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Part VI I. Finite-Difference Methods 

Introduction 

In preceding chapters we have considered cases, we are forced to seek approximate 
formal mathematical solutions to the differ- solutions, using methods other than direct 
ential equations of ground-water flow. In formal solution. In Part VII, we consider one 
pract.ice, however, we find that such formal such method-the simulation of the differen- 
solutions are available only for a small mi- tial equations by finite difference equations, 
nority of field problems, representing rela- which in turn can be solved algebraically or 
tively simple boundary conditions. In most numerically. 
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Three observation wells tap a confined 
aquifer. The wells are arranged in a straight 
line in the x direction at a uniform spacing, 
AX. The water levels in the three wells are 
designated h,, &, and h, as #indicated in the 
figure. 

QUESTION 

Which of the following equations gives a 
reasonable approximation for the derivative, 
ah/ax, at point d, midway between well 1 
and well O? 

Turn to Section: 

a- 7 

w- 26 

w- 12 
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Your answer, hi,j, in Section 3 is correct. 

QUESTION 

Following the same conventions, which of 
the following expressions would serve as a 
finite-difference approximation to the term 

a”h a’h 
-+- 
ax2 aY2 

at the point haj? 

'Turn to Section: 

azh a'h hi-2,j+hi-1,j+ht+l,j+h*+2,j-4h{,j 
-+-- 

ax2 7321" a2 
20 

a*h azh hcr+l+hi+l,i+hc,r+2+hi+2,r-4ho 
-x 

$G+ ay* a* 
18 

a2h a*h hi-l,j+ht+l,j+hi,j-1+hi,j+1-4hr,j 

z+gg- a2 
4 

3 Del 

Your answer in Section 15, 

a*h a*h hl+h2+h3i-h4-4ho 
-w 

$G+ ay* a2 ’ 
is correct. These approximations to a*h/ax’ 
and a*h/ay* can be obtained more formally 
through the use of Taylor series expansions. 
A certain error is involved in approximating 
the derivatives by finite differences, and we 
can see intuitively that this error will gen- 
erally decrease as a is given smaller and 
smaller values. 

Now let us place a rectangular grid of in- 
tersecting lines, as shown in the diagram 

Y Column 

8 

6 

12346678 

over the x, y plane. The lines are drawn at 
a uniform spacing, a, and are numbered suc- 
cessively from the origin. Lines parallel to 
the x-axis are termed rows, while lines 
parallel to the’ y-axis are termed columns. 
The intersections of the grid lines are 
termed nodes and are identified by the num- 
bers associated with the intersecting lines. 
for example, the node 3, 4 is that formed by 
the intersection of the third column to the 
right of the y-axis with the fourth row 
above the x-axis. The spacing a, may be 
thought of as a unit of measurement; the 
node numbers then give the number of units 
of distance of a given node from the x and 
y axes. The head at a given node is indicated 
by using the node numbers for a subscript 
notation; for example, the head at node 3, 4 
would be indicated by h,,,. 

QUESTION 

Following this convention, how would we 
indicate the head at a node located i units 
to the right of the y axis and j units above 
the x axis (that is, at the point x=i.a, y= 
j.u, in the conventional Cartesian nota- 
tion) ? 

hj,i 

h ki 
h hia 

Turn to Section: 

14 
2 
5 0 
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Your answer in Section 2 is correct. We 
next consider the time axis and divide it as 
shown in the sketch into segments of length 
At, again numbering the division marks suc- 
cessively from t =O. We also introduce a 
third subscript, indicating the time at which 
a given head value is observed ; for example, 

Time *~~i..:t 
234567 

hi,i,, refers to the head at the node i, j of the 
Z, y plane at the time indicated by the nth 
division mark on the time axis. 

QUESTION 

Again assuming AX = Ay=u, which of the 
following would give the actual coordinate 
distances and time of measurement asso- 
ciated with the term h,,j,n? 

Turn to Section: 

&,,,=head at X=i.a, y=i.At, time=n*At 
9 

h,j,,=head at X=i-AX, y=i-Ay, time=n*a 
23 

hi,j,,=head at x=i.a, y= j-u, time=n-At 
10 

0 5 q u 

Your answer, hi,,i,, in Section 3 is not cor- 
rect. You have used the distances from the 
two coordinate axes as subscripts. That is, 

8 

7 

21 

12345678” 

you have used ia, which is actually the x 
coordinate of the node, or its distance from 
the y axis, as the first subscript; and you 
have used ja, which is actually the y coor- 
dinate of the node, or its distance from the 
x axis, as the second subscript. The conven- 
tion introduced in Section 3, however, does 
not have this form. If the finite-difference 
grid is superimposed on the x,y plane, as in 
the sketch, then the subscript associated 
with the point s=2a, y=3a is simply 2,3; 
the head at this point is designated h,.,. If 
we number the lines of the grid in succes- 
sion along each axis, starting with the axis 
as 0, we can obtain the subscript of a given 
node, or grid intersection, by looking at the 
numbers assigned to the two grid lines 
which intersect there ; point 2,3 is at the 
intersection of vertical line number 2 and 
horizontal line number 3. 

Return to Section 3 and choose another 
answer. 
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Your answer in Section 25 is not correct. 
Your formulation for the calculation of the 
new value of & in the first step is incorrect. 
The finite-difference equation which we de- 
veloped sta.ted that the value of h,,j should 
be the average of the values of h at the four 
surrounding nodes, that is 

The idea in the relaxation process is to com- 
pute a new value of hj,j as the average of the 
previous values of h at the four surrounding 
nodes. That is 

h,,i(New Value) =‘(hi-l,j+hi+l+i 

+ hcj--,+4hi,J+i) (Previous Values). 

When this calculation has been made, the 
idea is to compare the new value of hi,j with 
the previous value of h,,j. If these two are 
very close, everywhere in the grid, there is 
no point in continuing the process further, 
since additional iterations will produce little 
additional change. The solution, in other 
words, has converged to values of h which 
satisfy the difference equation. In the second 
step, therefore, rather than setting A& equal 
to the average of the new and previous 
values of hi,1 as in the answer you selected, 
Ri,; should be sot equal to the difference be- 
tween hi,j (New Value) and ‘hi,j (Previous 
Value). This difference may then be tested 
throughout the grid, and if it is sufficiently 
small at all points, the iteration process can 
be terminated. 

Return to Section 25 and choose another 
answer. 

Your answer in Section 1, 

h-h, 

Ax 

is not correct. In introducing the notion of a 
derivative, it is customary to begin with the 
finite-difference form-that is, to consider 
the finite change in h, Ah, occurring over a 
finite interval, ax, along the x axis. The de- 
rivative notation, dh/dx, is then introduced 
to represent the value of the ratio Ah/Ax, as 
AX becomes infinitesimal in size. Here, the 
idea is to move in the opposite direction. We 
started with1 the derivative, ah/ax, and we 
wish to approximate it by a ratio of finite 
differences. Moreover, we want an expres- 
sion which applies at point d, midway be- 
tween well 0 and well 1. The finite change 
in h occurring between these two wells is 
ho-h,. The finite distance separating them is 
Ax. 

Observation 
wells 

1 o! 0 e 2 

Return to Section 1 and choose another 
answer. 
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Your answer in Section 10 is not correct. 
You have used the correct formulation for 
the forward-difference approximation to 
@/at-that is, 

-but your approximation for (a”h/ax”) + 
(a’h/a@) is not correct. To obtain an ap- 
proximation for a2h/ax2, we move along the 
x axis, holding y constant. In this process 
i, the subscript denoting node position on the 
x axis will change, whereas j, the subscript 
denoting node position in the y direction, 
will remain unchanged. Our result will be 

- 
a”h a a hi+ l,j,s + hi-l,j,e - 2hi,j,n 
-$zs I . 
ax= a a2 

Similarly, in obtaining an approximation 
for a”h/ay?, we move along the y axis, so 
that i remains fixed, while the y-subscript, 
j, varies. The result is 

hi,j+l,n-h,j,n h,j,a-kj-1,e 
- 

a’h a a h,j+l,n+ hi,j-1.n -S,j,n 
-523 = 

3Y2 a a2 

Addition of these two expressions will 
give the correct approximation for (a2h/ 
ax? + (a2h/av2). 

Return to Section 10 and choose another 
answer. 

9 Em 

Your answer in Section 4 is not correcl. 
The subscripts i, j, n tell us that head hi,j,, 
occurs at a certain node, i, j of the finite- 
difference grid on the x, y plane and at a cer- 
tain point, n, of the finite-difference scale 
along the time axis. The coordinate values 
are found by multiplying the number of 
nodes along a given axis by the node spac- 
ing. Along the x axis the node i, j lies a dis- 
tance i-a from the origin (i nodes, each with 

spacing a). Along the time axis, the point 
n occurs at a time n-At (n time marks, each 
at a spacing At). The same procedure should 
be applied in determining the y coordinate, 
keeping in mind that there are j nodes along 
the y axis between the origin and point i, j, 
and that these nodes fall at a spacing a. 

Return to Section 4 and choose another 
answer. 
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10 q u 

Your answer in -Section 4 is correct. On to 
each axis, X, y, an6 t, the value of the inde- a”h a”h 
pendent variable is found by multiplying the -+- 
subscript, or node number, by the node spac- ax2 all2 
ing along the axis. Using the conventions we at the time t =nAt, and at the point x =6a, 
have adopted, therefore, the approximation y=j-a would be given by 

( a2h a2h 
\ 

hi-,,j,n+ hi+l,j,n + hr,j-qn+ hi,j+laR-4hi,j.* 
-+- sz 

a2 

Now in o:rder to simulate the differential In practical methods of computation, how- 
equation ever, the approximations 

a2h ph S ah 
-+-=-- 
ax2 av2 T at 

at the instant t =nAt we require in addition 
an approximation to ah/at at this instant. 

