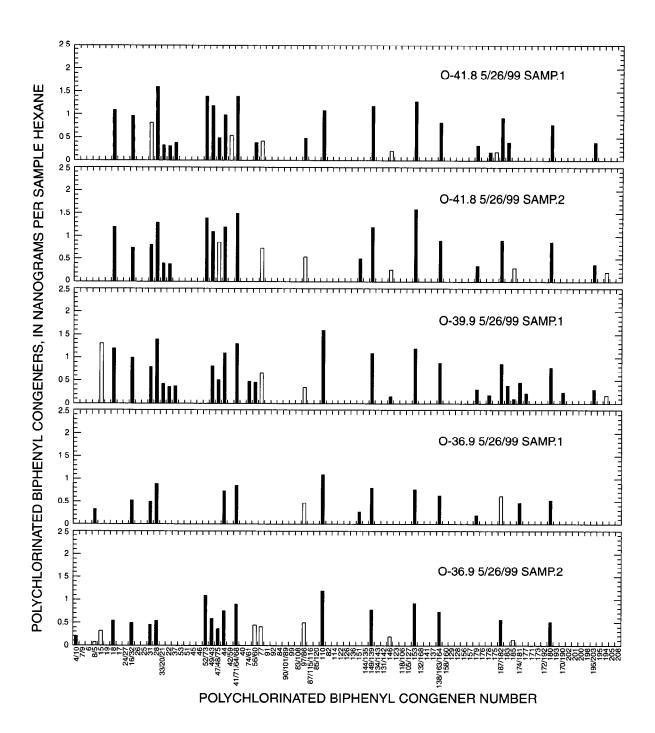

Source Identification and Fish Exposure for Polychlorinated Biphenyls Using Congener Analysis from Passive Water Samplers in the Millers River Basin, Massachusetts

Water-Resources Investigations Report 00-4250

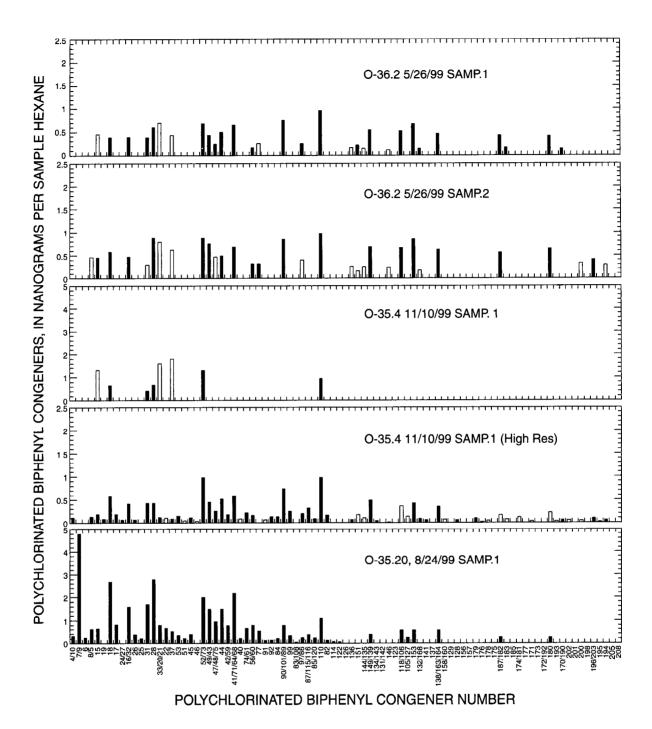
and the

APPENDIX A: Polychlorinated Biphenyl Congener Names and International Union of Pure and Applied Chemistry (IUPAC) Numbers in Gas-Chromatograph Domain Order

