
 
 
Three aquifers are sampled to determine whether they differ in their concentrations of copper.  
In all three, over 40 percent of the samples were below the detection limit.  What methods will 
test whether the distribution of copper is identical in the three aquifers while effectively 
incorporating data below the detection limit?  
 
Counts of three macroinvertebrate species were measured in three stream locations to determine 
ecosystem health.  The three species cover the range of tolerance to pollution, so that a shift 
from dominance of one species to another is an indication of likely contamination.  Do the three 
locations differ in their proportions of the three species, or are they identical? 
 
This chapter presents methods to evaluate the relationship between two discrete (also called 
categorical) variables.  The tests are analogous to analysis of variance or t-tests where the 
response variable is not continuous -- it is recorded only as a discrete number or category (see 
Figure 4.1).   When the response variable is ordinal (possible values can be ordered into a logical 
sequence, such as low, medium and high) the familiar Kruskal-Wallis test can be used.  When 
the response variable is nominal (no ordering to the categories, such as with different species of 
organism), contingency tables can assess association. When both variables are ordinal, Kendall's 
tau can test for significance in association. 

Chapter 14
Discrete Relationships
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14.1   Recording Categorical Data 

Categorical variables are those whose possible values are not along a continuous scale (such as 
concentration), but may take on only one of a discrete number of values classed into one of 
several categories.  Examples of categorical variables used in water resources studies are:  
presence or absence of a benthic invertebrate, whether an organic compound is above or below 
the detection limit, soil type, land use group, and location variables such as aquifer unit, gaging 
station, etc.  To easily inspect the relationship between two categorical variables, the data are 
recorded as a matrix of counts (Figure 14.1).  The matrix is composed of two categorical 
variables, one assigned to the columns and one to the rows.  Both variables will take on several 
possible values.  The entries in the cells of the matrix are the number of observations Oij which 
fall into the ith row and jth column of the matrix.   
 
  Variable 2 
 Variable 1 Group 1 Group 2 Group 3 

Response 1 O11 O12 O13 
Response 2 O21 O22 O23 

Figure 14.1   Structure of a 2-variable matrix 
 
 
14.2   Contingency Tables (Both Variables Nominal) 
 
Contingency tables measure the association between two nominal categorical variables.  Because 
they are nominal there is no natural ordering of either variable, so that categories may be 
switched in assignment from the first to the second row, etc. without any loss in meaning.  The 
purpose of contingency table analysis is to determine whether the row classification (variable 1, 
here arbitrarily assigned to the response variable if there is one) is independent of the column 
classification (variable 2, here assigned to the location or group-of-origin variable).  The null 
hypothesis Ho is that the two variables are independent -- that is, the distribution of data among 
the categories of the first variable is not affected by the classification of the second variable.   
Evidence may be sufficient to reject Ho in favor of H1:  the variables are dependent or related.  
The statement that one variable causes the observed values for the second variable is not 
necessarily implied, analogous to correlation.  Causation must be determined by knowledge of 
the relevant processes, not only mathematical association.  For example, both variables could be 
caused by a third underlying variable. 
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Example 1 
Three streams are sampled to determine if they differ in their macrobiological community 
structure.  In particular, the presence or absence of two species are recorded for each stream, 
one species being pollution tolerant, and one not.  If the streams differ in their proportion of 
pollution-tolerant species, it is inferred that they differ in their pollution sources as well.  Test 
whether the streams are identical in (independent of) the proportion of pollution-tolerant 
organisms, or whether they differ in this proportion (proportion is dependent on the stream). 
 
Ho: the proportion of one species versus the second is the same for (is independent of) all 3 

streams. 
H1: the proportion differs between (is dependent on) the stream. 

 
  Stream 1 Stream 2 Stream 3 

Tolerant O11 O12 O13  A1 = Σ(O11+O12+O13) 
Intolerant O21 O22 O23  A2 = Σ(O21+O22+O23) 

 C1= C2= C3= N = (A1+A2)  
 Σ(O11+O21) Σ(O12+O22) Σ(O13+O23)      = (C1+C2+C3) 
 
14.2.1   Performing the Test for Independence 
To test for independence, the observed counts Oij (row i and column j) in each cell are summed 
across rows to produce the row totals Ai, and down columns to produce column totals Cj.  
There are m rows (i=1,m) and k columns (j=1,k).  The total sample size N is the sum of all 
counts in every cell, or  N =ΣAi =ΣCj =ΣOij.   The marginal probability of being in a given 
row (ai) or column (cj), can be computed by dividing the row Ai and column Ci totals by N: 
 ai = Ai/N cj = Cj/N 
If Ho is true, the probability of a new sample falling into row 1 (species tolerant of pollution) is 
best estimated by the marginal probability a1 regardless of which stream the sample was taken 
from.  Thus the marginal probability for a row ignores any influence of the column variable.   
 
