

Shallow Ground Water in the Whitney Area,
Southeastern Las Vegas Valley,
Clark County, Nevada

Part I. Description of Chemical Quality, 1986-87

By David H. Emme and David E. Prudic

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 89-4117

Prepared in cooperation with the

U.S. BUREAU OF RECLAMATION

Carson City, Nevada

1991

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

U.S. Geological Survey
Room 227, Federal Building
705 North Plaza Street
Carson City, NV 89701

Copies of this report may be
purchased from:

U.S. Geological Survey
Books and Open-File Reports Section
Federal Center, Building 810
Box 25425
Denver, CO 80225

CONTENTS

	<i>Page</i>
ABSTRACT -----	1
INTRODUCTION -----	2
Purpose and scope -----	2
Previous work -----	3
Monitoring well design and numbering systems -----	3
Acknowledgments -----	8
HYDROLOGY AND HYDROGEOLOGY OF THE WHITNEY STUDY AREA -----	8
GROUND-WATER SAMPLING AND ANALYSES -----	11
Sampling procedures -----	11
Analyses of water quality -----	11
Quality assurance -----	13
GROUND-WATER QUALITY -----	15
Chemical character -----	15
Areal differences in chemical character -----	22
Vertical variations in chemical character -----	24
Seasonal variations in chemical character -----	27
Distribution of nitrate and nitrite -----	34
SUMMARY AND CONCLUSIONS -----	37
BASIC DATA -----	39
REFERENCES CITED -----	46

ILLUSTRATIONS

	<i>Page</i>
Figures 1-3. Maps showing:	
1. Location and general features of Las Vegas Valley and the Whitney study area -----	4
2. Location of sampled wells -----	6
3. Water-table altitude, March 1986 -----	9
4. Trilinear diagram showing chemical character of shallow ground water in the study area and potential sources of the ground water -----	17
5. Graphs showing relation of sodium and sulfate to chloride for shallow ground water in the study area and potential sources of the ground water -----	21
6. Map showing dissolved-solids concentrations, September 1986 -----	23
7. Graphs showing relation between dissolved-solids concentration and depth for water from well clusters at sites WG035, WG044, and WG053, October 1986-June 1987 -----	25
8. Graphs showing relation between water-table depth and position of screened interval for wells WG035AN, WG044AN, and WG053AN, October 1986-June 1987 -----	26
9. Graphs showing comparison of net percentage change in dissolved-solids concentration during three periods between April 1986 and June 1987 -----	28
10. Graphs showing distribution of concentrations of dissolved solids and major dissolved constituents for water samples collected between April 1986 and June 1987 -----	30
11. Graph showing mean change in concentration of dissolved solids and major dissolved constituents during three periods between April 1986 and June 1987 -----	33
12. Map showing nitrogen concentrations, September and October 1986 -----	35
13. Graphs showing relation between nitrate-plus-nitrite, bicarbonate, and dissolved-oxygen concentrations and depth for well water from cluster sites WG035, WG044, and WG053 -----	36

TABLES

	<i>Page</i>
Table 1. Bulk x-ray diffraction analyses of 10 sediment samples collected during the drilling of wells in October 1986 and February 1987 -----	10
2. Comparison of analytical results from U.S. Geological Survey and U.S. Bureau of Reclamation laboratories for dissolved constituents in ground-water samples collected during the period from April 1986 through January 1987 -----	12
3. Comparison of analytical results from U.S. Geological Survey and U.S. Bureau of Reclamation laboratories for dissolved nitrogen concentrations in ground-water samples collected during the period from April 1986 through January 1987 -----	14
4. Average chemical composition of shallow ground water in the study area and potential ground-water sources -----	16
5. Statistical summary of data on ground-water quality -----	18
6. Correlation coefficients among dissolved solids and major ions in ground-water samples -----	19
7. Saturation indices of calcite, dolomite, and gypsum for ground-water samples collected in September 1986 -----	22
8. Results from simulation of complete evaporation of water represented by wells WG042 and WG052 sampled on September 23, 1986 -----	27
9. Location, construction, and selected water levels for wells -----	40
10. Data on ground-water quality for the period April 1986 through June 1987 -----	42

CONVERSION FACTORS AND ABBREVIATIONS

"Inch-pound" units of measure used in this report may be converted to metric (International System) units by using the following factors:

<i>Multiply</i>	<i>By</i>	<i>To obtain</i>
Acre	0.4047	Square hectometer (hm^2)
Foot (ft)	0.3048	Meter (m)
Inch (in.)	25.40	Millimeter (mm)
Mile (mi)	1.609	Kilometer (km)
Square mile (mi^2)	2.590	Square kilometer (km^2)

For temperature, degree Celsius ($^{\circ}C$) may be converted to degrees Fahrenheit ($^{\circ}F$) by using the formula $^{\circ}F = [1.8(^{\circ}C)] + 32$.

SEA LEVEL

In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), which is derived from a general adjustment of the first-order leveling networks of both the United States and Canada (formerly called "Sea-Level Datum of 1929").

Shallow Ground Water in the Whitney Area, Southeastern Las Vegas Valley, Clark County, Nevada

Part I. Description of Chemical Quality, 1986-87

By David H. Emme and David E. Prudic

ABSTRACT

A prototype ground-water detention basin was proposed by the U.S. Bureau of Reclamation to reduce the quantity of dissolved solids entering Las Vegas Wash from ground-water seepage, as part of an overall plan to reduce salinity in the lower Colorado River. This report describes ground-water quality in the area of the prototype detention basin prior to its construction and the processes that may control the chemical quality of the ground water.

The prototype detention basin is adjacent to Las Vegas Wash about 7 miles southeast of Las Vegas, Nevada, and is an area of about 1 square mile just downstream from two wastewater treatment facilities. The surficial sediments beneath the prototype basin are primarily flood-plain deposits that are dominated by silt near land surface, silty sand between depths of 10 and 25 feet, and silt and clay below about 25 feet. Ground-water flow is generally southeastward, paralleling the course of Las Vegas Wash. The water table at the proposed basin site is generally 1 to 10 feet below land surface, and it fluctuates seasonally in response to changing rates of evapotranspiration.

Water samples were collected four times, at most, during a 16-month period from about 65 wells ranging in depth from 5 to 45 feet. Dissolved-solids concentrations in the shallow ground water differ throughout the study area; measured values range from about 2,000 milligrams per liter, in an area affected by seepage of treated effluent, urban runoff, and storm runoff, to about 28,000 milligrams per liter along the western edge of the study area.

Geochemical interpretation of water-quality analyses suggests that the concentrations and distribution of major ions in the ground water are controlled by: (1) seepage of treated effluent, including land disposal of sludge; (2) seepage of urban runoff entering the area; (3) dissolution of minerals as ground water moves through sediments in Las Vegas Valley, including those of the study area; and (4) evapotranspiration, which tends to concentrate solutes near the water table.

INTRODUCTION

The dissolved-solids concentration of water in the Colorado River is increasing as a result of increasing water use for irrigation and municipal supplies in the basin. The river supplies water to more than 14 million people and is used to irrigate about 1 million acres of farmland in the mostly arid southwestern United States (U.S. Bureau of Reclamation, 1982, p. 35-36). Any increase in the quantity of dissolved solids in the river water adversely affects both the people and the irrigated crops. In 1974, the Colorado River Basin Salinity Control Act, Title II (public law 92-320), authorized the U.S. Bureau of Reclamation to construct salinity-control structures in four areas along the Colorado River. Las Vegas Wash, Nev., was one of the four areas. One of the proposed salinity-control efforts in Las Vegas Wash was the construction of 14 shallow ground-water detention basins along the channel of the wash (U.S. Bureau of Reclamation, 1985, figure 1). The basins would include a dike raised above land surface and a slurry wall excavated to the top of a hydraulically confining clay thought to underlie the shallow alluvial deposits.

The intent of the detention basins was to reduce the quantity of saline ground water entering Las Vegas Wash (U.S. Bureau of Reclamation, 1985, p. 4-6). Because of uncertainties regarding the effectiveness of the detention basins, the Bureau of Reclamation proposed construction of one prototype basin (basin D-14). Ground-water flow and water quality were to be monitored both before and after construction of the basin to determine if it produced the expected reduction in ground-water seepage to the channel of Las Vegas Wash and reduced the quantity of dissolved solids entering the wash (U.S. Bureau of Reclamation, 1985). In March 1986 and prior to construction of the detention basin, the U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, began a study to define ground-water flow and water quality in the vicinity of the proposed detention basin.

Construction of the dike began in September 1986, and was mostly completed by the end of October 1986. Construction of the slurry wall was initially scheduled for the fall of 1987 but in January 1987, the project was cancelled as a result of policy changes within the Bureau of Reclamation.

The location of the prototype detention basin is near the town of East Las Vegas, about 7 miles southeast of Las Vegas (figure 1). The area is a rectangular parcel of land approximately 1 mi^2 in area located downstream from three wastewater treatment plants (figure 1B). The area is referred to herein as the Whitney study area because the Bureau of Reclamation project is called the Whitney Verification Program, named after the small community of Whitney that is now part of East Las Vegas.

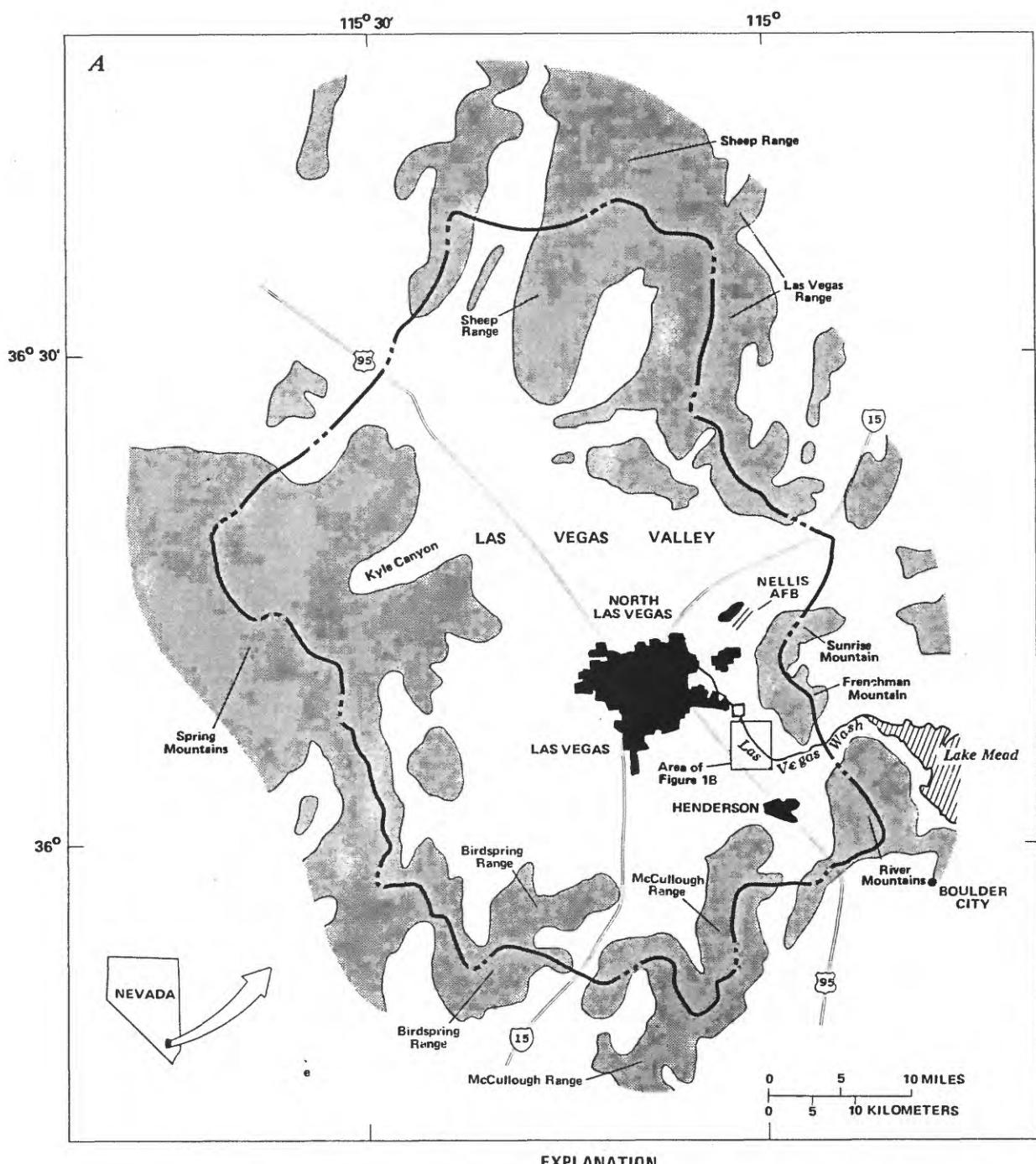
Purpose and Scope

The purposes of this report are to describe (1) the areal, vertical, and seasonal variations of ground-water quality in the vicinity of the D-14 prototype detention basin for the period April 1986 through June 1987 and prior to construction of the proposed slurry wall, and (2) the processes and factors that may control the chemistry of ground water. The scope of the study included: (1) drilling numerous test holes and installing observation wells, principally by the Bureau of Reclamation; (2) collecting lithologic data (thickness, grain-size distribution, and mineral composition of the alluvial deposits); (3) routinely measuring ground-water levels in the observation wells; (4) estimating hydraulic properties from field and laboratory tests; and (5) routinely collecting water samples from observation wells for chemical analyses.

Results of the chemical analyses of water samples are depicted on maps and graphs and listed in tables presented in this report. The processes and factors that may influence or control the chemistry of ground water are evaluated herein.

Previous Work

Previous investigations of the quality of shallow ground water in Las Vegas Valley include work by Dinger (1977), Kaufmann (1978), and Dettinger (1987). Through detailed mapping of surficial sediments, Dinger established carbonate and sulfate lithofacies (rock units defined on the basis of mineralogic composition and other physical characteristics) in the valley. Sulfate-dominated sediments occupy the eastern part of the valley, including the Whitney study area. Kaufmann (1978, p. 87) described a sulfate hydrochemical facies for ground water that roughly correlated with the lithofacies of Dinger. Comparing the quality of shallow ground water to that of water from deeper aquifers, Kaufmann (p. 57) notes the prevalent effect of sewage effluent and irrigation return flow on the quality at shallow depths. Deeper ground water was found to be of better chemical quality and virtually unaffected by recharge of sewage effluent. According to Kaufmann (p. 37), degradation of deeper aquifers is a concern where the vertical hydraulic gradient is downward.


In a study of nutrient input to Las Vegas Wash, Schmidt and Hess (1980, p. 21) discuss the possibility of surface flow from the wash recharging the shallow ground water at times in the vicinity of the Whitney study area. They also describe the potential for reduction of nutrient concentrations in sewage effluent through uptake by marsh vegetation in the vicinity of the wash. A detailed discussion of the existence, extent, and mechanisms for nutrient and toxin stripping in Las Vegas Wash is presented by Roline and Sartoris (1984). Their report deals primarily with surface water in the channel of Las Vegas Wash and how toxin and nutrient loads change as a result of changing environments along the course of the wash.

Monitoring Well Design and Numbering Systems

The U.S. Bureau of Reclamation drilled seven wells in the Whitney study area during May 1984 to obtain preliminary information on ground water along Las Vegas Wash. These wells were drilled to depths of 11 to 39 feet using a 6-inch diameter, solid-stem power auger or a 3-inch hand auger. The wells were completed with 2-inch polyvinylchloride (PVC) pipe. The bottom 10 to 11 feet of each well was generally machine-slotted and the space between the wall of the hole and the pipe was backfilled with sediments brought up during the drilling process. The wells were designated by the Bureau as "PG," followed by three numerals (figure 2).

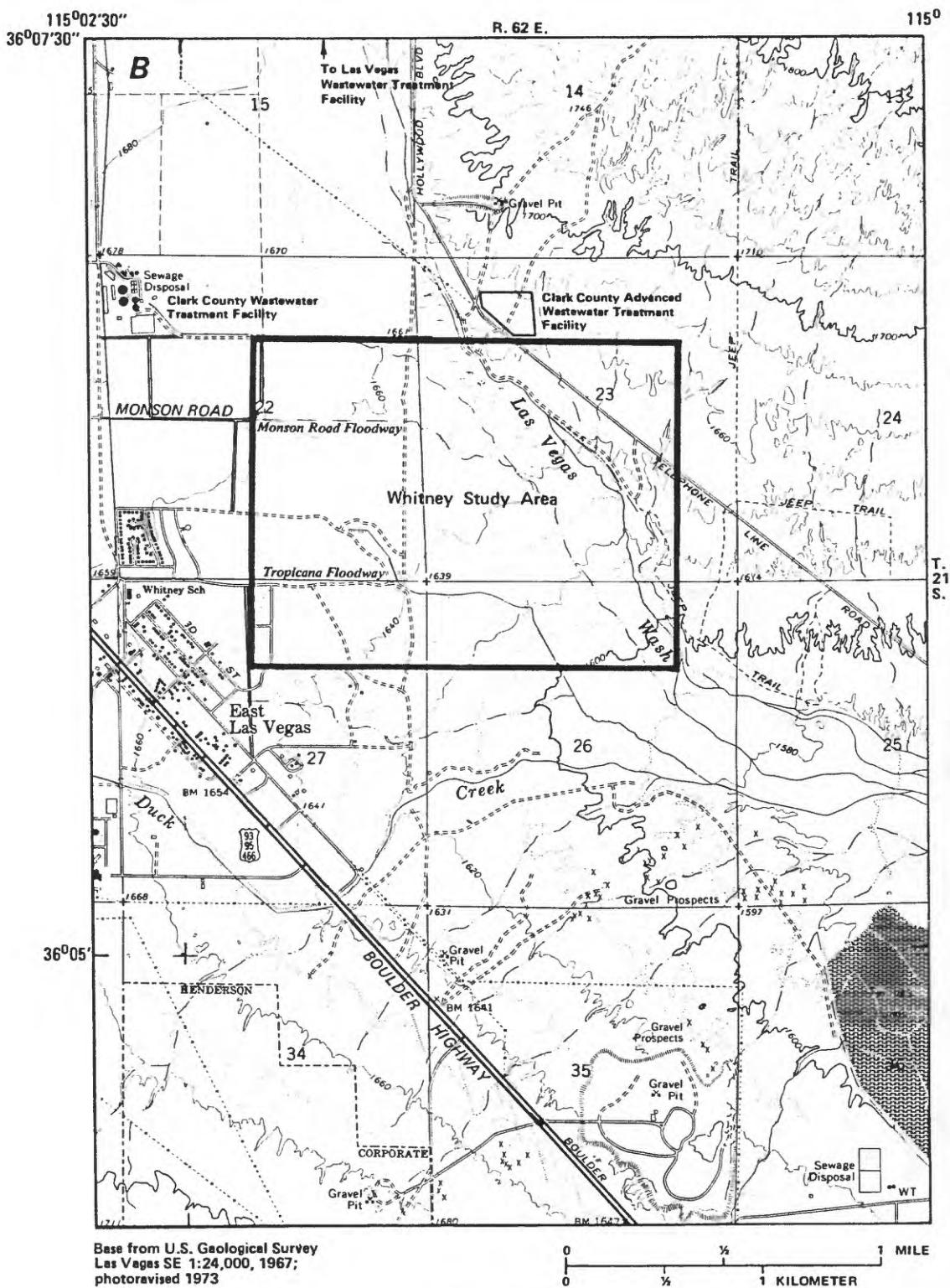
The Bureau of Reclamation constructed 39 more wells between September and October 1985 as part of their Whitney Verification Program. These wells are aligned along the Nevada State-plane coordinate system at 1,000-foot intervals to form a grid of wells throughout most of the study area (figure 2). The wells were drilled to depths of 5 to 45 feet using a 6-inch diameter, solid-stem power auger, and each well was completed with 2-inch PVC pipe. Most of the PVC pipe for these wells was machine-slotted from the bottom of the hole to land surface. The space between the hole and the pipe was filled with pea gravel except in the 2-foot interval below land surface, which was filled with a cement grout. These wells are designated "WG," followed by three numerals (figure 2).

The numbering sequence of the "WG" well sites follows a column-and-row system for the 1,000-foot grid when the first number in the designation is a zero. The second number designates the column, numbered sequentially from west to east, and the third number designates the row, numbered sequentially from south to north (figure 2). Five wells have the number 1 following "WG"; these wells are aligned along the Tropicana floodway (figure 2).