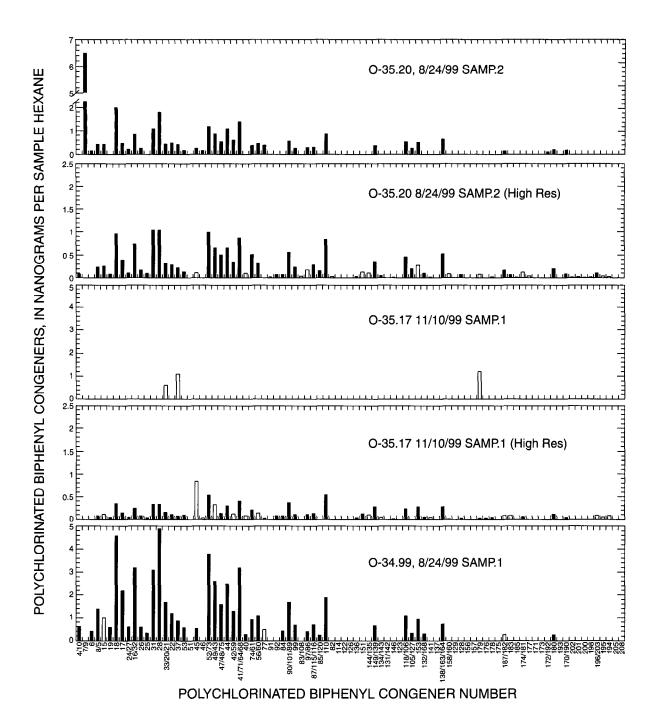
Appendix A. Polychlorinated biphenyl congener names and International Union of Pure and Applied Chemistry (IUPAC) numbers in gas-chromatograph domain order

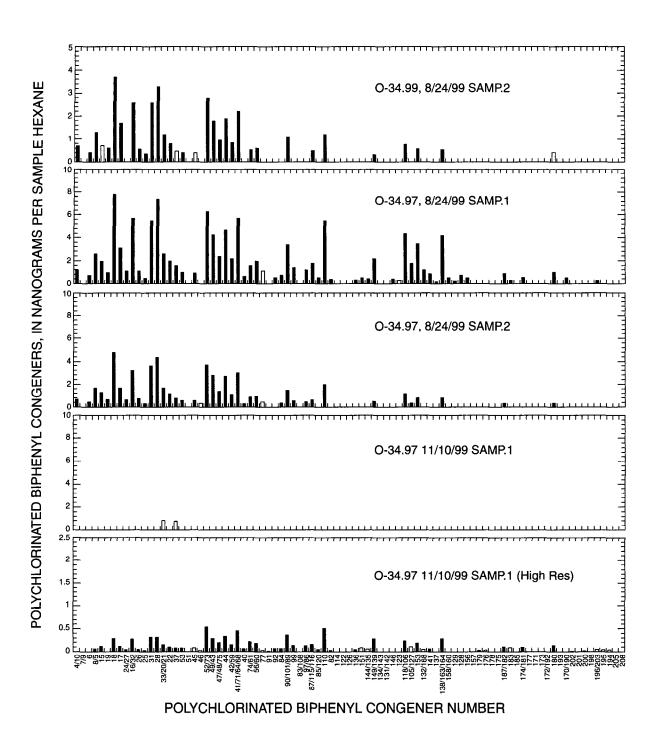

[No., number]

