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CONVERSION FACTORS

For those readers who may prefer to use metric (International System) units rather than inch-pound units,

Multiply

inch (in.)
foot (ft)
mile (mi)

square mile (miz)

gallon (gal)

million gallons (Mgal)

gallon per minute (gal/min)

million gallons per day (Mgal/d)
inch per year (in/yr)
cubxc foot per second (ft /s)
[(ft /s)/m1 ]
fool per year (ft/yr)
gallon per day (gal/d)

foot squared per day ( ft?'/d)

foot per day (ft/d)

foot per second per foot [(ft/s)/ft]

conversion factors for the terms used in this report are listed below:

By

Length
25.40
0.3048
1.609

Area
2.590

Yolume
3.785

3.785x10°

3,785

Flow
0.06309

6.309x10°

0.04381
25.40

2.832x1072

0.3048
3.785

Transmissivity

0.09290.

Hydraulic conductivity

0.3048

Leakance
1000

To obtain

millimeter (mm)
meter (m)
kilometer (km)

square kilometer (kmz)

liter (L)
cubic meter (m )
cubic meter (m™)

liter per second (L/s)

cubic meter per second (m7/s)

cubic meter per second (m3/s)

millimeter per year (mm/a

cublc meter per second (m’/s)
[(m®/s)/km”)

meter per year (m/yr)

liter per day (L/d)

meter squared per day (mz/d)
meter per day (m/d)

meter per second per meter [(m/s)/m]

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows:

°F = 1.8°C + 32.

- ): A geodetic datum derived from a general adjustment
of the first-order level nets of both the United States and Canada, formerly called mean sea level.
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HYDROGEOLOGY AND PRELIMINARY ASSESSMENT
OF REGIONAL FLOW IN THE UPPER CRETACEOUS
AND ADJACENT AQUIFERS IN THE NORTHERN
MISSISSIPPI EMBAYMENT

by J.V. Brahana and T.O. Mesko

ABSTRACT

On a regional scale, the ground-water system of the
northern Mississippi embayment is composed of a series of
nonindurated clastic sediments that overlie a thick
sequence of Paleozoic carbonates, sandstones, and shales.
Precambrian crystalline rocks form both the structural and
the hydrogeologic basement throughout the northern
embayment. The units that comprise the hydrogeologic
framework of this study are the alluvium-lower Wilcox
aquifer, the Midway confining unit, the Upper Cretaceous
aquifer, the Cretaceous-Paleozoic confining unit, and the
Ozark-St. Francois aquifer. The Upper Cretaceous
aquifer of Late Cretaceous age is the primary focus of this
investigation; the study is part of the Gulf Coast Regional
Aquifer-System Analysis.

A ground-water flow model was developed as the main
tool to refine the concepts of deep regional flow in the
northern Mississippi embayment. This four layer finite-
difference model enabled testing of alternative boundary
concepts and provided a refined definition of the
hydrologic budget of the deep aquifers.

The alluvium-lower Wilcox aquifer, the Upper
Cretaceous aquifer, and the Ozark-St.Francois aquifer
form layers 2 through 4, respectively. Layer 1 is an inactive
layer of constant heads representing shallow water levels,
which are a major control on recharge to and discharge
from the regional system. A matrix of leakance values
simulates each confining unit, allowing vertical inter-
change of water between different aquifers. The model was
calibrated to 1980 conditions by using the assumption that
1980 was near steady-state conditions; it was calibrated to
simulate observed heads within acceptable limits. For this
preliminary model, calculated heads were found to be most
sensitive to pumping, and least sensitive to the leakance.

By using all available water-quality and water-level
data, alternative boundary conditions were tested by com-
paring model simulated heads to observed heads. Simula-

tion indicated that the major discharge zone for the Upper
Cretaceous aquifer occurred along a narrow area coinci-
dent with the boundary of a buried rift.

The results of the early modeling effort also con-
tribute to a better understanding of the regional hydrologic
budget, indicating that upward leakage from the Ozark-
St. Francois aquifer to the Upper Cretaceous aquifer is
about 43 cubic feet per second, with about 30 cubic feet per
second occuring west of the western margin of the embay-
ment. Calculations suggest upward recharge of about 68
cubic feet per second occurs to the lower Wilcox-alluvium
aquifer from the Upper Cretaceous aquifer. Simulation
results also indicate that the Midway is an effective regional
confining unit.

INTRODUCTION

The Upper Cretaceous aquifer of Cretaceous age is a
regionally extensive but relatively little-used aquifer in the
northern Mississippi embayment. Throughout much of its
area of occurrence, this aquifer is the deepest freshwater
source available. Because it is commonly overlain by high-
yiclding, shallower aquifers that supply most of the water
needs of the region, the Upper Cretaceous aquifer hasbeen
the focus of few studies. Data are relatively sparse, and
details about the hydrogeology and regional flow in this
aquifer are poorly defined.

The Upper Cretaceous aquifer, as discussed in this
report, includes the McNairy Sand in Missouri, Tennessee,
and Kentucky; the Nacatoch Sand in Arkansas; and the
Ripley Formation (including the McNairy Sand Member)
in Tennessee and Mississippi. Hydrologic units adjacent
to the Upper Cretaceous aquifer that are described in this
report include the Ozark-St. Francois, the lower Wilcox
and the alluvial aquifers, and the undifferentiated
Cretaceous-Paleozoic, the Midway, and the undifferen-
tiated Claiborne-upper Wilcox confining units (table 1).
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The Upper Cretaceous aquifer study area is irregular-
ly shaped and slightly larger than the physical boundaries
of the northern Mississippi embayment. The 52,000 square
mile area, with maximum dimensions of 240 miles by 260
miles, includes parts of eastern Arkansas, southeastern
Missouri, southern Illinois, western Kentucky, western
Tennessee, and northern Mississippi (fig. 1). Boundaries
of the area are aligned at approximately 50° east of north
and 40° west of north.

The Upper Cretaceous aquifer study is a subproject
of the larger, regional Gulf Coast Regional Aquifer-Sys-
tems Analysis (GC RASA) study. The GC RASA study,
one of several RASA studies being conducted by the U.S.
Geological Survey on major regional aquifers, is designed
to define the hydrogeology of Tertiary and younger age
units in the Mississippi embayment and Gulf Coastal area,
and of Upper Cretaceous sedimentary rocks where these
are used for ground-water supplies in the northern Missis-
sippi embayment.

OBJECTIVES

The objectives of this report are (1) to describe the
hydrogeology of the Upper Cretaceous and adjacent
aquifers; (2) to document the development and calibration
of a preliminary multilayer model used to simulate flow
within this system of aquifers; and (3) to evaluate quantita-
tively the contributions of the various aquifer-system com-
ponents to the regional hydrologic budget.

The three-dimensional finite-difference flow model
(McDonald and Harbaugh, 1984) is one of several tools
that will be used in later studies to develop a more complete
understanding of ground-water flow in the northern Mis-
sissippi embayment. Final results of the Gulf Coastal Plain
RASA study and its subprojects will be documented in
chapters of a report in the U.S. Geological Survey Profes-
sional Paper series.

PREVIOUS INVESTIGATIONS

Although the hydrogeology of the northern Missis-
sippi embayment has been documented in a variety of
reports, details of the deep aquifers (Paleozoic and Upper
Cretaceous rocks) are not well understood. These forma-
tions are not used as widely. as shallower formations for
sources of water, and consequently few data exist.

Geologic studies describing lithologic, stratigraphic,
and structural aspects of the area include papers by Caplan
(1954), Groshkopf (1955), Stearns and Armstrong (1955),
Pryor (1960), Marcher and Stearns (1962), Cushing and

others (1964), Schwalb (1969, 1982), McCracken (1971),
Howe and others (1972), and Crone and Russ (1979). Ervin
and McGinnis (1975) described the regional tectonics of
the northern embayment, and McKeown and Pakiser
(1982) edited a collection of papers that examined both the
regional tectonics and geophysical studies of the New
Madrid, Missouri, earthquake region in detail. Other sig-
nificant studies include Stauder and others (1976), Mitchell
and others (1977), Hildenbrand and others (1977), Zoback
and others (1980), Crone and Brockman (1982), Hil-
denbrand and others (1982), Swanberg and others (1982),
and Crone and others (1985).

The hydrogeology of the area, including the areal ex-
tent of the geologic units, has been compiled from a variety
of sources. The generalized geology (fig. 2) is based on
geologic maps published by Arkansas (Haley, 1976), Mis-
souri (Anderson and others, 1979), Illinois (Willman and
others, 1967), Kentucky (Olive, 1980), Tennessee (Har-
deman and others, 1966; Parks and Russell, 1975), and Mis-
sissippi (Mississippi Geological Survey, 1979). The basis
for current understanding of the hydrogeology of the
Cretaceous and younger sediments is a series of interpre-
tive reports by Boswell and others (1965), Boswell and
others (1968), Hosman and others (1968), Cushing and
others (1970), and Davis and others (1973).

Modeling studies that have been conducted in the area
on aquifers related to this study include work on the
Cretaceous aquifers in northern Missisissippi by Kernodle
(1981), on the regional aquifer system of Cretaceous age in
Mississippi by Mallory (M.J. Mallory, U.S. Geological Sur-
vey, written commun., 1985) and on the Ozark Plateaus
aquifer system of Cambrian and Ordovician age in
southeastern Missouri and northeastern Arkansas by Imes
(1988a, 1988b, 1988c).

