QE75
B2
no. 177-178
Copy 2
CATALOGUE AND INDEX

OF THE

PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY

1880 to 1901

BY

PHILIP CREVELING WARMAN

WASHINGTON
GOVERNMENT PRINTING OFFICE
1901
<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>7</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Catalogue of Survey publications</td>
<td></td>
</tr>
<tr>
<td>Annual Reports</td>
<td>11</td>
</tr>
<tr>
<td>Monographs</td>
<td>11</td>
</tr>
<tr>
<td>Bulletins</td>
<td>34</td>
</tr>
<tr>
<td>Water-Supply and Irrigation Papers</td>
<td>37</td>
</tr>
<tr>
<td>Reports on Mineral Resources (old series)</td>
<td>48</td>
</tr>
<tr>
<td>Geologic Atlas of United States</td>
<td>49</td>
</tr>
<tr>
<td>Topographic maps and folios of United States</td>
<td>64</td>
</tr>
<tr>
<td>Topographic atlas sheets, by States</td>
<td>67</td>
</tr>
<tr>
<td>Index to topographic atlas sheets</td>
<td>101</td>
</tr>
<tr>
<td>General, combined, special, and forestry maps</td>
<td>109</td>
</tr>
<tr>
<td>Topographic folios</td>
<td>110</td>
</tr>
<tr>
<td>Miscellaneous publications</td>
<td>112</td>
</tr>
<tr>
<td>Charts showing mineral products of United States</td>
<td>112</td>
</tr>
<tr>
<td>Regulations</td>
<td>112</td>
</tr>
<tr>
<td>Instructions relating to work of Topographic Branch</td>
<td>113</td>
</tr>
<tr>
<td>List of publications</td>
<td>113</td>
</tr>
<tr>
<td>Hampson's Rules</td>
<td>113</td>
</tr>
<tr>
<td>Croffut's Suggestions</td>
<td>113</td>
</tr>
<tr>
<td>Johnson's Iron Regions of Louisiana and Texas</td>
<td>113</td>
</tr>
<tr>
<td>Digest of decisions concerning water in the arid region</td>
<td>113</td>
</tr>
<tr>
<td>Special reports on Alaska</td>
<td>114</td>
</tr>
<tr>
<td>Map of Alaska, etc. (published in 1898)</td>
<td>114</td>
</tr>
<tr>
<td>Maps and Descriptions of Routes, etc. (published in 1899)</td>
<td>114</td>
</tr>
<tr>
<td>Cape Nome Gold Region (published in 1900)</td>
<td>115</td>
</tr>
<tr>
<td>Index to Survey publications</td>
<td>117</td>
</tr>
</tbody>
</table>
LETTER OF TRANSMITTAL.

DEPARTMENT OF THE INTERIOR,
UNITED STATES GEOLOGICAL SURVEY,
Washington, D. C., March 15, 1901.

SIR: I have the honor to transmit herewith the manuscript for a Catalogue and Index of the Publications of the United States Geological Survey from 1880 to 1901, with the request that it be published as one of the numbers in the series of Bulletins.

Very respectfully, your obedient servant,

P. C. WARMAN,
Editor.

HON. CHARLES D. WALCOTT,
Director of United States Geological Survey.
This bulletin is an extension of Bulletin No. 100, published in 1893. In that work were catalogued and indexed the publications issued by the Survey from the date of its organization to the year 1892. This work brings the catalogue and index to date, embracing Annual Reports 1 to 21, Monographs I to XL (except Part I of Monograph XXXII, which has not been published), Bulletins 1 to 176, Water-Supply and Irrigation Papers 1 to 45, the 10 volumes of the old series of Mineral Resources (1882-1893), folios 1 to 70 of the Geologic Atlas of the United States, the completed topographic atlas sheets and folios (about 1,100 sheets, 3 folios), certain special maps (general, combined, forestry, etc.), and miscellaneous publications.

The first portion of the work, the catalogue, is much more abridged than the corresponding portion of Bulletin 100, bibliographic details having been omitted. The index has not been materially changed in character. It is intended to be mainly a broad classification of contents, alphabetically arranged, rather than a full index composed largely of unrelated items. It undertakes to put the inquirer on the proper highway, whence in most cases he will be able readily to find the place he seeks; but often he may profit by a consultation of the individual volume index to which this points, which should give him more detailed directions for finding particular places along diverging roads and lanes.

The index has been in preparation many months, and in the work the writer has had the assistance, during intervals in their regular work, of the following members of the editorial corps: Mr. F. R. Rutter, Mr. L. F. Schmeckebier, Mr. W. S. Wiley, Miss M. G. Wilmarth, and Mr. G. M. Wood.

P. C. W.
CATALOGUE AND INDEX OF PUBLICATIONS OF THE UNITED STATES GEOLOGICAL SURVEY, 1880-1901.

By P. C. Warman.

CATALOGUE.

ANNUAL REPORTS.

8°. lv, 588 pp., 62 pls. and maps and 1 unnumbered map in pocket. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

- Administrative reports by heads of divisions, pp. 3-46, pls. viii-ix.
- The physical geology of the Grand Canyon district, by Clarence E. Dutton, pp. 47-166, pls. x-xxxvi and 1 unnumbered map.
- Contributions to the history of Lake Bonneville, by G. K. Gilbert, pp. 167-200, pls. xxxvii-xlili.
- Abstract of report on geology and mining industry of Leadville, Lake County, Colorado, by S. F. Emmons, pp. 201-290, pls. xlv-xliv.
- Production of the precious metals in the United States, by Clarence King, pp. 331-401, pls. xlviii-liii.
- Index, pp. 567-588.

8°. xviii, 564 pp., xxxv + 32 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.
Administrative reports of chiefs of divisions, pp. 1-41, pls. i-ii.
Birds with teeth, by Professor O. C. Marsh, pp. 45-88.
The copper-bearing rocks of Lake Superior, by Roland Duer Irving, pp. 89-188, pls. iii-xvii.
Sketch of the geological history of Lake Lahontan, a Quaternary lake of northwestern Nevada, by Israel C. Russell, pp. 189-235, pls. xvii-xxiii.
Index, pp. 551-564.

Fourth Annual Report of the United States Geological Survey to the Secretary of the Interior 1882-'83. by J. W. Powell Director
8°. xxxii, 473 pp., 85 pls. and maps. Bound in dark maroon cloth (Survey edition). Separates of the various papers were issued, in paper covers.
Report of the Director, pp. xiii-xxxii, pl. i.
Administrative reports of chiefs of divisions, pp. 1-72.
A review of the fossil Ostreidse of North America, and a comparison of the fossil with the living forms, by Charles A. White, M. D, with appendices by Prof. Angelo Heilprin and Mr. John A. Ryder, pp. 273-430, pls. xxxiv-lxxxii.
A geological reconnaissance in southern Oregon, by Israel C. Russell, pp. 431-464, pls. lxxxiii-lxxxv.
Index, pp. 465-473.

Fifth Annual Report of the United States Geological Survey to the Secretary of the Interior 1883-'84 by J. W. Powell Director
8°. xxxvi, 469 pp., 58 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.
Report of the Director, pp. xvii-xxxvi, pls. i-ii.
Administrative reports of chiefs of divisions, pp. 1-66.
The topographic features of lake shores, by G. K. Gilbert, pp. 69-123, pls. iii-xx.
The requisite and qualifying conditions of artesian wells, by Thomas C. Chamberlin, pp. 125-173, pl. xxi.
The gigantic mammals of the order Dinocerata, by Professor O. C. Marsh, pp. 243-302.
Existing glaciers of the United States, by Israel C. Russell, pp. 303-355, pls. xxxii-lv.
Sketch of paleobotany, by Lester F. Ward, pp. 357-452, pls. lvi-lviii.
Index, pp. 453-469.

NOTE.—A pocket carries a map (pl. ii) of the United States, "exhibiting the present status of knowledge relating to the areal distribution of geologic groups (preliminary compilation), compiled by W J McGee, 1884." (See notes to Fourteenth and Twenty-first annual reports, pp. 17 and 31 of this bulletin.)

8°. xxix, 570 pp., 65 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

- Administrative reports of chiefs of divisions, pp. 1–101, pls. iv–x.
- The quantitative determination of silver by means of the microscope, by Joseph Story Curtis, pp. 323–352, pl. xxx.
- Index, pp. 559–570.

8°. xx, 656 pp., 71 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

- Report of the Director, pp. 3–42.
- Administrative reports of chiefs of divisions, pp. 43–143, pls. i–vii.
- The rock scorings of the great ice invasions, by T. C. Chamberlin, pp. 147–248, pl. viii.
- On the classification of the early Cambrian and pre-Cambrian formations, a brief discussion of principles, illustrated by examples drawn mainly from the Lake Superior region, by R. D. Irving, pp. 365–454, pls. xxx–lii.
- The geology of the head of Chesapeake Bay, by W J McGee, pp. 537–646, pls. lvi–lxxi.
- Index, pp. 647–656.

8°. 2 pts. xix, 474, xii pp., 53 pls. and maps; 1 prel. l. (title), 475–1063 pp., 54–76 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

- Pt. 1. Report of the Director, pp. 3–93, pl. i.
- Administrative reports of chiefs of divisions, pp. 95–257, pls. ii–xv.

Index pp. i–xii.

Pt. II. The Trenton limestone as a source of petroleum and inflammable gas in Ohio and Indiana, by Edward Orton, pp. 475–662, pls. liv–lx.
The geographical distribution of fossil plants, by Lester F. Ward, pp. 663–960, pl. lxi.
The geology of the island of Mount Desert, Maine, by Nathaniel Southgate Shaler, pp. 987–1061, pls. lxiv–lxviii.
Index, p. 1063.

Ninth Annual Report of the United States Geological Survey to the Secretary of the Interior 1887–’88 by J. W. Powell Director

8°. xiii, 717 pp., 88 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Administrative reports of chiefs of divisions, pp. 47–199, pls. i–vi.
The geology of Cape Ann, Massachusetts, by Nathaniel Southgate Shaler, pp. 529–611, pls. xxxii–lxxvii.
Formation of travertine and siliceous sinter by the vegetation of hot springs, by Walter Harvey Weed, pp. 613–676, pls. lxxviii–lxxxvii.
On the geology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and Wyoming, by Charles A. White, pp. 677–712, pl. lxxxviii.
Index, pp. 713–717.

8°. 2 pts. xv, 774 pp., 98 pls. and maps; viii, 123 pp. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Geology. xv, 774 pp., 98 pls. and maps.
Administrative reports of chiefs of divisions, pp. 81–252.
Index, pp. 765–774.

Pt. II. Irrigation. viii, 123 pp.
Eleventh Annual Report of the United States Geological Survey to the Secretary of the Interior 1889–90 by J. W. Powell Director

Part I—Geology

Part II—Irrigation

[Vignette]

Washington Government Printing Office 1891

8°. 2 pts. xv, 757 pp., 66 pls. and maps; xiv, 395 pp., 67-96 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Geology. xv, 757 pp., 66 pls. and maps.

Report of the Director, pp. 3-30, pl. i.

Administrative reports of chiefs of divisions, pp. 31-185.

The Pleistocene history of northeastern Iowa, by W J McGee, pp. 189-577, pls. ii-ixi.

Index, pp. 743-757.

Pt. II. Irrigation. xiv, 395 pp., 67-96 pls. and maps.

Abstract of report, pp. xi-xiv.

Hydrography, pp. 1-110, pls. lxvii-lxxiv.

Engineering, pp. 111-200, pls. lxxv-lcxi.

The arid lands, pp. 201-289.

Topography, pp. 291-343.

Irrigation literature, pp. 345-388.

Index, pp. 389-395.

Twelfth Annual Report of the United States Geological Survey to the Secretary of the Interior 1890–91 by J. W. Powell Director

Part I—Geology

Part II—Irrigation

[Vignette]

Washington Government Printing Office 1891

8°. 2 pts. xiii, 675 pp., 53 pls. and maps; xviii, 576 pp., 54-146 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Geology. xiii, 675 pp., 53 pls. and maps.

Report of the Director, pp. 3-19, pl. i.

Administrative reports of chiefs of divisions, pp. 21-210.

The origin and nature of soils, by Nathaniel Southgate Shaler, pp. 213-345, pls. ii-xxx.

Index, pp. 665-675.

Pt. II. Irrigation. xviii, 576 pp., 54-146 pls. and maps.

Report upon the location and survey of reservoir sites during the fiscal year ended June 30, 1891, by A. H. Thompson, chief of western division of topography, pp. 1-212, pls. lv-lvi.

Irrigation in India, by Herbert M. Wilson, C. E., pp. 363-561, pls. cvii-cxlvi.

Financial statement, pp. 562-568.

Index, pp. 569-576.

8°. 3 pts. vii, 240 pp., 2 maps; x, 372 pp. and 22 unnumbered leaves, 107 pls. and maps; xi, 486 pp., 108-184 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Director's report and reports of chiefs of divisions. vii, 240 pp., 2 maps.
Report of the Director, pp. 3-66, pls. i, ii (maps).
Administrative reports of chiefs of divisions, pp. 67-235.
Index, pp. 237-240.

Pt. II. Geology. x, 372 pp. and 22 unnumbered leaves, 107 pls. and maps.
The geological history of harbors, by Nathaniel Southgate Shaler, pp. 93-209, pls. xxii-xlv.
The mechanics of Appalachian structure, by Bailey Willis, pp. 211-281 and 22 unnumbered leaves, pls. xlvi-xcvi.
The average elevation of the United States, by Henry Gannett, pp. 283-289, pl. civ (in pocket).
The American Tertiary Aphide, with a list of the known species and tables for their determination, by Samuel Hubbard Scudder, pp. 341-366, pls. cii-cxiv.
Index, pp. 367-372.

Pt. III. Irrigation. xi, 486 pp., 108-184 pls. and maps.
Engineering results of irrigation survey, by Herbert M. Wilson, pp. 351-427, pls. clxvii-clxxxii.
Report upon the construction of topographic maps and the selection and survey of reservoir sites in the hydrographic basin of the Arkansas River, Colorado, by A. H. Thompson, pp. 429-444.
Report upon the location and survey of reservoir sites during the fiscal year ending June 30, 1892, by A. H. Thompson, pp. 445-478, pls. clxxxiii, clxxxiv.
Index, pp. 479-486.

8°. 2 pts. 321 pp., 1 map; xx, 597 pp., 74 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Director's report and reports of chiefs of divisions. 321 pp., 1 map.
Report of the Director, pp. 3-165, 1 map (in pocket).
Pt. I. Director's report and reports of chiefs of divisions—Continued.
Administrative reports of chiefs of divisions, pp. 167-318.
Index, pp. 319-321.

Pt. II. Accompanying papers, pp. 319-321.
The potable waters of eastern United States, by W J McGee, pp. 1-47.
Natural mineral waters of the United States, by A. C. Peale, pp. 49-88,
pls. iii-iv.
Results of stream measurements, by F. H. Newell, pp. 89-155, pls. v-vi.
The laccolitic mountain groups of Colorado, Utah, and Arizona, by Whitman Cross, pp. 157-241, pls. vii-xvi.

Tertiary revolution in the topography of the Pacific coast, by J. S. Diller, pp. 397-434, pls. xl-xlvi.
Pre-Cambrian igneous rocks of the Unkar terrane, Grand Canyon of the Colorado, Arizona, by Charles D. Walcott; with notes on the petrographic character of the lavas, by Joseph Paxson Iddings, pp. 497-524, pls. lx-lxv.

The Potomac and Roaring Creek coal fields, in West Virginia, by Joseph D. Weeks, pp. 567-590, pls. lxxiii, lxxiv.

Index, pp. 591-597.

Note.—A pocket in the cover of Part II carries a reconnaissance map of the United States showing the distribution of the geologic systems as far as known, compiled from data in the possession of the United States Geological Survey, by W J McGee, 1893. (See notes to Fifth and Twenty-first annual reports, pp. 12, 31, of this bulletin.)

8°. xiv, 755 pp., 48 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. - Separates of the various papers were issued, in paper covers.

Report of the Director, pp. 3-108, pl. i.
Sketch of the geology of the San Francisco peninsula, by Andrew C. Lawson, pp. 399-476, pls. v-xii.
The origin and relations of central Maryland granites, by Charles Rollin Keyes, with an introduction on the general relations of the granitic rocks in the Middle Atlantic Piedmont Plateau, by George Huntington Williams, pp. 651-740, pls. xxvii-xlvi.

Index, pp. 741-755.

Sixteenth Annual Report of the United States Geological Survey to the Secretary of the Interior 1894-95 Charles D. Walcott Director

Bull. 177—01—2

8°. 4 pts. xxii, 910 pp., 118 pls. and maps; xix, 598 pp., 42 pls. and maps; xv, 646 pp., 23 pls. and maps; xix, 735 pp., 6 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Director’s report and papers of a theoretic nature. xxii, 910 pp., 117 pls. and maps.
 Report of the Director, pp. 1-130, 1 map.
 Glacier Bay and its glaciers, Alaska, by Harry Fielding Reid, pp. 415-461, pls. lxxvi-xcvi and xcva.
 Some analogies in the Lower Cretaceous of Europe and America, by Lester F. Ward, pp. 463-542, pls. xcvi-cxvii.
 Summary of the primary triangulation executed by the United States Geological Survey between the years 1882 and 1894, by Henry Gannett, chief topographer, pp. 875-885.
 Index, pp. 887-910.

Pt. II. Papers of an economic character. xix, 598 pp., 43 pls. and maps.
 Geology and mining industries of the Cripple Creek district, Colorado, by Whitman Cross (general geology) and R. A. F. Penrose, jr. (mining geology), pp. 1-209, pls. i-xiv and supplemental map.
 The geology of the road-building stones of Massachusetts, with some consideration of similar materials from other parts of the United States, by Nathaniel Southgate Shaler, pp. 277-341, pls. xviii-xxiv.
 Economic geology of the Mercur mining district, Utah, by J. Edward Spurr, with introduction by S. F. Emmons, pp. 343-455, pls. xxv-xxxiv.
 The public lands and their water supply, by Frederick Haynes Newell, pp. 457-533, pls. xxxv-xxxix.
 Index, pp. 589-598.

Pt. III. Mineral resources of the United States, 1894; metallic products. xv, 646 pp., 23 pls.
 Summary, pp. 5-19.
 The production of iron ores in various parts of the world, by John Birkinbine, pp. 21-218, pls. i-xv.
 Iron and steel and allied industries in all countries, by James M. Swank, general manager of the Iron and Steel Association, pp. 219-250.
Pt. III. Mineral resources of the United States, 1894; metallic products—Cont.
Copper, by Charles Kirchhoff, pp. 332–358.
The production of tin in various parts of the world, by Charles M. Rolker, pp. 458–538, pl. xix.
Quicksilver, pp. 598–604.
Nickel, pp. 605–607.
Chromium, pp. 608–614.
Antimony, by Edward W. Parker, pp. 624–646.
Index, pp. 635–646.
Pt. IV. Mineral resources of the United States, 1894; nonmetallic products. xix, 735 pp., 6 pls.
Coal, by Edward W. Parker, pp. 1–217.
The manufacture of coke, by Joseph D. Weeks, pp. 218–304.
Asphaltum, by Edward W. Parker, pp. 430–435.
Soapstone, by Edward W. Parker, pp. 511–513.
Magnesite, pp. 514–516.
Clay, pp. 517–575.
Technology of the clay industry, by Heinrich Ries, pp. 523–575.
Precious stones, by George Frederick Kunz, pp. 595–605.
The Tennessee phosphates, by Charles Willard Hayes, pp. 610–630, pls. v, vi.
Commercial development of the Tennessee phosphate, by C. G. Memminger, pp. 631–635.
Sulphur and pyrites, by Edward W. Parker, pp. 636–645.
Salt, by Edward W. Parker, pp. 646–657.
Gypsum, by Edward W. Parker, pp. 662–666.
Monazite, by H. B. C. Nitze, pp. 667–693.
Mineral paints, by Edward W. Parker, pp. 694–700.
Pt. IV. Mineral resources of United States, 1894, nonmetallic products—Cont’d.
 Barytes, by Edward W. Parker, pp. 701-702.
 Asbestos, by Edward W. Parker, pp. 703-706.
 Index, pp. 723-735.

Note.—Parts III and IV of the Sixteenth Annual Report are the direct continuation of the separate series of statistical papers known as Mineral Resources of the United States, 1882-1893, ten volumes (see pp. 49-63 of this bulletin).

8°. 3 pts. in 4 vols. xxii, 1076 pp., 67 pls. and maps; xxv, 864 pp., 113 pls. and maps; xxiii, 542 pp., 8 pls. and maps; iii, 543-1058 pp., 9-13 pls. and maps. Bound in dark maroon cloth (Survey edition). Out of stock. Separates of the various papers were issued, in paper covers.

Pt. I. Director's report and other papers. xxii, 1076 pp., 67 pls. and maps.
 Report of the Director, pp. 1-200, pl. i.
 A geological reconnaissance in northwestern Oregon, by Joseph Silas Diller, pp. 441-520, pls. iv-xvi.
 Further contributions to the geology of the Sierra Nevada, by Henry W. Turner, pp. 521-762, pls. xvii-xlvi.
 Appendix I. Report on the fossil plants collected in Alaska in 1895, as well as an enumeration of those previously known from the same region, with a table showing their relative distribution, by F. H. Knowlton, pp. 876-897.
 The uintaite (gilsonite) deposits of Utah, by George Homans Eldridge, pp. 909-949, pls. lix, lx.
 The glacial brick clays of Rhode Island and southeastern Massachusetts, by N. S. Shaler, J. B. Woodworth, and C. F. Marbut, pp. 951-1004, pls. lxi, lxii.
 Index, pp. 1061-1076.

Pt. II. Economic geology and hydrography. xxv, 864 pp., 113 pls. and maps.
 The gold-quartz veins of Nevada City and Grass Valley districts, California, by Waldemar Lindgren, pp. 1-262, pls. i-xxiv.
Pt. II. Economic geology and hydrography—Continued.

The mines of Custer County, Colorado, by Samuel Franklin Emmons, pp. 405-472, pl. xxxvii.

Geologic section along the New and Kanawha rivers in West Virginia, by Marius R. Campbell and Walter C. Mendenhall, pp. 473-511, pls. xxxviii-xxxix.

The underground water of the Arkansas Valley in eastern Colorado, by Grove Karl Gilbert, pp. 551-601, pls. lvi-lxiv.

The water resources of Illinois, by Frank Leverett, pp. 695-849, pls. cxviii-cxlix.

Index, pp. 851-864.

Pt. III. Mineral resources of the United States, 1895; metallic products and coal.

Summary, pp. 5-21.

Iron ores, by John Birkinbine, pp. 23-43, pls. i-v.

Present condition of the iron and steel industries of the United States, by James M. Swank, general manager of the American Iron and Steel Association, pp. 45-71.

Gold and silver, pp. 72-79.

Copper, by Charles Kirchhoff, pp. 81-129.

Quicksilver, pp. 179-184.

Manganese, by Joseph D. Weeks, pp. 185-225.

Tin, pp. 227-242.

The occurrence of tin ore in the islands of Banca and Billiton, by O. H. Van der Wyck, pp. 227-242.

Aluminum, pp. 243-251.

Aluminum manufacture in Europe, by Alfred E. Hunt, pp. 245-251.

Nickel and cobalt, pp. 253-260.

Antimony, by Edward W. Parker, pp. 275-280.

Platinum, pp. 281-283.

Coal, by Edward W. Parker, pp. 285-542, pls. vi-viii.

Pt. III (Continued). Mineral resources of the United States, 1895; nonmetallic products, except coal. iii, 543-1058 pp., 5 pls.

Natural gas, by Joseph D. Weeks, pp. 733-750.

Asphaltum, by Edward W. Parker, pp. 751-758.

Stone, by William C. Day, pp. 759-811, pls. ix, x.

The sandstones of western Indiana, by T. C. Hopkins, pp. 780-787.

Soapstone, by Edward W. Parker, pp. 813-816.

Clay, pp. 817-880, pls. xi-xii.

Flint and feldspar, by William Golding, pp. 838-841.

The pottery industry of the United States, by Heinrich Ries, pp. 842-880, pls. xi, xii.
Pt. III (Continued). Mineral resources of the United States, etc.—Continued.
Precious stones, by George F. Kunz, pp. 895–926.
Abrasives, by Edward W. Parker, pp. 927–950, pl. xiii.
Corundum deposits of the southern Appalachian region, by J. A. Holmes, pp. 935–943, pl. xiii.
The manufacture and use of corundum, by Charles N. Jenks, pp. 943–947.
Phosphate rock, pp. 951–957.
Sulphur and pyrites, by Edward W. Parker, pp. 958–977.
Gypsum, by Edward W. Parker, pp. 978–983.
Salt, by Edward W. Parker, pp. 984–997.
Fluorspar and cryolite, pp. 998–999.
Mica, pp. 1000–1003.
Asbestos, by Edward W. Parker, pp. 1004–1006.
Graphite, pp. 1007–1010.
Occurrences of graphite in the South, by William M. Brewer, pp. 1008–1010.
Barytes, by Edward W. Parker, pp. 1023–1024.
Index, pp. 1045–1058.

8°. 5 pts. in 6 vols. 440 pp., 4 pls. and maps; v, 653 pp., 105 pls. and maps; v, 861 pp., 118 pls. and maps; x, 756 pp., 102 pls. and maps; xii, 642 pp., 1 pl.; 643–1400 pp. Bound in dark maroon cloth (Survey edition). Separates of the various papers were issued, in paper covers.

Pt. I. Director's report, including triangulation and spirit leveling. 440 pp., 4 pls. and maps.
Report of the Director, pp. 1–130, pls. i, ii (maps in pocket).
Index, pp. 423–440.

Pt. II. Papers chiefly of a theoretic nature. v, 653 pp., 105 pls. and maps.
Pt. II. Papers chiefly of a theoretic nature—Continued.

A table of the North American Tertiary horizons, correlated with one another and with those of western Europe, with annotations, by William H. Dall, pp. 323-348.

Glaciers of Mount Rainier, by Israel Cook Russell, with a paper on the rocks of Mount Rainier, by George Otis Smith, pp. 349-423, pls. lxv-lxxxii.

The age of the Franklin white limestone of Sussex County, New Jersey, by John Elliot Wolff and Alfred Hulse Brooks, pp. 425-457, pl. lxxxi.

Geology of the Cape Cod district, by N. S. Shaler, pp. 497-593, pls. xvii-civ.

Recent earth movement in the Great Lakes region, by Grove Karl Gilbert, pp. 595-647, pl. cv.

Index, pp. 649-653.

Pt. III. Economic geology. v, 861 pp., 118 pls. and maps.

Reconnaissance of the gold fields of southern Alaska, with some notes on general geology, by George F. Becker, pp. 1-86, pls. i-xxxiii.

Geology of the Yukon gold district, Alaska, by Josiah Edward Spurr; with an introductory chapter on the history and condition of the district to 1897, by Harold Beach Goodrich, pp. 87-392, pls. xxxii-li.

Geology and mineral resources of the Judith Mountains of Montana, by Walter Harvey Weed and Louis Valentine Pirsson, pp. 437-616, pls. lxix-lxxxvi.

Index, pp. 851-861.

Pt. IV. Hydrography. x, 756 pp., 102 pls. and maps.

The water resources of Indiana and Ohio, by Frank Leverett, pp. 419-559, pls. xxxiii-xxxvii.

Reservoirs for irrigation, by James D. Schuyler, pp. 617-740, pls. xlviii-cii.

Index, pp. 741-756.

Pt. V. Mineral resources of the United States, 1896; metallic products and coal. xii, 642 pp., 1 pl.

Introduction, p. 3.

Summary, pp. 5-21.

Iron and steel and allied industries in all countries, by James M. Swank, general manager of the American Iron and Steel Association, pp. 51-140.

Gold and silver, pp. 141-151.

The Witwatersrand banket, with notes on other gold-bearing pudding stones, by George F. Becker, pp. 153-184, 1 pl.

Copper, by Charles Kirchhoff, pp. 185-235.
Pt. V. Mineral resources of the United States, 1896, etc.—Continued.
Quicksilver, pp. 287-290.
Manganese ores, by John Birkinbine, pp. 291-328.
Antimony, by Edward W. Parker, pp. 343-348.
Platinum, p. 349.
Coal, by Edward W. Parker, pp. 351-632.
Index, pp. 633-642.
Pt. V. (Continued). Mineral resources of the United States, 1896; nonmetallic
products except coal, pp. 643-1400.
Coke, by Edward W. Parker, pp. 659-746.
Natural gas, by F. H. Oliphant, pp. 895-918.
Asphaltum, by Edward W. Parker, pp. 919-948.
The asphalt deposits of western Texas, by T. Wayland Vaughan, pp. 930-935.
Soapstone, by Edward W. Parker, pp. 1069-1075.
Statistics of the clay-working industries in the United States in 1896, by
The clay-working industry in 1896, by Heinrich Ries, pp. 1105-1168.
Cement, pp. 1169-1182.
Rock cement, by Uriah Cummings, pp. 1178-1182.
Precious stones, by George F. Kunz, pp. 1183-1217.
Abrasive materials, by Edward W. Parker, pp. 1219-1231.
Phosphate rock, pp. 1233-1242.
Sulphur and pyrites, by Edward W. Parker, pp. 1243-1261.
Gypsum, by Edward W. Parker, pp. 1263-1271.
Salt, by Edward W. Parker, pp. 1273-1313.
Fluorspar and cryolite, by Edward W. Parker, pp. 1315-1316.
Mica, by Edward W. Parker, pp. 1317-1321.
Asbestos, by Edward W. Parker, pp. 1323-1331.
Graphite, pp. 1332-1334.
Mineral paints, by Edward W. Parker, pp. 1335-1347.
Barytes, by Edward W. Parker, pp. 1348-1350.
 Fuller's earth, pp. 1351-1359.
Lithographic stone, pp. 1361-1363.
Feldspar and quartz, by Heinrich Ries, pp. 1365-1368.
Index, pp. 1391-1400.

Nineteenth Annual Report of the United States Geological Survey
to the Secretary of the Interior 1897–98 Charles D. Walcott Director
In six parts Part I.—Director's report, including triangulation and
spirit leveling [Part II.—Papers chiefly of a theoretic nature; Part
III.—Economic geology; Part IV.—Hydrography F. H. Newell, chief
of division; Part V.—Forest reserves Henry Gannett, chief of division;
Part VI.—Mineral resources of the United States, 1897 Metallic prod-

8°. 6 pts. in 7 vols., and separate 8° case for maps with Pt. V. 422 pp., 2 pls. (maps); v, 958 pp., 172 pls. and maps; v, 785 pp., 99 pls. and maps; viii, 814 pp., 118 pls. and maps; xvii, 400 pp., 110 pls. and maps (16 maps in separate case); viii, 651 pp., 11 pls.; viii, 706 pp. Bound in dark maroon cloth (Survey edition). Separates of the various papers were issued in paper covers.

Pt. I. Director's report, including triangulation and spirit leveling. 422 pp., 2 pls. (maps).
Report of the Director, pp. 11-143, pls. i, ii (maps in pocket).
Index, pp. 409-422.

Pt. II. Papers chiefly of a theoretic nature. v, 958 pp., 172 pls. and maps.
Physiography of the Chattanooga district, in Tennessee, Georgia, and Alabama, by Charles Willard Hayes, pp. 1-58, pls. i-v.
Principles and conditions of the movements of ground water, by Franklin Hiram King, pp. 59-294, pls. vi-xvi.
Theoretical investigation of the motion of ground waters, by Charles S. Slichter, pp. 295-384, pl. xvii.
The Cretaceous formation of the Black Hills as indicated by the fossil plants, by Lester F. Ward, with the collaboration of Walter P. Jenney, Wm. M. Fontaine, and F. H. Knowlton, pp. 521-946, pls. liii-clxxii.
Index, pp. 947-958.

Pt. III. Economic geology. v, 785 pp., 99 pls. and maps.
The titaniferous iron ores of the Adirondacks, by James Furman Kemp, pp. 377-422, pls. lv-lxiii.
Geology of the McAlester-Lehigh coal field, Indian Territory, by Joseph A. Taff; accompanied by a report on the fossil plants, by David White, and a report on the Paleozoic invertebrate fossils, by George H. Girty, pp. 423-600, pls. lxiv-lxxii.
Geology and mining industry of the Tintic district, Utah, by George Warren Tower, jr., and George Otis Smith, pp. 601-767, pls. lxxiii-xcix.
Index, pp. 769-785.

Pt. IV. Hydrography. viii, 814 pp., 118 pls. and maps.
Report of progress of stream measurements for the calendar year 1897, by F. H. Newell, including papers by Dwight Porter, J. B. Lippincott, and other hydrographers, pp. 1-632, pls. i-lxx.
The rock waters of Ohio, by Edward Orton, pp. 633-717, pls. lxxi-lxxiii.
Preliminary report on the geology and water resources of Nebraska west of the one hundred and third meridian, by Nelson Horatio Darton, pp. 719-785, pls. lxxiv-cxviii.
Index, pp. 787-814.
Pt. V. Forest reserves. xvii, 400 pp., 110 pls. and maps (16 maps in separate case).
The forests of the United States, by Henry Gannett, pp. 1-66, pls. i-xiii.
Teton Forest Reserve, from notes by Dr. T. S. Brandegee, pp. 191-212, pl. xliii-xliv.
Yellowstone Park Forest Reserve, southern part, from notes by Dr. T. S.
Brandegee, pp. 213-216.
Priest River Forest Reserve, by John B. Leiberg, pp. 217-252, pls. xlv-ixi.
Bitterroot Forest Reserve, by John B. Leiberg, pp. 253-282, pls. xliii-lxii.
Eastern part of Washington Forest Reserve, by Martin W. Gorman, pp. 315-350, pl. ci.
San Jacinto Forest Reserve (preliminary report), by John B. Leiberg, pp. 351-357, pls. ci-civ.
San Bernardino Forest Reserve (preliminary report), by John B. Leiberg, pp. 359-365, pl. cv.
Present condition of the forested areas in northern Idaho outside the
limits of the Priest River Forest Reserve and north of the Clearwater
River, by John B. Leiberg, pp. 373-386, pls. cix-cx.
Index, pp. 389-400.
Case for maps with Part V contains the maps which are designated pls.
i-iv, ix, xiv-xviii, xxxvii, xliii, xlvi, xlvii, lxiv, lxxv.
Pt. VI. Mineral resources of the United States, 1897; metallic products, coal, and
coke. viii, 651 pp., 11 pls.
Introduction, p. 3.
Summary, pp. 3-22.
Iron ores, by John Birkinbine, pp. 23-63, pls. i-xi.
The American iron trade in 1897 and immediately preceding years, by
James M. Swank, general manager of the American Iron and Steel
Association, pp. 65-83.
The foreign iron trade in 1897 and immediately preceding years, by
James M. Swank, general manager of the American Iron and Steel
Association, pp. 84-89.
Manganese ores, by John Birkinbine, pp. 91-125.
Gold and silver, pp. 127-135.
Quicksilver, pp. 243-248.
Nickel and cobalt, pp. 249-252.
Antimony, by Edward W. Parker, pp. 253-258.
Chromic iron ore, pp. 259-264.
The chrome ores of Turkey, by William Glenn, pp. 261-264.
Coal, by Edward W. Parker, pp. 273-543.
Coke, by Edward W. Parker, pp. 545-642.
Index, pp. 643-651.
Pt. VI (Continued). Mineral resources of the United States, 1897; nonmetallic products, except coal and coke. viii, 706 pp.

Petroleum, by F. H. Oliphant, pp. 1-166.

Production of petroleum in Japan, by K. Nakashima, pp. 156-160.

Asphaltum, by Edward W. Parker, pp. 187-204.

The production of an asphalt resembling gilsonite by the distillation of a mixture of fish and wood, by William C. Day, pp. 202-204.

The Bedford oolitic limestone, by C. E. Siebenthal, pp. 292-296.

Soapstone, by Edward W. Parker, pp. 311-315.

The kaolins and fire clays of Europe, by Heinrich Ries, pp. 377-467.

The clay-working industry of the United States in 1897, by Heinrich Ries, pp. 469-486.

Cement, pp. 487-496.

American rock cement, by Uriah Cummings, pp. 495-496.

Precious stones, by George F. Kunz, pp. 497-514.

Abrasive materials, by Edward W. Parker, pp. 515-533.

Carborundum in 1897, by E. G. Atcheson, president Carborundum Company, p. 533.

Phosphate rock, pp. 535-556.

Review of the land and river pebble phosphate mining industry, Florida, for the year 1897, by C. G. Memminger, pp. 543-545.

The phosphate rock deposits of Tennessee during 1897, by Lucius P. Brown, pp. 547-555.

Sulphur and pyrites, by Edward W. Parker, pp. 557-576.

Gypsum, by Edward W. Parker, pp. 577-585.

Salt, by Edward W. Parker, pp. 587-612.

Fluorspar, by Edward W. Parker, pp. 613-617.

Mica, by Edward W. Parker, pp. 618-622.

Asbestos, by Edward W. Parker, pp. 623-626.

Graphite, pp. 627-631.

Mineral paints, by Edward W. Parker, pp. 633-650.

Barytes, by Edward W. Parker, pp. 651-653.

Fuller's earth, pp. 655-656.

Quartz and feldspar, p. 657.

Memorandum on the mineral resources of the Philippine Islands, by George F. Becker, pp. 687-693.

Index, pp. 695-706.

Twentieth Annual Report of the United States Geological Survey to the Secretary of the Interior 1898-99 Charles D. Walcott Director In seven parts Part I.—Director’s report, including triangulation and spirit leveling [Part II.—General geology and paleontology; Part III.—Precious-metal mining districts; Part IV.—Hydrography F. H. Newell, chief of division; Part V.—Forest reserves Henry Gannett, chief of division; Part VI.—Mineral resources of the United States, 1898 Metallic products, coal, and coke David T. Day, chief of division; Part VI (Continued).—Mineral resources of the United States,
1899 Nonmetallic products, except coal and coke David T. Day, chief of division; Part VII.—Explorations in Alaska in 1898

Pt. I. Director's report, including triangulation and spirit leveling. 551 pp., 2 pls. (maps).
Report of the Director, pp. 11-209, pls. i, ii (maps in pocket).
Index, pp. 531-551.

Pt. II. General geology and paleontology. v, 953 pp., 193 pls. and maps.
Brief memorandum on the geology of the Philippine Islands, by George F. Becker, pp. 1-7.
Devonian fossils from southwestern Colorado; the fauna of the Ouray limestone, by George H. Girty, pp. 25-81, pls. iii-vii.
Status of the Mesozoic floras of the United States; first paper: The older Mesozoic, by Lester F. Ward, with the collaboration of Wm. M. Fontaine, Arthurs Wanner, and F. H. Knowlton, pp. 211-748, pls. xxi-clxxxix.
The stratigraphic succession of the fossil floras of the Pottsville formation in the southern anthracite coal field, Pennsylvania, by David White, pp. 749-930, pls. clxxx-clxciii.
Index, pp. 931-953.

Pt. III. Precious-metal mining districts. v, 595 pp., 77 pls. and maps.
The Bohemia mining region of western Oregon, with notes on the Blue River mining region and on the structure and age of the Cascade Range, by J. S. Diller; accompanied by A report on the fossil plants associated with the lavas of the Cascade Range, by F. H. Knowlton, pp. 1-64, pls. i-vi.
Geology of the Little Belt Mountains, Montana, with notes on the mineral deposits of the Neihart, Barker, Yogo, and other districts, by Walter Harvey Weed; accompanied by A report on the petrography of the igneous rocks of the district, by L. V. Pirsson, pp. 257-581, pls. xxxvi-lxxvii.
Index, pp. 583-595.

Pt. IV. Hydrography. vii, 660 pp., 75 pls.
Index, pp. 639-660.

Pt. V. Forest reserves. xix, 498 pp., 159 pls. and maps (8 maps in separate case).
Pt. V. Forest reserves—Continued.
The forests of the United States, by Henry Gannett, pp. 1-37, pls. i-vii.
Pikes Peak, Plum Creek, and South Platte reserves, by John G. Jack,
pp. 39-115, pls. viii-xlvi.
White River Plateau Timber Land Reserve, by George B. Sudworth,
pp. 117-179, pls. xviii-xlix.
Battlement Mesa Forest Reserve, by George B. Sudworth, pp. 181-243,
pls. lix-lxxxvi.
The Flathead Forest Reserve, by H. B. Ayres, pp. 245-316, pls. lxxvi-
clxii.
Bitterroot Forest Reserve, by John B. Leiberg, pp. 317-410, pls. cxiv-
clxii.
The San Gabriel Forest Reserve, by John B. Leiberg, pp. 411-428, pls.
clxxiii-cclvi.
The San Bernardino Forest Reserve, by John B. Leiberg, pp. 429-454,
pls. ccxxiv-clxxvii.
The San Jacinto Forest Reserve, by John B. Leiberg, pp. 455-478, pls.
clxiv-clxxviii.
Index, pp. 479-498.
Case for maps with Pt. V contains the maps which are designated pls. i, ii,
viii, ix, x, xlviii, lix, and cxiv.
Pt. VI. Mineral resources of the United States, 1898; metallic products, coal,
and coke. viii, 616 pp.
Introduction, pp. 3-4.
Summary of the mineral production of the United States in 1898, pp.
5-26.
Iron ores, by John Birkinbine, pp. 27-59.
Statistics of the American iron trade for 1898, by James M. Swank,
general manager of the American Iron and Steel Association, pp.
61-88.
The foreign iron trade in 1898 and immediately preceding years, by
James M. Swank, general manager of the American Iron and Steel
Gold and silver, pp. 103-123.
History of gold mining and metallurgy in the Southern States, by
H. B. C. Nitze, pp. 111-123.
Manganese ores, by John Birkinbine, pp. 125-158.
Copper, by Charles Kirchhoff, pp. 159-220.
Aluminum and bauxite, pp. 267-269.
Quicksilver, pp. 271-275.
Nickel and cobalt, pp. 277-278.
Antimony, by Edward W. Parker, pp. 283-289.
Chromic iron ore, pp. 291-292.
Platinum, p. 293.
Coal, by Edward W. Parker, pp. 295-507.
Coke, by Edward W. Parker, pp. 509-608.
Index, pp. 609-616.
Pt. VI (Continued). Mineral resources of the United States, 1898; nonmetal-
lic products, except coal and coke. xi, 804 pp., 1 pl.
Pt. VI. (Continued.) Mineral resources of the United States, 1898—Continued.
Asphaltum and bituminous rock, by Edward W. Parker, pp. 251–268.
Cement, pp. 539–550.
Soapstone, by Edward W. Parker, pp. 551–556.
Precious stones, by George F. Kunz, pp. 557–602, pi. i.
Abraive materials, by Edward W. Parker, pp. 603–617.
Phosphate rock, pp. 619–639.
Sulphur and pyrite, by Edward W. Parker, pp. 641–655.
Gypsum, by Edward W. Parker, pp. 657–666.
Salt, by Edward W. Parker, pp. 667–688.
Mica, pp. 689–707.
Fluorspar, by Edward W. Parker, pp. 709–710.
Asbestos, by Edward W. Parker, pp. 711–714.
Graphite, pp. 715–718.
Mineral paints, by Edward W. Parker, pp. 719–737.
Barytes, by Edward W. Parker, pp. 738–739.
Fuller's earth, pp. 741–743.
Quartz and feldspar, by Heinrich Ries, p. 745.
Index, pp. 789–804.

Pt. VII. Explorations in Alaska in 1898. v, 509 pp., 25 maps and 38 pls.
Index, pp. 495–509.

Twenty-first Annual Report of the United States Geological Survey to the Secretary of the Interior 1899–1900 Charles D. Walcott Director In seven parts Part I.—Director's report, including triangulation, primary traverse, and spirit leveling Part II.—General geology, economic geology, Alaska; Part III.—General geology, ore and phosphate deposits, Philippines; Part IV.—Hydrography F. H. Newell,

8°. 7 pts. in 8 vols., and separate atlas for maps with Pt. V. 608 pp., 3 pls. (maps); 522 pp., 68 pls. and maps; 644 pp., 68 pls. and maps; 768 pp., 156 pls. and maps; 711 pp., 143 pls. and maps (39 maps in atlas); viii, 656 pp.; viii, 634 pp.; 606 pp., 71 pls. and maps.

The three maps with Part I are entitled: (I) Map showing condition and progress of topographic surveys and location of gaging stations. (II) Map showing condition and progress of astronomic location, primary triangulation, primary traverse, and spirit leveling. (III) Map showing progress of topographic and geologic surveys, 1879-1900. (See notes to Fifth and Fourteenth annual reports, pp. 12 and 17 of this bulletin.)

Pt. I. Director's report, including triangulation, primary traverse, and spirit leveling. 608 pp., 3 pls. (maps).
Report of the Director, pp. 11-204, pls. i-iii (maps in pocket).
Index, pp. 583-608.

Pt. II. General geology, economic geology, Alaska. 522 pp., 68 pls. and maps.
Geology of the Rico Mountains, Colorado, by Whitman Cross and Arthur Coe Spencer, pp. 7-165, pls. i-xxii.
Glacial sculpture of the Bighorn Mountains, Wyoming, by François E. Matthes, pp. 167-190, pl. xxiii.
Geology of the eastern Choctaw coal field, Indian Territory, by Joseph A. Taff and George I. Adams, pp. 257-311, pls. xxxv-xxxvii.
A reconnaissance from Pyramid Harbor to Eagle City, Alaska, including a description of the copper deposits of the upper White and Tanana rivers, by Alfred Hulse Brooks, pp. 331-391, pls. xl-l.
Index, pp. 511-522.

Pt. III. General geology, ore and phosphate deposits, Philippines. 644 pp., 68 pls. and maps.
The Newark system of the Pomperaug Valley, Connecticut, by William Herbert Hobbs; with a report on fossil wood from the Newark formation of South Britain, Connecticut, by F. H. Knowlton, pp. 7-162, pls. i-xviii.
A reconnaissance of the Black Hills, by Thomas Augustus Jaggar, jr.; with a chapter on experiments illustrating intrusion and erosion, by Ernest Howe, pp. 163-303, pls. xviii-xvii.
Pt. III. General geology, ore and phosphate deposits, Philippines—Continued.
Index, pp. 627-644.

Pt. IV. Hydrography. 768 pp., 156 pls. and maps.
Index, pp. 743-768.

Pt. V. Forest reserves. 711 pp., 143 pls., and maps (39 maps in atlas).
Summary of forestry work in 1899-1900, by Henry Gannett, pp. 9-25, pl. l.
Lewis and Clarke Forest Reserve, Montana, by H. B. Ayres, pp. 27-80, pls. li-xxxii.
Mount Rainier Forest Reserve, Washington, by Fred G. Plummer, pp. 81-143, pp. xxxiii-l.
Cascade Range Forest Reserve, Oregon, from township 28 south to township 37 south, inclusive; together with the Ashland Forest Reserve and adjacent forest regions from township 28 south to township 41 south, inclusive, and from range 2 west to range 14 east, Willamette meridian, inclusive, by John B. Leiberg, pp. 209-498, pls. lxix-lxxxiv.
Stanislaus and Lake Tahoe forest reserves, California, and adjacent territory, by George B. Sudworth, pp. 499-561, pls. lxxxv-exiv.
Woodland of Indian Territory, by C. H. Fitch, pp. 603-672, pl. cxlii.
Timber conditions of the pine region of Minnesota, by H. B. Ayres, pp. 673-689, pl. cxliii.
Index, pp. 691-711.
Portfolio for maps with Pt. V contains the maps which are designated pls. i, iii, xxxii, li, lii, lvi, lix, lxi, lxii, lxxi, lxxxv-xc, cv-xcvii, cvxxi-cxliii.

Introduction, pp. 3-4.
Summary of the mineral production of the United States in 1899, pp. 5-29.
Iron ores, by John Birkinbine, pp. 31-67.
Pt. VI. Mineral resources of the United States, 1899, etc.—Continued.
The American and foreign iron trades in 1899, by James M. Swank, general manager of the American Iron and Steel Association, pp. 69-118.
Gold and silver, pp. 119-127.
Manganese ores, by John Birkinbine, pp. 129-162.
Zinc, by Charles Kirchhoff, pp. 249-266.
Aluminum and bauxite, pp. 267-271.
Quicksilver, by Edward W. Parker, pp. 273-283.
Antimony, by Edward W. Parker, pp. 291-297.
Tungsten, molybdenum, uranium, and vanadium, by Joseph Hyde Pratt, pp. 299-318.
Coal, by Edward W. Parker, pp. 321-519.
Coke, by Edward W. Parker, pp. 521-633.
Index, pp. 635-656.
Natural gas, by F. H. Oliphant, pp. 293-318.
Asphaltum and bituminous rock, by Edward W. Parker, pp. 319-332.
Stone, pp. 333-360.
Clay, pp. 361-392.
Clays and clay products at the Paris Exposition of 1900, by Heinrich Ries, pp. 365-392.
Soapstone, by Edward W. Parker, pp. 413-418.
Precious stones, by George F. Kunz, pp. 419-461.
Abrasive materials, by Edward W. Parker, pp. 463-479.
Phosphate rock, by Edward W. Parker, pp. 481-502.
Sulphur and pyrite, by Edward W. Parker, pp. 503-522.
Gypsum, by Edward W. Parker, pp. 523-530.
Salt, by Edward W. Parker, pp. 531-554.
Mica, pp. 555-558.
Fluorspar, by Edward W. Parker, pp. 559-560.
Asbestos, by Edward W. Parker, pp. 561-564.
Graphite, pp. 565-568.
Mineral paints, by Edward W. Parker, pp. 569-586.
Barytes, pp. 587-588.
Fuller's earth, pp. 589-592.
Feldspar and quartz, by Heinrich Ries, pp. 593-596.
Index, pp. 623-634.
Pt. VII. Geography and geology of the Black and Grand prairies, Texas, with detailed descriptions of the Cretaceous formations and special reference to artesian waters, by Robert T. Hill, 666 pp., 71 pls. and maps.
MONOGRAPHS.

4°. 40 vols. Bound in dark maroon cloth. For sale at price of publication.

I. Lake Bonneville, by Grove Karl Gilbert. 1890. xx, 438 pp., 51 pls. and maps and 1 map in pocket. Price, $1.50.

V. The copper-bearing rocks of Lake Superior, by Roland Duer Irving. 1883. xvi, 464 pp., 15 ll., 29 pls. and maps. Price, $1.85.

VI. Contributions to the knowledge of the older Mesozoic flora of Virginia, by William Morris Fontaine. 1883. xi, 144 pp., 54 ll., 54 pls. Price, $1.05.

IX. Brachiopoda and Lamellibranchiata of the Raritan clays and greensand marls of New Jersey, by Robert P. Whitfield. 1885. xx, 338 pp., 35 pls. and 1 map in pocket. Price, $1.15.

XI. Geological history of Lake Lahontan, a Quaternary lake of northwestern Nevada, by Israel Cook Russell. 1885. xiv, 288 pp., 46 pls. and maps. Price, $1.75.

XIII. Geology of the quicksilver deposits of the Pacific slope, with an atlas, by George F. Becker. 1888. xix, 486 pp., 7 pls. and maps, and atlas of 14 sheets folio. Price, $2.00.

XV. The Potomac or younger Mesozoic flora, by William Morris Fontaine. 1889. 2 pts. xiv, 377 pp.; x, 180 ll., 180 pts. Text and plates bound separately. Price, $2.50.

XVIII. Gasteropoda and Cephalopoda of the Karitan clays and greensand marls of New Jersey, by Robert Parr Whitfield. 1892. 402 pp., 50 pts. Price, $1.00.

XX. Geology of the Eureka district, Nevada, with an atlas, by Arnold Hague. 1892. xvi, 419 pp., 8 pts. and maps, and atlas of 13 sheets folio. Price, $5.25.

XXII. A manual of topographic methods, by Henry Gannett, chief topographer. 1893. xiv, 300 pp., 18 pts. Price, $1.00.

XXV. The glacial Lake Agassiz, by Warren Upham. 1895. xxiv, 658 pp., 38 pts. and maps. Price, $1.70.

XXVI. The flora of the Amboy clays, by John Strong Newberry; a posthumous work, edited by Arthur Hollick. 1895. 200 pp., 58 pts. Price, $1.00.

XXIX. Geology of Old Hampshire County, Massachusetts, comprising Franklin, Hampshire, and Hampden counties, by Benjamin Kendall Emerson. 1898. xxi, 790 pp., 35 pts. and maps. Price, $1.90.

XXXVIII. The Illinois glacial lobe, by Frank Leverett. 1899. xxi, 817 pp., 24 pls. and maps. Price, $1.60.

XL. Adephagous and clavicorn Coleoptera from the Tertiary deposits at Florissant, Colorado, with descriptions of a few other forms, and a systematic list of the non-rhynchophorous Tertiary Coleoptera of North America, by Samuel Hubbard Scudder. 1900. 148 pp., 11 pls. Price, 80 cents.
BULLETINS.

8°. 176 pamphlets or unbound volumes, in "granite" covers. For sale at price of publication. The first 54 bulletins are provided with volume pagination (at the bottom), and volume titles, etc., were issued for 8 volumes. Beginning with Bulletin No. 55 this feature was discontinued.

1. On hypersthene-andesite and on triclinic pyroxene in augitic rocks, by Whitman, Cross, with a geological sketch of Buffalo peaks, Colorado, by S. F. Emmons, geologist in charge of Rocky Mountain division. 1883. 42 pp., 2 pls. Price, 10 cents.

2. Gold and silver conversion tables, giving the coining values of troy ounces of fine metal and the weights of fine metal represented by given sums of United States money, computed by Albert Williams, jr., chief of division of mining statistics and technology. 1883. 8 pp. Price, 5 cents.

3. On the fossil faunas of the Upper Devonian, along the meridian of 76° 30', from Tompkins County, N. Y., to Bradford County, Pa., by Henry S. Williams, 1884. 36 pp. Price, 5 cents.

9. A report of work done in the Washington laboratory during the fiscal year 1883-84; F. W. Clarke, chief chemist; T. M. Chatard, assistant chemist. 1884. 40 pp. Price, 5 cents.

Mineral, rock, and ore analyses, pp. 9-18.

Water analyses, pp. 19-35.

The estimation of alkalies in silicates, by Thomas M. Chatard, pp. 36-37.

13. Boundaries of the United States and of the several States and Territories, with a historical sketch of the territorial changes, by Henry Gannett, chief geographer. 1885. 135 pp. Price, 10 cents. (Out of stock.)
24. List of marine Mollusca, comprising the Quaternary fossils and recent forms from American localities between Cape Hatteras and Cape Roque, including the Bermudas, by William Healey Dall. 1885. 336 pp. Price, 25 cents.
28. The gabros and associated hornblende rocks occurring in the neighborhood of Baltimore, Md., by George Huntington Williams, associate professor in the Johns Hopkins University. 1886. 78 pp., 4 pls. Price, 10 cents.
31. Systematic review of our present knowledge of fossil insects, including myriapods and arachnids, by Samuel Hubbard Scudder. 1886. 128 pp. Price, 15 cents.

34. On the relation of the Laramie molluscan fauna to that of the succeeding fresh-water Eocene and other groups, by Charles A. White, M. D. 1886. 54 pp., 5 pls. Price, 10 cents.

36. Subsidence of fine solid particles in liquids, by Carl Barns. 1886. 54 pp. Price, 10 cents.

42. Report of work done in the division of chemistry and physics, mainly during the fiscal year 1885-86; F. W. Clarke, chief chemist. 1887. 152 pp., 1 pl. (map). Price, 15 cents.

Researches on the lithia micas, by F. W. Clarke, pp. 11-27, pl. 1.
The minerals of Litchfield, Maine, by F. W. Clarke, pp. 28-38.
Turquoise from New Mexico, by F. W. Clarke and J. S. Diller, pp. 39-44.
A method for the separation and estimation of boric acid, with an account of a convenient form of apparatus for quantitative distillations, by F. A. Gooch, pp. 64-72.
A method for the separation of sodium and potassium from lithium by the action of amyl alcohol on the chlorides, with some reference to a similar separation of the same from magnesium and calcium, by F. A. Gooch, pp. 73-88.
The indirect estimation of chlorine, bromine, and iodine by the electrolysis of their silver salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids, by J. Edward Whitfield, pp. 89-93.
On two new meteoric irons and an iron of doubtful nature, by R. B. Riggs, pp. 94-97.
The specific gravity of lampblack, by William Hallock, pp. 132-133.
Miscellaneous analyses, pp. 136-149.

43. Tertiary and Cretaceous strata of the Tuscaloosa, Tombigbee, and Alabama rivers, by Eugene A. Smith and Lawrence C. Johnson. 1887. 189 pp., 21 pls. Price, 15 cents.

45. The present condition of knowledge of the geology of Texas, by Robert T. Hill. 1887. 95 pp. Price, 10 cents.

47. Analyses of waters of the Yellowstone National Park, with an account of the methods of analysis employed, by Frank Austin Gooch and James Edward Whitfield. 1888. 84 pp. Price, 10 cents.

49. Latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico, by Robert Simpson Woodward. 1889. 133 pp. Price, 15 cents.

52. Subaerial decay of rocks and origin of the red color of certain formations, by Israel Cook Russell. 1889. 65 pp., 5 pls. Price, 10 cents.

53. The geology of Nantucket, by Nathaniel Southgate Shaler. 1889. 55 pp., 10 pls. Price, 10 cents.

54. On the thermo-electric measurement of high temperatures, by Carl Barus. 1889. 313 pp., frontispiece, and 9 leaves containing figs. 7, 8, 9, 16, 21, 22, 30, 37, 38, 39, 42. Price, 25 cents.

55. Report of work done in the division of chemistry and physics, mainly during the fiscal year 1886-87; Frank Wigglesworth Clarke, chief chemist. 1889. 96 pp., 1 pl. Price, 10 cents.

Mineralogical notes, by W. F. Hillebrand, pp. 48-55.
Meteorites from Johnson County, Arkansas, and Allen County, Kentucky, by J. Edward Whitfield, pp. 63-64.
Scorodite from the Yellowstone Park, by J. Edward Whitfield, pp. 65, 66.
The flow of solids, or the behavior of solids under high pressure, by William Hallock, pp. 67-75, pl. i.
Miscellaneous analyses, pp. 79-93.

56. Fossil wood and lignite of the Potomac formation, by Frank Hall Knowlton. 1889. 72 pp., 7 pls. Price, 10 cents.

58. The glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois, by George Frederick Wright, with an introduction by Thomas Chrowder Chamberlin. 1890. 112 pp., 8 pls. Price, 15 cents.

59. The gabbros and associated rocks in Delaware, by Frederick D. Chester, 1890. 45 pp., 1 pl. (map). Price, 10 cents.

60. Report of work done in the division of chemistry and physics, mainly during the fiscal year 1887-88; F. W. Clarke, chief chemist. 1890. 174 pp. Price, 15 cents.

The chemical structure of the natural silicates, by F. W. Clarke, pp. 13-20.
Some nickel ores from Oregon, by F. W. Clarke, pp. 21-26.
Natural soda; its occurrence and utilization, by Thomas Marcon Chatard, pp. 27-31.
Analyses of six new meteorites, by J. Edward Whitfield, pp. 103-114.
Two sulfurphthonmites from Colorado, by L. G. Eakins, pp. 115-117.
Coefficients of volatility for aqueous chlorhydric acid, by Robert B. Warder, pp. 119-122.
Analyses of jade, by F. W. Clarke, pp. 125-127.
Mineralogical notes, pp. 129-137.
The subsidence of fine solid particles in liquids (second paper), by Carl Barus, pp. 139-145.
Miscellaneous analyses, pp. 149-174.

62. The greenstone-schist areas of the Menominee and Marquette regions of Michigan, a contribution to the subject of dynamic metamorphism in eruptive rocks, by George Huntington Williams, with an introduction by Roland Duer Irving. 1890. 241 pp., 16 pls. Price, 30 cents.

63. A bibliography of Paleozoic Crustacea from 1698 to 1889, including a list of North American species and a systematic arrangement of genera, by Anthony W. Vodges. 1890. 177 pp. Price, 15 cents.

64. A report of work done in the division of chemistry and physics, mainly during the fiscal year 1888-89; F. W. Clarke, chief chemist. 1890. 60 pp. Price, 10 cents.

A new occurrence of gyrolite, by F. W. Clarke, pp. 22-23.
Analyses of three desclozites from new localities, by W. F. Hillebrand, pp. 24-28.
Demortierite from Harlem, New York, and Clip, Arizona, by J. S. Diller and J. E. Whitfield, pp. 31-33.
Chemical action between solids, by William Hallock, pp. 34-37.
Miscellaneous analyses, pp. 40-60.

65. Stratigraphy of the bituminous coal field of Pennsylvania, Ohio, and West Virginia, by Israel C. White. 1891. 212 pp., 11 pls. Price, 20 cents. (Out of stock.)

66. On a group of volcanic rocks from the Tewan Mountains, New Mexico, and on the occurrence of primary quartz in certain basalts, by Joseph Paxson Iddings. 1890. 34 pp. Price, 5 cents.

67. The relations of the traps of the Newark system in the New Jersey region, by Nelson Horatio Darton. 1890. 82 pp., 6 pls. and maps. Price, 10 cents.

71. Index to the known fossil insects of the world, including myriapods and arachnids, by Samuel Hubbard Scudder. 1891. 744 pp. Price, 50 cents.

73. The viscosity of solids, by Carl Barus. 1891. xii, 139 pp., 6 pls. Price, 15 cents.

77. The Texan Permian and its Mesozoic types of fossils, by Charles A. White. 1891. 51 pp., 4 pls. Price, 10 cents.

78. A report of work done in the division of chemistry and physics, mainly during the fiscal year 1889-90; F. W. Clarke, chief chemist. 1891. 131 pp. Price, 15 cents.

Experiments upon the constitution of the natural silicates, by F. W. Clarke and E. A. Schneider, pp. 11-33.
The relative abundance of the chemical elements, by F. W. Clarke, pp. 34-42.
On the occurrence of nitrogen in uraninite and on the composition of uraninite in general, by W. F. Hillebrand, pp. 49-79.
Metacinnabarite from New Almaden, California, by W. H. Melville, pp. 80-83.
An apparatus for the determination of water in the mineral analyses, by Thomas M. Chatard, pp. 84-86.
The separation of titanium, chromium, aluminum, iron, barium, and phosphoric acid in rock analyses, by Thomas M. Chatard, pp. 87-90.
Seven new meteorites, by L. G. Eakins, pp. 91-97.
On a petroleum from Cuba, by H. N. Stokes, pp. 98-104.
On a supposed mineral resin from Livingston, Montana, by H. N. Stokes, pp. 105-108.
Miscellaneous analyses, pp. 119-129.

88. The Cretaceous Foraminifera of New Jersey, by Rufus Mather Bagg, jr. 1898. 89 pp., 6 pls. Price, 10 cents.
89. Some lava flows of the western slope of the Sierra Nevada, California, by F. Leslie Ransome. 1898. 74 pp., 11 pls. Price, 15 cents.
90. A report of work done in the division of chemistry and physics, mainly during the fiscal year 1890-91; Frank Wigglesworth Clarke, chief chemist. 1892. 77 pp. Price, 10 cents.
On the constitution of certain micas, vermiculites, and chlorites, by F. W. Clarke and E. A. Schneider, pp. 11-21.
New analyses of astrophyllite and tscheffkinite, by L. G. Eakins, pp. 41-44.
Two new meteorites, by L. G. Eakins, pp. 45-46.
On the colloidal sulphides of gold, by E. A. Schneider, pp. 56-61.
Miscellaneous analyses, pp. 62-75.
92. The compressibility of liquids, by Carl Barus. 1892. 96 pp., 29 pls. Price, 10 cents.
93. Some insects of special interest from Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah, by Samuel Hubbard Scudder. 1892. 35 pp., 3 pls. Price, 5 cents.
96. The volume thermodynamics of liquids, by Carl Barnes. 1892. 100 pp., 8 pls. Price, 10 cents.
103. High temperature work in igneous fusion and ebullition, chiefly in relation to pressure, by Carl Barnes. 1893. 57 pp., 9 pls. Price, 10 cents.
104. The glaciation of the Yellowstone Valley north of the Park, by Walter Harvey Weed. 1893. 41 pp., 4 pls. Price, 5 cents.
105. The Laramie and the overlying Livingston formation in Montana, by Walter Harvey Weed, with report on flora, by Frank Hall Knowlton. 1893. 68 pp., 6 pls. Price, 10 cents.
110. The Paleozoic section in the vicinity of Three Forks, Montana, by Albert Charles Peale; with petrographic notes by George Perkins Merrill. 1893. 56 pp., 6 pls. Price, 10 cents.
113. A report of work done in the division of chemistry during the fiscal years 1891-92 and 1892-93; Frank Wigglesworth Clarke, chief chemist. 1893. 115 pp. Price, 15 cents.

Tschermak's theory of the chlorite group and its alternative, by F. W. Clarke, pp. 11-21.
The constitution of the lithia micas, by F. W. Clarke, pp. 22-26.
Experiments upon the constitution of certain micas and chlorites, by F. W. Clarke and E. A. Schneider, pp. 27-33.
Notes on the action of ammonium chloride upon silicates, by E. A. Schneider and F. W. Clarke, pp. 34-36.
The preparation and specific gravity of crystallized uranium dioxide, by W. F. Hillebrand, pp. 37-40.
A further example of the isomorphism of thorium and uranium dioxide, by W. F. Hillebrand, pp. 41-43.
Zinc-bearing spring waters from Missouri, by W. F. Hillebrand, pp. 49-53.
Josephinite, a new nickel iron, by W. H. Melville, pp. 54-60.
A new meteorite from Hamblen County, Tennessee, by L. G. Eakins, pp. 61-62.
On the catalytic action of aluminum chloride on silicic ethers, by H. N. Stokes, pp. 63-76.
On the action of phosphorus oxychloride on aromatic silicic ethers, by H. N. Stokes, pp. 77-78.
Note on benzyl silicate, by H. N. Stokes, p. 79.
On amidophosphoric acid, by H. N. Stokes, pp. 80-94.
On some organosols, by E. A. Schneider, pp. 95-98.
Contributions to the knowledge of colloidal silver, by E. A. Schneider, pp. 102-108.
Miscellaneous analyses, pp. 109-114.

120. The Devonian system of eastern Pennsylvania and New York, by Charles S. Prosser. 1894. 81 pp., 2 pls. Price, 10 cents.
125. The constitution of the silicates, by Frank Wigglesworth Clarke, chief chemist. 1895. 100 pp. Price, 15 cents.

137. The geology of the Fort Riley military reservation and vicinity, Kansas, by Robert Hay. 1896. 35 pp., 8 pls. Price, 5 cents.

141. The Eocene deposits of the Middle Atlantic slope in Delaware, Maryland, and Virginia, by William Bullock Clark. 1896. 167 pp., 40 pls. Price, 15 cents.

144. The moraines of the Missouri Coteau and their attendant deposits, by James Edward Todd. 1896. 71 pp., 21 pls. Price, 10 cents.

