354356078403502. County number, WK-278; DENR Lake Wheeler Research Station MW-1I (Transition zone well).

LOCATION.--Lat $35^{\circ} 43^{\prime} 55.8^{\prime \prime}$, long $78^{\circ} 40^{\prime} 34.5^{\prime \prime}$, North American Datum of 1983, Hydrologic Unit 03020201 , 6 mi south of Tryon Road, .2 mi east of Lake Wheeler Road on NCSU Research Farm. Owner: DENR (North Carolina Department of Environment and Natural Resources), Division of Water Quality.

WATER-LEVEL RECORDS

AQUIFER.--Regolith (saprolitic Raleigh Gneiss).
WELL CHARACTERISTICS.--Drilled observation well, depth 41.5 ft , diameter 4 in., cased to 31.5 ft, screened interval from 31.5 to 41.5 ft , sand filter packed from 26.5 to 42 ft .

INSTRUMENTATION.--Water-level recorder collecting data at 60 -minute intervals. Satellite telemetry at station.
DATUM.--Land-surface datum is 335.54 ft above NGVD of 1929. Measuring point: Top of instrument shelter floor, 1.87 ft above land-surface datum.

REMARKS.--Well is part of Piedmont/Mountains groundwater project.
PERIOD OF RECORD.--July 2001 to current year. Continuous record began December 2001 . Periodic water level measurements made by DENR, July 2001 to December 2001.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 1.31 ft below land-surface datum, Apr. 1, 2002 ; lowest water level recorded 3.57 ft below land-surface datum, Aug. 13, 2002.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	-	-	2.60	2.44	1.77	2.77	3.10	3.26	3.18	2.17
2	---	---	---	---	2.67	2.33	2.15	2.79	3.11	3.27	3.21	2.39
3	---	---	---	---	2.65	2.27	2.36	2.82	3.17	3.29	3.25	2.50
4	---	---	---	---	2.68	2.37	2.43	2.76	3.18	3.32	3.28	2.57
5	---	---	---	---	2.72	2.41	2.32	2.75	3.18	3.34	3.29	2.65
6	---	---	---	---	2.67	2.41	2.36	2.79	3.20	3.36	3.31	2.70
7	---	---	---	---	2.25	2.42	2.38	2.80	3.20	3.39	3.36	2.76
8	---	---	---	---	2.29	2.44	2.39	2.85	3.21	---	3.38	2.78
9	---	---	---	---	2.38	2.44	2.41	2.89	3.22	3.40	3.40	2.79
10	---	---	---	---	2.39	2.47	2.42	2.93	3.25	3.43	3.41	2.81
11	---	---	---	---	2.30	2.50	2.44	2.94	3.27	3.31	3.43	2.87
12	---	---	---	---	1.97	2.48	2.45	2.92	3.29	3.30	3.46	2.93
13	---	---	---	---	1.91	2.46	2.46	2.91	3.31	3.30	3.48	2.94
14	---	---	---	2.57	2.14	2.52	2.48	2.92	3.31	3.25	3.43	2.90
15	---	---	---	2.61	2.18	2.52	2.51	2.96	3.34	3.26	3.37	2.82
16	---	---	---	2.66	2.26	2.53	2.55	2.96	3.35	---	3.32	2.64
17	-	---	---	2.68	2.31	2.55	2.56	2.97	3.36	-	3.29	2.69
18	---	---	---	2.70	2.35	2.54	2.59	2.92	3.36	---	3.26	2.75
19	---	---	---	2.36	2.34	2.55	2.58	2.95	3.37	3.39	3.20	2.79
20	---	---	---	2.00	2.32	2.53	2.59	2.97	3.38	3.38	---	2.82
21	--	---	---	2.16	2.34	2.47	2.62	2.97	3.40	3.37	3.27	2.85
22	--	---	---	2.28	2.36	2.54	2.64	2.98	3.38	3.38	3.28	2.87
23	---	---	---	1.91	2.38	2.52	2.69	2.97	3.38	3.34	3.30	2.89
24	-	---	---	2.04	2.40	2.52	2.69	2.98	3.40	3.27	3.32	2.92
25	---	---	---	2.11	2.39	2.52	2.68	3.02	3.43	3.08	3.33	2.92
26	--	---	---	2.29	2.35	2.39	2.73	3.04	3.39	---	3.28	2.86
27	--	---	---	2.39	2.40	2.35	2.72	3.06	3.31	2.96	3.19	2.85
28	---	---	---	2.45	2.43	2.41	2.68	3.07	3.26	3.02	3.09	2.89
29	---	-	-	2.51	---	2.42	2.75	3.06	3.14	3.07	3.11	2.90
30	---	---	---	2.56	---	2.44	2.78	3.06	3.23	3.12	2.88	2.88
31	---	---	---	2.59	---	2.25	---	3.08	---	3.16	2.48	--

