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LETTER OF TRANSMITTAL.

DEPARTMENT OF THE INTERIOR,
17. S. GEOLOGICAL SURVEY,
Washington, D. C., May 31, 1887.

Str: I have the honor to trausmit herewith the results of certain
investigations, which may be broadly designated as relating to the form
and position of the sea level. These investigations were begun in part
previous to my connection with the Geological Survey, but they were
taken up again in 1883, with your approval, at the request of Mr. G. K.
Gilbert and Prof. T. C. Chamberlin, for solutions of some special prob-
lems which arose in their geological researches. The work has been
prosecuted simultaneously with other lines of office and field work. It
reached its present form substantially, however, moré than a year ago;
and the principal numerical results of the discussion of Protessor Cham-
berlin’s problem are incorporated with his paper on The Driftless
Area, in the Sixth Aunual Report. The purely mathematical features
of the paper have been published also in the Annals of Mathematics,
Nos. 5 and 6, vol. 2, and No. 1, vol..3. I have delayed offering the
complete manuscript for publication up to this time in order that I
might give it & careful revision and check all the more important form-.
ulas by independent processes of derivation.

The questions treated in this paper are for the most part necessarily '
somewhat mathematical., - They are, however, fundamental questioﬁs in
geophysics, and although the mathematical form of presentation has
been followed throughout, an attempt has been made to state the end
results and formulas in such a way that they may be understood and
used with safety by those who may not care to follow the details of the
analysis. TFor the benefit of such readers a key to the mathematical
symbols employed is given in addition to the list of contents and gen-
eral index. '

While the analysis of this investigation was designed especially to
solve the particular problems of Messrs. Gilbert and Chamberlin, it has
not been confined to those problems, but has been adapted to the entire
class of problems to which they belong. It is hoped, therefore, that
the results of the paper will be of interest and v&lue to geodesists and
mathematicians as well as to geologists.

Very respectfully, your obedient servant,

R. S. WOODWARD.
Hon. J. W. POWELL,

Director U. 8. Geological Survey.
(97) 13






ON THE FORM AND POSITION OF THE SEA LEVEL.

By R. S. WOODWARD.

I. INTRODUCTION.

1. The problem of the form and dimensions of the sea level surface
of the earth has been one of peculiar difficulty. The combined efforts
of the ablest mathematicians of the past two centuries, supplemented
by the most laborious and costly geodetic measurements have yielded
us the first approximation only to the complete solution. Fortunately
this first approximation is exceedingly close. It assigns to the sea level
a form which differs but slightly from that of an oblate spheroid, whose
major and minor semi-axes are about 20,926,000 and 20,855,000 English
feet, respectively. This spheroid, or reference ellipsoid, as it is some-
times called, has its minor axis.coincident with the earth’s axis of rota.
tion and is usually regarded as sensibly fixed in position and dimen-
sions. With respect to it the actual sea surface or geoid must be
imagined to lie partly above and partly below by small but unknown
amounts, the determination of which, if possible, will "constitute a
second approximation to the figure of the earth. For many if not most
of the applications of science the reference ellipsoid suffices; the first
approximation is nearly enough correct. But geodesy, on'the one hand,
has attained such a degree of perfection in precise measurement that
the discrepancies now brought to light in some of its operations must be
attributed largely if not chiefly to defects in theory. These discrepan-
cies must be explained before any considerable advance can be expected
in our knowledge of the figure of the earth along the presentlines of in-
vestigation. Their true explanation is apparently intimately connected
with the form of the geoid, and it is to the study of the form, therefore,
_rather than to the determination of the dimensions of the geoid that we
may look for future progress in geodesy. Geology, on the other hand,
has raised many questions relative not only to the form, position, and
fixity of the geoid proper, but also with respect to the allied equipoten-
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16 FORM AND POSITION OF THE SEA LEVEL. {BULL. 48.

tial surfaces of isolated bodies of water at higher or lower levels. It is
found, for example, in geological investigations, that the shore lines of
extinct seas do'not always coincide with existing level lines, but often
cross them at decided angles, or that the water level lines traced on
islands in such extinct seas differ in elevation from contemporaneous
lines traced on their distant shores. Aside from the changes which
may have been due in these cases to subsidence or upheaval, the ques-
tion may be raised whether such slopes or differences in elevation rela-
tive to present level lines may not have been caused by adjacent
attracting masses, which have since disappeared, like the ice mass of
the glacial epoch, or in a lake basin by the presence of the water itself,
Correct and complete answers to such questions require a knowledge
of the existing geoid and of the causes which may have produced secu-
lar variations in its form and position.

At present it is by no means clear how any specially extensive addi-
tions to our information concerning the more minute featares of the sea
surface are to be obtained. It may even be doubted whether we have
not reached a practical limit in the first approximation; whether in fact

“the distribution of matter within the earth’s surface is not so irregular
as to preclude gaining anything more than an empirical formula for the
deviations of the geoid from the ellipsoid of reference. It seems prob-
able, however, that the forces producing these deviations have their
seat in a comparatively thin terrestrial crust resting on a fluid or plastic
substratum (or nucleus), or that such was the antecedent condition of
the earth, and that our failure to perceive the relations of the crust to
the substratum is the chief obstacle to improvement.

In the absence of a complete rational theory the best evidence which
analysis can bring to bear on questions pertaining to the geoid is largely
of a negative charActer. The effects which would result under certain
conditions can be computed, but it is not always possible to prove that
those conditions accord with the actual facts. Investigation must
proceed to some extent upon doubtful postulates, and computations .
must be made from uncertain data. But notwithstanding this limita-
tion on the calculations we are about to consider, they will generally
possess a value in excluding or confirming hypotheses, or in furnishing
limiting values for the effects of observed causes.

2. A considerable class of problems concerning the sea level is that
in which the attracting or disturbing mass is symmetrically disposed
about a radius of the earth’s surface, and is situated on or near the
surface. As examples of this class we may adduce the two following,
which led to this investigation :

(a) Given the dimensions of a lake basin having a circular border.
When the lake was full of water it left a trace of its surface along the
border and on an island at the center of the basin. After the water
had disappeared a line of spirit levels was run between the water trace

(100)



WOODWARD.] RESUME OF RESULTS. 17

on the island and that on the border; what difference in altitude should
have been found %!
(b) Assuming the accumulation of ice in glacial txmes to have been
_in the shape of a spherical stratum bounded by a circle, or some sort of
meniscus symmetrical about an axis, and that the earth’s crust did not
yield under the weight of the ice, what were the resulting distortions
in the sea level %2
It will be seen that these problems are essentially the same. They are
substantially identical also with the problem of the effect of continental
masses on the sea level, since the continents may be represented, ap-
proximately at least, as spherical strata having circular borders, or as
masses of memscmd shape. ., .
3. The following paper is devoted to the investigation and discussion
of this class of problems. An attempt has been made to develop the
theory of their solution so far as‘is necessary to render practicable the
numerical evaluation of the characteristic effects of the disturbing mass
in any special case. In Articles IT to XI the theory of the effect of a
mass in the shape of a spherical stratum having a circular border and
uniform thickness is worked out with considerable detail. The only re-
strictions imposed on this mass are that its density is uniform, and that
the ratio of its thickness to the earth’s radius may be neglected in com-
parison with unity. Expressions for the potential of the disturbing mass
at any point of the disturbed sarface are derived in terms of a definite
integral and in terms of spherical harmonics; and the degree of approx-
imation of these expressions is investigated. Equations to the dis-
turbed surface are assigned for the case in which the effect of the re-
arranged free water is considered, as well as for the case in which that
effect is neglected. The disturbance in the former case is shown to be
equal to that in the latter, which is expressed in compact integral form,
plus a rapidly converging series of additive terms, '

1 This problem was proposed by my colleague, Mr. G. K. Gilbert, to the mathematical
section of the Washington Philosophical Society, February, 1884. In his geological
investigations within the area of the Quaternary sea known as Lake Bonneville, Mr.
Gilbert has found traces of the central portions of the ancient lake surface to be more
than 100 feet higher than the traces of tho contemporaneous surface at its margin,
A complete consideration of the effects of the causes which might contribute to this
distortion requires, obviously, a numerical evaluation of the depression of the level
surfaces within the area, due to the removal of the water.

A solution of the problem was given by the writer before the above-named society
in March, 1884, and a more complete discussion will be found in sections 39-41.

2To what extent the form and position of the sea level may be modified by the mere
attraction of glacial masses is a question which has been much discussed by geologists.
It was proposed to the writer by Prof. T. C. Chamberlin, geologist in charge of the
" division of glacial geology, U. 8. Geological Survey. The question is considered at
some length in sections 42-52, and a review of the work of the more prominent
mathematicians who have discussed the problem is given in sections 53-62. The
principal numerical results of the writer's investigations are given in Professor
Chamberlin’s paper on The Driftless Area, in the Sixth Annual Report of the U. S.
Geological Survey .
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18 FORM AND POSITION OF THE SEA LEVEL. {BULL. 48.

In Article XII the investigation is extended so as to assign the effect
of any mass of uniform density having a symmetrical distribution about
a radius of the earth’s surface. Particular attention is paid to a class
of masses whose shapes are assigned by a formula which represents
fairly well the mass features of the problems (a) and (b) above.

