#### 02147126 WAXHAW CREEK AT SECONDARY ROAD 1103 NEAR JACKSON, NC

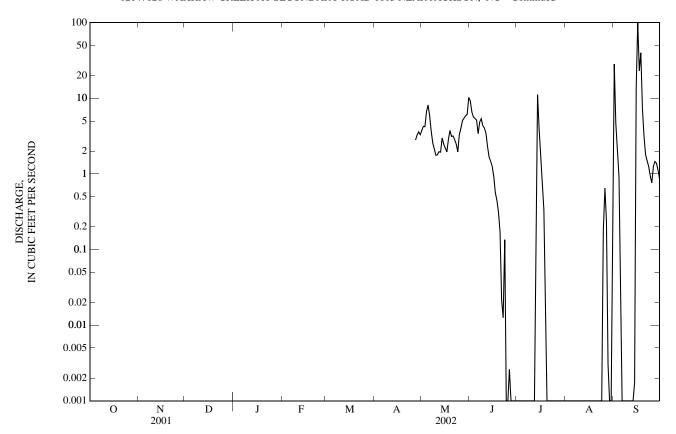
LOCATION.--Lat 34°50'13", long 80°47'30", Union County, Hydrologic Unit 03040103, on right upstream wingwall on Secondary Road 1103, 6 mi upstream from mouth, 6 mi southwest of Jackson and 6.5 mi south of Waxhaw.

DRAINAGE AREA.--35.0 mi<sup>2</sup>.

PERIOD OF RECORD.--May 2002 to September 2003

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 490 ft above NGVD of 1929, from topographic map. Satellite telemetry at site.

REMARKS.-Records poor. Peak stage for period of record and current water year from floodmark. Peak discharge for period of record and current water year from rating curve extended above 1,200 cfs on basis of step-backwater computations. No flow also occurred many days in June, July, Aug., and Sept. 2002, and Oct. 7-10, 2002.