Time node- n-l n n+l t 

The sketch shows a graph of h versus t in 
the vicinity of this time. A reasonable ap- 
proximation to ah/at in the vicinity of the 
nth time mark would obviously be 

ah hn-ts) -b+) --= 
at At ’ 

h n+l -h, 
525 

At 

or 

hn-hn-, 
F=z 

At 

are often found’ preferable. Here, we are 
simulating the derivative, at t =nat by, re- 
spectively, a “forward difference” taken be- 
tween the times n-At and (n+l) -At, and a 
“backward difference,” taken between (n - 
1) *dt and neat. The error involved will de- 
pend largely upon our choice of At, and can 
be reduced to tolerable limits by choosing At 
sufficiently small. 

QUESTION 

Using the forward-difference approxima- 
tion to ah/at given above, which of the fol- 
lowing results is obtained as a finite-differ- 
ence simulation of the equation 

a2h ph S ah 
-=-- 

G+ay2 T at 
at the point x =ia, y = ja, and at the time 
t=nAt? 
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Turn to Section: 

ht-l,j,a~h~+l,j,n+ht,j-*,n+h,,j+I,n -b,j,n S h,j,n+l-kj,n 
=-. 

a2 T At 

hi-l,j-l,n+~t+l,j+l,n+hr+t.l,,-l,n-hr-1,j+l,n-4hcr,, S hi,j,m+l--hw,n 
=-. 

a2 T At 

hr-+j,n+h+I,j,n + hi,r-I.n+hc,r+1,n-4h{,j,n S hc,j,n+ ‘/--hem- %, 
=-. 

a2 T At 

16 

8 

19 

11 q n 

Your answer in Section 16 is not correct. 
For the steady-state condition, ah/at = 0 ; so, 
our equation, 

a”h a”h S ah 
-+-=-- 
ax* ag* T at 

becomes simply 

a’h a*h 
-+-=o. 
ax* a2/* 

To obtain a finite-difference approximation 
to this equation, we need only take our fi- 
nite-difference approximation to (a*h/ax*) 

Obnervation 
Wells 

1. %r 

12 

J I \‘ Potentiometric 
\ dmrface 

+ (a*h/ay*) and set it equal to zero. Our ap- 
proximation to this sum, using the subscript 
notation associated with the finite-difference 
grid, was 

a2 
. 

This expression can be set equal to zero, 
and the resulting equation multiplied 
through by the constant a2 to obtain the 
finite-difference equation which we require. 

Return to Section 16 and choose another 
answer. 

cl0 

Your answer in Section 1, 

is correct. Similarly the derivative at point 
e, midway between well 0 and well 2 is ap- 
proximated by 

(continued on next page) 
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h,-ho 
a-. 

Ax 

QUESTION 

Which of the following expressions gives 
a reasonable approximation for the second 
derivative, a”h/ax’, at point O-that is, at 
the location of the center well? 

13 
Your answer in Section 16 is not correct. 

The finite-difference expression approximat- 
ing 

a*h azh 
-+- 
ax2 av 

was 

L-r,j+ ht+l,j + h;,j-l+ h,j+, -4&j 
. 

a2 

Turn to Section: 

a2h 12*-h, 
-w- 27 
ax? 2Ax 

a% h,+h,-2h, 

;- (Ax)’ 
15 

h,-h, ho-h, 
--- 

azh Ax AX 

s- 2Ax 
22 

q u 

To approximate the equation 

a”h ph 
-= 

g+ay2 
0 

this finite-difference expression need only be 
equated to zero. The resulting equation can 
be multiplied through by the constant a*. 

Return to Section 16 and choose another 
answer. 

14 q u 

Your answer, hj,i, in Section 3 is not cor- 
rect. The sketch shows a diagram of the x, 
y plane, with the finite-difference grid super- 
imposed upon it. Node 2, 3 is at a distance 
2a from the y axis (z=2a) and a distance 
3a from the x axis (y=3a). That is, the 
node having the coordinates x =2a, y=3a is 

at this node is 
2,3. The same rules apply for the 

node in the question of Section 3 which was 
at a distance i*a from the y axis and a dis- 
tance ja from the x axis. The coordinates of 

choose another 
12346678’ 
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Cross section along @ axis 

Your answer in Section 12, 
a’h h, -k h, - 2h, 

G- (AX)* ’ 

is correct. If we were to consider, in addi- 
tion, the wells 3 and 4 along a line parallel 
to the y axis (see figure), we would similar- 
ly have as an approximation for a*h/ay* at 
point 0, 

a”h h,+h,-2h, 
-2% 
az/* (AY)” ’ 

QUESTION 

If the spacing of the wells in the diagram 
is uniform-that is, if AX = Ay = u-which of 
the following expressions may be obtained 
for 

a’h a*h 
3 

$$ 
Turn to Section: 

$h a*h h,+h,+h,+h,-4ho 
---+-a 3 
ax* aY2 a2 

a”h a”h h,+h,+h,+h, 
-+-sd 28 
ax* av* a2 

a”h a’h (h,+h,-h,+h,) 
-+-e 24 
ax* aI* a* 

16 q o 

Your answer in Section 10 is correct. Note of the x, y plane for some initial time, t= 0, 
that the equation which we have obtained is then the head value at each internal node 
actually an algebraic equation, involving the for the succeeding time, t = 1. At, can be ob- 
term h-l,j,n, hi+ 1,~~~ h,j-l,w k,j+,,,, h,j,,, and tained by applying the equation we have just 
h,j,n + 1; that is, we have simulated a differ- obtained at the two times 0 and 1 *At (n= 0 
ential equation by an algebraic equation. If and n= 1). This would give 
the values of head are known at all nodes 



128 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 
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This equation is applied in turn at each 
internal node of the plane and solved for 
hi,j,l at eachL point, using the appropriate 
values of h from the t= 0 distribution. Ad- 
ditional conditions must be given from 
which head values at nodes along the bound- 
aries of the X, v plane at the new time can 
be determined. When the head values are de- 
termined throughout the plane for the new 
time (n = 1) , the procedure may be repeated 
to determine head values at the next point 
on the time a.xis (n = 2) ; and so on. 

This is termed the explicit procedure of 
solution. It suffers from the shortcoming 
that if At is chosen too large, errors may be 
introduced which grow in size as the step- 
wise calculation proceeds, so that for large 
values of time the solution bears no relation 
to reality, even as an approximation. To cir- : 
cumvent this difficulty, other schemes of 
computation are often used, some involving 
the backward-difference approximation to 
ah/at, and others involving entirely differ- 
ent simulations of the differential equation. 

Many of these schemes of solution involve 
iterative tech:niques, in which the differences 
between members of an equation are suc- 
cessively reduced by numerical adjustment. 
These techniques are sometimes termed re- 

17 
Your answer in Section 25 is correct. If 

we were to “flow chart” the relaxation pro- 
cedure for solution on a digital computer, 
we would have to incorporate these steps 
in some way. 

Numerous other techniques exist for the 
numerical solution of the differential equa- 
tions of flow. The efficiency of various meth- 
ods, in terms of computational labor or ma- 
chine time, varies widely depending upon 
the problem under study. Care must be ex- 
ercised in selecting a method that is well 
suited to the problem, or unreasonable in- 
vestments of time and effort may be re- 
quired to obtain a solution. 

laxation methods; they are of sufficient im- 
portance that it will be worthwhile to see 
how they operate, through a simple example. 

Suppose we are dealing with a problem of 
two-dimensional steady-state ground-water 
flow. For a steady state situation, the term 
ah/at of our differential equation, and 
therefore the term 

h,j,n+ I- hi,j,n 

At 

of our finite-difference equation, is zero.-The 
differential equation is simply 

a% a% 
-+-=o. 
ax’ aY’ 

QUESTION 

Using the notation developed above, but 
dropping the third subscript since time is 
not involved, which of the following would 
represent a valid finite-difference approxi- 
mation to this steady-state equation? 

Turn to Section: 

h~-~,j+hc+1,j+h~,j-1+hi,j+l-4h~,j=O 25 
hr-l,j+hi+l,j+ht,j-l+hl,j+l +&,j=a’ 11 

4h.j 

hi-,,,+hi+l,j+hr,j-1+hi,j+l=- 13 
a2 

q u 

In this discussion we have given only a 
brief indication of the way in which numeri- 
cal methods may be applied in ground-water 
hydrology. Numerical analysis is a broad 
and complex field in itself. Interested 
readers will find, an extensive literature deal- 
ing both with theory and with a wide range 
of applications. Examples of the use of nu- 
merical techniques in ground water may be 
found in the work of Prickett and Lonnquist 
(1971)) Stallman (1956)) Remson, Appel, 
and Webster (1965), Pinder and Bredehoeft 
(1968)) Rubin (1968), Bredehoeft and 
Pinder (1970)) Freeze (1971), Prickett and 
Lonnquist (1973)) Trescott, Pinder, and 
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Jones (1970), Trescott, (1973)) and many You have completed the programed in- 
others. An excellent summary of numerical struction of Part VII. A discussion giving 
methods as applied in ground-water hydrolo- further details of some of the standard fin- 
gy is given by Remson, Hornberger, and Molz ite-difference techniques is presented in 
(1970). standard text format following Section 28. 

