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Hydrogeology and Ground-Water Flow in the Memphis
and Fort Pillow Aquifers in the Memphis Area,

Tennessee

By J.V. Brahana and R.E. Broshears

ABSTRACT

On the basis of known hydrogeology of
the Memphis and Fort Pillow aquifers in the
Memphis area, a three-layer, finite-difference
numerical model was constructed and calibrated
as the primary tool to refine understanding of
flow in the aquifers. The model was calibrated
and tested for accuracy in simulating measured
heads for nine periods of transient flow from
1886-1985. Testing and sensitivity analyses
indicated that the model accurately simulated
observed heads areally as well as through time.

The study indicates that the flow system
is currently dominated by the distribution of
pumping in relation to the distribution of areally
variable confining units. Current withdrawal of
about 200 million gallons per day has altered
the prepumping flow paths, and effectively cap-
tured most of the water flowing through the
aquifers. Ground-water flow is controlled by
the altitude and location of sources of recharge
and discharge, and by the hydraulic characteris-
tics of the hydrogeologic units.

Leakage between the Fort Pillow aquifer
and Memphis aquifer, and between the Mem-
phis aquifer and the water-table aquifers (allu-
vium and fluvial deposits) is a major component
of the hydrologic budget. The study indicates
that more than 50 percent of the water with-
drawn from the Memphis aquifer in 1980 is

derived from vertical leakage across confining
units, and the leakage from the shallow aquifer
(potential source of contamination) is not uni-
formly distributed. Simulated leakage was con-
centrated along the upper reaches of the Wolf
and Loosahatchie Rivers, along the upper
reaches of Nonconnah Creek, and the surficial
aquifer of the Mississippi River alluvial plain.
These simulations are supported by the geologic
and geophysical evidence suggesting relatively
thin or sandy confining units in these general
locations. Because water from surficial aquifers
1s inferior in quality and more susceptible to
contamination than water in the deeper aquifers,
high rates of leakage to the Memphis aquifer
may be cause for concern.

A significant component of flow (12 per-
cent) discharging from the Fort Pillow aquifer
was calculated as upward leakage to the Mem-
phis aquifer. This upward leakage was generally
limited to areas near major pumping centers in
the Memphis aquifer, where heads in the Mem-
phis aquifer have been drawn significantly
below heads in the Fort Pillow aquifer.
Although the Fort Pillow aquifer is not capable
of producing as much water as the Memphis
aquifer for similar conditions, it is nonetheless a
valuable resource throughout the area.

Abstract

1



INTRODUCTION

The Memphis area has a plentiful supply of
ground water suitable for most uses, but the resource
may be vulnerable to pollution. Withdrawal of nearly
200 million gallons per day (Mgal/d) ranks Memphis
second only to San Antonio, Texas, among the nation's
cities that depend solely on ground water for
municipal-water supply. For the past century, most of
the city's ground water has been pumped from the
Memphis aquifer, a Tertiary sand unit that is confined
in most of the Memphis area. Industrial, public supply,
and private withdrawals also have been made from the
Fort Pillow aquifer, but these generally have amounted
to less than 10 percent of the total pumping in the area.

There has been increasing concern that contami-
nated ground water in the area's surficial aquifers may
leak downward to the Memphis aquifer (Parks and
others, 1982; Graham and Parks, 1986; M.W. Bradley,
U.S. Geological Survey, written commun., 1987). To
assess the potential for such leakage, a cooperative
investigation was initiated in 1978 between the City of
Memphis, Memphis Light, Gas and Water Division
(MLGW) and the U.S. Geological Survey. This inves-
tigation is part of a series of studies pursuing a more
complete understanding of ground-water flow and
chemistry in the area. The main tool of this investiga-
tion is a ground-water flow model of the major aqui-
fers in the Memphis area. This flow model integrates
all available information on the geology, hydrology,
and ground-water chemistry of the region. The model
has helped to quantify the potential for leakage
between principal aquifers, and it may be a valuable
predictive tool to assist water managers in managing
ground-water resources.

Approach and Scope

The necessary approaches to this investigation
were:

1. to describe the hydrogeologic framework of the
Memphis area, with emphasis on the Memphis
aquifer and Fort Pillow aquifer;

2. to develop a conceptual model of ground-water
flow in the Memphis area;

3. to test the conceptual model through the application
of a multilayer, finite-difference ground-water flow
model.

As defined for this investigation, the Memphis
area comprises a rectangular zone of roughly

2  Hydrogeology and Ground-Water Flow in the Memphis and
Fort Pillow Aquifers in the Memphis Area, Tennessee

1,500 square miles (miz), measuring about 45 miles
from east to west by 35 miles from north to south. The
Memphis area lies near the center of the northern part
of the Mississippi embayment and includes all of
Shelby County, Tennessee, and parts of Fayette and
Tipton Counties, Tennessee, DeSoto and Marshall
Counties, Mississippi, and Crittenden and Mississippi
Counties, Arkansas (fig. 1).

The study area includes all of metropolitan
Memphis, as well as undeveloped, outlying areas
where ground water is affected by pumping from met-
ropolitan well fields. Although the study focuses on
the Memphis area, the aquifers and confining units are
regional in occurrence, and extend far beyond the
Memphis area boundaries. Descriptions and maps nec-
essary to define the regional hydrogeology are
included within this report only as an aid to under-
standing ground-water flow in the Memphis area.
Readers interested in a full discussion of the regional
hydrogeology of the Memphis and Fort Pillow aqui-
fers in the northern Mississippi embayment are
referred to Arthur and Taylor (1990).

Previous Investigations

A substantial body of literature exists on the
hydrology and hydrogeology of aquifer systems in the
Memphis area. The most recent, comprehensive stud-
ies include those of Graham and Parks (1986), who
studied the potential for leakage in the Memphis area,
and Parks and Carmichael (1989a, 1989b, 1989c¢), who
described the geology and ground-water resources of
three aquifers in West Tennessee. Extensive bibliogra-
phies of previous ground-water studies are included in
Brahana (1982a, table 2 and p. 35-40) and in Graham
and Parks (1986, p. 41-44). A series of potentiometric
maps and a description of historic water-level changes
and pumpage from the Memphis aquifer and Fort Pil-
low aquifer in the Memphis area are included in Criner
and Parks (1976). Historic water levels in individual
wells are also documented by the U.S. Geological Sur-
vey (1936-1973). The potentiometric surface in the
Memphis aquifer for 1978 and 1980 in the Memphis
area is shown in Graham (1979, 1982), and for 1985
for West Tennessee is shown in Parks and Carmichael
(1989d). The potentiometric surface of the Fort Pillow
aquifer for 1980 for the northern Mississippi embay-
ment is shown in Brahana and Mesko (1988, fig. 11),
and for 1985 for West Tennessee is shown in Parks and
Carmichael (1989, fig. 2).
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Water quality in aquifers in the Memphis area
has been summarized by Brahana and others (1987),
and data describing selected water-quality parameters
in the water-table aquifers in the Memphis area have
been described by McMaster and Parks (1988). Parks
(1973, 1974, 1975, 19770, 1978, 1979a, 1979b)
mapped the surface and shallow subsurface geology of
the Memphis metropolitan area. A summary of some
current and possible future environmental problems
related to geology and hydrology in the Memphis area
is given in a report by Parks and Lounsbury (1976).
Parks and others (1982) described the installation and
sampling of observation wells at selected waste-
disposal sites.

Analog simulation of water-level declines in the
Sparta aquifer (equivalent to the upper part of the
Memphis aquifer) in the Mississippi embayment was
summarized by Reed (1972). A two-dimensional digi-
tal flow model of the Memphis aquifer was described
by Brahana (1982a). This model was used as a predic-
tive tool to estimate aquifer response to various hypo-
thetical pumpage projections (Brahana, 1982b). Arthur
and Taylor (1990) evaluated the Memphis and Fort
Pillow aquifers (as part of the Mississippi embayment
aquifer system) in a regional study that encompassed
the northern Mississippi embayment. Fitzpatrick and
others (1989) described the geohydrologic characteris-
tics and digital model-simulated response to pumping
stresses in the Sparta aquifer (equivalent to upper part
of Memphis aquifer) in east-central Arkansas.

Reports describing the general geology and
ground-water hydrology of the Memphis area include
Fisk (1944), Schneider and Blankenship (1950),
Caplan (1954), Stearns and Armstrong (1955), Stearns
(1957), Cushing and others (1964), Krinitzsky and
Wire (1964), Moore (1965), Boswell and others (1965,
1968), Hosman and others (1968), and Cushing and
others (1970).

In addition to published reports, there is a sub-
stantial body of unpublished hydrogeologic data for
the Memphis area. These data include borehole geo-
physical logs, well-completion data, driller's records,
geologic logs, summaries of pumping tests, invento-
ries of pumpage, and individual well records and maps
of water levels. Most of these records are located in
the files of the U.S. Geological Survey, Water
Resources Division; Tennessee Division of Geology;
Tennessee Division of Water Resources; and City of
Memphis, Memphis Light, Gas and Water Division.

4  Hydrogeology and Ground-Water Flow in the Memphis and
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HYDROLOGIC SETTING

Climate and Precipitation

The Memphis metropolitan area is characterized
by a temperate climate, with a mean annual air temper-
ature of about 62° F, and abundant precipitation.
About 48 inches of precipitation per year is typical,
although annual amounts recorded have ranged from
31 to 77 inches.

The distribution of rainfall is nonuniform in
space and time. Mean annual precipitation increases
approximately 4 inches per year from west to east
across the Mississippi embayment (Cushing and oth-
ers, 1970). The driest part of the year is late summer
and fall, and the wettest is late winter.

Topography and Drainage

Land-surface altitudes in the Memphis area
range from about 200 feet above sea level on the flat
alluvial plain of the Mississippi River to about
400 feet above sea level in the upland hills of eastern
Shelby County. A bluff 50 to 150 feet high separates
the alluvial plain from the upland. Other than the bluff,
local relief seldom exceeds 40 feet.