EXPLANATION

MOUNTAINOUS AREA

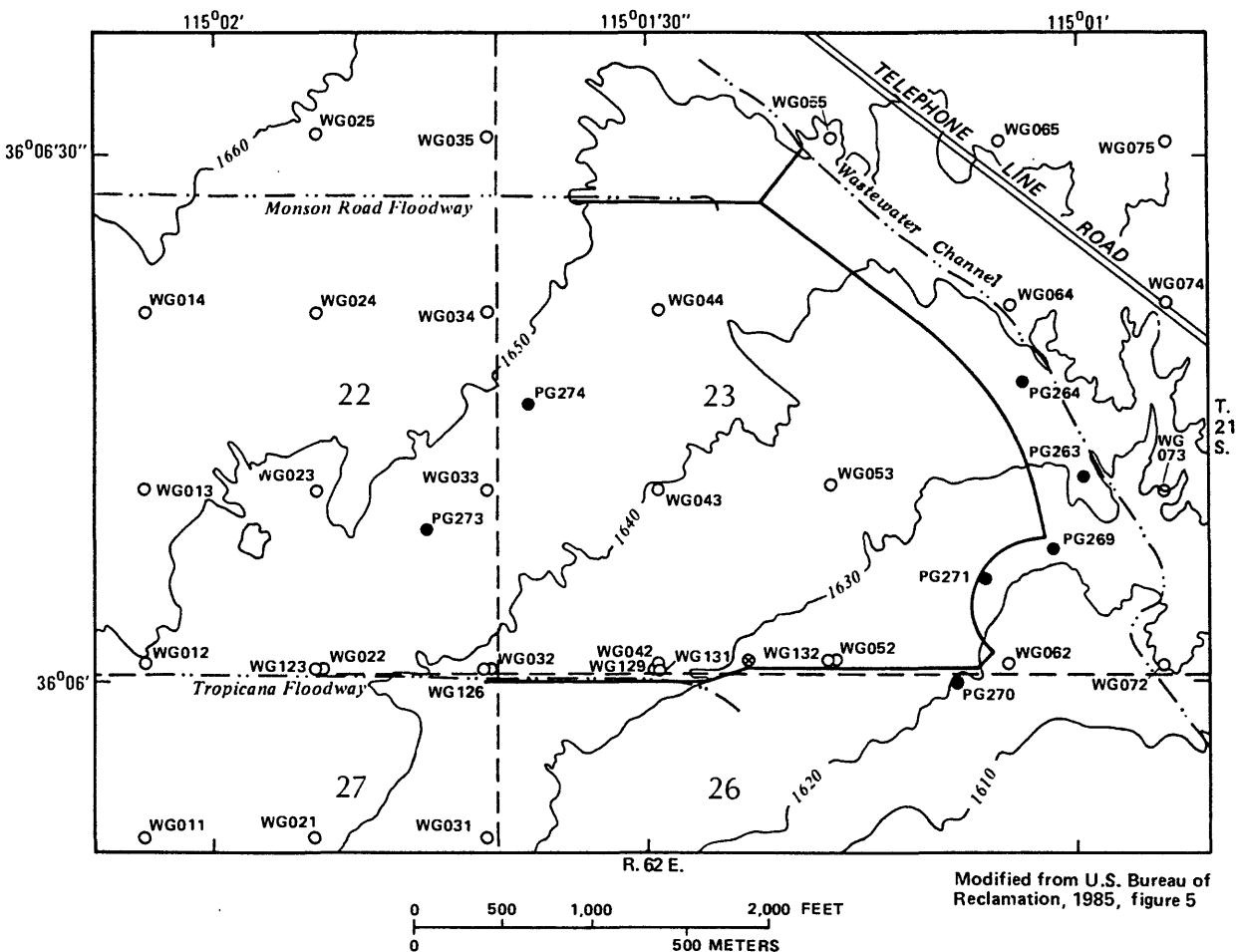
HYDROGRAPHIC BASIN BOUNDARY



URBAN AREA

LAS VEGAS WASTEWATER TREATMENT FACILITY

FIGURE 1.--Location and general features of (A) Las Vegas Valley (modified from Dettinger, 1987, figure 1) and (B) the Whitney study area.



EXPLANATION

— 1580 —

TOPOGRAPHIC CONTOUR -- Shows land-surface altitude. Contour interval 20 feet, with dotted supplementary 10-foot contours. Datum is sea level

FIGURE 1.--Continued.

EXPLANATION

— DIKE STRUCTURE	— 1650 — TOPOGRAPHIC CONTOUR — Shows land-surface altitude. Dashed where approximately located. Contour interval 10 feet. Datum is sea level
WG025 WG WELL SITE, WITH DESIGNATION	— — — SECTION LINE
PG273 PG WELL SITE, WITH DESIGNATION	
⊗ SURFACE-SALT SAMPLE SITE	

FIGURE 2.--Location of sampled wells.

At sites WG035, WG044, and WG053, as many as five wells were drilled to different depths during September and October 1985; these are referred to as cluster wells. Only the bottom 5 feet of PVC pipe at each cluster well is machine slotted; pea gravel was used to fill the space between the wall of the drill hole and the pipe. Designations at these cluster sites include the letters A-E to identify individual wells. The letter A is used to identify the shallowest well, B the next deepest well, and so on. For example, WG035A is the shallowest well at site WG035, and WG035E is the deepest.

Several wells were drilled by the Bureau of Reclamation using a rotary drill rig during October 1986. The purpose of the drilling was to: (1) add new wells at selected sites; (2) replace wells that had been destroyed; (3) replace the cluster wells at sites WG035, WG044, and WG053 because pea gravel that had been used to backfill around the pipe provided an avenue for vertical movement of water; or (4) add new wells near some existing wells that were slotted from the pipe bottom to land surface or above. The new wells that replaced destroyed or cluster site wells are designated with an N. Thus, WG044EN is the deepest new well drilled at site WG044. Wells drilled next to those slotted along the entire length of the pipe are designated with a B. For example, WG043B, with slotted pipe at only the bottom 2 feet, was drilled next to well WG043, which is slotted throughout its length.

The drilling technique used by the U.S. Bureau of Reclamation in October 1986 was considerably different from that used previously. A hole was made by pushing a 4-inch diameter tube into the ground. The tube generally was pushed 5 feet downward and then removed to collect sediment samples from it. The hole was deepened to the desired depth by alternately pushing and removing the tube. Generally, only small amounts of sediment collapsed into the hole as it was drilled, even below the zone that was saturated with water.

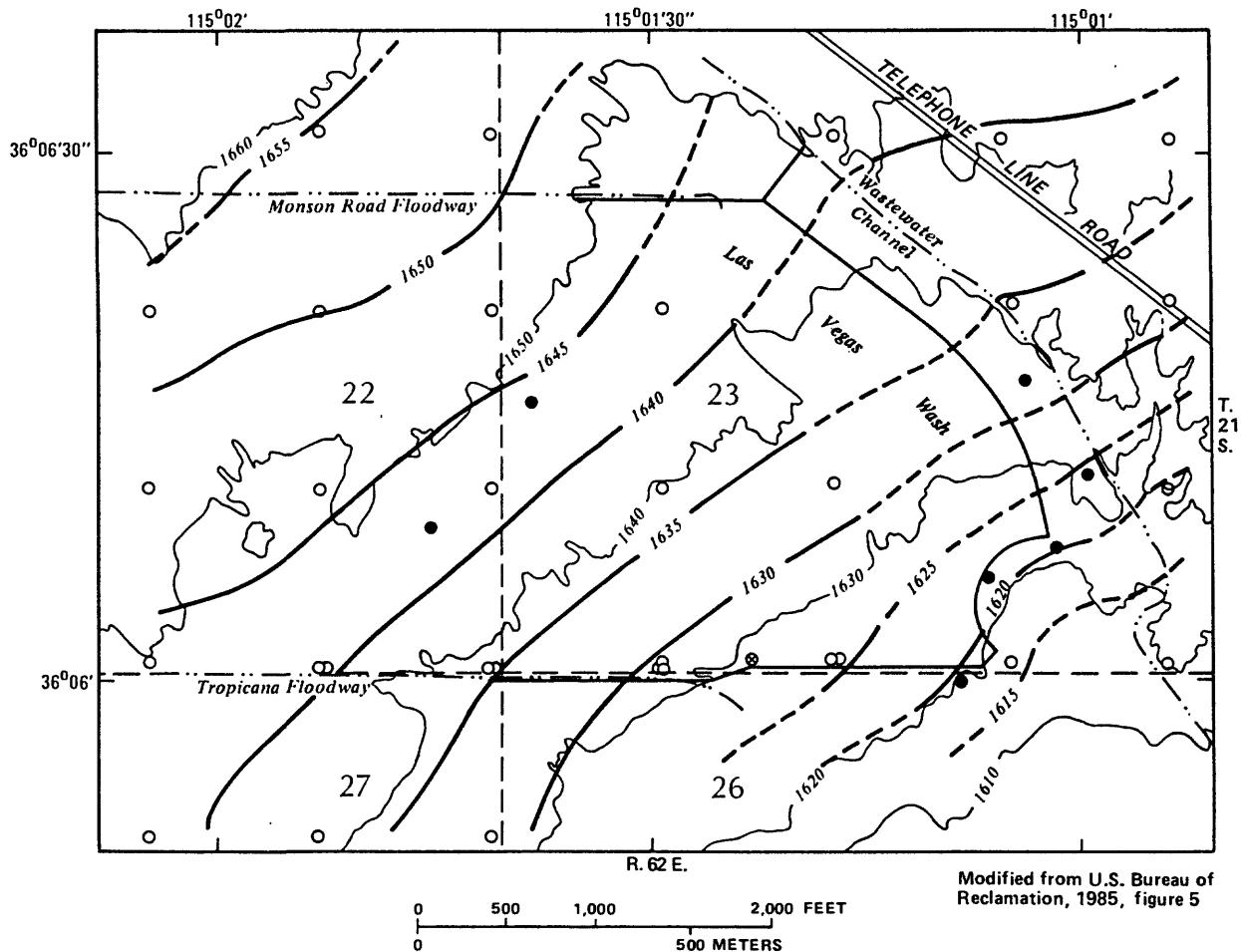
Each well was completed using 2-inch PVC pipe with 2 feet of machine-slotted PVC (0.001-inch slots) at the bottom. Silica sand (20 to 40 mesh) was used to fill the space between the wall of the hole and the slotted PVC and for 1 to 2 feet above the slotted pipe. Bentonite pellets were then used to fill at least 5 feet of the space around the pipe, and the remainder was backfilled with sediments brought up during the drilling process. Each well was covered with a capped 3-foot-long, 4-inch-diameter steel pipe set into a cement grout for protection.

Wells at site WG062 were constructed in February 1986 by the U.S. Geological Survey using both a 4-inch, solid-stem power auger and 3- to 4-inch hand augers because the area was too marshy for a large drill rig. The wells were completed in a manner similar to those drilled by the Bureau during October 1986.

Available information for each well (depth of hole, depth to water, drilling method, casing type and diameter, slotted interval, land-surface altitude) was entered into the Geological Survey's WATSTORE data base. Each well having information stored in WATSTORE is identified by the standard Geological Survey site-identification number, a local (Nevada) identification number, and a Bureau of Reclamation designation (referred to as an "owner number" in the data base). These identification numbers and other well data are listed in table 9 at the end of this report.

Acknowledgments

The U.S. Bureau of Reclamation, Boulder City, Nev., funded the project and provided information regarding the drilling and design of test holes drilled prior to this study. Especially helpful in providing previously collected data were D. Art Tuma, Joseph Kahl, Jr., and David J. Sobek. Christian Carlsen and Roberta C. Lunnis, (U.S. Geological Survey, Las Vegas, Nev.), were responsible for the collection of field data.


HYDROLOGY AND HYDROGEOLOGY OF THE WHITNEY STUDY AREA

Las Vegas Wash is a broad, low-lying area that drains Las Vegas Valley (figure 1). Sewage effluent from treatment plants upstream from the study area is the primary source of surface water entering the study area (figure 1B). Prior to the excavation of a wastewater channel in 1983 (figure 2), most of the treated effluent flowed in small channels choked with marshland vegetation. Urban runoff and ground-water seepage, including percolation from irrigation of lawns and golf courses, contribute to flow in the wash. Two floodways that convey storm runoff away from urban areas enter the study area from the west (figure 2). The Monson Road floodway parallels Monson Road, enters the study area from the west, and ends about one-half mile beyond (east of) the end of Monson Road. Flow from the end of the floodway meanders through marshlands on its way to the channel of Las Vegas Wash. The Tropicana floodway parallels Tropicana Avenue and also discharges urban runoff and ground-water seepage into the study area.

The surficial deposits are composed of Quaternary alluvial-fan and flood-plain sediments. North of Las Vegas Wash, the deposits are primarily alluvial-fan sediments derived from Frenchman Mountain (figure 1), and are a heterogeneous mixture of sand, gravel, silt, and clay. Flood-plain deposits are dominant elsewhere in the study area. These deposits generally are silts and clays at land surface; in the marshy areas, they include considerable organic matter from decaying plant materials. The deposits become coarser between depths of 10 and 25 feet, and generally consist of sand and silt with some gravel. Below about 25 feet, the deposits are predominately silts and clays. Thickness of the surficial deposits is not precisely known.

The Muddy Creek Formation of late Tertiary age, consisting primarily of clay and silt, is thought to underlie the surficial deposits, but it has not as yet been absolutely identified in the study area. A reddish silty clay, which could be the Muddy Creek Formation, was encountered in a test hole at a depth of about 30 feet at site WG062 (D.E. Prudic, U.S. Geological Survey, written communication, 1987). The lateral extent of the clay found in test hole WG062 is uncertain; however, a pronounced increase in the resistance to drilling was noted at depths between 20 and 30 feet in several test holes (U.S. Bureau of Reclamation, Boulder City, Nev., written communication, 1986). The depth at which the resistance to drilling increased was interpreted by the U.S. Bureau of Reclamation as the top of the Muddy Creek Formation, which was assumed to be a resistant clay.

The coarser sediments in the surficial deposits constitute the principal near-surface aquifer in the study area. The general direction of ground-water flow in this shallow upper unit is from northwest to southeast, approximately paralleling the course of Las Vegas Wash (figure 3). The water table is generally 1 to 10 feet below land surface, except where the land surface rises up the fan toward Frenchman Mountains. In this area, which lies north of the wastewater channel, the depth to water may be more than 20 feet.

EXPLANATION

—	DIKE STRUCTURE	●	PG WELL SITE
— 1640 — —	WATER-TABLE CONTOUR — Shows altitude of water table. Dashed where approximately located. Contour interval 5 feet. Datum is sea level	— 1630 — —	TOPOGRAPHIC CONTOUR — Shows land-surface altitude. Dashed where approximately located. Contour interval 10 feet. Datum is sea level
○	WG WELL SITE	— - - - -	SECTION LINE

FIGURE 3.--Water-table altitude, March 1986 (modified from T.J. Burbey, U.S. Geological Survey, written communication, 1987).

Several sediment samples collected during test drilling in October 1986 and February 1987 were analyzed by x-ray diffraction to identify the types of minerals present in the sediments. Results of the analyses are shown in table 1. In general, the deposits consist primarily of quartz, calcite, and dolomite, and the predominant clay minerals are smectite and illite. Seven samples contained 1 to 15 percent gypsum. One sample of the reddish silty clay that may be from the Muddy Creek Formation was collected from test hole WG062. It consists mostly of dolomite, calcite, and quartz, but contains no detectable gypsum. Results of analyses of surface salt collected near a pit midway between sites WG042 and WG052 (location of sample is shown in figure 2) are also included in table 1.

TABLE 1.--Bulk x-ray diffraction analyses of 10 sediment samples collected during the drilling of wells in October 1986 and February 1987. Well locations are shown in figure 2.

[Mineral abundances are reported as percent by weight, except as follows: M, major constituent; m, minor; tr, trace; ?, tentative identification; nd, not detected; <, less than. Analyzed by University of Utah Research Institute, Earth Science Laboratory.]

Mineral	Sur- face salts ¹	U.S. Bureau of Reclamation well designation and sample depth, in feet								
		WG044A 3-6	WG044A 9-12	WG053A 0-3	WG053A 26-29	WG062 6.4-7	WG062 12-12.6	WG062 21.5-22.5	WG062 32-33	WG071 2.5-3
Quartz	7	17	13	40	32	25	15	47	13	21
Potassium feldspar	1	5	7	8	6	5	3	3	5	6
Plagioclase	3	6	9	11	5	8	4	3	5	6
Calcite	4	3	43	10	19	22	24	22	21	24
Dolomite	8	18	13	15	19	18	11	13	40	18
Gypsum	9	15	nd	4	4	1	nd	1	nd	1
Halite	15	nd	nd	nd	nd	nd	nd	nd	nd	nd
Bloedite ²	M	nd	nd	nd	nd	nd	nd	nd	nd	nd
Hydromagnesite ²	m	nd	nd	nd	nd	nd	nd	nd	nd	nd
Nesquehonite	nd	m?	nd	nd	nd	nd	nd	nd	nd	m
Siderite	nd	3	nd	nd	nd	nd	nd	nd	nd	nd
Amphibole	nd	1	1	nd	nd	1	nd	nd	nd	2
Smectite	1	11	7	7	7	9	6	4	7	11
Illite	1	5	5	5	6	5	5	3	7	7
Kaolinite	tr	2	1	tr	1	1	tr	nd	1	2
Palygorskite	2	nd	nd	nd	nd	nd	nd	nd	nd	nd
Sepiolite	tr	nd	1	tr	1	1	tr	nd	1	nd
Other	<48	14	nd	nd	nd	3	32	5	nd	2

¹ Sample of surface salts was collected in October 1986 near a pit about midway between sites WG042 and WG052. Sample-site location is shown in figure 2.

² No standards available.

GROUND-WATER SAMPLING AND ANALYSES

Sampling Procedures

Each monitoring well was purged of at least three well volumes before sampling to obtain water representative of the aquifer. Samples were obtained by using a surge pump or a 1-3/4-inch Teflon¹ bailer, depending on the depth of the well and the length of the water-level recovery period. Both the surge pump and bailer were thoroughly rinsed with deionized water between wells to reduce the potential of contamination.

Once a sufficient quantity of water had been removed from a well, a water sample was collected. At least three 250-mL (milliliter) polyethylene sample bottles were used. One was filled with unfiltered and untreated water. A second was filled with water filtered through a pre-rinsed 0.45-micrometer pore-size filter but was untreated. A third bottle, for cation analysis, was filled with filtered water that was acidified with nitric acid to a pH of about 1.5 (Wood, 1976, p. 7). At selected wells, filtered water was added to an opaque, 250-mL polyethylene bottle and treated with a mercuric chloride tablet (a tablet contains about 10 milligrams mercuric ion as mercuric chloride in a 150 milligram sodium chloride base), then chilled immediately in ice (to about 4 °C) and kept chilled until it was analyzed for nutrients. Water temperature, pH, specific conductance, and alkalinity were determined on-site at the time of sample collection.

Ground-water samples for dissolved constituents were collected from 41 wells between April 28 and May 3, 1986, and from 36 wells during September 22-28, 1986 (table 10). A few of the wells were destroyed by vandals between the sampling dates. In October 1986, 17 water samples were collected from new wells drilled at the cluster-well sites WG035, WG044, and WG053. Ground-water samples also were collected from 49 wells during January 12-18, 1987, and from 43 wells during June 1-4, 1987 (table 10). Supplemental field measurements of water temperature, specific conductance, and dissolved oxygen were made at selected wells in April 1987.

Analyses of Water Quality

Water samples for analysis of major dissolved constituents were delivered to the U.S. Bureau of Reclamation Soils Laboratory in nearby Boulder City, Nev. Analytical results from the Bureau of Reclamation Soils Laboratory are stored in their computer data base at Boulder City, Nev. The analytical results are given in table 10 at the end of this report.

A few duplicate samples were sent to the U.S. Geological Survey laboratory in Arvada, Colo. Water samples for nutrient analysis were also sent to the same Geological Survey laboratory. The analytical methods used by the U.S. Geological Survey laboratory for the analyses of inorganic substances and nutrients in water are discussed by Fishman and Friedman (1985). Analyses of water samples done by the U.S. Geological Survey laboratory are stored in the Survey's WATSTORE data base. Results are given in table 2.

