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Occurrence of and Trends in Selected
Sediment-Associated Contaminants in
Caddo Lake, East Texas, 1940-2002

By Jennifer T. Wilson

Abstract

Bottom-sediment cores were collected from
four sites in Caddo Lake in East Texas during
May 2002 for analyses of radionuclides (for age
dating), organochlorine pesticides, polychlorinated
biphenyls (PCBs), polycyclic aromatic hydrocar-
bons (PAHs), and major and trace elements, and
to describe the occurrence and trends of these
sediment-associated contaminants. The Goose
Prairie Creek and Harrison Bayou sites receive
drainage from an area that includes parts of the
now-closed Longhorn Army Ammunitions Plant.
The mid-lake site is relatively close to dense oil and
gas operations in the lake. The Carter Lake site
receives minimal discharge from developed areas.

Sediment age (deposition) dates represented
in the cores ranged from 1940 to 2002. The only
organochlorine compounds detected in all core
samples were the DDT degradation products DDE
or DDD, and PCB Aroclors 1242, 1254, and 1260
were detected only at the Goose Prairie Creek site.
One or more of the DDE concentrations at all sites
exceeded a consensus-based threshold effect con-
centration (on benthic biota), but none exceeded a
consensus-based probable effect concentration.
The Goose Prairie Creek site had significant down-
ward trends in concentrations of organochlorine
compounds, except for no trend in DDE concentra-
tions. The Ammunitions Plant is a possible histori-
cal source of the few organochlorine compounds
detected at the Goose Prairie Creek and Harrison
Bayou sites.

PAH concentrations at all sites were below
respective threshold effect concentrations. Highest
PAH concentrations at all four sites were of C2-
alkylated naphthalenes. Nearly all statistically sig-

nificant PAH trends in the cores were downward.
On the basis of PAH source-indicator ratios, the
majority of PAH compounds appear to have origi-
nated from uncombusted sources such as leaks or
spills from oil and gas operations or vehicles (auto-
mobiles, boats, aircraft) in the Caddo Lake area.

Concentrations of several of the eight trace
elements with threshold effect concentrations and
probable effect concentrations (among 26 ana-
lyzed) were above the respective threshold effect
concentrations, but all, except one lead concentra-
tion at the Goose Prairie Creek site (deposited
about 1961), were below respective probable effect
concentrations. Among trace element concentra-
tions at the four sites, lead and mercury were con-
sistently relatively high at the Goose Prairie Creek
site. Again the Ammunitions Plant, because of its
proximity and history of industrial activities, is the
suspected primary source. Statistically significant
trends in trace element concentrations were mixed,
but more were downward than upward.

Computations to indicate the dominant
source (atmospheric fallout or drainage area) of
mercury to the Caddo Lake sediment core sites
(except Carter Lake) indicate that about one-third
of the mercury at the Goose Prairie Creek site
might result from drainage area sources. No drain-
age area sources were indicated for the Harrison
Bayou and mid-lake sites. Arsenic, cadmium, and
zinc concentrations were highest at the Carter Lake
site. No relation between the relatively higher trace
element concentrations and any potential source of
contamination in the Carter Lake drainage area (for
example, oil and gas operations, a road, a boat
ramp) is indicated.

Abstract 1



INTRODUCTION

Caddo Lake in East Texas (and Louisiana) (fig. 1)
is designated a Wetlands of International Importance by
the Ramsar Convention on Wetlands (an intergovern-
mental treaty to promote the wise use of wetlands) and
is home to numerous and unique species of fish, birds,
and plants (Ramsar Sites Database, 2003). Caddo Lake
serves as the primary source of drinking water for sev-
eral surrounding communities (for example, Uncertain
and Karnack) and provides recreational opportunities
and lakeshore residential areas. It is the only natural
lake in Texas—that is, it was not impounded by humans.
The most widely accepted hypothesis regarding the ori-
gin of the lake is that the water was pooled in the early
1800s by a logjam. About 1914 the logjam was replaced
with a constructed dam on the Louisiana end of the lake
to stabilize water levels. The lake was re-dammed in
1971, which increased the surface area of the lake to its
current (2003) 103 square kilometers (kmz). The Caddo
Lake drainage area is estimated from digital elevation
models to be 7,230 km? (Toby Welborn, U.S. Geologi-
cal Survey, written commun., 2002).

The Longhorn Army Ammunitions Plant
(LHAAP) operated on the southwestern shore of Caddo
Lake for 55 years as a munitions loading and assembly
facility. The LHAAP has several areas of known
contamination, and surface runoff from the plant
drains toward Caddo Lake (fig. 2). Several sediment-
associated contaminants are of concern to water-
resource managers because of their common occurrence
and toxicity. For example, the Agency for Toxic Sub-
stances and Disease Registry (ATSDR) releases a prior-
ity list of substances as required by the Comprehensive
Environmental Response, Compensation, and Liability
Act (CERCLA). This list describes, in order of priority,
275 substances that are most commonly detected at
facilities on the (Superfund) National Priorities List
(NPL) and that have been determined to pose the most
substantial potential threat to human health because of
their known or suspected toxicity and potential for
human exposure at NPL sites (Agency for Toxic Sub-
stances and Disease Registry, 2001). The LHAAP was
placed on the NPL in August 1990. The analyses of the
sediment samples from Caddo Lake yielded 54 of the
275 substances on the ATSDR CERCLA priority list
including eight of the top 10 substances.

The U.S. Army Corps of Engineers (USACE)
and the Texas Commission on Environmental Quality
(TCEQ) (formerly the Texas Natural Resource Conser-

vation Commission) have sampled Caddo Lake bottom
sediments in Texas extensively (Texas Natural Resource
Conservation Commission, 2002a, 2002b; Cliff Murray,
U.S. Army Corps of Engineers, unpub. data, 2002).
However, both agencies described only the occurrence
of contaminants and did not describe contaminant
trends over time. The bottom sediments in Caddo Lake
(Texas part only) were sampled in May 2002 by the
U.S. Geological Survey (USGS), in cooperation with
the U.S. Environmental Protection Agency, Region 6,
Superfund Division. The evaluation of contaminant
trends over time can be used to improve knowledge

of possible contaminant sources, the extent of contami-
nation in the sediments, and the potential effects on
aquatic biota, and can be used to determine whether
conditions are getting better or worse.

Purpose and Scope

The purpose of this report is to describe the occur-
rence of and trends in selected sediment-associated
contaminants in age-dated sediment cores from four
sites in the Texas part of Caddo Lake. Radionuclides
were used to age date the sediment layers in the cores,
which makes possible evaluation of changes in contam-
inant concentrations over time. The report explains the
age-dating process and associates dates of deposition
with successive intervals in each core. Concentrations
of selected organochlorine compounds, polycyclic aro-
matic hydrocarbons (PAHs), and trace elements are
compared to sediment-quality guidelines that reflect
relative sediment toxicity to aquatic biota. Trends based
on contaminant concentrations in intervals of core
sediment were tested for statistical significance. Poten-
tial sources of contaminants, particularly mercury, are
discussed.

Background

Caddo Lake can be described as a wetland with
bottomland hardwoods and bald cypress swamps. The
habitats of the lake support some of the largest popula-
tions of wood ducks and mallards in Texas, in addition
to migratory birds, restricted wetland species (Ameri-
can alligator and river otter), and other wildlife such as
the barred owl, gray squirrel, beaver, and green heron
(Cloud and Short, 1993). The lake supports Texas’ most
diverse fish fauna—one study collected 69 species
(Gray, 1955)—and is described by the Texas Parks and
Wildlife Department as “the epitome of fish habitat,
supporting large populations of largemouth bass, black

2 Occurrence of and Trends in Selected Sediment-Associated Contaminants in Caddo Lake, East Texas, 1940-2002
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Figure 2. Drainage areas of creeks and contaminated or potentially contaminated areas on Longhorn Army
Ammunition Plant (LHAAP), Texas, identified by U.S. Army during a public health assessment of the plant in July
1999 (Texas Department of Health, 1999).
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and white crappie, channel catfish, and bluegill” (Toole
and Ryan, 1981, in Cloud and Short, 1993, p. 5). Several
other fish species also are supported by Caddo Lake, for
example, bowfin, paddlefish, American eel, southern
brook lamprey, and chain pickerel. Caddo Lake and its
forested wetlands of mature bald cypress and bottom-
land hardwoods are considered a unique, fragile, and
irreplaceable high-quality habitat for fish and wildlife
(Cloud and Short, 1993).

Caddo Lake overlies the Caddo oil and gas field.
Oil production in Caddo Lake and its drainage area
began in the early 1900s. Gulf Oil Corporation leased
the bottom of Caddo Lake for oil development and built
the first over-water drilling platform in 1911. Most of
the current (2003) producing wells in the lake are in
Louisiana.

The LHAAP operated from 1942 to 1997 on the
southwestern shore of Caddo Lake near the towns of
Karnack and Uncertain (fig. 1). The plant manufactured
trinitrotoluene (TNT) and rocket motors; loaded,
assembled, and packed pyrotechnic and signal ammuni-
tion; and performed rocket demilitarization (U.S. Envi-
ronmental Protection Agency, 2002). Five areas on the
LHAAP (A-E, fig. 2) have active releases of contami-
nants to surface water: (active) burning ground no. 3,
old landfill, former TNT production area, ground signal
test area, and south test area. In addition, 15 other areas
are contaminated or possibly contaminated and have the
potential for contaminant migration off the LHAAP
(U.S. Environmental Protection Agency, 2002). The
LHAAP site was designated as the Caddo Lake
National Wildlife Refuge in October 2000 and will be
transferred to the U.S. Department of the Interior, U.S.
Fish and Wildlife Service, as areas are designated
appropriate for use as a wildlife refuge (U.S. Environ-
mental Protection Agency, 2002).

Study Design

The study was designed to sample and analyze the
bottom sediments in Caddo Lake to indicate whether
contaminants associated with historical activities at the
now-closed LHAAP are being transported into Caddo
Lake and if the amount of contaminants associated with
activities at the LHAAP or other potential sources has
changed over time. Four natural drainage areas direct
runoff and stormwater from the LHAAP into Caddo
Lake: Goose Prairie Creek, Central Creek, Harrison
Bayou, and Saunders Branch (fig. 2). The estimated per-
centages of surface water draining from the LHAAP

through the four creeks are 30 percent in Goose Prairie
Creek, 29 percent in Central Creek, 30 percent in Harri-
son Bayou, and 11 percent in Saunders Branch (Texas
Department of Health, 1999).

Two sediment cores were collected near the
shores of the LHAAP, one near the mouth of Goose
Prairie Creek (core CDO.GP) and one near the mouths
of Central Creek, Harrison Bayou, and Saunders Branch
(core CDO.HB) (figs. 1, 2). These two sites were
selected to assess the occurrence and trends of contam-
inants that might enter the lake from the LHAAP and to
determine if sediment-bound contaminants presumably
from the Goose Prairie Creek drainage area differed
from those presumably from the three other drainage
areas. Another core was collected from the middle of
the main body of the lake (core CDO.MD) (fig. 1). This
third site was selected to indicate whether contaminants
are being transported into the main body of the lake and
whether oil and gas production or industrial activity in
Caddo Lake and its drainage area have released contam-
inants to the lake sediments, such as through improper
drilling-mud disposals or oil spills. The CDO.MD core
was collected near an abandoned oil pipeline. The
fourth core was collected from upper Caddo Lake in an
area called Carter Lake (core CDO.CR) (fig. 1). This
site was selected to indicate background concentrations
of contaminants because the location does not receive
runoff from the LHAAP and is far from the area of the
lake with dense oil and gas operations. No residential,
commercial, or industrial development is near the
CDO.CR core site. Industrial activity could be a source
of contaminants, however, through atmospheric trans-
port and deposition.

Review of Existing Information

There have been numerous studies of Caddo Lake
and its drainage areas because it is such a unique and
biologically important area. The topics of studies
include local history, habitat, possible contaminant
sources (such as on-site studies of the LHAAP), and
contaminant concentrations in various media in and
around Caddo Lake (for example, Gray, 1955; Cloud
and Short, 1993; Crowe, 1996; U.S. Environmental Pro-
tection Agency, 2002). This section describes existing
information that is readily available.

The ATSDR classifies the LHAAP as a hazardous
waste site and has a site contaminants list showing the
presence of 233 chemicals in various media on the site
(Agency for Toxic Substances and Disease Registry,
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2003). Of relevance to this report is the documented
presence of arsenic, barium, beryllium, cadmium,
chromium, copper, lead, manganese, nickel, strontium,
zinc, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (p,p'-
DDE), 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane
(p,p"-DDT), dieldrin, and aldrin in the soils or the sedi-
ment of the LHAAP, or both. Only three contaminant
concentrations for the soils and sediments sampled
on-site were reported: 1,290 milligrams per kilogram
(mg/kg) of lead and 25.4 mg/kg of dieldrin in the soil
and 20,500 mg/kg of barium in the sediment. Mercury
was not listed as a contaminant in soil or sediment sam-
ples from the LHAAP; however, it does not appear that
soil or sediment samples were analyzed for mercury.
Mercury was reported at 3.3 micrograms per liter (Lg/L)
in ground-water samples collected during a health
assessment at the plant.

The Texas Department of Health (TDH) released
a public health assessment of the LHAAP in July 1999
that stated the site posed no apparent public health haz-
ard (Texas Department of Health, 1999). The public
health assessment cites releases of arsenic, barium,
chromium, and lead on the LHAAP and their presence
in ground water. Production wastes were washed into
ponds or buried in landfills until about 1984. Areas
identified by the Army as contaminated or potentially
contaminated during the Installation Restoration Pro-
gram by the Department of Defense included burning
ground no. 3 where flammable wastes were burned
beginning in the early 1950s; the unlined evaporation
pond, which received about 61 cubic meters per day
(16,000 gallons per day) of waste containing arsenic,
barium, chromium, lead, and zinc during 1972-84; the
old landfill where TNT wastes were disposed during
1942-44; the former TNT production area; and the
ground signal and south test areas where rocket motors
and ammunition were tested (fig. 2).

The USACE sampled sediment in Caddo Lake
three times. The first round of sampling was in August
2000 and included samples from Caddo Lake near the
inlets of Goose Prairie Creek, Harrison Bayou, Central
Creek, and Saunders Branch. Samples were analyzed
for major and trace elements, organochlorine pesticides,
organophosphorus pesticides, herbicides, polychlori-
nated biphenyls (PCBs), explosives, volatile organic
compounds (VOCs), semivolatile organic compounds
(SVOCs) that included several PAHs, and dioxins and
furans. The second round of sampling was in May 2001
in Clinton Lake (northwestern part of Caddo Lake;
fig. 1) to determine background concentrations. The

samples were analyzed for major and trace elements
and dioxins and furans. The final round of sampling was
in March 2002 and focused on sediments near the inlets
of Goose Prairie Creek and Harrison Bayou, and in
Clinton Lake. Samples were analyzed for eight trace
elements (arsenic, cadmium, chromium, copper, lead,
nickel, silver, and zinc), PCBs, perchlorate, and dioxins
and furans. During all sampling events the bottom-sed-
iment samples were collected to a depth of 0.46 meter
(m), and three 0.15-m sediment intervals were analyzed.

