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Introduction
This appendix supplements the material presented in the 

body of this report. It is included only as documentation of the 
complete analysis and is meant to encourage further research. 
Herein, little attempt is made to explain any of the particulari-
ties of data. Full figures of all metrics considered and dis-
cussed in the report body are included.

Overall Goodness-of-Fit of Estimated 
Streamflow Records

Nash-Sutcliffe Efficiency of Estimated Daily 
Streamflow

The Nash-Sutcliffe efficiency of daily streamflow (NSE) 
quantifies how accurately the day-by-day observations of 
streamflow are reproduced in the estimated record. The dis-
tribution of the at-site NSEs for each prediction of ungaged 
basins (PUB) method is shown in figure C1. The horizontal 
axis indicates the PUB methods while the vertical axis shows 
the calculated efficiency. Most of the methods do poorly, with 
those based on annual moments performing worst. In gen-
eral, it can be seen that the transfer-based methods using the 
nearest-neighbor algorithm to select an index gage perform 
better than those that rely on the map-correlation algorithm. 
The best methods are the nearest-neighbor implementations 
of the drainage area ratio, QPPQ, monthly standardizations 
(SMS12 and SM12), and the Precipitation Runoff Modeling 
System (PRMS) and NN-AFINCH.

Nash-Sutcliffe Efficiency of the Logarithms of 
Estimated Daily Streamflow

The Nash-Sutcliffe efficiency of the logarithms of non-
zero daily streamflow (NSEL) captures the day-by-day perfor-
mance of the model but is somewhat less sensitive to outliers 
in the analysis. Taking the logarithms of the non-zero flows 
removes some of the extreme skew in the record. As a result, 
the statistic is more robust. While NSE is largely dominated 
by large errors in large flows, the NSEL may be more sensi-
tive to errors in the smaller flows. The distribution of NSEL 
for each PUB method is shown in figure C2. Even though the 
values of NSEL are slightly greater than the NSE, suggesting 
better performance, the conclusions remain similar: Methods 
relying on annual moments do not reproduce the record well. 
Transfer-based approaches using nearest-neighbor are superior 
to those relying on map correlation. The best methods remain 
the nearest-neighbor implementations of the drainage area 
ratio, QPPQ, monthly standardizations (SMS12 and SM12), 
and the PRMS and NN-AFINCH.

Root-Mean-Square Error of Estimated Daily 
Streamflow

The root-mean-square error (RMSE) of daily streamflow 
is a function of the Nash-Sutcliffe efficiency and the vari-
ability of the observed record. Because the RMSE is a mean 
value of highly skewed data, the statistic is highly sensitive to 
extreme values. The result is the large values of RMSE seen 
in figure C3. The conclusions reached by considering the NSE 
are nearly identical to those seen derived from the RMSE. The 
errors are greatest for methods relying on annual moments; 
nearest-neighbor outperforms map correlation. The nearest-
neighbor implementations of the drainage area ratio, QPPQ, 
monthly standardizations (SMS12 and SM12), and the PRMS 
and NN-AFINCH all perform well.

Root-Mean-Square-Normalized Error of 
Estimated Daily Streamflow

Because the RMSE is in streamflow units, it is difficult 
to compare the RMSE at one site to the RMSE at another site, 
especially if the streamflows between the sites are starkly 
different. This can be corrected by normalizing each error by 
the observation, much like a percent difference. Conducting 
this process produces the root-mean-square-normalized error 
(RMSNE) of daily streamflow. The RMSNE is defined for a 
given site as:

where S is the simulated streamflow and O is the 
observed streamflow on day i out of n days. The distributions 
of RMSNE are shown in figure C4. Because the RMSNE 
is still a mean value, the errors can appear large. Still, the 
message is the same: The annual methods are weakest; NN 
outperform MC; the best methods are the nearest-neighbor 
implementations of the drainage area ratio, QPPQ, monthly 
standardizations (SMS12 and SM12), and PRMS and 
NN-AFINCH.