159. The geology of eastern Berkshire County, Massachusetts, by Benjamin Kendall Emerson. 1899. 139 pp., 9 pls. and maps. Price, 20 cents.

Preface, by Henry S. Williams, pp. 11-14.

Pt. I. The Paleozoic faunas of Maine: A preliminary report upon the Paleozoic faunas already known and upon new faunas recently collected from Aroostook County, by Henry S. Williams, pp. 15-92, pls. i, ii.

Pt. II. Geology of the Aroostook volcanic area, including an account of the clastic rocks of Aroostook County, by Herbert E. Gregory, pp. 93-188, pls. iii-xiv.

Pt. III. List of localities of Paleozoic, igneous, and other crystalline rocks examined during the seasons of 1897 and 1898, by Henry S. Williams, pp. 189-203.

Experiments relative to the constitution of pectolite, pyrophyllite, calamine, and analcite, by F. W. Clarke and George Steiger, pp. 13-25.

The constitution of tourmaline, by F. W. Clarke, pp. 26-36.

Distribution and quantitative occurrence of vanadium and molybdenum in rocks of the United States, by W. F. Hillebrand, pp. 49-55.

Warning against the use of fluoriferous hydrogen peroxide in estimating titanium, by W. F. Hillebrand, p. 56.

Mineralogical notes, by W. F. Hillebrand, pp. 57-76.

On the chloronitrides of phosphorus and the metaphosphinic acids, by H. N. Stokes, pp. 77-153.

On a hydronium from New Jersey, by F. W. Clarke and N. H. Darton, pp. 154-155.

The alkaline reaction of some natural silicates, by F. W. Clarke, pp. 156-158.

The solubility in water of certain natural silicates, by George Steiger, pp. 159-160.

171. Boundaries of the United States and of the several States and Territories, with an outline of the history of all important changes of territory (second edition), by Henry Gannett. 1900. 142 pp., 53 pls. Price, 30 cents.
WATER-SUPPLY AND IRRIGATION PAPERS.

8°. 45 pamphlets, in "terra-cotta" covers; each limited, by law, to 100 pages. Nos. 1-14, 20, 24, 25, 30, 32, and 33 are now out of stock.

2. Irrigation near Phoenix, Arizona, by Arthur Powell Davis. 1897. 98 pp., 31 pls. and maps.
3. Sewage irrigation, by George W. Rafter. 1897. 100 pp., 4 pls.
6. Underground waters of southwestern Kansas, by Erasmus Haworth. 1897. 65 pp., 12 pls. and maps.
7. Seepage water of northern Utah, by Samuel Fortier. 1897. 50 pp., 3 pls. and maps.
8. Windmills for irrigation, by Edward Charles Murphy. 1897. 49 pp., 8 pls.
10. Irrigation in Mesilla Valley, New Mexico, by F. C. Barker. 1898. 51 pp., 11 pls.
14. New tests of certain pumps and water lifts used in irrigation, by Ozni Porter Hood. 1898. 91 pp., 1 pl.
17. Irrigation near Bakersfield, California, by Carl Ewald Grunsky. 1898. 96 pp., 16 pls.
18. Irrigation near Fresno, California, by Carl Ewald Grunsky. 1898. 94 pp., 14 pls.
21. Wells of northern Indiana, by Frank Leverett. 1899. 82 pp., 2 pls. (maps)
22. Sewage irrigation, Part II, by George W. Rafter. 1899. 100 pp., 7 pls.
23. Water-right problems of Bighorn Mountains, by Elwood Mead. 1899. 62 pp., 7 pls.
26. Wells of southern Indiana (continuation of Water-Supply and Irrigation Paper No. 21), by Frank Leverett. 1899. 64 pp.
29. Wells and windmills in Nebraska, by Erwin Hinckley Barbour. 1899. 85 pp., 27 pls.
30. Water resources of the Lower Peninsula of Michigan, by Alfred C. Lane. 1899. 97 pp., 7 pls. and maps.
31. Lower Michigan mineral waters, a study into the connection between their chemical composition and mode of occurrence, by Alfred Church Lane. 1899. 97 pp., 4 pls. and maps.
33. Storage of water on Gila River, Arizona, by Joseph Barlow Lippincott. 1900. 98 pp., 33 pls.
34. Geology and water resources of a portion of southeastern South Dakota, by James Edward Todd. 1900. 34 pp., 10 pls. and maps.
40. The Austin dam, by Thomas U. Taylor. 1900. 52 pp., 16 pls.
41. The windmill: its efficiency and economic use, Part I, by Edward Charles Murphy. 1901. 72 pp., 14 pls.
42. The windmill: its efficiency and economic use, Part II, by Edward Charles Murphy, 1901, pp. 73–147, pls. 15–16.
43. Conveyance of water in irrigation canals, flumes, and pipes, by Samuel Fortier. 1901. 86 pp., 15 pls.
44. Profiles of rivers in the United States, by Henry Gannett. 1901. 100 pp., 11 pls.
45. Water storage on Cache Creek, California, by Alfred E. Chandler. 1901. 48 pp., 10 pls.

REPORTS ON MINERAL RESOURCES (old series).

Department of the Interior United States Geological Survey J. W. Powell Director Mineral resources of the United States [Calendar year 1882] Albert Williams, Jr. chief of division of mining statistics Bull. 177—01——4

Summary, pp. xi–xvii.

Coal, pp. 1–107.
 General view of the coal-mining industry, pp. 1–7.
 Anthracite, pp. 7–32.
 Description and production of the anthracite coal fields of Pennsylvania, by Chas. A. Ashburner, pp. 7–32.
 Analyses and calorific values of some Utah coals, by Ellsworth Daggett, pp. 76–81.

 The iron ores of Alabama in their geological relations, by Eugene A. Smith, pp. 149–161.
 Utilization of blast-furnace slag, pp. 161–164.

Gold and silver, pp. 172–185.

Copper, pp. 213–305.
 Bluestone, pp. 297–305.
 The manufacture of bluestone at the Lyon mill, Dayton, Nevada, by J. E. Gignoux, pp. 297–305.

 The smelting of argentiferous lead in the far West, by O. H. Hahn, pp. 324–345.

Zinc, pp. 346–386.

Quicksilver, pp. 387–398.

Tin, pp. 434–437.

Antimony, pp. 438–439.

Bismuth, p. 440.

Arsenic, p. 441.

Platinum, pp. 442–443.

Iridium, by F. W. Clarke, p. 444.

Molybdenum, p. 446.

Tellurium, p. 447.

Uranium, p. 448.
Vanadium, p. 449.
 Building stone, pp. 450–457.
 Brick, tile, etc., pp. 457–458.
 Soapstone, p. 464.
 Marble dust, p. 464.
Clays, pp. 465–475.
 Pottery clay and kaolin in the eastern division, pp. 469–472.
 Clays of the Rocky mountain division, pp. 472–475.
 Clays of the Pacific coast, p. 475.
Abrasive materials, pp. 476–481.
 Corundum and emery, by Henry Gannett, pp. 476–477.
 Buhrstones, p. 477.
 Berea grit, by M. C. Read, pp. 478–479.
 Grindstones, p. 479.
 Infusorial earth, pp. 479–480.
 Pumice-stone, p. 480.
 Carbons, pp. 480–481.
Precious stones, pp. 482–503.
 Hiddinite, the new emerald-green gem, by W. E. Hidden, pp. 502–503.
Fertilizers, pp. 504–531.
 The phosphate deposits of South Carolina, by Otto A. Moses, pp. 504–521.
 Gypsum, pp. 526–531.
 Commercial fertilizers, p. 531.
Salt, pp. 532–565.
 The salines of Louisiana, by E. W. Hilgard, pp. 554–565.
Borax, pp. 566–577.
Sulphur, pp. 578–579.
Strontia, p. 582.
Mica, pp. 583–584.
Talc, p. 585.
Quartz, p. 586.
Fluorspar, p. 587.
Asbestos, pp. 588–589.
Lithographic stone, pp. 595–596.
Niter, pp. 597–598.
Nitrate of soda, pp. 599–600.
Carbonate of soda, pp. 601–602.
Sulphate of soda, pp. 603–604.
Asphaltum, p. 605.
Alum, p. 606.
Copperas, p. 607.
Cryolite, p. 608.
Ozocerite, p. 609.
Miscellaneous contributions, pp. 610-663.
The divining rod, by R. W. Raymond, pp. 610-626.
Electrolysis in the metallurgy of copper, lead, zinc, and other metals, by C. O. Mailloux, pp. 627-658.
The minor minerals of North Carolina, by W. C. Kerr, pp. 659-661.
Minor minerals of the Pacific coast, by C. G. Yale, pp. 662-663.
The useful minerals of the United States, pp. 664-775.
Appendix, the new tariff, pp. 777-787.
Index, pp. 789-813.

Summary, pp. 1-10.
Coal, pp. 11-213.
Coal mining in the Kanawha Valley of West Virginia, by Stuart M. Buck, pp. 131-143.
The manufacture of coke, by Joseph D. Weeks, pp. 144-213.
Natural gas, pp. 233-245.
Iron, pp. 246-311.
The manufacture of iron and steel in the United States, by James M. Swank, pp. 246-257.
Iron in the Rocky Mountain division, by F. F. Chisolm, pp. 281-286.
American blast-furnace progress, by John Birkinbine, pp. 290-311.
Gold and silver, pp. 312-321.
Copper, pp. 322-410.
The mines and reduction works of Butte City, Montana, by E. D. Peters, jr., pp. 374-396.
Lead, pp. 411-473.
Lead slags, by Malvern W. Iles, pp. 440-462.
Recent improvements in desilverizing lead in the United States, by H. O. Hoffman, pp. 462-473.
Quicksilver, pp. 492-536.
Quicksilver reduction at New Almaden, by Samuel B. Christy, pp. 503-536.
Nickel, by W. P. Blake, pp. 537-543.
Platinum, pp. 576-580.
Arsenic, pp. 656–657.
Structural materials, pp. 662–711.
 Building stone, pp. 662–667.
 Building sand, pp. 667–668.
 Cement, pp. 671–676.
 Buhrstones, pp. 712–713.
 Grindstones, pp. 713–714.
 Infusorial earth, pp. 720–721.
 Pumice stone, p. 721.
 Rottenstone, p. 722.
Precious stones, by George F. Kunz, pp. 723–782.
Fertilizers, pp. 783–826.
 Apatite, pp. 805–808.
 Marls, by F. A. Wilber, p. 808.
Salt, pp. 827–850.
Borax, pp. 859–863.
Mica, by F. W. Clarke, pp. 906–912.
Asbestos, pp. 913–914.
Chalk, pp. 930–932.
Lithographic stone, pp. 935–936.
Asphaltum, pp. 937–948.
The asphaltum deposits of California, by E. W. Hilgard, pp. 938–948.
Alum, pp. 949–950.
Bluestone, p. 951.
Copperas, pp. 952–953.
Cryolite, p. 954.
Ozocerite, pp. 955–957.
Historical sketch of mining law, by Rossiter W. Raymond, pp. 988–1004.
Index, pp. 1005–1016.
year 1885 Division of mining statistics and technology [Vignette]
Washington Government Printing Office 1886
Summary, pp. 1-9.
Coal, by Charles A. Ashburner, pp. 10–73.
The manufacture of coke, by Joseph D. Weeks, pp. 74–129.
Twenty-one years of progress in the manufacture of iron and steel in the United States, by James M. Swank, pp. 180–195.
Iron in the Rocky Mountain division, by F. F. Chisolm, p. 196.
Gold and silver, pp. 200–207.
Quicksilver, pp. 284–296.
Tin, pp. 370–385.
Arsenic, p. 386.
Antimony, pp. 387–388.
Bismuth, p. 389.
Building stone, pp. 396–404.
Building sand, pp. 404–405.
Cement, pp. 405–409.
Lime, pp. 410–413.
Abrasif material, pp. 428–436.
Buhrstones, p. 428.
Grindstones, pp. 428–429.
Corundum, pp. 429–432.
Infusorial earth, p. 433.
Pumice stone, p. 433.
Precious stones, by George F. Kunz, pp. 437–444.
Fertilizers, pp. 445–473.
Apatite, pp. 455–458.
Marls, p. 464.
Manufactured fertilizers, pp. 465–473.
Borax, pp. 491-493.
Pyrites, by Herbert J. Davis, pp. 501-517.
Mica, pp. 518-520.
Asbestos, pp. 521-522.
Mineral paints, by Marcus Benjamin, pp. 524-533.
Talc, by G. F. Perrenoud, pp. 534-535.
Mineral waters, by A. C. Peale, pp. 536-543.
Index, pp. 559-576.

Summary, pp. 1-10.
Iron, pp. 11-103.
The American iron trade in 1886, by James M. Swank, pp. 11-22.
The American iron industry from its beginning in 1619 to 1886, by James M. Swank, pp. 23-38.
The iron ores east of the Mississippi River, by John Birkinbine, pp. 39-103.
Gold and silver, pp. 104-108.
Quicksilver, pp. 160-168.
Nickel, pp. 169-173.
Cobalt, pp. 174-175.
Chromium, pp. 176-179.
Tin, pp. 214-217.
Tungsten, pp. 218-219.
Platinum and iridium, pp. 222-223.
Coal, by Charles A. Ashburner, pp. 224-377.
The building industry in general, pp. 517-536.
Building stone, pp. 536-556.
Cement, pp. 556-564.
Lime, pp. 565-566.
Brick, pp. 566-580.
Buhrstones, by William A. Raborg, pp. 581-582.
Grindstones, by William A. Raborg, pp. 582-585.
Infusorial earth, pp. 587-588.
Precious stones, by George F. Kunz, pp. 595-605.

Fertilizers, pp. 606-627.
- Phosphate rock, pp. 607-610.
- The fertilizer trade in North Carolina in 1886, by W. B. Phillips, pp. 611-617.
- Marls, pp. 619-620.
- Gypsum, pp. 620-623.
- Manufactured fertilizers, pp. 623-627.

Bromine, pp. 642-643.

Tellurium, pp. 648-649.

Borax, pp. 678-680.

Alum, pp. 681-682.

Bluestone, p. 683.

Copperas, pp. 684-685.

Lithographic stone, pp. 690-691.

Fluorspar, pp. 692-693.

Magnesium, pp. 694-698.

Strontium, pp. 699-700.

Index, pp. 791-813.

Summary, pp. 1-9.

Iron, pp. 10-57.
- The iron and steel industries of the United States in 1887 and 1888, by James M. Swank, pp. 10-27.
- Iron in the Rocky Mountain division, by F. F. Chisolm, pp. 28-29.
- Iron ore mining in 1887, by John Birkinbine, pp. 30-57.

Quicksilver, pp. 118-125.

Nickel, pp. 126-129.

Cobalt, pp. 130-131.

Chromium, pp. 132-133.

Tin, pp. 134-137.

Aluminum, by R. L. Packard, pp. 138-141.

Platinum, pp. 142-143.

Coal, by Charles A. Ashburner, pp. 168-382.

 The building industry in general, pp. 503-511.
 Building stone, pp. 511-527.
 Cement, pp. 527-532.
 Lime, pp. 532-534.
 Brick, pp. 534-551.
Abrasive materials, pp. 552-554.
Precious stones, by George F. Kunz, pp. 555-579.
Gypsum, pp. 595-603.
 Gypsum or land plaster in Ohio, by Edward Orton, pp. 596-601.
 Pyrites, pp. 609-610.
Bromine, pp. 626-627.
Fluorspar, p. 659.
Mica, pp. 660-671.
Graphite, pp. 672-673.
Index, pp. 813-832.

Summary, pp. 1-11.
Iron, pp. 12-35.
 The iron and steel industries of the United States in 1888 and 1889, by James M. Swank, pp. 12-32.
 Iron in the Rocky Mountain division, by F. F. Chisolm, pp. 33-35.
Gold and silver, pp. 36-42.
Copper, by C. Kirchhoff, jr., pp. 43-77.
Quicksilver, pp. 97-107.
Nickel, pp. 108-118.
Chromium, pp. 119-122.
Tin, pp. 144-159.
Platinum, pp. 165-167.
Coal, by Charles A. Ashburner, pp. 168-394.
 Arkansas, by Arthur Winslow, pp. 216-224.
 Dakota, by F. F. Chisolm, p. 240.
 Illinois, by J. S. Lord, pp. 242-256.
The manufacture of coke, by Joseph D. Weeks, pp. 395-441.
Asphaltum, pp. 513-514.
Ozokerite, p. 515.
 The building industry in general, pp. 516-536.
 Granite and allied rocks, pp. 536-544.
 Sandstone, pp. 544-547.
 Slate, pp. 547-551.
 Cement, pp. 551-554.
 Lime, pp. 554-557.
 Brick, pp. 557-571.
 Pottery, pp. 571-575.
Fertilizers, pp. 586-596.
Bromine, p. 613.
Mica, pp. 614-615.
Mineral paints, pp. 616-622.
Index, pp. 631-652.

Summary, pp. 1-9.
Iron, pp. 10-47.
 The iron and steel industries of the United States in 1889, 1890, and 1891, by James M. Swank, pp. 10-22.
 Iron ores, by John Birkinbine, pp. 23-47.
Gold and silver, by William Kent, pp. 48-55.
Copper, by C. Kirchhoff, pp. 56-77.
Quicksilver, pp. 94-109.
Aluminum, by C. L. Packard, pp. 110-118.
Tin, pp. 119-123.
Nickel and cobalt, pp. 124-126.
Chromic iron ore, pp. 137-140.
Antimony, pp. 141-142.
Platinum, pp. 143-144.
Coal, by E. W. Parker, pp. 145-286.
 Pennsylvania anthracite, by John H. Jones, pp. 242-252

Limestone, pp. 373–374.

Granite, pp. 374.

Sandstone, pp. 374–375.

Marble, pp. 375–376.

Slate, p. 376.

Production by States, 377–440.

Pottery, pp. 441–444.

Fertilizers, pp. 449–455.

Buhrstones, p. 456.

Corundum and emery, p. 457.

Grindstones, p. 458.

Infusorial earth, p. 459.

Oilstones, whetstones, etc., p. 460.

Fluorspar, pp. 468–473.

Mica, pp. 474–475.

Soapstone, p. 476.

Asphaltum, by E. W. Parker, pp. 477–481.

Bromine, p. 493.

Graphite, p. 507.

Barytes, p. 513.

Asbestos, p. 514.

Sulphur, pp. 515–517.

Pyrises, p. 518.

Lithographic stone, pp. 519–520.

General index to Mineral Resources of the United States from 1882 to 1890, pp. 537–651.

Index, pp. 653–671.

8°, vii, 630 pp., 1 l. Bound in black cloth. Price, 50 cents.

Summary, pp. 1–9.

Twenty years of progress in the manufacture of iron and steel in the United States, by James M. Swank, pp. 47–73.

Quicksilver, pp. 117–125.

Aluminum, by R. L. Packard, pp. 147-163.
Tin, pp. 164-166.
Nickel and cobalt, pp. 167-170.
Chrome iron ore, pp. 171-173.
Antimony, by E. W. Parker, pp. 174-176.
Coal, by E. W. Parker, pp. 177-356.
The coal fields of Texas, by Robert T. Hill, pp. 326-328.
The manufacture of coke, by Joseph D. Weeks, pp. 357-402.
Asphaltum, by E. W. Parker, pp. 452-455.
 Granite, pp. 456-460.
 Sandstone, pp. 460-463.
 Limestone, pp. 464-468.
 Marble, pp. 468-471.
 Slate, pp. 472-473.
Natural and artificial cements, by Spencer B. Newberry, pp. 529-538.
Precious stones, by George Frederick Kunz, pp. 539-551.
Abrasive materials, by E. W. Parker, pp. 552-556.
 Buhurstones, p. 552.
 Grindstones, pp. 552-553.
 Oilstones and whetstones, pp. 553-555.
 Emery and corundum, pp. 555-556.
Fertilizers, pp. 557-563.
Sulphur, by E. W. Parker, pp. 564-571.
Salt, pp. 572-578.
Bromine, p. 579.
Gypsum, by E. W. Parker, pp. 580-583.
Magnesite, pp. 584-585.
Fluorspar, p. 586.
Borax, pp. 587-588.
Graphite, by E. W. Parker, pp. 589-590.
Asbestos, by E. W. Parker, pp. 591-592.
Soapstone, by E. W. Parker, pp. 593-594.
Mineral paints, by E. W. Parker, pp. 595-598.
Barytes, pp. 599-600.
Index, pp. 611-630.
Quicksilver ore deposits, by George F. Becker, pp. 139-168.
Aluminum, by Alfred E. Hunt, pp. 227-254.
Nickel and cobalt, pp. 255-257.
Tin, pp. 258-259.
Antimony, pp. 260-262.
Coal, by E. W. Parker, pp. 263-550.
 The coal deposits of California, by H. W. Turner, pp. 308-310.
 Coal fields of Colorado, by R. C. Hills, pp. 319-365.
 Sketch of the coal deposits of Iowa, by Charles R. Keyes, pp. 398-404.
 Coal fields of Utah, by Robert Forrester, pp. 511-520.
 The improvement of the Great Kanawha River, West Virginia, by Col. W. P.
 Craighill, corps of engineers, pp. 540-546.
Asphaltum, by E. W. Parker, pp. 699-703.
 Granite, pp. 705-709.
 Marble, pp. 709-710.
 Slate, p. 710.
 Sandstone, pp. 710-711.
 Limestone, p. 711.
 Natural and artificial cements, by Spencer B. Newberry, pp. 739-747.
 Abrasive materials, by E. W. Parker, pp. 748-755.
 Buhrstones, pp. 748-749.
 Grindstones, p. 749.
 Oilstones and whetstones, pp. 750-751.
 Emery and corundum, pp. 751-752.
 Infusorial earth, p. 752.
 Tripoli, pp. 752-753.
 Recent inventions, pp. 753-755.
Precious stones, by George F. Kunz, 756-781.
 Phosphate rock, pp. 782-784.
 Sulphur, by E. W. Parker, pp. 785-791.
 Salt, by E. W. Parker, pp. 792-800.
 Gypsum, pp. 801-804.
 Fluorspar, p. 805.
 Graphite, pp. 806-807.
 Asbestos, by E. W. Parker, pp. 808-812.
 Soapstone, pp. 813-814.
 Mineral paints, pp. 815-820.
 Barytes, pp. 821-822.
 Index, pp. 835-850.

Department of the Interior United States Geological Survey J. W.
Powell Director Mineral resources of the United States Calendar
year 1893 David T. Day chief of division of mining statistics and

Summary, pp. 1-12.
Iron ores, by John Birkinbine, pp. 23-49.
Gold and silver, by R. E. Preston, pp. 50-61.
Quicksilver, pp. 111-118.
Aluminum, pp. 156-167.
Bauxite, by C. W. Hayes, pp. 159-167.
Nickel and cobalt, pp. 168-177.
Tin, pp. 178-183.

The occurrence of tin ore at Kings Mountain [North Carolina], by Titus Ulke, pp. 178-180.

Antimony, pp. 184-186.
Coal, by E. W. Parker, pp. 187-414.
Natural gas, by Joseph D. Weeks, pp. 534-541.

Granite, pp. 544-547.
Marble, pp. 547-549.
Slate, pp. 549-552.
Sandstone, pp. 552-555.
Limestone, pp. 555-557.
Bluestone, pp. 557-559.

Exhibits of stone at the World's Columbian Exposition, pp. 560-602.

Soapstone, pp. 624-626.
Asphaltum, pp. 627-669.

Buhrstones, pp. 670-671.
Grindstones, pp. 671-672.
Oilstones and whetstones, pp. 672-674.
Emery and corundum, pp. 674-678.
Infusorial earth, p. 678.
Tripoli, p. 679.
Carborundum, 679.

Fertilizers, pp. 703-712.
Gypsum, pp. 713-716.
Salt, by E. W. Parker, pp. 717-727.
Natural sodium salts, by R. L. Packard, pp. 728-738.
Sulphur and pyrites, by E. W. Parker, pp. 739-745.
Fluorspar, pp. 746-747.
Mica, by E. W. Parker, pp. 748-755.
Mineral paints, by E. W. Parker, pp. 758–766.
Graphite, pp. 767–769.
Barytes, pp. 770–771.
Mineral waters, pp. 772–794.
Index, 795–810.

NOTE.—On March 2, 1895, the following provision was included in an act of Congress: “Provided, That hereafter the report of the Mineral Resources of the United States shall be issued as part of the report of the Director of the United States Geological Survey.” In conformity with this act, Mineral Resources as a distinct series was discontinued with the tenth volume, the report for the calendar year 1893. See note to Sixteenth Annual Report, p. 20 of this bulletin.
GEOLOGIC ATLAS OF UNITED STATES.

Folio. 70 numbers.

The Geologic Atlas of the United States is the final form of publication of the topographic and geologic maps. The atlas is issued in parts, progressively as the surveys are extended, and is designed ultimately to cover the entire country.

Under the plan adopted the entire area of the country is divided into small quadrangular districts (called quadrangles), bounded by certain meridians and parallels, each quadrangle being designated by the name of a principal town or some prominent natural feature within it. The maps and textual descriptions of each quadrangle are issued as a folio of the Geologic Atlas.

Each folio contains topographic, geologic, economic, and structural maps, together with textual descriptions and explanations, and is designated by the name of the quadrangle which it describes. Two forms of issue have been adopted—a library edition and a field edition. In both the sheets are bound between heavy paper covers, but the library copies are permanently bound, while the sheets and covers of the field copies are only temporarily wired together.

The folios are sold at twenty-five cents each, except such as contain an unusually large amount of matter, which are priced accordingly. The folios ready for distribution are as follows:

Published folios of Geologic Atlas of United States.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio</th>
<th>State</th>
<th>Limiting meridians</th>
<th>Limiting parallels</th>
<th>Area, in square miles</th>
<th>Price, in cents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Livingston</td>
<td>Montana</td>
<td>110°-111°</td>
<td>45°-46°</td>
<td>3,354</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Ringgold</td>
<td>Georgia</td>
<td>85°-85° 30'</td>
<td>34° 30'-35°</td>
<td>980</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Placerville</td>
<td>California</td>
<td>120° 30'-121°</td>
<td>38° 30'-39°</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Kingston a</td>
<td>Tennessee</td>
<td>84° 30'-85°</td>
<td>35° 30'-36°</td>
<td>969</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Sacramento</td>
<td>California</td>
<td>121°-121° 30'</td>
<td>38° 30'-39°</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Chattanooga a</td>
<td>Tennessee</td>
<td>85°-85° 30'</td>
<td>35°-35° 30'</td>
<td>975</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Pikes Peak a</td>
<td>Colorado</td>
<td>105°-105° 30'</td>
<td>38° 30'-39°</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Sewanee</td>
<td>Tennessee</td>
<td>85° 30'-86°</td>
<td>35°-35° 30'</td>
<td>975</td>
<td>25</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>9</td>
<td>Anthracite-Crested Butte, a</td>
<td>Colorado</td>
<td>105° 45'-107° 15'</td>
<td>38° 45'-39° 0</td>
<td>465</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Harpers Ferry</td>
<td>West Va.</td>
<td>77° 30'-78°</td>
<td>39°-39° 30'</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Jackson</td>
<td>Virginia</td>
<td>120° 30'-121°</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Estillville</td>
<td>Kentucky</td>
<td>82° 30'-83°</td>
<td>30° 30'-37°</td>
<td>957</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>Fredericksburg</td>
<td>Maryland, Virginia</td>
<td>77°-77° 30'</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Staunton</td>
<td>Virginia</td>
<td>79°-79° 30'</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Lassen Peak</td>
<td>California</td>
<td>121°-122°</td>
<td>40°-41°</td>
<td>3,634</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>Knoxville</td>
<td>Tennessee</td>
<td>83° 30'-84°</td>
<td>35° 30'-36°</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>Marysville</td>
<td>California</td>
<td>121° 30'-122°</td>
<td>39°-39° 30'</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>Smartsville</td>
<td>Alabama, Georgia</td>
<td>85° 30'-86°</td>
<td>34° 30'-35°</td>
<td>980</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>Cleveland</td>
<td>Tennessee</td>
<td>84° 30'-85°</td>
<td>35°-35° 30'</td>
<td>975</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Pikeville</td>
<td>Tennessee, Kentucky</td>
<td>85° 30'-86°</td>
<td>35° 30'-36°</td>
<td>969</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>McMinnville</td>
<td>Tennessee</td>
<td>76° 30'-77°</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Nomihi</td>
<td>Virginia, Maryland</td>
<td>111°-112°</td>
<td>45°-46°</td>
<td>3,354</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>Three Forks</td>
<td>Montana</td>
<td>120° 57'-121° 0'</td>
<td>40° 30'-41°</td>
<td>11.65</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>London</td>
<td>Tennessee, Virginia</td>
<td>39° 13'-39° 17'</td>
<td>11.65</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Pocahontas</td>
<td>West Va.</td>
<td>81°-81° 30'</td>
<td>37°-37° 30'</td>
<td>351</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>Morristown</td>
<td>Tennessee</td>
<td>83° 30'-84°</td>
<td>35°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>Piedmont</td>
<td>Maryland</td>
<td>73°-73° 30'</td>
<td>39°-39° 30'</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>Nevada City:</td>
<td>Nevada City...Nevada City...Grass Valley...Banner Hill...</td>
<td>121° 00'-121° 06° 30' 12°17'-12°25' 0'</td>
<td>11.65</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Wyoming...Wyoming...Wyoming...Wyoming...</td>
<td>110°-111°</td>
<td>44°-46°</td>
<td>3,412</td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>Pyramid Peak</td>
<td>California</td>
<td>120°-120° 30'</td>
<td>44°-45°</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>31</td>
<td>Franklin</td>
<td>Virginia</td>
<td>79°-79° 30'</td>
<td>38° 30'-39° 0</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>Bricville</td>
<td>Tennessee</td>
<td>84°-84° 30'</td>
<td>38°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>Buckbannon</td>
<td>West Va.</td>
<td>86°-86° 30'</td>
<td>38° 30'-39° 0</td>
<td>932</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>Gadsden</td>
<td>Alabama</td>
<td>86°-86° 30'</td>
<td>34°-34° 30'</td>
<td>986</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>Pueblo</td>
<td>Colorado</td>
<td>104° 30'-105°</td>
<td>35°-35° 30'</td>
<td>938</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>Downieville</td>
<td>California</td>
<td>120° 30'-121°</td>
<td>39° 30'-40° 0</td>
<td>919</td>
<td>25</td>
</tr>
<tr>
<td>37</td>
<td>Butte Special</td>
<td>Montana</td>
<td>112° 29'-112° 36' 42°</td>
<td>46° 59'-47° 02'</td>
<td>21.80</td>
<td>50</td>
</tr>
<tr>
<td>38</td>
<td>Truckee</td>
<td>California</td>
<td>120°-120° 30'</td>
<td>39°-39° 30'</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>39</td>
<td>Wartburg</td>
<td>Tennessee</td>
<td>84° 30'-85°</td>
<td>36°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
</tbody>
</table>

Bull. 177—01—5

*Out of stock.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio</th>
<th>State</th>
<th>Limiting meridians</th>
<th>Limiting parallels</th>
<th>Area, in square miles</th>
<th>Price, in cents</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Sonora</td>
<td>California</td>
<td>120°-120° 30'</td>
<td>37° 30'-38°</td>
<td>944</td>
<td>25</td>
</tr>
<tr>
<td>42</td>
<td>Nueces</td>
<td>Texas</td>
<td>100°-100° 30'</td>
<td>29° 30'-30°</td>
<td>1,035</td>
<td>25</td>
</tr>
<tr>
<td>43</td>
<td>Bidwell Bar</td>
<td>California</td>
<td>121°-121° 30'</td>
<td>39° 30'-40°</td>
<td>918</td>
<td>25</td>
</tr>
<tr>
<td>44</td>
<td>Tazewell</td>
<td>(Virginia)</td>
<td>81° 30'-82°</td>
<td>37°-37° 30'</td>
<td>950</td>
<td>25</td>
</tr>
<tr>
<td>45</td>
<td>Boise</td>
<td>Idaho</td>
<td>110°-110° 30'</td>
<td>43° 30'-44°</td>
<td>864</td>
<td>25</td>
</tr>
<tr>
<td>46</td>
<td>Richmond</td>
<td>Kentucky</td>
<td>84°-84° 30'</td>
<td>37° 30'-38°</td>
<td>944</td>
<td>25</td>
</tr>
<tr>
<td>47</td>
<td>London</td>
<td></td>
<td>84°-84° 30'</td>
<td>37°-37° 30'</td>
<td>950</td>
<td>25</td>
</tr>
<tr>
<td>48</td>
<td>Tenmile District Special</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>25</td>
</tr>
<tr>
<td>49</td>
<td>Roseburg</td>
<td>Oregon</td>
<td>123°-123° 30'</td>
<td>43°-43° 30'</td>
<td>871</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>Holyoke</td>
<td></td>
<td>70° 30'-73°</td>
<td>42°-42° 30'</td>
<td>885</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>Big Trees</td>
<td>California</td>
<td>120°-120° 30'</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td>52</td>
<td>Absaroka:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crandall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ishawoosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Standingstone</td>
<td>Tennessee</td>
<td>85°-85° 30'</td>
<td>36°-36° 30'</td>
<td>963</td>
<td>25</td>
</tr>
<tr>
<td>54</td>
<td>Tacoma</td>
<td></td>
<td>122°-122° 30'</td>
<td>47°-47° 30'</td>
<td>812</td>
<td>25</td>
</tr>
<tr>
<td>55</td>
<td>Fort Benton</td>
<td>Montana</td>
<td>110°-110° 30'</td>
<td>47°-48°</td>
<td>3,273</td>
<td>25</td>
</tr>
<tr>
<td>56</td>
<td>Little Belt Mts</td>
<td></td>
<td>110°-111°</td>
<td>46°-47°</td>
<td>3,295</td>
<td>25</td>
</tr>
<tr>
<td>57</td>
<td>Telluride</td>
<td>Colorado</td>
<td>107° 45'-108°</td>
<td>37° 45'-38°</td>
<td>256</td>
<td>25</td>
</tr>
<tr>
<td>58</td>
<td>Elmororo</td>
<td></td>
<td>104°-104° 30'</td>
<td>37°-37° 30'</td>
<td>950</td>
<td>25</td>
</tr>
<tr>
<td>59</td>
<td>Bristol</td>
<td></td>
<td>82°-82° 30'</td>
<td>36° 30'-37°</td>
<td>957</td>
<td>25</td>
</tr>
<tr>
<td>60</td>
<td>La Plata</td>
<td>Colorado</td>
<td>108°-108° 15'</td>
<td>37° 15'-37° 30'</td>
<td>227</td>
<td>25</td>
</tr>
<tr>
<td>61</td>
<td>Monterey</td>
<td>(West Va)</td>
<td>79° 30'-80°</td>
<td>38°-38° 30'</td>
<td>998</td>
<td>25</td>
</tr>
<tr>
<td>62</td>
<td>Menominee Special</td>
<td>Michigan</td>
<td>(a NW.-SE. area, about 30 m. long, 63 wide)</td>
<td>125</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Mother Lode</td>
<td>California</td>
<td>(a NW.-SE. rectangle, 70 m. long, 6 wide)</td>
<td>428</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Uvalde</td>
<td>Texas</td>
<td>99° 30'-100°</td>
<td>29°-29° 30'</td>
<td>1,040</td>
<td>25</td>
</tr>
<tr>
<td>65</td>
<td>Tintic Special</td>
<td>Utah</td>
<td>111° 55'-112° 10'</td>
<td>38° 45'-40°</td>
<td>229</td>
<td>25</td>
</tr>
<tr>
<td>66</td>
<td>Colfax</td>
<td></td>
<td>120° 30'-121°</td>
<td>39°-39° 30'</td>
<td>925</td>
<td>25</td>
</tr>
<tr>
<td>67</td>
<td>Danville</td>
<td>(Illinois)</td>
<td>87° 30'-87° 45'</td>
<td>40°-40° 15'</td>
<td>228</td>
<td>25</td>
</tr>
<tr>
<td>68</td>
<td>Walsenburg</td>
<td>(Indiana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colorado</td>
<td>104° 30'-105°</td>
<td>37° 30'-35°</td>
<td>944</td>
<td>25</td>
</tr>
<tr>
<td>69</td>
<td>Huntington</td>
<td>(West Va)</td>
<td>82°-82° 30'</td>
<td>38°-38° 30'</td>
<td>938</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Dist. of Columbia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Washington</td>
<td>(Virginia)</td>
<td>76° 45'-77° 15'</td>
<td>38° 45'-39°</td>
<td>465</td>
<td>50</td>
</tr>
</tbody>
</table>
When, in 1882, the Geological Survey was directed by law to make a geologic map of the United States, there was in existence no suitable topographic map to serve as a base for the geologic map. The preparation of such a topographic map was therefore immediately begun. About three-tenths of the area of the country, excluding Alaska, has now been thus mapped. The map is published in atlas sheets, each sheet representing a small quadrangular district, as explained under the preceding heading. The separate sheets are sold at 5 cents each when fewer than 100 copies are purchased, but when they are ordered in lots of 100 or more copies, whether of the same sheet or of different sheets, the price is 2 cents each. The mapped areas are widely scattered, nearly every State being represented. About 1,100 sheets have been engraved and printed; they are tabulated below.

Published topographic atlas sheets, arranged by States. (a)

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anniston</td>
<td>33 30 30</td>
<td>33 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ashland</td>
<td>33 00 30</td>
<td>33 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Bessemer</td>
<td>33 00 30</td>
<td>33 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Birmingham</td>
<td>33 30 30</td>
<td>33 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Brookwood</td>
<td>33 00 00</td>
<td>33 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Clanton</td>
<td>32 30 30</td>
<td>32 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Cullman</td>
<td>34 00 30</td>
<td>34 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Payne (Ala.-Ga.)</td>
<td>35 30 00</td>
<td>35 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Gadsden</td>
<td>34 00 00</td>
<td>34 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Huntsville (Ala.-Tenn.)</td>
<td>36 30 00</td>
<td>36 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Jasper</td>
<td>33 30 30</td>
<td>33 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Rome (Ga.- Ala.)</td>
<td>34 00 30</td>
<td>34 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Scottsboro (Ala.-Tenn.)</td>
<td>36 00 00</td>
<td>36 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Springville</td>
<td>33 30 30</td>
<td>33 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Stevenson (Ala.-Ga.-Tenn.)</td>
<td>35 30 00</td>
<td>35 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Talladega</td>
<td>33 00 30</td>
<td>33 00</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tallapoosa (Ga.-Ala.)</td>
<td>35 30 30</td>
<td>35 30</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) The Survey has issued a sheet of "Conventional signs" used on its topographic maps; price, 5 cents a single sheet; 2 cents each in lots of 100 or more.

67
Arizona

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp Mohave (Ariz.-Nev.-Cal.)</td>
<td>Lat. 36 00, Long. 114 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Canyon de Chelly (Ariz.-N. Mex.)</td>
<td>Lat. 36 00, Long. 112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Chino</td>
<td>Lat. 36 00, Long. 113 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Diamond Creek</td>
<td>Lat. 36 00, Long. 111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Echo Cliffs</td>
<td>Lat. 36 00, Long. 110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Fort De Anza (Ariz.-N. Mex.)</td>
<td>Lat. 34 00, Long. 110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Holbrook</td>
<td>Lat. 36 00, Long. 113 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Kalba</td>
<td>Lat. 36 00, Long. 112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Marsh Pass</td>
<td>Lat. 36 00, Long. 110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Mount Trumbull</td>
<td>Lat. 36 00, Long. 113 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Prescott</td>
<td>Lat. 34 00, Long. 112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>St. John's (Ariz.-N. Mex.)</td>
<td>Lat. 34 00, Long. 109 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>St. Thomas (Nev.-Ariz.)</td>
<td>Lat. 36 00, Long. 114 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>San Francisco Mountain</td>
<td>Lat. 35 00, Long. 111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Tusayan</td>
<td>Lat. 35 00, Long. 110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Verde</td>
<td>Lat. 34 00, Long. 111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
</tbody>
</table>

Arkansas

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batesville</td>
<td>Lat. 35 30, Long. 91 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Benton</td>
<td>Lat. 34 30, Long. 92 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Dardanelle</td>
<td>Lat. 35 00, Long. 93 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fayetteville (Ark.-Mo.)</td>
<td>Lat. 35 00, Long. 94 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Smith (Ark.-Ind. T.)</td>
<td>Lat. 35 00, Long. 94 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hot Springs</td>
<td>Lat. 34 30, Long. 93 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Little Rock</td>
<td>Lat. 34 30, Long. 92 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Magazine Mountain</td>
<td>Lat. 35 00, Long. 93 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Marshall</td>
<td>Lat. 35 30, Long. 92 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Morrilllon</td>
<td>Lat. 35 00, Long. 92 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mount Ida</td>
<td>Lat. 34 30, Long. 93 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mountain Home (Ark.-Mo.)</td>
<td>Lat. 36 00, Long. 92 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mountain View</td>
<td>Lat. 35 30, Long. 92 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Poteau Mountain (Ark.-Ind. T.)</td>
<td>Lat. 34 30, Long. 94 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tahlequah (Ark.-Ind. T.)</td>
<td>Lat. 35 30, Long. 94 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Yellville (Ark.-Mo.)</td>
<td>Lat. 36 00, Long. 92 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

California

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alturas</td>
<td>Lat. 41 00, Long. 120 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Anaheim</td>
<td>Lat. 33 45, Long. 117 45</td>
<td>do</td>
<td>25</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Arroyo Grande a</td>
<td>Lat. 35 00, Long. 120 30</td>
<td>do</td>
<td>50</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Bidwell Bar</td>
<td>Lat. 39 30, Long. 121 00</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Big Trees</td>
<td>Lat. 38 00, Long. 120 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Camp Mohave (Ariz.-Nev.-Cal.)</td>
<td>Lat. 35 00, Long. 114 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Cayucos a</td>
<td>Lat. 35 15, Long. 120 45</td>
<td>do</td>
<td>50</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Chico</td>
<td>Lat. 39 30, Long. 121 30</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Colfax</td>
<td>Lat. 39 00, Long. 120 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Concord</td>
<td>Lat. 37 45, Long. 122 00</td>
<td>do</td>
<td>25</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

Arroyo Grande, Cayucos, Port Harford, and San Luis Obispo sheets, on scale of 1:62500, have been reduced and form parts of San Luis, on scale of 1:125000.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

CALIFORNIA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat. / Long.</td>
<td></td>
<td></td>
<td></td>
<td>Cents.</td>
</tr>
<tr>
<td>Cucamonga</td>
<td>34 00 / 117 30</td>
<td>50 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Dardanelles</td>
<td>38 00 / 119 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Downey</td>
<td>33 45 / 118 00</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Downieville</td>
<td>39 30 / 120 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>El Cajon</td>
<td>32 45 / 116 45</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Elsinore a</td>
<td>33 30 / 117 00</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Escondido</td>
<td>33 00 / 117 00</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Fernanda</td>
<td>34 15 / 118 15</td>
<td>do</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Hayward</td>
<td>37 30 / 122 00</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Honey Lake</td>
<td>40 00 / 120 00</td>
<td>1 degree</td>
<td>200</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Jackson</td>
<td>38 30 / 120 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Karquines</td>
<td>38 00 / 122 00</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Lake Tahoe and Vicinity (Cal.-Nev.)</td>
<td>38 30 / 119 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Los Bolas</td>
<td>33 30 / 118 00</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Lassen Peak</td>
<td>40 00 / 121 00</td>
<td>1 degree</td>
<td>200</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Los Angeles (double sheet) c</td>
<td>38 00 / 120 00</td>
<td>1 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Markleeville (Cal.-Nev.) b</td>
<td>38 30 / 119 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Maryville</td>
<td>30 00 / 121 30</td>
<td>do</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Modoc Lava Bed</td>
<td>41 00 / 120 00</td>
<td>do</td>
<td>200</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Diablo</td>
<td>37 45 / 121 45</td>
<td>1 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Hamilton</td>
<td>37 15 / 121 30</td>
<td>do</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Ocean Side</td>
<td>33 00 / 117 15</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Palm Alto</td>
<td>37 15 / 122 00</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Pasadena c</td>
<td>34 00 / 118 00</td>
<td>do</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Placerville</td>
<td>38 30 / 120 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Pomona</td>
<td>34 00 / 117 45</td>
<td>1 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Port Harford d</td>
<td>35 00 / 120 45</td>
<td>do</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Pyramid Peak b</td>
<td>38 30 / 120 00</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Red Bluff</td>
<td>40 00 / 122 00</td>
<td>1 degree</td>
<td>200</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Redondo</td>
<td>33 45 / 118 10</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Riverside a</td>
<td>33 45 / 117 15</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Sacramento</td>
<td>38 30 / 120 00</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Bernardino</td>
<td>34 00 / 117 15</td>
<td>1 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Francisco</td>
<td>37 45 / 122 15</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>33 30 / 116 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>San Jose</td>
<td>37 15 / 121 45</td>
<td>1 degree</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Luis d</td>
<td>35 00 / 120 30</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Luis Obispo d</td>
<td>35 15 / 120 30</td>
<td>1 degree</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Mateo</td>
<td>37 30 / 122 15</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>San Pedro</td>
<td>33 30 / 118 10</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Santa Ana</td>
<td>33 30 / 117 45</td>
<td>do</td>
<td>25</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Santa Monica c</td>
<td>34 00 / 118 15</td>
<td>do</td>
<td>50</td>
<td>1 : 62500</td>
<td>5</td>
</tr>
<tr>
<td>Shasta</td>
<td>41 00 / 122 00</td>
<td>1 degree</td>
<td>200</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Sierra rice</td>
<td>39 30 / 120 00</td>
<td>1 degree</td>
<td>100</td>
<td>1 : 25000</td>
<td>5</td>
</tr>
<tr>
<td>Silver Peak (Nev.-Cal.)</td>
<td>37 30 / 117 30</td>
<td>do</td>
<td>100</td>
<td>1 : 125000</td>
<td>5</td>
</tr>
</tbody>
</table>

- a. Riverside sheet, on scale of 1:62500, has been reduced and forms part of Elsinore, on scale of 1:125000.
- b. Lake Tahoe and Vicinity includes Carson, Markleeville, Pyramid Peak, and Truckee sheets.
- c. Los Angeles includes Pasadena and Santa Monica sheets.
- d. Arroyo Grande, Cayucas, Port Harford, and San Luis Obispo sheets, on scale of 1:62500, have been reduced and form parts of San Luis, on scale of 1:125000.
PUBLICATIONS OF U. S. GEOLOGICAL SURVEY.

Published topographic atlas sheets, arranged by States—Continued.

CALIFORNIA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smarsville</td>
<td>39 00</td>
<td>121 00</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Sonora</td>
<td>37 30</td>
<td>120 00</td>
<td>1/4 degree</td>
<td>50,100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Tamalpais</td>
<td>37 45</td>
<td>122 30</td>
<td>1/2 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Truckee</td>
<td>39 00</td>
<td>120 00</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Tujunga</td>
<td>34 15</td>
<td>118 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:25000</td>
</tr>
<tr>
<td>Wellington (Cal.—Nev.)</td>
<td>38 30</td>
<td>119 00</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Yosemite</td>
<td>37 30</td>
<td>119 30</td>
<td>1/2 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

COLORADO.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abajo (Utah-Colo.)</td>
<td>37 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:25000</td>
</tr>
<tr>
<td>Albany (Colo.—Kans.)</td>
<td>37 30</td>
<td>102 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Anthracite</td>
<td>38 45</td>
<td>107 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Apishapa</td>
<td>37 30</td>
<td>104 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Arroyo</td>
<td>38 30</td>
<td>103 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Ashley (Utah-Colo.)</td>
<td>40 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:25000</td>
</tr>
<tr>
<td>Aspen</td>
<td>39 00</td>
<td>106 45</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Big Springs</td>
<td>38 30</td>
<td>101 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Canyon City</td>
<td>38 00</td>
<td>105 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Castle Rock</td>
<td>39 00</td>
<td>104 30</td>
<td>1/4 degree</td>
<td>50,100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Catlin</td>
<td>38 00</td>
<td>103 30</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Cheyenne Wells (Colo.—Kans.)</td>
<td>38 30</td>
<td>102 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Colorado Springs</td>
<td>38 30</td>
<td>104 30</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Crested Butte</td>
<td>38 45</td>
<td>106 45</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Denver (double sheet)</td>
<td>39 00</td>
<td>104 30</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Durango</td>
<td>37 15</td>
<td>107 45</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>East Tavaputs (Utah-Colo.)</td>
<td>39 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:25000</td>
</tr>
<tr>
<td>Elmoore</td>
<td>37 00</td>
<td>104 00</td>
<td>1/4 degree</td>
<td>50</td>
<td>1:25000</td>
</tr>
<tr>
<td>Engineer Mountain</td>
<td>37 30</td>
<td>107 15</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Granada (Colo.—Kans.)</td>
<td>38 00</td>
<td>102 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Higbee</td>
<td>37 30</td>
<td>103 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Hoeflano Park</td>
<td>37 30</td>
<td>105 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Kit Carson</td>
<td>39 00</td>
<td>110 30</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>La Plata</td>
<td>37 15</td>
<td>108 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>La Sal (Utah-Colo.)</td>
<td>38 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:25000</td>
</tr>
<tr>
<td>Lamar</td>
<td>38 00</td>
<td>102 30</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Las Animas</td>
<td>38 00</td>
<td>103 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Leadville</td>
<td>39 00</td>
<td>106 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Limon</td>
<td>39 00</td>
<td>103 30</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Mesa de Mayo</td>
<td>37 30</td>
<td>103 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Mount Carrizo</td>
<td>37 00</td>
<td>100 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Nepesta</td>
<td>38 00</td>
<td>104 00</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Pikes Peak</td>
<td>38 30</td>
<td>105 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Platte Canyon</td>
<td>39 00</td>
<td>105 00</td>
<td>1/4 degree</td>
<td>25 1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Pueblo</td>
<td>38 00</td>
<td>104 30</td>
<td>1/4 degree</td>
<td>50</td>
<td>1:25000</td>
</tr>
<tr>
<td>Rico</td>
<td>37 30</td>
<td>108 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Sanborn</td>
<td>38 30</td>
<td>103 30</td>
<td>1/4 degree</td>
<td>25</td>
<td>1:25000</td>
</tr>
<tr>
<td>Silverton</td>
<td>37 30</td>
<td>107 30</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
<tr>
<td>Spanish Peaks</td>
<td>37 00</td>
<td>104 30</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:25000</td>
</tr>
</tbody>
</table>

* Lake Tahoe and Vicinity includes Carson, Markleeville, Pyramid Peak, and Truckee sheets.*
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

COLORADO—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springfield</td>
<td>37 00 102 30</td>
<td></td>
<td>25,50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Telluride</td>
<td>37 45 107 45</td>
<td></td>
<td>100</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Timpas</td>
<td>37 30 103 30</td>
<td></td>
<td>25,50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Two Butte</td>
<td>37 30 102 30</td>
<td></td>
<td>25,50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Vilas (Colo.-Kans.)</td>
<td>37 00 102 00</td>
<td></td>
<td>25</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Walsenburg</td>
<td>37 30 104 30</td>
<td></td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

CONNECTICUT.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridgeport</td>
<td>41 00 73 00</td>
<td></td>
<td>1/2 degree</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brookfield (Mass.-Conn.)</td>
<td>42 00 72 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Carmel (N.Y.-Conn.)</td>
<td>41 15 73 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Glove (N.Y.-Conn.)</td>
<td>41 30 73 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cornwall (Conn.-N.Y.)</td>
<td>41 45 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Danbury</td>
<td>41 15 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Derby</td>
<td>41 15 73 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gilead</td>
<td>41 30 72 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Granby</td>
<td>41 45 72 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Granville (Mass.-Conn.) a</td>
<td>42 00 72 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Guilford</td>
<td>41 15 72 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hartford</td>
<td>41 45 72 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Holyoke (Mass.-Conn.) a</td>
<td>42 00 72 30</td>
<td></td>
<td>1/2 degree</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Housatonic (Mass.-Conn.-N.Y.) b</td>
<td>42 00 72 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Meriden</td>
<td>41 30 72 45</td>
<td></td>
<td>1/2 degree</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Middletown</td>
<td>41 30 72 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mocsup (Conn.-R.I.)</td>
<td>41 30 71 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New Haven</td>
<td>41 15 72 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New London (Conn.-N.Y.)</td>
<td>41 15 72 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New Milford</td>
<td>41 30 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Norwalk (Conn.-N.Y.)</td>
<td>41 00 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Norwich</td>
<td>41 30 72 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oyster Bay (N.Y.-Conn.)</td>
<td>40 45 73 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Palmer (Mass.-Conn.)</td>
<td>42 00 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Putnam (Conn.-R.I.)</td>
<td>41 45 71 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sandisfield (Mass.-Conn.) b</td>
<td>42 00 73 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Saybrook</td>
<td>41 15 72 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sheffield (Mass.-Conn.-N.Y.) b</td>
<td>42 00 73 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Springfield (Mass.-Conn.) a</td>
<td>42 00 72 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Stamford (Conn.-N.Y.)</td>
<td>41 00 73 30</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Stonington (Conn.-R.I.-N.Y.)</td>
<td>41 15 71 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Toland</td>
<td>41 45 72 15</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Waterbury</td>
<td>41 30 73 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Webster (Mass.-Conn.-R.I.)</td>
<td>42 00 71 45</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Winsted</td>
<td>41 45 73 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Woodstock</td>
<td>41 45 72 00</td>
<td></td>
<td>do</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also general maps, p. 109.)

a Granville and Springfield sheets, on scale of 1:62500, have been reduced and form parts of Holyoke, on scale of 1:125000.

b Sandisfield and Sheffield sheets, on scale of 1:62500, have been reduced and form parts of Housatonic, on scale of 1:125000.
Delaware

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayside (N.J.-Del.) a</td>
<td>39 15 S 75 15'</td>
<td>1/8 degree</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Camden (N.J.-Penn.-Del.) b</td>
<td>39 30 S 75 00'</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Cecilton (Md.-Del.) c</td>
<td>39 15 S 75 45'</td>
<td>1/8 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Chester (Pa.-Del.-N.J.) d</td>
<td>39 45 S 75 15'</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Elkton (Md.-Pa.-Del.)</td>
<td>39 30 S 75 45'</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Philadelphia and Vicinity (Pa.-N.J.-Del.) e</td>
<td>39 45 S 75 00'</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Salem (N.J.-Del.) b</td>
<td>39 30 S 75 15'</td>
<td>1/8 degree</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Vineland (N.J.-Del.) a</td>
<td>39 00 S 75 00'</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

District of Columbia

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Vernon (Va.-Md.-D.C.)</td>
<td>38 30 S 77 00'</td>
<td>1/4 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Patuxent (Md.-D.C.) d</td>
<td>38 30 S 76 30'</td>
<td>do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Washington (D.C.-Md.-Va., double sheet). d</td>
<td>38 45 S 76 45'</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:625000</td>
<td>10</td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arredondo</td>
<td>29 30 S 82 15'</td>
<td>1/8 degree</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Citra</td>
<td>29 15 S 82 00'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Dunnellon</td>
<td>29 00 S 82 15'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Ocala</td>
<td>29 00 S 82 00'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Panama City</td>
<td>28 45 S 82 00'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Tallahassee</td>
<td>28 45 S 82 15'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
<tr>
<td>Williston</td>
<td>29 15 S 82 15'</td>
<td>do</td>
<td>10</td>
<td>1:625000</td>
<td>5</td>
</tr>
</tbody>
</table>

Georgia

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>33 30 S 84 00'</td>
<td>1/4 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Carnesville (Ga.-S.C.)</td>
<td>34 00 S 85 00'</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Cartersville</td>
<td>34 00 S 84 30'</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Dahlonega (Ga.-N.C.)</td>
<td>34 30 S 83 30'</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Dalton (Ga.-Tenn.)</td>
<td>34 30 S 84 30'</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Elberton (Ga.-S.C.)</td>
<td>34 00 S 82 30'</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ellijay (Ga.-N.C.-Tenn.)</td>
<td>34 30 S 84 00'</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Payne (Ala.-Ga.)</td>
<td>34 00 S 85 30'</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Gainesville</td>
<td>34 00 S 83 30'</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>McCormick (Ga.-S.C.)</td>
<td>33 30 S 82 00'</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

a Bayside sheet, on scale of 1:62500, has been reduced and forms part of Vineland, on scale of 1:125000.
b Chester and Salem sheets, on scale of 1:62500, have been reduced and form parts of Camden, on scale of 1:125000.
c Philadelphia and Vicinity includes Chester, Germantown, Norristown, and Philadelphia sheets.
d East Washington sheet, on scale of 1:62500, has been reduced and forms part of Patuxent, on scale of 1:125000.
e Out of stock.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marietta</td>
<td>33 30</td>
<td>84 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Monroe</td>
<td>33 30</td>
<td>83 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ringgold (Ga.-Tenn.)</td>
<td>34 30</td>
<td>85 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Rome (Ga.-Ala.)</td>
<td>34 00</td>
<td>85 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Stevenson (Ala.-Ga.-Tenn.)</td>
<td>34 30</td>
<td>85 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Suwanee</td>
<td>34 00</td>
<td>84 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Tallapoosa (Ga.-Ala.)</td>
<td>33 30</td>
<td>85 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Walhalla (Ga.-S.C.-N.C.)</td>
<td>34 30</td>
<td>83 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear Valley</td>
<td>44 00</td>
<td>115 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Bisuka</td>
<td>43 00</td>
<td>116 00</td>
<td>do</td>
<td>25, 50, 100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Boise</td>
<td>43 30</td>
<td>116 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Camas Prairie</td>
<td>43 00</td>
<td>115 00</td>
<td>do</td>
<td>50, 100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Halley</td>
<td>43 30</td>
<td>114 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Idaho Basin</td>
<td>43 30</td>
<td>115 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Mountain Home</td>
<td>43 00</td>
<td>115 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Nampa (Idaho-Oreg.)</td>
<td>43 30</td>
<td>116 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Rocky Bar</td>
<td>43 30</td>
<td>115 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Sawtooth</td>
<td>43 30</td>
<td>114 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Silver City</td>
<td>43 00</td>
<td>116 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Squaw Creek</td>
<td>44 00</td>
<td>116 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Weiser (Idaho-Oreg.)</td>
<td>44 00</td>
<td>116 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calumet (Ill.-Ind.)</td>
<td>41 30</td>
<td>87 30</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Chicago</td>
<td>41 45</td>
<td>87 30</td>
<td>do</td>
<td>5</td>
<td>1:62500</td>
</tr>
<tr>
<td>Clinton (Iowa-III.) a</td>
<td>41 45</td>
<td>90 00</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cordova (Iowa-III.) a</td>
<td>41 30</td>
<td>90 00</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Danville (Ill.-Ind.)</td>
<td>40 00</td>
<td>87 30</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Davenport (Iowa-III.)</td>
<td>41 30</td>
<td>90 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Desplaines</td>
<td>41 30</td>
<td>87 45</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Dunlap</td>
<td>40 45</td>
<td>89 30</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Evanston</td>
<td>42 00</td>
<td>87 30</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Goose Lake (Iowa-III.) a</td>
<td>41 45</td>
<td>90 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Hennepin</td>
<td>41 15</td>
<td>89 15</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Highwood</td>
<td>42 00</td>
<td>87 45</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Joliet</td>
<td>41 30</td>
<td>88 00</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Laron</td>
<td>41 00</td>
<td>89 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Lancaster (Wis.-Iowa-III.)</td>
<td>42 30</td>
<td>90 30</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Lasalle</td>
<td>41 15</td>
<td>89 00</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>LeClaire (Iowa-III.) a</td>
<td>41 30</td>
<td>90 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Louisiana (Mo.-III.)</td>
<td>39 00</td>
<td>91 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Marseilles</td>
<td>41 15</td>
<td>88 30</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
</tr>
<tr>
<td>Metamora</td>
<td>40 45</td>
<td>89 15</td>
<td>do</td>
<td>10</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

Clinton, Goose Lake, and LeClaire sheets, on scale of 1:62500, have been reduced and form parts of Cordova, on scale of 1:125000.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morris</td>
<td>41 15 88 15</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ottawa</td>
<td>41 15 88 45</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Peosta (Iowa-Ill.)</td>
<td>42 00 90 30</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Riverside</td>
<td>41 45 87 45</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>St. Louis (Mo.-Ill.), double sheet</td>
<td>38 30 90 00</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Savannah (Iowa-Ill.)</td>
<td>42 00 90 00</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wilmington</td>
<td>41 15 88 00</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

ILLINOIS—Continued.

INDIANA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calumet (Ill.-Ind.)</td>
<td>41 30 87 30</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Danville (Ill.-Ind.)</td>
<td>40 00 87 30</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Toleton</td>
<td>41 30 87 15</td>
<td>1/2 degree</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

INDIAN TERRITORY.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoka</td>
<td>34 00 96 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Canadian</td>
<td>35 00 95 50</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Claremore</td>
<td>36 00 95 50</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Coalgate</td>
<td>34 30 96 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Smith (Ark.-Ind.T.)</td>
<td>35 00 94 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Joplin (Kans.-Mo.-Ind.T.)</td>
<td>37 00 94 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>McAlester</td>
<td>34 30 95 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Muscogee</td>
<td>35 30 95 90</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Okmulgee</td>
<td>35 30 95 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Poteau Mountain (Ark.-Ind.T.)</td>
<td>34 30 94 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Pryor</td>
<td>32 00 95 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Sallisaw</td>
<td>33 00 94 90</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Saultebois</td>
<td>35 00 95 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Stonewolf (Ind.T.-Okla.)</td>
<td>34 30 96 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tahlequah (Ind.T.-Ark.)</td>
<td>35 30 94 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tishomingo</td>
<td>34 00 96 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tusahoma</td>
<td>34 30 95 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Vinita</td>
<td>36 30 95 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wewoka</td>
<td>35 00 96 00</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Winding Stair</td>
<td>34 30 94 30</td>
<td>1/2 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also general maps, p. 109.)

IOWA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anamosa b</td>
<td>41 45 91 15</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Anamosa b</td>
<td>42 00 91 15</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Baldwin a</td>
<td>42 00 90 45</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Canton (S. Dak.-Iowa)</td>
<td>43 00 96 30</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cedar Rapids</td>
<td>41 45 91 30</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

a Baldwin and Maquoketta sheets, on scale of 1:62500, have been reduced and form part of Peosta, on scale of 1:125000.
b Anamosa and Monticello sheets, on scale of 1:62500, have been reduced and form parts of Farley, on scale of 1:125000.
Published topographic atlas sheets, arranged by States—Continued.

IOWA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>degree</td>
<td>Feet.</td>
<td></td>
</tr>
<tr>
<td>Clinton (Iowa-Ill.) a</td>
<td>41 45</td>
<td>90 00</td>
<td>1/2</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cordova (Iowa-Ill.) a</td>
<td>41 30</td>
<td>90 00</td>
<td>1/2</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Davenport (Iowa-Ill.)</td>
<td>41 30</td>
<td>90 30</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Dewitt</td>
<td>41 45</td>
<td>90 30</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Durant</td>
<td>41 30</td>
<td>90 45</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Farley b</td>
<td>42 00</td>
<td>91 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Goose Lake (Iowa-Ill.) a</td>
<td>41 45</td>
<td>90 15</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Iowa City</td>
<td>41 30</td>
<td>91 30</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Lancaster (Mo.-Iowa-Ill.)</td>
<td>42 30</td>
<td>90 30</td>
<td>1/2</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Leclaire (Iowa-Ill.) a</td>
<td>41 30</td>
<td>90 15</td>
<td>1/2</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Maquoketa e</td>
<td>42 00</td>
<td>90 30</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Marion</td>
<td>42 00</td>
<td>91 33</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Mechanicsville</td>
<td>41 45</td>
<td>91 15</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Monticello b</td>
<td>42 00</td>
<td>91 00</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Omaha and Vicinity (Nebr.-Iowa)</td>
<td>41 00</td>
<td>95 45</td>
<td>1/2</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Oxford</td>
<td>41 30</td>
<td>91 45</td>
<td>1/2</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Peosta (Iowa-Ill.) c</td>
<td>42 00</td>
<td>90 30</td>
<td>1/2</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Savanna (Iowa-Ill.)</td>
<td>42 00</td>
<td>90 00</td>
<td>1/2</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Shellburg</td>
<td>42 00</td>
<td>91 45</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Tipton</td>
<td>41 45</td>
<td>91 00</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>West Liberty</td>
<td>41 30</td>
<td>91 15</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Wheatland</td>
<td>41 45</td>
<td>90 45</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Wilton Junction</td>
<td>41 30</td>
<td>91 00</td>
<td>..</td>
<td>20</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

KANSAS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>degree</td>
<td>Feet.</td>
<td></td>
</tr>
<tr>
<td>Abilene</td>
<td>38 30</td>
<td>97 00</td>
<td>1/2</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Albany (Colo-Kansa.)</td>
<td>37 30</td>
<td>102 00</td>
<td>1/2</td>
<td>25</td>
<td>1:125000</td>
</tr>
<tr>
<td>Anthony</td>
<td>37 00</td>
<td>98 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Amphitoe (Nebr.-Kansa.)</td>
<td>40 00</td>
<td>99 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ashland d</td>
<td>37 00</td>
<td>99 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Atchison (Kansa.-Mo.)</td>
<td>39 30</td>
<td>95 00</td>
<td>..</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Beloit</td>
<td>39 00</td>
<td>98 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Burden</td>
<td>37 00</td>
<td>96 30</td>
<td>..</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Burlington</td>
<td>38 30</td>
<td>95 30</td>
<td>..</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Caldwell</td>
<td>37 00</td>
<td>97 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Cheney</td>
<td>37 30</td>
<td>97 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Cheyenne Wells (Colo.-Kansa.)</td>
<td>38 30</td>
<td>102 00</td>
<td>..</td>
<td>25</td>
<td>1:125000</td>
</tr>
<tr>
<td>Clay Center</td>
<td>39 00</td>
<td>97 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Coldwater</td>
<td>37 00</td>
<td>99 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Concordia</td>
<td>39 30</td>
<td>97 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Cottonwood Falls</td>
<td>38 00</td>
<td>96 30</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Dodge</td>
<td>37 30</td>
<td>90 00</td>
<td>..</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Eldorado</td>
<td>37 30</td>
<td>96 30</td>
<td>..</td>
<td>50</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

a Clinton, Goose Lake, and Leclaire sheets, on scale of 1:62500, have been reduced and form parts of Cordova, on scale of 1:125000.

b Anamosa and Monticello sheets, on scale of 1:62500, have been reduced and form parts of Farley, on scale of 1:125000.

c Baldwin and Maquoketa sheets, on scale of 1:62500, have been reduced and form parts of Peosta, on scale of 1:125000.

d Sitka, on scale of 1:62500, has been reduced and forms part of Ashland, on scale of 1:125000.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis</td>
<td>38°30' 99°30'</td>
<td>1 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ellsworth</td>
<td>38°30' 98°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Emporia</td>
<td>38°00' 96°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Eskridge</td>
<td>38°30' 96°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Eureka</td>
<td>37°30' 96°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Scott (Kans.-Mo.)</td>
<td>37°30' 94°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fredonia</td>
<td>37°30' 95°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Garden</td>
<td>37°30' 100°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Garnett</td>
<td>38°00' 95°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Granada (Colo.-Kans.)</td>
<td>38°00' 102°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Great Bend</td>
<td>38°00' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hays</td>
<td>38°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hebron (Nebr.-Kans.)</td>
<td>40°30' 97°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hiawatha</td>
<td>39°30' 95°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hill</td>
<td>39°00' 99°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Holdrege (Nebr.-Kans.)</td>
<td>40°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hutchinson</td>
<td>38°00' 97°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Independence</td>
<td>37°30' 95°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Iola</td>
<td>37°30' 95°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Joplin (Kans.-Mo.-Ind. T.)</td>
<td>37°30' 94°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Junction City</td>
<td>39°00' 96°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kansas City (Kans.-Mo.)</td>
<td>39°00' 94°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kingman</td>
<td>37°30' 98°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kinsley</td>
<td>37°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lakin</td>
<td>37°30' 101°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lamar</td>
<td>38°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lawrence</td>
<td>38°30' 95°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lyons</td>
<td>38°00' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mankato</td>
<td>39°30' 98°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Marysville</td>
<td>39°30' 96°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Meade</td>
<td>37°00' 100°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Medicine Lodge</td>
<td>37°00' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>39°00' 97°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mound City (Kans.-Mo.)</td>
<td>39°00' 94°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ness City</td>
<td>38°00' 99°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Newton</td>
<td>38°00' 97°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Norton</td>
<td>39°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Olathe (Kans.-Mo.)</td>
<td>38°30' 94°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Osborne</td>
<td>39°00' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Osawaloosa (Kans.-Mo.)</td>
<td>39°00' 95°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Parkerville</td>
<td>38°30' 96°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Parsons</td>
<td>37°30' 95°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Philpburg</td>
<td>39°30' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Plainville</td>
<td>39°00' 99°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Pratt</td>
<td>37°30' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Red Cloud (Nebr.-Kans.)</td>
<td>40°00' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Russell</td>
<td>38°30' 98°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Salina</td>
<td>38°30' 97°30'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Sedan</td>
<td>37°00' 96°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Seneca</td>
<td>39°30' 96°00'</td>
<td>0 do</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

39 00 96 00 0 do 20 1:125000 5
Published topographic atlas sheets, arranged by States—Continued.

