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three samples (Flint River) or four samples (Hester 
Creek) collected over a 30-day period.

Variation of Concentrations with Streamflow and 
Turbidity

Concentrations of E. coli in the Flint River and 
Hester Creek are significantly different (p < 0.001, 
Wilcoxon rank-sum test) between base flow and storm 
flow (fig. 12). Concentrations of E. coli in the 11 base-
flow samples from the Flint River, in the reach used 
for recreational boating, generally did not exceed the 
single-sample criterion, whereas E. coli concentrations 
in 12 out of the 13 storm samples exceeded the 
single-sample criterion. The median value for all base-
flow samples from the Flint River was 50 col./100 mL, 
less than both the single-sample and geometric-mean 
criteria. However, the median value for samples col-
lected 3 to 6 days after a storm was higher, almost 
equal to the geometric mean criterion, suggesting that 
the bacteriological risk remains elevated at least 6 
days after a storm. Concentrations of E. coli were 
higher in Hester Creek when compared with the Flint 

River concentra-
tions; concentrations 
in 3 of 14 base-flow 
samples from Hester 
Creek exceeded the 
single-sample crite-
rion, and E. coli con-
centrations in 14 of 
16 storm samples, 
and concentrations in 
7 of 9 samples col-
lected 3 to 6 days 
after a storm, 
exceeded the single-
sample criterion 
(fig. 12).

Concentra-
tions of E. coli did 
not vary as greatly 
with season 
(p > 0.40; Wilcoxon 
rank sum test) as 
with streamflow. 
Mass loading of 
E. coli was much 
greater in winter, 
however, because of 

more frequent occurrences of storms. Based on 
instream load calculations, 84 percent of the estimated 
annual instream load of E. coli in the Flint River was 
calculated for the 3-month period of December 
through February, whereas only 2 percent was calcu-
lated for the 3-month period of June through August; 
for Hester Creek, 54 percent of the estimated annual 
load was calculated for the period of December 
through February, and 2 percent for the period of June 
through August.

Concentrations of E. coli were strongly corre-
lated with turbidity for the Flint River throughout the 
range of concentration values (r > 0.9, p < 0.001 for 
log-transformed data); correlation was not as strong 
for Hester Creek, especially for E. coli concentrations 
less than 1,000 col./100 mL (fig. 13). Turbidity, there-
fore, may be useful as a surrogate for estimating con-
centrations of E. coli in the Flint River. For example, a 
turbidity value of 22 nephelometric turbidity units 
(NTU) was estimated from a linear regression of the 
data (fig. 13) for the Flint River to be the value at 
which the E. coli concentration would be expected to 
exceed the single-sample criterion (406 col./100 mL).
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Spatial Variation of Concentrations During Base 
Flow

E. coli-concentration data were collected from 
the network of eight stream sites in the Flint River 
Basin during base flow in May and September 1999 
(fig. 14). Concentrations exceeded the single-sample 
criterion for recreation (406 col./100 mL) at two sites: 
Hester Creek and West Fork Flint River, site S2. The 
spatial pattern of E. coli concentrations was compared 
to the pattern for various watershed characteristics 
including percentage of pastureland and percentage of 
cultivated land, density of livestock population, and 
failing septic systems (table 2). The reader should note 
that input from livestock is not necessarily represented 
by density of population; stream access may also be an 
important factor, but one that was not considered in 
this analysis. Correlation was significant (r > 0.9, 
p < 0.006) between E. coli concentration during May 
1999 and density of livestock population (highest for 
Hester Creek). A weaker correlation (r = 0.7, p = 0.10) 
was observed between E. coli concentrations during 
September 1999 and density of failing septic systems 

(highest for West Fork Flint River, site S2). These cor-
relations suggest that, of the four variables considered, 
livestock populations were the most likely source of 
fecal material to streams during base flow in May 
1999; whereas failing septic systems were the most 
likely source during base flow in September 1999, 
when sampling followed a prolonged 40-day dry 
period. Correlations should be interpreted with cau-
tion, however, because of the small number of obser-
vations (n = 8).

The E. coli-concentration data from the spatial 
network can be used to identify which tributaries in the 
Flint River Basin contribute the largest amount of fecal 
material to the Flint River during base flow. During 
May 1999, Hester Creek contributed the largest 
amount (41 percent) of the tributary load to the Flint 
River, and Beaverdam Creek (site S5) contributed the 
second largest amount (26 percent). Bacterial loading 
differed during September 1999 after a prolonged dry 
period, when West Fork Flint River (site S2) contrib-
uted the largest amount (56 percent).
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