Average Percent Error of Estimated Daily 
Streamflow

The average percent error of daily streamflow gives an 
indication how accurate each PUB method is on a given day. 
As can be seen in figure C5, all of the PUB methods here show 
a positive bias and vary widely. The annual methods show the 
greatest range and magnitude of error. The bias in the map-
correlation results is of a greater magnitude than the nearest-
neighbor results and shows a wider range of 
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variability. The average percent error is distinct from but simi-
lar to the percent bias, which is discussed as the average error 
in the mean below.

Pearson Correlation between Observed and 
Estimated Daily Streamflow

The Pearson correlation between observed and estimated 
streamflow quantifies the agreement between the two records. 
If the estimated series is a perfect prediction of the observa-
tions, the couplets of observed and estimated flow would fall 
along a one-to-one line and the Pearson correlation would be 
one. The distribution of the observed Pearson correlations for 
each PUB method is shown in figure C6. It is immediately 
apparent that the nearest-neighbor approaches are superior to 
the map-correlation implementations. From this measure, the 
annual methods appear more competitive than before. From 
this result, the choice of index gage seems to drive the Pearson 
correlation most. The PRMS model tracks closest with the 
nearest-neighbor approaches, while the two AFINCH group 
align with their index-gage cohorts.

Spearman Correlation between Observed and 
Estimated Daily Streamflow

The Spearman correlation between observed and esti-
mated streamflow captures the agreement between the ranks 
of the observed and estimated flows. Unlike Pearson, the mag-
nitude of error plays little part in Spearman, which relies only 
on the relative ranking of magnitudes. By this metric, all of 
the methods perform well (fig. C7). There is still a distinction 
between nearest-neighbor and map correlation, but the annual 
methods do not show the same degree of weakness seen in 
other metrics. This result suggests that the relative timing of 
the streamflow record is effectively transferred by all methods, 
but the magnitude of accumulation of errors drives the low 
values of Nash-Sutcliffe efficiency.

Ability to Reproduce Observed 
Storage-Yield Curves

In addition to overall goodness of fit, a reliable PUB 
method should also reproduce the cumulative properties 
and signatures of the streamflow record. The storage-yield 
curve (SYC) is one such signature and is used here to assess 
the cumulative impact of prediction errors on the possible 
applications of the estimated records. Here, the SYC is 
estimated using a constant-yield, no-fail, daily sequent peak 
algorithm (Thomas and Burden, 1963). See the report body for 
more information.

Nash-Sutcliffe Efficiency of Estimated Storage-
Yield Curves

Because the SYCs are generated from a uniform distribu-
tion of yield fractions, data do not exhibit the level of skew 
seen in the original streamflow records. Accordingly, the 
Nash-Sutcliffe efficiency of the SYCs (SYC-NSE) is more 
reliable than the NSE of streamflow. From figure C8, which 
shows the distributions of the SYC-NSE, all of the methods 
reproduce the SYC well. These values of NSE are even greater 
than was seen in the overall goodness of fit. The standardiza-
tion of flows with an annual mean and standard deviation 
is the only method that fails to reliably reproduce the SYC. 
There is less of a distinction between nearest-neighbor and 
map correlation here, but the NN methods remain slightly 
superior. Some of the methods, such as the drainage-area ratio, 
are highly sensitive to the index gage.

Nash-Sutcliffe Efficiency of Logarithms of 
Estimated Storage-Yield Curves

As before, in the case of skewed data, the NSE of the 
logarithms of the nonzero realizations of a quantity might be 
more reliable than the original NSE. There is little skew pres-
ent in the SYC, so the SYC-NSEL—the distributions of which 
are shown in figure C9—gives nearly the same message as the 
NSE-SYC. Still, the SYC-NSEL suggests an interesting weak-
ness of NN-SMS12R.