The Mississippi River dominates surface-water
flow in the area. From the upland in the east, it
receives drainage from three main tributary streams—
Nonconnah Creek, Wolf River, and Loosahatchie
River. Along most reaches, these three tributaries flow
throughout the year. One notable exception is Noncon-
nah Creek upstream from the mouth of Johns Creek.
Since the 1950's, Nonconnah Creek has been dry in its
upstream reaches for short periods during the dry sea-
son from July to October (Criner and others, 1964).

Hydrogeologic Framework

The Memphis area is located near the axis of the
Mississippi embayment, a regional downwarped
trough of Paleozoic rock that has been filled with more
than 3,000 feet of unconsolidated sediments (Criner
and Parks, 1976). These sediments include unce-
mented sand, clay, silt, chalk, gravel, and lignite. On a
regional scale, the sediments form a sequence of
nearly parallel, sheetlike layers of similar lithology.
The layers reflect the trough-like shape of the Paleo-
zoic strata (fig. 2).
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On a local scale, however, there are complex lat-
eral and vertical gradations in the lithology of each
layer. Of particular interest to this study are variations
in thickness and sand percentage of the major clay lay-
ers. These confining clay units control the ground-
water interchange between the sand layers that form
the major aquifers. Zones where the confining clays
are thin or sandy are potential sites of high leakage,
and the most likely pathways for pollutant migration
(Graham and Parks, 1986).

The structural axis of the northern Mississippi
embayment is approximately coincident with the Mis-
sissippi River, passing south-southwest through the
western part of the study area in eastern Crittenden
County, Ark. (fig. 1). The sedimentary rock layers
which comprise the embayment gently dip 10 to
35 feet per mile from both the west and east toward the
axis of the embayment (fig. 2). These layers thicken to
the south-southwest (fig. 3).

The thickness, lithology, and hydrologic signifi-
cance of each stratigraphic unit in the Memphis area
are described briefly in table 1. Five of these units rep-
resent major water-bearing zones: the alluvium, the
surficial fluvial deposits, the Memphis Sand, the Fort
Pillow Sand, and the Ripley Formation and McNairy
Sand. With the exception of the alluvium and fluvial
deposits, water-bearing zones are confined by clay
layers over much of the Memphis area. Reported
ground-water conditions and hydraulic characteristics
of selected units that are the focus of this report have
been generalized in table 2.

Water-Table Aquifers

Water-table aquifers in the Memphis area con-
sist of the alluvium and fluvial deposits which are
mostly unconfined (Graham and Parks, 1986, p. 5).
These aquifers outcrop throughout the study area, and
generally occur at shallow depths (table 2).

An interpretive water-table map of the alluvium
and fluvial deposits was constructed for "average,"
steady-state conditions, designated 1980 (fig. 4). The
map was based on the most complete set of water-level
data available (Graham and Parks, 1986), supple-
mented by historic water-levels (Wells, 1933), stream
stages, and where no other data were available, esti-
mates based on topographic maps, land surface eleva-
tions, and extrapolated depths to water (Brahana and
Mesko, 1988).

6 Hydrogeology and Ground-Water Flow in the Memphis and
Fort Pillow Aquifers in the Memphis Area, Tennessee

Alluvium

Alluvium occurs at land surface in the stream
valleys of the study area. The alluvium is not a major
ground-water source in the Memphis area, even
though it is a major water-bearing zone and can supply
large quantities of water to wells. This lack of use is
related to its limited area of occurrence and to the
hardness and high iron concentration of the water.
West, north, and south of the study area, the alluvium
of the Mississippi River alluvial plain is one of the
most productive regional aquifers in the Mississippi
embayment, supplying over a billion gallons per day
to irrigation wells in Arkansas and Mississippi
(Boswell and others, 1968; Ackerman, 1989).

The thickness of the alluvium may vary signifi-
cantly over very short distances (Krinitzsky and Wire,
1964). In the Mississippi River alluvial plain, which
lies west of the bluffs (fig. 4), the alluvium is com-
monly 100 to 175 feet thick (Boswell and others,
1968); along valleys of upland streams tributary to the
Mississippi River east of the bluffs (fig. 4), thickness
generally is less than 50 feet (Graham and Parks,
1986). Alluvium includes gravel, sand, silt, and clay;
the latter is commonly rich in organic matter. Abrupt
vertical and horizontal variations in lithology are
common.

The alluvium is separated from the Memphis
aquifer by a confining unit made up of clays and fine-
grained sediments of the Jackson Formation and
underlying upper part of the Claiborne Group, which
has variable thickness and lithology. Where this con-
fining unit is thin or sandy, leakage of ground water
from one aquifer to the other may be substantial. The
generalized thickness of this confining unit is shown
in figure 5.

Rivers dominate the hydrology of the water-
table aquifers. Local streams, as shown by figure 4, are
in direct hydraulic connection with these aquifers,
functioning as drains during much of the year. Sea-
sonal variations of water level in the alluvium are typi-
cally less than 10 feet, although variations of as much
as 15 feet have been reported (Plebuch, 1961; Broom
and Lyford, 1981; Brahana and Mesko, 1988, fig. 13).
During floods when stream stage is temporarily higher
than the water table, some recharge to the alluvium
occurs. No long-term declines in water level in the
alluvium in the Memphis area are known.

Aquifer hydraulic characteristics of the Missis-
sippi River alluvial aquifer in Arkansas and Missouri
have been reported by Halberg and Reed (1964), Albin
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and Hines (1967), Broom and Lyford (1981), and
Luckey (1985). Transmissivity ranges from 8,500 to
50,000 ft*/d, and storage coefficient for the deeper,
more confined part of the aquifer ranges from 1 x 10™
to4x 1072 (table 2). No values of aquifer hydraulic
characteristics of alluvium at other locations in the
Memphis area have been reported.

Water from the alluvium is hard and has rela-
tively high concentrations of iron, dissolved solids,
and barium (Brahana and others, 1987, tables 2 and 3).
Lenses of clay rich in organic matter and associated
geomicrobial activity are thought to be the source of
high concentrations of hydrogen sulfide, carbon diox-
ide, and iron in this formation (Wells, 1933).

Fluvial Deposits

Fluvial deposits occur at land surface in the
uplands east of the bluffs (fig. 4). Although at one time
the fluvial deposits were an important source of
domestic water, present pumpage from this formation
is negligible. Since about 1950, when the city of Mem-
phis expanded its municipal supplies to serve outlying
areas, few wells have been drilled into the fluvial
deposits. Many of the wells that existed in 1950 have
not remained operational and have been abandoned,
plugged, or destroyed. Wells in the fluvial deposits are
capable of large yields, greater than 100 gal/min, sig-
nifying a potentially large source of water in the study
area.

Fluvial deposits range in thickness from O to
100 feet (table 1). Thickness is highly variable,
because of surfaces at both top and base (Graham and
Parks, 1986). Locally, the fluvial deposits may be
absent. The lithology of fluvial deposits is primarily
sand and gravel, with minor layers of ferruginous
sandstone.

Fluvial deposits are separated from the Mem-
phis aquifer by sediments of the Jackson Formation
and the upper part of the Claiborne Group (fig. 5). As
with the alluvium, if the underlying confining unit is
thin or sandy, leakage between water-table aquifers
and the Memphis aquifer may be substantial.

Wells (1933), Graham (1982), and Graham and
Parks (1986, fig. 8) reported seasonal water-level fluc-
tuations in the fluvial deposits in the range of from 2 to
10 feet. Long-term declines of water levels within the
fluvial deposits have not been documented, except in
one location in the southern part of Sheahan well field
(fig. 4). During the period 1943 to 1955, pumpage from
the Memphis aquifer in the south Sheahan area dewa-

tered the fluvial deposits around the southern part of
the well field (Graham and Parks, 1986, figs. 7 and 8).
Before pumping began in 1933 from the Sheahan well
field, the fluvial deposits in the southern part of the
well field supplied small domestic wells, but these
wells were reported to be dry in 1985 (W.S. Parks, U.S.
Geological Survey, written commun., 1985).

No measurements of aquifer hydraulic charac-
teristics have been reported for the fluvial deposits in
the Memphis area. Based on lithology, saturated thick-
ness, and mode of occurrence, transmissivity probably
is within the range of 5,000 to 10,000 ft>/d, and stor-
age coefficient probably is in the range of 0.1 to 0.2
(Freeze and Cherry, 1979).

Water quality in the fluvial deposits is highly
variable. The distribution of dissolved-solids concen-
trations, which ranges from 76 mg/L iron to 440 mg/L,
shows more variation in these deposits than in any
other aquifer in the area (Brahana and others, 1987,
tables 2 and 3). Some of the variation may be related
to the thickness of overlying loess, which may contrib-
ute much of the dissolved solids in the aquifer (Wells,
1933). Dissolved-solids concentrations are lowest in
the east-central part of the Memphis area, between the
Loosahatchie and Wolf Rivers (Brahana and others,
1987, fig. 5).

Memphis Aquifer

The Memphis aquifer is the most productive
aquifer in the study area, providing approximately
98 percent of total pumpage (188 Mgal/d) to the city
of Memphis in 1980 (Graham, 1982). Total pumpage
since 1886 is calculated to be more than 3.2 trillion
gallons, using published pumping values (Criner and
Parks, 1976, fig. 2; Graham, 1982, table 2).

The Mempbhis aquifer is a fine- to coarse-
grained sand interbedded with layers of clay and
minor amounts of lignite. The formation occurs at
depths ranging from 0 to 600 feet (table 2) and varies
in thickness from 500 to 890 feet (table 1) based on
interpretations of geophysical logs. Generalized thick-
ness of the Memphis aquifer in the Memphis area,
based on work by Parks and Carmichael (1989a), has
been extrapolated to a slightly wider range from less
than 500 to more than 900 feet (fig. 6).

