
 
 
Concentrations of a volatile organic chemical are measured in numerous wells across a large 
study area.  About 75% of the resulting samples are below the laboratory reporting limit.  The 
likelihood of finding concentrations above this limit is suspected to be a function of several 
variables, including population density, industrial activity, and traffic density.  What is the most 
appropriate way to model the probability of being above the reporting limit using a regression-
like relationship? 
 
Streams can be classified according to whether or not they meet some criteria for use set by a 
regulatory agency.  For example, a stream may be considered "fishable" or "not fishable", 
depending on several concentration and esthetic standards.  What is the probability that a stream 
reach will meet the "fishable" criteria as a function of population density, distance downstream 
from the nearest point source, and percentage of the basin used for crop agriculture? 
 
The above situations involve fitting a model similar to OLS regression, in that the explanatory 
variables are continuous.  However the response variable is discrete -- it can be designated by an 
integer value (see figure 4.1).  Discrete (or categorical) response variables are often encountered 
when the measurement process is not sufficiently precise to provide a continuous scale.  Instead 
of an estimate of  concentration, for example, only whether or not a sample exceeds some 
threshold, such as a reporting limit or health standard, is recorded.  In water resources this 
response is usually ordinal.  Logistic regression is the most commonly-used procedure for this 
situation.  The equation predicts the probability of being in one of the possible response groups. 

Chapter 15
Regression for Discrete Responses



394 Statistical Methods in Water Resources 

Discrete response variables are commonly binary (two categories).  For example, species of 
organism or attribute of an organism are listed as either present or absent.  Analysis of binary 
responses using logistic regression is discussed in the following sections, beginning with 15.1.  
Analysis of multiple response categories is discussed in section 15.4. 
 

15.1   Regression For Binary Response Variables.   
 
With OLS regression, the actual magnitude of a response variable is modelled as a function of 
the magnitudes of one or more continuous explanatory variables.  When the response is a binary 
categorical variable, however, it is the probability p of being in one of the two response groups 
that is modelled.  The response variable is coded by setting the larger of the two possible 
responses (above or present) equal to 1, and the lower to 0.  The predicted probability p is then 
the probability of the response being a 1, with 1−p as the probability of the response being a 0.  
The explanatory variables may be either continuous as in OLS regression, or a mixture of 
continuous and discrete variables similar to analysis of covariance.  If all explanatory variables 
are discrete, logistic regression provides a multivariate alternative to the test for significance by 
Kendall's tau used in Chapter 14.  
 
15.1.1   Use of Ordinary Least Squares 
In the case of a binary response, the attempt to predict p̂  = the probability of a response of 1 
could be done with OLS regression.  This would be a simple but incorrect approach.  There are 
three reasons why this is not appropriate (Judge, et al., 1985): 

1. Predictions p̂  may fall outside of the 0 to 1 boundary.   
2. The variance of p̂  is not constant over the range of x's, violating one of the basic 

assumptions of OLS.  Instead, the variance of the binary response variable equals 
p•(1−p), where p is the true probability of a 1 response for that x.  Because this is not 
constant over x, weighted least squares must be used to obtain minimum variance and 
unbiased estimates of slope and intercept.  See Draper and Smith (1981, pp. 108-116) for 
the WLS approach.  WLS is still not appropriate, however, if estimates go beyond the 0 
to 1 boundary. 

3. Residuals from the regression cannot be normally distributed.  This renders tests on the 
slope coefficients invalid.   

 
OLS been used with discrete responses when multiple observations occur for all or most 
combinations of explanatory variables.  The responses (0 or 1) are first grouped by some range 
of explanatory variable(s).  This creates a new continuous y variable, the proportion of responses 
which equal 1.  Even so, least-squares regression fails the three criteria above, so that more 
appropriate methods are warranted. 
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15.2   Logistic Regression  
 
Logistic regression, also called logit regression, transforms the estimated probabilities p̂  into a 
continuous response variable with values possible from − to + infinity.  The transformed 
response is predicted from one or more explanatory variables, and subsequently retransformed 
back to a value between 0 and 1.  A plot of estimated probabilities has an S shape (figure 15.1).  
The estimates of probability change most rapidly at the center of the data.  Thus logistic 
regression is most applicable for phenomena which change less rapidly as p approaches its limits 
of 0 or 1.  However, when the range of predicted probabilities does not get near its extremes, 
the plot is one of mild curvature (figure 15.2).  Thus the function is a flexible and useful one for 
many situations.  A review of this and other categorical response models is given by Amemiya 
(1981). 

