
CHAPTER 9
PROGRAMMER DOCUMENTATION

This chapter provides code documentation for programmers. This chapter starts with sections on overall design
decisions and the use of Fortran modules for sharing data. The remaining sections describe the MAIN Program, each
package, and the utility subroutines; the extent of the documentation varies substantially among the sections. The
most detailed documentation is provided for the MAIN Program, the Basic (BAS) Package, the Layer-Property Flow
(LPF) Package, the River (RIV) Package, Recharge (RCH) Package, and the Utility subroutines. The remaining
stress packages are similar to RIV and RCH, so the subroutines are only briefly summarized. The Block-Centered
Flow (BCF) Package is similar to LPF. Solvers are only briefly described because rarely are they modified, and
programming details can be found in the references. Many details about the programs also are included in the code
as Fortran comments, which must be examined to gain total understanding of the code.

Overall Design Decisions

The following paragraphs provide information about a variety of programming decisions or conventions that
were adopted for MODFLOW. The coding decisions are not absolute, and coding style is not strictly enforced;
however, anyone who examines the code is likely to notice some aspects of the coding decisions. Developers of new
code are encouraged to follow the coding decisions.

MODFLOW is written as a batch program, which means that the program is designed to run without user
intervention. The primary reason for this is the expectation that execution time will be lengthy. Execution time of
course varies with the problem and the power of the computer, but this expectation continues to be valid.
Simulations frequently take many minutes, and simulations taking hours or days are common.

 The input data are read from files that must be prepared in advance. Although interactive computer programs
usually are used to prepare the input data, interactive data input has been intentionally avoided within MODFLOW
because this is in conflict with the view that MODFLOW is a batch program. The methods of interactive input are
inherently less standard among kinds of computers so that including interactive input would result in a less portable
program. The variety of user preferences would also promote the addition of numerous input options that would
cause the code to be more difficult to understand. From the perspective of maintaining a compact, efficient, and
easily understood code, input data read from files is best.

To maximize computational efficiency and minimize code complexity, MODFLOW includes minimal error
checking. Also, when an error is found, the program stops rather than prompting the user to correct the error and
resuming computations. This does not mean that the author views error checking as unimportant. Rather, the author
believes that the error checking is best done as part of an interactive program that prepares the input files. Having
separate data preparation and data checking makes possible the accommodation of the needs and preferences of a
variety of users while keeping the model code straightforward and efficient.

Variable names generally are six characters or less, which was originally a requirement of Fortran. Short names
also help to keep the code compact. Longer variable names are used sparingly in new parts of the code. Changing the
original variable names to longer names at this time would be unwise because of possible confusion.

Many programmers have strong feelings about the issue of specifying the data type of variables. Default implicit
typing generally is used in MODFLOW. This means that type statements are not used unless specifically needed;
and therefore, the type will be Real for variables starting with letters A–H and O–Z, and the type will be Integer for
variables starting with I–N. The default types allow the code to be shorter, but limit flexibility for naming variables.
Requiring data types to be declared for all variables also would have the advantage that the compiler would produce
an error if an untyped variable were used, which is helpful for avoiding misspelling of variables. Nevertheless, the
desire for short, concise code led to the decision to use default typing.

Logical variables generally are avoided. Instead, Integer flags are used in which false is a value of 0 and true is a
value of not 0 (usually 1). This is partly evolutionary because the original authors experienced errors with early

9–2 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Fortran compilers regarding logical variables. Some code simplicity also is gained from avoiding the need for logical
type statements and logical operators.

The precision used to represent numbers in the computer determines in large part the accuracy of the numeric
solution of the flow equation. When using Fortran, precision depends on the computer hardware and the declared
precision of Real numbers. Although the Fortran standard does not directly specify precision requirements, Fortran
includes single and double precision Real numbers without specifying the actual precision of either type. Fortran 90
provides a further mechanism for finding out the precision of numbers and specifying what precision is desired, but
still no absolute requirements for numeric precision are incorporated. MODFLOW was developed assuming that
single precision Real numbers are represented with approximately 32 binary digits and double precision Real
numbers are represented with 64, which was and continues (2005) to be common among computers. The default
implicit Real type is single precision. When double precision is desired, the type is explicitly declared to be double
precision.

Tests of the original MODFLOW code were done to determine the need or benefit from making some variables
double precision. The tests showed that a wide variety of problems worked well when using a limited amount of
double precision. Head and some of the solver arrays were made double precision based on this testing. Some
problems benefit from the use of full double precision, and in general, the larger the problem, the more likely that
full double precision is beneficial. Other reasons why double precision might be needed are for high-precision
answers and for problems where the head distribution is relatively flat in large areas of the model.

 The number of cells in a typical model has increased over the years as the complexity of problems and
computer speed have increased; thus, the need for full double precision is greater now than when MODFLOW was
originally released (1984). This would argue in favor of eliminating the mixed precision coding in favor of full
double precision; however, the original mixed precision continues to be adequate for a variety of problems. There is
a penalty of computer memory, disk space, and sometimes on execution time when full double precision is used. The
author is reluctant to impose this penalty unnecessarily. Therefore, the original mixed precision code has been
maintained in MODFLOW–2005. Modern Fortran compilers have an option to convert all Real numbers to double
precision without the need to modify the code, so on most computers, making any code changes to convert the code
to double precision is unnecesssary. Simply recompile by using the double precision compiler option. When
necessary, code modification to convert MODFLOW to all double precision as described by McDonald and
Harbaugh (1988, Appendix A) is still a relatively simple task.

To avoid inconsistent results among early Fortran compilers, mixed precision in a single arithmetic expression
was avoided when MODFLOW was developed, and this practice continues. If any operand in an arithmetic
expression is double precision, all of the single precision operands are replaced with temporary double precision
variables that are set equal to the single precision values. These temporary variables have no affect when converted
to full double precision. When constants are needed in arithmetic statements, ambiguity over the precision of the
constants is generally avoided by using variables to store the constant values. Regardless of the precision of the
constant, the Fortran compiler will cause the constant to be converted to the precision of the variable. The constant
value is then referenced using the variable. For example, variables ONE and ZERO are typically used to store values
for 1.0 and 0.0, respectively.

Explicit DO Loops are used throughout much of MODFLOW to make assignments of array elements an
element at a time; however, in some places a Fortran 90 array assignment statement is used to assign values to all
elements of an array without using a Do Loop. The lack of array assignment statements is primarily evolutionary in
that this capability was not available until Fortran 90. Further, the author sees benefit in maintaining explicit loops
for the sake of clarity. Although array assignment statements result in shorter code, they tend to make the code more
obscure. When an array assignment statement is used, one must recognize that a variable is an array to understand
what is going on in the code.

Experience has shown that some specifiers used in the Fortran OPEN statement are not standard among all
compilers. File openspec.inc contains variable definitions used for opening files. Variables ACCESS, FORM, and
ACTION are used as values for the ACCESS, FORM, and ACTION specifiers in open statements. Openspec.inc is
incorporated in the code whenever the variables are needed by using a Fortran INCLUDE statement. The values of
variables can be modified in openspec.inc and the code recompiled if different values for the open specifiers are
required.

 Chapter 9. Programmer Documentation 9–3

Output to the Listing File is mostly written using lines of 80 characters or less. Although computer displays are
no longer limited to 80 characters as in the past, a width of 80 characters is judged to be a convenient size for a wide
range of uses. For compatibility with older versions of MODFLOW, the utility subroutines continue to support the
writing of lines that are 132 characters wide.

Each stress and internal flow package must incorporate a budget subroutine that adds budget data to the VBVL
array. The VBVL array is defined as part of Fortran module GWFBASMODULE of the Basic Package. Additional
information about the model budget is contained in Chapter 3 of this report. Budget subroutines can optionally
support cell-by-cell budgets, and all packages documented in this report support this capability. This capability
requires budget data to be written into a file using the appropriate cell-by-cell budget utility subroutine.

When the cell-by-cell budget capability is supported, the budget subroutine should store budget values in array
BUFF. BUFF should contain the net inflow for each cell in the entire grid. At cells where IBOUND is 0 or where
stress is not applied, BUFF should be set equal to 0. The Ground-Water Flow Process does not use the budget values
stored in BUFF, but this is a mechanism for other processes to obtain the budget data. Further, for packages that
specify stresses using lists of cell locations (as opposed to layer arrays), the cell-by-cell budget values should be
stored in the list of data for each stress location. Again, this can be useful for other processes. Space for this budget
data must be reserved in the list of data.

For internal flow packages, flow between adjacent cells is a special kind of cell-by-cell budget data. These data
do not represent inflow or outflow for the system as a whole, but the data can be useful for many purposes. These
data comprise three terms, one for each coordinate axis as described in Chapter 3. These data are written to a file as
is done for inflows and outflows. Flow between adjacent cells is also stored in BUFF for use by the Ground Water
Transport Process if the IBDRET flag is not 0. When IBDRET is not 0 and budget data are not written to disk, flow
between adjacent cells is computed only for a subset of the grid, which is designated through subroutine arguments.
IBDRET is a local variable in the MAIN Program.

Data Declaration and Sharing Using Fortran Modules

Shared data can be declared in Fortran modules. This was not done in the original code because the capability
was not available until Fortran 90. Most data were passed to subroutines as arguments, which results in long
argument lists, but makes clear which data are used by the subroutines. Shared data in modules are passed to
subroutines using the Fortran USE statement. The “ONLY” specifier to USE allows the specific variables being used
to be identified in each subroutine. Fortran modules eliminate the need for most subroutine arguments.

Figure 9–1 is an example Fortran module for a simple river package. This is simpler than the RIV Package in
MODFLOW–2005, but illustrates the concept of sharing data using a Fortran module. Integer NRIVER is the
number of river cells in use in the current time step, and MXRIVR is the maximum number of river cells that can be
used in any stress period. RIVR is a two-dimensional array declared as a pointer. RIVR is allocated with the first
index being the number of values needed for each river cell, and the second index being MXRIVR. The specific
dimensions for RIVR will be declared when the array is allocated in the Allocate and Read Procedure subroutine
(GWF2RIV7AR). All of these variables have the SAVE attribute so that they will never become unassociated.

 MODULE GWFRIVMODULE
 INTEGER,SAVE ::NRIVER,MXRIVR
 REAL, SAVE, DIMENSION(:,:), POINTER ::RIVR
 END MODULE GWFRIVMODULE

Figure 9–1. Fortran module for declaring shared data.

The data in the module can be accessed in any subroutine by including the statement

 USE GWFRIVMODULE, ONLY:NRIVER,MXRIVR,RIVR

9–4 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

If each river cell requires six data values, the memory for RIVR can be allocated with the statement:

 ALLOCATE (RIVR(6,MXRIVR))

A new complexity is introduced when the possibility of Local Grid Refinement (LGR) (Mehl and Hill, 2004) is
added to MODFLOW. Although LGR is not described here, the impact on shared data is described. LGR requires
data to be defined for multiple grids. At a minimum, a regional grid for the entire modeled area and a refined grid
containing a subset of the modeled area is included. The regional and refined grids must both have data defined. In
MODFLOW–2005, multiple grids are accommodated by using a derived data type. The derived type contains data
for one grid, and an array of the derived type can then store data for multiple grids.

Figure 9–2 is the Fortran module for the RIV Package of MODFLOW–2005, which supports LGR.
GWFRIVTYPE is a derived type that includes a complete set of pointers for all data required for a grid.
GWFRIVDAT is an array of this type. Thus each element of GWFRIVDAT can contain data for one grid. The data
for different grids can be accessed by specifying an element of GWFRIVDAT and the variable within
GWFRIVTYPE. For example, the value of MXRIVR for the second grid would be GWFRIVDAT(2)%MXRIVR.

 MODULE GWFRIVMODULE
 TYPE GWFRIVTYPE
 INTEGER,POINTER ::NRIVER,MXRIVR,NRIVVL,IRIVCB,IPRRIV
 INTEGER,POINTER ::NPRIV,IRIVPB,NNPRIV
 CHARACTER(LEN=16), DIMENSION(:), POINTER ::RIVAUX
 REAL, DIMENSION(:,:), POINTER ::RIVR
 END TYPE
 TYPE(GWFRIVTYPE), SAVE:: GWFRIVDAT(10)
 END MODULE GWFRIVMODULE

Figure 9–2. Fortran module for declaring shared data with support for multiple grids.

Several additional variables compared with those used for the simple river package (fig. 9–1) also have been
included in the module shown in figure 9–2. These variables support some of the optional capabilities of the River
Package. See the documentation for the River Package for definitions of all the variables.

Variables in a derived type can be referenced more simply through the use of pointers. Although some extra
steps are needed to setup the pointers, the code then looks more like the code without the LGR capability. This
approach is implemented by creating pointers that have the same names as the variables in the derived type as shown
in figure 9–3. The 4 lines preceding the derived type declaration are the declarations for these variables. Each pointer
can be made to point to a variable for a specific grid. The pointers can then be used to access the variables for that
grid without repeating the grid designation. For example, the statement

MXRIVR=>GWFRIVDAT(2)%MXRIVR

causes MXRIVR to point to the value of MXRIVR in the derived type for grid 2, and accordingly,
GWFRIVDAT(2)%MXRIVR can be accessed simply as MXRIVR.
 MODULE GWFRIVMODULE
 INTEGER,SAVE,POINTER ::NRIVER,MXRIVR,NRIVVL,IRIVCB,IPRRIV
 INTEGER,SAVE,POINTER ::NPRIV,IRIVPB,NNPRIV
 CHARACTER(LEN=16),SAVE, DIMENSION(:), POINTER ::RIVAUX
 REAL, SAVE, DIMENSION(:,:), POINTER ::RIVR
 TYPE GWFRIVTYPE
 INTEGER,POINTER ::NRIVER,MXRIVR,NRIVVL,IRIVCB,IPRRIV
 INTEGER,POINTER ::NPRIV,IRIVPB,NNPRIV
 CHARACTER(LEN=16), DIMENSION(:), POINTER ::RIVAUX
 REAL, DIMENSION(:,:), POINTER ::RIVR
 END TYPE
 TYPE(GWFRIVTYPE), SAVE:: GWFRIVDAT(10)
 END MODULE GWFRIVMODULE

Figure 9–3. Fortran module for declaring shared data with support for multiple grids and pointers
for simplified access.

 Chapter 9. Programmer Documentation 9–5

To make possible the use of the pointers as simple variables, several steps are needed in addition to declaring
the pointers in the module. First, the non-array pointers must be allocated much like the array pointers are allocated.
Allocating a scalar pointer causes memory to be created for that scalar. This is done by ALLOCATE statements at
the beginning of the Allocate and Read (AR) Procedure subroutine. When LGR is used, the AR subroutine will be
called for each grid. At the end of the AR subroutine, the pointers to the variables for the current grid must be saved
in the corresponding pointers of the derived type (GWFRIVDAT) for the grid. For example, the statement

GWFRIVDAT(2)%MXRIVR=>MXRIVR

causes the MXRIVR pointer for the current grid to be saved in the derived type for grid 2. The complete set of these
pointer saving statements are placed in a pointer saving subroutine, named SGWF2RIV7PSV for the River Package,
which is called at the end of the AR subroutine. All other subroutines that use the data need to insure that the
pointers are set to the current grid by setting the simple variable pointers. This is done by calling a pointer setting
subroutine, named SGWF2RIV7PNT for the River Package, at the beginning of each subroutine. The pointer setting
subroutine contains statements setting the pointers for all the data for the package. Each package that supports LGR
will have a pointer saving secondary subroutine and a pointer setting secondary subroutine. These pointer saving and
setting subroutines are not specifically documented in the subsequent sections that document each package because
they all have the same simple structure.

Fortran provides a mechanism for releasing allocated memory, which is called deallocation. Memory is used
throughout a simulation in MODFLOW, so deallocation is not needed until the end. Further, a Fortran program
automatically releases all memory when the program terminates, and accordingly, explicit memory deallocation
generally is not required in MODFLOW. A deallocation procedure is included in the MODFLOW–2005 flowchart
(fig. 3–1), however, and each package includes a deallocation subroutine that is called to release memory from the
Ground-Water Flow Process (GWF). The deallocation subroutines are not specifically documented in the subsequent
sections that document each package because they all have the same simple structure.

MAIN Program

The MAIN Program controls the order in which the primary subroutines are executed. This occurs with CALL
statements that specify by name the subroutines to be executed. The arrangement of CALL statements in the MAIN
Program reflects the order of procedures shown in the system flow chart (fig. 3–1). Within most procedures, the calls
to the primary subroutines should begin with the Basic Package (if included in that procedure) followed by calls to
the other packages in any order. The one exception is that the Basic Package Deallocate subroutine should be the last
call in the Deallocate procedure. The reason for this is that the data allocated in the Basic Package may be needed by
other deallocate subroutines.

The subroutines of a package are called only if the package is being used in a simulation. The Name File
indicates which packages are being used. Each primary option has a unique file type; when the option is a package,
the file type is simply the package abbreviation. The defined file types are stored in the one-dimensional CUNIT
variable; a DATA statement in the MAIN Program defines these values. CUNIT contains 100 elements, and each
element consists of four characters. Unused elements are filled with blanks. A corresponding IUNIT integer variable
also has 100 elements. The Basic Package initializes all IUNIT values to 0. When the Name File is read, each file is
tested to see if its File Type parameter matches one of the defined file types in CUNIT. If a match is indicated, the
unit number for that file is placed in the element of IUNIT that corresponds to the matched element of CUNIT.
IUNIT is an indicator of which options are active, and therefore is tested to determine whether or not the subroutines
of a package should be called. For example, the Recharge Package corresponds to the eighth element of IUNIT. If
IUNIT(8) is greater than 0; then the Recharge Package is active, and the primary subroutines of the Recharge
Package are all called within the appropriate procedures.

The MAIN Program is the only place where Fortran modules are used without the “ONLY” option. The reason
for using modules in the MAIN Program is to allow all data to pass to the solvers using subroutine arguments. The
subroutine arguments indicate which variables are used.

9–6 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

File “openspec.inc” appears in an Include Statement in the MAIN Program because openspec.inc defines file
attributes that can sometimes vary among compilers. Putting such attributes in a separate file allows the code to be
changed in many places by modifying the single file. In the MAIN Program, the Open Statement for the Name File
uses one of the file attributes (ACTION).

Character variable VERSION is defined using a Fortran Parameter Statement. VERSION is used to identify the
specific version of MODFLOW.

The executable part of the code starts by writing VERSION to the standard output. Then, two unit numbers are
defined. INUNIT is the unit number for the Name File, and IERRU is the output unit number for writing errors.

The MAIN Program makes use of a special secondary subroutine, GETNAMFIL, to get the name of the Name
File. This subroutine is not part of any MODFLOW package. Isolating this code in a separate subroutine makes the
MAIN Program easier to follow and makes modifying the way the Name File is defined easier should this be
desired. GETNAMFIL first attempts to get the Name File from the command line. If the command line argument is
absent, the user is prompted to enter a file name. Modifying the call to a system subroutine that retrieves the
command line may be necessary. After calling GETNAMFIL, the MAIN Program opens the Name File and writes
the name to standard output.

