USGS

Water Resources of Colorado

Traveltime Characteristics of Gore Creek and Black Gore Creek, Upper Colorado River Basin, Colorado

by Jason J. Gurdak, Norman E. Spahr, and Richard J. Szmajter

Available from the U.S. Geological Survey, Branch of Information Services, Box 25286, Denver Federal Center, Denver, CO 80225, USGS Water-Resources Investigations Report 02-4037, 14 p., 4 figs.

This document also is available in pdf format: Adobe Acrobat iconWRIR 02-4037
(Requires Adobe Acrobat Reader)

Abstract

In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70.

Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed.

In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided.

Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements, discharges ranged from 82 cubic feet per second (ft3/s) at Black Gore Creek near Minturn (U.S. Geological Survey station number 09066000) to 724 ft3/s at Gore Creek at mouth near Minturn (U.S. Geological Survey station number 09066510), whereas during the September traveltime measurements, discharges ranged from 3.6 ft3/s at Black Gore Creek near Minturn to 62 ft3/s at Gore Creek at mouth near Minturn. Cumulative traveltimes for the peak dye concentration during the May traveltime measurements ranged from 3.45 hours (site 1 to site 3) in Black Gore Creek to 2.50 hours (site 8 to site 12) in Gore Creek, whereas cumulative traveltimes for the peak dye concentration during the September traveltime measurements ranged from 15.33 hours (site 1 to site 3) in Black Gore Creek to 8.65 hours (site 8 to site 12) in Gore Creek. During the September dye injections, beaver dams on Black Gore Creek, between site 1 and the confluence with Gore Creek, substantially delayed movement of the rhodamine WT.

Estimated traveltimes were developed using relations established from linear-regression methods of relating measured peak traveltime to discharge during those measurements, which were obtained at Black Gore Creek near Minturn and Gore Creek at mouth near Minturn. Resulting estimated peak traveltimes for Black Gore Creek (sites 1 to 5) ranged from 5.4 to 0.4 hour for 20 to 200 ft3/s and for Gore Creek (sites 5 to 12), 5.5 to 0.3 hour for 20 to 800 ft3/s.

Longitudinal-dispersion coefficients that were calculated for selected stream reaches ranged from 17.2 square feet per second at 4 ft3/s between sites 2 and 3 to 650 square feet per second at 144 ft3/s between sites 7 and 8. Longitudinal-dispersion coefficients are necessary variables for future stream-contaminant modeling in the Gore Creek watershed.  


Table of Contents

Abstract

Introduction

Purpose and scope

Study Area

Acknowledgments

Theory and Methods for Determination of Traveltime and Longitudinal-Dispersion Characteristics

Tracer Theory

Traveltime

Longitudinal Dispersion

Methods Used in the Gore Creek Watershed

Traveltime

Traveltime Measurements

Estimated Traveltimes

Traveltime Estimation Example

Longitudinal-Dispersion Coefficients

Summary

References Cited

Up arrowBack to top


Water Resources of Colorado
Contact: webmaster_co@usgs.gov


U.S. Department of the Interior, U.S. Geological Survey
Persistent URL: http://pubs.water.usgs.gov/wri024037
Page Contact Information: GS Pubs Web Contact
Last modified: Friday, September 16 2005, 04:22:24 PM
FirstGov button  Take Pride in America button