Root-Mean-Square Error of Estimated Storage-
Yield Curves

Figure C10 shows the distribution of root-mean-square 
error in the SYC for each PUB method. The best methods are 
NN-QPPQ, NN-SMS12L, NN-SM1, NN-SM12, and MC-
SMS12L. In general, the nearest-neighbor methods are better 
than the map-correlation methods, but this is not uniformly 
the case. By this measure, the more process-based methods 
(PRMS and AFINCH) do not perform as well as the transfer-
based methods using nearest-neighbor selection criteria.

Root-Mean-Square-Normalized Error of 
Estimated Storage-Yield Curves

Because there is not much skew in data, normalizing the 
RMSE does not greatly alter the conclusions. (See above for 
calculation of the RMSNE; here the RMSNE was calculated 
based on observed (O) and simulated (S) storage.) Figure C11 
shows the distribution of the root-mean-square-normalized 
error of the SYC. The RMSNE-SYC does show an improved 
performance in the PRMS. This, in comparison to previous 
results, suggests that the error is greatest in the high end of the 
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SYC for the PRMS, but that the error is of a similar proportion 
along the SYC. The PRMS may be misrepresenting a portion 
of the distribution of flows.

Average Percent Error of Estimated Storage-
Yield Curves

The distribution of the average percent error of the esti-
mated storage is shown in figure C12 for each PUB method. 
Most of the methods show a significantly positive error on 
average in the SYC. The PRMS and AFINCH show a strong 
underestimate of the SYC. There is only a slight distinction 
between the nearest-neighbor set and map-correlation group. 
NN-DAR produces the smallest median error. The percent 
error is interesting because it can be interpreted as resulting 
in overdesign or underdesign. In this case, the process-based 
models lead toward underdesign, while the transfer-based 
models result in only a slight overdesign.

Pearson Correlation between Observed and 
Estimated Storage-Yield Curves

The Pearson correlations between observed and estimated 
SYCs are all quite high (fig. C13). There is only a slight 
difference between the nearest-neighbor and map-correlation 
implementations. This uniformly high performance suggests 
the errors associated with the daily records of streamflows 
are smoothed out, to some degree, when aggregated and 
sequenced to produce a simplification like the SYC.

Spearman Correlation between Observed and 
Estimated Storage-Yield Curves

Because Spearman correlation only considers the ranks 
of a series and the SYC is a simple, monotonic curve, all of 
the Spearman correlations are nearly perfect for almost every 
PUB method shown in figure C14. It is, therefore, remarkable 
that only the annual standardization of flows with a mean and 
standard deviation produces such dissimilar results. All of the 
other methods perform well.

Ability to Reproduce Observed Flow 
Statistics

Coefficient of Variation of Annual Streamflow

The distribution of percent error in the estimate of annual 
coefficient of variation calculated from each estimated flow 
series is shown in figure C15. The transfer-based methods 
show general unbiasedness. The best of these methods are the 
nearest-neighbor implementations of the drainage area ratio, 

and standardizing by annual or monthly means. The more 
process-based methods (PRMS and AFINCH) underestimate 
the annual coefficient of variation. The coefficient of varia-
tion of the annual flows is calculated by aggregating the daily 
flows to annual flows and then taking the ratio of the mean and 
standard deviation of these annual flows. This is slightly dif-
ferent than the coefficient of variation of daily streamflow and 
the L-CV of daily streamflow, which are discussed below.

Coefficient of Variation of Daily Streamflow

All of the PUB methods show more variability in the pre-
diction of the daily coefficient of variation than in the annual 
coefficient. The transfer-based methods all show approximate 
unbiasedness, but some have a much greater variability—espe-
cially the annual methods (fig. C16). There is little difference 
between the nearest-neighbor and map-correlation cohorts. 
The same methods remain strongest: the nearest-neighbor 
implementations of the drainage area ratio, and standardizing 
by annual or monthly means. The more process-based meth-
ods (PRMS and AFINCH) continue to produce a strongly 
negative median bias. The coefficient of daily flows is the ratio 
of the mean and standard deviation of daily flows; for related 
statistics, see the discussion of the coefficient of variation of 
annual streamflow and the L-CV of daily streamflow.

