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FOREWORD

The mission of the U.S. Geological Survey
(USGS) is to assess the quantity and quality of the earth
resources of the Nation and to provide information that
will assist resource managers and policymakers at Fed-
eral, State, and local levels in making sound decisions.
Assessment of water-quality conditions and trends is an
important part of this overall mission.

One of the greatest challenges faced by water-
resources scientists is acquiring reliable information that
will guide the use and protection of the Nation’s water
resources. That challenge is being addressed by Federal,
State, interstate, and local water-resource agencies and
by many academic institutions. These organizations are
collecting water-quality data for a host of purposes that
include: compliance with permits and water-supply stan-
dards; development of remediation plans for a specific
contamination problem; operational decisions on indus-
trial, wastewater, or water-supply facilities; and research
on factors that affect water quality. An additional need
for water-quality information is to provide a basis on
which regional and national-level policy decisions can be
based. Wise decisions must be based on sound informa-
tion. As a society we need to know whether certain types
of water-quality problems are isolated or ubiquitous,
whether there are significant differences in conditions
among regions, whether the conditions are changing over
time, and why these conditions change from place to
place and over time. The information can be used to help
determine the efficacy of existing water-quality policies
and to help analysts determine the need for and likely
consequences of new policies.

To address these needs, the Congress appropriated
funds in 1986 for the USGS to begin a pilot program in
seven project areas to develop and refine the National
Water-Quality Assessment (NAWQA) Program. In 1991,
the USGS began full implementation of the program.
The NAWQA Program builds upon an existing base of
water-quality studies of the USGS, as well as those of
other Federal, State, and local agencies. The objectives
of the NAWQA Program are to:

*Describe current water-quality conditions for a
large part of the Nation’s freshwater streams, riv-
ers, and aquifers.

*Describe how water quality is changing over
time.

eImprove understanding of the primary natural
and human factors that affect water-quality
conditions.

This information will help support the develop-
ment and evaluation of management, regulatory, and
monitoring decisions by other Federal, State, and local
agencies to protect, use, and enhance water resources.

The goals of the NAWQA Program are being
achieved through investigations of 60 of the Nation’s
most important river basins and aquifer systems, which
are referred to as study units. These study units are dis-
tributed throughout the Nation and cover a diversity of
hydrogeologic settings. More than two-thirds of the
Nation’s freshwater use occurs within the 60 study units
and more than two-thirds of the people served by public
water-supply systems live within their boundaries.

National synthesis of data analysis, based on
aggregation of comparable information obtained from
the study units, is a major component of the program.
This effort focuses on selected water-quality topics using
nationally consistent information. Comparative studies
will explain differences and similarities in observed
water-quality conditions among study areas and will
identify changes and trends and their causes. The first
topics addressed by the national synthesis are pesticides,
nutrients, volatile organic compounds, and aquatic biol-
ogy. Discussions on these and other water-quality topics
will be published in periodic summaries of the quality of
the Nation’s ground and surface water as the information
becomes available.

This report is an element of the comprehensive
body of information developed as part of the NAWQA
Program. The program depends heavily on the advice,
cooperation, and information from many Federal, State,
interstate, Tribal, and local agencies and the public. The
assistance and suggestions of all are greatly appreciated.

Robert M. Hirsch
Chief Hydrologist
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CONVERSION FACTORS

Multiply By To obtain
inch (in.) 254 millimeter
inch per year (in/yr) 25.4 millimeter per year
inch per month (in/mo) 254 millimeter per month
foot (ft) 0.3048 meter
mile (mi) 1.609 Kilometer
acre 4,047 square meter
square mile (miz) 2.590 square kilometer
cubic foot per second (ft3/s) 0.02832 cubic meter per second
gallon per minute (gal/min) 0.06309 liter per second

million gallons per day (Mgal/d) 0.04381 cubic meter per second

ton 0.9072 megagram

tons per square mile (ton/miz)

ton per year (ton/yr)
Degrees Celsius (° C) can be converted to degrees Fahrenheit (° F) by using the following equation:

° F=(1.8x° C)+32

Water year: In this report “water year” refers to October 1 through September 30, numbered for the calendar year starting
January 1. For example, water year 1991 is defined as October 1, 1990 through September 30, 1991.
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Water-Quality Assessment of the Ozark Plateaus Study Unit,
Arkansas, Kansas, Missouri, and Oklahoma—Analysis of
Information on Nutrients, Suspended Sediment, and

Suspended Solids, 1970-92

By Jerri V. Davis, James C. Petersen, James C. Adamski, and David A. Freiwald

Abstract

Water-quality data collected during water
years 1970-90 (October 1 to September 30) for
83 surface-water sites and during 1970-92 for 395
ground-water sites in the 48,000 square mile
Ozark Plateaus study unit of the National Water-
Quality Assessment Program were analyzed using
selected descriptive and statistical methods. The
water-quality data include nutrient (nitrogen and
phosphorus), suspended-sediment, and sus-
pended-solids data; and ancillary information on
fertilizer use, animal waste, sewage-treatment
plants, and land use.

Statistically significant differences existed
in surface-water quality that can be attributed to
physiography, land use, and other effects. The
sites that were considered to be substantially
affected by sewage-treatment plants had the larg-
est concentrations of nutrients. Nutrient concen-
trations generally were larger at sites associated
with agricultural basins than at sites associated
with forested basins.

Statistically significant differences existed
in the quality of ground water that can be attrib-
uted to hydrogeologic and land-use effects. Nutri-
ent concentrations generally were largest where
the water source is indicated to be shallow in ori-
gin and where parts of the hydrogeologic units are
in agricultural land-use areas.

Water quality has changed at several sur-
face-water sites since 1970. Nutrient concentra-
tions appear to have increased at some sites and

decreased at other sites. Causes of these apparent
trends are not known, but many of the sites with
apparent trends are in agricultural areas.

Surface-water loads of nutrients and sus-
pended sediment were affected by several factors
including streamflow, climate, drainage area, res-
ervoir operation, and inputs from point and non-
point sources. Annual loads were largest in large
basins, with large inputs of nutrients or sediment
during periods of high streamflows at locations
where reservoir operation effects are not substan-
tial.

INTRODUCTION

In 1991, the U.S. Geological Survey (USGS)
began full implementation of the National Water-Qual-
ity Assessment (NAWQA) Program to provide a
nationally consistent description of water-quality con-
ditions for a large part of the Nation’s water resources.
The long-term goals of the NAWQA Program are to
describe the status and trends in the quality of the
Nation’s surface- and ground-water resources and to
provide a better understanding of the natural and
human factors that affect the quality of these
resources. Investigations will be conducted on a rota-
tional basis in 60 river basins or aquifer systems
(referred to as study units) throughout the Nation.

Regional and national synthesis of information
from the study units will be the foundation for the
comprehensive assessment of the Nation’s water qual-
ity. Nationally consistent information on water quality,
and factors such as climate, geology, hydrology, land
use, and agricultural practices, will be integrated to
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focus on specific water-quality issues that affect large
contiguous hydrologic regions. For example, a con-
cern that will be addressed first in the program is the
retrospective analysis of existing data on pesticides,
nutrients, and suspended sediment as part of the
national synthesis activities, which will contribute to
answering fundamental water-quality questions facing
the Nation.

In 1991, the Ozark Plateaus NAWQA study unit
was among the first 20 study units selected for assess-
ment under the full-scale implementation plan. The
complex, mostly karst aquifer system of the Ozark
Plateaus study unit, coupled with the influx of people
and probability of future population and agricultural
growth, makes this area extremely susceptible to
water-resources degradation. The study unit investiga-
tion will consist of 5 years (1991-95) of intensive
assessment, followed by 5 years (1996-2000) of low-
level monitoring, and then the cycle will be repeated.
Each 5-year assessment activity period will include
about 2 years of retrospective analysis and planning
and 3 years of intensive-data collection.

The purpose of this report is to describe the spa-
tial and temporal availability of nutrient and sus-
pended-sediment and suspended-solids data and to
develop an improved conceptual model of the spatial
and temporal patterns of concentrations and loads of
nutrients and suspended sediment and suspended sol-
ids within the study unit. The synthesis of existing
nutrient and suspended-sediment and suspended-solids
data will document what is currently known prior to
the intensive-data collection phase of NAWQA and
improve our understanding of the hydrologic system.
This information will be used as a guide for additional
data-collection activities. The information in this
report also will contribute to the national synthesis
activity that will compare and contrast water quality in
similar and different environments throughout the
Nation.

The scope of this report includes (1) a brief
overview of the environmental setting of the study
unit; (2) an assessment of methods used to analyze
available data; (3) the spatial and temporal distribution
characteristics of nutrient data for surface and ground
water and suspended-sediment and suspended-solids
data for surface water; (4) a description of water-qual-
ity conditions in selected physiographic, hydrogeo-
logic, and land-use settings using statistical summaries
of nutrient and suspended-sediment and suspended-
solids data; and (5) a limited trend analysis and sur-

face-water load calculations for selected constituents
and basins. The water-quality data analyzed were col-
lected during water years 1970-92.

DESCRIPTION OF THE OZARK
PLATEAUS STUDY UNIT

This section describes the environmental setting
of the study unit. The environmental setting character-
istics that are most important to the discussion of
nutrients and suspended-sediment and suspended-sol-
ids patterns will be discussed here. For more detail, the
reader is referred to the environmental setting report
for the study unit by Adamski and others (1995).

The Ozark Plateaus study unit area is approxi-
mately 48,000 mi” and includes parts of northern
Arkansas, southeastern Kansas, southern Missouri,
and northeastern Oklahoma (fig. 1). The study unit
includes most of the Ozark Plateaus Province as well
as parts of the surrounding Central Lowland Province
known as the Osage Plains section, and a small portion
of the Mississippi Alluvial Plain section of the Coastal
Plain Province.

The Ozark Plateaus Province consists of a struc-
tural dome of igneous rocks that form the St. Francois
Mountains in southeastern Missouri. Sedimentary
rocks gently dip away from this core of igneous rocks
to form three distinct physiographic sections (Fenne-
man, 1938)—the Salem Plateau (includes the St. Fran-
cois Mountains), the Springfield Plateau, and the
Boston Mountains (fig. 1). Topography ranges from
mostly gently rolling hills in the Springfield Plateau,
rugged with relief as much as 500 ft in the Salem Pla-
teau, to extremely rugged with relief as much as 1,000
ft in the Boston Mountains. The Osage Plains of the
Central Lowland Province in the west-northwestern
part of the study unit has gently rolling topography
with relief rarely exceeding 250 ft. The Mississippi
Alluvial Plain of the Coastal Plain Province along the
extreme southeastern boundary of the study unit has
flat to gently rolling topography with minimal relief.

The St. Francois Mountains area is not a sepa-
rate physiographic section as defined by Fenneman
(1938), but will often be discussed in this report sepa-
rately because of its unique hydrogeologic features.
For the purposes of this report, the physiographic sec-
tions described above and the St. Francois Mountains
will hereafter be referred to as physiographic areas.
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Geology and Hydrology

The geology (Imes and Emmett, 1994) of the
Ozark Plateaus study unit consists of basement igne-
ous rocks of Precambrian age overlain by as much as
5,000 ft of gently dipping sedimentary rocks of Paleo-
zoic age. The igneous rocks include granite, rhyolite,
and diabase and are located in the St. Francois Moun-
tains. In the Salem Plateau, sedimentary rocks of Cam-
brian through Ordovician age consist of dolomite,
sandstone, and limestone with minor amounts of shale.
Most of the rocks of Mississippian age in the Spring-
field Plateau are cherty limestones. Sedimentary rocks
of Pennsylvanian age in the Osage Plains and Boston
Mountains consist of shale, sandstone, and limestone.
Lead-zinc deposits are present in the rocks of Cam-
brian through Mississippian age near the St. Francois
Mountains and in the Tri-State area of Kansas, Mis-
souri, and Oklahoma. Coal deposits are present in the
rocks of Pennsylvanian age along the northwestern
study unit boundary. The rocks in the study unit have
been extensively fractured and faulted as a result of
uplifting.

The study unit is divided into seven hydrogeo-
logic units consisting of three major aquifers interbed-
ded within four confining units (Imes and Emmett,
1994; fig. 1). These units, from youngest to oldest, are
the Western Interior Plains confining system, the
Springfield Plateau aquifer, the Ozark confining unit,
the Ozark aquifer, the St. Francois confining unit, the
St. Francois aquifer, and the Basement confining unit.
The unconsolidated sediments of the Mississippi River
Valley alluvial aquifer form an eighth, but minor aqui-
fer, of limited areal extent within the study unit.

Agquifers in the study unit are in different rock
types and have varying yields of water. The Spring-
field Plateau and Ozark aquifers are thick sequences of
limestones and dolomites with secondary permeability
resulting from fracturing and dissolutioning of the
dense rocks. Where the Springfield Plateau aquifer is
unconfined (coincident with the Springfield Plateau
physiographic area), it is extensively used as a source
of domestic water, with well yields averaging less than
20 gal/min. The Ozark aquifer is used where it is both
unconfined (coincident with the Salem Plateau physio-
graphic area) and confined as public supply and
domestic use, with well yields ranging from 50 to 100
gal/min but which can be as much as 600 gal/min. The
St. Francois aquifer consists of sandstones and dolo-
mites, with well yields as much as 500 gal/min,

although the aquifer is rarely used except where it
crops out.

The Western Interior Plains confining system
(coincident with the Boston Mountains and Osage
Plains physiographic areas) consists of relatively per-
meable sandstone and limestone beds separated by
thick layers of impermeable shale beds. The confining
system has low permeability and is used locally as a
source of water for domestic supplies, with well yields
ranging from 1 to 40 gal/min. The Ozark and St. Fran-
cois confining units mostly consist of shales and dense
limestones or dolomites. These confining units
hydraulically separate the overlying and underlying
aquifers. The Basement confining unit underlies the
study unit and mostly consists of igneous rocks.

The Ozark Plateaus study unit is drained by
seven major rivers—the White, Neosho-Illinois,
Osage, Gasconade, Meramec, Black, and St. Francis
Rivers (fig. 1)—which either directly or indirectly
flow into the Mississippi River. Many large reservoirs
have been constructed on the White, Osage, and
Neosho Rivers.

Stream gradients are steepest in the Boston and
St. Francois Mountains and flattest in the Osage Plains
and Mississippi Alluvial Plain. Channel-bed material
ranges from clay and silt in the Osage Plains to sand,
gravel, boulders, and bedrock in most of the Ozark
Plateaus Province. Streams in the Osage Plains are tur-
bid, with long pools separated by poorly defined rif-
fles. Streams in the Ozark Plateaus Province are
mostly clear, with pools separated by riffles, and in
places, cascading waterfalls.

Mean annual runoff generally increases from the
north to the south (Gebert and others, 1985). Mean
annual runoff is least (ranging from 9 to 10 in.) in the
northern Osage Plains, increases to the south (ranging
from 10 to 16 in.) in the Springfield and Salem Pla-
teaus, and is greatest (ranging from 14 to 20 in.) in the
Boston Mountains.

Minimum monthly streamflows generally occur
in the summer and early fall, and maximum monthly
streamflows typically occur in the late winter and
spring. Maximum monthly streamflows generally
coincide with the period of maximum precipitation
and minimum evapotranspiration.

Climate, Population, Land Use, and Water Use

The Ozark Plateaus study unit has a temperate
climate with average annual precipitation increasing
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from about 38 in/yr in the north to about 48 in/yr near
the southern edge of the study unit (Dugan and Peck-
enpaugh, 1985). Average monthly precipitation is
greatest in the spring (about 3 to 5 in/mo) and least in
the late fall and winter (about 1 to 3 in/mo). Mean
annual air temperature ranges from about 56 °F in the
northeastern part of the study unit to about 60 °F in the
southwestern part of the study unit (Dugan and Peck-
enpaugh, 1985). The estimated mean annual evapo-
transpiration rate in the study unit is 30 to 35 in.
(Hanson, 1991).

Atmospheric deposition is recognized as an
important source of nutrients from a mass balance
standpoint, although sufficient monitoring information
is not yet available for rigorous quantification. The
removal of atmospheric gases and particles by wet
(precipitation) and dry deposition are major mecha-
nisms for nutrient inputs to basins. Wet precipitation
chemistry data for ammonia and nitrate from four
National Trends Network monitoring sites in or near
the study unit for 1980-90 were used to calculate
nitrogen deposition (National Atmospheric Deposition
Program, 1981-91). These calculated values were then
corrected for dry deposition inputs (Sisterson, 1990).
The total mean annual nitrogen deposition calculated
for the study unit is 1.89 tons/mi”. Mean annual wet
ammonia (as nitrogen) deposition is 0.65 ton/mi” and
wet plus dry nitrate (as nitrogen) deposition is 1.24
tons/mi°. Droplet and urban deposition corrections
were not used in these calculations because they are
not considered a factor in the study unit.

Population within the study unit in 1990 was
approximately 2.3 million people (U.S. Department of

Table 1. Land-use percentage by physiographic area
[1978-83 land-use data from U.S. Geological Survey (1990)]

Commerce, Bureau of the Census, 1990). Population
increased by about 28 percent between 1970 and 1990
with the largest increases occurring in northwestern
Arkansas and southwestern Missouri. Springfield,
Mo., with a population of about 140,000 (1990), is the
largest city in the study unit. Joplin, Mo., and Fay-
etteville, Rogers, and Springdale, Ark., are the only
cities within the study unit with populations exceeding
20,000 residents (1990).

Land use in the study unit predominantly is for-
est and agriculture (includes pasture and cropland;
table 1; U.S. Geological Survey, 1990). Deciduous for-
est is predominant in the Salem Plateau and Boston
Mountains, although this is often mixed with ever-
green forest. Some pasture also occurs in the Salem
Plateau where livestock (beef and dairy cattle) are
raised. The Springfield Plateau predominantly is pas-
ture, although this is mixed with cropland in the north
and forest in the south. Intensive poultry farming is
associated with the Springfield Plateau pastures in
northwestern Arkansas, southwestern Missouri, and
northeastern Oklahoma. Cropland dominates in the
Osage Plains and Mississippi Alluvial Plain. Major
crops grown in the Osage Plains are soybeans and sor-
ghum with some corn, wheat, grains, and field crops.
Rice is the dominant crop grown in the Mississippi
Alluvial Plain. The two major lead and zinc mining
areas are the Southeastern District (Old Lead Belt,
Viburnum Trend, and the Fredericktown subdistricts)
in and around the St. Francois Mountains and the Tri-
State Mining District of Kansas, Missouri, and Okla-
homa.

Percentage of land use

2

Physiographic area Urban Agriculturel Forest Water Barren
Osage Plains 1 82 14 1 2
Springfield Plateau 3 58 38 1 <1
Salem Plateau 1 27 71 1 <1
Boston Mountains 1 29 70 <1 <1
Mississippi Alluvial Plain 1 83 8 33 <1

! Includes pasture and cropland.
2 Includes mining.
3 Includes approximately 7 percent wetland.
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Total water use from both surface- and ground-
water sources in the study unit was 1,053 Mgal/d in
1990. Of this, 614 Mgal/d was from ground-water
sources and 439 Mgal/d was from surface-water
sources. About 67 percent of the total ground-water
use is for irrigation; however, most of this use is from
counties along the extreme southeastern part of the
study unit in the Mississippi Alluvial Plain. Domestic
and public supply accounts for about 21 percent of the
ground-water use. About 47 percent of the total sur-
face-water use is used for public supply and almost 30
percent for commercial and industrial use. Less than 6
percent of total water use in the study unit is for agri-
cultural purposes other than irrigation.

Nitrogen and Phosphorus Fertilizer Use

Fertilizer use in the Ozark Plateaus study unit
has increased substantially since 1960. Fertilizer-use
estimates (Alexander and Smith, 1990) indicate that
nitrogen and phosphorus fertilizer use has increased
152 percent and 55 percent, respectively, from 1965 to
1985.

The application rates for nitrogen and phospho-
rus fertilizer in the Ozark Plateaus study unit are less
than the national median. Estimates of nitrogen and
phosphorus fertilizer application rates for 1982 were
computed as a ratio of fertilizer use to fertilized acre-
age. The national median of nitrogen fertilizer applica-
tion rate is 28 tons/miZ, with median application rates
by State ranging from 14 to 64 tons/mi’. Nitrogen fer-

tilizer application rates (1982) for the counties within
the study unit ranged from an estimated O to 35 tons/
mi. Application rates generally were larger in coun-
ties in Arkansas and Kansas. The national median of
phosphorus fertilizer application rate is 6 tons/mi?,
with median application rates by State ranging from 3
to 17 tons/mi>. Phosphorus fertilizer application rates
(1982) for the counties within the study unit ranged
from an estimated 0 to 5 tons/mi> (Alexander and
Smith, 1990).

Fertilizer use differed substantially among major
river basins (table 2) in the study unit. Annual nitrogen
fertilizer use in 1965 ranged from 0.53 ton/mi in the St.
Francis River Basin to 2.41 tons/mi? in the Osage River
Basin. In 1985, annual nitrogen fertilizer use ranged
from 1.30 tons/mi” in the St. Francis River Basin to 5.09
tons/mi? in the Osage and Neosho-Illinois River Basins.
Nitrogen fertilizer use in the Osage and the Neosho-Illi-
nois River Basins nearly equals the combined total
nitrogen fertilizer use in the rest of the study unit.
Annual phosphorus fertilizer use in 1965 ranged from
0.14 ton/mi? in the St. Francis River Basin to 0.64 ton/
mi’ in the Osage River Basin. In 1985, annual phospho-
rus fertilizer use ranged from 0.23 ton/mi? in the St.
Francis River Basin to 0.87 ton/mi? in the Osage River
Basin. As with nitrogen fertilizer use, approximately
one-half of the total phosphorus fertilizer used was
applied in the Osage and Neosho-Illinois River Basins.

The physiographic area with the largest nitro-
gen fertilizer use within the study unit in 1985 was the
Mississippi Alluvial Plain (8.0 tons/mi?) followed by
the Osage Plains (7.1 tons/miz), Salem Plateau (3.0

Table 2. Annual nitrogen and phosphorus fertilizer use by major river basins, 1965 and 1985

[Fertilizer use data from U.S. Department of Agriculture in Alexander and Smith, 1990]

Nitrogen fertilizer

(tons per square mile

Phosphorus fertilizer
(tons per square mile

per year) per year)
Area Percent Percent
River basin (acres) 1965 1985 difference 1965 1985 difference
Black 5,435,238 1.33 3.17 139 0.34 0.49 42
Gasconade 2,180,647 1.28 3.22 152 34 .56 65
Meramec 2,553,402 77 1.85 141 .20 32 58
Neosho-Illinois 5,948,454 1.67 5.09 206 45 8 73
Osage 6,332,800 241 5.09 111 .64 .87 36
St. Francis 849,216 .53 1.30 144 .14 .23 59
White 7,170,362 .81 243 200 21 37 77
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tons/mi’), Springfield Plateau (2.8 tons/mi?), and the
Boston Mountains (1.8 tons/miz). The largest phos-
phorus fertilizer use in 1985 occurred in the Missis-
sippi Alluvial Plain and the Osage Plains (each 0.99
ton/mi?) followed by the Springfield Plateau (0.52
ton/miz), Salem Plateau (0.49 ton/miz), and the Bos-
ton Mountains (0.23 ton/miz).

Animal and Municipal Sources of Nutrients

Livestock and poultry waste is a major source of
nutrient loading in parts of the study unit. The nutrient
composition of animal waste varies widely with
respect to animal species, feed consumption and con-
tent, and age (Fulhage, 1989a). Animal waste contains
three major nutrients (nitrogen, phosphorus, and
potassium) essential for plant production and is, there-
fore, used as a source of fertilizer for pasture.