The Memphis aquifer is separated from the
underlying Fort Pillow aquifer by 140 to 310 feet of
clay of the Flour Island Formation, and from the over-
lying alluvium and terrace deposits by O to 370 feet of
clay and sandy clay of the Jackson Formation and

Hydrologic Setting 13
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upper part of the Claiborne Group. The effectiveness
of the Jackson Formation and upper part of the Clai-
borne Group as a confining unit appears to vary
because of areal differences in sand content and layer
thickness (Graham and Parks, 1986). Due to this vari-
ability, rates of leakage from surficial aquifers are spa-
tially heterogeneous.

Water levels in the Memphis aquifer are
strongly influenced by pumping (fig. 7). Water levels
within the outcrop area, which occurs in the southeast-
ern part of the Memphis area, range from about 280 to
290 feet above sea level (Graham, 1982, plate 1; Parks
and Carmichael, 1989a, fig. 7). Recharge to the Mem-
phis aquifer occurs primarily in the outcrop area
(fig. 7). The deepest pumping cone of depression in
the Memphis aquifer is less than 100 feet above sea
level; the water levels at most other pumping centers
are in the range of 120 to 170 feet above sea level
(Graham, 1982, plate 1; Parks and Carmichael, 1989a,
fig. 7). The widespread and irregular distribution of
pumping centers in the Memphis aquifer in the Mem-
phis area causes a complex flow pattern as ground
water flows inward from all directions to several
pumping centers (fig. 7).

Long-term water-level declines in the Memphis
aquifer are greater than 120 feet in the area of maxi-
mum drawdown near the Mallory well field. East of
the pumping centers near the areas of outcrop, long-
term declines have not been detected (Parks and Car-
michael, 1989a, fig. 10). Seasonal variations in water
levels are commonly less than 2 feet in areas unaf-
fected by pumping.

Data from 23 representative aquifer tests in the
Memphis aquifer (table 3; fig. 8) from throughout the
northern Mississippi embayment show transmissivity
ranges from 2,700 to 45,000 ft*/d, and storage coeffi-
cients range from 1 x 10*to 6 x 10"*. Confined condi-
tions are typical for the Memphis aquifer, except in
areas of outcrop.

The Memphis aquifer in the Memphis area
(table 2) is reported to have a range of transmissivity
from 6,700 to 54,000 ft*/d, and a range of storage
coefficients from 1 x 10 to 2 x 10! (Criner and oth-
ers, 1964; Moore, 1965; Hosman and others, 1968;
Brahana, 1982a; Arthur and Taylor, 1990; Parks and
Carmichael, 1989a, p. 27).

Ground water in the Mempbhis aquifer is a cal-
cium-magnesium-sodium bicarbonate type (Hosman
and others, 1968; Brahana and others, 1987, table 2).
In the study area, water in the Mempbhis aquifer is

characterized by a pH generally less than 7, and except
for a limited area in the northwestern part of the study
area, the dissolved-solids concentration is generally
less than 100 mg/L.

Fort Pillow Aquifer

The Fort Pillow aquifer is a major regional aqui-
fer throughout much of the northern Mississippi
embayment (Hosman and others, 1968; Arthur and
Taylor, 1990; Parks and Carmichael, 1989b). In the
Memphis study area, the Fort Pillow aquifer currently
(1989) provides water to supplement supplies at Mill-
ington, Tenn., the U.S. Naval Air Station near Milling-
ton, one industrial user in Memphis, and the Shaw
well field east of Memphis (fig. 9). The Fort Pillow
aquifer is the sole source of water for West Memplhis,
Marion, and other small towns in eastern Arkansas,
and for the town of Walls in Mississippi (fig. 9). In
1984, pumpage from the Fort Pillow aquifer averaged
about 10 Mgal/d (Graham and Parks, 1986). Although
the Fort Pillow aquifer is much deeper in the subsur-
face than the Memphis aquifer, the Fort Pillow is the
preferred aquifer in eastern Arkansas for municipal
and domestic supplies because it provides water that
requires less treatment than water from the Memphis
aquifer.

The Fort Pillow aquifer is characteristically a
fine- to medium-grained sand containing clay lenses
and minor amounts of lignite. Thickness of the aquifer
is commonly about 250 feet and ranges from about
125 to 305 feet (table 1). The generalized thickness of
the Fort Pillow aquifer in the Memphis area, based on
work of Parks and Carmichael (1989b), is shown in
figure 10.

The Fort Pillow aquifer is confined above by
140 to 310 feet of clay of the Flour Island Formation,
as defined by interpretation of geophysical logs
(table 1). The Flour Island Formation is thought to be
a leaky confining unit. Generalized thickness of the
Flour Island confining unit in the Mempbhis area is
based on the work of Graham and Parks (1986, fig. 5)
and E. Mahoney, Vanderbilt University (written com-
mun., 1989) (fig. 11). Head differences between the
Memphis aquifer and Fort Pillow aquifer (Graham and
Parks, 1986) occur as a result of pumping and are
affected by the vertical hydraulic characteristics and
thickness of the Flour Island Formation.

Water levels in the Fort Pillow aquifer (fig. 9) in
1980 were from slightly less than 160 to more than
240 feet above sea level. Water levels are highest in

Hydrologic Setting 15
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Table 3. Results of selected aquifer tests

[Data source: 1, Davis and others (1973); 2, Moore (1965); 3, Newcome (1971); 4, Hosman and others (1968); 5, Luckey (1985); 6, Broom and Lyford

(1981); 7, Albin and Hines (1967); 8, Halberg and Reed (1964); --, not reported; ft%/d, square feet per day; ft/d, feet per day]

Test no. Location Transmissivities (T)  Hydraulic Storage Water-bearing Data
(keyed to ft2/d conductivity coefficient formation source
fig. 8) (K) (ft/d) (S)
1 Mayfleld, Ky. 37,000-41,000 - 0.0001-0.0004 Memphis Sand 1
2 Union City, Tenn. 8,300 -- .0003 Memphis Sand 1
3 Tiptonville, Tenn. 18,000 -- .0003 Memphis Sand 2
4 Dresden, Tenn. 7,200 -- .0006 Memphis Sand 2
5 Kenton, Tenn. 15,000 -- -- Memphis Sand 2
6 Dyersburg, Tenn. 19,000 -- .0004 Memphis Sand 2
7 Milan, Tenn. 16,000 - -- Memphis Sand 2
8 Ripley, Tenn. 22,000 -- -- Memphis Sand 2
9 Bells, Tenn. 5,600 -- .0005 Memphis Sand 2
10 Covington, Tenn. 29,000 -- -- Memphis Sand 2
11 Stanton, Tenn. 27,000 -- .0001 Memphis Sand 2
12 Arlington, Tenn. 21,000 -- Memphis Sand 2
13 Memphis, Tenn. 41,000 -- .0014 Memphis Sand 2
14 Somerville, Tenn. 2,700 - - Memphis Sand 2
15 Memphis (McCord), Tenn. 43,000 - .0002 Memphis Sand 2
16 Memphis (Mallory), Tenn. 26,000 - Memphis Sand 2
17 Memphis, Tenn. 45,000 -- Memphis Sand 2
18 Memphis (Sheahan), Tenn. 35,000 - Memphis Sand 2
19 Memphis (Allen), Tenn. 31,000 - Memphis Sand 2
20 Memphis (Lichterman), Tenn. 27,000 - Memphis Sand 2
21 Germantown, Tenn. 23,000 -- Memphis Sand 2
22 Collierville, Tenn. 23,000 -- Memphis Sand 2
23 Clarksdale, Miss. 6,600 100 .0006 Memphis Sand 3
24 Blytheville, Ark. 21,000 - .002 Fort Pillow Sand 4
25 Memphis (Mallory), Tenn. 17,000-19,000 - .0002-.0006 Fort Pillow Sand 4
26 Madison Co., Tenn. 10,000 - .0015 Fort Pillow Sand 4
27 Marks, Miss. 2,700 29 -- Fort Pillow Sand 3
28 Stoddard Co., Mo. 15,000 -- .002 Alluvium 5
29 Stoddard Co., Mo. 20,000 -- .001 Alluvium 5
30 Wayne Co., Mo. 47,000 -- .0009 Alluvium 5
31 Butler Co., Mo. 50,000 - .001 Alluvium 5
32 Clay Co., Ark. 30,000 360 .0011 Alluvium 6
33 Jackson Co., Ark. 39,000 320 .022 Alluvium 7
34 Craighead Co., Ark. 37,000 380 .022 Alluvium 6
35 Jackson Co., Ark. 8,500 - - Alluvium 6
36 Jackson Co., Ark. 10,000 100 .007 Alluvium 6
37 Poinsett Co., Ark. 48,000 390 .001 Alluvium 6
38 St. Francis Co., Ark. 43,000 330 .04 Alluvium 8
39 Lee Co., Ark. 13,000-19,000 130 .00073 Alluvium 6
40 Monroe Co., Ark. 24,000 - -- Alluvium 6
41 Monroe Co., Ark. 32,000 290 .0004 Alluvium 6
42 Phillips Co., Ark. 34,000 247 .0001 Alluvium 6

Hydrologic Setting
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the eastern part of the area, nearest the outcrop, and
lowest in the west near the centers of pumping. The
regional movement of ground water in the Fort Pillow
aquifer is toward the axis of the Mississippi embay-
ment (Hosman and others, 1968).