18 Em 

Your answer in Section 2 is not correct. 
The sketch shows the five-well array which 
we used earlier to develop an approximation 
for (a2h/aP) + (a’h/ay’), but with the 
wells now redesignated according to the 
scheme of subscripts associated with our 

T 
i,i+J 

i-&j i, i i+Li 
2 

‘L--U- I I .’ 1 
a 

1 i, j - 1 ,,----- 

finite-difference grid. The head at the central 
well is designated hi,3 rather than h, ; the 
heads at the two wells along the x axis are 
k-l,j and h+l,j, rather than h, and h, ; and 
the heads at the two wells along the y axis 
are designated h,,j-I and hi,j+l, rather than 
h, and h,. Our previous expression for 

iyh a2h 
-+- 
ax2 av2 

was 
h,+h,+h,+h,-4h, 

. 
a2 

The question only requires that this be 
translated into the notation associated with 
the finite-difference grid. 

Return to Section 2 and choose another 
answer. 

Your answer in Section 10 is not correct. 
Your approximation for (a2h/ax2) + (ph/ 
ay”) is correct, but you have not used the 
forward-difference formulation to approxi- 
mate ah/at, as required by the question. 
The approximation which you have used, 

ah hcj,,+g - hi,j,,- s 
-= , 
at At 

is normally a more accurate approximation 
to ah/at at i, j, n, than is the forward-dif- 
ference formulation, since the difference is 

taken symmetrically about the point at 
which ah/at is to be approximated. Un- 
fortunately, however, it is not always as 
useful in the calculation of actual numerical 
solutions as is the forward-difference or 
backward-difference formulation. These for- 
mulations are unsymmetrical in the sense 
the difference is measured entirely to one 
side or the other of the time t=nat, which 
is the instant at which ah/at is to be ap- 
proximated ; but they are better suited to 
many techniques for computing solutions. 

Return to Section 10 and choose another 
answer. 
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Your answer in Section 2 is not correct. 
The upper part of the figure shows the ar- 
ray which we used in developing our finite- 
difference approximation for (a”h/ax”) + 
(a’h/ay”) . The well at the center of the ar- 
ray was labeled 0 ; the surrounding wells 
were labeled as indicated. The expression 
we obtained for 

a”h a*h 
-+- 
ax* av* 

was 

h,+h,+h,+h,-4h, 
. 

a2 

Using the notation introduced for our finite- 
difference grid, shown in the lower part of 
the figure, the well at the center of the ar- 
ray would be denoted i, j ; the remaining 
wells would be designated : i - 1, j ; i + 1, j ; i, 
j- 1; and i, j+ 1, as shown. It is simply a 
matter of substituting these designations 
for the designations, 0, 1, 2, 3, and 4 used in 
our earlier development. 

Return to Section 2 and choose another 
answer. 

Your answer in Section 25 is not correct. becomes very small everywhere in the grid. 
Your initial step, giving the formulation for Thus Ri,j should represent, the difference be- 
computing the new value of hi,j using the tween hi,j (New Value) and hJ,, (Previous 
previous values of L1,j, hs+l,j, &-I, and Value) ; and the process should be continued 
hiJ+l, is correct. However, your second step until I&j is negligible throughout the grid. 
is not correct. The idea is to continue the Return to Section 25 and choose another 
process until the difference between the pre- answer. 
vious value of hi,j and the new value of hi,j 
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Your answer in ‘Section 1% 

h,-h, ho-h, 
--- 

azh AX Ax 
-c=z5 
3X” 2AX ’ 

is not correct. The numerator in your an- 
swer gives the difference between two 
terms : (h, - h,) /Ax, which approximates 3 h/ 
ax at point e; and (ho-h,) /AX, which ap- 
proximates ah/ax at point d. 

Observation 
wells 

J I \ Potentiometric 

2 

The numerator thus represents the differ- 
ence 

El- (3 
that is, it approximates the change in ah/ax 
between point d and e. Thus if it were di- 
vided by Ax, the interval between points d 
and e, we would have an approximation to 

ax ’ 

that is, to aZh/ax2 at the midpoint, 0, of the 
interval between d and e. In the answer 
which you selected, however, the quantity 

h,-h, h,-h, 
--- 

Ax Ax 

is divided by 2Ax, rather than by Ax. 
Return to Section 12 and choose another 

answer. 

23 q u 

Your answer in Section 4 is not correct. to i, j, and the node spacing is a. The same 
The coordinate of a point, in space or time, procedure may be applied along the y and t 
is found by multiplying the number of nodes axes, keeping in mind that the node spacing 
between the origin and the point in question, along the y axis is a, while that along the 
along the appropriate axis, by the node time axis is At. 
spacing along that axis. Thus the x coordi- Return to Section 4 and choose another 
nate of a node i, j, n, is x =i*a, since there answer. 
are i nodes along the x axis from the origin 
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24 cm 
Your answer in Section 15, 

a’h a*h (h,+h2) - (h,+h,j 
-x 

gG+ ay2 a2 
is not correct. The approximate expression 
which we obtained for ph/ax2 was 

h,+h,-2h, 

(Ax)* 
or, since we have taken AX =a, 

h,+h,-2h, 

25 
The expression given in Section 15 for azh/ 
ay2 was 

h,+h,-2h,, 

(AY)” ’ 

or again, since we have taken Ay=a, 

ha+h,-2h, 

a2 

These two expressions need only be added 
algebraically to obtain an approximation for 

azh a’h 
-+-. 
ax2 av2 

Return to Section 15 and choose another 
answer. 

Your answer in Section 16 

hi-l,i+ hi+l,j+ hi,j-l+ h<,j+l -4hi,j=O 
is correct. To solve this by an iteration tech- 
nique we rewrite the equation in the form 

h<,j=l(hi-l,j + hi+l,j+hi,j-1+hi,i+*), 
4 

and we divide the x, y plane into a grid 
as shown in t,he sketch, with the grid inter- 
sections forming the nodes at which we will 
compute values of h. In the form in which 

we have written it, it is easy to see that 

no 

what our equation atitually says is that the 
head at each node must be the average of 
the heads at the four adjacent nodes. We 
begin by entering known values of head 
along the boundaries of the grid-that is, 
by applying the boundary conditions. We 
then insert assumed values of h at each in- 
terior grid point. These initial values of h 
may be anything we wish, although a great 
deal of work can be saved if we can choose 
them in a way that roughly approximates 
the final head distribution. We then move 
through the grid, in any order or direction, 
and at each interior node cross out the value 
of head, writing in its place the average of 
the head values at the four adjacent nodes. 
At each node we note not only the new value 
of h, but the change in h, from the initial 
value, resulting from the calculation. When 
we have completely traversed the grid, we 
start again, and proceed through the grid in 
the same way, replacing each h value by the 
average of the heads at the four adjacent 
nodes, and noting the change in h that this 
causes. After a number of repetitions we 
will find that the change in h caused by each 
new calculation becomes very small-in 
other words, that the value of head at each 
point is already essentially equal to the aver- 
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0 25 Cl El-Con. 

age of those at the four neighboring points, 
so that inserting this average in place of h 
produces little or no additional change. At 
this point our head distribution represents 
an approximate solution to our difference 
equation and thus to the differential equa- 
tion which the difference equation simulates. 

The process just described, as noted ear- 
lier, is an example of a relaxation technique. 

In general, since the head at each node is 
used in calculating the head at each of the 
four surrounding nodes, several complete 
traverses of the grid may be required be- 
fore the changes in head are everywhere 
sufficiently small. This method can readily 
be used in hand calculation; it is also well 
adapted to solution by digital computer. 

QUESTION 

Which of the following would you choose as a “shorthand” description of the method of 
calculation described above? 

Turn lo Section: 

1 
h<,j (New Value) =4(h~-l,j+hi+l,i+hi,j_l+hi,j+l) (Previous Values) 

R,, = hi,j (New Value) - hi,j (Previous Value) 
Continue calculation until I&I=0 for all points in grid. 

hc,,(New Value) =‘(hi-l,j+ h i+1,j + hd,j-I+ hi,j+l) (Previous Values) 
4 

Ri,j= hi,j (New Value) 

r7 

Continue calculation until jR,,jIBO for all points in grid. 21 

hi,j (New Value) =‘(h,+~,j-hi-l,t+hl,j+l-h~,i-1) (Previous Values) 
4 

hi,, (New Value + h,,)( Previous Value) R. _ 
t,, - 

2 
Continue calculation until IRi,jjwO for all points in grid. 6 

26 q u 

Your answer in Section 1, is not correct. This answer would be a rea- 
sonable approximation for the derivative at 
point 0, in the center of the array, because 
it gives the ratio of a change in h, h, - h,, to 
the corresponding change in distance, 2Az, 
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26 q El -Con. 
Observation 

wells 

over an interval which is centered at 0. For 
the derivative at point d, however, midway 
between well 1 and well 0, we can do a little 
better. The change in h over an interval 
centered at d is simply h,- h,, and the cor- 
responding interval of distance is simply 
Ax. 

Return to Section 1 and choose another 
answer. 