Under the head of applications, Articles XIII to X VI, the character-
istic properties of the equipotential surfaces in a lake basin are first
considered. Then the variationsin sea level attributable to continental
glaciers or ice caps are discussed at some length. The angunlar radial
extent of the ice mass is, for the most of the discussion, assumed to be
380, for the reason that this is the ‘extent of a mass of nearly uniform

‘t_hickness, which would produce the maximum upheaval of the water
along its border. The external shapes of the various masses, their vol-
umes, and the distortions of the sea surface attributable to them are
given in detail. The minimum thicknesses of ice masses of varying
angular radial extent, requisite to produce average slopes of five feet
per mile within one degree (69 miles) of their borders, and the extent of
variation in sea level on the hypothesis of an alternation of glaciation
at the poles of the earth, are also worked out. _

In the historical note of Article XV, the allied investigations of Arch-
deacon Pratt, Mr. D. D. Heath, and Sir William Thomson, on the prob-
lem of glacial submergence are reviewed. The special cases they have
considered are shown to be eas11v derived from the general formula of

- Article XII.

Finally, in Article X VI, a brief dlscussmn of the effect of continental
masses in distorting the sealevel is given. It is shown that according
as the continents are or are not superficial masses unbalanced in their
attractive effects, the sea siurface muost be very irregular or deviate only
by minute quantities from the ellipsoidal form. It is also shown that
although a continent whose radial element masses are in a condition
bordering on hydrostatic equilibrium would produce but slight disturb-
ances in the position of the sea level, it might nevertheless cause a.con-
siderable slope of the sea surface, or deflection of the plumb line along
its border.

A. THEORY. -

1I. MATHEMATICAL STATEMENT OF PROBLEM.

4. The solution of the general problem outlined in the preceding sec-
tion depends on the principle of hydrostatics that the potential of the
forces producing a liquid surface in equilibriam has a constant value
for all points of that surface. In the case of the earth, if the potential
of all the attractive forces acting on a unit mass at any point of the sea
surface be denoted by P, the distance of the point from the earth’s axis
of rotation by I, and the velocity of rotation by e, the form of the sur-
face will be completely defined by the equation
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P4-3Pe?=a constant. (1)

The exac$ value of P in this equation is a complicated function of the
densities of the element particles of the earth and of the co-ordinates of
those particles and the attracted point. For the present purposes, how-
ever, it will be sufficient to consider P due to a centrobaric sphere of
- equal mass and volume with the earth and concentric with the earth’s
center of gravity. Sinee we shall only consider relative positions of -
any point on the sea surface, the potential due to centrifugal force, which
is represented by the second.term in (1), may be neglected.

5. If ay and b, denote the equatorial ‘and polar semi-axes, respectively,
of the earth’s ellipsoid, and r, the radius of the sphere just referred to;

o= \3/_0?5(—; ’ @
‘Using Clarke’s values! of a, and b, we have

a,=20926062 English feet,

0,=20855121 English feet,

ro=20902394 English feet,
log 7,="7.32020.

The surface of the sphere thus defined may be regarded as the sur-
face assumed by a thin film of sea water covering a nucleus whose mass,
plus the mass of the film, equals the earth’s mass. We shall call this
ideal surface the undisturbed surface. With respect to it the real sur-
face of the earth lies partly without and partly within; but so far as
small relative changes in sea level are concerned it is practically imma-
~ terial whether we refer to the actual closely spheroidal surface or to
the simpler spherical one.

6. Let

.

M=mass of the earth,
p.=mean density of earth.
Then, .

- M=% nr¢pn 3)
and the equation to the undisturbed surface is '

J—l—é‘n'o on=Cl o (4)

C, being a constant. ’
Suppose, now, a new mass, m, of density p (positive or negative) be
placed in any fixed position relatively to the undisturbed surface. The
resulting sea surface will then differ from that defined by (4). To de-
termine this difference let ¥ be the potential of the disturbing mass m

! Comparisons of Standards of Length, made at the Ordnance Survey Office, Soath-
ampton, England, by Capt. A. R. Clarke, R. E. Published by order of the secretary
of state for war, 1866,
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at any point of the disturbed surface, and let » denote the elevation or
depression of this point relative to the undisturbed surface. The equa-
tion to the disturbed surface will then be

M | , : 5
ro+v+ V=0, a consta?,nt. ‘ (d)

The difference of this and (4) to terms of the first order inclusive in
v is ' '

M .
— EZH_ V=0,—0,

whence, putting .

Vi=Co— Gy
Co=(V=TyE. (6)
M ’

Since M /ro*=g, the velocity increment at the earth’s.-surface due to
the earth’s attraction, (6) may be written

g

v (6
Vo in the last two equations is the value of V when v:O; or the value
of Valong the line of intersection of the disturbed and undisturbed

surfaces. If we put .

A
r?2 V
V4= V= =-. . 7
My : (@)

This equation represents the elevation of the disturbed surface above -
a spherical surface of equal potential, whose value is

.

since the difference between this and (5) gives (7).

The constant V, may be determined from the obvious condition that
the disturbed and undisturbed surfaces must contain equal volumes.

It is evident that the equnations just derived will hold true if the
mass m be a part of the earth’s mass, so long as the ratio m /M may be
neglected relatively to unity. Thus,in the problems we shall consider,
m may represent the mass of a continent, the deficiency in mass of a
lake or lake Dbasin, or the ice mass of the glacial epoch.
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III. EVALUATION OF POTENTIAL V—DISTURBING MASS ON SURFACE
OF EARTH, OF UNIFORM THICKNESS AND DENSITY, AND WITH
CIRCULAR BORDER.

7. The next step in the solution requires the determination of the
potential V of the attracting mass for any point of the disturbed sur-
face, whether without or within the circle which we have assumed to
define the boundary of the mass. Although the nature of the mass may
be such as to prevent the water from permeating it freely, the surface
the water would take if not so restricted is an essential part of the
disturbed surface. .

In order to derive an expression for V, let the rectangular and polar
co-ordinates of any point of the attracting mass be defined by the usual
relations, viz:

r=r c08-0 cos A,
y=r cos f.sin A, -
z=r sin 0,
in which # and A correspond to polar distance and longitude, respect-
~ ively, the position of the origin being arbitrary. With reference to
the same origin, let the co-ordinates of the attracted poiut on the sea
surface be ' -
x'=1" cos 6 cos )/,
y'=r' cos ¢ sin A,
2'=1'sin ¢'.
If D denote the distance between the attracting and attracted points
and

¢os 1p=cos 6 cos §'+sin ¢ sin & cos (A—1'), (8)
D=12472—2rr" cos h=(r—7r')44r1 sin? .’/23 . 9)

The volume element of the attracting mass is
dzdydz=vr*dr sin JdOdA.

Hence, if p denote the density of the attracting mass, a general ex-
pression for the required potential is

V=p f ff redr si; fdbd ) (10)

We must now evaluate this integral. Taking the center of the sphere
of reference as the origin of co-ordinates, let

’r=7’0+ U,
and (11)
¥/ =7+,
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in which # and v are small quantities relative to_,, v being the same
of course as defined by equation (6). Premising what will be proved in -

Article IV, namely, that we may neglect quantities of the order ?;, %’,
(]
and C_‘_"_"’ \2 equation (9) gives
Yo /9
D=2y, sin %) ' \' (12)
From the first of, equations (11)
: dr=du,
and _ N (13)
) ,,.2=,.02,

to terms of the orderg .
. 0

As to the magnitude of the quantities neglected, it may be remarked
in passing that 7, is in round numbers 21,000,000 feet (see section 5),
while » and v may be restricted to values less than 100,000 feet; so

.that the fractions neglected will not exceed +%5.

Without loss of generality we may assume the line from which ¢ and
6" are reckoned to pass through the attracted point, and the plane from
which A and A’ are reckoned to pass through the attracted point and
the center of the attracting mass. In this case §/=0 and 1’=0, and (8)
gives p=40. '

By means of this relation and the equivalents in (12) and (13) the in-
tegral in (10) becomes

Verep f f f du cos 7 a6aN. (14)

If the uniform thickness of the attracting mass be denoted by &, the
limits of  in (14) will be 0 and %. Let the limits of &, which are ob-
viously functions of A, be denoted by #; and #,, The limits of A are
evidently equal in magnitude but of opposite signs. Hence we have

13 62 ‘N A A 6, -6
V=2rp | du| cos-df f dA=4rohp sin - — sin 5 )dA. (15)
0 4, 2 J oo 0 2 2

8. To complete the evaluation of (15) it will be convenient to change
variables. Consider the spherical triangles formed by the attracted and
attracting points, the center of the attracting mass, and the points in
which the arc # cuts the circle bounding the mass. Thusin Figs. 1 and
2, let P be the attracting and A the attracted points, ¢ the center of
the attracting mass, and BD@G the bounding circle. Then

f=AP and A=BAC.
(106)
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Draw CE perpendicular to AB and put

AC=a, BC=p,
. PE=g, BE=s,
CE=p, AE=q,
From either figure
f=q+s, th=q— 3, By=q+80,
whence | ‘
sin %%—Sh.l %:2 cos % sin %’

The right-angled spherical triangles of either figure give

cos q=zgzz, cos s,=208 B

cos p

, sin p=sin « sin A.