10th Percentile of the 7-Day Average Annual-
Minimum Streamflows

The error in low-flow statistics is much more variable 
than in other metrics. The distribution of errors in the 10th per-
centile of the 7-day average annual-minimum event is shown 
in figure C17 for each PUB method. Except for the PRMS, 
most of the competitive methods show a negative error. The 
SMS12R method produces the greatest magnitude of error, 
on average. NN-SMS12L produces the best balance between 
median bias and variability of bias. The 10th percentile of the 
7-day average annual-minimum streamflow is based on the 
empirical distribution of 7-day average annual minimums; 
this is related to but distinct from the 10-year, 7-day average 
annual minimum, which is typically calculated by fitting a log-
Pearson distribution.

50th Percentile of the 7-Day Average Annual-
Minimum Streamflows

The 50th percentile of the 7-day average annual-
minimum event shows slightly more variability across PUB 
methods than the 10th percentile. The distributions of these 
percent errors are shown in figure C18. Only the NN-DAR and 
NN-SM12 show minimal bias on average. NN-SM12 offers 
a median error of -3 percent with a relatively small amount 
of spread. NN-SMS12L shows smaller variability, but with 
a greater magnitude of median error (-16 percent). As with 
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the 10th percentile, the 50th percentile of the 7-day average 
annual minimum is closely related to the 2-year, 7-day average 
annual minimum. The 10th percentile was calculated using 
only an empirical distribution of 7-day average annual mini-
mums rather than fitting a specific distribution.

90th Percentile of the Annual-Maximum 
Streamflows

Figure C19 shows the distribution of errors in the 90th 
percentile of the distribution of the annual-maximum events 
for each PUB method. All of the transfer-based methods 
produce a relatively unbiased estimate of this percentile, on 
average, with medians ranging from -5 percent to 8 percent. 
The variability of bias is greatest for the annual methods with 
the nearest-neighbor approaches showing slightly less variabil-
ity than the map-correlation applications. The unbiasedness 
of this annual-maximum event, when compared to the annual 
minimum presented earlier, suggests that all the PUB methods 
are better at predicting high flows than low-flow events. Both 
THE PRMS and both iterations of AFINCH underestimate 
the flood event: medians errors of -19 percent, -20 percent, 
and -29 percent. The 90th percentile of annual-maximum 
events is closely related to the 10-year flood. (As with annual 
minimums above, the 90th percentile was estimated with an 
empirical distribution rather than a fitted distribution.) In light 
of this relationship, the biasedness of the more process-based 
approaches ties back to what was seen with the SYC: these 
methods lead towards underdesign of water-resources struc-
tures, planning smaller reservoirs than needed, or preparing for 
smaller floods than might be expected.

Daily, 90-Percent-Exceedance Streamflow

Considering the 90-percent-exceedance flow again 
shows that the low flows are not estimated as well as the high 
flows. The distribution in the percent error of the 90-percent-
exceedance flow is shown in figure C20 for each PUB method. 
NN-DAR and NN-SM12 and MC-AFINCH all show general 
unbiasedness. The variability of bias is greatest in the annual 
transfer-based methods. The PRMS drastically overestimates 
the low-flow events. The wide variability of performance per-
taining to this statistic demonstrates that the low-flow events 
are not well represented by most PUB methods.

Daily, 75-Percent-Exceedance Streamflow

As compared to the error seen in the 90-percent-
exceedance flow, the 75-percent-exceedance flow shows 
significantly less variability in performance (fig. C21). For 
all of the transfer-based methods, except the annual method, 
unbiasedness (±5 percent) is shown with a reasonable amount 
of variability. Map-correlation causes only a slight exaggera-
tion of the variability of errors. The process-based methods 
show a strong level of bias; the PRMS in particular continues 

to overestimate this flow quantile by a median of 51 percent. 
NN-SM12 balances variability and median error quite well.