The USACE compared sample concentrations to
the sediment-quality guidelines (SQGs) of Long and
others (1995) to determine which constituents were at
levels of concern in regard to adverse biological effects
(Cliff Murray, U.S. Army Corps of Engineers, written
commun., 2002). The two SQGs recommended by Long
and others (1995) were based on data obtained from 89
reports that contained chemical data and simultaneous
measures of biological effects: (1) the effects range-low
(ER-L) and (2) the effects range-median (ER-M) con-
centrations. Sediment concentrations below the ER-L
were “rarely” associated with adverse biological effects.
Concentrations above the ER-L but below the ER-M
were “occasionally” associated with adverse biological
effects; those above the ER-M were “frequently” asso-
ciated with adverse biological effects. Several trace ele-
ments had concentrations that exceeded the SQGs—that
is, concentrations that were above threshold concentra-
tions associated with “occasional” or “frequent”
adverse biological effects. Lead, mercury, and silver
concentrations exceeded the ER-Ms in the upper two
sampled depth intervals (0 to 0.15 and 0.15 to 0.3 m)
from the near Goose Prairie Creek inlet site. The sam-
ples from Harrison Bayou had one concentration of
mercury and one concentration of nickel that exceeded
the ER-Ls, both in the 0.15- to 0.3-m interval in two dif-
ferent cores. The top interval from one core collected
near Central Creek had concentrations of mercury and
nickel that exceeded the ER-Ls. Arsenic, nickel, and
mercury concentrations exceeded the ER-Ls in the
upper two intervals of the samples from Clinton Lake.
The cores collected near Saunders Branch had no trace
element concentrations that exceeded the SQGs of Long
and others (1995).

There were a few detections of VOCs and SVOCs
in the cores from near Goose Prairie Creek. Commonly
detected compounds were acetone, carbon disulfide,
and phenol. The cores from near Goose Prairie Creek
had several PAHs at concentrations of 1,000 to 3,000
micrograms per kilogram (ug/kg). Acetone and carbon
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disulfide also were detected in the cores from near Har-
rison Bayou, Central Creek, and Saunders Branch.
VOCs were not analyzed in the Clinton Lake cores
(U.S. Army Corps of Engineers, written commun.,
2002). SQGs are not included for VOCs and SVOCs
(Long and others, 1995).

A fish consumption advisory was issued by the
TDH in November 1995 that included Caddo Lake and
Big Cypress Creek (fig. 1), discouraging the consump-
tion of largemouth bass and freshwater drum because of
elevated mercury concentrations (Texas Department of
Health, 1995). Caddo Lake is one of five East Texas
lakes for which fish consumption advisories have been
issued because of elevated mercury concentrations in
largemouth bass and freshwater drum. The TDH and
TCEQ have sampled several species of fish from Caddo
Lake for mercury and have detected concentrations
ranging from 0.14 to 1.63 parts per million (ppm)
(Crowe, 1996). The mercury is thought to be from
atmospheric deposition of nonpoint-source emissions
(Texas Department of Health, 1999). Possible sources
of emissions of mercury in the Big Cypress Creek Basin
include a lignite-fired power plant, a coal-fired power
plant, a chicken-processing plant, and a steel company,
but emissions distant from the basin could be sources of
mercury as well. Mercury was not used at the LHAAP
and has not been detected in its permitted discharge
(Crowe, 1996). Caddo Lake has favorable conditions for
mercury methylation and subsequent uptake into the
aquatic food chain, such as low pH, low alkalinity, low
dissolved calcium, high dissolved organic carbon, high
sulfate, and seasonally flooded wetlands (Lange and
others, 1993; Wiener, 1995; Crowe, 1996; Krabbenhoft
and others, 2002).

The TCEQ currently (2003) samples Caddo
Lake as part of its Surface Water Quality Monitoring
Program. A draft version of the 2002 Water Quality
Inventory (Texas Natural Resource Conservation Com-
mission, 2002a, p. 11) listed sediment contaminants of
concern at two sites (mid-lake and Carter Lake) and
their possible sources. Two TCEQ sampling sites were
near two of the coring sites of the study documented in
this report (CDO.MD and CDO.CR). TCEQ data from
March 1996 through February 2001 listed lead, manga-
nese, mercury, and zinc as metals of concern in the
samples collected from the mid-lake site. Barium, man-
ganese, mercury, selenium, and zinc were listed as con-
taminants of concern at the Carter Lake site. At least
two possible sources were identified by the TCEQ:
industrial activity for lead, manganese, mercury, and

zinc at the mid-lake site and for manganese, mercury,
selenium, and zinc at the Carter Lake site; oil and gas
drilling for barium at the Carter Lake site (because bar-
ium is used in drilling mud to increase specific gravity)
(Texas Natural Resource Conservation Commission,
2002b).

Crowe (1996) summarized the mercury con-
centrations in water, sediment, soil, and fish samples
collected from the Big Cypress Creek Basin during
May—October 1994. Sediment samples were collected
from two sites in Caddo Lake using an Eckman dredge.
The sites were identical to the TCEQ sampling loca-
tions, one in mid-lake and the other in Carter Lake.
Mercury concentrations in the sediment samples col-
lected from the mid-lake site ranged from less than
0.01 to 1.57 ppm, and those from the Carter Lake site
did not exceed the reporting level of 0.01 ppm.

Possible sources of contamination (PSOCs) were
identified by various State agencies and compiled by the
USGS as part of the Source Water Assessment Program
(SWAP) of the TCEQ. SWAP was developed to comply
with 1996 amendments to the Safe Drinking Water Act
that require States to develop and implement programs
to analyze existing and potential threats to the quality of
public drinking water in each State (U.S. Environmental
Protection Agency, 2003). The PSOC database included
the location of the PSOC, the source of the data, a list of
regulated contaminants associated with the PSOC, and
the method of introduction of the contaminant into the
environment. The majority of PSOCs in the Caddo Lake
area are oil and gas wells, but other PSOCs in the area
include private and industrial wastewater outfalls,
mined land, abandoned municipal solid-waste sites, an
airport, roads, a marina, and boat ramps (fig. 3). About
50 aircraft per year use two oiled-dirt runways of the
private airport (AirNav.com, 2003). Boating is popular
in the lake; however, dense vegetation and numerous
obstructions such as trees and oil wells in the lake
require careful navigation of the waters. Thus, most
probably follow the channels or “boat roads” that are
dredged throughout the lake to provide a pathway clear
of the thick aquatic vegetation.

The National Atmospheric Deposition Program
collected weekly precipitation samples from a site at
Longview, Tex. (site TX21), in cooperation with the
TCEQ (National Atmospheric Deposition Program,
2003). The Longview site is part of the Mercury Depo-
sition Network, which has been providing precipitation
samples for total mercury analysis since 1995. Long-
view is about 72 kilometers southwest of Caddo Lake.
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Table 1. Description of sediment box cores collected from Caddo Lake, Texas, May 2002

[m, meters; cm, centimeters]

Core Latitude and USGS Water Box core
Site name identifier longitude site ID depth length
(fig. 1) of site (m) (cm)

Caddo Lake near Goose Prairie CDO.GP N 32°42'08.0" 324208094073500 0.86 30
Creek inlet W 94°07'34.6"

Caddo Lake near Harrison Bayou CDO.HB N 32°41'13.2" 324113094061900 1.2 20
inlet W 94°06'18.7"

Caddo Lake mid-lake (main stem CDO.MD N 32°41'02.2" 324102094041400 2.4 13
near Little Green Brake) W 94°04'13.6"

Carter Lake near Horse Island CDO.CR N 32°4424.5" 324424094094600 1.95 25
W 94°09'45.7"

Complete mercury data were available for 1996-2001.
The annual deposition of mercury at the Longview site
increased from 9,000 nanograms per square meter
(ng/rnz) in 1996 to 15,000 ng/m2 in 2001 (National
Atmospheric Deposition Program, 2003). Sulfate con-
centrations, a constituent important for mercury methy-
lation (Krabbenhoft and others, 2002), were available
for precipitation samples collected during 1983-2001.
The average annual sulfate deposition was 17.6 kilo-
grams per hectare (kg/ha) (1.76 grams per square meter
[g/rnz]), with peak sulfate deposition occurring in 1991
at 23.7 kg/ha (2.37 g/mz) (National Atmospheric Depo-
sition Program, 2003).
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METHODS OF SEDIMENT COLLECTION
AND ANALYSIS

This section describes the methods used in the
sediment study at Caddo Lake. The methods descrip-
tions will be in the order in which they were used—first,
a description of how the sediment cores were collected
from Caddo Lake and subsampled for analyses; second,
the analytical methods used by the several laboratories

to analyze the sediment samples; third, an overview of
the methods used to compute and estimate deposition
dates for each sample interval; fourth, the criteria used
to assess the degree of sediment contamination; then,
the trend test used to assess temporal trends is briefly
discussed; and finally, sediment-core burdens and
focusing factors.

Sediment-Core Collection Method

Sediment box cores were collected by the USGS
in May 2002 for chemical analyses of radionuclides (for
age dating), organochlorine pesticides, PCBs, PAHs,
petroleum biomarkers, forms of carbons, and major and
trace elements. Cores were collected from Caddo Lake
near the inlet of Goose Prairie Creek (CDO.GP), near
the inlet of Harrison Bayou (CDO.HB), in the main
stem of the lake (mid-lake) near Little Green Brake
(CDO.MD), and in Carter Lake near Horse Island
(CDO.CR) (fig. 1; table 1). The samples were collected
using a custom-built 14- by 14- by 30-centimeter (cm)
aluminum Wildco box corer. An extension rod was
attached to the top of the box corer and used to lower the
corer onto the bottom and gently press it through the
sediment until 20 to 30 cm of sediment was penetrated
or the corer could not be pushed deeper because consol-
idated material was encountered. After a box core was
obtained at a sampling site, the core was transported
back to shore and subsampled to minimize sediment
disturbance.

The box cores were subsampled by placing the
box core liner containing the sample onto a piston and
pushing the sample up through the core liner. Small
intervals of the sediment were sliced off the top of the
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core and placed into sample containers for analysis. The
Goose Prairie Creek and Harrison Bayou cores were
subsampled at 1-cm intervals throughout their lengths.
The mid-lake box core was subsampled at 0.5-cm inter-
vals from 0 to 10 cm and at 1-cm intervals below 10 cm.
The Carter Lake core was subsampled at 0.5-cm inter-
vals from O to 5 cm and at 1-cm intervals below 5 cm.
Samples for organic analysis were placed into pre-
baked glass jars, and samples for inorganic analysis
were placed in polypropylene jars. All samples were
immediately stored on ice and frozen upon arrival at the
USGS Austin office. Sample identifiers include the site
and depth interval; for example, CDO.GP 1-2 is the

1- to 2-cm depth interval of the Goose Prairie Creek box
core.

Push cores also were collected at each sampling
site for description. A push core was collected by push-
ing a hollow cylinder (6-cm diameter) through the sedi-
ment until it could not be pushed farther. The push cores
were capped and stored in the upright position until the
following day when they were extruded, and their color
and texture were described (appendix 1). No further
analyses were done on the push core samples.

Sediment-Core Analytical Methods

Box core samples from the four coring sites were
analyzed for radionuclides (table 2) by Severn Trent
Laboratories, Inc., Richland, Wash. (STL Richland),
under contract with the USGS National Water Quality
Laboratory (NWQL), Denver, Colo. Samples were
freeze-dried and ground to a fine powder. Cesium-137
(137Cs) was analyzed by gamma spectroscopy using a
high-purity germanium (HPGe) photon detector.
Lead-210 (ZIOPb) and radium-226 (226Ra) were ana-
lyzed using a low-energy photon spectrometer (LPES)
(Jackie Waddell, Severn Trent Laboratories, Inc., oral
commun., 2002).

Box core samples from the four coring sites were
analyzed for organochlorine pesticides, PCBs, and
PAHSs (table 2) by the NWQL. Additionally, selected
samples from the mid-lake site were analyzed by the
NWQL for petroleum biomarkers (appendix 2.5). A
laboratory reporting level (LRL) for each constituent
was established by the NWQL for a 25-gram (g) dry
sediment weight sample (table 2). The LRL is increased
when less than 25 g is submitted to the lab for analysis.
Several surficial samples had low dry sediment weights,

which resulted in high LRLs. The sample mass avail-
able was insufficient for analysis of organochlorine
compounds and PAHs in surficial sample CDO.CR
0-0.5.

Samples for analysis of organochlorine pesti-
cides, PCBs, PAHs, and petroleum biomarkers were
extracted, isolated, and analyzed using a variation of the
procedures of Foreman and others (1995) and Furlong
and others (1996). Briefly, sediment was extracted over-
night with dichloromethane in a Soxhlet apparatus. Two
aliquots of the sample extract were injected into a poly-
styrene-divinylbenzene gel permeation column (GPC)
and eluted with dichloromethane to remove sulfur and
partially isolate the target analytes from co-extracted
high-molecular-weight interferences such as humic
substances. The first aliquot was analyzed for PAHs,
alkyl-PAHs, and petroleum biomarkers by capillary-
column gas chromatography (GC) with detection by
mass spectrometry (MS). The second aliquot was fur-
ther split into two fractions by combined alumna/silica
adsorption chromatography prior to analysis of the
organochlorine pesticides and PCBs by dual capillary-
column gas chromatography with electron capture
detection (GC-ECD).

Variations on the procedures of Furlong and
others (1996) for the analysis of PAHs and petroleum
biomarkers include the addition of a silica column
cleanup step following the GPC step and the use of
selected ion monitoring (SIM) MS to reduce chemical
interferences and improve detection limits. Eighteen
parent PAHs, 10 specific alkyl-PAHs, and the homo-
logues series of alkyl-PAHs were identified for this
report (table 2). Concentrations of n-alkanes, three indi-
vidual biomarkers, and three biomarker classes were
reported by the NWQL. The petroleum biomarker
results are provided in appendix 2.5; however, the
results are not discussed in this report. Comparison of
the petroleum biomarker concentrations in the mid-lake
core to those of a local crude oil sample was planned,
but a crude oil sample was not collected, which made
the biomarker results less useful.