WTR YR 2002 MEAN 2.82 HIGH 1.77 LOW 3.48

PERIOD OF RECORD.--December 2001 to August 2002 (discontinued).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 2001 to August 2002.
pH: December 2001 to August 2002.
WATER TEMPERATURE: December 2001 to August 2002.
DISSOLVED OXYGEN: January to August 2002.
DISSOLVED OXYGEN, PERCENT SATURATION: January to August 2002.
INSTRUMENTATION.-- Water-quality monitor with satellite telemetry from December 2001 to August 2002.
REMARKS.--Station operated in cooperation with North Carolina Department of Environment and Natural Resources, Water Resources Division as part of the Piedmont/Mountains ground-water project. Dissolved oxygen, percent saturation, is computed using a barometric pressure of 760 mm Hg .

EXTREMES FOR CURRENT YEAR.--

CONSTITUENT	MAXIMUM RECORDED	MINIMUM RECORDED
SPECIFIC CONDUCTANCE, microsiemenS	145, June 12-14	118, January 17
pH, standard units	5.3 , on many days during the period	5.2, on many days during the period
WATER TEMPERATURE, ${ }^{\circ} \mathrm{C}$	16.1, April 17, May 9	15.9, on many days during the period
DISSOLVED OXYGEN, mg/L	3.0 , January 17, 19, 20, 24-29	20, on several days during the period
DISSOLVED OXYGEN, PERCENT SATURATION, $\%$	30, January 17, 19, 20, 24-29	20, several days during the period

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), FOR PERIOD DECEMBER 2001 TO AUGUST 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	-	---	--	---	122	128	131	136	142	141	134	-
2	-	-	--	---	122	128	131	136	142	141	134	---
3	-	---	---	123	123	128	132	136	142	141	134	---
4	---	---	---	123	123	128	132	136	143	141	133	---
5	--	---	---	123	123	129	132	136	143	141	133	-
6	-	---	---	123	123	129	132	136	143	141	133	---
7	---	---	---	123	123	129	132	137	144	141	133	---
8	---	---	---	124	124	129	132	137	144	--	132	---
9	-	---	---	124	124	129	131	135	144	140	132	---
10	---	---	---	124	124	129	131	134	144	140	132	-
11	---	---	---	124	124	130	132	134	144	140	132	---
12	-	---	---	124	124	130	132	135	144	140	132	---
13	---	---	---	124	124	130	132	135	144	139	131	---
14	---	---	---	123	124	130	132	136	144	139	131	---
15	---	---	---	121	124	130	132	136	144	139	131	---
16	---	---	---	122	124	130	132	136	144	---	131	---
17	---	---	---	121	125	130	133	137	143	---	131	---
18	---	---	---	121	125	130	133	137	143	131	131	-
19	---	---	---	121	126	130	133	138	143	131	---	---
20	-	---	---	121	126	130	133	138	142	131	---	-
21	---	---	120	121	126	130	133	138	142	131	---	---
22	-	-	---	121	126	130	134	138	142	131	-	---
23	---	---	120	121	126	130	134	139	142	131	---	---
24	-	---	120	121	127	130	134	139	142	131	---	---
25	-	---	120	120	127	130	134	139	142	132	---	-
26	-	-	120	121	127	130	134	140	142	132	---	---
27	---	---	120	121	127	131	135	140	142	133	---	---
28	-	---	120	121	128	131	135	140	141	134	---	-
29	-	---	120	121	---	131	135	141	141	134	---	---
30	---	---	120	122	---	131	136	141	141	135	--	---
31	--	-	120	122	-	131		141	---	135	---	-
MEAN	---	---	---	---	125	130	133	137	143	---	---	---
MAX	-	-	-	---	128	131	136	141	144	---	---	---
MIN	---	---	---	---	122	128	131	134	141	---	---	---