The column variable is important in that the number of available samples may differ among the 
columns.  The probability of being in any column may not be (1/no. columns).  Therefore, with 
Ho true, the best estimate of the joint probability eij of being in a single cell in the table equals 
the marginal probability of being in row i times the marginal probability of being in column j 
 eij = ai•cj. 
 
Finally, for a sample size of N, the expected number of observations in each cell given Ho is 
true can be computed by multiplying each joint probability eij by N: 
 Eij = N ai cj  , or 
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 Eij = 
Ai Cj
 N   [14.1] 

 
To test Ho, a test statistic Xct is computed by directly comparing the observed counts Oij with 
the counts Eij expected when Ho is true.  This statistic is the sum of the squared differences 
divided by the expected counts, summed over all i•j cells:  

 Xct = ∑
i=1

m

 ∑
j=1

k

 
(Oij - Eij)2

Eij   [14.2] 

 
If Ho is not true, the observed counts Oij will be very different from the Eij for at least one cell 
and Xct will then be large.  If Ho is true, the Oij ≅ Eij for all i•j cells, and Xct will be small.  To 
evaluate whether Xct is sufficiently large to reject Ho, the test statistic is compared to the (1−α) 
quantile of a chi-square distribution having (m−1)•(k−1) degrees of freedom.  Tables of the chi-
square distribution are available in most statistics texts. 
 
To understand why there are (m−1)•(k−1) degrees of freedom, when the marginal sums Aij and 
Cij are known, once (m−1)•(k−1) of the cell counts Oij are specified the remainder can be 
computed.  Therefore, only (m−1)•(k−1) entries can be "freely" specified. 

Example 1 cont. 
For the table of observed counts Oij below, determine whether the streams differ significantly in 
their proportion of pollutant-tolerant species. 
 
 Oij Stream 1 Stream 2 Stream 3 

Tolerant 4 8 12 A1 = 24 
Intolerant 18 12 6 A2 = 36 

 C1=22 C2=20 C3=18 N = 60  
 
To determine whether the proportion of pollutant-tolerant species is significantly different for 
the three streams, a table of expected counts Eij assuming Ho to be true is computed using 
equation 14.1: 
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 Eij  Stream 1 Stream 2 Stream 3 
Tolerant 8.8 8.0 7.2 A1 = 24 

Intolerant 13.2 12.0 10.8 A2 = 36 
 C1= 22 C2 = 20 C3 = 18 60  
 
Dividing these expected counts by N results in the table of expected probabilities 
(eij = Eij / N): 
 eij Stream 1 Stream 2 Stream 3 

Tolerant .148 .132 .120 a1 = 0.4 
Intolerant .222 .198 .180 a2 = 0.6 

 c1= 0.37 c2 = 0.33 c3 = 0.30 1.0  
 
To perform the significance test: 

 Xct  = 
(4.0-8.8)2

8.8   + 
(8-8.0)2

8.0   + 
(12-7.2)2

7.2   + 

 
(18-13.2)2

13.2   + 
 (12-12)2

12   + 
(6-10.8)2

10.8   

 =     9.70 
 
Ho should be rejected if Xct exceeds the (1−α) quantile of the chi-square distribution with 1•2 = 
2 degrees of freedom.  For α = 0.05,  χ2(.95, 2) = 5.99.  Therefore, Ho is rejected.  The 
proportion of pollutant-tolerant species is not the same in all three streams.  Thus the overall 
marginal probability of 0.4 is not an adequate estimate of the probability of pollution-tolerant 
species for all three streams. 
 
14.2.2   Conditions Necessary for the Test 
The chi-square distribution is a good approximation to the true distribution of Xct as long as 
 • all Eij>1 and 
 • at least 80% of cells have Eij > 5 (Conover, 1980). 
 