The next step in MAIN is to call the standard Fortran subroutine for obtaining the date and time. This will be
used at the end of the program to compute the elapsed simulation time.

The variable IGRID is incorporated in some primary subroutines to facilitate the addition of the Local Grid
Refinement (LGR) capability mentioned above. Variable IGRID is set equal to 1 in MAIN, which indicates the
primary grid.

The loop indices for iteration, time steps, and stress periods are needed in many subroutines; however, these are
not directly passed as arguments. Rather, duplicate variables are assigned the values and the duplicates are passed.
This avoids the appearance that these loop indices could be modified, which allows some Fortran compilers to
perform greater optimization.

Like subroutine GETNAMFIL, subroutine GLO1BAS7ET is a secondary subroutine of MAIN. GLO1BAS7ET
is used to compute execution time for the simulation and write the execution time to the standard output. This is an
unessential part of the program that users may wish to modify or delete. This routine makes a second call to the
standard Fortran date and time routine and computes the elapsed time since the initial call.

The following is a summary of the MAIN Program (the numbers in the list correspond to the numbers of the
comments in the MAIN Program listing):

1. USE package modules for purpose of data sharing.

2. Write banner to screen and assign 99 as the input unit number for the Name File.

3. Call GETNAMFIL to obtain the name of the Name File either from a command argument or from a user response
to a prompt. This code was placed in a subroutine rather than directly in the MAIN to avoid obscuring the
structure of the MAIN.

4. Open the Name File.

5. Get current date and time so execution time can be tracked.

6. Call primary subroutines in the AR Procedure. (GWF1BAS6AR reads the Name File and assigns IUNIT values.)

7. For each stress period:
7A. Read stress-period timing information.
7B. Read and prepare information that changes each stress period.
7C. For each time step:

7C1. Calculate the current time-step length and move "new" heads from the preceding time step to the
variable containing "old" heads of the current time step.

 Chapter 9. Programmer Documentation 9–7

7C2. For each solution iteration:
7C2A. Formulate the finite-difference equations.
7C2B. Calculate an approximate solution to the system of equations.
7C2C. If convergence criterion has been met, stop iterating.

7C3. Determine the type and amount of output needed for this time step.
7C4. Calculate overall budget terms and, if specified, calculate and print or record cell-by-cell flow terms.
7C5 Print and/or record heads and/or drawdown. Print the overall volumetric budget and simulation time
summary.
7C6. If convergence criterion was not met during iteration, STOP.

8. Call GLO1BAS7ET to get date and time at end of simulation.

9. Close files and deallocate memory.

10. End of program.

9–8 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Basic Package

Although the Basic (BAS) Package does not contribute terms to or solve the flow equation, the BAS Package
performs many logistical functions. BAS declares and allocates memory for variables that can be shared throughout
the GWF and other processes, initializes variables that are used to construct the flow equation, reads the Name File
and opens files, reads discretization data, and implements output control.

Basic Package Data
The shared Basic Package variables are declared in four Fortran modules: GLOBAL, PARAMMODULE,

GWFBASMODULE, and GWFCHDMODULE; tables 9–1, 9–2, 9–3, and 9–4 define these variables, respectively.
Some of the program variables have different names than the variables used to develop the finite-difference equation
in Chapter 2, and these differences are described in the tables.

GLOBAL Module

NIUNIT, which defines the size of the IUNIT, VBVL, and VBNM arrays, is defined using a Fortran Parameter
statement. These arrays cannot be readily defined on the basis of user requirements because these arrays are
allocated prior to the user specifying information about the required array dimensions.

PARAMMODULE Module

Parameter definitions for all packages are stored in a group of variables contained in Fortran module
PARAMMODULE. The parameter variables are somewhat complex, and it is recommended that they be accessed
only through the parameter utility subroutines. These routines create parameters and access all of the associated data.

The primary parameter data are stored in one-dimensional arrays. PARNAM contains the parameter name,
PARTYP contains the parameter type, B contains the parameter value, and IACTIVE is a flag indicating whether a
parameter is active in the current time step. The parameters are stored in the order in which they are defined.
Parameters are found when needed by a simple sequential search through PARNAM.

Parameter indexing data depend on whether a parameter is an array parameter or a list parameter. An array
parameter requires a set of clusters that define the cells in each layer that are associated with the parameter. Clusters
are stored in IPCLST. Pointers to the first and last cluster for a parameter are stored in IPLOC. For example, if
parameter 7 is a hydraulic conductivity parameter, then IPLOC(1,7) and IPLOC(2,7) contain the location of the first
and last clusters in IPCLST associated with this parameter.

A list parameter requires pointers to the first and last cells associated with the parameter in the list that stores
data for the package. These pointers are stored in IPLOC. For example, if parameter 5 is a river parameter, then
IPLOC(1,5) and IPLOC(2,5) contain the location in RIVR of the first and last cells associated with this parameter.

The capability to have multiple instances of the same parameter adds further complexity to parameter definition.
This capability is used to allow parameter definitions to change during the simulation. Each instance has the same
parameter value, but the cells associated with the parameter can be different. Thus, each array parameter instance has
its own clusters, and each list parameter instance has its own cell list. IPLOC(3,n) indicates the number of instances.
If there are instances for an array parameter, then IPLOC(2,n) is the last cluster of the last instance. Each instance
must have the same number of clusters. Similarly, if there are instances for a list parameter, IPLOC(2,n) is the
location of the last cell of the last instance. Each instance must have the same number of cells.

Several variables that specify array dimensions (MXPAR, MXCLST, and MXINST) are defined using Fortran
Parameter statements. These cannot be readily computed from input data because the arrays are allocated prior to the
user specifying information about the array dimensions.

 Chapter 9. Programmer Documentation 9–9

Table 9–1. Variables in Fortran module GLOBAL.

Variable
Name

Size Description

NIUNIT Scalar The dimension of the IUNIT, VBVL, and VBNM arrays. Initially set equal to 100 using
a Parameter statement.

NCOL Scalar The number of columns in the model grid.
NROW Scalar The number of rows in the model grid.
NLAY Scalar The number of layers in the model grid.
NPER Scalar The number of stress periods in the simulation.
NBOTM Scalar The number of layers of data in the BOTM array.
NCNFBD Scalar The number of model layers that are underlain by Quasi–3D confining beds.
ITMUNI Scalar Time unit code: 0=undefined, 1=seconds, 2=minutes, 3=hours, 4=days, 5=years
LENUNI Scalar Length unit code: 0=undefined, 1=feet, 2=meters, 3=centimeters
IXSEC Scalar Cross section flag that is set to 1 if “XSECTION” is found in the option line of Basic

Package file: 0 indicates not a cross section, 1 indicates a 1-row cross section.
ITRSS Scalar Flag: 0=steady state, 1=transient, -1=combined steady state and transient.
INBAS Scalar File unit number for the BAS Package of the GWF Process.
IFREFM Scalar Free format flag that is set to 1 if “FREE” is found in the option line of Basic Package

file: 0=fixed format, 1=free format.
NODES Scalar The number of nodes (or cells) in the model grid.
IOUT Scalar The file unit number for the Listing File.
IUNIT NIUNIT An array of unit numbers. Each package or option that requires an input file is

assigned an element in IUNIT. If that element is 0, the package or option is inactive. If
the element is greater than 0, the package or option is active and the value is unit
number for reading data.

LBOTM NLAY Array of pointers to the 3rd index of the BOTM array. For example, LBOTM(2) is the
index in BOTM of the bottom of layer 2.

LAYCBD NLAY Quasi–3D confining bed flag for each layer: 0 indicates no confining bed under a layer,
not 0 indicates a confining bed.

LAYHDT NLAY Head-dependent transmissivity flag: 0 indicates transmissivity for a layer is constant, 1
indicates transmissivity varies with head.

LAYHDS NLAY Head-dependent storage flag: 0 indicates storage for a layer is constant, 1 indicates
storage varies with head.

PERLEN NPER The length of a stress period.
NSTP NPER The number of time steps in a stress period.
TSMULT NPER Multiplier for the length of successive time steps in a stress period.
ISSFLG NPER Steady State/Transient flag for a stress period – “SS” for steady state and “TR” for

transient.
DELR NCOL The cell width along rows (Δr in equations used throughout this report). DELR(J) is

the width of column J.
DELC NROW The cell width along columns (designated as Δc in equations throughout this report).

DELC(I) is the width of row I.
BOTM NCOL,NROW,0:NBOT

M
Elevation of cell and Quasi–3D confining bed bottoms. A value of 0 for the 3rd index is
used to store the system top elevation.

HNEW NCOL,NROW,NLAY Computed head at the current time step (designated as hm throughout this report).
HOLD NCOL,NROW,NLAY Head from the end of the previous time step (designated as hm-1 throughout this

report).
IBOUND NCOL,NROW,NLAY Boundary code: <0 – specified head, =0 – no flow, >0 – variable head.
CR NCOL,NROW,NLAY Conductance along rows. CR(J,I,K) is the conductance between cell (J,I,K) and

(J+1,I,K), where J is the column index.
CC NCOL,NROW,NLAY Conductance along columns. CC(J,I,K) is the conductance between cell (J,I,K) and

(J,I+1,K), where I is the row index.
CV NCOL,NROW,NLAY-1 Vertical conductance. CV(J,I,K) is the conductance between cell (J,I,K) and (J,I,K+1),

where K is the column index.
HCOF NCOL,NROW,NLAY Coefficient of head in ground-water flow equation.
RHS NCOL,NROW,NLAY Right-hand side of ground-water flow equation.
BUFF NCOL,NROW,NLAY Temporary buffer for use within a subroutine.
STRT NCOL,NROW,NLAY Initial head.

9–10 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Table 9–2. Variables in Fortran module PARAMMODULE.

[“C*n” in size column indicates a character variable of n characters]

Variable
Name

Size Description

MXPAR Scalar Maximum number of parameters allowed. Initially set equal to 500 using a Param
statement.

eter

MXCLST Scalar Maximum number of clusters that can be used for defining array parameters. Initiall
set equal to 1000 using a Parameter statement.

y

MXINST Scalar Maximum number of zone arrays. Initially set equal to 1000 using a Parameter
statement.

ICLSUM Scalar The number of defined array parameter clusters.
IPSUM Scalar The number of defined parameters.
INAMLOC Scalar Pointer to the next unused instance name.
NMLTAR Scalar The number of multiplier arrays
NZONAR Scalar The number of zone arrays.
NPVAL Scalar The number of parameters for which values are defined in the Parameter Value File.
B MXPAR eter values. Param
IACTIVE gs:

steps.
tep.

ing instances, IACTIVE is the instance

MXPAR Active parameter fla
-1 – Active in all time
0 – Not active in current time s
>0 – Active in current time step – if us

number.
IPLOC 4,MXPAR Parameter alues of IPLOC(n,p), where p is the parameter number:

irst instance name.

index. V
n=1 – First cluster or list location of first instance.
n=2 – Last cluster or list location of last instance.
n=3 – Number of instances.
n=4 – Location in INAME of f

IPCLST 14,MXCLST IPC

umber (0 indicates none).

LST(n,c) – c=cluster number:
n=1 – Layer number.
n=2 – Multiplier array n
n=3 – Zone array number (0 indicates all cells).
n=4 – Index of last zone number for this cluster.
n=5-14 – Zone numbers.

PARNAM C*10,MXPAR Parameter names.
PARTYP C*4,MXPAR Parameter types.
ZONNAM C*10,MXZON Zone array names.
MLTNAM C*10,MXMLT Multiplier array names.
INAME C*10,MXINST Instance names.
RMLT NCOL,NROW,NMLTAR or defining parameters. Multiplier arrays f
IZON NCOL,NROW,NZONAR Zone arrays for defining parameters.

 Chapter 9. Programmer Documentation 9–11

GWFBASMODULE Module
Table 9–3. Variables in Fortran module GWFBASMODULE.
[“C*n” in size column indicates a character variable of n characters]

Variable
Name

Size Description

MSUM Scalar Budget term counter.
IHEDFM Scalar Format code for writing head in the Listing File.
IHEDUN Scalar File unit number for saving head in a file.
IDDNFM Scalar Format code for writing drawdown in the Listing File.
IDDNUN Scalar File unit number for saving drawdown in a file.
IBOUUN Scalar File unit number for saving IBOUND in a file.
LBHDSV Scalar Label flag for saving head in a formatted file:

0 –Do not write label.
not 0 – Write label.

LBDDSV Scalar Label flag for saving drawdown in a formatted file:
0 – Do not write label.
not 0 – Write label.

LBBOSV Scalar Label flag for saving IBOUND in a formatted file:
0 – Do not write label.
not 0 – Write label.

IBUDFL Scalar Flag for writing overall budget in the Listing File in current time step:
0 – Do not write budget.
not 0 – Write budget.

ICBCFL Scalar Flag for writing cell-by-cell budget data in current time step:
0 – Do not write data.
1 – Write data using noncompact form.
2 – Write data using compact form.

IHDDFL Scalar Flag for output of head and drawdown in current time step:
0 – No output.
1 – Write output according to IOFLG.

IAUXSV Scalar Auxiliary flag for saving cell-by-cell budget data:
0 – Do not save auxiliary data in budget file.
not 0 – Save auxiliary data in budget file.

IBDOPT Scalar Compact budget option:
1 – Noncompact
2 – Compact

IPRTIM Scalar A flag that is set to 1 if “PRINTTIME” is specified in the option line of the Basic Package
file. This is used to determine if execution time is written to the Listing File.

IPEROC Scalar The stress period at which the next output control should occur when using alphabetic
output control. If numeric output control is used, the value is -1.

ITSOC Scalar The time step at which the next output control should occur when using alphabetic output
control. If numeric output control is used, the value is -1.

ICHFLG Scalar A flag that is set to 1 if “CHTOCH” is specified in the option line of the Basic Package file.
This indicates that flow between constant-head cells should be computed when cell-by-cell
budget terms are computed.

DELT Scalar Length of current time step. (Designated as Δt = tm-tm-1 throughout this report.)
PERTIM Scalar Total simulation time in current stress period.
TOTIM Scalar Total simulation time.
HNOFLO Scalar Value substituted in HNEW at no-flow cells.
CHEDFM C*20 Format for saving head in a file (blank indicates unformatted).
CDDNFM C*20 Format for saving drawdown in a file (blank indicates unformatted).
CBOUFM C*20 Format for saving IBOUND in a file.
IOFLG NLAY,5 Flags for output of data in current time step (k is a layer index):

(k,1) Not 0 – Write head to Listing File.
(k,2) Not 0 – Write drawdown to Listing File.
(k,3) Not 0 – Save head to unit IHEDUN.
(k,4) Not 0 – Save drawdown to unit IDDNUN.
(k,5) Not 0 – Save IBOUND to unit IBOUUN.

9–12 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

VBVL 4,NIUNIT Overall budget values (n is a budget term index):

(1,n) – Inflow rate for current time step.
(2,n) – Outflow rate for current time step.
(3,n) – Cumulative volume of inflow.
(4,n) – Cumulative volume of outflow.

VBNM C*16,NIUNI
T

Names of budget terms.

GWFCHDMODULE Module
Table 9–4. Variables in Fortran module GWFCHDMODULE.
[“C*n” in size column indicates a character variable of n characters]

Variable
Name

Size Description

NCHDS Scalar The number of constant-head cells in the current stress period.
MXCHD Scalar head cells The second dimension of CHDS, which includes space for the active constant-

in a stress period and all constant-head cells defined by parameters.
NCHDVL Scalar mension of CHDS array, which includes five input values and The number of the first di

the auxiliary data.
IPRCHD Scalar Flag for printing constant-head data – 0 indicates do not print, 1 indicates print.
NPCHD Scalar The number of constant-head parameters.
ICHDPB Scalar The value of the second index in CHDS at which parameter data begins.
NNPCHD Scalar The number of nonparameter constant-head cells in the current stress period.
CHDAUX C*16,20 The name of auxiliary variables.
CHDS HDVL,MXCHD

e
constant-head cells specified through the initial value of IBOUND.

NC Constant-head list, which includes space for the constant-head cells active in a stress
period and all constant-head cells defined by parameters. CHDS does not includ

Subroutines
The Basic Package contains six primary subroutines: GWF2BAS7AR, GWF2BAS7ST, GWF2BAS7AD,

GWF2BAS7FM, GWF2BAS7OC, and GWF2BAS7OT. The subroutines GWF2BAS7AR, GWF2BAS7OC, and
GWF2BAS7OT each make use of secondary subroutines to reduce the size of the primary subroutines. The Tim
Variant Specified-Head (CHD) Option further consists of subroutines GWF2CHD7AR, GWF2CHD7RP, and
GWF2CHD7AD. These CHD subroutines are named as if they are a package because this code was originally
viewed as a package (Leake and Prudic, 1991). The CHD subroutines also are called from the MAIN Program as
they are primary subroutines. Nevertheless, as mentioned in Chapter 4, CHD

e-

if
 is viewed functionally as an option

 function to define IBOUND values.

GW
ead

n, Output Control, Zone, and Multiplier files are read by
broutines called by GWF2BAS7AR.

n File

for the Output Control File

IUPVAL – Element in IUNIT that is used for the Parameter Value File

within the BAS Package because of its

F2BAS7AR
This subroutine allocates memory and reads data for the Basic (BAS) Package. The BAS Package file is r

directly by this subroutine. The Name, Discretizatio
secondary su
Arguments:
INUNIT – Input unit number for the Name File
CUNIT – Array of file types for primary options
VERSION – MODFLOW version as a text string
IUDIS – Element in IUNIT that is used for the Discretizatio
IUZON – Element in IUNIT that is used for the Zone File
IUMLT – Element in IUNIT that is used for the Multiplier File
MAXUNIT – The maximum unit number used in the Name File
IGRID – The grid number, which is used for local grid refinement
IUOC – Element in IUNIT that is used
HEADNG – A two-line simulation title

 Chapter 9. Programmer Documentation 9–13

The AR subroutine performs its work in the following sequence:

1. Allocate the scalar variables.

2. Call secondary subroutine to open files.

3. Identify package and initialize data.

4. Initialize parameter definition variables.

5. Call a secondary subroutine to allocate memory for discretization and read the discretization file.

6. Allocate remaining global data.

7. Initialize LAYHDT and LAYHDS to -1. These are flags for each layer indicating if transmissivity and storage are
head dependent. These flags should be defined by the internal flow package so they can be used by other
packages. LAYHDT=0 indicates transmissivity for a layer is constant; LAYHDT=1 indicates transmissivity
varies with head. LAYHDS=0 indicates storage for a layer is constant; LAYHDS=1 indicates storage varies with
head.

 8. Read the Basic Package file.

8A. Read the comments, saving the first two in variable HEADNG.

8B. Look for options in the first item after the heading.

8C. Print the options.

8D. Initialize TOTIM to 0.0.

8E. Read boundary array. If the cross-section option is in effect, read the data as a single array. If not a cross
section, read the data a layer at a time.

8F. Read and print HNOFLO, which is the value to be printed at cells where IBOUND is initially 0.