¹ The use of trade or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

TABLE 2.--Comparison of analytical results from U.S. Geological Survey and U.S. Bureau of Reclamation laboratories for dissolved constituents in ground-water samples collected during the period from April 1986 through January 1987

[All values are in milligrams per liter rounded to two significant figures; --, not determined. Well locations are shown in figure 2]

U.S. Bureau of Reclamation well designation	Sample date	Ana- lyzing agency ¹	Dis- solved solids ²	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Sulfate (SO ₄)	Chlo- ride (Cl)	Silica (Si)
WG013	01-13-87	USGS USBR	10,300 10,500	610 720	480 510	1,800 1,700	250 260	3,700 3,600	3,000 3,000	74 73
WG014	04-29-86	USGS USBR	21,800 21,800	370 440	1,600 1,600	3,200 3,300	660 820	9,700 9,700	3,600 3,700	51 53
WG014	01-13-87	USGS USBR	^a 19,900 27,500	450 560	1,800 2,000	4,400 4,100	830 910	13,000 12,000	4,900 4,500	52 42
WG022	04-29-86	USGS USBR	5,350 5,280	670 720	270 250	500 440	50 54	2,800 2,300	910 820	-- 74
WG025	05-01-86	USGS USBR	7,640 6,760	480 490	420 420	830 800	78 94	4,100 3,300	1,100 910	78 75
WG035CN	01-17-87	USGS USBR	5,950 6,240	380 460	420 440	660 630	42 46	3,400 3,100	330 530	86 52
WG044B	04-30-86	USGS USBR	7,490 7,260	500 500	510 510	780 770	85 98	4,000 3,700	760 710	100 92
WG052	05-03-86	USGS USBR	8,550 8,620	510 550	640 660	900 910	73 85	4,700 4,300	980 1,000	82 75
WG055	05-01-86	USGS USBR	3,670 3,430	550 480	130 160	280 230	28 30	2,000 1,800	310 270	97 88
WG064	05-01-86	USGS USBR	3,240 3,160	560 610	80 110	200 190	23 24	1,800 1,700	240 250	-- 77
WG072	05-02-86	USGS USBR	4,690 4,720	590 620	210 230	450 430	41 45	2,400 2,200	700 630	-- 112
WG075	05-02-86	USGS USBR	7,520 7,440	570 590	470 490	960 900	76 87	4,000 3,600	820 990	-- 27
WG131	01-14-87	USGS USBR	7,500 7,520	570 630	470 510	850 830	57 69	4,000 3,600	870 1,000	83 70
PG273	01-14-87	USGS USBR	5,650 5,680	500 540	280 280	680 680	37 39	3,000 2,700	680 630	75 70

¹ USGS, U.S. Geological Survey laboratory, Arvada, Colo.; USBR, U.S. Bureau of Reclamation Soils Laboratory, Boulder City, Nev.

² Dissolved solids determined from residue at 180 degrees Celsius.

^a Dissolved solids as the sum of constituents is 26,000 milligrams per liter.

Quality Assurance

Since 1983, the Bureau of Reclamation Soils Laboratory in Boulder City, Nev., has participated in the Geological Survey standard-reference water sample (SRWS) program for quality-assurance purposes of concern to both agencies (Janzer, 1985). The U.S. Geological Survey laboratory also participates in the SRWS program, as well as a quality-assurance program sponsored by the U.S. Environmental Protection Agency. A description of the quality assurance program implemented for the U.S. Geological Survey laboratory is discussed by Friedman and Erdman (1982).

Statistics that summarize each semi-annual SRWS testing indicate that most analyses made by the Bureau of Reclamation Soils Laboratory were acceptable. As an added check during the study, a few samples collected in April and May 1986 and January 1987 were split and sent to both laboratories. The results are given in table 2. The analyses from both laboratories are generally within acceptable limits (± 5 percent). However, results from the Geological Survey laboratory were slightly lower for potassium and calcium and generally higher for sodium and sulfate than results from the Bureau of Reclamation laboratory. The sample-to-sample consistency of these differences suggests a slight bias in the analyses between the two laboratories.

Results from the SRWS testing program indicate that nitrate concentrations determined by the Bureau of Reclamation Soils Laboratory were periodically unacceptable. In recognition of this problem, the Bureau of Reclamation requested that nutrients in water from selected wells be analyzed by the U.S. Geological Survey. Although the primary purpose of the nutrient analyses was to determine the concentrations of the various forms of nitrogen, the analyses also allowed a comparison between nitrate concentrations determined by the Bureau of Reclamation Soils Laboratory and those determined from the Geological Survey laboratory. These results are given in table 3.

The Bureau of Reclamation Soils Laboratory analyzed only the combined oxidized forms of nitrogen (nitrate plus nitrite) and reported the concentrations as nitrate (David Hemphill, U.S. Bureau of Reclamation, oral communication, 1988). Analyses by the Geological Survey laboratory include the organic and ammonium forms of nitrogen, which, along with nitrate and nitrite, are reported as nitrogen. Analyses by the Bureau of Reclamation are recalculated from nitrate to nitrogen in table 3 for comparison with the Geological Survey data. In general, the analyses by the two laboratories are nearly the same when concentrations exceed 3 milligrams per liter as nitrogen (mg/L as N) but the Bureau of Reclamation results are slightly higher at concentrations less than 3 mg/L (table 3). Only 6 of the 28 analysis pairs differ by more than a factor of 2 and one pair differs by a factor of 10 (water sampled from well WG072 on January 18, 1987).

Differences in the concentrations of nitrate plus nitrite shown in table 3 may, in part, be related to the amount of ammonium in the samples and to differences in the sampling procedures. Sampling procedures for nutrient analyses were described in the section "Sampling Procedures." Briefly, filtered water was poured into an opaque polyethylene bottle; mercuric chloride was then added as a preservative, and the samples chilled to about 4 °C. The samples were kept chilled until analyzed. These procedures, which are standard for nutrient analyses by the U.S. Geological Survey, are done to reduce the possibility of changes in nutrient concentrations between the time of sample collection and analyses.

TABLE 3.--Comparison of analytical results from U.S. Geological Survey and U.S. Bureau of Reclamation laboratories for dissolved nitrogen concentrations in ground-water samples collected during the period from April 1986 through January 1987

[All values are in milligrams per liter as nitrogen; --, not determined.
Well locations are shown in figure 2]

U.S. Bureau of Reclamation well designation	Sample date	Analytical results by U.S. Geological Survey ¹					Analytical results by U.S. Bureau ² of Reclamation	
		Total nitrogen	Ammonium (NH ₄)	Organic nitrogen	Nitrate (NO ₃)	Nitrite (NO ₂)	Nitrate plus nitrite	Nitrate plus nitrite
WG014	04-29-86	3.3	0.53	2.3	--	--	0.33	1.0
	09-23-86	1.1	.51	.00	0.55	0.08	.63	1.4
	01-13-87	1.7	.52	1.0	.21	.01	.22	.9
WG022	04-29-86	7.9	.35	.15	--	--	7.4	6.8
	09-23-86	9.3	.30	1.2	7.8	.01	7.8	7.5
	01-13-87	8.5	.27	1.4	6.8	.05	6.8	6.6
WG025	05-01-86	12	.20	.30	11	--	11	10
	09-25-86	12	.23	.87	11	.03	11	10
	01-17-87	12	.20	1.0	11	.04	11	11
WG042	01-16-87	7.9	.20	1.4	6.3	<.01	6.3	5.9
WG044B	04-30-86	2.8	.22	.18	--	--	2.4	2.5
	09-25-86	3.4	.22	.58	2.6	<.01	2.6	2.7
WG044BN	01-13-87	3.8	.20	.90	2.7	<.01	2.7	2.7
WG052	05-03-86	--	--	--	--	--	2.8	3.2
	09-23-86	5.2	.29	.41	4.4	.11	4.5	4.5
WG055	05-01-86	2.2	1.1	.00	--	--	1.1	1.4
	09-25-86	6.0	2.2	.30	3.5	.03	3.5	4.1
	01-17-87	10	.27	2.0	7.6	.18	7.8	7.0
WG064	05-01-86	18	6.5	1.7	--	--	10	11
	01-17-87	9.7	2.9	.80	6.0	.02	6.0	6.5
WG072	05-02-86	3.6	2.8	.20	--	--	.78	3.8
	09-27-86	5.7	3.6	.80	1.3	<.01	1.3	1.6
	01-18-87	4.3	3.8	.10	.41	.01	.42	6.5
WG075	05-02-86	46	.23	.37	--	--	45	48
	09-27-86	26	.24	.36	25	<.01	25	23
	01-17-86	29	.22	2.5	26	<.01	26	23
PG263	09-24-86	5.2	4.4	0	.8	.01	.8	2.2
PG271	01-16-87	.8	.18	.52	.1	<.01	.1	.16

¹ Analyses by U.S. Geological Survey were done on ground-water samples that were filtered using a 0.45-micrometer filter and stored in 250-milliliter opaque polyethylene bottles. The samples were treated with 10 milligrams of mercuric ion as mercuric chloride in a 250-milligram sodium-chloride base and kept chilled to about 4 °C.

² Analyses by U.S. Bureau of Reclamation Soils Laboratory were done on ground-water samples that were filtered using a 0.45-micrometer filter and stored in 250-milliliter translucent polyethylene bottles. The samples were neither treated nor chilled.

Water samples sent to the U.S. Bureau of Reclamation Soils Laboratory were collected by pouring filtered water into a translucent polyethylene bottle. The samples were not chilled but were delivered to the laboratory once the samples from all wells were collected. No special treatment was given to the samples at the laboratory, and they were stored at room temperature until analyzed. These procedures may allow for changes in the concentrations of nutrients. In samples where oxygen is abundant, some or all of the ammonium could be converted into nitrate or nitrite prior to analyses. In samples where oxygen is depleted, both nitrate and nitrite may be converted into ammonium or nitrogen gas. Thus, the nitrate-plus-nitrite concentrations determined by the Bureau of Reclamation could range from values that are less than those determined by the Geological Survey laboratory to the amount of total nitrogen in table 3. Interpretation of nitrate-plus-nitrite values determined by the Bureau of Reclamation must, therefore, be viewed in the context of these analytical procedures.

Even though efforts were made to reduce errors in the sampling of ground water and in the analyses, and quality-control procedures are routinely done by both laboratories, concentrations reported as representative of ground-water quality at a specific well must be interpreted with caution.

GROUND-WATER QUALITY

Chemical Character

The quality of ground water in the Whitney study area is controlled (1) by the quality of recharge to the area, either from local sources or from sources that originate outside the study area, and (2) by the physical, chemical, and biological processes in the shallow subsurface within the area. Ground water in the study area is primarily from three sources: lateral ground-water inflow from areas to the west and northwest; seepage and lateral ground-water inflow of sewage effluent adjacent to the wastewater channel and upstream from the study area; and surface-water inflow from the Monson Road floodway (figure 1). Seepage from surface flow mixes with shallow ground water in the eastern one-third of the study area. Surface flow from the Tropicana floodway (figure 1) normally does not seep into the ground in the western half of the study area because adjacent ground-water levels normally are higher than the water in the floodway.

Occasionally, floods may result in seepage of surface water into the shallow ground-water body, which in turn may influence the quality of the ground water. However, only one flood of short duration occurred between April 1986 and June 1987. Its effect could not be separated from the normal flow in the Monson Road floodway and the surface flow of treated effluent. Thus, the effect floods may have on ground-water quality in the study area is uncertain, and is not discussed herein.

The primary processes within the Whitney study area that influence or control the quality of ground water include: (1) mixing of water from sewage effluent and urban and storm runoff with ground water; (2) application of sludge from the nearby wastewater treatment facilities onto the ground in the study area; (3) dissolution of minerals as water flows through the subsurface sediments; and (4) concentration of dissolved constituents in ground water near land surface due to evapotranspiration. The effect of the sludge on dissolved nitrate and nitrite concentrations in ground water is described in a separate section.

The Whitney study area represents the distal end of a much larger ground-water flow system. The average chemical composition of ground-water samples collected from wells in the Whitney study area is compared with potential sources of recharge in table 4. Results of the tabulation suggest that shallow ground water in Las Vegas Valley has a generally higher dissolved-solids concentration than deeper ground water, and that shallow ground water sampled in the Whitney study area is generally more concentrated than shallow ground water sampled elsewhere on the valley floor.

Dissolved anions in the ground water within the Whitney study area are dominated by sulfate. An apparent evolutionary trend in dominant anions from bicarbonate in waters sampled from possible source areas to sulfate in the study area can be interpreted from the relations shown in figure 4 and the analyses listed in table 4. No particularly dominant cation is discernible, although water from possible source areas to the west generally contains a lower proportion of sodium than does ground water in the Whitney study area.

TABLE 4.--Average chemical composition of (1) shallow ground water in the study area and (2) potential ground-water sources

[Milligrams per liter; --, not determined]

Source	Dissolved solids	Calcium	Magnesium	Sodium	Potassium	Bicarbonate	Sulfate	Chloride	Nitrate
Whitney area ¹	6,587	539	415	737	83	282	3,158	800	30
Ground water elsewhere below floor of Las Vegas Valley									
Shallow ²	2,824	303	212	262	34	242	1,569	311	13
Intermediate ³	640	89	55	^a 35	(a)	120	267	45	3.2
Deep ⁴	295	40	35	12	2	237	47	9	2.3
Spring Mountains ⁵	266	64	23	2.3	.6	303	12	2.2	--
Colorado River ⁶	737	85	28	92	13	128	310	88	--

¹ Average of 53 samples collected during September 1986 for this study.

² Average of 35 samples collected from depths less than 100 feet (Dinger, 1977, p. 48).

³ Average of 250 samples collected from depths of 101 to 300 feet (Dinger, 1977, p. 48).

⁴ Average of 3 samples collected from a depth greater than 300 feet (Dinger, 1977, p. 48).

⁵ Average of 4 spring samples (U.S. Geological Survey, data in WATSTORE data base).

⁶ Average of 4 samples of Colorado River water imported into Las Vegas Valley (Dinger, 1977, p. 48).

^a Values reported as sodium plus potassium, expressed as sodium.

EXPLANATION

- SHALLOW GROUND WATER IN STUDY AREA -- Samples collected during September 1986
- 2. POTENTIAL SOURCES -- See table 4 for water-chemistry data
 - 1 Average for 35 samples of shallow ground water (well depths less than 100 feet; Dinger, 1977, p. 48)
 - 2 Average for 250 samples of intermediate ground water (well depths range from 101 to 300 feet; Dinger, 1977, p. 48)
 - 3 Average for 3 samples of deep ground water (well depths greater than 300 feet; Dinger, 1977, p. 48)
 - 4 Average for 4 samples collected from springs in the Spring Mountains west of Las Vegas (U.S. Geological Survey, data in WATSTORE data base)
 - 5 Average for 4 samples of Colorado River water imported to Las Vegas Valley (Dinger, 1977, p. 48)

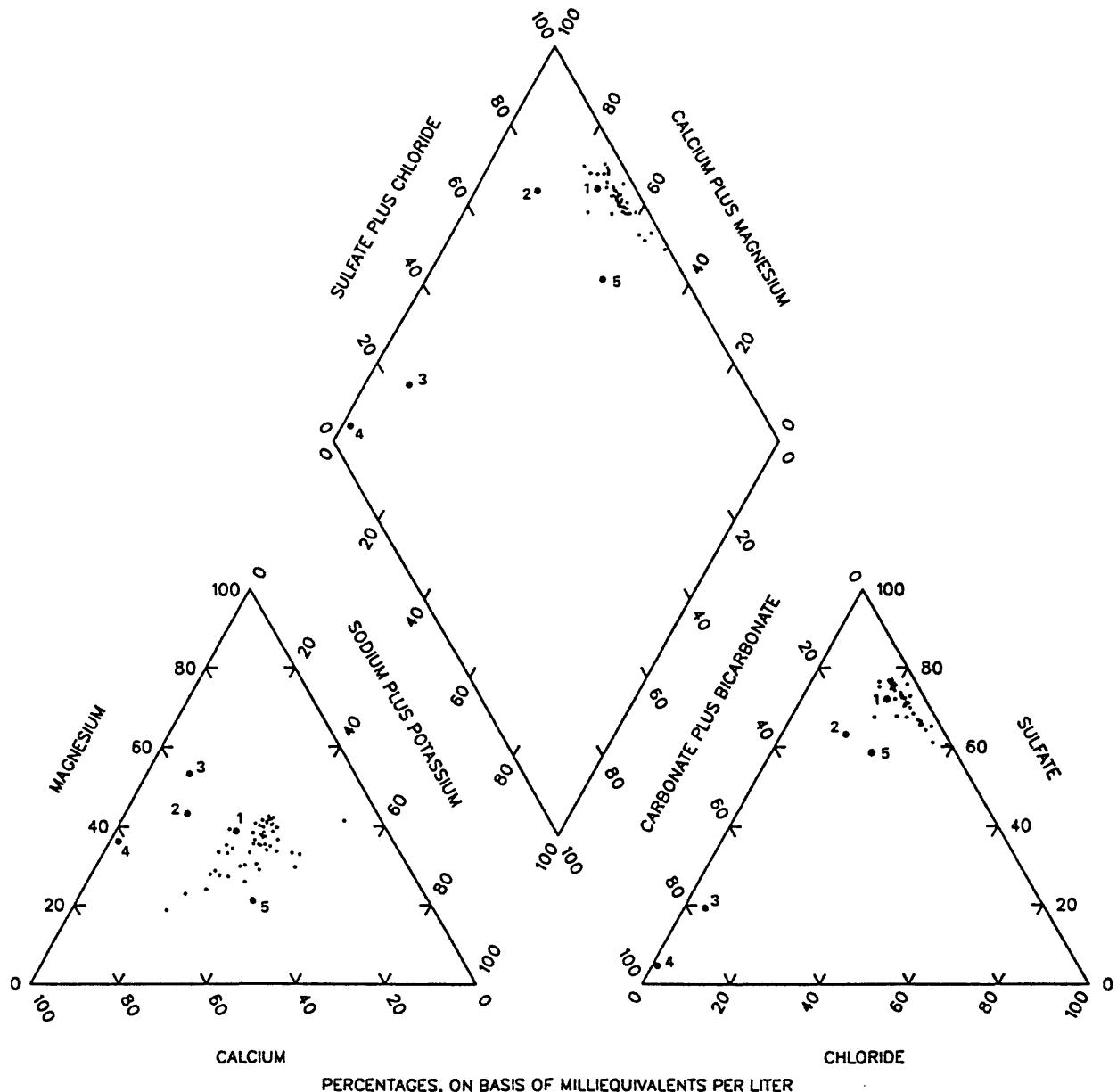


FIGURE 4.--Chemical character of (1) shallow ground water in the study area and (2) potential sources of the ground water.

A summary of water quality from samples collected during the study is given in table 5. Results of analyses summarized in table 5 are given in table 10. Table 5 includes one to four samples for each well in the study area and, thus, the statistics represent variations in space and time. Most major constituents range in concentration over more than an order of magnitude except for calcium, bicarbonate, and silica. For all samples, dissolved-solids concentrations range from 1,840 to 27,500 mg/L and have a median of 6,140 mg/L (mean, 6,550 mg/L). The highest dissolved-solids concentrations in sampled water are from two wells at site WG014; they range from 18,600 to 27,500 mg/L (table 10). Removing these analyses from the statistics results in lower maximum concentrations for most major constituents and slightly lower mean concentrations, but the median concentrations are not greatly affected (table 5).

Sulfate is the dominant anion in all ground-water samples, accounting for nearly half of the mean dissolved-solids concentration. The dominant cations are sodium, calcium, and magnesium.

