

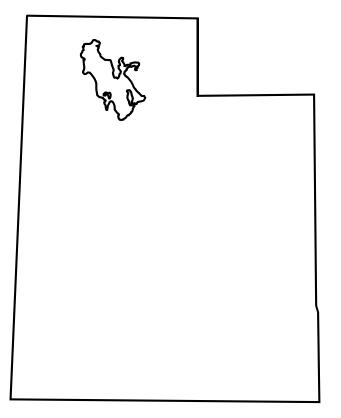
Water Resources Data Utah Water Year 2004

Water-Data Report UT-04-1

Water-Data Report UT-04-1

U.S. Department of the Interior U.S. Geological Survey

Calendar for Water Year 2004


		0	ctobe	er					No	oveml	ber					D	ecem	ber		
S	Μ	т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	т	W	Т	F	S
			1	2	3	4							1		1	2	3	4	5	6
5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
26	27	28	29	30	31		23	24	25	26	27	28	29	28	29	30	31			
							30													
										2004	4									
		Ja	anuar	Y					Fe	ebrua	ry					I	Marcl	h		
S	Μ	т	W	т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S
				1	2	3	1	2	3	4	5	6	7		1	2	3	4	5	6
4	5	6	7	8	9	10	8	9	10	11	12	13	14	7	8	9	10	11	12	13
11	12	13	14	15	16	17	15	16	17	18	19	20	21	14	15	16	17	18	19	20
18	19	20	21	22	23	24	22	23	24	25	26	27	28	21	22	23	24	25	26	27
25	26	27	28	29	30	31	29							28	29	30	31			
			April							May						J	lune			
S	М	т	W	т	F	S	S	М	т	W	т	F	S	S	М	Т	W	т	F	S
				1	2	3							1			1	2	3	4	5
4	5	6	7	8	2	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12
11	12	13	, 14	15	16	17	9	10	11	12	13	, 14	15	13	, 14	15	16	17	18	19
18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26
25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30	- ·	20	20
							30	31												
			July						А	ugusi	t					Sep	temb	er		
S	М	т	w	т	F	S	S	М	т	W	т	F	S	S	М	T	W	т	F	S
				1	2	3	1	2	3	4	5	6	7				1	ŋ	3	Л
4	5	6	7	8	2		8	2 9		4 11	12	13	, 14	5	6	7	1 8	2 9	3 10	4 11
11	12	13	, 14	15	16	17	15	16	17	18	12	20	21	12	13	, 14	o 15	9 16	17	18
18	12	20	21	22	23	24	22	23	24	25	26	20	28	12	20	21	22	23	24	16 25
25	26	20	28	29	30	31	29	30	31	-0	-0	-1	-0	26	20 27	28	22	23 30	4 7	20
20	20		20	20	00	01	20	00	01					20	21	20	20	00		

2003

Water Resources Data Utah Water Year 2004

By Michael Enright, D.E. Wilberg, and J.R. Tibbetts

Water-Data Report UT-04-1

Prepared in cooperation with the State of Utah and other cooperators and agencies

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

2005

U.S. Geological Survey 2329 Orton Circle Salt Lake City, Utah 84119-2047 801-908-5000

Information about the USGS, Utah Water Science Center is available on the Internet at http://ut.wa-ter.usgs.gov

Information about all USGS reports and products is available by calling 1-888-ASK-USGS or on the Internet via the World Wide Web at http://www.usgs.gov/

Additional earth science information is available by accessing the USGS home page at http://www.usgs.gov/

WATER RESOURCES DATA FOR UTAH, 2004

PREFACE

This volume of the annual hydrologic data report of Utah is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nations land and water resources. Hydrologic data for Utah are contained in one volume.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

Carole B. Burden	Jay Cederberg	Howard K. Christiansen
Jennifer Cillessen	Mark Danner	Paul Downhour
Stefanie L. Dragos	Robert Eacret	Martel Fisher
Kenneth Galyean	Joseph F. Gardner	Steve Gerner
Michael Hawkins	James Howells	Terry Kenney
Julane Mulder	Jeff Phillips	Brad A. Slaugh
Cynthia Smith	Robert Swenson	Chuck E. Turner
Christopher Wilkowske	Vince Walzem	

This report was prepared in cooperation with the State of Utah and with other agencies and cooperators under the general supervision of Patrick Lambert, Director, Utah Water Science Center.

Special thanks to Larry R. Herbert and Michael ReMillard, USGS Retired, for their continued assistance and support in production of this report.

REPOR	Form Approved OMBNO.0704-0188			
Public reporting burden for this colle data sources, gathering and maintain or any other aspect of this collection Operations and Reports, 1215 Jeffers	ction of information is estimated to average ing the data needed, and completing and re of information, including suggestions for re son Davis Highway, Suite 1204, Arlington, V	e 1 hour per response, including th viewing the collection of informa ducing this burden, to Washingto (A 22202-4302, and to the Office of	he time for revi ition. Send com on Headquarter of Management	ewing instructions, searching existing ments regarding this burden estimate s Services, Directorate for Information : and Budget, Paperwork Reduction
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 2005	3. REPORT TYPE AND ANNUAL—(03 to September 2004
4. TITLE AND SUBTITLE Water-Resources Data for	or Utah, Water Year 2004	I	5. FUNDI	NG NUMBERS
6. AUTHOR(S) Michael Enright, D.E. W	ilberg, and J.R. Tibbetts,			
7. PERFORMING ORGANIZATION NAME(S) A U.S. Geological Survey, Utah Water Science Cen 2329 West Orton Circle Salt Lake City, Utah 841	ter		REPOR	IMING ORGANIZATION IT NUMBER SS-WDR-UT-04-1
9. SPONSORING / MONITORING AGENCY N	AME(S) AND ADDRESS(ES)			ISORING / MONITORING ICY REPORT NUMBER
U.S. Geological Survey, Utah Water Science Cen 2329 West Orton Circle Salt Lake City, Utah 841			USG	S-WDR-UT-04-1
12a. DISTRIBUTION / AVAILABILITY STATE	WITH the State of Utah and othe MENT Ition. This report may be purc			RIBUTION CODE
National Technical Infor Springfield, VA 22161		nased from.		
streams; stage and conten- contains discharge record 16 hydrologic stations, a tional water data were co- lished as miscellaneous r	the 2004 water year for Utah nts of lakes and reservoirs; and ds for 156 gaging stations; stag nd 29 wells; water levels for 6 llected at various sites not invo neasurements. These data repr urvey and cooperating State an	l water levels and water ge and contents for 8 la 7 observation wells; ar olved in the systematic resent that part of the N	e quality of thes and re ad precipita data-collect fational Wa	ground water. This report eservoirs; water quality for ation for 3 stations. Addi- ction program and are pub-
14. SUBJECT TERMS	ı, *Surface water, *Ground wa		low rate,	15. NUMBER OF PAGES 428
	Reservoirs, Chemical analysis, vels, Water analyses	Sediments, Water temp	eratures,	16. PRICE CODE
Gaging stations, Lakes, F		19. SECURITY CLASSIFICATION		16. PRICE CODE 20. LIMITATION OF ABSTRACT

Preface	
Report documentation page	
List of surface water stations, in downstream order, for which records are published in this volume	
List of ground-water wells, by county, for which records are published in this volume	
List of discontinued surface-water discharge or stage-only stations	
List of discontinued surface-water-quality stations	XX
Introduction	
Cooperation	
Summary of Hydrologic Conditions	
Definition of terms.	
Downstream order and station number.	
Numbering system for wells and miscellaneous sites	
Special networks and programs	
Explanation of stage- and water-discharge records	
Data collection and computation	
Station manuscript	
Peak discharge greater than base discharge	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge.	
Accuracy of field data and computed results	
Other data records available	
Explanation of precipitation records	
Data collection and computation	
Data presentation	
Explanation of water-quality records	
Collection and examination of data	
Water analysis	
Surface-water-quality records	
Classification of records.	
Accuracy of the records	
Arrangement of records	
On-site measurements and sample collection	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Remarks codes Water-quality control data	
Blank samples	
Reference samples	
Spike samples.	
Explanation of ground-water level records	
Site identification numbers	
Data collection and computation	
Data presentation	
Water-level tables	
Hydrographs.	
Ground-water quality data	
Data collection and computation	
Laboratory measurements	
Access to USGS water data	
Surface-water records	
Hydrologic data at Union Pacific Causeway	3
Discharge measurements at selected springs and tunnels during water year 2004	3
Discharge measurements at selected springs and tunnels during water year 2004	2
Ground-water level records	3
Wells	2
Miscellaneous water-quality data.	

CONTENTS

Water-quality data Oquirrh Mountains, Tooele County	400
Quality of ground water, Wasatch County	402
National Water-Quality Assessment program	403
Quality of ground water in selected wells in Duchesne County.	422
Index	423

ILLUSTRATIONS

Figure	1.	Map showing selected U.S. Geological Survey streamflow-gaging stations, observation wells, and National Oceanic and Atmospheric Administration precipitation-recording stations in Utah and Wyoming3	3
	2.	Graphs showing daily mean discharge for water years 1999-2004 with the historic daily minimum, maximum, and average at eight long-term U.S. Geological Survey streamflow-gaging stations in	
		Utah and Wyoming	5
	3.	Graphs showing water-level fluctuations in selected wells in Utah for the period of record through the	
		2004 water year	10
	4.	Diagram showing system for numbering wells and miscellaneous sites (latitude and longitude)	26
	5.	Diagram showing system for numbering wells and miscellaneous sites (township and range)	27
	6.	Maps showing location of U.S. Geological Survey gaging stations in Utah	38
		TABLES	
Table	1.	Precipitation at selected National Oceanic and Atmospheric Administration precipitation-recording	
		stations, in Utah, water year 2004	2
	2.	Streamflow data for eight long-term U.S. Geological Survey streamflow-gaging stations used as	
		representative index sites in Utah and Wyoming, 1999-2004	4

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME [Letter after station name designates type of data: (d) discharge, (e) elevation or contents, (c) chemical, (b) biological, (t) water temperature, (s) sediment, (p) precipitation]

(b) biological, (t) water temperature, (s) sediment, (p) precipitation]	a .	
	Station Number	Page
COLORADO RIVER BASIN		
Colorado River near Colorado-Utah State line (d) TRIBUTARIES BETWEEN UTAH-COLORADO STATE LINE AND DOLORES RIVER	09163500	41
DOLORES RIVER BASIN		
Dolores River near Cisco (d,c,t)	09180000	42
Colorado River near Cisco (d,c,t) TRIBUTARIES BETWEEN DOLORES RIVER AND GREEN RIVER	09180500	46
Castle Creek below Castle Valley, near Moab (d)	09182400	50
Mill Creek at Sheley Tunnel, near Moab (d)	09183500	52
Mill Creek below Sheley Tunnel, near Moab (d)	09183600	54
Green River near Green River, WY (d)	09217000	55
Blacks Fork near Robertson, WY (d)	09217900	57
East Fork of Smiths Fork near Robertson, WY (d).	09220000	59
Green River near Greendale (d,t)	09234500	61
Green River near Jensen (d,t)	09261000	65
Big Brush Creek above Red Fleet Reservoir, near Vernal (d).	09261700	69
Ashley Creek near Vernal (d)	09266500	71
Duchesne River:		
Duchesne River near Tabiona (d, p)	09277500	73
Rock Creek near Mountain Home (d)	09279000	76
Strawberry River:	0/2//0000	
Strawberry River near Duchesne (d)	09288180	78
Lake Fork River above Moon Lake, near Mountain Home (d)	09289500	80
Moon Lake Reservoir near Mountain Home (e)	09290500	82
Lake Fork River below Moon Lake, near Mountain Home (d)	09291000	83
Yellowstone River at Bridge Campground near Altonah (d)	09292000	85
Yellowstone River near Altonah (d)	09292500	87
Duchesne River at Myton (d)	09295000	89
Duchesne River above Uinta River near Randlett (d).	09295100	91
Uinta River below powerplant diversion, near Neola (d)	09296800	92
Whiterocks River near Whiterocks (d)	09299500	94
Uinta River at Randlett (d)	09301500	96
Duchesne River near Randlett (d.c.t)	09302000	98
White River near Watson (d,c)	09306500	105
Fish Creek (head of Price River):		
Gooseberry Creek:	00000000	100
Fairview Tunnel near Fairview (d)	09309600	108
Fish Creek above reservoir, near Scofield (d)	09310500	109
Mud Creek below Winter Quarters Canyon, at Scofield (d)	09310700	111
White River below Tabbyune Creek, near Soldier Summit (d)	09312600	113
Price River at Woodside (d,t)	09314500	115
Green River at Green River (d,c,t)	09315000	119
Huntington Creek (head of San Rafael River)	00217900	102
Electric Lake near Scofield (e)	09317800	123
Huntington Creek near Huntington (d)Cottonwood Creek:	09317997	124
Ephraim Tunnel near Ephraim (d)	09319000	125
Ferron Creek (upper station) near Ferron (d)	09326500	126
San Rafael River at Fuller Bottom near Castle Dale (d,p)	09328060	128
San Rafael River below I-70, near Green River (d)	09328400	130
San Rafael River near Green River (d) DIRTY DEVIL RIVER BASIN	09328500	131
Fremont River (head of Dirty Devil River):		
Fremont River near Bicknell (d).	09330000	134
Fremont River near Caineville (d)	09330230	136
Muddy Creek near Emery (d)	09330500	138

COLORADO RIVER BASINContinued	Station Number	Page
DIRTY DEVIL RIVER BASINContinued		
Dirty Devil River above Poison Springs, near Hanksville (d) ESCALANTE RIVER BASIN	09333500	140
North Creek (head of Escalante River)		
Pine Creek near Escalante (d)	09337000	142
Escalante River near Escalante (d)	09337500	144
Deer Creek near Boulder (d)	09338900	146
Boulder Creek near Boulder (d) SAN JUAN RIVER BASIN	09339000	148
Montezuma Creek:		
North Creek near Monticello (d)	09372400	150
Spring Creek near Monticello (d)	09376800	151
South Creek above reservoir near Monticello (d)	09378170	152
Coal Bed Canyon near Dove Creek, CO (d)	09378490	154
Recapture Creek near Blanding (d)	09378630	155
San Juan River near Bluff (d,c,t)	09379500	157
Colorado River at Lees Ferry, AZ (d) PARIA RIVER BASIN	09380000	164
Paria River near Cannonville (d)	09381500	165
Paria River near Kanab (d)	09381800	166
Paria River at Lees Ferry, AZ (d)	09382000	167
KANAB CREEK BASIN		
Kanab Creek near Kanab (d)	09403600	169
VIRGIN RIVER BASIN		
Virgin River:		
East Fork Virgin River near Glendale (d)	09404450	171
East Fork Virgin River near Springdale (d)	09404900	173
North Fork Virgin River near Springdale (d)	09405500	175
Virgin River at Virgin (d)	09406000	177
Virgin River below Ash Creek near La Verkin (d)	09407810	179
Leeds Creek near Leeds (d)	09408000	180
Virgin River above Quail Creek, near Hurricane (d)	09408135	182
Virgin River near Hurricane (d)	09408150	183
St. George-Washington Canal near Washington (d,c,t)	09408175	185
Fort Pearce Wash near St. George (d)	09408195	187
Santa Clara River near Pine Valley (d)	09408400	188
Santa Clara River above Baker Reservoir, near Central (d)	09409100	190
Santa Clara River at Gunlock (d)	09409880	191
Santa Clara River at St. George (d).	09413000	192
Virgin River near Bloomington (d).	09413200	192
Virgin River near St. George (d).	09413500	196
Beaver Dam Wash near Enterprise (d)	09413900	198
THE GREAT BASIN GREAT SALT LAKE BASIN		
Great Salt Lake at State Park Saltair Beach Boat Harbor (e,t)	10010000	200
Great Salt Lake near Saline (e,t).	10010100	201
BEAR RIVER BASIN		
Bear River:		
Bear River near Utah-Wyoming State line (d)	10011500	202
Bear River at Evanston, WY (d)	10016900	204
Bear River above reservoir, near Woodruff (d)	10020100	206
Bear River below reservoir, near Woodruff (d)	10020300	208
Big Creek near Randolph (d).	10023000	210
Bear River below Pixley Dam, near Cokeville, WY (d)	10028500	212
Smiths Fork near Border, WY (d)	10032000	213
Bear River below Smiths Fork, near Cokeville, WY (d,c)	10038000	215
Bear River at Border, WY (d)	10039500	218

GREAT BASINContinued	Station Number
REAT SALT LAKE BASINContinued	
BEAR RIVER BASINContinued	
Bear River:Continued	
Rainbow inlet canal near Dingle, ID (d)	10046000
Bear Lake at Lifton, near St. Charles, ID (e)	10055500
Bear Lake outlet canal:	100222000
Bear Lake outlet canal near Paris, ID (d)	10059500
Bear River at Pescadero, ID (d)	10059500
Bear River at Soda Springs, ID (d)	10075000
Soda Point Reservoir at Alexander, ID (e)	10079000
Bear River at Alexander, ID (d)	10079000
Bear River below Grace Dam, near Grace, ID (d)	10079300
Oneida Narrows Reservoir, at Oneida, ID (e).	10086000
Bear River below Utah Power & Light Co.'s tailrace, at Oneida, ID (d)	10086500
Bear River at Idaho-Utah State line (d).	10092700
Little Bear River at Paradise (d)	10105900
Logan River:	10100400
Logan, Hyde Park & Smithfield Canal at head, near Logan (d)	10108400
Logan River above State dam, near Logan (d)	10109000
Combined discharge of Logan River above State dam and Logan, Hyde Park, &	10100001
Smithfield Canal at head, near Logan (d).	10109001
Blacksmith Fork above Utah Power & Light Co.'s dam, near Hyrum (d,p)	10113500
Cutler Reservoir near Collinston (e)	10116500
Hammond (East Side) Canal near Collinston (d)	10117000
West Side Canal near Collinston (d)	10117500
Bear River near Collinston (d)	10118000
Bear River near Corinne (d)	10126000
Weber River:	
Weber River near Oakley (d).	10128500
Weber River near Wanship (d)	10129500
Silver Creek near Silver Creek Junction (d,c,t)	10129900
Weber River near Coalville (d)	10130500
Chalk Creek at Coalville (d)	10131000
Weber River at Echo (d)	10132000
Lost Creek:	
Lost Creek near Croydon (d)	10132500
East Canyon Creek:	
McLeod Creek near Park City (d)	10133600
East Canyon Creek below I-80 rest stop, near Park City (d)	10133650
East Canyon Creek near Jeremy Ranch (d,c,t)	10133800
East Canyon Creek near Morgan (d)	10134500
Weber River at Gateway (d)	10136500
Ogden River:	
South Fork Ogden River near Huntsville (d).	10137500
Ogden River below Pineview Reservoir near Huntsville (d)	10140100
Weber River near Plain City (d)	10141000
TRIBUTARIES BETWEEN WEBER AND JORDAN RIVERS:	
Centerville Creek above diversions near Centerville (d)	10143500
JORDAN RIVER BASIN	101 10000
Salt Creek below Nephi Powerplant diversion, near Nephi (d)	10145400
Salt Creek at Nephi (d)	10145400
	10140000
Utah Lake (head of Jordan River):	10146400
Currant Creek near Mona (d) Soldier Creek (head of Spanish Fork):	10146400
Sixth Water Creek above Syar Tunnel, near Springville (d)	10149000
Diamond Fork above Red Hollow, near Thistle (d)	10149400

	Station Number	Page
THE GREAT BASINContinued	Inulliber	
GREAT SALT LAKE BASINContinued		
JORDAN RIVER BASINContinued		
Spanish Fork at Castilla (d)	10150500	297
Provo River:		
Provo River near Woodland (d)	10154200	299
Provo River near Hailstone (d)		301
Provo River at River Road bridge near Heber City (d)		303
Provo River near Midway (d)		304
Spring Creek near Heber City (d)		305
Provo River near Charleston (d)		307
Snake Creek near Charleston (d)		309
Daniels Creek at Charleston (d)		311
Provo River at Provo (d)		312
American Fork above upper powerplant, near American Fork (d)		314
West Canyon Creek near Cedar Fort (d)		315
Little Cottonwood Creek at Tanners Flat Campground, near Alta (d)		317
Little Cottonwood Creek at Jordan River near Salt Lake City (d,c)		318
Tailrace at Stairs plant, near Salt Lake City (d)		323
		323
Surplus Canal at Salt Lake City (d)		324 325
Jordan River at Salt Lake City (d,c)		323 327
Combined discharge of Jordan River and Surplus Canal (d)		
Red Butte Creek at Fort Douglas, near Salt Lake City (d,c)	10172200	332
RUSH VALLEY	10152500	225
Vernon Creek near Vernon (d)		335
Faust Creek near Vernon (d)	10172727	337
TOOELE VALLEY		
South Willow Creek near Grantsville (d)	10172800	338
SNAKE VALLEY		
Trout Creek near Callao (d)		340
Granite Creek near Callao (d)	10172875	342
TRIBUTARIES BETWEEN GREAT SALT LAKE DESERT AND BEAR RIVER		
Dunn Creek near Park Valley (d)	10172952	344
SEVIER LAKE BASIN		
Mammoth Creek (head of Sevier River) above West Hatch ditch, near Hatch (d)	10173450	346
Sevier River at Hatch (d)	10174500	348
Sevier River near Kingston (d)	10183500	350
East Fork Sevier River near Kingston (d)	10189000	352
Salina Creek near Emery (d)	10205030	354
San Pitch River:		
Manti Creek below Dugway Creek, near Manti (d)	10215900	356
Sevier River below San Pitch River, near Gunnison (d)		358
Sevier River near Juab (d).		359
Sevier River near Lynndyl (d)		361
BEAVER RIVER BASIN		
Beaver River near Beaver (d)	10234500	362
CEDAR VALLEY, IRON COUNTY		
Coal Creek near Cedar City (d).	10242000	364
Discharge at partial-record and special study stations		201
Big Spring in Pine Canyon, near Tooele (d).		366
Mill Spring near Erda (d)		367
GSL Farmington Bay outflow at causeway bridge.		368
North Fork Weber River near West Warren (d)		369
Hydrologic data at Union Pacific Railroad Causeway, Great Salt Lake		370
Hydrologic-discharge data for Oquirrh Mountains, Tooele County.		370
Discharge measurements made at miscellaneous sites during water year 2004		374
Discharge measurements made at miscentalicous sites during water year 2004		574