354356078403502 WK-278 DENR LAKE WHEELER RESEARCH STATION MW-1I (TRANSITION ZONE WELL) --Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, FOR PERIOD DECEMBER 2001 TO AUGUST 2002
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	5.3	5.3	5.3	5.3	5.3	5.3	5.2	---
2	---	---	---	---	5.3	5.3	5.3	5.3	5.3	5.3	5.2	---
3	---	---	---	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	---
4	--	--	-	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	-
5	---	--	---	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	-
6	--	--	--	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	---
7	---	---	---	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	---
8	---	-	---	5.2	5.3	5.2	5.3	5.3	5.2	--	5.2	---
9	-	---	---	5.2	5.2	5.2	5.3	5.3	5.2	5.3	5.2	-
10	--	---	---	5.2	5.2	5.2	5.3	5.3	5.2	5.3	5.2	-
11	-	---	-	5.2	5.2	5.2	5.3	5.3	5.2	5.3	5.2	-
12	---	---	---	5.2	5.2	5.2	5.3	5.3	5.2	5.3	5.2	---
13	---	---	---	5.2	5.3	5.2	5.3	5.3	5.2	5.3	5.2	-
14	---	---	---	---	5.3	5.2	5.3	5.3	5.2	5.3	5.3	---
15	--	---	-	---	5.3	5.2	5.3	5.2	5.2	5.3	5.3	--
16	---	---	---	---	5.3	5.2	5.3	5.2	5.2	-	5.3	---
17	---	---	---	---	5.3	5.2	5.3	5.2	5.2	---	5.3	---
18	---	---	---	5.3	5.3	5.2	5.3	5.2	5.2	5.3	5.3	---
19	---	---	--	5.3	5.3	5.2	5.3	5.2	5.3	5.3	---	---
20	-	-	5.3	5.3	5.3	5.3	5.3	5.2	5.3	5.3	-	-
21	-	-	5.3	5.3	5.3	5.3	5.3	5.2	5.3	5.3	-	-
22	-	-	---	5.3	5.3	5.3	5.3	5.2	5.3	5.3	---	---
23	---	-	5.3	5.3	5.3	5.3	5.3	5.2	5.3	5.3	---	---
24	--	-	5.3	5.3	5.3	5.3	5.3	5.2	5.3	5.3	--	---
25	---	---	5.3	5.3	5.3	5.3	5.3	5.2	5.3	5.3	---	-
26	-	-	5.3	5.3	5.3	5.3	5.2	5.2	5.3	5.3	--	---
27	-	---	5.3	5.3	5.3	5.3	5.2	5.2	5.3	5.3	--	-
28	-	-	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	--	---
29	---	---	5.3	5.3	---	5.3	5.3	5.3	5.3	5.3	---	-
30	-	---	5.3	5.3	---	5.3	5.3	5.3	5.3	5.2	---	---
31	---	---	5.3	5.3	---	5.3	---	5.3	---	5.2	---	---
MEAN	---	---	---	---	5.3	5.2	5.3	5.3	5.2	---	---	-
MAX	---	---	---	---	5.3	5.3	5.3	5.3	5.3	---	---	---
MIN	---	---	---	---	5.2	5.2	5.2	5.2	5.2	--	---	-