KANSAS—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitka a...</td>
<td>37 00</td>
<td>99 30</td>
<td>90°</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Smith Center</td>
<td>39 30</td>
<td>98 30</td>
<td>90°</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Spearville</td>
<td>37 30</td>
<td>99 30</td>
<td>90°</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Superior (Nebr.-Kans.)</td>
<td>40 00</td>
<td>98 00</td>
<td>90°</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Syracuse</td>
<td>37 30</td>
<td>101 30</td>
<td>90°</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Topeka</td>
<td>39 00</td>
<td>95 30</td>
<td>90°</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Vitas (Colo.-Kans.)</td>
<td>37 00</td>
<td>102 00</td>
<td>90°</td>
<td>25</td>
<td>1:125000</td>
</tr>
<tr>
<td>Wamego</td>
<td>39 00</td>
<td>96 00</td>
<td>90°</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Washington</td>
<td>39 30</td>
<td>97 00</td>
<td>90°</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Wellington</td>
<td>37 00</td>
<td>97 00</td>
<td>90°</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Wichita</td>
<td>37 30</td>
<td>97 00</td>
<td>90°</td>
<td>50</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

KENTUCKY.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beattyville</td>
<td>37 30</td>
<td>83 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Cincinnati (Ohio-Ky.) doublesheet b...</td>
<td>39 00</td>
<td>84 15</td>
<td>90°</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cumberland Gap (Ky.-Va.-Tenn.)...</td>
<td>36 30</td>
<td>83 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>East Cincinnati (Ohio-Ky.) b...</td>
<td>39 00</td>
<td>84 15</td>
<td>90°</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Estillville (Va.-Ky.-Tenn.) b...</td>
<td>36 30</td>
<td>82 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Grundy (Va.-Ky.)...</td>
<td>37 00</td>
<td>82 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Hazard</td>
<td>37 00</td>
<td>85 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Huntington (W. Va.-Ohio-Ky.)...</td>
<td>38 00</td>
<td>82 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ironont (Ohio-Ky.)...</td>
<td>38 30</td>
<td>82 30</td>
<td>90°</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Jonesville (Ky.-Va.-Tenn.)...</td>
<td>36 30</td>
<td>83 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>London</td>
<td>37 00</td>
<td>84 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Manchester</td>
<td>37 00</td>
<td>83 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Oceana (W. Va.-Ky.)...</td>
<td>37 30</td>
<td>81 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Prestonsburg</td>
<td>37 30</td>
<td>82 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Richmond</td>
<td>37 30</td>
<td>84 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Salyersville</td>
<td>37 30</td>
<td>83 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Warfield (W. Va.-Ky.-Va.)...</td>
<td>37 30</td>
<td>82 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>West Cincinnati (Ohio-Ky.) b...</td>
<td>39 00</td>
<td>84 30</td>
<td>90°</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Whitesburg (Ky.-Va.)...</td>
<td>37 00</td>
<td>82 30</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Williamsburg (Ky.-Tenn.)...</td>
<td>36 30</td>
<td>84 00</td>
<td>90°</td>
<td>100</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

LOUISIANA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barataria...</td>
<td>29 30</td>
<td>90 00</td>
<td>90°</td>
<td>5</td>
<td>1:62500</td>
</tr>
<tr>
<td>Bayou de Large</td>
<td>29 15</td>
<td>90 45</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Bodreau</td>
<td>29 45</td>
<td>89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Bonnet Carre</td>
<td>30 00</td>
<td>90 15</td>
<td></td>
<td>5</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cat Island (La.-Miss.)...</td>
<td>30 00</td>
<td>89 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Chalender...</td>
<td>29 45</td>
<td>89 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Chef Menteur...</td>
<td>30 00</td>
<td>89 45</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cheniere Caminada</td>
<td>29 00</td>
<td>90 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Creole</td>
<td>29 15</td>
<td>90 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Cut Off...</td>
<td>29 30</td>
<td>90 15</td>
<td></td>
<td>5</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

a Sitka, on scale of 1:62500, has been reduced and forms part of Ashland, on scale of 1:125000.
b Cincinnati (double sheet) includes East Cincinnati and West Cincinnati sheets.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dime</td>
<td>29 30 89 30</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Donaldsonville</td>
<td>30 00 90 45</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dulac</td>
<td>29 15 90 30</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>East Delta</td>
<td>29 00 89 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fort Livingston</td>
<td>29 15 89 45</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Forts</td>
<td>29 15 89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gibson</td>
<td>29 30 90 45</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hahnville</td>
<td>29 45 90 15</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Houma</td>
<td>29 30 90 30</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>La Fortuna</td>
<td>29 30 89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lac des Allemands</td>
<td>29 45 90 15</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lake Felicity</td>
<td>29 15 90 15</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Airy</td>
<td>30 00 90 30</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New Orleans</td>
<td>29 45 90 00</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Pointe a la Hache</td>
<td>29 30 89 45</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Quarantine</td>
<td>29 15 89 30</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Rigolets (La.-Miss.)</td>
<td>30 00 89 30</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>St. Bernard</td>
<td>29 45 89 45</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Shell Beach</td>
<td>29 45 89 30</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Spanish Fort</td>
<td>30 00 90 00</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Tibodeaux</td>
<td>29 45 90 45</td>
<td></td>
<td>5</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Timberville</td>
<td>29 00 89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Toulane (La.-Miss.)</td>
<td>30 00 89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>West Delta</td>
<td>29 00 89 15</td>
<td></td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

MAINE.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet.</th>
<th>Area covered.</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augusta</td>
<td>44 15 69 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Bath</td>
<td>43 45 69 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Berwick (Me.-N. H.)</td>
<td>43 15 70 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Biddeford</td>
<td>43 15 70 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Boothbay</td>
<td>43 45 69 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Bucksport</td>
<td>44 30 69 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Buxton</td>
<td>43 30 70 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Casco Bay</td>
<td>43 30 70 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dover (N. H.-Me.)</td>
<td>43 00 70 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Freeport</td>
<td>43 45 70 06</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gardiner</td>
<td>44 06 69 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gorham (N. H.-Me.) a</td>
<td>44 15 71 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gray</td>
<td>43 45 70 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Kennebunk</td>
<td>43 15 70 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Washington and Vicinity (N. H.-Me.) a</td>
<td>44 00 71 00</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Newfield (Me.-N. H.)</td>
<td>43 30 70 45</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Norridgewock</td>
<td>44 30 69 45</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>North Conway (N. H.-Me.) a</td>
<td>44 00 71 00</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Norway</td>
<td>44 00 70 30</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Orland</td>
<td>44 30 68 30</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Portland</td>
<td>43 30 70 15</td>
<td>5 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

a Mt. Washington and Vicinity sheet includes Gorham and North Conway sheets, together with the Crawford Notch and Mt. Washington sheets, New Hampshire.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

MAINE—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebago</td>
<td>43 45 70 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Small Point</td>
<td>43 30 69 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Vassalboro</td>
<td>44 15 69 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Waterville</td>
<td>44 30 69 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wiscasset</td>
<td>44 00 69 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>York (Me.-N. H.)</td>
<td>43 00 70 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Accident (Md.-Pa.-W. Va.)</td>
<td>39 30 79 15</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Annapolis</td>
<td>38 45 76 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Baltimore</td>
<td>39 15 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Betterton b</td>
<td>39 15 76 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brandywinee</td>
<td>38 30 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cecilton (Md.-Del.)</td>
<td>39 15 75 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Choptank</td>
<td>38 30 76 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Drum Point d</td>
<td>38 15 76 15</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Elkton (Md.-Pa.-Del.)</td>
<td>39 30 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ellicott</td>
<td>39 15 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Flintstone (Md.-W. Va.-Pa.)</td>
<td>39 30 78 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Frederick (Md.-Va.)</td>
<td>39 00 77 00</td>
<td>1/6 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Frederickburg (Va.-Md.)</td>
<td>39 00 77 00</td>
<td></td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Frostburg (Md.-W. Va.-Pa.)</td>
<td>39 30 78 45</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Grantsville (Md.-Pa.)</td>
<td>39 30 79 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gunpowder b</td>
<td>39 15 76 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Harpers Ferry (Va.-W. Va.-Md.)</td>
<td>39 00 77 30</td>
<td>5/6 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Havre de Grace (Md.-Pa.)</td>
<td>39 30 76 00</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Laurel</td>
<td>39 00 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Leonardtown e</td>
<td>38 15 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Montross (Va.-Md.) e</td>
<td>38 00 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Vernon (Va.-Md.-D. C.)</td>
<td>38 30 77 00</td>
<td>1/6 degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Nomini (Md.-Va.) e</td>
<td>38 00 76 30</td>
<td></td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>North Point b</td>
<td>39 00 76 15</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oakland (Md.-W. Va.)</td>
<td>39 15 76 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Owensville c ...</td>
<td>38 45 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Putuxent (Md.-D. C.)</td>
<td>38 30 76 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Pawpaw (Md.-W. Va.-Pa.)</td>
<td>39 30 78 15</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Piedmont (W. Va.-Md.)</td>
<td>39 00 79 00</td>
<td>1/6 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Pinney Point (Md.-Va.) e</td>
<td>38 00 75 30</td>
<td>5/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Point Lookout (Md.-Va.) d</td>
<td>38 00 76 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Prince Frederick c</td>
<td>38 30 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Relay</td>
<td>39 00 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Romney (W. Va.-Md.)</td>
<td>39 00 78 30</td>
<td>1/6 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

a Annapolis and Sharps Island sheets, on scale of 1:62500, have been reduced and form parts of Choptank, on scale of 1:125000.

b Betterton, Gunpowder, and North Point sheets, on scale of 1:62500, have been reduced and form parts of Tolchester, on scale of 1:125000.

c Brandywine, East Washington, Owensville, and Prince Frederick sheets, on scale of 1:62500, have been reduced and form parts of Putuxent, on scale of 1:125000.

d Drum Point and Point Lookout sheets, on scale of 1:62500, have been reduced and form parts of St. Mary, on scale of 1:125000.

e Leonardtown, Montross, Pinney Point, and Wicomico sheets, on scale of 1:62500, have been reduced and form parts of Nomini, on scale of 1:125000.
Maryland—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Mary (Md.-Va.) a</td>
<td>38 00 76 00</td>
<td>1/4 degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Sharps Island b</td>
<td>38 30 76 15</td>
<td>1/6 degree...</td>
<td>None.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Tolchester c</td>
<td>39 00 76 00</td>
<td>1/4 degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Washington (D.C.-Md.-Va.) (double sheet.) d</td>
<td>38 45 76 45</td>
<td>1/4 degree...</td>
<td>20</td>
<td>1:62500</td>
<td>10</td>
</tr>
<tr>
<td>Wicomico (Md.-Va.) e</td>
<td>38 15 76 45</td>
<td>1/6 degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

Massachusetts.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abington</td>
<td>41 00 70 45</td>
<td>1/6 degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Barnstable</td>
<td>41 32 70 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Barre</td>
<td>42 15 72 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Becket f</td>
<td>42 15 73 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Belchertown</td>
<td>42 15 72 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Berlin (N.Y.-Mass.-Vt.)</td>
<td>42 30 73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Blackstone (Mass.-R.I.)</td>
<td>42 00 71 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Boston</td>
<td>42 15 71 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Boston Bay</td>
<td>42 15 70 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brookfield (Mass.-Conn.)</td>
<td>42 00 72 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Chatham</td>
<td>41 30 69 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Chesterfield h</td>
<td>42 15 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dedham</td>
<td>42 00 71 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Duxbury</td>
<td>42 00 70 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fall River (Mass.-R.I.)</td>
<td>41 30 71 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Falmouth</td>
<td>41·30 70 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fitchburg (Mass.-N.H.)</td>
<td>42 30 71 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Framingham</td>
<td>42 15 71 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Franklin (Mass.-R.I.)</td>
<td>42 00 71 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gay Head</td>
<td>41 15 70 42</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gloucester</td>
<td>42 30 70 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Granville (Mass.-Conn.) h</td>
<td>42 00 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Greenfield (Mass.-Vt.)</td>
<td>42 30 72 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Greylock (Mass.-Vt.)</td>
<td>42 30 73 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Groton (Mass.-N.H.)</td>
<td>42 30 71 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Havenhill (Mass.-N.H.)</td>
<td>42 45 71 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hawley (Mass.-Vt.)</td>
<td>42 30 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Holyoke (Mass.-Conn.) a</td>
<td>42 00 72 30</td>
<td>1/4 degree...</td>
<td>40</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Housatonic (Mass.-Conn.-N.Y.)</td>
<td>42 00 73 00</td>
<td>...do...</td>
<td>40</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

a Drum Point and Point Lookout sheets, on scale of 1:62500, have been reduced and form parts of St. Mary, on scale of 1:125000.
b Annapolis and Sharps Island sheets, on scale of 1:62500, have been reduced and form parts of Choptank, on scale of 1:125000.
c Betterton, Gunpowder, and North Point sheets, on scale of 1:62500, have been reduced and form parts of Tolchester, on scale of 1:125000.
d Brandywine, East Washington, Owensville, and Prince Frederick sheets, on scale of 1:62500, have been reduced and form parts of Tolchester, on scale of 1:125000.
e Leonardtown, Montross, Piney Point, and Wicomico sheets, on scale of 1:62500, have been reduced and form part of Nomini, on scale of 1:125000.
f Becket, Pittsfield, Sandisfield, and Sheffield sheets, on scale of 1:62500, have been reduced and form parts of Housatonic, on scale of 1:125000.
g Berlin and Greylock sheets, on scale of 1:62500, have been reduced and form parts of Taconic, on scale of 1:125000.
a Chesterfield, Granville, Northampton, and Springfield sheets, on scale of 1:62500, have been reduced and form part of Holyoke, on scale of 1:125000.
Published topographic atlas sheets, arranged by States—Continued.

MASSACHUSETTS—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawrence (Mass.-N.H.)</td>
<td>o 42 30, Long. 71 00</td>
<td>64 degree</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lowell (Mass.-N.H.)</td>
<td>o 42 30, Long. 71 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Marlboro</td>
<td>42 15, Long. 71 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Martha's Vineyard</td>
<td>41 15, Long. 70 27</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Middleboro</td>
<td>41 45, Long. 70 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Muskgeet</td>
<td>41 15, Long. 70 12</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Nantucket</td>
<td>41 13, Long. 69 57</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New Bedford</td>
<td>41 30, Long. 70 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Newburyport (Mass.-N.H.)</td>
<td>o 42 45, Long. 70 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Northampton a</td>
<td>o 42 15, Long. 72 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Palmer (Mass.-Conn.)</td>
<td>o 42 00, Long. 72 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Pittsfield (Mass.-N.Y.) b</td>
<td>42 15, Long. 73 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Plymouth</td>
<td>41 45, Long. 70 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Providence (Mass.-R. I.)</td>
<td>41 45, Long. 71 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Providence town</td>
<td>42 00, Long. 70 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sakonnet (R. I.-Mass.)</td>
<td>41 15, Long. 71 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Salem</td>
<td>42 30, Long. 70 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sandisfield (Mass.-Conn.) b</td>
<td>42 00, Long. 73 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sheffield (Mass.-Conn.-N.Y.) b</td>
<td>42 00, Long. 73 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Springfield (Mass.-Conn.) a</td>
<td>42 00, Long. 72 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Taconic (N.Y.-Mass.-Vt.) c</td>
<td>42 30, Long. 73 00</td>
<td>1/9 degree</td>
<td>40 cts.</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Taunton</td>
<td>41 45, Long. 71 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Warwick (Mass.-N.H.-Vt.)</td>
<td>42 30, Long. 72 15</td>
<td>1/9 degree</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Webster (Mass.-Conn.-R. I.)</td>
<td>42 00, Long. 71 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wellfleet</td>
<td>41 45, Long. 69 55</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Winchendon (Mass.-N.H.)</td>
<td>42 30, Long. 72 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Worcester</td>
<td>42 15, Long. 71 45</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Yarmouth</td>
<td>41 30, Long. 70 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also general maps, p. 109.)

MICHIGAN.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval.</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Falls</td>
<td>46 00, Long. 88 15</td>
<td>1/9 degree</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Iron River (Mich.-Wis.)</td>
<td>46 00, Long. 88 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ned Lake</td>
<td>46 15, Long. 88 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Passage Island</td>
<td>48 00, Long. 88 15</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Perch Lake</td>
<td>46 15, Long. 88 30</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sagola</td>
<td>46 00, Long. 88 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Witbeck</td>
<td>46 15, Long. 88 00</td>
<td>do</td>
<td>20 cts.</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

a Chesterfield, Granville, Northampton, and Springfield sheets, on scale of 1 :62500, have been reduced and form parts of Holyoke, on scale of 1:125000.

b Becket, Pittsfield, Sandisfield, and Sheffield sheets, on scale of 1 :62500, have been reduced and form parts of Housatonic, on scale of 1:125000.

c Berlin and Greylock sheets, on scale of 1 :62500, have been reduced and form parts of Taconic, on scale of 1:125000.

Bull. 177—01—6
PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Published topographic atlas sheets, arranged by States—Continued.

MINNESOTA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Duluth</td>
<td>46 45</td>
<td>92 00</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fargo (N. Dak.—Minn.)</td>
<td>46 20</td>
<td>96 30</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>44 45</td>
<td>93 15</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>St. Croix Dalles (Wis.—Minn.)</td>
<td>45 35</td>
<td>92 30</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>St. Paul</td>
<td>44 45</td>
<td>93 00</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

MISSISSIPPI.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cat Island (La.—Miss.)</td>
<td>30 00</td>
<td>89 00</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Rigolets (La.—Miss.)</td>
<td>30 00</td>
<td>89 30</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Toulne (La.—Miss.)</td>
<td>30 00</td>
<td>89 15</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

MISSOURI.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Atchison (Kans.—Mo.)</td>
<td>39 30</td>
<td>95 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Bolivar</td>
<td>37 30</td>
<td>93 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Boonville</td>
<td>38 30</td>
<td>92 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Butler</td>
<td>38 00</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Carthage</td>
<td>37 00</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Clinton</td>
<td>38 00</td>
<td>93 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fayetteville (Ark.—Mo.)</td>
<td>36 00</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Scott (Kans.—Mo.)</td>
<td>37 30</td>
<td>94 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fulton</td>
<td>38 30</td>
<td>91 39</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Glasgow</td>
<td>39 00</td>
<td>92 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Greenwood</td>
<td>37 00</td>
<td>93 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Harrisonville</td>
<td>38 30</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hermann</td>
<td>38 30</td>
<td>91 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Independence</td>
<td>39 00</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Jefferson City</td>
<td>38 30</td>
<td>92 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Joplin (Kans.—Mo.—Ind. T.)</td>
<td>37 00</td>
<td>94 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kansas City (Kans.—Mo.)</td>
<td>39 00</td>
<td>94 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lexington</td>
<td>39 00</td>
<td>93 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Louisiana (Mo.—Ill.)</td>
<td>39 00</td>
<td>91 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Marshall</td>
<td>39 00</td>
<td>93 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mexico</td>
<td>39 00</td>
<td>91 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Moberly</td>
<td>39 00</td>
<td>92 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mound City (Kans.—Mo.)</td>
<td>36 00</td>
<td>94 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mountain Home (Ark.—Mo.)</td>
<td>36 00</td>
<td>92 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Nevada.</td>
<td>37 30</td>
<td>94 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Olath (Kans.—Mo.)</td>
<td>38 30</td>
<td>94 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Osakaloosa (Kans.—Mo.)</td>
<td>39 00</td>
<td>95 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>St. Louis (Mo.—Ill.) (double sheet)</td>
<td>38 30</td>
<td>90 00</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Sedalia</td>
<td>35 30</td>
<td>93 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Springfield</td>
<td>37 00</td>
<td>93 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Stockton</td>
<td>37 30</td>
<td>93 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Tecumseh</td>
<td>38 00</td>
<td>92 03</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Versailles</td>
<td>38 00</td>
<td>92 33</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Warrensburg</td>
<td>38 30</td>
<td>93 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Warsaw</td>
<td>38 00</td>
<td>93 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Yellville (Ark.—Mo)</td>
<td>36 00</td>
<td>92 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Name of atlas sheet</td>
<td>Position of SE. corner of sheet</td>
<td>Area covered</td>
<td>Contour interval</td>
<td>Scale</td>
<td>Price</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Big Snowy Mountain</td>
<td>46 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Big Timber</td>
<td>45 30</td>
<td>109 30</td>
<td>½ degree</td>
<td>50</td>
<td>1:12500</td>
</tr>
<tr>
<td>Boulder</td>
<td>46 00</td>
<td>112 00</td>
<td>...do...</td>
<td>100</td>
<td>1:12500</td>
</tr>
<tr>
<td>Dillon</td>
<td>45 00</td>
<td>112 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Fort Benton</td>
<td>47 00</td>
<td>110 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Fort Custer</td>
<td>45 30</td>
<td>107 30</td>
<td>½ degree</td>
<td>50</td>
<td>1:12500</td>
</tr>
<tr>
<td>Fort Logan</td>
<td>46 00</td>
<td>111 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Great Falls</td>
<td>47 00</td>
<td>111 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Helena</td>
<td>46 00</td>
<td>112 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Huntley</td>
<td>45 30</td>
<td>108 00</td>
<td>½ degree</td>
<td>50</td>
<td>1:12500</td>
</tr>
<tr>
<td>Little Belt Mountains</td>
<td>46 00</td>
<td>110 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Livingston (Mont.-Yellowstone Nat. Park)</td>
<td>45 00</td>
<td>110 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Rosebud</td>
<td>45 00</td>
<td>107 00</td>
<td>½ degree</td>
<td>50</td>
<td>1:12500</td>
</tr>
<tr>
<td>St. Xavier</td>
<td>45 00</td>
<td>107 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td>Stillwater</td>
<td>45 30</td>
<td>109 00</td>
<td>...do...</td>
<td>50</td>
<td>1:12500</td>
</tr>
<tr>
<td>Threeforks (Mont.-Yellowstone Nat. Park)</td>
<td>45 00</td>
<td>111 00</td>
<td>...do...</td>
<td>200</td>
<td>1:25000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arapahoe (Nebr.-Kans.)</td>
<td>40 00</td>
<td>99 30</td>
<td>½ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Brown's Creek</td>
<td>41 30</td>
<td>102 30</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Camp Clarke</td>
<td>41 30</td>
<td>103 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Chappell</td>
<td>41 00</td>
<td>102 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>David City</td>
<td>41 00</td>
<td>97 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Fremont</td>
<td>41 00</td>
<td>96 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Goshen Hole (Wyo.-Nebr.)</td>
<td>41 30</td>
<td>104 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Grand Island a</td>
<td>40 30</td>
<td>98 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Grand Island a</td>
<td>40 45</td>
<td>98 15</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Hebron (Nebr.-Kans.)</td>
<td>40 00</td>
<td>97 30</td>
<td>¼ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Holdrege (Nebr.-Kans.)</td>
<td>40 00</td>
<td>99 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Kearney b</td>
<td>40 30</td>
<td>99 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Kearny h</td>
<td>40 30</td>
<td>99 00</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Kenesaw c</td>
<td>40 30</td>
<td>98 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Lexington</td>
<td>40 30</td>
<td>99 30</td>
<td>½ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Lincoln</td>
<td>40 30</td>
<td>96 30</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Loup</td>
<td>41 00</td>
<td>98 20</td>
<td>½ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Minden c</td>
<td>40 30</td>
<td>98 45</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Oelrichs (S. Dak.-Nebr.)</td>
<td>40 00</td>
<td>103 00</td>
<td>½ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ogallala</td>
<td>41 00</td>
<td>101 30</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Omaha and Vicinity (Nebr.-Iowa)</td>
<td>41 00</td>
<td>95 45</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Patrick (Wyo.-Nebr.)</td>
<td>42 00</td>
<td>104 00</td>
<td>½ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Paxton</td>
<td>41 00</td>
<td>101 00</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

a Grand Island sheet on scale of 1:62500 has been reduced and forms part of Grand Island on scale of 1:125000.
b Kearney sheet on scale of 1:62500 has been reduced and forms part of Kearney on scale of 1:125000.
c Kenesaw, Minden, and Wood River sheets, on scale of 1:62500, have been reduced and form parts of Wood River on scale of 1:125000.
PUBLICATIONS OF U.S. GEOLOGICAL SURVEY

BULL. 177.

Published topographic atlas sheets, arranged by States—Continued.

NEBRASKA—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Cloud (Nebr.-Kans.)</td>
<td>40 00 98 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>St. Paul</td>
<td>41 00 98 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Scotts Bluff</td>
<td>41 30 102 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Sidney</td>
<td>41 00 97 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Stromsburg</td>
<td>40 00 96 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Superior (Nebr.-Kans.)</td>
<td>42 00 98 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wahoo</td>
<td>41 00 96 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Whistle Creek</td>
<td>42 00 102 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wood River a</td>
<td>40 00 98 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>York</td>
<td>40 00 97 30</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

NEVADA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp Mohave (Ariz.-Nev-Cal.)</td>
<td>35 00 114 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Carson b</td>
<td>39 00 119 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Disaster</td>
<td>41 00 118 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Granite Range</td>
<td>40 00 119 00</td>
<td>1/4 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Lake Tahoe and Vicinity (Cal.-Nev.)</td>
<td>38 30 118 30</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Long Valley</td>
<td>41 00 118 30</td>
<td>1/4 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Markleeville (Cal.-Nev.)</td>
<td>38 30 118 30</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Paradise</td>
<td>41 00 117 00</td>
<td>1/4 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Pioche (Nev-Utah)</td>
<td>37 00 114 00</td>
<td>1/4 degree</td>
<td>250</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>St. Thomas (Nev-Ariz.)</td>
<td>39 00 119 30</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Silver Peak (Nev-Cal.)</td>
<td>37 30 117 20</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wabuska</td>
<td>39 00 119 00</td>
<td>1/4 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Wadsworth</td>
<td>39 30 119 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wellington (Cal.-Nev)</td>
<td>38 30 119 00</td>
<td>1/4 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

NEW HAMPSHIRE.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berwick (Me.-N.H.)</td>
<td>43 15 70 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brattleboro (Vt.-N.H.)</td>
<td>42 45 72 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Crawford Notch c</td>
<td>44 00 71 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dover (N.H.-Me.)</td>
<td>43 00 70 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fitchburg (Mass.-N.H.)</td>
<td>42 30 71 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Gorham (N.H.-Me.) c</td>
<td>44 15 71 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Groton (Mass.-N.H.)</td>
<td>42 30 71 30</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Haverhill (Mass.-N.H.)</td>
<td>42 45 71 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Keene (N.H.-Vt.)</td>
<td>42 45 72 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lawrence (Mass.-N.H.)</td>
<td>42 30 71 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lowell (Mass.-N.H.)</td>
<td>42 30 71 45</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Monadnock</td>
<td>42 45 72 00</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Washington c</td>
<td>44 15 71 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Washington and Vicinity (N.H.-Me.)</td>
<td>44 00 71 15</td>
<td>1/6 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

a Kenesaw, Minden, and Wood River sheets, on scale of 1:62500, have been reduced and form parts of Wood River on scale of 1:125000.
b Lake Tahoe and Vicinity includes Carson, Markleeville, Pyramid Peak, and Truckee sheets.
c Mt. Washington and Vicinity includes Crawford Notch, Gorham, Mt. Washington, and North Conway sheets.
NEW HAMPSHIRE—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Newburyport (Mass.-N. H.)</td>
<td>42 45</td>
<td>70 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Newfield (Me.-N. H.)</td>
<td>43 30</td>
<td>70 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>North Conway (N. H.-Me.) a.</td>
<td>44 00</td>
<td>71 60</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Peterboro</td>
<td>42 45</td>
<td>71 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Warwick (Mass.-N. H.-Vt.)</td>
<td>42 30</td>
<td>72 15</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Whitefield (N. H.-Vt.)</td>
<td>44 15</td>
<td>71 30</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Winchendon (Mass.-N. H.)</td>
<td>42 30</td>
<td>72 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>York (Me.-N. H.)</td>
<td>43 00</td>
<td>70 30</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

NEW JERSEY.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbury Park</td>
<td>40 00</td>
<td>74 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Atlantic City</td>
<td>39 15</td>
<td>74 15</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Barnegat</td>
<td>39 45</td>
<td>74 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bayside (N. J.-Del.) b</td>
<td>39 15</td>
<td>75 15</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bordentown (N. J.-Pa.)</td>
<td>40 00</td>
<td>74 30</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bridgeton b</td>
<td>39 15</td>
<td>75 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Burlington (Pa.-N. J.)</td>
<td>40 00</td>
<td>74 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Camden (N. J.-Pa.-Del.) c</td>
<td>39 30</td>
<td>75 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Cape May</td>
<td>38 45</td>
<td>74 45</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cassville</td>
<td>40 00</td>
<td>74 15</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Chester (Pa.-Del.-N. J.) cd</td>
<td>39 45</td>
<td>75 15</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Delaware Water Gap (Pa.-N. J.)</td>
<td>40 45</td>
<td>75 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Dennisville</td>
<td>39 00</td>
<td>74 45</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Doylestown (Pa.-N. J.)</td>
<td>40 15</td>
<td>75 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Easton (Pa.-N. J.)</td>
<td>40 30</td>
<td>75 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Franklin</td>
<td>41 00</td>
<td>74 30</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Germantown (Pa.-N. J.) d</td>
<td>40 00</td>
<td>75 00</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Glassboro c</td>
<td>39 30</td>
<td>75 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Great Egg Harbor</td>
<td>39 15</td>
<td>74 30</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Greenwood Lake (N. J.-N. Y.)</td>
<td>41 00</td>
<td>74 15</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Hackentown e</td>
<td>40 45</td>
<td>74 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Hammonton f</td>
<td>39 30</td>
<td>74 45</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Harlem (N. Y.-N. J.) g</td>
<td>40 45</td>
<td>74 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>High Bridge e</td>
<td>40 30</td>
<td>74 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Lake Hopatcong e</td>
<td>40 45</td>
<td>74 30</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Lambertville (Pa.-N. J.)</td>
<td>40 15</td>
<td>74 45</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Little Egg Harbor</td>
<td>39 30</td>
<td>74 15</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Long Beach</td>
<td>39 30</td>
<td>74 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Maurice Cove b</td>
<td>39 00</td>
<td>75 00</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

a Mt. Washington and Vicinity includes Crawford Notch, Gorham, Mt. Washington, and North Conway sheets.
b Bayside, Bridgeton, and Maurice Cove sheets, on scale of 1:62500, have been reduced and form parts of Vineland, on scale of 1:125000.
c Chester, Glassboro, Philadelphia, and Salem sheets, on scale of 1:62500, have been reduced and form parts of Camden, on scale of 1:125000.
d Philadelphia and Vicinity includes Chester, Germantown, Norristown, and Philadelphia sheets.
e Hackettstown, High Bridge, Lake Hopatcong, and Somerville sheets, on scale of 1:62500, have been reduced and form parts of Raritan, on scale of 1:125000.
f Hammonton, Mount Holly, Mullica, and Pemberton sheets, on scale of 1:62500, have been reduced and form parts of Raritan, on scale of 1:125000.
g New York City and Vicinity includes Brooklyn, Harlem, Paterson, Staten Island, and parts of Hempstead, Oyster Bay, and Sandy Hook sheets.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown a</td>
<td>0</td>
<td>40</td>
<td>74 15</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>Mt. Holly b</td>
<td>39</td>
<td>45</td>
<td>74 45</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Mullica b</td>
<td>39</td>
<td>30</td>
<td>74 30</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>40</td>
<td>15</td>
<td>74 15</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>New York City and Vicinity</td>
<td>40</td>
<td>22</td>
<td>73 40</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>(N. Y.-N. J.) e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passaic (N. J.-N. Y.) a</td>
<td>40</td>
<td>30</td>
<td>74 00</td>
<td>1/4 degree</td>
<td>20</td>
</tr>
<tr>
<td>Paterson (N. J.-N. Y.) ac</td>
<td>40</td>
<td>45</td>
<td>74 00</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>Pemberton b</td>
<td>39</td>
<td>45</td>
<td>74 30</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Philadelphia (Pa.-N. J.) de</td>
<td>39</td>
<td>45</td>
<td>75 00</td>
<td>...do...</td>
<td>20</td>
</tr>
<tr>
<td>Philadelphia and Vicinity (Pa.-N. J.-Del.) e</td>
<td>39</td>
<td>45</td>
<td>75 00</td>
<td>1/4 degree</td>
<td>20</td>
</tr>
<tr>
<td>Plainfield a</td>
<td>40</td>
<td>30</td>
<td>74 15</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>Princeton</td>
<td>40</td>
<td>15</td>
<td>74 30</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Rancocas b</td>
<td>39</td>
<td>30</td>
<td>74 30</td>
<td>1/2 degree</td>
<td>10</td>
</tr>
<tr>
<td>Raritan f</td>
<td>40</td>
<td>30</td>
<td>74 30</td>
<td>...do...</td>
<td>20</td>
</tr>
<tr>
<td>Salem (N. J.-Del.) d</td>
<td>39</td>
<td>30</td>
<td>75 15</td>
<td>1/2 degree</td>
<td>10</td>
</tr>
<tr>
<td>Sandy Hook c</td>
<td>40</td>
<td>15</td>
<td>74 00</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Sea Isle</td>
<td>39</td>
<td>00</td>
<td>74 30</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Somerville f</td>
<td>40</td>
<td>30</td>
<td>74 30</td>
<td>...do...</td>
<td>20</td>
</tr>
<tr>
<td>Staten Island (N. J.-N. Y.) ac</td>
<td>40</td>
<td>30</td>
<td>74 00</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>Tarrytown (N. Y.-N. J.)</td>
<td>41</td>
<td>00</td>
<td>73 45</td>
<td>...do...</td>
<td>20</td>
</tr>
<tr>
<td>Tuckahoe</td>
<td>39</td>
<td>15</td>
<td>74 45</td>
<td>...do...</td>
<td>10</td>
</tr>
<tr>
<td>Vineland (N. J.-Del.) g</td>
<td>39</td>
<td>00</td>
<td>73 00</td>
<td>1/2 degree</td>
<td>20</td>
</tr>
<tr>
<td>Wallpack (N. J.-Pa.)</td>
<td>41</td>
<td>00</td>
<td>74 15</td>
<td>...do...</td>
<td>20</td>
</tr>
<tr>
<td>Whiting</td>
<td>39</td>
<td>45</td>
<td>74 15</td>
<td>...do...</td>
<td>10</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

NEW MEXICO.

<table>
<thead>
<tr>
<th></th>
<th>Lat.</th>
<th>Long.</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque</td>
<td>35</td>
<td>00</td>
<td>106 30</td>
<td>1/2 degree</td>
<td>50</td>
</tr>
<tr>
<td>Bernal</td>
<td>35</td>
<td>00</td>
<td>105 00</td>
<td>...do...</td>
<td>50</td>
</tr>
<tr>
<td>Canyon de Chelly (Ariz.-N. Mex.)</td>
<td>36</td>
<td>00</td>
<td>109 00</td>
<td>1/2 degree</td>
<td>200</td>
</tr>
<tr>
<td>Chaco</td>
<td>36</td>
<td>00</td>
<td>108 00</td>
<td>...do...</td>
<td>200</td>
</tr>
<tr>
<td>Coronado</td>
<td>35</td>
<td>00</td>
<td>104 30</td>
<td>1/2 degree</td>
<td>50</td>
</tr>
<tr>
<td>Deming</td>
<td>32</td>
<td>00</td>
<td>107 30</td>
<td>...do...</td>
<td>100</td>
</tr>
</tbody>
</table>

a Morristown, Paterson, Plainfield, and Staten Island sheets, on scale of 1:62500, have been reduced and form parts of Passaic, on scale of 1:125000.

b Hammonton, Mount Holly, Mullica, and Pemberton sheets, on scale of 1:62500, have been reduced and form parts of Rancocas, on scale of 1:125000.

c New York City and Vicinity includes Brooklyn, Harlem, Paterson, Staten Island, and parts of Hempstead, Oyster Bay, and Sandy Hook sheets.

d Chester, Glassboro, Philadelphia, and Salem sheets, on scale of 1:62500, have been reduced and form parts of Camden, on scale of 1:125000.

e Philadelphia and Vicinity includes Chester, Germantown, Morristown, and Philadelphia sheets.

f Hackensack, High Bridge, Lake Hopatcong, and Somerville sheets, on scale of 1:62500, have been reduced and form parts of Raritan, on scale of 1:125000.

g Bayside, Bridgeton, and Maurice Cove sheets, on scale of 1:62500, have been reduced and form parts of Vineland, on scale of 1:125000.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

NEW MEXICO—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Defiance (Ariz.-N. Mex.)</td>
<td>Lat. 35 00, Long. 109 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Jemez</td>
<td>Lat. 35 30, Long. 106 30</td>
<td>4 1/2 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lamy</td>
<td>Lat. 35 00, Long. 105 30</td>
<td>do</td>
<td>50,100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Largo</td>
<td>Lat. 35 00, Long. 107 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>Las Cruces</td>
<td>Lat. 32 00, Long. 106 30</td>
<td>do</td>
<td>25,50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>Lat. 35 30, Long. 105 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Taylor</td>
<td>Lat. 35 00, Long. 107 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>St. Johns (Ariz.-N. Mex.)</td>
<td>Lat. 34 00, Long. 106 00</td>
<td>do</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
<tr>
<td>San Pedro</td>
<td>Lat. 35 00, Long. 106 00</td>
<td>1/2 degree</td>
<td>50,100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>Lat. 35 30, Long. 106 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>Lat. 35 30, Long. 105 30</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Watrous</td>
<td>Lat. 35 30, Long. 104 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Wingate</td>
<td>Lat. 35 00, Long. 108 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
<td>5</td>
</tr>
</tbody>
</table>

NEW YORK.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany a</td>
<td>Lat. 42 30, Long. 73 45</td>
<td>3/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Albany and Vicinity a</td>
<td>Lat. 42 30, Long. 73 30</td>
<td>1/2 degree</td>
<td>20</td>
<td>1:62500</td>
<td>20</td>
</tr>
<tr>
<td>Albion</td>
<td>Lat. 43 00, Long. 75 00</td>
<td>1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>Lat. 42 45, Long. 74 00</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Auburn</td>
<td>Lat. 42 45, Long. 76 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ausable</td>
<td>Lat. 44 15, Long. 73 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Baldwinsville</td>
<td>Lat. 43 00, Long. 76 13</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Berlin (N. Y.-Mass.-Vt.) b</td>
<td>Lat. 42 30, Long. 73 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Bolton</td>
<td>Lat. 43 30, Long. 73 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brockport</td>
<td>Lat. 43 40, Long. 77 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Brooklyn c</td>
<td>Lat. 42 30, Long. 73 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Buffalo (N. Y.-Canada)</td>
<td>Lat. 42 45, Long. 78 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cambridge (N. Y.-Vt.)</td>
<td>Lat. 43 00, Long. 73 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Canada Lake</td>
<td>Lat. 43 30, Long. 74 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Canajoharie</td>
<td>Lat. 42 45, Long. 74 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cape Vincent (N. Y.-Canada)</td>
<td>Lat. 44 00, Long. 76 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Carmel (N. Y.-Conn.)</td>
<td>Lat. 41 45, Long. 73 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Castleton (Vt.-N. Y.)</td>
<td>Lat. 43 30, Long. 73 00</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Catskill</td>
<td>Lat. 42 00, Long. 73 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cazenovia</td>
<td>Lat. 42 45, Long. 75 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cherry Creek</td>
<td>Lat. 42 15, Long. 79 00</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Chittenango</td>
<td>Lat. 43 00, Long. 75 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Clove (N. Y.-Conn.)</td>
<td>Lat. 41 30, Long. 73 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cohoes a</td>
<td>Lat. 42 45, Long. 73 30</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cornwall (Conn.-N. Y.)</td>
<td>Lat. 41 45, Long. 73 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Cossackie</td>
<td>Lat. 42 15, Long. 73 45</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dryden</td>
<td>Lat. 42 15, Long. 76 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Dunkirk</td>
<td>Lat. 42 15, Long. 79 15</td>
<td>do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

a Albany and Vicinity includes Albany, Cohoes, Schenectady, and Troy sheets.

b Berlin and Hoosick sheets, on scale of 1:62500, have been reduced and form parts of Taconic, on scale of 1:125000.

c New York City and Vicinity includes Brooklyn, Harlem, Paterson, Staten Island, and parts of Hempstead, Oyster Bay, and Sandy Hook sheets.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durham</td>
<td>42 15 74 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Elizabethtown</td>
<td>44 00 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Elmira (N.Y.-Pa.)</td>
<td>42 00 76 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fonda</td>
<td>42 45 74 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fort Ann (N.Y.-VI.)</td>
<td>43 15 73 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fulton</td>
<td>43 15 76 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Glens Falls</td>
<td>43 15 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Greenwood Lake (N.J.-N.Y.)</td>
<td>41 00 74 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hamlin</td>
<td>43 15 77 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Harlem (N.Y.-N.J.) a</td>
<td>40 45 73 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hemstead a</td>
<td>40 30 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hoosick (N.Y.-Vt.) b</td>
<td>42 45 73 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Housatonic (Mass.-Conn.-N.Y.) c</td>
<td>42 00 73 00</td>
<td>¼ degree</td>
<td>40</td>
<td>1:125000</td>
<td>6</td>
</tr>
<tr>
<td>Indian Lake</td>
<td>43 30 74 15</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ithaca</td>
<td>42 15 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Kaaterskill</td>
<td>42 00 74 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>44 15 73 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Little Falls</td>
<td>43 00 74 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lockport d</td>
<td>43 00 78 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Macedon</td>
<td>43 00 77 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Medina</td>
<td>43 00 78 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Moovers</td>
<td>44 45 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Moravia</td>
<td>42 30 76 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Marcy</td>
<td>44 00 73 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New London (Conn.-N.Y.)</td>
<td>41 15 72 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>New York City and Vicinity (N.Y.-N.J. a)</td>
<td>40 22 73 40</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>25</td>
</tr>
<tr>
<td>Newcomb</td>
<td>43 45 74 00</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Niagara d.</td>
<td>43 00 78 30</td>
<td>¼ degree</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Niagara Falls (N.Y.-Canada)d e</td>
<td>43 00 79 00</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Niagara Falls and Vicinity e</td>
<td>43 00 78 45</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>North Creek</td>
<td>43 30 73 45</td>
<td>½ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Norwalk (Conn.-N.Y.)</td>
<td>41 00 73 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oak Orchard</td>
<td>43 15 78 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Olcott d</td>
<td>43 15 78 00</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Old Forge</td>
<td>43 30 74 45</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Olean</td>
<td>42 00 78 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oneida</td>
<td>43 00 75 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Ontario Beach</td>
<td>43 15 77 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oriskany</td>
<td>43 00 75 15</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oswego</td>
<td>43 15 76 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oyster Bay (N.Y.-Conn.) a</td>
<td>40 45 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Paradox Lake</td>
<td>43 45 73 30</td>
<td></td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

* New York City and Vicinity includes Brooklyn, Harlem, Paterson, Staten Island, and parts of Hempstead, Oyster Bay, and Sandy Hook sheets.

* Berlin and Hoosick sheets, on scale of 1:62500, have been reduced and form parts of Taconic, on scale of 1:125000.

* Pittsfield and Shefield sheets on scale of 1:62500, have been reduced and form parts of Housatonic, on scale of 1:125000.

* Lockport, Niagara Falls, Olcott, Tonawanda, and Wilson sheets, on scale of 1:62500, have been reduced and form parts of Niagara, on scale of 1:125000.

* Niagara Falls and Vicinity includes Niagara Falls, Tonawanda, and Wilson sheets.
Published topographic atlas sheets, arranged by States—Continued.

NEW YORK—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passaic (N. J.—N. Y.)a</td>
<td>40 30</td>
<td>74 00</td>
<td>1/2 degree...</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Paterson (N. J.—N. Y.) ab</td>
<td>40 45</td>
<td>74 00</td>
<td>1/4 degree...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Pawlet (Vt.—N. Y.)</td>
<td>43 15</td>
<td>73 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Pittsfield (Mass.—N. Y.) c</td>
<td>42 15</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Plattsburg (N. Y.—Vt.)</td>
<td>44 30</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Port Henry (N. Y.—Vt.)</td>
<td>44 00</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Poughkeepsie</td>
<td>41 30</td>
<td>73 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Pulaski</td>
<td>43 30</td>
<td>76 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Ramapo (N. J.—N. Y.)</td>
<td>41 00</td>
<td>74 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Remsen</td>
<td>43 15</td>
<td>76 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Rhinebeck</td>
<td>41 45</td>
<td>73 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Ridgeway</td>
<td>43 15</td>
<td>78 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Rochester</td>
<td>43 00</td>
<td>77 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Rouse Point (N. Y.—Vt.)</td>
<td>44 45</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Sacketts Harbor</td>
<td>43 45</td>
<td>76 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Salamanca</td>
<td>42 00</td>
<td>78 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Scheneckytady</td>
<td>42 45</td>
<td>73 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Schoborah</td>
<td>42 30</td>
<td>74 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Schroon Lake</td>
<td>42 45</td>
<td>73 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Schuylerville</td>
<td>43 00</td>
<td>73 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Sheffield (Mass.—Conn.—N. Y.) c</td>
<td>42 00</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Silver Creek</td>
<td>42 30</td>
<td>79 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Skaneateles</td>
<td>42 45</td>
<td>76 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Stamford (Conn.—N. Y.)</td>
<td>41 00</td>
<td>73 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Staten Island (N. J.—N. Y.)ab</td>
<td>40 30</td>
<td>74 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Stonington (Conn.—R. I.—N. Y.)</td>
<td>41 15</td>
<td>71 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Stony Island</td>
<td>43 45</td>
<td>76 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Syracuse</td>
<td>43 00</td>
<td>76 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Taconic (N. Y.—Mass.—Vt.) e</td>
<td>42 30</td>
<td>73 15</td>
<td>1/2 degree...</td>
<td>40</td>
<td>1:125000</td>
</tr>
<tr>
<td>Tarrytown (N. Y.—N. J.)</td>
<td>41 00</td>
<td>73 45</td>
<td>1/4 degree...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Thirteenth Lake</td>
<td>43 30</td>
<td>74 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Tiadoneroga (N. Y.—Vt.)</td>
<td>43 45</td>
<td>73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Tonawanda/f</td>
<td>43 00</td>
<td>78 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Troy d</td>
<td>42 30</td>
<td>73 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Tully</td>
<td>42 45</td>
<td>76 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Utica</td>
<td>43 00</td>
<td>75 00</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Watertown</td>
<td>43 45</td>
<td>75 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Watkins</td>
<td>42 15</td>
<td>76 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

a Paterson and Staten Island sheets, on scale of 1:62500, have been reduced and form parts of Passaic, on scale of 1:125000.
b New York City and Vicinity includes Brooklyn, Harlem, Paterson, Staten Island, and parts of Hempstead, Oyster Bay, and Sandy Hook sheets.
c Pittsfield and Sheffield sheets, on scale of 1:62500, have been reduced and form parts of Housatonic, on scale of 1:125000.
d Albany and Vicinity includes Albany, Cohoes, Scheneckytady, and Troy sheets.
e Berlin and Hoosick sheets, on scale of 1:62500, have been reduced and form parts of Taconic, on scale of 1:125000.
f Lockport, Niagara Falls, Olcott, Tonawanda, and Wilson sheets, on scale of 1:62500, have been reduced and form parts of Niagara, on scale of 1:125000.
g Niagara Falls and Vicinity includes Niagara Falls, Tonawanda, and Wilson sheets.
Published topographic atlas sheets, arranged by States—Continued.

NEW YORK—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Point</td>
<td>Lat. 41 15, Long. 73 45</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Westfield</td>
<td>Lat. 42 15, Long. 79 30</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Whitehall</td>
<td>Lat. 43 30, Long. 73 15</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Willsboro</td>
<td>Lat. 44 15, Long. 73 15</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wilmurt</td>
<td>Lat. 48 15, Long. 74 45</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wilson a b</td>
<td>Lat. 43 15, Long. 78 45</td>
<td>feet</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also combined sheets, p. 109.)

NORTH CAROLINA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abingdon</td>
<td>Lat. 36 30, Long. 81 30</td>
<td>degree</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Asheville</td>
<td>Lat. 35 00, Long. 82 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Cowee</td>
<td>Lat. 35 00, Long. 83 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Cranberry</td>
<td>Lat. 36 00, Long. 81 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Dehlonega</td>
<td>Lat. 34 30, Long. 83 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Elljay</td>
<td>Lat. 34 30, Long. 84 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Greenville</td>
<td>Lat. 36 00, Long. 82 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Hickory</td>
<td>Lat. 35 30, Long. 81 00</td>
<td>feet</td>
<td>50</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Hillsville</td>
<td>Lat. 36 30, Long. 80 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Knoxville</td>
<td>Lat. 35 30, Long. 83 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Morganton</td>
<td>Lat. 35 30, Long. 81 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Guyot</td>
<td>Lat. 35 30, Long. 83 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Mitchell</td>
<td>Lat. 35 30, Long. 82 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Murphy</td>
<td>Lat. 36 00, Long. 84 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Nantahala</td>
<td>Lat. 35 00, Long. 83 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Norfolk</td>
<td>Lat. 36 30, Long. 75 45</td>
<td>degree</td>
<td>5</td>
<td>1:12500</td>
<td>10</td>
</tr>
<tr>
<td>Pisgah</td>
<td>Lat. 35 00, Long. 82 30</td>
<td>degree</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Roan Mountain</td>
<td>Lat. 36 00, Long. 82 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Saltuda</td>
<td>Lat. 35 00, Long. 82 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Statesville</td>
<td>Lat. 35 30, Long. 80 30</td>
<td>feet</td>
<td>50</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Walhalla</td>
<td>Lat. 34 30, Long. 83 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Wilkesboro</td>
<td>Lat. 36 00, Long. 81 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Wytheville</td>
<td>Lat. 36 30, Long. 81 00</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Yadkinville</td>
<td>Lat. 36 00, Long. 80 30</td>
<td>feet</td>
<td>100</td>
<td>1:12500</td>
<td>5</td>
</tr>
</tbody>
</table>

NORTH DAKOTA.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casselton</td>
<td>Lat. 46 30, Long. 97 00</td>
<td>degree</td>
<td>20</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Columbia</td>
<td>Lat. 45 30, Long. 98 00</td>
<td>feet</td>
<td>20</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Eckelson</td>
<td>Lat. 46 30, Long. 98 30</td>
<td>feet</td>
<td>20</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Edgeley d.</td>
<td>Lat. 46 00, Long. 98 30</td>
<td>feet</td>
<td>20</td>
<td>1:12500</td>
<td>5</td>
</tr>
</tbody>
</table>

a Lockport, Niagara Falls, Olcott, Tonawanda, and Wilson sheets, on scale of 1:62500, have been reduced and form parts of Niagara, on scale of 1:125000.

b Niagara Falls and Vicinity includes Niagara Falls, Tonawanda, and Wilson sheets.

c Hecla and Savo sheets, on scale of 1:62500, have been reduced and form parts of Columbia, on scale of 1:125000.

d Monango sheet, on scale of 1:62500, has been reduced and forms part of Edgeley, on scale of 1:125000.
Published topographic atlas sheets, arranged by States—Continued.

NORTH DAKOTA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellendale (N. Dak.—S. Dak.) a</td>
<td>Lat: 45 30, Long: 98 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ellendale (N. Dak.—S. Dak.) a</td>
<td>Lat: 45 45, Long: 98 30</td>
<td>$\frac{3}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Fargo (N. Dak.—Minn.)</td>
<td>Lat: 46 30, Long: 96 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fullerton b</td>
<td>Lat: 46 00, Long: 98 15</td>
<td>$\frac{3}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Hecla (S. Dak.—N. Dak.) c</td>
<td>Lat: 45 45, Long: 98 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Jamestown</td>
<td>Lat: 46 30, Long: 98 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Lamoure b</td>
<td>Lat: 46 00, Long: 98 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lamoure b</td>
<td>Lat: 46 15, Long: 98 15</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Monango d</td>
<td>Lat: 46 00, Long: 98 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oakes b</td>
<td>Lat: 46 00, Long: 98 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Pingree</td>
<td>Lat: 47 00, Long: 98 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Savo (N. Dak.—S. Dak.) e</td>
<td>Lat: 45 45, Long: 98 15</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Tower</td>
<td>Lat: 46 30, Long: 97 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

OHIO.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati (Ohio-Ky.), double sheet</td>
<td>Lat: 39 00, Long: 84 15</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>10</td>
</tr>
<tr>
<td>East Cincinnati (Ohio-Ky.)</td>
<td>Lat: 39 00, Long: 84 15</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>East Columbus</td>
<td>Lat: 39 45, Long: 82 45</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Huntington (W. Va.—Ohio-Ky.)</td>
<td>Lat: 38 00, Long: 82 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ironton (Ohio-Ky.)</td>
<td>Lat: 38 30, Long: 82 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Maumee Bay (Ohio-Mich.)</td>
<td>Lat: 41 30, Long: 83 15</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Oak Harbor</td>
<td>Lat: 41 30, Long: 83 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Toledo</td>
<td>Lat: 41 30, Long: 83 50</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>West Cincinnati (Ohio-Ky.) e</td>
<td>Lat: 39 00, Long: 84 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>West Columbus</td>
<td>Lat: 39 45, Long: 83 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

OKLAHOMA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingfisher</td>
<td>Lat: 35 30, Long: 97 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

OREGON.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashland</td>
<td>Lat: 42 00, Long: 122 60</td>
<td>$\frac{1}{4}$ degree...</td>
<td>200</td>
<td>1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Lat: 43 00, Long: 124 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Klamath</td>
<td>Lat: 42 00, Long: 121 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>200</td>
<td>1:25000</td>
<td>5</td>
</tr>
<tr>
<td>Nampa (Idaho-Oreg.)</td>
<td>Lat: 43 30, Long: 116 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Port Orford</td>
<td>Lat: 42 30, Long: 124 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Portland (Oreg.—Wash.)</td>
<td>Lat: 45 30, Long: 122 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>25</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Roseburg</td>
<td>Lat: 43 00, Long: 123 00</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Weiser (Idaho-Oreg.)</td>
<td>Lat: 44 00, Long: 116 30</td>
<td>$\frac{1}{4}$ degree...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

a Ellendale sheet on scale of 1:62500 has been reduced and forms part of Ellendale on scale of 1:125000.

b Oakes, Fullerton, and Lamoure sheets, on scale of 1:62500, have been reduced and form parts of Lamoure on scale of 1:125000.

c Hecla and Savo sheets, on scale of 1:62500, have been reduced and form parts of Columbia, on scale of 1:125000.

d Monango sheet, on scale of 1:62500, has been reduced and forms part of Edgeley, on scale of 1:125000.

e Cincinnati (double sheet) includes East Cincinnati and West Cincinnati sheets.
<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Areaw covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident (Md.-Pa.-W.Va.)</td>
<td>39 30 79 15 1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Allentown</td>
<td>40 30 75 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bloomsburg</td>
<td>41 00 76 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bordentown (N.J.-Pa.)</td>
<td>40 00 74 30 do</td>
<td>10</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Burlington (Pa.-N.J.)</td>
<td>40 00 74 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Camden (N.J.-Pa.-Del.) a</td>
<td>39 30 75 00 1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Catskill</td>
<td>40 45 76 15 1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chester (Pa.-Del.-N.J.) a b</td>
<td>39 45 75 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Delaware Water Gap (Pa.-N.J.)</td>
<td>40 15 75 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dryden (Pa.-N.J.)</td>
<td>40 15 75 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Elmira (N.Y.-Pa.)</td>
<td>42 00 76 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Erie</td>
<td>42 00 80 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fairview</td>
<td>42 00 80 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flintstone (Md.-W.Va.-Pa.)</td>
<td>39 30 78 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Frostburg (Md.-W.Va.-Pa.)</td>
<td>39 30 78 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gaines</td>
<td>41 45 77 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Germantown (Pa.-N.J.) b</td>
<td>40 00 75 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Girard</td>
<td>41 45 80 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Grantsville (Md.-Pa.)</td>
<td>39 30 79 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Harrisburg</td>
<td>40 15 76 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Harvey Lake</td>
<td>41 15 76 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Havre de Grace (Md.-Pa.)</td>
<td>39 30 76 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>40 45 75 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Honesdale</td>
<td>41 30 75 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hummelstown</td>
<td>40 15 76 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lambertville (Pa.-N.J.)</td>
<td>40 15 74 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lebanon</td>
<td>40 15 76 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lykens</td>
<td>40 30 76 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mahanoy</td>
<td>40 45 76 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Masonburg</td>
<td>39 45 79 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Millersburg</td>
<td>40 30 76 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Norristown b</td>
<td>40 00 73 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pawpaw (Md.-W.Va.-Pa.)</td>
<td>39 30 78 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Philadelphia (Pa.-N.J.) a b</td>
<td>39 45 75 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Philadelphia and Vicinity (Pa.-N.J.-Del.) b</td>
<td>39 45 75 00 1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pinegrove</td>
<td>40 30 76 15 1/4 degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pittston</td>
<td>41 15 75 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pottsville</td>
<td>40 30 76 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quakertown</td>
<td>40 15 75 15 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>40 15 75 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Scranton</td>
<td>41 15 75 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Shamokin</td>
<td>40 45 76 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Shickshinny</td>
<td>41 00 76 00 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sunbury</td>
<td>40 45 76 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Uniontown</td>
<td>39 45 79 30 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Warrack (N.J.-Pa.)</td>
<td>41 00 74 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Wilkesbarre</td>
<td>41 00 75 45 do</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

a Chester and Philadelphia sheets, on scale of 1:62500, have been reduced and form parts of Camden, on scale of 1:125000.
b Philadelphia and Vicinity includes Chester, Germantown, Norristown, and Philadelphia sheets.
RHODE ISLAND

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour Interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>⁴⁄₉₀ degree</td>
<td>Feet.</td>
<td>1:62500</td>
</tr>
<tr>
<td>Blackstone (Mass.-R.I.)</td>
<td>42 00</td>
<td>71 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Block Island</td>
<td>41 00</td>
<td>71 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Burrillville</td>
<td>41 45</td>
<td>71 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Charlestown</td>
<td>41 15</td>
<td>71 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Fall River (Mass.-R.I.)</td>
<td>41 30</td>
<td>71 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Franklin (Mass.-R.I.)</td>
<td>42 00</td>
<td>71 15</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Kent</td>
<td>41 30</td>
<td>71 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Mousap (Conn.-R.I.)</td>
<td>41 30</td>
<td>71 45</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Narraganett Bay (R.I.-Mass.)</td>
<td>41 30</td>
<td>71 15</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Newport</td>
<td>41 15</td>
<td>71 15</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Providence (Mass.-R.I.)</td>
<td>41 45</td>
<td>71 15</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Putnam (Conn.-R.I.)</td>
<td>41 45</td>
<td>71 45</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Sakonnet (R.I.-Mass.)</td>
<td>41 15</td>
<td>71 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Stonington (Conn.-R.I.-N.Y.)</td>
<td>41 15</td>
<td>71 45</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Webster (Mass.-Conn.-R.I.)</td>
<td>42 00</td>
<td>71 45</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

SOUTH CAROLINA

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour Interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>⁴⁄₉₀ degree</td>
<td>Feet.</td>
<td>1:125000</td>
</tr>
<tr>
<td>Abbeville</td>
<td>34 00</td>
<td>82 00</td>
<td>⁴⁄₉₀ degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Carnesville (Ga.-S.C.)</td>
<td>34 00</td>
<td>83 00</td>
<td>⁴⁄₉₀ degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Cowee (N.C.-S.C.)</td>
<td>35 00</td>
<td>82 00</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Elberton (Ga.-S.C.)</td>
<td>34 00</td>
<td>82 30</td>
<td>⁴⁄₉₀ degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>McCormick (Ga.-S.C.)</td>
<td>33 30</td>
<td>82 00</td>
<td>⁴⁄₉₀ degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Pickens</td>
<td>34 30</td>
<td>82 30</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Pisgah (N.-S.C.)</td>
<td>35 00</td>
<td>82 20</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Saluda (N.-C.-S.C.)</td>
<td>35 00</td>
<td>82 00</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Walhalla (Ga.-S.-C.-N.C.)</td>
<td>34 30</td>
<td>83 00</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

SOUTH DAKOTA

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour Interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>⁴⁄₉₀ degree</td>
<td>Feet.</td>
<td>1:125000</td>
</tr>
<tr>
<td>Aberdeen a</td>
<td>45 00</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Alexandria</td>
<td>43 30</td>
<td>97 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Byron</td>
<td>44 30</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Canton (S. Dak.-Iowa)</td>
<td>45 00</td>
<td>96 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Columbia (S. Dak.-N. Dak.) b</td>
<td>45 30</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Columbia b</td>
<td>45 30</td>
<td>98 15</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Conde a</td>
<td>45 00</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>De Smet</td>
<td>44 00</td>
<td>97 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Deadwood</td>
<td>44 00</td>
<td>103 30</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ellendale (N. Dak.-S. Dak.) c</td>
<td>45 30</td>
<td>98 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Ellendale (N. Dak.-S. Dak.) c</td>
<td>45 45</td>
<td>98 30</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Harney Peak</td>
<td>43 30</td>
<td>103 30</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Hecia (S. Dak.-N. Dak.) b</td>
<td>45 45</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
<tr>
<td>Hermosa</td>
<td>43 30</td>
<td>103 00</td>
<td>⁴⁄₉₀ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Huron</td>
<td>44 00</td>
<td>98 00</td>
<td>⁴⁄₉₀ degree</td>
<td>20</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

*Conde sheet, on scale of 1:62500, has been reduced and forms part of Aberdeen, on scale of 1:125000.
*Columbia, Hecia, and Savo sheets, on scale of 1:62500, have been reduced and form parts of Columbia on scale of 1:125000.
*Ellendale sheet on scale of 1:62500 has been reduced and forms part of Ellendale on scale of 1:125000.
SOUTH DAKOTA—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitchell.</td>
<td>45 30</td>
<td>98 00</td>
<td>64 5</td>
<td>20</td>
<td>125000</td>
</tr>
<tr>
<td>Northville.</td>
<td>45 00</td>
<td>98 30</td>
<td>64 5</td>
<td>20</td>
<td>125000</td>
</tr>
<tr>
<td>Oelrichs (S. Dak.-Nebr.)</td>
<td>43 00</td>
<td>103 00</td>
<td>64 5</td>
<td>50</td>
<td>125000</td>
</tr>
<tr>
<td>Olivet.</td>
<td>43 00</td>
<td>97 30</td>
<td>64 5</td>
<td>20</td>
<td>125000</td>
</tr>
<tr>
<td>Redfield.</td>
<td>43 00</td>
<td>97 00</td>
<td>64 5</td>
<td>20</td>
<td>125000</td>
</tr>
<tr>
<td>Rapid.</td>
<td>44 00</td>
<td>103 00</td>
<td>64 5</td>
<td>50</td>
<td>125000</td>
</tr>
<tr>
<td>Savo (N. Dak.-S. Dak.) a</td>
<td>45 45</td>
<td>98 15</td>
<td>64 5</td>
<td>20</td>
<td>125000</td>
</tr>
<tr>
<td>Spearfish.</td>
<td>44 15</td>
<td>103 45</td>
<td>64 5</td>
<td>50</td>
<td>125000</td>
</tr>
<tr>
<td>Sturgis.</td>
<td>44 15</td>
<td>103 30</td>
<td>64 5</td>
<td>50</td>
<td>125000</td>
</tr>
<tr>
<td>Sundance (Wyo.-S. Dak.)</td>
<td>44 00</td>
<td>104 00</td>
<td>64 5</td>
<td>50</td>
<td>125000</td>
</tr>
</tbody>
</table>

TENNESSEE.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abingdon (Tenn.-Va.-N.C.)</td>
<td>36 30</td>
<td>81 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Asheville (N.C.-Tenn.)</td>
<td>35 30</td>
<td>82 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Bricetville.</td>
<td>36 00</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Bristol (Va.-Tenn.)</td>
<td>36 30</td>
<td>82 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Chattanooga.</td>
<td>35 00</td>
<td>85 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Cleveland.</td>
<td>35 00</td>
<td>84 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Columbia.</td>
<td>35 30</td>
<td>87 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Cranberry (N.C.-Tenn.)</td>
<td>36 00</td>
<td>81 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Cumberland Gap (Ky.-Va.-Tenn.)</td>
<td>36 30</td>
<td>83 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Dalton (Ga.-Tenn.)</td>
<td>34 30</td>
<td>84 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Elijah (Ga.-N.C.-Tenn.)</td>
<td>34 30</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Estillville (Va.-Ky.-Tenn.)</td>
<td>36 30</td>
<td>82 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Greenville (Tenn.-N.C.)</td>
<td>36 00</td>
<td>82 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Huntsville (Ala.-Tenn.)</td>
<td>34 30</td>
<td>86 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Jonesville (Ky.-Va.-Tenn.)</td>
<td>36 30</td>
<td>83 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Kingsford.</td>
<td>35 30</td>
<td>84 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Knoxville (Tenn.-N.C.)</td>
<td>35 30</td>
<td>83 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>London.</td>
<td>35 30</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>McMinnville.</td>
<td>35 30</td>
<td>85 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Maynardville.</td>
<td>36 00</td>
<td>83 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Morristown.</td>
<td>36 00</td>
<td>83 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Mt. Guyot (Tenn.-N.C.)</td>
<td>35 30</td>
<td>88 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Mt. Mitchell (N.C.-Tenn.)</td>
<td>35 30</td>
<td>82 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Murphy (Tenn.-N.C.)</td>
<td>35 00</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Nantahala (N.C.-Tenn.)</td>
<td>35 00</td>
<td>83 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Pikeville.</td>
<td>35 30</td>
<td>85 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Ringgold (Ga.-Tenn.)</td>
<td>34 30</td>
<td>85 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Roan Mountain (Tenn.-N.C.)</td>
<td>36 00</td>
<td>82 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Scottsboro (Ala.-Tenn.)</td>
<td>34 30</td>
<td>86 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Sewanee.</td>
<td>35 00</td>
<td>85 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Standingstone.</td>
<td>36 00</td>
<td>85 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Stevenson (Ala.-Ga.-Tenn.)</td>
<td>34 30</td>
<td>85 30</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Warburg.</td>
<td>36 00</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
<tr>
<td>Williamsburg (Ky.-Tenn.)</td>
<td>36 30</td>
<td>84 00</td>
<td>64 5</td>
<td>100</td>
<td>125000</td>
</tr>
</tbody>
</table>

\[a\] Columbia, Hecla, and Savo sheets, on scale of 1:62500, have been reduced and form parts of Columbia on scale of 1:125000.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

TEXAS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td>Feet.</td>
<td></td>
<td>Cents</td>
</tr>
<tr>
<td>Abilene</td>
<td>32 00</td>
<td>99 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Albany</td>
<td>32 30</td>
<td>99 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Alpine</td>
<td>30 00</td>
<td>103 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Anson</td>
<td>32 30</td>
<td>99 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Austin</td>
<td>30 00</td>
<td>97 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ballinger</td>
<td>31 30</td>
<td>99 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Bastrop</td>
<td>30 00</td>
<td>97 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Blanco</td>
<td>30 00</td>
<td>98 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Brackett</td>
<td>29 00</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Brady</td>
<td>31 00</td>
<td>99 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Breckenridge</td>
<td>32 30</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Brownwood</td>
<td>31 30</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Burnet</td>
<td>30 30</td>
<td>98 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Chispa</td>
<td>30 30</td>
<td>104 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Cleburne</td>
<td>32 00</td>
<td>97 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Coleman</td>
<td>31 30</td>
<td>99 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Dallas</td>
<td>32 30</td>
<td>96 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Eagle Mountain</td>
<td>30 30</td>
<td>105 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Eastland</td>
<td>32 00</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Eden</td>
<td>31 00</td>
<td>99 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>El Paso</td>
<td>31 30</td>
<td>106 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Flatonia</td>
<td>29 30</td>
<td>97 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Davis</td>
<td>30 30</td>
<td>103 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Hancock</td>
<td>31 00</td>
<td>105 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort McKavett</td>
<td>30 30</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fort Worth</td>
<td>32 30</td>
<td>97 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fredericksburg</td>
<td>30 30</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Gatesville</td>
<td>31 00</td>
<td>97 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Georgetown</td>
<td>30 30</td>
<td>97 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Granbury</td>
<td>32 00</td>
<td>97 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hamilton</td>
<td>31 30</td>
<td>98 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hayrick</td>
<td>31 30</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Kerrville</td>
<td>30 00</td>
<td>99 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lampasas</td>
<td>31 00</td>
<td>98 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Llano</td>
<td>30 30</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Marfa</td>
<td>30 00</td>
<td>104 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Mason</td>
<td>30 30</td>
<td>99 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Meridian</td>
<td>31 30</td>
<td>97 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Nueces</td>
<td>29 30</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Palo Pinto</td>
<td>32 30</td>
<td>98 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Polvo</td>
<td>29 00</td>
<td>104 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Rio Grande</td>
<td>31 00</td>
<td>106 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Roby</td>
<td>32 30</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Rock Springs</td>
<td>30 00</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ruidosa</td>
<td>29 30</td>
<td>104 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Salt Basin</td>
<td>31 30</td>
<td>105 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>San Angelo</td>
<td>31 00</td>
<td>100 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>San Carlos</td>
<td>30 00</td>
<td>104 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>San Saba</td>
<td>31 00</td>
<td>98 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Shafter</td>
<td>29 33</td>
<td>104 00</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Sherwood</td>
<td>31 00</td>
<td>100 30</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
</tbody>
</table>
Published topographic atlas sheets, arranged by States—Continued.