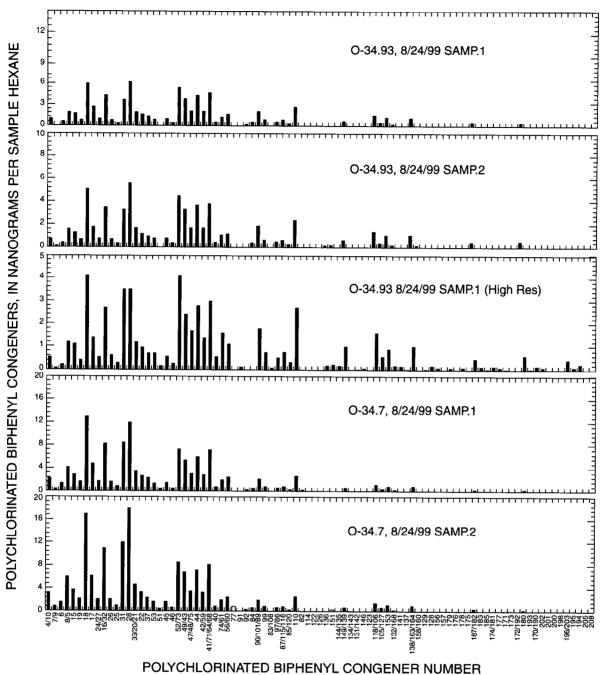
Domain	IUPAC No.	Congener name	Domain	IUPAC No.	Congener name
1	4	2,2'-Dichlorobiphenyl	30	56	2,3,3',4'-Tetrachlorobiphenyl
1	10	2,6-Dichlorobiphenyl	30	60	2,3,4,4'-Tetrachlorobiphenyl
2	7	2,4-Dichlorobiphenyl	31	77	3,3',4,4'-Tetrachlorobiphenyl
2	9	2,5-Dichlorobiphenyl	32	91	2,2',3,4',6-Pentachlorobiphenyl
3	6	2,3'-Dichlorobiphenyl	33	92	2,2',3,5,5'-Pentachlorobiphenyl
4	5	2,3-Dichlorobiphenyl	34	84	2,2',3,3',6-Pentachlorobiphenyl
4	8	2,4'-Dichlorobiphenyl	35	90	2,2',3,4',5-Pentachlorobiphenyl
5	15	4,4'-Dichlorobiphenyl	35	101	2,2',4,5,5'-Pentachlorobiphenyl
6	19	2,2',6-Trichlorobiphenyl	35	89	2,2',3,4,6'-Pentachlorobiphenyl
7	18	2,2',5-Trichlorobiphenyl	36	99	2,2',4,4',5-Pentachlorobiphenyl
8	17	2,2',4-Trichlorobiphenyl	37	83	2,2',3,3',5-Pentachlorobiphenyl
9	24	2,3,6-Trichlorobiphenyl	37	108	2,3,3',4,5'-Pentachlorobiphenyl
9	27	2,3',6-Trichlorobiphenyl	38	97	2,2',3',4,5-Pentachlorobiphenyl
10	16	2,2',3-Trichlorobiphenyl	38	86	2,2',3,4,5-Pentachlorobiphenyl
10	32	2,4',6-Trichlorobiphenyl	39	87	2,2',3,4,5'-Pentachlorobiphenyl
11	26	2,3',5-Trichlorobiphenyl	39	115	2,3,4,4',6-Pentachlorobiphenyl
12	25	2,3',4-Trichlorobiphenyl	39	116	2,3,4,5,6-Pentachlorobiphenyl
13	31	2,4',5-Trichlorobiphenyl	40	85	2,2',3,4,4'-Pentachlorobiphenyl
14	28	2,4,4'-Trichlorobiphenyl	40	120	2,3',4,5,5'-Pentachlorobiphenyl
15	33	2',3,4-Trichlorobiphenyl	41	110	2,3,3',4',6-Pentachlorobiphenyl
15	20	2,3,3'-Trichlorobiphenyl	42	82	2,2',3,3',4-Pentachlorobiphenyl
15	21	2,3,4-Trichlorobiphenyl	43	114	2,3,4,4',5-Pentachlorobiphenyl
16	22	2,3,4'-Trichlorobiphenyl	44	122	2',3,3'4,5-Pentachlorobiphenyl