In addition to interpretive reports, reports by Boswell
(1963, 1978), Hines and others (1972), Davis and others
(1973), Newcome (1974), Luckey and Fuller (1980), Was-
son (1980), Edds (1982), and Luckey (1985) contain valu-
able water-level and water-quality data.

HYDROGEOLOGY

Occurrence and movement of ground water in the
study area are controlled by (1) the distribution of recharge
to and discharge from the aquifers, (2) the hydraulic
gradients established between recharge and discharge loca-
tions, (3) the hydraulic characteristics, stratigraphic
position, and thickness of aquifers and confining units, and
(4) the tectonic setting and structural discontinuites that
may serve as hydrogeologic boundaries.
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Recharge to the aquifers is provided mostly by
precipitation. Mean annual precipitation in the study area
ranges from less than 46 inches in southern Illinois to more
than 56 inches in northeastern Mississippi (Cushing and
others, 1964; U.S. Geological Survey, 1970). Except in
areas of intense pumping, more water is available for
recharge than the deeper, confined flow systems can ac-
cept. Consequently, almost all the water that enters the
shallow parts of the aquifer in the outcrop area is dis-
charged locally to streams.

Physiography and altitude of the land surface (fig. 3)
influence ground-water levels significantly. In this study,
land-surface altitude has been used to estimate the altitude
of the water table, based on a multiple linear regression of
depth-to-water as a function of land-surface altitude and
well depth. Setting well depth equal to the depth-to-water
and solving the regression equation for water-table altitude
yielded the equation:

‘Water-table altitude, in feet = (land-surface altitude, in
feet x 0.9585)-3 feet

(A.K. Williamson, U.S. Geological Survey, written com-
mun., 1985). This equation was used to generate a water-
table map with a calculated average water level for each
5-mile square block. The blocks are defined by the GC
RASA model grid (A.K. Williamson, U.S. Geological Sur-
vey, written commun., 1985).

HYDROGEOLOGIC FRAMEWORK

The sediments of Cretaceous and Tertiary age that
comprise the aquifers and confining units within the area
are exposed at land surface in narrow bands that roughly
parallel the eastern and northern margins of the embay-
ment (fig. 2). Alluvium occurs at the surface throughout
most of the western half of the embayment. Carbonate
rocks of Cambrian and Early Ordovician age crop out in
the western part of the study area as part of the Salem
Plateau.

Maps of thickness, sand percentage, and structure of
hydrogeologic units described in this report were based
primarily on geophysical well logs and secondarily on pre-
vious studies. Geophysical logs, which are part of a com-
mon data base of all GC RASA regional and subproject
studies, were selected to give the most regionally repre-
sentative three-dimensional definition of the system (R.L.
Hosman, written commun., 1985).

Hydrogeologic sections A-A’ (fig. 4) and B-B’ (fig. 5)
illustrate the vertical framework of the system with
reference to the Upper Cretaceous aquifer, and table 1 lists

generalized hydraulic characteristics of this framework.
Section A-A' is transverse to and section B-B' is parallel to
the axis of the embayment (fig. 2). These sections illustrate
the southward plunging synclinal structure of the embay-
ment, show the relatively flat relief of the land surface, and
indicate the relative thickness of the units,

The Mississippi embayment rift is one of the dominant
tectonic features in the northern Mississippi embayment
(fig. 6) (McKeown and Pakiser, 1982). This deep zone of
faulting in Precambrian basement rocks has been reac-
tivated periodically by crustal stresses. As a zone of crus-
tal weakness, the rift is thought to be a potential propagator
of faults into the overlying younger rocks and sediments
(Brahana and others, 1982). Geologic and hydrologic dis-
continuities occur close to the western margin of the rift,
suggesting that this feature, or effects associated with this
feature, is important to the regional hydrogeologic
framework of the study area.

On a regional scale, the ground-water system of the
northern Mississippi embayment is composed of a series of
nonindurated granular sediments that overlie a thick
sequence of Paleozoic carbonate rocks, sandstones, and
shales. Precambrian crystalline rocks form both the struc-
tural and the hydrogeologic basement throughout the
northern embayment.

Precambrian rocks consist of felsitic volcanic rocks
ranging from rhyolite to andesite, granites and granite por-
phyries, and basic intrusives of gabbroic composition,
which locally may be fractured (Howe and Koenig, 1961).
The Precambrian rocks are dense and commonly have ex-
ceedingly low porosity and permeability. These rocks crop
out in the St. Francois Mountains northwest of the study
area and slope steeply toward the axis of the Mississippi
embayment. Depth to Precambrian basement generally
ranges from less than 2,000 to more than 10,000 feet within
the study area, but is greater than 15,000 feet at the
southern margin of the study area (T.C. Buschbach, writ-
ten commun., 1981; Schwalb, 1982).

Several thousand feet of Cambrian and Lower
Ordovician rocks, primarily dolomite, sandstone, and shale
overlie the Precambrian basement. This sequence hasbeen
separated (Imes, 1988a) into three hydrogeologic units, the
St. Francois aquifer, the St. Francois confining bed, and the
Ozark aquifer.

The basal LaMotte Sandstone .and overlying Bonne-
terre Formation, consisting of dolomite and limestone of
Cambrian age, have been defined as the St. Francois aquifer
by Imes (1988b). This aquifer is about 500 to 600 feet thick
in the northwestern part of the study area. The LaMotte
and Bonneterre are equivalent to the lower part of the
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Copper Ridge Dolomite, which is part of the Knox Group
in the eastern part of the study area (Schwalb, 1982).

The St. Francois aquifer is confined by the overlying
St. Francois confining bed (Imes, 1988c), which consists of
shale, siltstone, fine-grained sandstone, dolomite, and
limestone conglomerate. These units total about 500 feet
in thickness and include the Davis, Derby and Doe Run
Formations of Late Cambrian age (Howe and Koenig,
1961). In the eastern part of the study area, these forma-
tions are equivalent to the middle part of the Copper Ridge
Dolomite (Schwalb, 1982).

The Ozark aquifer consists of eight formations that
overlie the St. Francois confining bed (Imes, 1988d). These
formations, in ascending order, are the Potosi Formation
and Eminence Dolomite of Cambrian age, and the Gas-
conade Dolomite, Roubidoux Formation, Jefferson City
and Cotter Dolomites, Smithville Formation, and Powell
Dolomite of Early Ordovician age, (Howe and Koenig,
1961). They are primarily siliceous dolomites, with some
beds of sandstone and minor shale. The dolomites have
well-developed zones of secondary porosity and per-
meability throughout the area of this study, including the
area beneath the embayment.

A highlydiverse sequence of rocks ranging in age from
Middle Ordovician to Late Cretaceous may overlie the
Ozark-St. Francois aquifer, depending on its location
(Howe and Koenig, 1961; Boswell and others, 1965; Davis
and others, 1973; Schwalb, 1982). In this report, these
rocks are named the undifferentiated Cretaceous-
Paleozoic confining unit. Data describing the hydrology of
these rocks where they occur more than several hundred
feet deep are scarce. Based on geologic data from the few
deep oil-exploration wells in the embayment, the undif-
ferentiated Paleozoic and Cretaceous rocks are believed to
form a regional confining layer in the subsurface. Some

" formations of Cretaceous age within this sequence are
known to function as aquifers at shallow depths around the
margins of the embayment and as regional aquifers in the
southeastern part of the study area (Boswell and others,
1965; Davis and others, 1973; M.J. Mallory, written
commun., 1986). In the southern part of the study area,
Middle Ordovician to Upper Cretaceous rocks have an ag-
gregate thickness of more than 11,000 feet (fig. 5). Thick-
ness decreases to the north, and this sequence of rocks is
absent in the central part of the study area (fig. 5).

The Upper Cretaceous aquifer, consisting of the Mc-
Nairy and Nacatoch Sands and the Ripley Formation (in-
cluding the McNairy Sand Member), is composed of
glauconitic, clayey sand interbedded with clay and chalk.
Coarse sediments are common in the north, and clay and
chalk predominate in the south (Boswell and others, 1965).
The aquifer underlies most of the study area and crops out
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at the north end of Crowleys Ridge in Missouri and along
the eastern edge of the embayment in Kentucky, Tennessee,
and northern Mississippi.

Total thickness of the Upper Cretaceous aquifer
ranges from 0 to about 500 feet, with the thickest zones oc-
curring in the north central part of the study area in western
Tennessee and southeastern Missouri. Cumulative sand
thickness in the Upper Cretaceous aquifer (fig. 7), ranges
from 0 to about 440 feet.

The Midway confining unit (Midway Group consist-
ing of the Clayton Formation and Porters Creek Clay) con-
sists primarily of fine-grained sediments and overlies the
Upper Cretaceous aquifer throughout most of its area of
occurrence in the northern embayment. The confining
unit ranges in thickness from a few feet along its subcrop
to about 1,200 feet in the south central part of the study
area (fig. 8).