The quantity of nutrients available for use from
livestock and poultry waste changes substantially from
the amount initially excreted. The type of housing and
waste-handling system used and different storage
times greatly affect the nitrogen and phosphorus con-
centration of animal waste. The longer time that ani-
mal waste lies in the soil before plant uptake, the more

nutrients can be lost through mineralization, volatiliza-
tion, denitrification, leaching, and erosion.

Fulhage (1989a) indicates that more than one-
half of the nitrogen content of manure will be either
used by plants or volatilized to the atmosphere. Phos-
phorus in manure is primarily in the organic form but
is not readily available to plants until it is broken down
by bacteria (a slow process). Also, phosphorus tends to
remain attached to soil that can erode into receiving
waters causing excessive plant and algae growth (Ful-
hage, 1989a).

Estimated livestock and poultry populations
within the study unit were used to calculate total nutri-
ent contribution to the study unit by animal waste
(table 3). An estimated 154,600 tons of wet weight
manure is produced daily in the study unit that annu-
ally produces about 358,300 tons of nitrogen and
123,400 tons of phosphorus initially available for use.

Data on municipal sewage-treatment plant
(STP) point-source discharges were retrieved from the
U.S. Environmental Protection Agency’s (USEPA)
Permit Compliance System data base for 1985-91.
The STP’s that have effluents of 0.5 Mgal/d or more
are shown in figure 2. Municipalities are frequently
upgrading and changing their STP’s, and, therefore, in
some instances, these data have been superseded.

Table 3. Animal waste nutrient contribution to the Ozark Plateaus study unit

Pounds phos-
Manure Pounds nitrogen phorus per
production per 1,000 pounds Nitrogen 1,000 pounds
Animal Annual (tons per of animal per (tons per of animal Phosphorus
species populationl day)2 year3 year) per year2 (tons per year)
Beef cattle 4,264,000 127,900 124 264,400 40 85,300
Dairy cattle 231,000 9,500 150 17,300 27 3,100
Swine 1,087,000 8,800 165 22,400 55 7,500
Chickens 4498,325,000 4,400 352 29,200 149 12,400
Turkeys 425,178,000 54,000 372 25,000 4225 15,100
Total 154,600 358,300 123,400

! Arkansas Agricultural Statistics Service, 1992; Kansas State Board of Agriculture, 1991; Missouri Agriculture Statistics Office, 1991; Okla-
homa Department of Agriculture, 1992; Ken Arnold, Missouri Department of Natural Resources, oral commun., 1993; Jerry Barker, Oklahoma
Department of Agriculture, oral commun., 1992.

2 University of Missouri-Columbia Extension Division and Missouri Department of Natural Resources, 1979 (animal waste production based
on wet weight pounds of manure per day per 1,000 pounds of animal).

3 Missouri Department of Natural Resources (1989).

4 Chicken and turkey populations are totals produced during a year. Manure production and nutrient contribution (tons per year) values have
been adjusted based on the average number of chickens and turkeys being produced on a single day. Multiple flocks of chickens (6) and turkeys
(2.25) are produced per year (Fulhage, 1989b).

3 Van Dyne and Gilbertson, 1978.
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Many additional sources of 0.49 Mgal/d or less from
municipalities, private homes, recreational areas, busi-
nesses, and public offices were excluded from this
analysis.

The upper White, lower Meramec, Illinois, and
Spring River Basins have the highest number of
municipal STP’s (fig. 2). The Southwest plant in
Springfield, Mo., discharges effluent into a tributary of
the White River and has the largest single discharge
capability (42.5 Mgal/d) in the study unit. The Metro-
politan Sewer District of St. Louis has five STP’s that
discharge to the lower Meramec River. These five
plants have the capability of collectively discharging
as much as 36 Mgal/d. The cities of Springdale, Fay-
etteville, and Rogers, Ark., discharge their effluent
into tributaries of the Illinois River, although Fay-
etteville also discharges some effluent into a tributary
of the White River. These three cities have the ability
to collectively discharge as much as 34 Mgal/d. Joplin,
Mo., discharges about 21 Mgal/d into tributaries of the
Spring River.

Most municipalities in the study unit treat their
raw sewage with a combination of two or more treat-
ment methods. The most common method of sewage
treatment seems to be the use of oxidation ditches or
ponds. Trickling filters, aerated lagoons, extended aer-
ation, and lagoons in series also are common methods
of treatment. Sewage water that has undergone tertiary
treatment will contain nitrogen mostly as nitrate,
whereas the nitrogen in secondary treated wastewater
is mostly in the form of ammonia, which will rapidly
oxidize in most stream environments. Chlorination is
frequently used in the disinfectant process. In general,
the average STP has a daily discharge of 0.479 Mgal
of effluent with an average total nitrogen concentration
of 8.4 mg/L (milligrams per liter) and an average total
phosphorus concentration of 5.2 mg/L. (National Oce-
anic and Atmospheric Administration, 1993).

ASSESSMENT APPROACH

The following section describes the method of
selecting the constituents and their importance. It also
describes the evaluation and sources of data and the
methods of analysis.

Selection of Properties and Constituents for
Analysis

For purposes of this report, nutrients are defined
as the nitrogen and phosphorus species. The fixation

of atmospheric nitrogen by plants and animals, the dis-
solution of phosphorus-bearing rocks or minerals in
the soil, and organic matter, including soil organic
matter and decaying plants and animals, are natural
sources for nitrogen and phosphorus in streams.
Anthropogenic sources include sewage discharges,
fertilizers, animal waste, and septic tanks. Atmo-
spheric deposition is another source of nitrogen in nat-
ural waters (Hem, 1985). Background concentrations
in streams generally are small, because the dissolved
forms of the two elements are assimilated rapidly by
plants and bacteria. Aquatic vegetation, particularly
algae, depend on nitrogen and phosphorus for their
food supply. Nitrogen or phosphorus concentrations
greater than normal, ambient levels can contribute to
the dense growth of algae (algal blooms). Bacterial
decomposition of dead algal cells after an algal bloom
can cause the depletion of dissolved oxygen, causing
fish kills and other negative effects on aquatic life.

Nitrogen occurs in surface and ground water as
nitrite (NOQ']), nitrate (NO3'1), and ammonium
(NH4+1) ions and at intermediate oxidation states in
organic solutes (Hem, 1985). The ammonium ion is in
chemical equilibrium with unionized ammonia, a
nitrogen species that is toxic to aquatic life under cer-
tain conditions. Ammonium ions predominate at pH
values of less than 9.2, which is larger than the pH of
most natural water (Hem, 1985). Nitrite and organic
species are unstable in aerated water, nitrate is readily
transported in water and is stable over a wide range of
conditions, and ammonium cations tend to adsorb on
mineral surfaces. The reduced forms of nitrogen
(nitrite, ammonium, and organic species) are oxidized
to nitrate in most aerobic environments, but in contam-
inated streams and aquifers, a substantial part of the
total nitrogen concentration may be these reduced spe-
cies. Large nitrate concentrations are undesirable in a
domestic or public water supply because of potential
health hazards, particularly for infants. Because of the
potential health risks associated with nitrate, the
USEPA has established a Maximum Contaminant
Level (MCL) of 10 mg/L of nitrate as nitrogen in pub-
lic-drinking water supplies (U.S. Environmental Pro-
tection Agency, 1986).

The most common phosphorus species in water
is the fully oxidized orthophosphate ion (PO4'3), but
organic phosphate species synthesized by plants and
animals also constitute a substantial part of the phos-
phorus in natural waters (Hem, 1985). The orthophos-
phate ion is the phosphorus species most readily
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available for use by aquatic plants. Most phosphorus-
containing compounds are relatively insoluble, and
thus the chemistry of the element favors precipitation
or adsorption onto sediments.

For surface-water data, the nitrogen and phos-
phorus species considered in this report were nitrite
plus nitrate, ammonia (includes both ammonium ions
and unionized ammonia), total ammonia plus organic
nitrogen, total nitrogen, total phosphorus, and ortho-
phosphate. Because nitrite rapidly oxidizes to nitrate
in most surface water, the assumption was made that
nitrite concentrations were negligible, and nitrite plus
nitrate was considered instead of the individual spe-
cies. Nitrate is soluble in water and so first consider-
ation was given to dissolved nitrite plus nitrate
(filtered samples). Total nitrite plus nitrate (whole-
water samples) was substituted if dissolved data were
unavailable. Ammonia is less soluble than nitrate, but
the same substitution was made when dissolved data
were unavailable, because samples for ammonia anal-
yses do not undergo rigorous digestion prior to analy-
sis. Total nitrogen is the sum of the nitrogen species
and, for surface water, generally is calculated using
total nitrite plus nitrate and total ammonia plus organic
nitrogen. For this analysis, dissolved ammonia plus
organic nitrogen data were not substituted for missing
total ammonia plus organic nitrogen data because the
Kjeldahl method used involves rigorous sample diges-
tion. Dissolved nitrite plus nitrate concentrations were
substituted in the total nitrogen calculation when total
nitrite plus nitrate data were unavailable. The ortho-
phosphate ion, like nitrate, is soluble. In cases where
dissolved orthophosphate data were unavailable, total
orthophosphate data were substituted.

For ground-water data, the nitrogen and phos-
phorus species considered for this report were nitrite
plus nitrate, ammonia, ammonia plus organic nitrogen,
total nitrogen, total phosphorus, and orthophosphate.
Similar methods were used for substituting the various
measurements of nitrogen and phosphorus concentra-
tions in ground water. For example, nitrate concentra-
tions in ground water were reported in four ways:
nitrate, total (whole water), as nitrogen; nitrate, dis-
solved (filtered), as nitrogen; nitrate, total, as nitrate;
and nitrate, dissolved, as nitrate. First, filtered and
whole-water analyses were grouped together because
colloidal material in ground water in the Ozark Pla-
teaus generally is negligible. Second, concentrations
reported as nitrate were converted to concentrations as
nitrogen by dividing the former by 4.43. The result

was a single constituent for nitrate. Similar groupings
and data conversions were used for other species of
nitrogen and phosphorus.

Because of the substitution and combination of
certain water-quality measurements for other measure-
ments (for example, total nitrite plus nitrate for dis-
solved nitrite plus nitrate), the resulting data for a
constituent (nitrite plus nitrate, for example) often
included results of analyses performed on filtered and
whole-water samples. For these constituents, the
“total” and “dissolved” adjectives are not included in
the following discussions. Data for total ammonia plus
organic nitrogen and total phosphorus in surface-water
samples were not combined with data for filtered sam-
ples, and the “total” adjective is, therefore, retained.
However, the “total” in “total nitrogen” refers to a
summation of nitrogen species values, some of which
may be from analyses of filtered samples.

Suspended sediment in water is the particulate
matter that consists of soil and rock particles eroded
from land. Sediment can be transported in the water
column or can settle to the streambed. The movement
of suspended sediment in streams is an important fac-
tor in the transport and fate of chemicals in the envi-
ronment, because the particles can sorb nutrients, trace
elements, and organic compounds. Fecal bacteria also
can be associated with suspended sediment. The sedi-
ment available for transport by a stream is controlled
by a combination of factors, including the intensity or
frequency of precipitation, soil type, vegetative cover,
topography, and land use. Overland runoff of precipi-
tation primarily is responsible for delivering sediment
to streams. Large suspended-sediment concentrations
often are associated with intense storms that increase
stream discharge, erosion, and resuspension of bed
sediments. Row-crop agriculture, animal grazing, tim-
ber harvesting, mining, highway construction and
maintenance, and urbanization can cause increased
erosion and thus increase stream sediment concentra-
tions. Surface-water quality can be adversely affected
by suspended sediment. Turbid streams are aestheti-
cally unsatisfactory for swimming and other recreation
and are biologically less productive than clear streams
because of decreased light penetration. Elevated sus-
pended-sediment concentrations can affect fish popu-
lations, either directly or indirectly, by preventing the
successful development of fish eggs and larvae or by
decreasing the available food supply. Deposits of sedi-
ment in reservoirs decrease the storage capacity for
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water supply or flood control, and removal of sediment
from water supplies is expensive.

Two measures of stream suspended-sediment
concentrations were considered for this report—sus-
pended sediment and suspended solids. These two
measures are not considered to be comparable because
of differences in collection and analytical techniques.
Suspended-sediment samples are a composite of indi-
vidual samples collected at multiple verticals in a
stream cross section. The suspended-solids sample is
usually a subsample of a composite or a sample col-
lected at a single vertical in the stream. Protocols for
the analysis of suspended-sediment samples specify
that the entire sample is analyzed; whereas suspended-
solids analysis is done on a 100-mL aliquot of the
sample. When sand is a component of the suspended
sediment, it is impossible to remove a 100-mL aliquot
from the sample that contains a representative amount
of the sand, therefore biasing the results of the sus-
pended-solids analysis to the low side of the actual
suspended-sediment concentration. Organic particles
are removed from suspended-sediment samples prior
to analysis, while the suspended-solids concentrations
can include some organic particles. Suspended-sedi-
ment concentrations are considered the most accurate
indicator of the actual stream-sediment concentrations
because of the representative sampling and analytical
techniques that are used. Suspended-sediment data
were used in this report when available. When sus-
pended-solids data were used, the data were not com-
pared directly to suspended-sediment data.

Evaluation of Water-Quality Data

Water-quality data are collected by many Fed-
eral, State, and local governmental agencies and others
for a variety of regulatory and nonregulatory purposes.
Regulatory agencies monitor water quality to deter-
mine compliance with permits and water-quality stan-
dards. Industrial, wastewater, and water-supply
facilities need water-quality information to make oper-
ational decisions. Nonregulatory agencies monitor
ambient water quality for resource characterization,
and research-oriented groups study water-quality pro-
cesses. Depending on the purpose for data collection,
samples may be collected with varying frequency in
specific locations employing different sample collec-
tion, processing, preservation, and analytical tech-
niques and with different quality-assurance and
quality-control requirements. Careful screening is nec-

essary before using data for a regional-scale water-
quality assessment, because data collected for some
purposes may be unsuitable for a regional-type assess-
ment.

Surface-Water Quality Data

The initial surface-water data set contained
approximately 71,500 water-quality samples for 2,222
sites for water years 1970-90. Some of these 2,222
sites were duplicates sampled by more than one
agency, so the data that were selected have the best
temporal, seasonal, or hydrologic distribution or were
collected, processed, preserved, or analyzed using pre-
ferred techniques. Screening criteria (described below)
were applied to the data set decreasing the number of
samples to about 20,000 for 83 sites.

Screening criteria were used for all surface-
water quality data considered for inclusion in the final
data set used in this analysis. Those data not meeting
the specified criteria were removed from the data set.
Data were acceptable if:

1. Site-specific information regarding location,
type, number of samples, and seasonal and
hydrologic distribution of samples was avail-
able. Sites with inadequate existing location
information were deleted. Wastewater dis-
charge and contaminant monitoring data were
automatically excluded. Only instream, ambient
water-quality data were used. Instream data col-
lected to monitor stream water quality down-
stream of a STP were included, but this specific
purpose was noted. Sites with less than 6 years
of either quarterly, bimonthly, or monthly data
were not used unless the data were needed for
areal coverage, and then only those sites with 10
or more samples were used. Sites with poor sea-
sonal or hydrologic sample distribution also
were excluded. Samples had to be collected rel-
atively evenly in each season and throughout the
range of streamflows; this was a subjective
determination. Examples of distributions are
shown in the “Characteristics of Water-Quality
Data” section of this report.

2. Sample collection, processing, preservation, and
analytical techniques were appropriate. A vari-
ety of sample collection methods are used, but
the use of the data will determine the best col-
lection method. The USGS collects depth-inte-
grated samples from multiple verticals in the
stream cross section using techniques described
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by Guy and Norman (1970) for the collection of
suspended-sediment samples. The objective of
using this method is to obtain a sample that is
representative of the stream cross section. This
is especially important for constituents associ-
ated with suspended sediment or where com-
plete stream mixing is in question. Agencies
collecting samples for permit compliance or
water-quality standards generally collect a sin-
gle vertical at the centroid of flow, which may
not represent the stream cross section. Samples
collected from a single vertical were used for
describing water-quality conditions but were not
used for load estimations. Data collected using
questionable techniques, such as a dip sample
from the edge of the stream, were deleted from
the data set.

Sample processing and preservation techniques
are used to stabilize the sample so that it retains
its original character as nearly as possible.
These procedures involve filtering or addition of
reagents to stop biological action. Nutrient sam-
ples generally are preserved with mercuric chlo-
ride (USGS) or sulfuric acid (USEPA-approved
method) and then chilled, or by chilling alone.
The data used for this report were derived from
samples preserved by one of these methods.

The analytical methods used for sample analysis
are another important consideration. For
approximately the past decade, most laborato-
ries have used autoanalyzers to determine
nitrite, nitrate, ammonia, phosphorus, and ortho-
phosphate, and the Kjeldahl method to deter-
mine ammonia plus organic nitrogen (for
example, Fishman and Friedman, 1989, or
American Public Health Association and others,
1989). Only the period including water years
1980-90 was used for the discussion of water-
quality conditions. Prior to 1980, other methods
may have been used that potentially resulted in a
positive or negative analytical bias. Data col-
lected before water year 1980 are shown as part
of the discussion of long-term trends.

3. Quality assurance and quality control (QA/QC)
practices were used by the collecting and ana-
lyzing agencies. The QA/QC practices
employed by a laboratory are another indicator
of data quality. Participation in an external refer-
ence sample program (the USGS Standard Ref-
erence Water Sample or USEPA Water

Protection and Water Supply sample programs,
for example) and internal QA/QC measures
such as field duplicates, laboratory duplicates,
spikes, blanks, standards, and reference samples
all may be part of a laboratory QA/QC program.
For this analysis, only data analyzed at the
USGS National Water-Quality Laboratory,
USEPA-approved laboratories, or laboratories
with adequate QA/QC programs were used.
Chemical logic programs, such as those that cal-
culate cation-anion balances or that compare
total and dissolved constituent concentrations,
were not used. The cation-anion balance is not
an appropriate indicator of the quality of a labo-
ratory’s nutrient or sediment data, and, in many
cases, either a total or dissolved concentration
was available, but not both.

Ground-Water Quality Data

Approximately 2,000 water-quality samples
were available from 719 ground-water sites for water
years 1970-92; of these, 223 sites had more than 1
water-quality sample. Only the latest, most analyti-
cally complete water-quality sample for each ground-
water site was included in the data set for statistical
analysis, because multiple samples from a specific site
would weight the data set unevenly. Therefore, the
number of water-quality samples in the data set was
decreased to 719.

The number of ground-water sites in the data
base was further decreased to arrive at a final data set
for analysis based on the amount of available informa-
tion and spatial distribution. Ground-water sites lack-
ing data on geologic unit and well depth were deleted.
Wells that are completed in the Ozark and St. Francois
confining units were deleted because these units are
rarely used for water supply; hence, available data are
few and insufficient. Ground-water sites with water-
quality data were not evenly spatially distributed
throughout the study unit because data were gathered
for numerous studies in relatively small parts of the
Ozark Plateaus Province. For example, numerous
ground-water samples were collected as part of a study
in Boone County, Arkansas (Leidy and Morris, 1990).
In comparison, few ground-water samples have been
collected from many other parts of the study unit. To
obtain an even spatial distribution of data from wells
and springs, some ground-water sites with water-qual-
ity data were deleted from areas of the study unit with
large sample sizes. The deletion process was subjec-
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tively random with regard only to site location. A total
of 395 ground-water sites with water-quality data for
water years 1970-92 was included in the final data set
for ground-water analysis.

Sources of Available Water-Quality Data

Numerous sources of surface- and ground-water
quality data were available for this analysis. Because
of the large volume of data, only data collected by
Federal or State governmental agencies stored in com-
puterized data bases were used in the final data analy-
sis.

Each agency has different objectives for collect-
ing water-quality data. The specific collection objec-
tives affect the spatial, temporal, and, in the case of
surface water, hydrologic distribution of the data and
potentially the usefulness of some data. Synoptic-type
data collection activities generally involve infrequent
sampling at numerous sites in a large area for a limited
number of constituents. Project-specific data collec-
tion may involve sampling numerous sites in a rela-
tively small geographic area for a few, specific
constituents. Synoptic- and project-type data may have
limited use because of the poor spatial, temporal, or
hydrologic distribution of the data and the number of
constituents analyzed. Data collected for ambient
water-quality monitoring networks generally are col-
lected with regular frequency and for many constitu-
ents. Many ambient water-quality monitoring
networks have been in existence for 10 or more con-
secutive years and are most useful for regional-type
water-quality assessments.

The USGS began collecting water-quality data
for selected streams of the Ozark Plateaus in the early
1920’s. Presently (1994), 6 Federal and 15 State agen-
cies from Arkansas, Kansas, Missouri, and Oklahoma
collect and maintain records for most of the surface-
and ground-water quality information in the study
unit. The major water-quality data sources available
for this investigation have been tabulated by agency
(table 4). Many other local agencies and private orga-
nizations collect water-quality data, but much of these
data are in paper files rather than in computerized data
bases, making much of these data impractical for use
in this report.

Most of the computerized water-quality data
available for the study unit are in three national data
bases: (1) USGS National Water Data Storage and
Retrieval system (WATSTORE), (2) USEPA Storage

and Retrieval system (STORET), and (3) U.S. Depart-
ment of Energy National Uranium Resources Evalua-
tion Program system (NURE).

The Water Resources Division of USGS imple-
mented WATSTORE in 1971. In addition to data pro-
cessing, storage, and retrieval, WATSTORE is capable
of producing tables, graphs, and statistical analysis of
water data (Hutchison, 1975). WATSTORE is admin-
istered by and accessed through the National Water
Information System (NWIS). NWIS is a distributed
water data base in which data can be processed over a
network of minicomputers at USGS offices throughout
the United States (Maddy and others, 1991). All data
used for analysis in this report now are stored in WAT-
STORE.

STORET is a computerized data-management
information system maintained by the USEPA.
STORET consists of several software modules that
allow the user to store and retrieve data, use analytical
programs to access and analyze data, and to transfer
data to user written software or statistical packages.
STORET contains information for more than 700,000
sampling sites throughout the United States with more
than 130 million observations (Hoelman, 1989).

From 1974 to 1980, the U.S. Department of
Energy NURE Program systematically evaluated the
uranium resources of the conterminous United States
and Alaska. In 1984, the USGS assumed the responsi-
bility for archiving and distribution of NURE data.
Seven major types of NURE data are now available:
(1) geological maps; (2) aerial radiometric data; (3)
aeromagnetic data; (4) data from hydrogeochemical
and stream-sediment sample analyses; (5) geochemi-
cal data from rock sample analyses; (6) radiometric
data from borehole logging; and (7) evaluation data for
resource estimates.

Water-quality data from four Federal and four
State agencies were used for this retrospective analy-
sis, representing a total of 83 surface-water sampling
sites and 395 ground-water sampling sites. The data
used in this report are summarized in table 5 by
agency, the number of surface- and ground-water sam-
pling sites, and the collection method and frequency of
sampling.

Methods of Data Analysis

This section describes the methods of data anal-
ysis that were used in this report. These methods
include treatment of censored data, descriptive statis-
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Table 4. Major water-quality data sources available for the Ozark Plateaus study unit

Agency Data collection purpose, type, and accessibility
Federal agencies
National Park Service Resources assessment in National Park Service lands; data are collected

U.S. Army Corps of Engineers

U.S. Department of Energy

U.S. Environmental Protection Agency

U.S. Forest Service

U.S. Geological Survey

seasonally, in cooperation with the U.S. Geological Survey and universities;
data include organic and coliform bacteria; data are computerized, some in
WATSTORE; some streamflow data available.