BEAVER COUNTY	Page
Well 382046112592701 Local number (C-28-10)29add-1	375
BOX ELDER COUNTY	515
Well 414236112101201 Local number (B-11-3)10abb-4.	375
Well 414411112543701 Local number (B-12-9)30cda-1.	376
Well 415703112514501 Local number (B-14-9)9add-1	376
IRON COUNTY	
Well 375241112471001 Local number (C-34-8)5bca-1	377
Well 374252113385801 Local number (C-35-16)33bdc-2.	377
Well 374132113063601 Local number (C-36-11)8aab-1	378
Well 373735113393801 Local number (C-36-16)29daa-1	378
JUAB COUNTY	
Well 393143111523301 Local number (C-15-1)12aba-1	379
KANE COUNTY	
Well 370650112331002 Local number (C-42-6)32cba-2	379
MILLARD COUNTY	
Well 393020112362201 Local number (C-15-7)23bac-1	380
Well 390623113084101 Local number (C-20-12)1aac-1	380
Well 385844112245801 Local number (C-21-5)21aba-1	380
Well 384824112333801 Local number (C-23-6)18ddd-1	381
SALT LAKE COUNTY	
Well 404202112064701 Local number (C-1-2)30cac-1	381
Well 403916111575901 Local number (C-2-1)9ccc-1	381
Well 403907112073901 Local number (C-2-3)13aba-1	382
Well 403241112053301 Local number (C-3-2)20bdd-1	382
Well 403241112053302 Local number (C-3-2)20bdd-2	382
Well 403055112060401 Local number (C-3-2)31add-1	383
Well 403055112060402 Local number (C-3-2)31add-2.	383
SAN JUAN COUNTY	
Well 375243109191301 Local number (D-33-24)30dab-1	383
Well 375050109034801 Local number (D-34-26)4dad-1	384
Well 373830109283201 Local number (D-36-22)22daa-1	384
TOOELE COUNTY	
Well 404242112131101 Local number (C-1-3)30add-1	384
Well 404242112131102 Local number (C-1-3)30aad-2	385
Well 404242112131103 Local number (C-1-3)30aad-3	385
Well 403547112155101 Local number (C-2-4)35dcc-1	385
Well 403547112155102 Local number (C-2-4)35dcc-2	386
Well 403547112155103 Local number (C-2-4)35dcc-3.	386
Well 403237112131401 Local number (C-3-3)19dab-1	386
Well 403240112121801 Local number (C-3-3)20acb-1	387
Well 403002112123201 Local number (C-3-3)20bab-1	387
Well 403400112144001 Local number (C-3-4)13abb-2	387
Well 403339112152501 Local number (C-3-4)14abd-1	388
Well 401312112442301 Local number (C-7-8)10 cbd-1	388
UINTAH COUNTY	
Well 403158109372201 Local number (D-3-20)25abc-2.	389
UTAH COUNTY	
Well 401818112014501 Local number (C-6-2)14aba-1	389
Well 402333111513401 Local number (D-5-1)8dcc-1	390
WASATCH COUNTY	
Well 403146111272701 Local number (D-3-4)26dba-1	390
Well 403403111253501 Local number (D-3-5)7cdb-1	390
Well 403325111254601 Local number (D-3-5)18cba-1	391
Well 403305111251901 Local number (D-3-5)18dcc-2.	391
Well 403243111252701 Local number (D-3-5)19bdd-2	391
Well 403127111240301 Local number (D-3-5)29cac-1	392
Well 403149111255601 Local number (D-3-5)30bcc-1.	392
Well 403004111280301 Local number (D-4-4)2bcd-1	392
Well 402937111283501 Local number (D-4-4)3dcd-1	393
	575

GROUND WATER LEVELS—Continued

	Page
WASATCH COUNTY—Continued	
Well 402902111282001 Local number (D-4-4)10daa-1	393
Well 402842111263101 Local number (D-4-4)12dcc-1	393
Well 402810111263601 Local number (D-4-4)13bdd-1	394
Well 402742111281501 Local number (D-4-4)23bbb-2	394
Well 402937111214901 Local number (D-4-5)3dcc-1.	394
Well 402946111233901 Local number (D-4-5)4ccb-1.	395
Well 402842111223601 Local number (D-4-5)4ddd-1	395
Well 403022111240801 Local number (D-4-5)5abb-1	395
Well 403003111255801 Local number (D-4-5)6bcc-2.	396
Well 402856111252701 Local number (D-4-5)7cad-1.	396
Well 402857111245601 Local number (D-4-5)7dad-1	396
Well 402929111233901 Local number (D-4-5)9bbb-1	397
Well 402840111213801 Local number (D-4-5)15aab-1.	397
Well 402839111221101 Local number (D-4-5)15bab-1	397
Well 402840111232201 Local number (D-4-5)16bab-1	398
Well 402750111232701 Local number (D-4-5)16ccd-1.	398
Well 402810111241601 Local number (D-4-5)17caa-1	398
WEBER COUNTY	
Well 411544111461001 Local number (A-6-2)18bad-1	399
Well 411348112013601 Local number (B-6-2)26ada-1	399
Miscellaneous Water-Quality data	

Oquirrh Mountains, Tooele County, Kennecott Utah Copper Analysis	400
Wasatch County Water Quality	402
National Water-Quality Assessment Program	403
Duchesne River at Bridgeland Water-Quality.	422

The following continuous-record surface-water gaging stations in Utah and parts of surrounding states have been discontinued. Daily streamflow (d) and reservoir elevation (e) records were collected and published for the period of record, expressed in water years. Discontinued project stations with less than 2 years of data have not been included. Stations shown in bold were discontinued at end of previous water year. Information regarding these stations may be obtained from the USGS Watere Science Center Office at the address given on the back side of the title page of this report.

Station name	Station number	Drainage area (sq mi)	Period of Record
COLORADO R	RIVER BASIN		
Cottonwood Wash at I-70 near Cisco, UT (d)	09163675	170	1983-86
womile Creek near LaSal, UT (d)	09169000	269	1944-51
aylor Creek near Gateway, CO (d)	09177500	12	1944-67
eep Creek near Paradox, CO (d)	09178000	_	1944-53
TRIBUTARIES BETWEEN DOLOI	RES RIVER AND GREEN RIV	/ER	
eyser Creek near Paradox, CO (d)	09178500	_	1944-51
nion Creek above Onion Creek Bridge near Moab, UT (d)	09180920	_	1979-81
nion Creek below Onion Creek Bridge near Moab, UT (d)	09180970	_	1979-81
nion Creek near Moab, UT (d)	09181000	18.8	1950-55
ofessor (Rock) Creek near Moab, UT (d)	09181500	33.6	1950-53
astle Creek above diversions, near Moab, UT (d)	09182000	7.58	1951-55
			1958-75
astle Creek below Castleton near Moab, Utah (d)	09182200	17.6	1992-2001
astle Creek near Moab, UT (d)	09182500	53.1	1950-55
			1957-58
ourthouse Wash at Arches Hwy Crossing near Moab, UT (d)	09182900	143	1959-66
ourthouse Wash near Moab, UT (d)	09183000	162	1950-55
			1957
			1966-89
ill Creek near Moab, UT (d)	09184000	74.9	1949-71
			1972-93
ck Creek at M4 Ranch, near Moab, UT (d)	09184500	15.8	1955-59
ick Creek near Moab, UT (d)	09185000	57.4	1955-59
atch Wash near LaSal, UT (d)	09185500	378	1951-71
dian Creek Tunnel near Monticello, UT (d)	09185800	_	1958-80
dian Creek near Monticello, UT (d)	09186000	4.70	1950-57
dian Creek above Cottonwood Creek near Monticello, UT (d)	09186500	31.2	1949-71
			1988-91
ottonwood Creek near Monticello, UT (d)	09187000	115	1950-57
dian Creek above Harts Draw near Monticello, UT (d)	09187500	258	1949-57
dian Creek below Bogus Pocket near Monticello, UT (d)	09187550	262	1983-88
GREEN RIV	'ER BASIN		
acks Fork above Blacks Fork Ranger Station, UT (d)	09217500	48.8	1937-39
lacks Fork at Blacks Fork Ranger Station, UT (d)	09218000	a130	1937-39
lacks Fork near Millburne, Wyoming (d)	09218500	152	1939-98
reen River near Linwood, UT (d)	09225500	a14,300	1928-63
iddle Fork Beaver Creek near Lonetree, WY (d)	09226500	a28	1948-70
ast Fork Beaver Creek near Lonetree, WY (d)	09227000	a8.2	1949-62
est Fork Beaver Creek near Lonetree, WY (d)	09227500	a23	1949-62
urnt Fork near Burntfork, WY (d)	09228500	52.8	1943-83
enrys Fork near Manila (d)	09229500	520	1928-93
een River at Flaming Gorge near Linwood, UT (d)	09230500	a14,900	1923-38
eep Creek Upper Canal near Manila, UT (d)	09231000	_	1950-61
rter Creek Canal near Manila, UT (d)	09231200	_	1956-61
eep Creek Lower Canal near Manila, UT (d)	09231500	_	1950-61
heep Creek near Manila, UT (d)	09232000	a42	1943-61
heep Creek at mouth near Manila, UT (d)	09232500	111	1947-61
arter Creek near Manila, UT (d)	09233000	a19	1949-54
ed Lake Outlet near Manila, UT (d)	09233500	a19	1946-49
arter Creek at mouth near Manila, UT (d)	09234000	a110	1946-55
ed Creek near Dutch John, UT (d)	09234700	140	1971-76

Station name	Station number	Drainage area (sq mi)	Period of Record
GREEN RIVER B/	ASINContinued		
Green River at (near) Bridgeport, UT (d)	09235000	a15,700	1912-15
Crouse Creek near Vernal, UT (d)	09235100	30.2	1986-90
Pot Creek above diversions, near Vernal (d)	09235600	24.6	1957-93
ot Creek near Vernal, UT (d)	09235800	107	1958-82
ones Hole Creek near Jensen, UT (d)	09260500	a120	1950-56
			1960-61
rush Creek above cave near Vernal, UT (d)	09261500	a23	1946-55
ig Brush Creek near Vernal, UT (d)	09262000	79.6	1940-79
ittle Brush Creek below East Park Reservoir near Vernal, UT (d)	09262500	a20	1949-55
ittle Brush Creek near Vernal, UT (d)	09263000	a28	1946-52
rush Creek near Jensen, UT (d)	09263500	255	1940-65
ASHLEY CRI	EEK BASIN		
shley Creek below Trout Creek near Vernal, UT (d)	09264000	a27	1944-54
outh Fork Ashley Creek near Vernal, UT (d)	09264500	a20	1944-55
aks Park Canal near Vernal, UT (d)	09265000	_	1946-69
shley Creek above Red Pine Creek near Vernal, UT (d)	09265300	55.8	1965-75
shley Creek above Spring near Vernal, UT (d)	09265500	a100	1941-45
shley Creek Spring near Vernal, UT (d)	09266000	_	1944-45
			1954-55
.P.&L. Co.'s Tailrace near Vernal, UT (d)	09267000	_	1917
			1920-31
shley Creek above Dry Fork, near Vernal, UT (d)	09267100	110	1969-72
losby Canal near Lapoint, UT (d)	09267500	_	1954-2003
ry Fork above sinks, near Dry Fork, UT (d)	09268000	44.4	1940-75
orth Fork of Dry Fork near Dry Fork, UT (d)	09268500	8.62	1947-89
rownie Canyon above sinks, near Dry Fork, UT (d)	09268900	8.24	1961-89
ast Fork of Dry Fork near Dry Fork, UT (d)	09269000	a12	1947-63
ast Fork of Dry Fork at mouth near Dry Fork, UT (d)	09269500	a18	1950-52
ry Fork below springs near Dry Fork, UT (d)	09270000	97.4	1904
			1941-45
			1954-69
ry Fork at mouth near Dry Fork, UT (d)	09270500	116	1954-89
shley Creek at Sign of the Maine, near Vernal, UT (d)	09271000	241	1900-04
			1939-65
lighline Canal below Mantle Gulch near Jensen, UT (d)	09271070	—	1969-72
teinaker Reservoir near Vernal, UT (e)	09271300	—	1962-68
shley Creek near Naples, UT (d)	09271400	—	2000-03
shley Creek below Sadlier Draw near Naples, UT (d)	09271450	_	2000-03
iver Irrigation Company Canal near Jensen, UT (d)	09271470	_	1969-72
shley Creek near Jensen, UT (d)	09271500	383	1947-83
shley Creek below Union Canal diversion near Jensen, UT (d)	09271550	389	1991-2002
tewart Lake Outflow near Jensen, UT (d)	09271600	_	1990-94
TRIBUTARIES BETWEEN ASHLEY	CREEK AND DUCHESNE R	IVER	
alfway Hollow Tributary near LaPoint, UT (d)	09271800	a5.6	1960-74
DUCHESNE R	IVER BASIN		
Duchesne Tunnel near Kamas, UT (d)	09272500	—	1954-69
uchesne River at Provo River Trail near Hanna, UT (d)	09273000	a39	1930-33
			1935-54
uchesne River below Little Deer Creek, near Hanna, UT (d)	09273200	a39	1965-68
ades Creek near Hanna, UT (d)	09273500	a75	1950-68
uchesne River (North Fork) near Hanna, UT (d)	09274000	a78	1922-23
			1929-30
			1946-63
est Fork Duchesne River below Vat Diversion near Hanna, UT (d)	09274900	37.0	1989-94
/est Fork Duchesne River below Dry Hollow near Hanna, UT (d)	09275000	43.8	1950-68
			1074.91
Vest Fork Duchesne River near Hanna, UT (d)	09275500	61.6	1974-81 1945-94

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
DUCHESNE RIVER BA	SINContinued		
olf Creek above Rhoades Canyon near Hanna, UT (d)	09276000	10.6	1946-84
/olf Creek near Hanna, UT (d)	09276500	a19	1922-23
est Fork Duchesne River above North Fork, near Hanna, UT (d)	09276600	89.1	1990-2003
uchesne River at Hanna, UT (d)	09277000	a230	1953-61
omb. flow Duchesne River & Duchesne Tunnel near Tabiona, UT (d)	09277501	_	1919-67
ock Creek above South Fork, near Hanna, UT (d)	09277800	98.9	1965-84
			1988-94
uth Fork Rock Creek near Hanna, UT (d)	09278000	15.7	1953-92
ck Creek near Hanna, UT (d)	09278500	122	1950-69
			1974-88
ck Creek below Miners Gulch near Hanna, UT (d)	09278700	133	1974-81
ck Creek near Talmage, UT (d)	09279100	238	1963-94
ichesne River above Knight Diversion, near Duchesne, UT (d)	09279150	623	1970-2003
ichesne River at Duchesne, UT (d)	09279500	a660	1918-70
awberry River and Willow Creek Ditches near Heber, UT (d)	09280000	2000	1910-70
bble Creek at Daniels Summit near Wallsburg, UT (d)	09280400	2.89	1950-00
- · · · · · · · · · · · · · · · · · · ·	09280400	2.09	1904-84
per Hobble Creek Ditch near Heber, UT (d)		—	
wer Hobble Creek Ditch near Heber, UT (d)	09281000	_	1950-52
bbble Creek Ditch (Upper & Lower) near Heber, UT (d)	09281500	_	1949-60
rawberry Tunnel at West Portal near Thistle, UT (d)	09282000	—	1915-25
			1932-34
		. = .	1935-68
rawberry Reservoir near Soldier Springs, UT (e)	09282500	170	1913-68
lian Creek in Strawberry Valley, UT (d)	09284000	a50	1905-06
			1909-10
awberry River below mouth of Indian Creek, Strawberry Valley, UT (d)	09284500	182	1903-06
			1909
awberry River near Soldier Springs, UT (d)	09285000	213	1942-56
			1963-94
illow Creek near Soldier Springs, UT (d)	09285500	a44	1943-47
rawberry River above Red Creek near Fruitland, UT (d)	09285700	363	1964-81
rawberry River at Pinnacles near Fruitland, UT (d)	09285900	372	1989-94
ed Creek above reservoir, near Fruitland, UT (d)	09286100	31.4	1986-98
d Creek near Fruitland, UT (d)	09286500	a89	1918-22
			1956-61
Irrant Creek below Currant Creek Dam, near Fruitland, UT (d)	09286700	48.0	1983-94
urrant Creek below Red Ledge Hollow near Fruitland, UT (d)	09287000	50.1	1946-68
			1974-83
ater Hollow near Fruitland, UT (d)	09287500	a14	1946-84
urrant Creek near Fruitland, UT (d)	09288000	140	1935-2003
d Creek below Currant Creek near Fruitland, UT (d)	09288100	297	1964-81
est Fork Avintaquin Creek near Fruitland, UT (d)	09288150	56.1	1964-86
arvation Reservoir near Duchesne, UT (e)	09288395	1,058	1989-94
rawberry River below Starvation Reservoir near Duchesne, UT (d)	09288400	1,059	1989-94
rawberry River at Duchesne (Theodore), UT (d)	09288500	1,066	1908-10 1915-68
wers Creek near Duchesne, UT (d)	09288900	40.6	1915-68 1964-86
ttelope Creek near Myton, UT (d)	09289000	a198	1918-21
own Duck Creek near Mountain Home, UT (d)	09290000	a15	1933-34
	00201200	120	1943-55
ke Fork River below Taskeech Damsite near Mt Home, UT (d)	09291200	138	1977-84
llowstone Creek below Swift Creek near Altonah, UT (d)	09291500	a99	1950-55
llowstone River at mouth near Altonah, UT (d)	09293000	142	1943-44
			1976-81
ke Fork River (below Forks) near Altonah, UT (d)	09293500	304	1904
			1907-10
			1917-20
			1976-81

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
DUCHESNE RIVER BAS	SINContinued		
ake Fork River at Hwy 87 near Altamont, UT (d)	09293600	318	1976-81
igeon Water Creek near Altamont, UT (d)	09293700	95.5	1976-79
ake Fork River near Upalco, UT (d)	09294000	427	1943-55
			1976-81
ake Fork (Creek) near Myton, UT (d)	09294500	484	1900-03
			1907-36
			1976-81
inta River below Gilbert Creek near Neola, UT (d)	09295500	a33	1951-55
inta River above Clover Creek near Neola, UT (d)	09296000	132	1946-55
lover Creek near Neola, UT (d)	09296500	a9.5	1950-55
inta River near Neola, UT (d)	09297000	163	1922-27
			1930-83
inta River near Whiterocks, UT (d)	09297500	218	1899-1903
			1907-10
			1917-20
est Channel Uinta River below diversion works near Whiterocks, UT (d)	09297600	216	1976-81
ast Channel Uinta River below diversion works near Whiterocks, UT (d)	09297700	215	1977-81
ast Channel Uinta River at County Road Bridge near Whiterocks, UT (d)	09297800	253	1976-81
ast Channel Uinta River at LaPoint Road near LaPoint, UT (d)	09297900	382	1976-82
arm Creek near Whiterocks, UT (d)	09298000	14.9	1950-81
/hiterocks River above Paradise Creek near Whiterocks, UT (d)	09298500	a90	1946-55
aradise Creek near Whiterocks, UT (d)	09299000	a10	1946-55
/hiterocks River below damsite near Whiterocks, UT (d)	09299000	110	1940-33
	09299400	120	1976-81
/hiterocks River below Farm Creek Canal near Whiterocks, UT (d)	09299800	120	
/hiterocks River 1 mile east of Whiterocks, UT (d)			1976-81
eep Creek at State Highway 246 near LaPoint, UT (d)	09299900	72.2	1976-79
eep Creek near LaPoint, UT (d)	09300000	a75	1943-45
	00200500	<i></i>	1950-55
inta River at Fort Duchesne, UT (d)	09300500	557	1899-1904
			1907-10
			1917-20
			1943-58
			1976-81
ry Gulch near Neola, UT (d)	09301000	a67	1951-58
ry Gulch near Fort Duchesne, UT (d) WHITE RIVER I	09301200	469	1976-81
hite River near Colorado State Line, UT (d)	09306395	3,680	1977-86
	09306400	a3,700	
/hite River above Hells Hole Canyon near Watson, UT (d)			1974-76
ells Hole Canyon Creek at mouth near Watson, UT (d)	09306405	24.5	1975-83
vacuation Creek above Missouri Creek near Dragon, UT (d)	09306410	100	1975-83
vacuation Creek below Park Canyon near Watson, UT (d)	09306415	246	1975-76
himble Rock Canyon near Watson, UT (d)	09306417	1.7	1975-76
vacuation Creek at Watson, UT (d)	09306420	259	1975-75
vacuation Creek Tributary near Watson, UT (d)	09306425	12.4	1974-76
vacuation Creek near mouth near Watson, UT (d)	09306430	284	1975-81
hite River below Southam Canyon near Watson, UT (d)	09306600	a4,030	1975-76
butham Canyon Wash near Watson, UT (d)	09306605	2.5	1974-76
outham Canyon Wash at mouth near Watson, UT (d)	09306610	8.3	1974-76
sphalt Wash below Center Fork near Watson, UT (d)	09306620	94.4	1975-76
sphalt Wash near mouth near Watson, UT (d)	09306625	97.5	1974-83
hite River below Asphalt Wash near Watson, UT (d)	09306700	a4,130	1974-77
itter Creek above Dick Canyon near Watson, UT (d)	09306740	11.7	1975-78
weetwater Canyon below South Canyon near Watson, UT (d)	09306760	22.6	1975-78
weetwater Canyon Creek near mouth near Watson, UT (d)	09306780	124	1975-78
itter Creek near Bonanza, UT (d)	09306800	324	1971-89
itter Creek at mouth near Bonanza, UT (d)	09306850	398	1975-83
and Wash near Ouray, UT (d)	09306870	59.7	1975-81