TEXAS—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra Blanca</td>
<td>31 00</td>
<td>106 00</td>
<td>4 degree</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Stephensville</td>
<td>32 00</td>
<td>98 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Sweetwater</td>
<td>32 00</td>
<td>100 00</td>
<td>do</td>
<td>25</td>
<td>1:125000</td>
</tr>
<tr>
<td>Taylor</td>
<td>30 30</td>
<td>97 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Temple</td>
<td>31 00</td>
<td>97 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Uvalde</td>
<td>29 30</td>
<td>99 30</td>
<td>do</td>
<td>25</td>
<td>1:125000</td>
</tr>
<tr>
<td>Valentine</td>
<td>30 30</td>
<td>104 00</td>
<td>do</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Waco</td>
<td>31 30</td>
<td>97 00</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Weatherford</td>
<td>32 30</td>
<td>97 30</td>
<td>do</td>
<td>50</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

UTAH.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abajo (Utah-Colo.)</td>
<td>37 00</td>
<td>109 00</td>
<td>1 degree</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Ashley (Utah-Colo.)</td>
<td>40 00</td>
<td>109 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Beaver</td>
<td>38 00</td>
<td>112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>East Tavaputs (Utah-Colo.)</td>
<td>39 00</td>
<td>109 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Escalante</td>
<td>37 00</td>
<td>111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Fish Lake</td>
<td>38 00</td>
<td>111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Henry Mountains</td>
<td>37 00</td>
<td>110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Kanab</td>
<td>37 00</td>
<td>112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>La Sal (Utah-Colo.)</td>
<td>38 00</td>
<td>109 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Manti</td>
<td>39 00</td>
<td>111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Picacho (Nev.—Utah)</td>
<td>37 00</td>
<td>114 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Price River</td>
<td>39 00</td>
<td>110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>St. George</td>
<td>37 00</td>
<td>113 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Salt Lake</td>
<td>40 00</td>
<td>111 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>San Rafael</td>
<td>38 00</td>
<td>110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Sevier Desert</td>
<td>39 00</td>
<td>112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Tooele Valley</td>
<td>40 00</td>
<td>112 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
<tr>
<td>Uinta</td>
<td>40 00</td>
<td>110 00</td>
<td>do</td>
<td>250</td>
<td>1:250000</td>
</tr>
</tbody>
</table>

(See also special maps, p. 110.)

VERMONT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bennington a</td>
<td>42 45</td>
<td>73 00</td>
<td>1 degree</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Berlin (N. Y.—Mass.—Vt.) a</td>
<td>42 30</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Brattleboro (Vt.—N. H.)</td>
<td>42 45</td>
<td>72 30</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Cambridge (N. Y.—Vt.)</td>
<td>43 00</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Castleton (Vt.—N. Y.)</td>
<td>43 30</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Equinox</td>
<td>43 00</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Fort Ann (N. Y.—Vt.)</td>
<td>43 15</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Greenfield (Mass.—Vt.)</td>
<td>42 30</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Greylock (Mass.—Vt.) a</td>
<td>42 30</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Hawley (Mass.—Vl.)</td>
<td>42 30</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Hoosick (N. Y.—Vt.) a</td>
<td>42 45</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Keene (N. H.—Vt.)</td>
<td>42 45</td>
<td>72 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Londonderry</td>
<td>43 00</td>
<td>72 45</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Pawlet (Vt.—N. Y.)</td>
<td>43 15</td>
<td>73 00</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Plattsburg (N. Y.—Vt.)</td>
<td>44 30</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Port Henry (N. Y.—Vl.)</td>
<td>44 00</td>
<td>73 15</td>
<td>do</td>
<td>20</td>
<td>1:625000</td>
</tr>
</tbody>
</table>

a Bennington, Berlin, Greylock, and Hoosick sheets, on scale of 1:62500, have been reduced and form Taconic, on scale of 1:125000.
<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granville, Mass.-Conn.</td>
<td>80</td>
</tr>
<tr>
<td>Grey, Mo.</td>
<td>78</td>
</tr>
<tr>
<td>Great Bend, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Great Egg Harbor, N. J.</td>
<td>85</td>
</tr>
<tr>
<td>Great Falls, Mont.</td>
<td>83</td>
</tr>
<tr>
<td>Greeneville, Tenn.-N. C.</td>
<td>94</td>
</tr>
<tr>
<td>Greenfield, Mass.-Vt.</td>
<td>80</td>
</tr>
<tr>
<td>Greenfield, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>Greenwood Lake, N. J.-N. Y.</td>
<td>85</td>
</tr>
<tr>
<td>Greylock, Mass.-Vt.</td>
<td>80</td>
</tr>
<tr>
<td>Groton, Mass.-N. H.</td>
<td>80</td>
</tr>
<tr>
<td>Grundy, Va.-Ky.</td>
<td>97</td>
</tr>
<tr>
<td>Guilford, Conn.</td>
<td>71</td>
</tr>
<tr>
<td>Gunpowder, Md.</td>
<td>79</td>
</tr>
<tr>
<td>Hackettstown, N. J.</td>
<td>85</td>
</tr>
<tr>
<td>Hahnville, La.</td>
<td>78</td>
</tr>
<tr>
<td>Hailey, Idaho.</td>
<td>73</td>
</tr>
<tr>
<td>Hamilton, Tex.</td>
<td>95</td>
</tr>
<tr>
<td>Hamlin, N. Y.</td>
<td>88</td>
</tr>
<tr>
<td>Hammonton, N. J.</td>
<td>85</td>
</tr>
<tr>
<td>Harlem, N. Y.-N. J.</td>
<td>88</td>
</tr>
<tr>
<td>Harney Peak, S. Dak.</td>
<td>93</td>
</tr>
<tr>
<td>Harpers Ferry, Va.-W. Va.-Md.</td>
<td>97</td>
</tr>
<tr>
<td>Harrisburg, Pa.</td>
<td>92</td>
</tr>
<tr>
<td>Harrisonburg, Va.</td>
<td>97</td>
</tr>
<tr>
<td>Harrisonville, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>Hartford, Conn.</td>
<td>71</td>
</tr>
<tr>
<td>Hartville, Wyo.</td>
<td>100</td>
</tr>
<tr>
<td>Harvey Lake, Pa.</td>
<td>92</td>
</tr>
<tr>
<td>Haverhill, Mass.-N. H.</td>
<td>80</td>
</tr>
<tr>
<td>Havre de Grace, Md.-Pa.</td>
<td>79</td>
</tr>
<tr>
<td>Hawley, Mass.-VI</td>
<td>80</td>
</tr>
<tr>
<td>Hayrick, Tex.</td>
<td>95</td>
</tr>
<tr>
<td>Hays, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Haywards, Cal.</td>
<td>69</td>
</tr>
<tr>
<td>Hazard, Ky.</td>
<td>77</td>
</tr>
<tr>
<td>Hasleton, Pa.</td>
<td>92</td>
</tr>
<tr>
<td>Hebron, Nbr.-Kans.</td>
<td>83</td>
</tr>
<tr>
<td>Hecla, S. Dak.-N. Dak</td>
<td>93</td>
</tr>
<tr>
<td>Helena, Mont.</td>
<td>83</td>
</tr>
<tr>
<td>Hempstead, N. Y</td>
<td>88</td>
</tr>
<tr>
<td>Hennepin, Ill.</td>
<td>73</td>
</tr>
<tr>
<td>Henry Mountains, Utah</td>
<td>96</td>
</tr>
<tr>
<td>Hermann, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>Hermosa, S. Dak.</td>
<td>93</td>
</tr>
<tr>
<td>Hinwatha, Kans</td>
<td>76</td>
</tr>
<tr>
<td>Hickory, N. C.</td>
<td>90</td>
</tr>
<tr>
<td>High, Colo.</td>
<td>70</td>
</tr>
<tr>
<td>High Bridge, N. J.</td>
<td>85</td>
</tr>
<tr>
<td>Highwood, Ill.</td>
<td>73</td>
</tr>
<tr>
<td>Hill, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Hillsville, Va.-N. C.</td>
<td>97</td>
</tr>
<tr>
<td>Hinton, W. Va.</td>
<td>99</td>
</tr>
<tr>
<td>Holbrook, Ariz.</td>
<td>68</td>
</tr>
<tr>
<td>Holdridge, Nebr.-Kans.</td>
<td>83</td>
</tr>
<tr>
<td>Holyoke, Mass.-Conn.</td>
<td>80</td>
</tr>
<tr>
<td>Homestead, Pa.</td>
<td>92</td>
</tr>
<tr>
<td>Honey Lake, Cal.</td>
<td>69</td>
</tr>
<tr>
<td>Hoosick, N. Y.-VI.</td>
<td>88</td>
</tr>
<tr>
<td>Hot Springs, Ark.</td>
<td>78</td>
</tr>
<tr>
<td>Houma, La.</td>
<td>68</td>
</tr>
<tr>
<td>Houstaton, Mass.-Conn.-N. Y.</td>
<td>80</td>
</tr>
<tr>
<td>Huerfano Park, Colo.</td>
<td>70</td>
</tr>
<tr>
<td>Hummelstown, Pa.</td>
<td>92</td>
</tr>
<tr>
<td>Huntersville, W. Va.</td>
<td>59</td>
</tr>
<tr>
<td>Huntington, W. Va.-Ohio.</td>
<td>99</td>
</tr>
<tr>
<td>Huntley, Mont.</td>
<td>83</td>
</tr>
<tr>
<td>Huntsville, Ala.-Tenn.</td>
<td>70</td>
</tr>
<tr>
<td>Huron, S. Dak.</td>
<td>93</td>
</tr>
<tr>
<td>Hutchinson, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Idaho Basin, Idaho.</td>
<td>73</td>
</tr>
<tr>
<td>Independence, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Independence, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>Indian Lake, N. Y.</td>
<td>88</td>
</tr>
<tr>
<td>Jolal. Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Iowa City, Iowa.</td>
<td>75</td>
</tr>
<tr>
<td>Iron River, Mich.-Wis.</td>
<td>81</td>
</tr>
<tr>
<td>Jronton, Ohio-Ky.</td>
<td>91</td>
</tr>
<tr>
<td>Juhawoo, Wyo.</td>
<td>100</td>
</tr>
<tr>
<td>Ithaca, N. Y.</td>
<td>88</td>
</tr>
<tr>
<td>Jackson, Cal.</td>
<td>69</td>
</tr>
<tr>
<td>Jamestown, N. Dak.</td>
<td>91</td>
</tr>
<tr>
<td>Janesville, Wis.</td>
<td>99</td>
</tr>
<tr>
<td>Jasper, Ala.</td>
<td>67</td>
</tr>
<tr>
<td>Jefferson City, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>James, N. Mex.</td>
<td>87</td>
</tr>
<tr>
<td>Joliet, Ill.</td>
<td>78</td>
</tr>
<tr>
<td>Jonesville, Ky.-Va.-Tenn.</td>
<td>77</td>
</tr>
<tr>
<td>Joplin, Kans.-Mo.-Ind. T.</td>
<td>76</td>
</tr>
<tr>
<td>Junction City, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Kastersville, W. Y.</td>
<td>88</td>
</tr>
<tr>
<td>Kailb, Ariz.</td>
<td>68</td>
</tr>
<tr>
<td>Kamab, Utah.</td>
<td>96</td>
</tr>
<tr>
<td>Kanawha Falls, W. Va.</td>
<td>99</td>
</tr>
<tr>
<td>Kansas City, Kans.-Mo.</td>
<td>76</td>
</tr>
<tr>
<td>Karoniques, Cal.</td>
<td>69</td>
</tr>
<tr>
<td>Kearney, Nebr.</td>
<td>33</td>
</tr>
<tr>
<td>Keene, N. H.-VI.</td>
<td>14</td>
</tr>
<tr>
<td>Kenesaw, Nebr.</td>
<td>83</td>
</tr>
<tr>
<td>Kennebunk, Me.</td>
<td>78</td>
</tr>
<tr>
<td>Kent, R. I.</td>
<td>93</td>
</tr>
<tr>
<td>Kerrville, Tex.</td>
<td>95</td>
</tr>
<tr>
<td>Kingfisher, Okla.</td>
<td>91</td>
</tr>
<tr>
<td>Kingman, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Kingston, Tenn.</td>
<td>91</td>
</tr>
<tr>
<td>Kinsley, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Kit Carson, Colo.</td>
<td>70</td>
</tr>
<tr>
<td>Klamath, Oreg.</td>
<td>91</td>
</tr>
<tr>
<td>Knoxville, Tenn.-N. C.</td>
<td>94</td>
</tr>
<tr>
<td>Koshkonong, Wis.</td>
<td>99</td>
</tr>
<tr>
<td>La Fortuna, La.</td>
<td>78</td>
</tr>
<tr>
<td>La Plata, Colo.</td>
<td>78</td>
</tr>
<tr>
<td>La Sal, Utah-Colo</td>
<td>96</td>
</tr>
<tr>
<td>Lacs de Allemants, La.</td>
<td>78</td>
</tr>
<tr>
<td>Lace, Ill.</td>
<td>78</td>
</tr>
<tr>
<td>Lake, Yell. Nat. Park-Wyo.</td>
<td>100</td>
</tr>
<tr>
<td>Lake Felicity, La.</td>
<td>78</td>
</tr>
<tr>
<td>Lake Hopatcong, N. J.</td>
<td>85</td>
</tr>
<tr>
<td>Lake Placid, N. Y.</td>
<td>88</td>
</tr>
<tr>
<td>Lake Tahoe and Vicinity, Cal.-Nev.</td>
<td>69</td>
</tr>
<tr>
<td>Lakin, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>Lamar, Colo.</td>
<td>70</td>
</tr>
<tr>
<td>Lamesly, Pa.-N. J.</td>
<td>92</td>
</tr>
<tr>
<td>Lampeas, Tex.</td>
<td>95</td>
</tr>
<tr>
<td>Lamy, N. Mex.</td>
<td>87</td>
</tr>
<tr>
<td>Lancaster, Wis.-Iowa-I.</td>
<td>99</td>
</tr>
<tr>
<td>Laramie, Wyo</td>
<td>100</td>
</tr>
<tr>
<td>Largo, N. Mex.</td>
<td>87</td>
</tr>
<tr>
<td>Larred, Kans.</td>
<td>76</td>
</tr>
<tr>
<td>INDEX TO TOPOGRAPHIC ATLAS SHEETS.</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Donaldsonville, La 78</td>
<td></td>
</tr>
<tr>
<td>Dover, N. H.—Me 84</td>
<td></td>
</tr>
<tr>
<td>Downey, Cal 69</td>
<td></td>
</tr>
<tr>
<td>Downville, Cal 69</td>
<td></td>
</tr>
<tr>
<td>Doylestown, Pa.—N. J 92</td>
<td></td>
</tr>
<tr>
<td>Drum Point, Md 79</td>
<td></td>
</tr>
<tr>
<td>Dryden, N. Y 80</td>
<td></td>
</tr>
<tr>
<td>Dublin, Va.—W. Va 97</td>
<td></td>
</tr>
<tr>
<td>Dulac, La 78</td>
<td></td>
</tr>
<tr>
<td>Duluth, Minn 82</td>
<td></td>
</tr>
<tr>
<td>Dundafl, Pa. 92</td>
<td></td>
</tr>
<tr>
<td>Dunkirk, N. Y 87</td>
<td></td>
</tr>
<tr>
<td>Dunlap, Ill 73</td>
<td></td>
</tr>
<tr>
<td>Dunmellon, Fls 72</td>
<td></td>
</tr>
<tr>
<td>Durango, Colo 70</td>
<td></td>
</tr>
<tr>
<td>Durant, Iowa 75</td>
<td></td>
</tr>
<tr>
<td>Durham, N. Y 88</td>
<td></td>
</tr>
<tr>
<td>Duxbury, Mass 80</td>
<td></td>
</tr>
<tr>
<td>Eagle, Wis 99</td>
<td></td>
</tr>
<tr>
<td>Eagle Mountain, Tex 95</td>
<td></td>
</tr>
<tr>
<td>East Cincinnati, Ohio—Ky 91</td>
<td></td>
</tr>
<tr>
<td>East Columbus, Ohio 91</td>
<td></td>
</tr>
<tr>
<td>East Delta, La 78</td>
<td></td>
</tr>
<tr>
<td>East Tavaputs, Utah—Colo 96</td>
<td></td>
</tr>
<tr>
<td>Eastland, Tex 95</td>
<td></td>
</tr>
<tr>
<td>Easton, Pa.—N. J 92</td>
<td></td>
</tr>
<tr>
<td>Echo Cliffs, Ariz 68</td>
<td></td>
</tr>
<tr>
<td>Eckelson, N. Dak 90</td>
<td></td>
</tr>
<tr>
<td>Eden, Tex 95</td>
<td></td>
</tr>
<tr>
<td>Edgeley, N. Dak 90</td>
<td></td>
</tr>
<tr>
<td>Elberton, Ga.—S. C 72</td>
<td></td>
</tr>
<tr>
<td>Ely, Cal 69</td>
<td></td>
</tr>
<tr>
<td>Eldorado, Kans 75</td>
<td></td>
</tr>
<tr>
<td>Elizabeth, N. Y 88</td>
<td></td>
</tr>
<tr>
<td>Elk Island, Pa 92</td>
<td></td>
</tr>
<tr>
<td>Elkton, Md.—Pa.—Del 79</td>
<td></td>
</tr>
<tr>
<td>Ellendale, N. Dak.—S. Dak 91</td>
<td></td>
</tr>
<tr>
<td>Ely, Me 79</td>
<td></td>
</tr>
<tr>
<td>Ellijay, Ga.—N. C.—Tenn 72</td>
<td></td>
</tr>
<tr>
<td>Ellis, Kans 76</td>
<td></td>
</tr>
<tr>
<td>Elsworth, Kans 76</td>
<td></td>
</tr>
<tr>
<td>Elmira, N. Y—Pa 88</td>
<td></td>
</tr>
<tr>
<td>Elmore, Colo 70</td>
<td></td>
</tr>
<tr>
<td>El Paso, Tex 95</td>
<td></td>
</tr>
<tr>
<td>Elsinore, Cal 69</td>
<td></td>
</tr>
<tr>
<td>Emporia, Kans 76</td>
<td></td>
</tr>
<tr>
<td>Engineer Mountain, Colo 70</td>
<td></td>
</tr>
<tr>
<td>Equinox, Vt 96</td>
<td></td>
</tr>
<tr>
<td>Erie, Pa 92</td>
<td></td>
</tr>
<tr>
<td>Escalante, Utah 90</td>
<td></td>
</tr>
<tr>
<td>Essex, N. J—New York 88</td>
<td></td>
</tr>
<tr>
<td>Eskridge, Kans 76</td>
<td></td>
</tr>
<tr>
<td>Estillville, Va.—Ky.—Tenn 97</td>
<td></td>
</tr>
<tr>
<td>Eureka, Kans 76</td>
<td></td>
</tr>
<tr>
<td>Evanston, Ill 73</td>
<td></td>
</tr>
<tr>
<td>Evansville, Wis 99</td>
<td></td>
</tr>
<tr>
<td>Fairview, Pa 92</td>
<td></td>
</tr>
<tr>
<td>Fall River, Mass.—R. I 10</td>
<td></td>
</tr>
<tr>
<td>Falmonth, Mass 80</td>
<td></td>
</tr>
<tr>
<td>Fargo, N. Dak.—Minn 91</td>
<td></td>
</tr>
<tr>
<td>Farley, Iowa 75</td>
<td></td>
</tr>
<tr>
<td>Farmville, Va 97</td>
<td></td>
</tr>
<tr>
<td>Foyetville, Ark.—Mo 53</td>
<td></td>
</tr>
<tr>
<td>Fernando, Cal 69</td>
<td></td>
</tr>
<tr>
<td>Fish Lake, Utah 95</td>
<td></td>
</tr>
</tbody>
</table>

Page |
Fitchburg, Mass.—N. H 80 |
Flota, Tex. 95 |
Flintstone, Md.—W. Va.—Pa 79 |
Fonda, N. Y 88 |
Fort Ann, N. Y.—Vt 88 |
Fort Benton, Mont 83 |
Fort Custer, Mont 83 |
Fort Davis, Tex 95 |
Fort Defiance, Ariz.—N. Mex 68 |
Fort Hancock, Tex 91 |
Fort Livingston, La 78 |
Fort Logan, Mont 83 |
Fort McKavett, Tex 95 |
Fort Payne, Ala.—Ga 67 |
Fort Scott, Kans.—Mo 76 |
Fort Smith, Ark.—Ind. T 68 |
Fort Steele, Wyo 100 |
Fort Worth, Tex 95 |
Forts, La 78 |
Framingham, Mass 80 |
Franklin, Mass.—R. I 80 |
Franklin, N. J 85 |
Franklin, W. Va.—Va 98 |
Frederick, Md.—Va 79 |
Fredericksburg, Tex 95 |
Fredericksburg, Va.—Md 97 |
Frederon, Kans 76 |
Freeport, Me 78 |
Fremont, Nebr 83 |
Frostburg, Md.—W. Va.—Pa 79 |
Fullerton, N. Dak 91 |
Fulton, Mo 82 |
Fulton, N. Y 88 |
Gadsden, Ala 67 |
Gaines, Pa 92 |
Gainesville, Ga 72 |
Gallatin, Yell. Nat. Park, Wyo 100 |
Garden, Kans 76 |
Gardiner, Me 78 |
Garnett, Kans 76 |
Gatesville, Tex 95 |
Gay Head, Mass 80 |
Geneva, Wis 99 |
Georgetown, Tex 95 |
Germantown, Pa.—N. J 92 |
Gibson, La 78 |
Gilead, Conn 71 |
Girard, Pa 92 |
Glacier Peak, Wash 98 |
Glasgow, Mo 82 |
Glassboro, N. J 85 |
Glen Falls, N. Y 88 |
Gloucester, Mass 80 |
Goochland, Va 97 |
Goose Lake, Iowa—III 75 |
Gordonsville, Va 97 |
Gorham, N. H.—Me 84 |
Goshen Hole, Wyo.—Nebr 100 |
Granada, Colo.—Kans 70 |
Granbury, Tex 95 |
Granby, Conn 71 |
Grand Island, Nebr 83 |
Grand Teton, Wyo 100 |
Granite Range, Nev 84 |
Grantville, Md.—Pa 79 |
<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Burden, Kans.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Burlingame, Kans.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Burlington, Kans.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Burlington, Pa.-N. J.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Burnet, Tex.</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Burrillville, R. I.</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Butler, Mo.</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Burton, Mo.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Byron, S. Dak.</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>Caldwell, Kans.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Calumet, Ill.-Ind.</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Camas Prairie, Idaho</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Cambridge, N. Y.-Va.</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Camden, N. J.-Pa.-Del.</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Camp Clarke, N. Dakota</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Camp Mohave, Ariz.-Nov.-Cal</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Canada Lake, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Canadian, Ind. T.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Canajoharie, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Canton, S. Dak.-Iowa</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Canyon, Yell. Nat. Park, Wyo</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Canyon City, Colo</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Canyon de Chelly, Ariz.-N. Mex</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Cape May, N. J.</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Cape Vincent, N. Y.-Canada</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Carmel, N. Y.-Conn.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Carnetville, Ga.-S. C.</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Carson, Nev.</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Cartersville, Ga.</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Carchage, Mo.</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Casselton, N. Dak.</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Casco Bay, Me.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Casville, N. J.</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Castle Rock, Colo.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Castleton, Vt.-N. Y.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Cat Island, La.-Mississippi</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Catawissa, Pa.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Catlin, Colo.</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Catskill, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Cayenne, Colo.</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Cawson, Cal.</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Cazeno, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Cecilton, Md.-Del.</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Cedar Rapids, Iowa</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Chaco, N. Mex.</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Chandleur, La.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Chappell, N. D.</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Charleston, W. Va.</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Charleston, E. I.</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>Chatham, Mass</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Chattanooga, Tenn.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Chef Menteur, La.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Cheney, Kans.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Cheniere Caminada, La.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Cherry Creek, N. Y.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Chester, Pa.-Del.-N. J.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Chesterfield, Mass</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Chelsea, N. Y.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Chico, Cal.</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Chino, Ariz.</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Chippa, Tex.</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Chittenango, N. Y.</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Choptank, Md.</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Christiansburg, Va.-W. Va.</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

Page: 102

PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [Bull. 177]
Index to foregoing list of topographic atlas sheets.

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abajo, Utah-Colo</td>
<td>90</td>
</tr>
<tr>
<td>Abbeville, S. C.</td>
<td>93</td>
</tr>
<tr>
<td>Aberdeen, S. Dak</td>
<td>93</td>
</tr>
<tr>
<td>Abilene, Kans</td>
<td>75</td>
</tr>
<tr>
<td>Abilene, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Abingdon, Tenn.-Va.-N. C.</td>
<td>94</td>
</tr>
<tr>
<td>Abington, Mass</td>
<td>80</td>
</tr>
<tr>
<td>Accident, Md.-Pa.-W. Va</td>
<td>79</td>
</tr>
<tr>
<td>Albany, Colo.-Kans</td>
<td>70</td>
</tr>
<tr>
<td>Albany, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Albany and Vicinity, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Albany, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Albion, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Albuquerque, N. Mex</td>
<td>86</td>
</tr>
<tr>
<td>Alexandria, S. Dak</td>
<td>93</td>
</tr>
<tr>
<td>Allentown, Pa</td>
<td>92</td>
</tr>
<tr>
<td>Alpine, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Alturas, Cal</td>
<td>65</td>
</tr>
<tr>
<td>Amman, Iowa</td>
<td>74</td>
</tr>
<tr>
<td>Amelia, Va</td>
<td>97</td>
</tr>
<tr>
<td>Amsterdam, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Anaheim, Cal</td>
<td>68</td>
</tr>
<tr>
<td>Anamosa, Iowa</td>
<td>74</td>
</tr>
<tr>
<td>Annapolis, Md</td>
<td>79</td>
</tr>
<tr>
<td>Anniston, Ala</td>
<td>67</td>
</tr>
<tr>
<td>Anson, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Anthony, Kans</td>
<td>75</td>
</tr>
<tr>
<td>Anthracite, Colo</td>
<td>70</td>
</tr>
<tr>
<td>Aplhapa, Colo</td>
<td>70</td>
</tr>
<tr>
<td>Appomattox, Va</td>
<td>97</td>
</tr>
<tr>
<td>Arapahoe, Nebr.-Kans</td>
<td>81</td>
</tr>
<tr>
<td>Arredondo, Fla</td>
<td>72</td>
</tr>
<tr>
<td>Arroyo, Colo</td>
<td>70</td>
</tr>
<tr>
<td>Arroyo Grande, Cal</td>
<td>68</td>
</tr>
<tr>
<td>Asbury Park, N. J</td>
<td>85</td>
</tr>
<tr>
<td>Asheville, N. C-Tenn</td>
<td>90</td>
</tr>
<tr>
<td>Ashland, Ala</td>
<td>67</td>
</tr>
<tr>
<td>Ashland, Kans</td>
<td>75</td>
</tr>
<tr>
<td>Ashland, Oreg.</td>
<td>91</td>
</tr>
<tr>
<td>Ashley, Utah-Colo</td>
<td>96</td>
</tr>
<tr>
<td>Aspen, Colo</td>
<td>70</td>
</tr>
<tr>
<td>Atchison, Kans-Mo</td>
<td>75</td>
</tr>
<tr>
<td>Atlanta, Ga</td>
<td>72</td>
</tr>
<tr>
<td>Atlantic City, N. J</td>
<td>85</td>
</tr>
<tr>
<td>Atoka, Ind. T</td>
<td>74</td>
</tr>
<tr>
<td>Auburn, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Augusta, Mo</td>
<td>78</td>
</tr>
<tr>
<td>Ausable, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Austin, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Bald Mountain, Wyo</td>
<td>100</td>
</tr>
<tr>
<td>Baldwin, Iowa</td>
<td>74</td>
</tr>
<tr>
<td>Baldwinville, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Balingner, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Baltimore, Md</td>
<td>79</td>
</tr>
<tr>
<td>Baraboo, Wis</td>
<td>99</td>
</tr>
<tr>
<td>Barnstoy, La</td>
<td>77</td>
</tr>
<tr>
<td>Barnegat, N. J</td>
<td>85</td>
</tr>
<tr>
<td>Barnstable, Mass</td>
<td>80</td>
</tr>
<tr>
<td>Barre, Mass.</td>
<td>80</td>
</tr>
<tr>
<td>Bastrop, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Batesville, Ark</td>
<td>68</td>
</tr>
<tr>
<td>Bath, Me</td>
<td>78</td>
</tr>
<tr>
<td>Bay View, Wis</td>
<td>99</td>
</tr>
<tr>
<td>Bayou de Laforge, La</td>
<td>77</td>
</tr>
<tr>
<td>Bayside, N. J-Del</td>
<td>86</td>
</tr>
<tr>
<td>Bear Valley, Idaho</td>
<td>73</td>
</tr>
<tr>
<td>Beautyville, Ky</td>
<td>77</td>
</tr>
<tr>
<td>Beaver, Utah-R. I</td>
<td>99</td>
</tr>
<tr>
<td>Becket, Mass.</td>
<td>80</td>
</tr>
<tr>
<td>Belchertown, Mass</td>
<td>80</td>
</tr>
<tr>
<td>Beloit, Kans</td>
<td>75</td>
</tr>
<tr>
<td>Bennington, Vi</td>
<td>96</td>
</tr>
<tr>
<td>Benton, Ark</td>
<td>68</td>
</tr>
<tr>
<td>Berlin, N. Y-Mass.-Vt</td>
<td>87</td>
</tr>
<tr>
<td>Bernal, N. Mex</td>
<td>86</td>
</tr>
<tr>
<td>Berwick, Me.-N. H</td>
<td>78</td>
</tr>
<tr>
<td>Bessmer, Ala</td>
<td>67</td>
</tr>
<tr>
<td>Betterton, Md</td>
<td>79</td>
</tr>
<tr>
<td>Beverly, W. Va. Va.</td>
<td>95</td>
</tr>
<tr>
<td>Biddeford, Me</td>
<td>78</td>
</tr>
<tr>
<td>Bidwell Bar, Cal</td>
<td>68</td>
</tr>
<tr>
<td>Big Snowy Mountain, Mont</td>
<td>83</td>
</tr>
<tr>
<td>Big Springs, Colo</td>
<td>70</td>
</tr>
<tr>
<td>Big Timber, Mont</td>
<td>88</td>
</tr>
<tr>
<td>Big Trees, Cal</td>
<td>68</td>
</tr>
<tr>
<td>Birmingham, Ala</td>
<td>97</td>
</tr>
<tr>
<td>Bisuka, Idaho</td>
<td>73</td>
</tr>
<tr>
<td>Blackstone, Mass.-R. I</td>
<td>99</td>
</tr>
<tr>
<td>Blanco, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Block Island, R. I</td>
<td>93</td>
</tr>
<tr>
<td>Bloomsburg, Pa</td>
<td>92</td>
</tr>
<tr>
<td>Bodreau, La</td>
<td>77</td>
</tr>
<tr>
<td>Boise, Idaho</td>
<td>73</td>
</tr>
<tr>
<td>Bolivar, Mo.</td>
<td>82</td>
</tr>
<tr>
<td>Bolton, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Bonnet Carre, La</td>
<td>77</td>
</tr>
<tr>
<td>Boonville, Mo</td>
<td>82</td>
</tr>
<tr>
<td>Bostchay, Me</td>
<td>78</td>
</tr>
<tr>
<td>Bordenown, N. J-Pa</td>
<td>85</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>80</td>
</tr>
<tr>
<td>Boston Bay, Mass</td>
<td>80</td>
</tr>
<tr>
<td>Boulder, Mont</td>
<td>83</td>
</tr>
<tr>
<td>Brackett, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Brady, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Brandywine, Md</td>
<td>79</td>
</tr>
<tr>
<td>Brattleboro, Vt.-N. H</td>
<td>96</td>
</tr>
<tr>
<td>Breckenridge, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Bridgeville, Tenn</td>
<td>94</td>
</tr>
<tr>
<td>Bridgeport, Conn</td>
<td>71</td>
</tr>
<tr>
<td>Bridgeton, N. J</td>
<td>85</td>
</tr>
<tr>
<td>Bristol, Va.-Tenn</td>
<td>97</td>
</tr>
<tr>
<td>Brockport, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Broilmington, Wis</td>
<td>99</td>
</tr>
<tr>
<td>Brookfield, Mass.-Conn.</td>
<td>50</td>
</tr>
<tr>
<td>Brooklyn, N. Y</td>
<td>87</td>
</tr>
<tr>
<td>Brookwood, Ala</td>
<td>67</td>
</tr>
<tr>
<td>Browns Creek, Nebr</td>
<td>88</td>
</tr>
<tr>
<td>Brownwood, Tex</td>
<td>95</td>
</tr>
<tr>
<td>Buckhannon, W. Va.</td>
<td>98</td>
</tr>
<tr>
<td>Buckingham, Va</td>
<td>97</td>
</tr>
<tr>
<td>Buckورd, Me.</td>
<td>98</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>00</td>
</tr>
<tr>
<td>Canyon (Yellowstone National Park, Wyo.) a</td>
<td>44 30</td>
</tr>
<tr>
<td>Cloud Peak</td>
<td>44 00</td>
</tr>
<tr>
<td>Crandall</td>
<td>44 30</td>
</tr>
<tr>
<td>Dayton</td>
<td>44 30</td>
</tr>
<tr>
<td>Fort Steele</td>
<td>41 30</td>
</tr>
<tr>
<td>Gallatin (Yellowstone National Park, Wyo.) a</td>
<td>44 30</td>
</tr>
<tr>
<td>Goshen Hole (Wyo.-Neb.)</td>
<td>41 30</td>
</tr>
<tr>
<td>Grand Tetón</td>
<td>43 30</td>
</tr>
<tr>
<td>Hartville</td>
<td>42 00</td>
</tr>
<tr>
<td>Ishawooa</td>
<td>44 00</td>
</tr>
<tr>
<td>Lake (Yellowstone National Park-Wyo.) a</td>
<td>44 00</td>
</tr>
<tr>
<td>Larimie</td>
<td>41 00</td>
</tr>
<tr>
<td>Patrick (Wyo.-Neb.)</td>
<td>42 00</td>
</tr>
<tr>
<td>Shoshone (Yellowstone National Park-Wyo.) a</td>
<td>44 00</td>
</tr>
<tr>
<td>Sundance (Wyo.-S. Dak.)</td>
<td>44 00</td>
</tr>
<tr>
<td>Yellowstone National Park (Y. N. P.-Wyo.) a</td>
<td>44 00</td>
</tr>
</tbody>
</table>

YELLOWSTONE NATIONAL PARK.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canyon (Yellowstone National Park, Wyo.) a</td>
<td>44 30</td>
<td>110 00</td>
<td>½ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Gallatin (Yellowstone National Park, Wyo.) a</td>
<td>44 30</td>
<td>110 30</td>
<td>½ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Lake (Yellowstone National Park-Wyo.) a</td>
<td>41 00</td>
<td>110 00</td>
<td>½ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Livingston (Mont.-Yellowstone National Park).</td>
<td>45 00</td>
<td>110 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:125000</td>
</tr>
<tr>
<td>Shoshone (Yellowstone National Park-Wyo.) a</td>
<td>44 00</td>
<td>110 30</td>
<td>½ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Threeforks (Mont.-Yellowstone National Park).</td>
<td>45 00</td>
<td>111 00</td>
<td>1 degree</td>
<td>200</td>
<td>1:250000</td>
</tr>
<tr>
<td>Yellowstone National Park (Y. N. P.-Wyo.) a</td>
<td>44 00</td>
<td>110 00</td>
<td>½ degree</td>
<td>100</td>
<td>1:125000</td>
</tr>
</tbody>
</table>

a Yellowstone National Park sheet includes Canyon, Gallatin, Lake, and Shoshone sheets.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

WEST VIRGINIA—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harpers Ferry (Va.-W. Va.-Md.)</td>
<td>39 00 77 30 7 degree</td>
<td>44 feet</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hinton</td>
<td>37 30 80 15 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Huntersville</td>
<td>38 00 80 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Huntington (W. Va.-Ohio-Ky.)</td>
<td>38 00 82 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Kanawha Falls</td>
<td>38 00 81 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lewisburg (Va.-W. Va.)</td>
<td>37 30 80 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Monterey (Va.-W. Va.)</td>
<td>38 00 79 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nicholas</td>
<td>38 00 80 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Oakland (Md.-W. Va.)</td>
<td>30 15 79 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Oceana (W. Va.-Va.-Ky.)</td>
<td>37 30 81 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pawpaw (Md.-W. Va.-Pa.)</td>
<td>39 30 78 15 7 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Piedmont (W. Va.-Md.)</td>
<td>39 00 79 00 7 degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pocahontas (Va.-W. Va.)</td>
<td>37 00 81 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Raleigh</td>
<td>37 30 81 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Romney (W. Va.-Va.-Md.)</td>
<td>39 00 78 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>St. George</td>
<td>39 00 79 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Staunton (Va.-W. Va.)</td>
<td>39 00 79 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sutton</td>
<td>38 30 80 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tazewell (Va.-W. Va.)</td>
<td>37 00 81 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Warfield (W. Va.-Ky.-Va.)</td>
<td>37 30 82 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Winchester (Va.-W. Va.)</td>
<td>39 00 78 00 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Woodstock (Va.-W. Va.)</td>
<td>38 30 78 30 do</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

WISCONSIN.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baraboo</td>
<td>43 15 89 30 7 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bay View</td>
<td>42 45 87 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Brodhead</td>
<td>42 30 89 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Delavan</td>
<td>42 30 88 30 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Eagle</td>
<td>42 45 88 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Evansville</td>
<td>42 45 89 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Geneva</td>
<td>42 30 88 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Iron River (Mich.-Wis.)</td>
<td>46 00 88 30 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Janesville</td>
<td>42 30 89 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Koshkonong</td>
<td>42 45 88 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lancaster (Wis.-Iowa-Ill.)</td>
<td>42 30 90 30 7 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Madison</td>
<td>43 00 89 15 7 degree</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Milwaukee</td>
<td>43 00 87 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Muskego</td>
<td>42 45 88 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Oconomowoc</td>
<td>43 00 88 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Port Washington</td>
<td>43 15 87 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Portage</td>
<td>43 30 89 15 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Racine</td>
<td>42 30 87 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>St. Croix Dalles (Wis.-Minn.)</td>
<td>45 15 92 30 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Shopiere</td>
<td>42 30 88 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Silver Lake</td>
<td>42 30 88 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Stoughton</td>
<td>42 45 89 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sun Prairie</td>
<td>43 00 89 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Waterloo</td>
<td>43 00 88 45 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Watertown</td>
<td>43 00 88 30 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Waukesha</td>
<td>43 00 88 00 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Whitewater</td>
<td>42 45 88 30 do</td>
<td>20</td>
<td>1:625000</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
VIRGINIA—Continued.

<table>
<thead>
<tr>
<th>Name of atlas sheet</th>
<th>Position of SE. corner of sheet</th>
<th>Area covered</th>
<th>Contour interval</th>
<th>Scale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat.</td>
<td>Long.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceana (W. Va.-Va.-Ky.)</td>
<td>37 30</td>
<td>81 30</td>
<td>° 4 degree...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Palmyra</td>
<td>37 30</td>
<td>78 00</td>
<td>° 37 80...</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Petersburg</td>
<td>37 00</td>
<td>77 15</td>
<td>° 37 30...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Piney Point (Md.-Va.) a</td>
<td>38 00</td>
<td>76 30</td>
<td>° 37 00...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Pocahontas (Va.-W. Va.)</td>
<td>37 00</td>
<td>81 00</td>
<td>° 38 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Point Lookout (Md.-Va.) b</td>
<td>38 00</td>
<td>76 15</td>
<td>° 38 00...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Richmond</td>
<td>37 30</td>
<td>77 15</td>
<td>° 37 30...</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Romney</td>
<td>37 00</td>
<td>79 30</td>
<td>° 37 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>St. Mary (Md.-Va.) b</td>
<td>38 00</td>
<td>76 30</td>
<td>° 38 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Spotsylvania</td>
<td>38 00</td>
<td>77 30</td>
<td>° 38 00...</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Staunton (Va.-W. Va.)</td>
<td>38 00</td>
<td>79 00</td>
<td>° 39 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Tazewell (Va.-W. Va.)</td>
<td>37 00</td>
<td>81 30</td>
<td>° 37 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Warfield (W. Va.-Ky.-Va.)</td>
<td>37 30</td>
<td>82 00</td>
<td>° 39 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Warrenton</td>
<td>38 30</td>
<td>77 30</td>
<td>° 40 00...</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Washington (D.C.-Md.-Va.) (double sheet)</td>
<td>38 45</td>
<td>76 45</td>
<td>° 39 30...</td>
<td>20</td>
<td>1:625000</td>
</tr>
<tr>
<td>Whiteburg (Ky.-Va.)</td>
<td>37 00</td>
<td>82 30</td>
<td>° 40 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Wicomico (Md.-Va.) a</td>
<td>38 15</td>
<td>76 45</td>
<td>° 38 30...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Winchester (Va.-W. Va.)</td>
<td>39 00</td>
<td>78 30</td>
<td>° 39 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Woodstock (Va.-W. Va.)</td>
<td>38 30</td>
<td>78 30</td>
<td>° 40 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Wytheville (Va.-N.C.)</td>
<td>36 36</td>
<td>81 00</td>
<td>° 37 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacier Peak</td>
<td>48 00</td>
<td>121 00</td>
<td>° 48 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Methow</td>
<td>48 00</td>
<td>120 00</td>
<td>° 48 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Mt. Stuart</td>
<td>47 00</td>
<td>120 30</td>
<td>° 47 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Portland (Oreg.-Wash.)</td>
<td>46 30</td>
<td>122 30</td>
<td>° 46 30...</td>
<td>25</td>
<td>1:62500</td>
</tr>
<tr>
<td>Seattle</td>
<td>47 30</td>
<td>122 00</td>
<td>° 47 30...</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td>Seattle c</td>
<td>47 30</td>
<td>122 15</td>
<td>° 47 30...</td>
<td>25</td>
<td>1:62500</td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>48 00</td>
<td>121 30</td>
<td>° 48 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Tacoma</td>
<td>47 00</td>
<td>122 00</td>
<td>° 47 00...</td>
<td>50</td>
<td>1:125000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST VIRGINIA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident (Md.-Pa.-W. Va.)</td>
<td>39 33</td>
<td>79 15</td>
<td>° 39 33...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Beverly (W. Va.-Va.)</td>
<td>38 30</td>
<td>79 33</td>
<td>° 38 33...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Buckhannon</td>
<td>38 30</td>
<td>80 00</td>
<td>° 38 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Charleston</td>
<td>38 00</td>
<td>81 30</td>
<td>° 38 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Christiansburg (Va.-W. Va.)</td>
<td>37 00</td>
<td>80 00</td>
<td>° 37 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Dublin (Va.-W. Va.)</td>
<td>37 00</td>
<td>80 30</td>
<td>° 37 00...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Flintstone (Md.-W. Va.-Pa.)</td>
<td>39 30</td>
<td>78 30</td>
<td>° 39 30...</td>
<td>20</td>
<td>1:62500</td>
</tr>
<tr>
<td>Franklin (W. Va.-Va.)</td>
<td>38 30</td>
<td>79 00</td>
<td>° 38 30...</td>
<td>100</td>
<td>1:125000</td>
</tr>
<tr>
<td>Frostburg (Md.-W. Va.-Pa.)</td>
<td>39 30</td>
<td>78 45</td>
<td>° 39 30...</td>
<td>20</td>
<td>1:62500</td>
</tr>
</tbody>
</table>

*a Montross, Piney Point, and Wicomico sheets, on scale of 1:62500, have been reduced and form parts of Nomini, on scale of 1:125000.
*b Point Lookout sheet, on scale of 1:62500, has been reduced and forms part of St. Mary, on scale of 1:125000.
*c Seattle sheet on scale of 1:62500 has been reduced and forms part of Seattle on scale of 1:125000.
TOPOGRAPHIC ATLAS SHEETS.

Published topographic atlas sheets, arranged by States—Continued.

VERMONT—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouse Point (N. Y.-Vt.)</td>
<td>44 45 73 15</td>
<td>$\frac{1}{8}$ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Rutland</td>
<td>43 30 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Strafford</td>
<td>45 45 72 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Taconic (N. Y.-Mass.-Vt.)</td>
<td>42 30 73 00</td>
<td>$\frac{1}{4}$ degree</td>
<td>40</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Ticonderoga (N. Y.-Vt.)</td>
<td>45 45 73 15</td>
<td>$\frac{1}{8}$ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wallingford</td>
<td>48 15 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Warwick (Mass.-N. H.-Vt.)</td>
<td>42 30 72 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Whitefield (N. H.-Vt.)</td>
<td>44 15 71 30</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Whitehall (N. Y.-Vt.)</td>
<td>44 15 73 15</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Wilmington</td>
<td>42 45 72 45</td>
<td>...do...</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
</tbody>
</table>

VIRGINIA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abingdon (Tenn.-Va.-N. C.)</td>
<td>36 30 81 30</td>
<td>$\frac{1}{4}$ degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Amelia</td>
<td>37 00 77 30</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Appomattox</td>
<td>37 00 78 30</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Bermuda Hundred</td>
<td>37 15 77 15</td>
<td>$\frac{1}{4}$ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Beverly (W. Va.-Va.)</td>
<td>38 30 79 30</td>
<td>$\frac{1}{4}$ degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Bristol (Va.-Tenn.)</td>
<td>36 30 82 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Buckingham</td>
<td>37 30 78 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Christiansburg (Va.-W. Va.)</td>
<td>40 00 77 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Cumberland Gap (Ky.-Va.-Tenn.)</td>
<td>36 30 83 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Dublin (Va.-W. Va.)</td>
<td>37 00 80 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Estillville (Va.-Ky.-Tenn.)</td>
<td>36 30 82 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Farmville</td>
<td>37 00 78 00</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Franklin (W. Va.-Va.)</td>
<td>38 30 79 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Frederick (Md.-Va.)</td>
<td>39 00 77 00</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Fredericksburg (Va.-Md.)</td>
<td>38 00 77 00</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Goochland</td>
<td>37 30 77 30</td>
<td>...do...</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Gordonsville</td>
<td>38 00 78 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Grundy (Va.-Ky.)</td>
<td>37 00 82 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Harpers Ferry (Va.-W. Va.-Md.)</td>
<td>39 00 77 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Harrisonburg</td>
<td>38 00 78 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Hillsville (Va.-N. C.)</td>
<td>36 30 80 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Jonesville (Ky.-Va.-Tenn.)</td>
<td>36 30 83 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lewisburg (Va.-W. Va.)</td>
<td>37 30 80 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lexington</td>
<td>37 30 79 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Luray</td>
<td>38 30 78 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Lynchburg</td>
<td>37 00 79 00</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Monterey (Va.-W. Va.)</td>
<td>38 00 79 30</td>
<td>$\frac{1}{4}$ degree</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Montross (Va.-Md.)</td>
<td>38 00 76 45</td>
<td>$\frac{1}{8}$ degree</td>
<td>20</td>
<td>1:62500</td>
<td>5</td>
</tr>
<tr>
<td>Mt. Vernon (Va.-Md.-D. C.)</td>
<td>38 30 77 00</td>
<td>$\frac{1}{4}$ degree</td>
<td>50</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Natural Bridge</td>
<td>37 30 79 30</td>
<td>...do...</td>
<td>100</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Nomin (Md.-Va.)</td>
<td>38 00 76 30</td>
<td>...do...</td>
<td>20</td>
<td>1:125000</td>
<td>5</td>
</tr>
<tr>
<td>Norfolk (Va.-N. C.)</td>
<td>36 30 75 45</td>
<td>$\frac{1}{4}$ degree</td>
<td>5</td>
<td>1:125000</td>
<td>10</td>
</tr>
</tbody>
</table>

a Bennington, Berlin, Greylock, and Hoosick sheets, on scale of 1:62500, have been reduced and form parts of Taconic, on scale of 1:125000.

b Montross, Pincey Point, and Wicomico sheets, on scale of 1:62500, have been reduced and form parts of Nomini, on scale of 1:125000.

Bull. 177—01——7
<table>
<thead>
<tr>
<th>Town</th>
<th>State(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Animas</td>
<td>Colo</td>
<td>70</td>
</tr>
<tr>
<td>Las Bolsas</td>
<td>Colo</td>
<td>69</td>
</tr>
<tr>
<td>Las Cruces</td>
<td>N. Mex</td>
<td>87</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>N. Mex</td>
<td>87</td>
</tr>
<tr>
<td>Lassen, Ill</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Lassen Peak, Cal</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Laurel</td>
<td>Md</td>
<td>79</td>
</tr>
<tr>
<td>Lawrence</td>
<td>Kaus</td>
<td>76</td>
</tr>
<tr>
<td>Laurel</td>
<td>Md</td>
<td>79</td>
</tr>
<tr>
<td>Lawrence</td>
<td>Mass.-N. H</td>
<td>81</td>
</tr>
<tr>
<td>Leadville</td>
<td>Colo</td>
<td>70</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Pa</td>
<td>92</td>
</tr>
<tr>
<td>LeClaire</td>
<td>Iowa-Ill</td>
<td>75</td>
</tr>
<tr>
<td>Leonardtown, Md</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Lewisburg</td>
<td>Va-W. Va</td>
<td>97</td>
</tr>
<tr>
<td>Lexington</td>
<td>Mo</td>
<td>82</td>
</tr>
<tr>
<td>Lexington</td>
<td>Nbr</td>
<td>83</td>
</tr>
<tr>
<td>Lexington</td>
<td>Va</td>
<td>97</td>
</tr>
<tr>
<td>Limon</td>
<td>Colo</td>
<td>70</td>
</tr>
<tr>
<td>Lincoln</td>
<td>Nbr</td>
<td>88</td>
</tr>
<tr>
<td>Little Belt Mountains, Mont.</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Little Egg Harbor, N. J</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Little Falls, N. Y</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Little Rock, Ark</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Livingston</td>
<td>Mont.-Yell. Nat. Pk</td>
<td>83</td>
</tr>
<tr>
<td>Llano</td>
<td>Tex</td>
<td>35</td>
</tr>
<tr>
<td>Lockport, N. Y</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Lodi, Cal</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>London</td>
<td>Ky</td>
<td>77</td>
</tr>
<tr>
<td>Londonderry, Vt</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Long Beach</td>
<td>N. J</td>
<td>85</td>
</tr>
<tr>
<td>Long Valley, Nev</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Los Angeles, Cal</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>London</td>
<td>Tenn</td>
<td>94</td>
</tr>
<tr>
<td>Louisiana, Mo.-III</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Loop, Nebr</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Lowell, Mass.-N. H</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Luray, Va</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>Lykens, Pa</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Lynchburg</td>
<td>Va</td>
<td>97</td>
</tr>
<tr>
<td>Lyons</td>
<td>Kans</td>
<td>76</td>
</tr>
<tr>
<td>McAlester, Ind. T</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>McCormick</td>
<td>Ga-S. C</td>
<td>72</td>
</tr>
<tr>
<td>McMinnville</td>
<td>Tenn</td>
<td>94</td>
</tr>
<tr>
<td>Mcedon</td>
<td>N. Y</td>
<td>88</td>
</tr>
<tr>
<td>Madison</td>
<td>Wis</td>
<td>99</td>
</tr>
<tr>
<td>Magazine Mountain, Ark</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Mahanoy, Pa</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Manchester, Ky</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Mankato, Kans</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Mantle, Utah</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Maquoeta, Iowa</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Maria</td>
<td>Tex</td>
<td>95</td>
</tr>
<tr>
<td>Marietta</td>
<td>Ga</td>
<td>73</td>
</tr>
<tr>
<td>Marion</td>
<td>Iowa</td>
<td>75</td>
</tr>
<tr>
<td>Markleove, Cal.-NeV</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Marlboro</td>
<td>Mass</td>
<td>81</td>
</tr>
<tr>
<td>Marseilles</td>
<td>Ill</td>
<td>73</td>
</tr>
<tr>
<td>Marvich Pass, Aria</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Marshall</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Marshall, Mo</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Martinis Vineyard, Mass</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Marysville</td>
<td>Cal</td>
<td>69</td>
</tr>
<tr>
<td>Marysville, Kans</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Mason</td>
<td>Tex</td>
<td>95</td>
</tr>
<tr>
<td>Maysontown, Pa</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Location</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Natura Bridge, Va</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Neil Lake, Mich</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Nepesta, Colo.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>New City, Kans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Nevada, Mo.</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>New Bedford, Mass</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>New Brunswick, N. J</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>New Haven, Conn.</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>New London, Conn.-N. Y</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>New York City and Vicinity, N. Y-N. J</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Newburyport, Mass.-N. H</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Newcomb, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Newfield, Me.-N. H</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Newport, R. I</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Newton, Kans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Niagra, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Niagra Falls, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Niagra Falls and Vicinity</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Nicholas, W. Va.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Nomini, Md.-Va.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Norfolk, Va.-N. C</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Norridgewock, Me</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Norristown, Pa</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>North Conway, N. H.-Me</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>North Creek, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>North Point, Md.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Northampton, Mass.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Northville, S. Dak</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Norton, Kans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Norwalk, Conn.-N. Y</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Norway, Me</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Norwich, Conn.</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Nuuces, Tex.</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Oak Harbor, Ohio</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Oak Orchard, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Oakes, N. Dak</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Oakland, Md.-W. Va</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Ocala, Fla.</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Oceana, W. Va.-Va.-Ky</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Oceanside, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Oconomovoc, Wis</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Oelrichs, Dak.-Neb.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Ogallala, Neb.</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Okmulgee, Ind. T.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Olathe, Kans.-Mo</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Ocott, N. Y.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Old Forge, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Olean, N. Y.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Olivet, S. Dak.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Ohama and Vicinity, Neb.-Town</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Oneida, N. Y.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Ontatio Besch, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Oriskany, N. Y.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Orland, Me</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Osborne, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Osaloosa, Kans.-Mo</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Oswego, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Ottawa, Ill.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Owensville, Md.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Oxford, Iowa.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Oyster Bay., N. Y.-Conn.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Palmer, Mass.-Conn.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Palmyra, Va.</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Palo Alto, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Palo Pinto, Tex.</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Panaoskeco, Fla.</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Paradise, Nev.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Panidox Lake, N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Parker, S. Dak.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Parkerville, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Parsons, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Passiac, N. J.-N. Y</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Patrick, N. Y.-Utah.</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Patuxent, Md.-D. C.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Pawlet, Vt.-N. Y.</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Pawpaw, Md.-W. Va.-Pa.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Paxton, Neb.</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Pemberton, N. J.</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Peosta, Iowa-Ill</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Perch Lake, Mich</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Peterboro, N. H.</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Petersburg, Va.</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Pioche, Nev.-Utah.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Philadelphia and Vicinity, Pa.-N. J.-Del</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Phillipburg, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Pickens, S. C.</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Piedmont, W. Va.-Md</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Pikes Peak, Colo.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Pikeville, Tenn.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Plainfield, N. J</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Plainville, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Platte Canyon, Colo</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Plattsburg, N. Y.-Vt</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Plymouth, Mass.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Pocahontas, Va.-W. Va.</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Point Lookout, Md.-Va.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Point a la Hache, La.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Polvo, Tex.</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Pomona, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Port Harford, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Port Henry, N. Y.-Vt</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Port Orford, Oreg.</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Port Washington, Wis</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Portage, Wis.</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Portland, Me</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Portland, Oreg.-Wash</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Poteau Mountain, Ark.-Ind. T.</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Pottsville, Va.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Roughriderlo, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Pratt, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Prescott, Ariz.</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Prestonsburg, Ky</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Price River, Utah</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Prince Frederick, Md.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Princeton, N. J.</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Providence, Mass.-R. I.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Providence, Mass.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Pryor, Ind. T.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Pueblo, Colo.</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Pulaski, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Putnam, Conn.-R. I.</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Town</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Pyramid Peak, Cal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Quakertown, Pa</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Quarantine, La</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Racing, Wis</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Raleigh, W. Va</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Ramapo, N. J.-N. Y.</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Rancocas, N. J.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Rapid, S. Dak</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Rabin, N. J.-Miss</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Reading, Pa</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Red Bluff, Cal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Red Cloud, Nebr.-Kans</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Redfield, S. Dak</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Redondo, Cal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Relay, Md</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Remsen, N. Y</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Reno, Nev.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Rhinebeck, N. Y</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Richmond, Ky</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Richmond, Va</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Rio, Colo.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Ridgeway, N. Y</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Rigolito, La.-Miss</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Ringgold, Ga.-Tenn</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Rio Grande, Tex</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Riverside, Cal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Riverside, Ill</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Roan Mountain, Tenn.-N. C.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Roanoke, Va.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Roby, Tex.</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Rochester, N. Y</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Rock Springs, Tex</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Rocky Bar, Idaho</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Rome, Ga.-Ala.</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Romney, W. Va.-Va.-Md.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Rosebud, Mont</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Roseburg, Ore.</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Rouse Point, N. Y.-Vt.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Ruidosa, Tex</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Russell, Kans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Rutland, Vt</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Sackets Harbor, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Sacramento, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Sagola, Mich.</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>St. Bernard, La.</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>St. Croix Dales, Wis.-Minn</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>St. George, W. Va.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>St. Johns, Ariz.-N. Mex</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>St. Louis, Mo.-Ill.</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>St. Mary, Md.-Va.</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>St. Paul, Minn</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>St. Paul, Nebr.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>St. Thomas, Nev.-Ariz.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>St. Xavier, Mont.</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Sakonnet, R. I.-Mass</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Salamanca, N. Y.</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Salem, Mass</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Salem, N. J.-Del</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Salina, Kans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Salinas, Ind. T.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Salt Basin, Tex</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Salt Lake, Utah</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Saluda, N. C.-S. C.</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Salyerville, Ky</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>San Angelo, Tex</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>San Bernardino, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Carlos, Tex</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>San Francisco, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Francisco Mountain, Ariz.</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>San Jacinto, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Jose, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Luis, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Luis Obis, Cal.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>San Mateo, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Pedro, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>San Pedro, N. Mex</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>San Rafael, Utah</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>San Saba, Tex</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Sanborn, Colo.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Sandy Hook, N. J.</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Sansbois, Ind. T.-Okla.</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Santa Ana, Cal</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Santa Clara, N. Mex.</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Santa Fe, N. Mex.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Santa Monica, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Savannah, 70-Miss.</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Savo, N. Dak.-S. Dak</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Sawtooth, Idaho</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Saybrook, Conn.</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Schenectady, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Schoharie, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Schroon Lake, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Schuyerville, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Scotts Bluff, Nebr.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Scottsboro, Ala.-Tenn</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Scranton, Pa.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Sea Isle, N. J.</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Seattle, Wash.</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Sebago, Me.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Sedalia, Mo.</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Sedan, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Seneca, Kans.</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Sevier Desert, Utah</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Sewance, Tenn.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Shafter, Tex.</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>ShambOKin, Pa.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Sharp's Island, Md.</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Shasta, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Sheffield, Mass.-Conn.-N. Y.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Shell Beach, La.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Shellsburg, Iowa</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Sherwood, Tex.</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Shickshinny, Pa.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Shopiere, Wis.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Shoshone, Yell. Nat. Park-Wyo.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sidney, Nebr.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Sierra Blanca, Tex.</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Sierra Nevada, Cal.</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Silver City, 70-Dak.</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Silver Creek, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Silver Lake, Wyo.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Silver Peak, Nev.-Cal.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Silverton, Colo.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Sitka, Kans.</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Skaneateles, N. Y.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Small Point, Mo.</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Smartsville, Cal.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Smith Center, Kans.</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Somervell, N. J.</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Sonora, Cal.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Town</td>
<td>State</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Spanish Fork, La.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Spanish Peaks, Colo.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Spearfish, S. Dak.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Spearville, Kans.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Spottsylvania, Va.</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Springfield, Colo.</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Springfield, Mass.-Conn.</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Springfield, Mo.</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Springfield, Ala.</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Stonewall, Ind.</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Stamford, Conn.-N. Y.</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Standingstone, Tenn.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Staten Island, N. J.-N. Y.</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Statesville, N. C.</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Staunton, Va.-W. Va.</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Stephenville, Tex.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Stevenson, Ala.-Ga.-Tenn.</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Stilwell, Wash.</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Stillwater, Mont.</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Stockton, Mo.</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Sumner, Iowa</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Stonington, Conn.-R. I.-N. Y.</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Stony Island, N. Y.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Stoughton, Wis.</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Strafford, Vt.</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>Stromsburg, Nebr.</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Sturgis, S. Dak.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Sun Prairie, Wis.</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Sunbury, Pa.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Sundance, Wyo.-S. Dak.</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Superior, Nebr. - Kans.</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Sutton, W. Va.</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Suwanee, Ga.</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Sweetwater, Tex.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Syracuse, Kans.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Syracuse, N. Y.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Tacoma, Wash.</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Taconic, N. Y.-Mass.-Vt.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Tahlequah, Ind.-T.-Ark</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Talladega, Ala.</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Tallapoosa, Ga.-Ala</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Tamalpais, Cal.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Tarrytown, N. Y.-N. J.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Terre Haute, Ind.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Texarkana, Tex.</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Telluride, Colo</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Temple, Tex.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Thibodeaux, La.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Thirteenth Lake, N. Y.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Three Forks, Mont.-Yell.</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Ticonderoga, N. Y.-Vt.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Timbalier, La.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Timpana, Colo</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Tipton, Iowa</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Tishomingo, Ind.</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Tolchester, Md.</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Toledo, Ohio</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Toleton, Ind.</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Tolland, Conn.</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Tomsawanda, N. Y.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Tooele Valley, Utah</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Topeka, Kans.</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Towle, La.-Miss.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Tower, N. Dak.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Troy, N. Y.</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Truckee, Cal.</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
GENERAL AND COMBINED MAPS.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Number of sheets</th>
<th>Size (Inches)</th>
<th>Scale (Fractional)</th>
<th>Miles to 1 inch</th>
<th>Price (Single)</th>
<th>Price (100 or more)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour map</td>
<td>5</td>
<td>49 x 76</td>
<td>1:2500000</td>
<td>40</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Base map</td>
<td>3</td>
<td>49 x 76</td>
<td>1:2500000</td>
<td>40</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Base map</td>
<td>1</td>
<td>18 x 28</td>
<td>1:7000000</td>
<td>111</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Contour map</td>
<td>1</td>
<td>18 x 28</td>
<td>1:7000000</td>
<td>111</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Hypsometric map</td>
<td>1</td>
<td>18 x 28</td>
<td>1:7000000</td>
<td>111</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Base map</td>
<td>1</td>
<td>11 x 16</td>
<td>1:1250000</td>
<td>204</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Massachusetts: Contour map</td>
<td>4</td>
<td>32 x 50</td>
<td>1:2500000</td>
<td>4</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Connecticut: Contour map</td>
<td>2</td>
<td>43 x 54</td>
<td>1:2500000</td>
<td>2</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Arkansas River: Drainage basin of, in Colorado</td>
<td>2</td>
<td>30 x 47</td>
<td>1:2500000</td>
<td>6</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Indian Territory: Base map</td>
<td>1</td>
<td>30 x 33</td>
<td>1:2500000</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Texas: Contour map</td>
<td>1</td>
<td>31 x 34</td>
<td>1:1500000</td>
<td>25</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Sheets formed by combination of atlas sheets.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Scale (Fractional)</th>
<th>Contour Interval</th>
<th>Price (Single)</th>
<th>Price (100 or more)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany and Vicinity, N. Y</td>
<td>1:62500</td>
<td>20</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>Cincinnati (Ohio-Ky.)</td>
<td>1:62500</td>
<td>20</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>Lake Tahoe and Vicinity (Cal.-Nev.)</td>
<td>1:125000</td>
<td>100</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Los Angeles, Cal.</td>
<td>1:62500</td>
<td>50</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Mount Washington and Vicinity (N. H.-Me.)</td>
<td>1:62500</td>
<td>23</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>New York City and Vicinity (N. Y.-N. J.)</td>
<td>1:62500</td>
<td>20</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Niagara Falls and Vicinity (N. Y.-Canada)</td>
<td>1:62500</td>
<td>20</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Omaha and Vicinity (Nebr.-Iowa)</td>
<td>1:62500</td>
<td>20</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Oswego, N. Y.</td>
<td>1:62500</td>
<td>20</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Philadelphia and Vicinity (Pa.-N. J.-Del.)</td>
<td>1:62500</td>
<td>20</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Rochester, N. Y.</td>
<td>1:62500</td>
<td>20</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>St. Louis (Mo.-Ill.)</td>
<td>1:62500</td>
<td>20</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Yellowstone National Park (Wyo.-Mont.)</td>
<td>1:125000</td>
<td>100</td>
<td>20</td>
<td>8</td>
</tr>
</tbody>
</table>

Out of stock.
Special maps of exceptional economic importance. (a)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen, Colo.</td>
<td>1:9600</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Banner Hill, Cal.</td>
<td>1:14400</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Butte, Mont.</td>
<td>1:15000</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Crater Lake, Oreg. (with descriptive text dorso)</td>
<td>1:62500</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Cripple Creek, Colo.</td>
<td>1:25000</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Franklin Furnace, N. J.</td>
<td>1:14400</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Genesee, Cal.</td>
<td>1:31680</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Grass Valley, Cal.</td>
<td>1:14400</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Helena, Mont.</td>
<td>1:62500</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Hot Springs, Ark.</td>
<td>1:62500</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Indian Valley, Cal.</td>
<td>1:65500</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Menominee, Mich.</td>
<td>1:62500</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Mother Lode district, Cal., I.</td>
<td>1:63300</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Mother Lode district, Cal., II.</td>
<td>1:63300</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Nevada City, Cal.</td>
<td>1:14400</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Rico, Colo.</td>
<td>1:23600</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Shasta, Cal.</td>
<td>1:62500</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Taylorsville, Cal.</td>
<td>1:31680</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Tenmile district, Colo.</td>
<td>1:31680</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Tintic, Utah.</td>
<td>1:62500</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Tintic (mining map), Utah.</td>
<td>1:9600</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Forestry maps.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Scale.</th>
<th>Price.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Marcy and Vicinity</td>
<td>1:62500</td>
<td>20</td>
</tr>
<tr>
<td>Seattle, Wash.</td>
<td>1:12500</td>
<td>5</td>
</tr>
<tr>
<td>Tacoma, Wash.</td>
<td>1:12500</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) The Survey has issued a sheet of "Conventional signs" used on its topographic maps; price, 5 cents a single sheet; 2 cents each in lots of 100 or more.