The hydrograph for well Fa:R-1 (location on
fig. 9), which taps the Fort Pillow aquifer about
27 miles east of the center of pumping at Memphis,
shows a long-term decline of about 0.4 foot per year
(ft/yr) (Graham, 1982). Regionally, declines of about
1 ft/yr are not uncommon (Hosman and others, 1968;
Brahana and Mesko, 1988, fig. 13). Graham (1982)
noted that the hydrograph of well Sh:0-170 (location
on fig. 9) near the center of historic pumping in Mem-
phis showed approximately 20 feet of recovery when
all municipal (MLGW) pumpage from the Fort Pillow
aquifer ceased in the early 1970's. Seasonal variations
of nonstressed water levels are commonly less than
2 feet (Graham, 1982, fig. 4).

Hydraulic conductivity of the Fort Pillow aqui-
fer throughout its area of occurrence in the northern
Mississippi embayment is reported to range from 25 to
470 ft/d. This corresponds to a range of transmissivity
from about 670 to 85,000 ft%/d. Storage coefficient is
reported to range from 2 x 10 to 1.5 x 10°2 (Hosman
and others, 1968; Boswell, 1976; Parks and Car-
michael, 1989b). Data from aquifer tests of the Fort
Pillow aquifer (table 3, fig. 8) indicate that transmis-
sivity ranges from 2,700 to 21,000 ft?/d, and storage
coefficients range from 2 x 10 t0 2.0 x 107,

Within the Memphis area, hydraulic characteris-
tics have a narrower range (table 2) than described
previously for the entire embayment. In the Memphis
area, transmissivity of the Fort Pillow aquifer is
reported to range from 12,000 to 19,000 ft?/d, and
storage coefficient is reported to range from 1.2 x 10
t06.1x 10 (Criner and others, 1964).

Water from the Fort Pillow aquifer is a soft,
sodium bicarbonate type with a median dissolved-
solids concentration of 116 mg/L (Brahana and others,
1987). Iron concentrations range from 170 to
1,900 micrograms per liter, and pH typically is about
7.4.

McNairy-Nacatoch Aquifer

The McNairy-Nacatoch aquifer, which encom-
passes sands of the Ripley Formation, McNairy Sand
(table 1), and equivalent Upper Cretaceous Nacatoch
Sand in Arkansas, is the basal freshwater aquifer in the
study area. The McNairy-Nacatoch aquifer has not

22 Hydrogeology and Ground-Water Flow in the Memphis and
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been used as a source of water supply in Memphis, but
it has the potential for such use; north and east of the
study area, it is a major regional aquifer (Brahana and
Mesko, 1988).

The McNairy-Nacatoch aquifer ranges in thick-
ness from 360 to 570 feet and is fine- to coarse-
grained, glauconitic sand. The McNairy-Nacatoch
aquifer occurs deeper than 2,500 feet below land sur-
face at Memphis, and is confined and hydraulically
separated from the overlying Fort Pillow Sand by
about 750 feet of clays of the Midway and lower Wil-
cox Groups (table 1). These confining clays, herein
called the Midway confining unit, are a major hydro-
logic boundary in the northern Mississippi embay-
ment. Arthur and Taylor (1990) simulated the Midway
confining unit as a lower no-flow boundary. Brahana
and Mesko (1988) used flow modeling to evaluate
leakage across the Midway confining unit; they found
less than 0.5 ft3/s moved across this confining unit in
the study area.

Hydrogeologic evaluation of the McNairy-
Nacatoch aquifer in the Memphis area is based on
unpublished data from a single observation well in the
Mallory well field and on extrapolation of regional
data (Boswell and others, 1965; Davis and others,
1973; Luckey and Fuller, 1980; Edds, 1983; Brahana
and Mesko, 1988). The static water level in this well is
approximately 350 feet above sea level, which is about
100 feet above land surface (W.S. Parks, U.S. Geolog-
ical Survey, written commun., 1985). Seasonal varia-
tion in water level is about 2 feet, and no long-term
decline is evident. Head values in the McMairy-
Nacatoch aquifer are approximately 180 feet higher
than heads measured in the overlying Fort Pillow aqui-
fer (Brahana and Mesko, 1988, figs. 10 and 11).
Water-level declines in the McNairy-Nacatoch aquifer
due to pumping in the overlying Fort Pillow aquifer
have not been observed.

In addition to head differences, significant dif-
ferences in water quality exist between the McNairy-
Nacatoch aquifer and the Fort Pillow aquifer. Concen-
trations of dissolved solids, for example, are 10 times
greater in the McNairy-Nacatoch aquifer than in the
Fort Pillow aquifer.

Although the data from the McNairy-Nacatoch
aquifer are sparse, they are consistent on both a local
and regional scale. These differences in hydrology and
water chemistry strongly support the contention that
clays in the Midway confining unit (Porters Creek
Clay, Clayton Formation, and Owl Creek Formation,



table 2) act as an effective confining unit (figs. 2
and 3), and isolate the Fort Pillow aquifer from deeper
aquifers.

CONCEPTUALIZATION OF THE
GROUND-WATER FLOW SYSTEM

The hydrogeologic information presented in the
previous section forms the basis for a conceptual
model of ground-water flow in the Mempbhis area. This
conceptualization accounts for the ability of each
major unit to store and transmit water, as indicated by
its lithology and stratigraphy, and by hydrologic data.
Water-quality data are also used to lend credence to
hypotheses regarding the hydrologic isolation or com-
munication between aquifers. The conceptual model
represents a simplification of reality but preserves and
emphasizes the major elements controlling ground-
water flow in the study area. This conceptual model
can be tested quantitatively by depicting each of its
elements mathematically in a digital model of ground-
water flow. The relation between the hydrogeologic
framework, the conceptual model, and the digital
ground-water flow model is shown in figure 12.

The alluvium and fluvial deposits form the
uppermost water-table aquifers in the conceptual
model. Water levels respond seasonally to recharge,
evapotranspiration, and minor pumping, but on the
time scale of interest to this investigation, the water-
table aquifers are at steady state. The one documented
exception to steady state occurred about 1943 in the
southern area of the Sheahan well field. Conceptually,
the water-table aquifers serve the important function
of providing a potentially large reservoir of vertical
leakage to the underlying confined aquifers. Horizon-
tal flow in the water-table aquifers are defined by the
water-level map (fig. 4), but are of incidental interest
in this investigation. Recharge to the aquifer is prima-
rily from the infiltration of rainfall on the outcrop. Dis-
charge from these aquifers is primarily to streams, as
baseflow, and vertically to deeper aquifers as down-
ward leakage.

The Jackson-upper Claiborne confining unit is
conceptualized as a leaky confining unit with variable
thickness (fig. 5) and lithology. Leakance values for
this confining unit were poorly defined by aquifer test
data (table 2), and much quantitative testing of alterna-
tive leakance parameters and distributions were under-
taken. In general, pumping from the Memphis aquifer
has induced flow from the shallow water-table aqui-

fers downward to the Memphis aquifer through the
Jackson-upper Claiborne confining unit. Leakage has
increased with time as the head difference between the
water-table aquifers and the Memphis aquifer has
increased.

Flow in the Memphis aquifer has been transient
since the onset of pumping in 1886. Recharge occurs
in the outcrop area in the southeastern and eastern
parts of the study area (fig. 13), and flow is predomi-
nantly into the centers of pumping from all directions
(fig. 7). An increasing component of recharge is
derived from leakage through time from the super and
subjacent aquifers across nonhomogeneous confining
units. Pumping represents the major source of dis-
charge from the system, and the areal and temporal
variation of pumping through time is the major reason
this aquifer is not at steady state. Prior to pumping,
discharge was westward to the subcrop of the Mem-
phis aquifer beneath the alluvium, and upward beneath
the Mississippi River alluvial plain. Up dip pinch out
of the Memphis Sand defines the limit of occurrence
of the Mempbhis aquifer, and no-flow boundaries
around the eastern, northern, and western boundaries
conceptually represent ground-water conditions where
the pinch out occurs. A major effort of quantitative
testing was focused on the Memphis aquifer and its
related hydrogeology, including its transmissivity,
storage, boundary configuration, and pumping.

The Flour Island confining unit is conceptual-
ized as a confining unit that is less variable in thick-
ness (fig. 11) and less leaky than the Jackson-upper
Claiborne confining unit. Flow directions across the
Flour Island confining unit are in response to dynami-
cally changing heads in the overlying Memphis aqui-
fer and underlying Fort Pillow aquifer. Quantitative
testing of the vertical hydraulic conductivity of this
unit was a specific focus of this investigation.

Flow in the Fort Pillow aquifer has been tran-
sient since about 1924, not only in response to pump-
ing from this aquifer in the study area, but to major
regional pumping in Arkansas. Recharge to the Fort
Pillow aquifer occurs primarily in the outcrop areas
east and north of the study area. Vertical leakage pro-
vides some recharge at locations where heads in the
overlying Memphis aquifer are higher than heads in
the Fort Pillow aquifer. Discharge from the system is
primarily to a temporally and areally varying pumping
distribution particularly in Arkansas (Arthur and
Taylor, 1990). Some discharge from the Fort Pillow
aquifer occurs as horizontal flow southward, and some

Conceptualization of the Ground-Water Flow System 23
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Geology modified from R.L. Hosman, A.T. Long,
and T.W. Lambert and others, 1968, Plate 7;
and J.H. Criner and W.S. Parks, 1976, figure 4.

Figure 13. Areal geology of the northern Mississippi embayment.
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occurs as vertical flow upward. No-flow boundaries
define the up-dip limits of the Fort Pillow aquifer.
Higher leakance through the overlying Flour Island
confining unit simulates horizontal outflow to the
south, more than 50 miles from the study area. Quanti-
fication of hydraulic parameters of the Fort Pillow
aquifer (transmissivity, storage coefficient, boundary
configuration, and pumping) was the focus of quanti-
tative testing and verification.

The Midway confining unit was conceptualized
as being a no-flow boundary. The concept was tested
by Brahana and Mesko (1988) and found to be a valid
assumption. Alternative testing was not undertaken in
this study.

