Skip Links

USGS - science for a changing world

Scientific Investigations Report 2013–5211

Prepared in cooperation with the Great Lakes Restoration Initiative

Real-Time Piscicide Tracking Using Rhodamine WT Dye for Support of Application, Transport, and Deactivation Strategies in Riverine Environments

By P. Ryan Jackson and Jonathan D. Lageman

Thumbnail of and link to report PDF (24.4 MB)Abstract

Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process.

Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further, these strategies facilitate adjustment of rotenone application and deactivation strategies in real time if necessary based on the observed advection and dispersion of the rotenone plume.

Two large-scale and complex applications of rotenone in the Chicago Area Waterway System (CAWS) in 2009 and 2010 to combat invasive Asian carp are documented in this report. The application in Chicago Sanitary and Ship Canal (CSSC) in December 2009 involved more than 1,800 gallons of rotenone injected at multiple stations through a 6.2-mile reach of the canal near Lockport, Illinois. The rotenone plume was encased in Rhodamine WT dye so that two survey boats provided real-time feedback to shore personnel regarding the plume extent as it advected downstream. Real-time tracking of the rotenone was essential in this large-scale application because of the multistage injection strategy and the numerous deactivation points required to minimize collateral damage to fisheries in surrounding and receiving water bodies. All timing of application and deactivation operations relied on dye tracking. A second application of rotenone in May 2010 to the Little Calumet River near O’Brien Lock and Dam (Illinois) provided another opportunity for dye-tracking support operations; however, application and deactivation strategies were designed considering zero-flow conditions within the reach of interest. Therefore, dye was injected at the upstream and downstream boundaries of the rotenone application reach and was used to track movement of water in and out of a treatment reach, allowing proper deactivation to occur and avoiding unnecessary damage to fisheries downstream. The data collected during the real-time tracking operations for both applications allowed full documentation of the rotenone treatment for archival purposes and provided information for future applications.

First posted January 16, 2014

For additional information, contact:
Director, Illinois Water Science Center
U.S. Geological Survey
1201 W. University Avenue
Suite 100
Urbana, IL 61801
http://il.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Jackson, P.R., Lageman, J.D., 2014, Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments: U.S. Geological Survey Scientific Investigations Report 2013–5211, 43 p., http://dx.doi.org/10.3133/sir20135211.

ISSN 2328-0328 (online)



Contents

Abstract

Introduction

Sites

Methods of Tracking Piscicide Applications by Using Rhodamine WT

Documentation of Two Rotenone Applications Using Rhodamine WT Dye

Summary and Conclusions

References Cited

Appendix 1


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2013/5211/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 16-Jan-2014 09:28:20 EST