 
Figure 15.1   Logistic regression equations with − and + slopes.  Note that estimates change 

more rapidly in the center than at the extremes. 
 
 

15.2.1   Important Formulae 
The odds ratio is defined as the ratio of the probability of obtaining a 1 divided by the 
probability of obtaining a 0: 
 

 odds ratio = 



 

p
1 - p    [15.1] 

where p is the probability of a response of 1.   
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The log of the odds ratio or logit transforms a variable constrained between 0 and 1, such as a 
proportion, into a continuous and unbounded variable.  The logit can then be modeled as a 
linear function of one or more explanatory variables to produce logistic regression: 
 

 log 



 

p
1 - p   = b0 + bX [15.2] 

where b0 is the intercept, X is a vector of k explanatory variable(s), and bX includes the slope 
coefficients for each explanatory variable so that bX = b1X1, b2X2, ... bkXk.   
 
Thus the odds ratio is modelled as 

 



 

p
1 - p    =  exp (b0 + bX). [15.3] 

To return the predicted values of the response variable to original units, the logistic 
transformation (the inverse of the logit transformation) is used: 
 

 p = 
exp (b0 + bX)

[1+ exp (b0 + bX)]  [15.4] 

 
For example, the mutliple logistic regression equation with two explanatory variables would look 
like 

 p = 
exp (b0 + b1X1 + b2X2)

[1+ exp (b0 + b1X1 + b2X2)]  

 
For a single x variable, the odds of obtaining a 1 response increase multiplicatively by eb1 for 
every unit increase in X.  The inflection point of the curve is at −b0/b1, which is the median of 
the data.  The slope of the estimated probability is greatest at this point.  Equations are 
analogous for multiple explanatory variables.  Biologists call the inflection point the median 
lethal dose (LD50) when predicting the probability of death from some concentration (dose) of 
toxicant.   The animal has a 50% chance of survival at this dose. 

 
15.2.2   Computation by Maximum Likelihood 
Estimates bj of the j=1,...k slope coefficients could physically be computed by WLS when the 
input data are proportions between 0 and 1 (but they should not -- see section 15.1.1).  
However, the original data are most often coded only in the binary form, with replicates not 
available for computing proportions.  A more general method for computing slope coefficients, 
valid for both binary and proportions as input data, is maximum likelihood estimation.  
Maximum likelihood optimizes the likelihood that the observed data would be produced from a 
given set of slopes.  It is an iterative procedure available in the more complex statistical software 
packages.  A function called the log likelihood (l) of the overall regression model is written as: 
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 l = ∑
i=1

n
 ( ) yi•ln[p̂i] + (1-yi)•ln[1-p̂i]    [15.5] 

for the i=1,n binary observations yi  and predicted probabilities p̂ .  When yi  = 0, the second 
term inside the brackets is nonzero, and a p̂  is desirable which is close to 0.  When yi  = 1, the 
first term is nonzero and a p̂  close to 1 is desirable.  The log of either p̂  or [1−p̂ ] will be 
negative, and therefore l is a negative number which is maximized (brought closest to 0) by 
iteratively substituting estimates of p derived from estimates of slopes and intercept.  The log 
likelihood may be alternately reported as the positive number G2, the −2 log likelihood, which 
is minimized by the MLE procedure:  
 

 −2 log likelihood  G2 =  −2•l.    [15.6] 
 
 
15.2.3   Hypothesis Tests 
 
15.2.3.1   Test for overall significance 
An overall test of whether a logistic regression model fits the observed data better than an 
intercept-only model (where all slopes bj = 0), analogous to the overall F test in multiple 
regression, is given by the overall likelihood ratio (lro):   
  lro = 2•(l−l0) = (G2

0 − G2)   [15.7] 
where l is the log likelihood of the full model, l0 is the log likelihood of the intercept-only 
model, and G2

0 is the −2 log likelihood of the intercept only model.   

The overall likelihood ratio lro can be approximated by a chi-square distribution with k degrees 
of freedom, where k is the number of slopes estimated.  If lro > χ2

k,α then the null hypothesis 
that all bj = 0 can be rejected.  Should the null hypothesis not be rejected, the best estimate over 
all X of the probability of a 1 is simply the proportion of the entire data set which equals 1. 
 