TABLE 5.--Statistical summary of data on ground-water quality

[Temperature, pH, and specific conductance were determined at time of sample collection. Laboratory analyses of dissolved solids and constituents determined by U.S. Bureau of Reclamation Soils Laboratory, Boulder City, Nev. Milligrams per liter, except as indicated]

Constituent or property	Number of analyses	Mean	Median	Standard deviation	Minimum	Maximum
<u>All data</u>						
Temperature ¹	189	18.7	19.0	2.9	9.0	24.5
pH	191	7.2	7.2	.15	6.9	7.9
Specific conductance ²	191	7,100	6,500	3,300	2,500	26,000
Dissolved solids ³	192	6,550	6,140	3,310	1,840	27,500
Calcium	192	540	540	85	190	750
Magnesium	192	410	400	260	93	2,000
Sodium	192	730	650	560	190	4,100
Potassium	192	82	57	115	15	910
Bicarbonate	192	280	280	77	120	570
Sulfate	192	3,100	3,000	1,400	800	12,000
Chloride	192	800	660	690	140	4,900
Silica	192	74	75	16	21	120
<u>Excluding site WG014 (anomalously high dissolved solids)</u>						
Temperature ¹	183	19.0	19.0	2.9	9.0	24.5
pH	185	7.2	7.2	.16	6.9	7.9
Specific conductance ²	185	6,500	6,500	1,400	2,500	12,000
Dissolved solids ³	186	6,020	6,110	1,350	1,840	10,500
Calcium	186	540	540	86	190	750
Magnesium	186	370	400	120	93	700
Sodium	186	640	640	220	190	1,700
Potassium	186	64	57	36	15	310
Bicarbonate	186	280	280	68	120	570
Sulfate	186	2,900	3,000	660	800	5,000
Chloride	186	680	650	280	140	3,000
Silica	186	75	76	16	21	120

¹ Degrees Celsius (°C).

² Microsiemens per centimeter at 25 °C.

³ Residue on evaporation at 180 °C.

Linear correlation coefficients among major constituents and dissolved solids reveal a strong statistical relation between dissolved solids and magnesium, sodium, potassium, sulfate, and chloride (table 6). Correlation among the latter five constituents is statistically significant, with coefficients ranging from 0.90 to 0.98. Ground water at well site WG014 contains an anomalously high dissolved-solids concentration which, as a result, accounts for a large part of the total range in concentration. Even if the data for this well are removed from the statistical evaluation, the correlation coefficients among dissolved solids and magnesium, sodium, and sulfate remain favorable, ranging from 0.82 to 0.96 (table 6).

Calcium, bicarbonate, and silica yield little or no correlation with dissolved solids or other ions. These three constituents may be controlled by processes that differ from those that control the ions correlated with dissolved solids. For example, calcium and bicarbonate may be affected by mineral solubility, and silica is near or at saturation with respect to amorphous silica in all samples.

TABLE 6.--Correlation coefficients (*r* values) among¹
dissolved solids and major ions in ground-water samples¹

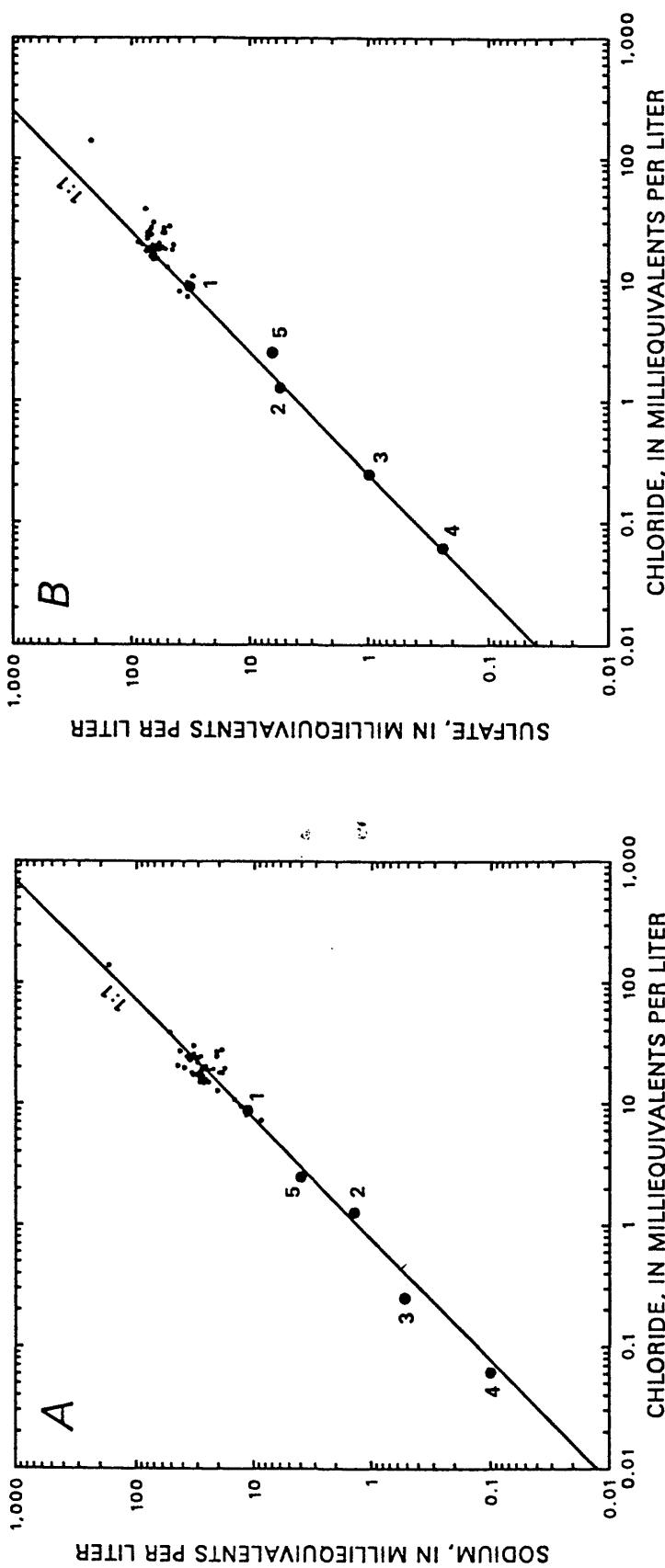
[Analyses by U.S. Bureau of Reclamation Soils Laboratory, Boulder City, Nev.]

Constituent	Dissolved solids	Sodium	Potas- sium	Calcium	Magnesium	Chloride	Sulfate	Bicar- bonate	Nitrate
<u>All data (including site WG014)</u>									
Sodium	0.99								
Potassium	.92	0.93							
Calcium	.10	.06	0.07						
Magnesium	.98	.96	.90	0.02					
Chloride	.95	.96	.90	.23	0.91				
Sulfate	.99	.97	.90	.06	.98	0.90			
Bicarbonate	.53	.51	.50	-.29	.59	.38	0.56		
Nitrate	.00	.02	- .03	.08	-.04	.01	-.01	-0.32	
Silica	-.16	-.20	-.18	.13	-.14	-.20	-.15	.13	-0.39
<u>Excluding site WG014 (anomalously high dissolved solids)</u>									
Sodium	0.94								
Potassium	.66	0.68							
Calcium	.11	-.04	0.10						
Magnesium	.93	.82	.54	-0.08					
Chloride	.73	.69	.59	.46	0.56				
Sulfate	.96	.91	.62	.02	.93	0.58			
Bicarbonate	.23	.18	.11	-.36	.38	-.23	0.31		
Nitrate	.22	.31	.20	.09	.10	.33	.17	-0.31	
Silica	.02	-.10	-.04	.14	.05	-.11	.03	.26	-0.42

¹ The correlation coefficient (*r* value) is used to describe the intensity and direction of interdependence between two variables. In this table, it is a way of evaluating how well concentrations of major ions relate linearly to concentrations of other major ions or to dissolved-solids concentrations. If the correlation coefficient approaches zero, no linear correlation exists between two variables. If the correlation coefficient approaches either +1 or -1, then the values of the two variables closely correlate linearly. A positive correlation coefficient indicates a relation where both variables either increase or decrease. A negative correlation coefficient indicates that one variable decreases as the other increases.

A plot of sodium as related to chloride, in samples from shallow ground water and from potential recharge sources, indicates that the two constituents increase proportionally (figure 5A). Assuming that chloride behaves conservatively, this suggests the possibility of (1) the evaporative or transpirative concentration of sodium in ground water in the study area or (2) the dissolution of halite (NaCl) in the sediments. Halite was not detected in shallow sediments within the study area (table 1), but this does not rule out the possibility that the mineral is present in shallow sediments elsewhere in Las Vegas Valley. Halite is known to be present as lenses in the Muddy Creek Formation, which presumably underlies much of eastern Las Vegas Valley. If halite is present in the deeper sediments upgradient from the site, it could explain the relation in figure 5. Sodium and chloride concentrations in water collected from well site WG014 are much higher than those in water collected from wells elsewhere in the study area. Possible reasons for the elevated concentrations are discussed in the next section.

A similar plot (figure 5B) of sulfate as related to chloride, in samples from shallow ground water and from potential recharge sources, indicate that sulfate and chloride increase proportionately. However, data from well site WG014 plot to the right of the line of proportionality (figure 5B). This suggests that sulfate may be precipitating as gypsum (CaSO_4) in the vicinity of that well.


The computer program WATEQF (Plummer and others, 1976) was used to determine if ground water in the study area could be dissolving minerals or precipitating minerals. The program is used to calculate saturation indices [$\log(\text{IAP}/\text{KT})$, where IAP is the ion-activity product and KT is the temperature-dependent equilibrium constant for a specific chemical reaction] for each mineral. The minerals considered in the study area were calcite (CaCO_3), dolomite [$\text{CaMg}(\text{CO}_3)_2$], and gypsum (CaSO_4), on the basis of mineralogy of sediments in the study area (table 1) and water chemistry (table 10).

Saturation indices calculated for calcite, dolomite, and gypsum for water samples collected during September 1986 are shown in table 7 (careful sampling techniques were used and field measurements of pH and alkalinity were made on these samples). A saturation index ranging from 0.1 to -0.1 is assumed to indicate saturation of the water with respect to these minerals. A value greater than 0.1 indicates oversaturation (and possible mineral precipitation), whereas a value less than -0.1 indicates undersaturation (and possible dissolution).

Gypsum may be oversaturated and precipitating at well WG014 and water may be dissolving gypsum from the sediments at wells PG264 and PG271. Water collected from the other wells are at saturation with respect to gypsum.

Saturation indices for calcite indicate that the ground water in the study area is saturated to oversaturated with respect to this mineral. Therefore, calcite should be precipitating from the ground water in the study area. Examination of sediments collected during the drilling of wells at site WG062 found calcite nodules around root hairs to depths of about 15 feet, confirming that calcite was being precipitated in the study area. This may account for the relatively minor variation in calcium concentration and lack of linear correlation between calcium and dissolved-solids concentrations.

Saturation indices for dolomite indicate the ground water in the study area also is saturated to oversaturated with respect to this mineral. However, a kinetically slow reaction rate for dolomite (Bohn and others, 1979, p. 131) and an unfavorable calcium-to-magnesium ratio probably prevent dolomite from precipitating in the study area.

EXPLANATION

• SHALLOW GROUND WATER IN STUDY AREA - Samples collected during September 1986

2. POTENTIAL SOURCES – See table 4 for water-chemistry data

- 1 Average for 35 samples of shallow ground water (well depths less than 100 feet; Dinger, 1977, p. 48)
- 2 Average for 250 samples of intermediate ground water (well depths range from 101 to 300 feet; Dinger, 1977, p. 48)
- 3 Average for 3 samples of deep ground water (well depths greater than 300 feet; Dinger, 1977, p. 48)
- 4 Average for 4 samples collected from springs in the Spring Mountains west of Las Vegas (U.S. Geological Survey, data in WATSTORE data base)
- 5 Average for 4 samples of Colorado River water imported to Las Vegas Valley (Dinner, 1977, p. 48)

FIGURE 5.--Relation of (A) sodium and (B) sulfate to chloride for (1) shallow ground water in the study area and (2) potential sources of the ground water. Diagonal lines indicate position of equivalent (one-to-one) increases in sodium or sulfate relative to chloride with respect to average values for group 4.

TABLE 7.--Saturation indices of calcite, dolomite, and gypsum for ground-water samples collected in September 1986^a


Well name	SI _{calcite}	SI _{dolomite}	SI _{gypsum}	Well name	SI _{calcite}	SI _{dolomite}	SI _{gypsum}
WG011B	0.39	1.00	0.02	WG052	0.25	0.80	0.02
WG012	.14	.34	.00	WG053AN	.51	1.21	.02
WG012B	.63	1.20	.05	WG053BN	.40	.98	.03
WG013	.13	.09	.02	WG053CN	.44	1.09	.02
WG014	.22	1.28	.14	WG053DN	.32	.85	.04
WG021B	.42	.95	-.02	WG053EN	.79	1.87	.06
WG022	.18	.27	.01	WG055	.20	.16	-.03
WG023	.16	.36	.02	WG065	.21	.75	.01
WG024	.13	.54	-.06	WG072	.24	.42	-.01
WG025	.25	.71	-.05	WG073	.07	.36	.05
WG031	.12	.33	-.01	WG074	.33	.86	.06
WG033	.26	.74	.03	WG075	.18	.55	.04
WG034	.16	.59	.00	WG123	.16	.26	.07
WG035AN	.45	1.18	-.03	WG126	.28	.62	.02
WG035BN	.53	1.41	-.06	WG129	.11	.34	.00
WG035CN	.24	.81	-.07	WG132	.32	.88	.04
WG035DN	.29	.92	-.06	PG263	.29	.20	-.08
WG042	.15	.55	.02	PG264	.22	.49	-.29
WG043	.24	.80	-.08	PG269	.18	.26	.02
WG043B	.48	1.20	-.04	PG270	.45	1.04	.08
WG044BN	.45	1.17	-.01	PG271	.45	.90	-.21
WG044CN	.47	1.22	-.03	PG273	.29	.67	-.01
WG044DN	.36	.94	.02	PG274	.28	.83	-.05

^a See text for discussion of saturation indices (SI) and their geochemical significance.

Areal Differences in Chemical Character

Dissolved-solids concentrations decrease from more than 6,500 mg/L west of the marsh area to 3,000-5,000 mg/L in the marsh area (figure 6). The more dilute water in the marsh area may be due to seepage of treated effluent into the ground both upgradient from and within the study area. The dissolved-solids concentrations of surface water in the channel of Las Vegas Wash near well WG055 (figure 2) ranged from an average of 1,120 mg/L in 1970 to 1,570 mg/L in 1978 (Schmidt and Hess, 1980, p. 28). Dissolved-solids concentrations of water in the wastewater channel near well WG055 ranged from 1,290 to 1,530 mg/L for three dates in 1983 (Roline and Sartoris, 1984, table N-3). Prior to the excavation of the wastewater channel, much of the treated effluent flowed in small channels in the marsh area south of the new channel. Some treated effluent still entered the marsh area from the northwest and flowed through the marsh area during the study.

Water in the Monson Road floodway may also seep into the shallow ground water in the marsh area. The floodway ends in the study area and flow from it also meanders through the marsh area where it mixes with the treated effluent. Dissolved-solids concentrations ranged from about 680 to 4,500 mg/L for samples collected during three dates in 1983 (Roline and Sartoris, 1984, table N-3). The most dilute concentration (680 mg/L) may reflect urban runoff from lawn irrigation or storm runoff. The highest concentration is more indicative of shallow ground water in the western part of the study area and in areas farther west. During periods of little urban runoff or storm runoff, much of the flow in the floodway is from ground-water seepage.

EXPLANATION

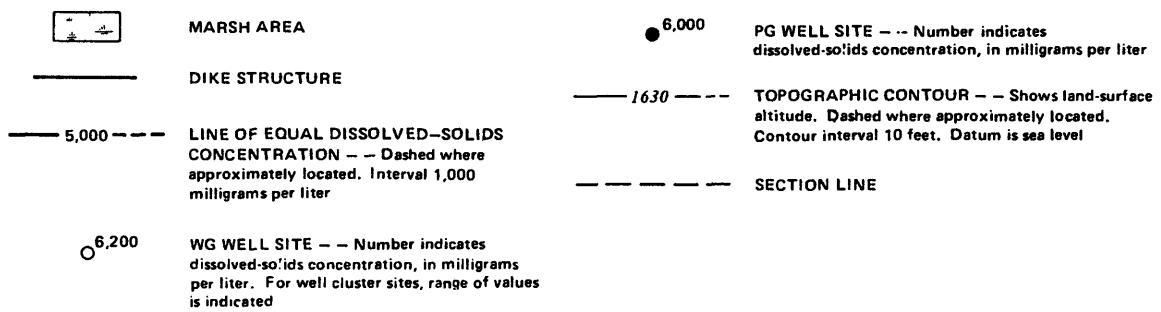


FIGURE 6.--Dissolved-solids concentrations, September 1986.

Further evidence that treated effluent is mixing with shallow ground water in the study area is provided by ammonium-nitrogen concentrations. Ammonium concentrations exceeded 1 mg/L as nitrogen in wells WG055, WG064, WG072, and PG263 (table 3). These wells are adjacent to the wastewater channel, and the concentrations suggest that the nitrogen-rich treated effluent may be seeping into the ground, at least seasonally, along parts of the channel. The average ammonium concentration in the wastewater channel near well WG064 is 14.6 mg/L as nitrogen (Rolinc and Sartoris, 1984, table N-4).

Dissolved-solids concentrations in water samples collected from wells WG014 and WG014B were anomalously high (range from 18,600 to 27,500 mg/L). The reason for this anomaly is unclear, because nearby well waters do not have similarly high concentrations. The occurrence of saline water in wells WG014 and WG014B could be attributed to a relatively recent source of contamination, because downgradient wells seem unaffected. Another possibility is that the water at wells WG014 and WG014B is influenced by upward-leaking water from the underlying Muddy Creek Formation that has dissolved gypsum and halite. The hypothetical saline water may then disperse and mix with less saline water in the shallow deposits, resulting in a much lower dissolved-solids concentration in downgradient wells. This hypothesis cannot be evaluated with current data because no study-area wells are completed solely in the underlying deposits (presumably the Muddy Creek Formation), and, therefore, hydraulic heads and the quality of water in the underlying deposits are unknown.

Vertical Variations in Chemical Character

Analyses of dissolved-solids concentrations at cluster-well sites WG035, WG044, and WG053 (location shown in figure 2) indicate that dissolved-solids concentrations are highest in the shallowest wells (figure 7). These higher concentrations are probably due to evapotranspiration during warmer months from April through September which results in the precipitation of dissolved solids in the capillary fringe above the water table. In the winter months, the water table rises and dissolves some of the minerals that formed during the summer months. This process, which has been previously discussed by Smith and Drever (1976, p. 1081) and Naff and others (1975), is most apparent in the shallowest well at site WG035 (well WG035AN, shown in figure 7).

The shallowest well at site WG044 (well WG044AN) does not show as great a change in dissolved solids as the shallowest wells at sites WG035 and WG053 (wells WG035AN and WG053AN in figure 7). In addition, the highest concentration at well WG044AN was for a sample collected in June rather than January 1987, whereas the January samples for wells WG035AN and WG053AN contained the highest concentration of dissolved solids. This difference can be explained by the location of the slotted interval compared with the location of the water table for each shallow well. The slotted interval for well WG044AN is farther below the water table than for either well WG035AN or WG053AN (figure 8). The lowest dissolved-solids concentrations of the three shallow wells are from well WG044AN, whereas the highest concentrations of dissolved solids are from well WG035AN where the water table is within the slotted interval. This suggests a thin layer of more saline ground water near the water table.