17	37	3,4,4'-Trichlorobiphenyl	45	126	3,3',4,4',5-Pentachlorobiphenyl
18	53	2,2',5,6'-Tetrachlorobiphenyl	46	136	2,2',3,3',6,6'-Hexachlorobiphenyl
19	51	2,2',4,6'-Tetrachlorobiphenyl	47	151	2,2',3,5,5',6-Hexachlorobiphenyl
20	45	2,2',3,6-Tetrachlorobiphenyl	48	144	2,2',3,4,5',6-Hexachlorobiphenyl
21	46	2,2',3,6'-Tetrachlorobiphenyl	48	135	2,2',3,3',5,6'-Hexachlorobiphenyl
22	52	2,2',5,5'-Tetrachlorobiphenyl	49	149	2,2',3,4',5',6-Hexachlorobiphenyl
22	73	2,3',5',6-Tetrachlorobiphenyl	49	139	2,2',3,4,4',6-Hexachlorobiphenyl
23	49	2,2',4,5'-Tetrachlorobiphenyl	50	134	2,2',3,3',5,6-Hexachlorobiphenyl
23	43	2,2',3,5-Tetrachlorobiphenyl	50	143	2,2',3,4,5,6'-Hexachlorobiphenyl
24	47	2,2'4,4'-Tetrachlorobiphenyl	51	131	2,2',3,3',4,6-Hexachlorobiphenyl
24	48	2,2',4,5-Tetrachlorobiphenyl	51	142	2,2',3,4,5,6-Hexachlorobiphenyl
24	75	2,4,4',6-Tetrachlorobiphenyl	52	146	2,2',3,4',5,5'-Hexachlorobiphenyl
25	44	2,2',3,5'-Tetrachlorobiphenyl	53	123	2',3,4,4',5-Pentachlorobiphenyl
26	42	2,2',3,4'-Tetrachlorobiphenyl	54	118	2,3',4,4',5-Pentachlorobiphenyl
26	59	2,3,3',6-Tetrachlorobiphenyl	54	106	2,3,3',4,5-Pentachlorobiphenyl
27	41	2,2',3,4-Tetrachlorobiphenyl	55	105	2,3,3',4,4'-Pentachlorobiphenyl
27	71	2,3',4',6-Tetrachlorobiphenyl	55	127	3,3',4,5,5'-Pentachlorobiphenyl
27	64	2,3,4',6-Tetrachlorobiphenyl	56	153	2,2',4,4',5,5'-Hexachlorobiphenyl
27	68	2,3',4,5'-Tetrachlorobiphenyl	57	132	2,2',3,3',4,6'-Hexachlorobiphenyl
28	40	2,2',3,3'-Tetrachlorobiphenyl	57	168	2,3',4,4',5',6-Hexachlorobiphenyl
29	74	2,4,4°,5-Tetrachlorobiphenyl	58	141	2,2',3,4,5,5'-Hexachlorobiphenyl
29	61	2,3,4,5-Tetrachlorobiphenyl	59	137	2,2',3,4,4',5-Hexachlorobiphenyl