(b) No wholesale rate for Crater Lake sheet.

(c) No wholesale rate for forestry maps.

TOPOGRAPHIC FOLIOS.

The map sheets represent a great variety of topographic features, and with the aid of descriptive text they can be used to illustrate topographic forms. This has led to the projection of an educational series of topographic folios, for use wherever geography is taught in high schools, academies, and colleges. Of this series the first three folios have been issued, viz:

1. Physiographic types, by Henry Gannett. 1898. Folio. Four pages of descriptive text and the following topographic sheets: Fargo (N. Dak.—Minn.), a region in youth; Charleston (W. Va.), a region in maturity; Caldwell (Kans.), a region in old age; Palmyra (Va.), a rejuvenated region; Mount Shasta (Cal.), a young volcanic mountain; Eagle (Wis.), moraines; Sun Prairie (Wis.), drumlins; Donaldsonville (La.), river flood plains; Boothbay (Me.), a fiord coast; Atlantic City, (N. J.), a barrier-beach coast. Price, 25 cents.
2. Physiographic types, by Henry Gannett. 1900. Folio. Eleven pages of descriptive text and the following topographic sheets: Norfolk (Va.–N. C.), a coast swamp; Marshall (Mo.), a graded river; Lexington (Nebr.), an overloaded stream; Harrisburg (Pa.), Appalachian ridges; Poteau Mountain (Ark.–Ind. T.), Ozark ridges; Marshall (Ark.), Ozark Plateau; West Denver (Colo.), hogbacks; Mount Taylor (N. Mex.), volcanic peaks, plateaus, and necks; Cucamonga (Cal.), alluvial cones; Crater Lake special (Oreg.), a crater. Price, 25 cents.

3. Physical geography of the Texas region, by Robert T. Hill. 1900. Folio. Twelve pages of text (including 11 cuts); 5 sheets of special half-tone illustrations; 5 topographic sheets, one showing types of mountains, three showing types of plains and scarps, and one showing types of rivers and canyons; and a new map of Texas and parts of adjoining territories. Price, 50 cents.
MISCELLANEOUS PUBLICATIONS.

CHARTS SHOWING MINERAL PRODUCTS.

Mineral products of the United States, calendar years 1882, 1883, and 1884.
Mineral products of the United States, calendar years 1882, 1883, 1884, and 1885.
Mineral products of the United States, calendar years 1882 to 1886.
Mineral products of the United States, calendar years 1882 to 1887.
Mineral products of the United States, calendar years 1880 to 1890.
Mineral products of the United States, calendar years 1880 to 1891.
Mineral products of the United States, calendar years 1880 to 1892.
Mineral products of the United States, calendar years 1884 to 1893.
Mineral products of the United States, calendar years 1885 to 1894.
Mineral products of the United States, calendar years 1886 to 1895.
Mineral products of the United States, calendar years 1887 to 1896.
Mineral products of the United States, calendar years 1888 to 1897.
Mineral products of the United States, calendar years 1889 to 1898, and total value of the mineral products since 1880.
Mineral products of the United States, calendar years 1890 to 1899, and total value of the mineral products since 1880.

Note.—The above charts (large broadsides) are issued yearly and are for gratuitous distribution. All are out of stock except the last two.

REGULATIONS.

Organic law of the Survey, with instructions relating thereto, pp. 9-11.
General instructions and office regulations, pp. 12-17.
Instructions relating to money and property, pp. 18-74.
Instructions relating to collections, pp. 75-78.
Government salary tables, pp. 79-97.
Rates of pay for communications by telegraph, pp. 99-105.

Note.—For first edition (1882) and earlier circulars, see Bulletin No. 100, pp. 321-322.
INSTRUCTIONS RELATING TO WORK OF TOPOGRAPHIC BRANCH.

LIST OF PUBLICATIONS.

8°. 93 pp. A pamphlet, in "granite" cover. For earlier issues, see Bulletin No. 100, p. 322.

HAMPSON’S RULES.

8°. 24 pp. A pamphlet, in "tea" cover. The following is a revision of the Rules:

CROFFUT’S SUGGESTIONS.

8°. 15 pp. A pamphlet, in "tea" cover.

JOHNSON’S IRON REGIONS OF LOUISIANA AND TEXAS.

8°. 54 pp., 1 map. A preliminary report, made in response to a resolution of inquiry of the House of Representatives.

DIGEST OF DECISIONS CONCERNING WATER IN THE ARID REGION.

Bull. 177—01——8
Department of the Interior United States Geological Survey
Charles D. Walcott, director Map of Alaska showing known gold-bearing rocks with descriptive text containing sketches of the geography, geology, and gold deposits and routes to the gold fields Prepared in accordance with Public Resolution No. 3 of the Fifty-fifth Congress, second session, approved January 20, 1898 Printed in the engraving and printing division of the United States Geological Survey Washington, D. C. 1898

8°. 44 pp., 1 map. A pamphlet, in "tea" cover.

REPORT OF 1899.

Summary of plans and results, by the Director, pp. 11-13, map 1.

Pt. I. Special reports of expeditions, pp. 15-83.

Pt. II. General information concerning the Territory, by geographic provinces, pp. 85-131.
 The Yukon district, by Alfred H. Brooks, pp. 85-100.
 The coast from Lynn Canal to Prince William Sound, by G. H. Eldridge, pp. 103-104.
 The Sushitna drainage area, by G. H. Eldridge, pp. 111-112.
 The Kadiak Islands, by W. C. Mendenhall, pp. 113-114.
 The Alaska Peninsula and the Aleutian Islands, by W. C. Mendenhall, pp. 115-117.
 Lakes Iliamna and Clark, by J. E. Spurr, p. 118.
Pt. II. General information concerning the Territory, etc.—Continued.
The Nushagak River, by J. E. Spurr, p. 119.
The coast from Bristol Bay to the Yukon, by J. E. Spurr, pp. 120-121.
The Kuskokwim drainage area, by J. E. Spurr, pp. 122-123.
From the Yukon mouth to Point Barrow, by J. E. Spurr, pp. 124-126.
The Kowak River, by J. E. Spurr, pp. 127-128.
The Noatak River, by J. E. Spurr, p. 129.
The coast from Point Barrow to the Mackenzie, by Alfred H. Brooks, pp. 130-131.
Pt. III. Tabulated information, pp. 133-138.
Meteorological tables, pp. 133-135.
Periods during which certain Alaskan waters are free from ice, p. 136.
United States land offices, p. 138.
Ration list adopted by J. E. Spurr, p. 138.

REPORT ON CAPE NOME GOLD REGION.

Department of the Interior United States Geological Survey
Charles D Walcott, Director Preliminary report on the Cape Nome
gold region Alaska with maps and illustrations By Frank C.
Schrader and Alfred H. Brooks assistant geologists Washington
Government Printing Office 1900

8°. 56 pp., 3 maps, 19 pls. A pamphlet, in “granite” cover.
INDEX.

[Abbreviations: Ann = Annual Report; Mon = Monograph; Bull = Bulletin; MB. = Mineral Resources; WS = Water-Supply Paper; GF = Geologic Folio; TF = Topographic Folio; Alaska (1), Alaska (2), Nome = pamphlets on Alaska catalogued on pages 114-115 of this bulletin; i = part i, ii = part ii, etc.; p = page, pp = pages.]

Aa type of lava, character of.. Ann 4, p 95
Abajo Mountains, Utah, structure and rocks of...................... Ann 14, ii, pp 215-217
Abrasion tests of road-building stones................................. Ann 16, ii, pp 328-340
MR 1885, pp 428-436; MR 1886, pp 551-594; MR 1887, pp 552-554;
MR 1888, pp 576-579; MR 1889-90, pp 450-460;
MR 1891, pp 552-556; MR 1892, pp 748-755; MR 1893, pp 670-679;
Ann 16, iv, pp 586-594; Ann 17, vi cont, pp 927-930;
Ann 18, vi cont, pp 1219-1231; Ann 19, vi cont, pp 515-533;
Ann 20, vi cont, pp 603-617; Ann 21, vi cont, pp 463-479
Absaroka district, Wyoming, geology of................................ GF 52
Absaroka Range, Wyoming, structure of................................. Bull 119, pp 29-32
Absaroka Range and Two-ocean Plateau, igneous rocks of................ Mon xxx, ii, pp 269-325
Absarokite, analysis of, from Montana, various localities............ Mon xxx, ii, p 352
analysis of, from Wyoming, Clark Fork................................ Mon 20, iii, p 484
from Yellowstone Park, various localities........................ Mon xxx, ii, p 329;
Bull 148, pp 125, 129; Bull 168, pp 99, 103
of Yellowstone Park and Montana................................ Mon xxx, ii, pp 328-339, 351-355
thin section of, from Yellowstone Park.............................. Mon xxx, ii, pp 250-251
Acadian area of Newark system.. Bull 85, pp 19-20, 80
Acadian province, Paleozoic formations, upper, in, correlation and classification of....................... Bull 80, pp 226-257
(See, also, Canada.)
Acadian series, equivalents of, in Alabama......................... Bull 81, p 305
origin of name... Bull 81, p 248
Accretion, shaft, analyses of, from Colorado, Leadville district........ Mon xii, pp 727-728; 730, 731
Accretions formed in blast furnace................................. Mon xi, pp 725-731
Acresceae of Amboy clays.. Mon xxvi, p 106
of Dakota group.. Mon xvii, pp 156-158
of North America, extinct..................................... Mon xxv, pp 115-116
of Yellowstone Park.. Mon xxx, ii, pp 735-736
Acetabulariae from Lower Coal Measures of Missouri................ Mon xxx, pp 11-13
Acmite, chemical constitution of................................. Bull 125, pp 87, 88, 92, 104
Acmite-trachyte, analysis of, from Montana, Crazy Mountains........ Bull 90, p 71; Bull 148, p 145; Bull 168, p 123
Acteonidse from Chico-Tejon series of California.................... Bull 51, p 15
from Colorado formation.. Bull 106, pp 161-162
from Miocene deposits of New Jersey................................. Mon xxiv, p 137
Actinolite, analysis of, from New Jersey, Montville. Bull 64, p 44
analysis of, from North Carolina, Corundum Hill. Bull 42, p 52
chemical constitution of .. Bull 125, p 91
occurrence of ... MR 1883-84, p 765
secondary character of .. Ann 10, i, p 407
Actinolite(?)-diorite, analysis of, from California, Bidwell Bar quadrangle. Ann 17, i, p 575
Actinolite-limestone in Massachusetts, eastern Berkshire County. Bull 159, p 32
Actinolite-magnetite-schist, analysis of, from Minnesota, sec. 34, T. 61 N., E. 12 W. Bull 148, p 13; Bull 168, p 83
thin section of, from Wisconsin, Penokee Gap Mon xix, pp 496-497
Actinolite-quartzite of Massachusetts, western. Mon xxix, pp 45-47
Actinolite-siderite-slate, thin section of, from Minnesota, north arm of Gunflint Lake. Ann 10, i, pp 486-487; Mon xix, pp 498-499
Actinozoa of Cambrian, lower. Ann 10, i, pp 587, 599-602
of Devonian of Nevada, Eureka district. Mon vii, pp 100-106
of Olenellus zone. Ann 10, i, pp 599-602
of Paleozoic strata of Nevada, Eureka district. Mon xx, pp 322, 324, 325-326, 330
Adams (G. I.) and Taff (J. A.), geology of eastern Chocotaw coal field, Indian Territory. Ann 21, ii, pp 257-311
Adinoles, analyses of, from Michigan, Crystal Falls district. Mon xxxvi, pp 208, 210; Bull 168, p 69
Adirondack district, succession, correlation, etc., of rocks in. Ann 16, i, pp 771-773
Adirondacks, iron ores, titaniferous, of. Ann 19, ii, pp 377-422
pre-Cambrian rocks of. Bull 86, pp 398-399, 413-414, 508
Admiralty Island, Alaska, coal on. Ann 17, i, pp 776-783
Admiralty till in Washington. GF 54, p 4
Adobe soil, analysis of, from Nevada, Humboldt. Bull 168, p 303
analysis of, from New Mexico, Fort Wingate and Santa Fe. Bull 168, p 302
from Utah, Salt Lake City. Bull 168, p 302

(See, also, Soils.)

Aegirine-augite, thin section of, aqueous deposit of plagioclase, diopside, and, from Greenfield, Massachusetts. Mon xxix, pp 430-431
Aegirite-syenite-porphry of Montana, Judith Mountains. Ann 18, iii, p 566
Enigmaitite, chemical constitution of. Bull 125, p 93
Eolian sandrock of Florida. Bull 84, p 320
Eolian sands in Great Basin. Mon xi, pp 153-156
Eolian soils. Ann 12, i, pp 326-329
Eschynite, chemical constitution of. Bull 125, pp 79-80
Afghanistan, iron-ore deposits of. Ann 16, iii, p 160
Africa, asbestos in, occurrence of. Ann 18, v, p 313
copper production of. Ann 18, v, p 414; Ann 19, vi, pp 311, 320; Ann 20, vi, pp 332, 341
diamonds in, occurrence and output of. MR 1887, pp 563-568; Ann 16, iv, pp 597-598; Ann 19, vi cont, pp 497-499; Ann 20, vi cont, pp 558-564
ACTINOLITE—ALABAMA.

Africa, fossil plants of, literature of Ann 8, ii, pp 790-803

gold production of, compared with that of other portions of the world MR 1883-84, pp 319, 320

iron-ore deposits in .. Ann 16, iii, pp 177-180

irrigation by artesian waters in Algeria Ann 11, ii, pp 265-266

onyx marble localities in .. Ann 20, vi cont, p 290

petroleum in, localities and statistics of Ann 19, vi cont, pp 153, 156; Ann 21, vi cont, pp 290-291

Witwatersrand banket, with notes on other gold-bearing pudding stones Ann 18, v, pp 153-184

Agassiz Glacier, Alaska, description of Ann 13, ii, pp 85-38

Agassiz Lake, the glacial .. Mon xxv

beaches and deltas of upper ... Bull 39

levels of, causes of changes of Mon xxv, pp 487-501

section, geologic, across a beach ridge of Bull 39, fig 1 (p 11)

Agate, occurrence and statistics of MR 1882, p 491; MR 1883-84, pp 756-760, 781;

MR 1885, p 443; MR 1886, pp 597, 604; MR 1887, pp 556, 557, 561; MR 1888, pp 584, 585; MR 1889-90, pp 446, 447;

MR 1891, pp 540, 547; MR 1892, pp 774-776, 781; MR 1893, pp 681, 682, 697; Ann 17, iii cont, pp 914, 924; Ann 18, v cont, pp 1207-1208, 1217; Ann 19, vi cont, pp 506, 513;

Ann 20, vi cont, p 599; Ann 21, vi cont, pp 454-455, 461

Agate Bay group in Minnesota ... Mon v, pp 284-294

Agathaumas, remarks on ... Ann 16, i, p 217

Agatized wood formations in Arizona MR 1891, pp 548-549

Agglomerate of Bassick Hill and Mount Tyndall, Colorado Ann 17, ii, pp 307-311, 343

Agglomerates, diabasic, relations of, to greenstone-schists in Marquette district,

Michigan .. Bull 62, pp 185-191

Aggrading streams in Chattanooga district Ann 19, ii, pp 57-58

Agnotozoic, name for system of rocks between Archean and Paleozoic Ann 7, pp 454-455; Bull 86, pp 147, 148, 461, 462, 475, 491, 493

Agricolite, chemical constitution of Bull 125, pp 67, 101

Agricultural implements, exports of, in 1899 Ann 21, vi, p 88

Agricultural products of Porto Rico WS 32, pp 34-41

Agriculture; farming, dry, in Western United States, areas in which it is at-

temted .. Ann 16, ii, pp 486-487

in Alaska, possibilities of ... Ann 20, vii, pp 24-27;

Alaska (2), pp 24, 50, 72, 112; Nome, p 44

on Great Plains, necessity of irrigation to Ann 21, iv, pp 680-691

(See, also, Soils.)

Air, flow of, through sands, sandstones, and other porous media, experiments on Ann 19, ii, pp 157-165, 168-178, 190-195, 199-202

Ajibik quartzite, petrographic character, relations, etc., of Ann 15, pp 540-554, 610-611; Mon xxviii, pp 282-312, 528-529

Åkermannite, chemical constitution of Bul 125, p 27

Alabama; Alabama River, flow of, measurements of WS 36, pp 155-155

Alabama, Tuscaloosa, and Tombigbee rivers, Tertiary and Cretaceous strata of .. Bull 43

altitudes in ... Ann 18, i, pp 317-323; Ann 19, i, p 253; Ann 20, i, pp 387-403; Ann 21, i, pp 461-464; Bull 5, pp 25-28; Bull 76; Bull 160, pp 23-31

artesian wells in ... Ann 11, ii, p 263

atlas sheets covering areas in. (See p 67 of this bulletin.)
Alabama, bauxite deposits in, as source of aluminumMR 1892, pp 237-240

bauxite deposits in, location, origin, relations, etc., ofMR 1893, pp 162-163; Ann 16, iv, pp 551-597

profile ofWS 44, p 32

boundary lines of, and formation of StateBull 13, pp 50, 102-103; Bull 171, pp 108-109

brick industry of, statistics ofMR 1887, pp 535, 537; MR 1888, pp 557

building stone from, statistics ofMR 1893, pp 555, 556; Ann 16, iv, pp 437, 438, 484 et seq; Ann 17, iii cont, pp 760, 775 et seq; Ann 18, vi cont, pp 500, 501, 502, 503, 504 et seq; Ann 19, vii cont, pp 599, 600, 601 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 353 et seq

in Stevenson quadrangleGF 19, p 3

Chattanooga district, physiography ofAnn 19, iv, pp 1-58

clay deposits and industry ofMR 1893, pp 611-612; Ann 18, vi cont, pp 1127-1129; Ann 19, vi cont, pp 469-470

clay products of, statistics ofAnn 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 519 et seq; Ann 18, vi cont, pp 1077 et seq; Ann 19, vi cont, pp 318 et seq; Ann 20, vi cont, pp 466 et seq; Ann 21, vi cont, pp 362, 363

in Gadsden quadrangleGF 35, p 3

in Stevenson quadrangleGF 19, p 3

coal fields ofMR 1892, pp 293-300; Ann 16, iv, pp 65

profile ofWS 44, p 31

Coosa Valley, fossil medusae from rocks inMon xxx, pp ix, 1, 3, 13-14

copper mines inMR 1882, pp 231

elevations inAnn 18, i, pp 317-323; Ann 19, i, pp 258; Ann 20, i, pp 387-405; Ann 21, i, pp 461-464; Bull 5, pp 25-28; Bull 76, Bull 160, pp 23-31

Ensley, Semet-Solvay by-product coke plant atAnn 20, vi, pp 545-547

Gadsden quadrangle, geology ofGF 35

gold and silver from, statistics ofAnn 2, p 385; MR 1882, pp 176, 177, 178;

MR 1889-90, p 49; MR 1891, p 77; MR 1892, p 88; MR 1893, pp 50, 51, 55, 57, 58; Ann 16, iv, p 258; Ann 17, iv, pp 73, 74, 75, 76, 77; Ann 18, v, p 141 et seq; Ann 19, vi, p 128 et seq; Ann 19, vii, p 103 et seq; Ann 21, vi, pp 125-127
gold mining in, history of ..Ann 20, vi, p 114 et seq

iron and steel from, statistics ofAnn 2, pp 120, 125, 129 et seq, 149-161; MR 1883-84, pp 252, 278; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 85-92, 98; MR 1887, pp 11, 16, 49-50; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 11, 17, 18, 24, 35, 36, 39, 40, 41; MR 1891, pp 12, 19, 61; MR 1892, pp 12, 13, 15, 16, 17, 21, 26, 29, 35, 36, 37, 42; MR 1893, pp 15, 20, 26, 28, 30-31, 38, 39; Ann 16, iv, pp 31, 37, 192, 194, 196-197, 203, 208, 249, 250; Ann 17, iv, pp 26, 27, 39, 41, 47, 48, 57, 63, 68; Ann 18, v, pp 24, 36-37, 41; Ann 19, vi, pp 26, 27, 29, 31-32, 66, 68, 72; Ann 20, vi, pp 29, 39-40, 43, 44, 74, 75, 81, 82, 83; Ann 21, vi, pp 34, 45-46, 52, 53, 90, 92

iron ores in ...Ann 19, vi, pp 58-63

in Gadsden quadrangle...GF 35, p 3

in Stevenson quadrangle..GF 19, p 3

in their geologic relations...MR 1882, pp 149-161

lime production of ..MR 1887, p 532

limestone production of...Ann 16, iv, pp 437, 494, 495; Ann 17, iv cont, pp 760, 787, et seq; Ann 18 v cont, pp 950, 1044, et seq; Ann 19, vi cont, pp 206, 280, et seq; Ann 20, vi cont, pp 271, 342, et seq; Ann 21, vi cont, pp 335, 357, et seq

magnetic declination in ..Ann 17, i, pp 306-308

manganese-ore production ofMR 1885, p 345; MR 1886, pp 181, 183; MR 1892, pp 192-194; MR 1893, pp 124-125; Ann 16, iv, pp 400-401; Ann 17, iv, p 193; Ann 18, v, pp 299-300; Ann 20, vi, pp 126, 130

maps, geologic, of. (See Map, geologic, of Alabama.)

maps, topographic, of. (See Map, topographic, of Alabama.)

mica industry in ...MR 1893, pp 751-753

mineral spring resorts in ..Ann 14, iv, p 81

mineral springs of ..Ball 32, pp 88-94;

Alabama, minerals of, useful MR 1882, pp 667-670; MR 1887, pp 690-695
oil fields of .. MR 1893, pp 509-510
paint, mineral, production of MR 1892, pp 816, 818; MR 1893, pp 759, 760;
 Ann 16, iv, pp 695, 696; Ann 17, iii cont, pp 1013, 1014;
 Ann 18, v cont, pp 1338, 1339; Ann 19, vi cont, pp 637, 638;
 Ann 20, vi cont, pp 723, 724; Ann 21, vi cont, pp 573, 574
phosphatic deposits of Bull 46, pp 75-78;
 MR 1883-84, pp 794-803; MR 1886, p 618
quartz from, statistics of Ann 19, vi cont, p 657; Ann 20, vi cont, p 745
rainfall at Mobile and Montgomery (average) Ann 21, iv, p 668
road material in Stevenson quadrangle GF 19, p 3
sandstone production of MR 1892, p 710; MR 1893, p 553;
 Ann 16, iv, pp 437, 484, 485, 486; Ann 17, iii cont, pp 760,
 775, 776, 777, 778; Ann 18, v cont, pp 950, 1012, 1013, 1014;
 Ann 19, vi cont, pp 206, 264, 265, 266, 267; Ann 20, vi cont,
sections, geologic, in (See Section, geologic, in Alabama.)
soils of Gadsden quadrangle GF 35, pp 3-4
of Stevenson quadrangle GF 19, pp 3-4
Stevenson quadrangle, geology of GF 19
survey of, by cooperation with U. S. Geological Survey ... Ann 20, i, p 98
Tallapoosa River, flow of, measurements of Ann 18, iv, p 110; Ann 19, iv,
 pp 249-250; Ann 20, iv, pp 51, 193-194; Ann 21, iv, pp 151-
 152; WS 15, p 56; WS 27, pp 56, 57, 58; WS 36, pp 152-153
 profile of .. WS 44, p 32
timber in, estimates of Ann 19, v, p 17
tin ore in ... MR 1882, pp 434-436; MR 1883-84, pp 601-602;
 Ann 16, iii, pp 527-528
topographic maps of (See Map, topographic, of Alabama.)
topographic work in Ann 6, pp 9, 10;
 Ann 7, pp 50, 52; Ann 8, p 102; Ann 9, pp 54, 55; Ann 10,
 1, pp 91, 92; Ann 11, 1, p 37; Ann 13, 1, p 72; Ann 17, 1,
 pp 97, 101; Ann 18, 1, pp 94, 95, 103; Ann 19, 1, pp 89, 90,
 99; Ann 20, 1, pp 100, 102, 111-112; Ann 21, 1, pp 119, 128
triangulation in Bull 122, pp 113, 114, 115
woodland area in Ann 19, v, p 6
Alabama River, measurements of flow of WS 36, pp 153-155
Alabama, Tuscaloosa, and Tombigbee rivers, Tertiary and Cretaceous strata
 of .. Bull 43
Alachua clays of Florida Bull 84, pp 127-130, 320
Alaska; Agassiz Glacier, description of............... Ann 13, ii, pp 35, 38
agriculture in, possibilities of Ann 20,
 vii, pp 24-27; Alaska (2), pp 24, 50, 72, 112; Nome, p 44
Alaska Peninsula, notes on Alaska (2), pp 115-117
Alaskan Range, remarks on Ann 20, vii, pp 8, 11
Aleutian Islands, notes on Alaska (2), pp 115-117
Aleutian mountain system, structure, etc., of Ann 20, viii, pp 238, 240
Alexander Archipelago, gold of Alaska (2), pp 101-102
altitudes of localities in Bull 5, p 29; Bull 76; Bull 160, p 32; Bull 169
animal life in ... Ann 21, i, pp 415, 459-460
in Copper River country Ann 20, vii, pp 369-370
animal and vegetable life of Sushitna-Kuskokwim region Ann
 20, vii, pp 76-85
Apollo Consolidated mine, on Unga Island Ann 18, ii, pp 83-85
Alaska, Baby Creek, granite on Ann 21, ii, p 480
beach sands, auriferous .. Ann 18, iii, pp 85-86
Berners Bay, mining operations at............................. Ann 18, iii, p 76
Birch Creek district, discovery and history to 1897 of... Ann 18, iii, pp 118-131
gulch diggings in .. Ann 18, iii, pp 341-355
birds of Sushitna and Kuskokwim regions, list of, and notes on Ann 20, viii, pp 56-57
Bogoslof and Grewingk islands Ann 18, iii, pp 25-28
Bristol Bay to the Yukon, along the coast, notes on Alaska (2), pp 120-121
Cantwell River and Valley, notes on Ann 20, vii, pp 13-47
Cassiar district, population and gold production of Ann 18, iii, p 114
Chaix Hills, geology of .. Ann 13, ii, pp 24-28
Chitina River and Skolai Mountains, reconnaissance of ... Ann 21, ii, pp 393-440
Chugach Mountains, notes on Ann 20, viii, pp 375-376
Chulitna River and Valley, notes on Ann 20, viii, pp 12-13
cinnabar in .. Ann 20, vii, p 261; Mon xiii, pp 384-385
Clark Lake, notes on .. Alaska (2), p 118
climate at Prince William Sound and in Copper River district... Ann 20, viii, p 369
of southern ... Ann 18, iii, p 9
of southwestern, notes on Ann 20, vii, pp 62-63, 67
of Sushitna Basin, notes on Ann 20, vii, pp 25-27
of various parts of, notes on Alaska (2), pp 24-26,
32, 49, 53-54, 72, 82-82, 96, 108, 133-136; Nome, pp 40-42
climate and seasons in .. Ann 20, v, pp 388, 412-414, 458-459
climatic conditions of .. Alaska (1), pp 10-11
coal in .. Ann 20, vii, pp 324-383, 485-486
in Matanuska Valley, notes on Ann 20, vii, p 324
in southwestern, notes on Ann 20, vii, pp 232-264
in Yukon district, occurrence and character of Ann 18, iii, pp 380-382
coal and coal fields of Cook Inlet and Sushitna Basin Ann 20, vi, pp 21-24
coal and lignite of ... Ann 17, ii, pp 763-908; Alaska (1), pp 39-44
coal deposits and industry in, statistics of MR 1883-84, p 17; MR 1885,
p 14; MR 1888, pp 214-216; MR 1891, pp 209-210; Ann 18, v, p 469; Ann 19, vi, p 385; Alaska (2),
pp 22-24, 36, 48, 61, 71, 81, 95, 103-104, 110, 112, 116
cost from Bristol Bay to the Yukon, notes on Alaska (2), pp 120-121
from Point Barrow to the Mackenzie, notes on Alaska (2), pp 130-131
from Yukon mouth to Point Barrow, notes on Alaska (2), pp 124-126
cost range of .. Ann 21, ii, p 345
copper in .. Ann 21, ii, pp 377-382, 437-439, 482
in Copper River district, deposits and mines, notes on Ann 20, vii, pp 417-421
in Copper River and other regions, notes on Alaska (2), pp 59-60, 71
in Tanana-White region, note on Ann 20, vii, p 488
Copper River district, reconnaissance in, in 1898 Ann 20, vii, pp 341-423
report on .. Alaska (2), pp 51-63, 105-108
routes and trails into ... Ann 20, vii, pp 365-367
topography, drainage, and physiography of, notes on Ann 20, vii, pp 384-404
development of, difficulties of Ann 18, iii, pp 125-127
Disenchantment Bay, exploration of Ann 13, ii, pp 83-91
elevations in ... Bull 5, p 29; Bull 76; Bull 160, p 32; Bull 169
Eskimos and Indians of southwestern, notes on Ann 20, vii, pp 71-76
Alaska, explorations in Ann 21, ii, pp 331-486
explorations in, brief sketch of Alaska (1), pp 5-6
in southwestern, notes on ... Ann 20, vii, pp 93-96
Russian, English, etc, résumé of Ann 20, vii, pp 290-295
explorations and discoveries about Prince William Sound and in Copper River district Ann 20, vii, pp 371-372
explorations and surveys in Ann 18, i, pp 52-54;
Fortymile Creek, drainage as illustrated by Ann 18, iii, pp 276-278, 280
Fortymile district, discovery and history to 1893 of ... Ann 18, iii, pp 115-118
gulch diggings in ... Ann 18, iii, pp 317-337
Fortymile expedition (1898), report on Alaska (2), pp 76-83
Fortymile quadrangle, forest conditions in Ann 21, v, p 597
fossil plants from, enumeration and distribution of .. Ann 17, i, pp 876-897
literature of ... Ann 8, ii, pp 924-926
forts from ... Ann 8, ii, pp 924-926; Ann 17, i, pp 898-908;
Funter Bay, mining operations at Ann 18, iii, pp 77-78
game in ... Ann 21, ii, pp 387-388
game and fish around Cook Inlet, Kenai Peninsula, Matanuska Valley, etc .. Ann 20, vii, pp 337-339
geographic sketch of ... Alaska (1), pp 7-17
glacial history of southwestern Ann 20, vii, pp 242-258
glacial investigations in Ann 11, i, pp 57-58; Ann 12, i, pp 59-61;
 Ann 16, i, pp 415-461; Ann 17, i, pp 763-908; Ann 18, iii, pp 1-392; Ann 20, vii; Alaska (1); Alaska (2); Nome
geologic maps of. (See Map, geologic, of Alaska.)
geologic sections in. (See Section, geologic, in Alaska.)
geologic sketch of .. Alaska (1), pp 18-44
geology of, early observations on Ann 17, i, p 835
of southwestern, notes on Ann 20, vii, pp 102-147
in southwestern, notes on Ann 20, vii, pp 252-255
of southern, notes on .. Ann 18, iii, pp 59-60
Glacier Bay and its glaciers Ann 16, i, pp 415-461
of gold .. Ann 5, pp 348-355; Mon xxxiv, pp 355-358
historical notes on discovery of Ann 18, iii, pp 9-10
of Prince William Sound and Copper River district, notes on Ann 20, vii, pp 324-331
of southwestern, notes on Ann 20, vii, pp 252-255
of Sunrise and Matanuska districts, notes on Ann 20, vii, pp 318-323
of Susitna Basin, notes on Ann 20, vii, pp 20-21
of Tanana-White region Ann 20, vii, pp 483-488
gold-bearing veins of, sketch of Alaska (1), pp 21-28
gold deposits and districts of, notes on Alaska (2), pp 22, 36, 47-48, 60-61, 70-71, 80, 91, 95, 101-102, 110, 112, 116, 125
gold districts of northern, notes on Nome
of southern, reconnaissance of, with some notes on general geology ... Ann 18, iii, pp 1-86
gold production of, in 1896, 1897, and 1898, by districts Alaska (2), p 138
Alaska, gold and silver from, statistics of Ann 2, p 385; MR 1882, pp 172, 174, 176, 177, 178; MR 1883-84, pp 312, 313, 314, 315; MR 1885, pp 201, 203; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 76, 77, 78, 79; MR 1892, p 50 et seq; MR 1893, p 50 et seq; Ann 17, iii, p 72 et seq; Ann 18, iii, pp 130-132; v, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, pp 119, 121 et seq

granite in Ann 21, ii, pp. 471-472
gravels, beach and stream, of Alaska (1), pp 28-33
ice, periods during which certain waters are free from Alaska (2), p 136

Icy Bay, description of Ann 13, ii, p 13
igneous rocks from, classification of, according to composition Ann 20, vii, pp 188-194
description of Ann 20, vii, pp 195-222

Iliamna Lake, notes on Alaska (2), p 118
inhabitants of, about Cook Inlet, Matanuska and Copper valleys, etc. Ann 20, vii, pp 339-340
about Prince William Sound and in Copper River country Ann 20, vii, pp 367-369
native Ann 21, ii, pp 388-390
of southwestern, notes on Ann 20, vii, pp. 27, 66, 71-76, 92-93
of Tanana-White region Ann 20, vii, pp 490-493
of various parts of, notes on Alaska (2), pp 31-32, 50, 52-53, 74, 80, 99, 107, 109, 117, 120, 123; Nome, pp 45-47
Kadiak Island, Uyak Bay, mining operations at Ann 18, iii, pp 80-81
Kadiak Islands, notes on Alaska (2), pp 113-114
Kanektok River, itinerary of a reconnaissance along, with geologic notes Ann 20, vii, pp 54-56, 85-87, 99, 133-139
Katmai, Togiak via Nushagak to, itinerary of reconnaissance from Ann 20, vii, pp 57-60, 88-93

Kenai Peninsula, explorations in, in 1898 Ann 20, vii, pp 273-280, 300-303
notes on Alaska (2), pp 109-110
to Tanana River, expedition from, in 1898 Alaska (2), pp 40-50
Klondike, routes to Alaska (2), pp 11-17
Klondike district, discovery and development of Ann 18, iii, pp 123-124
gulch diggings in Ann 18, iii, p 359
Kowak River, notes on Alaska (2), pp 127-128
Koyukuk region, notes on Nome, pp 55-56
Kuiu Island, fossils from Ann 17, i, pp 902-906
Kuskokwim drainage area, notes on Alaska (2), pp 122-123
Kuskokwim expedition (1898), report of Alaska (2), pp 28-39
Kuskokwim River, itinerary of reconnaissance along, with geologic notes Ann 20, vii, pp 51-54, 67-76, 121-133
Kuskokwim steamboat route Ann 20, vii, p 96
land offices established (March, 1899) Alaska (2), p 138
lead, deposits of, in Ann 21, ii, p 482
statistics of, from Ann 17, iii, p 134; Ann 18, v, p 240;
Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229
magnetic variations in, in 1898 . . Ann 20, vii, pp 13, 61; Alaska (2), pp 27, 39, 75
Mammoth Mountain, remarks on Ann 18, iii, pp 260-261
maps, geologic, of. (See Map, geologic, of Alaska.)
Alaska, maps, topographic, of. (See Map, topographic, of Alaska.)

McKinley, Mount, height, etc., of. Ann 20, vii, p 8

meteorologic tables. Alaska (2), pp 133-135

mineral resources of Prince William Sound and Copper River district. Ann 20, vii, pp 417-423

mineral water of Copper River district, notes on. Ann 20, vi, p 423

minerals of, useful. MR 1882, p 760; MR 1887, pp 695-696

miners' meetings and laws. Ann 18, ii, pp 127-129

Mission Creek district, gulch diggings in. Ann 18, ii, pp 337-341

Mount St. Elias, second expedition to, by Russell, in 1891. Ann 13, ii, pp 1-91

mountain and valley systems of southwestern, structure, etc., of. Ann 20, vii, pp 238-242

mountain ranges inclosing Sushitna Basin. Ann 20, vii, pp 7-8

Mynook Creek district, gulch diggings in. Ann 18, ii, pp 355-359

Naknek River and Lake, geologic notes taken along. Ann 20, vii, p 145

names of localities and features in, list of. Ann 21, ii, pp 487-509

Neocene formations of, summary of our knowledge of. Bull 84, pp 234-268

Noatak River, notes on. Alaska (2), p 129

Nome gold region, preliminary report on. Nome

Nushagak River, notes on. Alaska (2), p 119

Nushagak to Katmai, and Togiak to Nushagak, itinerary of a reconnaissance from. Ann 20, vii, pp 57-60, 88-93

paleontology of, notes on. Ann 17, i, pp 864-875

petroleum localities in. Ann 19, vi cont, p 110; Ann 20, vi cont, p 123; vii, p 423; Ann 21, vi cont, p 167

population of, in 1896. Ann 18, iii, p 129

native. Ann 21, ii, p 457

Porcupine River, notes on. Alaska (2), p 88

postal service in operation March 1, 1899. Alaska (2), pp 136-137

precious stones in, occurrence of. Ann 20, vi cont, p 570

Pribilof Islands, notes on. Alaska (2), p 121

Prince William Sound and Copper River district, reconnaissance in, in 1898. Ann 20, vii, pp 341-423

report on. Alaska (2), pp 51-63, 105-108

provisions and outfit for work in. Nome, pp 51-54

purchase of, from Russia, boundaries of, etc. Bull 13, p 23; Bull 171, pp 27-28

railway route to interior of, through Sushitna and Cantwell valleys. Ann 20, vii, pp 28-29

railway routes possible in. Ann 21, ii, pp 386-387

ration list for parties. Ann 20, vii, p 44; Alaska (2), p 138

Resurrection Bay to Tanana River, reconnaissance from. Ann 20, vii, pp 265-310

rivers of, sketch of. Alaska (1), pp 8-10

rocks of, general notes on. Bull 84, pp 232-234

routes in. Ann 21, ii, pp 453-457

through southwestern, notes on. Ann 20, vii, pp 96-100

to Klondike. Alaska (1), pp 11-17

St. Augustine Volcano. Ann 18, iii, pp 28-30
Alaska, St. Elias Chain, notes onAnn 20, vii, pp 374–375, 378
St. Elias, Mount, second expedition to, by Russell, in 1891...Ann 13, ii, pp 1–91
Samovar Hills, description ofAnn 13, ii, pp 34–37
sections, geologic, in. (See Section, geologic, in Alaska.)
Sheep Creek Basin, mining activity inAnn 18, iii, pp 73–75
Silver Bow Basin, geology of and mining activity inAnn 18, iii, pp 70–73
Sitka district, mining operations inAnn 18, iii, pp 78–80
Skwentna River, itinerary of reconnaissance alongAnn 20, vii, pp 48–49
to the Kuskokwim, routes fromAnn 20, vii, p 96
slate on shores of Prince William Sound, notes onAnn 20, vii, p 422
Sundum Bay, mining operations atAnn 18, iii, p 75
surveys inAnn 13, i, pp 35–36, 90–94; Ann 17, i, pp 56–59;
Sushitna Basin and adjacent territory, reconnaissance in, in 1898....Ann 20, vii, pp 1–29
Sushitna drainage area, notes onAlaska (2), pp 111–112
Sushitna expedition (1898), report ofAlaska (2), pp 15–27
Tanana River, expedition to, in 1898.................................Alaska (2), pp 40–50, 64–75
explorations in basin of, sketch ofAnn 20, vii, pp 436–439
reconnaissance from Resurrection Bay toAnn 20, vii, pp 265–340
Tanana and White River basins, reconnaissance in, in 1898........Ann 20, vi, pp 425–494
stratigraphic and structural geology ofAnn 20, vii, pp 477–482
topography, drainage, and physiographic development ofAnn 20, vii, pp 445–469
timber in, notes onAnn 20, vii, pp 24, 67–68, 77–80; Ann 21, ii, pp 387, 414,
460–461; Alaska (2), pp 48, 55, 71, 82, 95–96; Nome, pp 42–43
Togiak River, geologic notes taken along........................Ann 20, vii, pp 139–140
itinerary of reconnaissance alongAnn 20, vii, pp 50–57, 87–89, 99
Togiak to Nushagak, to Katmai, itinerary of reconnaissance fromAnn 20, vi, pp 57–60, 88–93
Tordrillo Mountains, geologic notes onAnn 20, vii, pp 109–121
portage across, notes onAnn 20, vii, pp 49–51
topographic maps of. (See Map, topographic, of Alaska.)
Treadwell and Mexican mines, plan, section, yield, etc., ofAnn 18, iii, pp 64–70
tundra of Nome region, gold inNome, pp 11, 14–15, 19–20, 22, 30
Turnagain Arm placersAnn 18, iii, pp 81–82
Valdres Port and Glacier, notes onAnn 20, vii, pp 380–382
vegetation inAnn 21, ii, pp 460–461
in Copper River districtAnn 20, vii, p 370
in Kenai Peninsula, Matanuska Valley, and on Copper River Plateau
volcanic eruptions in, list ofAnn 18, iii, pp 14–17
white inhabitants ofAnn 21, ii, pp 390–391, 457–458
(See, also, Arctic.)
Alaskan names, list ofAnn 21, ii, pp 487–509
Alaskan Range, Alaska, remarks onAnn 20, vii, pp 8, 11
Alaskite, analysis of, from Alaska, Chilkoot Pass.Bull 168, p 228
analysis of, from Alaska, Skwentna RiverBull 168, p 228
from Alaska, Tordrillo MountainsBull 168, p 228
Alaskite group of igneous rocks, definition of, and description of species... Ann 20, vi, pp 189, 195-196
Alaskite-porphry, analysis of, from Alaska, Fortymile Creek... Bull 168, p 228
Alberite in New Brunswick, Hillsborough, occurrence of... Ann 17, i, pp 941-942
Albirupean series of deposits and flora... Ann 15, pp 333-338, 369-375; Bull 82, pp 89-90, 94
Albite, analysis of... Bull 150, p 206
 analysis of, from California, Plumas County... Ann 14, ii, p 477
 from Maine, Litchfield... Bull 43, pp 34-35; Bull 148, p 20; Bull 168, p 21
 from Massachusetts, Hampshire County... Bull 126, p 12
 from North Carolina, Mitchell and Montgomery counties... Bull 74, p 56
 chemical constitution of... Bull 125, pp 13, 28, 29, 33, 36, 44, 101
 composition of, as one of the more important varieties of feldspar... Ann 21, vii cont, p 594
 occurrence of... MR 1887, p 562
 thin section of altered gabbro from Michigan, Sturgeon Falls, showing veins filled with... Bull 62, p 69
Albite and orthoclase mixed, analysis of, from New Hampshire, Moultonborough... Bull 148, p 67; Bull 168, p 23
Albite-oligoclase, analysis of, from Maryland, Baltimore... Bull 148, p 89;
 Bull 168, p 49
Albite-schist from Massachusetts, Hoosac Mountain, description of, as one of the educational series... Bull 150, pp 325-327
 thin section of, from Massachusetts, Hoosac Mountain... Mon xxiii, pp 112-113
Albitic granite and pegmatite dikes of western Massachusetts... Mon xxiv, pp 323-330
Albitic mica-schist of western Massachusetts... Mon xxix, pp 66-75
Albuquerque district, New Mexico, irrigation in... Ann 12, ii, pp 270-273
Alcohol, compressibility and thermal expansion of... Bull 92, pp 30-32
Aleutian Islands, coal on, localities of... Alaska (2), pp 115-117
 lignitic beds of... Bull 84, pp 242-249
 notes on... Alaska (2), pp 117-117
Aleutian mountain system, Alaska, structure, etc., of... Ann 20, vii, pp 238, 240
Alexander Archipelago; coal in, localities of... Ann 17, i, pp 772-783
 gold of... Alaska (2), pp 101-102
Algae of Alaska... Ann 17, i, p 876
 of hot springs... Ann 9, pp 657-666
 of Laramie group... Bull 37, pp 13-14
 of Lower Coal Measures of Missouri... Mon xxxvii, pp 11-13
Algeria, iron and iron ore from, statistics of... Ann 17, iii, pp 24, 28, 174-176
 irrigation in... Ann 11, ii, pp 265-266
Algonkian; Huronian defined... Bull 86, p 463
Huronian system, history of the term... Bull 86, pp 470-474
Algonkian and Archean, a correlation essay, by C. R. Van Hise... Bull 86
Algonkian history of Michigan, Menominee district... GF 62, pp 11-12
 of Montana, Fort Benton quadrangle... GF 55, p 5
 Little Belt Mountains quadrangle... GF 56, p 6
Algonkian period to be used in Geologic Atlas of United States... Ann 10, i, p 20
Algonkian rocks; a group between Archean and Cambrian, necessity for... Ann 16, i, pp 759-762
Agate Bay group of Minnesota... Mon v, pp 284-289
Ajibik quartzite of Michigan, Marquette district... Ann 15, pp 540-554, 610-611;
 Mon xxviii, pp 282-312, 528-529
Animikie group of Lake Superior region... Ann 3, pp 157-163; Ann 5, pp 203-205;
 Ann 7, pp 417-423; Mon v, pp 367-386; Mon xix, pp 260-268, 468-470; Bull 86, pp 59, 187-189
Algonkian rocks; areas of, in United States and Canada........Ann 16, i, pp 766-843
Ashton schists of Narragansett Basin......................Mon xxxvi, p 107
Baraboo quartzites of Lake Superior region.............Bull 86, pp 105, 107, 117, 186-187
Beaver Bay group of Minnesota.........................Mon v, pp 298-323
Belt terrane of Montana, description and section of........Ann 20, iii, pp 279-284, 382;
Bull 110, pp 16-20; GF 24, p 2; GF 56, pp 1-2
Bijiki schist of Michigan, Marquette district...........Ann 15, pp 596-598
Biwabik formation of Lake Superior region..............Ann 21, iii, p 356-360
Black River Falls series of Wisconsin.....................Bull 86, pp 105, 190
Blackstone series of Narragansett Basin.................Mon xxxiii, pp 104-106
blue-quartz gneiss of western Massachusetts..............Mon xxxix, p 28
Braintree argillites of Massachusetts....................Bull 86, pp 366, 369
Cades conglomerate of Tennessee and North Carolina........GF 16, p 2
Catoctin schist of Virginia, Maryland, and West Virginia...GF 10, p 2
Chamberlain shales of Montana, description and section of........Ann 20, iii, pp 282, 283
Cherry Creek beds of Montana..............................GF 24, p 2
Cherty limestone of Michigan-Wisconsin, Penokee district...Mon xix, pp 127-142
Chuar group of Grand Canyon district....................Bull 86, pp 329-330, 507
Citico conglomerate of Tennessee and North Carolina.......GF 16, p 2
GF 20, p 2; GF 23, p 2
Clarksburg formation of Michigan, Marquette district.......Ann 15, pp 604-607;
Mon xxviii, pp 460-486
classification of, table showing............................Ann 10, i, p 546
of early Cambrian and pre-Cambrian formations.............Ann 7, pp 371-454
Clingman conglomerate of Tennessee and North Carolina.....GF 16, p 3
Coldbrook group of New Brunswick.........................Bull 86, pp 230-238
Coles Brook limestone of western Massachusetts...........Mon xxv, p 27
conglomerate formation of Michigan, Sturgeon River tongue.......Ann 19, iii, pp 148-149; Mon xxxvi, pp 471-479
Coos group of New Hampshire...............................Bull 86, pp 351, 352, 353
copper-bearing rocks of Lake Superior........................Ann 1, pp 70-71; Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v; Bull 86, pp 196-199
correlation of...Bull 86
crystalline schists of Lake Superior region................Ann 10, i, pp 355-364
Cumberland quartzites of Narragansett Basin..............Mon xxxiii, p 106
delimitations and stratigraphy of..........................Ann 16, i, pp 762-766
dolomite formation of Michigan, Sturgeon River tongue........Ann 19, iii, pp 149-150; Mon xxxvi, pp 479-482
Duluth group of Minnesota.................................Mon v, pp 275-279
Felch Mountain series of Michigan.........................Mon xxxvi, pp 384, 398-426; Bull 86, pp 190, 195
Franklin white limestone of New Jersey.....................Ann 18, ii, pp 425-457;
Bull 86, pp 399, 403-404
George River limestone of Canada, Nova Scotia, and Cape Breton....Bull 86, pp 242, 243
Grand Canyon group of Arizona.............................Ann 16, i, p 825; Bull 86, pp 327-330, 507
Grenville series of Canada.................................Bull 86, pp 26, 27, 28, 32, 451, 497
Greysen shale of Montana, description and section of.........Ann 20, iii, pp 282, 283

Bull. 177—01—9
Algonkian rocks; Groveland formation of Michigan, Crystal Falls district. Ann 19, iii, pp 115-121, 137-139; Ann 21, iii, pp 385-387; Mon xxxvi, pp 415-423, 446-450

Gunflint formation of Lake Superior region, Vermilion district. Ann 21, iii, pp 408-409

Hanbury slate of Michigan, Menominee district. GF 62, pp 10-11

Hazel slate of Tennessee and North Carolina. GF 16, p 3

Hemlock formation of Michigan, Crystal Falls district. Ann 19, iii, pp 45-63, 133-137; Mon xxxvi, pp 73-154, 440-446

Hinsdale gneiss of western Massachusetts. Mon xxix, pp 20, 24

Hinsdale limestone of western Massachusetts. Mon xxxix, pp 20, 25-27

Huronian quartzites of Lake Superior region, genesis of and metamorphism in. Ann 5, pp 236-237; Bull 8, pp 48-52

Huronian rocks, enlargements in. Bull 8, pp 23-37

Iron-bearing member of Lake Superior region. Ann 10, i, pp 380-422; Ann 21, iii, p 323; Mon xix, pp 190-198, 200-245, 361-368

Ironwood formation of Lake Superior region. Ann 21, iii, pp 341-351

Ishpeming formation of Michigan, Marquette district. Ann 15, pp 590-598; Mon xxvii, pp 409-444

Keweenawan series of Lake Superior region. Ann 3, pp 93-188; Ann 7, pp 20, 419-421; Ann 16, i, pp 794-796; Bull 81, pp 198, 199, 335-339; Bull 86, passim

junction between Eastern sandstone and Kainan. Bull 23

list of works that embrace references to. Mon v, pp 14-23, 431-432

Kona dolomite of Michigan, Marquette district. Ann 15, pp 523-530; Mon xxvii, pp 240-256

Laurentian of Canada and the Great Lakes region. Bull 86, passim

Lee gneiss of western Massachusetts. Mon xxix, pp 20, 29-30

Lester River group of Minnesota. Mon v, pp 279-283

Llano group of Texas. Bull 45, p 56; Bull 86, p 269

Lower Menominee series of Michigan, Menominee district. GF 62, pp 2-4

Mamainse series of Lake Superior region. Bull 86, pp 56, 57, 61

Mansfield formation of Michigan, Crystal Falls district. Ann 19, iii, pp 36-44, 114-115, 131-133; Mon xxxvi, pp 54-73, 411-415, 437-440

Marquette series of Lake Superior region. Ann 3, pp 166-168; Ann 15, pp 477-500, passim; Ann 16, i, p 784; Ann 19, iii, pp 16, 17; Ann 21, iii, p 371; Mon xix, pp 471-473; Mon xxvii, passim; Bull 86, passim

Menominee series of Lake Superior region. Ann 3, pp 166-168; Ann 19, iii, pp 16, 17; Ann 16, i, p 784; Ann 21, iii, p 389; Mon xxvii, passim; Bull 86, passim; GF 62, pp 2-4

Mesnard quartzite of Michigan, Marquette district. Ann 15, pp 517-523; Mon xxvii, pp 221-240
Algonkian rocks, Michigamme formation of Michigan, Marquette district... Ann 15, pp 598-604; Mon xxvii, pp 444-459
Montalban group of Canada and adjacent regions............... Bull 86, pp 351, 367, 368, 380, 463, 465, passim,
Negaunee formation of Michigan, Marquette district............. Ann 15, pp 561-589, 611-614; Ann 21, ii, pp 372-383; Mon xxviii, pp 328-407, 529-532
of Michigan, Menominee district.......................... GF 62, p 4
Neihart quartzite of Montana, description and section of......... Ann 20, iii, pp 281, 284, 382; GF 56, pp 1-2
Newland limestone of Montana, description and section of... Ann 20, iii, pp 282, 283
Nipigon group of Lake Superior region............. Bull 86, pp 61, 70, 195, 211, 468
Norian of New England, New York, and Canada............... Bull 86, passim
Ocoee conglomerate of Tennessee.......................... Bull 81, pp 143-144
Ocoee group of Tennessee and North Carolina........... Bull 86, pp 422-423; GF 16, p 2; GF 20, p 2; GF 25, p 2
of Colorado, Denver Basin.................................. Mon xxvii, pp 10-13
Pikes Peak quadrangle.. GF 7, p 1
Rico Mountains... Ann 21, ii, pp 26, 37-41
Telluride quadrangle.. GF 57, p 2
of Idaho.. Ann 16, ii, pp 225-226
of Maryland-Virginia-West Virginia, Harpers Ferry quadrangle.... GF 10, p 2
of Michigan, Menominee district........................... GF 62, p 2-11
of Montana... Bull 139, pp 31-34
Little Belt Mountains................................. Ann 20, iii, pp 279-284, 382; GF 56, pp 1-2
Livingston quadrangle.. GF 1, p 1, 2
Three Forks quadrangle..................................... Bull 110, pp 16-20; GF 24, p 2
of Massachusetts, western................................. Mon xxix, pp 19-30; GF 50, p 1
of Rhode Island-Massachusetts, Narragansett Basin........ Mon xxxi, pp 104-109
of South Dakota, Black Hills, northern....................... Ann 21, ii, pp 178, 181
southeastern.. WS 34, p 12
of States. (See, also, formation names under this heading.)
of Texas.. Bull 45, pp 55-56
of Virginia-Maryland-West Virginia, Harpers Ferry quadrangle... GF 10, p 2
of West Virginia-Maryland-Virginia, Harpers Ferry quadrangle... GF 10, p 2
of Yellowstone Park.. GF 30, pp 1, 4
Ogishki conglomerate of Great Lakes region........... Bull 86, pp 127-128, passim
Penokee iron-bearing series of Michigan and Wisconsin........ Ann 10, i, pp 341-507; Mon xix
Penokee series of Lake Superior region, correlation of......... Bull 86, pp 150-154
Pigeon slate of Tennessee and North Carolina................... GF 16, p 2; GF 20, p 2; GF 25, p 2
Pokégamma formation of Lake Superior region.................. Ann 21, iii, pp 357-358
Portland group of New Brunswick................................ Bull 86, pp 230-231, 238
pre-Cambrian igneous rocks of Unkar terrane, Grand Canyon of the
Colorado.. Ann 14, ii, pp 497-524
of Michigan, Menominee district.......................... GF 62, p 3
Republic formation of Lake Superior region.................... Bull 86, p 102
St. John group of New Brunswick................................ Bull 86, pp 230, 231
St. Louis slates of Lake Superior region..................... Bull 86, pp 186-187
Shawmut group of Massachusetts............................ Bull 86, p 368
Sheridan quartzite of Wyoming............................. GF 30, p 4
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Algonkian rocks; Siamo slate of Michigan, Marquette district...............Ann 15, pp 554–561; Mon xxviii, pp 313–328

Sioux quartzites of Lake Superior region..............Bull 86, pp 186–187, 194 of South Dakota .. WS 34, p 12

Smithfield limestones of Narragansett Basin........... Mon xxxiii, pp 107–109

Steep Rock series of CanadaBull 86, pp 70–72

Sturgeon quartzite of Michigan, Crystal Falls district...Ann 19, iii, pp 105–110, 125; Mon xxxvi, pp 398–405, 430–431

of Michigan, Menominee districtGF 62, pp 2–3

system of, establishment of.................................. Ann 14, i, p 72

Temperance River group of Minnesota Mon v, pp 323–329

Texian system ... Bull 86, pp 269, 474, 504

Thunderhead conglomerate of Tennessee and North Carolina.............GF 16, p 2; GF 20, p 2

Torridon sandstone of Scotland............................ Bull 86, p 525

Uinta group of Utah... Bull 86, pp 286–289, 505

Upper Menominee series of Michigan, Menominee district...........GF 62, pp 4–11

Vermont formation of Hoosac Mountain Bull 86, pp 372, 373

Virginia slate of Lake Superior region Ann 21, iii, p 360

Vishnu series of Grand Canyon region................... Bull 86, pp 330, 331

Vulcan formation of Michigan, Menominee district ...Ann 21, iii, pp 390–400; GF 62, pp 4–10

Wasatch series of Utah.. Bull 86, pp 299, 487, 505

Washington gneiss of Massachusetts and Connecticut...........Mon xxix, p 20;

GF 50, pp 1, 4

Wewe slate of Michigan, Marquette districtAnn 15, pp 530–540;

Mon xxviii, pp 256–282

Wilhite slate of Tennessee and North Carolina.............GF 16, p 2;

GF 20, p 2; GF 25, p 2

Algonkian and Archean rocks, correlation ofBull 86

of North America as related to CambrianAnn 12, i, pp 540–563

work on, summary of Ann 14, i, pp 101–110

Algous vegetation, dried, from Yellowstone Park, analysis of..........Bull 150, p 92

Alismaceae from Alaska .. Ann 17, i, p 880

from Dakota group ... Mon xvii, pp 37–38

Alkali and drainage as related to irrigation Ann 13, iii, pp 127–130

Alkalies in silicates, estimation of Bull 9, pp 36–37

Alkaline reaction of some natural silicates Bull 167, pp 156–158

Allanite, analysis of, from Maine, Topsham.................. Bull 9, p 10

analyses of, from North Carolina, various localities.............Bull 74, p 51

chemical constitution of Bull 125, p 21

composition of .. Bull 150, p 43

in igneous rocks of Nevada, Eureka district............... Mon xx, pp 338, 341, 379

in porphyries of Colorado, Mosquito Range Mon xii, pp 329, 335

in porphyrites of Utah, Henry Mountains................... Mon xii, p 360

occurrence of ... MR 1883–84, p 773

Allegheny Plateaus, divisions, topography, and character of............GF 69, p 1

profile of ... WS 44, p 44

Allelophane, chemical constitution of Bull 125, pp 66, 104

Alloys, a new method of making Bull 60, pp 147–148

thermoelectric data of Bull 14, pp 80–88

Alluvial cones, examples of TF 2, p 18
Alluvial cones and terraces...Ann 2, p 184; Ann 4, pp 201–202; Ann 6, p 311; Mon I, pp 81, 91, 92, 178, 185, 220, 344, 346, 349, 352; Mon xi, pp 255–257
Alluvial deposits of Neocene, Pleistocene, and Recent periods in Texas...Ann 18, ii, pp 243–256; Ann 21, vii, pp 345–361
Alluvial fans in Rico Mountains, Colorado...Ann 21, ii, pp 162–163
Alluvial formations in Nebraska...Ann 19, iv, pp 732, 740
Alluvial soils...Ann 12, i, pp 288–293
Alluvial terraces in Massachusetts–Connecticut, Holyoke quadrangle...GF 50, p 7
Alluvium, analysis of, from Colorado, Jefferson County (loess-like)...Bull 148, p 299; Bull 168, p 301
in California, Marysville quadrangle...GF 17, p 1
Nevada City district...Ann 17, ii, p 101
in Maine...Mon xxxiv, pp 58–69
in Maryland–Virginia, Fredericksburg quadrangle...GF 13, p 2
Nomini quadrangle...GF 23, p 1
in Ohio, Huntington quadrangle...GF 69, p 5
in Utah, Tintic district...GF 65, p 3
in Virginia–Maryland, Fredericksburg quadrangle...GF 13, p 2
Nomini quadrangle...GF 23, p 1
in Washington, Tacoma quadrangle...GF 54, p 5
in West Virginia, Huntington quadrangle...GF 69, p 5
Alluvium, river, of the Great Plains, relation of, to water supply...Ann 16, ii, pp 584–585
Almandite, chemical constitution of...Bull 125, p 21
Alsek River, Alaska, features of...Ann 21, ii, pp 348–349
Altamaha Basin, Georgia–South Carolina, rainfall and run-off in Savannah Basin and...Ann 20, iv, pp 158–161
stream measurements in...Ann 18, iv, pp 77–84; Ann 19, iv, pp 227–233; Ann 20, iv, pp 51, 170–172; WS 11, pp 19–23;
WS 15, pp 41–44; WS 27, pp 43, 44, 46; WS 36, pp 133–137
water powers in...Ann 20, iv, pp 166–169
Altamaha grit of Georgia, correlation of...Bull 84, pp 81–82, 320; Ann 18, ii, p 340
Alteration, mechanical and chemical, of rocks of Nevada City and Grass Valley districts, California...Ann 17, ii, pp 145–157
Alteration, rock, in ore veins of Montana, Little Belt Mountains...Ann 20, iii, pp 418, 421
Alteration, superficial, of ores of Colorado, Cripple Creek district, depth, effect, etc., of...Ann 16, ii, pp 129–132
(See, also, Metamorphism.)
Alteration product from any substance. (See name of the substance.)
Alteration products, miscellaneous, analyses of...Mon xii, p 607
Altitude of Appalachian province...GF 4, p 1; GF 8, p 1; GF 10, p 1; GF 12, p 1;
GF 14, p 1; GF 16, p 1; GF 19, p 1; GF 20, p 1; GF 21, p 1; GF 22, p 1; GF 25, p 1;
GF 26, p 1; GF 27, p 1; GF 28, p 1; GF 32, p 1; GF 33, p 1; GF 34, p 1; GF 35, p 1;
GF 40, p 1; GF 44, p 1
relation of rainfall to, in California...Bull 140, pp 328–330
(See, also, Elevation.)
Altitudes, a new method of measuring, with the barometer...Ann 2, pp 403–566
between Lake Superior and Rocky Mountains...Bull 72
in Alaska...Bull 169
in Bonneville Basin...Mon i, pp 405–419
in Canada...Bull 6
in New York, along principal rivers...WS 24, pp 27, 29–30, 31, 34, 35, 36, 42, 43, 46
Altimates in North Dakota Bull 144, pp 61-69
in Texas, Black and Grand prairies.......................... Ann 21, vi, pp 647-650
in United States, dictionary of Bull 5; Bull 76; Bull 160

map showing .. Ann 13, ii, pocket
Alum, foreign sources of MR 1883-84, p 950
in Hawaii, occurrence of Ann 19, vi, cont, p 685

statistics of ... Ann 19, vi, cont, pp 685-687

Alum Bluff beds of Florida, correlation of Ann 18, ii, p 340; Bull 84, pp 112-113, 320
Alum rock, so called, from Grant County, New Mexico, analyses of Bull 9, p 13

Aluminum, alloys of .. MR 1892, pp 249-254; Ann 16, iii, pp 539-540
analyses of .. MR 1883-84, pp 659

bauxite as a source of MR 1892, pp 236-240; Ann 16, ii, pp 542-544
chemical constitution of orthosilicates of Bull 125, pp 18-67
manufacture of, in Europe Ann 17, iii, pp 245-251
metallurgy of—processes MR 1892, pp 228-236

properties of—malleability, conductivity, tensile strength, etc.. MR 1892, pp 241-254; Ann 16, iii, pp 540-542

separation of, in rock analyses Bull 78, pp 87-90

statistics of .. Ann 18, v, pp 281-284

uses of Ann 18, v, pp 281-284

Aluminum and titanium, separation of, and of titanium and iron Bull 27, pp 16-26

Aluminum chloride, catalytic action of, on silicie ethers Bull 113, pp 63-76

Aluminum foil, action of various acids on MR 1891, p 157

Alunite, analysis of, from Colorado, Calico Peak Ann 21, ii, p 94

analysis of, from Colorado, Custer County Bull 90, p 62

from Colorado, Rosita Hills, Mount Robinson Ann 21, ii, p 94

Alunite pseudomorphs, analysis of, from Colorado, Knickerbocker Hill Ann 17, ii, p 318

Alunite rocks of Colorado, Rosita Hills Ann 17, ii, pp 314-319

Alunogen, analyses of, from New Mexico, Grant County Bull 9, p 13

Alurgite, chemical constitution of Bull 125, p 47

Amalik Harbor, Alaska, coal at Ann 17, i, p 799

AmaltheiclEe, from Colorado formation Bull 106, pp 168-181

Amazon stone, flora of Bull 82, p 215

Amboy clay, correlation of Mon xxvi
American fossil Bryozoa, synopsis of, including bibliography and synonymy. Bull 173
American River, California, profile of. WS 44, p 93
Amesite, analysis of, from Massachusetts, Chesterfield. Bull 126, p 15
Amherst feldspathic mica-schist of Massachusetts and Connecticut. GF 50, p 5
Amidoheximidoheptaphosphoric acid, constitution and salts of. Bull 1167, pp 151-152
Amidophosphoric acid, chemical researches on. Bull 113, pp 80-94
Ammonia liquor and sulphate of ammonia, production of. Ann 20, vi cont, pp 227-228, 232-239
Ammonia soda, analysis of. MR 1883-84, p 965
of Cretaceous of Vancouver Island. Bull 51, p 48
of Mesozoic of Alaska Peninsula. Bull 51, pp 68-70
of New Jersey marls. Mon xviii, pp 249-279
Ammonium chloride, chemical action of, on silicates. Bull 113, pp 84-86
Ammonoides from Colorado formation. Bull 106, pp 164-189
from Cretaceous of Pacific coast. Bull 133, pp 72-83
Ammonsaurus, description of. Ann 16, i, p 150
Amphelidaceae from Dakota group. Mon xvii, pp 159-165
Amphelidaceae from Laramie group. Bull 37, pp 68-72
Amphibole, analysis of, from California, various localities. Bull 168, pp 190, 206, 208
analysis of, from Colorado, Leadville district. Mon xii, p 598
chemical constitution of. Bull 125, pp 90-94, 106
composition of. Bull 150, pp 41-42
Amphibole-biotite-granite, analysis of, from California, Mariposa County. Bull 168, p 208
Amphibole-gabbro, analysis of, from California, Tuolmone County. Bull 168, p 206
Amphibole-granite, thin section of, from Michigan, near Negaunee. Bull 62, pp 238-239
Amphibole-granitite, analysis of, from Germany, Hohwald. Mon xxviii, p 202
Amphibole-schist, analysis of, from California, Bidwell Bar quadrangle. Ann 17, i, p 579
Amphibole-schists of Michigan, Crystal Falls district. Mon xxxvi, pp 465-467
of Michigan, Marquette district. Mon xxviii, pp 206-208
of Oregon, Roseburg quadrangle. GF 49, p 2
of Sierra Nevada. Ann 17, i, pp 578-579
Amphibolite, analysis of, from California, various localities. Ann 14, ii, pp 259, 275
Bull 148, p 211; Bull 168, p 197
analysis of, from Massachusetts, various localities. Mon xxix, pp 167, 168, 196, 303
Bull 148, pp 75, 76; Bull 168, pp 31, 32
from Michigan, Walkerville and Crystal Falls districts. Mon xxxvi, p 397; Bull 168, p 66
from Vermont, Guilford. Mon xxix, pp 196, 303; Bull 148, p 71; Bull 168, p 27
of California, Bidwell Bar quadrangle. GF 48, p 3
Big Trees quadrangle. GF 51, p 5
Colfax quadrangle. GF 66, p 3
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.]

