BIBLIOGRAPHY AND INDEX OF THE PUBLICATIONS OF THE GEOLOGICAL SURVEY, WITH THE LAWS GOVERNING THEIR PRINTING AND DISTRIBUTION

WASHINGTON
GOVERNMENT PRINTING OFFICE
1893
LIBRARY CATALOGUE SLIPS.

United States. Department of the interior. (U. S. geological survey.)

Second title: United States geological survey | J. W. Powell, director | — | Bibliography and index | of the | publications of the United States geological survey | with the laws governing their printing and distribution | by | Philip Creveling Warmen | [Vignette] |

Washington | government printing office | 1893
8°. 495 pp.

Warman (Philip Creveling).

United States geological survey | J. W. Powell, director | — | Bibliography and index | of the | publications of the United States geological survey | with the laws governing their printing and distribution | by | Philip Creveling Warmen | [Vignette] |

Washington | government printing office | 1893
8°. 495 pp.

[UNITED STATES. Department of the interior. (U. S. geological survey.) Bulletin 100.]
ADVERTISEM ENT.
[Bulletin No. 100.]

The publications of the United States Geological Survey are issued in accordance with the statute approved March 3, 1879, which declares that—

"The publications of the Geological Survey shall consist of the annual report of operations, geological and economic maps illustrating the resources and classification of the lands, and reports upon general and economic geology and paleontology. The annual report of operations of the Geological Survey shall accompany the annual report of the Secretary of the Interior. All special memoirs and reports of said Survey shall be issued in uniform quarto series if deemed necessary by the Director, but otherwise in ordinary octavos. Three thousand copies of each shall be published for scientific exchanges and for sale at the price of publication; and all literary and cartographic materials received in exchange shall be the property of the United States and form a part of the library of the organization; and the money resulting from the sale of such publications shall be covered into the Treasury of the United States."

On July 7, 1882, the following joint resolution, referring to all Government publications, was passed by Congress:

"That whenever any document or report shall be ordered printed by Congress, there shall be printed, in addition to the number in each case stated, the "usual number" (1,715) of copies for binding and distribution among those entitled to receive them."

Except in those cases in which an extra number of any publication has been supplied to the Survey by special resolution of Congress or has been ordered by the Secretary of the Interior, this office has no copies for gratuitous distribution.

ANNUAL REPORTS.

MONOGRAPHS.

I. Lake Bonneville, by Grove Karl Gilbert. 1890. 4°. xx, 438 pp. 51 pl. 1 map. Price $1.50.

III. Geology of the Comstock Lode and the Washoe District, with atlas, by George F. Becker. 1882. 4°. xv, 422 pp. 7 pl. and atlas of 21 sheets folio. Price $11.00.

V. The Copper-Bearing Rocks of Lake Superior, by Roland Duer Irving. 1883. 4°. xvi, 464 pp. 15 pl. 29 pi. and maps. Price $1.85.

VI. Contributions to the Knowledge of the Older Mesoziic Flora of Virginia, by William Morris Fontaine. 1883. 4°. xi, 144 pp. 54 pi. 54 pi. Price $1.05.

VIII. Paleontology of the Eureka District, by Charles Doolittle Walcott. 1884. 4°. xvi, 298 pp. 24 pl. Price $1.10.

XI. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada, by Israel Cook Russell. 1885. 4°. xiv, 288 pp. 40 pi. and maps. Price $1.75.

XIII. Geology of the Quicksilver Deposits of the Pacific Slope, with atlas, by George F. Becker. 1886. 4°. xix, 486 pp. 7 pl. and atlas of 14 sheets folio. Price $2.00.

XX. Geology of the Eureka District, Nevada, with atlas, by Arnold Hague. 1892. 4°. 419 pp. 8 pl.

In press:

XXI. The Tertiary Rynochohorous Coleoptera of North America, by Samuel Hubbard Scudder.

XXII. A Manual of Topographic Methods, by Henry Gannett, chief topographer.

In preparation:

— Sacropoda, by O. C. Marsh.
— Stegosauria, by O. C. Marsh.
— Brontotheridae, by O. C. Marsh.
— The Glacial Lake Agassiz, by Warren Upham.

BULLETINS.

2. Gold and Silver Conversion Tables, giving the coining values of Troy ounces of fine metal, etc., computed by Albert Williams, Jr. 1883. 8°. 8 pp. Price 5 cents.

24. List of Marine Mollusca, comprising the Quaternary Fossils and recent forms from American Localities between Cape Hatteras and Cape Roque, including the Bermudas, by William Henry Dall. 1885. 8°. 336 pp. Price 25 cents.

27. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1884-'85. 1885. 8°. 235 pp. Price 20 cents.

34. On the relation of the Laramie Molluscan Fauna to that of the succeeding Fresh-water Eocene and other groups, by Charles A. White. 1886. 8°. 54 pp. 5 pi. Price 10 cents.

42. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1885-'86. F. W. Clarke, chief chemist. 1887. 8°. 152 pp. 1 pi. Price 15 cents.

47. Analyses of Waters of the Yellowstone National Park, with an Account of the Methods of Analysis employed, by Frank Austin Gooch and James Edward Whitfield. 1888. 8°. 84 pp. Price 10 cents.
55. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1886-'87. Frank Wigglesworth Clarke, chief chemist. 1889. 8°. 96 pp. Price 10 cents.
59. The Gabros and Associated Rocks in Delaware, by Frederick D. Chester. 1890. 8°. 45 pp. 1 pl. Price 10 cents.
60. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1887-'88. F. W. Clarke, chief chemist. 1890. 8°. 174 pp. Price 15 cents.
64. A report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1888-'89. F. W. Clarke, chief chemist. 1890. 8°. 60 pp. Price 10 cents.
66. On a Group of Volcanic Rocks from the Tewan Mountains, New Mexico, and on the occurrence of Primary Quartz in certain Basalts, by Joseph Paxson Iddings. 1890. 8°. 34 pp. Price 5 cents.
73. The Viscosity of Solids, by Carl Barns. 1891. 8°. xii, 139 pp. 6 pl. Price 15 cents.
78. A report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1889-'90. F. W. Clarke, chief chemist. 1891. 8°. 131 pp. Price 15 cents.
90. A report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1890-'91. F. W. Clarke, chief chemist. 1892. 8°. 77 pp. Price 10 cents.
93. Some insects of special interest from Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah, by Samuel Hubbard Scudder. 1892. 8°. 35 pp. 3 pl. Price 5 cents.
103. The Eruptive and Sedimentary Rocks on Pigeon Point, Minnesota, and their contact phenomena, by W. S. Boyce. 1893. 8°. 41 pp. 4 pl. Price 5 cents.
104. The Paleozoic Section in the vicinity of Three Forks, Montana, by A. C. Peale.

In press:
103. High Temperature Work in Igneous Fusion and Ebullition, chiefly in relation to pressure, by Carl Barus.
106. The Trap Dikes of Lake Champlain Valley and the Eastern Adirondacks, by J. F. Kemp.
108. The Eruptive and Sedimentary Rocks on Pigeon Point, Minnesota, and their contact phenomena, by W. S. Boyce.
109. The Paleozoic Section in the vicinity of Three Forks, Montana, by A. C. Peale.

In preparation:
— Correlation papers— Pleistocene, by T. C. Chamberlin.
— The Moraines of the Missouri Coteau, and their attendant deposits, by James Edward Todd.
— A Bibliography of Paleobotany, by David White.

STATISTICAL PAPERS.

VI

ADVERTISEMENT.

In preparation:

Mineral Resources of the United States, 1892.

The money received from the sale of these publications is deposited in the Treasury, and the Secretary of the Treasury declines to receive bank checks, drafts, or postage stamps; all remittances, therefore, must be by POSTAL NOTE or MONEY ORDER, made payable to the Chief Clerk of the U. S. Geological Survey, or in CURRENCY, for the exact amount. Correspondence relating to the publications of the Survey should be addressed.

To the Director of the
United States Geological Survey,
Washington, D. C.

Washington, D. C., June, 1893.
DEPARTMENT OF THE INTERIOR

BULLETIN

OF THE

UNITED STATES

GEOLOGICAL SURVEY

No. 100

WASHINGTON

GOVERNMENT PRINTING OFFICE

1893
UNITED STATES GEOLOGICAL SURVEY
J. W. POWELL, DIRECTOR

BIBLIOGRAPHY AND INDEX

OF THE

PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY

WITH THE LAWS GOVERNING THEIR PRINTING AND DISTRIBUTION

BY

PHILIP CREVELING WARMAN

WASHINGTON
GOVERNMENT PRINTING OFFICE
1893
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>7</td>
</tr>
<tr>
<td>Notice</td>
<td>8</td>
</tr>
<tr>
<td>Preface</td>
<td>9</td>
</tr>
<tr>
<td>Laws relating to the publications of the U. S. Geological Survey</td>
<td>11</td>
</tr>
<tr>
<td>Bibliography of the publications of the U. S. Geological Survey</td>
<td>15</td>
</tr>
<tr>
<td>Annual Reports</td>
<td>17</td>
</tr>
<tr>
<td>Monographs</td>
<td>91</td>
</tr>
<tr>
<td>Bulletins</td>
<td>127</td>
</tr>
<tr>
<td>Reports on Mineral Resources</td>
<td>247</td>
</tr>
<tr>
<td>Geologic Atlas of the United States and auxiliary and subsidiary maps</td>
<td>305</td>
</tr>
<tr>
<td>Geologic folios</td>
<td>305</td>
</tr>
<tr>
<td>Topographic atlas sheets</td>
<td>307</td>
</tr>
<tr>
<td>Special topographic sheets</td>
<td>320</td>
</tr>
<tr>
<td>Miscellaneous topographic maps</td>
<td>320</td>
</tr>
<tr>
<td>Miscellaneous publications</td>
<td>321</td>
</tr>
<tr>
<td>Circulars of instructions</td>
<td>321</td>
</tr>
<tr>
<td>Regulations</td>
<td>322</td>
</tr>
<tr>
<td>Circular concerning publications</td>
<td>322</td>
</tr>
<tr>
<td>Guyot's tables</td>
<td>322</td>
</tr>
<tr>
<td>History of American State surveys</td>
<td>323</td>
</tr>
<tr>
<td>Rules and suggestions for preparation of manuscript and illustrations</td>
<td>323</td>
</tr>
<tr>
<td>Johnson's report on the iron regions of Louisiana and Texas</td>
<td>323</td>
</tr>
<tr>
<td>Digest of decisions concerning water in the arid region</td>
<td>324</td>
</tr>
<tr>
<td>Index to the publications of the U. S. Geological Survey</td>
<td>325</td>
</tr>
</tbody>
</table>
LETTER OF TRANSMITTAL.

DEPARTMENT OF THE INTERIOR,
UNITED STATES GEOLOGICAL SURVEY,
Washington, D. C., April 20, 1893.

SIR: I have the honor to transmit herewith the manuscript of a bibliography and index of the publications of the Geological Survey, with a compilation of the laws governing their printing and distribution, prepared with a view to its publication as a bulletin.

Permit me to make use of this opportunity to thank you for the privilege of diverting a portion of my attention to this work and for your constant support and encouragement while engaged therein.

P. C. WARMAN.

Hon. J. W. POWELL,
Director.
NOTICE.

All the publications of the U. S. Geological Survey are either sold or exchanged for scientific works of like value except the series of Annual Reports. The larger portion of the Survey's quota of the latter, also, go regularly to institutions and individuals with whom the Survey has established exchange relations, so that only a limited number of any Annual are available for gratuitous distribution, and these are quickly exhausted. The earlier Annuals can no longer be supplied by the Geological Survey, but the Secretary of the Interior has a small number for sale at cost of paper, printing, and binding. The Monographs, Bulletins, and Mineral Resources are purchasable of the Director of the Geological Survey at like low prices, which are given individually throughout the bibliography in this Bulletin. Checks, drafts, or postage stamps can not be received; all remittances must be for the exact amount in currency or by postal note or money order made payable to the Chief Clerk of the U. S. Geological Survey.
The publications of the U. S. Geological Survey catalogued and indexed herein are: Annual Reports 1 to 12, Monographs I to XX, Bulletins 1 to 99 (except 87, 88, and 89, reserved as numbers of a series not yet completed), the first eight volumes of Mineral Resources (1882-1891), such portions of the Geologic Atlas, with auxiliary and subsidiary maps, as have been completed, and a few miscellaneous brochures. The work has been done incidentally to the compiler's regular official duties, and therefore in a desultory manner, occupying his attention, now five minutes, now a half hour, through more than a year's time.

In the bibliographic work no limitations of detail were set, and the information given approximates completeness. Respecting the index, however, the intention has been to avoid much elaboration, which the Director of the Survey thought not highly desirable. The plan contemplated a broad and systematic classification of contents, alphabetically arranged, rather than a detailed and full index composed of unrelated items. To this end the large domain of knowledge into which the publications of the Geological Survey enter has been conceived as falling into the following fields: Geology (structural), geologic processes, petrography, paleontology, topography, and chemistry and physics. Under these names themselves and under the names of grand divisions in each of these fields entries have been grouped. For example, entries of a more strictly geologic character will be found aggregated under the period names of the stratigraphic column—Archean, Algonkian, Cambrian, Silurian, etc.; geologic processes, under the names of the processes, as Degradation, Metamorphism, Volcanism, etc.; those of a paleontologic nature, under Paleontology, Paleobotany, Plants, Vertebrate, Invertebrate, Brachiopoda, Lamellibranchiata, Pteropoda, etc.; those of a petrographic character, under Petrography, Lithology, Igneous, Sedimentary, Rocks, etc.; and so on. The names of states and countries have been treated as leading words, and so of course have the names of authors; and each paper has been entered under every significant word in its title.

For many of the bibliographic details the writer is indebted to Mr. James C. Pilling, who, while Chief Clerk of the Survey, was in the habit
PREFACE.

of making memoranda of such matters as they passed through his hands; and he has contributed valued suggestions during the reading of the proof. Any excellence the index may be found to possess is due in large measure to Mr. G. K. Gilbert, who is responsible for interesting the writer in the project and who has at all times been found ready to advance it by advice and aid, and to Messrs. Whitman Cross, A. C. Peale, Charles S. Prosser, and I. C. Russell, who have kindly rendered assistance in special lines.

WASHINGTON, D. C., May 25, 1893.

P. C. W.
LAWS RELATING TO THE PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY.

The legal provisions under which the various editions of the reports of the U. S. Geological Survey are published, sold, and distributed are as follows:

GENERAL PROVISIONS IN THE ORGANIC ACT.

The publications of the Geological Survey shall consist of the annual report of operations, geological and economic maps illustrating the resources and classification of the lands, and reports upon general and economic geology and paleontology. The annual report of operations of the Geological Survey shall accompany the annual report of the Secretary of the Interior. All special memoirs and reports of said Survey shall be issued in uniform quarto series if deemed necessary by the Director, but otherwise in ordinary octavos. Three thousand copies of each shall be published for scientific exchanges and for sale at the price of publication; and all literary and cartographic materials received in exchange shall be the property of the United States and form a part of the library of the organization: And the money resulting from the sale of such publications shall be covered into the Treasury of the United States * * * [Approved March 3, 1879.]

USUAL NUMBER EDITION.

Fifteen hundred and fifty copies of any document ordered by Congress shall be printed, and that number shall be known as the usual number. No greater number shall be printed unless ordered by either House or as hereinafter provided. — Revised Statutes, sec. 5792.

Increased for a time to 1,900 to meet the requirements of law, and subsequently decreased to 1,734.

USUAL NUMBER TO BE ADDED TO ALL ORDERS.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That whenever any document or report shall be ordered printed by Congress, there shall be printed, in addition to the number in each case stated, the "usual number" of copies for binding and distribution among those entitled to receive them; and this shall apply to all unexecuted orders now in the office of the Public Printer. [Approved July 7, 1882.]— Statutes at Large, vol. 22, p. 337.

When the foregoing joint resolution was approved, monograph II of the survey publications—the one first to appear—had just been printed and was then being delivered; it was consequently not covered by this resolution, and in order that the same number of copies should be published of it as of the monographs to succeed it, the following joint resolution was subsequently passed:

USUAL NUMBER OF MONOGRAPH II.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That there be printed at the Government Printing Office the usual number of monograph second of the publications of the United States Geological Survey, with the necessary illustrations, and to conform to the editions al-
ready issued by the Survey. [Approved March 2, 1885.]—Statutes at Large, vol. 23, p. 519.

MESSAGE AND DOCUMENTS EDITION.

Of the documents named in this section there shall be printed and bound, in addition to the usual number for Congress, the following numbers of copies, namely:

First. Of the documents accompanying the annual reports of the Executive Departments, one thousand copies for the use of the members of the Senate, and two thousand copies for the use of the members of the House of Representatives.—Revised Statutes, sec. 3798.

DEPARTMENTAL EDITION.

Provided, That hereafter the Congressional Printer shall print, upon the order of the heads of the Executive Departments, respectively, only such limited number of the annual reports of such Departments and necessary accompanying reports of subordinates as may be deemed necessary for the use of Congress.—Revised Statutes, Supplement, p. 98.

SECOND AND THIRD ANNUALS, SPECIAL EDITION.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That there be printed, at the Government Printing Office, eleven thousand copies each of the second and third annual reports of the Director of the United States Geological Survey, with the necessary illustrations and charts, five thousand copies of which shall be for the use of the House of Representatives, two thousand five hundred for the use of the Senate, and two thousand five hundred for the use of the United States Geological Survey, and one thousand for sale by the Public Printer, at the cost of publication with ten per cent added thereto; the illustrations and charts to be made by the Public Printer under the direction of the joint committee on printing. [Approved August 5, 1882.]—Statutes at Large, vol. 22, p. 393.

FOURTH AND FIFTH ANNUALS, SPECIAL EDITION.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That there be printed at the Government Printing Office, in addition to the number already ordered by law, fifteen thousand five hundred copies of each of the Fourth and Fifth Annual Reports of the Director of the United States Geological Survey, uniform with the preceding volumes of the series; of which three thousand five hundred of each shall be for the use of the Senate, seven thousand for the use of the House of Representatives, and five thousand for distribution by the Geological Survey. [Approved June 26, 1884.]—Statutes at Large, vol. 23, p. 276.

SIXTH AND SEVENTH ANNUALS, SPECIAL EDITION.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That there be printed at the Government Printing Office, in addition to the number already ordered by law, fifteen thousand five hundred copies of each of the sixth and seventh annual reports of the Director of the United States Geological Survey, uniform with the preceding volumes of the series; of which three thousand five hundred shall be for the use of the Senate, seven thousand for the use of the House of Representatives, and five thousand for the distribution by the Geological Survey. [Approved March 2, 1885.]—Statutes at Large, vol. 23, p. 519.

EIGHTH AND NINTH ANNUALS, SPECIAL EDITION.

Resolved by the Senate (the House of Representatives concurring herein), That there be printed at the Government Printing Office, in addition to the number already ordered by law, fifteen thousand five hundred copies of the eighth and ninth annual reports
of the Director of the United States Geological Survey, uniform with the preceding volumes of the series, of which three thousand five hundred of each shall be for the use of the Senate, seven thousand for the use of the House of Representatives, and five thousand for distribution by the Geological Survey.—Congressional Record, vol. 15, pp. 6498, 6990.

TENTH, ELEVENTH, AND TWELFTH ANNUALS, SPECIAL EDITION.

Resolved by the House of Representatives (the Senate concurring therein), That there be printed at the Government Printing Office, in addition to the number already ordered by law, fifteen thousand five hundred copies each of the tenth, eleventh, and twelfth annual reports of the Director of the United States Geological Survey, uniform with the preceding volumes of the series, of which three thousand five hundred of each shall be for the use of the Senate, seven thousand for the use of the House of Representatives and five thousand for distribution by the Geological Survey.—Congressional Record, vol. 21, pp. 872, 8142.

DISTRIBUTION OF PUBLIC DOCUMENTS.

The copies of journals, books, and public documents which are or may be authorized to be distributed to incorporated bodies, institutions, and associations within the States and Territories, shall be distributed to such bodies as shall be designated to the Secretary of the Interior by each of the Senators from the several States respectively, and by the Representatives in Congress from each congressional district, and by the Delegate from each Territory. The distribution shall be made in such manner that the quantity distributed to each congressional district and Territory shall be equal; except that whenever the number of copies of any publication is insufficient to supply therewith one institution, upon the designation of each member of the Senate and House of Representatives, the copies at the disposal of the Secretary may be distributed to such incorporated colleges, public libraries, Athenaeums, literary and scientific institutions, boards of trade, or public associations, as he may select.

The selection of an institution to receive the documents ordered to be published or produced at the first session of any Congress shall control the documents of the entire Congress, unless another designation be made before any distribution has taken place under the selection first made. Where the same work is printed by order both of the Senate and House of Representatives, the duplicates may be sent to different institutions, if so desired, by the member whose right it is to direct the distribution. And the public documents to be distributed by the Secretary of the Interior shall be sent to the institutions already designated, unless he shall be satisfied that any such institution is no longer a suitable depository of the same. Congressional journals and public documents, authorized to be distributed to institutions on the designation of members of Congress, shall be sent to such libraries and institutions only as shall signify a willingness to pay the cost of their transportation.—Revised Statutes, secs. 501, 502.

DISTRIBUTION OF SPECIAL MEMOIRS AND REPORTS OF THE SURVEY.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That there shall be distributed from the number of special memoirs and reports of the United States Geological Survey now authorized by law one copy of every such publication to every public library which shall be designated to the Secretary of the Interior as follows: Two public libraries to be designated by each of the Senators from the States, respectively, two public libraries by the Representative in Congress from every Congressional district, and two public libraries by the Delegate from every Territory; such public libraries to be additional to those to which the said publications are distributed under existing law. [Approved March 3, 1887.]—Statutes at Large, vol. 24, p. 647.
SALE OF PUBLIC DOCUMENTS BY THE PUBLIC PRINTER.

If any person desiring extra copies of any document printed at the Government Printing Office by authority of law shall, previous to its being put to press, notify the Congressional Printer of the number of copies wanted, and shall pay to him in advance the estimated cost thereof and ten per cent thereon, the Congressional Printer may, under the direction of the Joint Committee on Public Printing, furnish the same.—Revised Statutes, sec. 3809.

SALE OF PUBLIC DOCUMENTS BY THE SECRETARY OF THE INTERIOR.

Resolved, by the Senate and House of Representatives of the United States of America in Congress assembled, That the Secretary of the Interior be, and he is hereby, authorized to sell at cost price, to any party wishing to purchase the same, any public document of which copies available for this purpose, not required for official use, remain: Provided, That only one copy of any document be sold to any one person. [Approved March 3, 1887.]—Statutes at Large, vol. 24, p. 647.
BIBLIOGRAPHY

OF THE

PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY.
BIBLIOGRAPHY OF THE PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY.

By P. C. Warman.

ANNUAL REPORTS.

FIRST ANNUAL REPORT, 1879-1880.

[First] Annual report of the United States geological survey [by Clarence King, director].

In 46th congress, 3d session, house of representatives, ex. doc. 1, part 5, report of the secretary of the interior, being part of the message and documents communicated to the two houses of congress at the beginning of the third session of the forty-sixth congress, in three volumes, vol. II, pp. 333-392; Washington, 1880. 8°. No map. The report is dated Nov. 1, 1880, and signed Clarence King, director.

This edition of this volume consisted of 1,900 copies, the "usual number." A portion of these (about 800) were, as is customary, delivered unbound; the remainder (about 1,100) were printed later and bound in sheep, and these constitute vol. 10 of the "Executive documents of the house of representatives for the third session of the forty-sixth congress."

In addition to the "usual number" an edition of 3,000 copies of the same document was printed, as the law directs, "1,000 copies for the use of the members of the senate and 2,000 copies for the use of the members of the house of representatives." These 3,000 were bound, as is customary, in black cloth. Their title is identical with that of the 1,900 edition, with the exception of the omission at the top of the designation of the congress, session, etc., the title beginning "Report of the secretary of the interior." Survey report, pp. 333-392.

Besides the 4,900 copies of this volume described above, 750 copies of the same were printed by order of the secretary of the interior. They are bound in dark red cloth and titled as follows:

Annual report of the secretary of the interior on the operations of the department for the year ended June 30, 1880. In three volumes. Volume II. Washington: government printing office. 1880.

The survey report occupies pp. 333-392.

On the requisition of the director of the survey the secretary of the interior caused to be printed for the use of the survey 2,000 separate copies of the survey report, as follows:

First annual report of the United States geological survey to the hon. Carl Schurz, secretary of the interior. By Clarence King, director.

Washington: government printing office. 1880.

Paper cover bearing title as above within a border; inner title same, no border, verso blank; the report, pp. 3-62. 8°. Map. This description applies to one-half

Bull. 100—2
of the edition only; the other 1,000 copies have no map or paper cover, but were bound in dark red cloth, with the following half-title in gilt on the front cover:

First annual report | of the | U. S. geological survey | King, 1880

The only other changes from the original issue are of pagination and running heading on versos, which is changed from “Report of the secretary of the interior” to uniformity with the recto heading—“United States geological survey.” The map accompanying the paper-cover quota is entitled “Map showing geographical divisions of the U. S. geological survey, 1880.” The “colored areas indicate divisions now [then] organized,” all of which are west of the 102d meridian.

Sold by the secretary of the interior, by authority of a joint resolution approved March 3, 1887, for 50 cents.

All the forms of this survey report thus far described were probably printed from the same plates, the typo being long primer, with subreports, tables, etc., in brevier. By order of the secretary of the interior there were published 1,000 additional copies of the report, as follows:

First annual report | of the | United States geological survey | to the | hon. Carl Schurz, | secretary of the interior. | By | Clarence King, | director. |

Washington: | government printing office. | 1880.

Paper cover bearing title as above within a border; inner title same, no border, verso blank; text, pp. 3-79. Royal 8°. Map, as in the other separate.

The matter was partly, at least, reset, subreports appearing in long primer also, instead of in brevier. The type page is practically the same size as in the earlier separate, but the work is printed on sheets of royal octavo size.

I have seen the same separate bound in the customary dark red cloth, without a paper cover, showing that there were two styles of issue, as was the case with the smaller separate, but I have been unable to ascertain the number of copies issued of each style; the survey requisition merely called for 1,000 copies.

This report was prepared by Mr. King in the fall of 1880 while engaged in survey work in California, and was transmitted to the secretary of the interior from San Francisco. The Washington office not having been fully organized, and there being no special person to supervise the preparation of the survey reports, Mr. King thought it best to submit his report in type; therefrom a private edition of 500 copies was printed; title and collation as follows:

First | annual report | of the | U. S. geological survey | to the | hon. Carl Schurz, | secretary of the interior. | By | Clarence King, | director. |

[San Francisco, Cal.: 1880.]

Paper cover bearing title as above; inner title same, verso blank; the report, pp. 3-77. 8°.

SECOND ANNUAL REPORT, 1880-1881.

47th congress, | 1st session. | House of representatives. | Ex. doc. 1, | part 5. | Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of congress | at the | beginning of the first session of the forty-seventh congress. | In four volumes. | Volume III. |

Paper cover with title as above; inner title same, verso blank; half-title, “Report of the director of the United States geological survey”, verso blank; letter of transmittal, p. iii, verso blank; table of contents (including list of illustrations), pp. vi-vi; text (including half-titles of individual papers), pp. xi-iv, 1-565; index, pp. 567-588. Royal 8°. Plates 1-xxx; figs. 1-32; 1 map in pocket. Plate xxxvi, opposite p. 162, is wrongly numbered xxxv.
WASHINGTON.] SECOND ANNUAL REPORT. 19

CONTENTS.

Page

Powell (J. W.), Report of the director... XI-LV
Chiefs of divisions, Administrative reports of.. 3-46
Dutton (C. E.), The physical geology of the Grand canyon district....................... 47-100
Gilbert (G. K.), Contributions to the history of lake Bonneville.......................... 167-209
Emmons (S. P.), Abstract of report on geology and mining industry of Leadville........ 209-220
Becker (G. F.), A summary of the geology of the Comstock lode and the Washoe district.. 221-330
King (C.), Production of the precious metals in the United States........................ 331-401
Gilbert (G. K.), A new method of measuring heights by means of the barometer......... 403-566

This edition consisted of 1,900 copies, the "usual number." Of these, about 800 were, as is customary, delivered unbound, as described above; the remainder were printed later and bound in sheep as vol. 11 of the "Executive documents of the house of representatives for the first session of the forty-seventh congress."

Another edition as follows:

Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the first session of the forty-seventh congress. In four volumes. Volume III.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding edition.

This is the 3,000 edition; bound in black cloth. Another edition as follows:

Annual report of the secretary of the interior on the operations of the department for the year ended June 30, 1881. In four volumes. Volume III.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions.

This edition consisted of 750 copies, ordered by the secretary of the interior for distribution by the department; bound in dark red cloth. Another edition as follows:

Second annual report of the United States geological survey to the secretary of the interior 1880-'81 by J. W. Powell director [Survey design]

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions, with the exception that this edition has on pp. 565-566 a "Postscript on graphic table," followed by an additional plate (IX1), entitled "Graphic table for computation of thermic correction."

This edition, ordered by joint resolution of congress approved August 5, 1882, consisted of 11,000 copies; bound in dark red cloth.

The second annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $1.50.

One hundred copies of this report were divided into the separate papers of which it is composed and the separates issued with the following titles, etc.: SEPARATES FROM THE SECOND ANNUAL.

Second annual report of the United States geological survey to the secretary of the interior 1880-'81 by J. W. Powell director [Survey design]

CONTENTS.

Page

Introductory.. xi
Tertiary history of the Grand canyon district, by Capt. C. E. Dutton.................. xii
The history of lake Bonneville, by Mr. G. K. Gilbert................................. xvi
Geology of the Eureka district, by Mr. Arnold Hague................................. xviii
Geology of Leadville, by Mr. S. F. Emmons... xx
Geology of the Comstock lode, by Mr. G. F. Becker................................... xxiv
Statistics of coal and iron, by Prof. Raphael Pumpelly................................ xxvi
The copper-bearing rocks of lake Superior, by Dr. K. D. Irving...................... xxxi
Precious metal statistics, by Mr. Clarence King.. xxxiv
History of the Comstock lode, by Mr. Eliot Lord... xxxvi
New method of hypsometry, by Mr. G. K. Gilbert....................................... xxxvii
Plan of publication.. xxxviii
General considerations... xli
General nomenclature.. xlii
Colors for geologic cartography.. xl
Conventional characters for diagrams... lii
Financial statement.. lv

Paper cover with title as above; half-title, "The physical geology of the Grand canyon district, by capt. Clarence E. Dutton, ordnance corps, U. S. a.," p. 47, verso blank; text, pp. 49–166. Royal 8°. Plates x–xxxvi; figs. 2–16; 1 map. Plate xxxvi is wrongly numbered xxxv. 100 copies.

CONTENTS.

Page

The Plateau province .. 49
Geography of the Grand canyon district.. 69
The terraces... 74
The Eocene... 74
The Cretaceous... 76
The Jurassic.. 77
The Trias... 82
The Vermilion cliffs.. 83
The temples and towers of the Virgin .. 88
The Permian... 91
The great denudation .. 96
Base levels of erosion... 101
The Toroweap and Uinkaret.. 104
The Kaibab... 127
De Motte park.. 138
Point Sublime... 142
The excavation of the chasm... 156
Corrasion.. 157
Weathering... 161

WARMAN J. SEPARATES FROM SECOND ANNUAL.

CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>The history of the oscillations</td>
</tr>
<tr>
<td>The lake and the glaciers</td>
</tr>
<tr>
<td>The lake and volcanic eruption</td>
</tr>
<tr>
<td>The lake and mountain building</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>

Department of the interior—U. S. geological survey | J. W. Powell director | Abstract of a report | upon the | geology and mining industry | of | Leadville Lake co. Colorado | by | S. F. Emmons | Extract from the annual report of the director of the U. S. geological survey—1880-81 | [Survey design] |
Washington | government printing office | 1882

Paper cover with title as above; half title, "Abstract of report on geology and mining industry of Leadville, Lake county, Colorado, by S. F. Emmons," p. 201, verso blank; text, pp. 203-290. Royal 8°. Plates xliv and xlv, which are located between pp. 240 and 241. 350 copies—the usual quota of 100 and an additional lot of 250 ordered by the secretary of the interior.

CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory</td>
</tr>
<tr>
<td>Topographical position</td>
</tr>
<tr>
<td>General geology of Mosquito range</td>
</tr>
<tr>
<td>Rock formations—Composition</td>
</tr>
<tr>
<td>Archean rocks</td>
</tr>
<tr>
<td>Paleozoic formations</td>
</tr>
<tr>
<td>Cambrian</td>
</tr>
<tr>
<td>Silurian</td>
</tr>
<tr>
<td>Carboniferous</td>
</tr>
<tr>
<td>Quaternary</td>
</tr>
<tr>
<td>Eruptive or igneous rocks</td>
</tr>
<tr>
<td>White or Leadville porphyry</td>
</tr>
<tr>
<td>Other porphyries</td>
</tr>
<tr>
<td>Dioritic rocks</td>
</tr>
<tr>
<td>Rock formations—Distribution</td>
</tr>
<tr>
<td>Sedimentary</td>
</tr>
<tr>
<td>Eruptive</td>
</tr>
<tr>
<td>Ore deposits</td>
</tr>
<tr>
<td>Leadville deposits</td>
</tr>
<tr>
<td>Descriptive geology of the Leadville region</td>
</tr>
<tr>
<td>General structure</td>
</tr>
<tr>
<td>Area east of Mosquito fault</td>
</tr>
<tr>
<td>Between Mosquito and Ball mountain faults</td>
</tr>
<tr>
<td>Between Ball mountain and Weston faults</td>
</tr>
<tr>
<td>Between Weston and Mike faults</td>
</tr>
<tr>
<td>West of Mike and Weston faults</td>
</tr>
<tr>
<td>North of Evans gulch</td>
</tr>
<tr>
<td>Quaternary formations</td>
</tr>
<tr>
<td>Iron hill mines</td>
</tr>
<tr>
<td>Carbonate hill mines</td>
</tr>
<tr>
<td>Fryer hill mines</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Metallurgical report</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>

Some separates were ordered by the author and issued in advance of the main volume; these have title and collate as follows:

Paper cover with title as above; "With the compliments of S. F. Emmons," verso blank, 11.; title as above, verso blank; list of contents, verso blank; the two colored plates; half-title, "Abstract of report on geology and mining industry of Leadville, Lake county, Colorado, by S. F. Emmons," p. 201, verso blank; text, pp. 203-290. Royal 8°. Plates XLIV and XLV. 250 copies.

Later the author ordered an additional lot; these collate thus:

Paper cover, with title nearly identical with that of the regular official separate; inner title same, verso blank; list of contents, verso blank; text, pp. 203-290. Royal 8°. Plates XLIV and XLV, between pp. 240 and 241. 200 copies.

Department of the interior—U. S. geological survey | J. W. Powell director | A summary of the geology of the Comstock lode and the Washoe district by George F. Becker | Extract from the annual report of the director of the U. S. geological survey—1880-81 | [Survey design] |

Washington: government printing office. 1882

CONTENTS.

I. Introductory ... 293
II. Decomposition of rocks ... 295
III. Propylite ... 297
IV. The rocks of the Washoe district 298
V. Structural results of faulting 300
VI. Occurrence and succession of rocks 301
VII. Chemistry ... 307
VIII. Heat phenomena of the lode 319
IX. The lode ... 320
X. Physical investigations ... 319
XI. On the electrical activity of ore bodies 323
XII. On the thermal effect of kaolinization 325

Department of the interior—U. S. geological survey | J. W. Powell director | Production of the precious metals in the United States by Clarence King | Extract from the annual report of the director of the U. S. geological survey—1880-81 | [Survey design] |

Washington: government printing office. 1882

CONTENTS.

Letter of transmittal ... 333
Method followed in compilation 337
Classification of mines .. 341
Classification of reduction works 342
Statistics of the Pacific division 343
California ... 343
Statistics of the Pacific division—continued.

Nevada .. 346
Utah .. 348
Arizona .. 354
Idaho .. 355
Oregon .. 358
Washington .. 360
Alaska .. 361

Statistics of the division of the Rocky mountains

Colorado .. 361
Dakota .. 368
Montana ... 370
New Mexico .. 373
Wyoming ... 374

Statistics of the eastern division

Silver contained in placer gold 374

Resume of reduction statistics

Production unaccounted for in the preceding tables 380
Assay value of fine bullion .. 391
Discount and market value .. 394
The outlook .. 395
Final disposition of the precious metals—coining 395
Consumption of the precious metals in the arts 396
Other estimates of the bullion product 397
Bullion product of the world 399
Explanation of charts ... 400

Reprinted, with more tabular detail, as: "Department of the interior. Tenth census of the United States. Francis A. Walker, superintendent. Statistics of the production of the precious metals in the United States. By Clarence King, special agent of the census. [Seal of the department of the interior.] Washington: government printing office. 1881." Paper cover with title as above; inner title same, verso blank; table of contents, pp. 5-6; text, pp. 7-94. 4°. Plates A-F, being the same six as in the survey publication.

Appears also, without the plates, as chap. vii of vol. xiii of the Tenth census of the United States, pp. 296-381; Washington, 1885. 4°.

CONTENTS.

The problem stated .. 405
The fundamental principle .. 406
Barometers ... 407
Modifying conditions .. 409
Gradient ... 412
Devices for the elimination of errors due to gradient .. 415
Temperature .. 420
Devices for the elimination of errors due to temperature. 423
Humidity ... 425
Devices for the elimination of errors due to humidity .. 426
Errors of observation ... 427
General devices for diminishing hypsometric errors . 429
Relative importance of different sources of error 434
The practical problem .. 435
The new solution.. 437
The formula ... 439
Comparative tests .. 451
 Comparison with Williamson's method ... 452
 Comparison with Whitney's method ... 455
 Comparison with Plantamour's method .. 459
 Comparison by means of observations at Mount Washington 488
Comparative computations from monthly means 495
Summary .. 498
Possible improvements ... 501
 1. Redetermination of the constant ... 501
 2. Provision for diurnal periodicity .. 503
 3. Provision for annual periodicity .. 513
 4. Addition of a third base station .. 518
 5. Better form for thermic term ... 530
 6. General provision for non-periodic gradient 536
 7. Special provision for non-periodic gradient ... 539
 8. Summary ... 540
Limitations to utility .. 544
The work of others ... 548
On the use of the table .. 553
Supplementary note on devices to eliminate wind influence 562

Two additional lots of these separates were ordered by the department, one of 250 copies in June, 1882, and the other of 350 copies in June, 1883. It is probable that the former of these lots are identical with the regular 100 separates described above, and that the latter—a year later—are like one I have seen which is made up as follows: Cover title as in the regular separates; inner title same, verso blank; contents, differing slightly from those in the regular separate, 11., verso blank; text, pp. 405-566; special index to the separate, pp. [i]-iv. Royal 8°. Plates LIV-LXII; figs. 27-32.

THIRD ANNUAL REPORT, 1881-1882.

47th congress, | 2d session. | House of representatives. | Ex. doc. 1, | part 5. | Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of congress | at the | beginning of the second session of the forty-seventh congress. | In four volumes. | Volume III. |

Washington: | government printing office. | 1883.

Paper cover with title as above; inner title same, verso blank; half-title, "Report of the director of the United States geological survey," p. iii, verso blank; letter of transmittal, p. [v], verso blank; table of contents, pp. vii-ix, verso blank; list of illustrations, pp. xi-xiii, verso blank; text (including half-titles, contents, etc., of individual papers, and plate explanations), pp. xv-xviii, 1-550; index, pp. 551-564. Royal 8°. Plates i-xxxv and 1-32; 56 figures.

CONTENTS.

Page.
Powell (J. W.), Report of the director ... XV-XVIII
Chiefs of divisions, administrative reports of .. 1-41
Marsh (O. C.), Birds with teeth .. 45-88
Irving (R. D.), The copper-bearing rocks of Lake Superior 89-188
Russell (L. C.), Sketch of the geological history of Lake Lahontan 189-235
Hague (A. A.), Abstract of report on geology of the Eureka district, Nevada ... 237-290
Chamberlin (C. C.), Preliminary paper on the terminal moraine of the second glacial epoch. 291-402

This edition consisted of 1,900 copies, the "usual number," about 800 of which were delivered unbound, as described above; the remainder were printed later and bound in sheep as vol. 12 of the "Executive documents of the house of representatives for the second session of the forty-seventh congress."
Another edition as follows:

Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the second session of the forty-seventh congress. In four volumes. Volume III.

Washington: government printing office. 1883.

Advertisement of the publications of the survey, pp. [i]-ii; title as above, verso blank; half-title and remainder of collation and the contents as in the preceding edition.

This is the 3,000 edition; bound in black cloth. Another edition as follows:

Annual report of the secretary of the interior on the operations of the department for the year ended June 30, 1882. In four volumes. Volume III.

Washington: government printing office. 1883.

Advertisement of the publications of the survey, pp. [i]-ii; title as above, verso blank; half-title and remainder of collation and the contents as in the previous editions.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Third annual report of the United States geological survey to the secretary of the interior 1881-'82 by J. W. Powell director. [Survey design]

Washington: government printing office. 1883

Advertisement of the publications of the survey, pp. [i]-ii; title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions.

This edition, ordered by joint resolution approved August 5, 1882, consisted of 11,000 copies; bound, as usual, in dark red cloth, but 50 copies were delivered in paper covers.

The third annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $2.21.

One hundred copies of this report were divided into the separate papers composing the volume and the separates issued with the following titles:

SEPARATES FROM THE THIRD ANNUAL.

Third annual report of the United States geological survey to the secretary of the interior 1881-'82 by J. W. Powell director. [Survey design]

Washington: government printing office. 1883

Paper cover bearing title as above; inner title same, verso blank; half-title, "Report of the director of the United States geological survey," p. iii, verso blank; letter of transmittal to the secretary, p. [v], verso blank; table of contents (of the whole volume), pp. vii-ix, verso blank; list of illustrations (of the whole volume), pp. xi-xiii, verso blank; text, being the director's own report and the administrative reports of chiefs, pp. xv-xviii, 1-41, verso blank; half-title for accompanying papers, p. 43, verso blank. Royal 8°. Plates 1 and 11; figs. 1 and 2. 100 copies.

Department of the interior—U. S. geological survey J. W. Powell director | Birds with teeth by Othniel Charles Marsh | Extract from the third annual report of the director—1881-82 [Survey design]

Washington: government printing office. 1883
CONTENTS.

Page

Introduction ... 49
Description of Hesperornis ... 52
Restoration of Hesperornis ... 64
Description of Ichthyornis ... 69
Restoration of Ichthyornis ... 77
Conclusion ... 83

Department of the interior—U. S. geological survey | J. W. Powell director | The copper-bearing rocks of lake Superior, by Roland Duer Irving | Extract from the third annual report of the director—1881-82 | [Survey design] |

Washington | government printing office | 1883

Paper cover with title as above; half-title, “The copper-bearing rocks of lake Superior, by Roland Duer Irving.” p. 89, verso blank; contents (including illustrations), pp. 91-92; text, pp. 93-188. Royal 8°. Plates iii-xvii; figs. 34-43. 100 copies.

CONTENTS.

Page

Introductory .. 93
Extent and general nature of the Keweenaw or copper-bearing series ... 95
Lithology of the Keweenaw series ... 101
Structural features of the three classes of rocks of the Keweenaw series .. 116
General stratigraphy of the Keweenaw ... 128
The Keweenawan rocks of the south shore of lake Superior ... 139
The Keweenawan rocks of the north and east shores of lake Superior .. 140
Relations of the Keweenawan rocks to the associated formations ... 147
Structure of the lake Superior basin .. 174
The copper deposits .. 189

Department of the interior—U. S. geological survey | J. W. Powell director | Sketch of the geological history of lake Lahontan, a Quaternary lake of northwestern Nevada, by Israel C. Russell | Extract from the third annual report of the director—1881-82 | [Survey design] |

Washington | government printing office | 1883

CONTENTS.

Page

Introduction ... 185
Lake Lahontan .. 203
The smaller fossil lakes of the Great basin ... 234

Department of the interior—U. S. geological survey | J. W. Powell director | Abstract of report on the geology of the Eureka district, Nevada, by Arnold Hague | Extract from the third annual report of the director—1881-82 | [Survey design] |

Washington | government printing office | 1883

Paper cover with title as above; half-title, “Abstract of report on geology of the Eureka district, Nevada, by Arnold Hague,” p. 237, verso blank; contents and illus-
WAUMAN.

SEPARATES FROM THIRD ANNUAL.

trations, p. 239, verso blank; text, pp. 241-290. Royal 8°. Plates xxiv and xxv. 100 copies.

CONTENTS.

Introduction ... 211
General description .. 244
Paleozoic formations ... 248
Cambrian rocks ... 254
Silurian rocks ... 260
Devonian rocks ... 264
Carboniferous rocks ... 268
Pre-Tertiary igneous rocks ... 273
Tertiary and post-Tertiary volcanic rocks ... 277
Geological cross-sections .. 288

An additional lot ordered by the author have slightly different title, as follows:
Department of the interior—U. S. geological survey | J. W. Powell director | Abstract of report | on the | geology of the Eureka district | Nevada | by | Arnold Hague | Extract from the annual report of the director of the U. S. geological survey—1881-82 | [Survey design] |
Washington | government printing office | 1883
Collation and contents as given above for the regular separates. 150 copies.

Department of the interior—U. S. geological survey | J. W. Powell director | Preliminary paper | on the | terminal moraine | of the | second glacial epoch | by | Thomas Chrowder Chamberlin | Extract from the third annual report of the director 1881-82 | [Survey design] |
Washington | government printing office | 1883

CONTENTS.

Preliminary definitions .. 295
Structural classification of drift ... 296
Genetic classification of drift .. 296
Associated topographical types .. 304
The moraine .. 310
Distribution .. 313
Special descriptions of morainic loops ... 314
Moraine of the Green bay glacier ... 315
Moraine of the lake Michigan glacier ... 322
Moraine of the Grand traverse glacier .. 325
Moraine of the Saginaw glacier .. 327
Moraine of the western Erie or the Maumee glacier 330
Moraine of the Scioto glacier .. 338
Moraine of the Grand river glacier ... 341
Dentate margin assumed in the ridged regions .. 344
Separation of the older from the younger moraine 347
Moraine of the Genesee glacier .. 351
Moraine of the glacier of the Finger lake region 353
Moraine of the Mohawk valley .. 360
The western marginal moraine of the Hudson river glacier 366
A collateral belt of moraines .. 369
Morainic loops of the coast region ... 373
Interlobate morainic in the coast region ... 380
Moraine of the Chippewa valley glacier .. 381
Moraine of the lake Superior glacier .. 382
Moraine of the Minnesota valley glacier ... 388
Moraine of the Dakota valley glacier .. 393
Moraines of the Missouri coteau .. 396
Possible course of the moraine beyond present exploration...................... 401

Paper cover with title as above; half-title, "A review of the non-marine fossil mollusca of North America, by C. A. White, m. d.," p. 403, verso blank; letter of transmittal, pp. 405–406; contents, p. 407, verso blank; illustrations, p. 409, verso blank; text, pp. 411–486; plate explanations, pp. 488, 490, 492, and the consecutive even numbers (versos) to and including 550, the recto in each case being blank. Royal 8°. Plates 1–32, each composed of a number of figures. 100 copies.

CONTENTS.

Letter of transmittal
Introductory remarks
Annotated and illustrated catalogue
Conchifera
Gasteropoda
Tabular view of the non-marine fossil mollusca of North America
Spurious and doubtful species
General discussion

Besides the regular separates of the last paper, described above, there was a special preliminary issue, as follows:

Paper cover with title as above; inner title same, verso blank; illustrations, p. iv; letter of transmittal, pp. 3–4; text, pp. 5–80; plate explanations, pp. 82, 84, 86, and the consecutive even numbers (versos) to and including 144, the recto in each case being blank; index, pp. i–iii. Royal 8°. Plates 1–32, each composed of a number of figures. 100 copies. The number "5478" appearing at the end of the title is doubtless the requisition number.

FOURTH ANNUAL REPORT, 1882–1883.

48th congress, 1st session. | House of representatives. | Ex. doc. 1, part 5. | Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the first session of the forty-eighth congress. | In four volumes. | Volume III.

Washington: government printing office. | 1883.

CONTENTS.

Powell (J. W.), Report of the director
Chiefs of divisions, Administrative reports of
Dutton (C. E.), Hawaiian volcanoes
Curtis (J. S.), Abstract of a report on the mining geology of the Eureka district, Nevada.
Williams (A.), Jr., Popular fallacies regarding precious-metal ore deposits 253-271
White (C. A.), A review of the fossil Ostreidie of North America, and a comparison of the fossil with the living forms; with appendices by Angelo Heilprin and J. A. Rider 273-430
Russe11 (L. C.), A geological reconnaissance in southern Oregon ... 431-464

This edition consisted of 1,900 copies, the "usual number," about 800 of which were delivered unbound, as described above; the remainder were printed later and bound in sheep, in which form they constitute vol. 12 of the "Executive documents of the house of representatives for the first session of the forty-eighth congress."

Another edition as follows:

Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the first session of the forty-eighth congress. In four volumes. Volume III.
Washington: government printing office. 1883.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding edition.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Annual report of the secretary of the interior on the operations of the department for the year ended June 30, 1883. In four volumes. Volume III.
Washington: government printing office. 1883.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Fourth annual report of the United States geological survey to the secretary of the interior 1882-'83 by J. W. Powell director [Survey design]
Washington: government printing office 1884

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions.

This edition, ordered by joint resolution approved June 27, 1884, consisted of 15,500 copies; bound, as usual, in dark red cloth.

The fourth annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $1.32.

One hundred and ten copies of this volume were divided into the separate papers composing it and the separates issued with the following titles:

SEPARATES FROM THE FOURTH ANNUAL.

Fourth annual report of the United States geological survey to the secretary of the interior 1882-'83 by J. W. Powell director [Survey design]
Washington: government printing office 1884

Paper cover with title as above; inner title same, verso blank; half-title, "Report of the director of the United States geological survey," p. iii, verso blank; letter of transmittal to the secretary, p. v, verso blank; contents (of the whole volume), pp. vii-ix; illustrations (of the whole volume), pp. xi-xii; text, being the director's own report and the administrative reports of the heads of divisions, pp. xiii-xxxii, 1-72; half-title for accompanying papers, which page (recto) is numbered "73-74." Royal 8°. Map (plate i) and figs. 1 and 2. 110 copies.
CONTENTS.

REPORT OF THE DIRECTOR.

Introduction ... XIII

Topographic work:
- South Atlantic district .. XXI
- South Mississippi district .. XXII
- Rocky mountain district .. XXII
- Great basin district .. XXII
- District of the Pacific .. XXIII
- Special mining districts ... XXIII

Geologic work:
- Study of the Eureka district by Mr. Arnold Hague XXIV
- Study of glacial phenomena by Prof. T. C. Chamberlin XXV
- Study of metamorphic rocks by Prof. Roland D. Irving XXV
- Study of Quaternary lakes of the Great basin by Mr. G. K. Gilbert XXVI
- Survey of the Cascade range by Capt. C. E. Dutton XXVI
- Survey of the mining districts of Colorado by Mr. S. F. Emmons XXVII
- Survey of the quicksilver districts by Mr. G. F. Becker XXVIII

Paleontologic work:
- Work of Prof. O. C. Marsh ... XXVIII
- Work of Dr. C. A. White .. XXIX
- Work of Mr. C. D. Walcott ... XXX
- Work of Mr. Lester F. Ward ... XXX
- Work of Mr. Lawrence C. Johnson XXX

Chemical work:
- Physical researches of Dr. Carl Barus and Mr. William Hallock XXX

Statistics:
- Mineral production of the United States, by Mr. Albert Williams, Jr. XXXI

Administrative Reports.

- Report of Mr. Henry Gannett .. 3
- Mr. Arnold Hague .. 16
- Mr. G. K. Gilbert .. 19
- Capt. C. E. Dutton .. 22
- Prof. T. C. Chamberlin .. 23
- Prof. R. D. Irving ... 28
- Mr. S. F. Emmons .. 34
- Mr. G. F. Becker .. 39
- Prof. O. C. Marsh .. 41
- Dr. C. A. White ... 42
- Mr. C. D. Walcott .. 44
- Mr. L. C. Johnson ... 48
- Mr. L. F. Ward .. 50
- Dr. Carl Barus .. 52
- Mr. Albert Williams, Jr. .. 59

CONTENTS.

- Geography of the Hawaiian islands 81
- A journey to Kilauea ... 92
- Kilauea ... 104
- Purlieus of Kilauea .. 120

CONTENTS.

Letter of transmittal .. 225
General outline of Eureka district.. 227
The structure of Prospect mountain... 228
The structure of Ruby hill ... 230
Occurrence of the ore.. 243
The source of the ore ... 247
The ore ... 250
Future of Ruby hill ... 251

CONTENTS.

Introduction... 257
Local prejudices against formations and in favor of others 257
The supposition that the richness of mineral veins usually increases with depth........... 259
The prejudice against "specimen" mines .. 262
The prejudice in favor of certain strikes and against others 263
The predilection for "true fissures" .. 264
The block system of underground prospecting 264
The prejudice against bedded deposits and veins of small dip ... 266
That the appearance of ores is a trustworthy index of their value...... 267

Department of the interior—U. S. geological survey | J. W. Powell director | A review of the fossil Ostreidae of North America and a comparison of the fossil with the living forms | by | Charles A. White, m. d. | with appendices by prof. Angelo Heilprin and mr. John
A. Ryder | Extract from the fourth annual report of the director—1882–83 | [Survey design] | Washington | government printing office | 1884

Paper cover with title as above; half-title, “A review of the fossil Ostreidae,” etc., p. 273, verso blank; contents, p. 273, verso blank; illustrations, p. 277, verso blank; letter of transmittal to the director, pp. 279–280; text by White, pp. 281–308; appendix i, by Heilprin, pp. 309–316; appendix ii, by Ryder, pp. 317–333; explanation of plates, pp. 334, 336, 338, and consecutive even pages to and including 430, the recto in each case being blank. Royal 8°. Plates xxxiv–lxxxi, most of them composed of several figures each. 160 copies—110 regular separates and 50 extras ordered by the author.

CONTENTS.

Letter of transmittal ... 279
Introduction ... 281
Carboniferous ... 288
Jurassic .. 289
Cretaceous ... 290
Laramie group ... 307
Appendix i.—North American Tertiary Ostreide by Prof. Angelo Heilprin ... 309
Eocene .. 309
Oligocene ... 311
Miocene .. 312
Pliocene .. 314
Post-Pliocene ... 315
Appendix ii.—A sketch of the life-history of the oyster, by John A. Ryder.. 317
Explanation of plates .. 334

Department of the interior—U. S. geological survey | J. W. Powell director | A geological reconnaissance in southern Oregon | by | Israel C. Russell | Extract from the fourth annual report of the director—1882–83 | [Survey design] | Washington | government printing office | 1884

CONTENTS.

Introduction ... 435
Route of travel .. 438
Displacements .. 442
Stein mountain fault .. 444
Warner valley fault ... 445
Abert lake fault ... 447
Summer lake fault .. 448
Surprise valley fault .. 449
Summary of observations relating to displacement 450
Existing lakes ... 455
Recent changes in existing lakes ... 456
Quaternary lakes .. 457
Tufa deposits .. 461
Résumé .. 462

FIFTH ANNUAL REPORT, 1883–1884.

48th congress, | 3d session. | House of representatives. | Ex. doc. 1, | part 5. | Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of con-
gress | at the | beginning of the second session of the forty-eighth con­
gress. | In four volumes. | Volume III. |
Washington: | government printing office. | 1884.

Paper cover with title as above; inner title same, verso blank; half-title, “Re­
port of the director of the United States geological survey,” p. iii, verso blank; let­
ter of transmittal, p. v, verso blank; contents, pp. vii-x; illustrations, pp. xi-xy;
text, with half-titles, contents, etc., of individual papers, pp. xvii-xxxvi, 1-452; index,
pp. 453-469. Royal 8°. Plates 1-LVIII (1 and 11 being maps in pocket); figures 1-143.

CONTENTS.

Powell (J. W.), Report of the director... xvii-xxxvi
Chiefs of divisions, Administrative reports of.. 1-66
Gilbert (G. K.), The topographic features of lake shores.............................. 69-123
Chamberlin (T. C.), The requisite and qualifying conditions of artesian wells. ... 125-173
Irving (R. D.), Preliminary paper on an investigation of the Archean formations of
the northwestern states.. 175-242
Marsh (O. C.), The gigantic mammals of the order Dinocerata........................ 243-302
Russell (I. C.), Existing glaciers of the United States................................ 303-355
Ward (L. P.), Sketch of paleobotany.. 357-452

This edition consisted of 1,900 copies, the "usual number," about 800 of which
were delivered unbound, as described above; the remainder were printed later and
bound in sheep, in which form they constitute vol. 13 of the "Executive documents
of the house of representatives for the second session of the forty-eighth congress."

Another edition as follows:

Report | of the | secretary of the interior; | being part of | the mes­
 sage and documents | communicated to the | two houses of congress |
at the | beginning of the second session of the forty-eighth congress. |
In four volumes. | Volume III. |
Washington: | government printing office. | 1884.

Title as above, verso blank; half-title and remainder of collation, and the con­t
ents, same as in the edition previously described.

This edition consisted of 3,000 copies; bound in black. Another edition as follows:

Report | of the | secretary of the interior | for the | fiscal year end­
ing June 30, 1884. | In four volumes. | Volume III. |
Washington: | government printing office. | 1884.

Title as above, verso blank; half-title and remainder of collation, and the con­t
ents, same as in the editions previously described.

This edition consisted of 750 copies; bound in dark red cloth. Another edition
as follows:

Fifth annual report | of the | United States geological survey | to
the | secretary of the interior | 1883-'84 | by | J. W. Powell | director |
[Survey design] |
Washington | government printing office | 1885

Title as above, verso blank; half-title and remainder of collation, and the con­t
ents, as in the other editions.

This edition, ordered by joint resolution approved June 27, 1884, consisted of
15,500 copies; bound in dark red cloth.

The fifth annual is sold by the secretary of the interior, under authority of a joint
resolution approved March 3, 1887, at the price of $1.95.

One hundred and ten copies of this edition were divided into the separate papers
composing the volume, and the separates issued with the following titles:

Bull. 100—3
Fifth annual report of the United States geological survey to the secretary of the interior 1883-84 by J. W. Powell director [Survey design]

Washington government printing office 1885

CONTENTS.

REPORT OF THE DIRECTOR.

Topographic work
North Atlantic district
South Atlantic district
Rocky mountain division
District of the Great basin
District of the Pacific
Geologic work
Survey of the Yellowstone national park, by Mr. Arnold Hague
Studies in Dakota and Montana, by Dr. F. V. Hayden
Study of glacier phenomena, by Prof. T. C. Chamberlin
Study of the Archean rocks, by Prof. Roland D. Irving
Study of the Quaternary lakes of the Great basin, by Mr. G. K. Gilbert
Survey of the Cascade range, by Capt. C. E. Dutton
Survey of the District of Columbia and adjacent territory, by Mr. W J McGee
Economic studies in Colorado, by Mr. S. F. Emmons
Survey of mining districts, by Mr. G. F. Becker

Paleontologic work
Work of Prof. O. C. Marsh
Work of Dr. C. A. White
Work of Mr. Charles D. Walcott
Work of Prof. William M. Fontaine

Chemical work
Work of Prof. F. W. Clarke

Statistics
Mineral production of the United States, by Mr. Albert Williams, jr
Preliminary geologic map of the United States and thesaurus of American formations
Bibliography of North American geology
The publications of the survey
Sale of publications
Exchange of publications
Library
Photographic work
Financial statement

ADMINISTRATIVE REPORTS:

Report of Mr. Henry Gannett
Mr. Arnold Hague
Mr. T. C. Chamberlin
Prof. Roland D. Irving
Dr. F. V. Hayden
Mr. G. K. Gilbert
Mr. W J McGee
Capt. C. E. Dutton
Mr. S. F. Emmons
Mr. G. F. Becker
Prof. O. C. Marsh

Page.
XVII
XVIII
XVIII
XVIII
XIX
XIX
XX
XXI
XXI
XXII
XXII
XXII
XXIII
XXIV
XXV
XXVII
XXVIII
XXVIII
XXVIII
XXX
XXX
XXXI
XXXII
XXXIII
XXXIII
XXXIV
XXXIV
XXXV
XXXV
XXXVI
3
15
20
24
28
30
34
42
43
47
49
Map of the United States | exhibiting | the present status of knowledge | relating to the | areal distribution of geologic groups | (preliminary compilation) | compiled by W J McGee | 1884 | Extract from the fifth annual report of the director of the U. S. geological survey

[Washington: government printing office. 1885.]

Half-title as above, verso beginning of text; text (headed “The general map”), pp. 36-38. 8°. Accompanied by a geologic map of the United States about 17½ by 28½ inches in size within the borders.

200 copies of both text and map, published by the department of the interior for gratuitous distribution.

These three pages of text (36-38) are extracted from the fifth annual, and the geologic map is the same as plate II of that annual. The color scheme on p. 36 of this separate, however, differs from that on p. 36 of the volume, and does not conform to the colors actually used on these 200 maps, which are identical in coloring with the volume map; and the map is printed on heavier paper than the folding map for the pocket of the volume. Moreover, 100 of the maps have wide margins. But there were published, in addition, 25 copies of the map (heavier paper, narrow margins) with colors conforming to those named in this separate. And further, there was issued one copy of the map (now in Mr. McGee’s possession) in eleven sheets, one for each color.

Department of the interior—U. S. geological survey | J. W. Powell, director | The topographic features | of | lake shores | by | Grove K. Gilbert | (Extract from the fifth annual report of the director, 1883-'84.)

[Survey design] | Washington | government printing office | 1885

Paper cover with title as above; general half-title for papers accompanying, p. 67, verso blank; half-title, “The topographic features of lake shores, by G. K. Gilbert,” p. 69, verso blank; contents, p. 71, verso blank; illustrations, p. 73, verso blank; text, pp. 75-123. Royal 8°. Plates iii-xx; figs. 1-6. 310 copies—110 regular separates and 200 extras ordered by the author.

CONTENTS.
Department of the interior—U. S. geological survey | J. W. Powell, director | The requisite and qualifying conditions of artesian wells | by | Thomas C. Chamberlin | (Extract from the fifth annual report of the director, 1883-'84) | [Survey design] |

Washington | government printing office | 1885

CONTENTS.

<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>131</td>
</tr>
<tr>
<td>Essential features of artesian wells</td>
<td>134</td>
</tr>
<tr>
<td>The water-bearing beds</td>
<td>135</td>
</tr>
<tr>
<td>The confining beds</td>
<td>138</td>
</tr>
<tr>
<td>The inclination of the beds</td>
<td>141</td>
</tr>
<tr>
<td>The reservoir or fountain head</td>
<td>144</td>
</tr>
<tr>
<td>The collecting area</td>
<td>145</td>
</tr>
<tr>
<td>Advantages of low inclination of the strata</td>
<td>146</td>
</tr>
<tr>
<td>Surface condition of the porous bed</td>
<td>147</td>
</tr>
<tr>
<td>Rainfall</td>
<td>147</td>
</tr>
<tr>
<td>Irrigation by artesian wells</td>
<td>148</td>
</tr>
<tr>
<td>Adequacy of rainfall measured by capacity of strata</td>
<td>151</td>
</tr>
<tr>
<td>Escape of water at lower levels than the well</td>
<td>153</td>
</tr>
<tr>
<td>Conditions relating to the well itself</td>
<td>154</td>
</tr>
<tr>
<td>Loss of flow in the well</td>
<td>157</td>
</tr>
<tr>
<td>Height of flow</td>
<td>159</td>
</tr>
<tr>
<td>Detection of flow</td>
<td>160</td>
</tr>
<tr>
<td>Effect of time on flow</td>
<td>163</td>
</tr>
<tr>
<td>Character of the water</td>
<td>166</td>
</tr>
<tr>
<td>Limits in depth</td>
<td>167</td>
</tr>
<tr>
<td>The art of sinking wells</td>
<td>169</td>
</tr>
<tr>
<td>Record of drillings</td>
<td>170</td>
</tr>
<tr>
<td>Areas of favorable, doubtful, and adverse probabilities</td>
<td>172</td>
</tr>
</tbody>
</table>

Department of the interior—U. S. geological survey | J. W. Powell, director | Preliminary paper on an investigation of the Archaean formations of the northwestern states | by | Roland D. Irving | (Extract from the fifth annual report of the director, 1883-'84) | [Survey design] |

Washington | government printing office | 1885

Paper cover with title as above; half-title, "Preliminary paper on an investigation of the Archaean formations of the northwestern states, by R. D. Irving," p. 175, verso blank; contents, p. 177, verso blank; illustrations, pp. 179-180; text, pp. 181-242. Royal 8°. Plates xxii-xxx1 (the last two composed of several figures each); figs. 32-35. 210 copies—110 regular separates and 100 extras ordered by the author.

CONTENTS.

<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of the investigation</td>
<td>181</td>
</tr>
<tr>
<td>Preliminary geological map of the region</td>
<td>181</td>
</tr>
<tr>
<td>Problems to be attacked</td>
<td>183</td>
</tr>
<tr>
<td>General plan of operation</td>
<td>186</td>
</tr>
<tr>
<td>Field investigations</td>
<td>187</td>
</tr>
<tr>
<td>Investigations in Huronian areas</td>
<td>187</td>
</tr>
<tr>
<td>Granitic and gneissic areas</td>
<td>208</td>
</tr>
<tr>
<td>Petrographical studies</td>
<td>209</td>
</tr>
<tr>
<td>Systematic microscopic studies</td>
<td>209</td>
</tr>
<tr>
<td>Enlargements of mineral fragments in certain detrital rocks</td>
<td>218</td>
</tr>
<tr>
<td>Metamorphism in the Huronian</td>
<td>241</td>
</tr>
</tbody>
</table>
Department of the interior—U. S. geological survey | J. W. Powell, director | The gigantic mammals of the order Dinocerata by | Othniel C. Marsh | (Extract from the fifth annual report of the director, 1883–'84.) | [Survey design] | Washington | government printing office | 1885

CONTENTS.

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The skull</td>
<td>249</td>
</tr>
<tr>
<td>The nasal bones</td>
<td>256</td>
</tr>
<tr>
<td>The pre-nasal bones</td>
<td>259</td>
</tr>
<tr>
<td>The frontal bones</td>
<td>260</td>
</tr>
<tr>
<td>The parietal bones</td>
<td>265</td>
</tr>
<tr>
<td>The occiput</td>
<td>263</td>
</tr>
<tr>
<td>The squamosal bones</td>
<td>265</td>
</tr>
<tr>
<td>The malar bones</td>
<td>265</td>
</tr>
<tr>
<td>The lachrymal bones</td>
<td>266</td>
</tr>
<tr>
<td>The maxillaries</td>
<td>266</td>
</tr>
<tr>
<td>The premaxillaries</td>
<td>266</td>
</tr>
<tr>
<td>The palate</td>
<td>267</td>
</tr>
<tr>
<td>The palatine bones</td>
<td>269</td>
</tr>
<tr>
<td>The pterygoid bones</td>
<td>270</td>
</tr>
<tr>
<td>The vomers</td>
<td>272</td>
</tr>
<tr>
<td>The lower jaw</td>
<td>273</td>
</tr>
<tr>
<td>The teeth</td>
<td>277</td>
</tr>
<tr>
<td>The incisors</td>
<td>277</td>
</tr>
<tr>
<td>The canines</td>
<td>279</td>
</tr>
<tr>
<td>The upper molars</td>
<td>282</td>
</tr>
<tr>
<td>The lower molars</td>
<td>283</td>
</tr>
<tr>
<td>The brain</td>
<td>284</td>
</tr>
<tr>
<td>The cranial nerves</td>
<td>285</td>
</tr>
<tr>
<td>Brain growth</td>
<td>288</td>
</tr>
<tr>
<td>The vertebrae</td>
<td>294</td>
</tr>
<tr>
<td>The ribs and sternum</td>
<td>298</td>
</tr>
<tr>
<td>The fore limbs</td>
<td>298</td>
</tr>
<tr>
<td>The pelvis</td>
<td>300</td>
</tr>
<tr>
<td>The hind limbs</td>
<td>300</td>
</tr>
<tr>
<td>Restoration</td>
<td>302</td>
</tr>
</tbody>
</table>

Department of the interior—U. S. geological survey | J. W. Powell, director | Existing glaciers of the United States by | Israel C. Russell | (Extract from the fifth annual report of the director, 1883–'84.) | [Survey design] | Washington | government printing office | 1885

CONTENTS.

<table>
<thead>
<tr>
<th>What is a glacier?</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing glaciers of the Sierra nevada</td>
<td>309</td>
</tr>
<tr>
<td>Personal observations</td>
<td>314</td>
</tr>
<tr>
<td>Previous explorations</td>
<td>315</td>
</tr>
<tr>
<td>Restoration</td>
<td>324</td>
</tr>
</tbody>
</table>

Ancient glaciers of the Sierra nevada.. 327
Glaciers of northern California and the Cascade mountains.......................... 329
Permanent ice on the mountains of the Great basin.. 342
Existing glaciers in the Rocky mountains... 344
Glaciers of Alaska.. 348

Department of the interior—U. S. geological survey | J. W. Powell, director | Sketch of paleobotany | by | Lester F. Ward | (Extract from the fifth annual report of the director, 1883-'84.) | [Survey design] |
Washington | government printing office | 1885

CONTENTS.

On the term "Paleobotany "... 363
Interrelations of geology and biology ... 363
Scope of the present paper .. 364
Need of a condensed exhibit... 364
Future prospects of paleobotany .. 365
Interdependence of botany and paleobotany ... 366
Historical view of paleobotanical discovery ... 368
A.—Biographical sketches... 378
B.—Sketch of the early history and subsequent progress of paleobotany 385
Nomenclature and classification of fossil plants .. 425
The natural method as indicated by paleobotany .. 431
1. Types of vegetation .. 432
2. The Linnean system .. 433
3. Systems of the Jussieuans .. 434
4. Systems of modern botanists ... 435
5. Modified system proposed..........................I... 436
6. Classification of the cryptogams.. 437
7. Geognostico botanical view of the plant life of the globe 439

SIXTH ANNUAL REPORT, 1884-1885.

49th congress, | 1st session. | House of representatives. | Ex. doc. 1, | part 5. | Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of congress | at the | beginning of the first session of the forty-ninth congress. | In five volumes. | Volume III. |
Washington | government printing office. | 1886.

Paper cover bearing title as above; inner title same, verso blank; half-title, "Report of the director of the United States geological survey," p. iii, verso blank; contents, pp. v-viii; illustrations, pp. ix-xi; letter of transmittal, p. xiii, verso blank; text, including half-titles, contents, etc., to individual papers, pp. xv-xxix, 1-557; index, pp. 559-570. Royal 8°. Plates i-1xv (1 being a map in pocket); figs. 1-57.

CONTENTS.

Powell (J. W.), Report of the director... xv-xxix
Chief of divisions, Administrative reports of.. 1-101
Dutton (C. E.), Mount Taylor and the Zuñi plateau.. 105-198
Chamberlin (T. C.) and Salisbury (R. D.), Preliminary paper on the driftless area of the upper Mississippi valley... 199-322
Curtis (J. S.), The quantitative determination of silver by means of the microscope... 323-352
Shaler (N. S.), Preliminary report on sea-coast swamps of the eastern United States 353-398
Ward (L. F.), Synopsis of the flora of the Laramie group 399-557
This edition consisted of 1,900 copies, the "usual number," about 800 of which were delivered unbound, as described above; the remainder were printed later and bound in sheep as vol. 13 of the "Executive documents of the house of representatives for the first session of the forty-ninth congress."

Another edition as follows:

Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the first session of the forty-ninth congress. In five volumes. Volume III.

Washington: government printing office. 1886.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding edition.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Report of the secretary of the interior for the fiscal year ending June 30, 1885. In five volumes. Volume III.

Washington: government printing office. 1886.

Title as above, verso blank; half-title and remainder of collation and the contents as in the preceding editions.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Sixth annual report of the United States geological survey to the secretary of the interior 1884-'85 by J. W. Powell director [Survey design] Washington government printing office 1885

Title as above, verso blank; half-title and remainder of collation and the contents as in the other editions.

This edition, ordered by joint resolution approved March 2, 1885, consisted of 15,500 copies; bound, as usual, in dark red cloth.

The sixth annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $1.67.

One hundred copies of this report were divided into the papers composing the volume and the separates issued with the following titles:

SEPARATES FROM THE SIXTH ANNUAL.

Sixth annual report of the United States geological survey to the secretary of the interior 1884-'85 by J. W. Powell director [Survey design] Washington government printing office 1885

Paper cover with title as above; inner title same, verso blank; half-title, "Report of the director of the United States geological survey," p. iii, verso blank; contents (of the whole volume), pp. v-viii; illustrations (of the whole volume), pp. ix-xi, verso blank; letter of transmittal, p. xiii, verso blank; report of the director, pp. xv-xxix; administrative reports of chiefs, pp. 1-101. Royal 8°. Plates II–X. (Plate I is a map in pocket, and though pertaining to this portion of the volume, it does not accompany these separates.) 100 copies.

CONTENTS.

REPORT OF THE DIRECTOR. Page

Letter of transmittal... xiii
Topography ... xv
Paleontology ... xxi

Washington | government printing office | 1886

CONTENTS.

Page.
Letter of transmittal .. 111
The plateau country at large .. 113
The general features of the district ... 125
The stratigraphy ... 131
The Zuñi plateau ... 141
The Nutria monocline ... 142
Mount Taylor and vicinity .. 164
Recent lavas of the San José valley .. 179
General conclusions .. 183
Department of the interior—U. S. geological survey | J. W. Powell, director | Preliminary paper | on the | driftless area of the upper Mississippi valley | by | T. C. Chamberlin and R. D. Salisbury | Extract from the sixth annual report of the director, 1884–85 | [Survey design] | Washington | government printing office | 1886

CONTENTS.

Introduction	205
Significance of phenomena	205
Table of Quaternary formations of the interior	211
Correlative features and stratigraphy	217
General relationships	217
Form	217
Location	217
Drainage relations	217
Topographical relationships	217
Stratigraphy of the region	218
Pre-glacial degradation and residuary products	221
Erosion and its results	221
Erosion history	221
Channelings of the region	225
Flat-bottomed valleys	226
Slit-bottomed valleys	226
Diversities due to stratal inequalities	227
Longitudinal profile of valleys	228
The absence of falls in the driftless region	228
Rarity of constricted gorges	228
Special instance of valley sculpture—the Mississippi valley	230
The reliefs of the region	235
Forms of ridges	234
Evidence of non-glaciation	237
Residuary products	239
Physical characteristics of residuary earths	240
Formation of residuary earths	242
Microscopic character of residuary earths	244
Size of partilces	245
Chemical constitution of the residuary earths	249
Rock relics	251
Amount of residuary material	254
Rock surface	255
Capacity of the valleys and its relation to the amount of residuary material	257
Circumjoacent glacial phenomena	259
Border of the driftless area	259
Morainic border	259
The fringing deposits of glacial waters	261
The fringing deposits of ponded waters	262
Attenuated till and boulder border	264
Nature of the border	265
Course of the border of the old drift	265
Absence of valley drift	270
Attenuated pebble drift border	271
Distribution	275
Method of deposit	277
The loess	278
Differential characters	278
Chemical and mineralogical constitution	281
Distribution	283
Later fluvial loess	285
Fossils	285
SEVENTH ANNUAL REPORT, 1885-1886.

Paper cover with title as above; inner title same, verso blank; half-title, "Seventh annual report of the director of the United States geological survey," p. iii, verso blank; contents, pp. v-xiv; illustrations, pp. xv-xx; letter of transmittal, p. i, verso blank; text, with half-titles, contents, and illustrations to individual papers, pp. 3-646; index, pp. 647-656. Royal 8°. Plates I-LXXI (c and iv being folded maps in pocket); figs. 1-114.

<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powell (J. W.), Report of the director</td>
<td>3-42</td>
</tr>
<tr>
<td>Chiefs of divisions, Administrative reports of</td>
<td>43-143</td>
</tr>
<tr>
<td>Chamberlin (T. C.), The rock-scourings of the great ice invasions</td>
<td>147-248</td>
</tr>
<tr>
<td>Iddings (J. P.), Obsidian cliff, Yellowstone national park</td>
<td>249-262</td>
</tr>
<tr>
<td>Shaler (N. S.), Report on the geology of Martha's vineyard</td>
<td>267-309</td>
</tr>
<tr>
<td>Irving (K. D.), On the classification of the early Cambrian and pre-Cambrian formations; a brief discussion of principles, illustrated by examples drawn mainly from the Lake Superior region</td>
<td>365-454</td>
</tr>
<tr>
<td>Davis (W. M.), The structure of the Triassic formation of the Connecticut valley</td>
<td>455-460</td>
</tr>
<tr>
<td>Chatard (T. M.), Salt-making processes in the United States</td>
<td>491-535</td>
</tr>
<tr>
<td>McGe (W J)., The geology of the head of Chesapeake bay</td>
<td>537-646</td>
</tr>
</tbody>
</table>

This edition consisted of 1,734 copies, the "usual number," about 600 of which were issued unbound, as described above; the remainder were printed later and bound in sheep as vol. 10 of the "Executive documents of the house of representatives for the second session of the forty-ninth congress."

Another edition as follows:

Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of congress |
at the beginning of the second session of the forty-ninth congress. In five volumes. Volume III.

Advertisement of survey publications, pp. i-iv; library catalogue slips (samples), p. v, verso blank; title as above, verso blank; half-title and remainder of collation, and the contents, as in the edition previously described.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Report of the secretary of the interior for the fiscal year ending June 30, 1886. In five volumes. Volume III.

Collation and contents as in the 3,000 edition, described next above.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Collation and contents as in the 3,000 edition, described above.

This edition, ordered by joint resolution approved March 2, 1885, consisted of 15,500 copies; bound, as usual, in dark red cloth.

The seventh annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $1.60.

One hundred and ten copies of this report were divided into the separate papers composing the volume and the separates issued with the following titles:

SEPARATES FROM THE SEVENTH ANNUAL.

Seventh annual report of the United States geological survey to the secretary of the interior 1885-'86 by J. W. Powell director [Survey design]

Paper cover with title as above; inner title the same, verso blank; half-title, "Seventh annual report of the director of the United States geological survey," p. iii, verso blank; contents (of the whole volume), pp. v-xiv; illustrations (of the whole volume), pp. xv-xx; letter of transmittal to the secretary, p. 1, verso blank; report of the director, pp. 3-42; half-title to administrative reports of chiefs, p. 43, verso blank; administrative reports of chiefs, pp. 45-143. Royal 8°. Plates i-vii pertain to the text of this separate, but i and iv (being maps in pocket) do not accompany it; the others do. 110 copies.

CONTENTS.

REPORT OF THE DIRECTOR.

Letter of transmittal ... 1
Remarks on the plan and organization of the survey 3
The geographic division ... 3
The geologic divisions ... 8
The accessory divisions ... 11
Schedule of organization ... 14
Topographic work ... 15
Geologic work ... 17
The investigation of the Archean rocks 17
The surveys of the Atlantic coast ... 18
Geologic work—continued.

<table>
<thead>
<tr>
<th>Survey/Investigation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The surveys of the Appalachian region</td>
<td>19</td>
</tr>
<tr>
<td>The surveys of the lake Superior region</td>
<td>20</td>
</tr>
<tr>
<td>The investigations in glacial geology</td>
<td>21</td>
</tr>
<tr>
<td>The surveys in Montana</td>
<td>23</td>
</tr>
<tr>
<td>The researches in the Yellowstone national park</td>
<td>23</td>
</tr>
<tr>
<td>The surveys in Colorado</td>
<td>24</td>
</tr>
<tr>
<td>The surveys in California</td>
<td>25</td>
</tr>
<tr>
<td>The researches in volcanic geology</td>
<td>26</td>
</tr>
<tr>
<td>The investigations in the lower Mississippi region</td>
<td>27</td>
</tr>
<tr>
<td>The investigations on the Potomac river</td>
<td>28</td>
</tr>
</tbody>
</table>

Paleontologic work

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The researches in vertebrate paleontology</td>
<td>29</td>
</tr>
<tr>
<td>The researches in Paleozoic invertebrate paleontology</td>
<td>30</td>
</tr>
<tr>
<td>The investigation of Mesozoic invertebrate fossils</td>
<td>31</td>
</tr>
<tr>
<td>The study of Cenozoic invertebrate fossils</td>
<td>32</td>
</tr>
<tr>
<td>The researches in paleobotany</td>
<td>33</td>
</tr>
<tr>
<td>The researches in fossil insects</td>
<td>34</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Work Area</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work in the division of chemistry and physics</td>
<td>35</td>
</tr>
<tr>
<td>Researches on sea level as affected by the attraction of adventitious masses</td>
<td>36</td>
</tr>
<tr>
<td>Work in the division of mining statistics and technology</td>
<td>38</td>
</tr>
<tr>
<td>Office of the survey</td>
<td>41</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>41</td>
</tr>
<tr>
<td>Financial statement</td>
<td>42</td>
</tr>
</tbody>
</table>

ADMINISTRATIVE REPORTS

Report of Mr. Henry Gannett | 45 |
Mr. Raphael Pumplecy | 60 |
Mr. N. S. Shaler | 61 |
Mr. G. K. Gilbert | 65 |
Mr. R. D. Irving | 68 |
Mr. T. C. Chamberlin | 76 |
Mr. F. V. Hayden | 85 |
Mr. Arnold Hague | 87 |
Mr. S. F. Emmons | 91 |
Mr. G. F. Boecker | 93 |
Mr. C. E. Dutton | 97 |
Mr. L. C. Johnson | 103 |
Mr. W. J. McGee | 104 |
Mr. O. C. Marsh | 111 |
Mr. C. D. Walcott | 113 |
Mr. C. A. White | 117 |
Mr. W. H. Dall | 120 |
Mr. L. F. Ward | 123 |
Mr. S. H. Scudder | 127 |
Mr. F. W. Clarke | 127 |
Mr. Albert Williams | 130 |
Mr. G. W. Shatt | 135 |
Mr. W. H. Holmes | 136 |
Mr. C. C. Darwin | 138 |

Department of the interior—U. S. geological survey | J. W. Powell, director | The rock-scorings | of the | great ice invasions | by | Thomas Chrowder Chamberlin | Extract from the seventh annual report of the director, 1885–1886 | [Survey design] |

Washington | government printing office | 1888

CONTENTS.

Geographical distribution of striæ... 155
Extent of the ice invasion... 155
Disparity of distribution of striæ... 158
Illusory irregularity of present mapping... 159
Postglacial destruction of striæ... 159
Unequal search for striæ... 159
Unequal detection of striæ... 159
Original distribution of striæ... 159
Topographical relations of the strife... 160
Range of strife in altitude... 160
Upper limit of glacial markings... 161
The margin of glaciated area vertically undulatory....................... 162
Varying position of the striated surface...................................... 162
Striae on level plains.. 162
Striae on descending plane surfaces... 164
Striae on ascending plane surfaces.. 167
Relations of the striæ to the inclined surfaces.......................... 168
Striae on vertical surfaces... 169
(1) Horizontal... 169
(2) Descending.. 171
(3) Ascending.. 171
Striae on terminal surfaces.. 174
Striae on rounded angles... 175
Striae on horizontally curved surfaces.. 177
Striae on obliquely curved surfaces.. 177
Striae on vertically arched surfaces.. 177
Striae on domes... 178
Striae on warped surfaces... 179
Topography as affecting the distribution of striæ.......................... 181
Distribution and direction of striæ.. 181
Distinction between glacial borders.. 182
Influence of deeply overridden topography on glacial currents.... 185
Temperature and saturation as affecting glacial movement............. 186
Pressure as affecting plasticity... 187
Rate of flowage as affecting the course of striæ about obstacles.... 191
The forms of prominences as affecting the course of flow about them. 191
The element of magnitude... 191
Miniature ridges behind hard knobs... 193
Grooving in front of obstacles... 194
Absence of grooving in front of obstacles..................................... 196
Deflection of currents in crossing valleys...................................... 197
Cross striation... 200
Varying effects of topography in successive stages..................... 200
Changes of glacial movement during a symmetrical retreat........... 201
Changes of movement due to varying topographic influence, producing an unsymmetrical retreat... 201
Changes of movement due to inequalities of supplies.................... 202
Changes of movement due to varying rates of ablation.................... 209
Changes of movement due to glacial drainage................................ 203
Changes of movement due to the seasons....................................... 203
Changes of movement due to solar action...................................... 204
Changes of movement due to climatic periods............................... 204
Changes of movement due to inequalities of debris covering........ 205
Changes of course due to possible movements of the earth's crust... 205
Scoring action and the scorings... 207
I. Disruption by glacial action... 207
Inthrusting of drift... 210
II. Glacial grooves... 211
Pre-existent grooves... 211
Single grooves.. 213
Compound grooves.. 214
III. Striation.. 216
Definition of the lines.. 216
"Chatter marks".. 218
Scoring action and the scorings—continued.

<table>
<thead>
<tr>
<th>Scoring type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jagged grooves</td>
<td>219</td>
</tr>
<tr>
<td>Crescentic gouges</td>
<td>219</td>
</tr>
<tr>
<td>Crescentic cross fractures</td>
<td>221</td>
</tr>
<tr>
<td>Jumping gouges</td>
<td>222</td>
</tr>
<tr>
<td>Lunoid furrows</td>
<td>222</td>
</tr>
<tr>
<td>Variations in the width and depth of stria</td>
<td>223</td>
</tr>
<tr>
<td>Variations in length of stria</td>
<td>224</td>
</tr>
<tr>
<td>Interrupted continuity of stria</td>
<td>225</td>
</tr>
<tr>
<td>Persistence or deviation of direction</td>
<td>225</td>
</tr>
<tr>
<td>Straight stria</td>
<td>225</td>
</tr>
<tr>
<td>Deflected stria</td>
<td>225</td>
</tr>
<tr>
<td>Angulated stria</td>
<td>225</td>
</tr>
<tr>
<td>Curved stria</td>
<td>226</td>
</tr>
<tr>
<td>Supposed iceberg stria</td>
<td>227</td>
</tr>
<tr>
<td>Zigzag stria</td>
<td>229</td>
</tr>
<tr>
<td>Origin and disappearance of stria</td>
<td>229</td>
</tr>
<tr>
<td>The process of striation</td>
<td>230</td>
</tr>
<tr>
<td>Other modes by which scoring debris was brought into action</td>
<td>235</td>
</tr>
<tr>
<td>By melting</td>
<td>235</td>
</tr>
<tr>
<td>By precipitation through crevasses</td>
<td>236</td>
</tr>
<tr>
<td>By quasi-fluidal movement</td>
<td>236</td>
</tr>
<tr>
<td>By gravitation</td>
<td>236</td>
</tr>
<tr>
<td>By derivation from the bottom</td>
<td>227</td>
</tr>
<tr>
<td>By rotation</td>
<td>227</td>
</tr>
<tr>
<td>By mutual action of subglacial debris</td>
<td>227</td>
</tr>
<tr>
<td>Removal of scoring debris from activity</td>
<td>238</td>
</tr>
<tr>
<td>By rotation</td>
<td>238</td>
</tr>
<tr>
<td>By quasi-fluidal movements</td>
<td>239</td>
</tr>
<tr>
<td>By removal of the rider</td>
<td>239</td>
</tr>
<tr>
<td>By crushing</td>
<td>239</td>
</tr>
<tr>
<td>By wearing out</td>
<td>239</td>
</tr>
<tr>
<td>IV. Polishing</td>
<td>240</td>
</tr>
<tr>
<td>Attrition polishing</td>
<td>240</td>
</tr>
<tr>
<td>Pressure polishing</td>
<td>241</td>
</tr>
<tr>
<td>Glacial polishing distinguishable from that of wind or of water</td>
<td>241</td>
</tr>
<tr>
<td>V. Planation</td>
<td>242</td>
</tr>
<tr>
<td>The aid of striation in estimating glacial erosion</td>
<td>248</td>
</tr>
<tr>
<td>Observation on the character of the striated surface</td>
<td>248</td>
</tr>
<tr>
<td>Methods of determining the point of motion</td>
<td>248</td>
</tr>
<tr>
<td>Knobs and trails</td>
<td>249</td>
</tr>
<tr>
<td>Advanced cones</td>
<td>245</td>
</tr>
<tr>
<td>Abrasion of the distal side of cavities</td>
<td>245</td>
</tr>
<tr>
<td>Drag-lines</td>
<td>246</td>
</tr>
<tr>
<td>Stoss and lee phenomena</td>
<td>246</td>
</tr>
<tr>
<td>Truncation of prominences</td>
<td>246</td>
</tr>
<tr>
<td>The phenomena of “plucking”</td>
<td>246</td>
</tr>
<tr>
<td>Fluted hills</td>
<td>246</td>
</tr>
<tr>
<td>Character of the ends of scratches</td>
<td>246</td>
</tr>
<tr>
<td>The roll of a pebble</td>
<td>247</td>
</tr>
<tr>
<td>Chatter marks</td>
<td>247</td>
</tr>
<tr>
<td>Disrupted gouges</td>
<td>248</td>
</tr>
<tr>
<td>Crescentic cracks</td>
<td>248</td>
</tr>
</tbody>
</table>

CONTENTS.

Page.

Introduction... 255
Geological occurrence.. 256
Lithological structure... 257
Columnar cracking.. 257
Lamination.. 258
Petrographical character... 261
Obsidian... 261
Spherulites.. 262
Hollow spherulites... 263
Lithoidite.. 264
Lithophysa.. 265
Minerals composing lithophysa...................................... 266
Quartz... 267
Tridymite.. 267
Feldspar... 267
Fayalite.. 267
Microscopical characters... 269
Trichites and microites.. 270
Granophyre groups.. 271
Spherulites.. 271
Porous spherulites... 272
Fayalite.. 272
Origin of fayalite and lithophysa..................................... 273
Mineral association.. 274
Chemical evidence... 274
Conclusion... 275
Apparent exceptions... 275
Development of various structures in obsidian.................. 276
Conditions modifying the development of lithophysa........... 277
The cause of different layers of lamination....................... 278
Historical review.. 279
Geographical distribution of obsidian............................. 280
Conclusion... 281

Paper cover with title as above; half-title, “Report on the geology of Martha's vineyard, by Nathaniel S. Shaler,” p. 297, verso blank; contents, p. 299, verso blank; illustrations, p. 301, verso blank; text, pp. 303-360; appendix (consisting of a report to Prof. Shaler by Henry L. Whiting, of the results of his surveys in Martha's vineyard), pp. 361-363. Royal 8°. Plates xix-xxix; figs. 55-63. 210 copies—110 regular separates and 100 extras ordered by the author.

CONTENTS.

Page.

Introduction.. 303
General geological relations of this area.............................. 304
Surface contour of Martha's vineyard................................. 306
Glacial deposits of Martha's vineyard................................. 307
Ordinary ground moraines... 309
Frontal moraine drift... 311
Kame and terrace drift.. 314
Origin of glacially transported materials............................ 322
Cretaceous rocks of Martha's vineyard............................... 325
Tertiary rocks of Martha's vineyard.................................... 326
Stratigraphy of the Vineyard series................................... 328
Analyses of dips in Vineyard series.................................... 330
Origin and nature of the rocks of the Vineyard series........... 333
Deposits of doubtful age.. 340
Dislocations of the Vineyard series..................................... 343
Department of the interior—U. S. geological survey | J. W. Powell, director | On the classification | of the | early Cambrian and pre-Cambrian formations | by | Roland Duer Irving | Extract from the seventh annual report of the director, 1885-1886 | [Survey design] | Washington | government printing office | 1888

CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>371</td>
</tr>
<tr>
<td>372</td>
</tr>
<tr>
<td>373</td>
</tr>
<tr>
<td>374</td>
</tr>
<tr>
<td>375</td>
</tr>
<tr>
<td>377</td>
</tr>
<tr>
<td>377</td>
</tr>
<tr>
<td>378</td>
</tr>
<tr>
<td>379</td>
</tr>
<tr>
<td>380</td>
</tr>
<tr>
<td>381</td>
</tr>
<tr>
<td>382</td>
</tr>
<tr>
<td>383</td>
</tr>
<tr>
<td>384</td>
</tr>
<tr>
<td>385</td>
</tr>
<tr>
<td>390</td>
</tr>
<tr>
<td>391</td>
</tr>
<tr>
<td>392</td>
</tr>
<tr>
<td>393</td>
</tr>
<tr>
<td>394</td>
</tr>
<tr>
<td>395</td>
</tr>
<tr>
<td>396</td>
</tr>
<tr>
<td>397</td>
</tr>
<tr>
<td>398</td>
</tr>
<tr>
<td>399</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
<tr>
<td>402</td>
</tr>
<tr>
<td>403</td>
</tr>
<tr>
<td>404</td>
</tr>
<tr>
<td>405</td>
</tr>
<tr>
<td>406</td>
</tr>
<tr>
<td>407</td>
</tr>
<tr>
<td>408</td>
</tr>
<tr>
<td>409</td>
</tr>
<tr>
<td>410</td>
</tr>
<tr>
<td>411</td>
</tr>
<tr>
<td>412</td>
</tr>
<tr>
<td>413</td>
</tr>
<tr>
<td>414</td>
</tr>
<tr>
<td>415</td>
</tr>
<tr>
<td>416</td>
</tr>
<tr>
<td>417</td>
</tr>
<tr>
<td>418</td>
</tr>
<tr>
<td>419</td>
</tr>
<tr>
<td>420</td>
</tr>
<tr>
<td>421</td>
</tr>
<tr>
<td>422</td>
</tr>
<tr>
<td>423</td>
</tr>
<tr>
<td>424</td>
</tr>
<tr>
<td>425</td>
</tr>
<tr>
<td>426</td>
</tr>
<tr>
<td>427</td>
</tr>
<tr>
<td>428</td>
</tr>
<tr>
<td>429</td>
</tr>
<tr>
<td>430</td>
</tr>
<tr>
<td>431</td>
</tr>
<tr>
<td>432</td>
</tr>
<tr>
<td>433</td>
</tr>
<tr>
<td>434</td>
</tr>
<tr>
<td>435</td>
</tr>
<tr>
<td>436</td>
</tr>
<tr>
<td>437</td>
</tr>
<tr>
<td>438</td>
</tr>
<tr>
<td>439</td>
</tr>
<tr>
<td>440</td>
</tr>
<tr>
<td>441</td>
</tr>
<tr>
<td>442</td>
</tr>
<tr>
<td>443</td>
</tr>
<tr>
<td>444</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>446</td>
</tr>
<tr>
<td>447</td>
</tr>
<tr>
<td>448</td>
</tr>
<tr>
<td>449</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>451</td>
</tr>
<tr>
<td>452</td>
</tr>
<tr>
<td>453</td>
</tr>
<tr>
<td>454</td>
</tr>
</tbody>
</table>
Unconformity as a basis for classification—continued.

Unconformities between the Animikie series of the north side of Lake Superior and the adjacent formations	417
Unconformities of the Penokee-Gogebic region of northern Wisconsin and Michigan	423
Cases in which the overlying strata are folded	428
Examples	429
The Laurentian-Huronian unconformity of the north shore of Lake Huron	429
The unconformity between the iron-bearing and gneissic series in the Marquette region of Michigan	431
The unconformity between the iron-bearing and gneissic formations in the Monominee region of Michigan and Wisconsin	434
The unconformity among the schistose rocks of the Vermilion Lake region	435
Résumé	437

The use of unconformities in classification | 438 |
The use of unconformities in defining the grander groups of strata | 438 |
The use of unconformities in correlating the formations of a single geological basin | 439 |
Correlation of the rock groups and unconformities of the Lake Superior region | 440 |
The use of unconformities in establishing general relations | 443 |
Summary of conclusions | 446 |
Taxonomy of the lower part of the geological column | 448 |

CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page.</td>
</tr>
<tr>
<td>I. The conditions of accumulation</td>
</tr>
<tr>
<td>Original area of deposits</td>
</tr>
<tr>
<td>Igneous rocks</td>
</tr>
<tr>
<td>Dikes</td>
</tr>
<tr>
<td>Intrusive sheets</td>
</tr>
<tr>
<td>Overflow sheets</td>
</tr>
<tr>
<td>Structural significance of overflows</td>
</tr>
<tr>
<td>Sequence and thickness of the Triassic series</td>
</tr>
<tr>
<td>Main trap overflow</td>
</tr>
<tr>
<td>Anterior trap overflow</td>
</tr>
<tr>
<td>Limestone</td>
</tr>
<tr>
<td>Posterior trap overflow</td>
</tr>
<tr>
<td>The Southbury-Woodbury Triassic area</td>
</tr>
<tr>
<td>II. The structure of the formation</td>
</tr>
<tr>
<td>General attitude</td>
</tr>
<tr>
<td>Classes of faults</td>
</tr>
<tr>
<td>Oblique faults</td>
</tr>
<tr>
<td>Strike faults</td>
</tr>
<tr>
<td>Marginal faults</td>
</tr>
<tr>
<td>Systematic arrangement of faults</td>
</tr>
<tr>
<td>Faults with reversed throw</td>
</tr>
<tr>
<td>Folds of the crescentic ridges</td>
</tr>
<tr>
<td>Summary of structure to be accounted for</td>
</tr>
<tr>
<td>III. Mechanical origin of the Triassic monocline</td>
</tr>
<tr>
<td>Conditions of the problem</td>
</tr>
<tr>
<td>Oblique deposition</td>
</tr>
<tr>
<td>Contemporary disturbance</td>
</tr>
<tr>
<td>Disturbance by intrusions</td>
</tr>
<tr>
<td>General tilting and faulting</td>
</tr>
<tr>
<td>Relation of several Triassic areas</td>
</tr>
<tr>
<td>Character of the disturbing force</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory note</td>
<td>545</td>
</tr>
<tr>
<td>I. Geography</td>
<td>548</td>
</tr>
<tr>
<td>The great natural divisions</td>
<td></td>
</tr>
<tr>
<td>The general hydrography</td>
<td>550</td>
</tr>
<tr>
<td>II. Topography</td>
<td>551</td>
</tr>
<tr>
<td>General configuration</td>
<td></td>
</tr>
<tr>
<td>Subordinate configuration</td>
<td>552</td>
</tr>
<tr>
<td>Analysis of topography</td>
<td>558</td>
</tr>
<tr>
<td>Résumé</td>
<td>564</td>
</tr>
<tr>
<td>III. The geologic exposures</td>
<td>564</td>
</tr>
<tr>
<td>Exposures in the Piedmont plateau</td>
<td>565</td>
</tr>
<tr>
<td>Exposures along the Piedmont margin</td>
<td>567</td>
</tr>
<tr>
<td>Exposures along the margin of the Coastal plain</td>
<td>571</td>
</tr>
<tr>
<td>The boring within the bay</td>
<td>580</td>
</tr>
<tr>
<td>Exposures on the east side of the bay</td>
<td>580</td>
</tr>
<tr>
<td>Exposures along Elk river</td>
<td>587</td>
</tr>
<tr>
<td>Exposures along Sassafras river</td>
<td>590</td>
</tr>
<tr>
<td>IV. The formations</td>
<td>593</td>
</tr>
<tr>
<td>Alluvium</td>
<td>593</td>
</tr>
<tr>
<td>The Columbia formation</td>
<td>594</td>
</tr>
<tr>
<td>Structure and composition</td>
<td>594</td>
</tr>
<tr>
<td>Distribution and local variation</td>
<td>598</td>
</tr>
<tr>
<td>The low-level phase</td>
<td>601</td>
</tr>
<tr>
<td>Altitude and attitude</td>
<td>601</td>
</tr>
<tr>
<td>Genesis</td>
<td>602</td>
</tr>
<tr>
<td>The littoral phase of the formation</td>
<td>607</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>608</td>
</tr>
<tr>
<td>The Sassafras river greensand</td>
<td>612</td>
</tr>
<tr>
<td>The Potomac formation</td>
<td>613</td>
</tr>
<tr>
<td>The Archean (?)</td>
<td>616</td>
</tr>
<tr>
<td>V. The displacement</td>
<td>616</td>
</tr>
<tr>
<td>Evidences of displacement</td>
<td>616</td>
</tr>
<tr>
<td>Position and character of the displacement</td>
<td>619</td>
</tr>
<tr>
<td>Geographic extent of the displacement</td>
<td>619</td>
</tr>
<tr>
<td>Topographic effects of the displacement</td>
<td>620</td>
</tr>
<tr>
<td>The date of the displacement</td>
<td>621</td>
</tr>
<tr>
<td>The amount of displacement</td>
<td>623</td>
</tr>
<tr>
<td>The rate of displacement</td>
<td>624</td>
</tr>
<tr>
<td>Possible cause of the displacement</td>
<td>626</td>
</tr>
<tr>
<td>General hypothesis</td>
<td>626</td>
</tr>
<tr>
<td>The special conditions</td>
<td>626</td>
</tr>
<tr>
<td>The special hypotheses</td>
<td>628</td>
</tr>
<tr>
<td>Résumé</td>
<td>633</td>
</tr>
<tr>
<td>VI. The general section</td>
<td>634</td>
</tr>
<tr>
<td>VII. The Quaternary history recorded in the Columbia formation</td>
<td>638</td>
</tr>
<tr>
<td>VIII. The application of the investigation</td>
<td>640</td>
</tr>
<tr>
<td>The local application</td>
<td></td>
</tr>
<tr>
<td>The general application</td>
<td>644</td>
</tr>
</tbody>
</table>

EIGHTH ANNUAL REPORT, 1886–1887.

Two parts, bound as separate volumes. Part 1: paper cover with title as above; library catalogue slips (sample), verso blank, 11.; advertisement of the publications of the survey, pp. i–iv; title as above, verso blank; half-title, "Eighth annual report of the director of the United States geological survey," p. iii, verso blank; contents
EIGHTH ANNUAL REPORT. 53

(of the two parts), pp. v-xv, verso blank; illustrations (of the two parts), pp. xvii-xix, verso blank; letter of transmittal to the secretary, verso blank; text, including half-titles, tables of contents, and lists of illustrations of individual papers, also plate explanations, pp. (3)-474; index to part 1, pp. i-xii. Royal 8°. Plates i-lxxxii (i being a map in pocket); figs. 1-22.

Part 2 has the following additional title:

Eighth annual report | of the | United States geological survey | to the | secretary of the interior | 1886-'87 | by | J. W. Powell | director | Part II | [Survey design] |

Washington | government printing office | 1889

Part 2: paper cover with title as in part 1; first inner title same, verso blank; second inner title as given next above, verso blank; text, with half-titles, tables of contents, and lists of illustrations of individual papers, pp. 475-1061; index to part 2, p. 1063. Royal 8°. Plates lxxv-lxxxvi; figs. 23-45.

CONTENTS (OF BOTH PARTS).

Powell (J. W.), Report of the director ... 3-93
Chiefs of divisions, Administrative reports of .. 95-257
Russell (I. C.), Quaternary history of Mono valley, California 251-394
Diller (J. S.), Geology of the Lassen peak district 395-432
Soudier (S. E.), The fossil butterflies of Florissant 433-474
Orton (Edward), The Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana .. 475-492
Ward (L. F.), The geographical distribution of fossil plants 493-545
Becker (G. F.), Summary of the geology of the quicksilver deposits of the Pacific slope ... 546-961
Shaler (N. S.), The geology of the island of Mt. Desert, Maine 962-1001

This edition consisted of 1,734 copies, the "usual number," about 600 of which were delivered unbound, as described above; the remainder were printed later and bound in sheep as vol. 12 (in two parts) of the "Executive documents of the house of representatives for the first session of the fiftieth congress."

Another edition as follows:

Report | of the | secretary of the interior; | being part of | the message and documents | communicated to the | two houses of congress | at the | beginning of the first session of the fiftieth congress. | In five volumes. | Volume III—in two parts. | Part I [-2]. |

Washington: | government printing office. | 1889.

This edition collates precisely like the unbound quota of the previous edition, except, of course, that there are no paper covers, and its contents are the same. The title beginning "Eighth annual report" is found in part 2.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Washington: | government printing office. | 1889.

Collation and contents as in the 3,000 edition, described next above. This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Eighth annual report | of the | United States geological survey | to the | secretary of the interior | 1886-'87 | by | J. W. Powell | director | Part I [- II] | [Survey design] |

Washington | government printing office | 1889
Two parts, bound as two volumes. Part 1: library catalogue slips (sample), verso blank, 1 l.; advertisement of the publications of the survey, pp. i-iv; title as above, verso blank; half-title, "Eighth annual report of the director of the United States geological survey," p. iii, verso blank; contents (of both parts), pp. v-xv, verso blank; illustrations (of both parts), pp. xvii-xix, verso blank; letter of transmittal to the secretary, p. [1], verso blank; text, with half-titles, contents, illustrations, and plate explanations of individual papers, pp. [3]-474; index to part i, pp. i-xii. Plates i-liii (1 being a map in pocket); figs. 1-22. Part ii: title as above, verso blank; text, with half-titles, contents, etc., of individual papers, pp. 475-1061, verso blank; index to part ii, p. 1063. Plates iiiv-lxxvi; figs. 23-45. Royal 8°. Contents as in the earlier editions.

This edition, ordered by concurrent resolution of the senate adopted by the house July 29, 1888, consisted of 15,500 copies; bound, as usual, in dark red cloth.

The eighth annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $2.60.

One hundred and ten copies of this report were divided into the separate papers composing it and the separates issued with the following titles:

SEPARATES FROM THE EIGHTH ANNUAL.

Eighth annual report | of the | United States geological survey | to the | secretary of the interior | 1886-'87 | by | J. W. Powell | director | [Survey design] |

Washington | government printing office | 1889

Paper cover with title as above; inner title, same as second one above (part i), verso blank; half-title, "Eighth annual report of the director of the United States geological survey," p. iii, verso blank; contents (of the whole volume), pp. v-xv, verso blank; illustrations (of the whole volume), pp. xvii-xix, verso blank; letter of transmittal to the secretary, verso blank; report of the director, pp. [3]-93, verso blank; half-title to administrative reports, p. 95, verso blank; administrative reports of chiefs, pp. 97-257. Royal 8°. Plates ii-ix. Plate i is a map in pocket, and though pertaining to this separate, does not accompany it. 110 copies.

CONTENTS.

REPORT OF THE DIRECTOR.

Letter of transmittal ... 1
Business organization of the survey .. 3
Introductory remarks .. 3
General plan of the survey ... 4
The fiscal system .. 9
 Principles controlling the system ... 9
 Appropriations .. 10
 Method of allotment ... 11
 Methods of making purchases .. 12
 Vouchers .. 13
 Transportation over bonded railroads 16
 Disbursing officers and their specific duties 17
The custodial system ... 20
 Principles of the system ... 20
 Methods employed ... 20
 Camp equipage and rations .. 22
 Custodians of property .. 23
The museum system ... 25
 Production of museum property ... 25
 Acquisition, custody, and transfer of collections 26
The illustration system ... 28
 Uses of illustrations .. 28
 Production, custody, and disposition of illustrations 32
The editorial system ... 36
Functions of the editorial system .. 36
Methods of work .. 38
The document system ... 40
Publications of the survey ... 40
Principles recognized in the document system 46
Custody and mode of distribution of documents 49
The library system .. 54
General plan of the library .. 54
Accessions ... 56
The circulation ... 57
Bibliographic work ... 58
The stationery system .. 59
The correspondence system .. 61
The general administrative system ... 62
The survey regulations .. 67
Summary .. 68

Work of the fiscal year ..
Progress in topography .. 70
Progress in geology ... 74
Plan for the geologic map .. 74
Work of the geologic divisions ... 76
Progress in paleontology ... 80
Methods pursued ... 80
Results attained .. 81
Work of the accessory divisions .. 83
Chemistry and physics .. 83
Mining statistics .. 85
Miscellaneous ... 87
Collateral investigations ... 88
Natural gas ... 88
The Charleston earthquake ... 89
Researches in terrestrial physics ... 91
Financial statement .. 92
Acknowledgments .. 93

ADMINISTRATIVE REPORTS.

Report of Mr. Henry Gannett ... 97
Mr. R. S. Woodward .. 121
Prof. Raphael Pumpelly ... 124
Prof. N. S. Shaler ... 125
Mr. G. K. Gilbert ... 128
Prof. R. D. Irving ... 132
Prof. T. C. Chamberlin ... 141
Mr. S. F. Emmons ... 144
Dr. A. C. Peale ... 148
Mr. Arnold Hague ... 149
Mr. George F. Becker ... 153
Capt. C. E. Dutton ... 156
Mr. L. C. Johnson ... 165
Mr. W. J. McGee .. 166
Prof. O. C. Marsh ... 173
Mr. C. D. Walcott .. 174
Dr. C. A. White ... 178
Mr. W. H. Hall ... 181
Mr. Lester F. Ward .. 184
Mr. S. H. Scudder .. 188
Prof. F. W. Clarke .. 189
Mr. J. S. Diller ... 193
Mr. David T. Day .. 195
Mr. George W. Shutt .. 201
Mr. W. H. Holmes .. 202
Mr. Charles C. Darwin .. 203
Mr. John D. McChesney ... 210
CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>267</td>
<td>Prefatory note</td>
</tr>
<tr>
<td>269</td>
<td>The Mono basin</td>
</tr>
<tr>
<td>287</td>
<td>The present lake</td>
</tr>
<tr>
<td>287</td>
<td>Sources of water supply</td>
</tr>
<tr>
<td>287</td>
<td>Streams</td>
</tr>
<tr>
<td>287</td>
<td>Springs</td>
</tr>
<tr>
<td>292</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>296</td>
<td>Chemical deposits</td>
</tr>
<tr>
<td>298</td>
<td>Fluctuation of level</td>
</tr>
<tr>
<td>299</td>
<td>The Quaternary lake</td>
</tr>
<tr>
<td>305</td>
<td>Sediments</td>
</tr>
<tr>
<td>310</td>
<td>Chemical deposits</td>
</tr>
<tr>
<td>315</td>
<td>Tephrolite</td>
</tr>
<tr>
<td>319</td>
<td>Fossils</td>
</tr>
<tr>
<td>321</td>
<td>Glacial history</td>
</tr>
<tr>
<td>321</td>
<td>The high sierra</td>
</tr>
<tr>
<td>324</td>
<td>Existing glaciers</td>
</tr>
<tr>
<td>324</td>
<td>Mt. Dana glacier</td>
</tr>
<tr>
<td>325</td>
<td>Mt. Lyell glacier</td>
</tr>
<tr>
<td>325</td>
<td>Parker creek glacier</td>
</tr>
<tr>
<td>326</td>
<td>Quaternary glaciers of the high sierra</td>
</tr>
<tr>
<td>330</td>
<td>Mt. Dana névé field</td>
</tr>
<tr>
<td>331</td>
<td>Rush creek névé field</td>
</tr>
<tr>
<td>331</td>
<td>Lundy canon glacier</td>
</tr>
<tr>
<td>333</td>
<td>Leving creek glacier</td>
</tr>
<tr>
<td>333</td>
<td>Gibbs cañon glacier</td>
</tr>
<tr>
<td>336</td>
<td>Bloody cañon glacier</td>
</tr>
<tr>
<td>337</td>
<td>Parker cañon glacier</td>
</tr>
<tr>
<td>340</td>
<td>Rush cañon glacier</td>
</tr>
<tr>
<td>342</td>
<td>Glacial phenomena</td>
</tr>
<tr>
<td>347</td>
<td>Glacial canyons</td>
</tr>
<tr>
<td>348</td>
<td>Scars and terraces</td>
</tr>
<tr>
<td>349</td>
<td>Measure of glacial erosion in canyons</td>
</tr>
<tr>
<td>351</td>
<td>High lateral canyons</td>
</tr>
<tr>
<td>353</td>
<td>Glacial cirques</td>
</tr>
<tr>
<td>355</td>
<td>Glacial erosion and deposition</td>
</tr>
<tr>
<td>358</td>
<td>Moraines</td>
</tr>
<tr>
<td>358</td>
<td>Terminal moraines</td>
</tr>
<tr>
<td>359</td>
<td>Lateral moraines</td>
</tr>
<tr>
<td>360</td>
<td>Morainal embankments</td>
</tr>
<tr>
<td>366</td>
<td>Polished and striated surfaces</td>
</tr>
<tr>
<td>367</td>
<td>Perched boulders</td>
</tr>
<tr>
<td>368</td>
<td>Glacial lakes</td>
</tr>
<tr>
<td>368</td>
<td>Relation of the glaciers to the Quaternary lake of Mono valley</td>
</tr>
<tr>
<td>371</td>
<td>Volcanic history</td>
</tr>
<tr>
<td>371</td>
<td>Recent volcanic phenomena</td>
</tr>
<tr>
<td>372</td>
<td>Fumaroles and hot springs</td>
</tr>
<tr>
<td>372</td>
<td>Modern craters and lava flows</td>
</tr>
</tbody>
</table>
Volcanic history—continued.

Quaternary volcanic phenomena ... 377
The Mono craters .. 378
Interstratified lapilli.. 386
Associated phenomena .. 387
Post-Quaternary orographic movements ... 389
Résumé.. 390
Mono valley in Quaternary times as compared with its present condition 390
Relation of ancient lake Mono to lakes Bonneville and Lahontan 393

Department of the interior—U. S. geological survey | J. W. Powell, director | Geology | of the | Lassen peak district | by | J. S. Diller |
Extract from the eighth annual report of the director, 1886–87 | [Survey design] |

CONTENTS.

Introduction... 401
Hypsography ... 401
General hypsographic features .. 401
Hypsography of the Lassen peak district ... 402
Geology ... 403
Geologic formations in the Lassen peak district ... 403
Auriferous slate series... 404
Distribution.. 404
Carboniferous limestone.. 404
Serpentine... 405
Age of the auriferous slate series ... 406
Cretaceous-Chico beds .. 407
Composition.. 407
Distribution.. 407
Age of the fossils.. 409
Upper and lower limits .. 411
Geography of the district during the Chico epoch................................ 411
Miocene... 413
Composition of the Miocene strata .. 413
Distribution and relations .. 413
Fossils found in the Miocene strata .. 419
Hypsographic and climatic conditions during the Miocene 420
Pliocene... 422
Upheaval of the piedmont region .. 425
Structure of the sierras .. 426
Relation of the uplifting and the faulting of the sierras to each other and to volcanic phenomena ... 428
Recapitulation... 430

Department of the interior—U. S. geological survey | J. W. Powell, director | The | fossil butterflies | of | Florissant | by | Samuel H. Scudder |
Extract from the eighth annual report of the director, 1886–87 | [Survey design] |

Washington | government printing office | 1889
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>439</td>
</tr>
<tr>
<td>Classified list of known fossil butterflies</td>
<td>440</td>
</tr>
<tr>
<td>Nymphalidae</td>
<td>441</td>
</tr>
<tr>
<td>Nymphalinae</td>
<td>441</td>
</tr>
<tr>
<td>Vanessidae</td>
<td>441</td>
</tr>
<tr>
<td>Prodryas</td>
<td>441</td>
</tr>
<tr>
<td>Jupiteria</td>
<td>448</td>
</tr>
<tr>
<td>Lithopsyche</td>
<td>452</td>
</tr>
<tr>
<td>Nymphalites</td>
<td>457</td>
</tr>
<tr>
<td>Apanthesis</td>
<td>459</td>
</tr>
<tr>
<td>Libytheina</td>
<td>461</td>
</tr>
<tr>
<td>Prolibythea</td>
<td>461</td>
</tr>
<tr>
<td>Papilionidae</td>
<td>467</td>
</tr>
<tr>
<td>Pierina</td>
<td>467</td>
</tr>
<tr>
<td>Pieridi</td>
<td>467</td>
</tr>
<tr>
<td>Stolopsyche</td>
<td>467</td>
</tr>
<tr>
<td>Appendix (Libythea labdaca)</td>
<td>469</td>
</tr>
</tbody>
</table>

Department of the interior—U. S. geological survey | J. W. Powell, director | The Trenton limestone | as a source of | petroleum and inflammable gas | in | Ohio and Indiana | by | Edward Orton | Extract from the eighth annual report of the director, 1886–87 | [Survey design] | Washington | government printing office | 1889

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>483</td>
</tr>
<tr>
<td>Theories respecting the origin of petroleum and natural gas</td>
<td>485</td>
</tr>
<tr>
<td>Statement and discussion of theories of chemical origin</td>
<td>486</td>
</tr>
<tr>
<td>Statement of theories of organic origin</td>
<td>487</td>
</tr>
<tr>
<td>Theory of origin from primary decomposition of organic matter</td>
<td>488</td>
</tr>
<tr>
<td>Statement of Hunt's theory</td>
<td>488</td>
</tr>
<tr>
<td>Statement of theories of indigenous origin</td>
<td>489</td>
</tr>
<tr>
<td>Theory of origin from distillation of organic matter</td>
<td>490</td>
</tr>
<tr>
<td>Statement of Newberry's distillation theory</td>
<td>491</td>
</tr>
<tr>
<td>Statement of Peckham's distillation theory</td>
<td>492</td>
</tr>
<tr>
<td>Discussion of the several theories of organic origin</td>
<td>493</td>
</tr>
<tr>
<td>Discussion of Peckham's theory</td>
<td>495</td>
</tr>
<tr>
<td>Discussion of Newberry's theory</td>
<td>497</td>
</tr>
<tr>
<td>Discussion of Hunt's theory</td>
<td>498</td>
</tr>
<tr>
<td>Summary</td>
<td>506</td>
</tr>
</tbody>
</table>

CHAPTER I.

- Modes of accumulation
- Composition and order of sequence of petroleum-bearing rocks
- Sandstones as reservoirs
- Limestones as reservoirs
- Permeability of the reservoirs
- Relative importance of the elements of an oil series
- Effect of disturbances of strata upon the accumulation of oil and gas
- Earlier statements of the anticlinal theory
- The anticlinal theory as specially applied to gas wells
- Arrested anticlines
- Structural irregularities in northwestern Ohio
CHAPTER III.

The discovery of oil and high-pressure gas in the Trenton limestone of Ohio .. 520
Black swamp .. 520
Surface indications .. 521
The pioneer well ... 525
Development of the new horizon .. 529
A year's progress ... 533
Magnitude and importance of the new field ... 536
The Findlay gas rock in Indiana .. 541

CHAPTER IV.
The geological scale ... 545
The Trenton limestone .. 547
The Utica shale ... 556
The Medina shale ... 558
The Clinton group ... 559
The Niagra group .. 561
The Utica shale ... 561
The Niagra limestone ... 561
The lower Helderberg series ... 563
The upper Helderberg limestone .. 568
The Devonian shale .. 570
Geological structure ... 573
The Cincinnati uplift ... 574
Disturbed stratification in the Wabash valley .. 580
Geological factors in gas and oil production .. 581
Porosity of the Trenton limestone .. 583
The relief of the Trenton limestone as connected with gas and oil production .. 587

CHAPTER V.
Practical development of the gas and oil fields .. 590
Trenton limestone gas—its composition and uses ... 590
The rock pressure of Trenton limestone gas ... 593
Causes of rock pressure ... 593
Measurement of gas wells .. 598
Centers of production of gas and oil ... 604
Divisions of the fields in Ohio ... 604
The Findlay gas field ... 604
Probable duration of the gas production ... 611
Gas fields of northwestern Ohio, exclusive of Findlay ... 612
The Lima oil field ... 615
Structure of the field .. 619
The oil and salt water rock ... 619
Production and promise of the field .. 622
The quality and the uses of Trenton limestone oil .. 623
The Findlay oil field .. 627
The north Baltimore oil field ... 629
Divisions of the gas field in Indiana .. 631
Discovery ... 631
Area ... 632
Geological scale .. 633
The Devonian limestone ... 633
The lower Helderberg limestone (Water-lime) ... 634
The Niagra limestone .. 634
The Clinton limestone .. 637
The Hudson river shale (Cincinnati group) ... 637
The Utica shale ... 638
The Trenton limestone .. 639
Geological structure of the gas field .. 639
Conditions of gas production in Indiana .. 642
Porosity of the gas rock ... 644
Abundance of gas rock ... 644
Character of the production .. 645
Absence of oil ... 645
Rock pressure .. 645
CHAPTER VI.

Summary ... 653
Table I (statistics of wells) .. 655
Table II (composition of the rock) ... 661
Conclusion .. 662

CONTENTS.

Introduction .. 669
Relations of the present paper to preceding and to prospective contributions 669
Enumeration of the localities, with the geological horizons, as far as practicable, at which vegetable remains have been found in the strata of the globe .. 670
Geographical distribution .. 672
Europe ... 672
Great Britain ... 673
France ... 673
Spain ... 673
Portugal ... 705
Italy ... 707
Greece .. 716
Roumelia ... 717
Bosnia .. 717
Austrian empire ... 718
Switzerland .. 738
Germany ... 744
Belgium ... 775
Netherlands ... 777
Denmark ... 778
Norway ... 778
Sweden ... 779
Russia .. 781
Asia .. 786
Siberia .. 786
Japan .. 788
Corea ... 790
China .. 790
Cochin China ... 792
Burmah ... 793
India ... 793
Turkestan ... 796
Persia .. 797
Transcaucasia ... 798
Asia Minor ... 799
Geographical distribution—continued. Page.

Arabia ... 799
Africa ... 799
South Africa ... 800
Egypt .. 800
Nubia .. 802
Abyssinia .. 803
Western Africa and Algeria ... 803
Sunda islands ... 803
Java .. 803
Sumatra ... 805
Borneo .. 806
Australasia .. 807
Australia ... 807
Tasmania .. 814
New Zealand ... 815
New Guinea ... 817
Kerguelen land ... 817
Madeira .. 818
West Indies ... 819
South America .. 820
Chili .. 820
Argentina... 821
Bolivia .. 823
Brazil .. 823
Honduras .. 824
Mexico ... 825
Arctic regions .. 826
Nova Zembla .. 827
Beaver island ... 827
Spitzbergen ... 827
Iceland .. 830
Greenland ... 830
Grinnell land ... 834
Bathurst island .. 834
Melville island .. 835
Bank's land .. 835
North America .. 836
Mackenzie river .. 836
British Columbia .. 836
British northwest territory .. 838
Canada .. 842
New Brunswick ... 845
Prince Edward island ... 846
Nova Scotia ... 847
Cape Breton ... 848
Newfoundland ... 848
United States ... 848
Alaska ... 924

Explanation of the map .. 927

Department of the interior—U. S. geological survey | J. W. Powell, director | Summary | of the | geology of the quicksilver deposits | of the | Pacific slope | by | George F. Becker | Extract from the eighth annual report of the director, 1886–87 | [Survey design] |

Washington | government printing office | 1889

CONTENTS.

Statistics and history .. 965

Foreign occurrences of quicksilver .. 966

Lithological geology .. 967

Sedimentary rocks ... 967

Massive rocks .. 971

Historical geology .. 972

Descriptive geology ... 974

Deposits of the Pacific slope .. 974

- Clear lake district ... 974
- Sulphur bank ... 975
- Knoxville district .. 976
- New Idria district ... 977
- New Almaden district .. 978
- Steamboat springs ... 979
- Oathill, Great eastern, and Great western districts 980
- Other quicksilver deposits .. 981

Generalizations .. 982

Discussion of the ore deposits .. 982

Solution and precipitation of cinnabar and other ores 983

Origin of the ore ... 985

Department of the interior—U. S. geological survey | J. W. Powell, director | The geology of the island of Mount Desert, Maine | by | Nathaniel Southgate Shaler | Extract from the eighth annual report of the director, 1886-'87 | [Survey design] | Washington | government printing office | 1889

CONTENTS.

Introduction	993
I. Surface and glacial geology	994
Description of the surface	997
Glacial action	1002
Direction of glacial movement	1002
Glacial sculpture	1003
Evidence of subsidence during and after the glacial period	1009
First bench	1016
Second bench	1018
Third bench	1019
Fourth bench	1020
Fifth bench	1021
Sixth bench	1022
Seventh bench	1022
Sea-worn cliffs	1023
Evidence of benches above the level of 1,000 feet	1025
Generalization of evidences from benches	1027
Evidence from chasms	1027
Evidence of subsidence from distribution of glacial waste	1029

Conclusions respecting subsidence	1031
II. Structural geology	1035
Prefatory	1035
Granite of Mount Desert	1035
Stratified rocks of Mount Desert	1037
General statement	1037
Bartlett's Island series	1038
Schooner head series	1041
Sutton's Island series	1041
II. Structural geology—continued.

<table>
<thead>
<tr>
<th>Series/Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranberry island series</td>
<td>1043</td>
</tr>
<tr>
<td>Bar harbor series</td>
<td>1047</td>
</tr>
<tr>
<td>Dikes of Mount Desert</td>
<td>1052</td>
</tr>
<tr>
<td>Granite dikes</td>
<td>1052</td>
</tr>
<tr>
<td>Baker's island dike</td>
<td>1052</td>
</tr>
<tr>
<td>Dix's point</td>
<td>1053</td>
</tr>
<tr>
<td>Lesser dikes</td>
<td>1053</td>
</tr>
<tr>
<td>Felsite porphyry masses</td>
<td>1054</td>
</tr>
<tr>
<td>Other dikes</td>
<td>1055</td>
</tr>
<tr>
<td>Trend of the dikes</td>
<td>1056</td>
</tr>
<tr>
<td>Dikes of white quartz</td>
<td>1057</td>
</tr>
<tr>
<td>Origin and physical history of Mount Desert rocks</td>
<td>1057</td>
</tr>
<tr>
<td>Explanation of geologic maps</td>
<td>1060</td>
</tr>
<tr>
<td>Map of surface geology</td>
<td>1060</td>
</tr>
<tr>
<td>Map showing bed rock geology</td>
<td>1060</td>
</tr>
</tbody>
</table>

NINTH ANNUAL REPORT, 1887-1888.

50th congress, 2d session. House of representatives. Ex. doc. 1, part 5. Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the second session of the fiftieth congress in six volumes. Volume IV.

Washington: government printing office. 1889.

CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powell (J. W.), Report of the director.</td>
</tr>
<tr>
<td>Chiefs of divisions. Administrative reports of</td>
</tr>
<tr>
<td>Dutton (C. E.), The Charleston earthquake of August 31, 1886.</td>
</tr>
<tr>
<td>Shaler (N. S.), The geology of Cape Ann, Massachusetts.</td>
</tr>
<tr>
<td>Weed (W. H.), Formation of travertine and siliceous sinter by the vegetation of hot springs</td>
</tr>
<tr>
<td>White (C. A.), On the geology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming</td>
</tr>
</tbody>
</table>

This edition consisted of 1,734 copies, the "usual number," about 600 of which were delivered unbound, as described above; the remainder were printed later and bound in sheep, in which form they constitute vol. 13 of the "Executive documents of the house of representatives for the second session of the fiftieth congress," and have three titles, as follows:

Washington: government printing office. 1890.

Second title: 50th congress, 2d session. House of representatives. Ex. doc. 1, part 5. Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the second session of the fiftieth congress in six volumes. Volume IV.

Washington: government printing office. 1889.

Third title: Ninth annual report of the United States geological survey to the secretary of the interior. 1887–88 by J. W. Powell director [Survey design].

Washington: government printing office 1889.
First title above, verso blank; second title above, verso blank; sample library catalogue slips, 1 p., verso blank; advertisement of the publications of the survey, pp. i-iv; third title above, verso blank; half-title, contents, illustrations, etc., as in the unbound quota. About 1,100 copies.

Another edition as follows:

Report of the secretary of the interior; being part of the message and documents communicated to the two houses of congress at the beginning of the second session of the fiftieth congress. In six volumes. Volume IV.

Washington: government printing office. 1889.

Collation precisely like that of the unbound quota of the previous edition, except, of course, that there is no paper cover, and the contents are the same.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Annual report of the secretary of the interior for the fiscal year ending June 30, 1888. In six volumes. Volume IV.

Washington: government printing office. 1889.

Collation and contents as in the 3,000 edition, described next above.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Ninth annual report of the United States geological survey to the secretary of the interior 1887-'88 by J. W. Powell director

Washington: government printing office 1889

Library catalogue slips (sample), verso blank, 1 l.; advertisement of the publications of the survey, pp. i-iv; title as above, verso blank; half-title, “Ninth annual report of the director of the United States geological survey,” p. iii, verso blank; contents, pp. v-viii; illustrations, pp. ix-xiii; letter of transmittal to the secretary, p. 1, verso blank; text, with half-titles, contents, etc., of individual papers, pp. 3-712; index, pp. 713-717. Royal 8°. Plates I-LXXXVIII; figs. 1-61. Contents as in the earlier editions.

This edition, ordered by concurrent resolution of the senate adopted by the house July 29, 1888, consisted of 15,500 copies; bound, as usual, in dark red cloth.

The ninth annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $1.50.

One hundred and ten copies of this report were divided into the separate papers composing it and the separates issued with the following titles:

SEPARATES FROM THE NINTH ANNUAL.

Ninth annual report of the United States geological survey to the secretary of the interior 1887-'88 by J. W. Powell director

Washington: government printing office 1889

Paper cover with title as above; inner title same, verso blank; half-title, “Ninth annual report of the director of the United States geological survey,” p. iii, verso blank; contents (of the whole volume), pp. v-viii; illustrations (of the whole volume), pp. ix-xiii, verso blank; letter of transmittal of the volume to the secretary, p. 1, verso blank; report of the director, pp. 3-46; half-title to administrative reports of chiefs, p. 47, verso blank; administrative reports of chiefs, pp. 49-199. Royal 8°. Plates I-VI. 110 copies.
CONTENTS

REPORT OF THE DIRECTOR

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>1</td>
</tr>
<tr>
<td>Progress in topographic work</td>
<td>3</td>
</tr>
<tr>
<td>Progress in geologic work</td>
<td>7</td>
</tr>
<tr>
<td>Atlantic coast division</td>
<td>7</td>
</tr>
<tr>
<td>Division of Archean geology</td>
<td>8</td>
</tr>
<tr>
<td>Lake Superior division</td>
<td>10</td>
</tr>
<tr>
<td>Glacial division</td>
<td>11</td>
</tr>
<tr>
<td>Appalachian division</td>
<td>12</td>
</tr>
<tr>
<td>Pacific coast division</td>
<td>13</td>
</tr>
<tr>
<td>California division</td>
<td>14</td>
</tr>
<tr>
<td>Colorado division</td>
<td>15</td>
</tr>
<tr>
<td>Yellowstone park division</td>
<td>15</td>
</tr>
<tr>
<td>Correlation of formations</td>
<td>16</td>
</tr>
<tr>
<td>Division of volcanic geology</td>
<td>17</td>
</tr>
<tr>
<td>Potomac division</td>
<td>19</td>
</tr>
<tr>
<td>Montana division</td>
<td>21</td>
</tr>
<tr>
<td>Progress in paleontologic work</td>
<td>21</td>
</tr>
<tr>
<td>Tendency to specialize</td>
<td>22</td>
</tr>
<tr>
<td>Methods of collection and classification</td>
<td>22</td>
</tr>
<tr>
<td>Vertebrate paleontology</td>
<td>23</td>
</tr>
<tr>
<td>Invertebrate paleontology</td>
<td>24</td>
</tr>
<tr>
<td>Cenozoic invertebrate fossils</td>
<td>24</td>
</tr>
<tr>
<td>Fossil plants and fishes</td>
<td>25</td>
</tr>
<tr>
<td>Fossil insects</td>
<td>28</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>28</td>
</tr>
<tr>
<td>Mining statistics and technology</td>
<td>29</td>
</tr>
<tr>
<td>Chemistry and physics</td>
<td>29</td>
</tr>
<tr>
<td>Illustrations division</td>
<td>30</td>
</tr>
<tr>
<td>Division of library and documents</td>
<td>31</td>
</tr>
<tr>
<td>Necrology</td>
<td>31</td>
</tr>
<tr>
<td>Ferdinand Vandiveer Hayden</td>
<td>38</td>
</tr>
<tr>
<td>Roland Duer Irving</td>
<td>38</td>
</tr>
<tr>
<td>James Stevenson</td>
<td>42</td>
</tr>
<tr>
<td>Thomas Hampson</td>
<td>44</td>
</tr>
<tr>
<td>Administrative reports</td>
<td>49</td>
</tr>
<tr>
<td>Report of Mr. Henry Ganuett</td>
<td>69</td>
</tr>
<tr>
<td>Mr. R. S. Woodward</td>
<td>71</td>
</tr>
<tr>
<td>Prof. N. S. Shaler</td>
<td>75</td>
</tr>
<tr>
<td>Prof. Raphael Pumpelly</td>
<td>76</td>
</tr>
<tr>
<td>Mr. G. K. Gilbert</td>
<td>79</td>
</tr>
<tr>
<td>Mr. C. R. Van Hise</td>
<td>87</td>
</tr>
<tr>
<td>Prof. T. C. Chamberlin</td>
<td>91</td>
</tr>
<tr>
<td>Prof. S. F. Emmons</td>
<td>96</td>
</tr>
<tr>
<td>Mr. Arnold Hague</td>
<td>98</td>
</tr>
<tr>
<td>Capt. C. E. Dutton</td>
<td>100</td>
</tr>
<tr>
<td>Mr. J. S. Diller</td>
<td>102</td>
</tr>
<tr>
<td>Mr. Geo. F. Becker</td>
<td>110</td>
</tr>
<tr>
<td>Mr. W J McGee</td>
<td>111</td>
</tr>
<tr>
<td>Mr. L. C. Johnson</td>
<td>114</td>
</tr>
<tr>
<td>Mr. A. C. Peale</td>
<td>115</td>
</tr>
<tr>
<td>Prof. O. C. Marsh</td>
<td>120</td>
</tr>
<tr>
<td>Mr. C. D. Walcott</td>
<td>123</td>
</tr>
<tr>
<td>Dr. C. A. White</td>
<td>124</td>
</tr>
<tr>
<td>Mr. W. H. Dall</td>
<td>131</td>
</tr>
<tr>
<td>Mr. Lester F. Ward</td>
<td>132</td>
</tr>
<tr>
<td>Prof. J. S. Newberry</td>
<td>133</td>
</tr>
<tr>
<td>Prof. W.M. Fontaine</td>
<td>134</td>
</tr>
<tr>
<td>Prof. Samuel H. Scudder</td>
<td>134</td>
</tr>
<tr>
<td>Dr. David T. Day</td>
<td>141</td>
</tr>
<tr>
<td>Prof. F. W. Clarke</td>
<td>143</td>
</tr>
<tr>
<td>Mr. W. H. Holmes</td>
<td>145</td>
</tr>
<tr>
<td>Mr. C. C. Darwin</td>
<td>153</td>
</tr>
<tr>
<td>Mr. John D. McClesney</td>
<td>154</td>
</tr>
</tbody>
</table>

Bull. 100—5
Department of the interior—U. S. geological survey | J. W. Powell, director | The geology | of | cape Ann, Massachusetts | by | Nathaniel Southgate Shaler | Extract from the ninth annual report of the director, 1887-88 | [Survey design] | Washington | government printing office | 1890

CONTENTS.

Letter of transmittal 557
Nature and objects of report 539
General geographic and geologic relations of the cape Ann district 541
 General form of the cape Ann anticline ... 543
 Nature and distribution of drift deposits 546
 Shoved moraines 546
 Form of drift deposits ... 547
 Serpent kames ... 549
 Drumlinus ... 550
Composition and nature of glacial materials 552
 Decay of bowlders 554
Amount of erosion during the glacial period 556
 Glacial scratches 557
 Carriage of erratics 558
Post-glacial erosion on cape Ann 559
 Atmospheric erosion 559
 Marine erosion 560
 Sea beaches 562
 Effect of sea-weeds on movement of pebbles 563
 Rate of wear of pebbles .. 565
 Decay of rocks in place ... 567
Recent changes of level in cape Ann ... 667
Evidence of recent subsidence.. 668
Evidences of recent elevation.. 669
Height of sea since glacial period... 671
Dunes of cape Ann district .. 674
Marshes .. 675
Physical structure of the bed rocks of cape Ann ... 676
Mineralogical character of rocks ... 679
Dikes of the cape Ann district .. 680
Distribution of dikes ... 682
Area occupied by dikes .. 689
Joint-planes of cape Ann district .. 689
List of dikes of cape Ann ... 690
Rifting of the quarried rocks ... 692
The general petrography of cape Ann .. 695
Influence of geological structure on health of district 696

Influence of geological structure on health of district

Department of the interior—U. S. geological survey | J. W. Powell, director | The formation | of | travertine and siliceous sinter | by the | vegetation of hot springs | by | Walter Harvey Weed | Extract from the ninth annual report of the director, 1887-'88 | [Survey design] | Washington | government printing office | 1890

Paper cover with title as above; half-title, "Formation of travertine and siliceous sinter by the vegetation of hot springs, by Walter Harvey Weed," p. 613, verso blank; contents, p. 615, verso blank; illustrations, p. 617, verso blank; text, pp. 619-676. Royal 8°. Plates LXXVIII-LXXXVII; figs. 52-56. 260 copies—110 regular separates and 150 extras ordered by the author.

CONTENTS.

Page.
Introduction.. 619
Plants as rock-builders .. 619
Vegetation of hot waters.. 620
Hot springs of the Yellowstone national park ... 628
Mammoth hot springs.. 628
Geological relations ... 629
Travertine deposits... 629
The springs and their vegetation .. 630
General occurrence of the algae .. 631
Effect of environment .. 633
Description of the vegetable growth.. 635
Solubility of carbonate of lime ... 637
Character of the hot spring waters ... 638
Deposition of carbonate of lime .. 640
Deposits of carbonate of lime due to plant life .. 642
Description of the deposits .. 645
Weathering of the travertine .. 649
Origin of siliceous sinter ... 650
Upper Geyser basin of the Firehole river ... 651
General description .. 651
Character of the hot spring waters... 654
Formation of siliceous sinter .. 655
Algous vegetation of the hot waters .. 657
Algous pools and channels .. 658
Fibrous varieties of algous sinter ... 665
Rate of deposition of siliceous sinter .. 666
Microscopic evidence .. 667
Moss sinter.. 667
Dintom beds .. 668
Nature of siliceous sinter .. 669
Siliceous sinters from New Zealand .. 672
Summary ... 676
CONTENTS.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography of the district .. 683</td>
</tr>
<tr>
<td>Geological formations ... 685</td>
</tr>
<tr>
<td>Archean rocks .. 686</td>
</tr>
<tr>
<td>Uinta sandstone ... 687</td>
</tr>
<tr>
<td>Carboniferous .. 688</td>
</tr>
<tr>
<td>Jura-Trias .. 688</td>
</tr>
<tr>
<td>Cretaceous .. 689</td>
</tr>
<tr>
<td>The Dakota group .. 689</td>
</tr>
<tr>
<td>The Colorado group ... 689</td>
</tr>
<tr>
<td>The Fox hills group ... 689</td>
</tr>
<tr>
<td>The Laramie group .. 690</td>
</tr>
<tr>
<td>Tertiary ... 690</td>
</tr>
<tr>
<td>The Wasatch group ... 690</td>
</tr>
<tr>
<td>The Green river group .. 690</td>
</tr>
<tr>
<td>The Bridger group ... 690</td>
</tr>
<tr>
<td>The Brown’s park group .. 691</td>
</tr>
<tr>
<td>Displacements .. 692</td>
</tr>
<tr>
<td>The Uinta fold .. 692</td>
</tr>
<tr>
<td>The Yampa plateau and other subordinate folds 697</td>
</tr>
<tr>
<td>Junction mountain upthrust .. 701</td>
</tr>
<tr>
<td>Yampa mountain upthrust .. 702</td>
</tr>
<tr>
<td>Relation of the Uinta fold to other folds and to the Park range uplift .. 703</td>
</tr>
<tr>
<td>Cañons traversing the upthrust and folds 706</td>
</tr>
<tr>
<td>The Uinta cañons of the Green river .. 707</td>
</tr>
<tr>
<td>Yampa mountain cañon .. 708</td>
</tr>
<tr>
<td>Junction mountain cañon .. 709</td>
</tr>
<tr>
<td>Yampa cañon ... 709</td>
</tr>
<tr>
<td>Concluding remarks .. 710</td>
</tr>
</tbody>
</table>

TENTH ANNUAL REPORT, 1888-1889.

Two parts, bound as two volumes. Part I: paper cover with title as above; library catalogue slips (sample), verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; title as above, verso blank; half-title, “Tenth annual report of the director of the United States geological survey, part I—geology,” p. iii, verso blank; contents, pp. v-ix, verso blank; illustrations, pp. xi-xv, verso blank; letter of transmittal to the secretary, p. 1, verso blank; text, including half-titles, tables of contents, and lists of illustrations of individual papers, also plate designations and explanations, pp. 3-760; (there are no pp. 761, 762); errata, p. 763, verso
TENTH ANNUAL REPORT.

blanks; index, pp. 765–774. Plates i-xcviii (i being a map in pocket); figs. 1-69. Part ii: paper cover with title as above; inner title the same, verso blank; half-title, "Tenth annual report of the director of the United States geological survey, part II—irrigation," p. iii, verso blank; contents, pp. v-vi; abstract, pp. vii-viii; text, pp. 1–119, verso blank; index, pp. 121–123. No illustrations. Royal 8°.

CONTENTS OF PART I.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powell (J.W.), Report of the director</td>
</tr>
<tr>
<td>Chiefs of divisions, Administrative reports of</td>
</tr>
<tr>
<td>Shaler (N.S.), General account of the fresh-water morasses of the United States, with a description of the Dismal swamp district of Virginia and North Carolina</td>
</tr>
<tr>
<td>Irving (R.D.) and Van Hise (C.R.), The Penokee iron-bearing series of Michigan and Wisconsin</td>
</tr>
<tr>
<td>Walcott (C.D.), The fauna of the lower Cambrian or Olenellus zone</td>
</tr>
</tbody>
</table>

CONTENTS OF PART II.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract of this report</td>
</tr>
<tr>
<td>Origin of the irrigation survey</td>
</tr>
<tr>
<td>Letter from the secretary of the interior to the president pro tempore of the senate</td>
</tr>
<tr>
<td>Letter from the acting commissioner of the general land office to the secretary of the interior</td>
</tr>
<tr>
<td>Letter from the director of the United States geological survey to the secretary of the interior</td>
</tr>
<tr>
<td>Letter from the secretary of the interior to the president pro tempore of the senate</td>
</tr>
<tr>
<td>Letter from the director of the United States geological survey to the secretary of the interior</td>
</tr>
<tr>
<td>Letter of the secretary of the interior to the president pro tempore of the senate</td>
</tr>
<tr>
<td>Letter from the director of the United States geological survey to the secretary of the interior</td>
</tr>
<tr>
<td>Preliminary report on the organization and prosecution of the survey of the arid lands for purposes of irrigation</td>
</tr>
<tr>
<td>Topographic work</td>
</tr>
<tr>
<td>Work in Montana</td>
</tr>
<tr>
<td>Work in Nevada</td>
</tr>
<tr>
<td>Work in Colorado</td>
</tr>
<tr>
<td>Work in New Mexico</td>
</tr>
<tr>
<td>Hydraulic work</td>
</tr>
<tr>
<td>Segregation work</td>
</tr>
<tr>
<td>Reservoir sites</td>
</tr>
<tr>
<td>Irrigable lands</td>
</tr>
<tr>
<td>Appropriation of reservoir sites</td>
</tr>
<tr>
<td>Disposal of irrigable lands</td>
</tr>
<tr>
<td>Purpose of the survey</td>
</tr>
<tr>
<td>Plan of the survey</td>
</tr>
<tr>
<td>Details of the plan of operations</td>
</tr>
<tr>
<td>Topographic operations</td>
</tr>
<tr>
<td>Montana</td>
</tr>
<tr>
<td>Colorado</td>
</tr>
<tr>
<td>New Mexico</td>
</tr>
<tr>
<td>Idaho</td>
</tr>
<tr>
<td>Nevada and California</td>
</tr>
<tr>
<td>Hydraulic work</td>
</tr>
<tr>
<td>Engineering survey</td>
</tr>
<tr>
<td>Upper Missouri division</td>
</tr>
<tr>
<td>Colorado division</td>
</tr>
<tr>
<td>New Mexico division</td>
</tr>
<tr>
<td>Idaho division</td>
</tr>
<tr>
<td>Lahontan division</td>
</tr>
<tr>
<td>California division</td>
</tr>
<tr>
<td>Recapitulation</td>
</tr>
<tr>
<td>Instructions</td>
</tr>
<tr>
<td>Areas surveyed</td>
</tr>
<tr>
<td>Reservoir sites selected</td>
</tr>
<tr>
<td>Report of Prof. A. H. Thompson</td>
</tr>
<tr>
<td>Time and location of work</td>
</tr>
<tr>
<td>General organization and personnel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detailed report by divisions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>California and Nevada</td>
<td>66</td>
</tr>
<tr>
<td>Colorado</td>
<td>68</td>
</tr>
<tr>
<td>Montana</td>
<td>71</td>
</tr>
<tr>
<td>New Mexico</td>
<td>72</td>
</tr>
</tbody>
</table>

Field methods

<table>
<thead>
<tr>
<th>Character of work</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of control</td>
<td>74</td>
</tr>
<tr>
<td>Horizontal control</td>
<td>74</td>
</tr>
<tr>
<td>Vertical control</td>
<td>75</td>
</tr>
<tr>
<td>Control of representation</td>
<td>76</td>
</tr>
</tbody>
</table>

Office work

<table>
<thead>
<tr>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>California and Nevada</td>
<td>76</td>
</tr>
<tr>
<td>Colorado</td>
<td>77</td>
</tr>
<tr>
<td>Montana</td>
<td>77</td>
</tr>
<tr>
<td>New Mexico</td>
<td>77</td>
</tr>
</tbody>
</table>

Report of Capt. C. E. Dutton

Hydrographic work

<table>
<thead>
<tr>
<th>Measurement of river flow</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorology</td>
<td>84</td>
</tr>
<tr>
<td>Evaporation</td>
<td>85</td>
</tr>
<tr>
<td>Suspended matter</td>
<td>85</td>
</tr>
<tr>
<td>Topography of river channel</td>
<td>85</td>
</tr>
<tr>
<td>Arkansas river</td>
<td>86</td>
</tr>
<tr>
<td>Rio Grande</td>
<td>87</td>
</tr>
<tr>
<td>Gila and Salt rivers</td>
<td>87</td>
</tr>
<tr>
<td>Truckee and Carson rivers</td>
<td>87</td>
</tr>
<tr>
<td>Hydrographic work in Utah</td>
<td>88</td>
</tr>
<tr>
<td>Snake river</td>
<td>88</td>
</tr>
<tr>
<td>Yellowstone and upper Missouri</td>
<td>89</td>
</tr>
</tbody>
</table>

General remarks on hydrographic work

<table>
<thead>
<tr>
<th>Montana division</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas division</td>
<td>91</td>
</tr>
<tr>
<td>Rio Grande division</td>
<td>93</td>
</tr>
<tr>
<td>California division</td>
<td>98</td>
</tr>
<tr>
<td>Lahontan division, in Nevada</td>
<td>104</td>
</tr>
<tr>
<td>Snake river division</td>
<td>106</td>
</tr>
</tbody>
</table>

Expenditures

<table>
<thead>
<tr>
<th>Classification of expenditures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract of disbursements</td>
<td>108</td>
</tr>
</tbody>
</table>

Index

121

(A preliminary report of the director of the geological survey, on "the organization and prosecution of the survey of the arid lands for purposes of irrigation," was transmitted to the secretary of the interior December 31, 1888, and by the secretary transmitted to the president pro tempore of the senate January 2, 1889, to be laid before congress. It was printed as senate ex. doc. no. 43, 50th congress, 2d session; 12 pp. 8°; and it is reprinted on pp. 16–29 of part II of the tenth annual.)

This edition consisted of 1,734 copies, the "usual number," about 600 in paper covers, as described, the balance printed later and bound in sheep, in which form they constitute vol. 14 (in two parts) of the "Executive documents of the house of representatives for the first session of the fifty-first congress."

Another edition as follows:

<table>
<thead>
<tr>
<th>Report</th>
<th>of the</th>
<th>secretary of the interior;</th>
<th>being part of</th>
<th>the message and documents</th>
<th>communicated to the</th>
<th>two houses of congress</th>
<th>at the</th>
<th>beginning of the first session of the fifty-first congress</th>
<th>In five volumes.</th>
<th>Volume IV—in two parts.</th>
<th>Part 1 [-2].</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Washington:</td>
<td>government printing office</td>
<td>1890,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The two parts collate as in the unbound quota of the previous edition, except that there are no paper covers, and their contents are the same.

This edition consisted of 3,000 copies; bound in black cloth. Another edition as follows:

Washington: | government printing office. | 1890.

Two parts, bound as two volumes. Part i: title as above, verso blank; half-title, contents, and remainder of volume as described under previous editions. Part ii: title as above, verso blank; half-title, contents, and remainder of volume as described under previous editions.

This edition consisted of 750 copies; bound in dark red cloth. Another edition as follows:

Tenth annual report | of the | United States geological survey | to the | secretary of the interior | 1888–1889 | by | J. W. Powell | director | Part i—geology [—ii—irrigation] | [Survey design] |
Washington | government printing office | 1890

Two parts, bound as two volumes. Part i: Sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i–v, verso blank; title as above, verso blank; half title, “Tenth annual report of the director of the United States geological survey, part i—geology,” p. iii, verso blank; contents, pp. v–ix, verso blank; illustrations, pp. xi–xv, verso blank; letter of transmittal by the director to the secretary of the interior, p. 1, verso blank; text, including half-titles, contents, etc., of individual papers, pp. 3–760; errata, p. 763 [sic], verso blank; index, pp. 765–774. Plates i–xcviii (i being a map in pocket); figs. 1–69. Part ii: title as above, verso blank; half title, “Tenth annual report of the director of the United States geological survey, part ii—irrigation,” p. iii, verso blank; contents, pp. v–vi; abstract of this the first irrigation annual report, pp. vii–viii; text, pp. 1–119; index, pp. 121–123. No illustrations. Royal 8°. Contents as in the earlier editions.

There were published of this edition, under resolution of the house concurred in by the senate March 13, 1890, 15,500 copies; bound, as usual, in dark red cloth.

Part ii (irrigation), being small and not illustrated, and needed for the immediate information and use of congress, was put in type and a few hundred copies delivered to the survey some months in advance of the main portion of the edition. These were in paper covers, the main title being repeated on the front cover.

The tenth annual is sold by the secretary of the interior, under authority of a joint resolution approved March 3, 1887, at the price of $2.80 for both parts. One hundred and ten copies of part i of this report were divided into the separate papers composing it, and the separates issued with the following titles:

SEPARATES FROM THE TENTH ANNUAL.

Tenth annual report | of the | United States geological survey | to the | secretary of the interior | 1888–1889 | by | J. W. Powell | director | Part i—geology | [Survey design] |
Washington | government printing office | 1890

Paper cover with title as above; inner title the same, verso blank; half-title, “Tenth annual report of the director of the United States geological survey, part i—geology,” p. iii, verso blank; contents (of the whole volume), pp. v–ix, verso
PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY. (BULL. 100.)

72

Report of Mr. Henry Gantiett... 83

Financial statement.. 80

Disbursements.. 80

CONTENTs.

REPORT OF THE DIRECTOR.

Page.

Letter of transmittal... 1
Changes in organization... 3
Progress of topographic work... 5
Progress in geologic work... 10
 Work in geologic correlation.. 10
 Work in Archean geology.. 12
 Work on the Atlantic coast... 14
 Work in the Appalachian region... 16
 Work in the lake Superior division... 19
 Work in glacial geology... 21
 Work in Montana... 22
 Work in Yellowstone park... 23
 Work in Colorado... 25
 Work in California... 27
 Work of the Cascade division... 28
 Work of the Potomac division.. 29
Progress in paleontologic work.. 33
 Work on vertebrate fossils... 33
 Work in paleobotany.. 36
 Work in Paleozoic invertebrate paleontology..................................... 38
 Work in Mesozoic invertebrate paleontology..................................... 39
 Work in Cenozoic invertebrate paleontology..................................... 40
 Work on fossil insects.. 40
Progress in accessory work.. 41
 Work in chemistry and physics.. 41
 Work in petrography... 42
 Processes.. 43
 Rocks in general.. 44
 Volcanic rocks.. 45
 Metamorphic rocks... 49
 Sedimentary rocks.. 51
 Work in mining statistics and technology... 52
 Work in mathematics.. 54
Publications... 55
 Work in the division of illustrations... 55
 Work of the library... 56
Conference on map publication... 56
 The occasion for the conference... 56
 Circular letter... 58
 The work of the conference.. 62
 Unit of publication... 63
 Nomenclature... 63
Conventional symbols for geologic maps... 67
 The illustrative plates... 76
Conventional symbols for geologic sections.. 77
Disbursements.. 80
Financial statement.. 80

ADMINISTRATIVE REPORTS.