97n n I-II-I 

Your answer in Section 12, 

a”h h,-h, 
-e- 
ax* 2AX 

is not correct. h,- h, gives the change in h 
between points 1 and 2, and 2Ax gives the 
distance between these points. Thus the term 
(h,- h,)/2Ax is an approximation ta the 
first derivative, ah/ax, at the midpoint of 
the distance interval-that is, at point 0. 
The question however, asked for a term ap- 
proximating the second derivative, a2h&c2, 
at this p0in.t. The second derivative is ac- 
tually the derivative of the first derivative ; 
that is 

ah 
a- 

( ) a*h ax -= -* 
ax2 ax 

To obtain a finite-difference expression for 
this term, we must consider the change in 
the first derivative, ah/ax, between two 
points, and must divide this change in ah/ 
ax by the distance separating these two 
points. We have seen that ah/ax at point d, 
midway between wells 1 and 0, can be ap- 
proximated by the expression (h,- hl)/AX; 
and that ah/ax at point e, midway between 

- 

-h. 
- 

Observation 
wells 

J \ Potentiomel 

2 

wells 0 and 2 can be approximated by the 
term (h, - h,) /Ax. Points d and e are them-. 
selves separated by a distance AX, and point 
0 is at the midpoint of this interval. Thus if 
we subtract our approximate expression for 
ah/ax at d, from that for ah/ax at e, and 
divide the result by the interval between d 
and e, Ax, we should obtain an expression 
for a*h/az2 at point 0. 

Return to Section 12 and choose another 
answer. 
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28 q fl 

Your answer in Section 15, 

a2h a2h h,+h,+h,+h, 
-+-m 
ax2 av a* 

expressions -that for a2h/ax2 and that for 
a2h/ay2. When we add these two ex- 
pressions to obtain an approximation for 
(a2h/axz) + (a2h/ay2), these terms in ho 
do not drop out. 

is not correct. The term -2h, appeared in Return to Section 15 and choose another 
the numerator of both of our approximate answer. 
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Techniques of Finite-Difference Solution of the 
Ground-Water-Flow Equation 

Certain techniques of numerical solution 
which are commonly used in ground-water 
modeling are described in the following dis- 
cussion. No, attempt has been made to dis- 
cuss such topics as stability or rate of con- 
vergence in the&etical terms ; the reader is 
referred to the paper by Peaceman and 
Rachford (I955) for discussion of these sub- 
jects. Similarly, no attempt has been made 
to give the details of the programing pro- 
cedure. The paper by Prickett and Lonnquist 
(1971) analyzes some typical programs and 
in addition provides an excellent summary 
of the hydrologic and mathematical founda- 
tions of digital modeling ; the paper by Tres- 
cott (1973) describes a versatile program 
for area1 aquifer simulation. The discussion 
presented here is limited to a description of 
some of the common techniques of approxi- 
mation and calculation. 

In Section 10 of Part VII we introduced 
two methods of approximating the time de- 
rivative in finite-difference simulations of 
the ground-water equation. One of these was 
termed the forward-difference approxima- 
tion, and one the backward-difference ap- 
proximation. Figure A shows a plot of head 
versus time which we may use to review 
these approximations. The time axis is di- 
vided into intervals of length at. The head 
at the end of the nth interval is termed h,, ; 
that at the end of the preceding interval is 
termed h,,-, ; and that at the end of the sub- 
sequent interval is termed h,,+1. We wish to 
approximate ah/at at the end of the nth in- 
terval, that is, at the time nat. If we utilize 
the head diff’erence over the subsequent time 
interval, we employ the forward-difference 
approximation to the time derivative ; if we 
utilize the head difference over the preced- 

ing interval, we employ the backward-dif- 
ference approximation. The forwarddiffer- 
ence approximation is given by 

h n+1 -hn 
w 

At 
(1) 

Where (ah/at) ,& represents the derivative 
at time ?ZAt. The backward-difference ap- 
proximation is given by 

hn-k-, 
m 

At 
(2) 

Head FIGURE A 

Backward Forward 
difference : dit7erence : 

I-__ 1 
I I I 1 Time 

$At 

I 
-f-At-j 

n-1 
Tg = 

n+l 

?aAt 



PART VII. FINITE-DIFFERENCE METHODS 

Forward-difference simulation: Explicit solution 

137 

The ground-water-flow equation, as it was 
given in Part V for two-dimensional flow, is 

a”h a’h S ah 
-+-=--‘- (3) 
ax2 ay2 T at 

where S represents storage coefficient and T 
transmissivity. In order to simulate this 
equation using either the forward-difference 
or backward-difference formulation, we 
would first write an approximate expression 
for the term 

ph ph 
-+- 
ax2 ay2 

at the time ?Ai!- that is, at point n on the 
time axis of figure A. Thus the forward-dif- 
ference simulation is characterized by the 
fact that we approximate ah/at over a time 
interval which follows the time at which we 
approximate (a2h/ax2) + (a2h/ay2), 
whereas the backward-difference simulation 
is characterized by the fact that we approxi- 
mate ah/at over the time interval which 
precedes the time at which we approximate 
( a2h/ax2) + (a2h/ay2). In the question of 
Section 10, Part VII, we obtained the follow- 
ing forward-difference simulation to equa- 
tion 3 : 

a2 

where a is the node spacing, S is the stor- 
age coefficient, and T is the transmissivity. 
We wish to know the new value of head at 
the time (n+ 1)At for the point i, j. Figure 
B shows the computation stencil for this 
simulation ; the head at node i, j at the time 
(n + 1) At depends on the head in a five-node 
array at the preceding time, nAt. The five 
values of h at the time 7ZAt are all known. 
We need only to rearrange the equation, solv- 
ing for h,j,n+u and to insert the known 

FIGURE B 

, b,n+ 1 Time = 
I (n+ l)At 
I 
I 

T At 

values of h<-,,j,,, hi+l,j,“, hi,j-l,,, hJ,j+l,,, and 
hi,j,n. There is no need to use simultaneous 
equations ; the head at each node is com- 
puted explicitly, using the head at that node 
and the four neighboring nodes from the 
preceding time. The sequence in which we 
move through the x, 1/ plane, calculating new 
values of head, is immaterial. The solution at 
one point does not require information on 
the surrounding points for the same time- 
only for the preceding time. For all these 
reasons, the forward-difference technique is 
computationally simpler than the backward- 
difference technique. 

However, as we noted earlier, the for- 
ward-difference method does suffer from a 
serious drawback. Unless the ratio at/a2 is 

kept sufficiently small, errors which grow in 
magnitude with each step of the calculation 
may appear in the result. More exactly, let 
us suppose that an error of some sort does 
arise, for whatever reason, at a certain node 
at a particular time step. Unless the ratio 
at/a2 is sufficiently small, this error will in- 
crease in magnitude at each succeeding time 
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step in the balculation until eventually the pear throughout the mesh in the first steps 
error completely dominates the solution. The of the calculation. If the restriction on At/a’ 

term “error:,” as used here, refers to any dif- is satisfied, these errors will tend to die out 
ference between the computed head at a as the computation sequence continues; the 
node i, j and time nAt, and the actual value solution is then said to be stable. If the re- 
of head-that is, the value which would be striction is not satisfied, the errors will grow 
given by the exact solution to the differential with each succeeding time step and will 
equation at that point and time. Such errors eventually destroy any significance which 
are inevitable in the normal application of the solution might have; in this case, the 
finite-difference methods ; they generally ap- solution is said to be unstable. 

hckward-difference simulation: Solution by iteration 

Because of this limitation in the forward- equation 3 through use of the backward- 
difference approach, attention has been difference approximation to the time deriva- 
given to a variety of alternative methods. tive as given in equation 2. The resulting 
One of these is simulation of the differential finite-difference equation is 

Ll,j,n+ hi+l,j,n+ h,j-l,n+ hi,j+l,n -&,a S h,j,n-h,j,n-1 
=- (5) 

a2 T At 0 

Figure C shows a diagram of the compu- 
tation stencil for equation 5. The time de- 
rivative is simulated over an interval which 
precedes the time at which (aZh/ax2) + 
( azh/av2) is simulated ; the equation incor- 
porates five unknown values of head, cor- 
responding to the time nht, and only one 
known value of head, corresponding to the 
time (n- 1) At. Clearly we cannot obtain an 

FIGURE C 

Time = 
nAt 

I 

1 hr.,.w 
Time = 

(n - l)At 

explicit solution to a single equation of the 
form of equation 5, the way we could to a 
single equation of the form of equation 4. 
We can, however, write an equation of the 
form of equation 5 for each node in the z, ‘y 
plane ; then since there is one unknown value 
of head (for time t= nAt) at each node in 
the plane, we will have a system in which the 
total number of equations is equal to the total 
number of unknowns. We should therefore 
be able to solve the entire set as a system of 
simultaneous equations, obtaining the new 
value of &,j,n at each node. The only draw- 
back to this approach is that a great deal of 
work may be involved in solving the set of 
simultaneous equations ; off setting this 
drawback is the advantage that the tech- 
nique is stable regardless of the size of the 
time step-that is, that errors tend to di- 
minish rather than to increase as the com- 
putation proceeds, regardless of the size of 
At relative to a*. 

