USGS - Science for a Changing World

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 03-4325

Quality and Sources of Ground Water Used for Public Supply in Salt Lake Valley, Salt Lake County, Utah, 2001

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM

By Susan A. Thiros and Andrew H. Manning

ABSTRACT

Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.

Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.

Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range of valley water-table temperatures indicating that mountain-block recharge must constitute a substantial fraction of recharge to the principal aquifer in this area. Together, the recharge temperature and stable-isotope data define two zones with apparently high proportions of valley recharge on the east side of the valley.

The possibility of water samples containing a substantial proportion of water recharged before thermonuclear testing began in the early 1950s (pre-bomb) was evaluated by comparing the initial tritium concentration of each sample (measured tritium plus measured tritiogenic helium-3) to that of local precipitation at the apparent time of recharge. Three interpreted-age categories were determined for water from the sampled wells: (1) dominantly pre-bomb; (2) dominantly modern; and (3) modern or a mixture of pre-bomb and modern. Apparent tritium/helium-3 ages range from 3 years to more than 50 years. Water generally becomes older with distance from the mountain front, with the oldest water present in the discharge area.

The presence of anthropogenic compounds at concentrations above reporting levels and elevated nitrate concentrations (affected wells) in the principal aquifer is well correlated with the distribution of interpreted-age categories. All of the wells (10 of 10) with dominantly modern water are affected. Seventy percent (7 of 10) of the wells with dominantly modern or a mixture of modern and pre-bomb waters are affected. Only 1 of the 11 wells with dominantly pre-bomb water is affected. Anthropogenic compounds were not detected in water with an apparent age of more than 50 years, except for water from one well. All of the samples that consisted mostly of modern water contained at least one anthropogenic compound.

CONTENTS

Abstract

Introduction

Purpose and Scope

Description of Study Area

Land and Water Use

Ground-Water Hydrology

Acknowledgments

Study Design and Methods

Site Selection

Sample Collection

Sample Analysis

Quality Assurance

Ground-Water Quality

Physical Properties

Major Ions

Trace Elements

Nutrient Constituents and Dissolved Organic Carbon

Pesticides

Volatile Organic Compounds

Sources of Ground-Water Recharge

Stable Isotopes

Dissolved Gas Recharge Temperatures

Tritium and Tritium/Helium-3 Ages

Chlorofluorocarbon Ages

Relation Between Ground-Water Quality and Sources of Recharge

Summary

References Cited

Appendix

This report is contained in the following file:

WRI034325.pdf (7.1 mb)

Send questions or comments about this report to Sue Thiros (sthiros@usgs.gov) 801.908.5063.

For more information about USGS activities in Utah, visit the USGS Utah District home page.

Document Accessibility: Adobe Systems Incorporated has information about PDFs and the visually impaired. This information provides tools to help make PDF files accessible. These tools convert Adobe PDF documents into HTML or ASCII text, which then can be read by a number of common screen-reading programs that synthesize text as audible speech. In addition, an accessible version of Acrobat Reader 5.0 for Windows (English only), which contains support for screen readers, is available. These tools and the accessible reader may be obtained free from Adobe at Adobe Access.


U.S. Department of the Interior, U.S. Geological Survey
Persistent URL: http://pubs.water.usgs.gov/wri034325
Page Contact Information: GS Pubs Web Contact
Last modified: Thursday, September 01 2005, 05:13:30 PM
FirstGov button  Take Pride in America button