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
WHITE RIVER BA	SINContinued		
oyote Wash near mouth near Ouray, UT (d)	09306878	228	1977-83
North Wash near Ouray, UT (d)	09306880	11.0	1980-8
ottonwood Wash near mouth near Ouray, UT (d)	09306885	70.6	1977-8
/hite River at mouth near Ouray, UT (d)	09306900	5,120	1974-80
TRIBUTARIES BETWEEN DUCHE	SNE RIVER AND PRICE RIV	,	
reen River near Ouray, UT (d)	09307000	a35,500	1948-60
• • • •			1948-00
ariette Draw near Ouray, UT (d) ombined flow Pariette Draw at mouth and Lambs Diversion (d)	09307200 09307290	153	1976-84
ambs Diversion from Pariette Draw at mouth and Lamos Diversion (d)	09307295	—	1978-80
ariette Draw at mouth near Ouray, UT (d)	09307293	298	1978-82
illow Creek above diversions near Ouray, UT (d)	09307500	298	1975-8-
niow creek above diversions hear Ouray, 01 (d)	09507500	231	1951-5.
			1958-70
ill Creek above Towave Reservoir near Ouray, UT (d)	09307800	89.7	1975-8
Il Creek near mouth near Ouray, UT (d)	09307800	288	1975-8
illow Creek near Ouray, UT (d)	09308000	897	1975-8
mow creek near ouray, or (u)	09308000	097	1948-3
innia Maud Creak near Muton LIT (d)	09308500	32.0	1975-82
innie Maud Creek near Myton, UT (d)	09308300	52.0	1950-5
innia Maud Craak at Nutter Danah naar Mutan LIT (d)	09309000	231	1937-85
innie Maud Creek at Nutter Ranch near Myton, UT (d)		231	1948-55
PRICE RIVE			
airview Ditch near Fairview, UT (d)	09309500	—	1950-65
ooseberry Creek near Fairview, UT (d)	09309800	a7.51	1960-69
ooseberry Creek near Scofield, UT (d)	09310000	16.8	1931
			1940-2003
pardinghouse Creek at mouth near Scofield, UT (d)	09310575	2.04	1983-84
ccles Canyon near Scofield, UT (d)	09310600	5.5	1980-84
cofield Reservoir near Scofield, UT (e)	09311000	154	1942-2003
ice River near Scofield, UT (d)	09311500	a155	1918-21
			1925-31
			1939-69
			1979-80
rice River near Soldier Summit, UT (d)	09311700	a180	1962-63
orth Fork White River near Soldier Summit, UT (d)	09312000	23.3	1942-47
'hite River near Soldier Summit, UT (d)	09312500	52.8	1938-67
eaver Creek near Soldier Summit, UT (d)	09312700	26.1	1961-89
'illow Creek near Castle Gate, UT (d)	09312800	62.8	1963-89
/illow Creek at Castle Gate, UT (d)	09312900	77.4	1980-81
rice River near Heiner, UT (d)	09313000	455	1934-69
			1980-8 1
			1991-2003
oring Canyon below Sowbelly Gulch at Helper, UT (d)	09313040	23.0	1979-81
ice River near Helper, UT (d)	09313500	a530	1904-34
oal Creek near Helper, UT (d)	09313965	25.3	1978-8
oldier Creek below Mine near Wellington, UT (d)	09313975	17.7	1978-84
ugout Creek near Sunnyside, UT (d)	09313985	5.8	1980-8
ice River near Wellington, UT (d)	09314000	853	1950-58
ice River below Miller Creek near Wellington, UT (d)	09314250	956	1972-80
esert Seep Wash near Wellington, UT (d)	09314280	191	1972-86
rassy Trail Creek at Sunnyside, UT (d)	09314340	40.1	1978-85
orse Canyon near Sunnyside, UT (d)	09314374	12.5	1978-81
TRIBUTARIES BETWEEN PRICE R	IVER AND SAN RAFAEL RI	VER	
leratus Wash at Green River, UT (d)	09315500	a180	1949-70
owns Wash near Green River, UT (d)	09316000	a75	1950-68
oy Wash near Green River, UT (d)	09316100	56.6	1983-86
oulger Creek near Fairview, UT (d)	09317000	a1.9	1938-40
	05517000	u1.>	1942-49

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
TRIBUTARIES BETWEEN PRICE RIVER AN	D SAN RAFAEL RIVER-	-Continued	
Candland Ditch near Mt. Pleasant, UT (d)	09317500	_	1950-58
Crandall Canyon at mouth near Huntington, UT (d)	09317919	5.70	1978-84
Tie Fork Canyon near Huntington, UT (d)	09317920	11.7	1978-81
Huntington Creek near Huntington, UT (d)	09318000	187	1909-79
Huntington Creek near Castle Dale, UT (d)	09318500	325	1911-17
•			1919-21
Horseshoe Tunnel near Ephraim, UT (d)	09320000	_	1950-58
Larsen Tunnel near Ephraim, UT (d)	09320500	_	1949-58
Coal Fork Ditch near Mount Pleasant, UT (d)	09321000	_	1950-58
			1976
Twin Creek Tunnel near Mount Pleasant, UT (d)	09321500	_	1950-58
Black Canyon Ditch near Spring City, UT (d)	09322000	_	1950-58
Cedar Creek Tunnel near Spring City, UT (d)	09322500		1950-58
Spring City Tunnel near Spring City, UT (d)	09323000	_	1950-2003
Reeder Ditch near Spring City, UT (d)	09323500	_	1950-58
Joes Valley Reservoir near Orangeville, UT (e)	09323900	146	1966-2003
Seely Creek near Orangeville, UT (d)	09324000	a150	1954-57
Cottonwood Creek above Straight Canyon near Orangeville, UT (d)	09324000	21.9	1934-37
	09324200	208	
Cottonwood Creek near Orangeville, UT (d)	09524500	208	1910-27
			1933-70
	00225000	2(1	1975-85
Cottonwood Creek near Castle Dale, UT (d)	09325000	261	1947-58
San Rafael River above Ferron Creek near Castle Dale, UT (d)	09325100	a680	1965-70
John August Ditch near Ephraim, UT (d)	09325500	—	1949-58
Madsen Ditch near Ephraim, UT (d)	09326000		1950-58
Ferron Creek near Ferron, UT (d)	09327000	159	1909-11
Ferron Creek near Castle Dale, UT (d)	09327500	a210	1912-14
			1948-58
Ferron Creek below Paradise Ranch near Clawson, UT (d)	09327550	221	1976-86
San Rafael River near Castle Dale, UT (d)	09328000	930	1948-64
			1972-86
San Rafael River at San Rafael Bridge Campground, near Castle Dale, UT (d)	09328100	1,284	1975-86
Cresent Wash Reservoir, UT (e)	09328870	19.0	1954-57
DIRTY DEVIL RIVI	ER BASIN		
Fremont River below Fish Lake near Fremont, UT (d)	09329000	a27	1939-45
Seven Mile Creek near Fish Lake, UT (d)	09329050	24.0	1964-98
Fremont River near Fremont, UT (d)	09329500	205	1949-58
Pine Creek near Bicknell, UT (d)	09329900	104	1965-80
Pleasant Creek near Caineville, UT (d)	09330210	115	1969-72
Bull Creek near Hanksville, UT (d)	09330410	7.53	1983-91
Muddy Creek (Lower Station) near Emery, UT (d)	09331000	114	1911-14
Ivie Creek above diversions near Emery, UT (d)	09331500	a50	1951-61
Convulsion Canyon near Emery, UT (d)	09331850	21.6	1981-84
Quitchupah Creek near Emery, UT (d)	09331900	104	1978-81
Christiansen Wash near Emery, UT (d)	09331950	13.6	1978-84
Muddy Creek below I-70 near Emery, UT (d)	09332100	418	1973-86
Muddy Creek below Ivie Creek near Emery, UT (d)	09332500	a440	1950-61
Muddy Creek at Delta Mine near Hanksville, UT (d)	09332700	841	1975-86
Muddy Creek at mouth near Hanksville, UT (d)	09332800	1,552	1976-80
Dirty Devil River near Hanksville, UT (d)	09333000	a3,490	1946-48
North Wash near Hanksville, UT (d)	09334000	136	1951-70
White Canyon near Hanksville (Hite), UT (d)	09334500	276	1951-70
Colorado River at Hite, UT (d)	09335000	a76,600	1948-58
		u10,000	17-0-50
ESCALANTE RIVE		-00	1050 55
North Creek near Escalante, UT (d)	09335500	a90	1950-55
Birch Creek near Escalante, UT (d)	09336000	a36	1950-51
Birch Creek at mouth near Escalante, UT (d)	09336500	a100	1952-55

Station name	Station number	Drainage area (sq mi)	Period of Record
ESCALANTE RIVER BA	ASINContinued		
East Fork Boulder Creek near Boulder, UT (d)	09338000	21.4	1951-55
			1958-72
East Fork Deer Creek near Boulder, UT (d)	09338500	a1.9	1950-55
Escalante River at mouth near Escalante, UT (d)	09339500	a1,770	1951-55
SAN JUAN RIVE	R BASIN		
IcElmo Creek near Bluff, UT (d)	09372200	_	1981-82
pring Creek above diversions near Monticello, UT (d)	09376900	4.95	1966-72
Davenport and Campbell Canal near Monticello, UT (d)	09377500	_	1914-16
pring (Vaga) Creek near Monticello, UT (d)	09377000	a8.5	1914-16
reen Canal near Monticello, UT (d)	09378000	_	1914-16
orth Creek above Ranger Station near Monticello, UT (d)	09378100	8.68	1980-85
Iontezuma Creek at Golf Course, at Monticello, UT (d)	09378200	17.6	1979-92
Iontezuma Creek near Bluff, UT (d)	09378600	1,154	1985-93
ecapture Creek below Johnson Creek, near Blanding, UT (d)	09378650	50.2	1975-93
ottonwood Wash near Blanding, UT (d)	09378700	205	1965-87
omb Wash near Bluff, UT (d)	09379000	278	1959-68
COMBINED INFLOW ABOVE	GLEN CANYON DAM		
olorado plus Green plus San Juan (temp) (d)	09379505	_	1928-84
COLORADO RIVER TRIBUTARIES B		AM	
			1050 55
lenrieville Creek near Henrieville, UT (d)	09381000	a29	1950-55
aria River near Cannonville, UT (d)	09381500	a220	1951-55
hnson Wash above Flood Canyon, near Kanab, UT (d)	09403690 09404700	237 179	1994-97 1993-2002
ast Fork Virgin River near Mount Carmel Junction, UT (d)		179	1995-2002
VIRGIN RIVER			
eep Creek near Cedar City, UT (d)	09405200	6.72	1987-93
ast Fork Deep Creek near Cedar City, UT (d)	09405250	7.82	1987-93
rystal Creek near Cedar City, UT (d)	09405300	10.2	1957-61
forth Fork Virgin River near Glendale, UT (d)	09405400	5.65	1973-78
orth Fork Virgin River below Bulloch Canyon near Glendale, UT (d)	09405420	29.6	1975-84
orth Fork Virgin River above Zion Narrows near Glendale, UT (d)	09405450	45.5	1979-84
forth Fork Virgin River above Big Bend near Springdale, UT (d)	09405490	311	1991-94
pringdale Canal near Springdale, UT (d)	09405499		1969-89
forth Creek near Virgin, UT (d)	09405900	110	1984-93
aVerkin Creek near LaVerkin, UT (d)	09406150	91.3	1984-91
anarra Creek at Kanarraville, UT (d)	09406300	9.85	1960-82
sh Creek near New Harmony, UT (d) sh Creek Reservoir near New Harmony, UT (e)	09406500	a133.9	1939-48
	09406600 09406640	0.10	1973-82
eap Creek below Maple Hollow, near Pintura, UT (d) outh Ash Creek below Mill Creek near Pintura, UT (d)	09406040	9.19 11.0	1994-2001 1966-82
		5.02	
/et Sandy Creek near Pintura, UT (d) sh Creek above Toquerville, UT (d)	09406900 09407000	201	1994-2001 1941-42
sh creek above roquervine, 01 (u)	09407000	201	1941-42
Vest Field Ditch at Toquerville, UT (d)	09407150		1984-91
sh Creek below West Field Ditch at Toquerville, UT (d)	09407130	201	1973-82
sh Creek below diversion dam at Toquerville, UT (d)	09407200		1973-82
sh Creek near Toquerville, UT (d)	09407600	213	1975-82
sh Creek near LaVerkin, UT (d)	09407800	215	1950-58
anta Clara-Pinto Diversion near Pinto, UT (d)	09407800		1957-58
and char i into Diversion nodi i into, O i (u)	07-00500		1954-02
anta Clara River near Central, UT (d)	09409000	a97	1970-93
and characteristic contail, 01 (u)	07407000	u) (1909-50
loody Wash near Veyo, UT (d)	09409500	a33	1939-42
	07-07500	uss.	1955-69
anta Clara River above Winsor Dam near Santa Clara, UT (d)	09410000	338	1942-71

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004,
DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

	Station number	Drainage area (sq mi)	Period of Record
VIRGIN RIVER BASIN	Continued		
Santa Clara River below Winsor Dam near Santa Clara (d)	09410100	378	1972-2001
Santa Clara River near Santa Clara, UT (d)	09410400	410	1965-74
Santa Clara River (Creek) near St. George, UT (d)	09412500	502	1909-13
Beaver Dam Wash at Beaver Dam, AZ (d)	09414900	575	1993-94
			1996-98
THE GREAT BA	SIN		
Breat Salt Lake at Promontory Point, UT (e)	10010050	—	1969-82
			1997-99
Great Salt Lake at AIC near Syracuse, UT (e)	10010300		1975-82
BEAR RIVER BA	ASIN		
ast Fork Bear River near Evanston, WY (d)	10010400	34.6	1974-86
lilliard East Fork Canal near State Line near Evanston, WY (d)	10010500	_	1944-47
			1953-56
Vest Fork Bear River at Whitney Dam, near Oakley, UT (d)	10011200	a7.5	1964-86
Vest Fork Bear River below Deer Creek near Evanston, WY (d)	10011400	52.2	1974-86
Iill Creek at Utah-Wyoming State Line (d)	10012000	a59	1950-62
Iill Creek near Evanston, WY (d)	10012500	60.6	1942-48
ear River above Sulphur Creek near Evanston, WY (d)	10014000	282	1946-56
ulphur Creek above reservoir, below LaChapelle Creek, near Evanston, WY (d)	10015700	64.2	1957-97
ulphur Creek below reservoir, near Evanston, WY (d)	10015900	69.2	1958-92
ulphur Creek near Evanston, WY (d)	10016000	80.5	1942-59
ear River at Millis, near Evanston, WY (d)	10016500	a420	1942-46
ellow Creek near Evanston, WY (d)	10017000	a80	1943-45
			1950-78
oyote Creek near Evanston, WY (d)	10017500	a28	1942-45
ear River near Evanston, WY (d)	10019000	715	1913-56
hapman Canal at State Line near Evanston, WY (d)	10019500	_	1942-86
/oodruff Narrows Reservoir near Woodruff, UT (e)	10020200	784	1966-96
ear River near Woodruff, UT (d)	10020500	a870	1943-61
Voodruff Creek below reservoir near Woodruff, UT (d)	10020900	50.0	1971-86
Voodruff Creek near Woodruff, UT (d)	10021000	a65	1938-43
	10021000	uoo	1950-75
irch Creek near Woodruff, UT (d)	10021500	a17	1949-56
andolph Creek near Randolph, UT (d)	10024000	30.3	1949-56
tter Creek near Randolph, UT (d)	10025000	36.2	1939-44
ear River near Randolph, UT (d)	10026500	1,616	1943-92
ock Creek near Fossil, WY (d)	10026800	49.0	1961-66
win Creek at Sage, WY (d)	10027000	246	1946-62
ear River above Sublette Creek near Cokeville, WY (d)	10029500	a2,110	1948-55
miths Fork above Hobble Creek near Geneva, ID (d)	10031000	u2,110	1944-46
lobble Creek near Geneva, Id (d)	10031500	86.1	1943-46
Coal (Howland) Creek near Cokeville, WY (d)	10032500		1944-48
ou (nomina) creek neur concerne, mit (u)	10052500		1944-48
Iuddy Creek above Mill Creek near Cokeville, WY (d)	10032700	20.7	1964-69
fill Creek near Cokeville, WY (d)	10032800	8.07	1965-69
rade Creek near Cokeville, WY (d)	10033000		1944-48
ine Creek above Diversions near Cokeville, WY (d)	10033500	_	1944-48
			1953-56
ine Creek above Covey Canal near Cokeville, WY (d)	10034500	_	1944-48
			1953-56
	10035000	275	1942-52
miths Fork at Cokeville, WY (d)	100000000		
miths Fork at Cokeville, WY (d)			1044 45
miths Fork at Cokeville, WY (d) pring Creek to Collette Creek near Cokeville, WY (d)	10036000	_	1944-45 1953-56

Station name	Station number	Drainage area (sq mi)	Period of Record
BEAR RIVER BA	SINContinued		
lickman Canal near Cokeville, WY (d)	10037000	_	1944-48
George Bourne Canal near Cokeville, WY (d)	10037500	_	1944-48
'homas Fork near Geneva, ID (d)	10040000	45.3	1939-51
alt Creek near Geneva, ID (d)	10040500	37.6	1939-51
homas Fork near Wyoming-Idaho state line (d)	10041000	113	1949-92
homas Fork above Diversions near Geneva, ID (d)	10041500		1944-46
homas Fork near Raymond, ID (d)	10042500	202	1942-52
Bear River at Harer, ID (d)	10044000	2,839	1912-32
Dingle Inlet Canal near Dingle, ID (d)	10044300		1911-92
ear River at Dingle, ID (d)	10044500	a2,810	1903-14
ear River below Stewart Dam near Montpelier, ID (d)	10046500	2,853	1905 14
Iontpelier Creek near Montpelier, ID (d)	10047000	28.2	1922-92
Iontpelier Creek at irrigators weir, near Montpelier, ID (d)	10047500	49.5	1939-44
Iontpelier Creek below Diversions at Montpelier, ID (d)	10047500	49.5	1943-79
t. Charles Creek above Diversions near St. Charles, ID (d)	10048500	17.4	1944-47
. Charles Creek above Diversions hear St. Charles, ID (u)	10054000	17.4	
loomington Crook near Ploomington D (1)	10050500	22.1	1961-66
loomington Creek near Bloomington, ID (d)	10058500	22.1	1942-47
loomington Creek at Bloomington, ID (d)	10058600	24.0	1960-86
aris Power Canal near Paris, ID (d)	10060000		1943-47
aris Creek near Paris, ID (d)	10060500	18.6	1943-47
light Canyon Creek near Paris, ID (d)	10062000	6.81	1943-45
lill Creek above West Fork near Liberty, ID (d)	10062500	18.4	1944-47
lill Creek near Liberty, ID (d)	10063000	27.2	1943-47
eorgetown Creek near Georgetown, ID (d)	10069000	22.2	1911-14
			1939-56
eorgetown Creek below diversions at Georgetown, ID (d)	10070500	—	1944-47
kinner Creek at Nounan, ID (d)	10071500	5.41	1939-45
tauffer Creek near Nounan, ID (d)	10072000	—	1939-44
ightmile Creek near Soda Springs, ID (d)	10072800	22.6	1960-86
ightmile Creek below Diversions near Soda Springs, ID (d)	10073500	31.0	1944-47
oda Creek at Fivemile Meadow near Soda Springs, ID (d)	10076400	a49	1964-86
oda Creek at Lau Ranch near Soda Springs, ID (d)	10076500	a49	1923-26
oda Creek near Soda Springs, ID (d)	10077000	54.6	1913-26
			1928-29
oda Creek below Diversions at Soda Springs, ID (d)	10078000	—	1945-47
reasureton Canal near Swan Lake, ID (d)	10083500	_	1939-46
ottonwood Creek near Swan Lake, ID (d)	10084000	42.6	1939-46
ottonwood Creek near Cleveland, ID (d)	10084500	61.7	1938-86
link Creek Canal near Mink Creek, ID (d)	10087000	_	1949-52
link Creek below Dry Fork near Mink Creek, ID (d)	10087500	19.3	1947-52
			1955-62
win Lakes Canal near Mink Creek, ID (d)	10088000	_	1943-52
reston Riverdale and Mink Creek Canal near Mink Creek, ID (d)	10088500	_	1943-52
link Creek near Mink Creek, ID (d)	10089500	58.7	1943-52
ear River near Preston (at Battlecreek), ID (d)	10090500	4,545	1889-1919
	10070500	.,	1944-45
			1981-86
eep Creek near Clifton, ID (d)	10091200	107	1966-78
ear River near Weston, ID (d)	10091200	4,880	1900-78
eston Creek at Weston, ID (d)			
	10092000	a63	1942-44
ub River Irrigation Company Pump Canal near Weston, ID (d)	10092500	10 4	1934-44
ub River near Preston, ID (d)	10093000	19.4	1940-52
	10001000		1955-86
ub River-Worm Creek Canal near Preston, ID (d)	10094000	—	1943-52
reston-Whitney Canal near Preston, ID (d)	10095000	—	1944-45
			1946-52
ub River Canal near Preston, ID (d)	10095500	—	1944-5

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004,
DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
BEAR RIVER BA	SINContinued		
East Branch Cub River Canal near Lewiston, UT (d)	10095900	_	1962-63
Cub River above Maple Creek near Franklin, ID (d)	10096000	53.7	1940-52
Iaple Creek near Franklin, ID (d)	10096500	21.2	1946-52
Vorm Creek near Preston, ID (d)	10098500	11.0	1943-46
igh Creek near Richmond, UT (d)	10099000	16.2	1944-52
			1971-72
			1978-89
ub River near Richmond, UT (d)	10102200	222	1962-63
			1999-2000
ear River near Smithfield, UT (d)	10102250	5,193	1964-78
			1990-95
ummit Creek above diversions near Smithfield, UT (d)	10102300	11.6	1944-45
			1961-79
irch Creek at mouth near Smithfield, UT (d)	10103000	_	1944-45
outh Fork Little Bear River near Avon, UT (d)	10104600	26.0	1966-74
ittle Bear River below Davenport Creek near Avon, UT (d)	10104700	61.6	1960-92
ast Fork Little Bear River above Reservoir near Avon, UT (d)	10104900	56.7	1964-86
ast Fork Little Bear River (below Pole Creek) near Avon, UT (d)	10105000	49.7	1938-50
ast Fork Little Bear River below Pole Creek near Avon, UT (d)	10105500	a67	1927-30
ittle Bear River near Paradise, UT (d)	10106000	203	1937-86
yrum Reservoir near Hyrum, UT (e)	10107000	220	1938-80
ittle Bear River near Hyrum, UT (d)	10107500	222	1938-74
ittle Bear River at Wellsville, UT (d)	10107600	245	1966-68
tah Power and Light Tailrace near Logan, UT (d)	10108000	_	1913-70
ogan, Hyde Park and Smithfield Canal near Logan, UT (d)	10108500	_	1904-07
			1909-10
			1912-64
ogan River near Logan, UT (d)	10109500	_	1896-1912
ogan Northern Canal near Logan, UT (d)	10110500	_	1913-16
			1944-45
ogan River below Logan Northern Canal near Logan, UT (d)	10111000	_	1915-17
lacksmith Fork below Mill Creek near Hyrum, UT (d)	10111700	78.0	1965-69
			1985-92
lacksmith Fork at Hardware Ranch near Hyrum, UT (d)	10112000	a130	1944-50
lacksmith Fork at Municipal Powerplant near Hyrum, UT (d)	10112500	153	1929-35
yrum City Power Canal near Hyrum, UT (d)	10113000	_	1904-10
Blacksmith Fork Municipal Powerplant Race)			1914-17
lacksmith Fork at U.P. & L. Plant near Hyrum, UT (d)	10114000	_	1914-16
lacksmith Fork below U.P. & L. Plant near Hyrum, UT (d)	10114500	286	1900-02
Blacksmith Fork at Hyrum)			1904-10
			1914-16
ogan River below Blacksmith Fork near Logan, UT (d)	10115200	524	1964-80
larkston Creek near Newton, UT (d)	10115500	a43	1939-47
utler Reservoir at Cache Junction, UT (e)	10116000		1944-50
/est Canal above Salt Creek diversion near Tremonton, UT (d)	10117510	_	1980-84
	1011/010		1986
/est Canal below Salt Creek diversion near Tremonton, UT (d)	10117530		1980-84
	1011/000		1986
alad River below Springs near Malad City, ID (d)	10118200	a3.3	1931-32
and the of bolow optimes near manual only, in (a)	10110200	u.ss	1931-32
arm Springs Canal near Samaria, ID (d)	10118300	_	1940-47
alad River near Samaria, ID (d)	10118300	a31	1940-45
ittle Malad River above Elkhorn Reservoir near Malad, ID (d)	10118400	a120	1941-45
			1911-13
lkhorn Reservoir near Malad City (near Malad), ID (e)	10119500	153 153	
ittle Malad River below Elkhorn Reservoir near Malad, ID (d)	10120000	153 223	1940-53
ittle Malad River below Sand Ridge Dam near Malad, ID (d)	10120500	223	1945-51
evil Creek above Campbell Creek near Malad City, ID (d)	10122500	a13	1938-61