The work required in utilizing the back- 
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ward-difference technique depends upon the 
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size of the problem-that is, upon the num- 
ber of equations in the simultaneous set. If 
this number becomes large, as it does in most 
ground-water problems, the work entailed 
becomes very great, particularly when the 
standard direct methods of solving simul- 
taneous equations are used. For this reason 
it is worthwhile to look for efficient methods 
of solving these-sets of equations ; and it 
turns out that iteration or relaxation-the 
process described in Section 25 of Part VII, 
in connection with solution of the steady- 
state equation-provides us with a reason- 

This equation states that the head at the 
node i, j should be the average of the heads 
at the four surrounding nodes. No time sub- 
scripts are involved, since we are dealing 
with a steady-state situation. Our method is 
simply to move through the ZZ, y plane, re- 
placing the head at each node by the average 
of the heads at the four surrounding nodes. 
This process is continued until the head 
changes become negligible-that is, until the 
head at each node remains essentially un- 
changed after each traverse through the 
plane, indicating that equation 6 is satis- 
fied throughout the plane. 

ably efficient approach. 
The equation that we 

by iteration in Section 
written here using the 
tion, is 

were trying to solve 
25 of Part VII re- 
i, j subscript nota- 

In applying iteration to our nonequilib- 
rium problem, the idea is to carry out a 
similar series of traverses of the z, y plane 
at every time step, using equation 5 rather 
than equation 6 as the basis of the calcula- 
tion at each node. Thus to compute heads 
for the time nAt we would rearrange equa- 
tion 5 as follows 

We can envision an x, y plane for the time 
?ZAt, initially containing specified values of 
hi,j,, at a few nodes, corresponding to the 
boundary conditions, and trial values of 
&J,j,, at the remaining nodes. We write an 
equation of the form of equation 7 for every 
node not controlled by a boundary condition ; 
and we write equations expressing the 
boundary conditions for the nodes at which 
these conditions apply. In equation 7, the 
value of hd,j,n is expressed in terms of the 
head at the four surrounding nodes for the 
same time, and the head at the same node 
for the preceding time. In solving the set of 
equations for values of hi,j,, the values of 
hs,,,,-z actually constitute known or constant 

terms, determined in the preceding step of 
the operation. Thus equation 7 relates the 
head at each node to the head at the four 
surrounding nodes, in terms of a set of con- 
stants or known quantities. The equation is 
a little more cumbersome than equation 6 
in that instead of multiplying the sum of 
the heads at the surrounding nodes by ?,4,, 
we must now multiply by the term 

1 

and we must add the known term 
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s 
Tat 

*hi,j,n-1 
4 s 

-+- 
a2 Tht 

on the right side. These changes, however, 
do not make the equation appreciably more 
difficult to solve. We can still use the process 
of iteration; that is, we can move through 
the x, 1/ plane, replacing each original trial 
value of hi,;;,, by a new value, calculated from 
the four surrounding values by equation 7. 
At each node we note the difference between 
the new value of hc,j,, which we have calcu- 
lated, and the trial value with which we 
started. If this difference turns out to be 
negligible at every node, we may conclude 
that our starting values already satisfied 
equation 7 and that further computation of 
new values is pointless. More commonly, 
however, we will note a measurable change 
in the value of h at each node, indicating 
that the initial values did not satisfy equa- 
tion 7, and that the iteration procedure is 
producing an adjustment toward new values 
which will satisfy the equation. In this case 
we traverse the x, y plane again, repeating 
the procedure ; each value of hi,j,, which we 
calculated ,in the first step (or iteration) is 
replaced by a new value calculated from the 
heads at the four surrounding nodes by 
equation 7. Again the difference between 
the new value and the preceding value at 
each node is recorded; and a test is made 
to see whether this difference is small 
enough to indicate that the new array of 
head values approximately satisfies equation 
7. The process is continued until the differ- 
ence between newly computed and preceding 
values is negligible throughout the array, 
indicating that equation 7 is essentially sat- 
isfied at all points. 

The technique described above is often 
referred to as the Gauss-Seidel method ; it 
is basically the same procedure that was ap- 
plied in Section 25 of Part VII to the steady- 
state problem. It is an example of a relaxa- 
tion technique-a method of computation in 
which the,differences between the two sides 

of an equation are successively reduced by 
numerical adjustment, until eventually the 
equation is satisfied. There are a number of 
varieties of relaxation techniques in use, dif- 
fering from one another in the order or se- 
quence in which the x, y plane is traversed 
in the calculation and in certain other re- 
spects. 

It has been found that the number of cal- 
culations required to solve the set of finite- 
difference equations can frequently be re- 
duced by the inclusion of certain “artificial” 
terms in these equations. These terms norm- 
ally take the form 

The superscripts m and m+ 1 indicate levels 
of iteration ; that is, hi,j,nm represents the 
value of hi,j,, after m traverses of the X, Y 
plane in the iteration process, and hi,j,nm+l 
represents the value of hi,j,,, obtained in the 
next following calculation, after m+ 1 tra- 
verses. h is termed an “iteration parameter”; 
it is a coefficient which, either on the basis 
of practical experience or theoretical analy- 
sis, has been shown to produce faster rates 
of solution. As the iteration process ap- 
proaches its goal at each time step ,the dif- 
ference between the value of hi,j,n obtained in 
one iteration and that obtained in the next 
iteration becomes negligible-that is, the 
term ( hi,i,nm+l - hi,j,nm) approaches zero, SO 
that the difference equation appears essen- 
tially in its original form, without the itera- 
tion parameter term ; and the solution which 
is obtained thus applies to the original equa- 
tion. In some cases, A is given a sequence of 
different values in successive iterations, 
rather than a single constant value. Again, 
the particular sequence of values is chosen, 
either through theoretical analysis or 
through practical experience, in such a way 
as to produce the most rapid solution. When 
an iteration parameter or sequence of itera- 
tion parameters is utilized, the relaxation 
process is termed “successive overrelaxa- 
tion” a’nd is frequently designated by the ini- 
tials SOR. Discussions of this technique are 
given by Forsythe and Wasow (1960) and 
many others. 
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Alternating-direction 

The work required to obtain a solution by 
relaxation techniques is frequently tedious, 
particularly for a problem of large dimen- 
sions. For this reason, a great deal of effort 
has gone into the development of alternative 
approaches. Peaceman and Rachford (1955) 
proposed a technique of computation which 
has received wide use in a variety of forms. 
The name “alternating direction” has been 
applied to the general procedures of calcula- 
tion which they proposed. 

To simplify our discussion of their tech- 
niques we will introduce some new notation. 
We saw in Sections 12 and 15 of Part VII 
that an approximation to a”h/ax* is given by 
the term 

h, + h:t - 2h, 

(Ax)’ ; 

or, in terms of our subscript notation, 

(Ax)’ . 

In the discussion which follows, we will let 
the symbol A,,h represent this approxima- 
tion to a2h/ax2. That is, we say 

a”h hi- l,j + hi+ l,j- 2hi,j 
-=A,,h = (8) 
ax2 (Ax)* ’ 

In addition, we will use a subscript to indi- 
cate the time at which the approximation is 
taken. For example, (A,h), will indicate an 
approximation to the second derivative at 
the time ?ZAt, or specifically 

h- *,j,n + hi+ l,j,n -2h,j,n 
(A,&) n = * (9) 

(Ax)’ 

( A,h) ,,--1 will represent an approximation to 
the second derivative at time (n- 1) At, and 
so on. Similarly, we will use the notation 
A,h to represent our approximation to a2h/ 
av2, that is, 

implicit procedure 

a”h hi,j-1 + h+,j+ I- 2h4,j 
---w&h = (10) 
ay2 (AY)’ 

and again (A,,h) n will represent our ap- 
proximation to a2h/ay2 at the time nAt, 
that is 

hi,f-l,,+ hi,i+1,,-2hi,j,, 
(A&d = (11) 

(AYj2 

and so on. 
Using this notation, our forward-differ- 

ence approximation to the equation 

a*h a2h S ah 
-+-=-- 
ax2 av2 T at 

(3) 

as given in equation 4, would be rewritten 

S h,j,a + I- h,j,n 
(A,,h),+ (AYYh)n=F At . 

(12) 

In this formulation, a2h/ax2 and a2h/ay2 
are simulated at the beginning of the time 
interval over which ah/at is simulated. 

Again using the notation introduced 
above, our backward-difference approxima- 
tion to equation 3, as given in equation 5, 
would be rewritten 

S h,j,e - h,j,n- 1 
(A,&).+ (A,&),= r At . 

(13) 

In this formulation, a2h/ax2 and a2h/ayz 
are simulated at the time ?ZAi?, while ah/at 
is simulated over the time interval between 
(n-1)At and Y&hi?; thus both a2h/ax2 and 
a2h/ay2 are approximated at the end of the 
time interval over which ah/at is approxi- 
mated. 

In the form in which it was originally 
proposed, Peaceman and Rachford’s tech- 
nique is usually termed the alternating-di- 
rection implicit procedure. In this form, the 
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simulation utilizes two equations, applicable 
over two successive time intervals. In the 
first equation, a”h/ax* is simulated at the 
beginning of a time interval, and a2h/a@ at 
the end of that interval; ah/at is simulated 
using the change in head occurring over the 
interval. The second equation applies over 
the immediately following time interval ; 
here the order is reversed- a2h/ay2 is 
simulated at the beginning of the time in- 
terval, aZh/az2 is simulated at the end, and 
again ah/at is simulated using the head dif- 
ference occurring over the interval. 

Using the notation introduced above, this 
simulation may be represented by the follow- 
ing equation. pair 

S 
(A,&) n-1 + (A,&) w = y- 

hi,j,, - hi,i,,-, 

At 

(14) 
S h<,j,n+ I- h,j,n 

(A&)n+ (&zhL+~=-g 
At 

(15) 

For the first time interval, a2h/ax2 is simu- 
lated at (VP-1)At; ph/ay’ is simulated at 
nat; and ah/at is simulated by the change 
in htj between (n- l)At and nat. For the 
second time interval a2h/ay2 is simulated at 
nat; a2h/ax2 is simulated at (n+ 1)At; and 
ah/at is simulated by the change in h,,, be- 
tween nAt and (n+ 1) At. 