Daily, 50-Percent-Exceedance Streamflow

As one moves along the flow duration curve to consider 
the median, the bias in the transfer-based methods continues to 
improve. The distribution of the percent error in the median is 
shown in figure C22 for each PUB method. The annual meth-
ods continue to produce a widely variable bias, but the other 
methods show a reduction in the variability of error. Both the 
PRMS and AFINCH continue to show a distinct positive error. 

Daily, 25-Percent-Exceedance Streamflow

The distribution of the errors in the 25-percent-exceed-
ance flow is not very different from that seen in the median, 
except that variability is further reduced here. The distribu-
tions for all of the PUB methods are shown in figure C23. The 
drainage area ratio, QPPQ, and the monthly standardizations 
all show median unbiasedness with a much smaller variability 
than seen previously. The annual methods overpredict this 
high-flow event. The more process-based methods continue to 
overpredict, though the median is much less egregious here, 
especially for the AFINCH realizations. This begins to suggest 
that the more process-based methods are strongly driven by 
high-flow fitting.

Daily, 10-Percent-Exceedance Streamflow

The distribution of errors in the 10-percent-exceedance 
event is nearly identical to the distribution of errors in the 
25-percent-exceedance event. The distributions for every PUB 
method are shown in figure C24. The transfer-based methods 
remain unbiased, with the annual methods continuing to show 
a positive bias with a high degree of variability. AFINCH 
is nearly unbiased, while the PRMS continues to show a 
slightly greater amount of negative bias. As the bias in the 
process-based methods is smaller here than in the 25-percent-
exceedance event, the process-based methods appear to be 
tied closely to reproducing high-flow events and the cost of 
overestimating low flows.

Ability to Reproduce Fundamental 
Daily Streamflow Statistics

It was recently shown that seven statistics can be used 
to characterize the distribution of daily streamflow (Archfield 
and others, 2013). These Fundamental Daily Streamflow 
Statistics (FDSS) include the mean daily streamflow, the coef-
ficient of variation of daily streamflow (L-CV), the skew of 
daily streamflow (L-skew), the kurtosis of daily streamflow 
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(L-kurtosis), the lag-1 autocorrelation coefficient of daily 
streamflow, and the amplitude and phase of the sinusoidal sea-
sonal trend of daily streamflow. Reliable PUB methods should 
accurately reproduce the distribution of daily streamflow. The 
following section presents the errors of each PUB method in 
reproducing the FDSS.

Mean Daily Streamflow

Nearly all of the PUB methods considered here reproduce 
an unbiased estimate of the mean daily streamflow. The distri-
bution of the error in the mean is shown for each PUB method 
in figure C25. This statistic is equivalent to the percent bias, a 
common statistical tool for assessing an estimator. The same 
methods continue to succeed: nearest-neighbor implementa-
tions of DAR, QPPQ, and monthly standardizations (SM12 
and SMS12). The annual methods are not competitive. The 
PRMS produces a distinct positive error in the mean, while 
AFINCH slightly underestimates the mean.

Coefficient of Variation of Daily Streamflow 
(L-CV)

The L-CV of daily streamflow is a more reliable estimate 
of the variability of daily streamflow than the normal CV 
(Vogel and Fennessey, 1993). The distributions of errors in the 
L-CV are shown in figure C26. The transfer-based methods 
produce a slight positive bias, but are generally unbiased. The 
least biased methods are NN-DAR, NN-SM1, and NN-MS12. 
The PRMS significantly underestimates the variability in 
daily streamflow (median error of -17 percent), a problem 
that could have design and management implications. The 
AFINCH methods show a slightly negative median error (near 
–10 percent) as well.