Amphibolite of California, Downieville quadrangle:..........................GF 37, p 3

of California, Mother Lode district ..GF 63, p 3

Nevada City and Grass Valley districts:......................................Ann 17, ii, pp 75-78

Ophir district ...Ann 14, ii, pp 256-259

Smartsville quadrangle ...GF 18, p 4

Sonora quadrangle ..GF 41, p 4

of Colorado, Mosquito Range ...Ann 2, p 215; Mon xit, p 50

of Connecticut, Holyoke quadrangle ..GF 50, p 4

of Massachusetts, Holyoke quadrangleGF 50, p 4

Hoosac Mountain ..Mon xxix, pp 65-69

of Michigan, Crystal Falls district ...Ann 19, iii, p 105; Mon xxxii, pp 395-397

of Northwestern States ...Ann 5, p 211

of Sierra Nevada ..Ann 14, ii, pp 470-471; Ann 17, i, p 584

thin section of, from California, OphirAnn 14, ii, pp 258-259

from Massachusetts, Hoosac MountainMon xxix, p 114

various localities ..Mon xxix, pp 302, 306

from Vermont, Mount Holly ...Mon xxix, pp 114-115

Amphibolite-schist, analysis of, from California, Downieville quadrangle ...Ann 17, i, p 652

of Alaska, Chandlar-Koyukuk region ...Ann 21, ii, pp 472-473

Copper Mountain ...Ann 20, vii, pp 414-415

of California, Jackson quadrangle ..GF 11, p 3

Placerville quadrangle ..GF 3, p 2

of Sierra Nevada ..Ann 17, i, pp 584, 651-653, 673

Amphidesmitide of Miocene marls of New JerseyMon xxiv, pp 79-81

Amygdaloid, analysis of metamorphosed, from North Carolina, Watauga County ...Bull 168, 53

thin section of, from Minnesota, Great Palisades.......................Mon v, pp 88-89

Amygdaloid, diabasic, of the Keweenaw seriesMon v, pp 87-91

Amygdaloid diabase from Minnesota, Grand Marais, description of, as one of the educational seriesBull 150, pp 355-357

Amygdaloidal aporhyolite, thin section of, from Pennsylvania, South Moun-
tain ...Bull 136, pp 118-119, 120-121

Amygdaloidal rocks of Keweenaw series, structural features ofMon v, pp 134-139

Amygdule, thin section of, in diabase of dike at Pigeon Point, Minnesota ...Bull 169, pp 46-47

Amygdules in Catoctin schist. ..Am. 14, ii, pp 312-313

Amyl alcohol, action of, on chlorides, a method for separation of sodium and potassium from lithium by, with reference to a similar separation of same from magnesium and calciumBull 42, pp 73-88

Amyzon beds of Colorado, Nevada, and Oregon, correlation ofBull 83, pp 125, 141, 145-146; Bull 84, pp 281, 317, 320

Anacacho formation of Texas ..Ann 18, ii, pp 240-241; Bull 164, pp 31-33, 34; GF 64, p 2

of Texas, Uvalde quadrangle, wells inGF 64, p 6

Anacardiacee of Alaska ...Mon xvii, pp 154-156

of Dakota group ...Mon xxxv, p 114

of North America (extinct) ...Mon xxxvii, ii, p 731

Analcite, analyses of, from Colorado, Table Mountain and Pikes Peak districtBull 20, p 29; Bull 148, p 164; Bull 168, p 146

analysis of, from Montana, Highwood MountainsBull 148, p 155; Bull 168, p 134
Analcite, analysis of, from Nova Scotia, Wassons Bluff............Bull 167, pp 19, 22
chemical constitution of......................................Bull 125, pp 31, 33, 37, 42, 103
composition of..Bull 150, p 33
experiments relative to constitution ofBull 167, pp 19-25
from Colorado, Table Mountain, general description, optical behavior, and
chemical composition of.......................................Bull 20, pp 27-29
Analcite-basalt, analysis of, from Arkansas, Magnet Cove........Ann 20, in, p 544
analysis of, from Brazil, Santa Cruz........................Ann 20, in, p 544
from Colorado, Cripple Creek and Pikes Peak districts....Ann 20, in, p 544;
Bull 148, p 164; Bull 168, p 146
from Montana, various localities................Ann 20, in, pp 544, 548, 581
from Vermont, Shelburne Point..........................Ann 20, in, p 544
of Montana, Little Belt Mountains..................Ann 20, in, pp 543-551
Analcite-syenite of Montana, Little Belt Mountains........Ann 20, in, pp 469-471
Analcitite of New York-Vermont slate belt........................Ann 19, in, p 225-226
Analysees, mineral, an apparatus for the determination of water in rocks, and analytical methods.........................Bull 148
of rocks from the laboratory of the United States Geological Survey........Bull 160
of waters of Yellowstone Park, with an account of the methods of analysis employed......................Bull 47
(See, also, the various substances: Coal; Clay; Iron; rock names; Water, etc.)
Analysis, physical, of rocks, methods of..................Bull 150, pp 18-27
Anatase from ilmenite, thin section of, from Michigan, Lower Twin Falls....Bull 62, p 131
Anatidina of Colorado formation................................Bull 106, pp 117-120
of Cretaceous of Vancouver Island.........................Bull 51, pp 43-44
of marls of New JerseyMon ix, pp 175-178, 220-221; Mon xxiv, pp 85-86
Anchisauridina of North AmericaAnn 16, iv, pp 147-151
Ancylidina of Eocene of Utah................................Bull 34, p 26
of North America (non-marine fossil)Ann 3, pp 451-452
Andalusite, chemical constitution of....................Bull 125, pp 15, 16, 19, 63, 65, 95, 101
composition of...Bull 150, pp 37-38
occurrence and statistics of..........................MR 1882, p 497; MR 1883-84, pp 741-742; Ann 17, iii, cont, pp 910, 923
Andalusite-hornfels, analysis of, from California, Mariposa County......Bull 148, p 221;
Bull 150, p 342; Bull 168, p 210
Andalusite-schist, analysis of, from California, Mariposa County......Bull 148, p 221;
Bull 168, p 210
Anderson sandstone of Tennessee........................GF 33, p 3; GF 40, p 2
Andesine, analysis of, from Massachusetts, Chester...Mon xxix, p 140; Bull 126, p 119
Andesite, analysis of, from Alaska, Delarof Harbor................Ann 18, iii, p 55
analysis of, from Alaska, St. Augustine................Ann 18, iii, p 52
from California, Clear Lake............................Bull 148, p 223; Bull 168, p 212
Downieville quadrangle....................................Ann 17, iii, p 619, 731;
Bull 148, p 207; Bull 168, p 193
San Clemente Island.......................................Ann 18, ii, p 488
Tuscan buttes...Bull 55, p 85
various localities......................................Ann 14, ii, p 490
from Colorado, Leadville district........................Mon xii, p 590
Pikes Peak district...Bull 148, p 163; Bull 168, p 145
Rosita Hills..Ann 17, ii, pp 321, 324;
Bull 89, p 66; Bull 148, p 166; Bull 168, p 148
from Maine, Aroostook County.........................Bull 165, p 171; Bull 168, p 19
Andesite, analysis of, from Maine, Edmunds Hill
Bull 165, p 188

analysis of, from Maine, Fox Islands
Bull 165, p 171

from New Mexico, San Mateo Mountains (phonolitic)
Bull 27, p 64; Bull 148, p 165; Bull 168, p 170

from North Carolina, Clay County
Bull 74, p 55

from Philippine Islands
Ann 21, p 516

from Spain, Cabo de Gata
Bull 89, p 66

from Utah, Tintic district
Ann 19, p 641, 649; Bull 168, p 166; GF 65, p 3

from Virginia, near Front Royal
Ann 14, p 305;
Bull 148, p 91; Bull 168, p 51

from Yellowstone Park, Sepulchre Mountain
Mon xxxi, p 283

of Alaska, southern
Ann 18, p 50-58

of California, Bidwell Bar quadrangle
Ann 17, p 568-569; SF 43, p 5

Big Trees quadrangle
GF 51, p 6

Colfax quadrangle
GF 66, p 6

Downieville quadrangle
GF 37, pp 6-7

Jackson quadrangle
GF 11, p 5

Lassen Peak quadrangle
GF 15, p 1-2

Mother Lode district (also meta-andesite)
GF 63, pp 3-4, 6

Nevada City, Grass Valley, and Banner Hill districts
GF 28, p 5

Placerville quadrangle
GF 3, p 3

Pyramid Peak quadrangle
GF 31, p 6

quicksilver belt
Mon XIII, pp 152-156, 221, 238, 242-245

Sacramento quadrangle
GF 5, p 3

San Clemente Island
Ann 18, p 478-482

Smartsville quadrangle
GF 18, p 5

Sonora quadrangle
GF 41, p 6

Truckee quadrangle
GF 39, pp 5-6

of Colorado, Buffalo Peaks
Mon XI, pp 353-354

Cripple Creek district
Ann 16, p 46-48, 75, 78, 82, 88

Pikes Peak quadrangle
GF 7, pp 3, 4, 7

Rosita Hills
Ann 17, pp 285-291, 303-305, 340, 342, 379-382

Telluride quadrangle
GF 57, p 7

Walsenburg quadrangle
GF 68, p 4

of Idaho, Boise quadrangle
GF 45, p 4

of Maine, Aroostook volcanic area
Bull 165, pp 111-114, 168-169, 173-175

of Maryland–Virginia–West Virginia, Harpers Ferry quadrangle
GF 10, p 2

of Montana, Butte district
GF 38, p 1

of Nevada, Eureka district
Mon XX, pp 233-237, 239, 348

Steamboat Springs
Mon XIII, pp 146-151, 221, 334-337

Washoe district, relations of
Bull 17, pp 12-21, 23-26, 34

of New Mexico, Tewa Mountains
Bull 66, pp 12-15

of Oregon, Bohemia mining region
Ann 20, p 12-13

Roseburg quadrangle
GF 49, p 3

of Philippine Islands
Ann 21, p 513-516

of Sierra Nevada
Ann 14, p 487-490; Ann 17, p 616-620

of Utah, Tintic district
Ann 19, p 638-642; GF 65, p 2

of Virginia, Catoctin belt
Ann 14, p 304-306

of Yellowstone Park and vicinity
Mon XXXII, p 73-80, 242, 296, 302-304, 314-321; GF 30, p 6

thin section of, from Colorado, Buffalo Peaks
Mon XII, pp 354-355

from Yellowstone Park
Mon XXXII, pp 350-351

Andesite-basalt, analysis of, from California, Shasta County
Bull 148, p 190; Bull 168, p 176
Andesite-breccia, analysis of, from Yellowstone Park, Sepulchre Mountain. Bull 148, p 121; Bull 168, p 91
of Sierra Nevada. Ann 17, i, p 708
Andesite-breccia and tuff of Montana, Fort Benton quadrangle. GF 55, p 3
of Sierra Nevada, mode of formation of. Ann 17, i, pp 537-538
Andesite-perlite, analysis of, from Nevada, Eureka district. Mon xx, p 264
Andesite-porphyr, analysis of, from California, Downieville quadrangle. Ann 17, i, p 731

analysis of, from Montana, Daylight and Hiawatha Creek. Bull 168, p 119
of Montana, Little Belt Mountains quadrangle. GF 56, p 4
Three Forks quadrangle. GF 24, p 4
of Yellowstone Park. GF 30, p 6
thin section of, from Yellowstone Park. Mon xxxii, ii, pp 62-63, 104-105
Andesites, classification of. Mon xxi, pp 149-151
transitions between types of. Mon xii, pp 148-151
Andesitic perlite of Nevada, Eureka district. Mon xx, pp 368-373
Anchisaurus, description and restoration of. Ann 16, i, pp 147-151
Androscoggin River, Maine, flow of, measurements of. Ann 20, iv, pp 46, 66-72;
Ann 21, iv, pp 56-57; WS 27, pp 14-16; WS 35, pp 27-28
profile of. WS 44, p 10
water power of. Ann 19, iv, pp 84-97
Angiosperms, archetypal. Ann 16, i, pp 535-540
Angiosperms, fossil, of the Potomac or younger Mesozoic. Mon xv, pp 277-325
(See, also, Monocotyledons; Dicotyledons.)
Animals and plants in relation to soil formation. Ann 12, i, pp 268-287
Animas River, flow of, measurements of. Ann 18, iv, pp 283-285;
Ann 19, iv, pp 414-415; Ann 20, iv, pp 49, 403; Ann 21, iv, p 301; Bull 140, pp 198-200;
WS 11, p 72; WS 16, p 146; WS 28, pp 139, 142, 145; WS 38, pp 310-311
profile of. WS 44, p 85
Ann 7, pp 417-423; Mon v, pp 367-386; Mon xxi, pp 260-268, 468-470;
Bull 86, pp 59, 187-189
Ankerite, analyses of, from Massachusetts, Franklin County. Bull 126, p 25
Ankerite spar, analyses of, from Montana, Neihart district. Ann 20, iii, p 409
Ann, Cape, Massachusetts, geology of. Ann 9, pp 529-611
Annelida of Cambrian, Lower. Ann 10, i, pp 588, 602-604
of Devonian beds of New York. Bull 16, p 43
Annite, analysis of, from Massachusetts, Rockport. Bull 42, p 25
Annuolosa from Bear River formation. Bull 128, pp 61-62
of Cretaceous of Pacific coast. Bull 133, p 35
of lower marl beds of New Jersey. Mon ix, pp 42-57
Anona chalk of Texas. Ann 21, viii, p 340
Anoneceae from Dakota group. Mon xvii, p 198
Anorthite, analysis of, from Delaware, Iron Hill. Bull 55, p 80
analysis of, from Maine, Phippsburg. Bull 167, p 70
from Maine, Raymond. Bull 113, p 110
from Massachusetts, Pelham. Bull 126, p 26
from Minnesota. Mon v, p 438
Anorthite, chemical constitution of Bull 125, pp 29-30, 33, 34, 102
determination of, in pyroxene-andesite Ann 21, vi cont, p 594
of Keweenaw series ... Mon xx, p 333
thin section of, from Minnesota, sec. 5, T. 54, R. 8 W Mon v, pp 56-57
Anorthoclase, analysis of, from Massachusetts, Marblehead Neck Bull 148, p 78; Bull 168, p 34
Anorthosite, analysis of, from New York, Adirondack region Ann 19, iii, p 411; Bull 168, p 37
thin section of, from New York, Lake Sanford Ann 19, iii, pp 412-413
Anthophyllite, analysis of, from North Carolina, Macon County Bull 74, p 45
chemical constitution of .. Bull 125, p 90
Anthosiderite, chemical constitution of Bull 125, pp 66, 101
Anthracite basins of Pennsylvania, structure of Ann 13, ii, pp 256-263
Anthracite coal. (See Coal.)
Anthracite and Crested Butte quadrangles, Colorado, geology of GF 9
Anthracite Range, Colorado, structure and rocks of Ann 14, ii, pp 186-188
Anthribide, Tertiary, of United States Mon xxi, pp 160-167
Antietam Creek, Maryland, flow of, measurements of Ann 19, iv, pp 149-150; Ann 20, iv, pp 49, 122; Ann 21, iv, p 95; WS 15, p 16; WS 27, pp 19, 23, 24; WS 35, p 86
Antietam sandstone in the Catoctin belt of Maryland and Virginia Ann 14, ii, pp 335-337
in Virginia-Maryland-West Virginia, Harpers Ferry quadrangle GF 10, p 3
Antigorite-serpentine of western Massachusetts Mon xxix, pp 98-101
Antimony ore, analysis of, from California, Kern County MR 1882, p 438
new method of reducing .. MR 1893, pp 185-186
Antlers sands of Indian Territory Ann 21, vii, pp 195-196
of Texas .. Ann 12, i, pp 192-197
Ants as agents in soil formation ... Ann 12, i, pp 277-278
streams in, list of .. Ann 20, iv, pp 175-177
Apalachicola River, profile of .. WS 44, p 30
Apatite, analysis of, from Canada, various localities Bull 46, p 42
Apatite, analysis of, from Maine, Stoneham Bull 27, p 15
analysis of, from Norway ... Bull 46, pp 44, 45
from Spain ... Bull 46, pp 45-46
from Virginia, near Amelia Court-House ... MR 1883-84, p 808
composition of ... Bull 150, p 36
in diorite from Wyoming, Electric Peak .. Ann 12, i, p 608
in Maine, Auburn .. MR 1883-84, p 775
in rocks of Pacific slope .. Mon xiii, p 85
statistics of MR 1882, p 521; MR 1883-84, pp 805-808; MR 1885, pp 455-458;
MR 1887, p 594; MR 1888, p 596; MR 1889-90, pp 454-455
thin section of, from Minnesota, Pigeon Point, showing skeleton crystals in
altered diabase .. Bull 109, p 47
from Minnesota, southwestern, in labradorite feldspar in porphyritic
diorite... Bull 157, pp 150-151
from Nevada, Eureka district, from andesitic perlite Mon xx, pp 396-397
Eureka district, from hornblende-mica-andesite Mon xx, pp 396-397
Washoe district, from diorite-porphyry .. Mon iii, pp 150-151
Apatites, foreign .. Bull 46, pp 22-46
Apatosaurus, description of ... Ann 16, i, pp 166-168
from Denver Basin, remains of ... Mon xxvii, pp 489-492
Aphide, American Tertiary, list of known species Ann 13, ii, pp 341-366
Aphrodite, chemical constitution of ... Bull 125, pp 74, 105
Aphrosiderite, analysis of ... Bull 113, p 17
chemical constitution of .. Bull 125, pp 55, 103
Apiocrinide, Mesozoic, of United States ... Bull 97, pp 24-25
Apishapa formation of Colorado ... Ann 17, ii, pp 567, 571; GF 58, p 2; GF 68, p 2
Apison shale in Georgia and Tennessee ... GF 2, p 1;
GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2
Aplin (S. A.), work in charge of ... Ann 18, i, p 115; Ann 19, i, p 121; Ann 20, i, p 137
Aplite, analysis of, from California, Sierra County Bull 168, p 192
analysis of, from Yellowstone Park, Hurricane Ridge Mon xxxii, ii, p 261;
Bull 148, p 124; Bull 168, p 94
of Alaska, in dike rocks of Fortymile district Ann 18, ii, pp 229-230
of California, Nevada City, Grass Valley, and Banner Hill districts Ann 17, ii, pp 44-46; GF 29, p 2
of Maine, Aroostook volcanic area .. Bull 165, p 149
of Montana, Butte district ... GF 38, p 2
Little Belt Mountains ... Ann 20, ii, pp 493-497
of Sierra Nevada .. Ann 17, ii, pp 550, 570-572, 634-635
thin section of, from Yellowstone Park ... Mon xxxii, ii, pp 250-251
Aplite-granite, analysis of, from Montana, Castle Mountain Bull 165, p 166
Aporhyolite of the Sierra Nevada .. Ann 17, i, p 585
Apophyllite, analysis of, from Colorado, Table Mountain Bull 20, pp 33, 34
chemical constitution of ... Bull 125, pp 81-82, 105
from Colorado, Table Mountain, general description, optical properties,
and chemical composition of ... Bull 20, pp 29-35
occurrence of ... MR 1883-84, p 775
Apophyolite, analysis of, from Maine, Fox Islands Bull 165, p 155
analysis of, from Pennsylvania, Franklin County Bull 148, p 81;
Bull 150, p 348; Bull 168, p 40
from Pennsylvania, South Mountain ... Bull 165, p 155
from Pennsylvania, South Mountain, description of, as one of the educa­
tional series ... Bull 150, pp 343-349
Aporhyolite, thin section of, from Michigan, Crystal Falls district, showing perlitic parting........Mon xxxvi, pp 274-275
thin section of, from Minnesota, Lake Superior........Bull 150, pp 348-349
from Pennsylvania, South Mountain (amygdaloidal)........Bull 136, pp 118-119, 120-121
South Mountain, showing altered and unaltered spherulites........Bull 136, pp 110-111, 112-113
showing altered spherulites..........................Bull 150, pp 346-347
showing axiolites...............................Bull 136, pp 108-109
showing flow structure and chain spherulites......Bull 136, pp 102-103
showing perlitic parting..............Bull 136, pp 106-107, 108-109
showing perlitic spherulitic and lithophysal structures........Bull 150, pp 348-349
showing rhyolitic structure..................Bull 136, pp 114-115, 116-117
Aporhyolite breccia, thin section of, from Michigan, Crystal Falls........Mon xxxvi, pp 276-277
Aporhyolite-porphryres, analyses of, from California, Downieville quadrangle..Ann 17, i, p 647
Aporhyolite-porphyry of Michigan, Crystal Falls district........Ann 19, iii, p 51; Mon xxxvi, p 87
Aporrhaidae from Chico-Tejon series of California........Bull 51, pp 19-20
from Colorado formation..................................Bull 106, pp 143-146
from Cretaceous of Pacific coast..................................Bull 133, p 72
Appalachian coal field, extent of...........................Ann 14, ii, pp 573-574
Appalachian crystalline belt, igneous granites in, distribution and relative ages of..................Ann 15, pp 666-670
Appalachian group, geologic name proposed...Bull 80, p 60
Appalachian Mountain region, structure of...Bull 111, pp 19-27
Appalachian Mountains and Valley, brief description of........Ann 19, ii, pp 12, 15
Appalachian oil field..................................Ann 21, vi cont, pp 29, 62-88
Appalachian province, geologic history of...GF 59, p 2
structure of..GF 61, p 5
subdivisions, altitude, drainage, rocks, etc., of..................GF 4, pp 1, 3; GF 8, pp 1, 2-3; GF 10, pp 1, 3-4; GF 12, pp 1, 3; GF 14, pp 1, 3; GF 16, pp 1, 5; GF 19, pp 1, 2-3; GF 20, pp 1, 3; GF 21, pp 1, 2-3; GF 22, pp 1; GF 25, pp 1, 4; GF 26, pp 1, 3-4; GF 27, pp 1, 3-4; GF 28, pp 1, 4; GF 32, pp 1, 4; GF 33, pp 1, 3; GF 34, pp 1, 3; GF 35, pp 1, 3; GF 40, pp 1, 3; GF 44, pp 1, 4; GF 59, pp 1; GF 61, p 1; GF 69, p 1
subdivisions of southern..................................Ann 19, ii, pp 11-13
Appalachian ridges, examples of...TF 2, p 8
Appalachian structure, mechanics of..Ann 13, ii, pp 211-281
Appalachian type of structure in Catoctin belt..................Ann 14, ii, pp 358-396
Appalachians, Cambrian and pre-Cambrian rocks of............Bull 86, p 487
gold fields of southern, geography, history, geology, etc., of..................Ann 16, iii, pp 251-331
Appomattox or Lafayette formation. (See Lafayette formation.)
Appomattox River, profile of..WS 44, p 23
Appropriations for the United States Geological Survey.................Ann 1, p 15; Ann 3, p xvii; Ann 5, p xxxvi; Ann 6, p xxxviii; Ann 7, p 42; Ann 8, i, pp. 10-11, 92, 257; Ann 9, p 152; Ann 10, i, pp 80, 252; Ann 11, i, pp 24-25, 140; Ann 12, i, pp 18, 210; Ann 13, i, pp 56, 185; Ann 14, i, pp 11-12, 61, 278; Ann 15, i, pp 9-10, 108, 212; Ann 16, i, pp 9-10, 89; Ann 17, i, pp 14-15, 121; Ann 18, i, pp 16-17, 130; Ann 19, i, pp 25-26, 142-143; Ann 20, i, pp 25-28, 159-160; Ann 21, i, pp 59-60, 186-187
Aqueous action, ore concentration by, in Colorado, Cripple Creek district... Ann 16, ii, pp 160-162
Aqueous vapor, thermal effect of action of, on feldspathic rocks......... Ann 2, pp 325-330; Mon iii, pp 290-308
Aquij Mountains, literature of geology of....................... Bull 86, pp 296, 506
Aquia Creek series of deposits and flora.............. Ann 15, pp 326-330, 367-368
Aquidneck shales of Narragansett Basin.............. Mon xxxi, pp 248-263
Aquifoliaceae of Amboy clays............................. Mon xxvi, p 98
Aquitanian formation, correlation of.................. Ann 18, ii, p 341
Aracese from Dakota group..................... Mon xvin, pp 38-39
Archchida from Rhode Island coal field.............. Bull 101, p 9
Archnids, index to known fossil, of the world......... Bull 71
systematic review of our present knowledge of............ Bull 31, pp 19-31
Aquago beds of Oregon................................. Ann 17, i, pp 458-462; Ann 18, ii, p 343; Ann 19, iii, pp 319-320
Aragonite, occurrence of......................... MR 1883-84, p 777
Aragonite and calcite, formation of, in caves........ Mon vii, p 95
Aragonite crystals, measurement of growth of........ Mon vii, pp 56-58
Alasce of Alaska....................................... Ann 17, i, p 888
of Amboy clays.. Mon xxvi, pp 113-119
of Dakota group.................................... Mon xvii, pp 127-136
of Laramie group................................. Bull 37, pp 56-63
of North America (extinct)........................... Mon xxxv, pp 121-123
of Yellowstone Park............................... Mon xxxii, ii, pp 744-749
Arapaho beds, correlation of.......................... Bull 82, p 231;
of Denver Basin..................................... Bull 83, pp 136-137, 145-146; Bull 84, p 320
Arbuckle Ranges of Ouachita system...................... Ann 21, vii, p 38
Arcadia marl of Florida............................... Ann 21, vii, p 122
Archeopteryx, comparison of Ichthyornis and Hesperornis with...... Ann 3, pp 83-85
Archean; Laurentian system, history of the term........ Bull 86, pp 462, 470-474
restriction of, to gneissic basement terrane........ Ann 7, pp 450-452
Archean rocks; Arvonian of Great Lakes region........ Bull 86, pp 457, 462-463, 465, 474
Baseement complex of Michigan, Marquette district........ Ann 15, pp 489-516, 631-632; Mon xvin, pp 149-220, 526-528, 555
Burnetian series of Texas.......................... Bull 86, pp 269, 474, 504
Cambrian, early, and pre-Cambrian formations, classification of Ann 7, pp 371-454
Carolina gneiss of Washington, D. C., quadrangle........ GF 70, p 2
Central granite of Michigan—Wisconsin, Penokee district... Mon xix, pp 111-116
character, origin, delimitations, and stratigraphy of.. Ann 16, i, pp 744-759
Coldbrook group of New Brunswick......................... Bull 86, pp 230-238
comparison of, with Cretaceous metamorphics........ Mon xiv, pp 138, 458
Coutchiching series of Canada.......................... Bull 86, pp 65-67, 68 passim
Eastern granite of Michigan—Wisconsin, Penokee district... Mon xix, p 122
Eastern green schist of Michigan—Wisconsin, Penokee district... Mon xix, pp 116-122
Fernandian system of Texas.......................... Bull 86, pp 267-268, 269, 474, 504
gneiss of Sierra Nevada............................... Ann 17, i, pp 538-537, 700-705
gneisses of Lake Superior district, character of......... Ann 10, i, pp 358-360; Mon xix, pp 107-111, 116-122
Archean rocks; gneisses and schists of Montana, Little Belt Mountains Ann 20, i, pp 371–373, 382
granite of Sierra Nevada, pre-sedimentary Mon xiii, pp 164–175
granite, basal, of Alaska, Yukon district Ann 18, ii, pp 134–140, 224–225
Hastings series of Canada .. Bull 86, pp 27, 28, 29, 30, 32, 451, 497, 498
in United States and Canada, areas of Ann 16, i, pp 767–843
investigation of .. Ann 7, pp 17–18, 75
Keeewatin series of Lake Superior region Bull 86, passim
Kitchi schists of Michigan, Marquette district Ann 15, pp 496–500;
Mon xxviii, pp 160–169
Laurentian, the original ... Bull 86, pp 23–50, 497–498
Laurentian and Huronian, relations of Keweenawan rocks to Ann 3, pp 156–173
relations of Penokee iron-bearing series to Ann 10, i, pp 458–464; Mon xiv, pp 81, 82
Mareniscan series of Canada .. Bull 86, pp 191, 192, 195, 490
Monona schists of Michigan, Marquette district Ann 15, pp 490–496; Mon xxviii, pp 152–160
Northern complex of Michigan, Menominee district GF 62, p 2
of area of glacial Lake Agassiz Mon xxv, pp 65–68
of Chesapeake Bay, vicinity of Ann 7, p 616
of Colorado, Anthracite and Crested Butte quadrangles GF 9, p 6
 Denver Basin .. Mon xxvii, pp 10–13, 84, 105
 Leadville district ... Ann 2, pp 215–216
 Mosquito Range ... Mon xii, pp 45–53, 93–94, 276–277
 northwestern ... Ann 9, pp 686–687
 Pueblo quadrangle .. GF 36, p 2
 Tenmile district ... GF 48, p 1
 Walsenburg quadrangle GF 68, p 1
 of District of Columbia .. GF 70, pp 2–3
 of Grand Canyon, in the lowest deeps Mon ii, p 207
 of Idaho .. Ann 16, ii, pp 224–225
 of Lake Superior region Ann 10, i, pp 355–364; Ann 16, i, pp 781–783; Ann 21, iii, p 354; Mon xiv, p 41; Bull 62; GF 62
 of Maine, Mount Desert Ann 8, ii, pp 1035–1059
 of Maryland, Washington quadrangle GF 70, pp 2–3
 of Massachusetts, Cape Ann Ann 9, pp 576–610
 of Michigan, Crystal Falls district Ann 19, iii, pp 10, 28–33, 100–105, 124, 146–147; Mon xxxvi, pp xviii, 38–49, 385–397, 428–430
 · Menominee district .. GF 62, pp 1–2
 of Missouri region, upper Ann 6, pp 49–50
 of Montana, Fort Benton, quadrangle GF 55, pp 1–2
 Livingston quadrangle GF 1, p 1
 Three Forks quadrangle GF 24, p 2
 of Northwestern States Ann 5, pp 175–242
 of Plateau region ... Ann 6, pp 156–161
 of States. (See also, formation names under this heading.)
 of Texas .. Ann 21, vii, pp 87–89; Bull 45, pp 55–57
 of Utah, Uinta Basin Ann 17, i, p 924
 Uinta Mountains ... Ann 9, pp 686–687
 of Virginia, Washington quadrangle GF 70, pp 2–3
 of Wisconsin, northern, lithologic character and origin of Ann 10, i, pp 353–364
 of Wyoming .. Bull 119, p 17
 Absaroka district .. GF 52, p 1
Archean rocks of Yellowstone Park Mon xxxii, ii, p 206; GF 30, p 1
Palmer gneiss of Michigan, Marquette district Ann 15, pp 514-515;
Mon xxxiii, pp 211-218
Portland group of New Brunswick Bull 86, pp 230-231, 238
primeval, possible character of Mon xiii, pp 171-174
Prozoic of Colorado ... Bull 86, p 323
Quinnecac schists of Michigan, Menominee district GF 62, pp 1-2
Shuswap series of Canada ... Bull 86, p 340
Soudan formation of Lake Superior region Ann 21, iii, pp 403-408
Southern complex of Michigan and Wisconsin, Penokee district........ Ann 10, i, pp 353-356; Mon xix, pp 104-126, 441-454
Stamford gneiss of Massachusetts Bull 86, p 373
Vermilion series of Great Lakes region Bull 86, pp 129, 130, 181-182, 185, 184, passim
Western granite of Michigan and Wisconsin, Penokee district Mon xix, pp 106-107
Western green schist of Michigan and Wisconsin, Penokee district Mon xix, pp 107-111
Archean and Algonkian, a correlation essay, by C. R. Van Hise Bull 86
Archean and Algonkian rocks, summary of work on Ann 14, i, pp 101-110
Archean and Algonkian rocks of North America as related to the Cam­ brian .. Ann 12, i, pp 540-563
Archean or Algonkian; Franklin white limestone of New Jersey, Sussex County, age of .. Ann 18, ii, pp 425-457
Archeology of the auriferous gravels of California Bull 84, pp 221-222
researches in .. Ann 14, i, pp 237-238
Archimedes group of the Carboniferous, geologic name proposed ... Bull 80, p 169
Arcide from Colorado formation Bull 106, pp 89-93
from Cretaceous of Pacific coast Bull 133, pp 50-51
from marl beds of New Jersey Mon ix, pp 82-101, 199, 208; Mon xxiv, pp 40-50
from Mesozoic of Alaska Peninsula Bull 51, p 65
Arctic America, Cretaceous fossils from Bull 82, p 203
geologic maps of, list of ... Bull 7, pp 33-35
(See, also, Alaska.)
Arctic regions, fossil plants from, literature of Ann 8, ii, pp 826-835
Arctolite, chemical constitution of Bull 125, pp 27, 102
Ardennite, chemical constitution of Bull 125, pp 66, 67, 104
Arvvedsonite, analysis of, from North Carolina Bull 74, p 45
chemical constitution of ... Bull 125, p 92
Argentina, copper production of MR 1883-84, p 356; MR 1885, p 229; MR 1886, p 128; MR 1887, p 88; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 101; MR 1892, pp 114, 117; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii, pp 118, 119; Ann 18, vi, pp 219, 221; Ann 19, vi, pp 176, 178; Ann 20, vi, pp 202, 204; Ann 21, vi, pp 204, 206
fossil plants of, literature of Ann 8, ii, pp 821, 822
gold and silver production of, compared with that of other countries .. MR 1883-84, pp 319, 320
iron-ore deposits of .. Ann 16, iii, p 70
petroleum localities and statistics of MR 1893, p 532;
Ann 19, vi cont, p 120; Ann 21, vi cont, p 184
quicksilver ore deposit in MR 1892, p 161
Argentina, analysis of, from Massachusetts, Southampton Bull 126, p 43

Bull. 177—01—10
Argillite, analysis of, from Nevada, Federal Loan mine (siliceous) Ann 17, ii, p 150
thin section of, from Massachusetts, Hatfield Mon xxix, pp 208–209
Argillites, Braintree, fauna of. Bull 10, pp 43–49
Arid region of United States, amount of, redeemable by irrigation Ann 11, ii, pp 203–205
of United States, hydrography of. Ann 10, ii, pp 36, 78–90;
Ann 11, ii, pp 1–110; Ann 12, ii, pp 213–361
location of, and cause of its aridity Ann 12, ii, pp 219–220
map showing, and areas irrigated therein. Ann 11, ii, pp ii–iii
relation of Great Plains to. Ann 21, iv, p 609
(See, also, Hydrography; Irrigation.)
Arikaree formation of Nebraska Ann 19, iv, pp 735, 743–747
Arionidse, nonmarine fossil, of North America Ann 3, p 452
Aristolochiaree, extinct, of North America Mon xxxv, p 90
Aristolochiacee from Dakota group Mon xvn, p 109
Arizona; Agua Fria reservoir dam Ann 18, iv, pp 695–698
altitudes in. Bull 5, pp 30–34; Bull 76; Bull 60, pp 33–37
atlas sheets covering areas in. (See p 68 of this bulletin.)
Arizona irrigation canal. Bull 13, pp 32, 125; Bull 171, p 132
building stone from, at World’s Columbian Exposition. MR 1893, p 560
statistics of. MR 1892, pp 710, 711, MR 1893, pp 548, 553, 556; Ann 16, iv, pp 437, 485, 494, 495; Ann 17, iii cont, pp 760, 775 et seq; Ann 18, v cont, pp 950, 987, 1012 et seq, 1044, 1045, 1046, 1048; Ann 19, vi cont, pp 206, 264 et seq, 280, 282, 283, 286; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, p 335 et seq
Buttes reservoir site on Gila River Ann 18, iv, pp 719–720, 740
Carriso Mountains, structure and rocks of Ann 14, ii, pp 209–211
clay products of, statistics of Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 819 et seq; Ann 18, v cont, p 1077 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq; Ann 21, vi cont, p 362
coal areas and statistics of. MR 1882, p 67; MR 1883–84, p 18; MR 1885, p 14
Colorado River, flow of, measurements of. Ann 18, iv, pp 298–299;
Bull 131, pp 51–52; Bull 140, pp 207–210; WS 11, p 73; WS 16, p 151; WS 28, p 141; WS 38, pp 323–325
Coon Butte, a peculiar crater, examination of. Ann 13, i, p 98; Ann 14, i, p 187
copper, cupola smelting of, in. MR 1883–84, pp 397–410
Cretaceous rocks of. Bull 82, p 154
dumortierite from. Bull 60, pp 133–135
elevations in. (See "altitudes," under this State.)
evaporation at various points in Ann 11, ii, p 34;
Ann 12, ii, p 235; WS 2, pp 83–84
geographic positions in Ann 21, i, pp 340–347; Bull 123, pp 137–138
geologic maps of, listed. Bull 7, pp 140, 141, 142
(See Map, geologic, of Arizona.)
Arizona, geologic sections in. (See Section, geologic, in Arizona.)

geologic and paleontologic investigations in..........................Ann 1, pp 29-31;
Ann 2, pp 8-9; Ann 4, pp 45-48; Ann 6, p 75;
Ann 11, i, pp 114, 126; Ann 20, i, p 48

Gila River, evaporation in basin of......................................WS 33, pp 32-33
flow of, measurements of........Ann 11, ii, p 100; Ann 12, ii, pp 306, 360;
Ann 13, iii, pp 95, 99; WS 2, pp 40-41; WS 33, pp 22-32;
Ann 18, iv, pp 286-292; Ann 19, iv, pp 415-417;
Ann 20, iv, p 59; Ann 21, iv, pp 331-332;
Bull 140, pp 204-206, 207; WS 11, p 72; WS 16, pp 147-148;
WS 28, pp 140-142; WS 38, pp 313-319

hydrography of basin of..Ann 11, ii, pp 58-63, 100, 108;
Ann 12, ii, pp 292-316; Ann 21, iv, pp 334-358

irrigation problems relating to basin of......................Ann 11, ii, pp 227-229

rainfall in basin of...............Ann 12, ii, pp 300-301, 307; WS 33, pp 18-21

rainfall, temperature, water supply, wind, canals, etc., in basin of....WS 2,
pp 16-55

silt carried by..WS 33, pp 32-33

storage of water on..Ann 21, iv, pp 358-379; WS 33

lead deposits and production of, statistics of..................MR 1882, p 313;
MR 1883-84, pp 416, 494; MR 1885, pp 248, 258-259;
MR 1887, p 110; MR 1889-90, p 80; Ann 16, iii, p 362;
Ann 17, ii, p 134; Ann 18, v, p 240; Ann 19, vi, pp 201, 215;
Ann 20, vi, pp 226, 228; Ann 21, vi, p 229

limestone production of..MR 1893, p 556;
Ann 16, iv, pp 437, 494, 495; Ann 17, iii cont, pp 760, 787,
789, 790, 791; Ann 18, v cont, pp 950, 1044, 1045, 1046, 1048;
Ann 19, vi cont, pp 206, 280, 282, 283, 286; Ann 20, vii cont,
pp 271, 342, 343, 344, 345, 346; Ann 21, vi cont, pp 335, 357-360

Little Colorado River, reservoir sites onAnn 18, iv, p 722

lumber industry in...Ann 19, v, pp 21, 22

McDowell reservoir project..Ann 18, iv, pp 718-719

magnetic declination in..........................Ann 17, i, pp 809-910

maps of. (See Map, geologic; Map, topographic, of Arizona.)

marble production of..................MR 1893, p 548; Ann 18, v cont, p 987
Arizona, mineral spring resorts in .. Ann 14, ii, p 81
mineral springs of ... Bull 32,
 pp 196–197; MR 1883–84, p 979; MR 1893, pp 786, 794
minerals of, useful .. MR 1882, pp 760–764; MR 1887, pp 696–700
mining districts of ... MR 1882, pp 765–766
onyx marble localities in .. Ann 20, vi cont, p 288
Pecos Valley irrigation canals ... Ann 13, iii, pp 187–191
petrified forests of ... Ann 20, ii, pp 324–332
petroleum in, report of finding ... Ann 21, vi cont, p 166
Phoenix, irrigation near .. Ann 21, iv cont, p 450
rock formations in ... Bull 80, pp 215, 219, 221, 222, 224
Salt River, flow of, measurements of Ann 11, ii, p 100;
 Ann 12, ii, pp 306, 369; Ann 18, iii, pp 95, 99; WS 2, pp 35–37, 39; Ann 18, iv, p 298; Ann 19, iv, pp 418–420,
 423; Ann 20, iv, pp 59, 405–406; Ann 21, iv, pp 386–387;
San Pedro River, flow of, measurements of Ann 11, ii, p 99
sandstone production of .. MR 1892, pp 710, 711; MR 1893, pp 553; Ann 16, iv,
 p 485; Ann 17, iii cont, pp 760, 775 et seq; Ann 18, v cont, pp 950, 1012 et seq; Ann 19, vi cont, pp 206, 264 et seq;
 Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353–356
sections, geologic, in. (See Sections, geologic, in Arizona.)
seepage on Gila River .. Ann 21, iv, pp 343–346
seepage measurements near Phoenix Ann 21, iv, pp 379–383
sewage-disposal plant at Phoenix ... WS 22, p 82
timber, standing, in San Francisco forest Ann 19, v, pp 19, 47–48
Tonto Basin reservoir project ... Ann 18, iv, pp 715–717, 739
topographic features of ... WS 2, pp 15–16
topographic maps of. (See Map, topographic, of Arizona.)
topographic work in ... Ann 1, pp 28–30; Ann 2, pp 6–8; Ann 6, pp 13–14; Ann 7, p 55; Ann 8, i, pp 104–105; Ann 19, i, pp 89, 90, 108; Ann 20, i, pp 101, 117; Ann 21, i, pp 121, 134–135
triangulation in ... Bull 122, pp 360, 368–370, 373, 375–381, 397–401
tungsten in ... Ann 21, vi, p 300
turquoise in ... Ann 20, vi cont, p 561; MR 1882, pp 493, 494
Verde River, flow of, measurements of Ann 11, ii, pp 100, 108;
 WS 2, p 38; Ann 18, iv, pp 297, 298; Ann 19, iv, pp 420–423;
 Ann 20, iv, pp 59, 407; Bull 131, p 51; Bull 140, p 206;
 WS 15, p 150; WS 28, pp 141, 143, 145; WS 38, pp 323–324
reservoirs on, proposed .. Ann 18, iv, pp 717–718
water in, legal control of .. WS 2, pp 55–62
water supply of, for public lands .. Ann 16, ii, pp 504–506
Arizona, wells in ... WS 2, pp 86-90
wind movement in... WS 2, pp 31-32
woodland area of ...Ann 19, v, p 12
Arkadelphia beds of Texas......................................Ann 21, vii, p 341
Arkadelphia shales of Arkansas.......................... Bull 83, p 75; Bull 84, p 320
Arkansas, altitudes in........ Ann 18, iv, pp 337-338; Ann 20, i, pp 405-406; Ann 21, i, pp 475-479; Bull 5, pp 35-36; Bull 76; Bull 160, pp 38-46
atlas sheets of. (See p 68 of this bulletin.)
bauxite in, as source of aluminum...... .Ann 16, ni, p 550; MR 1892, pp 237-238
districts, relations, origin, development, etc........ Ann 21, iii, pp 435-472
boundary lines of, and admission of the State............ Bull 13, pp 30, 106-108; Bull 171, pp 112-114
brick industry of.............................MR.1887, p 535; MR 1888, p 558
building stone from, statistics ofMR 1892, pp 706, 710, 711;
MR 1893, pp 544, 553, 556; Ann 16, iv, pp 437, 441, 457, 458,
484, 485, 486, 494, 496; Ann 17, 111 cont, pp 760, 763, 771
et seq; Ann 18, v cont, pp 950, 954, 1012 et seq; Ann 19, vi cont,
pp 206, 211, 251, 264, et seq; Ann 20, vi cont, pp 271,
275, 276, 295, 336 et seq; Ann 21 vi cont, p 335 et seq
Camden coal field Ann 21, n, pp 313-329
cement production of ...Ann 17, 111 cont, p 885; Ann 19,
vi cont, p 487; Ann 20, vi cont, p 593; Ann 21, vi cont, p 363
clay and brick industry of.........MR 1893, p 612; Ann 19, vi cont, pp 470-471
clay products of, statistics of................Ann 16, iv, pp 518, 519, 520, 521;
Ann 17, 111 cont, p 819 et seq; Ann 18, v cont, p 1077 et seq;
Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq
coal area and statistics of................Ann 2, p xxviii; Bull 80, p 25; MR 1882, pp 27-38; MR 1883-84,
pp 12, 18-19; MR 1885, pp 11, 15; MR 1886, pp 225, 230, 241;
MR 1887, pp 169, 207-208; MR 1888, pp 169, 171, 216-224;
MR 1899-90, pp 147, 174-178; MR 1891, pp 180, 210-212;
MR 1892, pp 265, 267, 268, 300-306; MR 1893, pp 189, 190,
194, 195, 197, 199, 200, 245-248; Ann 16, iv, pp 7 et seq, 70-73;
Ann 17, 111, pp 287 et seq, 369-371; Ann 18, v, pp 354 et seq,
460-471; Ann 19, vi, pp 278 et seq, 385-387; Ann 20, vi,
pp 300 et seq, 397-400; Ann 21, vi, pp 325 et seq, 427-430
coal fields of ...Ann 16, iv, pp 70-71; Ann 21, n, pp 313-229; MR 1892, pp 303-306
floras of, comparison of floras of McAlester district with Ann 19,
iii, pp 469-471
coke in, manufacture of of ...Ann 20, vi cont, p 227
elevations in. (See “altitudes,” under this State.)
floods on Mississippi River, discussion of Ann 20, iv, pp 347-352
gas, illuminating and fuel, and by-products in, statistics of Ann 20,
vi cont, pp 227, 240, 243, 245, 247, 249
geographic positions in Ann 18, i, pp 173-174;
Ann 21, i, pp 202-205; Bull 123, pp 86-89
geologic maps of. (See Map, geologic, of Arkansas.)
geologic sections in. (See Section, geologic, in Arkansas.)
geologic and paleontologic investigations in............... Ann 10, i, p 157;
Ann 11, i, p 75; Ann 12, i, pp 90, 107, 121; Ann 13,
i, pp 95, 123, 148; Ann 18, i, p 39; Ann 21, i, p 77
granite production of..........................MR 1888, pp 537, 542; MR 1889-90, pp
374, 378; MR 1891, pp 457, 458; MR 1892, p 706; MR 1893,
p 544; Ann 16, iv, pp 437, 441, 457, 458; Ann 17, 111 cont,
pp 760, 763; Ann 18, vi cont, p 954; Ann 19, vi cont, p 211;
Ann 20, vi cont, pp 275, 276; Ann 21, vi cont, pp 335-340
Arkansas, limestone production of..........................MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495-496; Ann 17, iii cont, pp 760, 787, 789, 790, 791; Ann 18, v cont, pp 950, 1044, 1045, 1046, 1048; Ann 19, vi cont, pp 206, 280, 282, 283, 286; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 346; Ann 21, vi cont, pp 335, 357-360

magnetic declination in......................................Ann 17, i, pp 310-313

manganese ores of Batesville region, character of....................MR 1892, pp 179-180

maps of. (See Map, geologic; Map, topographic, of Arkansas; also p 68 of this bulletin.)

marble production of..Ann 21, vi cont, pp 335, 341, 342, 343

marls..Bull 84, p 320

Marshall quadrangle, physiography of..............................TF 2, p 12

meridian marks in..Ann 20, i, pp 264-265

mineral spring resorts in....................................Ann 14, ii, p 81

minerals of, useful...MR 1882, pp 670-672; MR 1887, pp 700-703

natural gas localities and statistics of..........................MR 1892, p 676; MR 1893, p 536; Ann 16, iv, pp 415, 418, 419; Ann 17, iii cont, pp 734, 735, 738, 739; Ann 18, v cont, pp 900, 901, 903, 904, 916; Ann 19, vi cont, pp 168, 169, 171, 172, 173; Ann 20, vi cont, p 207; Ann 21, vi cont, p 299

nickel deposits of...MR 1887, p 128

novaculite quarries in..MR 1885, pp 433-434; MR 1886, p 589

Ouachita Mountains, extent and character of........................TF 3, p 3

Ouachita River, profile of....................................WS 44, pp 62-63

Poteau Mountain quadrangle, physiography of........................TF 2, p 10

pyrites from, statistics of..................................Ann 17, iii cont, p 977

St. Francis River, profile of..................................WS 44, p 68

sandstone production of....................................MR 1892, p 710; MR 1893, p 553; Ann 16, iv, pp 437, 484, 485, 486; Ann 17, iii cont, pp 760, 775 et seq; Ann 18, v cont, pp 950, 1012, 1013, 1014; Ann 19, vi cont, pp 206, 264 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353 et seq

sections, geologic, in. (See Section, geologic, in Arkansas.)

slate production of..Ann 16, iv, pp 476, 477; Ann 17, iii cont, pp 771, 772, 773; Ann 19, vi cont, pp 251; Ann 20, vi cont, pp 295; Ann 21, vi cont, pp 345

syenites, tests of, results of................................MR 1889-90, p 379

timber in, estimates of.....................................Ann 19, v, p 17

topographic maps of. (See Map, topographic, of Arkansas.)
Arkansas, topographic work in Ann 4, pp 12, 13; Ann 9, p 50; Ann 10, i, pp 83, 95; And 11, i, p 40; Ann 12, i, p 30; Ann 13, i, p 74; Ann 18, i, pp 94, 95, 105-106; Ann 19, i, p 90; Ann 20, i, pp 100, 102, 115; Ann 21, i, pp 132-133

triangulation in ... Bull 122, pp 120-148

White River, profile of ... WS 44, p 67

woodland area in .. Ann 19, v, p 7

zinc works and statistics of MR 1882, p 347; MR 1883-84, p. 476; MR 1889-90, p 88

Arkansas Basin, hydrography of .. Ann 11, ii, pp 45-52, 97

irrigation engineering works in Ann 13, iii, pp 362-370

rainfall and run-off in .. Ann 20, iv, pp 325-330

Arkansas Basin in Colorado, mapping of, and surveying of reservoir sites in .. Ann 11, ii, pp 133-144; Ann 13, iii, pp 429-444

underground water of .. Ann 17, ii, pp 551-601

Arkansas Basin in Colorado and Kansas, irrigation problems relating to .. Ann 11, ii, pp 210-214

Arkansas River, drainage area of .. Bull 140, p 154

profile of .. WS 44, pp 63-65

Arkansas Valley region of Indian Territory, physiography of .. Ann 21, ii, p 267

Arkansite, occurrence of .. MR 1883-84, p 772

Arkose beds of Coast Ranges Mon xxxiv, p 61

of Narragansett Basin .. Mon xxxiii, pp 50-59, 137-139, 233-234, 284-286, 375-380

of Richmond Basin .. Ann 19, ii, pp 426-428

Arkose conglomerate of Connecticut, South Britain Ann 21, ii, pp 40-43, 60-64

thin section of, from Connecticut Ann 21, ii, p 62

Arkoses, granitic, of Alaska, southwestern Ann 20, vii, pp 222-223, 227, 229

Arlington formation of California GF 15, p 1

Armor plate and armor-piercing projectiles, use of chromium in making Ann 16, iii, pp 610-614

Arnold (Miss A. L.), work in charge of, in 1896-97 Ann 18, i, pp 127, 128

Aroostook limestone of Maine, Aroostook volcanic area .. Bull 165, pp 141-143

faujas of .. Bull 165, pp 44-45

Aroostook volcanic area, Maine, geology of, including an account of the clastic rocks of Aroostook County Bull 165, pp 93-188

Arroyo Seco, California, underground water obtained from Pasadena Mesa and bed of .. Ann 20, iv, pp 543-549

Arseniate, hydrous cupri-calcium, analysis of, from Utah, Tintic mining district Bull 20, p 86

Arsenic, statistics of .. MR 1882, p 441; MR 1883-84, pp 656-657; MR 1885, p 386

Arsenide (argentiferous) of nickel and cobalt, analysis of, from New Mexico, Grant County Bull 55, p 54

Artesian basin in South Dakota, extent of Ann 18, iv, pp 590-591

Artesian irrigation in Dakotas, progress of Ann 17, ii, pp 681-690

Artesian problem along Atlantic slope Ann 7, pp 640-646

Artesian water, analyses of, from Texas, various localities .. Ann 21, vii, pp 447-451

chemical impregnations of Ann 5, pp 165-167

depth of reservoir, formula for ascertaining Ann 21, vii, p 422
Artesian water of Colorado, eastern, distribution, quality, etc., of.............Ann 17, n, pp 580-595
of Colorado, Elmooro quadrangleGF 58, pp 4-5
Pueblo quadrangle...GF 36, p 7
Walsenburg quadrangle...GF 68, p 6
of Dakotas, portion of, preliminary report onAnn 17, n, pp 603-694
of South Dakota, the deeper, temperature of................Ann 18, iv, pp 606-611
of Texas, Black and Grand prairies, conditions, chemical qualities, etc ..Ann 21, vii, pp 387-650
principles of, generalAnn 18, ii, pp 212-215
temperature of ..Ann 5, p 165
(See, also, Hydrography; Irrigation.)

Artesian-water supply in southeastern WashingtonWS 4, pp 75-87

Artesian-well prospects in Atlantic Coastal Plain regionBull 138

Artesian wells, conditions of, requisite and qualifyingAnn 5, pp 125-173
construction and management of, remarks onAnn 17, n, pp 681-694
definition, etc., ofAnn 21, vii, pp 391-394
in Great Plains, portion ofAnn 16, n, pp 565-567
in Idaho, Boise quadrangle......................................GF 45, p 7
in Illinois, distribution, depth, strata, etc....................Ann 17, n, pp 785-818
in Kansas ..Bull 57, pp 13, 30, 48
in Massachusetts, on Dalton faultBull 159, pp 30-48
in South Dakota, volume of flow fromAnn 18, iv, pp 613-615
southeastern ..WS 34, pp 26-31
in Texas, Black and Grand prairiesAnn 21, vii, pp 394-447, 456, 458 et seq, pl lxviii
in United States, easternAnn 14, ii, pp 44-46
in Virginia, Fort MonroeBull 145, pp 44-45
in Washington ...Bull 108, pp 32-36, 55-60, 69, 100-101
Moxee Valley ..Ann 19, iv, p 468; Ann 20, iv, pp 508-509
(See, also, Hydrography; Irrigation.)