#### DISCHARGE, CUBIC FEET PER SECOND FOR PERIOD MAY TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY     | OCT        | NOV      | DEC      | JAN     | FEB      | MAR          | APR     | MAY        | JUN    | JUL    | AUG    | SEP    |
|---------|------------|----------|----------|---------|----------|--------------|---------|------------|--------|--------|--------|--------|
| 1       |            |          |          |         |          |              |         | 3.8        | 9.3    | 0.00   | 0.00   | 28     |
| 2       |            |          |          |         |          |              |         | 4.3        | 6.6    | 0.00   | 0.00   | 4.7    |
| 3       |            |          |          |         |          |              |         | 4.2        | 5.6    | 0.00   | 0.00   | 2.0    |
| 4       |            |          |          |         |          |              |         | 6.7        | 5.4    | 0.00   | 0.00   | 0.92   |
| 5       |            |          |          |         |          |              |         | 8.2        | 5.1    | 0.00   | 0.00   | 0.13   |
| 6       |            |          |          |         |          |              |         | 5.9        | 3.4    | 0.00   | 0.00   | 0.00   |
| 7       |            |          |          |         |          |              |         | 3.7        | 4.9    | 0.00   | 0.00   | 0.00   |
| 8       |            |          |          |         |          |              |         | 2.6        | 5.4    | 0.00   | 0.00   | 0.00   |
| 9       |            |          |          |         |          |              |         | 2.1        | 4.3    | 0.00   | 0.00   | 0.00   |
| 10      |            |          |          |         |          |              |         | 1.8        | 4.1    | 0.00   | 0.00   | 0.00   |
| 11      |            |          |          |         |          |              |         | 1.8        | 3.5    | 0.00   | 0.00   | 0.00   |
| 12      |            |          |          |         |          |              |         | 2.0        | 2.3    | 0.00   | 0.00   | 0.00   |
| 13      |            |          |          |         |          |              |         | 1.9        | 1.7    | 0.93   | 0.00   | 0.00   |
| 14      |            |          |          |         |          |              |         | 3.0        | 1.5    | 11     | 0.00   | 0.00   |
| 15      |            |          |          |         |          |              |         | 2.5        | 1.3    | 3.9    | 0.00   | 14     |
|         |            |          |          |         |          |              |         |            |        |        |        |        |
| 16      |            |          |          |         |          |              |         | 2.2        | 0.92   | 1.9    | 0.00   | 100    |
| 17      |            |          |          |         |          |              |         | 2.0        | 0.57   | 0.75   | 0.00   | 23     |
| 18      |            |          |          |         |          |              |         | 2.9        | 0.45   | 0.34   | 0.00   | 40     |
| 19      |            |          |          |         |          |              |         | 3.8        | 0.31   | 0.06   | 0.00   | 7.3    |
| 20      |            |          |          |         |          |              |         | 3.1        | 0.17   | 0.00   | 0.00   | 3.1    |
| 21      |            |          |          |         |          |              |         | 3.2        | 0.02   | 0.00   | 0.00   | 1.8    |
| 22      |            |          |          |         |          |              |         | 2.8        | 0.01   | 0.00   | 0.00   | 1.5    |
| 23      |            |          |          |         |          |              |         | 2.5        | 0.13   | 0.00   | 0.00   | 1.3    |
| 24      |            |          |          |         |          |              |         | 2.0        | 0.00   | 0.00   | 0.00   | 0.94   |
| 25      |            |          |          |         |          |              |         | 3.3        | 0.00   | 0.00   | 0.18   | 0.76   |
| 26      |            |          |          |         |          |              |         | 4.0        | 0.00   | 0.00   | 0.65   | 1.2    |
| 27      |            |          |          |         |          |              |         | 5.1        | 0.00   | 0.00   | 0.24   | 1.5    |
| 28      |            |          |          |         |          |              |         | 5.5        | 0.00   | 0.00   | 0.00   | 1.4    |
| 29      |            |          |          |         |          |              |         | 5.9        | 0.00   | 0.00   | 0.00   | 1.1    |
| 30      |            |          |          |         |          |              |         | 6.1        | 0.00   | 0.00   | 0.00   | 0.84   |
| 31      |            |          |          |         |          |              |         | 10         |        | 0.00   | 2.8    |        |
| mom 4.1 |            |          |          |         |          |              |         | 110.0      | 66.00  | 10.00  | 2.07   | 225.40 |
| TOTAL   |            |          |          |         |          |              |         | 118.9      | 66.98  | 18.88  | 3.87   | 235.49 |
| MEAN    |            |          |          |         |          |              |         | 3.84       | 2.23   | 0.61   | 0.12   | 7.85   |
| MAX     |            |          |          |         |          |              |         | 10         | 9.3    | 11     | 2.8    | 100    |
| MIN     |            |          |          |         |          |              |         | 1.8        | 0.00   | 0.00   | 0.00   | 0.00   |
| CFSM    |            |          |          |         |          |              |         | 0.11       | 0.06   | 0.02   | 0.00   | 0.22   |
| IN.     |            |          |          |         |          |              |         | 0.13       | 0.07   | 0.02   | 0.00   | 0.25   |
| STATIST | TICS OF MO | ONTHLY M | EAN DATA | FOR WAT | ER YEARS | 2002 - 2002, | BY WATE | ER YEAR (W | /Y)    |        |        |        |
| MEAN    |            |          |          |         |          |              |         | 3.84       | 2.23   | 0.61   | 0.12   | 7.85   |
| MAX     |            |          |          |         |          |              |         | 3.84       | 2.23   | 0.61   | 0.12   | 7.85   |
| (WY)    |            |          |          |         |          |              |         | (2002)     | (2002) | (2002) | (2002) | (2002) |
| MIN     |            |          |          |         |          |              |         | 3.84       | 2.23   | 0.61   | 0.12   | 7.85   |
| (WY)    |            |          |          |         |          |              |         | (2002)     | (2002) | (2002) | (2002) | (2002) |
|         |            |          |          |         |          |              |         |            | . ,    | . ,    | . ,    | . /    |

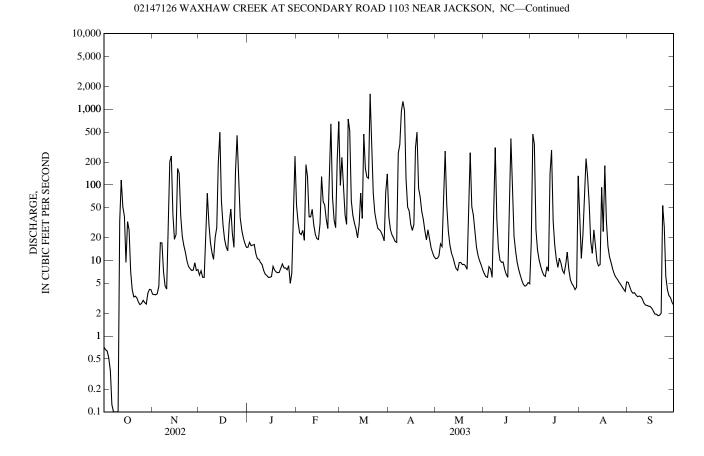
| SUMMARY STATISTICS     | FOR PERIOD<br>MAY TO SEPTEMBER 2002 |
|------------------------|-------------------------------------|
| HIGHEST DAILY MEAN     | 100 Sep 16                          |
| LOWEST DAILY MEAN      | 0.00 Jun 24                         |
| MAXIMUM PEAK FLOW      | 132 Sep 16                          |
| MAXIMUM PEAK STAGE     | 4.61 Sep 16                         |
| INSTANTANEOUS LOW FLOW | 0.00* Jun 24                        |

<sup>\*</sup> See REMARKS.