Appendix A. Polychlorinated biphenyl congener names and International Union of Pure and Applied Chemistry (IUPAC) numbers in gas-chromatograph domain order—*Continued*

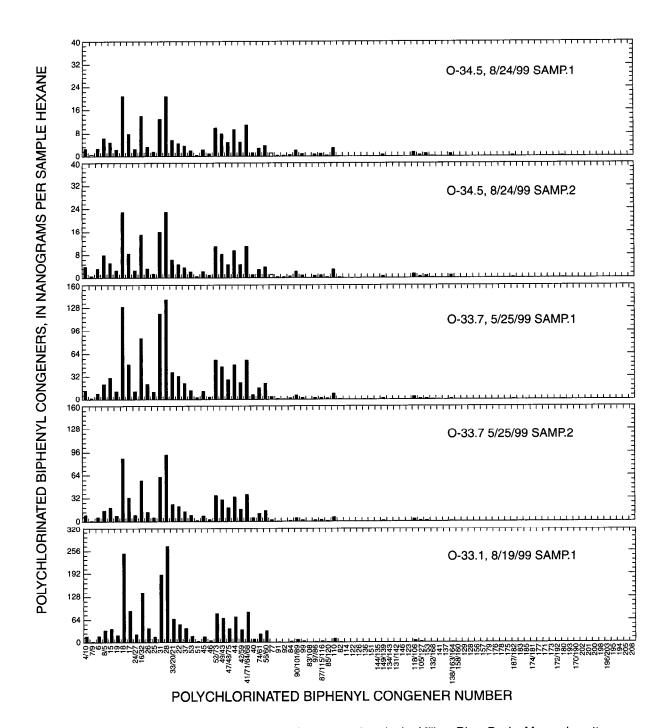
Domain	IUPAC No.	Congener name	Domain	IUPAC No.	Congener name
60	138	2,2',3,4,4',5'-Hexachlorobiphenyl	75	171	2,2',3,3',4,4',6-Heptachlorobiphenyl
60	163	2,3,3',4',5,6-Hexachlorobiphenyl	76	173	2,2',3,3',4,5,6-Heptachlorobiphenyl
60	164	2,3,3',4',5',6-Hexachlorobiphenyl	77	172	2,2',3,3',4,5,5'-Heptachlorobiphenyl
61	158	2,3,3',4,4',6-Hexachlorobiphenyl	77	192	2,3,3',4,5,5',6-Heptachlorobiphenyl
61	160	2,3,3',4,5,6-Hexachlorobiphenyl	78	180	2,2',3,4,4',5,5'-Heptachlorobiphenyl
62	129	2,2',3,3',4,5-Hexachlorobiphenyl	79	193	2,3,3',4',5,5',6-Heptachlorobiphenyl
63	128	2,2',3,3',4,4'-Hexachlorobiphenyl	80	170	2,2',3,3',4,4',5-Heptachlorobiphenyl
64	156	2,3,3',4,4',5-Hexachlorobiphenyl	80	190	2,3,3',4,4',5,6-Heptachlorobiphenyl
65	157	2,3,3',4,4',5'-Hexachlorobiphenyl	81	202	2,2',3,3',5,5',6,6'-Octachlorobiphenyl
66	179	2,2',3,3',5,6,6'-Heptachlorobiphenyl	82	201	2,2',3,3',4,5',6,6'-Octachlorobiphenyl
67	176	2,2',3,3',4,6,6'-Heptachlorobiphenyl	83	200	2,2',3,3',4,5,6,6'-Octachlorobiphenyl
68	178	2,2',3,3',5,5',6-Heptachlorobiphenyl	84	198	2,2',3,3',4,5,5',6-Octachlorobiphenyl
69	175	2,2',3,3',4,5',6-Heptachlorobiphenyl	85	196	2,2',3,3',4,4',5',6-Octachlorobiphenyl
70	187	2,2',3,4',5,5',6-Heptachlorobiphenyl	85	203	2,2',3,4,4',5,5',6-Octachlorobiphenyl
70	182	2,2',3,4,4',5,6'-Heptachlorobiphenyl	86	195	2,2',3,3',4,4',5,6-Octachlorobiphenyl
71	183	2,2',3,4,4',5',6-Heptachlorobiphenyl	87	194	2,2',3,3',4,4',5,5'-Octachlorobiphenyl
72	185	2,2',3,4,5,5',6-Heptachlorobiphenyl	88	205	2,3,3',4,4',5,5',6-Octachlorobiphenyl
73	174	2,2',3,3',4,5,6'-Heptachlorobiphenyl	89	208	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl
73	181	2,2',3,4,4',5,6-Heptachlorobiphenyl			
74	177	2,2',3,3',4',5,6-Heptachlorobiphenyl			