SIMULATION OF THE GROUND-WATER
FLOW SYSTEM

The validity of the conceptual model can be
assessed in part by constructing a digital model of the
ground-water flow system. In the digital model, differ-
ential equations depicting the physical laws governing
ground-water flow in porous media are solved to sim-
ulate the movement of water through the system. The
digital model code used in this study was developed
by McDonald and Harbaugh (1988) and has the fol-
lowing attributes:

1. Flow is simulated in a sequence of layered aquifers
separated by confining units;

2. Flow within the confining units is not simulated,
but the hydraulic effect of these units on leakage
between adjacent aquifers is taken into account;

3. A modular design facilitates hydrologic simulation
by several alternative methods; and

4. The model code has been documented and validated
in hydrogeologic settings similar to those which
occur in the study area.

For this model the study area is discretized in
space and time, and finite-difference approximations
of differential equations depicting ground-water flow
are solved at each node. The solution algorithm
employs an iterative numerical technique known as
the strongly implicit procedure—SIP (Weinstein and
others, 1969). The theory and use of the model is doc-
umented by McDonald and Harbaugh (1988).

A three-layer model (fig. 12) was constructed to
simulate the regional flow system in the Memphis and
Fort Pillow aquifers. The uppermost layer represents
the shallow aquifer. Flow within the shallow aquifer

26 Hydrogeology and Ground-Water Flow in the Memphis and
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was not simulated; rather, the layer consisted of an
array of constant-head nodes representing water levels
at steady state during any given stress period. This
layer serves as the ultimate source of recharge to the
aquifers, either by leakage, or where the Memphis and
Fort Pillow aquifers outcrop, as a source of simulated
direct recharge.

The second and third layers represent the Mem-
phis and Fort Pillow aquifers, respectively. The areal
extent of the formations that make up the Memphis
and Fort Pillow aquifers are shown in figure 13.

Layers of the model are separated by leaky con-
fining units. These units are depicted by arrays of lea-
kance terms. Leakance is calculated by dividing the
vertical hydraulic conductivity by the thickness of the
confining unit (McDonald and Harbaugh, 1988,

p. 5-11). Leakance values are high in areas where con-
fining units are thin or absent, and are low where the
units are thick and tight.

Finite-Difference Grid

The area simulated by the digital model (fig. 14)
is much larger than the Memphis study area. Evalua-
tion of the larger area allows simulation of regional
flow in the aquifer using realistic representations of
the natural boundaries of the Memphis and Fort Pillow
aquifers on the western, northern, and eastern margins
of the Mississippi embayment.

Approximately 10,000 mi of the northern Mis-
sissippi embayment is divided by a variably-spaced,
finite-difference grid of 58 rows, 44 columns, and
3 layers. The grid, in relation to the areas of outcrop
and subcrop of the Memphis and Fort Pillow aquifers,
is shown in figures 14 and 15 and is oriented to mini-
mize the number of inactive nodes. Directional proper-
ties of transmissivity were not used to determine grid
alignment, because on a regional scale there is no evi-
dence of anisotropic transmissivity in the Mississippi
embayment area (Hayes Grubb, U.S. Geological Sur-
vey, oral commun., 1986). An evaluation of an aquifer
test of the Memphis aquifer in the Memphis area using
tensor analysis (Randolph and others, 1985) was con-
ducted after the grid was aligned. This evaluation indi-
cated a slight anisotropy (2.3 to 1) with respect to
principal axes oriented within 15° of the grid of this
model (Morris Maslia, U.S. Geological Survey, writ-
ten commun., 1985).
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and T.W. Lambert and others, 1968, Plate 7;
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Figure 14. Regional digital model representation of aquifer layer 2 (Memphis aquifer) in the
northern Mississippi embayment.
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Figure 15. Regional digital model representation of aquifer layer 3 (Fort Pillow aquifer) in the
northern Mississippi embayment.
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The grid spacing varies from a minimum of
3,200 feet in the Memphis area to 100,000 feet at the
western boundary of the model. This variable spacing
provides computational efficiency while affording the
highest node density within the Mempbhis study area.
Grid block size within the Memphis study area varies
from 0.45 mi’ to slightly more than 8 mi (see fig. 25).
A grid block size of about 1 mi? is typical for the area
of intense pumping in metropolitan Mempbhis. To
reduce the potential for numerical instability during
model simulation, block dimensions varied by no

more than 1.5 times the dimensions of adjacent blocks.

Hydrologic Parameters

The flow model requires arrays of input data
that define the distribution of "average" hydrologic
parameters and conditions affecting ground-water
flow within each grid block. These parameters include
initial head distributions, boundary conditions,
hydraulic properties of the aquifers and confining
beds, and pumping stresses.

Initial Head Distributions

The initial head distributions used in the model
are general estimates of pre-development, steady-state
conditions. Data are sparse, and many data points were
extrapolated. Initial water levels for the shallow aqui-
fer (layer 1) in the Memphis area are estimated to be
the same as water levels in 1980 (fig. 4), except that
the cone of depression in the area of the south Sheahan
well field was not present under initial conditions.
Prior to pumping, water levels in the shallow aquifers
in the south Sheahan area are estimated to be about
240 feet above sea level. Initial heads for the shallow
aquifer (layer 1) in the Memphis area are based on
data from Wells (1933), Boswell and others (1968,
plate 1), Krinitzsky and Wire (1964), and Graham and
Parks (1986, fig. 7).

Initial heads in the Memphis aquifer for the
entire modeled area prior to development were derived
from Arthur and Taylor (1990), Hosman and others
(1968, plate 7), and Reed (1972). Within the Memphis
area, estimated potentiometric surface of the Memphis
aquifer prior to development in 1886 is shown in
figure 16 (Criner and Parks, 1976, fig. 4).

Initial head data for the Fort Pillow aquifer in
the modeled area are from Arthur and Taylor (1990),

Criner and Parks (1976, fig. 4), Hosman and others
(1968, plate 4), Plebuch (1961), and Schneider and
Cushing (1948). The estimated potentiometric surface
of the Fort Pillow aquifer within the Memphis area
prior to development in 1924 is shown in figure 17.

Boundary Conditions

Boundary conditions include lateral no-flow
boundaries for the Memphis and Fort Pillow aquifers,
a no-flow condition beneath the Fort Pillow aquifer,
and constant heads for the uppermost layer. To the
north, east, and west for the Memphis and Fort Pillow
aquifers, no-flow boundaries correspond with the
updip extent of respective outcrop and subcrop areas
(figs. 14 and 15). On the south, a no-flow boundary is
specified that is roughly perpendicular to water-level
contours (parallel to ground-water flow). This bound-
ary is not truly "no flow"; however, the low aquifer
transmissivity and distance from the area of interest
are assumed to cause negligible effects on simulation
in the area of interest.

Constant heads in the uppermost layer, which
corresponds to the water-table aquifer, represent long-
term, steady-state water-table altitudes. Head declines
have been documented in only one isolated area in the
shallow water-table aquifer. In this area of water-level
decline, the water levels were decreased step-wise in
sequential stress periods to reflect estimated declines
in the local water table.

Simulated flow to and from the uppermost layer
represents deep recharge and discharge from the sys-
tem. Inasmuch as the focus of the study was on the
deeper aquifers, a detailed evaluation of the hydro-
logic budget of the shallow aquifer was outside the
scope of this report. However, the calculated value of
regional recharge used in the model was hydrologi-
cally reasonable and compared favorably with values
used in Arthur and Taylor (1990) and Brahana and
Mesko (1988).

The Midway confining unit underlying the Fort
Pillow aquifer is assumed to be impermeable, and its
upper surface is specified as a "no-flow" boundary.
This assumption is supported by lithologic, chemical,
and hydrologic data (Brahana and Mesko, 1988,
figs. 8, 10, and 11, and table 2).

Simulation of the Ground-Water Flow System 29
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Aquifer Hydraulic Properties

Average storage coefficient and transmissivity
for each grid block for each aquifer were required for
model simulation. Initial estimates for these hydraulic
properties were based on pumping tests, geologic data
such as lithology and layer thickness, and estimates
and calculations made by other investigators
(Schneider and Cushing, 1948; Criner, Sun, and
Nyman, 1964; Halberg and Reed, 1964; Bell and
Nyman, 1968; Boswell and others, 1968; Hosman and
others, 1968; Cushing and others, 1970; Newcome,
1971; Reed, 1972; Parks and Carmichael, 1989a
and b). The model-derived storage coefficient and
transmissivity for the Memphis aquifer represent the
values that provided the best fit between calculated
and observed potentiometric levels (heads) (table 2
and figs. 18 and 19).

Transmissivity values determined by calibra-
tion for the Memphis aquifer in the Memphis area
ranged from less than 10,000 ft%/d to 50,000 ft?/d, with
values commonly in the range from 20,000 ft%/d to
50,000 ft*/d (fig. 19). These values agree with the
average transmissivity determined by flow-net analy-
ses (U.S. Geological Survey, unpublished data, 1985),
and are within the range of reported values (table 2).
Transmissivity decreases south of Shelby County,
which reflects the change to clay facies in the middle
part of the Memphis Sand (Hosman and others, 1968).
The best match of heads was simulated using values of
transmissivity that more closely matched those of the
Sparta aqufier (Fitzpatrick and others, 1989) than
those of the entire clay and sand unit. The storage
coefficients for the Memphis aquifer ranged from
2x 10102 x 107! (fig. 18).

Leakance values were initially determined by
dividing estimates of the vertical hydraulic conductiv-
ity of reported lithologies (U.S. Geological Survey,
unpublished data, 1984; Freeze and Cherry, 1979) by
the generalized thickness of the confining units (Gra-
ham and Parks, 1986, figs. 3-6). These values were
refined during the calibration process; areal distribu-
tion of leakance by calibration is shown in figure 20.