23

(16)

amn

Fie. 1.

The first two of (17) give

COoS «

2 cos? =149 & 2 sin?So—1_C08 B
3 3

cos p’
whence

cosp’

9 cos g sin ?=[(cosp+cos a) (cos p—cos £)] )

a 4 CoS p

From the last of (17)

A=___08Pdp
(cos? p—cos?® a)t

(18)

(19)

Now, the last of equations (17) and thé diagrams show that the limits
of p, corresponding to the limits of A, are 0 and « or 0 and £, according
as the attracted point is within or without the circle bounding the at-

(107)



24 FORM AND POSITION OF THE SEA LEVEL. [BULL. 48,

tracting mass. Hence, if we denote the potentials in the two cases by
V; and V3, respectively, the equivalents in (15), (16), (18), and (19) give

. cos p—cos A\ ‘ :
Vi=drilp j\ <cos p—cos & ap, o (20)
S
: . ‘ o
VZ=47'thS (g%:g—:ggz—g dp, (21)
0 :

ai B.

9. The integrals in these equations are in general elliptics of the third
species. They may be evaluated by the usual processes apphcable to
elliptics, by series, or by mechanical quadrature.

The integral in (20) presents some apparent difficulty, since the ele-
ment function is infinite at the upper limit, except when a=/4. Again,
in case a=90, this integral assumes the anomalous form

S (1_008 A ) dp,

the value of which is 7 sin B T a8 may be easily verified by means of (15),

(16), and (18). These peculiar features may be removed by the follow-
ing change of variables, which secures the same constant limits for both
(20) and (21).

For brevity put

ML

. . _ 4 :
; I= (M a | (22)
. COS p—cCos a

Jd 3
I— (cos p—cos f3
= LT R

dp. '35,
€COS p—cCos «
0 .

Then, observing that
siu’r/fj—--sin2 D

cosp—ceos 3. 2 2
Csp—cos a1, g—s'inzﬂ’
. 2 2
putin I; . -
sin;‘g =sin% sin y;,
and in 7, ' '

sin £ —sin &4 sin ys.
2 2
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These give ,
2 sin g_f cos y1dy,
d_p:—*—*—‘aj——— !
(1—sin? 3 sin? )/‘])éf

and

2 siyng oS yodyy

bl
(L—sin? g sin? yp)t

dp=

and the limits for both y; and y, are 0 and -7)5 Therefore

s
4

P sin{g !
0 . . 'l
2sing 1__——.—/3, sin? 9 dyy
n sin® L » ‘
I= PG (24)
(1—sinz Xsin? )t
0 2 .
aSB;
U_E J)
2 sin?é cos? yody,
25
I _ ps i ) (_«\))
: sinz 4 &
caf Ty ' - )
sinCf 1— sin2y, (1—51112‘751112 yz)
4 N4 <
5 . sing
.a;:/i .

10. Some special values ot the integrals (22) to (25) and the corre-
sponding potentials (20) and (21) are worth deriving. These values are:

(#) For a point of the disturbed surface at the center of the disturb-
ing mass, a=0, and (24) gives '

L=2sinf f Ty =nsin L, (26§
<J0 ~

and the corresponding value of the poteutial is
Vi=drohpn sin’% - @1

(b) For a point at the border of the disturbing mass, a=/, and hence
from (24) and (25)

I=1I,=2arc sin [sin P sin y] e =, © (28)
, =0

2
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a result which is reaclied more readily from (22) or (23). The corre-
sponding value of the potential is

Vi=Vy=4rhpp. (29)

(¢) For a point of the disturbed surface 180° from the center of the
disturbing mass, a=w, and (25) gives

sm2 /3 cos? ydy, g/ 1—cos2§>d}/2
I2— » 9 \ 2
1— sm2 1—sin?B sin? , sin® )/Z A .1+ cosz-'g tan?y,
=n—2c08 g arc tan [tan(cosg tan y2>] 2
. . 0

=7z<1—cos§> =27 sin’ g, (30)

and the potential is

-

172'=8rohpjz shﬁ%. | o (31)

(d) Suppose == ; in other words, let the attracting mass cover the
whole sphere. Then (24) gives :

I1=7T, (32)

and we have the following well-known approximate value for the po- -
tential of a spherical shell for a point on its interior or exterior surface,
viz:

drohprm. ’ (33)
This result follows also from (27) or (29) if we make f=z7.

IV. DEGREE OF APPROXIMATION OF THE LXPRDSSIONS FOR THE
POTENTIAL 7V,

11. In deriving the expressions (20) and (21) for-the potential of the
disturbing mass, it was assumed that a suiﬁcient degree of approxima-
tion is attained if quantities of the orders » , ;, and upwards are

To
neglected. The grounds of this assumption need to be examined with

some care., For this purpose we shall derive the exact expressions, in
form at least, for the potential of the disturbing mass at its center, at
its border, and at 180° from its center. A comparison of these exact
values with the approximate values given by (27), (29), and (31) will
show the order of approximation of (20) and (21).

1 See equation 34.
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We will first write down the expression for the potential of a com-
plete spherical shell, of uniform thickness and density, for a point within
its bounding surfaces. This expression will be useful as a check on
formulas relating to partial shells.

Let the radius of the interior surface of the complete shell be ry,-the
uniform thickness %, the uniform density p, and the distance of the at-
tracted point from the center of the shell ry4v.

Then the potential is!

V=drhpn{ 14; v + v (34)
0 2(ry +v) 20r0+0)0 " 2r(roF0)  Oro(roF+v)h )"

12. Let the notation be the same as that used heretofore; i. e., let r
be the radius-vector of any point of the attracting mass, »* the radius-
vector of any point of the disturbed surface, p the density, & the thick-
ness, and § the angular extent of the mass; and 4 the angular distance
between the attracted and attracting points. . For points of the dis-

_turbed surface lying above the undisturbed surface, r will be less than
r'=ry+v over the range r, to #/, and r will be greater than +' over the
range  to ro+h. Bearing these facts in mind it follows that the exact
value of the potential of the disturbing mass for the point where its
axis pierces the disturbed surface is

ot 3
' sin 66
V2 y2_2rr cos f

V=2pr | 7rZdr

[N 0
rot+h 3
9 ) sin 6d6
P 4y ‘/7.2_}_,,./2__)7-1-/ cos 6 -
oty 0 P
ro-+-v .
- ot inz B y . rdr
= <\/41 7! sin? g-}-(r’—r)z—(?’—r)) it
Yo+l
207 ( [arvrsine B4 (r—prp—(r - ,,)> rdr,
7o4-v

OW/J( @ °+h)o - (q vhoy — 310’-(I)-v> '

See Price’s Calculus, vol. 3, p. 299.
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Since

\/4w'sin2é;+( ’)2 Alnﬁx/w'(l-{- 7_7) ):

Srr’ smzl

2r sin g 1+
z( Qr’rsm? >< )

we find by expansion, integration, and reduction, to terms of the first
order inclusive,

3k sin g —h
1+ _‘—_—7
5 4(ry+v) sin L
V =4rhpmr sin 3
' @'(1—- sin —> 2
+

2(rp+v) sin g 2(ro+0)k sin B

(35)

2

If we make f=n this expression agrees with (34) to terms of the
second order.

Equation (35), it will be observed, differs from (27) by certain terms
which must be small unless & and v are very large. In one of the most
important applications discussed in the sequel, A=10,000 feet, v=3,000
feet, and f=38°. With these values, since 7, is in round numbers
21,000,000 feet, the quantity within the parentheses of (35) differs from
unity by less than 5dqg. If =600, which is (see section 23) the an;
gular extent of mass required to produce the maximum elevation of the
disturbed surface at the center of the mass, the quantity within the
brackets of (35) exceeds unity by less than 3455, using the above values
of hand v. -

13. Similarly, if the attracted point be at the border of the attrflctlnv
mass, the exact value of the potential is

’77'o+v

V=-J/)/ -—dr/ \/(T' vy mze)z . dA
T+l : -

2

+ p/ ,dr/ (a — ¥R drr! sm26’2 . dA

eV . To+-h -
r 7
_p”/l (w‘_fp)?/dr—an/ (r—’f"wdr’

0 Tot+v

(112)
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in which

sinz & . sin?fcos? A
2T I=sin? Fsin® L

Introducing this valae, the first of the above integrals relative to A
becomes

7
’ Jsiuzﬂ’cos2 A4
(’)‘I+7’)

¥ —r\?
’+r> cos? 3 m
1—sin® fsin? A i

0

Since the numerator of the element function in this integral is greater

thaun sin £ cos A and less than sin 3 cos A+ " cos /3, the value of the in-

..l..
tegral lies between (#/+7)8 and

! P OO ? 1
. 1= cos 3 ‘—M_____ .
(r'+ )/3)( +7‘/+r B Jo VI=sin®fsin?}

Suppose the-exact value of this integral is

w
s 140 T L
Likewise, represent the exact value of the second integral relative to
A by
W] r—r
rrp{ 140 15 )

Then to terms of the first order inclusive the above expression for

the potential becomes

W(B—s) v(14Q) |, v Qi+ Q) - 7&2—2}ov+27)2 :
V—47'0h/‘)ﬁ{1+ 4(,’_ +'17) (’VO+'U) 470’L —B 5(70+’U,/;(’/ }’ (36)

The first term of this agrees with (29).
The quantities ¢, and @, lie between

™

2
cos 8 dar

s v 1“_—si?127fsiﬁzx'

0

0 and

When /J’_”, or when the attracting stratum covers a whole hemi.

sphere, = (,=0, and (36) becomes’

To+0) Z(nﬁ-v)h

v=anhpr{ 14l ? } (309
(113) '
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This agrees, as it should, to terms of the second order with the half of
(34). For 1=10,000 feet and v=3,000 feet the quantity in the paren-
thesis exceeds unity by less than ;5. When g <‘~‘75, @rand @, will ex-

ceed 0, and the degree of approximation of (36) will be somewhat higher
than that of (36).