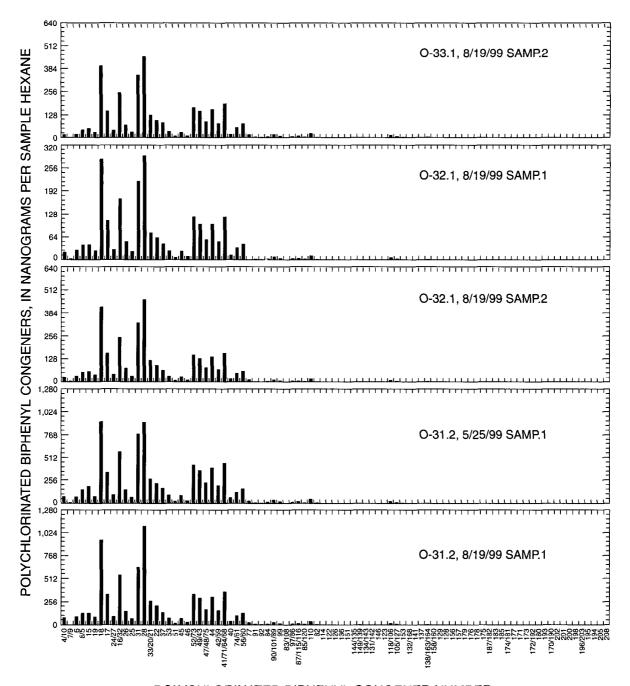

Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. ISamples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

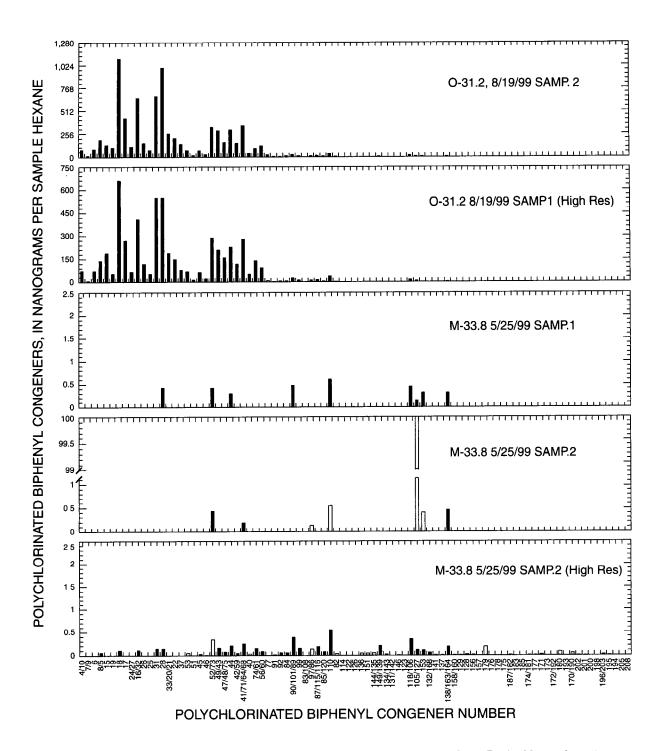


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts, [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