Figure D illustrates the form of this simu- 
lation. It may be recalled from Section 3 
that lines parallel to the x-axis in the finite- 
difference grid are termed rows and that 
lines parallel to the y-axis are termed col- 
umns. As shown in figure D, then, three 
values of h are taken along row j at time 
(n- 1)at to simulate a2h/ax2, while at the 
time ?ZAt three values of h are taken along 
column i to simulate a2h/ay2. The time 
derivative is simulated using the difference 
between the central h values at these two 
times. For the succeeding time interval, the 
three values of h along column i are taken 
first to simulate a2h/ag2 at time nht; while 
at the time (n+l)At, three values of h are 
taken along row j to simulate a2h/aX2. Again 
the time derivative is simulated using the 

difference between the central h values. 
The forward-difference and backward- 

difference techniques are characterized by 
symmetry in their simulation of the expres- 
sion ( azh/ax2) + (a*h/ap) . Both terms of 
this expression are simulated at the same 
time, using a five-node array centered about 
a single value of head, hd,j,n. However, the 

FIGURE D 

Time = 

Time = 
(n - l)At 
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simulation of ah/at in these formulations is 
asymmetrical, in the sense that it is not 
centered in time about hi,j,n but extends for- 
ward or backward from the time nilt. 
In either case, however, if we allow 
At to become very small, the effects 
of this asymmetry die out; the ap- 
proximation then approaches more and 
more closely the value of .ah/at at the time 
nat. In the alternating-direction implicit pro- 
cedure, by contrast, azh/ax2 and a2h/ay2 are 
not simulated at the same time, and in this 
sense the simulation of (a2h/ax2) + (a’h/ 
ay2) cannot be termed symmetrical. It is 
again helpful, however, to visualize what 
will hapljen if At is allowed to become very 
small, so that the times (n-l)At and nAt 
at which the individual simulations occur, 
fall more and more closely together. In this 
case, (A,,h),-, should begin to approximate 
the value of a2h/ax2 at (n- I$) At, while 
(A,,h), should begin to approximate the 
value of a2h/ay2 at (n-155) At. In this sense, 
then ,the expression 

(L&J n-x+ (A,&) ,, 
can be considered an approximation to 

a2h a”h 
--l-- 
ax2 aY” 

at the time (n - l/s) At. The simulation of 
ah/at is symmetrical with respect to this 
time, since it utilizes the head difference 
h,- h,-,. Thus even though a certain asym- 
metry exists in the expression by which 
(a2h/ax2) + (a2h/ay2) is approximated in 
the alternating-direction technique, it can be 
argued that there is symmetry with respect 
to time in the simulation of ah/at. More- 
over, we may expect intuitively that if an 
error is generated by the fact that we simu- 
late a2h/ax2 prior to a2h/ay2 during one 
time interval, some sort of compensating 
error should be generated during the follow- 
ing time interval, when we simulate a2h/ay2 
prior to a2h/ax2 ; and in fact it turns out 
that this alternation in the order of simula- 
tion is essential to the stability of the meth- 
od. If the order of simulation is reversed in 

this way, then regardless of the size of the 
time step, the calculation will not be affected 
by errors which grow at each step of the 
calculation. A further condition for stability 
is that the time intervals represented in the 
two steps of the simulation (equations 14 
and 16) must be equal. The length of the 
time interval may differ from one pair of 
time steps to the next, but within a given 
pair, as used in equations 14 and 15, the two 
values of At must be kept the same. Finally, 
there must be an even number of total time 
steps; a2h/ay2 must be simulated prior to 
a2h/ax2 as often as a2h/axz is simulated 
prior to a2h/ay2. 

If equations 14 and 15 are written out us- 
ing the earlier notation we have 

(Ax)” 
&,j-,,n+hz,,+~,n -2h,,j,n S ht,j,n-h,j,n-1 

+ 
(Ay)” =r At 

(16) 

and 

hi-,,j,n+l + hi+l, j,n+l-2JLi,j,n+l 

(Ax) 2 
hd,j-l,,+ hi,j+1,,-2hi,i,, S hi,j,,+l- hi,j,n 

+ 
(Ay)” =r At ’ 

(17) 

Equation 16 involves three values of head 
along row j at time (n - 1) At and three 
values of head along column i at time nat. 
Let us assume that the head values for the 
earlier time, (n - 1) At, have been calculated 
throughout the x, y plane and that we are 
concerned with calculation of head values for 
the time YbAt. Equation 16 then contains 
three known values of head, for the time 
(n- 1)At and three unknown, for the time 
nat. Since we have three unknowns in one 
equation, we will again need to use simulta- 
neous equations. In this case the three un- 
knowns occur along a single column ; and by 
considering other equations which apply 
along this column we can develop a con- 
venient method of solution. 
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Let us suppose that there are m nodes 
along column i and that the head is specified 
at the two end nodes by boundary condi- 
tions, but must be determined for all of the 
interior nodes. The first node is identified by 
the subscript j= 1 (we assume that the x- 
axis, where j= 0, lies outside the problem 
area) ; the final node is identified by the 
subscript j:=m. Thus hbl,, and h,,,,, are spe- 
cified by boundary conditions, while hi,,, 
through h,,,,-,, must be determined. 

We can write an equation of the form of 
equation 16 for each interior node along col- 
umn i. As we set up the equation at each 
node, we pick up three known values of head 
from the (n-1)At “time plane”; these 
known values fall along a three-column band, 
as shown in figure E. Each equation also in- 
corporates three values of head for the new 
time, nAt, all lying along column i; and when 
we have set up an equation of the form of 
equation 16 for each interior node along the 
column, we have a system of m-2 equations 
in m-2 unknowns, which can be solved 
simultaneously. The solution of this set of 
equations is undertaken independently from 
the solutions for adjacent columns in the 
mesh ; thus, instead of dealing with a set of, 
say, 2,500 simultaneous equations in a 50 by 
50 array, we deal in turn with separate sets 
of only 50 equations. Each of these sets cor- 
responds to a column within the mesh ; and 

FIGURE E 
Time = 

nAt 

each is much easier to solve than the 2,500 
equation set, not only because of the smaller 
number of equations, but also because a 
convenient order of computation is possible. 
We are able to utilize this order of computa- 
tion through a technique developed by H. L. 
Thomas (1949) that is known as the Thomas 
algorithm. 

To illustrate this method, we rearrange 
equation 16, putting the unknown values of 
head, corresponding ta time r&At, on one side, 
as follows: 

The right-hand side consists entirely of 
known terms, and it is convenient to replace 
this side of the equation by a single symbol, 
D,, that is 

hi+l,j,m-l - 9 (19) 
(Ax)’ 

The single subscript, j, is sufficient to desig- 
nate D for our purposes. As suggested in 
figure E, the sequence of calculation is along 
the column i. At each node-that is, for each 
value of &there is only one value of D, 
taken from the three-column band in the 
preceding time plane. We are limiting con- 
sideration here to one set of equations, cor- 
responding to one column, and aimed at cal- 
culating the heads for one value of time ; 
the subscripts designating the column and 
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time are therefore not required. Thus we can 
omit the subscripts i and n from the values 
of h on the left side of the equation. With 
these changes, equation 18 takes the form 

Aihj_,+B,h,+Cihi+l=Dj (20) 
where, in the problem which we have set up 

1 

Ai=-, 
(AY)” 

’ 
and 

1 
c,=-. 

(AYj2 
The coefficients A, B, and C are constant for 
the problem which we have postulated. In 
some problems, however, where variation in 
T, S, or the node spacing is involved, they 
may vary from one node to another. To keep 
the discussion sufficiently general to cover 
such cases, the coefficients have been desig- 
nated with the subscript j. 

If we solve equation 20 for hj, the central 
value of the three-node set represented in 
the equation, we obtain 

D,--Ajh,-,-Cjhlfl 
hi= 

Bj 
(21) 

h, the head at the initial node of the column, 
is specified by the boundary condition. We 
apply equation 21 to find an expression for 
h2; this gives 

D,-A,h,-C,h,’ 
hz= 

& ’ 
(22) 

We rewrite this equation in the form 

hz=gz-b&s (231 
where 

Dz -A&, 
g2= 

B2 

(241 

and 

b2=$. (251 
2 

b, consists of known terms, and since h, 
is known, g2 can be calculated ; equation 23 
thus gives us an equation for h, in terms of 
the next succeeding value of head, h3. If we 
can continue along the column, forming 
equations which give the head at each node 
in terms of that at the succeeding node- 
that is, which give hj in terms of hi+l-we 
will eventually reach the next to last node in 
the column, where we will have an equation 
for h,-, in terms of h,, the head at the last 
node. Then since h, is known, from the 
boundary condition, we will be able to cal- 
culate h,-,; using this value of h,-, we can 
calculate h,-,, and so on back down the col- 
umn, until finally we can calculate h, in 
terms of h, using equation 23. This is the 
basic idea of the Thomas algorithm. We now 
have to see whether we can in fact obtain 
expressions for each head, hj, in terms of 
the succeeding head, hj+l, along the column. 

We first apply equation 21 to find an ex- 
pression for h3 obtaining 

D, -A,hz - Csh, 
h,= 

B, - 
(26) 

To eliminate h, from this equation, we sub- 
stitute from equation 23, obtaining 

D, -A, (gz - bzhn) - C,h, 
hs= . (27) 

4 
Equation 27 is now solved for h, as follows 

or 

A&2 LA - A,g, - CA 
h,- -hs= 

B2 B, 

D,-&L-C&, 
h:, = 

B, -A&, 
B2 

( ) B, 

D,--A,gz C’s 
h,= 

B,-A,bz - B,_A,b,h’. 
(28) 

Now again we have an equation of the form 

h,=g,-b,h, (29) 

where here 
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Da -k/z 
g3= (30) 

&-A&, 

the value of hi+, using equation 32, until 0 
finally a value for h, has been calculated and 
heads have been determined throughout the 
column. 