Resource assessment on Corps developed projects; variety of water-quality
data, sometimes collected in cooperation with other Federal agencies; data
available from STORET and/or WATSTORE.

NURE Program; assess uranium resources of the Nation; data are
computerized, all data are inorganic; some data available on well location,
depth, and casing length.

Regulatory; wide variety of water-quality data, sometimes collected in
cooperation with State agencies; all data in STORET; information on well
construction and streamflow available.

Resource assessment in National Forest lands; some data are computerized,
some are paper files only; data include inorganic and biological analyses and
results of dye-tracing tests; some information available on streamflow.

Water-resources assessment and research; limited monitoring network for
surface- and ground-water quality; inorganic and some organic data; all data
are computerized in WATSTORE including some State agency data;
information on streamflow and well construction available.

Arkansas agencies

Arkansas Department of Health

Arkansas Department of Pollution Control
and Ecology

Arkansas Geological Commission

Monitoring of public water-supply system; most samples collected after
treatment, although some raw water sampled; samples analyzed for inorganic,
organic, radiochemical, and biological constituents; most data in paper files,
although will soon be computerized; no streamflow data.

Regulatory monitoring of 110 surface-water sites statewide; samples analyzed
for inorganic compounds with some pesticide data and fish-tissue analysis for
trace elements and organic compounds; data are computerized in WATSTORE
and STORET; information available on streamfiow.

Geologic mapping and mineral assessment with some water-resources
research; data are collected in cooperation with the U.S. Geological Survey
and are computerized; information available on well construction.

Kansas agencies

Kansas Department of Health and
Environment

Kansas Department of Wildlife and Parks

Kansas Geological Survey

Monitoring network of surface- and ground-water quality originally in
cooperation with the U.S. Geological Survey, but in-house since 1990; 20
years of records, virtually all data in STORET; chemical and biological
analyses for approximately 240 surface-water sites statewide, about 30 to 40
percent have streamflow data.

Monitoring of surface-water quality; data include inorganic analyses; data are
published, but not computerized.

Geological investigations and limited ground-water resources research; data
are computerized; information available on well construction, particularly for
wells drilled after 1975.
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Table 4. Major water-quality data sources available for the Ozark Plateaus study unit—Continued

Agency

Data collection purpose, type, and accessibliity

Missouri agencies

Missouri Department of Conservation

Missouri Department of Health

Missouri Department of Natural Resources -
Division of Environmental Quality

Missouri Department of Natural Resources -
Division of Geology and Land Survey

Monitoring contaminants in fish; analysis of fish tissue for organic compounds,
lead, cadmium, and mercury; samples collected at between 75 to 125 sites
statewide; large volume of data, only some are computerized.

Regulatory monitoring of ground-water quality; data include coliform bacteria
analyses on private wells statewide and nitrate and pesticide analyses in west-
central Missouri; also some tritium analyses; data are collected in cooperation
with the U.S. Geological Survey and are computerized; information available

on well construction.

Regulatory and some ambient monitoring; data include chemical,
radiochemical, and microbiological analyses of community and non-
community water-supply wells; analyses of stream water quality done in
cooperation with the U.S. Geological Survey; surface-water and
microbiological data are computerized, ground-water data are being
computerized; information on well construction available mostly for wells
drilled after 1975.

Geologic and water-resources research generally site specific; inorganic and
some pesticide analyses; some data are computerized, some only in paper files;
information on well construction includes drillers’ logs for about 30,000 wells
statewide, some are computerized.

Oklahoma agencies

Oklahoma Conservation Commission

Oklahoma Department of Environmental
Quality

Oklahoma Geological Survey

Oklahoma Scenic River Commission

Oklahoma Water Resources Board

Regulatory and ambient monitoring, as well as prioritization of basins for cost-
share assistance; data include nutrients, specific conductance, pH, and
dissolved oxygen, with some biological data on fish, periphyton, and algae;
data are computerized in STORET and WATSTORE.

Monitoring ambient water quality and assessment of hazardous waste sites;
most data in STORET or other computerized data base; some sites are water-
supply systems with samples collected after treatment; ground-water samples
generally are raw; analyses include inorganic, and some fish tissue, sediment,
and pesticide; some streamflow information is available; well construction
information is available from the Oklahoma Water Resources Board.

All water-quality work done in cooperation with the U.S. Geological Survey;
all data are computerized; information on well-site characteristics and
construction available on most sampling sites.

Monitoring ambient water quality of the Illinois, Flint, and Baron Fork Rivers;
analyses include nutrients, suspended solids, chloride, sulfate, hardness,
turbidity, and chemical oxygen demand; all data in STORET.

Monitoring network to establish trends and set water-quality standards; 300
wells statewide; all data in STORET, analyses primarily include inorganic
compounds; well construction information available as supplied from drillers’
logs.

tics (illustrated by boxplots), hypothesis tests, time-
series plots, and load estimation.

Treatment of Censored Data

Limitations in laboratory analytical techniques
and equipment determine the lower limit below which

constituent concentrations cannot be accurately deter-
mined or reported. When the actual concentration is
less than this lower limit, the concentration is reported
as less than the detection limit or minimum reporting
level of the analytical method. Some of the data
reported in this analysis as less than a certain concen-
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Table 5. Summary by agency of the number of sites, collection methods, and frequency of water-quality samples used for analysis in this

report

[GB, grab; M, monthly; D, daily; NA, not applicable; U, untreated water samples; EWI, equal width increment; PD, project dependent frequency; T, treated

water samples; B-M, bimonthly; W, weekly]

Surface-water samples

Ground-water samples

Number Collection Collection Number Collection Collection
Agency of sites method frequency of sites method frequency
National Park Service 1 GB M 0 NA NA
U.S. Army Corps of Engineers 1 GB M, D 0 NA NA
U.S. Forest Service 0 NA NA Spring—3 U 3-4 per year
Well—1
U.S. Geological Survey 42 EWI PD Spring—61 U PD
Well—300
Arkansas Department of Pollution Control 30 GB PD Spring—11 T once every
and Ecology Well—4 5-6 years
Kansas Department of Health and Environment 2 GB B-M, M 0 NA NA
Missouri Department of Natural Resources 1o NA NA Spring—6 T, U PD
Well—0
Oklahoma Department of Environmental 7 GB M, W Spring—8 T PD
Quality Well—1
Total number of sites analyzed 83 Spring—89
Well—306

!'Several of the U.S. Geological Survey sites were sampled in cooperation with the Missouri Department of Natural Resources.

tration may actually represent method detection limits
rather than minimum reporting levels. In the following
discussions, “detection limit” will be used to describe
the lower limit of an analytical method. Data are con-
sidered censored if greater than 5 percent of the total
number of data values are flagged as being less than a
certain detection limit or as not detected. A particular
constituent may have censored values with several dif-
ferent detection limits because analytical techniques
differ among laboratories or have changed over time.
How these censored data are handled in statistical
analysis varies with each method. When dealing with
censored values, the objective is to maximize informa-
tion without losing statistical integrity. The specific
treatment of censored data will be discussed in the
descriptions of the individual statistical methods.

Assessment of Water-Quality Conditions

A relatively short and recent period from water
years 1980-90 was chosen to assess current surface-
water quality conditions because of potential time

trends and to minimize the number of changes in
detection limits through time. The 11-year period is
short enough so that only in extreme cases would long-
term time trends affect the overall description of cur-
rent conditions. Nutrient concentrations are frequently
at or less than detection limits, and in general, detec-
tion limits have been fairly consistent through the
selected 11-year period. For ground water, a longer
period (water years 1970-92) was used so that suffi-
cient data would be available for analysis and interpre-
tation. Water-quality conditions for surface and ground
water were assessed using descriptive statistics and
hypothesis tests.

Descriptive Statistics

Descriptive statistics were used to show the cen-
tral tendency and variation in the water-quality data.
The minimum, maximum, and the 10th, 25th, 50th
(median), 75th, and 90th percentiles were calculated.
The median was chosen to represent the central ten-
dency of the data instead of the mean because the
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median is less sensitive to extreme values. The 25th
and 75th percentiles provide more information on the
central tendency and also variation of the data. The
10th and 90th percentiles provide information on the
typical variation in the data because they exclude the
extreme values in the lower and upper 10 percent of
the data set. When summary statistics for individual
surface-water sites were calculated, the percentiles for
censored data were estimated using a log-probability
regression procedure described by Gilliom and Helsel
(1986) and Helsel and Cohn (1988). The estimated
percentiles were not reported if there were fewer than
five observations larger than the detection limit.

The distribution of selected nutrient concentra-
tions for surface- and ground-water data was graphi-
cally displayed using side-by-side boxplots. A boxplot
is a useful tool for visually examining the central ten-
dency and variation of a group of data or for compar-
ing two or more groups of data (Tukey, 1977). A
boxplot is constructed by drawing a box from the 25th
percentile to the 75th percentile. A horizontal line in
the box depicts the median (50th percentile). In the
truncated version of the boxplot used for this report,
vertical lines (whiskers) are drawn from the box to the
10th and 90th percentiles. The top and bottom 10 per-
cent of the data are excluded to avoid scale compres-
sion of the data by the extremes. Boxplots constructed
for sites with censored data were modified by making
the lower limit of the box equal to the detection limit.
For sites with multiple-detection limits, the lower limit
was set equal to the largest detection limit. If this
detection limit was unusually large, the lower limit
was set to the next largest detection limit to avoid los-
ing important data.

Hypothesis Tests

The nonparametric Kruskal-Wallis analysis-of-
variance test (Helsel and Hirsch, 1992) was used to
test for differences in the distributions of two or more
groups of data. The distributions of the groups are con-
sidered significantly different from one another if the
probability (p-value) is less than 5 percent (<0.05) that
the observed difference occurs by chance.

Analysis of Long-Term Trends

Data from selected sites were plotted as time
series with a line of central tendency, or smooth,
added. The smoothing technique used is called the
LOWESS (LOcally WEighted Scatterplot Smoothing)

procedure (Cleveland, 1979). The purpose of smooth-
ing is to highlight trends or patterns in the data that are
difficult to see when only data are plotted as scatter-
plots. The smoothed line is determined by the pattern
of the data and may not be linear. Scatterplots and
LOWESS allow a visual examination of trend patterns
for sites with data available for different periods and
illustrate patterns of similarity or variation in constitu-
ent concentrations between two or more surface- or
ground-water sites. No statistical trend tests were per-
formed for this report.

Estimation of Loads

Loads (the product of concentration times dis-
charge) were estimated for total nitrogen, total phos-
phorus, and suspended sediment at selected surface-
water sites in the study unit. Site selection criteria for
load determinations were based on the sample collec-
tion method used and availability of continuous-
streamflow data. All sites with continuous-streamflow
data and water-quality samples collected using the
depth- and width-integrated methods (described previ-
ously in the “Evaluation of Water-Quality Data” sec-
tion) were identified. A subset (about 35 percent) of
these sites was selected to represent a variety of basins
of interest in the study unit. Because the loads of many
constituents increase as streamflow increases, a large
part of the annual load can be associated with the high-
est flows; therefore, it is important to estimate high-
flow concentrations accurately. Loads were estimated
only if four or more of the samples for a given constit-
uent were collected at streamflows in the upper decile;
that is, at flows that corresponded to daily mean flows
that would be expected to be exceeded 10 percent or
less of the time.

A load estimation method using the Minimum
Variance Unbiased Estimator (described in Cohn and
others, 1992) and log linear regression models was
used to estimate annual mean loads. One of several log
linear regression models based on concentration and
streamflow data for water years 1980-90 was chosen
for estimating loads during the same period. The
model selected was chosen based on significance of
variables, correlation coefficients, and residual analy-
sis. Independent variables in the models include time,
sine and cosine of time, and functions of streamflow.
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CHARACTERISTICS OF WATER-
QUALITY DATA

The distribution of water-quality data through
space and time is an important factor when evaluating
the significance of that data. Spatial and temporal dis-
tribution, site and basin characteristics, land use,
ground-water site type (well or spring), and well depth
are all important in assessing the representativeness
and suitability of data for statistical summaries.

Spatial and Temporal Distribution of Surface-
Water Quality Data

Nutrient and suspended-sediment data were
available for more than 2,000 surface-water sites in the
study unit. The location of the 83 sites selected to eval-
uate the water-quality conditions of the study unit for
this report is shown in figure 3. Spatial distribution of
the sites is not uniform; long-term water-quality sam-
pling programs have not been conducted in the head-
waters of streams draining several physiographic
areas, such as the Salem Plateau, the St. Francois
Mountains, and the Boston Mountains. However, the
sites selected collectively represent a wide range of the
physiography and major land uses present in the study
unit.

Site and basin characteristic information for the
83 surface-water sites is shown in table 6, at the back
of this report. Drainage areas of the streams for these
sites range from 35 mi? (Butler Creek near Sulphur
Springs, Ark., site 62) to 14,500 miZ (Osage River
below St. Thomas, Mo., site 9). The frequency of sam-
ple collection generally was monthly or bimonthly for
most of the sites.

A site type was assigned to each site based on
physiography and land use, or proximity to a STP.
Integrator sites have basins that have heterogeneous
physiography or land use or both and integrate the
effects of a variety of natural or anthropogenic factors
affecting water-quality conditions. All other site types
represent indicator sites, which have basins that have
relatively homogeneous physiography and land use.
The factors affecting water-quality conditions in these
basins are more readily identifiable. Geographic Infor-
mation Retrieval and Analysis System (GIRAS) land-
use coverage data (U.S. Geological Survey, 1990)
were used to determine the major land uses in each
basin. Forest and agricultural land-use settings pre-
dominate throughout the study unit. Agricultural land

use can be further subdivided into cropland, pasture,
and forest/pasture mix (greater than one-third but less
than two-thirds pasture), to reflect the different agri-
cultural practices in the Ozark Plateaus study unit.
Poultry, cattle, and swine commonly are raised on
these pastures. Other sites have been categorized as
“STP sites” because of the close proximity of STP dis-
charges.

The monthly distribution of sampling differs
somewhat among agencies and sampling programs.
For example, nitrite plus nitrate samples were col-
lected at most sites on a somewhat uniform monthly or
bimonthly schedule (fig. 4). The selected sites repre-
sent sampling programs conducted by Federal and
State agencies and are generally characteristic of the
83 surface-water sites used in this analysis. A seasonal
component to sampling at some locations is indicated
by an increased frequency of sample collection. The
increased sampling frequency at some sites during
summer and early fall months is related to collection
of samples during low-flow conditions. The larger
number of samples collected during May, August, and
December at the White River at Beaver Dam near
Eureka Springs, Ark. (site 22), is related to the trian-
nual frequency of sample collection.

Streamflow conditions frequently affect the con-
centration of constituents in rivers and streams. To
accurately represent water-quality conditions at a par-
ticular location, water-quality samples should be col-
lected during a variety of streamflow conditions. The
number of samples of a representative constituent,
total phosphorus, collected under different discharge
conditions at selected surface-water sites in the study
unit during water years 1980-90 is shown in figure 5.
The sites for which data are shown in figure 5, all of
which had continuous record streamflow information,
represent several Federal and State agencies and gen-
erally are characteristic of other sites for which contin-
uous discharge information is available. Discharge
conditions are grouped in categories of deciles of daily
mean discharge. For example, discharges in the first
decile (10 percent) category represent low flows; these
discharges were exceeded 90 percent of the time dur-
ing water years 1980-90. The sites shown in figure 5
generally were sampled throughout the complete range
of discharge conditions, although specific deciles for
some sites might have fewer samples than expected for
an ideal statistical distribution. For example, 79 total
phosphorus samples were collected from the Osage
River below St. Thomas, Mo. (site 9), dur-
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ing water years 1980-90. Ideally, the 79 samples
would have been distributed evenly in each decile cat-
egory, but the third decile (20-30 percent) category
was sampled only two times.

Spatial and Temporal Distribution of Ground-
Water Quality Data

The number of ground-water samples from each
hydrogeologic unit used in the data set for this report
is related to the unit’s relative size and importance as a
source of water (table 7; figs. 6 and 7). For example,
ground-water samples were collected most frequently
from the Ozark aquifer. The Ozark aquifer is areally
extensive and used across the study unit, even in places
where the aquifer is confined by a thick sequence of
overlying rocks.

In general, the land use (agriculture, forest, and
urban) for each ground-water sampling site was deter-
mined from the GIRAS land-use coverage (U.S. Geo-
logical Survey, 1990). Most of the sites were identified
in areas of agricultural and forested land use. The
number of ground-water sites in each land use (fig. 8)
is approximately proportional to the amount of a par-
ticular land-use setting in each hydrogeologic unit. For
example, the predominant land-use setting in the West-
ern Interior Plains confining system is agricultural;
therefore, most of the ground-water sites from this
hydrogeologic unit are located in areas of agricultural
land use. Most water samples from within the Ozark
aquifer are from deep (mostly greater than 500 ft) pub-
lic-supply wells. Although the land use adjacent to
these public-supply wells has been identified as urban,
the aquifer probably is recharged in forested or agri-
cultural land that surrounds most of these communi-
ties.

The number of water samples collected from
spring and well site types in each aquifer is related to
hydrogeology and use (fig. 8). For example, the data
set contains no water samples collected from springs
in the Mississippi River Valley alluvial aquifer
because few springs issue from the unconsolidated
sediments that constitute that aquifer. By contrast, in
the Springfield Plateau aquifer, the number of water
samples collected from springs is greater than the
number from wells because springs are abundant, are
readily available to sample, and are locally an impor-
tant source of water.

The number of ground-water samples collected
from the confined and unconfined hydrogeologic types
is related to geology and use (fig. 9). For example, a

large number of wells are completed in the confined
parts of the Springfield Plateau and Ozark aquifers
because those units are overlain in places by a thick
sequence of rock. In contrast, few wells are completed
in confined parts of the St. Francois aquifer. The West-
ern Interior Plains confining system and the Missis-
sippi River Valley alluvial aquifer are not confined in
the study unit.

The ground-water samples are not evenly dis-
tributed throughout the period of record from 1970-92
(fig. 9). The largest number of samples were collected
in 1970 and the smallest in 1984. Similar to the spatial
distribution of ground-water sites, the uneven temporal
distribution of ground-water quality data is a conse-
quence of numerous local-scale hydrologic investiga-
tions for which data were collected during a relatively
short, 2- to 3-year, period.

The depths of wells used here ranged from 5 to
3,420 ft below land surface. Median well depth is 436
ft below land surface. Well depth generally is not a
reliable indicator of the depth of the source of water in
a well. Most wells in the study unit have a short sec-
tion of surface casing (less than 50 ft) and an open
borehole (no screened interval) that allows the well to
obtain water from nearly the entire open section.
Therefore, water samples collected from deep wells
generally were a composite of water from the entire
hydrogeologic unit or even from several units.

Statistical analyses indicate median well depths
differ significantly among the five major hydrogeo-
logic units (fig. 10). Median well depths are related to
the depth and thickness of each hydrogeologic unit.
For example, median well depths are greater in the
Ozark and St. Francois aquifers than in the other
hydrogeologic units because the Ozark and St. Fran-
cois aquifers are relatively thick in the study unit and
are used in areas where they are overlain by a thick
sequence of confining rock. In contrast, the Western
Interior Plains confining system and Mississippi River
Valley alluvial aquifer are present in relatively thin
surficial deposits in the study unit; therefore, median
depths of wells completed in these two units are less
than in the other hydrogeologic units.

Median depth of wells is greatest in the urban
land-use setting compared to forest and agricultural
land-use settings (fig. 10). The wells in the urban land-
use setting primarily are for public supply and are
drilled relatively deep and often penetrate several geo-
logic units to provide an adequate water supply.
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Table 7. Number of ground-water samples, by hydrogeologic unit, used in data analysis

Number of
Hydrogeologic unit Abbreviation samples Percent

Mississippi River Valley alluvial aquifer ALVM 20 5.1
Ozark aquifer 0ZAQ

Confined 81 20.5

Unconfined 131 332
St. Francois aquifer SFAQ 11 2.8
Springfield Plateau aquifer SPAQ

Confined 29 7.3

Unconfined 74 18.7
Western Interior Plains confining system WIPC 49 12.4
Total 395 100.0

Median well depths are greater in the confined
parts of the Springfield Plateau and Ozark aquifers as
compared to those in the unconfined parts of the same
hydrogeologic unit (fig. 10). Wells completed in the
confined parts of the Springfield Plateau and Ozark
aquifers are drilled deep to penetrate a thick sequence
of overlying confining rocks to reach the more produc-
tive confined aquifer.

WATER-QUALITY CONDITIONS

Water quality is affected by physiography, geol-
ogy, land use, and other natural and human factors.
The relation between water quality and selected fac-
tors is discussed in the following sections.

Surface Water

The factors affecting nutrient and suspended-
solids concentrations in surface water were determined
by analyzing the relation of water quality with various
basin characteristics using the techniques described in
the section “Methods of Data Analysis.” Data for
water years 1980-90 for individual stream sites were
combined based on physiography and land-use setting
or site type (table 6). Water-quality differences within
a physiographic area with multiple land-use settings
and between physiographic areas with forested or agri-
cultural land-use settings were considered. Because of
the availability of data for only a small group of sites

in the Boston and St. Francois Mountains, the results
of these analyses may not always be representative of
these physiographic areas. For selected nutrients, con-
centrations for indicator basins were compared to con-
centrations for integrator basins later in this
section.The relation between selected nutrient concen-
tration and stream discharge also was determined.
Summary statistics for each of the 83 surface-water
sites are listed in table 8, at the back of this report.

Nutrients

The nutrient species analyzed included nitrite
plus nitrate, ammonia, total ammonia plus organic
nitrogen, total nitrogen, total phosphorus, and ortho-
phosphate. Summary statistics of the nutrient data for
all indicator basins (table 6) grouped by physiography
and land-use setting are listed in table 9, at the back of
this report, and figures 11 to 16.

Nitrite Plus Nitrate

Nitrite plus nitrate concentrations differed sig-
nificantly among samples for streams draining basins
with different land-use settings within the five physio-
graphic areas (fig. 11 and table 9). In all cases, concen-
trations at STP sites were significantly larger than at
any other type of site. Within the Boston Mountains
and Springfield and Salem Plateaus, nitrite plus nitrate
concentrations increased significantly with more
intense land-use activities (from forest to forest/pas-
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ture mix to pasture), indicating a strong association
between percent pasture and nitrite plus nitrate con-
centrations. With the exception of the STP sites, the
largest concentrations were in samples from streams
draining Springfield Plateau forest/pasture mix and
pasture sites, where some of the largest densities of
poultry, cattle, and swine in the study unit are located.

Significant differences in nitrite plus nitrate con-
centrations also occurred between samples from for-
ested and agricultural basins in different physio-
graphic areas (fig. 11). Concentrations were smallest
at forested sites in the Springfield Plateau. Differences
between the Springfield and Salem Plateaus forested
sites would not be expected, but in this case, the 2
basins representing Springfield Plateau forested land
use are 85 percent or more forested as compared with
the 11 Salem Plateau sites, which may be as much as
33 percent pasture. Wasteloads can be expected to
increase as forest lands are converted to pasture. Con-
centrations from the forested Boston Mountains sites
were elevated relative to the other physiographic areas.
The Salem Plateau forest/pasture mix sites had smaller
nitrite plus nitrate concentrations than Osage Plains
cropland sites, and both had concentrations signifi-
cantly smaller than either of the Springfield Plateau
agricultural land-use settings.