WATER TEMPERATURE, DEGREES CELSIUS, FOR PERIOD DECEMBER 2001 TO AUGUST 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	-	-	--	---	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
2	---	---	---	---	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
3	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
4	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
5	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	---	16.0	---
6	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	---	16.0	---
7	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	---	16.0	---
8	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	---	16.0	---
9	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
10	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
11	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
12	---	---	---	16.0	16.0	16.0	16.0	16.0	15.9	16.0	16.0	---
13	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---
14	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---
15	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	-
16	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	---	16.0	---
17	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	-	16.0	---
18	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---
19	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
20	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
21	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
22	---	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
23	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
24	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
25	---	-	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	-
26	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
27	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	---	---
28	---	---	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	--	---
29	---	---	16.0	16.0	---	16.0	16.0	16.0	16.0	16.0	---	---
30	---	---	16.0	16.0	---	16.0	16.0	15.9	16.0	16.0	---	---
31	---	---	16.0	16.0	---	16.0	---	16.0	---	16.0	---	-
MEAN	---	---	---	---	16.0	16.0	16.0	16.0	16.0	---	---	---
MAX	---	---	---	-	16.0	16.0	16.0	16.0	16.0	---	---	---
MIN	---	---	---	---	16.0	16.0	16.0	15.9	15.9	---	---	---

OXYGEN DISSOLVED（MG／L），FOR PERIOD JANUARY TO AUGUST 2002
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	－－－	－－－	－－－	－－－	2.8	2.6	2.5	2.2	2.2	2.4	2.5	－－－
2	－	－－－	－－－	－－－	2.8	2.6	2.5	2.2	2.2	2.4	2.5	－－－
3	－－－	－－－	－－－	－－－	2.8	2.6	2.5	2.2	2.2	2.4	2.5	－
4	－－	－－	－	－	2.8	2.5	2.5	2.2	2.2	2.4	2.5	－
5	－－	－	－－－	－－－	2.8	2.5	2.4	2.2	2.2	2.5	2.5	－
6	－－	－	－－－	－	2.8	2.5	2.5	2.2	2.2	2.5	2.5	－－－
7	－－－	－－－	－－－	－－－	2.8	2.5	2.5	2.2	2.2	2.5	2.5	－－－
8	－－	－	－－－	－－－	2.8	2.5	2.5	2.2	2.2	－－－	2.5	－－－
9	－－－	－－－	－－－	－－－	2.8	2.5	2.5	2.3	2.2	2.5	2.5	－
10	－－	－	－	－－－	2.8	2.5	2.5	2.4	2.2	2.5	2.5	－
11	－－	－－	－－－	－－－	2.7	2.5	2.5	2.4	2.2	2.5	2.5	－－－
12	－－－	－－－	－－－	－－－	2.7	2.5	2.4	2.4	2.2	2.4	2.5	－－－
13	－	－	－－－	－－－	2.7	2.5	2.5	2.3	2.2	2.3	2.4	－－－
14	－－－	－－－	－－－	－－－	2.7	2.5	2.4	2.3	2.2	2.4	2.4	－－－
15	－－	－－	－	－－－	2.7	2.5	2.4	2.3	2.2	2.4	2.4	－－－
16	－－－	－－－	－－－	－－－	2.7	2.5	2.4	2.3	2.2	－－	2.4	－－－
17	－－	－	－－－	2.9	2.6	2.5	2.4	2.3	2.2	－－－	2.4	－
18	－－－	－－－	－－－	2.8	2.6	2.5	2.3	2.2	2.2	2.5	2.4	－－－
19	－－－	－－－	－－－	2.8	2.6	2.5	2.3	2.2	2.2	2.5	－－－	－－－
20	－－	－	－－－	2.9	2.6	2.5	2.3	2.2	2.3	2.5	－－	－
21	－－	－－	－－－	2.8	2.6	2.5	2.2	2.2	2.3	2.5	－－	－
22	－－	－	－－－	2.8	2.6	2.5	2.2	2.1	2.3	2.5	－－	－－－
23	－	－－	－－－	2.9	2.6	2.5	2.2	2.2	2.3	2.5	－	－－－
24	－－	－	－－－	2.9	2.6	2.5	2.2	2.2	2.3	2.5	－－	－－－
25	－－	－－－	－	2.9	2.6	2.5	2.2	2.2	2.4	2.5	－－	－－
26	－	－	－－－	3.0	2.6	2.5	2.2	2.2	2.4	2.5	－－－	－－－
27	－－	－	－－－	2.9	2.6	2.5	2.2	2.2	2.3	2.5	－	－
28	－－	－	－－－	2.9	2.6	2.5	2.2	2.2	2.4	2.5	－	－
29	－－－	－－－	－－－	2.9	－－－	2.5	2.2	2.2	2.4	2.5	－－－	－－
30	－	－	－－－	2.9		2.5	2.2	2.2	2.4	2.5	－－－	－
31	－－－	－－－	－－－	2.9	－－－	2.5	－－－	2.2	－－－	2.5	－－－	－－－
MEAN	－－－	－－－	－－－	－－－	2.7	2.5	2.4	2.2	2.3	－－－	－－－	－－－
MAX	－－－	－－－	－－－	－－－	2.8	2.6	2.5	2.4	2.4	－－－	－－－	－－－
MIN	－－	－	－	－	2.6	2.5	2.2	2.1	2.2	－－	－－	－