Leakance of the upper confining layer, the Jack-
son Formation and upper part of the Claiborne Group,
was characterized by a wide range of values, from
1x 1078 feet per day per foot to 1 x 1073 feet per day
per foot. This range reflects the diverse lithology of
the Jackson-upper Claiborne confining unit as well as
variations in thickness of the unit (fig. 5).

32 Hydrogeology and Ground-Water Flow in the Memphis and
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Most transmissivity values determined by cali-
bration for the Fort Pillow aquifer in the Mempbhis area
ranged from 6,000 to 24,000 ft%/d (fig. 21). The stor-
age coefficients used in the calibrated model for the
Fort Pillow aquifer in the Memphis area varied by less
than a factor of 2, from 5 x 107 to 1 x 103 (fig. 22),
sigifying uniformly confined conditions for the Fort
Pillow aquifer. Leakance values for the lower confin-
ing unit, the Flour Island Formation, were from
1 x 1072 feet per day per foot to 2 x 10712 feet per day
per foot (fig. 23), reflecting similar lithology and little
variation in thickness (fig. 11) of the Flour Island con-
fining unit within the Memphis area.

Pumping

Pumping from the Mempbhis aquifer began in
1886, and pumping from the Fort Pillow aquifer began
in 1924. Withdrawals from these two major aquifers
have occurred at varying rates and with a changing
areal distribution. Because of variation with time,
pumping data were introduced in the model in nine
discrete stress periods. The total modeled pumpage
and the corresponding total reported pumpage for the
nine periods are shown in figure 24. The length of the
stress periods ranged from 5 to 39 years. Seasonal
variations in pumping were not simulated. Mean
annual pumping was used to calculate average stress at
each node for each of the stress periods.

Delineation of stress periods was based on
abrupt changes in pumpage rates, variations in the
areal distribution of pumping centers, and on availabil-
ity of water-level maps. The number of well nodes
simulating pumping in the Memphis area increased
from 18 in stress period 1 to 88 in stress period 9. Total
pumping from the Memphis and Fort Pillow aquifers
increased from O in 1885 to about 190 Mgal/d in 1985.

Pumpage data for the Memphis and Fort Pillow
aquifers in the Memphis area are based on the pub-
lished reports of Criner and Parks (1976) and Graham
(1982). Areal distribution was assigned based on
extensive unpublished documents of water use
reported to the U.S. Geological Survey in Memphis
(W.S. Parks, U.S. Geological Survey, written
commun., 1984).

Model Calibration

Calibration of the flow model is the process of
adjusting the input data to produce the best match
between simulated and observed water levels. The
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model was calibrated by simulating the stress periods
from 1886-1980, a time interval during which flow in
both the Memphis and Fort Pillow aquifers was
thought to be transient. Calibration was concentrated
on stress periods from 1961 to 1980. Ground-water
conditions were transient in both the Fort Pillow and
the Mempbhis aquifers during the period 1961 to 1980,
whereas conditions in the shallow aquifer were
thought to be at steady state. It should be noted that
water-level and pumping data exist for the entire
period of development of the Memphis aquifers; the
early data are sparse, however, and are less well docu-
mented than data collected after 1960.

An enlarged view of part of the model grid in
the Memphis study area, including locations simulated
as major centers of pumping, is shown in figure 25.

The strategy for calibration was dictated by the
availability of data, and in partcular, by availability of
detailed water levels and pumping information for
specified wells. In general, there is a wealth of water-
level and pumpage data for the Memphis and Fort Pil-
low aquifers since 1960. There are many records that
are adequate for general interpretation for the period
1924 to 1960, but prior to 1924, there are few reliable
records at all.

For example, the prepumping (1886) potentio-
metric surface of the Memphis aquifer is based on four
data points (Criner and Parks, 1976), all of which were
extrapolated (fig. 16). Data points for the Fort Pillow
aquifer in the Memphis area likewise are lacking for
this period. Because of this data, no formal steady-
state calibration to these few prepumping data was
attempted, although the match of prepumping condi-
tions by removing pumping from the calibrated model
(transient) provided a reasonable match with the esti-
mated maps.

The completeness and documentation of the
data base for conditions after 1960 justified using this
data as the major tool of calibration. The transient sim-
ulation from 1961 to 1980 was completed using four
5-year pumping periods (fig. 24) of 10 time-steps
each. Seasonal fluctuations in water levels were aver-
aged to give a single annual value. The model was cal-
ibrated by minimizing the difference between model
simulated heads and measured heads (Criner and
Parks, 1976; Graham, 1982). In addition, differences
between hydrographs of observed and simulated water
levels at long-term observation wells were minimized.

Calibration was continued by adjusting the glo-
bal multiplier of transmissivity, vertical conductance,
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and storage coefficients of the Memphis and Fort Pil-
low aquifers and their confining units until the sum of
the squared differences between observed and calcu-
lated heads was minimized. Individual hydraulic data
for nodes was adjusted only if geologic or hydrologic
justification warranted such a change. Calibrated val-
ues for hydraulic properties were within the range
determined by aquifer tests (table 2) and those esti-
mated from published values of similar geologic mate-
rials (Schneider and Cushing, 1948; Criner, Sun, and
Nyman, 1964; Halberg and Reed, 1964; Bell and
Nyman, 1968; Boswell and others, 1968; Hosman and
others, 1968; Cushing and others, 1970; Newcome,
1971; Reed, 1972; Parks and Carmichael, 1989a and b).

Data collected from the period 1886 to 1960
were used to make minor adjustments to parameters
during calibration (fig. 24). These data were less well
defined than post-1960 data, and in some instances,
were essentially undocumented. As an example, major
uncertainty exists about water levels and discharge
from the Auction Avenue “tunnel,” a major source of
municipal supply that was used from about 1906 to
about 1924. The Auction Avenue “tunnel” was a col-
lector tunnel for some early wells screened in the
Memphis aquifer (Criner and Parks, 1976, p. 13).
According to Criner and Parks (1976): “.. little is
known about the tunnel (Auction Avenue “tunnel”),
but it is reported to have been constructed in a clay
layer, about 85 feet below land surface and below the
potentiometric surface of the Memphis aquifer. The
tunnel was reported to be brick-lined, about 5 feet in
diameter, and about one-quarter mile in length. Sev-
eral wells were completed along the tunnel and con-
structed so that water would flow into the tunnel
through underground outlets. Water was pumped into
the city supply system from a large well, 40 feet in
diameter, at the end of the tunnel at Auction Avenue
Station.” Inasmuch as this and other dominant with-
drawals during the period 1886-1924 were not well
defined, little emphasis was given to calibrating the
model using older data.

An important model calibration and testing cri-
terion was an error analysis of simulated and observed
water levels at the nodes representing the control
points. The root mean square error (RMSE) was used
to judge how closely the simulation matched “reality,”
which was defined by a network of observation wells
(Criner and Parks, 1976, fig. 1). The root mean square
error was calculated as a measure of the difference
between model-calculated heads and observed heads.






The root mean square error is described by the equa-
tion:

omisE - | (H —HD)?
= 'Zl -
where
RMSE is the root mean square error;
HC is calculated head, in feet, at a model node;
HY is observed head, in feet;
n is the number of comparison points;
i is a subscript that defines any specific comparison
point, varying between 1 and n.

Another criterion was the comparison made
between observed and simulated hydrographs.
Records from four wells from the Memphis aquifer
and two wells from the Fort Pillow aquifer were of
sufficient duration to provide reasonable comparisons
(fig. 28). Locations of the wells from which the com-
parisons were made are shown on figure 25. For the
most part, the observed and simulated hydrographs
agree closely.

The results of the calibration are shown in fig-
ures 26, 27, and 28. A comparison of observed data
points and simulated potentiometric surface of the
Memphis aquifer is shown in figure 26; a similar map
for the Fort Pillow aquifer is shown in figure 27.
Hydrographs of observed and simulated water levels
for selected wells are compared in figure 28.

The simulated potentiometric surfaces match
the observed data points reasonably well for both aqui-
fers at the end of the calibration period, stress period 8
(figs. 26 and 27). Likewise, interpretive maps con-
toured from the observed data (figs. 7 and 9) are simi-
lar to simulated potentiometric surfaces. Stress periods
4 through 7 simulated observed water levels as well or
better than stress period 8, but because of their similar-
ities to one another, have not been included as figures.

In addition to the areal match of water-level
data, simulated and observed water levels agree closely
through time for selected hydrographs (fig. 28). Varia-
tions are thought to be due to errors in the amount and
distribution of pumping, particularly prior to 1960,
when pumping was not accurately monitored.

Although the overall simulation of heads in the
Memphis aquifer is considered to be good, heads
matched poorly in one subarea lying near Nonconnah
Creek and the Tennessee-Mississippi border in south
Memphis (figs. 26 and 7). Many alternative represen-
tations of transmissivity, leakage, and recharge were
attempted, but their effect on heads outside the
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problem area created more problems with overall sim-

ulation than they solved with improved subarea simu-

lation. Hydrogeologic data from this area suggest that
the model does not contain all relevant hydraulic or
boundary conditions; any model application to this
subarea should be undertaken with extreme caution.

There is no doubt that this subarea is a source of sig-

nificant recharge to the Memphis aquifer. The quantity

and location of the concentrated recharge in this area
as indicated by the model may be subject to error and
the descriptions of these factors in this report should
be considered tentative at best.