15.2.3.2   Testing nested models 
To compare nested logistic regression models, similar to the partial F tests in OLS regression, 
the test statistic is the partial likelihood ratio lr: 
 
 

 lr = 2•(lc − ls) = (G2s − G2c)  [15.8] 
 

 where lc is the log likelihood for the more complex model, and  
  ls is the log likelihood for the simpler model.   
 

 
The partial likelihood ratio is approximated by a chi-square distribution with (kc−ks) degrees of 
freedom, the number of additional coefficients in the more complex model.  For the case where 
only one additional coefficient is added, the chi-square with 1 degree of freedom equals the 
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square of a t-statistic called Wald's t, computed from the estimated coefficient b divided by its 
standard error.  Degrees of freedom for the t-statistic are the number of observations n minus 
the number of estimated slopes, or n−k.  As with OLS regression, some computer software will 
report the t-statistic, while others report the t2 = χ2  value;  p-values will be essentially the same 
for either form of the test.  
 
15.2.4   Amount of Uncertainty Explained, R2 
A measure of the amount of uncertainty explained by the model, actually the proportion of log-
likelihood explained, is McFadden's R2, or the likelihood-R2, 

 R2 = 1 − 
l
l0

  [15.9] 

where l and l0 are as before.  The likelihood-R2 is uncorrected for the number of coefficients in 
the model. much like R2 in OLS regression. 
 
A second measure of the amount of uncertainty explained by the model is the R2 between the 
observed and predicted values of p, or Efron's R2 

 Efron's R2 = 1 − 

∑
i=1

n
 (yi - p̂)2

∑
i=1

n

 (yi - p-)2

  [15.10] 

where p-  = Σ yi/n, the proportion = 1 for the entire data set.  However, this version of R2 is 
not as appropriate as the likelihood-R2 because the residuals (yi − p̂ ) are heteroscedastic due to 
the binary nature of the yi. 
 
15.2.5   Comparing Non-Nested Models 
To compare two or more non-nested logistic regression models, partial likelihood ratios are not 
appropriate.  This is the situation in OLS regression where Mallow's Cp or PRESS is used.  For 
likelihood ratio tests, a statistic related to Mallow's Cp is Akaike's Information Criteria (AIC).  
AIC includes both a measure of model error (−l) and a penalty for too many variables, the 
number of explanatory variables k.  Better models are those with small AIC.  Akaike's 
information criteria 
 AIC = −l + k [15.11] 

 
AIC can also be written to expressly include the comparison of each candidate 
model to the full model (the model which includes all possible explanatory 
variables).   
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 AIC* = 2 (lf − l) − 2•(kf − k) 
 = (G2 − G2f) − 2•∆df 
 = lr − 2•∆df  
where lf is the log likelihood of the full model, kf is the degrees of freedom of the full model, 
∆df is the difference in the degrees of freedom between the model and the full model, and lr is 
the partial likelihood ratio comparing the candidate and full models.  Either form should be 
minimized to find the best model. 
 
Related to the AIC is an adjusted R2  which adjusts for the degrees of freedom in the model.  It 
penalizes a model which includes too many slope parameters.  The adjusted R2 allows 
comparisons between models with differing number of explanatory variables: 

 adjusted R2  =   1 − 
(l - k)

 l0
       =   1 − 

2•AIC
G2

0
  [15.12] 

This adjusted R2 should be maximized. 
 
Example 1 
Eckhardt et al. (1989) reported the pattern of occurrence for several volatile organic compounds 
in shallow groundwaters on Long Island, NY.  TCE detections for 643 samples are listed in table 
15.1 below, where 1 signifies a concentration above the reporting limit of 3 ppb.  Logistic 
regression between occurrence (1) or non-occurrence (0) as a function of population density 
gives the following results: 
 
 Population Density no. 1s no. 0s  N  %1s 
 1 1 148 149 0.7 
 2 4 80 84 4.8 
 3 10 88 98 10.2 
 5 25 86 111 22.5 
 6 11 33 44 25.0 
 8 8 24 32 25.0 
 9 29 14 43 67.4 
 11 19 31 50 38.0 
 13  6  5  11 54.5 
 14 2 11 13 15.4 
 17 2 5 7 28.6 
 19  0  1  1  0.0 
 overall 117 526 643 18.2 

Table 15.1  TCE data in the Upper Glacial Aquifer, Long Island 

 
The log likelihood for the intercept-only model l0 = −305.0 (G20 = 610.0).  To determine the 
significance of population density (POPDEN) as an explanatory variable, the likelihood ratio is 
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computed by subtracting the log likelihood of this one-variable model from that of intercept-
only model, and comparing to a chi-square distribution: 
 lr = 610.0 − 533.0 = 77.0 with 1 df resulting in a p-value = 0.0001. 
 