Box core samples were analyzed for forms of car-
bon and major and trace elements (table 2) by the USGS
Geologic Discipline laboratory in Denver, Colo. Sam-
ples were freeze-dried and ground to a fine powder.
Total carbon was analyzed by combustion with an auto-
matic carbon analyzer, inorganic carbon was deter-
mined as carbon dioxide by coulometric titration, and
organic carbon was computed by difference (Arbogast,
1996). Samples for major and trace elements were
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Table 2. Constituents and laboratory reporting levels for samples collected from Caddo Lake, Texas, May 2002

[STL Richland, Severn Trent Laboratories, Inc.; pCi/g, picocuries per gram; NWQL, USGS National Water Quality
Laboratory; ng/kg, micrograms per kilogram; GD, USGS Geologic Discipline laboratory; |Lg/g, micrograms per gram]

Constituent L;?ozrrat:g;y Constituent Lraelz,c;rrat:g;y
(units) level (units) level

Radionuclides (STL Richland) Polycyclic aromatic hydrocarbons (NWQL)—Cont.
Cesium-137 (pCi/g) 0.20 Parent compounds:—Cont.
Lead-210 (pCi/g) .10 Fluoranthene (ug/kg) 5
Radium-226 (pCi/g) 40 Pyrene (ug/kg) 5
Organochlorine compounds (NWQL) Benz(a)anthracene (ug/kg) 5
Lindane (ug/kg) 5 Chrysene (ug/kg) 5
Heptachlor (ug/kg) 5 Benzo(b)fluoranthene (ug/kg) 5
Aldrin (ug/kg) 5 Benzo(k)fluoranthene (ug/kg) 5
Heptachlor epoxide (ug/kg) 5 Benzo(e)pyrene (Lg/kg) 5
Technical chlordane (ug/kg) 5.0 Benzo(a)pyrene (ug/kg) 5
Endosulfan I (ug/kg) 5 Benzo(g,h,i)perylene (ug/kg) 5
Dieldrin (ug/kg) 5 Indeno(1,2,3-c,d)pyrene (1g/kg) 5
Endrin (ug/kg) 5 Dibenzo(a,h)anthracene (ug/kg) 5
p.p-DDE (ug/kg) 5 Coronene (ug/kg) 5
p.p-DDD (ug/kg) 5 Alkylated compounds:
p.p-DDT (ug/kg) 5 2-Ethylnaphthalene (ug/kg) 5
p.p'-Methoxychlor (ug/kg) 2.0 2,6-Dimethylnaphthalene (ug/kg) 5
Mirex (ug/kg) 5 1,6-Dimethylnaphthalene (ng/kg) 5
Toxaphene (ug/kg) 50 1,2-Dimethylnaphthalene (ng/kg) 5
PCB Aroclor 1242 (ug/kg) 5.0 2,3,6-Trimethylnaphthalene (ug/kg) 5
PCB Aroclor 1254 (ug/kg) 5.0 1-methyl-9H-Fluorene (ug/kg) 5
PCB Aroclor 1260 (ug/kg) 5.0 2-Methylanthracene (ug/kg) 5
Polycyclic aromatic hydrocarbons (NWQL) 4,5-Methylenephenanthrene (ug/kg) 5

Parent compounds: 1-Methylphenanthrene (ug/kg) 5
Naphthalene (ng/kg) 5 1-Methylpyrene (ug/kg) 5
Acenaphthylene (ug/kg) 5 C1-128 isomers (ug/kg) 5
Acenaphthene (ug/kg) 5 C2-128 isomers (ug/kg) 5
9H-Fluorene (ug/kg) 5 C3-128 isomers (ug/kg) 5
Phenanthrene (ug/kg) 5 C4-128 isomers (ug/kg) 5
Anthracene (ug/kg) 5 C5-128 isomers (ug/kg) 5
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Table 2. Constituents and laboratory reporting levels for samples collected from Caddo Lake, Texas, May 2002—

Continued

Constituent
(units)

Laboratory
reporting
level

Polycyclic aromatic hydrocarbons (NWQL)—Cont.

Alkylated compounds:—Cont.

C1-178 isomers (ug/kg)
C2-178 isomers (ug/kg)
C3-178 isomers (ug/kg)
C4-178 isomers (ug/kg)
C5-178 isomers (ug/kg)
C1-202 isomers (ug/kg)
C2-202 isomers (ug/kg)
C3-202 isomers (ug/kg)
C4-202 isomers (ug/kg)
C5-202 isomers (ug/kg)
C1-228 isomers (ug/kg)
C2-228 isomers (ug/kg)
C3-228 isomers (ug/kg)
C4-228 isomers (ug/kg)
C5-228 isomers (ug/kg)
C1-252 isomers (ug/kg)
C2-252 isomers (ug/kg)
C3-252 isomers (ug/kg)
C4-252 isomers (ug/kg)
C5-252 isomers (ug/kg)

Forms of carbon (GD)

Carbon, carbonate (inorganic) (percent)

Carbon, organic (percent)

Carbon, total (percent)
Major elements (GD)
Aluminum (ug/g)
Calcium (ng/g)

Tron (1g/g)
Magnesium (ug/g)
Phosphorus (ug/g)

L L b L L L b b b b b b b b b b b e e WD

.01
.01
.01

20
50

Constituent Labora?ory
(units) reporting

Major elements (GD)—Cont.
Potassium (ng/g) 20
Sodium (ug/g) 6
Titanium (ug/g) 40
Trace elements (GD)
Antimony (ug/g) .02
Arsenic (Ug/g) 1
Barium (ng/g) 5
Beryllium (pg/g) .001
Cadmium (ug/g) .003
Cerium (ng/g) 5
Chromium (ug/g) 2
Cobalt (ug/g) 1
Copper (Lg/g) 5
Gallium (ug/g) .006
Lanthanum (ug/g) 3
Lead (ug/g) 2
Lithium (ug/g) 2
Manganese (ug/g) 2
Mercury (ug/g) .02
Molybdenum (ug/g) 1
Nickel (ug/g) 1
Niobium (ng/g) 2
Scandium (ug/g) 3
Selenium (ug/g) 2
Silver (ug/g) 3
Strontium (Ug/g) .05
Thorium (ug/g) .03
Uranium (1g/g) .02
Vanadium (ug/g) 4
Zinc (ug/g) 5
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completely digested using a mixture of hydrochloric-
nitric-perchloric-hydrofluoric acids and analyzed for
32 elements by inductively coupled plasma/mass spec-
trometry (ICP/MS) (Briggs and Meier, 1999). Mercury
was analyzed separately by cold vapor atomic absorp-
tion spectrometry (Arbogast, 1996).

Sediment-Core Age Dating

Sediment-core deposition dates were based pri-
marily on radionuclide concentrations with supporting
evidence for the deposition dates provided by the con-
centrations of DDD, DDE, and elemental lead. Selected
samples from the Goose Prairie Creek and Harrison
Bayou sites were analyzed for 137Cs, and those from the
mid-lake and Carter Lake sites were analyzed for 137¢s,
219pp, and 2?6Ra for age dating purposes. The samples
from the Goose Prairie Creek and Harrison Bayou cores
were analyzed for only 137Cs because the cores were
expected to consist of young sediment deposits (post-
1950). The sites were located adjacent to creek inlets
where thick sediment deposits tend to accumulate rap-
idly. Conversely, the samples from the mid-lake and
Carter Lake cores were not located adjacent to the
mouths of incoming creeks where sediment deposits
accumulate rapidly; so the cores were expected to
consist of both old (pre-1950) and young (post-1950)
sediment deposits, which limited the effectiveness of
137¢s alone for age dating purposes. These samples
therefore were analyzed for 210py, (in addition to 137Cs),
which, as will be explained later in this section, can be
used to compute the date at which the 210pp was at the
sediment surface. 137Cs (half-life of 30.8 years) was
released to the atmosphere through nuclear weapons
testing beginning about 1952, and atmospheric con-
centrations peaked during 1963-64. Wet atmospheric
fallout and strong and rapid sorption of 137¢s to soil
particles make it useful for studying sediment accumu-
lation rates in lakes and reservoirs (Bolt and others,
1976; Ritchie and McHenry, 1990).

Peak !37Cs activities in the cores were assigned a
date of 1964.0, the time at which atmospheric concen-
trations were highest. The top of each core also was
used as a date marker matching the date of sample col-
lection (2002.4). An average mass accumulation rate
(MAR) in grams per square centimeter per year was
computed using the two depth-date markers, and the
porosity and density of each sample were computed

using the wet and dry sediment weights. The computa-
tion of an average MAR assumed a constant sedimenta-
tion rate for the core. The average MAR of the core was
used to compute deposition dates for samples between

the date markers.

The deposition dates computed for the samples
were compared to concentrations of lead and total DDT
in the cores for corroboration. The concentration of lead
typically peaks in lake sediments deposited during the
mid-1970s (Callender and Van Metre, 1997) when the
Clean Air Act prompted the phasing out of leaded gas-
oline. In this report, total DDT is defined as the sum of
the para, para (p,p’) isomers of DDT and its degradates,
p,p-DDD and p,p'-DDE. The ortho, para (o,p’) isomers
of the compounds were not analyzed by the laboratory.
Total DDT concentrations in lake sediments generally
peaked during the mid-1960s (Van Metre and others,
1997), coincident with peak DDT use in the United
States (Smith and others, 1988).

The mid-lake and Carter Lake cores were ana-
lyzed for 219pp and ??°Ra in addition to '37Cs. 21%Pb is
a naturally occurring radionuclide in the uranium-238
(238U) decay series:

2381y 451X 10° yr 226Ra1602 yr 222Rn 3.82d ZIOPb 0

22.26 yr 206Pb
(simplified decay sequence from Appleby and Oldfield
[1992]). The daughter product of 226Ra, radon-222
(222Rn), is a gas that moves from the soil into the atmo-
sphere where it quickly decays to produce 210pp, The
residence time of >!9Pb in the atmosphere is less than 1
month, after which it is removed from the atmosphere
through precipitation or dry deposition and adsorbed
onto surficial soils. The amount of atmospheric fallout
of 210Pb is nearly equal to the amount of *2’Ra moving
into the atmosphere, and the atmospheric fallout of
219pp is considered reasonably constant at any given
locality (Appleby and Oldfield, 1992; Durrance, 1992).
The amount of atmospherically derived 210py is called
excess or unsupported 210pp and is the amount of 21°Pb
present in the soil excluding that contributed by the in-
place decay of 225Ra. The unsupported 219pp in any
given layer of a sediment deposit reduces exponentially
over time following the radioactive decay law and thus
can be used to compute the date at which it was first
adsorbed onto the surface of the deposit. The unsup-
ported 210py, was computed by subtracting the concen-
tration of 22°Ra from the concentration of >!Pb.

METHODS OF SEDIMENT COLLECTION AND ANALYSIS 13
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Figure 4. Relation between logarithm of unsupported lead-210 and cumulative dry mass in cores from (a) mid-

lake and (b) Carter Lake, Caddo Lake, Texas, May 2002.

The unsupported 219pp and cumulative dry sedi-
ment mass' were used in the constant accumulation rate
model (which assumes that there is a constant rate of
accumulation of unsupported 210pp and that each layer
of the sediment deposited has the same initial unsup-
ported 210pp) to compute the age of each sample
collected from the mid-lake and Carter Lake sites, fol-
lowing the method of Appleby and Oldfield (1992).
They define the unsupported 210pp concentration (activ-
ity) in sediments of age ¢ as

C = Cpe bt 2)
where
C = concentration in sediments of age #, in picocu-
ries per gram,;
Cy = current (2002) surficial concentration, in pico-
curies per gram;
Mio = 210pp, radioactive decay constant (about
0.03114 per year);
t =cum (grams per centimeter square)/MAR
(grams per centimeter square per year), in
years; and

cum = cumulative dry sediment mass, in grams per
square centimeter.

! Computed by multiplying effective density times thickness
of sample interval and summing results for each sample interval
over the length of the core.

Using this first-order decay equation, the natural log of
unsupported 210pp was graphed as a function of the
cumulative dry mass, and a least-squares line was fit to
the data from each of the two sites (fig. 4). The slope of
the least-squares line on the graph equals -A,;(/MAR;
thus the MAR was obtained by dividing -1, by the
computed slope from the graph (actually from the
least-squares equation [fig. 4]). The age was then com-
puted as the cumulative mass divided by the MAR. A
poor fit to the line can be caused by variable sedimenta-
tion rates, variable initial unsupported 219pp in the lay-
ers, or post-depositional sediment mixing (Appleby
and Oldfield, 1992).

Caution is needed regarding age dating of the
Caddo Lake cores. A thick clay was encountered at the
bottom of the cores collected from Goose Prairie Creek,
Harrison Bayou, and mid-lake (appendix 1), and age
dating indicated that the Goose Prairie Creek and
Harrison Bayou cores did not penetrate lacustrine
sediment deposited before 1948. Historical records of
local precipitation, stream discharge, and lake altitude
were investigated for evidence of extremely dry con-
ditions associated with low lake levels around 1948
that could have resulted in the lacustrine sediments of
Caddo Lake being exposed, dried, and compacted to
form the thick clay layer encountered by the three cores.
A record of annual precipitation during 1943-97 for
the National Weather Service station in Karnack, Tex.
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Table 3. Selected consensus-based sediment-quality guidelines used to assess contaminant concentrations in

cores collected from Caddo Lake, Texas, May 2002

[TEC, threshold effect concentration (MacDonald and others, 2000); PEC, probable effect concentration (MacDonald and
others, 2000); ng/kg, micrograms per kilogram; [1g/g, micrograms per gram]

Constituent TEC PEC Constituent TEC PEC
Organochlorine compounds (ug/kg) Polycyclic aromatic hydrocarbons (ug/kg)—Cont.
DDE 3.16 31.3 Pyrene 195 1,520
DDD 4.88 28.0 Total SQG PAH! 1,610 22,800
Total PCBs 59.8 676 Trace elements (1.g/g)

Polycyclic aromatic hydrocarbons (ug/kg) Arsenic 9.79 33.0
Anthracene 57.2 845 Cadmium .99 4.98
Fluorene 77.4 536 Chromium 434 111
Naphthalene 176 561 Copper 31.6 149
Phenanthrene 204 1,170 Lead 35.8 128
Benz(a)anthracene 108 1,050 Mercury 18 1.06
Benzo(a)pyrene 150 1,450 Nickel 22.7 48.6
Chrysene 166 1,290 Zinc 121 459
Fluoranthene 423 2,230

I'Sum of 13 PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)-
anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene [Swartz, 1999]).

(fig. 1) showed a drought in the early 1950s (fig. 5).
The lowest annual precipitation on record at the weather
station was 60.4 cmin 1951. The average annual precip-
itation over the period of record was 120.7 cm. The
monthly mean discharge in Big Cypress Creek near
Jefferson, Tex. (USGS station 07346000) was low (near
zero) several times around 1950; however, comparably
low stream discharge occurred regularly throughout the
years of record (fig. 5). Similarly, the lake water level
was low a few times around 1950 and was comparably
low in other years. Stream discharge and lake water-
level records did not support the hypothesis of subaerial
exposure of lacustrine sediments in Caddo Lake around
1950; nonetheless, the coring tools could not penetrate
the thick clay layer, and sediment deposited at the
Goose Prairie Creek and Harrison Bayou sites before
1948 was not collected.

Assessing Contaminant Levels

Sediment concentrations can be compared to
SQGs to indicate the degree of contamination of sedi-
ments. SQGs are based on numerous field studies and
toxicity tests and have been shown to be reasonable

predictors of toxicity or other adverse effects on biota
from contaminants in sediments (MacDonald and oth-
ers, 2000). SQGs are derived through a variety of labo-
ratory, field, and theoretical methods and are not
definitive for determining sediment toxicity to benthic
biota; only sediment toxicity tests can determine this
(Long and others, 1995; MacDonald and others, 2000).
In addition, SQGs cannot be extrapolated to determine
the possibility that the sediments might be harmful to
fish, aquatic plants, or humans.