14. Tor a point of the disturbed surface 180° from the center of the
disturbing mass the exact value of the potential is

e 38 .
sin 8d6 °
V=2 2d
p”"[o ! 7/ V2721 277 cos 0 )

ro-+h ”
=2pn (r4v'— Vr24r242rr cos ,3);;,‘17'-
To .

‘When

(r—rPdrr’ cosz.g ,

which is the only case we need consider,

_ : 2 -
wzm=zcos/f¢rw§1+__—(' ") —g

L ,
< 8rr’ cos? ‘[j
2

=2rcosé%1+ﬂ —_ % %1_?—7"_'_. . %
2 8y 2r
rr! cos £ .
2
Hence, expanding, integrating, and reducing, there results to terms of
the first order inclusive, )

. - ., B 3h—2v
V=8rohpr sin® g{ 1+ =22 4,

4(ro+v)
the first term of which agrees with (31). Using the values r,=21,000,000
feet, h=10,000 feet, and v=—1,000 feet (v being here intrinsically nega-
tive), the factor in the brackets of (37) exceeds unity by z¢ss.

(37)

V. DEVELOPMENT OF POTENTIAL V IN SERIES OF SPHERICAL
HARMONICS.

15. The preceding expressions for the potential of the attracting mass,
namely, V, as defined by equations (20) and (21), are sufficient for most
of the applications to be considered in the sequel. They possess the
obvious advantage of a compact integral form. TFor some purposes,
however, it will be desirable to have V expressed in a series of spheri-
cal harmonics or Laplace’s functions. We may thereby arrive at equa-
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tions (20) and (21) by a process differing from that followed in Article IIT
and establish a useful harmonic development of the elllptxc integrals
I, and I, of equations (22) to (25).

16. Expressions fulfilling the present requirements may be derived
from equation (10) by expanding D! in a series of ascending powers of

r 7!
7 and ~ Thus from eqmtlon (9) we have

1[1",4-13( >+P2< >+ . | when r<v/,
| ]_)=% [p0+ P1< ;>+P2<?) .. ] when 17"

In these equations Py, Py, P, etc., are Laplace’s coefficients of the
zero, first, second, ete., order, respectively. They are functions of the
angular coordinates 6, ¢, A, and A’ only.

Taking, now, the ceuter of the sphere of reference as the origin of co-
ordinates, and supposing the line from which A and ¢ are reckoned to
pass through the center of the attracting mass, we shall have for a mass
of uniform thickness 7, all integrations in (10) independent. Tor that
part of the disturbed surface which lies above the undisturbed surface
r'=ro+ov will fall between the extreme values of r, which are 7, and
ro+n; and hence r <+ for values between r, and r,+4v, >’ for values
between 7,4+ and 7,4+ For that part of the disturbed surface lying
below the undisturbed surface »>7/. In both cases the limits of 4 are
0, and the angular radius 3 of the attracting mass and the limits of A
are 0 and 27. Therefore for that part of the disturbed surface lying
above the undisturbed surface equation (10) gives

S on roto
V=p sin 66 a [P.,+P1< >+P2<w>+ Zch
0 0
8 27 rth (38)
+p sin 62 f ’ |:P0+Pl<§>+z>z<3;>f|. . .:Irdr;

T

7‘/=7'0+U-

Likewise for that part of the disturbed surface which lies below the
undisturbed surface, equation (10) gives

. .
8 2

+h
/
V=p sin 646 dar [P0+P1<£—)+Pz<§;>‘3- . -]rdr; (39)

“ 7 =1yt
(115)
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Tor brevity, let the integrals with respect to » in (38) be denoted as
follows:
J _(7‘0'—‘-’0)3'—703 .
0= 3(ro+v) ’

" g (rto)i—ngt
K D

(40)
J _(7'0+'v;5--7’05
=B (vt 0)F !
T (ro+v)+—r+? .
T (143) (o)
.j0,=(7'0+h)2;(7'0+”)2,
Iy =(ro4-h) (h—v), )
(41

ro+h

Iy =(1+2)? log, kv’

Ji, r?+v) [(7‘ +’U)_ 1-2)_(,',0+]b) (;—2)]

The ambiguous forin which J;/ assumes when ¢=2 receives its proper
interpretation in the third of (41).
Similarly, let the integrals with respect to r in (39) be denoted thus:

roh)2—~1r?
J0//=( 0+:’2 0 ,.

Jl”=(7'0+’v)h,

Ty =(ryto) log, o ? (42)

"o

TG SO —(i-2)_(7~0+h)—(i—2)] .

=2

Substituting these equivalents of (40), (41), and (42) in (38) and (39)
the latter become, respectively, : '

g 2m
V=p f sin 60 f (o do) Pt (4 J) P . . .]JAA, (43)
JO 0 -

B8 - 2
V=p j sin 646 f [/ Pyt dPig . . L ]dA. (44)
0 Jo
(116)
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Now, it is known from the theory of spherical harmonics! that the
general value of P, is _
P,=f;(cos f)f; (cos ¢')+terms multiplied by cosines of multiples of (A—2'). -
Since .
jj"c‘os i(A—=A1)ar=0,

we have to:deal only with the first term of P,. The function of cos ¢
or cos ¢ involved in this first term is defined as follows:?

pu=cosf, '

1 A2 —1)

S )=l W=gry5 7 ~aw

The following important relation exists between any three consecu-
tive values of f;(u), viz:3 '

2i—1 .~ i—1 :
SR =2t s === Sial ) (45)
The remaining integrals in (43) and (44) are therefore of the form
Y] 2r 1
fi(cos @) [ fi(cos 6)sin 6d6 f aa=2qf(w) [ fi(wau.
0 TJo cos B
Let
i 1
F.(B)=| - filman. (46)
) cos B
The known value of this integral is*
1
F(B)=gi | fi-l008 f)=Fin(e0s ) |- (47)

The values of V in (43) and (44) may now be written thus, replacing
6' by a, ¢ or a being the angular distance of the attracted point from
the center of the attracting mass:

1=
V=2px E :[(J.-+J/)Ji~ (cos a) ()] (48)
i=0
for points of disturbed surface above undisturbed.
V=2pm E [J/ fi(cos &) F;(f3)] | (49)

=0

for points of disturbed surface below undisturbed.

!See Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, Erster
Band. Second edition, G. Reimer, Berlin, 1878.
2 Heiue, p. 19. 3 Heine, p. 91. 4 Heine, p. 93,

Bull, 48——3 (117)
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17. The values of V in the last two equations are exact, but their ap-
plicability to the problems we have to consider is limited by the slow
convergence of the series in the second members. In these problems
70, Yo+, and r,+h are nearly equal, and hence the convergence of the
series depends almost wholly on the convergence of the functions of «

and g.
If we neglect terms of the order h/7,, v/70, and upwards, equations

(48) and (49) become identical and equivalent to (20) and (21). To show
these facts we expand J; and J; of (40) and (41) and obtain

J4d!=reh 1— (z—l)h—2w+ @+ +02 (50)
2 1 5

in which O, represents terms of the second order. Likewise, (42) gives

_; 1,. h .o
%//_rolb[l—g(z—l)%-}-z?o-i-Og]. , (51)

Hence, to terms of the first order we have!
']i'l"TiI:J’i”:rOh,
and (48) and (49) become

V=2rhpr v/}(cos a)F,(f3). | - (62)
ya

1=0
Now, if cos ¢p=cos 6§ cos a+sin 0 sin « cos (h-;l’)_,

1=o0

9 E : | sin 6d6aA
T f(cos a / / T e s ¢+1

1=¢

But this integral, as shown by the transforniation in se(,tlon 3,1is equlva

lent to
cos p—cos 8 €OS p—Co08 ﬁ)
4[(0031} cos a) dp or 4/<cosp—cosa D

according as «a is less or greater than f.