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
BEAR RIVER BASINC	Continued		
evil Creek above Evans Dividers near Malad City, ID (d)	10123000	a36	1940-43
			1946-53
evil Creek near Malad City (near Malad), ID (d)	10123500	a39	1931-40
beep Creek below First Creek near Malad City, ID (d)	10125000	a32	1931-48
lalad River at Woodruff, ID (d)	10125500	a485	1938-82
lalad river near Plymouth, UT (d)	10125600	a632	1964-80
ear River Duck Club near Bear River City, UT (d)	10125700		1964-73
alad River below Bear River Duck Club Canal near Bear River City, UT (d)	10125800	a698	1964-74
TRIBUTARIES TO GREAT SALT LAKE BETWEEN			190171
			1050.04
ulphur Creek near Corinne, UT (d)	10126180	15.4	1972-86
ox Elder Creek at Mantua, UT (d)	10126400	14.0	1960-63
ox Elder Creek near Brigham City, UT (d)	10126500	33.4	1918-21
ox Elder Creek at Brigham City, UT (d)	10127000	34.2	1909-12
alt Spring near Tremonton, UT (d)	10127040	_	1979-86
alt Creek below Salt Spring near Tremonton, UT (d)	10127050	—	1979-86
ack Slough near Brigham City, UT (d)	10127100	31.1	1972-86
ighway 83 Culverts (d)	10127107	—	1980-86
Ilphur Creek & Black Slough (d)	10127108	_	1980-86
ulverts & Sulphur Creek & Black Slough (d)	10127109	_	1980-86
ear River Basin outflow across State Hwy 83 near Corinne, UT (d)	10127110	—	1972-86
WEBER RIVER BA	SIN		
		33.8	1947
nith and Morehouse Creek near Oakley, UT (d)	10128000	33.8	
	10120200	14	1976-86
buth Fork Weber River near Oakley, UT (d)	10128200	a16	1965-74
eber Provo Diversion Canal at Oakley, UT (d)	10129000	_	1931-69
Veber River near Peoa, UT (d)	10129300	296	1957-77
randall Creek near Peoa, UT (d)	10129350	11.8	1963-73
ockport Reservoir near Wanship, UT (e)	10129400		1957-99
lver Creek near Wanship, UT (d)	10130000	27.9	1942-46
			1982-85
			1990-96
ast Fork Chalk Creek near Coalville, UT (d)	10130700	a35	1965-74
cho Reservoir at Echo (e)	10131500		1931-99
ost Creek Reservoir near Croydon (e)	10132490		1967-99
ost Creek at Croydon, UT (d)	10132900	a220	1966-67
ost Creek at Devils Slide (near Croydon), UT (d)	10133000	223	1905
• / • /			1921-33
Veber River at Devils Slide, UT (d)	10133500	1,192	1905-55
imball Creek above East Canyon Creek near Park City, UT (d)	10133540	12.2	1990-96
hreemile Creek near Park City, UT (d)	10133700	2.68	1964-74
	10120700	2.00	1982-84
ast Canyon Cr above Big Bear Hollow, near Park City, UT	10133895	75.0	1982-84
ast Canyon Creek near Park City, UT (d)	10133895	68.9	1990-90
•		00.9	
ast Canyon Reservoir near Morgan, UT (e)	10134000	20 0	1932-99
ardscrabble Creek near Porterville, UT (d)	10135000	28.0	1937-40
	10105500		1941-70
ast Canyon Creek below diversions near Morgan, UT (d)	10135500		1951-55
eber River near Morgan, UT (d)	10136000	a1,500	1951-55
eber River at Ogden, UT (d)	10137000	a1,670	1951-58
ausey Reservoir near Huntsville, UT (e)	10137290	92.2	1966-68
outh Fork Ogden River below Causey Dam near Huntsville, UT (d)	10137300	92.3	1966-67
outh Fork Ogden River at Huntsville, UT (d)	10137600	a170	1937-57
			1959-65
orth Fork Ogden River near Eden, UT (d)	10137680	6.03	1964-74
orth Fork River near Huntsville, UT (d)	10137700	61.4	1960-65
liddle Fork Ogden River above diversion near Huntsville, UT (d)	10137780	31.3	1964-74

Station name	Station number	Drainage area (sq mi)	Period of Record
WEBER RIVER BA	SINContinued		
Aiddle Fork Ogden River at Huntsville, UT (d)	10137800	32.9	1958-65
Spring Creek at Huntsville, UT (d)	10137900	a7.2	1958-65
ineview Reservoir near Ogden, UT (e)	10139000		1937-68
			1990-99
/heeler Creek near Huntsville, UT (d)	10139300	11.1	1959-95
gden River near Ogden, UT (d)	10139500	321	1904-12
			1931-59
gden River below Pineview Dam near Ogden, UT (d)	10140000	321	1937-59
gden River at Powder Mill near Ogden, UT (d)	10140500	a360	1889-90
			1897-98
/illard Bay Reservoir near Plain City, UT (e)	10408000	_	1965-81
ooper Slough near Hooper, UT (d)	10141040	13.0	1975-83
outh Fork Weber Canal near Hooper, UT (d)	10141050	_	1972-76
outh Fork Weber River near Hooper, UT (d)	10141100	_	1972-75
liddle Fork Weber River near Hooper, UT (d)	10141150	_	1971-75
orth Fork Weber River near Hooper, UT (d)	10141200	_	1971-75
TRIBUTARIES TO GREAT SALT LAKE BETWI	EEN WEBER RIVER AND J	ORDAN RIVER	
orm Drain at 1700 North 475 West, Sunset, UT (d)	10141395	0.28	1948-83
oward Slough at Hooper, UT (d)	10141400		1952-55
	10111100		1972-84
olmes Creek near Kaysville, UT (d)	10141500	2.49	1951-66
armington Creek above diversions near Farmington, UT (d)	10142000	10.0	1951-00
icks Creek above diversions, near Centerville, UT (d)	10142500	2.35	1951-66
arrish Creek above diversions, near Centerville, UT (d)	10142000	2.08	1950-68
one Creek above diversions near Bountiful, UT (d)	10145000	4.48	1950-66
lill Creek at Mueller Park near Bountiful, UT (d)	10145000	8.88	1951-68
torm Drain east of Orchard Drive at Bountiful, UT (d)	10145125	0.80	1949-83
torm Drain to Mill Creek, 620 South 200 West, Bountiful, UT (d)	10145126	0.28	1949-83
alt Creek near Nephi, UT (d)	10145500	a95	1925-38
JORDAN RIVI		4,0	1,20 00
urrant Creek near Goshen, UT (d)	10146500	303	1954-60
ummit Creek near Santaquin, UT (d)	1014000	19.2	1911-16
unnint Creek near Santaquin, 01 (u)	1014/000	19.2	1911-10
ayson Creek above diversions, near Payson, UT (d)	10147500	18.8	1955-00
ayson Creek (Peteetneet Creek) near Payson, UT (d)	10147500		
		25.6	1910-16
ie Fork near Soldier Summit, UT (d)	10148200	19.4	1964-96
ebo Creek near Thistle, UT (d)	10148400	36.7	1964-73
panish Fork at Thistle, UT (d)	10148500	450	1908-25
	10140510	450	1932-74
panish Fork below Halls Falls near Thistle, UT (d)	10148510	452	1983-92
iamond Fork below Red Hollow, near Thistle, UT (d)	10149500	107	1953-69
	10150000	1.4.1	1989-2001
iamond Fork near Thistle, UT (d)	10150000	141	1908-17
	10151000		1940-55
S. Bureau of Reclamation Power Canal near Spanish Fork, UT (d)	10151000		1909-17
panish Fork near Spanish Fork, UT (d)	10151500	a670	1909-17
panish Fork near Lakeshore, UT (d)	10152000	675	1904-07
			1909-25
			1938-88
panish Fork at mouth near Lake Shore, UT (d)	10152001		1978-82
obble Creek near Springville, UT (d)	10152500	105	1904-16
			1945-74
laple Creek near Mapleton, UT (d)	10152700	3.13	1965-72
laple Creek near Springville, UT (d)	10153000	10.8	1912-13
rovo River near Kamas, UT (d)	10153500	29.6	1950-69
forth Fork Provo River near Kamas, UT (d)	10153800	24.4	1964-96
hingle Creek near Kamas, UT (d)	10154000	a8.4	1963-73

Station name	Station number	Drainage area (sq mi)	Period of Record
JORDAN RIVER BAS	IN-—Continued		
Weber-Provo diversion canal near Woodland, UT (d)	10154500		1989-98
Provo River below Jordanelle Dam, near Heber, UT (d)	10155100	252	1991-94
Daniels Creek above diversions near Heber City (d)	10157000	37.2	1992-98
Round Valley Creek near Wallsburg, UT (d)	10158500	71.9	1938-50
Deer Creek Reservoir near Charleston, UT (e)	10159000	560	1940-68
rovo River below Deer Creek Dam, UT (d)	10159500	547	1953-2003
Deer Creek near Wildwood, UT (d)	10160000	a26	1939-50
rovo River near Wildwood, UT (d)	10160500	574	1939-49
forth Fork Provo River at Wildwood, UT (d)	10160800	12.3	1965-74
rovo River at Vivian Park, UT (d)	10161000	598	1912-63
outh Fork Provo River at Vivian Park, UT (d)	10161500	33.4	1912-62
rovo River above Telluride Power Company Dam near Provo, UT (d)	10162000	a640	1912-02
rovo River at mouth of canyon near Provo, UT (d)	10162500	a640	1889-1906
•			
ock Creek Overflow east of Highway 189 near Provo, UT (d)	10162850	0.66	1948-83
buth Fork of American Fork near American Fork, UT (d)	10164000	8.87	1912-14
merican Fork (River) near American Fork, UT (d)	10165000	a66	1889-90
			1897
			1900-01
			1903-05
ry Creek near Alpine, UT (d)	10165500	9.82	1948-55
ort Creek at Alpine, UT (d)	10166000	6.55	1947-55
tah Lake near Lehi (at Geneva) (near Spanish Fork), UT (e)	10166500	2,965	1883-1960
rdan River at Narrows, near Lehi, UT (d)	10167000	3,010	1904
			1913-88
rdan River Station No. 1 at Narrows, UT (d)	10167001	—	1980-83
ast Jordan Canal at Jordan Narrows near Bluffdale, UT (d)	10167100	—	1980-83
ast Jordan Canal at Little Cottonwood Creek near Sandy, UT (US) (d)	10167105	_	1980-82
ast Jordan Canal at Little Cottonwood Creek near Sandy, UT (DS) (d)	10167106	_	1980-82
ast Jordan Canal at pumphouse at 6200 South near Murray, UT (d)	10167115	_	1980-82
pper Canal at 5800 South (Tolcate Lane) near Murray, UT (d)	10167122	_	1980-82
pper Canal at Wild Rose Lane near Salt Lake City, UT (d)	10167125	_	1980-82
ordan & Salt Lake Canal at Little Cottonwood Creek near SLC, UT (US) (d)	10167141	_	1980-82
ordan & Salt Lake Canal at Little Cottonwood Creek near SLC, UT (DS) (d)	10167142	_	1980-82
ordan & Salt Lake Canal at Mill Creek near Salt Lake City, UT (US) (d)	10167147	_	1980-82
ordan & Salt Lake Canal at Mill Creek near Salt Lake City, UT (DS) (d)	10167148		1980-82
tah & Salt Lake Canal at Jordan Narrows near Bluffdale, UT (d)	10167160	_	1980-83
ordan River at 9400 South near South Jordan, UT (d)	10167200	q3,130	1965-67
ells Canyon Conduit 1000 East 110000 South (d)	10167220	q5,150	1948-81
ens eanyon conduit 1000 East 110000 South (d)	10107220		1982-86
rden Diver at 00th South near Miduala IIT (d)	10167220	q3,130	1982-80
rdan River at 90th South near Midvale, UT (d)	10167230	q5,150	
	101(7240		1986-89
Oth South Conduit at Jordan River near Midvale, UT (d)	10167240		1980-84
215 Median Drain at Jordan River near Murray, UT (d)	10167242	0.20	10/5 /0
rdan River at 5800 South near Salt Lake City, UT (d)	10167300	q3,254	1965-68
			1980-85
ttle Cottonwood Creek (channel) near Salt Lake City, UT (d)	10167499		1980-88
ttle Cottonwood Creek near Salt Lake City, UT (d)	10167500	27.4	1898-99
			1904-68
			1980
ttle Cottonwood Creek at 2050 East near Salt Lake City, UT (d)	10167700	35.2	1963-67
			1979-81
			1983-87
ttle Cottonwood Creek at Crestwood Park at Salt Lake City, UT (d)	10167800	36	1999-2000
ig Cottonwood Creek (Cottonwood Creek) near Salt Lake City, UT (d)	10168500	50.0	1898-1967
ig Cottonwood Creek at 5550 South near Salt Lake City, UT (d)	10168800	57.3	1964-68
o Suit first found found band band only, or (u)	1010000	07.0	1980-89
effs Creek above Wasatch Boulevard near Salt Lake City, UT (d)	10168832	_	1980-89
pring Run at 9th East & 48th South near Murray, UT (d)	10168852	—	1984-80

1		
Continued		
10169500	a78	1933-35
		1980-82
		1987-88
10169800	7.7	1964-68
10170000	21.7	1964-68
		1980
	_	1963-67
		1963-67
10170250	a32	1984
		1986-88
10170700	—	1963-67
		1979-83
10170750	_	1976-82
10170800	_	1963-67
10171500	50.1	1898-1963
10171600	50.7	1964-68
		1980-88
10171900	5.9	1964-68
10172000	18.4	1898-1960
		1960-68
		1980-86
10172100	a9	1963-67
10172220	7.95	1942-67
		1980-88
10172350	_	1981
		1987-88
10172351	_	1986-89
10172352	_	1980-81
		1985-89
10172400	17.0	1964-68
	19.2	1898-1960
		1960-69
		1980
10172550	_	1975-86
	a3 590	1963-68
-01/2000	7-,	1903-00
10172620	_	1963-67
	0.08	1984-86
		1964-67
10172030		1904-07
10172640		1972-84
		1972-82
10172030	_	1964-67
		17/2-04
10172720	a0 08	1961-74
101/2/20	a0.70	1701-74
10172726	_	1992-96
	6.71	1985-2001
	16.8	1988-98
10177701		
10172791		
10172791 10172794 10172795	10.8 12.1 9.84	1984-86 1986-94
	10170000 10170200 10170250 10170700 10170750 10170750 10170800 10171500 10171600 10171600 10172000 10172000 10172220 10172350 10172351	101698007.7 10170000 21.7 10170200 22.6 10170200 22.6 10170250 $a32$ 10170700 - 10170700 - 10170700 - 10170700 - 10170700 - 10170700 - 10170700 - 10170700 - 10170700 - 1017100 5.9 10172000 18.4 10172350 - 10172350 - 10172352 - 10172352 - 10172500 19.2 10172500 - 10172600 - 10172620 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172630 - 10172650 - 10172650 - 10172650 - 10172650 - 10172720 $a0.98$ 10172726 -

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004,
DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
GREAT SALT LA	KE DESERT		
Deep Creek near Goshute, UT (d)	10172893	a43	1964-68
Great Salt Lake West Pond near Wendover, UT (e)	10172903		1987-89
Pine Creek near Grouse Creek, UT (d)	10172921	_	1972-73
Dove Creek near Park Valley, UT (d)	10172940	33.2	1959-68
	10172910	55.2	1971-73
isher Creek near Park Valley, UT (d)	10172950	_	1972-73
ndian Creek near Park Valley, UT (d)	10172955	_	1971-73
Vest Locomotive Spring at Locomotive Spring near Snowville, UT (d)	10172963	_	1969-73
Baker Spring at Locomotive Spring near Snowville, UT (d)	10172964		1969-73
are M Spring at Locomotive Spring near Snowville, UT (d)	10172965		1969-80
ff Spring at Locomotive Spring near Snowville, UT (d)	10172967		1969-80
		—	1969-80
parks Spring at Locomotive Spring near Snowville, UT (d)	10172968	_	1969-80
SEVIER LAKE			
atch Bence Canal near Hatch, UT (d)	10173000	—	1914
			1916-19
Iammoth Creek near Hatch, UT (d)	10173500	151	1912-14
			1915-19
Iidway Creek near Hatch, UT (d)	10173600	25.7	1958-62
avajo Lake west of Dyke near Hatch, UT (e)	10173700	—	1954-59
uck Creek near Hatch, UT (d)	10173900	—	1954-59
say Creek above West Fork near Hatch, UT (d)	10174000	105	1954-59
say Creek near Hatch, UT (d)	10174200	a96	1912-14
			1939-41
ed Canyon Tributary near Bryce Canyon, UT (d)	10174800	a2.2	1959-74
tate Canal near Panquitch, UT (d)	10175500	—	1913-19
ong Canal near Panquitch, UT (d)	10176000	—	1914-19
anquitch Creek near Panguitch, UT (d)	10176300	97.0	1961-80
ast Panquitch Canal near Panguitch, UT (d)	10176500	_	1914-19
anguitch Creek above Canals near Panguitch, UT (d)	10177000	a110	1915-20
anguitch Creek below Canals at Panguitch, UT (d)	10177500	_	1915
			1917-18
arton and LeFevere Canal near Panguitch, UT (d)	10178000	_	1915-19
IcEwen Canal near Panguitch, UT (d)	10178500	_	1914-19
ld Houston Canal near Panguitch, UT (d)	10179000	_	1915-19
evier River near Circleville, UT (d)	10180000	986	1912
			1914-27
			1950-95
ox Canal near Circleville, UT (d)	10180500	_	1914-19
ircleville Canal near Circleville, UT (d)	10181000	_	1914-19
ld Kingston Canal near Circleville, UT (d)	10181500	_	1914-19
alton Canal at Circleville, UT (d)	10181500	_	1914-19
litchell Slough Canal near Junction, UT (d)	10182500	_	1914-19
unction Middle Canal near Junction, UT (d)	10182500	_	1914-19
ast Fork Sevier River near Ruby's Inn, UT (d)	10183000	71.6	1913-19
ropic and East Fork Canal near Tropic, UT (d)	10183900	/1.0	1902-93
ast Fork Sevier River near Antimony, UT (d)	10184000	a570	1950-61
oyoto Canal near Coyoto, UT (d)	101844500	aJ/U	1961-60
		50.3	1916-19
ntimony Creek near Antimony, UT (d)	10185000	50.5	
not Early Sourian Divar at Antimony (Courte) ITT (d)	10105500		1957-76
ast Fork Sevier River at Antimony (Coyoto), UT (d)	10185500	—	1915-19
tter Creek Reservoir Feeder Canal at mouth near Coyoto, UT (d)	10186500		1915-20
tter Creek near Koosharem, UT (d)	10187300	23.5	1964-82
tter Creek above reservoir near Antimony, UT (d)	10187500	322	1915-20
			1961-64
			1971-80
tter Creek Reservoir near Antimony, UT (e)	10188000	373	1914-15
			1934-95

Station name	Station number	Drainage area (sq mi)	Period of Record
SEVIER LAKE F	BASIN—Continued		
Otter Creek near Antimony (Coyoto), UT (d)	10188500	_	1913-19
Combined Flow Sevier River and East Fork Sevier River (d)	10189001	_	1915-77
Kingston Canal at Kingston, UT (d)	10189500	_	1914-19
Sevier River near Junction, UT (d)	10190500	a2,390	1911-16
Piute Reservoir near Marysvale, UT (e)	10191000	2,438	1914-95
Sevier River below Piute Dam, near Marysvale (d)	10191500	2,441	1912-2003
Sevier River near Marysvale, UT (d)	10192000	a2,560	1906-11
Sevier River at Marysvale, UT (d)	10192500	a2,580	1912-14
Pine (Bullion) Creek at Marysvale, UT (d)	10193500	a29	1914
· · · · · · · · · · · · · · · · · · ·			1918-19
Sevier River above Clear Creek, near Sevier, UT (d)	10194000	2,707	1911-16
			1939-55
			1961-95
Clear Creek above diversions, near Sevier, UT	10194200	164	1957-2003
Cove Canal at Sevier, UT (d)	10194500	_	1914-19
Clear Creek at Sevier, UT (d)	10195000	169	1912-19
			1934-58
Sevier River at Sevier, UT (d)	10195500	a2,850	1917-29
Monroe South Bend Canal near Joseph, UT (d)	10196000		1914-19
Sevier Valley Canal near Joseph, UT (d)	10196500	_	1912-19
Joseph Canal near Joseph, UT (d)	10197000	_	1914-19
Sevier Valley Canal near Richfield, UT (d)	10198000	_	1912-19
State Canal near Redmond, UT (d)	10200000	_	1913-19
Wells Canal near Joseph, UT (d)	10200500	_	1914-19
Monroe Canal near Elsinore, UT (d)	10201000	_	1914-19
Elsinore Canal near Elsinore, UT (d)	10201500	_	1914-19
Brooklyn Canal near Elsinore, UT (d)	10202000	_	1914-19
Richfield Canal near Elsinore, UT (d)	10202500	_	1914-19
Annabella Canal at Elsinore, UT (d)	10203000	_	1914-19
Vermilion Canal near Richfield, UT (d)	10203500	_	1914-19
Sevier River near Richfield, UT (d)	10204000	_	1916-18
Mill Creek near Glenwood, UT (d)	10204200	18.9	1963-74
Rockyford Canal near Vermilion, UT (d)	10204500		1914-35
Sevier River near Sigurd, UT (d)	10205000	3,375	1914-2003
Sheep Creek near Salina, UT (d)	10205100	0.30	1958-69
West Fork Sheep Creek near Salina, UT (d)	10205200	0.43	1958-69
Sheep Creek at mouth near Salina, UT (d)	10205300	1.47	1958-69
Salina Creek at Salina, UT (d)	10206000	292	1914-16
	10200000	272	1918-19
			1943-55
			1960-95
Sevier River below Salina Creek near Salina, UT (d)	10206001	_	1985-86
West View Canal at Redmond, UT (d)	10206500	_	1985-80
Fayette Canal near Centerfield, UT (d)	10207000	_	1914-19
Dover Canal near Gunnison, UT (d)	10207500	_	1914-19
Sevier River near Gunnison, UT (d)	10208000	a3,990	1914-19
Oak Creek near Fairview, UT (d)	10208500	11.8	1965-89
Pleasant Creek near Mount Pleasant, UT (d)	10208300		1905-89
San Pitch River near Mount Pleasant, UT (d)	10210000	170	1935-75
Twin Creek near Mount Pleasant, UT (d)	10210300	a5.9	1988-89
Big Hollow at Fountain Green, UT (d)	10215500	a	1955-68
-		 8 25	
Oak Creek near Spring City, UT (d)	10215700	8.35	1964-74 1979-94
Curnison Decervoir near Starling LIT (a)	10016000	a670	
Gunnison Reservoir near Sterling, UT (e)	10216200	a670 672	1966-83
San Pitch River near Sterling, UT (d)	10216210	672 50.4	1965-80
Twelvemile Creek near Mayfield, UT (d)	10216400	59.4 886	1960-80
San Pitch River near Gunnison, UT (d)	10216500	886	1900-05
			1912-18