Table 15.2 gives the important statistics for the model.  A plot of the logistic regression line 
along with bars of ± 2 standard errors are shown in figure 15.2. 
 
 −2 log likelihood = 533.0 
 

 Explanatory variable Estimate Partial t-statistic p-value 
 INTERCEPT −2.80 −13.4 0.0001 
 POPDEN 0.226 8.33 0.0001 

Table 15.2   Statistics for the popden model. 
 

 
Figure 15.2   Logistic regression line for the TCE data, with percent detections observed for 

each population density. 
 
 
The positive slope coefficient for popden means that the probability of a response =1 
(concentration above the reporting limit) increases with increasing population density.  Note that 
the line did not fit the observed data well at popden= 9.  A second variable, a binary indicator of 
whether or not the area around the well was sewered, was added to the model in hopes of 
improving the fit.  Does this second variable help explain more of the variation observed?  The 
results are presented in table 15.3. 
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 −2 log likelihood = 506.3 
 

 Explanatory variable Estimate Partial t-statistic p-value 
 INTERCEPT −3.24 −12.47 0.0001 
 POPDEN 0.13 4.07 0.0001 
 SEWER 1.54 4.94 0.0001 

Table 15.3   Statistics for the popden + sewer model. 
 
The likelihood ratio test determines whether this model is better than an intercept-only model  
 lro = 610.0 − 506.3 = 103.7 with 2 df resulting in a p-value = 0.0001. 

Thus this logistic regression is significantly better than just estimating the proportion of data 
above the detection limit without regard to the two variables.  The positive slope estimate for 
sewer means that the probability of detection of TCE increases with increasing proportion of 
sewering around the well.  Note that this does not prove that sewering itself is the cause -- this 
could result from sewering as a surrogate for increasing urbanization or industrialization of the 
area.  The usefulness of sewer in comparison to the popden-only model is seen by the 
significance of its partial t-statistic.  It may also be measured by the difference in likelihood ratios 
for the one and two-variable models: 
 lr = 533.0 − 506.3 = 26.7 with 1 df resulting in a p-value = 0.0001. 
 
Next a model with completely different explanatory variables was tried, relating TCE detections 
to the amount of land near the well which was classified as industrial land (indlu), and to the 
depth of the water below land surface.  The results are given in table 15.4.  As the partial t-
statistics are both significant, a logical question is which of the two 2-variable models is 
preferable? 
 
 −2 log likelihood = 557.8 
 

 Explanatory variable Estimate Partial t-statistic p-value 
 INTERCEPT −1.07 −5.49 0.0001 
 INDLU 0.092 4.61 0.0001 
 DEPTH 0.008 −4.52 0.0001 

Table 15.4   Statistics for the indlu + depth model. 
 
As these models are not nested, they must be compared using AIC.  Magnitudes of their partial 
t-statistics will not help decide which to use.  As seen is table 15.5, the AIC for the 
population+sewer model is lower, and therefore is the preferable model between these two 
candidates.  
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 Explanatory variables −l k (# exp. vars.) AIC  
 POPDEN, SEWER 253.2 2 255.2 
 INDLU, DEPTH 278.9 2 280.9 

Table 15.5   AIC for comparing two 2-variable logit models. 
 
 
15.3   Alternatives to Logistic Regression 
 
Two other methods have been used to relate one or more continuous variables to a binary 
variable.-- discriminant function analysis (parametric), and the nonparametric rank-sum test.  In 
the following sections these methods are compared to logistic regression. 
 
15.3.1   Discriminant Function Analysis 
Discriminant function analysis is used as a multivariate classification tool, to decide in which of 
several groups a response is most likely to belong (Johnson and Wichern, 1982).  Probabilities of 
being in each of the groups is computed as a function of one or more continuous variables.  The 
group having the highest probability is selected as the group most likely to contain that 
observation.  An equation (the discriminant function) is computed from data classified into 
known groups, and used to classify additional observations whose group affiliation is unknown.  
As each group is assigned an integer value, these objectives are identical to those of logistic 
regression. 
 
