Skip Links

USGS - science for a changing world

Techniques and Methods 5–A10

Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

By Michael T. Meyer, Keith A. Loftin, Edward A. Lee, Gary H. Hinshaw, Julie E. Dietze, and Elisabeth A. Scribner

Thumbnail of and link to report PDF (1.2 MB)

Abstract

The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples.

The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards.

Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8.35 (n = 206), and glufosinate 9.3 plus or minus 9.16 (n = 16).

The analytical variation of the method, comparison of quantitation by isotope dilution and multipoint linear regressed standard curves, and method detection levels were evaluated by analyzing six sets of distilled-water, groundwater, and surface-water samples spiked in duplicate at 0.0, 0.05, 0.10 and 0.50 microgram per liter and analyzed on 6 different days during 1 month. The grand means of the normalized concentration percentage recovery for glyphosate, AMPA, and glufosinate among all three matrices and spiked concentrations ranged from 99 to 114 plus or minus 2 to 7 percent of the expected spiked concentration. The grand mean of the percentage difference between concentrations calculated by standard addition and linear regressed multipoint standard curves ranged from 8 to 15 plus or minus 2 to 9 percent for the three compounds. The method reporting levels calculated from all the 0.05- microgram per liter spiked samples were 0.02 microgram per liter for all three compounds.

Compound stability experiments were conducted on 10 samples derivatized four times for periods between 136 to 269 days. The glyphosate and AMPA concentrations remained relatively constant in samples held up to 136 days before derivatization. The half life of glyphosate varied from 169 to 223 days in the underivatized samples. Derivatized samples were analyzed the day after derivitization, and again 54 and 64 days after derivatization. The derivatized samples analyzed at days 52 and 64 were within 20 percent of the concentrations of the derivatized samples analyzed the day after derivatization.

Posted September 29, 2009

For additional information contact:
Director, USGS Kansas Water Science Center
4821 Quail Crest Place, Lawrence, KS
(785) 842–9909
http://ks.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Meyer, M.T., Loftin, K.A., Lee, E.A., Hinshaw, G.H., Dietze, J.E., Scribner, E.A., 2009, Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry: U.S. Geological Survey Techniques and Methods, book 5, chap. A10, 32p.



Contents

Abstract

Introduction

Purpose and Scope

Analytical Method

Evaluation of Instrument Performance

Method Performance

Method Detection Limits

Compound Stability in Underivatized and Derivatized Water Samples

Conclusions

Acknowledgments

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubs.usgs.gov/tm/tm5a10/
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, January 09, 2013, 03:54:33 PM