G 
b,= 

B,-A,b; 
(31) 

Since g, and b, are known from the preced- 
ing step of the calculation (equation 24 and 
25), g, and b, can be calculated, and equa- 
tion 29 then gives us an expression for h, in 
terms of h,. In effect ,we have eliminated h, 
from equation 26, so that h, is expressed in 
terms of the succeeding value of head alone. 

If we continue this process, we find that 
at each step we can obtain an equation of 
the form 

hj=g,- bjhj+l (32) 

relating the head at each node to that at the 
succeeding node ; and we find that gj and b, 
can always be determined from the preced- 
ing values of g and b by equations of the 
form of equations 30 and 31. That is, we find 
that 

Dj-Ajgj--1 
gj= (33) 

Bj-Ajbj-1 

C j 
bj= 

Bj-Ajbj-1’ 
(34) 

These general formulas apply even to the 
calculation of gz and b, if we specify the 
starting conditions g,= h, and bl=O. 

In summary, then, we may start at node 1 
and move up the column calculating values 
of gj and b,. At each node, these values are 
calculated by equations 33 and 34, using the 
preceding values, gj-1 and bj-1, and using 
the coefficients Aj, B, and Cj and the term 
Dj. 

Ultimately, at the next to last node of the 
column, g,-, and b,-, are calculated; then 
since h, is known from the boundary condi- 
tion, h,-, can be calculated from equation 
32. We then proceed back down the column, 
calculating the value of hj at each node from 

The whole process is actually one of 
Gaussian elimination, taking advantage of 
a convenient order of calculation. The solu- 
tion of the difference equation 16 is obtained 
directly for points along the column through 
this process ; we are not dealing with an 
iterative technique which solves the set of 
algebraic equations by successive approxima- 
tion. When the head has been calculated at 
all nodes along column i, the process is re- 
peated for column i+ 1, and so on until the 
entire plane has been traversed. 

In a sense, this process of calculation 
stands somewhere between the forward-dif- 
ference technique and the backward-differ- 
ence technique. In the forward-difference 
technique the head at every node, for a 
given time level, is computed independently 
from the heads at the four. adjacent nodes 
for that time level; the technique of compu- 
tation is said to be explicit. In the backward- 
difference technique, the calculation of the 
head at each node incorporates the heads at 
the four adjacent nodes for the same time 
level; the method of calculation is termed 
implicit. In the alternating-direction tech- 
nique the calculation of the head at a given 
node, as we move along a column, incor- 
porates the heads for that time level at the 
two adjacent nodes along the column, but 
not at the two adjacent nodes in the adjoin- 
ing columns. The method of calculation, for 
this step, is said to be implicit along the col- 
umns, but explicit in the transverse direc- 
tion, along the rows. 

When the heads have been calculated 
everywhere throughout the plane by the 
process of traversing the columns, calcula- 
tions for the following time, (n+ 1) At are 
initiated using equation 17. The procedure 
followed is the same as that described above, 
except that the calculation now moves along 
rows, rather than along columns. This alter- 
nation of direction again, is necessary in 
order to insure the stability of the method of 
calculation. 
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Solution of the steady-state equation by iteration using the 
alternating-direction method of calculation 
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In their initial paper proposing the alter- 
nating-direction implicit procedure, Peace- 
man and Rachford point out that the tech- 
nique of solving alternately along rows and 
columns can be used effectively to iterate the 
steady-state equation. That is, suppose we 
must deal with the problem considered in 
Section 16 and 25 of Part VII, and reviewed 
earlier in the present discussion, in which 
the steady&state- equation 

a”h a”h 
-+-=() 
ax2 i3Y’ 

is to be solved. In Section 25, 
a technique of iteration, or 

(35) 

we considered 
relaxation, to 
technique we solve this equation. In this 

wrote the finite-difference approximation 
given in equation 6 as a simulation of equa- 
tion 35 ; this gave 

hi,~=l(hi_,,i+hr+l,l+hbj-l+ hi,j+d. (6) 
4 

To apply equation 6, we would move through 
the x, y plane replacing values of hi,j at each 
interior node by the average of the heads at 
the four surrounding nodes. At the end of 
one complete traverse of the plane we would 
have a set of values of hi,j which would be 
somewhat closer to satisfying equation 6 
than were the values with which we started ; 
and after several traverses, we would have 
a set of head values which would essentially 
satisfy equation 36 throughout the plane. 
This would be indicated by the fact that the 
values of h4,j obtained in each step would dif- 
fer very little from those obtained in the 
preceding step. 

Our objective here is to outline a more 
efficient technique of carrying out this itera- 

tion process, based upon Peaceman and 
Rachford’s method and the Thomas algor- 
ithm. We begin by introducing some nomen- 
clature and notation. In our discussion of 
nonequilibrium problems, we spoke of “time 
planes”-that is, representations of the X, y 
plane in which the heads calculated for a 
given time were displayed. In discussing the 
solution of steady-state problems by itera- 
tion we can similarly speak of “iteration 
planes”-that is, representations of the x, y 
plane in which the values of head obtained 
after a certain number of iterations are dis- 
played. Again, in our discussion of nonequili- 
brium problems we used the subscript n to 
designate the time level of a given head 
valu+hi,j,m referred to a head value at the 
time nAt. In a similar way, we will use a 
superscript m to denote the iteration level in 
the steady-state problem. hi,? will be used 
to designate the starting values of head, 
prior to any iterations; hiJ will indicate 
head values after one iteration-that is, the 
head values in the first iteration plane ; and 
in general, h,,, m will indicate head values 
after m iterations, or in the mth iteration 
plane. 

Next we rewrite our approximation to 
equation 35 in a slightly different form. We 
rearrange equation 6 to give 

h-*,9+ hi+l,j- 2h~,j=-hi,i-,-hi,j+l+2hi,j (36) 

This can be obtained also by rewriting equa- 
tion 35 in the form 

a”h a2h 
-= -- 
w aY’ 

and then using the approximations given in 
equation 8 and 10 for yh/ax2 and ?yh/W. 

We are interested in applying equation 36 
to calculate head values for a new iteration 
level, using head values from the preceding 
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iteration level. In the ‘procedure which we 
will employ it is necessary to consider two 
successive interation steps. Using the super- 
script notation described above, and using 
A,,h and Avilh to represent our approxima- 
tions to aZk/ax2 anda2h/ay2 as in equations 
8 and 10, the method of calculation may be 
summarized as follows 

- Arvhm = A,,hm-’ (37) 

and 

Aazh”fl = - &,hm (33) 

or, in the notation of equation 36, 

= hi- l,jm-’ + hi+ I,jnt-’ - 2hi,j”p1 
(39) 

and 

= - hi,j _ In’- hd,j+ Irn + 2hi,jmw 
(40) 

As these equations indicate, the idea here 
is first to simulate a2h/axz at one iteration 
level and azh/ay2 at the next; in the succeed- 
ing iteration, the order is reversed ; a’h/ay” 
is simulated at the earlier iteration level, and 
a2h/.ax2 at the next. Figure D, which illu- 
strated the simulation technique for the non- 
eqilibrium problem, is reproduced as figure 
F, but with the time planes now relabeled as 
iteration planes. Equation 39 relates three 
values of head at iteration level m to three 
values at iteration level m - 1; and, following 
the technique described above for the non- 
equilibrium case, we may move along col- 
umn i in iteration plane m, at each node 
picking up three known values of hm--l from 
a three column band in the preceding itera- 
tion plane, and thus generating a set of 
equations in which the unknowns are all 
values of hm along column i. 

As in the nonequilibrium case, the set of 
equations along a given column is solved di- 
rectly by the Thomas algorithm-that is, by 

FIGURE F 

Iteration level 

Iteration level 
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the process of Gaussian elimination outlined 
in equation 20 through 34. When this has 
been done for every column in the X, y plane, 
we have a new set of head values throughout 
the plane. These values, however do not nec- 
essarily constitute a solution to equation 35. 
The process we have described, of replacing 
the earlier head values with new values cal- 
culated through equation 39, accomplishes 
the same thing as the relaxation process of 
Section 25-it produces a new set of values 
which is closer to satisfying equation 35 than 
was the earlier set. This does not guarantee 
that the new set will constitute an accept- 
able solution. The test as to whether or not 
a solution has been found is carried out as 
in the relaxation technique of Section 25- 

the values of head in iteration plane m are 
compared to those in iteration plane m- 1. 
If the difference is everywhere negligible, 
equation 35 must be satisfied throughout the 
x, y plane ; otherwise a new iteration must be 
initiated. In this new iteration we would 
utilize equation 40, moving along a row of 
the model to set up a system of equations for 
the head values along that row. As in the 
nonequilibrium problem this alteration of di- 
rection is necessary for stability. In sum- 
mary then, we are utilizing an indirect 
iterative procedure of solution ; but we use 
a direct method, Gaussian elimination, along 
each individual column or row, to move 
from one set of approximate head values to 
the next during the iterative process. 