The primary drawback of discriminant analysis is that it makes two assumptions:  
1) multivariate normality, and  2) that the variance of data within each group is identical for all 
groups.  Thus it requires the same assumptions as does a t-test or analysis of variance, but in 
multiple dimensions when multiple explanatory variables are employed.  It will be slightly more 
efficient than logistic regression if these assumptions are true, but is much less robust (Press and 
Wilson, 1978).  Therefore logistic regression should be preferred when multivariate normality 
and equality of variances cannot be assumed, as is the case for most of the data found in water 
resources. 
 
15.3.2   Rank-Sum Test 
Dietz (1985) has shown that the rank-sum test is a powerful alternative to the more complicated 
likelihood-ratio test for determining whether a binary response variable is significantly related to 
one continuous explanatory variable.  The responses of 0 and 1 are treated as two separate 
groups, and the ranks of the continuous variable are tested for differences among the two 
response groups.  When the probabilities of a 0 or 1 differ as a function of x, the ranks of x will 
differ between the two response variable groups.  A slight modification to the rank-sum test is 
necessary for small sample sizes (see Dietz, 1985).  The rank-sum test is equivalent to the 
significance test for Kendall's tau between the binary y variable and a continuous x. 
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When software is not available to perform likelihood-ratio tests, the rank-sum test can be used 
with little loss in power.  However, it only considers the influence of one explanatory variable.  
There also is no slope estimate or equation associated with the rank-sum test when the 
responses are recorded as 0 or 1.  When the responses are proportions between 0 and 1, 
Kendall's robust line may be used to linearly relate logits to the explanatory variable, though 
estimates below 0 or above 1 may result. 

 
15.4   Logistic Regression for More Than Two Response Categories 
  
In water resources applications, response variables may often be discretized into more than two 
response categories.  Extensions of logistic regression for binary responses are available to 
analyze these situations.  The method of analysis should differ depending on whether the 
response variable is ordinal or simply nominal.  Ordinal responses such as low, medium and high 
are the most common situation in water resources.  Here a common logit slope is computed, 
with multiple thresholds differing by offset intercepts in logit units.  When responses are not 
ordinal, the possible response contrasts -- such as the probabilities of being in group 1 versus 
group 2 and in group 2 versus 3 -- are independent.  In this case independent logit models are fit 
for each threshold. 
 
15.4.1   Ordered Response Categories 
Categorical response variables sometimes represent an underlying continuous variable which 
cannot be measured with precision sufficient to provide a continuous scale.  For example, 
concentration data may be discretized into above and below a detection limit, or into three 
categories based on two thresholds (see below).  Biologic activity may be categorized as not 
affected, slightly affected or severely affected by pollution.  The resulting multiple responses yi, 
i=1 to m are ordinal, so that y1<y2<...<ym. 
 
For example, suppose 3 responses are possible:   
 0:  concentrations are below the reporting limit,  
 1:  concentrations are above the reporting limit but below a health standard, and  
 2:  concentrations are above the health standard. 
 
This corresponds to two thresholds, one below versus above the reporting limit (0 versus not 0) 
and the second below versus above the health standard (not 2 versus 2).  Figure 15.3 shows that 
for y=2, a transformation of the underlying continuous concentration Y* can be developed such 
that y=2 only when X>Y* for one explanatory variable X.  Similarly, y>0 (above the reporting 
limit) only when X>Y*−δ, where δ is the difference between the two thresholds in the 
transformed scale.  Therefore the upper threshold can be modeled as: 
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 log 



 

Prob(y=2)
Prob(y=0)+Prob(y=0)   = Prob(X >Y*) = b0 + b1X , [15.13] 

where b0 is the estimate of intercept and b1 the estimate of slope.  This is a standard logistic 
regression identical to the binary case of not 2 versus 2.  The probability of being above the 
lower threshold (reporting limit) is modelled using 

 log 



 

Prob(y=1)+Prob(y=2)
Prob(y=0)    = Prob(X >Y*−δ) = b0 + b1(X+δ), [15.14] 

  = b0' + b1X 

  = b0 + λ + b1X  
 

where λ=b1δ is a shift parameter that must be estimated (McCullagh, 1980).  Because the 
responses are ordered, the slope b1 is common to all thresholds, and represents the proportional 
effect of X on the underlying and unobserved Y*.  The resulting s-shaped curves for each 
threshold are simply offset (figure 15.4).  Unfortunately the method for efficiently estimating 
these parameters is not available on many commercial statistics packages.  McCullagh (1980) 
discusses the mathematics.  As an alternative, separate logistic regressions can be estimated for 
each threshold (see below).  This procedure is less efficient for the case of ordered responses, 
being appropriate for nominal responses.  Unfortunately, it is the best that is available to most 
practitioners. 
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Figure 15.3   Diagram of continuous variable Y* underlying a discrete response variable 
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Figure 15.4   Offset logistic curves for an ordered response variable. 