Report of Mr. Henry Gantiett... 83
Mr. R. S. Woodward... 106
Mr. G. E. Gilbert... 108
Mr. Raphael Pumelly... 114
Prof. N. S. Shaler.. 117
Mr. Bailey Willis... 119
Prof. C. R. Van Hise.. 123
Dr. T. C. Chamberlin.. 128
Dr. A. C. Peale.. 130
- Department of the interior—U. S. geological survey | J. W. Powell, director | General account of the fresh-water morasses of the United States with a description of the Dismal swamp district of Virginia and North Carolina by Nathaniel Southgate Shaler | Extract from the tenth annual report of the director, 1888-’89 | [Survey design] | Washington | government printing office | 1890

CONTENTS. Page.

Inundated lands ... 261
Prefatory note ... 261
Classification of swamps .. 261
Classification of inundated lands based on physical characters 263
Table of classification of inundated lands 264
Delta swamps .. 271
Classification of inundated lands based on the character of the vegetation 282
Effect of certain plants on the formation of morasses 291
Mangrove swamps .. 291
The effect of glacial action in perturbing drainage 295
Economic uses of morasses ... 303
Area of inundated lands in the United States which are winnable to agricultural uses 310
List of approximate areas of inundated lands in the several states 311
Description of the Dismal swamp district of Virginia and North Carolina 313
General character of the beds below the level of the Dismal swamp 315
List of fossils found in beds exposed near Suffolk, Va. 315
Topography of the Dismal swamp 317
General character of the vegetation in the Dismal swamp 321
The Nansemond bench or elevated sea margin 325
Effect of recent changes in the continental level on the Dismal swamp district 328
Animal life of the Dismal swamp ... 332
Method of draining the Dismal swamp 334
Healthfulness of the Dismal swamp district 338

V. The lower Cambrian or Olenellus Zone, as known to the geologist.. 547
 Typical locality of Cambrian group... 547
 Table showing classification of Paleozoic and subjacent strata.. 547
 Table showing classification of the Cambrian group.. 548
 Base of the Olenellus zone... 549
 Eureka section of Nevada... 549
 Wasatch section of Utah... 549
 Mount Stephen section of British Columbia.. 550
 Grand Cañon section of Arizona... 550
 Eastern New York section.. 552
 Vermont section... 552
 Newfoundland section.. 554
 Line of demarkation between Cambrian and pre-Cambrian.. 555

VI. The North American continent during the deposition of the sediment now forming the Olenellus zone.. 556

VII. The continent of Europe during Cambrian time.. 556

VIII. Geographic distribution .. 564
 Atlantic coast province... 564
 Champlain-Hudson province.. 565
 Rocky mountain province... 570
 Table of the geographic distribution of the lower Cambrian fauna in North America......... 572

 Distribution in Europe.. 577
 Scandinavia.. 577
 Russia.. 579
 Spain... 580
 Britain... 580
 France.. 581

IX. Relations of the lower Cambrian to the superjacent faunas.. 581
 Physical or stratigraphic relations... 582
 Zoological relations.. 583
 New York and Vermont.. 583
 Newfoundland... 584

 Relations of the genera and species.. 586
 Algae.. 586
 Spongia.. 587
 Hydrozoa.. 587
 Actinnoza.. 587
 Echinodermata.. 588
 Annelida, etc... 588
 Brachiopoda... 588
 Lamellibranchiata.. 589
 Gasteropoda... 589
 Pteropoda.. 590
 Crustacea.. 590
 Trilobita... 592
 Comparison of the faunas as a whole... 593
 Origin of fauna.. 594
 Comparison and correlation... 595

X. Notes on the genera and species.. 597
 Spongia.. 597
 Actinnoza.. 599
 Trails, burrows, and tracks... 602
 Hydrozoa.. 604
 Echinodermata... 607
 Brachiopoda... 607
 Lamellibranchiata.. 614
 Gasteropoda... 616
 Pteropoda... 620
 Crustacea.. 625
 Trilobita... 629

Washington: government printing office. 1890.

Two parts, to be issued as two volumes. At this writing part I has not appeared, the preparation of some of the illustrations having delayed it. The above title is from part II, which collates as follows: Paper cover bearing title as above; inner title the same, verso blank; half-title, "Eleventh annual report of the director of the United States geological survey, part II—irrigation," p. iii, verso blank; contents, pp. v-vii, verso blank; illustrations, p. ix, verso blank; abstract of this report, pp. xi-xiv; text, pp. 1-388; index, pp. 389-395. Royal 8°. Plates lxvii-xcvii; figs. 121-124.

CONTENTS OF PART I.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powell (J. W.), Report of the director .. 3-30</td>
</tr>
<tr>
<td>Chiefs of divisions, Administrative reports of .. 31-185</td>
</tr>
<tr>
<td>McGee (W. J.), The Pleistocene history of northeastern Iowa 189-577</td>
</tr>
<tr>
<td>Phinney (A. J.), The natural gas field of Indiana 579-742</td>
</tr>
</tbody>
</table>

CONTENTS OF PART II.

HYDROGRAPHY.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline of this report .. 1x1</td>
</tr>
<tr>
<td>Scope of work .. 1</td>
</tr>
<tr>
<td>Units of measurement .. 2</td>
</tr>
<tr>
<td>Stream measurements .. 5</td>
</tr>
<tr>
<td>Current meters ... 6</td>
</tr>
<tr>
<td>Rating the meter .. 11</td>
</tr>
<tr>
<td>River stations ... 14</td>
</tr>
<tr>
<td>Equipment of station ... 15</td>
</tr>
<tr>
<td>Diurnal variation .. 18</td>
</tr>
<tr>
<td>Rating the station ... 19</td>
</tr>
<tr>
<td>Rainfall ... 23</td>
</tr>
<tr>
<td>Evaporation .. 30</td>
</tr>
<tr>
<td>Hydrography of the drainage basins .. 34</td>
</tr>
<tr>
<td>Yellowstone basin ... 36</td>
</tr>
<tr>
<td>Upper Missouri basin ... 38</td>
</tr>
<tr>
<td>The Missouri river .. 41</td>
</tr>
<tr>
<td>The Sun river ... 43</td>
</tr>
<tr>
<td>Cache la poudre basin ... 44</td>
</tr>
<tr>
<td>The Arkansas basin ... 45</td>
</tr>
<tr>
<td>Rio Grande basin .. 52</td>
</tr>
<tr>
<td>Gila basin ... 53</td>
</tr>
<tr>
<td>Truckee and Carson basins .. 63</td>
</tr>
<tr>
<td>Salt lake basin .. 66</td>
</tr>
<tr>
<td>Snake river basin ... 77</td>
</tr>
<tr>
<td>Tables of monthly discharges .. 93</td>
</tr>
<tr>
<td>Tables of gaugings at temporary stations .. 107</td>
</tr>
</tbody>
</table>

ENGINEERING.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of work .. 111</td>
</tr>
<tr>
<td>Montana division ... 113</td>
</tr>
<tr>
<td>The Sun river surveys .. 120</td>
</tr>
<tr>
<td>Arkansas division ... 133</td>
</tr>
<tr>
<td>Twin lake reservoir .. 135</td>
</tr>
<tr>
<td>Rio Grande division .. 145</td>
</tr>
</tbody>
</table>
California division
Page 150

- The Clear lake survey: 150
- Lahontan division: 158
- Utah division: 183
- Utah lake: 184
- Snake river division: 190

Articulated division
Page 194

- Canal surveys: 194

THE ARID LANDS

- Statement of the director of the U.S. geological survey to the house committee on irrigation: 203
- Extracts from the constitutions of states, relating to irrigation: 240
- Artesian irrigation on the Great plains: 260
- General considerations affecting artesian water supply: 260
- Economic limit to utilization of artesian water for irrigation: 263
- Irrigation by artesian wells in various countries: 265
- Geologic conditions and statistics of artesian wells on the Great plains: 266
- Summary and conclusions: 275

TOPOGRAPHY

- Report of A. H. Thompson, geographer: 293
 - Time and location of work: 293
 - General organization and personnel: 293
 - Detail report of divisions: 294
 - California-Nevada: 294
 - Colorado: 299
 - Idaho: 302
 - Montana: 305
 - New Mexico: 306
 - Summary: 309
 - Reservoir sites: 310
 - Field methods: 310
 - Character of the work: 310
 - Vertical control: 311
 - Representation: 311
 - Office work: 312
 - Disbursements of money: 312

BIBLIOGRAPHY

- Irrigation literature: 345
- Index: 389

This edition consists of 1,734 copies, the "usual number," about 600 in paper covers, as described, the balance printed later and bound in sheep, in which form they constitute, part 1 vol. 14 and part 2 vol. 15 of the "Executive documents of the house of representatives for the second session of the fifty-first congress." I have not seen a copy of the message and documents edition (3,000), nor of the departmental edition (750). Survey edition as follows:

Two parts, bound as two volumes. Part i: sample library catalogue slips, verso blank, 1 1.; advertisement of the publications of the survey, pp. i–v, verso blank; title as above, verso blank; half-title, "Eleventh annual report of the director of the United States geological survey, part i—geology," p. iii, verso blank; contents, pp. v–x; illustrations, pp. xi–xv, verso blank; letter of transmittal, p. [1], verso blank; text, with half-titles, contents, etc., to individual papers, pp. 3–742; index, pp. 743–757. Plates i–lxvi; figs. 1–120. Part ii: title as above, verso blank; half-title, "Eleventh annual report of the director of the United States geological survey, part ii—irrigation," p. iii, verso blank; contents, pp. v–vii, verso blank; illustrations, p. ix, verso blank; abstract of this report, pp. xi–xiv; text, with half-

At this writing, part I of this report has not been issued, the preparation of illustrations causing delay, but I have seen a copy in unbound form and from it composed the foregoing description.

One hundred and ten copies of part I of this report were divided into the separate papers composing it, and the separates issued with the following titles:

SEPARATES FROM THE ELEVENTH ANNUAL.

Eleventh annual report | of the | United States geological survey | to the | secretary of the interior | 1889-'90 | by | J. W. Powell | director | Part I—geology | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; inner title same, verso blank; half-title, "Eleventh annual report of the director of the United States geological survey, part I—geology," p. iii, verso blank; contents (of the whole volume), pp. v-x; illustrations (of the whole volume), pp. xi-xv, verso blank; letter of transmittal to the secretary, p. [1], verso blank; report of the director, pp. 3-30; half-title to administrative reports of chiefs, p. 31, verso blank; administrative reports of chiefs, pp. 33-185. Royal 8°. The "map showing progress of the topographic survey" (plate I) is not with the separate. 110 copies.

CONTENTS.

REPORT OF THE DIRECTOR.

Letter of transmittal .. 1
Changes in organization ... 3
Progress of topographic work for geologic purposes 4
Engraving .. 8
Progress in geologic work ... 10
Progress in paleontologic work ... 12
Progress in accessory work ... 17
Chemistry and physics .. 17
Mathematics ... 18
Statistics of mineral products ... 19
Publications ... 21
Illustrations ... 22
Organization of the engraving division ... 22
The library ... 24
Disbursements .. 24
Financial statement ... 24
Accompanying papers ... 25
Offices and laboratories ... 28
Acknowledgments .. 29

ADMINISTRATIVE REPORTS.

Report of Mr. Henry Gannett ... 33
Mr. G. K. Gilbert .. 49
Prof. N. S. Shaler .. 62
Prof. R. Pumpelly .. 64
Mr. W. J. McGee .. 65
Mr. Bailey Willis ... 70
President T. C. Chamberlin .. 74
Prof. C. R. Van Hise ... 77
Dr. W. P. Jenney ... 88
Dr. A. C. Peale .. 92
Mr. Arnold Hague .. 98
Mr. S. F. Emmons .. 101
Mr. J. S. Diller ... 90
Dr. G. F. Becker ... 95
Mr. Alpheus Hyatt ... 97
Prof. O. C. Marsh ... 101
Mr. Charles D. Walcott ... 102
CONTENTS.

Prefatory note ... 199
Chapter I. Northeastern Iowa .. 202

Chapter II. Principles and definitions. ... 238
Section I. General statement .. 238
Section II. Diastatic geology .. 242
Section III. Geomorphic geology .. 244
Primary classification ... 244
The law of land profiles .. 247
Ice-fashioned land forms ... 249
River terraces ... 256
Analysis of terraces ... 256
The formation of river terraces ... 259
Section IV. Stratigraphic geology ... 273
Section V. The products of rock decay .. 275
Section VI. Glacial geology ... 280
Glacial deposits in general ... 280
The loess ... 291
The general features of the loess ... 291
The specific features of the loess ... 296
Chapter III. The indurated rocks .. 304
Section I. The formations and terranes ... 304
The Rockville conglomerate ... 304
The coal measures ... 308
The sub-carboniferous formations .. 312
The St. Louis limestone ... 312
The Keokuk limestone .. 312
The Burlington limestone ... 312
The Kinderhook limestone ... 313
The Devonian formations ... 314
The Hackberry shale ... 314
The Cedar valley limestone .. 314
The Independence shale .. 320
The Niagara limestone .. 323
CONTENTS.

Letter of transmittal... 587
Section I. The conquest of the bitumens..................................... 389
Section II. The constitution of the bitumens............................... 592
Section III. The distribution of the bitumens.............................. 394
General remarks... 594
Recent deposits... 595
Pleistocene... 595
Tertiary... 596
Cretaceous.. 597
Jura-Trias ... 598
Carboniferous... 598
Devonian... 599
Silurian... 600
Pre-Silurian and eruptive... 600
Résumé.. 601
Section IV. The natural storage of the lighter bitumens............. 603
Section V. The origin of rock gas and related bitumens............... 607
The natural gas field of Indiana, by A. J. Phimney.................. 617
History of the investigation.. 617
The geologic map... 620
Acknowledgments.. 621
Chapter I. Geologic structure of Indiana.................................. 623
Section I. General structure... 623
Section II. Stratigraphy.. 624
General section of the rocks of Indiana.................................... 624
The lower Magnesian limestone... 625
The St. Peter sandstone... 625
The Trenton limestone.. 627
The Utica shale.. 629
The Hudson river group.. 630
The Clinton and Medina.. 631
The Niagara... 632
The lower Helderborg and Waterlime..................................... 633
The Schoharie... 634
The upper Helderborg.. 635
The Hamilton limestone and shale... 636
The brown shale... 637
The black shale... 637
The Waverly, or Knobstone... 638
The Kookuk, St. Louis, and Chester... 638
The coal measures.. 639
The drift... 639
Topography of the rock surface... 642
Section III. The altitude of the strata...................................... 643
The Cincinnati arch.. 643
The topography of the Trenton in Indiana............................... 648
The hypothetic Wabash arch... 651
Chapter II. Conditions of gas accumulation............................. 654
Section I. Conditions of rock structure.................................... 654
Section II. Conditions of rock texture..................................... 657
Chapter III. Gas pressure and its measurements........................ 662
Section I. Definitions... 662
Section II. The static pressure... 662
Section III. The open pressure... 666
Section IV. The retained pressure... 669
Section V. The measurement of gas wells............................... 671
Chapter IV. The gas field and the borings within it.................. 676
Section I. The area yielding gas and oil................................. 676
Section II. Records of borings within this area........................ 678
Chapter V. Records of borings outside of the gas field............. 720
Chapter VI. The care of gas wells.. 741

Bull. 100—6
Two parts, to be issued as two volumes. At this writing part I has not appeared, the preparation of some of the illustrations having delayed it. The above title is from part II, which collates as follows: Paper cover bearing title as above; inner title the same, verso blank; half-title, "Twelfth annual report of the director of the United States geological survey, part II—irrigation," p. iii, verso blank; contents, pp. v-viii; illustrations, pp. ix-xiv; abstract of this report, pp. xv-xviii; text (including half-titles, contents, etc., of individual papers), pp. 1-568; index, pp. 569-576. Royal 8°. Plates LI-V-CXLVI; figs. 81-270.

CONTENTS OF PART I.

Powell (J. W.), Report of the director

Chiefs of divisions. Administrative reports of

Shaler (N. S.), The origin and nature of soils

McGee (W J), The Lafayette formation

Walcott (C. D.), The North American continent during Cambrian time

Iddings (J. P.), The eruptive rocks of Electric peak and Sepulchre mountain, Yellowstone national park

CONTENTS OF PART II.

Thompson (A. H.), Report upon the location and survey of reservoir sites during the fiscal year ended June 30, 1891

Newell (F. H.), Hydrography of the arid regions

Wilson (H. M.), Irrigation in India

This edition consists of 1,734 copies, the "usual number," about 600 in paper covers, as described, the balance printed later and bound in sheep, in which form they constitute, part 1 vol. 17 and part 2 vol. 18 of the "Executive documents of the house of representatives for the first session of the fifty-second congress."

I have not seen a copy of the message and documents edition (3,000), nor of the departmental edition (750). Survey edition as follows:

Twelfth annual report | of the | United States geological survey | to the | secretary of the interior | 1890-'91 | by | J. W. Powell | director | Part I—geology | [Part II—irrigation] | [Survey design] |

Washington | government printing office | 1891

Two parts, bound as two volumes. Part I: sample library catalogue slips, verso blank, 1 r.; advertisement of the publications of the survey, pp. i-v, verso blank; title as above, verso blank; half-title, "Twelfth annual report of the director of the United States geological survey, part I—geology," p. iii, verso blank; contents, pp. v-viii; illustrations, pp. ix-xiii, verso blank; letter of transmittal, p. 1, verso blank; text, with half-titles, contents, etc., to individual papers, pp. 3-664; index, pp. 665-675. Plates I-LIII; figs. 1-81. Part II: title as above, verso blank; half-title, "Twelfth annual report of the director of the United States geological survey, part II—irrigation," p. iii, verso blank; contents, pp. v-viii; illustrations, p. ix-xiv; abstract of this report, pp. xv-xviii; text, with half-titles, contents, etc., to individual papers, pp. 1-561; financial statement, pp. 562-568; index, pp. 569-576. Royal 8°. Plates LIV-CXLVI; figs. 81-270.
At this writing part I of this report has not been issued, the preparation of some of the illustrations causing delay, but I have seen a copy in unbound form and from it composed the foregoing description.

One hundred and ten copies of both parts of this report were divided into the separate papers composing them and the separates issued with the following titles:

SEPARATES FROM THE TWELFTH ANNUAL.

Twelfth annual report | of the | United States geological survey | to the | secretary of the interior | 1890-91 | by | J. W. Powell | director |
Part I—geology | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; inner title same, verso blank; half-title, "Twelfth annual report of the director of the United States geological survey, part I—geology," p. iii, verso blank; contents (of the whole volume), pp. v-viii; illustrations (of the whole volume), pp. ix-xiii, verso blank; letter of transmittal to the secretary, p. 1, verso blank; report of the director, pp. 3-19, verso blank; half-title to administrative reports of chiefs, p. 21, verso blank; administrative reports of chiefs, pp. 23-210. Royal 8°. The "map showing the progress of the topographic survey" (plate i) is not with the separate. 110 copies.

CONTENTS.

REPORT OF THE DIRECTOR.

Letter of transmittal... 1
Progress of topographic work.. 3
Atlas sheets.. 5
Organization.. 5
Surveys east of the one hundredth meridian................................. 5
Surveys west of the one hundredth meridian................................. 6
Engraving.. 7
Progress of geologic work.. 8
Progress of paleontologic work... 9
Progress in accessory work... 13
Chemistry and physics... 13
Statistics of mineral products... 14
Illustrations... 16
Engraving and printing.. 16
Publications... 17
Library... 17
Disbursements.. 18
Acknowledgments.. 19

ADMINISTRATIVE REPORTS.

Report of Mr. Henry Gannett... 23
Mr. A. H. Thompson... 42
Mr. G. K. Gilbert... 52'
Prof. N. S. Shaler... 66
Mr. Raphael Pumfrey... 67
Mr. W. J. McGee... 70
Mr. Bailey Willis... 78
Mr. George H. Eldridge.. 82
Prof. C. R. Van Hise... 84
Dr. T. C. Chamberlin... 88
Mr. W. P. Jenney... 90
Mr. A. C. Peale... 91
Mr. Arnold Hague... 92
Mr. S. P. Emmons... 96
Mr. J. S. Diller... 100
Mr. G. F. Becker... 104
Mr. C. D. Walcott... 109
CONTENTS

Prefatory note	219
Nature and origin of soils	221
Process of soil formation	230
Cliff talus soils	232
Glaciated soils	236
Volcanic soils	239
Soils of newly elevated ocean bottoms	245
Physiology of soils	250
Effect of animals and plants on soils	268
Effect of certain geologic conditions on soils	287
Glacial aggregation	288
Alluvial aggregation	288
Overplacement	296
Inheritance	300
Certain peculiar soil conditions	306
Swamp soils	311
Marine marshes	317
Tule lands	329
Ancient soils	321
Prairie soils	323
Wind-blown soils	326
Action and reaction of man and the soil	329
Effects of soil on health	340
Man's duty to the earth	344

Department of the interior—U. S. geological survey | J. W. Powell, director | The | Lafayette formation | by | W J McGee | Extract from the twelfth annual report of the director, 1890–91 | [Survey design] | Washington | government printing office | 1892

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The area occupied by the formation</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>The physiographic provinces</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>The configuration of the coastal plain</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>The general geology of the coastal plain</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>The method of classification</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>The Columbia formation</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>The Grand gulf formation</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>The Chesapeake formation</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>The Vicksburg-Jackson limestone</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>The Claiborne-Meridian</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>The Lignite deposits</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>The Pamunkey formation</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>The upper Cretaceous</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>The Severn formation</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>The Petomac and Tuskaloosa formations</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Résumé</td>
<td>424</td>
</tr>
<tr>
<td>II</td>
<td>The features of the formation</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>The features in detail</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>The general features</td>
<td>489</td>
</tr>
<tr>
<td>III</td>
<td>Definition and synonymy of the formation</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Definition</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Synonymy</td>
<td>498</td>
</tr>
<tr>
<td>IV</td>
<td>Material resources of the formation</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>State of the survey</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>Siliceous clays</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>Gravel</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>506</td>
</tr>
<tr>
<td>V</td>
<td>The history recorded in the formation</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>The antecedent physiography</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>The Lafayette deposition</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>The Lafayette degradation</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>The burial of the Lafayette</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>The relations of the continent movements</td>
<td>515</td>
</tr>
</tbody>
</table>

Department of the interior—U. S. geological survey | J. W. Powell, director | The North American continent during Cambrian time | by Charles D. Walcott | Extract from the twelfth annual report of the director, 1890-'91 | [Survey design] | Washington | government printing office | 1892 |

Pre-Cambrian land—continued. Page.

Continental features 557

Dana ... 557
Chamberlin ... 561
Walcott .. 562

Middle Cambrian land 563

Post-Cambrian land 565

Conclusions ... 567

Department of the interior—U. S. geological survey | J. W. Powell, director | The eruptive rocks of Electric peak and Sepulchre mountain | Yellowstone national park | by | Joseph Paxson Iddings | Extract from the twelfth annual report of the director, 1890–91 | [Survey design] |

Washington | government printing office | 1892

CONTENTS.

Page.

Introduction ... 577
Geological sketch of the region 578
Electric peak .. 579

Geological description 581

The eruptive rocks of Electric peak 582

Use of the terms porphyrite and porphyry 582
Sheet rocks .. 584

The dike rocks and certain contact facies of the stock 588

The stock rocks and apophyses 595

Intergrowth of hornblende and pyroxene in glassy rocks 610
Quartz-mica-diorite-porphyrite 617

General consideration of the mineral and chemical composition of the rocks 619

Sepulchre mountain 633

Geological description 633

The volcanic rocks of Sepulchre mountain 634

The lower breccia 634

The upper breccia 635

The dike rocks 640

General consideration of the mineral and chemical composition of the rocks 647

Comparison of the rocks from the two localities 650

Correlation of the rocks on a chemical basis 652

Effect of mineralizing agents 658

Application to the classification of igneous rocks 660

Appendix ... 664

Department of the interior—U. S. geological survey | J. W. Powell, director | Report upon the location and survey of reservoir sites | during the fiscal year ended June 30, 1891 | by | A. H. Thompson | chief of western division of topography | Extract from the twelfth annual report of the director, 1890–91 | [Survey design] |

Washington | government printing office | 1892

CONTENTS.

Page

Introduction ... 9
California .. 10
Colorado ... 12
Montana ... 127
New Mexico .. 165
Nevada .. 209

Department of the interior—U. S. geological survey | J. W. Powell, director | Hydrography of the arid regions | by F. H. Newell.
Extract from the twelfth annual report of the director, 1890-91 | [Survey design].

Washington | government printing office | 1892

CONTENTS.

Page

Hydrographic measurements and irrigation .. 219
The arid regions .. 219
Hydrographic data ... 221
Deficiency of water .. 221
Increase of water duty .. 223
Water storage .. 224
Relative amount of flood waters .. 227
Time of floods ... 228
Intensity of floods ... 229
Rainfall and river flow ... 230
Points of maximum utility .. 231
Classification of drainage basins .. 232
Humidity and irrigation ... 234
Evaporation observations ... 234
Results of stream measurements ... 235
Upper Missouri and Yellowstone basins ... 236
Platte basin .. 238
Arkansas basin ... 240
Rio Grande basin .. 248
Topography and elevations .. 249
Annual and monthly rainfall ... 253
The Colorado district of the Rio Grande .. 255
San Luis valley .. 247
Irrigation practice ... 248
The Taos district of the Rio Grande ... 251
Tres Piedras mesa ... 256
Embudo gauging station ... 257
Espanola valley ... 258
The Chama district ... 261
Santa Fe district .. 269
Albuquerque district ... 270
Tributaries below the Chama .. 271
Santa Fe and adjacent streams .. 273
Jemez river .. 274
Puerco river .. 275
Resume of water supply .. 277
Mesas along the Rio Grande .. 278
Mesilla valley ... 279
Gypsum plains district ... 281
Pecos river ... 282
General topography ... 282
Climate and water supply .. 283
Upper tributaries ... 284
Lower tributaries in New Mexico .. 286
Pecos river—continued.
Agriculture along the Pecos .. 28
Irrigation works on the Pecos .. 28
Colorado river drainage basin .. 29
The Gila basin .. 29
 Topography and altitudes ... 29
 Agricultural lands ... 296
 Duty of water .. 296
 Water storage ... 299
 Rainfall .. 299
 Upper Gila district .. 302
 San Pedro district ... 303
 Middle Gila district .. 305
 Verde district ... 309
 Upper Salt district .. 310
 Lower Salt district .. 311
 Lower Gila district ... 314
 Agua Fria and Hassayampa districts 315
 Santa Cruz district ... 315
Sacramento and San Joaquin basins ... 316
 Kern river ... 319
 Tulare river ... 319
 Kaweah river ... 320
 Kings river .. 320
 San Joaquin river .. 321
 Merced river .. 322
 Tuolumne river .. 322
 Mokelumne river ... 323
 Lower San Joaquin river .. 323
The Great basin ... 324
 Truckee river ... 324
 Carson river ... 325
Salt Lake basin ... 325
 Bear river ... 325
 Bear lake ... 327
 Lower Bear river ... 329
 Cache valley .. 330
 Ogden and Weber rivers .. 334
 Utah lake drainage ... 334
 Sevier river .. 339
Snake river drainage ... 344
Discharge tables ... 345

Department of the interior—U. S. geological survey | J. W. Powell, director | Irrigation in India | by | Herbert M. Wilson, c. e. | Extract from the twelfth annual report of the director, 1890–91 | [Survey design] | Washington | government printing office | 1892

CONTENTS.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>269</td>
</tr>
<tr>
<td>Author's list</td>
<td>271</td>
</tr>
<tr>
<td>Introduction</td>
<td>290</td>
</tr>
<tr>
<td>Chapter I.—Finance and statistics</td>
<td>290</td>
</tr>
<tr>
<td>Value and necessity of irrigation</td>
<td>300</td>
</tr>
<tr>
<td>Land and crops</td>
<td>395</td>
</tr>
</tbody>
</table>
MONOGRAPHS.

MONOGRAPH I.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume I | [Seal of the department of the interior] | Washington | government printing office | 1890

Library catalogue slips (samples), verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as given above, verso blank; special title as given above, verso blank; contents, pp. v-ix, verso blank; illustrations, pp. xi-xiii, verso blank; letter of transmittal to the director, p. xv, verso blank; preface, pp. xvii-xviii; abstract of volume, pp. xix-xx; text, pp. 1-402; half-title for appendices, p. 403, verso blank; appendices, pp. 405-426; index, pp. 427-438. 4°. Plates I-11; figs. 1-51; folded map, in cover pocket.

CONTENTS OF MONOGRAPH I.

| Letter of transmittal | xv
| Preface | xvi
| Abstract of volume | xix
| Chapter I.—INTRODUCTION | 1
| Interior basins | 2
| The Great basin | 5
| History of investigation | 12
| The Bonneville basin | 20
| Chronologic nomenclature | 22
| Chapter II.—THE TOPOGRAPHIC FEATURES OF LAKE SHORES | 23
| Wave work | 29
| Littoral erosion | 29
| The sea cliff | 34
| The wave-cut terrace | 35
| Littoral transportation | 37
| The beach | 39
| The barrier | 40
| The subaqueous ridge | 43
| Littoral deposition | 46
| Embankments | 46
| The spit | 47
| The bar | 48
| The hook | 52
| The loop | 55
| The wave-built terrace | 55
| The v-terrace and v-bar | 57
| Drifting sand; dunes | 59
| The distribution of wave-wrought shore features | 60

91
Chapter II.—continued.

Stream work; the delta......................... 65
Ice work; the rampart.............................. 71
Submergence and emergence....................... 72
The discrimination of shore features............ 74
Cliffs... 75
The cliff of differential degradation........... 75
The stream cliff................................. 75
The coulee edge.................................. 76
The fault scarp................................ 76
The land-slip cliff............................... 77
Comparison..................................... 77
Terraces.. 78
The terrace by differential degradation.......... 78
The stream terrace............................... 79
The moraine terrace............................. 81
The fault terrace............................... 83
The land-slip terrace............................ 83
Comparison..................................... 84
Ridges.. 86
The moraine.................................... 86
The osar or kame............................... 87
Comparison..................................... 87
The recognition of ancient shores............. 88

Chapter III.—SHORES OF LAKE BONNEVILLE........... 90

The Bonneville shore-line............................ 93
The question of a higher shore-line.............. 94
More ancient lakes................................ 98
Outline of the lake................................ 101
Extent of the lake.................................. 105
Shore details....................................... 108
Embankment series.................................. 111
Determination of still-water level................ 122
Depth... 125
The map.. 125
The Provo shore-line................................ 126
Outline and extent................................ 127
Shore characters................................... 128
Deltas... 129
The underscore.................................. 130
Embankment series................................. 131
The map.. 134
The Stansbury shore-line......................... 134
The intermediate shore-lines..................... 135
Description of embankments..................... 135
Grantsville....................................... 135
Provo valley..................................... 136
The snow-plow.................................. 137
Stockton and Wellsville.......................... 137
Dove creek....................................... 137
Comparison of embankments..................... 137
Hypothesis of differential displacement......... 140
Hypothesis of oscillating water surface......... 141
Superposition of embankments.................. 147
The snow-plow.................................. 147
Reservoir butte.................................. 148
Stockton... 149
Blacksmith's fork............................... 151
Dove creek....................................... 151
Double series in Provo valley..................... 152
Deltas... 153
American fork delta............................. 155
Logan delta..................................... 159
Summary... 166
Tufa... 167
Résumé... 169
Chapter VI.—continued.

Depauperation and cold ... 300
Depauperation and salinity .. 301
The evidence from vertebrate life ... 303
The evidence from encroaching moraines 305
Wasatch-Bonneville moraines ... 306
Sierra-Mono moraines ... 311
Summary of chapter ... 316

Chapter VII.—Lake Bonneville and Volcanic Eruption 319

Ice spring craters and lava field .. 320
Pavant butte .. 325
Tabernacle crater and lava field ... 329
Pleistocene winds ... 332
Fumarole butte and lava field ... 332
Other localities of basalt .. 335
Pleistocene eruptions elsewhere ... 336
Rhyolite .. 337
Summary and conclusions .. 338

Chapter VIII.—Lake Bonneville and Diastrophism 340

Evidence from faulting; fault scarps ... 340
General features of fault scarps ... 354
Local displacements versus local loading and unloading 357
Mountain growth ... 359
Earthquakes ... 360
Evidence from shore-lines .. 362
Measurements ... 362
Deformation of the Bonneville shore-line 365
Deformation of the Provo shore-line .. 371
Deformation during the Provo epoch .. 372
Postulate as to the cause of deformation 373
Hypothesis of geoidal deformation .. 376
Hypothesis of expansion from warming 377
Hypothesis of terrestrial deformation by loading and unloading 379
Evidence from the position of Great salt lake 384
The strength of the earth .. 387

Chapter IX.—The Age of the Equus Fauna 393

The fauna and its physical relations .. 393
The paleontologic evidence ... 397

Appendix A.—Altitudes and Their Determination. By Albert L. Webster ... 405

Scheme of tables ... 405
Trigonometric data ... 406
Barometric data ... 406
Lake records ... 409
Railroad records .. 411
Special spirit-level determinations .. 411
Combination of data .. 413
Altitudes of shore-lines and their differences 416

Appendix B.—On the Deformation of the Geoid by the Removal, Through Evaporation, of the Water of Lake Bonneville. By R. S. Woodward ... 421

Appendix C.—On the Elevation of the Surface of the Bonneville Basin by Expansion Due to Change of Climate. By R. S. Woodward ... 425

Index .. 427

3,000 copies; bound in dark maroon cloth. Sold by the director of the U. S. geological survey at $1.50 per copy, its actual cost as computed by the public printer. Documentary edition as follows:

Paper cover bearing title as above; library catalogue slips (sample), verso blank, 1 l.; advertisement of the publications of the survey, pp. i–iv; general title as on cover, verso blank; then follow special title, contents, and remainder of volume as
collated for the other edition, except that plates xi, xiv, and xxiii are lacking in the copies of this edition which I have seen, and that plate xxxvi in this edition differs totally from the correspondingly numbered plate in the 3,000 edition. The folded map is loose.

1,734 copies, the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these, a portion were delivered in paper covers, as described; the remainder were bound in sheep, in which form they constitute vol. 17 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-first congress."

MONOGRAPH II.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume II | [Seal of the department of the interior] |
Washington | government printing office | 1882

Washington | government printing office | 1882

Advertisement of the publications of the survey, verso blank, 11.; general title as above, verso blank; special title as above, verso blank; letter of transmittal to the director, p. v, verso blank; preface, pp. vii-ix, verso blank; contents, including lists of plates and atlas sheets, pp. xi-xiv; abstract of the monograph, pp. 1-8; text, pp. 9-260; index, pp. 261-264. 4°. Plates i-xlvi.

CONTENTS OF MONOGRAPH II.

Abstract of the monograph... 1

Chapter I.—General description of the topographic and geologic features of the Grand canyon district... 9

II.—The Mesozoic terraces upon the northern border of the district.............................. 20

III.—A description of the Vermilion cliffs and of the valley of the Virgin.......................... 51

IV.—The great denudation.. 61

V.—The Toroweap valley and the middle portion of the Grand canyon............................ 73

VI.—The Uinkaret plateau.. 101

VII.—A journey from Kanab across the desert to the Kaibab plateau and to the brink of the chasm... 122

VIII.—The scenery of the Grand canyon in the Kaibab division viewed from point Sublime 140

IX.—The amphitheaters of the Kaibab division... 157

X.—Structural geology and evolution of the Kaibab plateau.. 183

XI.—The Paria plateau and the Marble canyon platform.. 199

XII.—Physical history and evolution of the Grand canyon district................................. 206

XIII.—The excavation of the Grand canyon—corrosion and weathering........................... 230

XIV.—The excavation of the Grand canyon—origin of the details of its erosion.............. 250

A volume of atlas sheets accompanies the text, as follows:

Title: Department of the interior | United States geological survey | J. W. Powell director | Atlas | to accompany the monograph | on the | Tertiary history | of the | Grand canyon district | by | capt. Clarence E. Dutton U. S. a. | [Survey design] |
Washington 1882 | Julius Bien & co. lith. New York
Half-title as above in gilt on front cover; engraved title as above, verso blank, and list of atlas sheets, verso blank, the two constituting one double sheet; twenty-two other sheets, folio and double, measuring from edge to edge about 33 by 20 inches. Twelve are maps, all of which are colored except sheet iv; ten are panoramic and general views, four of which by Holmes are in colors, one by Thomas Moran in black, and five by Holmes in gray tints. The list is as follows:

CONTENTS OF ATLAS TO MONOGRAPH II.

Sheet
Title page and table of contents ... i
Sketch map showing the approximate distribution of the strata in the western part of the southern Plateau province... ii
Sketch map showing the approximate arrangement of the principal faults and displacements in the district of the High plateaus and in the Grand cañon district............................. iii
Panoramic view of the temples and towers of the Virgen iv
View of the Toroweap valley looking north from Vulcan’s throne, and view of the Uinkaret plateau northwest from the same standpoint... v
View looking eastward from Vulcan’s throne, disclosing the inner gorge of the Grand cañon, the great esplanade, and the upper or outer walls on either hand............ vi
Map of the Uinkaret plateau .. vii
Panoramic views from the summit of mount Trumbull, on the Uinkaret plateau, looking eastward and southward, with distant glimpses of the Kamb division of the Grand cañon and some of its lateral gorges... viii
Two views—one looking northward from the summit of mount Trumbull, the other looking north and northeast from the summit of mount Emma—exhibiting the basaltic cinder cones of the Uinkaret plateau... ix
Map of the southern portion of the Kaibab plateau, and of the Kaibab division of the Grand cañon, and of the lower portion of the Marble cañon... x
The panorama from point Sublime in the Kaibab... xi
The Transept. View of a lateral gorge opening into one of the branches of the Bright angel amphitheater in the Kaibab... xii
View looking from the eastern brink of the Kaibab, and overlooking the Marble cañon platform... xiii
Sleeves from the general topographic and geologic atlas of the United States geological survey ... xiv

3,050 copies of both text and atlas published, being the 3,000 required by law and 50 extras ordered of the public printer by the author; bound in dark maroon cloth. Sold by the director of the U. S. geological survey at $10 for both parts.

Documentary edition as follows:

48th congress, | 2d session. | House of representatives. | Mis. doc. | no. 35. | Department of the interior | Monographs | of the | United States geological survey | Volume II | [Seal of the department of the interior] |

Washington | government printing office | 1885

Title as above on paper cover; inner title same, verso blank; then follow special title, letter of transmittal, preface, and remainder of volume as collated for the other edition. Atlas as follows:

[Washington: government printing office. 1885.]

The atlas of this edition is identical with that of the earlier edition except in binding and cover title. This atlas is not bound, but the sheets are laid loosely inside a heavy-paper cover, on the front of which the above half-title appears.

1,900 copies of text and atlas; published under a joint resolution approved March 2, 1886; about 800 of which were delivered unbound, as described; the remainder
were, as usual, bound in sheep as vol. 11 of the "Miscellaneous documents of the house of representatives for the second session of the forty-eighth congress," the 23 atlas-sheets being folded quarto size and laid loosely inside half-sheep covers.

MONOGRAPH III.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume III | [Seal of the department of the interior] |
Washington | government printing office | 1882

Special title: United States geological survey | Clarence King director | Geology | of the | Comstock lode and the Washoe district | with atlas | by George F. Becker | [Survey design] |
Washington | government printing office | 1882

Advertisement of survey publications, pp. i-ii, general title as above, verso blank; special title as above, verso blank; letter of transmittal, p. iii, verso blank; preface, pp. v-vii, verso blank; contents, p. ix, verso blank; list of illustrations (in the text), p. xi, verso blank; list of atlas-sheets, p. xiii, verso blank; brief outline of results, p. xv, verso blank; text, pp. 1-404; note to chap. iii, pp. 405-408; index to mining claims, pp. 409-412; general index, pp. 413-422. 4°. Plates i-vii; figs. 1-33.

Mr. King’s name appears on the title-page of this monograph because it was projected and work on it was begun under his directorship.

CONTENTS OF MONOGRAPH III.

Letter of transmittal.. iii
Preface.. v
Contents.. ix
List of illustrations ... xi
List of atlas sheets... xiii
Brief outline of results... xv
Chapter I.—The Comstock mines... 1
II.—Previous investigations of the Comstock lode............................. 12
III.—Lithology... 32
Section 1. The rocks of the Washoe district..................................... 32
2. The decomposition of the rocks.. 72
3. Propylite.. 81
4. Detailed description of slides.. 91
Description of illustrations .. 145
Tables of analyses and assays.. 152
IV.—Structural results of faulting.. 156
V.—The occurrence and succession of rocks.................................... 188
VI.—Chemistry... 209
VII.—Heat phenomena of the lode.. 228
Section 1. General discussion.. 228
2. Thermal survey... 244
VIII.—The lode... 256
IX.—On the thermal effect of the action of aqueous vapor on feldspathic rocks (kaolinitization), by Carl Barus.. 250
X.—On the electrical activity of ore bodies, by Carl Barus................... 309
XI.—Summary.. 368
Note to Chapter III (on the determination of feldspar by Szabó’s method).. 405
Index to the mining claims... 409
General index... 415

A volume of atlas sheets accompanies the text, as follows:

Half-title: United States geological survey | Clarence King director | Atlas | to accompany the | geology of the Comstock lode | and the | Washoe district | Becker | [Geologist’s hammers crossed] |
Bull. 100—7
Title: Department of the interior | United States geological survey | Clarence King director | Atlas | to accompany the monograph | on the | geology | of the | Comstock lode | and the | Washoe district | by | George F. Becker | [Survey design] |

Washington | 1882 | Julius Bien & co. lith. New York

Half-title as above in gilt on front cover; xxı engraved sheets, of which i, ii, xıı, and xxi are single, the others double, i bearing the title as given above, and ii the contents, verso of both blank. The double sheets measure, from edge to edge, about 3 by 20 inches. The full list is as follows:

CONTENTS OF ATLAS TO MONOGRAPH III.

<table>
<thead>
<tr>
<th>Sheet</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contents</td>
</tr>
<tr>
<td></td>
<td>Map of the Washoe district, showing mining claims</td>
</tr>
<tr>
<td></td>
<td>Geological map of the Washoe district</td>
</tr>
<tr>
<td></td>
<td>Vertical cross-sections of the Comstock lode, through the Utah, Sierra Nevada, Union, and C. & C. shafts</td>
</tr>
<tr>
<td></td>
<td>Vertical cross-sections of the Comstock lode, through the Sutro tunnel and the Forman shaft</td>
</tr>
<tr>
<td></td>
<td>Vertical cross-sections of the Comstock lode, through the Combination, Yellow jacket, Belcher, and Savage shafts</td>
</tr>
<tr>
<td></td>
<td>Horizontal cross-section of the Comstock lode on the Sutro tunnel level (1,900 feet). North end</td>
</tr>
<tr>
<td></td>
<td>Ditto. South end</td>
</tr>
<tr>
<td></td>
<td>Vertical longitudinal projection of the Comstock lode, showing the position of ore-bodies from the Utah to the Potosi</td>
</tr>
<tr>
<td></td>
<td>Ditto. From the Bullion-Ward to the Baltimore consolidated</td>
</tr>
<tr>
<td></td>
<td>Ditto. From the Overman to the Silver hill</td>
</tr>
<tr>
<td></td>
<td>Comstock mine maps: no. 1, Utah, Sierra Nevada</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 2. Sierra Nevada, Union, Mexican</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 3. Ophir, California, Conv. Virginia, Best & Belcher</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 4. Gould & Curry, Savage, Hale & Norcross, Chollar</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 5. Potosi, Bullion, Exchequer, Alpha, Imperial</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 6. Challenge, Confidence, Yellow jacket, Kentuck, Crown point, Belcher</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 7. Segregated belcher, Overman, Caledonia, New-York</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 8. Lady Washington, Alta, Justice Woodville, Silver hill, Succor, Niagara</td>
</tr>
<tr>
<td></td>
<td>Ditto. no. 9. Knickerbocker, Baltimore consolidated</td>
</tr>
</tbody>
</table>

3,075 copies of both text and atlas published, the 3,000 required by law and 75 extras ordered of the public printer by the author; bound in dark maroon cloth. Monograph III is sold by the director of the survey at cost price, $11 for both parts.

Documentary edition as follows:

47th congress, | 1st session. | House of representatives. | Mis. doc. | no. 52. | Department of the interior | Monographs | of the | United States geological survey | Volume III | [Seal of the department of the interior] |

Washington | government printing office | 1882

Title as above on paper cover; advertisement of survey publications, pp. i-ii; inner title same as cover title, verso blank; special title, letter of transmittal, preface, and remainder of volume as collated for the other edition. Atlas as follows:

47th congress, | 1st session. | House of representatives. | Mis. doc. | no. 52. | Department of the interior | Monographs | of the | United States geological survey | Volume III | Atlas | [Seal of the department of the interior] |

Washington | government printing office | 1882

Paper cover with title as above; then follow the xxı engraved sheets as in the other edition, from the same plates.
1,900 copies of text and atlas, the "usual number," published under a joint resolution approved July 7, 1882. Of these, about 800 were delivered in paper covers, as described; the remainder were printed later and bound in sheep as Vol. 17 (2 parts) of the "Miscellaneous documents of the house of representatives for the first session of the forty-seventh congress."

MONOGRAPH IV.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume IV | [Seal of the department of the interior] | Washington | government printing office | 1883

Special title: United States geological survey | Clarence King director | Comstock | mining and miners | by Eliot Lord | [Survey design] | Washington | government printing office | 1883

Advertisement of survey publications, pp. i-ii; general title as above, verso blank; special title as above, verso blank; letter of transmittal, p. vii, verso blank; preface, pp. ix-x; contents (including list of plates), pp. xi-xiv; text, pp. 1-414; appendix (tabular), pp. 415-446; index, pp. 447-451. 4°. Plates i-xi. (Plate iii being the same as plate iii of the atlas accompanying monograph iii, by Becker).

Mr. King's name appears on the title-page of this monograph because it was projected and work on it begun under his directorship.

CONTENTS OF MONOGRAPH IV.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The discovery of gold</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>The Gold cañon placer mining colony</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>The discovery of the Comstock lode</td>
<td>33</td>
</tr>
<tr>
<td>IV</td>
<td>The mining camp</td>
<td>56</td>
</tr>
<tr>
<td>V</td>
<td>The foundation of a great mining town</td>
<td>77</td>
</tr>
<tr>
<td>VI</td>
<td>The inevitable litigation</td>
<td>97</td>
</tr>
<tr>
<td>VII</td>
<td>Constructive and disorganizing agencies</td>
<td>109</td>
</tr>
<tr>
<td>VIII</td>
<td>Interminable litigation</td>
<td>131</td>
</tr>
<tr>
<td>IX</td>
<td>Industrial conflicts</td>
<td>161</td>
</tr>
<tr>
<td>X</td>
<td>The mining city</td>
<td>168</td>
</tr>
<tr>
<td>XI</td>
<td>Six years of progress</td>
<td>216</td>
</tr>
<tr>
<td>XII</td>
<td>The contests with water</td>
<td>259</td>
</tr>
<tr>
<td>XIII</td>
<td>A controlling combination</td>
<td>244</td>
</tr>
<tr>
<td>XIV</td>
<td>A hazardous task</td>
<td>283</td>
</tr>
<tr>
<td>XV</td>
<td>A fortunate deliverance</td>
<td>378</td>
</tr>
<tr>
<td>XVI</td>
<td>The great bonanza</td>
<td>391</td>
</tr>
<tr>
<td>XVII</td>
<td>Feats of labor</td>
<td>322</td>
</tr>
<tr>
<td>XVIII</td>
<td>The laborers of Washoe</td>
<td>355</td>
</tr>
<tr>
<td>XIX</td>
<td>Pains and perils of mining</td>
<td>389</td>
</tr>
<tr>
<td>XX</td>
<td>A significant contrast</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Appendix (tables)</td>
<td>415</td>
</tr>
</tbody>
</table>

3,000 copies; bound in dark maroon cloth. Issued in the summer of 1884. Monograph IV is sold by the director of the survey at cost price, $1.50 a copy.

Documentary edition as follows:

Paper cover with title as above; advertisement of the publications of the survey, pp. i-ii; general title as on cover, verso blank; then follow special title, letter of transmittal, preface, and remainder of volume as collated above for the other edition.
1,900 copies, the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these, about 800 were delivered unbound, as described; the remainder were printed later and bound in sheep, in which form they constitute vol. 16 of the "Miscellaneous documents of the house of representatives for the first session of the forty-seventh congress."

MONOGRAPH V.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume v | [Seal of the department of the interior] | Washington | government printing office | 1883

Special title: United States geological survey | Clarence King director | The | copper-bearing rocks | of | lake Superior | by Roland Duer Irving | [Survey design] | Washington | government printing office | 1883

General title as above, verso blank; special title as above, verso blank; letter of transmittal by Raphael Pumpelly, in charge of division of mining geology, to the director, p. vi, verso blank; letter of transmittal by the author to Raphael Pumpelly, p. vii, verso blank; contents, p. ix, verso blank; illustrations, pp. xi-xvi; text, pp. 1-430; notes, pp. 431-446; index, pp. 447-464. 4°. Plates i-xxix; figs. 1-37.

Mr. King's name appears on the title-page of this monograph because it was projected and work on it was begun under his directorship.

CONTENTS OF MONOGRAPH V.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introductory</td>
<td>1</td>
</tr>
<tr>
<td>Literature</td>
<td>14</td>
</tr>
<tr>
<td>II. Extent and general nature of the Keweenaw series</td>
<td>24</td>
</tr>
<tr>
<td>Section I. Basic original rocks</td>
<td>34</td>
</tr>
<tr>
<td>Section II. Acid original rocks</td>
<td>55</td>
</tr>
<tr>
<td>Section III. Summary view of the original rocks of the Keweenaw series</td>
<td>91</td>
</tr>
<tr>
<td>IV. Detrital rocks</td>
<td>126</td>
</tr>
<tr>
<td>V. Structural features of the three classes of rocks of the Keweenaw series</td>
<td>127</td>
</tr>
<tr>
<td>VI. General stratigraphy of the Keweenaw series</td>
<td>134</td>
</tr>
<tr>
<td>Chapter VI. The Keweenawan rocks of the south shore of lake Superior</td>
<td>152</td>
</tr>
<tr>
<td>Section I. Keweenaw point</td>
<td>161</td>
</tr>
<tr>
<td>Section II. The region between Portage lake and the Ontonagon river</td>
<td>163</td>
</tr>
<tr>
<td>Section III. The south range</td>
<td>198</td>
</tr>
<tr>
<td>Section IV. The region between the Ontonagon river and Numakagon lake of Wisconsin, including the Porcupine mountains</td>
<td>201</td>
</tr>
<tr>
<td>Section V. Northwestern Wisconsin and the adjoining part of Minnesota</td>
<td>206</td>
</tr>
<tr>
<td>Section VI. The Keweenawan rocks of the north and east shores of lake Superior</td>
<td>234</td>
</tr>
<tr>
<td>Chapter VII. The Keweenawan rocks of the north and east shores of lake Superior</td>
<td>260</td>
</tr>
<tr>
<td>Section I. The Minnesota coast</td>
<td>262</td>
</tr>
<tr>
<td>Section II. Isle Royale to Porcupine bay</td>
<td>329</td>
</tr>
<tr>
<td>Section III. Michipicoten island and the east coast of lake Superior</td>
<td>341</td>
</tr>
<tr>
<td>VIII. Relations of the Keweenaw series to the associated formations</td>
<td>350</td>
</tr>
<tr>
<td>Section I. To the newer formations</td>
<td>351</td>
</tr>
<tr>
<td>Section II. To the older formations</td>
<td>367</td>
</tr>
<tr>
<td>IX. Structure of the lake Superior basin</td>
<td>410</td>
</tr>
<tr>
<td>X. The copper deposits</td>
<td>419</td>
</tr>
<tr>
<td>Notes</td>
<td>431</td>
</tr>
</tbody>
</table>

3,000 copies; bound in dark maroon cloth. Monograph v is sold by the director of the survey at $1.85 a copy, cost price.

Documentary edition as follows:

47th congress, | 1st session. | House of representatives. | Mis. doc. | no. 50. | Department of the interior | Monographs | of the | United
MONOGRAPH VI.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume vi | [Seal of the department of the interior] |

Washington | government printing office | 1883

Special title: United States geological survey | J. W. Powell director | Contributions | to the knowledge of the | older Mesozoic flora of Virginia | by William Morris Fontaine | [Survey design] |

Washington | government printing office | 1883

General title as above, verso blank; special title as above, verso blank; letter of transmittal to the director, p. v, verso blank; contents, p. vii, verso blank; illustrations, pp. ix-xi, verso blank; text, pp. 1-128; explanation of plates, pp. 129-140; index, pp. 141-144; plates I-LIV, facing each of which is its explanation, recto blank, these explanations being a repetition of those on pp. 129-140. 4°.

CONTENTS OF MONOGRAPH VI.

Letter of transmittal... v

Part I.—The geology of the Mesozoic areas ... 1

II.—The fossil flora ..

Description of the species .. 10

Fruits of cycads ... 85

Undetermined plants .. 90

General observations on the flora.. 92

III.—The older Mesozoic flora of North Carolina 97

General remarks and conclusions ... 121

Explanation of plates. .. 129

3,000 copies; bound in dark maroon cloth. Sold by the director of the survey at the price of $1.05 a copy, its actual cost as estimated by the public printer.

Documentary edition as follows:

47th congress, | 2d session. | House of representatives. | Mis. doc. | no. 43. | Department of the interior | Monographs | of the | United States geological survey | Volume vi | [Seal of the department of the interior] |

Washington | government printing office | 1883

Paper cover with title as above; inner title same, verso blank; special title, letter of transmittal, contents, and remainder of volume as in the other edition.

1,900 copies, the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these about 800 were delivered unbound, as described; the remainder were printed later and bound in sheep, in which form they constitute vol. 14 of the "Miscellaneous documents of the house of representatives for the second session of the forty-seventh congress."
MONOGRAPH VII.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume VII | [Seal of the department of the interior] |
Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | Silver-lead deposits | of | Eureka Nevada | by Joseph Story Curtis | [Survey design] |
Washington | government printing office | 1884

General title as above, verso blank; special title as above, verso blank; letter of transmittal by G. P. Becker, in charge of Pacific division, to the director, p. v, verso blank; contents, p. vii, verso blank; illustrations, p. ix, verso blank; preface, pp. xi-xii; brief outline of results, p. xiii, verso blank; text, pp. 1-193, verso blank; index, pp. 195-200. 4°. Plates i-xvi; figs. 1-10.

CONTENTS OF MONOGRAPH VII.

Letter of transmittal .. v
Contents .. vii
Illustrations ... ix
Preface .. xi
Brief outline of results .. xiii

Chapter I. General description of Eureka district... 1
II. Surface geology .. 5
III. Structure of Prospect mountain .. 11
IV. Structure of Ruby hill ... 19
V. Ores of Prospect mountain and Ruby hill.................................... 51
VI. The ore deposits .. 64
VII. The source of the ore ... 80
VIII. The manner of deposition of the ore...................................... 93
IX. Water .. 107
X. Do the Ruby hill deposits form a lode 111
XI. Assaying .. 120
XII. Prospecting ... 139
XIII. Tribute system .. 150
XIV. Timbering in the Eureka mines... 153
XV. Metallurgy .. 158
XVI. Adams hill .. 165
XVII. Future of Eureka district.. 169
XVIII. Summary ... 175

Index ... 195

3,125 copies published, being the 3,000 required by the law relating to these monographs, and 125 extras ordered of the public printer by the author. Bound in dark maroon cloth. Sold by the director of the survey at $1.20 per copy, cost price.

Documentary edition as follows:

48th congress, | 1st session. | House of representatives. | Mis. doc. | no. 72. | Department of the interior | Monographs | of the | United States geological survey | Volume VII | [Seal of the department of the interior] |
Washington | government printing office | 1884

Paper cover with title as above; inner title same, verso blank; special title, letter of transmittal, contents, and remainder of volume as in the other edition.

1,900 copies, the “usual number” edition; published under authority of a joint resolution approved July 7, 1892. Of these, about 800 were delivered unbound, as described; the remainder were printed later and bound in sheep, in which form they
constitute vol. 37 of the "Miscellaneous documents of the house of representatives for the first session of the forty-eighth congress."

MONOGRAPH VIII.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume VIII | [Seal of the department of the interior] |

Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | Paleontology | of | the Eureka district | by Charles Doolittle Walcott | [Survey design] |

Washington | government printing office | 1884

General title as above, verso blank; special title as above, verso blank; letter of transmittal by the author to Mr. Arnold Hague, geologist in charge, p. v., verso blank; letter of transmittal by Mr. Hague to the director, p. vii, verso blank; preface, p. ix, verso blank; contents, p. xi, verso blank; illustrations, p. xiii, verso blank; summary of results, pp. 1-9, verso blank; text, pp. 11-285, verso blank; index, pp. 287-298. 4°. Plates i-xxiv; figs. 1-7. The 24 plates are grouped together after the index, and facing each plate is its explanation; this leaf of explanations, if the latter occupy but a page, precedes the plate and its recto is blank, but if the explanations require both sides of the leaf, the latter follows the plate. The department seal in the general title of this monograph and the later ones differs slightly from that in the earlier ones.

CONTENTS OF MONOGRAPH VIII.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal to Mr. Arnold Hague, by the author</td>
</tr>
<tr>
<td>Letter of transmittal to the director, by Mr. Arnold Hague</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Summary of results</td>
</tr>
<tr>
<td>Fossils of the Cambrian</td>
</tr>
<tr>
<td>Observations on Olenellus Howelli</td>
</tr>
<tr>
<td>Fossils of the lower Silurian</td>
</tr>
<tr>
<td>Fossils of the Devonian</td>
</tr>
<tr>
<td>Fossils of the Carboniferous</td>
</tr>
<tr>
<td>Systematic list of species</td>
</tr>
<tr>
<td>Paleozoic section in central Nevada</td>
</tr>
</tbody>
</table>

3,050 copies—which is the 3,000 required by the law relating to these monographs, and 50 extras ordered of the public printer by the author. Bound in dark maroon cloth. Sold by the director of the survey at $1.10 per copy, cost price.

Documentary edition as follows:

48th congress, 1st session. | House of representatives. | Mis. doc. | no. 73. | Department of the interior | Monographs | of the | United States geological survey | Volume VIII | [Seal of the department of the interior] |

Washington | government printing office | 1884

Title as above verso blank; followed by special title, letters of transmittal, preface, contents, etc., as in the other edition.

1,900 copies, being the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these, about 800 were delivered unbound; the remainder were printed later and bound in sheep as vol. 38 of the "Miscellaneous documents of the house of representatives for the first session of the forty-eighth congress."
CONTENTS OF MONOGRAPH IX.

Page
Letter of transmittal from Prof. George H. Cook ... ix
Sketch of the geology of the Cretaceous and Tertiary formations of New Jersey ix
Letter of transmittal from Prof. Robert P. Whitfield.. xv
Preliminary remarks .. xvii
Brachiopoda... ... 3
Section I.—Brachiopoda of the marl beds ... 5
Lamellibranchiata... 17
Section II.—Lamellibranchiata from the Raritan clays..................................... 22
III.—Lamellibranchiata from the lower marl beds 29
IV.—Lamellibranchiata from the middle marl beds 194
V.—Lamellibranchiata from the base of the upper marls 205
VI.—Lamellibranchiata from the Eocene marls..................................... 222
VII.—Unionidae from the Camden clays ... 245
VIII.—Classified list of the species... 253

3,000 copies; bound in dark maroon cloth. Sold by the director of the survey at cost price, $1.15 a copy.

Documentary edition as follows:
48th congress, | 1st session. | House of representatives. | Mis. doc. | no. 74. | Department of the interior | Monographs | of the | United States geological survey | Volume IX | [Seal of the department of the interior] |
Washington | government printing office | 1885

Paper cover with title as above; inner title same, verso blank; special title, contents, illustrations, and remainder of coliation as in the other edition.
1,900 copies, the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these, about 800 were delivered unbound, as described; the remainder were printed later and bound in sheep, in which form they constitute vol. 39 of the "Miscellaneous documents of the house of representatives for the first session of the forty-eighth congress."
The geological survey of New Jersey purchased of the public printer 1,050 copies, unbound, of this work, and issued them with the following title:

Geological survey of New Jersey | George H. Cook, state geologist | Brachiopoda and Lamellibranchiata | of the | Raritan clays and greensand marls | of | New Jersey | by | Robert P. Whitfield | [Seal of the state of New Jersey] |

John L. Murphy | State Gazette printing office, Trenton, N. J. | 1886

Title as above, verso blank; contents, illustrations, letters of transmission, and remainder of the work precisely as collated above except that page xiii, which contains the closing portion of the letter of transmission of Geo. H. Cook, state geologist of New Jersey, was reset for the purpose of changing the address of the letter to “His excellency Leon Abbett, governor and ex-officio president of the board of managers of the geological survey of New Jersey.”

MONOGRAPH X.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume x | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Dinocerata | a | monograph | of an | extinct order of gigantic mammals | by | Othniel Charles Marsh | [Survey design] |

Washington | government printing office | 1886

General title as above, verso blank; special title as above, verso blank; letter of transmission, dated December 18, 1884, verso blank; table of contents, p. vii, verso blank; illustrations (list of plates and list of woodcuts), pp. ix-xvi; preface, pp. xvii-xviii; introduction, pp. 1-10; text, pp. 11-191, verso blank; appendix: synopsis of dinocerata, pp. 193-223, verso blank; and bibliography, pp. 225-237, verso blank; index, pp. 239-243. 4°. Plates i-LVI; figs. 1-200. The plates are assembled after the index. Six of them (i,.ix, xxvii, xli, xlii, lvi) are double, and one (lvii) is dissected and mounted on cloth, it being about 23½ by 16½ inches in size. Preceding each plate is a leaf bearing on verso the plate explanation and on recto the plate number.

CONTENTS OF MONOGRAPH X.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal .. v</td>
</tr>
<tr>
<td>Table of contents .. vi</td>
</tr>
<tr>
<td>List of illustrations .. vii</td>
</tr>
<tr>
<td>Preface .. xvii</td>
</tr>
<tr>
<td>Introduction .. 1</td>
</tr>
<tr>
<td>Chapter I. The skull .. 11</td>
</tr>
<tr>
<td>II. The lower jaw ... 35</td>
</tr>
<tr>
<td>III. The teeth .. 41</td>
</tr>
<tr>
<td>IV. The brain .. 63</td>
</tr>
<tr>
<td>V. The cervical vertebrae ... 69</td>
</tr>
<tr>
<td>VI. The dorsal-lumbar vertebrae 78</td>
</tr>
<tr>
<td>VII. The fore limbs ... 87</td>
</tr>
<tr>
<td>VIII. The fore limbs (continued) 101</td>
</tr>
<tr>
<td>IX. The ribs and sternum ... 129</td>
</tr>
<tr>
<td>X. The pelvic arch and tail .. 135</td>
</tr>
<tr>
<td>XI. The hind limbs .. 139</td>
</tr>
<tr>
<td>XII. The hind limbs (continued) 145</td>
</tr>
<tr>
<td>XIII. Restorations of Dinoceras and Thrinoceras 165</td>
</tr>
<tr>
<td>XIV. Conclusion .. 169</td>
</tr>
<tr>
<td>Appendix.—Synopsis ... 193</td>
</tr>
<tr>
<td>Bibliography .. 225</td>
</tr>
<tr>
<td>Postscript ... 237</td>
</tr>
</tbody>
</table>
3,000 copies, the number required by the law relating to these monographs; bound in dark maroon cloth. Sold by the director of the survey at $2.70 a copy, cost price. Documentary edition as follows:

49th congress, | 1st session. | House of representatives. | Mis. doc. | no. 305. | Department of the interior | Monographs | of the | United States geological survey | Volume x | [Seal of the department of the interior] |

Washington | government printing office | 1886

Paper cover with general title as above; inner title same, verso blank; special title, letter of transmittal, and remainder of collation as in the other edition.

1,900 copies, the “usual number” edition; published under authority of a joint resolution approved July 7, 1882. Of these, a portion (about 800) were delivered unbound, as described; the remainder were printed later and bound in sheep, in which form they constitute a part of vol. 2 of the “Miscellaneous documents of the house of representatives for the first session of the forty-ninth congress.”

To save trouble and delay in transmitting proof-sheets back and forth between himself and the government printing office at Washington, the author procured a font of pica type, such as is used by that office in the monographs of the survey, and had the material put in type at New Haven and electrotyped, and from these plates had, by permission of the director, 500 large-paper copies struck off for his own use in advance of the official edition, which was somewhat delayed; titles and collation as follows:

Half-title: Dinocerata | a | monograph | of an | extinct order of gigantic mammals | by | Othniel Charles Marsh

Title: United States geological survey | Volume x | Dinocerata | a | monograph | of an | extinct order of gigantic mammals | by | Othniel Charles Marsh | [Survey design] |

Washington | 1884

Half-title as above on board cover; title as above, verso blank; letter of transmittal to the director, dated Dec. 18, 1884, p. v, verso blank; table of contents, p. vii, verso blank; lists of illustrations, pp. ix-xvi; preface, pp. xvii-xviii; introduction, pp. 1-10; text, pp. 11-191; appendix, pp. 193-223; bibliography of dinocerata, pp. 225-237; followed by plates 1-LVI, each preceded by a leaf bearing on verso the plate explanation and on recto the plate number. No index. The text and appendix contain 200 wood-cuts. The size of the type page is about the same as that of the official editions, but the paper used is considerably larger, a leaf measuring about 10 by 14 inches.

These 500 copies were issued in three forms of binding: the first lot with paste-board covers and half-title thereon, as described above, another lot in green cloth, and the remainder in half-morocco.

MONOGRAPH XI.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xi | [Seal of the department of the interior] |

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | Geological history | of | lake Lahontan | a Quaternary lake of northwestern Nevada | by | Israel Cook Russell | [Survey design] |

Washington | government printing office | 1885
MONOGRAPH XI.

General title as above, verso blank; special title as above, verso blank; letter of transmittal to the director by G. K. Gilbert, geologist in charge of the division of the Great basin, p. v, verso blank; preface, pp. vii-viii; contents, pp. ix-xi, verso blank; illustrations, pp. xiii-xiv; text, pp. 1-283, verso blank; index, pp. 285-288. 4°. Plates I-XLVI (the last one being a folded map in pocket of cover); figs. 1-36.

CONTENTS OF MONOGRAPH XI.

Letter of transmittal.. v
Preface .. vii
Abstract of monograph.. 1
Chapter I.—Introductory:
The field of study.. 6
The Great basin.. 7
Explorations... 15
Chapter II.—Genesis of lake Lahontan:
The formation of lacustrine basins.............................. 23
Origin of the Lahontan basin.................................... 24
Geographical extent of lake Lahontan......................... 28
The hydrographic basin.. 28
The lake basin.. 31
Question of outlet................................ 32
Chapter III.—Physiography of the Lahontan basin:
Valleys... 36
Mountains.. 38
Rivers.. 40
The Humboldt... 40
Quinn river... 41
The Truckee.. 42
The Carson.. 43
The Walker.. 45
Springs.. 47
Extinct springs... 47
Lakes... 54
Honey lake, California... 55
Pyramid lake, Nevada... 56
Winnemucca lake, Nevada.................................... 63
Humboldt lake, Nevada... 66
North Carson lake, Nevada.................................. 68
South Carson lake, Nevada................................... 68
Walker lake, Nevada.. 69
Tahoe lake, Nevada and California......................... 71
Soda lakes, near Eagtown, Nevada......................... 73
Playa-lakes and playas.. 81
Chapter IV.—Physical history of lake Lahontan:
Section 1. Shore phenomena in general:
Terraces... 87
Sea-cliffs.. 89
Bars... 90
Embankments... 93
Deltas... 96
Recapitulation... 98
Section 2. Shore phenomena of lake Lahontan:
Terraces and sea-cliffs.. 100
Bars and embankments.. 105
Embankments at the west end of Humboldt lake........ 105
Embankments on the southern border of the Carson desert.... 112
Embankments at Buffalo springs, Nevada.................. 115
Deltas... 123
Section 3. Sediments of lake Lahontan:
Exposures in the cañon of the Humboldt river............. 126
Exposures in the cañon of the Truckee river............... 131
Exposures in the cañon of the Carson river................. 137
Exposures in the cañon of the Walker river................. 138
Generalized section of Lahontan sediments................ 143
Exceptional sedimentary deposits............................ 146
Chapter IV.—Physical history of lake Lahontan—continued.

Section 3. Sediments of lake Lahontan—continued.

Pumiceous dust ... 146
White marl ... 149
Eolian sands ... 153

Section 4. Ancient stream channels ... 156

Section 5. Illustrations of geological structure .. 158

Stratification and lamination .. 158
Current bedding ... 158
Contorted strata ... 160
Arches of deposition .. 161
Unconformity by erosion and deposition .. 162
Jointing ... 162
Faults ... 163

Section 6. Illustrations of structure of terraces and embankments 166

Conglomerates and breccias ... 167
Oolitic sand... 168
Surface markings .. 168
Color of lacustrine sediments ... 169

Résumé of physical history ... 169

Chapter V.—Chemical history of lake Lahontan.

Section 1. General chemistry of natural waters .. 172
River water... 172
Spring water .. 175
Ocean water .. 178
Waters of inland seas .. 181
Succession of salts deposited on evaporation .. 182
Deposition of calcium carbonate ... 187

Section 2. Chemical deposits of lake Lahontan .. 188
Calcareous tufa ... 189
Lithoid tufa .. 190
Thinolitic tufa ... 192

Professor Dana’s crystallographic study of thinolite 194

Dendritic tufa .. 201

Chemical composition of the tufa deposits ... 203
Succession of tufa deposits ... 204
Tufa deposits in the form of towers, domes, castles, crags, etc ... 207

Conditions favoring the deposition of tufa ... 210

Section 3. Desiccation products .. 223
The freshening of lakes by desiccation ... 224

Section 4. Efflorescences ... 230
Buffalo springs salt works ... 232
Eagle salt works ... 233
Sand spring salt works ... 234

Résumé of chemical history .. 236

Chapter VI.—Life history of lake Lahontan .. 238

Summary ... 244

Chapter VII.—Résumé of history of lake Lahontan ... 245

Chapter VIII.—Quaternary climate .. 254

Chapter IX.—Geological age of lake Lahontan .. 269

Chapter X.—Post-Lahontan orographic movement .. 274

Index ... 285

3,025 copies published, the 3,000 required by law and 25 extras ordered by the author. Sold by the director of the survey at $1.75 a copy, the cost of publication.

Documentary edition as follows:

49th congress, 1st session. House of representatives. Mis. doc. no. 304. Department of the interior, Monographs of the United States geological survey, Volume xi, [Seal of the department of the interior]

Washington government printing office 1885

Paper cover bearing title as above; inner title same, verso blank; then follow special title, letter of transmittal, preface, and remainder of volume as collated above for the other edition.
1,900 copies, being the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these, a portion (about 600) were delivered unbound, as described; the remainder were printed later and bound in sheep as a portion of vol. 2 of the "Miscellaneous documents of the house of representatives for the first session of the forty-ninth congress."

MONOGRAPH XII.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume XII | [Seal of the department of the interior] |
Washington | government printing office | 1886

Special title: United States geological survey | Clarence King, director | Geology | and | mining industry | of | Leadville, Colorado | with atlas | by | Samuel Franklin Emmons | [Survey design] |
Washington | government printing office | 1886

General title as above, verso blank; special title as above, verso blank; letter of transmittal by the author to J. W. Powell, director, p. v, verso blank; preface, pp. vii-xi, verso blank; contents (of the whole volume), pp. 13-23, verso blank; list of illustrations (in the volume of text), pp. xxv-xxvi; list of atlas sheets, pp. xxvii-xxviii; brief outline of results, p. xxix, verso blank; half-title to part i, p. 1, verso blank; text of part i, pp. 3-313, verso blank; half-title of appendix A, p. 315, verso blank; contents of appendix A (repeated), pp. 317-318; text of appendix A, pp. 319-362; half-title to part II, p. 363, verso blank; contents of part II (repeated), p. 365; list of illustrations of part II (repeated), p. 366; text of part II, pp. 367-584; half-title of appendix B, p. 585, verso blank; contents of appendix B (repeated), p. 587, verso blank; text of appendix B, pp. 589-608; half-title of appendix C, p. 609, verso blank; contents of appendix C (repeated), pp. 611-612; text of appendix C, pp. 613-747, verso blank; plates xxiii-xlv (which pertain to appendix C); list of metallurgical plates (also contained, in an abridged form, in the general list of illustrations at the beginning of the volume), pp. 749-750; index of letters used on plates (xxiii-xlv), p. 751, verso blank; index (to the whole volume), pp. 753-770. 4°. Plates i-xlv; figs. 1-6.

Mr. King's name appears on the title-page of this monograph because it was projected and work on it was begun under his directorship.

CONTENTS OF MONOGRAPH XII.

<table>
<thead>
<tr>
<th>Letter of transmittal</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Table of contents</td>
<td>xii</td>
</tr>
<tr>
<td>List of illustrations</td>
<td>xxv</td>
</tr>
<tr>
<td>List of atlas sheets</td>
<td>xxvii</td>
</tr>
<tr>
<td>Brief outline of results</td>
<td>xxix</td>
</tr>
</tbody>
</table>

PART I.

Geology.

CHAPTER I.

Leadville—Its position, discovery, and development.. 3
Topographical description .. 3
Routes of approach ... 6
Discovery of the precious metals ... 7
Development of mines .. 10
Growth of the city ... 14
Production ... 15
WARMAN.

MONOGRAPH XII. 111

Descriptive geology of the Mosquito range—continued. 319
Southern division ... 169
Northwestern division .. 184

CHAPTER V.

Descriptive geology of Leadville and vicinity ... 202
General structure ... 202
Distribution of periphery bodies .. 206
Area east of Mosquito fault .. 209
Area between Mosquito and Ball mountain faults.......................... 215
Area between Ball mountain and Weston faults 219
Area between Weston and Mike faults 226
Area north of Breece fault .. 237
Area between Mike and Iron-dome faults 244
Area between Iron-dome and Carbonate faults 248
Little stray horse syncline .. 253
Fryer hill .. 257
Prospect mountain ... 257
Area west of Carbonate and Fryer hills 261
Explanation of transverse sections ... 263

CHAPTER VI.

Discussion of geological phenomena .. 276
Sedimentary rocks .. 276
Archean .. 276
Paleozoic .. 277
Dolomitic sediments .. 278
Serpentine .. 281
Origin of the serpentine ... 283
Structural features .. 284
Folds and faults .. 284
Hade of faults .. 287
The one-sided or S-shaped fold .. 290
Eruptive rocks .. 292
Age ... 293
Manner of occurrence—Intrusive sheets 295
Dikes ... 296
Relation of form to composition ... 297
Amount of intrusive force .. 298
Source of intrusive force .. 299
Why intrusive and not surface flows .. 300
Internal structure .. 302
Orthoclastic and plagioclastic rocks ... 304
Distribution of intrusive rocks in the Rocky mountains 309
Contact metamorphism .. 307
Nonabsorption of sedimentary rocks by eruptive masses 308

APPENDIX A, BY WHITMAN CROSS.

Petrography.

Introduction .. 319
Discussion of classification in general 319
Classification of Mosquito range eruptives 322
Older eruptives ... 323
Quartz-porphyry ... 323
Diorite .. 333
Porphyrite ... 334
Younger eruptives .. 345
Rhyolite .. 345
Andesite .. 351
Résumé .. 354
Rock structures observed—Individual rock types 355
Mutual relations of rock type—Rock constituents—Their decomposition . 356
Negative observations—Chemical composition 357
Notes upon the Henry mountain rocks 359
Augitic rocks .. 359
Résumé ... 362
<table>
<thead>
<tr>
<th>Classification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of ore deposits in general</td>
<td>367</td>
</tr>
<tr>
<td>Leadville deposits</td>
<td>367</td>
</tr>
<tr>
<td>Manner of occurrence</td>
<td>375</td>
</tr>
<tr>
<td>Composition</td>
<td>375</td>
</tr>
<tr>
<td>Distribution</td>
<td>376</td>
</tr>
<tr>
<td>Secondary alteration—Mode of formation</td>
<td>377</td>
</tr>
<tr>
<td>Age of deposits—Origin of the metallic contents</td>
<td>378</td>
</tr>
</tbody>
</table>

Iron hill group of mines	380
Iron hill	380
Geological structure	380
Later intrusive sheets	381
White porphyry	382
Blue limestone—Silurian—Cambrian—Iron fault	384
California fault	385
Dome fault—Emmet fault—Dome Hill	386
Ore deposits	388
Mine workings	389
North iron hill	401
General geological structure	401
Iron fault—Adelaide fault—Rock formations	402
Ore deposits	404
Mine workings	405

Carbonate hill group of mines	409
General structure	409
Rock formations	410
Carbonate fault	410
Pendery fault—Morning star fault—Ore deposits	411
Southwest slope of carbonate hill	412
Southern group of mines	414
Northern group of mines	420

Fryer hill group of mines	445
General description	445
Rock formations	447
Gray porphyry	447
White porphyry	448
Weber quartzite—Blue limestone	449
Gangue—Ore deposits	451
Parting quartzite—White limestone—Lower quartzite	453
Explanation of Fryer hill map	454
Mine workings	455
Résumé	489

Other groups of mines	493
Mines and prospects in the Leadville region	493
Mines and prospects outside the Leadville district	519

Genesis of Leadville deposits	539
Manner of occurrence—Why in blue limestone rather than in any other formation	540
Composition of ores	543
Composition of vein materials	556
Ores deposited as sulphides	562
More of formation	565
Origin or source of the metallic minerals	568
Appendix B, by W. F. Hillebrand.

Chemistry.

Tables of analyses and notes on methods employed .. 589
Eruptive rocks ... 589
Limestones... 596
Ores and vein materials ... 599

Appendix C, by Antony Guyard.

Metallurgy.

Introduction... 613
Preliminary conditions of smelting .. 614
Materials used in smelting .. 635
Plant and smelting operations .. 659
Products of smelting .. 692
Theoretical discussion..:............................ 731
Metallurgical plates ... 749
General index ... 753

A volume of atlas sheets accompanies the text, as follows:

Department of the interior | United States geological survey | Clarence King director | Atlas | to accompany a monograph | on the | geology and mining industry | of | Leadville | Colorado | by | Samuel Franklin Emmons | [Survey design] |

Washington | 1883 | Julius Bien & co. lith. | New York

This atlas consists of 35 engraved sheets; paper cover. Sheets I-III, V, X, XV-XX, XXIV-XXXV, are double; sheets IV, VI-IX, XI-XIV, XXI-XXV, single. A double sheet measures, from edge to edge, about 33 by 20 inches. Sheet i contains the title, as given above; sheet ii, contents; sheet iii, legend; then follow topographic and geologic maps and sections, mostly colored, as listed below. The paper cover bears an engraved title very nearly identical with that on sheet i, but enough variations can be detected to show that it is from another plate.

CONTENTS OF ATLAS TO MONOGRAPH XII.

<table>
<thead>
<tr>
<th>Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title .. 1</td>
</tr>
<tr>
<td>List of atlas sheets H</td>
</tr>
<tr>
<td>Legend ... 11</td>
</tr>
<tr>
<td>Central Colorado IV</td>
</tr>
<tr>
<td>Mosquito range. Topography V</td>
</tr>
<tr>
<td>Mosquito range. Geology VI, VII</td>
</tr>
<tr>
<td>Mosquito range. Geological sections . VIII, IX, X</td>
</tr>
<tr>
<td>Leadville and vicinity. Topography . XI, XII</td>
</tr>
<tr>
<td>Leadville and vicinity. Geology XIII, XIV</td>
</tr>
<tr>
<td>Leadville and vicinity. Geological sections XXV-XXH</td>
</tr>
<tr>
<td>Iron hill. Geology and mine workings XXIX</td>
</tr>
<tr>
<td>Iron hill. Geological sections XXXIV, XXXV</td>
</tr>
<tr>
<td>North iron hill. Geology and mine workings XXVI</td>
</tr>
<tr>
<td>North iron hill. Geological sections . XXVII</td>
</tr>
<tr>
<td>Carbonate hill. Geology and mine workings XXVIII</td>
</tr>
<tr>
<td>Carbonate hill. Geological sections . XXIX, XXX</td>
</tr>
<tr>
<td>Freyer hill. Geology and mine workings XXX</td>
</tr>
<tr>
<td>Freyer hill. Geological sections XXXII, XXXIII, XXXIV</td>
</tr>
<tr>
<td>Index to shafts on Leadville map XXXV</td>
</tr>
</tbody>
</table>

3,100 copies of both text and atlas published — being the 3,000 required by the law relating to these monographs and 100 extras ordered by the author; the text is bound in dark maroon cloth; the atlas sheets are laid loosely inside a paper cover. Of a portion of the 100 extras, the volume of text was issued in two separately bound parts, part i ending with p. 362, and part ii commencing with p. 363 — preceding which, however, are the general and special titles, as in part i. The atlas is identical with the atlas of the regular edition except the paper cover, which in these 100 differs not only in color but to such an extent in particularities of the title it bears as to lead to the conclusion that the title was printed from still another plate.
Monograph XII is sold by the director of the survey at $8.40 for both parts, the cost of publication.

Documentary edition as follows:

49th congress, 1st session. House of representatives. Mis. doc. no. 397. Department of the interior Monographs of the United States geological survey Volume XII [Seal of the department of the interior]

Washington government printing office 1886

Paper cover bearing title as above; inner title same, verso blank; special title, letter of transmittal, preface, and remainder of collation as in the 3,000 edition.

I have not seen a copy of the atlas accompanying the unbound portion of this edition of the text.

1,900 copies, being the “usual number” edition; published under authority of a joint resolution approved July 7, 1882. Of these, a portion were delivered in paper covers, as described; the remainder were bound in sheep as vol. 27 of the “Miscellaneous documents of the house of representatives for the first session of the forty-ninth congress,” the 35 atlas-sheets being folded quarto size and laid loosely inside half-sheep covers.

MONOGRAPH XIII.

General title: Department of the interior Monographs of the United States geological survey Volume XIII [Seal of the department of the interior]

Washington government printing office 1888

Special title: United States geological survey J. W. Powell, director Geology of the quicksilver deposits of the Pacific slope with an atlas by George F. Becker [Survey design].

Washington government printing office 1888

Advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; letter of transmittal by the author to the director, p. v, verso blank; contents, p. vii, verso blank; illustrations (in the volume of text), p. ix, verso blank; list of atlas sheets, p. xi, verso blank; preface, pp. xiii-xv, verso blank; brief outline of results, pp. xvii-xix, verso blank; text, pp. 1-475, verso blank; index, pp. 477-486. 4°. Plates i-20.

CONTENTS OF MONOGRAPH XIII.

Letter of transmittal... v
Preface.. xiii
Brief outline of results... xv
Chapter I. Statistics and history ... 1
II. Notes on foreign occurrences of quicksilver............................. 14
III. The sedimentary rocks... 56
IV. The massive rocks... 140
V. Structural and historical geology of the quicksilver belt.............. 178
(Appendix to Chapter V, remarks on the genus Aucella, by Dr. C. A. White). 226
VI. Descriptive geology of the Clear lake region.......................... 233
VII. Descriptive geology of Sulphur bank..................................... 251
VIII. Descriptive geology of the Knoxville district....................... 271
IX. Descriptive geology of the New Idria district....................... 291
X. Descriptive geology of the New Almaden district.................... 310
XI. Descriptive geology of the Steamboat springs district.............. 331
XII. Descriptive geology of the Oathill, Great western, and Great eastern districts. 354
XIII. Other deposits of the Pacific slope..................................... 365
XIV. Discussion of the ore deposits... 387
XV. On the solution and precipitation of cinnabar and other ores........ 419
XVI. The origin of the ore.. 438
XVII. Summary of results... 451
Index.. 477
An atlas accompanies the text, as follows:

Department of the interior | United States geological survey | J. W. Powell director | Atlas | to accompany a monograph | on the geology of | the quicksilver deposits | of | the Pacific slope | by | George F. Becker. | [Survey design] |

Washington 1887 | Giles litho. & liberty printing co. N. Y.

This atlas consists of 14 sheets, laid loosely inside a paper cover bearing title as given above. Sheet I, title as above; sheet II, contents; the remaining 12 sheets are topographic and geologic maps and sections and plans of mine workings, as listed below. Sheets I-IV, VI, VIII, XII-XIV, are single; sheets V, VII, IX-XI, double. A double sheet measures, from edge to edge, about 34 by 22 inches.

CONTENTS OF ATLAS TO MONOGRAPH XIII.

<table>
<thead>
<tr>
<th>Sheet</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Title</td>
</tr>
<tr>
<td>II</td>
<td>Contents</td>
</tr>
<tr>
<td>III</td>
<td>Geological map of the Clear lake district</td>
</tr>
<tr>
<td>IV</td>
<td>Geological map of the Sulphur bank district</td>
</tr>
<tr>
<td>V</td>
<td>Geological map of the Knoxville district</td>
</tr>
<tr>
<td>VI</td>
<td>Geological map of the New Idria district</td>
</tr>
<tr>
<td>VII</td>
<td>Geological map of the New Almaden district</td>
</tr>
<tr>
<td>VIII</td>
<td>Ore bodies of the New Almaden shown beneath the topography</td>
</tr>
<tr>
<td>IX</td>
<td>Map of the workings of the New Almaden mine</td>
</tr>
<tr>
<td>X</td>
<td>Vertical section of the New Almaden mine on a broken line nearly north and south</td>
</tr>
<tr>
<td>XI</td>
<td>Two north and south sections of the New Almaden mine</td>
</tr>
<tr>
<td>XII</td>
<td>East and west sections of the New Almaden mine</td>
</tr>
<tr>
<td>XIII</td>
<td>Plan of the clays of the New Almaden mine</td>
</tr>
<tr>
<td>XIV</td>
<td>Geological map of the Steamboat springs district</td>
</tr>
</tbody>
</table>

3,000 copies, the number required by the law relating to these monographs; text bound in dark maroon cloth; atlas sheets laid loosely inside paper cover. Monograph XIII is sold by the director of the survey at $2 for both parts, the cost of publication.

Documentary edition as follows:

50th congress | 1st session | House of representatives | Misc. doc. | no. 610 | Department of the interior | Monographs | of | United States geological survey | Volume XIII | [Seal of the department of the interior] |

Washington | government printing office | 1888

General title as above, verso blank; special title, letter of transmittal, contents, illustrations, and remainder of collation as in the other edition. Atlas as follows:

50th congress | 1st session | House of representatives | Misc. doc. | no. 610 | Department of the interior | United States geological survey | J. W. Powell director | Atlas | to accompany a monograph | on the geology of | the quicksilver deposits | of | the Pacific slope | by | George F. Becker. | [Survey design] |

Washington 1887 | Giles litho. & liberty printing co. N. Y.

Consists of 14 sheets, laid loosely inside a paper cover bearing title as given above. The 14 sheets are identical with those of the other edition, being from the same plates.

1,734 copies of both text and atlas, the "usual number" edition; published under authority of a joint resolution approved July 7, 1882. Of these a portion (about 600) were delivered unbound, as described above, while the remainder were, as usual, bound in sheep as vol. 24 of the "Miscellaneous documents of the house of representatives for the first session of the fiftieth congress."

I have not seen a copy of the atlas accompanying the bound portion of the edition.
MONOGRAPH XIV.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xiv | [Seal of the department of the interior] |
Washington | government printing office | 1888

Special title: United States geological survey | J. W. Powell, director | Fossil fishes and fossil plants | of the | Triassic rocks | of | New Jersey and the Connecticut valley | by | John S. Newberry | [Survey design] |
Washington | government printing office | 1888

Advertisement of the publications of the survey, pp. i-iv; sample library catalogue slips, p. v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. v-vi; illustrations, pp. vii-viii; letter of transmittal, p. ix, verso blank; preface, pp. xi-xiv; half-title, “Part i, geological relations of the Triassic rocks of New Jersey and the Connecticut valley,” p. [1], verso blank; text, pp. 3-15, verso blank; half-title, “Part II, fossil fishes of the Triassic rocks of New Jersey and the Connecticut valley,” p. 17, verso blank; text, pp. 19-76; half-title, “Part III, fossil plants of the Triassic rocks of New Jersey and the Connecticut valley,” p. 77, verso blank; text, pp. 79-95, verso blank; half-title, “Plates,” verso blank, pp. [97-98]; “Plate i,” verso explanation of same, pp. [99]-100 (followed by plate i); “Plate ii,” verso explanation of same, pp. [101]-102 (followed by plate ii); etc. consecutively to “plate xxvi,” verso explanation of same, pp. [149]-150 (followed by plate xxvi); index, pp. 151-152. 4°. Plates i-xxvi.

CONTENTS OF MONOGRAPH XIV.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal ix</td>
</tr>
<tr>
<td>Preface ... xi</td>
</tr>
</tbody>
</table>

PART I.

GEOLOGICAL RELATIONS OF THE TRIASSIC ROCKS OF NEW JERSEY AND THE CONNECTICUT VALLEY 1
Geological sketch ... 3
Geological equivalents of our Triassic rocks .. 8

PART II.

FOSSIL FISHES OF THE TRIASSIC ROCKS OF NEW JERSEY AND THE CONNECTICUT VALLEY 17
Fossil fishes ... 19
List of Triassic fishes 23
Descriptions of genera and species .. 24
Genus Ischypterus Egerton 24
Ischypterus ovatus W. C. R. 27
Marshii W. C. R. .. 33
Agassizi W. C. R. 39
micropterus, n. sp 31
tenuiceps, Ag. sp 32
fultus, Ag. sp ... 34
robustus, n. sp .. 36
elegans, n. sp ... 37
alatus, n. sp ... 37
modestus, n. sp .. 38
lenticularis, n. sp 39
lineatus, n. sp .. 40
macropterus W. C. R. 41
Braunii, n. sp ... 43
parvus W. C. R. (MS.) 45
latus J. H. R. .. 46
minutus, n. sp ... 48
gigas, n. sp .. 49
Fossil shales—continued.

Genus Catopterus J. H. R. .. 50
 gracilis J. H. R. .. 55
 minor, n. sp ... 57
 ornatus, n. sp. .. 58
 anguilliformis W. C. R. .. 59
 parvulina W. C. R. ... 60

Genus Dictyopyge Egerton .. 61
 Dictyopyge macrura Egerton .. 64
Genus Ptycholepis, Ag. .. 65
 Ptycholepis Marshall Newb. ... 66
Genus Acentrophorus Traquair .. 67
 Acentrophorus Chicoponia, n. sp. .. 69
Genus Diplurus Newb. .. 70
 Diplurus longicaudatus Newb. ... 74

PART III.

FOSSIL PLANTS OF THE TRIASSIC ROCKS OF NEW JERSEY AND THE CONNECTICUT VALLEY 77
Sketch of Triassic flora ... 79
 Descriptions of genera and species ... 82
 Dendrophycus triassicus, n. sp .. 82
 Baiiera Munsteriana Ung .. 84
 Equisetum Rogeri Schimper ... 85
 Equisetum Meriani(?) Brong ... 86
 Schizonemia planicoasta Rogers sp .. 87
 Paehyphyllum simile, n. sp. .. 88
 Paehyphyllum brevifolium, n. sp .. 89
 Cheirolepis Munsteri Schimper .. 90
 Otzanaites lator Saprta ... 90
 Otzanaites brevifolius F. Br ... 91
 Cycadimocarpus Chapini Newb, n. sp 92
 Dioonites longifolius Emmoas sp .. 92
 Loperia simplex, n. sp. .. 93
 Clathropteris platyphylla Brong .. 94
 Palisaya (?) sp. .. 94

3,000 copies, the number required by law; bound in dark maroon cloth. Sold by the
director of the survey at $1 a copy, the cost of publication.

Documentary edition as follows:
50th congress, | 1st session. | House of representatives. | Mis. doc. |
 no. 611. | Department of the interior | Monographs | of the | United
 States geological survey | Volume xiv | [Seal of the department of
 the interior] |
 Washington | government printing office | 1888

Paper cover bearing title as above; advertisement of the publications of the sur-
vey, pp. i-iv; library catalogue slips, p. v, verso blank; title as above, verso blank;
special title, contents, illustrations, and remainder of collation as in the other edition.
1,734 copies, the “usual number” edition; published under authority of a joint
resolution approved July 7, 1882. Of these, about 600 were issued unbound, as de-
scribed above; the remainder were printed later and bound in sheep as vol. 25 of
the “Miscellaneous documents of the house of representatives for the first session of
the fiftieth congress.”

MONOGRAPH XV.

General title: Department of the interior | Monographs | of the | United
 States geological survey | Volume xv—text | [Seal of the de-
 partment of the interior] |
 Washington | government printing office | 1889
Special title: United States geological survey | J. W. Powell, director | The Potomac | or | younger Mesozoic flora | by | William Morris Fontaine | [Survey design] |

Washington | government printing office | 1889

Sample library catalogue slips, 1 1., verso blank; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, verso blank; illustrations, pp. vii-xii; letter of transmittal to the director, pp. xiii-xiv; text, pp. 1-348; half-title, "Tables," p. 349; the tables, being lists of species and localities, pp. 350-372; index, pp. 373-377. 4°.

CONTENTS OF MONOGRAPH XV.

Letter of transmittal... xiii
Introduction.. 1
Plant localities... 10
Location and geology of the Potomac beds................................. 33
Location of the Potomac beds... 33
Geology of the Potomac beds.. 47
Geological position and origin of the lower Potomac beds........ 68
Description of the species.. 63
Cryptogams... 63
 Equiseta... 63
 Filices... 66
Phanerogams.. 166
 Gymnospermwm... 166
 Zamia... 166
 Conifera.. 193
 Gymnospermous fruits.. 262
Undetermined plants.. 274
 Angiospermas.. 277
General remarks and conclusions.. 326
List of Potomac plants.. 326
Geological affinities of the Potomac plants....................................... 333
 Equiseta.. 334
 Ferns.. 335
 Cycads.. 341
 Conifers.. 343
 Angiospermas.. 346
Tables.. 349
Index... 373

The plates are in a separate volume, as follows:

Department of the interior | Monographs | of the | United States geological survey | Volume xv—plates | [Seal of the department of the interior] |

Washington | government printing office | 1889

General title as above, verso blank; special title as with the volume of text, verso blank; illustrations (being the same list as appears in the volume of text), pp. v-x; half-title, "Plates," verso blank; then follow 180 plates, each preceded by a leaf bearing on verso the plate explanation and on recto the plate number. 4°. Plates 1-CLXXX, LXXIII, LXXV, and CXIV are double, the others single.

3,000 copies of both text and plates published, being the number required by the law relating to these monographs; bound in dark maroon cloth. Sold by the director of the survey at $2.50 for both parts, the cost of their publication.

Another edition as follows:

50th congress, 2d session. | House of representatives. | Mis. doc. 147, part 1. | Department of the interior | Monographs | of the |
United States geological survey | Volume xv—text | [Seal of the department of the interior]

Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, 1 l., verso blank; advertisement of the publications of the survey, pp. i-iv; title as on cover repeated, verso blank; special title, lists of contents and illustrations, and remainder of volume as in the other edition. Plates in a separate volume, as follows:

50th congress, | 2d session. | House of representatives. | Mis. doc. 147, | part 2. | Department of the interior | Monographs | of the | United States geological survey | Volume xv—plates | [Seal of the department of the interior]

Washington | government printing office | 1889

Paper cover bearing title as above; first inner title the same, verso blank; then follow special title, list of illustrations, half-title, and plates as in the other edition.

1,734 copies of both text and atlas, being the "usual number" edition, about 600 of which were issued in paper covers, as described; the remainder were printed later and bound in sheep (text and plates in a single volume) as vol. 17 of the "Miscellaneous documents of the house of representatives for the second session of the fiftieth congress."

MONOGRAPH XVI.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xvi | [Seal of the department of the interior]

Washington | government printing office | 1889

Special title: United States geological survey | J. W. Powell, director | The Paleozoic fishes | of | North America | by | John Strong Newberry | [Survey design]

Washington | government printing office | 1889

General title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp. 7-9, verso blank; letter of transmittal to the director, p. 11, verso blank; introduction, pp. 13-15, verso blank; half-title, "Part I, fishes of the upper Silurian rocks" p. 17, verso blank: text, pp. 19-20; half-title, "Part II, fishes of the Devonian age," p. 21, verso blank; text, pp. 23-74; half-title, "Part III, fishes of the Carboniferous system," p. 75, verso blank; text, pp. 77-228; half-title, "Plates," verso blank, pp. [229-230]; "Plate I," verso explanation of same, pp. [231]-232 (followed by plate 1); "Plate II," verso explanation of same, pp. [233]-234 (followed by plate II); etc., consecutively to "Plate LIII," verso explanation of same, pp. [335]-336 (followed by plate LIII); index, pp. 337-340, 4°. Plates r-LIII; figs. 1-3.

CONTENTS OF MONOGRAPH XVI.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal..........................</td>
</tr>
<tr>
<td>Introduction.....................................</td>
</tr>
<tr>
<td>Part I. Fishes of the upper Silurian rocks</td>
</tr>
<tr>
<td>Part II. Fishes of the Devonian age........</td>
</tr>
<tr>
<td>Origin of the Devonian fishes..............</td>
</tr>
<tr>
<td>Stratigraphical distribution of Devonian fishes</td>
</tr>
<tr>
<td>Section A. Fishes of the Corniferous limestone</td>
</tr>
<tr>
<td>Fish beds of the Corniferous limestone.....</td>
</tr>
<tr>
<td>Section B. Fishes of the Hamilton group....</td>
</tr>
</tbody>
</table>
Part III. Fishes of the Carboniferous system.. 75
Section A. Fishes of the Chemung group.. 82
Section B. Fishes of the Catskill group.. 106
Section C. Fishes of the Waverly group.. 120
Section D. Fishes of the Cleveland shale... 126
The structure and relations of Dimichthys.. 135
The fins of Dimichthys.. 144
The eyes of Dimichthys ... 146
Section E. Fishes of the Carboniferous limestone...................................... 181
Fishes of the lower Carboniferous rocks of New Brunswick........................ 186
Section F. Fishes of the Coal measures .. 210
The structure and relations of Edestus... 217
Plates ... 229
Index.. 337

3,000 copies, the number required by the law relating to these monographs; bound in dark maroon cloth. Sold by the director of the survey at $1 a copy, cost of publication.

Documentary edition as follows:
51st congress, | 1st session. | House of representatives. | Mis. doc. | no. 249. | Department of the interior | Monographs | of the | United States geological survey | Volume xvi | [Seal of the department of the interior] |
Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; title as on cover, verso blank; special title, contents, illustrations, and remainder of collation as in the other edition.

1,734 copies, being the “usual number” edition; published under authority of a joint resolution approved July 7, 1882. Of these, a portion (about 600) were delivered in paper covers, as described; the remainder were printed later and bound in sheep as vol. 37 of the “Miscellaneous documents of the house of representatives for the first session of the fifty-first congress.”

MONOGRAPH XVII.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xvii | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | The flora | of the | Dakota group | a posthumous work | by | Leo Lesquereux | Edited by F. H. Knowlton | [Survey design] |
Washington | government printing office | 1891

Sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, pp. 7-10; letter of transmittal to the director by Prof. Lester F. Ward, p. 11, verso blank; editor’s preface, pp. 13-18; introduction, pp. 19-22; text, pp. 23-256; half-title, “Plates,” verso blank, pp. [257-258]; half-title, “Plate I,” verso explanation of same, pp. [259]-260 (followed by plate I); half title, “Plate II,” verso explanation of same, pp. [261]-262 (followed by plate II); etc., consecutively to “Plate LXVI,” verso explanation of same, pp. [389]-390 (followed by plate LXVI); index, pp. 391-400. 4°. Plates 1-LXVI.
CONTENTS OF MONOGRAPH XVII

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>11</td>
</tr>
<tr>
<td>Editor's preface</td>
<td>13</td>
</tr>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Description of species</td>
<td>23</td>
</tr>
</tbody>
</table>

Cryptogamia

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>23</td>
</tr>
<tr>
<td>Pyrenomycetes</td>
<td>23</td>
</tr>
<tr>
<td>Ferns</td>
<td>24</td>
</tr>
<tr>
<td>Polypodiaceae</td>
<td>24</td>
</tr>
</tbody>
</table>

Phanerogamia

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnospermae</td>
<td>26</td>
</tr>
<tr>
<td>Cypadaceae</td>
<td>25</td>
</tr>
<tr>
<td>Coniferae</td>
<td>32</td>
</tr>
<tr>
<td>Coniferae of uncertain relation</td>
<td>36</td>
</tr>
</tbody>
</table>

Monocotyledones

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramineae</td>
<td>37</td>
</tr>
<tr>
<td>Alismaceae</td>
<td>37</td>
</tr>
<tr>
<td>Araceae</td>
<td>38</td>
</tr>
<tr>
<td>Palmae</td>
<td>39</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>40</td>
</tr>
<tr>
<td>Dioscoreaceae</td>
<td>41</td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td>41</td>
</tr>
</tbody>
</table>

Dicotyledones

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicinaceae</td>
<td>42</td>
</tr>
<tr>
<td>Cupuliferae</td>
<td>51</td>
</tr>
<tr>
<td>Myricaceae</td>
<td>66</td>
</tr>
<tr>
<td>Juglandaceae</td>
<td>68</td>
</tr>
<tr>
<td>Platanaceae</td>
<td>72</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>76</td>
</tr>
<tr>
<td>Balanophoraceae</td>
<td>87</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>89</td>
</tr>
<tr>
<td>Laurinaceae</td>
<td>91</td>
</tr>
<tr>
<td>Monimiaceae</td>
<td>108</td>
</tr>
<tr>
<td>Aristolochiaceae</td>
<td>109</td>
</tr>
<tr>
<td>Ebenaceae</td>
<td>109</td>
</tr>
<tr>
<td>Sapotaceae</td>
<td>113</td>
</tr>
<tr>
<td>Myristinaceae</td>
<td>114</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>115</td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td>119</td>
</tr>
<tr>
<td>Cornaceae</td>
<td>125</td>
</tr>
<tr>
<td>Araucinaceae</td>
<td>127</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>136</td>
</tr>
<tr>
<td>Bamanueliaceae</td>
<td>139</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>142</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>145</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>154</td>
</tr>
<tr>
<td>Aceraceae</td>
<td>156</td>
</tr>
<tr>
<td>Sapindaceae</td>
<td>158</td>
</tr>
<tr>
<td>Ampelidaceae</td>
<td>159</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>165</td>
</tr>
<tr>
<td>Celastrinaceae</td>
<td>172</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>176</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>180</td>
</tr>
<tr>
<td>Sterculiaceae</td>
<td>182</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>186</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>198</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>212</td>
</tr>
</tbody>
</table>

Genera and species of uncertain relation

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspidiphylhum</td>
<td>212</td>
</tr>
<tr>
<td>Phyllites</td>
<td>213</td>
</tr>
<tr>
<td>Ptenostrobus</td>
<td>219</td>
</tr>
<tr>
<td>Nortensiskioidia</td>
<td>219</td>
</tr>
<tr>
<td>Carpites</td>
<td>220</td>
</tr>
</tbody>
</table>

Table of distribution

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of the Dakota group flora</td>
<td>222</td>
</tr>
</tbody>
</table>

Table of distribution

<table>
<thead>
<tr>
<th>Description of species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of the Dakota group flora</td>
<td>226</td>
</tr>
</tbody>
</table>
3,000 copies, the number required by the law relating to these monographs; bound in dark maroon cloth. Sold by the director of the survey at $1.10 a copy, cost price.

Documentary edition as follows:

52d congress, | 1st session. | House of representatives. | Mis. doc. | no. 60. | Department of the interior | Monographs | of the | United States geological survey | Volume xvii | [Seal of the department of the interior] |

Washington | government printing office | 1892

No cover; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title, contents, illustrations, letter of transmittal, and remainder of volume as described under the previous edition.

1,734 copies, the "usual number" edition; published in pursuance of a joint resolution approved July 7, 1882. Of these, a portion (about 600) were delivered unbound, as described; the remainder were printed later and bound in sheep as vol. 29 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

MONOGRAPH XVIII.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xviii | [Seal of the department of the interior] |

Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Gasteropoda and Cephalopoda | of the | Raritan clays and greensand marls | of | New Jersey | by | Robert Parr Whitfield | [Survey design] |

Washington | government printing office | 1892

Sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp. 7-8; letter of transmittal to the director by Geo. H. Cook, state geologist of New Jersey, p. [9], verso blank; letter of transmittal to Professor Cook by the author, p. 11, verso blank; preliminary remarks by the author, pp. 13-15, verso blank; half-title "Gasteropoda," p. 17, verso blank; text, pp. 19-239, verso blank; half-title "Cephalopoda," p. 241, verso blank; text, pp. 243-295, verso blank; half-title "Plates," verso blank, pp. [297-298]; half-title "Plate i," verso explanation of same, pp. [299]-300 (followed by plate i); half title "Plate ii," verso explanation of same, pp. [301]-302 (followed by plate ii); etc. consecutively to half-title "Plate l," verso explanation of same, pp. [397]-398 (followed by plate l); index, pp. 399-402. 4°. Plates i-l; figs. 1 and 2.

CONTENTS OF MONOGRAPH XVIII. Page.
Letter of transmittal from Prof. Geo. H. Cook ... 9
Letter of transmittal from Prof. R. F. Whitfield .. 11
Preliminary remarks .. 13
Gasteropoda ... 17
Section I. Gasteropoda of the lower marl beds .. 19
II. Gasteropoda of the middle marl bed .. 172
III. Gasteropoda of the base of the upper marl bed 182
IV. Gasteropoda of the Eocene marls ... 190
Cephalopoda ... 241
Section V. Cephalopoda of the Cretaceous marls.. 243
VI. Cephalopoda of the Eocene marls .. 284
Classified lists of the Mollusca of the Cretaceous and Eocene formations............ 289
3,000 copies, the number required by law; bound in dark maroon cloth. Monograph xix is sold by the director of the survey at $1 a copy, the cost of its publication.

Documentary edition as follows:

No cover; general title as above on white paper; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. 1-5, verso blank; special title, contents, illustrations, letters of transmittal, and remainder of volume as described under the previous edition.

1,734 copies, the "usual number" edition; published in pursuance of a joint resolution approved July 7, 1882. Of these, about 600 were delivered unbound, as described; the remainder were printed later and bound in sheep as vol. 30 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

MONOGRAPH XIX.

General title: Department of interior Monographs of the United States geological survey Volume xix [Seal of the department of the interior] Washington government printing office 1892

Sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. 1-5, verso blank; special title as above, verso blank; general title as above, verso blank; contents, pp. v-vii, verso blank; illustrations, pp. ix-xii; letter of transmittal by Van Hise, pp. xiii-xv, verso blank; introduction, pp. 1-4; text, pp. 5-474; half-title, "Plate xiv," p. 475; explanation of plate xiv, p. 476; followed by the plate; half-title, "Plate xv," p. 477; explanation of plate xv, p. 478, followed by the plate; etc. consecutively with half-titles on odd pages and explanations of plates on even pages to "Plate xxxvii," p. 521; explanation of plate xxxvii, p. 522, followed by the plate; index, pp. 523-534. 4°. Plates i-xxxvii; figs. 1-12.

CONTENTS OF MONOGRAPH XIX.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.—Geological explorations and literature</td>
<td>5</td>
</tr>
<tr>
<td>II.—The southern complex</td>
<td>103</td>
</tr>
<tr>
<td>III.—The cherty limestone</td>
<td>127</td>
</tr>
<tr>
<td>IV.—The quartz-slate member</td>
<td>143</td>
</tr>
<tr>
<td>V.—The iron-bearing member</td>
<td>182</td>
</tr>
<tr>
<td>VI.—The upper slate member</td>
<td>206</td>
</tr>
<tr>
<td>VII.—The eruptives</td>
<td>346</td>
</tr>
<tr>
<td>VIII.—The eastern area</td>
<td>369</td>
</tr>
<tr>
<td>IX.—General geology of the district</td>
<td>437</td>
</tr>
</tbody>
</table>

3,000 copies, the number required by the law relating to these monographs; bound in dark maroon cloth.
At this writing monograph XIX is not yet out of press; the foregoing description, therefore, which has been made up from final page proof, should be taken cum grano salis. The documentary edition has not, of course, been issued, but I understand the sheep portion will constitute vol. 52 of the miscellaneous documents of the house of representatives for the first session of the fifty-second congress.

MONOGRAPH XX.

General title: Department of the interior | Monographs | of the | United States geological survey | Volume xx | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Geology | of the | Eureka district, Nevada | with an atlas | by | Arnold Hague | [Survey design] |
Washington | government printing office | 1892

Sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. vi, verso blank; illustrations, p. vii; atlas sheets, p. viii; letter of transmittal, p. [ix], verso blank; preface, pp. xi-xiv; outline of volume, pp. xv-xvii, verso blank; text, including appendixes A and B with half-titles, pp. 1-394; explanation of plate iii, pp. 395-396, followed by the plate; explanation of plate iv, p. 400, recto blank, followed by the plate; explanation of plate v, p. 402, recto blank, followed by the plate; explanation of plate vi, p. 404, recto blank, followed by the plate; explanation of plate vii, p. 406, recto blank, followed by the plate; explanation of plate viii, p. 408, recto blank, followed by the plate index, pp. 407-419. 4°. Plates i-viii; figs. 1-9.

CONTENTS OF MONOGRAPH XX.

<table>
<thead>
<tr>
<th>Outline of volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I.—General description</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter II.—Geological sketch of the Eureka district</td>
<td>1</td>
</tr>
<tr>
<td>Chapter III.—Cambrian and Silurian rocks</td>
<td>34</td>
</tr>
<tr>
<td>Chapter IV.—Devonian and Carboniferous rocks</td>
<td>63</td>
</tr>
<tr>
<td>Chapter V.—Descriptive geology</td>
<td>99</td>
</tr>
<tr>
<td>Chapter VI.—General discussion of the Paleozoic rocks</td>
<td>175</td>
</tr>
<tr>
<td>Chapter VII.—Pre-Tertiary igneous rocks</td>
<td>218</td>
</tr>
<tr>
<td>Chapter VIII.—Tertiary and post-Tertiary volcanic rocks</td>
<td>230</td>
</tr>
<tr>
<td>Chapter IX.—Ore deposits</td>
<td>292</td>
</tr>
<tr>
<td>Appendix A.—Systematic lists of fossils of each geologic horizon. By C. D. Walcott</td>
<td>317</td>
</tr>
<tr>
<td>Appendix B.—Microscopical petrography of the eruptive rocks. By J. P. Iddings</td>
<td>335</td>
</tr>
</tbody>
</table>

Accompanied by an atlas, as follows:

Department of the interior | United States geological survey | Clarence King, director | Atlas | to accompany the monograph | on the | geology | of the | Eureka district | Nevada | by | Arnold Hague | [Survey design] |

13 sheets, folio (first four single, last nine double), laid loosely inside a granite paper cover bearing title as given above.

The title of this atlas bears Mr. King's name because the monograph was projected and work on it begun under his directorship, and it bears the date 1883 because it was engraved at that time, although the atlas was not issued until the text was ready, in 1892.
CONTENTS OF ATLAS TO MONOGRAPH XX.

<table>
<thead>
<tr>
<th>Sheet</th>
<th>Title (as on cover)</th>
<th>List of atlas sheets and legend</th>
<th>Topographical and index map of the Eureka district</th>
<th>Geological map of the Eureka district</th>
<th>Geological map of the northwest sheet</th>
<th>Geological map of the northeast sheet</th>
<th>Geological map of the northwest-central sheet</th>
<th>Geological map of the northeast-central sheet</th>
<th>Geological map of the southwest-central sheet</th>
<th>Geological map of the southeast-central sheet</th>
<th>Geological map of the southwest sheet</th>
<th>Geological map of the southeast sheet</th>
<th>Geological cross-sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>XI</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Topographical and index map of the Eureka district</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Geological map of the Eureka district</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Geological map of the northwest sheet</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Geological map of the northeast sheet</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Geological map of the northwest-central sheet</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Geological map of the northeast-central sheet</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Geological map of the southwest-central sheet</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Geological map of the southeast-central sheet</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>Geological map of the southwest sheet</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>Geological map of the southeast sheet</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>Geological cross-sections</td>
<td></td>
</tr>
</tbody>
</table>

3,000 copies of both text and atlas published, the number required by law; text bound in dark maroon cloth; atlas sheets in paper cover. Monograph xx is sold by the director of the survey at $5.25 for both parts, the cost of their publication.

Documentary edition as follows:

52d congress, 1st session. | House of representatives. | Mis. doc. | no 343. | Department of the interior | Monographs | of the | United States geological survey | Volume xx | [Survey design] |

Washington | government printing office | 1892

No cover; general title as above, verso blank; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; then follow special title, contents, and remainder of volume as collated for the other edition.

The atlas furnished with this edition is identical in title and contents with that accompanying the other edition, the distinguishing mark being that in this edition the atlas cover bears in its upper right corner a pasted slip on which is printed:

52d congress, 1st session. | House of representatives. | Mis. doc. no. 343.

1,734 copies, the "usual number" edition, published under authority of a joint resolution approved July 7, 1882. Of these, a portion (about 600) were issued unbound, as described; the remainder were printed later and bound in sheep as vol. 53 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."
BULLETINS.

BULLETIN 1.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no.1 | On hypersthene-andesite and on triclinic pyroxene in augitic rocks, by Whitman Cross; with a geological sketch of Buffalo peaks, Colorado, by S. F. Emmons, geologist-in-charge of Rocky mountain division |

Washington | government printing office | 1883

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 1 | [Seal of the department of the interior] |

Washington | government printing office | 1883

Special title: United States geological survey | J. W. Powell director | On hypersthene-andesite | and on triclinic pyroxene in augitic rocks | by Whitman Cross | with a geological sketch of Buffalo peaks Colorado | by S. F. Emmons | geologist in charge of Rocky mountain division | [Survey design] |

Washington | government printing office | 1883

Paper cover bearing title as above; advertisement of the publications of the survey, pp.1-2; general title as above, verso blank; special title as above, verso blank; letter of transmittal by Mr. Emmons to the director, p. “7-8,” verso blank; contents and illustrations, p. “9-10,” verso blank; “Errors in bulletin 1, United States geological survey,” verso blank, 11.; introductory sketch by Emmons, pp. 11-17, verso blank; text by Cross, pp. 19-38; index, pp. 39-42; “notice” (as to numbering and binding) on outside of back cover; 8°. Plates I and II. A second (volume) pagination, in parentheses, is carried through the text at the foot of the pages. In this (the first) bulletin it runs uniform with the regular pagination; and it is explained by the following extract from the advertisement:

“The Bulletins will each contain but one paper, and be complete in itself. They will, however, be numbered in a continuous series, and will in time be united into volumes of convenient size. To facilitate this each Bulletin will have two paginations, one proper to itself at the top, and at the bottom, one which belongs to it in the volume.”

CONTENTS OF BULLETIN 1.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal ..</td>
</tr>
<tr>
<td>Introductory geological sketch of Buffalo peaks, by S. F. Emmons ..</td>
</tr>
<tr>
<td>On hypersthene-andesite and on triclinic pyroxene in augitic rocks, by Whitman Cross</td>
</tr>
<tr>
<td>Chapter I.—Hypersthene-andesite from Buffalo peaks, Colorado ..</td>
</tr>
<tr>
<td>Description of rock ..</td>
</tr>
<tr>
<td>Triclinic pyroxene in other rocks</td>
</tr>
<tr>
<td>Chemical composition of the rock</td>
</tr>
<tr>
<td>Isolation and analysis of hypersthene</td>
</tr>
</tbody>
</table>

127
Chapter II.—Rhombic pyroxene in other andesites

Previous observations of rhombic pyroxene in augite-andesites.. 31
Rhombic pyroxene in diabasic rocks.. 33
Rhombic pyroxene in hornblende-andesite.. 35

Classification of andesitic rocks .. 36

Results .. 36

3,200 copies published—3,000 required by the law relating to these bulletins, and 200 extras ordered by the authors. The selling price of this bulletin is 10 cents.

Documentary edition of bulletin 1 as follows:

Outside title as above, on white paper; advertisement, general title, special title, and remainder of collation as in the other edition.

1,900 copies, the “usual number” edition; published by authority of a joint resolution approved July 1, 1882. Of these, about 800 were delivered unbound, as described above; the remainder were printed later and bound in sheep as a part of vol. 1 of the “Miscellaneous documents of the house of representatives for the second session of the forty-seventh congress.”

This bulletin appears again in the documentary edition of vol. 1, description of which will be found infra between the descriptions of bulletins 6 and 7.

BULLETIN 2.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 2 | Gold and silver conversion tables, giving the coining values of troy ounces of fine metal, and the weights of fine metal represented by given sums of United States money | Washington | government printing office | 1883

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 2 | [Seal of the department of the interior] | Washington | government printing office | 1883

Special title: United States geological survey | J. W. Powell director | Gold and silver conversion tables, giving the coining values of troy ounces of fine metal, and the weights of fine metal represented by given sums of United States money, computed by Albert Williams, jr., chief of division of mining statistics and technology | [Survey design] | Washington | government printing office | 1883

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; the tables, pp. 5-8 (47-50 of the volume); notice as to numbering and binding, outside of back cover. 8°.

3,000 copies published, being the number required by the law relating to these bulletins. The selling price of this bulletin is 5 cents.
There is no documentary edition of this bulletin and subsequent ones separately. Bulletin 1 does appear separately in documentary form, but thereafter, seeing that several bulletins would appear within a year and that they were prepared for combination into volumes, it was concluded to issue a documentary edition of the volumes instead of one of each brochure. For description of the documentary edition of vol I, see infra between descriptions of bulletins 6 and 7.

BULLETIN 3.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 3 | On the fossil faunas of the upper Devonian along the meridian of 76° 30' from Tompkins county N. Y. | to Bradford county Pa. | Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 3 | [Seal of the department of the interior] | Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; text, pp. [5]-31 (55-81 of the volume) verso blank; index, pp. 33-36; notice as to numbering and binding, outside of back cover. 8°. 3,000 copies published, being the number required by the law relating to these bulletins. The price of this bulletin is 5 cents.

BULLETIN 4.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 4 | On Mesozoic fossils | Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | On | Mesozoic fossils | by | Charles A. White, m. d. | [Survey design] | Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; contents and illustrations, verso blank, 1 leaf; text, pp. [5]-17 (93-105 of the volume), verso blank; index, p. [19]; explanation of plate I, p. 20 (followed by the plate); explanation of plate II, p. 22, recto blank (followed by the plate); etc. even pages to 36, rectos blank, each followed by a plate; notice as to numbering and binding, outside of back cover. 8°. Plates 1-IX.

Bull. 100——9
Contents of Bulletin 4

Description of certain aberrant forms of the Chamides from the Cretaceous rocks of Texas	5
On a small collection of Mesozoic fossils obtained in Alaska by Mr. W. H. Dall, of the United States Coast Survey	10
On the Nautiloid, genus Enclimatoceras Hyatt, and a description of the type species	16

3,000 copies published, being the number required by the law relating to these bulletins. Price, 5 cents.

Bulletin 5

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 5 | A dictionary of altitudes in the United States |

Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 5 | [Seal of the department of the interior] |

Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | A | dictionary of altitudes | in | the United States | compiled by | Henry Gannett | chief geographer | [Survey design] |

Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; letter of transmittal, verso blank, 1 leaf; contents, pp. [7]-8; discussion of authorities, pp. [9]-16; abbreviations of names of railroads given as authorities, pp. [17]-24; the dictionary of altitudes, pp. [25]-325 (149-449 of the volume); notice as to numbering and binding, outside of back cover 8°.

Arranged alphabetically by states, and within each state by railroad stations. 3,500 copies—the 3,000 required by the law relating to these bulletins, and 500 additional ordered by the department. Price, 20 cents. See bulletin no. 76.

Bulletin 6

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 6 | Elevations in the dominion of Canada |

Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 6 | [Seal of the department of the interior] |

Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | Elevations | in the | dominion of Canada | by | J. W. Spencer | [Survey design] |

Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; letter of transmittal, verso blank, 1 leaf; preface, verso blank, 1 leaf; table of contents, verso blank, 1 leaf; the tables of elevations, pp. [11]-43 (461-493
of the volume), verso blank; title for vol. i (see below), verso blank; contents for vol. i, p. iii, verso blank; illustrations for vol. i, p. v, verso blank; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 6.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Profiles</td>
</tr>
<tr>
<td>Great western railway</td>
</tr>
<tr>
<td>Wellington, Grey and Bruce railway</td>
</tr>
<tr>
<td>Welland railway</td>
</tr>
<tr>
<td>Hamilton and northwestern railway</td>
</tr>
<tr>
<td>Northern railway</td>
</tr>
<tr>
<td>Toronto, Grey and Bruce railway</td>
</tr>
<tr>
<td>Credit valley railway</td>
</tr>
<tr>
<td>Canada southern railway</td>
</tr>
<tr>
<td>Grand trunk railway</td>
</tr>
<tr>
<td>Toronto and Nipissing railway</td>
</tr>
<tr>
<td>Midland railway</td>
</tr>
<tr>
<td>Ontario and Quebec railway</td>
</tr>
<tr>
<td>Saint Lawrence and Ottawa railway</td>
</tr>
<tr>
<td>Saint Lawrence river</td>
</tr>
<tr>
<td>Ottawa river and Rideau navigation co.</td>
</tr>
<tr>
<td>Quebec, Montreal, Ottawa and occidental railway</td>
</tr>
<tr>
<td>Alphabetic list of elevations in Canada, abstracted from the foregoing profiles.</td>
</tr>
</tbody>
</table>

3,000 copies, the number required by the law relating to these bulletins. Price, 5 cents.

Bulletins 1-6 form vol. i, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. i | [Seal of the department of the interior] | Washington | government printing office | 1884

Title as above, verso blank; contents of the volume, p. iii, verso blank; illustrations of the volume, p. v, verso blank; the six bulletins, pp. 1-493. 8°. 11 plates.

Documentary edition of vol. i, as follows:

Title as above on white paper; then follow title, contents, illustrations, and remainder of volume as in the other edition.

1,900 copies published, the “usual number” edition. A portion of the edition (about 800) were delivered unbound, as described above; the remainder were printed later and bound in sheep, in which form they constitute the greater part of vol. 36 of the “Miscellaneous documents of the house of representatives for the first session of the forty-eighth congress.”

BULLETIN 7.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 7 | A catalogue of geological maps relative to | North and South America | Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 7 | [Seal of the department of the interior] | Washington | government printing office | 1884
Special title: United States geological survey | J. W. Powell director | Mapoteca geologica americana | A catalogue of geological maps of America (North and South) | 1752-1881 | in geographic and chronologic order | by | Jules Marcou and John Belknap Marcou | [Survey design] |

Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; contractions used in references, pp. [7]-8; introduction (signed Jules Marcou, Cambridge, Mass., September, 1882), pp. 9-17, verso blank; the catalogue, pp. 19-171, a supplement beginning on p. 159; index of authors and places, pp. 173-184; notice as to numbering and binding, outside of back cover. 8°. A volume pagination, in parentheses, appears at the foot of the pages.

The catalogue is arranged geographically, from Arctic America to Tierra del Fuego, and chronologically under each division.

3,000 copies published, being the number required by the law relating to these bulletins. Price 10 cents.

BULLETIN 8.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 8 | On secondary enlargements of mineral fragments | in certain rocks. |

Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 8 | [Seal of the department of the interior] |

Washington | government printing office | 1884

Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; letter of transmittal by Irving to the director, p. 5, verso blank; contents, p. 7, verso blank; illustrations, pp. 9-10; text, pp. 11-52 (195-236 of the volume); index, pp. 53-56; notice as to numbering and binding, outside of back cover. 8°. Plates i-vi; figs. 1-4.

CONTENTS OF BULLETIN 8.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal................................. 5</td>
</tr>
<tr>
<td>Contents.. 7</td>
</tr>
<tr>
<td>List of illustrations................................. 9</td>
</tr>
<tr>
<td>Part I.—Enlargements of quartz fragments and genesis of quartzites, by R. D. Irving and C. R. Van Hise .. 11</td>
</tr>
<tr>
<td>General considerations............................. 11</td>
</tr>
<tr>
<td>List of localities of rocks examined, with brief descriptive notes........ 23</td>
</tr>
<tr>
<td>For Huronian rocks.................................... 23</td>
</tr>
<tr>
<td>In the typical Huronian of Lake Huron 23</td>
</tr>
<tr>
<td>In the iron-bearing series of Marquette, Mich. 27</td>
</tr>
<tr>
<td>In the iron-bearing series of the Penokee region of Wisconsin 30</td>
</tr>
<tr>
<td>In the slates of the Saint Louis river, Minnesota 32</td>
</tr>
<tr>
<td>In the quartzite formation of the Baraboo region of Wisconsin 33</td>
</tr>
</tbody>
</table>
Part I.—Enlargements of quartz fragments and genesis of quartzites—continued.

Page.

In the quartzite formation of southern Minnesota ... 34

In the Animikie series of northern Minnesota and the Thunder Bay region of lake Superior ... 35

In the folded schists of the national boundary line north of lake Superior ... 37

For Keweenawan sandstones .. 38

For Cambrian rocks.. 39

In the Grand cañon group of the Colorado river .. 39

In the Potsdam sandstone of the Mississippi valley .. 39

In the Eastern sandstone of lake Superior .. 40

In the Western sandstone of lake Superior .. 41

For Silurian rocks .. 41

In the saint Peter's sandstone of Wisconsin .. 41

In the Eureka quartzite of Nevada ... 42

For Devonian rocks.. 42

For Carboniferous rocks.. 43

For Triassic rocks ... 43

For Cretaceous rocks .. 43

Part II.—Enlargements of feldspar fragments in certain Keweenawan sandstones, by C. R. Van Hise ... 44

Part III.—Summary of general conclusions, by R. D. Irving ... 48

3,000 copies published, the number required by the law relating to these bulletins. Price 10 cents.

BULLETIN 9.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 9 | A report of work done in the Washington laboratory | during the fiscal year 1883-'84 |

Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 9 | [Seal of the department of the interior] | e

Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | A report of work done | in the | Washington laboratory | during the | fiscal year 1883-'84 | F. W. Clark chief chemist | T. M. Chatard assistant chemist | [Survey design] |

Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; introductory, by Clarke, p. 7, verso blank; text, pp. 9-37 (249-277 of the volume), verso blank; index, pp. 39-40; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 9.

Page.

Introductory ... 7

Mineral, rock, and ore analyses .. 9

Gahnite, from Montgomery county, Maryland ... 9

Jade and pectolite, from Alaska .. 9

Saussurite, from St. Lasa county, California ... 10

Allanite, from Topsham, Maine .. 10

Beryl, from Greene county, Tennessee ... 11

Damourite, from Stoneham, Maine .. 11

Margarite ... 11

Cimolite, from Norway, Maine .. 12
Mineral, rock, and ore analysis—continued.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halloysite, from California</td>
<td>12</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>13</td>
</tr>
<tr>
<td>Alum rock, from Grant county, New Mexico</td>
<td>13</td>
</tr>
<tr>
<td>Scoriaceous Obsidian, from Mono valley, California</td>
<td>14</td>
</tr>
<tr>
<td>Powder, from Truckee river, Nevada</td>
<td>14</td>
</tr>
<tr>
<td>Marl, from Pyramid lake, Nevada</td>
<td>14</td>
</tr>
<tr>
<td>Clays, from Mill City, Nevada</td>
<td>15</td>
</tr>
<tr>
<td>Basalt, from Mount Thielsen, Oregon</td>
<td>15</td>
</tr>
<tr>
<td>Basalt, from Pit river, California</td>
<td>16</td>
</tr>
<tr>
<td>Dacites, from Lassen's peak, California</td>
<td>16</td>
</tr>
<tr>
<td>Limestones, from Moundsville, West Virginia</td>
<td>17</td>
</tr>
<tr>
<td>Magnetite, from near Bozeman, Montana</td>
<td>17</td>
</tr>
<tr>
<td>Limonite, from Canaan mountain, West Virginia</td>
<td>18</td>
</tr>
<tr>
<td>Coal, from Cranston, Rhode Island</td>
<td>18</td>
</tr>
</tbody>
</table>

Water analyses.

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyramid lake, Nevada</td>
<td>19</td>
</tr>
<tr>
<td>Winnemucca lake, Nevada</td>
<td>21</td>
</tr>
<tr>
<td>Walker lake, Nevada</td>
<td>22</td>
</tr>
<tr>
<td>Walker river, Nevada</td>
<td>23</td>
</tr>
<tr>
<td>Humboldt river, Nevada</td>
<td>23</td>
</tr>
<tr>
<td>Hot spring, foot of Granite mountain, Nevada</td>
<td>24</td>
</tr>
<tr>
<td>Hot spring, Hot spring station, Nevada</td>
<td>24</td>
</tr>
<tr>
<td>Larger Soda lake, Rattles, Nevada</td>
<td>25</td>
</tr>
<tr>
<td>Mono lake, California</td>
<td>26</td>
</tr>
<tr>
<td>Spring on Tufa crag in Mono lake, California</td>
<td>27</td>
</tr>
<tr>
<td>Warm spring, Mono basin, California</td>
<td>27</td>
</tr>
<tr>
<td>Boiling spring, Honey lake valley, California</td>
<td>28</td>
</tr>
<tr>
<td>Lake Tahoe, California</td>
<td>28</td>
</tr>
<tr>
<td>Abert lake, Oregon</td>
<td>28</td>
</tr>
<tr>
<td>Utah lake, Utah</td>
<td>29</td>
</tr>
<tr>
<td>City creek, Utah</td>
<td>29</td>
</tr>
<tr>
<td>Bear river, Utah</td>
<td>30</td>
</tr>
<tr>
<td>Utah hot springs</td>
<td>30</td>
</tr>
<tr>
<td>Livingston warm springs, Montana</td>
<td>31</td>
</tr>
<tr>
<td>Warm springs, Emigrant gulch, Montana</td>
<td>31</td>
</tr>
<tr>
<td>Helena hot springs, Montana</td>
<td>32</td>
</tr>
<tr>
<td>Mill creek cold springs, Montana</td>
<td>32</td>
</tr>
<tr>
<td>Virginia hot springs, Bath county, Virginia</td>
<td>33</td>
</tr>
</tbody>
</table>

The estimation of alkalies in silicates, by T. M. Chatard | 36 |

3,150 copies published—3,000 required by the law relating to these bulletins, and 150 extras ordered by the author. Price, 5 cents.
verso blank; letter of transmittal, p. 5, verso blank; contents and illustrations, p. 7, verso blank; text, pp. 9-51 (289-331 of the volume), verso blank; index, pp. 53-55; explanation of plate 1, p. 56 (plate I facing); explanations of the remaining plates, pp. 58, 60, 62, 64, 66, 68, 70, 72, and 74 (rectos blank, plates facing explanations); notice as to numbering and binding, outside of back cover. 8°. Plates i-x (ix being folded.)

CONTENTS OF BULLETIN 10.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal: Department of the interior</td>
</tr>
<tr>
<td>Review of the fauna of the saint'John formation, contained in the Hartt collection</td>
</tr>
<tr>
<td>Fauna of the Braintree argillites</td>
</tr>
<tr>
<td>On a new genus and species of Phyllopoda from the middle Cambrian</td>
</tr>
</tbody>
</table>

3,100 copies published—3,000 required by the law relating to these bulletins, and 100 extras ordered by the author. Price, 5 cents.

BULLETIN 11.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 11 | On the Quaternary and recent Mollusca of the | Great basin, with descriptions of new forms |
Washington | government printing office | 1884

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 11 | [Seal of the department of the interior] |
Washington | government printing office | 1884

Special title: United States geological survey | J. W. Powell director | On the | Quaternary and recent Mollusca of the | Great basin | with descriptions of new forms | by | R. Ellsworth Call | Introduced by a | sketch of the Quaternary lakes of the Great basin | by | G. K. Gilbert | [Survey design] |
Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; introductory sketch by Gilbert, pp. 9-12; text by Call, pp. 13-49 (367-403 of the volume), verso blank; index, pp. 51-56; plate explanations, pp. 58, 60, 62, 64, and 66 (rectos blank, plates facing the explanations); notice as to numbering and binding, outside of back cover. 8°. Plates i-vi.

CONTENTS OF BULLETIN 11.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory sketch of the Quaternary lakes of the Great basin, by G. K. Gilbert:</td>
</tr>
<tr>
<td>On the Quaternary and recent Mollusca of the Great basin, with descriptions of new forms, by R. Ellsworth Call</td>
</tr>
<tr>
<td>Systematic catalogue of the recent and Quaternary shells of the Great basin</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Catalogue</td>
</tr>
<tr>
<td>Lamellibranchiata</td>
</tr>
<tr>
<td>Gasteropoda</td>
</tr>
<tr>
<td>Ostracoda</td>
</tr>
<tr>
<td>Distribution and environment</td>
</tr>
<tr>
<td>Geographic and chronologic distribution</td>
</tr>
<tr>
<td>Depauperation versus salinity</td>
</tr>
<tr>
<td>Depauperation versus temperature</td>
</tr>
<tr>
<td>Hypsometric distribution</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Descriptions of new forms... 44

Valvatidae... 44

Valvata sincera var. utahensis.. 44

Rissoidae.. 45

Amnicola dalli.. 45

Limnidae .. 47

Radix ampla var. utahensis... 47

Limnophysa bonnevillensis... 49

3,200 copies published—3,000 required by the law relating to these bulletins, and 200 extras ordered by the author. Price, 5 cents.

BULLETIN 12.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 12 | A crystallographic study of the thinolite of lake Lahontan. | Washington | government printing office | 1884

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; letter of transmittal by G. K. Gilbert, geologist in charge of the division, to the director, p. 5, verso blank; contents and illustrations, p. 7, verso blank; text, pp. 9–28 (429–448 of the volume); index, p. "29–30," verso blank; explanations of plates, pp. 32 and 34 (rectos blank, plates facing the explanations); notice as to numbering and binding, outside of back cover. 8°. Plates i–iii; fig. 1.

CONTENTS OF BULLETIN 12.

Letter of transmittal... 5

Introductory statement... 9

Varieties of tufa... 10

Succession of tufa deposits.. 11

Crystallographic study

General aspect of the thinolite... 14

Thinolite from Pyramid lake.. 15

Examination of sections of crystals... 17

Thinolite from Mono lake.. 19

Thinolite from Walker lake and from Black rock and Smoke creek deserts.. 20

Original crystalline form of the thinolite.. 20

Chemical nature of the original mineral... 22

Relation of the thinolite to the so-called Gaylussite pseudomorphs of Sangerhausen and other localities... 25

3,100 copies published—3,000 required by the law relating to these bulletins, and 100 extras ordered by the author. Price, 5 cents.

BULLETIN 13.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 13 | Boundaries of the United States
and of the several states and territories, with a historical sketch of the territorial changes.

Washington government printing office 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 13 | [Seal of the department of the interior]

Washington government printing office 1885

Special title: United States geological survey | J. W. Powell director | Boundaries | of | the United States | and of the | several states and territories | with a | historical sketch of the territorial changes | by | Henry Gannett | chief geographer | [Survey design]

Washington government printing office 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 1 unpaged leaf; general title as above, verso blank; special title as above, verso blank; letter of transmittal, p. 5, verso blank; contents, pp. 7-8; text, pp. 9-129 (465-585 of the volume), verso blank; index, pp. 131-135; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 13.

Boundaries of the United States and additions to its territory ... 9
Boundaries of the United States .. 9
Additions to the territory of the United States .. 19
Louisiana purchase .. 19
Florida .. 21
Texas .. 21
First Mexican cession .. 22
Gadsden purchase ... 22
Alaska .. 23

The public domain and an outline of the history of the changes made therein 24
Cessions by the states ... 24
Territory northwest of the river Ohio .. 27
Territory south of the river Ohio .. 29
Louisiana and the territory acquired from Mexico ... 30
Boundary lines of the states and territories (in usual geographical order, from Maine to California) .. 32

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 14.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 14 | On the physical characteristics of the iron-carbures | more particularly on the galvanic thermo-electric | and magnetic properties of wrought iron steel | and cast iron in different states of hardness | together with a physical diagram for | the classification of iron-carbures

Washington government printing office 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 14 | [Seal of the department of the interior]

Washington government printing office 1885

Special title: United States geological survey | J. W. Powell di-
The thermo-electric effect of magnetization

The nature of the phenomenon of temper, as observed in steel, discussed from an electrical standpoint.

The influence of hardness on the maximum of magnetization which thin cylindrical steel rods of different dimensions permanently retain.

CONTENTS OF BULLETIN 14.

Page

Introduction... 13

The relation between electrical conductivity and temperature in case of steel in different states of hardness, of wrought iron, and of cast iron.. 15

Steel.. 15

Wrought iron.. 20

Cast iron.. 22

Deductions.. 24

Addendum: Statement of a resistance method for the measurement of heat conductivity... 25

The conditions which in the case of steel essentially determine the efficacy of the operation of tempering; the measurement of the state of hardness of steel .. 28

Introductory remarks ... 28

Apparatus for imparting glass-hardness to steel......................... 29

Measurement of thermo-electric power.. 31

Measurement of electrical conductivity.. 36

The operation of sudden cooling. Glass-hardness.......................... 38

Behavior of hard steel rods annealed in hot oil baths.................. 40

On the bearing of the time of exposure on the efficacy of annealing.. 43

Behavior of hard steel annealed in vapor of boiling methyl alcohol (360°)... 47

Behavior of hard steel annealed in steam (100°)............................. 49

Behavior of hard steel annealed in vapor of boiling aniline (150°)...... 51

Behavior of hard steel annealed in molten lead (330°).................... 53

General discussion of the results of this annealing......................... 54

The effect of higher and of lower temperatures on the temper of steel originally annealed at a given intermediate temperature.. 57

Behavior of soft steel rods.. 60

The relation existing between the thermo-electric power and the specific resistance of steel.......................... 62

Sources of error.. 68

Concluding remarks.. 70

Addendum: On a simple method for the galvanic calibration of a wire.. 72

The nature of the phenomenon of temper, as observed in steel, discussed from an electrical standpoint, particularly in reference to the analogous behavior of malleable cast iron and of alloys of silver.. 76

Introduction... 76

Experiments with alloys.. 80

The general phenomenon of temper regarded from the chemical and from the mechanical standpoint.. 88

The phenomenon of glass-hardness discussed from the chemical and from the mechanical standpoint.. 98

Experiments with malleable cast iron... 100

The thermo-electric effect of magnetization.................................... 104

The influence of hardness on the maximum of magnetization which thin cylindrical steel rods of different dimensions permanently retain.. 111

Plan and purpose of the present experiments............................... 111

The material used.. 115

Method of magnetization... 118

Measurement of magnetic moment.. 120

Determination of the degree of hardness.. 121

Method of annealing... 123

Magnetic results for rods of large dimension ratio........................ 125

Results with rods of smaller dimensional ratio............................. 128
The influence of hardness on the maximum of magnetization, etc.—continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>136</td>
</tr>
<tr>
<td>Conclusion</td>
<td>148</td>
</tr>
<tr>
<td>Addendum: Density-effect of incipient annealing of hard steel</td>
<td>149</td>
</tr>
<tr>
<td>The tempering of steel considered in its bearing on the power of</td>
<td>151</td>
</tr>
<tr>
<td>magnetic retention, and on the conditions of magnetic stability of</td>
<td></td>
</tr>
<tr>
<td>this material</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>Retentiveness as regards variation of temperature</td>
<td>152</td>
</tr>
<tr>
<td>Magnetic retentiveness as regards the effects of percussion, etc</td>
<td>160</td>
</tr>
<tr>
<td>Addendum: Results of H. Wild, of St. Petersburg, with magnets</td>
<td>171</td>
</tr>
<tr>
<td>tempered and magnetized by the method proposed in this chapter</td>
<td></td>
</tr>
<tr>
<td>A physical definition of steel based on the electrical behavior of</td>
<td>173</td>
</tr>
<tr>
<td>iron with gradually increasing degrees of carburation</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>Wrought iron</td>
<td>176</td>
</tr>
<tr>
<td>Steel</td>
<td>177</td>
</tr>
<tr>
<td>Cast iron</td>
<td>178</td>
</tr>
<tr>
<td>Discussion</td>
<td>184</td>
</tr>
<tr>
<td>Commercial or impure iron-carburets</td>
<td>188</td>
</tr>
<tr>
<td>Final generalization</td>
<td>189</td>
</tr>
<tr>
<td>Brief summary of the principal data</td>
<td>194</td>
</tr>
<tr>
<td>Appendix—On the relation between the thermo-electric properties,</td>
<td>203</td>
</tr>
<tr>
<td>the specific resistance, and the hardness of steel (1879)</td>
<td></td>
</tr>
<tr>
<td>Introductory remarks</td>
<td>203</td>
</tr>
<tr>
<td>Apparatus for hardening thin steel wire</td>
<td>204</td>
</tr>
<tr>
<td>Methods of measuring the hardness of steel electrically</td>
<td>205</td>
</tr>
<tr>
<td>Determination of thermo-electric hardness. Apparatus</td>
<td>208</td>
</tr>
<tr>
<td>Determination of specific resistance</td>
<td>210</td>
</tr>
<tr>
<td>Experimental results</td>
<td>211</td>
</tr>
<tr>
<td>Hardness and thermo-electric properties of steel: deductions and</td>
<td>217</td>
</tr>
<tr>
<td>supplementary experiments</td>
<td></td>
</tr>
<tr>
<td>Hardness and specific resistance of steel: deductions</td>
<td>223</td>
</tr>
<tr>
<td>Remarks on the above considered as auxiliary to the determination</td>
<td>225</td>
</tr>
<tr>
<td>of the relation between hardness and magnetic moment</td>
<td></td>
</tr>
</tbody>
</table>

3,200 copies published—the 3,000 required by the law relating to these bulletins, and 200 extras ordered by the author. The latter have a leaf of dedication. Price, 15 cents. See bulletins 27 and 35.

Bulletins 7-14 form vol. II, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. II. | [Seal of the department of the interior] | Washington | government printing office | 1885

Title as above, verso blank; contents of the volume, p. iii, verso blank; illustrations of the volume, pp. v–vi; the eight bulletins, pp. 1–830. 8°. 25 plates and 39 figures.

Documentary edition of vol. II as follows:

Title as above on white paper; then follow contents, illustrations, and remainder of volume as in the other edition.

1,900 copies published, being the “usual number” edition. A portion of these (about 800) were delivered unbound, as described above; the remainder were printed later and bound in sheep, in which form they constitute the greater part of vol. 16 of the “Miscellaneous documents of the house of representatives for the second session of the forty-eighth congress.”
BULLETIN 15.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 15 | Notes on the Mesozoic and Cenozoic paleontology | of California |
Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 15. | [Seal of the department of the interior] |
Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | On the | Mesozoic and Cenozoic paleontology | of | California | by | Charles A. White m. d. | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; text, pp. 7-32; index, p. 33, verso blank; notice as to numbering and binding, verso of back cover. 8°.

CONTENTS OF BULLETIN 15.

General remarks... 7
The Chico-Téjon series.. 11
The Shasta group.. 18
Relations of the Shasta group to strata beyond the limits of California.. 22
Relations of the fauna of the auriferous slates to that of the Shasta group.. 24
The geological age of the Ancella-bearing strata of California.. 26
Certain Cretaceous strata which apparently belong between the Shasta and the Chico groups.. 27
Remarks on certain Californian fossils which have been identified with eastern species.. 27
On the separation of contemporaneous Cretaceous faunas in western North America.. 30
Conclusion.. 31

Index.. 33

3,100 copies published—3,000 required by the law relating to these bulletins, and 100 extras ordered by the author. Price, 5 cents.

BULLETIN 16.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 16 | On the higher Devonian faunas of Ontario | county, New York. |
Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 16 | [Seal of the department of the interior] |
Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | On | the higher Devonian faunas | of | Ontario county New York | by | John M. Clarke | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; letter of transmittal from Charles D. Walcott,
BULLETINS 15, 16, AND 17.

paleontologist, to the director, p. 5, verso blank; contents and illustrations, p. 7, verso blank; text, pp. 9-76 (43-110 of the volume); index, pp. 77-80; explanations of plates, pp. 82, 84, 86 (versos), rectos blank, each explanation facing its plate; notice as to numbering and binding, outside of back cover. 8°. Plates 1-111.

CONTENTS OF BULLETIN 16.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Introductory remarks</td>
</tr>
<tr>
<td>Petrographic and paleontologic characters of the Genesee beds</td>
</tr>
<tr>
<td>Review of the fossils of the Genesee shales of New York</td>
</tr>
<tr>
<td>Petrographic and paleontologic characters of the Naples beds</td>
</tr>
<tr>
<td>Review of fauna and flora of the Naples beds</td>
</tr>
<tr>
<td>Petrographic and paleontologic characters of the Portage beds</td>
</tr>
<tr>
<td>Fauna of Chemung beds at High point</td>
</tr>
</tbody>
</table>

3,100 copies published—3,000 required by the law relating to these bulletins, and 100 ordered by the author. Price, 5 cents.

BULLETIN 17.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 17 | On the development of crystallization in the igneous | rocks of Washoe Nevada with notes on | the geology of the district |

Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 17 | [Seal of the department of the interior] |

Washington | government printing office | 1885

Special title: United States geological survey | J.W.Powell director | On the | development of crystallization | in the | igneous rocks of Washoe Nevada | with | notes on the geology of the district | by | Arnold Hague and Joseph P. Iddings | [Survey design] |

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal by Arnold Hague to the director, p. 7, verso blank; text, pp. 9-41 (129-161 of the volume), verso blank; index, pp. 43-44; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 17.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Introductory</td>
</tr>
<tr>
<td>Diabase and augite-andesite</td>
</tr>
<tr>
<td>Sutro tunnel section</td>
</tr>
<tr>
<td>Granular diorite</td>
</tr>
<tr>
<td>Porphyritic diorite and earlier hornblende-andesite</td>
</tr>
<tr>
<td>Mica diorite and later hornblende-andesite</td>
</tr>
<tr>
<td>Quartz-porphyry, dacite, and rhyolite</td>
</tr>
<tr>
<td>Younger diabase, black dike, and basalt</td>
</tr>
<tr>
<td>Geological and chemical evidence</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

3,200 copies published—3,000 required by the law relating to these bulletins, and 200 extras ordered by the authors. Price, 5 cents.
BULLETIN 18.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 18 | On marine Eocene fresh water Miocene and other | fossil Mollusca of western North America |

Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 18 | [Seal of the department of the interior] |

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | On | marine Eocene fresh water Miocene | and other fossil Mollusca | of | western North America | by | Charles A. White m. d. |

[Survey design] |

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents and illustrations, p. 5; verso blank; text, pp. 7-19 (171-183 of the volume), verso blank; index, p. 21; explanation of plate i, p. 22 (facing plate i); explanation of plate ii, p. 24 (facing plate ii), recto blank; explanation of plate iii, p. 26 (facing plate iii), recto blank; notice as to numbering and binding, outside of back cover. 8°. Plates i-iii; figs. 1-3 and 3a.

3,050 copies published—3,000 required by the law relating to these bulletins, and 50 extras ordered by the author. Price, 5 cents.

CONTENTS OF BULLETIN 18.

Page.
The occurrence of Cardita planicosta Lamarck in western Oregon ... 7
Fossil Mollusca from the John Day group in eastern Oregon .. 10
Unioideae .. 13
Helicoideae ... 14
Supplementary notes on the non-marine fossil Mollusca of North America 17
Additions ... 17
Corrections .. 18
Index .. 21

BULLETIN 19.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 19 | Notes on the stratigraphy of California |

Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 19 | [Seal of the department of the interior] |

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | Notes | on the | stratigraphy of California | by | George F. Becker |

[Survey design] |

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso
BULLETINS 18, 19, AND 20.

blank; special title as above, verso blank; contents, p. 5, verso blank; text, pp. 7-25 (197-215 of the volume), verso blank; index, pp. 27-28; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 19.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory</td>
</tr>
<tr>
<td>Matamorphic rocks of the Coast ranges</td>
</tr>
<tr>
<td>Age of the metamorphic rocks of the Coast ranges</td>
</tr>
<tr>
<td>Nonconformity between the Knoxville beds and the Chico</td>
</tr>
<tr>
<td>Identity of the Mariposa and Knoxville beds</td>
</tr>
<tr>
<td>Relation of the Cascades to the Sierra and the Coast ranges of California</td>
</tr>
<tr>
<td>Other Mesozoic beds</td>
</tr>
<tr>
<td>Paleozoic rocks of California</td>
</tr>
<tr>
<td>The Coast ranges members of the western cordillera system</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

3,150 copies published—3,000 required by the law relating to these bulletins, and 150 extras ordered by the author. Price, 5 cents.

BULLETIN 20.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 20 | Contributions to the mineralogy of the | Rocky mountains |
Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 20 | [Seal of the department of the interior] |
Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell | director | Contributions | to the | mineralogy of the Rocky mountains | by | Whitman Cross and W. F. Hillebrand | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; letter of transmittal by S. F. Emmons, geologist in charge, to the director, p. 5, verso blank; contents and illustrations. pp. 7-9, verso blank; introductory remarks, pp. 11-12; text, pp. 13-109 (231-327 of the volume), verso blank; index, pp. 111-113; explanation of plate, p. 114 (facing the plate); notice as to numbering and binding, outside of back cover. 8°. Plate 1, consisting of 21 figures.

CONTENTS OF BULLETIN 20

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory remarks</td>
</tr>
<tr>
<td>L—Minerals from the basalt of Table mountain, Golden, Colorado, by Whitman Cross and W. F. Hillebrand</td>
</tr>
<tr>
<td>Description of Table mountain</td>
</tr>
<tr>
<td>Manner of occurrence of the minerals</td>
</tr>
<tr>
<td>Order of deposition</td>
</tr>
<tr>
<td>Zeolites. First group</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Laumontite</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Chemical composition</td>
</tr>
<tr>
<td>Mixed zeolites</td>
</tr>
<tr>
<td>General description</td>
</tr>
</tbody>
</table>
I.—Minerals from the basalt of Table mountain, Golden, Colorado, etc.—continued.

Zeolites—continued.

- Mixed zeolites—continued.
 - Chemical composition
 - Thomsonite spherules
 - Chemical identification
 - Zeolites. Second group
 - Stilbite. ("Deamit" German.)
 - General
 - Crystal form and optical properties
 - Analysis
 - Thomsonite
 - Other minerals
 - Thomsonite
 - Pachnolite
 - Thomsonite
 - Bole
 - Levynite
 - Mesolite
 - Natrolite
 - Scolocite
 - Levynite
 - Calcite

II.—Minerals from the neighborhood of Pike's peak, by Whitman Cross and W. F. Hillsbrand.

- General
 - List of species known
 - Mode of occurrence
 - Cryolite
 - Locality
 - Occurrence and association
 - Purely scientific value of the discovery
 - Recent literature of cryolite and its alteration products
 - Chemical composition
 - Twin structure
 - Chemical composition
 - Chemical composition
 - General description
 - Pachnolite
 - From the thin walls
 - From the bluish massive alteration product
 - Crystallographical determinations
 - Chemical investigation
 - Other forms of pachnolite
 - Thomsenolite
 - Occurrence and description
 - Ralstonite
 - Probable identification
III.—On the lustre exhibited by sanidine in certain rhyolites, by Whitman Cross

Sanidine in rhyolite from Chalk mountain

Sanidine in rhyolite from Ragged mountain

Previous description of lustre in feldspar

Lustre upon other sanidines

Conclusion

IV.—An unusual occurrence of topaz, by Whitman Cross

V.—Associated rare minerals from Utah, by W. F. Hillebrand

VI.—Miscellaneous mineral notes, by W. F. Hillebrand

BULLETIN 21.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no, 21 | The lignites of the great Sioux res-

Bul, 100——10
The lignites of the great Sioux reservation—a report on the region between the Grand and Moreau rivers Dakota.

Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 21 | [Seal of the department of the interior]

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | The lignites | of the | great Sioux reservation | a report on the region between the Grand | and Moreau rivers Dakota | by | Bailey Willis | [Survey design]

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; letter of transmittal, p. 5, verso blank; contents and illustrations, p. 7, verso blank; text, pp. 9-14 (341-346 of the volume); index, pp. 15-16. 8°. Plates i-v (iii being double and iv and v folded maps).

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

BULLETIN 22.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 22 | On new Cretaceous fossils from California | Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 22 | [Seal of the department of the interior]

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | On | new Cretaceous fossils | from | California | by | Charles A. White m. d. | [Survey design]

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents and illustrations, p. 5, verso blank; text pp. 7-14 (355-362 of the volume); plate explanations, pp. 14 [bis], 16, 18, 20, 22, (versos), rectos blank, each explanation facing its plate; index, p. 25, verso blank; notice as to numbering and binding, outside of back cover. 8°. Plates i-v.

CONTENTS OF BULLETIN 22.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General remarks</td>
</tr>
<tr>
<td>Chamidae</td>
</tr>
<tr>
<td>Trochidae</td>
</tr>
<tr>
<td>Neritidae</td>
</tr>
<tr>
<td>Cerithiidae</td>
</tr>
<tr>
<td>Soliriidae</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

3,050 copies published—3,000 required by the law relating to these bulletins, and 50 extras ordered by the author. Price, 5 cents.
BULLETIN 23.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 23 | Observations on the junction between the Eastern sandstone and the Keweenaw series on | Keweenaw point, | Lake Superior |

Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 23 | [Seal of the department of the interior] |

Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | Observations | on the | junction between the Eastern sandstone | and the | Keweenaw series | on | Keweenaw point, lake Superior | by | R. D. Irving and T. C. Chamberlin | [Survey design] |

Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp. 7-8; letter of transmittal by Irving to the director, p. 9, verso blank; text, pp. 11-119 (385-493 of the volume), verso blank; index pp. 121-124; title for vol. iii (see below), verso blank; contents for vol. iii, p. iii, verso blank; illustrations for vol. iii, pp. v-vii; notice as to numbering and binding, outside of back cover. 8°. Plates i-xvii; figs. 1-26.

CONTENTS OF BULLETIN 23.

PART I. LOCAL DESCRIPTIONS.

Page.

Introductory ... 11
Bite gris bay ... 12
Wall ravine ... 27
Saint Louis ravine ... 37
Douglas Houghten ravine .. 39
Torch lake quarry ... 49
Hungarian ravine ... 54
The contact at other points ... 63

PART II. DISCUSSION OF VIEWS; CONCLUSIONS.

The Jackson view ... 71
The Foster and Whitney view .. 73
The Agassiz view .. 86
The Rominger view ... 88
The Credner view .. 91
Conclusions of the authors .. 98

Index ... 121

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

Bulletins 15-23 form vol. iii, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. iii | [Seal of the department of the interior] |

Washington | government printing office | 1885

Title as above, verso blank; contents of the volume, p. iii, verso blank; illustrations of the volume, pp. v-vii, verso blank; the nine bulletins, pp. 1-498. 8°. 34 plates and 34 figures.
DOCUMENTARY EDITION OF VOL. III AS FOLLOWS:

Title as above on white paper, verso blank; contents, illustrations, and remainder of collation as in the other edition.

1,900 copies published, being the "usual number" edition. A portion of the edition (about 800 copies) were delivered unbound, as described above; the remainder were printed later and bound in sheep, in which form they constitute a portion of vol. 1 of the "Miscellaneous documents of the house of representatives for the first session of the forty-ninth congress."

BULLETIN 24.

Cover title: Department of the interior | Bulletin of the United States geological survey | no. 24 | List of marine Mollusca comprising the Quaternary fossils and recent forms from American localities between cape Hatteras and cape Roque including the Bermudas Washington | government printing office | 1885

General title: Department of the interior | Bulletin of the United States geological survey | no. 24 | [Seal of the department of the interior] Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell director | List of marine Mollusca comprising the Quaternary fossils and recent forms from American localities between cape Hatteras and cape Roque including the Bermudas by William Healey Dall [Survey design] Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. "5-6", verso blank; introductory, pp. 7-8; bibliography, pp. 9-17; abbreviations for localities, p. 18; list of marine Mollusca, pp. 19-336; notice as to numbering, binding, outside of back cover. 8°.

3,000 copies published, the number required by the law relating to these bulletins. Price, 25 cents.

BULLETIN 25.

Cover title: Department of the interior | Bulletin of the United States geological survey | no. 25 | The present technical condition of the steel industry of the United States Washington | government printing office | 1885

General title: Department of the interior | Bulletin of the United States geological survey | no. 25 | [Seal of the department of the interior] Washington | government printing office | 1885
BULLETINS 24, 25, AND 26. 149

Special title: United States geological survey | J. W. Powell director | The present technical condition | of the | steel industry | of the | United States | by | Phineas Barnes | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. [5], verso blank; letter of transmittal by Albert Williams, jr., geologist in charge, to the director, p. 7, verso blank; text, pp. {9\}-82 (345-418 of the volume); index, pp. 83-85; notice as to numbering and binding, verso of back cover. 8°.

CONTENTS OF BULLETIN 25.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Introductory</td>
</tr>
<tr>
<td>Raw material</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Silicon</td>
</tr>
<tr>
<td>Manganese</td>
</tr>
<tr>
<td>Sulphur</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Rare metals in combination</td>
</tr>
<tr>
<td>Processes</td>
</tr>
<tr>
<td>Crucible process</td>
</tr>
<tr>
<td>Bessemer process</td>
</tr>
<tr>
<td>Open-hearth process</td>
</tr>
<tr>
<td>Furnaces</td>
</tr>
<tr>
<td>Fuels</td>
</tr>
<tr>
<td>Refractories</td>
</tr>
<tr>
<td>Converting methods</td>
</tr>
<tr>
<td>Basic process</td>
</tr>
<tr>
<td>Apparatus</td>
</tr>
<tr>
<td>Steam machinery</td>
</tr>
<tr>
<td>Hydraulic machinery</td>
</tr>
<tr>
<td>Finishing machinery</td>
</tr>
<tr>
<td>Steel castings</td>
</tr>
<tr>
<td>Steel plates</td>
</tr>
<tr>
<td>General methods and requirements in testing</td>
</tr>
<tr>
<td>Recent applications of steel</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 26.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 26 | Copper smelting |
Washington | government printing office | 1885

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 26 | [Seal of the department of the interior] |
Washington | government printing office | 1885

Special title: United States geological survey | J. W. Powell, director | Copper smelting | by | Henry M. Howe | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank;
special title as above, verso blank; contents, pp. 5-7, verso blank; letter of transmittal by Albert Williams, jr., geologist in charge, to the director, p. 9, verso blank; text, pp. 11-104 (433-526 of the volume); index, pp. 105-107; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 26.

Letter of transmittal .. 9
Introduction ... 11

I.

Reverberatory method for sulphurized ores .. 15
1. Ore roasting .. 16
 Roasting in heaps or piles ... 16
 Roasting in stalls ... 18
 Kiln roasting .. 18
 Furnaces for fine ore .. 19
 Hasenclever and Helbig's .. 19
 Gerstenhöfer's ... 19
 Maletra's .. 19
 Spence's .. 20
 Revolving cylinders ... 21
 The Stetefeldt furnace ... 21
 Reverberatory furnaces ... 21
 Open reverberatories ... 21
 Muffles ... 24
 Mechanical reverberatories .. 24

Objects of the roasting ... 25
 a. Oxidation of the iron, and incidentally of the sulphur 25
 b. The expulsion of arsenic and antimony .. 25
 Pile and stall roasting .. 26
 Roasting in reverberatories .. 26
 Comparison of heap and reverberatory roasting .. 28

2. Smelting the roasted ore in reverberatories ... 28
 Furnace construction ... 28
 Fire box .. 28
 Fire bridges .. 29
 Binding .. 30
 Erection of binding .. 32
 The masonry .. 32
 The bottom or hearth ... 33
 Size and shape of hearth ... 34

Chimneys ... 35
 Draft .. 35
 Separate chimneys ... 35
 Central chimneys ... 36
 Shape ... 37
 Stability .. 38
 Iron vs. brick chimneys .. 38
 Linings .. 38
 Batter ... 38

Gas furnaces .. 39

Smelting operation .. 44
 The muffle ... 47
 The slag ... 47
 In general .. 47

Chemical reactions ... 53
 In general .. 53
 Arsenic and antimony ... 54

-

-
Reverberatory method for sulphureted ores—continued.

3. Roasting the first matte (coarse metal) ..54
 The aim ..54
 The operation ..56
4. Smelting roasted coarse metal for white metal ..58
 The aim ..58
 The operation ..60
 Chemical reactions ...61
4 a. Smelting roasted coarse metal for blue metal ...62
 The furnaces ..62
 The operation ..63
4 b. Roasting-smelting the raw blue metal for regulc and bottoms63
 The furnaces ..63
 The operation ..63
5. Roasting-smelting the raw white metal and regulc for blistered copper66
 The aim ..66
 The operation ..66
Classification of ores and slags ..70
Ores ..70
Slags ..72

II.

Reverberatory method for oxidized ores and native copper73
Roasting-smelting with carbon ...73
Smelting without carbon ..74
Comparison of the two methods ..74

III.

Shaft furnace process for sulphureted ores ..74
General plan ...74
1. Ore roasting ...76
2. Ore smelting ..76
 In general ...76
 The deoxidizing effect ...80
 The average temperature of the ore ...80
 The proportion of fuel to burden ..80
 The porosity of the fuel ...80
 The porosity of the ore ...80
 The intimacy of mixture ..80
 The basicity of the mixture ...80
 The fusibility of the mixture ...80
 The preponderance of iron oxide ...80
 Height vs. width ..81
 Sulphides ..82
 Arsenic and antimony ...82
 Volume of furnace ...83
 Raschotte furnaces ...85
 Disposition of crucible ...86
 Internal crucibles ..86
 Crucibles, partly internal, partly external ..87
 External crucibles ...87
 Water-jacketed vs. brick walls ..88
 Cast vs. wrought-iron jackets ..90
 Blast, tuyeres, etc ..91
 Hot blast ..92
 Products ..92
 Matte ...93
 Slag ...93
 Details of working ...94
 Mechanical charging ..94
 Changing tuyeres ..95
 Filter charging ..95
 Fine ore ...95
3. Roasting the first matte ..98
Shaft furnace process for sulphureted ores—continued.

4. Smelting the roasted first matte... 56
 Products.. 95
 Black copper... 98
 Matte... 98
 Slags.. 98

IV.

Shaft furnace process for oxidized ores and native copper.. 99

V.

Comparison of the reverberatory and shaft furnace methods.. 99
 Composition of charge.. 99
 Labor and fuel... 99
 Arsenic and antimony ... 100
 Technical skill... 101
 The first cost of construction.. 101
 Repairs.. 101
 The loss of copper.. 101
 Fines .. 101
 Salamanders ... 101
 Rapidity... 101
 Size of establishment... 102
 Bringing forward... 102

VI.

Résumé.. 102

ADDENDUM.

Matte roasting in reverberatory furnaces at the Oxford copper and sulphur works........ 10

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 27.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 27 | Work done in the division of chemistry and physics | mainly during the fiscal year 1884-'85 | Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 27 | [Seal of the department of the interior] | Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Report of work done | in the | division of chemistry and physics | mainly during the | fiscal year 1884-'85 | [Survey design] | Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; preface by F. W. Clarke, chief chemist, p. 7, verso blank; text, pp. 9-76 (539-606 of the volume); index, pp. 77-80; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 27.

Page

Preface.. 7
Topaz from Stoneham, Me.; by F. W. Clarke .. 9
On the separation of titanium and aluminium, with a note on the separation of titanium and iron; by F. A. Gooch.. 16
WABMAN. BULLETINS 27 AND 28. 153

Method of filtration by means of easily soluble and easily volatile filters; by F. A. Gooch	27
The relation between electrical resistance and density, when varying with the temper of steel; by C. Barus and V. Strouhal	30
The relation between time of exposure, temper-value, and color in oxide films on steel; by C. Barus and V. Strouhal. (See bulletins 14 and 35)	51

MISCELLANEOUS ANALYSES.

Minerals from Washington, D. C	62
Payalite from the Yellowstone park	63
Serpentine from Newburyport, Mass	63
Kaolin from Altam, S. C	63
Hornblende andesite from Bogusoff island, Alaska	63
Eruptive rocks from New Mexico	64
Dacito from Washoe, Nev	65
Rhyolite from Washoe, Nev	66
Blue Ohio sandstone	66
Sandstone from Stony point, Mich	66
Clays from Henry county, Illinois	66
Residuary clays from Wisconsin	67
Maritime soils from Massachusetts	68
Oolitic sand from Great salt lake	68
Two incrustations from Nevada	69
Marl from Wa Keeney, Kans	70
Incrustation from a gas-well, Armstrong county, Pennsylvania	70
Two porcelain clays from China	71
Ancient Mexican cement	71
Brown iron ore from Timonium, Md	72
Brown iron ore from Randolph county, West Virginia	73
Coal from Randolph county, West Virginia	73
Coal and limestone from Randolph county, West Virginia	74
Lignite from Turtle mountains, Dakota	74
Coal from Arizona	74
Water from Matthews' warm springs, Montana	75
Water from White sulphur springs, Montana	75
Water from near Santa Fé, N. Mex	75

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 28.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 28 | The gabbros and associated hornblende rocks | occurring in the neighborhood | of Baltimore, Md. | Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 28 | [Seal of the department of the interior] | Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | The gabbros and | associated hornblende rocks | occurring in the | neighborhood of Baltimore, Md. | by | George Huntington Williams, ph. d. | associate professor in the Johns Hopkins university. | [Survey design] | Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp.
CONTENTS OF BULLETIN 28.

Page
Introduction .. 9
Summary.. 11
The limits of the gabbro area near Baltimore and the general character of the rocks composing it. 13
Petrographical description of the hypersthene-gabbro .. 18
Petrographical description of the gabbro-diorite... 27
Genetic relations of the hypersthene-gabbro and the gabbro-diorite. 34
1. Geological relations of the gabbro and diorite to each other and to the surrounding rocks. 34
2. Chemical relations of the gabbro and diorite .. 37
3. Microscopical relations of the gabbro and diorite... 40
4. General conclusions... 45
The olivine-bronzite-gabbro, peridotites, and associated serpentines and amphibole rocks of the Baltimore region .. 50
Index... 75

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 29.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 29 | On the fresh-water invertebrates of the | North American Jurassic |
Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 29 | [Seal of the department of the interior] |
Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | On the | fresh-water invertebrates | of the | North American Jurassic | by | Charles A. White, m. d. | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; text, pp. 9-24 (697-712 of the volume); plate explanations, pp. 26, 30, 34, 38 (versos), rectos blank, each explanation facing its plate; index, p. 41, verso blank; notice as to numbering and binding, outside of back cover. 8°. Plates i-iv.

CONTENTS OF BULLETIN 29.

Page
General remarks.. 9
Description and citation of species... 14
Mollusca .. 15
Crustacea ... 23
Index.. 41

3,000 copies published, the number required by the law relating to these bulletins.
Price, 5 cents.
BULLETIN 30.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 30 | Second contribution to the studies of the Cambrian faunas of North America |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 30 | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Second contribution | to the | studies of the Cambrian faunas | of | North America | by | Charles Doolittle Walcott | [Survey design] |

Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents and note, p. 5, verso blank; illustrations, p. 7, verso blank; text, pp. 11-225 (737-951 of the volume); explanation of plate i, p. 236 (facing plate i); explanations of the remaining plates, pp. 238, 239, and every fourth page thereafter to and including 354 (versos), rectos blank, each explanation facing its plate; index, pp. 357-369, verso blank; title for vol. iv, verso blank; contents for vol. iv, p. iii, verso blank; illustrations for vol. iv, pp. v-vii, verso blank; notice as to numbering and binding, outside of back cover. 8°. Plates i-xxxm; figs. 1-10.

CONTENTS OF BULLETIN 30.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Introductory observations</td>
</tr>
<tr>
<td>* Summary of the strata and faunas referred to the middle Cambrian or Georgia horizon</td>
</tr>
<tr>
<td>On the use of the name Taconic ..</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>Description of the middle Cambrian fauna</td>
</tr>
<tr>
<td>Fucoidal remains, trails of annelids, etc.</td>
</tr>
<tr>
<td>Spongiae ..</td>
</tr>
<tr>
<td>Echinodermata</td>
</tr>
<tr>
<td>Brachiopoda</td>
</tr>
<tr>
<td>Lamellibranchiata</td>
</tr>
<tr>
<td>Gastropoda</td>
</tr>
<tr>
<td>Pteropoda</td>
</tr>
<tr>
<td>Pecichopoda</td>
</tr>
<tr>
<td>Description of a pteropod from the upper Cambrian or Potsdam horizon</td>
</tr>
<tr>
<td>Index ...</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 25 cents.

Bulletins 24-30 form vol. iv, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. iv | [Seal of the department of the interior] |

Washington | government printing office | 1886

Title as above, verso blank; contents, p. iii, verso blank; illustrations, pp. v-vii, verso blank; the seven bulletins, pp. 1-1095. 8°. 41 plates and 14 figures.

Documentary edition of vol. iv as follows:
156 PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY. [BULL. 100.

49th congress, | 2d session. | House of representatives. | Mis. doc. | no. 163. | Department of the interior | Bulletins | of the | United States | geological survey | Vol. iv | [Seal of the department of the interior]

Washington | government printing office | 1887

Title as above, verso blank; contents, illustrations, and remainder of collation as in the other edition.

1,734 copies, the "usual number," about 600 of which were delivered unbound; the remainder were printed later and bound in sheep, in which form they constitute a portion of volume 8 of the "Miscellaneous documents of the house of representatives for the second session of the forty-ninth congress."

BULLETIN 31.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 31 | Systematic review of our present knowledge of fossil insects, including myriapods and arachnids |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 31 | [Seal of the department of the interior]

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Systematic review | of our | present knowledge of fossil insects | including | myriapods and arachnids | by | Samuel Hubbard Scudder | [Survey design]

Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; letter of transmittal, p. 7, verso blank; text, pp. 9-113, verso blank; index of names, pp. 115-128; notice as to numbering and binding, outside of back cover; 8°. See bulletin no. 71.

CONTENTS OF BULLETIN 31.

Letter of transmittal	.. 7
Myriapoda	.. 9
Bibliography	.. 9
Characteristics and phylogeny	.. 9
Table showing geological distribution	.. 13
1. Order Protosyngnathina Scudder	.. 13
2. Order Chilopoda Latreille	.. 14
3. Order Archipolypoda Scudder	.. 15
4. Order Diplopoda Gervais	.. 17
Arachnida	.. 19
Bibliography	.. 19
Characteristics and geological history	.. 19
Table showing geological distribution	.. 22
1. Order Acari Leach	.. 22
2. Order Chelomethi Thorell	.. 23
3. Order Anthropomarti Karsch	.. 23
4. Order Pedipalpi Latreille	.. 25
5. Order Scorpiones Thorell	.. 26
6. Order Opiliones Sundevall	.. 29
7. Order Araneae Sundevall	.. 29
Insects

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics and development</td>
<td>34</td>
</tr>
<tr>
<td>A. Paleodictyoptera Goldenberg</td>
<td>36</td>
</tr>
<tr>
<td>Bibliography</td>
<td>36</td>
</tr>
<tr>
<td>1. Section Orthopteroidea Scudder</td>
<td>38</td>
</tr>
<tr>
<td>2. Section Neuropteroidea Scudder</td>
<td>41</td>
</tr>
<tr>
<td>3. Section Hemipteroidea Scudder</td>
<td>45</td>
</tr>
<tr>
<td>4. Section Coleopteroidea Scudder</td>
<td>45</td>
</tr>
<tr>
<td>B. Heterometabola Packard</td>
<td>49</td>
</tr>
<tr>
<td>1. Order Orthoptera Olivier</td>
<td>46</td>
</tr>
<tr>
<td>Bibliography</td>
<td>46</td>
</tr>
<tr>
<td>2. Order Neuroptera Linné</td>
<td>51</td>
</tr>
<tr>
<td>Bibliography</td>
<td>51</td>
</tr>
<tr>
<td>3. Order Hemiptera Linné</td>
<td>58</td>
</tr>
<tr>
<td>Bibliography</td>
<td>58</td>
</tr>
<tr>
<td>4. Order Coleoptera Linné</td>
<td>65</td>
</tr>
<tr>
<td>Bibliography</td>
<td>65</td>
</tr>
<tr>
<td>C. Metabola Packard</td>
<td>85</td>
</tr>
<tr>
<td>5. Order Diptera Linné</td>
<td>85</td>
</tr>
<tr>
<td>Bibliography</td>
<td>85</td>
</tr>
<tr>
<td>6. Order Lepidoptera Linné</td>
<td>94</td>
</tr>
<tr>
<td>Bibliography</td>
<td>94</td>
</tr>
<tr>
<td>7. Order Hymenoptera Linné</td>
<td>96</td>
</tr>
<tr>
<td>Bibliography</td>
<td>96</td>
</tr>
</tbody>
</table>

History and distribution of fossil insects

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and distribution of fossil insects</td>
<td>102</td>
</tr>
<tr>
<td>Tables showing the geological distribution of insects</td>
<td>109</td>
</tr>
<tr>
<td>Table of comparative distribution of extinct and existing orders</td>
<td>111</td>
</tr>
<tr>
<td>Comparative histories of Myriapoda, Arachnida, and Hexapoda</td>
<td>111</td>
</tr>
<tr>
<td>Table indicating the chronological range of presumed ancestral and extinct stocks</td>
<td>113</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 32.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 32 | Mineral springs of the United States | Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 32 | [Seal of the department of the interior] | Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Lists and analyses | of the | mineral springs | of the | United States | (a preliminary study) | by | Albert C. Peale, m. d. | [Survey design] | Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–8; text, pp. 9–220 (137–348 of the volume); index, pp. 221–235, verso blank; notice as to numbering and binding, outside of back cover. 8°.

Arranged geographically by states, and under each state alphabetically by names of springs,
3,650 copies published—3,000 required by the law relating to these bulletins, 150 extras ordered by the author, and 500 extras ordered by the department for gratuitous distribution. Price, 20 cents.

BULLETIN 33.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 33 | Notes on the geology of northern California |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 33 | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Notes | on the | geology | of | northern California | by | J. S. Diller | [Survey design] |

Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal by C. E. Dutton to the director, p. 7, verso blank; text, pp. 9-21 (373-385 of the volume), verso blank; index, p. [23], verso blank; notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 33.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Introductory</td>
</tr>
<tr>
<td>General topographic divisions of northern California and Oregon</td>
</tr>
<tr>
<td>Character and distribution of the carboniferous limestone</td>
</tr>
<tr>
<td>Structure of the Sierra Nevada range</td>
</tr>
<tr>
<td>Age of the faulting of the Sierra Nevada range</td>
</tr>
<tr>
<td>Age of the auriferous slates</td>
</tr>
<tr>
<td>General distribution of the metamorphic, volcanic, and Cretaceous rocks</td>
</tr>
<tr>
<td>Relation of the Sierra, Coast, and Cascade ranges</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

BULLETIN 34.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 34 | On the relation of the Laramie Molluscan fauna | to that of the succeeding fresh-water | Eocene and other groups |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 34 | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | On the relation | of | the | Laramie Molluscan fauna | to that of
the succeeding fresh-water Eocene and other groups by Charles A. White, m. d. [Survey design] | Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; text, pp. 9-32 (397-420 of the volume); half-title "Plate i," p. 33; explanation of plate i, p. 34 (the plate facing); half-title "Plate ii," p. 37; explanation of plate ii, p. 38 (the plate facing); half-title "Plate iii," p. 41; explanation of plate iii, p. 42 (the plate facing); half-title "Plate iv," p. 45; explanation of plate iv, p. 46 (the plate facing); half-title "Plate v," p. 49; explanation of plate v, p. 50 (the plate facing); index, pp. 53-54; notice as to numbering and binding, outside of back cover. 8°. Plates i-v.

CONTENTS OF BULLETIN 34.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General remarks ...</td>
</tr>
<tr>
<td>Description of species</td>
</tr>
<tr>
<td>Mollusca ..</td>
</tr>
<tr>
<td>Unionida ...</td>
</tr>
<tr>
<td>Cyrenida ..</td>
</tr>
<tr>
<td>Limnida ...</td>
</tr>
<tr>
<td>Physida ...</td>
</tr>
<tr>
<td>Ancylida ...</td>
</tr>
<tr>
<td>Holida ...</td>
</tr>
<tr>
<td>Pupida ...</td>
</tr>
<tr>
<td>Cerithiida ..</td>
</tr>
<tr>
<td>Bisida ...</td>
</tr>
<tr>
<td>Viviida ...</td>
</tr>
<tr>
<td>Crustacea ..</td>
</tr>
<tr>
<td>Cyprida ...</td>
</tr>
<tr>
<td>Index ...</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 35.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 35 | Physical properties of the iron-carburets |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 35 | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Physical properties | of | the iron-carburets | third paper | (preceding papers on the iron-carburets in bulletins 14 and 27) | by | Carl Barus and Vincent Strouhal | [Survey design] |

Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9, verso blank; text, pp. 11-60 (453-562 of the volume); index, pp. 61-62; notice as to numbering and binding, verso of back cover. 8°, Figures 1-10.
CONTENTS OF BULLETIN 35.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal ..</td>
</tr>
<tr>
<td>The internal structure of tempered steel</td>
</tr>
<tr>
<td>Introduction ...</td>
</tr>
<tr>
<td>Apparatus ..</td>
</tr>
<tr>
<td>Experimental results ...</td>
</tr>
<tr>
<td>Discussion ...</td>
</tr>
<tr>
<td>Conclusion ...</td>
</tr>
<tr>
<td>The color effect produced by slow oxidation of iron-carburets</td>
</tr>
<tr>
<td>Data for high temperature ...</td>
</tr>
<tr>
<td>Data for low temperature ..</td>
</tr>
<tr>
<td>Index ..</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 36.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 36 | Subsidence of fine solid particles in liquids |

Washington | government printing office | 1886

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 36 | [Seal of the department of the interior] |

Washington | government printing office | 1886

Special title: United States geological survey | J. W. Powell, director | Subsidence | of | fine solid particles in liquids | by | Carl Barus |

*[Survey design] |

Washington | government printing office | 1886

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9, verso blank; text, pp. 11-51 (515-555 of the volume), verso blank; index, pp. 53-54; title for vol. v, verso blank; contents for vol. v, p. iii, verso blank; illustrations for vol. v, p. v, verso blank; notice as to numbering and binding, outside of back cover. 8°. Figures 1-4. See bulletin 60.

CONTENTS OF BULLETIN 36.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General relations of the phenomenon of subsidence</td>
</tr>
<tr>
<td>Introductory ...</td>
</tr>
<tr>
<td>General inferences ..</td>
</tr>
<tr>
<td>Analogies ..</td>
</tr>
<tr>
<td>The physical variables ..</td>
</tr>
<tr>
<td>Stratification ...</td>
</tr>
<tr>
<td>Analogies ..</td>
</tr>
<tr>
<td>Descriptive equation ..</td>
</tr>
<tr>
<td>Effect of density of mixture ...</td>
</tr>
<tr>
<td>Sharp demarkation ..</td>
</tr>
<tr>
<td>Temperature ...</td>
</tr>
<tr>
<td>Chemical effect ..</td>
</tr>
<tr>
<td>Physical effect ..</td>
</tr>
<tr>
<td>Precipitants ..</td>
</tr>
<tr>
<td>Chemical effect ..</td>
</tr>
<tr>
<td>Physical effect ..</td>
</tr>
<tr>
<td>Experimental results ..</td>
</tr>
<tr>
<td>Discussion ..</td>
</tr>
</tbody>
</table>
General relations of the phenomenon of subsidence—continued.

Mechanical relations... 33
Electrical relations.. 35
Particles of larger dimensions... 36
Subsidence and viscosity.. 38

Conclusion.. 39

The dependence of rate of subsidence on order of surface, concentration, and turbidity 41
Experimental results.. 41
Introductory.. 41
Data... 42
Deductions.. 48
Surfaces of different orders... 48
Concentration.. 49
Turbidity... 50
Sedimentation battery.. 50

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

Bulletins 31–36 form vol. v, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. v | [Seal of the department of the interior] | Washington | government printing office | 1887
Title as above, verso blank; contents, p. iii, verso blank; illustrations, p. v, verso blank; the six bulletins, pp. 1-558. 8°. 5 plates and 14 figures.

Documentary edition of vol. v as follows:

Title as above, verso blank; contents, illustrations, etc., as in the other edition.
1,734 copies published, the “usual number,” about 600 of which were delivered unbound; the remainder were printed later and bound in sheep as a portion of vol. 8 of the “Miscellaneous documents of the House of representatives for the second session of the forty-ninth Congress.”

BULLETIN 37.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 37 | Types of the Laramie flora |
Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 37 | [Seal of the department of the interior] |
Washington | government printing office | 1887

Special title: United States geological survey | J. W. Powell, director | Types | of the | Laramie flora | by | Lester F. Ward | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, pp. 7-8; text, pp. 9-115, verso blank; half-title, “Plates,” p. 117, verso blank; (plates 1-LVII, all folded;) index, pp. 347-354; notice as to numbering and binding, outside of back cover. 8°. Plates 1-LVII. The hiatus of 228 pages in the pagination (from 119 to Bull. 100——11.
(Bull. 100, 346 inclusive) was evidently an allowance by the printer for 57 leaves of plates and 57 accompanying leaves of plate explanations, but the plates were not provided with explanations on separate leaves.

CONTENTS OF BULLETIN 37.

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory remarks</td>
<td>9</td>
</tr>
<tr>
<td>Description of the species</td>
<td>13</td>
</tr>
</tbody>
</table>

CRYPTOGAMS.

- **Algæ** | Page 13
- **Fucus** | Page 13
- **Spiraxis** | Page 14

PHANEROGAMS.

- **Gymnosperms** | Page 14
 - **Conifera** | Page 14
 - **Ginkgo** | Page 14
 - **Sequoia** | Page 16

- **Angiosperms** | Page 16
 - **Monocotyledons** | Page 16
 - **Graminææ** | Page 16
 - **Lemnaceæ** | Page 17
 - **Typhaceæ** | Page 17
 - **Sparganium** | Page 17
 - **Dicotyledons** | Page 18
 - **Apetalæ** | Page 18
 - **Salicinææ** | Page 18
 - **Populus** | Page 18
 - **Capuliferae** | Page 24
 - **Quercus** | Page 24
 - **Dryophyllum** | Page 26
 - **Corylus** | Page 28
 - **Alnus** | Page 30
 - **Betula** | Page 31
 - **Myricæææ** | Page 32
 - **Myrica** | Page 32
 - **Juglandæææ** | Page 33
 - **Juglans** | Page 33
 - **Carya** | Page 34
 - **Platanæææ** | Page 34
 - **Platanus** | Page 34
 - **Urticæææ** | Page 37
 - **Ficus** | Page 37
 - **Ulmus** | Page 44
 - **Laurinæææ** | Page 46
 - **Laurus** | Page 46
 - **Litsææææ** | Page 48
 - **Cinnamomum** | Page 49
 - **Daphnogeneææææ** | Page 51
 - **Monimiææææ** | Page 51
 - **Monimiopææææ** | Page 51
 - **Polypetææææ** | Page 52
 - **Cornææææ** | Page 52
 - **Nyssa** | Page 52
 - **Cornus** | Page 54
 - **Araliææææ** | Page 56
 - **Hodera** | Page 56
 - **Aralis** | Page 59
 - **Onagrarææææ** | Page 63
 - **Trapa** | Page 63
 - **Hamamelidææææ** | Page 64
Angiosperms—continued.

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamamelites</td>
<td>64</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>65</td>
</tr>
<tr>
<td>Leguminosites</td>
<td>65</td>
</tr>
<tr>
<td>Sapindaceae</td>
<td>65</td>
</tr>
<tr>
<td>Acer</td>
<td>65</td>
</tr>
<tr>
<td>Sapindus</td>
<td>66</td>
</tr>
<tr>
<td>Ampelidaceae</td>
<td>69</td>
</tr>
<tr>
<td>Vitis</td>
<td>69</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>72</td>
</tr>
<tr>
<td>Berberis</td>
<td>72</td>
</tr>
<tr>
<td>Zizyphus</td>
<td>73</td>
</tr>
<tr>
<td>Paliurus</td>
<td>75</td>
</tr>
<tr>
<td>Celastraceae</td>
<td>77</td>
</tr>
<tr>
<td>Celastrus</td>
<td>77</td>
</tr>
<tr>
<td>Erythroxylon</td>
<td>82</td>
</tr>
<tr>
<td>Elaeodendron</td>
<td>83</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>85</td>
</tr>
<tr>
<td>Grewia</td>
<td>85</td>
</tr>
<tr>
<td>Grewiopsis</td>
<td>88</td>
</tr>
<tr>
<td>Sterculiaceae</td>
<td>93</td>
</tr>
<tr>
<td>Pterospermite</td>
<td>93</td>
</tr>
<tr>
<td>Crotalaria</td>
<td>96</td>
</tr>
<tr>
<td>Crotonia</td>
<td>96</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>100</td>
</tr>
<tr>
<td>Cocculus</td>
<td>100</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>102</td>
</tr>
<tr>
<td>Liliumodron</td>
<td>102</td>
</tr>
<tr>
<td>Magnolia</td>
<td>103</td>
</tr>
<tr>
<td>Gamopetalace</td>
<td>104</td>
</tr>
<tr>
<td>Ebenaceae</td>
<td>104</td>
</tr>
<tr>
<td>Diospyros</td>
<td>104</td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td>106</td>
</tr>
<tr>
<td>Viburnum</td>
<td>106</td>
</tr>
</tbody>
</table>

Index 347

3,000 copies published, the number required by the law relating to these bulletins. Price, 25 cents.
CONTENTS OF BULLETIN 38.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Distribution and mode of occurrence</td>
<td>9</td>
</tr>
<tr>
<td>Mineralogical composition and structure</td>
<td>10</td>
</tr>
<tr>
<td>Relations and origin of the peridotite</td>
<td>20</td>
</tr>
<tr>
<td>Chemical composition</td>
<td>24</td>
</tr>
<tr>
<td>Loose fragments of feldspathic rocks found with the peridotite</td>
<td>25</td>
</tr>
<tr>
<td>Age of the peridotite</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>29</td>
</tr>
<tr>
<td>Index</td>
<td>31</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

BULLETIN 39.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 39 | The upper beaches and deltas of the | glacial lake Agassiz |

Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 39 | [Seal of the department of the interior] |

Washington | government printing office | 1887

Special title: United States geological survey | J. W. Powell, director | The | upper beaches and deltas | of the | glacial lake Agassiz | by | Warren Upham | [Survey design] |

Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves, verso of last one blank; general title as above, verso blank; special title as above, verso blank; contents and illustrations, p. 5, verso blank; letter of transmittal to the director by T. C. Chamberlin, geologist in charge of glacial division, p. 7, verso blank; text, pp. 9-79 (395-465 of the volume), verso blank; index, pp. 81-84; notice as to numbering and binding, outside of back cover. 8°. Plate 1; figs. 1 and 2.

CONTENTS OF BULLETIN 39.

<table>
<thead>
<tr>
<th>Introduction:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The upper or Herman beach</td>
<td>10</td>
</tr>
<tr>
<td>The Norcross beach</td>
<td>13</td>
</tr>
<tr>
<td>The Campbell beach</td>
<td>12</td>
</tr>
<tr>
<td>The McCauleyville beach</td>
<td>12</td>
</tr>
<tr>
<td>The Red river valley</td>
<td>12</td>
</tr>
<tr>
<td>The outlet of lake Agassiz</td>
<td>14</td>
</tr>
<tr>
<td>The northern barrier</td>
<td>15</td>
</tr>
<tr>
<td>Area and depth of lake Agassiz</td>
<td>19</td>
</tr>
<tr>
<td>Elevations of the crests of the beaches of lake Agassiz</td>
<td>20</td>
</tr>
</tbody>
</table>

The upper or Herman beach in Minnesota:

- From lake Traverse east to Herman | 21 |
- From Herman north to the Red river | 23 |
- From the Red river north to Muskoda | 24 |
- Delta of the Buffalo river | 26 |
- From Muskoda north to the Wild rice river | 30 |
- From the Wild rice river north to Maple lake | 34 |

The upper or Herman beach in Dakota:

- From lake Traverse northwest to Milnor | 38 |
- From Milnor north to Sheldon | 42 |
- From Sheldon north to the northern Pacific railroad | 45 |
BULLETINS 39, 40, AND 41.

The upper or Herman beach in Dakota—continued.

From the northern Pacific railroad north to Galesburg .. 48
From Galesburg north to Larimore .. 51
Shore west of the Elk and Golden valleys ... 57
Beaches and islands east of the Elk and Golden valleys 64
From Gardner north to the Tongue river ... 72
Delta of the Pambina river .. 74

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 40.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 40 | Changes in river courses in Washington territory | due to glaciation |
Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 40 | [Seal of the department of the interior] |
Washington | government printing office | 1887

Special title: United States geological survey | J. W. Powell, director | Changes in river courses | in | Washington territory | due to glaciation | by | Bailey Willis | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; illustrations, p. 5, verso blank; text, pp. 7-10 (477-480 of the volume); notice as to numbering and binding, outside of back cover. 8°. Plates i-iv.

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

BULLETIN 41.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 41 | On the fossil faunas of the upper Devonian—the Genesee section, New York. |
Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 41 | [Seal of the department of the interior] |
Washington | government printing office | 1887

Special title: United States geological survey | J. W. Powell, director | On | the fossil faunas | of the | upper Devonian | the Genesee section, New York | by | Henry S. Williams | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; contents, p. [5], verso blank; illustrations, p. 7, verso blank; letter of transmittal, pp. 9-10; introduction, pp. 11-13, verso blank; text, pp. 15-104 (495-584 of the volume); half-title “Plates,” p. 105, verso blank; plates i and ii, pp.
CONTENTS OF BULLETIN 41.

Page.

Introduction... 11

Review of opinions; the bearings of these investigations upon the classification of the upper
Devonian rocks and faunas.. 15

Prof. James Hall’s views.. 16

Prof. A. Winchell’s views... 17

Views on the relation of the Waveley to the New York series........... 17

Views of the Pennsylvania geologists.. 19

The Allegany county section.. 20

Order of deposits in Ohio... 20

Geographical and chronological relations of the faunas....................... 21

List of the faunas.. 22

Relation of the faunas to the character of the deposits...................... 23

Relation of the black shales to the upper faunas.............................. 24

Place of the Venango oil group... 25

Strata following the Chemung faunas... 25

The interpretation of the facts... 27

Faunas of the Genesee shale and the Portage groups......................... 31

Description of two new lamellibranchs... 35

Description of Donula carcinops.. 39

Description of two new Lucinas... 44

Description of worm tracks.. 46

The Portage sandstones and the faunas of the Chemung group............ 51

Description of fish remains.. 62

The upper Chemung—the sands and the conglomerates..................... 83

Description of Rhynchonella Allegany... 87

Conclusions... 103

3,000 copies published, the number required by the law relating to these bulle-
tins. Price, 15 cents.

Bulletins 37-41 form vol. vi, as follows:

Department of the interior | Bulletins | of the | United States | geolog­
cal survey | Vol. vi | [Seal of the department of the interior] | Washington | government printing office | 1887

Title as above, verso blank; contents, p. iii, verso blank; illustrations, pp. v–vii,
verso blank; the five bulletins, pp. 1–603. 8°. 67 plates and 10 figures.

Documentary edition of vol. vi as follows:

50th congress, | 1st session. | House of representatives. | Mis. doc. | no. 375. | Department of the interior | Bulletins | of the | United States | geological survey | Vol. vi | [Seal of the department of the interior] |

Washington | government printing office | 1887

Title as above on white paper, verso blank; contents, illustrations, and remainder
of volume as in the other edition.

1,734 copies, the “usual number” edition, a portion of which (about 600 copies)
were delivered unbound, as described above; the remainder were printed later and
bound in sheep as a part of vol. 2 of the “Miscellaneous documents of the house of
representatives for the first session of the fiftieth congress.”
BULLETIN 42.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 42 | Report of work done in the division of chemistry and physics mainly during the fiscal year 1885-'86 | Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 42 | [Seal of the department of the interior] | Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, p. 7, verso blank; preface, p. 9, verso blank; text, pp. 11-149, verso blank; index, pp. 151-152; notice as to numbering and binding, outside of back cover. 8°. Plate i; ligs. 1-10.

CONTENTS OF BULLETIN 42.

Scientific Papers.

Researches on the lithia micas. By F. W. Clarke 11

I. The lepidolites of Maine .. 11

II. The iron lithia micas of Cape Ann ... 21

The minerals of Litchfield, Maine. By F. W. Clarke 28

Ecolite ... 28

Cucurinites ... 29

Sodalite.. 30

Hydroxypeltite .. 31

Albite and lepidolitane ... 34

Discussion of formula ... 35

Turquoise from New Mexico. By F. W. Clarke and J. S. Diller 39

The gneiss dunite contacts of Corunnum hill, North Carolina, in relation to the origin of corundum. By Thomas M. Chattard 45

The localities .. 46

Description of the sections .. 48

Analytical results .. 49

Conclusion ... 61

A method for the separation and estimation of borie acid, with an account of a convenient form of apparatus for quantitative distillations. By F. A. Gooch .. 64

A method for the separation of sodium and potassium from lithium by the action of amyl alcohol on the chlorides, with some reference to a similar separation of the same from magnesium and calcium. By F. A. Gooch .. 73

The indirect estimation of chlorine, bromine, and iodine by the electrolysis of their silie salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids. By J. Edward Whitfield ... 89

On two new meteoric irons and an iron of doubtful nature. By R. B. Riggs ... 94

The Grand rapids meteorite ... 94

The Abert iron .. 95

An iron of doubtful nature .. 96

The effect of sudden cooling exhibited by glass and by steel. By C. Barus and V. Strouhal ... 98

§ I. The strain imparted by sudden cooling, and its relations to temperature ... 98

§ II. The strain imparted by sudden cooling, and its structural relations ... 112

§ III. The hydro-electric effect of temper ... 121

Retrospective remarks ... 129

The specific gravity of lampblack. By William Hallock 132
MISCELLANEOUS ANALYSES.

The peridotite of Elliott County, Kentucky................................. 136
Trenton limestone from Lexington, Virginia 137
Residual deposit from the subaerial decay of chloritic schist from eight miles west of Cary, North Carolina... 137
Decomposed trap from North Carolina ... 138
Altered iuldbspar from Laurel creek, Georgia 138
Ferruginous rock from Panokee iron range, Wisconsin........................... 138
Two rocks from Kakabicka falls, Kaminiistiquia river, Ontario.................. 139
Mica andesite from a cation on the east side of San Mateo mountain, New Mexico............. 139
Hypersthene andesite from San Francisco mountains, Arizona..................... 139
Basalt from six miles northeast of Grant, New Mexico.............................. 140
Fulgurite from Whiteside county, Illinois ... 140
Blue and buff limestones from Bedford, Indiana 140
Yellow sandstone from Armejo quarry, Colorado 141
Eight samples of volcanic dust... 141
Loess and clays... 142
“Natural coke’’ from Midlothian, Virginia.. 143
Coal from Jefferson county, West Virginia ... 144
Three coals from Gulf, North Carolina ... 144
Coal from Walnut cove, North Carolina... 144
“Natural coke” from Purgatory cation, New Mexico................................. 147
Two springs, one mile from Farmwell station, Loudoun county, Virginia.............. 147
Two artesian wells, Story city, Iowa... 148
Beck’s hot springs, near Salt lake city, Utah... 148
Water of Mono lake, California.. 149

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 43.
CONTENTS OF BULLETIN 43.

Preface .. 13
Introduction ... 15
Tertiary strata:
 The white limestone ... 19
 The Claiborne ... 25
 The brackstone .. 34
 The lignitic .. 38
 Summary of the leading features of the Tertiary strata of Alabama 68
Cretaceous strata:
 The Kipley formation ... 71
 The rotten limestone .. 83
 The Eutaw formation ... 86
Other Mesozoic strata, probably Cretaceous:
 The Tuscaloosa formation .. 95
Summary of the leading features of the Cretaceous strata of Alabama: 116
Strata of undetermined age, probably Cretaceous 117
Undulations and faults in the Tertiary and Cretaceous strata of Alabama: ... 117
Résumé:
 The formations .. 133
 The genesis of the formations .. 139

3,000 copies published, the number required by the law relating to these bulletins.
Price, 15 cents.

BULLETIN 44.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 44 | Bibliography of North American geology for 1886 |

Washington | government printing office | 1887

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 44 | [Seal of the department of the interior] |

Washington | government printing office | 1887

Washington | government printing office | 1887

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; introduction, pp. 5-6; text, pp. 7-35 (349-377 of volume), verso blank; notice as to numbering and binding, outside of back cover. 8°.

3,000 copies published, the number required by the law relating to these bulletins.
Price, 5 cents.

BULLETIN 45.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 45 | Present condition of knowledge of the | geology of Texas |

Washington | government printing office | 1887
CONTENTS OF BULLETIN 45.

Prefatory note... 7

I. HISTORIC STATEMENT OF GEOLOGIC INVESTIGATIONS.

Knowledge at the beginning of this century............................... 9
Anglo-American adventurers and colonists.................................. 10
Philip Nolan... 11
American colonization period... 11
European investigators... 12
William Kennedy... 13
G. A. Scherpf... 14
Prince Carl Solms-Braunfels.. 14
Victor Bracht... 15
Ferdinand Roemer... 15
United States military reconnaissances and explorations............ 18
Reconnaissances... 21
Explorations.. 22
Exploration of the Red river of Louisiana................................... 23
United States and Mexican boundary survey........................... 24
Pacific railroad survey.. 25
Thirty-fifth parallel survey.. 25
Thirty-second parallel survey... 26
Artesian well experiment... 27
Geologic surveys conducted by the state.................................. 27
The Texas land office.. 29
First geological survey (Shumard).. 29
Organization and equipment.. 30
Field labors.. 30
Methods of survey.. 31
Maps.. 32
Operations of 1860.. 32
Official results.. 36
Indirect results... 36
Expense.. 37
Second geological survey (Glenn-Buckley)................................... 38
Operations of 1874.. 40
Operations of 1875.. 41
Recent miscellaneous investigations.. 42
Individual contributors.. 42
Work of the United States geological survey.......................... 47
Succession of scientific explorations.. 48

II. SUMMARY OF RESULTS.

Topography.. 49
Classification of topography of Texas....................................... 52
Chart illustrating progressive classification of topographic features... 53
II. SUMMARY OF RESULTS—continued.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic geology and stratigraphy</td>
<td>53</td>
</tr>
<tr>
<td>Table of geologic formations of Texas, with authorities</td>
<td>54</td>
</tr>
<tr>
<td>So-called Archean and earlier Paleozoic</td>
<td>55</td>
</tr>
<tr>
<td>Carboniferous system</td>
<td>57</td>
</tr>
<tr>
<td>Central Carboniferous area</td>
<td>58</td>
</tr>
<tr>
<td>Trans-Pecos Carboniferous area</td>
<td>59</td>
</tr>
<tr>
<td>General conclusions respecting the Texas Carboniferous</td>
<td>62</td>
</tr>
<tr>
<td>So-called Permian or Permo-Carboniferous</td>
<td>62</td>
</tr>
<tr>
<td>Trans-Pecos region of Shumard</td>
<td>63</td>
</tr>
<tr>
<td>Permian of Cope and his assistants</td>
<td>65</td>
</tr>
<tr>
<td>Jura-Trias or gypsum strata</td>
<td>69</td>
</tr>
<tr>
<td>So-called Jurassic</td>
<td>70</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>71</td>
</tr>
<tr>
<td>So-called Laramie</td>
<td>84</td>
</tr>
<tr>
<td>Tertiary</td>
<td>84</td>
</tr>
<tr>
<td>Quaternary and other post-Tertiary strata</td>
<td>86</td>
</tr>
<tr>
<td>Geological deductions</td>
<td>87</td>
</tr>
<tr>
<td>General conclusions</td>
<td>88</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 46.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 46 | The nature and origin of deposits of phosphate of lime |
Washington | government printing office | 1888

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 46 | [seal of the department of the interior] |
Washington | government printing office | 1888.

Washington | government printing office | 1888.

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unaged leaves; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp. 7-8; introduction, by N. S. Shaler, pp. 9-20; text, pp. 21-127, (495-601 of the volume), verso blank; bibliography, pp. 129-140; index, pp. 141-143, verso blank; title for volume vii, verso blank; contents for vol., vii, p. iii, verso blank; illustrations for vol. vii. pp. v-vii, verso blank; notice as to numbering and binding, outside of back cover. 8°. Plates i-iii; figs. 1-36.

CONTENTS OF BULLETIN 46.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction by N. S. Shaler</td>
<td>9</td>
</tr>
<tr>
<td>Importance of phosphate of lime in nature</td>
<td>21</td>
</tr>
<tr>
<td>Classification of deposits of phosphate of lime</td>
<td>21</td>
</tr>
<tr>
<td>Mineral phosphates</td>
<td>22</td>
</tr>
<tr>
<td>Apatites</td>
<td>22</td>
</tr>
<tr>
<td>Apatites of Canada</td>
<td>23</td>
</tr>
<tr>
<td>Apatites of Norway</td>
<td>42</td>
</tr>
<tr>
<td>Apatites of Spain</td>
<td>45</td>
</tr>
</tbody>
</table>
Mineral phosphates—continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorites</td>
<td>46</td>
</tr>
<tr>
<td>Phosphorites of Nassau</td>
<td>46</td>
</tr>
<tr>
<td>Phosphorites of southwestern France</td>
<td>48</td>
</tr>
<tr>
<td>Phosphorites of Spain</td>
<td>53</td>
</tr>
<tr>
<td>Rock phosphates</td>
<td>59</td>
</tr>
<tr>
<td>Amorphous nodular phosphates</td>
<td>69</td>
</tr>
<tr>
<td>Amorphous nodular phosphates of South Carolina</td>
<td>69</td>
</tr>
<tr>
<td>Amorphous nodular phosphates of North Carolina</td>
<td>70</td>
</tr>
<tr>
<td>Amorphous nodular phosphates of Alabama</td>
<td>75</td>
</tr>
<tr>
<td>Amorphous nodular phosphates of Martha's vineyard</td>
<td>78</td>
</tr>
<tr>
<td>Amorphous nodular phosphates of Florida</td>
<td>78</td>
</tr>
<tr>
<td>Amorphous nodular phosphate deposits of north Wales</td>
<td>80</td>
</tr>
<tr>
<td>Amorphous nodular phosphate deposits of England</td>
<td>84</td>
</tr>
<tr>
<td>Phosphate beds of Cretaceous upper greensand</td>
<td>84</td>
</tr>
<tr>
<td>Phosphate beds of Cretaceous lower greensand</td>
<td>90</td>
</tr>
<tr>
<td>Tertiary phosphate beds</td>
<td>94</td>
</tr>
<tr>
<td>History of the rock phosphates of England</td>
<td>96</td>
</tr>
<tr>
<td>Phosphates of Belgium</td>
<td>102</td>
</tr>
<tr>
<td>Phosphates of northern France</td>
<td>107</td>
</tr>
<tr>
<td>Phosphates of central France</td>
<td>111</td>
</tr>
<tr>
<td>Phosphates of Russia</td>
<td>112</td>
</tr>
<tr>
<td>Phosphatic limestone beds</td>
<td>118</td>
</tr>
<tr>
<td>Phosphatic limestones of Kentucky</td>
<td>118</td>
</tr>
<tr>
<td>Guanos</td>
<td>117</td>
</tr>
<tr>
<td>Soluble guanos</td>
<td>117</td>
</tr>
<tr>
<td>Leached guanos</td>
<td>122</td>
</tr>
<tr>
<td>Bone beds</td>
<td>125</td>
</tr>
<tr>
<td>Cave deposits</td>
<td>125</td>
</tr>
<tr>
<td>Lacustrine deposits</td>
<td>127</td>
</tr>
<tr>
<td>Bibliography</td>
<td>129</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

Bulletins 42-46 form vol. vii, as follows:

Title as above, verso blank; contents, p. iii, verso blank; illustrations, pp. v-vii, verso blank; the five bulletins, pp. 1-617. 8°. 25 plates and 47 figures.

Documentary edition of vol. vii as follows:

Title as above on white paper, verso blank; contents, illustrations, and remainder of volume as in the other edition.

1,734 copies, the "usual number" edition, about 600 copies of which were, as is customary, delivered unbound, as described above; the remainder were printed later and bound as a part of vol. 11 of the "Miscellaneous documents of the house of representatives for the second session of the fiftieth congress."

BULLETIN 47.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 47 | Analyses of waters of the Yellow-
stone national park, with an account of the methods of analysis employed.

Washington government printing office 1888

General title: Department of the interior | Bulletin of the United States geological survey | no. 47 | [Seal of the department of the interior]

Washington government printing office 1888

Special title: United States geological survey | J. W. Powell, director | Analyses of waters of the Yellowstone national park with an account of the methods of analysis employed by Frank Austin Gooch and James Edward Whitfield | [Survey design]

Washington government printing office 1888

Paper cover bearing title as above; advertisement of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; contents and illustrations, pp. 5-6; letter of transmittal, by F. W. Clarke, chief chemist, p. 7, verso blank; text, pp. 9-81, verso blank; folded table containing a "Summary of analyses" index, pp. 83-84; notice as to numbering and binding, outside of back cover. 8°. Figures 1 and 2.

CONTENTS OF BULLETIN 47.

Letter of transmittal 7
Introduction .. 9
Operations in the field 10
Operations in the laboratory 11
Treatment of natural waters 12
 Specific gravity ... 12
 Hydrogen sulphide and free sulphur 13
 Sulphurous acid .. 13
 Sulphuric acid .. 13
 Nitric and nitrous acids 14
 Carbonic acid .. 15
 Arsenious acid and boric acid 17
 Chlorine (with bromine and iodine) 20
 Silica, iron and aluminium, calcium, and magnesium 21
 Sodium, potassium, and lithium 22
 Ammonia and albuminoid ammonia 25
Treatment of concentrated waters 25
 Strength of the concentrated waters 25
 Treatment of the residue 26
 Fluoride ... 26
 Barium and strontium 26
 Phosphoric acid 27
 Manganese .. 27
 Iron .. 28
Treatment of the aqueous solution 29
 Iodine and bromine 29
 Cesium, rubidium, and thallium 30
 Arsenic, antimony, tin, copper, and lead 31
 Boric acid .. 33
Statement of the results of analysis 33
Analyses .. 33
 Cleopatra spring 36
 Orange spring 38
 Hot river .. 39
 Gardiner river 40
 Gardiner river 41
 Water supply at Mammoth hot springs 42
 Soda spring ... 43
Analyses—continued.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fearless geyser</td>
<td>44</td>
</tr>
<tr>
<td>Pearl geyser</td>
<td>46</td>
</tr>
<tr>
<td>Constant geyser</td>
<td>48</td>
</tr>
<tr>
<td>Coral spring</td>
<td>49</td>
</tr>
<tr>
<td>Coral spring</td>
<td>50</td>
</tr>
<tr>
<td>Echinus spring</td>
<td>51</td>
</tr>
<tr>
<td>Schlammkessel</td>
<td>52</td>
</tr>
<tr>
<td>Fountain geyser</td>
<td>53</td>
</tr>
<tr>
<td>Great fountain geyser</td>
<td>54</td>
</tr>
<tr>
<td>Hygeia spring</td>
<td>55</td>
</tr>
<tr>
<td>Madison spring</td>
<td>56</td>
</tr>
<tr>
<td>Firehole river</td>
<td>57</td>
</tr>
<tr>
<td>Excelsior geyser</td>
<td>58</td>
</tr>
<tr>
<td>Old faithful geyser</td>
<td>60</td>
</tr>
<tr>
<td>Splendid geyser</td>
<td>62</td>
</tr>
<tr>
<td>Splendid geyser</td>
<td>64</td>
</tr>
<tr>
<td>Giantess geyser</td>
<td>65</td>
</tr>
<tr>
<td>Beehive geyser</td>
<td>66</td>
</tr>
<tr>
<td>Grotto geyser</td>
<td>67</td>
</tr>
<tr>
<td>Tarban and Grand geysers</td>
<td>68</td>
</tr>
<tr>
<td>Artemisia geyser</td>
<td>69</td>
</tr>
<tr>
<td>Taurus geyser</td>
<td>70</td>
</tr>
<tr>
<td>Asta spring</td>
<td>71</td>
</tr>
<tr>
<td>Bench spring</td>
<td>72</td>
</tr>
<tr>
<td>Firehole river</td>
<td>73</td>
</tr>
<tr>
<td>Yellowstone lake</td>
<td>74</td>
</tr>
<tr>
<td>Alum creek</td>
<td>75</td>
</tr>
<tr>
<td>Chrome spring</td>
<td>76</td>
</tr>
<tr>
<td>Mush pot spring</td>
<td>78</td>
</tr>
<tr>
<td>Devil's ink pot</td>
<td>80</td>
</tr>
<tr>
<td>Soda butte spring</td>
<td>81</td>
</tr>
<tr>
<td>Summary of analyses</td>
<td>82</td>
</tr>
<tr>
<td>Index</td>
<td>83</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 48.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 48 | On the form and position of the sea level |
| Washington | government printing office | 1888

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 48 | [Seal of the department of the interior] |
| Washington | government printing office | 1888

Special title: United States geological survey | J. W. Powell, director | On the form and position | of | the sea level | with special reference to its dependence on superficial | masses symmetrically disposed about a normal | to the earth's surface | by | Robert Simpson Woodward | [Survey design] |
| Washington | government printing office | 1888

Paper cover bearing title as above; advertisements of the publications of the survey, 2 unpaged leaves; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-7, verso blank; key to mathematical symbols, pp. 9-11, verso blank; letter of transmittal, p. 13, verso blank; text pp. 15-86 (99-170 of the volume); index, pp. 87-88; notice as to numbering and binding, outside of back cover. 8°.
CONTENTS OF BULLETIN 48.

Page.

A. THEORY.

II. Mathematical statement of problem .. 18

1. Fundamental principle and equation ... 18

2. Class of problems discussed in this paper 16

3. Résumé of results attained ... 17

4. Dimensions of earth's ellipsoid and sphere of equal volume 19

5. Derivation of equation of disturbed surface 19

III. Evaluation of potential of disturbing mass of uniform thickness 21

7. Determination of potential in terms of rectangular and polar coordinates 21

8. Transformation and reduction to single integration of elliptic forms 22

9. Discussion and further transformation ... 24

10. Special values of the integrals and corresponding values of the potential 25

(a) For a point of the disturbed surface at the center of the disturbing mass 25

(b) For a point of the disturbed surface at the border of the disturbing mass 26

(c) For a point of the disturbed surface 180° from the center of the disturbing mass 26

(d) Potential of a spherical shell .. 26

11. Exact expression for potential of complete spherical shell 26

12. Degree of approximation of expression for potential at center of disturbing mass 27

13. Degree of approximation of expression for potential at border of disturbing mass 28

14. Degree of approximation of expression for potential at point 180° from center of disturbing mass 29

15. Remarks on expressions for potential previously derived and on those to be considered 30

16. Expansion of potential function in series and integration of separate terms 31

17. Discussion and derivation of approximate forms. Harmonic development of elliptic integrals I_1 and I_2 34

VI. Effect of rearranged free water .. 35

16. Remark on difficulty of obtaining exact expression for effect of rearranged free water. Derivation of expression for an effect which will exceed probable actual effect 35

17. Additional expansion of I_2 for case when attracted point is near border of attracting mass 37

18. Statement of principle involved in determination of constants V_0 and U_0 and their evaluation 37

(a) Values of V_0 and U_0 found by means of property of spherical harmonics 38

(b) Value of V_0 found by direct integration 38

VII. Equations of disturbed surface ... 40

20. Equations of disturbed surface when effect of rearranged water is neglected and when that effect is considered 40

21. Discussion of equations .. 41

22. Special values of the elevation of the disturbed surface at the center, at the border, and 180° from the center of the disturbing mass 41

23. Angular radial extent of masses of uniform thickness requisite to produce maximum elevation of disturbed surface 42

24. Effect of rearranged free water ... 42

IX. Evaluation of the definite integrals I_1 and I_2 43

25. Expansion of I_1 in series .. 43

26. Expansion of I_2 in series .. 45

27. Additional expansion of I_2 for case when attracted point is near border of attracting mass 46

X. Slope of disturbed surface .. 47

28. Derivation of expressions for slope of disturbed surface 47

29. Failure of these expressions in special case of slope at border of disturbing mass 47

30. Derivation of expression for slope at border of disturbing mass 48
XVI.—Variations in sea level attributable to continental masses—continued.

69. Deflections of the plumb-line along the border of the continent................................. 83
70. Consideration of the effect on the sea level of the continents under the conditions of
the second hypothesis.. 83
71. Deflection of the plumb-line... 85

XVII.—List of authors consulted

72. Authors, titles of their works, and dates of publication... 85, 86

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 49.

Cover title: Department of the interior | Bulletin | of the | United
States | geological survey | no. 49 | Latitudes and longitudes of certain
points in Missouri, | Kansas, and New Mexico | Washington | government printing office | 1889

General title: Department of the interior | Bulletin | of the | United
States | geological survey | no. 49 | [Seal of the department of the inte­
rior] | Washington | government printing office | 1889

Special title: United States geological survey | J. W. Powell, direc­
tor | Latitudes and longitudes | of | certain points in Missouri, Kansas,
and New Mexico | by | Robert Simpson Woodward | [Survey design] | Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–iv; general title as above, verso blank; special title as above, verso blank; contents, p. [5], verso blank; letter of transmittal, p. [7], verso blank; text, pp. 9–133 (181–305 of the volume); notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 49. Page

Descriptions of stations.. 9
Oswego, Elk Falls, and Fort Scott, Kans.; Springfield and Bolivar, Mo.; Albuquerque, N.
Mex... 9

Instruments and instrumental constants.. 11

Instruments used at Saint Louis and their constants... 11

Instruments used at the field stations and their constants.. 11

Principal details of determination of constants of field instruments.. 12

Latitudes.. 20

Methods of observation; selection of stars; table of results.. 20

Combination of results from different pairs of stars by weights; table of definitive results............ 32

Longitudes.. 39

Program for time determination... 39

Method of reduction... 39

Weights... 41

Details of time work... 42

Personal equation... 43

Time-piece corrections and rates... 112

Apparent differences of longitude.. 115

Relations of apparent and true differences of longitude and systematic errors........................ 120

Derivation of longitude differences uncorrected for personal and instrumental equation............ 121

Corrections for personal equation.. 123

Transmission times; arrangement of circuits; instrumental equation.. 128

Adopted corrections for personal and instrumental equation... 130

Adopted longitudes... 130

Table of geographical positions.. 132

Derivation of geographical positions.. 132

Bull. 100—12
3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 50.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 50 | Formulas and tables to facilitate the construction | and use of maps. |

Washington | government printing office | 1889

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 50 | [Seal of the department of the interior] |

Washington | government printing office | 1889

Special title: United States geological survey | J. W. Powell, director | Formulas and tables | to | facilitate the construction and use of maps | by | Robert Simpson Woodward | [Survey design] |

Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; errata slip; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal, p. 7, verso blank; text, pp. 9-124 (315-430 of the volume); notice as to numbering and binding, outside of back cover. 8°.

CONTENTS OF BULLETIN 50.

Page

Theory of the tables... 9
Adopted spheroid and constants thereof... 9
Principal radii of curvature... 9
Lengths of arcs of meridian.. 11
Lengths of arcs of parallels.. 14
Coordinates for the polyconic projection of maps ... 15
Areas of zones and quadrilaterals of the earth's surface 18
Explanation of use of tables... 20
Table I, logarithms of radius of curvature of meridian 25
Table II, logarithms of radius of curvature of normal section......................... 28
Table III, lengths of arcs of meridian.. 31
Table IV, lengths of arcs of parallels... 32
Table V, co-ordinates for map projection on scale 1:250000 33
Table VI, co-ordinates for map projection on scale 1:125000......................... 36
Table VII, co-ordinates for map projection on scale 1:125000....................... 39
Table VIII, co-ordinates for map projection on scale 1:63360......................... 43
Table IX, co-ordinates for map projection on scale 1:62500......................... 47
Table X, co-ordinates for map projection on scale 1:31680.......................... 53
Table XI, co-ordinates for map projection on scale 1:30000......................... 78
Table XII, areas of quadrilaterals of the earth's surface of 1° extent in latitude and longitude... 103
Table XIII, areas of quadrilaterals of the earth's surface of 30° extent in latitude and longitude... 105
Table XIV, areas of quadrilaterals of the earth's surface of 15° extent in latitude and longitude... 109
Table XV, areas of quadrilaterals of the earth's surface of 10° extent in latitude and longitude... 117
Table XVI, actual intervals corresponding to 0.01 inch on maps of various scales 123
Miscellaneous constants... 124

3,500 copies published—the 3,000 required by the law relating to these bulletins, and 500 extras ordered by the department. Price, 15 cents.
CONTENTS OF BULLETIN 51.

Page

Letter of transmittal .. 9

Part I. New fossil Mollusca from the Chico-Tejon series of California ... 11
 General remarks ... 11
 Description of species .. 14
 Conchifera .. 14
 Ostreidae ... 14
 Pholadidae ... 15
 Gasteropoda .. 15
 Acteonidae ... 15
 Fasciolariidae .. 16
 Stomatellidae ... 17
 Trochidae ... 17
 Naticidae ... 19
 Aporrhaidae .. 19
 Turritellidae ... 20
 Melanopsisidae ... 20
 Rissoidae ... 21
 Muricidae .. 21
 Buccinidae ... 22
 Fasciolariidae .. 22
 Volutidae .. 23
 Cancellariidae .. 25
 Pleurotomidae ... 25
 Cephalopoda .. 26
 Ammonitidae .. 27

Part II. Equivalents of the Chico-Tejon series in Oregon and Washington .. 28
 General remarks ... 28
 Localities in southern, central, and eastern Oregon .. 29
 Locality near Dwanish river, in Washington ... 30
 Locality near Astoria, Oregon ... 31

Part III. Cretaceous fossils from Vancouver island region .. 33
 General remarks ... 33

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, p. 7, verso blank; letter of transmittal, p. 9, verso blank; text pp. 11-70 (441-500 of the volume); half-title "Plates," p. 71, verso blank; half-titles of individual plates (on rectos) and explanations of the same (on versos), 14 leaves paged 73-100, each plate facing its explanation; index, pp. 101-102; notice as to numbering and binding, outside of back cover. 8°. Plates i-xiv.
Part III. Cretaceous fossils from Vancouver island region—continued.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotated list and description of species</td>
<td>36</td>
</tr>
<tr>
<td>Brachiopoda</td>
<td>36</td>
</tr>
<tr>
<td>Rhyynchonellida</td>
<td>36</td>
</tr>
<tr>
<td>Conchifera</td>
<td>36</td>
</tr>
<tr>
<td>Ostreidae</td>
<td>36</td>
</tr>
<tr>
<td>Anomaliidae</td>
<td>36</td>
</tr>
<tr>
<td>Aviculidae</td>
<td>37</td>
</tr>
<tr>
<td>Mytilidae</td>
<td>38</td>
</tr>
<tr>
<td>Aroidea</td>
<td>38</td>
</tr>
<tr>
<td>Trigoniidae</td>
<td>39</td>
</tr>
<tr>
<td>Crassatellidae</td>
<td>39</td>
</tr>
<tr>
<td>Lucinidae</td>
<td>41</td>
</tr>
<tr>
<td>Veneridae</td>
<td>42</td>
</tr>
<tr>
<td>Mactridae</td>
<td>42</td>
</tr>
<tr>
<td>Pholadomyidae</td>
<td>42</td>
</tr>
<tr>
<td>Anatinidae</td>
<td>43</td>
</tr>
<tr>
<td>Teredinidae</td>
<td>44</td>
</tr>
<tr>
<td>Gasteropoda</td>
<td>44</td>
</tr>
<tr>
<td>Dentaliidae</td>
<td>44</td>
</tr>
<tr>
<td>Ringiulidae</td>
<td>44</td>
</tr>
<tr>
<td>Trochidae</td>
<td>45</td>
</tr>
<tr>
<td>Scaliariidae</td>
<td>45</td>
</tr>
<tr>
<td>Naticidae</td>
<td>45</td>
</tr>
<tr>
<td>Neroliopside</td>
<td>46</td>
</tr>
<tr>
<td>Fasciolariidae</td>
<td>46</td>
</tr>
<tr>
<td>Volutidae</td>
<td>46</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td>47</td>
</tr>
<tr>
<td>Baculitidae</td>
<td>47</td>
</tr>
<tr>
<td>Ammonitidae</td>
<td>48</td>
</tr>
</tbody>
</table>

Part IV. Molluscan fauna of the Puget group.

- General remarks on the geology of the group: 49
- Description of species: 58
 - Conchifera: 58
 - Cardididae: 58
 - Cyrenidae: 58
 - Tellinidae: 61
 - Teredinidae: 62
 - Gasteropoda: 62
 - Neritidae: 62
 - Cerithidae: 62
- Concluding remarks on the fauna: 63

Part V. Mesozoic Mollusca from the southern coast of the Alaskan peninsula.

- General remarks: 64
- Description of species: 65
 - Conchifera: 65
 - Aroidea: 65
 - Saxicavidae: 66
 - Cephalopoda: 67
 - Belemnitidae: 67
 - Ammonitidae: 68

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 52.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 52 | Subaërial decay of rocks and origin of the | red color of certain formations |

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 52 | [Seal of the department of the interior] |
CONTENTS OF BULLETIN 52.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction ...</td>
</tr>
<tr>
<td>Subaerial decay of rocks ..</td>
</tr>
<tr>
<td>Decay of the crystalline rocks of the Piedmont region</td>
</tr>
<tr>
<td>Decay of the rocks of the Newark system</td>
</tr>
<tr>
<td>Decay of the rocks of the southern Appalachians</td>
</tr>
<tr>
<td>Decay of the rocks of the great Appalachian valley</td>
</tr>
<tr>
<td>Absence of decayed rocks in the arid region of the Far West</td>
</tr>
<tr>
<td>Subaerial decay in other countries ...</td>
</tr>
<tr>
<td>Conditions favoring the decay of rocks ..</td>
</tr>
<tr>
<td>Effects of geologically recent orogenic movement on the distribution of residual deposits in the Appalachian region</td>
</tr>
<tr>
<td>The soluble portions of rocks ..</td>
</tr>
<tr>
<td>Characteristics of residual clays ..</td>
</tr>
<tr>
<td>Economic products of residual clays ..</td>
</tr>
<tr>
<td>Origin of the red color of certain formations</td>
</tr>
<tr>
<td>A hypothesis proposed ...</td>
</tr>
<tr>
<td>Previous hypotheses ...</td>
</tr>
<tr>
<td>Exceptions ..</td>
</tr>
<tr>
<td>Résumé ...</td>
</tr>
<tr>
<td>Bibliography ..</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 53.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 53 | The geology of Nantucket | Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9; introduction, p. 11; text, pp. 11-54 (609-652 of the volume); index, p. 55; notice as to numbering and binding, outside of back cover. 8°. Plates i-x; figs. 1-16.
CONTENTS OF BULLETIN 53.

Prefatory note ... 11
General form of Nantucket .. 11
General geological structure ... 15
Origin of the detrital materials .. 26
Fossiliferous deposits .. 28
Fossiliferous deposits of Sankaty head 30
Succession of geological events .. 42
Post-glacial changes of Nantucket .. 47
Recent changes on the coast of Nantucket 49
Vegetation of Nantucket ... 52

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 54.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 54 | On the thermo-electric measurement of high | temperatures |
Washington | government printing office | 1889

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 54 | [Seal of the department of the interior] |
Washington | government printing office | 1889

Special title: United States geological survey | J. W. Powell, director | On the | thermo-electric measurement | of | high temperatures | by | Carl Barns | [Survey design] |
Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 1., advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-8; illustrations, pp. 9-10; list of tables, pp. 11-13, verso blank; letter of transmittal, by F. W. Clarke, chief chemist, p. 15, verso blank; preface, pp. 17-22; introduction, pp. 23-55; text, pp. 56-306 (710-960 of the volume); index, pp. 307-313, verso blank; title for vol. viii, verso blank; contents for vol. viii, p. iii, verso blank; illustrations for vol. viii, pp. v-vii; notice as to numbering and binding, outside of back cover. 8°. Figures 1-55, 10a, 11a, 14a, 35a, 36a, 47a, and a frontispiece unnumbered.

CONTENTS OF BULLETIN 54.

Letter of transmittal ... 15
Preface ... 17
Introduction .. 23
General account of methods of pyrometry 23
Earlier digests ... 23
Character of the measurements .. 24
Classification of pyrometers .. 25
Dilatation of solids .. 25
Dilatation of liquids ... 27
Dilatation of gases (manometric methods) 27
Dilatation of gases (displacement methods) 36
Vapor tension ... 38
Dissociation ... 38
Fusion ... 39
Specific heat ... 40
Ebullition .. 42
Heat conduction .. 42
Radiation .. 43
Chapter I. The degree of constant high temperatures attained in metallic vapor baths of large dimensions; by C. Barns and W. Hallock

Chapter II. The calibration of electrical pyrometers by the aid of fixed thermal data

Chapter III. Certain pyro-electric properties of the alloys of platinum

Introduction—continued.

General account of methods of pyrometry—continued.

Viscosity

Acoustics

Thermo-electrics

Electrical conductivity

Magnetism

Interpolation methods

Advantages of thermo-electric pyrometry

Fusion and mechanical treatment of the alloys

Explanation

Apparatus

Remarks

Low boiling points

Boiling points between 100° and 300°

Apparatus for mercury

Apparatus for high boiling points

Original forms of boiling-point crucible

Insulators

Method of measurement

Thermo-element

Standards of electromotive force

Method of computation

Experimental results

Explanation for constancy of temperature; water, aniline

Explanation for constancy of temperature, mercury

Exploration for constancy of temperature; water, aniline

Thermo-electric datum for the melting point of platinum

Fusion and mechanical treatment of the alloys

Fusion and rolling

Preliminary data, density

Preliminary data, electrical resistance of rods

Experimental data

Further mechanical treatment; resistance of wires

Thermo-electrics of wires

Temperature coefficient
Chapter V.—The pyrometric use of the principle of viscosity—continued.

Experimental results—continued.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature</td>
<td>250</td>
</tr>
<tr>
<td>Data</td>
<td>258</td>
</tr>
<tr>
<td>Discussion</td>
<td>271</td>
</tr>
<tr>
<td>Viscosity at zero</td>
<td>271</td>
</tr>
<tr>
<td>Viscosity at high temperatures, kinetic inferences</td>
<td>273</td>
</tr>
<tr>
<td>Sources of error</td>
<td>274</td>
</tr>
<tr>
<td>Diffusion</td>
<td>275</td>
</tr>
<tr>
<td>Sliding coefficient</td>
<td>276</td>
</tr>
<tr>
<td>Advantages of an exponential law</td>
<td>277</td>
</tr>
<tr>
<td>Effect of imperfect gaseity</td>
<td>279</td>
</tr>
<tr>
<td>The new method of pyrometry</td>
<td>281</td>
</tr>
<tr>
<td>Methods of computation</td>
<td>281</td>
</tr>
<tr>
<td>Results</td>
<td>282</td>
</tr>
<tr>
<td>Transpiration not subject to the Poisenille-Meyer law</td>
<td>284</td>
</tr>
<tr>
<td>Objects of the investigation</td>
<td>284</td>
</tr>
<tr>
<td>Hoffman's researches</td>
<td>285</td>
</tr>
<tr>
<td>Experimental results</td>
<td>287</td>
</tr>
<tr>
<td>Transpiration under variable pressure</td>
<td>287</td>
</tr>
<tr>
<td>Transpiration under constant pressure</td>
<td>288</td>
</tr>
<tr>
<td>Transpirations compared differentially</td>
<td>293</td>
</tr>
<tr>
<td>Discussion</td>
<td>295</td>
</tr>
<tr>
<td>Apparent viscosity and pressure</td>
<td>295</td>
</tr>
<tr>
<td>Apparent viscosity and temperature</td>
<td>297</td>
</tr>
<tr>
<td>Obliquity of the linear loci</td>
<td>297</td>
</tr>
<tr>
<td>Supplementary results</td>
<td>298</td>
</tr>
<tr>
<td>General remarks</td>
<td>300</td>
</tr>
<tr>
<td>The new method of pyrometry</td>
<td>302</td>
</tr>
<tr>
<td>Practical remarks</td>
<td>302</td>
</tr>
<tr>
<td>Appurtenances</td>
<td>302</td>
</tr>
<tr>
<td>The transpiration pyrometer</td>
<td>302</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 25 cents.

Bulletins 47-54 form vol. viii, as follows:

Department of the interior | Bulletins | of the | United States | geological survey | Vol. viii | [Seal of the department of the interior] | Washington | government printing office | 1889

Title as above, verso blank; contents of the volume, p. iii, verso blank; list of illustrations in the volume, pp. v-vii, verso blank; the eight bulletins, pp. 1-960 (and 961-967, being the index to bulletin 54). 8°. 29 plates and 80 figures.

Documentary edition of vol. viii as follows:

Paper cover bearing title as above; inner title same, verso blank; then follow contents, list of illustrations, and the eight bulletins, as in the other edition.

1,734 copies, the “usual number” edition, about 600 of which were issued in paper covers, as just described; the remainder were printed later and bound in sheep as a part of vol. 11 of the “Miscellaneous documents of the house of representatives for the second session of the fiftieth congress.”
CONTENTS OF BULLETIN 55.

SCIENTIFIC PAPERS.

Studies in the mica groups. F. W. Clarke. (See bulletin 64)	12
The analysis and composition of tourmaline. By R. B. Riggs	19
Notes on certain rare copper minerals from Utah. By W. F. Hillebrand and H. S. Washington	38
Mineralogical notes. By W. F. Hillebrand	48
Analyses of some natural borates and borosilicates. By J. Edward Whitfield	56
Scorodite from the Yellowstone park. By J. Edward Whitfield	65
Flow of solids, or behavior of solids under high pressure. By William Hallock	67

MISCELLANEOUS ANALYSES.

Feldspar from the Hoosac tunnel	70
Two feldspars from Greylock mountain, Massachusetts	79
Three feldspars from Delaware	79
Triassic sandstone from Maryland	80
Limestone from the Auglaize river, Ohio	80
Twelve rocks from the Menomonee river	81
Rocks from Pigeon point, Minnesota	81
Two rocks from Montana	83
Fifteen rocks from California	84
Ores of iron and manganese	85
Coals	87
Iron and steel	87
Nitre from Utah	88
Salt from Warsaw, N. Y.	89
Two clays from Owen's lake, California	89
Clay, sand, etc., from Martha's vineyard	89
Water from Paris, Me.	91
Waters from Savannah, Ga.	91
Artesian wells in Georgia and Alabama	91
WARWICK.]

BULLETINS 55, 56, AND 57. 187

Page.
Water from Arkansas... 92
Water from a spring near fort Wingate, N. Mex.. 92
Water from Owen's lake, California... 93

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 56.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 56 | Fossil wood and lignite of the Potomac | formation |
Washington | government printing office | 1889

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 56 | [Seal of the department of the interior] |
Washington | government printing office | 1889

Special title: United States geological survey | J. W. Powell, director | Fossil wood and lignite | of the | Potomac formation | by | Frank Hall Knowlton | [Survey design] |
Washington | government printing office | 1889

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, by Lester F. Ward, geologist in charge, p. 9, verso blank; text, pp. 11-52; half-title "Plates," p. 53, verso blank; half-titles of individual plates (on rectos) and explanations of the same (on versos), seven leaves paged 55-68, each plate facing its explanation; index, pp. 69-72. 8°. Plates i-vii.

CONTENTS OF BULLETIN 56.
Page.
Introduction .. 11
Value of the study of internal structure, with brief review of its progress 11
Geologic and geographic distribution of the Potomac formation 38
The organic remains and their mode of occurrence 39
Systematic description of lignite 41
Systematic description of silicified species 43
Cupressinoxylon Göppert 43
Cupressinoxylon pulchellum, n. sp. 45
Cupressinoxylon McGeei, n. sp. 46
Cupressinoxylon Wardi, n. sp. 48
Cupressinosylou Columbianum, n. sp. 49
Araucarioxylon Kraus 50
Araucarioxylon Virginianum, n. sp. 50

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 57.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 57 | A geological reconnaissance in southwestern | Kansas |
Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 57 | [Seal of the department of the interior] |
Washington | government printing office | 1890
CONTENTS OF BULLETIN 57.

Introduction by W. J. McGee .. 11
General statement ... 15
The geologic formations .. 18
Carboniferous .. 19
Jura-Trias .. 20
Cretaceous .. 27
The Dakota .. 27
The Fort Benton ... 27
The Niobrara .. 30
The post-Cretaceous erosion ... 31
Tertiary ... 31
The Tertiary grit ... 32
The Tertiary marl .. 35
The Tertiary erosion ... 36
Quaternary .. 38
The gumbo .. 39
The earlier gravel ... 41
The loess .. 41
The later gravel .. 42
The alluvium .. 43
Conclusion ... 45
The general results .. 45
The source of the Tertiary conglomerates 45
The question of Tertiary shores .. 46
The tripartite erosion ... 47
Economic geology ... 48

3,000 copies published, the number required by the law relating to these bulletins.

Price, 5 cents.

BULLETIN 58.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 58 | The glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois |

Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 58 | [Seal of the department of the interior] |

Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, director | The | glacial boundary | in | western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois | by | George Frederick Wright | with an introduction by Thomas Chrowder Chamberlin | [Survey design] |

Washington | government printing office | 1890
CONTENTS OF BULLETIN 58.

INTRODUCTION BY T. C. CHAMBERLIN ... 13

Terraces of the upper Ohio river district .. 22
 The high horizontal terraces .. 23
 The higher river terraces .. 24
 The lower river or morain-headed terraces ... 32
 General remarks on the two systems ... 33
 The slender horizontal terraces ... 37
 The structural terraces .. 38

Summation .. 39

THE GLACIAL BOUNDARY IN WESTERN PENNSYLVANIA, OHIO, KENTUCKY, INDIANA, AND ILLINOIS, BY G. F. WRIGHT ... 39

Introduction .. 39

Striated surfaces of rocks in place .. 42

Summary of facts concerning the unstratified deposit called “till” 42

Preliminary remarks ... 42

General distribution of till and its relations to buried channels 43

Character of the material composing the till .. 45

Source of boulders in the till .. 50

Regularity of distribution of till near the margin 52

Distribution of the till east of the Alleghanies 52
 New England ... 52
 New Jersey ... 55
 Pennsylvania ... 55
 New York .. 56

Distribution of the till west of the Alleghanies .. 57
 General remarks .. 57
 Pennsylvania ... 58
 Ohio .. 59
 Kentucky .. 63
 Indiana .. 65
 Illinois .. 70
 Missouri .. 72
 General remarks .. 73

Hypothesis of a glacial dam at Cincinnati .. 76

Introduction .. 76

The lower terraces of the Ohio and its tributaries 76

The upper terraces of the Ohio and its tributaries 80

Theoretical explanations ... 82

 The upper terraces the remnants of a distinct glacial epoch earlier than that producing the lower ... 82

 Facts adverse to this theory .. 83
 Terraces on the Monongahela ... 83
 River deposits in Teasue valley, W. Va ... 88
 Terraces on the Big Sandy .. 88
 Terraces on the Elk river .. 88
 Terraces in Bath county, Ky .. 90
 Beach flats, Pike county, Ohio ... 92
 Freshness of the vegetable remains near the glacial margin 96

Summary ... 100

The loess and its relation to the glacial drift ... 101

Gold near the glacial margin .. 104

Interglacial man in Ohio ... 105

General conclusions ... 108

3,000 copies published, the number required by the law relating to these bulletins, Price, 15 cents.
CONTENTS OF BULLETIN 59.

<table>
<thead>
<tr>
<th>CONTENTS OF BULLETIN 59.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction...</td>
<td>7</td>
</tr>
<tr>
<td>General petrographical considerations...</td>
<td>8</td>
</tr>
<tr>
<td>Hypersthene-gabbro...</td>
<td>10</td>
</tr>
<tr>
<td>Gabbro-diorite...</td>
<td>15</td>
</tr>
<tr>
<td>Series illustrating transformations...</td>
<td>18</td>
</tr>
<tr>
<td>Gabbro-granite...</td>
<td>19</td>
</tr>
<tr>
<td>Series illustrating transformations...</td>
<td>20</td>
</tr>
<tr>
<td>Norite...</td>
<td>21</td>
</tr>
<tr>
<td>The iron hill gabbros and gabbro-diorites...</td>
<td>22</td>
</tr>
<tr>
<td>Diorite...</td>
<td>29</td>
</tr>
<tr>
<td>Series illustrating transformations...</td>
<td>30</td>
</tr>
<tr>
<td>Gabbro-diorite and hornblende-gneiss...</td>
<td>31</td>
</tr>
<tr>
<td>Structural relations...</td>
<td>36</td>
</tr>
<tr>
<td>The gabbro belt...</td>
<td>38</td>
</tr>
<tr>
<td>Stratigraphy...</td>
<td>38</td>
</tr>
<tr>
<td>The origin and genetic relationship of the gabbros and their associated hornblende rocks...</td>
<td>40</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 60.

Cover title: Bulletin of the United States geological survey | no. 60 | Report of work done in the division of chemistry and physics, mainly during the fiscal year 1887-88 |

Washington | government printing office | 1890

General title: Department of the interior | Bulletin of the United States geological survey | no. 60 | [Seal of the department of the interior] |

Washington | government printing office | 1890

Special title: United States geological survey | J.W. Powell, director | Report of work done in the division of chemistry and physics |
mainly during the fiscal year 1887-88 | F. W. Clarke, chief chemist |
[Survey design] |
Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-7, verso blank; illustrations, p. 9, verso blank; preface, p. 11, verso blank; text, pp. 13-174. 8°. Figures 1-9.

CONTENTS OF BULLETIN 60.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>The chemical structure of the natural silicates. By F. W. Clarke</td>
</tr>
<tr>
<td>Some nickel ores from Oregon. By F. W. Clarke</td>
</tr>
<tr>
<td>Natural soda: Its occurrence and utilization. By Thomas Marcan Chatard</td>
</tr>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>Sodium sulphate</td>
</tr>
<tr>
<td>Sodium chloride</td>
</tr>
<tr>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>Sodium sesquicarbonate</td>
</tr>
<tr>
<td>Localities and mode of occurrence</td>
</tr>
<tr>
<td>Hungary</td>
</tr>
<tr>
<td>Egypt</td>
</tr>
<tr>
<td>Armenia</td>
</tr>
<tr>
<td>Venezuela</td>
</tr>
<tr>
<td>North America</td>
</tr>
<tr>
<td>Wyoming</td>
</tr>
<tr>
<td>Ragtown lakes, Nevada</td>
</tr>
<tr>
<td>Ragtown soda works</td>
</tr>
<tr>
<td>Mono lake, California</td>
</tr>
<tr>
<td>Abert lake, Oregon</td>
</tr>
<tr>
<td>Dry deposits</td>
</tr>
<tr>
<td>Owen’s lake, California</td>
</tr>
<tr>
<td>Owen’s lake soda works</td>
</tr>
<tr>
<td>Experiments on the evaporation and fractional crystallization of the water of Owen’s lake.</td>
</tr>
<tr>
<td>Evaporation</td>
</tr>
<tr>
<td>Fractional crystallization</td>
</tr>
<tr>
<td>Discussion of results</td>
</tr>
<tr>
<td>Fractional crystallization of water of Mono lake</td>
</tr>
<tr>
<td>Urao</td>
</tr>
<tr>
<td>Native urao from Venezuela</td>
</tr>
<tr>
<td>Native urao from Egypt</td>
</tr>
<tr>
<td>True character of Trona, or the native sesquicarbonate</td>
</tr>
<tr>
<td>Artificial production of sesquicarbonate</td>
</tr>
<tr>
<td>Urao from Owen’s lake</td>
</tr>
<tr>
<td>Artificial production of urao; experiments and discussion of results</td>
</tr>
<tr>
<td>Analytical methods</td>
</tr>
<tr>
<td>Origin of natural soda</td>
</tr>
<tr>
<td>Cause of the red color of alkaline brines</td>
</tr>
<tr>
<td>Leaching of alkaline soils and clays</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Analyses of six new meteorites. By J. E. Whitfield</td>
</tr>
<tr>
<td>The Rockwood meteorite</td>
</tr>
<tr>
<td>Chattooga county meteorite</td>
</tr>
<tr>
<td>Taney county meteorite</td>
</tr>
<tr>
<td>Lionville mountain meteorite</td>
</tr>
<tr>
<td>Fayette county meteorite</td>
</tr>
<tr>
<td>Sun Bernardino county meteorite</td>
</tr>
<tr>
<td>Two sulphantimonites from Colorado. By L. G. Eakins</td>
</tr>
<tr>
<td>Coefficients of volatility for aqueous chlorhydric acid. By Robert B. Warder</td>
</tr>
<tr>
<td>Experimental method</td>
</tr>
<tr>
<td>Calculation of results</td>
</tr>
<tr>
<td>Discussion of results</td>
</tr>
</tbody>
</table>
Analyses of jade. By F. W. Clarke ... 123

Mineralogical notes:
1. Petalite from Peru, Me. By F. W. Clarke ... 129
2. Spessartite from Amelia county, Va. By F. W. Clarke 129
3. Oligoclase from Bakersville, N. C. By F. W. Clarke 129
4. Willemite from Franklin, N. J. By F. W. Clarke 130
5. Desloizite from Beaverhead county, Mont. By W. F. Hillebrand 130
6. Preliminary remarks on North American uraninites. By W. F. Hillebrand ... 131
8. Xanthan from North Carolina. By L. G. Eakins 135
9. Triplet from the Black hills. By L. G. Eakins 135
11. Native gold from Persia. By C. Catlett .. 137
12. Pyroxene and serpentine from Montville, N. J. By C. Catlett 137

The subsidence of fine solid particles in liquids. Second paper (see bulletin 36). By Carl Barns 139

Miscellaneous analyses:
Rocks collected by E. D. Irving ... 141
Novaculite from Marquette, Mich ... 159
Brick clay from New Ulm, Minn .. 151
Rocks from Montana .. 152
Eruptive rock from the Henry mountains, Utah .. 154
Rocks from New Mexico ... 155
Lava's from near Lassen peak, California .. 155
Basalt from Mytilene .. 158
Inclusion in diorite from Cruger's station, N. Y. 158
White earth from Talladega, Ala. ... 158
Sandstone from Bera, Ohio ... 158
Knox dolomite and residual clay, from Alabama 159
Dolomite from Tuckahoe, N. Y ... 159
Dolomite marble from Cockeysville, Md. ... 159
Marble from Louisiana .. 160
Limestones from Ohio and Indiana .. 160
Coquina, coral, coral rocks, etc ... 162
Iron and manganese ores .. 164
Coal and coke ... 169
Efflorescence from Cliff creek, Colo .. 170
Salt from Hutchinson, Kans. .. 171
Water from Lincoln county, N. C. .. 171
Water from St. Augustine, Fla. .. 171
Water from McLeansborough, Ill. ... 172
Water from Lebanon, Mo. ... 172
Water from Hominy hill, Ark ... 173
Water from near Denver, Colo ... 174
Water from Matilija hot springs, California ... 174

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 61.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 61 | Contributions to the mineralogy of the | Pacific coast |
Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 61 | [Seal of the department of the interior] |
Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, director
| Contributions to the mineralogy of the Pacific coast by William Harlow Melville and Waldemar Lindgren [Survey design] | Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9, verso blank; text, pp. 11-30; note, p. 31, verso blank; half-title "Plates," p. 33, verso blank; half-titles of individual plates (on rectos) and explanations of the same (on versos), three leaves, paged 35-40, each plate facing its explanation. 8°. Plates 1-III.

CONTENTS OF BULLETIN 61.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinnabar crystals from New Idria, Fresno county, California</td>
</tr>
<tr>
<td>Cinnabar crystals from Sulphur bank, Lake county, California</td>
</tr>
<tr>
<td>Cinnabar crystals from Knoxville, Napa county, California</td>
</tr>
<tr>
<td>Cinnabar crystals from New Almaden, Santa Clara county, California</td>
</tr>
<tr>
<td>Metacinnabarite from Knoxville, Napa county, California</td>
</tr>
<tr>
<td>Metacinnabarite from Cerro Gordo mine, near Panoche, Fresno co., Cal.</td>
</tr>
<tr>
<td>Sulfates from the Kedington quicksilver mine, Knoxville, Napa co., Cal.</td>
</tr>
<tr>
<td>Copiapite from Redington mine, Knoxville, California</td>
</tr>
<tr>
<td>Copiapite from Sulphur bank, Lake county, California</td>
</tr>
<tr>
<td>Stromeyerite from Calico, San Bernardino county, California</td>
</tr>
<tr>
<td>Chromiferous chlorite—Kotschubelle</td>
</tr>
<tr>
<td>Uwarowite</td>
</tr>
<tr>
<td>Scorodite</td>
</tr>
<tr>
<td>Note</td>
</tr>
<tr>
<td>Plates</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

With vol. viii (ending with bulletin 54) the volume feature was discontinued by the survey, but of the subsequent bulletins the documentary edition required by law was gotten out by throwing together bodily as many as might be convenient. Bulletins 55-61 form a volume with the following title:

51st congress, 1st session. House of representatives. Mis. doc. no. 244. Bulletins of the United States geological survey nos. 55 to 61 | Washington | government printing office | 1890

No covers; title as above, verso blank; followed by the seven bulletins, without their covers.

1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as described above; the remainder were printed later and bound in sheep as vol. 32 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-first congress."

BULLETIN 62.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 62 | The greenstone schist areas of the Menominee and Marquette regions of Michigan | Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 62 | [Seal of the department of the interior] | Washington | government printing office | 1890

Bull. 100—13
Special title: United States geological survey | J. W. Powell, director | The greenstone schist areas | of the | Menominee and Marquette regions of Michigan | a contribution to the subject of dynamic metamorphism | in eruptive rocks | by | George Huntington Williams | with an introduction by | Roland Duer Irving | [Survey design] | Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 i ; advertisement of the publications of the survey, pp. i-ix; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, pp. 7-8; letter of transmittal, by R. D. Irving, geologist in charge, p. 9, verso blank; explanatory and historical note, by Roland Duer Irving, pp. 11-30; text, pp. 31-217, verso blank; half-title "Plates," p. 219, verso blank; half-titles of individual plates VIII-XVI (on rectos) and explanations of the same (on versos), nine leaves paged 221-238, each plate facing its explanation and covered with tissue paper; index, pp. 239-241. 8°. Plates i-xvi; figs. 1-29.

CONTENTS OF BULLETIN 62.

Letter of transmittal, by R. D. Irving .. 9
Explanatory and historical note, by R. D. Irving .. 11
Introduction .. 31
Chapter I. Present state of our knowledge regarding the metamorphism of eruptive rocks 34
Value of the microscope in the study of metamorphism................................. 34
Historical outline of studies on the metamorphism of eruptive rocks 40
Chapter II. Greenstone belts of the Menominee iron district............................ 64
Introductory and historical .. 64
Sturgeon falls .. 67
Lower, or Little Quinnesec falls .. 77
Chapter III. Greenstone belts of the Menominee iron district (continued) 96
Upper, or Big Quinnesec falls ... 96
The dark colored greenstones of the basin.. 97
The light colored greenstones at Upper Quinnesec falls 102
The coarse grained diorites of the Horse race .. 106
The acid rocks of the Upper Quinnesec falls and Horse race 110
Four-footfalls .. 123
The Twin falls ... 127
Lower Twin falls .. 129
Upper Twin falls .. 132
Chapter IV. Greenstone belts of the Marquette district 134
Introductory ... 134
Rocks of the northern portion of the Marquette area 138
Basic intrusives .. 138
Acid intrusives .. 146
Banded greenstone schists .. 154
Chapter V. Greenstone belts of the Marquette district (continued) 163
Rocks of the southern portion of the Marquette area 163
The aphanitic greenstones .. 163
Coarse grained dike rocks .. 168
Greenstones south of the quartzite .. 170
Rocks of the Negaunee area .. 171
Aphanitic greenstones .. 171
Coarsely crystalline greenstones .. 173
The stretched fragmental rocks on the Carp river 175
Acid rocks .. 178
Rocks of the northern area .. 179
Unaltered basic intrusives ... 180
Altered coarse grained rocks ... 180
Banded greenstones .. 184
Green schists and agglomerates of Deer lake .. 185
Chapter VI. General results and conclusions .. 192
Original character of the Menominee and Marquette greenstone areas 192
Evidence of eruptive character .. 192
Chapter VI.—General results and conclusions—continued.

Original character of the Menominee and Marquette greenstone areas—continued. .. 197

Original rock types .. 197

Original mineral constituents ... 199

Conditions under which the greenstones were formed .. 200

Macrostructural metamorphism of the Menominee and Marquette massive rocks 201

Macrostructural metamorphism through compression, faulting, or crushing 202

Macrostructural metamorphism through stretching ... 204

Microstructural metamorphism of the Menominee and Marquette massive rocks 204

Effects of dynamic action on individual minerals .. 205

New structures produced by dynamic action .. 206

Mineralogical (chemical) metamorphism of the Menominee and Marquette massive rocks 208

Secondary minerals and their origin ... 209

Progress of alteration in the original minerals ... 214

3,000 copies published, the number required by the law relating to these bulletins. Price, 30 cents.

BULLETIN 63.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 63 | A bibliography of Paleozoic Crustacea | from 1698 to 1889 |

Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 63 | [Seal of the department of the interior] |

Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, director | A bibliography | of | Paleozoic Crustacea | from | 1698 to 1889 |

including a list of North American species and a | systematic arrangement of genera | by | Anthony W. Vodges | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal, p. 7, verso blank; introduction, p. 9, verso blank; half-title “Part i, list of authors,” p. 11, verso blank; text, pp. 13-78; half-title “Part ii, catalogue of trilobites,” p. 79, verso blank; text, pp. 81-148; half-title “Part iii, catalogue of non-trilobites,” p. 149, verso blank; text, pp. 151-177. 8°.

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 64.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 64 | A report of work done in the division of chemistry and | physics, mainly during the fiscal year 1888-'89 |

Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 64 | [Seal of the department of the interior] |

Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, director | A report of work done | in the | division of chemistry and physics
Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; preface, p. 7, verso blank; text, pp. 9–60. 8°.

CONTENTS OF BULLETIN 64.

A theory of the mica group, by F. W. Clarke. (See bulletin 55) .. 9–19
A platiniferous nickel ore from Canada, by F. W. Clarke and Charles Catlett .. 20–21
A new occurrence of gyrolite, by F. W. Clarke .. 22–23
Analyses of three descloizites from new localities, by W. F. Hillebrand .. 24–28
A new meteorite from Mexico, by J. Edward Whitfield ... 29–30
Dumortierite from Harlem, N. Y., and Clip, Ariz., by J. S. Diller and J. E. Whitfield 31–33
Chemical action between solids, by William Hallock ... 34–37
The flow of solids: a note, by William Hallock .. 38–39
Miscellaneous analyses (by Hillebrand, Eakins, Whitfield, Chatard, Catlett, Clarke, and E. L. Howard) .. 40–60

3,000 copies published, the number required by the law relating to these bulletins.
Price, 10 cents.

BULLETIN 65.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 65 | Stratigraphy of the bituminous coal field in | Pennsylvania, Ohio, and West Virginia |

Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 65 | [Seal of the department of the interior |

Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Stratigraphy | of the | bituminous coal field | of | Pennsylvania, Ohio and West Virginia | by | Israel O. White | [Survey design] |

Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–10; illustrations, pp. 11–14; letter of transmittal, p. 15, verso blank; text, pp. 17–205, verso blank; index, pp. 207–212. 8°. Plates i–xi; figs. 1–152, plate i being a map showing the general distribution of the Carboniferous in Pennsylvania, West Virginia, and Ohio.

CONTENTS OF BULLETIN 65.

Area, structure, and classification of the bituminous coal rocks .. 17
The Permo-Carboniferous or Dunkard creek measures .. 20
The upper coal measures, or Monongahela river series .. 43
The barren measures, or Elk river series .. 70
The lower coal measures, or Alleghany river series .. 99
The Pottsville conglomerate series .. 179

3,000 copies published, the number required by the law relating to these bulletins.
Price, 20 cents.
A documentary edition of bulletins 62-65 in a single volume was issued as follows:

51st congress, | 2d session. | House of representatives. | Mis.
doc. | no. 136. | Department of the interior | Bulletins | of the | United
States | geological survey | nos. 62 to 65 |

Washington | government printing office | 1891

No cover; title as above, verso blank, followed by the four bulletins, without their
covers.

1,734 copies, the “usual number” edition, about 600 of which were issued unbound,
as described above; the remainder were printed later and bound in sheep as vol. 15 of
the “Miscellaneous documents of the house of representatives for the second session
of the fifty-first congress.”

BULLETIN 66.

Cover title: Department of the interior | Bulletin | of the | United
States | geological survey | no. 66 | On a group of volcanic rocks from
the Tewan | mountains, New Mexico, and on the | occurrence of pri-
mary quartz | in certain basalts. |

Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United
States | geological survey | no. 66. | [Seal of the department of the in-
terior] |

Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, direc-
tor | On | a group of volcanic rocks | from the | Tewan mountains, New
Mexico, | and on | the occurrence of primary quartz in certain ba-
salts | by | Joseph Paxson Iddings | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal, by Arnold Hague, p. 7, verso blank; text, pp. 9-32; index, pp. 33-34. 8°.

CONTENTS OF BULLETIN 66.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction ...</td>
</tr>
<tr>
<td>Petrographical description ..</td>
</tr>
<tr>
<td>Rhyolites ..</td>
</tr>
<tr>
<td>Normal porphyritic varieties ...</td>
</tr>
<tr>
<td>Obsidian ..</td>
</tr>
<tr>
<td>Lithoidite ...</td>
</tr>
<tr>
<td>Mica-bearing rhyolite ..</td>
</tr>
<tr>
<td>Tufa ...</td>
</tr>
<tr>
<td>Ash ...</td>
</tr>
<tr>
<td>Andesites ..</td>
</tr>
<tr>
<td>General characteristics ..</td>
</tr>
<tr>
<td>Class I. Mica-andesite ..</td>
</tr>
<tr>
<td>Class II. Hornblende-mica-andesite</td>
</tr>
<tr>
<td>Class III. Hornblende-pyroxene-andesite</td>
</tr>
<tr>
<td>Class IV. Pyroxene-andesite ...</td>
</tr>
<tr>
<td>Basalts ...</td>
</tr>
<tr>
<td>Normal basalts ...</td>
</tr>
<tr>
<td>Quartz-bearing basalt ..</td>
</tr>
<tr>
<td>Mineralogical gradations ..</td>
</tr>
</tbody>
</table>
The occurrence of primary quartz grains in basalts ... 20
Basalt from rio Grande canon .. 20
Basalt from Arizona .. 21
Basalt from Colorado .. 22
Possible origin of porphyritical quartz .. 23
Its exceptional occurrence ... 23
Variation of conditions .. 23
Influence of absorbed water ... 24
Comparison of exceptional occurrences .. 24
Changes of physical conditions ... 25
Influence of water vapor .. 26
Application to quartz-bearing basalts ... 28
Confirmatory observations .. 29
Porphyritical quartz in other volcanic rocks ... 29
Chemical similarity of basalts with and without quartz 30
Chemical differences between basalts with quartz 31
Different mineral development of chemically similar magmas 31
Summary ... 32

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.

BULLETIN 67.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 67 | The relations of the traps of the Newark system | in the New Jersey region | Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 67 | [Seal of the department of the interior] | Washington | government printing office | 1890

Special title: United States geological survey | J. W. Powell, director | The relations | of the | traps of the Newark system | in the New Jersey region | by | Nelson Horatio Darton | [Survey design] | Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i–iv and [v], verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–6; illustrations, pp. 7–9, verso blank; letter of transmittal, by G. K. Gilbert, geologist in charge, p. 11, verso blank; text, pp. 13–74; bibliography, pp. 74–79, verso blank; index, pp. 81–82. 8°. Plates i–vi; figs. 1–49.

CONTENTS OF BULLETIN 67.

Introduction .. 13
Watchung trap sheets .. 16
Structural relations in the Watchung region .. 16
Mutual relations of the Watchung traps ... 18
First and second Watchung traps ... 19
General relations ... 19
Thickness—Faults ... 21
Columnar structure .. 23
Succession of sheets .. 24
The surface of the trap sheets and their contact relations—With the inclosing strata 25
<table>
<thead>
<tr>
<th>Trap Sheet</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watchung trap sheets—continued.</td>
<td></td>
</tr>
<tr>
<td>Third Watchung trap</td>
<td>32</td>
</tr>
<tr>
<td>General relations</td>
<td>32</td>
</tr>
<tr>
<td>Thickness</td>
<td>33</td>
</tr>
<tr>
<td>Rock structure</td>
<td>34</td>
</tr>
<tr>
<td>Relations to the associated sedimentary rocks</td>
<td>34</td>
</tr>
<tr>
<td>New Vernon trap</td>
<td>34</td>
</tr>
<tr>
<td>New Germantown trap</td>
<td>36</td>
</tr>
<tr>
<td>Palisade trap</td>
<td>37</td>
</tr>
<tr>
<td>General relations</td>
<td>37</td>
</tr>
<tr>
<td>Structural relations in the Palisade region</td>
<td>39</td>
</tr>
<tr>
<td>Faults</td>
<td>41</td>
</tr>
<tr>
<td>Thickness</td>
<td>44</td>
</tr>
<tr>
<td>Relations to underlying strata</td>
<td>45</td>
</tr>
<tr>
<td>Relations to overlying strata</td>
<td>50</td>
</tr>
<tr>
<td>Union hill trap</td>
<td>53</td>
</tr>
<tr>
<td>Granton trap</td>
<td>54</td>
</tr>
<tr>
<td>Snake hills trap</td>
<td>55</td>
</tr>
<tr>
<td>Arlington traps</td>
<td>56</td>
</tr>
<tr>
<td>Lawrence brook, Ten mile run mountain, Rocky hill, Pennington mountain, Bald pate, and Jericho hill traps</td>
<td>59</td>
</tr>
<tr>
<td>Sourland mountains trap</td>
<td>61</td>
</tr>
<tr>
<td>Trap of Cushetunk and Round mountains</td>
<td>62</td>
</tr>
<tr>
<td>Small trap sheets in the Raritan river region</td>
<td>65</td>
</tr>
<tr>
<td>Smaller trap masses of the Delaware river region</td>
<td>68</td>
</tr>
<tr>
<td>Small dikes</td>
<td>69</td>
</tr>
<tr>
<td>Summary</td>
<td>70</td>
</tr>
<tr>
<td>Bibliography</td>
<td>74</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 68.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 68 | Earthquakes in California in 1889 | Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 68 | [Seal of the department of the interior] | Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; text, pp. 7-24; index, p. 25. 8°. See bulletin 95.

CONTENTS OF BULLETIN 68.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Scale of measurements</td>
<td>7</td>
</tr>
<tr>
<td>Differences of intensity</td>
<td>8</td>
</tr>
<tr>
<td>Chronologic record</td>
<td>10</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 5 cents.
CONTENTS OF BULLETIN 69.

General for all geological times, or without regard to times, or miscellaneous	9
General for Paleozoic time	25
Special for Paleozoic time	33
Myriapoda	33
Arachnida	36
Neuropteroidea	40
Orthopteroidea	43
Hemipteroidea	47
Coleopteroidea	47
General for Mesozoic time	48
Special for Mesozoic time	53
Myriapoda	53
Arachnida	53
Neuroptera	54
Orthoptera	56
Hemiptera	57
Coleoptera	57
Diptera	59
Lepidoptera	59
Hymenoptera	59
General for Cenozoic time	59
Special for Cenozoic time	80
Myriapoda	80
Arachnida	80
Neuroptera	81
Orthoptera	85
Hemiptera	85
Coleoptera	86
Diptera	92
Lepidoptera	94
Hymenoptera	96
Copal insects	98

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.
BULLETIN 70.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 70 | Report on astronomical work of 1889 and 1890 | Washington | government printing office | 1890

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 70 | [Seal of the department of the interior] | Washington | government printing office | 1890

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustration p. 7, verso blank; letter of transmittal, p. 9, verso blank; text, pp. 11–79. 8°. 1 figure.

CONTENTS OF BULLETIN 70.

Astronomical positions determined in 1889 and 1890 .. 11
Description of stations .. 12
Spearville, Kansas; Boise city, Idaho; Cisco, Texas; Sierra Blanca, Texas 12
Instruments and instrumental constants .. 12
Instruments used at St. Louis and in field, and their constants 12
Latitudes .. 13
Methods of observation and computation; tables of results 13
Longitudes .. 23
Methods of observation and computation; tables of results............................. 23
Personal equation work ... 24
Time-piece corrections and rates ... 62
Record of clock comparisons and apparent differences of longitude.................. 64
Longitude differences uncorrected for personal and instrumental equation........ 66
Corrections for personal and instrumental equation, 1889 67
Corrections for personal and instrumental equation, 1890............................... 69
Arrangement of telegraphic circuits, transmission times, etc............................. 70
Adopted longitudes .. 70
Geographical positions of piers .. 71
Fixation of the one hundred and fifth meridian in El Paso county, Texas 71
Method adopted to fix meridian .. 71
Measurement of base-line .. 72
Angles of triangulation ... 74
Connection with base of Texas geological survey ... 77
Azimuth of base-line .. 78
Geodetic position of points in triangulation ... 78
Positions of stones marking the one hundred and fifth meridian 79
Probable error of position of meridian as defined by marking stones 80

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

A documentary edition of bulletins 66–70 in a single volume was issued as follows:
52d congress, | 1st session. | House of representatives. | Mis. doc. | no. 21. | Department of the interior | Bulletins | of the | United States | geological survey | nos. 66 to 70 |
Washington | government printing office | 1892
No covers; title as above, verso blank; followed by the five bulletins, without their covers.

1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as described above; the remainder were printed later and bound in sheep as the larger portion of vol. 17 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress.

BULLETIN 71.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 71 | Index to the known fossil insects of the world, | including myriapods and arachnids |

Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 71 | [Seal of the department of the interior] |

Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Index | to the known | fossil insects of the world | including | myriapods and arachnids | by | Samuel Hubbard Scudder | [Survey design] |

Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal to the director, pp. 7-8; text, pp. 9-734; index of generic names, pp. 735-744. 8°. See bulletin no. 31.

CONTENTS OF BULLETIN 71.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
</table>

Paleozoic fossils

Myriapoda	9
Arachnida	9
Paleodictyoptera	30
The orthopteroid series	30
The neuropteroid series	92
The hemipteroid series	92
The coleopteroid series	96

| Others | 98 |

Mesozoic fossils

Myriapoda	98
Arachnida	98
Hexapoda	100
Orthoptera	101
Neuroptera	130
Hemiptera	165
Coleoptera	177
Diptera	221
Lepidoptera	227
Hymenoptera	228

| Tracks and foot-prints | 233 |

Cenozoic fossils

Myriapoda	237
Arachnida	244
Hexapoda	301
Orthoptera	301
Neuroptera	318
Hemiptera	330
Cenozoic fossils—continued.
Hexapoda—continued.

| Index of genera | 735 |

3,000 copies published; the number required by the law relating to these bulletins.
Price, 50 cents.

A documentary edition of bulletin 71 alone was published, as follows:
52d congress, | 1st session. | House of representatives. | Mis. doc. | no. 22. | Department of the interior | Bulletins | of the | United States | geological survey | no. 71 |
Washington | government printing office | 1892
Title as above, verso blank; followed by the leaf bearing sample catalogue slips, the advertisement, and the remainder of the volume as detailed above for the other edition.

1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as just described; the remainder were printed later and bound in sheep as a portion of vol. 17 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

BULLETIN 72.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 72 | Altitudes between lake Superior and the | Rocky mountains |
Washington | government printing office | 1891
General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 72 | [Seal of the department of the interior] |
Washington | government printing office | 1891
Special title: United States geological survey | J. W. Powell, director | Altitudes | between | lake Superior and the Rocky mountains | by | Warren Upham | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 1.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-10; letter of transmittal to the director by T. C. Chamberlin, geologist in charge, p. 11, verso blank; introduction, pp. 13-17; text, pp. 18-193, verso blank; indexes (of hills and mountains, lakes, and towns and stations), pp. 195-229. 8°.

CONTENTS OF BULLETIN 72.

Introduction	13
Fluctuations of lake Superior, November, 1870, to January, 1888	18
Altitudes of railroads	19
Northern Pacific railroad system	19
Canadian Pacific railroad system	39
Winnipeg and Hudson bay railway	52
Manitoba and northwestern railway	52
Northwest coal and navigation company’s railway	57
Regina and Long lake railway	57
St. Paul and Duluth railway	57
Duluth and Iron range railroad	62
Altitudes of railroads—continued. Page.
Wisconsin central railroad (the part in Minnesota) 63
Chicago, Burlington and northern railroad (the part in Minnesota) 63
Minneapolis, Sault Ste. Marie and Atlantic railway 63
Minneapolis and Pacific railway ... 66
Great northern (formerly St. Paul, Minneapolis and Manitoba) railway system ... 68
Chicago, Milwaukee and St. Paul railway system 95
Chicago and northwestern railway .. 118
Chicago, St. Paul, Minneapolis and Omaha railway 122
Chicago, St. Paul and Kansas city railway ... 129
Minneapolis and St. Louis railway .. 135
Burlington, Cedar rapids and northern railway 140
Fremont, Elkhorn and Missouri valley railroad 145

Altitudes of rivers ... 147
St. Lawrence river system .. 147
Mississippi river system ... 148
Minnesota river system ... 161
Missouri river system ... 163
Streams and lakes on the canoe route from Lake Superior to the Lake of the woods, by way of the Kaministiquia, Dog, Sturgeon, and Rainy rivers ... 170
System of the Rainy and Winnipeg rivers .. 171
System of the Red river of the north ... 173
Saskatchewan river ... 181
Nelson river .. 181

Altitudes of watersheds, hills, mountains, lakes, and streams, on routes of geological or other surveys ... 182
Additional notes from railroad surveys in Minnesota 182
Chains of lakes in Martin county .. 183
St. Paul and vicinity ... 183
Minneapolis and vicinity ... 183
Northeastern Minnesota ... 184
Various topographic districts in Minnesota 187
Morainic belts in Iowa .. 187
Plateaus, hills, and lakes in South and North Dakota 188
On the international boundary .. 188
Manitoba and adjoining parts of British America 189
Index of hills and mountains .. 195
Index of lakes ... 197
Index of towns and stations .. 204

3,000 copies published, the number required by the law relating to these bulletins. Price, 20 cents.

BULLETIN 73.
Chapter II. The viscosity of steel and its relations to temperature

53

Preface

xi

Chapter I. The viscosity of steel and its relations to temper, by C. Barus and V. Strouhal

1

Introduction

1

Literary notes

2

Plan of research

3

Method of experiment

3

Apparatus

3

Bifilar apparatus

3

Tubular apparatus

5

Unifilar apparatus

6

Method of observing

6

Method of tempering

6

Quenching

6

Annealing

8

Elimination of errors

9

Experimental data

12

Notation

12

Introductory explanations

12

Experiments proper

14

Rods annealed at 250° and 1000°

14

Rods annealed at 1000°

18

Rods annealed at 3000°

21

Rods annealed at 4500°

23

Soft rods

25

Remarks on the tables

28

Miscellaneous experiments

29

Glass fibers

29

Iron, soft and drawn

31

Nickel and copper

35

Steels annealed at 450° and 1000°

37

Quadrifilar arrangement

37

Tubular apparatus

38

Discussion

39

Interpretation of (Φ-φ)

39

Viscosity and temper

41

Graphic digest

41

Immediate results

42

Viscosity and electric of steel

44

Viscosity and hardness

44

Residual phenomenon

45

Sectional areas of the bifilar wires

45

Viscosity and strain

47

Steel and glass

47

Steel and iron

47

Effect of quenching

48

Steel and cast-iron

49

Stress intensity estimated

49

Magnetic relations

50

Viscosity and magnetic intensity

50

Magnetic and viscous maxima in steel

50

Steel and iron

51

Remarks

51

Chapter II. The viscosity of steel and its relations to temperature

53

Introduction

53

Method of measurement

53

Apparatus

55

Theory of apparatus

55

Digression

57

CONTENTS OF BULLETIN 73.

Page.

Preface

xi

Chapter I. The viscosity of steel and its relations to temper, by C. Barus and V. Strouhal

1

Introduction

1

Literary notes

2

Plan of research

3

Method of experiment

3

Apparatus

3

Bifilar apparatus

3

Tubular apparatus

5

Unifilar apparatus

6

Method of observing

6

Method of tempering

6

Quenching

6

Annealing

8

Elimination of errors

9

Experimental data

12

Notation

12

Introductory explanations

12

Experiments proper

14

Rods annealed at 250° and 1000°

14

Rods annealed at 1000°

18

Rods annealed at 3000°

21

Rods annealed at 4500°

23

Soft rods

25

Remarks on the tables

28

Miscellaneous experiments

29

Glass fibers

29

Iron, soft and drawn

31

Nickel and copper

35

Steels annealed at 450° and 1000°

37

Quadrifilar arrangement

37

Tubular apparatus

38

Discussion

39

Interpretation of (Φ-ϕ)

39

Viscosity and temper

41

Graphic digest

41

Immediate results

42

Viscosity and electric of steel

44

Viscosity and hardness

44

Residual phenomenon

45

Sectional areas of the bifilar wires

45

Viscosity and strain

47

Steel and glass

47

Steel and iron

47

Effect of quenching

48

Steel and cast-iron

49

Stress intensity estimated

49

Magnetic relations

50

Viscosity and magnetic intensity

50

Magnetic and viscous maxima in steel

50

Steel and iron

51

Remarks

51

Chapter II. The viscosity of steel and its relations to temperature

53

Introduction

53

Method of measurement

53

Apparatus

55

Theory of apparatus

55

Digression

57
Chapter V.—The change of the order of absolute viscosity, etc.—continued.

Introduction .. 120
Gases and vapors .. 120
Liquids ... 121
Viscous fluids .. 121

Apparatus .. 121
Computation. Example: glycerine .. 121
Data for marine glue ... 123
Results for paraffine ... 124

Solids.. 124
Method of comparison ... 124
Discussion of results .. 125
Errors encountered. .. 125
General remarks on solid viscosity 126
Apparatus for direct method .. 126
Method of computation .. 128
Data obtained ... 128

Discussion .. 132
Retrospective ... 132
Spontaneous breaking ... 132
Time variation of absolute viscosity 132
Solidity of the three states of aggregation 134

3,000 copies published, the number required by the law relating to these bulletins.
Price, 15 cents.

BULLETIN 74.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 74 | The minerals of North Carolina | Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 74 | [Seal of the department of the interior] | Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 1.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–8; letter of transmittal to the director, by F. W. Clark, chief chemist, p. 9, verso blank; preface, pp. 11–12; text, pp. 13–116; index, pp. 117–119. 8°.

CONTENTS OF BULLETIN 74.

Letter of transmittal .. 9
Preface ... 11
Native elements .. 13
Gold ... 13
Silver ... 14
Platinum .. 14
Palladium ... 14
Copper ... 14
Iron, including meteorites ... 14
Lead .. 20
Antimony ... 20
Sulphur .. 21
Diamond .. 21
Graphite .. 22
<table>
<thead>
<tr>
<th>Substance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphides, etc</td>
<td>22</td>
</tr>
<tr>
<td>Sulphides and tellurides of metals of the sulphur and arsenic groups</td>
<td>22</td>
</tr>
<tr>
<td>Sibnite</td>
<td>22</td>
</tr>
<tr>
<td>Bismuthinite</td>
<td>22</td>
</tr>
<tr>
<td>Tetradymite</td>
<td>22</td>
</tr>
<tr>
<td>Molybdinite</td>
<td>23</td>
</tr>
<tr>
<td>Sulphides, etc., of the iron, gold, and tin groups</td>
<td>23</td>
</tr>
<tr>
<td>Argentite</td>
<td>23</td>
</tr>
<tr>
<td>Galenite</td>
<td>23</td>
</tr>
<tr>
<td>Altaite</td>
<td>23</td>
</tr>
<tr>
<td>Bornite</td>
<td>23</td>
</tr>
<tr>
<td>Sphalerite or zinc blende</td>
<td>24</td>
</tr>
<tr>
<td>Chalcocite</td>
<td>24</td>
</tr>
<tr>
<td>Trenlite</td>
<td>24</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>24</td>
</tr>
<tr>
<td>Schreibersite</td>
<td>25</td>
</tr>
<tr>
<td>Pyrite</td>
<td>24</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>25</td>
</tr>
<tr>
<td>Barnhardtite</td>
<td>25</td>
</tr>
<tr>
<td>Marcasite</td>
<td>26</td>
</tr>
<tr>
<td>Leucopyrite</td>
<td>26</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td>26</td>
</tr>
<tr>
<td>Nagyagite</td>
<td>26</td>
</tr>
<tr>
<td>Covellite</td>
<td>27</td>
</tr>
<tr>
<td>Sulpharsenides, sulphantimonides, etc.</td>
<td>27</td>
</tr>
<tr>
<td>Prousite</td>
<td>27</td>
</tr>
<tr>
<td>Alkinitite</td>
<td>27</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td>27</td>
</tr>
<tr>
<td>Compounds of chlorine, etc.</td>
<td>28</td>
</tr>
<tr>
<td>Halite</td>
<td>28</td>
</tr>
<tr>
<td>Cerargyrite</td>
<td>28</td>
</tr>
<tr>
<td>Ferrous chloride</td>
<td>28</td>
</tr>
<tr>
<td>Fluorine compounds</td>
<td>28</td>
</tr>
<tr>
<td>Fluorite</td>
<td>28</td>
</tr>
<tr>
<td>Yttrioferite</td>
<td>28</td>
</tr>
<tr>
<td>Oxygen compounds</td>
<td>28</td>
</tr>
<tr>
<td>Oxides</td>
<td>28</td>
</tr>
<tr>
<td>Cuprite</td>
<td>28</td>
</tr>
<tr>
<td>Melaconite</td>
<td>29</td>
</tr>
<tr>
<td>Corundum</td>
<td>29</td>
</tr>
<tr>
<td>Hematite</td>
<td>31</td>
</tr>
<tr>
<td>Menaccanite</td>
<td>31</td>
</tr>
<tr>
<td>Spinel</td>
<td>31</td>
</tr>
<tr>
<td>Gahnite</td>
<td>33</td>
</tr>
<tr>
<td>Magnesite</td>
<td>33</td>
</tr>
<tr>
<td>Chromite</td>
<td>34</td>
</tr>
<tr>
<td>Cassiterite</td>
<td>35</td>
</tr>
<tr>
<td>Uraninito</td>
<td>35</td>
</tr>
<tr>
<td>Rutile</td>
<td>36</td>
</tr>
<tr>
<td>Anatase</td>
<td>37</td>
</tr>
<tr>
<td>Brookite</td>
<td>37</td>
</tr>
<tr>
<td>Pyrolusite</td>
<td>37</td>
</tr>
<tr>
<td>Braunitine</td>
<td>37</td>
</tr>
<tr>
<td>Hausmannite</td>
<td>38</td>
</tr>
<tr>
<td>Diaspore</td>
<td>38</td>
</tr>
<tr>
<td>Gökülite</td>
<td>38</td>
</tr>
<tr>
<td>Limonite</td>
<td>38</td>
</tr>
<tr>
<td>Gummite</td>
<td>38</td>
</tr>
<tr>
<td>Felsomelane</td>
<td>39</td>
</tr>
<tr>
<td>Wad</td>
<td>39</td>
</tr>
<tr>
<td>Senarmontite or valmontinite</td>
<td>40</td>
</tr>
<tr>
<td>Bismite</td>
<td>40</td>
</tr>
<tr>
<td>Molybdite</td>
<td>40</td>
</tr>
<tr>
<td>Quartz</td>
<td>40</td>
</tr>
<tr>
<td>Opal</td>
<td>42</td>
</tr>
</tbody>
</table>
Oxygen compounds—continued.

<table>
<thead>
<tr>
<th>Ternary oxygen compounds—silicates</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous silicates</td>
<td>42</td>
</tr>
<tr>
<td>Enstatite</td>
<td>42</td>
</tr>
<tr>
<td>Pyroxene</td>
<td>43</td>
</tr>
<tr>
<td>Spodumene</td>
<td>43</td>
</tr>
<tr>
<td>Amphibole</td>
<td>44</td>
</tr>
<tr>
<td>Smaragdite</td>
<td>45</td>
</tr>
<tr>
<td>Arfvedsonite</td>
<td>45</td>
</tr>
<tr>
<td>Crocidolite</td>
<td>46</td>
</tr>
<tr>
<td>Beryl</td>
<td>46</td>
</tr>
<tr>
<td>Chrysolite</td>
<td>47</td>
</tr>
<tr>
<td>Garnet</td>
<td>48</td>
</tr>
<tr>
<td>Zircon</td>
<td>49</td>
</tr>
<tr>
<td>Vesuvianite</td>
<td>49</td>
</tr>
<tr>
<td>Epidote</td>
<td>50</td>
</tr>
<tr>
<td>Allanite</td>
<td>50</td>
</tr>
<tr>
<td>Zoisite</td>
<td>51</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>52</td>
</tr>
<tr>
<td>Biotite</td>
<td>52</td>
</tr>
<tr>
<td>Muscovite</td>
<td>52</td>
</tr>
<tr>
<td>Labradorite</td>
<td>54</td>
</tr>
<tr>
<td>Andesite</td>
<td>55</td>
</tr>
<tr>
<td>Oligoclase</td>
<td>55</td>
</tr>
<tr>
<td>Albite</td>
<td>56</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>56</td>
</tr>
<tr>
<td>Tourmaline</td>
<td>57</td>
</tr>
<tr>
<td>Fibrolite</td>
<td>58</td>
</tr>
<tr>
<td>Cynnite</td>
<td>58</td>
</tr>
<tr>
<td>Topaz</td>
<td>59</td>
</tr>
<tr>
<td>Enclase</td>
<td>59</td>
</tr>
<tr>
<td>Titanite</td>
<td>60</td>
</tr>
<tr>
<td>Staurolite</td>
<td>60</td>
</tr>
<tr>
<td>Hydrous silicates</td>
<td>60</td>
</tr>
<tr>
<td>Chrysoberillite</td>
<td>60</td>
</tr>
<tr>
<td>Calamine</td>
<td>61</td>
</tr>
<tr>
<td>Tale</td>
<td>61</td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>62</td>
</tr>
<tr>
<td>Stilpnomelane</td>
<td>62</td>
</tr>
<tr>
<td>Glauconite</td>
<td>62</td>
</tr>
<tr>
<td>Serpentine</td>
<td>62</td>
</tr>
<tr>
<td>Deweylite</td>
<td>63</td>
</tr>
<tr>
<td>Cerolite</td>
<td>63</td>
</tr>
<tr>
<td>Genthite</td>
<td>63</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>63</td>
</tr>
<tr>
<td>Sepiolite</td>
<td>64</td>
</tr>
<tr>
<td>Saponite</td>
<td>64</td>
</tr>
<tr>
<td>Halloysite</td>
<td>64</td>
</tr>
<tr>
<td>Plaitt</td>
<td>64</td>
</tr>
<tr>
<td>Paragonite</td>
<td>64</td>
</tr>
<tr>
<td>Hisingerite</td>
<td>64</td>
</tr>
<tr>
<td>Clinozoisite</td>
<td>65</td>
</tr>
<tr>
<td>Kerrite</td>
<td>65</td>
</tr>
<tr>
<td>Maconite</td>
<td>66</td>
</tr>
<tr>
<td>Lucasite</td>
<td>66</td>
</tr>
<tr>
<td>Penninite</td>
<td>66</td>
</tr>
<tr>
<td>Procchlorite and chlorite</td>
<td>67</td>
</tr>
<tr>
<td>Chloritoid</td>
<td>68</td>
</tr>
<tr>
<td>Willoxite</td>
<td>68</td>
</tr>
<tr>
<td>Margarite</td>
<td>69</td>
</tr>
<tr>
<td>Dudleyite</td>
<td>69</td>
</tr>
<tr>
<td>Uromontite</td>
<td>70</td>
</tr>
<tr>
<td>Thorite</td>
<td>70</td>
</tr>
<tr>
<td>Anerlite</td>
<td>70</td>
</tr>
<tr>
<td>Xanthite</td>
<td>71</td>
</tr>
<tr>
<td>Tantalates, columbates</td>
<td>71</td>
</tr>
<tr>
<td>Pyrochlore or microlite</td>
<td>71</td>
</tr>
</tbody>
</table>

Bull. 100——14
Oxygen compounds—continued.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatchettolite</td>
<td>72</td>
</tr>
<tr>
<td>Tantalite</td>
<td>72</td>
</tr>
<tr>
<td>Columbite</td>
<td>72</td>
</tr>
<tr>
<td>Yttrotantalite</td>
<td>73</td>
</tr>
<tr>
<td>Samarskite</td>
<td>73</td>
</tr>
<tr>
<td>Rutherfordite</td>
<td>74</td>
</tr>
<tr>
<td>Fergusite</td>
<td>74</td>
</tr>
<tr>
<td>Polyacete</td>
<td>75</td>
</tr>
<tr>
<td>Bogerite</td>
<td>75</td>
</tr>
<tr>
<td>Phosphates, arsenates, etc.</td>
<td>76</td>
</tr>
<tr>
<td>Xenotime</td>
<td>76</td>
</tr>
<tr>
<td>Apatite</td>
<td>76</td>
</tr>
<tr>
<td>Pyromorphite</td>
<td>77</td>
</tr>
<tr>
<td>Monazite</td>
<td>77</td>
</tr>
<tr>
<td>Vivianite</td>
<td>78</td>
</tr>
<tr>
<td>Olivenite</td>
<td>78</td>
</tr>
<tr>
<td>Pseudomalachite</td>
<td>78</td>
</tr>
<tr>
<td>Lazulite</td>
<td>78</td>
</tr>
<tr>
<td>Scerodite</td>
<td>79</td>
</tr>
<tr>
<td>Wavellite</td>
<td>79</td>
</tr>
<tr>
<td>Pharmacosiderite</td>
<td>79</td>
</tr>
<tr>
<td>Dufrenite</td>
<td>79</td>
</tr>
<tr>
<td>Phosphuranylite</td>
<td>79</td>
</tr>
<tr>
<td>Antimite</td>
<td>79</td>
</tr>
<tr>
<td>Nitre</td>
<td>79</td>
</tr>
<tr>
<td>Tungstates, molybdates, etc.</td>
<td>80</td>
</tr>
<tr>
<td>Wolframite</td>
<td>80</td>
</tr>
<tr>
<td>Rhombic tungstate of lime</td>
<td>80</td>
</tr>
<tr>
<td>Scheelite</td>
<td>80</td>
</tr>
<tr>
<td>Cuproscheelite</td>
<td>80</td>
</tr>
<tr>
<td>Stolzite</td>
<td>80</td>
</tr>
<tr>
<td>Sulphates, chromates, etc.</td>
<td>81</td>
</tr>
<tr>
<td>Barite</td>
<td>81</td>
</tr>
<tr>
<td>Anglesite</td>
<td>81</td>
</tr>
<tr>
<td>Crocoite</td>
<td>81</td>
</tr>
<tr>
<td>Melenarite</td>
<td>81</td>
</tr>
<tr>
<td>Melanterite</td>
<td>81</td>
</tr>
<tr>
<td>Dolomite</td>
<td>81</td>
</tr>
<tr>
<td>Calcite</td>
<td>82</td>
</tr>
<tr>
<td>Dolomite</td>
<td>82</td>
</tr>
<tr>
<td>Magnesite</td>
<td>83</td>
</tr>
<tr>
<td>Siderite</td>
<td>83</td>
</tr>
<tr>
<td>Rhodochrosite</td>
<td>83</td>
</tr>
<tr>
<td>Cerussite</td>
<td>84</td>
</tr>
<tr>
<td>Malachite</td>
<td>84</td>
</tr>
<tr>
<td>Azurite</td>
<td>84</td>
</tr>
<tr>
<td>Bismutite</td>
<td>84</td>
</tr>
<tr>
<td>Mineral coal</td>
<td>85</td>
</tr>
<tr>
<td>Anthracite</td>
<td>85</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>85</td>
</tr>
<tr>
<td>Lignite</td>
<td>85</td>
</tr>
<tr>
<td>Organic compounds</td>
<td>85</td>
</tr>
<tr>
<td>Amber</td>
<td>85</td>
</tr>
</tbody>
</table>

Synopsis of minerals and mineral localities by counties

3,000 copies published, the number required by the law relating to these bulletins. *Price, 15 cents.*
Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 75 | Record of North American geology for 1887 to 1889 | inclusive |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 75 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Record of North American geology for 1887 to 1889 inclusive | by | Nelson Horatio Darton | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; letter of transmission to the director, p. 5, verso blank; introductory, p. 7; key to the subject references, p. 8; list of publications examined, pp. 9-11, verso blank; text, pp. 13-175. 8°.

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

A documentary edition of bulletins 72-75 in a single volume was issued as follows:
52d congress, | 1st session. | House of representatives. | Mis. doc. | no.23. | Department of the interior | Bulletins | of the | United States | geological survey | nos. 72 to 75 |
Washington | government printing office | 1892

No covers; title as above, verso blank; followed by the four bulletins, without their covers.
1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as just described; the remainder were printed later and bound in sheep as vol. 18 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

BULLETIN 76.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 76 | A dictionary of altitudes in the United States | (second edition) |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 76 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | A dictionary of altitudes in the United States | (second edition) | compiled by | Henry Gannett | chief topographer | [Survey design] |
Washington | government printing office | 1891
Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; letter of transmittal to the director, p. 5, verso blank; schedule of authorities, pp. 7-14; abbreviations of names of railroads, pp. 15-19, verso blank; the dictionary, pp. 21-393. 8°. Arranged alphabetically by railroad stations. See bulletin no. 5.

3,500 copies published, the 3,000 required by the law relating to these bulletins and 500 copies ordered by the department for gratuitous distribution. These 500 were bound in dark maroon cloth. Price, 25 cents.

BULLETIN 77.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 77 | The Texan Permian and its Mesozoic types of fossils |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 77 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | The Texan Permian | and its | Mesozoic types of fossils | by | Charles A. White | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents and illustrations, p. 5, verso blank; letter of transmittal to the director, p. 7, verso blank; synopsis of results, p. 8; text, pp. 9-39, verso blank; half-title “Plates,” p. 41, verso blank; descriptions of plates, pp. 44, 46, 48, and 50 (versos), the recto in each case containing the word “Plate” and its number as a half-title; index, p. 51. 8°. Plates i-iv; fig. 1.

CONTENTS OF BULLETIN 77.

<table>
<thead>
<tr>
<th>CONTENTS OF BULLETIN 77.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis of results</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Description of species</td>
<td>19</td>
</tr>
<tr>
<td>General discussion</td>
<td>30</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 78.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 78 | Report of work done in the division of chemistry and | physics, mainly during the fiscal year 1889-90 |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 78 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. 1–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–6; illustrations, p. 7, verso blank; preface, p. 9, verso blank; text, pp. 11–129, verso blank; index, p. 131. 8°. Figs. 1–9.

CONTENTS OF BULLETIN 78.

Experiment upon the constitution of the natural silicates, by F. W. Clarke and E. A. Schneider.	11
Olive	12
Serpentinite	16
The chlorite group	19
The micas	24
The vermiculites	28
Final considerations	31
On the occurrence of nitrogen in uraninite, and on the composition of uraninite in general; by W. F. Hillebrand	43
General introductory remarks	43
Preparation of samples for analysis	45
Methods of analysis	46
Detection and examination of nitrogen	53
Estimation of nitrogen	56
Analysis of uraninite	60
Bohemian and Saxon uraninite	72
Discussion of analyses	73
Special experiments relating to the nitrogen in uraninite	76
Effect of heating in air	76
Effect of heating in carbonic acid gas	77
Effect of heating in hydrogen	77
Conclusions	78
Motac rhythm from New Almaden, California, by W. H. Melville	80
An apparatus for the determination of water in mineral analysis, by Thomas M. Chatard	84
The separation of titanium, chromium, aluminum, iron, barium and phosphoric acid in rock analysis, by Thomas M. Chatard	87
Seven new meteorites, by L. G. Eakins	91
Stony meteorite from Texas	91
Meteoric iron from North Carolina	93
Pallene from Kansas	94
Meteoric iron from Texas	95
Meteoric iron from Chili	95
Chondrite from Iowa	95
Llano del Inca meteorite	97
On a petroleum from Cuba, by H. N. Stokes	98
Paraffins	100
Unsataturated fatty hydrocarbons	100
Aromatic hydrocarbons	100
Naphthene	101
On a supposed mineral resin from Livingston, Montana, by H. N. Stokes	105
Preliminary notes on the coefficients of thermal expansion of certain rocks, by William Hallock	109
Methods	109
Materials	115
Miscellaneous analyses	119
Astrophyllite	119
Brown hornblende	119
Kyante	120
Miscellaneous analyses—continued.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liebenrite?</td>
<td>120</td>
</tr>
<tr>
<td>Kaolin</td>
<td>120</td>
</tr>
<tr>
<td>Picralinogene</td>
<td>121</td>
</tr>
<tr>
<td>Brechantite</td>
<td>121</td>
</tr>
<tr>
<td>Keratophyr from Marblehead neck, Massachusetts</td>
<td>121</td>
</tr>
<tr>
<td>Websterite from North Carolina and Maryland</td>
<td>122</td>
</tr>
<tr>
<td>Feldspars from Minnesota gabbros</td>
<td>122</td>
</tr>
<tr>
<td>Eruptive rock from Montana</td>
<td>123</td>
</tr>
<tr>
<td>Rocks from California</td>
<td>123</td>
</tr>
<tr>
<td>Sandstone from Arizona</td>
<td>124</td>
</tr>
<tr>
<td>Limestone from Kansas</td>
<td>124</td>
</tr>
<tr>
<td>Five Cherokee limestones</td>
<td>125</td>
</tr>
<tr>
<td>Ores of iron</td>
<td>125</td>
</tr>
<tr>
<td>Ores of manganese</td>
<td>127</td>
</tr>
<tr>
<td>Two coals from West Virginia</td>
<td>128</td>
</tr>
<tr>
<td>Water from Webster grove, Missouri</td>
<td>129</td>
</tr>
<tr>
<td>Brass</td>
<td>129</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 79.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 79 | A late volcanic eruption in northern California | and its peculiar lava |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 79 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | A late volcanic eruption | in | northern California | and | its peculiar lava | by | Joseph Silas Diller | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–iv, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7; synopsis of contents, p. 8; text, pp. 9–33. 8°. Plates i–xvii; figs. 1–4.

CONTENTS OF BULLETIN 79.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis of contents</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>General view of the scene</td>
<td>10</td>
</tr>
<tr>
<td>The cinder cone</td>
<td>11</td>
</tr>
<tr>
<td>The ash field</td>
<td>13</td>
</tr>
<tr>
<td>The lava field</td>
<td>15</td>
</tr>
<tr>
<td>Ancient lake bed</td>
<td>17</td>
</tr>
<tr>
<td>History of the eruption</td>
<td>18</td>
</tr>
<tr>
<td>Age of the eruption</td>
<td>19</td>
</tr>
<tr>
<td>The lava-quartz basalt</td>
<td>21</td>
</tr>
<tr>
<td>The quartz of the quartz basalt</td>
<td>24</td>
</tr>
<tr>
<td>Distribution of quartz basalt</td>
<td>30</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.
BULLETIN 80.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 80 | Correlation papers—Devonian and Carboniferous |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 80 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Devonian and Carboniferous | by | Henry Shaler Williams | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 1.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal to the director by G. K. Gilbert, geologist in charge, pp. 7-10; outline of the paper, pp. 11-12; text, pp. 13-269, verso blank; index, pp. 271-279. 8°.

CONTENTS OF BULLETIN 80.

<table>
<thead>
<tr>
<th>CONTENTS OF BULLETIN 80.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal by Mr. G. K. Gilbert</td>
<td>7</td>
</tr>
<tr>
<td>Outline of this paper</td>
<td>11</td>
</tr>
<tr>
<td>Introduction. The state of opinion at the beginning of the present century regarding the classification and naming of geologic formations</td>
<td>13</td>
</tr>
<tr>
<td>Chapter I. The history and development of opinion regarding the classification of rocks in the United States, from the time of William Maclure to the completion of the geological survey of the state of New York (1809-1843)</td>
<td>22</td>
</tr>
<tr>
<td>Chapter II. The general application of the nomenclature of the New York system as a standard of correlation in other parts of the United States (1840-1851)</td>
<td>58</td>
</tr>
<tr>
<td>Chapter III. Miscellaneous discussions regarding the correlation of Devonian and Carboniferous formations in the central part of the United States (1846-1887)</td>
<td>75</td>
</tr>
<tr>
<td>Chapter IV. The differentiation of the Carboniferous system</td>
<td>83</td>
</tr>
<tr>
<td>Chapter V. The Coal measures or Pennsylvanian series: The development of its nomenclature and classification in the Appalachian province (1830-1888)</td>
<td>108</td>
</tr>
<tr>
<td>Chapter VI. The conglomerates and lower Carboniferous formations of the Appalachian province</td>
<td>121</td>
</tr>
<tr>
<td>Chapter VII. The Chemung-Catskill problem: The history of the discussions concerning the correlation of the Chemung-Catskill formations in the northern part of the Appalachian province</td>
<td>135</td>
</tr>
<tr>
<td>Chapter VIII. The lower Carboniferous or Mississippian series: The development of the nomenclature and classification of the lower Carboniferous formations of the Mississippian province (1821-1874)</td>
<td>173</td>
</tr>
<tr>
<td>Chapter IX. The Waverly problem: The history of the discussions concerning the correlation of the Waverly, Marshall, Goniatite limestone, Kinderhook, and Choteau formations (1838-1888)</td>
<td>193</td>
</tr>
<tr>
<td>Chapter X. The Permian problem: Discussions relative to the correlation of the Permian in Kansas and Nebraska and other parts of the United States (1858-1888)</td>
<td>213</td>
</tr>
<tr>
<td>Chapter XI. Devonian and Carboniferous correlations in the western and northern provinces of North America</td>
<td>226</td>
</tr>
<tr>
<td>Chapter XII. The Acadian province: The correlations and classifications of the upper Paleozoic formations in the Acadian province</td>
<td>258</td>
</tr>
</tbody>
</table>

3,500 copies published, the 3,000 required by the law relating to these bulletins, and 500 ordered by the department for free distribution. Price, 20 cents.
A documentary edition of bulletins 76–80 in a single volume was issued as follows:

52d congress, 1st session. | House of representatives. | Mis. doc. | no. 24. | Department of the interior | Bulletins | of the | United States | geological survey | nos. 76 to 80 |
Washington | government printing office | 1892

No covers; title as above, verso blank; followed by the five bulletins, without their covers.

1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as just described; the remainder were printed later and bound in sheep as vol. 19 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

BULLETIN 81.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 81 | Correlation papers—Cambrian |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 81 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Cambrian | by | Charles Doolittle Walcott |
[Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–9, verso blank; illustrations, p. 11, verso blank; letter of transmittal to the director by G. K. Gilbert, geologist in charge, p. 13, verso blank; outline of the paper, pp. 15–16; text, pp. 17–434; index, pp. 435–447. 8°. Plates i–iii; figs. 1–5.

CONTENTS OF BULLETIN 81.

<table>
<thead>
<tr>
<th>CONTENTS OF BULLETIN 81.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>13</td>
</tr>
<tr>
<td>Outline of this paper</td>
<td>15</td>
</tr>
<tr>
<td>Chapter I. Introductory</td>
<td>17</td>
</tr>
<tr>
<td>Literature</td>
<td>19</td>
</tr>
<tr>
<td>List of authors and year of publication</td>
<td>19</td>
</tr>
<tr>
<td>List of papers by dates</td>
<td>22</td>
</tr>
<tr>
<td>Chapter II. Historical review of the geologic and paleontologic work</td>
<td>49</td>
</tr>
<tr>
<td>Atlantic coast province</td>
<td>50</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>50</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>56</td>
</tr>
<tr>
<td>New Brunswick and Cape Breton</td>
<td>59</td>
</tr>
<tr>
<td>Maine</td>
<td>68</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>70</td>
</tr>
<tr>
<td>Eastern Massachusetts</td>
<td>72</td>
</tr>
<tr>
<td>Paleontology</td>
<td>78</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>78</td>
</tr>
<tr>
<td>New Brunswick and Cape Breton</td>
<td>80</td>
</tr>
<tr>
<td>Eastern Massachusetts</td>
<td>88</td>
</tr>
<tr>
<td>Appalachian province</td>
<td>91</td>
</tr>
<tr>
<td>Northern Appalachian district</td>
<td>91</td>
</tr>
<tr>
<td>Granular quartz</td>
<td>91</td>
</tr>
<tr>
<td>Red sandrock</td>
<td>96</td>
</tr>
</tbody>
</table>
Chapter II.—Historical review of the geologic and paleontologic work—continued.

Appalachian provinces—continued.

Northern Appalachian district—continued.

Georgian slates .. 98
Potsdam sandstone .. 113
Canadian extension ... 114

Southern Appalachian district

New Jersey ... 122
Delaware ... 123
Pennsylvania ... 124
Maryland ... 133
Virginia ... 133
North Carolina .. 138
Tennessee ... 139
Georgia ... 144
Alabama ... 146

Paleontology

Northern Appalachian district 148
Southern Appalachian district 154

New Jersey, etc. ... 154
Tennessee ... 154
Georgia ... 155

Rocky mountain province

Utah and Nevada .. 155
Idaho ... 161
Montana ... 162

Canadian extension .. 163

Paleontology

Interior continental province 171

Upper Mississippi area .. 171
Wisconsin ... 171
Minnesota ... 181
Iowa ... 187
Lake Superior sandstone .. 188
Missouri ... 199

Eastern border or Adirondack sub-province

Canadian extension .. 201

Western border or Rocky mountain sub-province

Colorado ... 209
Wyoming ... 211
Dakota ... 214

Southwestern sub-province

Texas ... 216
Arizona ... 219

Paleontology

Upper Mississippi area .. 221
Red sandstone of Lake Superior 228
Missouri ... 229

Eastern border or Adirondack sub-province

Western border or Rocky mountain sub-province

Texas ... 234
Arizona ... 235

Chapter III. Nomenclature employed in the description of the formations

Cambrian ... 237
Taconic ... 242
Taconian ... 243
Primordial ... 243
Potsdam ... 244
St. Croix ... 245
Madison ... 245
Mendota ... 245
Tonto ... 245
Hamburg .. 246
Secret cañon .. 246
Katemy ... 246
Riley ... 246
Chapter III.—Nomenclature employed in the description of the formations—continued.

Page

Hickory .. 246
Connassanga .. 246
Montevallls .. 247
Choccoocollo .. 247
Cossa .. 247
Rome sandstone 247
Bretonian .. 247
Acadian .. 248
St John’s ... 248
Johannian .. 249
Georgia .. 249
Granular quartz 250
Red sandrock .. 250
Primal .. 251
Chilhowee ... 251
Weisner .. 252
Prospect ... 252
Eastern and western sandstone 252
Lake Superior sandstone 252
Potsdamian ... 252

Chapter IV. Summary of the present knowledge of the formations

Atlantic coast province 253
Newfoundland and the adjoining coast of Labrador 253
Northwestern Newfoundland 253
Southwestern Newfoundland 256
Eastern and southeastern Newfoundland 257
Nova Scotia ... 262
New Brunswick and Cape Breton 262
Maine .. 267
New Hampshire 267
Eastern Massachusetts 268
Résumé .. 273

Appalachian province 274
Northern Appalachian district 275
Canadian extension 285
Southern Appalachian district 287
New Jersey .. 287
Delaware ... 288
Pennsylvania .. 288
Maryland ... 289
Virginia .. 290
North Carolina 299
Tennessee ... 299
Ocote conglomerate 299
Chilhowee sandstone 300
Knox sandstone and shale 301
Georgia .. 303
Alabama .. 305
Résumé .. 306

Rocky mountain province 313
Utah and Nevada 313
Idaho ... 320
Montana ... 323
Canadian extension 326
Résumé .. 328

Interior continental province 330
Upper Mississippi valley 330
Canadian extension 334
Lake Superior sandstone 335
Canadian extension 339
Missouri .. 339
Eastern border or Adirondack sub-province and its Canadian extension 341
Section at Potsdam 345
Section at Chateaugay chasm 342
Chapter IV.—Summary of the present knowledge of the formations—continued.

Interior continental province—continued.

Eastern border or Adirondack sub-province and its Canadian extension—continued. Page.

<table>
<thead>
<tr>
<th>Formation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section at Hemmingford</td>
<td>343</td>
</tr>
<tr>
<td>Section at Keeseville and in Au Sable chasm</td>
<td>348</td>
</tr>
<tr>
<td>Section at Whitehall</td>
<td>344</td>
</tr>
<tr>
<td>Section at Saratoga</td>
<td>346</td>
</tr>
<tr>
<td>Western border or Rocky mountain sub-province</td>
<td>347</td>
</tr>
<tr>
<td>South Dakota</td>
<td>347</td>
</tr>
<tr>
<td>Wyoming</td>
<td>349</td>
</tr>
<tr>
<td>Colorado</td>
<td>351</td>
</tr>
<tr>
<td>Southwestern sub-province</td>
<td>354</td>
</tr>
<tr>
<td>Texas</td>
<td>356</td>
</tr>
<tr>
<td>Arizona</td>
<td>350</td>
</tr>
<tr>
<td>Résumé</td>
<td>357</td>
</tr>
</tbody>
</table>

Synopsis of the Cambrian group.

Comparison with the Cambrian rocks of other countries.

Europe... 373
Scotland... 376
Ireland... 377
China... 377
India.. 378
Australia.. 378
South America................................. 379

Chapter V. Problems for investigation and settlement.

Local problems.

Newfoundland................................. 380
Nova Scotia..................................... 380
New Brunswick................................. 381
Maine and New Hampshire.................... 381
Eastern Massachusetts....................... 381
New York... 381
Adirondack sub-province...................... 381
Vermont.. 381
Canadian extension............................ 382
New Jersey...................................... 382
Pennsylvania.................................... 382
Virginia... 383
North Carolina................................ 383
Tennessee....................................... 383
Georgia and Alabama......................... 383
Utah and Nevada............................... 384
Colorado... 384
Rocky mountains.............................. 384
Arizona.. 385
Upper Mississippi valley..................... 385
Missouri... 385
Texas... 385

Problems affecting our knowledge of the Cambrian group as a whole or in large parts.

Problems of nomenclature and classification.

The name.. 388
The limit of the group........................ 388

Chapter VI. The criteria and principles used by authors in the correlation of the various parts composing the group, with observations on some methods of correlation.

Historical notes.

American.. 391
Maclure... 391
Eaton... 392
Bigby... 395
James... 396
Bakewoll....................................... 397
De la Boche................................. 398
Chapter VI. — The criteria and principles used by authors, etc.—continued.

Historical notes—continued.

America—continued.