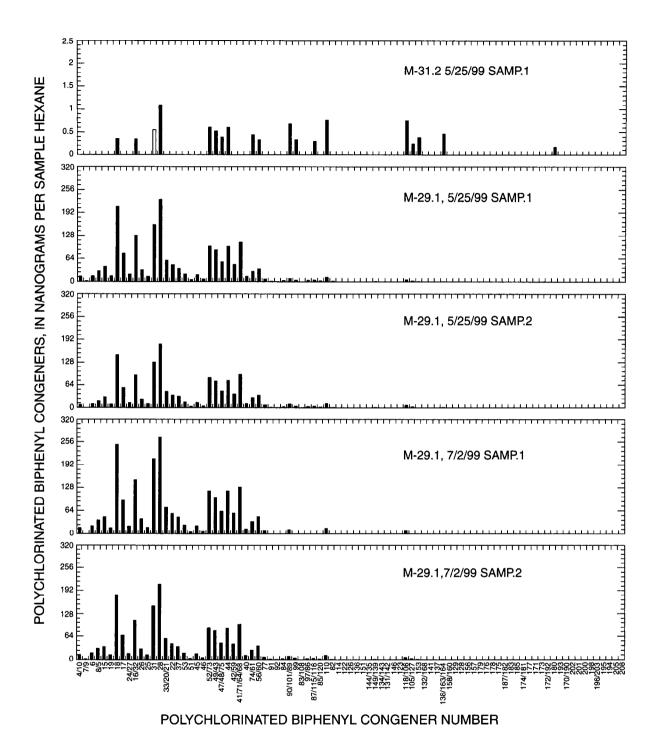


OCIONEO MANED DII NEIVIE CONGENER NOIMBER

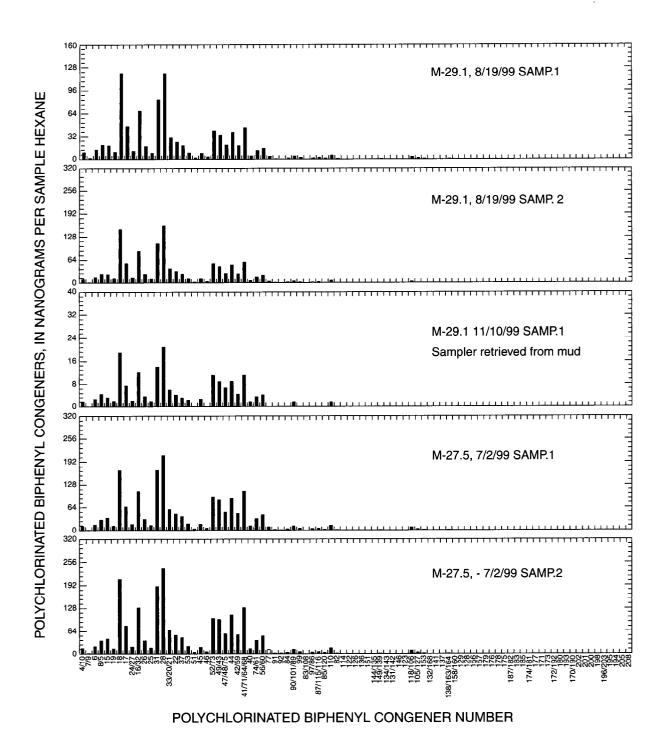
Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