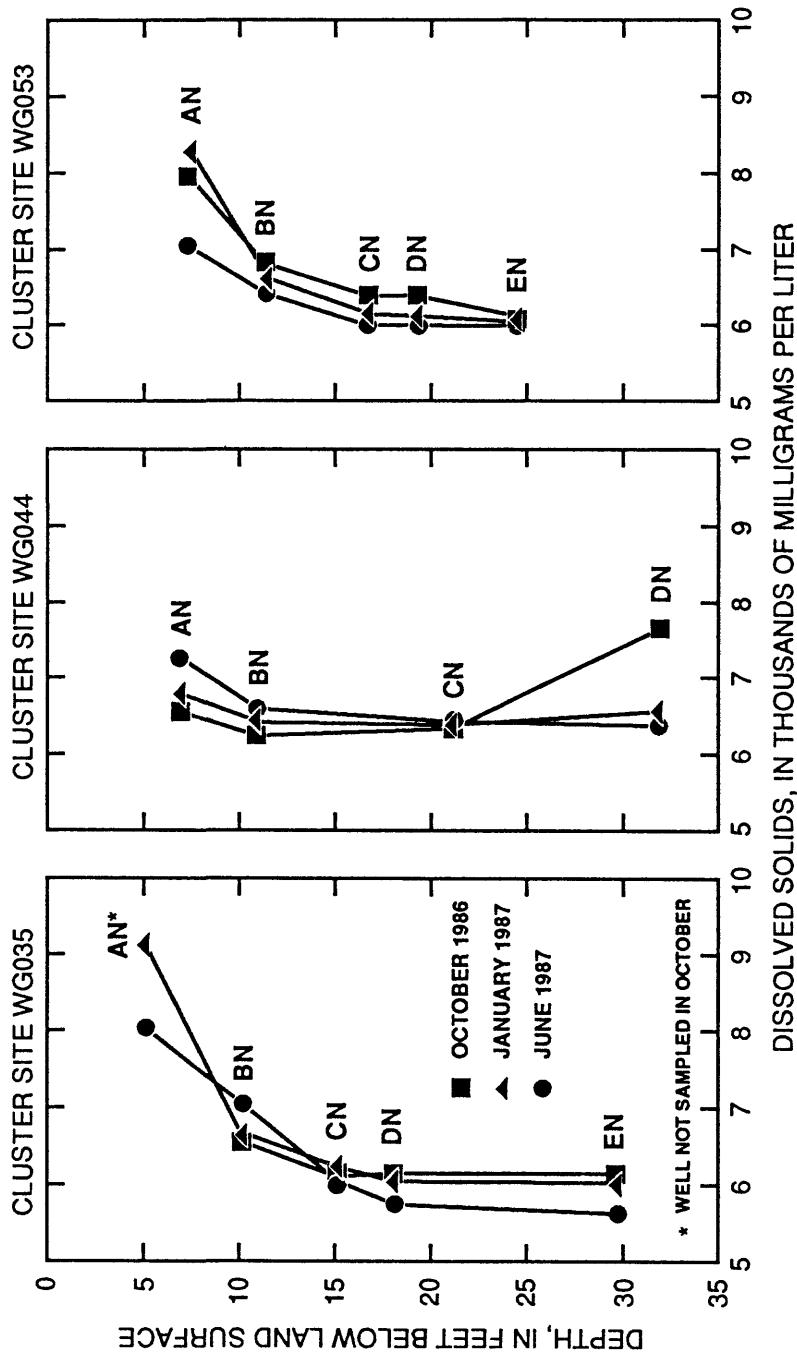


FIGURE 7.--Relation between dissolved-solids concentration and depth for water from well clusters at sites WG035, WG044, and WG053, October 1986-June 1987. These sites are aligned approximately parallel to the hydraulic gradient, with site WG035 farthest upgradient (see figure 2 for site locations).

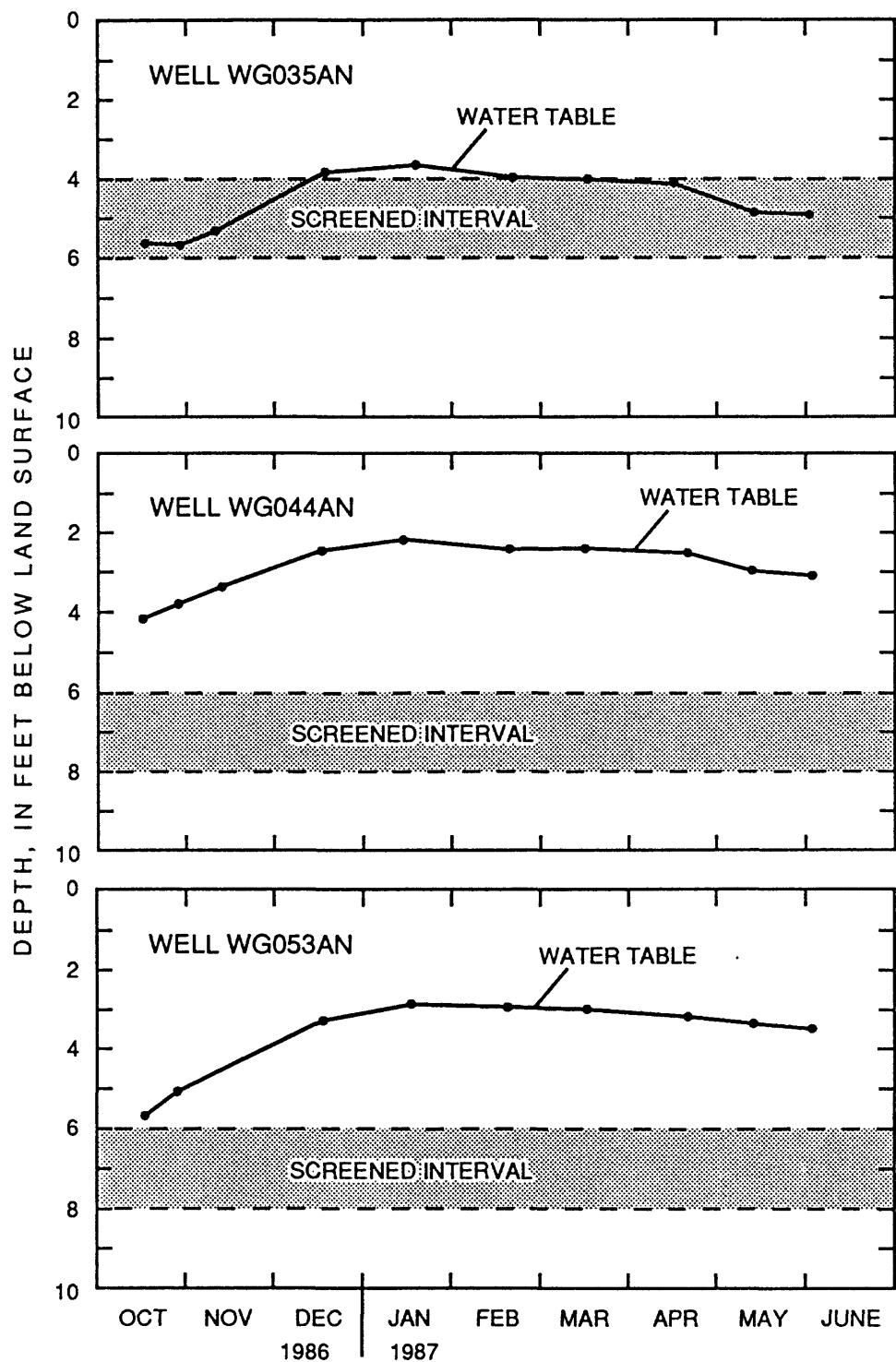


FIGURE 8.--Relation between water-table depth and position of screened interval for wells WG035AN, WG044AN, and WG053AN, October 1986-June 1987.

The presence of ubiquitous salt crusts at land surface over parts of the study area testifies to evaporative losses of water from the ground. A sample of the salt crust was collected near a pit midway between sites WG042 and WG052 and analyzed for mineral content using x-ray diffraction. The results of the analyses are shown in table 1. Analyses of water samples collected in adjacent wells were used with the computer program SNORM (Bodine and Jones, 1986) to identify the minerals that may precipitate from the water if it were allowed to evaporate. The results suggest that the minerals bloedite, halite, gypsum (or anhydrite), and epsomite would form if the water from the adjacent wells were evaporated (table 8). These minerals are nearly the same as those identified from x-ray diffraction (table 1), thus providing further evidence that the surface salt crust is the result of evaporation of shallow ground water.

TABLE 8.--Results from simulation of complete evaporation of water represented by wells WG042 and WG052 sampled on September 23, 1986^a

Mineral	Normative salt assemblage Formula	Percentage, on basis of anhydrous weight	
		Well WG042	Well WG052
Epsomite	$MgSO_4 \cdot 7H_2O$	24	25
Anhydrite	$CaSO_4$	28	26
Halite	$NaCl$	23	20
Bloedite	$Na_2Mg(SO_4)_2 \cdot 4H_2O$	15	19
Polyhalite	$Ca_2K_2Mg(SO_4)_4 \cdot 2H_2O$	7	6
Magnesite	$MgCO_3$	3	3
	Total	100	99

^a Results from computer program written by Bodine and Jones (1986).

Seasonal Variations in Chemical Character

The interpretation of seasonal variation is limited by availability of a maximum of four samples from each well. Changes in dissolved-solids concentrations in the Whitney study area are represented by frequency plots of the percentage change from April-May to September 1986, from September-October 1986 to January 1987, and from January to June 1987 (figure 9). Except for seemingly anomalous changes in dissolved solids that exceeded 50 percent for water collected from wells PG263, PG264, PG270, and WG013, changes at most other wells were less than 25 percent. Dissolved-solids concentrations of water both decreased and increased between sampling periods, suggesting differing trends depending on the location and sampling depth of each well.

Changes in dissolved-solids concentrations of greater than 25 percent in wells PG270, PG263, and PG264 (figure 9) probably are related to changes in the seepage of nearby surface water. The increase in dissolved-solids concentration in well PG270, from 1,840 mg/L in May 1986 to 6,280 mg/L in September 1986 (figure 9 and table 10), may be caused by the diversion of surface flow away from the well after construction of a dike for the detention basin in August 1986. A small channel was located next to the well prior to the dike. Wells PG263 and PG264 are within 100 feet of the wastewater channel. Variations in these wells may be related to seasonal changes in seepage between the wastewater channel and the shallow ground water.

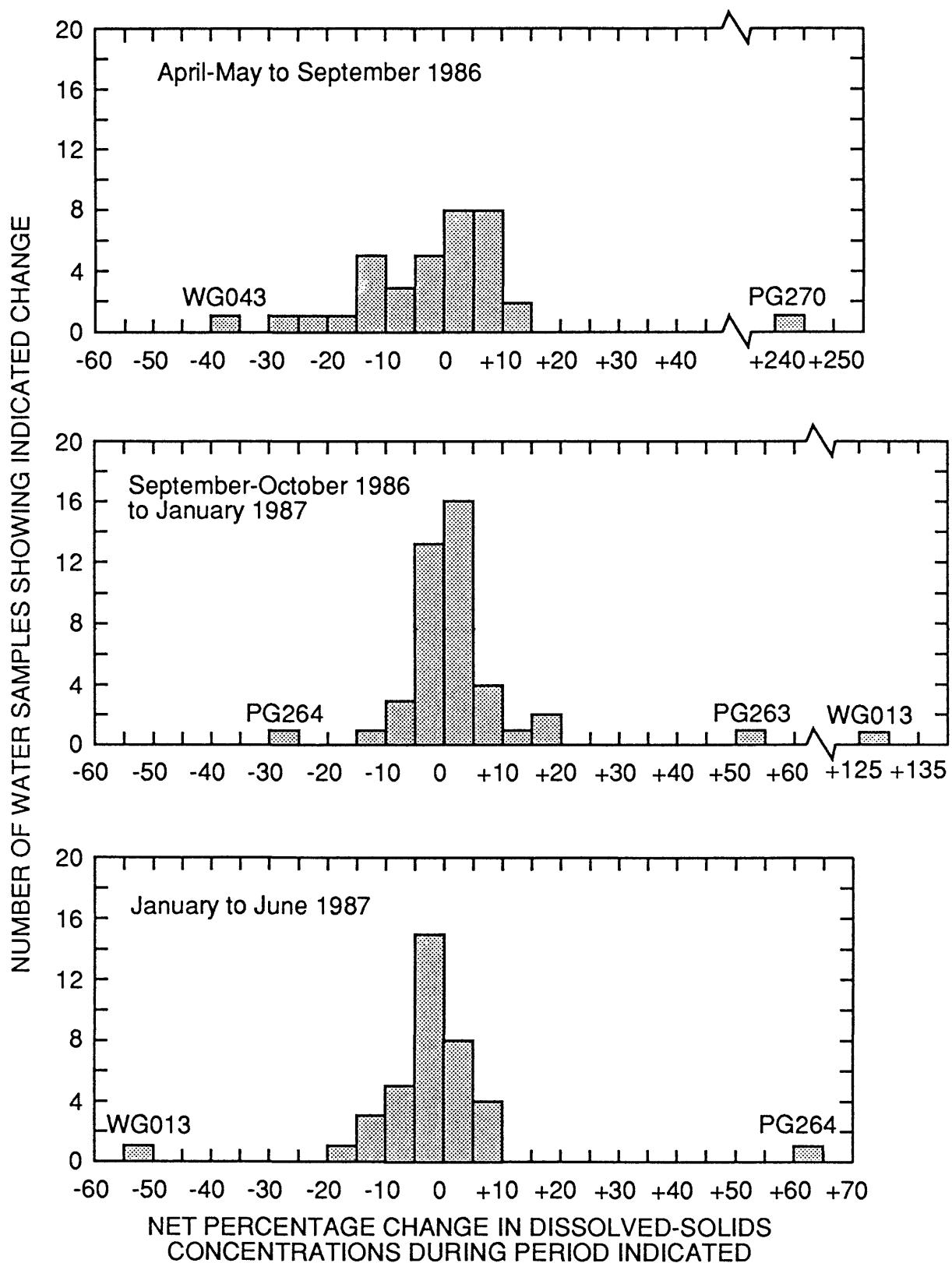
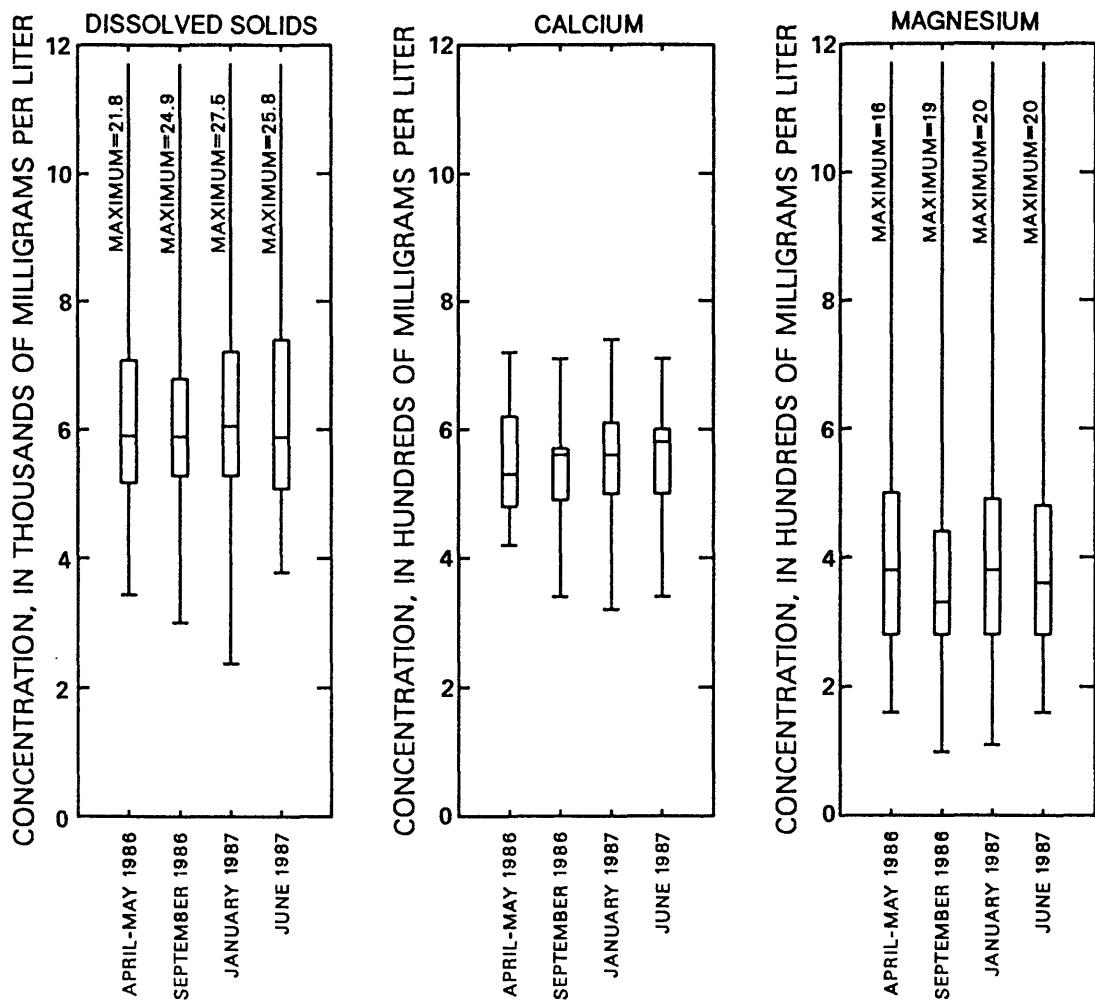


FIGURE 9.--Comparison of net percentage change in dissolved-solids concentration during three periods between April 1986 and June 1987. Specific wells showing abnormally large change are identified using U.S. Bureau of Reclamation designation.

Changes in dissolved-solids concentrations of more than 25 percent in wells WG013 and WG043 are not related to nearby surface-water sources. The dissolved-solids concentration of water collected from well WG013 increased from 4,620 mg/L in September 1986 to 10,500 mg/L in January 1987. The cause of the increase in well WG013 is unknown, but it might be the result of dissolution of salts that had previously precipitated near land surface, when the water table rose during the winter. The well is slotted over the entire length of the casing. The dissolved-solids concentration for water collected at WG013 in June 1987 was again about 5,000 mg/L (table 10). Given that the dissolved solids returned to concentrations observed for samples collected in April and September 1986 (table 10), another possibility is that a sample was mislabeled either in the field or in the laboratory.


The dissolved-solids concentration of water from well WG043 decreased from 9,750 mg/L in April 1986 to 6,220 mg/L in September 1986. The reason for this decrease is unknown but it may be the result of poor well development prior to the initial sample in April 1986. The maximum change between subsequent samples is only about 15 percent.

General seasonal trends in concentrations of dissolved constituents within and among the four sample dates (April-May 1986; September 1986; January 1987; and June 1987) were evaluated using descriptive statistics. A total of 17 wells had analyses for each sample date (table 10), but the analyses from wells PG270 and WG013 were not used because changes in water quality are attributed to other causes (as previously discussed).

The distributions of dissolved-solids concentrations and concentrations of major constituents of water sampled from 15 wells are similar for each sample date (figure 10). Median concentrations do not show a consistent pattern of change between sample dates. However, with the exceptions of bicarbonate and silica, the 75 percentile for concentrations of dissolved solids and major constituents is consistently lowest for samples collected during September 1986.

Possible seasonal trends in the data for the 15 wells were investigated by calculating the percentage change in concentrations of dissolved solids and major constituents between the four sample dates (April-May to September 1986; September 1986 to January 1987; January to June 1987). The percentage changes in concentration were then linearly regressed against the three periods to determine whether a parametric statistical test could be used in the analysis of trends. The resultant residuals from the regression equations were homogeneous and normally distributed about a mean of zero. Thus, an analysis-of-variance procedure was used to determine whether a significant part of the variability in the percent change for each constituent could be attributed to the three periods.

Means of percentage change in concentrations were compared using Fisher's least-significant-difference test (Steel and Torrie, 1980, p. 172-177) at the 0.05 probability level. Results of the statistical analyses are summarized in figure 11. With the exceptions of magnesium, sodium, and potassium, the differences in means of percentage change in concentrations were not significant at the 0.05 probability level during the three periods. Also, the mean percentage change in concentrations was usually less than 5 percent, which is within the range of uncertainty for the analytical procedures used to determine concentrations of dissolved constituents in the water (Hem, 1985, p. 163). Differences in means of percentage change for magnesium, sodium, and potassium were significant at the 0.05 probability level. For these constituents, the mean percentage changes in concentrations from April to September 1986 were significantly different from the mean percentage changes from September 1986 to January 1987. This suggests that the decrease in concentration for these constituents may be related to seasonal changes whereby concentrations of magnesium, sodium, and potassium decrease during the summer and increase during the winter. Although not statistically significant, means of percentage changes in concentrations of dissolved solids and the other constituents (except bicarbonate and silica) show a similar trend (figure 11).

EXPLANATION

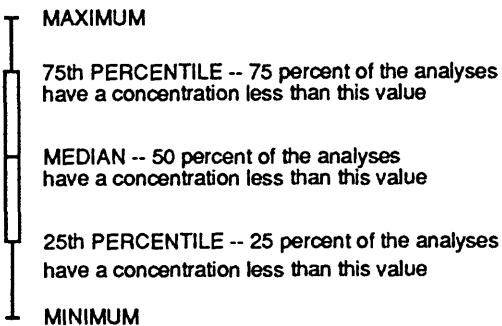


FIGURE 10.--Distribution of concentrations of dissolved solids and major dissolved constituents for water samples collected between April 1986 and June 1987. The distributions are based on analyses of water sampled from 15 wells during April-May 1986, September 1986, January 1987, and June 1987 (table 10; wells WG013 and PG270 were excluded).