## 02147126 WAXHAW CREEK AT SECONDARY ROAD 1103 NEAR JACKSON, NC—Continued



### 02147126 WAXHAW CREEK AT SECONDARY ROAD 1103 NEAR JACKSON, NC—Continued


# DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

| DAY                                                                             | OCT                                           | NOV                                           | DEC                                           | JAN                                          | FEB                                       | MAR                                           | APR                                         | MAY                                           | JUN                                           | JUL                                           | AUG                                           | SEP                                        |
|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|
| 1<br>2<br>3<br>4<br>5                                                           | 0.72<br>0.66<br>0.64<br>0.52<br>0.35          | 3.6<br>3.6<br>3.5<br>3.6<br>4.6               | 6.4<br>7.3<br>6.0<br>6.0<br>26                | e15<br>17<br>16<br>16<br>16                  | 54<br>32<br>23<br>22<br>25                | 99<br>231<br>97<br>e40<br>e30                 | 38<br>26<br>e22<br>e20<br>18                | 11<br>11<br>12<br>17<br>15                    | 6.7<br>6.1<br>6.0<br>8.3<br>7.8               | 17<br>469<br>346<br>26<br>14                  | 31<br>11<br>22<br>63<br>224                   | 5.1<br>4.5<br>3.9<br>3.7<br>3.8            |
| 6<br>7<br>8<br>9<br>10                                                          | 0.12<br>0.00<br>0.00<br>0.00<br>0.00          | 17<br>17<br>7.0<br>4.6<br>4.2                 | 78<br>30<br>17<br>13<br>10                    | 12<br>11<br>10<br>9.4<br>8.8                 | 19<br>184<br>129<br>38<br>38              | 742<br>521<br>62<br>40<br>31                  | 17<br>263<br>341<br>948<br>1,270            | 83<br>280<br>54<br>24<br>16                   | 6.0<br>59<br>312<br>35<br>15                  | 10<br>8.4<br>7.2<br>6.4<br>6.2                | 131<br>58<br>18<br>12<br>25                   | 3.5<br>3.3<br>3.4<br>3.3<br>3.1            |
| 11<br>12<br>13<br>14<br>15                                                      | 33<br>116<br>51<br>38<br>9.4                  | 32<br>203<br>241<br>41<br>19                  | 20<br>27<br>194<br>496<br>62                  | 7.4<br>6.6<br>6.3<br>e6.0<br>e6.0            | 48<br>30<br>22<br>20<br>19                | 26<br>e20<br>e30<br>78<br>36                  | e960<br>e120<br>51<br>e45<br>e30            | 13<br>11<br>9.1<br>7.8<br>7.4                 | 10<br>9.5<br>9.6<br>7.7<br>6.6                | 8.3<br>7.2<br>142<br>288<br>33                | 16<br>9.8<br>8.5<br>8.9                       | 2.7<br>2.6<br>2.6<br>2.5<br>2.5            |
| 16<br>17<br>18<br>19<br>20                                                      | 33<br>25<br>7.1<br>4.1<br>3.3                 | 22<br>165<br>144<br>38<br>21                  | 30<br>19<br>15<br>14<br>31                    | 6.1<br>8.4<br>7.5<br>7.1<br>6.9              | 31<br>129<br>60<br>54<br>35               | 470<br>164<br>127<br>122<br>e1,600            | e25<br>e30<br>e310<br>e500<br>e90           | 9.4<br>9.4<br>8.8<br>8.9<br>8.5               | 6.0<br>49<br>411<br>87<br>21                  | 16<br>11<br>8.1<br>11<br>9.2                  | 24<br>180<br>34<br>15                         | 2.3<br>2.2<br>2.0<br>2.0<br>1.9            |
| 21<br>22<br>23<br>24<br>25                                                      | 3.4<br>3.2<br>2.8<br>2.6<br>2.7               | 16<br>13<br>9.8<br>8.3<br>7.8                 | 48<br>23<br>e15<br>e150<br>452                | e7.0<br>e8.0<br>e9.0<br>e8.0<br>e8.0         | 26<br>185<br>641<br>68<br>34              | e400<br>79<br>43<br>33<br>26                  | e70<br>e45<br>e35<br>e25                    | 7.7<br>58<br>267<br>51<br>40                  | 13<br>9.5<br>7.6<br>6.4<br>5.5                | 7.4<br>6.7<br>8.8<br>13<br>7.6                | 9.4<br>7.8<br>6.7<br>6.1<br>5.7               | 1.9<br>2.0<br>54<br>28<br>6.2              |