It is common in reports documenting ground-
water flow models to evaluate average ground-water
discharge to streams with calculated flux from the
model. Inasmuch as the Mississippi River and its trib-
utaries dominated the ground-water flow, and inas-
much as simulation of the shallow aquifer was outside
the scope of this report, no attempt was made to
include this comparison. Discharge to streams was not
undertaken in this study because:

1. Flow in the Mississippi River was four to five
orders of magnitude greater than ground-water
inflow rates to streams, thereby masking the
inflow component;

2. Grid dimensions for the outcrop areas of the Mem-
phis aquifer and Fort Pillow aquifer were large.
Simulation of streams in these large blocks
required estimations that were poorly quantified;

3. No aquifer hydraulic tests were reported for the
fluvial deposits; and

4. Direct simulation of flow in the water-table aquifer
was outside the scope of the investigation.

Model Testing

After calibration, the model was tested to deter-
mine its ability to simulate observed water levels for
the period 1981-85 (fig. 24). For this testing phase, no
modification of boundary conditions or calibrated data
was made. In this testing phase, the flow model simu-
lated heads in the Fort Pillow aquifer and Mempbhis
aquifer within 5 feet of observed water levels for at
least 75 percent of the observation wells (this compar-
ison used interpolated values rather than root mean
square error values). These results increase confidence
that the model accurately simulates ground-water flow
in the study area. The additional criteria used to evalu-
ate the calibration phase also were used to judge the
accuracy of the simulated results for this testing phase.
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Figure 28. Selected hydrographs of observed and model-computed water levels
for wells in the Memphis and Fort Pillow aquifers in the Memphis area.
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Sensitivity Analysis

The response of the calibrated model to varia-
tions in model parameters, pumping, and boundary
conditions was evaluated by sensitivity analysis.
Transmissivity and storage of the Memphis and Fort
Pillow aquifers, and leakance for the Jackson-upper
Claiborne and Flour Island confining units were each
varied uniformly in the model while the other parame-
ters were kept constant. The subsequent effects of
these variations on calculated water levels in the
Memphis and Fort Pillow aquifers were evaluated by
root mean square error (RMSE) comparison of
observed and simulated water levels for 1980. Results
of the sensitivity analyses are illustrated in figures 29
and 30 for the Memphis aquifer and the Fort Pillow
aquifer, respectively.

The RMSE was 14 feet for the Memphis aquifer
and about 10 feet for the Fort Pillow aquifer. These
values, on initial evaluation, appear to define very
poor simulation of a system. The data set that was used
to generate the RMSE value, however, was treated in a
nontraditional manner, and the values generated
should be considered relative rankings rather than
absolute measures of goodness-of-fit.

The data set for RMSE comparisons included all
known observed water levels for the period of interest.
Typically, for pumping periods 4 through 9 (fig. 24)
occurring after 1955, the data set included more than
100 points. For pumping period 8, on which figures 29
and 30 are based, 129 comparison points were used.
Many of the observation wells did not occur at the
center of a model node, but fell near boundaries of
adjacent nodes. Rather than interpolate an observed
value to the nearest nodal center, the actual measure-
ment was compared to the simulated head at the sur-
rounding nodes typically either the two nearest if on a
boundary, or the four nearest if on a corner. Because of
the steep gradients associated with pumping, a large
difference in head frequently occurred for such com-
parisons (one typically higher, one typically lower),
giving rise to a large RMSE when in fact an interpola-
tion of simulated conditions matched observed condi-
tions closely.

Results of the sensitivity analysis showed that
calculated heads in the Memphis aquifer were most
sensitive to variations in aquifer transmissivity and
leakance of confining unit A, and least sensitive to
storativity (fig. 29). Calculated heads in the Memphis
aquifer were not responsive to changes in the aquifer
characteristics of the Fort Pillow aquifer. Calculated
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heads in the Fort Pillow aquifer were most sensitive to
transmissivity, and least sensitive to leakance of the
Flour Island confining unit and storativity (fig. 30). As
a general rule, calculated heads in the Fort Pillow
aquifer were insensitive to general changes in aquifer
characteristics of the Memphis aquifer. Because of the
dominating effect of the pumping stress in the Mem-
phis aquifer, calculated heads in the Fort Pillow aqui-
fer were sensitive to factors affecting recharge and
leakage to the Memphis aquifer. Although not shown
in the figures, variations in simulated pumping caused
large variations in calculated heads in the aquifers.
Changes in simulating the southern boundary of the
model 20 miles closer and 20 miles farther from Mem-
phis caused only very slight changes in calculated
heads from calibrated values.

These results suggest that the values used in the
calibrated model are reasonable approximations of
actual conditions within the aquifer, particularly in
light of the constraints made by the well-defined
pumping data and the well-defined potentiometric sur-
faces. The high sensitivity of leakance of the Jackson-
upper Claiborne confining unit with respect to simu-
lated heads in the Memphis aquifer gives confidence
that an otherwise poorly defined parameter is well
approximated in the model.

Interpretation of Model Results

The underlying objective of ground-water flow
modeling was to develop a tool to quantitatively assess
the hydrogeology of the Memphis area, and thereby
improve understanding of the factors affecting ground-
water flow. Digital simulation of ground-water flow
permitted a quantitative evaluation of flux across
hydrogeologic boundaries and calculation of a hydro-
logic budget. Interpretation of these results promotes a
more complete understanding of the flow system and
often has direct implications for resource manage-
ment.

Hydrologic Budget

One of the principal products of the digital
model is a hydrologic budget for each layer in which
ground-water flow is simulated. For a given stress
period, the model calculates the simulated volume of
water that was added to or removed from the layer.
Flow rates are also calculated. Because pumpage was
variable in space and time throughout the simulation,
components of the hydrologic budget were not



200

(0.1,198)
175

1
[l
'
'
1
[l
\
ll
'
}
'
v
\
'
'

Transmissivity of Memphis aquifer

150 -

1
1
'
'
}
'
\
'
'
v
l
\
ll
[l
\
'
1
\

— 125
[1n}
i
z \ (0.2,115)
o v
2 x
hod 100 |
Ll y
L \
o t
< \
2 \
3
= 75 .
< \
Ll '.
= \
- Leakance of confining unit A-- %
8 Jackson-upper Claiborne confining uni‘e\ [ ]
4 ' ; (2.54)
50 ° \ ,
' (0.1,48) ;
\_\. \“ ”
S, \ . (5,30)
N\ \ °
25 (0.2,25) | (5,26)
/ (2,18)
Storage of Memphis aquifer
(1,14)
0 T T T T T T T T
0.01 0.03 0.08 0.22 0.60 1.67

464 1292
MULTIPLE OF CALIBRATED VALUE

35.94 100.00
Figure 29. Relation between changes in magnitude of calibrated
input (1980) parameters and root mean square error between

observed and simulated water levels in the Memphis aquifer.

Simulation of the Ground-Water Flow System

47



100

85 (0.1,80)
-
\“ Transmissivity of Fort Pillow aquifer
570
L 5
(T \
Zz N
14
(@) \
o \
o \
w 55 ‘\‘
L (5,50)
S ‘\ ?
\ /
(@] o /
n x I/
<Z( N /
w40 \‘ ]
= | /
= L H (10,33.5)
8 \ /
\‘ /
o \ / Storage of
\‘ v ST i
\ / Fort Pillow aquifer
25 3 /I
v (5.19)
\ ! 2
\ ; o
(0.05,13.5) L ,,\
‘\“. ~” Leakance of confining unit B--
10 | 02,11 T o Flour Island confining unit
| 1 |
0.01 0.10 1.00 10.00
MULTIPLE OF CALIBRATED VALUE

Figure 30. Relation between changes in magnitude of calibrated
input (1980) parameters and root mean square error between

observed and simulated water levels in the Fort Pillow aquifer.

48 Hydrogeology and Ground-Water Flow in the Memphis and
Fort Pillow Aquifers in the Memphis Area, Tennessee

100.00



constant. The budget figures for 1980 are presented in
table 4.

Pumpage accounted for almost all of the total
discharge from the Memphis aquifer (table 4). Model
simulations indicated pumped water was replaced
from three sources: recharge and lateral inflow
(42 percent), leakage from the shallow aquifer (54 per-
cent), leakage from the deep aquifer (1 percent), and
storage (3 percent). Lateral inflow refers to the essen-
tially horizontal movement of water within the aqui-
fer; the ultimate source of this water is recharge in the
outcrop area.

Leakage to the Memphis aquifer occurred both
from the surficial aquifers and the Fort Pillow aquifer.
As water-levels in the Memphis aquifer declined in
response to pumpage, hydraulic gradients favored the
flow of water across the overlying and underlying con-
fining units. Approximately 98 percent of the simu-
lated leakage to the Memphis aquifer was attributable
to flow across the Jackson-upper Claiborne confining
unit. In 1980, this leakage from water-table aquifers
contributed more than 50 percent of the water pumped
from the Memphis aquifer. Because water in the
water-table aquifers is inferior in quality and more sus-
ceptible to contamination than water in the Memphis
aquifer, this substantial contribution may be cause for
concern. The third source of water pumped from the
Memphis aquifer was storage, which refers to water
made available by compression of the aquifer and
expansion of the water column. Storage contributes a
minor part (3 percent) of the budget of the Memphis
aquifer, based on simulation of 1980 conditions.

The hydrologic budget for the Fort Pillow aqui-
fer in 1980 also is defined in table 4. Water was
removed from this aquifer both by pumpage
(88 percent) and leakage to the Memphis aquifer
(12 percent). Most of the water removed from this
aquifer was derived from recharge and lateral inflow
(87 percent). About 13 percent of the water was
derived from storage.

Areal Distribution of Leakage

Downward leakage from the water-table aquifer
through the Jackson-upper Claiborne confining unit to
the Memphis aquifer poses a potential threat to the
quality of water used for public supply in the Memphis
area. To facilitate management and protection of this
resource, it is important to identify those areas where
leakage is most significant.

In the flow simulation, a small amount of down-
ward leakage to the Memphis aquifer occurred
throughout the study area. In certain zones, however,
leakage was more pronounced (fig. 31). In most places
leakage did not exceed 0.01 cubic feet per second per
square mile, which is equivalent to an infiltration
velocity of 0.14 inch per year (in/yr). Near the outcrop
area and around Lichterman well field in southeastern
Memphis, there was a zone in which leakage was
greater than other areas. Near the outcrop area, leak-
age rates varied from 0.01 to 0.1 cubic feet per second
per square mile, which is equivalent to an infiltration
velocity of 0.14 to 1.4 in/yr. In this zone the confining
unit is known to be relatively thin (fig. 5).