Two consensus-based SQGs are used in this
report: the threshold effect concentration (TEC) and
the probable effect concentration (PEC). The TEC
represents the concentration below which adverse
effects to benthic biota rarely occur, and the PEC repre-
sents the concentration above which adverse effects are
expected to occur frequently (MacDonald and others,
2000). TECs and PECs for a number of substances
analyzed for in this report are listed in table 3. The
consensus-based SQGs were developed using a number
of published SQGs. Some of the SQGs used to develop
the consensus-based SQGs were normalized with
organic carbon (for example, Swartz, 1999). These
organic carbon normalized SQGs were converted to

METHODS OF SEDIMENT COLLECTION AND ANALYSIS 15
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dry-weight normalized values at 1-percent organic car-
bon (MacDonald and others, 2000). Previous studies
have shown that dry-weight normalized SQGs predict
sediment toxicity as well or better than organic carbon
normalized SQGs in field-collected sediment samples
(Barrick and others, 1988; Long and others, 1995;
Ingersoll and others, 1996; U.S. Environmental Protec-
tion Agency, 1996; MacDonald, 1997).

Trend Testing

Time series of concentrations of selected com-
pounds (those with three or more detections) were
tested for statistically significant trends using Kendall’s
tau (Helsel and Hirsch, 1992). Positive or negative
trends were considered significant at the 95-percent
confidence level (p-value <.05). Kendall’s tau is a non-
parametric (normal distribution of data not required)
test based on ranks. Thus the outcome of a trend test is
based on the rank order of concentrations rather than
actual concentrations.

The NWQL qualifies some organic compound
concentrations with an “E” (for estimated), which signi-
fies that although the compounds are qualitatively iden-
tified as present, their reported concentrations have
greater uncertainty than those reported without qualifi-
cation (G.L. Cottrell, U.S. Geological Survey, written
commun., 2001). In some cases, estimated concentra-
tions of organic compounds reported by the NWQL
were less than the LRL. (See Childress and others
[1999] for an explanation of conditions under which
estimated concentrations can be less than LRLs.) How-
ever, the NWQL reports nondetections as “less than the
LRL” (Childress and others, 1999). Nondetections were
included in trend testing of organic compounds. Nonde-
tections commonly are set equal to LRLs in such tests;
but to avoid situations in which nondetections (concen-
tration = LRL) ranked higher than some estimated con-
centrations (concentration < LRL), nondetections were
set equal to values just below the lowest estimated con-
centration for each compound tested, rather than leaving
them at the LRL as reported by the NWQL.

No concentrations of major and trace elements
reported by the Geologic Discipline laboratory were
less than respective LRLs. Thus, for trend testing, non-
detections reported as less than the LRL were set equal
to the LRL.

Sediment-Core Burden and Focusing Factor

“Burden” is a term for the amount per unit area of
a contaminant in a sediment core. Burdens of '3’Cs and
mercury were computed as an interim step in estimating
what the atmospheric fallout rate of mercury would
have to have been to account for the accumulated mer-
cury in a core and thus provide information on whether
the predominant source of mercury in a core is atmo-
spheric fallout or point and nonpoint sources in the
Caddo Lake drainage area. The 137Cs burden for each
sample interval, in picocuries per square centimeter,
was computed by multiplying the 137¢s concentration,
in picocuries per gram, by the dry mass of sediment, in
grams per square centimeter. The interval burdens were
summed over the length of the core to yield the 137¢cs
burden for the core (¢,), in a manner comparable to that
of Van Metre and others (1997).

Similarly, the mercury burden for each sample
interval in a core, in micrograms per square centimeter,
was computed by multiplying the mercury concentra-
tion of the interval by the dry mass of sediment and
summing the interval burdens over the length of the core
to yield the mercury burden for the core (¢,,).

“Focusing factor” (FF) is the ratio of the ¢, to the
model-predicted (from the fallout prediction model of
Sarmiento and Gwinn [1986]) atmospheric fallout of
137¢s for the coring site. FF provides an estimate of the
degree of focusing of particle-associated contaminants
from the drainage area and other parts of a lake to the
coring site (Van Metre and others, 1997). An FF near
unity implies that the site is influenced only by atmo-
spheric fallout. The 137¢s atmospheric fallout flux
(mass per unit area) was computed for the Caddo Lake
area using the fallout prediction model of Sarmiento and
Gwinn (1986). Precipitation data from the National
Weather Service station at Karnack was used in the
model. Monthly 137Cs fallout was decay-corrected
using the core collection date of the Caddo Lake sam-
pling and summed over the period 1954-74 (the period
upon which the prediction model is based) to yield the
cumulative '37Cs fallout deposition (¢y). FF for each
core was then computed by dividing ¢ by ¢y.

To estimate what the atmospheric fallout rate of
mercury would have to have been to account for the
accumulated mercury in a core, ¢, is normalized
(divided) by FF. 137Cs is supplied to lakes only by
atmospheric fallout on the lake and its drainage area—
therefore normalized burdens represent the estimated
cumulative atmospheric loading of mercury over the

METHODS OF SEDIMENT COLLECTION AND ANALYSIS 17



drainage area that would be necessary to supply the
measured core burdens, assuming no point and nonpoint
sources in the drainage area (Van Metre and others,
1997).

QUALITY ASSURANCE OF CHEMICAL
DATA

Quality-control (QC) samples are included with
each group of environmental samples analyzed to assure
the quality of the analytical results. Analytical results
from two types of duplicate samples are included in this
report—environmental duplicates and laboratory dupli-
cates. An environmental duplicate is a sample that was
split into two jars at the time of collection, and both jars
were submitted to the laboratory for analysis. A labora-
tory duplicate is a single sample that was split at the lab-
oratory during preparation and analyzed in duplicate.

Three QC samples were included with each group
of environmental samples analyzed for radionuclides: a
laboratory duplicate, a blank, and a laboratory control
sample (LCS). A blank is a sample of reagent (deion-
ized) water. An LCS is a reference material used by the
laboratory to assess the recovery of radionuclides by the
analytical instruments. The USGS and STL Richland
have established contractually required detection limits
for the environmental and QC samples; however, the
contractually required detection limits were not met for
the environmental samples because the sediment avail-
able was insufficient for analysis. STL Richland reports
overall method uncertainty estimates with their analyti-
cal results, which are listed with sample concentrations
in appendix 2.1 (Jackie Waddell, Severn Trent Labora-
tories, Inc., written commun., 2002).

The analytical results for each group of samples
analyzed for radionuclides included blank concentra-
tion, percent recovery of the LCS, and relative percent
difference (RPD) of the duplicate (appendix 3.1). The
RPD is a measure of the variability in the concentrations
produced by the analytical method. The RPD was com-
puted for each pair of duplicate samples using the
equation

RPD = 100 x |_samplel —sample2 (3)
(samplel + sampleZ)
2

where sample 1 and sample 2 are the concentrations of
individual compounds in duplicate samples.

The overall median RPD of duplicate analyses for
B37¢Csis 8.7 percent. There were two duplicate analyses

for 2°Ra (RPD = 16.10 and 5.65 percent), but 2!°Pb
was not analyzed in duplicate.

Four QC samples were included with each group
of environmental samples analyzed for organic com-
pounds: a laboratory duplicate, a blank, a spiked reagent
sample, and a certified reference material (CRM). The
overall median RPD of duplicate analyses for orga-
nochlorine compounds is 15.4 percent and for PAHs,
10.0 percent (appendixes 3.2, 3.3).

There were no detections in the organochlorine
blank samples, spike recoveries for four of the five
groups analyzed were within acceptable limits, and the
CRM concentrations for three of the five groups were
within an acceptable range (appendix 3.2). Group num-
ber 200221106 had low spike recoveries for mirex and
PCB Aroclor 1254 because of a problem in the prepara-
tion of the spike at the NWQL. Mirex and PCB Aroclor
1254 were not detected in any of the environmental
samples analyzed in group number 200221106. Mirex
rarely has been detected in lake-bottom sediments
collected as part of the USGS National Water-Quality
Assessment Program, but PCB Aroclor 1254 frequently
has been detected (P.C. Van Metre, U.S. Geological
Survey, unpub. data, 2003). The LRL for PCB Aroclor
1254 in group number 200221106 ranged from 5.0
to 150 pg/kg. Despite the low spike recoveries for
this group, the nondetections of PCB Aroclor 1254
were believed to be credible because most samples
had low LRLs (5.0 to 15 pg/kg), and the two samples
with the highest LRLs (70 and 150 pg/kg for samples
CDO.GP 0-1 and CDO.CR 4.5-5, respectively) were
not expected to have detectable concentrations of PCB
Aroclor 1254. PCB Aroclor 1254 was not expected in
CDO.CR 4.5-5 because no other samples from that
core had detections of PCBs. The CRM concentrations
were below the acceptable limits in group number
200220603 (CDO.HB; CDO.GP) for heptachlor, aldrin,
heptachlor epoxide, endosulfan, dieldrin, DDE, and
endrin; and in group number 200222605 (CDO.MD) for
heptachlor epoxide, endosulfan, and dieldrin. The CRM
concentrations were low because of problems in prepa-
ration of the sample at the NWQL; however, environ-
mental sample results are not affected by the CRM
recoveries.

PAH concentrations were low (estimated [E]
values less than LRL) in some blank samples for all
groups, PAH spike recoveries were considered normal
(the NWQL has not established acceptable recovery
ranges), and one compound concentration was below
the acceptable CRM limits. Group number 8022R02177
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(CDO.HB) had the most detections in its blank sample
with low concentrations of naphthalene (E0.15 ng/kg),
2,6-dimethylnaphthalene (E0.44 ng/kg), acenaphthene
(EO0.18 pg/kg), phenanthrene (E0.24 ug/kg), anthracene
(E0.54 ng/kg), fluoranthene (E0.61 pg/kg), pyrene
(E0.62 ug/kg), and chrysene (E0.28 pug/kg). The blanks
in group number 8022R02171 (CDO.MD) had one
detection of naphthalene (E0.23 ng/kg), and group
number 8022R02169 (CDO.GP; CDO.HB) had one
detection of 2,6-dimethylnaphthalene (E0.46 pug/kg).
The LRL for the blank is 5.0 pg/kg, so these detections
were considered insignificant. The spike recoveries
ranged from 41.4 to 98.7 percent with a median
recovery of 70.5 percent. Spike recoveries typically
were lowest for coronene and highest for dibenzo(a,h)-
anthracene. The NWQL used CRM 362 for groups
8022R02169, 8022R02171, and 8022R02177; and
CRM 354 for group number 8022R02165. The CRM is
a commercially available organic soil from Environ-
mental Resource Associates Arvada, Colo. The percent
recovered of pyrene was 110.2 in group number
8022R02165 (CDO.CR), above the acceptable range of
32 to 90 percent.

QC samples included with samples analyzed for
major and trace elements were duplicate and triplicate
samples, several blanks, and standard reference materi-
als (SRMs). The blanks were not analyzed for forms of
carbon or mercury but were analyzed for major and
other trace elements. The SRMs used by the laboratory
were the National Research Council Canada Marine
Estuarine Sediment (MESS—1), National Institute of
Standards and Technology Buffalo River Sediment
(NIST 2704), USGS Cody Shale (SCO-1), USGS
Marine Sediment (MAG-1), and Chinese Quangxi
Province Stream Sediment (GSD-8).

The environmental samples were analyzed in two
groups, and two duplicates and one triplicate were
included with each group (appendix 3.4). The RPD was
computed for a triplicate sample by comparing triplicate
sample 1 to triplicate sample 2, triplicate sample 1 to
triplicate sample 3, and triplicate sample 2 to triplicate
sample 3. The overall median RPD for all duplicate and
triplicate samples analyzed for forms of carbon and
major and trace elements was 2.4 percent. Four blanks
were analyzed in group number 3959: two of the blanks
had arsenic concentrations of 0.1 and 0.2 microgram per
gram (ug/g), respectively; the LRL for arsenic is 0.1
ug/g. Three of the blanks had beryllium concentrations
of 0.003, 0.006, and 0.007 pg/g, respectively; the LRL
for beryllium is 0.001 pg/g. The range of arsenic and

beryllium concentrations in the environmental samples
included in group 3959 was 12 to 15 pug/g and 2.9 to 3.5
ug/g, respectively (appendix 2.4). Group number 3958
included three blank samples, which yielded two detec-
tions of beryllium, 0.008 and 0.01 pg/g. The concentra-
tion of beryllium in the environmental samples in group
3958 ranged from 1.3 to 2.6 ug/g. The detections of
arsenic and beryllium in the blank samples were consid-
ered negligible relative to concentrations in environ-
mental samples. SRMs were analyzed with both groups,
but MESS-1 was not used in group number 3958. The
concentrations obtained by laboratory analysis of the
SRMs were compared to the published SRM values
(Xuejing and Mingcai, 1985; Potts and others, 1992),
and the RPD was computed. The median RPD of the
SRMs analyzed in group 3959 was 5.3 percent, and the
RPD for group 3958 was 4.7 percent.

OCCURRENCE AND TRENDS

The findings on occurrence and trends are
grouped by coring location. Sources of mercury based
on burden and FF computations, a comparison of find-
ings to those of other lakes, and implications of the find-
ings relative to drainage area sources are discussed in
this section.

Goose Prairie Creek

Age Dating and Sedimentation Rates

The Goose Prairie Creek core was analyzed for
137¢s for age dating. The core has a clearly defined
37¢s peak at 20.5 cm that was used as the 1964.0 date-
depth marker (fig. 6a). The 137¢s peak was used to com-
pute a constant average MAR of 0.15 gram per square
centimeter per year (g/cmz-yr) for the core and deposi-
tion dates for the remaining samples. Sediment deposi-
tion dates were computed back to about 1948 for the
Goose Prairie Creek core. DDE concentrations were
variable throughout the core, and a clear peak is not well
defined. The highest DDE concentration was dated as
1969, which was slightly later than the time of peak his-
torical use of the pesticide but reasonable in the context
of possible transport through the drainage area and error
associated with age-dating techniques. The lead profile
had a pronounced peak, which was dated as 1961 on the
basis of the MAR computed from the 137¢g peak. The
lead peak in the Goose Prairie Creek core was dated
much earlier than lead peaks in the 1970s in most urban
lakes (Callender and Van Metre, 1997); however, lead
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Figure 6. Concentrations of selected constituents used to compute sediment deposition dates in cores collected at
(a) Goose Prairie Creek, (b) Harrison Bayou, (c) mid-lake, and (d) Carter Lake sites, Caddo Lake, Texas, May
2002.
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concentrations at this site could reflect historical indus-
trial releases and not urban use of leaded gasoline.

Neither DDE nor lead was good corroborating
evidence for the 137Cs-based age dates; however the
137 profile shows a clear peak and was considered
more reliable than the DDE and lead-concentration pro-
files. It is unlikely that the sediment accumulation rate
at the Goose Prairie Creek site was constant over the
period of deposition represented in the core, but no
additional date-depth markers were in the core (such as
a pre-reservoir surface) to use for the computation of
more than one MAR; therefore, an uncertainty of £5
years was estimated for the age dates of the samples in
the Goose Prairie Creek core.