Ammonia

Ammonia concentrations, like nitrite plus nitrate
concentrations, were significantly larger in samples
from STP sites in all of the physiographic areas (fig.
12 and table 9). Ammonia concentrations for sites in
the Springfield and Salem Plateaus generally increased
significantly with more intense land-use activities,
with the exception of samples from sites in the Spring-
field Plateau forest/pasture mix. Ammonia concentra-
tions were significantly larger than those from basins
where pasture is the dominant land use.

When comparing forested land use among four
of the physiographic areas, only samples from the
Boston Mountains forested sites had significantly
larger ammonia concentrations (fig. 12). Most of the
samples representing the Boston Mountains forested
site type were collected at one site on the West Fork
White River east of Fayetteville, Ark. (site 18; table 9).
The land use in this basin is primarily forested. How-
ever, a substantial amount of pasture occurs adjacent
to the stream for 15 to 20 mi upstream of the site. An
STP about 15 river miles upstream and urban nonpoint
sources also probably contributed to the larger ammo-

nia concentrations. Samples from the Salem Plateau
forest/pasture mix agricultural land-use sites generally
had the smallest ammonia concentrations, and samples
from the Osage Plains cropland sites had the largest.

Total Ammonia Plus Organic Nitrogen

Fewer total ammonia plus organic nitrogen data
were available for all physiographic areas; therefore,
fewer comparisons could be made. The patterns for
total ammonia plus organic nitrogen were not as defi-
nite as those for nitrite plus nitrate and ammonia (fig.
13 and table 9). Samples from STP sites had signifi-
cantly larger concentrations than samples from other
land-use settings within the same physiographic area
as with other species. Also, total ammonia plus
organic nitrogen concentrations at sites in forested
basins within the Springfield and Salem Plateaus were
equal to or significantly smaller than concentrations at
sites in basins with agricultural land use.

When comparing total ammonia plus organic
nitrogen samples from basins with forested land use in
different physiographic areas, the Springfield Plateau
again had the smallest concentrations and the Boston
Mountains the largest (fig. 13). Total ammonia plus
organic nitrogen concentrations did not differ signifi-
cantly among samples from basins with agricultural
land uses in the Springfield and Salem Plateaus, but all
of these concentrations were significantly smaller than
concentrations in samples collected from streams in
the Osage Plains cropland.

Total Nitrogen

The best indicator of nitrogen loads in a stream
is the total nitrogen concentration because total nitro-
gen is the sum of all nitrogen species (nitrite, nitrate,
ammonia, and organic nitrogen). Total nitrogen also is
the preferred constituent to use for comparisons
between land uses and physiographic areas; however,
as with total ammonia and organic nitrogen, fewer
total nitrogen analyses were available (table 9). Fewer
analyses were available because total nitrogen gener-
ally is a calculated value and thus requires values for
all species that contribute to total nitrogen concentra-
tions. Because total ammonia plus organic nitrogen
was not determined for many of the samples, total
nitrogen values could not be calculated for these sam-
ples.

Samples collected from STP sites had the largest
total nitrogen concentrations in the Boston Moun-
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Figure 11. Statistical distribution of nitrite plus nitrate concentrations at surface-water sites for water years 1980-90.
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Figure 12. Statistical distribution of ammonia concentrations at surface-water sites for water years 1980-90.
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Figure 13. Statistical distribution of total ammonia plus organic nitrogen concentrations at surface-water sites for water years
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tains and Springfield and Salem Plateaus (fig. 14).
Within the Springfield Plateau, total nitrogen concen-
trations increased significantly with more intense land-
use activities (from forest to forest/pasture mix to pas-
ture). For samples from forested basins, the pattern
seen with nitrite plus nitrate and total ammonia plus
organic nitrogen was repeated.

Within agricultural basins, streams in the Salem
Plateau forest/pasture mix land-use setting had the
smallest total nitrogen concentrations, whereas
streams in the Springfield Plateau pasture had the larg-
est (fig. 14). In previous comparisons between samples
collected from streams in agricultural areas in the
Osage Plains and Springfield Plateau, samples from
the Osage Plains cropland had the smallest nitrite plus
nitrate concentrations and the largest ammonia and
total ammonia plus organic nitrogen concentrations.
Total nitrogen concentrations in the Osage Plains were
significantly larger than the Salem Plateau forest/pas-
ture mix but smaller than either of the Springfield Pla-
teau agricultural land uses.

Total Phosphorus

Total phosphorus concentrations include phos-
phorus in solution and adsorbed to sediment particles.
Total phosphorus concentrations differed significantly
between streams in different land-use settings in the
five physiographic areas (fig. 15 and table 9). As with
the various nitrogen species, concentrations at STP
sites were significantly larger than at sites from the
other land-use settings. Within the Springfield Plateau,
total phosphorus concentrations at sites in forested
basins were significantly smaller than concentrations
at sites in basins with agricultural land use. This differ-
ence did not occur in the Salem Plateau.

Significant differences in total phosphorus con-
centrations also occurred in samples from forested and
agricultural land-use settings between the five physio-
graphic areas (fig. 15). Concentrations were smallest
for streams in forested parts of the Springfield Plateau.
Total phosphorus concentrations in samples from the
forested Boston Mountains probably were elevated
relative to the other physiographic areas because of the
adjacent pasture and the STP located upstream of one
of the sites. Within agricultural basins, the Salem Pla-
teau forest/pasture mix sites had the smallest total
phosphorus concentrations, and the Osage Plains crop-
land and Springfield Plateau pasture sites had the larg-
est. The larger concentrations in the Osage Plains
could be related not only to agricultural land use but

also to the substantially larger suspended-sediment
concentrations in streams in the area.

Orthophosphate

Orthophosphate is the most common phospho-
rus ion detected in solution in natural waters. Ortho-
phosphate analysis was not routinely done, and less
data were available than for total phosphorus. Ortho-
phosphate concentrations had virtually the same pat-
tern as concentrations for total phosphorus for various
land-use settings within the physiographic areas (fig.
16 and table 9), except that concentrations from
Springfield Plateau pasture streams were significantly
larger than those from the forest/pasture mix streams
in the Springfield Plateau.

Patterns similar to those for total phosphorus
also were seen for orthophosphate concentrations from
forested and agricultural land-use settings between the
five physiographic areas (fig. 16). An exception is that
concentrations for Osage Plains cropland streams were
significantly smaller than those from either of the agri-
cultural land-use settings in the Springfield Plateau.
These results support the idea that much of the phos-
phorus in the Osage Plains cropland streams was asso-
ciated with sediment particles, whereas much of the
phosphorus in the Springfield Plateau forest/pasture
mix and pasture streams was in solution as orthophos-
phate.

Suspended Sediment and Suspended Solids

Because of differences in collection and analyti-
cal methods, suspended-sediment data are considered
to be more accurate than suspended-solids data as an
indicator of actual stream concentrations of inorganic
material. Only 14 of the 83 sites had suspended-sedi-
ment data, so suspended-solids data were used here.

Suspended-solids concentrations were largest in
the Osage Plains because of easily erodible soils and
intensive field- and row-crop agriculture (fig. 17 and
table 9). The slightly larger concentrations in the Bos-
ton Mountains, as compared to the Springfield and
Salem Plateaus and St. Francois Mountains, may be
the result of the availability of data for only a small
group of possibly unrepresentative sites in the Boston
Mountains. Suspended-solids concentrations differed
significantly among samples from different land-use
settings in the Springfield and Salem Plateaus; concen-
trations increased with more intense land-use activities
(from forest to forest/pasture mix to pasture). Concen-

Water-Quality Conditions 33



100 (241)  (0) (53) (5) (107) (132) (387) (276) (134) (155) (86) (129)  (0)
p<0.05 p<0.05 p<0.05
10 =
@ D
z [¢]
L 1~ B B =
g B
E
z A
2 A&
o
E o1
= (o] S F M S F M P S F M S F
e OoP BM SP SA SF
o
» PHYSIOGRAPHIC AREA AND LAND USE
(0] (63) (1382) (155)  (0) (241) (337) (276)  (86)
3 100
= p<0.05 p<0.05
=
-4
g
8
E | . - .
=z
:
'_ %
1+ — - D -
(o]
B
B B A
A
0.1 c M P M
BM SP SA SF OP SP SP SA
FORESTED LAND USE AGRICULTURAL LAND USE
EXPLANATION
PHYSIOGRAPHIC AREA p<0.05 P-VALUE--Probability that observed difference
occurs by chance. Probabilities less than
OP Osage Piains 5 percent (<0.05) are assumed to be significant
s U lnEE (155)  NUMBER IN PARENTHESES ber of anal
g --number of analyses
aP Springfield Plateau included in computation of percentiles
SA Salem Plateau
SF St. Francois Mountains 90th percentile
——75th il
LAND USE th percentile
— 50th percentile (median)
F Forest — o5 il
M Forest/pasture mix parcentie
P Pasture — 10th percentile
C Cropland
s Sewage treatment plant A WITHIN A COMPARED GROUP, DISTRIBUTIONS

ASSOCIATED WITH THE SAME LETTER ARE
NOT SIGNIFICANTLY (p<0.05) DIFFERENT

Figure 14. Statistical distribution of total nitrogen concentrations at surface-water sites for water years 1980-90.

34 Water-Quality Assessment—Analysis of Information on Nutrients, Suspended Sediment, and Suspended Solids, 1970-92



TOTAL PHOSPHORUS, IN MILLIGRAMS PER LITER AS PHOSPHORUS

o
L

0.01

0.001

-
o

(=]
o

0.01

0.001

(510)  (117) (124) (24) (223) (200) (775) (752) (683) (651) (872) (331)  (66)
p<0.05 p<0.05 p<0.05 p<0.05
B c
A B B ¢
I W - S | I S R 1 L (- "L
A B A A
C S F M S F M P S F M S F
OP BM SP SA SF
PHYSIOGRAPHIC AREA AND LAND USE
(124) (200) (651)  (66) (510) (775) (752) (872)
p<0.05 p<0.05
D é c BC
________ I A TS ) I
A B T B A
[oF M P M
BM SP SA SF OP SP SP SA
FORESTED LAND USE AGRICULTURAL LAND USE
EXPLANATION
PHYSIOGRAPHIC AREA p<0.05  P-VALUE--Probability that observed difference
occurs by chance. Probabilities less than
OP Osage Plains 5 percent (<0.05) are assumed to be significant
BM  Boston Mountains (66)  NUMBER IN PARENTHESES--number of analyses
SP Springfield Plateau included in computation of percentiles
SA Salem Plateau .
SF  St. Francois Mountains 90th percentile
— 75th percentile
EHBIES —— 50th percentile (median)
; iorest —— 25th percentile
orest/pasture mix .
P Bt 10th percentile
c Cropland A WITHIN A COMPARED GROUP, DISTRIBUTIONS
S Sewage treatment plant ASSOCIATED WITH THE SAME LETTER ARE
NOT SIGNIFICANTLY (p<0.05) DIFFERENT
DL  DETECTION LIMIT

Figure 15. Statistical distribution of total phosphorus concentrations at surface-water sites for water years 1980-90.

‘Water-Quality Conditions

35



(110)  (0)  (120) (24) (223) (169) (258) (515) (406) (189) (621) (314)  (0)
10
p<0.05 p<0.05 p<0.05
1 t
8 o1f é -
c
o
: iin |
c D
i 001 [rmim e it i o i s i r ~& B e DL
B A A B A A B
2
o
E
=
o« 0.001
W (o] S F M S F M P S F M S F
o OP BM SP SA SF
E PHYSIOGRAPHIC AREA AND LAND USE
[0}
5_ - (120) (169) (189)  (0) (110)  (258) (515)  (621)
=
- p<0.05 p<0.05
ke
& 1k o L 4
[77]
o
x
-
(v
o) 01 - - -
ﬁ i D D DL
o c A B 8 B A
0.001
Cc M P M
BM SP SA SF OP SP SP SA
FORESTED LAND USE AGRICULTURAL LAND USE
EXPLANATION
PHYSIOGRAPHIC AREA p<0.05 P-VALUE--Probability that observed difference
occurs by chance. Probabilities less than
OP Osage Plains 5 percent (<0.05) are assumed to be significant
BM Boston Mountains
i (66) NUMBER IN PARENTHESES--number of analyses
SP  Springfield Plateau included in computation of percentiles s
SA Salem Plateau .
SF St Francols Mountains 90th percentile
— 75th percentile
LAND USE — 50th percentile (median)
F Forest —— 25th percentile
M Forest/pasture mix 10th percentile
P Pasture
(o] Cropland A WITHIN A COMPARED GROUP, DISTRIBUTIONS
s Sewage treatment plant ASSOCIATED WITH THE SAME LETTER ARE

DL DETECTION LIMIT

NOT SIGNIFICANTLY (p<0.05) DIFFERENT

Figure 16. Statistical distribution of orthophosphate concentrations at surface-water sites for water years 1980-90.

36

Water-Quality Assessment—Analysis of Information on Nutrients, Suspended Sediment, and Suspended Solids, 1970-92



trations in the samples from STP sites are most likely
related to land-use activities in the basin and not from
STP effluents.

Significant differences in suspended-solids con-
centrations also occurred among samples from for-
ested and agricultural basins in the five physiographic
areas (fig. 17). Concentrations were significantly
larger in the Salem Plateau and St. Francois Mountains
than in the Springfield Plateau probably because of the
larger percentage of pasture in the basins of available
sites in these two forested regions. Suspended-solids
concentrations in samples collected at Springfield Pla-
teau pasture sites and at Salem Plateau forest/pasture
mix sites did not differ, but they were both signifi-
cantly larger than the concentrations in samples col-
lected at Springfield Plateau forest/pasture mix sites.
The reason for the difference within the Springfield
Plateau can be attributed to increased land disturbance
from forest/pasture mix to pasture.

Comparison of Indicator and Integrator Sites

Indicator sites were chosen to represent specific
land-use settings, such as forested, forest/pasture mix,
pasture, and STP, within a specific physiographic area.
To be designated an indicator site, a basin had to have
relatively homogeneous land use and physiography.
Integrator sites had more heterogeneous land use and
physiography. Median nutrient concentrations at inte-
grator sites in general were intermediate between the
observed median concentrations at upstream indicator
sites (tables 8 and 9), because the water quality at inte-
grator sites was partially determined by the mixing of
water coming from these basins. Three basins—the
Meramec River, the Osage River, and the White
River—were chosen for comparison of nitrite plus
nitrate and total phosphorus concentrations at indica-
tor and integrator sites (figs. 18 and 19) because these
basins represent a wide variety of conditions. The
hydrologic, chemical, and biological processes occur-
ring in these three basins represent processes in the
other major basins of the study unit.

Meramec River

The Meramec River is not regulated by reser-
voirs and lies within the St. Francois Mountains and
Salem Plateau (fig. 1). The upper Meramec River
Basin (site 12) is primarily forested and lies within the
Salem Plateau. Major basins within the Meramec
River Basin include the Bourbeuse River Basin (site

13), which lies in the Salem Plateau and has a forest/
pasture mix land-use setting, and the Big River Basin
(site 14), which lies in the St. Francois Mountains and
Salem Plateau and is primarily forested (table 6, fig.
3). Historically, lead and zinc mining occurred in the
basin. Median nitrite plus nitrate concentrations were
largest at the site in the Bourbeuse River Basin, which
probably has the most agricultural activity in the Mer-
amec River Basin, and smallest at the downstream
integrator site (site 15), which indicates a dilution
effect (fig. 18). Median total phosphorus concentra-
tions at the integrator site (site 15) were intermediate
between concentrations for samples from the two for-
ested sites (sites 12 and 14) and the forest/pasture mix
site (site 13, fig. 19). Variations in water quality at
these sites within the Meramec River Basin can be
attributed mostly to land-use differences rather than
physiography or stream regulation.

Osage River

The Osage River Basin lies within the Osage
Plains and Springfield and Salem Plateaus physio-
graphic areas (fig. 1). The Osage River and its major
tributaries are regulated by several dams on the main
stem, including two dams on the Osage River in Mis-
souri, one dam on the Pomme de Terre River, and one
dam on the Sac River. The indicator sites in the basin
represent multiple land-use settings within different
physiographic areas including: Osage Plains cropland
(sites 1, 2, and 6), Springfield Plateau pasture (site 3),
and Salem Plateau pasture, forest/pasture mix, and for-
est (sites 5, 8, and 10; table 6, fig. 3). Although site 10
(Big Piney River at Devil’s Elbow) is not actually in
the Osage River Basin, the quality of water for the Big
Piney River, a tributary of the Gasconade River, was
representative of the water quality for similar streams
in the Osage River Basin.

Median concentrations of nitrite plus nitrate
were largest at stream sites in the basins with agricul-
tural land use (sites 1, 2, 3, 5, 6, and 8) and decreased
at the Salem Plateau forested and integrator sites (sites
9, 10, and 83; fig. 18). The smaller median concentra-
tion at site 83 (Osage River below Truman Dam at
Warsaw, Mo.), the first integrator site, probably was
related to the location of the site below a major reser-
voir and the storage of relatively dilute water within
the reservoir. The median nitrite plus nitrate concen-
tration at the second integrator site (site 9, Osage River
below St. Thomas, Mo.) was equal to the median con-
centration at site 83 but smaller than the
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Figure 17. Statistical distribution of suspended-solids concentrations at surface-water sites for water years 1980-90.
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median concentration at site 8, indicating that the
water quality at site 9 was determined partially by the
mixing of water of different quality from other basins.

Total phosphorus concentrations were largest in
samples from the Osage Plains cropland as shown pre-
viously (fig. 19). Median concentrations at the two
integrator site (sites 9 and 83) were intermediate
between the upstream indicator sites, again indicating
that the water quality at these sites was determined
partially by the mixing of water of different quality
from other basins.

White River

The White River Basin drains parts of the Bos-
ton Mountains, Springfield and Salem Plateaus, and
Mississippi Alluvial Plain physiographic areas (fig. 1).
The White River and major tributaries are regulated by
four dams on the mainstem and one dam on the North
Fork River. The indicator sites in the basin represent
multiple land-use settings within different physio-
graphic areas including: Boston Mountains forest and
forest/pasture mix (sites 18 and 20), Springfield Pla-
teau forest, forest/pasture mix, and pasture (sites 26,
28, 31, 34, and 41), and Salem Plateau forest and for-
est/pasture mix (sites 33 and 37; table 6, fig. 3).

Concentrations of nitrite plus nitrate generally
were largest in the basins with agricultural land use
and were smallest in the two Springfield Plateau for-
ested basins (sites 34 and 41; fig. 18). Site 18 (West
Fork White River east of Fayetteville, Ark.), represent-
ing Boston Mountains forested land use, had relatively
large nitrite plus nitrate concentrations. As discussed
previously, although the land use in this basin is pri-
marily forested, pasture adjacent to the stream, a STP
upstream, and the urban nonpoint sources probably
contributed to nutrient concentrations. Site 37 (North
Fork River near Tecumseh, Mo.), representing Salem
Plateau forested land use, also had relatively large
nitrite plus nitrate concentrations. Dye-trace studies
indicate that two springs discharging into the river
upstream of site 37 are recharged partly by effluent
from a STP (J.E. Vandike, Missouri Department of
Natural Resources, oral commun., 1994). The median
values and ranges in concentrations at five of the inte-
grator sites (sites 22, 30, 36, 39, and 42) were similar
and were intermediate between the indicator sites in
the White River Basin. The larger concentrations at
integrator site 29, which is located below Table Rock
Dam, probably reflect the larger concentrations

expected with the agricultural and urban development
that has occurred in the basin.

Total phosphorus concentrations also generally
were largest in the basins with agricultural land use
and were smallest in the two Springfield Plateau for-
ested basins (sites 34 and 41), the Salem Plateau for-
ested basin (site 37), and three of the integrator basins
(sites 22, 30, and 39; fig. 19). The larger concentra-
tions at integrator site 29 most likely were related to
development in the basin. Integrator site 42 on the
White River is located in the Mississippi Alluvial
Plain. Streams in this region generally have larger sed-
iment concentrations than streams in other regions in
the study unit, which probably accounts for the larger
total phosphorus concentrations at this site.

Relation of Selected Nutrient Concentrations and
Discharge

The relation between nutrient concentration and
discharge is a function of which phase the nutrient pre-
fers (dissolved or particulate phase), point or nonpoint
source origin of the nutrient, the overall magnitude
and availability of the constituent in the basin, and the
degree of streamflow regulation by reservoirs. Two
constituents, nitrite plus nitrate and total phosphorus,
were considered in this discussion. Representative
plots of concentration and discharge with a line of cen-
tral tendency (LOWESS) for selected sites with vari-
ous land uses and from different physiographic areas
are shown in figures 20 and 21. Plots for selected inte-
grator sites also are shown.

Nitrite Plus Nitrate

Nitrite and nitrate primarily exist in the dis-
solved phase. Increases in discharge caused by precip-
itation runoff in unregulated basins with primarily
nonpoint sources of nitrite and nitrate generally result
in an initial increase in nitrite plus nitrate concentra-
tions caused by washoff of available material followed
by decreasing concentrations as dilution occurs. The
magnitude of the concentrations will depend on the
availability of nitrite and nitrate in the basin, which is
directly related to land use. The sites representing for-
ested land use (sites 12, 16, 34, and 41) had little to no
increases in nitrite plus nitrate concentrations with
increasing discharge and virtually no dilution effect. In
contrast, the sites representing agricultural land use
(sites 2, 53, 63, and 66) had definite increases in con-
centration with increasing discharge followed by dilu-
tion (fig. 20).
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Figure 20. Relation of nitrite plus nitrate concentration to discharge at selected sites for water yars 1980-90.
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Figure 20. Relation of nitrite plus nitrate concentration to discharge at selected sites for water yars 1980-90—Continued.
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Figure 21. Relation of total phosphorus concentration to discharge at selected sites for water years 1980-90.
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At sites primarily affected by point sources of
nitrite and nitrate, concentrations generally were larg-
est at low flows. Increases in discharge caused by pre-
cipitation runoff dilute the point source of nitrite plus
nitrate causing a decrease in concentration as detected
at site 27, which is a Springfield Plateau STP site.

Streamflow regulation by reservoirs can affect
the concentration-discharge relation. Increases in dis-
charge caused by dam releases upstream will not sig-
nificantly change constituent concentrations in the
stream. Integrator site 9 is located downstream of a
major reservoir and had a rather indefinite relation
between nitrite plus nitrate and discharge. Integrator
Site 15 is unregulated and had a similar concentration-
discharge relation to that of the agricultural basins.

Total Phosphorus

Because phosphorus species tend to adsorb to
sediments, increases in discharge caused by precipita-
tion runoff in unregulated basins with mostly nonpoint
sources of phosphorus generally result in an increase
in phosphorus concentrations. Sites 2, 53, and 66, rep-
resenting agricultural land use, had increasing total
phosphorus concentrations with increasing discharge.
No definite concentration-discharge relation was
observed at site 63, which also represents agricultural
land use. Total phosphorus concentrations either
increased or did not change as discharge increased in
samples from the four forested basins (sites 12, 16, 34,
and 41; fig. 21).

As with nitrite and nitrate, total phosphorus con-
centrations at sites primarily affected by point sources
of phosphorus were largest at low flows. Increases in
discharge caused by precipitation runoff dilute the
point source of phosphorus causing a decrease in con-
centration as detected at site 27.

Streamflow regulation by reservoirs may affect
the concentration-discharge relation even more for
total phosphorus than for nitrite plus nitrate because of
sediment trapping by the reservoir. Total phosphorus
concentrations had no change with discharge at a site
downstream of a reservoir (site 9), whereas the plot for
site 15, which is not downstream of a reservoir, had the
pattern typical of agricultural basins.