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton</td>
<td>398</td>
</tr>
<tr>
<td>Conrad</td>
<td>399</td>
</tr>
<tr>
<td>Hall</td>
<td>401</td>
</tr>
<tr>
<td>Emmons</td>
<td>403</td>
</tr>
<tr>
<td>Rogers</td>
<td>403</td>
</tr>
<tr>
<td>Safford</td>
<td>405</td>
</tr>
</tbody>
</table>

Canada

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logan</td>
<td>405</td>
</tr>
</tbody>
</table>

Newfoundland

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dana</td>
<td>406</td>
</tr>
</tbody>
</table>

Mississippi valley

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>408</td>
</tr>
<tr>
<td>Winchell</td>
<td>409</td>
</tr>
<tr>
<td>Meek</td>
<td>410</td>
</tr>
</tbody>
</table>

Rocky mountains

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitney</td>
<td>411</td>
</tr>
<tr>
<td>Bradley</td>
<td>411</td>
</tr>
<tr>
<td>Fortieth parallel survey</td>
<td>412</td>
</tr>
<tr>
<td>Explorations and surveys west of one hundredth meridian</td>
<td>412</td>
</tr>
<tr>
<td>Geological surveys of the territories</td>
<td>412</td>
</tr>
<tr>
<td>U. S. geological survey</td>
<td>413</td>
</tr>
</tbody>
</table>

Correlations with European formations

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Verneuil</td>
<td>414</td>
</tr>
<tr>
<td>Hall</td>
<td>415</td>
</tr>
<tr>
<td>Barrande</td>
<td>416</td>
</tr>
<tr>
<td>Rogers</td>
<td>417</td>
</tr>
<tr>
<td>Bigsby</td>
<td>418</td>
</tr>
<tr>
<td>Agassiz</td>
<td>419</td>
</tr>
<tr>
<td>Matthew</td>
<td>420</td>
</tr>
</tbody>
</table>

Methods of correlation

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superposition</td>
<td>421</td>
</tr>
<tr>
<td>Organic remains</td>
<td>422</td>
</tr>
<tr>
<td>Life zones</td>
<td>423</td>
</tr>
<tr>
<td>Stage of evolution</td>
<td>425</td>
</tr>
<tr>
<td>Life history</td>
<td>426</td>
</tr>
<tr>
<td>Contemporaneity and homotaxis</td>
<td>427</td>
</tr>
<tr>
<td>Percentage of species</td>
<td>428</td>
</tr>
<tr>
<td>Lithologic character</td>
<td>428</td>
</tr>
<tr>
<td>Unconformity</td>
<td>429</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>432</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>432</td>
</tr>
<tr>
<td>Topographic features</td>
<td>434</td>
</tr>
</tbody>
</table>

3,500 copies published, the 3,000 required by the law relating to these bulletins, and 500 extras ordered by the department for free distribution. Price, 25 cents.

BULLETIN 82.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 82 | Correlation papers—Cretaceous |
| Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 82 | [Seal of the department of the interior] |
| Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Cretaceous | by | Charles A. White |
| [Survey design] |
| Washington | government printing office | 1891
Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-6; illustrations, p. 7, verso blank; letter of transmittal to the director by G. K. Gil- bert, geologist in charge, pp. 9-10; outline of the paper, pp. 11-12; preface, pp. 13-14; text, pp. 15-268; index, pp. 269-273. 8°. Plates i-iii; figs. 1-7.

CONTENTS OF BULLETIN 82.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal ...</td>
</tr>
<tr>
<td>Preface ..</td>
</tr>
<tr>
<td>Introduction ...</td>
</tr>
<tr>
<td>Taxonomy and the criteria of correlation</td>
</tr>
<tr>
<td>Historical sketch ...</td>
</tr>
<tr>
<td>Discussion of the formation by regions</td>
</tr>
<tr>
<td>Explanation of terms and methods ...</td>
</tr>
<tr>
<td>Atlantic border region ..</td>
</tr>
<tr>
<td>New Jersey ..</td>
</tr>
<tr>
<td>The non-marine division ..</td>
</tr>
<tr>
<td>The marine division ...</td>
</tr>
<tr>
<td>Stanton island and Long island ..</td>
</tr>
<tr>
<td>Martha's vineyard ..</td>
</tr>
<tr>
<td>Pennsylvania and Delaware ..</td>
</tr>
<tr>
<td>Maryland and District of Columbia ...</td>
</tr>
<tr>
<td>Virginia ..</td>
</tr>
<tr>
<td>North Carolina ..</td>
</tr>
<tr>
<td>South Carolina ..</td>
</tr>
<tr>
<td>Concluding remarks on the Atlantic border region</td>
</tr>
<tr>
<td>Gulf border region ...</td>
</tr>
<tr>
<td>Texan region ...</td>
</tr>
<tr>
<td>North Mexican region ..</td>
</tr>
<tr>
<td>Great interior area ...</td>
</tr>
<tr>
<td>South interior region ..</td>
</tr>
<tr>
<td>North interior region ..</td>
</tr>
<tr>
<td>The lower Cretaceous ..</td>
</tr>
<tr>
<td>The upper Cretaceous ..</td>
</tr>
<tr>
<td>Pacific border region ..</td>
</tr>
<tr>
<td>The lower Cretaceous ..</td>
</tr>
<tr>
<td>The upper Cretaceous ..</td>
</tr>
<tr>
<td>Extra-regional districts ...</td>
</tr>
<tr>
<td>Correlation and taxonomy, illustrated by tables</td>
</tr>
<tr>
<td>Horizons of the North American Cretaceous</td>
</tr>
<tr>
<td>Potomac horizon ...</td>
</tr>
<tr>
<td>Comanche horizon ...</td>
</tr>
<tr>
<td>Shasta horizon ..</td>
</tr>
<tr>
<td>Dakota horizon ..</td>
</tr>
<tr>
<td>Maritime and interior horizon ..</td>
</tr>
<tr>
<td>Colorado subhorizon ..</td>
</tr>
<tr>
<td>Montana subhorizon ...</td>
</tr>
<tr>
<td>Laramie horizon ..</td>
</tr>
<tr>
<td>Chico-Tejon horizon ..</td>
</tr>
<tr>
<td>Great displacements of, and volcanic material in, the North American Cretaceous</td>
</tr>
<tr>
<td>Explanation of map ...</td>
</tr>
<tr>
<td>Index ...</td>
</tr>
</tbody>
</table>

3,500 copies published, the 3,000 required by the law relating to these bulletins, and 500 extras ordered by the department for free distribution. Price, 20 cents.

A documentary edition of bulletins 81-82, together, was issued as follows:
BULLETIN 83.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 83 | Correlation papers—Eocene. |

Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 83 | [Seal of the department of the interior] |

Washington | government printing office | 1891

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Eocene | by | William Bullock Clark | [Survey design] |

Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–6; illustrations, p. 7, verso blank; letter of transmittal to the director by G. K. Gilbert, geologist in charge, pp. 9–10; outline of the paper, pp. 11–12; preface, p. 13, verso blank; text, pp. 15–146; explanation of the map, p. 147; bibliography, pp. 148–159, verso blank; index, pp. 161–173. 8°. Plates I and II. The plate which bears the number I is placed at p. 146 and is listed as “Plate II,” while the plate which bears the number II is placed at p. 60 and is listed as “Plate I.”

CONTENTS OF BULLETIN 83.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>9</td>
</tr>
<tr>
<td>Outline of this paper</td>
<td>11</td>
</tr>
<tr>
<td>Preface</td>
<td>13</td>
</tr>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Atlantic and Gulf coast region</td>
<td>17</td>
</tr>
<tr>
<td>Preliminary remarks</td>
<td>17</td>
</tr>
<tr>
<td>Historical sketch</td>
<td>17</td>
</tr>
<tr>
<td>General boundaries</td>
<td>38</td>
</tr>
<tr>
<td>Stratigraphical and paleontological characteristics</td>
<td>39</td>
</tr>
<tr>
<td>General remarks</td>
<td>39</td>
</tr>
<tr>
<td>New Jersey</td>
<td>40</td>
</tr>
<tr>
<td>Delaware</td>
<td>43</td>
</tr>
<tr>
<td>Maryland</td>
<td>43</td>
</tr>
<tr>
<td>Virginia</td>
<td>46</td>
</tr>
<tr>
<td>North Carolina</td>
<td>48</td>
</tr>
<tr>
<td>South Carolina</td>
<td>50</td>
</tr>
<tr>
<td>Georgia</td>
<td>54</td>
</tr>
<tr>
<td>Florida</td>
<td>55</td>
</tr>
<tr>
<td>Alabama</td>
<td>57</td>
</tr>
</tbody>
</table>
Atlantic and Gulf coast region—continued.

Stratigraphical and paleontological characteristics—continued.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississippi</td>
<td>68</td>
</tr>
<tr>
<td>Tennessee</td>
<td>70</td>
</tr>
<tr>
<td>Kentucky</td>
<td>71</td>
</tr>
<tr>
<td>Illinois</td>
<td>72</td>
</tr>
<tr>
<td>Missouri</td>
<td>73</td>
</tr>
<tr>
<td>Arkansas</td>
<td>74</td>
</tr>
<tr>
<td>Louisiana</td>
<td>75</td>
</tr>
<tr>
<td>Texas</td>
<td>76</td>
</tr>
</tbody>
</table>

Correlation of deposits.

<table>
<thead>
<tr>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>80</td>
</tr>
<tr>
<td>Maryland</td>
<td>80</td>
</tr>
<tr>
<td>Virginia</td>
<td>80</td>
</tr>
<tr>
<td>North Carolina</td>
<td>81</td>
</tr>
<tr>
<td>South Carolina</td>
<td>82</td>
</tr>
<tr>
<td>Georgia</td>
<td>82</td>
</tr>
<tr>
<td>Florida</td>
<td>82</td>
</tr>
<tr>
<td>Alabama</td>
<td>83</td>
</tr>
<tr>
<td>Mississippi</td>
<td>83</td>
</tr>
<tr>
<td>Mississippi embayment</td>
<td>83</td>
</tr>
<tr>
<td>Louisiana</td>
<td>84</td>
</tr>
<tr>
<td>Texas</td>
<td>84</td>
</tr>
</tbody>
</table>

Tabular representation of the geological range of the Eocene in the Atlantic and Gulf coast region.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>85</td>
</tr>
<tr>
<td>Maryland-Virginia</td>
<td>85</td>
</tr>
<tr>
<td>Carolina-Georgia</td>
<td>87</td>
</tr>
<tr>
<td>Gulf</td>
<td>87</td>
</tr>
</tbody>
</table>

Comparisons with European deposits.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermont</td>
<td>90</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>92</td>
</tr>
<tr>
<td>Georgia</td>
<td>93</td>
</tr>
</tbody>
</table>

Pacific coast region.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary remarks</td>
<td>99</td>
</tr>
<tr>
<td>Historical sketch</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stratigraphical and paleontological characteristics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary group</td>
<td>100</td>
</tr>
<tr>
<td>Puget group</td>
<td>107</td>
</tr>
</tbody>
</table>

Grounds for the reference of the Tertiary and Puget groups to the Eocene.

<table>
<thead>
<tr>
<th>Interior region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary remarks</td>
<td>111</td>
</tr>
<tr>
<td>Historical sketch</td>
<td>111</td>
</tr>
</tbody>
</table>

Stratigraphical and paleontological characteristics.

<table>
<thead>
<tr>
<th>General remarks</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laramie group</td>
<td>131</td>
</tr>
<tr>
<td>Fort Union beds</td>
<td>132</td>
</tr>
<tr>
<td>Bear river estuary beds</td>
<td>135</td>
</tr>
<tr>
<td>Arapahoe beds</td>
<td>135</td>
</tr>
<tr>
<td>Donner beds</td>
<td>135</td>
</tr>
<tr>
<td>Middle park beds</td>
<td>136</td>
</tr>
<tr>
<td>Fuerro beds</td>
<td>137</td>
</tr>
<tr>
<td>Wasatch group</td>
<td>139</td>
</tr>
<tr>
<td>Green river group</td>
<td>140</td>
</tr>
<tr>
<td>Wind river group</td>
<td>140</td>
</tr>
<tr>
<td>Manti beds</td>
<td>140</td>
</tr>
<tr>
<td>Amyzon beds</td>
<td>141</td>
</tr>
<tr>
<td>Bridger group</td>
<td>141</td>
</tr>
<tr>
<td>Huerfano beds</td>
<td>142</td>
</tr>
<tr>
<td>Uinta group</td>
<td>143</td>
</tr>
</tbody>
</table>

Summary of correlative evidence.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
</tr>
</tbody>
</table>

Table showing the relative position of the interior deposits in the Eocene series.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior region</td>
<td>149</td>
</tr>
</tbody>
</table>
3,500 copies published, the 3,000 required by the law relating to these bulletins, and 500 extras ordered by the department for free distribution. Price, 15 cents.

A documentary edition of bulletin 83 was issued as follows:

52d congress, | 1st session. | House of representatives. | Mis. doc. | no. 336. | Department of the interior | Bulletins | of the | United States | geological survey | no. 83 |
Washington | government printing office | 1892

Outer title as above on white paper, verso blank; catalogue slips, advertisement, special title, contents, illustrations, letter of transmittal, outline of paper, preface, text, bibliography, index, and plates as in the other edition.

1,734 copies, the "usual number" edition, about 600 of which were issued unbound, as just described; the remainder were printed later and bound in sheep as a portion of vol. 20 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-second congress."

BULLETIN 84.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 84 | Correlation papers—Neocene |
Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 84 | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Neocene | by | William Healey Dall | and | Gilbert Dennison Harris | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; errata slip; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-8; illustrations, pp. 9-10; letter of transmittal to the director by G. K. Gilbert, geologist in charge, pp. 11-12; outline of paper, p. 13, verso blank; introduction, pp. 15-17; text, pp. 18-338; index, pp. 339-349. 8°. Plates i-m; figs. 1-43.

CONTENTS OF BULLETIN 84.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal, by G. K. Gilbert.</td>
<td>11</td>
</tr>
<tr>
<td>Outline of this paper.</td>
<td>13</td>
</tr>
<tr>
<td>Introduction.</td>
<td>15</td>
</tr>
<tr>
<td>Chapter I. General considerations.</td>
<td>18</td>
</tr>
<tr>
<td>Early classification of American Cenozoic beds</td>
<td>18</td>
</tr>
<tr>
<td>Boundaries of the subdivisions of the Cenozoic</td>
<td>19</td>
</tr>
<tr>
<td>Eocene.</td>
<td>20</td>
</tr>
<tr>
<td>Miocene</td>
<td>21</td>
</tr>
<tr>
<td>Pliocene</td>
<td>22</td>
</tr>
<tr>
<td>Geographic provinces of American Neocene</td>
<td>22</td>
</tr>
<tr>
<td>Principles of classification</td>
<td>22</td>
</tr>
</tbody>
</table>
Chapter II. Summary of our knowledge of the Neocene of the Atlantic and Gulf coasts of the United States, considered by states

<table>
<thead>
<tr>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>85</td>
</tr>
<tr>
<td>Georgia</td>
<td>81</td>
</tr>
<tr>
<td>South Carolina</td>
<td>75</td>
</tr>
<tr>
<td>North Carolina</td>
<td>74</td>
</tr>
<tr>
<td>Virginia</td>
<td>75</td>
</tr>
<tr>
<td>New York</td>
<td>74</td>
</tr>
<tr>
<td>Delaware</td>
<td>73</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>74</td>
</tr>
<tr>
<td>Ohio</td>
<td>74</td>
</tr>
<tr>
<td>New Jersey</td>
<td>73</td>
</tr>
<tr>
<td>Maine</td>
<td>73</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>73</td>
</tr>
<tr>
<td>Vermont</td>
<td>73</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>73</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>73</td>
</tr>
<tr>
<td>Submarine strata off Newf.</td>
<td>72</td>
</tr>
</tbody>
</table>

Chapter I. General considerations—continued.

Geographic provinces of American Neocene—continued.

<table>
<thead>
<tr>
<th>Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisiana</td>
<td>66</td>
</tr>
<tr>
<td>Texas</td>
<td>65</td>
</tr>
<tr>
<td>Mexico</td>
<td>65</td>
</tr>
<tr>
<td>Central America</td>
<td>65</td>
</tr>
<tr>
<td>Pacific Coast</td>
<td>65</td>
</tr>
<tr>
<td>Central America</td>
<td>65</td>
</tr>
<tr>
<td>North America</td>
<td>65</td>
</tr>
<tr>
<td>General distribution of the Florid.</td>
<td>65</td>
</tr>
<tr>
<td>Recent rock formation</td>
<td>65</td>
</tr>
<tr>
<td>Bull. 100—15</td>
<td>225</td>
</tr>
</tbody>
</table>
Chapter II. Summary of our knowledge of the Neocene of the Atlantic and Gulf coasts of the United States, etc.—continued.

Florida—continued.

<table>
<thead>
<tr>
<th>Stratigraphy of Florida—continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme of the Floridian Cenozoic rocks</td>
<td>157</td>
</tr>
<tr>
<td>Thickness and dip of the strata</td>
<td>158</td>
</tr>
<tr>
<td>Alabama</td>
<td>159</td>
</tr>
<tr>
<td>Grand gulf group</td>
<td>159</td>
</tr>
<tr>
<td>Lafayette formation</td>
<td>159</td>
</tr>
<tr>
<td>Mississippi</td>
<td>160</td>
</tr>
<tr>
<td>Grand gulf group</td>
<td>161</td>
</tr>
<tr>
<td>Lafayette formation</td>
<td>166</td>
</tr>
<tr>
<td>Louisiana</td>
<td>167</td>
</tr>
<tr>
<td>Grand gulf group</td>
<td>167</td>
</tr>
<tr>
<td>Lafayette formation</td>
<td>170</td>
</tr>
<tr>
<td>Tennessee</td>
<td>170</td>
</tr>
<tr>
<td>Lagrange group</td>
<td>170</td>
</tr>
<tr>
<td>Kentucky</td>
<td>170</td>
</tr>
<tr>
<td>Lagrange group</td>
<td>171</td>
</tr>
<tr>
<td>Illinois</td>
<td>171</td>
</tr>
<tr>
<td>Missouri</td>
<td>172</td>
</tr>
<tr>
<td>Texas</td>
<td>172</td>
</tr>
<tr>
<td>Grand gulf group</td>
<td>172</td>
</tr>
<tr>
<td>Lake beds of the interior</td>
<td>175</td>
</tr>
<tr>
<td>Chapter III. General considerations on the later Atlantic Tertiaries</td>
<td>178</td>
</tr>
<tr>
<td>Correlation of American and exotic Neocene</td>
<td>178</td>
</tr>
<tr>
<td>Classification by Lyell and Deshayes</td>
<td>178</td>
</tr>
<tr>
<td>Growth of the continental border</td>
<td>180</td>
</tr>
<tr>
<td>The Eocene island of Florida</td>
<td>181</td>
</tr>
<tr>
<td>The great Carolina ridge</td>
<td>182</td>
</tr>
<tr>
<td>Contact of Eocene and Miocene</td>
<td>183</td>
</tr>
<tr>
<td>Warm and cold water Miocene</td>
<td>184</td>
</tr>
<tr>
<td>Grand gulf perezone</td>
<td>187</td>
</tr>
<tr>
<td>Lafayette perezone</td>
<td>189</td>
</tr>
<tr>
<td>Pliocene deposits</td>
<td>191</td>
</tr>
<tr>
<td>Table showing the vertical range of the Neocene formations of the Atlantic coast</td>
<td>193</td>
</tr>
</tbody>
</table>

Chapter IV. Summary of our knowledge of the Neocene of the Pacific coast of the United States and Canada, considered by states.

California	194
The Great valley of California	194
The Livermore valley	198
Stratigraphy, Coast ranges	200
Division north of the Golden gate	203
Division south of the Golden gate	217
The Sierra nevada	217
The auriferous gravels	219
Human remains in the auriferous gravels	221
Oregon	223
Pacific border	223
Columbia river	223
Willamette river	226
Washington	227
Pacific border	228
Central basin	228
British Columbia	230
Neocene of the coast	230
Neocene of the region east from the Coast ranges	231
Alaska	232
General notes on the rocks	232
Miocene of the Kenai group	234
Lithic beds of the Aleutian islands	242
Cape Bounfort coal-measures	249
Correlation of the Kenai series	249
Miocene of the Astoria group	252
Table showing distribution of the fauna of the Astoria group	253
Enumeration of special localities	255
Chapter IV. Summary of our knowledge of the Neocene of the Pacific coast of the United States, etc.—continued.

<table>
<thead>
<tr>
<th>Alaska—continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pliocene</td>
<td>259</td>
</tr>
<tr>
<td>Beds of marine origin</td>
<td>259</td>
</tr>
<tr>
<td>The Ground ice formation</td>
<td>260</td>
</tr>
<tr>
<td>The Kowak clays</td>
<td>263</td>
</tr>
<tr>
<td>Distribution of fossil vertebrates</td>
<td>266</td>
</tr>
<tr>
<td>Origin of the ice and clay formations</td>
<td>266</td>
</tr>
<tr>
<td>Volcanic phenomena</td>
<td>268</td>
</tr>
<tr>
<td>Notes on the map</td>
<td>268</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>268</td>
</tr>
</tbody>
</table>

Chapter V. General considerations on the Cenozoic epoch on the Pacific coast of North America

269

Chapter VI. Summary of our knowledge of the supposed Neocene of the interior region of the United States, considered by states.

<table>
<thead>
<tr>
<th>United States</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>269</td>
</tr>
<tr>
<td>Oregon</td>
<td>273</td>
</tr>
<tr>
<td>Idaho</td>
<td>285</td>
</tr>
<tr>
<td>Montana</td>
<td>287</td>
</tr>
<tr>
<td>Nevada</td>
<td>288</td>
</tr>
<tr>
<td>New Mexico</td>
<td>291</td>
</tr>
<tr>
<td>Colorado</td>
<td>294</td>
</tr>
<tr>
<td>Utah</td>
<td>296</td>
</tr>
<tr>
<td>Wyoming</td>
<td>299</td>
</tr>
<tr>
<td>Oregon</td>
<td>301</td>
</tr>
<tr>
<td>Idaho</td>
<td>304</td>
</tr>
<tr>
<td>Montana</td>
<td>306</td>
</tr>
<tr>
<td>Nevada</td>
<td>308</td>
</tr>
</tbody>
</table>

Chapter VII. List of names applied to Cenozoic beds and formations of the United States, excluding the Laramie.

3,500 copies published, the 3,000 required by the law relating to these bulletins and 500 extras ordered by the department for free distribution. Price, 25 cents.

At this writing the documentary edition of bulletin 84 and of subsequent ones has not appeared.
CONTENTS OF BULLETIN 85.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Outline of this paper</td>
</tr>
<tr>
<td>Chapter I. Nomenclature</td>
</tr>
<tr>
<td>Table of names and correlations</td>
</tr>
<tr>
<td>Chapter II. Area occupied by the Newark system</td>
</tr>
<tr>
<td>Acadian area</td>
</tr>
<tr>
<td>Connecticut valley area</td>
</tr>
<tr>
<td>Southbury area</td>
</tr>
<tr>
<td>New York-Virginia area</td>
</tr>
<tr>
<td>Barboursville area</td>
</tr>
<tr>
<td>Scottsville area</td>
</tr>
<tr>
<td>Danville area</td>
</tr>
<tr>
<td>Dan river area</td>
</tr>
<tr>
<td>Taylorsville area</td>
</tr>
<tr>
<td>Richmond area</td>
</tr>
<tr>
<td>Farmville area</td>
</tr>
<tr>
<td>Deep river area</td>
</tr>
<tr>
<td>Wadeborough area</td>
</tr>
<tr>
<td>Summary—areas of distribution</td>
</tr>
<tr>
<td>Chapter III. Presence or absence of Newark rocks on Prince Edward island</td>
</tr>
<tr>
<td>Historical</td>
</tr>
<tr>
<td>Discussion of the evidence</td>
</tr>
<tr>
<td>Plants</td>
</tr>
<tr>
<td>Animals</td>
</tr>
<tr>
<td>Other indications of geological position</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Chapter IV. Lithology and stratigraphy</td>
</tr>
<tr>
<td>Conglomerates and breccias</td>
</tr>
<tr>
<td>Sandstones, shales, and slates</td>
</tr>
<tr>
<td>Limestones</td>
</tr>
<tr>
<td>Coal</td>
</tr>
<tr>
<td>Quality of coal</td>
</tr>
<tr>
<td>Natural coke</td>
</tr>
<tr>
<td>Richmond area</td>
</tr>
</tbody>
</table>
Chapter IV. Lithology and stratigraphy—continued.

Coal—continued. ... Page
Farmville area .. 40
Deep river area .. 11
Dan river area ... 42
Commercial development .. 42
Thickness of the Newark rocks .. 43

Chapter V. Conditions of deposition .. 45

Physical conditions .. 45
Previous interpretations ... 45
Conclusions .. 46

Climatic conditions .. 47

Glacial hypothesis ... 47
Preservation of glacial records .. 49
Weight of the evidence of glaciation 50
Indications of a mild climate .. 52
Conclusions .. 53
Résumé .. 53

Chapter VI. Life records .. 54

Mammals .. 54
Batrachians and reptiles ... 54
Insects .. 58
Fishes ... 56
Crustaceans .. 59
Mollusks .. 60
Footprints .. 61
Plants ... 62

Chapter VII. Associated igneous rocks 66

Mineralogical composition ... 68
Chemical composition .. 68
Characteristics of trap dikes ... 69
Characteristics of trap sheets .. 69
Geographical distribution ... 70

Trap dikes outside the Newark area 70
Trap rocks of the Acadian area ... 72
Trap rocks of the Connecticut valley area 73
Trap rocks of the New York-Virginia area 74
Trap rocks of the Newark areas south of the New York-Virginia area ... 76

Summary respecting the distribution and age of the trap rocks. ... 76

Chapter VIII. Deformation .. 78

Introduction .. 78

Structure of the Acadian area .. 80
Structure of the Connecticut valley area 80
Structure of the Southbury area .. 81
Structure of the New York-Virginia area 83
Structure of the Barboursville, Scottsville, Danville, and Dan river areas .. 85
Structure of the Farmville area .. 88
Structure of the Richmond area .. 89

Previous observations .. 89

Personal observations .. 90

Section along the James river ... 90
West border of the area ... 91
East border of the area ... 92
Failures in mining due to geological structure 93
Absence of oil and gas .. 94

Structure of the Deep river area .. 94
Structure of the Wadesboro area 95

Summary .. 97

Origin of fault structure ... 98

Chapter IX. Former extent ... 101

The local-basin hypothesis stated .. 101
The broad-terrane hypothesis stated 103
Evidence favoring the local-basin hypothesis 104
Evidence favoring the broad-terrane hypothesis 104
Objections to the broad-terrane hypothesis 106

Conclusion ... 107
Chapter X. Correlation

General principles... 108
Physical phenomena as a basis of correlation................................. 108
Superposition.. 108
Contained fragments.. 108
Relation to systems of folds, faults, and dikes................................. 108
Relation to unconformities... 108
Relation to glaciation... 109
Lithological similarity... 109
Summary concerning physical phenomena.. 110
Chemical phenomena considered... 110
Life records as a basis of correlation... 110
Imperfections of the geological record.. 111
Imperfections of our knowledge of the geological record..................... 111
Influence of distribution on the life records...................................... 112
The life record continuous.. 113
The European standard... 113
Principles on which widely separated terranes may be correlated.... 116
Manner in which American terranes have been correlated............... 118
Correlation of the Newark system.. 120
Relation to terranes in the western part of the United States.............. 121
Relation to European terranes... 122
Testimony of the vertebrates... 123
Testimony of the crustaceans... 125
Testimony of the plants... 125
Summary... 129
Relation of terranes in Asia and Central America........................... 131
Literature of the Newark system... 133

3,500 copies published, the 3,000 required by the law relating to these bulletins and 500 extras ordered by the department for free distribution. Price, 25 cents.

BULLETIN 86.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 86 | Correlation papers—Archean and Algonkian |
Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 86 | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Correlation papers | Archean and Algonkian | by | Charles Richard Van Hise | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of survey publications, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-8; illustrations, p. 9, verso blank; letter of transmittal to the director by G. K. Gilbert, geologist in charge, pp. 11-12; outline of the paper, pp. 13-14; preface, pp. 15-18; introduction, pp. 19-22; text, pp. 23-529, verso blank; index, pp. 531-549. 8°.
Plates i-xii.

CONTENTS OF BULLETIN 86.

Letter of transmittal ... 11
Outline of this paper ... 13
Preface ... 15
Table of Contents

<table>
<thead>
<tr>
<th>Section I. The original Laurentian and Huronian areas</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Chapter I. The original Laurentian and Huronian areas</td>
<td></td>
</tr>
<tr>
<td>Section I. Eastern Ontario and western Quebec</td>
<td>23</td>
</tr>
<tr>
<td>Literature</td>
<td>23</td>
</tr>
<tr>
<td>Summary of results</td>
<td>24</td>
</tr>
<tr>
<td>Section II. From north channel of lake Huron to lake Temiscaming</td>
<td>35</td>
</tr>
<tr>
<td>Literature</td>
<td>35</td>
</tr>
<tr>
<td>Summary of results</td>
<td>36</td>
</tr>
<tr>
<td>Notes</td>
<td>48</td>
</tr>
</tbody>
</table>

Chapter II. The great northern area	
Section I. The region about Hudson bay	209
Literature	209
Summary of results	212
Section II. Northern Canada	213
Literature	216
Summary of results from Dawson	217
Section III. The lower St. Lawrence river and westward to lakes St. John and Mistassini	218
Literature	218
Summary of results	220
Notes	220

Chapter III. The great northern area	
Section I. The eastern townships	223
Literature	223
Summary of results	226
Section II. Gaspé peninsula	227
Literature	227
Section III. Central New Brunswick	227
Literature	227
Summary of results	229
Section IV. Southern New Brunswick	229
Literature	229
Summary of results	230
Section V. Nova Scotia and Cape Breton	230
Literature	230
Summary of results	233

Chapter IV. Eastern Canada and Newfoundland	
Section I. The Great Lakes	235
Literature	235
Summary of results	238
Section II. Great Lakes	238
Literature	238
Summary of results	240
Section III. Great Lakes	240
Literature	240
Summary of results	243
Chapter IV. Eastern Canada and Newfoundland—continued.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI. Newfoundland</td>
<td>247</td>
</tr>
<tr>
<td>Literature</td>
<td>247</td>
</tr>
<tr>
<td>Summary of results</td>
<td>251</td>
</tr>
<tr>
<td>Notes</td>
<td>252</td>
</tr>
</tbody>
</table>

Chapter V. Isolated areas of the Mississippi valley.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. The Black hills</td>
<td>257</td>
</tr>
<tr>
<td>Literature</td>
<td>257</td>
</tr>
<tr>
<td>Summary of results</td>
<td>260</td>
</tr>
<tr>
<td>Section II. Missouri</td>
<td>261</td>
</tr>
<tr>
<td>Literature</td>
<td>261</td>
</tr>
<tr>
<td>Summary of results</td>
<td>265</td>
</tr>
<tr>
<td>Section III. Texas</td>
<td>266</td>
</tr>
<tr>
<td>Literature</td>
<td>266</td>
</tr>
<tr>
<td>Summary of results</td>
<td>269</td>
</tr>
<tr>
<td>Notes</td>
<td>270</td>
</tr>
</tbody>
</table>

Chapter VI. The Cordilleras.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Laramie, Medicine bow, and Park ranges in southern Wyoming</td>
<td>272</td>
</tr>
<tr>
<td>Literature</td>
<td>272</td>
</tr>
<tr>
<td>Summary of results</td>
<td>276</td>
</tr>
<tr>
<td>Section II. Central and western Wyoming</td>
<td>277</td>
</tr>
<tr>
<td>Literature of the Big horn mountains</td>
<td>277</td>
</tr>
<tr>
<td>Literature of the Rattlesnake mountains</td>
<td>278</td>
</tr>
<tr>
<td>Literature of the Sweetwater and adjacent mountains</td>
<td>278</td>
</tr>
<tr>
<td>Literature of the Wind river mountains</td>
<td>279</td>
</tr>
<tr>
<td>Literature of the Gros ventre and Wyoming ranges</td>
<td>280</td>
</tr>
<tr>
<td>Literature of the Teton range</td>
<td>281</td>
</tr>
<tr>
<td>Summary of results</td>
<td>281</td>
</tr>
<tr>
<td>Section III. Central and southwestern Montana, with adjacent parts of Wyoming and Idaho</td>
<td>282</td>
</tr>
<tr>
<td>Literature</td>
<td>282</td>
</tr>
<tr>
<td>Summary of results</td>
<td>286</td>
</tr>
<tr>
<td>Section IV. Utah and southeastern Nevada</td>
<td>286</td>
</tr>
<tr>
<td>Literature of the Uinta mountains</td>
<td>286</td>
</tr>
<tr>
<td>Literature of the Wasatch mountains</td>
<td>289</td>
</tr>
<tr>
<td>Literature of the Promontory ridge, Fremont island and Antelope island ranges</td>
<td>295</td>
</tr>
<tr>
<td>Literature of the Oquirrh mountains</td>
<td>295</td>
</tr>
<tr>
<td>Literature of the Aqui mountains</td>
<td>296</td>
</tr>
<tr>
<td>Literature of the Raft river range</td>
<td>296</td>
</tr>
<tr>
<td>Literature of the southern Utah and southeastern Nevada</td>
<td>296</td>
</tr>
<tr>
<td>Summary of results</td>
<td>297</td>
</tr>
<tr>
<td>Section V. Nevada, north of parallel 39° 30'</td>
<td>299</td>
</tr>
<tr>
<td>Literature</td>
<td>299</td>
</tr>
<tr>
<td>Summary of results</td>
<td>306</td>
</tr>
<tr>
<td>Section VI. Colorado and northern New Mexico</td>
<td>308</td>
</tr>
<tr>
<td>Literature of the Front range, north and east of the Arkansas</td>
<td>308</td>
</tr>
<tr>
<td>Literature of the West and Sangre de Cristo mountains</td>
<td>313</td>
</tr>
<tr>
<td>Literature of the Front range of southern Colorado and northern New Mexico</td>
<td>314</td>
</tr>
<tr>
<td>Literature of the Park range</td>
<td>314</td>
</tr>
<tr>
<td>Literature of the Sawatch mountains</td>
<td>316</td>
</tr>
<tr>
<td>Literature of the Elk mountains</td>
<td>317</td>
</tr>
<tr>
<td>Literature of the Grand and Gunnison rivers</td>
<td>318</td>
</tr>
<tr>
<td>Literature of the Quartzite mountains</td>
<td>319</td>
</tr>
<tr>
<td>Literature of the La Plata mountains</td>
<td>323</td>
</tr>
<tr>
<td>Summary of results</td>
<td>324</td>
</tr>
<tr>
<td>Section VII. Arizona and western New Mexico</td>
<td>326</td>
</tr>
<tr>
<td>Literature</td>
<td>326</td>
</tr>
<tr>
<td>Summary of results</td>
<td>330</td>
</tr>
<tr>
<td>Section VIII. California, Washington, and British Columbia</td>
<td>332</td>
</tr>
<tr>
<td>Literature of California, with adjacent parts of Nevada and Arizona</td>
<td>332</td>
</tr>
<tr>
<td>Literature of Washington</td>
<td>337</td>
</tr>
<tr>
<td>Literature of British Columbia</td>
<td>337</td>
</tr>
<tr>
<td>Summary of results</td>
<td>341</td>
</tr>
<tr>
<td>Notes</td>
<td>342</td>
</tr>
</tbody>
</table>
Chapter VII. Eastern United States

Section I. The New England states
- Literature of Maine
- Literature of New Hampshire
- Literature of Vermont
- Literature of Massachusetts
- Literature of Rhode Island
- Literature of Connecticut

Section II. The middle Atlantic states
- Literature of New York
- Literature of New Jersey
- Literature of Pennsylvania
- Literature of Maryland
- Literature of Delaware

Section III. The southern Atlantic states
- Literature of the Virginias
- Literature of North Carolina
- Literature of Tennessee
- Literature of South Carolina
- Literature of Georgia
- Literature of Alabama

Summary of results

Chapter VIII. General successions and discussions of principles

Section I. Literature

Section II. General discussion
- Names applied to pre-Cambrian rocks
- The character of the Archean
- Delimitations of Archean
- Stratigraphy of Archean
- Necessity for a group between Cambrian and Archean
- Delimitations of the Algonkian
- Difficulties in Algonkian stratigraphy
- The original Laurentian and associated areas
- The original Huronian
- Lake Superior region
- The region about Hudson bay
- Other regions of northern Canada
- The eastern townships
- Southern New Brunswick
- Nova Scotia and Cape Breton
- Newfoundland
- The Black hills
- Missouri
- Texas
- Medicine bow range
- Southwestern Montana
- The Uinta mountains
- The Wasatch mountains
- Promontory ridge, Antelope and Fremont islands
- Schell creek, Egan, Pogonip or White pine, and Pinfou ranges
- Front range of Colorado
- The Quartzite mountains
- Grand canyon of the Colorado
- British Columbia
- The Adirondacks
- Other Algonkian areas
Chapter VIII. General successions and discussions of principles—continued.

Section II. General discussion—continued.

Subdivisions of Algonkian .. 509
Comparison with other classifications ... 509
Principles applicable to Algonkian stratigraphy 511
Results in America and Europe compared 524
Notes .. 527
Index ... 531

3,000 copies published, the number required by the law relating to these bulletins. Price, 25 cents.

Nos. 87, 88, and 89 of the series of bulletins were assigned to certain correlation essays, but the essays have not yet been submitted for publication.

BULLETIN 90.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 90 | Report of work done in the division of chemistry and | physics, mainly during the fiscal year 1890-91 |

Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 90 | [Seal of the department of the interior] |

Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Report of work done | in the division of chemistry and physics | mainly during the fiscal year 1890-91 | Frank Wigglesworth Clarke, chief chemist | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9, verso blank; text, pp. 11-75, verso blank; index, p. 77. 8°. Figs. 1-3.

CONTENTS OF BULLETIN 90.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the constitution of certain micas, vermiculites, and chlorites. By F. W. Clarke and E. A. Schneider .. 11</td>
</tr>
<tr>
<td>New analyses of uraninite. By W. F. Hillebrand .. 22</td>
</tr>
<tr>
<td>On the isomorphism and composition of thorium and uranium sulphates ... 26</td>
</tr>
<tr>
<td>I. Chemical discussion. By W. F. Hillebrand .. 26</td>
</tr>
<tr>
<td>II. Crystallographic discussion. By W. H. Melville .. 31</td>
</tr>
<tr>
<td>Powellite—calcium molybdate: a new mineral species. By W. H. Melville .. 34</td>
</tr>
<tr>
<td>Mineralogical notes. By W. H. Melville .. 38</td>
</tr>
<tr>
<td>Natrolite from Magnet cove, Arkansas .. 38</td>
</tr>
<tr>
<td>Tourmaline from Nevada county, California .. 39</td>
</tr>
<tr>
<td>Spezzartite garnet from Llano county, Texas .. 39</td>
</tr>
<tr>
<td>Bismuthinite from Sinaloa, Mexico .. 40</td>
</tr>
<tr>
<td>Two new meteorites. By L. G. Eakins .. 41</td>
</tr>
<tr>
<td>I. Meteoric iron from Pulaski county, Virginia .. 45</td>
</tr>
<tr>
<td>II. Stone from Washington county, Kansas .. 45</td>
</tr>
<tr>
<td>On the action of phosphorus oxychloride on the ethers and chlorhydrines of silicic acid. By II. N. Stokes .. 47</td>
</tr>
<tr>
<td>On the colloidal sulphides of gold. By E. A. Schneider .. 56</td>
</tr>
</tbody>
</table>
Miscellaneous analyses ... 62
Three minerals from Colorado .. 62
Yellow smithsonite from Arkansas .. 62
Rocks and clays from the zinc region of Missouri and Kansas 63
Two feldspars .. 65
Six sandstones .. 65
Seven marbles and dolomites .. 66
Nine rocks from Maryland .. 66
Eruptive rock from Kentucky .. 67
Four granites from Missouri ... 68
Three rocks from Minnesota ... 68
Rocks from Colorado ... 69
Rocks from Montana .. 70
Rocks from Arizona .. 72
Rocks from Eureka, Nevada ... 72
Rocks from California ... 73
Sinter from Queensland ... 74
Two clays from Florida .. 74
Iron ores from West Virginia .. 74
Coal and coke from West Virginia .. 75
Two coals from Utah ... 75

3,000 copies published, the number required by law. Price, 10 cents.

BULLETIN 91.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 91 | Record of North American geology for 1890 |
Washington | government printing office | 1891

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 91 | [Seal of the department of the interior] |
Washington | government printing office | 1891

Special title: Record | of | North American geology for 1890 | by | Nelson Horatio Darton | [Survey design] |
Washington | government printing office | 1891

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; introductory, p. 5; classified key to the subject entries, pp. 6–8; list of publications examined, pp. 9–10; text, pp. 11–88. 8°.

3,000 copies published, the number required by law. Price, 10 cents.

BULLETIN 92.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 92 | The compressibility of liquids |
Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 92 | [Seal of the department of the interior] |
Washington | government printing office | 1892
Special title: United States geological survey | J. W. Powell, director | The compressibility of liquids | by | Carl Barus | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5-7, verso blank; tables, pp. 9-10; illustrations, pp. 11-12; letter of transmittal to the director by F. W. Clarke, chief chemist, p. 13, verso blank; preface, pp. 15-16; text, pp. 17-94; index, pp. 95-96. 8°. Plates i-xxix.

CONTENTS OF BULLETIN 92.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Chapter I. Fluid volume: its dependence on pressure and temperature</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Literature of compressibility</td>
</tr>
<tr>
<td>Literature of heat expansion</td>
</tr>
<tr>
<td>Remarks on the literature</td>
</tr>
<tr>
<td>Apparatus</td>
</tr>
<tr>
<td>Force pump and appurtenances</td>
</tr>
<tr>
<td>Pressure tube and appurtenances</td>
</tr>
<tr>
<td>Method of charging the tube</td>
</tr>
<tr>
<td>Method of heating</td>
</tr>
<tr>
<td>Pressure measurement</td>
</tr>
<tr>
<td>Volume changes of the glass tubes</td>
</tr>
<tr>
<td>Mercury tests</td>
</tr>
<tr>
<td>Isothermals and adiabatics</td>
</tr>
<tr>
<td>Thermal expansion</td>
</tr>
<tr>
<td>Experimental results</td>
</tr>
<tr>
<td>Explanation</td>
</tr>
<tr>
<td>Ether</td>
</tr>
<tr>
<td>Alcohol</td>
</tr>
<tr>
<td>Palmitic acid</td>
</tr>
<tr>
<td>Para-toluidine</td>
</tr>
<tr>
<td>Diphenylamine</td>
</tr>
<tr>
<td>Capric acid</td>
</tr>
<tr>
<td>Benzoic acid</td>
</tr>
<tr>
<td>Paraflin</td>
</tr>
<tr>
<td>Thymol</td>
</tr>
<tr>
<td>Naphthalene</td>
</tr>
<tr>
<td>Method of discussion</td>
</tr>
<tr>
<td>Plan pursued</td>
</tr>
<tr>
<td>Quadratic constants</td>
</tr>
<tr>
<td>Compressibility increasing inversely as the pressure binomial</td>
</tr>
<tr>
<td>Transition to exponential constants</td>
</tr>
<tr>
<td>Properties of the exponential equation</td>
</tr>
<tr>
<td>Exponential constants computed</td>
</tr>
<tr>
<td>Mean exponential constants derived</td>
</tr>
<tr>
<td>Subsidiary results</td>
</tr>
<tr>
<td>Isothermals computed</td>
</tr>
<tr>
<td>Isometrics</td>
</tr>
<tr>
<td>Digression on thermal expansion</td>
</tr>
<tr>
<td>Exponential equation proposed</td>
</tr>
<tr>
<td>Observed contractions due to cooling under pressure</td>
</tr>
<tr>
<td>Compressibility increasing inversely as the second power of the pressure binomial</td>
</tr>
<tr>
<td>Properties of the hyperbolic equation</td>
</tr>
<tr>
<td>Presumptive character of the isometrics</td>
</tr>
<tr>
<td>Hyperbolic constants computed</td>
</tr>
<tr>
<td>Mean hyperbolic constants derived</td>
</tr>
<tr>
<td>The isothermal band</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Chapter II. The effect of pressure on the electrical conductivity of mercury .. 68

Introduction ... 68

Purposes of the work .. 68

Literature ... 69

Simple methods and results .. 69

Cailletet's tubes described ... 69

Electrical apparatus .. 70

Preliminary data .. 70

Correction for volume changes of tube ... 71

Preliminary results stated .. 71

Piezometer methods and results ... 72

Tubular piezometer described ... 72

Results ... 73

Deductions ... 74

Purely thermal variation of resistance ... 74

Comparison with J. J. Thomson's equation .. 75

Zero of resistance ... 75

Electrical pressure measurement ... 75

Measurement of melting point and pressure .. 76

Conclusion ... 76

Chapter III. The compressibility of water above 100° and its solvent action on glass 78

Introduction ... 78

Behavior of water ... 78

Literature. Compressibility of water ... 78

Literature. Solvent action of water ... 79

Method of measurement and results ... 79

Apparatus ... 79

Low temperature data ... 80

High temperature data .. 80

Discussion of these results ... 81

High temperature measurement repeated ... 82

Discussion of these results ... 82

Conclusion ... 83

Chapter IV. The solution of vulcanized india rubber ... 85

The present application ... 85

Solution in carbon disulphide .. 86

Solution in liquids of the paraffin series .. 87

Solution in turpentine .. 87

Solution in chloroform and carbon tetrachloride .. 87

Solution in sulfolene .. 88

Solution in animal oils .. 88

Treatment with glycerin .. 88

Solution in benzol and higher aromatic hydrocarbons ... 88

Solutions in ethylalcohol and higher ethers ... 88

Treatment with alcohols .. 88

Treatment with ketones ... 88

Treatment with water and mineral acids ... 88

Treatment for vulcanization. Liquid carbon.. 89

Direct de-vulcanization .. 90

Fusion of impregnated rubber .. 90

Behavior of reagents and solvents .. 92

Summary of the results .. 93

Presumable conditions regarding the solution of carbon, etc. .. 93

Index .. 95

3,000 copies published, the number required by law. Price, 10 cents.

BULLETIN 93.
CONTENTS OF BULLETIN 93.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal ..</td>
</tr>
<tr>
<td>Introduction ...</td>
</tr>
<tr>
<td>Genera and species ..</td>
</tr>
<tr>
<td>Neuroptera—Odonata ..</td>
</tr>
<tr>
<td>Trichocnemis Selys ..</td>
</tr>
<tr>
<td>Trichocnemis aliena ..</td>
</tr>
<tr>
<td>Stenogomphus, gen. nov ...</td>
</tr>
<tr>
<td>Stenogomphus carletoni ...</td>
</tr>
<tr>
<td>Hemiptera—Cicadida ...</td>
</tr>
<tr>
<td>Cicada Linne ...</td>
</tr>
<tr>
<td>Cicada grandiosa ..</td>
</tr>
<tr>
<td>Coleoptera—Byrrhida ..</td>
</tr>
<tr>
<td>Nosotetocus, gen. nov ..</td>
</tr>
<tr>
<td>Nosotetocus marcovi ..</td>
</tr>
<tr>
<td>Coleoptera—Carabida ..</td>
</tr>
<tr>
<td>Carabites Heer ...</td>
</tr>
<tr>
<td>Carabites examinus ..</td>
</tr>
<tr>
<td>Diptera—Estrida ...</td>
</tr>
<tr>
<td>Paleastrus, gen. nov ...</td>
</tr>
<tr>
<td>Paleastrus oligocenus ...</td>
</tr>
<tr>
<td>Diptera—Mycetophilida ...</td>
</tr>
<tr>
<td>Mycetophagi ..</td>
</tr>
<tr>
<td>Mycetophagus, gen. nov ..</td>
</tr>
<tr>
<td>Mycetophagus intermedius ..</td>
</tr>
<tr>
<td>Lepidoptera—Nymphalida ...</td>
</tr>
<tr>
<td>Llibytheina ..</td>
</tr>
<tr>
<td>Barborothea, gen. nov ..</td>
</tr>
<tr>
<td>Barborothea florissanti ...</td>
</tr>
<tr>
<td>Hymenoptera—Tenthredinida ...</td>
</tr>
<tr>
<td>Atocus, gen. nov ...</td>
</tr>
<tr>
<td>Atocus defossus ...</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by law. Price, 5 cents.

BULLETIN 94.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 94 | The mechanism of solid viscosity. | Washington | government printing office | 1892
CONTENTS OF BULLETIN 94.

Letter of transmittal .. 13

Preface .. 15

Chapter I. Tensile, drawn, and other strains in their bearing on Maxwell's theory of viscosity. 17
 Introductory ... 17
 Apparatus ... 18
 Data for drawn wires ... 18
 Data for stretched wires .. 24
 Inferences ... 26

Chapter II. The two species of molecular break-up which promote viscous deformation. 30
 Introductory ... 30
 Motional annealing defined .. 30
 Strain, electric resistance, and viscosity ... 31
 Temper, electric resistance, and viscosity ... 31
 Data relative to temper, electric resistance, and viscosity ... 31
 Discussion of results ... 33
 Data for cyclic twisting ... 33
 Discussion of results of cyclic twisting ... 37
 The marked feature ... 37
 Analogy with thermal annealing ... 38

Chapter III. The effect of mechanical strain on the carburation of steel 40
 Introductory ... 40
 Drowne's experiments ... 40
 The present method ... 40
 Method of experiment ... 41
 Results obtained ... 41
 Tables .. 42
 Discussion ... 44
 Inconsistency of the results... 44
 Errors of the method ... 45
 Temperature ... 45
 Concentration of acid ... 45
 Solution in air and in hydrogen ... 45
 Rate of solution ... 46
 Structural density ... 46
 Summary ... 46
 Osmond's α and β iron .. 47

Chapter IV. The effect of strain on the rate of solution of steel .. 48
 Introductory ... 48
 Method .. 48
 Tables .. 49
 Discussion ... 57
 Incidental errors ... 57
 Effect of surface ... 58
 Effect of diffusion .. 58
Chapter IV. The effect of strain on the rate of solution of steel—continued.

Discussion—continued.
- Wires originally soft ... 59
- Wires annealed ... 60
- Relation to Drowne's inferences .. 61
- Summary .. 61

Chapter V. The hydroelectric effect of changes of molecular configuration.

Introductory ... 63
- Apparatus .. 63
- Experiments ... 64
- Zero method .. 64
- Results for iron .. 64
- Discussion of results ... 66
- Data for diverse metals .. 66
- Effects classified .. 69
- Discussion of errors ... 70
- Variable capacity .. 70
- Single wires .. 72
- Summary ... 72

Chapter VI. Secular annealing of cold hard steel.

Introductory ... 74
- Results for homogeneity of rods .. 75
- Mass constants of rods ... 76
- Electrical constants of rods ... 77
- Summary ... 79

Chapter VII. The viscosity of electrolyzing glass.

- Apparatus .. 81
- Results .. 82
- Inferences ... 83

Chapter VIII. The electrical resistance of stressed glass.

Introductory ... 85
- Apparatus .. 85
- Experiments ... 86
- Data for 350° .. 86
- Data for 100° .. 86
- Data for 185° .. 88
- Results of twisting ... 89
- Differential apparatus ... 89
- Results for torsion ... 91
- Character of traction effects ... 91
- Results for traction at 100° ... 91
- Discussion of these results ... 92
- Traction at 100° .. 94
- Further results at 100° ... 95
- Dimensional change due to torsion .. 96
- Effect of temperature ... 96
- Traction at 360° .. 97
- Summary ... 98
- Degree of molecular instability of glass 99

Chapter IX. The energy potentialized in permanent changes of molecular configuration.

Introductory ... 101
- Apparatus .. 101
- Results .. 103
- Discussion of errors ... 104
- Successive stretching ... 105
- Results of improved methods ... 106
- Summary ... 107

Chapter X. The chemical equilibrium of solids in its relation to pressure and to temperature.

Earlier researches .. 109
- Apparatus .. 110
- Compressor ... 110
- Vapour baths .. 110
- Insulation .. 110
- The resistance tube ... 111
- Arrangement for testing insulation .. 113
- Depression ... 113
- Resistance measurement .. 114
Chapter X. The chemical equilibrium of solids in its relation to pressure, etc.—continued.

BULLETINS 94 AND 95. 241

Apparatus—continued.

Galvanometer ... 114
Other adjustments .. 114
Observations ... 114

Galvanometer ... 114
Other adjustments .. 114
Observations ... 114

Table explained .. 114
Remarks on the table .. 115
Electromotive force .. 116
Remarks on the table .. 116
Pressure coefficient of sperm oil ... 117
Pressure coefficient of gasoline .. 117
Pressure coefficient of petroleum 118
Pressure coefficient of thin machine oil 120
Pressure coefficient of thick machine oil 122
Digest ... 123

Deductions ... 124
Effect of pressure .. 124
Temporary and permanent effects 124
Chart .. 125
Pressure and chemical equilibrium 125
Effect of temperature .. 125
Molecular effects of stress .. 125
Hysteresis .. 126
Magnetic hysteresis .. 127
Mechanism of viscosity .. 128
Electrical effects of anisotropic stress 130

Unavoidable errors ... 130
Polarization ... 130
Insulators .. 130
Shifting isothermal planes .. 130
Electromotive force .. 131
Short-circuiting .. 132
Electromotive force and pressure 132
Graphic representation .. 133
Electric instability of hydrocarbon oils 134

Conclusion .. 135
Index .. 137

3,000 copies published, the number required by the law relating to these bulletins. Price, 15 cents.

BULLETIN 95.

Cover title: Department of the interior, | Bulletin | of the | United States | geological survey | no. 95 | Earthquakes in California in 1890 and 1891 |
Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 95 | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | Earthquakes in California | in 1890 and 1891 | by | Edward Singleton Holden | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i—v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; letter of transmittal to the director by G. K. Gilbert, chief geologist, p. 7, verso blank; text, pp. 9—29, verso blank; index to places, p. 31. 8°. See bulletin 68.

Bull. 100—16
CONTENTS OF BULLETIN 95.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Instruments</td>
</tr>
<tr>
<td>Scale of measurements</td>
</tr>
<tr>
<td>Differences of intensity</td>
</tr>
<tr>
<td>Stations</td>
</tr>
<tr>
<td>Chronological record, 1890</td>
</tr>
<tr>
<td>Chronological record, 1891</td>
</tr>
</tbody>
</table>

3,000 copies published, the number required by law. Price, 5 cents.

BULLETIN 96.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 96 | The volume thermodynamics of liquids |
Washington | government printing office | 1892

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 96 | [Seal of the department of the interior] |
Washington | government printing office | 1892

Special title: United States geological survey | J. W. Powell, director | The | volume thermodynamics | of | liquids | by | Carl Barus |
[Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, pp. 5–7, verso blank; illustrations, p. 9, verso blank; list of tables in the text, p. 11, verso blank; letter of transmittal to the director by F. W. Clarke, chief chemist, p. 13, verso blank; preface, p. 15, verso blank; erratum slip; text, pp. 17–97, verso blank; index, pp. 99–100. 8°. Plates i–viii; figs. 1–13.

CONTENTS OF BULLETIN 96.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Chapter I. Method of obtaining and of measuring very high pressures</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>The screw compressor</td>
</tr>
<tr>
<td>General method</td>
</tr>
<tr>
<td>Special devices</td>
</tr>
<tr>
<td>Steel screw</td>
</tr>
<tr>
<td>Barrel. Head</td>
</tr>
<tr>
<td>Barrel. Head, improved</td>
</tr>
<tr>
<td>Barrel. Body</td>
</tr>
<tr>
<td>Barrel. End with piezometer tube</td>
</tr>
<tr>
<td>Piezometer tube. Vapor bath</td>
</tr>
<tr>
<td>Method of filling</td>
</tr>
<tr>
<td>Case for protection</td>
</tr>
<tr>
<td>Vertical piezometer</td>
</tr>
<tr>
<td>Pressure measurement</td>
</tr>
<tr>
<td>Tait gauge. Adjustment</td>
</tr>
<tr>
<td>Tait gauge. Graduation</td>
</tr>
<tr>
<td>Tait gauge. Volume increase measured and computed</td>
</tr>
<tr>
<td>Direct reading, Bourdon gauge</td>
</tr>
<tr>
<td>Concluding remarks</td>
</tr>
<tr>
<td>Chapter II. The isometrics of liquids</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Apparatus</td>
</tr>
<tr>
<td>Constant volume tube</td>
</tr>
</tbody>
</table>
Chapter IV. The continuity of solid and liquid

WAHMAN. BULLETIN 96. 243

Chapter III. A comparison of the Bourdon, the Tait, and the Amagat high-pressure gauges.

Method of measurement

Apparatus

Introductory

Discussion of results

Historical

Results of the measurements

Chapter II. The isometrics of liquids—continued.

Apparatus—continued.

Manipulation

Method of filling

Vapor baths

Method of cooling piezometer

Method of temperature measurement

Method of pressure measurement

Preliminary results

Data for ether

Discussion

Definite results

Apparatus improved

Notation

Data for ether

Method of purifying

Observations for ether

Observations for alcohol

Observations for thymol, para-toluidine, and diphenylamine

Temperatures corrected

Behavior of the torsion galvanometer

Air thermometer comparisons

Air thermometer comparisons. Observations

Isometrics corrected as to temperature

Correction for the thermal and elastic volume changes of the glass tubes

Thermal expansion of glass

Compressibility of glass

Compressibility of the above liquids

Deductions

Curvature and slope of the isometrics

Final interpretation

Isometrics of solid glass

Conclusion

Chapter III. A comparison of the Bourdon, the Tait, and the Amagat high-pressure gauges

The earlier work

Amagat's manometer

Bourdon gauge

Discussion of results

Multiplying mechanism

Fraunhofer micrometer

Tait gauge

Summary

Chapter IV. The continuity of solid and liquid

Introductory

Scope of the work

Other methods tested

Advantages of the present method

Apparatus

Temperature

Pressure

The volume tube

Method of measurement

Constants of the tube

Volume of the charge

Correction for expansion and compressibility of envelopes

Resistance measurement

Calibration

Electrolytic resistance and temperature

Volume in terms of resistance

Pressure coefficient of the electrolyte

Results of the measurements

Arrangement of the tables

Solid isothermal, 63°

Liquid-solid isothermals, 89°

Liquid-solid isothermals, 99°

Liquid-solid isothermals, 100°

Liquid-solid isothermals, 117°
Chapter IV. The continuity of solid and liquid—continued.

Results of the measurements—continued.

Liquid-solid isothermals, 130° ... 88

Deductions ... 89

Graphic construction .. 89

Hysteresis ... 89

James Thomson's double inflections ... 90

The characteristic specific volumes... 91

Critical point .. 92

Solidifying points and melting points.. 93

Transitional point ... 94

Solubility and pressure.. 95

Conclusion... 96

3,000 copies published, the number required by the law relating to these bulletins. Price, 10 cents.

BULLETIN 97.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 97 | The Mesozoic Echinodermata of the United States | Washington | government printing office | 1893

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i–v, verso blank; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, pp. 7–8; letter of transmittal to the director by C. A. White, geologist in charge, p. 9, verso blank; preface, p. 11, verso blank; introduction, pp. 13–14; bibliography, pp. 15–20; text, pp. 21–101, verso blank; half-title “Plates,” p. 103, verso blank; half-title “Plate I,” p. 103; explanation of plate I, p. 106, followed by the plate; etc., consecutively with half-titles on odd pages and plate explanations on even pages to “Plate L,” as a half-title on p. 203; explanation of plate L, p. 204, followed by the plate; index, pp. 205–207. 8°. Plates 1–L.

CONTENTS OF BULLETIN 97. Page.

Letter of transmittal .. 9

Preface .. 11

Introduction .. 13

Bibliography .. 15

Systematic review... 21

Crinoidea... 21

Unitacerinidae .. 21

Apleocrinidae ... 24

Pentacerinidae ... 25

Asteroidea .. 29

Ophiuridae .. 29

Stelleridæ .. 31

Echinoidea .. 33

Euechinoidae ... 33

Regularæ ... 33

Cidaridae ... 33

Sceleidæ ... 40

Diadematidæ ... 44

Echinide ... 54
Systematic review—continued.

Echinoidea—continued.

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregulares</td>
<td>58</td>
</tr>
<tr>
<td>Echinoconida</td>
<td>58</td>
</tr>
<tr>
<td>Cassidulidae</td>
<td>59</td>
</tr>
<tr>
<td>Holasteridae</td>
<td>74</td>
</tr>
<tr>
<td>Spatangidae</td>
<td>78</td>
</tr>
<tr>
<td>Doubtful and unrecognized species</td>
<td>92</td>
</tr>
</tbody>
</table>

Geological distribution | 94

Catalogue of specific names employed by writers upon the Mesozoic Echinodermata of the United States | 95

Plates | 103

Index | 205

3,000 copies published, the number required by law.

At this writing bulletin 97 has not been delivered by the printer. The foregoing description has been made up from final page proofs, and may not be without error. Its price will be 20 cents.

BULLETIN 98.

Cover title: Department of the interior | Bulletin | of the | United States | geological survey | no. 98 | Flora of the outlying Carboniferous basins | of southwestern Missouri |

Washington | government printing office | 1893

General title: Department of the interior | Bulletin | of the | United States | geological survey | no. 98 | [Seal of the department of the interior] |

Washington | government printing office | 1893

Special title: United States geological survey | J. W. Powell, director | Flora | of the | outlying Carboniferous basins | of | southwestern Missouri | by | David White | [Survey design] |

Washington | government printing office | 1893

Paper cover bearing title as above; sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-vi; general title as above, verso blank; special title as above, verso blank; contents, p. 5, verso blank; illustrations, p. 7, verso blank; letter of transmittal, p. 9; outline of the bulletin, p. 10; introduction, pp. 11-16; text, pp. 17-121, verso blank; half-title “Plates,” p. 123, verso blank; half-title “Plate i,” p. 125; explanation of plate i, p. 126, followed by the plate; etc., consecutively with half-titles on odd pages and plate explanations on even pages to “Plate v” as a half-title on p. 133; explanation of plate v, p. 134, followed by the plate; etc., index, pp. 135-139. 8°. Plates i-v; fig. 1.

CONTENTS OF BULLETIN 98.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>9</td>
</tr>
<tr>
<td>Outline of this paper</td>
<td>10</td>
</tr>
<tr>
<td>Geological</td>
<td>11</td>
</tr>
<tr>
<td>Localities</td>
<td>11</td>
</tr>
<tr>
<td>Mode of occurrence</td>
<td>12</td>
</tr>
<tr>
<td>Paleontological</td>
<td>15</td>
</tr>
<tr>
<td>Description of species</td>
<td>17</td>
</tr>
<tr>
<td>I. Vascular cryptogams</td>
<td>17</td>
</tr>
<tr>
<td>Equisetinae</td>
<td>17</td>
</tr>
<tr>
<td>Calamaria</td>
<td>17</td>
</tr>
<tr>
<td>Calamites</td>
<td>17</td>
</tr>
<tr>
<td>Annularia</td>
<td>25</td>
</tr>
<tr>
<td>Sphenophyllum</td>
<td>35</td>
</tr>
<tr>
<td>Pinnularia (Hydatica)</td>
<td>43</td>
</tr>
</tbody>
</table>
Description of species—continued.

I. Vascular cryptogams—continued.

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filicinaceae</td>
<td>43</td>
</tr>
<tr>
<td>Sphenopteridaceae</td>
<td>43</td>
</tr>
<tr>
<td>Diplomiscaceae</td>
<td>43</td>
</tr>
<tr>
<td>Diplomiscina</td>
<td>44</td>
</tr>
<tr>
<td>Maripteris</td>
<td>46</td>
</tr>
<tr>
<td>Sphenopteris</td>
<td>52</td>
</tr>
<tr>
<td>Pecopteridaceae</td>
<td>60</td>
</tr>
<tr>
<td>Pecopteris</td>
<td>69</td>
</tr>
<tr>
<td>Neuropteridaceae</td>
<td>62</td>
</tr>
<tr>
<td>Neuropteris</td>
<td>68</td>
</tr>
<tr>
<td>Dictyopteris</td>
<td>90</td>
</tr>
<tr>
<td>Anomalous forms</td>
<td>101</td>
</tr>
<tr>
<td>Aphlebia</td>
<td>101</td>
</tr>
<tr>
<td>Lycopodineae</td>
<td>103</td>
</tr>
<tr>
<td>Sigillaria</td>
<td>103</td>
</tr>
<tr>
<td>Sphenopteris</td>
<td>103</td>
</tr>
</tbody>
</table>

II. Phanerogams

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gynnospermae</td>
<td>105</td>
</tr>
<tr>
<td>Cordaiteae</td>
<td>105</td>
</tr>
<tr>
<td>Cordalcius</td>
<td>105</td>
</tr>
<tr>
<td>Cordalanthus</td>
<td>106</td>
</tr>
<tr>
<td>Cordiicarpus</td>
<td>107</td>
</tr>
</tbody>
</table>

Results

Difficulties in correlation of western terranes with eastern series by means of fossil plants

Distribution of the species

Summary table

Age of the outliers as determined by the distribution and facies of the flora

Conclusions

Plates with descriptions

Index

3,000 copies published, the number required by law.

At this writing bulletin 98 has not been delivered by the printer; the foregoing description of it has been made up from final page proofs, and may not be errorless. Its price will be 15 cents.
Reports on Mineral Resources

Mineral Resources 1882

Advertisement of the publications of the survey, pp. i-ii; title as above, verso blank; contents, pp. iii-iv; letter of transmittal, p. v, verso blank; acknowledgments, pp. vii-x; summary, pp. xi-xvii, verso blank; text, pp. 1-775, verso blank; appendix, pp. 777-787, verso blank; index pp. 789-813. 8°.

Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>xi-xvii</td>
</tr>
<tr>
<td>Coal</td>
<td>1-107</td>
</tr>
<tr>
<td>General view of the coal-mining industry</td>
<td>1-7</td>
</tr>
<tr>
<td>Anthracite</td>
<td>7-32</td>
</tr>
<tr>
<td>Description and production of the anthracite coal fields of Pennsylvania, by Chas. A. Ashburner</td>
<td>7-24</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>33-107</td>
</tr>
<tr>
<td>Analyses and calorific values of some Utah coals, by Ellsworth Daggett</td>
<td>76-81</td>
</tr>
<tr>
<td>Iron</td>
<td>108-171</td>
</tr>
<tr>
<td>Iron ore and its products, by James M. Swank</td>
<td>108-144</td>
</tr>
<tr>
<td>Iron in the Rocky mountain division</td>
<td>144-148</td>
</tr>
<tr>
<td>Iron on the Pacific coast</td>
<td>148</td>
</tr>
<tr>
<td>The iron ores of Alabama in their geographical relations, by Eugene A. Smith</td>
<td>149-181</td>
</tr>
<tr>
<td>Utilization of blast-furnace slag</td>
<td>161-164</td>
</tr>
<tr>
<td>The Bower-Barff process, by A. S. Bower</td>
<td>164-171</td>
</tr>
<tr>
<td>Gold and silver</td>
<td>172-185</td>
</tr>
<tr>
<td>Petroleum</td>
<td>186-212</td>
</tr>
<tr>
<td>Petroleum, by S. H. Stowell</td>
<td>186-211</td>
</tr>
<tr>
<td>Petroleum in the Rocky mountain division</td>
<td>211-212</td>
</tr>
<tr>
<td>Copper</td>
<td>213-305</td>
</tr>
<tr>
<td>The copper industry of the United States, by C. Kirchhoff, jr.</td>
<td>213-257</td>
</tr>
<tr>
<td>The metallurgy of copper, by James Douglas, jr.</td>
<td>257-280</td>
</tr>
<tr>
<td>The roasting of copper ores and furnace products, by Edward D. Peters, jr.</td>
<td>280-297</td>
</tr>
<tr>
<td>Bluestone</td>
<td>297-305</td>
</tr>
<tr>
<td>The manufacture of bluestone at the Lyon mill, Dayton, Nevada, by J. E. Gignoux</td>
<td>297-305</td>
</tr>
<tr>
<td>Lead</td>
<td>306-345</td>
</tr>
<tr>
<td>The lead industry of the United States, by C. Kirchhoff, jr.</td>
<td>306-323</td>
</tr>
<tr>
<td>The smelting of argentiferous lead in the far west, by O. H. Hahn</td>
<td>324-345</td>
</tr>
<tr>
<td>Zinc</td>
<td>346-388</td>
</tr>
<tr>
<td>The zinc industry of the United States, by C. Kirchhoff, jr.</td>
<td>346-358</td>
</tr>
<tr>
<td>The mining and metallurgy of zinc in the United States, by F. L. Clerc</td>
<td>358-388</td>
</tr>
<tr>
<td>Quicksilver</td>
<td>387-388</td>
</tr>
<tr>
<td>Nickel, by W. P. Blake</td>
<td>399-420</td>
</tr>
<tr>
<td>Cobalt, by F. W. Taylor</td>
<td>421-423</td>
</tr>
<tr>
<td>Manganese, by David T. Day</td>
<td>424-427</td>
</tr>
<tr>
<td>Chromium, by David T. Day</td>
<td>428-430</td>
</tr>
</tbody>
</table>
Asphaltum ... 605
Nitrate of soda .. 599-600
Appendix; the new tariff .. 777-787
Miscellaneous contributions .. 475
Ozocerite .. 609
Cryolite .. 608
Copperas .. 607
Alum .. 606
Lithographic stone .. 595-596
Sulphate of soda .. 603-604
Carbonate of soda .. 602
Fluorspar .. 587
Quartz .. 586
Flourspar .. 587
Astebus .. 588-589
Graphite, by John A. Walker ... 590-594
Lithographic stone .. 595-596
Niter ... 597-598
Nitrate of soda .. 599-600
Carbonate of soda ... 601-602
Sulphate of soda ... 603-604
Asphaltum ... 605
Alum .. 606
Copperas ... 607
Cryolite .. 608
Ozocerite .. 609
Miscellaneous contributions ... 610-663
The divining rod, by R. W. Raymond .. 610-626
Electrolysis in the metallurgy of copper, lead, zinc, and other metals, by C. O. Mailloux 627-658
The minor minerals of North Carolina, by W. C. Kerr 659-661
Minor minerals of the Pacific coast, by C. G. Yale 662-663
The useful minerals of the United States 664-775
Appendix; the new tariff .. 777-787
6,000 copies published—3,000 under the law relating to survey publications and 3,000 by order of the secretary of the interior. Sold by the director of the survey at 50 cents a copy.

Documentary edition as follows:

Title as above, verso blank; contents, letter of transmittal, acknowledgments, and remainder of collation, and the contents, same as in the other edition.

1,900 copies published, the "usual number" edition, about 800 of which were delivered unbound, as described above; the remainder (about 1,100) were printed later and bound in sheep, in which form they constitute vol. 40 of the "Miscellaneous documents of the house of representatives for the first session of the forty-eighth congress." In these sheep-bound copies the leaf of advertisement is found preceding the title.

Of the "Summary" and the article on "American gems and precious stones" in this volume I have seen separates, as follows:

SEPARATES FROM MINERAL RESOURCES 1882.

No title; heading as above; pp. [1]-7. 8°.
Following the heading is this note, within brackets:
Abstract from a report entitled "The mineral resources of the United States," by Albert Williams, jr., chief of division of mining statistics and technology, United States geological survey, for the calendar year 1882 and the first six months of 1883.

Cover title: Department of the interior | American gems | and | precious stones | by | George F. Kunz | [Seal of the department of the interior] | Washington | government printing office | 1883

Last title: United States geological survey | J. W. Powell director | American gems | and | precious stones | by | George F. Kunz | Extract from "The mineral resources of the United States" by Albert Williams jr. | chief of the division of mining statistics and technology 1883 | [Survey design] | Washington | government printing office | 1883

Paper cover bearing title as given above; the same title repeated, verso blank; last title as given above, verso beginning of text; text, pp. 482-499. 8°. 500 copies issued by the department for gratuitous distribution.

MINERAL RESOURCES 1883-1884.

[Survey design] | Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States | calendar years 1882, 1883, and 1884.

CONTENTS.

Summary .. 1-10
Coal .. 11-219
Anthracite coal mining, by H. M. Clance .. 104-131
Coal mining in the Kanawha valley of West Virginia, by Stuart M. Buck 131-143
The manufacture of coke, by Joseph D. Weeks ... 144-213
Petroleum, by S. H. Stowell ... 214-232
Natural gas .. 233-245
Iron .. 246-311
The manufacture of iron and steel in the United States, by James M. Swank 246-257
Iron ores in the United States, by James M. Swank ... 257-261
Iron in the Rocky mountain division, by F. F. Chisolm ... 261-289
Iron on the Pacific coast, by C. G. Yale .. 280-286
American blast-furnace progress, by John Birkinbine .. 290-311
Gold and silver .. 312-410
Copper ... 322-410
The copper industry of the United States, by C. Kirchhoff, jr.. 322-374
The mines and reduction works of Butte city, Montana, by E. D. Peters, jr 374-396
The cupola smelting of copper in Arizona, by James Douglas, jr 397-410
Lead .. 411-473
The lead industry of the United States, by C. Kirchhoff, jr .. 411-440
Lead slags, by Malvern W. Ies ... 440-462
Recent improvements in desilverizing lead in the United States, by H. O. Hofman 462-473
Zinc. The zinc industry of the United States, by C. Kirchhoff, jr 474-491
Quicksilver .. 492-536
Quicksilver reduction at New Almaden, by Samuel B. Christy 503-534
Nickel, by W. P. Blake .. 537-543
Cobalt, by David T. Day .. 544-549
Manganese, by David T. Day ... 556-569
Chromium, by David T. Day ... 567-573
Tungsten, by David T. Day .. 574-575
Platinum ... 576-580
Iridium, by William L. Dudley ... 581-591
Tin, by W. P. Blake .. 592-604
Antimony, by W. P. Blake ... 641-653
Bismuth ... 654-655
Arsenic .. 656-657
Aluminum, by R. L. Packard ... 658-669
Zirconium, by David T. Day ... 661-667
 Structural materials ... 662-711
Building stone ... 662-667
Building sand ... 667-668
Lime .. 668-679
Cement ... 671-678
Clays, by F. A. Willer .. 674-711
Abrasive materials.. 712-722
Buhrstones.. 712-713
Grindstones.. 713-714
Corundum and emery, by T. M. Chatard.. 714-720
Infusorial earth ... 720-721
Pumice stone.. 721
Rottenstone... 722
Precious stones, by George F. Kunz.. 723-782
Phosphate rock, by David T. Day... 783-805
Alabama, by W. C. Stubbs.. 794-803
Apatite .. 805-808
Marls, by F. A. Wilber... 808
Gypsum, by F. A. Wilber... 809-815
Manufactured fertilizers, by David T. Day... 815-826
Salt.. 827-850
Bromine, by David T. Day... 851-853
Iodine, by David T. Day.. 854-858
Borax ... 859-863
Sulphur, by David T. Day... 864-876
Pyrites, by William Martyn.. 877-905
Mica, by F. W. Clarke.. 906-912
Asbestos... 913-914
Graphite, by John A. Walker... 915-919
Mineral paints .. 920-929
Chalk.. 930-932
Feldspar, by David T. Day ... 933,934
Lithographic stone ... 935,936
Asphaltum.. 937-948

The asphaltum deposits of California, by E. W. Hilgard........... 938-948
Alum.. 949,950
Bluestone.. 951
Copperas.. 952-953
Cryolite.. 954
Ozocerite.. 955-957
Glass materials, by Joseph D. Weeks.. 958-977
Mineral waters, by A. C. Pealo... 978-987
Historical sketch of mining law, by Rossetter W. Raymond............... 988-1004

6,000 copies published—3,000 under the law relating to survey publications and
3,000 by order of the secretary of the interior. Sold by the director of the survey
at 60 cents a copy.

Documentary edition as follows:

49th congress, | 1st session. | House of representatives, | Mis. doc. | no. 36. | Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar years | 1883 and 1884 | Albert Williams, jr. | chief of division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1885

Title as above, verso blank; advertisement of the publications of the survey, 2
unpaged leaves, verso of last one blank; contents, illustrations, letter of transmittal,
and remainder of collation, and the contents, same as the other edition.

1,900 copies published, the “usual number” edition, about 800 of which were
issued unbound, as described above; the remainder were printed later and bound in
sheep, in which form they constitute vol. 9 of the “Miscellaneous documents of the
house of representatives for the first session of the forty-ninth congress.”

Of most of the papers composing this volume, 100 copies were issued separately
by the department for gratuitous distribution, as follows:
Department of the interior | United States geological survey | J. W. Powell director | Coal | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884.”—Albert Williams, jr., chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 11-104. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Anthracite coal mining | by | H. M. Chance | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 104-131. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Coal mining in the Kanawha Valley of West Virginia | by | Stuart M. Buck | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 131-143. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | The manufacture of coke | by | Joseph D. Weeks | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 144-213. 8°. 600 copies—the regular edition of 100, and 500 extras ordered by the author.

Department of the interior | United States geological survey | J. W. Powell director | Petroleum | by | S. H. Stowell | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 214-232. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Natural gas | Abstract from “Mineral resources
of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics [Survey design] | Washington | government printing office | 1885

Department of the interior | United States geological survey | J. W. Powell director | The manufacture of iron and steel in the United States | by | James M. Swank | vice-president American iron and steel association | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics [Survey design] | Washington | government printing office | 1885

Department of the interior | United States geological survey | J. W. Powell director | American blast-furnace progress | by | John Birkinbine | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics [Survey design] | Washington | government printing office | 1885

Department of the interior | United States geological survey | J. W. Powell director | Gold and silver | by | Albert Williams, jr., Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics [Survey design] | Washington | government printing office | 1885

States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 322-374. 8°. 1 figure (fig. 3 of the volume). 175 copies—the regular 100, and 75 extras ordered by the author.

Department of the interior | United States geological survey | J. W. Powell director | The mines and reduction works of Butte city, Montana | by | Edward D. Peters, jr. | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 374-396. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | The cupola smelting of copper in Arizona | by | James Douglas, jr. | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 397-410. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | The lead industry of the United States | by | O. Kirchhoff, jr. | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 411-440. 8°. 1 figure (fig. 4 of the volume). 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Lead slags | by | Malverna W. Iles | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics [Survey design] |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same; verso blank; text, pp. 440-462. 8°. 1 figure (fig. 5 of the volume). 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Recent improvements in desilverizing lead | in the United States | by | H. O. Hofman | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert
Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 462-473. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | The | zinc industry | of the | United States | by | C. Kirchhoff, jr. | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 474-491. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Quicksilver | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 492-503. 8°. 1 figure (fig. 6 of the volume). 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Quicksilver reduction | at | New Almaden | by | Samuel B. Christy | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 503-536. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Nickel | by | W. P. Blake | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 537-543. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Cobalt | by | David T. Day | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., | chief of division of mining statistics | [Survey design] |
Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 544-549. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell director | Manganese | by | David T. Day | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 550-566. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Chromium | by | David T. Day | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 567-573. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Tungsten | by | David T. Day | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 574-575. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Platinum | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 576-580. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Iridium | by | William L. Dudley | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—Albert Williams, jr., chief of division of mining statistics |
Washington | government printing office | 1885
Paper cover bearing title as above; inner title same, verso blank; text, pp. 581-591. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Tin | by | W. P. Blake | Abstract from "Mineral resources of the United States, calendar years 1883 and 1884"—
Department of the interior | United States geological survey | J. W. Powell director | Corundum and emery | by | T. M. Chatard | Abstract from “Mineral resources of the United States, | calendar years 1883 and 1884”—Albert Williams, jr., | chief of division of mining statistics | [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 714–720. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Precious stones | by | George F. Kunz | Abstract from “Mineral resources of the United States, | calendar years 1883 and 1884”—Albert Williams, jr., | chief of division of mining statistics | [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 723–782. 8°. 1,150 copies—the regular 100, and 1,050 extras ordered by the author.

Department of the interior | United States geological survey | J. W. Powell director | Salt | by | Albert Williams, jr., | Abstract from “Mineral resources of the United States, | calendar years 1883 and 1884”—Albert Williams, jr., | chief of division of mining statistics | [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 827–850. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Bromine | by | David T. Day | Abstract from “Mineral resources of the United States, | calendar years 1883 and 1884”—Albert Williams, jr., | chief of division of mining statistics | [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 851–853. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell director | Iodine | by | David T. Day | Abstract from “Mineral resources of the United States, | calendar years 1883 and 1884”—Albert Williams, jr., | chief of division of mining statistics | [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 854–858. 8°. 100 copies.
calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics. [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 937-948. 8°. 150 copies—the regular 100, and 50 extras ordered by the author.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 958-977. 8°. 175 copies—the regular 100 and 75 extras ordered by the author.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 978-987. 8°. 250 copies—the regular 100 and 150 extras ordered by the author.

Department of the interior | United States geological survey | J. W. Powell director | Historical sketch of mining law | by | Rossiter W. Raymond | Abstract from “Mineral resources of the United States, calendar years 1883 and 1884”—Albert Williams, jr., chief of division of mining statistics. [Survey design] | Washington | government printing office | 1885

Paper cover bearing title as above; inner title same, verso blank; text, pp. 988-1004. 8°. 100 copies.

MINERAL RESOURCES 1885.

[Survey design] | Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States calendar years 1882, 1883, 1884, and 1885.

Colophon: Division of mining statistics, Washington, D. C., August 27, 1886.

One sheet, folio. A tabulation of the quantities and values of the various mineral products of the country for the years named. 2,500 copies issued by the department.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources of the United States calendar year 1885 [Albert Williams, jr., and David Talbot Day, chiefs of division of mining statistics and technology. [Survey design] | Washington | government printing office | 1886
Advertiment of the publications of the survey, 2 unpaged leaves, verso of last
one "notice"; title as above, verso blank; contents, pp. iii-iv; letter of transmittal
to the director, by David T. Day, geologist in charge, p. v; introductory, pp. vi-vii,
verso blank; summary, pp. 1-9; text, pp. 10-557, verso blank; index, pp. 559-576.
8°. "Fig. 2" occupies p. 205, "Fig. 6" p. 287, and a "map" p. 308; these are the
only illustrations in the volume.

CONTENTS.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>Coal, by Charles A. Ashburner</td>
<td>10-73</td>
</tr>
<tr>
<td>The manufacture of coke, by Joseph D. Weeks</td>
<td>74-129</td>
</tr>
<tr>
<td>Petroleum, by S. H. Stowell</td>
<td>130-154</td>
</tr>
<tr>
<td>Natural gas, by Joseph D. Weeks</td>
<td>155-179</td>
</tr>
<tr>
<td>Iron, twenty-one years of progress in the manufacture of iron and steel in the United States, by James M. Swank</td>
<td>180-195</td>
</tr>
<tr>
<td>Iron in the Rocky mountain division, by F. F. Chisolm</td>
<td>196</td>
</tr>
<tr>
<td>Iron on the Pacific coast, by C. G. Yale</td>
<td>196-199</td>
</tr>
<tr>
<td>Gold and silver</td>
<td>200-207</td>
</tr>
<tr>
<td>Copper. The copper industry of the United States, by C. Kirchhoff, Jr</td>
<td>208-243</td>
</tr>
<tr>
<td>Lead. The lead industry of the United States, by C. Kirchhoff, Jr</td>
<td>244-271</td>
</tr>
<tr>
<td>Zinc. The zinc industry of the United States, by C. Kirchhoff, Jr</td>
<td>272-283</td>
</tr>
<tr>
<td>Quicksilver</td>
<td>284-296</td>
</tr>
<tr>
<td>Nickel</td>
<td>297-302</td>
</tr>
<tr>
<td>Manganese, by C. D. Weeks</td>
<td>303-350</td>
</tr>
<tr>
<td>Chromium, by David T. Day</td>
<td>357-359</td>
</tr>
<tr>
<td>Cobalt, by David T. Day</td>
<td>361-365</td>
</tr>
<tr>
<td>Tungsten, by David T. Day</td>
<td>366</td>
</tr>
<tr>
<td>Platinum and iridium</td>
<td>367-369</td>
</tr>
<tr>
<td>Tin</td>
<td>370-385</td>
</tr>
<tr>
<td>Arsenic</td>
<td>386</td>
</tr>
<tr>
<td>Antimony</td>
<td>387-388</td>
</tr>
<tr>
<td>Bismuth</td>
<td>389</td>
</tr>
<tr>
<td>Aluminum, by R. L. Packard</td>
<td>390-392</td>
</tr>
<tr>
<td>Zirconium, by David T. Day</td>
<td>393-394</td>
</tr>
<tr>
<td>Structural materials, by H. S. Sproull</td>
<td>395-427</td>
</tr>
<tr>
<td>Abrasive materials</td>
<td>428-430</td>
</tr>
<tr>
<td>Bauxite stones</td>
<td>428</td>
</tr>
<tr>
<td>Grindstones</td>
<td>428-429</td>
</tr>
<tr>
<td>Corundum</td>
<td>429-432</td>
</tr>
<tr>
<td>Infusorial earth</td>
<td>433</td>
</tr>
<tr>
<td>Pumice stone</td>
<td>433</td>
</tr>
<tr>
<td>Novaculite, by George M. Turner</td>
<td>433-436</td>
</tr>
<tr>
<td>Precious stones, by George F. Kunz</td>
<td>437-444</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>445-473</td>
</tr>
<tr>
<td>Phosphate rock, by David T. Day</td>
<td>445-455</td>
</tr>
<tr>
<td>Apatite</td>
<td>456-458</td>
</tr>
<tr>
<td>Gypsum, by H. S. Sproull</td>
<td>458-464</td>
</tr>
<tr>
<td>Marls</td>
<td>464</td>
</tr>
<tr>
<td>Manufactured fertilizers</td>
<td>465-473</td>
</tr>
<tr>
<td>Salt</td>
<td>474-485</td>
</tr>
<tr>
<td>Bromine, by David T. Day</td>
<td>486-487</td>
</tr>
<tr>
<td>Iodine, by David T. Day</td>
<td>488-490</td>
</tr>
<tr>
<td>Borax</td>
<td>491-493</td>
</tr>
<tr>
<td>Sulphur, by William C. Day</td>
<td>494-500</td>
</tr>
<tr>
<td>Pyrites, by Herbert J. Davis</td>
<td>501-517</td>
</tr>
<tr>
<td>Mica</td>
<td>518-520</td>
</tr>
<tr>
<td>Asbestos</td>
<td>521-522</td>
</tr>
<tr>
<td>Feldspar, by William C. Day</td>
<td>523</td>
</tr>
<tr>
<td>Mineral paints, by Marcus Benjamin</td>
<td>524-533</td>
</tr>
<tr>
<td>Talc, by G. F. Perrenoud</td>
<td>534-535</td>
</tr>
<tr>
<td>Mineral waters, by A. C. Peale</td>
<td>536-543</td>
</tr>
<tr>
<td>Glass materials, by Jos. D. Weeks</td>
<td>544-557</td>
</tr>
</tbody>
</table>
6,000 copies published—3,000 under the law relating to survey publications and 3,000 by order of the secretary of the interior. Sold by the director of the survey at 40 cents a copy, the actual cost of publication as estimated by the public printer.

Documentary edition as follows:

49th congress, 2d session. House of representatives. Mis. doc. no. 146. Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the United States | calendar year 1885 | division of mining statistics and technology |
[Survey design] |
Washington | government printing office | 1886
Title as above, verso blank; then follow advertisement, title, contents, letter of transmittal, etc., as in the other edition.

1,900 copies published, being the “usual number” edition, about 800 of which were issued unbound, as described above; the remainder were printed later and bound in sheep as vol. 6 of the “Miscellaneous documents of the house of representatives for the second session of the forty-ninth congress.”

Of some of the more important papers comprising this volume brief abstracts were issued, usually “subject to revision,” in advance of the volume; and of most of the papers 100 copies were issued separately for gratuitous distribution, as follows:

SEPARATES FROM MINERAL RESOURCES 1885.

- **Department of the interior | United States geological survey | J. W. Powell, director | Coal | by | Chas. A. Ashburner | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
 Washington | government printing office | 1886
 Paper cover bearing title as above; inner title same, verso blank; text, pp. 10-73. 8°. 100 copies.

- **Department of the interior | United States geological survey | J. W. Powell, director | The manufacture of coke | by | Jos. D. Weeks | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
 Washington | government printing office | 1886
 Paper cover bearing title as above; inner title same, verso blank; text, pp. 74-129. 8°. 100 copies.

- **Department of the interior | United States geological survey | J. W. Powell, director | Petroleum | by | S. H. Stowell | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
 Washington | government printing office | 1886
 Paper cover bearing title as above; inner title same, verso blank; text, pp. 130-151. 8°. 100 copies.

- **Department of the interior | United States geological survey | J. W. Powell, director | Natural gas | by | Jos. D. Weeks | Abstract from
"Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 155-179. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Gold and silver | by | David T. Day | Abstract from "Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 200-207. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The | copper industry | of the | United States | by | C. Kirchhoff, jr. | Abstract from "Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 208-243. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The | lead industry | of the | United States | by | C. Kirchhoff, jr. | Abstract from "Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 244-271. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The | zinc industry | of the | United States | by | C. Kirchhoff, jr. | Abstract from "Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 272-283. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Quicksilver | Abstract from "Mineral resources of the United States, | calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886

Paper cover bearing title as above; inner title same, verso blank; text, pp. 284-296. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Nickel | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 297-302. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Manganese | by | Jos. D. Weeks | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 303-356. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Chromium | by | David T. Day | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 357-360. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Cobalt | by | David T. Day | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 361-365. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Platinum and iridium | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 367-369. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Tin | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 370-385. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Salt | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 474-485. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Bromine | by | David T. Day | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 486-487. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Iodine | by | David T. Day | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 488-490. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Borax | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 491-493. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Sulphur | by | William C. Day | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 494-500. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Pyrites | by | Herbert J. Davis | Abstract from “Mineral resources of the United States, calendar year 1885”—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 508-517. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Mica | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 518-520. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral paints | by | Marcus Benjamin | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 524-533. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral waters | by | A. C. Peale | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 536-543. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Glass materials | by | Jos. D. Weeks | Abstract from "Mineral resources of the United States, calendar year 1885"—Division of mining | statistics and technology | [Survey design] |
Washington | government printing office | 1886
Paper cover bearing title as above; inner title same, verso blank; text, pp. 544-557. 8°. 100 copies.

MINERAL RESOURCES 1886.

[Survey design] | Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States calendar years 1882 to 1886.

One sheet, folio. A tabulation of the quantities and values of the various mineral products of the country for the years named. 3,000 copies issued by the department.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar year | 1886 | David T. Day | chief of division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887
Advertisement of the publications of the survey, 2 unpaged leaves; 1 leaf with recto blank and verso bearing a "notice" in relation to this series of reports; title as above, verso blank; contents, pp. iii-iv; letter of transmittal, p. v, verso blank; introductory, pp. vii-viii; summary, pp. 1-10; text, pp. 11-790; index, pp. 791-813.

Fig. 1 occupies p. 107 and Fig. 2 p. 165.

CONTENTS.

Page.

Summary ... 1-10
Iron ... 11-103
The American iron industry from the beginning in 1619 to 1886, by James M. Swank 11-22
The American iron trade in 1885, by James M. Swank 16-23
Gold and silver ... 104-108
Copper, by C. Kirchhoff, jr .. 109-139
Lead, by C. Kirchhoff, jr .. 140-153
Zinc, by C. Kirchhoff, jr .. 154-159
Quick silver ... 160-168
Nickel ... 169-173
Cobalt ... 174-175
Manganese, by Jos. D. Weeks .. 176-179
Chromium ... 180-181
Tin ... 182-187
Tungsten ... 188-189
Aluminum, by R. L. Packard .. 190-221
Platinum and iridium ... 222-233
Coal, by Charles A. Ashburner .. 224-377
The manufacture of coke, by Jos. D. Weeks 238-249
Petroleum, by Jos. D. Weeks ... 250-261
Natural gas, by Jos. D. Weeks ... 262-273
Structural materials, by Wm. C. Day ... 274-285
Abrasive materials ... 286-297
Borax ... 298-302
Corundum, by William A. Raborg ... 303-307
Infusorial earth ... 308-312
Novaculite, by George M. Turner ... 313-317
Precious stones, by George F. Kunz ... 318-322
Fertilizers ... 323-327
Phosphate rock ... 328-332
The fertilizer trade in North Carolina in 1886, by W. B. Phillips 333-347
Marls ... 348-352
Gypsum ... 353-357
Manufactured fertilizers ... 358-372
Salt, by William A. Raborg ... 373-377
Bromine ... 378-382
Sulphur, by Wm. C. Day ... 383-387
Tellurium ... 388-389
Pyrites, by Richard P. Rathwell ... 390-394
Phosphorus, by George M. Turner ... 395-399
Borax ... 400-404
Alum ... 405-409
Bluestone ... 410-414
Copperas ... 415-419
Graphite, by William A. Raborg ... 420-424
Lithographic stone ... 425-429
Flour spar ... 430-434
Magnesium ... 435-439
Strontium ... 440-444
Feldspar, by Wm. C. Day ... 445-449
Mineral paints, by Marcus Benjamin ... 450-454
Mineral waters, by A. C. Feale ... 455-459
Mining law, by E. R. L. Gould ... 460-464

Advertisement of the publications of the survey, 2 unpaged leaves; 1 leaf with recto blank and verso bearing a "notice" in relation to this series of reports; title as above, verso blank; contents, pp. iii-iv; letter of transmittal, p. v, verso blank; introductory, pp. vii-viii; summary, pp. 1-10; text, pp. 11-790; index, pp. 791-813.

Fig. 1 occupies p. 107 and Fig. 2 p. 165.
6,000 copies published—3,000 under the law relating to survey publications and 3,000 by order of the secretary of the interior. Sold by the director of the survey at 50 cents a copy, the actual cost of publication as estimated by the public printer.

Documentary edition as follows:

50th congress, | 1st session. | House of representatives. | Mis. doc. | no. 42. | Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar year | 1886 | David T. Day | chief of division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1887

Title as above, verso blank; “Notice” in relation to this series of reports, verso blank, 1 l.; advertisement of the publications of the survey, 2 unpaged leaves; contents, letter of transmittal, and remainder of collation as in the other edition.

1,734 copies published, the “usual number” edition, about 600 of which were delivered unbound; the remainder were printed later and bound in sheep as a part of vol. 2 of the “Miscellaneous documents of the house of representatives for the first session of the fiftieth congress.”

Of some of the more important papers comprising this volume brief abstracts were issued, usually “subject to revision,” in advance of the volume; and of most of the papers 100 copies were issued separately, for gratuitous distribution, as follows:

SEPARATES FROM MINERAL RESOURCES 1886.

Department of the interior | United States geological survey | J. W. Powell, director | Summary | of the | mineral products | of the United States | Abstract from “Mineral resources of the United States, calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 1-10. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The American iron trade | by | James M. Swank | Abstract from “Mineral resources of the United States, calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 11-38. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The iron ores east of the Mississippi river | by | John Birkinbine | Abstract from “Mineral resources of the United States, calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 39-103 (and p. 104, which contains the beginning of the article on “Gold and silver”). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 169-175 (and p. 176, which contains the beginning of the article on “Chromium”). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 176-179 (and p. 180, which contains the beginning of the article on “Manganese”). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 180-213 (and p. 214, which contains the beginning of the article on “Tin”). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 214-223 (and p. 224, which contains the beginning of the article on “Coal”). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Coal | by Chas. A. Ashburner | Abstract from “Mineral resources of the United States, calendar year 1886”—David T. Day, chief of the division of mining statistics and technology [Survey design] | Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 224-377 (and p. 378, which contains the beginning of the article on “The manufacture of coke”). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The manufacture of coke | by J. D. Weeks | Ab-
stract from "Mineral resources of the United States, | calendar year 1886"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 378-438. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Petroleum | by | Jos. D. Weeks | Abstract from "Mineral resources of the United States, | calendar year 1886"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 439-487 (and p. 488, which contains the beginning of the article on "Natural gas."). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Natural gas | by | Jos. D. Weeks | Abstract from "Mineral resources of the United States, | calendar year 1886"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 488-516. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Structural materials | by | William C. Day | Abstract from "Mineral resources of the United States | calendar year 1886"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 517-580. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Abrasive materials | by | William A. Raborg | Abstract from "Mineral resources of the United States, | calendar year 1886"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 581-594. 8°. 100 copies.
"Mineral resources of the United States, calendar year 1886"—David T. Day, chief of the division of mining statistics and technology

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 589-594. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 595-605 (and p. 606, which contains the beginning of the article on "Fertilizers"). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 606-627 (and p. 628, which contains the beginning of the article on "Salt"). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 628-641 (and p. 642, which contains the beginning of the article on "Bromine"). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 642-643 (and p. 644, which contains the beginning of the article on "Sulphur"). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 642-643 (and p. 644, which contains the beginning of the article on "Sulphur"). 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 642-643 (and p. 644, which contains the beginning of the article on "Sulphur"). 8°. 100 copies.
eral resources of the United States, calendar year 1886"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 644-647 (and p. 648, which contains the beginning of the article on "Tellurium"). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Pyrites | by | Richard P. Rothwell | Abstract from "Mineral resources of the United States, calendar year 1886"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 650-675 (and p. 676, which contains the beginning of the article on "Phosphorus"). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Borax, alum, bluestone, and copperas | by | William A. Eaborg | Abstract from "Mineral resources of the United States, calendar year 1886"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 678-685 (and p. 686, which contains the beginning of the article on "Graphite"). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Fluorspar | by | William A. Eaborg | Abstract from "Mineral resources of the United States, calendar year 1886"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 692-693 (and p. 694, which contains the beginning of the article on "Magnesium"). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Magnesium | Abstract from "Mineral resources of
the United States, | calendar year 1886”—David T. Day, chief of the |
division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 694–698. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral paints | by | Marcus Benjamin | Abstract from “Mineral resources of the United States, | calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology |
[Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 704–714. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral waters | by | A. C. Peale | Abstract from “Mineral resources of the United States, | calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology |
[Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso blank; text, pp. 715–721 (and p. 722, which contains the beginning of the article on “Mining law”). 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mining law | by | Elgin E. L. Gould | Abstract from “Mineral resources of the United States, | calendar year 1886”—David T. Day, chief of the | division of mining statistics and technology |
[Survey design] |
Washington | government printing office | 1887

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 722–790. 8°. 100 copies.

MINERAL RESOURCES 1887.

[Survey design] | Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States | calendar years 1882 to 1887.

One sheet, folio. A tabulation of the quantities and values of the various mineral products of the country for the years named. 4,000 copies issued by the department.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar
CONTENTS.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1-9</td>
</tr>
<tr>
<td>Iron</td>
<td>10-57</td>
</tr>
<tr>
<td>The iron and steel industries of the United States in 1887 and 1888, by James M. Swank</td>
<td>10-27</td>
</tr>
<tr>
<td>Iron in the Rocky mountain division, by F. F. Chisolm</td>
<td>28-29</td>
</tr>
<tr>
<td>Iron ore mining in 1887, by John Birkinblin</td>
<td>30-37</td>
</tr>
<tr>
<td>Gold and silver</td>
<td>58-85</td>
</tr>
<tr>
<td>Copper, by C. Kirchhoff, Jr.</td>
<td>66-97</td>
</tr>
<tr>
<td>Lead, by C. Kirchhoff, Jr.</td>
<td>88-112</td>
</tr>
<tr>
<td>Zinc, by C. Kirchhoff, Jr.</td>
<td>113-117</td>
</tr>
<tr>
<td>Mercury</td>
<td>118-125</td>
</tr>
<tr>
<td>Cobalt</td>
<td>126-129</td>
</tr>
<tr>
<td>Chromium</td>
<td>130-131</td>
</tr>
<tr>
<td>Tissues</td>
<td>132-133</td>
</tr>
<tr>
<td>Aluminum, by R. L. Packard</td>
<td>134-137</td>
</tr>
<tr>
<td>Platinum</td>
<td>138-141</td>
</tr>
<tr>
<td>Manganese, by Joseph D. Weeks</td>
<td>142-143</td>
</tr>
<tr>
<td>Coal, by Charles A. Ashburner</td>
<td>144-167</td>
</tr>
<tr>
<td>The manufacture of coke, by Joseph D. Weeks</td>
<td>168-332</td>
</tr>
<tr>
<td>Petroleum, by Joseph D. Weeks</td>
<td>338-435</td>
</tr>
<tr>
<td>Natural gas, by Joseph D. Weeks</td>
<td>436-463</td>
</tr>
<tr>
<td>Structural materials, by William C. Day</td>
<td>464-502</td>
</tr>
<tr>
<td>Abrasive materials</td>
<td>503-551</td>
</tr>
<tr>
<td>Precious stones, by George F. Kunz</td>
<td>552-554</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>555-579</td>
</tr>
<tr>
<td>Gypsum</td>
<td>580-594</td>
</tr>
<tr>
<td>Gypsum or land plaster in Ohio, by Edward Orton</td>
<td>595-603</td>
</tr>
<tr>
<td>Sulphur, by William C. Day</td>
<td>604-610</td>
</tr>
<tr>
<td>Salt, by William A. Rahorg</td>
<td>611-625</td>
</tr>
<tr>
<td>Bromine</td>
<td>626-627</td>
</tr>
<tr>
<td>Potassium salts, by William C. Day</td>
<td>628-650</td>
</tr>
<tr>
<td>Sodium salts, by William C. Day</td>
<td>651-658</td>
</tr>
<tr>
<td>Fluorspar</td>
<td>659</td>
</tr>
<tr>
<td>Mica</td>
<td>660-671</td>
</tr>
<tr>
<td>Mica mining in North Carolina, by William B. Phillips</td>
<td>662-671</td>
</tr>
<tr>
<td>Graphite</td>
<td>672-673</td>
</tr>
<tr>
<td>Mineral paints</td>
<td>674-679</td>
</tr>
<tr>
<td>Mineral waters, by A. C. Poole</td>
<td>680-687</td>
</tr>
<tr>
<td>Useful minerals of the United States, edited by Albert Williams, Jr</td>
<td>688-812</td>
</tr>
</tbody>
</table>

6,000 copies published—3,000 under the law relating to survey publications and 3,000 additional copies ordered by the secretary of the interior. Sold by the director of the survey at 50 cents a copy, actual cost of publication as estimated by the public printer.

Documentary edition as follows:

50th congress, [2d session. | House of representatives. | Mis. doc. | no. 4. | Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar year | 1887 | David T. Day | chief of division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1888
Title as above, verso blank; then follow the advertisement, notice, title, letter of transmittal, and remainder of collation precisely as in the other edition.

1,734 copies published, being the "usual number" edition, about 600 of which were delivered unbound; the remainder were printed later and bound in sheep, in which form they constitute vol. 2 of the "Miscellaneous documents of the house of representatives for the second session of the fiftieth congress."

Of some of the more important papers composing this volume brief abstracts, usually "subject to revision," were issued in advance of the volume; and of most of the papers 100 copies were issued separately, for gratuitous distribution, as follows:

SEPARATES FROM MINERAL RESOURCES 1887.

Department of the interior | United States geological survey | J. W. Powell, director | Summary | of the | mineral products | of the | United States | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso blank; text, pp. 1-9. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The iron and steel industries | of the | United States | in | 1887 and 1888 | by | James M. Swank | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 10-27. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Iron ore mining in 1887 | by | John Birkinbine | Abstract from " Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 30-57. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Gold and silver | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 58-65. 8°. 100 copies.
T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 436-463. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Natural gas | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 464-502. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Structural materials | by | William C. Day | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso blank; text, pp. 503-551. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Abrasive materials | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 552-554. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Precious stones | by | George F. Kunz | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso blank; text, pp. 555-579. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Fertilizers | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the division of mining statistics and technology
[Survey design]
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 580-594. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Gypsum | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888
Paper cover bearing title as above; inner title same, verso blank; text, pp. 595-603. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Sulphur | by | William O. Day | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 604-610. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Salt | by | William A. Raborg | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888
Paper cover bearing title as above; inner title same, verso blank; text, pp. 611-625. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Potassium salts | by | William C. Day | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 628-650. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Sodium salts | by | William O. Day | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888
Paper cover bearing title as above; inner title same, verso blank; text, pp. 651-658. 8°. 100 copies.
United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 660-671. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral paints | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 674-679. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral waters | by | A. C. Peale | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 680-687. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Useful minerals | of the | United States | by | Albert Williams, jr. | Abstract from "Mineral resources of the United States | calendar year 1887"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1888

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 688-812. 8°. 100 copies.

MINERAL RESOURCES 1888.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar year | 1888 | David T. Day | chief of division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890

Sample library catalogue slips, verso blank, 11.; advertisement of the publications of the survey, pp. i-iv; notice concerning this series of publications, recto blank, 11.; title as above, verso blank; contents, p. iii, verso blank; letter of transmittal, p. [v], verso blank; introduction, p. viii, verso blank; summary, pp. 1-11; text, pp. 12-630; index, pp. 631-652. 8°. "Fig. 2" occupies p. 101; it is the only illustration in the volume.
MINERAL RESOURCES 1888.

CONTENTS.

Summary .. 1-11
Iron .. 12-35
The iron and steel industry of the United States in 1888 and 1889, by James M. Swank ... 12-32
Iron in the Rocky mountain division, by F. F. Chisolm ... 33-35
Gold and silver ... 36-42
Copper, by C. Kirchhoff, jr... 43-77
Lead, by C. Kirchhoff, jr... 78-91
Zinc, by C. Kirchhoff, jr... 92-96
Quicksilver .. 97-107
Nickel ... 108-118
Chromium .. 119-122
Manganese, by Joseph D. Weeks .. 123-143
Tin .. 144-159
Aluminum, by R. L. Packard .. 160-164
Platinum .. 165-167
Coal, by Charles A. Ashburner .. 168-184
Arkansas, by Arthur Winslow .. 185-224
Dakota, by F. F. Chisolm .. 225-240
Illinois, by J. S. Lord ... 241-256
Wyoming, by F. F. Chisolm ... 257-293
The manufacture of coke, by Joseph D. Weeks .. 294-341
Petroleum, by Joseph D. Weeks .. 342-380
Natural gas, by Joseph D. Weeks .. 381-400
Asphaltum .. 481-512
Ozokerite .. 513-514
Structural materials, by William C. Day .. 515-575
Abrasive materials .. 576-579
Precious stones, by George F. Kunz .. 580-585
Fertilizers .. 586-596
Salt, by William A. Raborg ... 597-612
Bromine ... 613-614
Mica .. 615-619
Mineral paints ... 620-624
Mineral waters, by A. C. Poole .. 625-630

6,000 copies published—3,000 under the law relating to survey publications, and 3,000 additional copies ordered by the secretary of the interior. Sold by the director of the survey at 50 cents a copy, actual cost of publication, as estimated by the public printer.

Documentary edition as follows:

Paper cover bearing title as above; sample library catalogue slips, advertisement, notice, title, contents, and remainder of collation precisely as in the other edition. 1,734 copies published, being the "usual number" edition. Of these about 600 were issued unbound, as described above; the remainder were printed later and bound in sheep as vol. 16 of the "Miscellaneous documents of the house of representatives for the first session of the fifty-first congress."

Of some of the more important papers composing this volume brief abstracts were issued, usually "subject to revision," in advance of the volume; and of most of the papers separate copies were issued for gratuitous distribution, as follows:
Department of the interior | United States geological survey | J. W. Powell, director | Summary | of the | mineral products | of the | United States | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 1-11. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The | iron and steel industries of the United States | for | 1888 and 1889 | by | James M. Swank | general manager American iron and steel association | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 12-35. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Gold and silver | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 36-42. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Copper | by | C. Kirchhoff, jr. | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 43-77. 8°. 100 copies.

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 78-91. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Zinc | by | C. Kirchhoff, jr. | Abstract from “Mineral
resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 92-96. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Quicksilver | Abstract from “Mineral resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 97-107. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Nickel | Abstract from “Mineral resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 108-118. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Chromium | Abstract from “Mineral resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 119-122. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Manganese | by Joseph D. Weeks | Abstract from “Mineral resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 123-143. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Tin | Abstract from “Mineral resources of the United States calendar year 1888”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 144-159. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Aluminum | by R. L. Packard | Abstract from
"Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 160-164. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Platinum | Abstract from "Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 165-167. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Coal | by | Chas. A. Ashburner | Abstract from "Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 168-394. 8°. 500 copies.

Department of the interior | United States geological survey | J. W. Powell, director | The | manufacture of coke | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 395-441. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Petroleum | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 442-480. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Natural gas | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar year 1888"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 481-512. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Asphaltum and Ozokerite | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890
Paper cover bearing title as above; inner title same, verso blank; text, pp. 513-515. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Structural materials | by | William C. Day | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 516-575. 8°. 500 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Abrasive materials | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 576-579. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Precious stones | by | George F. Kunz | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 580-585. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Fertilizers | Abstract from “Mineral resources of the United States | calendar year 1888”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1890
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 586-596. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Salt | by | William A. Raborg | Abstract from “Mineral resources of the United States | calendar year 1888”—David T.
Day, chief of the division of mining statistics and technology [Survey design] Washington | government printing office | 1890

Paper cover bearing title as above; inner title same, verso blank; text, pp. 597-612. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 616-622. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 623-630. 8°. 100 copies.

MINERAL RESOURCES 1889-1890.

[Survey design] | Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States | Calendar years 1880 to 1890. |

One sheet, 32 1/2 by 34 1/2 inches. A tabulation of the quantities and values of the various mineral products of the country for the years named. 4,000 copies published by the department.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the United States | calendar years | 1889 and 1890 | David T. Day | chief of division of mining statistics and technology [Survey design] Washington | government printing office | 1892

Sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i-v, verso “notice” concerning this series of publications; title as above, verso blank; contents, pp. iii-iv; letter of transmittal, p. v, verso blank; introduction, pp. vii-viii; summary, pp. 1-9; text, pp. 10-535, verso blank; general index to Mineral resources of the United States from 1882 to 1890, pp. 537-651, verso blank; index to the volume, pp. 653-671. 8°. One unnumbered fig. occupying p. 53, entitled “World’s production of gold and silver,” and one unnumbered plate facing p. 94, entitled “Production and price of quicksilver in the United States.”

CONTENTS. Page.
Summary.. 1-9
Iron and steel.. 10-47
The iron and steel industries of the United states in 1889, 1890, and 1891, compared with the iron and steel industries of other countries, by James M. Swank .. 10-22
Iron ores, by John Birkinbine.. 23-47
<table>
<thead>
<tr>
<th>Mineral Resources 1889-1890</th>
<th>289</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold and silver, by William Kent</td>
<td>48-55</td>
</tr>
<tr>
<td>Copper, by C. Kirchoff</td>
<td>56-77</td>
</tr>
<tr>
<td>Lead, by C. Kirchoff</td>
<td>78-87</td>
</tr>
<tr>
<td>Zinc, by C. Kirchoff</td>
<td>88-93</td>
</tr>
<tr>
<td>quicksilver</td>
<td>94-109</td>
</tr>
<tr>
<td>Aluminum, by R. L. Packard</td>
<td>110-118</td>
</tr>
<tr>
<td>Tin</td>
<td>119-123</td>
</tr>
<tr>
<td>Nickel and cobalt</td>
<td>124-126</td>
</tr>
<tr>
<td>Manganese, by Joseph D. Weeks</td>
<td>127-133</td>
</tr>
<tr>
<td>Chrome iron ore</td>
<td>137-140</td>
</tr>
<tr>
<td>Antimony</td>
<td>141-142</td>
</tr>
<tr>
<td>Platinum</td>
<td>143-144</td>
</tr>
<tr>
<td>Coal, by E. W. Parker</td>
<td>145-286</td>
</tr>
<tr>
<td>Anthracite, by John H. Jones</td>
<td>242-252</td>
</tr>
<tr>
<td>Petroleum, by Joseph D. Weeks</td>
<td>287-305</td>
</tr>
<tr>
<td>Natural gas, by Joseph D. Weeks</td>
<td>306-372</td>
</tr>
<tr>
<td>Stone, by William C. Day</td>
<td>373-440</td>
</tr>
<tr>
<td>Pottery</td>
<td>441-444</td>
</tr>
<tr>
<td>Precious stones, by George F. Kunz</td>
<td>445-448</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>449-455</td>
</tr>
<tr>
<td>Barytes</td>
<td>453-456</td>
</tr>
<tr>
<td>Corundum and emery</td>
<td>457</td>
</tr>
<tr>
<td>Grindstones</td>
<td>458</td>
</tr>
<tr>
<td>Infusorial earth</td>
<td>459</td>
</tr>
<tr>
<td>Oilstones, whetstones, etc</td>
<td>460</td>
</tr>
<tr>
<td>cement</td>
<td>461-484</td>
</tr>
<tr>
<td>Product of hydraulic cement in the United States, by Spencer B. Newbury</td>
<td>465-467</td>
</tr>
<tr>
<td>Product of Portland cement in the United States in 1890 and 1891, by Spencer B. Newbury</td>
<td>468</td>
</tr>
<tr>
<td>Gypsum</td>
<td>465-467</td>
</tr>
<tr>
<td>Fluorspar</td>
<td>473</td>
</tr>
<tr>
<td>Mica</td>
<td>474-475</td>
</tr>
<tr>
<td>Soapstone</td>
<td>476</td>
</tr>
<tr>
<td>Asphaltum, by E. W. Parker</td>
<td>477-481</td>
</tr>
<tr>
<td>Salt, by William A. Baborg</td>
<td>482-492</td>
</tr>
<tr>
<td>Bromine</td>
<td>493</td>
</tr>
<tr>
<td>Beras, by Charles G. Yale</td>
<td>494-506</td>
</tr>
<tr>
<td>Graphite</td>
<td>507</td>
</tr>
<tr>
<td>Mineral paints</td>
<td>508-512</td>
</tr>
<tr>
<td>Barytes</td>
<td>513</td>
</tr>
<tr>
<td>Asbestos</td>
<td>514</td>
</tr>
<tr>
<td>Sulphur</td>
<td>515-517</td>
</tr>
<tr>
<td>Pyrites</td>
<td>518</td>
</tr>
<tr>
<td>Lithographic stone</td>
<td>519-520</td>
</tr>
<tr>
<td>Mineral waters, by A. C. Peale</td>
<td>521-535</td>
</tr>
<tr>
<td>General index to mineral resources of the United States from 1882 to 1890</td>
<td>537-651</td>
</tr>
<tr>
<td>Index to the volume</td>
<td>653-671</td>
</tr>
</tbody>
</table>

6,000 copies published—3,000 under the law relating to survey publications and 3,000 additional copies ordered by the secretary of the interior. Sold by the director of the survey at 50 cents a copy, actual cost of publication as estimated by the public printer.

Documentary edition as follows:

52d congress, | 1st session. | House of representatives. | Mis. doc. | no.296. | Department of the interior | United States geological survey | J. W. Powell, director | Mineral resources | of the | United States | calendar years | 1889 and 1890 | David T. Day | chief of division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1892

No cover; sample library catalogue slips, verso blank, 1 l.; advertisement of the publications of the survey, pp. i- v, verso "notice" concerning this series of publi-

Bull. 100—19
cations; title as above, verso blank; contents and remainder of volume as described above for the other edition.

1,734 copies published, the “usual number” edition, about 600 of which were delivered unbound; the remainder were printed later and bound in sheep, in which form they constitute vol. 42 of the “Miscellaneous documents of the house of representatives for the first session of the fifty-second congress.”

Of each of the papers composing this volume, except those on Soapstone and Lithographic stone and the Index from 1882 to 1890, separates were issued, for gratuitous distribution, as follows:

SEPARATES FROM MINERAL RESOURCES 1889-1890.

Department of the interior | United States geological survey | J.W. Powell, director | Summary | of the | mineral products | of the | United States | Abstract from “Mineral resources of the United States calendar years 1889 and 1890”—David T. Day, chief of | the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 1-9. 8°. 100 copies.

Department of the interior | United States geological survey | J.W. Powell, director | The | iron and steel industries of the United States | for | 1889, 1890, and 1891 | by | James M. Swank | general manager American iron and steel association | Abstract from “Mineral resources of the United States calendar years 1889 and 1890”—David T. Day, chief of | the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 10-22. 8°. 100 copies.

Department of the interior | United States geological survey | J.W. Powell, director | Iron ores | by | John Birkinbine | Abstract from “Mineral resources of the United States calendar years 1889 and 1890”—David T. Day, chief of | the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 23-47. 8°. 100 copies.

Department of the interior | United States geological survey | J.W. Powell, director | Gold and silver | by | William Kent | Abstract from “Mineral resources of the United States calendar years 1889 and 1890”—David T. Day, chief of | the | division of mining statistics and technology | [Survey design] |

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 48-55. 8°. An illustration occupies p. 53. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Tin | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 119-123. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Nickel and cobalt | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 124-126. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Manganese | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 127-138. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Chromic iron ore, antimony, and platinum | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 137-144. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Coal | by | E. W. Parker | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 145-286 8°. 1,500 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Petroleum | by | Joseph D. Weeks | Abstract from "Mineral resources of the United States | calendar years 1889 and,
Department of the interior | United States geological survey | J. W. Powell, director | Abrasive materials | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 456-460. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Cement and gypsum | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892
Paper cover bearing title as above; inner title same, verso blank; text, pp. 461-467. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Fluorspar | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 468-473. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mica | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 474-475. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Asphaltum | by | E. W. Parker | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of | the division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892
Paper cover bearing title as above; inner title same, verso blank; text, pp. 477-481. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Salt | by | William A. Baborg | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—
David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 482-492. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Bromine and borax | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 493-506. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Graphite, mineral paints, barytes | and asbestos | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 507-514. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Sulphur and pyrites | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 515-518. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Mineral waters | by A. C. Peale | Abstract from "Mineral resources of the United States | calendar years 1889 and 1890"—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington | government printing office | 1892

Paper cover bearing title as above; inner title same, verso blank; text, pp. 521-535. 8°. 400 copies.

MINERAL RESOURCES 1890.

[Survey design] Department of the interior | United States geological survey | J. W. Powell, director | Mineral products of the United States | Calendar years 1880 to 1891.

Sample library catalogue slips, verso blank, 1 1.; advertisement of the publications of the survey, pp. i-v, verso notice; title as above, verso blank; contents, pp. iii-iv; letter of transmittal to the director, p. v, verso blank; introduction, p. vi, verso blank; text, pp. 1-610; index, pp. 611-630. 8°. Three unnumbered illustrations, one occupying pp. 44-45, one (a folded plate) following p. 46, and one occupying p. 118.

CONTENTS.

Summary.. 1-9
Iron ores, by John Birkinbine.. 10-46
Twenty years of progress in the manufacture of iron and steel in the United States, by James M. Swank... 47-73
Gold and silver... 74-80
Copper, by C. Kirchhoff... 81-102
Zinc, by C. Kirchhoff.. 103-110
Quicksilver.. 111-116
Manganese, by Joseph D. Weeks.. 117-125
Aluminum, by R. L. Packard... 126-146
Tin.. 147-163
Nickel and cobalt... 164-166
Chrome iron ore... 167-170
Antimony, by E. W. Parker... 171-173
Coal, by E. W. Parker... 174-176
Manufacture of coke, by Joseph D. Weeks.................................... 177-202
Petroleum, by Joseph D. Weeks... 203-235
Natural gas, by Joseph D. Weeks.. 236-257
Asphaltum, by E. W. Parker.. 258-289
Stone, by Wm. C. Day... 290-305
Granite.. 306-310
Slaughter... 311-313
Limestone.. 314-318
Marble.. 319-322
Slate... 323-326
Clay materials of the United States, by Robert T. Hill................. 327-442
Natural and artificial cements, by Spencer B. Newberry [sic]............ 443-452
Precious stones, by George F. Kunz... 453-463
Abrasive materials, by E. W. Parker.. 464-473
Bohrstones.. 474-478
Gritstones.. 479-483
Olabones and whetstones.. 484-488
Emery and corundum.. 489-493
Sulphur, by E. W. Parker... 494-505
Salt... 506-509
Bromine... 510-513
Gypsum, by E. W. Parker.. 514-518
Magnesite.. 519-523
Fluorspar.. 524-528
Borax... 529-533
Graphite, by E. W. Parker.. 534-539
Asbestos, by E. W. Parker.. 540-545
Soapstone, by E. W. Parker ... 593-594
Mineral paints, by E. W. Parker .. 595-598
Barytes .. 599-600
Mineral waters, by A. C. Peale ... 601-610
Index .. 611-630

7,000 copies published—3,000 under the law relating to survey publications and
4,000 additional copies ordered by the secretary of the interior. Sold by the director
of the survey at 50 cents a copy, actual cost of publication as estimated by the
public printer.

At this writing the documentary edition of M. R. 1891 has not been issued.
Of the papers composing this volume separates were issued as follows:

SEPARATES FROM MINERAL RESOURCES 1891.

Department of the interior | United States geological survey | J. W.
Powell, director | The | production of iron ores | in | 1891 | by | John
Birkinbine | Extract from "Mineral resources of the United States |
calendar year 1891"—David T. Day, chief of the | division of mining
statistics and technology | [Survey design] |

Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso beginning of text;
text, pp 10-46. 8°. 2 plates. 100 copies.
The foregoing is the regular separate, delivered in May, 1893; but there was an
issue of 700 copies in advance of the volume; in these the title is identical with that
given above except that the date is 1892 instead of 1893, and the collation is the
same except that the text is repaged 3-37 and the running heading on both even
and odd pages is made to read "Production of iron ores in 1891."

Department of the interior | United States geological survey | J. W.
Powell, director | Twenty years of progress | in | the | manufacture ot
iron and steel | in the | United States | by | James M. Swank | general
manager American iron and steel association | Abstract from "Mineral
resources of the United States | calendar year 1891."—David T. Day,
chief of the | division of mining statistics and technology | [Survey de­
sign] |

Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso blank; text, pp 47-73.
8°. 100 copies.
The foregoing is the regular separate from the volume, but the same matter was
printed and issued earlier, as follows:

Department of the interior | United States geological survey. | J.
W. Powell, director. | Twenty years of progress | in | the manufacture
of iron and steel | in the United States. | By | James M. Swank, | gen­
eral manager of the American iron and steel association. | Extract from
Mineral resources of the United States | for calendar year 1891.—David
T. Day, chief of the | division of mining statistics and technology. |
[Survey design.] |

Washington: | 1892.

Paper cover bearing title as above, verso contents; no inner title; text, pp. 1-32.
8°. 600 copies. At the foot of p. 31 is the following line: "No. 261 South Fourth
Street, Philadelphia, December 1, 1892." This brochure was printed in Philadelphia in advance of the volume, the former being used as copy for the corresponding portion of the latter, though there are a few minor differences between the two texts, probably made in proof. Moreover, the last page of this earlier brochure is occupied by a "Comparative exhibit of the foregoing statistical statements," partly in graphic form, which does not appear at all in the volume or the regular separate.

Twenty years of iron-ore development, pp. 1-7.
Twenty years of pig-iron production, pp. 7-13.
Twenty years of progress in the manufacture of steel, pp. 13-16.
Twenty years of rolling-mill development, pp. 17-19.
Twenty years of changes in the manufacture of iron and steel rails, pp. 19-22.
Twenty years of progress in the manufacture of nails, pp. 23-24.
Twenty years of progress in iron and steel bridge-building, pp. 24-25.
Twenty years of iron and steel shipbuilding, pp. 25-27.
Efforts to establish the tin-plate industry, pp. 27-29.
A branch of the iron industry which has declined, p. 29.
Twenty years of prices of iron and steel, p. 30.
The United States now the first of all iron and steel manufacturing countries, pp. 30-31.
Comparative exhibit of the foregoing statistical statements, p. 32.

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 74-80. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 81-102. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 103-110. 8°. 100 copies.

Paper cover bearing title as above; inner title same, verso blank; text, pp. 111-116. 8°. 100 copies.
Department of the interior | United States geological survey | J. W. Powell, director | Antimony | by | E. W. Parker | Abstract from “Mineral resources of the United States | calendar year 1891”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 174-176. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Coal | by | E. W. Parker | Extract [sic] from “Mineral resources of the United States,”[sic] | calendar year 1891—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above, inner title the same, verso blank; text, pp. 3-182. 8°. 2,600 copies; issued in advance of the volume. The text is identical with the corresponding text in the volume; only the pagination and running headings changed.

Department of the interior | United States geological survey | J. W. Powell, director | The | manufacture of coke | by | Joseph D. Weeks | Extract [sic] from “Mineral resources of the United States | calendar year 1891”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1892

Paper cover bearing title as above; inner title the same, verso blank; text, pp. 3-48. 8°. 600 copies; issued in advance of the volume. The text is identical with the corresponding text in the volume; only the pagination and running headings changed.

Department of the interior | United States geological survey | J. W. Powell, director | Petroleum | by | Joseph D. Weeks | Abstract from “Mineral resources of the United States | calendar year 1891”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso blank; text, pp. 403-435. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Natural gas | by | Joseph D. Weeks | Abstract from “Mineral resources of the United States | calendar year 1891”—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 436-451. 8°. 800 copies.
from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 552-556. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Fertilizers | Abstract from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso blank; text, pp. 557-563. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Sulphur | Abstract from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 564-571. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Salt and bromine | Abstract from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 572-579. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Gypsum | by | E. W. Parker | Abstract from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 580-583. 8°. 100 copies.

Department of the interior | United States geological survey | J. W. Powell, director | Magnesite | Abstract from "Mineral resources of the United States | calendar year 1891"—David T. Day, chief of the | division of mining statistics and technology | [Survey design] |
Washington | government printing office | 1893
Paper cover bearing title as above; inner title same, verso beginning of text; text, pp. 584-585. 8°. 100 copies.

Department of the interior | United States geological survey | Fluorspar and borax | Abstract from "Mineral resources of the United
States calendar year 1891—Division of mining statistics and technology [Survey design]

Washington government printing office 1893

Paper cover bearing title as above; inner title same, verso beginning of text: text, pp. 586-588. 8°. 100 copies. The words “David T. Day, chief of the,” usually found in the titles of these separates, are lacking in this instance.

Department of the interior United States geological survey J. W. Powell, director Graphite, asbestos, and soapstone by E. W. Parker Abstract from “Mineral resources of the United States calendar year 1891”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington government printing office 1893

Paper cover bearing title as above; inner title same, verso blank; text, pp. 589-594. 8°. 200 copies.

Department of the interior United States geological survey J. W. Powell, director Mineral paints and barytes by E. W. Parker Abstract from “Mineral resources of the United States calendar year 1891”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington government printing office 1893

Paper cover bearing title as above; inner title same, verso blank; text, pp. 595-600. 8°. 100 copies.

Department of the interior United States geological survey J. W. Powell, director Mineral waters by A. C. Peale Abstract from “Mineral resources of the United States calendar year 1891”—David T. Day, chief of the division of mining statistics and technology [Survey design]

Washington government printing office 1893

Paper cover bearing title as above; inner title same, verso blank; text, pp. 601-610. 8°. 100 copies.
GEOLOGIC ATLAS OF THE UNITED STATES AND AUXILIARY AND SUBSIDIARY MAPS.

GEOLoGIC FOLIOS.

Department of the interior | United States geological survey | J. W. Powell, director | Geologic atlas | of the | United States | Chattanooga sheet | Tennessee [-Ringgold sheet | Tennessee-Georgia] | Index map | [the index map, showing geographic position of area covered by the sheet] | Scale: 50 miles=1 inch | List of sheets | explanatory Appalachian descriptive topography areal geology structure sections | economic geology columnar sections |

Executed by the engraving division, U. S. geological survey | Washington, D. C. | 1892 | Chattanooga sheet [-Ringgold sheet]

Title as above on cover, laid loosely inside which are, in each case, the sheets composing the folio.

The following information concerning these atlas folios is taken from the explanatory text which accompanies every folio:

"The Geological Survey is making a large topographic map and a large geologic map of the United States. These large maps are being made in small sections or sheets of convenient and uniform size. Several thousand such sheets are required for the whole of the United States. Taken altogether they will constitute an atlas, and each leaf is called an atlas sheet.

"Three different scales are used on the atlas sheets of the U. S. Geological Survey; the smallest is \(\frac{1}{16,000}\), the second \(\frac{1}{40,000}\), and the largest \(\frac{1}{250,000}\). These correspond approximately to four miles, two miles, and one mile of natural length to one inch of map length.

"A map of the United States on the smallest scale used by the U. S. Geological Survey would be 60 feet long and 45 feet high. If drawn on one of the larger scales it would be either two times or four times as long and high. To make it possible to use such a map it is divided into parts printed on atlas sheets of convenient size, about 17 by 21 inches, and bounded by parallels and meridians. Each sheet on the scale of \(\frac{1}{16,000}\) contains one square degree (that is, represents an area one degree in extent in each direction); each sheet on the scale of \(\frac{1}{40,000}\) contains one-quarter of a square degree; each sheet on the scale of \(\frac{1}{250,000}\), one-sixteenth of a square degree. These areas correspond nearly to 4,000, 1,000, and 250 square miles.

"The atlas sheets, being parts of one great map, are laid out without reference to political boundary lines of any kind. They are not state, county, or town maps, but only parts of one map of the United States. For convenience of reference they are given such names as will readily suggest the region shown.

Bull. 100—20

305
The details belonging to the geologic map are numerous, and in some districts a single sheet does not suffice for their representation without confusion. In such cases special groups of facts are represented on different copies of the same base map. In many of the northern states the Pleistocene formations are varied in character and require representation in detail, yet fail to conceal wholly the underlying formations, so that the latter also can be mapped. In such case a special sheet is devoted to the Pleistocene formations. In regions where the rocks are greatly folded it is specially important that record be made of their inclination or dip. To this end structure sections are delineated on a sheet, which is a partial duplicate of the general geologic map, so as to bring them into close relation to the representation of formation areas, and there is added a special notation to indicate the direction and amount of dip. In certain districts where economic resources are sufficiently important, a special sheet is devoted to the representation of mines and minerals in their relation to the rock formations.

At this writing the following six folios have been finished, but there is yet no edition for distribution, though it is hoped one will soon be ready.

Folio. Sheets.

Explanatory.
Appalachian.
Descriptive.
Topography.
Areal geology.
Structure sections.
Economic geology.
Columnar sections.

Chattanooga, Tenn.

Hawley, Mass.

Sacramento, Cal.

Lassen Peak, Cal.

Kingston, Tenn.

Ringgold, Tenn.-Ga.

Explanatory.
Green Mountain.
Descriptive.
Topography.
Areal geology.
Economic geology.
Structure sections.

Explanatory.
Sketch of Gold Belt.
Descriptive text.
Topography.
Areal geology.
Economic geology.
Structure sections.

Explanatory.
Descriptive.
Topography.
Areal geology.
Economic geology.
Illustrations of the Cinder Cone.
Explanatory.
Appalachian.
Descriptive.
Topography.
Areal geology.
Economic geology.
Structure sections.

Explanatory.
Appalachian.
Descriptive.
Topography.
Areal geology.
Economic geology.
Structure sections.

Areal geology.
Economic geology.
Illustrations of the Cinder Cone.
Explanatory.
Appalachian.
Descriptive.
Topography.
Areal geology.
Economic geology.
Structure sections.

Special geologic sheets and maps accompany many of the volumes of text; see entries under "Maps, geologic" in the index, pp. 410-416 of this bulletin.
TOPOGRAPHIC ATLAS SHEETS.

Topography is the basis of geologic representation, and as no suitable topographic map of the country existed, the preparation of such a map claimed the first attention of the survey. The topographic work is therefore well advanced, the following atlas sheets having been finished. The plates are ready for the press, but no edition for general distribution has been printed, and the survey is therefore supplied with only a limited number of proofs.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Name of sheet</th>
<th>Designation of sheet</th>
<th>Area covered</th>
<th>Scale</th>
<th>Contour interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>Portland</td>
<td>43 30 70 15 15 degree</td>
<td>1:62500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newfield</td>
<td>43 30 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biddeford</td>
<td>43 15 70 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kennebunk</td>
<td>43 15 70 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gardiner</td>
<td>44 00 60 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freeport</td>
<td>43 45 70 00 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Augusta</td>
<td>44 15 60 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buxton</td>
<td>43 30 70 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterville</td>
<td>44 30 60 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Point</td>
<td>43 30 60 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boothbay</td>
<td>43 45 60 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bath</td>
<td>43 45 60 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wiscasset</td>
<td>44 00 60 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vassalboro</td>
<td>44 15 60 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norridgewock</td>
<td>44 30 60 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>York</td>
<td>43 00 70 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dover</td>
<td>43 00 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berwick</td>
<td>43 45 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Washing</td>
<td>44 15 71 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brattleboro</td>
<td>42 45 72 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>Wilmington</td>
<td>42 45 72 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rutland</td>
<td>43 30 72 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waltingford</td>
<td>43 15 72 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newburyport</td>
<td>42 45 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haverhill</td>
<td>42 45 71 00 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lawrence</td>
<td>42 30 71 00 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lowell</td>
<td>42 30 71 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groton</td>
<td>42 30 71 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fitchburg</td>
<td>42 30 71 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winchendon</td>
<td>42 00 72 00 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warwick</td>
<td>42 30 72 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenfield</td>
<td>42 30 72 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hawley</td>
<td>42 30 72 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greylock</td>
<td>42 30 73 00 do</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berlin</td>
<td>42 30 73 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pittsfld</td>
<td>42 15 73 15 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gloucester</td>
<td>42 30 70 30 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salem</td>
<td>42 30 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boston Bay</td>
<td>42 15 70 45 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boston</td>
<td>42 15 71 00 do</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Framingham</td>
<td>o 42 15 71 15</td>
<td>3 3/4 degree</td>
<td>1:62500</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Marlboro</td>
<td>o 42 15 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Worcester</td>
<td>o 42 15 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Barre</td>
<td>o 42 15 72 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Belchertown</td>
<td>o 42 15 72 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Northampton</td>
<td>o 42 15 72 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Chesterfield</td>
<td>o 42 15 72 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Becket</td>
<td>o 42 15 73 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Provincetown</td>
<td>o 42 00 70 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Duxbury</td>
<td>o 42 00 70 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Abington</td>
<td>o 42 00 70 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Dedham</td>
<td>o 42 00 71 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Wellfleet</td>
<td>o 41 45 69 55</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Plymouth</td>
<td>o 41 45 70 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Middleboro</td>
<td>o 41 45 70 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Taunton</td>
<td>o 41 45 71 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Chatham</td>
<td>o 41 30 69 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Yarmouth</td>
<td>o 41 30 70 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Barnstable</td>
<td>o 41 32 70 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Falmouth</td>
<td>o 41 30 70 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>New Bedford</td>
<td>o 41 30 70 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nantucket</td>
<td>o 41 13 69 57</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Muskeget</td>
<td>o 41 15 70 12</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Martha's Vineyard</td>
<td>o 41 15 70 27</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Gay Head</td>
<td>o 41 15 70 42</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Webster</td>
<td>o 42 00 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Brookfield</td>
<td>o 42 00 72 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Palmer</td>
<td>o 42 00 72 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Springfield</td>
<td>o 42 00 72 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Granville</td>
<td>o 42 00 72 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sandisfield</td>
<td>o 42 00 73 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sheffield</td>
<td>o 42 00 73 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td>Massachusetts and Connecticut.</td>
<td>Webster</td>
<td>o 42 00 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Brookfield</td>
<td>o 42 00 72 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Palmer</td>
<td>o 42 00 72 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Springfield</td>
<td>o 42 00 72 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Granville</td>
<td>o 42 00 72 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sandisfield</td>
<td>o 42 00 73 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sheffield</td>
<td>o 42 00 73 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td>Massachusetts, Connecticut, and New York.</td>
<td>Franklin</td>
<td>o 42 00 71 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Blackstone</td>
<td>o 42 00 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Providence</td>
<td>o 41 45 71 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Fall River</td>
<td>o 41 30 71 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Burrville</td>
<td>o 41 45 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Narragansett Bay</td>
<td>o 41 30 71 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Kent</td>
<td>o 41 30 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sakonnet</td>
<td>o 41 15 71 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Newport</td>
<td>o 41 15 71 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Charlestown</td>
<td>o 41 15 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Block Island</td>
<td>o 41 00 71 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Putnam</td>
<td>o 41 45 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Moosup</td>
<td>o 41 30 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Stonington</td>
<td>o 41 15 71 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Meriden</td>
<td>o 41 30 72 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Waterbury</td>
<td>o 41 30 73 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>New Milford</td>
<td>o 41 30 73 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>New Haven</td>
<td>o 41 15 72 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Derby</td>
<td>o 41 15 73 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
</tr>
</tbody>
</table>
TOPOGRAPHIC ATLAS SHEETS.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Name of sheet</th>
<th>Designation of sheet</th>
<th>Area covered</th>
<th>Scale</th>
<th>Contour interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>Bridgeport</td>
<td>41 00 73 00</td>
<td>do</td>
<td>1:62500</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Norwalk</td>
<td>41 00 73 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Danbury</td>
<td>41 15 73 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winsted</td>
<td>41 45 73 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New London</td>
<td>41 15 72 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolland</td>
<td>41 45 72 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hartford</td>
<td>41 45 72 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granby</td>
<td>41 45 72 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saybrook</td>
<td>41 45 72 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guilford</td>
<td>41 45 72 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Woodstock</td>
<td>41 45 72 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gilead</td>
<td>41 30 72 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middletown</td>
<td>41 30 72 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norwich</td>
<td>41 30 72 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>New York and Connecticut</td>
<td>Albany</td>
<td>42 30 73 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Point</td>
<td>41 15 73 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brooklyn</td>
<td>40 30 73 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carmel</td>
<td>41 15 73 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glove</td>
<td>41 30 73 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Troy</td>
<td>42 30 73 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>New York and New Jersey</td>
<td>Harlem</td>
<td>40 45 73 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staten Island</td>
<td>40 30 74 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramapo</td>
<td>41 00 74 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenwood lake</td>
<td>41 00 74 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tarrytown</td>
<td>41 00 73 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Franklin</td>
<td>41 00 74 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paterson</td>
<td>41 00 74 00</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morristown</td>
<td>40 45 74 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake Hopatcong</td>
<td>40 45 74 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hackettstown</td>
<td>40 45 74 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plainfield</td>
<td>40 30 74 15</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Somerville</td>
<td>40 30 74 30</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Bridge</td>
<td>40 30 74 45</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandy Hook</td>
<td>40 15 74 00</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Brunswick</td>
<td>40 15 74 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Princeton</td>
<td>40 15 74 30</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asbury Park</td>
<td>40 00 74 00</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caveville</td>
<td>40 00 74 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bordentown</td>
<td>40 00 74 30</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barnegat</td>
<td>39 45 74 00</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whiting</td>
<td>39 45 74 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pemberton</td>
<td>39 45 74 30</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Holly</td>
<td>39 45 74 45</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Beach</td>
<td>39 30 74 00</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Egg Harbor</td>
<td>39 30 74 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mullica</td>
<td>39 30 74 30</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hammonton</td>
<td>39 30 74 45</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glassboro</td>
<td>39 30 75 00</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salem</td>
<td>39 30 75 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlantic City</td>
<td>39 15 74 15</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Great Egg Harbor</td>
<td>39 15</td>
<td>74 30</td>
<td>1/2 degree</td>
<td>1:62500</td>
</tr>
<tr>
<td></td>
<td>Tuckahoe</td>
<td>39 15</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Bridgeton</td>
<td>39 15</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Sea Isle</td>
<td>39 00</td>
<td>74 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Dennisville</td>
<td>39 00</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Maurice Cove</td>
<td>39 00</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Cape May</td>
<td>38 45</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>New Jersey and Pennsylvania</td>
<td>Wallpack</td>
<td>41 00</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Delaware Water Gap</td>
<td>40 45</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Easton</td>
<td>40 30</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lambertville</td>
<td>40 15</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Burlington</td>
<td>40 00</td>
<td>74 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Philadelphia</td>
<td>39 45</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Scranton</td>
<td>41 15</td>
<td>75 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Hazelton</td>
<td>40 45</td>
<td>75 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Catawissa</td>
<td>40 45</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lykens</td>
<td>40 30</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Doylestown</td>
<td>40 15</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Quakertown</td>
<td>40 15</td>
<td>75 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lebanon</td>
<td>40 15</td>
<td>70 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Germantown</td>
<td>40 00</td>
<td>75 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Shamokin</td>
<td>40 45</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Pottsville</td>
<td>40 30</td>
<td>76 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Dundaff</td>
<td>41 30</td>
<td>75 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Honesdale</td>
<td>41 30</td>
<td>75 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Harrisburg</td>
<td>40 15</td>
<td>70 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Hummelstown</td>
<td>40 15</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Pittston</td>
<td>41 15</td>
<td>75 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>New Jersey and Delaware</td>
<td>Bayside</td>
<td>39 15</td>
<td>75 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Maryland</td>
<td>Baltimore</td>
<td>39 15</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Brandywine</td>
<td>38 30</td>
<td>76 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Annapolis</td>
<td>38 45</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Wicomico</td>
<td>38 15</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Owensville</td>
<td>38 45</td>
<td>76 20</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Relay</td>
<td>39 00</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Ellicott</td>
<td>39 15</td>
<td>76 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Drum Point</td>
<td>38 15</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>PrinceFredericktown</td>
<td>38 30</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>39 00</td>
<td>76 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Leonardstown</td>
<td>38 15</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Sharps Island</td>
<td>38 30</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>North Point</td>
<td>39 00</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Gunpowder</td>
<td>39 15</td>
<td>76 15</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Maryland and District of</td>
<td>East Washington</td>
<td>38 45</td>
<td>76 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Columbia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland, District of</td>
<td>West Washington</td>
<td>38 45</td>
<td>77 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Columbia, and Virginia.</td>
<td>Mount Vernon</td>
<td>38 30</td>
<td>77 00</td>
<td>1/ degree</td>
<td>1:12500</td>
</tr>
<tr>
<td>Maryland, Virginia, and</td>
<td>Harpers Ferry</td>
<td>39 00</td>
<td>77 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Romney</td>
<td>39 00</td>
<td>78 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Maryland and West Virginia.</td>
<td>Piedmont</td>
<td>39 00</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Maryland and Virginia.</td>
<td>Frederick</td>
<td>39 00</td>
<td>77 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Fredericksburg</td>
<td>38 00</td>
<td>77 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Locality</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>degree</td>
<td>1:62500</td>
</tr>
<tr>
<td>Maryland and Virginia</td>
<td>Point Lookout</td>
<td>38 30</td>
<td>76 15</td>
<td>1/4 degree</td>
<td>1:62500</td>
</tr>
<tr>
<td></td>
<td>Pookey Point</td>
<td>38 30</td>
<td>76 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Montrose</td>
<td>38 30</td>
<td>76 45</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Virginia</td>
<td>Warrenton</td>
<td>38 30</td>
<td>77 30</td>
<td>1/4 degree</td>
<td>1:12500</td>
</tr>
<tr>
<td></td>
<td>Luray</td>
<td>38 30</td>
<td>78 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Spottsylvania</td>
<td>38 30</td>
<td>78 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Gordensville</td>
<td>38 30</td>
<td>78 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Harrisonburg</td>
<td>38 30</td>
<td>78 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Goochland</td>
<td>37 30</td>
<td>77 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Palmyra</td>
<td>37 30</td>
<td>78 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Buckingham</td>
<td>37 30</td>
<td>78 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lexington</td>
<td>37 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Natural Bridge</td>
<td>37 30</td>
<td>79 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Farmville</td>
<td>37 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Roanoke</td>
<td>37 30</td>
<td>79 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Appomattox</td>
<td>37 30</td>
<td>78 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lynchburg</td>
<td>37 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Virginia Beach</td>
<td>36 30</td>
<td>75 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Norfolk</td>
<td>36 30</td>
<td>76 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Virginia and West Virginia</td>
<td>Winchester</td>
<td>39 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Woodstock</td>
<td>38 30</td>
<td>78 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Franklin</td>
<td>38 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Beverly</td>
<td>38 30</td>
<td>79 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Staunton</td>
<td>38 30</td>
<td>79 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Monterey</td>
<td>38 30</td>
<td>79 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Lewisburg</td>
<td>37 30</td>
<td>80 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Christiansburg</td>
<td>37 30</td>
<td>80 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Dublin</td>
<td>37 30</td>
<td>80 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Pocahontas</td>
<td>37 30</td>
<td>81 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Tazwell</td>
<td>37 30</td>
<td>81 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>West Virginia</td>
<td>St. George</td>
<td>39 30</td>
<td>79 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Huntersville</td>
<td>38 30</td>
<td>80 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Nicholas</td>
<td>38 30</td>
<td>80 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Kanawha Falls</td>
<td>38 30</td>
<td>81 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Hinton</td>
<td>37 30</td>
<td>80 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Raleigh</td>
<td>37 30</td>
<td>81 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Oceana</td>
<td>37 30</td>
<td>81 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Charleston</td>
<td>38 30</td>
<td>81 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Buckhannon</td>
<td>38 30</td>
<td>80 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Sutton</td>
<td>38 30</td>
<td>80 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>West Virginia and Ohio</td>
<td>Huntington</td>
<td>38 30</td>
<td>82 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>West Virginia, Virginia, and</td>
<td>Warfield</td>
<td>37 30</td>
<td>82 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Prestonsburg</td>
<td>37 30</td>
<td>82 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Salyersville</td>
<td>37 30</td>
<td>83 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Hazard</td>
<td>37 30</td>
<td>83 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Manchester</td>
<td>37 30</td>
<td>83 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Beattyville</td>
<td>37 30</td>
<td>83 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Richmond</td>
<td>37 30</td>
<td>84 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>London</td>
<td>37 30</td>
<td>84 00</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Kentucky and Virginia</td>
<td>Whitesburg</td>
<td>37 30</td>
<td>82 30</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Grundy</td>
<td>37 30</td>
<td>82 00</td>
<td>do</td>
<td>do</td>
</tr>
</tbody>
</table>

Contour interval: Feet.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia and North Carolina</td>
<td>Hillsville</td>
<td>30 30 30 30</td>
<td>45 degree</td>
<td>1:12500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wytheville</td>
<td>30 30 30 0</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Virginia, North Carolina, and Tennessee</td>
<td>Abingdon</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Virginia and Tennessee</td>
<td>Bristol</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Kentucky, Virginia, and Tennessee</td>
<td>Estillville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Jonesville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Cumberland Gap</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Kentucky and Tennessee</td>
<td>Williamsburg</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Morgantown</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Coleville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>North Carolina and Tennessee</td>
<td>Roan Mountain</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Cranberry</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Greenville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Mount Mitchell</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Asheville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Mount Guntot</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Knoxville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Nantahala</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Murphy</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>North Carolina and South Carolina</td>
<td>Saluda</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Pisgah</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Morristown</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Maynardville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>London</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Kingston</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Cleveland</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Chattanooga</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Pikeville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Sumner</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>McMinnville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Braceville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Pickens</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Abbeville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Walhalla</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Elibertton</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>McCormick</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Georgia</td>
<td>Dahlonega</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ellijay</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Dalton</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Carneville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Gainesville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Swayne</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Cartersville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Atlanta</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Marietta</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ringgold</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Rome</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Tallasapoosa</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Georgia and Alabama</td>
<td>Stevenson</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Scottsboro</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Huntsville</td>
<td>30 30 30 30</td>
<td>...do...</td>
<td>...do...</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Locality</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>Fort Payne</td>
<td>34 00 85 30</td>
<td>1/2 degree</td>
<td>1:125000</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gadsden</td>
<td>34 00 80 00</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collin</td>
<td>34 00 80 30</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anniston</td>
<td>33 30 82 30</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springville</td>
<td>33 30 80 00</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birmingham</td>
<td>33 30 80 30</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ashland</td>
<td>33 00 85 30</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talladega</td>
<td>33 00 80 00</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bessemer</td>
<td>33 00 80 30</td>
<td>do</td>
<td>do</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clanton</td>
<td>32 30 80 30</td>
<td>do</td>
<td>do</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>Bonnet Carre</td>
<td>30 00 90 15</td>
<td>1/2 degree</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish Fort</td>
<td>30 00 90 00</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Orleans</td>
<td>29 45 90 00</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lac des Allemands</td>
<td>29 45 90 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Bernard</td>
<td>29 45 90 45</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Habibville</td>
<td>29 45 90 15</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thibodaux</td>
<td>29 45 90 45</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pointe à la Hache</td>
<td>29 30 89 45</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quarantine</td>
<td>29 15 89 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barataria</td>
<td>29 30 90 00</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Livingstone</td>
<td>29 15 89 45</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chef Menteur</td>
<td>30 00 89 45</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut Off</td>
<td>29 30 90 15</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheniere Caminada</td>
<td>29 00 90 00</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Honna</td>
<td>29 30 90 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Airy</td>
<td>30 00 90 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donaldsonville</td>
<td>30 00 90 45</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Delta</td>
<td>29 00 89 15</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creole</td>
<td>29 15 90 00</td>
<td>do</td>
<td>do</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gibson</td>
<td>29 30 90 45</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Delta</td>
<td>29 00 80 00</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forts</td>
<td>29 15 89 15</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Fortuna</td>
<td>29 30 89 15</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shell Beach</td>
<td>29 45 89 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat Island</td>
<td>30 00 89 00</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Touline</td>
<td>30 00 89 15</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rigollet</td>
<td>30 00 89 30</td>
<td>do</td>
<td>do</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>Dunellon</td>
<td>29 00 82 15</td>
<td>do</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arredondo</td>
<td>29 30 82 15</td>
<td>do</td>
<td>do</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Sun Prairie</td>
<td>43 00 89 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterloo</td>
<td>43 00 88 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madison</td>
<td>43 00 89 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koskikoming</td>
<td>42 45 88 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stoughton</td>
<td>42 45 89 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evansville</td>
<td>42 45 89 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whitewater</td>
<td>42 45 88 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eagle</td>
<td>42 45 88 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watertown</td>
<td>43 00 88 30</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Washington</td>
<td>43 15 87 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bayview</td>
<td>42 45 87 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Racine</td>
<td>42 30 87 45</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oconomovoo</td>
<td>43 00 88 15</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waukeasha</td>
<td>43 00 88 00</td>
<td>do</td>
<td>do</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Milwaukee</td>
<td>43 00 87 45</td>
<td>1/2 degree</td>
<td>1:62500</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Muskego</td>
<td>42 45 88 00</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Desplaines</td>
<td>41 45 87 45</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Riverside</td>
<td>41 30 87 45</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Joliet</td>
<td>41 30 88 00</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Wilmington</td>
<td>41 15 88 00</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Morris</td>
<td>41 15 88 15</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Marseilles</td>
<td>41 15 88 30</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ottawa</td>
<td>41 15 88 45</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chicago</td>
<td>41 45 87 30</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Lacon</td>
<td>41 00 89 15</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>LaSalle</td>
<td>41 15 89 00</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Hannepin</td>
<td>41 15 89 15</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Illinois and Indiana</td>
<td>Calumet</td>
<td>41 30 87 30</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Maquoketa</td>
<td>42 00 90 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Baldwin</td>
<td>42 00 90 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Monticello</td>
<td>42 00 91 00</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Anamosa</td>
<td>42 00 91 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Marion</td>
<td>42 00 91 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Shellsburg</td>
<td>42 00 91 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>DeWitt</td>
<td>41 45 90 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Wheatland</td>
<td>41 45 90 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tipton</td>
<td>41 45 91 00</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Mechanicsville</td>
<td>41 45 91 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Cedar Rapids</td>
<td>41 45 91 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Amana</td>
<td>41 45 91 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>West Liberty</td>
<td>41 30 91 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Iowa City</td>
<td>41 30 91 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Oxford</td>
<td>41 30 91 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Davenport</td>
<td>41 30 90 30</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Durant</td>
<td>40 30 90 45</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Iowa and Illinois</td>
<td>Clinton</td>
<td>41 45 90 00</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Goose Lake</td>
<td>41 45 90 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Leclaire</td>
<td>41 30 90 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Savannah</td>
<td>42 00 90 00</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Missouri and Illinois</td>
<td>Louisiana</td>
<td>39 00 91 00 ¼ degree</td>
<td>1:125000</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, East</td>
<td>38 30 90 00 ¼ degree</td>
<td>1:62500</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>St. Louis, West</td>
<td>38 30 90 15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>39 00 91 30 ¼ degree</td>
<td>1:125000</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moberly</td>
<td>39 00 92 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Glasgow</td>
<td>39 00 92 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Marshall</td>
<td>39 00 93 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Lexington</td>
<td>39 00 93 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Independence</td>
<td>39 00 94 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Hermann</td>
<td>38 30 91 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Fulton</td>
<td>38 30 91 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Jefferson City</td>
<td>38 30 92 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Boonville</td>
<td>38 30 92 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Sedalia</td>
<td>38 30 93 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Warrensburg</td>
<td>38 30 93 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Harrisonville</td>
<td>38 30 94 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Tuscalumbia</td>
<td>38 00 92 00</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Versailles</td>
<td>38 00 92 30</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Localities</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>Warsaw</td>
<td>Lat. 38 00</td>
<td>Long. 93 00</td>
<td>1:125000</td>
<td>Feet 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinton</td>
<td>Lat. 38 00</td>
<td>Long. 93 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butler</td>
<td>Lat. 38 00</td>
<td>Long. 94 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolivar</td>
<td>Lat. 37 30</td>
<td>Long. 93 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stockton</td>
<td>Lat. 37 30</td>
<td>Long. 93 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nevada</td>
<td>Lat. 37 30</td>
<td>Long. 94 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springfield</td>
<td>Lat. 37 30</td>
<td>Long. 93 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenfield</td>
<td>Lat. 37 30</td>
<td>Long. 93 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carthage</td>
<td>Lat. 37 30</td>
<td>Long. 94 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td>Missouri and Kansas</td>
<td>Atchison</td>
<td>Lat. 39 30</td>
<td>Long. 95 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kansas City</td>
<td>Lat. 39 30</td>
<td>Long. 94 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olathe</td>
<td>Lat. 38 30</td>
<td>Long. 94 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mound City</td>
<td>Lat. 38 00</td>
<td>Long. 94 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Scott</td>
<td>Lat. 37 30</td>
<td>Long. 94 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joplin</td>
<td>Lat. 37 00</td>
<td>Long. 94 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiawatha</td>
<td>Lat. 39 30</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seneca</td>
<td>Lat. 39 30</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marysville</td>
<td>Lat. 39 30</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oskaloosa</td>
<td>Lat. 39 00</td>
<td>Long. 95 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topeka</td>
<td>Lat. 39 00</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wamego</td>
<td>Lat. 39 00</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junction City</td>
<td>Lat. 39 00</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lawrence</td>
<td>Lat. 38 30</td>
<td>Long. 95 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burlingame</td>
<td>Lat. 38 30</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eskridge</td>
<td>Lat. 38 30</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parkerville</td>
<td>Lat. 38 30</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abilene</td>
<td>Lat. 38 30</td>
<td>Long. 97 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garnett</td>
<td>Lat. 38 00</td>
<td>Long. 95 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burlington</td>
<td>Lat. 38 00</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emporia</td>
<td>Lat. 38 00</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cottonwood Falls</td>
<td>Lat. 38 00</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newton</td>
<td>Lat. 38 00</td>
<td>Long. 97 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hutchinson</td>
<td>Lat. 38 00</td>
<td>Long. 97 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lyons</td>
<td>Lat. 38 00</td>
<td>Long. 98 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Great Bend</td>
<td>Lat. 38 00</td>
<td>Long. 98 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larned</td>
<td>Lat. 38 00</td>
<td>Long. 99 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ness City</td>
<td>Lat. 38 00</td>
<td>Long. 99 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tola</td>
<td>Lat. 37 30</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fredonia</td>
<td>Lat. 37 30</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eureka</td>
<td>Lat. 37 30</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eldorado</td>
<td>Lat. 37 30</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wichita</td>
<td>Lat. 37 30</td>
<td>Long. 97 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheney</td>
<td>Lat. 37 30</td>
<td>Long. 97 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kingman</td>
<td>Lat. 37 30</td>
<td>Long. 98 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pratt</td>
<td>Lat. 37 30</td>
<td>Long. 98 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kinley</td>
<td>Lat. 37 30</td>
<td>Long. 99 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spearville</td>
<td>Lat. 37 30</td>
<td>Long. 99 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parsons</td>
<td>Lat. 37 00</td>
<td>Long. 95 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Independence</td>
<td>Lat. 37 00</td>
<td>Long. 95 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedan</td>
<td>Lat. 37 00</td>
<td>Long. 96 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burden</td>
<td>Lat. 37 09</td>
<td>Long. 96 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellington</td>
<td>Lat. 37 09</td>
<td>Long. 97 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caldwell</td>
<td>Lat. 37 09</td>
<td>Long. 97 30</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthony</td>
<td>Lat. 37 09</td>
<td>Long. 98 00</td>
<td>do</td>
<td>do</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

- "°" indicates degrees.
- "do" indicates degree.
- "Feet" indicates feet as the unit of measure.
- "Scale" indicates the scale of the map, with the specific number indicating the ratio of map distance to real-world distance.
- "Contour Interval" indicates the difference in elevation between contour lines.
<table>
<thead>
<tr>
<th>Locality</th>
<th>Name of sheet</th>
<th>Designation of sheet</th>
<th>Lat.</th>
<th>Long.</th>
<th>Area covered</th>
<th>Scale</th>
<th>Contour interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>Dodge</td>
<td></td>
<td>37.50</td>
<td>100.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Meade</td>
<td></td>
<td>37.00</td>
<td>100.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Clay Center</td>
<td></td>
<td>39.00</td>
<td>97.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Concordia</td>
<td></td>
<td>39.30</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Minneapolis</td>
<td></td>
<td>39.00</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Medicine Lodge</td>
<td></td>
<td>37.00</td>
<td>98.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Coldwater</td>
<td></td>
<td>37.00</td>
<td>99.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Salina</td>
<td></td>
<td>38.30</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td></td>
<td>39.00</td>
<td>97.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>20 Feet</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Mountain View</td>
<td></td>
<td>36.00</td>
<td>92.00</td>
<td>1 degree</td>
<td>1:625000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Marshall</td>
<td></td>
<td>35.30</td>
<td>92.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Morrilton</td>
<td></td>
<td>35.00</td>
<td>92.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Dardanelle</td>
<td></td>
<td>35.00</td>
<td>93.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Magazine Mountain</td>
<td></td>
<td>35.00</td>
<td>93.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Fort Smith</td>
<td></td>
<td>35.00</td>
<td>94.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Benton</td>
<td></td>
<td>34.30</td>
<td>92.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Hot Springs</td>
<td></td>
<td>34.30</td>
<td>93.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Mount Ida</td>
<td></td>
<td>34.30</td>
<td>93.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Poteau Mountain</td>
<td></td>
<td>34.30</td>
<td>94.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Aplin</td>
<td></td>
<td>35.00</td>
<td>93.00</td>
<td>1 degree</td>
<td>1:625000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Greenwood</td>
<td></td>
<td>35.00</td>
<td>94.15</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Atkins</td>
<td></td>
<td>35.00</td>
<td>92.45</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Washburn</td>
<td></td>
<td>35.00</td>
<td>94.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Petit Jean</td>
<td></td>
<td>35.00</td>
<td>92.45</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Dauphine</td>
<td></td>
<td>35.00</td>
<td>93.15</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Russellville</td>
<td></td>
<td>35.15</td>
<td>93.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Clarksville</td>
<td></td>
<td>35.15</td>
<td>93.15</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Coal Hill</td>
<td></td>
<td>35.15</td>
<td>93.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Van Buren</td>
<td></td>
<td>35.15</td>
<td>94.15</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Arburnke</td>
<td></td>
<td>35.15</td>
<td>94.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Ozark</td>
<td></td>
<td>35.15</td>
<td>93.45</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Oak Mountain</td>
<td></td>
<td>35.15</td>
<td>92.45</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Mountain Home</td>
<td></td>
<td>36.00</td>
<td>92.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Batesville</td>
<td></td>
<td>35.30</td>
<td>91.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Little Rock</td>
<td></td>
<td>34.30</td>
<td>92.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Yellville</td>
<td></td>
<td>36.00</td>
<td>92.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Dallas</td>
<td></td>
<td>32.30</td>
<td>96.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Fort Worth</td>
<td></td>
<td>32.30</td>
<td>97.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Weatherford</td>
<td></td>
<td>32.30</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Palo Pinto</td>
<td></td>
<td>32.30</td>
<td>98.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Breckenridge</td>
<td></td>
<td>32.30</td>
<td>98.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Albany</td>
<td></td>
<td>32.30</td>
<td>99.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Anson</td>
<td></td>
<td>32.30</td>
<td>99.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Cleburne</td>
<td></td>
<td>32.00</td>
<td>97.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Granbury</td>
<td></td>
<td>32.00</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Stephensville</td>
<td></td>
<td>32.00</td>
<td>98.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Eastland</td>
<td></td>
<td>32.00</td>
<td>98.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Meridian</td>
<td></td>
<td>31.30</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Hamilton</td>
<td></td>
<td>31.30</td>
<td>98.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Brownwood</td>
<td></td>
<td>31.30</td>
<td>98.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Coleman</td>
<td></td>
<td>31.30</td>
<td>99.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Gatesville</td>
<td></td>
<td>31.00</td>
<td>97.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>Lampasas</td>
<td></td>
<td>31.00</td>
<td>98.00</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td></td>
<td>San Saba</td>
<td></td>
<td>31.00</td>
<td>98.30</td>
<td>1 degree</td>
<td>1:125000</td>
<td>50 Feet</td>
</tr>
<tr>
<td>Locality</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>Brady</td>
<td>31 00 99 00</td>
<td>1/degree</td>
<td>1:125000</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taylor</td>
<td>30 00 97 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Georgetown</td>
<td>30 00 97 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burnet</td>
<td>30 00 98 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Llano</td>
<td>30 00 98 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mason</td>
<td>30 00 99 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bostrop</td>
<td>30 00 97 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austin</td>
<td>30 00 97 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blanco</td>
<td>30 00 98 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fredericksburg</td>
<td>30 00 98 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kerrville</td>
<td>30 00 99 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albany</td>
<td>32 30 99 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hayrick</td>
<td>31 30 100 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Angelo</td>
<td>31 00 100 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waoo</td>
<td>31 30 97 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temple</td>
<td>31 00 97 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eden</td>
<td>31 00 99 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abilene</td>
<td>32 00 99 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ballinger</td>
<td>31 30 99 30</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sierra Blanca</td>
<td>31 00 100 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roby</td>
<td>52 30 100 00</td>
<td>...do</td>
<td>...do</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nueces</td>
<td>29 30 100 00</td>
<td>...do</td>
<td>...do</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rapid City</td>
<td>44 00 103 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Benton</td>
<td>47 00 110 00</td>
<td>1/degree</td>
<td>1:250000</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Great Falls</td>
<td>47 00 111 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Big Snowy Mountain</td>
<td>46 00 100 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Bt Mountain</td>
<td>46 00 110 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Logan</td>
<td>46 00 111 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helena</td>
<td>46 00 112 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Livingston</td>
<td>45 00 110 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three Forks</td>
<td>45 00 111 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dillon</td>
<td>45 00 112 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Big Timber</td>
<td>45 30 100 30</td>
<td>2/degree</td>
<td>1:125000</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stillwater</td>
<td>45 30 100 00</td>
<td>...do</td>
<td>...do</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huntley</td>
<td>45 30 100 00</td>
<td>...do</td>
<td>1:62500</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowstone Park</td>
<td>Canyon</td>
<td>44 30 110 00</td>
<td>...do</td>
<td>1:125000</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gallatin</td>
<td>44 30 110 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake</td>
<td>44 00 110 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shoshone</td>
<td>44 00 110 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>Fort Steele</td>
<td>41 30 106 00</td>
<td>...do</td>
<td>...do</td>
<td>25 and 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>Camas Prairie</td>
<td>43 00 115 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mountain Home</td>
<td>43 00 115 30</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bisuka</td>
<td>43 00 116 00</td>
<td>...do</td>
<td>...do</td>
<td>25, 50, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boise</td>
<td>43 00 116 00</td>
<td>...do</td>
<td>...do</td>
<td>25, 50, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nampa</td>
<td>43 30 116 30</td>
<td>...do</td>
<td>...do</td>
<td>50 and 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bear Valley</td>
<td>44 00 115 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squaw Valley</td>
<td>44 00 116 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>Klamath</td>
<td>42 00 112 00</td>
<td>1/degree</td>
<td>1:250000</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ashland</td>
<td>42 00 122 00</td>
<td>...do</td>
<td>...do</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>East Denver</td>
<td>39 30 104 30</td>
<td>2/degree</td>
<td>1:125000</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crested Butte</td>
<td>38 45 106 45</td>
<td>2/degree</td>
<td>1:62500</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthracite</td>
<td>38 45 107 00</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arroya</td>
<td>38 30 103 00</td>
<td>2/degree</td>
<td>1:125000</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanborn</td>
<td>38 30 103 30</td>
<td>...do</td>
<td>...do</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Name of sheet</td>
<td>Designation of sheet</td>
<td>Area covered</td>
<td>Scale</td>
<td>Contour interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>Big Springs</td>
<td>Lat. 38 00 Long. 104 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las Animas</td>
<td>Lat. 38 00 Long. 103 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catlin</td>
<td>Lat. 38 00 Long. 104 30</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepesta</td>
<td>Lat. 38 00 Long. 104 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pueblo</td>
<td>Lat. 38 00 Long. 104 20</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highbee</td>
<td>Lat. 37 30 Long. 103 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timpas</td>
<td>Lat. 37 30 Long. 103 30</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apishapa</td>
<td>Lat. 37 30 Long. 104 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kit Carson</td>
<td>Lat. 37 30 Long. 102 30</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vilas</td>
<td>Lat. 37 00 Long. 102 00</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamar</td>
<td>Lat. 37 00 Long. 102 30</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheyenne Wells</td>
<td>Lat. 37 00 Long. 102 00</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limon</td>
<td>Lat. 37 00 Long. 103 30</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadville</td>
<td>Lat. 36 00 Long. 106 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huerfano Park</td>
<td>Lat. 37 30 Long. 105 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walsenburg</td>
<td>Lat. 37 30 Long. 104 30</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorado Springs</td>
<td>Lat. 38 30 Long. 104 30</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>El More</td>
<td>Lat. 37 00 Long. 104 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canyon City</td>
<td>Lat. 38 00 Long. 105 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trinidad</td>
<td>Lat. 37 00 Long. 104 30</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesa de Maya</td>
<td>Lat. 37 00 Long. 103 30</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Carriso</td>
<td>Lat. 37 00 Long. 103 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two Butte</td>
<td>Lat. 37 30 Long. 102 30</td>
<td>25 and 50</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springfield</td>
<td>Lat. 37 00 Long. 102 30</td>
<td>25 and 50</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platte Canyon</td>
<td>Lat. 39 00 Long. 105 00</td>
<td>25, 50, 100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grenada</td>
<td>Lat. 39 00 Long. 102 00</td>
<td>25</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ashley</td>
<td>Lat. 40 00 Long. 109 00</td>
<td>1 degree.</td>
<td>Feet.</td>
<td>1:350000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Tavaputs</td>
<td>Lat. 39 00 Long. 109 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Sal</td>
<td>Lat. 38 00 Long. 109 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abajo</td>
<td>Lat. 37 00 Long. 109 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uinta</td>
<td>Lat. 40 00 Long. 110 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salt Lake</td>
<td>Lat. 40 00 Long. 111 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tooele Valley</td>
<td>Lat. 40 00 Long. 112 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price River</td>
<td>Lat. 39 00 Long. 110 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manti</td>
<td>Lat. 39 00 Long. 112 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sevier Desert</td>
<td>Lat. 38 00 Long. 110 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Rafael</td>
<td>Lat. 38 00 Long. 112 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish Lake</td>
<td>Lat. 38 00 Long. 111 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beaver</td>
<td>Lat. 38 00 Long. 112 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Henry Mountain</td>
<td>Lat. 37 00 Long. 110 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escalante</td>
<td>Lat. 37 00 Long. 111 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kanab</td>
<td>Lat. 37 00 Long. 112 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. George</td>
<td>Lat. 37 00 Long. 113 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fiocche</td>
<td>Lat. 37 00 Long. 114 00</td>
<td>250</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paradise</td>
<td>Lat. 41 00 Long. 117 00</td>
<td>200</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disaster</td>
<td>Lat. 41 00 Long. 118 00</td>
<td>200</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Valley</td>
<td>Lat. 41 00 Long. 119 00</td>
<td>200</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granite Range</td>
<td>Lat. 49 00 Long. 119 00</td>
<td>200</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carson</td>
<td>Lat. 39 00 Long. 119 30</td>
<td>1 degree.</td>
<td>Feet.</td>
<td>1:350000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reno</td>
<td>Lat. 39 30 Long. 119 30</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wabuska</td>
<td>Lat. 39 00 Long. 119 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wadsworth</td>
<td>Lat. 39 00 Long. 119 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Truckee</td>
<td>Lat. 39 00 Long. 120 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellington</td>
<td>Lat. 38 00 Long. 119 00</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Markleeville</td>
<td>Lat. 38 30 Long. 119 30</td>
<td>100</td>
<td>Feet.</td>
<td>1:125000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modoc Lava Bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shasta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Honey Lake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lassen Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Bluff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downieville</td>
<td></td>
<td></td>
<td>25000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidwell Bar</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chico</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colfax</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nevada City</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marysville</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placerville</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jackson</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyramid Peak</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sierraville</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sonora</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escalante</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oceanside</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El Cajon</td>
<td></td>
<td></td>
<td>125000</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>Largo</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chico</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Clara</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albuquerque</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Taylor</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wingate</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las Vegas</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watrous</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bernal</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cornson</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las Cruces</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamy</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Pedro</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Fe</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canyon de Chelly</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Port Defiance</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Johns</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marsh Pass</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echo Cliffs</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaibab</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Trumbull</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tusayan</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco Mount-</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ain.</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chino</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diamond Creek</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holbrook</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verde</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prescott</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Thomas</td>
<td></td>
<td>1 degree.</td>
<td>25000</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>New Mexico and Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>Canyon de Chelly</td>
<td></td>
<td></td>
<td></td>
<td>25 and 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Port Defiance</td>
<td></td>
<td></td>
<td></td>
<td>50 and 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Johns</td>
<td></td>
<td></td>
<td></td>
<td>50 and 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marsh Pass</td>
<td></td>
<td></td>
<td></td>
<td>50 and 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echo Cliffs</td>
<td></td>
<td></td>
<td></td>
<td>50 and 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona and Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona, Nevada, and California</td>
<td>Camp Mohave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above lists the designations of sheets, their areas covered, scales, and contour intervals for various localities in California, New Mexico, Arizona, and Nevada. The sheets are designated by location and include details such as latitude, longitude, and specific areas covered by the sheets, along with their scales and contour intervals.
Aspen, Colorado. Scale, 1: 9,600; contour interval, 25 feet.
Banner Hill, California. Scale, 1: 14,400; contour interval, 20 feet.
Grass Valley, California. Scale, 1: 14,400; contour interval, 20 feet.
Genesee, California. Scale, 1: 31,680; contour interval, 50 feet.
Taylorsville, California. Scale, 1: 31,680; contour interval, 50 feet.
Indian Valley, California. Scale, 1: 62,500; contour interval, 50 feet.