Simulated leakage rates were substantially
higher in several other locations, as well. These loca-
tions included: (1) Johns Creek, Nonconnah Creek,
and the South Sheahan area (fig. 31, area 1); (2) the
Wolf River between Sheahan and McCord well fields
(fig. 31, area 2); (3) along the Mississippi River near
Mallory well field (fig. 31, area 3); and (4) a zone east
of Lichterman well field (fig. 31, area 4). The large
leakage rates indicated by the simulation agree with
other evidence supporting substantial flow between
the surficial aquifers and the Memphis aquifer at these
locations. Other evidence includes isotopic data,
water-level measurements, and thermal anomalies
(Graham and Parks, 1986).

Model Limitations

Models by their very nature are only approxima-
tions, and are not exact replicas of natural systems.
The success of a model in approximating the natural
system is limited by such factors as scale, inaccuracies
in estimating hydraulic characteristics and stresses,
inaccurate or poorly defined boundary or initial condi-
tions, and the degree of violation of flow-modeling
assumptions (P. Tucci, U.S. Geological Survey, written
commun., 1988).

For example, the minimum grid block size for
this model is about 0.45 miZ, an area much too large to
simulate ground-water levels in individual wells. The
model was neither designed for nor should it be used
for site-specific applications. It was designed for inter-
mediate to regional evaluation of "average" transient
ground-water conditions within the Mempbhis area, and
within this application, the model has been shown to
simulate observed conditions to a reasonable degree of
accuracy.
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Table 4. Water budget calculated by the flow model, 1980, for the Memphis area

Sources and discharges Flow, in cublc feet per second Percentage of total
Memphis Aquifer
Sources:
Recharge 106 36
Boundary flux 17 6
Leakage from shallow aquifer 157 54
Leakage from deep aquifer 2 1
Storage 10 3
Total 292 100
Discharge:
Boundary flux out 3 1
Pumping 289 99
Leakage (net in) 0 0
Total 292 100

Fort Pillow Aquifer

Sources:
Recharge 5 31
Boundary flux in 9 56
Leakage from Memphis aquifer 0 0
Storage 2 13
Total 16 100
Discharge:
Boundary flux out 0 0
Pumping 14 88
Leakage to Memphis aquifer 2 12
Total 16 100
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Selection of model boundary conditions can
greatly influence model results. Model boundaries
should closely correspond to natural hydrologic
boundaries whenever possible (E. Weeks, U.S. Geo-
logical Survey, written commun., 1975), and, with the
exception of the southern boundary, this concept was a
guiding approach that was followed in this (figs. 14
and 15) and previous models of the area (Brahana,
1982a, fig. 5). The variable spacing of the grid, how-
ever, has the potential of introducing “average”
approximations within the larger grid cells (the largest
are about 8 mi?) that are significantly different than
actual conditions. For example, representation of
hydrologic features such as divides or drains is diffi-
cult in large grid cells, because the feature represents
only a small percentage of the total area of the cell. For
this reason, any but regional interpretations regarding
head and flow in grid cells larger than several square
miles should be avoided, and, as with the actual devel-
opment of the model, emphasis should be limited to
the Memphis study area.

Continuing reassessment will be very important
in the evolution of the model. As ongoing studies fill
the gaps in the data base and improve understanding of
this complex flow system, the model can be modified
and recalibrated to include those changes. Newly
developed techniques of aquifer parameter estimation
would be particularly useful as an aid to understanding
the system, as would an optimization model (Larson
and others, 1977; Lefkoff and Gorelick, 1987).
Though the USGS does not develop them, an optimi-
zation model might be useful to resource managers in
evaluating placement of future well fields and pump-
ing configurations.

Despite the limitations discussed in this section,
the model provided useful insights into the workings
of the hydrologic system of the study area. Model
results support the conceptual model of the ground-
water flow system that the Memphis aquifer and Fort
Pillow aquifer are partially isolated by the Flour Island
confining unit. Leakage between aquifer layers repre-
sents a large component of the hydrologic budget
(table 4), and if the model is to be used for predictive
purposes using pumping configurations with locations
significantly different than those tested for the calibra-
tion and validation phases, simulated results may vary
from measured results. Extreme caution is recom-
mended in interpreting results in such simulations.
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SUMMARY AND CONCLUSIONS

The Memphis area has a plentiful supply of
ground water suitable for most uses, but the resource
may be vulnerable to contamination. Current with-
drawals totalling about 200 million gallons per day
have caused water-level declines in the major aquifers,
increasing the potential for contaminated ground water
in the surficial aquifer downward into the major aqui-
fers. This study describes the hydrologic framework,
simplifies and conceptualizes the hydrogeologic sys-
tem to preserve and emphasize the major elements
controlling ground-water flow, and quantitatively tests
each of the major elements. The main tool for the
investigation is a digital ground-water flow model; the
ultimate objective of the study is an improved under-
standing of the factors affecting ground-water flow in
the Memphis area.

The hydrogeologic framework of the area con-
sists of approximately 3,000 feet of unconsolidated
sediments that fill a regional downwarped trough, the
Mississippi embayment. For the most part, the sedi-
ments are interbedded clays and sands, with varying
amounts of silt, gravel, chalk, and lignite present. On a
regional scale, the sediments form a sequence of
nearly parallel, sheetlike layers of similar lithology.
On a local scale, complex lateral and vertical grada-
tions in lithology are common.

Clays of the Owl Creek Formation, Clayton For-
mation, Porters Creek Clay, and Old Breastworks For-
mation effectively define the base of freshwater
aquifers. Overlying this base, the hydrogeologic
framework includes the Fort Pillow Sand, the Flour
Island Formation, the Memphis Sand, the Jackson For-
mation and upper part of the Claiborne Group, and
alluvial and fluvial deposits.

Ground-water flow in this framework of aqui-
fers (sands and gravels) and confining units (clays) is
controlled by the altitude and location of sources of
recharge and discharge, and by the hydraulic charac-
teristics of the hydrogeologic units. Leakage between
the Fort Pillow aquifer (Fort Pillow Sand) and Mem-
phis aquifer (Memphis Sand), and between the Mem-
phis aquifer and the shallow aquifer (alluvium and
fluvial deposits) is a major component of the hydro-
logic budget. Pumping from the Fort Pillow and Mem-
phis aquifers has significantly affected flow in these
aquifers in the study area. Net discharge to the Missis-
sippi River alluvial plain from the subcropping Fort
Pillow and Memphis aquifers has decreased or ceased
since predevelopment time; pumpage has captured



most of present-day flow by lowering potentiometric
surfaces. The shallow surficial aquifer has not been
pumped intensively (<1 Mgal/d), and with the excep-
tion of one limited area, is thought to have remained at
steady state throughout the period of evaluation.

A three-layer finite-difference flow model was
constructed to simulate the regional flow system in the
Memphis area. The model area was much larger than
the area of immediate concern, so that natural bound-
aries of the aquifers could be incorporated. Initial con-
ditions, boundary conditions, hydraulic characteristics,
and stresses were input values into 58 row by 44 col-
umn matrices. The model calculated heads and hydro-
logic budgets. In the model, the uppermost aquifer
layer represents the shallow aquifer. Flow within the
shallow aquifer was not simulated; rather, the layer
consisted of an array of constant-head nodes repre-
senting water levels at steady state during any given
stress period. The second and third layers represent the
Memphis aquifer and Fort Pillow aquifer, respectively,
where horizontal flow was simulated. Layers of the
model are separated by leaky confining units. These
units are depicted by arrays of leakance terms. Lea-
kance values are high in areas where confining units
are thin or absent, and are low in areas where the con-
fining units are thick and hydraulically tight. The
model was calibrated and tested using standard
accepted practices of the U.S. Geological Survey.

This study has provided an improved under-
standing of the hydrogeology and ground-water flow
in the Memphis and the Fort Pillow aquifers in the
Memphis area. Calibration and validation of a multi-
layer finite-difference flow model indicated that leak-
age through the upper confining layer was a
significant part of the hydrologic budget of the Mem-
phis aquifer. The model attributes more than 50 per-
cent of water withdrawn from this aquifer in 1980 to
leakage. Although a significant portion of this leakage
occurs near the outcrop area where the confining unit
is thin, the implications for the Memphis aquifer
remain the same. The potential exists for contamina-
tion of the Mempbhis aquifer in areas where surficial
aquifers are contaminated and head gradients favor
downward leakage.

Leakage was not uniformly distributed. The
assumption of zones of high leakage along the upper
reaches of the Wolf and Loosahatchie Rivers, the
upper reaches of Nonconnah Creek, and in the area of
the surficial aquifer in the Mississippi River alluvial
plain was essential in simulating observed water levels

in the Memphis aquifer. Geologic and geophysical
data from these suspected zones of leakage suggest
relatively thin or sandy confining units. On a regional
basis, simulated vertical leakage through the upper
confining unit was almost an order of magnitude
greater than leakage through the lower confining unit.

A significant component of flow (12 percent)
from the Fort Pillow aquifer was calculated to occur in
the form of upward leakage to the Memphis aquifer.
This upward leakage generally was limited to areas
near major pumping centers in the Memphis aquifer,
where heads in the Memphis aquifer have been drawn
significantly below heads in the Fort Pillow aquifer.
Although the Fort Pillow aquifer is not capable of pro-
ducing as much water as the Mempbhis aquifer for sim-
ilar conditions, it is nonetheless a valuable resource
throughout the area.

The multilayer finite-difference flow model is a
valuable tool for hydrogeological research and
resource management in the Memphis area. The model
integrates boundary conditions as suggested by avail-
able information on the geology, hydrology, and water
chemistry of the area; it can be updated as new data
are collected.
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