The lower Wilcox aquifer (composed of sands and clay
of the lower part of the Wilcox Group) overlies the Midway
confining unit. The Wilcox Group is undifferentiated in
Arkansas and Kentucky, but has been subdivided and cor-
related in Missouri and Tennessee (Hosman and others,
1968). Throughout much of the area, sands of the lower -
Wilcox aquifer are separated from sands in the upper part
of the Wilcox Group by clays in the middle and upper part
of the Wilcox Group (Hosman and others, 1968). In the
northern part of the study area where it subcrops, the Wil-
cox may be in direct contact with the alluvium (fig. 4). Sand
thickness of the lower Wilcox Group may exceed 600 feet
near the center of the embayment in northwestern
Mississippi.

Upper sands in the Wilcox and younger Eocene for-
mations, are referred to in this report as the undifferen-
tiated Claiborne-upper Wilcox confining unit. These
upper Wilcox and younger Eocene aquifers are described
in a separate GC RASA study of the Mississippi embay-
ment aquifer system (Arthur and Taylor, 1988).

The Mississippi River Valley alluvial aquifer (al-
luvium) consists of sand, gravel, silt, and clay, and is the sur-
ficial aquifer throughout the western part of the
embayment. The extent and thickness (a few to 250 feet)
of this alluvial aquifer have been mapped by Fisk (1944),
Krinitzsky and Wir€ (1964), Boswell and others (1968), and
Luckey (1985). The alluvial aquifer directly overlies parts
of the lower Wilcox, Upper Cretaceous, and Ozark-St.
Francois aquifers in a subcrop relation (fig. 4).
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REGIONAL FLOW

Estimates of the regional flow in the Upper
Cretaceous aquifer were based primarily on water levels.
Because this aquifer is relatively deep and ground-water
supplies are readily available from shallower aquifers,
extensive arcas exist where no water wells tap the Upper
Cretaceous or deeper aquifers. For those areas, informa-
tion from oil test wells was used to estimate regional
ground-water flow.

Water Levels

Water levels within the outcrop area of the Ozark-St.
Francois aquifer (fig. 9) are based on data and interpreta-
tions provided by Imes (1988a; 1988b; 1988c; J.L. Imes,
U.S. Geological Survey, written commun., 1986). Water-
level gradients are relatively steep in the outcrop area and
slope toward the margin of the embayment. These data in-
dicate that streams are major discharge outlets for this
aquifer in the Salem Plateau. Additionally, the presence of
12 sprmgs with flows greater than 100 cubic feet per second
(ft /s) along major stream valleys is consistent with this
observation (Beckman and Hinchey, 1944; Vineyard and
Feder, 1974).

It is believed that beneath the embayment, the
gradients become much flatter, but few water-level data are
available for the Ozark-St. Francois aquifer where it occurs
within the embayment. Therefore, determinations of the
direction of ground-water flow in this part of the aquifer
can only be generalized. In southeastern Missouri, south-
ward flow is indicated (fig. 9); in western Tennessee,
eastward flow toward the Tennessee River is indicated
(Brahana and Bradley, 1985).

The potentiometric surface of the Upper Cretaceous
aquifer in 1980 (fig. 10) indicates that regional flow in this
aquifer is from the outcrop area westward across the em-
bayment to a major discharge area on the extreme western
edge of the Missouri "bootheel” near the Arkansas bound-
ary. Previous studies in Kentucky indicate that the aquifer
discharges to the Ohio River and its tributaries and that
streams draining the outcrop receive significant recharge
from the aquifer, ranging from 7 to 10 inches per year
(in/yr) (Davis and others, 1973; Zurawski, 1978). In the
outcrop areas in Kentucky and Tennessee, flow locally may
be eastward. In Missouri and Arkansas, flow toward the
south also is indicated (fig. 10). The discharge zone, iden-
tified by a low in the potentiometric surface (fig. 10), is
coincident with the approximate arca of major use. The
discharge zone is also nearly coincident with the western
margin of the Mississippi embayment rift (fig. 6), but does
not coincide with surface-drainage features.
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The potentiometric surface of the lower Wilcox
aquifer in 1980 (fig. 11) indicates that regional flow is west
and southwest from the outcrop areas of Kentucky, Ten-
nessee, and Mississippi, and south from subcrop areas in
Missouri. West of the Mississippi River, flow in the aquifer
is predominantly southward. In southeastern Missouri,
western Tennessee, eastern Arkansas, and northwestern
Mississippi, intensive pumping [greater than 1 million gal-
lons per day (Mgal/d)] has caused localized depressions in
the potentiometric surface.

In the outcrop area of the Wilcox Group, the rivers act
as drains and ground-water flow is toward the rivers (Was-
son, 1980). Water levels near the area of subcrop of the
lower Wilcoxbeneath the alluvium are not defined (fig. 11).

Water levels in the alluvial aquifer west of the subcrop
of the lower Wilcox aquifer have been mapped by Broom
and Lyford (1981) and Luckey (1985) (fig. 12). Water
levels in the alluvium indicate a regional flow southward,
with the rivers acting as major drains (o the ground-water
flow system.

In all aquifers of this study, water levels vary seasonal-
ly in response to natural variations in recharge and dis-
charge, and in response to pumping. Hydrographs for
selected wells in the Upper Cretaceous, lower Wilcox, and
in the alluvial aquifers show long-term water-level trends
(fig. 13). No hydrographs are available for the Ozark-St.
Francois aquifer. In the outcrop areas (Murray, Paris,
Malden, and Peach Orchard on fig. 13), mean yearly water
levels appear to be at steady state. In contrast, a long-term
water-level decline has occurred in the Fisher well, which
is open to the alluvial aquifer west of Crowleys Ridge (figs.
2, 4, and 13), and which is located in an area intensively
pumped for rice irrigation. This decline is also thought to
affect water levels in the deeper aquifers, because of the
high hydraulic conductivity along the subcrop areas.
Hydrographs of wells in the confined aquifers in the
western part of the study area (Campbell, Paragould, Delta
Farms, and Walls) show small (about 1 foot/year) but con-
tinuing water-level declines.

Water Quality

The Ozark-St. Francois aquifer is characterized by
two water types. According to Hollyday and others (1981),
freshwater [dissolved-solids concentration less than 1,000
milligrams per liter (mg/L)] occurs throughout the aquifer
in the Salem Plateau area (fig. 2), the approximate area of
outcrop (Harvey, 1980). Water from the aquifer in this
area is a calcium magnesium bicarbonate type with dis-
solved-solids concentrations generally less than 250 mg/L
(table 2). In the Mississippi embayment where the aquifer
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is covered by younger sediments, the water is a sodium
chloride type. Dissolved-solids concentrations generally
exceed 1,000 mg/L, increasing gradually toward the south
and generally with depth. Although few water-quality data
are available, dissolved-solids concentrations greater than
10,000 mg/L are indicated in water from the upper part of
the Ozark-St. Francois aquifer near the Missouri-
Arkansas-Tennessee border (Grohskopf, 1955).

Three distinct types of water occur in the Upper
Cretaceous aquifer. Within and fairly close to the outcrop
areas, a calcium magnesium bicarbonate type with dis-
solved-solids concentrations less than 250 mg/L is typical
(fig. 14 and table 2). Within the zonc of confined flow, the
water is generally either a sodium chloride or a sodium
bicarbonate type. Sodium chloride type water is found in
southeastern Missouri (fig. 15) near the western margin of
the rift in the vicinity of the Pascola arch and Bloomfield
pluton (fig. 6); and in the area (fig. 15) extending from
northeastern Arkansas to north central Mississippi (Hines
and others, 1972; Boswell, 1978). Elsewhere, water from
the Upper Cretaceous aquifer is a soft, sodium bicarbonate
type; dissolved-solids concentrations range from 200 to 700
mg/L, generally increasing from east towest and from north
to south.

Water at a temperature of 5 °C or more above the
mean annual temperature of the surrounding environment
is termed "hydrothermal” (White, 1957). In this report,
water that is cooler than hydrothermal but warmer than the
geothermal gradient is called "anomalously warm." Zones
of hydrothermal and anomalously warm water occur in the
Upper Cretaceous aquifer on the western side and eastern
sides, respectively, of the western rift boundary in south-
eastern Missouri (fig. 16). This water is thought to be
recharging the Upper Cretaceous from a deeper aquifer.

The areal distribution of water types in the lower Wil-
cox aquifer is similar to that in the Upper Cretaceous.
However, in southeastern Missouri, the zones of warm
water and salty water found in the McNairy-Nacatoch have
not been observed in the Jower Wilcox (Brahana and others,
1982). Also, freshwater occurs about 10 miles further
south in Arkansas in the lower Wilcox than in the Upper
Cretaceous (Hines and others, 1972).

Throughout the area of freshwater occurrence in the
lower Wilcox aquifer, dissolved-solids concentrations are
generally less than 250 mg/L. The water is either a sodium
bicarbonate type in the confined part of aquifer or a cal-
cium magnesium bicarbonate type in the outcrop (Hosman
and others, 1968).

Water from the alluvium is characterized as a hard,
calcium magnesium bicarbonate type with dissolved-solids
concentrations generally ranging from 200 to 600 mg/L
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(Boswell and others, 1968). Chloride concentrations less
than 10 mg/L are common in water from this aquifer, but
concentrations greater than 200 mg/L. have been deter-
mined at several locations (fig. 15) (Broom and Lyford,
1981).