Other special topographic sheets accompany some of the volumes of text; see especially contents of atlases to monographs II, III, XII, XIII, XX, as detailed on pages 96, 98, 113, 115, and 125 of this bulletin.

MISCELLANEOUS TOPOGRAPHIC MAPS.

Contour map of the United States; scale 1: 2,500,000. 9 sheets.
Contour map of the United States; scale 1: 7,000,000. 1 sheet.
Hypsometric map of the United States; scale 1: 7,000,000. 1 sheet.
Index map of the United States; scale 1: 2,500,000. 9 sheets.
Base map of the United States; scale 1: 7,000,000. 1 sheet.
Base map of the United States; scale 1: 14,000,000. 1 sheet.
Contour map of the state of Massachusetts; scale 1: 250,000. 4 sheets.
Contour map of the state of Connecticut; scale 1: 125,000. 4 sheets.
Contour map of the states of Massachusetts and Rhode Island; scale 1: 250,000. 4 sheets.
Contour map of the drainage basin of the Arkansas river in Colorado; scale 1: 380,160. 2 sheets.

These miscellaneous maps are compilations.
MISCELLANEOUS PUBLICATIONS.

CIRCULARS OF INSTRUCTIONS.

(Circular no. 1.) | Department of the interior, | United States geological survey, | office of the director, | Washington, July 16, 1879.

A small sheet, measuring about 5 by 8 inches, with the above heading, and signed “Clarence King, director.” It calls the attention of officers and employees of the survey to the provision of law prohibiting personal or private interest by the director and members of the survey in the lands or mineral wealth of the region under survey and their execution of surveys or examinations for private parties or corporations.

Circular no. 2. | Department of the interior, | United States geological survey, | office of the director, | Washington, July 16, 1879.

A small sheet, measuring about 5 by 8 inches, with the above heading, and signed “Clarence King, director.” It relates to official correspondence.

Circular no. 3. | Department of the interior, | United States geological survey, | office of the director, | Washington, D. C., April 1, 1880.

A small circular, pp. [1]-3, verso blank, measuring about 5 by 8 inches, and signed “Clarence King, director.” It relates to reports to be rendered by disbursing officers.

(Circular no. 4.) | Department of the interior, | United States geological survey, | office of the director, | Washington, May 26, 1880.

A small sheet, measuring about 5 by 8 inches, with the above heading, and signed “Clarence King, director.” It relates to the entering by members of the survey of private or corporate mining property and to giving expert testimony in lawsuits.

Circular no. 5. | Department of the interior, | United States geological survey, | office of the director, | Washington, D. C., September 10, 1881. | Instructions relating to the form of the reports of the | U. S. geological survey.

A small circular, 2 leaves (verso of each blank), measuring about 5 by 8 inches, and signed “J. W. Powell, director.” 1,500 copies issued.

A small sheet, measuring about 5 by 8 inches, with the above heading, and signed “J. W. Powell, director.” It relates to the survey ration. 250 copies issued.

These six circulars of instructions were rescinded and superseded by the following:

Bull. 100—21 321
REGULATIONS.

United States geological survey | J. W. Powell director | Regulations | of the | U. S. geological survey | [Survey design] |
Washington | government printing office | 1882

Title as above, verso blank; contents, pp. v-vi; promulgating order by the director, dated Sept. 1, 1882, and approved by the acting secretary of the interior, p. [vii], verso blank; text, pp. 1-51. 8°. Bound in cloth and lettered on front cover: "Regulations | of the | U. S. geological survey | 1882". 200 copies were issued in this form. Besides these there were 50 copies issued with paper covers, the full title being repeated on the cover.

Chapter I. Organic law of the survey, with instructions relating to its provisions............................ 1-2
Chapter II. Instructions relating to money and property.. 3-36
Chapter III. Instructions relative to bonded railroads.. 37-43
Chapter IV. Instructions relating to collections.. 44-46
Chapter V. Instructions relating to publications.. 47-50
Chapter VI. Miscellaneous instructions .. 51

A revision of these Regulations is in an advanced state of preparation.

CIRCULAR CONCERNING PUBLICATIONS.

Department of the interior, | United States geological survey, | Washington, D. C., 188 . | Circular concerning publications.

[Washington: government printing office. 1882.]

One leaf (two unnumbered pages), with heading as above. 4°. 1,000 copies.

Brief titles, collations, contents, and prices are given, the whole preceded by information respecting the distribution of the reports.

This circular has been revised and reissued from time to time, and has, of course, grown with the increase of survey publications. The last one at this writing is as follows:

(9-320.) | Department of the interior | United States geological survey | J. W. Powell, director | List | of the | publications | of the | U. S. geological survey | J. W. Powell | director | [Survey design] |
Washington | government printing office | 1893

Paper cover bearing title as above; inner title same, verso blank; prefatory note, p. 3, verso blank; the list of survey publications, pp. 5-44; finding list, showing where in the congressional documents the publications of the U. S. geological survey are to be found, pp. 45-46. 8°. 2,500 copies.

GUYOT’S TABLES.

Guyot’s tables | for | computing differences of elevation | from | barometric observations. | (Extract from Smithsonian miscellaneous collections, no. 31.)

[Washington: government printing office. 1884.]

Paper cover bearing half-title as above; inner half-title same, verso blank; text, pp. 3-8; tables, pp. 9-18. 8°. 100 copies issued by the department of the interior on survey requisition.
HISTORY OF AMERICAN STATE SURVEYS.

Department of the interior, | United States geological survey. | A proposed | history of American state surveys. |

Colophon: Washington, D. C., April 10, 1885.

No title; heading as given above; pp. [1]-4. 8º. 100 copies printed for distribution among gentlemen invited to contribute to the proposed history, accompanied by letters from the director.

After setting forth the purpose, scope, and manner of compilation of the proposed history, the information desired from contributors is indicated by a series of questions, grouped under the five following heads:

I.—Questions relating to organization.
II.—Questions relating to administration.
III.—Questions relating to cost.
IV.—Questions relating to publications.
V.—Benefits resulting from the survey.

RULES AND SUGGESTIONS FOR PREPARATION OF MANUSCRIPT AND ILLUSTRATIONS.

Rules | for the | preparation of manuscript and illustrations | designed for publication by the United | States geological survey. | By | Thomas Hampson. | January, 1888.

[Washington: government printing office. 1888.]

Paper cover bearing half-title as above; inner half-title same, verso blank; letter of transmittal to the director and approval of the rules by the director, pp. 3-4; the rules, pp. 5-19, verso blank; blank pages for manuscript additions or changes, pp. 21-24 (headed “Rules” at the top of p. 21). 8º. 500 copies published.

The following is a revision of these rules:

Suggestions | for the | preparation of manuscript and illustrations for | publication by the U. S. geological survey. | By W. A. Croffut. | January, 1892.

[Washington: government printing office, 1892.]

Half-title on paper cover as above; inner half-title the same, verso blank; letter of transmittal and approval of the director, p. 3, verso blank; text, pp. 5-15. 8º. 500 copies published.

JOHNSON'S REPORT ON THE IRON REGIONS OF LOUISIANA AND TEXAS.

Title as above, verso blank; contents, p. 3, verso blank; illustrations, p. 5, verso blank; letter of transmittal by the secretary of the interior to the speaker of the house of representatives, p. 7, verso blank; letter of transmittal by the director of the survey to the secretary of the interior, p. 9; letter of transmittal by the author, Lawrence C. Johnson, assistant geologist, to the director, pp. 9-10; text, pp. 11-54. 8º. Plate i (being a map of the region reported on); figs. 1-13. 1,754 copies, the “usual number.”

A preliminary report, made in response to a resolution of inquiry of the house of representatives.
DIGEST OF DECISIONS CONCERNING WATER IN THE ARID REGION.

A digest of the decisions of the supreme courts of the states and territories of the arid region and of the United States circuit and supreme courts in cases involving questions relative to the use and control of water in that region. Compiled by D. W. Campbell, esq., of the United States geological survey; revised and edited, under the direction of the secretary of the interior, by W. C. Pollóck, esq., of the assistant attorney-general's office for the interior department.

Washington: government printing office. 1889.

Title as above, verso blank; text, arranged alphabetically by subject matter of decision (e.g., ditch, flumes, riparian), pp. 3-59. 8°. 1,000 copies published; bound in sheep.
INDEX

TO THE

PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY.
INDEX TO THE PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY.

Abbreviations: Ann = Annual Report; Mon = Monograph; Bull = Bulletin; MR = Mineral Resources;
1 = part 1; ii = part ii; p = page; pp = pages.

Aa type of lava, character of ...Ann 4, p 95
Acadian area of the Newark system Bull 85, pp 19-20, 80
Acadian province, the upper Paleozoic formations in the, correlations and classifications ofBull 80, pp 226-257
Acadian. See, also, Canada.
Accretion formed in the blast furnaceMon xi, pp 725-731
Actinolite, secondary character ofAnn 10, ii, p 407
Actinoida from the Devonian of the Eureka district, Nevada...Mon viii, pp 100-106
Actinotest of the Olenellus zoneAnn 10, ii, p 599-602
Adirondacks, pre-Cambrian rocks of theBull 86, pp 398-399, 413-414, 508
Aeolian sands in the Great basinMon xi, pp 153-156
Aeolian soils ...Ann 12, i, pp 326-329
Africa, diamond mines and production ofMR 1887, pp 563-568
Africa, fossil plants of, literature of theAnn 8, ii, pp 799-803
Africa, gold production of, compared with that of other portions of the world ..MR 1883-84, pp 319, 320
Africa; irrigation by artesian waters in AlgeriaAnn 11, ii, pp 265-266
Agassiz, the glacial lake, upper beaches and deltas ofBull 39
Agatized wood formations in ArizonaMR 1891, pp 548-549
Agglomerates, diabasic, relations of, to greenstone schists in the Marquette district, MichiganBull 62, pp 183-191
Agnostozoic proposed as a name for a system of rocks between the Archean and the PaleozoicAnn 7, pp 454-455; Bull 86, pp. 147, 148, 461, 462, 475, 491, 493
Alabama, altitudes of localities inBull 5, pp 25-28; Bull 76
Alabama, artesian wells in ...Ann 11, ii, p 263
Alabama, boundary lines of, and formation of stateBull 13, pp 102-103
Alabama, brick industry of, statistics of the....................MR 1887, pp 535, 537; MR 1888, p 557
Alabama, copper mines in ...MR 1882, p 231
Alabama, Cretaceous rocks ofBull 82, pp 105-110, 216-217
Alabama; dolomite and residual clay from Morrisville, analysis ofBull 60, p 159
Alabama, Eocene deposits in ... Bull 83, pp 57-66, 83, 87
Alabama, fossils from ... Ann 4, pp 296, 301, 310, 311; Ann 8, ii, pp 878-879; Bull 4, p 16
Alabama, geologic and paleontologic investigations in ... Ann 4, pp 43, 49-50; Ann 5, pp 52-53; Ann 6, pp 74, 75; Ann 7, pp 67, 114; Ann 8, i, p 129; Ann 9, pp 76, 122, 132; Ann 10, i, pp 120, 121, 167, 174; Ann 11, i, p 67; Ann 12, i, pp 74, 75, 79
Alabama, geologic maps of, listed ... Bull 7, pp 103, 109, 110, 111, 167
Alabama, gold from, statistics of ... Ann 2, p 385; MR 1882, pp 176, 177, 178; MR 1889-90, p 49; MR 1891, p 77
Alabama, iron and steel from, statistics of ... Ann 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 135, 136, 137, 149-161; MR 1883-84, pp 252, 278; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 85-92, 98; MR 1887, pp 11, 16, 49-50; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 11, 17, 18, 24, 35, 36, 39, 40, 41; MR 1891, pp 12, 19, 61
Alabama, iron ores of, in their geological relations MR 1882, pp 149-161
Alabama, limestone from Chewacla, Lee county, analysis of ... MR 1889-90, p 377
Alabama, Neocene beds of ... Bull 84, pp 159-160
Alabama, phosphate deposits of ... Bull 46, pp 75-78; MR 1883-84, pp 794-803; MR 1886, p 618
Alabama, tin ore in ... MR 1882, pp 434-436; MR 1883-84, pp 601-602
Alabama, topographic work in ... Ann 6, pp 9, 10; Ann 7, pp 50, 52; Ann 8, p 102; Ann 9, pp 54, 55; Ann 10, i, pp 91, 92; Ann 11, i, p 37
Alabama; white earth from Talladega, analysis of Bull 60, p 158
Alabama, Tuscaloosa, and Tombigbee rivers, Tertiary and Cretaceous strata of the ... Bull 43
Alachua clays of Florida ... Bull 84, pp 127-130
Alaska, altitudes of localities in ... Bull 5, p 29
Alaska, Cenozoic epoch in, general considerations on the Bull 84, pp 276-277
Alaska, cinnabar in ... MR 1882, pp 384-385
Alaska, coal deposits and industry in ... MR 1883-84, p 17; MR 1885, p 14; MR 1888, pp 214-216; MR 1891, pp 209-210
Alaska, Cretaceous deposits of ... Bull 82, pp 205-206
Alaska, fossil plants of, literature of the .. Ann 8, ii, pp 924-926
Alaska, fossils from ... Ann 8, ii, pp 924-926; Bull 82, pp 205-206
Alaska, geologic investigations in .. Ann 11, i, pp 57-58; Ann 12, i, pp 59-61
Alaska, glaciers of ... Ann 5, pp 348-355
Alaska; hornblende-andesite from Hague volcano, Bogusloff island, Bering sea, analysis of ... Bull 27, pp 63-64
Alaska, jade and pectolite from, analyses of ... Bull 9, pp 9-10
Alaska, Mesozoic fossils from ... Bull 4, pp 10-15
Alaska; Mesozoic Mollusca from the southern coast of the Alaskan peninsula... Bull 51, pp 64-70
Alaska, mineral springs of ... Bull 32, pp 218-219; MR 1882, p 979
Alaska, minerals of, the useful .. MR 1882, p 760; MR 1887, pp 695-696
Alaska; Neocene formations of, summary of our knowledge of the Bull 84, pp 234-268
Alaska, purchase of, from Russia, boundary of, etc Bull 13, p 23
INDEX.

Alaska, rocks of, general notes on the.. Bull 84, pp 232-234

Alaska. See, also, Arctic.

Albite from Litchfield, Maine, analysis of Bull 42, pp 34-35

Albuquerque district, New Mexico, irrigation in the.......................... Ann 12, ii, pp 270-273

Alcohol, compressibility and thermal expansion of.............................. Bull 92, pp 30-32

Aleutian islands, lignitic beds of the... Ann 84, pp 242-249

Algae of hot springs .. Ann 9, pp 657-666

Algeria, irrigation in ... Ann 11, ii, pp 265-266

Algonkian; classification of the early Cambrian and pre-Cambrian forma-
tions... Ann 17, pp 371-454

Algonkian; copper-bearing rocks of lake Superior............................... Ann 1, pp 70-71; Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v

Algonkian; crystalline schists of the lake Superior region.................... Ann 10, i, pp 355-364

Algonkian; greenstone-schist areas of the Monominee and Marquette regions
of Michigan, a contribution to the subject of dynamic metamorphism in
eruptive rocks... Bull 62

Algonkian; Huronian areas, investigations in Ann 5, pp 187-208

Algonkian; Huronian defined .. Bull 86, p 463

Algonkian; Huronian of the northwestern states, metamorphism in the... Ann 5, pp 241-242

Algonkian; Huronian quartzites, genesis of and metamorphism in........... Bull 8, pp 48-52

Algonkian; Huronian rocks, enlargements in Bull 8, pp 23-37

Algonkian; Huronian rocks of the lake Superior region....................... Mon v, pp 386-394, 402-409

Algonkian; Huronian system, history of the term................................ Bull 86, pp 470-474

Algonkian; Huronian, the original.. Bull 86, pp 23-50, 498-499

Algonkian; Huronian and Laurentian, relations of the Keweenawan rocks to
the... Ann 3, pp 150-173

Algonkian; Huronian and Laurentian, relations of the Penokee iron-bearing
series of Michigan and Wisconsin to the..................................... Ann 10, i, pp 456-464

Algonkian; Keweenaw series, lake Superior, the junction between the East-
eran sandstone and the.. Bull 23

Algonkian; Keweenawan rocks of lake Superior, chronologic list of works
that embrace references to the.. Mon v, pp 14-23, 431-432

Algonkian; Keweenawan rocks of the lake Superior basin, extent and gen-
eral nature of the... Ann 3, pp 93-188; Mon v, pp 24-409; Bull 86, pp 160-162

Algonkian of Texas ... Bull 45, pp 55-56

Algonkian; Penokee iron-bearing series of Michigan and Wisconsin... Ann 10, i, pp 341-507; Mon xix

Algonkian period to be used in the geologic atlas of the United States..... Ann 10, i, p 20

Algonkian strata, table showing classification of the................................ Ann 10, i, p 546

Algonkian and Archean, a correlation essay, by C. R. Van Hise............. Bull 86

Algonkian and Archean rocks of North America as related to the Cambrian.. Ann 12, i, pp 540-563

Alkalies in silicates, estimation of.. Bull 9, pp 36-37

Allanite from Topsham, Me., description and analysis of...................... Bull 9, p 10

Allanite in igneous rocks of the Eureka district, Nevada........................ Mon xx, pp 338, 341, 379

Allanite in porphyries of the Mosquito range, Colorado....................... Mon xii, pp 329, 335

Allanite in porphyrites of the Henry mountains.................................. Mon xii, p 360

Alloys, a new method of making... Bull 60, pp 147-148

Alloys, thermoelectric data of.. Bull 14, pp 80-88

Alluvial cones and terraces.. Ann 2, p 184; Ann 4, pp 201-202; Ann 6, p 311; Mon i, pp 81, 91, 92, 178, 185, 220, 344, 346, 349, 352; Mon xi, pp 255-257

Alluvial soils... Ann 12, i, pp 288-293

Altamaha grit of Georgia ... Bull 84, pp 81-82

Alteration products, miscellaneous, analyses of.................................. Mon xii, p 607
Altitudes, a new method of measuring, with the barometer Ann 2, pp 403-566
Altitudes between lake Superior and the Rocky mountains Bull 72
Altitudes in the Bonneville basin ... Mon. 1, pp 405-419
Altitudes in the Dominion of Canada Bull 6
Altitudes in the United States, dictionary of Bull 5; Bull 76
Alum, foreign sources of .. MR 1888, pp 681-682;
Alum rock, so-called, from Grant county, New Mexico, analyses of Bull 9, p 13
Alum, analyses of .. Bull 1883-84, p 659
Alum, separation of, in rock analyses .. Bull 78, pp 87-90
Alum, statistics of ... MR 1882, pp 606;
Alum, the ore of (bauxite), analyses of .. MR 1891, p 157
Aluminum, analyses of ... MR 1883-84, p 659
Aluminum, separation of, in rock analyses Bull 78, pp 87-90
Aluminum, statistics of .. MR 1882, pp 445;
Aluminum and titanium, separation of, and of uranium and iron Bull 27, pp 16-26
Aluminum foil, action of various acids on MR 1891, pp 152-154
Amphibolite of the Mosquito range, Colorado, described Mon xii, p 50
Amygdaloid, diabasic, of the Keweenaw series Mon v, pp 87-91
Amygdaloidal rocks of the Keweenaw series, structural features of the Mon v, pp 134-139

Amyl alcohol, the action of, on the chlorides, a method for the separation of
sodium and potassium from lithium by, with some reference to a similar
separation of the same from magnesium and calcium Bull 42, pp 73-88
Amyzon beds, correlation of the ... Bull 83, pp 141, 145-146
Amyzon group of rocks of Oregon ... Bull 84, pp 281
Analcite from Table mountain, Colorado, general description, optical behavior,
and chemical composition of ... Bull 20, pp 27-29
Analyses, lists and, of the mineral springs of the United States Bull 32
Analyses, mineral, an apparatus for the determination of water in .. Bull 78, pp 84-86
Analyses of waters of American rivers and springs and of inclosed lakes and
oceans ... Mon xi, pp 176-180
Analyses of waters of the Yellowstone national park, with an account of the
methods of analysis employed .. Bull 47

Analyses. See, also, the various substances: Coal, Clay, Iron, Rocks, Water, etc.
Andesite, augite-, of the Washoe district, Nevada, description and occurrence
of ... Mon iii, pp 62-66, 120-130, 151, 201-203
Andesite, hornblende-, of the Washoe district, Nevada, description and occurrence
of ... Mon iii, pp 53-62, 66-70, 116-125, 130-134, 199-201, 203-205
Andesite, hypersthene-, and triclinic pyroxene in augitic rocks Bull 1, pp 19-38
Andesite, pyroxene-, of the Eureka district, Nevada Mon xx, pp 239-242, 348-364
Andesites, classification of ... Mon xiii, pp 149-151
Andesites near Steamboat springs, Nevada Mon xiii, pp 146-151, 221, 334-337
Andesites of Buffalo peaks, Colorado Mon xi, pp 353-354
Andesites of the Eureka district, Nevada Mon xx, pp 233-237, 258, 348
Andesites of the quicksilver belt, California .. Mon xiii, pp 152-156, 221, 238, 242-245
Andesites of the Tewan mountains, New Mexico Bull 66, pp 12-15
Andesites of the Washoe district, Nevada, relations of the Bull 17, pp 12-21, 23-26, 34
Andesites, transitions between types of Mon xiii, pp 148-151
Andesitic pelite of the Eureka district, Nevada Mon xx, pp 368-373
Angiosperms, fossil, of the Potomac or younger Mesozoic Mon xv, pp 277-325
Angiosperms. See, also, Monocotyledons; Dicotyledons.
Animals and plants in relation to soil formation Ann 12, i, pp 268-287
Animikie series of rocks of lake Superior Mon xix, pp 260-268, 468-470; Bull 86, pp 59, 187-189
INDEX.

Ann, cape, Massachusetts, geology of Ann 9, pp 529-611
Annealing of steel ... Bull 14, pp 40-59; Bull 94, pp 74-79
Anorthite determined in pyroxene-andesite Mon xx, p 353
Anorthite rock of the Keweenaw series described Mon v, pp 59-61, 438-440
Anorthoclase in lithophysse, Obsidian cliff, Yellowstone park Ann 7, pp 267-269
Antimony, foreign sources of MR 1883-84, pp 644-649
Antimony, ore, analyses of MR 1882, p 438
Ants as agents in soil formation Ann 12, i, pp 277-278
Apatites, analyses of ... Bull 46, pp 42, 44-46; MR 1883-84, pp 806, 808
Apatites, foreign .. Bull 46, pp 22-46
Apophyllite from Table mountain, Colorado, general description, optical properties, and chemical composition of Bull 20, pp 29-35
Appalachians, Cambrian and pre-Cambrian rocks of the Bull 86, 487
Appomattox or Lafayette formation. See Lafayette formation.
Aqueous vapor, thermal effect of the action of, on feldspathic rocks Ann 2, pp 325-330; Mon v, pp 290-308
Aquinn mountains, literature of the geology of the Bull 86, pp 296, 506
Arachnids, index to the known fossil, of the world. Bull 71
Arachnids, systematic review of our present knowledge of Bull 31, pp 19-31
Aragonite and calcite, formation of, in caves Mon vii, p 95
Aragonite crystals, measurement of the growth of Mon vii, pp 40-58
Arapahoe beds, correlation of the Bull 83, pp 136-137, 145-146
Archaeopteryx, comparison of Ichthyornis and Hesperornis with Ann 3, pp 83-85
Archean; Cambrian, the early, and pre-Cambrian formations, classification of .. Ann 7, pp 371-454
Archean; crystalline schists of the lake Superior region Ann 10, i, pp 355-364; Mon xix, p 41
Archean formations of the northwestern states Ann 5, pp 175-242
Archean; gneisses of the lake Superior district, character of the Ann 10, i, pp 358-360; Mon xix, pp 107-111, 116-122
Archean; granite of the Sierra Nevada, pre-sedimentary Mon xiii, pp 164-175
Archean; Huronian and Laurentian, relations of the Keweenawan rocks to the Ann 3, pp 156-173
Archean; Huronian and Laurentian, relations of the Penokee iron-bearing series to the Ann 10, i, pp 458-464; Mon xix, pp 81, 82
Archean; Laurentian system, history of the term Bull 86, pp 462, 470-474
Archean; Laurentian, the original Bull 86, pp 23-50, 497-498
Archean, restriction of, to the gneissic basement terrane Ann 7, pp 450-452
Archean; southern complex of the Penokee district, lake Superior Ann 10, i, pp 353-364; Mon xix, pp 103-126, 441-454
Archean rocks compared with Cretaceous metamorphics Mon xiii, pp 138, 458
Archean rocks in Texas .. Bull 45, pp 55-57
Archean rocks in the lowest deeps of the Grand canyon Mon ii, pp 207
Archean rocks in the upper Missouri region Ann 6, pp 49-50
Archean rocks in the vicinity of Chesapeake bay Ann 7, pp 616
Archean rocks, investigation of the Ann 7, pp 17-18
Archean rocks of cape Ann, Massachusetts Ann 9, pp 576-610
Archean rocks of mount Desert, Maine. Ann 8, ii, pp 1033-1059
Archean rocks of northern Wisconsin, lithological character and origin of the Ann 10, i, pp 353-364
Archean rocks of northwestern Colorado. .. Ann 9, pp 686-687
Archean rocks of the Leadville district, Colorado. Ann 2, pp 215-216
Archean rocks of the Mosquito range, Colorado, petrographical descriptions of the. .. Mon xii, pp 45-53, 93-94, 276-277
Archean rocks of the northwestern states Ann 5, pp 181-242
Archean rocks of the Plateau region .. Ann 6, pp 156-161
Archean rocks of the Uinta mountains .. Ann 9, pp 686-687
Archean rocks on south shore of lake Superior Bull 62
Archean rocks, possible character of (primeval) Mon xiii, pp 171-174
Archean and Algonkian, a correlation essay, by C. R. Van Hise Bull 86
Archean and Algonkian rocks of North America as related to the Cambrian .. Ann 12, ii, pp 203-205
Arid region of United States, amount of, redeemable by irrigation Ann 11, ii, pp 319-320
Arid region of United States and areas irrigated therein, map showing the.. Ann 11, ii, pp 298-299
Arid region of United States, hydrography of the.......................... Ann 10, ii, pp 36, 78-90; Ann 11, ii, pp 1-110; Ann 12, ii, pp 213-301
Arid region of United States, location of the, and cause of its aridity Ann 12, ii, pp 219-220
Arid region of United States. See, also, Irrigation.
Arizona, altitudes in. .. Bull 5, pp 30-34; Bull 76
Arizona, boundary lines of, and formation of territory Bull 13, pp 32, 125
Arizona; brochantite from United Verde mine, Yavapai county, analysis of. Bull 78, p 121
Arizona, Cambrian rocks in, correlation of the ... Bull 81, pp 219-221, 235, 336, 367, 385
Arizona, coal areas and statistics of .. MR 1882, p 37; MR 1883-84, p 18; MR 1885, p 14
Arizona, copper, cupola smelting of, in .. MR 1883-84, pp 397-410
Arizona, Cretaceous rocks of ... Bull 82, p 154
Arizona, dumortierite from .. Bull 60, pp 133-135
Arizona, fossils from ... Ann 8, ii, pp 916-917
Arizona, geologic and paleontologic investigations in Ann 1, pp 29-31; Ann 2, pp 8-9; Ann 4, pp 45-48; Ann 6, p 75; Ann 11, i, pp 114, 126
Arizona, geologic maps of, listed .. Bull 7, pp 140, 141, 142
Arizona; Gila river basin, hydrography of the Ann 11, ii, pp 58-63, 100, 108; Ann 12, ii, pp 292-316
Arizona; Gila river basin, irrigation problems relating to the Ann 11, ii, pp 227-229
Arizona; Grand canyon district, geography of the Ann 2, pp 70-73
Arizona; Grand canyon district, physical geology of the Ann 2, pp 49-166
Arizona; Grand canyon district, Tertiary history of the Mon II and atlas
Arizona; Hassayampa disaster, causes of the Ann 11, II, pp 228-229
Arizona; hypersthene-andesite from San Francisco mountains, analysis of Bull 42, p 139
Arizona, irrigation, hydrography, etc., in Ann 10, II, p 87
Arizona; kyanite from Clip, analysis of .. Bull 78, p 120
Arizona, mineral springs of Bull 32, pp 196-197; MR 1883-84, p 979
Arizona, minerals of, the useful MR 1882, pp 760-764; MR 1887, pp 690-700
Arizona, mining districts of MR 1882, pp 765-766
Arizona, rock formations in Bull 80, pp 215, 216, 221, 222, 224
Arizona; sandstone from Flagstaff, analysis of Bull 78, p 124
Arizona, topographic work in Ann 1, pp 28-30; Ann 2, pp 6-8; Ann 6, pp 13-14; Ann 7, p 55; Ann 8, pp 104-105
Arizona, turquoise from MR 1882, pp 493, 494
Arkansas, altitudes of localities in Bull 5, pp 35-36; Bull 76
Arkansas, boundary lines of, and admission of the state Bull 13, pp 30, 106-108
Arkansas, brick industry of MR 1887, p 535; MR 1888, p 558
Arkansas coals, analyses of MR 1889-90, p 176
Arkansas, Eocene deposits in Bull 83, pp 74-75, 83
Arkansas, fossils from Ann 4, pp 295-296; Ann 8, pp 896-897; Bull 4, p 16
Arkansas, geologic and paleontologic investigations in Ann 10, I, p 157; Ann 11, I, p 75; Ann 12, I, pp 90, 107, 121
Arkansas, granite and marble production of MR 1888, pp 537, 542; MR 1889-90, pp 374, 378; MR 1891, pp 457, 458
Arkansas kaolin, analyses of MR 1891, p 517
Arkansas, minerals of, the useful MR 1882, pp 670-672; MR 1887, pp 700-703
Arkansas, natrolite from Magnet cove, description and analysis of Bull 90, p 38
Arkansas, nickel deposits of MR 1887, p 128
Arkansas, novaculite quarries in MR 1885, pp 433-434; MR 1886, p 589
Arkansas syenites, results of tests of MR 1889-90, p 379
Arkansas, topographic work in Ann 4, pp 12, 13; Ann 9, p 56; Ann 10, I, pp 93, 95; Ann 11, I, p 40; Ann 12, I, p 30
Arkansas; water from two springs at Hominy hill, analyses of Bull 60, p 173
Arkansas; waters from, analyses of Bull 55, p 92
Arkansas; yellow smithsonite from Marion county, analysis of Bull 90, p 62
Arkansas, zinc works and statistics of............................. MR 1882, p 347; MR 1883-84, p 476; MR 1889-90, p 88
Arkansas river basin, hydrography of the......................Ann 11, 11, pp 45-52, 97
Arkansas river basin in Colorado and Kansas, irrigation problems relating to
the.. Ann 11, 11, pp 210-214
Arkansas river in Colorado, surveys for reservoir sites along the........Ann 11, 11, pp 133-144
Arsenic, statistics of...... MR 1882, p 441; MR 1883-84, pp 656-657; MR 1885, p 386
Artesian problem along the Atlantic slope Ann 7, pp 640-646
Artesian water, chemical impregnations of.Ann 5, pp 165-167
Artesian water, temperature of....................................... Ann 5, p 165
Artesian wells in Kansas.................................. Bull 57, pp 13, 30, 48
Artesian wells, requisite and qualifying conditions of............ Ann 5, pp 125-173
Artesian wells and waters for irrigation in western United States, and in va­rious countries..................... Ann 5, pp 148-150; Ann 11, 11, pp 257-278
Artesian. See, also, Irrigation.
Arvonian terrane defined....................................... Bull 86, pp 462-463
Asbestos, foreign sources of MR 1883-84, p 913; MR 1885, p 591
Asbestos, relative value of, from different countries............ MR 1882, p 589
Ashburner (C. A.), description and production of the anthracite coal fields of
Pennsylvania...MR 1882, pp 7-24
Ashley and Cooper beds of South Carolina................................. Bull 83, p 53
Asia, fossil plants of, literature of the.............................Ann 8, 11, pp 786-799
Asia. See, also, China; India; Japan.
Asia Minor; basalt from the island of Mitylene, analysis of.............. Bull 90, p 158
Asia Minor, corundum deposits of.................................. MR 1888, pp 429-432
Asia Minor, fossil plants of, literature of the......................Ann 8, 11, pp 798-799
Asperite, name proposed for andesites of trachytic habit............ Mon. xiii, pp 151, 459
Asperites of Steamboat springs, Nevada, described................. Mon. xiii, pp 335-337
Asperites of the Coast ranges of California describedMon. xiii, pp 222, 242
Asphalt, analyses of..MR 1883-84, pp 942, 944-947
Asphaltum deposits of California.......................... MR 1883-84, pp 938-948
Asphaltum, foreign sources of.................................. MR 1883, p 605; MR 1883-84, pp 937-938
Asphaltum, statistics ofMR 1882, pp 605; MR 1883-84, pp 937-948; MR 1885, pp 4, 6, 8; MR 1886, pp 5, 8, 10; MR 1887, pp 7, 8-9; MR 1888, pp 513-514; MR 1889-90, pp 477-481; MR 1891, pp 452-455
Assaying of Eureka ores, Nevada.................................Mon. vii, pp 120-138, 144-145, 190
Assaying silver ore with the micrometer measuring apparatus......Ann 6, pp 331-352
Assays and assaying at Leadville, Colorado.......................Mon. xii, pp 608, 621-625, 632-636, 695, etc.
Assays of Comstock rocks, Nevada.............................. Mon. iii, pp 154-155
Assays of country rock of Eureka, Nevada........................Mon. vii, pp 82-87, 120-138
Assays of silver, experimental.................................. Ann 6, pp 339-341, 349-352
Assays of tin ore.. MR 1888, pp 146-147
Asteroidea of the United States................................. Bull 97, pp 29-32
Astoria group of Oregon and Alaska............................ Bull 84, pp 223-226, 252-259
Astronomical work of 1889 and 1890................................. Bull 70
Astrophyllite from El Paso county, Colorado, analysis of......... Bull 78, p 119
Astrophyllite and tscheffekinite, new analyses of.................. Bull 90, pp 41-44
Atlantic system of rocks of New Hampshire......................... Bull 86, pp 351-355
Atlas sheets of the United States prepared by the Geological Survey and engraved to May 20, 1893, list of, by states... See pp. 307-319 of this bulletin.

Atlas. See, also, Map.

Aucella, remarks on the genus, with especial reference to its occurrence in California... Mon xiii, pp 201-204, 226-232

Augite-andesite in the Washoe district, Nevada, description and occurrence of... Mon iii, pp 62-66, 126-130, 151, 201-203

Augite-andesite of the Washoe district, Nevada, its relation to diabase... Bull 17, pp 12-21, 40

Augite-syenite of the Keweenaw series described... Mon v, pp 112-124

Auriferous gravels of California... Bull 84, pp 219-222

Auriferous slate series of the Lassen peak district, California... Ann 8, i, pp 404-407

Auriferous. See, also, Gold.

Australia, Cambrian rocks of... Bull 81, pp 378-379

Australia, coal area and output of, compared with those of other countries
MR 1882, p 5; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189

Australia, diamonds found in...MR 1887, p 569

Australia, fossil plants of, literature of the... Ann 8, ii, pp 507-514

Australia, gold and silver production of, compared with that of other countries...MR 1883-84, pp 319, 320

Australia, lead production of...MR 1883-84, p 434; MR 1885, p 264

Australia, quicksilver deposits in... Mon xiii, pp 48-49

Australia, zinc production of...MR 1887, p 117

Austria-Hungary, antimony production of...MR 1883-84, p 646

Austria-Hungary, coal area and output of, compared with those of other countries...MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208

Austria-Hungary, copper production of...MR 1883-84, pp 356, 372-373; MR 1883, pp 228, 242; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 10

Austria-Hungary, coal area and output of, compared with that of other countries...MR 1883-84, pp 319, 320

Austria-Hungary, iron and steel production of, compared with that of other countries...MR 1882, p 109; MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 21, 22, MR 1891, pp 46, 73

Austria-Hungary, lead production of...MR 1883-84, pp 434, 439; MR 1885, pp 264, 271

Austria-Hungary, mining law of...MR 1883-84, pp 1001

Austria-Hungary, quicksilver mines of...Ann 8, ii, pp 965, 966; Mon xiii, pp 4, 5, 7, 14, 38-41

Austria-Hungary, quicksilver production of...MR 1882, pp 392, 393; MR 1883-84, p 496; MR 1885, p 293; MR 1887, p 125; MR 1888, p 106; MR 1891, p 124

Austria-Hungary, salt production of...MR 1883-84, p 649

Austria-Hungary, tin production of...MR 1883-84, p 618

Austria-Hungary; uranium production of Bohemia...MR 1882, p 448

Austria-Hungary, zinc production of...MR 1883-84, pp 480, 490-491; MR 1885, p 277; MR 1886, p 159; MR 1888, p 95; MR 1889-90, p 92; MR 1891, pp 113, 114

Azoic rocks, history of the term...Bull 86, pp 470, 473

Azoic. See, also, Archean.

Bad river series, Wisconsin...Mon xix, pp 37-40

Barff-Bower process...MR 1882, pp 164-171
Barium, etc., separation of, in rock analyses Bull 78, pp 87-90
Barnes (P.), present technical condition of the steel industry of the United States Bull 25
Barometer, new method of measuring heights with the... Ann 2, pp xxxviii-xl, 403-566
Barometers, description of different kinds of Ann 2, pp 407-409
Barus (C.), administrative report for 1882-83 Ann 4, pp 52-59
Barus (C.), electrical activity of ore bodies Mon iii, pp 309-367
Barus (C.), physical properties of the iron carburets ... Ann 4, pp 53-50
Barus (C.), subsidence of fine solid particles in liquids... Bull 36; Bull 60, pp 139-145
Barus (C.), the compressibility of liquids................. Bull 92
Barus (C.), the mechanism of solid viscosity Bull 94
Barus (C.), the viscosity of solids Bull 73
Barus (C.), the volume thermodynamics of liquids Bull 96
Barus (C.), thermal effect of the action of aqueous vapor on feldspathic rocks. Mon iii, pp 290-308
Barus (C.), thermolectric measurement of high temperatures Ann 4, pp 53-59; Bull 54
Barus (C.) and Strouhal (V.), electrical and magnetic properties of the iron-carburets Bull 14
Barus (C.) and Strouhal (V.), physical properties of the iron-carburets (third paper) Bull 35
Barus (C.) and Strouhal (V.), relation between electrical resistance and density when varying with the temper of steel Bull 27, pp 30-50
Barus (C.) and Strouhal (V.), relation between time of exposure, temper value, and color in oxide films on steel ... Bull 27, pp 51-61
Barus (C.) and Strouhal (V.), the effect of sudden cooling exhibited by glass and by steel Bull 42, pp 98-131
Baryta in eruptive rocks, determination of Mon xii, p 577
Basalt from lava flows and cones of the Grand canyon district Mon ii, pp 81-83, 94-97, 104-112
Basalt from lavas of the Uinkaret plateau Ann 2, pp 118, 121-124
Basalt from mount Thielson, Oregon, analysis of Bull 9, p 15
Basalt from Pitt river, California, analysis of Bull 9, p 16
Basalt from six miles northeast of Grant, New Mexico, analysis of Bull 42, p 140
Basalt from Table mountain, Golden, Colorado, zeolites in Bull 20, pp 13-39
Basalt from the Coast ranges of California Mon xii, pp 156-162, 245-247, 252, 280
Basalt from the island of Mitylene, Asia Minor, analysis of Bull 60, p 158
Basalt from volcanic necks and flows in northwestern New Mexico Ann 6, pp 167-182
Basalt from volcanoes of the Great basin Ann 2, pp 190-192
Basalt from Washoe district, Nevada Mon iii, pp 70-71, 134
Basalt of the Eureka district, Nevada Mon xx, pp 242, 257-259, 386-395
Basalt of the Newark system Bull 85, pp 66, 77
Basalt, quartz-bearing, distribution of Bull 79, pp 30-33
Basalt, quartz-bearing, from Arizona Bull 66, p 21
Basalt, quartz-bearing, from Colorado Bull 66, p 22
Basalt, quartz-bearing, from the Cinder cone, northern California ... Bull 79, pp 21-30
Basalt, quartz-bearing, from the Tewan mountains, New Mexico ... Bull 66, pp 16, 20
Basaltic eruptions in Bonneville basin, Utah Mon i, pp 319-336
Basaltic glass of Sulphur bank, California Mon xiii, pp 158-162
Basalts, the occurrence of primary quartz in certain Bull 66
Base-levels of erosion in the Grand canyon district and elsewhere Ann 2, pp 101-103; Mon ii, pp 76-77, 119, 224, 225
INDEX.

Basin range structure Ann 4, p 443; Mon xi, pp 24-28; Mon xx, pp 10, 211
Basins, interior, description of, their origin, destruction, etc Mon 1, pp 2-4
Bauxite, analyses of, from various localities MR 1891, pp 152-154
Beaches and deltas of the glacial lake Agassiz Bull 39
Beaches. See, also, Shorelines.

Bear river basin, hydrography of Ann 11, ii, pp 66-70, 102, 103; Ann 12, ii, pp 325-326
Bear river beds, correlation of the Bull 83, pp 115-116, 135
Bear river in Wyoming, Utah, and Idaho, irrigation problems of Ann 11, ii, p 238

Becker (G. F.), administrative report for 1879-80 Ann 1, pp 37-47
Becker (G. F.), administrative report for 1880-81 Ann 2, pp 40-41
Becker (G. F.), administrative report for 1881-82 Ann 3, pp 24-26
Becker (G. F.), administrative report for 1882-83 Ann 4, pp 39-41
Becker (G. F.), administrative report for 1883-84 Ann 5, pp 47-49
Becker (G. F.), administrative report for 1884-85 Ann 6, pp 67-70
Becker (G. F.), administrative report for 1885-86 Ann 7, pp 93-97
Becker (G. F.), administrative report for 1886-87 Ann 8, i, pp 153-155
Becker (G. F.), administrative report for 1887-88 Ann 9, pp 100-102
Becker (G. F.), administrative report for 1888-89 Ann 10, i, pp 141-144
Becker (G. F.), administrative report for 1889-90 Ann 11, i, pp 95-96
Becker (G. F.), administrative report for 1890-91 Ann 12, i, pp 104-106
Becker (G. F.), administrative report on Tenth Census work Ann 1, pp 65-69
Becker (G. F.), geology of the Comstock lode and the Washoe district Ann 1, pp 71-72; Ann 2, pp 291-330; Mon xiii and atlas.
Becker (G. F.), geology of the quicksilver deposits of the Pacific slope Ann 8, ii, pp 961-985; Mon xiii and atlas.
Becker (G. F.), notes on the stratigraphy of California Bull 19
Belgium, coal area and output of, compared with those of other countries MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73
Belgium, copper production of MR 1882, pp 256-257
Belgium, fossil plants of, literature of the Ann 8, ii, pp 775-777
Belgium, iron and steel production of, compared with that of other coun­tries .. MR 1882, p 109; MR 1883-84, p 257; MR 1886, p 193; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, p 21, 22; MR 1891, p 73
Belgium, lead production of MR 1883-84, pp 434, 438-439; MR 1885, p 264
Belgium, manganese production of MR 1887, p 154
Belgium, mining law of MR 1883-84, p 998
Belgium, phosphates of Bull 46, pp 102-107
Benjamin (M.), mineral paints, statistics of MR 1885, pp 524-533; MR 1886, pp 702-714
Benzoic acid, compressibility of Bull 92, p 36
Bermudas, marine Mollusca, comprising the Quaternary fossils and recent forms from the Bull 24
Beryl from Greene county, Tennessee, analysis of Bull 9, p 11
Beryl, white, from near Winslow, Maine, analysis of Bull 55, p 53
Bessemer pig iron, production of MR 1891, p 55
Bessemer-steel ingots and rails, production of, in the United States and Great Britain since 1877 MR 1891, p 59
Bessemer. See, also, Steel.

Bibliographies, contemplated, of special topics in North American geol­ogy .. Ann 5, pp xxx-xxxv

Bull. 100——24
Bibliography of Arachnida... Bull 31, p 19
Bibliography of Dinocerata.. Mon x, p 225-237
Bibliography of fossil insects, classed and annotated............ Bull 69
Bibliography of Insecta...................................... Bull 31, pp 32-34, 36-37, 46, 51, 58, 65, 85, 94, 96
Bibliography of iridium...................................... MR 1883-84, pp 588-591
Bibliography of irrigation in India............................ Bull 86, pp 48-50,
Bibliography of irrigation literature a list of books, pamphlets, and articles
on irrigation and allied subjects..................................Ann 11, ii, pp 345-388
Bibliography of marine Mollusca.................................. Bull 24, pp 9-17
Bibliography of Myriapoda... Bull 31, p 9
Bibliography of Paleozoic Crustacea from 1698 to 1889............ Bull 63
Bibliography of phosphate of lime............................... Bull 46, pp 129-140
Bibliography of the Cambrian rocks................................ Bull 81, pp 22-48
Bibliography of the Cretaceous rocks of North America, annotated... Bull 82, pp 26-60
Bibliography of the Eocene formation................................... Bull 83, pp 148-159
Bibliography of the geology of North America for 1886............. Bull 44
Bibliography of the geology of North America for 1887 to 1889........ Bull 75
Bibliography of the geology of North America for 1890.............. Bull 91
Bibliography of the geology of North America for 1891.............. Bull 99
Bibliography of North America for 1892............................. Bull 100
Bibliography of the Mesozoic Echinodermata of the United States.. Bull 97, pp 15-20
Bibliography of the Newark system.................................. Bull 85, pp 140-339
Bibliography of the Penokee district of Michigan and Wisconsin... Mon xix, pp 5-102
Bibliography of the PreCambrian rocks of the
Olenellus zone.. Ann 10, i, pp 516-524
Bibliography of the subaerial decay of rocks........................ Bull 52, pp 57-61
Bibliography of the traps of the New Jersey region............... Bull 67, pp 74-79
Big horn mountains, Archean and Algonkian literature of the.... Bull 86, pp 277-278
Birkenheinste from Secret canyon, Nevada.......................... Bull 20, p 97
Binney (Edward William), biographical sketch of............. Ann 5, pp 374-375
Biographical sketches of paleobotanists.......................... Ann 5, pp 368-385
Biology and geology, interrelations of............................ Ann 5, pp 363-364
Biotite, a product of mineralogical metamorphism................... Bull 62, p 212
Biotite, an alteration product of feldspar.......................... Ann 10, i, p 355
Biotite and quartz as alteration products of alkali feldspar.... Mon xix, pp 107, 108, 152, 396-343
Biotite, iron-, from Auburn, Maine, analysis of................... Bull 55, pp 16-17
Birds, fossil, classification of.................................... Ann 3, p 86
Birds, fossil, with teeth.. Ann 3, pp 45-58
Birds, origin of.. Ann 3, pp 86-87
Birkinbine (J.), American blast-furnace progress........ MR 1883-84, pp 290-311
Birkinbine (J.), iron-ore mining in 1887............................ MR 1887, pp 30-57
Birkinbine (J.), iron ores, statistics of....................... MR 1889-90, pp 23-47;
Birkinbine (J.), the iron ores east of the Mississippi river..... MR 1886, pp 33-103
Bisilicate minerals in rocks, decomposition of.................... Mon iii, p 214
Bismuth, statistics of.. MR 1882, p 440; MR 1883-84, pp 654-655; MR 1885, p 389
Bismuthinite from Sinaloa, Mexico, description and analysis of...... Bull 90, p 40
Bituminous coal field of Pennsylvania, Ohio, and West Virginia, stratigraphy of the................................. Bull 65
Bituminous. See, also, Carboniferous; Coal.
Black hills, pre-Cambrian rocks of the................................ Bull 86, pp 257-261, 272, 503
Black river series, Wisconsin

Blair (A. A.), report on chemical work in 1879-80

Blake (W. P.), antimony, statistics of

Blake (W. P.), nickel, statistics of

Blake (W. P.), quoted on glaciers of Alaska

Blake (W. P.), tin, statistics of

Blast furnace, accretions formed in the

Blast furnace, description of the

Blast-furnace slag, utilization of

Blast furnaces of Leadville, chemical discussion of the, and reactions in the

Blue ridge, Archean and Algonkian literature of the

Bluestone, manufacture of, at the Lyon mill, Dayton, Nevada

Bolivia, copper production of

Bolivia, fossil plants of, literature of the

Bolivia, gold and silver production of, compared with that of other countries

Bonneville, lake, contributions to the history of

Bonneville, lake, Molluscan fauna of

Bonneville, lake, sediments of, analyses of the

Borates and borosilicates, natural, analyses of

Borax, analyses of

Borax, statistics of

Borax lake, California, analysis of water of

Borax marsh, the Searles, San Bernardino county, California

Boric acid, a method for the separation and estimation of, with an account of a convenient form of apparatus for quantitative distillation

Borneo, antimony production of

Borneo, fossil plants of, literature of the

Borneo, quicksilver deposits in

Bosnia, manganese-ore production of

Botany and paleobotany, interdependence of

Boulders resulting from external attack

Boundaries of the United States and of the several states and territories, with a historical sketch of the territorial changes

Bower (A. S.), the Bower-Barff process

Brachiopoda; description of species of the middle Cambrian of North America

Brachiopoda, fossil, of the Raritan clays and greensand marls of New Jersey

Brachiopoda, fossil, of the Cambrian of the Eureka district, Nevada

Brachiopoda of the Carboniferous of the Eureka district, Nevada

Bodie district, California, brief description of the

Bog iron ore and infusorial earth in swamps

Bolivia, fossil plants of, literature of the

Bosnia, manganese-ore production of

Botany and paleobotany, interdependence of

Boulders resulting from external attack

Boundaries of the United States and of the several states and territories, with a historical sketch of the territorial changes

Bower (A. S.), the Bower-Barff process

Brachiopoda; description of species of the middle Cambrian of North America

Brachiopoda, fossil, of the Raritan clays and greensand marls of New Jersey

Brachiopoda, fossil, of the Cambrian of the Eureka district, Nevada

Brachiopoda of the Carboniferous of the Eureka district, Nevada

Borie acid, a method for the separation and estimation of, with an account of a convenient form of apparatus for quantitative distillation
Brachiopoda of the Devonian of the Eureka district, Nevada... Mon VIII, pp 106-164
Brachiopoda of the lower Silurian of the Eureka district, Nevada.... Mon VIII, pp 67-76
Brachiopoda of the higher Devonian of Ontario county, New York... Bull 16, pp 24-25, 62-63
Brachiopoda of the Olenellus zone Ann 10, i, pp 607-614
Brandon formation, digest of the literature of the............ Bull 83, pp 90-94
Brass used in standards of United States bureau of weights and measures, analysis of Bull 78, p 129
Brazil, diamond mines of ..MR 1887, p 568
Brazil, fossil plants of, literature of the..................... Ann 8, ii, pp 823-824
Brazil, gold production of, compared with that of other countries..... MR 1883-84, pp 319, 320
Brazil, quicksilver deposits in Mon XIII, pp 23-24
Brick clay from New Ulm, Minnesota, analysis of Bull 60, p 151
Bridge-building, iron and steel, progress in.......................MR 1891, pp 66-68
Bridger group of rocks, correlation of the............... Bull 83, pp 117, 123, 141-142, 146
Brine, chemistry of ..Ann 7, pp 498-504
Brine, impurities of ...Ann 7, pp 500-504
Brints, analyses of ...Ann 3, pp 226, 227; Ann 8, ii, p 620; Mon i, pp 227, 253-255; Mon xi, pp 233, 234; MR 1883-84, pp 833, 845; MR 1885, p 552; MR 1887, pp 619, 630
British Columbia, Cenozoic epoch in, general considerations on the... Bull 84, pp 273-276
British Columbia, fossil plants from, literature of the.......... Ann 8, ii, pp 836-838
British Columbia, Neocene deposits of.................. Bull 84, pp 230-232
British Columbia. See, also, Canada.
Brochantite from Utah.. Bull 55, pp 46-47
Brochantite from Yavapai county, Arizona, analysis of Bull 78, p 121
Bromine, chlorine, and iodine, the indirect estimation of, by the electrolysis of their silver salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids............... Bull 42, pp 89-93
Brongniart (Adolphe Théodore), biographical sketch of........ Ann 5, p 372
-Buck (S. M.), coal mining in the Kanawha valley of West Virginia... MR 1883-84, pp 131-143
Buffalo peaks, Colorado, geological sketch of................. Bull 1, pp 11-17
Buhrstone, the, of South Carolina, Alabama, and Mississippi... Bull 83, pp 51-52, 61-62, 68
Building industry in general, statistics of the........... MR 1886, pp 517-536; MR 1887, pp 503-511; MR 1888, pp 516-535
Building sand, statistics of MR 1883-84, pp 667-668; MR 1885, pp 404-405
Bullion product, annual, of the United States and of the world,..... Ann 2, pp 399-401
Bullion. See, also, Precious metals.
Bunbury (Sir Charles James Fox), biographical sketch of. Ann 5, p 379
Burmah, fossil plants of, literature of the. Ann 8, n, p 793
Burmah, petroleum fields and wells of. MR 1886, pp 480-484; MR 1888, p 474
Burnetan system of rocks of Texas. Bull 86, pp 267-269
Burrowing animals as soil-makers. Ann 12, r, pp 274-278
Business organization of the United States geological survey. Ann 8, i, pp 9-69
Butte, Montana, the mines and reduction works of. MR 1883-84, pp 374-386; MR 1891, pp 90-99
Butterflies, known fossil, classified list of. Ann 8, i, p 440
Butterflies, the fossil, of Florissant, Colorado. Ann 8, i, pp 433-447
Cache la poudre river basin, Colorado, hydrography of the. Ann 11, ii, pp 44, 95
Cache lake beds of California. Bull 84, pp 201-202
Calcareous tufa. See Tufa.
Calcite from Table mountain, Colorado, occurrence and description of. Bull 42, pp 73-88
Calcium and magnesium, separation of sodium and potassium from, by the action of amyl alcohol on the chlorides. Bull 47, pp 157
Calibration of electrical pyrometers. Bull 54, pp 84-125, 165-238
California, altitudes in. Bull 5, pp 37-54; Bull 76
California, antimony deposits in. MR 1882, p 438
California, asphaltum deposits and industry of. MR 1883-84, pp 938-948; MR 1888, pp 513-514; MR 1889-90, p 477; MR 1891, p 452
California; basalt from Pitt river, analysis of. Bull 9, p 16
California, borax marsh, the Searles, in San Bernardino county. MR 1889-90, pp 498-503
California, boundary lines of, and admission of state. Bull 13, pp 31, 129
California, building stone from, statistics of. MR 1882, p 451; MR 1883-84, pp 603-604; MR 1886, pp 545-546; MR 1887, pp 514, 518; MR 1888, pp 536, 538, 541, 542, 545
California; cement from South Riverside, composition of. MR 1889-90, p 463
California, cement manufacture in. MR 1882, p 463; MR 1883-84, pp 675-676
California, chromia from. MR 1882, p 428; MR 1883-84, pp 569-571; MR 1885, pp 357-358; MR 1886, p 176; MR 1887, p 132; MR 1888, pp 119-120
California, clay, brick, and pottery industry in. MR 1882, p 475; MR 1883-84, pp 678, 702-704; MR 1888, pp 558, 566; MR 1891, pp 526-528
California; clays from shore of Owen’s lake, analyses of. Bull 55, p 89
California; coal from Shasta county, analysis of. MR 1891, p 215
California, Cretaceous fossils from, new. Bull 22
California, Cretaceous rocks of. Bull 82, pp 181-194, 240-241
California; dacites from Lassen’s peak, analyses of. Bull 9, p 16
California, earthquakes in. Bull 95
California, earthquake in, in 1889. Bull 68
California, earthquake in, in 1890 and 1891. Bull 51, pp 11-27
California, fossil Mollusca, new, from the Chico-Téjon series of. Bull 51, pp 11-27

WARMAN.] INDEX. 341
342 PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY. [BULL. 100.

California, fossils from... Ann 4, pp 291-316; Ann 8, ii, pp 919-922
California, gas, natural, in.. MR 1887, pp 499-501; MR 1888, pp 509-510
California, geologic maps of, listed Bull 7, pp 122-126
California, geology of northern, notes on the Bull 33
California; geology of the Lassen peak district Ann 8, i, pp 395-432
California; geology of the quicksilver deposits of the Pacific slope Ann 8, ii, pp 961-985; Mon xiii
California; glaciers, existing, of the United States Ann 5, pp 303-305
California, gypsum deposits and industry of...................... MR 1882, p 529; 1883-84, pp 812-813; MR 1885, p 463; MR 1886, p 623; MR 1887, p 602; MR 1889-90, p 465; MR 1891, pp 580, 581
California; halloysite from Detroit copper mine, near Mono lake, analysis of ... Bull 9, p 12
California; iron and steel from, statistics of MR 1882, pp 120, 125, 129, 131, 133, 135, 136, 137; MR 1883-84, pp 252, 256-257; MR 1885, pp 182, 184, 186, 197-198; MR 1886, p 18; MR 1887, p 11; MR 1888, p 15; MR 1889-90, p 12
California, irrigation in, law governing, quoted at lengthAnn 11, ii, pp 242-250
California, irrigation progress and problems in Ann 11, ii, pp 235-237
California; lavas from near Lassen peak, analyses of Bull 60, pp 155-157
California, lead deposits in .. MR 1882, p 313; MR 1883-84, p 416; MR 1885, p 248; MR 1886, p 146; MR 1887, p 104; MR 1889-90, p 80
California, lime production of MR 1887, p 532; MR 1888, p 555; MR 1889-90, p 383; MR 1891, p 465
California; limestone from San Benito county, analyses of MR 1889-90, p 383
California; marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America Bull 18
California, Mesozoic and Cenozoic paleontology of Bull 15
California; metacinnabarite from New Almaden Bull 78, pp 80-83
California; mineralogy of the Pacific coast, contributions to the Bull 61
California, minerals of, the useful MR 1882, pp 767-769; MR 1887, pp 703-707
California, Neocene of, summary of our knowledge of the Bull 84, pp 194-222
California, nickel ore in ... MR 1883-84, p 539
California; obsidian, scoriaceous, from Mono valley, analysis of Bull 8, p 14
California, precious stones found in MR 1883-84, pp 730-732, 763
California; Quaternary and recent Mollusca of the Great basin, with descriptions of new forms, introduced by a sketch of the Quaternary lakes of the Great basin................................. Bull 11
California; Quaternary history of Mono valley.................. Ann 8, i, pp 261-394
California; quicksilver deposits of the Pacific slope...Ann 8, i, pp 961-985; Mon xx
California; quicksilver reduction at New Almaden........... MR 1883-84, pp 503-536
California, rocks from, analyses of... Bull 55, pp 84-85
California; rocks from sandstone dikes and from Mount Diablo, analyses of.. Bull 78
California, salines and refineries in................................. MR 1882, pp 570-571
California; sanssurite from Shasta county, analyses of.......... Bull 9, p 10
California, silver and gold in, comparative production of.......... Ann 2, p xxxvi
California; soda, natural, of Mono and Owen’s lakes......... Bull 60, pp 53, 57-67, 75-78
California, stratigraphy of, notes on the....................... Bull 19
California, sulphur production of............................ MR 1883-84, pp 864-865
California, Téjon strata of... Bull 83, pp 100-103
California, tin ore in.................................. MR 1889-90, pp 119, 121; MR 1891, p 164
California, topographic work in...Ann 4, pp 4-6, 7-9; Ann 5, pp 13-14, 47-48; Ann 6, pp 15-16; Ann 7, pp 55-56; Ann 8, i, pp 105, 131; Ann 9, p 58; Ann 10, i, p 97; ii, pp 66-67; Ann 11, ii, pp 293-296; Ann 12, i, p 45
California; tourmaline from Nevada county, description and analysis of...Bull 90, p 39
California, volcanic eruption (a late one) in, and its peculiar lava........... Bull 79
California; water from Matilija hot springs, near San Buenaventura, analysis of.................. Bull 60, p 174
California; water from Owen’s lake, analysis of.................. Bull 55, p 93
California; waters from lakes Mono, Tahoe, and other localities in, analyses of... Bull 9, pp 26-28; Bull 42, p 149
California-Nevada, reservoir sites and irrigable lands in, reported by topographers........ Ann 11, ii, pp 297-298, 310
California, Oregon, and Washington, Cenozoic epoch in, general considerations on the............ Bull 84, pp 269-273
Call (R. E.), Quaternary and recent Mollusca of the Great basin.... Bull 11, pp 13-66
Caboosahatchie beds of Florida... Bull 84, pp 142-149
Cambrian; a correlation essay, by C. D. Walcott...................... Bull 81
Cambrian; classification of the early Cambrian and pre-Cambrian formations.............. Ann 7, pp 365-454
Cambrian; Eastern sandstone, junction between the, and the Keweenaw series of lake Superior..... Bull 23
Cambrian; Eastern sandstone of the Penokee district, lake Superior..... Mon xix, pp 461-463
Cambrian fauna of the Eureka district, Nevada.................. Mon xx, pp 41-47, 191-192
Cambrian faunas of North America................................. Bull 10; Bull 30
Cambrian fossils of the Eureka district, Nevada........ Mon viii, pp 11-64, 268-269
Cambrian fossils of the Eureka district, Nevada, systematic list of.......... Mon xx, pp 320-321
Cambrian group, table showing classification of the.................. Ann 10, i, p 548
Cambrian, lower, bibliography of the rocks and fossils of the... Ann 10, i, pp 516-524
Cambrian, lower, fauna, notes on the genera and species of the. Ann 10, i, pp 597-760
Cambrian, lower, geographic distribution of the. Ann 10, i, pp 564-581
Cambrian, lower, review of investigations relating to the. Ann 10, i, pp 524-547
Cambrian, lower, or Olenellus zone, fauna of the. Ann 10, i, pp 509-569
Cambrian, lower, relations of the, to the superjacent faunas. Ann 10, i, pp 581-597
Cambrian of the lake Superior region. Ann 3, pp 155-156; Mon v, pp 351-352, 366,443; Bull 62
Cambrian rocks, enlargements in. Bull 8, pp 39-41
Cambrian rocks in northeastern Iowa. Ann 11, i, pp 333-334
Cambrian rocks in the Leadville, Colorado, district. Ann 2, pp 217-218
Cambrian rocks in the upper Missouri region. Ann 6, pp 50-51
Cambrian rocks of mount Desert island, Maine. Ann 8, ii, pp 1058-1059
Cambrian rocks of North America, classification of the. Bull 30, p 63
Cambrian rocks of Texas. Bull 45, pp 56, 87
Cambrian rocks of the Eureka district, Nevada. Ann 3, pp 254-259; Mon vii, pp 5-10; Mon xx, pp 84-92
Cambrian rocks of the Mosquito range, Colorado. Mon xii, pp 58-60, 277
Cambrian strata of North America, map showing the. Ann 10, i, pp 510-511
Cambrian, the North American continent during. Ann 12, i, pp 523-568
Cambrian, the North American continent and the continent of Europe during. Ann 10, i, pp 556-564
Cambrian. See also, Paleozoic.
Camden series of rocks of Arkansas. Bull 83, pp 74-75
Campbell (D. W.), digest of decisions relating to the use and control of water in the arid region. See p 324 of this bulletin.
Canada; Acadian area of the Newark system. Bull 85, pp 19-20, 80
Canada; Acadian province, the upper Paleozoic formations in the, correlations and classifications of the. Bull 180, pp 226-257
Canada, antimony mines and production of. MR 1883-84, pp 644-645
Canada, asbestos production of. MR 1883-84, 913;
MR 1885, p 521; MR 1889-90, p 514
Canada; coal area and output of Nova Scotia compared with that of other countries. MR 1882, p 5; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189
Canada, coal production of. MR 1891, p 73
Canada, fossil plants of, literature of the. Ann 8, ii, pp 842-848
Canada, gas, natural, in. MR 1887, pp 501-502; MR 1891, pp 443-448
Canada, geological maps of, list of the. Bull 7, pp 39-51
Canada, gold production of, compared with that of other countries. MR 1883-84, pp 319, 320
Canada; gypsum deposits of Nova Scotia. MR 1883-84, p 809;
MR 1885, pp 459-460; MR 1887, pp 602, 603
Canada, mining law of. MR 1883-84, p 1009
Canada; nickel ores at Sudbury. MR 1888, pp 110-117
Canada, petroleum production of. MR 1887, pp 456-458; MR 1888, pp 443, 467-473
Canada; pyrites production of.............................. MR 1883-84, p 881; MR 1885, pp 506-507; MR 1886, p 656
Canada; rocks from Kakabikka falls, Kaministiquia river, Ontario, analyses of................................. Bull 42, p 139
Canada and the northwest territories, elevations in Bull 6; Bull 72
Canada. See, also, British Columbia; Newfoundland.
Canal lines to divert water from Snake river in Idaho Ann 11, ii, pp 190-200
Canals. See, also, Irrigation.
Canerinite, from Litchfield, Maine, analysis of............. Bull 42, pp 29-30
Canyon. See Grand canyon.
Canyons traversing the upthrusts and folds of the Uinta and Park ranges............... Ann 9, pp 706-712
Cape Ann, Massachusetts, geology of........................ Ann 9, pp 529-611
Carbonic acid, compressibility and thermal expansion of..... Bull 92, p 35
Carbon in steel.. Bull 25, p 12
Carbonate of lime, deposition of............................ Ann 9, pp 640-645
Carbonate of lime, solution of, in natural waters.......... Ann 9, p 637
Carbonate of soda, analyses of................................ MR 1882, pp 601, 602
Carbonate ores, analyses of.................................. Mon xi, pp 544
Carboniferous age of peridotite in Kentucky................. Bull 38, pp 28-29
Carboniferous basins of southwestern Missouri, flora of the... Bull 98
Carboniferous; Coal measures or Pennsylvania series; the development of its nomenclature and classification in the Appalachian provinces........ Bull 80, pp 83-107
Carboniferous; comparative stratigraphy of the bituminous coal field of the northern half of the Appalachian field................................. Bull 65
Carboniferous fauna of the Eureka district, Nevada........... Mon xx, pp 86-91, 94-95, 96, 98, 171, 194, 199
Carboniferous fossils of the Eureka district, Nevada......... Mon viii, pp 212-267, 279-281
Carboniferous fossils of the Eureka district, Nevada, systematic list of........ Mon xx, pp 330-333
Carboniferous limestone of northern California, character and distribution of the................................. Bull 33, pp 10-12
Carboniferous nonconformity in the Gunnison region of Colorado.. Ann 6, pp 65-66
Carboniferous; nonmarine fossil Mollusca of North America.... Ann 3, pp 411-486
Carboniferous Ostreideae of North America........................ Ann 4, p 288
Carboniferous; Permian of Kansas and Nebraska and other parts of the United States, discussions relative to the correlation of the........... Bull 80, pp 193-212
Carboniferous; Permian of Texas and its Mesozoic types of fossils... Bull 77
Carboniferous; Permian of the Grand canyon district........ Ann 2, pp 64, 91-94; Mon ii, pp 16, 43-46, 117-121
Carboniferous; Permian of the Plateau country................ Ann 6, pp 134-135, 184-185
Carboniferous rocks containing bitumen deposits................. Ann 11, i, pp 598-599, 638-639
Carboniferous rocks in California................................ Bull 19, pp 21-23
Carboniferous rocks in the Leadville, Colorado, district........ Ann 2, pp 218-220
Carboniferous rocks in the region of the Uinta mountains..... Ann 9, pp 687-688
Carboniferous rocks in the upper Missouri region................. Ann 6, pp 51-52
Carboniferous rocks of Lassen peak district, Colorado.......... Ann 8, ii, pp 404-405
Carboniferous rocks of northeastern Iowa........................ Ann 11, i, pp 308-313
Carboniferous rocks of Texas.................................... Bull 45, pp 56-62
Carboniferous rocks of the Eureka district, Nevada........... Ann 3, pp 268-272; Mon xx, pp 63-98
Carboniferous rocks of the Grand canyon district............. Ann 2, pp 64-66; Mon ii, pp 18, 87-89, 178-179
Carboniferous rocks of the Mosquito range, Colorado............ Mon xi, pp 63-70, 278
Carboniferous strata of southwestern Kansas....................... Bull 57, pp 13, 19-20
Carboniferous strata of the Plateau country....................... Ann 6, pp 132-133, 150-162, 184
Carboniferous system, fishes of the................................ Mon xvi, pp 75-228
Carboniferous and Devonian, a correlation essay, by H. S. Williams........ Bull 80
Carboniferous and Devonian formations of the Eureka district, Nevada........ Mon xx, pp 63-98
Carboniferous. See, also, Paleozoic.

Carburets, iron, electrical and magnetic properties of the.... Bull 14; Bull 27, pp 30-50
Carburets, iron, physical characteristics of the................. Ann 4, pp 53-59; Bull 35
Carll (J. F.), quoted on natural gas in Pennsylvania.......... MR 1887, pp 467-474
Carruthers (William), biographical sketch of.................... Ann 5, pp 384-385
Carson river and valley, Nevada, irrigation surveys of......... Ann 11, ii, pp 179-180
Carson river basin, hydrography of............................... Ann 11, i, pp 65-66, 102, 109; Ann 12, ii, p 325
Cartographic system for geologic maps............................ Ann 7, pp 104-106
Cartography, geologic, color scheme for.......................... Ann 2, pp xlix-lii
Cartography, geologic, conference on, and standards adopted.... Ann 10, i, pp 56-79
Cascade and Coast ranges, structure of the...................... Ann 7, pp 98-102
Cascade, Coast and Sierra Nevada ranges, relation of the........ Bull 19, p 20;
Bull 33, pp 19-20
Cascade mountains, geological examination of the................ Ann 8, i, pp 159-164
Cascade mountains, structure of the............................. Mon xiii, pp 205-207
Cascade mountains. See, also, Oregon; Washington.
Cassiterite from veins in the Black hills, Dakota, and other localities, analyses of........ MR 1888, pp 153, 154
Catalogue, annotated and illustrated, of nonmarine Mollusca of North America................ Ann 3, pp 420-550
Catalogue. See Bibliography.
Catlett (C.), native gold from Persia, analysis of............. Bull 60, p 137
Catlett (C.), pyroxene and serpentine from Montville, New Jersey, analyses of................. Bull 60, p 137
Catlett (C.) and Clarke (F. W.), a platiniferous nickel ore from Canada........ Bull 64, pp 20-21
Caverns or sink-holes formed by the action of soil water......... Ann 12, i, p 257
Caves in limestone found in connection with ore bodies........ Mon vii, pp 73-74, 94-100
Caves, theory of formation of.................................. Mon vii, pp 94, 189
Cement, ancient Mexican, analysis of................................ Bull 27, p 72
Cement from South Riverside, California, composition of........ MR 1889-90, p 463
Cement, Portland, industry in America, history of the.......... MR 1891, pp 535-537
Cements, analyses of... MR 1882, p 460; MR 1883-84, p 676; MR 1887, p 531
Cenozoic beds and formations of the United States, excluding the Laramie, list of names applied to the........... Bull 84, pp 320-336
Cenozoic epoch on the Pacific coast of North America, general considerations on the......................... Bull 84, pp 269-273
Cenozoic formations, classification of the....................... Bull 83; Bull 84
Cenozoic and Mesozoic paleontology of California................ Bull 15
Cenozoic. See, also, Eocene; Eocene; Tertiary.
Central America, geological map of a portion of, described........ Bull 7, p 149
Cephalopoda from the Carboniferous of the Eureka district, Nevada........ Mon viii, pp 265-266
Cephalopoda from the Cretaceous of Arkansas..................... Bull 4, pp 16-17
Cephalopoda from the Devonian of the Eureka district, Nevada........ Mon viii, pp 200-204
Cephalopoda from the higher Devonian of Ontario county, New York Bull 16, pp 20-22, 47-52
Cephalopoda from the lower Silurian of the Eureka district, Nevada Mon viii, pp 86-88
Cephalopoda of the Eocene ..Mon xviii
Cephalopoda and Gasteropoda of the Raritan clays and greensand marls of New Jersey ... Mon xviii
Cephalopoda and gasteropods from the New Jersey Cretaceous recognized at other localities, table showing Mon xviii, p 30
Cessions and purchases, territory of the United States acquired by...Bull 13, pp 19-32
Ceylon, graphite mining in ..MR 1891, p 589
Chabazite from Table mountain, Colorado, general description and chemical composition of ... Bull 20, pp 23-24
Chalcopyhilit from Utah .. Bull 55, p 43
Chalks, statistics of ...MR 1883-84, pp 930-932
Chama district, New Mexico, irrigation in the Ann 12, ii, pp 261-269
Chamber dust, analysis and composition of Mon xii, pp 711-717
Chamberlin (T. C.), administrative report for 1881-82.............. Ann 3, pp 17-21
Chamberlin (T. C.), administrative report for 1882-83.............. Ann 4, pp 23-27
Chamberlin (T. C.), administrative report for 1883-84.............. Ann 5, pp 29-24
Chamberlin (T. C.), administrative report for 1884-85.............. Ann 6, pp 33-40
Chamberlin (T. C.), administrative report for 1885-86.............. Ann 7, pp 76-85
Chamberlin (T. C.), administrative report for 1886-87.............. Ann 8, i, pp 141-144
Chamberlin (T. C.), administrative report for 1887-88.............. Ann 9, pp 84-87
Chamberlin (T. C.), administrative report for 1888-89.............. Ann 10, i, pp 128-129
Chamberlin (T. C.), administrative report for 1889-90.............. Ann 11, i, pp 74-76
Chamberlin (T. C.), administrative report for 1890-91.............. Ann 12, i, pp 88-90
Chamberlin (T. C.), conditions of artesian wells Ann 5, pp 125-173
Chamberlin (T. C.), introduction to Wright's "Glacial boundary"... Bull 58, pp 13-38
Chamberlin (T. C.), rock-scorings of the great ice invasions Ann 7, pp 147-248
Chamberlin (T. C.), terminal moraine of the second glacial epoch.... Ann 3, pp 291-402
Chamberlin (T. C.) and Irving (R. D.), observations on the junction between the Eastern sandstone and the Keweenaw series on Keweenaw point, lake Superior ... Bull 23
Chamberlin (T. C.) and Salisbury (R. D.), driftless area of the upper Mississipi valley ... Ann 6, pp 199-322
Chance (H. M.), anthracite coal mining MR 1883-84, pp 104-131
Chance (H. M.), Choctaw coal fields, Indian territory, description of the... MR 1889-90, pp 207-214
Charcoal and coals from Montana, analyses ofMR 1889-90, pp 229, 230
Charleston earthquake of August 31, 1886 Ann 9, pp 203-528
Chatard (T. M.), an apparatus for the determination of water in mineral analyses ... Bull 78, pp 84-86
Chatard (T. M.), corundum and emery MR 1883-84, pp 714-720
Chatard (T. M.), estimation of alkalies in silicates Bull 9, pp 36-37
Chatard (T. M.), natural soda, its occurrence and utilization Bull 60, pp 27-101
Chatard (T. M.), salt-making processes in the United States Ann 7, pp 491-535
Chatard (T. M.), the gneiss dunite contacts of Corundum hill, North Carolina, in relation to the origin of corundum Bull 42, pp 45-63
Chatard (T. M.), the separation of titanium, chromium, aluminum, iron, barium, and phosphoric acid in rock analyses Bull 78, pp 87-90
Chatard (T. M.) and Clarke (F. W.), mineral, rock, ore, and water analyses .. Bull 9, pp 9-35
Chattahoochee group of rocks of Georgia and Florida Bull 84, pp 83, 105-107
Chemical action between solids Bull 64, pp 34-37
Chemical alteration of rocks Bull 52, p 37
Chemical analyses and composition. See the various substances.
Chemical and geological evidence of the identity of rocks of Washoe, Nevada,
of different degrees of crystallization Bull 17, pp 29-39
Chemical and physical effect of sudden cooling of glass Bull 42, pp 98-131
Chemical deposits of Mono lake, California Ann 8, i, pp 296-298, 310-315
Chemical effect of precipitants Bull 36, p 24
Chemical effect of temperature in subsidence of fine solid particles in liquids Bull 36, pp 20-21
Chemical elements, the relative abundance of the Bull 78, pp 34-42
Chemical equilibrium of solids, in its relation to pressure and to temperature Bull 94, pp 109-135
Chemical evidence of the origin of fayalite and lithophyse Ann 7, pp 282-283
Chemical history of lake Lahontan Ann 3, pp 211-215; Mon xi, pp 172-237
Chemical history of the Comstock lode, Nevada Ann 2, pp 307-310
Chemical impregnation of artesian water Ann 5, pp 160-167
Chemical metamorphosis of the Menominee and Marquette rocks Bull 62, pp 208-217
Chemical origin of petroleum and natural gas Ann 8, ii, pp 486-487
Chemical properties of lead slags MR 1883-84, pp 447-453
Chemical reactions in copper smelting Bull 26, pp 53-54, 61-62, 64-66
Chemical relations of gabbro and diorite Bull 28, pp 37-39
Chemical structure of natural silicates Bull 60, pp 13-20
Chemical tests of steel Bull 25, pp 72-75
Chemistry of the Comstock lode Mon xi, pp 209-227, 384-386
Chemistry of the rocks and ores of Leadville, Colorado Mon xii, pp 585
Chemistry, work in, during 1883-84 Ann 5, pp 59-62; i
Chemistry and physics, work in, during 1884-85 Ann 6, pp 86-88; Bull 27
Chemistry and physics, work in, during 1885-86 Ann 7, pp 127-130; Bull 42
Chemistry and physics, work in, during 1886-87 Ann 8, i, pp 189-193; Bull 55
Chemistry and physics, work in, during 1887-88 Ann 9, pp 141-148; Bull 60
Chemistry and physics, work in, during 1888-89 Ann 10, i, pp 177-181; Bull 64
Chemistry and physics, work in, during 1889-90 Ann 11, i, pp 125-127; Bull 78
Chemistry and physics, work in, during 1890-91 Ann 12, i, pp 127-129; Bull 90
Chemung-Catskill formations, history of the discussions concerning the correlation of the Bull 80, pp 121-134
Chenevixite from Tintic mining district, Utah Bull 20, pp 85-86
Chert in limestone of the Penokee series, origin of Ann 10, i, pp 367-369
Cherty iron carbonates, action of water in the formation of........ Ann 10, i, p 385
Cherty limestone of Penokee iron-bearing series, petrographical character, origin, etc. Ann 10, i, pp 365-369, 446, 472, 480-490; Mon xix, pp 127-142, 443-455
Chesapeake bay, geology of the head of Ann 7, pp 537-546
Chesapeake formation of Maryland, North Carolina, and Florida Ann 12, i, pp 410-412; Bull 84, pp 54, 68, 123-126
Chester (F. D.), the gabbros and associated rocks in Delaware Bull 59
Chico-tejon series .. Ann 6, pp 68-70, 73; Bull 15, pp 11-17; Bull 19, pp 14, 17; Bull 83, pp 100-110
Chico-tejon series in Oregon and Washington, equivalents of the Bull 51, pp 28-32
Chico-tejon series of California, new fossil Mollusca from the Bull 51, pp 11-27
Chico-tejon. See, also, Cretaceous; Eocene.
Chile, fossil plants of, literature of the Ann 8, ii, pp 820-821
Chile, geological maps of, list of the Bull 7, pp 156, 157
Chile, gold and silver production of, compared with that of other countries MR 1883-84, pp 319, 320
Chile, iodine production of .. MR 1883-84, pp 857-858; MR 1885, p 488
Chile, manganese production of .. MR 1886, p 206; MR 1888, p 138; MR 1889-90, p 130; MR 1891, pp 138-141
Chile, meteorites from, description and analysis of Bull 78, pp 95, 97
Chile, quicksilver deposits in .. Bull 81, p 377
China, Cambrian rocks of ... Ann 8, ii, pp 790-792
China, gas, natural, statistics of .. MR 1891, pp 448-451
China, porcelain clays from, analyses of Bull 27, pp 71-72
China, quicksilver mines of ... Ann 8, ii, pp 955-966; Mon xiii, pp 4, 6, 14, 46
China, tin production of ... MR 1883-84, p 623
Chisolm (F. F.), Dakota coal ... MR 1888, p 240
Chisolm (F. F.), Wyoming coal ... MR 1888, pp 390-394
Chlorine, bromine, and iodine, the indirect estimation of, by the electrolysis of their silver salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids .. Bull 43, pp 89-93
Chlorine in dolomites of the Mosquito range, Colorado Mon xiii, p 279
Chlorite as a product of weathering Bull 62, p 213
Chlorite, formation of, in Comstock lode, Nevada Mon xiii, p 211
Chlorite, formation of, in decomposition of rocks Mon xiii, pp 72, 210, 384
Chlorites, micas, and vermiculites, on the constitution of certain ... Bull 90, pp 11-21
Chloritization, a kind of mineralogical metamorphism Bull 62, p 55
Chondrodite from Iowa, description and analysis of Bull 78, pp 95-97
Christy (S. B.), quicksilver reduction at New Almaden MR 1883-84, pp 503-534
Chrome iron ore, statistics of ... MR 1891, pp 171-173
Chromium, foreign sources of ... MR 1883-84, p 571
Chromium, separation of, in rock analyses Bull 78, pp 87-90
Chryohydrates in relation to rock magmas Bull 66, p 27
Chuar group of rocks of Arizona ... Bull 86, pp 329-332
Church (J. A.), quoted on the Comstock lode, Nevada Mon xiii, pp 28-31
Cimolite from Norway, Maine, analysis of Bull 9, p 12
Cincinnati ice-dam ... Bull 58, pp 17-38, 76-101
Cinnabar and hot springs, association of Mon xiii, p 403
Cinnabar and other ores, solution and precipitation of Mon xiii, pp 269-270, 419-437, 473-474
Cinnabar crystals from California .. Bull 61, pp 11-22
Cinnabar deposits of the Pacific slope and elsewhere Mon xiii
Cinnabar, distribution of .. Mon xiii, pp 50-52
Cinnabar in British Columbia .. Mon xiii, p 384
Cinnabar in the Great basin .. Mon xiii, p 385
Cinnabar, mineral association of Mon xiii, p 52
Cinnabar, pyrite, and gold of the quicksilver mines of the Pacific slope, origin of the .. Mon xiii, pp 438-450, 475
Cinnabar, solubility of, in ammoniacal solutions Mon xiii, pp 269-270
Cinnabar, solution and precipitation of Mon xiii, pp 419-437
Cinnabar. See, also, Quicksilver.
Claiborne formation of Alabama and Mississippi Bull 83, pp 62-64, 68
Claiborne-Meridian deposits ... Ann 12, i, pp 413-415
Clark (F. A.), report on Eureka topographical survey Ann 1, p 36
Clark (W. B.), a correlation essay—Eocene .. Bull 88
Clark (W. B.), the Mesozoic Echinodermata of the United States Bull 97
Clarke (F. W.), a new occurrence of gyrolite Bull 64, pp 22-23
Clarke (F. W.), a theory of the mica group Bull 64, pp 9-19
Clarke (F. W.), administrative report for 1883–84 Ann 5, pp 59-62
Clarke (F. W.), administrative report for 1884–85 Ann 6, pp 86-88
Clarke (F. W.), administrative report for 1885–86 Ann 7, pp 127-130
Clarke (F. W.), administrative report for 1886–87 Ann 8, i, pp 189-193
Clarke (F. W.), administrative report for 1887–88 Ann 9, pp 141-143
Clarke (F. W.), administrative report for 1888–89 Ann 10, i, pp 177-181
Clarke (F. W.), administrative report for 1889–90 Ann 11, i, pp 125-127
Clarke (F. W.), administrative report for 1890–91 Ann 12, i, pp 127-129
Clarke (F. W.), analyses of jade .. Bull 60, 123-127
Clarke (F. W.), chemistry and physics, report of work in, during 1884–85.... Ann 6, pp 86-88; Bull 27
Clarke (F. W.), chemistry and physics, report of work in, during 1885–86.... Ann 7, pp 127-130; Bull 42
Clarke (F. W.), chemistry and physics, report of work in, during 1886–87.... Ann 8, i, pp 189-193; Bull 55
Clarke (F. W.), chemistry and physics, report of work in, during 1887–88.... Ann 9, pp 141-143; Bull 60
Clarke (F. W.), chemistry and physics, report of work in, during 1888–89.... Ann 10, i, pp 177-181; Bull 64
Clarke (F. W.), chemistry and physics, report of work in, during 1889–90.... Ann 11, i, pp 125-127; Bull 78
Clarke (F. W.), chemistry and physics, report of work in, during 1890–91.... Ann 12, i, pp 127-129; Bull 90
Clarke (F. W.), iridium, statistics of ... MR 1882, p 444
Clarke (F. W.), mica, statistics of ... MR 1883–84, pp 906–912
Clarke (F. W.), minerals of Litchfield, Maine Bull 42, pp 28-38
Clarke (F. W.), oligoclase from Bakersville, North Carolina Bull 60, pp 129-130
Clarke (F. W.), petatite from Peru, Maine Bull 60, p 129
Clarke (F. W.), researches on the lithia micas Bull 42, pp 11-27
Clarke (F. W.), some nickel ores from Oregon Bull 60, pp 21-26
Clarke (F. W.), spessartite from Amelia county, Virginia Bull 60, p 129
Clarke (F. W.), studies in the mica group Bull 55, pp 13-18
Clarke (F. W.), the chemical structure of the natural silicates Bull 60, pp 13-20
Clarke (F. W.), the relative abundance of the chemical elements Bull 78, pp 34-42
Clarke (F. W.), topaz from Stoneham, Maine Bull 27, pp 9-15
Clarke (F. W.), willemite from the Trotter mine, Franklin, New Jersey Bull 60, p 130
Clarke (F. W.) and Catlett (C.), a platiniferous nickel ore from Canada Bull 64, pp 20-21
Clarke (F. W.) and Chatard (T. M.), mineral, rock, ore, and water analyses.... Bull 9, pp 9-35
Clarke (F. W.) and Diller (J. S.), turquoise from New Mexico Bull 42, pp 39-44
Clarke (F. W.) and Schneider (E. A.), experiments upon the constitution of the natural silicates .. Bull 78, pp 11-33
Clarke (F. W.) and Schneider (E. A.), on the constitution of certain micas, vermiculites, and chlorites ... Bull 90, pp 11-21
Clarke (J. M.), the higher Devonian faunas of Ontario county, New York . . . Bull 16
Classification and nomenclature of fossil plants Ann 5, pp 425-439
Classification, natural method of, as indicated by paleobotany Ann 5, pp 431-452
Classification of clays, commercial and natural MR 1891, pp 478-484
Classification of drainage basins .. Ann 12, ii, pp 232-234
Classification of early Cambrian and pre-Cambrian Ann 7, pp 365-454
Classification of formations by paleontological and lithological characteristics.

and by unconformity...............................Ann 7, pp 371-448

Classification of formations. See, also, Correlation.

Classification of geology....................................... Ann 11, i, pp 238-242
Classification of igneous rocks....................................... Ann 12, i, pp 660-663
Classification of the cryptogams.................................... Mon xx, p 233
Classification of the lavas of the Eureka district, Nevada.................. Ann 7, pp 558-564

Clay, lacustral, analyses of.......................................Ann 8, i, p 307

Clay, sand, etc., from Martha's vineyard, Mass., analyses of........... Bull 55, pp 89-90

Clay, yellow, of lake Bonneville.................................... Bull 1, pp 200-203

Clays, analyses of... MR 1882, pp 469,472-474; MR 1883-84, pp 678, 975
Clays, classification of, commercial and natural.......................... MR 1891, pp 476-484

Clays, fire, analyses of.................................... MR 1882, pp 468,469,473,474; MR 1888, p 569

Clays from Florida, analyses of.................................... Bull 90, p 74

Clays from Henry county, Illinois, analyses of......................... Bull 27, pp 66-67

Clays from Mill city, Nevada, analyses of................................. Bull 9, p 15

Clays from shore of Owen's lake, California, analyses of............ Bull 55, p 89

Clays, glacial, from Milwaukee, Wisconsin, analyses of.............. Ann 6, p 250

Clays not essentially kaolin.. Mon iii, p 217

Clays, porcelain, from China, analyses of.................................. Bull 27, pp 71-72

Clays, pottery, analyses of..................................... MR 1882, p 472; MR 1883-84, p 690

Clays, Rarita, and greensand marls of New Jersey, Brachiopoda and Lamellibranchiata, and Gasteropoda and Cephalopoda, of the... Mon ix; Mon xviii

Clays, residual, characteristics of...................................... Bull 52, p 39

Clays, residuary, from Wisconsin, analyses of............................. Ann 6, p 250; Bull 27, pp 67-68

Clays, sedimentary, of the geological formations in sequence.........MR 1891, pp 490-500

Clays, statistics of.. MR 1882, pp 465-475;

Clear lake, California, surveyed for reservoir site.............. Ann 11, ii, pp 150-154

Clerc (F. L.), the mining and metallurgy of zinc in the United States.....MR 1882, pp 358-386

Cliff talus soils..Ann 12, i, pp 232-236

Cliffs of various kinds... Ann 5, pp 112-115; Mon i, pp 75-77

Cliffs, recession of... Ann 2, p 58; Mon ii, pp 250-260

Climate and interior basins... Ann 2, pp 173-174; Mon i, pp 3-4

Climate, arid, of the Great basin, causes of the........ Ann 3, pp 199-201; Mon i, pp 6-10

Climate; depauperation of shells in relation to temperature........ Bull 11, pp 38-41

Climate; direction of Pleistocene winds in the Bonneville basin........ Mon i, p 332

Climate in relation to oscillations of the surface of Great salt lake.....Mon i,
pp 238-239, 244-250

Climate in relation to aridityBull 52, pp 30-34

Climate in relation to the deformation of the Bonneville basin............ Mon i,
pp 377-378, 425-427

Climate in relation to the driftless area................................ Ann 6, p 322

Climate interpreted by lake oscillations...................................... Mon i, pp 262-318

Climate of the Eureka district, Nevada, in geologic time............ Mon xx, p 5

Climate of the Newark epoch.. Bull 85, pp 47-53

Climate, Pleistocene, as revealed by the lake Lahontan records........ Ann 3,
pp 230-232; Mon xi, pp 254-268

Climate, Pleistocene, in relation to the rise and fall of the surface of lake
Bonneville.. Ann 2, pp 186-187; Mon i, pp 265-297, 317-318

Climate, Pleistocene, of Mono basin, California........................Ann 8, i, pp 300-393

Climate; relation of alluvial cones to aridity............................ Mon i, pp 220-221
Climates, geologic, of the Grand canyon district................. Mon ii, pp 99-100, 189-191, 196, 222-229
Climatic changes in the Great basin............................ Ann 4, pp 456-457, 465-464
Climatic conditions affecting barometric hypsometry............. Ann 2, pp 409-429, 521-534, 562-565
Clinoclasite from Utah.. Bull 55, pp 43-45
Coal, analysis of, from Alaska, Cook's inlet.................... MR 1891, p 210
Coal, analysis of, from Arizona, Deer creek valley............. Bull 27, p 74
Coal, analysis of, from Arkansas, many localities............... MR 1888, pp 222-223; MR 1889-90, p 176
Coal, analysis of, from California, Shasta county.............. MR 1891, p 215
Coal, analysis of, from Colorado, various localities......... Bull 64, pp 55-57; MR 1889-90, pp 181, 186, 187, 188
Coal, analysis of, from Indian territory, Choctaw fields..... MR 1889-90, pp 207-214
Coal, analysis of, from Massachusetts, Martha's vineyard.... Bull 55, p 87
Coal, analysis of, from New Mexico, Lincoln and Santa Fe counties..... MR 1889-90, pp 237-233
Coal, analysis of, from North Carolina, Gulf, Walnut cove, and Farmville.... Bull 42, p 146; Bull 85, p 37
Coal, analysis of, from Rhode Island, Cranston.................. Bull 9, p 18
Coal, analysis of, from Texas, Burnet county.................. Bull 55, p 87
Coal, analysis of, from Utah, near Salt lake city............. Bull 90, p 75
Coal, analysis of, from Virginia, various localities........... Bull 55, p 87; Bull 85, p 37
Coal, analysis of, from West Virginia, Barbour, Jefferson, and Randolph counties.................. Bull 78, p 128; Bull 42, p 146; Bull 27, pp 73-74
Coal and charcoal, analysis of, from Montana.................. MR 1889-90, pp 229, 230
Coal and coke, analysis of, from Tennessee...................... Bull 64, pp 54-55
Coal and coke, analysis of, from West Virginia................ Bull 60, p 169; Bull 64, p 54; Bull 90, p 75
Coal area and output of the world, by countries................ MR 1882, p 5; MR 1883-84, p 13; MR 1885, pp 11-12; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1889-90, p 22; MR 1891, p 73
Coal-bearing strata of Virginia.................................. Mon vi, pp 1-9
Coal field, the bituminous, of Pennsylvania, Ohio, and West Virginia, stratigraphy of......................... Bull 65
Coal fields in Pennsylvania, description and production of the anthracite.. MR 1882, pp 7-24
Coal fields in the arid region of the United States............. Ann 11, ii, pp 208-209
Coal fields of the United States, area and classification of the..... MR 1882, pp 4-5; MR 1888, pp 168-170; MR 1889-90, pp 146-147; MR 1891, pp 178-179
Coal in the great Sioux reservation, Dakota..................... Bull 21
Coal measures of cape Beaufort.................................. Bull 84, p 249
Coal measures of Indian territory, columnar section of the..... MR 1889-90, p 212
Coal measures or Pennsylvanian series; the development of its nomenclature and classification in the Appalachian province........... Bull 80, pp 83-107
Coal mines of the United States, wages and labor at the........ MR 1889-90, pp 169-171; MR 1891, pp 203, 204
Coal mining, anthracite.. MR 1883-84, pp 104-131
Coal mining in the Kanawha valley of West Virginia............. MR 1883-84, pp 131-143
Coal mining industry, general view of the...................... MR 1882, pp 1-7
Coal of Carboniferous age at Eureka, Nevada..................... Mon xx, pp 95-98
Coal of the Newark system.. Bull 85, pp 36-43
Coal. See, also, Lignite.

Coal of Utah, analyses and calorific values of some. MR 1882, pp 76-81
Coast and Cascade ranges, structure of the. Ann 7, pp 98-102
Coast, Cascade, and Sierra Nevada ranges, relation of the. Bull 18, pp 20; Bull 33, pp 19-20
Coast ranges of California, metamorphic rocks of the. Bull 19, pp 7-12
Coast ranges, stratigraphy of the. Bull 84, pp 200-217
Coast ranges. See, also, California; Oregon.
Coastal group of rocks of New Brunswick. Bull 86, pp 232-238
Coastal plain, configuration and general geology of the. Ann 7, pp 548-550; Ann 12, pp 360-429
Coasts, special topography of. Ann 2, pp 171-172; Mon 1, pp 23-170; Mon xi, pp 87-124
Cobalt ore, analyses of. MR 1883-84, pp 544, 545; MR 1885, pp 361, 362
Coke, natural, from Carbonhill and Midlothian, Virginia, analyses of. Bull 42, pp 146; Bull 85, pp 37
Coke, natural, from Purgatory canyon, New Mexico, analysis of. Bull 42, pp 147
Coke, natural, of Virginia. Bull 85, pp 37
Coking in Europe and other countries. MR 1886, pp 430-437; MR 1887, pp 432-435
Cold Brook group of rocks of New Brunswick. Bull 86, pp 230-238
Colloidal sulphides of gold. Bull 90, pp 56-61
Colombia, gold and silver production of, compared with that of other countries. MR 1883-84, pp 319, 320
Color effect produced by slow oxidation of iron carbonates. Bull 35, pp 51-60
Color, temper-value, and time of exposure, the relation between, in oxide films on steel. Bull 27, pp 51-61
Color scheme for geologic cartography. Ann 2, pp xlix-lii; Ann 7, p 105; Ann 10, p 69-79
Colorado, altitudes in. Bull 5, pp 55-70; Bull 76
Colorado, Arkansas river in, surveys for reservoir sites along the. Ann 11, pp 133-144
Colorado; artesian water in the Denver basin. Ann 11, p 262
Colorado; astrophyllite from El Paso county, analysis of. Bull 78, p 119
Colorado, boundary lines of, and admission of territory. Bull 13, pp 32, 123
Colorado; Buffalo peaks, geological sketch of. Bull 1, pp 11-17
Colorado, cement manufacture in. MR 1882, pp 462-463; MR 1883-84, p 674; MR 1885, p 409; MR 1886, p 564; MR 1889-90, p 462; MR 1891, p 536
Colorado, coals from, analyses of. Bull 64, pp 55-57; MR 1889-90, pp 181, 182, 186, 187, 188
Colorado, constitution of, extracts from the, relating to irrigation Ann 11, II pp 240-241
Colorado; efflorescence on sandstone from Cliff creek, Gunnison county, analysis of.......................... Bull 60, p 170
Colorado; fossil butterflies of Florissant..................... Ann 8, i, pp 433-474
Colorado, fossils from........ Ann 3, pp 420-470; Ann 4, pp 290, 297, 300; Ann 6, pp 552, 553; Ann 8, II, pp 911-913; Bull 29, pp 16-22; Bull 37, pp 38, 39, 55
Colorado, geologic maps of, listed............... Bull 7, pp 131-133, 135, 136, 138, 171
Colorado; geology and mining industry of Leadville......... Ann 1, pp 20-21; Ann 2, pp 201-290; Mon XII
Colorado; geology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming........ Ann 9, pp 677-712
Colorado; hypersthene-andesite and triclinic pyroxene in augitic rocks, with a geological sketch of Buffalo peaks.......................... Bull 1
Colorado; insects of special interest from Florissant and other points in the Tertiaries of Colorado and Utah.............. Bull 93
Colorado, iron and steel from, statistics of........ MR 1882, pp 120, 125, 129, 130, 133, 134, 135, 136, 137, 144-147; MR 1883-84, pp 252, 281-285; MR 1885, pp 182, 184, 186, 196; MR 1886, p 18; MR 1887, pp 11, 28-29, 52-54; MR 1888, pp 15, 33; MR 1889-90, pp 10, 17, 24, 35; MR 1891, pp 12, 26
Colorado, irrigation, provisions relating to, in the constitution of........ Ann 11, II, pp 240-241
Colorado; kaolin from the Waterfall mine, Gunnison county, description and analysis of.......................... Bull 60, p 136
Colorado, lead from, statistics of........ MR 1882, pp 310-311; MR 1883-84, pp 412, 416, 419-422; MR 1885, pp 248, 250-257; MR 1886, pp 144-146; MR 1887, pp 105-107; MR 1888, p 87; MR 1889-90, p 80; MR 1891, p 105
Colorado, manganese ore from...................... MR 1885, p 348; MR 1889-90, pp 127, 131; MR 1891, pp 127, 132-133
Colorado, mineral species from, new............... Bull 20, pp 100-109
Colorado; minerals from Gunnison and Custer counties, analyses of....Bull 90, p 62
Colorado; minerals from the basalt of Table mountain, Golden....Bull 20, pp 13-39
Colorado; minerals from the neighborhood of Pike's peak....Bull 20, pp 40-74
Colorado, minerals of, the useful....MR 1882, pp 748-753; MR 1887, pp 707-714
Colorado, natural gas in....MR 1887, pp 498-499
Colorado, Neocene beds of....Bull 84, pp 301-309
Colorado, nickel ore in....MR 1882, p 404; MR 1883-84, p 539
Colorado, reservoir sites and irrigable lands in, reported by topographers....Ann 11, ii, pp 301-302, 310
Colorado; sandstone from Boulder county, analysis of....MR 1889-90, p 384
Colorado; sandstone from the Armejo quarry, analysis of....Bull 42, p 141
Colorado, sanidine in certain rhyolites from, the lustre exhibited by....Bull 20, pp 75-80
Colorado, silver and gold in, comparative production of....Ann 2, p xxxvi
Colorado, topaz from, an unusual occurrence of....Bull 20, pp 81-82
Colorado, topographic work in....Ann 3, p 22; Ann 4, pp 6-7, 35-36; Ann 5, pp 9, 44-46; Ann 7, p 57; Ann 10, ii, pp 18, 68-71; Ann 11, ii, pp 299-301; Ann 12, i, p 45
Colorado; water from a spring near Denver, analysis of....Bull 60, p 174
Colorado and Kansas, Arkansas river basin in, irrigation problems relating to the....Ann 11, ii, pp 210-214
Colorado and New Mexico, Rio Grande basin in, hydrography of the....Ann 12, ii, pp 240-290
Colorado and New Mexico, Rio Grande basin in, irrigation problems relating to the....Ann 11, ii, pp 215-227
Colorado, Utah, and Wyoming, geology and physiography of portions of....Ann 9, pp 677-712
Colorado river. See Grand canyon.
Colorado river basin, hydrography of the....Ann 12, ii, pp 290-316
Colorado river basin, irrigation problems relating to the....Ann 11, ii, pp 229-231
Colors and conventional symbols adopted for geologic maps and sections....Ann 10, i, pp 67-79
Columbia formation, description of the....Ann 7, pp 594-612, 635; Ann 12, i, pp 384-407
Columbite from the Etta tin mine, Dakota, analysis of....MR 1888, p 151
Columnar structure in obsidian....Ann 7, p 257
Columnar structure of basalt in volcanic necks....Ann 6, pp 172-174
Compressibility of liquids....Bull 92
Comstock lode, alteration of minerals in the....Mon iii, p 20
Comstock lode, brief description of the....Ann 1, pp 39-46
Comstock lode, decomposition products from the, chemical analyses of....Mon iii, pp 217-218
Comstock lode, history of the....Ann 1, p 71; Ann 2, pp xxxvii-xxxviii
Comstock lode, mechanical appliances used on the....Ann 1, pp 50-52, 72
Comstock lode and Washoe district, geology of the....Ann 2, pp xxiv-xxvi, 291-330; Mon iii
Comstock mine waters, analyses of....Mon iii, p 152
Comstock mining and minerals....Mon iv
Concentration, natural, of iron ores in the Penokee district....Mon xix, pp 285-290
Conchifera, nonmarine fossil, of North America....Ann 3, pp 420-449
Concretions, analysis of....Mon xiii, p 65
Concretions in sandstone, origin of....Mon xiii, pp 64-68
Conditions, requisite and qualifying, of artesian wells....Ann 5, pp 125-173
Conference of geologists and lithologists on geologic nomenclature and map notation in January, 1889....Ann 10, i, pp 56-67
Conglomerates of the Keweenaw series described....Mon v, pp 127-133
Conichalcite from Tintic mining district, Utah Bull 20, pp 84-85
Coniferæ of the Dakota group Mon xvii, pp 32-36
Coniferæ of the Laramie flora Bull 37, pp 14-16
Coniferæ of the older Mesozoic of Virginia Mon vi, pp 85-89
Coniferæ of the Potomac or younger Mesozoic Mon xv, pp 193-262
Connecticut, altitudes in Bull 5, pp 71-72; Bull 76
Connecticut, boundary lines of Bull 13, p 68
Connecticut, brick industry of MR 1887, pp 535, 537; MR 1888, pp 558, 566
Connecticut cedes territory to general government Bull 13, pp 26, 66-70
Connecticut, cobalt deposit in MR 1883-84, p 544
Connecticut, geologic and paleontologic investigations in Ann 6, i, p 36;
Ann 7, p 61; Ann 9, p 76; Ann 11, i, p 59; Ann 12, i, pp 62, 66, 121, 125
Connecticut, glacial investigations in Bull 7, pp 52, 53, 54
Connecticut, limestone from Fairfield county, analysis of MR 1889-90, p 386
Connecticut, nickel production of MR 1882, pp 401-402; MR 1883-84, p 539
Connecticut, topographic work in Ann 10, i, pp 7, 88;
Ann 11, i, p 35; Ann 12, i, p 25
Connecticut river, rock formations of Bull 80, pp 26-27
Connecticut valley, structure of the Triassic formation of the Ann 7, pp 453-490
Connecticut valley and New Jersey, fossil fishes and plants of the Triassic rocks of Mon xiv
Connecticut valley. See, also, Massachusetts.
Contact metamorphism not marked about intrusive rocks of Mosquito range, Colorado Mon xiv, p 307
Contact phenomena in the Penokee district Mon xix, pp 171-174, 184-185, 297-298
Contractions of substances due to cooling under pressure Bull 92, pp 56-61
Cook (G. H.), sketch of the geology of the Cretaceous and Tertiary formations of New Jersey Mon ix, pp ix-xiii
Cooling, sudden, the effect of, exhibited by glass and steel Bull 42, pp 98-131
Cooling under pressure, contractions due to Bull 92, pp 56-61
Copiapite from California .. Bull 61, pp 25-26
Copper-bearing rocks of lake Superior Ann 1, pp 70-71;
Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v
Copper, cupola smelting of, in Arizona MR 1883-84, pp 397-410
Copper industry of the United States MR 1882, pp 213-231;
MR 1883-84, pp 322-343; MR 1885, pp 208-243
Copper, metallurgy of .. MR 1882, pp 257-280
Copper minerals from Utah, notes on certain rare Bull 55, pp 38-47
Copper ore, analysis of MR 1882, pp 258, 286
Copper ores and furnace products, the roasting of MR 1882, pp 280-297
Copper production of the world .. MR 1883-84, pp 355-374; MR 1885, pp 228, 243; MR 1886, pp 128-139; MR 1887, pp 87-97; MR 1888, pp 73-77; MR 1891, pp 100-101
Copper slags, analyses of ... MR 1883-84, pp 388, 405, 408
Copper smelting .. Bull 26
Copper sulphide, solubility of .. Mon xiii, pp 433-434, 474
Copperas, statistics of ... MR 1882, p 607; MR 1883-84, pp 952-953; MR 1886, pp 684-685
Coral, analyses of .. Bull 52, p 29; Bull 60, pp 162-164
Coral, coral rocks, coquina, etc., from Florida and other localities ..Bull 60, pp 162-164
Coral reef soils .. Ann 12, i, pp 247-250
Corda (August Joseph), biographical sketch of Ann 5, p 374
Coral, fossil plants of, literature of the Ann 8, ii, p 790
Corrasion, analysis and laws of .. Ann 2, pp 157-158; Mon ii, pp 231-233
Corrasion in the Grand canyon chasm Ann 2, pp 156-161; Mon ii, pp 230-244
Corrasion. See also, Degradation.
Correlation and comparison of lower Cambrian Ann 10, i, pp 595-597
Cambrian, by C. D. Walcott ... Bull 81
Cretaceous, by C. A. White ... Bull 82
Devonian and Carboniferous, by H. S. Williams Bull 80
Eocene, by W. B. Clark .. Bull 83
Neocene, by W. H. Dall and G. D. Harris Bull 84
Newark system, by I. C. Russell Bull 85
Correlation, geologic, plan for discussion of, and work in Ann 10, i, pp 10-12, 108-113; Bull 80, pp 7-9
Correlation of American strata with one another and with European systems .. Ann 9, pp 16-17
Correlation of eruptive with intrusive rocks Ann 12, i, pp 650-658
Correlation of formations of the Penokee district Mon xix, pp 468-474
Correlation of metamorphic rocks of the Coast ranges of California........ Mon xiii, pp 182-188
Correlation of the rock groups and unconformities of the lake Superior region .. Ann 7, pp 440-441; Ann 10, i, pp 458-464
Correlation of transition beds Bull 15, pp 13-17
Correlation of western terranes with eastern series by means of fossil plants, difficulties in ... Bull 98, pp 109-110
Correlation; Paleozoic and Mesozoic types in Texas, mingling of Bull 77
Correlation, principles of, general Bull 85, pp 108-116
Correlation, principles of, illustrated by phenomena of the lake Superior region .. Ann 7, pp 371-448
Correlation, value of lithological and physical characters for purposes of .. Ann 7, pp 378-390; Bull 19, pp 11-12
Correlations, use of fossils in establishing Ann 7, pp 374-377
Correlations, use of unconformities in establishing Ann 7, pp 439-446
Correlations and classifications of Paleozoic formations in the Acadian province .. Bull 80, pp 226-257
Corundum, origin of, the gneiss dunyte contacts of Corundum hill, North Carolina, in relation to the Bull 42, pp 45-63
Cosalite from La Plata county, Colorado.......................... Bull 20, pp 95-96
Costa Rica, sketch of the geology of.................................. Bull 84, p 188
Coutchiching series of rocks of the Rainy lake region Bull 86, pp 65-67, 162-167
Crater lake, Oregon, special examination of Ann 8, i, pp 150-158
Craters, basaltic, of the Bonneville basin Mon 1, pp 319-330
Craters, basaltic, of the Uintakaret plateau Ann 2, pp 118, 121
Craters of Mono valley, California Ann 8, i, pp 372-389
Crawfish as soil-makersAnn 12, i, pp 278-279
Cretaceous; a correlation essay, by C. A. White Bull 82
Cretaceous; Ancella in California Mon xiii, pp 226-232
Cretaceous; Cephalopoda from the Cretaceous marls of New Jersey..Mon xviii, pp 243-283
Cretaceous; Chico-tejon series Ann 6, pp 68-70, 73;
 Bull 15, pp 11-17; Bull 19, pp 14, 17
Cretaceous; Chico-tejon series in Oregon and Washington, equivalents of
 the...Bull 51, pp 28-32
Cretaceous; Chico-tejon series of California, new fossil Mollusca from the....Bull 51, pp 11-27
Cretaceous; Dakota group, the flora of the Mon xvii
Cretaceous; Enclimatoceras ulrichi, description of Bull 4, pp 16-17
Cretaceous formation in California Mon xiii, pp 178-180, 460-461
Cretaceous formations in southwestern Kansas Bull 57, pp 27-31
Cretaceous formations in Texas Ann 8, i, pp 180-181
Cretaceous formations in the great Sioux reservation, Dakota Bull 21, pp 11-12
Cretaceous, fossil birds from the....................................... Ann 3, pp 49-88
Cretaceous fossils from Alaska Bull 4, pp 10-15
Cretaceous fossils from Arctic America Bull 82, pp 203
Cretaceous fossils from California Bull 22
Cretaceous; fossils from Shasta and Chico-tejon groups in California.... Bull 15;
 Bull 19; Bull 51, pp 11-27
Cretaceous fossils from Vancouver island region Bull 51, pp 33-48
Cretaceous; Gasteropoda from the marl beds of New Jersey Mon xviii, pp 19-189
Cretaceous; Laramie flora, types of the............................ Bull 37
Cretaceous; Laramie formation, discussion of the................. Bull 82, pp 145-153
Cretaceous; Laramie group, historical review of opinion concerning the.... Ann 6, pp 406-433
Cretaceous; Laramie group, nature and extent of the............. Ann 6, pp 433-436
Cretaceous; Laramie group, recent collections of fossil plants from the..... Ann 6, pp 536-557
Cretaceous; Laramie group, stratigraphy and correlation of the Bull 82, pp 127,
 148; Bull 83, pp 111-134, 145-146
Cretaceous; Laramie group, synopsis of the flora of the......... Ann 6, pp 399-557
Cretaceous; Laramie Molluscan fauna, the relation of the, to that of the suc-
 ceeding fresh-water Eocene and other groups Bull 34
Cretaceous; Laramie Ostreidae...................................... Ann 4, pp 307-308
Cretaceous; Laramie, Senonian, and Eocene plants, table of distribution of,
 and discussion thereof................................ Ann 6, pp 443-536
Cretaceous Molluscan fauna of the Puget group Bull 51, pp 49-63
Cretaceous; nonmarine fossil Mollusca of North America Ann 3, pp 411-486
Cretaceous Ostreidae of North America Ann 4, pp 290-308
Cretaceous; Potomac beds, location and geology of the............ Ann 7, pp 546-547, 613-
 616, 636; Ann 12, i, pp 421-424; Mon xv, pp 33-62; Bull 56, pp 38-39
Cretaceous; Potomac formation, fossil wood and lignite of the...... Bull 56
Cretaceous; Potomac or younger Mesozoic flora Mon xv
Cretaceous; Potomac plants, geological affinities of the Mon xv, pp 333-348
Cretaceous rocks containing bitumen deposits Ann 11, i, p 597
Cretaceous rocks in northeastern Iowa........................Ann 11, i, pp 304-308
Cretaceous rocks in the Lassen peak district, California....Ann 8, i, pp 407-411
Cretaceous rocks in the region of the Uinta mountains.....Ann 9, pp 689-690
Cretaceous rocks of Alaska..................................Bull 51, pp 64-70
Cretaceous rocks of Martha's vineyard.......................Ann 7, pp 325-326
Cretaceous rocks of Texas.....................................Bull 45, pp 71-84
Cretaceous rocks of Texas, description of certain aberrant forms of the Cham¬
dae from the...Bull 4, pp 5-9
Cretaceous rocks of the Grand canyon district.............Ann 2, pp 56-60, 65-66, 76-77;
Mon xi, pp 16, 31-34, 212-215
Cretaceous rocks, upper, of the Mississippi embayment....Ann 12, i, pp 419-424
Cretaceous strata in California..............................Ann 8, ii, pp 972-982; Bull 51, pp 11-14
Cretaceous system of the Plateau country....................Ann 6, pp 138-140, 166-167, 177-178, 185-188

Cretaceous and Tertiary formations of New Jersey, sketch of the geology of the.........Mon ix, pp ix-xiii
Cretaceous and Tertiary strata of the Tuscaloosa, Tombigbee, and Alabama rivers....Bull 43
Cretaceons, volcanic, and metamorphic rocks of northern California, general distribution of the......................................Bull 33, pp 18-19
Cretaceous. See, also, Mesozoic.
Crinoidea of the United States................................Bull 97, pp 21-29
Croffut (W. A.), administrative report for 1888-89........Ann 10, i, p 189
Croffut (W. A.), administrative report for 1889-90.........Ann 11, i, pp 131-132
Croffut (W. A.), administrative report for 1890-91.........Ann 12, i, pp 141-142
Croffut (W. A.), suggestions for the preparation of manuscript........See p 323 of this bulletin
Cross (W.), an unusual occurrence of topaz....................Bull 20, pp 81-82
Cross (W.), lists of ores, minerals, and mineral substances of industrial impor-
tance in several of the states.............................ME 1882, pp 748-759
Cross (W.), lustre exhibited by sanidine in certain rhyolites....Bull 20, pp 75-80
Cross (W.), notes upon the Henry mountain rocks............Mon xii, pp 359-362
Cross (W.), on hypersthen-e-andesite and on tryclinic pyroxene in augitic rocks...Bull 1, pp 19-38
Cross (W.), petrography of the Leadville region............Mon xii, pp 315-326
Cross (W.) and Hillebrand (W. F.), contributions to the mineralogy of the Rocky mountains..Bull 20
Cross (W.) and Hillebrand (W. F.), minerals from the basalt of Table moun-
tain, Golden, Colorado.....................................Bull 20, pp 13-39
Cross (W.) and Hillebrand (W. F.), minerals from the neighborhood of Pike's peak..Bull 20, pp 40-73
Crust of the earth, elementary composition of the............Bull 78, pp 35-42
Crustacea; catalogue of American Paleozoic non-trilobites....Bull 56, pp 149-177
Crustacea; catalogue of American Paleozoic Trilobita....Bull 63, pp 79-148
Crustacea; description of species of the middle Cambrian of North America........Bull 30, pp 146-148
Crustacea, Devonian, of the Eureka district.................Mon viii, pp 204-206
Crustacea of the fresh-water North American Jurassic.....Bull 29, pp 23-24
Crustacea of the Great basin..................................Bull 11, p 23
Crustacea of the higher Devonian of Ontario county, New York........Bull 16, pp 43-47
Crustacea of the Olenellus zone................................Ann 10, i, pp 625-629
Crustacea of the Wasatch group, description of species of the........Bull 34, p 32
Crustacea, Paleozoic, bibliography of, from 1698 to 1889, including a list of North American species and a systematic arrangement of genera........Bull 63
Crustacea; Protocaris, a new genus from the middle Cambrian....Bull 10, pp 50-51
Crustacea. See, also, Trilobita.
Cryolite from near Pike’s peak, Colorado, occurrence, chemical composition, etc., of .. Bull 20, pp 41-49

Cryolite, statistics of .. MR 1882, p 608; MR 1883-84, p 954; MR 1886, pp 692-693; MR 1887, 659; MR 1889-90, p 473; MR 1891, p 147

Cryptogams, classification of .. Ann 5, pp 437-439

Cryptogams of the Dakota group ... Mon xvii, p 23

Cryptogams of the Laramie flora ... Bull 37, pp 13-14

Cryptogams, vascular, from the Carboniferous basins of southwestern Missouri .. Bull 98, pp 17-104

Crystalline rocks, subaerial decay of .. Bull 52, pp 12-15, 18-20

Crystalline schists, metasomatic origin of Ann 10, i, p 434

Crystalline schists of the lake Superior region Ann 10, i, pp 355-364

Crystallization, development of, in the igneous rocks of Washoe, Nevada, etc .. Bull 17

Crystallization in the granite of the lake Superior district Ann 10, i, pp 356-358

Crystallization, influence of pressure on, in igneous magmas Bull 66, p 25

Crystallization of granitic magmas, course of Mon xix, p 113

Crystallization of igneous magmas, influence of conditions upon ... Ann 12, i, pp 655-657

Crystallographic determinations of pachnolite from near Pike’s peak, Colorado .. Bull 20, pp 50-52

Crystallographic study of the thinolite of lake Lahontan Bull 12

Crystals, cinnabar, from California ... Bull 61, pp 11-22

Crystals of thinolite, sections of ... Bull 12, pp 17-19

Cuba, manganese production of ... MR 1887, p 154; MR 1888, pp 137-139; MR 1889-90, p 130; MR 1891, pp 142-143

Currents as agents of littoral transportation Ann 5, pp 85-86; Mon r, p 37

Curtis (J. S.), administrative report for 1884-85 Ann 6, p 71

Curtis (J. S.), mining geology of Eureka district, Nevada Ann 4, pp 221-251

Curtis (J. S.), quantitative determination of silver by means of microscope .. Ann 6, pp 323-352

Curtis (J. S.), silver-lead deposits of Eureka, Nevada Mon vni

Cycadaeae of the Dakota group ... Mon xvii, pp 26-31

Cycadae of the older Mesozoic of Virginia Mon vi, pp 84-85

Cyclic twisting .. Bull 94, pp 33-39

Dacite from Washoe, Nevada, analysis of Bull 27, pp 27

Dacite of the Eureka district, Nevada Mon xx, pp 236, 368-373

Dacites from Lassen’s peak, California, analyses of Bull 9, p 16

Daggett (E.), analyses and calorific values of some Utah coals MR 1882, pp 76-81

Dakota group, the flora of the .. Mon xvi

Dakota, South, liebenerite from Rapid city, analysis of Bull 78, p 120

Dakota, South, sandstone from, tests of MR 1889-90, p 429

Dakotas, altitudes in the ... Bull 5, pp 73-75; Bull 72, pp 195, 196, 201, 217-223; Bull 76

Dakotas; Archean formations of the northwestern states Ann 5, pp 175-242

Dakotas, artesian waters in the .. Ann 11, ii, pp 257-306, 274

Dakotas, artesian wells in the, list of Ann 11, ii, pp 268-270

Dakotas, boundary lines of, and formation of territory Bull 13, pp 31, 121

Dakotas, building stone from the, statistics of MR 1882, p 451; MR 1889-90, pp 374, 429

Dakotas, Cambrian rocks of the .. Bull 81, pp 214-216, 347-349

Dakotas; cassiterite from veins in the Black hills, analysis of MR 1888, p 153

Dakotas, cement production of ... MR 1891, p 536

INDEX.

361

Dakotas; columbite from the Etta tin mine, analysis of MR 1888, p 151
Dakotas, Cretaceous rocks of the Bull 82, pp 145, 149, 158, 160, 166-179
Dakotas, fossils from the .. Ann 3, pp 427, 436, 448;
Ann 6, pp 554, 555; Ann 8, ii, pp 902-904; Bull 37, pp 67, 76
Dakotas, geologic and paleontologic investigations in the Ann 3, pp 19, 21;
Ann 4, p 24; Ann 5, pp 21-22, 27, 28-29, 50, 56; Ann 6, pp 33-34; Ann
7, pp 76-77, 79, 81, 112; Ann 8, i, pp 143, 174; Ann 9, pp 72, 85, 86,
114; Ann 10, i, p 159; Ann 11, i, pp 75, 101, 102; Ann 12, ii, p 119
Dakotas, geologic maps of the, listed Bull 7, pp 114, 115, 116
Dakotas, glacial investigations in the Ann 3, pp 393-400; Ann 7, p 157
Dakotas; glacial lake Agassiz, the upper beaches and deltas of the Bull 27
Dakotas, gold and silver from the, statistics of Ann 2, p 385; MR 1882, pp 172,
174, 176, 177, 178; MR 1883-84, pp 312, 313, 314, 315; MR
1885, pp 201, 203; MR 1886, pp 104, 105; MR 1887, pp 58, 59;
MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 78, 79
Dakotas, gypsum deposits in the Black hills MR 1886, p 622;
MR 1889-90, pp 465, 466; MR 1891, pp 560, 582
Dakotas, lead from the, statistics of MR 1887, p 110; MR 1889-90, p 80
Dakotas; lignite from the Turtle mountains, analysis of Bull 27, p 74
Dakotas; lignites of the great Sioux reservation, a report on the region be­
tween the Grand and Moreau rivers Bull 21
Dakotas, manganese ore from, analysis of MR 1891, p 137
Dakotas, mica production of the MR 1882, p 583;
MR 1883-84, pp 909-910; MR 1888, p 614
Dakotas, mineral springs of the Bull 32, pp 159-161
Dakotas, minerals of the, the useful MR 1882, p 754; MR 1887, pp 716-718
Dakota, Neocene beds of the Bull 84, pp 288-299
Dakota; nickel industry in South Dakota MR 1891, p 168
Dakotas; sandstone production of South Dakota MR 1891, pp 461, 463
Dakotas; tantalite from the Etta tin mine, analysis of MR 1888, p 151
Dakotas; tin ore in the Black hills MR 1883-84, pp 602-613; MR 1885, p 370;
MR 1886, p 214; MR 1887, pp 134-136; MR 1888, pp 144-156; MR 1889-90, p 120; MR 1891, p 164
Dakotas, topographic work in the Ann 12, i, p 49
Dakotas; triplite from the Black hills Bull 60, pp 135-136
Dall (W. H.), administrative report for 1884-85 Ann 6, pp 78-80
Dall (W. H.), administrative report for 1885-86 Ann 7, pp 120-122
Dall (W. H.), administrative report for 1886-87 Ann 8, i, pp 181-184
Dall (W. H.), administrative report for 1887-88 Ann 9, pp 123-127
Dall (W. H.), administrative report for 1888-89 Ann 10, i, pp 166-169
Dall (W. H.), administrative report for 1889-90 Ann 11, i, pp 109-113
Dall (W. H.), administrative report for 1890-91 Ann 12, i, pp 115-118
Dall (W. H.), list of marine Mollusca Bull 24
Dall (W. H.), quoted on glaciation in Alaska Ann 5, p 354
Dall (W. H.) and Harris (G. D.), Neocene of North America, a correlation es­
say ... Bull 84
Dalles group of rocks of Oregon Bull 84, p 285
Damonite from Stoneham, Maine, description and analysis of Bull 9, p 11
Dans (E. S.), crystallographic study of the thinolite of lake Lahontan Bull 12
Darton (N. H.), bibliography of North American geology for 1886 Bull 44
Darton (N. H.), record of North American geology for 1887 to 1889 Bull 75
Darton (N. H.), record of North American geology for 1890 Bull 91
Darton (N. H.), the relations of the traps of the Newark system in the New
Jersey region .. Bull 67
Darwin (C. C.), administrative report for 1884-85................. Ann 6, pp 97-101
Darwin (C. C.), administrative report for 1885-86................. Ann 7, pp 138-143
Darwin (C. C.), administrative report for 1886-87................. Ann 8, i, pp 203-209
Darwin (C. C.), administrative report for 1887-88................. Ann 9, pp 145-151
Darwin (C. C.), administrative report for 1888-89................. Ann 10, i, pp 190-198
Darwin (C. C.), administrative report for 1889-90................. Ann 11, i, pp 137-140
Darwin (C. C.), administrative report for 1890-91................. Ann 12, i, pp 142-144
Davis (H. J.), pyrites, statistics of............................. ME 1885, pp 501-517
Davis (W. M.), structure of the Triassic formation of the Connecticut valley .. Ann 7, pp 455-490
Day (D. T.), feldspar, statistics of..................... ME 1883-84, pp 933-934
Day (D. T.), iodine, statistics of..................... MR 1883-84, pp 834-858; MR 1885, pp 488-490
Day (D. T.), manufactured fertilizers......................... MR 1883-84, pp 815-826
Day (D. T.), mineral resources of the United States in 1886.............................. MR 1886
Day (D. T.), mineral resources of the United States in 1887.............................. MR 1887
Day (D. T.), mineral resources of the United States in 1888.............................. MR 1888
Day (D. T.), mineral resources of the United States in 1889 and 1890.............................. MR 1889-90
Day (D. T.), mineral resources of the United States in 1891.............................. MR 1891
Day (D. T.), sulphur, statistics of..................... MR 1883-84, pp 804-876
Day (W. C.), structural materials, statistics of..................... MR 1886, pp 517-580;
MR 1887, pp 503-551; MR 1888, pp 516-575
Day (W. C.), sulphur, statistics of..................... MR 1885, pp 494-500;
MR 1886, pp 644-647; MR 1887, pp 604-610
Decay and debris of rocks .. Ann 11, i, pp 275-280
Decay, subaerial, of rocks and origin of the red color of certain formations... Bull 52
Decomposition area, effects, products, etc., in the Washoe district.... Mon iii, pp 72-80, 209-227, 238-240, 369-372, 383-385
Decomposition of biotite minerals in rocks, course of.............. Mon iii, p 214
Decomposition of ferro-magnesian silicates in rocks.............. Mon iii, p 384
Decomposition of rock constituents........................... Mon iii, pp 214-215, 369-372
Decomposition of rocks... Bull 52
Decomposition of rocks near Comstock lode, Nevada............... Ann 2, pp 295, 307-310
Decomposition of rocks of the Washoe district, Nevada Ann 2, pp 295-297;
Mon iii, pp 72-80, 209-218, 369-372
Decomposition products from Comstock lode, Nevada, chemical analyses
of .. Mon III, pp 217-218
Decomposition. See, also, Metamorphism.
Deep creek beds of Montana .. Bull 84, pp 287, 288
Deformation of Newark strata .. Bull 85, pp 78-100
Deformation of the geoid by loading and unloading................. Mon I, pp 376-377, 379-383; Bull 48
Deformation of the geoid by the removal, through evaporation, of the water
of lake Bonneville.. Mon I, pp 379-383, 421-424
Deformation. See, also, Diastrophism.
Deformations in the Mississippi valley Ann 11, i, pp 336-347
Degradation, cliffs due to .. Ann 5, pp 23-48
Degradation; corrasion of the Grand canyon of the Colorado Ann 2, pp 156-166
Degradation; drainage system of the Grand canyon district in relation to up-
lift ... Mon II, pp 72-74, 187-188, 192-196, 218-220
Degradation; erosion of the Grand canyon of the Colorado in relation to
climate ... Mon II, pp 99-100, 189-191, 196, 222-229
Degradation; erosion of the Grand canyon of the Colorado in relation to
volcanism .. Mon II, pp 96-98, 107-108
Degradation, glacial and post-glacial, on cape Ann, Massachusetts Ann 9, pp 556-567
Degradation, glacial, of Mono basin, California Ann 8, i, pp 347-358
Degradation; glacial sculpture of mount Desert island, Me Ann 8, ii, pp 1005-1009
Degradation of the piedmont region of California in relation to uplift Ann 8, ii, pp 425-426
Degradation of the basin of the Colorado river Ann 2, pp 57-68, 95-102; Mon II, pp 61-77, 220-229
Degradation of the island of Oahu, Hawaiian islands Ann 4, pp 212-216
Degradation; post-glacial erosion on Martha's vineyard Ann 7, pp 347-361
Degradation, pre-glacial, in the driftless area of the upper Mississippi Ann 6, pp 221-239
Degradation; rock scorings of the great ice invasions Ann 7, pp 155-248
Degradation; sculpture of the Zuñi plateau Ann 6, pp 154-159, 189-190
Degradation; shore terraces, origin of Ann 3, pp 206-211; Ann 5, pp 75-89, 112-116; Mon i, pp 29-37; Mon xi, pp 88-89
Degradation; subaerial and littoral sculpture contrasted Ann 2, pp 183-186
Degradation; subaerial decay of rocks and origin of the red color of certain for-
mations ... Bull 52
Degradation, terraces due to Ann 5, pp 84-85, 115-120; Mon I, pp 35-37, 78-81, 129
Degradation. See, also, Drainage systems.
Delaware, altitudes in .. Bull 5, p 76; Bull 76
Delaware, boundary lines of Bull 13, pp 80-82
Delaware, brick industry of MR 1887, pp 535, 537
Delaware, building stone from, statistics of MR 1882, p 451
Delaware, clay materials of MR 1891, p 503-504
Delaware, Cretaceous deposits of Bull 82, pp 87-88
Delaware, Eocene deposits in Bull 83, pp 43, 86
Delaware, feldspars from, analyses of Bull 55, pp 79-80
Delaware, gabbros and associated rocks in Bull 59
Delaware, geologic and paleontologic investigations in Ann 9, p 122
Delaware, granite production of MR 1891, pp 457, 458
Delaware; iron and steel, statistics of Ann 2, p xxviii; MR 1882, pp 120, 125, 133, 134, 135; MR 1886, p 18; MR 1887, p 11; MR 1888, p 14; MR 1889-90, p 12; MR 1891, p 61
Delaware, metallic paint production of MR 1891, p 597
Delaware, mineral springs of .. Bull 32, p 51
Delaware, minerals of, the useful MR 1882, pp 674-675; MR 1887, pp 718-719
Delaware, Neocene beds of .. Bull 84, pp 45-49
Delaware, Potsdam rocks of .. Bull 81, pp 123, 288
Delta swamps .. Ann 10, t, pp 271-282
Deltas and beaches of the glacial lake Agassiz Bull 39
Deltas, formation of .. Ann 5, pp 104-108; Mon i, pp 65-70; Mon xi, 96-99
Dendritic tufa of Mono valley, California Ann 8, t, pp 311-315
Denmark, fossil plants of, the literature of the Ann 8, t, p 778
Density and electrical resistance, relation between, when varying with the temper of steel .. Bull 27, pp 30-50
Denudation, elevation and, of the entire mountain and plateau region of the West in Tertiary times Ann 6, pp 189-191
Denudation, the great, in the Grand canyon district Ann 2, pp 95-103; Mon ii, pp 61-77, 220-222, 250-260
Denudation. See, also, Degradation.
Denver beds, correlation of the Bull 83, pp 136-137, 145-146
Deposition and erosion, glacial ... Ann 8, t, pp 355-369
Deposition, conditions of, in the Newark area Bull 85, pp 45-53
Deposition; conditions of sedimentation in Bonneville basin Ann 2, pp 176-180
Deposition; experiments in the precipitation of fine sediments ... Mon i, pp 205-208; Bull 36; Bull 60, pp 139-145
Deposition; genetic classification of glacial drift and associated deposits ... Ann 3, pp 296-309
Deposition, glacial, of Mono basin Ann 8, t, pp 358-368
Deposition in fresh-water marshes Ann 10, t, pp 261-294
Deposition in lakes .. Ann 2, p 174
Deposition in marine marshes ... Ann 6, pp 359-368
Deposition, littoral .. Ann 2, pp 181-182; Ann 3, pp 206-211;
Ann 5, pp 80-99; Mon i, pp 46-59, 65-72, 135-166; Mon xi, pp 90-98
Deposition; loess, origin of the .. Ann 6, pp 286-307
Deposition, long era of, from Carboniferous to Tertiary, in the Grand canyon district .. Mon ii, pp 208-209
Deposition of pereozonai formations Bull 84, pp 98-99
Deposition of saline matter by desiccation Ann 3, p 199;
Mon 1, pp 208-209; Mon xi, pp 223-230
Deposition of sand in dunes .. Ann 5, pp 99-100; Ann 9,
pp 374-375; Mon 1, pp 59-60; Mon xi, pp 153-156
Deposition of travertine and sinter by vegetation of hot springs ... Ann 9, pp 619-676
Deposition of tufa in lake Mono, California Ann 8, t, pp 289-290, 297, 311-315
Deposition of tufas in lake Lahontan Ann 3, pp 212-221;
Mon xi, pp 188-222; Bull 12, pp 10-14
Deposition of tufas in lake Bonneville Ann 2, pp 190-191; Mon i, pp 167-169
Deposition; petroleum and natural gas, accumulation of Ann 8, t, pp 507-517;
Ann 11, t, pp 654-661
Deposition; phosphatic deposits, origin of Bull 46, pp 12-15, 40-41, 44, 50-52, 69, 86-90
Deposition; quicksilver ores, origin of Ann 8, t, p 985; Mon xiii, pp 55, 438, 445
Deposition; relation of characters of sediments to characters of marine faunas ... Bull 3
Deposition; spits on shore of Nantucket island, origin of Bull 53, pp 12-15, 49-54
Deposition, terraces due to ... Ann 5, pp 90-99, 119-120;
Mon i, pp 55-57, 65-71, 81-83, 153-166
Descloizite (?) from Beaverhead county, Montana, description and analysis of ... Bull 60, pp 130-131
Descloizites, three, from new localities, analyses of Bull 64, pp 24-28
Desert, mount, Maine, geology of .. Ann 8, pp 987-1061
Desiccation, freshening of lakes by Ann 3, pp 177-180; Mon xi, pp 224-230
Desiccation products of Lahontan basin Ann 3, pp 224-230; Mon xi, p 223
Desiccation products of Sevier lake, Utah Mon v, pp 225-227
Detrital rocks of the Keweenaw series Mon v, pp 127-133, 151
Devil's head mountain, Colorado, notes upon the occurrence of topaz at Bull 20, pp 73-74
Devonian age, fishes of the ... Mon vii, p 6
Devonian fauna of Nevada, New York, falls of Ohio, and Iowa, a summary of the Mon vii, p 6
Devonian fauna of the Eureka district, Nevada Mon xx, pp 20-84, 193, 199
Devonian faunas, the higher, of Ontario county, New York Bull 16
Devonian; fossil faunas of the upper Devonian in New York and Pennsylvania Bull 3
Devonian fossils of the Eureka district, Nevada Mon viii, pp 99-211, 274-278
Devonian fossils of the Eureka district, Nevada, systematic list of the Bull 3
Devonian fossils of the Eureka district, Nevada, systematic list of the Bull 3
Devonian; nonmarine fossil Mollusca of North America Ann 3, pp 411-486
Devonian rocks containing bitumen deposits Ann 11, 1, pp 599-600, 634-638
Devonian rocks in northeastern Iowa Ann 11, 1, pp 314-323
Devonian rocks in the upper Missouri region Ann 6, p 51
Devonian rocks of the Eureka district, Nevada Ann 3, pp 264-267
Devonian, the upper, Genesee section, New York, fossil faunas of Bull 41
Devonian; Uinta sandstone in northwestern Colorado Ann 9, pp 687-688
Devonian and Carboniferous—a correlation essay, by H. S. Williams Bull 80
Devonian and Carboniferous formations of the Eureka district, Nevada Mon xx, pp 63-98

Devonian. See, also, Paleozoic.