| 26<br>27<br>28<br>29<br>30<br>31                                                | 3.0<br>2.8<br>2.7<br>3.7<br>4.2<br>4.1        | 7.4<br>7.5<br>9.3<br>7.4<br>7.6               | 127<br>37<br>25<br>20<br>17<br>e15            | 7.6<br>8.6<br>e5.00<br>e6.8<br>53<br>239     | 27<br>222<br>691<br>                      | e26<br>e24<br>21<br>18<br>e80.0<br>e140       | 26<br>19<br>15<br>13<br>11                  | 24<br>15<br>12<br>10<br>8.8<br>7.5            | 4.9<br>4.6<br>4.7<br>5.1<br>4.9               | 5.6<br>4.9<br>4.6<br>4.1<br>4.5               | 5.2<br>4.9<br>4.5<br>4.2<br>3.9<br>5.2        | 4.1<br>3.4<br>3.2<br>2.8<br>2.6            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN.                                      | 358.11<br>11.6<br>116<br>0.00<br>0.33<br>0.38 | 1,088.8<br>36.3<br>241<br>3.5<br>1.04<br>1.16 | 2,036.7<br>65.7<br>496<br>6.0<br>1.88<br>2.16 | 559.50<br>18.0<br>239<br>5.0<br>0.52<br>0.59 | 2,906<br>104<br>691<br>19<br>2.97<br>3.09 | 5,456.0<br>176<br>1,600<br>18<br>5.03<br>5.80 | 5,402<br>180<br>1,270<br>11<br>5.14<br>5.74 | 1,117.3<br>36.0<br>280<br>7.4<br>1.03<br>1.19 | 1,145.5<br>38.2<br>411<br>4.6<br>1.09<br>1.22 | 1,643.2<br>53.0<br>469<br>4.1<br>1.51<br>1.75 | 1,058.8<br>34.2<br>224<br>3.9<br>0.98<br>1.13 | 169.1<br>5.64<br>54<br>1.9<br>0.16<br>0.18 |
| STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2003, BY WATER YEAR (WY) |                                               |                                               |                                               |                                              |                                           |                                               |                                             |                                               |                                               |                                               |                                               |                                            |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)                                              | 11.6<br>11.6<br>(2003)<br>11.6<br>(2003)      | 36.3<br>36.3<br>(2003)<br>36.3<br>(2003)      | 65.7<br>65.7<br>(2003)<br>65.7<br>(2003)      | 18.0<br>18.0<br>(2003)<br>18.0<br>(2003)     | 104<br>104<br>(2003)<br>104<br>(2003)     | 176<br>176<br>(2003)<br>176<br>(2003)         | 180<br>180<br>(2003)<br>180<br>(2003)       | 19.9<br>36.0<br>(2003)<br>3.84<br>(2002)      | 20.2<br>38.2<br>(2003)<br>2.23<br>(2002)      | 26.8<br>53.0<br>(2003)<br>0.61<br>(2002)      | 17.1<br>34.2<br>(2003)<br>0.12<br>(2002)      | 6.74<br>7.85<br>(2002)<br>5.64<br>(2003)   |

| SUMMARY STATISTICS                                                                                                                                                                                                                                                          | FOR 2002 CALE       | NDAR YEAR                  | FOR 2003 WAT                                                                                                   | ER YEAR                                               | WATER YEARS 2002 - 2003                                                                                           |                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 496<br>0.00<br>0.00 | Dec 14<br>Jun 24<br>Jun 24 | 22,941.01<br>62.9<br>e1,600<br>0.00*<br>0.14<br>2,880*<br>10.71*<br>0.00*<br>1.80<br>24.38<br>146<br>15<br>3.4 | Mar 20<br>Oct 7<br>Oct 4<br>Mar 20<br>Mar 20<br>Oct 7 | 62.9<br>62.9<br>62.9<br>e1,600<br>0.00*<br>0.00<br>2,880*<br>10.71*<br>0.00*<br>1.80<br>24.40<br>146<br>15<br>3.4 | 2003<br>2003<br>Mar 20, 2003<br>Jun 24, 2002<br>Jun 24, 2002<br>Mar 20, 2003<br>Mar 20, 2003<br>Jun 21, 2002 |  |

e Estimated.
\* See REMARKS.

597