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004,
DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

Station name	Station number	Drainage area (sq mi)	Period of Record
SEVIER LAKE B/	SIN Continued		1952
		1.0(0)	1014.14
evier River at Clark's Bridge near Fayette, UT (d)	10217500	a4,960	1914-16
evier Bridge Reservoir near Juab, UT (e)	10218500	5,155	1914-95
ellington Canal near Mills, UT (d)	10219100	-	1914-18
hicken Creek near Levan, UT (d)	10219200	27.9	1963-95
evier River near Mills, UT (d)	10220000	a5,800	1914-17
evier River Land and Water Company Canal near Learnington, UT (d)	10220500	—	1914-19
cIntyre Canal near Learnington, UT (d)	10222500	—	1914-18
eamington Canal near Leamington, UT (d)	10223000		1914-19
evier River at Leamington, UT (d)	10223500	a5,860	1889-93
			1912-14
ak Creek above Little Creek, near Oak City, UT (d)	10224100	5.58	1964-97
ak Creek below Big Spring near Oak City, UT (d)	10224300	17.8	1979-86
elta and Melville Reservoir near Delta, UT (e)	10224500	—	1914-17
anal A (Delta and Melville Canal) near Delta, UT (d)	10225000	—	1912-19
vier River near Delta, UT (d)	10228000	a7,380	1912-19
unnison Bend Reservoir near Delta, UT (e)	10228500	_	1914-19
vier River at Oasis, UT (d)	10231500	a8,080	1912-27
nalk Creek near Fillmore, UT (d)	10232500	58.7	1914
			1945-71
eadow Creek near Meadow, UT (d)	10233000	11.6	1914
			1965-75
orn Creek near Kanosh, UT (d)	10233500	—	1914
			1965-75
rree Creeks near Beaver, UT (d)	10234000	19.5	1947-61
outh Creek near Beaver, UT (d)	10235000	14.7	1906
			1965-76
orth Fork North Creek above Pole Creek near Beaver, UT (d)	10235500	a6.9	1947-49
orth Fork North Creek near Beaver, UT (d)	10236000	14.1	1906
			1966-76
outh Fork North Creek near Beaver, UT (d)	10236500	23.0	1906
			1966-76
eaver River at Adamsville, UT (d)	10237000	303	1914-2003
dian Creek near Beaver, UT (d)	10237500	18.5	1906
dian crock hour bourter, er (u)	10237300	10.5	1947-49
			1965-76
dian Creek at Adamsville, UT (d)	10238000	a180	1914-16
inersville Reservoir near Minersville, UT (e)	10238500	534	1915-22
inclusion reserved neur millersville, e r (e)	10230300	557	1913-22
eaver River at Rocky Ford Dam, near Minersville, UT (d)	10239000	535	1938-9. 1913-2003
inersville Canal at Minersville, UT (d)	10239500	555	1913-2000
incryvine Canar at Winersvine, 01 (d)	10257500	—	1914
			1951-55
eaver River at Minersville, UT (d)	10240000	a560	1931-33
laver Kryer at Willersville, U I (U)	10240000	aJUU	
novar Divar noar Milford LIT (4)	10241000	a1 100	1951-55
eaver River near Milford, UT (d)	10241000	a1,100	1952-55
PAROWAN			
ttle Creek near Paragonah, UT (d)	10241400	15.8	1960-80
d Creek near Paragonah, UT (d)	10241430	a6.3	1965-75
nter Creek above Parowan Creek near Parowan, UT (d)	10241470	11.6	1965-87
enter Creek near Parowan, UT (d)	10241500	a60	1943-50
ummit Creek near Summit, UT (d)	10241600	24.0	1965-87
CEDAR VALLEY,	IRON COUNTY		
shdown Creek near Cedar City, UT (d)	10241800	13.1	1958-61
	10241800		1958-61
rassy Creek near Enterprise, UT (d)	10242430	a2.5	1903-08

Station name	Station number		Station number Drainage area (sq mi)		Station number		Station name Station number		Period of Record
SI	JAKE VALLEY								
Snake Creek near Baker, NV (d)	10243230	a30	1913-15						
Baker Creek at Narrows near Baker, NV (d)	10243240	16.4	1947-55						
Baker Creek near Baker, NV (d)	10243250	a10	1913-15						
Lehman Creek near Baker, NV (d)	10243260	a11	1947-55						
SNA	KE RIVER BASIN								
George Creek near Yost, UT (d)	13077700	7.84	1959-89						
Clear Creek near Naf, ID (d)	13079000	20.2	1910-11						
			1944-70						

The following stations were discontinued as continuous-record surface-water-quality stations prior to the 2004 water year. Records of (b) microbiological, (c) chemical and/or specific conductance, (s) sediment, or (t) water temperature were collected and published for each station. Period of record indicates first and last year of sampling. Sampling may not have occurred during every year indicated in the period of record. Stations shown in bold were discontinued at end of the previous water year. Abbreviation: a, approximate.

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
COLORA	ADO RIVER BASIN			
Cottonwood Wash at I-70 near Cisco, UT	09163675	170	c,s,t	1983-86
TRIBUTARIES BETWEEN I	OLORES RIVER AND	GREEN RIVER		
Onion Creek above Onion Creek Bridge near Moab, UT	09180920	2.90	c,t	1980-81
Onion Creek below Onion Creek Bridge near Moab, UT	09180970	14.50	c,t	1980-81
Castle Creek above diversions, near Moab, UT	09182000	7.58	c,t	1971-75
Colorado River at Highway Bridge near Moab, UT	09182880		c,t	1974-79
Courthouse Wash near Moab, UT	09183000	162	c,t	1971-89
Colorado River above Mill Creek near Moab, UT	09183210		c,t	1974-81
Mill Creek near Moab, UT	09184000	74.90	c,s,t	1971-91
indian Creek Tunnel near Monticello, UT	09185800	2.45	c,t	1971-80
Indian Creek above Cottonwood Creek, near Monticello, UT	09186500	31.20	c,t	1988-91
ndian Creek below Bogus Pocket, near Monticello, UT	09187550	262	c,s,t	1983-88
GREE	N RIVER BASIN			
Red Creek near Dutch John, UT	09234700	140	c,s,t	1971-76
Crouse Creek near Vernal, UT	09235100	30.2	c,t	1987-90
Pot Creek above diversions, near Vernal, UT	09235600	24.6	c,t	1971-91
Pot Creek near Vernal, UT	09235800	107	c,t	1971-82
ASHLE	Y CREEK BASIN			
Big Brush Creek near Vernal, UT	09262000	79.6	c,t	1908-81
Ashley Creek above Red Pine Creek near Vernal, UT	09265300	55.8	c,t	1971-75
Dry Fork above sinks, near Dry Fork, UT	09268000	44.4	c,t	1954-75
North Fork of Dry Fork near Dry Fork, UT	09268500	8.62	c,t	1955-89
Brownie Canyon above sinks, near Dry Fork, UT	09268900	8.24	c,t	1971-89
Dry Fork at mouth near Dry Fork, UT	09270500	115	c,t	1954-89
Ashley Creek at Sign of the Maine, near Vernal, UT	09271000	241	c,t	1947-74
Ashley Creek near Naples, UT	09271400		c,t	2000-03
Ashley Creek below Sadlier Draw, near Naples, UT	09271450		c,t	2000-03
Ashley Creek near Jensen, UT	09271500	383	c,t	1947-91
DUCHE	SNE RIVER BASIN			
West Fork Duchesne River below Vat Diversion near Hanna, UT	09274900	40.0	c,t	1990-91
West Fork Duchesne River below Dry Hollow near Hanna, UT	09275000	43.8	c,t	1957-81
West Fork Duchesne River near Hanna, UT	09275500	61.6	c,t	1948-91
Wolf Creek above Rhoades Canyon near Hanna, UT	09276000	10.6	c,t	1951-84
Duchesne River at Hanna, UT	09277000	a230	c,t	1956-73
Rock Creek above South Fork, near Hanna, UT	09277800	98.9	c,t	1951-91
South Fork Rock Creek near Hanna, UT	09278000	15.7	c,t	1951-91
Rock Creek near Hanna, UT	09278500	122	c,t	1957-88
Rock Creek below Miners Gulch near Hanna, UT	09278700	133	c,t	1974-81
Duchesne River at Duchesne, UT	09279500	a660	c,t	1941-74
Hobble Creek at Daniels Summit near Wallsburg, UT	09280400	2.89	c,t	1971-84
Strawberry River near Soldier Springs, UT	09285000	213	c,t	1951-91
Strawberry River above Red Creek near Fruitland, UT	09285700	363	c,t	1941-81
Strawberry River at Pinnacles near Fruitland, UT	09285900	380	c,t	1990-91
Red Creek above reservoir, near Fruitland, UT	09286100	31.4	c,t	1987-91
Currant Creek below Currant Creek Dam, near Fruitland, UT	09286700	48.0	c,t	1983-91
Currant Creek below Red Ledge Hollow near Fruitland, UT	09287000	50.1	c,t	1951-83
Water Hollow near Fruitland, UT	09287500	13.8	c,t	1956-84
Red Creek below Currant Creek near Fruitland, UT	09288100	297	c,t	1971-81
West Fork Avintaquin Creek near Fruitland, UT	09288150	56.1	c,t	1971-86
Strawberry River below Starvation Reservoir near Duchesne, UT	09288400	1,059	c,t	1989-91
Strawberry River at Duchesne (Theodore), UT	09288500	1,066	c,t	1941-74
Sowers Creek near Duchesne, UT	09288900	40.6	c,t	1971-86

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
DUCHESNE RIV	/ER BASIN—Contin	ued		
Lake Fork River below Taskeech Damsite near Mountain Home, UT	09291200	138	c,t	1977-84
Yellowstone River at mouth near Altonah, UT	09293000	142	c,t	1977-81
Lake Fork River (below Forks) near Altonah, UT	09293500	304	c,t	1949-81
Lake Fork River at Highway 87 near Altamont, UT	09293600	318	c,t	1977-81
Pigeon Water Creek near Altamont, UT	09293700	95.5	c,t	1977-94
Lake Fork River near Upalco, UT	09294000	427	c,t	1941-81
Lake Fork River near Myton, UT	09294500	484	c,t	1941-94
Jinta River near Neola, UT	09297000	163	c,t	1941-83
West Channel Uinta River below diversion works near Whiterocks, UT	09297600	216	c,t	1977-81
East Channel Uinta River below diversion works near Whiterocks, UT	09297700	215	c,t	1977-81
East Channel Uinta River at county road bridge near Whiterocks, UT	09297800	253	c,t	1977-81
East Channel Uinta River at LaPoint Road near LaPoint, UT	09297900	382	c,t	1977-81
Farm Creek near Whiterocks, UT	09298000	14.9	c,t	1971-81
Whiterocks River below damsite near Whiterocks, UT	09299400	110	c,t	1977-81
Whiterocks River below Farm Creek Canal near Whiterocks, UT	09299600	120	c,t	1977-81
Whiterocks River 1 Mile East of Whiterocks, UT	09299700	124	c,t	1977-81
Deep Creek at State Highway 246 near LaPoint, UT	09299900	72.2	c,t	1977-79
Jinta River at Fort Duchesne, UT	09300500	557	c,t	1941-81
Dry Gulch near Fort Duchesne, UT	09301200	469	c,t	1977-81
Jinta River at Randlett, UT	09301500	1,064	c,s,t	1950-94
WHITE	RIVER BASIN			
White River near Colorado State Line, UT	09306395	3,680	c,s,t	1976-85
White River above Hells Hole Canyon near Watson, UT	09306400	a3,700	c,s,t	1974-76
Hells Hole Canyon Creek at mouth near Watson, UT	09306405	24.5	c,s,t	1975-82
Evacuation Creek above Missouri Creek near Dragon, UT	09306410	100	c,s,t	1974-83
Evacuation Creek below Park Canyon near Watson, UT	09306415	246	c,s,t	1974-75
Evacuation Creek at Watson, UT	09306420	259	c,s,t	1948-77
Evacuation Creek near mouth near Watson, UT	09306430	284	c,s,t	1974-83
White River below Southam Canyon near Watson, UT	09306600	a4,030	c,s,t	1974-76
White River below Asphalt Wash near Watson, UT	09306700	a4,130	c,s,t	1974-83
Bitter Creek above Dick Canyon near Watson, UT	09306740	11.7	c,s,t	1974-78
Sweetwater Canyon below South Canyon near Watson, UT	09306760	22.6	c,s,t	1974-78
Sweetwater Canyon Creek near mouth near Watson, UT	09306780	124	c,s,t	1975-78
Bitter Creek near Bonanza, UT	09306800	324	c,s,t	1971-88
Bitter Creek at mouth near Bonanza, UT	09306850	398	c,s,t	1974-83
Coyote Wash near mouth near Ouray, UT	09306878	228	c,s,t	1976-83
White River at mouth near Ouray, UT	09306900	5,120	b,c,s,t	1974-86
TRIBUTARIES BETWEEN DU	CHESNE RIVER AN			
Green River near Ouray, UT	09307000	a35,500	c,s,t	1950-66
Pariette Draw near Ouray, UT	09307200	153	c,s,t	1975-84
Pariette Draw near Eight Mile Flat, near Myton, UT	09307250		c,s,t	1975-82
Pariette Draw at mouth near Ouray, UT	09307300	298	c,s,t	1975-91
Willow Creek above diversions near Ouray, UT	09307500	297	c,s,t	1969-83
Hill Creek above Towave Reservoir near Ouray, UT	09307800	89.7	c,s,t	1974-81
Hill Creek near mouth near Ouray, UT	09307900	288	c,s,t	1975-81
Willow Creek near Ouray, UT	09308000	897	c,s,t	1950-83
Minnie Maud Creek near Myton, UT	09308500	32.0	c,t	1971-89
	RIVER BASIN			
Boardinghouse Creek at mouth near Scofield, UT	09310575	2.04	c,s,t	1982-84
Eccles Canyon near Scofield, UT	09310600	5.5	b,c,s,t	1979-84
rice River near Scofield, UT	09311500	a155	c,t	1962-80
Beaver Creek near Soldier Summit, UT	09312700	26.1	c,t	1969-89
Villow Creek near Castle Gate, UT	09312800	62.8	c,t	1969-89
Villow Creek at Castle Gate, UT	09312900	77.4	b,c,s,t	1979-81
Spring Canyon below Sowbelly Gulch at Helper, UT	09313040	23.0	c,s,t	1978-81
Coal Creek near Helper, UT	09313965	25.3	b,c,s,t	1976-81

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
PRICE RIVER B	ASINContinued			
oldier Creek below mine near Wellington, UT	09313975	17.7	b,c,s,t	1969-84
ugout Creek near Sunnyside, UT	09313985	5.8	b,c,s,t	1979-81
rice River below Miller Creek near Wellington, UT	09314250	956	c,t	1969-86
esert Seep Wash near Wellington, UT	09314280	191	c,t	1969-86
rassy Trail Creek at Sunnyside, UT	09314340	40.1	b,c,s,t	1975-84
orse Canyon near Sunnyside, UT	09314374	12.5	b,c,s,t	1975-81
TRIBUTARIES BETWEEN PRICE			-,-,-,-	
oy Wash near Green River, UT	09316100	56.6	c,s,t	1983-86
randall Canyon at mouth near Huntington, UT	09317919	5.7	b,c,s,t	1985-80
e Fork Canyon near Huntington, UT	09317919	11.7	b,c,s,t	1978-81
untington Creek near Huntington, UT	09318000	187	b,c,s,t	1978-81
ely Creek near Orangeville, UT	09324000	a150	c,t	1949-81
ottonwood Creek above Straight Canyon near Orangeville, UT	09324000	21.9	b,c,s,t	1930-73
ottonwood Creek above straight Carlyon near Orangevine, 01	09324200	208		1978-81
ottonwood Creek near Castle Dale, UT	09325000	208	c,s,t c,t	1949-83
n Rafael River Above Ferron Creek near Castle Dale, UT	09325100	a680		1948-78
rron Creek near Castle Dale, UT	09327500	a080 a210	c,t c,t	1964-78
in Rafael River near Castle Dale, UT	09328000	930		1900-78
			c,t	
n Rafael River at San Rafael Bridge Campground, near Castle Dale, UT	09328100	1,284	c,s,t	1975-86
	RIVER BASIN			
even Mile Creek near Fish Lake, UT	09329050	24.0	c,t	1971-91
ne Creek near Bicknell, UT	09329900	104	c,t	1971-80
easant Creek near Caineville UT	09330210	115	c,s,t	1969-76
Ill Creek near Hanksville, UT	09330410	7.53	c,s	1975-91
onvulsion Canyon near Emery, UT	09331850	21.6	c,s,t	1980-84
uitchupah Creek near Emery, UT	09331900	104	b,c,s,t	1978-81
nristiansen Wash near Emery, UT	09331950	13.6	b,c,s,t	1978-84
uddy Creek below I-70 near Emery, UT	09332100	418	c,s,t	1973-87
uddy Creek at Delta Mine near Hanksville, UT	09332700	841	c,s,t	1975-86
uddy Creek at mouth near Hanksville, UT	09332800	1,552	c,s,t	1975-80
blorado River at Hite, UT	09335000	a6,600	c,s	1950-56
ESCALANTE	RIVER BASIN			
calante River at mouth near Escalante, UT	09339500	a1,770	с	1951-53
SAN JUAN F	RIVER BASIN			
cElmo Creek near Bluff. UT	09372200	720	c.t	1978-82
bring Creek above diversions near Monticello, UT	09376900	4.95	c,t	1971-72
orth Creek above Ranger Station near Monticello, UT	09378100	8.68	c,t	1980-84
Iontezuma Creek at golf course at Monticello, UT	09378200	17.6	c,t	1980-91
iontezuma Creek near Bluff, UT	09378600	1,154	c,t	1985-94
ecapture Creek below Johnson Creek near Blanding, UT	09378650	50.2	c,t	1977-94
ottonwood Wash near Blanding, UT	09378700	205	c,s,t	1968-86
-	VER BASIN	205	0,3,1	1700 00
		(70		1007-01
eep Creek near Cedar City, UT	09405200	6.72	c,t	1987-91
ast Fork Deep Creek near Cedar City, UT	09405250	7.82	c,t	1987-91
orth Fork Virgin River near Glendale, UT	09405400	5.65	c,t	1973-78
orth Fork Virgin River below Bulloch Canyon, near Glendale, UT	09405420	29.6	c,s,t	1974-86
orth Fork Virgin River above Zion Narrows, near Glendale, UT	09405450	41.5	c,s,t	1979-86
orth Creek near Virgin, UT	09405900	96.6	c,t	1985-91
Verkin Creek near LaVerkin, UT	09406150	91.3	c,t	1985-91
anarra Creek at Kanarraville, UT	09406300	9.85	c,t	1971-82
outh Ash Creek below Mill Creek, near Pintura, UT	09406700	11.0	c,t	1971-82
sh Creek above Toquerville, UT	09407000	201	c,t	1985-91
est Field Ditch at Toquerville, UT	09407150		c,t	1973-78
sh Creek below West Field Ditch at Toquerville, UT	09407200	201	c,t	1973-82
irgin River above Quail Creek near Hurricane, UT	09408135	1,381	t	1989-90
anta Clara-Pinto Diversion near Pinto, UT	09408500	0.01	c,t	1973-91

xxxiii

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
VIRGIN RIVER E	ASINContinued			
anta Clara River above Winsor Dam near Santa Clara, UT	09410000	338	c,s,t	1962-72
anta Clara River below Winson Dam, near Santa Clara, UT	09410100	378	c,t	1973-91
anta Clara River near Santa Clara, UT	09410400	410	c,t	1971-74
irgin River at Littlefield, AZ	09415000	5,090	c,s,t	1947-86
THE GRE	AT BASIN			
reat Salt Lake at Promontory Point, UT	10010050		c,t	1997-99
reat Salt Lake at AIC near Syracuse, UT	10010300	_	c,t	1972
BEAR RIV	ER BASIN			
ast Fork Bear River near Evanston, WY	10010400	34.6	c,t	1973-86
lliard East Fork Canal near State Line near Evanston, WY	10010500	_	c,t	1967-79
est Fork Bear River at Whitney Dam, near Oakley, UT	10011200	6.79	c,t	1965-86
est Fork Bear River below Deer Creek near Evanston, WY	10011400	52.2	c,t	1973-86
lphur Creek above reservoir, below LaChapelle Creek, near Evanston, WY	10015700	64.2	c,t	1961-91
lphur Creek below Reservoir, near Evanston, WY	10015900	69.2	c,t	1961-91
llow Creek near EvanstonWY	10017000	79.2	c,t	1958-78
apman Canal at State Line, near Evanston, WY	10019500	0.01	c,t	1957-84
ar River near Woodruff, UT	10020500	a870	c,t	1957-61
oodruff Creek below reservoir, near Woodruff, UT	10020900	50.0	c,t	1972-84
oodruff Creek near Woodruff, UT	10021000	56.8	c,t	1961-75
ar River near Randolph, UT	10026500	1,616	c,t	1956-91
omas Fork near Wyoming-Idaho state line, WY	10041000	113	c,t	1961-91
ontpelier Creek at irrigation weir, near Montpelier, ID	10047500	49.5	c,t	1961-79
oomington Creek at Bloomington, ID	10058600	24.0	c,t	1961-84
ghtmile Creek near Soda Springs, ID	10072800	22.6	c,t	1961-84
da Creek @ Fivemile Meadows near Soda Springs, ID	10076400	51.7	c,t	1967-84
ttonwood Creek near Cleveland, ID	10084500	61.7	c,t	1961-84
ar River near Preston (at Battlecreek), ID	10090500	4,545	c,t	1947-84
ep Creek near Clifton, ID	10091200	107	c,t	1967-78
b River near Preston, ID	10093000	31.6	c,t	1958-84
ıb River at Franklin, ID	10098000	47.1	c,t	1969-72
gh Creek near Richmond, UT	10099000	16.2	c,t	1978-89
ıb River near Richmond, UT	10102200	200	c,t	1959-2001
ear River near Smithfield, UT	10102250	5,193	c,t	1964-91
mmit Creek above diversions, near Smithfield, UT	10102300	11.6	c,t	1967-79
outh Fork Little Bear River near Avon, UT	10104600	26.0	c,t	1967-74
ttle Bear River below Davenport Creek, near Avon, UT	10104700	61.6	S	1961-91
st Fork Little Bear River above Reservoir, near Avon, UT	10104900	56.7	c,t	1967-84
ttle Bear River near Paradise, UT	10106000	198	c,t	1947-84
acksmith Fork below Mill Creek, near Hyrum, UT	10111700	78	c,t	1966-91
gan River below Blacksmith Fork, near Logan, UT	10115200	524	c,t	1964-2001
est Canal above Salt Creek diversion, near Tremonton, UT	10117510	—	c,t	1979-83
est Canal below Salt Creek diversion, near Tremonton, UT	10117530		c,t	1979-83
alad River near Plymouth, UT	10125600	a632	c,t	1964-80
TRIBUTARIES TO GREAT SALT LAKE BET			RIVER	
lphur Creek near Corinne, UT	10126180	15.4	c,t	1963-89
It Creek below Salt Spring, near Tremonton, UT	10127050	0.01	c,t	1979-84
ack Slough near Brigham City, UT	10127100	31.1	c,t	1973-89
WEBER RIV	/ER BASIN			
nith and Morehouse Creek near Oakley, UT	10128000	33.8	c,t	1975-87
uth Fork Weber River near Oakley, UT	10128200	a16	c,t	1971-74
eber River near Peoa, UT	10129300	296	c,t	1971-77
andall Creek near Peoa, UT	10129350	11.8	c,t	1971-73
lver Creek near Wanship, UT	10130000	27.5	c,t	1982-91
st Fork Chalk Creek near Coalville, UT	10130700	a35	c,t	1972-74
mball Creek above East Canyon Creek, near Park City, UT	10133540	12.2	c,t	1990-91
reemile Creek near Park City, UT	10133700	2.68	c,t	1971-84