1This inference from (50) and (51) does not appear to be quite satisfactory. For
large values of i, J;4J;' and J;’/ ave less than »h; they are each 0 for i=x. The in-
fluence of the too great factor roh in the higher terms of (52) is, however, counter-
acted by the small factors f; (cos @) F;(8) in those terms; and that the order of approx-
imation secured in (52) is sufficient is evident from the equivalence of (52) with (20)
and (21), whose order of approximation has been investigated in Article IV,

(118)
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This establishes the equivalence of (52) with (20) and (21), and fur-
nishes the following development in polar harmonics of the elhptlc inte-
grals in (22) to (25):

=%

AC = DY I
(33) *
/ng:ﬁ:ggz ﬁ) dp= 92 (cos a)F,(B),
aSp.

In order to show the form of the second numbers of equations (52)
and (53) we give below the first four values of f;(cos a) and F; (), re-
spectively. The series of values may be easily extended by means of
the relations in (45) and (47).

fifcos @)=1, | Fy(f)=1—cos f=2sin* &,

fi(cos a)=cos a, - Fy(B)=4(1—cos’ B)=4%sin® §,
fi(cos @)=3(3 cos? a—1),  Fy(B)=}(cos f—cos’B)=} sin?3 cos 3,
Ja(cos a)=21(5 cos® a—3 cos a); Fy(B)=4%(6cos? f—5 cost B—1).

By meaus of these values equation (52) may be written thus:

+2 sin2§+%cos a sin?

V=2rihprn +3(3 cos? «—1) sin? £ cos 3 . (54)
++%(5 cos® a—3 cos a) (6 cos? 5—5 cost f—1)

+ . ..

VI. EFFECT OF REARRANGED FREE WATER.

18. In case the disturbing mass is as large as the supposed ice mass
of the glacial epoch, the attraction of the rearranged free water on
itself may be appreciable. To determine the exact effect of this attrac-
tion would be a work of great difficulty even if we had the requisite
information, namely, an accurate knowledge of the complicated shapes
of the continents and sea bottom. But we may determine an effect
which will exceed the probable actual effect by supposing the whole
surtace of the earth covered with a film of water free to assume the

(119)
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proper form for equilibrium under the given forces. To fit this ideal
case formula:(6) may be modified in the following manner:

Let the potential V in (6) be replaced by V44V, where 4V is the
potential due to the rearrangement of the water. Likewise replace
the constant V, byV,+47V,. Then,if 4v denote the corresponding
change in v, equation (6) gives ‘ :

. 3 o .
®+A”—4ropm7r(v+d V=V,—4Vy). . (55)
Now, v44v may be expressed by a series of Laplace’s functions

(which are in this case polar harmonics) thus:

vt dv=rio(Zot+ Dt-Zot . . L),
"in which ¢, is a constant of small numerical value ; and hence, d'enoting;
the density of sea water by p,, we have, as shown by Laplace,’

AV=47'0200/)W7I(Z0+%ZI+%Z2 . 1 Z+ . e e ).

V has alread‘y been expressed, equation (54), in a series of Laplace’s®
functions. Denoting these functions in (54) for brevity by Yo, Y, Y3,
ete.,

V=2rihpa( Yo+ Y1+ Yo+ . . . )

Substituting these values of V, 4V, and v+ 4Jv in (55) there results, if
we make the obviously permissible substitution

h p Uo—

2 pm 4 Opm (V0+AV6),

the following equation:

il 1=222 )= 02 (¥,— 1)\

+rocozl<1_»ifiz> 3,2 v,

z pm
3 3
+ "'()COZg(l— —&0 —_ 2 hp—m Yz =0.
. 3P P
+ ’°C°Z‘<1— (2i+1)p, 2’ o T

According to the theory of Laplace’s functions we must have in this
equation the sums of the functions of the same order separately equal
! Mécanique Céleste, Book III, Chap. II, o
(120)
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1} .

to zero, which amounts to placing each line in the equation equal to
zero. Thus we find -

3} 0
3" on
roColo= (Yo —U,)
1_3Pu ’
P
Shl
1oy = 3{)'" Y
1— 2L
30m
§hﬁ
roColy= 2 P Y.
0Cols;= 30, i3
1=
whence by summation
1= 1=00 N R
V4 Jv="ryy Zi=§hﬁ Y” - 2 . (56)
2 pn 1—3 Pu 1_3Pe
. 1=0 v =0 27;+1 P P

This equation expresses the total effect of the disturbi;]g mass in
altering the sea level, v being the effect which would result if the ocean
were an infinitely rare fluid, and 4v being the increase over v which
would result under the assumed conditions. Obviously, » and 4v may
be expressed separately. Thus

1=

J@:%hg 31:3 p3U° : (57)
m 2i+1)Pr_g Pn_g s
Z( .

=0

VII. EVALUATION OF CONSTANTS V, AND U,.

19. We proceed now to determine the constants Vp of equation (6)
and U, of equations (56) and (57).

It has already been stated that these constants are to be determined
from the condition of equality in volumes contained by the disturbed
and undisturbed surfaces, a condition whose analytical statement is, to
terms of the order we neglect,

us
2re’m / v 8in ada=0.
1]

(121)
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Substituting the value of » from equation (6) in this, there results

/ V sin ada— Vo/ sin ada=0.
0 ~ 0

whence

(@) The easiest way to evaluate this integral is to substitute for ¥ its
value given by equation (54). We get, then, at once

Vo=4rhpr sin? = ﬂ ‘ (59) l

since by the theory of spherical harmonics all terms of the series except
the first vanish in the integration. For the same reason, if we apply
the condition : .

I
/ (v+4v) sin ada=0
0 .

to equation (56), it will appear that
Uy=Y,=2 sin® Lz” (60)

(b) The value of ¥, may also be found by the following process, which
is chiefly interesting on account of its complication as compared with
the process used above. For points within the perimeter of the attract-
ing mass replace Vin (58) by V; of (20), and for points outside the perim-
eterreplace V by V;of (21). Making these substitutions, there results

Vo_2r0hp( / I sin ada+ / I, sin ada) (61)

Substituting the value of I from (24),

]
P sm2 B —sm9_ sin%y;
I, sin ada=4 smgy - sin? y,d (tsm2 )
n T 1—sin Feinty suﬁ— sin?y,

sin? g — sinz-g sin? 3,
tz..

. A . *
1-—sin? 5 sin? 4

(122)

Vo=t / Vsin ada.  (58)
2./ o

-
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Then the last integral becomes

et B Ly 28t
4 cos / Sinty, / E=1p

2

’ — ZE tl (1+t2) 1—- tl) d}/l
=doos'y [ti—l - 1+zl 8o (T—t,) (144 sin 31’
o .
in which
| t1= SlIl g,
and
' sin g oS 11

tg =

(1— sin? Ezsin2 %)t

Substituting these limits in the non-logarithmic part of the integra]
it becomes

whl [fn L
45111 2{./' s]ﬂ/gsulzy-_slnﬁ
£ o (Lt (-t
+2 sin cot /smz V1 ga(l—'tz)(l"“tl.\‘

Integrating by parts all terms of this expression except the first, we get

(K]

<l—sm?ﬁ szy) cos 7/1

su"

1_.2£ c o o\B ) 2
+( smzsm ¥1) cot 11

sin g sjn V1 sin -g

4 sin? 2/? + are sin ( sin g sin y,) '
LB (L+8) (1—-1)
5 cot}“?Ooge (W)) cot 3

—cotz_/? are sin ( sin B sin y;)
22 2 .

This gives

8 .
/ 1, sin ada=2(sin f— G cos G). (62)
' (123)
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The second integral in (61) becomes by substitution of the value of
I, from (25) ) '

2 : a( sin? ﬁ)
=4 sin? zﬁ cos” yadys 7 ( z Lo
' B(sinz g— sinzé_‘ sin? y,)‘ <l—sin2 % sin? y2>ﬁ

B sin g €oS ¥ sing sin? y, €O8 y;
=8 sin’ 5 cos? 3y — 5 —5t —F i dy»
\ , <l—sin2§ sin? y2> ‘<1—sm?§ sin? y, )
1., B 2
y2+§ sin 2y,—2 are sin ( sin 5 sin y,
<l—sin2 g sin? y2>isin Ve
— nd ; j
=4 Siﬂzg Sin ‘/2
arcsin (sin 5_3 sin y, )
+— 3 ,
sinz3
“ 0
This gives ‘
| Lsin ada=2<7r sinzg— sin 84 £ cos /J’). (63)

B
The sum of (62) and (63) is

iz B
27 sin 3 |
which, substituted in (61), gives for V, the same value as (59).

VIII. EQUATIONS OF DISTURBED SURFACE,

20. ‘By reference now to equations (3), (6), (20) to (23), and (59) we
find for the equation of the disturbed surface when the effect of the re-
arranged water is neglected

v=3h/_f_<71_t— sin® g) Do (64)
(124)
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The corresponding expression in polar harmonics is [see equations
(56), (57), and (60)]

i==c0

v=§’h"— [Y.==fi(cos a) F;(B)]. N (65)

m

=1
Under the assumption that the water covers the whole sphere and is

free to adjust itself as stated in Article VI, the equation to the dis-
turbed surface is

vt do=31 2 Jfi(cos a)F: ()
27 Pn 1— 3 Py
= L. T 24T p.