Ground Water

The quality of ground water is related to natural
and anthropogenic conditions within the study unit.
The factors affecting concentrations of nutrients in

ground water were determined by statistically analyz-
ing the relation of water-quality constituents with vari-
ous hydrogeologic characteristics. Data for water
years 1970-92 were used to determine differences in
water quality among five hydrogeologic units (Missis-
sippi River Valley alluvial aquifer, Western Interior
Plains confining system, Springfield Plateau aquifer,
Ozark aquifer, and St. Francois aquifer), among three
major land-use settings (agriculture, forest, and
urban), between springs and wells (site type) in the
Springfield Plateau and Ozark aquifers, and between
confined and unconfined parts (hydrogeologic type) of
the Springfield Plateau and Ozark aquifers. Data also
were analyzed to determine the relation between water
quality and well depth.

Nutrients

The nutrient species considered in this analysis
of ground water include nitrite plus nitrate, ammonia,
ammonia plus organic nitrogen, total nitrogen, total
phosphorus, and orthophosphate. Summary statistics
for the ground-water data used in this report for nutri-
ents are listed in table 10.

Nitrite Plus Nitrate

Nitrite plus nitrate concentrations for 245
ground-water samples were available for analysis.
Because nitrite concentrations generally were small
(more than 93 percent of the available samples had
nitrite concentrations less than the reporting limit of
0.01 mg/L), 138 samples analyzed only for nitrate
were included to make a total of 383 samples.

Nitrite plus nitrate concentrations in the sam-
ples ranged from less than 0.1 to 42 mg/L as nitrogen.
Median nitrite plus nitrate concentration was 0.25 mg/
L as nitrogen (table 10), and 15 samples had concen-
trations exceeding the MCL of 10 mg/L as nitrogen
for drinking water (table 11).

Nitrite plus nitrate concentrations differed sig-
nificantly among the five hydrogeologic units, among
the three land-use settings, between samples collected
from wells and springs, and between the confined and
unconfined parts of the Ozark and Springfield Plateau
aquifers (fig. 22). Results indicate that nitrite plus
nitrate concentrations in ground water generally were
affected by land use. The median nitrite plus nitrate
concentration in ground water collected from the agri-
cultural land-use setting was larger than that of the
other two land-use settings. Nitrite plus nitrate concen-
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Table 10. Statistical summary of nutrient data for ground water in the Ozark Plateaus study unit

[All units are milligrams per liter; N, nitrogen; <, less than; P, phosphorus]

Percentiles
Number of 50
Constituent samples Minimum 10 25 (median) 75 90 Maximum

Nitrite plus 383 <0.1 <0.1 <0.1 0.25 1.4 4.1 42

nitrate as N
Ammonia as N 156 <.01 <.01 .01 .04 .09 28 25
Ammonia plus 87 .01 .04 .06 .10 27 .55 25

organic nitrogen
Total nitrogen as N 87 <.1 15 31 .55 1.9 3.8 25
Total phosphorus 161 <.01 <.01 <.01 <.01 .02 .06 .84
Orthophosphate as P 85 <.01 <.01 <.01 .01 .03 .05 .54

trations in ground water can be elevated in agricultural
land-use settings as a result of fertilizers and animal
wastes applied to the land surface. Nitrate concentra-
tions exceeding the MCL of 10 mg/L as nitrogen were
present in samples primarily from agricultural areas
(table 11). Land use in the Western Interior Plains con-
fining system and Springfield Plateau aquifer, which
had the largest median nitrite plus nitrate concentra-
tion in ground water among the hydrogeologic units, is
mostly agricultural.

Hydrogeology also affects nitrite plus nitrate
concentrations in ground water. The Mississippi River
Valley alluvial aquifer had the smallest median nitrite
plus nitrate concentration in ground water among the
hydrogeologic units. Similar to the Western Interior
Plain confining system, the land use overlying the
Mississippi River Valley alluvial aquifer is intensely
agricultural; however, thin clay layers in these uncon-
solidated sediments probably retard the vertical trans-
port of surface contaminants into the aquifer.

Nitrite plus nitrate concentrations were greater
in shallow parts of the ground-water system as com-
pared to deep parts of the system. Samples collected
from springs had higher median nitrite plus nitrate
concentrations than those collected from wells in both
the Ozark and Springfield Plateau aquifers. In addi-
tion, samples collected from springs in both aquifers
had significantly lower median specific conductance
(356 uS/cm) and alkalinity (144 mg/L as CaCO3) than
samples collected from wells (508 uS/cm and 221 mg/
L). Lower specific conductance and alkalinity in

spring samples indicate less water-rock interaction
and a more shallow source of water discharging from
springs than water withdrawn from wells; hence,
water from springs probably is more vulnerable to
surface contamination than water withdrawn from
wells.

Nitrite plus nitrate concentrations were larger in
samples from shallow wells than in samples from deep
wells. Wells completed in formations of the Western
Interior Plains confining system from which samples
were withdrawn were relatively shallow (median depth
of 40.5 ft). In addition to having a high median nitrite
plus nitrate concentration, 9 samples from these wells
had nitrite plus nitrate concentrations exceeding the
MCL of 10 mg/L as nitrogen. In contrast, median
nitrite plus nitrate concentrations in water samples
from urban land-use settings were lowest among the
land-use settings, primarily because these mostly deep
(median depth of 855 ft), public-supply wells are less
vulnerable to surface contamination than shallow
wells or springs.

Median nitrite plus nitrate concentrations were
larger in samples collected from the unconfined parts
of the Ozark and Springfield Plateau aquifers than
those collected from the confined parts of the aquifers.
The shallow depth to water, as indicated by the median
well depths, probably makes the unconfined parts of
the aquifers more vulnerable to surface contamination
than water in the relatively deep, confined parts of the
Ozark and Springfield Plateau aquifers. In addition,
the shale units that, in places, confine the Ozark and
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Table 11. Ground-water samples with nitrate concentrations exceeding the maximum contaminant level

[mg/L, milligrams per liter; SPAQ, Springfield Plateau aquifer; OZAQ, Ozark aquifer; ALVM, Mississippi River Valley alluvial aquifer; WIPC,
Western Interior Plains confining system]

Map number Site Nitrate Hydrogeologic
(figs. 6 and 7) Station number type County State (mg/L as nitrogen) unit Land use
1 362226093102201 Spring  Boone Arkansas 13 SPAQ Agriculture
2 362636092374201 Well Marion Arkansas 29 0ZAQ Urban
3 362923093081001  Spring  Boone Arkansas 11 SPAQ Agriculture
4 363344090215701  Well Butler Missouri 15 ALVM Agriculture
5 363529090303501  Well Butler Missouri 14 ALVM Agriculture
6 370931093275701  Well Greene Missouri 14 0ZAQ Agriculture
7 373833094580801 Well Crawford Kansas 14 WIPC Agriculture
8 373932094584101  Well Crawford Kansas 13 WIPC Agriculture
9 373937094500401  Well Crawford Kansas 32 WIPC Agriculture
10 374708094083401  Well Vernon Missouri 12 WIPC Agriculture
11 375123094303801 Well Vernon Missouri 42 WIPC Agriculture
12 375153094522801 Well Bourbon Kansas 23 WIPC Agriculture
13 375733094341901  Well Vernon Missouri 18 WIPC Agriculture
14 380125094212301  Well Vernon Missouri 26 WIPC Agriculture
15 380442094092901  Well Bates Missouri 14 WIPC Agriculture

Springfield Plateau aquifers probably retard the verti-
cal transport of contaminants from overlying hydro-
geologic units.

Well depth did not directly correlate with nitrite
plus nitrate concentrations in ground water. Open-hole
construction techniques of most of the sampled wells
allow water to be withdrawn from shallow and deep
parts of the same aquifer or even from several hydro-
geologic units; therefore, well depth is not always a
good indicator of the depth from which a sample was
withdrawn.

Ammonia

Ammonia concentrations of 156 ground-water
samples ranged from less than 0.01 to 25 mg/L as
nitrogen. Median ammonia concentration was 0.04
mg/L as nitrogen (table 10).

Ammonia concentrations differed significantly
among four of the hydrogeologic units, among the
three land-use settings, and between the confined and
unconfined parts of the Ozark aquifer (fig. 23).
Ammonia concentrations were not significantly differ-
ent in samples collected between well and spring sam-
ples, or between the confined and unconfined parts of
the Springfield Plateau aquifer. Ammonia concentra-
tions did not correlate with well depth.

Ammonia concentrations in ground water prob-
ably are related to land use and oxidation-reduction
conditions of the hydrogeologic unit because ammonia
is a reduced species of nitrogen. Similar to nitrite plus
nitrate, median ammonia concentrations were largest
in the Western Interior Plains confining system and in
the agricultural land-use setting. In contrast to nitrite
plus nitrate, ammonia concentrations were larger in
the deeper parts of the ground-water system, such as
the confined parts of the Ozark aquifer. The source of
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AMMONIA, IN MILLIGRAMS PER LITER AS NITROGEN
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ammonia in the confined parts of the Ozark aquifer
could be organic matter in some of the rock units, par-
ticularly the shales. In the confined parts of the Ozark
aquifer, dissolved oxygen is depleted and reducing
conditions exist, allowing ammonia to be stable.

Ammonia Plus Organic Nitrogen

Ammonia plus organic nitrogen concentrations
for only 87 ground-water samples were available for
analysis. Concentrations ranged from 0.01 to 25 mg/L
as nitrogen. Median ammonia plus organic nitrogen
concentration was 0.10 mg/L as nitrogen (table 10).

Ammonia plus organic nitrogen concentrations
do not seem to be related to site characteristics (fig.
24). In many cases, data were few and may not be suf-
ficient to indicate if relations exist.

Total Nitrogen

Total nitrogen concentrations for only 87
ground-water samples were available for analysis.
Concentrations ranged from less than 0.1 to 25 mg/L
as nitrogen. Median total nitrogen concentration was
0.55 mg/L (table 10).

Nitrite plus nitrate comprised at least 50 percent
of the total nitrogen in 70 percent of the samples.
Hence, the distribution of total nitrogen in ground-
water samples was similar to the distribution of nitrite
plus nitrate (figs. 22 and 25). Total nitrogen concentra-
tions in ground-water samples were significantly dif-
ferent between the Ozark and Springfield Plateau
aquifers, among land-use settings, between springs
and wells in the Ozark and Springfield Plateau aqui-
fers, and between confined and unconfined parts of the
Ozark aquifer. As with nitrite plus nitrate, total nitro-
gen concentrations probably were affected by land use
and hydrogeology.

Total Phosphorus

Total phosphorus concentrations of 161 ground-
water samples ranged from less than 0.01 to 0.84 mg/L
as phosphorus. Median total phosphorus concentration
was less than 0.01 mg/L as phosphorus (table 10).
More than 68 percent of the samples had a total phos-
phorus concentration less than or equal to the report-
ing limit of 0.01 mg/L.

Total phosphorus concentrations differed signif-
icantly among the five hydrogeologic units, between
wells and springs in the Ozark and Springfield Plateau
aquifers, and between samples collected from the con-

fined and unconfined parts of the Ozark aquifer (fig.
26). Total phosphorus concentrations were not signifi-
cantly different among samples collected from the
three land-use settings and were not correlated with
well depth.

Total phosphorus concentrations in ground
water can be related to water-rock interactions or land-
use setting. For example, all six samples from the Mis-
sissippi River Valley alluvial aquifer had total phos-
phorus concentrations greater than the reporting limit
of 0.01 mg/L. Nitrite plus nitrate concentrations for
these samples were small (less than or equal to 0.55
mg/L as nitrogen), indicating these samples were not
affected by agricultural land use. Hence, the total
phosphorus concentrations in these samples could be a
result of mineral dissolution. In contrast, total phos-
phorus concentrations in samples from the Western
Interior Plains confining system and in samples from
springs could be affected by agricultural land use, as
indicated by the elevated nitrite plus nitrate concentra-
tions in some of the samples.

Orthophosphate

Orthophosphate concentrations for only 85
ground-water samples were available for analysis.
Concentrations ranged from less than 0.01 to 0.54 mg/
L as phosphorus. Median orthophosphate concentra-
tion was 0.01 mg/L as phosphorus (table 10). More
than 57 percent of the samples had concentrations less
than or equal to the reporting limit of 0.01 mg/L as
phosphorus.

Orthophosphate concentrations differed signifi-
cantly among four hydrogeologic units, among the
three land-use settings, between samples collected
from wells and springs, and between samples collected
from confined and unconfined parts of the Ozark aqui-
fer (fig. 27). As with total phosphorus concentrations,
orthophosphate concentrations can be related to agri-
cultural practices in the study unit. Orthophosphate
concentrations were larger in samples collected from
the intensely agricultural area underlain by the West-
ern Interior Plains confining system and the Spring-
field Plateau aquifer than in samples from areas
underlain by the other hydrogeologic units. Ortho-
phosphate concentrations were larger in agricultural
land-use settings as compared to forest and urban
land-use settings. In addition, orthophosphate concen-
trations were larger in ground water with shallow
sources, such as springs and wells completed in the
unconfined parts of the Springfield Plateau aquifer, as
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compared to concentrations in water from deep
sources. Water in the shallow parts of the system is
more susceptible to surface contamination than water
from deep parts of the system.

Orthophosphate concentrations were less than
or equal to total phosphorus concentrations in 75 per-
cent of the ground-water samples; however, in the
remaining samples, orthophosphate concentrations
exceeded total phosphorus concentrations by as much
as a factor of 10. Because total phosphorus concentra-
tions include orthophosphate, these results could indi-
cate some analytical error in the data.

LONG-TERM TRENDS

The analysis of long-term trends in water quality
provides another method to assess water quality, in
addition to the previously discussed spatial and hydro-
logic assessment. The following section describes
changes in quality of surface water during water years
1970-90. A discussion of changes in quality of ground
water also is included but is limited because of the lim-
ited amount of data available.

Surface Water

Water-quality trends have been a subject of sev-
eral water-quality investigations of streams in the
Ozark Plateaus study unit (Arkansas Department of
Pollution Control and Ecology, 1980, 1984, 1986,
1992; Kansas Department of Health and Environment,
1988; Brown and others, 1991; Mott, 1991; Davis and
Schumacher, 1992; John C. Ford, Missouri Depart-
ment of Natural Resources, written commun., 1992;
Petersen, 1992; Davis, 1993; Kenny, 1993; Kurklin,
1993; Petersen and Green, 1993; Yu and Zou, 1993;
Wright, 1994). Several trend-analysis methods and
periods have been used in these investigations.

Generalizations and comparisons based on
existing trend-analysis results that would apply to the
entire study unit are difficult because of differing
trend-analysis methods, periods, and station densities.
For example, most of the sites for which data have
been analyzed for trends are in Arkansas, southwest-
ern Missouri, and the Illinois River Basin in northeast-
ern Oklahoma. However, based on the results of these
previous investigations, it seems that nitrite plus
nitrate, phosphorus, and orthophosphate concentra-
tions have increased at a disproportionately large num-
ber of sites in northwestern Arkansas, northeastern

Oklahoma, and southwestern Missouri. Statistically
significant downward trends in total phosphorus con-
centrations have occurred at several sites in the Spring
River Basin of southwestern Missouri. The downward
trends at most of these sites in the Spring River Basin
can be attributed to the aging of two large phospho-
gypsum waste piles, which has resulted in decreasing
phosphorus concentrations in the leachate from the
sites (Davis and Schumacher, 1992). In Arkansas,
where most of the sites are located for which the data
have been analyzed (Petersen, 1992), about one-third
of the sites had downward trends in total ammonia
data.

Trends in water-quality data can be caused not
only by changes in ambient concentrations, but also by
changes in field and laboratory methods. For example,
a study of quality-assurance records by Alexander and
others (1993) has shown that for standards analyzed at
the USGS National Water Quality Laboratory in Den-
ver, Colo., a larger positive bias existed for ammonia,
ammonia plus organic nitrogen, and phosphorus dur-
ing the early 1980’s as compared to more recent peri-
ods. Airborne ammonia contamination may be one
cause; the cause of the phosphorus contamination is
unknown. Improvements (decreases in bias) after the
early 1980’s would result in more apparent downward
trends than actually occurred. Also, a change in labo-
ratory methods of the Arkansas Department of Pollu-
tion Control and Ecology for analysis of nitrite,
nitrate, ammonia, and total phosphorus occurred in
March 1977 (Richard Thompson, Arkansas Depart-
ment of Pollution Control and Ecology, written com-
mun., 1990). Other agencies also have changed
laboratory and field methods between 1970 and 1990.
These changes must be considered in analyses of
water-quality data for time trends.

Thirty-nine sites were selected for subsequent
examination of changes in water quality for water
years 1970-90 (table 12). Site selection was primarily
based on the length of time for which data are avail-
able. Sites were chosen with the longest periods of
data for the selected constituents. Some chosen sites
had little data for one or more of the constituents.
Also, sites that were considered to be substantially
affected by STP discharges or were immediately
downstream of reservoirs were not included.

Water-quality data (nitrite plus nitrate, ammo-
nia, total ammonia plus organic nitrogen, total phos-
phorus, orthophosphate, suspended-sediment, and
suspended-solids concentrations) for water years
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Figure 27. Statistical distribution of orthophosphate concentrations in ground water for water years 1970-92.
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Table 12. Sites selected for examination of changes in water
quality

[See table 6 for location, site name, collecting agency, and land-use
information]

Site numbers

Physiographic area (fig. 3 and table 6)

Springfield Plateau 26, 34, 41, 60, 63, 64, 66, 69, 71, 72

Salem Plateau 10, 11, 12, 23, 33, 45, 50, 51, 53, 55
Boston Mountains 18, 20
St. Francois Mountains 16

Osage Plains 1,2,7, 56, 57, 81

Integrator sites 9, 15, 25, 36, 39, 42, 48, 54, 58, 80

1970-90 were plotted for all 39 sites. The LOWESS
procedure was used to draw an “inferred concentration
trend line” on plots. This procedure cannot be used to
draw a concentration trend line when the proportion of
censored values is large. Therefore, lines were not
drawn on some plots.

Rather than including plots for all 39 sites in this
report, a group of sites representative of most physio-
graphic areas, land-use settings, and collecting agen-
cies was selected. Data for these sites are shown in
figures 28 to 33. The largest concentrations for several
sites were not shown on several plots so that the
remaining data were plotted at a more usable scale.
However, all data for a site were included in the calcu-
lations used to draw the LOWESS lines.

No statistical-trend tests were performed for this
report; therefore, decreasing or increasing trends men-
tioned in the following sections were subjectively
determined by inspection of the plots of concentration
for all 39 sites. Factors not always considered included
laboratory and field method changes and the effects of
streamflow on concentration. Plots of concentrations
adjusted for streamflow (Helsel and Hirsch, 1992) also
were inspected, and, in general, the “flow-adjusted
concentration trend lines” were similar to the concen-
tration trend lines. However, because a substantially
smaller number of sites had sufficient streamflow data
available, the flow-adjusted data are not shown.

Nitrogen

The concentrations of most species of nitrogen
did not increase between water years 1970-90, yet
nitrogen fertilizer application rates substantially

increased between 1965 and 1985 in all of the major
river basins of the study unit (table 2).

Concentrations of nitrite plus nitrate had not
changed substantially at most sites (fig. 28). However,
decreases had occurred at most sites in the Osage
Plains (sites 1, 2, 7, 56, and 81) and some integrator
sites (sites 9, 15, and 80). Data indicate increases
occurred at some sites in the Springfield Plateau (sites
64, 66, and 69), but the causes of these changes are
unknown. None of the sites were considered to be sub-
stantially affected by discharges from STP’s. However,
several of the sites (2, 9, 15, 56, 64, 66, 80, and 81) are
downstream of STP’s (table 6; fig. 2). The decreases at
sites in the Osage Plains may be the result of some
changes in agricultural practices. The sites in the
Springfield Plateau, where concentrations appear to
have increased, have basins with substantial amounts
of agricultural activity.

Concentrations of ammonia decreased at several
sites (fig. 29). Many of these decreases were relatively
small and occurred in concentrations that were near
the detection or reporting limits where analytical vari-
ability may be greater. Decreases occurred at all of the
sites in the Osage Plains (sites 1, 2, 7, 56, 57, and 81),
at four or more sites in the Salem Plateau (sites 50, 51,
53, and 55), and at all of the integrator sites. The
causes of these decreases in concentration are
unknown. Although sites were not considered to be
substantially affected by STP discharges, some are
downstream of STP’s that might be affecting concen-
trations enough to cause these changes in water qual-
ity. Some indicator sites (1, 7, 50, 53, 55, and 57) are
in agricultural basins and not downstream of STP’s
(table 6; fig. 2). At integrator sites operated solely by
the USGS (sites 9, 15, 39, and 54), concentrations gen-
erally decreased in the middle to late 1980’s, but at
sites operated by the Arkansas Department of Pollu-
tion Control and Ecology (sites 25, 36, 42, and 48),
concentrations generally decreased in the late 1970’s.
Most sites in the Salem Plateau with decreases also are
operated by the Arkansas Department of Pollution
Control and Ecology (sites 50, 51, 53, and 55) and had
decreasing concentrations in the late 1970’s. These
agency-related patterns indicate that field or laboratory
methods of the two agencies (such as the early 1980’s
bias of USGS data) may partially explain these
decreases in reported concentration.

Concentrations of total ammonia plus organic
nitrogen seem to have decreased at several sites (fig.
30). Most of these decreases in concentration were at
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ST T T 1T 11T 7T I P i I 3
| Site 41 _
| Springfield forest 2
B N A o A =}
Lo o 1 1 W—‘r e et s i i 1 i i i
25 Sleal | T i i i G T T T | AT~ o o e
ite 4 A A =]
— Springleld mix A% s aws . " “2 s aoA Ay
{. A A 7
Y s NI L
0= ! i ] L L [ I i | L ! | ! I | (i
25 el T | | | | | T | T T = T e ] ES T
A A Al
| Site 72 A mooa AL MR Al at s 3
| Springfield mix e A Ty =|
- - PR YN rab AR m { 'y A A A
0 o W - e P o e ) g R T R ! !
z
@ RS r -1 T W T T T T & & I T T = Gael T e
8 |_ Site 12 |
E Salem forest
=z [ a .
- AL v
2 N 5
o
E 25 1+ 1 F & T . & 17 G N F S T 1
o | Site 53 7
w [~ Salem mix i
o b
(2} =
5 0= = Lo |
o}
d 25 1 | T T T T T T I =l T T T T T &l T T 1 |
s [ Stets . A o
z [~ Boston Mountains forest , : L, Ak A A
= A A A AA 4 A A4 Aa =
E -3 T N W . [ 44 4
Z 25
< C T T 7 0 7 T 1
é | Site 1
Osage Plains cropland 4 4
p - A
— =
A
E O . . T kA
Z
25 7T T T T T T T T T T T T T T 1 R R | R
- Ouage Pl land a &
sage Plains croplan A A A ]
N O S S S AA“‘ aAlA &4 a7
AA A *I-H—
0 10 sestmanands 4 &4 4 & T A AS AT A
&8 T I R R I S A (S S S I S S I RS AR RN NS I
| Site 25
|_ Integrator
[ | I
2.5 I ’
|~ Site 58
|~ Integrator
0= i I
1970 1975 1980 1985 1980
WATER YEAR
EXPLANATION

=== [NFERRED CONCENTRATION
TREND LINE
A CENSORED VALUE
A DETECTED VALUE
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sites in the Springfield Plateau (sites 34, 64, 71, and
72) and Osage Plains (sites 2, 7, and 56), and at inte-
grator sites (sites 9, 15, 25, 54, and 80). The causes of
these decreases are unknown. Although the sites were
not considered to be substantially affected by STP’s,
some are downstream of STP’s that might be affecting
concentrations enough to cause these changes in water
quality. Some sites (2 and 7) are in agricultural basins
and not downstream of any STP’s.