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004, DISCONTINUED SURFACE-WATER-QUALITY STATIONS

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
WEBER RIV	ER BASINContinued			
ast Canyon Creek near Big Bear Hollow, near Park City, UT	10133895	75.0	c,t	1990-91
East Canyon Creek near Park City, UT	10133900	68.9	c,t	1982-84
Jorth Fork Ogden River near Eden, UT	10137680	6.03	c,t	1971-74
Aiddle Fork Ogden River above diversion, near Huntsville, UT	10137780	31.3	c,t	1971-74
Vheeler Creek near Huntsville, UT	10139300	11.1	c,t	1971-91
Iooper Slough near Hooper, UT	10141040	13.0	c,t	1974-84
outh Fork Weber Canal near Hooper, UT	10141050		c,t	1972-75
outh Fork Weber River near Hooper, UT	10141000	_	c,t	1972-75
forth Fork Weber River near Hooper, UT	10141200		c,t	1972-76
TRIBUTARIES TO GREAT SALT LAKE I				1772-70
				1070.04
oward Slough at Hooper, UT	10141400	20.6	c,s,t	1972-84
armington Creek above diversion, near Farmington, UT	10142000	10.0	c,t	1978-81
	N RIVER BASIN			
ie Fork near Soldier Summit, UT	10148200	19.4	c,t	1928-91
ebo Creek near Thistle, UT	10148400	36.7	c,t	1971-73
panish Fork at Thistle, UT	10148500	450	c,t	1971-74
panish Fork below Halls Falls, near Thistle, UT	10148510	452	c,t	1983-94
iamond Fork below Red Hollow, near Thistle, UT	10149500	107	c,t	1988-91
panish Fork near Lakeshore, UT	10152000	675	b,c,t	1971-88
obble Creek near Springville, UT	10152500	105	c,t	1971-74
Iaple Creek near Mapleton, UT	10152700	3.13	c,t	1971-72
orth Fork Provo River near Kamas, UT	10153800	24.4	c,t	1971-91
hingle Creek near Kamas, UT	10154000	a8.4	c,t	1971-73
eber-Provo diversion canal near Woodland, UT	10154500		c,t	1971-91
orth Fork Provo River at Wildwood, UT	10160800	12.3	c,t	1971-74
ordan River at Narrows near Lehi, UT	10167000	3,010	c,t	1987-91
rdan River Station No. 1 at Narrows, UT	10167001		c,s,t	1980-83
pper Canal at Wild Rose Lane, near Salt Lake City, UT	10167125	_	c,s,t	1980-81
ordan & Salt Lake Canal at Zenith Avenue near Salt Lake City, UT	10167149	_	c,s,t	1980-81
ordan River at 9400 South near South Jordan, UT	10167200	3,130	c,s,t	1965-81
ells Canyon Conduit 1000 East 110000 South	10167220		c,s,t	1981-82
ordan River at 90th South near Midvale, UT	10167230	a3,130	c,s,t,	1980-99
Oth South Conduit at Jordan River, near Midvale, UT	10167240		b,c,s,t	1980-82
ordan River at 5800 South, near SLC, UT	10167300	3,254		1965-84
ittle Cottonwood Creek (channel) near SLC, UT	10167499	27.4	b,c,s,t	1903-84
ittle Cottonwood Creek at 2050 East, near SLC, UT	10167700	35.2	c,s,t	1979-91
			c,t	
ittle Cottonwood Creek at Crestwood Park, at Salt Lake City, UT	10167800	37.0	c,t	1998-2001
ig Cottonwood Creek (Cottonwood Creek), near SLC, UT	10168500	50.0	c,s,t	1964-70
olladay Drain @ 4800 So @ Big Cottonwood Creek near Murray, UT	10168840		b,c,s,t	1980-81
ig Cottonwood Creek at Jordan River, near SLC, UT	10169500		b,c,s,t	1980-81
Iill Creek near Salt Lake City, UT	10170000	21.7	b,c,s,t	1964-79
lill Creek at Jordan River, near SLC, UT	10170250	a32	b,c,st	1979-82
Parleys Creek at Suicide Rock, near SLC, UT	10171600	50.7	b,c,s,t	1964-81
migration Creek near Salt Lake City, UT	10172000	18.4	b,c,s,t	1964-81
ed Butte Creek below reservoir, near SLC, UT	10172220	7.95	c,t	1980-81
ity Creek above Wasatch Drive, near SLC, UT	10172400	17.0	c,s,t	1963-68
rdan River at 5th North at SLC, UT	10172550	3,562	b,c,s,t	1970-84
rdan River at Cudahy Lane, near SLC, UT	10172600	q3,590	b,c,t	1963-98
oggin Drain near Magna, UT	10172630	0.01	c,t	1963-84
ee Creek near Magna, UT	10172640	—	c,t	1972-83
ennecott Drain near Magna, UT	10172650	0.01	c,s,t	1962-84
lover Creek above Big Hollow, near Clove, UT	10172765	6.71	c,t	1987-91
ettlement Creek above reservoir, near Tooele, UT	10172791	16.8	c,t	1988-91
ox Elder Wash near Grantsville, UT	10172795	9.84	c,t	1987-91
orth Willow Creek near Grantsville, UT	10172805	5.38	c,t	1979-92

WATER RESOURCES DATA FOR UTAH, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004,
DISCONTINUED SURFACE-WATER-QUALITY STATIONS

Station name	Station number	Drainage area (sq mi)	Type of Water Quality	Period of Record
GREAT SA	ALT LAKE DESERT			
Great Salt Lake West Pond near Wendover, UT	10172903	_	c,t	1988-90
West Locomotive Spring at Locomotive Spring, near Snowville, UT	10172963	_	c,t	1973-75
Baker Spring at Locomotive Spring, near Snowville, UT	10172964		c,t	1969-75
Bar M Spring at Locomotive Spring, near Snowville, UT	10172965	_	c,t	1969-80
Off Spring at Locomotive Spring, near Snowville, UT	10172967	_	c,t	1969-80
Sparks Spring at Locomotive Spring, near Snowville, UT	10172968	_	c,t	1969-80
SEVIE	R LAKE BASIN			
Panguitch Creek near Panguitch, UT	10176300	97.0	c,t	1971-80
Sevier River near Circleville, UT	10180000	986	c,t	1971-91
East Fork Sevier River near Ruby's Inn, UT	10183900	71.6	c,t	1971-91
Antimony Creek near Antimony, UT	10185000	50.3	c,t	1971-76
Dtter Creek near Koosharem, UT	10187300	23.5	c,t	1971-82
Otter Creek above Reservoir, near Antimony, UT	10187500	322	c,t	1971-80
evier River above Clear Creek, near Sevier, UT	10194000	2,707	c,t	1971-91
alina Creek at Salina, UT	10206000	51.8	c,t	1971-91
Dak Creek near Fairview, UT	10208500	11.8	c,t	1971-89
leasant Creek near Mount Pleasant, UT	10210000	16.4	c,t	1971-75
an Pitch River near Mt Pleasant, UT	10210500		c,t	1988-89
Dak Creek near Spring City, UT	10215700	8.35	c,t	1971-91
an Pitch River near Sterling, UT	10216210	672	c,t	1971-80
Swelvemile Creek near Mayfield, UT	10216400	59.4	c,t	1971-80
Chicken Creek near Levan, UT	10219200	27.9	c,t	1971-94
Dak Creek above Little Creek, near Oak City, UT	10224100	5.58	c,t	1971-91
Dak Creek below Big Spring, near Oak City, UT	10224300	17.8	c,t	1979-83
Meadow Creek near Meadow, UT	10233000	11.6	c,t	1944-85
Corn Creek near Kanosh, UT	10233500	87.0	c,t	1944-85
South Creek near Beaver, UT	10235000	14.7	c,t	1965-76
North Fork North Creek near Beaver, UT	10236000	14.1	c,t	1971-76
South Fork North Creek near Beaver, UT	10236500	23.0	c,t	1971-76
ndian Creek near Beaver, UT	10237500	18.5	c,t	1965-76
PARO	WAN VALLEY			
Little Creek near Paragonah, UT	10241400	15.8	c,t	1971-80
Red Creek near Paragonah, UT	10241430	a6.3	c,t	1971-75
Center Creek above Parowan Creek, near Parowan, UT	10241470	11.6	c,t	1971-83
Summit Creek near Summit, UT	10241600	24.0	c,s,t	1971-83
SNAKE	RIVER VALLEY			
George Creek near Yost, UT	13077700	7.84	c,t	1965-89

INTRODUCTION

Water-resources data for the 2004 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report contains discharge records for 156 gaging stations; stage and contents for 8 lakes and reservoirs; water quality for 16 hydrologic stations, and 29 wells; water levels for 67 observation wells; and precipitation for 3 stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey Water-Supply Papers entitled, "Surface Water Supply of the United States." Through September 30, 1969, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, "Ground-Water Levels and Artesian Pressures in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1974, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report UT-04-1." For archiving and general distribution, the reports for water years 1971-74 are also identified as water-data reports. These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the USGS Utah Water Science Center office at the address given on the back of the title page or by telephone (801) 908-5000.

COOPERATION

The U.S. Geological Survey and organizations of the State of Utah have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1935, and for water-quality records since 1941. Organizations that assisted in collecting data through cooperative agreement with the U.S. Geological Survey are:

Department of Natural Resources, Michael R. Styler, Executive Director Division of Water Rights, J. Olds, State Engineer Division of Water Resources, D. L. Anderson, Director Bear River Commission, D. Hansen, Chairman Salt Lake County Flood Control, Brent Overson, Chairman Weber Basin Water Conservancy District, Page Flint Ogden River Water Users, Terel Grimley Weber River Water Users, Ivan Ray Central Utah Water Conservancy District, Don Christiansen Nephi City, Tony Ferguson Davis County Public Works, Thomas Smith Washington County Water Conservancy District, Ron Thompson Centerville City, Steve Thacker, City Manager Snyderville Basin Water Reclamation District, Michael Luers, General Manager Tooele City, Gerald Webster, City Engineer

Assistance in the form of funds was given by the Bureau of Reclamation, U.S. Department of the Interior, for collecting data at 17 gaging stations. Records for nine gaging stations in Idaho in the Bear River basin and eight in Utah were collected by Pacificorp under Federal Energy Regulatory Commission License.

Other USGS Water Science Center offices of the Geological Survey, Water Resources Division, obtained the records listed below:

USGS Colorado Water Science Center USGS Wyoming Water Science Center	Colorado River near Colorado-Utah State line Bear River at Evanston, WY
, ,	Blacks Fork near Robertson, WY
	Green River near Green River, WY

Records for all stream-gaging stations operated by the U.S. Geological Survey in the Bear River basin in Utah, Idaho, and Wyoming are included in this report.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

By C.D. Wilkowske

During water year 2004, streamflows and ground-water levels in Utah again were lower than normal. This marked the sixth year (water year 1999 to 2004) of an ongoing drought in Utah and surrounding areas. Since the winter of 1998-1999, mountain snowpacks generally have been below normal statewide and have caused significant reductions in spring runoff. Additionally, soil moisture throughout the state has been very low during the drought, so a large proportion of spring melting has been absorbed into the subsurface. Utah requires above-normal precipitation (snowpack) during the winter and spring of 2004-2005 to alleviate the cumulative effects of this drought.

Hydrologic conditions for Utah can vary greatly across the State because of topography, geology, changing seasonal atmospheric conditions, and changes in climatic conditions from year to year. Mountain ranges and plateaus in many parts of Utah are characterized by steep slopes, sparse vegetation, thin soils, and, in areas such as the Colorado River Basin, large expanses of bedrock and steep-walled canyons. These conditions can lead to rapid runoff and flooding that can occur any time of the year. The large valleys and basins in the western part of Utah have a fairly flat topography and are underlain with alluvial soils composed of clay, silt, sand, and gravel. Average annual precipitation in Utah ranges from about 5 inches in the Great Salt Lake Desert to about 60 inches on some of the State's highest mountains (Butler and Marsell, 1972).

PRECIPITATION

Precipitation in Utah results from three general atmospheric conditions: Pacific frontal systems (late fall through early spring), cutoff low-pressure systems (late spring and fall), and monsoonal thunderstorms (summer). Frontal systems usually move west-to-east across Utah and account for much of the mountain snowpack (U.S. Geological Survey, 1991). These systems can affect all or part of the State, depending on the prevailing jet stream (high-altitude winds). Before reaching Utah, Pacific frontal storms must first cross the Sierra and Cascade mountain ranges, where a large part of the original precipitation falls as rain and snow. Therefore, the storms are relatively dry upon reaching Utah, resulting in comparatively light precipitation over most of the State (Utah Climate Center, 2003). During some winters, a high-pressure ridge is dominant over the Western United States, and the jet stream is forced north or south of Utah, resulting in winter drought. When conducive, weather systems moving across Great Salt Lake acquire additional moisture from evaporation of lake water, enhancing precipitation in the local area. This is the so-called "lake effect."

Cutoff low-pressure systems generally originate in the Pacific Ocean, are widespread and slow moving, and can produce large amounts of precipitation over an extended time (U.S. Geological Survey, 1991). These are typically dissipating tropical cyclones Monsoonal thunderstorms frequently occur during the summer months when high temperatures and heating of the Earth's surface produce strong thermals. Subtropical moisture originating in the Gulf of Mexico and Gulf of California can combine with these thermals and produce locally intense thunderstorms.

Precipitation in Utah was less than normal at all of the selected weather stations operated by the National Oceanic and Atmospheric Administration in Utah (table 1) (National Oceanic and Atmospheric Administration 2003, 2004). The 11 stations were selected to be representative of the areal, spatial, and topographic distribution of precipitation for the entire State (fig. 1). The largest annual amount of precipitation recorded at the selected sites was at Alta (32.18 inches), however, this value was only 59 percent of the historic average. The lowest annual precipitation recorded at the selected stations was at Wendover (2.41 inches). This value was 50 percent of normal. Stations at Salt Lake City, Delta, Randolph, Richfield, and Vernal all recorded near normal precipitation for the 2004 water year. Precipitation was above normal for most stations in November, December, and February, but significant warming and lack of precipitation in March caused mountain snowpack that feeds the major streams in Utah to rapidly disappear. Streamflows did not increase significantly at this time because the majority of runoff was absorbed due to dry soil conditions across the State.

 Table 1.
 Precipitation at selected National Oceanic and Atmospheric Administration precipitation-recording stations, in Utah, water year

 2004
 Precipitation at selected National Oceanic and Atmospheric Administration precipitation-recording stations, in Utah, water year

[in inches]

Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Water year 2004 annual total	1971-2000 average annual total precipi- tation	Water year 2004 percent normal
Delta	0.45	0.79	1.53	0.20	1.18	0.55	1.29	0.61	0.57	0.38	0.34	0.20	8.09	8.41	96
Wendover	0.06	0.10	0.13	0.00	0.33	0.01	0.68	0.37	0.02	0.09	0.26	0.36	2.41	4.78	50
Zion National Park	0.31	1.64	2.36	0.67	3.63	0.23	1.77	0.08	0.00	0.14	0.80	0.97	12.60	16.21	78
Salt Lake City Interna- tional Airport	0.16	1.94	3.97	0.46	2.25	0.88	2.38	0.95	1.70	0.34	0.19	0.50	15.72	16.54	95
Bryce Canyon National Park	1.12	0.69	1.09	0.26	2.75	0.18	1.36	0.00	0.28	0.98	0.65	1.87	11.23	16.56	68
Richfield	0.21	0.87	0.75	0.39	0.21	0.04	2.23	1.03	0.44	0.91	0.50	0.43	8.01	8.12	99
Alta	0.64	4.56	6.55	2.61	4.40	1.88	2.75	1.81	1.44	1.85	1.95	1.74	32.18	54.84	59
Electric Lake	0.66	2.49	3.71	2.12	2.69	0.66	2.25	0.12	1.30	0.72	0.39	0.45	17.56	27.27	64
Randolph	0.68	1.78	1.16	0.89	0.92	0.46	1.70	1.24	0.82	0.46	1.88	0.72	12.71	13.55	94
Vernal	0.18	0.88	1.32	0.13	0.66	0.02	1.07	0.24	1.21	0.23	0.18	1.72	7.84	8.74	90
Arches National Park	0.36	0.27	0.80	0.16	0.84	0.14	2.09	0.28	0.76	0.00	0.14	1.19	7.03	8.98	78

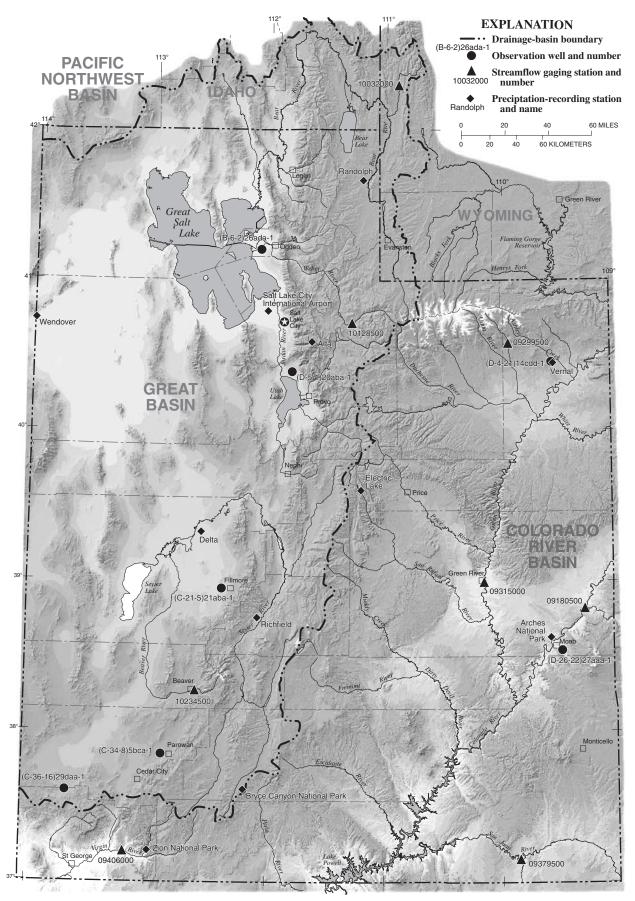


Figure 1. Selected U.S. Geological Survey streamflow-gaging stations, observation wells, and National Oceanic and Atmospheric Administration precipitation-recording stations in Utah and Wyoming.

STREAMFLOW, FLOODING, AND RESERVOIR STORAGE

As a result of below-average precipitation and snowpack in much of Utah and the Upper Colorado River Basin at the close of the 2003 water year, streamflow conditions in most major rivers in Utah have been below normal for the past 5 to 6 years. Eight long-term streamflow-gaging stations maintained by the USGS Utah Water Science Center were used to assess historic and current drought effects on streamflow. Locations of these stations are shown in figure 1. They were selected from a network of more than 150 stations in Utah. Major dams have regulated flow on the Colorado, Green, and San Juan Rivers since the early 1960s. The Beaver, Virgin, and Weber Rivers are slightly regulated by small headwater reservoirs or power-generating facilities. Smiths Fork and the Whiterocks River have small diversions in the upper watershed areas but are not regulated upstream from the stations. Despite the modifications to the drainages, these sites generally reflect hydrologic conditions in their respective watersheds, including snowpack and the amount of water stored in reservoirs.

Percentage of normal flow for the eight index sites for 1999-2004 is shown in table 2. In 1999, streamflow was near or below average for the Colorado River near Cisco, Utah; Beaver River near Beaver, Utah; and the Virgin River near Virgin, Utah. These sites are all located in the southern part of the state. By 2000, all eight sites indicated below-normal flow. This trend continued through 2002, with the exception of Whiterocks River near Whiterocks, Utah, which had slightly higher than normal flow in 2001. Inflow from the three main contributing rivers to Lake Powell, the Colorado River, the Green River, and the San Juan River was 49, 43, and 45 percent of normal, respectively, in 2004. This is slightly lower than flow in 2003, but greater than that measured in 2002, which had the lowest on record. Total annual flow during 2004 at the eight index stations was very similar to that observed in 2003 and continued to be significantly below normal.