. (66)
i=00 ’

3
5/i(cos @) F, ()
=3h—”—<7I—, —sin? 2ﬁ>+3k £ E ER
Pm Pm | (@i+1) -;332 -3

21. The position of any point of the disturbed surface is thus defined
by the co-ordinates v and «, v being the elevation or depression of the
point relative to the undisturbed spherical surface and «a the angular
distance of the point from the axis of the disturbing mass. I in (64)
and (66) is to be computed from (22) or (23) or their equivalents (24)
and (25), according as the point is within or without the perimeter of
the disturbing mass. The functions f;(cos «) and F,(f) are given by
(45) and (47), respectively. ‘

22, The general character of the disturbed surface when the effect of
the rearranged water is neglected is evident from (64). It is symmetri-
cal with respect to the axis of the attracting mass. It lies without or
within the spherical surface of reference according as I is greater or

less than s sin® g_ The values of I for the point of the disturbed sur-

face at the center of the attracting mass, for points along the border of
the mass, and for the point 180° from the center of the mass, are given
by equations (26), (28), and (30), respectively. If we denote the corre.
sponding values of » by the suffixes 1, 2, 3, we get

\ 0, =3h % (sin B_sime /%)
a=0;

v=3h //)’_m<§ —sin? %) ' . o
a=p;

ms=?h%<2 sin? g —8in? _g ) ,

aA=TI.

© )
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The meaning of these equations may be most readily understood by
reference to Fig. 3. Thus, if the circle FCH represent (in cross-

section) the undisturbed sea level surface of the earth, and a stratum of-
matter, as an ice cap, ABDUF, be added thereto, the new sea-level
surface will assume the form indicated by the dotted line. The values
of »; and v,, as shown in the diagram, are positive, while the value of
v3 is negative. If, on the other'hand, we suppose the space A’B’D'F
to be occupied by matter of less density than the average density of
the earth’s crust, as is the case in a lake basin, the disturbed surface
will fall within the undisturbed surface from I to some line P, and
outside the undisturbed surface from PQ to H, i. e., v; and v, will be
negative and v; positive, or, what amounts to the same th—ing, p in (67)
will be essentially negative.

23. Itis of interest to inquire what angular extent of mass will pro-
duce numerical maxima of v;, v,, and v, supposing the thickness » and
the densities p and p, constant. By means of the usual criteria it is
readily found that

v;=a maximum for £=60°,
V=2 maximum for sin f= % , or §=39° 32, (68)
=a maximum for S=120°,

24. A glance at equation (66) suffices to show that the effect of the
free water, if it covers the whole earth, is simply to produce an exag-
geration of the type of surface defined by (64) and (65). The series in

' (126)
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~ the third member of (66) expressing this exaggeratlon is raplclly con-
verging on account of the dnmmshmg factor

3

2
2i41)FPr _3
( )ﬁu

)

°

which is, since % is about %1,
3
22i+5° )
The essential features of the disturbed surface are, therefore, in any
case, defined by (64) or its equivalent (65); and in most cases the effect
of the rearranged water may be neglected as unimportant, or as of no
greater magnitude than the uncertainties inherent in the data for actual

problems.

‘.

IX. EVALUATION OF THE DEFINITE INTEGRALS I; AND I,.

25. The equations (67) define the position of the disturbed surface in
some of its most characteristic points. To define its position at any
other point we must evaluate the elliptic integral I; or I,, which per-
tains to such point. These integrals have already been expressed
[equation (53)]in a series of polar harmonics, which, if more convergent,
would suffice for computing I, or I,. It is easy, however, to derive
- more convergent and convenient series than that of (53), and this is
the object of the present Article.

First take I, of (24). For brevity put

sin‘a
e 92
- )
sin g—
and
b= sin g .

Then by Maclaurin’s series, of by the binomial theorem, we readily find

13 S
Il—9b/ (1—A4 sin? y;—Bsint y,—Csin®y1— . . .)dyr, (69)
. 0 .

in which o
A= FJuw*(1-1?),

B= jw'(1+20°—30%),

O =7ws(14 2+ 3b*—50°),

(127)
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The even powers of sin y; may each be expanded in a series of the
form

¢+d cos 2y1+6 cos 41+

in which ¢, d, e, etc., are constants. But since

x
/ cos 2nydy =0,
0

we shall need in these expansions only the values of ¢. The value of ¢
in the expansion of (sin y)* is

_2n(2n—1)(2n—2) . . . . (n4l) 1\
e= 1.2.3. . . . = (5)

Applying this formula, and making the integration in (69), there re-
sults '
IL=ba(l—34A—3B—35C0—- . . . )
Hence if we put?

g1=1(1-0),
go= 5 (1—12) (1+30%),
Gr=35 (1—12) (1+-20°4+ 514),

gi=vs57 (1—0°) (54902 + 150+ 350°),
95=55%35 (1—=0%) (T+120°+18b*+280°+ 630%),
o= 1523 kg (L—b?) (214 85D%-4 500440054 10558 - 23151),

Il=b7z(1-—g1w2—gzw4.—ggwe-— . e ),

: (70)
sin S ‘ '

w=-— 2, b=sin§y a’_S_ﬁ-
s ) )

This series converges rapidly, except for values of w near unity. - In
a practical application, to be considered presently, wherein §=38° (70)
gives, using terms up to that in w?, inclusive, I; too great by about 5
per cent. for the case w=1. But this is the most unfavorable case,

1 The general value of g is

41.1.3.5 . . . (=3
+1.1,3.5 .. . (2n-51. ndb?
_ n(n—1)
g 2RCO=D 0= . . . (D) F1.1.8.5 ... @e=D1. 35t
Bo2.d ..ot B 01,805, .. (2n-9).1.3.5’i‘2‘1‘12_’—‘l3"—2-’b6

R I * e e
~1.3.,5 ¢ .0 o . (@n=1)b28 &
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and one moreover for which the exact value of I is known from equa-

tion (28).
26. By a process entirely similar to that followed above, the expan-
sion of (25) gives, writing for brevity, .
v=cosec é s
+I(149?) *
. + 204 (34224374
/ 6 2 4 6
; Legptny] TT0 B b5(543124-3v4 - 5vb) ]
f F153570%(35 4200241844 2054-35+%)
- +i3wr b1°(63+3w2+30v4+30V6+o51/8+63v1°) .
+ . . . . . . . . . . 1 . .

If in this expression we put

N oA TT S NN Y L
Tp=5+ 30" z%Z§b4+z%%‘6b6+mrﬁbg+
ks—“T"f“’%)%Eb'i' Zb4+131072b+ Coe e
k4=§0—4§+3%26b2+1—5§-11§'73 .
k5=—..,—%—$‘2—8+mmb2+ P

—_ 1323
kﬁ_262144+ LI

we find
L=br(kw 4+ kw4 kw4 . . ),
. . (71)
PSRN 2 4
sin o -
w= 3, b= sin %, - aS .
sin g

This series converges somewhat more rapidly than (70). For the
- case in which §=38° and for the extreme value w=1, using terms to
that in w" ivclusive, (71) gives I, too small by about 3 per cent.
*A general expression for the nth term within the brackets, beginning with the -
- third term, for which n=2, is the following
‘+1.3.5. . .(@2n—1)
+1.3.5. . .(2—3)1.n¥%
1.3.5. .. (2.;1—5)1.3.&1"_.—_;74

b..
a = n(n—1)(n-=2)
3.5 23— 3"

n(2n—1)(2m—2) . . (n42) +
P2 @ w2\ 3.5, . @u=1)1.

b o
+1.3.5. . .(.Zn—l)v""

(129)
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27. For points near the border of the disturbing mass I; may be
oxpressed by a more rapidly converging series than (71). Thus from
equation (23)

\ %
L= 1008 f—cos a\ g,
2 A COS P—COS

cos S—cos a=2 sin <ﬁ"_'|2'_ﬂ> sin (“;ﬂ>=2a.
Then ’

'az .ad :
/ [ 2 3 —- ]dp.
(cosp cos @)  (cos p—cos @) (co8p—cos @)
8 dp 1

Now, if
sin (“42)

o COS P—COS « sma sm ( ﬂ)

8
X __gin / @
a , (€0osS p—cos a)

@*X | T dp . Poap
¢2 = P4 9gin? @ -
daz 0%« L[ (cos p—cos a)2+ s , (cosp—cosa)’

Let

X=

ete. ;
whence -
@ 1 X
, (cosp—cosal  sina da’
# g _ 1 (®X_ dX
, (cos p—cos a)” 2 sin? a\ da?
ete. ‘

The integrals in the third and higher terms of the above series are
thus seen to depend on the integral in the second term. Making the
requisite differentiations we find, to terms of the third order inclusive,

) . @ ,a®cos o, a*(3—-2 sin® a) sm( oL
2=ﬂ_<sin a+2 sin’ a+ 4 sin’® o )10 ( >
4 sin
' . (72
5a sin B 3a* cos a sin S
16 sin? « 8 sint « ‘T ) ')’

a= sin “'g/j Sir? “_f:z_ﬁ

(130)
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X. SLOPE OF DISTURBED SURFACE.

28. Having derived the requisite formulas for computing the position
of any point of the disturbed surface, it remains to determine the slope
of this surface relative to the undisturbed surface.