HYDRAULIC CHARACTERISTICS

Aquifer tests have been used in this study to define the
range of transmissivity, hydraulic conductivity, and storage
coefficients for the Upper Cretaceous, lower Wilcox, and
alluvial aquifers. Results of tests selected-to show repre-
sentative values are presented in table 3, and locations are
shown in fig. 17.

No aquifer tests have been conducted in the Ozark-St.
Francois aquifer within the study area, but based on results
of the few tests made at other locations (Imes, 1988a;
1988b), average hydraulic conductivity is assumed to be
about 0.9 feet per day (ft/d) and transmissivity is beheved
to range from 50 to 2,600 feet squared per day (ft /d). No
storage coefficients have been reported.

The Upper Cretaceous aquifer is reported to have a
range of hydrauhc conductivity from 10 to 75 ft/d, a range
of transmissivity from 270 to 4,300 fi%d, and a range of
storage coefficients from 0.0001 to 0.0008 (Boswell and
others, 1965; Newcome, 1971; Boswell, 1978). Three rep-
resentative aquifer tests of the Upper Cretaceous a(}ulfer
show a transmissivity range from 1800 to 4,300 ft“/d, a
hydraulic conductivity range from 16 to 45 ft/d, and a
storage coefficient range from 0.007 to 0.0008 (table 3).

The lower Wilcox aquifer is reported to have a range
of hydrauhc conductivity from 25 to 470 ft/d, a range of
transmissivity from 670 to 85,000 ft /d and a range of
storage coefficients from 0.0002 to 0.015 (Hosman and
others, 1968; Boswell, 1976). Data from three repre-
sentative tests in the lower Wilcox aquifer i in table 3 show
transmissivity ranges from 10,000 to 21,000 f%/d, hydraulic
conductivity ranges from about 50 to 110 ft/d, and storage
coefficients are about 0.002.

Reported aquifer tests of the alluvium indicate that
the hydraulic conductivity ranges from 60 to 450 ft/d, trans-
missivity ranges from 8,000 to 54,000 fi%/d, and storage
coefficients range from 0.0001 to 0.04 (Newcome, 1972;
Broom and Lyford, 1981; Luckey, 1985). Representative
values of reliable tests from the alluvium (tdble 3) show
transmissivity ranges from 8,500 to 50,000 fi%/d, hydraulic
conductivity ranges from 106 to 390 ft/d and storage coef-
ficients range from 0.0001 to 0.04.

No empirical data exist that can be used to calculate
vertical hydraulic conductivity (K.) of confining layers in
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the study area. Typical hydraulic conduct1v19' values for
clays reported in the literature range from 10™ to 10 8 fi/d
(Freeze and Cherry, 1979). The hydraulic conductivity for
the Midway confining layer was assumed to be 10" fu/d,
based on drilling records of the Midway that indicate it is a
tight, low permeable unit throughout the northern embay-
ment. Typical hydraulic conduc[wnty values for lime-
stone and dolomite range from 10* 1o 107 fu/d, and for shale
range from 10° 3 1010”7 f/d. The hydraulic conductivity for
the Cretaceous-Paleozoic confining bed was assumed to be
10™ fiyd where the dominant lithology was limestone or
dolomite, and 10~ ft/d where the dominant lithology was
shale.

STRESSES

Pumpage from each aquifer has been defined for the
entire Gulf Coast RASA Regional Project area (D.J.
Ackerman, personal commun., 1986). Individual wells that
pump more than 10,000 gal/d for municipal, public supply,
or industrial users have been identified. Pumpage from
these wells represents about 75 percent of the total for the
area (table 4). The remaining 25 percent of the pumpage
is from rural, domestic, stock, irrigation, and other wells
generally not identified in existing water-use studies.
Pumpage, where not otherwise available, was estimated
from population and per capita use data. Individual pump-
ing sites reported by aquifer are shown in figure 18.

about the flow system. Although simplified from the physi-
cal system, a model should be consistent with all known
hydrogeologic observations.

CONCEPTUALIZATION OF THE SYSTEM

Most of the flow in the Ozark-St. Francois aquifer
occurs in the Salem Plateau, the area where the Lower
Ordovician rocks that comprise the upper part of this
aquifer outcrop (figs. 2 and 19). Precipitation directly
recharges the aquifer in this area, and flow is transmitted
through well-developed zones of secondary permeability to
major springs and streams (Beckman and Hinchey, 1944;
Harvey, 1980). Major springs in the outcrop area have
components of both local and regional flow, suggesting that
deeper flow paths are an important, dynamic part of the
flowsystem (Feder, 1973). Deep flow is also consistent with
the observation that in the Salem Plateau the aquifer con-
tains freshwater throughout its entire thickness. Flow
within or from the Ozark-St. Francois is believed to be
more restricted in the embayment because the overlying
sediments have low permeability and restrict vertical move-
ment of water into or out of the aquifer.

Although most of the water in the Ozark-St. Francois
aquifer is discharged to springs and streams in the outcrop
area, a small amount is believed to flow southeast beneath
the western margin of the embayment to discharge into

Table 4.--Water use from the Ozark-St. Francois and Upper Cretaceous aquifers for 1980, by state

[All units are in thousand gallons per day]

Ozark-St. Francois aquifer

Upper Cretaceous aquifer Total reported

Public supply Public supply _and
State Rural domestic and industrial Rural domestic and industrial simulated

Arkansas 300* 800 * 600 900 2,600
Missouri 500* 1,600 500* 4,200 6.800
Ninois 0 0 0 0 0
Kentucky 0 0 1,100 * 3,400 .4.500
Tennessee 0 0 2,000* 6,800 8,800
Mississippi 0 0 500 500 1,000
Total 800 2,400 4,700 15,800 23,700
*Estimated.

All other values are reported (D.J. Ackerman, U.S. Geological Survey, written commun., 1986)

MODELING THE GROUND-WATER
FLOW SYSTEM

The physical system, described in the previous section
of ground-water hydrology, is the basis for a ground-water
flow model. A model that simulates actual aquifer behavior
provides a powerful tool with which to test understanding
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overlying aquifers (fig. 19). The discharge occurs com-
monly along faults (Stearns and Zurawski, 1976; Schwalb,
1982; Stauder, 1982; Crone and others, 1985), and zones
where the Midway confining layer has been removed or
thinned by erosion (fig. 20) (Schwalb, 1982). Areas where
relatively high dissolved-solids concentrations occur in
water from the Upper Cretaceous aquifer and the alluvium
are believed to coincide with discharge from the
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underlying, more mineralized Ozark-St. Francois aquifer.
With the exception of a zone of flow between the outcrop
area and the discharge areas within the western part of the
embayment, flow in the Ozark-St. Francois aquifer is
believed to be small,

Water-quality and water-level data from wells in the
upper few hundred feet of the Ozark-St. Francois aquifer
in central Tennessee indicate that flow from the aquifer
east of the study area is discharged to the Tennessee River.
The Ozark-St. Francois aquifer is within several hundred
feet of tand surface east of the Tennessee River and receives
significant recharge by downward leakage (Brahana and
Bradley, 1985). A freshwater zone occurs in the upper part
of the aquifer in that area. West of the Tennessee River,
dissolved-solids concentrations, ranging from 4,000 to
5,000 mg/L in water from the few wells sampled, indicate
little freshwater recharge or circulation. The Tennessee
River in western Tennessee is thought to be a regional dis-
charge area and thus serves as a constant-head boundary.

Toward the south, the Ozark-St. Francois aquifer
deepens rapidly and is overlain by a thickening wedge of
undifferentiated Paleozoic and Cretaceous rocks (fig. 5).
The southern part of the Ozark-St. Francois aquifer is
probably a zone of very restricted ground-water flow. This
assumption is based on the depth of the top of the aquifer,
the thickness of the overlying confining layer, and the
salinity of water in the aquifer. No head data exist from this
part of the aquifer.

The undifferentiated Cretaceous-Paleozoic confining
unit thins from the margins of the study area toward the
center of the northern part of the embayment (fig. 20).
Consequently, the potential for leakage through the con-
fining unit is less near the southern and northern boun-
dariesand is higher in the center of the study area. Leakage
potential through the confining unit may also be relatively
higher near the western margin of the rift and the Pascola
arch-Bloomfield pluton (fig. 20).

Deep regional freshwater flow in the Upper
Cretaceous aquifer occurs north of a line from the eastern
boundary of the embayment near latitude 34° N. to the
western boundary of the embayment at latitude 36° N. (fig.
21). Flow is from topographically high recharge areas at
the northern and eastern margins of the embayment to
topographically low discharge arcas where Cretaceous
sediments subcrop beneath the alluvium (fig. 2). Water
level in the alluvium is thought to control aquifer discharge
or recharge at the subcrop.

In addition to recharge at the outcrop, the Upper
Cretaceous aquifer is thought to be recharged in two dis-
tinct areas in southeastern Missouri by upward leakage
from the Ozark-St. Francois aquifer. An area of recharge
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overlying the Pascola arch (figs. 6, 20, and 21), has been
delineated by differences in water-quality parameters.
These differences include variations in water type, and in
dissolved-solids, chloride, and trace-constituent con-
centrations (Brahana and others, 1985). Based on carbon
isotope (14C) data, water in the Upper Cretaceous aquifer
in the area of the Pascola arch-Bloomfield pluton is
younger than water elsewhere in the confined part of the
aquifer (Brahana and others, 1985).