Contaminant Occurrence and Trends

The only organochlorine compounds detected in
the Goose Prairie Creek core were DDE and PCB Aro-
clors 1242, 1254, and 1260 (fig. 7; appendix 2.2). DDE
and PCB Aroclor 1260 were detected in all samples
analyzed for organochlorines. PCB Aroclor 1242 was
detected in samples deposited between 1961 and 1975,
and PCB Aroclor 1254 was detected in samples depos-
ited between 1961 and 1987. Fifty-six percent of the
sample concentrations of DDE in the Goose Prairie
Creek core exceeded the consensus-based SQG TEC for
DDE, but they were well below the PEC (table 3; appen-
dix 2.4). An SQG was available for total PCB, which
was computed as the sum of PCB Aroclors 1242, 1254,
and 1260. Estimated concentrations were included in
the summation. Only one sample concentration, depos-
ited about 1969 before restrictions on the use of PCBs,
exceeded the TEC for total PCB (table 3; appendix 2.2).

The organic compounds discussed in this report
have been shown to preferentially sorb to the organic
matter in sediment (Elzerman and Coates, 1987;
Schwarzenbach and others, 1993); therefore, a trend in
organic carbon could affect the trends of organic com-
pounds. For this reason, the concentrations of organic
compounds that were to be trend tested were normalized
with (divided by) the concentrations of organic carbon
if organic carbon had a statistically significant trend.
Organic carbon had a significant upward trend in the
Goose Prairie Creek core (Kendall’s T =1, p = 0); there-
fore, the organochlorine compounds with sufficient
numbers of detections for trend testing were normalized
with organic carbon before trend testing. Organic car-
bon normalized PCB Aroclors 1242 and 1254 had sig-
nificant downward trends (Kendall’s T = -.83 and -.67,

p-value = .01 and .01, respectively). No other organic
carbon normalized organochlorines had significant
trends (table 4).

Numerous PAHs were detected, although their
concentrations were low (appendix 2.3), comparable to
concentrations in lakes in remote areas (P.C. Van Metre,
U.S. Geological Survey, unpub. data, 2003) and to
those in a core from a forested area of Lake Houston
(Van Metre and Sneck-Fahrer, 2002). The naphthalene
homologues with two alkyl groups (C2-alkylated
naphthalenes), particularly 2,6-dimethylnaphthalene,
and fluoranthene had the highest concentrations (fig. 8).
No consensus-based SQG has been established for 2,6-
dimethylnaphthalene. None of the samples analyzed
from the Goose Prairie Creek core had concentrations of
individual PAH compounds higher than the respective
TEC. Thirty-six of the 53 PAH compounds analyzed
(includes parent compounds and alkylated homologues)
were detected in the Goose Prairie Creek samples ana-
lyzed. Nineteen individual organic carbon normalized
PAHs had statistically significant trends—all downward
(table 5).

A consensus-based SQG, or TEC, was available
for the sum of 13 PAHs (naphthalene, acenaphthylene,
acenaphthene, fluorene, phenanthrene, anthracene,
fluoranthene, pyrene, benz(a)anthracene, chrysene,
benzo(b)fluoranthene, benzo(k)fluoranthene, and
benzo(a)pyrene [Swartz, 1999]), which is referred to as
“total SQG PAH” in this report. The most recently
deposited sample in the Goose Prairie Creek core had
the highest total SQG PAH concentration, which was
about one-sixth of the TEC. A significant downward
trend was indicated for organic carbon normalized total
SQG PAH concentrations in the Goose Prairie Creek
core (Kendall’s T =-.67, p=.01).

Another commonly studied group of PAHs,
called “combustion PAH,” is the sum of ten 4- and
5-ringed parent compounds (fluoranthene, pyrene,
benz(a)anthracene, chrysene, benzo(b)fluoranthene,
benzo(k)fluoranthene, benzo(e)pyrene, benzo(a)-
pyrene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,i)-
perylene) that are produced by high-temperature
burning of fuels and are independent of fuel type (Prahl
and Carpenter, 1983). The combustion PAH in the
Goose Prairie Creek core did not exceed 260 pg/kg,
and the organic carbon normalized combustion PAH
had a significant downward trend (Kendall’s T = -.61,
p =.02). As an indicator of general PAH source, the
ratio of concentrations of 2- and 3-ringed compounds
plus homologues to the 4- and 5-ringed combustion
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Figure 7. Organochlorine pesticide (DDE and DDD) and polychlorinated biphenyl (PCB) concentrations in cores
collected from Caddo Lake, Texas, May 2002.
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Figure 8. Selected polycyclic aromatic hydrocarbon (PAH) concentrations and trends in core collected near
Goose Prairie Creek, Caddo Lake, Texas, May 2002.

PAH was computed for each sample analyzed. The 2- matter. If the ratio of uncombusted to combusted PAH

and 3-ringed and alkylated homologue compounds are concentrations is greater than 1, the PAH mixture in the
not typically produced by combustion and are more sediments is primarily from uncombusted sources; if the
commonly from uncombusted PAH sources such as ratio is less than 1, the mixture is primarily from com-

crude oil, vehicular fuels, crankcase oil, and organic busted sources. The ratio was about 1 throughout the
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Table 4. Summary of trend testing results for organochlorine compounds detected in sediment cores from Caddo
Lake, Texas, May 2002—Kendall’s tau correlation of concentration with deposition date

[Significant trends at 95-percent confidence level shown in bold; --, not tested]

Goose Prairie Creek inlet

Harrison Bayou inlet

Non-normalized

Organochlorine .
concentrations

Organic carbon

. Non-normalized
normalized

concentrations

compound concentrations
Kendall’s Kendall’s Kendall’s
tau p-value tau p-value tau p-value
Organic carbon 1 0 -- -- A1 g1
DDE 0 1 -.44 .10 -71 .01
DDD -- -- -- -- -- --
Total DDT 0 1 -.44 .10 -71 01
PCB Aroclor 1242 -47 .08 -83 01 -- --
PCB Aroclor 1254 -.30 25 -.67 .01 -- --
PCB Aroclor 1260 .29 .28 -.28 .30 -- --
Total PCB -.11 .67 -.28 .30 -- --

Mid-lake (main stem near Little Green Brake)

Carter Lake near Horse Island

Non-normalized

Organochlorine -
concentrations

Organic carbon
normalized

Organic carbon

Non-normalized .
normalized

concentrations

compound concentrations concentrations
Kendall’s Kendall’s Kendall’s Kendall’s
tau p-value tau p-value tau p-value tau p-value
Organic carbon .86 0 -- -- 73 0 - -
DDE -.50 .08 -57 .048 -85 .003 -0.86 003
DDD -- - -- -- -- -- -- --
Total DDT -.50 .08 -79 01 -85 003 -.86 003

PCB Aroclor 1242 -- -- -
PCB Aroclor 1254 -- - -
PCB Aroclor 1260 - - -
Total PCB -- - -

core, until about 1995 when the ratio increased (fig. 8),
indicating predominance of uncombusted sources in
recent years.

The Goose Prairie Creek core was analyzed for
eight major elements and 26 trace elements (appendix
2.4). Several major elements compose the bulk of geo-
logic materials, although some also are derived from
human activities. For example, phosphorus is a nutrient
essential to plant growth and is used in fertilizers. Cal-
cium is a secondary essential plant nutrient and also is
used in fertilizers (Hem, 1985; James, 1993).

Several major elements had significant trends in
the sediment cores (table 6): potassium (T =-.89, p=0),
sodium (T =-.78, p=0), and titanium (T =-1, p=0) had
downward trends, and calcium (T = 1, p = 0) and phos-
phorus (T = .89, p = 0) had upward trends.

Aluminum, iron, and titanium are stable ele-
ments; significant trends in stable elements often are
associated with changes in sedimentation rates. In the
Goose Prairie Creek core, no trend was indicated for
aluminum or iron concentrations, although titanium
concentrations had a significant downward trend. The
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Table 5. Summary of trend testing results for polycyclic aromatic hydrocarbon compounds detected in sediment

cores from Caddo Lake, Texas, May 2002—Kendall’s tau correlation of concentration with deposition date

[Significant trends at 95-percent confidence level (p-value <.05) shown in bold; --, not tested]

Goose Prairie Creek inlet

Harrison Bayou inlet

Organic carbon-

“aromatic ‘Concentrations normalized concentrations
hydrocarbon concentrations
Ker;::ll’s p-value Ker;::ll’s p-value Ker;::ll’s p-value

Organic carbon 1 0 -- -- A1 71
Naphthalene A48 .07 -44 .10 -.04 .90
2,6-Dimethylnaphthalene 78 0 22 40 21 46
1,6-Dimethylnaphthalene 78 0 A1 .68 .14 .62
C2-128 isomers 72 01 .06 .83 .29 32
Acenaphthylene .65 .02 -.33 21 -.18 .54
1,2-Dimethylnaphthalene 83 0 17 .53 25 .38
Acenaphthene 72 .01 -17 53 -.04 .90
C3-128 isomers -.37 17 =72 01 49 .09
2,3,6-Trimethylnaphthalene .03 92 -78 0 .29 32
9H-Fluorene -17 .53 -.67 007 .64 .03
1-methyl-9H-Fluorene .39 .14 -.50 .06 -.64 .03
Phenanthrene 44 .10 -.50 .06 21 46
Anthracene 54 .04 -.50 .06 29 32
2-Methylanthracene -.26 .33 -.83 0 -- --
4,5-Methylenephenanthrene -17 .53 -78 .004 -.55 .06
C1-178 isomers -44 .10 -.89 0 -- --
1-Methylphenanthrene 0 1 -.67 .01 0 1
C2-178 isomers -.67 01 -.94 0 -.53 .06
Fluoranthene -.39 .14 -78 .004 .14 .62
Pyrene -33 21 -78 004 0 1
C3-178 isomers -.61 .02 -.83 0 -- --
1-Methylpyrene .20 .46 -.61 .02 -.48 .09
C1-202 isomers -.65 .02 -.83 0 -- --
C2-202 isomers 40 13 -.33 21 -- --
Benz(a)anthracene 44 .10 -.50 .06 40 17
Chrysene .20 46 -.67 .01 .14 .62
C1-228 isomers -.18 49 -.89 0 -- --
Benzo(b)fluoranthene .61 .02 -.44 .10 .14 .62
Benzo(k)fluoranthene 44 .10 -.44 .10 .07 .80
Benzo(e)pyrene A48 .07 -.39 .14 .14 .62
Benzo(a)pyrene .61 .02 -.39 .14 -.07 .80
C1-252 isomers -- -- -- -- -- --
Benzo(g,h,i)perylene 0 1 =72 01 -.14 .62
Indeno(1,2,3-c,d)pyrene 72 .01 -.17 53 .07 .80
Dibenzo(a,h)anthracene -.03 91 -.61 .02 -.53 .06
Coronene -.20 45 -.83 0 18 .53
Total SQG PAH 17 .53 -.67 .01 14 .62
Combustion PAH 22 40 -.61 .02 14 .62
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Table 5. Summary of trend testing results for polycyclic aromatic hydrocarbon compounds detected in sediment
cores from Caddo Lake, Texas, May 2002—Kendall’s tau correlation of concentration with deposition date—

Continued
Mid-lake (main stem near Little Green Brake) Carter Lake near Horse Island
. ) . Organic carbon- ) . Organic carbon-
“aromatic Concentrations normalized oncontrations normalized
hydrocarbon concentrations concentrations
Kertl::II’s p-value Kertlgjll’s p-value Ken:::ll’s p-value Ken:::ll’s p-value

Organic carbon .86 0 -- -- 73 0 -- --
Naphthalene -.11 71 -.29 32 32 26 .07 .80
2,6-Dimethylnaphthalene .36 22 21 46 .64 .06 .50 .08
1,6-Dimethylnaphthalene 57 .05 .36 22 .50 .08 .50 .08
C2-128 isomers .36 22 21 46 .64 03 .50 .08
Acenaphthylene .64 .03 .50 .08 -- -- -- --
1,2-Dimethylnaphthalene -- -- -- -- -.09 .76 -43 .14
Acenaphthene 37 20 .07 .80 -- -- -- --
C3-128 isomers - - - - -- - - -
2,3,6-Trimethylnaphthalene - - - - -- - - -
9H-Fluorene -.23 42 -.36 22 -.53 .06 -71 01
1-methyl-9H-Fluorene - - - -- -.53 .06 -71 01
Phenanthrene .36 22 .14 .62 43 .14 .36 22
Anthracene .62 .03 21 46 =11 g1 -.07 .80
2-Methylanthracene -- -- -- -- -- -- -- --
4,5-Methylenephenanthrene .19 51 -.07 .80 -73 01 -79 01
C1-178 isomers -.48 .09 -71 01 - -- -- -
1-Methylphenanthrene - -- -- -- .29 32 21 46
C2-178 isomers -.64 .03 -79 01 - -- -- -
Fluoranthene .40 17 21 46 21 46 14 .62
Pyrene .07 .80 -.36 22 57 .05 43 14
C3-178 isomers -- -- -- -- -- -- -- --
1-Methylpyrene -- -- -- -- -- -- -- --
C1-202 isomers - - - - - - - -
C2-202 isomers - - - - - - - -
Benz(a)anthracene -.08 78 -.36 22 -- -- -- --
Chrysene 40 17 =21 46 57 .05 .50 .08
C1-228 isomers -- -- -- -- -- -- -- --
Benzo(b)fluoranthene .29 32 0 1 43 .14 .36 22
Benzo(k)fluoranthene 0 1 -.29 32 .50 .08 43 .14
Benzo(e)pyrene 33 .26 -.07 .80 .50 .08 43 14
Benzo(a)pyrene 47 .10 .07 .80 .50 .08 43 .14
C1-252 isomers -76 .01 -.86 0 -49 .09 -.50 .08
Benzo(g,h,i)perylene .64 .03 .14 .62 -73 01 -79 01
Indeno(1,2,3-c,d)pyrene 43 .14 0 1 21 46 21 46
Dibenzo(a,h)anthracene .34 24 -.07 .80 -.64 .03 -79 01
Coronene -47 .10 -71 01 0 1 -.29 32
Total SQG PAH 43 .14 -.07 .81 79 .006 J1 01
Combustion PAH 43 14 -.14 .62 .64 .03 .64 .03

26 Occurrence of and Trends in Selected Sediment-Associated Contaminants in Caddo Lake, East Texas, 1940-2002



Table 6. Summary of trend testing results for major and trace elements detected in sediment cores from Caddo
Lake, Texas, May 2002—Kendall’s tau correlation of concentration with deposition date

[Significant trends at 95-percent confidence level (p-value <.05) shown in bold; nd, not detected]

Goose Prairie

Harrison Bayou

Mid-lake (main stem

Carter Lake near

Creek inlet near Green Brake) Horse Island
Constituent
Kendall’s Kendall’s Kendall’s Kendall’s
tau p-value tau p-value tau p-value tau p-value

Organic carbon 1 0 11 71 .86 0 73 0
Total carbon 1 0 22 44 .86 0 71 0
Aluminum -.25 .34 -71 .01 0 1 -.69 0
Calcium 1 0 .07 .80 A1 71 .60 0
Iron .08 75 .86 0 1 0 -85 0
Magnesium .89 .34 -.79 .07 -.14 .62 -49 01
Phosphorus .89 0 93 0 1 0 -.32 11
Potassium -89 0 -.07 .80 -93 0 -.63 0
Sodium -78 0 0 1 -.86 0 .03 .87
Titanium -1 0 -43 .14 -79 .01 -.61 0
Antimony -.39 14 -93 0 -.62 .03 -.67 0
Arsenic -.44 .10 -21 46 57 .05 -.60 0
Barium -87 0 .36 22 47 .10 -.38 .06
Beryllium 17 .53 -.36 22 -.25 .38 -.82 0
Cadmium .28 .30 47 .10 18 .53 -.54 .01
Cerium -.61 .02 .07 .80 -57 .05 -.26 .20
Chromium -.61 .02 -.62 .03 -.21 .46 -76 0
Cobalt 42 A1 .50 .08 -.50 .08 -.08 .70
Copper =22 .40 -.64 .03 -.50 .08 32 11
Gallium -.37 17 -.69 .02 -.26 .36 -75 0
Lanthanum -.61 .02 .07 .80 -.55 .06 =27 .19
Lead -89 0 -71 .01 -.14 .62 -.86 0
Lithium -76 0 -71 .01 -.64 .03 -.88 0
Manganese 1 0 93 0 1 0 .02 91
Mercury -.56 .04 .89 0 .78 .01 -.62 0
Molybdenum 54 .04 -43 .14 .36 22 .36 .08
Nickel 22 40 -.50 .08 -.50 .08 -.80 0
Niobium -.67 .01 -.36 22 -71 .01 -57 0
Scandium -.54 .04 -.69 .02 -43 .14 -70 0
Selenium 99 0 0 1 .18 .53 .05 .82
Silver -44 .10 nd nd nd nd nd nd
Strontium 28 .30 -.40 17 -.40 17 -.07 74
Thorium -.89 0 -43 .14 -71 .01 -.61 0
Uranium -83 0 -.64 .03 -79 .01 -.64 0
Vanadium -.50 .06 -.64 .03 -.36 22 -83 0
Zinc 44 .10 -.14 .62 .04 .90 -73 0
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significant downward trend in titanium concentrations
was not considered strong enough evidence to support a
change in the sedimentation rate. Decreasing concen-
trations of phosphorus with depth have been reported
as an effect of early diagenesis (for example, Sundby
and others, 1992) and might not be related to changes
in fertilizer usage. A significant downward trend in iron
was not indicated in the Goose Prairie Creek core.