 If either condition is not met, 
 • combine two or more rows or columns and recompute, or 
 • enumerate the exact distribution of Xct.  See Conover (1980) for details. 
 
A contingency table test is not capable of extracting the information contained in any natural 
ordering of rows or columns.  Contingency tables are designed to operate on nominal data 
without this ordering.  The columns or rows can be rearranged without changing the expected 
values Eij, and therefore without altering the test statistic.  When the response variable or both 
variables have a natural scale of ordering, the test statistic should change as the ordinal variable 
is rearranged.  Methods more powerful than contingency tables should be used when one or 
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both variables are ordinal.  When only the response variable is ordinal, the Kruskal-Wallis test of 
the next section will have more power to see differences between groups than will contingency 
tables.  When both variables are ordinal, Kendall's tau can measure the relationship as shown in 
section 14.4. 
 
14.2.3   Location Of the Differences 
When a contingency table finds an association between the two variables, it is usually of interest 
to know how the two are related.  Which cells are higher or lower in proportion than would be 
expected had Ho been true?  A guide to this are the individual cell chi-square statistics. 
 

Cells having large values of 
(Oij - Eij)2

Eij   are the cells contributing most to the  

rejection of the null hypothesis.  The sign of the difference between Oij and Eij indicates the 
direction of the departure.  For example, the individual cell chi-square statistics for the species 
data of example 1 are as follows: 
 
 χ2 Stream 1 Stream 2 Stream 3 

Tolerant (4.0-8.8)2
8.8   = 2.6 

(8-8.0)2
8.0   = 0 

(12-7.2)2
7.2   = 3.2 

Intolerant (18-13.2)2
13.2   = 1.7 

 (12-12)2
12   = 0 

(6-10.8)2
10.8   = 2.1 

 
Stream 3 has many more counts of the pollution-tolerant species than the number expected if all 
three streams were alike, and stream 1 has many less.  Therefore stream 1 appears to be the least 
affected by pollution, stream 2 in-between, and stream 3 the most affected. 
 
 
14.3   Kruskal-Wallis Test for Ordered Categorical Responses 
 
In Chapter 5 the Kruskal-Wallis test was introduced as a nonparametric test for differences in 
medians among 3 or more groups.  The response variable in that case was continuous.  In 
Chapter 13 the test was applied to response data whose lower end of a continuous scale was 
below a reporting limit.  All censored data were treated as ties.  Now the test will be applied to 
data which are ordinal -- the response variable can only be recorded as belonging to one of 
several ordered categories.  All observations in the same response category (row) are tied with 
each other.  The test takes on its most general form in this situation, as a test for whether a shift 
in the distribution has occurred, rather than as a test for differences in the median of continuous 
data.  The test may be stated as: 
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 Ho: the proportion of data in each response category (row) is the same for each 
group (column). 

 H1: the proportion differs among (is dependent on) the groups. 
 
14.3.1   Computing the Test 
The data are organized in a matrix identical to that for a contingency table, but the computations 
at the margins differ (Figure 14.2).  Once the row sums Ai are computed, ranks Ri are assigned 
to each observation in the table in accord with levels of the response variable.  Ranks for all 
observations in the category with the lowest responses (response row 1 in Figure 14.2) will be 
tied at the average rank for that row, or R 1 = (A1 +1)/2.  All observations in the row having 
the next highest response are also assigned ranks tied at the average of ranks within that row, 
and so on up to the highest row of responses.  For response 2 in the Figure 14.2 the average 
rank equals R 2 = A1 + (A2 +1)/2.  For any row x of a total of m rows, the average rank will 
equal 
 

 R x = ∑
i=1

x-1
 Ai   + (Ax+1)/2.  [14.3] 

To determine whether the distribution of proportions differs among the k groups (the k 
columns), the average column ranks D j are computed as  
 

 D j = 
O

ij
R i

i=1

m

∑
C

j

 where Cj = ∑
i=1

m
 Oij .   [14.4] 

 
 
  Group 1 Group 2 Group 3 

response 1 O11 O12 O13   A1 = Σ(O11+O12+O13) 
response 2 O21 O22 O23   A2 = Σ(O21+O22+O23) 