The second area of recharge is slightly east of the
western margin of the rift and is defined by the zone of
hydrothermal water in the Upper Cretaceous aquifer (fig.
16). Recharge to the Upper Cretaceous aquifer east of the
rift area is less mineralized than in the area of the Pascola
arch, more hydrothermal, and is relatively older based on

‘¢ isotope age interpretations (Brahana and others,
1985).

Unpublished radium isotope ratio data indicate that
much of the Upper Cretaceous aquifer in southeastern
Missouri is receiving recharge from the deep Ozark-St.
Francois aquifer (Tom Kraemer, written commun., 1986).

Regional flow south of the line delineating freshwater
in the Upper Cretaceous aquifer is assumed to be small (fig.
21). This assumption is based on (1) the higher dissolved-
solids concentrations of the water toward the south, and (2)
the decreasing permeability, caused by increasing amounts
of clay, marl, and chalk in the Upper Cretaceous aquifer
toward the south (Boswell and others, 1965).

Water levels in the Upper Cretaceous and the lower
Wilcox aquifers (separated by the Midway confining unit),
indicate an upward gradient from the Upper Cretaceous
aquifer to the lower Wilcox aquifer for most of the area
(figs. 10 and 11). Head differences of as much as 100 feet
have been documented at Memphis (Graham and Parks,
1985).

A linear zone above the western margin of the rift (fig.
22) coincides with a low in the potentiometric surface of
the Upper Cretaceous aquifer (fig. 10). This zone is an
hypothesized area of higher leakance, possibly related to
faulting overlying the rift. The occurrence of a hydrother-
mal anomaly in the lower Wilcox aquifer is also consistent
with the hypothesis of greater upward leakage near the rift.
Dissolved chloride and dissolved-solids concentrations,
however, suggest that leakage across the Midway confining
unit is minor in the vicinity of the rift.

Regional flow in the lower Wilcox is from the outcrop
areas in the east and from the subcrop area in the north
(fig. 23). Flow is confined throughout the area shown, ex-
cept in the outcrop. Discharge from the aquifer occurs at
three major pumping centers, along parts of the subcrop in
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Missouri and Arkansas, and upward to shallower aquifers
beneath the alluvial plain of the Mississippi River. The
occurrence of a sodium chloride type water in east central
Arkansas at about latitude 36° N. and longitude 91° W,
(Hines and others, 1972) suggests vertical upward leakage
of salty water from deeper aquifers, including the Upper
Cretaceous and the Ozark-St. Francois aquifers. Faults in
the Midway confining unit near the western margin of the
rift or deep wells drilled through the Midway and later
abandoned are two possible explanations of the upward
leakage. To the south in Mississippi, the approximate
southern limit of freshwater in the aquifer is thought to rep-
resent an abrupt change in flow conditions. South and west
of this freshwater limit, flow is very sluggish, because of
restricted discharge upward through a thick sequence of
confining clays. North and east of this boundary, the exist-
ence of freshwater documents that a deep regional dynamic
flow system is active.

Flow within the alluvial aquifer is generally from
north to south and locally from ground-water highs toward
streams that drain the area (fig. 24) (Broom and Lyford,
1981; Luckey, 1985). In the southwestern part of the area,
flow in the aquifer is toward the southeast. Throughout
most of the area, water levels in the alluvium have remained
relatively stable. An exception is the area west of Crowleys
Ridge (fig. 2), where declines in alluvial water levels have
been observed for more than 30 years (figs. 13 and 24)
(Broom and Lyford, 1981).

Upward leakage from deeper aquifers is suspected of
causing anomalously high chloride concentrations in water
from the alluvium (fig. 15), but is thought to represent a
small percentage of the total flux in the alluvium. An
evaluation of a water budget of the alluvium indicates that
surface-water and shallow ground-water contributions are
probably several orders of magnitude greater than water
contributed by confined aquifers (Luckey, 1985).

MODEL ATTRIBUTES

The ground-water flow model used in this study was
developed by McDonald and Harbaugh (1984) and has the
following attributes:

o flow in a sequence of layered aquifers
separated by confining units can be simu-
lated

« simulation of hydrologic features by several
alternative methods is facilitated because of
the modular design of the model

e documentation and testing of the model in
hydrogeologic settings similiar to the study
area has been conducted.

In this model, the differential equations of ground-
water flow are simulated by an iterative numerical techni-
que known as the strongly implicit procedure using the
development and notation of Weinstein and others (1969).
The theory and use of the model is documented thoroughly
by McDonald and Harbaugh (1984), and no additional
description of the general aspects of their work is included
here.

A four layer model (three aquifers and one source
bed) was constructed to represent the regional flow system
in the Upper Cretaceous aquifer and adjacent
hydrogeologic units. The relation between geologic units
of the natural system, hydrogeologic units of the concep-
tual model, and equivalent units in the ground-water flow
model is shown in figure 25.

Layer 1, the top layer of the model, represents a
hydrologic boundary in the form of a source-sink term that
allows movement and evaluation of recharge or discharge
across the upper surface of the active model. Layers 2, 3,
and 4 are simulated with a matrix that represents the
hydraulic properties of the geologic units modeled.

Aquifer layers of the model are separated by matrices
called confining units in this report. Geologically, the con-
fining units are not present at all locations throughout the
area of the model; they are absent in the western part of the
mode! area, where the Ozark-St. Francois aquifer out-
crops, and where the Ozark-St. Francois and Upper
Cretaceous aquifers subcrop beneath the alluvium. Nodes
in the model representing areas where the confining units
are absent are modeled as high leakance, with aquifer
directly overlying aquifer. The quantitative value used for
these high leakance nodes is approximated as an average
vertical hydraulic conductivity of the aquifers divided by an
average distance between the centers of the aquifers,

At locations where the confining units exist, the con-
ductance between aquifer layers represents the leakance of
the confining units. The leakance matrix for the Midway
confining unit (confining unit B) was determined by divid-
ing an areally uniform vertical hydraulic conductivity for
the layer by the average thickness of the unit within each
grid block (a 25 mi’ area). The leakance matrices for the
upper confining unit (confining unit A) and the
Cretaceous-Paleozoic confining unit (confining unit C)
were determined by separating the confining units into
zones based on hydrogeologic characteristics to be dis-
cussed later. Each zone was assigned a specific leakance.
Horizontal flow in confining units is not calculated.

Because of the complex relation of geologic boun-
daries to model boundaries and because of fluxes near
potential discharge areas in the western part of the study
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area, a more detailed section view is given in figure 26. In
addition to showing the horizontal and vertical boundaries
across which flux is evaluated, the section view shows the
multi-unit geologic makeup of model layers 2 and 3. Layer
2 consists of the top 100 feet of the Cambrian and Or-
dovician carbonate rocks in the Salem Plateau, the alluvium
west of the subcrop of the lower Wilcox aquifer, and the
lower Wilcox aquifer. Layer 3 consists of the Upper
Cretaceous aquifer and of Cambrian and Ordovician car-
bonate rocks that occur from 100 to 400 feet below land sur-
face in the Salem Plateau area.

Aquifer layer 4 represents most of the Cambrian and
Ordovician carbonate rock section (table I; figs. 25 and 26).
Aquifer layer 4 includes the St. Francois aquifer, the St.
Francois confining layer, and the Ozark aquifer, except for
the top 400 feet which is included in layers 3 and 2 (Imes,
1988b, 1988c). The two aquifers and one confining unit
have been combined into one model layer, because under
the Mississippi embayment these rocks are thought to func-
tion as a single aquifer (J.L. Imes, written commun., 1985).

MODEL REQUIREMENTS

The digital model requires that the studied area be
divided into discrete subareas (blocks), and that a finite-
difference approximation of the continuous differential
equation be solved for each block for specified boundary
conditions, aquifer hydraulic properties, and pumping
stresses. Anorthogonal grid defines the discretization and
arrangement of blocks in the model.

Finite-Difference Grid

A 48 row by 52 column grid was used to divide the
study area (fig. 18). Grid spacing is equidemensional,
resulting in blocks 5 miles on a side. The grid is coincident
with the regional Gulf Coast RASA grid, and with all Gulf
Coast RASA subproject grids. This coincidence facilitates
interchange of fluxes and heads at common boundaries be-
tween the various models. Because the blocks in the
regional RASA grid spacing are 10 miles on each side, each
regional grid block corresponds to four model grid blocks
in the Upper Cretaceous model (fig. 18).

Alignment of the regional grid, which was oriented to
minimize the number of inactive nodes, originally dictated
the alignment of the model grid of the Upper Cretaceous
aquifer. Transmissivity was not used to determine grid
alignment, because on a regional scale there was no
evidence of anisotropic transmissivity (Hayes Grubb, U.S.
Geological Survey, oral commun., 1986). An evaluation of
an aquifer test of the Eocene Memphis Sand of the
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Claiborne Group at Mempbhis using tensor analysis (Ran-
dolph and others, 1985) was conducted after the grid was
aligned. This evaluation indicated a slight anisotropy (2.3
to 1) with principal axes oriented within 10° of the grid of
the Upper Cretaceous aquifer model (Morris Maslia, U.S.
Geological Survey, written commun., 1985).