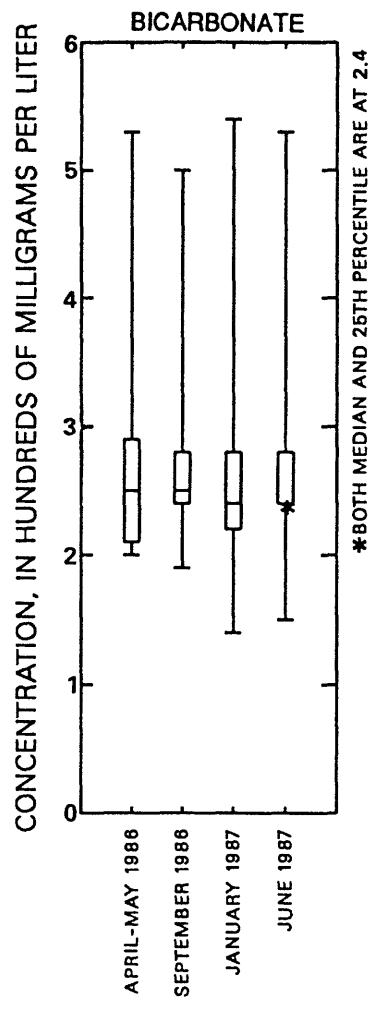
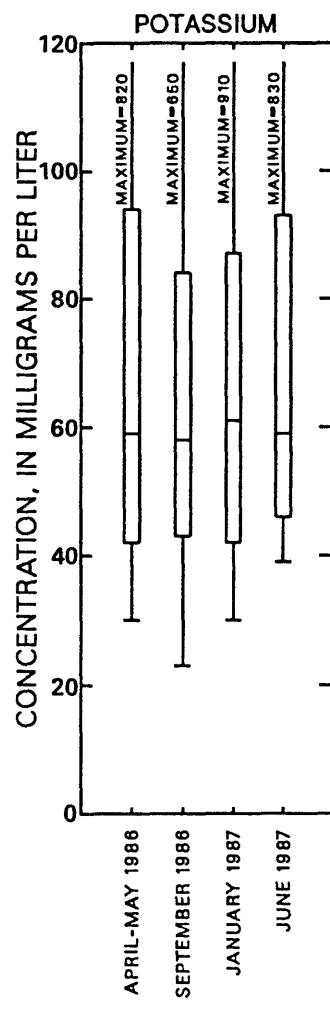
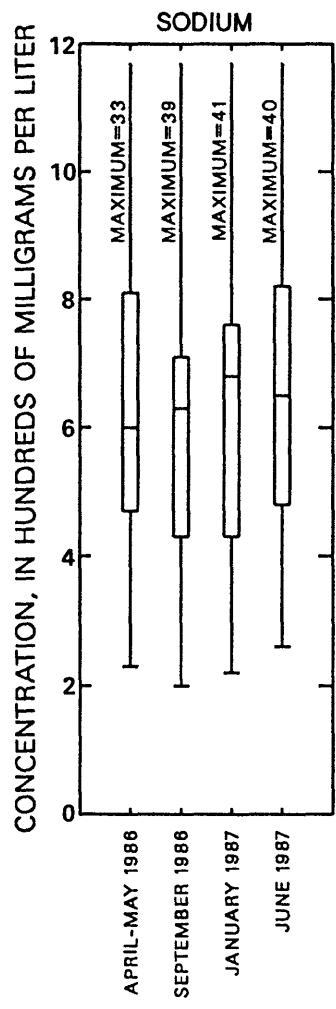




FIGURE 10.--Continued.

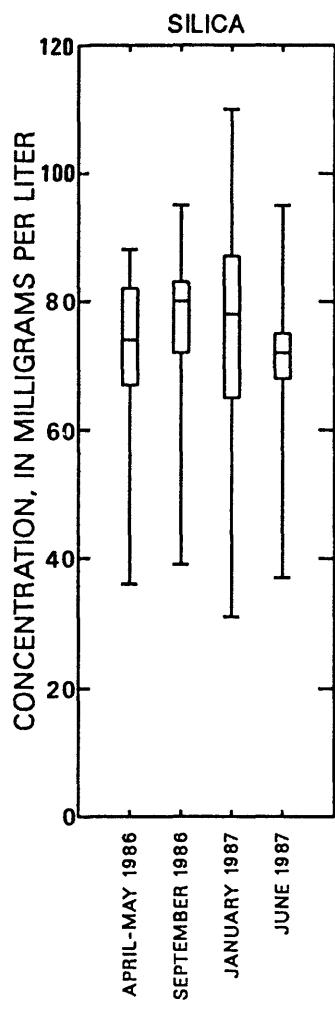
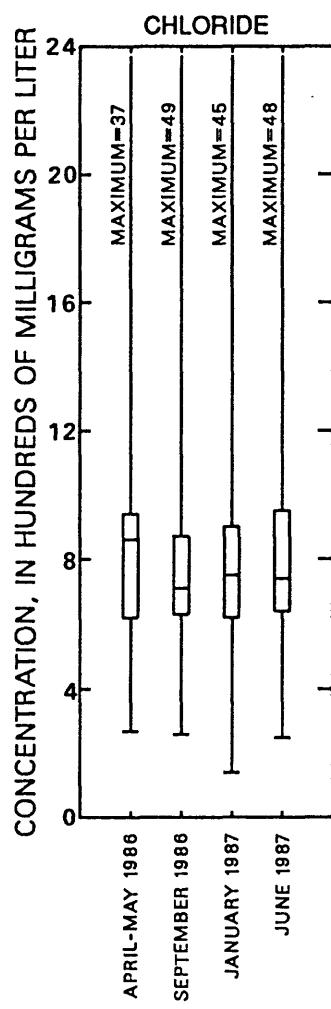
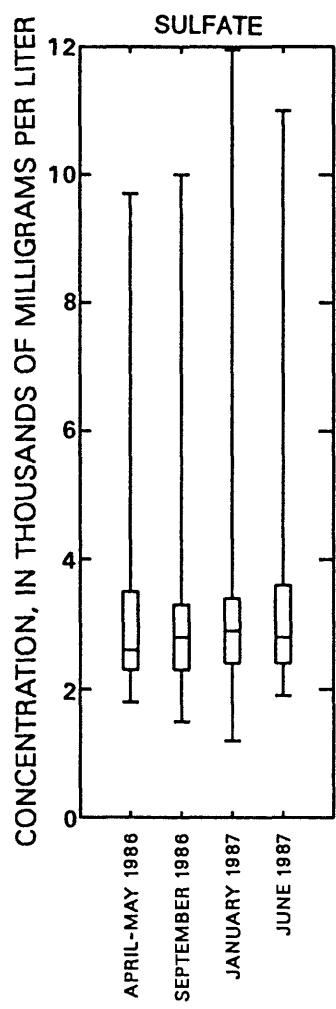
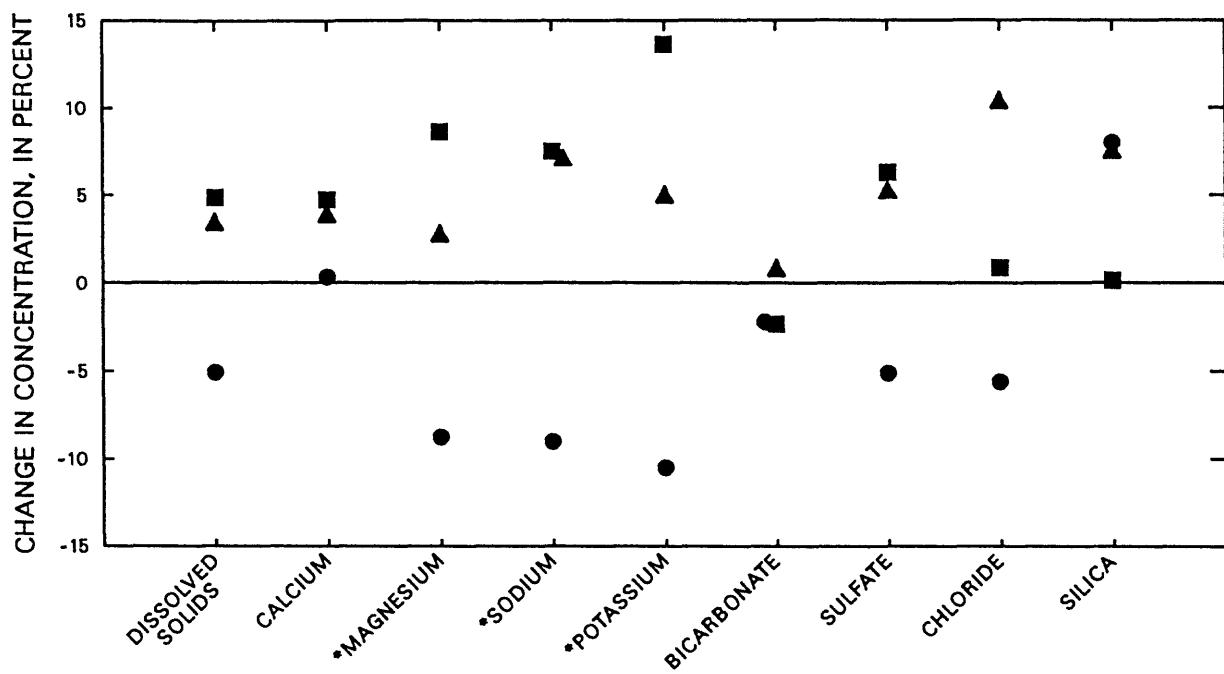
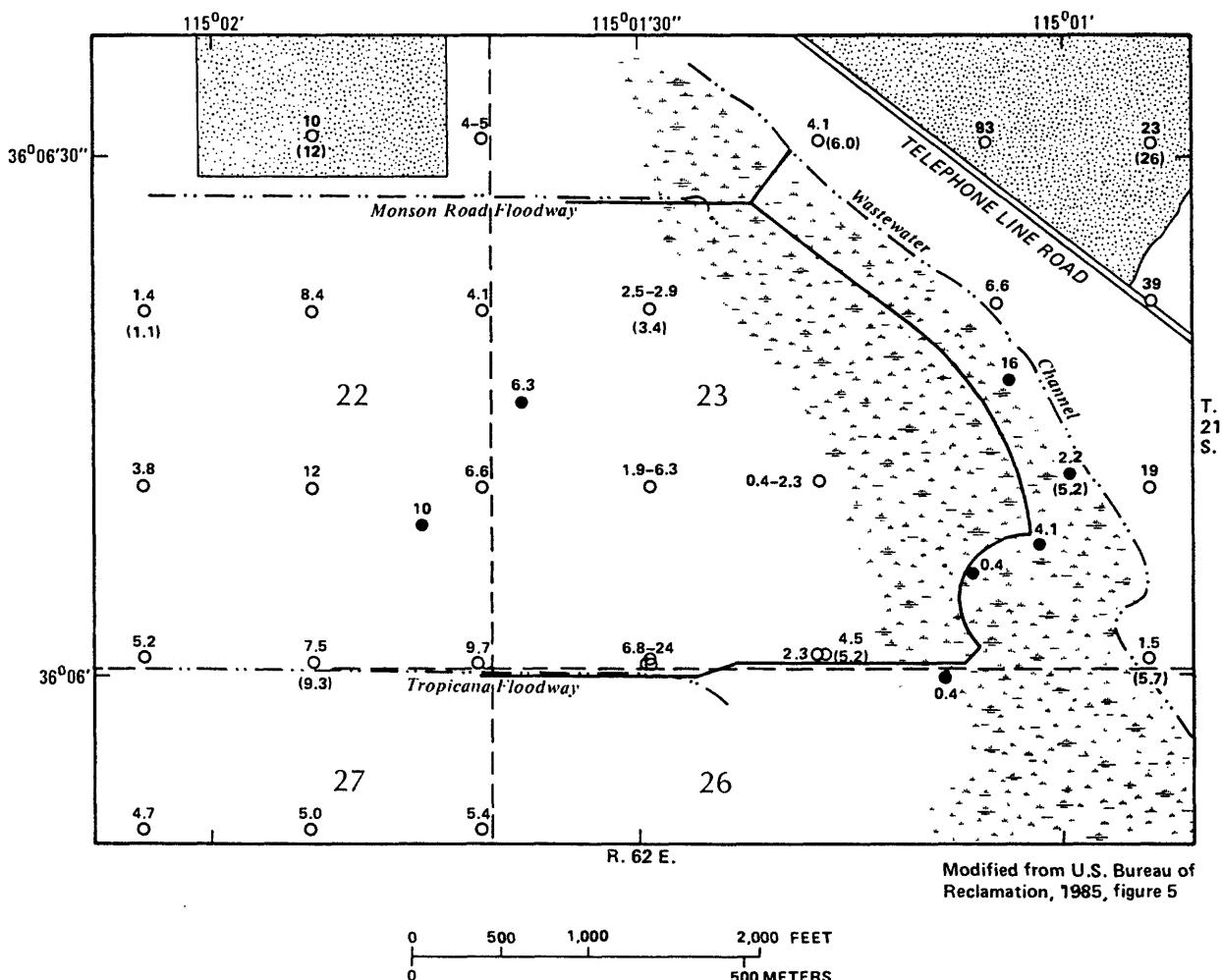





FIGURE 10.--Continued.

EXPLANATION

- MEAN CHANGE FROM APRIL-MAY TO SEPTEMBER 1986
- MEAN CHANGE FROM SEPTEMBER 1986 TO JANUARY 1987
- ▲ MEAN CHANGE FROM JANUARY TO JUNE 1987

FIGURE 11.--Mean change in concentration of dissolved solids and major dissolved constituents during three periods between April 1986 and June 1987. Means are based on analyses of water from 15 wells that were sampled in April-May 1986, September 1986, January 1987, and June 1987 (table 10; wells WG013 and PG270 were excluded). Asterisks next to magnesium, sodium, and potassium indicate significant differences between some of the mean-change values at the 0.05 probability level, on the basis of the Fischer's-least-significant-difference statistical test. For these three constituents, the difference between mean-change values from April-May to September 1986 and from September 1986 to January 1987 exceeds the least significant difference at the 0.05 probability level. The least significant differences are: 12.4 percent for magnesium; 14.4 percent for sodium; and 16.7 percent for potassium. For sodium, the difference between the mean-change values from September 1986 to January 1987 and from January to June 1987 also exceeds the least significant difference. Differences between all other pairs of mean-change values in the graph are not significantly different.


Distribution of Nitrate and Nitrite

The proximity of the study area to the wastewater facilities and to the urban environment increases the possibility of elevated concentrations of dissolved nitrogen in the shallow ground water. The distribution of nitrate plus nitrite is shown in figure 12 and is based on analyses done by the U.S. Bureau of Reclamation Soils Laboratory for September and October 1986. Total-nitrogen concentrations analyzed by the U.S. Geological Survey laboratory for wells also are shown. The distribution of nitrate plus nitrite is much different from the distribution of dissolved-solids concentrations (figure 6). Anomalously high concentrations of nitrate plus nitrite (10 mg/L or more, as nitrogen) in wells generally correspond to areas where sludge from the wastewater facilities periodically is tilled into the ground (figure 12). Anomalously high concentrations were also determined from two wells adjacent to the wastewater channel.

In contrast, relatively low nitrogen concentrations correspond with the marsh area (figure 12). Inflow to the marsh area includes seepage from the Monson Road floodway and treated effluent that seeps into the ground upstream from the study area, within the marsh area, and along the wastewater channel. Assimilation of nitrogen by marsh vegetation may be responsible for the more dilute nitrate and nitrite concentrations in this part of the study area.

Dinger (1977, p. 52), in his investigation of ground-water quality in Las Vegas Valley, related much of the elevated nitrate concentrations in water from two-thirds of the wells he sampled in the eastern part (including the Whitney study area) to sewage effluent. The dissolution of natural nitrogen-rich deposits may also contribute to the elevated nitrate and nitrite concentrations in the ground water; however, no nitrate-bearing minerals were detected by the x-ray diffraction analysis of sediments in the study area.

The distribution of nitrate-plus-nitrite and dissolved-oxygen concentrations in water sampled at cluster-well sites WG035, WG044, WG053, and WG062 (figure 13) indicate that denitrification by plant uptake, and perhaps reduction by organic material, is decreasing the concentration of nitrate plus nitrite in the shallow ground water. This is evidenced by substantially lower concentrations of nitrate plus nitrite and dissolved oxygen in water from the shallow wells than in water from the deeper wells (figure 13), and by an opposite trend for bicarbonate. Dissolved-oxygen concentrations are not available for water from cluster-well site WG062. Within the marsh area, a layer of organic muck 1 to 2 feet thick commonly is present near land surface. Organic matter was detected primarily in sandy silts to a depth of about 8 feet below land surface at cluster well site WG062 (within the marsh area). This organic matter, in addition to decreasing nitrate-plus-nitrite and dissolved-oxygen concentrations, may be increasing bicarbonate concentrations in the shallow ground water.

EXPLANATION

- AREA DOMINATED BY HYDROPHYTE -- primarily reeds and rushes
- AREA WHERE SLUDGE FROM SEWAGE-TREATMENT PLANTS PERIODICALLY IS TILLED INTO SOIL
- DIKE STRUCTURE
- WG WELL SITE -- Upper number indicates concentration of nitrate plus nitrite as nitrogen, in milligrams per liter. Lower number in parentheses is total inorganic and organic nitrogen, in milligrams per liter. For well cluster, range of values is indicated
- PG WELL SITE -- Upper number indicates concentration of nitrate plus nitrite as nitrogen, in milligrams per liter. Lower number in parentheses is total inorganic and organic nitrogen, in milligrams per liter
- SECTION LINE

FIGURE 12.--Nitrogen concentrations, September and October 1986. Data on nitrate plus nitrite are from U.S. Bureau of Reclamation Soils Laboratory, Boulder City, Nev. Data on total inorganic and organic nitrogen are from U.S. Geological Survey Laboratory, Arvada, Colo., and are given in table 3.

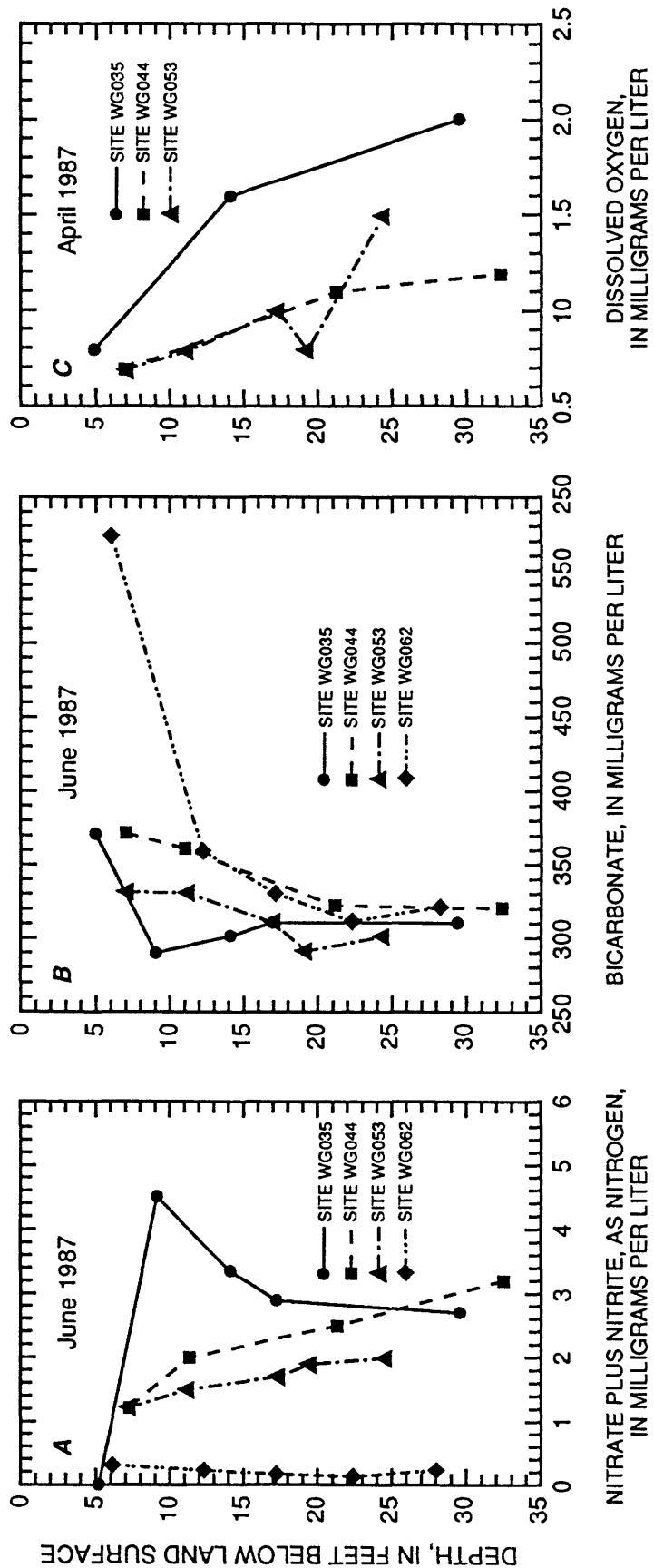


FIGURE 13.—Relation between nitrate-plus-nitrite, bicarbonate, and dissolved-oxygen concentrations and depth for well water from cluster-well sites WG035, WG044, WG053, and WG062. These sites are aligned approximately parallel to the hydraulic gradient, with site WG035 farthest upstream (see figure 2 for site locations). Dissolved-oxygen concentrations are not available for cluster-well site WG062.