Table 2. Streamflow data for eight long-term U.S. Geological Survey streamflow-gaging stations used as representative index sites in Utah and Wyoming, 1999-2004

Station Name	Period of Record	Average total annual runoff (ac-ft/yr)	1999 total annual runoff (kac-ft/yr)	1999 percent normal	2000 total annual runoff (kac-ft/yr)	2000 percent normal	2001 total annual runoff (kac-ft/yr)	2001 percent normal
Colorado River near Cisco, UT	1914-2004	5,235	4,806	92	3,856	74	3,003	57
Whiterocks River nr Whiterocks, UT	1930-2004	81	116	142	62	76	87	107
Green River near Green River, UT	1895-2004	4,434	5,393	122	3,205	72	2,463	56
San Juan River near Bluff, UT	1915-17, 1927-2004	1,613	1,837	114	838	52	1,161	72
Virgin River near Virgin, UT	1910-2004	143	102	71	91	64	100	70
Smiths Fork near Border, WY	1943-2004	138	179	130	107	78	72	52
Weber River near Oakley, UT	1905-2004	158	184	117	109	69	100	64
Beaver River near Beaver, UT	1915-2004	37	37	99	25	66	29	78
Station Name	Period of Record	Average total annual runoff (ac-ft/yr)	2002 total annual runoff (kac-ft/yr)	2002 percent normal	2003 total annual runoff (kac-ft/yr)	2003 percent normal	2004 total annual runoff (kac-ft/yr)	2004 percent normal
Colorado River near Cisco, UT	1914-2004	5,235	1,740	33	2,736	52	2,560	49
Whiterocks River nr Whiterocks, UT	1930-2004	81	33	41	62	76	59	72
Green River near Green River, UT	1895-2004	4,434	1,467	33	2,436	55	1,929	43
San Juan River near Bluff, UT	1915-17, 1927-2004	1,613	524	32	647	40	729	45
Virgin River near Virgin, UT	1910-2004	143	64	45	73	52	77	54
Smiths Fork near Border, WY	1943-2004	138	74	54	85	62	89	65
Weber River near Oakley, UT	1905-2004	158	95	60	114	72	98	62
Beaver River near Beaver, UT	1915-2004	37	15	40	25	68	23	61

By the end of the 2004 water year, the compounded effects of drought had significantly lowered the levels of many major lakes and reservoirs in Utah. For example, on October 13, 2004 the altitude of Lake Powell in southern Utah was 3,571 feet above sea level. This is 129 feet below full pool elevation. On the same date, storage in the reservoir was 9.2 million acre-feet of water, or about 38 percent of full (U.S. Bureau of Reclamation, 2004). On October 1, 2004, the elevation of Great Salt Lake was 4,194.1 feet. This is 2.7 feet above the historic minimum recorded in 1963.

The daily mean discharge in relation to the historic daily minimum, maximum and average for these eight rivers is shown in figure 2. Flows started near normal for most sites in water year 1998 and were at or near historic lows in 2002. Flows have recovered slightly during 2003 and 2004, however, they are still below the historic average flow.

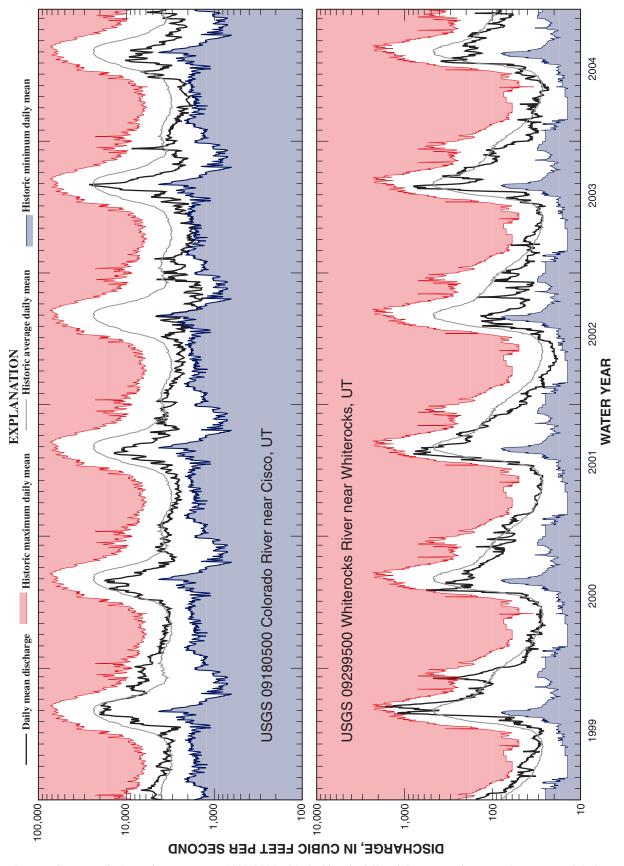


Figure 2. Daily mean discharge for water years 1999-2004 with the historic daily minimum, maximum, and average at eight long-term U.S. Geological Survey streamflow-gaging stations in Utah and Wyoming.

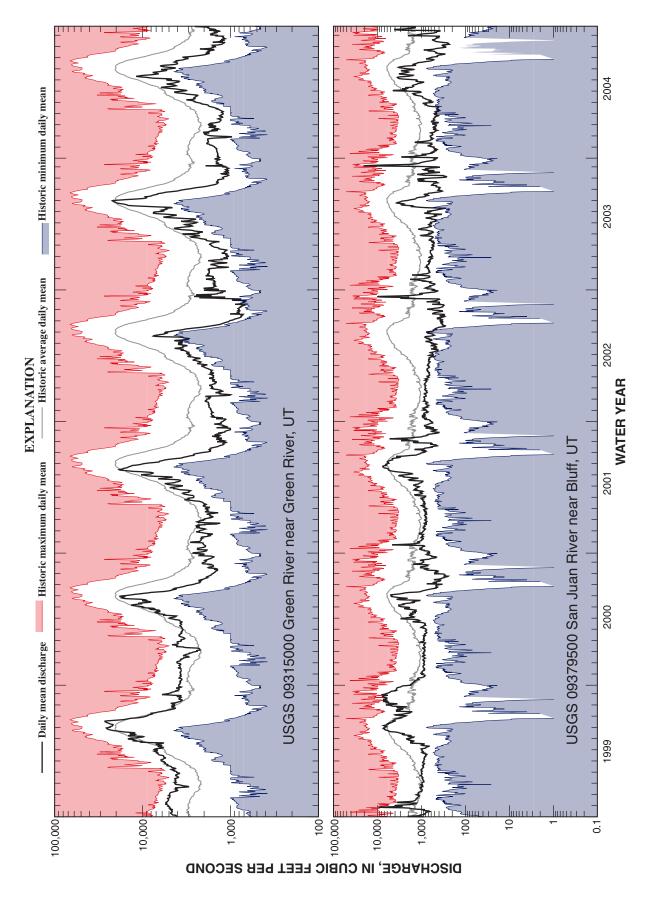


Figure 2. Daily mean discharge for water years 1999-2004 with the historic daily minimum, maximum, and average at eight long-term U.S. Geological Survey streamflow-gaging stations in Utah and Wyoming--Continued.

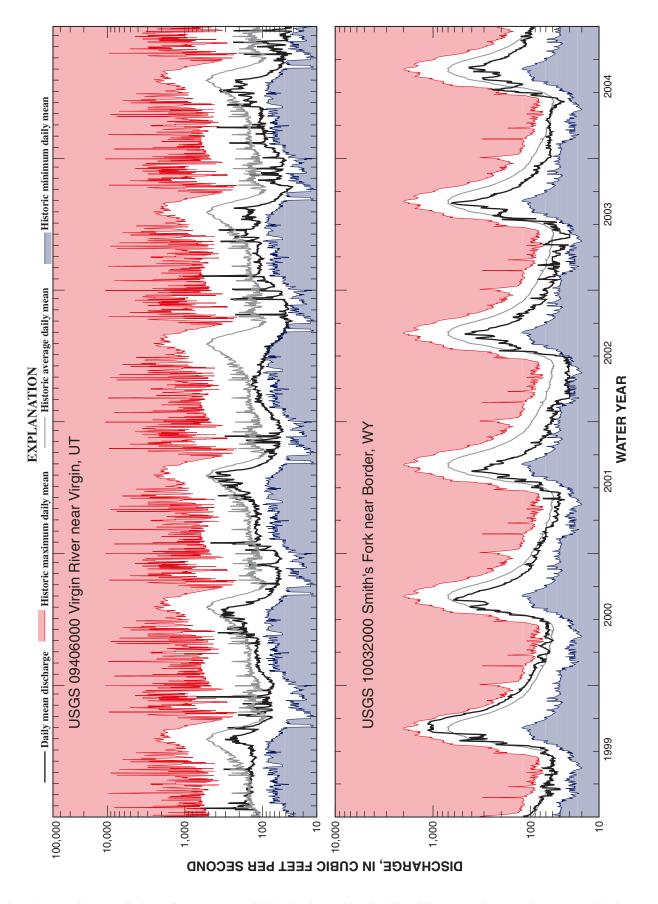


Figure 2. Daily mean discharge for water years 1999-2004 with the historic daily minimum, maximum, and average at eight long-term U.S. Geological Survey streamflow-gaging stations in Utah and Wyoming--Continued.

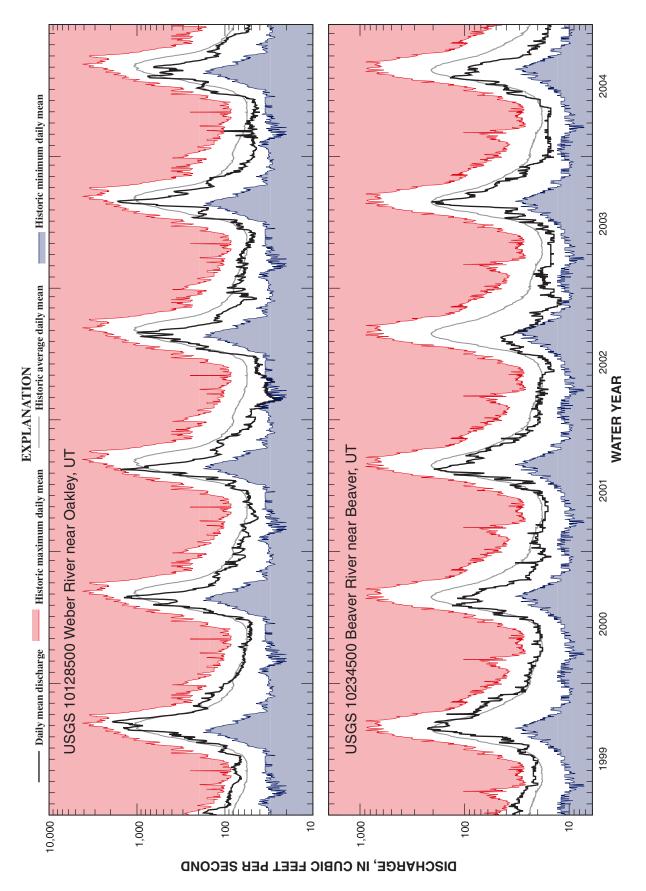


Figure 2. Daily mean discharge for water years 1999-2004 with the historic daily minimum, maximum, and average at eight long-term U.S. Geological Survey streamflow-gaging stations in Utah and Wyoming--Continued.

GROUND WATER

Prolonged droughts have a primary and secondary effect on ground-water resources. First, decreased precipitation leads to decreased recharge to aquifers. Second, decreased surface-water resources generally lead to increased ground water withdrawals, as well as to increased requests for water-well construction permits. Seven wells were selected to show trends in ground-water levels throughout the state of Utah. The wells are located in the East Shore area near Ogden (northern Utah), the Vernal area (eastern Utah), northern Utah Valley (north-central Utah), the Fillmore area (central Utah), Spanish Valley near Moab (southeastern Utah), the Parowan area (southwestern Utah), and the Beryl-Enterprise area (southwestern Utah).

Statewide water-level trends generally continued to decline in water year 2004 as shown in figure 3. Water levels in each well, except the well located near Vernal declined from 2003 levels. The Vernal well is a shallow water-table well that may be responding to wetter conditions in the spring during 2003 and 2004. Water levels for the following wells were at an historic low for their respective periods of record; (B-6-2)26ada-1 (East shore area), (D-5-1)20aba-1 (northern Utah Valley), (C-21-5 21aba-1 (Fillmore area), (C-34-8)5bca-1 (Parowan area), and (C-36-16)29daa-1 (Beryl-Enterprise area).

The total estimated withdrawal of water from wells in Utah during 2003 was about 924,000 acre-feet (Burden and others, 2004). This is slightly less than the total for 2002 and 80,000 acre-feet greater than the 1993-2002 average. The decrease in total withdrawals resulted from decreased pumped irrigation in 2003. Withdrawals for public supply wells in 2003 remained nearly the same as in 2004 at 261,000 acre-feet.

REFERENCES

- Burden, C.B, and others, 2004, Ground-water conditions in Utah, spring of 2003: Utah Division of Water Resources Cooperative Investigations Report No. 45, 120 p.
- Butler, Elmer, and Marsell, R.E., 1972, Cloudburst floods in Utah, 1936-1969: Utah Division of Water Resources Cooperative Investigations Report No. 11, 103 p.
- Tibbetts, J.R., Enright, Michael, and Wilberg, D.E., 2004, Water Resources Data, Utah, Water Year 2003: U.S. Geological Survey Water-Data Report UT-03-1, 458 p.
- National Oceanic and Atmospheric Administration, 2003, Climatological Data, Utah: Asheville, N.C., National Climatic Data Center, v. 105, no. 13, 26 p.
- National Oceanic and Atmospheric Administration, 2004, Climatological Data, Utah: Asheville, N.C., National Climatic Data Center, v. 106, no. 1-9, [variously paged].
- U.S. Bureau of Reclamation, 2004, Upper Colorado Region Water Resources Group, 24-Month Study Reports, accessed March 3, 2005 at http://www.usbr.gov/uc/water/crsp/studies/24Month_10.pdf.
- U.S. Geological Survey, 1991, National Water Summary 1988-89--Floods and Droughts in Utah: U.S. Geological Survey Water Supply Paper 2375, p. 527-534.
- Western Regional Climate Center, 2004, Utah Climate Summaries, accessed March 2, 2005 at http://www.wrcc.dri.edu/summary/ climsmut.html.

Western Regional Climate Center, 2004, Utah Climate Narrative, accessed March 8, 2005 at http://www.wrcc.dri.edu/narratives/UTAH.htm.

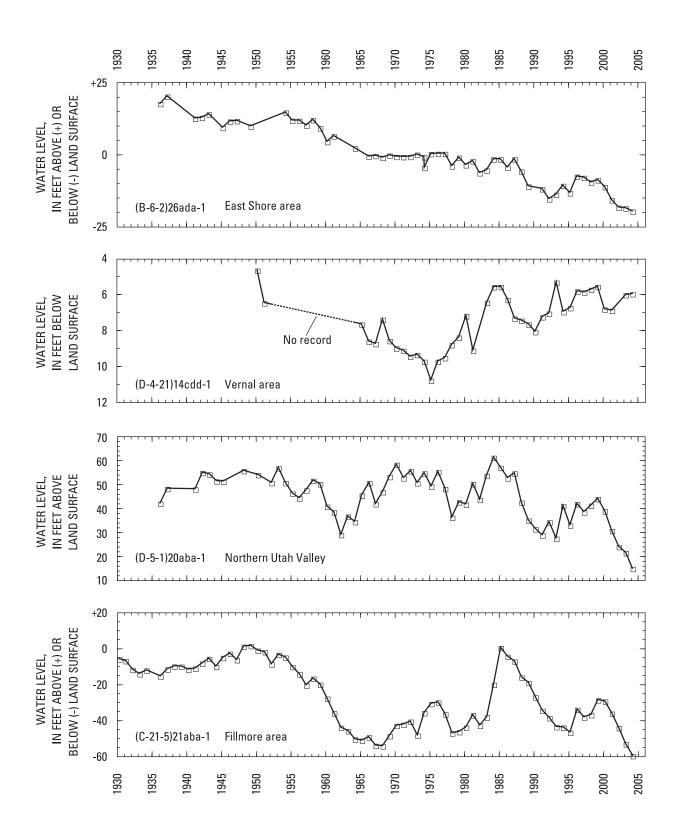


Figure 3. Water-level fluctuations in selected wells in Utah for the period of record through the 2004 water year.

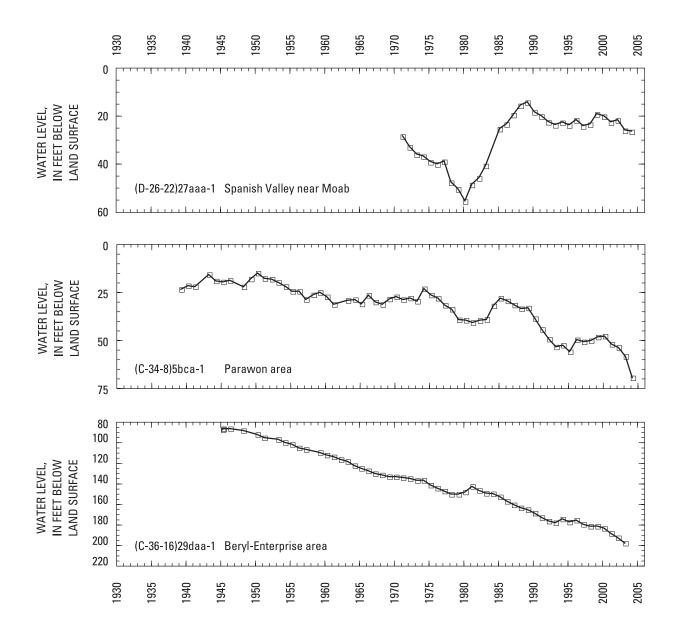


Figure 3. Water-level fluctuations in selected wells in Utah for the period of record through the 2004 water year--Continued.

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from <u>http://water.usgs.gov/glossaries.html</u>.

- Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).
- Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")
- Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.
- Adjusted discharge is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage).
- Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")
- Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.
- Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.
- Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)
- Aroclor is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.
- Artificial substrate is a device that purposely is placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")
- Ash mass is the mass or amount of residue present after the residue from a dry-mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m^3), and periphyton and benthic organisms in grams per square meter (g/m^2). (See also "Biomass" and "Dry mass")
- Aspect is the direction toward which a slope faces with respect to the compass.
- **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.
- Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.
- **Base discharge** (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")
- **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.
- **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

- **Bedload** is material in transport that primarily is supported by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to the top of the bedload sampler nozzle (an elevation ranging from 0.25 to 0.5 foot). These particles are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.
- **Bedload discharge** (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")
- **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.
- **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.
- Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.
- **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This also is called the Autotrophic Index.
- **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found commonly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter ($\mu m^3/mL$). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter ($\mu m^3/cm^2$). (See also "Phytoplankton" and "Periphyton")

Bottom material (See "Bed material")

- **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved-solids content of the pore water, and the lithology and porosity of the rock.
- Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928.
- **Cell volume** (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are used frequently in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm^3) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere
$$4/3 \pi r^3$$
 cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L).

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

- **Chemical oxygen demand** (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]
- *Clostridium perfringens* (*C. perfringens*) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and the presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")
- **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

- **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.
- **Confined aquifer** is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.
- **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.
- **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.
- **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.
- **Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.
- **Cubic foot per second** (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.
- **Cubic foot per second-day** (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables numerically are equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.
- **Cubic foot per second per square mile** [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")
- **Daily mean suspended-sediment concentration** is the time-weighted mean concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")
- **Daily record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to data collection on a daily or near-daily basis.
- **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.
- **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data usually are downloaded from onsite data loggers for entry into office data systems.
- Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or Universal Transverse Mercator (UTM) coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")
- **Diatoms** (*Bacillariophyta*) are unicellular or colonial algae with a siliceous cell wall. The abundance of diatoms in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μ m³/mL). The abundance of diatoms in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μ m³/cm²). (See also "Phytoplankton" and "Periphyton")
- Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.
- **Discharge**, or **flow**, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, and so forth, within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).
- **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.
- **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

- **Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4917 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.
- **Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{3} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

- **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.
- **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")
- **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")
- **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")
- **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")
- **Enterococcus bacteria** commonly are found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")
- **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that generally are considered pollution sensitive; the index usually decreases with pollution.
- *Escherichia coli* (*E. coli*) are bacteria present in the intestine and feces of warmblooded animals. *E. coli* are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- **Estimated (E) value** of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts.
- **Euglenoids** (*Euglenophyta*) are a group of algae that usually are free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")
- **Extractable organic halides** (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.
- **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

- **Fecal streptococcal bacteria** are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- Filtered pertains to constituents in a water sample passed through a filter of specified pore diameter, most commonly 0.45 micrometer or less for inorganic analytes and 0.7 micrometer for organic analytes.
- Filtered, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that has passed through a filter has been extracted. Complete recovery is not achieved by the extraction procedure and thus the analytical determination represents something less than 95 percent of the total constituent concentration in the sample. To achieve comparability of analytical data, equivalent extraction procedures are required of all laboratories performing such analyses because different procedures are likely to produce different analytical results.
- Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")
- **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.
- **Gage datum** is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum is not an actual physical object, the datum is usually defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.
- **Gage height** (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.
- **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.
- Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.
- Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.
- Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.
- **Green algae** (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μ m³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μ m³/cm²). (See also "Phytoplankton" and "Periphyton")
- Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat typically are made over a wider geographic scale than are measurements of species distribution.
- Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.
- Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).
- High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA Web site: http://www.csc.noaa.gov/text/glossary.html* (See "High water")
- Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum\frac{(n)(a)}{N},$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

- **Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.
- **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.
- **Inch** (IN., in.), in reference to streamflow, as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were distributed uniformly on it. (See also "Annual runoff")
- Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")
- International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission.
- **Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year, on average, and remains stable except during large flood events.
- Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV).