 
15.4.2   Nominal Response Categories 
For the situation where there is no natural ordering of the possible response categories, an 
independent logistic regression must be performed for each possible contrast.  Thus if there are 
m response categories there must be m−1 logistic regressions performed.  Coefficients of 
intercept and slope are estimated independently for each.  The econometrics literature has 
treated this situation in depth -- see for example Maddala (1983).  Econometrics categories are 
often ones of choice -- to purchase one product or another, etc.  Examples of unordered 
variables for water resources applications are not as obvious.  However, an understanding of the 
equations appropriate for nominal responses is important, because these are used when most 
commercial software is employed to perform logistic regression of ordinal responses.   
 
When independent logistic regressions are computed to determine the likelihood of being below 
versus above adjacent pairs of categories, no requirement of constant slope across thresholds is 
made.  The probabilities employed may take several forms, but the easiest to interpret are logits 
of the cumulative probabilities of being below versus above each of the m−1 thresholds 

  log 






∑ Prob (y > i)

∑ Prob (y ≤ i)
   ,  i =1 to m−1. [15.15] 

These are called cumulative logits, as discussed by Agresti (1984) and Christensen (1990). 
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For the situation of m=3 ordered responses (0, 1, and 2) corresponding to two thresholds 
(reporting limit and health standard), m−1 or two logistic regressions must be performed.  One 
equation determines the probability of being at least 1 -- the probability of being above the 
reporting limit:  

 L1 =log 



 

prob(y=1)+prob(y=2)
prob(y=0)    = b0 + b1X  . [15.16] 

 
A second equation describes the probability of being at least 2 -- the probability of being above 
the health standard: 

 L2 =log 



 

prob(y=2)
prob(y=0)+prob(y=1)   = b0' + b2X  . [15.17] 

 
Together, these two equations completely define the three probabilities as a function of the k 
explanatory variables X.   
 
Example 1, cont. 
Suppose a second threshold at 10 µg/L were important for the TCE data of Eckhardt et al. 
(1989).  This could represent an action limit, above which remedial efforts must be taken to 
clean up the water before use.  Separate logistic regressions were performed for the probabilities 
of being above the 3 µg/L reporting limit and the 10 µg/L action limit.  A new binary response 
variable, 0 if TCE concentrations were below 10 and 1 if above, was regressed against 
population density.  The results are reported in table 15.6, and the curves plotted in figure 15.5.  
Note that the two curves are not simply offsets of one another, but have differing slopes.  This 
situation could be viewed as an interaction, where the rate of increase in probability with unit X 
is not the same for the two thresholds.  
 
 

  Response category b0 b1 lr0  
 Above 3 µg/L report. limit −2.80 0.226 77.0 
 Above 10 µg/L action limit −3.37 0.164 23.9 
 

Table 15.6   Independent logistic regressions for two TCE thresholds. 
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Figure 15.5   Independent logistic curves for two TCE thresholds. 
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Exercises 

15.1 Person and others (1983) evaluated the ability of four factors to predict whether a 
surface impoundment was contaminated or not.  Of particular interest was which of the 
four factors, information for which must be collected in other areas in the future, 
showed ability to predict contamination.  The factors were: 

 Factor Possible scores 
 Unsaturated Thickness 0 (favorable) to 9 (unfavorable) 
 Yields: aquifer properties 0 (poor) to 6 (good) 
 Groundwater Quality 0 (poor) to 5 (excellent) 
 Hazard Rating for Source 1(low) to 9 (high) 
 
Each impoundment was rated as contaminated or uncontaminated.  Using the data in 
Appendix C20, compute a logistic regression to determine which of the four explanatory 
variables significantly affects the probability of contamination.  What is the best 
regression equation using one or more of these variables?