Boundary Conditions and Discretized
Hydrogeology

The lowest boundary of the model (base of aquifer
layer 4) consists of impermeable Precambrian crystalline
rocks (fig. 25) and is simulated as a no-flow boundary
throughout the study area. The northwestern boundary of
aquifer layer 4 was initially modeled using a constant-head
source to simulate recharge from the outcrop areas near
the St. Francois Mountains. Water levels in the
westernmost blocks where the Paleozoic rocks outcrop
were set at constant values to simulate pre-development
(prior to any pumping) of the aquifer layer (fig. 27). This
boundary representation was later modified to allow input
of specified recharge provided by calculations from the
Central Midwest RASA model (J.L. Imes, written
commun., 1985). Figure 27 shows the no-flow and constant
head boundaries.

The castern boundary of aquifer layer 4 was simulated
as a constant-head boundary representing the Tennessee
River. An alternative representation of this boundary was
tested, using vertical leakage through the confining beds to
a constant head boundary in layer 1. Preliminary results
were inconclusive because of few data with which to check.
The southern one third of the western boundary, the entire
southern boundary, the northern boundary, and the
southern one-half of the eastern boundary are simulated as
no-flow boundaries (fig. 27). Calculated heads within 50
miles of these boundaries are not used in model interpreta-
tion.

Confining unit C represents the Cretaceous-
Paleozoic confining unit, the upper boundary to aquifer
layer 4. Geologically, confining unit C is not present in the
western part of the study area. The area where the confin-
ing unit is absent is simulated in the model as a zone of high
leakance, representing aquifers in direct contact with one
another. Model representation of confining unit C (fig. 28)
is based primarily on the geologic interpretations of
Schwalb (1982). The confining unit was separated into
zones of similar geology. A single leakance value was cal-
culated for each zone, based on dividing the average verti-
cal hydraulic conductivity of the dominant lithology
(Freeze and Cherry, 1979) by the average thickness of the
confining unit within the zone (Schwalb, 1982). Variations
from the geology of Schwalb (1982) occur in zones 8 and 9.
These high leakance zones represent fracturing in the con-
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fining unit above the western margin of the rift and fractur-
ing in the confining unit above the Pascola arch-Bloomfield
pluton.

Zone 1 (fig. 28) is modeled as a probable moderate
leakance area corresponding to an eroded structural high.
In zone 1, the Ozark-St. Francois aquifer is eroded, and less
permeable units of the St. Francois confining layer (Imes,
1988¢) are directly overlain by the Upper Cretaceous
aquifer. Zone 2 is modeled as a zone with high to moderate
leakance potential. Rocks of the Ozark-St. Francois
aquifer are directly overlain by the Upper Cretaceous
aquifer. Zone 3 is a low leakance zone representing a thick
sequence of Ordovician through Devonian and possibly
pre-McNairy Cretaceous sedimentary rocks that separate
the Ozark-St. Francois aquifer from the Upper Cretaceous
aquifer. Zone 4 has very low leakance and includes the
units of zone 3, as well as thick fine-grained sedimentary
rocks of Mississippian and Pennsylvanian age. The out-
crop area of the Ozark-St. Francois aquifer (zone 5) is
modeled as a zone of high leakance to simulate hydrologic
interaction between the aquifer and the water table. The
outcrop of post-Middle Ordovician rocks north and south
of the Salem Plateau (zone 6) is characterized by a thick se-
quence of fine-grained rocks; these are simulated as having
low leakance.

Aquifer layer 3 contains the Upper Cretaceous
aquifer (fig. 29) and a thin part of the Ordovician and
Cambrian rocks (fig. 26). A no-flow boundary is simulated
around aquifer layer 3, except for constant heads that simu-
late recharge along the western margin (zone 6). The out-
crop area of the Upper Cretaceous aquifer along the
eastern and northern margins of the embayment is
simulated as zone 4; subcrop is zone 5. Active nodes rep-
resenting the confined Upper Cretaceous aquifer are zone
1. Nodes with zero transmissivity are zone 2, where verti-
cal flux passes between deeper and shallower layers, but
does not move laterally. Zone 3 is inactive.

Confining unit B, the Midway confining unit, is of
major concern in this study. Major zones in confining unit
B (fig. 30) and how each is simulated in the model include
the following: the area of the Ozark-St. Francois aquifer
outcrop (zone 1), where no confining bed separates dif-
ferent parts of the Ozark-St. Francois aquifer is modeled
as a high leakance zone; the outcrop of the post Middle
Ordovician Paleozoic formations (zone 2), modeled as a
low leakance zone that has zero transmissivity in the under-
lying Upper Cretaceous aquifer; the subcrop of the Upper
Cretaceous aquifer (zone 3), modeled as high leakance to
represent direct hydraulic contact with the overlying
alluvium; the outcrop of the Upper Cretaceous aquifer
(zone 4), modeled as high leakance to represent recharge;
the zone overlying the western margin of the rift in Mis-

souriand Arkansas (zone 5), modeled as variable leakance;
the zone of thick clays of the Midway Group (zone 6),
modeled as very low leakance; and a zone beyond the extent
of the Midway Group (zone 7), modeled as high leakance
in this confining layer to pass recharge to deeper forma-
tions. Zones 1, 3, 4, and 7 simulate a geologic condition
where the confining bed is actually absent. The large con-
ductance of these nodes connects nodes in lower layers to
constant head nodes in layer 1.

Agquifer layer 2 contains parts of three formations, the
top 100 feet of the outcropping Cambrian and Ordovician
carbonate rocks, the alluvium west of the subcrop with the
lower part of the Wilcox Group, and the lower Wilcox
aquifer throughout its area of occurrence (fig. 26).
Aquifer layer 2 is not an active layer in the sense of aquifer
layers 3 and 4. Heads in this aquifer are specified as initial
conditions in response to 1980 pumping, and they are iden-
tical to heads in layer 1. The boundaries simulated in
aquifer layer 2 are identical to those of aquifer layer 3,
except for constant head along the southern boundary (fig.
31). Specific zones in aquifer layer 2 include the outcrop
area of the QOzark-St. Francois aquifer (zone 6), the out-
crop area of the alluvium (zone 4), a subcrop zone that has
average properties of the alluvium over the Wilcox Group
(zone 2), a zone of confined flow for the lower Wilcox
aquifer (zone 3), the outcrop area of the Wilcox Group
(zone 1), and a fairly wide zone of inactive nodes around
the northern and eastern margins of the model (zone 5).

Confining unit A (not shown) has uniformly high
leakance except for the arca represented as confined in the
lower Wilcox aquifer in figure 31. For the confined lower
Wilcox aquifer, leakance varies from moderate to low.

Aquifer layer 1 (not shown) is represented by a layer
of constant head nodes throughout the area modeled. The
heads include confined heads in the lower Wilcox aquifer
(1980), showing pumping effects, and water-table heads
(1980) for the alluvium, the Ozark-St. Francois, Upper
Cretaceous, and the lower Wilcox aquifers where these
aquifers crop out (fig. 31). The heads represent a source
layer which affects recharge to and discharge from all deep
layers; without aquifer layer 1, recharge and discharge flux
in aquifer layer 2 could not be evaluated.

Aquifer Hydraulic Properties

Preliminary model calibration was accomplished
using transmissivity calculated from one uniform value of
hydraulic conductivity for each of the various aquifers
(fig. 32). Where thickness data from the GC RASA
geophysical log file were available, the hydraulic conduc-
tivity value for each aquifer was multiplied by aquifer
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thickness to define transmissivity. Transmissivity for
~ aquifer layers 2 (alluvium and lower Wilcox) and 3 (Upper
Cretaceous) was calculated using this method. Because
few thickness data were available, transmissivity for aquifer
layer 4 was input as a single uniform value.

Hydraulic conductivities were initially selected based
on the results of aquifer tests (tables 1 and 3 and fig. 32).
These conductivities were adjusted during calibration, and
the following values of hydraulic conductivity provided the
best match of simulated and observed heads:

Alluvium aquifer 100 fi/d
Lower Wilcox aquifer 80 ft/d
McNairy-Nacatoch aquifer 50 ft/d
Ozark-St. Francois aquifer 0.9 fi/d

Ranges of values of these input parameters are shown for
the model of the Upper Cretaceous aquifer, for the Central
Midwest (CM) RASA model, the Southeast Coastal Plain
(SE) RASA model, and the Mississippi embayment
aquifer-system RASA model, the Mississippi River alluvial
aquifer RASA model, and the Gulf Coast Regional RASA
model (table 5).

Stresses

Model development involved evaluating both
unstressed (prepumping) and stressed (pumping) condi-
tions. Pumping stresses for point source and estimated
domestic and stock use of water were located by grid block
for the Ozark-St. Francois aquifer and the Upper
Cretaceous aquifer (fig. 18). About 37 ft’/s (24 Mgal/d)
were pumped from these aquifers in the study area in 1980,
This pumpage, most of which was concentrated in
southeastern Missouri, was assigned to appropriate grid
blocks (D.J. Ackerman, written commun., 1986). Inas-
much as observed 1980 heads from the lower Wilcox aquifer
were input as starting heads, the effect of pumpage was
included, and no pumpage was simulated from this layer.