OXYGEN DISSOLVED（\％OF SATURATION），FOR PERIOD JANUARY TO AUGUST 2002 DAILY MEAN VALUES

$\begin{aligned} & \text { 狊 } \\ & \omega \end{aligned}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
苞	$\stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{N} \stackrel{n}{\sim}$	$\stackrel{\perp}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{\cap}{\sim} \stackrel{n}{\sim}$	$\stackrel{\sim}{n} \stackrel{n}{\sim}$	ザガカ！	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$
$\begin{aligned} & 3 \\ & \hline \end{aligned}$	$\underset{\sim}{n} \underset{\sim}{n} N \sim \sim$	：$: 1: \stackrel{N}{N}$		$\begin{array}{l:l} 1 & \stackrel{\llcorner }{\sim} \stackrel{L}{N} \stackrel{\llcorner }{N} \\ : & 1 \end{array}$	$\stackrel{n}{N} \stackrel{n}{N} \stackrel{\bullet n}{N} \stackrel{\bullet}{N} \stackrel{n}{N}$	$\stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{N}$	$\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 1 & 1 & 1\end{array}$
$\stackrel{\vdots}{5}$	NNNNN ～N N N	NNNNT N N N N	NNNNN N $ก$ N	NNNNN NNNN	$\cdots \sim N \sim M$ $N \sim N \sim$	$\underset{\sim}{n} \underset{\sim}{N} \underset{\sim}{m} \underset{\sim}{m}$	$\underset{N}{N} \underset{N}{N}$
茫	NinNTN N N N N	$\underset{N}{N} N \underset{N}{N} \underset{\sim}{\text { Hi}}$	$\stackrel{+}{\sim} \stackrel{H}{N} \underset{\sim}{m} \sim \sim N$	$\underset{\sim}{\mathrm{N}} \underset{\mathrm{~N}}{\mathrm{~N}} \underset{\sim}{N}$	$\mathfrak{N} \underset{N}{N} \underset{N}{N} N$	NN NN N N N N	$\underset{\sim}{N} \underset{\sim}{N}$
	$\stackrel{\perp}{\sim} \stackrel{n}{\sim} \stackrel{n}{N} \stackrel{n}{\sim} \underset{\sim}{+1}$	$\stackrel{\perp}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{N}$	$\stackrel{\sim}{\sim} \underset{\sim}{\sim} \stackrel{H}{N} \underset{\sim}{H}$	$\stackrel{H}{N} \underset{\sim}{N} \underset{N}{N}$	$\underset{N}{N} \underset{\sim}{N} \underset{\sim}{N}$	$\underset{\sim}{N} N \mathbb{N} N \mathbb{N} \text { N }$	$\underset{\sim}{\sim} \stackrel{n}{N} \underset{N}{N}$
\sum_{i}^{\sim}	$\bullet 6 \vdash^{\bullet} \stackrel{\llcorner }{n}$ N N N N	$\stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim}$	$\stackrel{\llcorner n}{\sim} \stackrel{1 n}{\sim} \stackrel{L n}{\sim} \stackrel{n}{\sim}$	$\stackrel{\perp}{\sim} \stackrel{n}{\sim} \stackrel{n}{N} \stackrel{n}{\sim} \stackrel{n}{\sim}$	$\stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim}$	$\stackrel{\perp}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim}$	$\stackrel{\perp}{\mathrm{N}} \stackrel{\bullet}{\mathrm{~N}} \stackrel{(1)}{\sim}$
$\begin{gathered} \text { 䍖 } \\ \text { 年 } \end{gathered}$	$\stackrel{\infty}{\mathrm{N}} \stackrel{\infty}{\mathrm{~N}} \stackrel{\infty}{\mathrm{~N}} \stackrel{\infty}{\sim} \stackrel{\infty}{N}$	$\stackrel{\infty}{\sim} \stackrel{\infty}{N}_{\infty}^{\infty}{ }_{N}^{\infty} \stackrel{\infty}{N}$	へへへ入入入入へ	$\stackrel{\sim}{N} \stackrel{6}{\sim} \stackrel{6}{\sim} \stackrel{6}{N} \stackrel{6}{N}$	$\stackrel{+}{\sim} \stackrel{6}{\sim} \stackrel{6}{\sim} \stackrel{6}{\sim} \stackrel{e}{N}$	$\begin{array}{cc:c} \bullet \\ \sim & \bullet & \bullet \\ \sim & 1 & : \\ 1 & 1 & 1 \end{array}$	$\stackrel{\wedge}{\sim} \stackrel{\infty}{N} \stackrel{1}{\sim}$
学	$\begin{array}{lllll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim} \underset{\sim}{\sim}$			$\begin{array}{lll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$
$\begin{aligned} & \text { U } \\ & \text { 䓢 } \end{aligned}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$
E-U	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$
葆	HN M サー	மト		6숭	$\underset{N}{N} \underset{N}{N} \underset{N}{\text { N }}$	$\stackrel{6}{\mathrm{~N}} \stackrel{\mathrm{~N}}{\infty} \stackrel{\infty}{\mathrm{~N}} \mathrm{~N}_{\mathrm{N}}^{\mathrm{m}} \mathrm{~m}^{-1}$	