8G. Read initial heads into STRT as multiple layer arrays or as a single array for a cross section.

9. Copy initial heads from STRT to HNEW. If IBOUND is zero, set HNEW equal to the double precision equivalent
of HNOFLO.

10. Call a secondary subroutine to allocate memory for the Output Control Option and read preliminary data.

11. Initialize volumetric budget accumulators.

12. Call a secondary subroutine to allocate memory for zone and multiplier arrays and read these arrays.

13. Call a secondary subroutine to read parameter values from the Parameter Value File.

14. Save memory pointers for the grid and return.

SGWF2BAS7OPEN

This subroutine reads the Name File and opens all of the files in the Name File. File types in the Name File are
compared to values in array CUNIT, which is defined in the MAIN Program. The file unit number for a file is saved
in the element of IUNIT that is the same as the element of CUNIT that matches the file type. For example if the file
type of a file is “RIV” and element 4 of CUNIT contains “RIV,” then the file unit is saved in IUNIT(4). Thus,
IUNIT(4) can be tested for a not 0 value to determine if the River Package is active.

9–14 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Arguments:

INUNIT – Input unit number for the Name File
IOUT – File unit number for Listing File
IUNIT – Array of file unit numbers for primary options
CUNIT – Array of file types for primary options
NIUNIT – The number of elements in IUNIT
VERSION – MODFLOW version as a text string
INBAS – The input unit number for the Basic Package
MAXUNIT – The maximum unit number used in the Name File

SGWF2BAS7ARDIS

This subroutine allocates and reads discretization data, both space and time.

Arguments:

INUNIT – Input unit number for the Name File
CUNIT – Array of file types for primary options
VERSION – MODFLOW version as a text string
IUDIS – Element in IUNIT that is used for the Discretization File
IUZON – Element in IUNIT that is used for the Zone File
IUMLT – Element in IUNIT that is used for the Multiplier File
MAXUNIT – The maximum unit number used in the Name File
IGRID – The grid number, which is used for local grid refinement
IUOC – Element in IUNIT that is used for the Output Control File
HEADNG – A two-line simulation title

This subroutine performs its work in the following sequence:

1. Check that the input file for discretization has been specified in the Name File. Stop the simulation if the file is not
defined.

2. Read the comments and the first line after the comments.

3. Use URWORD to get NLAY, NROW, NCOL, NPER, ITMUNI, and LENUNI from the line.

4. Print NLAY, NROW, and NCOL.

5. Print a message showing the time units.

6. Print a message showing the length units.

7. Allocate the flags that keep track of bottom elevation arrays (LBOTM) and confining bed arrays (LAYCBD).

8. Read confining bed flags into LAYCBD.

9. Loop through the number of layers counting confining beds as indicated by LAYCBD being not 0. Save a pointer
to the confining bed number in LAYCBD. LAYCBD(K) will be the layer index for VKCB in the Layer-Property
Flow Package. Also, set up LBOTM to contain the third index to the bottom elevation array BOTM for each
model layer. Elevation arrays for model layers and confining beds are stored in BOTM in the order of depth.
Compute NBOTM, which is the sum of the number of model layers and the number of confining beds.

10. Allocate space discretization arrays (DELR, DELC, and BOTM) and time discretization arrays (PERLEN,
NSTP, TSMULT, and ISSFLG). BOTM requires NBOTM+1 layers of data, which are indexed from 0 to
NBOTM. Layer 0 is for the top elevation for layer 1, which is the overall top of the simulated system.

 Chapter 9. Programmer Documentation 9–15

11. Read DELR and DELC.

12. Read the top elevation for layer 1.

13. Loop through the model layers reading the bottom elevation for each layer as well as the confining bed bottom
elevation for layers that have a confining bed.

14. Read and write data defining the NPER stress periods. For each stress period, a line from the input file contains
the length of the stress period, the number of time steps, the time step multiplier, and a code indicating steady
state or transient. Use URWORD to get each value. Check that the transient/steady-state code is valid and set a
numeric code in ISSFLG: 0 for transient and 1 for steady state. Set ISS to 1 if at least one stress period is steady
state, and set ITR to 1 if at least one stress period is transient.

15. Check for invalid stress period data. All stress periods must have at least one time step. Only steady-state stress
periods can have 0 length. All time step multipliers must be positive. No stress periods can have negative length.

16. Use the ISS and ITR flags from step 14 to define the value for ITRSS, which is a flag that indicates the overall
steady-state/transient status of the simulation: 0 indicates all stress periods are steady state, 1 indicates all stress
periods are transient, and -1 indicates a combination of steady-state and transient stress periods.

17. Return.

SGWF2BAS7I

This subroutine sets up the Output Control Option. Arrays IOFLG, VBVL, and VBNM are allocated. If the
Output Control Option is not active, default output control is setup. Values are then set in IOFLG to cause head for
all layers to be written. GWF2BAS7OC further implements default output by invoking the output of head and
overall budget at the end of each stress period.

Arguments:

NLAY – The number of layers in the model grid
INOC – Input unit number for the Name File
IOUT – File unit number for the Listing File
IFREFM – Free format flag:
 0 – Fixed format
 1 – Free format
NIUNIT – The number of elements in IUNIT

If the Output Control Option is active, the first record is read from the output control file. The first record is
examined to determine whether alphabetic or numeric coding is being used. If alphabetic coding is used, then
SGWF2BAS7J is called to set up output control. If numeric coding is used, the values from the first record are read,
and IPEROC and ITSOC are set equal to -1 as an indicator of numeric output control.

SGWF2BAS7J
This subroutine sets up output control using alphabetic coding. Lines are read from the output control file until a

line starting with “PERIOD” is found. The stress period and time step indicated by this line are saved in variables
IPEROC and ITSOC, respectively. This subroutine primarily consists of a sequence of calls to URWORD and “IF”
tests to search for the alphabetic commands.

Arguments:

INOC – Input unit number for the Name File
IOUT – File unit number for the Listing File
LINE – Line of text from the Output Control file

9–16 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

LLOC – Location pointer within LINE
ISTART – Location of the start of a word in LINE
ISTOP – Location of the end of a word in LINE

SGWF2BAS7ARMZ
This subroutine allocates and reads zone and multiplier arrays.

Arguments:

INZONE – Input unit number for the Zone File
INMULT – Input unit number for the Multiplier File

SGWF2BAS7ARPVAL
This subroutine reads and stores parameter values from the Parameter Value File. This subroutine creates a

parameter for each of the listed parameters, but only the name and value are defined. The other values necessary to
define a parameter must be defined in the internal flow or stress package that uses the parameter.

Arguments:

IUPVAL – Element in IUNIT corresponding to the Parameter Value File.

GWF2BAS7ST

This subroutine initializes a new stress period. Using the stress period data from the discretization file, the
length of the first time step is computed. PERTIM is set to 0. If the first stress period, GWF2BAS7ST calls
GWF2BAS7STPVAL to check that all parameters for which a parameter value was defined in the Parameter Value
File have been fully defined.

Arguments:

KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement. Note: Each grid has its own time data; however,
this data is required to be the same for all grids.

SGWF2BAS7STPVAL
This subroutine checks that all parameters for which a parameter value was defined in the Parameter Value File

have been fully defined. NPVAL contains the number of parameters specified in the Parameter Value File. A blank
value for the parameter type indicates an undefined parameter.

Arguments: None

GWF2BAS7AD

This subroutine advances to a new time step of a stress period. The length of the new time step (DELT) is
computed unless the new step is step 1. DELT is added to TOTIM and PERTIM. HOLD is set equal to HNEW.

Arguments:

KPER – Current stress period
KSTP – Current time step
IGRID – The grid number, which is used for local grid refinement

 Chapter 9. Programmer Documentation 9–17

GWF2BAS7FM
This subroutine initializes HCOF and RHS to 0 so that the various packages can add terms to them. This is one

place where an array assignment statement is used to initialize all elements of an array without an explicit Do Loop.

Arguments:

IGRID – The grid number, which is used for local grid refinement

GWF2BAS7OC
This subroutine is called every time step to set output control flags. If default output control is being used, flags

are set to write head (IOFLG) and overall budget (IBUDFL) to the Listing File in the time step of each stress period.
If alphabetic coding of output control is being used, SGWF2BAS7N is called to read output control information.

If numeric coding is being used, the output control records are read for the time step. If the time step is the last time
step of a stress period, the overall budget flag (IBUDFL) is set even if IBUDFL was not specified in the output
control data. This automatic setting of IBUDFL is done to prevent a user from running a model without having any
budget output.

Arguments:

KSTP – Current time step
KPER – Current stress period
ICNVG – Convergence flag:
 0 – Not converged
 not 0 – Converged
INOC – Element in IUNIT that is used for the Output Control option
IGRID – The grid number, which is used for local grid refinement

SGWF2BAS7N
This subroutine reads alphabetic output control time step information and sets output flags. The output control

information for a time step consists of a record specifying a stress period and time step followed by one or more
records indicating the kinds of output. Not all time steps must be specified. When Subroutine SGWF2BAS7I detects
alphabetic output control, SGWF2BAS7J is called to read preliminary output control data. Data are read until the
first stress period/time step record is found. The specified stress period and time step values are stored in IPEROC
and ITSOC.

SGWF2BAS7N is called every time step by GWF2BAS7OC. The output control times must be entered in order
of increasing time. The current stress period and time step are compared to IPEROC and ITSOC, and three
possibilities exist:

1. The current time can be earlier than IPEROC & ITSOC. If so, output does not occur this time step. The I/O flags
are cleared, and no output control records are read.

2. The current time can exactly match IPEROC & ITSOC. This means output flags should be read and acted upon
this time step. Lines are read until a new stress period/time step record is found (or end of file). As output records
are found, the appropriate flags are set. When a new stress period/time step flag is found, they are saved in
IPEROC and ITSOC so that subsequent calls to SGWF2BAS7N can compare them to the current simulation time.
If the end of the output control file is found, IPEROC and ITSOC are set to 9999, which is presumably greater
than the stress period and time step values for the remainder of the simulation.

3. The current time can be later than the IPEROC & ITSOC time. This can only happen if the stress period and time
step values are entered out of order in the output control file or if a nonexistent time step is specified. For
example, output control for stress period 1 and time step 2 might be specified after stress period 1 and time step 3.
This causes IPEROC and ITSOC to be set equal to KPER and KSTP so that output occurs in the current time
step.

9–18 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Arguments:

KPER – The current stress period
KSTP – The current time step
INOC – Input unit number for the Output Control file
IOUT – File unit number for the Listing File

SGWF2BAS7L
When SGWF2BAS7N determines that head, drawdown, or IBOUND should be written (to the Listing File or a

separate file), SGWF2BAS7L is called to determine which layers should be written. By default all layers are written,
but a list of layer numbers can be specified at the end of the output control line. URWORD is repeatedly called to
retrieve an Integer value. A value outside of the range of model layers terminates the check. Note that specification
of no layer numbers at the end of the line results in the first call to URWORD returning 0 for the layer number,
which causes all layers to be written.

Arguments:

IPOS – Value of second index of IOFLG for which layers are being specified
LINE – Line of data from the Output Control File
LLOC – Location in LINE
IOFLG – Flags for output of data in current time step
NLAY – Number of layers in the grid
IOUT – File unit number for the Listing File
LABEL – A label specifying the kind of data (head, drawdown, or IBOUND)
INOC – Input unit number for Output Control file

GWF2BAS7OT
This subroutine outputs head, drawdown, IBOUND, and overall budget for the time steps specified by

GWF2BAS7OC. These are each output using a separate secondary subroutine. If head, drawdown, or the overall
budget are written to the Listing File, IPFLG is set to 1, which causes SGWF2BAS7T to be called to write
simulation time to the Listing File.

Arguments:

KSTP – Current time step
KPER – Current stress period
ICNVG – Convergence flag:
 0 – Not converged
 not 0 – Converged
ISA – Equation solution flag:
 0 – Flow equation was not solved this time step.
 not 0 – Flow equation was solved this time step.
IGRID – The grid number, which is used for local grid refinement

SGWF2BAS7H
This subroutine writes head to the Listing File and separate file according to flags in array IOFLG that have

been previously set by output control.

Arguments:

KSTP – Current time step
KPER – Current stress period

 Chapter 9. Programmer Documentation 9–19

IPFLG – Flag indicating whether output has been written to the Listing File in current time step:
 0 – There has been no output to Listing File.
 not 0 – There has been some form of output to the Listing File.
ISA – Equation solution flag:
 0 – Flow equation was not solved this time step.
 Not 0 – Flow equation was solved this time step.

SGWF2BAS7D
This subroutine writes drawdown to the Listing File and separate file according to flags in array IOFLG that

have been previously set by output control. Drawdown is computed as the difference between initial head (STRT)
and the current head (HNEW). Where IBOUND is 0, drawdown is specified to be the value of HNEW, which will
either be HNOFLO or HDRY depending on the reason why the cell is dry. If the cell is dry because IBOUND was
initially 0, HNEW will be HNOFLO. If the cell is dry because the head dropped below the bottom elevation, HNEW
will be HDRY.

Arguments:

KSTP – Current time step
KPER – Current stress period
IPFLG – Flag indicating whether output has been written to the Listing File in current time step:
 0 – There has been no output to Listing File.
 not 0 – There has been some form of output to the Listing File.
ISA – Equation solution flag:
 0 – Flow equation was not solved this time step.
 Not 0 – Flow equation was solved this time step.

SGWF2BAS7IB
This subroutine writes IBOUND to a separate file according to flags in array IOFLG that have been previously

set by output control.

Arguments:

KSTP – Current time step
KPER – Current stress period

SGWF2BAS7V
This subroutine writes the overall budget. All of the individual budget terms have been stored in variable VBVL

by the packages that compute them, but the totals must still be computed. Budget values in the range from 0.1 to
9.99999E11 (BIGVL1) are printed using a fixed F17.4 format. This makes comparing the magnitude of values easy.
Outside of this range, values are printed using an exponential format so that at least five digits are printed. The upper
value of the range for using a fixed format for printing the difference between total inflow and outflow is decreased
to 9.99999E10 (BIGVL2) because the difference can be negative, which requires an extra space for printing.

Arguments:

MSUM – Budget term counter
VBNM – Names of budget terms
VBVL – Overall budget values
KSTP – Current time step
KPER – Current stress period
IOUT – File unit number for Listing File

9–20 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

SGWF2BAS7T
This subroutine writes three values of simulation time: total time, stress period time, and length of the current

time step. This subroutine is called at every time step for which head, drawdown, or overall budget are written to the
Listing File. If the time unit is specified (ITMUNI>0), then the three values of time are converted to seconds. Each
time is then converted to minutes, hours, days, and years; and all of the times are written in a table to the Listing
File. A year is taken to be 365.25 days. If the time unit is not specified, then no conversion is made, and the time is
written with the unknown units.

Arguments:

KSTP – Current time step
KPER – Current stress period
DELT – The length of the current time step
PERTIM – Total simulation time in current stress period
TOTIM – Total simulation time
ITMUNI – Time unit code
IOUT – File unit number for Listing File

Time-Variant Specified-Head Option Subroutines

Once a cell is made constant head, the cell stays constant head throughout the remainder of the simulation. The
“active” constant-head cells in a stress period are those for which heads are being specified.

GWF2CHD7AR
This subroutine allocates memory for the CHD Option.

Arguments:

IN – Input unit number for the CHD Option
IGRID – The grid number, which is used for local grid refinement

GWF2CHD7RP
This subroutine reads data for the CHD Option every stress period.

 Arguments:

IN – Input unit number for the CHD Option
IGRID – The grid number, which is used for local grid refinement

GWF2CHD7AD
This subroutine sets the head for the constant-head cells specified by the CHD Option every time step. Input

data read by GWF2CHD7RP specifies the head at the beginning and end of each stress period. GWF2CHD7AD uses
linear interpolation to define the head for each time step.

Arguments:

KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

 Chapter 9. Programmer Documentation 9–21

Block-Centered Flow Package

The Block-Centered Flow (BCF) Package computes conductance terms for flow between cells and storage
terms. When simulating confined flow, the computations are straightforward, but complexities such as unconfined
conditions, cell drying, cell wetting, and conversion between confined and unconfined conditions cause the code to
be much more complex. Shared data for the BCF Package are declared in Fortran Module GWFBCFMODULE and
defined in table 9–5.

Table 9–5. Variables in Fortran module GWFBCFMODULE.

Variable Name Size Description
IBCFCB Scalar Cell-by-cell budget flag and unit:

<0 – Constant-head cell-by-cell budget data are written to the Listing File.
0 – No cell-by-cell budget
>0 – Unit number for saving cell-by-cell budget data

IWDFLG Scalar Wetting flag:
0 – Wetting is inactive.
not 0 – Wetting is active in layers where LAYCON is 1 or 3.

IWETIT Scalar The iteration interval for attempting to wet cells. Wetting is attempted every IWETIT
iterations.

IHDWET Scalar Flag indicating which equation to use for defining the head at a cell that has just
converted from dry to wet:

0 – HNEW= BOT+WETFCT(Hn-BOT)
not 0 – HNEW = BOT+WETFCT(THRESH)

WETFCT Scalar Factor included in the calculation of head at a cell that has just converted from dry to
wet.

HDRY Scalar When a cell converts to dry, HNEW is set equal to HDRY.
LAYCON NLAY Layer-type code:

0 – Confined
1 – Unconfined
2 – Partially convertible
3 – Fully convertible

LAYAVG NLAY Interblock transmissivity flag.
0 – Harmonic mean
10 – Arithmetic mean
20 – Logarithmic mean
30 – Arithmetic-mean saturated thickness and logarithmic-mean hydraulic

conductivity.
TRPY NLAY Ratio of transmissivity (or hydraulic conductivity) in the column direction to

transmissivity (or hydraulic conductivity) in the row direction.
HY NCOL,NROW,nhy Hydraulic conductivity. The third dimension, nhy, is the number of layers where

LAYCON is 1 or 3.
SC1 NCOL,NROW,NLAY Primary storage capacity. Only allocated when simulation is transient.
SC2 NCOL,NROW,ntop Secondary storage capacity. Only allocated when simulation is transient. The third

dimension, ntop, is the number of layers where LAYCON is 2 or 3.
WETDRY NCOL,NROW,nwet Wetting threshold combined with wetting direction indicator. Absolute value is the

wetting threshold. Negative indicates wetting only from below. Zero indicates no
wetting. Positive indicates wetting from sides and below. The third dimension, nwet, is
the number of layers where wetting can occur.

CVWD NCOL,NROW,NLAY-
1

Vertical conductance between cells. This is allocated only if wetting is active.

BCF consists of six primary subroutines: GWF2BCF7AR, GWF2BCF7AD, GWF2BCF7FM,

GWF2BCF7BDADJ, GWF2BCF7BDS, and GWF2BCF7BDCH. The budget procedure consists of three subroutines
because BCF computes three budget terms: flow between adjacent cells, storage, and constant-head flow. BCF is
similar to the Layer-Property Flow (LPF) Package; therefore, detailed documentation for BCF is not included. Refer
to the LPF section for more details.