Phosphorus

Concentrations of total phosphorus had not
changed substantially at most sites (fig. 31). Increases
in total phosphorus concentrations had occurred at
about one-half of the sites in the Springfield Plateau
(sites 64, 66, 69, 71, 72; and site 60 since about 1980).
All of the Springfield Plateau sites with increasing
concentrations are pasture or forest/pasture mix type
sites (table 6). Decreases in total phosphorus concen-
trations had occurred at about one-third of the sites in
the Salem Plateau (sites 10, 11, and 12). Most of the
sites with decreasing concentrations are Salem Plateau
forest sites (table 6). The USGS laboratory bias in the
early 1980’s may at least partially explain these
decreases. These sites also are downstream of STP’s,
although the STP’s are not considered to be substan-
tially affecting the water quality at these sites.

Concentrations of orthophosphate had not
changed substantially at most sites (fig. 32). The rela-
tively few number of sites and limited amount of
orthophosphate data make any definition of areal or
land-use patterns of water-quality trends difficult.
Concentrations may have decreased at some sites in
the Osage Plains during the relatively short periods
that data are available (sites 2, 56, and 57). Decreases
in orthophosphate concentration also may have
occurred at some integrator sites (sites 9, 15, and 25).

Suspended Sediment and Suspended Solids

Few suspended-sediment concentration data
were available. Concentrations have not changed sub-
stantially at sites for which data were available.

Concentrations of suspended solids had not
changed substantially at most sites (fig. 33). However,
decreases had occurred at the two sites representative
of the Osage Plains (sites 1 and 81) and at the integra-
tor site on the Spring River (site 80), which has a sub-
stantial part of the Osage Plains in its drainage area.
Decreases in concentration also have occurred at sev-

eral sites in the Salem Plateau (sites 50, 51, 53, 55, and
possibly others). The decreasing concentrations may
be the result of some change in agricultural or forestry
practice that has decreased the amount of soil and
other suspended particles transported into streams.

Ground Water

Few ground-water sites had sufficient data for
determining changes in water quality over time. Only
five sites had water-quality samples collected for more
than 10 years. These sites, which are all springs in the
Ozark aquifer, are located in the mostly forested Cur-
rent River Basin of southeastern Missouri (table 13;
fig. 7).

Water-quality data for these sites are insufficient
for statistical trend analysis because the samples were
not collected seasonally. In addition, samples were not
analyzed for nitrate between about 1983 to 1991, and
samples were not analyzed for orthophosphate until
1991.

Nitrite plus nitrate, ammonia, and ammonia plus
organic nitrogen concentrations in water samples from
these springs do not indicate any trends. In general,
concentrations of nitrogen species in water issuing
from these springs were small, probably as a result of
the relatively pristine condition of the basin.

Total phosphorus concentrations generally were
less than detection limits in most of the water samples
collected from the springs. Relatively high concentra-
tions of total phosphorus in ground-water samples
occurred in the early 1980's, but probably resulted
from biases in the data caused by analytical proce-
dures.

SURFACE-WATER LOADS

Nutrient inputs to the study unit can be esti-
mated using data of varying accuracy and complete-
ness, between 1980 and 1991. Inputs from poultry and
livestock, commercial fertilizers, atmospheric deposi-
tion, and point sources were estimated. Inputs of natu-
rally occurring organic material were not estimated.

Approximately 650,000 tons of nitrogen per
year were input into the study unit from poultry and
livestock, commercial fertilizer, atmospheric deposi-
tion, and point sources. Inputs from streams that flow
into the study unit were not included in this estimate.
About 55 percent of the 650,000 tons of nitrogen was
from poultry and livestock (table 3), about 25 percent
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Figure 32. Concentrations of orthophosphate for water years 1970-90 at selected surface-water sites.

was from commercial fertilizers (table 2), 15 percent
was ammonia and nitrate from atmospheric deposition
(refer to the “Climate, Population, Land Use, and
Water Use” section of this report), and less than 5 per-
cent was ammonia and organic nitrogen from point
sources (Gianessi and Peskin, 1984). Point sources
probably contributed an amount of nitrate as nitrogen
about equal to the amount of ammonia and organic
nitrogen.

Approximately 150,000 tons of phosphorus per
year were input into the study unit from poultry and
livestock, commercial fertilizer, atmospheric deposi-

tion, and point sources. Inputs from streams that flow
into the study unit were not included in this estimate.
About 80 percent of the 150,000 tons of phosphorus
was from poultry and livestock (table 3), less than
about 20 percent was from commercial fertilizers
(table 2), and a few percent was from point sources
(Gianessi and Peskin, 1984). The amount of phospho-
rus from atmospheric deposition was unknown, but in
general, the amount of wet deposition of phosphorus
probably is minor, whereas the amount of dry deposi-
tion can be substantial but is affected by local sources
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Figure 33. Concentrations of suspended solids for water years 1970-90 at selected surface-water sites.
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Table 13. Ground-water sites with water-quality samples collected for more than 10 years

Map number Station
(fig. 7) number Station name Period of record Hydrogeologic unit
16 07064400  Montauk Springs at Montauk, Mo. July 1974—Oct. 1991 Ozark aquifer
17 07064530  Welch Spring near Akers, Mo. Apr. 1973-Oct. 1991 Ozark aquifer
18 07065000  Round Spring at Round Spring, Mo. Apr. 1973-Oct. 1991 Ozark aquifer
19 07065500  Alley Spring at Alley, Mo. Apr. 1973-Oct. 1991 Ozark aquifer
20 07066550 Blue Spring near Eminence, Mo. Apr. 1973—Oct. 1991 Ozark aquifer

(R.P. Hooper, U.S. Geological Survey, oral commun.,
1993).

The amount of nitrogen and phosphorus from
each of these input sources greatly differs among the
basins in the study unit. Inputs per square mile were
estimated for selected basins (tables 14 and 15). Of the
selected basins, nutrient inputs from municipal point
sources and animal manure (generally the largest non-
point source) were largest for the basins in the north-
western Arkansas and southwestern Missouri area
(White and Elk River Basins). The North Sylamore
Creek Basin (fig. 3; table 6), a relatively undisturbed
basin, had the smallest inputs of nitrogen and phos-
phorus from all sources.

The effect of each of these input sources varies
from basin to basin depending on factors such as the
proportion of each input in that basin, the volume of
streamflow, and other hydrologic and physiographic
conditions. For example, although atmospheric inputs

Table 14. Estimated annual inputs of nitrogen for selected basins

probably were relatively constant throughout the study
unit, inputs from poultry and livestock were greater in
northwestern Arkansas, southwestern Missouri, and
northeastern Oklahoma. Also, although nutrient inputs
from point sources only were a small fraction of total
nutrient inputs, these inputs were discharged directly
into streams and reservoirs. Much of the nutrients
from the poultry, livestock, and commercial fertilizers
will be taken up by plants or volatilized before reach-
ing the surface or ground water.

Ten sites in the study unit were selected for esti-
mation of annual loads of total nitrogen, total phos-
phorus, and suspended sediment. An attempt was
made to estimate loads for the largest basins in the
study unit, if adequate data were available. Loads were
estimated for sites on the Osage, Gasconade, Mer-
amec, White, Black, and Neosho Rivers. Loads also
were estimated for North Sylamore Creek (a small
tributary to the White River, with a basin relatively

[Inputs are in tons per square mile upstream of the specific site, in each basin. Original data from the U.S. Environmental Protection Agency Permit
Compliance System data base (point source), National Atmospheric Deposition Program data base (atmospheric), U.S. Department of Agriculture
fertilizer use estimates (Alexander and Smith, 1990), and the 1987 Census of Agriculture (manure) were used to calculate these estimates. Atmospheric

nitrogen values are for wet plus dry deposition of ammonia and nitrat

el

Point sources (1985-91)

Nonpoint sources

Basin Atmospheric Fertilizer Manure
(fig. 3 and table 6) Municipal Industrial (1980-90) (1985) (1987)
Gasconade (site 11) 0.04 0.11 1.9 4.3 6.2
Meramec (site 15) .02 .009 1.9 1.9 2.6
White (site 39) .19 .003 1.9 2.7 6.2
North Sylamore (site 41) None None 1.9 .06 25
Elk (site 63) .26 .02 1.9 33 13
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Table 15. Estimated annual inputs of phosphorus for selected basins

[Inputs are in tons per square mile upstream of the specific site in each basin. Original data from the U.S. Environmental Protection Agency Permit
Compliance System data base (point source), U.S. Department of Agriculture fertilizer use estimates (Alexander and Smith, 1990), and the 1987
Census of Agriculture (manure) were used to calculate these estimates. --, data are not available; <, less than]

Point sources (1985-91)

Nonpoint sources

Basin Atmospheric Fertilizer Manure
(fig. 3 and table 6) Municipal Industrial (1980-90) (1985) (1987)
Gasconade (site 11) 0.005 0.04 -- 0.75 1.7
Meramec (site 15) .02 .004 - .34 .86
White (site 39) .02 <.001 -- 41 1.9
North Sylamore (site 41) None None -- .007 .07
Elk (site 63) .03 .007 -- 52 4.2

unaffected by human activities), the Current River (a
major tributary to the Black River), and the Elk River
(amajor tributary to the Neosho River, with substantial
numbers of poultry, livestock, and STP’s in the basin).
Loads were not estimated for the Illinois and St. Fran-
cis Rivers because of a lack of appropriate data.

The regression models used for each load esti-
mate are shown in table 16. In addition to being a
function of streamflow, load estimates usually were a
function of time (the date in decimal years) and some-
times were a function of season (the sine and cosine
variables).

The small amount of data collected during high
flows at most sites limited the number and accuracy of
the load estimates (table 17). Data for the upper decile
of flow (flows greater than 90 percent of the daily
mean flows) were inadequate (less than four values)
for estimating the load of some constituents at 2 of the
10 sites. Data were marginally adequate for estimating
most of the loads for the remaining sites (fig. 5). The
approximate 95-percent confidence interval around the
estimated loads commonly was plus or minus 20 to 40
percent of the estimated load and was calculated as the
estimated load plus or minus 1.96 times the standard
error of the prediction (table 17). Some confidence
intervals were as wide as the estimated load plus or
minus 80 to 90 percent of the estimated load.

Loads were estimated for water year 1981 (a
low-flow year), 1984 (a moderate-flow year), and
1985 (a high-flow year). Annual mean streamflows for
these three years are listed in table 18. Streamflows in
1984 generally were about two to three times the
streamflows for 1981 (the low-flow year), and in 1985
generally were about three to six times the stream-

flows for 1981. Loads for 1984 were always substan-
tially higher than loads for 1981 and substantially
lower than loads for 1985 (table 17). Loads during
1985 were approximately 2 to 10 times higher than
loads during 1981.

Loads of total nitrogen, total phosphorus, and
suspended sediment generally increased with drainage
area. Smallest loads occurred at North Sylamore Creek
near Fifty Six, Ark. (site 41), the site with the smallest
drainage area. Largest loads generally occurred at the
Osage River near St. Thomas, Mo. (site 9), the site
with the largest drainage area. However, total phos-
phorus loads were substantially larger at the Gascon-
ade River above Jerome, Mo. (site 11), Meramec River
near Eureka, Mo. (site 15), and Neosho River near Par-
sons, Kans. (site 56), than at the site on the White
River at Calico Rock, Ark. (site 39), even though the
drainage area at Calico Rock is more than double the
drainage areas of the other three sites. Similar, but less
pronounced patterns occurred for total nitrogen. The
White River system is regulated upstream of Calico
Rock by several dams; two of these dams are within 60
river miles of the site. Phosphorus typically is trans-
ported in association with sediment, and the reservoirs
upstream would be expected to be sinks for sediment.

Loads and yields (loads per square mile) of
nutrients and suspended sediment are affected by geol-
ogy, hydrology, and inputs from natural sources, poul-
try and livestock, commercial fertilizers, STP’s and
other point sources, and atmospheric deposition. Total
nitrogen, total phosphorus, and suspended-sediment
yields were substantially larger for the sites on the

66 Water-Quality Assessment—Analysis of Information on Nutrients, Suspended Sediment, and Suspended Solids, 1970-92



Table 16. Regression models used to estimate daily constituent loads at selected sites

[In(L) = I + a In(Q) + bT + ¢(sin(27tT)) + d(cos(2TT)) + e(sin(47CT)) + f(cos(47tT)): where In is the natural logarithm, L is the load in kilograms per
day; [ is the regression intercept; a, b, c, d, e, and f are regression coefficients; Q is streamflow in cubic feet per second; T is the date in decimal
years; TC is 3.141592; --, indicates that the coefficient was not used in the model}

Site Regression coefficients
number Site name .
(fig. 3) (table 6) | a b c d e f
Total nitrogen
9  Osage River near St. Thomas, Mo. 9.264 1.033 -0.034 -- - - -
11 Gasconade River above Jerome, Mo. 8.231 1.442 -.082 -- -- 0.137 0.204
15  Meramec River near Eureka, Mo. 8.668 1.369 -.104 - - - -
39  White River at Calico Rock, Ark. 9.307 1.130 -.048 - -- -- -
41  North Sylamore Creek near Fifty Six, Ark. 2.212 1.060 -.243 -- -- - --
56  Neosho River near Parsons, Kans. 7.340 1.162 -.038 - -- -- --
65  Neosho River below Fort Gibson Lake near ~ 7.487 1.078 -.036 0.196 -0.032 -- --
Fort Gibson, Okla.
Total phosphorus
9  Osage River near St. Thomas, Mo. 6.317 1.033  -0.034 -- -- - --
11 Gasconade River above Jerome, Mo. 4813 1.317 -.086 -- -- -- -
15  Meramec River near Eureka, Mo. 5.987 1.414 - - - -- -
39  White River at Calico Rock, Ark. 5.429 972 -.093 - - -- -
41  North Sylamore Creek near Fifty Six, Ark. -.825 1.039 -.093 -- -- -0.011 0.367
45  Black River at Poplar Bluff, Mo. 4.498 1.562 - -0.256 -0.631 -- --
46  Current River at Doniphan, Mo. 5.092 1.688 -111 - -- -- --
56  Neosho River near Parsons, Kans. 4.997 1.162 -.059 -- -- - --
63  Elk River near Tiff City, Mo. 4.245 904 -- - - - --
65  Neosho River below Fort Gibson Lake near ~ 4.657 1.047 - -- -- -- --
Fort Gibson, Okla.
Suspended sediment
11 Gasconade River above Jerome, Mo. 11.694 136 -0.148 -- - - --
39  White River at Calico Rock, Ark. 11.445 1.442 -.183 0.421 = -- --
41 North Sylamore Creek near Fifty Six, Ark. 5.444 780 070 - - - -
56  Neosho River near Parsons, Kans. 11.232 1.406 -- - -- -- --

Surface-Water Loads
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Table 17. Estimated total nitrogen, total phosphorus, and suspended-sediment loads and yields at selected sites

[1981, 1984, and 1985 are water years with relatively low, moderate, and high annual mean streamflows; SEP is the standard error of the prediction; a 95-percent confidence interval can be approximated as
the estimated load plus or minus 1.96 times the SEP; tons/yr is tons per year; mi? is square miles; --, unless otherwise noted, indicates that data were examined but were inadequate for estimation of loads or

yields]
1981 1984 1985
Site Site name
number (drainage area) Load SEP Yield Load SEP Yield Load SEP Yield
(fig. 3) (table 6) Constituent  (tons/yr) (tons/yr) [(tons/yrmi?] (tonsiyr) (tons/yr) [(tons/yr¥mi?] (tonsiyr) (tonsiyr) [(tons/yr)imi?]
9  Osage River near St. Total nitrogen 11,900 1,010 0.821 19,900 1,420 1.37 25,500 1,890 1.76
Thomas, Mo. (14,500 mi?)
Total phosphorus 477 60 .033 848 91 058 1,090 123 075
Suspended
sediment - - - - - - - - -
11  Gasconade River above Total nitrogen 2,700 407 1.05 7,020 1,010 2.73 13,800 2,430 537
Jerome, Mo. (2,570 mi?)
Total phosphorus 94 23 037 252 64 .098 416 123 162
Suspended 167,000 69,000 65.0 391,000 161,000 152 608,000 287,000 237
sediment
15  Meramec River near Eureka, Total nitrogen 4,390 710 1.16 6,000 772 1.58 10,800 1,740 2.85
Mo. (3,788 mi?)
Total phosphorus 228 39 060 411 61 .108 849 159 224
Suspended _ } :
sedimit! & = = = == == = =
39  White River at Calico Rock,  Total nitrogen 2,690 251 270 7,340 543 074 15,100 1,390 1.51
Ark. (9,978 mi%)
Total phosphorus 95 18 .009 190 28 019 342 61 034
Suspended 20,300 4,080 2.03 87,600 14,900 8.78 245,000 49,500 246
sediment
41  North Sylamore Creek near  Total nitrogen 13 34 224 14 4.1 241 22 8.7 379
Fifty Six, Ark. (58 mi%)
Total phosphorus 37 .10 .006 57 17 .010 1.1 41 019
Suspended 82 16 1.41 176 36 3.03 311 80 5.36
sediment
45  Black River at Poplar Bluff, Total nitrogen2 _ _ _ _ _ _ _ _ _
Mo. (1,245 mi?)
Total phosphorus 39 11 .031 57 13 046 152 42 122
Suspended

sediment?
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Table 17. Estimated total nitrogen, total phosphorus, and suspended-sediment loads and yields at selected sites—Continued

1981 1984 1985
Site Site name
number (drainage area) Load SEP Yield Load SEP Yield Load SEP Yield
{fig. 3) {table 6) Constituent  (tonslyr) (tons/yr) [(tonsiyrYmi?] (tonsiyr) (tonslyr) [(tons/yrymi’] (tonsiyr) (tonslyr) [(tons/yr)/mi?]
46 Current River at Doniphan,  Total nit:rogen2 _ _
Mo. (2,038 mi?) - - - - - - -
Total phosphorus 28 59 0.014 78 14 0.038 223 68 0.109
Suspended _ . _ _ ) ) _ __
sediment? B B -
56 Neosho River near Parsons,  Total nitrogen 1,980 263 404 7,670 929 1.56 11,600 1,410 2.36
Kans. (4,905 mi?)
Total phosphorus 201 23 004 732 78 .149 1,080 116 220
Suspended 142,000 24,900 29.0 744,000 129,000 152 1,240,000 219,000 253
sediment
63 EIk River near Tiff City, Total nitrogen? _ ) _ _
Mo. (872 mi?) - i - - - -
Total phosphorus 13 1.2 014 38 4.1 .044 93 12 .107
Suspended __ _ - _ _ _ _ . _
sediment?
65 Neosho River below Fort Total nitrogen 2,750 260 220 14,700 1,210 1.18 25,700 2,030 2.06
Gibson Lake near Fort
Gibson, Okla. (12,495 mi%)
Total phosphorus 130 6.7 .010 649 37 052 1,230 72 .098
Suspended . _ } ) _ _ _ _ B
sediment B B

INo appropriate model found.
2No data available.
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Table 18. Annual mean streamflow for sites used for load estimation

[1981, 1984, and 1985 are water years with low, moderate, and high annual mean streamflows]

Site

Annual mean streamflow (cubic feet per second)

number Site name 1981 1984 1985
9 Osage River near St. Thomas, Mo. 7,833 15,150 20,060
11 Gasconade River above Jerome, Mo. 1,591 4,165 6,491
15 Meramec River near Eureka, Mo. 2,640 4,599 7,407
39 White River at Calico Rock, Ark. 3,482 9,434 18,960
41 North Sylamore Creek near Fifty Six, Ark. 17.3 37.0 73.5
45 Black River at Poplar Bluff, Mo. 819 1,445 2,858
46 Current River at Doniphan, Mo. 1,578 3,258 5,856
56 Neosho River near Parsons, Kans. 876 3,283 4,979
63 Elk River near Tiff City, Mo. 186 627 1,648
65 Neosho River below Fort Gibson Lake 1,948 9,194 17,210

near Fort Gibson, Okla.

Gasconade River above Jerome, Mo. (site 11), the
Meramec River near Eureka, Mo. (site 15), and the
Neosho River near Parsons, Kans. (site 56), than for
other sites. The row-crop agriculture occurring in the
Neosho River Basin upstream of the Parsons site and
the density of STP’s discharging into the lower Mer-
amec River or tributaries upstream of the Meramec
near Eureka, Mo., site (fig. 2) probably were the major
causes of these relatively larger yields. Causes of the
relatively high estimated yields for the Gasconade
River above Jerome, Mo., are less easy to identify.
Inputs of nitrogen and phosphorus from industrial
sources (primarily fertilizer production) are relatively
large in this basin (tables 14 and 15). However, total
nitrogen yields of the Gasconade River above Jerome,
Mo. (site 11), exceeded yields of rivers at other sites
by the largest amounts during water years with moder-
ate and high flows, indicating that point sources were a
relatively unimportant cause of these larger nitrogen
yields. Nonpoint sources of fertilizer also were rela-
tively high in the basin (tables 14 and 15). Suspended-
sediment yields at this site exceeded yields at other
sites by the largest amount during the water year with
low flow. The smaller total phosphorus yields for the
Osage River near St. Thomas, Mo. (site 9), White
River at Calico Rock, Ark. (site 39), and Neosho River
below Fort Gibson Lake, Okla. (site 65), probably
were strongly affected by upstream reservoirs. The

total phosphorus yield of the Neosho River below Fort
Gibson Lake, Okla., was approximately one-third of
the yield of the Neosho River near Parsons, Kans. (site
56). Total nitrogen yields were affected less by the
upstream reservoirs because of the greater proportion
of dissolved nitrogen. The yields were lowest for the
site on North Sylamore Creek at Fifty Six, Ark., a site
with a forested basin relatively unaffected by human
activity.

SUMMARY

This report includes an overview of the environ-
mental setting of the Ozark Plateaus study unit of the
National Water-Quality Assessment Program, an
assessment of methods used to analyze data, spatial
and temporal distribution characteristics of nutrient
data for surface and ground water and suspended-sedi-
ment and suspended-solids data for surface water.
Descriptions of water-quality conditions in selected
physiographic, hydrogeologic, and land-use settings
using statistical summaries of nutrient, suspended-sed-
iment, and suspended-solids data, and limited trend
analysis and surface-water load calculations for
selected constituents are presented using water-quality
data collected during water years 1970-90 for 83 sur-
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face-water sites and during 1970-92 for 395 ground-
water sites.

The interpretation of surface- and ground-water
quality in the Ozark Plateaus study unit was somewhat
limited by the available data. Data were collected over
a long period by different agencies with different
objectives, resulting in field collection and laboratory
analysis techniques that varied over time and between
agencies. For example, some nitrogen species often
were not included in laboratory analysis of samples,
which meant that total nitrogen concentrations could
not be calculated. Incomplete geographic distribution,
insufficient data for some hydrogeologic units and site
types, and a lack of good ancillary data such as well
depth, casing length, and land-use setting hindered
data analysis. Long-term analysis of surface-water
sites was somewhat limited because of insufficient
streamflow data for flow-adjusting concentrations and
for ground-water sites because few sites had long-term
data available for temporal analysis. Surface-water
load calculations could not be done at many of the 83
sites because of the lack of continuous streamflow data
and the fact that few samples were collected at higher
flows, which is when a stream carries the largest con-
stituent loads. In spite of these limitations, however,
analysis of existing data resulted in an initial descrip-
tion of the water-quality conditions in the study unit.