Skewness of Daily Streamflow (L-skew)

The skewness of the daily record represents the third 
moment of the distribution. The distribution of the error in the 
L-skew for each PUB method is shown in figure C27. Except 
for NN- and MC-SMS12R, all of the transfer-based methods 
produce unbiased estimates of the L-skew. The PRMS and 
NN- and MC-AFINCH continue to underestimate these higher 
order moments. The discrepancy between process-based and 
transfer-based model behavior suggests that the error structure 
is distinctly different between the two approaches; it may be 
that the transfer of information solely from an index gage car-
ries some intrinsic natural behavior.

Kurtosis of Daily Streamflow (L-kurtosis)

The L-kurtosis represents the fourth moment of the 
distribution of daily streamflow. As can be seen in figure C28, 
the transfer-based methods continue to produce relatively 
unbiased estimates of the L-kurtosis while the more process-
based models produce a distinct underestimate. This is further 
evidence that the error structure in the predicted records of 
these two broad approaches is inherently different. The natural 
flow information from an index gage, whereas AFINCH only 
transfers relative timing, improves the reproducibility of the 
parameters of the distribution of daily streamflow.

Lag-1 Autocorrelation of Daily Streamflow

All of the transfer-based methods are nearly identically 
unbiased in their ability to reproduce the lag-1 autocorrelation 
of daily streamflow (fig. C29). The daily disaggregation of 
AFINCH, which relies on an index gage to downscale flows, 
also produces unbiased estimates of the lag-1 autocorrelation. 
The PRMS, on the other hand, underestimates the lag-1 
autocorrelation. Again, this difference could be driven by the 
use of an index-gage to map the timing of events: by using 
an index gage, a “natural” estimate of lag-1 autocorrelation 
is explicitly transferred, while a process-based model must 
attempt to reproduce that autocorrelation from scratch.

Amplitude of the Sinusoidal, Seasonal Trend of 
Daily Streamflow

All of the methods, except AFINCH, produce an unbiased 
estimate of the amplitude of the sinusoidal seasonal trend in 
daily streamflow (fig. C30). The PRMS is surprisingly in line 
with all of the transfer-based methods. AFINCH, which is at 
its heart a monthly model, overestimates the amplitude of the 
seasonal trend. This is true for both the NN and MC imple-
mentations. For more information on the estimation of the 
amplitude of the sinusoidal seasonal trend, see Archfield and 
others (2013).

Phase of the Sinusoidal, Seasonal Trend of Daily 
Streamflow

The phase, or timing, of the sinusoidal seasonal trend is 
unbiasedly represented by all of the PUB methods considered 
here (fig. C31). The PRMS slightly underestimates the timing 
of the seasonal trend and produces a wider range of variability. 
As this is again an issue of timing, like the lag-1 autocorrela-
tion, this difference may be the result of the mechanism of pre-
diction: the transfer-based models (and AFINCH) rely on an 
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index gage for daily timing, while the PRMS must work from 
climate inputs alone and reproduce those processes. For more 
information on the estimation of the phase of the sinusoidal 
seasonal trend see Archfield and others (2013).

Root-Mean-Square-Normalized Error across All 
Fundamental Daily Streamflow Statistics

The root-mean-square-normalized error (RMSNE) can 
be used to quantify the average error across a set of statistics 
that significantly differs in scale or units. This statistical set is 
calculated using the same formula as the root-mean-square-
normalized error of daily streamflow, except that the seven 
FDSS are used in the formula instead of daily streamflow 
values. The result is that each error in each statistic is stan-
dardized to be a percent error. By standardizing errors, all 
seven FDSS can be combined into a single statistic that sums 
up how well each PUB method reproduced the distribution of 
daily streamflow. The distribution of the RMSNE of FDSS is 
shown in figure C32. The annual methods are clearly inferior 
to all others. The map-correlation applications show only a 
slightly greater RMSNE than their nearest-neighbor counter-
parts. The best methods are the nearest-neighbor implementa-
tions of DAR, QPPQ, and standardizing by monthly moments 
(SMS12 and SM12). The PRMS and MC-AFINCH show a 
greater RMSNE than these methods, but the magnitude is still 
relatively small.
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