9–22 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

GWF2BCF7AR
This subroutine allocates and reads BCF data. Parameters are not supported, so GWF2BCF7AR is not as

complex as the comparable LPF subroutine. However, the input data for each layer depends on the layer-type code,
LAYCON. Therefore, this subroutine must test LAYCON to determine the arrays that are allocated and read for each
layer. There are four main parts of this subroutine.

In the first part of the code (comments 1–5) initial records are read from the BCF input file to determine the
options in effect and the resulting memory requirements. Quite a few lines of code are required to decode the layer-
type and inter-block transmissivity codes and to write information to the Listing File. LAYHDT is set to 0 for when
LAYCON is 0 or 2, and LAYHDT is set to 1 when LAYCON is 1 or 3. LAYHDS is set to 0 when LAYCON is 0 or
1, and LAYHDS is set to 1 when LAYCON is 2 or 3.

In the second part of the code (comment 6) the required memory is allocated. When an array is unneeded, a
single element is allocated so that all pointers are associated.

In the third part of the code (comments 7–8) the arrays are read. The layer arrays are read through one do loop
over the number of model layers (NLAY). All layer arrays are read using utility subroutine U2DREL.

Finally, the data are checked and preliminary computations are made by calling secondary subroutine
SGWF2BCF7 (comment 9).

Arguments:

IN – Input unit number for BCF Package
IGRID – The grid number, which is used for local grid refinement

GWF2BCF7AD
This subroutine prepares BCF data for a new time step. This is done only when wetting is active. HOLD for dry

cells that are eligible for conversion to wet is set equal to the bottom elevation. This is necessary to cause the change
in head over the time step to be properly computed for the storage term in the flow equation. Otherwise, HOLD
would have a value of HNOFLO or HDRY depending on whether the cell was initially dry or converted to dry in a
prior time step.

Arguments:

KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

GWF2BCF7FM
This subroutine computes conductance and storage terms in the flow equation. The computations depend to a

great extent on the layer type. For confined layers, cell drying and wetting are not allowed, and conductance has
already been computed in GWF2BCF7AR. Convertible cells require computation of conductance and conversion
between wet and dry, which is done by calling secondary subroutine SGWF2BCF7H.

Arguments:

KITER – Current iteration of solver
KSTP – Current time step
KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

 Chapter 9. Programmer Documentation 9–23

GWF2BCF7BDS
This subroutine computes the storage budget term.

Arguments:

KSTP – Current time step
KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

GWF2BCF7BDCH
This subroutine computes the constant-head budget term.

Arguments:

KSTP – Current time step
KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

GWF2BCF7BDADJ
This subroutine computes the flow between adjacent cells, which is done only if needed. These flows are needed

when saving cell-by-cell budget data to a file and when returning them in array BUFF as indicated by variable
IBDRET. If values are being returned but not saved, the flows are computed only for a subgrid determined by
arguments IC1, IC2, IR1, IR2, IL1, and IL2.

Arguments:

KSTP – Current time step
KPER – Current stress period
IDIR – Coordinate direction flag:
 1 – Across columns (through right face)
 2 – Across rows (through front face)
 3 – Across layers (through lower face)
IBDRET – Flag for returning budget values in BUFF:
 0 – Do not return values
 not 0 – Return values
IC1 – First column of subgrid
IC2 – Last column of subgrid
IR1 – First row of subgrid
IR2 – Last row of subgrid
IL1 – First layer of subgrid
IL2 – Last layer of subgrid
IGRID – The grid number, which is used for local grid refinement

9–24 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Secondary Subroutines
SGWF2BCF7N

This secondary subroutine is called by GWF2BCF7AR to check data for consistency and to perform some initial
calculations. A secondary subroutine is used because of the size of the code.

Arguments:
ISS – Steady-state flag:
 0 – At least one transient stress period
 not 0 – All stress periods are steady state.

SGWF2BCF7N performs its work in the following sequence:

1. Vertical conductance is computed by multiplying vertical leakance by cell area. GWF2BCF7AR has read vertical
leakance into array CV.

2. Vertical conductance is saved in CVWD if wetting is active.

3. If IBOUND is 0, horizontal and vertical conductance (CC and CV) are set equal to 0. (A user might make CC and
CV arrays constant for all cells as a matter of input convenience.)

4. A check is made to see if IBOUND is not 0 when transmissive properties in all directions are 0. Numeric problems
occur in the solvers if a flow equation is constructed in which all conductances to adjacent cells are 0.
Accordingly, when this situation is detected for a cell, IBOUND is set to 0 and a message is written to the Listing
File. Also, head is set equal to 888.88 as an indicator that the cell has been converted to no flow.

5. For layers where transmissivity is constant, horizontal conductance is computed by calling one of several
secondary subroutines as determined by the user-specified option for computing inter-block transmissivity,
LAYAVG.

6. Confined storage coefficient and specific yield are multiplied by cell area to obtain storage capacity.

SGWF2BCF7H

This secondary subroutine computes horizontal conductance for a layer from saturated thickness and hydraulic
conductivity. SGWF2BCF7H is called by GWF2BCF7FM for water table and fully convertible layers.
SGWF2BCF7H converts dry cells to wet if wetting is active and computes saturated thickness for cells.
SGWF2BCF7H then calls another secondary subroutine for computing the horizontal branch conductances
according to the user-specified option for computing interblock transmissivity (LAYAVG).

Arguments:
K – Layer for which horizontal conductance is being calculated.
KB – Third index of arrays HY and WETDRY corresponding to layer K of the grid
KITER – Current iteration of solver
KSTP – Current time step
KPER – Current stress period

SGWF2BCF7C

This secondary subroutine computes horizontal conductance between nodes using harmonic mean
transmissivity. SGWF2BCF7C can be called by SGWF2BCF7H and SGWF2BCF7N. Upon entry, CC contains the
transmissivity for cells.

Arguments:

K – Layer for which conductance is being calculated.

 Chapter 9. Programmer Documentation 9–25

SGWF2BCF7A

This secondary subroutine computes horizontal conductance using arithmetic-mean transmissivity.
SGWF2BCF7A can be called by SGWF2BCF7H and SGWF2BCF7N. Upon entry, CC contains the transmissivity
for cells.

Arguments:

K – Layer for which conductance is being calculated.

SGWF2BCF7L

This secondary subroutine computes horizontal conductance using logarithmic mean transmissivity.
SGWF2BCF7L can be called by SGWF2BCF7H and SGWF2BCF7N. Upon entry, CC contains the transmissivity
for cells.

Arguments:

K – Layer for which conductance is being calculated.

SGWF2BCF7U

This secondary subroutine computes horizontal conductance using arithmetic mean saturated thickness and
logarithmic mean hydraulic conductivity. SGWF2BCF7U can be called by SGWF2BCF7H. Upon entry, CC
contains the hydraulic conductivity and BUFF contains the saturated thickness for cells.

Arguments:

K – Layer for which conductance is being calculated.

9–26 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Layer-Property Flow Package
The Layer-Property Flow (LPF) Package computes conductance terms for flow between cells and storage terms.

When simulating confined flow, the computations are straightforward, but complexities such as unconfined
conditions, cell drying, cell wetting, and conversion between confined and unconfined conditions cause the code to
be much more complex. Support for parameters also adds complexity to the code. Shared data for the LPF Package
are declared in Fortran Module GWFLPFMODULE and defined in table 9–6.

Table 9–6. Variables in Fortran module GWFLPFMODULE.

Variable
Name

Size Description

ILPFCB Scalar Cell-by-cell budget flag and unit:
<0 – Constant-head cell-by-cell budget data are written to the Listing File.
0 – No cell-by-cell budget
>0 – Unit number for saving cell-by-cell budget data

IWDFLG Scalar Wetting flag:
0 – Wetting is inactive.
not 0 – Wetting is active in at least one layer.

IWETIT Scalar The iteration interval for attempting to wet cells. Wetting is attempted every IWETIT iteration.
IHDWET Scalar Flag indicating which equation to use for defining the head at a cell that has just converted from

dry to wet:
0 – HNEW= BOT+WETFCT(Hn-BOT)
not 0 – HNEW = BOT+WETFCT(THRESH)

ISFAC Scalar SFA
0 – Not active
C option flag:

not 0 – Active
ICONCV Scalar CONSTANTCV option flag:

0 – Not active
not 0 – Active

ITHFLG Scalar TH flag:
0 – Not active

ICKSTRT option

not 0 – Active
NOCVCO Scalar NOCVCORRECTION option flag:

0 – Not active
not 0 – Active

WETFCT Scalar Fac e calculation of head at a cell that has just converted from dry to wet. tor included in th
HDRY Scalar When a cell converts to dry, HNEW is set equal to HDRY.
LAYTYP NLAY Layer-type code:

0 – A confined layer
>0 – A convertible layer
<0 – Convertible unless THICKSTRT option is active, in which case the layer is confined.

After detecting that the layer should be confined, GWF2LPF7AR changes LAYTYP to 0.
LAYAVG NLAY Interblo

urated thickness and logarithmic-mean hydraulic conductivity

ck transmissivity flag for layers:
0 – Harmonic mean
1 – Logarithmic mean
2 – Arithmetic-mean sat

CHANI NLAY Horizontal anisotropy flag or value for layers:
≤0 – Array HANI defines horizontal anisotropy for each cell in the layer.
>0 – CHANI is the horizontal anisotropy for the entire layer.

LAYVKA NLAY Ver

l hydraulic conductivity.

tical anisotropy flag for layers:
0 – VKA contains vertical hydraulic conductivity.
not 0 – VKA contains the ratio of horizontal to vertica

LAYWET NLAY We

tting flag for layers:
0 – Wetting is inactive.
not 0 – Wetting is active.

LAYSTRT NLAY Fla h LAYTYP was negative when THICKSTRT was active:
STRT is not active.

not 0 – LAYTYP <0 and THICKSTRT is active.

g indicating layers for whic
0 – LAYTYP ≥0 or THICK

 Chapter 9. Programmer Documentation 9–27

LAYFLG 6,NLAY Pri parameters (k is the layer index):

(2,k) – Print code for VKA values
(3,k) – Print code for SC1 values
(4,k) – Print code for SC2 values
(5,k) – Print code for VKCB values
(6,k) – Print code for HANI values

nt codes for printing arrays when they are defined by
(1,k) – Print code for HK values

HK NCOL,NROW,NLAY Horizontal hydraulic conductivity in the row direction.
VKA NCOL,NROW,NLAY Vertical hydraulic conductivity or the ratio of horizontal to vertical hydraulic conductivity

depending on LAYVKA.
VKCB NCOL,NLAY,ncb Vertical hydraulic conductivity of Quasi–3D confining bed, where ncb is the number of Quasi–3D

confining beds.
SC1 NCOL,NROW,NLAY Confined storage capacity.
SC2 NCOL,NROW,ncvt Unconfined storage capacity, where ncvt is the number of convertible layers.
HANI NCOL,NROW,nhani Horizontal anisotropy, where nhani is the number of layers in which horizontal anisotropy is not

constant (see CHANI).
WETDRY NCOL,NROW,nwet Wetting threshold combined with wetting direction indicator. Absolute value is the wetting

threshold. Negative indicates wetting only from below. 0 indicates no wetting. Positive indicates
wetting from sides and below. The third dimension, nwet, is the number of layers where wetting
can occur.

LPF consists of six primary subroutines: GWF2LPF7AR, GWF2LPF7AD, GWF2LPF7FM,

GWF2LPF7BDADJ, GWF2LPF7BDS, and GWF2LPF7BDCH. The budget procedure consists of three subroutines
because LPF computes three budget terms: flow between adjacent cells, storage, and constant-head flow.

GWF2LPF7AR
This subroutine allocates and reads LPF data. GWF2LPF7AR is fairly complex because it reads a large amount

of data, there are many complex data dependencies, and much of the data can be optionally defined using
parameters.

Arguments:

IN – The input unit number for the LPF Package
IGRID – The grid number, which is used for local grid refinement

The AR subroutine performs its work in the following sequence:
1. Allocate scalar data. This allows use with local grid refinement, in which this subroutine can be called multiple

times to establish multiple grids. The result is that separate memory is allocated for each of the grids.
2. Identify package.
3. Read and write comments and item 1. Check for the SFAC, CONSTANTCV, THICKSTRT, and

NOCVCORRECTION options.
4. Allocate and read indicator arrays for layers.

4A. Print table of option codes for each layer. Set LAYHDT and LAYHDS to 0 for confined cells and to 1 for
convertible cells. Set LAYSTRT=1 and set LAYTYP=0 if LAYTYP<0 and THICKSTRT is active.

4B. Look through indicator arrays to find out how many layer arrays are needed. Print a second table showing the
options for each layer in text form.

4C. Print wetting information.
5. Allocate layer arrays. When an array is unneeded, a single element is allocated so that all pointers are associated.
6. Read parameter definitions. Create flags for each parameter type—the flag is 0 if no parameter of that type is

specified and 1 if one or more parameters of that type are specified. If VK or VANI parameters are defined, then
SGWF2LPF7CK is called to check that the layers associated with the parameter correspond to the value of
LAYVKA. For example, all clusters for a VANI parameter should specify layers for which LAYVKA is not 0.
6A. If any HANI parameters are defined, then horizontal anisotropy for all layers must be defined using

parameters. Thus, CHANI cannot be a positive number for any layer, which indicates that horizontal
anisotropy is a constant for a layer.

9–28 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

7. Define arrays for each layer. All arrays except for WETDRY can be defined either by directly reading them or by
ar WETDRY ca

called to read the array. If an array PARARRSUB1 is called to define the values.
After an array is defined using par d to check that a value has been defined for
every cell. After SC1 and SC2 arra routine SGWF2LPF7SC is called to compute
storage capacity.

8. Prepare and check data. This is per e SGWF2LPF7N.
ve grid

 GWF2LPF7AD
is su LPF ss

period is transient. HOLD for dry elevation.
 is nece computed for the storage term in the
 equatio D e cell was

y dry in

s:

KPER – Current stress period
IGRID – The grid number, which is used for local grid refinement

GW

ersion
.

ent iteration for the solver

ent stress period
grid refinement

ce:
1. S r the current stress period, and define the

2. subroutine
ND to compute horizontal conductance. If a layer is convertible or the layer below is

3. If stress period is transient, loop through all layers to compute storage terms—steps 4–5. Compute 1/DELT,

4.
5. Com e.

6. Com layer.
7. ly the leakage correction if needed—steps 8 and 9.

10.

using p ameters. n be defined only by directly reading it. If an array is directly read, U2DREL is
 is defined using parameters, U

leameters, UPARARRCK is cal
ys are defined, secondary sub

formed by secondary subroutin
9. Sa pointers and return.

Th broutine prepares data for a new time step. This is done only when wetting is active and the stre
 cells that are eligible for conversion to wet is set equal to the bottom

This ssary to cause the change in head over the time step to be properly
flow n. Otherwise, HOL would have a value of HNOFLO or HDRY depending on whether th
initiall or converted to dry a prior time step.

Argument

F2LPF7FM
This subroutine computes conductance and storage terms in the flow equation. The computations depend to a

great extent on the layer type. For confined layers, cell drying and wetting are not allowed, and conductance has
already been computed in GWF2LPF7AR. Convertible cells require computation of conductance and conv
between wet and dry

Arguments:

KITER – Curr
KSTP – Current time step
KPER – Curr
IGRID – The grid number, which is used for local

The FM subroutine performs its work in the following sequen
et pointers to the LPF data for the grid, get the steady-state flag fo

constant ONE.
 Loop through all layers and compute conductance for convertible layers. If a layer is convertible, call
SGWF2LPF7HCO
convertible, call SGWF2LPF7VCOND to compute vertical conductance between layers.

which is needed to compute storage terms.
Test layer to see if convertible or confined.

pute storage terms for a confined layer. SC1 contains storage capacity computed from specific storag
Subtract SC1/DELT from HCOF, and subtract SC1*HOLD/DELT from RHS.

pute storage terms for a convertible
Loop through all layers and app

8. Compute leakage correction to layer above if the current layer is convertible.
9. Compute leakage correction to layer below if the layer below is convertible.

 Return.

 Chapter 9. Programmer Documentation 9–29

GWF2LPF7BDADJ
This subroutine computes the flow between adjacent cells, which is done when saving cell-by-cell budget data

 disk and when returning them in array BUFF as indicated by variable IBDRET.

guments:

to

Ar

IDIR – Coordinate direction flag:
ns (through right face)

lumn of transport subgrid
w of transport subgrid

grid

IL2 – Last layer of transport subgrid
mber, which is used for local grid refinement

mputes the storage budget term.

iod
h is used for local grid refinement

GW

KS

cy and perform some initial

KSTP – Current time step
KPER – Current stress period

 1 – Across colum
2 – Across rows (through front face)

 3 – Across layers (through lower face)
IBDRET – Flag for returning budget values in BUFF:
 0 – Do not return values.
 not 0 – Return values.
IC1 – First column of transport subgrid
IC2 – Last co
IR1 – First ro
IR2 – Last row of transport sub
IL1 – First layer of transport subgrid

IGRID – The grid nu

GWF2LPF7BDS
This subroutine co

Arguments:

KSTP – Current time step
KPER – Current stress per
IGRID – The grid number, whic

F2LPF7BDCH
This subroutine computes the constant-head budget term.

Arguments:

TP – Current time step
ER – Current stress period KP

IGRID – The grid number, which is used for local grid refinement

Secondary Subroutines
SGWF2LPF7N

This secondary subroutine is called by GWF2LPF7AR to check data for consisten
calculations. A secondary subroutine is used because of the size of the code.

Arguments: None

9–30 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

This subroutine performs its work in the following sequence:
1. Define constants ZERO and HCNV. HNEW will be set equal to HCNV at cells that are converted to no flow

b
t one direction is not 0 when

is not 0. Numerical problems occur in the solvers if a flow equation is constructed in which all
, when this situation is detected for a cell, IBOUND is set to 0

 to the Listing File. Also, head is set equal to 888.88 as an indicator that the cell has been
ecks depend on whether wetting is active.

RY must be checked to see if a cell is wet or can become wet.
t be checked to see if a cell is wet.

onductance by calling secondary subroutine SGWF2LPF7HCOND.
by calling secondary subroutine SGWF2LPF7VCOND.

 when both layers are confined.

F2LPF7FM and SGWF2LPF7N to compute horizontal branch conductance for
 for confined or convertible layers.

tion for the solver
KSTP – Current time step
KPE

 SGWF2LPF7HCOND to scan all cells in a wettable layer and converts dry cells to

K – Layer for which dry cells are being converted.
KIT

ent time step
ent stress period

label print flag:
n table has not been printed.

, and ACNVRT
ICNVRT – Row indices for cells that convert

r cells that convert
ACNVRT – Labels for cells that convert

gible to convert to wet, and steps 3–7
ind out if the cell should convert.

absolute value of WETDRY plus the bottom elevation.
4. Check head in the cell below to see if the head exceeds the wetting elevation. If so, then GO TO statement 50,

which converts the cell to wet.

ecause all hydraulic conductivity values are 0.
2. Loop through all layers to check that the aquifer hydraulic conductivity in at leas

IBOUND
conductances to adjacent cells are 0. Accordingly
and a message is written
converted to no flow. The ch

3. Wetting is active, so IBOUND and WETD
4. Wetting is inactive, so only IBOUND mus
5. For confined layers, compute horizontal c
6. For confined layers, compute vertical conductance

Vertical conductance between two layers is constant only
7. Return.