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

- Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.
- Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_o e^{-\lambda L}$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} \,.$$

- Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.
- Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike-sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.
- Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA Web site: http://www.csc.noaa.gov/text/glossary.html (see "Low water")
- Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.
- Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

- Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")
- **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.
- Megahertz is a unit of frequency. One megahertz equals one million cycles per second.
- Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.
- Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.
- Method code is a one-character code that identifies the analytical or field method used to determine a value stored in the National Water Information System (NWIS).
- Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.
- Method of Cubatures is a method of computing discharge in tidal estuaries based on the conservation of mass equation.
- Methylene blue active substances (MBAS) indicate the presence of detergents (anionic surfactants). The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.
- Micrograms per gram (UG/G, μg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.
- **Micrograms per kilogram** (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.
- Micrograms per liter (UG/L, µg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- **Microsiemens per centimeter** (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.
- Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.
- Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It formerly was called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. *See NOAA Web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88* (See "North American Vertical Datum of 1988")
- Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

- Nekton are the consumers in the aquatic environment and consist of large, free-swimming organisms that are capable of sustained, directed mobility.
- Nonfilterable refers to the portion of the total residue retained by a filter.
- North American Datum of 1927 (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866. All gages in this book are referenced to NAD 27.
- North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government.
- North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.
- **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- **Organic mass** or **volatile mass** of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.
- **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.
- **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.
- Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.
- **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.
- **Particle size** is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method uses the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).
- **Particle-size classification**, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values

are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

- **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.
- **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.
- **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.
- **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.
- **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.
- **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.
- **Phytoplankton** is the plant part of the plankton. They usually are microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")
- **Picocurie** (PC, pCi) is one-trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).
- **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.
- **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.
- **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.
- Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.
- **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.
- **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time $[mg C/(m^2/time)]$ for periphyton and macrophytes or per volume $[mg C/(m^3/time)]$ for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light- and dark-bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")
- **Primary productivity (oxygen method)** is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light- and dark-bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")
- **Radioisotopes** are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.
- **Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

- **Recoverable** is the amount of a given constituent that is in solution after a representative water sample has been extracted or digested. Complete recovery is not achieved by the extraction or digestion and thus the determination represents something less than 95 percent of the constituent present in the sample. To achieve comparability of analytical data, equivalent extraction or digestion procedures are required of all laboratories performing such analyses because different procedures are likely to produce different analytical results. (See also "Bed material")
- **Recurrence interval,** also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow ($7Q_{10}$) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the previous nonexceedance, half occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance, half occur less than 10 years after the previous nonexceedance, half occur less than 20 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7 Q_{10} .

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

- **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.
- **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

- **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")
- Salinity is the total quantity of dissolved salts, measured by weight in parts per thousand. Values in this report are calculated from specific conductance and temperature. Seawater has an average salinity of about 35 parts per thousand (for additional information, refer to: Miller, R.L., Bradford, W.L., and Peters, N.E., 1988, Specific conductance: theoretical considerations and application to analytical quality control: U.S. Geological Survey Water-Supply Paper 2311, 16 p.)
- Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.
- **Sediment** is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.
- Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.
- Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")
- Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.
- **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.
- Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.
- Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

- Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.
- Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

- Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.
- **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.
- Substrate is the physical surface upon which an organism lives.
- Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2 mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0	no gravel or larger substrate	3	26-50 percent
1	> 75 percent	4	5-25 percent
2	51-75 percent	5	< 5 percent

- Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.
- Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.
- **Surrogate** is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample.
- Suspended is the amount (concentration) of undissolved material in a water-sediment mixture. Most commonly refers to that material retained on a 0.45-micrometer filter.
- Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer filter has been extracted or digested. Complete recovery is not achieved by the extraction or digestion procedures and thus the determination represents less than 95 percent of the constituent present in the sample. To achieve comparability of analytical data, equivalent extraction or digestion procedures are required of all laboratories performing such analyses because different procedures are likely to produce different analytical results. (See also "Suspended")
- **Suspended sediment** is sediment carried in suspension by the turbulent components of the fluid or by the Brownian movement (a law of physics). (See also "Sediment")
- Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")
- Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")
- Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")
- Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.
- **Suspended, total** is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either

22

by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom:	Animal
Phylum:	Arthropeda
Class:	Insecta
Order:	Ephemeroptera
Family:	Ephemeridae
Genus:	Hexagenia
Species:	Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

- **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.
- **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.
- **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.
- **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric ton per day.
- **Total** is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)
- **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")
- **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.
- **Total in bottom material** is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."
- **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

- **Total recoverable** is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.
- **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")
- Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")
- **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.
- **Turbidity** is an expression of the optical properties of a liquid that causes light rays to be scattered and absorbed rather than transmitted in straight lines through water. Turbidity, which can make water appear cloudy or muddy, is caused by the presence of suspended and dissolved matter, such as clay, silt, finely divided organic matter, plankton and other microscopic organisms, organic acids, and dyes (ASTM International, 2003, D1889–00 Standard test method for turbidity of water, *in* ASTM International, Annual Book of ASTM Standards, Water and Environmental Technology, v. 11.01: West Conshohocken, Pennsylvania, 6 p.). The color of water, whether resulting from dissolved compounds or suspended particles, can affect a turbidity measurement. To ensure that USGS turbidity data can be understood and interpreted properly within the context of the instrument used and site conditions encountered, data from each instrument type are stored and reported in the National Water Information System (NWIS) using parameter codes and measurement reporting units that are specific to the instrument type, with specific instruments designated by the method code. The respective measurement units, many of which also are in use internationally, fall into two categories: (1) the designations NTU, NTRU, BU, AU, and NTMU signify the use of a broad spectrum incident light in the wavelength range of 400-680 nanometers (nm), but having different light detection configurations; (2) The designations FNU, FNRU, FBU, FAU, and FNMU generally signify an incident light in the range between 780-900 nm, also with varying light detection configurations. These reporting units are equivalent results for environmental samples. Specific reporting units are as follows:

NTU (Nephelometric Turbidity Units): white or broadband [400-680 nm] light source, 90 degree detection angle, one detector.

NTRU (Nephelometric Turbidity Ratio Units): white or broadband [400-680 nm] light source, 90 degree detection angle, multiple detectors with ratio compensation.

BU (Backscatter Units): white or broadband [400-680 nm] light source, 30 ± 15 degree detection angle (backscatter).

AU (Attenuation Units): white or broadband [400-680 nm] light source, 180 degree detection angle (attenuation).

NTMU (Nephelometric Turbidity Multibeam Units): white or broadband [400-680 nm] light source, multiple light sources, detectors at 90 degrees and possibly other angles to each beam.

FNU (Formazin Nephelometric Units): near infrared [780-900 nm] or monochrome light source, 90 degree detection angle, one detector.

FNRU (Formazin Nephelometric Ratio Units): near infrared [780-900 nm] or monochrome light source, 90 degree detection angle, multiple detectors, ratio compensation.

FBU (Formazin Backscatter Units): near infrared [780-900 nm] or monochrome light source, 30±15 degree detection angle.

FAU (Formazin Attenuation Units): near infrared [780-900 nm] light source, 180 degree detection angle.

FNMU (Formazin Nephelometric Multibeam Units): near infrared [780-900 nm] or monochrome light source, multiple light sources, detectors at 90 degrees and possibly other angles to each beam.

For more information please see http://water.usgs.gov/owq/FieldManual/Chapter6/6.7_contents.html.

- **Ultraviolet (UV) absorbance (absorption)** at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of path length of UV light through a sample.
- **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Unfiltered pertains to the constituents in an unfiltered, representative water-suspended sediment sample.

Unfiltered, **recoverable** is the amount of a given constituent in a representative water-suspended sediment sample that has been extracted or digested. Complete recovery is not achieved by the extraction or digestion treatment and thus the determination represents less than 95 percent of the constituent present in the sample. To achieve comparability of analytical data, equivalent extraction or digestion procedures are required of all laboratories performing such analyses because different procedures are likely to produce different analytical results.

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are components of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human-health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

Watershed (See "Drainage basin")

- **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)
- **Weighted average** is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 09004100, which appears just to the left of the station name, includes a 2-digit part number "09" plus the 6-digit (or 8-digit) downstream order number "004100." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (fig. 4). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

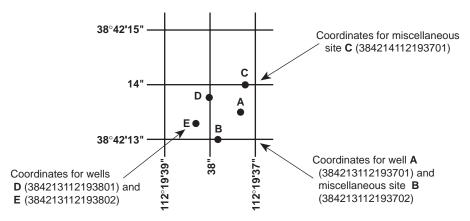


Figure 4. System for numbering wells and miscellaneous sites (latitude and longitude).

In addition to the well number that is based on latitude and longitude given for each well, another well number is given that is based on the U.S. Bureau of Land Management's system of land subdivision. This well number is familiar to the water users of Utah and shows the location of the well by quadrant, township, range section, and position within the section (see fig. 5). The capital letter at the beginning of the location number indicates the quadrant in which the well is located. Four quadrants are formed by the intersection of the base line and the principal meridian—A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. The first numeral indicates the township, the second the range, and the third the section in which the well is located. Lowercase letters following the section number locate the well within the section. The first letter denotes the quarter section, the second the quarter-quarter section, and the third the quarter-quarter section. The letters are assigned within the section in a counter-clockwise direction beginning with (a) in the northeast quarter of the section. Letters are assigned within each quarter section and quarter-quarter section in the order in which the wells are located within the smallest subdivision, consecutive numbers beginning with 1 are added to the letters in the order in which the wells are inventoried. For example, (C-28-10)29 add -1 indicates a well in the southeast quarter of the southeast quarter of the northeast quarter of sec. 29, T. 28 S., R.10 W., and shows that this is the first well inventoried in the quarter-quarter section. The capital letter C indicates that the township is south of the Salt Lake Base Line and that the range is west of the Salt Lake Meridian.

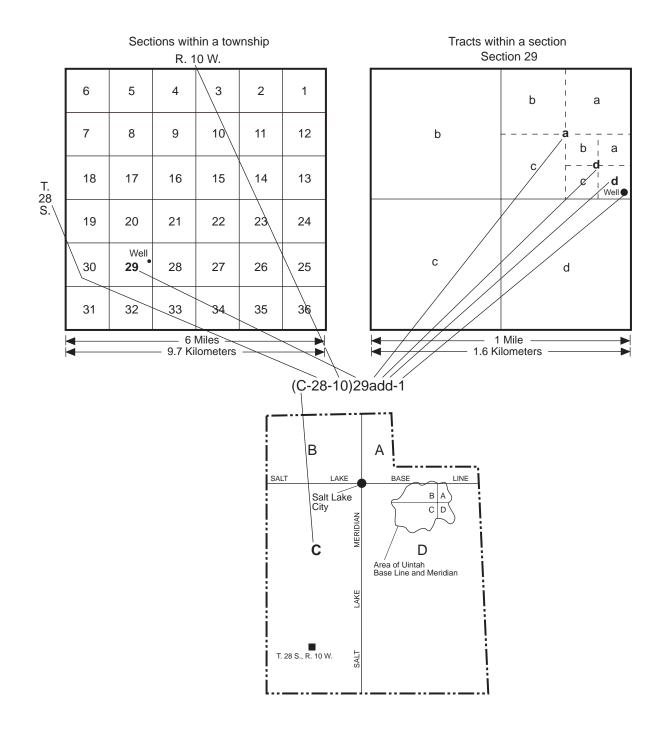


Figure 5. System for numbering wells and miscellaneous sites (township and range).

In addition to the Salt Lake Base Line and Salt Lake Meridian that apply to most of Utah, the Uintah Base Line and Meridian, are the basis for describing locations in a small, irregularly shaped area of northeastern Utah. The quadrants, townships, ranges, sections, and parts of sections are designated in the same way as for the Salt Lake Base Line and Meridian. For any location in the Uintah area, however, the letter "U" precedes the parenthesis.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from *http://water.usgs.gov/hbn/*.

National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from http://waterusgs.gov/hasgan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a network of monitoring sites that provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitation-chemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from http://bqsusqs.qov/acidrain/.

The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key Federal, State, and local waterresources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from http://waterusgs.gov/hawga/

The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from http://waterusgs.gov/hsip/.

EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS

Data Collection and Computation

The base data collected at gaging stations (fig. 6) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by hydrographers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shifting-control method.

The stage-discharge relation at some stream-gaging stations is affected by backwater from reservoirs, tributary streams, or other sources. Such an occurrence necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage at some distance from the base gage.

An index velocity is measured using ultrasonic or acoustic instruments at some stream-gaging stations and this index velocity is used to calculate an average velocity for the flow in the stream. This average velocity along with a stage-area relation is then used to calculate average discharge.

At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of five parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration; and (5) a hydrograph of discharge.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

- LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.
- DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.
- PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station.
- REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.
- GAGE.—The type of gage in current use, the datum of the current gage referred to a standard datum, and a condensed history of the types, locations, and datums of previous gages are given under this heading.
- REMARKS.—All periods of estimated daily discharge either will be identified by date in this paragraph of the station description for waterdischarge stations or flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.
- COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

- EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.
- REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (<u>http://waterusgs.gov/nwis/nwis</u>). Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Peak Discharge Greater than Base Discharge

Tables of peak discharge above base discharge are included for some stations where secondary instantaneous peak discharge data are used in flood-frequency studies of highway and bridge design, flood-control structures, and other flood-related projects. The base discharge value is selected so an average of three peaks a year will be reported. This base discharge value has a recurrence interval of approximately 1.1 years or a 91-percent chance of exceedence in any 1 year.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-__, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS __-_, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.-The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.-The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.-The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.-The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most lowflow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.
- MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a foot-note or in the REMARKS paragraph in the manuscript.
- MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.-The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first table lists annual maximum stage and discharge at crest-stage stations, and the second table lists discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are often made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for a special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e–Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft^3/s ; to the nearest tenths between 1.0 and 10 ft^3/s ; to whole numbers between 10 and 1,000 ft^3/s ; and to 3 significant figures above 1,000 ft^3/s . The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gageheight records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computerusable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address that is shown on the back of the title page of this report).

EXPLANATION OF PRECIPITATION RECORDS

Data Collection and Computation

Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table.

Data Presentation

Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitudelongitude identification number.

Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks.

The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description.

- LOCATION.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).
- PERIOD OF RECORD.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

INSTRUMENTATION.-Information on the type of rainfall collection system is given.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of records.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and Examination of Data

Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

SURFACE-WATER-QUALITY RECORDS

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data are useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between *continuous records* as used in this report and *continuous recordings* that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Table 1. Rating classifications for continuous water-quality records

[<, less than or equal to; ±, plus or minus; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Magned physical property	Rating							
Measured physical property	Excellent	Good	Fair	Poor				
Water temperature	$\leq \pm 0.2$ °C	$> \pm 0.2$ to 0.5 °C	$>\pm0.5$ to 0.8 °C	> ±0.8 °C				
Specific conductance	$\leq \pm 3\%$	> ±3 to 10%	$> \pm 10$ to 15%	> ±15%				
Dissolved oxygen	$\leq \pm 0.3$ mg/L	$> \pm 0.3$ to 0.5 mg/L	$>\pm0.5$ to 0.8 mg/L	$> \pm 0.8$ mg/L				
pH	$\leq \pm 0.2$ unit	> ±0.2 to 0.5 unit	$> \pm 0.5$ to 0.8 unit	> ±0.8 unit				
Turbidity	$\leq \pm 5\%$	> ±5 to 10%	$> \pm 10$ to 15%	>±15%				

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report).

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdi-

vided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radio-chemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAIN-AGE AREA statements are repeated. The following information is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

- LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).
- DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).
- PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.
- INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.
- REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.
- COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.
- EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.
- REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (<u>http://waterdata.usgs.gov/nwis</u>). Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

Table 2. The following remark codes may appear with the water-quality data in this section:

Printed Output	Remark
E or e	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
Κ	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
v	Analyte was detected in both the environmental sample and the associated blanks.
&	Biological organism estimated as dominant.

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Field blank—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank—A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples—A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

EXPLANATION OF GROUND-WATER-LEVEL RECORDS

Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report. This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers.

Site Identification Numbers

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is produced for local needs.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the On-site Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Data Presentation

Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown in figures 11; each well is identified on the map by its local well or county well number.

Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data.

The following comments clarify information presented in these various headings.

- LOCATION.—This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified.
- AQUIFER.—This entry designates by name and geologic age the aquifer that the well taps.
- WELL CHARACTERISTICS.—This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction.
- INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement.
- DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination.
- REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terrane, local, or areal effects) or the special project to which the well belongs.
- PERIOD OF RECORD.—This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted.
- EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest instantaneously recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence.

Water-Level Tables

A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (lsd). Missing records are indicated by dashes in place of the water-level value.

For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value.

Hydrographs

Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown. Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well.

GROUND-WATER-QUALITY DATA

Data Collection and Computation

The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide.

Most methods for collecting and analyzing water samples are described in the TWRIs. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 5, Chapters A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the USGS District office (see address shown on back of title page in this report).

Laboratory Measurements

Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed on site. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2; and Book 5, Chapters A1, A3, and A4.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from <u>http://waterusgs.gov</u>.

Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machinereadable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.)

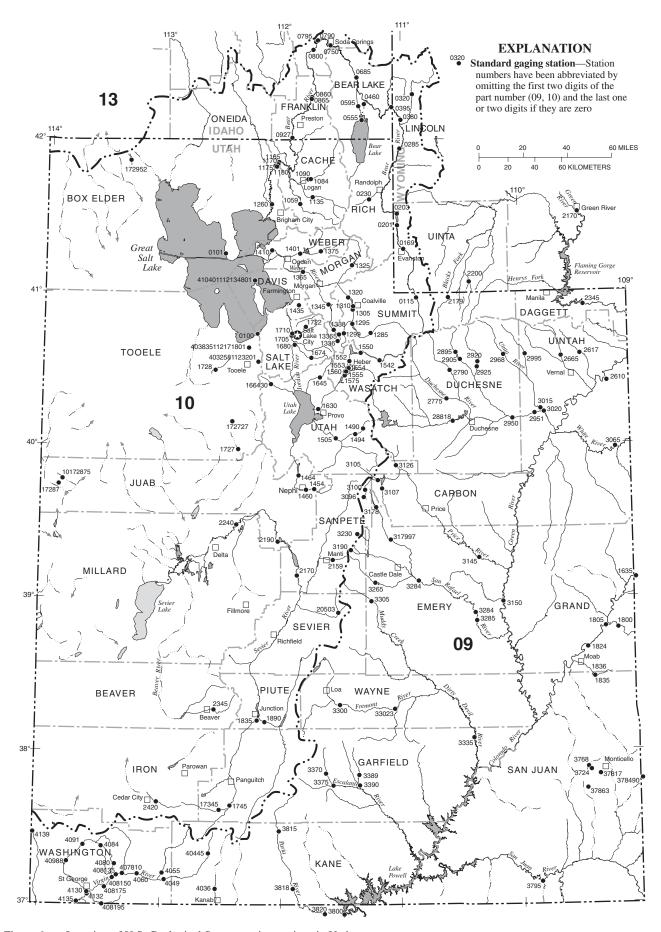


Figure 6. Location of U.S. Geological Survey gaging stations in Utah.

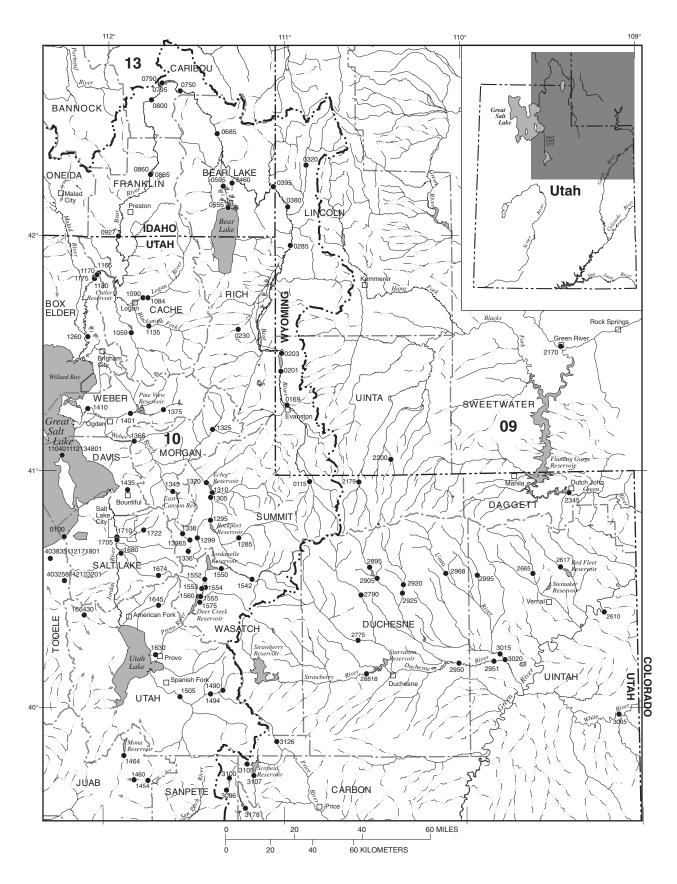


Figure 6. Location of U.S. Geological Survey gaging stations in Utah.--Continued.

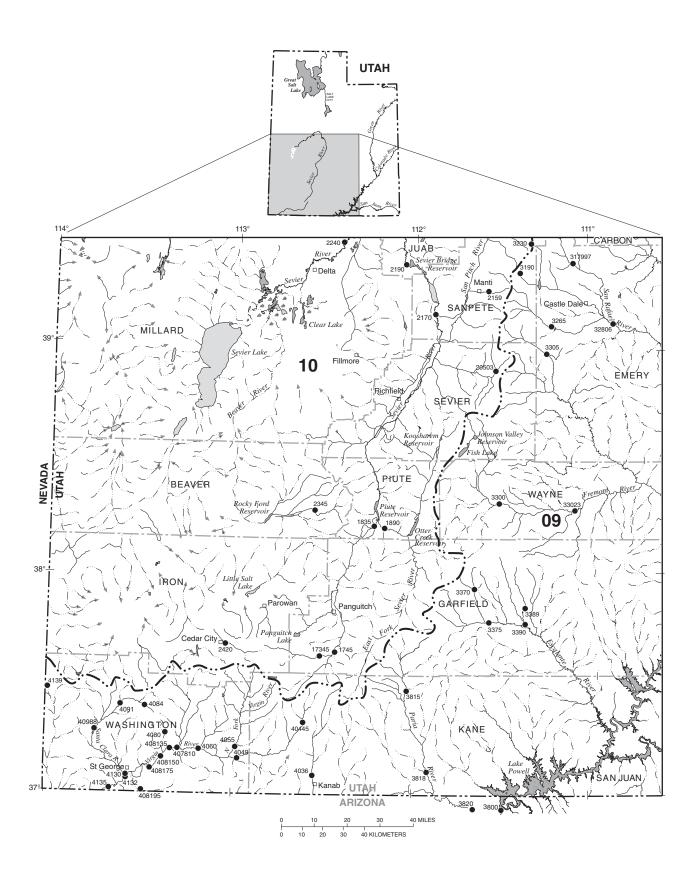


Figure 6. Location of U.S. Geological Survey gaging stations in Utah--Continued.