Differentiating equation (64) with respect to a, and dividing the re-
su}t by the radius of the undisturbed surface 7,, we get

dv _ 3hp dI

. roda” rop, " da ()

b This expresses the slope or inclination of the disturbed to the undis-
turbed surface in a meridian plane through the center of the disturbing

/ mass; it also expresses the deflection of the plumb line in the same
plane.,
In order to apply (73) it is essential to have the general value of
ar
T
Since )
. . a n
W= sz )
=\ =5
sin 5
aw"_n_ .
T35 S0 cot 3 .
and hence (70) gives
S +1gw!
+2g,u°
dI]_ [24
da - OOS— +393w5 . (74)
+494w7
\-!- . . / .
Similarly (71) gives
- +3Kw?
. 3K
gé— — 7 COS @ +§ 2wq—-6 7!"
° da 9 +i Ky . (75)
+IKwt -

+ .
29. Equations (74) and (75) will suffice for the computation of dI/da,

/ except for points near to or at the border of the attracting mass. As
a approaches equality to 3 the above series become less and less con-

vergent, and finally divergent when a=/ or w=1. This may be most

(131)
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readily seen by differentiating (22) or (23) with respect to a, and then
making a=/4. Thus we find

) S . sin p+pT]°
ar 1. dp
. G Tgpsin 51 m: — log, — =—mw.
/ I sin /2—1’ 1,

IS

Likewisa the integrals (24) and (25) become, after differentiating them
with respect to & and then making a=p3,

al ? sec? 1 tan? yidy
1_ . 1 -, (A)
da™ (sec2 _’g+ tan? y, >’
' 0
al, C sed pudys
da” (sec2 /j+tanz )é (B)
P & o
0
: d
_ sec? é sec? yaldy, sec? y, tan? yody,
]
(sec2 B Z 4 tan? ;/2> ' <se02 Lg +tan? y2>
- +dI1

This shows the equality of (A) and (B) since (B) is plainly infinite,
its value being
tan ;/2-|-<sec2 ’g+tan2 Vs )i 2

—1 log,
2 f3
-8ec 9

0

30. This failure of equations (74) and (75) for points at the border of
the attracting mass arises from the fact that the expressions (20) and
(21), though very approximate for the magnitude of the potential V,
are not sufficiently general to give an accurate value of dV/da, or the
attraction in the direction of the arc « for those points. To determine
the slope of the disturbed surface at the immediate border of the dis-
turbing mass a special investigation is requisite.

Since by equations (3) and (6) the slope is expressed by

dv 3 1 av .

o=, =2 76

rda 4 romp,  rda’ (76)
(132)
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we may derive an expression for the attraction d V/rida directly. Tle
exact expression for the horizontal attraction towards the axis of the
mass of any element mass is, using the same notation as in Article III,

4r’dr sin® ’0«5 cos? % dg cos AdA

[(r—r’ )2 +4rr’ sin’ _g] !

H

and theintegral of this is d V/ryda.

Now, as heretofore, lot

r=rot+u, . ri=ry4v.
In addition put
) g:r—r’,
so that
e dp=dr,
‘n=—u for r=n,,
n=h—v for r=ry+h.
Also let
_ ]
&= 21*0 sin 3
whence

d&=r, cos % as,

oos =1~ ().

Making these substitutions and neglecting terms of the order

v 5 \?
fr o (5)
the above expression becomes

&2d&dny cos Ad?t
&)

Integrating with respect to 17, and substituting the limits given above,

there results |
(h—v)dg vdE
[[Ez'i*(h—@)?]* +(gz+vz)é ]COS AdA.

Bull. 48—4 -~ (133)
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1If, now, we suppose the attracted point on the border of the attract:
ing mass, the limits of & will be 0,"and, with sufficient approximation,
27y sin B cos A=c cos A, say. Integrating with respeet to &, and substl- .
_tuting these limits, we get

T E oo
p(h—v) cos Mll log, ( \/ 1+ ¢ cobb))} + C}fisvl

2 2 )
-+ v cos AdA log (\/1_}_0 cos? /L. 60?79.

_ It remains to integrate these last expressions with respeet to A between
the limits 0 and g An application of the formula’ for integration by

-parts will readily transform them to ellipties, but since their element
" functions decrease very rapidly from the lower to the upper limit, the
following procesq1 will suffice. Conmlex the integral

' - @CeosTA | ceos A
j)‘cos Ad?t loge‘<\//1+ P + v >7

in which A.is such thdt <

S A
umby. In the cas_es we have to consider (

> may be neglected in comparlson with

w1ll not exceed <37
¢ Cos A - o T80

if 008 =1}y or A==89° 25’ about. Then, since

logel:\/l v cosM ccos?t]
/l; .
2¢cos A 1 v N
=1°ge{ v [Wz(e‘m)*’ - ]}’

the above integral becomes

' A A
f ¢oS M?L log, 20 008 A = log, %v_c f cos AdA 4 f cos AdA log, cos A
" . 0 : 0

Bt

=<1oge _ 1) sin A + log, (14 sin A)-(sin A—1) log, cos A",

But since sin A is very nearly unity, the last-expression reduces to

' _ log, G%(}) ~1

‘The error of this integral arising from the use of A insfead of 7_2r as the

upper limit is less than

2 .
<2—7L>coslloge {\/1+c cos? A ccosk[’

whlch if cos l——ﬁa and ¢ cos A/v=10, amounts to about TE5T .

1 Given in a somewhat different form by Helmert in Theorieen der hiheren Geo-
dasne, Vol. I1, p. 322.
: (134)
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For the entire attmcbion therefore, of the mass for a point on its
border we get *

av
m=—2p{ (h—v <1oge el —1> +o <loge do —1> }
='—2pf h <logel——— —1> +v log, h;”}-

Finally, restoring in this last expresmon the value of ¢, v1z, =
2ro sin (3, (76) becomes

dv 3 hp Srosmﬁ
W——ﬁmﬂp@{l *“h—v T% lg“e 4 _1} (1)

XI. DISTURBED CENTER OF GRAVITY OF EARTH.

31. Thus far the disturbed surface has been referred to a spherical
surface concentric with the earth’s center of gravity before the dis-
turbance arose. In determining the effects of the ice mass in glacial
times this is the proper surface of reference, since we wish to know the
distortion of the sea level in those times relative to the sea level in
preceding and following epochs. If, however, it is desired to consider
the joint effect in distorting the sea level of existing masses, like the
continents, on the hypothesis that such masses rest on the surface of a
centrobaric sphere, a better surface of reference will obviously be the

‘disturbed or existing center of gravity of the earth. The use of the

latter center will require a slight modification of the preceding formulas
defining the disturbed sea surface.

To determine the radial dlsplacement of the earth’s center of gravity
due to the addition of such a superficial mass as we have considered,
it is on]y necessary to equate the statical moment of that mass to the

- statical moment of the earth’s mass, the moment plane béing perpen-

dicular to the axis of the disturbin g mass at the undisturbed center of

" gravity of the earth., The moment of an elementary ring of angular

radius §, measured from the axis of the disturbing mass, is to our
order of approximation

2rlhpm sin B! cos BldfS.

Hence, if ¢ denote the displacement sought and A the earth’s mass,
B

M6=r03hp7tf 2 sin B’ cos pdp
0

=rhpm sin? 6.

. Therefore, by substitution of the value of M given in equation (3), we

find

m

‘ 3P ipe '
6_Ihp_ sin? G. | (78)
(135)
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Now, the elevation of any point of the disturbed surface relative to.
the sphere in the new position will. be less tlran its elevation relative to
the sphere in the former position Ly an amount whose value to the
. proper degree of approximation is ’

- G oS a,

- being, as heretofore, the angular distance  of the point from the axis
of the disturbing mass. That is, if v’ denote what v becomes by the
change in position at the sphere of reference,

V' =v—0G COS a.