SGWF2LPF7HCOND

This subroutine is called by GW
a layer. SGWF2LPF7HCOND works

Arguments:

K – Layer for which conductance is being computed
KITER – Current itera

R – Current stress period

SGWF2LPF7WET

This subroutine is called by
wet according to the wetting criteria.

Arguments:

ER – Current iteration for the solver
KSTP – Curr
KPER – Curr
IHDCNV – Cell conversion
 0 – Label for cell conversio
 not 0 – Label for cell conversion table has been printed.
NCNVRT – The number of cells in buffer arrays ICNVRT, JCNVRT

JCNVRT – Column indices fo

This subroutine performs its work in the following sequence:
1. After defining the constant ZERO, loop through all cells of the layer. The layer is first argument, which is K.
2. Test to see if the cell is dry and that WETDRY is not 0. If so, the cell is eli

are followed to f
3. Compute the wetting elevation, TURNON, which is the

 Chapter 9. Programmer Documentation 9–31

5. If can cause conversion to wet. Check the four

ne cell going wet could cause an avalanche across the grid. An

6. e

7. saying the cell converted to wet. Select the
cator

fter returning to

9.

SGWF2LPF7WDMSG

alled by SGWF2LPF7HCOND or SGWF2LPF7WET to store and print wet and dry
mes

ent is 0 with any number of messages, a
printed. IHDCNV is switched from 0 to 1 after the title is

of rows or columns is greater than 999. Five digits are used for
ee. This makes the line a little longer so that the title does not align perfectly

together, but the fields will not overflow.

code:

fer arrays ICNVRT, JCNVRT, and ACNVRT

olumn indices for cells that convert

s not been printed.
rsion table has been printed.

NRO

Arguments:

K – Layer for which conductance is being computed.

 WETDRY is positive, then head in four surrounding cells also
adjacent cells one at a time. In addition to the head exceeding the wetting threshold, the adjacent cell also must not
have converted to wet this iteration. Otherwise, o
IBOUND value of 30000 indicates a cell that just went wet. If the wetting elevation is exceeded, jump to
statement 50, which converts the cell to wet.

 The wetting criteria have not been met, so go to the next cell by jumping to statement 100, which is the end of th
loop.

 Convert the cell to wet. Call SGWF2LPF7WDMSG to write a message
equation to use for the head in the converted cell and set the head. Set IBOUND equal to 30000 as an indi
that the cell is wet but that it just converted to wet. This will be changed to 1 a
SGWF2LPF7HCOND.

8. This statement ends the loop for all cells in the layer.
 Return.

This subroutine is c
sages. To save space, five messages are printed on a line. NCNVRT counts the number of messages in the

buffer. After five messages have accumulated or when the ICODE argum
line is printed. Before printing the first line, a title is
printed.

The format for printing is changed if the number
row and column numbers rather than thr
and packs the values close

Arguments:

ICODE – Operation
0 – Print a partially full buffer.
not 0 – Add a cell to the buffer.

NCNVRT – The number of cells in buf
ICNVRT – Row indices for cells that convert
JCNVRT – C
ACNVRT – Labels for cells that convert

g: IHDCNV – Cell conversion label print fla
rsion table ha 0 – Label for cell conve

 not 0 – Label for cell conve
IOUT – File unit number for Listing File
KITER – Current iteration for the solver
J – Column of converted cell
I – Row of converted cell
K – Layer of converted cell
KSTP – Current time step
KPER – Current stress period
NCOL – Number of columns in the grid

W – Number of rows in the grid

SGWF2LPF7HHARM

This secondary subroutine computes horizontal conductance between nodes using harmonic mean
transmissivity. SGWF2LPF7HHARM can be called by SGWF2BCF7HCOND. Upon entry, CC contains the cell
thickness.

9–32 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

SG

tra d by SGWF2BCF7HCOND. Upon entry, CC contains the cell

K

condary subroutine computes horizontal conductance between nodes using arithmetic mean saturated
thickness and logarithmic mean transmissivity. SGWF2LPF7HUNCNF can be called by SGWF2BCF7HCOND.

 the cell thickness.

Arg

e ISPST argument is not 0,
by cell area and cell thickness to get storage capacity. If ISPST is

y cell area to get storage capacity.

eter is defined, then SGWF2LPF7CK is called by GWF2LPF7AR to check that the
rameter correspond to the value of LAYVKA. All clusters for a VANI parameter should

KA is not 0. All clusters for a VK parameter should specify layers for which

r specific yield that will be converted to storage capacity.
K – Layer for which storage capacity is being computed.
ISPS

 Specific storage

WF2LPF7HLOG

This secondary subroutine computes horizontal conductance between nodes using logarithmic mean
nsmissivity. SGWF2LPF7HLOG can be calle

thickness.

Arguments:

– Layer for which conductance is being computed.

SGWF2LPF7HUNCNF

This se

Upon entry, CC contains

uments:

K – Layer for which conductance is being computed.

SGWF2LPF7VCOND

This subroutine is called by GWF2LPF7FM and SGWF2LPF7N to compute vertical branch conductance
between a layer and the layer below.

Arguments:

K – Upper layer for which conductance is being computed.

SGWF2LPF7SC

This subroutine is called by SGWF2LPF7AR to compute storage capacity. If th
argument SC is specific storage. SC is multiplied
0, SC is specific yield. SC is multiplied b

Arguments:

K – Layer for which conductance is being computed.

SGWF2LPF7CK

If a VK or VANI param
alayers associated with the p

specify layers for which LAYV
LAYVKA is 0.

Arguments:

SC – Specific storage o

T – Flag indicating the data initially in SC:
 0 – Specific yield
 not 0 –

 Chapter 9. Programmer Documentation 9–33

Horizontal Flow Barrier Package

ulates flow barriers by reducing horizontal conductance.
Sha e 9–7.

Size Description

The Horizontal Flow Barrier (HFB) Package sim
red data for the HFB Package are declared in Fortran Module GWFHFBMODULE and defined in tabl

Table 9–7. Variables in Fortran module GWFHFBMODULE.

Variable
Name

MXHFB Scalar The second dimension of HFB, which includes space for the active horizontal-flow barriers and the
parameter definitions for horizontal-flow barriers.

NHFB Scalar The number of active horizontal-flow barriers.
IPRHFB Scalar Flag for printing HFB data – 0 indicates do not print, 1 indicates print.
NHFBNP Scalar The number of nonparameter horizontal-flow barriers.
NPHFB Scalar The number of HFB parameters.
IHFBPB Scalar The value of the second index in HFB at which parameter data begins.
HFB 7,MXHFB Horizontal-flow barrier list, which includes space for the active horizontal-flow barriers and the parameter

definitions for horizontal-flow barriers.

tines GWF2HFB7AR and GWF2WEL7FM, and four
secondary subroutines SGWF2HFB7MC, SGWF2HFB7CK, SGWF2HFB7RL, and SGWF2HFB7SUB.

s to insure that the two cells that define each flow barrier are adjacent. SGWF2HFB7RL is
used in the AR subroutine to read lists of barriers. SGWF

ermine if HFB can be used. The value for LAYHDT will be 0 for confined
or layers for which transmissivity is head dependent. SGWF2HFB7MC is called by the Allocate and

pute the modified horizontal conductance caused by barriers for confined layers.

computed in the Formulate Procedure subroutine.

r

ges that use list data such as the River
 the data lists for the stress packages. Each line of data

 packages has three Integers (layer, row, and column) while HFB has five Integers: layer, row 1,
nnot use the ULSTRD and UPARLSTSUB utility subroutines

used to handle data for the stress packages. The SGWF2HFB7RL and the SGWF2HFB7SUB routines are similar to

YHDT is negative, then HFB will abort the simulation because an unrecognized internal flow
pack ute

nds on
kness, which is computed in the Formulate Procedure subroutine.

The HFB Package consists of two primary subrou

SGWF2HFB7CK check
2HFB7SUB is used in the AR subroutine to substitute the

barriers for active parameters into the list of active barriers.
Variable LAYHDT is used to det

layers and 1 f
Read Procedure subroutine to com
When transmissivity is head dependent, the conductance of the barrier depends on the saturated thickness, which is

GWF2HFB7AR
This subroutine allocates memory for HFB and reads all HFB input data. This subroutine must be called afte

the primary internal flow package (either Block-Centered Flow or Layer-Property Flow) Formulate subroutine.
GWF2HFB7AR allocates memory for HFB much as is done for stress packa
and Well Packages; however, the list of data is different from
for the stress
column 1, row 2, and column 2. Accordingly, HFB ca

ULSTRD and UPARLSTSUB.
 If variable LA
age is in use. The value for LAYHDT will be 0 for confined layers, and SGWF2HFB7MC is called to comp

the modified horizontal conductance caused by barriers for confined layers. At confined cells, the conductance does
not change during the simulation. When transmissivity is head dependent, the conductance of the barrier depe
the saturated thic

Arguments:

IN – The input unit number for the HFB Package
ement IGRID – The grid number, which is used for local grid refin

9–34 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

GWF2HFB7FM
This subroutine modifies horizontal conductance between convertible cells for which a horizontal-flow bar

specified. This subroutine must be called after the primary internal flow package (either Block-Centered Flow or
rier is

Layer-Property Flow) Formulate subroutine. For layers for which transmissivity is head dependent (LAYHDT=1),
d from the saturated thickness. At confined cells

(LAYHDT=1), no additional computation is made for barriers because this has already been done in
G B7A

ts

– Th numbe

H C
 su o ier is

fied. T tin or
La r-Property Flow) Allocate and Read Procedure subroutine.

Arg

SG

x of HFB for first cell location

ber of layers in the grid
int flag:

the modified conductance caused by the barrier is compute

WF2HF R.

Argumen :

IGRID e grid r, which is used for local grid refinement

SGWF2 FB7M
This broutine m

his subrou
difies horizontal conductance between confined cells for which a horizontal-flow barr
e must be called after the primary internal flow package (either Block-Centered Flowspeci

ye

uments: None

SGWF2HFB7CK
This subroutine checks a group of flow barriers to insure that the two cells that define each flow barrier are

adjacent. This subroutine is called for each HFB parameter and for the list of barriers defined without parameters.

Arguments:

IB1 – Location in HFB of first barrier to check
IB2 – Location in HFB of last location to check

WF2HFB7RL
This subroutine reads a list of barriers and writes the barriers to the Listing File.

Arguments:

NLIST – Number of horizontal-flow barriers to read
HFB – List of horizontal-flow barriers
LSTBEG – Value of second inde
MXHFB – Dimensioned size of second index of HFB
INPACK – File unit number for reading barrier data
IOUT – File unit number for Listing File
LABEL – Label to be written above the list of barriers in the Listing File
NCOL – Number of columns in the grid
NROW – Number of rows in the grid
NLAY – Num
IPRFLG – Pr
 Not 1 – Do not write barriers to Listing File.
 1 – Write barriers to Listing File.

 Chapter 9. Programmer Documentation 9–35

SGWF2HFB7SUB

 value is the file unit number for Listing File. Negative value indicates do not print.

ntal-flow barrier list

MXACTFB – Value of the second index of HFB that is the end of the active data for the current stress period
f horizontal-flow barriers in the active part of HFB for the current stress period

This subroutine reads a parameter name and substitutes values into the list of active barriers.

Arguments:

IN – File unit number for reading barrier data
PACK – Package name
IOUTU – Absolute
PTYP – Parameter type
HFB – Horizo
LSTVL – Dimensioned size of first index of HFB
MXHFB – Dimensioned size of second index of HFB

NHFB – The number o
LABEL – Label to be written above the list of barriers in the Listing File

9–36 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Well Package

The Well (WEL) Package adds terms to the flow equation to represent wells. Shared data for the WEL Package
n Fortran Module GWFWELMODULE and defined in table 9–8.

LMODULE.

Description

are declared i

Table 9–8. Variables in Fortran module GWFWE

[“C*n” in size column indicates a character variable of n characters]

Variable Size
Name

NWELLS Scalar The number of wells in the current stress period.
MXWELL Scalar The second dimension of WELL, which includes space for the active wells in a stress period

and all wells defined by parameters.
NWELVL Scalar The number of the first dimension of WELL a

auxiliary data, and the well budget term.
rray, which includes four input values, the

IWELCB Scalar Cell-by-cell budget flag and unit. Negative indicates cell-by-cell budget is written to the Listing
File, 0 indicates no cell-by-cell budget, and positive is the unit number for saving cell-by-cell
budget data.

IPRWEL Scalar Flag for printing well data – 0 indicates do not print, 1 indicates print.
NPWEL Scalar The number of well parameters.
IWELPB Scalar The value of the second index in WELL at which parameter data begins.
NNPWEL Scalar The number of nonparameter wells in the current stress period.
WELAUX C*16,20 The name of auxiliary variables.
WELL NWELVL,MXWELL Well list, which includes space for the active wells in a stress period and all wells defined by

parameters.

The Well (WEL) Package consists of four primary subroutines: GWF2WEL7AR, GWF2WEL7RP,
GWF2WEL7FM, and GWF2WEL7BD. Subroutine ULSTRD is used in the AR subroutine to read lists of wells that
are defined by using parameters and in the RP subroutine to read the lists of wells that are defined without using
parameters. Details of the code are not contained here. The code is similar to, but simpler than, the River Package,
which is fully documented later in this chapter.

 Chapter 9. Programmer Documentation 9–37

Recharge Package

CHMODULE and defined in
table 9–9.

DULE.

V
N

Size Description

The Recharge (RCH) Package adds terms to the flow equation to represent areal recharge to the ground-water
system. Shared data for the RCH Package are declared in Fortran Module GWFR

Table 9–9. Variables in Fortran module GWFRCHMO

ariable
ame

NRCHOP Sc The rech
1 – Laye
2 – Laye
3 – Uppe

alar arge option:
r 1
r specified in IRCH
rmost variable-head cell

IRCHCB Sc The unit alar number for saving RCH budget data.
NPRCH Scalar The number of RCH parameters.
IRCHPF Sc The formalar at code for printing recharge data defined using parameters.
RECH NCOL,NROW Recharge rate. Initially, recharge flux is read into RECH and then multiplied by cell area.
IRCH NCOL,NROW Layer receiving recharge when NRCHOP is 2 or 3.

The Rec CH) Package H7RP,

H7 d GWF2RCH7 .

RCH
Ar

id refinement capability. Each invocation of this AR
subroutine will cause new memory to be allocated. In step 9, a pointer to this memory location is saved.

2. Identify package and initialize the parameter format print flag.
3. Read the recharge option and the cell-by-cell budget flag. The format depends on the free format flag, IFREFM,

which is defined in the Basic Package.
4. Check if NRCHOP is valid. If invalid, write a message and stop the simulation.
5. Write the recharge option.
6. If cell-by-cell budget will be written (IRCHCB >0), then write IRCHCB, which is the unit number for saving cell-

by-cell budget data.
7. Allocate memory for RECH and IRCH.
8. Read named parameters, if any.
9. Save recharge pointers for the current subgrid. Return.

GWF2RCH7RP
Arguments:

IN – The input unit number for the RCH Package
IGRID – The grid number, which is used for local grid refinement

harge (R consists of four primary subroutines: GWF2RCH7AR, GWF2RC
GWF2RC FM, an BD. Details of the code are provided for each subroutine

GWF2 7AR
guments:

IN – The input unit number for the RCH Package
IGRID – The grid number, which is used for local grid refinement

The AR subroutine performs its work in the following sequence:
1. Allocate scalar variables. This is necessary for the gr

9–38 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

The RP subroutine performs its work in the following sequence:
1. Set the recharge pointers to point to the current subgrid.
2. R

ECH to see if recharge is being reused or read.
3A. INRECH<0, which indicates recharge is being reused from previous stress period – either parameter or

tep 5.
B. INRECH is greater than or equal to 0. Read recharge data for stress period.

A o parameters, read RECH as an array. Then skip to step 4.
eters have been input, define RECH by using parameters. Start by resetting any previously

e parame ESET). INRECH is the number of parameters this stress period, make
sure that INR es and substitute the parameter values (Subroutine
UPARARRSU

ly by cell
e I NRCHO RCH is being reused or read.

I
INIR t

Arguments:

ber, which is used for local grid refinement

subroutine performs its work in the following sequence:
subgrid.

3. Recharge option 1—recharge is to the top layer.
3

l, except the recharge cannot be transmitted

the next horizontal cell location.

G

KPER – Current stress period
ber, which is used for local grid refinement

subroutine performs its work in the following sequence:

ators.
. Set IBD, which is the flag that indicates if cell-

by-cell budget is saved. IBD=0 for no saving, IBD=1 for save using original form, and IBD=2 for save using
compact budget.

ead flags that indicate whether data are being reused this stress period. INIRCH is read only if NRCHOP is 2.
The format depends on the free format flag, IFREFM, which is defined in the Basic Package.

3. Test INR

nonparameter values. Write a message and skip to s
3

3B . If n
3BB. If param

activ ters (Subroutine PR
ECH>0. Read the parameter nam

B2) into RECH.
4. Multip RECH area.
5. Defin RCH if P is 2. Test INIRCH to see if I

5A. IN RCH<0, which indicates that IRCH is being reused from previous stress period.
5B

6. Return.
. CH is greater han or equal to 0. Read IRCH as an array.

GWF2RCH7FM

IGRID – The grid num

The FM
1. Set the recharge pointers to point to the current
2. Determine the recharge option (NRCHOP).

A. Subtract recharge from RHS at cells where IBOUND>0.
4. Recharge option 2—recharge is to the layer specified in IRCH.

4A. Subtract recharge from RHS at cells where IBOUND>0.
5. Recharge option 3—recharge is to the highest variable-head cel

through a constant-head cell.
5A. If the cell is constant head, skip to
5B. Subtract recharge from RHS at cells where IBOUND>0.

6. Return.

WF2RCH7BD
Arguments:

KSTP – Current time step

IGRID – The grid num

The BD
1. Set the recharge pointers to point to the current subgrid.
2. Clear the inflow and outflow flow rate accumul
3. Clear the BUFF array, which will hold the flow rate at each cell

 Chapter 9. Programmer Documentation 9–39

4. D
h all cells in a layer.

6.

6A.
cision.

6C.
6D.

7. Recharge
through a
7A. Initia and loop through all cells in a vertical column.

, skip to next horizontal cell location.
on.

get appropriate utility module if cell-by-cell budget should be saved. UBUDSV is for the original format,
and UBDSV3 is for the compact format.

and outflow rates into VBVL.
es into VBVL.

get term name into VBNM.

13. Return.

etermine the recharge option (NRCHOP).
5. Recharge option 1—recharge is to top layer. Loop throug

5A. If the cell is variable head, save recharge rate in Q and QQ. QQ is double precision.
5B. Also save the recharge rate in BUFF.
5C. Add recharge to the inflow or outflow accumulators.
Recharge option 2—recharge is to the layer specified in IRCH. Loop through all cells in a layer.