PRELIMINARY MODEL DEVELOPMENT

Model development requires that model simulations
be tested against actual hydrogeologic conditions. The
testing provides a statistical level of confidence and
documentation for the simulated results, and it can provide
additional understanding of the natural system.

Calibration

Calibration involved matching observed heads with
calculated heads for 1980 conditions. Calibration was
accomplished by modifying (1) a sequence of selected
boundary configurations, (2) areally uniform hydraulic

47

conductivity for each individual aquifer layer and confin-

-ing unit, and (3) pumping configurations.

The conditions in 1980 are assumed to approximate
steady-state. This assumption is valid for all areas of the
aquifer except the limited area of major pumping from the
Upper Cretaceous aquifer (fig. 18), where sparse data sug-
gest there may be a 10 to 30 year decline in water levels of
less than a foot per year. The effect of the assumption that
1980 conditions represent steady state was tested by includ-
ing storage as a component of the model, and the resulting
heads in the area of interest generally showed less than 5
feet of change.

As a preliminary approximation, 1980 conditions rep-
resent the best available data. Testing of transient condi-
tions will be part of the modeling effort to be described in
later reports.

Difference between simulated and actual heads varied
considerably as changes were made in boundary conditions.
For example, by changing the northwestern boundary of the
Ozark-St. Francois aquifer from constant head to constant
flux and using a broad range of flux estimates from the CM
RASA (J.L. Imes, written commun., 1986), head differen-
ces of greater than 100 feet from the best simulation were
observed. The final boundary representations shown (figs.
27 to 31) match the known hydrogeologic boundaries as
defined by the GC RASA geophysical log data base.

A second method of calibration involved adjusting the
hydraulic conductivity. A representative value was tested
for each zone of similar geology within a layer. Depending
on whether the layer was an aquifer or a confining unit, the
hydraulic conductivity was either multiplied or divided by
the known thickness of the layer. This calibration method
allows the effects of known variations to be assessed with a
minimum of modeler bias in parameter selection.

A further constraint of the calibration was that the
fluxes between different model layers be "hydrologically
reasonable.” Fluxes between units in this regional study
cannot be measured directly; however, order of magnitude
interaquifer exchanges can be approximated based on
literature values from similar geologic settings and calcula-
tions from other models. These flux estimates were used as
a basis for comparison, and large differences between
model calculated fluxes or from fluxes calculated by other
RASA models (table 6), may require justification or
reevaluation of the conceptual model.

Heads calculated by the calibrated model are com-
pared to measured heads for the northwestern part of the
Ozark-St. Francois aquifer and for the Upper Cretaceous
aquifer in figures 33 and 34. The observed heads are
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reasonably matched by calibrated preliminary model cal-
culations. For the Ozark-St. Francois aquifer, the root
mean square error (described in the following section on
Sensitivity Analysis) was 25 feet for 14 comparison points
having both calculated and observed heads. Eight of 14 of
the comparison points had calculated heads within 20 feet
of observed. The maximum variation between calculated
and observed heads was 53 feet. These values are within an
acceptable limit considering the steep gradients in the
western part of the area, the large area of the grid blocks
compared with the point location of observed wells, and the
use of extrapolated data. Water-level data for years other
than 1980 were used for some observed match points
because water-level data in the Ozark-St. Francois aquifer
were sparse. For the Upper Cretaceous aquifer, the root-
mean square error was 9.7 feet for the 29 comparison points
having both model calculated and observed heads. Twenty-
one of 29 of the comparison points had calculated heads
within 0 feet of observed. The maximum variation between
calculated and observed heads in the Upper Cretaceous
aquifer was 26 feet. These values are also considered to be
within acceptible limits based on the same rationale as
given for the Ozark-St. Francois aquifer.

Sensitivity Analysis

The response of the model to adjustments in
(1) pumping from aquifer layer 4 (Ozark-St. Francois
aquifer); (2) transmissivity of aquifer layer 4; (3) leakance
of confining unit C (Cretaceous-Paleozoic confining unit);
(4) pumping from aquifer layer 3 (Upper Cretaceous
aquifer); (5) transmissivity of aquifer layer 3; and
(6) leakance of confining unit B (Midway confining unit)
was evaluated by sensitivity analysis. The sensitivity of layer
2 was not evaluated because heads representing 1980 con-
ditions in layer 2 were input as initial conditions in layers 2
and 1; the heads in layer 2 were maintained by high conduc-
tance in confining unit A. Heads in aquifer layer 1 were
held constant. The adjustment of each variable (items 1
through 6 above) was uniform over the entire model area
while all other variables were held constant. The adjust-
ment of each variable was 2, 5, and 10 times larger, and I/2,
1/5, and /jo smaller than values used in the calibrated model.

The root mean square error (RMSE) was calculated
as a measure of the difference between model calculated
heads and observed heads. The root mean square error is
described by the equation:

n
RMSE ﬂ/ S (HS-H%)
i=1
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where
RMSE is the root mean square error;
HE is calculated head, in feet, at a model node;
HP is observed head, in feet;
n is the number of comparison points;
i is a subscript that defines any specific compar-
ison point, varying between 1 and n.

RMSE was plotted for each adjustment in a variable to dis-
play the range of sensitivity.

The results of the sensitivity analysis for aquifer layer
4 (Ozark-St. Francois aquifer) and aquifer layer 3 (Upper
Cretaceous aquifer) are shown in figures 35 and 36, respec-
tively. RMSE for all values in the original model was 25
feet for the Ozark-St. Francois aquifer, and 9.7 feet for the
Upper Cretaceous aquifer. The RMSE was considered
sensitive to changes in variable values when the RMSE of
sensitivity tests exceeded the RMSE of the original model
by 5 or more feet. For the Ozark-St. Francois aquifer, a
RMSE greater than 30 feet was considered sensitive; for
the Upper Cretaceous aquifer, a RMSE greater than about
15 feet was considered sensitive. Simulated ground-water
flow to streams was not used as an indicator of sensitivity
because the amount of ground-water seepage (o streams is
unknown in the study area.

Heads in aquifer layer 4 (Ozark-St. Francois aquifer)
are relatively insensitive to the transmissivity of aquifer
layer 4 and the leakance of confining unit C (Cretaceous-
Paleozoic confining unit) (fig.35). The model was sensitive
to pumping from aquifer layer 4 at rates about 5 times
greater than the value used in the calibrated model. Lack
of sensitivity of transmissivity is probably due to the model
design, which incorporates constant heads around the mar-
gins. Such a representation rigidly defines a regional
gradient and, in the case of slight to moderate pumping,
which characterizes the Ozark-St. Francois aquifer, the ef-
fect of transmissivity on heads in the system is relatively
insignificant.

For this preliminary model, calculated heads in
aquifer layer 3 were found to be most sensitive to pumpmg
(figure 36). An order-of-magnitude increase in pumping
from the input of the calibrated model resulted in RMSE
increases of more than 40 feet. Calculated heads, however,
were relatively insensitive to decreases in pumping.
Reduction in original pumping stresses by as much as 0.1
resulted in increased RMSE values of only 2 feet. The
model was sensitive to transmissivity of aquifer layer 3 and
leakance of confining umt B (Midway confining unit) at
parameter values less than '/ and greater than 3 times the
calibrated values.
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REGIONAL CONTRIBUTIONS TO
THE HYDROLOGIC BUDGET

Calculations with the model allow a quantitative
evaluation of flux across important hydrogeologic boun-
daries, as well as a determination of regional contributions
to the hydrologic budget. Fluxes calculated for the main
components of each layer are shown in an idealized cross
section (fig. 37). The values are based on simulation with
the calibrated models.

Preliminary results show that about 40 ft%/s are added
to the Ozark-St. Francois aquifer system from precipita-
tion along the northwest boundary of the model. The
model calculates that about 75 percent of this flux moves
upward and discharges to rivers and springs in the outcrop
area.

Approximately 28 ft%/s of water moves into the Upper
Cretaceous aquifer, either vertically through the
Cretaceous-Paleozoic confining unit (L6), the rift zone
(L5), or laterally through the geologic contact (F3) with the
upper Ozark-St. Francois aquifer (fig. 37).

Deeprecharge tothe Upper Cretaceous aquifer is cal-
culated from the outcrop nodes to be about 0.3 in/yr. This
is determined by dlvxdmg the summauon of flux across the
boundary (465 _ ft°/s to 380 ft %) (fig. 37) by the area (146
blocks x 25 mx'/block) (fig. 29), and converting to inches
per year. The flux across the Midway confining unit is
greatly influenced by representation of the western rift
boundary. For the condition of h:gh leakage alon§ the rift,
net flux across the Midway is 52 i /s, with 49 ft”/s in the
vicinity of the rift boundary. At the subcrop of the Upper
Cretaceous aquifer (L2), the model calculates a net flux up-
ward of about 16 ft%/s. For conditions of low leakage along
the western rift boundary, the major area of leakage is
shifted to a more diffuse zone located between the rift and
the subcrop.