 D 1 D 2 D 3 N  
 
where 

D 1 =  
(O

11
R 1 +O

21
R 2)

O
11

+ O
21

 D 2 =  
(O

12
R 1+O

22
R 2)

O
12

+ O
22

 D 3 =  
(O

13
R 1+O

23
R 2)

O
13

+ O
23

 

 

Figure 14.2   2x3 matrix for Kruskal-Wallis analysis of an ordered response variable 
 
 

jkmonson
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The Kruskal-Wallis test statistic is then computed from these average group ranks.  If Ho is true, 
the average ranks D j will all be about the same, and similar to the overall average rank of 
(N+1)/2.  If Ho is not true, the average rank for at least one of the columns will differ.  The 
Kruskal-Wallis test statistic is computed using equation 14.5: 
 
 

 K =  (N−1)  
(C

j
D 

j

2 )
j=1

k

∑ − N
N +1

2

 
 
 

 
 
 

2

(A
i
R 

i

2 )
i=1

m

∑ − N
N +1

2

 
 
 

 
 
 

2  [14.5] 

 

 where Cj is the number of observations in column j, 
  D j is the average rank of observations in column j, 
  Ai is the number of observations in row i, and 
  R i is the average rank of observations in row i. 

 

 
To evaluate its significance, K is compared to a table of the chi-square distribution with k−1 
degrees of freedom. 
 
Example 2 
An organic chemical is measured in 60 wells screened in one of three aquifers.  The 
concentration is recorded only as being either above or below the reporting limit (rl).  Does the 
distribution of the chemical differ among the three aquifers? 
 
First, ranks are assigned to the response variable.  There are 36 observations in the lower 
category (below rl), each with a rank equal to the mean rank of that group.  The mean of 
numbers 1 to 36 is (36+1)/2 = 18.5.  The higher category contains 24 observations with ranks 
37 to 60, so that their mean rank is 36 + (24+1)/2, or 48.5. 

 
  Aquifer 1 Aquifer 2 Aquifer 3 Ai R`  i 

below rl 18 12 6 36 18.5 
above rl 4 8 12 24 48.5 

  D1  = 527/22   D2  = 610/20  D3  = 693/18 
 = 24 = 30.5 = 38.5 
 

 K =   (59)  
 ∑

 
 (22•242 + 20•30.52 + 18•38.52)  -  60 



61

2
2

    ∑
 

(24•48.52 + 36•18.52)  -  60 



61

2
2   

  =   9.75 

jkmonson

jkmonson
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The chi-square statistic χ2(.95, 2) = 5.99.  Thus Ho is rejected, and the groups are found to have 
differing percentages of data above the reporting limit. 
 
14.3.2   Multiple Comparisons 
Once differences between the groups (columns) have been found, it is usually of interest to 
determine which groups differ from others.  This is done with multiple comparison tests as 
stated in section 7.4.  Briefly, multiple Kruskal-Wallis tests are performed between pairs of 
columns.  After a significant KW test occurs for k groups, place the groups in order of 
ascending average rank.  Perform new KW tests for the two possible comparisons between 
groups which are p = (k−1) columns apart (the first versus the next-to-last column, and the 
second versus the last).  Note that the observations must be re-ranked for each test.  If 
significant results occur for one or both of these tests, continue attempting to find differences 
between smaller subsets of any groups found to be significantly different.  In order to control 
the overall error rate, set the individual error rates for each KW test at αp, below: 
 αp = 1 − (1−α)p/k for p < (k−1) 
  = α   for p ≥ (k−1) 
 
 
14.4   Kendall's Tau for Categorical Data (Both Variables Ordinal) 

 
When both row and column variables are ordinal, a contingency table would test for differences 
in distribution of the row categories among the columns, but would ignore the correlation 
structure of the data -- do increases in the column variable coincide with increases or decreases 
in the row variable?  This additional information contained in the correlation structure of ordinal 
variables can be evaluated with a rank correlation test such as Kendall's tau.  
 
14.4.1   Kendall's τ b for Tied Data 
Kendall's correlation coefficient tau (τ) must be modified in the presence of ties.  In Chapter 8 a 
tie modification was given for ties in the response variable only.  Now there are many more ties, 
the ties between all data found in the same row and column of a contingency table.  Kendall 
(1975) called this tie modification τ b (tau-b).   