354356078403502 WK-278 DENR LAKE WHEELER RESEARCH STATION MW-1I (TRANSITION ZONE WELL) --Continued

WATER-QUALITY RECORDS
PERIOD OF RECORD.--October 2001 to September 2002.
REMARKS.--Station operated in cooperation with North Carolina Department of Environment and Natural Resources, Water Resources Division as part of the Piedmont/Mountains ground-water project.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002													
Date	Time	$\begin{gathered} \text { OXYGEN, } \\ \text { DISS- } \\ \text { SOLVED } \\ \text { (MG/L) }) \\ (00300 \end{gathered}$	PH WATER WHOLE FIELD (STANDARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPERATURE WATER (DEG C) (00010)	$\begin{aligned} & \text { HARD- } \\ & \text { NESS } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \\ & (00900) \end{aligned}$	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \\ & (00915) \end{aligned}$	$\begin{gathered} \text { MAGNE- } \\ \text { SIUM, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS MG) } \\ (00925) \end{gathered}$	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) }) \\ & (00930) \end{aligned}$	$\begin{gathered} \text { ANC } \\ \text { WATER } \\ \text { UNLLTRD } \\ \text { IT } \\ \text { FIELD } \\ \text { MG/L AS } \\ \text { CACO3 } \\ (00419) \end{gathered}$	BICARBONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BROMIDE DIS- SOLVED (MG/L AS BR) (71870)
NOV 14...	1130	--	5.8	110	15.9	26	7.58	1.72	2.80	11.7	--	20	. 06
$\begin{gathered} \text { MAY } \\ 09 . \end{gathered}$	1230	2.4	5.4	126	16.1	29	8.22	1.95	2.89	11.6	20	25	. 04
Date	CHLO- RIDE, DISSOLVED (MG/L AS CL) (00940)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \\ & (00950) \end{aligned}$	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS-- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \\ & (00955) \end{aligned}$	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	$\begin{aligned} & \text { SOLIDS, } \\ & \text { RESIDUE } \\ & \text { AT 180 } \\ & \text { DEG. C } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \\ & (70300) \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \\ (00608) \end{gathered}$	NITROGEN, AMMONIA + ORGANIC DIS. (MG/L AS N) (00623)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2 +NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \\ (00631) \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SILVED } \\ \text { (MG/L } \\ \text { AS N) } \\ (00613) \end{gathered}$	$\begin{aligned} & \text { ORTHO- } \\ & \text { PHOS- } \\ & \text { PHATE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS P) } \\ & (00671) \end{aligned}$	ALUM- INUM, DISSOLVED (UG/L AS AL) (01106)	ANTIMONY, DISSOLVED (UG/L AS SB) (01095)	ARSENIC DISSOLVED (UG/L AS AS) (01000)
NOV 14...	8.75	E. 1	28.6	1.6	96	<. 04	<. 10	6.09	<. 008	. 02	--	--	E1
$\begin{gathered} \text { MAY } \\ \quad 09 \ldots \end{gathered}$	9.34	E. 1	28.2	1.4	115	<. 04	<. 10	6.46	<. 008	. 03	7	<. 05	<2
Date	BARIUM, DISSOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	$\begin{aligned} & \text { BORON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS B) } \\ & (01020) \end{aligned}$	$\begin{gathered} \text { CADMIUM } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { (SS CD) } \\ (01025) \end{gathered}$	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DISSOLVED (UG/L AS CO) (01035)	COPPER, DISSOLVED (UG/L AS CU) (01040)	IRON, DISSOLVED (UG/L AS FE) (01046)	$\begin{aligned} & \text { LEAD, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS PB) } \\ & \text { (01049) } \end{aligned}$	MANGA- NESE, DISSOLVED (UG/L AS MN) (01056)	MERCURY DISSOLVED (UG/L AS HG) (71890)	MOLYBDENUM, DISSOLVED (UG/L AS MO) (01060)	NICKEL, DISSOLVED (UG/L AS NI) (01065)
NOV 14...	--	--	<10	--	--	--	--	<10	--	71.4	--	--	--
$\begin{gathered} \text { MAY } \\ 09 \ldots \end{gathered}$	59	. 31	M	. 07	<. 8	. 25	. 7	<10	. 20	37.1	<. 01	. 8	. 99
				$\begin{aligned} & \text { SELE- } \\ & \text { NIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS SE) } \\ & (01145) \end{aligned}$	$\begin{gathered} \text { SILVER, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { (0S AG) } \\ (01075) \end{gathered}$	$\begin{aligned} & \text { ZINC, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS ZN) } \\ & (01090) \end{aligned}$	ALPHA RADIO. WATER DISS AS TH-230 (PCI/L) (04126)	$\begin{gathered} \text { GROSS } \\ \text { BETA, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (PCI/L } \\ \text { AS } \\ \text { CS-137) } \\ (03515) \end{gathered}$	$\begin{gathered} \text { RADON } \\ 222 \\ \text { TOTAL } \\ (\mathrm{PCI} / \mathrm{L}) \\ (82303) \end{gathered}$	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)			
		$\begin{array}{r} \text { NOV } \\ 1 \\ \text { MAY } \\ 0 \end{array}$		<2	<1	-- 4	1.1	-- 6.6	--	$.06$			

Remark codes used in this table:
mark Codes used
< -- Less than
M -- Presence verified, not quantified