SUMMARY AND CONCLUSIONS

Las Vegas Wash was identified by the U.S. Bureau of Reclamation as one of four areas where structures might be built to control salinity input to the Colorado River. Shallow ground-water detention basins along Las Vegas Wash were proposed to reduce the amount of dissolved solids entering the wash from ground-water seepage. A prototype basin was designed and the natural ground-water system was studied to determine if the detention basin concept would work as planned. This report describes the distribution and seasonal variations of ground-water quality in the vicinity of the prototype detention basin prior to construction of a slurry wall. The report also describes the processes that may control the chemistry of the ground water.

The area that incorporates the prototype detention basin is referred to as the Whitney study area and is about 7 miles southeast of downtown Las Vegas. It is a rectangular parcel of land approximately 1 mi² in area. A wastewater channel transverses the northeast part of the study area. The Tropicana and Monson Road floodways, which carry urban and storm runoff, enter the area from the west. The floodway channels end within the study area, and water from the floodways meanders through marsh areas. Some treated effluent also meanders through the marshland; prior to construction of a wastewater channel, all upstream effluent flowed through the marshland.

The surficial deposits are composed of alluvial-fan and flood-plain sediments. The alluvial-fan deposits are in the northeast part of the study area, whereas flood-plain deposits dominate elsewhere. The Muddy Creek Formation of late Tertiary age is thought to underlie the surficial deposits, but it was not absolutely identified in the study area. Minerals in the surficial deposits were identified by x-ray diffraction. In general, the deposits consist of quartz, calcite, and dolomite, but seven samples contained 1 to 15 percent gypsum.

The general direction of ground-water flow through the surficial deposits is from northwest to southeast, paralleling the course of Las Vegas Wash. The water table is generally 1 to 7 feet below land surface, except beneath the alluvial-fan deposits where the depth to water may exceed 20 feet. The water table fluctuates annually, declining during the summer in response to evapotranspiration and rising in the winter, when evapotranspiration is minimal.

Geochemical interpretations of water-quality analyses of samples collected from about 65 shallow wells in the Whitney study area suggest that the amounts and distribution of major ions in the shallow ground water are influenced or controlled by: (1) infiltration of treated effluent upgradient from and within the study area and infiltration of urban runoff primarily from Monson Road floodway; (2) land disposal of sludge from sewage-treatment facilities over parts of the study area; (3) dissolution of minerals as water moves through sediments in Las Vegas Valley, including those of the study area; and (4) evapotranspiration, which tends to concentrate solutes near the water table.

Dissolved-solids concentrations of ground water vary throughout the study area, and range from about 2,000 to about 28,000 mg/L. Concentrations generally decrease from more than 6,500 mg/L west of the marsh areas to 3,000-5,000 mg/L within the marsh areas. This decrease may also be caused by seepage of more dilute sewage effluent in the marsh area or along the wastewater channel. The average dissolved-solids concentration of water in the wastewater channel is about 1,400 mg/L.

Sulfate is the dominant anion in the shallow ground water in the study area. Sodium, calcium, and magnesium are generally the dominant cations.

Dissolved-solids concentrations are linearly correlated with concentrations of magnesium, sodium, potassium, sulfate, and chloride, whereas calcium, bicarbonate, and silica do not correlate. This suggests that calcium, bicarbonate, and silica concentrations (1) may be controlled by different processes than those controlling the concentrations of the other constituents, and (2) may be affected by mineral solubility.

Sodium and chloride concentrations increase proportionally, suggesting that evapotranspiration or dissolution of halite are responsible. Sulfate does not increase as much as chloride in water from several wells in the study area, suggesting that sulfate may be precipitating as gypsum in some places. This conclusion is also supported by mineral saturation indices, which indicate that the shallow ground water is generally saturated with respect to gypsum, as well as calcite and dolomite. However, the saturation indices of water from a few wells near the wastewater channel indicate that the ground water may be dissolving gypsum locally.

Dissolved-solids concentrations generally increase near the water table at sites where multiple wells were drilled to different depths. The higher concentrations of dissolved solids in ground water near the water table are caused, presumably, by evapotranspiration. In summer months, when evapotranspiration is at a maximum, and in locations where the depth to water is only a foot or so, water in the capillary fringe may become concentrated with dissolved solids. This process may explain the formation of a salt crust at land surface over much of the western part of the Whitney study area. During the cooler winter months, when evapotranspiration is minimal, the water table rises, and the previously deposited salts may be redissolved into the water near the water table.

Dissolved nitrate and nitrite concentrations in the shallow ground water also vary in the study area. They are generally highest below areas where sludge from nearby sewage-treatment facilities is tilled into the earth, and generally lowest in the marshy areas. Denitrification probably depletes nitrate and nitrite concentrations in these areas.

BASIC DATA

This section includes compilations of the principal data used in preparation of this report. Table 9 gives locations, construction data, and representative water-level measurements for wells in the study area. Additional water-level measurements are available from the U.S. Geological Survey in Carson City, Nev. Table 10 gives water-quality data for wells in the study area.

TABLE 9.--Location, construction, and selected water levels for wells

[All wells are constructed of 2-inch polyvinylchloride casing, and except for wells at site WG062, all were drilled by U.S. Bureau of Reclamation. --, no data available]

Well name	Standard identification ²	Local identification ³	Measured total	Depth ¹ (feet below land surface)		Water level		Land-surface altitude (feet above sea level)	
				Reported slotted interval		Feet below land surface	Date measured		
				Top	Bottom				
WG011N	360551115020702	212 S21 E62 27ABCA2	17	15	17	4.04	10-15-86	1,642	
WG012	360602115020701	212 S21 E62 22DCCD1	32	0	33	6.08	03-25-86	1,650	
WG012B	360602115020702	212 S21 E62 22DCCD2	20	18	20	6.46	10-15-86	1,650	
WG013	360612115020701	212 S21 E62 22DCBA1	29	0	31	4.43	03-25-86	1,651	
WG014	360621115020701	212 S21 E62 22DBBD1	22	0	22	2.68	03-25-86	1,656	
WG014B	360621115020702	212 S21 E62 22DBBD2	20	18	20	5.13	11-12-86	1,656	
WG021	360551115015501	212 S21 E62 27AACB1	24	0	24	4.12	03-26-86	1,642	
WG021N	360551115015502	212 S21 E62 27AACB2	20	18	20	4.21	10-15-86	1,640	
WG022	360602115015502	212 S21 E62 22DDCD2	26	0	22	3.86	03-25-86	1,645	
WG023	360612115015501	212 S21 E62 22DDBB1	22	0	22	0.1	03-26-86	1,647	
WG023B	360612115015502	212 S21 E62 22DDBB2	20	18	20	2.03	10-16-86	1,647	
WG024	360622115015501	212 S21 E62 22DABC1	24	0	24	7.0	03-26-86	1,656	
WG025	360632115015501	212 S21 E62 22ADCB1	23	0	23	4.65	03-25-86	1,659	
WG031	360552115014301	212 S21 E62 27AADA1	34	--	--	2.76	03-26-86	1,635	
WG032	360602115014101	212 S21 E62 23CCCC1	22	--	--	1.85	03-26-86	1,638	
WG033	360612115014301	212 S21 E62 22DDAA1	29	0	29	4.84	03-26-86	1,646	
WG034	360622115014201	212 S21 E62 22DADA1	28	0	29	4.82	03-26-86	1,653	
WG034B	360622115014202	212 S21 E62 22DADA2	20	18	20	6.98	10-17-86	1,653	
WG035A	360632115014301	212 S21 E62 22ADDA1	6	0	6	3.14	03-25-86	1,654	
WG035B	360632115014302	212 S21 E62 22ADDA2	11	5	10	3.14	03-25-86	1,654	
WG035C	360632115014303	212 S21 E62 22ADDA3	16	10	15	3.24	03-25-86	1,654	
WG035D	360632115014304	212 S21 E62 22ADDA4	20	15	20	3.33	03-25-86	1,654	
WG035E	360632115014305	212 S21 E62 22ADDA5	25	20	25	4.32	03-25-86	1,654	
WG035AN	360632115014310	212 S21 E62 22ADDA10	6	4	6	5.63	10-17-86	1,654	
WG035BN	360632115014309	212 S21 E62 22ADDA9	10	8	10	5.88	10-17-86	1,654	
WG035CN	360632115014308	212 S21 E62 22ADDA8	15	13	15	5.88	10-17-86	1,654	
WG035DN	360632115014307	212 S21 E62 22ADDA7	18	16	18	5.86	10-17-86	1,654	
WG035EN	360632115014306	212 S21 E62 22ADDA6	30	28	30	5.86	10-17-86	1,654	
WG042	360602115012901	212 S21 E62 23CCDD1	23	--	--	2.08	03-26-86	1,632	
WG043	360612115013001	212 S21 E62 23DCAB1	24	0	26	2.29	03-26-86	1,640	
WG043B	360612115013002	212 S21 E62 23DCAB2	22	19	21	4.55	10-15-86	1,640	
WG044A	360622115013001	212 S21 E62 23CBAC1	5	0	5	2.30	03-26-86	1,645	
WG044B	360622115013002	212 S21 E62 23CBAC2	11	5	10	2.32	03-26-86	1,645	
WG044C	360622115013003	212 S21 E62 23CBAC3	11	6	11	2.29	03-26-86	1,645	
WG044AN	360622115013007	212 S21 E62 23CBAC7	8	6	8	4.17	10-16-86	1,645	
WG044BN	360622115013006	212 S21 E62 23CBAC6	13	10	12	3.95	10-16-86	1,645	
WG044CN	360622115013005	212 S21 E62 23CBAC5	23	20	22	3.83	10-16-86	1,645	
WG044DN	360622115013004	212 S21 E62 23CBAC4	33	31	33	4.06	10-16-86	1,645	
WG052	360602115011701	212 S21 E62 23CDDC1	20	--	--	1.18	03-26-86	1,627	
WG053AN	360612115011705	212 S21 E62 23CDBA5	8	6	8	5.73	10-16-86	1,627	
WG053BN	360612115011704	212 S21 E62 23CDBA4	12	10	12	5.88	10-16-86	1,627	
WG053CN	360612115011703	212 S21 E62 23CDBA3	19	16	18	5.89	10-16-86	1,627	
WG053DN	360612115011702	212 S21 E62 23CDBA2	21	18	20	5.84	10-16-86	1,627	
WG053EN	360612115011701	212 S21 E62 23CDBA1	24	23	25	5.94	10-16-86	1,627	

TABLE 9.--Location, construction, and selected water levels for wells--Continued

Well name	Standard identification number ²	Local identification number ³	Measured total	Depth ¹ (feet below land surface)		Water level		Land-surface altitude (feet above sea level)	
				Reported slotted interval		Feet below land surface	Date measured		
				Top	Bottom				
WG055	360631115011801	212 S21 E62 23BDBB1	15	0	17	6.75	03-25-86	1,648	
WG062A	360601115010501	212 S21 E62 23DCCD1	6	4	6	2.21	02-20-87	1,618	
WG062B	360601115010502	212 S21 E62 23DCCD2	12	10	12	1.44	02-20-87	1,618	
WG062C	360601115010503	212 S21 E62 23DCCD3	17	15	17	2.12	02-20-87	1,618	
WG062D	360601115010504	212 S21 E62 23DCCD4	22	20	22	1.84	02-20-87	1,618	
WG062E	360601115010505	212 S21 E62 23DCCD5	28	26	28	3.11	02-20-87	1,618	
WG064	360621115010501	212 S21 E62 23DBBD1	10	0	10	5.19	03-25-86	1,641	
WG065	360631115010501	212 S21 E62 23ACCD1	33	0	34	14.0	03-25-86	1,652	
WG072	360601115005301	212 S21 E62 23DDCC1	18	0	19	13.1	03-27-86	1,621	
WG073	360612115005301	212 S21 E62 23DDBB1	25	0	25	14.6	03-25-86	1,633	
WG074	360622115005301	212 S21 E62 23DABC1	45	0	45	12.6	03-25-86	1,644	
WG075	360631115005301	212 S21 E62 23ADCB1	36	0	36	20.7	03-25-86	1,658	
WG123	360602115015501	212 S21 E62 22DDCD1	23	--	--	3.98	03-25-86	1,645	
WG126	360602115014102	212 S21 E62 23CCCC2	25	0	25	1.77	03-26-86	1,638	
WG129	360602115012902	212 S21 E62 23CCDD2	31	0	30	2.11	03-26-86	1,632	
WG131	360602115012903	212 S21 E62 23CCDD3	23	20	22	4.36	10-15-86	1,632	
WG132	360602115011702	212 S21 E62 23CDCD2	25	1	25	1.17	03-26-86	1,627	
PG263	360612115005801	212 S21 E62 23DCAA1	21	12	22	9.95	03-25-86	1,635	
PG264	360617115010501	212 S21 E62 23DBCD1	15	5	16	6.05	03-25-86	1,639	
PG269	360607115010001	212 S21 E62 23DCDB1	18	0	18	2.81	03-25-86	1,622	
PG270	360601115010701	212 S21 E62 23DCCC1	11	2	12	.77	03-25-86	1,620	
PG271	360606115010501	212 S21 E62 23DCAA1	11	1	11	.37	03-25-86	1,623	
PG273	360609115014701	212 S21 E62 22DDAC1	35	29	39	3.51	03-26-86	1,646	
PG274	360616115013901	212 S21 E62 23CBCC1	21	17	27	4.35	03-26-86	1,648	

¹ Well depths below land surface were measured with a steel tape. Not all measured depths correspond to the reported bottom of the slotted interval. The shallow measured depths may be caused by (1) silt that had entered the wells after drilling, or (2) a slight error in the reported depth. The top of the slotted interval in many wells is at land surface (designated at 0).

² Sites are identified by the standard Geological Survey identification (ID), which is based on the grid system of latitude and longitude. The ID indicates the geographic location of each site, and provides a unique number for each. The ID consists of 15 digits: The first 6 denote the degrees, minutes, and seconds of latitude; the next 7 denote degrees, minutes, and seconds of longitude; and the last 2 digits (assigned sequentially) identify the sites within a 1-second grid. For example, site 360551115020702 is at 36°05'51" latitude and 115°02'07" longitude, and it is the second site recorded in that 1-second grid.

³ The local site-identification system used in this report is based on an index of hydrographic areas in Nevada (Rush, 1968) and the rectangular subdivision of the public lands referenced to the Mount Diablo base line and meridian. Each site designation consists of four units separated by spaces: The first unit is the hydrographic area number. The second unit is the township, preceded by an N or S to indicate location north or south of the base line. The third unit is the range, preceded by an E to indicate location east of the meridian. The fourth unit consists of the section number and letters designating the quarter section, quarter-quarter section, and so on (A, B, C, and D indicate the northeast, northwest, southwest, and southeast quarters, respectively), followed by a number indicating the sequence in which the site was recorded. For example, site 212 S21 E62 27ABCA2 is in Las Vegas Valley (hydrographic area 212). It is the second site recorded in the northeast quarter of the southwest quarter of the northwest quarter of the northeast quarter of section 27, Township 21 South, Range 62 East, Mount Diablo base line and meridian.

TABLE 10.--Data on ground-water quality for the period April 1986 through June 1987

[Analysis by U.S. Bureau of Reclamation Soils Laboratory, Boulder City, Nev., except for water temperature, pH, specific conductance, and bicarbonate, which were determined when sample was collected; results are in milligrams per liter, except for temperature, pH, and specific conductance. Abbreviations: °C, degrees Celsius; microsiemens, microsiemens per centimeter at 25 °C; --, not determined]

Well name	Sample date	Water temperature (°C)	pH (units)	Specific conductance (micro-siemens)	Dissolved solids ¹	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Silica (SiO ₂)
WG011N	10-21-86	23.5	7.22	7,400	6,810	590	410	750	150	280	3,100	1,100	78
	01-12-87	19.5	6.99	7,000	6,600	590	410	700	140	270	3,000	1,000	99
	06-03-87	19.0	7.26	7,300	6,350	510	350	690	140	280	2,800	1,000	74
WG012	04-28-86	20.3	7.20	7,500	6,180	660	380	600	91	210	2,400	1,200	76
	09-22-86	23.0	7.03	6,100	5,500	660	330	440	87	190	2,300	980	83
	01-12-87	20.0	7.14	6,100	5,730	740	360	430	84	180	2,400	1,000	100
	06-01-87	19.0	7.21	6,600	5,660	650	350	510	93	180	2,400	1,000	68
WG012B	10-22-86	20.0	7.58	6,300	5,730	650	260	660	60	190	2,600	870	71
	01-12-87	20.0	7.10	5,500	5,100	680	260	420	56	180	2,300	800	84
	06-01-87	19.5	7.23	5,900	5,100	720	280	400	61	180	2,300	800	65
WG013	04-28-86	20.3	7.20	5,300	4,520	660	160	400	28	170	1,900	750	73
	09-22-86	22.0	7.04	5,300	4,620	640	200	410	26	180	2,200	690	75
	01-13-87	18.0	7.02	12,000	10,500	720	510	1,700	260	240	3,600	3,000	73
	06-04-87	20.0	7.19	5,900	4,980	680	220	500	35	190	2,300	810	66
WG014	04-29-86	18.3	7.20	24,000	21,800	440	1,600	3,300	820	530	9,700	3,700	53
	09-23-86	22.0	7.04	26,000	24,900	620	1,900	3,900	650	500	10,000	4,900	72
	01-13-87	14.0	7.10	23,000	27,500	560	2,000	4,100	910	540	12,000	4,500	42
	06-04-87	17.5	7.21	26,000	25,800	580	2,000	4,000	830	530	11,000	4,800	66
WG014B	01-13-87	18.0	7.13	20,000	19,800	600	1,400	3,000	290	410	8,700	3,800	54
	06-04-87	17.5	7.22	21,000	18,600	580	1,400	3,000	310	390	8,100	3,800	63
WG021N	10-21-86	23.0	7.25	5,600	5,110	560	310	460	64	260	2,500	640	70
	01-13-87	19.0	7.00	5,400	5,110	540	310	450	64	250	2,400	670	58
WG022	04-29-86	21.2	7.00	6,300	5,280	720	250	440	54	190	2,300	820	74
	09-23-86	20.5	7.05	6,200	5,630	750	280	480	57	190	2,600	950	74
	01-12-87	18.0	7.11	6,100	5,800	740	280	520	58	200	2,600	870	110
WG023	04-28-86	18.9	7.10	5,800	5,340	660	290	470	39	220	2,300	680	70
	09-22-86	23.0	7.04	6,200	5,570	600	290	580	37	220	2,700	670	69
WG024	04-28-86	19.0	7.00	9,000	6,680	450	370	890	99	260	2,900	910	68
	09-22-86	20.2	7.12	8,500	7,180	460	410	980	100	270	3,300	960	71
	01-13-87	18.0	7.23	7,100	6,510	460	380	850	79	270	3,000	790	80
WG025	05-01-86	20.0	7.10	7,700	6,760	490	420	800	94	300	3,300	900	75
	09-25-86	21.0	7.18	6,500	5,900	490	360	630	87	260	2,800	710	81
	01-17-87	18.3	7.13	6,500	6,300	570	380	680	87	280	2,900	810	87
	06-04-87	19.5	7.29	6,600	5,980	540	370	660	77	260	2,800	740	76
WG031	04-28-86	19.9	7.00	5,900	5,170	580	340	430	59	230	2,300	650	74
	09-23-86	20.5	7.00	5,800	5,280	570	320	430	63	240	2,500	640	75
	01-13-87	20.0	6.94	5,400	5,280	590	340	450	61	240	2,500	640	85
WG032	04-29-86	19.5	7.00	6,300	5,270	520	280	590	43	240	2,400	570	72
	01-16-87	11.0	7.31	6,100	5,750	550	310	650	47	240	2,700	680	110
WG033	04-29-86	18.0	7.10	7,700	7,060	570	470	810	66	290	3,300	880	84
	09-23-86	20.0	7.15	7,800	7,100	570	450	750	62	280	3,400	910	83
	01-14-87	19.0	7.24	7,200	7,080	610	460	750	60	290	3,300	840	110
	06-04-87	19.0	7.18	8,000	7,550	630	480	820	66	280	3,500	980	75
WG034	04-30-86	17.8	7.10	9,000	7,560	530	500	930	100	290	3,500	900	84
	09-22-86	20.5	7.10	7,700	7,140	520	440	820	84	270	3,400	820	80
	01-13-87	18.0	7.20	7,900	7,580	560	490	890	95	270	3,700	910	89
	06-04-87	18.0	7.25	8,300	8,010	580	490	920	100	280	3,800	950	74