The eight trace elements with consensus-based
SQGs (MacDonald and others, 2000) are arsenic, cad-
mium, chromium, copper, lead, mercury, nickel, and
zinc (table 3). All samples analyzed for trace elements
in the Goose Prairie Creek core exceeded the TEC for
chromium, lead, mercury, and nickel; and 78 percent
of samples were at or higher than the TEC for copper
and zinc (fig. 9; table 7). One sample, deposited about
1961, exceeded the PEC for lead with a concentration
of 181 ug/g. The highest concentration of cadmium
(not graphed in fig. 9) was 55 percent of the TEC. The
concentrations of chromium, lead, and mercury have
had significant downward trends since about 1961. In
sediments deposited after 1980, nickel and zinc had
significantly increasing concentrations (T = 1 and
p =.014 for both). Seventy percent of the trace elements
without SQGs but with significant trends had decreas-
ing concentrations over time in the Goose Prairie Creek
core.

Goose Prairie Creek was the only coring site
where silver was detected (LRL is 3 ug/g). Silver
was detected in all samples in the core except the oldest
sample interval analyzed, which had an estimated depo-
sition date of 1948 (fig. 9). The concentration increased
to a maximum of 23.8 ug/g in the sample deposited
about 1969. Although no consensus-based SQGs exist,
Long and others (1995) published recommended SQGs
(which included silver). For silver, the ER-L is 1.0
ug/g, and the ER-M is 3.7 ug/g. The concentration of
silver (fig. 9) was higher than the ER-M in all samples
deposited after 1960. The concentrations did not have a
statistically significant trend when all samples were
included in the trend test; however, the concentrations
decreased significantly over time from the sample
deposited in 1969 to the most recently deposited sample
(T =-0.86, p =.003).

Harrison Bayou

Age Dating and Sedimentation Rates

A clearly defined 137¢s peak at 15.5 cm was used
as the 1964.0 date-depth marker (fig. 6b), resulting in an
average MAR of 0.063 g/cmz—yr for the core. Sediment
deposition dates were computed back to about 1950 for
the Harrison Bayou core. The highest total DDT con-
centration had a deposition date of 1961, which was
compatible with historical DDT use. The highest lead
concentration was dated as 1950; however a small
“hump” in the lead profile occurred in sediments depos-
ited around the mid- to late-1970s, which was compati-
ble with historical environmental lead concentrations.
The 137Cs peak was considered the most reliable age-
date marker in the core. The sediment accumulation rate
in Harrison Bayou probably was not constant over the
period of deposition represented in the core, but no
additional date-depth markers were in the core to use for
the computation of more than one MAR; therefore, an
uncertainty of +2 years was estimated for the age dates
of the samples in the Harrison Bayou core.

Contaminant Occurrence and Trends

DDE was detected in all samples from the Harri-
son Bayou core that were analyzed for organochlorine
compounds. Five of the six samples deposited before
1995 had DDE concentrations higher than the TEC but
much lower than the PEC. DDD was detected in the
oldest sample only, which was deposited about 1950
(fig. 7). Most organic carbon concentrations were
between 9.86 and 11.6 percent and did not indicate
a significant trend for the core (Kendall’'s T = .11,

p =.71); therefore, organic compound concentrations
were not normalized with organic carbon before trend
testing. DDE concentrations in sediment at the site had
a significant downward trend. PCB Aroclors 1242,
1254, and 1260 were not detected in the core.

The PAH mixture was dominated by high
concentrations of C2- and C3-alkylated naphthalenes.
Concentrations in three of the eight samples exceeded
2,000 and 300 pg/kg for the C2- and C3-alkylated
naphthalenes, respectively. Concentrations of all other
compounds were less than 50 pg/kg (appendix 2.3).
Concentrations of most individual PAH compounds
were highest in the most recently deposited sample,
but most PAH time series did not show significant
upward trends (fig. 10). Individual PAHs and total
SQG PAHs were well below the respective TECs.
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Figure 9. Selected trace element concentrations and trends in core collected near Goose Prairie Creek, Caddo
Lake, Texas, May 2002.

The ratio of 2- and 3-ringed compounds to combus- 9H-fluorene and 1-methyl-9H-fluorene had significant
tion PAH was greater than 1 in all samples and sub- trends—upward and downward, respectively (table 5).
stantially greater than 1 in three of four post-1983 Total SQG PAH and combustion PAH had no trend
samples (fig. 10). Only two of the PAH compounds, (fig. 10).
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Figure 10. Selected polycyclic aromatic hydrocarbon (PAH) concentrations in core collected near Harrison Bayou,

Caddo Lake, Texas, May 2002.

Concentrations of the major elements were
tested for significant trends in the Harrison Bayou core
(table 6). Aluminum concentrations had a significant
downward trend (Kendall’s T =-.71, p = .01), iron con-
centrations had a significant upward trend (T = 0.86,

p = 0), and titanium concentrations had no significant
trend (T =-.43, p = .14). As with the Goose Prairie

30

Creek data, the lack of similarity among the trends of
aluminum, iron, and titanium concentrations provides
some evidence that the sedimentation rate over time has
not been constant.

Three of the trace elements with SQGs (chro-
mium, nickel, and zinc) had concentrations higher than
the respective TECs, although none exceeded the PECs
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Table 7. Summary of results of analysis for selected trace elements in sediment cores from Caddo Lake, Texas,
May 2002

[TEC, threshold effect concentration (MacDonald and others, 2000); PEC, probable effect concentration (MacDonald and
others, 2000); --, not applicable]

Concentrations Concentrations  Statistically If trend, percent change

Cor ing Trace greater than TEC greater than PEC  significant from highgst or lowest
site element (percent) (percent) trend concentration to. present
concentration
Goose Prairie Creek  Arsenic 0 0 No trend -
(9 samples) Cadmium 0 0 No trend --
Chromium 100 0 Downward 43
Copper 78 0 No trend --
Lead 100 11 Downward 72
Mercury 100 0 Downward 57
Nickel 100 0 No trend --
Zinc 78 0 No trend --
Silver 189 189 No trend -
Harrison Bayou Arsenic 0 0 No trend --
(8 samples) Cadmium 0 0 No trend --
Chromium 100 0 Downward 18
Copper 0 0 Downward 7.5
Lead 0 0 Downward 32
Mercury 0 0 Upward 33
Nickel 100 0 No trend --
Zinc 100 0 No trend --
Mid-lake Arsenic 25 0 Upward 93
(8 samples) Cadmium 0 0 No trend --
Chromium 100 0 No trend -
Copper 0 0 No trend --
Lead 0 0 No trend --
Mercury 0 0 Upward 50
Nickel 87.5 0 No trend -
Zinc 62.5 0 No trend --
Carter Lake Arsenic 100 0 Downward 20
(14 samples) Cadmium 0 0 Downward 12
Chromium 100 0 Downward 21
Copper 7 0 No trend --
Lead 29 0 Downward 33
Mercury 93 0 Downward 9.5
Nickel 100 0 Downward 16
Zinc 100 0 Downward 28

! percent samples greater than ER-L (effects range-low) and ER—M (effects range-median) (Long and others, 1995).
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Figure 11. Selected trace element concentrations and tren
Texas, May 2002.

(fig. 11; table 7). The concentrations of nickel were
close to, but still lower than, the PEC. Cadmium con-
centrations were lower than the TEC, and concentra-
tions of arsenic, copper, lead, and mercury were lower
than the respective TECs. Chromium, copper, and lead

32
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ds in core collected near Harrison Bayou, Caddo Lake,

concentrations had significant downward trends, and
mercury concentrations had a significant upward trend
(fig. 11; table 6). For trace elements without SQGs but
with significant trends, 86 percent of the trends were
upward.
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Mid-Lake
Age Dating and Sedimentation Rates

The mid-lake core was analyzed for 137Cs, 210Pb,
and 2*°Ra. A plot of unsupported 210pp as a function
of cumulative dry mass was scattered and did not follow
a linear decrease (when plotted on a logarithmic scale)
(R2 =.4117; fig. 4a). It was decided not to use the 210py,
concentrations for age dating the core. The 137Cs con-
centrations were used instead because they showed a
clear peak at 9.75 cm. An average MAR of 0.074
g/cmz—yr and sediment deposition dates back to about
1940 were computed for the core, which resulted in age
dates of 1976.0 for the highest total DDT concentration
and 1982.9 for the highest lead concentration. These
dates were later than their known historical peak con-
centrations in cores from other lakes (Callendar and
Van Metre, 1997; Van Metre and others, 1997); how-
ever, the peak total DDT and lead concentrations in the
core might have been missed by the wide sample analy-
sis interval used at the bottom of the core. Only two
samples were analyzed for organochlorine compounds
and trace elements near the bottom of the core. The esti-
mated deposition dates for those samples were 1950 and
1967. It is unlikely that the sediment accumulation rate
in the mid-lake was constant over the period of deposi-
tion represented in the core, but no additional date-depth
markers were in the core to use for the computation of
more than one MAR; therefore, an uncertainty of +5
years is estimated for the age dates of the samples in the
mid-lake core.

Contaminant Occurrence and Trends

DDE was detected in all samples from the mid-
lake site analyzed for organochlorine compounds, and
DDD was detected in the two oldest samples only,
deposited in 1950 and 1967 (fig. 7). Only in the sample
deposited in 1976 was a DDE concentration higher than
the TEC. Because organic carbon concentrations had a
significant upward trend (Kendall’s T = .86, p = 0),
organic compound concentrations were normalized
with organic carbon concentrations before trend testing.
DDE had a statistically significant downward trend in
the mid-lake core (Kendall’s T =-.57, p = .048). PCB
Aroclors 1242, 1254, and 1260 were not detected in the
core.

PAH concentrations in the mid-lake core were
low. The PAH mixture in the mid-lake core was domi-
nated by C2-alkylated naphthalenes, with 2,6-dimethyl-

naphthalene contributing about one-half to three-
fourths of the total C2-alkylated naphthalene concentra-
tion. Most individual PAH concentrations were below
20 pg/kg and well below their TECs (fig. 12). Total
SQG PAHs did not exceed 120 pg/kg, an order of mag-
nitude lower than the TEC. The ratio of 2- and 3-ringed
compounds to combustion PAH was about 1 or greater
than 1 in all but the surficial sample. Organic carbon
normalized concentrations of C1-178 isomers, C2-178
isomers, C1-252 isomers, and coronene had significant
downward trends (table 5). No trends were indicated by
concentrations of total SQG PAH and combustion PAH
(fig. 12).

Concentrations of the major elements were tested
for significant trends in the mid-lake core (table 6).
Aluminum concentrations had no trend (Kendall’s =0,
p = 1), iron concentrations had a significant upward
trend (T = 1, p = 0), and titanium concentrations had
a significant downward trend (t =-.79, p =.01). As
with the other core data described, the lack of similarity
among the trends of aluminum, iron, and titanium
concentrations indicates the possibility of a changing
sedimentation rate over time. The organic carbon con-
centrations in the mid-lake core were noticeably lower
than those in the other three cores collected from the
lake (appendix 2.4).

Variation in trace element concentrations in the
mid-lake core was more subtle than in the other cores—
arsenic, manganese, and mercury concentrations had
significant upward trends (fig. 13; table 6). Decreasing
concentrations of manganese with depth in sediment
have been reported as an effect of diagenesis (for exam-
ple, Gobeil and others, 1997). All chromium concentra-
tions in the core exceeded the TEC (table 7); seven of
eight nickel concentrations exceeded the TEC; the five
samples deposited between 1976 and 1998 had zinc
concentrations that exceeded the TEC; and the two most
recently deposited samples had arsenic concentrations
that exceeded the TEC. All concentrations of cadmium,
copper, lead, and mercury were below the TEC. No
trace element concentration exceeded the PEC.

Carter Lake

Age Dating and Sedimentation Rates

The Carter Lake core was analyzed for 37,
210pp, and *2Ra for age dating. Unsupported 210py,
graphed on a logarithmic scale as a function of cumula-
tive dry mass was almost linear (R? = .8059; fig. 4b),
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Figure 12. Selected polycyclic aromatic hydrocarbon (PAH) concentrations in core collected in mid-lake of Caddo

Lake, Texas, May 2002.

and a clearly defined 137¢s peak for a 1964.0 date-depth
marker was not available; thus the slope of the line fit to
the points was used to compute age dates back to about
1965 for the samples in the core. A MAR of 0.099

g/cmz—yr was computed for the core. The highest total

DDT and lead concentrations had a deposition date of
1975.8 (fig. 6d). This sample interval was the deepest
analyzed for organochlorine compounds, so the total
DDT peak might have occurred in sediments deeper
than those analyzed at this site. The age dates were
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Figure 13. Selected trace element concentrations and trends in core collected in mid-lake of Caddo Lake, Texas,

May 2002.

consistent with historical lead concentrations in cores.
137Cs concentrations increased with depth in the

core back to 1975, which is consistent with the 210py,
deposition dates (fig. 6d). It was unlikely that the sedi-
ment accumulation rate in Carter Lake was constant
over the period of deposition collected in the core, but
as with the other cores, no additional date-depth mark-
ers were in the Carter Lake core to use for the computa-

tion of more than one MAR; therefore, an uncertainty of
+2 years was estimated for the age dates of the samples
in the Carter Lake core.