Get the layer index for recharge from IRCH.
6B. If the cell is variable head, save recharge rate in Q and QQ. QQ is double pre

 Also save the recharge rate in BUFF.
 Add recharge to the inflow or outflow accumulators.

option 3—recharge is to the highest variable-head cell, except the recharge cannot be transmitted
constant-head cell. Loop through all cells in a layer.
lize the layer index (IRCH) to 1,

7B. If the cell is constant head
7C. If the cell is variable head, save recharge rate in Q and QQ. QQ is double precisi
7D. Also save the recharge rate in BUFF, and save the layer number in IRCH.
7E. Add recharge to the inflow or outflow accumulators.

8. Call bud

9. Move total inflow
10. Accumulate inflow and outflow volum
11. Move bud
12. Increment budget term counter (MSUM).

9–40 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

General-Head Boundary Package

The General-Head Boundary (GHB) Package adds terms to the flow equation to represent head-dependent
boundaries. Shared data for the GHB Package are declared in Fortran Module GWGHBLMODULE and defined in
tab

Ta ULE.

[“C

V Description

le 9–10.

ble 9–10. Variables in Fortran module GWFGHBMOD

*n” in size column indicates a character variable of n characters]

ariable Size
Name

NB n the current stress period. OUND Scalar The number of general-head boundaries i
MX al-head boundaries in a

ined by parameters.
BND Scalar The second dimension of BNDS, which includes space for the active gener

stress period and all general-head boundaries def
NG put values, the auxiliary HBVL Scalar The number of the first dimension of BNDS array, which includes five in

data, and the general-head boundary budget term.
IGHBCB Scalar The unit number for saving GHB budget data.
IPR cates do not print, 1 indicates print. GHB Scalar Flag for printing GHB data – 0 indi
NPGHB Scalar The number of GHB parameters.
IG e second index in BNDS at which parameter data begins. HBPB Scalar The value of th
NNPGHB Scalar The number of nonparameter general-head boundaries in the current stress period.
GHBAUX C*16,20 The name of auxiliary variables.
BNDS NGHBVL,MXBND Boundary list, which includes space for the active general-head boundaries in a stress period and

oundaries defined by parameters. all general-head b

The General-Head Boundary (GHB) Package consists of four primary subroutines: GWF2GHB7AR,
GWF2GHB7RP, GWF2GHB7FM, and GWF2GHB7BD. Subroutine ULSTRD is used in the AR subroutine to read
lists of general-head boundaries that are defined using parameters and in the RP subroutine to read the lists of
general-head boundaries that are defined without using parameters. Details of the code are not contained here. The
code is similar to, but simpler than, the River Package, which is fully documented later in this chapter.

 Chapter 9. Programmer Documentation 9–41

River Package

The River (RIV) Package adds terms to the flow equation to represent rivers. Shared data for the RIV Pack
are declared in Fortran Module GWFRIVMODULE and defined in table 9–11.

age

Table 9–11. Variables in Fortran module GWFRIVMODULE.

Variable Size Description

[“C*n” in size column indicates a character variable of n characters]

Name
NR Scalar The number of river reaches in the current stress period. IVER
MXRIVR S T aches in a stress period

a
calar he second dimension of RIVR, which includes space for the active river re

nd all river reaches defined by parameters.
NRIVVL Scalar T s, the auxiliary

d
he number of the first dimension of RIVR array, which includes six input value
ata, and the river budget term.

IRIVCB Scalar The unit number for saving RIV budget data.
IPRRIV S F , 1 indicates print. calar lag for printing RIV data – 0 indicates do not print
NPRIV S Tcalar he number of RIV parameters.
IRIVPB S T at which parameter data begins. calar he value of the second index in RIVR
NNPRIV S Tcalar he number of nonparameter river reaches in the current stress period.
RIVAUX C T*16,20 he name of auxiliary variables.
RIVR NRIVVL,MXRIVR R for the active river reaches in a stress period and all river

r
iver reach list, which includes space

eaches defined by parameters.

The River (RIV) Package consists of four primary subroutines: GWF2RIV7AR, GWF2RIV7RP,

GWF2RIV7FM, and GWF2RIV7BD. Details of the code are provided for each subroutine.

GWF2RIV7AR

Arguments:

IN – The input unit number for the RIV Package
IGRID – The grid number, which is used for local grid refinement

The AR subroutine work is performed in the following sequence:
1. Allocate scalar variables. This is necessary for the local grid refinement capability. Each invocation of this AR

subroutine will cause new memory to be allocated. In step 7, the pointers to this memory are saved.
2. Identify package and initialize NRIVER and NNPRIV.
3. READ items 0, 1, and 2. Item 0 consists of optional comments. URDCOM reads lines until a non-comment line is

found. After URDCOM, LINE contains the first line after item 0, which is either item 1 or item 2 because item 1
is also optional. UPARLSTAL examines LINE to see if it is item 1, which specifies that parameters are being
used. If parameters are being used, UPARLSTAL decodes the parameter information and reads the next line into
LINE. Thus, after URDCOM and UPARLSTAL, LINE contains item 2 in text form. Item 2 is then decoded from
LINE. The use of fixed or free format is supported.

4. Look at the end of LINE to find auxiliary variables and the no print option.
5. Allocate memory for the RIVR variable.
6. Read named parameters. For each parameter, call UPARLSTRP to read the parameter header record.

6A. If a simple parameter, use ULSTRD to read the reaches.
6B. If parameter has instances, for each instance call UINSRP to read the instance name and ULSTRD to read

reaches.
7. Save river pointers for the current subgrid. Return.

9–42 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

GWF2RIV7RP
Arguments:

IN – The input unit number for the RIV Package
ment

llowing sequence:
1. Set river pointers to point to the current subgrid.
2. Read ITMP and NPRIV using free or fixed format. NPRIV is th parameters, which is read only if river

te e been define reaches are defined for the stress
 A ive value ind alue

ber of non
at umber of aux in RIVR

for each reach. Three value fine reach properties, and one value is used for
g b ata. Thus, N values.
mi RIV, the nu non-negative,
RIV P. IF ITMP
ne arameter rea s sufficient room.
h using sub

l sub to the
parameter name and substit RIVR. UPARLSTSUB updates NRIVER and checks

 make sure RIVR has sufficient room for the data.
7. P

 grid refinement

ce:
1. S

7

8
9

Ar

IGRID – The grid number, which is used for local grid refinement

The BD subroutine performs its work in the following sequence:

IGRID – The grid number, which is used for local grid refine

The RP subroutine performs its work in the fo

e number of
parame rs hav d. ITMP is a flag that specifies how nonparameter
period.
indicates the num

 negat icates reaches from the previous stress period should be reused. A non-negative v
parameter reaches.

3. Calcul e the n iliary data values and the output unit. NRIVVL is the total number of values
s define the reach cell, three values de

savin udget d RIVVL–7 is the number of auxiliary data
4. Deter ne NNP mber of nonparameter reaches for the stress period. If ITMP is

NNP is ITM is negative, NNPRIV is unchanged from the last stress period.
5. Read w nonp ches. Before reading them, make sure that the river reach list ha

ber of rivers (NRIVER) equal to NNPRIV. Read t e reaches routine ULSTRD. Set the num
6. Cal routine PRESET deactivate all river parameters. For each parameter, call UPARLSTSUB to read

ute reaches into the active part of
to
rint the number of river reaches in the stress period.

8. Return.

GWF2RIV7FM
Arguments:

IGRID – The grid number, which is used for local

The FM subroutine performs its work in the following sequen
et river pointers to point to the current subgrid.

2. Return if no active river reaches for this time step.
3. Repeat steps 4 through 9 for each reach.
4. Get cell indices for reach from RIVR.
5. If cell is constant-head or no-flow, skip this reach.
6. Get reach properties from RIVR. RRBOT is double precision equivalent of RBOT.

. Compare current value of head (HNEW) for cell to the elevation of the bottom of the riverbed (RRBOT), which
determines whether seepage is constant or head dependent.

. Head is greater than RRBOT, so seepage is head dependent – add terms to HCOF and RHS.

. Head is less than or equal to RRBOT, so seepage is constant – add term to RHS only.
10. Return

GWF2RIV7BD

guments:

KSTP – Current time step
KPER – Current stress period

 Chapter 9. Programmer Documentation 9–43

1. Set river pointers to point to the current subgrid.
2. Initialize cell-by-cell flow term flag (IBD) and budget accumulators (RATIN and RATOUT). IBD is 0 for no cell-

get. IBD is -1 for writing cell-by-cell budget to Listing File. IBD is 1 for writing cell-by-cell budget to
cell-by-cell budget to a compact budget file.
ll UBDSV4 to write the budget header.

ernal use even if not written to a file.
5. If no reaches for this stress period, skip to step e step.

dget term name into VBNM.

by-cell bud
a noncompact budget file. IBD is 2 for writing

3. If writing cell-by-cell data in compact form, ca
4. Clear BUFF, which always stores the cell-by-cell budget for int

 7. River seepage does not exist for this tim
epeat steps 6A through 6L for each reach. 6. R

6A. Get cell indices for reach from RIVR, and initialize reach seepage to 0.
6B. If cell is no flow or constant head, skip to 6L. Reach seepage (RATE) already has been initialized to 0.
6C. Get reach properties from RIVR.
6D. Compare current value of head (HNEW) for cell to the elevation of the bottom of the riverbed (RRBOT),

which determines whether seepage is constant or head dependent.
6E. Head is greater than RRBOT, so compute head-dependent seepage.
6F. Head is less than or equal to RRBOT, so compute constant seepage.
6G. Write seepage to Listing File if IBD is negative.
6H. Add seepage to BUFF.
6I. Compare seepage to 0.
6J. Negative seepage indicates outflow from aquifer, which is subtracted from the outflow accumulator,

RATOUT.
6K. Positive (or 0) seepage indicates inflow to aquifer, which is added to the inflow accumulator, RATIN.
6L. Save seepage for reach if writing compact form of cell-by-cell budget.
Accumulate rates and volumes in VBVL. Move the bu7.

8. Increment the budget term number (MSUM).
9. Return.

9–44 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Drain Package

The Drain (DRN) Package adds terms to the flow equation to represent drains. Shared data for the DRN
ckage are declared in Fortran Module GWFDRNMODULE and defined in table 9–12. Pa

Va
N

Table 9–12. Variables in Fortran module GWFDRNMODULE.

[“C*n” in size column indicates a character variable of n characters]

riable Size Description
ame

ND of drains in the current stress period. RAIN Scalar The number
MXDRN Scalar The second dimension of DRAI, which includes space for the active drains in a stress period and all

drains defined by parameters.
ND ch includes five input values, the auxiliary RNVL Scalar The number of the first dimension of DRAI array, whi

data, and the drain budget term.
IDRNCB Scalar The unit number for saving DRN budget data.
IPR indicates do not print, 1 indicates print. DRN Scalar Flag for printing DRN data – 0
NP DRN Scalar The number of DRN parameters.
IDR The value of the second index in DRAI at which parameter data begins. NPB Scalar
NNPDRN Scalar The number of nonparameter drains in the current stress period.
DRNAU The name of auxiliary variables. X C*16,20
DRAI NDRNVL,MXDRN Drain list, which includes space for the active drains in a stress period and all drains defined by

parameters.

rimary subroutines: GWF2DRN7AR, GWF2DRN7RP, The Drain (DRN) Package consists of four p
7FM, and GWF2DRN7BD. SubroutiGWF2DRN

are defined by
ne ULSTRD is used in the AR subroutine to read lists of drains that

 using parameters and in the RP subroutine to read the lists of drains that are defined without using
parameters. Details of the code are not contained here. The code is similar to, but simpler than, the River Package,
which is fully documented earlier in this chapter.

 Chapter 9. Programmer Documentation 9–45

Evapotranspiration Package

om the
WFEVTMODULE and

defined in table 9–13.

DULE.

N
Size Description

The Evapotranspiration (EVT) Package adds terms to the flow equation to represent evapotranspiration fr
ground-water system. Shared data for the EVT Package are declared in Fortran Module G

Table 9–13. Variables in Fortran module GWFEVTMO

Variable
ame

NEVTOP Scalar The evapotranspiration option:
1 – Layer 1
2 – Layer specified in IEVT
3 – Uppermost variable-head cell

IEVTCB Scalar The unit number for saving EVT budget data.
NPEVT Scalar The number of EVT parameters.
IEVTPF Scalar The format code for printing evapotranspiration data defined using parameters.
EVTR NCOL,NROW Max TR, and then

mul
imum evapotranspiration rate. Initially evapotranspiration flux is read into EV

tiplied by cell area.
EXDP NCOL,NROW Extinction depth.
SURF NCOL,NROW Elevation at which evapotranspiration becomes the maximum.
IEVT NCOL,NROW Layer receiving recharge when NEVTOP is 2 or 3.

The Evapotranspiration (EVT) Package consists of four primary subroutines: GWF2EVT7AR, GWF2EVT7RP,

GW ilar to the

s
ich recharge option is being used, and for the selected option a

loop runs for all the cells in one layer. The effect is the same for both approaches. The EVT approach results in a
more compact code, but is slightly less efficient because the check for the option is done for every horizontal cell.

F2EVT7FM, and GWF2EVT7BD. Details of the code are not contained here because the code is sim
Recharge Package, which is fully documented earlier in this chapter. The differences are minor. EVT adds terms to
both RHS and HCOF; whereas RCH adds terms only to RHS. The EVT Package also reads more arrays than RCH
reads, but the same approach for reading is used. When formulating the flow equation and computing the budget,
EVT has one loop for all cells in a layer, and inside this loop a test is made to see which evapotranspiration option i
being used. Conversely, RCH first tests to find wh

9–46 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Strongly Implicit Procedure Package

an
ULE and defined in table 9–14.

Size Description

The Strongly Implicit Procedure (SIP) Package is one of the solvers that can be used to solve the simultaneous
equations resulting from the finite-difference approximation. Shared data for the SIP Package are declared in Fortr
Module GWFSIPMOD

Table 9–14. Variables in Fortran module GWFSIPMODULE.

Variable
Name

NPARM Scalar The number of iteration parameters.
IPCALC Scalar

 the user.
.

Iteration parameter calculation flag:
0 – WSEED will be specified by
not 0 – WSEED will be calculated by the program

IPRSIP Scalar Time step interval for printing table of maximum head change each iteration.
HCLOSE Scalar Head closure criterion for convergence.
ACCL Scalar Acceleration parameter.
W NPARM Iteration parameters.
EL NCOL,NROW,NL als in the upper triangular factor of [A+B]. AY One of the diagon
FL NCOL,NROW,NL . AY One of the diagonals in the upper triangular factor of [A+B]
GL NCOL,NROW,NL . AY One of the diagonals in the upper triangular factor of [A+B]
V NCOL,NROW,NLAY Intermediate solution result.
HDCG MXITER Maximum head change for each iteration.
LRCH 3,MXITER Layer, row, and column of the cell containing the maximum head change for each iteration.

The Strongly Implicit Procedure (SIP) Package consists of two primary subroutines, SIP7AR and SIP7AP.

Except for the change to Fortran modules for memory allocation, SIP7 is identical to the SIP1 code originally
documented in MODFLOW (McDonald and Harbaugh, 1988). Readers are referred to that documentation for
additional details.

All data used by subroutine SIP7AP are passed as subroutine arguments. This results in faster execution on
some computers as compared to passing data by using Fortran modules. Also for computational performance in
SIP7AP, the arrays storing three-dimensional data for cells in the grid are accessed as one-dimensional arrays.

 Chapter 9. Programmer Documentation 9–47

Preconditioned Conjugate-Gradient Package

T

fined in table 9–15.

e

he Preconditioned Conjugate-Gradient (PCG) Package is one of the solvers that can be used to solve the
simultaneous equations resulting from the finite-difference approximation. Shared data for the PCG Package are
declared in Fortran Module GWFPCGMODULE and de

Table 9–15. Variables in Fortran module GWFPCGMODULE.

Variable
Name

Siz Description

ITER1 Scalar ons. The maximum number of inner iterati
NPCOND Scalar

ms agreement
Preconditioner flag:

1 – Incomplete Cholesky with row-su
2 – Polynomial

NBPOL Scalar the

 used.
am computes the value.

When using polynomial preconditioning, flag for computing the upper bound of
maximum eigenvalue:

2 – A value of 2.0 is
not 2 – The progr

IPRPCG head change each iteration. Scalar Time step interval for printing table of maximum residual and
MUTPCG

mation.

Scalar Muting flag for printout:
0 – Print the convergence table.

mber of iterations 1 – Print only the total nu
2 – Do not print any convergence infor
3 – Print convergence information only if convergence fails.

NITER Scalar Inner iteration counter.
HCLOSEPCG Scalar Head closure criterion for convergence.
RCLOSE Scalar Residual closure criterion for convergence.
RELAX Scalar Relaxation parameter.
DAMP Scalar Damping parameter.
VPCG NCOL,NROW,NLAY Intermediate solution result. (Double precision)
SS NCOL,NROW,NLAY Matrix in PCG algorithm. (Double precision)
P NCOL,NROW,NLAY Matrix in PCG algorithm. (Double precision)
RES NCOL,NROW,NLAY The flow equation residual. (Double precision)
HPCG NCOL,NROW,NLAY Head at the beginning of an outer iteration. (Double precision)
CD NCOL,NROW,NLAY The main diagonal of [U] for incomplete Cholesky preconditioning.
HCSV NCOL,NROW,NLAY HCOF is saved in HCSV when using polynomial preconditioning.
LHCH 3,MXITER*ITER1 Layer, row, and column of the cell containing the maximum head change for each iteration.
HDCG MXITER Maximum head change for each iteration.
LRCHPCG 3,MXITER*ITER1 Layer, row, and column of the cell containing the maximum residual for each iteration.
IT1 MXITER*ITER1 Outer iteration flag:

0 – Not the first inner iteration of an outer iteration
1 – The first inner iteration of an outer iteration

The Preconditioned Conjugate-Gradient (PCG) Package consists of two primary subroutines, PCG7AR and

PCG7AP. Except for the change to Fortran modules for memory allocation, PCG7 is the same as the PCG2 code in
MODFLOW–2000. Readers are referred to Hill (1990) for additional details.

All data used by subroutine PCG7AP are passed as subroutine arguments. This results in faster execution on
some computers as compared to passing data by using Fortran modules. Also for computational performance in
PCG7AP, the arrays storing three-dimensional data for cells in the grid are accessed as one-dimensional arrays.

9–48 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

Direct Solver Package

The Direct Solver (DE4) Package is one of the solvers that can be used to solve the simultaneous equation
resulting from the finite-difference approximation. Shared data for the DE4 Package are declared in Fortran Modu
GWFDE4MODULE and defined in table 9–16.

s
le

S D

Table 9–16. Variables in Fortran module GWFDE4MODULE.