Artesian wells and waters for irrigation in western United States and in various countries ...Ann 5, pp 148-150; Ann 11, n, pp 257-278

Articulata from Texan PermianBull 77, p 30

Arvonian rocks of Great Lakes regionBull 86, pp 457, 462-463, 465, 474

Asbestite, analyses of, from Massachusetts, PelhamBull 126, p 27
Asbestos, foreign sources ofMR 1883-84, p 913; MR 1885, p 521
uses, mining, dressing, etc., ofAnn 18, v cont, pp 1320-1331
value of, relative, from different countriesMR 1882, pp 659

Asbestos industry in CanadaMR 1892, pp 809-814

Asclepiadaceae of Amboy claysMon xxvi, p 124

Ashbed-diabase, Keweenaw seriesAnn 3, pp 108-110
thin section of, from Wisconsin, Totogatig RiverAnn 3, pp 108-109; Mon v, pp 76-77

Ashland Forest Reserve, report on.................. Ann 21, v, pp 472-473
Ashland-limestone and shales of Maine, faunas of........ Bull 165, pp 49-54
Ashley and Cooper beds of South Carolina.............. Bull 83, pp 51,53-54; Bull 84, pp 320, 321
Ashley River marl, correlation of........................ Ann 18, ii, p 340
Ashton schists of Narragansett Basin.................. Bull 165, pp 107
Asia, fossil plants of, literature of.................. Ann 8, ii, pp 786-790
(See, also, China; India; Japan.)
Asia Minor, corundum deposits of.................... MR 1888, pp 429-432
fossil plants of, literature of........................ Ann 8, ii, pp 798-799
Aspen mining district, Colorado, geology of........... Mon xxxi, pp 151, 459
Asperite, analysis of, from California, Clear Lake.... Mon xiii, p 154; Bull 168, p 212
name proposed for andesites of trachytic habit........ Mon xiii, pp 151, 459
of California, Coast Ranges............................ Mon xiii, pp 222, 242
of Nevada, Steamboat Springs.......................... Mon xiii, pp 335-337
Asphalt, analysis of, from Barbados.................. Ann 18, v cont, p 939
analysis of, from Bechelbronn.......................... Ann 18, v cont, pp 937, 939
from California, Kern County.......................... MR 1893, p 634
Santa Barbara County................................. Ann 18, v cont, pp 926, 927; Ann 19, vi cont, p 191; MR 1893, p 632
Ventura County.. Ann 19, vi cont, p 191
from France, Seyssel (crude).......................... MR 1893, p 643
from Germany, Vorwohle (crude)......................... MR 1893, p 643
from Oregon, Coos Bay coal field....................... Ann 19, iii, pp 369, 372
from Sicily, Ragusa (crude)............................ MR 1893, p 643
from Switzerland, Neuchatel (crude).................... MR 1893, p 643
from Syria.. Ann 18, v cont, p 939
from Texas, near Cline................................. Ann 18, v cont, pp 932, 939
from Trinidad .. Ann 18, v cont, p 939
from Venezuela, Maracaibo............................ Ann 18, v cont, p 939
from West Virginia, Ritchie County..................... Ann 19, iii, p 369
assays of, from California, various localities........ MR 1883-84, pp 942, 944-947
deposits of, in California.................................. MR 1883-84, pp 938-948
in Texas, Uvalde quadrangle............................ GF 64, p 5
western.. Ann 18, v cont, pp 930-935
foreign sources of...................................... MR 1882, p 605; MR 1883-84, pp 937-938
manufacture of, from petroleum......................... Ann 18, v cont, pp 922-923
production of, by distillation of a mixture of fish and wood........ Ann 19, vi cont, pp 202-204
statistics of... MR 1882, p 605; MR 1883-84, pp 937-948; MR 1885, pp 4, 0, 8;
MR 1886, pp 5, 8, 10; MR 1887, pp 7, 8-9; MR 1888,
pp 513-514; MR 1889-90, pp 477-481; MR 1891, pp
452-455; MR 1892, pp 699-703; MR 1893, pp 627-629;
Ann 16, iv, pp 430-435; Ann 17, iii cont, pp 751-758;
Ann 18, v cont, pp 919-948; Ann 19, vi cont, pp 187-204;
Ann 20, vi cont, pp 251-268; Ann 21, vi cont, pp 319-332
Asphalt oil, boiling, analyses of...................... Ann 18, v cont, p 938
Asphalt pavements, history, specifications, methods of laying, etc........ MR 1889, pp 637-666
Asphaltites, resemblances and differences between................ Ann 17, i, p 919
Assaying of Eureka ores, Nevada....................... Mon vii, pp 120-138, 144-145, 190
Assaying of silver ore with micrometer measuring apparatus.............. Ann 6, pp 331-352
Assays of Comstock rocks, Nevada ... Mon m, pp 154-155
of country rock of Eureka, Nevada .. Mon vii, pp 82-87, 120-138
of silver, experimental ... Ann 6, pp 339-341, 349-352
of tin ore ... MR 1888, pp 140-147
Assays and assaying at Leadville, Colorado Mon xi, pp 608, 621-625, 632-636, 695, etc
Astartidse from clays and marls of New Jersey Mon ix, pp 23-24, 124-129, 209-214, 231-236; Mon xxiv, pp 52-59
from Cretaceous of Pacific coast .. Bull 133, pp 56-59
Asteroidea, Mesozoic, of United States .. Bull 97, pp 29-32
Asian formation of Italy, correlation of Ann 18, i, p 337
Astoria group of Oregon and Alaska .. Ann 17, i, pp 842-850;
Ann 18, ii, p 340; Bull 84, pp 223-226, 252-259, 321
Astringent clay of New Jersey .. Bull 84, p 321
Astromnic determinations of position in topographic work Ann 18, i, pp 143-144; Ann 19, i, p 154;
Bull 70 of positions in topographic work, methods of Mon xxii, pp 16-40
Astrophyllite, analysis of, from Colorado, El Paso County Bull 78, p 119; Bull 90, p 74
chemical constitution of ... Bull 125, pp 78, 105
Atane or Atanekerdluk beds of Greenland, correlation of Ann 18, ii, p 346; Bull 82, p 203
Atanum Creek, Washington, seepage measurements on Ann 19, iv, pp 469-473
Atcheson (E. G.), carborundum in 1897 Ann 19, iv, pp 469-473
Atheni shale of North Carolina, Tennessee, and Virginia GF 16, p 4; GF 20, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
Atlanta, Georgia, rainfall at .. Ann 18, iv, p 70
Atlantic City quadrangle, New Jersey, physiography of TF 1, p 4
Atlantic Coastal Plain region, artesian-well prospects in Bull 138
Atlantic slope, Eocene deposits of ... Bull 141
Atlantic group of Atlantic coast ... Bull 84, p 321
Atlantic system of rocks of New Hampshire Bull 86, pp 351-355
Atlanticosuridse of North America .. Ann 16, i, pp 169-175
Atlantosaurus, remains of, from Denver Basin Mon xxvii, pp 485-489
remarks on ... Ann 16, i, p 166
Atlantosaurus beds in western United States Ann 16, i, pp 164-165; Mon xxvii, p 476
Atlas, Geologic, of United States, plan of Ann 15, pp 79-90
Atlas folios, geologic, published, list of See pp 64-66 of this bulletin
Atlas sheets, topographic, engraved, list of See pp 67-109 of this bulletin
(See, also, Map, topographic.) ..
Atoksa formation of Indian Territory .. Ann 21, ii, pp 273-274
Atolls, or annular reefs, description of Ann 13, ii, pp 133-134
in Philippine Islands ... Ann 21, iii, pp 561-562
Atrato River, project for interoceanic canal by way of Ann 20, iv, pp 587-588
Atremata, biologic development of ... Bull 87, pp 78-79
Aturia beds of Oregon, correlation of Ann 18, ii, p 341; Bull 84, pp 224, 225, 321
Aubrey group, age, character, thickness, etc Ann 2, pp 114, 116, 151, 163, 217; Ann 6, pp 132-133
Aucella, remarks on the genus, with especial reference to its occurrence in California .. Mon xiii, pp 201-204, 226-232
Aucellae-bearing strata of California, geologic age of Bull 15, p 26
Aucella beds of Alaska, remarks on .. Ann 17, i, pp 867-869
Auerbachite, analysis and chemical constitution of Bull 125, pp 75, 105
Auerlite, analyses of, from North Carolina, Henderson County Bull 74, p 71
Augen-gneiss, analysis of, from Michigan, Menominee River Bull 55, p 81
thin section of, from Michigan, Upper Quinnesec Falls Bull 62, pp 236-237
Augite, analysis of, from Colorado, Blue Mountains (intergrown with hornblende) Ann 17, ii, p 278
analysis of, from Colorado, Denver Basin Mon xxvii, p 301;
Bull 148, p 158; Bull 150, p 264; Bull 168, p 140
from Colorado, Pikes Peak district Bull 148, p 164; Bull 168, p 146
from Minnesota, Pigeon Point (from gabbro) Bull 55, p 82
from New Mexico, Mount Taylor region (from basalt) Bull 148, p 185; Bull 168, p 170
from Philippine Islands, Luzon Bull 1, p 29
from Texas, Uvalde County Bull 168, p 63
chemical constitution of Bull 125, p 86
in diorite from Wyoming, Electric Peak Ann 12, ii, pp 603-604
in gneisses of Minnesota, southwestern Bull 157, p 57
in rocks of Pacific slope Mon xiii, pp 74-75
thin section of, from Minnesota, Pigeon Point (from diabase) Bull 109, pp 62-63
from Nevada, Comstock lode (from augite-andesite and diabase) .. Mon iii, pp 150-151
Crown Point Ravine (from augite-andesite) Mon iii, pp 150-151
Eureka district (from pyroxene-andesite) Mon xx, pp 396-397
Augite-aleutite, analysis of, from Alaska, Aleutian Peninsula Bull 168, p 229
Augite-andesite, analysis of, from Asia Minor, near Smyrna Bull 89, p 66
analysis of, from Colorado, Table Mountain Bull 148, p 159; Bull 168, p 141
from Nevada, Washoe district Mon iii, opp p 152
from Yellowstone Park, Absaroka Range Bull 168, p 98
of Colorado, Pikes Peak quadrangle GF 7, p 3
of Maine, Aroostook volcanic area Bull 165, pp 169-172
of Nevada, Eureka district Ann 3, p 278
Washoe district Mon iii, pp 62-66, 126-130, 151, 201-203
its relation to diabase Bull 17, pp 12-21, 40
of Philippine Islands Ann 21, iii, p 515
of Washington, Mount Rainier Ann 18, ii, p 419
thin section of, from Nevada, Washoe district Mon iii, pp 150-151
Augite-andesite-porphyry, analyses of, from Yellowstone Park Bull 148, pp 119, 123; Bull 168, pp 89, 93
Augite-belugite, analysis of, from Alaska, Skwentna River Bull 168, p 229
Augite-biotite-granite-gneiss of Minnesota, southwestern Bull 157, pp 66-72
Augite-bronzite-andesite, analysis of, from Alaska, Cook Inlet and Unna Island Bull 148, p 232; Bull 168, p 226
Augite-camptonite of Colorado, Telluride quadrangle GF 57, p 7
of Vermont, slate belt Ann 19, iii, p 224
Augite-diorite, analysis of, from Colorado Ann 17, ii, p 324
analysis of, from Colorado, Ouray County Ann 20, iii, p 490;
Bull 148, p 150; Bull 168, p 161
from Colorado, Rosita Hills Bull 148, p 165; Bull 168, p 147
San Juan County Bull 148, p 180; Bull 168, p 161
San Miguel Mountains (porphyritic) Ann 14, ii, p 227;
Bull 148, p 150; Bull 168, p 164
Augite-granite, analysis of, from California, Placer County Bull 168, p 198
Augite-hornblende-gneiss of Blue Mountains, Colorado Ann 17, ii, pp 277-278
Augite-latite, analyses of, from California, Tuolumne County Bull 89, pp 58, 66; Bull 168, p 205
Augite-latite, thin section of, from California, Table Mountain........Bull 89, pp 34-35
Augite-leucite-phonolite from Alaska, southwestern........Ann 20, vii, pp 221-222
Augite-mica-diorite, analysis of, from Montana, Robinson..........Bull 139, p 90
Augite-mica-syenite, analysis of, from Colorado, Denver Basin.....Mon xxvii, p 310; Bull 148, p 158; Bull 168, p 140

Augite-mica-syenite, of Denver BasinMon xxvii, pp 308-311
Augite-microcline-granite, analysis of, from Georgia, Bartow County...Bull 168, p 55
Augite-microcline-granite, analysis of, from Germany, Alsace........Ann 20, iii, p 531

of Colorado, Telluride quadrangle.................................GF 57, p 7
of Montana, Little Belt Mountains.................................Ann 20, iii, pp 526-531

Augite-porphyrite, analysis of, from Montana, Cottonwood Creek........Bull 60, p 153; Bull 148, p 138; Bull 168, p 168

Augite-rocks in Colorado, Telluride quadrangle........................GF 57, p 7

Augite-schist in Northwestern States..................................Ann 5, p 211

Augite-syenite, analysis of, from California, Amador County........Ann 17, i, p 727

Augite-syenite-porphyry, analysis of, from Yellowstone ParkBull 168, p 95

of Colorado, Cripple Creek district.................................Ann 16, ii, pp 45-46
Augite-teschenite, analysis of, from California, Point Sal...........Bull 165, p 183

Augite-vogesite, analysis of, from Montana, Castle Mountain district.......Bull 139, p 112; Bull 148, p 151; Bull 168, p 130

Augitic greenstone series of Sierra Nevada............................Ann 17, i, pp 643-644

Auriculidse of Bear River formation..................................Bull 128, pp 41-45

of North America (nonmarine fossil)..................................Ann 3, pp 443-444

Auriferous gravels of California..Ann 14, ii, pp 465-467; Ann 17, i, pp 544-546; ii, pp 97, 109; Ann 18, ii, p 338; Bull 84, pp 219-222, 321; GF 3, p 3; GF 5, pp 1, 3; GF 11, pp 1, 4-5; GF 15, p 1; GF 17, p 1; GF 18, p 5; GF 29, p 4; GF 31, pp 5, 8; GF 37, pp 3-4; GF 39, p 5; GF 41, p 6; GF 43, p 4; GF 51, pp 5-6, 7; GF 63, pp 5-6; GF 66, pp 5-6

of California, human remains in......................................Bull 84, pp 221-222

(See, also, Gold; Precious metals.)
Auriferous slate series of California and Sierra Nevada........ Ann 8, i, pp 404-407; Ann 14, ii, pp 445-456; Ann 17, i, pp 569, 621-632, 659-663, 684-686; Bull 33, pp 16-18; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 11, pp 1, 3; GF 15, p 1

Austrian chalk of Texas.. Ann 8, ii, pp 239-240; Ann 21, vi, pp 329-336; Bull 82, pp 116, 118, 122, 123, 124, 126, 127, 130, 221, 222; Bull 164, pp 19-20; GF 64, p 2

Austrian dam, Texas, construction and destruction of........ WS 40

Australia, antimony production of.............................. MR 1892, p 261

diamonds from.. MR 1887, p 569; Ann 21, vi cont, pp 423-425

gold and silver production of, compared with that of other countries........ MR 1883-84, pp 310, 320
gold-bearing conglomerate in.................................... Ann 8, ii, pp 807-814

gold and silver production of, compared with that of other countries........ MR 1883-84, pp 310, 320

iron and iron ore from, statistics of............................ Ann 16, iii, p 24

leak production of.. MR 1883-84, p 434; MR 1885, p 264; MR 1893, p 99; Ann 16, iii, pp 372, 376-377; Ann 17, iii, p 156; Ann 18, v, pp 256, 257; Ann 19, vi, p 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246

manganese-ore production of.................................... MR 1893, pp 153-154, 155; Ann 18, iii, pp 453, 457; Ann 17, iii, pp 222-224, 225; Ann 18, v, pp 326-327, 328; Ann 19, vi, pp 121-122; Ann 20, vi, pp 156-157; Ann 21, vi, p 162

precious stones in.. MR 1893, p 695; Ann 16, iv, p 507; Ann 20, vi cont, pp 564-565

quicksilver deposits in.. Mon xiii, pp 49-69; MR 1892, p 162

tin deposits and production of................................ MR 1892, p 258; MR 1893, p 182; Ann 16, iii, pp 461, 465, 494-503

Austria-Hungary, antimony production of......................... MR 1883-84, p 646

clay deposits of.. Ann 19, vi cont, pp 435-445

clay products of, at Paris Exposition of 1900................ Ann 21, vi cont, pp 372-373

Austria-Hungary, fossil plants of, literature of Ann 8, n, pp 718-738

gold and silver production of, compared with that of other countries........MR 1883-84, pp 319, 320

graphite production ofAnn 19, vi cont, p 630

iron, iron ore, and steel production of, compared with other countries... .MR 1882, pp 109; MR 1883-84, p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31; MR 1889-90, pp 21, 22; MR 1891, pp 46, 73; Ann 16, vi, pp 22, 23, 24, 25, 27, 28, 139-114, 243-244, 248; Ann 18, vi, pp 116-120, 136, 137; Ann 19, vi, pp 82, 83, 87-88; Ann 20, vi, pp 94, 101; Ann 21, vi, pp 113, 114

lead production of... .MR 1883-84, pp 434, 439;

MR 1885, pp 264, 271; MR 1893, pp 99; Ann 16, vii, p 372;
Ann 17, vii, pp 156, 161; Ann 18, vi, pp 256, 257; Ann 19, vi, p 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246, 247

manganese-ore production of........MR 1893, pp 151, 155; Ann 16, vii, pp 446, 457;
Ann 17, vii, pp 209-210, 224; Ann 18, vi, p 328; Ann 19, vi, p 112; Ann 20, vi, pp 152, 156; Ann 21, vi, pp 157, 158, 162

mining law of.. .MR 1883-84, p 1001

ozocerite production of:..:.. Ann 18, vi cont, p 946; Ann 19, vi cont, p 200; Ann 20, vi cont, p 267; Ann 21, vi cont, p 331

petroleum localities and statistics of................ .MR 1893, pp 524-525, 532;
Ann 16, iv, p 404; Ann 17, iii cont, pp 713-715; Ann 18, vi cont, pp 857-865; Ann 19, vi cont, pp 136-142;
Ann 20, vi cont, pp 157-165; Ann 21, vi cont, pp 218-223

quicksilver mines ofAnn 8, n, pp 965, 966; Mon xix, pp 4, 5, 7, 14, 38-41

quicksilver production of.............................. .MR 1882, pp 392, 393;

MR 1883-84, p 496; MR 1885, p 293; MR 1887, p 125;
MR 1888, p 106; MR 1891, p 124; MR 1893, p 118

salt production of...MR 1883-84,

p 849; Ann 19, vi cont, p 611; Ann 21, vi cont, p 553

tin deposits and production of......................... .MR 1883-84, p 618;

Ann 16, iii, pp 460, 465, 514

uranium production of BohemiaMR 1882, p 438

zinc production of .. .MR 1883-84, pp 480, 490-491;

MR 1885, p 277; MR 1886, p 159; MR 1888, p 95; MR 1889-90, p 92; MR 1891, pp 113, 114; Ann 21, vi, p 266

Autoclastic rocks, origin and relations of........ Ann 16, vi, pp 679-682

Avalanches in Washington, Cascade region.............. Ann 20, ii, pp 202-204

Aviculidæ from Colorado formation................. .Bull 106, pp 72-86

from Cretaceous of Pacific coast Bull 133, pp 38-47

from Vancouver Island................................. .Bull 51, pp 37-38

from marls of New JerseyMon ix, pp 68-81; Mon xxiv, pp 30-37

Awaruite, analysis ofBull 113, p 59

Axinite, analyses of, from France and Great BritainBull 55, p 61

analyses of from various localitiesBull 125, pp 61, 62

chemical constitution ofBull 125, pp 61-62, 104

occurrence of.............................. .MR 1883-84, p 765

Axiolites in aporhyolite, thin section of, from Pennsylvania, South Moun­

Axtell, Mount. (See Mount Axtell.)

Ayres (H. B.), Flathead Forest Reserve, Montana Ann 20, v, pp 245-316

Lewis and Clarke Forest Reserve, Montana Ann 21, v, pp 27-80

timber conditions of Pine region of Minnesota Ann 21, v, pp 673-689
Austria-Hungary—Barbados. 159

Ayers (H. B.), Washington Forest Reserve. Ann 19, v, pp 283-313

Azimuth, determination of, method of, in topographic work. Mon xxiv, pp 36-40

Azoic rocks, history of term. Bull 86, pp 470, 473

Azurite, occurrence and statistics of. MR 1883-84, pp 597-598;

MR 1892, p 781; MR 1893, p 682; Ann 16, iv, p 605

Banconite, analysis of, from Massachusetts, Buckland. Bull 126, p 32

chemical constitution of. Bull 125, pp 87, 104

Baculitidae, Cretaceous, from Vancouver Island. Bull 51, p 47

Bad River series, Wisconsin. Mon xix, pp 37-40

Badito formation of Colorado. GF 68, p 1

Babbingtonite, analysis of, from Massachusetts, Buckland. Bull 126, p 32

chemical constitution of. Bull 125, pp 87, 104

Bad River series, Wisconsin. Mon xix, pp 37-40

Badito formation of Colorado. GF 68, p 1

Banconite, analysis of, from Austria-Hungary, Banat. Ann 21, ii, p 82

analysis of, from Colorado, near Silverton. Ann 21, ii, p 82

from Colorado, Telluride quadrangle, San Miguel Peak. Ann 21, ii, p 82

Banca, geologic sketch of northeast part of. Ann 16, iii, p 485

tin deposits and production of. Ann 16, iii, pp 484-487; Ann 17, iii, pp 241, 242

tin ore in Billiton and, occurrence, geologic relations, treatment, etc., of. Ann 17, iii, pp 227-242

Bandai-san Volcano, in Japan, eruption of. Ann 17, i, pp 538-539

Banding in ore deposits of Montana, Little Belt Mountains. Ann 20, iii, p 417

Bangor limestone in Alabama, Georgia, and Tennessee. GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2

Banet, Witwatersrand, origin, composition etc., of. Ann 18, v, pp 153-177

Banner Hill district, California, gold-quartz veins of. Ann 17, ii, pp 185-199

Banner Hill, Grass Valley, and Nevada City districts, California, geology of. GF 29

Baptanodon from Denver Basin, remains of. Mon xxvii, p 485

Baptanodon beds of Denver Basin. Mon xxvii, pp 475-476

Baranof Island, Alaska, coal on. Ann 17, i, p 774

Barbados, petroleum localities in. Ann 19, v, cont, p 120

Baltimore, artesian and other wells in. Bull 174, pp 136-148

Banakite, analysis of, from Yellowstone Park, various localities. Mon xxi, ii, p 347; Bull 148, p 127; Bull 168, p 101

of Yellowstone Park. Mon xxi, ii, pp 347-351

thin section of, from Yellowstone Park. Mon xxi, ii, pp 350-351

Banakite, analysis of, from Austria-Hungary, Banat. Ann 21, ii, p 82

analysis of, from Colorado, near Silverton. Ann 21, ii, p 82

from Colorado, Telluride quadrangle, San Miguel Peak. Ann 21, ii, p 82

Banca, geologic sketch of northeast part of. Ann 16, iii, p 485

tin deposits and production of. Ann 16, iii, pp 484-487; Ann 17, iii, pp 241, 242

tin ore in Billiton and, occurrence, geologic relations, treatment, etc., of. Ann 17, iii, pp 227-242

Bandai-san Volcano, in Japan, eruption of. Ann 17, i, pp 538-539

Banding in ore deposits of Montana, Little Belt Mountains. Ann 20, iii, p 417

Bangor limestone in Alabama, Georgia, and Tennessee. GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2

Banet, Witwatersrand, origin, composition etc., of. Ann 18, v, pp 153-177

Banner Hill district, California, gold-quartz veins of. Ann 17, ii, pp 185-199

Banner Hill, Grass Valley, and Nevada City districts, California, geology of. GF 29

Baptanodon from Denver Basin, remains of. Mon xxvii, p 485

Baptanodon beds of Denver Basin. Mon xxvii, pp 475-476

Baranof Island, Alaska, coal on. Ann 17, i, p 774

Barbados, petroleum localities in. Ann 19, v, cont, p 120
Barbour (E. H.), wells and windmills in Nebraska.......................WS 29
Barff-Bower process of protecting iron and steel from rust........MR 1882, pp 164-171
Barite, analysis of, from Massachusetts, Hatfield....................Bull 126, p 33
Barium, etc., separation of, in rock analyses..........................Bull 78, pp 87-90
Barker (F. C.), irrigation in Mesilla Valley, New Mexico..........WS 10
Barker district, Montana, geology of.................................Ann 20, iii, pp 344-360
Barker formation in Montana..GF 55, p 2; GF 56, p 3
Barker porphyry in Montana, Fort Benton quadrangle.................GF 55, p 3
Barker syenite in Montana, Little Belt Mountains...................Bull 125, p 93
Barnard (E. C.), forest conditions in Coos Bay quadrangle, Oregon...Ann 21, v, pp 576-577
Barnes (P.), present technical condition of the steel industry of the United States.............................Bull 25
Barnhardtite, analyses of, from North Carolina, Cabarrus County.....Bull 74, p 26
Barnstable series of New England coast................................Ann 18, ii, pp 539-541
Barometer, new method of measuring heights with........................Ann 2, pp xxxviii-xl, 403-566
Barometers, description of different kinds of........................Ann 2, pp 407-409
Barosaurus, remarks on..Ann 16, i, pp 174-175
Barrier-beach coast, example of..TF 1, p 4
Bars in streams, manner of formation of..............................Ann 18, iii, pp 360-362
Barsowite, chemical constitution of.....................................Bull 125, pp 96-97
Barton Creek limestone. (See Edwards limestone.)
Bartonian beds, England, correlation of................................Ann 18, ii, p 342
Barus (C.), administrative report for 1882-83........................Ann 4, pp 52-59
Barus (C.), effect of sudden cooling exhibited by glass and by steel.........................Bull 42, pp 98-131
Barylite, chemical constitution of......................................Bull 125, pp 84, 106
Barysilite, chemical constitution of....................................Bull 125, pp 81, 105
Baryta in eruptive rocks, determination of............................Mon xii, p 577

Basal clays of Texas, Wills PointBull 84, p 321
Basal conglomerates, formation of, and phenomena liable to be mistaken forAnn 16, i, pp 721-724
Basal, alteration of, hydrothermal, in IdahoAnn 20, iii, pp 174-176
analysis of, from Asia Minor, Mytilene IslandBull 60, p 158
from California, Butte CountyAnn 14, ii, p 491;
Ann 17, i, p 734; Bull 148, p 205; Bull 168, p 191
Cascade Range ..Bull 55, p 84
Clear LakeMon xiii, p 159; Bull 148, p 223; Bull 168, p 212
KnoxvilleMon xiii, p 159; Bull 148, p 223; Bull 168, p 212
Lassen Peak regionBull 9, p 16; Bull 55, pp 84,85;
Bull 66, p 30; Bull 148, p 200; Bull 168, p 186
Madera County ..Bull 68, p 218
Mount Shasta (ophitic)Bull 148, p 190; Bull 168, p 176
Plumas CountyAnn 14, ii, p 491; Ann 17, i, pp 615, 734;
Bull 90, p 73; Bull 148, p 203; Bull 168, p 189
Tuolumne CountyAnn 14, ii, p 491; Ann 17, i, pp 727, 734;
Bull 90, p 73; Bull 148, p 218; Bull 168, p 205
from Colorado, Denver BasinMon xxvii, pp 306, 308;
Bull 148, p 158; Bull 168, p 140
from Connecticut, Pine HillAnn 21, iii, pp 66, 75
from Germany, Darmstadt ..Mon xiii, p 160
from Idaho, Florida MountainAnn 20, iii, p 176; Bull 168, p 138
from Michigan, Crystal Falls (microphytic amygdaloidal)Bull 148, p 97; Bull 168, p 68
from Montana, Bear CreekBull 78, p 123;
Bull 148, p 139; Bull 168, p 113
Bozeman CreekBull 60, p 152; Bull 148, p 137; Bull 168, p 111
Castle Mountain districtBull 139, pp 130, 135, 136;
Bull 148, p 151; Bull 168, p 130
from Nevada, Eureka districtMon xx, p 264;
Bull 148, p 189; Bull 168, p 175
Washoe districtMon xx, p 282; Bull 17, p 33
from New Jersey, OrangeBull 148, p 80; Bull 150, p 285; Bull 168, p 39
from New Mexico, Mount Taylor regionBull 27, p 65;
Bull 42, p 140; Bull 148, p 185; Bull 168, p 170
Rio Grande CanyonBull 60, p 155;
Bull 66, p 30; Bull 148, p 184; Bull 168, p 169
from Newark-formation localities (some composites)Ann 21, iii, pp 77-79
from Oregon, near Crater LakeBull 148, p 231; Bull 168, pp 222, 223
Mount ThielsenBull 9, p 15; Bull 148, p 230; Bull 168, p 220
from Philippine IslandsAnn 21, iii, 511
from Washington, Kittitas CountyBull 168, p 225
near Dayton ..WS 4, p 61
from Yellowstone Park, Crandall BasinMon xxxvii, ii, pp 260, 340; Bull 148, p 122; Bull 168, p 92
Mount WashburnBull 148, p 136; Bull 168, p 110

Bull. 177—01——11
Basalt, analysis of, from Yellowstone Park, Prospect PeakMon xxxiii, ii, p 438
analysis of, from Yellowstone Park, variousBull 148, p 135; Bull 168, p 109
of Alaska, southern ..Ann 18, iii, pp 58–59
Yukon district (Tertiary)Ann 18, iii, pp 242–250; Ann 21, ii, p 481–482
of Arizona, near Mount Tumblg, olivine nodule from, description of, as
one of the educational seriesBull 150, pp 258–261
Santa Maria Basin (quartz-bearing)Bull 66, p 21
Uinkaret Plateau ..Mon iii, pp 104–112
of California, Bidwell Bar quadrangleGF 43, p 5
Big Trees quadrangleGF 51, p 6
Coast Ranges ..Mon xiii, pp 156–162, 245–247, 252, 280
Colfax quadrangle ..GF 66, pp 6–7
Downieville quadrangleGF 37, pp 6, 7
Lassen Peak quadrangleGF 15, p 2
northern, Cinder Cone (quartz-bearing)Bull 79, pp 21–30
Pyramid Peak quadrangleGF 31, pp 5, 7
Sonora quadrangleGF 41, p 6
Table Mountain ...Ann 17, i, pp 543–544
Truckee quadrangleGF 39, p 6
of Colorado, Anita Peak (quartz-bearing)Bull 66, pp 22–23
Crested Butte quadrangleGF 9, p 5
Cripple Creek districtAnn 16, ii, pp 49–50, 77, 87, 90
Denver Basin ..Mon xxvii, pp 279–308
Elmoro quadrangleGF 58, p 3
Rosita Hills ..Ann 17, ii, pp 312–313
Table Mountain, zeolites inBull 20, pp 13–39
Walsenburg quadrangleGF 68, p 4
of Connecticut, Newark areas, origin, etc., ofAnn 21, iii; pp 56–58, 72–76
of Grand Canyon district lava flows and conesAnn 2, pp 118, 121–124; Mon ii, pp 81–83, 94–97, 104–112
of Great Basin volcanoesAnn 2, pp 190–192
of Idaho, Boise quadrangleGF 45, pp 2, 4, 5
western-central ..Ann 20, iii, pp 99, 118–120
of Montana, Castle Mountain mining districtBull 139, pp 71–73, 129–131
Fort Benton quadrangleGF 55, p 3
Little Belt MountainsAnn 20, iii, pp 556–557; GF 56, p 5
Livingston quadrangleGF 1, p 3
Three Forks quadrangleGF 24, p 4
of Nevada, Eureka districtAnn 3, pp 279–280; Mon xx, pp 242, 257–259, 386–395
Washoe district ...Mon iii, pp 70–71, 134
of New Jersey, Watchung Mountain, description of, as one of the educa­
tional series ..Bull 180, pp 254–255
of New Mexico, northwestern, volcanic necks and flowsAnn 6, pp 167–182
Tewa Mountains (quartz-bearing)Bull 66, pp 16, 20
of Newark system ..Bull 85, pp 66, 77
of Oregon, Bohemia mining regionAnn 20, iii, p 13
northwestern, use of, as road metalAnn 17, i, pp 514–515
Roseburg quadrangleGF 49, p 3
of Philippine IslandsAnn 21, iii, pp 511–512
of Sierra Nevada ...Ann 14, ii, pp 490–491, 493; Ann 17, i, pp 567–568, 614–616
of Texas, San Carlos coal fieldBull 164, pp 90–95
of Utah, Tintic districtAnn 19, iii, p 648; GF 65, p 2
of Virginia–West Virginia, Monterey quadrangleGF 61, p 5
of Washington, Mount RainierAnn 18, ii, p 419
of Wyoming, Absaroka districtGF 52, pp 4, 5
Basalt of Yellowstone Park

quartz-bearing, distribution of.

thin section of, from Connecticut, Pomperaug Valley

from Michigan, Crystal Falls district

from Nevada, Eureka district

from Yellowstone Park

thin section of matrix from ellipsoidal, from Michigan, Crystal Falls district

Basalt, cellular, description of the rocks as one of the educational series

Basalt dike, analysis of, from Yellowstone Park, Absaroka Range

thin section of, from Michigan, Crystal Falls district

Basaltic breccia, dikes, sheets, and scoria in Montana, Fort Benton quadrangle

Basaltic eruptions in Utah, Bonneville Basin

with in California, Sulphur Bank

Basaltic rock, analysis of, from Texas, Uvalde County

Basalts, occurrence of primary quartz in certain

Basanite, analysis of, from Texas, Uvalde County

occurrence of, in New York, New Jersey, and Pennsylvania

Bascom (F.), ancient volcanic rocks of South Mountain, Pennsylvania

report of a petrographic examination of dike rocks of the New York–Vermont slate belt

on Pacific coast, ancient

Basement complex of Michigan, Crystal Falls district

of Michigan, Marquette district

of Michigan and Wisconsin, Penokee district

(See Archean.)

Basement rocks of Black and Grand prairies, Texas

Bashi series of Alabama, correlation of

Basement sands of Alabama

Basement sands of Texas

Basin Range structure

WARMAN.] BASALT—BASIN. 163

Mon xxxii, ii, pp 239, 241, 275–281, 302–304, 433–439; GF 30, pp 3, 6

Ann 21, iii, p 68

Mon xxxvi, pp 280–299

Mon xx, pp 404–405

Mon xxxiv, ii, pp 250–251, 436–437

Mon xxxvi, pp 298–299

Mon xi, p 160

(See, also, Metabasalt.)

Mon xxxii, ii, p 260; Bull 148, p 122; Bull 168, p 92

Ann 18, iii, pp 658, 669, 675, 712

Mon xxxii, ii, pp 294–295

Mon xxxiv, pp 294–295

Mon xxxi, pp 158–162

Bull 168, p 20

Bull 168, p 61

Bull 66, pp 20–31

Bull 150, pp 343–349

Ann 19, iii, pp 223–226

Ann 20, i, p 38; Ann 21, i, p 74

Mon xxxiii, pp 42, 47–49, 75–76

Mon xi, pp 369–394

Ann 2, pp 101–103;

Mon ii, pp 76–77, 119, 224, 225

Ann 19, iii, pp 146–147; Mon xxxvi, pp 463–471

Ann 4, p 443; Ann 17, i, p 583; Mon xi, pp 24–28; Mon xx, pp 10, 211
Basins, interior, description of, their origin, destruction, etc........Mon i, pp 2-4
Bassler (R. S.) and Nickles (J. M.), synopsis of American fossil Bryozoa, including bibliography and synonymyBull 173
Bastite-serpentine of Massachusetts, westernMon xxix, pp 98-101
Bastnäsite, analysis of, from Colorado, Cheyenne MountainBull 167, pp 66
from Colorado, Cheyenne Mountain, mineralogic notes on tysonite and ...Bull 167, pp 64-66
Battle Mountain, Cripple Creek district, Colorado, rocks of, and ore deposits inAnn 16, ii, 73-78, pp 200-207
Bauxite, analysis of, from Alabama, Calhoun CountyBull 113, p 109; MR 1891, p 153
analysis of, from Alabama, Cherokee CountyMR 1891, p 153
from Arkansas (granitic variety)Ann 21, iii, p 470
Pulaski County ..MR 1891, p 154
from France, various localitiesMR 1891, p 152
from Georgia, Chattooga CountyAnn 16, iii, p 587
various localitiesMR 1891, p 154
from Germany, Langsdorf, Vogelsberg, and Wochein ...MR 1891, pp 152,153
as a source of aluminum ..MR 1892, pp 236-240; Ann 16, iii, pp 542-544
deposits of, in Arkansas, relations, origin, development, etcAnn 21, iii, pp 435-472
in Georgia and AlabamaMR 1892, pp 237-240
in United States, distribution ofAnn 21, iii, pp 441-442
occurrence, geology, origin, economic value, etc., ofMR 1893, pp 159-167; Ann 16, iii, pp 547-597
statistics of ..MR 1893, pp 159-167;
Ann 16, iii, pp 547-597; Ann 17, iii, p 244; Ann 18, v, p 285;
Ann 19, vi, p 242; Ann 20, vi, p 269; Ann 21, vi, pp 270-271
Bayard formation of West Virginia and MarylandGF 28, p 4
eruptive and sedimentary rocks of Pigeon Point, MinnesotaBull 109
Sturgeon River tongue, MichiganAnn 19, iii, pp 145-151; Mon xxxvi, pp 458-487
Bayley (W. S.) and Van Hise (C. R.), geology of Menominee district, Michigan ..GF 62
Marquette iron-bearing district of MichiganAnn 15, pp 477-650; Mon xxviii
Bays sandstone of Virginia, West Virginia, North Carolina, Kentucky, and
TennesseeGF 12, p 2; GF 16, p 4; GF 25, p 4;
GF 26, p 2; GF 27, p 3; GF 33, p 2; GF 44, p 3; GF 59, p 4
Beach gravel, description of, as one of the educational series ..Bull 150, pp 56-58
Beach and cove gravels of MaineMon xxiv; pp 41-54
Beach sand, description of, as one of the educational series ...Bull 150, pp 59-61
Beaches and deltas of glacial Lake AgassizMon xxv, pp 276-522; Bull 39
(See, also, Shorelines.)
Beacon Hill, Cripple Creek district, Colorado, ore deposits in, character of... Ann 16, ii, pp 177-179
phonolite of ..Ann 16, ii, pp 105-106
Bear Creek, Colorado, flow of, measurements ofAnn 18, iv, pp 167-169; Ann 19, iv, p 317; Ann 20, iv, pp 54, 284-285;
Ann 21, iv, p 204; Bull 140, pp 106-107; WS 11, p 54; WS 15, p 90; WS 27, pp 81, 86; WS 37, pp 227-228
Bear River in Wyoming, Utah, and Idaho, irrigation problems of.Ann 11, ii, p 238
 profile of.WS 44, pp 89-90
taxonomic position, geographic extent, and fauna of.Bull 128
Bear River irrigation canal, Utah.Ann 13, iii, pp 194-198
Bearwallow conglomerate of Virginia and West Virginia.GF 44, p 3
Beaver Bay group of Minnesota.Mon x, pp 298-323
Beaver limestone of Tennessee and North Carolina.GF 16, p 3
Becker (G. F.), brief memorandum on geology of Philippine Islands.Ann 20, ii, pp 1-7
geology of Comstock lode and Washoe district.Ann 1, pp 71-72; Ann 2, pp 291-330; Mon iii and atlas
geology of quicksilver deposits of Pacific slope.Ann 8, ii, pp 961-985; Mon xiii and atlas
gold fields of southern Appalachians.Ann 16, iii, pp 251-331
memorandum on mineral resources of Philippine Islands.Ann 19, vii cont, pp 657-693
notes on stratigraphy of California.Bull 19
quicksilver ore deposits.MR 1892, pp 139-168
reconnaissance of gold fields of southern Alaska, with some notes on general geology.Ann 18, iii, pp 1-86
report on geology of Philippine Islands.Ann 21, iii, pp 487-625
Witwatersrand banket, with notes on other gold-bearing pudding stones.Ann 18, v, pp 153-184
work in charge of, 1879-1900.Ann 1, pp 37-47, 65-69; Ann 2, pp 40-41; Ann 3, pp 24-26; Ann 4, pp 39-41; Ann 5, pp 46-49; Ann 6, pp 67-70; Ann 7, pp 93-97; Ann 8, i, pp 153-155; Ann 9, pp 100-102; Ann 10, i, pp 141-144; Ann 11, i, pp 95-96; Ann 12, i, pp 104-106; Ann 13, i, pp 133-135; Ann 14, i, p 192; Ann 16, i, pp 21-22; Ann 17, i, pp 56-59; Ann 18, i, p 54; Ann 19, i, p 52; Ann 20, i, pp 49, 54-55; Ann 21, i, p 87
Becker (G. F.) and Lindgren (W.), geology of Sacramento quadrangle, California.GF 5
Becker (G. F.), Lindgren (W.), and Turner (H. W.), description of the Gold Belt.GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
gеology of Marysville quadrangle, California.GF 17
gеology of Placerville quadrangle, California.GF 3
gеology of Smartsville quadrangle, California.GF 18
Becker (G. F.) and Turner (H. W.), geology of Jackson quadrangle, California.GF 11
Becket conglomerate-gneiss of Massachusetts, western.Mon xxxix, pp 31-38
Becket gneiss of Massachusetts and Connecticut.GF 60, pp 1, 4
Beckwith, Mount, Colorado, sketch of.Ann 14, ii, p 108
Bedding, clues to.Ann 16, i, pp 559-560
evidence of, and means of determining.Ann 16, i, pp 716-720
in New York-Vermont slate belt.Ann 19, iii, pp 200-205, 218, 269
Bedding and schistosity in rocks of California, Bidwell Bar area. Ann 17, i, pp 554-556
Bed-rock series of California. GF 3, p 2; GF 5, p 2; GF 11, p 3; GF 17, p 1; GF 18, p 3; GF 29, p 1; GF 31, pp 1, 3-4; GF 37, pp 1, 3; GF 39, pp 1, 3-5; GF 41, pp 1, 3-6; GF 43, pp 1, 3-4; GF 51, pp 1, 3-4; GF 63, pp 1-5; GF 66, pp 1-4
Beetles. (See Coleoptera.)
Beetles, Pleistocene, of Fort River, Massachusetts. Mon xxix, pp 740-746
Belomelitidte of Cretaceous of Pacific coast. Bull 133, pp 84-85
of Mesozoic of Alaska Peninsula. Bull 51, p 67
Belgium, building-stone industry in. MR 1893, pp 596-602
Belgium, copper production of. MR 1882, pp 256-257
Belgium, fossil plants of, literature of. Ann 8, ii, pp 775-777
Belgium, iron-ore deposits of. Ann 16, iii, pp 131-132
Belgium, lead production of. MR 1885, pp 264, MR 1893, p 99; Ann 16, iii, pp 372; Ann 17, iii, p 156; Ann 18, vi, pp 256, 257; Ann 19, vii, pp 220; Ann 20, vii, pp 246; Ann 21, vii, pp 245, 246
Belgium, manganese production of. MR 1887, p 154; MR 1892, pp 225; MR 1893, pp 146-147, 155; Ann 16, iii, pp 447, 457; Ann 17, iii, pp 210, 224; Ann 18, vii, pp 328; Ann 19, vii, p 110; Ann 20, vii, p 148; Ann 21, vi, p 154
Belgium, mining law of. MR 1883-84, p 998
Belgium, ocher production of. Ann 19, vi cont, p 641;
Belgium, phosphates of. Bull 46, pp 102-107
Belgium, quicksilver in. MR 1892, p 161
Bellowspipe limestone of Massachusetts, Mount Greylock. Mon xxiii, pp 184-186, 190
Bells Landing series of Alabama. Bull 84, p 321 (See Tuscaloosa series.)
Belly River formation. Bull 82, pp 170, 173-177, 191, 239
Belt formation of Montana. Ann 20, iii, pp 279-284, 382; Bull 110, pp 16-20; Bull 139, pp 32-37; GF 1, p 2; GF 24, p 2; GF 56, pp 1-2
Belt Mountains. (See Little Belt Mountains.)

Belding group of igneous rocks, definition of, and description of species from

Alaska .. Ann 20, vii, pp 189, 209-210

Bementite, chemical constitution of .. Bull 125, pp 82, 105

Bench gravels in Montana ... GF 55, p 2

Bench marks, law requiring establishment of, their form, etc ...Ann 17, i, pp 7-11;
Ann 18, i, pp 92, 225-228

Bend formation of California ... GF 15, p 1

Benjamin (M.), mineral paints, statistics of. .MR1885, pp524-533; MR1886, pp702-714

Bennettitaceae of Cretaceous of Black Hills Ann 19, ii, pp 598-641

of Mesozoic, Older, of North Carolina Ann 20, ii, pp 302-303

of Triassic of Pennsylvania .. Ann 20, ii, p 248

Benton formation of Colorado, Denver Basin Mon xxvii, pp 26, 65-66, 87, 107

of Kansas, southwestern .. Bull 57, pp 27-30; WS 6, pp 31-32

of Montana, Castle Mountain district Bull 139, p 46

Judith Mountains .. Ann 18, iii, p 482

of Nebraska, southeastern .. WS 12, p 19

of Rocky Mountain region, correlation of Bull 82, p 191

of Wyoming .. Bull 119, p 22

Benton group of Colorado, easternAnn 17, ii, pp 504-506, 571

of Colorado, Elmore quadrangle GF 58, p 1

of upper Missouri River region Bull 82, pp 211, 229

Benton shale of Colorado, Anthracite-Crested Butte district GF 9, pp 6, 9

of Colorado, Aspen district .. Mon xxxi, p 41

of Montana .. GF 1, p 2; GF 55, p 2

of Nebraska .. Ann 19, iv, pp 737, 760

of Wyoming .. GF 50, p 5

Benzoic acid, compressibility of Bull 92, p 36

Berea grit in Ohio ... Bull 150, pp 75-77

in Ohio as a source of gas .. MR 1892, pp 682-684

Berea sandstone and shale in Ohio as a water carrier Ann 19,
iv, pp 647-648, 685-690

Berea shale and grit in Michigan WS 30, pp 84-85

Berberidaceae, extinct, of North America Mon xxxv, p 97

Berkshire County, Massachusetts, geology of eastern Bull 159

Berkshire schist of Massachusetts, Mount Greylock Mon xxiii, pp 182-184, 190

of New York-Vermont .. Ann 19, iii, pp 191-192

Bermudas, marine Mollusca, comprising the Quaternary fossils and recent
forms, from .. Bull 24

Bernardston formation of Massachusetts and Connecticut ... Mon xxix, pp 253-299; GF 50, p 3

Bertrandite, chemical constitution of Bull 125, pp 70, 105

Beryl, analysis of, from Maine, Winslow Bull 55, p 53

analysis of, from North Carolina, Alexander County Bull 74, p 47

from Tennessee, Greene County Bull 9, p 11

chemical constitution of .. Bull 125, pp 95-96, 106

occurrence and statistics of MR 1882, p 487;
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Bessemer pig iron, production of MR 1891, p 55
Bessemer-steel ingots and rails, production of, in the United States and Great Britain since 1877 MR 1891, p 59

(See, also, Steel.)

Bettes series of rocks of Alaska Ann 21, ii, p 475
Betulaceas of North America (extinct) Mon xxxv, pp 59-68
of Yellowstone Park .. Mon xxxvii, ii, pp 698-699
Beulah shales of Black Hills Ann 21, iv, pp 525-526
Bibliographic index of North American Carboniferous invertebrates Bull 153
Bibliographies, contemplated, of special topics in North American geology ... Ann 5, pp xxx-xxx

Bibliography of American fossil Bryozoa Bull 173, pp 125-160
of Arachnida .. Bull 31, p 19
of Cambrian rocks Bull 88, pp 22-48
of Cambrian and Carboniferous rocks of Narragansett Basin Mon xxxiii, pp 212-214
of clays and clay industry Ann 18, v cont, pp 1146-1147
of Cretaceous and Tertiary plants of North America Bull 152, pp 13-23
of Cretaceous rocks of North America, annotated Bull 82, pp 26-60
of Crustacea, Paleozoic, from 1698 to 1889 Bull 63
decay of rocks, subaerial Bull 52, pp 57-61
dinocerata .. Mon x, pp 225-237
of Echinodermata, Mesozoic, of United States Bull 97, pp 15-20
de Eocene formations Bull 83, pp 148-158
gangue minerals of the southern Appalachians .. Ann 16, iii, p 273
geneseec, Naples, Portage, and High Point Chemung rocks of New York Ann 16, pp 9-12
geneseec, North American, 1732-1891 Bull 127
geneseec of eastern Berkshire County, Massachusetts .. Bull 159, pp 128-135
geneseec of North America for 1886, Bull 44; for 1887 to 1889, Bull 75; for 1890, Bull 91; for 1891, Bull 99

(See, also, Bibliography and index.)
geneseec of Penokee district, Michigan and Wisconsin Mon xix, pp 5-102
geneseec of geology of Philippine Islands Ann 21, iii, pp 594-605
geneseec of geology of Pikes Peak district, ColoradoGF 7, p 5
geneseec of gold fields of southern Appalachians Ann 16, ii, pp 316-319
of insects .. Bull 31, pp 32-34, 36-37, 46, 51, 58, 65, 85, 94, 96; Bull 69
geneseec of invertebrates, North American Mesozoic .. Bull 102
geneseec of iridium MR 1883-84, pp 588-591
of ore-iron industry Bull 16, iii, pp 217-218
geneseec of irrigation in India Ann 12, ii, pp 371-373
ngeneseec of irrigation literature Ann 11, ii, pp 345-388; Ann 13, iii, pp 346-349
geneseec of Keweenawan rocks Mon v, pp 14-23, 431-432
ngeneseec of Minnesota, explorations in Bull 157, pp 12-19
ngeneseec of Mollusca, marine Bull 24, pp 9-17
ngeneseec of monazite, marine Ann 16, iv, pp 690-693
geneseec of Myriapoda Bull 31, p 9
ngeneseec of Newark system Ann 21, iii, p 39; Bull 85, pp 140-339
ngeneseec of nickel ores MR 1893, p 177
ngeneseec of paleontology, North American, 1888-1892 Bull 121
ngeneseec of phosphate of lime Bull 46, pp 129-140
ngeneseec of publications of United States Geological Survey (1880-1893) Bull 100
WARMIN.

Bibliography of Rio Grande coal fields of Texas Bull 164, pp 67-72
of sewage and fossils of Olenellus zone Ann 10, iv, pp 516-524
of sewage utilization and disposal WS 22, pp 89-98
of slate, etc. .. Ann 19, iii, pp 166-174
of technology of clay industry ... Bull 67, pp 74-79
of traps of New Jersey region .. Bull 135; for 1895, Bull 146; for 1896, Bull 149; for 1897, Bull 156; for 1898, Bull 162; for 1899, Bull 172

(See, also, Bibliography of geology of North America.)

Bidwell Bar quadrangle, California, geology of GF 43
Big Baldy Mountain, Montana, geology of Ann 20, iii, pp 325-341
Big Bull Mountain, rocks of ... Ann 16, ii, pp 78-79
Big Game Ridge and Huckleberry Mountain, Yellowstone Park, geology of Mon xxxii, ii, pp 165-202
Big Pigeon River, profile of ... WS 44, p 53
Big Sandy River, profile of .. WS 44, pp 45-46
Big Stone Gap coal field of Virginia and Kentucky, geology of Bull 111
Big Trees quadrangle, California, geology of GF 51
Big Horn Basin, stream measurements in Ann 13, ii, pp 69-70; Ann 19, iv, pp 290-295; WS pp 75-76; WS 37, pp 211-213
Big Horn Forest Reserve, limits, condition, timber, fires, mining, grazing, etc. Ann 19, v, pp 52-54
Big Horn Hot Springs, Wyoming ... Bull 119, pp 67-68
Big Horn Mountains, Wyoming, Archean and Algokian literature of Bull 87, pp 277-278
glacial sculpture of .. Ann 21, ii, pp 167-190
structure of ... Bull 119, pp 41-45
water-right problems of .. WS 23
Bijiki schist, petrographic character, relations, etc., of Ann 15, pp 596-598;
Mon xxviii, pp 416-420
Billiton, tin deposits and production of Ann 16, iii, pp 487-491; Ann 17, iii, p 142
tin ore in Banca and, occurrence, geologic relations, treatment, etc., of Ann 17, iii, pp 227-242
Bindheimite, analyses of, from Nevada, Secret Canyon Bull 20, p 97
Bingen sands of Arkansas ... Bull 84, p 321
Binney (Edward William), biographic sketch of Ann 5, pp 374-375
Biographic sketches of paleobotanists Ann 5, pp 368-385
Biology and geology, interrelations of Ann 5, pp 363-304
Biotite, a product of mineralogic metamorphism Bull 62, pp 212
analysis of, from Maine, Auburn ... Bull 55, p 17
from Massachusetts, Chester and Goshen Bull 126, pp 40, 41
from Montana, Walkerville Station .. Bull 168, p 116
from North Carolina, Henderson County Bull 90, pp 11, 12
chemical constitution of .. Bull 125, pp 16, 20-28, 45, 46, 47, 49, 53, 102
distribution of, in rocks ... Bull 150, p 42
in diorite and porphyrite from Wyoming, Electric Peak, Ann 12, i, pp 594, 605-606
in gneisses of Minnesota, southwestern Bull 157, pp 53-54
Biotite in rocks of Pacific slope ... Mon xiii, p 74
thin section of, in quartz in hornblende-biotite-gneiss from Minnesota, southwestern .. Bull 157, pp 142-143
Biotite-bearing hornblende-granite from Cape Ann, Massachusetts, description of, as one of the educational series Bull 150, pp 179, 181
Biotite and quartz as alteration products of alkali feldspar Mon xix, pp 107, 108, 152, 336-343
Biotite-augite-latite, analysis of, from California, Big Trees and Clover Meadow Ann 17, t, p 727; Bull 89, pp 58, 66; Bull 148, p 217; Bull 168, p 205
thin section of, from Sierra Nevada ... Bull 89, pp 34-35
Biotite-chlorite, chemical constitution of Bull 128, pp 83, 102
Biotite-dacite, analysis of, from Asia Minor, Pergamon Bull 89, p 66
Biotite-diorite, analysis of, from District of Columbia, Georgetown Ann 15, p 673; Bull 148, p 85; Bull 168, p 44
analysis of, from Maryland, Montgomery County Ann 15, p 673; Bull 148, p 85; Bull 168, p 44
Biotite-gneiss, analysis of, from Michigan, Upper Quinnesec Falls Bull 148, p 102; Bull 168, p 72
from Manhattan Island, New York, description of, as one of the educational series (schistose) Bull 150, pp 332-333
in Massachusetts, eastern Berkshire County Bull 159, p 23
thin section of, from Michigan, sec. 18, T. 47 N., R. 45 W Ann 10, t, pp 470-471; Mon xix, pp 478-479
Biotite-granite, analyses of, from California, Amador County Ann 17, t, pp 702, 721; Bull 148, p 214; Bull 168, p 200
analysis of, from California, Mariposa County Bull 148, p 208
from California, Sierra County ... Ann 17, t, p 721; Bull 148, p 206; Bull 168, p 192
from Colorado, Pikes Peak ... Bull 150, p 177
from Maryland, Rowlandsville, Dorsey Run, Sykesville, and Woodstock Ann 15, p 672; Bull 148, pp 86, 87; Bull 168, pp 46, 47
from Massachusetts, Florence ... Bull 148, p 74; Bull 168, p 30
from Colorado, Pikes Peak, description of, as one of the educational series .. Bull 150, pp 172-177
from Maine, Fox Island, description of, as one of the educational series (hornblende-bearing) Bull 150, pp 177-179
inclusions in, analyses of, from Maryland, Dorsey Run and Sykesville Bull 148, p 87; Bull 168, p 47
of Massachusetts, western ... Mon xxix, pp 318-323
of Michigan, Crystal Falls-district Ann 19, iii, pp 29-32; Mon xxxvi, pp 40-44, 190-193
Marquette district ... Mon xxviii, pp 171-174
of Sierra Nevada .. Ann 17, t, p 703
thin section of, from Michigan, Crystal Falls district Mon xxxvi, pp 308-309
from Wisconsin, NE, 1/4 sec. 20, T. 44 N., R. 3 W Mon xix, pp 476-477
Biotite-granite-gneiss, analysis of, from District of Columbia Ann 15, p 672
analysis of, from Maryland, Port Deposit Ann 15, p 672
Biotite-hornblende-granite, analysis of, from California, Mariposa County Ann 14, ii, p 482
of Sierra Nevada .. Ann 14, ii, pp 480-482
Biotite-microcline-gneiss of Massachusetts, Berkshire County Bull 159, pp 23-24
Biotite-muscovite-granite of Massachusetts, western Mon xxix, pp 314-318
Biotite-porphyrite, analysis of, from Colorado, Leadville region Bull 148, p 173; Bull 168, p 155
Biotite-porphyrite, thin section of, from Colorado, Leadville district........Mon xii, pp 336-337

Biotite-quartz-monzonite, analysis of, from California, Sierra County........Bull 168, p 192

Biotite rocks of Colorado, Telluride quadrangle....................................GF 57, p 7

Biotite-schist of Michigan, Crystal Falls district.............................Mon xxxvi, pp 467-469

of Michigan, Marquette district........Ann 15, pp 513-514; Mon xxviii, pp 196-198

thin section of, from Michigan, sec. 3, T. 47 N., R. 30 W........Mon xxviii, p 197
from Wisconsin, NE. § sec. 6, T. 44 N., R. 2 W., and NE. § sec. 4, T. 44
N., R. 3 W........Ann 10, i, pp 506-507; Mon xix, pp 516-517

Biotite-slate, thin section of, from Wisconsin, sec. 9, T. 44 N., R. 3 W........Ann 10, i, pp 502-503, 504-505; Mon xix, pp 514-515
thin section of, from Wisconsin, SE. § sec. 10, T. 44 N., R. 3 W........Mon xix, pp 516-517
from Wisconsin, NE. § sec. 17, T. 44 N., R. 3 W........Mon xix, pp 486-487
SE. § sec. 12, T. 45 N., R. 1 W................................Mon xix, pp 516-517

Biotite-trachyte, analyses of, from Yellowstone Park, Absaroka Range.....Bull 168, p 98

Biotite-vulsinite from Italy, Rocca Monfino region, characters and analysis of.....Bull 89, pp 92-93, 96

Birch Creek series of Alaska, characteristics, distribution, etc., of.........Ann 18, iii, pp 140-145, 255-256; Alaska (1), p 22

Bird Mountain, Vermont, a study of..Ann 20, ii, pp. 9-23
“Bird tracks” of Connecticut River sandstone..............................Ann 10, i, p 151

Birds, origin of, account of..Ann 3, pp 86-87
of Alaska, Sushitna and Kuskokwim regions, list of, and notes on.........Ann 20, vii, pp 76-77, 80-85

Birds, fossil, with teeth...Ann 3, pp 45-48

Birkinbine (J.), American blast-furnace progress.........................MR 1888-84, pp 290-311
iron-ore mining in 1887..MR 1887, pp 30-57
iron ores east of Mississippi River....................................MR 1886, pp 39-103
iron ores, statistics of..MR 1889-90, pp 23-47; MR 1891, pp 10-46;
manganese ore, statistics of...Ann 18, v, pp 291-328; Ann 19, vi, pp 91-125; Ann 20, vi, pp 125-158; Ann 21, vi, pp 129-162

Bishop Mountain conglomerate of Wyoming...Bull 84, p 321

Bisilicate minerals in rocks, decomposition of..............................Mon iii, p 214

Bismuth, statistics of..MR 1882, p 440; MR 1883-84, pp 654-655; MR 1885, p 389

Bismuthinite from Mexico, Sinaloa, description and analysis of........Bull 90, p 40
Bismutite, analyses of, from North Carolina, Jackson County........Rull 74, p 85

Bitter Creek series of Wyoming..Bull 83, pp 117, 118, 121; Bull 84, p 322

Bitterroot Forest Reserve, lands, timber, fires, etc., of..................Ann 19, v, pp 57-59, 258-282; Ann 20, vi, pp 317-410

stream measurements in...Ann 19, iv, pp 460-461

Bitterroot River, Montana, irrigation on....................................Ann 20, iv, pp 492-495
flow of, measurements of..Ann 20, iv, pp 62, 485; Ann 21, iv, pp 419-420; WS 28, pp 163, 168-169, 170; WS 38, pp 367-369

Bitumens, geologic distribution of.......................................Ann 11, i, pp 504-603
pitch coal of Coos Bay coal field, Oregon.................................Ann 19, iii, pp 370-376

Bituminous coal. (See Coal.)

Bituminous coal field of Pennsylvania, Ohio, and West Virginia, stratigraphy
of...Bull 65

Bituminous compounds, natural and artificial, classification of........Ann 17, i, p 917

Bituminous deposits, Tertiary..Ann 11, i, pp 590-597
Bituminous rock, analyses of, from California, Santa Cruz and San Luis
Obispo .. Ann 18, v cont, p 925
Bituminous rock and asphaltum, statistics of. Ann 21, vi cont, pp 319-322
Biwabik formation of Lake Superior region Ann 21, iii, pp 358-360
Black and Grand prairies, Texas, geography and geology of Ann 21, vii
Black Bluff series of Alabama.............................. Bull 84, p 322
(See, also, Sucarnochee series.)
Black Hills, Algonkian rocks of Ann 16, iv, pp 813-814
climate of .. Ann 21, iv, pp 591-597
Cretaceous formation of, as indicated by fossil plants .. Ann 19, ii, pp 521-946
geologic history of Ann 19, ii, pp 587-592
geologic section of Bull 106, p 23
geology of northern...................................... Ann 21, iii, pp 174-194
geology and water resources of southern half of, and adjacent region, preliminary description of Ann 21, iv, pp 489-599
laccoliths of .. Ann 21, iii, pp 163-303
pre-Cambrian rocks of Bull 86, pp 257-261, 272, 503
topography of southern Ann 21, iv, pp 498-502
Black Hills Forest Reserve, limits, lands, mining, fires, lumbering, management, etc Ann 19, v, pp 49-52, 67-164
Black Patch grit of New York-Vermont Ann 19, iii, pp 181-183
Black River, New York, measurements of flow of WS 36, pp 191-193
Black River series of Wisconsin Mon xix, pp 37-38
Black River Falls series of Wisconsin Bull 86, pp 105, 190
profile of ... WS 44, p 32
Blackrock diabase of Massachusetts and Connecticut Mon xxx, pp 483-494; GF 50, p 6
Blackstone series of Narragansett Basin Mon xxxiii, pp 104-106
Blackwater formation of Virginia and West Virginia GF 61, p 5
Blackwater sandstone of Virginia, West Virginia, and Maryland GF 28, p 3; GF 32, p 4
Blair (A. A.), report on chemical work in 1879-80 Ann 1, pp 47-48
Blake (W. P.), antimony, statistics of MR 1883-84, pp 461-653
nickel, statistics of .. MR 1882, pp 399-420; MR 1883-84, pp 537-543
tin, statistics of MR 1883-84, pp 592-640
Blanco formation of Texas, correlation of Ann 18, iv, p 237
Blast furnace, accretions formed in Mon xi, pp 725-731
description of Bull 25, p 22
Blast-furnace progress, American MR 1883-84, pp 290-311
Blast-furnace slag, utilization of MR 1882, pp 161-164
Blast furnaces of Leadville, chemical discussion of, and reactions in Mon xi, pp 731-745
Blattinariae, American Bull 124, pp 56-143
Block Island, glacial clays of ..Ann 17, i, p 983
Bloodstones, occurrence and statistics ofMR 1883-84, p 763
Blowing wells of the Great PlainsAnn 16, ii, pp 567-568
Blue Canyon formation of CaliforniaGF 66, pp 1-2
Blue limestone of Colorado ..Ann 2, pp 218-219, 237; Mon xii, pp 63-66
(See Leadville limestone.)
Blue marl of New Jersey ..Bull 83, pp 85-86
Blue Mountains, Colorado, geology and rocks ofAnn 17, ii, pp 277, 278, 279, 280, 281, 336-337, 439
Blue Ridge, Archean and Algonkian literature ofBull 86, pp 416-418
in Maryland and Virginia, general description ofAnn 14, ii, pp 294-295
in vicinity of Potomac River, pre-Cambrian rocks ofAnn 16, i, p 839
residual nature of ...Ann 14, ii, p 301
Blue River mining region, Oregon, notes onAnn 20, iii, pp 31-32
Bluefield shale of Virginia and West VirginiaGF 26, p 3; GF 44, p 3
Bluestone, analysis of, from New York, Chenango, Wyoming, and Dutchess...Ann 20, vi cont, pp. 424, 425, 426
analysis of, from Pennsylvania, Susquehanna County.....Ann 20, vi cont, p 439
manufacture of, at the Lyon mill, Dayton, Nevada........MR 1882, pp 297-305
Bluestone formation of Virginia and West VirginiaGF 26, p 3; GF 44, p 3
Bluff Lignite group of Mississippi RiverBull 84, p 322
Bodie district, California, brief description ofAnn 1, pp 38-39
Bog iron ore and infusorial earth in swampsAnn 10, i, pp 305-307
Boggy shale of Indian TerritoryAnn 19, iii, pp 438, 441; Ann 21, ii, pp 278-279
Bogoslof and Grewingk islands, AlaskaAnn 18, iii, pp 25-28
Bohemia, fossil medusea ofMon xxx, pp 47-65
Bohemia mining region of western OregonAnn 20, iii, pp 1-31
Boise quadrangle, Idaho, geology ofGF 45
Boise Valley, seepage measurements inAnn 20, iv, pp 484-488
Bolle from Colorado, Table Mountain, description and analysis of...Bull 20, pp 38-39
Bolivia, copper production of ..MR 1883-84, p 356; MR 1885, p 229; MR 1886, p 128; MR 1887, p 88; MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 101; MR 1892, p 114; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii, pp 117, 119; Ann 18, v, pp 219, 221; Ann 19, vi, pp 176, 178; Ann 20, vi, pp 202, 204; Ann 21, vi, pp 204-206
fossil plants of, literature ofAnn 8, ii, p 823
gold and silver production of, compared with that of other countries..MR 1883-84, pp 319-320
Boltonite, analyses of, from Massachusetts, StowBull 148, p 77; Bull 168, p 33
Bonair conglomerate-lentil of TennesseeGF 53, p 3
Bonnie Terre lead mines, Missouri, workings at Bull 132, pp 20-21
Bonnie Terre beds of Utah Ann 2, pp 174-175;
Ann 19, iii, pp 667-668; Mon 1, pp 188-213; GF 65, p 3
Bonnieville Lake, fauna of, Molluscan Bull 11
history of Ann 1, pp 23-25, 74-75; Ann 2, pp xvi-xvii, 107-200; Mon 1
sediments of, analysis of Ann 2, p 177; Mon 1, pp 201-202
Boothbay quadrangle, Maine, physiography of TF 1, p 4
Borates and borosilicates, natural, analyses of Bull 55, pp 56-62
Borax, analysis of, from California, San Bernardino County MR 1882, p 573
analysis of, from Nevada, Esmeralda County MR 1882, p 573
MR 1887, pp 4, 6, 8-9; MR 1888, pp 5, 8, 10-11; MR 1889-90, pp 494-506; MR 1891, pp 587-588; MR 1893, pp 734-736
Borax Lake, California, analysis of water of Mon xiii, p 265
Borax marsh, the Searles, San Bernardino County, California MR 1889-90, pp 498-503
earth from, analyses of MR 1889-90, p 501
Boric acid, a method for the separation and estimation of, with an account of
a convenient form of apparatus for quantitative distilla­
tions Bull 42, pp 64-72
Borneo, antimony production of MR 1883-84, p 649
fossil plants of, literature of Ann 8, ii, pp 806-807
iron industry of Ann 16, iv, pp 180-182
petroleum localities and statistics of Ann 16, iv, p 404; Ann 19, vi cont,
p 152; Ann 20, vi cont, pp 185-187; Ann 21, vi cont, pp 266-260
quicksilver deposits in Mon xiii, p 48
Bornite, analysis of, from Montana, Butte Bull 55, p 53
in Montana, Butte district GF 38, p 6
Borosilicates and borates, natural, analyses of Bull 55, pp 56-62
Boscabel beds of Richmond Basin Ann 19, ii, pp 424-425
Bosnia, clay products of, at Paris Exposition of 1900 Ann 21, vi cont, p 373
manganese-ore production of MR 1888, p 142; MR 1889-90, p 130
Bostonite, analyses of, from Connecticut, New Haven Ann 21, iii, p 81
analysis of, from Lake Champlain region Bull 107, p 20; Bull 165, p 166
of Lake Champlain region Bull 165, p 19
from Maine, Aroostook County Bull 165, p 166
from Massachusetts, Marblehead Neck Bull 165, p 166
of Alaska, Kuskokwim River, near Kalmakof, description of Ann 20, vii, p 216
of Lake Champlain region Bull 107, pp 18-23
of Montana, Little Belt Mountains Ann 20, iii, pp 524-525
thin section of, from Vermont, Shelburne Bull 107, p 19
Botany; flora of basin of Red River of the North Mon xxi, pp 601-610
Botany and paleobotany, interdependence of Ann 5, pp 366-367
Boulder Creek, Colorado, flow of, measurements of Ann 13, iii, pp 87, 93; Ann 18, iv, pp 169-172; Ann 19, iv, pp 318-320; Ann 20, iv, pp 54, 286-288; Ann 21, iv, pp 206-208; Bull 140, pp 107-109; WS 11, pp 54-55; WS 15, pp 91-92; WS 27, pp 82, 86, 89; WS 37, pp 229-231
Boulder Hot Springs, Montana, mineral vein formation at Ann 21, ii, pp 227-255
Boundaries of the United States and of the several States and Territories, with
a historical sketch of the territorial changes... Bull 13; Bull 171
Bow River series of Canada Bull 86, p 340; Bull 87, pp 326-327
Bowden beds, Jamaica, correlation of Ann 18, ii, pp 340-341
Bowenite, occurrence of MR 1882, p 497
Bower (A. S.), the Bower-Barff process. MR 1882, pp 164-171

Bowler clay, description of, as one of the educational series Bull 150, pp 69-70

(See, also, Till.)

Bowler fields and trains of Maine............................... Mon xxxiv, p 284

Bowlders of glacial gravels, especially in Maine. Mon xxxiv, pp 333-337

resulting from external attack Mon xiii, pp 68-72

Boyd (D.), irrigation near Greeley, Colorado WS 9

Boyle (C. B.), catalogue and bibliography of North American Invertebrata......................... Bull 102

Bozeinan coal field, Montana, fossil plants of Bull 105, pp 43-66

Bozeinan lake beds of Montana GF 1, p 2; GF 24, p 3

Brachiopoda, biologic development of......................... Bull 87, pp 78-104

classification of....................................... Bull 87, pp 113-137

description of species of the Middle Cambrian, of North America........ Bull 30, pp 95-123

geologic development and geographic distribution of Bull 87, pp 13-72

morphology of the brachia of Bull 87, pp 105-112

Eureka district Mon viii, pp 12-64, 67-76, 106-164, 213-224; Mon xx, pp 320, 322, 325, 326-328, 331

of Cambrian, Lower. Bull 30, pp 52, 95-123

of Cambrian, Middle, of North America Bull 133, pp 31-34

of Cretaceous of Pacific coast Bull 30, 51, p 36

of Vancouver Island Bull 51, pp 5-15; Mon xxiv, pp 23-24

of Devonian, higher, of New York, Ontario County Bull 16, pp 24-25, 62-63

of Olenellus zone.................................... Ann 10, i, pp 607-614

of Raritan clays and greensand marls of New Jersey........ Bull 87, pp 5-15; Ann 10, i, pp 607-614

of Yellowstone Park Mon xxxii, ii, pp 502-505, 609-610, 636

synopsis, bibliography, and synonymy of American fossil Bull 87

terminology of structure of.................................. Bull 87, pp 73-77

Brantree argillites of Massachusetts, account of literature concerning........ Bull 81, pp 73-78; Bull 86, pp 306, 369

fauna of .. Bull 10, pp 43-49

Branchtown clay of Pennsylvania Bull 84, p 45

Brandegee (T. S.), notes on Teton Forest Reserve Ann 19, i, pp 191-212

notes on Yellowstone Park Forest Reserve Ann 19, i, pp 213-216

Brandisite, chemical constitution of............................ Bull 125, p 47

Brandon formation, digest of literature of........ Bull 83, pp 90-94; Bull 84, pp 33-34

Branner (J. C.), bibliography of clays and the ceramic arts. Bull 143

crcoal fields of Arkansas MR 1892, pp 303-306

work in charge of, 1895-1900 Ann 17, i, p 48; Ann 18, i, pp 46-47; Ann 19, i, p 49; Ann 20, i, p 48; Ann 21, i, p 82

used in standards of United States bureau of weights and measures, analysis of Bull 78, p 129

Braxton formation of West Virginia–Ohio GF 34, p 2; GF 69, pp 4-5

Brazil, diamond mines and production of MR 1887, p 568;

Ann 21, vi cont, pp 425-430

fossil plants of, literature of Ann 8, ii, pp 823-824

gold production of, compared with other countries MR 1883-84, pp 319, 320

iron and iron ore; analysis, deposits, and statistics Ann 16, iii, pp 24, 67, 69

Breccia, analysis of, from Great Britain, Wales (felsitic tuff) Bull 62, p 150.
Brecciation and brecciation-pebbles as illustrated in eastern New York Ann 16, i, pp 508-509.
Breeder (W. M.), graphite, occurrence of, in the South Ann 17, iii cont, pp 1008-1010.
Brewsterite, chemical constitution of Bull 125, pp 40, 102.
Brick clay. (See Clay, brick.)