Hence, by virtue of (64) and (78) we find for the equation-of the dis-
turbed surface when the sphere of reference is concentric with the dis-
turbed center of gravity of the earth,

P [ B B '
1;'_3hﬁ:[;—sm2 §<l+cosacoszj>]. (79)

And the inclination of the disturbed surface to the surface of refer-
ence is ’

voda ’I'oﬂ‘pm .
XII. EQUATIONS OF DISTURBED SURFACE WHEN THE DISTURBING
MASS IS OF VARIABLE THICKNESS '

32. Throughout the preceding investigations the thickness of the
attracting mass has been considered uniform. On this account the
range of application of the formulas derived is somewhat narrow. It
may be remarked, however, before proceeding to extend the investiga-
tiecn to more complex masses, that inasmuch as the data for actual
problems will be in general more or less uncertain, or to a large extent
ideal, formulas of a more comprehensive and hence more complex char-
acter are not specially desirable. Approximate calculations of a rather
rough sort in some cases” will be as good as the data for those calcula-
tions. The effects assigned by the foregoing equations will be for the
most part in excess of the probable actual effects, and in so far as com-
putation can contribute arguments pertinent to observed facts the max-
imum effects will be most essential. On the other hand it will be
desirable in some cases to get an idea of the inferior limiting effects.
The most important of these cases relates to the extent of submergence

_attributable to the ice cap of the glacial epoch. There would seem to
* be little probability of uniform thickness in such a cap. Apparently

(136)

' _g <dI +7 sin a sin? ﬂ) (80) .
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some sort of regular decrease in thickness (with here and there cousid-
erable though comparatively unimportant deviations) from the center
to the perimeter of the mass is more probable. Such a law of decrease
is expressed by the equation

pf)=h=h} 1-{ —F¢ , (81)

in which % is the thickness along any rddial line whose angular distance

from the axis of the mass is 3, , is the thickness along the axis, and /5,
is the angular radius of the perimeter of the mass. In brief, kis a func-
tion of 4, as stated by the first member of the equation. Thke exponent
n must be a positive number and may be for our purposes restricted to
integer values. In order to determine the effects of masses conform-
ing to the above, and, in general, any law requiring symmetry of mass
with respect to a radial axis, we shall devote the present Article to the
necessary extension of the formulas already derived.
33. The differential of equation (64) with respect to 4 gives

2 ‘
d sin
dﬁ =32 ko ( JgA—7 _7_201/3). (82)

This expresses the elevation of the disturbed surface due to an annu.
lus of angular radius 6, of angular width d, and height %, the density p

" being uniform. - If in this equation we make % 4 function of £, or write

h=g(/3), and integrate between the proper limits, the result will be the
elevation of the disturbed surface due to a mass whose thickness con-
forms to the law expressed by ¢(6). Calling, for the sake of distine-
tion, v’/ the new value of the elevation of the disturbed surface, and
the proper limits of g, ﬂl, and f,, the result of this integration is

ﬂzd(I zsin? B )
’v//_”pml[ __._dﬂ—__ P(B)ags. (83)

Tins equation assigns the effect of any homogeneous mass whose
bounding surface is one of reyolution about a radial axis, subject to’
the restriction that the maximum thickness of the mass may be neg-
lected -in comparison with the radius .of the earth. It is obvious,
however, that the integral in (83) may be impracticably complex for
some forms of @(/). Toavoid undue complexity and at the same time
attain results suitable for our special purposes we shall here confine

(137)
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attention to that form of ¢(f) expressed by equation (81). TFor this -
function we have, considering the whole mass,
ﬁ1=07 ﬁz—_—ﬁo;

P(8)=0 for £ =,

inlf) =—n<s1n B >Hd<sm ﬂ)

+ Bo
"1
S5

Then, observing that I: =d for 6=0, (83) becomes

P = 7’%;[ o ﬁo/ I(sm ﬂ}”"d<s n/j> + L zsin? 2 Fo ] (84

The definite integral in this expression depends on and will in gen-
eral be no less complex than I, which is defined by (22) to (25). An
examination of (24) and (25) shows that for points of the dlsturbed .
surface within the perimeter of the disturbing mass ’

o n—1 . 7]
/ I smﬂ> dsm__/ L(sin/’;) ldsiu[’i
0 0 : “ R 2 .
Bo n—1
C 4 / L(sinéi) dsing. (85)

-For points of the disturbed surface without the perimeter of the
mass it is only necessary to replace I in (84) by I, of (25), or replace
the limit « in (83) by ). By means of the series (70) and (71), or the
harmonic series (53), (84) may be evaluated for any pomt of the d1s
turbed sorface.

For two points of the disturbed surface, namely, at the center of the .
mass and 180° from that center, (84) yields to direct integration. The
process of evaluation is as follows:

The integral in (84) is a function of «, 6, and n. Let it be symbolized
by flafm). TFor the two points noted above let this function be dis-
tinguished by the suffixes 1 and 2, respectively, so that it becomes

_ Ji{a, S, n) for g=0,
and
f2( a, fo, 1) for a=m.

Then, since from (26), I=7 sin /73; for a=0,

Sila, Bo, n)——+—l7r sin g“ - _(86)

(138)
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Likewise, since from (30), I=27 siuﬁg for a=mn,

sin_g\ " - ,
2 dsin2§.~ (87)

: 6,
Ja(ay o, n)=27 sin’ = —27
’ 4 sin 2o

R 4

. :
=%<4 —2 cos [52—0 —fo co§ec %) for n=1,

7 2 ﬁo__ . 2 Bo =2
_3<4 cos® 7 1>t:m 1 for n=2,

When # is more thau a few units the integral in (87) may be evalu- .
ated by rapidly converging series. Thus, call the required integral B,

- and let ‘
B fo
. sin 5 = sin 5
Then
]“ , Sln_._f n ﬂ
B= 5 d sin® 7
sin 729
0 .
1 ' ) .
1' . ﬁo }£n+ld%
=7 sin? - (88) ‘

2 \/ 1— sinzﬂ’
0 ) 2

; 2!20 i 4& i 6/5_0
1(8111 0} 1811] 5 38111 0

. ’ T2\ g2 ) n44 *3 ny6 T )

2

~ 34. It will be particularly essential for our purposés to evaluate (84)
* for points outside the border of the disturbing mass. The integral re-
quired is, if we write for brevity :

; . P
b:smlz and bo=sm[2£,

: —n by Nl -
™ [ 15
0
)) Now, I, from the equation p@ceding (71), may be written thus:

Ig: 7[(j1b2+j2b4+j3b6+ . e ),
(139) -
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in which jj, f», etc., are obvious functions of a or v=cosec a. Therefore
the above integral becomes

T
+n+2]1b0

n .
b b
nb nf L b= | ATEN (89)
o ) N

+n+6

o
=8, say. -

b\

35. Let the value of 8 in the last equation for points at the border of
_tke disturbing mass where a=/, be denoted by 8;. Also denote by
0"y v,/'y and v,y" the elevatious of the disturbed surface at the center of

the mass, at its border, and 180° from its center. Then equation (84), by
means of the results in (86) to (89), gives the following equatlons analo-
gous to the group (67):

”—37&0 ( (j" ——s1n2ﬂ°>

: a..—.O;
v,/ =3 ,%(Sl‘ni 5 s E), ‘ (90)
’ a:ﬁo; ) i ‘
va”=3ko i( 2 sin? %’—2B ——+7 sin? ﬂ")
a=m.

36. To define the slope of the disturbed surface it is in general nec- -

essary to differentiate (84) with respect to «. The result is of a com-
plex character and subject to discontinuity for points at the border of
the mass. For practical purposes, however, it will suffice to make use
of Av""/da instead of the differential coefficient, and thus determine

average slopes over some hmte portion of a memdlan section of the -

disturbed surface.

37. In discussing the disturbance of the sea level attributable to the
ice mass of the glacial epoch, it will be of intérest to estimate the effect
of the rearranged free water. For this purpose we may extend the
~second term of the third member of equation (66) so as to make it as-
sign the effect of the rearranged water when the mass is of variable
as well as uniform thickness. The process is strictly analogous to that

(140) -
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followed in deriving (83) and (84) from (64). Thus, confining attention
to the form of mass defined by (81), and writing, as in section 34,
sin BN\"

- 2
=h| 1-}
go_(ﬁ) N ‘ sinﬁ

e

= hg(l —-bo_,nb” 9

E(ﬂ)=E(b)’
‘we readily find from (66) .

1= bo
g 5\ \/[ Jilcos ajudy f F(b)bo»-'ab
dv“:Eh[,pﬁ E ; L . (91)

(2i+1)Pn 3

Yw

and

=1L
A few valaes of F,(b) derived from (45) 'aud (47) are the following:

Fib)
(=~ ),

F(b)=

Fyb)=2(b2— 3D+ 21F),

Fyb)=2(b"— 6b'4+100°— 50),

Fub)=2(0*— 100443005 — 35624 14b1), .
Fy(b) =2(b — 155 4 7055 — 1400° 4+ 126510— 42h12),

IFrom these the corresponding integrals

bo N -
nby / F,(b) b
0

can be readily derived. Thus, for example,

2
2

bo + bos
- n— n+46
nby f F5(b)b.’db=‘)n 140 %) (92
- 0

(141)
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38. A common property of the formulas (84) to (92), both mcluswe,
is worthy of notice. They all refer to a mass whose thickness conforms
to the law (81), namely,

in® ﬁ
sin” &

n ﬁO
. sin T

.

@(f)= hzho 1-

When n=c this gives @(f)=h=Dhy, or the thickness of the mass is
uniform. Therefore the formulas (84) to (92) should return to the forms
applicable to a mass of uniform thickness on making n=». Such is
the case. Thus (84) becomes (64), as is readily seen by an application
of the formula for integration by parts. Likewise, for n=w equations
(86), (87), and (89) become (26), (30), and (28), respectively, and the group
(90) assumes the simpler forms of ‘the group (67).

B. APPLICATIONS.

XI11I. RELATIVE POSITIONS OF LEVEL OR EQUIPOTENTIAL SURFACES
IN A LAKE BASIN.

- 89. Consider the question stated in section 2, (a), relative to the level
surfaces in a lake basin. Inthis caseit is required to determine the dif-
ference in elevation at the center of the basin of two level surfaces
which ‘intersect along its perlmeter The first two of equations (90)
give

’01”—3]10 P <Sl—' > 8in ﬂO) . (93)

This.represents the difference in elevation of a level or liquid surface
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