Median nitrite plus nitrate concentrations in
streams substantially affected by sewage-treatment
plants (STP) in all physiographic areas were signifi-
cantly larger than at any other type of site. Within the
Boston Mountains and Springfield and Salem Pla-
teaus, nitrite plus nitrate concentrations increased sig-
nificantly at sites in basins with more intense land-use
activities (from forest to forest/pasture mix to pasture).
Concentrations were smallest at sites in forested
basins in the Springfield Plateau, which are 85 percent
or greater forested. With the exception of the STP
sites, the largest nitrite plus nitrate concentrations
were in streams in Springfield Plateau forest/pasture
mix and pasture, where some of the largest densities of
poultry, cattle, and swine are located. Ammonia, total
ammonia plus organic nitrogen, and total nitrogen pat-
terns were similar to nitrite plus nitrate patterns except
that within agricultural areas, the largest concentra-
tions of ammonia and total ammonia plus organic
nitrogen occurred in streams in Osage Plains cropland.

Total phosphorus concentration patterns were
similar to those discussed for the nitrogen species.
With the exception of the STP sites, the largest con-

centrations were in streams within agricultural land-
use settings in the Osage Plains and Springfield Pla-
teau. The larger concentrations in the Osage Plains
could be related not only to agricultural land use but
also to the large suspended-sediment concentrations in
streams in the area. Orthophosphate concentrations
generally had the same pattern as total phosphorus
except that concentrations in streams from Osage
Plains cropland were significantly smaller than those
from either of the agricultural land-use settings in the
Springfield Plateau, indicating that much of the phos-
phorus in the Osage Plains cropland streams was asso-
ciated with sediment particles.

Suspended-solids data were used in the statisti-
cal analysis because only 14 of the 83 surface-water
sites had suspended-sediment data. Suspended-solids
concentrations were largest in streams in the Osage
Plains because of easily erodible soils and intensive
field- and row-crop agriculture. Concentrations dif-
fered significantly among streams from different land-
use settings in the Springfield and Salem Plateaus with
concentrations generally increasing with more intense
land-use activities.

Indicator sites were chosen in basins that have
relatively homogeneous land use and physiography to
represent specific land-use settings within specific
physiographic areas. The basins containing integrator
sites have more heterogeneous land use and physiogra-
phy. Three basins—the Meramec River, the Osage
River, and the White River—were chosen for compari-
son of nitrite plus nitrate and total phosphorus concen-
trations at indicator and integrator sites.
Concentrations at integrator sites generally were inter-
mediate between those detected at indicator sites.

The relation between constituent concentrations
and discharge is a function of which phase the nutrient
prefers (dissolved or particulate phase), point or non-
point source origin of the nutrient, the overall magni-
tude and availability of the constituent in the basin,
and the degree of streamflow regulation by reservoirs.
Concentrations of nitrite plus nitrate, which primarily
exist in the dissolved phase, generally increase with
the washoff of available material by precipitation and
then decrease. This occurrence was most pronounced
in sites representing agricultural land use. At sites pri-
marily affected by point sources, concentrations were
generally largest at low flows and decreased in
response to precipitation. Streamflow regulation
resulted in poor correlation between concentration and
discharge. Concentrations of total phosphorus, which
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tends to adsorb to sediment, generally increased with
increasing streamflow. The total phosphorus concen-
tration and discharge relation is similar to nitrite plus
nitrate at sites primarily affected by point sources of
phosphorus. Streamflow regulation affects the total
phosphorus concentration-discharge relation because
of sediment trapping by the reservoir.

Ground-water samples were not regularly col-
lected from 1970-92. Ground-water samples have
been collected for numerous, short-term projects, the
objectives of which were to study the water quality in
small parts of the Ozark Plateaus. Well depth in the
data set ranges from 5 to 3,420 ft below land surface.
Well depth is related to the thickness, depth, and use of
each hydrogeologic unit. Well depth generally is great-
est in the confined Ozark and St. Francois aquifers and
least in the surficial Mississippi River Valley alluvial
aquifer and Western Interior Plains confining system.
Well depth also can be related to land and well use;
median depth is greater for public-supply wells in the
urban land-use setting than for wells in the other two
land-use settings.

Results indicate nitrite plus nitrate concentra-
tions in ground water were affected by agricultural
land use. Nitrite plus nitrate concentrations in ground
water also were largest where specific conductance
and alkalinity data indicate that the water source is
shallow and more susceptible to surface contamination
than where data indicate the water source is deep. In
addition, clay and shale confining layers can retard
migration of surface contaminants and prevent exces-
sive nitrate concentrations in ground water.

Ammonia concentrations in ground water were
larger in samples collected from agricultural areas than
in other land-use settings, and they were larger in sam-
ples collected from deep parts of the hydrogeologic
units than in shallow parts. The relation with depth of
water source probably is related to oxidation-reduction
conditions within the hydrogeologic units.

Ammonia plus organic nitrogen concentrations
in ground water generally were small in the study unit.
Data are insufficient to make conclusions about the
distribution of ammonia plus organic nitrogen in
ground water of the Ozark Plateaus.

More than 50 percent of the total nitrogen con-
centrations in most (70 percent) ground-water samples
were composed of nitrite plus nitrate. As with nitrite
plus nitrate, total nitrogen is affected by land use and
hydrogeology.

The distribution and occurrence of total phos-
phorus concentrations in ground water probably are
related to geology and land use. Orthophosphate con-
centrations in ground water are related to land use.

Changes in water quality have occurred at sev-
eral surface-water sites in the study unit during the last
10 to 20 years. Results of previous investigations of
water-quality trends in the study unit have indicated
that a disproportionately larger number of sites in
northwestern Arkansas, northeastern Oklahoma, and
southwestern Missouri have upward trends in nitrite
plus nitrate, phosphorus, and orthophosphate.

Nonstatistical examination of plots of concen-
trations and flow-adjusted concentrations of selected
nutrients, suspended sediment, and suspended solids
during water years 1970-90 indicates that concentra-
tions for sites associated with certain physiographic
areas or land uses have changed more often than for
other types of sites. Nitrite plus nitrate concentrations
have decreased at most sites in the Osage Plains but
have increased at some sites in the Springfield Plateau.
Ammonia concentrations seem to have decreased at
several sites, including all sites in the Osage Plains and
several sites in the Salem Plateau. Total ammonia plus
organic nitrogen concentrations have decreased at sev-
eral sites, primarily in the Osage Plains and Spring-
field Plateau. Total phosphorus concentrations
increased at about one-half of the sites in the Spring-
field Plateau, whereas decreases occurred at about
one-third of the sites in the Salem Plateau. Suspended-
solids concentrations have decreased at two Osage
Plains sites and several Salem Plateau sites. Many of
these increasing and decreasing trends may be related
to agricultural practices. Other possible causes include
laboratory or field method bias or STP effluents. How-
ever, sites selected for examination were chosen
because they were not considered to be substantially
affected by effluents.

Water-quality data for ground-water sites gener-
ally were not sufficient for statistical trend analysis.
Five ground-water sites had water-quality data for a
period of record of 10 or more years. All five sites are
springs located in southeastern Missouri. Nitrite plus
nitrate, ammonia, ammonia plus organic nitrogen, and
total phosphorus concentrations in water samples from
these springs do not indicate changes over time.

Surface-water loads of nutrients and suspended
sediment were affected in the study unit by several fac-
tors, including streamflow, climate, drainage area, res-
ervoir operation, and inputs from point and nonpoint
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sources. Annual loads were largest in large basins,
with large inputs of nutrients or sediment during peri-
ods of high streamflows at locations where reservoir
operation effects are not substantial. Smallest loads
occurred at North Sylamore Creek near Fifty Six,
Ark., a site with a small basin relatively unimpacted by
human activities. Largest loads generally occurred at
the Osage River near St. Thomas, Mo., the site with
the largest drainage area.
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit

[Abbreviations for collecting agency: USGS, U.S. Geological Survey; Coop, cooperative program; KWO, Kansas Water Office; KDHE, Kansas
Department of Health and Environment; NASQAN, National Stream Quality Accounting Network; MDNR, Missouri Department of Natural
Resources; OFA, other Federal agency; COE, U.S. Army Corps of Engineers; ADPCE, Arkansas Department of Pollution Control and Ecology;
Springfield, Springfield Plateau; Salem, Salem Plateau; St. Francois, St. Francois Mountains; AGC, Arkansas Geological Commission; HBM,
Hydrologic BenchMark network; SCS, Soil Conservation Service; ODEQ, Oklahoma Department of Environmental Quality; NPS, National Park
Service. Abbreviations for frequency of collection: B-M, bimonthly; D, daily; W, weekly; M, monthly; Q, quarterly; SD, sampling day; yr, year, W"
water year; mon, month; --, data unavailable; STP, sewage-treatment plant; Pb-Zn, lead-zinc; site designated as a “mix” site type has greater than on
third but less than two-thirds pasture land use in the basin]

Drainage Number of
Site area Period of record samples
number (square (through water (through water
(fig. 3) Site name Latitude Longitude  miles) Collecting agency year 1980) year 1990)
1 Little Osage River at 380109 94 42 48 295  USGS (Coop-KWO), KDHE Dec. 1968-Sept. 1990 1,019
Fulton, Kans.
2 Osage River above 380320 9408 44 5,410  USGS (NASQAN) Mar. 1979-Sept. 1990 143
Schell City, Mo.
3 Sac River near 372635 934105 257  USGS (Coop-MDNR) Nov. 1983-June 1987 44
Dadeville, Mo.
4 Little Sac River near 372355 932436 - USGS (Coop-MDNR) Oct. 1983-June 1990 50
Walnut Grove, Mo.
S Pomme de Terre River 37 40 56 932212 276  USGS (Coop-MDNR) Nov. 1983-Feb. 1986 28
near Polk, Mo.
6 South Grand River at 382708 9400 13 670  USGS (Coop-MDNR) Oct. 1979-June 1987 46
Urich, Mo.
7  West Fork Tebo Creek 382516 9339 36 - USGS (OFA-COE) Oct. 1983-Sept. 1990 84
near Lewis, Mo.
8  Niangua River at 374417 925137 -- USGS (Coop-MDNR) Oct. 1982-Sept. 1988 2
Bennett Springs, Mo.
9  Osage River below 382518 921231 14,500 USGS (NASQAN) Oct. 1974-Sept. 1990 238
St. Thomas, Mo.
10  Big Piney River at 375053 9203 44 -- USGS (Coop-MDNR) July 1977-June 1989 144
Devil’s Elbow, Mo.
11 Gasconade River above 375512 91 58 33 2,570  USGS (NASQAN) Aug. 1962-Sept. 1990 190
Jerome, Mo.
12 Meramec River near 380930 91 06 30 1,475  USGS (Coop-MDNR) Aug. 1963-June 1990 338
Sullivan, Mo.
13 Bourbeuse River above 382555 910111 808  USGS (Coop-MDNR) Aug. 1963-June 1987 226
Union, Mo.
14  Big River near 380934 904222 735  USGS (Coop-MDNR) Nov. 1983-Sept. 1989 52
Richwoods, Mo.
15 Meramec River near 383020 90 35 30 3,788  USGS (NASQAN) Jan. 1978-Sept. 1990 177
Eureka, Mo.
16  St. Francis River near 372306 90 28 27 664  USGS (Coop-MDNR) Oct. 1982-June 1989 66
Saco, Mo.
17 St Francis River at 36 46 50 901210 1,370  USGS (OFA-COE) Oct. 1977-Sept. 1990 155
Fisk, Mo.
18 West Fork White River 36 03 00 9404 42 - ADPCE Apr. 1974-Sept. 1990 196
east of Fayetteville, Ark.
19 White River near 36 06 22 94 00 41 412 USGS (OFA-COE), ADPCE Aug. 1963-Sept. 1990 389
Goshen, Ark.
20  Richland Creek at 36 06 14 9400 26 138 USGS (OFA-COE) Aug. 1963-Sept. 1990 47
Goshen, Ark.
21 Holman Creek near 36 07 25 934402 - ADPCE Nov. 1983-Sept. 1990 82

Huntsville. Ark.
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Site Major
number Physiographic  Major land point
(fig. 3) Site name Frequency of collection area uses' Site type sources
1 Little Osage River at B-M, Dec. 1968-June 1975; D-W, Oct. 1977-Aug. 1982; Osage Plains cropland Osage Plains 0
Fulton, Kans. M, Sept. 1982-Sept. 1990 cropland
2 Osage River above M, Mar. 1979-Sept. 1980; B-M, Nov. 1980-Sept. 1990  Osage Plains cropland/coal/  Osage Plains 2
Schell City, Mo. mining cropland
3 Sac River near M Springfield pasture/forest  Springfield 0
Dadeville, Mo. pasture
4 Little Sac River near M, Oct. 1983-Feb. 1986; M, Oct. 1988-June 1990 Springfield pasture/forest/ ~ Springfield 1
Walnut Grove, Mo. urban STP
5 Pomme de Terre River M Springfield pasture/forest ~ Salem 1
near Polk, Mo. pasture
6 South Grand River at M Osage Plains cropland Osage Plains 3
Urich, Mo. cropland
7 West Fork Tebo Creek M Osage Plains cropland/coal/  Osage Plains 0
near Lewis, Mo. mining cropland
8 Niangua River at M Salem pasture/forest ~ Salem mix 1
Bennett Springs, Mo.
9 Osage River below M, Oct. 1974-Nov. 1981; B-M, Jan. 1982-Sept. 1990 Salem, Spring- cropland/ Integrator |
St.Thomas, Mo. field, and pasture/forest/
Osage Plains coal mining
10 Big Piney River at M Salem forest/pasture  Salem forest 1
Devil’s Elbow, Mo.
11 Gasconade River above M, Aug. 1962-June 1963; M, July 1977-Oct. 1980; Salem forest/pasture  Salem mix 3
Jerome, Mo. B-M, Nov. 1980-Sept. 1986; M, Oct. 1986-Sept. 1990
12 Meramec River near M, Aug. 1963-July 1975; M, July 1977-June 1990 Salem forest/pasture  Salem forest 1
Sullivan, Mo.
13 Bourbeuse River above M, Aug. 1963-July 1975; M, Nov. 1983-June 1987 Salem forest/pasture  Salem mix 1
Union, Mo.
14 Big River near M, Nov. 1983-June 1987, Q, Feb. 1988-Sept. 1989 Salem and forest/pasture/  Salem forest 1
Richwoods, Mo. St. Francois Pb-Zn mining
15 Meramec River near M, Jan. 1978-Nov. 1980; B-M, Jan. 1981-Sept. 1990 Salem and forest/pasture/  Integrator 5
Eureka, Mo. St. Francois Pb-Zn mining
16 St. Francis River near M, Oct. 1982-June 1987; M, Oct. 1988-June 1989 St. Francois forest/pasture/  St. Francois forest 1
Saco, Mo. Pb-Zn mining
17 St. Francis River at M Mississippi forest/pasture/  Integrator 1
Fisk, Mo. Alluvial cropland/
Plain, Salem, Pb-Zn mining
and St. Francois
18 West Fork White River east M Boston forest/pasture/  Boston Mountains 1
of Fayetteville, Ark. Mountains and urban forest
Springfield
19 White River near 1 8D, 1963; M, July 1969-Sept. 1990 Boston forest/urban Boston Mountains 1
Goshen, Ark. Mountains STP
and Springfield
20 Richland Creek at 1 SD, 1963; 2 SD, 1980; 2-5 SD/yr, May 1984-July 1990 Boston forest/pasture  Boston Mountains 0
Goshen, Ark. Mountains and mix
Springfield
21 Holman Creek near M Boston forest/pasture/  Boston Mountains 1
Huntsville, Ark. Mountains urban STP
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Drainage Period of Number of
Site area record samples
number (square (through water (through water
(fig. 3) Site name Latitude Longitude miles) Collecting agency year 1990) year 1990)

22 White River at 362515 93 50 50 1,192 USGS (OFA-COE) Mar. 1967-Sept. 1990 260
Beaver Dam near
Eureka Springs, Ark.

23 Osage Creek southwest 362055 933526 - ADPCE Nov. 1983-Sept. 1990 84
of Berryville, Ark.

24 Osage Creek west of 362150 933626 - ADPCE Nov. 1983-Sept. 1990 62
Berryville, Ark.

25  Kings River near 362536 933715 527 ADPCE July 1945-Sept. 1990 363
Berryville, Ark.

26  James River near 370435 932215 - USGS (Coop-MDNR) Aug. 1964-June 1987 313
Wilson Creek, Mo.

27  James River near 370025 932150 462 USGS (Coop-MDNR) Aug. 1964-June 1987 304
Boaz, Mo.

28  Long Creek near 36 25 46 931822 - ADPCE Nov. 1983-Sept. 1990 83
Denver, Ark.

29  White River below 36 3542 931832 4,020 USGS (OFA-COE) Oct. 1974-Sept. 1990 250
Table Rock Dam
near Branson, Mo.

30  White River at Bull 36 21 54 923430 6,051 USGS (OFA-COE) July 1954-Sept. 1990 460
Shoals Dam near
Flippin, Ark.

31 Crooked Creek at 3613 57 930528 - ADPCE Nov. 1983-Sept. 1990 86
Harrison, Ark.

32 Crooked Creek near 361438 930438 - ADPCE Nov. 1983-Sept. 1990 83
Harrison, Ark.

33 Crooked Creek at 361323 92 40 47 406 ADPCE Oct. 1979-Sept. 1990 129
Yellville, Ark.

34  Buffalo River near 355902 924444 829 ADPCE July 1945-Sept. 1990 346
St. Joe, Ark.

35  Hicks Creek near 361732 922234 -- ADPCE Nov. 1983-Sept. 1990 83
Mountain Home, Ark.

36  White River near 361324 92 18 06 -- ADPCE Apr. 1974-Sept. 1990 201
Norfork, Ark.

37  North Fork River 363722 921453 561 USGS (Coop-MDNR) July 1969-June 1987 115
near Tecumseh, Mo.

38  North Fork River at 36 1457 921418 1,808 USGS (OFA-COE) Oct. 1946-Sept. 1990 459
Norfork Dam near
Norfork, Ark.

39  White River at 36 06 S8 9208 35 9,978 USGS (Coop-AGC) Nov. 1945-Aug. 1990 241
Calico Rock, Ark.

40  Mill Creek near 360313 915458 - ADPCE Nov. 1983-Aug. 1990 82
Melbourne, Ark.

41 North Sylamore Creek 355943 921245 58 USGS (HBM) June 1966-Sept. 1990 323

near Fifty Six, Ark.
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Site Major
number Physiographic  Major land point
(fig. 3) Site name Frequency of collection area uses’ Site type sources
22 White River at Beaver 3 SD, 1967 and 1968; M, May 1972-Sept. 1989; Springfield, forest/pasture  Integrator 2
Dam near Eureka Springs, 3 SD, 1990 Salem, and Bos- (reservoir)
Ark. ton Mountains
23 Osage Creek southwest M Salem, Spring- forest/pasture  Salem forest 0
of Berryville, Ark. field, and Boston
Mountains
24 Osage Creek west of M Salem, Spring- forest/pasture/  Salem STP 1
Berryville, Ark. field, and Boston  urban
Mountains
25 Kings River near 1-5 SD/yr, July 1945-Sept. 1953; M, Oct. 1953-Aug. Salem, Spring- forest/pasture  Integrator 1
Berryville, Ark. 1963; M, Oct. 1972-Sept. 1990 field, and Boston
Mountains
26 James River near 2 SD, 1964 and 1965; M, Oct. 1967-June 1987 Springfield pasture/forest/  Springfield pasture 0
Wilson Creek, Mo. urban
27 James River near 2 SD, 1964 and 1965; M, Oct. 1967-June 1987 Springfield pasture/forest/  Springfield STP 1
Boaz, Mo. urban
28 Long Creek near M Springfield pasture/forest  Springfield mix 0
Denver, Ark.
29 White River below M Salem, Spring- pasture/forest  Integrator 5
Table Rock Dam field, and Boston (reservoir)
near Branson, Mo. Mountains
30 White River at Bull M, July 1954-Sept. 1967; 3 SD, 1968; M, Dec. 1973- Salem, Spring- pasture/forest  Integrator 6
Shoals Dam near Sept. 1989; 3 SD, 1990 field, and Boston (reservoir)
Flippin, Ark. Mountains
31 Crooked Creek at M Springfield pasture/forest  Springfield pasture 0
Harrison, Ark.
32 Crooked Creek near M Springfield pasture/forest/  Springfield STP 1
Harrison, Ark. urban
33 Crooked Creek at M Salem and Spring- pasture/forest  Salem mix 1
Yeliville, Ark. field
34 Buffalo River near 1-3 SD/yr, July 1945-Aug. 1953; M, Oct. 1953-Sept. Springfield and forest Springfield forest 0
St. Joe, Ark. 1957; 1 SD, 1963; M, Apr. 1974-Sept. 1990 Boston Mountains
35 Hicks Creek near M Salem forest/pasture/  Salem STP 1
Mountain Home, urban
Ark.
36 White River near M Salem, Spring- forest/pasture  Integrator 9
Norfork, Ark. field, and Boston
Mountains
37 North Fork River M, July 1969-June 1972; M, Oct. 1978-Sept. 1979; M,  Salem forest/pasture  Salem forest 0
near Tecumseh, Mo. Nov. 1983-June 1987
38 North Fork River at M, Oct. 1946-Nov. 1967; M, Dec. 1973-Sept. 1989; Salem forest/pasture  Salem forest 0
Norfork Dam near 38D, WY90 (reservoir)
Norfork, Ark.
39 White River at 1-2 SD/yr, Nov. 1945-Aug. 1960 (no samples 1958); M, Salem, Spring- forest/pasture  Integrator 9
Calico Rock, Ark. Oct. 1972-Aug. 1980; B-M, Oct. 1980-Aug. 1990 field, and Boston
Mountains
40 Mill Creek near M Salem pasture/forest/  Salem STP 0
Melbourne, Ark. urban
41 North Sylamore Creek M, June 1966-Aug. 1982; B-M, Oct. 1982-Aug. 1990  Springfield forest Springfield forest 0

near Fifty Six, Ark.



Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Drainage Period of Number of
Site area record samples
number (square (through water {through water
(flg. 3) Site name Latitude Longitude miles) Collecting agency year 1990) year 1990)

42 White River at Oil 3538 36 912742 - ADPCE Apr. 1974-Aug. 1990 193
Trough, Ark.

43 Black River below 371930 90 45 50 - USGS (OFA-COE) Oct. 1962-Dec. 1985 142
Annapolis, Mo.

44  Black River at 370755 90 46 05 898 USGS (OFA-COE) Mar. 1978-Aug. 1990 114
Clearwater Dam, Mo.

45 Black River at 36 45 34 9023 17 1,245 USGS (Coop-MDNR) Nov. 1983-Aug. 1987 46
Poplar Bluff, Mo.

46 Current River at 363719 90 50 51 2,038 USGS (Coop-MDNR) Oct. 1979-June 1989 94
Doniphan, Mo.

47  Little Black 3637 54 903431 194 USGS (OFA-SCS) Aug. 1980-Aug. 1987 39
River below
Fairdealing, Mo.

48  Current River near 361755 905130 2,606 ADPCE Oct. 1954-Sept. 1990 280
Pocahontas, Ark.

49  Black Riverat 361514 90 58 12 4,845 ADPCE July 1945-Sept. 1990 190
Pocahontas, Ark.

50  South Fork Spring 362100 913800 -- ADPCE Mar. 1974-Sept. 1990 197
River at Saddle, Ark.

51 Spring River at 361330 911503 -- ADPCE Mar. 1974-Sept. 1990 198
Ravenden, Ark.

52 Eleven Point River 36 38 55 911203 793 USGS (Coop-MDNR) Oct. 1983-Sept. 1990 46
near Bardley, Mo.

53 Eleven Point River 361443 910505 1,192 ADPCE Mar. 1974-Sept. 1990 203
near Pocahontas, Ark.

54  Black River at 360615 910550 7,369 USGS (Coop-AGC) Oct. 1945-Sept. 1990 331
Black Rock, Ark.

55  Strawberry River near 3601 40 911931 539 ADPCE Mar, 1974-Sept. 1990 201
Smithville, Ark.

56 Neosho River near 371839 9506 37 4,905 USGS (NASQAN) Mar. 1958-Sept. 1990 481
Parsons, Kans.

57  Lightning Creek near 3716 54 9501 56 197 USGS (Coop-KWO) Apr. 1940-Sept. 1990 209
McCune, Kans.

58 Spring River near 371444 9433 58 1,164 USGS (Coop-MDNR), KDHE ~ Sept. 1964-Oct. 1989 329
Waco, Mo.

59  Turkey Creek near 370715 9434 55 42 USGS (Coop-MDNR), KDHE  Aug. 1963-Aug. 1990 440
Joplin, Mo.

60  Shoal Creek near 370231 94 38 34 - USGS (Coop-KDHE), KDHE  July 1967-Aug. 1990 255
Galena, Kans.

61 McKisic Creek 362426 9412 46 -- ADPCE Nov. 1983-Sept. 1990 85
tributary near
Bentonville, Ark.

62  Butler Creek near 36 30 44 94 28 54 35 ADPCE Oct. 1972-Sept. 1990 240
Sulphur Springs, Ark.

63  Elk River near 36 37 50 943512 872 USGS (Coop-MDNR) Feb. 1960-June 1990 306

Tiff City, Mo.
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Site Major
number Physiographic  Major land point
(fig. 3) Site name Frequency of collection area uses’ Site type sources
42 White River at M Mississippi Allu-  forest/pasture/  Integrator 10
Oil Trough, Ark. vial Plain, Salem, cropland
Springfield, and
Boston Mountains
43 Black River below 9 SD, WY63; M, July 1969-Aug. 1972; Q, Oct. 1972-  Salem and St. forest/Pb-Zn  Salem forest 0
Annapolis, Mo. July 1975; 2-4 SD/yr, Mar. 1978-Dec. 1985 Francois mining
44 Black River at 3-5 SD/yr, Mar. 1978-Dec. 1980; M, Feb. 1981-Sept. Salem and St. forest/Pb-Zn  Salem forest 0
Clearwater Dam, Mo. 1989; 3 SD 1990 Francois mining (reservoir)
45 Black River at Poplar M Salem and St. forest/pasture/  Salem forest 0
Bluff, Mo. Francois Pb-Zn mining
46 Current River at M (no samples WY83) Salem forest Salem forest 0
Doniphan, Mo.
47 Little Black River B-M Salem forest/pasture  Salem forest 0
below Fairdealing, Mo.
48 Current River near M, Oct. 1954-Sept. 1958; 1 SD, 1966; M, Oct. 1972- Mississippi Allu-  forest/pasture/  Integrator 0
Pocahontas, Ark. Sept. 1990 vial Plain and cropland
Salem
49 Black River at 1-3 SD/yr, July 1945-July 1956; M, Oct. 1965-Oct. Mississippi Allu-  forest/pasture/  Integrator 1
Pocahontas, Ark. 1966; M, Oct. 1977-Sept. 1990 vial Plain, Salem, cropland/Pb-
and St. Francois ~ Zn mining
50 South Fork Spring M Salem forest/pasture  Salem mix 0
River at Saddle, Ark.
51 Spring River at M Salem forest/pasture  Salem mix 1
Ravenden, Ark.
52 Eleven Point River M, Oct. 1983-June 1987; 1 SD, 1990 Salem forest/pasture  Salem mix 0
near Bardley, Mo.
53 Eleven Point River M Salem forest/pasture  Salem mix 0
near Pocahontas, Ark.
54 Black River at Black 3 SD/mon, WY46; 1-3 SD/yr, Feb. 1947-Sept. 1951; 3  Mississippi Allu-  forest/pasture/ Integrator 2
Rock, Ark. SD/mon, WY53; M, Oct. 1967-Aug. 1980; B-M, Oct. vial Plain, Salem, cropland/Pb-
1980-Sept. 1990 and St. Francois ~ Zn mining
55 Strawberry River near M Salem forest/pasture  Salem mix 0
Smithville, Ark.
56 Neosho River near Parsons, 1 SD, 1958; M, Sept. 1961-Sept. 1981; 8 SD/yr, Nov. Osage Plains cropland Osage Plains |
Kans. 1981-Sept. 1990 cropland
57 Lightning Creek near sampled 2-8 mon/yr, Apr. 1940-Feb. 1946 (1-4 SD/ Osage Plains cropland/coal ~ Osage Plains 0
McCune, Kans. mon); 1 SD/yr, 1962,63,66,68; M, Dec. 1975-Sept. 1990 mining cropland
58 Spring River near 1 SD, 1964; M, Nov. 1965-Jan. 1970; B-M, Feb. 1970-  Springfield and pasture/crop-  Integrator 2
Waco, Mo. Aug. 1975; M, Dec. 1975-Oct. 1989 Osage Plains land
59 Turkey Creek near M, Aug. 1963-Oct. 1989; 3 SD, 1990 Springfield pasture/urban/  Springfield 2
Joplin, Mo. Pb-Zn mining  STP
60 Shoal Creek near M Springfield pasture/forest/  Springfield 3
Galena, Kans. urban mix
61 McKisic Creek tributary M Springfield pasture/forest/  Springfield 1
near Bentonville, Ark. urban STP
62 Butler Creek near M Springfield forest/pasture/  Springfield 0
Sulphur Springs, Ark. urban STP
63 Elk River near 3-10 mon/yr, Feb. 1960-June 1963; M, Nov. 1965-Sept.  Springfield pasture/forest ~ Springfield 1
Tiff City, Mo. 1977; M, WY81; M, Oct. 1982-June 1990 mix
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Drainage Period of Number of
Site area record samples
number (square (through water (thfough water
(fig. 3) Site name Latitude Longitude miles) Collecting agency year 1990) year 1890)

64  Spavinaw Creek near 362031 943515 104 ADPCE Feb. 1961-Sept. 1990 148
Cherokee City, Ark.

65  Neosho River below 355110 951345 12,495 USGS (NASQAN) Oct. 1951-Aug. 1990 673
Fort Gibson Lake
near Fort Gibson, Okla.

66  Ilinois River at 3606 11 942039 167 ADPCE Sept. 1968-Sept. 1990 255
Savoy, Ark.

67  Osage Creek near 361319 941718 130 ADPCE Sept. 1951-Sept. 1990 256
Elm Springs, Ark.

68  Illinois River near 36 08 41 9429 41 509 ADPCE Sept. 1978-Sept. 1990 107
Siloam Springs, Ark.

69  Baron Fork at Dutch 355248 942911 41 ADPCE Mar. 1959-Aug. 1990 293
Mills, Ark.

70 Tlinois River at 353100 9505 28 - ODEQ Oct. 1959-Aug. 1990 492
Highway 64 Bridge,
Okla.

71  Baron Fork at 355516 945018 - ODEQ Oct. 1959-Aug. 1990 202
Eldon, Okla.

72 Ilinois River near 35.55/17 945515 959 ODEQ Nov. 1959-Aug. 1990 251
Tahlequah, Okla.

73 Buffalo River at 355635 932420 58 NPS Jan. 1990-Sept. 1990 10
Wilderness Boundary,
Ark.

74  Illinois River near 36 07 48 943412 635 ODEQ June 1973-Aug. 1990 173
Watts, Okla.

75  Neosho River above 361051 9516125 - ODEQ Oct. 1977-Sept. 1990 103
Industrial Park, Okla.

76  Flint Creek near 361258 943615 - ADPCE Oct. 1981-Sept. 1990 119
West Siloam Springs,
Okla.

77 Neosho River near 3626 15 9502 44 -~ ODEQ Nov. 1975-Sept. 1990 139
Langley, Okla.

78  Spring River near 363010 913131 - ADPCE Dec. 1970-Sept. 1990 214
Thayer, Mo.

79  Little Sugar Creek at 363010 9416 30 - ADPCE Feb. 1968-Oct. 1985 285
Caverna, Mo.

80  Spring River at 36 56 04 9444 45 - ODEQ Nov. 1959-Aug. 1990 171
Devils Prominade
Bridge, Okla.

81 Neosho River near 370210 95 04 50 - KDHE July 1967-Oct. 1989 212
Chetopa, Kans.

82  Marmaton River near 375147 94 40 36 - KDHE July 1967-Aug. 1990 227
Fort Scott, Kans.

83  Osage River below 381541 932410 - COE Aug. 1973-Sept. 1989 2,282
Truman Dam at
Warsaw, Mo.
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Table 6. Site and basin characteristics of surface-water sites in the Ozark Plateaus study unit—Continued

Site Major
number Physiographic  Major land point
(flg. 3) Site name Frequency of colliection area uses! Site type sources

64 Spavinaw Creek near 2 8D, 1961; M, Oct. 1978-Sept. 1990 Springfield pasture/forest  Springfield 1
Cherokee City, Ark. pasture

65 Neosho River below M, Oct. 1951-Dec. 1981; B-M, Feb. 1982-Aug. 1990 Springfield and cropland/ Integrator 13
Fort Gibson Lake near Osage Plains pasture/forest  (reservoir)
Fort Gibson, Okla.

66 Illinois River at 1 SD, 1968; M, Apr. 1974-Sept. 1990 Springfield pasture/forest  Springfield 1
Savoy, Ark. pasture

67 Osage Creek near 1-4 SD/yr, 1951-57,1959-60,1968; M, Apr. 1974-Sept.  Springfield pasture/forest/  Springfield 2
Elm Springs, Ark. 1990 urban STP

68 Illinois River near sporadic, Sept. 1978-Sept. 1981; M, Oct. 1983-Sept. Springfield pasture/forest  Springfield 3
Siloam Springs, Ark. 1990 pasture

69 Baron Fork at Dutch 18D, 1959; 11 SD, 1960; 4 SD, 1961; Springfield forest/pasture  Springfield 0
Mills, Ark. M, Oct. 1972-Aug. 1990 mix

70 Illinois River at M, Oct. 1959-Nov. 1988 (many months with muitiple ~ Springfield pasture/forest ~ Springfield mix 3
Highway 64 SD); 7 months, 1989; 3 months, 1990 (reservoir)
Bridge, Okla.

71 Baron Fork at Eldon, W, Oct. 1959-Mar. 1960; M, Nov. 1975-Sept. 1986; 2-3  Springfield forest/pasture  Springfield 0
Okla. SD/yr, Feb. 1987-Aug. 1990 mix

72 Illinois River near W, Nov. 1959-Mar. 1960; M, Apr. 1960-Apr. 1961; M,  Springfield pasture/forest ~ Springfield 4
Tahlequah, Okla. Nov. 1975-Sept. 1986; 3-6 SD/yr, Feb. 1987-Aug. 1990 mix

73 Buffalo River at M Boston forest Boston Mountains 0
Wilderness Boundary, Mountains forest
Ark.

74 Illinois River near 5 SD, 1973; M, Nov. 1975-Sept. 1986; Springfield pasture/forest  Springfield 3
Watts, Okla. 1-3 SD/yr, 1987-90 pasture

75 Neosho River above M, Oct. 1977-Aug. 1986; 1-3 SD/yr, 1987-90 Springfield and cropland/ Integrator 13
Industrial Park, Okla. Osage Plains pasture/forest  (reservoir)

76 Flint Creek near M Springfield pasture Springfield 1
West Siloam Springs, pasture
Okla.

77 Neosho River near M, Nov. 1975-Sept. 1986; 1-3 SD/yr, 1987-90 Springfield and cropland/ Integrator 12
Langley, Okla. Osage Plains pasture/forest  (reservoir)

78 Spring River near 1 8D, 1970; M, Dec. 1971-Mar. 1974; Salem forest/pasture/  Salem STP 0
Thayer, Mo. M, Aug. 1977-Sept. 1990 urban

79 Little Sugar Creek at M, Feb. 1968-Oct. 1983 (many months with multiple Springfield forest/pasture/  Springfield STP 0
Caverna, Mo. SD); 1 SD, 1985 urban

80 Spring River at M, Nov. 1959-Nov. 1960; 3-7 SD, 1961-63; Springfield and cropland/ Integrator 7
Devils Prominade M, Nov. 1975-Sept. 1986; 1-3 SD/yr, 1987-90 Osage Plains pasture/forest/
Bridge, Okla. Pb-Zn mining/

coal mining

81 Neosho River near B-M, Jan. 1968-Aug. 1975; M, Dec. 1975-Oct. 1989 Osage Plains cropland Osage Plains 2
Chetopa, Kans. cropland

82 Marmaton River near B-M, Nov. 1967-Aug. 1975; M, Dec. 1975-Oct. 1989;  Osage Plains cropland/ Osage Plains 1
Fort Scott, Kans. 5SD, WY90 urban STP

83 Osage River below M, Aug. 1973-Dec. 1987; 4 SD, 1988; 1 SD, 1989 (many Springfield and cropland/ Integrator 0
Truman Dam at multiple-sample months and days) Osage Plains pasture/forest/  (reservoir)
Warsaw, Mo. coal mining

! Primarily from U.S. Geological Survey (1990).
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface wat
in the Ozark Plateaus study unit for water years 1980-90

[<, less than; STP, sewage treatment plant; mix is forest/pasture mix; --, indicates insufficient data available)

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples  Minimum (median) Maximum

Nitrite plus nitrate, in milligrams per liter as nitrogen

Osage Plains 633 <0.10 <0.10 0.10 0.50 0.90 1.3 11
Cropland 514 <.10 <.10 .10 .46 .84 1.2 55
STP 119 <.10 .18 32 .67 1.2 3.0 11
Boston Mountains 376 <.10 .10 .35 .64 1.2 2.0 25
Forest 125 <.10 .10 .10 32 .60 97 6.1
Mix 24 <10 .10 15 .50 1.1 1.4 1.6
STP 227 .10 .38 .58 .90 1.5 3.1 25
Springfield Plateau 2,348 <10 25 79 1.5 22 34 32
Forest 189 <.10 <.10 <.10 10 A1 19 58
Mix 740 .10 .50 .60 1.2 1.7 22 5.5
Pasture 732 .10 .69 1.1 1.6 22 2.8 32
STP 687 <.10 .80 1.3 2.1 3.7 5.0 20
Salem Plateau 1,751 <.10 .10 .20 .38 .67 1.0 18
Forest 656 <.10 .10 .20 .30 .40 .68 6.5
Mix 784 <.10 .10 .18 37 .60 .82 1.5
STP 311 <.10 .36 55 94 1.5 2.6 18

St. Francois Mountains

Forest 66 <.10 <.10 .10 .20 .40 .65 1.3

Integrators 1,462 <.10 .10 .19 .33 .63 1.6 6.9
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water

in the Ozark Plateaus study unit for water years 1980-90—Continued

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples Minimum (median) Maximum
Ammonia, in milligrams per liter as nitrogen
Osage Plains 628 <0.01 <0.01 0.02 0.07 0.12 0.25 8.2
Cropland 510 <.01 <.01 .02 .06 .10 .16 51
STP 118 <.01 .04 .10 .18 39 2.0 8.2
Boston Mountains 340 <.01 .03 .05 .10 35 2.0 18
Forest 134 <.01 .01 .03 .05 .09 .16 2:5
Mix 5 .01 -- -- -- - - 25
STP 201 <.01 .05 .09 21 1.0 3.8 18
Springfield Plateau 2,099 <.01 <.01 .02 .04 .08 23 15
Forest 188 <.01 <.01 01 .03 .05 07 34
Mix 522 <.01 <.01 .02 .04 .07 A1 1.4
Pasture 686 <.01 <.01 .02 .04 .05 .10 1.6
STP 703 <.01 .01 .03 .06 .23 1.7 15
Salem Plateau 1,799 <.01 <.01 .01 .03 .06 A1 8.0
Forest 615 <.01 <.01 .01 .02 .04 .07 .63
Mix 867 <.01 <.01 01 .03 .05 07 87
STP 317 <.01 .02 .05 .08 .16 1.1 8.0
St. Francois Mountains
Forest 66 <.01 <.01 01 .02 .04 .08 44
Integrators 1,274 <.01 <.01 .02 .04 .06 .10 1.0
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water
in the Ozark Plateaus study unit for water years 1980-90—Continued

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples  Minimum (median) Maximum

Ammonia plus organic nitrogen, total, in milligrams per liter as nitrogen

Osage Plains
Cropland 229 <0.10 0.30 0.50 0.80 1.2 1.6 3.0
STP 0 -- -- - - -- -- -
Boston Mountains 168 <.10 .26 .44 .80 1.3 6.7 26
Forest 55 <.10 .20 .30 .50 .70 1.0 35
Mix 4 .70 - - - - - 1.3
STP 109 <.10 .40 54 .92 2.0 11 26
Springfield Plateau 999 <.10 <.10 15 35 .61 1.0 6.5
Forest 144 <.10 <10 .10 .20 .40 .83 6.4
Mix 397 <.10 <.10 .16 33 .56 97 4.0
Pasture 318 <.10 <.10 .10 .40 .69 1.0 2.8
STP 140 <.10 .10 .30 52 .80 1.2 6.5
Salem Plateau 385 <.10 .10 20 .46 .70 1.2 9.0
Forest 156 <.10 <.10 .20 .40 .60 1.0 3.1
Mix 86 <10 20 .20 .38 .60 .97 4.0
STP 143 <.10 .10 .30 .56 .90 2.7 9.0

St. Francois Mountains

Forest 0 -- -- - -- -- - --

Integrators 744 <10 20 33 S1 .78 1.2 29
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water
in the Ozark Plateaus study unit for water years 1980-80—Continued

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples Minimum (median) Maximum

Nitrogen, total, in milligrams per liter as nitrogen

Osage Plains
Cropland 241 0.10 0.40 0.70 1.1 1.9 25 6.8
STP 0 - - - - - - -
Boston Mountains 165 23 53 91 1.6 3.5 14 32
Forest 53 23 44 54 .80 1.1 2.0 9.6
Mix S .94 - - -- - - 29
STP 107 .46 1.0 1.3 23 6.9 18 32
Springfield Plateau 879 <.10 .40 95 1.6 2.5 34 18
Forest 132 <.10 .16 22 31 .50 .82 6.5
Mix 337 .26 .67 .92 1.3 1.8 25 54
Pasture 276 .60 1.3 1.6 2.1 2.6 3.2 47
STP 134 1.0 1.9 2.2 3.0 4.7 7.3 18
Salem Plateau 370 <.20 .40 .60 1.0 1.5 2.9 19
Forest 155 <.20 35 47 .70 1.1 1.6 3.2
Mix 86 .30 .35 48 72 1.1 1.4 43
STP 129 .62 1.0 1.2 1.6 3.6 7.6 19

St. Francois Mountains

Forest 0 = = - - - ae -

Integrators 666 <.20 44 .66 97 1.5 2.6 11
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water
in the Ozark Plateaus study unit for water years 1980-90—Continued

Percentiles
Physlographic Number of 10 25 50 75 90
area and land use samples  Minimum (median) Maximum

Phosphorus, total, in milligrams per liter as phosphorus

Osage Plains 627 <0.01 0.03 0.07 0.12 0.20 0.38 8.7
Cropland 510 <.01 .03 .06 A1 17 .29 1.2
STP 117 .01 .07 A2 .19 .56 2.0 8.7
Boston Mountains 371 <.01 .04 .07 .14 54 1.7 6.8
Forest 124 .01 .03 .05 .07 .09 15 .87
Mix 24 <.01 <.01 .01 .03 .06 .16 32
STP 223 <.01 .08 14 32 1.1 23 6.8
Springfield Plateau 2,410 <.01 .02 .05 .10 31 1.0 14
Forest 200 <.01 <.01 <.01 .01 .03 .05 32
Mix 775 <01 o1 05 09 15 25 22
Pasture 752 <.01 .03 .05 .08 .19 .34 3.4
STP 683 <.01 .04 19 .62 14 3.6 14
Salem Plateau 1,854 <.01 .01 .01 .03 .05 .14 7.2
Forest 651 <.01 <.01 .01 .02 .05 .07 99
Mix 872 <.01 .01 .01 .03 .04 .07 1.9
STP 331 <.01 .02 .04 AT .56 3.1 7.2

St. Francois Mountains

Forest 66 <.01 .02 .02 .04 .05 .08 31

Integrators 1,591 <.01 .01 .03 .05 .10 22 3.0
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water

in the Ozark Plateaus study unit for water years 1980-80—Continued

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples Minimum (median) Maximum
Orthophosphate, in milligrams per liter as phosphorus

Osage Plains

Cropland 110 <0.01 0.01 0.02 0.04 0.06 0.09 0.19

STP 0 - - - -- - -- -
Boston Mountains 367 <.01 .01 .03 .08 37 1.4 4.9

Forest 120 <.01 <.01 .02 .03 .05 .09 45

Mix 24 <.01 <.01 <.01 .01 .02 .18 .23

STP 223 <.01 .03 .08 .20 .90 1.7 49
Springfield Plateau 1,348 <.01 .01 .03 .06 21 .80 13

Forest 169 <.01 <.01 <.01 01 .02 .03 13

Mix 258 <.01 <.01 .03 .05 .09 15 .55

Pasture 515 <.01 .02 .03 .06 A2 24 1.7

STP 406 <01 .02 .05 .40 1.1 46 13
Salem Plateau 1,124 <.01 <.01 <.01 02 04 .18 5.7

Forest 189 <.01 <.01 <01 .01 .03 .05 .19

Mix 621 <.01 <.01 <.01 .01 .03 .03 1.7

STP 314 <.01 .01 .02 07 44 2.7 5.7
St. Francois Mountains

Forest 0 -- -- - -- -- - --
Integrators 952 <.01 <.01 <.01 02 .03 .06 1.0
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Table 9. Statistical summary, by physiographic area and land use, of nutrient and suspended-solids data for surface water
in the Ozark Plateaus study unit for water years 1980-90—Continued

Percentiles
Physiographic Number of 10 25 50 75 90
area and land use samples  Minimum (median) Maximum
Suspended solids, residue on evaporation at 105 degrees Celsius, in milligrams per liter
Osage Plains 373 <1 10 20 42 91 187 2,990
Cropland 262 <1 11 20 40 100 248 2,990
STP m <1 8 20 44 80 151 2,480
Boston Mountains 319 <1 4 8 15 25 47 429
Forest 121 1 6 10 18 30 50 316
Mix 0 -- -- -- -- -- -- -
STP 198 <1 4 7 12 22 42 429
Springfield Plateau 2,250 <1 1 3 6 13 23 480
Forest 128 <1 <1 1 3 5 13 228
Mix 704 <1 1 2 5 10 18 480
Pasture 781 <1 2 4 8 16 32 480
STP 637 <1 2 4 7 13 21 370
Salem Plateau 1,733 1 1 3 7 13 25 523
Forest 582 1 1 2 6 13 29 288
Mix 795 1 2 4 8 14 25 523
STP 356 1 2 3 6 10 16 263
St. Francois Mountains
Forest 65 <1 <1 3 3 8 16 38
Integrators 1,413 <1 2 5 10 17 33 651
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