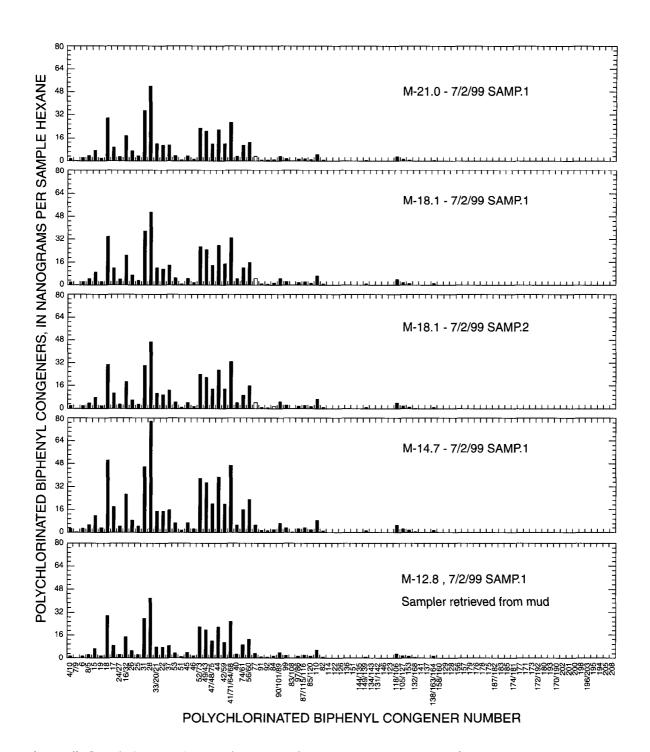


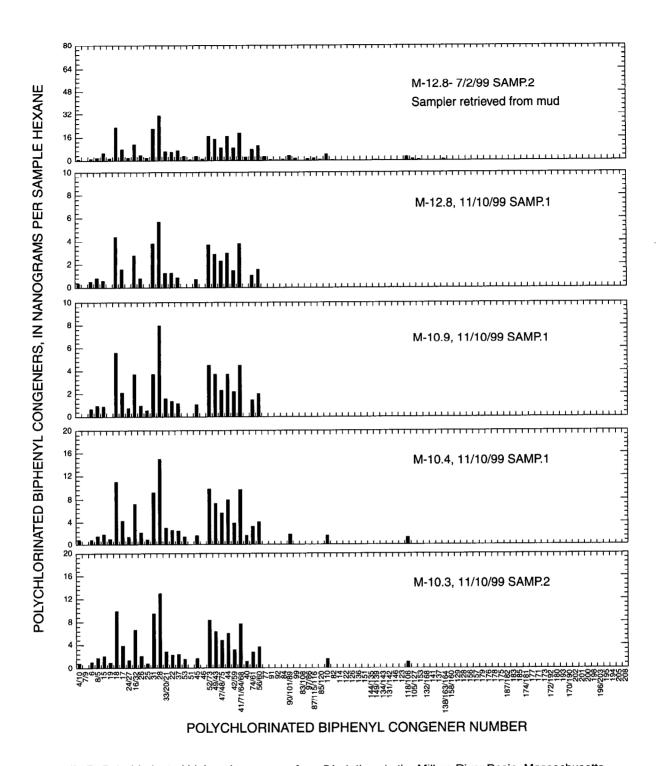
Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

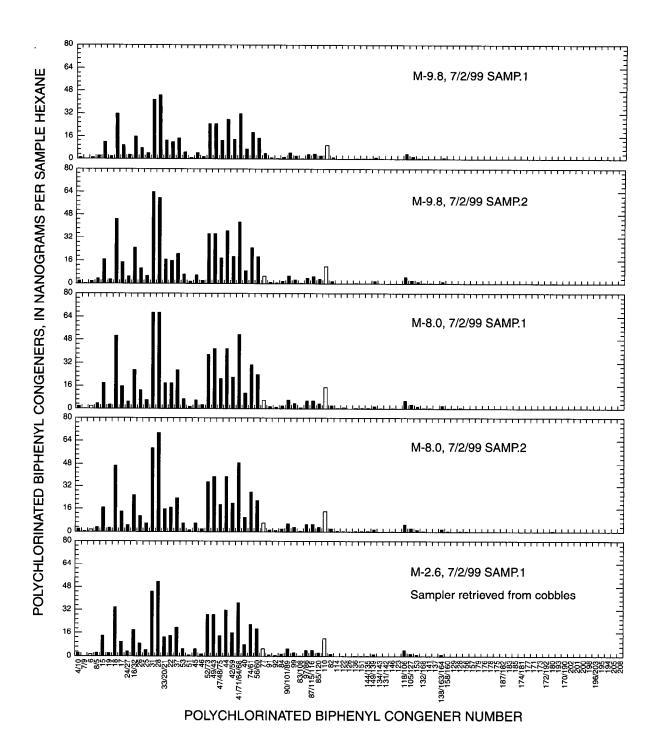


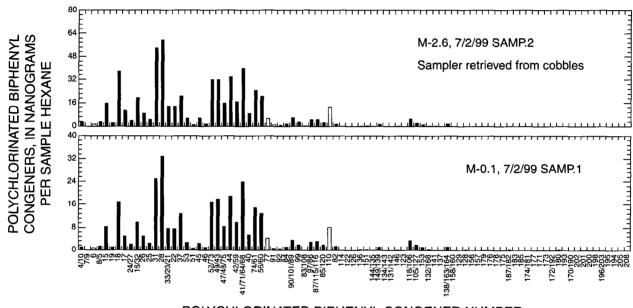
POLYCHLORINATED BIPHENYL CONGENER NUMBER


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.


Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.

POLYCHLORINATED BIPHENYL CONGENER NUMBER

Appendix B. Polychlorinated biphenyl congeners from 31 stations in the Millers River Basin, Massachusetts. [Samples are listed in downstream order and correspond in date order to the sample listing in table 2. When more than one congener is displayed for one bar, multiple IUPAC numbers are given separated by a slash. Unfilled bars represent cases where the ratio of monitored ion molecular fragments recorded by the mass spectrometer did not pass the laboratory-ratio criterion that was established for a congener expected at a particular retention time. Designation (High Res) indicates sample was analyzed additionally by high-resolution mass spectrometry.]—Continued.