Diabase aggregate in relation to greenstone schist, Marquette region, Michigan Bull 62, pp 185-191
Diabase, enstatite-bearing, from Colorado, described Bull 1, p 35
Diabase from the Keweenaw series described Mon v, pp 37-50, 61-68
Diabase from the Marquette region, Michigan, described Bull 62, pp 138-145, 168-170, 183
Diabase from the Washoe district, Nevada, described Mon iii, pp 48-53, 112-116, 197-199, 381
Diabase, occurrence of, in the traps of New Jersey Bull 67
Diabase of the Penokee iron-bearing series, petrographical character of the Mon xix, pp 348-359, 410-419
Diabase, olivine, from the Keweenaw series described Mon v, pp 68-77
Diabase, relations of, to augite-andesite Bull 17, pp 12, 16, 20, 40
Diabase-porphyrte from the Keweenaw series described Mon v, pp 77-87
Diabase tuffs of Michigan, and their metamorphism to greenstones Bull 62, pp 133, 158-162
Diabases and soapstone from the Penokee district of Michigan and Wisconsin Mon xii, p 357
Diabasic amygdaloid of the Keweenaw series Mon v, pp 87-91
Diagrams, conventional characters for Ann 2, pp liii, liv; Ann 10, 1, pp 77-78
Diamond peak quartzite at Eureka, Nevada Mon xx, p 85
Diamonds. See Precious stones.

Diastatic geology, especially in northeastern Iowa Ann 11, 1, pp 242-244
Diastrophism and lake Bonneville Ann 2, pp 192-200; Mon i, pp 340-392
Diastrophism; character and cause of displacement along fall-line Ann 7, pp 616-634
Diastrophism; characters of landslips Mon i, pp 77, 83-84
Diastrophism; deformation of the geoid by loading and unloading. Mon i, pp 376-377, 379-383; Bull 48
Diastrophism; deformation of the geoid by the removal, through evaporation, of the water of lake Bonneville. Mon i, pp 421-424
Diastrophism; earthquakes in California in 1889. Bull 68
Diastrophism; elevation and subsidence inferred from Cenozoic and Mesozoic rocks of Alabama. Bull 43, pp 136-138
Diastrophism; fault scarps and fault terraces. Mon i, pp 76-77, 83
Diastrophism; flow of solids, or the behavior of solids under high pressure. Bull 55, pp 67-75; Bull 64, pp 38-39; Bull 73
Diastrophism in relation to volcanism in the Sierra nevada. Ann 8, i, pp 428-430
Diastrophism in the eastern portion of the Uinta range. Ann 9, pp 691-705
Diastrophism in the Newark areas. Bull 85, pp 78-100
Diastrophism; mechanical origin of the Triassic monocline in Connecticut. Ann 7, pp 481-490
Diastrophism; mountain building, nature of the process of. Ann 6, pp 195-197
Diastrophism; movements which resulted in the elevation of Mosquito range, Colorado. Ann 2, pp 211-214, 277
Diastrophism; origin of the Lahontan basin. Mon xi, pp 24-28
Diastrophism; orogeny of the Eureka district, Nevada. Mon xx, pp 10-30, 209-217
Diastrophism; post-glacial uplift of Nantucket island. Bull 53, pp 44-49
Diastrophism; post-Lahontan faults and flexures. Mon xi, pp 274-283
Diastrophism, post-Quaternary, in Mono basin. Ann 8, i, pp 389-390
Diastrophism; Rocky mountains, origin of the structure of the. Mon xii, pp 24-27
Diastrophism; subsidence of the Grand canyon district. Mon ii, pp 210-214
Diastrophism; the Charleston earthquake. Ann 9, pp 209-258
Diastrophism; the form and position of the sea level. Bull 48
Diastrophism; theory of faults of the Comstock lode. Mon iii, pp 156-187, 377-378
Dicotyledons of the Dakota group. Mon xvii, pp 42-211
Dicotyledons of the Laramie flora. Bull 37, pp 18-104
Differentiation of lavas. Mon xx, pp 287-289
Dikes associated with iron ore in the Penokee district. Mon xix, pp 271-275, 276-279
Dikes in the Lake Superior region. Ann x, pp 143-144, 370, 379, etc.
Diller (J. S.), a late volcanic eruption in northern California and its peculiar lava. Bull 79
Diller (J. S.), administrative report for 1886-87. Ann 8, i, pp 193-194
Diller (J. S.), administrative report for 1887-88. Ann 9, pp 98-100
Diller (J. S.), administrative report for 1888-89. Ann 10, i, pp 144-147
Diller (J. S.), administrative report for 1889-90. Ann 11, i, pp 90-94
Diller (J. S.), administrative report for 1890-91. Ann 12, i, pp 100-103
Diller (J. S.), geology of Lassen peak district. Ann 8, i, pp 395-432
Diller (J. S.), notes on the geology of northern California. Bull 33
Diller (J. S.), peridotite of Elliott county, Kentucky. Bull 38
Diller (J. S.) and Clarke (F. W.), turquoise from New Mexico. Bull 42, pp 39-44
Diller (J. S.) and Whitfield (J. E.), dumortierite from Harlem, New York, and Clip, Arizona .. Bull 64, pp 31-33
Dinocerata, an extinct order of gigantic mammals Ann 5, pp 243-302; Mon x
Dinocerata, bibliography of the Mon x, pp 225-237
Dinocerata, classification of the Mon x, pp 190-191
Dinocerata, description of genera of the Ann 5, pp 255-301; Mon x, pp 11-164
Dinocerata, Eocene, of the Rocky mountain region Ann 5, pp 249-254
Dinocerata; restoration of Dinoceras and Tinoceras Ann 5, p 302; Mon x, pp 165-168
Dinocerata, synopsis of genera and species of the suborder Mon x, pp 193-223
Diorite from Delaware described Bull 59, pp 29-31
Diorite from the Marquette region, Michigan, described Bull 62, pp 181-183, 198
Diorite from the Mosquito range, Colorado, described Mon xvi, pp 84, 333-334
Diorite from the Washoe district, Nevada, described Mon iii, pp 34-45, 93-108, 150, 192-196
Diorite, inclusion in, from near Peekskill, New York, analysis of Bull 60, p 158
Diorite, relation of, to gabbro near Baltimore, Maryland Bull 28, pp 34-49
Diphenylamine, compressibility and thermal expansion of Bull 92, p 34
Disintegration resulting in soils Ann 12, 1, pp 250-268
Dismal swamp, description of (geology, topography, animal life, method of draining, healthfulness, etc.), and fresh-water morasses of United States Ann 10, i, pp 255-339
Displacements in the Great basin, data concerning Ann 4, pp 451-453
Displacements in the Plateau country are monoclines Ann 6, p 118
Displacements in the region of the Uinta mountains Ann 9, pp 691-706
Displacements of the middle Atlantic coastal plain and piedmont region Mon x, pp 616-634
Displacements, recent and more ancient, in the lake Lahontan basin Mon xi, pp 24-28, 274-283
Displacements. See, also, Diastrophism; Faults.
Distillations, quantitative, an account of a convenient form of apparatus for, with a method for the separation and estimation of boric acid Bull 42, pp 64-72
Distribution of the Dakota group of fossil plants, table of Mon xvii, pp 222-225
Distribution, the geographical, of fossil plants Ann 8, ii, pp 663-960
District of Columbia, altitudes in the Bull 5, p 77; Bull 76
District of Columbia, boundary lines of the Bull 13, pp 85-88
District of Columbia, clay and brick industry of the MR 1887, pp 533, 537; MR 1888, p 558; MR 1891, p 504
District of Columbia, Cretaceous deposits of the Bull 82, p 89
District of Columbia, geologic investigations in the Ann 5, p 41; Ann 7, p 109; Ann 8, i, pp 166-167; Ann 9, p 102; Ann 10, pp 150-152; Ann 11, i, pp 65, 66
District of Columbia, iron and steel from the, statistics of MR 1882, pp 120, 125, 133, 134, 135; MR 1886, p 18
District of Columbia, topographic work in the Ann 5, pp 8, 41; Ann 6, pp 16, 30; Ann 7, p 109; Ann 8, i, p 100
Divining rod, the .. MR 1882, pp 610-626
Dolerite of the Newark system, description and analyses of Bull 85, pp 66-77
Dolomite, chlorine in, of the Mosquito range, Colorado Mon xii, p 279
Dolomite from Tuckahoe, New York, analysis of Bull 60, p 159
Dolomite and residual clay from Morrisville, Alabama, analyses of Bull 60, p 159
Dolomite marble from Cockeysville, Maryland, analysis of Bull 60, p 159
Dolomite of the Mosquito range, Colorado Mon xii, pp 60, 63-66, 278-281
Dolomitic sediments discussed Mon xii, p 276
Donner lake reservoir sites and canal line Ann 11, ii, pp 173-174, 182
Douglas (J.), jr., the cupola smelting of copper in Arizona MR 1883-84, pp 397-410
Douglas (J.), jr., the metallurgy of copper.......................... MR 1882, pp 257-280
Drainage basins, classification of.............................. Ann 7, pp 558-562; Ann 12, ii, pp 232-234
Drainage districts of the arid region of the United States, map showing the.............................. Ann 11, ii, pp x-xi
Drainage features of the driftless area.......................... Ann 11, ii, pp 550-551, 553-558
Drainage in Washington territory, changes in the, due to glaciation......... Bull 40
Drainage of Green river basin in relation to mountain structure........ Ann 9, pp 703-712
Drainage of the Paria plateau... Mon ii, pp 200-203
Drainage, Quaternary, in the Great basin.......................... Mon xi, pp 28-32, 156-157
Drainage; rivers, origin and persistence of..................... Ann 2, pp 60-61; Mon ii, pp 72, 219
Drainage system of the district about the head of Chesapeake bay........ Ann 7, pp 550-551, 553-558
Drainage system of the Grand canyon district, origin of the........... Mon ii, pp 72-74, 187-188, 192-196, 218-220
Drainage system of the Kaibab plateau............................... Ann 2, pp 134-135, 138-140; Mon ii, pp 192-198
Drainage. See, also, Degradation; Irrigation; Physiography.
Drift deposits of cape Ann, Massachusetts........................... Ann 9, p 546
Drift of northeastern United States, map of the.................... Ann 6, pp 204-205
Drift sheets in northeastern Iowa and in Indiana.................. Ann 11, i, pp 472-542, 639-641
Drift. See, also, Glacial; Pleistocene.
Driftless area of the upper Mississippi valley.................... Ann 6, pp 190-322
Driftless region of the upper Mississippi and environs, geological map of the.......................... Ann 6, pp 229-221
Dudley (W. L.), iridium, statistics of............................. MR 1883-84, pp 581-691
Dumortierite from New York and Arizona............................. Bull 60, pp 133-135; Bull 64, pp 31-33
Dunes and drifting sand... Mon i, pp 59-60
Dunes, formation of... Ann 5, pp 99-100
Dunes of gypsum in Bonneville basin................................ Mon i, p 223
Dunes, sand, in the Great basin..................................... Mon xi, pp 153-156
Dunes, sand, of cape Ann district, Massachusetts.................. Ann 9, pp 574-575
Duntye of North Carolina, occurrence, analyses, etc., of the........ Bull 42, pp 45-63
Dutton (C. E.), administrative report for 1879-80.................. Ann 1, pp 28-31
Dutton (C. E.), administrative report for 1880-81.................. Ann 2, pp 5-10
Dutton (C. E.), administrative report for 1882-83.................. Ann 4, pp 22-23
Dutton (C. E.), administrative report for 1883-84.................. Ann 5, pp 42-43
Dutton (C. E.), administrative report for 1884-85.................. Ann 6, pp 59-62
Dutton (C. E.), administrative report for 1885-86.................. Ann 7, pp 97-103
Dutton (C. E.), administrative report for 1886-87.................. Ann 8, i, pp 156-165
Dutton (C. E.), administrative report for 1887-88.................. Ann 9, pp 96-98
Dutton (C. E.), Hawaiian volcanoes.................................. Ann 4, pp 75-219
Dutton (C. E.), mount Taylor and the Zuñi plateau.................. Ann 6, pp 105-198
Dutton (C. E.), physical geology of the Grand canyon district........ Ann 2, pp 47-166
Dutton (C. E.), report on hydrographic and engineering branches of irrigation survey during 1888-89........ Ann 10, pp 2, 65-77
Dutton (C. E.), Tertiary history of the Grand canyon district......... Mon ii
Dutton (C. E.), the Charleston earthquake.......................... Ann 9, pp 203-528
Dynamic action, new rock structures produced by.................. Bull 62, pp 206-208
Dynamic geology. See Degradation; Deposition; Diastrophism; Metamorphism; Volcanism.
Dynamic metamorphism in eruptive rocks............................ Bull 62
Dynamic movements in the Leadville district, Colorado............. Ann 2, pp 211-214, 277
Dynamic movements in the Rocky mountain region.................. Mon xii, pp 31-39
Eakins (L. G.), kaolin from the Waterfall mine, Colorado............. Bull 60, p 136
Eakins (L. G.), new analyses of astrophyllite and tscheffkinite........ Bull 90, pp 41-44
Eakins (L. G.), seven new meteorites............................... Bull 78, pp 91-97
Eakins (L. G.), triplite from the Black hills, Dakota Bull 60, pp 135-136
Eakins (L. G.), two new meteorites, description and analyses of Bull 90, pp 45-46
Eakins (L. G.), two sulphantimonites from Colorado Bull 60, pp 115-117
Eakins (L. G.), xanthitane from North Carolina Bull 60, p 135
Earth, crust of the, elementary composition of the Bull 78, pp 35-42
Earth, rigidity of the, considerations concerning the, derived from a study of
lake Bonneville .. Mon i, pp 387-392
Earthquake, the Charleston, of August 31, 1886 Ann 9, pp 203-208
Earthquake waves, nature and mechanism of Ann 9, pp 400-409
Earthquakes and fault scarps Mon i, pp 360-362
Earthquakes in California in 1889 Bull 68
Earthquakes in California in 1890 and 1891 Bull 95
Earthworms, action of, in producing soils Ann 12, i, pp 274-276
East Indies, tin production of the MR 1888-90, pp 621-622;
MR 1885, p 377; MR 1888, p 215; MR 1889-90, p 121
Eastern sandstone, junction between the, and the Keweenaw series of lake
Superior ... Bull 23
Eastern sandstone of the Penokee district, lake Superior ... Mon xix, pp 461-463
Echinodermata, description of species of, from the middle Cambrian of North
America .. Bull 30, pp 94-95
Echinodermata from the Carboniferous of the Eureka district ... Mon viii, pp 212-213
Echinodermata, Mesozoic, of the United States Bull 97
Echinodermata of the higher Devonian of Ontario county, New York Bull 16,
pp 25-63
Echinodermata of the Olenellus zone Ann 10, i, p 607
Echinoida of the United States Bull 97, pp 33-92
Eckart (W. R.), notes on mechanical appliances used in mining and milling on
the Comstock lode .. Mon i, pp 50-52
Educational series of rocks and bulletin to accompany the same, progress of
the preparation of the Ann 12, i, pp 102-103
Efflorescence on sandstone from Cliff creek, Colorado, analysis of Bull 60, p 170
Efflorescences, saline, of Lahontan basin Mon xiv, pp 230-232
Egypt, fossil plants of, literature of the Ann 8, ii, pp 800-803
Egypt, petroleum fields and wells of MR 1886, pp 478-480
Elecrite from Litchfield, Maine, analysis of Bull 42, pp 28-29
Eldridge (G. H.), administrative report for 1890-91 Ann 12, i, pp 82-84
Electric peak and Sepulchre mountain, Yellowstone national park, the eru­
ptive rocks of .. Ann 12, i, pp 569-664
Electric (thermo-) measurement of high temperatures Bull 54
Electrical activity of ore bodies Ann 2, pp 320-324; Mon iii, pp 309-367, 400-404
Electrical and magnetic properties of the iron carburets Bull 14
Electrical conductivity and resistance, measurement of Bull 14, pp 36-38
Electrical conductivity and temperature, relation between Bull 14, pp 15-27
Electrical conductivity of mercury, the effect of pressure on the Bull 92, pp 68-77
Electrical observation and assays of Eureka ore deposits Mon vii, pp 142-144
Electrical pyrometers, calibration of Bull 54, pp 81-125, 165-238
Electrical resistance and density, relation between, when varying with the
temper of steel Bull 27, pp 30-50
Electrical resistance, strain, temper, and viscosity Bull 94, pp 31-33
Electrolysis in the metallurgy of copper, lead, zinc, and other metals MR 1885,
pp 627-658
Electrolysis of their silver salts, the indirect estimation of chlorine, bromine,
and iodine by the, with experiments on the convertibility of the silver
salts by the action of alkaline haloids Bull 42, pp 89-93

Bull. 100—24
Electro-thermal measurement of high temperatures... Ann 4, pp 53-59; Bull 54
Elements, the chemical, the relative abundance of... Bull 78, pp 34-42
Elevation and subsidence in Cape Ann, Massachusetts, district, evidences of recent... Ann 9, pp 567-574
Elevation and subsidence in the Dismal swamp district... Ann 10, i, pp 328-332
Elevation and subsidence inferred from Cenozoic and Mesozoic rocks of Alabama... Bull 43, pp 136-138
Elevation of Mount Desert island during and after the glacial period... Ann 8, ii, pp 1009-1034
Elevation of the northern sierras of California... Ann 8, i, pp 426-432
Elevation of the piedmont region of California... Ann 8, i, pp 425-426
Elevation of the surface of the Bonneville basin by expansion due to change of climate... Mon 1, pp 425-426
Elevation. See also, Altitudes; Diastrophism.
Elevations in the Dominion of Canada... Bull 6
Elevations in the United States, dictionary of... Bull 5; Bull 76
Elk mountains, Archean and Algobikan rocks of the... Bull 86, p 317
Elpasolite, a new mineral from El Paso county, Colo., description of... Bull 20, p 57
Embankments and terraces, the formation of... Ann 2, pp 171-172
Ann 3, pp 206-208; Mon 1, pp 36, 46-58, 78-86; Mon xi, pp 88-89
Embudo gauging station, New Mexico, results of measurements at... Ann 12, pp 257-258
Emeralds in North Carolina, the discovery of... MR 1882, pp 500-502
Emeralds. See also, Precious stones.
Emmons (E.), reprint of descriptions by, of flora from the Mesozoic of North Carolina... Mon vi, pp 97-123
Emmons (S. F.), administrative report for 1879-80... Ann 1, pp 16-23
Emmons (S. F.), administrative report for 1880-81... Ann 2, pp 18-21
Emmons (S. F.), administrative report for 1881-82... Ann 3, pp 22-24
Emmons (S. F.), administrative report for 1882-83... Ann 4, pp 34-39
Emmons (S. F.), administrative report for 1883-84... Ann 5, pp 43-47
Emmons (S. F.), administrative report for 1884-85... Ann 6, pp 62-67
Emmons (S. F.), administrative report for 1885-86... Ann 7, pp 91-93
Emmons (S. F.), administrative report for 1886-87... Ann 8, pp 144-146
Emmons (S. F.), administrative report for 1887-88... Ann 9, pp 87-91
Emmons (S. F.), administrative report for 1888-89... Ann 10, i, pp 137-140
Emmons (S. F.), administrative report for 1889-90... Ann 11, i, pp 87-89
Emmons (S. F.), administrative report for 1890-91... Ann 12, i, pp 96-99
Emmons (S. F.), geological sketch of Buffalo peaks, Colorado... Bull 1, pp 11-17
Emmons (S. F.), geology and mining industry of Leadville, Colorado... Ann 2, pp 201-290; Mon xii and atlas
Emmons (S. F.), quoted on the glaciers of Mount Rainier... Ann 5, pp 335-339
Emmons (S. F.), report of Tenth Census work... Ann 1, pp 69-65
Engineering operations for irrigation purposes... Ann 10, ii, pp 37, 45-48, 78-108; Ann 11, ii, pp 111-200
England. See Great Britain.
Engraving and printing, a division of, organized in the Geological Survey... Ann 12, i, p 138
Enlargements of mineral fragments in certain detrital rocks of the northwestern states... Ann 5, pp 218-241
Enlargements, secondary, of mineral fragments in certain rocks... Bull 8
Enstatite-bearing diabase from Colorado described... Bull 1, p 35
Eocene, bibliography of works relating to the... Bull 83, pp 148-159
Eocene, boundaries of the................................. Bull 84, pp 20-21
Eocene; Brandon formation of Pennsylvania, and Georgia........ Bull 83, pp 90-94
Eocene; Cephalopoda from the marls of New Jersey................. Mon xviii, pp 284-288
Eocene; Chico-tejon series Bull 15, pp 11-17; Bull 19, pp 14, 17
Eocene; Chico-tejon series in Oregon and Washington, equivalents of the...... Bull 51, pp 28-32
Eocene; Chico-tejon series of California, description of fossils from the...... Bull 51, pp 11-27
Eocene, Dinocerata from the................................... Ann 5, pp 249-302; Mon x
Eocene formation in Virginia.................................. Mon xv, p 59
Eocene formations of America, correlation of the.................. Bull 83
Eocene; fossil butterflies of Florissant, Colorado............ Ann 8, 1, pp 439-470
Eocene; Gastropoda from the marls of New Jersey............... Mon xviii, p 190-239
Eocene in Alabama, Georgia, etc.................................. Bull 43
Eocene in California.. Mon xiii, pp 215-217, 299-300, 461; Bull 15; Bull 19
Eocene in Dakota.. Bull 21
Eocene in Lassen peak district, California...................... Ann 8, pp 413-422
Eocene in northwestern Colorado................................ Ann 9, pp 660-691
Eocene in Texas.. Bull 45, pp 84-86
Eocene in the Grand canyon district............................ Ann 2, pp 74-76; Mon ii, pp 16, 27-31
Eocene in the Plateau region.................................. Ann 6, pp 140, 188-190
Eocene island of Florida....................................... Bull 84, pp 181-182
Eocene; Laramie group of strata partly Cretaceous, partly Eocene........ Bull 82, pp 127, 148; Bull 83, pp 132-134
Eocene; Laramie. See, also, Cretaceous; Laramie.
Eocene, marine, fresh-water Miocene, and other fossil Mollusca of western North America.................................... Bull 18
Eocene marls of New Jersey, Lamellibranchia from the........... Mon ix, pp 222-242
Eocene Molluscan fauna of the Puget group........................ Bull 51, pp 49-63
Eocene; nonmarine fossil Mollusca of North America............. Ann 3, pp 411-486
Eocene of Florida... Bull 84, pp 101-105
Eocene of Martha’s vineyard.................................... Ann 7, pp 326-328
Eocene of the United States, historical sketch of the literature of the..... Bull 83, pp 17-37, 96-100, 112-131
Eocene; Oligocene, inapplicable of, in American nomenclature...... Bull 83, pp 16, 89
Eocene; Ostreide of North America................................ Ann 4, pp 309-312
Eocene; phosphate deposits of South Carolina.................... Bull 46
Eocene; Puget group of deposits in Washington.................. Bull 83, pp 107-108
Eocene, Senonian, and Laramie plants, table of distribution of, and discussion thereof.. Ann 6, pp 443-536
Eocene; Téjon group of deposits in California, Oregon, and Washington.... Bull 83, pp 100-106
Eocene, the succeeding fresh-water, and other groups, the relation of the Laramie Molluscan fauna to that of................................. Bull 34
Eocene. See, also, Tertiary.
Eolian sands in the Great basin.................................. Mon xi, pp 153-156
Eolian soils.. Ann 12, 1, pp 326-329
Eparchean proposed as a name for a system of rocks between the Archean and the Paleozoic proper.............................. Ann 7, pp 454-465; Bull 86, pp 148, 461-462
Epeirogeny. See Diastrophism.
Epidiorite from the Marquette region, Michigan.................. Bull 62, p 145
Epidote a product of mineralogical metamorphism.................. Bull 62, p 211
Epidote an alteration product of chlorite........................ Mon iii, pp 75, 213, 370, 384
Epidote an alteration product of feldspar........................ Mon xii, pp 341, 357; Bull 28, pp 31-32; Bull 59, p 35; Bull 62, pp 108, 211
Epidote, circumstances favoring the formation of. Mon III, pp 211-213
Epidote not formed at the expense of feldspar. Mon III, pp 76, 216
Epidotization a kind of mineralogical metamorphism. Bull 62, p 56
Equisetee of the older Mesozoic of Virginia. Mon VI, pp 10-18
Equisetee of the Potomac or younger Mesozoic. Mon XV, pp 63-66
Equisetineae from the Carboniferous basins of southwestern Missouri. Bull 98, pp 17-43
Equus beds of Nebraska. Bull 84, pp 298-299
Equus beds and fauna, the age of the. Mon I, pp 389-402; Bull 84, pp 283-285
Erinite from Utah. Bull 85, pp 40-41
Erosion and deposition, glacial. Ann 8, pp 355-369
Erosion, atmospheric. Ann 5, pp 75-76
Erosion by solution. Bull 84, pp 88-89
Erosion, elevation and, of the entire mountain and plateau region of the West in Tertiary time. Ann 6, pp 189-191
Erosion in Colorado. Mon XII, pp 40-44, 126-128
Erosion in the driftless area of the upper Mississippi. Ann 6, pp 221-239
Erosion phenomena on cape Ann, Massachusetts. Ann 9, pp 556-567
Erosion, post-glacial, of Martha's vineyard. Ann 7, pp 347-351
Erosion, rate of progress of. Ann 4, p 215
Erosion, the great, in the Grand canyon district. Ann 2, pp 95-103; Mon II, pp 61-77, 220-222, 250-260
Erosion, the tripartite, of the Great plains. Bull 57, pp 47-48
Erosion, transportation, and deposition, littoral. Mon I, pp 29-60; Mon XI, pp 87-99
Erosion. See, also, Degradation.
Erosional forms in the Hawaiian islands. Ann 4, pp 87-88
Eruptions in the Eureka district, Nevada, age of. Mon XX, pp 231-232
Eruptive rocks, analyses of. Mon XII, pp 326, 332, 340, 349, 358, 369
Eruptive rocks, especially those of California, origin of the. Mon XIII, pp 164-175, 459
Eruptive rocks of Electric peak and Sepulchre mountain, Yellowstone national park. Ann 12, I, pp 569-664
Eruptive rocks of the Mosquito range, Colorado. Mon XII, pp 74-89, 292-313, 322-354
Eruptive rocks of the Penokee series. Ann 10, I, pp 436-438
Eruptive rocks. See, also, Igneous rocks.
Española valley, New Mexico, irrigation in the. Ann 12, II, pp 258-261
Ether, compressibility and thermal expansion of. Bull 92, pp 28-30
Ettingshausen (Constantin, Freiherr von), biographical sketch of. Ann 5, pp 380-381
Eureka, Nevada, silver-lead deposits of. Mon VII
Eureka district, Nevada, description and history of the. Ann I, pp 32-35, 38; Ann 2, pp 21-34; Mon VII, pp 1-4
Eureka district, Nevada, geological map of. Ann 3, pp 240-241; Mon XX, atlas sheet IV
Eureka district, Nevada, geology of the. Ann I, pp 70; Ann 2, pp xviii-xx; Ann 3, pp 237-290; Mon XX and atlas
Eureka district, Nevada, mining geology of the. Ann 4, pp 221-231; Mon VII
Eureka district, Nevada, paleontology of the. Mon VIII; Mon XX, pp 319-333
Europe, Cambrian rocks of, compared with those of America. Bull 81, pp 373-377
Europe, continent of, during the deposition of the sediment now forming the Olenellus zone. Ann 10, I, pp 562-564
Europe, fossil plants of, literature of the. Ann 8, II, pp 672-735
Europe, lower Cambrian of, literature of the. Ann 10, I, pp 545-546, 577-581
Europe, quicksilver deposits of. Ann 8, II, pp 865-866; Mon XIII, pp 27-43
Europe. See, also, the various countries thereof.
INDEX.

- Eutectic substances in relation to rock magmas.............. Bull 66, p 27
- Evaporation measurements Ann 11, II, pp 30-34; Ann 12, II, pp 234-235
- Everglades of Florida Bull 84, pp 99-101
- Expansion, thermal, of certain rocks, preliminary note on the coefficients of... Bull 78, pp 109-118
- Fallacies, popular, regarding precious-metal ore deposits..... Ann 4, pp 253-271
- Fault and monocline at Nutria, New Mexico.............. Ann 6, pp 142-145
- Fault at margin of Eastern sandstone, lake Superior district... Ann 3, pp 152-155
- Fault basins in western United States Mon xi, pp 25-27
- Fault between Keweenaw series and Eastern sandstone......... Bull 23
- Fault, throw, hade, strike, etc., defined Ann 4, p 442
- Faulting and uplifting of the Sierras, relation of, to volcanic phenomena.... Ann 8, I, pp 426-430
- Faulting in the Connecticut valley Ann 7, pp 469-477, 481-490
- Faulting in the Great basin Mon 1, pp 340-362
- Faulting of the Sierra nevada, age of the Bull 33, pp 15-16
- Faulting, structural results of, on the Comstock lode, a discussion of the principles involved Ann 2, pp 300-304; Mon iii, pp 153-187, 376-380
- Faulting. See, also, Diastrophism.
- Faults and faulting, topography in the Great basin due to Ann 4, pp 443-450
- Faults and fissures of the Penokee district Mon xix, pp 437-441
- Faults and folds of the Grand canyon district........ Ann 2, pp 117-118, 124-126, 132-133;
 Mon ii, pp 13, 19-22, 93-94, 112-117, 122-123, 162-163, 177, 183-186, 191-192, 205, 228
- Faults and folds of the Mosquito range region, Colorado........ Ann 2, pp 213-214, 244-252, 265-268; Mon xii, pp 284-292
- Faults and undulations of the Tertiary and Cretaceous strata of Alabama........ Bull 43, 117-132
- Faults, classification of Ann 7, pp 469-481
- Faults in the copper district of lake Superior.............. Mon v, pp 205, 219, 258-259, 361-365, 416-417
- Faults in the lake Lahontan basin Mon xi, pp 163-166, 275-283
- Faults of Kilauea, Hawaiian islands......................... Ann 4, pp 121-122
- Fauna, Molluscan, from the Puget sound region............... Bull 51, pp 49-63
- Fauna of the Braintree, Massachusetts, argillites Bull 10, pp 43-49
- Fauna of the lower Cambrian or Oleenius zone.............. Ann 10, i, pp 509-763
- Fauna of the St. John formation contained in the Hartt collection at Cornell university, review of the Bull 10, pp 9-42
- Fauna, the Laramie Molluscan, the relation of the, to that of the succeeding fresh-water Eocene and other groups Bull 34
- Fauna, vertebrate, in America, section to illustrate........... Mon x, p 7
- Faunas, lists of species of the upper Devonian, of the Genesee section, New
 York ... Bull 41, pp 31-102
- Faunas, on the fossil, of the upper Devonian from Tompkins county, New
 York, to Bradford county, Pennsylvania Bull 3
- Faunas, on the fossil, of the upper Devonian of the Genesee section, New
 York .. Bull 41
- Faunas, recent, of different temperature zones, tables showing the number of shell-bearing marine species of mollusks contained in.... Bull 84, p 26
- Faunas, the Cambrian, of North America, studies of............... Bull 10; Bull 30
- Faunas, the higher Devonian, of Ontario county, New York............. Bull 16
- Fayalite from the Yellowstone national park, analysis of... Ann 7, p 272; Bull 27, p 63
- Fayalite in lithophyses, Yellowstone national park Ann 7, p 270

WARMAN.
Fayalite, origin of, in rhyolite Ann 7, pp 279-283
Features, topographic, of lake shores ... Ann 5, pp 69-123
Feldspar a product of mineralogical metamorphism Bull 62, p 209
Feldspar, alteration of, to zoelite ... Bull 28, pp 52-53
Feldspar, altered, from Laurel creek, Georgia, analysis of Bull 42, p 138
Feldspar determinations by Szabo's method Mon iii, pp 405-408
Feldspar, epidote an alteration product of Mon xiv, pp 341, 367; Bull 28, pp 31-32; Bull 59, p 35; Bull 62, pp 108, 211
Feldspar fragments, enlargements of, in certain Keweenawan sandstones Bull 8, pp 44-47
Feldspar from a typical Brandywine gabbro, analysis of Bull 59, p 12
Feldspar, progress of alteration of, during metamorphism of massive rocks .. Bull 62, pp 214-216
Feldspar, secondary enlargement of, in sandstones Ann 5, pp 237-240; Bull 8, p 44
Feldspar, statistics of MR 1883-84, pp 933-934; MR 1885, p 523; MR 1886, p 701; MR 1887, pp 5, 6, 8-9; MR 1888, pp 6, 8, 10-11; MR 1889-90, p 6; MR 1891, pp 474, 500
Feldspars yields biotite and quartz on decomposition in granite Ann 10, 1, p 335
Feldspars from Delaware, analyses of .. Bull 55, pp 79-80
Feldspars from Hoosac tunnel and Greylock mountain, Massachusetts, analyses of ... Bull 55, p 79
Feldspars from Minnesota gabbros, analyses of Bull 78, p 122
Feldspars from the Penokee district of Michigan and Wisconsin, analyses of ... Mon xix, p 352
Feldspathic magma in the Eureka district, Nevada Mon xx, p 255
Feldspathic rocks, thermal effect of the action of aqueous vapor on Ann 2, pp 325-330; Mon iii, pp 290-308, 397-400
Felsite of the Keweenaw series described .. Mon v, pp 95-112
Fernandian system of rocks of Texas .. Bull 86, pp 267-269
Ferric sulphaes, basic, analyses of .. Mon xii, p 550.
Ferro-magnesian minerals in rocks, decomposition of Mon iii, p 384
Fertilizer trade in North Carolina in 1886 MR 1886, pp 611-617
Fertilizers, analyses of MR 1883-84, pp 816-819, 821; MR 1885, pp 471-473; MR 1887, pp 593-594
Filices of the Dakota group .. Mon xvii, pp 24-25
Filices of the older Mesozoic of Virginia .. Mon vi, pp 18-63
Filices of the Potomac or younger Mesozoic Mon xv, pp 66-166
Filicinaceae from the Carboniferous basins of southwestern Missouri Bull 98, pp 43-103
Filtration by means of easily soluble and easily volatile filters Bull 27, pp 27-29
Fisher (F. R.), account of the Charleston earthquake by Ann 9, pp 242-247
Fishes, fossil, descriptions of genera and species of, from the Triassic rocks of New Jersey and the Connecticut valley Mon xiv, pp 24-76
Fishes, fossil, description of two species of, from the upper Devonian of New York ... Bull 41, pp 62-63
Fishes, fossil, of the Newark system .. Bull 85, pp 56-58, 125
Fishes of the Carboniferous of North America Mon xvi, pp 75-228
Fishes of the Devonian of North America .. Mon xvi, pp 21-74
Fishes of the higher Devonian of Ontario county, New York Bull 16, pp 17-20, 40-43
Fishes of the upper Silurian of North America Mon xvi, pp 17-20
Flexures and faults of the Penokee district Mon xix, pp 437-441
Flexures. See, also, Faults.
Flood plains and flood-plain soils .. Ann 12, i, pp 288-293
Flora, fossil, geographical distribution of .. Ann 8, ii, pp 663-960
Flora, fossil, of the Dakota group .. Mon xvi
Flora of the Laramie group, synopsis of the ... Ann 6, pp 399-557
Flora of the outlying Carboniferous basins of southwestern Missouri Bull 98
Flora, older Mesozoic, of North Carolina ... Mon vi, pp 97-128
Flora, older Mesozoic, of Virginia ... Mon vi
Flora, Potomac or younger Mesozoic ... Mon xv
Flora, types of the Laramie ... Bull 37
Floras and faunas, the higher Devonian, in Ontario county, New York Bull 16
Florida, altitudes in ... Bull 5, p 78; Bull 76
Florida, boundary lines of ... Bull 13, pp 101-102
Florida, clay deposits and industry of .. MR 1891, p 507
Florida, coral, coral rocks, and coquina gravels from, analyses of Bull 60, pp 162-163
Florida, Eocene deposits in ... Bull 83, pp 55-57, 82, 87
Florida, geologic and paleontologic investigations in Ann 6, p 74; Ann 8, p 182
Florida, geologic map of ... Bull 84, pp 150-157
Florida, geologic maps of, listed ... Bull p 112
Florida, mineral springs of ... Bull 32, pp 85-87; MR 1891, p 603, 604
Florida, minerals of, the useful .. MR 1882, p 475; MR 1887, pp 719-720
Florida, phosphate deposits of ... Bull 46, pp 78-79; MR 1883-84, 793-794;
Florida, stratigraphy of ... Bull 84, pp 101-108
Florida, topographic work in .. Ann 11, i, p 98
Florida; water from surface drainage at St. Augustine, analysis of Bull 60, p 171
Florida; waters from two artesian wells at St. Augustine, analyses of ... Bull 64, p 59
Florida peninsula, topography of the ... Bull 84, pp 86-101
Florida, purchase of the, from Spain ... Bull 13, p 21
Florissant, Colorado, fossil butterflies of .. Ann 8, i, pp 433-474
Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah,
some insects of special interest from .. Bull 93
Fluid inclusions in minerals of igneous rocks, secondary origin of Mou iii, pp 79, 119, 371
Fluid volume, its dependence on pressure and temperature Bull 92, pp 17-67
Fluor spar, statistics of ... MR 1882, p 587; MR 1885, p 518; MR 1886, pp 692-693;
MR 1887, p 659; MR 1889-90, pp 468-473; MR 1891, p 586
Folding in the region of the Uinta and Park ranges Ann 9, pp 693-706
Folding. See, also, Faulting.
Fontaine (W. M.), administrative report for 1884-85 Ann 6, pp 85-86
Fontaine (W. M.), administrative report for 1887-88 Ann 9, pp 132-133
Fontaine (W. M.), administrative report for 1888-89 Ann 10, i, p 174
Fontaine (W. M.), administrative report for 1890-91 Ann 12, i, p 125
Fontaine (W. M.), older Mesozoic flora of Virginia Mon vi
Fontaine (W. M.), the Potomac or younger Mesozoic flora Mon xv
Footprints in the Newark strata .. Bull 85, pp 61-62
Forest areas in the arid region of the United States, maps showing Ann 11, ii, pp iv-v
Forestry investigations in the Appalachian region Ann 5, pp 64-66; Ann 6, pp 98;
Ann 7, pp 135-136; Ann 8, ii, pp 201-202
Forestry of India ... Ann 12, ii, pp 401-405
Forests within the arid region of the United States, their area, timber, destruc­
tion, etc .. Ann 11, ii, pp 206-208
Formulas and tables to facilitate the construction and use of maps Bull 50
Fort Ellis beds of Montana... Bull 84, p 287
Fort Union beds, correlation of the............................ Bull 83, pp 114-130, 135
Fossil butterflies of Florissant, Colorado..................... Ann 8, i, pp 433-474
Fossil faunas of the upper Devonian, the Genesee section, New York........ Bull 41
Fossil fishes and fossil plants of the Triassic rocks of New Jersey and the Connecticut valley Mon xiv
Fossil insects, a classified and annotated bibliography of.................... Bull 69
Fossil insects, including myriapods and arachnids, systematic review of our present knowledge of............... Bull 31
Fossil insects of the world, index to the known, including myriapods and arachnids................................. Bull 71
Fossil Mollusca, marine Eocene, fresh-water Miocene, and other, in North America ... Bull 18
Fossil Mollusca, nonmarine, of North America .. Ann 3, pp 403-550; Bull 18, pp 17-19
Fossil Ostreidae of North America Ann 4, pp 273-340
Fossil plants, geographical distribution of............... Ann 8, pp 663-690
Fossil wood and lignite of the Potomac formation Bull 56
Fossiliferous deposits of Nantucket............................... Bull 53, pp 28-42
Fossils from California, new Cretaceous.......................... Bull 22
Fossils from the Carboniferous limestone of California............ Bull 33, p 11
Fossils from the great Sioux reservation, Dakota................. Bull 21, p 11
Fossils from the sediments and tufa deposits of lake Lahontan Mon xi, pp 238-249
Fossils, invertebrate, from the Pacific coast Bull 51
Fossils, Mesozoic .. Bull 4
Fossils, Mesozoic, types of, from the Texan Permian.................. Bull 77
Fossils of the Cambrian, Silurian, Devonian, and Carboniferous formations of the Eureka district, Nevada Mon viii; Mon xx, pp 319-333
Fossils, Quaternary, and recent forms from American localities between cape Hatteras and cape Roque Ann 7, pp 372-377; Ann 11, i, pp 273-275
Fossils. See, also, Invertebrates; Paleobotany; Paleontology; Vertebrates. France, antimony production of MR 1883-84, p 645
France, Cambrian rocks of, correlated with those of Wales........ Ann 10, i, p 581
France, coal area and output of, compared with those of other countries...MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 232; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73
France, fossil plants of, literature of the...................... Ann 8, ii, pp 689-702
France, iron and steel production of, compared with that of other countries...MR 1882, p 109; MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, p 21; MR 1891, p 46, 73
France, lead production of.. MR 1883-84, pp 434, 439; MR 1885, pp 264, 271
France, manganese production of MR 1888, p 141; MR 1889-90, p 130
France, mining law of .. MR 1883-84, p 998
France, phosphorites and phosphates of Bull 46, pp 48-53, 107-112
France, pyrites mines of .. MR 1883-84, p 885
France, quicksilver occurrences in............................... Mon xiii, pp 32-33
France, tin deposits in .. MR 1883-84, p 617
Freshening of lakes by desiccation Ann 2, pp 177-180; Ann 3, pp 224-230; Mon i, pp 208-209, 229, 238; Mon xi, pp 224-230
INDEX.

Fulgurite from mount Lincoln, Colorado ... Bull 86, pp 308-313, 314-315, 325, 356
Fulgurite from Whiteside county, Illinois, analysis of Bull 42, p 140
Fumaroles in Mono valley, California ... Ann 8, 1, p 372
Gabbro-diorite from Delaware, description of Bull 59, pp 15-19
Gabbro-diorite from near Baltimore, Maryland, description of Bull 28, pp 27-32
Gabbro-granite from Delaware .. Bull 59, pp 19-21
Gabbro, hornblende-, of the Keweenaw series, description of Mon v, pp 56-58
Gabbro, olivine-, of the Keweenaw series, description of Mon v, pp 37-50
Gabbro, orthoclase-bearing, of the Keweenaw series, description of Mon v, pp 50-56
Gabbros and associated hornblende rocks near Baltimore, Maryland Bull 28
Gabbros and associated rocks in Delaware .. Bull 59
Gabbros, genetic relationships of, in Delaware Bull 59
Gahnite from Montgomery county, Maryland, analysis of Bull 9, p 9
Galena and cerussite, relative richness of .. Ann xn, pp 553-556
Galena and pyrite, alteration products of, analyses of Ann xn, p 606
Galisteo group of rocks of New Mexico ... Bull 84, pp 301-303
Galatian river basin, hydrography of .. Ann 11, ii, pp 38-39, 93
Galvanic, thermo-electric, and magnetic properties of wrought iron, steel, and cast iron in different states of hardness ... Bull 14
Gastropetalie of the Laramie flora .. Bull 37, pp 106-115
Gannett (H.), administrative report for 1882-83 Ann 4, pp 3-16
Gannett (H.), administrative report for 1883-84 Ann 5, pp 3-14
Gannett (H.), administrative report for 1884-85 Ann 6, pp 3-17
Gannett (H.), administrative report for 1885-86 Ann 7, pp 49-60
Gannett (H.), administrative report for 1886-87 Ann 8, 1, pp 97-120
Gannett (H.), administrative report for 1887-88 Ann 9, pp 49-67
Gannett (H.), administrative report for 1888-89 Ann 10, 1, pp 83-105
Gannett (H.), administrative report for 1889-90 Ann 11, 1, pp 33-48
Gannett (H.), administrative report for 1890-91 Ann 12, 1, pp 23-42
Gannett (H.), boundaries of the United States and of the several states and territories, with a historical sketch of the territorial changes Bull 13
Gannett (H.), corundum and emery .. MR 1882, pp 476-477
Gannett (H.), dictionary of altitudes in the United States Bull 5
Gannett (H.), dictionary of altitudes in the United States, second edition ... Bull 76
Garnet, spessartite, from Llano county, Texas, description and analysis of ... Bull 90, pp 39-40
Garnet. See, also, Precious stones.
Gas accumulation, conditions and modes of Ann 8, 11, pp 507-519; Ann 11, 1, pp 654-661
Gas and oil production, geological factors in Ann 8, 11, pp 581-589
Gas and petroleum, theories respecting the origin of Ann 8, 11, pp 485-506
Gas and related bitumens, the origin, constitution, future, etc., of Ann 11, 1, pp 589-616
Gas, inflammable, and petroleum in Ohio and Indiana, the Trenton limestone as a source of ... Ann 8, 11, pp 475-662
Gas, natural, analyses of ... Ann 8, 11, pp 591, 592, 646; MR 1888, pp 490, 510
Gas, natural, history of the use of, in the United States MR 1885, pp 169-173
Gas, natural, in Japan .. MR 1888, pp 511-512
Gas, natural, storage and pumping of ... MR 1891, pp 441-443
Gas, natural, the Indiana field ... Ann 11, 1, pp 579-742
Gas, natural, total consumption of, in the United StatesMR 1888, pp 481-486;
MR 1889-90, p 366; MR 1891, p 438
Gas, natural, transportation of MR 1886, pp 493-496
Gas pressure and measurement Ann 8, ii, pp 593-603; Ann 11, i, pp 662-675
Gas rocks, analyses of .. Ann 8, ii, pp 553-556, 641-643, 654, 662
Gas wells, care of .. Ann 11, i, pp 741-744
Gas wells, pressure and production of MR 1886, pp 491-492
Gases, viscosity of .. Bull 54, pp 239-306
Gasteropoda, description of species of the middle Cambrian of North America Bull 30, pp 125-131
Gasteropoda, nonmarine fossil, of North America Ann 3, pp 443-471
Gasteropoda of the Carboniferous of the Eureka district, Nevada Mon viii, pp 254-263
Gasteropoda of the Devonian of the Eureka district, Nevada Mon viii, pp 182-196
Gasteropoda of the Eocene Bull 83
Gasteropoda of the Great basin................................ Bull 11, pp 16-23
Gasteropoda of the lower Silurian of the Eureka district, Nevada .. Mon viii, pp 78-84
Gasteropoda of the Olenellus zone Ann 10, i, pp 616-619
Gasteropoda, table showing number of, occurring in the several marl beds of New Jersey, genera and species under each family Mon xviii, p 26
Gasteropoda and Cephalopoda of the Raritan clays and greensand marls of New Jersey Mon xviii
Gasteropods and cephalopods from the New Jersey Cretaceous recognized at other localities, table showing Mon xviii, p 30
Gaylussite, analysis of .. Mon xi, p 76
Gaylussite, occurrence of, in soda lakes Mon xi, p 76
Gaylussite pseudomorphs, relation of the Lahontan thinolite to Bull 12, pp 25-28
Gearsite from near Pike's peak, Colorado, general description and chemical investigation of Bull 20, pp 58-62
Geinitz (Hans Bruno), biographical sketch of Ann 5, p 374
Gems and precious stones, American MR 1882, pp 4; 483-499
Gems, statistics of ...MR 1883-84, pp 723-782;
MR 1886, pp 437-444; MR 1886, pp 595-605; MR 1887, pp 555-579;
Genesee section, New York, fossil faunas of the upper Devonian Bull 41
Genth (F. A.), the minerals of North Carolina Bull 74
Geographic distribution of fossil plants Ann 8, ii, pp 663-960
Geographic work. See Topographic work.
Geoid, form and position of the Mon i, pp 421-424; Bull 48
Geologic folios prepared by the Geological Survey. See pp. 305-306 of this bulletin.
Geologic investigations in the various states and territories. See each state and territory.
Geologic map of the United States, plan for the Ann 8, i, pp 74-76
Geologic maps of portions of the United States and of the world. See entries under "Map, geologic," in this index, pp. 410-416.
Geologic nomenclature and map notation, conference of geologists and lithologists on, in January, 1889 Ann 10, i, pp 56-67
Geological survey, laws establishing and extending the Ann 1, pp 3-4; Ann 4, p xiii
Geological survey, plan and organization of the Ann 1, pp 6-14;
Ann 7, pp 3-17; Ann 8, i, pp 3-69
Geology and topography of India Ann 12, ii, pp 399-403
Geomorphic geology, domain and processes of Ann 11, i, pp 244-273
Georgia, altitudes in .. Bull 5, pp 79-83; Bull 76
Georgia, boundary lines of, and cession by, of territory to general government Bull 13, pp 27, 97-100
Georgia, brick industry of.......................... MR 1887, pp 535, 537; MR 1888, p 558
Georgia, building stone from, statistics of.............. MR 1882, pp 431, 452;
MR 1886, p 542; MR 1887, pp 514, 518; MR 1888, pp 536, 538,
541, 543; MR 1889-90, pp 374, 386-388; MR 1891, pp 457, 458
Georgia, Cambrian rocks of, correlation of the........... Bull 81, pp 144-146, 155, 303-305, 383-384
Georgia, coal area and statistics of.......................... Ann 2, pp xxviii; MR 1883-84, pp 12, 39; MR 1885,
pp 11, 26; MR 1886, pp 225, 230, 252; MR 1887, pp 169, 223; MR 1888,
pp 169, 171, 240-241; MR 1889-90, pp 146, 194; MR 1891, p 218
Georgia, coke in, manufacture of.......................... MR 1883-84, p 160; MR 1885, pp 80, 89; MR 1886,
pp 378, 384, 393-394; MR 1887, pp 383, 389, 397-398;
MR 1888, pp 395, 400, 408; MR 1891, pp 360, 366, 378
Georgia, copper mines and statistics of...................... Ann 2, p xxi; MR 1882, p 231
Georgia, corundum deposits and statistics of.............. MR 1883-84; MR 1886, pp 715, 716-717;
MR 1886, p 429; MR 1886, p 585; MR 1887, p 553;
MR 1888, p 577; MR 1889-90, p 457; MR 1891, p 555
Georgia, Eocene deposits in.................................. Bull 83, p 54-55, 82, 87
Georgia; feldspar, altered, from Laurel creek, analysis of... Bull 42, p 138
Georgia, fossils from.. Ann 4, p 4; Bull 29, 297, 311; Ann 8, p 11, 578
Georgia, geologic investigations in......................... Ann 6, p 24; Ann 7, p 114;
Ann 9, pp 78, 122; Ann 10, p 120; Ann 12, p 54, 71, 79, 117
Georgia, geologic maps of, listed........................... Bull 7, pp 102, 103
Georgia, iron and steel from, statistics of.................. Ann 2, p xxviii; MR 1882,
pp 120, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 278; MR 1885,
pp 182, 184; MR 1886, pp 18, 33, 84-85, 98; MR 1887, p 11; MR 1888,
pp 14, 23; MR 1889-90, pp 10, 17, 24, 32, 35; MR 1891, pp 12, 26, 54, 55, 61
Georgia, manganese deposits in............................. MR 1882, pp 424, 425; MR 1883-84,
p 552; MR 1885, pp 306, 328-332; MR 1886, pp 181, 185-188;
MR 1887, pp 145, 146, 150-151; MR 1888, pp 124, 125, 127;
MR 1889-90, pp 127, 133-134; MR 1891, pp 127, 128, 130-134
Georgia, manganese ore from, analysis of.................... MR 1891, p 134
Georgia; marble from Pickens county, analysis of........... MR 1889-90, p 387
Georgia, marble production of.................................. MR 1891, pp 468, 469
Georgia; margarite from near Gainesville, description and analysis of... Bull 9, p 11
Georgia, mineral springs of................................. Bull 32, pp 81-85; MR 1883-84, p 981;
MR 1885, p 537; MR 1886, pp 716; MR 1887, pp 683; MR 1888, pp 626; MR 1889-90, p 526; MR 1891, pp 603, 604
Georgia, minerals of, the useful............................. MR 1882, pp 675-677; MR 1887, pp 720-722
Georgia, Neocene beds of...................................... Bull 84, pp 81-85
Georgia, ochre production of.................................. MR 1891, p 555
Georgia, pyrites from.. MR 1883-84, p 880; MR 1885, p 566
Georgia; pyrolusite from the Etowah region, analyses of...... MR 1883-84, p 562
Georgia, slate production of.................................. MR 1891, p 472
Georgia, topographic work in.................................. Ann 6, p 9; Ann 7, p 52; Ann 8, p 102;
Ann 9, p 53; Ann 10, p 91, 92; Ann 11, p 57; Ann 12, p 24
Georgia; waters from Savannah, analyses of.................. Bull 55, p 91; Bull 64, p 59
Georgia and Alabama, waters from artesian wells in, analyses of... Bull 55, p 91
Germany, antimony production of............................. MR 1883-84, pp 645-646
Germany, coal area and output of, compared with those of other countries... MR 1882,
p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886,
p 235; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73
Germany, copper production of .. MR 1882, pp 255-256;
MR 1883-84, pp 356, 368-370; MR 1885, pp 228, 238-240; MR 1886, pp 128,
135-138; MR 1887, p 87; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 100
Germany, fossil plants of, literature of the.................... Ann 8, p, pp 744-775
Germany, gold and silver production of, compared with that of other coun-
tries.. MR 1883-84, pp 319, 320; MR 1889-90, p 49
Germany, iron and steel production of, compared with that of other coun-
tries.. MR 1882, p 109;
MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18;
MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 20, 21, 22; MR 1891, pp 46, 73
Germany, lead production of.. MR 1882, pp 322-323; MR 1883-84, pp 434, 436-438;
MR 1885, pp 264, 267-268
Germany, manganese production of................................ MR 1886, p 201; MR 1887, p 161
Germany, mining law of... MR 1883-84, pp 992-996, 1001
Germany, nickel production of................................... MR 1882, pp 406, 410; MR 1883-84, p 540
Germany, pyrites mines of.. MR 1883-84, p 885
Germany, quicksilver deposits of... Mon XXIII, pp 36-37
Germany, salt production of.. MR 1883-84, p 849
Germany, tin production of.. MR 1883-84, p 618
Germany, zinc production of....................................... MR 1882, pp 356-357; MR 1883-84, pp 480, 481-486;
MR 1885, pp 277-280; MR 1886, p 159; MR 1887, p 117; MR 1888, pp 95, 96
Geyser basin, upper, of the Firehole river, Yellowstone national park Ann 9,
pp 651-669
Geyser waters, analyses of... Ann 9, p 555
Geyserites from Rotoura, New Zealand, analyses of.................. Bull 64, p 45
Geyserites of the Yellowstone national park........................ Ann 9, p 628
Gignoux (J. E.), the manufacture of bluestone at the Lyon mill, Dayton,
Nevada.. MR 1882, pp 297-305
Gila river basin, Arizona, hydrography of the..................... Ann 11, p,
pp 58-63, 100, 108; Ann 12, p, pp 292-316
Gila river basin, Arizona, irrigation problems relating to the.. Ann 11, p, pp 227-229
Gilbert (G. K.), administrative report for 1879-80................. Ann 1, pp 23-28
Gilbert (G. K.), administrative report for 1880-81................. Ann 2, pp 10-17
Gilbert (G. K.), administrative report for 1881-82................. Ann 3, pp 14-16
Gilbert (G. K.), administrative report for 1882-83................. Ann 4, pp 19-21
Gilbert (G. K.), administrative report for 1883-84................. Ann 5, pp 30-34
Gilbert (G. K.), administrative report for 1884-85................. Ann 6, pp 22-25
Gilbert (G. K.), administrative report for 1885-86................. Ann 7, pp 65-68
Gilbert (G. K.), administrative report for 1886-87................. Ann 8, p, pp 128-132
Gilbert (G. K.), administrative report for 1887-88................. Ann 9, pp 76-78
Gilbert (G. K.), administrative report for 1888-89................. Ann 10, p, pp 108-113
Gilbert (G. K.), administrative report for 1889-90................. Ann 11, p, pp 49-62
Gilbert (G. K.), administrative report for 1890-91................. Ann 12, p, pp 52-65
Gilbert (G. K.), lake Bonneville, geological history of........ Ann 2, pp 167-200; Mon
Gilbert (G. K.), new method of barometric hypsometry............. Ann 2, pp 403-566
Gilbert (G. K.), sketch of the Quaternary lakes of the Great basin . Bull 11, pp 9-12
Gilbert (G. K.), topographic features of lake shores............... Ann 5, pp 69-123
Gill (D. W.), administrative report for 1889-90.................. Ann 11, p, pp 133-134
Gill (D. W.), administrative report for 1890-91.................. Ann 12, p, pp 136-139
Glacial action in New England, the effects of, in the development of shore
swamps.. Ann 6, pp 362-363
Glacial action in perturbing drainage so as to produce swamps........ Ann 10,
i, pp 295-309
Glacial action, land forms produced by................................ Ann 11, i, pp 249-256
Glacial action on mount Desert, Maine................................ Ann 8, ii, pp 1002-1009
INDEX.

Glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois ... Bull 58
Glacial clays from Milwaukee, Wisconsin, analyses of Ann 6, p 250
Glacial dam at Cincinnati, hypothesis of a ... Bull 58, pp 76-101
Glacial deposits of Martha's vineyard .. Ann 7, pp 308-325
Glacial deposits of the middle Atlantic slope .. Ann 7, p 611
Glacial epoch; driftless area of the upper Mississippi valley Ann 6, pp 199-322
Glacial epoch, second, terminal moraine of the .. Ann 3, pp 291-402
Glacial epoch, the Quaternary lakes of the Great basin regarded as the con-
temporaries of the .. Ann 2, pp 187, 189
Glacial epochs, rock-scorings of the ... Ann 7, pp 147-248
Glacial epochs. See, also, Pleistocene.
Glacial history and phenomena of northeastern Iowa Ann 11, i, pp 472-577
Glacial history of the Mono basin, California .. Ann 8, i, pp 321-371
Glacial lake Agassiz, upper beaches and deltas of the Bull 39
Glacial masses, modification of sea level by the attraction of Bull 48, pp 60-79
Glacial movement, changes of, and cross-striation Ann 7, pp 200-207
Glacial movement, temperature and saturation affecting Ann 7, pp 186-187
Glacial period, character and effect of the, in the Grand canyon district..... Mon xiii, pp 228-229
Glacial phenomena in Colorado ... Ann 2, pp 228-239
Glacial phenomena on Cape Ann, Massachusetts Ann 9, pp 546-559
Glacial phenomena on Nantucket ... Bull 53, pp 15-28, 42-47
Glacial phenomena. See, also, Drift; Loess.
Glacial strie of the eastern United States, map of the Ann 17, pp 151-155
Glacial theory as to the Newark system .. Bull 85, pp 47-53
Glacial theory, origin and history of the .. Ann 11, i, pp 280-291
Glaciation, changes in river courses in Washington territory due to Bull 40
Glaciation, correlation of lake maxima with ... Mon i, pp 265-283
Glaciation, evidence of, in the Yosemite valley Ann 10, i, pp 142-143
Glaciation, how affected by change in solar energy Mon i, pp 283-287
Glaciation in relation to soils ... Ann 12, i, pp 235-239, 268
Glacier, what is a? ... Ann 5, pp 309-313
Glaciers, almost total absence of, in the northern half of the Great basin during Quaternary time ... Ann 4, pp 463-464
Glaciers, ancient, of the Sierra Nevada .. Ann 5, pp 327-328
Glaciers, existing and Quaternary, of the high sierra in California Ann 8, i, pp 324-346
Glaciers, existing, of the United States .. Ann 5, pp 309-355
Glaciers, former and existing, of the Sierra Nevada, topographical sketch of ... Ann 5, pp 310-311
Glaciers of Alaska ... Ann 5, pp 348-355
Glaciers, testimony of, regarding the Quaternary climate of the Great basin ... Ann 10, i, pp 358-362
Glass and steel, the effect of sudden cooling exhibited by Bull 42, pp 265-268
Glass materials, statistics of ... MR 1883-84, pp 958-977; MR 1885, pp 541-567
Glass sands, analyses of ... MR 1883-84, p 962
Glass, stressed, the electrical resistance of ... Bull 94, pp 85-100
Glass, the viscosity of electrolyzing .. Bull 94, pp 80-84
Glass, thermal expansion and compressibility of Bull 96, pp 54-55
Glaucophane in metamorphic rocks of the Coast ranges of California Mon xiii, p 76
Glaucophane schists of the Coast ranges of California Mon xiii, pp 102-104
Gneiss, Archean, of northern Wisconsin .. Ann 10, i, pp 358-362
Gneiss dunyute contacts of Corundum hill, North Carolina, in relation to the origin of corundum ... Bull 42, pp 45-63
Gneiss of the Mosquito range, Colorado, description of the........ Mon xii, pp 48-50
Gneisses of the lake Superior district, character of the........ Ann 10, i, pp 358-360
Gogebic series. See Penokee series.
Gold; auriferous gravels of California......................... Bull 84, pp 219-222
Gold; auriferous slate series of Lassen peak district, Cal..... Ann 8, i, pp 404-407
Gold, colloidal sulphides of.. Bull 90, pp 56-61
Gold deposits in the Leadville district, Colo........ Mon xii, pp 376, 513-518, 545, 579, 594
Gold, discovery of, in California and Nevada..................... Mon iv, pp 1-14
Gold in the deposits of Eureka, Nevada....................... Mon vii, pp 120, 131-132, 163, 167, 184, 187
Gold, native, from Persia, analysis of................................. Bull 60, p 137
Gold, solubility of.. Mon xiii, pp 433, 474
Gold and silver conversion tables....................................... Bull 2
Gold and silver determinations in rocks of the Leadville region. Mon xii, p 594
Gold and silver, discovery of, in Colorado......................... Mon xii, 7-10
Gold and silver in the United States, production of, since 1804... MR 1888, p 38
Gold and silver in the United States since 1792, product of........ MR 1891, pp 74-75
Gold and silver of the Comstock lode, Nevada.................... Mon iii, pp 6-7, 9, 18, 224-225, 268
Gold and silver, the world's production of..................... MR 1883-84, pp 319-321; MR 1888, p 40; MR 1889-90, pp 52-55
Gooch (F. A.), a method for the separation and estimation of boric acid, with an account of a convenient form of apparatus for quantitative distillations Bull 42, pp 64-72
Gooch (F. A.), a method for the separation of sodium and potassium from lithium by the action of amylic alcohol on the chlorides, with some reference to a similar separation of the same from magnesium and calcium... Bull 42, pp 73-88
Gooch (F. A.), filtration by means of easily soluble and easily volatile filters... Bull 27, pp 27-29
Gooch (F. A.), separation of titanium and aluminum, and of titanium and iron... Bull 27, pp 16-26
Gooch (F. A.) and Whitfield (J. E.), analyses of waters of the Yellowstone national park, with an account of the methods of analysis employed......................... Bull 47
Göppert (Heinrich Robert), biographical sketch of................ Ann 6, pp 373-374
Gore (J. H.), administrative report for 1881-82..................... Ann 3, pp 30-32
Gossan and mundic ores of Virginia, analyses of.................. MR 1891, p 24
Gould (E. R. L.), mining law of states east of the Mississippi.... MR 1886, pp 722-730
Gradient, barometric... Ann 2, pp 412-420, 536-540
Grand canyon group of rocks in Arizona, literature of the........ Bull 86, pp 327-332
Grand canyon sections.. Ann 10, i, p 551; Bull 30, pp 42-43; Bull 81, pp 356, 357; Mon xx, p 207
Grand canyon district, brief description of the......................... Ann 1, pp 28-31
Grand canyon district, physical geology of the.................... Ann 2, pp 47-166
Grand canyon district, Tertiary history of the..................... Ann 2, pp xii-xvi; Mon ii
Grand canyon district. See, also, Arizona; Utah.
Grand gulf formation of Mississippi, Louisiana, and Texas........ Ann 12, i, pp 408-410; Bull 84, pp 161-165, 167-170, 172-175
Grand gulf group, physical history of the......................... Bull 84, pp 187-189
Granite, alteration of, to biotite-quartz schist.................. Ann 10, i, p 355
Granite from Bradford and Worcester, Massachusetts, analyses of.................. MR 1889-90, p 401
Granite from northern Wisconsin described Ann 10, i, pp 354-358
Granite from Steamboat springs, Nevada, described Mon xii, pp 141-143
Granite from the Coast ranges of California described Mon xiii, p 144
Granite from the Marquette region, Michigan, described Bull 62, pp 147-148
Granite from the Mosquito range, Colorado, described Mon xi, pp 46-48
Granite from the Washoe district, Nevada, described Mon iii, pp 34, 91-92, 190
Granite of California, origin of the Mon xiii, pp 174-175
Granite of Little Cottonwood canyon, Utah, age of the Mon xi, pp 309-313
Granite of Sierra nevada older than all sedimentary Mon xiii, pp 164-175
Granite of the Eureka district, Nevada Mon xx, pp 218-220, 337-338
Granite of the Keweenaw series, description of the Mon v, pp 112-124
Granite-porphyry of the Eureka district, Nevada Mon xx, pp 221-229, 339-345
Granites of the Penokee iron-bearing series Mon xix, pp 106, 111
Grano-porphyre groups, relation of, to spherulites Ann 7, pp 274-276
Graphite, analyses of .. MR 1882, p 593
Graphite, foreign sources of................................. MR 1886, pp 688-689
Graphite, statistics of .. MR 1882, pp 590-594;
MR 1883-84, pp 915-919; MR 1885, p 533; MR 1886, pp 686-689; MR 1887,
pp 672-673; MR 1888, pp 152, 361; MR 1889-90; p 507; MR 1891, pp 589-590
Gravity, specific, of lampblack Bull 42, pp 132-135
Great basin, climatic changes in the Ann 4, pp 456-457
Great basin, description of the Ann 3, pp 196-202;
Mon i, pp 5-12; Mon xi, pp 7-15
Great basin, map of the northwestern part of the Ann 4, pp 438-439
Great basin, map showing limits of the Ann 3, pp 16-17
Great basin, Paleozoic rocks of the Mon xx, pp 185-209
Great basin, Quaternary and recent Mollusca of the Bull 11, pp 13-66
Great basin, Quaternary lakes of the, sketch of the Bull 11, pp 9-12
Great basin, structure of the mountain ranges of the Mon xx, pp 10, 211
Great basin. See, also, California; Nevada; Oregon; Utah.
Great Britain, Cambrian rocks of Bull 81, pp 373-374, 377
Great Britain; lower Cambrian strata and fauna of Wales Ann 10, i, p 580
Great Britain, coal area and output of, compared with those of other
countries .. MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11;
MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73
Great Britain, copper production of. MR 1882, pp 245-252;
MR 1887, pp 87, 88-92; MR 1888, pp 73, 74-77; MR 1889-90, p 73; MR 1891, p 100
Great Britain, fossil plants of, literature of the Ann 8, ii, pp 672-689
Great Britain; iodine production of Scotland MR 1883-84,
pp 854-855; MR 1885, pp 489-490
Great Britain, iron and steel production of, compared with that of other
countries .. MR 1882, p 109;
MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18;
MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 11, 18, 22, 35; MR 1891, pp 58, 59, 73
Great Britain, lead production of. MR 1882, p 921;
MR 1883-84, pp 434, 435; MR 1885, pp 264, 268-269
Great Britain, mining law of MR 1883-84, pp 996-997, 1002
Great Britain, manganese production of. MR 1886, pp 199-200;
MR 1887, pp 154-159; MR 1888, p 140; MR 1889-90, p 150; MR 1891, pp 143-145
Great Britain, nickel production of. MR 1882, p 410; MR 1883-84, p 539
Great Britain; paraffin oil of Scotland MR 1886, pp 484-486
Great Britain, phosphate deposits of Bull 46, pp 80-102
Great Britain, phosphorus production of MR 1886, pp 676-677
Great Britain, salt production of MR 1883-84, p 848
Great Britain, tin production and industry of..MR 1883-84, pp 615-617; MR 1885, pp 376, 377

Great salt lake, analysis of the water of..Mon i, pp 253, 254, 255

Great salt lake, saline deposits of..Mon xi, pp 185-186

Great salt lake, surveys, oscillations, fauna, etc., of............................Mon i, pp 230-250

Great salt lake basin, fresh waters in, analyses of................................Mon i, p 207

Great salt lake basin, hydrography of..Ann 11, ii, pp 66-77, 109

Greenland, cryolite production of...ME 1882, p 608; MR 1883-84, p 954; MR 1886, p 692; MR 1887, p 659; MR 1889-90, p 473

Greenstone conglomerates of the Penokee iron-bearing series...................Mon xix, pp 374-387

Greenstones, aphanitic, described...Bull 62, pp 163-168, 171-173

Gymnosperms, also, Coniferæ; Cycadæ; Zamiae.

Gymnosperms. See also, Coniferæ; Cycadæ; Zamiae.

Gypsum, analyses of...MR 1887, pp 598-600

Gypsum deposits in Kansas...Bull 57, pp 22-24, 48

Gypsum or land plaster in Ohio..MR 1887, pp 596-600

Gypsum playa and dunes in the Bonneville basin.......................................Mon i, p 223

INDEX.

Gypsum plains district, N. M., irrigation possibilities in the .. Ann 12, ii, pp 281-282
Gyrolite, a new occurrence of Bull 64, pp 22-23
Habitus, value of, in rock determinations .. Mon xi, p 85
Hade, fault, strike, etc., defined .. Ann 4, p 442
Hague (A.), administrative report for 1879-80 Ann 1, pp 32-35
Hague (A.), administrative report for 1880-81 Ann 2, pp 21-35
Hague (A.), administrative report for 1881-82 Ann 3, pp 10-14
Hague (A.), administrative report for 1882-83 Ann 4, pp 16-18
Hague (A.), administrative report for 1883-84 Ann 5, pp 15-19
Hague (A.), administrative report for 1884-85 Ann 6, pp 54-59
Hague (A.), administrative report for 1885-86 Ann 7, pp 87-91
Hague (A.), administrative report for 1886-87 Ann 8, 1, pp 149-153
Hague (A.), administrative report for 1887-88 Ann 9, pp 91-96
Hague (A.), administrative report for 1888-89 Ann 10, 1, pp 132-137
Hague (A.), administrative report for 1889-90 Ann 11, 1, pp 83-87
Hague (A.), administrative report for 1890-91 Ann 12, 1, pp 92-96
Hague (A.), geology of Eureka district, Nevada Ann 3, pp 237-290; Mon xx and atlas
Hague (A.), quoted on the glaciers of Mount Hood Ann 5, pp 339-340
Hague (A.), and Iddings (J. P.), development of crystallization in the igneous rocks of Washoe, Nevada, with notes on the geology of the district Bull 17
Hahn (O. H.), the smelting of argentiferous lead in the West MR 1882, pp 324-345
Hallock (W.), chemical action between solids Bull 61, pp 34-37
Hallock (W.), new method of making alloys Bull 60, pp 147-148
Hallock (W.), preliminary note on the coefficients of thermal expansion of certain rocks Bull 75, pp 109-118
Hallock (W.), specific gravity of lampblack Bull 42, pp 132-135
Hallock (W.), the flow of solids, or the behavior of solids under high pressure .. Bull 55, pp 67-75; Bull 64, pp 38-39
Halloysite from California, analysis of Bull 9, p 12
Hamburg limestone and shale at Eureka, Nevada Mon xx, pp 38-41
Hampton (T.), death and biographic sketch of Ann 9, pp 44-46
Hampton (T.), rules for the preparation of manuscript.... See p 323 of this bulletin
Harris (G. D.) and Dall (W. H.), Neocene of North America, a correlation essay Bull 84
Hassayampa disaster in Arizona, causes of Ann 11, ii, pp 226-229
Hastings series of rocks of Canada Bull 86, pp 27-35
Hawaiian islands, climate and vegetation of Ann 4, pp 88-90
Hawaiian islands, coral rocks and a soil from, analyses of Bull 60, pp 164
Hawaiian islands, general map of the Bull 4, pp 80-81
Hawaiian islands, geography of the Bull 4, pp 81-91
Hawaiian race, growth of the, to full civilization Ann 4, pp 148-149
Hawaiian volcanoes ... Ann 4, pp 75-219
Hawthorne beds of Florida .. Bull 84, pp 107-111
Hay (R.), a geological reconnaissance in southwestern Kansas Bull 57
Hayden (F. V.), administrative report for 1879-80 Ann 1, p 50
Hayden (F. V.), administrative report for 1880-81 Ann 2, pp 42-44
Hayden (F. V.), administrative report for 1883-84 Ann 5, pp 28-30
Hayden (F. V.), administrative report for 1884-85 Ann 6, pp 48-53
Hayden (F. V.), administrative report for 1885-86 Ann 7, pp 85-87
Hayden (F. V.), death and biographic sketch of Ann 9, pp 31-38
Hayes (C. W.) accompanies Schwatka to the Yukon valley Ann 12, 1, p 62
Health as affected by soils .. Ann 12, 1, pp 340-344
Heat, conduction of, within the earth, theory and solution of the problem of Ann 4, pp 190-191
Heat conductivity of steel .. Bull 14, pp 25-27

Bull. 100——25
Heat, effect of, on solubility of sulphate of lime Ann 7, pp 502-503
Heat expansion, literature of .. Bull 92, pp 17-18
Heat of lava, etc., source of the .. Mon xiii, p 411
Heat of the Comstock lode, Nevada .. Ann 2, pp 310-314;
Mon iii, pp 228-265, 387-392; Mon iv, pp 389-400
Heat. See, also, Temperature; Thermal.
Heer (Oswald), biographical sketch of ... Ann 5, pp 378-379
Heights between lake Superior and the Rocky mountains...................... Bull 72
Heights in the Bonneville basin ... Mon ii, pp 405-419
Heights in the Dominion of Canada .. Bull 6
Heights in the United States, dictionary of Bull 5; Bull 76
Heights, a new method of measuring, with the barometer Ann 2, pp xxxviii-xl, 403-566
Henry mountain rocks, notes on the .. Mon xii, pp 359-362
Hesperornis, description and restoration of Bull 83, pp 71-72
Hickman group of rocks of Kentucky .. Bull 83, pp 71-72
Hidden (W. E.), hiddenite, the new emerald-green gem MR 1882, pp 502-503
Hidden (W. E.), the discovery of emeralds in North Carolina MR 1882, pp 500-502
Highlands of New Jersey and New York, literature of the geology of the Bull 86, pp 386, 387, 390, 391, 392, 396, 399, 400, 401, 402, 413, 414, 415
Hilgard (E. W.), the asphaltum deposits of California MR 1883-84, pp 938-948
Hilgard (E. W.), the salines of Louisiana MR 1882, pp 554-565
Hill (R. T.), clay materials of the United States MR 1891, pp 474-528
Hill (R. T.), present condition of knowledge of the geology of Texas Bull 45
Hill (R. T.), the coal fields of Texas .. MR 1891, pp 326-328
Hillebrand (W. F.), analyses of three descloizites from new localities Bull 64, pp 24-28
Hillebrand (W. F.), associated rare minerals from Utah Bull 20, pp 83-88
Hillebrand (W. F.), chemistry of the rocks and ores of Leadville, Colorado .. Mon xii, pp 585-608
Hillebrand (W. F.), descloizite (?) from Beaverhead county, Montana Bull 60, pp 130-131
Hillebrand (W. F.), mineralogical notes .. Bull 55, pp 48-55
Hillebrand (W. F.), miscellaneous mineral notes Bull 20, pp 89-99
Hillebrand (W. F.), new analyses of uraninite Bull 90, pp 22-25
Hillebrand (W. F.), new mineral species from Colorado Bull 20, pp 100-109
Hillebrand (W. F.), the occurrence of nitrogen in uraninite, and the composition of uraninite in general Bull 78, pp 43-79
Hillebrand (W. F.), uraninites, North American, preliminary remarks on Bull 60, pp 131-133
Hillebrand (W. F.) and Cross (W.), contributions to the mineralogy of the Rocky mountains ... Bull 20
Hillebrand (W. F.) and Cross (W.), minerals from the basalt of Table mountain, Golden, Colorado ... Bull 20, pp 13-39
Hillebrand (W. F.) and Cross (W.), minerals from the neighborhood of Pike's peak ... Bull 20, pp 40-73
Hillebrand (W. F.) and Melville (W. H.), on the isomorphism and composition of thorium and uranium sulphates Bull 90, pp 26-33
Hillebrand (W. F.) and Washington (H. S.), notes on certain rare copper minerals from Utah ... Bull 55, pp 38-47
Hoffman (H. O.), recent improvements in desilverizing lead in the United States .. MR 1883-84, pp 462-473
Holden (E. S.), earthquakes in California in 1890 and 1891 Bull 95
Holmes (W. H.), administrative report for 1884-85 Ann 6, pp 94-97
Holmes (W. H.), administrative report for 1885-86 Ann 7, pp 136-137
Holmes (W. H.), administrative report for 1886-87. Ann 8, 1, pp 202-203
Holmes (W. H.), administrative report for 1887-88. Ann 9, pp 143-144
Holmes (W. H.), administrative report for 1888-89. Ann 10, 1, pp 189-190
Holmes (W. H.), quoted on glaciers in the Rocky mountains. Ann 5, pp 344-347
Honduras, fossil plants of, literature of the. Ann 8, 11, p 824
Hoosac mountain, literature of the geology of. Bull 86, pp 361, 363, 371-373
Hope valley, California, irrigation surveys in. Ann 11, 11, pp 180-181
Hornblende a product of mineralogical metamorphism. Bull 62, p 210
Hornblende, brown, from Pierrepoint, New York, analysis of. Bull 78, p 119
Hornblende, progress of alteration of, during metamorphism of massive rocks. Bull 62, p 216
Hornblende rocks, gabbros and associated, near Baltimore, Maryland. Bull 28
Hornblende, speculation on the "black border" of, in igneous rocks. Mon III, pp 59-61
Hornblende-andesite of Eureka district, Nevada. Mon XX, p 233
Hornblende-andesite of Washoe district, Nevada, its relation to diorite. Bull 17, pp 23-26
Hornblende-andesite, relation of, to pyroxene-andesite. Bull 17, p 34
Hornblende-gneiss, probable derivation of, from eruptive rocks. Ann 10, 1, pp 360-362
Hornblende-mica-andesite of Eureka district, Nevada. Mon XX, pp 364-368
Hornblende and pyroxene, intergrowth of, in glassy rocks. Ann 12, 1, pp 610-617
Hornblende and quartz, alteration products of feldspar. Mon XIX, p 110
Hot-spring waters, analyses of. Bull 9, pp 24, 27, 28, 30-35; Bull 42, p 148; Bull 60, p 174
Hot-spring waters of Yellowstone national park, character of the. Ann 9, pp 638-640
Hot springs, association of, with cinnabar. Mon XIX, p 403
Hot springs in Colusa county, California. Mon XIX, p 367
Hot springs in the Lahontan basin. Mon XI, pp 48, 49, 51-54, 60
Hot springs of Funaro lake, Utah. Mon i, p 333
Hot springs of Mono lake, California. Ann 8, 1, pp 278, 288
Hot springs of Sulphur bank, California, origin and age of the. Mon XVII, p 254
Hot springs of the Yellowstone national park. Ann 9, p 628
Hot springs, travertine and siliceous sinter of. Ann 9, pp 613-676
Hot water, deposits from. Mon XIX, pp 260-261
Hot waters of Comstock lode, Nevada. Ann 2, p 313; Mon III, pp 286-287
Hot waters, vegetation of. Ann 9, pp 620-628, 657
Howe (H. M.), copper smelting. Bull 26
Hubnerite from Ouray county, Colorado. Bull 20, p 96
Hudson bay, pre-Cambrian rocks of the region about. Bull 86, pp 209, 500
Huerfano beds, correlation of the. Bull 83, pp 142-146
Human remains in the auriferous gravels of California. Bull 84, pp 221-222
Humboldt and other mountains of Nevada, literature of the geology of the. Bull 86, pp 290-308
Humboldt group of rocks of Utah and Nevada. Bull 84, pp 312-313, 315-316
Humboldt lake and river, Nevada, analyses of the water of. Mon XI, pp 41, 67
Humidity as a disturbing factor in barometric hypsometry. Ann 2, pp 425-427
Humidity, is it increased by irrigation? Ann 12, ii, p 234
Hunt (T. S.), system of classification for the pre-Paleozoic groups. Ann 7, pp 381-389; Bull 86, pp 462-466
Huntley (D. B.), list of ores, minerals, and mineral substances of industrial importance in Arizona and Utah. MR 1882, pp 760-764, 773-775
Huronian areas, investigations in. Ann 5, pp 187-208
Huronian defined. Bull 86, p 463
Huronian of the northwestern states, metamorphism in the. Ann 5, pp 241-242
Huronian quartzites, genesis of and metamorphism in. Bull 8, pp 48-52
Huronian rocks, enlargements in. Bull 8, pp 23-37
Huronian rocks of the lake Superior region. Mon v, pp 386-394, 402-409; Mon xix, pp 31-40, 42-59, 61-66, 75-77
Huronian system, history of the term. Bull 86, pp 470-474
Huronian, the original. Bull 86, pp 23-50, 498-499
Huronian and Laurentian, relations of the Keweenawan rocks to the. Ann 3, pp 156-173
Huronian and Laurentian, relations of the Penokee iron-bearing series of Michigan and Wisconsin to the. Ann 10, i, pp 458-464
Huronian. See, also, Algokian.
Hyatt (A.), administrative report for 1889-90. Ann 11, i, pp 97-100
Hyatt (A.), administrative report for 1890-91. Ann 12, i, pp 111-112
Hydrography of the arid regions of the United States. Ann 10, i, pp 36, 78-90; Ann 11, ii, pp 1-110; Ann 12, ii, pp 213-361
Hydrography, the basis for a classification of topographic forms. Ann 7, pp 558-564
Hydrography. See, also, Drainage.
Hydronephelite from Litchfield, Maine, description of. Bull 42, pp 31-34
Hydrozoa of the Olenellus zone. Ann 10, i, pp 604-606
Hypersthene, analyses of. Bull 1, p 29
Hypersthene in basalt. Mon xiii, p 157
Hypersthene in dacite. Mon xx, p 369
Hypersthene in pyroxene-andesite. Mon xx, p 336
Hypersthene in rhyolitic pumice. Mon xx, p 381
Hypersthene, methods of isolation of. Bull 1, p 27
Hypersthene-andesite and triclinic pyroxene in anditic rocks. Bull 1, pp 19-38
Hypersthene-andesite from Buffalo peaks, Colorado. Mon xiv, p 354
Hypersthene-andesite from San Francisco mountains, analysis of. Bull 42, p 139
Hypersthene-gabbro in Delaware, description of. Bull 59, pp 10-15
Hypersthene-gabbro near Baltimore, Maryland, description of. Bull 28, pp 18-26
Hypocho. See Archean.
Hypsometry, barometric, a new method of. Ann 2, pp xxxviii-xl, 403-566
Ice age. See Glacial; Pleistocene.
Ice-dau, Pleistocene, of the Ohio. Bull 58, pp 17-38, 76-101
Ice invasions, the great, rock-scorings of. Ann 7, pp 147-248
Iceland, fossil plants of, literature of the. Ann 8, ii, p 830
Iceland, quicksilver deposits in. Mon xiv, pp 24-26
Ichthyornis, description and restoration of. Ann 3, pp 69-83
Idaho, altitudes in. Bull 5, pp 84-86; Bull 72, pp 225; Bull 76
Idaho, boundary lines of, and formation of territory. Bull 13, pp 32, 127
Idaho, Cambrian rocks of, correlation of the. Bull 81, pp 161, 162, 320-323
Idaho, geologic investigations in. Ann 7, p 78
Idaho, geologic maps of, listed. Bull 7, p 170
Idaho, glacial investigations in. Ann 7, pp 178-179, 180

Idaho; irrigation problems along the Bear and Snake rivers. Ann 11, i, pp 238-239

Idaho; irrigation; Snake river drainage. Ann 12, ii, p 344

Idaho; latitude and longitude of Boise, determined. Ann 11, i, p 129; Bull 70

Idaho, minerals of, the useful. MR 1882, pp 770-771; MR 1887, pp 722-724

Idaho; Snake river; reservoirs and canal lines surveyed for irrigation purposes Ann 11, H, pp 190-203

Idaho, tin ore in. MR 1883-84, pp 513

Idaho, topographic work in Ann 11, ii, pp 303-304, 309; Ann 12, i, p 47

Iddings (J. P.), a group of volcanic rocks from the Tewan mountains, New Mexico, and the occurrence of primary quartz in certain basalts. Bull 66

Iddings (J. P.), microscopical petrography of the eruptive rocks of the Eureka district, Nevada. Mon xx, pp 335-406

Iddings (J. P.), Obsidian cliff, Yellowstone national park Ann 7, pp 249-295

Iddings (J. P.), the eruptive rocks of Electric peak and Sepulchre mountain, Yellowstone national park. Ann 12, i, p 569-664

Iddings (J. P.) and Hague (A.), development of crystallization in the igneous rocks of Washoe, Nevada, with notes on the geology of the district. Bull 17

Igneous rocks, assimilation of sedimentary masses by, discussion of the. Mon xi, pp 308-313

Igneous rocks, associated, of the Newark system. Bull 85, pp 66-77

Igneous rocks, classification of, discussion of the. Mon xi, pp 319-321

Igneous rocks, classification of, facts bearing on the, derived from the study of the rocks of Electric peak and Sepulchre mountain, Yellowstone national park. Ann 12, i, p 660-663

Igneous rocks; comparison of Tertiary and Keweenawan eruptives. Mon v, p 436

Igneous rocks, crystallization in the, of Washoe, Nevada, development of. Bull 17

Igneous rocks, crystallization of, physical conditions in relation to. Bull 66, pp 23-29

Igneous rocks; crystallization, unusual course of, in granitic magma. Ann 10, i, p 357

Igneous rocks, decomposition of constituents of, by weathering. Bull 66, pp 213-214

Igneous rocks, decomposition of, in the Mosquito range, Colorado. Mon xi, pp 356

Igneous rocks, decomposition of, in the Washoe district, character of the. Mon xi, pp 72-80, 209-218, 309-372

Igneous rocks; fluid inclusions, secondary origin of. Mon xi, pp 79, 119, 371

Igneous rocks; intrusive masses, contact metamorphism not marked about. Mon xi, p 307

Igneous rocks; intrusive masses, distribution of, in the Rocky mts. Mon xi, p 305

Igneous rocks; intrusive masses; force of intrusion discussed. Mon xi, pp 298-306

Igneous rocks; intrusive masses of the Mosquito range and Leadville district, Colorado. Ann 2, p 226; Mon xi, pp 285-306

Igneous rocks; intrusive masses; traps of New Jersey. Bull 67

Igneous rocks; intrusive masses. See also, Laccolites.

Igneous rocks; magmas considered as solutions. Bull 66, pp 26-29

Igneous rocks, metamorphism of, general discussion of the. Bull 62, pp 34-63

Igneous rocks, mineral composition, gradations in, between members of a group of. Bull 66, pp 17-19
Igneous rocks, nomenclature of; name asperite proposed... Mon xiii, pp 151, 459
Igneous rocks of the Henry mountains, correspondence of the, to rocks of Colorado... Mon xii, pp 305–306, 359–363
Igneous rocks of the Lake Superior district... Bull 86, pp 173–174
Igneous rocks, origin of... Mon xx, pp 267–289
Igneous rocks; origin of massive rocks of California... Mon xiii, pp 164–175
Igneous rocks, petrographical description of, from near Baltimore, Maryland... Bull 28
Igneous rocks, petrographical description of, from Coast ranges of California... Mon xiii, pp 140–164
Igneous rocks, petrographical description of, from Delaware... Bull 59
Igneous rocks, petrographical description of, from Eureka district, Nevada... Bull 28, pp 373–380; Mon xx, pp 218, 335–394
Igneous rocks, petrographical description of, from Henry mts... Mon xii, pp 359–363
Igneous rocks, petrographical description of, from Keweenaw series... Ann 3, pp 101–115; Mon v, pp 34–133
Igneous rocks, petrographical description of, from Leadville district, Colorado... Ann 2, pp 221–224
Igneous rocks, petrographical description of, from Menominee and Marquette regions of Michigan... Bull 62
Igneous rocks, petrographical description of, from Mosquito range, Colorado... Mon xii, pp 74–89, 319–326
Igneous rocks, petrographical description of, from Washoe district, Nevada... Ann 2, pp 297–300
Igneous rocks; relations between gabbro and diorite in Baltimore region... Bull 28, pp 34–49
Igneous rocks; relations of gneiss to granite, in northern Wisconsin... Ann 10, pp 362–364
Igneous rocks; relations of the igneous rocks of Washoe, Nevada... Bull 17
Igneous rocks; relations of the traps of the Newark system, New Jersey... Bull 67
Igneous rocks, relations of, to ore deposits... Mon iii, p 32
Igneous rocks, review of work of Geological Survey upon the... Ann 10, i, pp 45–49
Igneous rocks, soils derived from... Ann 12, i, pp 239–245
Igneous rocks, succession of, in the Coast ranges of California... Mon xiii, pp 221–225
Igneous rocks, succession of, in the Keweenaw series... Mon v, pp 432–436
Igneous rocks, succession of, in the Washoe district, Nev... Mon iii, pp 188–208, 380–338
Igneous rocks, succession of, means of determining the... Mon iii, p 188
Igneous rocks; structural features of the Keweenaw series... Ann 3, pp 116–131; Mon v, pp 134–151
Igneous rocks, structures of, amygdaloidal... Mon v, pp 134–139
Igneous rocks, structures of, columnar, in basalt of volcanic necks... Ann 6, pp 172–174
Igneous rocks, structures of, columnar, in obsidian... Ann 7, p 257
Igneous rocks, structures of, defined... Bull 17, pp 14–15
Igneous rocks, structures of, discussion on the... Mon xii, pp 302–304, 319–321
Igneous rocks, structures of, distinct from those of clastic rocks... Bull 62, p 196
Igneous rocks, structures of, granitoid and porphyritic... Mon xiii, pp 162–164
Igneous rocks, structures of, importance of understanding the... Bull 62, p 196
Igneous rocks, structures of; lamination of acid lavas, cause of... Ann 7, pp 260, 285
Igneous rocks, structures of; lithophysae, origin of... Ann 7, pp 279–290
Igneous rocks, structures of; micropegmatite (granophyre) in relation to spherulites... Ann 7, pp 274–276
Igneous rocks, structures of; poikilitic... Bull 62, pp 78, 79, 185, 196
Igneous rocks, structures of; spherulites, character and origin of... Ann 7, pp 262–264, 276–278
Igneous rocks, structures of, transitions in the... Bull 17
Igneous rocks; traps in the Triassic formation of the Connecticut valley......Ann 7, pp 462-468

Igneous rocks. See, also, Eruptive rocks; Lava; Rocks.

Iles (M. W.), lead slags.....................................MR 1883-84, pp 440-462

Illinois, altitudes in............................Bull 5, pp 87-94; Bull 72, p 205; Bull 76

Illinois; artesian wells at Rockford.. Ann 11, p 262

Illinois, boundary lines of, and formation of from territory northwest of Ohio river....................................Bull 13, pp 28, 29, 113

Illinois; clays from Henry county, analyses of.............Bull 27, pp 60-67

Illinois; fulgurite from Whiteside county, analysis of..............Bull 42, p 140

Illinois, geologic and paleontologic investigations in......Ann 5, pp 21, 23; Ann 6, p 35; Ann 7, p 84; Ann 8, p 142; Ann 10, p 293; Ann 11, p 75; Ann 12, p 88

Illinois, geologic maps of, listed.. Bull 7, pp 89, 90, 91, 92

Illinois, glacial investigations in..................Ann 3, pp 322-323, 331; Ann 7, p 157

Illinois, lead from, statistics of..............................Ann 2, p xxvii; MR 1882, pp 312; MR 1883-84, pp 416, 426; MR 1885, p 218

Illinois, lime production of..............................MR 1886, p 555

Illinois; limestone from Cook county, analysis of......MR 1889-90, p 300

Illinois, limestone production of..............................MR 1891, pp 464, 465

Illinois, mineral springs of.................................Bull 32, pp 142-144; MR 1883-84, p 981; MR 1886, p 537; MR 1886, p 715; MR 1887, p 683; MR 1888, p 526; MR 1889-90, p 526; MR 1891, pp 603, 605

Illinois, mining laws of..MR 1886, pp 750-759

Illinois, rocks in, classification of..................Bull 80, pp 159-163

Illinois, Tertiary deposits in.................................Bull 83, pp 73, 83

Illinois, topographic work in..............................Ann 11, p 39; Ann 12, p 29

Illinois; the driftless area of the upper Mississippi valley......Ann 6, pp 199-222

Illinois; the glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois..........................Bull 58

Illinois; water from a spring at M'Leansborough, analysis of.............Bull 60, p 172

Inclusion in diorite from near Peekskill, New York, analysis of.... Bull 80, p 158
Incrustations from Nevada, analyses of............................ Bull 27, pp 69-70
Independence lake, California, surveyed as a reservoir site.. Ann 11, ii, pp 174-175, 181
India, Cambrian rocks of .. Bull 81, p 378
India, coal area and output of, compared with those of other countries... MR 1882, p 5; MR 1885, p 11; MR 1886, p 233; MR 1887, p 189
India, diamond mines of .. MR 1887, p 569
India, fossil plants of, literature of the.................:...... Ann 8, ii, pp 793-796
India, irrigation in.. Bull 92, pp 85-94
Indian territory, altitudes in.. Bull 5, p 104; Bull 76
Indian territory; Choctaw coal fields, description of the.. MR 1889-90, pp 207-214
Indian territory, Coal measures of, columnar section of the......MR 1889-90, p 212
Indian territory, coke in the, manufacture of.................. MR 1883-84, p 164;
Indian territory, Cretaceous rocks of......................... Bull 82
Indian territory, fossils from...................................... Ann 8, ii, p 898
Indiana, coal area and statistics of......................... Bull 13, pp 28, 29, 111, 112
Indiana, clay, brick, and pottery industry of.......... MR 1882, pp 467, 471; MR 1883-84, pp 696, 701; MR 1885, pp 416, 421; MR 1886, pp 568, 575;
MR 1887, pp 535, 537, 547; MR 1888, pp 599, 566; MR 1891, p 510
Indiana, geologic and paleontologic investigations in......Ann 5, pp 21, 23; Ann 6, pp 81, 89-92; Mon xvi, pp 27, 31, 37, 60, 87, 193, 200, 206, 209, 210, 217, 218, 223
Indiana, geologic and paleontologic investigations in... Ann 5, pp 21, 23; Ann 6, pp 81, 89-92; Mon xvi, pp 27, 31, 37, 60, 87, 193, 200, 206, 209, 210, 217, 218, 223
Indiana, geologic maps of, listed............................... Bull 7, pp 50, 82, 87, 88
Indiana, geologic section of northern............................ MR 1888, p 505
Indiana, geologic structure of.......................... Ann 11, i, pp 623-633
Indiana, geologic maps of, listed............................... Bull 7, pp 50, 82, 87, 88
Indiana, iron and steel from, statistics of...........MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, p 252; MR 1885, pp 182, 184, 186; MR 1886, p 18; MR 1887, p 11; MR 1888, pp 14, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 54, 55, 61
Indiana, lime production of......MR 1887, p 533; MR 1888, p 555; MR 1889-90, p 392
Indiana; limestone from Adams, Howard, and Lawrence counties, analyses of...MR 1889-90, pp 392-393
Indiana, limestone production of.. Bull 42, p 140
Indiana, limestone from Bedford, analysis of... Bull 32, pp 134-141; MR 1883-84, p 981; MR 1885, p 537; MR 1886, p 716; MR 1887, p 683; MR 1888, p 626; MR 1889-90, p 526; MR 1891, p 603, 605
Indiana, minerals of, the useful...MR 1882, pp 679-681; MR 1887, pp 727-730
Indiana, natural gas field of...Ann 11, i, pp 579-742
Indiana, petroleum production of...MR 1891, pp 405, 407, 433-434
Indiana, rock formations of...Bull 80, p 139
Indiana, sandstone production of...MR 1891, pp 461, 462
Indiana; the glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois..Bull 58
Indiana; the Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana..Ann 8, ii, pp 475-662
Indiana, whetstone quarries in..MR 1886, pp 592-593
Indiana and Ohio, limestones from, analyses of......................................Bull 60, pp 160-162
Induration of sandstones by enlargement of quartz fragments.................Bull 8, pp 15-17
Induration of sandstones by weathering..Bull 8, pp 12, 16, 42, 49
Infusorial earth, analyses of..MR 1883, p 479; MR 1889-84, p 721; MR 1886, p 587
Infusorial earth and bog iron ore in swamps......................................Ann 10, i, pp 305-307
Inheritance by soils from rocks..Ann 12, i, pp 300-306
Insects, fossil, a classed and annotated bibliography of......................Bull 69
Insects, fossil, geological distribution of.....................................Bull 31, pp 110-111
Insects, fossil, history and distribution of...................................Bull 31, pp 102-113
Insects, fossil, including myriapods and arachnids, systematic review of our present knowledge of..Bull 31
Insects, fossil, index to the known Cenozoic, of the world.........................Bull 71, pp 237-754
Insects, fossil, index to the known Mesozoic, of the world........................Bull 71, pp 98-237
Insects, fossil, index to the known Paleozoic, of the world........................Bull 71, pp 9-98
Insects, fossil, systematic review of our present knowledge of............................Bull 31, pp 32-101
Insects of special interest from Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah...Bull 93
Intrigrowth of hornblende and pyroxene in glassy rocks..........................Ann 12, i, pp 610-617
Intrusive igneous rocks, distribution of, in the Rocky mountains............Mon XII, p 305
Intrusive igneous rocks; force of intrusion..Mon XII, pp 298-300
Intrusive igneous rocks of Electric peak, Yellowstone nat. park...........Ann 12, i, pp 582-632
Intrusive igneous rocks of the Mosquito range and Leadville district, Colorado...Ann 2, p. 226; Mon XII, pp 295-306
Intrusive igneous rocks; traps of New Jersey.......................................Bull 67
Inundated lands in the several states, approximate areas of......................Ann 10, i, p 311
Invertebrate paleontology of the Eocene..Bull 83
Invertebrate paleontology of the Neocene..Bull 84
Invertebrate paleontology of the Newark system..................................Bull 85
Invertebrates, fossil; a bibliography of Paleozoic Crustacea from 1698 to 1889...Bull 63
Invertebrates, fossil; a classified and annotated bibliography of fossil insects. Bull 69
Invertebrates, fossil; a review of the fossil Ostreidae of N. A. Ann 4, pp 273-430
Invertebrates, fossil; Brachiopoda and Lamellibranchiata of the Raritan clays and greensand marls of New Jersey. Mon ix, pp 253-264
Invertebrates, fossil; list of the species in the Raritan clays and greensand marls of New Jersey. Mon xv, pp 253-264
Invertebrates, fossil; Cretaceous Mollusca from Vancouver, Canada. Bull 51, pp 33-48
Invertebrates, fossil, from the Pacific coast. Bull 51
Invertebrates, fossil; Gastropoda and Cephalopoda of the Raritan clays and greensand marls of New Jersey. Mon xvi
Invertebrates, fossil; historical geology of the quicksilver belt of California; lists of fossils. Mon xiii, pp 170-225
Invertebrates, fossil; index to the known fossil insects of the world, including myriapods and arachnids. Bull 71
Invertebrates, fossil, list of Cambrian, for the Eureka district. Mon viii, pp 289-299
Invertebrates, fossil, list of Carboniferous, for the Eureka district. Mon vii, pp 279-291
Invertebrates, fossil, list of Devonian, for the Eureka district. Mon viii, pp 274-278
Invertebrates, fossil, list of lower Silurian, for the Eureka district. Mon viii, pp 270-273
Invertebrates, fossil; lists of species of the upper Devonian, of the Genesee section, New York. Bull 41, pp 31-102
Invertebrates, fossil; marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America. Bull 18
Invertebrates, fossil; Mesozoic Mollusca from the southern coast of Alaska. Bull 51, pp 64-70
Invertebrates, fossil; new Cretaceous fossils from California. Bull 22
Invertebrates, fossil; new Mollusca from the Chico-tejon series of California. Bull 51, pp 11-27
Invertebrates, fossil; notes on the Mesozoic and Cenozoic paleontology of California. Bull 15
Invertebrates, fossil, of California, which have been identified with eastern species. Bull 15, pp 27-29
Invertebrates, fossil, of the St. John formation contained in the Hartt collection at Cornell University. Bull 10, pp 9-42
Invertebrates, fossil, of the Shasta group. Bull 15, pp 18-22
Invertebrates, fossil; on Mesozoic fossils. Bull 4
Invertebrates, fossil; on the Cambrian faunas of North America. Bull 10; Bull 30
Invertebrates, fossil, on the fresh-water, of the North American Jurassic. Bull 29
Invertebrates, fossil; on the higher Devonian faunas of Ontario county, New York. Bull 16
Invertebrates, fossil; on the relation of the Laramie Molluscan fauna to that of the succeeding fresh-water Eocene. Bull 34
Invertebrates, fossil; remarks on the genus Aucella of California. Mon xiii, pp 226-232
Invertebrates, fossil; stratigraphy of the bituminous coal field of Pennsylvania, Ohio, and West Virginia. Bull 65
Invertebrates, fossil; systematic review of our present knowledge of fossil insects, including myriapods and arachnids. Bull 31
Invertebrates, fossil; table of distribution of the middle Cambrian fauna. Bull 30, pp 45-48
Invertebrates, fossil; Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers; species mentioned. Bull 43
Invertebrates, fossil; the butterflies of Florissant, Colorado. Ann 8, i, pp 433-474
Invertebrates, fossil; the fauna of the lower Cambrian or Olenellus zone. Ann 10, i, pp 509-763
Invertebrates, fossil; the geology of Nantucket; lists of species. Bull 53, pp 34-38
Invertebrates, fossil; the Molluscan fauna of the Puget group. Bull 51, pp 49-63
Invertebrates, fossil; the present condition of knowledge of the geology of Texas; species mentioned. Bull 45
Invertebrates, fossil; the Texan Permian and its Mezozoic types of fossils, with description of species. Bull 77
Invertebrates, fossil and recent; list of marine Mollusca between cape Hatteras and cape Roque. Bull 24
Invertebrates, fossil and recent; on the Quaternary and recent Mollusca of the Great basin. Bull 11, pp 13-49
Iodine, statistics of. MR 1883-84, pp 854-858; MR 1885, pp 488-490
Iodine, bromine, and chlorine, the indirect estimation of, by the electrolysis of their silver salts, with experiments on the convertible of the silver salts by the action of alkaline haloids. Bull 42, pp 89-93
Iowa, altitudes in. Ann 5, pp 105-112; Bull 72, pp 195, 201, 214-217; Bull 76
Iowa; artesian wells at Dubuque. Ann 11, i, p 263
Iowa, boundary lines of, and formation of state. Bull 13, pp 31, 117-118
Iowa, brick industry of. MR 1887, pp 535, 538; MR 1888, pp 559-560
Iowa, Cambrian rocks of. Bull 81, pp 187-188
Iowa, clay industry of. MR 1891, p 514
Iowa, Cretaceous rocks in. Bull 82, pp 142, 165
Iowa; driftless area of the upper Mississippi valley. Ann 6, pp 199-322
Iowa, formations of northeastern. Ann 11, i, p 234
Iowa, fossils from. Ann 8, i, p 895; Mon xvi, pp 62-63, 68, 174, 208
Iowa, geologic and paleontologic investigations in. Ann 5, p 20; Ann 6, p 31; Ann 7, pp 80, 157; Ann 8, i, p 143; Ann 9, pp 106, 108-109; Ann 10, i, pp 148-149; Ann 11, i, p 104
Iowa, geologic maps of, listed. Bull 7, pp 89, 90, 91, 92
Iowa, gypsum production of. MR 1891, pp 580, 581
Iowa, iron and steel from, statistics of. MR 1886, p 18;
MR 1887, pp 11, 47-48; MR 1888, p 14
Iowa, lime production of. MR 1887, p 533; MR 1888, p 555
Iowa, limestone production of. MR 1891, pp 464, 466
Iowa, meteorite from, description and analysis of. Bull 78, pp 95-97
MR 1883-84, p 982; MR 1885, p 537; MR 1886, p 716; MR 1887, p 684; MR 1888, p 627; MR 1889-90, p 527; MR 1891, pp 603, 605
Iowa, minerals of, the useful. MR 1882, pp 681-682; MR 1887, pp 731-732
Iowa, Pleistocene history of northeastern. Ann 11, i, pp 189-577
Iowa, rocks in, classification of the. Bull 80, pp 139-140, 146, 153, 166
Iowa, sandstone production of. MR 1891, pp 461-462
Iowa, topographic work in. Ann 9, p 57;
Ann 10, i, pp 93-94; Ann 11, i, p 38; Ann 12, i, p 29
Iowa; water from artesian wells at Story city, analyses of. Bull 42, p 148
Ireland, Cambrian rocks of ... Bull 81, p 377
Ireland, fossil plants of, literature of the Ann 8, II, pp 687-689
Ireland oolite compared with Kentucky limestone MR 1880-90, p 395
Ireland. See, also, Great Britain.
Iridium, bibliography of ... MR 1883-84, pp 588-591
Iridium and platinum, statistics of MR 1882, pp 442-444;
MR 1883-84, pp 576-591; MR 1885, pp 367-369; MR 1886, pp 222-223;
MR 1887, pp 142-143; MR 1888, pp 165-167; MR 1889-90, pp 143-144
Iron and manganese ores, analyses of Bull 55, pp 85-87;
Bull 60, pp 164-169; Bull 64, pp 51-53
Iron and steel, analyses of .. Bull 55, p 88
Iron and steel from Gruson armor plate and Krupp shell, analyses of Bull 55, pp 87-88
Iron and steel in the United States, the manufacture of MR 1883-84, pp 246-257; MR 1885, pp 180-195
Iron and steel in the United States, twenty years of progress in the manu­facture of .. MR 1891, pp 47-73
Iron and steel industries of the United States in 1887 and 1888 MR 1887, pp 10-27
Iron and steel industries of the United States in 1888 and 1889 MR 1888, pp 12-32
Iron and steel industries of the U. S. in 1889, 1890, and 1891 MR 1889-90, pp 10-22
Iron and steel, prices of, for twenty years MR 1891, pp 71-72
Iron and titanium, a note on the separation of Bull 27, pp 16-26
Iron-bearing carbonates of the Penokee district, analyses of Mon xix, p 192
Iron-bearing member of the Penokee series, origin of the Ann 10, i, pp 393-402; Mon xix, pp 245-260
Iron-bearing member of the Penokee series, petrographical character of the Ann 10, i, pp 380-393; Mon xix, pp 190-198, 200-245
Iron bisulphite, typical composition of MR 1885, p 515
Iron carbonates, cherty, origin of Ann 10, i, p 395
Iron-carburets, electrical and magnetic properties of the Bull 14; Bull 27, pp 30-50
Iron-carburets, physical characteristics of the Ann 4, pp 53-59; Bull 35
Iron, coal, etc., statistics of .. Ann 1, pp 72-73; Ann 2, pp xxvi-xxxi
Iron industry, the American, from its beginning in 1619 to 1886 MR 1886, pp 23-38
Iron mica from Pike's peak ... Bull 55, pp 17-18
Iron ore and its products ... MR 1882, pp 108-144
Iron ore, brown, from near Timonium, Maryland, analysis of Bull 27, p 72
Iron ore, brown, from Randolph county, W. Va., analyses of Bull 27, pp 72-73
Iron ore from Iron mountain, Missouri, composition of MR 1889-90, p 47
Iron ore, magnetic, from near Bozeman, Montana, analysis of Bull 9, p 17
Iron-ore mining in 1887 .. MR 1887, pp 30-57
Iron-ore supply for twenty years, outputs of prominent sources of .. MR 1891, p 41
Iron ores, action of water in the formation of Ann 10, i, pp 415-417
Iron ores from Louisiana, analyses of Bull 42, pp 144-145
Iron ores from West Virginia, analyses of Bull 90, p 74
Iron ores, Gogebic, analyses of Mon xix, p 90-91
Iron ores in the United States .. MR 1883-84, pp 267-281
Iron ores of Alabama in their geological relations MR 1882, pp 149-161
Iron, ores of, from various localities, analyses of Bull 78, pp 125-127
Iron ores of the lake Superior region, origin of the Bull 86, pp 170-173
Iron ores of Wisconsin and Michigan Ann 10, i, pp 409-422
Iron, separation of, in rock analyses Bull 78, pp 87-90
Iron sows or salamanders, analyses of Mon xii, p 723
Iron trade, the American, in 1886 MR 1886, pp 11-22
Iron. See, also, Steel.
Irons, two new meteoric, and an iron of doubtful nature.......... Bull 42, pp 94-97
Irrigated areas in the arid region of the United States, map showing Ann 11, ii, pp ii-iii
Irrigated areas in the United States, table of, by states Ann 11, ii, p 205
Irrigation; arid region of United States, location of, and cause of aridity Ann 12, ii, pp 219-220
Irrigation as affecting humidity Ann 12, ii, p 234
Irrigation by means of artesian wells...... Ann 5, pp 148-150; Ann 11, ii, pp 257-278
Irrigation; canal lines to divert water from Snake river in Idaho Ann 11, ii, pp 190-200
Irrigation; drainage basins, classification of Ann 12, ii, pp 232-234
Irrigation; floods, relative amount, time, and intensity of Ann 12, ii, pp 227-230
Irrigation; hydrography of the arid regions of the United States.......... Ann 10, ii, pp 36, 78-90; Ann 11, ii, pp 1-110; Ann 12, ii, pp 213-361
Irrigation in arid region of United States, amount of land redeemable by Ann 11, ii, pp 203-205
Irrigation in India.. Ann 12, ii, pp 363-561
Irrigation in India, list of authors of works on Ann 12, ii, pp 371-373
Irrigation, increase of land values by Ann 11, ii, p 252
Irrigation; interdistrict, interstate, and international problems and their solution Ann 11, ii, pp 252-257
Irrigation literature; a list of books, pamphlets, and articles on irrigation and allied subjects.. Ann 11, ii, pp 315-388
Irrigation of the arid lands, considerations touching the problem of the Ann 10, ii, pp 1-16, 29-33
Irrigation; rainfall and river flow, relation of Ann 12, ii, pp 230-231
Irrigation; river measurements, index map of. Ann 12, ii, pp 222-223
Irrigation; selection and segregation of lands, importance of, to the settlement of the best lands Ann 11, ii, pp 251, 287-289
Irrigation, storage of water for purposes of Ann 12, ii, pp 224-226
Irrigation survey, (first) annual report of director on, for 1888-89. . Ann 10, ii, pp 1-65
Irrigation survey, (second) annual report of director on, for 1889-90......... Ann 11, ii, pp 1-388
Irrigation survey, (third) annual report of director on, for 1890-91.. Ann 12, ii, pp 1-576
Irrigation survey law establishing the Ann 10, ii, p 38
Irrigation survey, plans, methods, underlying principles, and operations of the Ann 10, ii, pp 33-48; Ann 11, ii, pp 278-287; Ann 12, ii
Irrigation survey, preliminary report on the (reprint of) Ann 10, ii, pp 15-29
Irving (R. D.), administrative report for 1882-83 Ann 4, pp 28-34
Irving (R. D.), administrative report for 1883-84.................. Ann 5, pp 24-28
Irving (R. D.), administrative report for 1884-85.................. Ann 6, pp 40-48
Irving (R. D.), administrative report for 1885-86.................. Ann 7, pp 68-76
Irving (R. D.), administrative report for 1886-87 Ann 8, ii, pp 132-141
Irving (R. D.), Archean formations of the northwestern states Ann 5, pp 175-242
Irving (R. D.), classification of early Cambrian and pre-Cambrian.. Ann 7, pp 365-454
Irving (R. D.), copper-bearing rocks of Lake Superior............. Ann 3, pp 89-188; Mon v
Irving (R. D.), death and biographic sketch of Ann 9, pp 38-42, 79
Irving (R. D.), introduction to Williams's "Greenstone-schist areas of the Menominee and Marquette regions of Michigan" Bull 62, pp 11-30

Irving (R. D.) and Chamberlin (T. C.), observations on the junction between the Eastern sandstone and the Keweenaw series on Keweenaw point, lake Superior ... Bull 23

Irving (R. D.) and Van Hise (C. R.), secondary enlargements of mineral fragments in certain rocks ... Bull 8

Irving (R. D.) and Van Hise (C. R.), the Penokee iron-bearing series of Michigan and Wisconsin .. Ann 10, I, pp 341-507; Mon xix

Isometrics of liquids .. Bull 96, pp 33-62

Italy, antimony production of ... MR 1883-84, p 646

Italy, coal output of, compared with that of other countries MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 206; MR 1891, p 73

Italy, copper production of ... MR 1883-84, p 356; MR 1885, p 228; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1889-90, p 73; MR 1891, pp 100, 103

Italy, fossil plants of, literature of the Ann 8, n, pp 707-716

Italy, gold and silver production of, compared with that of other countries ... MR 1883-84, pp 319-320

Italy, iron and steel production of, compared with that of other countries ... MR 1882, p 109; MR 1883-84, p 257; MR 1886, p 211; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, p 21; MR 1891, p 73

Italy, lead production of .. MR 1883-84, p 434; MR 1885, pp 264, 269-270

Italy, manganese production of .. MR 1886, pp 202-203; MR 1887, p 161; MR 1889-90, p 130

Italy, mining law of .. MR 1883-84, p 999

Italy, quicksilver mines and production of Mon xiii, pp 5-6, 14, 33-36; MR 1888, p 106; MR 1891, pp 123-124

Italy, sulphur production of ... MR 1882, p 578; MR 1883-84, p 868; MR 1885, p 500; MR 1889-90, pp 515-517

Italy, tin production of .. MR 1883-84, p 618

Italy, zinc production of .. MR 1882, p 358

Jackson beds of Mississippi and Louisiana Bull 83, pp 68-69, 76

Jackson-Vicksburg limestone .. Ann 12, I, pp 412-413

Jacksonboro limestone of Georgia Bull 84, pp 83-84

Jade, analyses of ... Bull 60, pp 123-127

Jade and pectolite from Alaska, analyses of Bull 9, pp 9-10

Japan, antimony mines of ... MR 1883-84, p 649

Japan, coal output of, compared with that of other countries MR 1882, p 5; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189

Japan, copper production of .. MR 1883-84, p 356; MR 1885, p 229; MR 1886, p 128; MR 1887, p 88; MR 1888, p 73; MR 1889-90, p 74; MR 1891, pp 101, 102

Japan, fossil plants of, literature of the Ann 8, n, pp 788-790

Japan, gold and silver production of, compared with that of other countries ... MR 1883-84, p 319, 320

Japan, natural gas in .. MR 1888, pp 511-512

Japan, petroleum fields in ... MR 1888, pp 474-475

Japan, quicksilver deposits in .. Mon xiii, p 47

Japan, tin production of .. MR 1883-84, p 623

Jarosite from Tintic mining district, Utah Bull 20, pp 86-88

Java, fossil plants of, literature of the Ann 8, n, pp 809-806

Jefferson river basin, hydrography of Ann 11, n, pp 40-41

Jemez river, New Mexico, irrigation possibilities along the ... Ann 12, I, pp 274-275

Jenney (W. P.), administrative report for 1889-90 Ann 11, I, pp 80-81

Jenney (W. P.), administrative report for 1890-91 Ann 12, I, p 90

John Day group of rocks of Oregon Bull 84, pp 281-282
Johnson (L. C.), administrative report for 1882-83 Ann 4, pp 48-50
Johnson (L. C.), administrative report for 1885-86 Ann 7, pp 103-104
Johnson (L. C.), administrative report for 1886-87 Ann 8, i, pp 165-166
Johnson (L. C.), administrative report for 1887-88 Ann 9, pp 110-111
Johnson (L. C.), the iron regions of northern Louisiana and eastern Texas. See p 323 of this bulletin.

Johnson (L. C.) and Smith (E. A.), Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers Bull 43

Joint planes of cape Ann district, Massachusetts Ann 9, pp 583-588, 597-602

Joints and jointing in the Lahontan beds Mon xi, pp 132, 162-163

Joints in the Bóuneville beds Mon i, pp 211-213

Jurassic. See Jura-trias.

Jura-trias and associated traps of the New Jersey region Bull 67

Jura-trias area of Virginia, the geology of the Mon vi, pp 1-9

Jura-trias; Ancella in California Mon xiii, pp 226-232

Jura-trias; auriferous slates of the Lassen peak district, Cal ... Ann 8, i, pp 404-407

Jura-trias bitumen deposits Ann 11, i, p 598

Jura-trias flora of North Carolina Mon vi, pp 97-128

Jura-trias; fossil insects of Triassic age found in the Leadville dist. Mon xii, p 71

Jura-trias; fossil Mollusca of North America, nonmarine Ann 3, pp 411-486

Jura-trias fossils from Alaska Bull 4, pp 10-15

Jura-trias fossils from the Texan Permian, types of Bull 77

Jura-trias in California .. Ann 8, ii, pp 972-982; Bull 19

Jura-trias in the region of the Uinta mountains Ann 9, pp 688-689

Jura-trias; Jurassic flora in the older Mesozoic of Virginia and North Carolina Mon vi, pp 92-93, 94, 95, 122-123, 127, 128

Juraptiras; Jurassic, fresh-water invertebrates of the North American Bull 29

Jura-trias; Jurassic nonconformity in the Gunnison region of Col ... Ann 6, pp 64-65

Jura-trias; Jurassic Ostreidae of North America Ann 4, pp 289-290

Jura-trias Mollusca from the southern coast of Alaska Bull 51, pp 64-70

Jura-trias; Newark system, a correlation essay on the Bull 85

Jura-trias; Newark system in the New Jersey region, the relations of the traps of the Bull 67

Jura-trias of Texas .. Bull 45, pp 69-70

Jura-trias of the Grand canyon dist Ann 2, pp 64, 77-83; Mon ii, pp 16, 34-43, 199

Jura-trias; red color of the, origin of the Bull 52

Jura-trias; Rhaetic formation in Virginia Mon xv, pp 34, 58

Jura-trias; Rhaetic of Germany and France and the Triassic of the United States, parallelism of the Mon xiv, pp 10-11, 13

Juras-trias; Rhaetic plants, or those nearly allied to such, from the Mesozoic of Virginia and North Carolina Mon vi

Jura-trias; Trias in southwestern Kansas Bull 57, pp 20-27

Jura-trias; Trias of the Atlantic slope, flora of the Mon xv

Jura-trias; Trias of Virginia and North Carolina and flora therefrom Mon vi, pp 2, 92-93, 95, 100-101, 125-126

Jura-trias; Triassic of the Connecticut valley, structure of the Ann 7, pp 455-490

Jura-trias; Triassic rocks of New Jersey and the Connecticut valley, fossil fishes and plants of the Mon xiv

Jura-trias; Triassic rocks of New Jersey and the Connecticut valley, geological relations and equivalents of the Mon xiv, pp 1-15

Jura-trias system of New Mexico Ann 6, pp 133-136, 184-185

Jura-trias. See, also, Mesozoic.

Kaibab plateau, Grand canyon district, description, structural geology, and evolution of the Ann 2, pp 72, 127-141; Mon ii, pp 10, 183-198
Kainite, analyses of.......................... MR 1883-84, pp 816, 817
Kanab plateau, Grand canyon district, description of the........ Ann 2, pp 70, 72, 217; Mon xi, pp 10, 13, 23
Kanab section, Colorado river........................ Ann 2, p 217; Mon xii, p 57
Kansas, a geological reconnaissance in southwestern............ Bull 57
Kansas, altitudes in.......................... Bull 5, pp 113-119; Bull 76
Kansas, artesian wells of, list of the Ann 11, ii, p 271; Bull 57, pp 13, 30, 48
Kansas, boundary lines of, and formation of territory........ Bullet 13, pp 31, 119
Kansas, coal area and statistics of........................ Ann 2, p xxviii;
Kansas, coke in, the manufacture of........................ MR 1883-84, p 165;
Kansas, Cretaceous rocks of........................ Bull 82, pp 154, 159, 160, 163
Kansas, fossils from Ann 8, ii, pp 899-901; Mon xvii; Bull 77, pp 26, 27, 28, 29
Kansas, geologic and paleontologic investigations in........ Ann 3, p 50;
Ann 5, p 49; Ann 6, pp 32, 72; Ann 7, pp 110-111;
Ann 8, i, pp 169-170; Ann 9, p 104; Ann 10, i, pp 154-155
Kansas, geologic map of, listed.......................... Bull 7, p 137
Kansas, gypsum production of.......................... MR 1891, pp 580, 581
Kansas, iron and steel from, statistics of.................. MR 1882, pp 120, 125, 133, 135, 136, 137; MR 1885, pp 184, 185
Kansas; latitude and longitude of Spearville, determined... Ann 11, i, p 129; Bull 70
Kansas; latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico Bull 49
Kansas, lead from, statistics of........................ Ann 2, xxviii; MR 1882, p 312;
MR 1883-84, pp 416, 426-427; MR 1885, p 248; MR 1886, p 147; MR 1887, p 110
Kansas; limestone from Cowley county, analysis of........ MR 1889-90, p 394
Kansas; limestone from Joln, analysis of.................. Bull 78, p 124
Kansas; limestone production of.......................... MR 1891, pp 464, 466
Kansas; marl from Trego county, analysis of.................. Bull 27, p 71
Kansas; meteoric stone from Washington county, description and analysis of.......................... Bull 90, pp 45-46
Kansas, meteorite from, description and analysis of........ Bull 78, p 94
Kansas, minerals of, the useful........ MR 1882, pp 682-684; MR 1887, p 732-733
Kansas, Neocene beds of.......................... Bull 84, pp 299-301
Kansas; salt from Hutchinson, analysis of.................. Bull 60, p 171
Kansas, salt from, statistics of........................ MR 1882, pp 532-534; MR 1887, p 622;
MR 1888, pp 597-598, 607-609; MR 1889-90, pp 482, 488; MR 1891, p 572
Kansas, sandstone production of.......................... MR 1891, p 461, 462
Kansas, topographic work in.......................... Ann 6, p 11; Ann 7, pp 53-54, 112; Ann 8, i, p 103; Ann 9, p 56; Ann 10, i, p 93; Ann 11, i, p 99; Ann 12, i, pp 29-30, 47
Kansas, zinc and zinc works in, statistics of........ Ann 2, pp 320, 382; MR 1883-84, p 476; MR 1885, p 273; MR 1886, pp 154, 156; MR 1887, p 113; MR 1888, p 92; MR 1889-90, p 88
Kansas and Colorado, Arkansas river basin in, irrigation problems relating to the Ann 11, ii, pp 210-214
Kansas and Nebraska, the Permian problem in.. Bull 80, pp 193-212
Kaolin from Aiken, South Carolina, analysis of... Bull 27, p 63
Kaolin from Arkansas, Alabama, and Georgia, analyses of.................................. Bull 78, p 120;
MR 1891, p 517
Kaolin from the Waterfall mine, Gunnison county, Colorado, description and
analysis of.. Bull 60, p 136
Kaolin, residual or rock.. MR 1891, pp 484-486
Kaolinite from San Juan county, Colorado, description and chemical compo
sition of... Bull 20, pp 97-99
Kaolinite in the Eureka vein... Bull 20, pp 67-68
Kaolinization, experiments on... Mon iii, pp 290-308, 397-400
Kaolinization hypothesis to account for the heat of the Comstock lode........ Ann 2, pp 312-313, 325-330; Mon iii, pp 216, 231-237, 388-389
Kaolinization, thermal effect of.. Ann 2, pp 325-330
Kaweah river, California, hydrography of... Ann 12, ii, p 320
Kearsarge group of rocks of New Hampshire... Bull 86, pp 333-355
Keeler (J. E.), earthquakes in California in 1869.. Bull 68
Keewatin series of rocks of the Rainy lake region....................................... Bull 86, pp 65-67, 162-167
Kent (W.), gold and silver, statistics of... MR 1889-90, pp 48-55
Kentucky, altitudes in... Bull 5, pp 120-124; Bull 76
Kentucky, asphaltum or bituminous rock production of............................. MR 1891, p 452
Kentucky, boundary lines of, and admission of state.................................... Bull 13, pp 30, 109-110
Kentucky, brick industry of.. MR 1887, pp 500, 509
Kentucky, building stone from, statistics of... MR 1882, p 451; MR 1887, p 516;
MR 1888, p 540; MR 1889-90, pp 373, 395-396; MR 1891, pp 461, 462, 464, 466
Kentucky, cement manufacture in... MR 1887, p 527; MR 1888, p 551;
MR 1889-90, p 461; MR 1891, p 532
Kentucky, coal area and statistics of... Ann 2, p xxviii;
MR 1882, pp 56-58; MR 1883-84, pp 12, 47-49; MR 1885, pp 11, 32; MR 1886,
pp 225, 239, 270-272; MR 1887, pp 169, 171, 256-263; MR 1888, pp 169,
171, 276-280; MR 1889-90, pp 146, 219-221; MR 1891, pp 150, 247-255,
Kentucky, coke in, the manufacture of... MR 1883-84, pp 166-168;
MR 1885, pp 80, 91-92; MR 1886, pp 378, 384, 398-401; MR 1887, pp 383,
389, 401-405; MR 1888, pp 395, 400, 410-411; MR 1891, pp 360-361, 366, 381
Kentucky, Eocene deposits in.. Bull 83, pp 71-73, 83
Kentucky, fossils from... Ann 8, ii, pp 882-884;
Mon xvi, pp 59, 65, 121, 122, 129, 171, 197, 202
Kentucky, geologic and paleontologic investigations in.............................. Ann 6, pp 35, 36;
Ann 11, i, pp 75, 104; Ann 12, i, pp 88, 107
Kentucky, geologic maps of, listed... Bull 7, pp 107, 108, 109, 110, 112, 168
Kentucky; glacial boundary in western Pennsylvania, Ohio, Kentucky, Indi
ana, and Illinois.. Bull 58
Kentucky, iron and steel from, statistics of.. Ann 2, p xxviii;
MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp
252, 278, 279; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 96; MR 1887,
p 11; MR 1888, pp 14, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 27, 61
Kentucky, lime production of.. MR 1887, p 533
Kentucky; limestone from Bowling Green, compared with oolite from Ire
land... MR 1889-90, p 395
Kentucky, limestone production of... MR 1891, pp 464, 465
Kentucky, marl deposits in... MR 1886, p 620
Kentucky, mineral springs of ... Bull 32, pp 106-118;
MR 1883-84, p 982; MR 1883, p 538; MR 1886, p 716; MR 1887,
p 684; MR 1888, p 627; MR 1889-90, p 527; MR 1891, pp 603, 605
Kentucky, minerals, of, the useful... MR 1882, pp 684-686; MR 1887, pp 733-735

Bull. 100—26
Kentucky, natural-gas localities and statistics ofMR 1887, pp 489-492;
MR 1888, pp 506-509; MR 1881, p 438
Kentucky; peridotite of Elliott county Bull 38; Bull 42, pp 136-137
Kentucky, petroleum in, localities and statistics ofMR 1882, pp 189, 216;
MR 1883-84, p 216; MR 1885, p 147; MR 1888, p 463; MR
1889-90, pp 292, 350-353; MR 1891, pp 405, 407, 434-435
Kentucky; phosphatic limestones of Bull 46, pp 116-117
Kentucky, salt from, statistics of MR 1882, pp 532-534; MR 1891, p 572
Kentucky, sandstone production of MR 1891, pp 461, 462
Kentucky, topographic work in Ann 4, pp 13-15;
Ann 6, p 9; Ann 7, p 51; Ann 8, t, p 102; Ann 9, p 54,
55; Ann 10, t, p 91; Ann 11, t, p 37; Ann 12, t, p 27
Kentucky; water from near Frankfort, analysis of Bull 64, p 57
Keratophyr from Marblehead neck, Massachusetts, analysis of Bull 78, p 121
Kerguelen land, silicified wood from Ann 8, 11, p 817
Kern river, California, hydrography of Ann 12, 11, p 319
Kerr (W. C.), the minor metals of North Carolina MR 1882, pp 659-661
Keweenaw series on Keweenaw point, lake Superior, the junction between
the Eastern sandstone and the
Bull 23
Keweenawan rocks of lake Superior, chronologic list of works that embrace
references to the Mon v, pp 14-23, 431-432
Keweenawan rocks of the lake Superior basin, extent and general nature of
the Ann 3, pp 93-188; Mon v, pp 24-409; Bull 86, pp 160-162
Keweenawan. See, also, Algonkian.
King (C.), administrative report for 1880-81 Ann 2, pp 44-46
King (C.), administrative report for 1881-82 Ann 3, pp 3-9
King (C.), quoted, on glaciers of mount Shasta Ann 5, pp 329-331
King (C.), quoted, on the Comstock lode Mon m, pp 24-26
King (C.), production of precious metals in the United States Ann 2, pp 341-401
King (C.), report as director for 1879-80 Ann 1, pp 3-79
King (C.), resignation of, from directorship Ann 2, p xi
Kings river, California, hydrography of Ann 12, t, p 320
Kingston group of rocks of New Brunswick Bull 86, pp 232-238
MR 1888, pp 43-77; MR 1889-90, pp 56-77; MR 1891, pp 81-102
MR 1888, pp 79-91; MR 1889-90, pp 78-87; MR 1891, pp 103-110
Kirchhoff (C.), jr., the copper industry of the United States MR 1882, pp 213-257;
MR 1883-84, pp 322-374; MR 1885, pp 208-243
Kirchhoff (C.), jr., the lead industry of the United States MR 1882, pp 306-323;
MR 1883-84, pp 411-440; MR 1885, pp 244-271
Kirchhoff (C.), jr, the zinc industry of the United States MR 1882, pp 346-358;
MR 1883-84, pp 474-491; MR 1885, pp 272-283
Knowlton (F. H.), fossil wood and lignite of the Potomac formation Bull 56
Knowlton (F. H.), Lesquereux's "Flora of the Dakota group," edited by Mon xviii
Kotschubeite from California Bull 61, pp 27-30
Kowak clays of Alaska Bull 84, pp 265-268
Kübel (S. J.), administrative report for 1889-90 Ann 11, t, p 134-136
Kübel (S. J.), administrative report for 1890-91 Ann 12, t, p 138-140
Kunz (G. F.), American gems and precious stones, statistics of MR 1882,
pp 483-499; MR 1883-84, pp 723-782; MR 1885, pp 437-444;
MR 1886, pp 595-605; MR 1887, pp 530-579; MR 1888, pp
580-585; MR 1889-90, pp 445-458; MR 1891, pp 539-551
Kyanite from Clip, Arizona, analysis of Bull 78, p 120
Labradorian system of rocks in New Hampshire

Laccolites and intrusive sheets, discussion on

Laccolites in the Mosquito range, Colorado, occurrence of

Lacustral history of Mono basin, California

Lacustral sediments, color of

Lafayette formation of Virginia, North Carolina, South Carolina, Georgia, Alabama, Mississippi, Louisiana, and Texas, the features, history, etc., of

Lagrange group of Tennessee and Kentucky

Lahontan basin, analyses of clays from the

Lahontan basin, analyses of waters of lakes and rivers of the

Lahontan beds, volcanic dust from the, analysis of

Lahontan, lake, chemical deposits of

Lahontan, lake, crystallographic study of the thinolite of

Lake basins in relation to climate

Lake basins, the formation of

Lake Bonneville, contributions to the history of

Lake Bonneville, Molluscan fauna of

Lake Bonneville, sediments of, analysis of the

Lake Lahontan, chemical deposits of

Lake Lahontan, crystallographic study of the thinolite of

Lake Lahontan, geological history of

Lake Mono, California, analysis of water of

Lake Mono, California, deposits of

Lake Mono, California, old shorelines of

Lake shores, topographic features of

Lake Superior basin, geological maps of the

Lake Superior, copper-bearing rocks of

Lake Superior, fluctuations of, from 1870 to 1888

Lake Superior sandstone

Lake Superior synclinal

Lake Superior. See, also, Michigan; Minnesota; Wisconsin. Lake Tahoe as a reservoir site for irrigation purposes

Lake Tahoe, water of, analysis of the

Lake water, composition of

Lakes, Eocene, of Wyoming and Utah

Lakes, freshening of, by desiccation

Lakes in the Great basin, chemistry of

Lakes, inclosed, analyses of the waters of

Lakes, Quaternary, of the Great basin, sketch of the

Lakes, soda, in Nevada

Lamellibranchiata; description of certain aberrant forms of the Chamidae from the Cretaceous rocks of Texas

Lamellibranchiata, description of species of, from the middle Cambrian of North America
Lamellibranchiata, fossil, of the Raritan clays and greensand marls of New Jersey .. Mon ix, pp 17-252
Lamellibranchiata from the Carboniferous of the Eureka district, Nevada........... Mon viii, pp 225-254
Lamellibranchiata from the Devonian of the Eureka district, Nevada........... Mon viii, pp 164-182
Lamellibranchiata from the lower Silurian of the Eureka district, Nevada....... Mon viii, pp 76-78
Lamellibranchiata from the Eocene.. Bull 83
Lamellibranchiata of the Great basin ... Ann 7, pp 260, 286
Lamellibranchiates of New Jersey formations recognized in other localities, table showing ... Mon xviii, pp 28-29
Lamellibranchiates, table showing the number of genera and species of, under each family occurring in each of the several marl-beds of New Jersey Mon xviii, pp 24-25
Lamination of acid lavas, cause of... Ann 7, pp 260, 286
Lampblack, specific gravity of.. Bull 42, pp 132-135
Landslides, classification of.. Ann 7, p 631
Landslides, theory of... Mon iii, p 187
Lapidary work, aboriginal, in Oregon... MR 1891, p 551
La Plata mountains, literature of the geology of the......................... Bull 86, pp 323-324
Laramie flora, types of the.. Bull 37
Laramie formation, discussion of the... Ann 6, pp 406-433
Laramie group, historical review of opinion concerning the....................... Ann 6, pp 433-436
Laramie group, nature and extent of the... Ann 6, pp 536-557
Laramie group, recent collections of fossil plants from the Ann 6, pp 536-557
Laramie group, stratigraphy and correlation of the................................. Bull 82, pp 127, 148
Laramie group, synopsis of the flora of the... Ann 6, pp 399-557
Laramie hills, literature of the geology of the... Bull 86, pp 272, 273, 275, 276
Laramie hills. See, also, Black hills.
Laramie Molluscan fauna, the relation of the, to that of the succeeding fresh-water Eocene and other groups................................. Bull 34
Laramie Ostreidae... Ann 4, pp 307-308
Laramie, Senonian, and Eocene plants, table of distribution of, and discus-sion thereof... Ann 6, pp 443-536
Laramie. See, also, Cretaceous.
Lassen peak district, California, geology of the... Ann 8, i, pp 395-432; Bull 33
Latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico ... Bull 49
Laumontite from Table mountain, Colorado, description and chemical com-position of... Bull 20, pp 16-17
Laurentian system, history of the term.. Bull 86, pp 462, 470-474
Laurentian, the original... Bull 86, pp 23-50, 497-498
Laurentian and Huronian, relations of the Keweenawan rocks to the................. Ann 3, pp 156-173
Laurentian and Huronian, relations of the Penokee iron-bearing series of Michig-an and Wisconsin to the.. Ann 10, 1, pp 458-464; Mon xix, pp 45-46, 58, 59-61, 76-77
Laurentian. See, also, Algonkian; Archean.
Lava, as type of, characteristics of the.. Ann 4, p 95
Lava cascades in the Grand canyon of the Colorado................................... Mon ii, pp 85, 92, 106, 116
INDEX.

Lava flows, modern, of Mono valley, California
- Ann 8, 1, pp 372-377
Lava, pahoehoe type of, characteristics of the
- Ann 4, p 95
Lava, peculiar, from a late volcanic eruption in northern California
- Bull 79
Lavas, basaltic, of the Bonneville basin
- Mon 1, pp 319-336
Lavas, common source of
- Mon xx, 257
Lavas from near Lassen peak, California, analyses of
- Bull 60, pp 155-157
Lavas of California not fused sediments
- Mon xiii, p 174
Lavas of the Coast ranges of California
- Mon xiii, pp 145-164
Lavas of the Eureka district, Nevada, chemical composition of
- Mon xx, pp 264-267
Lavas of the Eureka district, Nevada, manner of occurrence of
- Mon xx, pp 243-249
Lavas of the volcanoes of the Hawaiian islands
- Ann 4, pp 84-98, etc.
Lavas, recent, of the San Jose valley, New Mexico
- Ann 6, pp 179-182
Law establishing and extending the United States Geological Survey
- Ann 1, pp 3-4; Ann 4, p xiii

Law establishing the Irrigation Survey
- Ann 10, II, p 38
Law, mining, historical sketch of
- MR 1883-84, pp 988-1004
Law, mining, of the states east of the Mississippi
- MR 1886, pp 722-790
Law; tariff of March 3, 1883, schedules from the
- MR 1882, pp 777-787
Laws governing the printing and distribution of the publications of the Geological Survey
- See pp 11-14 of this bulletin.

Lead, argentiferous, the smelting of, in the far West
- MR 1882, pp 324-345
Lead deposits of Cumberland and Derbyshire, England
- Mon vii, pp 67-68
Lead deposits of Leadville, Colorado
- Mon vii, p 66
Lead deposits of Missouri
- Mon vii, p 66
Lead deposits of Raibl, Corinthia
- Mon vii, pp 68, 102
Lead deposits of the Great basin
- Mon vii, pp 64-65
Lead deposits of the upper Mississippi
- Mon vii, p 65
Lead deposits of upper Silesia
- Mon vii, p 68
Lead deposits of Westphalia
- Mon vii, p 68
Lead, desilverizing, in the U. S., recent improvements in
- MR 1883-84, pp 462-473
Lead in eruptive rocks
- Mon xi, p 578
Lead industry of the United States
- MR 1882, pp 306-323; MR 1883-84, pp 411-434; MR 1885, pp 244-262
Lead of foreign countries, statistics of
Lead-producing regions of the U. S
- MR 1887, pp 103-110; MR 1888, pp 85-89
Lead, production of, in the United States since 1825
- MR 1891, pp 103-104
Lead-silver deposits of Eureka, Nevada
- Mon vii
Lead-silver deposits of the Leadville district, Colorado
- Mon xii, pp 367-584
Lead slags, analyses and chemical properties of
- MR 1883-84, pp 447-460
Lead, statistics of
Leadville, Colorado, and vicinity, geological map of
- Ann 2, pp 240-241
Leadville, Colorado, chemistry of the rocks and ores of
- Mon xii, pp 585-608
Leadville, Colorado, geology and mining industry of
- Ann 1, pp 69-70; Ann 2, pp xx-xxxii, 201-290; Mon xii

Leadville, Colorado, metallurgy of
- Mon xii, pp 609-751
Leadville, Colorado, petrography of
- Mon xii, pp 315-328
Leadville, Colorado, mining district, brief description of the
- Ann 1, pp 17-22
Le Chatelier's researches on cements
- MR 1891, pp 537-538
Lepidolites of Maine, analyses and discussion of the
- Bull 42, pp 11-21
Lepidomelane from Baltimore, analysis and description of
- Bull 55, pp 14-15
Lepidomelane from Maine, analysis and description of
- Bull 42, pp 34-35; Bull 55, pp 15-16
Lesquereux (Leo), biographic sketch of Ann 5, pp 370-377
Lesquereux (Leo), death and biographic sketch of Mon xvii, pp 15-18
Lesquereux (Leo), the flora of the Dakota group. Mon xvii
Lettering and conventional signs adopted for the topographic maps of the
United States .. Ann 6, pp xviii-xix
Levynite from Table mountain, Colorado, general description and chemical
composition of ... Bull 20, pp 37-38
Lherzolite from near Baltimore, Maryland, description of Bull 28, pp 54-59
Liebenerite from Rapid city, South Dakota, analysis of Bull 78, p 120
Library of the Geological Survey, contents of, June 30, 1891........ Ann 12, i, p 143
Life history of lake Lahontan Mon xi, pp 238-249
Life, plant, past and present, of the earth, table and diagrams of, by types
and geologic formations, with discussions thereof........ Ann 5, pp 439-452
Life, vertebrate, in America, section to illustrate Mon x, p 7
Lignite from the Turtle mountains, Dakota, analysis of Bull 27, p 74
Lignite and fossil wood of the Potomac formation Bull 56
Lignites of the great Sioux reservation Bull 21
Lignites. See also, Coal.
Lignite beds of the Aleutian islands Bull 84, pp 242-249
Liguidic deposits, the .. Ann 12, i, pp 415-418
Lime, phosphate of, nature and origin of deposits of Bull 46
Lime, statistics of MR 1882, pp 458-459; MR 1883-84, pp 668-670; MR 1885,
pp 410-413; MR 1886, pp 555-566; MR 1887, pp 532-534; MR 1888, pp 554-557
Limestone, analysis of, from Alabama, Chewacla, Lee county MR 1889-90, p 377
Limestone, analysis of, from California, San Benito county MR 1889-90, p 383
Limestone, analysis of, from Connecticut, Fairfield county MR 1889-90, p 386
Limestone, analysis of, from Illinois, Cook county MR 1889-90, p 390
Limestone, analysis of, from Indiana, various localities Bull 42, p 140;
Bull 60, pp 160-162; MR 1889-90, pp 392, 393
Limestone, analysis of, from Kansas, Cowley county and Iola Bull 78, p 124;
MR 1889-90, p 394
Limestone, analysis of, from Massachusetts, Berkshire county . MR 1889-90, p 403
Limestone, analysis of, from Michigan and Wisconsin, Penokee district. Mon
xix, p 131
Limestone, analysis of, from Missouri, various localities Bull 78, p 125;
MR 1889-90, pp 406-407
Limestone, analysis of, from New Jersey, Hunterdon county .. MR 1889-90, p 410
Limestone, analysis of, from Ohio, various localities Bull 55, p 80;
Bull 60, pp 160-162; MR 1889-90, p 417
Limestone, analysis of, from Pennsylvania, twelve localities in MR 1889-90,
pp 421-424
Limestone, analysis of, from Texas, El Paso county MR 1889-90, p 432
Limestone, analysis of, from Virginia, Lexington Bull 42, p 137
Limestone, analysis of, from West Virginia, below Wheeling Bull 9, p 17
Limestone, analysis of, from Wisconsin, Calumet and Winnebago counties ...MR
1889-90, p 439
Limestone, Carboniferous, of the Mosquito range, Colorado, description and
analyses of .. Mon xii, pp 63-66, 596-598
Limestone, cherty, of the Penokee iron-bearing series, petrographical charac-
ter, origin, etc., of the Ann 10, i, pp 365-369; Mon xix, pp 127-142
Limestone, decay of .. Bull 52, pp 20-25
Limestone from Bowling Green, Kentucky, compared with oolite from Port-
land, Ireland. .. MR 1889-90, p 395
Limestone, production of, in the United States in 1891 MR 1891, pp 464-468
Limestone, white, of Alabama Bull 83, pp 64-66
Limestone, hydraulic, analyses of, from various localities. MR 1891, p 531
Limonite from Canaan mt., West Virginia, analysis of. Bull 9, p 18
Lindgren (W.) and Melville (W. H.), contributions to the mineralogy of the Pacific coast Bull 96
Liquid and solid, the continuity of Bull 96, pp 71-97
Liquids, subsidence of fine solid particles in Bull 36; Bull 60, pp 139-145
Liquids, the compressibility of .. Bull 92
Liquids, the volume thermodynamics of Bull 96
Lists. See Table.
Litchfield, Maine, minerals of.................................. Bull 42, pp 28-38
Literature of various branches of geology, paleontology, etc. See Bibliography.
Litharge, statistics of.. MR 1891, p 598
Lithia micas, researches on the................................ Bull 42, pp 11-27
Lithium, a method for the separation of sodium and potassium from, by the action of amyl alcohol on the chlorides, with some reference to a similar separation of the same from magnesium and calcium Bull 42, pp 73-88
Lithographic stone, analyses of MR 1882, p 596
Lithographic stone from foreign countries. MR 1882, p 596
Lithographic stone, statistics of MR 1883-84, pp 595-596; MR 1886, pp 590-591; MR 1889-90, pp 519-520
Lithoid tufa of Mono valley, California Ann 8, 1, pp 311-315
Lithoidite of Obsidian cliff, Yellowstone national park Ann 7, p 204
Lithological characters of Azoic, Laurentian, Huronian, etc Bull 86, pp 167-170
Lithological characters of the strata in the Grand canyon Mon ii, pp 209-210
Lithological geology of the quicksilver deposits of the Pacific slope Ann 8, ii, pp 967-972
Lithological structure of Obsidian cliff, Yellowstone nat. park Ann 7, pp 257-260
Lithological studies in the Archean of the northwestern states Ann 5, pp 209-242
Lithology and stratigraphy of the Newark system........ Bull 85, pp 32-44
Lithology, importance of, to theory of ore-deposits. Mon iii, p 32
Lithology of the Keweenaw series Ann 8, pp 101-115; Mon v, pp 34-153
Lithology of the Pacific slope.......................... Mon xiii, pp 56-175, 453-460
Lithology of the Washoe district, Nevada Mon iii, pp 32-155, 369-376
Lithology, use of, in establishing correlations. Ann 7, pp 378-390
Lithology, use of, in marking off the grander groups of strata. Ann 7, p 377
Lithology. See, also, Petrography.
Lithophysae in obsidian of Yellowstone national park Ann 7, pp 265-272
Lithophysae, origin of. ... Ann 7, pp 279-290
Littoral erosion, transportation, and deposition Ann 5, pp 80-99; Mon i, pp 29-60; Mon xi, pp 87-99
Lode, horse, etc., discussion of the meaning of Mon vii, pp 115-117
Loess as a brick material MR 1891, p 496
Loess, chemical and mineralogical constitution of Ann 6, pp 281-288
Loess, especially that of the Mississippi valley. Ann 6, pp 278-307
Loess in Kansas ... Bull 57, pp 41-42
Loess in northeastern Iowa and contiguous territory Ann 11, i, pp 435-471
Loess of the lower Mississippi.......................... Ann 12, i, pp 392-393
Loess, origin, features, composition, and distribution of the Ann 6, pp 286-307; Ann 11, i, pp 291-303
Loess, the, and its relation to the glacial drift .. Bull 98, pp 101-104
Loess and clays, analyses of Bull 42, pp 142-144
Loess. See, also, Glacial.
Lone mountain limestone at Eureka, Nevada.....................Mon xx, pp 57-62
Long valley reservoir and irrigation-canal lines, Nev..Ann 11, pp 177-178, 179,182
Longitudes and latitudes of certain points in Missouri, Kansas, and N. M....Bull 49
Lord (E.), Comstock mining and miners................................Mon iv
Lord (E.), report of Tenth Census work..........................Ann 1, pp 48-50
Lord (J. S.), Illinois, coal.......................................MR 1888, pp 242-256
Louisiana, altitudes in..Bull 5, p 125; Bull 76
Louisiana, boundary lines of, and admission of state........Bull 13, pp 30,104-105
Louisiana, brick industry of....................................MR 1887, pp 536, 538; MR 1888, p 560
Louisiana, clay production of..................................MR 1891, p 507
Louisiana, Eocene deposits of..................................Bull 83, pp 75-76, 84
Louisiana, fossils from...Ann 8, pp 880-881
Louisiana, geologic investigations in............................Ann 7, pp 103-104; Ann 12, 1, pp 75
Louisiana, geologic maps of, listed................................Bull 7, p 140
Louisiana, iron-ore deposits of.................................MR 1887, pp 50-51
Louisiana, iron ores from, analyses of..........................Bull 42, pp 144-145
Louisiana; iron regions of northern La. and eastern Texas. See p 323 of this Bull.
Louisiana, marble from, analysis of................................Bull 60, p 160
Louisiana, mineral springs of..................................Bull 32, pp 123-124
Louisiana, minerals of, the useful............................MR 1882, pp 686-687; MR 1887, p 736
Louisiana, Neocene beds of.....................................Bull 84, pp 167-170
Louisiana, purchase of, from France............................Bull 13, pp 19-21, 30-31
Louisiana, salines of..MR 1882, pp 554-565
Louisiana, salt formations and statistics of...MR 1882, pp 532-534, 554-566; MR 1883-
84, pp 827, 841-842; MR 1885, pp 474, 480; MR 1886, pp 628, 636; MR 1887, pp 611, 620-621; MR 1888, pp 597-598, 604; MR 1889-90, pp 482, 488; MR 1891, p 577
Louisiana, sulphur deposits in.................................MR 1885, p 496
Louisiana, topographic work in................................Ann 11, 1, pp 40; Ann 12, 1, pp 24, 28, 31
Loup fork group of S. Dak., Neb., and Colo.................Bull 84, pp 292-293, 296-298, 304-305
Lustre exhibited by sanidine in certain rhyolites..............Bull 20, pp 75-80
Lustre-mottling structure in gabbro (see, also, Poicilitic).......Mon v, p 42
Lycepodines from the Carboniferous basins of southwestern Mo. .Bull 98 pp 109-104
McChesney (J. D.), report of office work for 1879-80..............Ann 1, pp 9-13
McChesney (J. D.), disbursements made during 1886-87........Ann 8, 1, pp 210-257
McChesney (J. D.), disbursements made during 1887-88..........Ann 9, pp 152-199
McChesney (J. D.), disbursements made during 1888-89........Ann 10, 1, pp 199-252
McChesney (J. D.), disbursements made during 1889-90........Ann 11, 1, pp 140-185
McChesney (J. D.), disbursements made during 1890-91........Ann 12, 1, pp 146-210
McGee (W. J.), administrative report for 1883-84..............Ann 5, pp 34-41
McGee (W. J.), administrative report for 1884-85..............Ann 6, pp 25-32
McGee (W. J.), administrative report for 1885-86..............Ann 7, pp 104-111
McGee (W. J.), administrative report for 1886-87..............Ann 8, 1, pp 166-173
McGee (W. J.), administrative report for 1887-88..............Ann 9, pp 102-110
McGee (W. J.), administrative report for 1888-89..............Ann 10, 1, pp 148-158
McGee (W. J.), administrative report for 1889-90..............Ann 11, 1, pp 65-70
McGee (W. J.), administrative report for 1890-91..............Ann 12, 1, pp 70-77
McGee (W. J.), geology of the head of Chesapeake bay.........Ann 7, pp 537-646
McGee (W. J.), investigations relating to the Charleston earthquake........Ann 9, pp 209, 298-299
McGee (W. J.), map showing the areal geology of the United States (preliminary compilation)........Ann 5, cover pocket, and pp xxviii-xxx, 36-38
McGee (W. J.), rock gas and related bitumens..................Ann 11, 1, pp 589-616
McGee (W. J.), the Lafayette formation........................Ann 12, 1, pp 347-521
McGee (W. J.), the Pleistocene history of northeastern Iowa...Ann 11, 1, pp 189-577
McKinley (C.), account of the Charleston earthquake..........Ann 9, pp 212-225
Macrostructural metamorphism of massive rocks.................Bull 62, pp 43-46, 201-204
INDEX.

WARMAN, J.