Backward-difference simulation: Solution by iteration using the 

alternating-direction method of calculation (iterative 

alternating-direction implicit procedure) 

Peaceman and Rachford found that itera- 
tion of the steady-state equation by the al- 
ternating-direction procedure was consider- 
ably more efficient than the most rapid re- 
laxation techniques that had been used prior 
to the time of their work. The use of the al- 
ternating-direction technique in this sense, 
as a method of iteration, has accordingly 
gained great popularity in recent years. As 
a method of solving the nonequilibrium 
equation 3, however, the alternating-direc- 
tion implicit procedure, as embodied in equa- 
tions 14 and 15 or 16 and 17, has not always 
proved advantageous. Although stability is 
assured, that is the calculation will not be 
affected by errors which necessarily increase 
in magnitude at each step, there is still a 
possibility for large error at any one time 
step and at any given node ; and in many 
problems these errors have proved uncon- 
trollable and unacceptable. This undesirable 
feature has inevitably led to renewed inter- 
est in the backward-difference formulation 
of equations 5 and 13. As we have noted, 

solution by this method must generally be 
accomplished through iteration, for example 
using equation 7; the systems of simultane- 
ous equations involved are usually too large 
to admit of an easy solution by direct meth- 
ods. We have seen that the alternating-di- 
rection procedure of Peaceman and Rach- 
ford provides an effective method of iterat- 
ing the steady-state equation; this suggests 
that the same technique may be used to 
iterate the backward-difference equation, 5 
or 13. Equation 13, which utilized the ab- 
brevated notation, is reproduced below 

S b,j,tt - h,j,n- 1 
(&ah),+ WOn=~. At (13) 

(A,,h), is an approximation to azh/azz at 
the time nat, while ( A,,h) n is an approxima- 
tion a”h/ay” at the time r&At. We again in- 
troduce the superscript m to indicate the 
level of iteration ; using this notation we re- 
write equation 13 as it will be used in two 
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successive steps of the iteration process un- 
der consideration, 

5’ ht,,,,” - hi,i,n - 1 
(Amh),m-l+ (A,,h)ent= r 

At 
(41) 

At . 
(42) 

Several points about equations 41 and 42 
should be noted carefully. The simulations 
of both ph/axz and a’h/az/“, in both equa- 
tions, are made at time ?ZAt ; and again, in 
both equations, ah/at is simulated by the 
change in head at node i, j from time (n- 
1) At to time nAt. In equation 41, (a2h/ 
ax*) nAt is simulated at the ( m - 1) th itera- 
tion- level, whereas (a’h/a@) nbt is simulated 
at the mth iteration level ; hi+ in the simu- 
lation of the time derivative, is represented 
at the mth iteration level. In equation 42, 
(a2h/ay*),,, is simulated at the mth itera- 
tion level, while (a2h/ax*).A, is simulated at 
the (m+ 1) th iteration level ; IQ,,, in the 
simulation of the time derivative, is again 
represented at the higher iteration level, 

CAY)’ 
+;G-(&++--)“u,nm= 

h-x,j,nm-’ - 
(Ax)~ - 

which is here m + 1. No iteration superscript 
is attached to hi,j,n-l the head at the preced- 
ing time level, in either equation. The itera- 
tion process is designed to compute heads for 
the new time level, nAt, and in this process 
the head at the preceding time level is sim- 
ply a constant; it retains the same value 
throughout the series of iterations. 

Rewriting equation 41 using the expanded 
notation for A,,h and ALrvh (as given in equa- 
tions 8 and lo), we have 

(AX)’ 
b-l,n”+ &+l,nm- 2hi,j,nm 

+ 
(AY)2 

S (hi,j,rzm-hi,i,,-d 
=- 

T At ’ 
(43) 

We wish to calculate head values at the 
new iteration level, m, on the basis of values 
which we already have for the preceding 
iteration level, m - 1. We therefore rearrange 
equation 43, placing unknown terms on the 
left and known terms on the right. This gives 

hi+Ij,nm--’ 2 s 
+ -hi,j,nm--l-- hi,j,n-l- (44) 

(Ax) 2 (Ax)’ Tat 

The unknown terms are the head values 
for iteration level m ; the known terms are 
the head values for the preceding iteration 
level, rm- 1, and one head value from the 
preceding time level, n- 1. We may there- 
fore proceed as in equation 19, replacing the 
entire right side by a single symbol, Dj, rep- 
resenting the known terms of the equation. 
We will then have an equation of the form 
of equation 20, 

Aihi-lm+ +Bihjm+Cjhj+,m=Di, (45) 
which can be solved by the Thomas algor- 
ithm, as outlined in equations 21-34. In the 
next step we utilize equation 42 ; here the 
unknown terms consist of three values of h 
for time lnht and iteration level m f 1, while 
the known terms consist of three values of h 
for time 72At and iteration level m, and again 
one value of h for the time level (n- 1)At. 
After this step, the heads which we obtain 
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FIGURE G 
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are compared with those obtained in the pre- 
ceding step. If the difference is everywhere 
negligible, the values of hmfl are taken as a 
sufficiently close approximation to the heads 
for time r&At. 

It’s important to note that while at each 
step we solve directly, (by Gaussian elimina- 
tion, along columns or rows) to obtain a new 
set of head values, these new values do not 
generally constitute a solution to our differ- 
ential equation. Rather, they form a new ap- 
proximation to a solution, in a series of 
iterations which will ultimately produce an 
approximation close enough for our pur- 
poses. We may review the sequence of com- 
putation by referring to figure G, which il- 
lustrates the process of calculation schemati- 
cally. The lowermost plane in the figure is a 
time plane, containing the final values of 
head for the preceding time level, (n - 1) At. 
The plane immediately above this contains 
the initial assumed values of head for the 
new time, nat; we use three values of head, 
/L~,~,~O, hi,],,“, and hi+lj,,’ from this plane, 
together with one value of head h~,~-~ from 
the n-l time plane, on the right side of 
equation 44. On the left side of equation 44 
we have three unknown values of head in 
the first iteration plane, hi,i-l,nl, hi,j,,tl, and 
hi,j+ l,nl- We set up equations of the form of 
equation 44 along the entire column i and 
solve by the Thomas algorithm (equations 
21-34). We then repeat the procedure along 
all other columns, thus determining head 
values throughout the first iteration plane ; 
these new head values constitute a somewhat 
closer approximation to the heads at time 
?ZAt than did the initial values. Next we 
set up a system of equations of the form of 
equation 42, arranged so that in each equa- 
tion three head values from the first itera- 
tion plane and one from the n- 1 time plane 
form the known terms, while three head 
values from the second iteration plane from 
the unknown terms. If we rewrite equation 
42 in the expanded notation and rearrange 
it so that the unknown terms appear on the 
left and the known terms on the right we 
have 
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h-l,,,,nm+l hs+*,,,nm+l 
-I- 

(Ax)’ (Ax) * 
- ( -&+&)kj,nmi’ = 

k,,-l,~m hd,j+l,n”’ 2 

(AY)* - (A?!)* 
+- h”“n (Ay) 2 

--&,j,n-1. (46) 

Applying equation 46 between the first 
and second iteration planes, m would be 
taken as 1 and (m + 1) as 2. The four known 
terms on the right side of the equation would 
consist of three head values from the first 
iteration plane hi,j-l,,, hi,j,,, and hi,j+l,,p and 
again one head value from the n- 1 time 
plane, hi,j,,-l. It is important to note that 
we return to the n- 1 time plane-the lower- 
most plane in figure G-at each iteration 
level in the series, to pick up the constant 
values of hi,i,,-l that are used in simulating 
the time derivative. On the left side of equa- 
tion 46 we would have the three unknown 
values of head corresponding to the new 
iteration level-(that is, the second itera- 
tion plane). Again we would use the Thomas 
algorithm (equations 2134) to solve for 
these new values of head throughout the 
plane. At the end of this solution procedure 
the head valules in the second iteration plane 
are compared with those in the first itera- 
tion plane. If the difference is sufficiently 
small at all points, there is nothing to be 
gained by continuing to adjust the head 
values through further calculation-equa- 
tion 3 is already approximately satisfied 
throughout the plane. If significant differ- 
ences are noted, the procedure is continued 
until the differences between the head values 
obtained in successive iteration levels be- 
comes negligible. At this point the heads for 
time ?&At have been determined, and work is 
started on the next time step, computing 
heads for the time (n+ 1) At. Thus while di- 
rect solution and an alternating-direction 
feature both play a part in this procedure of 
calculation, the technique is basically one of 
iteration, in which, using the backward-dif- 
ference formulation of equations 5 or 13, we 
progressively adjust head values for each 
time level until we arrive at a set of values 
which satisfies the equation. The method 
combines the advantages of the backward- 

difference technique with the ease of com- 
putation of the alternating-direction proce- 
dure ; it is the basis of many of the digital 
models presently used by the U.S. Geol. Sur- 
vey. It is sometimes referred to as the itera- 
tive alternating-direction implicit procedure. 

Prickett and Lonnquist (1971) further 
modify this method of calculation by rep- 
resenting the central head value, &,j only at 
the advanced iteration level ; and by repre- 
senting the head in the adjacent, previously 
processed column also at the advanced itera- 
tion level. That is, they do not simulate a2h/ 
ax* and azh/ayz in two distinct iteration 
planes, but rather set up the calculation as 
a relaxation technique, so that the new value 
of head at a given node is calculated on the 
basis of the most recently computed values 
of head in the surrounding nodes. They do, 
however, perform the calculations alternate- 
ly along rows and columns using the Thomas 
algorithm. 

In the discussions presented here we have 
treated transmissivity, storage coefficient, 
and the node spacings Ax and Ap, as con- 

stant terms in the x, y plane. In fact these 
terms can be varied through the mesh to ac- 
count for heterogeneity or anisotropy in the 
aquifer or to provide a node spacing which 
is everywhere suited to the ‘needs of the 
problem. Additional terms can be inserted 
into the equations to account for such things 
as pumpage from wells at specified nodes, 
retrieval of evapotranspiration loss, seepage 
into streams, and so on. Some programs 
have been developed which simulate three- 
dimensional flow (Freeze, 1971; Bredehoeft 
and Pinder, 1970; Prickett and Lonnquist, 
1971, p. 46) ; however, the operational prob- 
lems encountered in three-dimensional digi- 
tal modeling are sometimes troublesome. 

The reader may now proceed to the pro- 
gramed instruction of Part VIII. 
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