 
 

 τ b = 
 S

1
2 (N2 - SSa) (N2 - SSc)

  [14.6] 

 

 
The numerator S for τ b is P−M, just as in Chapter 8, the number of pluses minus the number of 
minuses.   Consider a contingency table structure with the lowest values on the upper left (the  
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rows are ordered from lowest value on the top to the highest value on the bottom, and the 
columns from lowest on the left to highest on the right -- see Figure 14.3).  With this format, the 
number of pluses are the number of comparisons with data in cells to the right and below each 
cell (Figure 14.4).  The number of minuses are the number of comparisons with data in cells to 
the left and below (Figure 14.5).  Data in cells of the same row or column do not contribute to 
S.  Therefore, summing over each cell of row x and column y, 
 
 S = P − M =  O

xy
( O

southeast∑ − O
southwest∑

xy

∑ ) , or  

 

 S = ∑
all x y

  ∑
i>x

  ∑
j>y

 Oxy•Oij  -  ∑
i<x

  ∑
j<y

 Oxy•Oij   [14.7] 

 

 
The denominator for τb is not (n•n−1)/2 as it was for τ, equal to the total number of 
comparisons.  Instead S is divided by the total number of untied comparisons.  To compute this 
efficiently with a contingency table, SSa and SSc (the sums of squares of the row and column 
marginal totals, respectively) are computed as in equation 14.8, and then used in equation 14.6 to 
compute τb. 

Col  1

Row 1

Row 2

Row 3

Col  2 Col  3
low

low

high

high

 
Figure 14.3   Suggested ordering of rows and columns for computing τ b. 

 
 

 SSa = ∑
i=1

m
 Ai2  SSc = ∑

j=1

k
 Cj2  [14.8] 
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Figure 14.4   3x3 matrix cells contributing to P (i>x and j>y). 
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Figure 14.5   3x3 matrix cells contributing to M (i<x and j<y). 

 
 
Example 3 
Pesticide concentrations in shallow aquifers were investigated to test whether their distribution 
was the same for wells located in three soil classes, or whether concentrations differed with 
increasing soil drainage.  The laboratory reported concentrations for the pesticide when levels 
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were above the reporting limit.  The compound was reported only as "present" when 
concentrations were between the reporting limit and the instrument detection limit (dl), and as 
"<dl" if concentrations were below the detection limit.  Compute Kendall's tau for this data. 
 
 Soil Drainage 
 Concentration Poor Moderate High Ai ai 

< dl 18 12 7 37 0.47 
"present" 5 10 8 23 0.29 

> rl 2 6 11 19 0.24 
 Cj 25 28 26 79 
 cj 0.32 0.35 0.33 1.0 
 
The number of pluses P = 18(10+8+6+11) + 12(8+11) + 5(6+11) + 10(11) = 1053 
The number of minuses M = 12(5+2) + 7(5+10+2+6) + 10(2) + 8(2+6) = 329 
So  S = 1053 − 322 = 731. 
 
To compute the denominator of τb, SSa = 372 + 232 + 192 =  2259. 
 SSc = 252 + 282 + 262 =  2085. 

and  τ b = 
724

(792 −2259)(792 − 2085)

2

 =  
724

2034
 =  0.36. 

 
14.4.2   Test Of Significance for τ b 
To determine whether τ b is significantly different from zero, S must be divided by its standard 
error σS and compared to a table of the normal distribution, just as in Chapter 8.  Agresti (1984) 
provides the following approximation to σS which is valid for P and M larger than 100: 
 

 σS ≅  
1
9 • (1-∑

i=1

m
 ai3) (1-∑

j=1

k
 cj3) • N3  [14.9] 

 where ai and cj are the marginal probabilities of each row and column. 
 
 
The exact formula for σS (Kendall, 1975) is much more complicated.  It is the square root of 
equation 14.10: 
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  σS
2 = 

(n(n-1)(2n+5) - ∑
i=1

m
 Ai(Ai-1) (2Ai+5) - ∑

j=1

k
 Cj(Cj-1) (2Cj+5))

18    + 

 

( ∑
i=1

m
Ai(Ai-1)(Ai-2))( ∑

j=1

k
Cj(Cj-1)(Cj-2))

9•N(N-1)(N-2)    + 

( ∑
i=1

m
Ai(Ai-1))( ∑

j=1

k
Cj(Cj-1))

2•N(N-1)   [14.10] 

 
If one variable were continuous and contained no ties, equation 14.10 would simplify to the 
square of equation 8.4.   
 