409

Madeira, fossil plants of, literature of the.......................... Ann 8, ii, p 818
Madison river basin, hydrography of the.......................... Ann 11, ii, pp 39-40, 94
Magnas, molten, considered as solutions.......................... Bull 66, pp 26-29
Magnas of eruption, two, in the Eureka district, Nevada........ MR 1886, pp 695, 697
Magnesium, analyses of.. Bull 42, pp 73-88
Magnesium, statistics of... Bull 86, pp 694-698
Magnesia, analyses of.. MR 1886, pp 695, 697
Magnetic and electrical properties of the iron carbures... Bull 14
Magnetite and hematite, occurrence of, in the Penokee iron-bearing rocks Ann 10, 1, p 391
Magnetization, effect of, on the viscousity and the rigidity of iron and of steel... Bull 73, pp 105-119
Magnetization, influence of hardness on................................ Batt 14, pp 111-150
Magnetization, thermoelectric effect of................................ Batt 14, pp 104-110
Mailloux (C. O.), electrolysis in the metallurgy of copper, lead, zinc, and other metals... Batt 18, pp 627-658
Maine; allanite from Topsham, description and analysis of........ Bull 9, pp 10-11
Maine, altitudes in.. Bull 5, pp 126-128; Bull 76
Maine, boundary lines of.. Bull 13, pp 32-40
Maine, brick industry of.. Bull 32, pp 127, 128
Maine, building stone from, statistics of.......................... Bull 1882, pp 326-329; Bull 1883, pp 329-332; Bull 1884, pp 332-335
Maine, Cambrian rocks of.. Bull 81, pp 111-115
Maine, Cambrian rocks of.. Bull 81, pp 111-115
Maine, calcium, analyses of....................................... Bull 60, pp 111-115
Maine, chemical analysis of.. Bull 25, pp 127-130
Maine, chemistry of... Bull 25, pp 127-130
Maine, climatic influences on...................................... Bull 25, pp 127-130
Maine, coal industry of... Bull 25, pp 127-130
Maine, coal mines of... Bull 25, pp 127-130
Maine, coal production of... Bull 25, pp 127-130
Maine, copper from, statistics of................................. Ann 2, pp 385-388; Bull 1882, pp 326-329; Bull 1883, pp 329-332; Bull 1884, pp 332-335
Maine, damourite from Stoneham, description and analysis of........ Bull 9, pp 11
Maine, damourite from Stoneham, description and analysis of........ Bull 9, pp 11
Maine, dissolved and calcined coal from.................................. Bull 25, pp 127-130
Maine, geologic and paleontologic investigations in........ Ann 6, pp 19, 36; Ann 7, pp 62, 82, 157; Ann 8, pp 126, 143; Ann 9, pp 71, 77; Ann 10, pp 160; Ann 12, pp 66
Maine, geological maps of, listed.................................. Bull 7, pp 55, 56, 57
Maine, geologic and paleontologic investigations in........ Ann 6, pp 19, 36; Ann 7, pp 62, 82, 157; Ann 8, pp 126, 143; Ann 9, pp 71, 77; Ann 10, pp 160; Ann 12, pp 66
Maine, gold and silver from, statistics of............................ Ann 2, pp 385-388; Bull 1882, pp 326-329; Bull 1883, pp 329-332; Bull 1884, pp 332-335
Maine, granite production of.. Bull 91, pp 457, 458
Maine, iron and steel from, statistics of............................ Ann 2, pp 385-388; Bull 1882, pp 326-329; Bull 1883, pp 329-332; Bull 1884, pp 332-335
Maine, lepidolites of.. Bull 42, pp 11-21
Maine, lime production of... MR 1887, pp 533; MR 1888, pp 555
Maine; Litchfield, the minerals of.................................. Bull 42, pp 28
Maine, mineral springs of... Bull 32, pp 13-16; Bull 1883-84, pp 923; Bull 1885, pp 538; Bull 1886, pp 716; Bull 1887, pp 684; Bull 1888, pp 627; Bull 1889-90, pp 528; Bull 1891, pp 603, 605
Maine, minerals of, the useful.. MR 1882, pp 697-698; MR 1887, pp 736-739
Maine; mount Desert, geology of the island of................ Ann 8, ii, pp 987-1061
Maine; petalite from Peru, description and analysis of........... Bull 60, pp 129
Maine, precious stones mined for in................................ MR 1882, pp 483; MR 1883-84, pp 723-724, 744; MR 1885, pp 437; MR 1886, pp 595
Maine, rocks of... Bull 80, pp 240, 247, 256
Maine; sea-coast swamps of eastern United States.................. Ann 6, pp 353-358
410 PUBLICATIONS OF THE U. S. GEOLOGICAL SURVEY.

Maine, slate production in.....................................MR 1891, pp 472,473
Maine, tin ore in..MR 1883-84, pp 598-599
Maine; topaz from Stoneham, analysis of.....................Bull 27, pp 9-15
Maine, topographic work in.....Ann 10,1, pp 85, 88; Ann 11,1, p 35; Ann 12,1, p 25
Malheur river basin, Oregon, hydrography of................Ann 11,11, pp 87-88, 106
Mammals, fossil, extinction of large.............................Mon x, pp 189-190
Mammals, gigantic, an extinct order of (Dinocerata)...........Ann 5, pp 243-302; Mon x
Mammals of the Eocene in the Rocky mountain region............Ann 5, pp 249-254
Mammoth hot springs, Yellowstone national park, analysis of water from Ann 9,p 639
Mammoth hot springs, Yellowstone national park, geological relations, deposits, etc., of Ann 9, pp 628-650
Man and the soil, action and reaction of............Ann 12,1, pp 329-345
Man; human remains in the auriferous gravels of California....Bull 84, pp 221-222
Man, influence of physiography on..................................Ann 12,1, p 357
Man, interglacial, in Ohio...Bull 58, pp 105-108
Manganese in steel..Bull 25, p 13
Manganese in the manufacture of iron and steel................MR 1886, pp 209-213
Manganese silver ore, analyses of..................MR 1883-84, pp 330-381
Manganese and iron, ores of, analyses of............Bull 55, pp 83-87; Bull 60, pp 164-169; Bull 64, pp 51-53; Bull 78, pp 127-128; MR 1891, pp 134, 135, 137, 140, 144
Manigault (G. E.), account of the Charleston earthquake........Ann 9, pp 226-241
Mangrove swamps ..Ann 10,1, pp 291-295
Manhattan group of rocks in New York...............................Ann 10,1, pp 397
Manitou group of rocks of Hudson bay....................Bull 86, pp 212-213
Mangiferous iron ore of lake Superior, analyses of...........MR 1891, pp 128-129
Mangrove swamps..Ann 10,1, pp 301-305
Manitou group of rocks of Hudson bay..............................Bull 86, pp 212-213
Mangiferous iron ore of lake Superior, analyses of...........MR 1891, pp 128-129
Mangrove swamps..Ann 10,1, pp 301-305
Manitou group of rocks of Hudson bay..............................Bull 86, pp 212-213
Map, geologic, of the United States, plan for the............Ann 8,1, pp 74-76
Map notation and geologic nomenclature, conference of geologists and lithologists on, in January, 1889.............Ann 10,1, pp 56-67
Map, the topographic, of the United States, plan and description of the........Ann 4, pp xii-xxiv; Ann 6, pp xv-xix; Ann 7, pp 3-8
Manganese in steel..Bull 25, p 13
Manganese in the manufacture of iron and steel................MR 1886, pp 209-213
Manganese silver ore, analyses of..................MR 1883-84, pp 330-381
Manganese and iron, ores of, analyses of............Bull 55, pp 83-87; Bull 60, pp 164-169; Bull 64, pp 51-53; Bull 78, pp 127-128; MR 1891, pp 134, 135, 137, 140, 144
Manitou group of rocks of Hudson bay..............................Bull 86, pp 212-213
Manti beds ..Bull 83, pp 141
Map, geologic, of the United States, plan for the............Ann 8,1, pp 74-76
Map notation and geologic nomenclature, conference of geologists and lithologists on, in January, 1889.............Ann 10,1, pp 56-67
Map, the topographic, of the United States, plan and description of the........Ann 4, pp xii-xxiv; Ann 6, pp xv-xix; Ann 7, pp 3-8
Map work in the United States done by national and state organizations and by corporate and private enterprise, a sketch of the........Ann 4, pp xiv-xx
Map work, topographic, reports on........Ann 3, pp xv-xvi; Ann 4, pp xiii-xxiv, 3-16; Ann 5, pp xvii-xx, 3-14; Ann 6, pp xv-xiv, 3-17; Ann 7, pp 3-8, 45-60; Ann 8,1, pp 70-74, 97-122; Ann 9, pp 3-7, 49-69; Ann 10,1, pp 5-9, 83-108
Maps; atlas sheets of the United States prepared by the Geological Survey and engraved to May 20, 1893, list of, by states. See pp 307-320 of this bulletin.
Maps; formulas and tables to facilitate the construction and use of............Bull 50
Maps; geologic folios and sheets. See pp 305-306 of this bulletin.
Maps, geological, of America, a catalogue of the.........Bull 7
Maps, geological (arranged geographically):
Map showing distribution of quicksilver deposits throughout the world........Ann 8,1, pp 969-969
Map, outline, of Europe, showing the comparative thickness and depth of deposition of the Cambrian and lower Silurian rocks in different areas Ann 8,1, pp 566-567
INDEX.

Maps, geological (arranged geographically)—continued.

Map of European Russia, showing the phosphate beds..............Bull 46, p 112
Map, hypothetical, of the North American continent at the beginning of
lower Cambrian time.................... Ann 12, i, pp 546-547; Bull 81, pp 368-369
Map, hypothetical, of the North American continent at the beginning of
lower Silurian (Ordovician) time.......... Ann 12, i, pp 566-567
Map, outline, of North America, with sections illustrating the comparative
thickness of the Cambrian in different provinces........ Ann 8, ii, pp 558-559
Map showing the distribution by geological provinces of the Cambrian
strata as shown by surface outcrops in North America......... Ann 10, i,
pp 510-511; Bull 81, pp 358-359
Map to illustrate the relative amount of sedimentation within the typical
geologic provinces of North America during Cambrian time........ Ann 12, i,
pp 532-533; Bull 81, pp 364-365
Map showing the distribution of Cretaceous formations of North Amer­
ica.. Bull 82, pp 268-269
Map showing the outlines of the known Cretaceous regions of North
America... Bull 82, pp 72-73
Map, geological, of northern Canada............................ Bull 86, pp 210-211
Map, geological, of a portion of southern Canada............... Bull 86, pp 24-25
Map, geological, of New Brunswick, Nova Scotia, and part of Quebec..... Bull
86, pp 224-225
Map, geological, of Newfoundland................................ Bull 86, pp 248-249
Map of the Acadian area of the Newark system................. Bull 85, pp 18-19
Map of the United States exhibiting the present status of knowledge re­
lating to the areal distribution of geologic groups (preliminary com­
piilation).. Ann 5, cover pocket and pp xxviii–xxx, 36–38
Map showing the distribution of the Eocene in the United States...... Bull 83,
pp 146-147
Map showing the known distribution of the Neocene formations in the
United States... Bull 84, pp 178-179
Map showing geographic distribution of fossil plants in the United
States... Ann 8, ii, pp 848-849
Map, general, of the terminal moraine of the second glacial epoch..... Ann 3,
pp 314-315
Map of a portion of the terminal moraine of the second glacial epoch..... Ann 3,
pp 322-323, 346-347, 382-383
Map showing areas occupied by the Newark system............... Bull 83, pp 2-3
Map showing areal distribution of Columbia and Lafayette formations..... Ann
12, i, pocket
Map of the glacial strata of eastern United States............... Ann 7, pp 154-155
Map, general, of the drift of northeastern United States, showing the rela­
tions of the driftless area............................ Ann 6, pp 204-205
Map, geological, of the northeastern states..................... Bull 86, pp 348-349
Map showing glaciated region and Pleistocene water bodies of northern
and eastern half of United States......................... Ann 11, i, pp 188-189
Map, geological, of Mount Desert island, Maine................ Ann 8, ii, pp 1060-1061
Map showing the Quaternary deposits of Mount Desert island, Maine..... Ann 8,
ii, pp 984-995
Map, geological, of Cape Ann, Massachusetts, showing distribution of
dikes, etc....................................... Ann 3, pp 610-611
Map, geological, of Cape Ann, Massachusetts, showing distribution of
glacial scratches, etc.............................. Ann 9, pp 606-607
Map, geological, of Cape Ann, Massachusetts, showing superficial de­
posits... Ann 9, pp 608-609
Map, geological, of Martha's vineyard, showing substructure........ Ann 7, pp 308-309
Maps, geological (arranged geographically)—continued.

Map of Martha's vineyard, showing the surface geology........ Ann 7, pp 308-309
Map of the island of Nantucket, showing the distribution of glacial and
post-glacial deposits... Bull 53, pp 2-3
Map of Connecticut valley and Southbury areas of the Newark system.... Bull 85, pp 20-21
Map and section of Southbury area, Connecticut valley............... Bull 85, p 82
Map, geological, of Connecticut, Percival's (1842), modification of a por-
tion of.. Ann 7, pp 462-463
Map of Rockland county, N. Y., showing geologic formations...... Bull 67, p 40
Map of the New York-Virginia and other Newark areas........ Bull 85, pp 20-21
Map, geological, of the greater part of New Jersey........... Mon ix, pocket
Map and sections showing relations of Graniton trap to Palisade trap,
New Jersey... Bull 67, p 54
Map of a portion of northeastern New Jersey, showing the relations of the
Watchung traps... Bull 67, pp 16-17
Map of Flemington, New Jersey, and vicinity, showing the extent and
position of the three trap masses............................. Bull 67, p 65
Map of Rocky hill, Ten mile run mountain, Lawrence brook trap and
vicinity, New Jersey.. Bull 67, p 60
Map of the New Germantown trap region, New Jersey........ Bull 67, p 36
Map of the region adjacent to the New Vernon trap, Long hill, and the
inner side of the terminal hook of the second Watchung mountain, New
Jersey.. Bull 67, pp 34-35
Map of the region near Arlington and the Schuyler copper mine, north of
Newark, New Jersey, showing traps............................. Bull 67, p 57
Map showing the relations of the Palisade trap north and northeast of
Hoboken, New Jersey.. Bull 67, p 45
Map, stereogrammic, and sections of Cushetunk and Round mountains
and vicinity, New Jersey, showing trap........................ Bull 67, p 63
Map, stereogrammic, and sections of Snake hill, New Jersey........ Bull 67, p 55
Map, geological, of part of northern New Jersey and adjacent portions of
New York and Pennsylvania................................. Bull 67, pp 2-3; Bull 83, pp 24-25
Map of the Delaware river region, New Jersey and Pennsylvania, show-
ing trap, etc.. Bull 67, pp 62-63
Map of gabbro area in Delaware................................ Bull 59, pp 6-7
Map, geological, of the Baltimore gabbro-area................... Bull 28, pp 73-74
Map of the head of Chesapeake bay, showing the distribution of the Co-
lumbia formation.. Ann 7, pp 552-553
Map of the Richmond area of the Newark system................. Bull 85, pp 22-23
Map of the Newark areas in southwestern Va. and N. C........ Bull 85, pp 22-23
Map, geological, of the southeastern states.................... Bull 86, pp 416-417
Map of a portion of North Carolina, showing phosphate beds... Bull 46, pp 70-71
Map of a portion of South Carolina, showing phosphate beds... Bull 46, pp 60-61
Map, geologic, of Florida.................................... Bull 84, pp 156-157
Map of Alabama, showing the distribution of Cenozoic and Mesozoic strata.. Bull 43, pp 134-135
Map of Alabama, showing the distribution of Eocene strata........ Bull 83, pp 60-61
Map showing the general distribution of the upper and middle Carbonif-
erous formations in the bituminous coal regions of Pennsylvania, West
Virginia, and Ohio.. Bull 65, pp 2-3
Map of Hamilton county, Ohio, showing situation of glacial terrace in
which paleolith was formed................................. Bull 58, p 106
Map showing glacial boundary in Ohio.......................... Bull 58, p 46
Map, geological, of portions of Ohio and Indiana............... Ann 8, 11, pp 520-521
Map, geologic, of Indiana, showing gas and oil fields........ Ann 11, 1, pp 620-621
Maps, geological (arranged geographically)—continued.

Map showing approximate topography of the Trenton limestone in western Ohio and eastern Indiana Ann 8, ii, pp 548-549
Map, hypsographic, of the Trenton formation in Indiana ... Ann 11, i, pp 618-649
Map of southern Indiana, showing glacial boundary Bull 58, p 65
Map of southern Illinois, showing glacial boundary Bull 58, pp 70-71
Map, preliminary geological, of the Northwest Ann 5, pp 180-181;
 Mon xix, pp xx-1

Map, preliminary geological, of the Northwest (smaller area)......... Ann 10, i, pp 348, 349

Map, geological, of the original Huronian rocks Bull 86, pp 84-35
Map, geological, of the lake Superior basin Ann 8, pp 92-93;
 Mon v, pp 24-25; Bull 86, pp 52-53
Map of the lake Superior basin, designed to show the structure and extent of the Keweenawan trough Ann 3, pp 172-173; Mon v, pp 410-411
Map, geological, of the northwestern coast of lake Superior Ann 3, pp 140-141; Mon v, pp 262-263

Map, geological, of Keweenaw point, Michigan Ann 3, pp 116-117; Mon v, pp 162-163
Map, outline geological, of the Marquette region Bull 62, pp 14-15
Map, geological, of the Porcupine mountains, Michigan Ann 3, pp 132-133; Mon v, pp 208-209
Map, geological, Brooks and Pumpelly’s, of the upper peninsula of Michigan, reproduction of a portion of Mon xix, pp 31-32
Map, geological, of the region between the Ontonagon river, Michigan, and Numakagon lake, Wisconsin Ann 3, pp 138-139; Mon v, pp 224-225
Map, diagrammatic, of drift currents adjacent to the driftless area Ann 6, pp 312-313

Map, geological, of central Wisconsin, designed to indicate the character of the ante-Potsdam land surface Ann 7, pp 404-405
Map, geological, of the driftless region of the upper Mississippi and environs Ann 6, pp 220-221
Map, Quaternary, of the driftless area of the upper Mississippi and environs Ann 6, pp 258-259
Map of the Green bay loop (Wisconsin) of the terminal moraine of the second glacial epoch Ann 3, pp 316-317
Map showing positions of exposures of Keweenawan rocks in the upper St. Croix valley, Wisconsin Mon v, pp 246-247
Map showing glacial flood plain of the Chippewa river Ann 6, pp 308-309
Map, general geological, of the Penokee region Ann 10, i, pp 350-351;
 Mon xix, pp 2-3
Map, geological, of the Penokee-Gogebic iron region Ann 7, pp 422-423
Map of exposures at West branch of Montreal river, Wis. ... Mon xix, pp 178-179
Map, geological, Whittlesey’s, of the Penokee range, reproduction of Mon xix, pp 20-21
Map showing detailed geology in the vicinity of Penokee gap Mon xix, pp 520-521
Map, geological, Barnes and Whitney’s, of region between Agogebic lake and Montreal river, Wis., reproduction of Mon xix, pp 13-14
Map, geological, of Gunflint lake and vicinity, Animikie series Mon xix, pp 522-523
Map of exposures at Potato river, Wisconsin Mon xix, pp 172-173
Map and section showing position of rock exposures at Tyler’s fork, Wis. ... Mon xix, pp 177-178
Map, outline geological, of the Menominee iron region Bull 62, pp 94-25
Map, geological, of Gunflint lake and vicinity, Minnesota Ann 10, i, pp 508-509
Maps, geological (arranged geographically)—continued.

Map, geological, of northeastern Minnesota................... Ann 7, pp 418-419
Map of the upper beaches and deltas of the glacial lake Agassiz.... Bull 39, pp 2-3
Map showing position of the exposures of Keweenawan rocks and Potsdam sandstone along the lower portions of Snake and Kettle rivers, Minnesota Mon v, pp 240-241
Map, geological, of isle Royal and neighboring mainland........... Ann 3, pp 156-157; Mon v, pp 328-329
Map showing regular deformations of northeastern Iowa and contiguous territory...................... Ann 11, i, pp 346-347
Map showing topographic areas of northeastern Iowa, showing drift, loess, and other topography........ Ann 11, i, pp 360-361
Map showing representative paha in northeastern Iowa....Ann 11, i, pp 404-405
Map, tectonic, of northeastern Iowa, showing distribution of ice and water in glacial times........ Ann 11, i, pp 564-565, 566-567, 568-569, 570-571
Map showing principal lakes and rivers of northeastern Iowa during the second ice invasion........ Ann 11, i, pp 576-577
Map showing primeval forests and swamps of northeast Iowa.. Ann 11, i, pocket Map showing indurated formations of northeastern Iowa........ Ann 11, i, pocket Map showing Pleistocene deposits of northeastern Iowa...... Ann 11, i, pocket Map, geological, of part of the great Sioux reservation, Dakota.... Bull 21, at end Map, geological, of southwest Kansas............ Bull 57, pp 2-3
Map, geological, of Leadville and vicinity, Lake county, Colorado...... Ann 2, pp 240-241; Mon xi, atlas sheets xiii, xiv
Map, geological, of Mosquito range Mon xi, atlas sheets vi, vii
Map, geological, of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming........ Ann 9, pp 684-685
Map, geological, of the region of Sepulchre mountain, Yellowstone national park.... Ann 12, i, pp 664-665
Map, geological, of portions of Colorado and New Mexico.... Bull 86, pp 308-309
Map, geological, of portions of Montana, Idaho, Wyoming, and Dakota.... Bull 86, pp 258-259
Map, geological, of northwestern New Mexico........ Ann 6, pp 128-129
Map, geological, of a portion of the Old river bed, Utah...... Mon 1, pp 194-195
Map of a volcanic district near Fillmore, Utah.......... Mon 1, pp 320-321
Map of the mouths of Little and Dry Cottonwood canyons, Utah, showing glacial moraines and faults........ Mon 1, pp 346-347
Map of the Old river bed, showing former connection of Great salt lake with Sevier lake........ Mon 1, pp 182-183
Map of lake Bonneville, showing its extent at the date of the Provo shoreline........ Mon 1, pp 128-129
Map of lake Bonneville, showing lines of recent faulting..... Mon 1, pp 352-353
Map of lake Bonneville, showing local variations of the vertical interval between the Bonneville and Provo shorelines........ Mon 1, pp 372-373
Map of lake Bonneville, showing the deformation of the Bonneville shoreline........ Mon 1, pp 368-369
Map of lake Bonneville, showing the deformation of the Provo shoreline and the position of Great salt lake on its plain.... Mon 1, pp 372-373
Map of lake Bonneville, showing the distribution of basalt.. Mon 1, pp 334-335
Map of lake Bonneville, showing the glaciated districts of the Bonneville basin Mon 1, pp 374-375
Map of lake Bonneville, showing the present hydrographic divisions of the Bonneville basin......... Mon 1, pp 122-123
Map of the outlet of lake Bonneville in Idaho........ Mon 1, pp 174-175
Map of the Great basin and its Quaternary lakes........ Ann 8, i, pp 268-269; Mon xi, pp 6-7; Mon xi, pp xiv-1
Maps, geological (arranged geographically)—continued.

Map of the northwestern part of the Great basin, showing fault lines, etc. .. Ann 4, pp 442-443
Map of the northwestern part of the Great basin, showing Quaternary lakes, etc. ... Ann 4, pp 438-439
Map, geological, of Utah and Nevada Bull 86, pp 286-287
Map of Carson desert, Nevada, showing lake Lahontan beach Mon xi, pp 44-45
Map of lake Lahontan, a Quaternary lake of northwestern Nevada Ann 3, pp 204-205; Mon xi, pocket
Map of lake Lahontan, showing water area and boundary of hydrographic basin ... Mon xi, pp 30-31
Map showing depth of lake Lahontan at highest water stage Mon xi, pp 32-33
Map showing post-Quaternary fault lines in the Lahontan basin Mon xi, pp 274-275
Map showing pre-Quaternary fault lines in the Lahontan basin ... Mon xi, pp 28-29
Map showing water surface of lake Lahontan at the thiolite stage... Mon xi, pp 192-193
Map of Walker lake, Nevada, showing Lahontan beach, etc Mon xi, pp 70-71
Map showing the Mono basin in Quaternary time Ann 8, i, pp 328-329
Map, geological, of the western part of the Plateau province Mon ii, atlas sheet
Map showing the distribution of volcanic areas around the borders of the Plateau country .. Ann 6, pp 118-119
Map, sketch, of the western part of the Plateau province, showing the faults of the Grand canyon district and high plateaus Mon ii, atlas sheet
Map, sketch, showing the distribution of the strata and the eruptive rocks in the western part of the Plateau province Ann 2, pocket
Map, geological, of the Colorado plateau and San Francisco mountains ... Mon ii, atlas sheet xxiii
Map, geological, of Arizona and part of New Mexico Bull 86, pp 326-327
Map of the Uinkaret plateau .. Mon ii, atlas sheets vii, viii
Map, geological, of the Grand canyon in the Kaibab plateau Mon ii, atlas sheet xiii
Map, geological, of the Mesozoic terraces of the Grand canyon district and the southern portions of the high plateaus Mon ii, atlas sheet xxi
Map, geological, of the southern part of the Kaibab plateau Mon ii, atlas sheets xi, xii, xv
Map, geological, showing the Kanab, Kaibab, Paria, and Marble canyon platforms .. Mon ii, atlas sheets xxi, xxiv
Map, geological, showing the southwestern portion of the Mesozoic terraces and the vicinity of the Hurricane fault Mon ii, atlas sheet xx
Map of the Grand canyon platform and the surrounding Mesozoic formations ... Mon ii, pp 28-29
Map, geological, of the Eureka district, Nevada Ann 3, pp 210-211; Mon xx, atlas sheet iv
Map, geological, of Ruby hill, Eureka mining district, Nevada Ann 2, pp 22-23; Mon vii, pp 4-5; Mon xx, pp 116-117
Map, geological, of the Steamboat springs district, Nevada Mon xiii, atlas sheet xiv
Map, geological, of the Washoe district, Nevada Mon iii, atlas sheet iv
Map, geological, of Virginia, Nevada, and immediate vicinity Ann 2, pp 292-293
Map, geological, of a cinder-cone region in northern California ... Bull 79, pp 22-23
Map, geological, of Lassen peak district, California Ann 8, i, pp 406-407
Map, geological, of the Clear lake district, Cal Mon xiii, atlas sheet iii
Map, geological, of the Knoxville district, Cal Mon xiii, atlas sheet v
Map, geological, of the New Almaden district, Cal Mon xiii, atlas sheet vii
Maps, geological (arranged geographically)—continued.

Map, geological, of the New Idria district, Cal............ Mon xiii, atlas sheet vi
Map, geological, of the Sulphur bank district, Cal........ Mon xiii, atlas sheet iv
Map showing morainal embankments of Parker and Bloody canyons, California................................. Ann 8, i, pp 340-341
Map showing the rock formations in the neighborhood of the Great western quicksilver mine, California........ Mon xiii, pp 358-359
Map showing the rock formations in the neighborhood of the Oathill quicksilver mine, California................... Mon xiii, pp 354-355
Map, sketch, showing distribution of quicksilver mines in California... Ann 8, i, pp 366-367
Map of eastern Washington, showing geologic formations........ Bull 40, at end
Map showing the known distribution of the Neocene formations in Alaska................................. Bull 84, pp 268-269
Marble from Georgia, Pickens county, analysis of........ MR 1889-90, p 387
Marble from Louisiana, analysis of.......................... Bull 60, p 160
Marble canyon, Grand canyon district, description of the Ann 2, p 71; Mon ii, p 10
Marcou (J.) and Marcon (J. B.), catalogue of geological maps of America.......................... Bull 7
Margarite from near Gainesville, Georgia, description and analysis of.... Bull 9, p 11
Marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America......................... Bull 18
Marine marshes... Ann 12, i, pp 317-320
Marine Mollusca... Bull 24
Marl, Arcadia, of Florida.. Bull 84, pp 131-132
Marl from Pyramid lake, Nevada, analysis of........................... Bull 9, p 14
Marl from Trego county, Kansas, analysis of................. Bull 27, p 71
Marl of lake Bonneville, composition of...................... Mon i, pp 200-203
Marl, white, of lake Lahontan.................................... Mon xi, pp 149-153
Marls, analyses of... MR 1882, pp 525-526; MR 1886, p 620
Marls, greensand, and Raritan clays of New Jersey, Brachiopoda and Lamel- libranchiata of the.... Mon ix
Marls, greensand, and Raritan clays of New Jersey, Gasteropoda and Cephalo- pada of the................ Mon xviii
Marls, greensand, of N. J., paleontological equivalents of the... Mon xviii, pp 31, 32
Marquette and Menominee regions of Michigan, the greenstone-schist areas of the bears the... Bull 62
Marquette series of lake Superior Mon xix, pp 470-472; Bull 86, pp 189-190
Marsh (O. C.), administrative report for 1882-83............. Ann 4, pp 41-42
Marsh (O. C.), administrative report for 1884-85............. Ann 5, pp 49-50
Marsh (O. C.), administrative report for 1884-85............. Ann 6, pp 71-72
Marsh (O. C.), administrative report for 1885-86............. Ann 7, pp 111-113
Marsh (O. C.), administrative report for 1886-87............... Ann 8, i, pp 173-174
Marsh (O. C.), administrative report for 1887-88................ Ann 9, pp 114-115
Marsh (O. C.), administrative report for 1888-89............. Ann 10, i, pp 158-159
Marsh (O. C.), administrative report for 1889-90............. Ann 11, i, pp 101-102
Marsh (O. C.), administrative report for 1890-91............... Ann 12, i, pp 118-119
Marsh (O. C.), birds with teeth................................ Ann 3, pp 45-88
Marsh (O. C.), Dinocerata, a monograph of an extinct order of gigantic mammals...................................... Mon x
Marshes, marine, formation and fertility of. Ann 12, i, 317-320
Marshes, salt, catalogue of the larger, of New Eng. and Long id. Ann 6, pp 390-398
Marshes, salt-water, process of development of Ann 6, pp 363-373
Marshes. See, also, Swamps.
Martha's vineyard, classification of the strata of Bull 84, pp 35-38
Martha's vineyard, Cretaceous deposits of Bull 82, pp 88-89
Martha's vineyard, geology of. Ann 7, pp 297-360
Martha's vineyard, phosphates of. Bull 46, p 78
Martha's vineyard, surveys of, by H. L. Whiting Ann 7, pp 361-363
Martyn (W.), pyrites, statistics of MR 1883-84, pp 877-905
Maryland, altitudes in Bull 81, pp 133, 289-290
Maryland, Cambrian rocks of............................... Bull 81, pp 133, 289-290
Maryland, chromium industry of MR 1882, p 428; MR 1883-84, p 567; MR 1885, p 358
Maryland, clay production of. MR 1891, p 504
Maryland, coal area and statistics of Ann 2, p xxviii; MR 1882, pp 58-60;
Maryland, Cretaceous deposits of Bull 82, pp 88-89
Maryland; dolomite marble from Cockeysville, analysis of Bull 60, p 193
Maryland, Eocene formations in Bull 83, pp 43-45, 80, 86
Maryland, fossils from Ann 4, pp 309-310, 314; Ann 8, II, pp 870-872
Maryland; gabbros and associated hornblende rocks occurring in the neighbor­ hood of Baltimore. Bull 28
Maryland; gahnite from Montgomery county, analysis of Bull 9, p 9
Maryland, granite production of. MR 1891, pp 457, 459
Maryland; iron ore, brown, from near Timonium, analysis of Bull 27, p 72
Maryland, lime production of. MR 1887, p 533; MR 1888, p 555
Maryland, limestone production of. MR 1891, pp 464, 466
Maryland, marble production of. MR 1891, pp 468-469
Maryland, mineral-springs of. Bull 32, pp 51-53;
MR 1889-90, p 528; MR 1891, pp 603, 605
Maryland, minerals and rocks from, analyses of Bull 64, pp 41-43
Maryland, minerals of the useful. MR 1882, pp 690-693; MR 1887, pp 730-742
Maryland, Neocene beds of. Bull 84, pp 49-55
Maryland, Newark system in Bull 85, pp 20, 85
Maryland, ocher production of. MR 1891, p 595
Maryland; Potomac or younger Mesozoic flora. Mon xv
Maryland, sandstone, Triassic, from near Hancock, analysis of Bull 55, p 80

Bull. 100 — 27
Maryland; serpentine from Harford county, analysis of MR 1889-90, p 400
Maryland, slate production of.. MR 1891, pp 472-473
Maryland, topographic work in Ann 5, p 7; Ann 6, p 8;
Ann 9, pp 52, 55; Ann 12, p 26
Maryland, websterite from, analysis of Bull 78, p 122
Massachusetts, altitudes in .. Bull 5, pp 133-137; Bull 76
Massachusetts; Braintree argillites, fauna of the............... Bull 10, pp 43-49
Massachusetts, boundary lines of, and cession of territory to general government Bull 13, pp 25-26, 47-64
Massachusetts, brick industry of.................. MR 1887, pp 536, 538; MR 1888, pp 560, 566
Massachusetts, building stone from, statistics of MR 1882, pp 453-452;
MR 1887, pp 513, 521; MR 1888, pp 536, 538; MR 1889-90, pp 373, 400-403; MR 1891, pp 457, 459, 461, 462, 464, 466
Massachusetts; Cambrian, literature of the lower.............. Ann 10, i, pp 534-537, 543
Massachusetts, Cambrian rocks in, correlation of the........... Bull 81, pp 72-78, 88-90, 92-94, 268-274, 381
Massachusetts; cape Ann, the geology of......................... Ann 9, pp 529-611
Massachusetts; cape Ann, the iron lithia micas of............... Bull 42, pp 21-27
Massachusetts, clay production of MR 1891, p 502
Massachusetts, copper production of MR 1883, pp 231
Massachusetts; feldspar from Hoosac tunnel, analysis of.......... Bull 55, p 79
Massachusetts; feldspars from Greylock mountain, analyses of........ Bull 55, p 79
Massachusetts; fossil fishes and fossil plants of the Triassic rocks of New Jersey and the Connecticut valley.............. Mon xiv
Massachusetts, fossils from .. Ann 8, i, pp 851-852; Ann 10, i, pp 572-375, 612, 615, 617-622, 624, 631, 637, 660; Bull 10, pp 43-49
Massachusetts, geologic and paleontologic investigations in Ann 6, pp 19, 20, 21, 22, 24, 36; Ann 7, pp 60-61, 63, 84; Ann 8, i, pp 124-125, 126, 127;
Ann 9, pp 71, 72, 75, 117, 122; Ann 10, i, pp 115, 116, 117, 118, 170;
Ann 11, i, pp 62-63, 64, 115; Ann 12, i, pp 54, 67, 69, 120, 121, 126
Massachusetts, geological maps of, listed .. Bull 7, pp 52, 53, 54, 56, 57
Massachusetts, glacial investigations in................. Ann 3, pp 377, 379, 380; Ann 7, i, p 157
Massachusetts; granite from Bradford and Worcester, analyses of MR 1889-90, p 401
Massachusetts, granite production of MR 1891, pp 457-459
Massachusetts, iron and steel found, statistics of................. Ann 2, pp xxviii;
MR 1882, pp 120, 125, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, p 252;
MR 1885, pp 182, 184, 186; MR 1886, pp 17, 42; MR 1887, pp 11, 42;
MR 1888, p 14; MR 1889-90, pp 10, 17; MR 1891, pp 12, 27, 61
Massachusetts; keratophyr from Marblehead neck, analysis of......... Bull 78, p 121
Massachusetts, limestone from Berkshire county, analysis of........ MR 1889-90, p 403
Massachusetts, limestone production of MR 1891, pp 464, 466
Massachusetts, maritime soils from, analyses of................. Bull 27, pp 68-69
Massachusetts, mineral springs of Bull 32, pp 21-23; MR 1883-84, p 982;
MR 1885, p 538; MR 1886, p 717; MR 1887, p 684; MR 1888, p 627;
MR 1889-90, p 528; MR 1891, pp 603, 605
Massachusetts, minerals of, the useful........................... MR 1882, pp 693-695; MR 1887, pp 742-745
Massachusetts; Martha's vineyard, clay, sand, etc., from, analyses of........ Bull 55, pp 89-90
Massachusetts; Martha's vineyard, Cretaceous deposits of........... Bull 82, pp 86-87
Massachusetts; Martha's vineyard, phosphates of Bull 46, p 78
Massachusetts; Martha's vineyard, report on the geology of........ Ann 7, pp 297-363
Massachusetts; Nantucket, the geology of Bull 53
Massachusetts, ocher production of MR 1891, p 595
Massachusetts, pyrites from, statistics of.......................... MR 1883-84, p 878;
MR 1885, p 503; MR 1886, p 654
Massachusetts, rocks of ... Bull 80, pp 35, 253, 255
Massachusetts, salt from, statistics of MR 1882, pp 532-534
Massachusetts; sandstone from Maynard, Worcester, and Kibbe, analyses of MR 1889-90, p 402
Massachusetts, sandstone production of MR 1891, pp 461-462
Massachusetts; sea-coast swamps of eastern United States Ann 6, pp 353-358
Massachusetts; serpentinite from Newburyport, analysis of Bull 27, p 63
Massachusetts surveyed topographically by cooperation of the state Ann 5, p xviii; Ann 6, p 4
Massachusetts; topographic work in Ann 5, pp 3-4;
Ann 6, pp 3-5; Ann 7, pp 46-48; Ann 8, i, pp 98-99; Ann 9, pp 50-51
Massachusetts; Triassic formation of the Connecticut valley, structure of
the ... Ann 7, pp 455-490
Massalongo (Abraio), biographical sketch of Ann 5, pp 379-380
Massive rocks, especially those of Cal., origin of the Mon xiii, pp 164-175, 459
Mattes of Leadville, Colorado, analyses and assays of the Mon xii, pp 723-725
Maxwell's theory of viscosity, tensile, drawn, and other strains in their bear-
ing on ... Bull 94, pp 17-29
Measurements of evaporation .. Ann 11, ii, pp 30-34
Measurements of rainfall ... Ann 11, ii, pp 23-30
Measurements of streams ... Ann 11, ii, pp 2-22
Mechanism of solid viscosity .. Bull 94
Medicine bow range, literature of the geology of the Bull 86, pp 272-277, 504
Melaphyr of the Keweenaw series described Mon v, pp 68-77
Melting-point and pressure of mercury, measurement of the Bull 92, pp 76-77
Melville (W. H.), metacinnabarite from New Almaden, California Bull 78, pp 60-83
Melville (W. H.), mineralogical notes Bull 90, pp 38-40
Melville (W. H.), powellite, a new mineral species Bull 90, pp 34-37
Melville (W. H.) and Hillebrand (W. F.), on the isomorphism and composition
of thorium and uranium sulphates Bull 90, pp 26-33
Melville (W. H.) and Lindgren (W.), contributions to the mineralogy of the
Pacific coast .. Bull 61
Menominee and Marquette regions of Michigan, the greenstone-schist areas of
the ... Bull 62; Bull 86, passim
Merced river, California, hydrography of the Ann 12, ii, p 522
Mercurial deposits of the Pacific slope and elsewhere Mon xiii
Mercuric sulphide, solution and precipitation of Mon xiii, pp 269, 419-437, 474
Mercury, electrical conductivity of, the effect of pressure on the Bull 92, pp 68-77
Mercury. See, also, Quicksilver ..
Meridian-Claiborne deposits .. Ann 12, i, pp 413-415
Merrimack group of rocks in New Hampshire Bull 86, pp 333-355
Mesas in the Plateau country .. Ann 6, p 127
Mesilla valley, N. M., irrigation possibilities and problems in Ann 12, ii, pp 279-281
Mesolite from Table mountain, Colorado, general description and chemical
composition of ... Bull 20, p 35
Mesozoic areas of Virginia, the geology of the Mon vi, pp 1-9
Mesozoic Echinodermata of the United States Bull 97
Mesozoic flora, the older, of Virginia and North Carolina Mon vi
Mesozoic flora, the Potomac or younger Mon xv
Mesozoic fossils from Texas and Alaska Bull 4
Mesozoic mollusca from the southern coast of the Alaskan peninsula.. Bull 51, pp 64-70
Mesozoic strata in California ... Bull 19, pp 9-10, 20-21; Bull 51, pp 11-13
Mesozoic types of fossils from the Texan Permian Bull 77
Mesozoic and Cenozoic paleontology of California Bull 15
Mesozoic. See, also, Cretaceous; Jura-trias.
Metacinnabarite from California Bull 61, pp 22-23
Metacinnabarite from New Almaden, California Bull 78, pp 80-83
Metallurgy and mining of zinc in the United States Bull 82, pp 383-386
Metallurgy of copper ... Bull 26; Bull 82, pp 257-280
Metallurgy of copper, lead, zinc, etc., electrolysis in the... Bull 82, pp 627-658
Metallurgy of nickel ... Bull 82, pp 415-420
Metallurgy of the Eureka ores, Nevada Mon vii, pp 158-164
Metallurgy of the Leadville region, Colorado Ann 2, pp 285-290; Mon xiv, pp 600-751
Metals in ores, source of ... Mon xiv, p 571
Metals, precious, discovery of the, in Colorado Mon vii, pp 7-10
Metals, precious, of Eureka, Nevada Mon vii
Metals, precious, statistics of the Mon vii
Metamorphic origin of schistose and massive rocks discussed Ann 10, i, pp 302-364; Mon xix, pp 107-111, 116-126
Metamorphic rocks compared with the Archean Mon xiii, pp 138,458
Metamorphic rocks; crystalline schists, metasomatic origin of ... Ann 10, i, p 434
Metamorphic rocks; hornblende-gneiss Ann 10, i, pp 360-362
Metamorphic rocks; mica schists derived from grey wacke Ann 10, i, pp 431-434
Metamorphic rocks of the Animikie series Ann 10, i, pp 402-408
Metamorphic rocks of the Coast ranges of California Mon xiii, pp 56-59, 63,74-87, 181-182, 455-458; Bull 19, pp 7-12
Metamorphic rocks; phyanite in the Coast ranges of Cal Mon xiii, pp 105-108
Metamorphic rocks; porphyroids of Michigan Bull 62, pp 119-122
Metamorphic rocks; quartzite, Huronian, genesis of Bull 8, pp 48-52
Metamorphic rocks, review of work of Geological Survey upon the.. Ann 10, i, pp 49-51
Metamorphic rocks of the Washoe district, Nevada Mon iii, pp 190,380
Metamorphic rocks; schistose structure, pressure in relation to ... Bull 59, p 43
Metamorphic rocks, structures in, produced by dynamic action ... Bull 62, pp 206-208
Metamorph, volcanic, and Cretaceous rocks of northern California, general distribution of the Bull 33, pp 18-19
Metamorphism; alteration of diorite to gabbro near Baltimore, Md.. Bull 28, pp 33-49
Metamorphism; alteration of topaz to damourite at Stonemount, Me.. Bull 27, pp 9-15
Metamorphism; contact phenomena of traps of N. J Bull 67, pp 25-31, 34, 45-53
Metamorphism; derivation of serpentine and other rocks near Baltimore, Maryland Bull 28, pp 50-59
Metamorphism, dynamic, in eruptive rocks, a contribution to the subject of. Bull 62
Metamorphism in relation to depth Ann 10, i, pp 457-458
Metamorphism in the Coast ranges of California Mon xiii, pp 56-59, 63,74-87; Bull 19, pp 7-8
Metamorphism in the Coast ranges of California, conditions attending.... Mon xiii, pp 129-159
Metamorphism in the Coast ranges of California, eras of Mon xiii, pp 131,187, 210
Metamorphism in the Coast ranges of California, proofs of Mon xiii, p 129
Metamorphism in the Huronian of the northwestern states Ann 5, pp 241-242
Metamorphism in the Penokee district Mon xiii, pp 65, 467-468
Metamorphism in the Sierra nevada Mon xiii, pp 208-213
Metamorphism, macrostructural, of massive rocks Bull 62, pp 46-50, 204-208
Metamorphism, microstructural, of massive rocks Bull 62, pp 43-46, 201-204
Metamorphism, mineralogical, of massive rocks Bull 62, pp 50–63, 208–217
Metamorphism; new structures produced by dynamic action Bull 62, pp 206–208
Metamorphism not marked about intrusive rocks of Mosquito range, Colo-
rado .. Mon xi, p 307
Metamorphism of Archean igneous rocks in Delaware Bull 59
Metamorphism of country rock Mon xiii, pp 392–394
Metamorphism of eruptive rocks Bull 28, pp 9–11
Metamorphism of igneous rocks of Yellowstone park Ann 12, i, pp 658–659
Metamorphism of massive rocks, three types of Bull 62, p 43
Metamorphism, products of Bull 62, pp 206–213
Metamorphism resulting in soils Ann 12, pp 250–258
Metamorphism; secondary enlargements of minerals in rocks Bull 8
Metamorphism; subaerial decay of rocks Bull 52, pp 12–34, 39–42
Metamorphism; the gneiss-dunyte contacts of Corundum hill, North Carolina, in relation to the origin of corundum Bull 42, pp 45–63
Metamorphism; the greenstone-schist areas of the Menominee and Marquette regions of Michigan Bull 62, pp 64–217
Metamorphism, value of the microscope in the study of Bull 62, pp 34–40
Metasomatie origin of crystal line schists Ann 10, i, p 434
Meteoric changes, diversity of Ann 2, pp 410–411
Meteoric irons, two new, and an iron of doubtful nature Bull 42, pp 94–97
Meteorite, a new, from Mexico Bull 64, pp 29–30
Meteorites from Johnson county, Ark., and Allen county, Ky ... Bull 55, pp 63–64
Meteorites, seven new, descriptions and analyses of Bull 78, pp 91–97
Meteorites, six new, descriptions and analyses of Bull 60, pp 103–104
Meteorites, two new, descriptions and analyses of Bull 90, pp 45–46
Meteorology of India .. Ann 12, ii, pp 403–404
Meters for stream measurement Ann 11, ii, pp 825–826
Mexico; bismuthinite from Sinaloa, description and analysis of Bull 90, p 40
Mexico, copper production of MR 1883–84, pp 356, 373; MR 1885, p 229;
MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1891, pp 101,102
Mexico, Cretaceous deposits of Bull 82, pp 201–202
Mexico, fossil plants of, literature of the Ann 8, ii, pp 85–86
Mexico, lead production of MR 1883–84, pp 319–320
Mexico, mining law of ... MR 1887, pp 661–671
Mexico, quicksilver ores in Mon xiii, pp 16–19
Mexico, tin deposits of MR 1883–84, pp 623–624
Mexico, a theory of the .. Bull 64, pp 9–19
Mexico, quicksilver ores in Mon xiii, pp 16–19
Mica schist derived from greywacke, Penokee series Ann 10, i, pp 431–434
Micas of cape Ann, Massachusetts Bull 42, pp 21–27
Micas, the lithia, researches on Bull 42, pp 11–27
Micas, vermiculites, and chlorites, on the constitution of certain... Bull 90, pp 11–21
Michigan, altitudes in Bull 5, pp 138-146; Bull 72, p 204; Bull 76
Michigan; Archean formations of the northwestern states Ann 5, pp 175-242
Michigan, boundary lines of, and formation of, from territory northwest of
Ohio river .. Bull 13, pp 28-29,113-114
Michigan, brick industry of MR 1887, pp 536, 538; MR 1888, pp 500-561, 566
Michigan, bromine industry of MR 1885, p 487; MR 1886, p 642;
MR 1887, p 626; MR 1888, p 613; MR 1889-90, p 493; MR 191, p 579
Michigan, building stone from, statistics of... MR 1882, p 451; MR 1888, pp 540, 544;
MR 1889-90, pp 373, 403; MR 1891, pp 461, 462, 464, 466
Michigan, coal area and statistics of Ann 2, p xxviii; MR 1883-84, pp 12, 50-51;
Michigan; copper-bearing rocks of lake Superior, nature, structure, and ex-
tent of the .. Ann 3, pp 93-188; Mon v
MR 1883-84, pp 327, 329, 331-334; MR 1885, pp 210, 211-214;
MR 1886, pp 112, 113-116; MR 1887, pp 69, 70-74; MR 1888,
pp 53, 54-57; MR 1889-90, pp 59-64; MR 1891, pp 83, 85, 86
Michigan, fossils from Ann 8, ii, pp 893-894; Mon xvi, pp 121, 126, 177, 178, 200
Michigan, geologic and paleontologic work in Ann 3, p 20; Ann 4, pp 24-25;
Ann 5, pp 24-25; Ann 6, p 44; Ann 7, p 71; Ann 8, i, pp 135, 137-138; Ann 9,
pp 72, 80-81, 85; Ann 10, i, pp 123-124; Ann 11, i, p 78; Ann 12, i, pp 85-86
Michigan, geologic maps of, listed Bull 7, pp 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Michigan, glacial investigations in Ann 3, pp 322-337; Ann 7, p 157
Michigan, gold and silver statistics of Ann 2, p 385; MR 1882, pp 176, 177, 178;
MR 1887, p 59; MR 1888, p 37; MR 1889-90, p 49; MR 1891, pp 75, 76
Michigan, gypsum deposits and industry of MR 1882, p 527; MR 1883-84,
pp 810-811; MR 1885, p 462; MR 1886, p 621; MR 1887,
pp 595, 601; MR 1889-90, p 465; MR 1891, pp 580, 581
Michigan, iron and steel from, statistics of Ann 2, p xxviii; MR 1882,
pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 254-256,
267-268; MR 1885, pp 182, 188; MR 1886, pp 14, 18, 62-72; MR 1887,
pp 11, 16, 34-39; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 17; MR 1891,
pp 12, 16, 54, 55, 61
Michigan, iron-ore mines of, total production to date of the larger... MR 1891, p 16
Michigan, limestone production of MR 1887, p 533; MR 1888, p 555
Michigan, limestone production of MR 1891, pp 464, 466
Michigan, manganese ore in MR 1885, p 346; MR 1886,
pp 188-190; MR 1887, p 151; MR 1888, pp 124, 128; MR 1891, p 135
Michigan, Menominee and Marquette regions of, the greenstone-schist areas of
the .. Bull 62
Michigan, mineral springs of Bull 32, pp 145-150; MR 1883-84, p 982;
MR 1885, p 538; MR 1886, p 717; MR 1887, p 684; MR 1888,
p 627; MR 1889-90, p 529; MR 1891, pp 603, 606
Michigan, minerals of, the useful MR 1882, pp 695-697; MR 1887, pp 745-747
Michigan, natural gas consumption in MR 1891, p 438
Michigan; novaculite from Marquette, analysis of Bull 60, p 151
Michigan; observations on the junction between the Eastern sandstone and the
Keweenaw series on Keweenaw point, lake Superior Bull 23
Michigan; on secondary enlargements of mineral fragments in certain rocks,
mostly from Michigan, Wisconsin, and Minnesota Bull 8
Michigan; on the classification of the early Cambrian and pre-Cambrian for-
mations: a brief discussion of principles, illustrated by examples drawn
mainly from the lake Superior region Ann 7, pp 365-454
Michigan; Penokee iron-bearing series of Michigan and Wisconsin Ann 10, i,
pp 341-508; Mon xix
Michigan, salt-making in...Ann 7, pp 504, 505, 507, 519-521
Michigan, sandstone from, analysis of..Bull 27, p 66
Michigan, sandstone production of...MR 1891, pp 461-462
Michigan, strata in, succession of...Ann 80, pp 41, 175, 177-178
Michigan, topographic work in..Ann 11, i, p 38; Ann 12, i, p 29
Michigan and Wisconsin, rocks from Menominee river, analyses of...........Bull 55, p 81
Micropegmatitic structure in granite-porphyry................................Mon xx, p 344
Micropegmatitic structure in rhyolite..Mon xx, p 377
Microscope, quantitative determination of silver by means of the.............Ann 6, pp 323-352
Microscope, value of the, in the study of metamorphism........................Bull 62, pp 34-36
Microscopic investigation of rocks...Ann 10, i, pp 45-52
Microscopic petrography. See Petrography.
Microscopic studies in the Archean formations of the northwestern states......Ann 5, pp 209-242

Microscopical characters of the rock forming Obsidian cliff, Yellowstone national park..Ann 7, pp 273-279
Microstructural metamorphism of massive rocks................................Bull 62, pp 46-50, 204-208
Middle park beds, Colorado..Bull 83, p 137
Miliolite limestone of Florida...Bull 84, pp 104-105
Mineral, a probably new, from Colorado, description of.........................Ann 20, pp 107-109
Mineral and economic resources of Martha's vineyard..............................Ann 7, pp 353-360
Mineral association of fayalite and lithophyse....................................Ann 7, pp 279-282
Mineral enlargements in rock alteration...Bull 8, pp 37-52
Mineral fragments of certain rocks, secondary enlargement of....................Bull 8
Mineral notes, miscellaneous..Bull 20, pp 89-99
Mineral paints, analyses of..MR 1885, pp 528, 530, 531
Mineral paints, statistics of..MR 1891, pp 595-598
Mineral phosphates; apatites and phosphorites, descriptions of.........................Bull 46, pp 22-30
Mineral resources, general, and lesser metals..Ann 1, p 74
Mineral resources of the West...Ann 11, i, p 210
Mineral, rock, and ore analyses..Bull 9, pp 9-18
Mineral species, new, from Colorado...Bull 20, pp 100-109
Mineral springs of the United States, lists and analyses of the..................Bull 32
Mineral springs of Knoxville district, California.......................................Mon xi, p 281
Mineral springs of Lahontan basin...Mon xi, pp 47-54, 60
Mineral springs, salinity of, in connection with Molluscan life.....................Bull 11, pp 30-38
Mineral statistics of the United States in 1882......................................Ann 4, pp 63-68; MR 1882
Mineral statistics of the United States in 1883-84................................Ann 6, pp 89-92; MR 1883-84
Mineral statistics of the United States in 1885......................................Ann 7, pp 38-39, 131-134; MR 1885
Mineral statistics of the United States in 1886......................................Ann 8, i, pp 85-87, 195-200; MR 1886
Mineral statistics of the United States in 1887......................................Ann 9, pp 27-28, 134-140; MR 1887
Mineral statistics of the United States in 1889-90..................................Ann 11, i, pp 130-131; MR 1889-90
Mineral statistics of the United States in 1891......................................Ann 12, i, pp 129-134; MR 1891
Mineral waters, action of, in formation of ores......................................Mon xi, pp 563
Mineral waters, action of, in silicification..Mon xii, p 137
Mineral waters, analyses of...Ann 8, ii, p 621; Ann 9, pp 639, 673;
Bull 27, pp 75-76; Bull 42, pp 147-149; Bull 55, p 92; Bull 60, pp 171-174
Mineral waters, chemical action of..Mon xii, pp 134-138
Mineral waters, concentrated, treatment of, in analysis............................Bull 47, pp 25-28
Mineral waters, statistics of...MR 1883-84, pp 978-987;
MR 1885, pp 536-543; MR 1886, pp 715-721; MR 1887, pp 680-687;
MR 1888, pp 623-630; MR 1889-90, pp 521-535; MR 1891, pp 601-610
Mineralizing agents, effects of, upon crystallization of igneous magmas...Ann 12, pp 658-659

Mineralogical composition and structure of peridotite of Elliott county, Kentucky Bull 38, pp 10-20

Mineralogical constitution of the loess ...Ann 6, pp 281-283

Mineralogical metamorphism of massive rocks ...Bull 62, pp 50-63, 208-217

Mineralogical metamorphism; progress of alteration of original minerals...Bull 62, pp 214-217

Mineralogical notes ...Bull 55, pp 48-55; Bull 60, pp 129-137

Mineralogical variations in volcanic rocks from Tewan mountains, New Mexico ...Bull 66, pp 17-19

Mineralogy of the Pacific coast, contributions to the ...Bull 61

Mineralogy of the Rocky mountains, contributions to the ...Bull 20

Minerals, alteration of, in Comstock lode ...Mon v, p 20

Minerals, associated rare, from Utah ...Bull 20, pp 83-88

Minerals, certain rare copper, from Utah, notes on ...Bull 55, pp 38-47

Minerals composing lithophysse ...Ann 7, pp 266-272

Minerals, effects of dynamic action on ...Bull 62, pp 205-206

Minerals from the basalt of Table mountain, Golden, Colorado ...Bull 20, pp 13-39

Minerals from the neighborhood of Pike's peak ...Bull 20, pp 40-73

Minerals, new, in Knoxville district, California ...Mon xiii, pp 279-280

Minerals of Eureka district, Nevada ...Mon vii, p 184

Minerals of Litchfield, Maine ...Bull 42, pp 28-38

Minerals of North Carolina, analyses of ...Bull 74, pp 1-85

Minerals of Redington mine, Knoxville district, California ...Mon xiii, pp 284-286

Minerals of Ruby hill, Eureka district, Nevada ...Mon vii, pp 52-59

Minerals of the crystalline metamorphics of the Coast ranges ...Mon xiii, pp 74-87

Minerals of the granite of Wisconsin and Michigan ...Ann 10, i, p 355

Minerals, origin of ...Mon xii, pp 509-584

Minerals, secondary, and their origin ...Bull 62, pp 209-214

Minerals and rocks from Maryland, analyses of ...Bull 64, pp 41-43

Mines, classification of ...Ann 2, p 341

Mining and metallurgy of zinc in the United States ...MR 1882, pp 358-386

Mining and milling on the Comstock lode, Nevada, mechanical appliances used in ...Ann 1, pp 50-52, 72

Mining and miners, Comstock ...Mon iv

Mining, coal-, industry, general view of the ...MR 1882, pp 1-7

Mining geology of Eureka district, Nevada ...Ann 4, pp 221-251; Mon vii

Mining industry, geology and, of Leadville, Colorado ...Ann 2, pp 201-290; Mon xii

Mining law, historical sketch of ...MR 1883-84, pp 988-1004; MR 1886, pp 722-790

Minnesota, altitudes in ...Bull 5, pp 147-154; Bull 72, pp 198-200, 206-214; Bull 76

Minnesota; Archean formations of the northwestern states ...Ann 5, pp 175-242

Minnesota, artesian wells of the Red river valley ...Ann 11, ii, pp 267-268

Minnesota; building stone from, statistics of ...MR 1882, pp 451; MR 1887, p 516; MR 1888, p 540; MR 1889-90, pp 373, 403-405; MR 1891, pp 457, 459, 461, 462, 461, 466

Minnesota, Cambrian rocks of ...Bull 81, pp 181-187, 334

Minnesota, Cambrian rocks of ...MR 1891, p 532

Minnesota, Cambro-Ordovician rocks in, classification of the ...Bull 80, pp 167-168

Minnesota cement, hydraulic, product of ...MR 1891, p 532

Minnesota, clay production of ...MR 1891, p 532

Minnesota; coal discovered in ...MR 1891, p 260

Minnesota; copper-bearing rocks of lake Superior, nature, structure, and extent of the ...Ann 3, pp 99-188; Mon v
Minnesota, Cretaceous rocks in. Bull 82, pp 142, 165
Minnesota; driftless area of the upper Mississippi valley. Ann 6, pp 199–222
Minnesota, feldspars from gabbros from, analyses of. Bull 78, p 122
Minnesota, fossils from. Ann 8, i, p 895
Minnesota, geologic and paleontologic investigations in. Ann 4, pp 30–31; Ann 5, pp 21–26; Ann 6, pp 40–44, 74, 75; Ann 7, pp 69–71, 72, 80, 81; Ann 8, i, pp 135–137, 143; Ann 9, pp 72, 81, 82, 85; Ann 10, i, pp 123, 124, 125, 126; Ann 11, i, pp 75, 76, 104
Minnesota, geologic maps of, listed. Bull 7, pp 89, 91, 92, 93, 96, 97, 98, 101
Minnesota; glacial lake Agassiz, the upper beaches and deltas of the. Bull 39
Minnesota, granite production of. MR 1891, pp 457, 459
Minnesota, lime production of. MR 1887, p 533; MR 1888, p 555
Minnesota, limestone production of. MR 1891, pp 464, 466
Minnesota, mineral springs of. Bull 82, pp 158–159; MR 1891, p 606
Minnesota, minerals of, the useful. MR 1882, pp 697–698; MR 1887, pp 747–749
Minnesota; on secondary enlargements of mineral fragments in certain rocks, mostly from Michigan, Wisconsin, and Minnesota. Bull 8
Minnesota; on the classification of the early Cambrian and pre-Cambrian formations: a brief discussion of principles, illustrated by examples drawn mainly from the lake Superior region. Ann 7, pp 365–454
Minnesota pipestone, red, analysis and tests of. MR 1889–90, p 404
Minnesota; Pigeon point, rocks from, analyses of. Bull 55, pp 81–83
Minnesota, sandstone production of. MR 1891, pp 461, 462
Miocene, boundaries of the. Bull 84, pp 21–22
Miocene, fresh-water, marine Eocene, and other fossil Mollusca of western North America. Bull 18
Miocene in California. Mon xiii, pp 218–219, 461
Miocene time in the Grand canyon district, erosion in. Ann 2, p 67
Miocene. See, also, Neocene.
Mississippi, altitudes in. Bull 5, pp 155–156; Bull 76
Mississippi, boundary lines of, and formation of state. Bull 13, pp 30, 103–104
Mississippi, brick industry of. MR 1887, p 536; MR 1888, p 561
Mississippi, clay production of. MR 1891, p 508
Mississippi, coal, discovery of, in. MR 1891, p 260
Mississippi, fossils from. Ann 4, pp 293, 295, 298, 310, 311, 312; Ann 8, ii, pp 879–880
Mississippi, geologic and paleontologic work in. Ann 4, pp 43, 48–49; Ann 6, p 74; Ann 8, i, p 165; Ann 9, pp 110–111, 122; Ann 10, i, p 157; Ann 11, i, pp 67, 108; Ann 12, i, p 75
Mississippi, geologic maps of, listed. Bull 7, pp 103, 104, 105, 106, 140
Mississippi, iron-ore deposits of. MR 1887, pp 48–49
Mississippi, marl deposits of. MR 1885, p 453; MR 1886, p 618
Mississippi, minerals of, the useful. MR 1882, pp 698–699; MR 1887, pp 749–750
Mississippi, Neocene beds of. Bull 84, pp 160–167
Mississippi; water from a well near Clinton, analysis of. Bull 64, p 60
Mississippi valley, upper, driftless area of the. Ann 6, pp 199–222
Missouri, altitudes in. Bull 5 pp 157–164; Bull 72, p 217; Bull 76
Missouri, barytes industry in, statistics of the MR 1891, p 599
Missouri, boundary lines of, and formation of state Bull 13, pp 30, 116-117
Missouri, building stone from, statistics of.......... MR 1882, p 451; MR 1886, p 441;
MR 1887, p 516; MR 1888, p 540; MR 1889-90, pp 373,405-408
Missouri, Cambrian rocks of Bull 81, pp 199-201, 229,399-341, 385
Missouri, classification of rocks in Bull 80, pp 144-145, 147, 151, 157, 168-170
Missouri, clay, brick, and pottery industry of MR 1882, pp 466,470;
MR 1887, pp 536,538; MR 1888, p 561; MR 1891, pp 511-513
Missouri, coal area and statistics of Ann 2, p xxviii;
MR 1882, pp 60-61; MR 1883-84, pp 12, 51-52; MR 1885, pp 11, 35-36;
MR 1886, pp 225, 230, 280-282; MR 1887, pp 169, 171, 272-275; MR 1888,
Missouri, cobalt deposits in MR 1882, p 421;
MR 1883-84, p 545; MR 1885, pp 362,364; MR 1889-90, p 124
Missouri, coke in, the manufacture of MR 1887, pp 383,389,405;
MR 1888, pp 395,400,411-412; MR 1891, pp 360,366,382
Missouri, copper from, statistics of Ann 2, p xxix;
MR 1882, pp 216, 230; MR 1883-84, pp 329, 342; MR 1885, p 210; MR 1886,
p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83, 84
Missouri, elephants from .. Ann 8, ii, p 906
Missouri, flora of the outlying Carboniferous basins of southwestern Bull 98
Missouri, geologic investigations in Ann 5, p 21; Ann 7, p 78; Ann 9, p 103;
Ann 10, i, pp 124-125; Ann 11, i, pp 59, 75, 80-81; Ann 12, i, pp 56, 62, 88, 90
Missouri, geologic maps of, listed Bull 7, pp 127-131
Missouri, granite production of MR 1891, p 457,459
Missouri, iron and steel from, statistics of Ann 2, p xxviii;
MR 1882, pp 120, 125, 129, 130, 131, 132, 134, 135, 136, 137; MR 1883-84, pp 252,
268-270; MR 1885, pp 182, 184; MR 1886, pp 14, 18, 97-98; MR 1887, pp 11, 16, 46-47;
MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 26, 54, 55, 61
Missouri; iron ore from Iron mountain, composition of MR 1889-90, pp 46-47
Missouri, limestones from localities in, analyses of. Bull 78, p 125;
MR 1889-90, pp 406-407
Missouri, lime production of MR 1888, p 555
Missouri, manganese ore in MR 1885, pp 346-348
Missouri, mineral springs of Bull 32, pp 164-170;
MR 1883-84, p 962; MR 1885, pp 538; MR 1886, pp 717; MR 1887, p 684;
MR 1888, p 627; MR 1889-90, pp 522, 529; MR 1891, pp 603, 606
Missouri, minerals of, the useful MR 1882, pp 699-702; MR 1887, pp 750-753
Missouri, natural-gas consumption in MR 1891, p 438
Missouri, nickel production of MR 1882, p 403;
MR 1883-84, p 559; MR 1889-90, p 124
Missouri, ochre production of MR 1891, p 595
Missouri, petroleum statistics of MR 1889-90, pp 292, 361-362
Missouri, sandstone production of MR 1891, p 461-462
Missouri, topographic work in Ann 6, p 11;
Ann 7, pp 53-54; Ann 8, i, p 103; Ann 9, p 56; Ann 10, i, p 93
Missouri; water from Lebanon, analysis of Bull 60, p 172
Missouri; water from Webster grove, near St. Louis, analysis of Bull 78, p 129
Missouri, zinc deposits of, investigation of the Ann 11, i, pp 54, 80-81
INDEX.

Missouri, zinc and zinc works in, statistics of.........................Ann 2, p xxix;
MR 1882, pp 347, 368-373; MR 1883-84, p 475; MR 1885, p 273;
MR 1886, pp 154, 155; MR 1887, p 113; MR 1888, p 92; MR 1889-90, p 88
Missouri, zinc region of, analyses of rocks and clays from the Bull 90, pp 63-64
Missouri river basin, hydrography of..................................Ann 11, rr,
pp 41-43, 94, 107; Ann 12, rr, pp 236-238
Mixite from Utah, description and analysis ofBull 55, pp 45-46
Mokelumne river, California, hydrography of theAnn 12, i, pp 323
Mollusca, a review of the nonmarine fossil, of North America....Ann 3, pp 403-550
Mollusca, doubtful species of nonmarine fossil, of North America...Ann 5, pp 475-479
Mollusca, fossil, Cretaceous, from Vancouver island region Bull 51, pp 33-48
Mollusca, fossil, from the Chico-tejon series of CaliforniaBull 51, pp 4-27
Mollusca, fossil; Gasteropoda and Cephalopoda of the Raritan clays and green-
sand marls of New Jersey ..Mon xviii
Mollusca, fossil, Mesozoic, from the southern coast of AlaskaBull 51, pp 64-70
Mollusca, fossil, nonmarine, of North America, table ofAnn 3, pp 472-477
Mollusca, fossil, of the Puget groupBull 51, pp 49-63
Mollusca, fossil and recent, of the Great basin, description and tables of...Bull 11,
pp 23-25, 44, 49
Mollusca, list of marine, comprising the Quaternary and recent forms, from
American localities between cape Hatteras and cape Roque, including
the Bermudas..Bull 24
Mollusca; marine Eocene, fresh-water Miocene, and other fossil Mollusca of
western North America..Bull 18
Mollusca, Mesozoic, of AlaskaBull 4, pp 10-15
Mollusca of the fresh-water North American JurassicBull 29, pp 15-23
Mollusca of the Wasatch group, description of species of theBull 34, pp 20-32
Mollusca, Quaternary and recent, of the Great basin, with descriptions of new
forms..Bull 11, pp 13-49
Mollusca. See, also, Brachiopoda; Cephalopoda; Gasteropoda; Lamellibranchiata;
Pteropoda.
Molybdonum, statistics of..MR 1882, p 446
Mono lake, California, analysis of water ofAnn 8, i, p 293; Bull 42, p 149
Mono lake, California, deposits ofMon xi, pp 221-222
Mono lake, California, description and history ofAnn 8, i, pp 269-320
Mono lake, California, obsidian ofAnn 7, p 292
Mono lake, California, old shorelines ofAnn 1, p 16
Mono valley, California, Quaternary or Pleistocene history ofAnn 8, i, pp
261-394; Mon i, pp 306, 311, 337
Monoclines in the Plateau countryAnn 6, p 118
Monoclines. See, also, Faulting; Faults.
Monocotyledons of the Dakota groupMon xvii, pp 37-41
Monocotyledons of the Laramie floraBull 37, pp 16-18
Montalban group of rocks in New Hampshire and Massachusetts ...Bull 86,
pp 351-355, 368, 463-464
Montana, altitudes inBull 5, pp 165-168; Bull 72, pp 196, 223-224; Bull 76
Montana, boundary lines of, and formation of the territoryBull 13, pp 32, 122
Montana; Butte city, mines and reduction works ofMR 1883-84, pp 374-396
Montana, Cambrian rocks of ..Bull 81, pp 162, 163, 323-326
Montana, coal area and statistics ofAnn 2, p xxviii; MR 1882, pp 61-62;
MR 1883-84, pp 12, 52-55; MR 1885, pp 11, 30-39; MR 1886, pp 225,
230, 282-285; MR 1887, pp 169, 275-276; MR 1888, pp 169, 171,
289-292; MR 1889-90, pp 147, 228-231; MR 1891, pp 180, 269-271
Montana, coals and charcoals from, analyses of.....MR 1889-90, pp 229, 230
Montana, constitution of, extract from the, relating to irrigation.....Ann 11, ii, p 241
Montana, Cretaceous rocks of......Bull 82, pp 145, 149, 161, 166-179
Montana; desclouizite from Beaverhead county, analysis of......Bull 60, pp 130-131
Montana, Devonian rocks of..............Bull 80, p 224
Montana; eruptive rock from Bear creek, analysis of...........Bull 78, p 123
Montana, fossils from.....Ann 6, pp 549-557; Ann 8, ii, pp 904-906; Bull 34, pp 25, 28, 31
Montana, geologic and paleontologic investigations in.....Ann 4, pp 42-43; Ann 5, pp 28-30, 50, 55-56; Ann 6, pp 48-53; Ann 7, pp 77-78, 85-87; Ann 8, i, pp 146-148; Ann 9, pp 111-113, 128; Ann 10, i, pp 22-23, 130-131, 139, 144; Ann 11, i, p 82; Ann 12, i, pp 56, 91, 92-94
Montana, geologic maps of, listed..........Bull 7, pp 114, 115, 116
Montana; glaciers, existing, of the United States..........Ann 5, pp 303-355
Montana, iron in, statistics of........MR 1882, p 147; MR 1883-84, p 285; MR 1888, pp 34-35; MR 1891, pp 12, 27
Montana; iron ore, magnetic, from near Bozeman, analysis of......Bull 9, p 17
Montana, irrigation surveys, engineering, hydrography, segregations, etc., in.....Ann 10, ii, pp viii, 17-18, 58, 59, 60, 61, 71-72, 89, 91-93; Ann 11, ii, pp 113-113; Ann 12, ii, pp 127-165
Montana, Laramie flora, types of the, largely from..............Bull 37
Montana, lime production of..............MR 1888, p 555
Montana, manganese ore in..............MR 1885, p 349
Montana; mineral resin from Livingston, a supposed...........Bull 78, pp 105-108
Montana, mineral springs of.....Bull 32, pp 177-180; MR 1891, p 606
Montana, minerals of, the useful......MR 1882, pp 754-756; MR 1887, pp 753-755
Montana, Neocene beds of......Bull 84, pp 287-288
Montana, reservoir sites and irrigable lands in.....Ann 11, ii, pp 306, 310
Montana, rocks from, analyses of......Bull 55, pp 83-84; Bull 60, pp 152-154
Montana, sandstone production of.........MR 1891, pp 461, 462
Montana, tin ore in........MR 1888-84, p 614
Montana, topographic work in.....Ann 4, pp 9-11; Ann 8, i, pp 105-106; Ann 9, pp 59; Ann 10, i, p 97; ii, pp 17, 71-72; Ann 11, ii, p 305; Ann 12, i, p 48
Montana; water from near Bozeman, analysis of......Bull 27, p 75
Montana; water from White sulphur springs, analysis of......Bull 27, p 75
Montana, waters from four localities in, analyses of......Bull 9, pp 31-32
Moraine, terminal, of the second glacial epoch........Ann 3, pp 391-402
Moraine. See, also, Glacial; Glacier.
Morasses, economic uses of............Ann 10, i, pp 303-310
Morasses, effect of certain plants on the formation of........Ann 10, i, pp 285-295
Morasses, fresh-water, of United States, with description of Dismal swamp......Ann 10, i, pp 255-259
INDEX.

Morasses. See, also, Swamps.

Morse (W. F.), administrative report for 1890-91.................. Ann 12, i, p 145
Moses (O. A.), the phosphate deposits of South Carolina........ MR 1882, pp 504-521
Mosquito range, Colorado, general geology, rock formations, and descriptive
geology of the.. Ann 2, pp 211-214; Mon xii, pp 19-201
Mount Desert, Maine, geology of................................ Ann 8, ii, 987-1061
Mountain building in the Great basin, evidence of, in the Lahontan basin...... Ann 3, pp 232-233

Mountain building, nature of the process of...................... Ann 6, pp 195-197

Mountain building. See, also, Distaesthesia.

Mountain growth, especially in the Bonneville basin........... Mon ii, pp 350-360
Mountain structure and the Rocky mountain structure........... Mon xi, pp 24-27
Mountain structure, diverse, in western United States........ Ann 6, pp 191-195
Mundi and gossan ores of Virginia, analyses of............................ MR 1891, p 24
Muscovite, a product of mineralogical metamorphism............... Bull 62, p 212
Muscovite from Alexander county, North Carolina, description and analysis
of... Bull 55, pp 13-14

Myriapods, index to the known fossil, of the world.................... Bull 71

Myriapods, systematic review of our present knowledge of........ Bull 31, pp 9-18
Nails, twenty years of progress in the manufacture of........ MR 1891, pp 65-66
Nantucket, age of the beds of................................... Bull 84, p 35
Nantucket, the geology of...................................... Bull 53
Napatite, a new mineral from California, description of......... Mon xiii, pp 372-373
Naphthaline, compressibility of................................ Bull 92, pp 40-41
Natrolite from Arkansas, Magnet Cove, description and analysis of........ Bull 90, p 38
Natrolite from Colorado, Table Mountain, description and analysis of... Bull 20, p 36

Natural gas. See Gas.

Naugus head group of rocks in Massachusetts........................ Bull 86, pp 367-368

Naushon, island of, age of the sands of the........................ Bull 84, p 38

Navy, the new United States.................................. MR 1891, p 69

Nebraska, altitudes in.. Bull 5, pp 169-172; Bull 72, p 225; Bull 76

Nebraska, artesian wells of.. Ann 11, ii, p 270

Nebraska, boundary lines of, and formation of territory........... Bull 13, pp 31, 120-121

Nebraska, brick industry of.. MR 1887, p 536, 538; MR 1888, p 561

Nebraska, building stone from, statistics of....................... MR 1882, p 461; MR 1888, p 540; MR 1888-90, pp 373, 408-409

Nebraska, coal area and statistics of... Ann 2, p xxviii; MR 1888-84, pp 55-56; MR 1886, p 18; MR 1887, pp 169, 276-277; MR 1888, pp 169, 171, 292; MR 1889-90, pp 147, 231; MR 1891, p 180, 271

Nebraska, Cretaceous rocks of... Bull 82, pp 154, 159

Nebraska, fossils from.. Ann 8, ii, pp 901-902

Nebraska, geologic and paleontologic investigations in.......... Ann 5, p 49; Ann 6, pp 34, 72; Ann 7, pp 80-81, 112, 157; Ann 8, i, p 143; Ann 11, i, p 101

Nebraska, geologic maps of, listed................................... Bull 7, pp 113, 114, 115

Nebraska, iron and steel from, statistics of....................... MR 1882, pp 120, 125, 133, 134; MR 1885, p 186; MR 1886, p 18

Nebraska, limestone production of................................MR 1891, pp 464, 486

Nebraska, mineral springs of... Bull 32, p 171; MR 1889-90, pp 522, 529; MR 1891, p 606

Nebraska, minerals of, the useful................................MR 1882, pp 702-703; MR 1887, pp 755-756

Nebraska, Neocene beds of.. Bull 84, pp 293-299

Nebraska and Kansas, the Permian problem of.......................... Bull 80, pp 193-212

Necks, volcanic, in northwestern New Mexico.......................... Ann 6, pp 167-178

Neocene age of the Equus fauna..................................... Mon i, pp 393-402

Neocene, American and exotic, correlation of....................... Bull 84, p 178
Neocene, Dinocerata from the Neocene formations of America, correlation of the Neocene formations of the Atlantic coast, table showing the vertical range of the Neocene in Alabama, Georgia, etc. Neocene in Kansas Neocene in northwestern Colorado Neocene in the Lassen peak district, California Neocene; Lafayette formation, the area, features, history, etc., of the Neocene; marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America Neocene; Miocene, boundaries of the Neocene; Miocene in California Neocene; Miocene time in the Grand canyon district, erosion in Neocene; nonmarine fossil Mollusca of the, in North America Neocene; Ostreidea of the, in North America Neocene; Pliocene and post-Pliocene in California Neocene; Pliocene, boundaries of the Neocene. See, also, Tertiary.

Netherlands, fossil plants of the, literature of the.

Nevada, altitudes in Nevada, antimony deposits in Nevada; bluestone, the manufacture of, at Lyon mill, Dayton Nevada, borate fields of, the principal Nevada, borax deposits and statistics of Nevada, boundary lines of, and organization of territory Nevada, Cambrian faunas of North America (fossils largely from Nevada), studies on the Nevada, Cambrian rocks of Nevada; clays from Mill city, analyses of Nevada; cobalt deposits in Nevada; Comstock lode and the Washoe district, geology of the Nevada; Comstock mining and miners Nevada; copper from, statistics of Nevada; dacite from Washoe, analysis of Nevada; Eureka, silver-lead deposits of Nevada; Eureka district, geology of the Nevada; Eureka district, mining geology of the Nevada; Eureka district, paleontology of the Nevada; Eureka district, rocks of the Nevada, fossils from Nevada, geologic and paleontologic investigations in Nevada, geologic maps of, listed Nevada; glaciers, existing, of the United States.
Nevada, incrustations from, analysis of Bull 27, pp 69-70
Nevada, irrigation needs and problems in Ann 11, ii, p 235
Nevada, lake Lahontan, a Quaternary lake of northwestern Nevada, geological history of Ann 3, pp 195-235; Mon xi
Nevada; marl from Pyramid lake, analysis of Bull 9, p 14
Nevada, mineral springs of Bull 32, pp 197-202; MR 1883-84, p 983
Nevada, natural soda in MR 1882, p 772; MR 1887, pp 756-757
Nevada, Neocene beds of Bull 84, pp 313-316
Nevada; Nevada limestone at Eureka Mon xx, pp 63-68
Nevada, nickel ore in MR 1883-84, pp 537, 539; MR 1889-90, p 124
Nevada; on the development of crystallization in the igneous rocks of Washoe, Nevada, with notes on the geology of the district Bull 17
Nevada; on the Quaternary and recent Mollusca of the Great basin, with descriptions of new forms, introduced by a sketch of the Quaternary lakes of the Great basin. Bull 11
Nevada; rhyolite from Washoe, analysis of Bull 27, p 66
Nevada, soda, carbonate and nitrate of, from MR 1882, pp 599, 601
Nevada, sulphur production of MR 1882, p 578; MR 1883-84, pp 865-866; MR 1885, p 496; MR 1886, p 644
Nevada; thinolite of lake Lahontan, a Quaternary lake, crystallographic study of the Bull 12
Nevada, topographic work in Ann 1, p 36; Ann 2, p 21; Ann 4, pp 16, 20-21; Ann 10, ii, pp 18, 66-67; Ann 11, ii, pp 294-296; Ann 12, i, p 45
Nevada, waters from localities in, analyses of Mon xi, p 225; Bull 9, pp 19-26
Nevada-California, reservoir sites and irrigable lands in, reported by topographers Ann 11, ii, pp 297-298, 310
Nevadite from Chalk mountain, Colorado, description of Mon xi, pp 345-349
New Brunswick, literature of the lower Cambrian in Ann 10, i, pp 529-531, 544
New Brunswick; review of the fauna of the St. John formation contained in the Hartt collection at Cornell university Bull 10, pp 9-42
New Hampshire, altitudes in Bull 5, pp 152-186; Bull 76
New Hampshire, boundary lines of Bull 13, p 40-44
New Hampshire, brick industry of MR 1887, pp 536, 538; MR 1888, p 561; MR 1891, 502
New Hampshire, Cambrian rocks of, correlation of the Bull 81, pp 70-72, 267, 268
New Hampshire, corals in .. Bull 80, p 243
New Hampshire, geologic investigations in Ann 6, p 24; Ann 7, p 157;
Ann 8, 1, p 126; Ann 12, 1, pp 66-67
New Hampshire, geologic maps of, listed Bull 7, pp 54, 56, 57
New Hampshire, gold and silver from, statistics of Ann 2, p 385;
MR 1882, pp 176, 177, 178
New Hampshire, iron and steel from, statistics of MR 1882, pp 120, 125, 133,
134, 135; MR 1886, p 17; MR 1887, p 11; MR 1888, p 14; MR 1891, p 61
New Hampshire, mica production of MR 1888, p 614
New Hampshire, mineral springs of Bull 32, pp 17-18; MR 1883-84, p 983;
MR 1885, p 593; MR 1886, p 717; MR 1887, p 684; MR 1888,
p 627; MR 1889-90, pp 322, 329; MR 1891, pp 603, 606
New Hampshire, minerals of, the useful.................. MR 1882, pp 703-706; MR 1887, pp 757-760
New Hampshire, pyrites from, statistics of MR 1882-84, pp 877-878;
MR 1885, pp 501-502; MR 1886, pp 652-653
New Hampshire, topographic work in Ann 9, p 76; Ann 10, 1, p 85
New Iclria mine, California, age of ore deposits of the........... Mon xiii, p 307
New Jersey, altitudes in ... Bull 5, pp 187-191; Bull 76
New Jersey, boundary lines of Bull 13, pp 76-78
New Jersey, building stone from, statistics of MR 1882, pp 451, 452; MR 1888,
pp 536, 544; MR 1889-90, pp 373, 410; MR 1891, pp 457, 459, 461, 463, 464, 466
New Jersey, Cambrian rocks of Bull 81, pp 122-123, 154, 287, 382
New Jersey, clay, brick, and pottery industry of MR 1882, pp 465, 469,
471-472; MR 1883-84, pp 686-687, 696, 699, 700; MR 1885,
pp 416, 418; MR 1886, p 569; MR 1887, pp 536,
538, 540; MR 1888, pp 561-562, 566; MR 1891, p 503
New Jersey, Cretaceous and Tertiary formations of, sketch of the geology of
the.. Mon ix, pp ix-xiii
New Jersey, Cretaceous rocks of, correlation of the........... Bull 82, pp 78-84, 214-215
New Jersey, Eocene formations in Bull 83, pp 40-43, 80, 85
New Jersey; fossil fishes and fossil plants of the Triassic rocks of New Jersey
and the Connecticut valley Mon xiv
New Jersey, fossils from. Ann 4, pp 293, 296, 299, 301, 303, 313, 314; Ann 8, 11, pp 860-862
New Jersey, geologic and paleontologic investigations in Ann 6, p 24;
Ann 8, 1, p 130; Ann 9, pp 122, 124, 126, 131; Ann 12, 1, pp 53, 54, 60-70
New Jersey, geologic maps of, listed Bull 7, pp 58, 60, 61, 62, 63
New Jersey, glacial investigations in Ann 3, pp 346, 368-369;
Ann 7, pp 157, 161
New Jersey, granite production of MR 1891, pp 457, 459
New Jersey; iron and steel from, statistics of Ann 2, 2 xxviii; MR 1882, pp 117, 120,
125, 129, 130, 133, 134, 135, 156, 137; MR 1883-84, pp 252, 274-275; MR 1885,
pp 182, 184, 186, 188; MR 1886, pp 14, 18, 50-52; MR 1887, pp 11, 16, 44; MR
1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 26, 54, 55, 61
New Jersey, lime production of MR 1888, p 556
New Jersey; limestone from Hunterdon county, analysis of MR 1889-90, p 410
New Jersey, limestone production of MR 1891, pp 464, 466
New Jersey, manganese in zinc ores of MR 1882, pp 336-341
New Jersey, marl deposits of MR 1882, pp 522, 525, 526; MR 1883-84, p 808; MR
1885, p 464; MR 1886, p 619; MR 1887, p 592; MR 1888, p 595; MR 1889-90, p 454
New Jersey; metallic paint production of MR 1891, p 597
New Jersey, mineral springs of Bull 32, pp 42-43; MR 1889-90, p 530
New Jersey, minerals of, the useful MR 1882, pp 706-708; MR 1887, pp 760-762
New Jersey, Neocene beds in Bull 84, pp 39-44
New Jersey, Newark system in Bull 85, pp 20-21, 83-84
New Jersey, Newark system in, the relations of the traps of the........ Bull 67
New Jersey; nickel works at Camden MR 1883-84, p 537; MR 1885, p 297
New Jersey, ocher production in.................................... MR 1891, p 595
New Jersey; pyroxene and serpentine from Montville, description and analyses of Bull 60, p 137
New Jersey, Raritan clays and greensand marls of, Brachiopoda and Lamellibranchiata of the .. Mon ix
New Jersey, Raritan clays and greensand marls of, Gasteropoda and Cephalopoda of the Mon xviii
New Jersey, sandstone production of................................ MR 1891, pp 461, 463
New Jersey, slate production of..................................... MR 1891, p 472
New Jersey surveyed by cooperation of the state .. Ann 6, pp 5-7
New Jersey, topographic work in.................................... Ann 6, pp 5-7; Ann 7, pp 48-49; Ann 8, i, pp 99-100; Ann 9, p 52
New Jersey; willemite from the Trotter mine, Franklin, description and analysis of........ Bull 60, p 130
New Jersey, zinc and zinc works in.................................. Ann 2, p xxix; MR 1882, pp 360-361, 373; MR 1883-84, p 476
New Mexico, altitudes in.. Bull 5, pp 192-202; Bull 76
New Mexico; alum rock, so-called, from Grant county, analyses of......................... Bull 9, p 13
New Mexico; basalt from six miles northeast of Grant, analysis of.......................... Bull 42, p 140
New Mexico, boundary lines of, and formation of territory Bull 13, pp 31, 123-124
New Mexico, cement, hydraulic, statistics of the production of, in.......................... MR 1891, p 532
New Mexico, clay, brick, and pottery industry of.. MR 1891, p 525
New Mexico, coals, analyses of... MR 1889-90, pp 292, 293
New Mexico, coke in, the manufacture of... MR 1883-84, p 170;
New Mexico, Cretaceous rocks of.. Bull 82, pp 149, 154-155, 157, 161, 164, 226-227
New Mexico, eruptive rocks from, analyses of... Bull 27, pp 64-65
New Mexico, fossils from... Ann 4, pp 297, 302, 304, 306;
Ann 8, ii, pp 914-916; Bull 34, pp 21, 26, 27
New Mexico, geologic and paleologic investigations in..................................... Ann 6, p 61; Ann 11, i, pp 97-98, 107, 114, 126
New Mexico, geologic maps of, listed.. Bull 7, pp 140, 141, 142, 143
New Mexico, iron in... MR 1882, pp 147-148;
MR 1883-84, pp 285-286; MR 1889-90, pp 24, 40; MR 1891, pp 12, 27
New Mexico, irrigation surveys, engineering, hydrography, segregations, etc., in.. Ann 10, ii, pp viii, 19, 58, 63-64, 72-74, 87, 98-102
Ann 11, ii, pp 145-150; Ann 12, ii, pp 165-209, 251-290
New Mexico; latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico ... Bull 49
New Mexico, lead deposits in.. MR 1882, p 313;
MR 1883-84, pp 416, 425; MR 1889, pp 248, 258; MR 1886, p 146; MR 1887, p 110; MR 1888, p 89; MR 1889-90, p 80
New Mexico, limestone production of... MR 1891, pp 464, 466

Bull. 100—28
New Mexico; mica andesite from a canyon on the east side of San Mateo mountain, analysis of .. Bull 42, p 139
New Mexico; mineral springs of.. Bull 32, pp 193-195;
MR 1889-90, p 530; MR 1891, pp 603, 606
New Mexico; minerals of, the useful.. MR 1882, pp 756-758; MR 1887, pp 762-765
New Mexico; mount Taylor and the Zuni plateau.......................... Ann 6, pp 105-198
New Mexico; Neocene beds of.. Bull 84, pp 301-303
New Mexico; on the occurrence of primary quartz in certain basalts........ Bull 66
New Mexico; Peruvian rocks in.. Bull 80, pp 199-200
New Mexico; petroleum found in... MR 1882, p 212; MR 1889-90, p 365
New Mexico; picrullumogen from vicinity of Las Vegas, analysis of...... Bull 78, p 121
New Mexico; reservoir sites and irrigable lands in, reported by topographers... Ann 11, ii, pp 308, 310
New Mexico; rocks from the Tewan mountains, analyses of................... Bull 60, p 155
New Mexico; topographic work in... Ann 3, pp 30-40;
Ann 4, pp 11-12; Ann 5, pp 11-12; Ann 7, p 87; Ann 9, p 68; Ann 10, i, p 97; ii, pp 19, 72-74; Ann 11, ii, pp 306-308; Ann 12, i, p 48
New Mexico; turquoise from................. Bull 42, pp 39-44; MR 1882, pp 493-495
New Mexico; water from a spring near Fort Wingate, analysis of........ Bull 55, p 92
New Mexico; water from mineral spring one mile west of Santa Fe, analysis of.................. Bull 27, p 76
New Mexico and Colorado; Rio Grande basin in, irrigation problems relating
New South Wales, antimony production of................................... MR 1883-84, p 648
New South Wales, manganese production of..................................... MR 1886, p 207
New South Wales, tin production of... MR 1883-84, pp 619-620
New York, altitudes in Bull 5, pp 203-222; Bull 76
New York; boundary lines of, and cession of territory to general government

New York; Cambrian faunas of North America, studies on the (fossils, largely
New York, Cambrian, lower, in, literature and fauna of the............ Ann 10, i,
pp 534-536, 541-542, 570, 583-584
New York, Cambrian rocks of .. Bull 81, pp 109, 311, 381
New York, Cambrian rocks of .. Bull 81, pp 109, 311, 381
New York, cement manufacture in.. Bull 16, pp 527;
MR 1888, p 551; MR 1889-90, p 461; MR 1891, pp 532, 536
New York, clay, brick, and pottery industry of......................... MR 1883-84, pp 696, 709;
MR 1885, p 416; MR 1886, p 568; MR 1887, pp 536, 539; MR 1888, p 562, 566
New York; Cretaceous deposits of Staten island and Long island ... Bull 83, pp 84-86
New York, Devonian, upper, in, fossil faunas of the............. Bull 3; Bull 41
New York; dolomite from Tuckahoe, analyses of......................... Bull 60, p 159
New York, dumortierite from.. Bull 60, pp 133-135
New York; faunas, the fossil, of the upper Devonian along the meridian of 76°
30' from Tompkins county, New York, to Bradford county, Pennsyl-
New York; faunas, the fossil, of the upper Devonian along the meridian of 76°
30’ from Tompkins county, New York, to Bradford county, Pennsyl-

New York; faunas, the fossil, of the upper Devonian, the Genesee section,
New York... Bull 41
New York; faunas, the higher Devonian, of Ontario county, New York........ Bull 16
New York, fossils from.. Ann 8, ii, pp 854-859; Ann 10, i,
 pp 572-575, 601-688; Mon xvi, pp 20-115
New York, geologic and paleontologic investigations in.........Ann 3, p 20;
Ann 4, p 25; Ann 5, pp 52, 54; Ann 6, pp 24, 28, 32, 74, 75; Ann 7, pp 65, 83, 85,
113, 114-115; Ann 8, i, pp 128, 133, 174, 175, 176; Ann 9, pp 71, 77, 105, 115, 116,
117, 122; Ann 10, i, p 160; Ann 11, i, pp 103, 104, 114; Ann 12, i, pp 107, 121
New York, geologic maps of, listed Bull 7, pp 58, 59, 60, 62, 63
New York, glacial investigations in Ann 3, pp 344, 346, 348-350,
353-377; Ann 7, pp 157, 166, 171

New York, granite production of.............................. .MR 1801, pp 457, 459
New York, graphite mined inMR 1882, pp 591-592;
MR 1883-84, pp 915, 916; MR 1887, p 672; MR 1889-90, p 507
New York, gypsum production of Ann 7, pp 580, 581
New York; hornblende from Pierrepont, analyses of Bull 78, p 119
New York; inclusion in diorite from near Peekskill, analysis of ... Bull 60, p 158
New York, iron and steel from, statistics of Ann 2, pp xxviii; MR 1882,
pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 271-274; MR
1885, pp 182, 184, 186, 188; MR 1886, pp 14, 18, 43-50; MR 1887, pp 11, 16, 43-44;
MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 21, 51, 55, 61
New York, lime production of MR 1887, p 533; MR 1888, p 556
New York, limestone production of Ann 1, pp 461, 466
New York, marble production of MR 1891, p 468, 469
New York, metallic paint production of MR 1891, p 597
New York, mineral springs of Bull 32, pp 26-41;
MR 1883-84, p 983; MR 1885, p 539; MR 1886, p 717; MR 1887,
p 685; MR 1888, p 627; MR 1889-90, p 530; MR 1891, pp 603, 606
New York, minerals of, the useful Ann 1, pp 708-713; MR 1887, pp 765-769
New York, mining laws of Ann 1, pp 732-734
New York, natural gas localities and statistics of MR 1883-84, pp 236, 243;
MR 1885, pp 169, 174; MR 1886, p 490; MR 1887, pp 466, 474-479;
MR 1888, p 489; MR 1889-90, p 367; MR 1891, pp 438, 439, 440
New York, petroleum localities and statistics of MR 1882, pp 190,
199-202; MR 1883-84, pp 214-215, 221-224; MR 1885, pp 131-145;
MR 1886, pp 441, 442-457; MR 1887, pp 438, 439-450; MR 1888,
New York, pyrites from, statistics MR 1885, p 504
New York, rocks of, their classification, etc Bull 50, pp 32-34, 38-40, 42-43, 45-46, 48-74, 206, 266
New York; salt from Warsaw, analysis of Bull 55, p 88
New York, salt-making in Ann 7, pp 504, 505, 506, 507, 510
New York, salt, from, statistics of MR 1882,
pp 532-534, 537-539; MR 1883-84, pp 827, 830-833; MR 1885, pp 474, 476-479;
MR 1886, pp 628, 632-636; MR 1887, pp 611, 614-617; MR 1888,
pp 597-598, 600-603; MR 1889-90, pp 482, 484-487; MR 1891, pp 575-576
New York, sandstone production of MR 1891, p 461, 463
New York; sea-coast swamps of eastern United States Ann 6, pp 353-398
New York, slate production of MR 1891, p 472-473
New York, talc production and industry of MR 1885, pp 534-535; MR 1889-90, p 476
New York, topographic work in Ann 10, i,
pp 85, 86, 87, 89; Ann 11, i, p 86; Ann 12, i, p 26
New York; warwickite from Edenville, Orange county; analysis of .. Bull 64, p 41
New York-Virginia area of the Newark system Bull 85, pp 20-21, 83-85
New Zealand, fossil plants of, literature of the Ann 8, ii, pp 815-817
New Zealand, geysers from, analyses of Bull 64, p 45
New Zealand, manganese production of MR 1886,
p 207; MR 1888, p 142; MR 1889-90, p 130; MR 1891, p 145
New Zealand, petroleum production of MR 1888, p 473
New Zealand, quicksilver deposits in .. Mon xiii, p 49
New Zealand sinters and spring waters.. Ann 9, pp 672-676
New Zealand, waters from springs of, analyses of Ann 9, p 673
Newark system, a correlation essay on the, by I. C. Russell.............. Bull 85
Newark system, areas occupied by the... Bull 85, pp 19-24
Newark system in the New Jersey region, the relations of the traps of the... Bull 67
Newark system, lithology and stratigraphy of the............................ Bull 85, pp 32-44
Newark system. See, also, Jura-trias.
Newberry (J. S.), administrative report for 1887-88...................... Ann 9, pp 131-132
Newberry (J. S.), administrative report for 1888-89...................... Ann 10, i, pp 174-175
Newberry (J. S.), biographic sketch of... Ann 5, pp 381-382
Newberry (J. S.), fossil fishes and fossil plants of the Triassic rocks of New
Jersey and the Connecticut valley .. Mon xiv
Newberry (J. S.), Paleozoic fishes of North America.......................... Mon xvi
Newberry (S. B.), natural and artificial cements----------------------------- MR 1891, pp 529-538
Newberry (S. B.), product of hydraulic and Portland cement in the United
States in 1890 and 1891.. MR 1889-90, pp 461-462
Newell (F. H.), administrative report for 1890-91......................... Ann 12, i, pp 134-136
Newell (F. H.), hydrography of the arid regions of the U. S......................... Ann 12, ii, pp 213-361
Newfoundland, Cambrian, lower, in, literature and fauna of the........ Ann 10, i, pp 528-529, 586
Newfoundland, copper production of.. MR 1883-84, pp 556, 373; MR 1885, p 229; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1891, pp 101, 102
Newfoundland; geologic section on Manuel's brook, Conception bay... Ann 10, i, p 554
Newfoundland, geologic maps of, list of the.................................... Bull 7, pp 36-38
Newfoundland, pre-Cambrian rocks of.. Bull 86, pp 247-252, 503
Newfoundland, pyrites deposits in... Bull 88, pp 47-52
Newfoundland, submarine strata off... Bull 84, p 32
Newfoundland. See, also, Canada.
Niagara falls, survey of, by R. S. Woodward, in 1886...................... Ann 8, i, p 122
Nickel from foreign localities.. MR 1882, pp 405-407, 410-411; MR 1883-84, pp 539-540; MR 1885, pp 299-301; MR 1889-90, p 125
Nickel ore, platiniferous, from mines at Sudbury, Canada.................. Bull 64, pp 20-21
Nickel ores, analyses of... Bull 64, pp 20, 21; MR 1882, pp 404, 406
Nickel ores at Sudbury, Can., mode of occurrence, treatment, etc.MR 1888, pp 110-117
Nickel ore from Oregon, descriptions and analyses of..................... Bull 69, pp 21-26
Niobrara group of rocks of Nebraska... Bull 84, pp 293-296
Nitrate from Utah, analysis of.. Bull 55, p 88
Niter, statistics of.. MR 1882, pp 597-598
Nitrogen in uraniuite, the occurrence of, and the composition of uraniunite in
general.. Bull 78, pp 43-79
Nodules resulting from external attack.. Mon xiii, pp 68-72
Nomenclature and classification of fossil plants............................ Ann 5, pp 425-439
Nomenclature and taxonomy, geologic, conference of geologists and lithol-
ogists on, in January, 1889 .. Ann 10, i, pp 56-67
Nomenclature, general geologie.. Ann 2, pp xli-xlvi
Nomenclature of pre-Cambrian.. Bull 86, p 191
Nomenclature. See, also, Correlation.
Nonabsorption of sedimentary rocks by eruptive masses............... Mon xii, pp 308-313
Nonconformity. See Unconformity.
Norian terrane defined .. Bull 86, p 462
Norite from Delaware described Bull 59, p 21
North America, fossil plants of, literature of the Ann 8, ii, pp 335-396
North America, geological maps of, a list of the Bull 7, pp 23-32, 159-160
North Carolina, altitudes in Bull 5, pp 223-226; Bull 76
North Carolina, barytes production of.......................... MR 1891, p 509
North Carolina, boundary lines of, and cession of territory to general government Bull 13, pp 92-96
North Carolina, brick industry of MR 1888, pp 562-566
North Carolina, building stone from, statistics of........ MR 1889-90, pp 374, 414-415;
MR 1891, pp 457, 459, 461, 463, 470
North Carolina, Cambrian rocks of Bull 87, pp 138-139, 299, 383
North Carolina, clay production of MR 1891, p 505
North Carolina, coal areas and statistics of............... Ann 2, p xxviii;
MR 1883-84, p 59; MR 1885, pp 41-43; MR 1887, pp 169, 279-281;
MR 1888, p 169; MR 1889-90, pp 146, 234; MR 1891, pp 180, 274
North Carolina, coals from, analyses of Bull 42, p 146
North Carolina, copper mines and statistics of Ann 2, p xxix; MR 1882, p 231
North Carolina, corundum deposits and statistics of MR 1882, p 477;
MR 1883-84, pp 715-716; MR 1885, p 429; MR 1886,
pp 585-586; MR 1887, p 553; MR 1888, p 577
North Carolina; Corundum hill, the gneiss dunyto contacts of, in relation to
the origin of corundum Bull 42, pp 45-63
North Carolina, Cretaceous deposits of Bull 82, pp 91-92
North Carolina; Dismal swamp district of Virginia and North Carolina, geology of the Ann 10, 1, pp 313-339
North Carolina, Eocene deposits in Bull 83, pp 48-50, 81, 87
North Carolina, emeralds in, the discovery of MR 1882, pp 500-503
North Carolina, fertilizers in, in 1886 MR 1886, pp 611-617
North Carolina, fossils from Ann 8, u, pp 877-878
North Carolina, geologic and paleontologic investigations in Ann 6, p 24;
Ann 7, p 66; Ann 8, i, p 129; Ann 10, i, pp 118, 120,
155, 174; Ann 11, i, p 69; Ann 12, i, pp 73, 114, 117
North Carolina, geologic maps of, listed Bull 7, pp 102, 103, 109, 167
North Carolina, graphite deposits of MR 1887, pp 539; MR 1891, pp 457, 459
North Carolina, iron and steel from, statistics of Ann 2, p xxviii;
MR 1882, pp 120, 129, 131; MR 1883-84, pp 252, 277-278;
MR 1885, p 182, 188; MR 1886, pp 14, 18, 33, 82-83;
MR 1887, pp 11, 16; MR 1888, pp 14, 17, 23;
MR 1889-90, pp 10, 17; MR 1891, pp 12, 27, 54, 55
North Carolina, manganese ore in MR 1885, p 344; MR 1886, p 181; MR 1886,
pp 190-193; MR 1887, pp 145, 151; MR 1888, p 124,
129-130; MR 1889-90, pp 127, 134; MR 1891, pp 127, 136
North Carolina, marl deposits of MR 1886, p 619; MR 1888, p 595
North Carolina, Mesozoic flora of, the older Mon vi, pp 97-128
North Carolina, meteoric iron from, description and analysis of .. Bull 76, pp 93-94
North Carolina, mica mining in MR 1887, pp 661-671
North Carolina, mica production of MR 1882, p 583; MR 1883-84,
pp 908-909; MR 1885, pp 518, 519; MR 1887,
pp 660; MR 1888, p 614; MR 1889-90, p 474
North Carolina, minerals of Bull 74
North Carolina, minerals of, the minor.............. MR 1882, pp 659-661
North Carolina, minerals of, the useful.............. MR 1882, pp 713-718; MR 1887, pp 769-774
North Carolina, Neocene beds of.......................... Bull 84, pp 68-74
North Carolina, Newark system in....................... Bull 85, pp 23-24, 95-97
North Carolina, nickel deposits in...................... MR 1886, p 170; MR 1889-90, p 125; MR 1891, p 168
North Carolina; oligoclase from Bakersville, description and analysis of........ Bull 60, pp 129-130
North Carolina, phosphate deposits of................. Bull 46, pp 70-75; MR 1883-84, pp 788-793; MR 1885, pp 449-450; MR 1888, p 592
North Carolina, precious stones mined for in......... MR 1882, p 483; MR 1883-84, pp 724, 729, 733-734, 739; MR 1885, p 437; MR 1886, p 595
North Carolina, pyrites from, statistics of........... MR 1885, p 505
North Carolina; residual deposit from subaerial decay of chloritic schist from eight miles west of Cary, analysis of........... Bull 42, p 137
North Carolina, slate found in......................... MR 1891, p 473
North Carolina, topographic work in.................. Ann 4, pp 13-15; Ann 5, pp 4-5; Ann 6, pp 8, 9; Ann 7, p 52; Ann 8, p 102; Ann 9, pp 54, 55; Ann 10, p 90; Ann 11, p 38
North Carolina; trap, decomposed, from near Sanford, analysis of........ Bull 42, p 138
North Carolina; water from Lincoln county, analysis of........... Bull 42, p 171
North Carolina; websterite from Webster, analyses of........ Bull 78, p 122
North Carolina; xanthitane from Green river.......... Bull 60, p 135
North Carolina, zirconium deposits in................. MR 1885, p 393
North Dakota. See Dakotas.
Northwest territories, geological maps of the, list of the......... Bull 7, pp 117-121
Northwest territory, fossil plants of the, literature of the......... Ann 8, II, pp 838-842
Northwest territory. See, also, Canada.
Norway, copper production of............................ MR 1883-84, p 356; MR 1885, p 228; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1889-90, p 73; MR 1891, pp 100, 102
Norway, fauna of the Olenellus zone in............... Ann 10, p 579
Norway, fossil plants of, literature of the........... Ann 8, II, pp 778-779
Norway, phosphate deposits of......................... Bull 46, pp 42-45
Norway, silver production of, compared with that of other countries........ MR 1883-84, pp 319, 320
Nova Scotia, coal area and output of, compared with those of other countries................ MR 1882, p 5; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189
Nova Scotia, gypsum deposits of......................... MR 1883-84, p 809; MR 1885, pp 459-460; MR 1887, pp 602, 603
Nova Scotia. See, also, Canada.
Novaculite from Marquette, Michigan, analysis of........ Bull 60, p 151
Obsidian, analyses of.. Ann 7, pp 282, 291
Obsidian, andesite, described............................ Mon xii, pp 153-154
Obsidian, basaltic, described......................... Mon xii, pp 158-161
Obsidian, columnar structure in......................... Ann 7, p 257
Obsidian, scoriaceous, from Mono valley, California, analysis of........ Bull 9, p 14
Obsidian cliff, Yellowstone national park............ Ann 7, pp 249-295
Ocala limestone of Florida................................. Bull 84, pp 103-104
Ocean waters, general chemistry of.................... Mon xi, pp 178-181
Ocher, statistics of.. MR 1889-90, pp 508-509; MR 1891, pp 595-596
Odontorhines, classification of the subclass......... Ann 3, p 86
INDEX.

Ogden and Weber rivers, Utah, hydrography of .. Ann 12, t, p 334
Ohio, altitudes in ... Bull 5, pp 227-240; Bull 76
Ohio, artesian wells in ... Ann 11, t, p 263
Ohio, Berea grit or sandstone from, analysis of ... Bull 60, p 158
Ohio, Berea grit or sandstone from, statistics of ... MR 1882, p 478; MR 1886, p 583
Ohio blue sandstone, analysis of .. Bull 27, p 66
Ohio, boundary lines of, and formation of, from territory northwest of Ohio river ... Bull 13, pp 28, 110-111
Ohio, bromine industry of ... MR 1883-84, pp 851-852;
MR 1885, p 487; MR 1886, p 642; MR 1887, pp 626, 627;
MR 1888, p 613; MR 1889-90, p 493; MR 1891, p 579
Ohio, building stone from, statistics of .. MR 1882, p 451;
MR 1886, p 540; MR 1887, pp 516-517, 521; MR 1888, pp 540, 545;
MR 1889-90, pp 373, 415-417; MR 1891, pp 461, 463, 464, 467
Ohio, cement production of .. MR 1889-90, p 461; MR 1891, pp 532, 536
Ohio, clay, brick, and pottery industry of ... MR 1882, pp 466, 470;
MR 1887, pp 536, 539, 540; MR 1888, pp 662-663, 566; MR 1891, p 509
Ohio, coal area and statistics of ... Ann 2, p xxviii;
MR 1882, pp 65-66; MR 1883-84, pp 12, 59, 66; MR 1885, pp 11, 43-45;
MR 1889-90, pp 147, 235-240; MR 1891, pp 275-287
Ohio, coke in, the manufacture of ... MR 1883-84, pp 171-175;
MR 1885, pp 80, 93-96; MR 1886, pp 378, 384, 403-408; MR 1887, pp 383, 389, 407-409;
MR 1888, pp 395, 400, 413-414; MR 1891, pp 360, 361, 366, 384-386
Ohio, cement production of .. MR 1889-90, p 461; Mon xvi, pp 27-228
Ohio, geologic and paleontologic investigations in Ann 3, pp 20-21;
Ann 4, p 25; Ann 5, p 23; Ann 6, pp 35, 36, 74, 75; Ann 7, p 67; Ann 9, p 77; Ann 11, t, p 74; Ann 12, t, p 89
Ohio, geologic maps of, listed .. Bull 7, pp 77, 78, 80, 81, 82, 83, 84, 85, 86, 87
Ohio; glacial boundary in western Pa., Ohio, Ky, Ill, and Ind. Bull 58
Ohio, glacial investigations in .. Ann 3, pp 334, 337, 339-342; Ann 7, pp 157, 227-228
Ohio, gypsum deposits and industry of ... MR 1882, p 527;
MR 1883-84, p 811; MR 1885, p 462; MR 1886, p 620; MR 1887, pp 596-599; MR 1889-90, p 465; MR 1891, pp 580, 582
Ohio, iron and steel from, statistics of ... Ann 2, p xxviii;
MR 1882, pp 120, 125, 129, 130, 131, 132, 133, 134, 135, 136, 137;
MR 1883-84, pp 252, 275-276; MR 1885, pp 182, 184, 186;
MR 1886, pp 18, 56-61; MR 1887, pp 11, 16, 46;
MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 26, 54, 55, 61
Ohio, limestone production of .. MR 1889-90, p 417;
Ohio, limestone production of .. MR 1891, p 411
Ohio, minerals of, the useful ... MR 1882, p 189;
MR 1883-84, pp 215-216; MR 1885, p 146; MR 1886, pp 441, 458-461;
MR 1887, pp 458, 461; MR 1888, pp 458, 459-462;
MR 1889-90, pp 292, 318-329; MR 1891, pp 405, 407, 426-431
Ohio, rocks of, their classification, etc. .. Bull 80, pp 41, 43, 87, 94, 101-102, 140, 177, 183, 184-189
Ohio, salt-making in .. Ann 7, pp 504, 508, 509, 522, 525
Ohio sandstone, analyses of ... Bull 65
Ohio and Indiana, limestones from, analyses of Bull 60, pp 160-162
Oil fields of the United States .. MR 1883-84, pp 214-220
Oil. See, also, Petroleum.
Oils and whetstones, statistics of .. MR 1891, pp 553-555
Olenellus Howelli, from the Eureka dist., Nev., observations on Mon AIII, pp 30-39
Olenellus shale of Nevada .. Mon xx, pp 45-47
Olenellus zone, bibliography of the rocks and fossils of the Ann 10, i, pp 516-524
Olenellus zone, geographic distribution of the fauna of the, in Europe Ann 10, i, pp 577-581
Olenellus zone, geographic distribution of the fauna of the, in North America.. Ann 10, i, pp 554-577
Olenellus zone, geologic description of the .. Ann 10, i, pp 547-564
Olenellus zone, historical review of the, for Europe............................... Ann 10, i, pp 534-547
Olenellus zone, historical review of the, for North America Ann 10, i, pp 524-544
Olenellus zone, notes on the genera and species of the........................... Ann 10, i, pp 597-760
Olenellus zone, table of the geographic distribution of the fauna of the, in North America ... Ann 10, i, pp 572-575
Olenellus zone, the lower Cambrian, fauna of the Ann 10, i, pp 509-763
Oligocene insects from Colorado and Utah .. Bull 93
Oligoclase from Bakersville, N. C., description and analysis of Bull 60, pp 129-130
Olivenite from the Tintic mining district, Utah, descriptions and analyses of.. Bull 20, pp 83-84; Bull 55, pp 39-40
Olivenite in basalts of the Eureka district, Nevada Mon xx, pp 258-259
Ontario. See Canada.
Oölite from Ireland compared with Kentucky limestone MR 1889-90, p 395
Oölitic sand from shore of Great salt lake, analysis of Bull 27, p 69
Opal. See Precious stones.
Optical properties of plagioclase in pyroxene-audensite Mon xx, pp 350-354
Oquirrh mountains, Utah, Archean and Algounkian rocks of the Bull 86, p 295
Orange sand .. Ann 12, i, pp 498-501
Ore bodies and fissures, connection between .. Mon vii, p 75
Ore bodies and fissures, relative ages of .. Mon vii, p 76
Ore bodies, caves in connection with .. Mon vii, pp 73, 95
Ore bodies, effects of oxidation on the bulk of Mon vii, p 100
Ore bodies, electrical activity of .. Ann 2, pp 320-324; Mon iii, pp 309-367, 400-404
Ore bodies of New Almaden, California, form of the Mon xiii, pp 316-317
Ore bodies of Virginia group of bonanzas in Nevada Mon iii, pp 275-276
Ore bodies; vein formation, theories of .. Mon iii, pp 18-21, 30; Mon vii, pp 89-106, 187-190; Mon xii, p 375; Mon xiii, pp 407-450, 473-475; Mon xx, pp 310-311
Ore deposits, age of ... Mon vii, pp 69, 76
Ore deposits, classification of, according to different authors Mon vii, pp 117-119
Ore deposits, fallacies regarding .. Ann 4, pp 257-271
Ore deposits in general, classification of ... Ann 2, pp 231-233; Mon xii, pp 367-375
INDEX.

Ore deposits of Adams hill, Eureka district, Nevada. Ann vii, pp 166-167
Ore deposits of Carbonate hill, Leadville, Colorado. Mon xii, p 411
Ore deposits of Eureka district, Nev., classification of the. Mon vn, pp 68-69, 184
Ore deposits of Eureka district, Nevada, geology of the. Mon xx, pp 292-316
Ore deposits of Eureka district, Nevada, theory in regard to the formation of the. Mon vii, p 80
Ore deposits of Fryer hill, Leadville, Colorado. Mon xii, p 451
Ore deposits of the Great eastern district, Sonoma co., Cal. Mon xiii, pp 363-364
Ore deposits of Leadville, Colorado. Ann 2, pp 234-239
Ore deposits of New Idria mine, California, age of, etc. Mon xiii, pp 302-304, 307
Ore deposits of Ten mile district, Colorado. Mon xi, pp 537-538
Ore deposits; quicksilver ores of California, origin of the. Mon xii, pp 261-263, 289-290, 308-309, 327-330, 394-450, 471-475
Ore genesis, theories of. Mon xii, pp 442-445, 475
Ore in Prospect mountain, Eureka district, Nevada, source of the. Mon vii, p 91
Ore of Comstock vein, Nevada, source of the. Mon iii, p 18
Ore of Eureka district, Nevada, age of the. Mon vii, p 105
Ore of Eureka district, Nevada, rhyolite as a source of the. Mon vii, p 90
Ore roasting. Bull 26, pp 16-18, 22-24, 76
Ore smelting in shaft-furnace process. Bull 26, pp 76-77
Ores and slags, classification of. Bull 26, pp 70-73
Ores, chloride, in the Leadville district, Nevada. Mon xi, pp 548-549
Ores deposited as sulphides. Mon xi, pp 502-505; Mon xii, pp 397, 438; Mon xx, pp 310-311
Ores, iron, analyses of. Bull 42, pp 144-145; Bull 78, pp 125-127
Ores, iron, mode of concentration of. Ann 10, i, p 417
Ores, iron, of Wisconsin and Michigan. Ann 10, i, pp 409-422
Ores, mode of formation of. Mon xii, pp 565-569
Ores of the Comstock mines, Nevada. Mon iii, pp 218-222
Ores of Eureka district, Nevada; arrangement in chambers. Mon vii, p 97
Ores of Eureka district, Nevada, comparison of, with deposits of Raibl, Carinthia. Mon vii, p 103
Ores of Eureka district, Nevada, manner of deposition of the. Mon vii, pp 93-106, 188
Ores of Eureka district, Nevada, miner's classification of the. Mon vii, pp 59-60
Ores of Eureka district, Nevada, occurrence of the. Ann 4, pp 244-247
Ores of Eureka district, Nevada, reduction of the. Mon vii, p 158
Ores of Eureka district, Nevada, segregation of the. Mon vii, pp 87-89
Ores of Leadville dist., Colo., manner of occurrence of. Mon xii, pp 375, 540-543
Ores of manganese, analyses of. Bull 78, pp 127-128
Ores of Mosquito range, Colorado, analyses of. Mon xii, pp 536, 537
Ores of Prospect mountain and Ruby hill, Eureka district, Nevada. Ann 4, p 250; Mon vii, pp 50-63
Ores of Steamboat springs, California. Mon xiii, pp 342-343
Ores, pseudomorphism after limestone, evidences of, in Mon vii, p 98
Ores, secondary alteration of. Mon xii, pp 550, 553
Oregon, aboriginal lapidary work in. MR 1891, p 551
Oregon, altitudes in. Bull 5, pp 241-244; Bull 72, p 226; Bull 76
Oregon; basalt from mount Thielsen, analysis of. Bull 9, p 15
Oregon; borax deposits at Chetco. MR 1889-90, pp 504-505
Oregon; boundary lines of, territory formed, state admitted. Bull 13, pp 31, 128
Oregon; Chico-tejou series in Oregon and Washington territory, the occurrence of equivalents of the. Bull 51, pp 28-32
Oregon, Cretaceous rocks of... Bull 82, pp 181, 183, 184, 187, 194
Oregon, fossils from... Ann 8, i, p 922-923
Oregon, geologic and paleontologic investigations in.................. Ann 4, p 41; Ann 5, p 49; Ann 6, pp 60, 73; Ann 7, p 102; Ann 8, i, pp 156-164; Ann 10, i, p 145; Ann 12, i, pp 57, 100, 116
Oregon, geologic reconnaissance in southern.......................... Ann 4, pp 431-464
Oregon, glacial, existing, of the United States......................... Ann 5, pp 303-355
Oregon, iron and steel from, statistics of.. Ann 2, p xxviii;
MR 1882, pp 120, 129, 131; MR 1883-84, pp 252, 287; MR 1885, pp 540; MR 1886, p 718; MR 1887, p 685; MR 1888, p 628; MR 1889-90, pp 531
Oregon, Neocene deposits of.. Bull 84, pp 223-227, 280-285
Oregon, nickel ores from.. Bull 60, pp 21-26; MR 1882, pp 403-404;
MR 1883-84, pp 537, 539; MR 1887, pp 127-128; MR 1891, pp 168
Oregon; on marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America... Bull 18
Oregon; on the Quaternary and recent Mollusca of the Great basin, with descriptions of new forms; introduced by a sketch of the Quaternary lakes of the Great basin... Bull 11
Oregon, California, and Washington, Cenozoic epoch in, general considerations on the... Bull 84, pp 269-273
Oregon, quicksilver production of.. MR 1887, pp 118, 125; MR 1889-90, pp 94
Oregon, soda, natural, of Abert and Summer lakes.................. Bull 60, pp 53-55
Oregon, Tejon strata of.. Bull 83, p 103
Oregon, topographic work in.. Ann 7, p 57; Ann 8, i, p 105; Ann 9, p 59; Ann 10, i, p 97
Oregon; water from Abert lake, analysis of... Bull 9, p 28
Organic matter an agent in formation of concretions in sandstones... Mon xiii, pp 64-68
Organic processes of soil formation....................................... Ann 12, i, pp 268-287
Organization, the business, of the United States Geological Survey........ Ann 8, i, pp 3-69
Orogeny. See Diastrophism.
Orthoclase, analyses of.. Mon xii, p 333
Orton (E.), gypsum or land plaster in Ohio............................... MR 1887, pp 596-601
Orton (E.), quoted on natural gas in Ohio............................... MR 1887, pp 479-484
Orton (E.), the Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana... Ann 8, ii, pp 475-662
Osmiridium, analyses of... MR 1883-84, p 581
Ostreidae, a review of the fossil, of North America.................. Ann 4, pp 273-430
Ostreidae, Carboniferous, of North America.......................... Ann 4, p 288
Ostreidae, Cretaceous, of North America.............................. Ann 4, pp 290-308
Ostreidae, Jurassic, of North America.................................. Ann 4, pp 289, 290
Ostreidae; life-history of the oyster................................... Ann 4, pp 317-333
Ostreidae, Miocene, of North America................................. Ann 4, pp 312-314
Ostreidae, Oligocene, of North America................................. Ann 4, pp 311, 312
Ostreidæ, Pliocene and post-Pliocene, of North America Ann 4, pp 314–316
Overplacement Ann 12, i, pp 296–300
Owen's lake, California, analysis of water from Ann 8, i, p 295; Bull 55, p 93
Owyhee river basin, Oregon, hydrography of Ann 11, ii, pp 85–86, 106
Oxide films on steel, relation between time of exposure, temper-value, and color in Bull 27, pp 51–61
Oyster, life-history of the Ann 4, pp 317–333
Oxocerite, statistics of MR 1882, p 609; MR 1883–84, pp 955–957; MR 1888, p 515; MR 1889–90, p 481
Pachnolite from near Pike's peak, Colo., description, etc., of Bull 20, pp 49–55
Pacific coast, invertebrate fossils from the... Bull 51
Pacific coast, invertebrate fossils from the... Bull 61
Pacific coast. See, also, California; Oregon; Washington.
Pacific slope, quicksilver deposits of the Ann 8, ii, pp 961–985
Pahoehoe lava, character of Ann 4, p 95
Paints, mineral, analyses of... MR 1885, pp 528, 530, 531
Paleobotanists, biographical sketches of... Ann 5, pp 369–385
Paleobotany, classification in, the natural method of... Ann 5, pp 431–452
Paleobotany, definition of... Ann 5, p 363
Paleobotany; flora of the Laramie group, synopsis of the... Ann 6, pp 399–557
Paleobotany; flora, the older Mesozoic, of Virginia... Mon vi
Paleobotany; flora, the Potomac or younger Mesozoic... Mon xv
Paleobotany; flora, types of the Laramie... Bull 37
Paleobotany, future prospects of... Ann 5, pp 355–366
Paleobotany; lignite and fossil wood of the Potomac formation... Bull 56
Paleobotany of the Dakota group... Mon xvii
Paleobotany of the Eocene... Bull 83
Paleobotany of the Newark system... Bull 85, pp 62–65
Paleobotany; plants, fossil, internal structure of, value of the study of the... Bull 56, pp 11–38
Paleobotany; plants, fossil, of the Triassic rocks of New Jersey and the Connecticut valley... Mon xiv, pp 77–95
Paleobotany; plants, fossil, the geographical distribution of... Ann 8, ii, pp 663–960
Paleobotany, sketch of... Ann 5, pp 357–452
Paleobotany; stratigraphy of the bituminous coal fields of Pennsylvania, Ohio, and West Virginia (fossil plants mentioned)... Bull 65
Paleobotany; travertine and siliceous sinter, the formation of, by the vegetation of hot springs... Ann 9, pp 613–676
Paleobotany and botany, interdependence of... Ann 5, pp 366–397
Paleobotany. See, also, Paleontology.
Paleontology; Ancella of California, remarks on the genus... Mon xiii, pp 226–232
Paleontology; birds with teeth... Ann 3, pp 45–88
Paleontology; Brachiopoda and Lamellibranchiata of the Raritan clays and greensand marls of New Jersey... Mon ix
Paleontology; butterflies, the fossil, of Florissant, Colorado... Ann 8, i, pp 433–474
Paleontology; classification, paleontologic characters as a basis for... Ann 7, pp 372–377
Paleontology; correlation papers: Archean and Algonkian... Bull 86
Paleontology; correlation papers: Cambrian... Bull 81
Paleontology; correlation papers: Cretaceous................................. Bull 82
Paleontology; correlation papers: Devonian and Carboniferous.............. Bull 80
Paleontology; correlation papers: Eocene.................................. Bull 83
Paleontology; correlation papers: Neocene.................................. Bull 84
Paleontology; correlation papers: Newark.................................. Bull 85
Paleontology; Crustacea, Paleozoic, a bibliography of, from 1698 to 1889..... Bull 63
Paleontology; Dinocerata, an extinct order of gigantic mammals.......... Ann 5, pp 243-302; Mon x
Paleontology; Eureka district, Nevada, paleontologic divisions of strata in
the .. Mon xx, pp 182-184
Paleontology; fauna of the lower Cambrian or Olenellus zone. Ann 10, i, pp 509-763
Paleontology; faunas, Cambrian, of North America.......................... Bull 10; Bull 30
Paleontology; faunas, fossil, of the upper Devonian, from Tompkins county,
New York, to Bradford county, Pennsylvania............................. Bull 3
Paleontology; faunas, fossil, of the upper Devonian, the Genesee section,
New York... Bull 41
Paleontology; faunas, the higher Devonian, of Ontario county, New York...................... Bull 16
Paleontology; fishes, fossil, of the Triassic rocks of New Jersey and the Con­
necticut valley .. Mon xiv, pp 17-76
Paleontology; fishes, the Paleozoic, of North America........................ Mon xvi
Paleontology; fossils, new Cretaceous, from California......................... Bull 22
Paleontology; Gastropoda and Cephalopoda of the Raritan clays and green­
sand marls of New Jersey .. Mon XVIII
Paleontology; insects, fossil, a classified and annotated bibliography of.... Bull 69
Paleontology; insects, fossil, including myriapods and arachnids, systematic
review of our present knowledge of ... Bull 31
Paleontology; insects, known fossil, of the world, including myriapods and
arachnids, index to the ... Bull 71
Paleontology; invertebrate fossils from the Pacific coast.......................... Bull 51
Paleontology, invertebrate, of the Eocene Bull 83
Paleontology, invertebrate, of the Neocene Bull 84
Paleontology, invertebrate, of the Newark system............................ Bull 85, pp 58-61
Paleontology; invertebrates, the fresh-water, of the N. A. Jurassic............ Bull 29
Paleontology; Lahontan basin, Nevada, paleontologic contributions from
the .. Mon xi, pp 238-249
Paleontology, Mesozoic and Cenozoic, of California............................. Bull 15
Paleontology; Mesozoic fossils .. Bull 4
Paleontology; Mollusca, fossil, of western North America, marine Eocene,
fresh-water Miocene, and other .. Bull 18
Paleontology; Mollusca, marine, list of, comprising the Quaternary fossils and
recent forms from American localities between cape Hatteras and cape
Roque, including the Bermudas .. Bull 24
Paleontology; Mollusca, nonmarine fossil, of North America, a review of
the .. Ann 3, pp 403-550
Paleontology; Mollusca, the Quaternary and recent, of the Great basin, with
descriptions of new forms .. Bull 11, pp 13-49
Paleontology; Molluscan fauna, the relation of the Laramie, to that of the
succeeding fresh-water Eocene and other groups.......................... Bull 34
Paleontology; Nantucket, the geology of, with lists of invertebrates.......... Bull 53, pp 34-38
Paleontology, objects of .. Ann 5, pp 363-364
Paleontology of the Eureka district, Nevada....................................... Ann 3, pp 256-259,
261, 262, 265-267, 269, 270-271; Mon viii; Mon xx, pp 319-333
Paleontology; Ostreidae, fossil, of North America, a review of the..Ann 4, pp 27-430
Paleontology; quicksilver belt of California, historical geology of the, with
lists of fossils ... Mon xiii, pp 176-225
Paleontology, tendency to specialize in ... Ann 9, p 22
Paleontology; Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers, with mention of invertebrates.

Paleontology; Texan Permian and its Mesozoic types of fossils.

Paleontology; Texas, the present condition of knowledge of the geology of, with mention of invertebrates.

Paleontology, vertebrate, of the Newark system.

Paleontology. See also, Paleobotany.

Paleozoic Crustacea, bibliography of, from 1698 to 1889, including a list of North American species and a systematic arrangement of genera.

Paleozoic fishes of North America.

Paleozoic formations in the Acadian province, correlations and classifications of.

Paleozoic formations in the Eureka district, Nevada.

Paleozoic formations in the Leadville district, Colorado.

Paleozoic formations of the Leadville district, Colorado.

Paleozoic history of the Mississippi valley and of the Rocky mountain region.

Paleozoic rocks and history of northeastern Iowa and contiguous territory.

Paleozoic rocks of California.

Paleozoic rocks of Texas.

Paleozoic rocks of the Great basin.

Paleozoic section of Nevada, with vertical range of genera.

Paleozoic shoreline of the Great basin.

Paleozoic. See also, Cambrian; Carboniferous; Devonian; Silurian.

Pallasite from Kansas, description and analysis of.

Palmitic acid, compressibility and thermal expansion of.

Paraffin, compressibility and thermal expansion of.

Paramorphism, general discussion of.

Paramorphism in relation to uralitization.

Paramorphism of pyroxene to hornblende.

Para-toluidine, compressibility and thermal expansion of.

Paria plateau, Grand cañon district, description of.

Park range, Wyo., literature of the geology of.

Parker (E. W.), antimony, statistics of.

Parker (E. W.), asbestos, statistics of.

Parker (E. W.), asphaltnm, statistics of.

Parker (E. W.), barytes, statistics of.

Parker (E. W.), barhstones, statistics of.

Parker (E. W.), coal, statistics of.

Parker (E. W.), emery and corundum, statistics of.

Parker (E. W.), fluor spar, statistics of.

Parker (E. W.), graphite, statistics of.

Parker (E. W.), gypsum, statistics of.

Parker (E. W.), mineral paints, statistics of.

Parker (E. W.), oilstones and whetstones, statistics of.

Parker (E. W.), soapstone, statistics of.

Parker (E. W.), sulphur, statistics of.

Pasturage lands of the West.

Peace creek bone bed.

Peale (A. C.), administrative report for 1886-87.
Peale (A. C.), administrative report for 1887-88................... Ann 9, pp 111-114
Peale (A. C.), administrative report for 1888-89.................. Ann 10, i, pp 130-132
Peale (A. C.), administrative report for 1889-90.................. Ann 11, i, p 82
Peale (A. C.), administrative report for 1890-91.................. Ann 12, i, pp 91-92
Peale (A. C.), lists and analyses of the mineral springs of the U. S. Bull 32
Peale (A. C.), mineral waters, statistics of MR 1883-84, pp 978-987;
 MR 1885, pp 536-543; MR 1886, pp 715-721; MR 1887, pp 680-687;
 MR 1888, pp 623-630; MR 1889-90, pp 521-555; MR 1891, pp 601-610
Peat of American bogs ... Ann 10, i, pp 303-304
Pecos valley, New Mexico, irrigation in the Ann 12, ii, pp 282-290
Pele's hair in Hawaii... Ann 4, p 108
Pennsylvania, altitudes in .. Bull 5, pp 245-274; Bull 76
Pennsylvania, anthracite coal fields of, description and production of the.................. MR 1883, pp 7-24
Pennsylvania; bituminous coal field in Pennsylvania, Ohio, and West Virginia, stratigraphy of the.. Bull 65
Pennsylvania, boundary lines of Bull 13, pp 78-80
Pennsylvania, bromine industry of MR 1885, p 487; MR 1886, p 642;
 MR 1887, pp 626, 627; MR 1888, p 613; MR 1889-90, p 493; MR 1891, p 579
Pennsylvania, building stone from, statistics of MR 1882, pp 451, 452;
 MR 1887, pp 514, 516; MR 1888, pp 536, 541, 545; MR 1889-90, pp 373, 418-427;
 MR 1891, pp 457, 460, 461, 464, 466, 467
Pennsylvania, Cambrian rocks of Bull 81, pp 124-132, 288-289, 382-393
Pennsylvania, cement manufacture in MR 1887, p 527;
 MR 1888, p 551; MR 1889-90, p 461; MR 1891, p 532, 536
Pennsylvania, Cenozoic gravels of Bull 84, pp 44-45
Pennsylvania, clay, brick, and pottery industry of MR 1882, pp 463, 469;
 MR 1883-84, pp 696, 698; MR 1885, pp 416, 418; MR 1886, p 569;
 MR 1887, pp 536, 539, 540; MR 1888, pp 563, 566; MR 1891, p 503-504
Pennsylvania, coal area and statistics of Ann 2, p xxviii;
 MR 1882, pp 7-32, 67-72; MR 1883-84, pp 12, 66-87; MR 1885, pp 11, 45-64;
 MR 1889-90, pp 241, 252-260; MR 1891, pp 180, 288-320
Pennsylvania, cobalt deposit in MR 1882, p 421; MR 1883-84, p 546; MR 1885, p 393
Pennsylvania, coke in, the manufacture of MR 1883-84, pp 175-196;
 MR 1885, pp 80, 96-111; MR 1886, pp 378, 384, 408-417; MR 1887, pp 383,
Pennsylvania, Cretaceous deposits of Bull 82, p 87
Pennsylvania; fossil faunas of the upper Devonian along the meridian of 76°30', from Tompkins county, N. Y., to Bradford county, Penn................. Bull 3
Pennsylvania, fossils from ... Ann 8, ii, pp 862-570; Mon xvi, pp 85-123
Pennsylvania, geologic and paleontologic investigations in ... Ann 5, p 52;
 Ann 6, pp 25, 31, 35, 74, 75; Ann 7, pp 67, 83; Ann 8, i, p 108; Ann 9, p 77, 122
Pennsylvania, geologic maps of, listed Bull 7, pp 64-76, 162, 163
Pennsylvania; glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois .. Bull 58
Pennsylvania, glacial investigations in Ann 3, pp 341-343, 346, 348, 351; Ann 7, p 157
Pennsylvania, granite production of MR 1891, pp 457, 460
Pennsylvania, graphite mines in MR 1886, p 688
Pennsylvania, iron and steel from, statistics of Ann 2, p xxviii,
 MR 1882, pp 120, 125, 129, 130, 131, 132, 133, 134, 135, 136, 137;
 MR 1883-84, pp 252, 270; MR 1885, pp 182, 184, 186, 188; MR 1886, pp 14, 18, 52-56;
 MR 1887, pp 11, 16, 44-46; MR 1888, pp 14, 17, 23, 25; MR 1889-90, pp 10, 12, 17;
 MR 1891, pp 12, 20, 54, 55, 61
Pennsylvania, lime production of MR 1887, p 533; MR 1888, p 556
Pennsylvania, limestone from localities in, analyses of MR 1889-90, pp 421-424
Pennsylvania, limestone production of MR 1891, pp 464,467
Pennsylvania, manganese ore in .. MR 1885, pp 342-343; MR 1888, p 124
Pennsylvania, marble production of MR 1891, pp 468-469
Pennsylvania, metallic paint production of MR 1891, p 597
Pennsylvania, mineral springs of Bull 32, pp 44-49;
MR 1883-84, p 984; MR 1885, p 540; MR 1886, p 718; MR 1887,
p 685; MR 1888, p 628; MR 1889-90, pp 531-532; MR 1891, pp 603,607
Pennsylvania, minerals of, the useful MR 1882, pp 721-726; MR 1887, pp 779-785
Pennsylvania, mining laws of .. MR 1886, pp 759-790
Pennsylvania, natural gas localities and statistics of MR 1883-84, pp 236,243;
MR 1885, pp 162-165; MR 1886, pp 490,502-504; MR 1887, pp 466,
467-474; MR 1888, p 489; MR 1889-90, p 367; MR 1891, p 438
Pennsylvania, Newark system in .. Bull 85, pp 20, 21, 83, 84
Pennsylvania, nickel ore in .. MR 1882, pp 404-405;
MR 1883-84, p 537; MR 1889-90, p 124
Pennsylvania, ocher production of MR 1891, p 605
Pennsylvania; petroleum, localities and statistics of MR 1882, pp 190,199-202;
MR 1883-84, pp 214-215, 221-224; MR 1885, pp 131-145;
MR 1886, pp 441, 442-457; MR 1887, pp 438, 439-450;
Pennsylvania, rocks of, their classification, etc Bull 80,
pp 42, 83-112, 124-125, 131, 260-261
Pennsylvania, salt from, statistics of MR 1882, pp 532-534, 836-836
Pennsylvania, sandstone from Luzerne, Blair, and Fayette counties, analyses
of .. MR 1889-90, pp 419,420
Pennsylvania, sandstone production of MR 1891, pp 461,463
Pennsylvania, slate production of MR 1891, pp 472,473
Pennsylvania, topographic work in Ann 10, t, p 87,89;
Ann 11, t, p 36; Ann 12, t, p 26
Pennsylvania, zinc and zinc works in Ann 2, p xxix,
MR 1882, pp 361-365, 373; MR 1883-84, p 476
Penokee iron-bearing series of Mich. and Wis Ann 10, t, pp 341-507; Mon xix
Penokee series of rocks of lake Superior Bull 86, pp 187-189
Penrose (R. A. F.), jr., nature and origin of deposits of phosphate of lime, with
an introduction by N. S. Shaler .. Bull 46
Penrose (R. A. F.), jr., quoted, on the lignite beds of Texas MR 1891, pp 327-328
Perezonal formations ... Bull 84, pp 98-99
Peridotite of Elliott co., Ky., composition, origin, etc., of Bull 38;
Bull 42, pp 136-137
Peridotites and associated serpentines near Baltimore, Maryland Bull 28, p 50
Perkins (J.), lists of ores, minerals, and mineral substances of industrial im-
portance in Alaska, California, Nevada, Oregon, and Washington MR 1882,
pp 769, 770-771, 772, 773, 775
Permian in Kansas and Nebraska and other parts of the United States, discus-
sions relative to the correlation of the Bull 80, pp 193-212
Permian of the Grand canyon district Ann 2, pp 64, 91-94;
Mon ii, pp 16, 43-46, 117-121
Permian strata of the Plateau country Ann 6, pp 134-135, 184-185
Permian, the Texan, and its Mesozoic types of fossils Bull 77
Permian. See, also, Carboniferous.
Perrenoud (G. F.), talc, statistics of MR 1885, pp 534-535
Persia, fossil plants of, literature of the Bull 8, t, p 797
Persia, gold from, analysis of .. MR 1883-84, p 366;
MR 1885, p 229; MR 1886, p 128; MR 1887, p 88; MR 1888,
p 73; MR 1889-90, p 73; MR 1891, pp 101,102
Peru, copper production of ... MR 1883-84, pp 856-857; MR 1885, p 488
Peru, quicksilver mines ofAnn 8, ii, pp 965-966; Mon xiii, pp 4, 6, 7, 14, 20-23
Petalite from Peru, Maine, description and analysis ofBull 60, p 129
Peters (E. D.), jr., the mines and reduction works of Butte city, MontanaMR 1888-84, pp 374-396
Peters (E. D.), jr., the roasting of copper ores and furnace productsMR 1882, pp 280-297
Petrographic and paleontologic characters of Devonian beds in New YorkBull 16, pp 13-17, 35-39, 67-68
Petrographic character as a basis for classification of formationsAnn 7, pp 377-390
Petrographic character of Obsidian cliff, Yellowstone parkAnn 7, pp 261-272
Petrographic description of rocks from the Tewan mts., N. MBull 66, pp 10-17
Petrographic descriptions; ferruginous slates, cherts, etc., of the Penokee seriesAnn 10, i, pp 383-392
Petrographic descriptions; general or miscellaneous schists of the Penokee seriesAnn 10, i, pp 354-362, 372-375, 426-434
Petrographic descriptions; greywackes, etc., of the Penokee seriesAnn 10, i, pp 427, 429-432
Petrographic laboratory of the Geological SurveyAnn 10, i, pp 29, 43-44
Petrographic work of the Geological Survey, review of theAnn 10, i, pp 42-52
Petrography, bibliography of American, 1886Bull 44, p 27
Petrography, bibliography of American, 1887-89Bull 75, p 128
Petrography; description and analyses of the yellow clay and white muri of the Bonneville bedsMon i, pp 190, 200-203
Petrography, microscopic, development ofBull 62, p 35
Petrography, microscopic, of the eruptive rocks of the Eureka district, NevadaMon xx, pp 335-394
Petrography, microscopic, of the Great basin and mounts Rainier, Hood, Shasta, and Lassen's peakAnn 3, pp 11-14
Petrography of cape Ann, MassachusettsAnn 9, pp 605-610
Petrography of rocks of the basement series in northern WisconsinAnn 10, i, pp 354-362
Petrography of the Delaware trapsBull 59
Petrography of the Mosquito range, ColoradoMon xii, pp 319-362
Petrography of the Newark systemBull 85, pp 32-36
Petrography of the Penokee iron-bearing seriesMon xix, passim
Petrography of the rocks of the Keweenaw seriesAnn 3, pp 101-115; Mon v, pp 34-133
Petrography; thinolite from lake Lahontan and the Mono basinBull 12
Petrography; transitions in mineralogical composition of igneous rocksBull 66, pp 17-20
Petrography. See, also, Lithology.
Petroleum, accumulation of, modes ofAnn 8, ii, pp 507-519
Petroleum, American, character and composition ofMR 1888-90, pp 288-290
Petroleum from CubaBull 78, pp 98-104
Petroleum; geological factors in gas and oil productionAnn 8, ii, pp 581-589
Petroleum; oil fields of the United StatesMR 1883-84, pp 214-220
Petroleum, total product of, in the United States and Canada since 1859MR 1888, pp 443-444; MR 1891, pp 408-409
Petroleum and inflammable gas in Ohio and Indiana, the Trenton limestone as a source of ... Ann 8, ii, pp 475-662
Petroleum and natural gas, theories respecting the origin of.... Ann 8, ii, pp 485-506
Petroleum; gas and related bitumens, the origin, constitution, future, etc., of... Ann 11, i, pp 589-616
Phanerogams from the Carboniferous basins of southwestern Missouri Bull 98, pp 105-109
Phenacite from Crystal park and Florissant, Colorado Bull 20, pp 68-70
Phillips (W. B.), nica mining in North Carolina. MR 1887, pp 661-671
Phillips (W. B.), the fertilizer trade in North Carolina in 1886. MR 1886, pp 611-617
Phinney (A. J.), the natural-gas field of Indiana. Ann 11, i, pp 579-742
Phosphate of lime, nature and origin of deposits of Bull 46
Phosphates, bibliography of Bull 46, pp 129-130
Phosphates, foreign sources of Bull 46, pp 803-801; MR 1885, pp 454-455
Phosphates of Alabama ... Bull 46, pp 75-78
Phosphates of Florida ... Bull 46, pp 78-79; MR 1891, pp 562-563
Phosphates of Martha's vineyard Bull 46; p 78
Phosphates of North Carolina Bull 46, pp 70-75
Phosphates of South Carolina Bull 46, pp 70-75
Phosphatic deposits of Florida, character and correlation of the Bull 81, pp 111-112, 130-131, 134-140
Phosphatic limestone beds of Kentucky Bull 46, pp 116-117
Phosphatic matter, accumulation of, in morasses Ann 10, i, pp 307-308
Phosphoric acid, separation of, in rock analyses Bull 78, pp 87-90
Phosphorites, foreign ... Bull 46, pp 46-59
Phosphorus from iron slag .. MR 1883-84, p 805
Phosphorus in other countries, production of MR 1886, pp 676-677
Phosphorus in steel ... Bull 25, p 14
Phosphorus oxychloride, the action of, on the ethers and chlorhydrines of silicic acid Bull 90, pp 47-55
Phosphorus, statistics of .. MR 1886, pp 676-677
Phthisanite of the Coast ranges of California described Mon xiii, pp 105-108
Physical and chemical effect of sudden cooling of glass Bull 42, pp 98-131
Physical effect of precipitants Bull 36, pp 24-26
Physical effect of temperature in subsidence of fine solid particles in liquids... Bull 36, pp 21-24
Physical geology of the Grand canyon district Ann 2, pp 47-166
Physical properties of the iron-carburats Bull 14; Bull 27; Bull 35
Physics and chemistry, work in, during 1884-85 Ann 6, pp 86-88; Bull 27
Physics and chemistry, work in, during 1885-86 Ann 7, pp 127-130; Bull 42
Physics and chemistry, work in, during 1886-87 Ann 8, i, pp 189-193; Bull 55
Physics and chemistry, work in, during 1887-88 Ann 9, pp 141-143; Bull 60
Physics and chemistry, work in, during 1888-89 Ann 10, i, pp 177-181; Bull 64
Physics and chemistry, work in, during 1889-90 Ann 11, i, pp 125-127; Bull 78
Physics and chemistry, work in, during 1890-91 Ann 12, i, pp 127-129; Bull 90
Physiography; beach ridges and deltas of lake Agassiz Bull 39
Physiography; cliffs of Toroweap valley, Arizona Mon ii, pp 84-88
Physiography; drainage of the Paria plateau Mon ii, pp 200-203
Physiography; interior basins, origin of Mon i, pp 2-5
Physiography of copper-bearing rocks of lake Superior, in relation to structure Mon v, pp 165-166

Bull. 100——29
Physiography of Martha's Vineyard .. Ann 7, pp 306-307
Physiography of Texas ... Bull 45, pp 45-54
Physiography of the Grand Canyon district Ann 2, pp 69-73
Physiography of the Hawaiian islands ... Ann 4, pp 81-89, 212-219
Physiography of the region about Chesapeake Bay Ann 7, pp 548-564
Physiography; plateaus of the Grand Canyon district Mon II, pp 9-19
Physiography; playa lakes and playas .. Mon XI, pp 81-86
Physiography; river courses in Washington territory, changes in, due to gla-
clin ... Bull 40
Physiography; surface of the Kaibab plateau Mon II, pp 135-139, 192-198
Physiography; terraces of the Grand Canyon district Mon II, pp 32, 35-37, 40, 42-46, 47
Physiography; terraces of the upper Ohio River district Bull 58, pp 22-38, 80-96
Physiography; topographic features of shorelines Ann 5, pp 75-123;
 Mon 1, pp 23-170; Mon XI, pp 87-124
Physiography; topography near Comstock lode due to faulting Mon III, pp 156, 181-182
Physiography; Vermilion cliffs of Southern Utah Mon II, pp 51-60
Physiography; walls of the Grand Canyon of the Colo. Mon II, pp 140-170, 173-178
Physiography and geology of portions of Colo., Utah, and Wyo. Ann 9, pp 677-712
Piercullumogene from vicinity of Las Vegas, New Mexico, analysis of ... Bull 78, p 121
Piedmont region of the middle Atlantic slope Ann 7, pp 548-550
Pig iron. See iron.
Pike's peak, minerals from the neighborhood of Bull 20, pp 40-73
Pilling (J. C.), resignation of, from office of chief clerk Ann 12, p 19
Pipestone, red, from Minnesota, analysis and tests of MR 1889-90, p 404
Plantamour (E.), hypsometric method of Ann 2, pp 480-488, 548-549
Plant life, past and present, of the earth, table and diagrams of, by types and geologic formations, with discussions thereof Ann 5, pp 439-452
Plants and animals in relation to soil formation Ann 12 I, pp 268-287
Plants as rock-builders .. Ann 9, pp 619-620
Plants, descent of ... Ann 5, p 452
Plants, fossil, description of silicified species of, from the Potomac formation ... Bull 56, pp 43-52
Plants, fossil, description of species of the Laramie Bull 37, pp 13-115
Plants, fossil, description of the species of the Potomac or younger Mesozoic .. Mon XV, pp 63-325
Plants, fossil, descriptions of genera and species of, from the Trias of New Jersey and the Connecticut valley Mon XIV, pp 82-95
Plants, fossil, discussion of table of distribution of the Laramie Ann 6, pp 515-536
Plants, fossil, geological affinities of the Potomac or younger Mesozoic Mon XV, pp 333-348
Plants, fossil; list of species of the Potomac formation identical with or allied to species described from other localities and formations Mon XV, pp 358-367
Plants, fossil; list of species of the Potomac formation, with the localities at which they were collected .. Mon XV, pp 350-357
Plants, fossil, list of the Potomac or younger Mesozoic Mon XV, pp 326-331
Plants, fossil, localities for the Potomac or younger Mesozoic Mon XV, pp 10-33
Plants, fossil; localities other than those of the Potomac formation at which Potomac species or their allies have been found Mon XV, pp 368-372
Plants, fossil, nomenclature and classification of Ann 5, pp 425-431
Plants, fossil, of the Dakota group ... Mon XVII
Plants, fossil, of the Devonian of the Eureka district, Nevada Mon XX, pp 69-70
Plants, fossil, of the higher Devonian of Ontario co., N. Y. Bull 16, pp 25-28, 63-65
Plants, fossil, of the Laramie age ... Ann 6, pp 436-440
Plants, fossil, of the Newark system ... Bull 85, pp 62-65, 126-129
Plants, fossil; sketch of paleobotany Ann 5, pp 337-452
Plants, fossil; stratigraphy of the bituminous coal field of Pennsylvania, Ohio, and West Virginia, with mention of species Bull 65
Plants, fossil, synopsis of the flora of the Laramie group of Ann 6, pp 399-557
Plants, fossil, table of distribution of the Laramie Ann 6, pp 440-514
Plants, fossil, table of number of species of, from each geological formation.. Ann 5, pp 440-441
Plants, fossil, table of the, from the older Mesozoic of N. C. Mon vi, pp 122-123
Plants, fossil, table of the, from the older Mesozoic of Virginia ... Mon vi, pp 92-93
Plants, fossil, the geographical distribution of Ann 8, n, pp 663-660
Plants, fossil, the older Mesozoic flora of North Carolina, with description of species. Mon vi, pp 97-128
Plants, fossil; the older Mesozoic flora of Virginia, with description of species. Mon vi, pp 1-96
Plants, fossil, value of the study of the internal structure of, with review of its progress Bull 56, pp 11-38
Plants, fossil; wood and lignite of the Potomac formation Bull 56
Plants; travertine and siliceous sinter, the formation of, by the vegetation of hot springs .. Ann 9, pp 613-676
Plants, types of ... Ann 5, pp 432-433
Plateau country of the western part of the United States, map showing the.. Ann 6, pp 114-145
Plateau province of Western United States Ann 2, pp 49-68; Ann 6, 113-124; Mon ii, pp 9-15, 217-218
Plateau province. See, also, Arizona; Colorado; New Mexico; Utah; Wyoming.
Platinumiferous nickel ore from Canada............................... Bull 64, pp 20-21
Platinumiferous, analyses of .. MR 1883-84, p 581
Platinum, foreign sources of .. MR 1883-84, pp 576-577; MR 1885, pp 367-368
Platinum ores, analyses of .. MR 1883-84, p 577; MR 1885, p 367
Platinum, pyro-electric qualities of alloys of Bull 54, pp 126-164
Platinum, statistics of .. MR 1882, pp 442-443;
MR 1883-84, pp 576-580; MR 1885, pp 367-369; MR 1886, pp 222-223;
MR 1887, pp 142-143; MR 1888, pp 165-167; MR 1889-90, pp 143-144
Platte river basin, hydrography of the......................... Ann 12, ii, pp 238-240
Platymud from Carson desert, Nevada, analysis of Mon xi, pp 83
Platya lakes and playas, especially those in the Lahontan basin.. Mon xi, pp 81-85
Pleistocene; beaches and deltas of lake Agassiz Bull 39
Pleistocene bitumen deposits... Ann 11, i, pp 535-596
Pleistocene climate as revealed by the lake Lahontan records... Mon xi, pp 255-268
Pleistocene climate, especially of the Great basin Ann 4, pp 468-464; Mon i, pp 265-318
Pleistocene; Columbia formation, description of the........ Ann vii, pp 594-612, 635; Ann 12, i, pp 384-407
Pleistocene; Columbia formation in relation to the Lafayette Ann 12, i, pp 430-496
Pleistocene, denudation in the Grand canyon of the Colorado during the... Ann 2, pp 95-101
Pleistocene; deposits of hot springs............................... Ann 9, pp 619-676
Pleistocene drainage in the Great basin.......................... Mon xi, pp 28-32
Pleistocene; driftless area of the upper Mississippi Ann 6, pp 205-322
Pleistocene; earthquake, the Charleston Ann 9, pp 299-528
Pleistocene; earthquakes in California in 1889 Bull 68
Pleistocene epochs, provisional classification of the, with attendant or characteristic phenomena........ Ann 6, p 212; Mon i, p 273
Pleistocene; Equus fauna, age of the................................ Mon i, pp 393-402
Pleistocene formations of the Leadville district, Colorado.................... Ann 2, pp 220-221, 256; Mon xi, pp 40-42, 71-72

Pleistocene fossils and recent forms from American localities between cape Hatteras and cape Roque, including the Bermudas.. Bull 24

Pleistocene; glacial boundary in Penn., Ohio, Ky., Ind., and Ill Bull 58

Pleistocene; glacial phenomena about Leadville, Colorado.................. Ann 2, pp 228-230

Pleistocene; glaciation; terminal moraine of the second glacial epoch........ Ann 3, pp 285-402

Pleistocene; glaciers of the Sierra nevada.................................. Ann 5, pp 309-355

Pleistocene history of Mono valley, California............................. Ann 8, i, pp 261-394

Pleistocene history of northeastern Iowa..................................... Ann 11, i, pp 189-297

Pleistocene history recorded in the Columbia formation.................. Ann 7, pp 637-639

Pleistocene lacustrine formations in Mexico.......................... Mon i, p 402

Pleistocene; lake Bonneville, geological history of.................. Ann 2, pp 167-200; Mon i

Pleistocene; lake Lahontan, northwestern Nevada, geological history of...... Ann 3, pp 195-235; Mon xi

Pleistocene; lake shores, topographic features of.......................... Ann 5, pp 75-123

Pleistocene lakes of the Great basin, map showing the...................... Ann 8, i, pp 268-269; Mon i, pp 6-7

Pleistocene lakes of the Great basin, sketch of the....................... Bull 11, pp 9-12

Pleistocene mammalian fauna of Great Britain.................................. Mon i, pp 339, 400, 401

Pleistocene Mollusca of the Great basin.................................. Bull 11, pp 13-96; Mon i, pp 298-299

Pleistocene; morasses, fresh-water, of the United States.................. Ann 10, i, pp 261-339

Pleistocene of cape Ann, Massachusetts.................................. Ann 9, pp 546-576

Pleistocene of central Oregon... Ann 4, pp 435-464

Pleistocene of Florida.. Bull 84, pp 149-156

Pleistocene of Martha's vineyard... Ann 7, pp 306-325, 347-333

Pleistocene of Mount Desert, Maine... Ann 8, ii, pp 994-1034

Pleistocene of southwestern Kansas....................................... Bull 57, pp 38-45

Pleistocene of Texas.. Bull 45, pp 86-107

Pleistocene of the vicinity of Chesapeake bay.............................. Ann 7, pp 545-616

Pleistocene of the Eureka district, Nevada................................... Mon xx, pp 31-33

Pleistocene on Nantucket island... Bull 153

Pleistocene, Ostreidea of the.. Ann 4, pp 314-316

Pleistocene, Quaternary, and Glacial, remarks on the use of the names...... Mon i, pp 22, 295-306

Pleistocene; river courses in the state of Washington, changes in, due to gla-
ciation; rock-scorings of the great ice invasions.......................... Bull 40

Pleistocene; subaerial decay of rocks and origin of the red color of certain formations... Bull 52

Pleistocene; swamps, sea-coast, of eastern United States.................. Ann 6, pp 359-398

Pleistocene; thinolite, crystallographic study of.......................... Bull 12

Pleistocene; volcanic eruption, a late, in northern California and its peculiar lava... Bull 79

Pleistocene volcanic eruptions in western U. S.......................... Mon i, pp 323, 326, 330, 336-338

Pleistocene volcanic eruptions of the Uintah plateau........................ Mon ii, pp 111-112

Pleistocene winds in the lake Bonneville basin............................ Mon i, p 332

Pliocene, boundaries of the.. Bull 84, p 22

Pliocene and post-Pliocene in California................................. Mon xiii, pp 219-221, 461

Pliocene. See, also, Neocene.

