USGS

Water Resources of Colorado

Fraser River Watershed, Colorado—Assessment of Available Water-Quantity and Water-Quality Data Through Water Year 1997

by Lori E. Apodaca and Jeffrey B. Bails

Available from the U.S. Geological Survey, Branch of Information Services, Box 25286, Denver Federal Center, Denver, CO 80225, USGS Water-Resources Investigations Report 98–4255, 58 p., 19 figs.

This document also is available in pdf format: Adobe Acrobat Icon WRIR 98–4255.pdf
(Requires Adobe Acrobat Reader)

Abstract

The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.

The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.

Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a possible indication of contamination from wastewater. Age of the alluvial ground water ranged from 10 to 30 years; therefore, results of land-management practices to improve water quality may not be apparent for many years.

Surface-water-quality data for the Fraser River watershed are sparse. The surface-water-quality data show that elevated concentrations of selected constituents generally are related to specific land uses in the watershed. For one sample (about 2 percent; 1 of 53), dissolved manganese concentration exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Two samples from two surface-water sites in the watershed exceeded the un-ionized ammonia chronic criterion. Spatial distribution of nutrient species (ammonia, nitrite, nitrate, and total phosphorus) shows that elevated concentrations occur primarily downstream from urban areas. Sites with five or more years of record were analyzed for temporal trends in concentration of nutrient species. Downward trends were identified for ammonia and nitrite for three surface-water sites. For nitrate, no trends were observed at two sites and a downward trend was observed at one site. Total phosphorus showed no trend for the site near the mouth of the Fraser River. Downward trends in the nutrient species may reflect changes in the wastewater-treatment facilities in the watershed. Bacteria sampling completed in the watershed indicates that more bacteria are present in the water near urban settings.

The limited ground-water and surface-water data for the Fraser River watershed provide a general assessment of the quantity and quality of these resources. Concentrations of most water-quality constituents generally are less than ground- and surface-water-quality standards, but the presence of bacteria, some volatile organic compounds, methylene blue active substances, and increased nutrients in the water may indicate that land use is affecting the water quality..


Table of Contents

Abstract

Introduction

Purpose and Scope

Acknowledgments

Description of Study Area

Data Sources and Compilation

Methods of Data Review and Analysis

Ground Water

Water Quantity

Water Quality

Occurrence of Inorganic Compounds

Occurrence of Organic Compounds

Dating Analysis

Surface Water

Water Quantity

Water Quality

Spatial Distribution of Concentrations

Temporal Trends in Nutrient Species Concentrations

Summary

References Cited

Appendix IóList of properties and constituents for ground-water-quality data in the Frasier River watershed

Up arrowBack to top


Water Resources of Colorado
Contact: webmaster_co@usgs.gov


U.S. Department of the Interior, U.S. Geological Survey
Persistent URL: http://pubs.water.usgs.gov/wri984255
Page Contact Information: GS Pubs Web Contact
Last modified: Friday, September 16 2005, 04:22:29 PM
FirstGov button  Take Pride in America button