The lower Wilcox aquifer receives approximately as
much recharge as the Upper Cretaceous aquifer, about 0.3
in/yr, but its areal distribution of discharge and discharge
budget are different from the underlying Upper
Cretaceous aquifer. Unlike the Upper Cretaceous, the
lower Wilcox aquifer appears to exchange much more
water by vertical leakage (74 ft3/s) lhan to flow across the
subcrop with the alluvium (F2) (13 ft s ). This is consis-
tent with the potentiometric maps of the Upper Cretaceous
and lower Wilcox aquifers (figs. 10 and 11) and with the
known geology of the upper confining layers of each
aquifer.

Results of the preliminary calibration indicated loca-
tions and magnitudes of discharge from the Ozark-St.
Francois (fig. 38) and the Upper Cretaceous aquifers (fig.
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39). The calibrated model indicates that although a zone
of greater leakance overlies the western margin of the Mis-
sissippi embayment rift in the discharge area, order of mag-
nitude flux variations by grid block are discontinuous and
more diffuse than expected. This suggests that the geology
and hydrology are more complex than originally envisioned
in the conceptual model.

SUMMARY

The Upper Cretaceous aquifer of Late Cretaceous
age, a regionally extensive but relatively little used aquifer
in the northern Mississippi embayment, was studied as part
of the Gulf Coast Regional Aquifer- System Analysis.
Although data from the Upper Cretaceous aquifer are rela-
tively sparse, this study improves understanding of the
regional aquifer system by providing (1) a description of
the Upper Cretaceous and adjacent aquifers, (2) a
documentation of the development and calibration of a
preliminary multilayer model used to simulate flow within
this sequence of aquifers, and (3) a quantitative evaluation
of the various aquifer-system components to the regional
hydrologic budget.

On a regional scale, the ground-water system of the
northern Mississippi embayment is composed of a series of
nonindurated granular sediments that overlie a thick
sequence of Paleozoic carbonate rocks, sandstones, and
shales. Precambrian crystalline rocks form both the struc-
tural and the hydrogeologic basement throughout the
northern embayment.

The units that comprise the hydrogeologic framework
of the study are:

Alluvium-lower Wilcox aquifer
Midway confining unit

Upper Cretaceous aquifer
Cretaceous-Paleozoic confining unit
Ozark-St. Francois aquifer

The Ozark-St. Francois aquifer is composed of several
thousand feet of indurated Cambrian and Lower Or-
dovician dolomite, sandstone, and shale that directly over-
lic the impermeable Precambrian basement. The
Ozark-St. Francois is overlain by a highly diverse sequence
of rocks that varies in thickness from a few feet to more than
11,000 feet. This diverse sequence of rocks, which includes
shale, limestone, sandstone, clay, and marl, is called the
Cretaceous-Paleozoic confining unit; the sequence in-
cludes rocks from Middle Ordovician to Late Cretaceous
in age. The Upper Cretaceous aquifer ranges in thickness
from a few to about 500 feet. The Upper Cretaceous
aquifer is composed of glauconitic, clayey sand interbedded
with clay and chalk, and includes the McNairy Sand in Mis-
souri, Tennessee, and Kentucky; the Nacatoch Sand in
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Arkansas; and the Ripley Formation (including the Mc-
Nairy Sand Member) in Tennessee and Mississippi. The
Midway confining unit directly overlies the Upper
Cretaceous aquifer. The Midway confining unit consists
primarily of fine-grained sediments (predominantly clay)
that range in thickness from a few feet to about 1,200 feet.

The alluvium-lower Wilcox aquifer overlies the Mid-
way confining unit. The alluvium-lower Wilcox is com-
posed of sand and clay of the Paleocene and Eocene Wilcox
Group, and sand and gravel of the Mississippi River alluvial
aquifer west of its subcrop with the lower Wilcox aquifer.
Thicknesses of the lower Wilcox sand and alluvium, respec-
tively, range from a few feet to more than 600 feet, and from
a few feet to about 250 feet.

The Mississippi embayment rift is one of the dominant
tectonic features of the northern Mississippi embayment.
As a zone of crustal weakness, the rift is thought to be a
potential propagator of faults into the overlying younger
rocks and sediments. The rift is a potential hydrologic
boundary.

Water levels in each of the aquifers were used to
estimate regional flow directions. Locally, flow in outcrop
areas of all aquifers is toward streams; regionally, flow in
all aquifers is toward the Mississippi embayment, which is
topographically lower than the recharge areas.

Water-quality data were helpful in describing
hydrogeologic boundaries. Specifically, zones of
hydrothermal and anomalously warm water that occur in
the Upper Cretaceous aquifer on the western and eastern
sides, respectively, of the western margin of the Mississippi
embayment rift are believed to be an indicator of recharge
from a deeper aquifer. Anomalous chloride and dissolved
solids concentrations suggest other areas where inter-
aquifer leakage may be occurring,.

Aquifer tests were used to estimate the range of trans-
missivity, hydraulic conductivity, and storage coefficients
of all aquifers except the Ozark-St. Francois. Because no
aquifer tests have been conducted in the Ozark-St. Fran-
cois aquifer within the study area, average hydraulic con-
ductivity (0.9 ft/d) was extrapolated from tests made at
other locations. Hydraulic conductivity was the main
parameter of interest: for the Upper Cretaceous aquifer,
hydraulic conductivity was reported to range from 10 to 75
ft/d; for the lower Wilcox aquifer, hydraulic conductivity
was reported to range from 25 to 470 ft/d, and for the
alluvium, hydraulic conductivity was reported to range
from 60 to 450 ft/d. On the basis of values reported in the
literature, the Midway confining unit was assumed to have
a vertical hydraulic conductivity of 10 fu/d, and the
Cretaceous-Paleozoic confining unit was assumed to have
a vertical hydraulic conductivity of 10” ft/d where the
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dominant lithology was limestone and dolomite, and 107
ft/d where the dominant lithology was shale.

Pumping from the Ozark-St. Francois aquifer was
about 3 million gallons per day in 1980 in the study area;
pumping from the Upper Cretaceous aquifer for the same
time period was about 21 million gallons per day. Pumping
was concentrated in the "bootheel area” of Missouri and
near the outcrop areas in Kentucky and Tennessee.

As a first step in modeling the Upper Cretaceous
aquifer, all known facts were incorporated into a concep-
tual model. The conceptual model includes pertinent
boundaries, initial conditions, hydraulic characteristics,
and stresses, for each hydrogeologic unit of interest.

A four-layer finite difference numerical model was
constructed and calibrated to simulate flow in the aquifers
defined by the conceptual model. A 48 row by 52 column
grid was used to divide the study area. Grid spacing was
equidimensional, resulting in blocks 5 miles on a side. The
aquifers previously discussed formed layers 2 through 4.
Layer lis an inactive layer of constant heads that represent
shallow water levels. Shallow water levels are a major con-
trol on recharge to and discharge from the regional system,
and are used to calculate fluxes to the deeper aquifers.

Heads in confining units in the model are not actively
simulated. A matrix of leakance values is used to allow ver-
tical interchange of water between different aquifers. For
confining unit B (Midway Confining Unit), leakance was
calculated by dividing an average vertical hydraulic con-
ductivity by thickness; for confining units A (undifferen-
tiated Claiborne-upper Wilcox Confining Unit) and C
(undifferentiated Cretaceous-Paleozoic confining unit),
leakance is input by zones, which have an average vertical
hydraulic conductivity divided by an average thickness.
The model was calibrated to 1980 conditions on the assump-
tion that 1980 represented near steady-state conditions.
The model was considered to simulate observed heads
within acceptable limits. For the Ozark-St. Francois
aquifer, the root mean square error was 25 feet for 14 com-
parison points having both observed and calculated heads.
Eight of 14 of the comparison points had calculated heads
within 20 feet of observed. The maximum variation be-
tween calculated and observed heads was 53 feet. Twenty-
one of 29 of the comparison points had calculated heads
within 10 feet of observed. For the Upper Cretaceous
aquifer, the root mean square error was 9.7 feet for 29 com-
parison points having both observed and calculated heads.
The maximum variation between calculated and observed
heads in the Upper Cretaceous aquifer was 26 feet.

For the preliminary calibrated model, calculated
heads were found to be most sensitive to pumping, and least
sensitive to the hydraulic conductivity of the confining layer



that separates the aquifers. The sensitivity analysis was
based on the response of the model! to adjustments in
(1) pumping from aquifer layer 4 (Ozark-St. Francois);
(2) transmissivity of aquifer layer 4; (3) leakance of confin-
ing unit C (Cretaceous-Paleozoic confining unit);
(4) pumping from aquifer layer 3 (Upper Cretaceous
aquifer); (5) transmissivity of aquifer layer 3; and
(6) leakance of confining unit B (Midway confining unit).

The results of this preliminary modeling effort con-
tribute to abetter understanding of the regional hydrologic

budget. Model results indicate that upward leakage from
the Ozark-St. Francois aquifer to the Upper Cretaceous
aquifer is about 43 ft%/s, with about 30 ft>/s occurring west
of the western margin of the embayment. The model also
indicates that throughout most of its area of occurrence,
the Midway (Confining Unit B).is an effective confining
unit (about 3 ft¥s net leakage). In the discharge area
defined by the potentiometric map, the Upper Cretaceous
aquifer is leaking about 49 fc/s upward to the overlying
alluvium-lower Wilcox aquifer, mostly in the vicinity of the
rift zone.
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