Skip Links

USGS - science for a changing world

Scientific Investigations Report 2014–5036

Prepared in cooperation with the Naval Facilities Engineering Command

Simulation of Zones of Groundwater Contribution to Wells at Site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York

By Paul Misut

Thumbnail of and link to report PDF (6.98 MB)Abstract

A three-dimensional groundwater-flow model is coupled with the particle-tracking program MODPATH to delineate zones of contribution to wells pumping from the Magothy aquifer and supplying water to a chlorinated volatile organic compound removal plant at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York. By use of driller’s logs, a transitional probability approach generated three alternative realizations of heterogeneity within the Magothy aquifer to assess uncertainty in model representation. Finer-grained sediments with low hydraulic conductivity were realized as laterally discontinuous, thickening towards the south, and comprising about 17 percent of the total aquifer volume.

Particle-tracking evaluations of a steady state present conditions model with alternative heterogeneity realizations were used to develop zones of contribution of remedial pumping wells. Because of heterogeneity and high rates of advection within the coarse-grained sediments, transport by dispersion and (or) diffusion was assumed to be negligible. Resulting zones of contribution of existing remedial wells are complex shapes, influenced by heterogeneity of each realization and other nearby hydrologic stresses. The use of two particle tracking techniques helped identify zones of contribution to wells. Backtracking techniques and observations of points of intersection of backward-tracked particles at shells of the GM–38 Hot Spot, as defined by surfaces of equal total volatile organic compound concentration, identified the source of water within the GM–38 Hot Spot to simulated wells. Forward-tracking techniques identified the fate of water within the GM–38 Hot Spot, including well capture and discharge to model constant head and drain boundaries. The percentage of backward-tracked particles, started at GM–38 wells that were sourced from within the Hot Spot, varied from 72.0 to 98.2, depending on the Hot Spot delineation used (present steady state model and Magothy aquifer heterogeneity realization A). The percentage of forward-tracked particles that were captured by GM–38 wells varied from 81.1 to 94.6, depending on the Hot Spot delineation used, with the remainder primarily captured by Bethpage Water District Plant 4 production wells (present steady state model and Magothy aquifer heterogeneity realization A). Less than 1 percent of forward-tracked particles ultimately discharge at model constant head and drain boundaries. The differences between forward- and backward-tracked particle percentage ranges are due to some forward-tracked particles not being captured by GM–38 wells, and some backward-tracked particles not intersecting specific regions of the Hot Spot.

During 2013, an aquifer test generated detailed time series of well pumping rates and corresponding water-level responses were recorded at numerous locations. These data were used to verify the present conditions steady state model and demonstrate the sensitivity of model results to transient-state changes.

First posted March 28, 2014

For additional information, contact:
Director, New York Water Science Center
U.S. Geological Survey
425 Jordan Road
Troy, NY 12180
(518) 285-5600
http://ny.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Misut, P.E., 2014, Simulation of zones of contribution to wells at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York: U.S. Geological Survey Scientific Investigations Report 2014–5036, 58 p., http://dx.doi.org/10.3133/sir20145036.

ISSN 2328-0328 (online)



Contents

Abstract

Introduction

Methods

Zones of Contribution to Wells

Discussion

Summary and Conclusions

References Cited

Glossary and Abbreviations

Appendix 1. List of wells with New York State Department of Environmental Conservation (NYSDEC) and U.S. Geological Survey (USGS) identification numbers


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2014/5036/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Friday, 28-Mar-2014 11:06:59 EDT