Variable
Name ize escription

MXUP S T part of [A]. calar he maximum number of equations in the upper
MXLOW S The maximum number of equations in the lower part of [A]. calar
MXEQ Scalar MXUP+MXLOW
MXBW Scalar The maximum value of the band width plus one.
ITMX S Tcalar he maximum number of iterations (internal or external) in one time step,
ID4DIR Scalar F , and NLAY:

1

W≤NCOL<NLAY
W

6

lag that indicates the relative size of NCOL, NROW
 – NLAY≤NROW≤NCOL

2
3 – NROW<NLAY≤NCOL
4 – NRO

 – NLAY≤NCOL<NROW

5 – NCOL<NLAY≤NRO
 – NCOL<NROW<NLAY

NITERDE4 Scalar The e step. maximum number of internal iterations in one tim
IFREQ Scalar Flag

0
en the time step changes.

s period and when the time step size changes.
led (nonlinear flow equation).

 indicating the frequency at which [A] changes:
 – [A] has not changed since the previous solution.

1 – [A] changes only wh
2 – [A] can change at the start of each stres
3 – [A] can change each time DE45AP is cal

IPRD4 S T ing table of maximum head change for each iteration. calar ime step interval for print
MUTD4 S Muting flag for printout: calar

0 – Print the convergence table
1 – Print only the total number of iterations
2 – Do not print any convergence information

ID4DIM S Fcalar irst dimension of AU and IUPPNT:
5 – for a two-dimensional grid
7 – for a three-dimensional grid

ACCLDE4 S Acalar cceleration parameter.
HCLOSEPCG S Hcalar ead closure criterion for convergence.
IUPPNT ID4DIM,MXUP The number of o

c
ff-diagonal coefficients and the equation numbers of the off-diagonal

oefficients that are stored in AU.
IEQPNT N DCOL,NROW,NLAY 4 order number for model cells.
AU I TD4DIM,MXUP he upper part of [A].
AL MXBW T,MXLOW he matrix AL in the D4 algorithm.
D4B MXEQ The vector {b}.
HDCGDE4 MXITER Maximum head change for each iteration.
LRCHDE4 3,ITMX Layer, row, and column of the cell containing the maximum residual for each iteration.

The Direct Solver (DE4) Package consists of two primary subroutines, DE47AR and DE47AP. Except for the

change to Fortran modules for memory allocation, DE4 is the same as the DE4 code in MODFLOW–2000. Reade
are referred to Harbaugh (1995) for additional details.

All data used by subroutine DE47AP are passed as subroutine arguments. This results in faster execution on
some computers as compared to passing data using Fortran modules.

rs

 Chapter 9. Programmer Documentation 9–49

Utility Subroutines

Non
 data from Fortran modules. All data are passed as subroutine

arguments, which are documented below. The code contains extensive comments, which provide the primary
ow for some of the subroutines.

URWORD

ents:

A line o
Elemen E where the s

T – Elem LINE that is the
 Eleme INE that is the

NCODE – A code for converting the wo
 0 – No conversion
 1 – Convert to uppercase
 2 – Convert to Integer
 3 – Convert to Real number

is converted if indicated by NCODE.
mb e to which the

 File un er for the Listin
IN – File unit from which the line was re

URWORD returns the location of a a, or
a tab. If the word starts with a single qu delimiter

 a quot finding a wor n be
peated tain successiv be optionally converted to uppercase, or it can be

converted to an Integer or Real number. d must be 30 characters or less.

Arguments:

 t g to be conve

ASE c g to up
be con e

The algori codin he offset between a lowercase and uppercase character is
same for al cters ng the offset between “a” and “A” to convert

er to e. The conv ption that the lowercase characters can
 by lational test

URD

IN –

LINE – A buffer for a line of text

Parameter Subroutines
The nonparameter utility subroutines use no

documentation. Some additional information is provided bel

Argum

LINE – f text
ICOL – t in LIN earch for a word should start.
ISTAR ent in last character of the word.
ISTOP – nt in L last character of the word.

rd:

N – Integer value to which the word
R – Real nu er valu word is converted if indicated by NCODE.
IOUT – it numb g File

ad.

 word in a line of text. A word delimiter is one or more spaces, a comm
ote, then the quote is removed from the word and the terminating

must be e. After d, the line index points to the remainder of the line so that URWORD ca
called re ly to ob e words. The word can

 When converting to a number, the wor

UPCASE

WORD – The ext strin rted

UPC onverts a strin percase. The single argument, WORD, is a character variable that contains the
string to verted. The result ov rwrites WORD.

thm works for a g method for which t
the l alphabetic chara . The conversion is done by addi
the charact
be detected

 uppercas
using a re

ersion algorithm also relies on an assum
 for greater than or equal to ‘a’ and less than or equal to‘z’.

COM

Arguments:

 File unit number for reading data
IOUT – File unit number for the Listing File

9–50 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

URDCOM reads lines from file unit IN until a non-comment line is found. A comment line starts with “#”. The
comments are written to file unit IOUT if IOUT is greater than 0. The non-comment line that follows any comments

n LINE.

 number of cells read in the list
 array that holds the list of data (LDIM,MXLIST)
he location in RLIST (second index) where the first data should be read.
irst dimension of RLIST

d dimension of RLIST
saving budget data.

LSTRD

 start of the list when writing the list to the Listing File.
AU uxiliary variables in the list
C UX
AU of auxiliary variables used.
R d by the Basic Package.

x) that is the first value in RLIST that gets scaled if a scale factor is
defined for the list.
ISC

required because of a variety of options that are supported.

IOU

BEL plus names of
auxiliary data fields.

JJ – The dimensioned size of the array
IN – File unit number for reading data
IOUT – File unit number for the Listing File

is returned to the calling program i

ULSTRD

Arguments:

NLIST – The
RLIST – The
LSTBEG – T
LDIM – The f
MXLIST – The secon
IAL – A flag indicating whether LDIM contains an extra location for
INPACK – The input unit number for the package that is calling U
IOUT – The output unit number for the Listing File
LABEL – The text label that is written at the
C X – The names of a
N AUX – The dimension of CA
N X – The actual number
IF EFM – Free format flag define
NCOL – The number of columns in the grid
NROW – The number of rows in the grid
NLAY – The number of layers in the grid.
ISCLOC1 – The location in RLIST (first inde

LOC2 – The location in RLIST (first index) that is the last value in RLIST that gets scaled if a scale factor is
defined for the list.
IPRFLG – Printout flag indicating to print the list if 1.

ULSTRD reads and writes to the Listing File a list of cell locations with data values as used to define river
reaches, drains, general-head boundaries, constant-head boundaries, and wells. A lengthy list of arguments is

ULSTLB

Arguments:

T – File unit number for the Listing File
LABEL – Text to be printed in the label
CAUX – Names of auxiliary data fields
NCAUX – The dimensioned size of CAUX
NAUX – The number of auxiliary fields being used.

This subroutine prints a label for a list of data. The label consists of the text in argument LA

U1DREL

Arguments:

A – The array to read
ANAME – The name of the array

 Chapter 9. Programmer Documentation 9–51

U1DREL reads a one-dimensional Real array using a control record to define how the data are read. This
supports the original control records using numeric codes and the newer control records using words to specify
options.

U2DINT

Arguments:

IA – The array to read
ANAME – The name of the array
II – The dimension size for the second index of IA
JJ – The dimensioned size for the first index of IA

g a control record to define how the data are read. This
d the newer control records using words to specify

II –

 0 – No layer
ayer number
nit number for reading data

nit number for the Listing File

 array using a control record to define how the data are read. This
ng numeric codes and the newer control records using words to specify

NLBL1 – The start column label (number)
he stop column label (number)
 The number of blank spaces to leave at start of line

number of column numbers per line

mber for writing the data – usually the Listing File

header, which is used before writing a two-dimensional array.

K – Layer code for the array:
 <0 – Array is a cross section
 0 – No layer
 >0 – Layer number
IN – File unit number for reading data
IOUT – File unit number for the listing File

U2DINT reads a two-dimensional Integer array usin
supports the original control records using numeric codes an
options.

U2DREL

Arguments:

A – The array to read
ANAME – The name of the array

The dimension size for the second index of A
JJ – The dimensioned size for the first index of A
K – Layer code for the array:
 <0 – Array is a cross section.

 >0 – L
IN – File u
IOUT – File u

U2DREL reads a two-dimensional Real
supports the original control records usi
options.

UCOLNO

Arguments:

NLBL2 – T
NSPACE –
NCPL – The
NDIG – The number of characters in each column field
IOUT – The file unit nu

UCOLNO writes a column-number

9–52 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

ULAPRS

Arguments:

e array to be written
name of the array being written
current time step

s period
 the grid

iting the data – usually the Listing File

o-dimensional array using strip format.

Arg

he name of the array being written
KSTP – The current time step

he current stress period

 number of rows in the grid
 array to be written

sually the Listing File

g wrap format.

nal Real array, but this subroutine first checks to see if all values are the
gle value is printed rather than writing all of the individual values. If all

values are not the same, then ULAPRW is called to print the values.

Arguments:

 array to be written
name of the array being written
current time step

urrent stress period

ICHN – The file unit number for writing the data

ULASAV writes a header record and a layer of Real data to an unformatted file.

BUF – Th
TEXT – The
KSTP – The
KPER – The current stres
NCOL – The number of columns in
NROW – The number of rows in the grid
ILAY – The layer of the array to be written
IPRN – Format code

UIO T – The file unit number for wr

ULAPRS writes a tw

ULAPRW

uments:

BUF – The array to be written
TEXT – T

KPER – T
NCOL – The number of columns in the grid
NROW – The
ILAY – The layer of the
IPRN – Format code
IOUT – The file unit number for writing the data – u

ULAPRS writes a two-dimensional array usin

ULAPRWC

ULAPRWC writes a two-dimensio
same. If all values are the same, then the sin

ULASAV

BUF – The
TEXT – The
KSTP – The
KPER – The current stress period
PERTIM – The accumulated length of the c
TOTIM – The accumulated length of the simulation
NCOL – The number of columns in the grid
NROW – The number of rows in the grid
ILAY – The layer of the array to be written

 Chapter 9. Programmer Documentation 9–53

ULASV2

:

array to be written
being written

 of the current stress period
ulation

LBL

 not 0 – Write header.

The boundary array

2 writes a layer of Real data to a formatted file. Optionally, a header record can be written. IBOUND is
r convenience for someone to provide a more complex

BOUND to control output.

he array being written

KPER – The current stress period
PER
TOTIM – The accumulated length of the simulation

number of columns in the grid
 number of rows in the grid

ILAY

 0 – Do not write header.
 Write header.

3 writes a layer of Integer data to a formatted file. A header record can be optionally written.

dget data
en

Arguments

BUFF – The
TEXT – The name of the array
KSTP – The current time step
KPER – The current stress per
PERTIM – The accumulated le

iod
ngth

TOTIM – The accumulated length of the sim
NCOL – The number of columns in the grid
NROW – The number of rows in the grid
ILAY – The layer of the array to be written
ICHN – The file unit number for writing the data
FMTOUT – The format for writing the data

SAV – Flag for writing a header
0 – Do not write header.

IBOUND –

ULASV
passed as an argument but is unused. IBOUND is included fo
replacement for ULASV2 that makes use of I

ULASV3

Arguments:

IDATA – The array to be written
TEXT – The name of t
KSTP – The current time step

TIM – The accumulated length of the current stress period

NCOL – The
NROW – The

 – The layer of the array to be written
ICHN – The file unit number for writing the data
FMTOUT – The format for writing the data
LBLSAV – Flag for writing a header:

 not 0 –

ULASV

UBUDSV

Arguments:

KSTP – The current time step
KPER – The current stress period
TEXT – The name of the budget term

 buIBDCHN – The file unit number for writing
BUFF – The array of data values to be writt
NCOL – The number of columns in the grid
NROW – The number of rows in the grid

9–54 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

NLAY – The number of layers in the grid

ensional array of values to an unformatted file. This is used for writing budget data
d in Output Control.

t data
ten

he grid
R in the grid

 the grid

DEL

V1 writes a three-dimensional array of values to an unformatted file. This is used for writing a full 3–D
et data when COMPACT BUDGET is specified in Output Control. This is no more compact than using

ng a compact budget code, DELT, PERTIM, and TOTIM. The
D is passed as an argument but is unused. IBOUND is included for convenience

cement for UBDSV1 that makes use of IBOUND to control output.

udget data
e grid

R in the grid
LA ers in the grid

NLIS
IOUT – File unit number for the Listing File

 length of the current time step
he accumulated length of the current stress period
 accumulated length of the simulation

 list of values to an unformatted file. This is used along with UBDSVA for
n COMPACT BUDGET is specified in Output Control. UBDSV2 writes a

IM, and TOTIM. The compact budget code is 2. UBDSV2
alues to be written by UBDSVA. IBOUND is passed as an argument

enience for someone to provide a more complex replacement for
ontrol output.

IOUT – File unit number for the Listing File

UBUDSV writes a three-dim
when COMPACT BUDGET is NOT specifie

UBDSV1

Arguments:

KSTP – The current time step
KPER – The current stress period
TEXT – The name of the budget term

udgeIBDCHN – The file unit number for writing b
e writBUFF – The array of data values to b

C ns in tN OL – The number of colum
wsN OW – The number of ro

NLAY – The number of layers in
IOUT – File unit number for the Listing File

T – The length of the current time step
PERTIM – The accumulated length of the current stress period
TOTIM – The accumulated length of the simulation
IBOUND – The boundary array

UBDS
array of budg
UBUDSV, but UBDSV1 adds an extra record containi
compact budget code is 1. IBOUN
for someone to provide a more complex repla

UBDSV2

Arguments:

KSTP – The current time step
KPER – The current stress period
TEXT – The name of the budget term

riting bIBDCHN – The file unit number for w
CO ns in thN L – The number of colum

owsN OW – The number of r
N Y – The number of lay

T – The number of cells in the list

DELT – The
PERTIM – T
TOTIM – The
IBOUND – The boundary array

UBDSV2 writes a header for a
writing constant-head budget data whe
record containing a compact budget code, DELT, PERT
also writes a record containing the number of v
but is unused. IBOUND is included for co
UBDSV2 that makes use of IBOUND to c

nv

 Chapter 9. Programmer Documentation 9–55

UBDSVA

Arguments:
IBDCHN – The file unit number for writing budget data
NCOL – The number of columns in the grid
NROW – The number of rows in the grid

lumn of the cell whose budget value is being written
 of the cell whose budget value is being written

r of the cell for which a budget value is being written

 grid

 each list value specified by the header written by UBDSV2.
ata when COMPACT BUDGET is specified in Output Control. A

, row, and layer hierarchy) is written along with the data value.
ents but are unused. IBOUND and NLAY are included for convenience for

ment for UBDSVA that makes use of these variables.

KPE

 Not 1 – Values in BUFF apply to layer 1, so IBUFF is not written.
lues in BUFF apply to layers in IBUFF, so IBUFF is written.

 number of rows in the grid

ting File
step
he current stress period

rray of values to an unformatted file and an optional two-dimensional array
g Recharge and Evapotranspiration budget data when COMPACT BUDGET

ites a record containing a compact budget code, DELT, PERTIM, and
 indicator array is written and 4 if an indicator array is written. IBOUND

 convenience for someone to provide a more
f IBOUND to control output.

UBD

J – The co
I – The row
K – The laye
Q – The budget value to be written
IBOUND – The boundary array
NLAY – The number of layers in the

UBDSVA writes a list value, and is called once for
This is used for writing constant-head budget d
one-dimensional cell index (based on column
IBOUND and NLAY are passed as argum
someone to provide a more complex replace

UBDSV3

Arguments:
KSTP – The current time step

R – The current stress period
TEXT – The name of the budget term
IBDCHN – The file unit number for writing budget data
BUFF – The array of data values to be written
IBUFF – An array of layer numbers for the data values
NOPT – The writing option:

 1 – Va
NCOL – The number of columns in the grid
NROW – The
NLAY – The number of layers in the grid
IOUT – File unit number for the Lis
DELT – The length of the current time
PERTIM – The accumulated length of t
TOTIM – The accumulated length of the simulation
IBOUND – The boundary array

UBDSV3 writes a two-dimensional a
of layer numbers. This is used for writin
is specified in Output Control. UBDSV3 wr
TOTIM. The compact budget code is 3 if no
is passed as an argument but is unused. IBOUND is included for
complex replacement for UBDSV3 that makes use o

SV4

Arguments:
KSTP – The current time step
KPER – The current stress period
TEXT – The name of the budget term

9–56 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

NAUX – The number of auxiliary data values being used

e file unit number for writing budget data

f the simulation

eone to
ore complex replacement for UBDSV4 that makes use of IBOUND to control output.

ing budget data

ing written
 written

es being used
iary data value

of multiple data values, and is called once for each list entry
y UBDSV4. This is used for writing budget data combined with auxiliary data for

the R

Arguments:
irst part of text message

ond part of text message

the Listing File.

AUXTXT – Names of auxiliary values
IBDCHN – Th
NCOL – The number of columns in the grid
NROW – The number of rows in the grid
NLAY – The number of layers in the grid
NLIST – The number of cells in the list
IOUT – File unit number for the Listing File
DELT – The length of the current time step

of the current stress period PERTIM – The accumulated length
h oTOTIM – The accumulated lengt

IBOUND – The boundary array

UBDSV4 writes a header for a list of values to an unformatted file. This is used along with UBDSVB for
writing budget data for the River, General-head Boundary, Well, and Drain Packages when the COMPACT
BUDGET is specified in Output Control. UBDSV4 writes a record specifying the number of data values to be
written for each entry in the list and a record containing a compact budget code, DELT, PERTIM, and TOTIM. The
compact budget code is 5. UBDSV4 also writes a record containing the number of entries to be written by
UBDSVB. IBOUND is passed as an argument, but is unused. IBOUND is included for convenience for som
provide a m

UBDSVB
Arguments:
IBDCHN – The file unit number for writ
NCOL – The number of columns in the grid
NROW – The number of rows in the grid
J – The column of the cell for which a budget value is be

ich a budget value is beingI – The row of the cell for wh
K – The layer of the cell for which a budget value is being written
Q – The budget value to be written

dget value is being writtenVAL – The list data for the cell for which a bu
NVL – The size of VAL
NAUX – The number of auxiliary data valu
LAUX – The location in VAL of the first auxil
IBOUND – The boundary array
NLAY – The number of layers in the grid

UBDSVB writes a list entry, which can consist
specified by the header written b

iver, General-head Boundary, Well, and Drain Packages when COMPACT BUDGET is specified in Output
Control. A one-dimensional cell index (based on column, row, and layer hierarchy) is written along with the data
values. IBOUND and NLAY are passed as arguments but are unused. IBOUND and NLAY are included for
convenience for someone to provide a more complex replacement for UBDSVB that makes use of these variables.