To test for significance of τ b, the test statistic ZS is computed as in Chapter 8: 

 ZS  =  

S −1

σ
S

if S > 0

0 if S = 0

S +1

σ
S

if S < 0

 

 

 
 
 
  

 

 
 
 
 
 

 [14.11] 

 
ZS is compared to the α/2 quantile of the normal distribution to obtain the two-sided p-value 
for the test of significance on τ b. 
 
Example 3, cont. 
Is the value of τ b = 0.36 significantly different from zero?  From equation 14.9 the approximate 
value of σS is 

 σS ≅  
1
9 • (1-(0.473+0.293+0.243))•(1-(0.323+0.353+0.333))•793  

  ≅ 
(0.86)•(0.89)•793

9   =  42329  =  205.74 

 ZS  ≅  
724 −1

205.74
 =  3.51 

 
and from a table of the normal distribution the one-sided p-value is  p = 0.0002.  Therefore Ho: 
τ b = 0 is rejected, which means that pesticide concentrations increase (the distribution shifts to 
a greater proportion of higher classes) as soil drainage increases. 
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14.5   Other Methods for Analysis of Categorical Data 
 
One other method is prominent in the statistical literature for analysis of all three situations 
discussed in this chapter -- loglinear models (Agresti, 1984).  Loglinear models transform the 
expected cell probabilities eij = ai•cj by taking logarithms to produce a linear equation ln(eij) = µ 
+ ln(ai) + ln(cj), where µ is a constant.  Models may be formulated for the completely nominal 
case, as well as for one or more ordinal variables.  Detailed contrasts of the probability of being 
in column 2 versus column 1, column 3 versus 2, etc. are possible using the loglinear model.  
Tests for higher dimensioned matrices (such as a 3-variable 3x2x4 matrix) can be formulated.  
Interactions between the variables may be formulated and tested analogous to an analysis of 
variance on continuous variables.  Though the computation of such models is not discussed 
here, Agresti (1984) provides ample detail. 
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Exercises 
14.1 Samples of water quality collected at USGS National Stream Quality Accounting Network 

(NASQAN) stations from 1974 to 1981 show more frequent increases in chloride ion than 
decreases.  245 stations were classified by Smith et al. (1987) by their trend analysis results 
at α = 0.1.  One reasonable cause for observed trends is road salt applications.  Estimates 
of tons of road salt applied to the 245 basins in 1975 and 1980 are used to place the 
stations into into 3 groups: decreases  (1980 is more than 20% less than 1975),  increases  
(1980 is more than 20% greater than 1975),  and little or no change.  The two variables are 
then summarized by this 3x3 table: 

  
     Trend in C1- (1974-81, α=0.1) 
 ∆ road salt appl. Down No trend Up Totals 

Down 5 32 9 46 
No change 14 44 25 83 

Up 10 51 55 116 
 Totals 29 127 89 245 
 

Test Ho: a basin's trend in chloride ion is independent of its change in road salt 
application, versus the alternative that they are related. 

a)  using a contingency table.  Interpret the test result. 
b)  using Kendall's tau.  Interpret the test result. 
c)  which test is more appropriate, and why? 

 
14.2 Fusillo et al. (1985) sampled 294 wells in New Jersey for volatile organic compounds.  The 

wells were classified by whether they were located in an outcrop location near the surface, 
or whether they were further downdip and somewhat more protected from direct 
contamination.  Determine whether the probability of finding detectable levels of volatile 
compounds differs based on the location of the well. 

  
 Location Non-detects Detect VOC Totals 

Downdip 106 9 115 
Outcrop 129 50 179 

 Totals 235 59 294 
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14.3 Regulation of organo-tin antifouling paints for boats was announced in 1988 in 
Switzerland.  Concentrations of tributyltin (TBT, in ng/L) in unfiltered water samples 
from Swiss marinas were measured in 1988 to 1990 (Fent and Hunn, 1991).  Is there 
evidence of a decrease in TBT concentrations in marina waters as these paints were being 
taken off the market? 

  
 Number of samples 
 Year TBT≤ 200 TBT>200 Totals 

1988 2 7  
1989 9 13  
1990 10 10  

 Totals   51 