Contaminant Occurrence and Trends

DDE was detected in samples deposited between
1975 and 1994, and DDD was detected in the oldest
sample only, deposited about 1975 (fig. 7). Only the
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Table 8. Sediment focusing data and core burdens for mercury, Caddo Lake, Texas, May 2002

[pCi/cm2, picocuries per square centimeter; ug/cm2, micrograms per square centimeter]

Cumulative 137Cs Mercury burden

137Cs burden Mercury » Focusing : )
. fallout deposition, normalized with
Sediment core (.¢c) \ burden (¢2>,,g) 1954-74 (4, factor (FF) focusing factor
(pCilem?) (ng/cm?) (oCilom?) (CEY (uglem?)
Goose Prairie Creek 6.82 5.17 4.65 1.47 3.53
Harrison Bayou 4.36 .49 4.65 .94 52
Mid-lake 2.45 52 4.65 .53 1.00

oldest sample had a DDE concentration above the TEC.
PCB Aroclors 1242, 1254, and 1260 were not detected
in the Carter Lake core. Organic carbon concentrations
ranged from 8.06 to 11.2 percent and had a significant
upward trend (Kendall’s T = .73, p = 0); therefore,
organic compound concentrations were normalized
with organic carbon concentrations before trend testing.
Organic carbon normalized DDE concentrations had

a significant downward trend (Kendall’s T = -.86,

p =.003).

PAH concentrations in the Carter Lake core were
less than the TECs (fig. 14). The C2-alkylated naphtha-
lenes had the highest concentrations, particularly 2,6-
dimethylnaphthalene. The concentrations of other com-
pounds were about an order of magnitude lower than
the C2-alkylated naphthalenes and of similar magnitude
to one another. The organic carbon normalized con-
centrations of 9H-Fluorene, 1-methyl-9H-Fluorene,
4,5-methylenephenanthrene, benzo(g,h,i)perylene, and
dibenzo(a,h)anthracene had significant downward
trends (table 5), but total SQG PAH and combustion
PAH had significant upward trends. The ratio of 2- and
3-ringed PAH to combustion PAH was greater than 1 for
all but one sample deposited in 1989, which indicates a
predominance of uncombusted PAH sources.

Concentrations of the major elements in the
Carter Lake core were trend tested (table 6). Aluminum,
iron, and titanium concentrations had significant down-
ward trends (Kendall’s T=-.69, p=0;t=-.85,p =0;
and T=-.61, p = 0, respectively). The downward trends
of these three stable elements indicate a decreasing sed-
imentation rate over time in the Carter Lake core.

Concentrations of several trace elements in the
samples from the Carter Lake core exceeded the respec-
tive TECs (fig. 15; table 7), but none exceeded the
PECs. All sample concentrations of arsenic, chromium,
nickel, and zinc exceeded the TECs; all but one mercury
concentration exceeded the TEC. Lead concentrations

in samples deposited before 1985 were higher than the
TEC, but concentrations in samples deposited after
1985 were lower. The copper concentration in one sam-
ple, with a deposition date of 1997, exceeded the TEC
for copper. The concentrations of seven of the eight
trace elements with SQGs had significant downward
trends—all except copper. The trends in concentrations
of trace elements without SQGs were all downward.

Sediment-Core Burdens, Focusing Factors,
and General Sources of Mercury

The burdens of 137Cs (¢,) and mercury (¢hg) for
the Goose Prairie Creek core, Harrison Bayou core, and
mid-lake core, and the FFs for the three coring sites
were computed as described in the “Sediment-Core
Burden and Focusing Factor” section. The ¢, for each
core was normalized with the respective FF to compute
the amount of cumulative atmospheric mercury fallout
necessary over the Caddo Lake region to produce the
measured ¢@,,. Similar data for the Carter Lake core
were not computed because the oldest Carter Lake sed-
iment analyzed for 137¢s (20- to 21-cm interval) was
age dated to 1973.9, essentially at the end of the period
1954—74 upon which the prediction model used to
obtain cumulative atmospheric fallout deposition of
37¢g ( ¢) for the Caddo Lake region is based. Thus,
because q)c and ¢ could not be obtained for a common
period, a meaningful focusing factor (FF = ¢,./¢y) for the
Carter Lake site could not be computed.

The ¢, ranged from 2.45 pCi/crn2 for the mid-
lake core to 6.82 pCi/crn2 for the Goose Prairie core
(table 8). The ¢ for the Caddo Lake region was com-
puted to be 4. 65 pCl/CIIl Comparison of the model-
predicted ¢ to decay-corrected fallout measured by the
U.S. Energy Research and Development Administra-
tion, Health and Safety Laboratory (1977), indicated
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Figure 14. Selected polycyclic aromatic hydrocarbon (PAH) concentrations and trends in core collected from
Carter Lake, Caddo Lake, Texas, May 2002.

uncertainty of about 20 percent in the model-predicted and about 0.5 for the mid-lake site (table 8). Com-

¢rand subsequent focusing computations. parable FFs have been reported for the Great Lakes
The sediment FF was about 1.5 for the Goose (Eadie and Robbins, 1987; Eisenreich and others,
Prairie Creek site, about 1.0 for the Harrison Bayou site, 1989), and larger FFs have been reported for reservoirs
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Figure 15. Selected trace element concentrations and trends in core collected from Carter Lake, Caddo Lake,
Texas, May 2002.

across the country (for example, Van Metre and are indicated by the FFs for the Harrison Bayou
others, 1997). The Goose Prairie Creek FF indicates and mid-lake sites. In a recent statewide inventory
that about one-third of the mercury at the Goose Prairie of water-quality concerns, the TCEQ (Texas Natural
Creek site might result from drainage area sources. Resource Conservation Commission, 2002b, p. 8—10)
After normalizing for sediment focusing, the Goose reported that the source of mercury to sites near
Prairie Creek mercury burden is about 3.5 and 7 times the mid-lake and Carter Lake sites of this report
larger than the burdens for the Harrison Bayou and is both industrial point sources and atmospheric
mid-lake sites, respectively. No drainage area sources deposition.
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Comparisons of Findings to Those of Other
Texas Lakes

The USGS cored Lake Meredith in the Texas Pan-
handle to investigate the effects of oil and gas produc-
tion in the area on the sediments in that reservoir
(Mahler and Van Metre, 2001). More than 250 wells are
in the Lake Meredith area, and oil and gas exploration
has been ongoing since about 1930. Lake Meredith is in
a dry, desert-like environment and has high sedimenta-
tion rates (MAR 1.1 to 1.7 g/cmz-yr), whereas Caddo
Lake is in a much more humid, swamp-like environ-
ment with low sedimentation rates.

Although drainage area characteristics are differ-
ent, oil and gas production is common to both drainage
areas. Concentrations of the trace elements and PAHs
were compared for Lake Meredith and Caddo Lake
(table 9). Arsenic and cadmium concentrations in the
Goose Prairie Creek, Harrison Bayou, and mid-lake
cores from Caddo Lake were similar to concentrations
in the Lake Meredith cores; concentrations in the Carter
Lake core were somewhat higher. Barium concentra-
tions were similar for the four Caddo Lake cores but
higher in the Lake Meredith cores. Chromium, copper,
and nickel concentrations were similar in sediments
from the two water bodies. Lead concentrations were
similar, except for the Goose Prairie Creek core in
which concentrations were at least three times higher.
Mercury concentrations in the Lake Meredith cores
did not exceed 0.04 ng/g, considerably less than those
in the Caddo Lake cores, which ranged from 0.08 to
0.86 ng/g. Zinc concentrations in the Goose Prairie
Creek, Harrison Bayou, and mid-lake cores were about
1.2 to 1.4 times higher than those in the Lake Meredith
cores, and concentrations in the Carter Lake core were
about 2.5 times higher.

The concentrations of PAHs were of the same
order of magnitude in cores from both lakes. Similar to
Caddo Lake sediments, Lake Meredith sediments gen-
erally contained more 2- and 3-ringed PAHs (uncom-
busted sources) than 4- and 5-ringed PAHs (combusted
sources).

The USGS did another sediment coring study in
Mountain Creek Lake in the cities of Dallas and Grand
Prairie (Jones and others, 1997). The reservoir is on
Mountain Creek, a tributary of the Trinity River, and
was constructed to provide cooling water for a utilities
power plant. Land use in the Mountain Creek Lake
drainage area is a mixture of commercial, residential,
and military facilities. The sedimentation rates (MAR

0.53t0 0.96 g/cmz—yr) in the reservoir are about double
the rates computed for Caddo Lake. The Naval Weapons
Industrial Reserve Plant was built adjacent to the north-
eastern part of the reservoir in 1941, with a primary mis-
sion of military aircraft manufacturing, and is still in
operation today (2003). Box cores collected in Cotton-
wood Bay (a part of Mountain Creek Lake) near the
Naval Weapons Industrial Reserve Plant had mostly
higher concentrations of arsenic, chromium, copper,
and nickel than the cores from Caddo Lake (table 9).
Barium concentrations in the Caddo Lake cores were
about two times higher than those in the Mountain
Creek Lake cores. The Goose Prairie Creek core had
higher concentrations of lead and mercury than those in
Mountain Creek Lake cores, but lead concentrations in
the three other cores from Caddo Lake were similar to
those in Mountain Creek Lake cores. Zinc concentra-
tions in the Carter Lake core were slightly lower than
those in Mountain Creek Lake cores, and concentrations
in the other Caddo Lake cores were much lower.

The PAH assemblages are different in sediments
of the two lakes. Combustion-derived compounds pre-
dominate in Mountain Creek Lake sediments, whereas
the PAH compounds in Caddo Lake sediments gener-
ally are from uncombusted sources.

Among the three lakes, oil and gas production is
in the drainage areas of Caddo Lake and Lake Meredith
but not Mountain Creek Lake. Barium concentrations in
Caddo Lake and Lake Meredith sediments about twice
those in Mountain Creek Lake sediments thus could be
associated with oil and gas production. Association of
other contaminants with drainage-area characteristics,
for example weapons production facilities common to
the drainage areas of Caddo and Mountain Creek Lakes
but not that of Lake Meredith, is less clear.

Implications of Findings Relative to Drainage
Area Sources of Contaminants

The organochlorine pesticides DDE and DDD,
degradation products of DDT, were detected in all four
cores and three of four cores, respectively, collected
from Caddo Lake. DDT probably was used by the
LHAAP, businesses, and households in the Caddo Lake
area during the period of DDT production. The peak
concentrations of DDE at the Goose Prairie Creek and
Harrison Bayou sites, the two sites closest to points of
entry of runoff from the LHAAP, were about twice the
peak concentrations at the mid-lake and Carter Lake
sites. The Carter Lake core had the fewest detections of
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DDE, perhaps because adjacent development was
sparse and thus DDT use minimal. A public health
assessment of the LHAAP found DDD, DDE, aldrin,
and dieldrin in soil samples (Agency for Toxic Sub-
stances and Disease Registry, 2003). Recently deposited
sediments in the four cores had low DDE concentrations
(below the TEC) and no detections of DDD, aldrin, or
dieldrin. These findings indicate that the LHAAP is a
possible source of the detected organochlorines in sedi-
ments, although not from recent transport.

The Goose Prairie Creek core was the only core in
which PCBs were detected. The former TNT production
area of the LHAAP and the town of Uncertain are in the
Goose Prairie Creek drainage area (fig. 2). Because
PCBs were not detected in the cores from other sites in
Caddo Lake and could have been used in industrial
activities at the LHAAP, the LHAAP is a potential
source of the PCBs to the sediments at the Goose Prairie
Creek site. Uncertain would seem an unlikely source of
PCBs to the environment.

All PAHs were detected at concentrations below
SQGs in the Caddo Lake sediment cores. PAHs in the
sediment samples often are from uncombusted sources,
as indicated by the dominance of the alkylated naphtha-
lenes in the PAH mixtures and PAH ratio computations.
Uncombusted sources are common in the Caddo Lake
area, with several oil and gas fields near the lake (fig. 1),
oil and gas wells in the lake, and an airport, roads,
marina, and numerous boat ramps on or near the shores
(fig. 3). Spills or leaks from oil or gas wells, automo-
biles, aircraft, or boats in or near the lake could contrib-
ute PAHs to the sediments in the drainage area and lake.
The composition of oil is highly variable depending
upon the type of oil, weathering, refinery, and length of
use (such as with a lubricant) (for example, Short and
others, 1999; Pruell and Quinn, 1988). Likewise, the
composition of gasoline is highly variable depending
upon the type of gasoline (such as unleaded gasoline for
automobiles, aviation gasoline, various grades, octane
ratings, and additives) (Irwin and others, 1998). Regard-
less of their composition, uncombusted sources such as
oil and gasoline are characterized by low molecular
weight and alkylated PAHs (Eganhouse and Gossett,
1991). However, differentiation among uncombusted
sources using the PAH assemblage in the Caddo Lake
sediment core samples was not possible.

The only exceedance of a PEC was one lead con-
centration in a sample from the Goose Prairie Creek
site. Lead concentrations at the Goose Prairie Creek site
were substantially higher than at the other three sites,

although the trend has been steadily downward from a
peak about 1961 (fig. 9). As previously described
(Review of Existing Information), lead has been
detected in soil and sediment samples collected from the
LHAAP. Based on this evidence and the sampling site’s
proximity to the LHAAP, the LHAAP could have been
a principal source of the lead detected at the Goose Prai-
rie Creek site. If the 1961-2002 decreasing trend at the
Goose Prairie Creek site continues, lead concentrations
there should be comparable to concentrations at the
other three sites in a few years.

Like lead concentrations, mercury concentrations
at the Goose Prairie Creek site were substantially higher
than at the other three sites and have been trending
downward from a peak about 1961 (fig. 9). Although no
reports of mercury use or discharge at the LHAAP have
been found, the FF for the Goose Prairie Creek site,
unlike FFs for the Harrison Bayou and mid-lake sites
(no FF for Carter Lake site), indicates that a substantial
part of the mercury at the Goose Prairie Creek site might
have come from drainage area sources in addition to
atmospheric deposition. The LHAAP remains a possi-
ble source of mercury to the site, although no direct link
is evident. If the 1961-2002 downward trend at the
Goose Prairie Creek site continues, mercury concentra-
tions there should be comparable to concentrations at
the other three sites in 10 to 15 years.

Arsenic, cadmium, and zinc concentrations were
highest at the Carter Lake site, the site that was selected
to represent background conditions because that loca-
tion does not receive runoff from the LHAAP, is far
from the area of the lake with dense oil and gas opera-
tions (fig. 3), and has little development within its drain-
age basin. However, some producing oil and gas wells
are in the waters to the north of the Carter Lake site, at
least one abandoned (plugged) oil or gas well is in the
small Carter Lake drainage area, and a road and boat
ramp are near the coring site. No relation between the
relatively higher trace element concentrations and any
potential source is indicated. The same potential sources
of contamination in the Carter Lake drainage area also
are in the drainage areas of the three other coring sites
in Caddo Lake.