Pogonip limestone at Eureka, Nevada.. Mon xx, pp 48-54

Poecilolite structure of igneous rocks.................................... Bull 62, pp 78, 79, 183, 196

Pollock (W. C.), digest of decisions relating to the use and control of water in the arid region. See p. 324 of this bulletin.

Porcelain clays from China, analyses of.................................... Bull 27, pp 71-72
INDEX.

Porphyrite and porphyry, use of the terms ... Ann 12, i, p 582
Porphyrites of the Henry mountains ... Mon xiv, pp 359-363
Porphyrites of the Mosquito range, Colorado ... Mon xiv, pp 85, 334-344
Porphyroids, schistose porphyries or, of Michigan Bull 62, pp 119-122
Porphyry, alteration products of, analyses of .. Mon xiv, p 603
Porphyry, quartzless, of the Keweenaw series .. Mon v, pp 91-95
Portland cement in America, history of ... MR 1891, pp 586-597
Portland group of rocks of New Brunswick ... Bull 86, pp 230-238
Portugal, antimony production of .. MR 1885, p 254; MR 1883-84, pp 356, 367-368;
MR 1885, pp 228, 237-238; MR 1886, pp 128, 133-135; MR 1887, pp 87, 95-96; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 100
Portugal, copper production of .. MR 1883-84, pp 545
Portugal, copper production of .. MR 1883-84, pp 545
Portugal, fossil plants of, literature of the Ann 8, ii, pp 705-707
Portugal, manganese production of .. MR 1886, p 201; MR 1889-90, p 130
Portugal, pyrites production of .. MR 1883-84, pp 882-884;
MR 1885, pp 507-508; MR 1886, pp 654-656
Portugal, tin production of .. MR 1883-84, p 618
Potassium and sodium, a method for the separation of, from lithium by the
action of amyl alcohol on the chlorides, with some reference to a similar
separation of the same from magnesium and calcium Bull 42, pp 73-88
Potassium salts, analyses of .. MR 1887, pp 632-639
Potassium salts, statistics of .. MR 1887, pp 628-650
Potomac and Tuscaloosa formations .. Ann 12, i, pp 421-424
Potomac beds, location and geology of the ... Ann 7, pp 546-547, 613-616, 636;
Mon xv, pp 33-62; Bull 56, pp 38-39
Potomac clays, description of the .. MR 1891, p 492
Potomac formation, fossil wood and lignite of the Bull 56
Potomac or younger Mesozoic flora .. Mon xv
Potomac plants, geological affinities of the .. Mon xv, pp 333-348
Potaslam sandstone of Wisconsin .. Mon xix, p 29
Pottery, statistics of .. MR 1882, pp 471-472;
MR 1883-84, pp 685-692, 698-700; MR 1885, pp 419-421; MR 1886, pp 571-572;
MR 1887, pp 542-545; MR 1888, pp 571-575; MR 1889-90, pp 441-444
Pottery clays, analyses of .. MR 1882, p 472; MR 1883-84, p 690
Powell (J. W.), appointment of, to directorship Ann 2, pp xi-xii
Powell (J. W.), report of director for 1880-81 Ann 2, pp xi-xlv
Powell (J. W.), report of director for 1881-82 Ann 3, pp xv-xviii
Powell (J. W.), report of director for 1882-83 Ann 4, pp xiii-xxxii
Powell (J. W.), report of director for 1883-84 Ann 5, pp xix-xxxv
Powell (J. W.), report of director for 1884-85 Ann 6, pp xv-xxix
Powell (J. W.), report of director for 1885-86 Ann 7, pp 3-42
Powell (J. W.), report of director for 1886-87 Ann 8, i, pp 3-93
Powell (J. W.), report of director for 1887-88 Ann 9, pp 3-46
Powell (J. W.), report of director for 1888-89 Ann 10, i, pp 3-80
Powell (J. W.), preliminary report of director on the irrigation survey (reprint of) .. Ann 10, ii, pp 15-29
Powell (J. W.), report of director on the irrigation survey for 1888-89 Ann 10,
ii, pp 1-65
Powell (J. W.), report of director for 1889-90 Ann 11, i, pp 3-30
Powell (J. W.), report of director on the irrigation survey for 1889-90 Ann 11,
ii, pp 1-200
Powell (J. W.), report of director for 1890-91 Ann 12, i, pp 3-19
Powell (J. W.), report of director on the irrigation survey for 1890-91 Ann 12, ii
Powell (J. W.), statements before the committee on irrigation of the house
of representatives .. Ann 11, ii, pp 203-289
Powellite, a new mineral species, description and analysis of........ Bull 90, pp 34-37
Prairie soils .. Ann 12, 1, 323-326
Pre-Cambrian rocks of North America, review of present state of knowledge of the .. Bull 86
Precious-metal ore deposits of the Comstock lode, Nevada, source of genesis of the.. Mon XI, pp 18-21, 285-288
Precious-metal ore deposits of the Leadville district, Colorado, source or genesis of the.. Mon XII, pp 367-384, 394
Precious-metal ore deposits, popular fallacies regarding........ Ann 4, pp 253-271
Precious metals, discovery of the, in Colorado...................... Mon XI, pp 7-10
Precious metals of Eureka, Nevada...................................... Mon VII
Precious metals. See, also, Gold; Silver.
Precious stones, American .. MR 1882, pp 483-499
Precious stones, foreign sources of.................................... MR 1887, pp 563-579
Precious stones, localities of, in the United States.............. MR 1883-84, pp 728-781
Pressure and temperature, dependence of fluid volume on........ Bull 92, pp 17-67
Pressure, contractions due to cooling under...................... Bull 92, pp 56-61
Pressure, effect of, on the electrical conductivity of mercury... Bull 92, pp 68-77
Pressure, high, the behavior of solids under....................... Bull 55, pp 67-75
Pressure in relation to schistose structure.......................... Bull 59, p 43
Pressure, influence of, on crystallization of igneous magmas..... Bull 96, p 25
Pressure, very high, method of obtaining and of measuring..... Bull 96, pp 17-32
Pre-Tertiary igneous rocks of Eureka district, Nevada........... Ann 3, pp 273-276; Mon XV, pp 218-229
Priceite from Chetco, Oregon, analysis of.......................... MR 1888, pp 297-315; Bull 17, p 30
Primeval rocks, possible character of............................. Mon XIII, pp 171-174
Primitive rocks, history of the term.................................. Bull 86, pp 470
Prince Edward island, presence or absence of Newark rocks on........ Bull 85, pp 27-31
Principles and definitions in geologic science..................... Ann 11, 1, pp 238-303
Prochlorite from Foundry run, Georgetown, D. C., analysis of..... Bull 9, p 13
Proctor (J. R.), list of ores, minerals, and mineral substances of industrial importance in Kentucky......................... MR 1882, pp 684-686
Propylite, a decomposition product of various rocks............ Ann 2, p 297; Mon XI, pp 81-90, 135-144, 375; Bull 17, p 30
Prosopite from near Pike’s peak, Colorado, occurrence, chemical investigation, etc., of................................. Bull 20, pp 62-66
Prospect mountain limestone at Eureka, Nevada................... Mon XX, pp 30-38
Prospect mountain quartzite at Eureka, Nevada.................... Mon XX, p 35
Prospecting, methods of, in the Eureka district, Nevada........ Mon VII, pp 139-149
Prospecting rules for Penokee district.............................. Mon XIX, pp 276-279
Pseudodiabase of the Coast ranges of California.................. Mon XIII, pp 94-99, 101-102
Pseudodiorite of the Coast ranges of California.................. Mon XIII, pp 93-101
Pseudomorphism after limestone, evidences of, in ores........... Mon XII, p 98
Pteropoda; Matthevia from the upper Cambrian of New York, description of... Bull 30, pp 223-225
Pteropoda of the Cambrian of the Eureka district, Nevada....... Mon VIII, pp 23-24
Pteropoda of the Carboniferous of the Eureka district, Nevada......Mon VIII, p 264
Pteropoda of the Devonian of the Eureka district, Nevada........ Mon VIII, pp 196-200
INDEX.

Pteropoda of the lower Silurian of the Eureka district, Nevada. Mon viii, pp 85-86
Pteropoda of the Olenellus zone. Ann 10, i, pp 620-625
Puercro river, New Mexico, irrigation possibilities along the. Ann 12, ii, pp 275-277
Puget group, digest of the literature pertaining to the. Bull 88, pp 107-110
Puget group of Washington. Bull 84, pp 229-230
Puget sound region, Molluscan fauna from the. Bull 51, pp 49-63
Pumice refused by basalt. Mon xx, pp 381-385
Pumice, rhyolitic, of the Eureka district, Nevada. Mon xx, pp 380-385
Pumice-stone, statistics of. MR 1882, pp 480; MR 1883-84, p 721; MR 1885, p 433
Pumpelly (R.), statistics of. MR 1882, pp 480; MR 1883-84, p 721; MR 1885, p 433
Pumpelly (R.), administrative report for 1879-80. Ann 1, pp 57-60
Pumpelly (R.), administrative report for 1884-85. Ann 6, p 18
Pumpelly (R.), administrative report for 1885-86. Ann 7, pp 60-61
Pumpelly (R.), administrative report for 1886-87. Ann 8, i, pp 124-125
Pumpelly (R.), administrative report for 1887-88. Ann 9, p 75-76
Pumpelly (R.), administrative report for 1888-89. Ann 10, i, pp 114-116
Pumpelly (R.), administrative report for 1889-90. Ann 11, i, pp 64-65
Pumpelly (R.), administrative report for 1890-91. Ann 12, i, pp 67-70
Pumpelly (R.), report on chemical work in 1879-80. Mon xi, pp 57-58
Pyrite, formation of, in Comstock lode. Mon xii, pp 432-433, 474
Pyrites, analyses of. MR 1883-84, pp 877, 878, 879, 880, 881, 884, 885;
MR 1885, pp 501-508, 514; MR 1886, pp 652, 712
Pyrites, foreign deposits of. MR 1883-84, pp 881-886;
MR 1885, pp 506-508; MR 1886, pp 651-656
Pyrites, statistics of. MR 1883-84, pp 877-906;
MR 1885, pp 501-517; MR 1886, pp 650-675; MR 1887, pp 95, 556, 609-610;
MR 1888, pp 5, 584; MR 1889-90, p 518; MR 1891, pp 570-571
Pyrites residue, ordinary, analysis of. MR 1885, p 514
Pyro-electric qualities of alloys of platinum. Bull 54, pp 126-164
Pyroclase from the Clinora mine, Virginia, analysis of. MR 1883-84, p 551
Pyroclase from the Etowah region, Georgia, analyses of. MR 1883-84, p 552
Pyrometric use of viscosity. Bull 54, pp 239-306
Pyroxene and serpentine from Montville, New Jersey, description and analyses of. Bull 60, p 137
Pyroxene magna in the Eureka district, Nevada. Mon xx, pp 255-257
Pyroxene, rhombic, in andesites. Bull 1, pp 31-36
Pyroxene, rhombic, in diabasic rocks. Bull 1, p 35
Pyroxene rocks free from feldspar and olivine. Bull 28, p 55
Pyroxene-andesite of the Eureka district, Nevada. Mon xx, pp 239-242, 348-364
Pyrrhotite, typical composition of. MR 1885, p 516
Quantitative determination of silver by means of the microscope. Ann 6, pp 329-352
Quartz as a product of mineralogical metamorphism. Bull 62, p 210
Quartz, conversion of, to serpentine. Mon xii, p 123
Quartz fragments, enlargements of, and genesis of quartzites. Bull 8, i, pp 11-43
Quartz in basalt. Mon xx, p 339
Quartz, primary, the occurrence of, in certain basalts. Bull 66
Quartz, secondary enlargement of, in sandstones. Ann 5, pp 218-237; Bull 8, pp 11-43
Quartz-bearing basalt, distribution of... Bull 79, pp 30-33
Quartz-bearing basalt from Arizona.. Bull 66, p 21
Quartz-bearing basalt from Colorado.. Bull 66, p 22
Quartz-bearing basalt from northern California..................................... Bull 79
Quartz-bearing basalt from the Tewan mountains, New Mexico................. Bull 66, pp 16, 20
Quartzite, Cambrian, of the Mosquito range, Colorado.............................. Mon xii, pp 58-60
Quartzite of the Penokee series.. Ann 10, i, p 375
Quartzite, the Eureka.. Mon xx, pp 54-57
Quartzites, genesis of.. Bull 8, pp 11-43, 48-52
Quartzite mountains, Colo., literature of the geology of the.. Bull 86, pp 319-323, 507
Quartz-porphyry of the Eureka district, Nevada...................................... Mon xx, pp 220-221, 345
Quartz-porphyry of the Keweenaw series... Mon v, pp 95-112
Quartz-porphyry of the Marquette region, Michigan................................. Bull 62, pp 148-151
Quartz-porphyry of the Mosquito range, Colorado................................... Mon xii, pp 76-81, 233-332
Quartz-porphyry of the Washoe district, Nevada................................... Mon iii, pp 45-48, 108-112, 150, 196
Quartz-slate member of the Penokee series... Ann 10, i, pp 370-379; Mon xix, pp 146-171
Quaternary. See Pleistocene.
Quicksilver, African localities of.. Mon xiii, pp 43-44
Quicksilver, Asian localities of... Mon xiii, pp 44-48
Quicksilver, Australian localities of.. Mon xiii, pp 48-50
Quicksilver deposits of the Pacific slope.. Ann 8, ii, pp 961-985; Mon xiii, pp 401-407
Quicksilver deposits, similarity of.. Mon xiii, pp 27-43
Quicksilver, European localities of.. Mon xiii, pp 452-453
Quicksilver, foreign occurrences of, notes on...................................... Mon xiii, pp 14-55
Quicksilver mines in California and throughout the world, maps showing the
distribution of the.................. Ann 8, ii, pp 966-967, 968-969; Mon xiii, plates i, ii
Quicksilver, North American localities of... Mon xiii, pp 15-19
Quicksilver-ore deposits of the Coast ranges, age of the...................... Mon xiii, pp 225
Quicksilver-ore deposits of Huancavelica, Peru.................................... Mon xiii, p 6
Quicksilver ore, genesis and source of.. Ann 8, ii, p 985; Mon xiii, pp 55, 438-450
Quicksilver ores of the Pacific slope, mineralogical character of the........ Mon xiii, pp 388-394
Quicksilver ores, solution and precipitation of.................................. Mon xiii, pp 269-270, 419-437, 473-474
Quicksilver reduction at New Almaden, California................................. MR 1883-84, pp 503-536
Quicksilver, South American localities of.. Mon xiii, pp 19-24
Quicksilver, uses, relative value, principal districts, total product, etc., of.. Mon xiii, pp 1-13, 451-452
Raborg (W. A.), burhstones, statistics of.. MR 1886, pp 581-582
Raborg (W. A.), corundum, statistics of... MR 1886, pp 585-586
Raborg (W. A.), graphite, statistics of... MR 1886, pp 686-689
Raborg (W. A.), grindstones, statistics of.. MR 1886, pp 582-586
Rails, iron and steel, twenty years of changes in the manufacture of........ MR 1891, pp 62-65
INDEX

Rainfall measurements .. Ann 11, ii, pp 23-30
Rainfall of western United States Ann 11, iv, pp 214-215
Rainfall. See also, Hydrography.
Ralstonite from near Pike's peak, Colorado Bull 20, p 56
Raritan clays and greensand marls of New Jersey, Brachiopoda and Lamellibranchiata of the .. Mon ix
Raritan clays and greensand marls of New Jersey, Gasteropoda and Cephalopoda of the .. Mon xviii
Rattlesnake mountains, Wyo., literature of the geology of the Bull 86, 278
Raymond (R. W.), historical sketch of mining law MR 1883-84, pp 988-1004
Raymond (R. W.), the divining rod MR 1882, pp 610-626
Read (M. C.), Berea grit .. Bull 52, pp 12-43
Recession of cliffs .. Ann 2, p 58; Mon ii, pp 250-260
Reconnaissance, a geological, in southern Oregon Ann 4, pp 431-464
Record of North American geology. See Bibliography.
Reconnaissance, a geological, in southwestern Kansas Bull 57
Red color of certain formations from the, and subaerial decay of rocks .. Bull 52
Red Creed quartzite of Wyoming Bull 86, pp 287-289
Requisite and qualifying conditions of artesian wells Ann 5, pp 125-173
Reservoir sites and canal lines of Snake river basin Ann 11, iv, pp 190-200
Reservoir sites and canal lines in Montana surveyed for irrigation purposes .. Ann 11, ii, pp 133-133; Ann 12, ii, pp 127-165
Reservoir sites and canal lines in Nevada, surveyed for irrigation purposes .. Ann 11, ii, pp 168-183; Ann 12, ii, pp 45, 209-212
Reservoir sites, canals, and irrigable lands in New Mexico Ann 11, ii, pp 145-150; Ann 12, ii, pp 165-209
Reservoir sites in Colorado surveyed for irrigation purposes Ann 11, ii, pp 133-144; Ann 12, ii, pp 55-127
Reservoir sites segregated in California Ann 11, ii, pp 150-168; Ann 12, ii, pp 10-54
Reservoir system of Utah lake .. Ann 11, ii, pp 184-189
Reservoirs. See Irrigation.
Residual clays, characteristics of Bull 52, p 39
Residual deposit from subaerial decay of chloritic schist from eight miles west of Cary, North Carolina, analysis of Bull 42, p 137
Residual products from the decay of rocks Bull 52, pp 12-43
Residuary products of erosion in the driftless area of the upper Mississippi, character and constitution of Ann 6, pp 239-258
Resin, a supposed mineral, from Livingston, Montana, description and analysis of .. Bull 78, pp 105-108
Resorption of quartz crystals in basalt Bull 79, p 25
Rhaetic formation in Virginia .. Mon xv, pp 34, 58
Rhaetic of Germany and France and the Triassic of United States, parallelism of the Mon xiv, pp 10-11, 13
Rhaetic plants, or those nearly allied to such, from the Mesozoic of Virginia and North Carolina Mon vi
Rhaetic. See also, Jura-trias.
Rhizopoda from the lower Silurian of the Eureka district Mon vii, pp 65-67
Rhode Island, altitudes in .. Bull 5, p 275; Bull 76
Rhode Island, boundary lines of Bull 13, p 65-66
Rhode Island, brick industry of MR 1887, pp 536, 539
Rhode Island, clay production of MR 1891, p 502
Rhode Island, coal area and statistics of Ann 2, pp xxviii;
MR 1883-84, pp 12, 87; MR 1885, p 11; MR 1886, p 224;
MR 1887, pp 169, 331-352; MR 1888, pp 199, 171, 361
Rhode Island; coal from Cranston, analysis of. Bull 9, p 18
Rhode Island, fossils from. Ann 8, ii, p 853
Rhode Island, geologic and paleontologic investigations in. Ann 6, pp 19-20;
Ann 9, pp 72, 76; Ann 10, 1, p 118; Ann 11, 1, p 63; Ann 12, 1, p 66
Rhode Island, geologic maps of, listed Bull 7, pp 53, 54, 55
Rhode Island, glacial investigations in Ann 3, pp 377, 380;
Ann 7, 1, p 157
Rhode Island, granite production of MR 1891, pp 457, 460
Rhode Island; graphitic carbon mine near Cranston MR 1886, p 636
Rhode Island, iron and steel from, statistics of MR 1882, pp 120, 123, 133, 134, 135;
1886, pp 17, 42-43; MR 1887, p 11; MR 1888, p 14; MR 1891, p 61
Rhode Island, limestone production of MR 1891, pp 464, 467
Rhode Island, mineral springs of Bull 32, p 24; MR 1883, p 510;
MR 1886, p 718; MR 1887, p 685; MR 1888, p 628; MR 1889-90, p 532;
MR 1891, p 603, 607
Rhode Island, minerals of, the useful. MR 1882, p 727; MR 1887, pp 783-786
Rhode Island surveyed by cooperation of the state. ... Ann 9, p 51; Ann 10, 1, pp 7, 85-86
Rhyolite, analyses of .. Ann 8, 1, p 380
Rhyolite from Washoe, Nevada, analysis of Bull 27, p 66
Rhyolite from Yellowstone national park, fayalite in Ann 7, 1, p 270
Rhyolite of the Bonneville basin, age of the Mon 1, 1, p 337
Rhyolite of the Eureka district, Nevada Mon xx, pp 237, 374-385
Rhyolite of the Mosquito range, Colorado Mon xi, pp 87, 345-352
Rhyolite, puniccinos, analysis of Mon xi, p 147
Rhyolite, topaz in ... Mon xi, p 347; Bull 20, p 81
Rhyolites, lustre exhibited by sanidine in certain Bull 20, pp 75-80
Rhyolites of the Tewan mountains, New Mexico Bull 62, pp 10-12
Richtofen (F.), quoted on the Comstock lode Mon iii, pp 12-24
Rifting in the rocks of Cape Ann, Massachusetts Ann 9, pp 602-605
Riggs (R. B.), analysis and composition of tourmaline ... Bull 55, pp 19-37
Riggs (R. B.), two new meteoric irons and an iron of doubtful nature Bull 42, pp 91-97
Rigoridity of the earth, considerations concerning the, derived from a study of lake Bonneville Mon 1, pp 387-392
Rio Grande, Pleistocene origin of the Ann 12, 1, pp 517-518
Rio Grande basin, hydrography of the Ann 11, 1, pp 52-57, 99, 107;
Ann 12, 1, pp 240-290
Rio Grande basin, irrigation problems relating to the. .. Ann 11, 1, pp 215-227
Rio Grande basin, surveys for reservoir sites and canals in the. .. Ann 11, 1, pp 145-150
Rio Grande valley, water supply of the Ann 12, 1, pp 277-278
River courses in Washington territory, changes in, due to glaciation Bull 40
River courses. See, also, Drainage.
River water, general chemistry of Mon xi, pp 172-174
River waters, analyses of Mon xi, p 176; Bull 52, p 38;
Bull 55, pp 91-93
Rivers, origin and persistence of Ann 2, pp 60-61; Mon 2, pp 72, 219
Rizer (H. C.), appointment of, to office of chief clerk Ann 12, 1, p 19
Rock builders, plants as Ann 9, p 619
Rock constituents, decomposition of Mon iii, pp 214-215, 360-372
Rock, eruptive, from Bear creek, Montana, analysis of Bull 78, p 123
Rock, eruptive, from New Mexico, analyses of Bull 27, pp 64-65
Rock, eruptive, from the Henry mountains, Utah, analysis of Bull 60, p 154
Rock, ferruginous, from Penokee iron range, Wisconsin, analysis of ... Bull 42, p 138
Rock formations of the Leadville district, Colorado, general description of the Ann 2, pp 215-224; Mon xi, pp 45-89, 276-284, 292-362
Rock phosphates, classes, nature, and localities of Bull 46, pp 59-116
Rock phosphates. See, also, Phosphates.
Rock-scorings of the great ice-invasions Ann 7, pp 147-248
Rock structures, importance of understanding the significance of Bull 62, p 196
Rock structures produced by dynamic action Bull 62, pp 206-208
Rock temperatures of Comstock lode, Nevada Mon iii, pp 246-258
Rockingham group of rocks in New Hampshire Bull 86, pp 533-535
Rocks as the source of soils Ann 12, t, pp 293-296, 300-306
Rocks, chemical alteration of Bull 52, p 37
Rocks, chemical analysis of, separation of titanium, chromium, aluminum, iron, barium, and phosphoric acid Bull 78, pp 87-90
Rocks, educational series of, and bulletin to accompany the same, progress of the preparation of the Ann 12, t, pp 102-103
Rocks, eruptive, from Electric peak and Sepulchre mountain, Yellowstone park, mineral and chemical composition of the ... Ann 12, t, pp 619-622, 647-650
Rocks from California, analyses of Bull 55, pp 84-88
Rocks from Kakabikka falls, Kaministiquia river, Ontario, Canada, analyses of .. Bull 42, p 139
Rocks from Menominee river, Michigan and Wisconsin, analyses of Bull 55, p 81
Rocks from Montana, analyses of Bull 55, pp 83-84; Bull 60, pp 152-154
Rocks from Pigeon point, Minnesota, analyses of Bull 55, p 81-83
Rocks from sandstone dikes of northern California and from the Diablo, analyses of Bull 78, pp 123-124
Rocks from Tewan mountains, New Mexico, analyses of Bull 60, p 155
Rocks from Wisconsin, Michigan, and Minnesota, analyses of Bull 60, pp 149-151
Rocks, miscellaneous, analyses of Bull 9, pp 9-18; Bull 27, pp 63-66; Bull 42, pp 136-144; Bull 52, pp 18, 24; Bull 55, pp 80-85; Bull 60, pp 149-160; Bull 62, pp 89, 91, 103, 104, 113, 119-121, 152-153; Bull 64, pp 41-50; Bull 66, p 30; Bull 78, pp 90, 116-117, 121-125; Bull 79, p 29; MR 1883-84, p 969; MR 1886, pp 542, 543, 547, 583; MR 1887, p 588; MR 1888, p 537
Rocks of the Washoe district, Nevada, nature and decomposition of the .. Mon iii, pp 32-38, 372-376
Rocks, physical constants of, investigations into the Ann 3, pp 3-9
Rocks, primeval, possible character of the Mon xiii, pp 171-173
Rocks, sedimentary and massive, of the Pacific slope ... Mon xiii, pp 56-175, 453-460
Rocks, stratified, of mount Desert island, Maine Ann 8, ii, pp 1037-1047
Rocks, subaerial decay of, and origin of the red color of certain formations .. Bull 52
Rocks, the copper-bearing, of lake Superior Mon v
Rocks. See, also, Igneous; Petrography; Sedimentary.
Rocky mountain, province, literature and fauna of the lower Cambrian in the ... Ann 10, t, pp 537-538, 542-543, 571, 581-586
Rocky mountains, contributions to the mineralogy of the Bull 20
Rocky mountains in Colorado, structure of the Mon xii, pp 19-27
Rolling-mill development, twenty years of MR 1891, pp 60-62
Roots as agents of soil formation Ann 12, t, pp 269-274
Rothwell (R. P.), pyrites, statistics of MR 1886, pp 650-675
Rottenstone, statistics of .. MR 1883-84, p 722
Ruffner (W. H.), the coal fields of Washington MR 1891, pp 334-341
Rühmann (R.), hypsometric method of Ann 2, pp 550-552
Russell (I. C.), existing glaciers of the United States Ann 5, pp 303-355
Russell (I. C.), explorations in Alaska Ann 11, t, pp 57-58; Ann 12, t, pp 59-61
Russell (I. C.), geological history of lake Lahontan Ann 8, pp 189-236; Mon xi
Russell (I. C.), geological reconnaissance in southern Oregon Ann 4, pp 431-464
Russell (I. C.), Newark system, a correlation essay Bull 85
Russell (I. C.), Quaternary history of Mono valley, California ... Ann 8, t, pp 261-284
Russell (I. C.), subaerial decay of rocks and origin of the red color of certain formations Bull 52
Russia, coal area and output of, compared with those of other countries... MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73

Russia, copper production of........................ MR 1882, p 257; MR 1883-84, p 356; MR 1885, pp 228, 241-242; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 100

Russia, fauna of the Olenellus zone in.................... Ann 10, i, pp 579-580

Russia, fossil plants of, literature of the............... Ann 8, ii, pp 781-785

Russia, gold and silver production of, compared with that of other countries........................ MR 1883-84, pp 319, 320

Russia, iron and steel production of, compared with that of other countries... MR 1882, p 109; MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 21, 22; MR 1891, p 73

Russia, lead production of.............................. MR 1883-84, p 434; MR 1885, pp 204, 270

Russia, manganese production of.......................... MR 1886, pp 204-205; MR 1887, p 161; MR 1888, p 141; MR 1891, p 146

Russia, mining law of...................................... MR 1883-84, p 1002

Russia, phosphates of....................................... Bull 46, pp 112-116

Russia, phosphorous production of........................ MR 1886, pp 676-677

Russia, platinum mines and production of................. MR 1882, p 443; MR 1883-84, p 576; MR 1885, pp 367-368; MR 1888, p 165; MR 1889-90, p 143

Russia, quicksilver deposits in............................ Mon xi, p 43

Russia, quicksilver production of........................ MR 1888, p 105; MR 1891, pp 123, 124

Russia, tin production of................................... MR 1883-84, p 619

Russia, zinc production of.................................. MR 1883-84, p 480;

MR 1885, pp 277, 283; MR 1886, p 159; MR 1887, p 117; MR 1888, p 95

Ryder (J. A.), life-history of the oyster.................. Ann 4, pp 317-333

Sacramento and San Joaquin basins, California, hydrography of the........ Ann 12, ii, pp 316-324

Saline contents of Great salt lake........................ Mon i, pp 251-258

Saline efflorescences of Lahontan basin................... Mon xi, pp 230-232

Salines and refineries in California....................... MR 1882, pp 570-571

Salines of Louisiana.. MR 1882, pp 554-565

Salisbury (R. D.) and Chamberlin (T. C.) ; driftless area of the upper Mississippi valley................. Ann 6, pp 199-392

Salt, analyses of.. Bull 55, p 88; Bull 60, p 171; MR 1882, pp 555, 557, 564; MR 1883-84, pp 834, 840, 841, 849; MR 1885, 479, 482; MR 1888, p 619

Salt deposits of Sevier basin and Snake valley, Utah.... Mon i, pp 223-228

Salt deposits of inclosed basins......................... Mon xi, pp 84-86

Salt, foreign commerce in.................................. MR 1882, pp 550-553; MR 1883-84, pp 848-849

Salt from Hutchinson, Kansas, analysis of................ Bull 60, p 171

Salt from Warsaw, New York, analysis of.................. Bull 55, p 88

Salt in Kansas.. Bull 57, pp 25-26, 48

Salt-making processes in the United States................. Ann 7, pp 491-535

Salt; salines of Louisiana................................. MR 1882, pp 554-565

Salt, statistics of.. MR 1883, pp 532-565;

Salt-works in the Lahontau basin........................... Ann 3, pp 226-227; Mon xi, pp 232-235

Salt lake basin, fresh waters in, analyses of............ Mon i, p 207

Salt lake basin, hydrography of.. Ann 11, ii, pp 66-77, 109

Salt lake, Great, analysis of the water of............... Mon i, pp 253, 254, 255

Salt lake, Great, saline deposits of....................... Mon xi, pp 185-186
INDEX.

Salt lake, Great, surveys, oscillations, fauna, etc., .. Mon i, pp 230-250
Salt lake group of rocks of Idaho ... Bull 84, pp 286-287
Salt river basin, Arizona, hydrography of .. Ann 11, ii, pp 61-63, 100
Salts deposited on evaporation .. Mon xii, pp 182-187
Samarskite from Colorado ... Bull 55, pp 48-61
San Francisco district, Utah, reconnaissance of the .. Ann 1, pp 37-38
San Joaquin and Sacramento basins, California, hydrography of the Ann 12, ii, pp 316-321
San Luis valley, Colorado, hydrography and irrigation in Ann 11, ii, p 146; Ann 12, ii, pp 247-251
San Pedro river basin, Arizona, hydrography of ... Ann 11, ii, pp 59-61, 99
Sand, building, statistics of ... MR 1883-84, pp 667-668; MR 1885, pp 401-405
Sand dunes, constitution of ... Mon i, p 59
Sand dunes in the Great basin ... Mon xi, pp 153-156
Sand dunes of cape Ann district, Massachusetts .. Ann 9, pp 574-575
Sands, volcanic, of lake Lahontan basin ... Mon xi, pp 153-156
Sands, glass, analyses of .. MR 1883-84, p 962
Sands, green, analyses of .. MR 1883-84, p 798
Sandstone, analysis of, from Arizona, Flagstaff .. Bull 78, p 124
Sandstone, analysis of, from Colorado, Armejo quarry and Boulder county.. Bull 42, p 141; MR 1889-90, p 384
Sandstone, analysis of, from Massachusetts, Maynard, Worcester, and Kibbe MR 1889-90, p 402
Sandstone, analysis of, from Michigan .. Bull 27, p 66
Sandstone, analysis of, from Ohio, various localities Bull 27, p 66; Bull 60, p 158; MR 1889-90, p 416
Sandstone, analysis of, from Pennsylvania, Luzerne, Blair, and Fayette counties .. MR 1889-90, pp 419-420
Sandstone from South Dakota, tests of .. MR 1889-90, p 429
Sandstone, induration of .. Bull 8, i, pp 12-18, 48-52
Sandstone, origin of concretions in ... Mon xiii, pp 64-68
Sandstone, secondary enlargement of mineral fragments in Ann 5, pp 218-241
Sandstone, secondary enlargement of quartz and feldspar grains in Bull 8, pp 11, 44
Sandstone, the Eastern, junction between the, and the Keweenaw series on Keweenaw point, lake Superior, observations on the ... Bull 23
Sandstone, transformation of, to serpentine .. Mon xiii, pp 121-126, 277-278
Sandstone, Triassic, from near Hancock, Maryland, analysis of Bull 56, p 80
Sandstones, Cretaceous, of the Coast ranges of California, metamorphism of... Mon xiii, pp 63, 87-93
Sandstones, metamorphosed, of the Eureka district, Nevada Mon xx, p 346
Sandstones of the Coast ranges of California, petrography of the Mon xiii, pp 59-63
Sandstones of the Keweenaw series .. Mon v, pp 127-133
Sandstones, origin of the red color of ... Bull 52, pp 44-55
Sandwich islands. See Hawaiian.
Sangre de Cristo and Wet mountains, Colo., geology of the Bull 86, pp 313-314
Sanidine, lustre of, in nevadite ... Mon xii, p 348
Sanidine in certain rhyolites, lustre exhibited by ... Bull 20, pp 75-80
Sanitary conditions of soils .. Ann 12, i, pp 340-344
Santa Fé district, New Mexico, irrigation in the .. Ann 11, ii, pp 149, 219, 224; Ann 12, ii, pp 269-270
Santee beds of South Carolina ... Bull 83, p 52-53
Saporta (Marquis Gaston de), biographical sketch of Ann 5, pp 383-384
Sapphire. See Precious stones.
Saussurite from Shasta county, California, analysis of. Bull 9, p 10
Saussurization, a kind of mineralogical metamorphism. Bull 62, pp 58-60
Sawatch mountains, Colo., Archean and Algoukian rocks of the. Bull 86, p 316
Schenk (August), biographical sketch of. Ann 5, pp 382-383
Scheuchzer (Johann Jacob), biographical sketch of. Ann 5, p 370
Schimper (Wilhelm Philipp), biographical sketch of. Ann 5, pp 375-376
Schist areas, the greenstone, of the Menominee and Marquette regions of Michigan, a contribution to the subject of dynamic metamorphism in eruptive rocks. Bull 62
Schistose rocks, relation of, to massive rocks in Wisconsin. Ann 10, i, p 363
Schistose structure in relation to pressure. Bull 59, p 43
Schists, crystalline, of the lake Superior region. Ann 10, i, p 355-364
Schists, metamorphic, of the Penokee iron-bearing series, origin of the. Mon xix, pp 107-111, 116-126
Schlotheim (Ernst Friederich, Baron von), biographical sketch of. Ann 5, pp 370-371
Schneider (E. A.), on the colloidal sulphides of gold. Bull 90, pp 56-61
Schneider (E. A.) and Clarke (F. W.), on the constitution of certain micas, verniculites, and chlorites. Bull 90, pp 11-21
Schneider (E. A.) and Clarke (F. W.), experiments upon the constitution of the natural silicates. Bull 78, pp 11-33
Schwatka (F.), exploration of the Yukon valley, etc., by. Ann 12, i, p 62
Scolecite from Table mountain, Colo., description and analyses of. Bull 20, pp 36-37
Scorings, rock, of the great ice invasions. Ann 7, pp 147-248
Scorodite from Steamboat springs, Nevada. Bull 60, p 30
Scorodite from the Yellowstone national park. Bull 55, pp 65-66
Scotland, fossil plants of, literature of the. Ann 8, ii, pp 684-687
Scotland, See, also, Great Britain.
Scudder (S. H.), administrative report for 1885-86. Ann 7, p 127
Scudder (S. H.), administrative report for 1886-87. Ann 8, i, pp 188-189
Scudder (S. H.), administrative report for 1887-88. Ann 9, p 133
Scudder (S. H.), administrative report for 1888-89. Ann 10, i, p 176
Scudder (S. H.), administrative report for 1889-90. Ann 11, i, pp 123-125
Scudder (S. H.), administrative report for 1890-91. Ann 12, i, pp 125-127
Scudder (S. H.), classed and annotated bibliography of fossil insects. Bull 69
Scudder (S. H.), fossil butterflies of Florissant. Ann 8, i, pp 433-474
Scudder (S. H.), index to the known fossil insects of the world, including myriapods and arachnids. Bull 71
Scudder (S. H.), some insects of special interest from Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah. Bull 93
Scudder (S. H.), systematic review of our present knowledge of fossil insects, including myriapods and arachnids. Bull 31
Sea-coast swamps of eastern United States. Ann 6, pp 353-398
Sea-level, the form and position of the. Bull 48
Secondary enlargements of amphibole and pyroxene in diabase. Mon xix, pp 353, 354, 411-413
Secondary enlargements of mineral fragments in certain rocks. Bull 8
Secret canyon shale at Eureka, Nevada. Mon xx, p 39
Sedimentary rocks, assimilation of, by igneous magmas. Mon xii, pp 308-313
Sedimentary rocks, chemical deposits of lake Lahontan. Mon xi, pp 188-222
Sedimentary rocks, chert in limestone, origin of. Ann 10, i, pp 367-369
Sedimentary rocks, chlorine in dolomite. Mon xii, p 279
Sedimentary rocks, concretions in sandstone, origin of. Mon xii, pp 64-68
Sedimentary rocks, dolomitic, discussion of. Mon xii, p 276
Sedimentary rocks, induration of, by enlargement of mineral fragments. Bull 8, pp 13-17
INDEX.

Sedimentary rocks; limestone, decay of ... Bull 52, pp 20-25
Sedimentary rocks of the Coast ranges of California Mon xiii, pp 56-139
Sedimentary rocks of the Eureka district, Nevada Mon xx, pp 34-98
Sedimentary rocks of the Keweenaw series Mon v, pp 127-133, 151
Sedimentary rocks of the Leadville district, Colorado Ann 2, pp 225-226;
................ Mon xi, pp 45-73, 276-281
Sedimentary rocks of the Penokee series Ann 10, i, pp 365-402, 423-435, 439-444
Sedimentary rocks; origin of the red color of sandstones, etc Bull 52, pp 44-55
Sedimentary rocks; quartzites, genesis of Bull 8, pp 11-43, 48-52
Sedimentary rocks; residual clays, characteristics of Bull 52, p 39
Sedimentary rocks. See, also, Limestone; Marl; Quartzite; Sandstone; Tufa.
Sedimentation. See Deposition.
Sediments, lacustral, of Mono lake, California Ann 8, i, pp 305-310
Sediments of lake Bonneville, chemical analyses of Ann 2, p 177; Mon i, pp 201-202
Sediments of lake Lahontan ... Mon xi, pp 124-156
Seismology. See Earthquakes.
Selkirk range, comparative table of formations met with in the, and the
... Bull 86, p 340
western side of the adjacent portion of the Rocky mountains Bull 86, p 340
Sevonian, Laramie, and Eocene plants, table of distribution of, and discussion
thereof .. Ann 6, pp 443-536
Sepulchre mountain and Electric peak, Yellowstone national park, the eruptive rocks of ... Ann 10, i, pp 250-251
Serpentinization, a kind of mineralogical metamorphism Bull 62, p 50-62
Serpentine, analyses of .. Mon xi, p 598; Mon xiii, pp 110, 111
Serpentine and its associates, analyses of Bull 64, pp 43-44
Serpentine and pyroxene from Montville, New Jersey, description and analyses
of .. Bull 60, p 137
Serpentine and serpentinization, especially in the Coast ranges of California Mon xiii, pp 108-128, 251, 276-278, 293, 311, 359, 457-458
Serpentine, decomposition of ... Mon xiii, pp 127-128
Serpentine from Harford county, Maryland, analysis of M.R. 1888-90, p 400
Serpentine from Newburyport, Massachusetts, analysis of Bull 27, p 63
Serpentine, microstructure of ... Mon xiii, pp 114-117
Serpentine of the Lassen peak district, California Ann 8, i, p 405
Serpentine of the Mosquito range, Colorado Mon xi, pp 281-284
Serpentine, origin of ... Mon xii, pp 282-284; Mon xiii, pp 117-126
Serpentine near Baltimore, Maryland, origin of Bull 28, pp 56-58
Serpentine, pseudomorphic .. Mon xiii, pp 123-126
Serpentinization, character of .. Mon xii, pp 120-127
Severn formation ... Ann 12, i, p 421
Sevier lake, Utah, analyses of the products and brine of Mon i, p 227
Sevier river basin, Utah, hydrography of Ann 11, ii, pp 74-77, 105; Ann 12, ii, pp 339-344
Shaler (N. S.), administrative report for 1884-85 Ann 6, pp 18-22
Shaler (N. S.), administrative report for 1885-86 Ann 7, pp 61-65
Shaler (N. S.), administrative report for 1886-87 Ann 8, i, pp 125-128
Shaler (N. S.), administrative report for 1887-88 Ann 9, pp 71-74
Shaler (N. S.), administrative report for 1888-89 Ann 10, i, pp 117-119
Shaler (N. S.), administrative report for 1889-90 Ann 11, i, pp 62-64
Shaler (N. S.), administrative report for 1890-91 Ann 12, i, pp 66-67
Shaler (N. S.), fresh-water morasses of the United States, with description of
the Dismal swamp ... Ann 9, pp 235-339
Shaler (N. S.), geology of cape Ann, Massachusetts Ann 9, pp 529-611
Shaler (N. S.), geology of Martha's vineyard Ann 7, pp 297-360
Shaler (N. S.), geology of Mount Desert, Maine.
Shaler (N. S.), geology of Nantucket.
Shaler (N. S.), introduction to Penrose's "Nature and origin of deposits of phosphate of lime."
Shaler (N. S.), sea-coast swamps of eastern United States.
Shaler (N. S.), the origin and nature of soils.
Shasta, Mount, topographical sketch of.
Sheawwits plateau, Grand canyon district, description of the.
Shiloh marls, stratigraphy and correlation of the.
Shuttle (G. W.), administrative report for 1883-84.
Shuttle (G. W.), administrative report for 1884-85.
Shuttle (G. W.), administrative report for 1885-86.
Shuttle (G. W.), administrative report for 1886-87.
Siberia, fossil plants of.
Siberia, quicksilver deposits of.
Sicilian asphaltum, statistics of.
Sicilian sulphur industry.
Sierra Nevada, Coast, and Cascade ranges, relation of the.
Sierra Nevada, range, structure of the.
Sierra Nevada. See also, California; Nevada.
Sierra, the high, in California, description of.
Silesia, zinc production of.
Silica and alkali determinations in eruptive rocks.
Silica, source of, in ferruginous cherts.
Silicates, alkalis in, estimation of.
Silicates, fusibility of.
Silicates, the natural, experiments upon the constitution of.
Silicates, the natural, the chemical structure of.
Siliceous sinter, formation of, by the vegetation of hot springs.
Siliceous sinter, nature of.
Siliceous sinter, of New Zealand.
Siliceous sinter of Yellowstone national park.
Siliceous sinter, origin of.
Siliceous sinter, rate of deposition of.
Sericic acid, the action of phosphorus oxychloride on the ethers and chlorhydrines of.
Silurian rocks of Texas .. Bull 45, pp 55-56, 87
Silurian rocks of the Eureka district, Nevada ... Ann 3, pp 260-263; Mon XX, pp 84-62
Silurian rocks of the Lake Superior region Ann 3, pp 147-155
Silurian rocks of the Mosquito range, Colorado Mon XII, pp 60-63
Silurian; Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana ... Ann 8, ii, pp 475-662
Silurian; Uinta sandstone in northwestern Colorado Ann 9, pp 687-688
Silurian, upper, fishes of the Mon XVI, pp 19-20
Silurian. See also, Paleozoic.
Silver, discovery of, in western United States Mon III, pp 26-28
Silver in country rocks, determination of Ann 6, pp 345-348
Silver, quantitative determination of, by means of the microscope Ann 6, pp 323-352
Silver and gold conversion tables Bull 2
Silver and gold, discovery of, in Colorado Mon XVII, pp 7-10
Silver and gold in eruptive rocks Mon XIV, p 579
Silver and gold in the United States, production of, since 1804 MR 1888, p 38
Silver and gold in the United States since 1792, product of MR 1891, pp 74-75
Silver and gold of the Comstock lode, Nevada ... Mon III, pp 6-17, 18, 224-225, 268
Silver and gold, the world's production of MR 1883-84, pp 319-321; MR 1888, p 40; MR 1889-90, p 54
Silver-lead deposits of Eureka, Nevada Mon VII
Silver-lead deposits of the Leadville district, Colorado Mon XII, pp 367-584
Silver salts, the indirect estimation of chlorine, bromine, and iodine by the electrolysis of their, with experiments on the convertibility of the silver salts by the action of alkaline haloids ... Bull 42, pp 89-93
Sinter, algous ... Ann 9, p 665
Sinter at Steamboat springs, Nevada Mon XIII, p 341
Sinter, dendritic ... Mon XIV, pp 266-268
Sinter from Queensland, analysis of ... Bull 90, p 74
Sinter, moss ... Ann 9, p 667
Sinter, siliceous, formation of, by the vegetation of hot springs Ann 9, p 613
Sinter, siliceous, nature of Ann 9, pp 669-676
Sinter, siliceous, of New Zealand Ann 9, pp 672-676
Sinter, siliceous, of Yellowstone national park Ann 9, p 650
Sinter, siliceous, origin of Ann 9, pp 650, 655-657
Sinter, siliceous, rate of deposition of Ann 9, p 666
Sioux quartzites, relations of the to the Huronian ... Bull 86, pp 186-187
Sioux reservation, lignites of the great Bull 21
Slag, blast furnace, utilization of MR 1882, pp 161-164
Slag, lead, statistics of MR 1883-84, pp 440-462
Slag of Leadville, analyses and composition of the ... Mon XIV, pp 698-709
Slate member of the Penokee iron-bearing series, origin and petrographical character of the ... Ann 10, i, pp 370-379; Mon XIX, pp 302-345
Slate series, auriferous, of the Laussen peak district, California ... Ann 8, i, pp 404-407
Slates from the Penokee district of Mich. and Wis., analyses of ... Mon XIX, p 306
Sloan (E.), investigations relating to the Charleston earthquake ... Ann 9, pp 210, 294-296, 297, 305, 312
Smelting, copper ... Bull 26
Smelting, materials used in Mon XII, pp 365-659

Bull. 100—30
Smelting at Leadville, Colorado............................ Mon xi, pp 609-751
Smelting of argentiferous lead in the far West MR 1882, pp 324-345
Smelting, products of.. Mon xi, pp 692, 731
Smith (E. A.), list of ores, minerals, and mineral substances of importance in Alabama.................. MR 1882, pp 667-670
Smith (E. A.), the iron ores of Alabama in their geological relations MR 1882, pp 149-161
Smith (E. A.) and Johnson (L. C.), Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers. Bull 43
Smith (W. B.), notes upon the occurrence of topaz at Devil's head mountain, Colorado......................... Bull 20, pp 73-74
Smithsonite from Arkansas, analysis of..................... Bull 90, p 62
Smook (J. C.), lists of ores, minerals, and mineral substances of industrial importance in several of the states.... MR 1882, pp 665-747
Smoky mountains, Tenn., literature of the geology of the Snake River basin, hydrography of........ Ann 11, ii, pp 77-92, 106, 110; Ann 12, ii, p 344
Snake River basin, reservoir sites and canal lines surveyed in, for irrigation purposes......................... Ann 11, ii, pp 190-200
Snake River valley, irrigation problems in the............. Ann 11, ii, p 239
Soapstone, statistics of...................................... MR 1891, p 593
Soapstone and diabases from the Penokee district of Mich., and Wis.. Mon xix, p 357
Soda ash, analyses of.. MR 1883-84, pp 965, 966
Soda, carbonate of, statistics of............................ MR 1882, pp 601-602
Soda lakes near Ragtown, Nevada............................. Mon xi, pp 73-80
Soda, natural, its occurrence and utilization................. Bull 60, pp 27-101
Soda, nitrate of, statistics of................................ MR 1882, pp 599-600
Soda, sulphate of, statistics of.............................. MR 1882, pp 603-604
Sodalite from Litchfield, Maine, description and analysis of............. Bull 42, pp 30-31
Sodium and potassium, a method for the separation of, from lithium by the action of amyl alcohol on the chlorides; with some reference to a similar separation of the same from magnesium and calcium. Bull 42, pp 73-88
Sodium salts, statistics of.................................... MR 1887, pp 651-658
Soil and man, action and reaction of the.................... Ann 12, i, pp 323-345
Soil formation, processes of................................... Ann 12, i, pp 230-250
Soil movement.. Ann 12, i, pp 260-300
Soil, red, from Bermuda, and the coral from which it was derived, analyses of... Bull 52, p 29
Soils and clays from various localities, analyses of............... Bull 64, p 51
Soils, effect of animals and plants on....................... Ann 12, i, pp 268-287
Soils, effects of, on health.................................. Ann 12, i, pp 340-344
Soils, maritime, from Massachusetts, analyses of............... Bull 27, pp 68-69
Soils, nature and origin of.................................... Ann 12, i, pp 213-345
Solfataric action at Sulphur bank, California................ Mon xiii, pp 253, 258-259
Solfataric action in the Comstock lode and the Washoe district, Nevada.... Ann 2, p 313; Mon iii, pp 21, 206, 238, 240, 389
Solfataric action in the Eureka district, Nevada, cause of........ Mon vii, pp 89, 188
Solfataric action in the Leadville district, Colorado........... Mon xii, p 563
Solfataric emanations at Steamboat springs, Nevada........... Mon xiii, pp 342-343
Solfataric gases at Knoxville, California...................... Mon xiii, pp 287-288
Solid and liquid, the continuity of.. Bull 96, pp 71-97
Solid viscosity, the mechanism of.................................... Bull 94
Solids, chemical action between.............................. Bull 64, pp 34-37
Solids, the flow of, or the behavior of solids under high pressure... Bull 55, pp 67-75; Bull 64, pp 38-39
INDEX.

467

Solids, the viscosity of .. Bull 73
Solution as affecting topography .. Bull 84, pp 88-89
Solutions, molten magmas considered as Bull 66, pp 26-29
South America, Cambrian rocks of .. Bull 81, p 379
South America, copper production of MR 1883-84, p 366;
MR 1885, p 229; MR 1886, p 128; MR 1887, p 88;
MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 101
South America, fossil plants of, literature of the............... Ann 8, ii, pp 820-823
South America, geological maps of, list of the..................... Bull 7, pp 150-157
South America, lead production of MR 1888, p 264
South America, tin production of .. MR 1883-84, p 625
South America. See, also, each country thereof.

South Carolina, altitudes in ... Bull 5, pp 276-278; Bull 76
South Carolina, boundary lines of, and cession of territory to general govern­
ment ... Bull 13, pp 26,96-97
South Carolina, brick industry of MR 1888, p 563
South Carolina, building stone from, statistics of MR 1889-90, pp 373, 428; MR 1891, pp 464, 467
South Carolina, clay deposits of ... MR 1881, p 506
South Carolina, Cretaceous deposits of Bull 82, p 92
South Carolina, Eocene deposits of Bull 83, pp 50-54, 81, 87
South Carolina, fossils from ... Ann 4, pp 309, 310, 311, 312, 314, 315
South Carolina, geologic and paleontologic investigations in....... Ann 7, p 121;
Ann 8, i, pp 168-169; Ann 10, i, p 155; Ann 11, i, p 69; Ann 12, i, pp 75, 76, 82
South Carolina, geologic maps of, listed Bull 7, pp 102, 104, 105, 106, 107
South Carolina, gold from, statistics of Ann 2, p 385; MR 1882, pp 172,
176, 177, 178; MR 1883-84, pp 312, 313; MR 1885, p 201; MR 1886, pp 104, 105;
MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 77
South Carolina; kaolin from Aiken, analysis of Bull 27, p 63
South Carolina, limestone production of.................................. MR 1891, pp 464, 467
South Carolina, manganese ore in .. MR 1886, p 193;
MR 1888, pp 124, 130; MR 1889-90, pp 127, 134; MR 1891, p 136
South Carolina, mineral springs of Bull 32, pp 79-80; MR 1883-84, p 984;
MR 1885, p 540; MR 1886, p 718; MR 1887, p 685; MR 1888, p 628; MR 1889-90, pp 522, 532; MR 1891, p 607
South Carolina, minerals of, the useful............................... MR 1882, pp 728-729; MR 1887, pp 786-788
South Carolina, Neocene beds of Bull 84, pp 74-51
South Carolina, phosphate deposits of Bull 46, pp 60-70; MR 1882, pp 504-521;
South Carolina, topographic work in Ann 7, p 52;
Ann 8, i, p 102; Ann 10, i, p 92; Ann 12, i, p 27

South Dakota. See Dakotas.

Southern complex of the Penokee dist., lake Superior.. Mon xix, pp 103-126, 441-454
Spain, antimony production of .. MR 1883-84, p 645
Spain, coal area and output of, compared with those of other countries... MR 1882,
p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1891, p 73
Spain, copper production of ... MR 1892, pp 253-254;
MR 1887, pp 87, 93-95; MR 1888, p 73; MR 1889-90, p 73; MR 1889-91, p 100, 102
Spain, fauna of the Olenellus zone from Ann 10, i, p 580
Spain, fossil plants of, literature of the Ann 8, ii, pp 702-705
Spain, iron and steel production of, compared with that of other countries...MR 1882, p 109; MR 1883-84, p 257; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 30, 31; MR 1889-90, pp 21, 22; MR 1891, pp 46, 73
Spain, lead production of .. MR 1882, p 322; MR 1886, p 344, 346; MR 1885, pp 264-267
Spain, iron-ore product of Bilboa district, compared with that of Michigan....MR 1891, pp 18, 38
Spain, manganese production of....................................MR 1886, p 201;
MR 1887, pp 159-160; MR 1889-90, p 130
Spain, mining law of... MR 1883-84, p 1000
Spain, phosphate deposits of...Bull 46, pp 45, 53-59
Spain, pyrites production of.. MR 1883-84, pp 882-884;
MR 1885, pp 507-508; MR 1886, pp 654-656
Spain, quicksilver mines of...Ann 8, ii, pp 965, 966;
Mon xiii, pp 4, 7, 14, 27-32
Spain, quicksilver production of................................MR 1882, pp 392, 393; MR 1883-84, p 496;
MR 1885, pp 507-509; MR 1887, p 128; MR 1888, pp 105, 106; MR 1891, pp 123, 124
Spain, silver production of, compared with that of other countries........MR 1883-84,
pp 319, 320
Spain, tin production of..MR 1883-84, p 618
Spain, zinc production of..MR 1882, p 358;
MR 1883-84, pp 480, 489-490; MR 1885, p 277; MR 1886, p 159;
MR 1887, p 117; MR 1888, p 95; MR 1891, pp 113, 114
Specific gravity of lampblack..Bull 42, pp 132-135
Species, analyses and assays of...Mon xii, pp 720, 721
Spencer (J. W.), elevations in the Dominion of Canada.....................Bull 6
Spessartite from Amelia county, Virginia, description and analysis of... Bull 60, p 129
Spessartite garnet from Llano county, Texas, description and analysis of... Bull 90,
pp 39-40
Spheroidal parting in greenstones..Bull 62, pp 166-169, 177
Spherulites of Obsidian cliff, Yellowstone national park..Ann 7, pp 262-264, 276-278
Spherulites, relation of granophyre groups to....................................Ann 7, pp 274-276
Spiegel leisen, production of...MR 1891, p 56
Spiegel iron, analyses of..MR 1883-84, pp 561-562, 565
Spongite from the Cambrian of the Eureka district, NevadaMon vii, pp 11-12
Spongite from the Devonian of the Eureka district, Nevada...........Mon vii, p 99
Spongite from the middle Cambrian of North America, description of species
of..Bull 30, pp 72-91
Spongite of the Olenellus zone...Ann 10, i, pp 597-599
Spring section, ideal ..Ann 3, p 219
Spring water, general chemistry of....................................Mon xi, pp 175-178
Spring waters from Maine, Arkansas, and New Mexico, analyses of..Bull 55, pp 91-93
Spring waters of New Zealand, analyses of................................Ann 9, p 673
Springs, classes of, and those in the Lahontan basin...........Mon xi, pp 47-55
Springs, extinct, in Lahontan basin.....................................Mon xi, p 54
Springs, hot, travertine and siliceous sinter of........................Ann 9, pp 613-676
Springs, mineral, of the United States, lists and analyses of the...........Bull 32
Springs of the Kaibab plateau..Mon ii, pp 129-130
Springs of Mono lake, California....................................Ann 8, i, pp 287-292
Springs of Steamboat springs district, Nevada........................Mon xiii, pp 388-340
Sproull (H. S.), gypsum, statistics of.................................MR 1885, pp 458-464
Sproull (H. S.), structural materials, statistics of...MR 1885, pp 395-427
Stahl (E.) and Huntley (D. B.), list of ores, minerals, and mineral substances
of industrial importance in Arizona..........................MR 1882, pp 760-764
States surveyed by their cooperation:
Connecticut..Ann 10, i, pp 7, 88
Massachusetts..Ann 5, p xviii; Ann 6, p 4
States surveyed by their cooperation—continued.

New Jersey .. Ann 9, p 51; Ann 10, i, pp 7, 85-86
Rhode Island................................. Ann 10, i, pp 7, 85-86

Steamboat springs, Nevada, scorodite from............................. Bull 61, p 30
Steamboat springs district, Nevada, springs of................. Mon xiii, pp 338-340
Steel, analyses of ... Bull 55, p 88
Steel, carburation of, the effect of mechanical strain on............ Bull 94, pp 40-47
Steel industry of the United States.................. Bull 25

Steel, oxide films on, relation between time of exposure, temper-value, and color in.. Bull 27, pp 51-61
Steel, physical definition of ... Bull 14, p 173
Steel, solution of, the effect of strain on the rate of............. Bull 94, pp 48-62
Steel, temper of, relation between electrical resistance and density when varying with the... Bull 27, pp 30-50
Steel, tempered, the internal structure of.......................... Bull 35, pp 11-50
Steel, the galvanic, thermo-electric, and magnetic properties of, etc........ Bull 14
Steel, the viscosity of, and its relations to temper and to temperature.. Bull 73, pp 1-73
Steel and glass, the effect of sudden cooling exhibited by............ Bull 42, pp 98-131
Steel and iron from Krupp shell and Gruson armor plate, analyses of Bull 55, pp 87-88

Steel and iron in the United States, the manufacture of......MR 1883-84, pp 246-257
Steel and iron in the United States, twenty-one years of progress in the manufacture of MR 1885, pp 180-195

Steel and iron in the United States, twenty years of progress in the manufacture of MR 1891, pp 47-73

Steel and iron industries of the United States in 1887 and 1888........ MR 1887, pp 10-27
Steel and iron industries of the United States in 1888 and 1889........ MR 1888, pp 12-32
Steel and iron industries of the U. S. in 1889, 1890, and 1891 .. .MR 1889-90, pp 10-22

Steel and iron rails, miles of, in use each year since 1880 MR 1891, p 64

Steel. See, also, Iron.

Steep rock series of rocks in Ontario Bull 86, pp 70-72

Stemberg (Kaspar Maria, Graf von), biographical sketch of Ann 5, p 371

Stevenson (James), death and biographic sketch of Ann 9, p 42-44

Stilbite from Table mountain, Colo., description, analysis, etc., of... Bull 20, pp 19-23

Stokes (H. N.), a petroleum from Cuba Bull 78, pp 98-104

Stokes (H. N.), a supposed mineral resin from Livingston, Mont.... Bull 78, pp 105-108

Stokes (H. N.), on the action of phosphorus oxychloride on the ethers and chlorhydrines of silicic acid.......................... Bull 90, pp 47-55

Strains, tensile, drawn, and other, in their bearing on Maxwell's theory of viscosity.......................... Bull 94, pp 17-29

Stratific geology or stratigraphy, principles of Ann 11, i, pp 273-275

Stratigraphy of California, notes on the Bull 19
Stratigraphy of Cretaceous and Tertiary formations of New Jersey. Mon ix, pp ix-xii
Stratigraphy of the bituminous coal field of Penn., Ohio, and W. Va. Bull 65
Stratigraphy of the Coast ranges. Bull 84, pp 200-217
Stratigraphy of the driftless area of the upper Mississippi valley. Ann 6, pp 219-220
Stratigraphy of the Plateau country. Ann 6, pp 131-140
Stratigraphy and lithology of the Newark system. Bull 85, pp 32-44
Stratigraphy. See also, Pleistocene; Neocene; Eocene; Cretaceous; Jurassic; Carboniferous; Devonian; Silurian; Cambrian; Algonkian; Archean.

Streams, migration of. Ann 12, I, pp 303-304
Streams, terraces of construction and destruction formed by. Ann 11, I, pp 256-273
Striae of the great ice invasions. Ann 7, pp 155-248
Striae, the glacial, of eastern United States, map of the. Ann 7, pp 154-155
Striation, cross-, and changes of glacier movement. Ann 7, pp 200-207
Strike, hade, throw, etc., defined. Ann 4, p 442
Strikes in coal mines. MR 1891, pp 184, 185, 219-220, 262
Stromeyerite from California. Bull 61, p 27
Strontia, statistics of. MR 1882, pp 48-582
Strontium, statistics of. MR 1886, pp 699-700
Strouhal (V.) and Barus (C.), electrical and magnetic properties of the iron-carbures. Bull 14
Strouhal (V.) and Barus (C.), physical properties of the iron-carbures. Bull 35
Strouhal (V.) and Barus (C.), relation between electrical resistance and density when varying with the temper of steel. Bull 27, pp 30-50
Strouhal (V.) and Barus (C.), relation between time of exposure, temper-value, and color in oxide films on steel. Bull 27, pp 51-61
Strouhal (V.) and Barus (C.), the effect of sudden cooling exhibited by glass and by steel. Bull 42, pp 98-131
Structure of the Mosquito range, Colorado. Mon xii, pp 34-39, 202-263, 284-291
Structure of mountains, especially of the Rocky mountains. Mon xii, pp 24-27
Structure of the Potomac formation. Mon xv, pp 47-53
Structure of the Sierra Nevada. Bull 33, pp 12-16, 21
Structure of the Trias in Connecticut and New Jersey. Mon xiv, pp 5-8
Structure. See also, Dystrophism; Fault; Unconformity.
Stubbs (W. C.), phosphate rock in Alabama. MR 1883-84, pp 794-803
Subaerial decay of rocks and origin of the red color of certain formations. Bull 52
Subsidence of fine solid particles in liquids. Bull 36; Bull 60, pp 139-145
Subsidence of Mount Desert, Maine, during and after the Glacial period, evidences of. Ann 8, II, pp 1009-1034
Subsidence and elevation in cape Ann district, Massachusetts, evidences of recent. Ann 9, pp 567-574
Subsidence and elevation inferred from Cenozoic and Mesozoic rocks of Alabama. Bull 43, pp 136-138
Subsidence and elevation. See Dystrophism.
Substitution theory of formation of quicksilver ores. Mon xiii, pp 394-401
Sulphantimonites from Colorado, analyses of. Bull 60, pp 116, 117
Sulphate of lime as an impurity of brines. Ann 7, pp 500-504
Sulphate of soda, analyses of. MR 1882, pp 603, 604
Sulphates, basic ferric. Mon xii, pp 549-550
Sulphur, deposition of, at Sulphur bank, California. Mon xiii, p 254
Sulphur in steel. Bull 25, p 13
INDEX.

Sulphur, statistics of .. MR 1882, pp 578-579;
MR 1883-84, pp 864-876; MR 1885, pp 494-500; MR 1886, pp 644-647; MR 1887,
pp 604-610; MR 1888, pp 5, 10-11; MR 1889-90, pp 515-517; MR 1891, pp 564-571

Sumatra, fossil plants of, literature of the.......................... Ann 8, ii, p 805

Sun river basin, Montana, hydrography of......................... Ann 11, ii, pp 43-94

Superior, lake. See Lake Superior.
Superior (lake) basin, geological maps of the.................. Ann 3, pp 92-93, 172-173
Superior, lake, copper-bearing rocks of.......................... Ann 1,
pp 70-71; Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v
Superior, lake, fluctuations of, from 1870 to 1888............. Bull 72, p 18
Superior, lake, sandstone..................................... Bull 86, pp 157-160
Superior, lake, synclinal..................................... Mon v, pp 410-418
Superior, lake. See, also, Michigan; Minnesota; Wisconsin.
Survey, the United States Geological, laws establishing and extending the...Ann 1,
pp 3-4; Ann 4, p xiii
Survey, the United States Geological, laws governing the printing and distrib­
ution of the publications of the. See pp 11-14 of this bulletin.
Survey, the United States Geological, the plan and organization of the...... Ann 1,
pp 6-14; Ann 7, pp 3-17; Ann 8, i, pp 3-69

Surveys of states by their cooperation:
Connecticut... Ann 10, pp 7, 88
Massachusetts..Ann 5, p xviii; Ann 6, p 4
New Jersey..Ann 6, pp 5-7
Rhode Island..Ann 9, p 51; Ann 10, i, pp 7, 85-86
Swamp reclamation in India..................................... Ann 12, ii, p 561
Swamp soil, fertility of, after drainage and removal of peat....Ann 10, i, pp 308-310
Swamp soils, character of................................... Ann 12, ii, pp 311-317
Swamps; catalogue of the larger salt marshes of New England and Long
island... Ann 6, pp 390-398
Swamps, classification of Ann 10, i, pp 261-285
Swamps; economic uses of morasses.............................. Ann 10, i, pp 303-310
Swamps; effect of certain plants on formation of morasses........ Ann 10, i, pp 285-295
Swamps; fresh-water morasses of the United States, with description of the
Dismal swamp... Ann 10, i, pp 255-339
Swamps, marine, economic problems connected with............. Ann 6, pp 374-380
Swamps; process of development of salt-water marshes........ Ann 6, pp 363-373
Swamps, sea-coast, of eastern United States..................... Ann 6, pp 353-398
Swamps, sea-shore, the formation of Ann 6, pp 359-361
Swamps which owe their origin to glacial action................. Ann 10, i, pp 295-303
Swank (J. M.), iron ore and its products........................ MR 1882, pp 108-144
Swank (J. M.), iron ores in the United States.................. MR 1883-84, pp 257-281
Swank (J. M.), the American iron industry from the beginning in 1619 to
1886... MR 1886, pp 23-38
Swank (J. M.), the American iron trade in 1886.................. MR 1886, pp 11-22
Swank (J. M.), the iron and steel industries of the United States in 1887 and
1888... MR 1887, pp 10-27
Swank (J. M.), the iron and steel industries of the United States in 1888 and
1889... MR 1888, pp 12-32
Swank (J. M.), the iron and steel industries of the United States in 1889, 1890,
and 1891, compared with those of other countries............ MR 1889-90, pp 10-22
Swank (J. M.), the manufacture of iron and steel in the United States........ MR
1883-84, pp 246-257
Swank (J. M.), twenty-one years of progress in the manufacture of iron and
steel in the United States............................... MR 1883, pp 180-195
Swank (J. M.), twenty years of progress in the manufacture of iron and steel in the United States .. MR 1891, pp 47-73

Sweden, coal output of, compared with that of other countries MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; MR 1888, p 208; MR 1889-90, p 22; MR 1891, p 73

Sweden, copper production of MR 1883-84, p 356;
MR 1885, p 228; MR 1886, p 128; MR 1887, p 87;
MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 100

Sweden, fauna of the Olenellus zone in Ann 10, i, pp 577-578

Sweden, fossil plants of, literature of the Ann 8, ii, pp 779-781

Sweden, gold and silver production of, compared with that of other countries .. MR 1883-84, p 519, 320

Sweden, iron and steel production of, compared with that of other countries .. MR 1882, p 109;
MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18;
MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 21, 22; MR 1891, p 73

Sweden, lead production of .. MR 1883-84, p 434; MR 1885, p 264

Sweden, manganese production of MR 1889-90, p 130

Sweden, nickel production of MR 1882, pp 405-406

Sweden, tin production of ... MR 1883-84, p 619

Sweetwater and adjacent mountains, literature of the geology of. Bull 86, pp 278-279

Switzerland, fossil plants of, literature of the Ann 8, ii, pp 738-744

Syenite, augite, of the Weevenaw series Mon v, pp 112-124

Syenites, Arkansas, results of tests of MR 1889-90, p 379

Synclinal of the lake Superior basin Ann 3, pp 174-179; Mon v, pp 410-418

Table mountain, Golden, Colorado, minerals from the basalt of Bull 20, pp 13-39

Tables and formulas to facilitate the construction and use of maps Bull 50

Taconian terrane defined .. Bull 86, pp 464-466

Taconic, on the use of the name Bull 30, pp 65-70

Taconic range, literature of the geology of the Bull 86, pp 361, 363, 379, 390, 393

Tahoe lake as a reservoir for irrigation purposes Ann 11, ii, pp 169-172

Tahoe lake, water of, analysis of the Mon xi, p 42

Talc, statistics of .. MR 1882, p 585

MR 1889, pp 534-535; MR 1889-90, p 476; MR 1891, p 594

Tahoe, process of formation of Ann 12, i, pp 232-236

Tampa group of rocks of Florida Bull 84, pp 112-123

Tantalite from the Etta tin mine, Dakota, analysis of MR 1888, p 151

Taos district of the Rio Grande, hydrography and irrigation in the Ann 12, ii, pp 251-256

Tariff of March 3, 1883, certain schedules from the MR 1882, pp 777-787

Tasmania, fossil plants of, literature of the Ann 8, ii, pp 814-815

Taxonomy of the lower part of the geological column Ann 7, pp 448-454

Taxonomy and correlation ... Bull 82, pp 17-25, 207-247

Taxonomy and nomenclature, geologic, conference of geologists and lithol-
ogists on, in January, 1889 Ann 10, i, pp 56-67

Taxonomy. See Correlation; Nomenclature.

Taylor (F. W.), cobalt, statistics of MR 1882, pp 421-423

Taylor, mount, and the Zuní plateau Ann 6, pp 105-198

Tejon, Chico-, series .. Ann 6, pp 68-70, 73;
Bull 15, pp 11-17; Bull 19, pp 14, 17; Bull 83, pp 100-110

Tejon, Chico-, series of California, new fossil Mollusca from the Bull 51, pp 11-27

Tejon group, digest of the literature relating to the Bull 83, pp 100-110

Tejon. See, also, Cretaceous; Eocene.

Tellurium, statistics of .. MR 1882, p 447; MR 1886, p 648-649

Temper chemically interpreted Bull 14, pp 77-79, 88, 98
Temper and viscosity of steel, relation between Bull 73, pp 1-52
Temper, electrical resistance, and viscosity Bull 94, pp 31-33
Temper in steel, hydroelectric effect of Bull 42, pp 121-129
Temperature and electrical conductivity, relation between Bull 14, pp 15-27
Temperature and pressure, dependence of fluid volume on Bull 92, pp 17-67
Temperature and strain from sudden cooling, relations between Bull 42, pp 98-112
Temperature and viscosity of steel, relation between Bull 73, pp 53-73
Temperature coefficient of steel Bull 14, pp 35-24
Temperature, constant high, degree of, attained in metallic vapor baths of large dimension Bull 54, pp 56-83
Temperature data for color effect in oxidation of iron carburets Bull 35, pp 51-57
Temperature, effect of, in production of petroleum and natural gas Ann 8, ii, pp 493, 495-496
Temperature, effect of, in subsidence of fine solid particles in liquids Bull 36, pp 20-24
Temperature, effect of, on glaciation Mon i, pp 276-283
Temperature, effect of, on Molluscan life Bull 11, p 38
Temperature gradients, underground, determination of, at the Wheeling deep well (4,471 feet), West Virginia............. Ann 12, i, p 63
Temperature; inequalities of, as cause of errors in barometric hypsometry Ann 12, i, pp 420-425, 536
Temperature, influence and effect of, in annealing of steel Bull 14, pp 43-59
Temperature, influence of, on crystallization of igneous magmas Bull 66, p 25
Temperature of artesian water Ann 5, pp 165-167
Temperature. See, also, Heat; Thermal.
Temperatures, high, of the mines of the Comstock lode, Nevada Ann 2, p 312
Temperatures, high, thermo-electric measurement of Ann 4, pp 53-59;
Ann 10, pp 179-180; Bull 54
Temperatures of lake Tahoe at different depths Mon xi, p 72
Tempering of steel and magnetic retention and stability Bull 14, pp 151-172
Tempering of steel, the conditions which determine the efficacy of the operation of Bull 14, pp 28-75
Tennessee, altitudes in .. Bull 5, pp 279-282; Bull 76
Tennessee; beryl from Greene county, analysis of Bull 9, p 11
Tennessee, boundary lines of, and formation of state Bull 13, pp 30, 108-109
Tennessee, brick industry of MR 1887, pp 536, 539; MR 1888, p 563
Tennessee, building stone from, statistics of MR 1882, p 451;
MR 1886, pp 543-544; MR 1887, p 518; MR 1888, pp 533, 541, 543;
MR 1889-90, pp 373, 429-430; MR 1891, pp 464, 467, 468, 470
Tennessee, Cambrian rocks of, correlation of the Bull 81, pp 139-144,
154-155, 299-303, 811, 383
Tennessee, coal area and statistics of Ann 2, p 28; xviii;
Tennessee, coals and cokes from, analyses of Bull 64, pp 54-55
Tennessee, coke in, the manufacture of MR 1883-84; pp 196-202;
MR 1885, pp 80, 111-116; MR 1886, pp 378, 384, 417-421; MR 1887, pp
Tennessee, copper deposits and statistics of Ann 2, p xxix; MR 1882, p 231
Tennessee, Eocene deposits of Bull 83, pp 70-71, 83
Tennessee, fossils from ... Ann 4, pp 294, 301; Ann 8, ii, pp 881-882
Tennessee, geologic and paleontologic investigations in Ann 5, pp 52, 53;
Ann 6, pp 24, 25; Ann 7, pp 67, 114; Ann 8, i, p 175; Ann 9, p 76; Ann 10,
1, pp 120, 157; Ann 11, i, pp 58, 71, 72, 75; Ann 12, i, pp 54, 62, 75, 78, 79
Tennessee, geologic maps of, listed Bull 7, pp 102, 103, 104, 107
Tennessee, gold from, statistics of Ann 2, p 385; MR 1885, pp 172, 176, 177, 178; MR 1885-86, p 312; MR 1886, p 104; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889, p 76, 77
Tennessee, lime production of MR 1887, p 533; MR 1888, p 556
Tennessee, limestone production of MR 1891, p 597
Tennessee, marble industry of MR 1891, pp 486, 490
Tennessee, minerals of, the useful MR 1883, pp 730-733; MR 1887, pp 788-792
Tennessee, petroleum localities and statistics of MR 1885, pp 147-148; MR 1889-90, pp 362-363
Tennessee, rocks of, their classification, etc Bull 80, pp 37, 41, 164-166
Tennessee, topographic work in Bull 33, pp 13-15; Ann 5, pp 4-5; Ann 6, pp 8, 9, 10; Ann 7, pp 50, 52; Ann 8, 1, p 102; Ann 9, p 55; Ann 10, 1, p 89; Ann 12, 1, pp 27-28
Tennessee, water from Mountain city, analysis of Bull 64, p 58
Terra rossa of southern Europe, equivalent of, in America Bull 52, p 25
Terraces and embankments, the formation of Ann 2, pp 171-172; Ann 3, pp 206-208; Mon i, pp 36, 46-58, 78-80; Mon xi, pp 88-99
Terraces, embankments, deltas, etc., of shore topography Mon xi, pp 88-99
Terraces of lake Agassiz Bull 39
Terraces of the glacial flood deposits in the Mississippi valley Ann 6, pp 398-311
Terraces of the Grand canyon district Ann 2, pp 74-94; Mon ii, pp 32, 35-37, 40, 43, 46-47
Terraces of various kinds Ann 5, pp 115-120; Mon i, pp 78-80
Territories, stream-formed, analysis and classification of ... Ann 11, 1, pp 256-273
Territorial changes in the United States, historical sketch of the ... Bull 13, pp 24-32
Tertiaries of Nebraska and Utah, some insects of special interest from the ... Bull 93
Tertiary bitumen deposits Ann 11, 1, pp 596-597
Tertiary formations in southwestern Kansas Bull 57, pp 31-38
Tertiary history of the Grand canyon district Ann 2, pp xii-xvi, 47-166; Mon ii
Tertiary of New Jersey, sketch of the geology of .. Ann 5, pp 252-254; Mon x, pp 5-8
Tertiary rocks in California Bull 15, pp 15-16, 32; Bull 19, pp 10, 13, 17; Bull 51, pp 11-14; Mon xxii, pp 214-221, 461
Tertiary rocks in the Lassen peak district, California Ann 8, 11, pp 413-424
Tertiary rocks of Martha's vineyard Ann 7, pp 326-347
Tertiary rocks of Texas Bull 45, pp 84-86
Tertiary strata in the region of the Uinta mountains Ann 9, pp 690-691
Tertiary and Cretaceous formations of New Jersey, sketch of the geology of the ... Mon ix, pp ix-xiii
Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers Bull 13
Tertiary and Mesozoic paleontology of California Bull 15
Tertiary and post-Tertiary volcanic rocks of Eureka dist., Nev....Ann 3, pp 277-287
Tertiary. See, also, Eocene; Neocene.

Teton range, Archean and Algonkian literature of the Bull 86, p 281
Tewan mountains, New Mexico, a group of volcanic rocks from the, and the
occurrence of primary quartz in certain basalts..................... Bull 66
Texan formations, diagram showing interrelation of................ Bull 82, p 127
Texan Permian and its Mesozoic types of fossils..................... Bull 77
Texan system of rocks.. Bull 66, pp 267-269
Texas, boundary lines of, and admission of Republic of............ Bull 13, pp 21, 105-106
Texas, altitudes in.. Bull 5, pp 283-289; Bull 76
Texas, artesian wells of, list of the................................ Ann 11, p 272
Texas, brick industry of....................................... MR 1887, pp 586, 594; MR 1888, pp 563, 566
Texas, building-stone production of................................ MR 1891, pp 457, 459, 463, 468
Texas, Chamisop from the Cretaceous rocks of, aberrant forms of Bull 4, pp 5-9
Texas, clay production of....................................... MR 1891, pp 518-522
Texas, Coal area and statistics of................................ MR 1882, p 74;
Texas, copper deposits of....................................... MR 1883-84, pp 342-343
Texas, Cretaceous rocks of...................................... Bull 82, pp 114-130, 220-223
Texas, Eocene deposits ip....................................... Bull 83, pp 76-79, 84
Texas; fixation of the 105th meridian in El Paso county Bull 70, pp 71-79
Texas, fossils from.. Ann 4, pp 292-307; Ann 8, pp 897-898
Texas, gadolinite from Llano county, analysis of................... Bull 64, p 40
Texas, geologic and paleontologic investigations in................ Ann 6, pp 75-76;
Ann 8, 1, pp 173-180; Ann 9, pp 120-121; Ann 10, 1, pp 163-164; Ann 11, 1, pp 55, 107; Ann 12, 1, p 114
Texas, geologic maps of, listed................................... Bull 7, pp 139, 140, 141
Texas, gold and silver from, statistics of......................... MR 1889-90, p 49; MR 1891, p 77
Texas; iron regions of northern Louisiana and eastern Texas, a report on the,
by Lawrence C. Johnson. See p 323 of this bulletin.
Texas; latitudes and longitudes of Cisco and Sierra Blanca determinedAnn 11, 1, p 129; Bull 70
Texas, lignite beds of.. MR 1891, pp 327-328
Texas, lime production of...................................... MR 1887, p 533; MR 1888, p 556
Texas; limestone from El Paso county, analysis of................ MR 1889-90, p 432
Texas; lithographic stone in Blanco county......................... MR 1889-90, p 519
Texas, meteoric iron from, description and analysis of............ Bull 78, p 95
Texas, meteorite, stony, from, description and analysis of......... Bull 78, pp 91-93
Texas, mineral springs of..................................... Bull 32, pp 124-128;
MR 1883-84, p 985; MR 1885, p 540; MR 1886, p 718; MR 1887, p 686; MR 1888, p 628; MR 1889-90, p 532; MR 1891, pp 603, 608
Texas, Neocene beds of... Bull 44, pp 172-177
Texas, petroleum from, statistics of............................ MR 1889-90, pp 292, 359-361
Texas, salt from, statistics of................................ MR 1882, pp 532-534; MR 1889-90, p 842
Texas; spessartite garnet from Llano county, description and analysis of........ Bull 90, pp 39-40
Texas, topographic work in...... Ann 6, pp 12-13; Ann 7, p 55; Ann 8, i, p 104;
Ann 9, pp 57-58; Ann 10, i, pp 95-96; Ann 11, i, p 40; Ann 12, i, pp 30, 47
Thermal effect of the action of aqueous vapor on feldspathic rocks........ Ann 2,
pp 325-330; Mon i, pp 296-308, 397-400
Thermal expansion, literature and measurement of........ Bull 92, pp 17-18, 27
Thermal expansion of certain rocks, preliminary note on the coefficients of.... Bull
78, pp 109-118
Thermal springs and Molluscan life............................... Bull 11, p 40
Thermal survey of the Comstock lode, Nevada........ Mon i, pp 244-265
Thermal. See, also, Heat; Temperature.
Thermodynamics of liquids, the volume............................ Bull 96
Thermo-electric data of alloys................................. Bull 14, pp 80-88
Thermo-electric effect of magnetization......................... Bull 14, pp 104-110
Thermo-electric, galvanic, and magnetic properties of wrought iron, steel, and
cast iron in different states of hardness....................... Bull 14
Thermo-electric measurement of high temperatures........ Ann 4, pp 53-59; Bull 54
Thermo-electric power and specific resistance of steel, relation between.... Bull 14,
pp 62-70
Thermo-electric power, measurement of........................ Bull 14, pp 31-36
Thermo-electric properties, specific resistance, and hardness of steel, rela-
tion of................................. Bull 14, pp 203-226
Thinolite, chemical nature of.................................. Bull 12, pp 22-25
Thinolite, crystallographic study of......................... Bull 12, p 14; Mon x, pp 194-201
Thinolite in the Mono basin, Cal.......................... Ann 8, i, pp 315-317, 320;
Bull 12, pp 19-20
Thinolite of lake Lahontan, crystallographic study of the.......... Ann 8, i,
pp 315-318; Mon x, pp 194-200; Bull 12
Thinolite of Walker lake, Nevada................................. Bull 12, p 20
Thinolite, original crystalline form of......................... Bull 12, pp 20-22
Thinolite, relation of, to gaylussite pseudomorphs................ Bull 12, pp 25-28
Thinolitic tufa of the lake Lahontan basin, Nevada........ Mon x, pp 192-201
Thomsenolite from near Pike’s peak, Colorado, occurrence and description of.. Bull
20, pp 55-56
Thompson (A. H.), report on topographic branch of irrigation survey for
1888-89................................. Ann 10, ii, pp 65-77
Thompson (A. H.), report on topographic branch of irrigation survey for
1889-90................................. Ann 11, ii, pp 291-343
Thompson (A. H.), report on topographic work during 1890-91........ Ann 12, i, pp 42-52
Thompson (A. H.), report on the location and survey of reservoir sites during
the fiscal year ending June 30, 1891.............................. Ann 12, ii, pp 1-212
Thompson (G.), administrative report for 1881-82........ Ann 3, pp 32-41
Thompson (G.), quoted on glaciers of Mount Shasta................ Ann 5, pp 332-334
Thomsonite from Table mountain, Colorado, general description and chemical
composition of.. Bull 20, pp 24-27
Thomsonite spherules from Table mountain, Colorado, chemical identification
of.. Bull 20, pp 18-19
Thorium and uranium sulphates, on the isomorphism and composition of........ Bull
90, pp 26-33
Thymol, compressibility and thermal expansion of........ Bull 92, pp 37-38
Tile, brick, etc., statistics of.................................. MR 1882,
pp 457-458; MR 1883-84, pp 679-711; MR 1885, pp 415-427; MR
1886, pp 566-580; MR 1887, pp 534-551; MR 1888, pp 557-575
Till, summary of facts concerning the unstratified deposit called... Bull 58, pp 42-75
Till. See, also, Glacial; Glacier.
Timbering in the Comstock mines, Nevada........................... Mon iii, pp 5-6
Timbering in the Eureka mines, Nevada........................... Mon vii, pp 153-157
INDEX.

Time ratios of the Coastal plain .. Ann 12, i, pp 428-429
Tin, analyses of .. MR 1883-84, pp 626, 629
Tin, foreign sources of .. MR 1882, p 436;
MR 1883-84, pp 615-625; MR 1885, pp 376-383; MR 1889-90, p 121
Tin, physical properties of ... MR 1883-84, pp 625-629
Tin, statistics of .. MR 1882, pp 434-437; MR
1883-84, pp 592-640; MR 1885, pp 370-385; MR 1886, pp 214-217; MR 1887, pp
134-137; MR 1888, pp 144-159; MR 1889-90 pp 119-123; MR 1891, pp 164-166
Tin ore, analyses of .. MR 1883-84, p 643;
MR 1883-84, p 614; MR 1885, p 370; MR 1888, pp 151-154
Tin ore, assays of ... ME 1888, pp 146-147
Tin-plate industry ... ME 1883-84, pp 633-637; MR
1888, pp 20-22
Tin-plate industry, efforts to establish the MR 1891, p 69
Titanium and aluminum, separation of, and of titanium and iron ..Bull 27, pp 16-26
Titanium, separation of, in rock analyses Bull 78, pp 87-90
Tombigbee, Tuscaloosa, and Alabama rivers, Tertiary and Cretaceous strata
of the .. Bull 43
Topaz, an unusual occurrence of ... Bull 20, pp 81-82
Topaz at Devil's head mountain, Colorado, notes upon the occurrence of.... Bull 20,
pp 73-74
Topaz from Florissant and Devil's head mountain, Colorado Bull 20, pp 70-73
Topaz from Stoneham, Maine ... Bull 27, pp 9-15
Topaz in nevadite from Chalk mountain, Colorado Mon xii, p 347
Topaz in rhyolite ... Bull 20, p 81
Topographic features of the Penokee district in relation to geology Mon xix,
pp 145, 188-189, 301-302
Topographic forms, classification of, by hydrography Ann 7, pp 558-564
Topographic map of the United States, plan and description of the Ann 4,
pp xiii-xiv; Ann 6, pp xvi-xix; Ann 7, pp 3-8
Topographic map of the United States; atlas sheets engraved to May 20, 1893.
See pp 307-320 of this bulletin.
Topographic work in the United States done by national and state organiza­
tions and by corporate and private enterprise, sketch of Ann 4, pp xiv-xx
Topographic work in the various states and territories. See each state and
territory.
Topographic work, reports on .. Ann 3, pp xv-xvi; Ann 4, pp xiii-xxiv,
3-16; Ann 5, pp xvii-xx, 3-14; Ann 6, pp xv-xix, 3-17; Ann 7, pp 3-8,
45-60; Ann 8, 1, pp 70-74, 97-122; Ann 9, pp 3-7, 49-69; Ann 10, 1,
pp 5-9, 83-108; Ann 11, 1, pp 4-10, 33-48; Ann 12, 1, pp 3-8, 23-52
Topography, analysis of ... Ann 7, pp 558-564
Topography and geology, interdependence of Mon xii, p 29
Topography and geology of India .. Ann 12, 1, pp 399-403
Topography as affected by solution .. Bull 84, pp 88-89
Topography due to faulting ... Ann 4, pp 443-450
Topography. See, also, Physiography.
Toroweap valley and the middle portion of the Grand canyon Ann 2, pp
104-121; Mon ii, pp 78-100
Tourmaline from Nevada county, California, description and analysis of .. Bull 90, p 29
Tourmaline, the analysis and composition of Bull 55, pp 19-37
Tourmaline. See, also, Precious stones.
Trade wind confined within narrow vertical limits Ann 4, p 145
Transportation, littoral ... Ann 5, pp 85-90
Transportation. See, also, Degradation.
Trap, decomposed, from near Sanford, North Carolina, analysis of Bull 42, p 138
Trap dikes and sheets, characteristics of Bull 85, p 69
Trap rocks, decay of .. Bull 52, pp 16-18
Trap rocks, geographical distribution of, in eastern United States.. Bull 85, pp 70-72
Trap rocks of the Newark system Bull 85, pp 66-77
Traps as data for correlation of Newark areas.................... Bull 85, pp 30-31
Traps of the Newark system in the New Jersey region, the relations of the.. Bull 67
Traps of the Triassic series in Connecticut valley................. Ann 7, pp 462-468
Traps. See, also, Basalt.

Travertines, analyses of .. Ann 9, p 646
Travertine and siliceous sinter, formation of, by hot springs Ann 9, pp 613-676
Travertine. See, also, Tufa.

Trees as agents of soil formation............................... Ann 12 i, pp 269-274
Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana Ann 8, ii, pp 475-662

Tree piedras mesa, Rio Grande basin, irrigation on Ann 12, ii, p 256
Trias in southwestern Kansas Bull 57, pp 20-27
Trias of the Atlantic slope, flora of the........................ Mon xv
Trias of Virginia and North Carolina and flora therefrom........... Mon vi, pp 2, 92-93, 95, 100-101, 125-126

Trias. See, also, Jura-trias.

Triassic age, fossil insects of, found in the Leadville district, Colo Mon xii, p 71
Triassic of the Connecticut valley, structure of the............... Ann 7, pp 455-490
Triassic rocks of New Jersey and the Connecticut valley, fossil fishes and plants of the.. Mon xiv

Triassic rocks of New Jersey and the Connecticut valley, geological relations and equivalents of the Mon xiv, pp 1-15
Triassic. See, also, Jura-trias.

Trilobita, catalogue of American Paleozoic....................... Bull 63, pp 79-148
Trilobita from the Cambrian of the Eureka district, Nevada.... Mon viii, pp 24-64
Trilobita from the Carboniferous of the Eureka district, Nev... Mon viii, pp 266-267
Trilobita from the Devonian of the Eureka district, Nevada... Mon viii, pp 207-211
Trilobita from the Lower Silurian of the Eureka district, Nevada.. Mon viii, pp 89-98
Trilobita from the middle Cambrian of North America............ Bull 30, pp 149-222
Trilobita of the Olenellus zone Ann 10, i, pp 629-658
Trinidad island, asphaltum production of........................ MR 1882, p 606;
MR 1883-84, p 337; MR 1891, pp 453-454
Trinidad asphalt pavements, cities where used MR 1891, p 454
Triplite from the Black hills, Dakota, analysis of............ Bull 60, pp 135-136
Troilite, typical composition of MR 1885, p 517
Truckee group of rocks of Oregon, Idaho, and Nev... Bull 84, pp, 282, 285-286, 313-315
Truckee reservoir sites and canal line................................ Ann 11, ii, pp 172, 175, 176
Truckee river basin, hydrography of Ann 11, ii, pp 63-65, 101, 108; Ann 12, ii, pp 324-325
Tscheffkinite and astrophyllite, new analyses of Bull 90, pp 41-44

Tufa and sinter of hot springs Ann 9, pp 613-676
Tufa, calcareous, of Borax lake, California..................... Mon xiii, pp 266-268
Tufa, calcareous, of lake Lahontan Mon xi, pp 189-222
Tufa, calcareous, of Mono valley, California, varieties and formation of.... Ann 8, i, pp 297, 310-318
Tufa, calcareous, of Pleistocene lakes of the Great basin..... Mon i, pp 167-169
Tufa, dendritic, of lake Lahontan Ann 3, pp 214-215; Mon xi, pp 201-203
Tufa deposits, succession of, in lake Lahontan.................. Ann 3, pp 215-221; Mon xi, pp 204-207; Bull 12, pp 10-14
Tufa from Salt lake desert, analysis of Mon i, pp 168
Tufa in lake Lahontan, conditions favoring the deposition of... Mon xi, pp 210-222
Tufa in the lake Bonneville basin Ann 2, pp 190-191; Mon i, pp 167-169
INDEX.

Tuff, lithoid, of lake Lahontan Ann 3, pp 212-213; Mon xi, pp 190-192
Tuff, thinolitic, nature and origin of Bull 12, pp 20-28
Tuff, thinolitic, of lake Lahontan Ann 3, pp 213-214; Mon xi, pp 192-200
Tuff, thinolitic, of Mono valley, California Ann 8, i, pp 315-318
Tufas from lake Lahontan, analyses of Ann 3, p 216; Mon xi, pp 53, 203; Bull 12, p 12

Tuff, basaltic, of the Bonneville basin Mon i, pp 319-336
Tuff, diabase Bull 62, pp 133, 158-162, 175-177
Tuff of acid rocks Bull 62, pp 151-154
Tule lands, formation and fertility of Ann 12, i, pp 320-321
Tule river, California, hydrography of Ann 12, ii, pp 319-320
Tuolumne river, California, hydrography of Ann 12, ii, pp 322-323
Turkestan, fossil plants of, literature of the Ann 8, ii, pp 766-797
Turkey, gold and silver production of, compared with that of other countries MR 1883-84, pp 319, 320
Turkey, lead production of MR 1883-84, p 434; MR 1885, p 264
Turkey, manganese production of MR 1886, p 265; MR 1888, p 142; MR 1889-90, p 130
Turkey, quicksilver deposits in Mon xiii, p 42
Turner (G. M.), phosphorus, statistics of MR 1886, pp 676-677
Turquoise from New Mexico Bull 42, pp 39-44
Turquoise. See, also, Precious stones.

Tuftas from lake Lahontan, analyses of Ann 3, pp 215-218

Tuscaloosa and Potomac formations Ann 12, i, pp 421-424
Tuscaloosa, Tombigbee, and Alabama rivers, Tertiary and Cretaceous strata of the Bull 43
Twin lakes, Colorado, surveyed for reservoir site Ann 11, ii, pp 135-139
Tyrolite from the Mammoth mine, Tintic district, Utah, analyses of Bull 55, pp 41-43; Bull 64, p 40
Unkaret plateau, Grand canyon district, description of the Ann 2, pp 72, 121-126; Mon ii, pp 10, 101-121
 Uinta fold, the Ann 9, pp 692-697
Uinta group of rocks, correlation of the Bull 83, pp 196, 143-146
Uinta mountains, Archean and Algonkian literature of the Bull 86, pp 286-289, 505
Uinta sandstone, the Ann 9, pp 687-688; Bull 86, pp 287-289
Unconformities above and below the Potomac formation Mon xv, pp 58-59
Unconformities in the Coast ranges of California Mon xiii, pp 188-195, 295-299
Unconformities in the Penokee district Ann 10, i, pp 453-456
Unconformities near Gunnison, Colorado Ann 6, pp 64-66
Unconformity at base of and within the clastic series of the lake Superior region Bull 86, pp 174-183
Unconformity at base of Eastern sandstone, lake Superior Mon xix, pp 461-463
Unconformity at base of Keweenaw series Mon xix, pp 456-461
Unconformity between Archean and Algonkian in the Penokee district Mon xix, pp 444-454
Unconformity between cherty limestone and Penokee series Mon xix, pp 454-455
Unconformity, distinguishing characters of Ann 7, pp 395-437
Unconformity of Keweenaw and Huronian rocks Mon v, pp 155-156
Unconformity of Keweenaw series and Eastern sandstone Ann 3, pp 152-155; Mon v, pp 251-259; Bull 23
Unconformity of Silurian rocks at Eureka, Nevada Ann 3, p 267
Unconformity seen in the walls of the Grand canyon of the Colorado Mon ii, pp 178-182, 207
Undertow, the function of the in littoral erosion. Ann 5, pp 82-83; Mon 1, pp 33, 38
Unga conglomerate of Alaska. Bull 84, pp 234-235
Unger (Franz), biographical sketch of. Ann 5, p 375
United States. See each state and territory.
United States Geological Survey, laws establishing and extending the; laws governing its publications. Ann 1, pp 3-4; Ann 4, p xiii; this Bull (100), pp. 11-14
Upham (W.), altitudes between lake Superior and the Rocky mountains. Bull 72
Upham (W.), upper beaches and deltas of the glacial lake Agassiz. Bull 39
Upehaval. See Diastrophism; Elevation.
Uralitization, cause, nature, etc. Bull 28, pp 40-43, 49; Bull 59, p 24; Bull 62, pp 52-55
Uraninite, new analyses of. Bull 90, pp 22-25
Uraninite, the occurrence of nitrogen in, and the composition of uraninite in general. Bull 78, pp 43-79
Uranium, statistics of. MR 1882, p 448
Uranous sulphates, the isomorphism and composition of thorium and. Bull 90, pp 26-33
Utah, altitudes in. Bull 5, pp 290-300; Bull 76
Utah, antimony deposits in. MR 1883-84, pp 643-644; MR 1891, p 174
Utah, asphaltum deposits and industry of. MR 1888, p 513; MR 1889-90, p 478
Utah, associated rare minerals from. Bull 20, pp 83-88
Utah, boundary lines of, and formation of territory. Bull 13, pp 31, 124-125
Utah; Cambrian faunas of North America, studies on the. Bull 30
Utah, Cambrian rocks of. Bull 81, pp 156-158, 319-320, 384
Utah, cement industry at Salt lake city. MR 1891, p 532
Utah coals, analyses and calorific values of some. MR 1882, pp 76-81
Utah, coke in, the manufacture of. MR 1883-84, pp 202-204; MR 1885, pp 80, 116-117; MR 1886, pp 378, 384, 422; MR 1887, p 389; MR 1888, p 400; MR 1891, pp 360, 361, 366, 368
Utah, copper minerals from, notes on certain rare. Bull 55, pp 38-47
Utah, copper from, statistics of. MR 1882, pp 216, 228-229; MR 1883-84, pp 329, 342; MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83, 84
Utah, Cretaceous rocks of. Bull 82, pp 148, 154, 156, 162, 164, 234-235
Utah; eruptive rocks from the Henry mountains, analysis of. Bull 60, p 154
Utah, fossils from. Ann 3, pp 420-470; Ann 4, pp 293, 299, 300, 304, 313, 314; Ann 8, ii, p 918; Bull 34, pp 21-32
Utah, geologic and paleontologic investigations in. Ann 1, pp 24-25, 37-38; Ann 2, pp 11-13; Ann 3, pp 28-29; Ann 7, pp 115-118, 118
Utah; geology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming. Ann 9, pp 677-712
Utah; Grand canyon district, physical geology of the. Ann 2, pp 49-166
Utah; Grand canyon district, Tertiary history of the. Mon ii and atlas
Utah, irrigation facilities and problems in. Ann 11, ii, pp 231-233, 238
INDEX.

Utah, irrigation surveys, engineering, hydrography, segregations, etc., in... Ann 10, ii, pp viii, 63, 88; Ann 12, ii, pp 325-344

Utah, lead from, statistics of... MR 1882, pp 308-309; MR 1883-84, pp 412, 416-418; MR 1885, pp 248-249; MR 1886, pp 142-143; MR 1887, pp 103-104; MR 1888, p 86; MR 1889-90, p 80; MR 1891, p 105

Utah; lake Bonneville, a Pleistocene lake of Utah... Ann 2, pp 169-200; Mon i

Utah, mineral springs of... Bull 82, pp 185-187

Utah, minerals of, the useful... MR 1882, pp 773-775; MR 1887, pp 794-796

Utah, Neocene beds of... Bull 84, pp 312-313

Utah, nitre from, analysis of... Bull 55, p 88

Utah; on the Quaternary and recent Mollusca of the Great basin, with descriptions of new forms, introduced by a sketch of the Quaternary lakes of the Great basin... Bull 11

Utah; oolitic sand from the shore of Great salt lake... Bull 27, p 69

Utah, ozocerite deposit in... MR 1882, p 609; MR 1883-84, pp 955-957; MR 1888, p 515; MR 1889-90, p 481

Utah, Permian rocks in... Bull 80, pp 220-221

Utah, quicksilver production of... MR 1886, p 168

Utah, sandstone production of... MR 1891, pp 461, 463

Utah, slate production of... MR 1891, pp 472, 473

Utah, sulphur production of... MR 1885, pp 494-496; MR 1886, p 644; MR 1887, p 604; MR 1889-90, p 515; MR 1891, p 564

Utah, topographic work in... Ann 2, pp 13-15

Utah, tyrolite from, analyses of, etc... Bull 55, pp 41-43; Bull 64, p 40

Utah and Colorado, Tertiaries of, some insects of special interest from the... Bull 93

Utah, Colo., and Wyo., geology and physiography of portions of... Ann 9, pp 677-712

Utah lake drainage system, hydrography of... Ann 11, ii, pp 70-74; Ann 12, ii, pp 334-339

Utah lake reservoir system... Ann 11, ii, pp 184-189

Utah, water from Beck's hot springs, near Salt lake city, analysis of... Bull 42, p 148

Utah, waters from Utah lake, City creek, Bear river, etc., analyses of... Bull 9, pp 29-30

Uwarowite from California, mineralogical description of... Bull 61, p 30

Vanadium, statistics of... MR 1882, p 449

Vancouver island region, Cretaceous fossils from... Bull 31, pp 33-48

Van Hise (C. R.), administrative report for 1887-88... Ann 9, pp 79-84

Van Hise (C. R.), administrative report for 1888-89... Ann 10, i, pp 123-128

Van Hise (C. R.), administrative report for 1889-90... Ann 11, i, pp 77-80

Van Hise (C. R.), administrative report for 1890-91... Ann 12, i, pp 84-87

Van Hise (C. R.), correlation papers—Archean and Algonkian... Bull 86

Van Hise (C. R.) and Irving (R. D.), secondary enlargements of mineral fragments in certain rocks... Bull 8

Van Hise (C. R.) and Irving (R. D.), the Penokee iron-bearing series of Michigan and Wisconsin... Ann 10, i, pp 341-350; Mon xix

Vapor, aqueous, thermal effect of the action of, on feldspathic rocks... Ann 2, pp 325-330; Mon iii, pp 290-308

Vein formation, theories of... Mon iii, pp 18-21, 30; Mon vii, pp 80-106, 187-190; Mon xii, p 376; Mon xiii, pp 407-450, 473-475; Mon xx, pp 292-316

Vein formation. See, also, Ore deposits.

Vein materials from the Leadville district, Colo., analyses of... Mon xii, p 557

Venezuela, copper production of... MR 1883-84, pp 356, 374; MR 1885, pp 229, 243; MR 1886, pp 128, 139; MR 1887, pp 88, 96; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 101

Bull. 100—31
Venezuela, gold production of, compared with that of other countries............ MR 1883-84, pp 319, 320
Venezuela, petroleum localities in.. MR 1886, pp 486-487
Vermiculites, micas, and chlorites, on the constitution of certain... Bull 90, pp 11-21
Vermilion cliffs and valley of the Virgin, Grand canyon district, description of..Ann 2, pp 83-91; Mon ii, pp 51-60
Vermont, altitudes in.. Bull 5, pp 301-303; Bull 76
Vermont, boundary lines of... Bull 13, pp 45-47
Vermont; Cambrian faunas of North America, studies on the................. Bull 30
Vermont, Cambrian, lower, in, literature and fauna of the.......................Ann 10, i, pp 531-534, 539-541, 569, 583-584
Vermont, clay, brick, and pottery industry of................................MR 1882, pp 465, 469; MR 1888, p 563; MR 1891, p 502
Vermont, copper from, statistics of..Ann 2, pp xxix; MR 1882, pp 216, 231; MR 1883-84, pp 329, 343; MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83, 84
Vermont, fossils from..Ann 8, ii, p 850; Ann 10, i, pp 572-575, 602, 605, 607, 609, 628, 645
Vermont, geologic and paleontologic investigations in.....................................Ann 5, pp 52, 54; Ann 6, pp 74, 75, 76; Ann 7, pp 60, 157; Ann 8, i, pp 125, 175, 176; Ann 9, p 116; Ann 10, i, pp 114, 160; Ann 11, i, pp 64, 104, 114; Ann 12, i, pp 66, 68, 69, 72, 76, 122
Vermont, geologic maps of, listed...Bull 7, pp 54, 55, 56, 57, 161
Vermont, granite production of.................................. MR 1891, pp 457, 469
Vermont, iron and steel from, statistics of..............................Ann 2, p xxviii; MR 1882, pp 120, 129, 131, 133, 136, 137; MR 1883-84, p 252; MR 1885, pp 182, 184; MR 1886, pp 17, 42; MR 1891, p 61
Vermont, limestone production of...MR 1891, pp 464, 467
Vermont, marble production of..MR 1891, pp 468, 470
Vermont, pyrites from, statistics of...MR 1885, pp 502-503
Vermont, slate production of..MR 1891, pp 472, 473
Vermont, topographic work in..Ann 9, i, p 76; Ann 11, i, p 35
Vertebrate life in America, section to illustrate..................................Ann 5, p 253; Mon x, p 7
Vertebrate paleontology of the Newark system......................................Bull 85
Vertebrate remains from the Neocene of Florida..................................Bull 84, pp 127-131
Vertebrates, fossil; birds with teeth..Ann 3, pp 45-88
Vertebrates, fossil; Dinocerata, an extinct order of gigantic mammals........Ann 5, pp 243-302; Mon x
Vertebrates, fossil; fishes from the upper Devonian of New York, description of two species of..Bull 41, pp 62-63
Vertebrates, fossil; fishes of the Triassic rocks of New Jersey and the Connecticut valley...Mon xiv, pp 17-75
Vertebrates, fossil; fishes of the Paleozoic, of North America................Mon xvi
Vertebrates, fossil, of Alaska, distribution of the................................Bull 84, p 266
Vertebrates, fossil, of the higher Devonian of Ontario county, New York...Bull 16, pp 17-20, 40-43
INDEX.

Vicksburg group of rocks of La., Miss., and Fla Bull 83, pp 69-70, 76, 101-103
Vicksburg-Jackson limestone ... Ann 12, i, pp 412-413
Victoria, antimony production of .. MR 1883-84, pp 646-648
Virgen, valley of the, and Vermilion cliffs, Grand canyon district, description of Ann 2, pp 83-91; Mon ii, pp 51-60
Virginia, altitudes in .. Bullet 5, pp 304-311; Bull 76
Virginia, boundary lines of .. Bull 13, pp 88-92
Virginia, brick industry of .. MR 1887, pp 536, 539; MR 1888, pp 563-564
Virginia, cement industry in .. MR 1891, p 592
Virginia, clay deposits of .. MR 1891, p 505
Virginia, Cambrian rocks of, correlation of the Bull 81, pp 133-138, 290-299, 311, 383
Virginia; coke, “natural,” from Midlothian, analysis of Bull 42, p 146
Virginia, copper mining in .. MR 1882, p 231
Virginia, Cretaceous deposits of Bull 82, pp 90-91
Virginia, Eocene deposits of ... Bull 83, pp 46-48, 80, 86
Virginia, forestry investigations in Ann 5, pp 64-66; Ann 6, p 93; Ann 7, p 135
Virginia, fossils from .. Ann 4, pp 311, 312, 313, 314; Ann 8, ii, pp 873-876
Virginia, geologic and paleontologic investigations in Ann 5, p 53; Ann 6, pp 24, 31, 86; Ann 7, pp 63, 66, 110, 123, 124; Ann 8, i, pp 170, 188; Ann 9, pp 77, 78; Ann 10, i, pp 118, 120, 121, 156; Ann 11, i, pp 71, 72, 109, 116, 117; Ann 12, i, pp 54, 79, 125
Virginia; geology of the Dismal swamp district of Virginia and North Carolina Ann 10, i, pp 313-339
Virginia, gold from, statistics of Ann 2, p 385; MR 1882, pp 172, 176, 177, 178; MR 1883-84, pp 312, 313; MR 1885, p 201; MR 1886, p 104; MR 1887, pp 58, 69; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 76, 77
Virginia, granite production of .. MR 1891, pp 457, 460
Virginia, gypsum production of .. MR 1891, pp 580, 582
Virginia, iron and steel from, statistics of Ann 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 276-277; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 77-81, 98; MR 1887, pp 11, 16; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17, 24, 41; MR 1891, pp 12, 23, 54, 55, 61
Virginia, lead from, statistics of Ann 2, p xxviii; MR 1883-84, p 416; MR 1885, p 248
Virginia, lime production of .. MR 1888, p 556
Virginia; limestone from Lexington, analysis of Bull 42, p 137
Virginia, limestone production of MR 1891, p 467
Virginia, marble production of .. MR 1891, p 470
Virginia, Mesozoic flora of, the older Mon vi
Virginia; meteoric iron from Pulaski co., description and analysis of Bull 90, p 45
Virginia, mineral springs of .. Bull 32, pp 54-68; MR 1883-84, p 985; MR 1885, p 541; MR 1886, p 719; MR 1887, p 688; MR 1888, p 629; MR 1889-90, p 533; MR 1891, pp 603, 608
Virginia, minerals of, the useful MR 1882, pp 738-743; MR 1887, pp 799-803
Virginia, Neocene beds of ... Bull 84, pp 55-67
Virginia, ochre production of MR 1891, p 595
Virginia; Potomac or younger Mesozoic flora Mon xiv
Virginia, pyrites from, statistics of ME 1883-84, pp 879-880; MR 1885, pp 504-505; MR 1886, pp 653-654
Virginia; pyrolusite from the Crimora mine, analysis of MR 1883-84, p 551
Virginia, rocks and coal of ... Bull 80, pp 29, 86, 112-113
Virginia, salt from, statistics of MR 1882, pp 532-534; MR 1883-84, p 840; MR 1891, p 572
Virginia, sandstone production of MR 1891, pp 461, 463
Virginia, slate production of .. MR 1891, pp 472, 473
Virginia; spessartite from Amelia county, description and analysis of .. Bull 60, p 129
Virginia, tin ore in .. MR 1883-84, pp 599-601; MR 1885, pp 371-376; MR 1891, p 164
Virginia, topographic work in Ann 4, pp 15-17; Ann 5, p 5; Ann 6, p 8; Ann 7, pp 50, 51; Ann 8, i, p 101; Ann 9, pp 52-53, 54, 55; Ann 10, i, p 90; Ann 11, i, p 36; Ann 12, i, p 27
Virginia; waters from springs in Loudoun county, analyses of .. Bull 42, p 147
Virginia; waters from Virginia hot springs, Bath co., analyses of ... Bull 9, pp 33-35
Virginia, zinc and zinc works in Ann 2, p xxix; MR 1882, p 365
Virginia, Nevada, and immediate vicinity, geological map of Ann 2, pp 292-293
Virginia-New York area of the Newark system Bull 85, pp 20-21, 83-85
Viscosity of solids .. Bull 73
Viscosity, solid, the mechanism of Bull 94
Viscosity, the pyrometric use of the principle of Bull 54, pp 239-236
Vishnu series of rocks in Arizona Bull 86, pp 330-332
Vogdes (A. W.), bibliography of Paleozoic Crustacea from 1698 to 1889, including a list of North American species and a systematic arrangement of genera ... Bull 63
Volatility, coefficients of, for aqueous chlorhydric acid Bull 60, pp 115-117
Volcanic action in the Eureka district, Nevada Mon xx, pp 230-291
Volcanic action in the Grand canyon district Ann 2, pp 118-119, 122; Mon ii, pp 81-83, 94-97, 104-112, 120-121
Volcanic activity in the Great basin during the epoch of lake Bonneville .. Ann 2, pp 190-192; Mon i, pp 319-339
Volcanic activity. See, also, Solfataric action.
Volcanic areas around the borders of the Plateau country, description of, and map showing the Ann 6, pp 118-121
Volcanic center, Eureka, Nevada, a Mon xx, pp 230
Volcanic cones and craters of the Uinkaret plateau, basaltic Ann 2, pp 118, 121-124; Mon ii, pp 104-109
Volcanic dust from Idaho, Montana, and Nebraska, analyses of .. Bull 42, pp 141-142
Volcanic dust from Lahontan beds, description and analyses of .. Mon xi, pp 146-149; Bull 9, p 14
Volcanic eruption in northern California (a late one) and its peculiar lava . Bull 79
Volcanic eruptions, Pleistocene, of western United States Mon i, pp 336-337
Volcanic lavas of Eureka dist., Nev., manner of occurrence of Mon xx, pp 243-249
Volcanic necks, columnar structure of basalt in Ann 6, pp 172-174
Volcanic necks in northwestern New Mexico Ann 6, pp 167-178
Volcanic phenomena, deposition of quicksilver in relation to Mon xiii, pp 52, 417
Volcanic phenomena, recent and Quaternary, of Mono valley, California .. Ann 8, i, pp 371-389
Volcanic rocks from the Tewan mountains, New Mexico, a group of, and the occurrence of primary quartz in certain basalts

Volcanic rocks of Sepulchre mountain, Yellowstone park

Volcanic rocks of the Eureka district, Nevada

Volcanic rocks of Washoe, Nevada, chemical analyses of

Volcanic rocks, stratified, of mount Desert id., Me.

Volcanic rocks. See, also, Igneous rocks.

Volcanic soils, origin and nature of

Volcanic source of the heat of the Comstock lode

Volcanism; dike of peridotite in Kentucky

Volcanism in Alaska

Volcanism in relation to diastrophism in the Sierra nevada

Volcanoes, cause of, the problem of

Volcanoes, Hawaiian

Volcanoes, relation of, to mountain structure in the Rocky mountains

Volcanoes. See, also, Igneous rocks.

Vulcanized India rubber, the solution of

Wages and labor at coal mines of the United States

Walcott (C. D.), administrative report for 1882-83

Walcott (C. D.), administrative report for 1883-84

Walcott (C. D.), administrative report for 1884-85

Walcott (C. D.), administrative report for 1885-86

Walcott (C. D.), administrative report for 1886-87

Walcott (C. D.), administrative report for 1887-88

Walcott (C. D.), administrative report for 1888-89

Walcott (C. D.), administrative report for 1889-90

Walcott (C. D.), administrative report for 1890-91

Walcott (C. D.), Cambrian faunas of North America

Walcott (C. D.), correlation papers—Cambrian

Walcott (C. D.), paleontology of the Eureka district

Walcott (C. D.), systematic list of fossils of each geological formation in the Eureka district, Nevada

Walcott (C. D.), the fauna of the lower Cambrian or Olenellus zone

Walcott (C. D.), the North American continent during Cambrian time

Wales, Cambrian rocks of

Wales, fossil plants of, literature of the

Wales, lower Cambrian strata and fauna of

Wales, phosphate deposits of

Wales. See, also, Great Britain.

Walker (J. A.), graphite, statistics of

Walker lake and river, Nevada, analysis of water of

Ward (L. F.), administrative report for 1881-82

Ward (L. F.), administrative report for 1882-83

Ward (L. F.), administrative report for 1883-84

Ward (L. F.), administrative report for 1884-85

Ward (L. F.), administrative report for 1885-86

Ward (L. F.), administrative report for 1886-87

Ward (L. F.), administrative report for 1887-88

Ward (L. F.), administrative report for 1888-89
Ward (L. F.), administrative report for 1889-90................ Ann 11, i, pp 114-123
Ward (L. F.), administrative report for 1890-91................ Ann 12, i, pp 120-125
Ward (L. F.), geographical distribution of fossil plants.......... Ann 8, ii, pp 663-960
Ward (L. F.), sketch of paleobotany................................ Ann 5, pp 357-452
Ward (L. F.), synopsis of the flora of the Laramie group........ Ann 6, pp 399-557
Ward (L. F.), types of the Laramie flora..................................... Bull 37
Warde (R. B.), coefficients of volatility for aqueous chlorhydric acid....... Bull 60, pp 117-126, 139, 145-146
Warwickite from Edenville, Orange county, New York, analysis of..... Bull 64, p 41
Wasatch group of rocks, literature and correlation of the........ Bull 83, pp 117-126, 139, 145-146
Wasatch mountains, Archean and Algonkian literature of the........ Bull 86, pp 289-295
Wasatch mountains, geologic section of the........................ Ann 2, p 217; Ann 10, i, pp 549-559; Mon xii, p 58; Mon xx, p 206; Bull 30, p 37, Bull 81, p 157
Wasatch mountains, recent growth of the, the testimony of the Bonneville shorelines to the.......................... Ann 2, pp 197-200; Mon i, p 359
Washington, altitudes in... Bull 5, pp 312-313; Bull 72, pp 196, 225-226; Bull 76
Washington, boundary lines of, and formation of territory........ Bull 13, pp 31, 128-129
Washington, brick industry of... MR 1888, p 564
Washington, building stone from, statistics of.................. MR 1882, p 451;
Washington, Chico-tejon series of rocks in........................... Bull 51, pp 28-32
Washington, clay deposits of... MR 1891, p 525-526
Washington, coal area and statistics of............................. Ann 2, p xxviii; Ann 1882, pp 95-96;
Washington, coke in, the manufacture of........................... MR 1883-84, p 206;
Washington, constitution of, extract from the, relating to irrigation........................ Ann 11, ii, p 241
Washington, Cretaceous rocks of...................................... Bull 82, pp 181, 183, 184, 187, 194
Washington, fossils from.. Ann 8, ii, pp 923-924
Washington, glaciers, existing, of the United States................ Ann 5, pp 303-355
Washington, gold and silver from, statistics of................... Ann 2, p 355;
MR 1888, pp 36, 37; MR 1889-90, pp 49; MR 1891, pp 75, 77, 78, 79
Washington, iron and steel from, statistics of..................... MR 1882, pp 129, 131;
MR 1883-84, pp 252, 288; MR 1885, pp 182; MR 1886, p 18;
MR 1887, p 11; MR 1888, p 15; MR 1889-90, pp 10, 17, 40
Washington, limestone production of................................. MR 1891, p 464, 468
Washington, mineral springs of... Bull 32, pp 217-218;
MR 1889-90, p 534; MR 1891, pp 603, 608
Washington, minerals of, the useful................................. MR 1882, p 775; MR 1887, pp 803-804
Washington, Neocene deposits of....................................... Bull 84, pp 227-230
Washington, Puget group, the Molluscan fauna of the............... Bull 51, pp 49-63
Washington, river courses in, changes in, due to glaciation.......... Bull 40
Washington, sandstone production of.................................. MR 1891, pp 461, 468
Washington, Tejon and Puget strata of................................. Bull 83, pp 103, 107
Washington, Oregon, and California, Cenozoic epoch in, general considerations on the... Bull 84, pp 269-273
Washington (H. S.) and Hillebraud (W. F.), notes on certain rare copper minerals from Utah................................. Bull 55, pp 38-47
Washoe district, Nev., development of crystallization in igneous rocks of.. Bull 17
Washoe district, Nevada, rocks from the, analyses of............. Mon xx, p 282; Bull 17, p 33
INDEX.

Washoe district and Comstock lode, Nevada, geology of the...........Ann 2, pp xxiv-xxvi, 291-330; Mon 111 and atlas

Washoe district, Nevada. See, also, Comstock lode.

Water above 100°, the compressibility of, and its solvent action on glass...Bull 92, pp 78-84

Water, action of, in formation of cherty iron carbonates............Ann 10, i, p 395

Water, action of, in formation of iron ores......................Ann 10, i, pp 415-417

Water; analyses of, from—

Alabama:

artesian well at Fitzpatrick's..................................Bull 55, p 91

Arkansas:

Happy hollow spring...Bull 55, p 92

Potash sulphur springs, Garland county..........................Bull 55, p 92

springs at Hominy hill...Bull 60, p 173

California:

Borax lake...Mon xiii, p 265

Honey lake valley...Bull 9, p 28

lake Tahoe...Mon xi, p 42; Bull 9, p 28

Matilija hot springs near San Buenaventura.....................Bull 60, p 174

Mono lake...Ann 8, i, pp 292-296; Bull 9, pp 26, 27; Bull 42, p 149

Owens lake...Ann 8, i, p 295; Bull 55, p 93

Sulphur bank..Mon xiii, p 259

Truckee river..Mon xi, p 225

Colorado:

spring near Denver..Bull 60, p 174

Florida:

artesian wells at St. Augustine......................................Bull 64, p 59

Georgia:

artesian well at Albany..Bull 55, p 91

artesian well at Americus...Bull 55, p 91

artesian well at Montezuma......................................Bull 55, p 91

artesian well at Smithville......................................Bull 55, p 91

Savannah river and artesian well at Savannah....................Bull 55, p 91; Bull 64, p 59

Illinois:

spring at McLeansborough..Bull 60, p 172

Iowa:

artesian wells at Story city......................................Bull 42, p 148

Kentucky:

Murray well, one mile north of Frankfort.......................Bull 64, p 57

Maine:

spring near Paris..Bull 55, p 91

Mississippi:

well near Clinton..Bull 64, p 60

Missouri:

spring at Webster grove, near St. Louis..........................Bull 78, p 129

well at Lebanon, Laclede county................................Bull 60, p 172

Montana:

Emigrant gulch warm springs, Yellowstone valley................Bull 9, p 31

Helena hot springs...Bull 8, p 32

Livingston warm springs..Bull 8, p 31

Matthews' warm springs, near Bozeman...........................Bull 27, p 75

Mill creek cold spring, Yellowstone valley......................Bull 9, p 32

White sulphur springs, Meagher county..........................Bull 27, p 75

Nevada:

hot spring, foot of Granite mountain.............................Bull 9, p 24

hot spring at Hot spring station, C. P. R. R........................Bull 9, p 24
Water, analyses of, from—continued.

Nevada—continued.

Humboldt lake and river Mon xi, pp 41, 67, 225; Bull 9, p 23
Pyramid lake Mon xi, pp 57, 58, 225; Bull 9, pp 20-21
Soda lakes Mon xi, p 77; Bull 9, p 25
Steamboat springs Mon xii, pp 94, 95
Walker lake and river Mon xi, pp 46, 70, 225; Bull 9, pp 22-23
Winnemucca lake Mon xi, pp 63, 225; Bull 9, p 21

New Mexico:
mineral spring one mile west of Santa Fé Bull 27, p 76
spring near fort Wingate .. Bull 55, p 92

New Zealand:

springs ... Ann 9, p 673

North Carolina:

spring twenty miles from Charlotte, Lincoln county Bull 60, p 171

Oregon:

Abert lake .. Bull 9, p 29

Tennessee:

spring at Mountain city Bull 64, p 58

Utah:

Bear river ... Bull 9, p 30
Beck's hot springs, near Salt lake city Bull 42, p 148
City creek .. Bull 9, p 29
Great salt lake ... Mon i, pp 253, 254, 255
Utah hot springs, eight miles north of Ogden Bull 9, p 30
Utah lake ... Bull 9, p 29

Virginia:

springs in Loudoun county Bull 42, p 147
Virginia hot springs, Bath county Bull 9, p 33

Yellowstone national park:

Mammoth hot springs Ann 9, p 639

Water, apparatus for determination of, in mineral analysis Bull 78, pp 84-86
Water, artesian, chemical impregnations of ... Ann 5, pp 165-167
Water, artesian; requisite and qualifying conditions of artesian wells ... Ann 5, pp 125-173
Water, artesian, temperature of .. Ann 5, p 165
Water-bearing beds, character of Ann 5, pp 135-137
Water, river, general chemistry of Mon xi, pp 172-174
Water, spring, general chemistry of Mon xi, pp 175-178
Water supply, dangerous, conditions of Ann 12, i, pp 342-344
Water supply of Mono lake, California Ann 8, i, p 287
Water supply of the Colorado river Mon ii, pp 234-235
Water vapor, influence of, in producing fayalite and various structures in ob­sidian Ann 7, pp 280-287
Water vapor, role of, in molten magmas Bull 66, pp 26-29
Waters and wells, artesian, for irrigation in western United States and in vari­ous countries Ann 11, ii, pp 257-278

Waters, geysers, analyses of Ann 9, p 655
Waters, mineral, of the United States, lists and analyses of the Bull 32
Waters, natural, treatment of, in analysis Bull 47, pp 12-25
Waters of Comstock lode, source and temperatures of........ Mon iii, pp 241-243, 252, 390
Waters of Comstock mines, analyses of Mon iii, p 152
INDEX.

WARMAI.

INDEX. 489

Waters of rivers, springs, oceans, and inland seas, chemistry of. .Mon xi, pp 172-187

Waters of the Yellowstone national park, analyses of, with an account of
the methods of analysis employed..................................... Bull 47

Wave motion, especially in solid media, nature and mechanism of. .Ann 9, pp 300-409

Wave work on shores. .Ann 5, pp 80-99; Mon i, pp 29-60; Mon x1, pp 88-99

Weathering, analysis of, and the results of, in the Grand canyon. .Ann 2,
pp 161-166; Mon ii, pp 245-249

Weathering of rocks and origin of the red color of certain formations .Bull 52

Weathering of rocks producing nodules, discussion of. .Mon xiii, pp 68-72

Weathering, products of, in massive rocks. .Bull 62, pp 213-214

Weathering. See, also, Degradation.

Webber lake, California, surveyed as a reservoir site. .Ann 11, ii, pp 175, 181-182

Weber and Ogden rivers, Utah, hydrography of .Ann 12, ii, p 334

Weber conglomerate at Eureka, Nevada. .Mon xx, pp 91-92

Webster (A. L.), altitudes and their determination. .Mon i, pp 405-419

Websterite from North Carolina and Maryland, analyses of .Bull 78, p 122

Weed (W. H.), travertine and siliceous sinter of hot springs .Ann 9, pp 613-676

Weeks (J. D.), glass materials, statistics of .MR 1883-84, pp 958-977; MR 1885, pp 544-557

Weeks (J. D.), manganese, statistics of. .MR 1885, pp 303-356; MR 1886, pp 180-213;
MR 1887, pp 144-167; MR 1888, pp 123-143;
MR 1889-90, pp 127-136; MR 1891, pp 126-146

Weeks (J. D.), natural gas, statistics of. .MR 1885, pp 155-179; MR 1886, pp 488-516;
MR 1887, pp 464-502; MR 1888, pp 481-512;

Weeks (J. D.), petroleum, statistics of. .MR 1886, pp 439-487; MR 1887, pp 436-463;
MR 1888, pp 442-480; MR 1889-90, pp 287-365; MR 1891, pp 403-435

Weeks (J. D.), the manufacture of coke, statistics of .MR 1883-84, pp 144-213;

Weiser river basin, Idaho, hydrography of .Ann 11, ii, pp 89-92, 106

Wells, artesian, requisite and qualifying conditions of .Ann 5, pp 125-173

Wells, artesian, in Kansas. .Ann 11, ii, p 271; Bull 57, pp 13, 30, 48

Wells, artesian, irrigation by .Ann 5, pp 148-150; Ann 11, ii, pp 237-278

Wells, the art of sinking. .Ann 5, pp 168-170

West Indies, fossil plants of, literature of the. .Ann 8, ii, pp 819-820

West Indies, geological maps of, listed .Bull 7, pp 146-148

West Virginia, altitudes in. .Bull 5, pp 314-316; Bull 76

West Virginia; bituminous coal field in Pennsylvania, Ohio, and West Vir­
ginia, stratigraphy of the. .Bull 65

West Virginia, boundary lines of .Bull 13, p 92

West Virginia, brick industry of .MR 1887, p 536; MR 1888, pp 564, 566, 569

West Virginia, bromine industry of .MR 1883-84, pp 851-852;
MR 1885, pp 846-847; MR 1886, p 642; MR 1887, p 626;
MR 1888, p 613; MR 1889-90, p 493; MR 1891, p 579

West Virginia, building stone from, statistics of .MR 1882, p 451; MR 1887, p 521;
MR 1889-90, pp 373, 437-438; MR 1891, pp 461, 463, 464, 468

West Virginia, clay deposits and industry of .MR 1891, p 515

West Virginia, coal area and statistics of .Ann 2, p xxvii; MR 1882, pp 83-85;
MR 1883-84, pp 12, 90-98; MR 1885, pp 11, 71; MR 1886, pp 225,
230, 389-374; MR 1887, pp 169, 171, 373-379; MR 1888, pp 169, 171,
385-389; MR 1889-90, pp 147, 277-280; MR 1891, pp 180, 341-351

West Virginia; coal from Jefferson county, analysis of. .Bull 42, p 146

West Virginia; coal from Randolph county, analyses of .Bull 27, pp 73-74

West Virginia, coal and coke from, analyses of .Bull 64, p 54

West Virginia; coal and coke from near Piedmont, analyses of........ Bull 60, p 169
West Virginia, Coal measures of.. Bull 80, pp 87, 88
West Virginia, coal mining in the Kanawha valley........ MR 1883-84, pp 131-143
West Virginia; coals from Barbour county, analyses of........ Bull 78, p 128
West Virginia, coke in the manufacture of....................... MR 1888-84, pp 207-213;
MR 1888, pp 395, 427-441; MR 1891, pp 360, 366, 396-401
West Virginia, forestry investigations in Ann 5, pp 64-66; Ann 6, p 93
West Virginia, fossils from.. Ann 8, ii, p 876
West Virginia, geologic and paleontologic investigations in..... Ann 5, pp 52, 53;
Ann 6, pp 24, 25, 31, 36; Ann 7, pp 65, 67; Ann 8, i, p 130;
Ann 9, p 77; Ann 10, i, pp 119-120; Ann 12, i, pp 55, 78
West Virginia, geologic maps of, listed............................ Bull 7, pp 109, 111, 112
West Virginia, iron and steel from, statistics of............. Ann 2, p xxviii; MR 1882,
pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137;
MR 1883-84, p 262; MR 1885, pp 182, 184, 186;
MR 1886, pp 18, 33, 81; MR 1887, pp 11, 16; MR 1888,
pp 14, 17, 23; MR 1889-90, pp 10, 12, 17, 24, 34;
MR 1891, pp 12, 27, 54, 55, 61
West Virginia; iron ore, brown, from Randolph county, analyses of.. Bull 27, pp 72-73
West Virginia, limestone production of............................ MR 1891, pp 464, 468
West Virginia; limestones from below Wheeling, analyses of........ Bull 9, p 17
West Virginia; limonite from Canaan mountain, analysis of........ Bull 9, p 18
West Virginia, mineral springs of.................................... Bull 32, pp 69-73;
MR 1885, p 541; MR 1886, p 719; MR 1887, p 866; MR 1888, p 629;
MR 1889-90, p 534; MR 1891, pp 603, 608
West Virginia, minerals of, the useful.......................... MR 1882, pp 743-745;
MR 1887, pp 804-806
West Virginia, mining laws of...................................... MR 1886, pp 741-746
West Virginia, natural-gas localities and statistics of....... MR 1883-84, pp 236, 237, 243;
MR 1885, p 167; MR 1886, p 504; MR 1887, pp 466, 484;
MR 1889-90, p 307; MR 1891, p 438
West Virginia, petroleum localities and statistics of........ MR 1882, p 189;
MR 1883-84, p 216; MR 1885, pp 146-147; MR 1886, p 441;
MR 1887, pp 438, 451, 463; MR 1889-90, pp 292, 329-332;
MR 1891, pp 405, 407, 491
West Virginia, salt from, statistics of.......................... MR 1883, pp 532-534, 539-541;
MR 1883-84, pp 827, 839-840; MR 1885, pp 474, 479;
MR 1886, pp 626, 637; MR 1887, pp 611, 620;
MR 1888, pp 597-598, 604; MR 1889-90, pp 482, 488;
MR 1891, p 572
West Virginia, sandstone production of.......................... MR 1891, pp 461, 463
West Virginia, topographic work in.................................. Ann 5, pp 6-8; Ann 6, pp 8, 9, 10;
Ann 7, 50, 51, 53; Ann 8, i, p 101; Ann 9, p 53;
Ann 10, i, p 92; Ann 11, i, p 37; Ann 12, i, p 27
West Virginia; Wheeling deep well (4,471 feet), determination of underground
temperature gradients at the.. Ann 12, i, p 63
West and Sangre de Cristo mountains, Colorado, Archean and Algolkian litera-
ture of the.. Bull 86, pp 313-314
Whetstones and oilstones, statistics of......................... MR 1889-90, p 460; MR 1891, pp 553-555
White (C. A.), administrative report for 1882-83................. Ann 4, pp 42-44
White (C. A.), administrative report for 1883-84................ Ann 5, pp 50-51
White (C. A.), administrative report for 1884-85................ Ann 6, pp 72-74
White (C. A.), administrative report for 1885-86................ Ann 7, pp 117-120
White (C. A.), administrative report for 1886-87................ Ann 8, pp 1, 178-181
White (C. A.), administrative report for 1887-88................ Ann 9, pp 120-123
White (C. A.), administrative report for 1888-89................ Ann 10, i, pp 162-165
White (C. A.), administrative report for 1889-90................. Ann 11, i, pp 107-109
White (C. A.), administrative report for 1890-91................. Ann 12, i, pp 112-115
White (C. A.), correlation papers, Cretaceous.................... Bull 82
White (C. A.), fossil Ostreidae of North America................. Ann 4, pp 273-430
INDEX.

White (C. A.), fresh-water invertebrates of the North American Jurassic... Bull 29
White (C. A.), geology and physiography of portions of Colorado, Utah, and Wyoming... Ann 9, pp 677-712
White (C. A.), invertebrate fossils from the Pacific coast... Bull 51
White (C. A.), marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America... Bull 18
White (C. A.), Mesozoic and Cenozoic paleontology of California... Bull 15
White (C. A.), Mesozoic fossils... Bull 4
White (C. A.), new Cretaceous fossils from California... Bull 22
White (C. A.), nonmarine fossil Mollusca of North America... Ann 3, pp. 403-550; Bull 18, pp 17-19
White (C. A.), remarks on the genus Ancella, with especial reference to its occurrence in California... Mon xiii, pp 226-232
White (C. A.), the relation of the Laramie Molluscan fauna to that of the succeeding fresh-water Eocene and other groups... Bull 34
White (C. A.), the Texan Permian and its Mesozoic types of fossils... Bull 77
White (D.), flora of the outlying Carboniferous basins of southwestern Missouri... Bull 98
White (I. C.), comparative stratigraphy of the bituminous coal field of the northern half of the Appalachian field... Bull 65
White Mountains, Archean and Algobanian literature of the... Bull 86, 350-352
White pine shale at Eureka, Nevada... Mon xx, pp 68-70, 153-154
White river group of rocks of South Dakota, Colorado, and Wyoming... Bull 84, pp 289-292, 304-305, 311-312
Whitfield (J. E.), a new meteorite from Mexico... Bull 64, pp 29-30
Whitfield (J. E.), analyses of natural borates and borosilicates... Bull 55, pp 56-62
Whitfield (J. E.), analyses of six new meteorites... Bull 60, pp 103-114
Whitfield (J. E.), dumortierite from New York and Arizona... Bull 60, pp 133-135
Whitfield (J. E.), meteorites from Johnson county, Arkansas, and Allen county, Kentucky... Bull 55, pp 63-64
Whitfield (J. E.), scorodite from the Yellowstone national park... Bull 55, pp 65-66
Whitfield (J. E.), the indirect estimation of chlorine, bromine, and iodine by the electrolysis of their silver salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids... Bull 42, pp 89-93
Whitfield (J. E.) and Diller (J. S.), dumortierite from Harlem, New York, and Clip, Arizona... Bull 64, pp 31-33
Whitfield (J. E.) and Gooch (F. A.), analyses of waters of the Yellowstone national park, with an account of the methods of analysis employed... Bull 47
Whitfield (R. P.), Brachiopoda and Lamellibranchiata of the Raritan clays and greensand marls of New Jersey... Mon ix
Whitfield (R. P.), Gasteropoda and Cephalopoda of the Raritan clays and greensand marls of New Jersey... Mon xviii
Whiting (H. L.), successive surveys in Martha's vineyard by... Ann 7, pp 301-363
Whitney (J. D.), hypsometric method of... Ann 2, pp 465-479
Wilber (F. A.), apatite, statistics of... MR 1882, p 521
Wilber (F. A.), clays, statistics of... MR 1883-84, pp 676-711
Wilber (F. A.), fire-clay in the eastern division... MR 1882, pp 465-469
Wilber (F. A.), gypsum, statistics of... MR 1883-84, pp 809-815
Wilber (F. A.), marls, statistics of... MR 1882, pp 522-526; MR 1883-84, p 808
Willenite from the Trotter mine, Franklin, New Jersey, description and analysis of... Bull 60, p 130
Williams (A.), jr., administrative report for 1882-83... Ann 4, pp 59-72
Williams (A.), jr., administrative report for 1883-84... Ann 5, pp 63-64
Williams (A.), jr., administrative report for 1884-85... Ann 6, pp 88-93
Williams (A.), jr., administrative report for 1885-86... Ann 7, pp 130-134
Williams (A.), jr., gold and silver conversion tables .. Bull 2
Williams (A.), jr., list of ores, minerals, and mineral substances of industrial importance in Idaho MR 1882, pp 770-771
Williams (A.), jr., mineral resources of the United States in 1883 and 1884. MR 1883-84
Williams (A.), jr., popular fallacies regarding precious-metall ore deposits Ann 4, pp 253-271
Williams (A.), jr., useful minerals of the United States; a list by states MR 1887, pp 688-812
Williams (G. H.), gabbros and associated hornblende rocks near Baltimore, Maryland ... Bull 28
Williams (G. H.), reports on studies of the crystalline rocks of Maryland ... Ann 10, i, pp 152-154; Ann 11, i, pp 66-67; Ann 12, i, pp 73-74
Williams (G. H.), the greenstone-schist areas of the Menominee and Marquette regions of Michigan, a contribution to the subject of dynamic metamorphism in eruptive rocks .. Bull 62
Williams (H. S.), fossil faunas of the upper Devonian, the Genessee section, New York ... Bull 3
Williams (H. S.), fossil faunas of the upper Devonian, along the meridian of 76° 30' in New York .. Bull 40
Willis (B.), changes in river courses in Washington due to glaciation Bull 41
Willis (B.), lignites of the great Sioux reservation Bull 21
Willis (B.), wind-blown soils .. Ann 12, ii, pp 363-361
Wind-blown soils .. Ann 12, i, pp 326-329
Wind river group of rocks, correlation of the Bull 83, pp 115-125, 140-141, 145-146
Wind river mountains, Archean and Algokian literature of the Bull 86, pp 279-280
Wind, the trade, confined within narrow vertical limits Ann 4, p 145
Winds in the lake Bonneville basin in Pleistocene time Mon, i, p 332
Winnemucca lake, Nevada, analysis of water of Mon xi, p 63
Winslow (A.), Arkansas coal .. MR 1888, pp 216-224
Wisconsin, altitudes in Bull 5, pp 317-320; Bull 72, pp 197-198, 204-205; Bull 76
Wisconsin; Archean formations of the northwestern states Ann 5, pp 175-242
Wisconsin, boundary lines of, and formation of, from territory northwest of Ohio river .. Bull 13, pp 28, 29, 114-116
Wisconsin, brick industry of .. MR 1887, pp 536, 539; MR 1888, p 564
Wisconsin, building stone from, statistics of MR 1891, p 496
Wisconsin, cement production of .. MR 1891, p 532
Wisconsin, clay deposits of ... MR 1891, pp 522-523
Wisconsin, copper-bearing rocks of lake Superior, nature, structure, and extent of the .. Ann 3, pp 93-188; Mon v
Wisconsin, Cambrian rocks in, correlation of the Bull 81, pp 171-181, 331
Wisconsin, coke in, the manufacture of MR 1888, pp 365, 400, 441; MR 1891, pp 361, 366, 401-402
Wisconsin, driftless area of the upper Mississippi valley Ann 6, pp 199-222
Wisconsin, fossils from .. Ann 8, ii, p 894; Mon xvi, pp 47, 51, 62, 66
Wisconsin, geologic and paleontologic investigations in Ann 3, p 19; Ann 5, pp 20, 21, 24-25, 52-53; Ann 6, pp 31, 34-35, 37, 38, 73, 75; Ann 7, pp 71, 83; Ann 8, i, p 143; Ann 9, pp 72, 86; Ann 10, i, pp 125, 129; Ann 11, i, pp 76, 104
Wisconsin, geologic maps of, listed .. Bull 7, pp 89-101, 164-166
Wisconsin, glacial investigations in ... Ann 3, pp 315-322, 381-382, 384-385; Ann 7, p 157
Wisconsin, lead from, statistics of ... Ann 2, p xxviii; MR 1882, p 312; MR 1883-84, pp 416, 425; MR 1885, p 248; MR 1886, p 148
Wisconsin, lime production of .. MR 1887, p 533; MR 1888, p 556
Wisconsin; limestone from Calumet and Winnebago counties, analyses of MR 1889-90, p 439
Wisconsin, limestone production of .. MR 1881, pp 464, 468
Wisconsin, manganese deposits in .. MR 1886, pp 188-190; MR 1887, p 151; MR 1888, p 128
Wisconsin, manganese production of MR 1891, p 595
Wisconsin; on secondary enlargements of mineral fragments in certain rocks (mostly from Michigan, Wisconsin, and Minnesota) Bull 8
Wisconsin; on the classification of the early Cambrian and pre-Cambrian formations; a brief discussion of principles, illustrated by examples drawn mainly from the lake Superior region Ann 7, pp 365-454
Wisconsin, Penokee iron-bearing series of Mich. and .. Ann 10, i, pp 341-508; Mon xix
Wisconsin, residuary clays from, analyses of Bull 27, pp 67-68
Wisconsin; rock, ferruginous, from Penokee iron range, analysis of Bull 42, p 138
Wisconsin, sandstone production of .. MR 1891, pp 461, 463
Wisconsin, topographic work in ... Ann 9, p 57; Ann 10, i, p 94; Ann 11, i, p 38; Ann 12, i, p 29
Wisconsin, zinc deposits and statistics of Ann 2, p xxix; MR 1882, pp 366, 367; MR 1886, p 156; MR 1889-90, p 88
Wisconsin and Michigan, rocks from Menominee river, analyses of Bull 55, p 81
Witham (Henry T. M.), biographical sketch of Bull 6, p 5
Wolff (J. E.), study of the geology of the Crazy mountains of Mont........................ Ann 11, i, p 55
Wolframite, German, partial analysis of .. MR 1883-84, p 575
Wood, silicified species of, from the Potomac formation Bull 56, pp 43-52
Wood, fossil, and lignite of the Potomac formation Bull 56
Wood rivers, Snake river basin, hydrography of Ann 11, ii, pp 83-88, 106
Woodward (R. S.), administrative report for 1886-87 Ann 8, i, pp 121-124
Woodward (R. S.), administrative report for 1887-88 Ann 9, pp 68-71
Woodward (R. S.), administrative report for 1888-89 Ann 10, i, pp 106-108
Woodward (R. S.), administrative report for 1889-90 Ann 11, i, pp 128-129
Woodward (R. S.), deformation of the geoid by the removal, through evaporation, of the water of lake Bonneville .. Mon i, pp 421-424
Woodward (R. S.), elevation of the surface of the Bonneville basin by expansion due to change of climate ... Mon i, pp 425-426
Woodward (R. S.), formulas and tables to facilitate the construction and use of maps ... Bull 50
Woodward (R. S.), latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico .. Bull 49
Woodward (R. S.), report on astronomical work of 1889 and 1890 Bull 70
Woodward (R. S.), the form and position of the sea-level Bull 48
Worms, earth-, action of, in producing soils..................Ann 12, i, pp 274-276
Wright (G. F.), the glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and the glaciation of Ohio, Kentucky, and Indiana............Bull 58
Wyoming, altitudes in............. Bull 5, pp 321-323; Bull 72, pp 196, 225; Bull 76
Wyoming, boundary lines of, and formation of territory............Bull 13, pp 32,123
Wyoming, Cambrian rocks of, correlation of the............Bull 81, pp 211-214, 349-351
Wyoming, clay deposits of..................................MR 1891, p 524
Wyoming coals, analyses of..................................MR 1889-90, pp 282, 284
Wyoming, coke industry of...............................MR 1891, pp 360, 366, 402
Wyoming, copper from, statistics of..........................MR 1882, pp 216, 229; MR 1883-84, pp 322, 342; MR 1885, p 210; MR 1886, p 112; MR 1887, pp 69, 76; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83-84
Wyoming, Creataceous rocks of..................................Bull 82, pp 155, 154, 156, 161
Wyoming; Dinocerata, an extinct order of gigantic mammals (remains found in Wyoming).............Ann 5, pp 243-302; Mon x
Wyoming, fossils fromAnn 3, pp 420-470; Ann 4, pp 289, 290, 300, 308; Ann 5, p 249; Ann 6, pp 549-556; Ann 8, ii, pp 906-908; Bull 29, pp 19, 22; Bull 34, pp 22, 23, 25, 29, 30
Wyoming, geologic and paleontologic investigations in.................Ann 4, p 41; Ann 5, pp 49-57; Ann 6, pp 72; Ann 7, pp 112, 118, 119; Ann 8, i, p 173; Ann 9, p 114; Ann 10, i, p 159; Ann 11, i, pp 101, 123; Ann 12, i, p 119
Wyoming, geologic maps of, listed..................................Bull 7, pp 115, 116, 169, 170
Wyoming; geology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming.................Ann 9, pp 677-712
Wyoming glaciers, existing, of the United States...............Ann 5, pp 303-365
Wyoming, mineral springs of..................................Bull 32, pp 183-184
Wyoming, minerals of, the useful........MR 1882, pp 758-759; MR 1887, pp 808-810
Wyoming, Neocene beds of..................................Bull 84, pp 309-312
Wyoming, salt from, statistics of..................................MR 1882, pp 532-534, 541
Wyoming, sandstone production of..................................MR 1891, pp 461, 463
Wyoming, soda deposits worked in..................................Bull 60, pp 42-46; MR 1885, pp 550-554
Wyoming, tin ore in..................................MR 1883-84, pp 613; MR 1885, p 370
Wyoming; types of the Laramie flora (largely from Wyoming).........Bull 37
Wyoming, Colorado, and Utah, geology and physiography of portions of Ann 9, pp 677-712
Wyoming and Gros Ventre ranges, Archean and Algonkian literature of the..................................Bull 86, p 280
Wyoming conglomerate of Wyoming and Utah.................Bull 84, pp 311, 313
Xanthitane from Green river, Henderson county, North Carolina........Bull 60, p 135
Yale (C. G.), borax..................................MR 1889-90, pp 494-506
Yale (C. G.), iron on the Pacific coast........MR 1883-84, pp 286-290; MR 1885, pp 196-199
Yale (C. G.), minor minerals of the Pacific coast........MR 1882, pp 662-663
Yellowstone basin, hydrography of. Ann 11, ii, pp 36-38, 93, 107; Ann 12, ii, pp 236-238
Yellowstone lake, altitude, area, discharge, etc., of. Ann 9, p 93
Yellowstone national park, analyses of waters of the, with an account of the methods of analysis employed. Bull 47
Yellowstone national park, fayalite from the, analysis of. Bull 27, p 63
Yellowstone national park; formation of travertine and siliceous sinter by the vegetation of hot springs. Ann 9, pp 613-676
Yellowstone national park, fossils from the. Ann 8, ii, pp 909-910
Yellowstone national park, geologic and paleontologic investigations in the. Ann 5, pp 15-18; Ann 6, pp 54-58; Ann 7, pp 87-89;
Ann 8, i, pp 149-151; Ann 9, pp 91-94, 128-129; Ann 10, i, pp 23-25, 132-136, 169-170; Ann 11, i, pp 83-85; Ann 12, i, pp 56, 94
Yellowstone national park, geologic maps of the, listed. Bull 7, p 169
Yellowstone national park, hot springs and geysers of the. Ann 9, pp 628-672
Yellowstone national park, Mammoth hot springs, analyses of waters from the. Ann 9, p 639
Yellowstone national park, Obsidian cliff. Ann 7, pp 240-295
Yellowstone national park, reasons for the maintenance of the. Ann 5, pp 17-18
Yellowstone national park, scorodite from the. Bull 55, pp 65-66
Yellowstone national park, topographic work in the. Ann 5, pp 9-10;
Ann 6, pp 14-15; Ann 7, p 57; Ann 9, p 60
Yosemite valley, California, origin of the. Ann 8, i, pp 350-351
Zamies of the older Mesozoic of Virginia. Mon vi, pp 63-84
Zamies of the Potomac or younger Mesozoic. Mon xv, pp 166-193
Zeolite, derivation of, from feldspar. Bull 28, p 52
Zeolites from the basalt of Table mountain, Colorado. Bull 20, pp 15-38
Zickenite from San Juan county, Colorado. Bull 20, pp 93-95
Zinc deposits of Missouri, investigation of the. Ann 11, i, pp 54, 80-81
Zinc, mining and metallurgy of, in the United States. MR 1882, pp 358-386
Zinc ores, analyses of. MR 1885, pp 337-340
Zinc, statistics of. MR 1882, pp 346-386;
MR 1883-84, pp 474-491; MR 1885, pp 272-283; MR 1886, pp 154-159; MR 1887,
Zinc sulphide, solubility of. Mon xiii, pp 434, 474
Zinc, the principal foreign producers of. MR 1882, pp 366-368; MR 1883-84,
pp 480-491; MR 1885, pp 276-283; MR 1886, p 159; MR 1888, pp 95-96
Zircon from near Pike's peak, Colorado. Bull 20, pp 66-67
Zirconium mineral from Colorado, an ill-defined. Bull 55, p 52
Zirconium, statistics of. MR 1883-84, p 661; MR 1885, pp 393-394
Zirkel (F.), report of, on a lithological collection from the Washoe district, Nevada, quoted. Mon iii, pp 26-28
Zoisite, a component of metamorphic rocks in the Coast ranges of California. Mon xiii, pp 77-82
Zoisite a product of mineralogical metamorphism. Bull 62, p 210
Zoisite an evidence of metamorphism. Mon xiii, pp 120-130
Zuni plateau, mount Taylor and the. Ann 6, pp 105-108
Zunyite, a new mineral from San Juan county, Colorado. Bull 20, pp 100-105