TABLE 10.--Data on ground-water quality for the period April 1986 through June 1987--Continued

Well name	Sample date	Water temperature (°C)	pH (units)	Specific conductance (micro-siemens)	Disolved solids ¹	Cal-cium (Ca)	Magne-sium (Mg)	Sodium (Na)	Potas-sium (K)	Bicar-bonate (HCO ₃)	Sulfate (SO ₄)	Chlo-ride (Cl)	Silica (SiO ₂)
WG034B	01-13-87 06-04-87	18.0 18.0	7.19 7.24	8,000 8,100	7,690 7,800	600 600	490 500	860 910	72 75	200 280	3,700 3,700	900 940	90 77
WG035A	05-01-86	16.5	7.10	8,500	7,810	570	600	820	92	350	3,800	750	97
WG035B	05-01-86 09-26-86	16.5 21.5	7.15 7.16	7,600 6,600	7,090 6,460	520 430	530 460	750 670	57 56	340 320	3,600 3,200	680 530	88 90
WG035C	05-01-86 09-26-86	17.5 18.0	7.10 7.11	6,400 6,300	5,690 6,160	440 430	420 430	600 630	45 48	310 300	2,800 3,100	500 550	88 87
WG035D	05-01-86 09-26-86	17.5 18.5	7.10 6.94	6,900 6,600	6,250 6,120	420 420	470 430	660 630	60 49	340 310	3,000 3,100	570 550	85 84
WG035E	05-01-86 09-26-86	18.1 19.0	7.10 6.89	6,200 6,500	5,720 6,090	410 410	430 430	590 600	48 48	300 300	2,800 3,100	500 560	89 80
WG035AN	01-17-87 06-01-87	12.0 24.0	7.41 7.42	8,500 7,900	9,170 8,030	530 440	700 500	990 870	55 59	450 370	4,500 4,000	870 710	47 86
WG035BN	10-29-86 01-17-87 06-01-87	21.5 16.0 17.5	7.18 7.21 7.14	7,100 6,500 7,400	6,540 6,640 7,090	460 470 500	460 470 540	710 680 760	55 51 57	320 300 290	3,100 3,300 3,500	620 590 700	82 59 79
WG035CN	10-29-86 01-17-87 06-01-87	21.0 16.5 18.0	7.15 7.14 7.10	6,700 6,200 6,400	6,160 6,240 6,100	460 460 440	440 440 440	640 630 630	50 46 50	310 300 300	3,000 3,100 3,100	580 530 530	78 52 77
WG035DN	10-29-86 01-17-87 06-01-87	24.5 17.0 24.0	7.40 7.24 7.04	6,400 6,000 6,100	6,140 6,060 5,750	460 440 420	440 430 420	640 600 600	49 46 50	310 300 310	3,200 2,900 2,900	590 500 460	78 84 76
WG035EN	10-29-86 01-17-87 06-01-87	20.5 17.0 19.0	7.34 7.28 7.09	6,600 6,100 6,200	6,150 5,980 5,650	500 460 420	430 420 410	620 610 590	47 45 50	310 310 310	3,100 3,000 2,800	520 510 470	74 85 80
WG042	04-30-86 09-23-86 01-16-87 06-02-87	20.3 21.5 18.0 18.5	7.10 7.07 7.24 7.15	8,900 6,900 7,300 7,200	7,080 6,790 7,310 6,520	720 560 580 580	510 440 490 430	700 710 760 680	65 56 62 48	290 250 260 240	3,600 3,300 3,400 3,100	940 840 870 770	77 81 78 72
WG043	04-30-86 09-25-86 01-14-87 06-02-87	17.0 17.0 21.0 18.5	7.30 7.21 7.23 7.17	11,000 7,200 6,900 8,000	9,750 6,220 7,210 7,400	620 440 460 480	640 420 500 540	1,200 650 790 830	310 63 97 120	320 280 270 280	5,000 3,100 3,600 3,700	1,100 680 750 810	65 84 45 75
WG043B	10-21-86 01-14-87 06-02-87	23.0 19.0 19.0	7.41 7.28 7.20	6,200 5,900 6,600	5,630 5,720 5,640	500 490 500	380 400 410	560 550 560	39 37 41	250 230 240	3,000 2,800 2,700	530 540 560	71 60 72
WG044A	04-30-86	17.5	7.40	8,200	7,640	520	550	820	110	410	3,600	760	97
WG044B	04-30-86 09-25-86	17.5 20.5	7.10 7.11	7,800 7,300	7,260 7,100	500 480	510 470	770 760	98 82	360 350	3,700 3,600	710 620	92 100
WG044C	04-30-86 09-25-86	16.7 19.5	7.20 7.20	7,700 7,200	7,300 7,050	560 480	520 470	750 750	75 78	360 360	3,600 3,600	730 610	94 98
WG044AN	10-23-86 01-13-87 06-01-87	20.0 14.5 19.0	7.18 7.28 7.20	6,700 7,200 7,500	6,580 6,790 7,250	540 490 540	420 450 510	700 800 800	71 70 77	340 350 370	3,300 3,600 3,600	600 670 660	93 88 86
WG044BN	10-23-86 01-13-87 06-01-87	23.0 17.0 23.0	7.31 7.14 7.09	6,400 6,800 6,800	6,220 6,450 6,600	500 480 490	410 440 440	670 760 740	73 71 65	310 320 360	3,100 3,400 3,300	530 620 600	81 86 79
WG044CN	10-23-86 01-13-87 06-01-87	22.0 18.0 18.0	7.31 7.29 7.09	6,400 6,700 6,900	6,340 6,370 6,440	500 460 400	420 430 370	670 730 570	64 68 65	310 320 320	3,300 3,300 2,400	560 550 590	83 82 78

TABLE 10.--Data on ground-water quality for the period April 1986 through June 1987--Continued

Well name	Sample date	Water temperature (°C)	pH (units)	Specific conductance (micro-siemens)	Dissolved solids ¹	Cal-cium (Ca)	Magne-sium (Mg)	Sodium (Na)	Potas-sium (K)	Bicar-bonate (HCO ₃)	Sulfate (SO ₄)	Chlo-ride (Cl)	Silica (SiO ₂)
WG044DN	10-23-86	--	7.20	7,500	7,680	580	470	900	75	360	3,900	700	84
	10-28-86	--	7.9	6,900	6,840	560	460	720	53	330	3,500	620	80
	01-13-87	16.0	7.14	6,600	6,560	520	420	760	57	320	3,400	600	79
	06-01-87	20.0	7.10	7,000	6,330	500	400	700	54	320	3,200	550	80
WG052	05-03-86	18.0	7.10	8,900	8,620	550	660	910	85	390	4,300	1,000	75
	09-23-86	19.0	7.18	7,500	7,020	530	500	700	54	290	3,600	770	80
WG053AN	10-27-86	23.0	7.61	9,100	7,980	550	460	1,000	150	350	4,200	730	66
	01-15-87	11.5	7.81	8,400	8,260	450	480	1,200	200	440	4,300	750	70
	06-02-87	19.5	7.32	7,600	7,040	550	430	820	110	330	3,500	660	100
WG053BN	10-27-86	21.0	7.15	7,300	6,830	560	420	780	84	320	3,500	640	88
	01-15-87	16.0	7.13	6,800	6,640	510	410	820	96	320	3,400	630	85
	06-02-87	17.0	7.02	7,000	6,430	520	400	740	88	330	3,100	580	86
WG053CN	10-22-86	22.0	7.26	6,800	6,340	560	390	700	57	320	3,300	610	81
	01-15-87	17.0	7.07	6,400	6,210	520	390	720	63	310	3,200	610	85
	06-02-87	17.5	7.08	6,700	6,010	520	380	640	59	310	3,000	550	81
WG053DN	10-22-86	21.0	7.23	6,700	6,370	560	390	680	56	310	3,200	610	81
	01-15-87	17.0	7.06	6,300	6,140	520	380	720	59	310	3,100	600	84
	06-02-87	17.5	7.11	6,700	6,040	530	380	640	57	290	3,000	540	80
WG053EN	10-22-86	21.5	7.34	6,500	6,120	560	380	640	52	300	3,100	600	76
	01-15-87	16.0	7.18	6,300	6,070	520	380	700	54	300	3,100	590	81
	06-02-87	18.0	7.09	6,600	5,960	540	380	640	51	300	2,900	560	77
WG055	05-01-86	18.5	6.90	4,100	3,430	480	160	230	30	210	1,800	270	88
	09-25-86	21.5	6.98	4,300	3,660	560	150	270	32	260	1,900	280	95
	01-17-87	15.0	7.34	3,800	3,760	550	190	240	38	140	2,200	140	69
	06-04-87	18.0	7.17	4,400	3,780	600	160	260	46	150	2,100	250	95
WG062A	03-03-87	10.0	7.65	5,200	4,910	560	300	420	36	440	2,400	450	71
	06-02-87	18.5	7.43	5,500	5,040	620	300	410	42	570	2,400	430	74
WG062B	03-04-87	10.0	7.56	4,600	3,880	430	230	330	28	360	2,100	430	61
	06-03-87	16.5	7.21	4,800	4,150	520	240	340	36	360	2,000	350	72
WG062C	03-04-87	11.0	7.52	4,700	3,960	460	230	340	28	330	2,100	250	63
	06-03-87	15.5	7.25	4,800	4,090	530	240	330	35	330	2,000	360	72
WG062D	03-04-87	11.0	7.50	5,100	4,540	530	250	420	33	310	2,300	370	67
	06-02-87	16.0	7.33	4,900	4,160	500	260	360	32	310	2,100	360	69
WG062E	03-05-87	11.0	7.46	5,000	4,520	490	250	440	33	300	2,300	410	57
	06-03-87	14.0	7.31	5,000	4,110	470	240	380	33	320	2,100	360	68
WG064	05-01-86	18.7	7.10	3,700	3,160	610	110	190	24	210	1,700	250	77
	01-17-87	17.0	7.18	3,800	3,520	620	110	240	23	240	1,800	280	99
	06-04-87	19.5	7.22	4,000	3,360	650	100	210	21	230	1,800	240	72
WG065	05-02-86	22.8	6.90	9,000	7,740	550	490	910	98	300	3,600	910	52
	09-26-86	23.0	7.05	8,000	7,520	540	500	800	100	310	3,600	810	61
	01-17-87	21.0	7.08	7,400	7,300	570	460	910	110	260	3,600	830	57
WG072	05-02-86	20.0	7.10	5,300	4,720	620	230	430	45	270	2,200	630	110
	09-27-86	21.5	7.02	5,400	4,750	590	230	430	48	270	2,200	630	120
	01-18-87	20.0	7.09	5,600	5,150	620	250	560	56	310	2,400	730	59
WG073	05-02-86	22.2	7.10	7,700	7,120	570	440	810	110	180	3,500	780	59
	09-27-86	21.0	7.12	7,500	7,350	570	420	860	110	190	3,600	870	62
	01-18-87	21.0	7.16	7,100	6,900	540	420	860	120	190	3,400	810	62
WG074	05-02-86	21.8	7.30	8,900	7,880	590	430	1,100	85	180	3,600	1,200	40
	09-27-86	20.5	7.49	9,400	8,350	610	430	1,200	91	150	3,700	1,400	40
	01-17-87	21.0	7.49	8,500	8,200	570	420	1,300	110	130	3,800	1,300	38

TABLE 10.--Data on ground-water quality for the period April 1986 through June 1987--Continued

Well name	Sample date	Water temperature (°C)	pH (units)	Specific conductance (micro-siemens)	Dissolved solids ¹	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Silica (SiO ₂)
WG075	05-02-86	21.8	7.30	8,500	7,440	590	490	900	87	160	3,600	990	27
	09-27-86	20.0	7.43	6,600	6,340	560	400	640	74	120	3,200	690	21
	01-17-87	22.0	7.38	6,500	6,330	540	420	670	78	130	3,200	730	21
WG123	04-29-86	22.5	7.10	6,300	5,500	700	280	470	58	200	2,400	860	74
	09-23-86	21.0	7.04	6,100	5,610	710	280	480	58	190	2,500	870	75
	01-12-87	20.0	7.03	6,100	5,480	700	280	540	62	190	2,600	900	74
	06-03-87	20.5	7.13	6,500	5,510	710	280	510	59	200	2,500	890	69
WG126	04-29-86	20.5	7.10	6,300	5,560	520	290	640	43	240	2,600	630	70
	09-24-86	19.0	7.22	6,400	5,880	560	310	670	45	240	2,800	630	72
	01-16-87	18.5	7.25	6,200	5,580	500	300	700	49	240	2,700	700	65
	06-03-87	19.5	7.20	6,400	5,550	500	280	660	42	240	2,700	640	67
WG129	04-30-86	18.7	7.00	6,500	5,300	450	310	590	36	210	2,500	630	67
	09-23-86	20.0	7.07	6,200	5,890	540	330	600	32	230	2,800	720	71
	01-16-87	18.5	6.97	6,500	6,060	500	380	700	53	240	3,000	750	71
	06-02-87	19.5	7.18	6,800	5,880	550	350	630	39	240	3,000	680	71
WG131	01-16-87	18.0	7.19	7,700	7,520	630	510	830	69	260	3,600	1,000	70
	06-02-87	20.5	7.11	8,500	7,800	440	560	860	70	280	3,700	1,000	72
WG132	05-03-86	20.0	7.20	7,900	7,830	580	560	790	65	340	3,600	820	72
	09-24-86	17.8	7.25	6,900	6,810	550	470	650	49	290	3,400	660	80
PG263	05-03-86	19.0	6.90	4,500	4,100	540	170	340	34	240	1,900	370	72
	09-24-86	21.5	7.11	3,800	3,000	520	98	200	23	240	1,600	260	82
	01-16-87	17.0	6.91	5,100	4,600	620	190	430	34	220	2,200	490	82
	06-04-87	17.5	7.15	5,200	4,330	590	200	430	40	240	2,200	480	75
PG264	05-03-86	19.0	6.95	4,000	4,200	420	220	490	45	250	2,200	470	36
	09-24-86	22.0	7.20	3,900	3,210	340	170	340	51	240	1,500	380	39
	01-16-87	17.0	7.20	3,100	2,370	320	110	220	30	240	1,200	260	31
	06-04-87	19.5	7.22	4,800	3,800	340	170	430	48	240	1,900	400	37
PG269	05-03-86	14.5	7.10	5,800	5,120	530	250	560	34	320	2,500	540	71
	09-24-86	17.0	7.06	5,200	4,680	560	230	470	34	270	2,400	450	82
PG270	05-03-86	14.0	7.30	2,500	1,840	190	93	210	24	270	800	200	34
	09-24-86	18.5	7.15	6,400	6,280	660	440	520	55	380	3,200	680	58
	01-16-87	10.0	7.21	6,700	6,410	650	410	600	41	440	3,000	740	49
	06-04-87	15.0	7.18	5,900	5,160	520	340	490	48	430	2,500	510	47
PG271	05-03-86	14.0	7.10	4,500	3,850	460	220	330	38	400	1,900	280	89
	09-24-86	17.0	7.22	4,000	3,310	390	200	300	49	430	1,600	340	94
	01-16-87	9.0	7.17	4,500	3,900	460	220	320	34	340	1,800	370	78
PG273	04-29-86	21.0	7.10	6,200	5,150	460	240	550	38	240	2,500	500	66
	09-25-86	23.0	7.19	6,200	5,640	540	280	670	41	240	2,800	650	72
	01-14-87	20.0	7.37	6,100	5,680	540	280	680	39	240	2,700	630	70
PG274	04-29-86	18.3	7.20	6,500	5,900	490	400	600	42	270	3,200	620	82
	09-25-86	18.5	7.26	6,500	5,990	470	420	630	43	280	3,000	680	80
	01-15-87	17.0	7.35	6,300	6,050	480	410	630	42	280	2,900	620	80
	06-02-87	19.5	7.28	6,700	5,960	480	420	650	47	280	3,600	640	72

¹ Dissolved solids determined from residue at 180 degrees Celsius.

REFERENCES CITED

Bodine, M.W., Jr., and Jones, B.F., 1986, The salt norm--a quantitative chemical-mineralogical characterization of natural waters: U.S. Geological Survey Water-Resources Investigations Report 86-4086, 130 p.

Bohn, H.L., McNeal, B.L., and O'Conner, G.A., 1979, Soil chemistry: New York, Wiley-Interscience, 329 p.

Dettinger, M.D., 1987, Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-83--Implementation of a monitoring network: U.S. Geological Survey Water-Resources Investigations Report 87-4007, 69 p.

Dinger, J.S., 1977, Relation between surficial geology and near-surface ground-water quality, Las Vegas Valley, Nevada: University of Nevada, Reno, unpublished Ph. D. thesis, 213 p.

Fishman, M.J., and Friedman, L.C., eds., 1985, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 709 p.

Friedman, L.C., and Erdman, D.E., 1982, Quality assurance practices for the chemical and biological analyses of water and fluvial sediments: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter A6, 181 p.

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water Supply Paper 2254, 263 p.

Janzer, V.J., 1985, The use of natural waters at U.S. Geological Survey reference samples: American Society of Testing and Materials, Special Technical Testing Publications 867, p. 319-333.

Kaufmann, R.F., 1978, Land and water use effects on ground-water quality in Las Vegas Valley: U.S. Environmental Protection Agency Report EPA-600/2-78-179, 216 p.

Naff, R.L., Baker, A.A., and Gross, G.W., 1975, Environmental controls on groundwater chemistry in New Mexico--I. The effect of phreatophytes: New Mexico Water Resources Research Institute Technical Completion Report, Project A-030-NMEX, 59 p.

Plummer, L.N., Jones, B.F., and Truesdell, A.H., 1976, WATEQF--A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U.S. Geological Survey Water-Resources Investigations Report 76-13, 61 p.

Roline, R.A., and Sartoris, J.J., 1984, Las Vegas Wash advanced water quality study--final report: Denver, Colo., U.S. Bureau of Reclamation, Engineering and Research Center, 102 p.

Rush, F.E., 1968, Index of hydrographic areas in Nevada: Nevada Division of Water Resources, Information Report 6, 38 p.

Schmidt, A., and Hess, J.W., 1980, Nitrogen and phosphorus hydrochemistry in Las Vegas Wash: University of Nevada, Desert Research Institute Publication 41063, 65 p.

Smith, C.L., and Drever, J.I., 1976, Controls on the chemistry of springs at Teels Marsh, Mineral County, Nevada: *Geochimica et Cosmochimica Acta*, v. 40, p. 1081-1093.

Steel, R.G.D., and Torrie, J.H., 1980, Principles and procedures of statistics, a biometrical approach (2d ed.): New York, McGraw-Hill, 633 p.

U.S. Bureau of Reclamation, 1982, Las Vegas Wash Unit, Nevada: Boulder City, Nev., Colorado River Basin Salinity Control Project, Point Source Division Status Report, 52 p.

-----1985, Environmental assessment Whitney verification program: U.S. Bureau of Reclamation, Lower Colorado Region, Colorado River Basin Salinity Control Project, Point Source Division, Las Vegas Wash Unit, Nevada, draft report, 55 p., 3 app.

Wood, W.W., 1976, Guidelines for collection and field analysis of ground-water samples for selected unstable constituents: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D2, 24 p.