None of the trace element concentrations was
salient at the Harrison Bayou or mid-lake sites, despite
numerous producing and abandoned oil and gas wells in
the Harrison Bayou drainage area and the proximity of
dense oil and gas operations in the lake to the east of the
mid-lake site. No specific sources of trace elements
detected at those sites are indicated by available data.
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SUMMARY

Bottom-sediment cores collected from four sites
in Caddo Lake, Texas, in May 2002 were analyzed for
radionuclides (for age dating), organochlorine pesti-
cides, PCBs, PAHs, and major and trace elements to
describe the occurrence and trends of these sediment-
associated contaminants. The sediment cores were
obtained from sites near the mouth of Goose Prairie
Creek; near the mouths of Harrison Bayou, Central
Creek, and Saunders Branch; in the main body of the
lake (mid-lake); and in a western part of the lake called
Carter Lake. The Goose Prairie Creek and Harrison
Bayou sites receive drainage from an area that includes
parts of the now-closed Longhorn Army Ammunitions
Plant (LHAAP). The mid-lake site is the closest to
dense oil and gas operations in the lake. The Carter Lake
site receives minimal discharge from developed areas.
Sediment deposition dates represented in the cores were
computed back to about 1948 for the Goose Prairie
Creek site, 1950 for the Harrison Bayou site, 1940 for
the mid-lake site, and about 1965 for the Carter Lake
site on the basis of the concentrations of 137Cs, 210Pb,
or both. Contaminant concentrations were compared to
sediment-quality guidelines (SQGs)—threshold effect
concentrations (TECs) and probable effect concentra-
tions (PECs)—that indicate the degree of potential harm
to benthic biota. Samples were tested for statistically
significant temporal trends using Kendall’s tau.

The only organochlorine compounds detected in
the Goose Prairie Creek core were DDE and PCB Aro-
clors 1242, 1254, and 1260. Fifty-six percent of the
sample concentrations of DDE in the Goose Prairie
Creek core exceeded the consensus-based TEC for
DDE but were well below the PEC. Only one sample
concentration, deposited about 1969 before restrictions
on the use of PCBs, exceeded the TEC for total PCB.
PCB Aroclors 1242 and 1254 had significant downward
trends; no other organochlorines had significant trends.

Numerous PAHs were detected in the Goose
Prairie Creek core, although concentrations were low,
all below the respective TECs. The naphthalene homo-
logues with two alkyl groups (C2-alkylated naphtha-
lenes) had the highest concentrations. Nineteen PAHs
had statistically significant trends—all downward.
Since about 1995, PAHs appear to have come primarily
from uncombusted sources such as petroleum-based
fuels, as opposed to combusted sources associated with
the high-temperature burning of fuels.

The Goose Prairie Creek core (and other cores)
was analyzed for eight major elements and 26 trace ele-
ments, eight of which have SQGs. All samples analyzed
for trace elements in the Goose Prairie Creek core
exceeded the TEC for chromium, lead, mercury, and
nickel, and 78 percent of samples were at or above the
TEC for copper and zinc. One sample, deposited about
1961, exceeded the PEC for lead. The concentrations of
chromium, lead, and mercury had significant downward
trends since about 1961. In sediments deposited after
1980, nickel and zinc had significantly increasing con-
centrations. Seventy percent of the trace elements with-
out SQGs but with significant trends had decreasing
concentrations over time in the core.

In the Harrison Bayou core, DDE was detected in
all samples analyzed for organochlorine compounds.
Five of the six samples deposited before 1995 had DDE
concentrations higher than the TEC but much lower
than the PEC. DDE concentrations at the site had a sig-
nificant downward trend. DDD was detected in the old-
est sample only, deposited about 1950. PCB Aroclors
1242, 1254, and 1260 were not detected in the core.

The PAH mixture was dominated by high concen-
trations of C2- and C3-alkylated naphthalenes, some
greater than 2,000 pg/kg. Concentrations of all other
compounds were less than 50 pg/kg. Concentrations of
most individual PAH compounds were highest in the
most recently deposited sample, but most PAH concen-
trations did not show significant upward trends. All
PAHs were below the respective TECs. Uncombusted
PAH sources dominated.

Among trace element concentrations in the Harri-
son Bayou core, chromium, nickel, and zinc concentra-
tions were higher than the respective TECs, but none
exceeded the PECs. Chromium, copper, and lead con-
centrations had significant downward trends, and mer-
cury concentrations had a significant upward trend.

DDE occurred in all samples from the mid-lake
site analyzed for organochlorine compounds. Only in
the sample deposited in 1976 was a DDE concentration
higher than the TEC. DDD was detected in the two old-
est samples only, deposited in 1950 and 1967. DDE
concentrations had a statistically significant downward
trend. PCB Aroclors 1242, 1254, and 1260 were not
detected in the core.

PAH concentrations in the mid-lake core were
low. As in the previously mentioned cores, the PAH
mixture in the mid-lake core was dominated by C2-
alkylated naphthalenes. Most individual PAH concen-
trations were below 20 ng/kg and well below their
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TECs. The few significant trends in PAHs were all
downward. Uncombusted sources dominated.

Variation in trace element concentrations in the
mid-lake core was more subtle than in the other cores—
arsenic, manganese, and mercury concentrations had
significant upward trends. One or more sample concen-
trations of arsenic, chromium, nickel, and zinc exceeded
the respective TEC; no trace element concentration
exceeded the PEC.

Similar to organochlorine analyses from the other
three cores, DDE was the most commonly detected
compound in Carter Lake samples. Only the oldest sam-
ple had a DDE concentration above the TEC, and there
was a significant downward trend in DDE concentra-
tions. DDD was detected only in the oldest sample,
deposited about 1975. No PCBs were detected.

PAH concentrations in the Carter Lake core
were less than the TECs. As in the other cores, the
C2-alkylated naphthalenes had the highest concentra-
tions, some greater than 2,000 pg/kg and comparable
to those at the Harrison Bayou site. The concentrations
of other compounds were about an order of magnitude
lower than the C2-alkylated naphthalenes. Among the
few PAHs with significant trends, almost all were down-
ward. As in the other cores, uncombusted sources
dominated.

Concentrations of several trace elements in the
samples from the Carter Lake core exceeded the respec-
tive TECs, but none exceeded the PECs. The concentra-
tions of seven of the eight trace elements with SQGs had
significant downward trends—all except copper.

Burdens (amount per unit area of a contaminant
in a sediment core) of '3’Cs and mercury and sediment
focusing factors (FF) (quantitative measure of the extent
to which contaminants from drainage area sources
occur at a site) were computed to provide information
on the dominant source (atmospheric fallout or drainage
area) of mercury to the Caddo Lake sediment core sites
(except Carter Lake). Results indicate that about one-
third of the mercury at the Goose Prairie Creek site
might result from drainage area sources. No drainage
area sources were indicated for the Harrison Bayou and
mid-lake sites.

Specific drainage area sources of contaminants
detected in the lake sediments are difficult to determine
with certainty. The fact that peak concentrations of the
DDT degradation products at the Goose Prairie Creek
and Harrison Bayou sites, the two sites closest to points
of entry of runoff from the LHAAP, were about twice
the peak concentrations at the mid-lake and Carter Lake

sites, and the fact that DDD, DDE, aldrin, and dieldrin
have been detected in soil samples from the LHAAP
indicate that the LHAAP is a possible historical source
of the detected organochlorines. As PCBs were detected
only at the Goose Prairie Creek site, the LHAAP is a
possible source for those as well.

The majority of PAH compounds appear to have
originated from uncombusted fuel sources. Uncom-
busted fuel sources are common in the Caddo Lake area,
with several oil and gas fields near the lake and oil and
gas wells in the lake. Oil and gas production in Caddo
Lake and its drainage area is a possible source of PAHs
in Caddo Lake sediments.

Among trace element concentrations at the four
sites, lead and mercury were consistently relatively high
at the Goose Prairie Creek site. Again the LHAAP,
because of its proximity and history of industrial activi-
ties, is a suspected source. Lead has been detected in
soil and sediment samples collected from the LHAAP;
mercury has not, although burden and FF computations
possibly indicate drainage area sources for part of the
mercury in sediment at the site.

Arsenic, cadmium, and zinc concentrations were
highest at the Carter Lake site. No direct link between
these relatively higher trace element concentrations and
oil and gas operations is indicated, but the proximity
between the site and oil or gas wells and the absence of
other potential sources makes oil and gas operations a
possible source.
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Appendix 1.1. Description of sediment push cores collected at Caddo Lake, Texas, May 2002

[cm, centimeters]

Depth interval

Color Comments
(cm)
Goose Prairie Creek Inlet
0-5 Olive-gray Very watery and soft
5-20 Olive-gray with some darker gray = More aquatic vegetation than overlying and underlying intervals;
areas lots of roots; one large white root at 15 cm; similar to box core
20-35 Light gray Much stiffer clay than the overlying material with a lot of root hairs
and wood chunks
Harrison Bayou Inlet
0-9 Medium olive-gray Very wet, loose combination of sediment and algae
9-22 Medium olive-gray Still fairly wet; a lot of stringy organics; leaf veins and pine needles;
especially dense vegetation at 15 cm
22-30 Light olive-gray Thick mass of stringy organics that look like roots
3040 Light greenish-gray Wet, clayey, more cohesive sediment
40-55 Light greenish-gray A lot stiffer and dryer than the overlying interval; big black spot at
50 cm that looks like ash; big wood chunk at 53-55 cm; a few
root hairs
Mid-lake (main stem near Little Green Brake)
0-7 Mostly dark olive-gray with some  Very soft with a small amount of sand
light olive-gray and rusty
brown spots
7-31 Light gray Dry, stiff clay; pine needles and charred wood bits speckled
throughout
Carter Lake near Horse Island
0-19 Dark olive-gray Wet at top, becoming more firm and gelatinous with depth
19-35 Light olive-gray Gelatinous sediment
35-42 Light olive-gray Large chunks of wood in the sediment
42-45 Light olive-gray Gelatinous sediment
45-50 Dark olive-gray Mat of roots and vegetation
50-75 Medium olive-gray Stiff, sticky clay; especially hard below 62 cm
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Appendix 2.1. Analytical results for radionuclides

[In picocuries per gram; uncertainty, two standard deviations; ID, identifier; --, not applicable]

USGS station ID Sample ID Cs-137 Cs-137 uncertainty Pb-210 Ra-226 Ra-226 uncertainty
Goose Prairie Creek core:
324208094073500 CDO.GP 1-2 0.693 0.25 -- -- --
324208094073500 CDO.GP 34 .86 27 -- -- --
324208094073500 CDO.GP 5-6 921 231 -- -- --
324208094073500 CDO.GP 8-9 .848 263 -- -- --
324208094073500 CDO.GP 11-12 922 252 -- -- --
324208094073500 CDO.GP 14-15 .964 204 -- -- --
324208094073500 CDO.GP 17-18 1.1 .19 -- -- --
324208094073500 CDO.GP 20-21 1.3 211 -- -- --
324208094073500 CDO.GP 22-23 754 125 -- -- --
324208094073500 CDO.GP 24-25 133 .0515 -- - --
Harrison Bayou core:
324113094061900 CDO.HB 1-2 77 27 -- -- --
324113094061900 CDO.HB 34 .652 231 - -- --
324113094061900 CDO.HB 5-6 1.13 263 - - --
324113094061900 CDO.HB 7-8 1.25 252 -- -- --
324113094061900 CDO.HB 9-10 1.47 204 -- -- --
324113094061900 CDO.HB 11-12 1.62 .19 -- -- --
324113094061900 CDO.HB 13-14 1.63 211 -- -- --
324113094061900 CDO.HB 15-16 2.36 125 -- -- --
324113094061900 CDO.HB 17-18 2.03 .0515 -- -- --
324113094061900 CDO.HB 19-20 1.19 27 -- -- --
Mid-lake core:
324102094041400 CDO.MD 0-1 .399 27 6.29 1.66 0.37
324102094041400 CDO.MD 1-1.5 531 231 6.04 2.03 1.1
324102094041400 CDO.MD 2.5-3 442 263 2.84 -.65 1.16
324102094041400 CDO.MD 4-4.5 .503 252 3.93 1.07 1.04
324102094041400 CDO.MD 5-5.5 582 204 5.94 2.08 .589
324102094041400 CDO.MD 6.5-7 .886 .19 5.57 1.66 .598
324102094041400 CDO.MD 8-8.5 .896 211 4.35 1.98 .883
324102094041400 CDO.MD 9.5-10 1.3 125 6.35 .824 1.1
324102094041400 CDO.MD 12-13 2 .0515 3.21 2.08 473
Carter Lake core:

324424094094600 CDO.CR 0.5-1 .339 27 16.6 3.22 1.13
324424094094600 CDO.CR 2-2.5 .875 231 10.7 1.2 .832
324424094094600 CDO.CR 3.54 .648 263 13 416 1.55
324424094094600 CDO.CR 5-6 .632 252 8.23 904 .622
324424094094600 CDO.CR 8-9 .84 204 10 1.7 54
324424094094600 CDO.CR 11-12 952 .19 8.29 1.73 444
324424094094600 CDO.CR 14-15 1.46 211 8.52 1.65 .389
324424094094600 CDO.CR 17-18 1.45 125 7.83 1.82 447
324424094094600 CDO.CR 20-21 2.36 .0515 5.65 1.08 429
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APPENDIX 3—
Quality-Assurance Data
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Appendix 3.1. Quality-control samples for radionuclides

[In picocuries per gram unless otherwise specified; ID, identifier; STL, Severn Trent Laboratories, Inc.; na, not analyzed; lab
dup, laboratory duplicate; RPD, relative percent difference; env dup, environmental duplicate; LCS, laboratory control sample]

Sample ID STL lot number Cesium-137 Radium-226 Lead-210

CDO.MD 12-13 J2G090162 0.200 2.08 na

CDO.MD 12-13 lab dup J2G090162 .336 1.77 na
RPD of radionuclide: 50.75 16.10

CDO.HB 7-8 J2G090162 1.25 na na

CDO.HB 7-8 lab dup J2G090162 1.29 na na
RPD of radionuclide: 3.15

CDO.CR 17-18 J2F260205 1.45 1.82 na

CDO.CR 17-18 lab dup J2F260205 1.78 1.72 na
RPD of radionuclide: 20.43 5.65

CDO.GP 34 J2F260205 .860 na na

CDO.GP 3-4 lab dup J2F260205 788 na na
RPD of radionuclide: 8.74

CDO.HB 15-16 env dup J2G110278 3.04 na na

CDO.HB 15-16 env dup, lab dup J2G110278 2.83 na na
RPD of radionuclide: 7.16

CDO.GP 14-15 J2F260205 964 na na

CDO.GP 14-15 env dup J2F260205 994 na na
RPD of radionuclide: 3.06

CDO.HB 15-16 J2G110278 2.36 na na

CDO.HB 15-16 env dup J2G110278 3.04 na na
RPD of radionuclide: 25.19

Blank J2G090162 -.0239 na na

Percent recovered of LCS J2G090162 98.40 na na

Blank J2G090162 -.0131 .149 -.00460

Percent recovered of LCS J2G090162 100.47 na 102.77

Blank J2F260205 -.0107 na na

Percent recovered of LCS J2F260205 103.36 na na

Blank J2F260205 -.0253 .0832 -.00443

Percent recovered of LCS J2F260205 109.10 na 107.48

Blank J2G110278 -.0118 na na

Percent recovered of LCS J2G110278 98.41 na na
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