UMESPR

TEXT1 – F
TEXT2 – Sec
IOUT – File unit number for the Listing File

UMESPR writes a message to

 Chapter 9. Programmer Documentation 9–57

USTOP

Arguments:

STOPMESS – Text message to write prior to stopping.

nd stops execution. Throughout MODFLOW, USTOP is called to
rather than directly invoking STOP. This is done to facilitate the
ure control upon an error.

tines are used to read parameter definitions and apply the definitions to generate
data

rwise

h is

ferent times, also
have 10 characters and are stored in INAME. Parameter and instance names are case insensitive except that case is

 for purposes of printing the names in the output file. For example, the parameter name “HyCond” would
ntiated from the parameter name “HYCOND” because they are identical without consideration of case;
 output file would contain the form of the name that was specified in the input data. This approach is

e input file and temporarily converting the names to
hed.

pe. The location in the list establishes the
s variables that store parameter information. The

the same order as in PARNAM. Similarly, B

 that are used to define the model data
The indices have different uses depending on whether the parameter is an array or list.

ied by array clusters. A cluster defines a group of cells in
ave any number of array clusters, so two values in

usters for each parameter. IPLOC(1,p) specifies the first cluster for parameter p, and
parameters are defined by specifying beginning and ending locations in

the ns

,

er
zone numbers. Zone numbers restrict the cells of a layer to which a parameter applies. Each parameter cluster

ist of zone numbers to which the parameter applies. The zone numbers are contained in elements 5–14 of
ter. The fourth value of the cluster specifies the last element in the cluster that is being used. Consider
example. If IPCLST(4,n) is 7, then there are three zone numbers, which are IPCLST(5,n),

ed to specify instances. These can only apply to parameters that can vary
ances, which is 0 if instances are not being used for the parameter.

IPL e of the first instance for the parameter.
IACTIVE contains a flag for each parameter. IACTIVE indicates whether a parameter is active in the current

time step. This is used for parameters that can change with time, such as recharge parameters. An inactive parameter
has a 0 value. Negative 1 indicates the parameter is active all the time; for example, LPF parameters will have -1 for
IACTIVE. For active time varying parameters, IACTIVE is the number of the instance that is active.

USTOP optionally writes a message a
terminate the program when an error occurs
possibility of enhancing the program to capt

Parameter Subroutines
The parameter utility subrou
 used to construct the flow equation. Parameters are a user-selected alternative to direct input of data into

program variables. The parameters are used to generate the same model variables into which data would othe
be read directly; therefore, the Formulate Procedure subroutines receive data in the same form whether or not
parameters are used.

The variables for storing parameter definitions are defined in Fortran module PARAMMODULE, whic
documented in the Basic Package section of this chapter. Parameters have 10–character names stored in PARNAM.
Instance names, which designate multiple versions of the same parameter that can be applied at dif

maintained
not be differe
however, the
implemented by storing the names exactly as read from th
uppercase whenever the list of names is searc

PARNAM contains all parameters, regardless of the parameter ty
riouparameter number, which is used extensively to reference the va

parameter type is a four-character value stored in PARTYP using
contains parameter values.

The parameter index, IPLOC, stores four indices for each parameter
values from parameters.
Arrays are considered first. Each array parameter is specif
one layer. Clusters are stored in IPCLST. A parameter can h
IPLOC are used to specify the cl
IPLOC(2,p) specifies the last cluster. List

list array for the corresponding parameter type. For example, a river parameter is defined by a series of locatio
in the RIVR array. IPLOC(1,p) is the beginning location and IPLOC(2,p) is the ending location for parameter p.

Each array cluster has 14 values. The first value is the layer number, the second value is the multiplier array
number, and the third is the zone array number. Multiplier array names are 10–character values stored in MLTNAM
and zone array names are 10–character values stored in ZONNAM. A multiplier array is a layer array that is
multiplied by the parameter value when generating an array using parameters. A zone array is a layer array of integ

contains a l
the array clus
cluster n, for
IPCLST(6,n), and IPCLST(7,n).

IPLOC(3,p) and IPLOC(4,p) are us
with time. IPLOC(3,p) is the number of inst

OC(4,p) is the element of INAME that contains the nam

9–58 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

The code for many of these subroutines is tedious because several levels of indexing are involved. First a
ber must be determined from the name or type. The parameter index, IPLOC, must be dealt with to

ta are stored. For array parameters, the clusters must be evaluated to find the appropriate multiplier and
he expectation of the author is that these subroutines will

not require frequent updating. If improvements are needed, new subroutines likely will be written.
as

Arg

arameters that the package will use

UPA

his

ation does
ed. Parameter estimation is not initially supported in MODFLOW–2005, so ITERP

will
is

 finding the
para e

parameter num
find where da
zone arrays. Instances add another level of complexity. T

The parameter utility subroutines use the data in PARAMMODULE as needed. All other data are passed
subroutine arguments.

UPARARRAL

uments:

IN – Package file unit from which parameter data will be read
IOUT – File unit number for the Listing File
LINE – Character variable containing a line of text already read from IN
NP – The number of p

This subroutine determines if a package will use array parameters. When parameters were added as an option to
existing MODFLOW packages, a new optional item was added to the input files. This subroutine looks for that item.
Upon entry to this subroutine, a line from the package input file containing the next input item is contained in
variable LINE. URWORD is called to look for the word “PARAMETER,” and if found, URWORD is called again
to get the number of parameters, which is variable NP. The next line is read from the input file so that LINE will
contain the next input item upon returning. If “PARAMETER” is not found in LINE, NP is set to 0. A message is
printed to IOUT giving the number of parameters.

RARRRP

Arguments:

IN – Package file unit from which parameter data will be read
IOUT – File unit number for the Listing File
NP – The parameter number of the new parameter
ILFLG – Layer flag:
 0 – Parameter defines a two-dimensional array.
 not 0 – Parameter defines a three-dimensional array.
PTYP – The parameter type of the new parameter
ITERP – The number of times the ground-water flow simulation has been run
ITVP – Time varying parameter flag:
 0 – Parameter cannot vary with time.
 not 0 – Parameter can vary with time using instances.
IACT – Value to save in IACTIVE array.

This subroutine reads data for defining one array parameter.
ITERP is an argument that specifies the number of times the ground-water flow simulation has been run. T

was used in MODFLOW–2000 when doing parameter estimation. The ground-water flow simulation is repeatedly
rerun with different parameter values. When ITERP is greater than 1, all the parameters will already be defined as a
result of the first run of the simulation. In this case, the parameter data are read but the parameter inform
not require saving and is not print

 always be 1.
Allowance is made for predefining parameter values as done in the MODFLOW–2000 Sensitivity file. In th

case, a parameter is partly defined prior to being read by UPARARRRP. This situation is detected by
meter name in PARNAM with an unspecified (blank) type. Parameter processing then continues to complete th

definition. The parameter value in the Sensitivity file supersedes the value read by UPARARRRP.

 Chapter 9. Programmer Documentation 9–59

UPA

IOUT – File unit number for the Listing File

ame of ZZ

not print the array after substitution.

ameters of a specified type into a two-dimensional array. This is the
low Package. For three-dimensional arrays,

D array.
NP – The number of parameters to read

 number for the Listing File
meter type
e name of ZZ

s

for the format code.

 into a two-dimensional array.
rence is that UPARARRSUB2 applies only a limited set

e. Also, this subroutine must deal with
 the

s

Arg
ZZ –

RARRSUB1
Arguments:
ZZ – Two-dimensional array into which data are substituted
NCOL – Number of columns in ZZ
NROW – Number of rows in ZZ
ILAY – Layer number for ZZ—ILAY is 0 if ZZ is a two-dimensional array.
PTYP – Parameter type

ANAME – The n
IPF – Print format code:
 <0 – Do
 ≤0 – Print the array after substitution using IPF for the format code.

This subroutine substitutes all array par
functional equivalent for U2DREL. This is used by the Layer Property F
UPARARRSUB1 must be called once for each layer.

UPARARRSUB2
Arguments:
ZZ – Two-dimensional array into which data are substituted
NCOL – Number of columns in ZZ
NROW – Number of rows in ZZ
ILAY – Layer number for ZZ—ILAY is 0 if ZZ is a 2–

IN – Package input file unit
IOUT – File unit
PTYP – Para
ANAME – Th
PACK – The package name, which is printed in error message
IPF – Print format code:
 <0 – Do not print the array after substitution.

ay after substitution using IPF ≤0 – Print the arr

This subroutine reads a list of parameter names and substitutes them
he diffeUPARARRSUB2 is similar to UPARARRSUB1. T

of parameters while UPARARRSUB1 applies all parameters of a specified typ
e set of parameters to apply is read from an input file. This is used bypossibility of parameter instances. Th

ecR harge and Evapotranspiration Package

USUB2D
uments:
 Two-dimensional array into which data are substituted

NCOL – Number of columns in ZZ
NROW – Number of rows in ZZ
IP – Parameter number of parameter to be substituted
ILAY – Layer number for ZZ—ILAY is 0 if ZZ is a two-dimensional array.
INIT – Initialization flag: 0 – Do not initialize.,not 0 – Initialize to zero before substituting.
NSUB – The number of values in ZZ that are substituted

9–60 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

This subroutine is called by UPARARRSUB1 and UPARARRSUB2 to substitute one parameter into a two-
array. This adds to the values already in the array, therefore supporting the use of additive parameters.
uting the first parameter of a type, the array must be initialized to 0, and the INIT argument specifies

hich parameter data will be read

MXL

as added to the input files. This subroutine looks for that item.
subroutine, a line from the package input file containing the next input item is contained in
WORD is called to look for the word “PARAMETER,” and if found, URWORD is called again

ber of parameters, which is variable NP. In addition, URWORD is called to find MXL, the total
e next line is read from the input file so that LINE will

R” is not found, NP and MXL are set to 0. A message is
eters.

ber of cell locations in the list array

 which parameter data will be read

PAC

ne list parameter.
ITERP is an argument that specifies the number of times the ground-water flow simulation has been run. This

n MODFLOW–2000 when doing parameter estimation. The ground-water flow simulation is repeatedly
fferent parameter values. When ITERP is greater than 1, all the parameters will already be defined as a
irst run of the simulation. In this case, the parameter data are read but the parameter information does

 not initially supported in MODFLOW–2005, so ITERP

as done in the MODFLOW–2000 Sensitivity file. In this
his situation is detected by finding the

n continues to complete the

Allocate and Read Procedure
reads this data. Typically ULSTRD is called to read the list.

dimensional
When substit
whether or not to initialize the array.

UPARLSTAL

Arguments:

IN – Package file unit fro
IOUT – File unit number f

m w
or the Listing File

LINE – Character variable containing a line of text already read from IN
NP – The number of parameters that the package will use

 – The number of cell locations for all parameters

This subroutine determines if a package will use list parameters. When parameters were added as an option to
existing MODFLOW packages, a new optional item w
Upon entry to this
variable LINE. UR
to get the num
number of list entries required to define these parameters. Th

urning. If “PARAMETEcontain the next input item upon ret
printed to IOUT giving the number of param

UPARLSTRP

Arguments:

LSTSUM – Count of the num
MXLST – The maximum number of cell locations in the list array
IN – Package file unit from
IOUT – File unit number for the Listing File
NP – The parameter number for the new parameter

K – The package name, which is used when printing an error message
PTYPX – The parameter type that the new parameter should have
ITERP – The number of times the ground-water flow simulation has been run
NUMINST – The number of instances that the new parameter has

This subroutine reads data for defining o

was used i
rerun with di
result of the f
not require saving and is not printed. Parameter estimation is
will always be 1.

Allowance is made for predefining parameter values
case, a parameter is partly defined prior to being read by UPARLSTRP. T
parameter name in PARNAM with an unspecified (blank) type. Parameter processing the

rsedes the value read by UPARLSTRP. definition. The parameter value in the Sensitivity file supe
The list of cell data for the parameter is not read by this subroutine. The package

 Chapter 9. Programmer Documentation 9–61

UIN

IN – Package file unit from which parameter data will be read

r number
 number of times the ground-water flow simulation has been run

ubroutine is called by UPARARRRP and all
 for UPARLSTRP to determine whether a ground-

ance names are read for all runs, but the

UPARLSTSUB

uld

LSTVL – The first dimension of RLIST
second dimension of RLIST

NREAD – The number of values in RLIST to be moved for each cell
e number of cells in RLIST that can be active during a stress period

egins
nds

meter values into the active part of the

PRE

lled at the beginning of a stress period to deactivate the time varying parameters used in the prior
stres

PACK – Package name
IOUT – The file unit number for the Listing File
PTYP – Parameter type

SRP

Arguments:
I – Instance number

IOUT – File unit number for the Listing File
IP – Paramete
ITERP – The

This subroutine reads and stores one instance name. This s
 used as describedpackages that read list parameters. ITERP is

water flow simulation is being run multiple times. After the first run, inst
names are printed only for the first run.

Arguments:
IN – Package file unit from which parameter data will be read
PACK – Package name
IOUTU – The absolute value is the file unit number for the Listing File. A negative sign indicates that the list sho

not be printed.
PTYP – Parameter type
RLIST – The package list array that stores the list of data that are active in the current stress period and parameter

lists

LSTDIM – The

MXLST – Th
NTOT – The number of cells in RLIST that are currently active
IPVL1 – The value of the first index of RLIST where substitution b

n eIPVL2 – The value of the first index of RLIST where substitutio
LABEL – Label to print above the list
CAUX – Auxiliary field names
NCAUX – The dimension of CAUX
NAUX – The number of auxiliary values being used

This subroutine reads the name of a list parameter and substitutes the para
package list, RLIST.

SET

Arguments:
PTYP – Parameter type.

This subroutine sets IACTIVE to 0 for all parameters of the specified type, PTYP, which makes the parameters
inactive. This is ca

s period.

UPARLSTLOC

Arguments:

IN – Package file unit from which parameter data will be read

9–62 MODFLOW–2005, The U.S. Geological Survey Modular Ground-Water Model

IBEG – The location in the package data list of the first value associated with the parameter
he last value associated with the parameter

ameter value

s the start and end of the list of values for the
ing the list

e current stress period, UPARLSTLOC simply returns the indices.

UPA

ount how many parameters define a value for each cell
IBOUND – Boundary array

nit number for the Listing File
being checked

number of columns in the grid

ks to see if all the array parameters of a specified type define a value for all cells in a layer.

ated cell, it counts the times each cell is indicated. The count is stored in the
e appropriate clusters, BUFF is examined to see if there are any

d, they are printed and the simulation is

d
CPA

mber for the Listing File

ubroutine looks for a parameter in the list of parameters. If found, the parameter number is returned. The
ust match the specified type. If the parameter is not found or the parameter type is incorrect, the

 aborted.

IEND – The location in the package data list of t
PV – The par

This subroutine reads the name of a list parameter and find
 same as the first part of UPARLSTSUB, but rather than copyparameter within the package list. This is the

into the active area for th

RARRCK

Arguments:

BUFF – Temporary layer array used to c

IOUT – The file u
LAY – The layer
NCOL – The
NLAY – The number of layers in the grid

 rows in the grid NROW – The number of
PTYP – Parameter type

This subroutine chec
UPARARRCK also counts the number of parameters that contribute a value to each cell. This subroutine works by
going through each cluster for each parameter of the specified type as done by UPARARRSUB1. However, rather
than adding to a data value at each indic
temporary array, BUFF. After scanning all th
variable-head or constant-head cells where BUFF is 0. If any are foun
aborted.

UPARFIND

Arguments:

PNAME – Name of parameter to be found
PTYP – Parameter type for the parameter to be foun

CK – Package name to whic
IFOUND – Parameter number of the found parameter
IOUT – The file unit nu

This s
parameter type m
simulation is

	CHAPTER 9 PROGRAMMER DOCUMENTATION
	Overall Design Decisions
	Data Declaration and Sharing Using Fortran Modules
	MAIN Program
	 Basic Package
	Basic Package Data
	GLOBAL Module
	PARAMMODULE Module
	 GWFBASMODULE Module
	GWFCHDMODULE Module

	Subroutines
	GWF2BAS7AR
	SGWF2BAS7OPEN
	SGWF2BAS7ARDIS
	SGWF2BAS7I
	SGWF2BAS7J
	SGWF2BAS7ARMZ
	SGWF2BAS7ARPVAL

	GWF2BAS7ST
	SGWF2BAS7STPVAL

	GWF2BAS7AD
	 GWF2BAS7FM
	GWF2BAS7OC
	SGWF2BAS7N
	SGWF2BAS7L

	GWF2BAS7OT
	SGWF2BAS7H
	SGWF2BAS7D
	SGWF2BAS7IB
	SGWF2BAS7V
	 SGWF2BAS7T

	Time-Variant Specified-Head Option Subroutines
	GWF2CHD7AR
	GWF2CHD7RP
	GWF2CHD7AD

	 Block-Centered Flow Package
	 GWF2BCF7AR
	GWF2BCF7AD
	GWF2BCF7FM
	 GWF2BCF7BDS
	GWF2BCF7BDCH
	GWF2BCF7BDADJ
	 Secondary Subroutines
	SGWF2BCF7N
	SGWF2BCF7H
	SGWF2BCF7C
	 SGWF2BCF7A
	SGWF2BCF7L
	SGWF2BCF7U

	 Layer-Property Flow Package
	GWF2LPF7AR
	 GWF2LPF7AD
	GWF2LPF7FM
	 GWF2LPF7BDADJ
	GWF2LPF7BDS
	GWF2LPF7BDCH
	Secondary Subroutines
	SGWF2LPF7N
	SGWF2LPF7HCOND
	SGWF2LPF7WET
	SGWF2LPF7WDMSG
	SGWF2LPF7HHARM
	 SGWF2LPF7HLOG
	SGWF2LPF7HUNCNF
	SGWF2LPF7VCOND
	SGWF2LPF7SC
	SGWF2LPF7CK

	 Horizontal Flow Barrier Package
	GWF2HFB7AR
	 GWF2HFB7FM
	SGWF2HFB7MC
	SGWF2HFB7CK
	SGWF2HFB7RL
	 SGWF2HFB7SUB

	 Well Package
	 Recharge Package
	GWF2RCH7AR
	GWF2RCH7RP
	GWF2RCH7FM
	GWF2RCH7BD

	 General-Head Boundary Package
	 River Package
	GWF2RIV7AR
	 GWF2RIV7RP
	GWF2RIV7FM
	GWF2RIV7BD

	 Drain Package
	 Evapotranspiration Package
	 Strongly Implicit Procedure Package
	 Preconditioned Conjugate-Gradient Package
	 Direct Solver Package
	 Utility Subroutines
	NonParameter Subroutines
	URWORD
	UPCASE
	URDCOM
	ULSTRD
	ULSTLB
	U1DREL
	U2DINT
	U2DREL
	UCOLNO
	 ULAPRS
	ULAPRW
	ULAPRWC
	ULASAV
	 ULASV2
	ULASV3
	UBUDSV
	UBDSV1
	UBDSV2
	 UBDSVA
	UBDSV3
	UBDSV4
	UBDSVB
	UMESPR
	 USTOP

	Parameter Subroutines
	UPARARRAL
	UPARARRRP
	UPARARRSUB1
	UPARARRSUB2
	USUB2D
	UPARLSTAL
	UPARLSTRP
	 UINSRP
	UPARLSTSUB
	PRESET
	UPARLSTLOC
	UPARARRCK
	UPARFIND