Bridge-building, iron and steel, progress in MR 1891, pp 66-68.
Bridger group of Wyoming and Utah....Ann 9, pp 690-691; Bull 83, pp 117, 120, 125, 141-142, 144, 145, 146; Bull 84, p 322; Bull 119, p 27
correlation of Ann 18, ii, p 343; Bull 83, pp 117, 123, 141-142, 146
fossils of Bull 84, pp 11-12
molluscan fauna of Bull 128, pp 79-81
Bridger Range, in Montana, structure of...GF 1, p 1
Brine, analyses of Ann 7, p 501
analysis of, from Germany, Stassfurt MR 1887, p 630
from Manitoba, Rosenfeld (artesian) Mon xxv, p 538
from Manitoulin Island (Trenton limestone) Ann 8, ii, p 620
from Michigan, various localities WS 31, passim
from Minnesota, Humboldt (artesian) Mon xxv p 537
from Nevada, Lahontan Basin Ann 3, pp 226, 227; Mon xi, pp 233, 234; MR 1883-84, p 848
from New York, Warsaw (artesian) MR 1883-84, p 833
various localities MR 1886, p 694
from Ohio, Canal Dover and Pomeroy MR 1887, p 619
Lorain Ann 8, ii, p 621
Woods County, Trenton limestone Ann 19, iv, p 653
from South Dakota, Salt Creek Ann 21, iv, p 591
from Utah, Great Salt Lake Mon i, p 255
Sevier Lake Mon i, p 227
from Wyoming, Donney soda lakes MR 1885, p 552
impurities of Ann 7, pp 500-504
chemistry of Ann 7, pp 498-504
Bristol Bay silts and gravels, Alaska, notes on Ann 20, vii, pp 177-178
Bristol quadrangle, Virginia-Tennessee, geology of GF 59
Bristow (H. W.), quoted on fossil forests of Isle of Wight Ann 16, i, p 493
British Columbia, Cenozoic epoch in, general considerations Bull 84, pp 273-276
fossil plants from, literature of Ann 18, ii, pp 836-838
gold and silver output, 1858-1895 Ann 18, iii, p 133
iron-ore deposits of Ann 16, iii, pp 53-54
Neocene deposits of Bull 84, pp 230-232
platinum from, character of Ann 16, iii, p 629
(See, also, Canada.)
Broad River, Georgia, flow of, measurements of Ann 19, iv, pp 225-227; Ann 20, iv, pp 51, 163; Ann 21, iv, pp 132-133; WS 15, p 40; WS 27, pp 42, 44, 46; WS 36, pp 131-132
profile of WS 44, p 27
water powers in basin of Ann 19, iv, pp 215-219
Brochantite, analysis of, from Arizona, Yavapai County Bull 78, p 121
from Utah Bull 55, pp 46-47
Brøggerite, analysis of Bull 78, p 69
Bromeliaceae from Dakota group Mon xvii, p 41

Bull. 177—01——12
Bromine, chlorine, and iodine, indirect estimation of, by electrolysis of their silver salts, with experiments on the convertibility of the silver salts by the action of alkaline haloids. Bull 42, pp 89-93
Brongniart (Adolphe Théodore), biographic sketch of. Ann 5, p 372
Brontosaurus, description and restoration of. Mon xxvii, pp 492-494
from Denver Basin, remains of. Mon xxvii, pp 479-480; Bull 84, p 322
Bronzite, analysis of, from Maryland, Hebbville, near Baltimore. Bull 78, p 122; Bull 148, p 84; Bull 168, p 43
chemical constitution of. Bull 125, p 86
occurrence of. MR 1883-84, pp 773-774
thin section showing alteration of, in bronzite-norite from Michigan, Crystal Falls district. Mon xxxvi, pp 306-307
Bronzite-norite, analysis of, from Michigan, Crystal Falls district. Bull 168, p 67
thin section of, from Michigan, Crystal Falls district. Mon xxxvi, pp 318-319
thin section showing alteration of bronzite in, from Michigan, Crystal Falls district. Mon xxxvi, pp 306-307
Bronzite-norite-porphyry, thin section of, from Michigan, Crystal Falls district
Brookite, occurrence of. MR 1883-84, p 772
Brooks (A. H.), coast from Point Barrow to the Mackenzie. Alaska (2), pp 130-131
reconnaissance from Pyramid Harbor to Eagle City, Alaska. Ann 21, iv, pp 331-391
Yukon district. Alaska (2), pp 85-100
Brooks (A. H.) and Peters (W. J.), report of White River-Tanana expedition (1898), Alaska. Alaska (2), pp 64-75
Brooks (A. H.) and Schrader (F. C.), preliminary report on Cape Nome gold region, Alaska, with maps and illustrations. Nome
Brooks (A. H.) and Taff (J. A.), geology of the Buckhannon quadrangle, West Virginia. GF 34
Brooks (A. H.) and Wolff (J. E.), age of Franklin white limestone of Sussex County, New Jersey. Ann 18, iv, pp 425-457
Brown (L. P.), phosphate rock deposits of Tennessee during 1897. Ann 19, vii, cont, pp 547-555
Browns Park group of Uinta Mountains. Ann 9, p 691; Bull 84, p 322
Brownstone, analysis of, from Arizona, Flagstaff. Ann 18, v cont, p 1031
analysis of, from Connecticut, Cromwell and Portland. Ann 18, v cont, p 1030
from Indiana, various localities. Ann 18, v cont, p 1031
from Maryland, Hancock. Ann 18, v cont, p 1030
from Massachusetts, East Longmeadow. Ann 18, v cont, p 1030
from Michigan, various localities. Ann 18, v cont, p 1031
from Minnesota, Kettle River and Pipestone. Ann 18, v cont, p 1031
from New Jersey, various localities. Ann 18, v cont, p 1030
from North Carolina, Sanford. Ann 18, v cont, p 1030
from Pennsylvania, various localities. Ann 18, v cont, p 1029
from Wisconsin, various localities. Ann 18, v cont, p 1031
Brownstones of Pennsylvania, properties, chemical composition, structural and textural features, etc., of. Ann 18, v cont, pp 1025-1043
Brownstown beds of Texas. Ann 21, vii, p 340
Brucite, analysis of, from Pennsylvania, Lancaster County. Bull 78, p 42
Brule clay of Nebraska. Ann 19, iv, pp 736, 755-759
WARMAN.] BROMINE—BURNETAN.

179

Bruneau River, flow of, measurements ofAnn 18, iv, pp 339-340, 341;
Ann 19, iv, pp 450-451; Ann 20, iv, pp 62, 481-482;
Ann 21, iv, pp 409-410; Bull 140, pp 239-241; WS 11,
p 81; WS 16, p 167; WS 28, pp 161, 169; WS 38, p 356

Brymawr gravel of Pennsylvania......................... .Bull 84, p 45
Bryoza from Yellowstone Park.............................. .Mon xxxi, ii, pp 516-576

synopsis of American fossil, including bibliography and synonymy.....Bull 173
Buccinidae from Chico-Tejon series of California........Bull 51, p 22
from clays and marls of New JerseyMon xviii, pp 77-79
from Miocene deposits of New JerseyMon xxiv, pp 101-104
Buck (S. M.), coal mining in Kanawha Valley of West Virginia.....MR 1883-84,
pp 131-143
Buckhannon quadrangle, West Virginia, geology of...............Ann 5, p 379

Buda limestone of Texas....................................Ann 16, iv, pp 399-401
(See, also, Precious metals.)

iron-ore deposits of..Ann 16, ii, p 156
Bull Cliff, Colorado, rocks of..............................Ann 16, ii, pp 80-83
Bull Hill, Cripple Creek district, Colorado, ore deposits in...Ann 16, ii, pp 190-200
rocks of..Ann 16, ii, pp 83-87
Bulla striata marls of Florida............................Bull 84, pp 147 (note), 322
Bullidse from clays and marls of New Jersey...............Mon xviii, pp 165-166, 189
from Colorado formation......................................Bull 106, p 162
Bullion, analyses of, from Colorado, Leadville district...Mon xiv, p 694
skimming from, analysis of, from Colorado, Leadville district...Mon xiv, p 696
Bullion product, annual, of United States and of the world......Ann 2, pp 399-401

Bunbury (Sir Charles James Fox), biographic sketch ofAnn 5, p 379
Bunsen Peak intrusive mass, Yellowstone Park................Mon xxxi, ii, pp 86-88
Burlington limestone, areas, characters, and divisions of..........Ann 11,
i, pp 312-313; Bull 80, pp 158-159, 160, 224
Burma, fossil plants of, literature of....................Ann 8, ii, p 793

petroleum localities and statistics of....................MR 1886, pp 480-484;
MR 1888, p 474; MR 1893, pp 528-529; Ann 16, iv, p 399
precious stones in.....Ann 18, vi cont, pp 1197-1198, 1202; Ann 20, vi cont, p 573

tin deposits and production of..........................Ann 16, ii, pp 481-484
Burnet County, Texas, general description of................Ann 21, vii, p 48
Burnetan system of rocks of Texas..........................Bull 86, pp 267-268, 474
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Burrowing animals as soil-makers .. Ann 12, 1, pp 274-287

Business and administrative organization of the United States Geological Survey .. Ann 8, 1, pp 3-69; Ann 20, 1, p 28

Butte district, Montana, geology of .. GF 38

mines and reduction works of .. MR 1883-84, pp 374-396; MR 1891, pp 90-99

Butterflies, fossil, of Florissant, Colorado Ann 8, 1, pp 433-474

classified list of .. Ann 8, 1, p 440

Bysmalith, Mount Holmes, Yellowstone Park Mon xxxii, ii, pp 16-20, 64-69

Bysmaliths of Montana, Little Belt Mountains Ann 20, iii, pp 335-336

Bytownite, analysis of, from Norway Bull 82, p 20

Cacapon sandstone of Virginia, West Virginia, and Maryland GF 28, p 2; GF 32, p 3; GF 61, p 3

Cache Creek, California, flow of, measurements of WS 45, pp 18-19

water storage on .. WS 45

Cache la Poudre River, Colorado, flow of, measurements of Ann 11, ii, p 95; Ann 12, ii, pp 226, 238-239, 348, 360; Ann 13, iii, pp 18, 21, 94, 98; Ann 20, iv, pp 55, 290-293; Bull 131, pp 30-32; Bull 140, p 112; WS 9, pp 16-27; WS 37, pp 235-237

hydrography of basin of ... Ann 11, ii, pp 44, 95

Cache lake beds of California .. Bull 84, pp 201-202, 323

Cache Valley, Utah, irrigation, stream measurements, etc., in Ann 11, pp 44, 95

Cades conglomerate of Tennessee and North Carolina GF 16, p 2

Calamite beds of Oregon .. Bull 84, p 323

Calapooya Mountain, Oregon, composition, structure, age Ann 20, iii, pp 10-11

Calaveras formation of California Ann 14, ii, pp 446-447; Ann 17, i, pp 549, 626-632; Ann 17, ii, pp 79-88, 102, 103; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 6, pp 1, 3; GF 15, p 1; GF 18, p 3; GF 29, pp 1, 2; GF 31, pp 1, 3-4; GF 37, pp 1, 3, 7; GF 39, p 3; GF 41, pp 1, 3-4; GF 43, pp 1, 3; GF 51, pp 1, 3-4; GF 63, pp 1-2

Calaveras River, profile of ... WS 44, p 95

Calaverite, analysis of, from Colorado, Cripple Creek district Ann 16, ii, p 134; Bull 167, p 58

from Colorado, Cripple Creek, chemical and crystallographic study of .. Ann 16, ii, pp 133-135; Bull 167, pp 57-60

Calcaire ostrée of southern Atlantic States Bull 84, p 323

Calcareaous Claiborne of Alabama Bull 84, p 323

Calcareaous deposits in Yellowstone Park GF 30, p 5

Calcareaous tufa. (See Tufa.)

Califerous rocks of New York-Vermont Ann 19, iii, p 185

Calcite, analysis of, from Montana, Boulder Hot Springs Ann 21, ii, p 243

composition of .. Bull 150, pp 35-36

in Colorado, Table Mountain ... Bull 20, p 39

in Montana, Butte district GF 38, p 7

thin section showing metasomatic replacement of quartz in granodiorite by sericite and Ann 17, ii, pp 134-135

Calcium and magnesium, separation of sodium and potassium from, by the action of amyl alcohol on the chlorides Bull 42, pp 73-88

Calcium carbonate, deposition of Mon xi, p 187

Caldwell quadrangle, Kansas, physiography of TF 1, p 2
Calibration of electric pyrometers....................... Bull 54, pp 84-125, 165-238
Caliente Creek, California, flow of, measurements of........ Bull 140, pp 264-267
California, Alpine reservoir................................ Ann 18, iv, pp 711-715
altitudes in.. Ann 18, i, pp 403-422;
Ann 19, i, pp 381-408; Ann 20, i, pp 457-471; Ann 21, i, pp 524-552; Bull 5, pp 37-54; Bull 76; Bull 160, pp 45-79
atlas sheets of. (See pp 68-70 of this bulletin.)
American River, profile of................................ WS 44, p 93
Antelope Valley Water Company................................ Ann 18, iv, pp 711
antimony deposits in......................................MR 1882, p 438; MR 1883-84, pp 641-642; MR 1885, p 387
Bakersfield, irrigation near................................ WS 17
Banner Hill, Grass Valley, and Nevada City districts, geology of........ GF 29
Barrett dam site...................................... Ann 18, iv, pp 642, 735
Bear Valley Irrigation Company, reservoir, dam, etc......... Ann 19, iv, pp 583-598
Bear Valley reservoir dam................................ Ann 18, iv, pp 682-685, 736
Bidwell Bar quadrangle, geology of..........................GF 43
Big Trees quadrangle, geology of............................GF 51
borax marsh, Searles, in San Bernardino County............. MR 1889-90, pp 498-503
boundary lines of, and admission of State......................... Bull 13, pp 31, 129; Bull 171, pp 136-137
Buena Vista Lake reservoir................................ Ann 18, iv, pp 701-702, 739
building stone from, at World’s Columbian Exposition........ MR 1893, p 560
in Big Trees quadrangle.....................................GF 51, p 8
in Jackson quadrangle......................................GF 11, p 6
in Mother Lode district....................................GF 63, p 11
in Placerville quadrangle...................................GF 3, p 3
in Sacramento quadrangle...................................GF 5, p 3
in Sonora quadrangle......................................GF 41, p 7
statistics of..MR 1882, p 451; MR 1883-84, pp 663-664; MR 1886, pp 545-546; MR 1887, pp 514, 518; MR 1888, pp 536, 538, 541, 542, 545; MR 1892, p 706 et seq; MR 1893, p 544 et seq; Ann 16, iv, p 437 et seq; Ann 17, vii cont, p 760 et seq; Ann 18, v, p 950 et seq; Ann 19, vi cont, p 206 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vii cont, p 335 et seq
Cache Creek, flow of, measurements of........................ WS 45, pp 18-19
water storage on...WS 45
Calaveras River, profile of................................ WS 44, p 95
Caliente Creek, flow of, measurements of..................... Bull 140, pp 264-267
Carson River, flow of, measurements of......................... Ann 11, ii, pp 102, 109; Ann 12, ii, pp 351, 360; Ann 13, iii, pp 96, 99
cement, production of....................................MR 1882, p 463; MR 1883-84, pp 675-676; MR 1885, p 409; MR 1889-90, p 463; MR 1891, p 536; MR 1892, p 743; Ann 16, iv, pp 581, 584; Ann 17, vii cont, p 884; Ann 18, v cont, pp 1170, 1174-1175; Ann 19, vi cont, pp 487, 492; Ann 20, vi cont, pp 539, 549; Ann 21, vi cont, p 393
California, Cenozoic epoch in Oregon, Washington, and, general considerations
on ...Bull 84, pp 269-273
Chatsworth Park rock-fill damAnn 18, iv, pp 643-644
Chino Creek, flow of, measurements of.................. WS 39, p 427
Chowchilla River, irrigation from:.......................... WS 19, pp 31-33
chromite in Bidwell Bar quadrangle................................GF 43, p 6
chromium and chrome iron ore fromMR 1882, p 428;
MR 1883-84, pp 569-571, 572; MR 1885, pp 357-358;
MR 1886, p 176; MR 1887, p 132; MR 1888, pp 119-120;
MR 1889-90, pp 137-139; MR 1891, p 171;
MR 1892, p 5; MR 1893, p 6; Ann 16, iv, pp 11, 608;
Ann 18, v, p 10; Ann 19, vi, p 259; Ann 20, vi, p 291
Cinder Cone, description of GF 15, p 3
clay, brick, and pottery industry in, statistics of.............. .MR 1882, p 475;
MR 1883-84, pp 678, 702-704; MR 1888, pp 558, 566; MR
1891, pp 526-528; MR 1893, p 612; Ann 16, iv, pp 518, 519,
520, 521; Ann 17, vi cont, pp 819 et seq, 858; Ann 18, v cont,
pp 1077 et seq, 1130; Ann 19, vi cont, pp 318 et seq, 353; Ann
20, vi cont, pp 466 et seq, 514; Ann 21, vi cont, pp 362, 363
clays in Sacramento quadrangle GF 5, p 3
Clear Lake, height and volume of, fluctuations in WS 45, pp 34-41
heights of, measurements of.. Ann 20, iv, p 528
coal in, area and statistics of................................... Ann 2, p xxviii; MR 1882, pp 90-94;
MR 1883-84, pp 12, 19-24; MR 1885, pp 11, 15-18;
MR 1888, pp 170, 171, 229; MR 1889-90, pp 147,
178-179; MR 1891, pp 180, 212-215; MR 1892, pp 265,
267, 268, 306-310; MR 1893, pp 169, 190, 194, 195, 197,
199, 200, 248-251; Ann 16, iv, pp 7 et seq, 73, 74; Ann
17, pp 287 et seq, 371-372; Ann 18, v, pp 354 et seq,
472-473; Ann 19, vi, pp 278 et seq, 388-389; Ann 20, vi,
pp 300 et seq, 400-401; Ann 21, vi, pp 325 et seq, 430-432
in Jackson quadrangle... GF 11, p 6
in Marysville quadrangle .. GF 17, p 2
coke in, manufacture of... Ann 20, vi cont, p 227
Colfax quadrangle, geology of GF 66
Copper in Colfax quadrangle GF 66, p 7
in Jackson quadrangle.. GF 11, p 6
in Smartsville quadrangle ... GF 18, p 6
production of, statistics of..................................... Ann 2, p xxix; MR 1882, pp 216, 226-227;
MR 1883-84, pp 329, 340-341; MR 1885, p 210; MR 1886,
p 112; MR 1887, pp 69, 76; MR 1888, p 54; MR 1889-1890,
p 60; MR 1891, pp 83, 84; MR 1892, pp 96, 97; MR 1893,
pp 64, 65; Ann 16, vii, pp 333, 334; Ann 17, vii,
pp 83, 84, 85, 86, 103; Ann 18, v, pp 189, 190, 191, 205;
Ann 19, vi, pp 140, 141, 142, 143, 160; Ann 20, vi,
pp 161, 162, 163, 164, 165, 185; Ann 21, vi,
pp 166-170, 187
corundum production of .. Ann 21, vi cont, pp 436-437
Cosumnes River, profile of..................................... WS 44, p 94
Cretaceous fossils from, new.. Bull 22
Cretaceous rocks of ... Bull 82, pp 181-194, 240-241
Crystal Springs reservoir, discharge of, measurements ofAnn 18, iv, p 370
Cucamonga quadrangle, topography, climate, and water supply of... TF 2, p 18
California, Cuyama reservoir dam Ann 18, iv, pp 698-700, 735
dams for irrigation reservoirs in Ann 18, iv, pp 627-657, 662-695, 698-702
Deer Creek, irrigation from WS 17, pp 76-77
diamond production of Ann 21, vi cont, pp 422-423
downieville quadrangle, geology of GF 37
earthquakes in, 1889-1898 Bull 68; Bull 95; Bull 112; Bull 114; Bull 129; Bull 147; Bull 155; Bull 161
elevations in. (See "altitudes," under this State.)
Escondido district dam Ann 18, iv, pp 627-637, 727
evaporation at Sweetwater dam WS 39, pp 430-431
at various points in Ann 11, ii, p 34
Feather River, profile of WS 44, p 93
Folsom reservoir dam Ann 18, iv, pp 687-688
fossil Mollusca, new, from Chico-Téjon series of Bull 51, pp 11-27
of western North America Bull 18
Fresno, irrigation near WS 18
seepage and evaporation near WS 18, pp 74-78
Fresno Plains, description of WS 18, pp 71-73
Fresno River, irrigation from WS 19, pp 27-31
gas, illuminating and fuel, and by-products in, statistics of........ Ann 20, vi cont, p 227 et seq
gas, natural, in .. MR 1887, pp 499-501; MR 1888, pp 509-510
geographic positions in Ann 18, i, p 225; Ann 19, i, pp 188-191; Ann 20, i, pp 289-291; Ann 21, i, pp 374-375; Bull 123, pp 142-145
graphy of, and conditions in northern, during Cretaceous, Eocene, and Miocene time Ann 14, ii, pp 422-426
geologic maps of, listed Bull 7, pp 122-126
(See Map, geologic, of California.)
geologic sections in. (See Section, geologic, in California.)
gold in Lassen Peak district Ann 8, i, pp 305-432
of northern, notes on Bull 33
of quicksilver deposits of Pacific slope Ann 8, ii, pp 961-985; Mon xiii
of glaciers, existing, of United States Ann 5, pp 303-355
gold in Bidwell Bar quadrangle GF 43, p 6
in Big Trees quadrangle GF 51, pp 7-8
in Colfax quadrangle GF 66, p 7
in Downieville quadrangle GF 37, p 8
in Jackson quadrangle GF 11, p 6
in Marysville quadrangle GF 17, p 2
in Mother Lode district GF 63, pp 7-10
in Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 5-6
in Placerville quadrangle GF 3, p 3
in Pyramid Peak quadrangle GF 31, p 8
in Sacramento quadrangle GF 5, p 3
California, gold in Smartsville quadrangle GF 18, pp 5-6
gold in Sonora quadrangle GF 41, pp 6-7
in Truckee quadrangle GF 39, p 8
gold and silver statistics of Ann 2, p 385; MR 1882, pp 172, 174, 176, 177, 178, 182; MR 1883-84, pp 312, 313, 314, 315; MR 1885, pp 201, 203; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 77, 80; MR 1892, p 50 et seq; MR 1893, p 50 et seq; Ann 17, iii, p 72 et seq; Ann 18, v, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, p 121 et seq
Gold Belt in, extent and geology of GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
granite production of MR 1892, p 706; MR 1893, p 544; Ann 16, iv, pp 437, 441, 457, 458; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 206 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
Grass Valley, Nevada City, and Banner Hill districts, geology of GF 29
gypsum deposits and industry of MR 1882, p 529; MR 1883-84, pp 812-813; MR 1885, p 463; MR 1886, p 623; MR 1887, p 602; MR 1889-90, p 465; MR 1891, pp 580, 581; MR 1892, p 802; MR 1893, p 714; Ann 16, iv, p 664; Ann 17, iii cont, pp 979, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 682; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527
harbors on coast of .. Ann 13, iv, pp 198-201
Hemet reservoir dam .. Ann 18, iv, pp 662-669, 730
Hetch Hetchy reservoir, discussion Ann 21, iv, pp 450-465
iron and steel from statistics of MR 1882, pp 120, 125, 129, 131, 133, 135, 136, 137; MR 1883-84, pp 252, 256-257; MR 1885, pp 182, 184, 186, 197-198; MR 1886, p 18; MR 1887, p 11; MR 1888, p 15; MR 1889-90, p 12; MR 1892, pp 15, 16, 18; MR 1893, p 15; Ann 17, iii, pp 48, 60, 63; Ann 19, vi, pp 66, 72; Ann 20, vi, pp 81, 83, 84, 85
iron ore in Bidwell Bar quadrangle GF 43, p 6
in Downieville quadrangle GF 37, p 8
irrigation in Cache Creek BasinWS 45, pp 19-24
in Smartsville quadrangle GF 18, p 3
law governing, quoted at length Ann 11, ii, pp 242-250
near Bakersfield .. .WS 17
near Fresno ... WS 18
near Merced .. WS 19
progress and problems in Ann 11, ii, pp 235-237
reservoirs projected for Ann 18, iv, pp 703-715
water storage for ... Ann 13, iii, pp 286-297, 305-317, 319-321
weir at head of Calloway canal Ann 13, iii, pp 227-229
of Folsom canal ... Ann 13, iii, pp 232-234
of Kraft district canal Ann 13, iii, pp 226-227
of San Diego flume ... Ann 13, iii, pp 230-231
of Turlock and Modesta canals Ann 13, iii, pp 231-232
irrigation and water-appropriation districts in WS 17, pp 19-25
irrigation canals in ... Ann 13, iii, pp 164-175, 184-187, 191-194, 203-214
irrigation engineering works in High Sierra and Clear Lake Basin Ann 13, iii, pp 398-409
irrigation history, early, in San Bernardino Valley Ann 19, iv, pp 542-543

Jackson quadrangle, geology of GF 11
Kaweah River, flow of, measurements of Bull 140, pp 279-282; WS 28, p 193
irrigation from ... WS 18, pp 14-38
irrigation canals on WS 17, pp 42-66
reservoir sites on .. Ann 18, iv, pp 703-706, 738
water powers on .. Ann 19, iv, pp 524-526
irrigation from ... WS 18, pp 42-91
Knoxville beds and fossils in Bull 133, pp 13-22
La Mesa reservoir dam Ann 18, iv, pp 649-653, 729
Lagrange reservoir dam Ann 18, iv, p 686
Lagrange reservoir site, survey of Bull 140, pp 303-304
Lake Helena dam site Ann 18, iv, p 654
Lake Tahoe Forest Reserve. (See Stanislaus and Lake Tahoe forest reserves.)
Lassen Peak quadrangle, geology of GF 15
lava flows in ... Bull 89
lead from, statistics of MR 1882, p 313; MR 1883-84, p 416; MR 1888, p 248; MR 1886, p 146; MR 1887, p 104; MR 1889-90, p 80; Ann 16, iii, p 362; Ann 17, iii, p 134; Ann 18, iv, p 240; Ann 19, vi, pp 201, 205; Ann 20, vi, pp 226, 228; Ann 21, vi, p 229
lime production of MR 1887, p 532; MR 1888, p 555; MR 1889-90, p 588; MR 1891, p 465
limestone in Downieville quadrangle GF 37, p 8
Little Bear Valley reservoir and dam Ann 18, iv, pp 690-692, 731
Littlerock Creek, flow of, measurements of Ann 18, iv, pp 402-405; Ann 19, iv, pp 526-528; Ann 20, iv, pp 64, 540; Ann 21, iv, pp 470-471; WS 16, p 193; WS 28, pp 189, 190, 191
Los Angeles River, flow of, measurements of Ann 18, iv, pp 413-415; Ann 20, iv, pp 541-543; WS 39, pp 409-410
lumber industry in Ann 19, v, pp 21, 22
Lytle Creek, flow of, measurements of Ann 20, iv, pp 555-557; Ann 21, iv, pp 481-483; WS 39, pp 413-417
Lytle Creek rock-fill dam Ann 18, iv, pp 648-649
magnetic declination in Ann 17, v, pp 313-317

maps, geologic, of. (See Map, geologic, of California.)

maps, topographic, of. (See Map, topographic, of California; also pp 68-70 of this bulletin.)

marble production of, statistics of MR 1892, p 709; MR 1893, pp 547-548; Ann 16, IV, pp 437, 463, 464; Ann 17, IV cont, pp 760, 766, 767, 768; Ann 18, V cont, pp 950, 975, 977-978; Ann 19, VI cont, pp 206, 238, 239, 240-242; Ann 20, VI cont, pp 271, 281, 282, 283, 284; Ann 21, VI cont, pp 335, 341, 342, 343

Marysville quadrangle, geology of GF 17

Merced, irrigation near ... WS 19

Merced reservoir and dam Ann 18, IV, pp 700-701

Merced River, irrigation from WS 19, pp 33-40

flow of, measurements of Ann 12, IV, p 320; Bull 140, pp 296-297

Mesozoic and Cenozoic paleontology of Bull 15

metacinnabarite from New Almaden Bull 78, pp 80-83

Mill Creek, flow of, measurements of Ann 19, IV, pp 551-567;

Ann 20, IV, p 558; Ann 21, IV, p 485; WS 39, pp 421-422

mineral spring resorts in .. Ann 14, II, p 81

mineral springs in Truckee quadrangle GF 39, p 8

mineral springs of .. Bull 32, pp 202-214;

MR 1883-84, p 980; MR 1885, p 537; MR 1886, p 715;
MR 1887, p 633; MR 1888, pp 626; MR 1889-90, p 528; MR 1891, pp 603-604; MR 1892, pp 824, 826; MR 1893, pp 774, 776, 784, 786-787, 794; Ann 16, IV, pp 709, 711, 720; Ann 17, IV cont, pp 1026, 1031-1032, 1042; Ann 18, V cont, pp 1371, 1376, 1387; Ann 19, VI cont, pp 661, 666, 678; Ann 20, VI cont, pp 749, 755, 767; Ann 21, VI cont, pp 599, 605-606, 620

mineralogy of Pacific coast, contributions to Bull 61

minerals of, useful MR 1882, pp 767-769; MR 1887, pp 703-707

Mohave River, flow of, measurements of Ann 19, IV, pp 614-632;

Ann 21, IV, pp 471-473; Bull 140, p 318; WS 39, pp 408-409

Mokelumne River, flow of, measurements of Ann 12, II, pp 322-323;

Bull 131, pp 86-87; Bull 140, pp 308-310

profile of .. WS 44, p 95

Mono Valley, Pleistocene history of Ann 8, I, pp 261-394

Moreno rock-fill dam Ann 18, IV, pp 640-642, 728

Mother Lode district, geology of GF 63

Mount Lyell quadrangle, forest conditions in Ann 21, V, pp 574-575

Mount Shasta, physiography of TF 1, pp 2-3

natural gas in Marysville quadrangle GF 17, p 2

Neocene of, summary of our knowledge of Bull 84, pp 194-222

Nevada City and Grass Valley districts, gold-quartz veins of Ann 17, II, pp 1-262

Nevada City, Grass Valley, and Banner Hill districts, geology of GF 29
California, nickel ore in ... MR 1883-84, p 539
onyx marble localities in ... Ann 20, vi cont, pp 287-288
Ophir, gold-silver veins of .. Ann 14, ii, pp 243-284
Otay (lower) rock-fill steel-core dam Ann 18, iv, pp 637-640, 728
Otay (upper) reservoir .. Ann 18, iv, pp 642, 726
Pacoima reservoir dam Ann 18, iv, pp 693-695
paint, mineral, production of MR 1892, p 818; Ann 16, iv, p 698;
Pastoria Creek, flow of, measurements of Bull 140, pp 258-259
Pine Valley reservoir dam .. Ann 18, iv, p 653, 729
Pit River, profile of .. WS 44, p 92
Placerville quadrangle, geology of GF 3
platinum from, character of Ann 16, ii, p 629
Pleistocene and recent Mollusca of Great Basin, with descriptions of new forms, introduced by sketch of Pleistocene lakes of Great Basin ... Bull 11
Pleistocene history of Mono Valley Ann 8, i, pp 261-394
Poso Creek, flow of, measurements of Bull 140, pp 274-276
irrigation from ... WS 17, pp 75-76
precious stones found in ... MR 1883-84, pp 730-732, 763; MR 1893, p 765; Ann 16, iv, pp 596, 601; Ann 20, vi cont, pp 582-584
Prosser Creek, flow of, measurements of Ann 11, iv, pp 101, 108
Pyramid Peak quadrangle, geology of GF 31
quicksilver in Sonora quadrangle GF 41, p 7
quicksilver deposits of Pacific slope Ann 8, ii, pp 961-985; Mon xii
quicksilver reduction at New Almaden MR 1883-84, pp 503-536
rainfall at San Francisco (monthly) Ann 21, iv, p 661
at Sweetwater dam ... WS 39, p 431
at various points in .. Ann 18, iv, pp 363, 361, 396, 399, 400, 407, 418; Ann 19, iv, pp 532-535, 559; Bull 140, pp 257-258, 264, 289, 321, 325-326, 329
in Cache Creek Basin ... WS 45, pp 12-18
on mountains of .. Ann 20, iv, pp 560-561; WS 39, pp 437-438
relation of altitude to ... Bull 140, pp 328-330
types of, in ... Ann 13, iii, p 27
Rancheria Creek, flow of, measurements of Bull 140, pp 262-264
California, reservoir capacities and areas in, tables of Ann 18, iv, pp 727-739
reservoir sites in southern Ann 18, iv, p 707
reservoir sites and irrigable lands in Nevada and, reported by topographers. Ann 11, ii, pp 297-298, 310
reservoir surveys in Ann 20, iv, pp 29-31
reservoirs, projected, for irrigation in Ann 18, iv, pp 703-715
rivers; low-water stage in 1898, measurements of WS 28, pp 193-196
rocks of Sierra Nevada Ann 14, ii, pp 435-495
Sacramento-quadangle, geology of GF 5
Sacramento River, flow of, measurements of Ann 18, iv, pp 361-369;
Sacramento River, flow of, measurements of Ann 19, iv, pp 508-510; Ann 20, iv, pp 63, 526, 527;
Sacramento River, flow of, measurements of Ann 21, iv, pp 444-447; Bull 131, pp 76-78; Bull 140, pp 249-255; WS 11, p 89; WS 16, pp 185-186; WS 28, pp 182, 193; WS 38, pp 387-389
profile of AVS 44, pp 91-92
profiles of MR 1882, pp 570-571
profile of MR 1882, pp 532-534, 547-549;
San Joaquin River, flow of, measurements of Ann 18, iv, pp 405-411; Ann 19, iv, pp 528-531; Ann 20, iv, pp 64, 549-552; Ann 21, iv, pp 475-480; Bull 140, pp 315-318; WS 16, pp 194-195; WS 28, pp 189, 190-191, 196; WS 39, pp 410-413
San Jacinto Forest Reserve, irrigation from WS 19, pp 13-26
San Joaquin Valley, description of WS 17, pp 15-18
San Leandro and Temescal reservoir dams Ann 18, iv, pp 655-657
San Andreas and Pilarcitos reservoir, discharge of, measurements of Ann 18, iv, pp 375-377
San Bernardino Forest Reserve, area, timber, etc. Ann 19, v, pp 65, 359-365
San Bernardino Valley, discharge measurements in WS 39, pp 423-425
San Clemente Island, geologic sketch of Ann 18, ii, pp 459-496
San Diego River, proposed dam on Ann 21, iv, pp 486-487
San Emidio Creek, flow of, measurements of Ann 18, iv, pp 397-399
San Francisco Peninsula, geology of, sketch of Ann 15, pp 399-476
San Gabriel Forest Reserve, irrigation from WS 19, pp 13-26
San Gabriel, San Bernardino, and San Jacinto forest reserves, reports on Ann 20, v, pp 411-478
San Joaquin River, flow of, measurements of Ann 18, iv, pp 385-389, 390; Ann 19, iv, pp 514-516; Ann 20, iv, pp 63, 526, 529-530; Ann 21, iv, pp 466-467; Bull 131, pp 81-82; Bull 140, pp 288-294; WS 19, pp 9-12; WS 11, p 91; WS 16, p 190; WS 28, pp 183, 185, 186, 193; WS 38, pp 395-396
San Joaquin Valley, description of WS 17, pp 15-18
San Leandro and Temescal reservoir dams Ann 18, iv, pp 655-657
California, San Luis Rey River, flow of, measurements of.................. Ann 19, iv, pp 532-535; Bull 140, p 321; WS 39, pp 428-429
San Mateo Creek, flow of, measurements of.............................. WS 38, pp 389-390
San Mateo reservoir dam.. Ann 18, iv, pp 688-690
Santa Ana Canyon steel dam... Ann 18, iv, p 715
Santa Ana River and tributaries, supply of water from. Ann 19, iv, pp 567-611
Santa Clara River, flow of, measurements of.................. Ann 20, iv, pp 540-541
sections, geologic, in. (See Section, geologic, in California.)
sewage-disposal plants in... WS 22, pp 82-85
Sierra Nevada, geology of.. Ann 14, ii, pp 435-495; Ann 17, i, pp 521-762
rocks and history of... GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
silver and gold in, comparative production of.......................... Ann 2, p xxxvi
(See “gold and silver,” under this State.)
Smartsville quadrangle, geology of.................................GF 18
soda, natural, of Mono and Owens lakes................................. Bull 60, pp 53, 57-67, 75-78
soils of Jackson quadrangle.. GF 11, p 6
of Placerville quadrangle.. GF 3, p 3
of Pyramid Peak quadrangle.. GF 31, p 8
of Sacramento quadrangle... GF 5, p 3
of Smartsville quadrangle... GF 18, p 6
Sonora quadrangle, forest conditions in................................. Ann 21, v, pp 569-571
geology of..........................GF 41
irrigation from..WS 19, pp 52-56
profile of..WS 44, p 95
Stanislaus and Lake Tahoe forest reserves and adjacent territory, report on..........................Ann 21, v, p 499-561
stratigraphy of, notes on.. Bull 19
streams in, average flow of... Bull 140, pp 311-312
stream measurements by State engineers, method of...................... Bull 140, pp 312-313
in, miscellaneous..Ann 18, iv, pp 416-418; Ann 19, iv, pp 535-536; WS 28, p 185; WS 39, pp 432-436
sulphur production of..MR 1883-84, pp 864-865
Sweetwater reservoir, evaporation at.................................. Bull 140, pp 325-326
California, Sweetwater reservoir dam Ann 18, iv, pp 669-682, 730
Tejon strata of .. Bull 83, pp 100-103
Tejon House Creek, flow of, measurements of Ann 18, iv, pp 400-402; Bull 131, p 79; Bull 140, pp 260-262
Temescal Creek, flow of, measurements of WS 39, pp 425-426
Tertiary revolution in topography of Pacific coast Ann 14, ii, pp 397-434
timber in, estimates of Ann 19, v, pp 17, 19
tin deposit and production of MR 1883-84, pp 614-615; MR 1889-90, pp 119, 121; MR 1891, p 164; MR 1892, p 258; Ann 16, iii, pp 535-538
topographic maps of. (See Map, topographic, of California.)
topographic work in .. Ann 4, pp 4-6, 7-9; Ann 5, pp 13-14, 47-48; Ann 6, pp 15-16; Ann 7, pp 55-56; Ann 8, ii, pp 105, 131; Ann 9, p 58; Ann 10, i, p 97; ii, pp 66-67; Ann 11, ii, pp 295-296; Ann 12, i, p 45; Ann 13, i, pp 77-78; Ann 14, i, pp 177-178; Ann 15, pp 121-123; Ann 16, i, pp 66, 68, 70, 71; Ann 17, i, pp 97, 105; Ann 18, ii, pp 94, 95, 109-110; Ann 19, i, pp 89, 90, 107-108, 113; Ann 20, i, pp 100, 101, 119, 124-125; Ann 21, i, pp 137-139, 144-145
Truckee quadrangle, geology of GF 39
Truckee River, flow of, measurements of Ann 11, ii, pp 101, 108; Ann 12, ii, pp 324-325; Ann 13, iii, pp 95, 99; Bull 140, pp 210-212; WS 38, p 331
Tule River, flow of, measurements of Ann 12, ii, p 319; Bull 140, pp 276-279; WS 28, p 192
irrigation from .. WS 17, pp 78-92
Tunis Creek, flow of, measurements of Bull 140, p 260
irrigation from .. WS 19, pp 43-50
profile of .. WS 44, p 96
reservoir project on Ann 21, iv, pp 450-465
Victor reservoir dam .. Ann 18, iv, pp 708-710
volcanic eruption (a late one) in, and its peculiar lava Bull 79
Warm Creek, flow of, measurements of Ann 20, iv, pp 558-559
water, underground, obtained from bed of Arroyo Seco and Pasadena Mesa Ann 20, iv, pp 543-549
water appropriation and irrigation districts in WS 17, pp 19-25
water storage on Cache Creek WS 45
water supply, for public lands, in Ann 16, ii, pp 506-509
of Marysville quadrangle GF 17, p 2
wells in San Bernardino Valley Ann 20, iv, p 559
Whitewater River, flow of, measurements of Bull 140, p 318
woodland area of .. Ann 19, v, p 13
Wright act, in relation to irrigation Ann 13, iii, pp 145-148
Yosemite quadrangle, forest conditions in Ann 21, v, pp 571-574
Yuba River, profile of .. WS 44, p 93
Callahan Divide, Texas, general description of Ann 21, vii, pp 46-47
Calloway irrigation canal, California Ann 13, iii, pp 164-168
Caloosahatchie beds of Florida Ann 18, ii, p 337; Bull 84, pp 142-149, 323
Calymperidea of Miocene deposits of New Jersey Mon xxiv, pp 122-125
Cambrian; a correlation essay, by C. D. Walcott Bull 81
Cambrian fauna of Nevada, Eureka district Mon xx, pp 41-47, 191-192
Lower, notes on genera and species of Ann 10 i, pp 597-700
relations of, to superjacent faunas........................ Ann 10, i, pp 581-597
Cambrian faunas of North America Bull 10; Bull 30
Cambrian fossils of Appalachian province Bull 81, pp 91-155
of Massachusetts .. .Bull 81, pp 88-90
of Nevada, Eureka district Mon viii, pp 11-64, 268-269
Eureka district, systematic list of Mon xx, pp 320-321
Cambrian history of Appalachian region GF 61, p 2
of Massachusetts, western .. .GF 50, p 1
of Montana, Fort Benton quadrangle GF 55, p 5
Cambrian land areas in Denver Basin Mon xxvii, pp 13-15
Cambrian meduse... Mon xxx, pp 1-65
Cambrian rocks; Acadian series in Georgia, equivalents of Bull 81, p 303
Acadian series, naming of Bull 5, p 248
Adams Lake series of British Columbia Bull 86, p 340
American and foreign equivalent formations Bull 81, pp 373-379
Antietam sandstone of Virginia, Maryland, and West Virginia GF 10, p 3
Apison shale of Georgia, Tennessee, and North Carolina GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2
Barker formation of Montana GF 55, p 2; GF 56, p 2
Beaver limestone of Tennessee and North Carolina GF 16, p 3
Becket conglomerate-gneiss of Massachusetts, western Mon xxix, pp 31-38
Becket gneiss of Massachusetts and Connecticut GF 50, pp 1, 4
bibliography of Lower Cambrian rocks and fossils Ann 10, i, pp 516-524
Black Patch grit of New York-Vermont Ann 19, iii, pp 181-183
Bow River group or series Bull 81, pp 326-327; Bull 86, p 340
Brantree argillites .. Bull 10, pp 43-49; Bull 81, pp 73-78, 268-273
Bretonian series, naming of Bull 81, p 247
Castle Mountain group or series of Canada Bull 81, pp 326-327; Bull 86, p 340
Cherokee slates of North Carolina, features of Bull 81, p 138
Cheshire quartzite of western Massachusetts GF 50, p 1
Chilhowee sandstones of North Carolina and Tennessee, features of Bull 81, pp 138, 247, 251
Choccolocco or Montevallo shales, naming of Bull 81, p 247
classification of, table showing Ann 10, i, p 548
of early Cambrian and pre-Cambrian formations Ann 7, pp 365-454
Cochran conglomerate of Tennessee and North Carolina GF 20, p 2; GF 16, p 3; GF 25, p 2
Conasauga shale in Alabama, Georgia, and Tennessee GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 20, p 2; GF 25, p 3; GF 33, p 2; GF 35, p 2
Cambrian rocks; Conasauga shale, naming of.. Bull 81, pp 246-247
copper-bearing series of Lake Superior region ... Bull 86, passim
Coosa shales of Alabama ... Bull 81, pp 208, 247
correlation of .. Bull 81
Cupferous series of Great Lakes region ... Bull 86, pp 120-121, 122, passim
(See, also, copper-bearing series; Keweenawan series; Nipigon series.)
Deadwood formation of Black Hills.. Ann 21, iv, pp 505-508
Deadwood sandstone of Black Hills, water from ... Ann 21, iv, p 567
distribution, geographic, of Lower ... Ann 10, i, pp 564-581
Dry Creek shale of Montana, description and sections of Ann 20, iii, pp 286, 328, 330, 340, 364, 368; GF 55, p 2; GF 56, p 2
Eastern sandstone of Lake Superior region .. Ann 3, pp 136, 147-159; Mon v, pp 351-365; Mon xix, pp 461-463; Bull 81, pp 197, 198, 199, 335-336
junction between Keweenaw series and .. Bull 23
enlargements in ... Bull 8, pp 39-41
Eureka series of Nevada .. Bull 86, pp 305
European and American equivalent formations .. Bull 81, pp 373-377
ferruginous quartzite and sandstone of New York-Vermont Ann 19, iii, pp 183-185
Flathead formation of Montana ... Bull 110, pp 20-22
of Wyoming .. GF 30, p 4; GF 52, p 2
of Yellowstone Park .. Mon xxxii, ii, pp 8, 21, 22, 23, 154, 206, 212, 214
Flathead quartzite of Montana .. GF 1, p 2; GF 24, pp 1, 2; GF 56, p 2
Flathead sandstone of Montana, description and sections of Ann 20, iii, pp 285, 364; GF 55, p 2
formations, table of ... Ann 10, i, p 548
Gallatin formation of Montana .. Bull 110, pp 22-25; GF 1, p 2; GF 24, p 2
of Wyoming .. GF 30, p 4; GF 52, p 2
of Yellowstone Park .. Mon xxxii, ii, pp 8, 22, 23, 58, 153, 206, 212, 214
Gallatin limestones and sandstones of Montana ... Bull 81, p 224
Georgia slates of Vermont and northern Appalachian province Bull 81, pp 98-114, 240-250, 277-281
history, relations, thickness, fossils, etc., of .. Bull 30, pp 12-59
gneisses of Massachusetts, western ... Mon xxix, pp 31-65
Granular quartz of Appalachian province, northern Bull 81, pp 91-96, 275-277, 283, 284
Hamburg limestone of Nevada and Utah ... Ann 3, p 255; Mon vii, pp 7-8; Mon xix, pp 39-41; Bull 81, p 315
Hamburg shale of Nevada, Eureka district, age, character, and thickness of Ann 3, pp 253, 255, 256; Mon xix, p 41; Bull 81, pp 246, 315, 316
Hampton shale of Virginia and Tennessee .. GF 59, p 3
Hardistownville quartzite of New Jersey, northern Ann 18, ii, pp 442-443, 454-456
Harpers shale in Catoctin belt .. Ann 14, ii, pp 333-335; GF 10, p 3
Hesse sandstone of Tennessee and North Carolina GF 16, p 3; GF 25, p 2
Hickory series, naming of ... Bull 81, p 246
historical notes on correlation of .. Bull 81, pp 391-421
Honaker limestone of Virginia, West Virginia, and Tennessee GF 44, p 2; GF 59, p 3
Hoosac schist in Hoosac Mountain .. Mon xxiii, pp 59-63
Johannian series of New Brunswick, naming of ... Bull 81, p 249
Katemcy series of Texas, naming of .. Bull 81, p 246
Cambrian rocks; Knox dolomite of Virginia, West Virginia, and Tennessee. GF 44, p 2; GF 59, p 3

Knox sandstone and shale of Southern States................. Bull 81, pp 301-307

Lake Superior sandstone of Michigan.......................... GF 62, p 11; Bull 81, pp 188-190, 292, 335-339; Bull 86, passim

Levis shales of Canada... Bull 81, pp 285-286

Loudoun formation in Catoctin belt......................... Ann 14, ii, pp 324-329; GF 10, p 2

Lower Quebec limestone of Wyoming............................. Bull 81, p 351

Madison sandstone of Wisconsin.............................. Bull 81, pp 245, 331-332

Manhattan group of New York.................................. Bull 86, pp 393, 394, 396, 397

Martinsburg shale of Virginia, Maryland, and West Virginia........ GF 10, p 3

Maryville limestone of Kentucky, Virginia, Tennessee, and North Carolina.............................. GF 12, p 2;

GF 16, pp 3-4; GF 25, p 3; GF 27, p 2; GF 33, p 2; GF 59, p 3

Meagher limestone of Montana, description and sections of........ Ann 20, iii, pp. 285, 340, 364; GF 55, p 2; GF 56, p 2

Mendota limestone group of Wisconsin....................... Bull 81, pp 245, 332, 334

Merrimack group of New Hampshire, features of............... Bull 81, p 70

Monson gneiss and associated rocks in Massachusetts........... Mon xxix, pp 41-65

Montevallo shales, naming of............................... Bull 81, p 247

Murray shale of Tennessee and North Carolina................ GF 16, p 3; GF 20, p 2; GF 25, p 2

Nebo sandstone of Tennessee and North Carolina............... GF 16, p 3; GF 20, p 2; GF 25, p 2

Nichols shale of Tennessee and North Carolina................. GF 16, p 3; GF 20, p 2; GF 25, p 2

Nipigon series of Canada... Bull 81, pp 339

Niskonlith series of Canada....................................... Bull 86, p 340

Nolichucky shale of Kentucky, Tennessee, Virginia, West Virginia, and North Carolina.......................... GF 12, p 2; GF 16, p 4;

GF 25, p 3; GF 27, p 3; GF 33, p 2; GF 44, p 2; GF 59, p 3

nomenclature of divisions of................................. Bull 81, pp 236-252

North American and South American equivalent formations........ Bull 81, p 379

Ocoee conglomerate and shales of Southern States............ Bull 81, pp 252, 299-300

of Alabama... Bull 81, pp 305-308

of Appalachian province.. Bull 81, pp 91-155, 274-313

of Arizona.. Bull 81, pp 350-357

of Atlantic coast province................................. Bull 81, pp 263-274

of California, Inyo or White Mountains...................... Ann 17, i, pp 534-535

of Canada... Bull 81, pp 114-122, 285-287, 326-337

of Cape Breton... Bull 81, pp 63-67, 262-267

of Colorado.. Bull 81, pp 351-354

Aspen district... Mon xxxi, pp 4-9

Leadville district.. Ann 2, pp 217-218

Mosquito Range.. Mon xii, pp 58-60, 277

Pikes Peak quadrangle... GF 7, pp 1-2

of Delaware... Bull 81, p 288

of Georgia... Bull 81, pp 303-305

Ringgold quadrangle.. GF 2, p 1

of Grand Canyon region... Bull 30, pp 41-43

of Idaho... Ann 16, ii, p 227; Bull 81, pp 320-323

of interior continental province............................. Bull 81, pp 330-339

of Iowa, northeastern... Ann 11, i, pp 333-334

of Kentucky, Estillville quadrangle............................ GF 12, p 2

Bull. 177—01—13
Cambrian rocks of Lake Superior region Ann 3, pp 155-156; Ann 16, i, p 796; Mon v, pp 351-352, 366, 443; Bull 62
of Maine Bull 81, pp 68-69, 267
Mount Desert Island Bull 81, pp 289-290
Harpers Ferry quadrangle Bull 110, pp 15, 20
of Massachusetts Bull 81, pp 232-236
of Missouri Bull 81, pp 339-341
of Missouri River region, upper Ann 6, pp 50-51
of Montana Bull 81, pp 323-326
Fort Benton quadrangle GF 55, p 2
Judith Mountains Ann 18, iii, pp 459, 465-468
Little Belt Mountains Ann 20, iii, pp 284-287, 383; GF 56, p 2
Livingston quadrangle GF 1, p 2
Three Forks, vicinity of Bull 110, pp 15, 20
Three Forks quadrangle GF 24, p 2
of Nevada Bull 81, pp 313-320
Eureka Ann 3, pp 254-259; Mon vii, pp 5-10; Mon xx, pp 34-62
of New Brunswick Bull 81, pp 59-67, 262-267
of New Hampshire Bull 81, pp 70-72, 267-268
of New Jersey Bull 81, p 287
of Newfoundland Bull 81, pp 253-262
of North America, classification of Bull 30, pp 63, 65
map showing Ann 10, i, pp 510-511
of North Carolina Bull 81, p 299
Knoxville quadrangle GF 16, pp 3-4
of Nova Scotia Bull 81, pp 50-59, 262
of Pennsylvania Bull 81, pp 288-289; Bull 134
of Rocky Mountain province Bull 81, pp 313-330
of South Dakota, Black Hills Bull 21, iii, pp 178, 181;
iv, pp 505-508; Bull 81, pp 347-349
of States. (See, also, formation names under this heading.)
of Tennessee Bull 81, pp 299-303
Briceville quadrangle GF 33, p 2
Bristol quadrangle GF 59, p 2
Chattanooga quadrangle GF 6, p 1
Cleveland quadrangle GF 20, p 2
Estillville quadrangle GF 12, p 2
Kingston quadrangle GF 4, p 2
Knoxville quadrangle GF 16, pp 3-4
Loudon quadrangle GF 25, pp 2-3
Morristown quadrangle GF 27, p 2
Ringgold quadrangle GF 2, p 1
of Texas Ann 21, vii, pp 89-90; Bull 45, pp 56, 87; Bull 81, pp 354-356
of Utah ... Bull 30, pp 38-40; Bull 81, pp 313-320
Tintic district GF 65, p 1
of Virginia Bull 81, pp 290-299
Bristol quadrangle GF 59, p 2
Estillville quadrangle GF 12, p 2
Harpers Ferry quadrangle GF 10, pp 2-3
Pocahontas quadrangle GF 26, p 2
Tazewell quadrangle GF 44, p 2
of West Virginia, Harpers Ferry quadrangle GF 10, pp 2-3
Cambrian rocks of West Virginia, Pocahontas quadrangle GF 26, p 2
of West Virginia, Tazewell quadrangle.. GF 44, p 2
of Wyoming ... Bull 81, pp 349-351; Bull 119, pp 17-18
Absaroka district .. GF 52, p 2
Black Hills, southern part .. Ann 21, iv, pp 505-508
of Yellowstone Park .. Mon xxxii, ii, pp 8, 21, 22, 23, 58, 153, 206, 212, 214; GF 30, pp 1, 4
Olive grit of New York–Vermont ... Ann 19, iii, pp 179-180
Park shale of Montana, description and sections of Ann 20, iii, pp 286, 340, 364, 368; GF 55, p 2; GF 56, p 2
Pilgrim limestone of Montana, description and sections of Ann 20, iii, pp 286, 330, 340, 364, 368; GF 55, p 2; GF 56, p 2
Potsdam rocks, naming of ... Bull 81, p 244
in Alabama, equivalent of ... Bull 81, pp 305-308
in Arizona... Bull 81, pp 219-221
in Black Hills region ... Bull 86, p 257
in Canada and Great Lakes region .. Bull 81, pp 207-208; Bull 86, passim
in Colorado ... Bull 81, pp 209-210, 352-354
in Dakota ... Bull 81, pp 214-216
in Delaware ... Bull 81, p 123
in Illinois .. Ann 17, ii, pp 839-840
in Iowa .. Ann 11, i, pp 333-334; Bull 81, pp 187-188
sections showing relations of ... Ann 10, i, pp 559, 560, 561, 562, 564
in Lake Superior region ... Ann 7, pp 399-414; Bull 81, pp 190-199, 338-339
in Michigan, Crystal Falls district .. Ann 19, iii, pp 151; Mon xxxvi, p 481
in Minnesota .. Bull 81, pp 181-187
in Mississippi Valley, Upper .. Bull 81, pp 330-334
in Missouri ... Bull 81, pp 199-201
in New Jersey ... Bull 81, pp 122-123; Bull 86, pp 401, 414
in Newfoundland ... Bull 81, pp 51-55
in Nova Scotia ... Bull 81, pp 56, 57
in Pennsylvania ... Bull 81, pp 124-132; Bull 86, pp 408, 409
in South Dakota .. Bull 81, pp 347-349
in Tennessee ... Bull 81, pp 142-143
in Texas .. Ann 21, vii, p 89; Bull 81, pp 216-219
in Vermont ... Bull 86, pp 358
in Virginia .. Bull 81, pp 134-138
in Wisconsin ... Ann 7, pp 399; Bull 81, pp 172, 175, 176-181
in Wyoming ... Bull 81, pp 211-214, 340-350
Potsdam sandstone and limestone of Texas, Packsaddle Mountain Ann 21, vii, p 89
stratigraphic relations of Georgia formation to Bull 30, pp 20-24
Prospect Mountain limestone of Nevada, Eureka district Ann 3, pp 253, 254-255; Ann 4, pp 229, 230-231; Mon vii, pp 6-7; Mon xix, pp 36-38; Bull 30, pp 32-33
of Utah and Nevada ... Bull 81, pp 252, 314-315
Prospect Mountain quartzite of Nevada, Eureka district Ann 3, p 254; Ann 4, pp 230, 233; Mon vii, p 6; Mon xix, p 35
of Utah and Nevada ... Bull 81, pp 252, 313-314
quartzite, Lower, in Colorado, Leadville district Mon xi, pp 58-60
red sand rock of Appalachian province, northern Bull 81, pp 96-98, 275, 277, 278, 280
review of investigations relating to Lower Ann 10, i, pp 524-547
Cambrian rocks; Riley series of Texas, naming of Bull 81, p 246
Robinson quartzite of Utah.. .Ann 19, i, pp 620-622
Rogersville shale of Kentucky, Virginia, Tennessee, and North Carolina.GF 12, p 2; GF 16, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
Rome formation of North Carolina, Georgia, and Tennessee.............. GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 18, p 3; GF 20, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2
Rome sandstone of Georgia, naming of... Bull 81, p 247
Russell formation of Kentucky, Virginia, West Virginia, and Tennessee..GF 12, p 2; GF 26, p 2; GF 44, p 2; GF 59, p 3
Rutledge limestone of Kentucky, Virginia, Tennessee, and North Carolina..GF 12, p 2; GF 16, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
St. Croix sandstone of Upper Mississippi Valley Bull 81, pp 295-300
St. John group of New Brunswick .. Bull 10, pp 9-42; Bull 81, pp 61-67
St. John's slate of Newfoundland ... Bull 81, pp 50-55, 248-249
Sandsuck shale of Tennessee and North Carolina GF 16, p 3; GF 20, p 2; GF 25, p 2
Sawatch quartzite of Colorado... GF 9, pp 6, 9; GF 48, p 1
Secret Canyon shale of Nevada, at Eureka. Ann 3, pp 253-255; Ann 4, pp 229, 231, 233; Mon vii, p 7; Mon xix, p 29
Selkirk series of Canada.. Bull 86, p 340
Shenandoah limestone of Catoctin belt.................................. Ann 14, ii, pp 337-342; GF 10, p 3; GF 26, p 2; GF 32, p 2
of Virginia and Tennessee...GF 59, p 3
of New York-VermontAnn 19, iii, pp 180-181
South American and North American equivalent formations............ Bull 81, p 379
Starr conglomerate of Tennessee.. GF 20, p 2
Stockbridge limestone of Massachusetts.......................... Bull 86, p 365, passim of New York............................. Ann 13, ii, pp 301-303, 333
structure of ridge between Taconic and Green Mountain ranges, and of Monument Mountain, Massachusetts Ann 14, ii, pp 525-549, 551-565
Taconic or Taconic system .. Bull 86, pp 379, 390, 464-465, 474, passim
Tintic quartzite of Utah.. GF 65, p 1
Tonto group or series of Grand Canyon of the Colorado................. Bull 81, pp 220-221, 245, 356-357
Tonto sandstone of Grand Canyon district.................................. Bull 86, pp 330, 331, passim
Unicoi sandstone of Virginia and Tennessee.......................... GF 59, p 3
Upper Quebec limestone of Wyoming..................................... Bull 81, p 351
Vermont formation of Green Mountains, Massachusetts................. Mon xxiii, pp 48-59, 181-190
Wallkill limestone of northern New Jersey......................... Ann 18, ii, pp 443-456
Weisner quartzite of Alabama, naming of Bull 81, p 251
Western sandstone of Lake Superior region............................ Ann 3, pp 155-156; Mon v, pp 365-366; Bull 81, pp 197, 198, 335, 336
Weverton sandstone of Catoctin belt.................................. Ann 14, ii, pp 329-333; GF 10, pp 2-3
Wolsey shale of Montana, description and sections of Ann 20, iii, pp 285, 340, 364; GF 55, p 2; GF 56, p 2
Yogo limestone of Montana, description and sections of Ann 20, iii, pp 286, 328, 329, 339, 303, 368; GF 55, p 2; GF 56, p 2
(See, also, Paleozoic.)
Cambrian time, North American continent during Ann 12, i, pp 523-568
North American continent and Europe during Ann 10, i, pp 556-564
Cambrian zone, Lower, or Olenellus, fauna of. Ann 10, i, pp 509-763
Cambrian and Ordovician rocks, relations of, in New York-Vermont slate belt Ann 19, iii, pp 290-297
Camden coal field of Arkansas, southwestern Ann 21, ii, pp 313-329
Camden series of rocks of Arkansas Bull 83, pp 74-75; Bull 84, p 323
Campbell (D. W.), digest of decisions relating to the use and control of water in the arid region. (See p 113 of this bulletin.)
Campbell (M. R.), geology of Big Stone Gap coal field of Virginia and Kentucky Bull 111
geology of Bristol quadrangle, Virginia-Tennessee GF 59
geology of Estillville quadrangle, Kentucky-Virginia-Tennessee. GF 12
geology of Huntington quadrangle, West Virginia-Ohio GF 69
geology of London quadrangle, Kentucky GF 47
geology of Pocahontas quadrangle, Virginia-West Virginia GF 26
geology of Richmond quadrangle, Kentucky GF 46
geology of Standingstone quadrangle, Tennessee GF 58
geology of Tazewell quadrangle, Virginia-West Virginia GF 44
work in charge of, 1893-1900 Ann 15, pp 151-153; Ann 16, i, pp 17-18; Ann 17, i, pp 23-24; Ann 18, i, pp 27-29; Ann 19, i, p 34; Ann 20, i, p 37; Ann 21, i, pp 71-72
Campbell (M. R.) and Leverett (F.), geology of Danville quadrangle, Illinois-Indiana GF 67
Campbell (M. R.) and Mendenhall (W. C.), geologic section along New and Kanawha rivers in West Virginia Ann 17, ii, pp 473-511
Camptonite, analysis of, from Canada, Montreal Bull 107, p 31
analysis of, from New Hampshire, Campton Falls Bull 107, p 31; Bull 148, p 67; Bull 150, p 241; Bull 168, p 23
from New York, Hudson River highlands, Orange County, and Washington County Bull 107, p 31
from Vermont, Fairhaven .. Bull 107, p 31
Mount Ascutney ... Bull 148, p 69; Bull 168, p 26
from Yellowstone Park, Stinkingwater Canyon Bull 148, p 136; Bull 168, p 110
from Campton Falls, New Hampshire, description of, as one of the educational series Bull 150, pp 239-241
in Lake Champlain region .. Bull 107, pp 29-32
in Montana, Little Belt Mountains quadrangle GF 56, p 4
of Vermont slate belt ... Ann 19, iii, pp 224-225
thin section of, from Vermont, Dorset Mountain Bull 107, p 31
Camptosaurus of North America Ann 16, i, pp 196-198
Camptosaurus, description and restoration of Ann 16, i, pp 196-198, 201
from Denver Basin, remains of Mon xxvi, pp 502-503
Canaan formation of Virginia, West Virginia, and Maryland GF 28,
p 3; GF 32, p 4; GF 34, p 2; GF 61, p 5
Canada; Acadian area of Newark system Bull 85, pp 19-20, 80
Acadian province, upper Paleozoic formations in, correlations and classifications of Bull 80, pp 226-257
antimony mines and production of MR 1883-84, pp 644-645
Archean and Algokian literature of Bull 86, pp 209-247, 501-503
asbestos industry and statistics of MR 1883-84, p 913; MR 1885, p 521; MR 1889-90, p 514; MR 1892, pp 809-814; MR 1893, p 757; Ann 16, iv, pp 705-706; Ann 17, iii cont, p 1006; Ann 18, v cont, pp 1325-1326; Ann 19, vi cont, p 626; Ann 20, vi cont, p 714; Ann 21, vi cont, p 564
Canada; Cambrian rocks in, investigations of Bull 81, pp 56-67, 80-88, 262-267, 285-287, 326, 334, 350, 382

cement production of ... MR 1892, p 743

chronic iron in, occurrence, character, use, etc., of Ann 17, iii, pp 261-273

clay production of, at Paris Exposition of 1900 Ann 21, vi cont, p 374

corundum production of ... Ann 21, vi cont, pp 437-441

elevations in, and in Northwest Territories Bull 6; Bull 72

fossil plants of, literature of Ann 8, ii, pp 842-848

gold fields of .. Ann 16, iii, pp 320-329

gold production of, compared with that of other countries MR 1883-84, pp 319, 320

gold production of,................................. Ann 19, vi cont, pp 629-630; Ann 20, vi cont, p 718; Ann 21, vi cont, p 568

grindstone statistics of ... Ann 18, v cont, pp 1224; Ann 19, vi cont, p 520; Ann 20, vi cont, p 612; Ann 21, vi cont, p 471

gypsum deposits and production of, statistics of MR 1883-84, p 809; MR 1885, pp 459-460; MR 1887, pp 602, 603; MR 1893, p 716; Ann 16, iv, p 660; Ann 17, iii cont, pp 982-983; Ann 18, v cont, p 1269; Ann 19, vi cont, pp 584, 585; Ann 20, vi cont, p 665; Ann 21, vi cont

iron trade of, progress of .. Ann 21, vi, pp 111-112

Lake Agassiz, the glacial ... Mon xxv

Lake Superior region, iron-ore formations of Ann 21, iii, pp 409-412

lead production of, statistics of Ann 18, v, pp 257, 262; Ann 19, vi, pp 201, 215, 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246

mica production of .. Ann 19, vi cont, p 621

mining law of ... MR 1883-84, p 1003

natural gas localities and statistics of MR 1887, pp 601-502; MR 1891, pp 443-448; MR 1893, p 541; Ann 17, iii cont, pp 749-750; Ann 18, v cont, pp 916-918; Ann 19, vi cont, pp 182-183; Ann 20, vi cont, pp 222-223; Ann 21, vi cont, pp 316-317

natural gas of Point Abino, hydrogen sulphide in Ann 19, vi cont, pp 184-185
Canada; nickel ores at Sudbury
nickel production of, statistics of... MR 1882, pp 402,403; MR 1888, pp 110-116;
MR 1889-90, p 125; MR 1891, pp 167,168; MR 1892, pp 255-257; Ann 16, vii, p 607; Ann 20, vi, p 280; Ann 21, vi, p 288
ocher production of, statistics of... Ann 19, vi cont, p 641; Ann 20, vi cont, p 727; Ann 21, vi cont, p 578
petroleum localities and statistics of... MR 1887, pp 456-458; MR 1888, pp 443,467-473; MR 1893, pp 511-515,
532; Ann 16, iv, pp 383-389; Ann 17, iii cont, pp 707-712;
Ann 18, v cont, pp 851-857; Ann 19, vi cont, pp 111-118;
Ann 20, vi cont, pp 124-134; Ann 21, vi cont, pp 167-179
phosphate deposits of..................................... Bull 46, pp 23-42
pre-Cambrian rocks in eastern areas of... Ann 16, i, pp 809-812
pyrites production of, statistics of... MR 1883-84,
p 881; MR 1895, pp 506-507; MR 1886, p 656; Ann 18, v cont, p 1260; Ann 19, vi cont, pp 573,576; Ann 20,
vi cont, pp 654-655; Ann 21, vi cont, pp 521, 522
rainfall at points in..WS 24, p 53
salt production of, statistics of... Ann 19, vi cont,
p 612; Ann 20, vi cont, p 688; Ann 21, vi cont, p 554
sewage-disposal plants in... WS 22, pp 85-89
soapstone production of, statistics of... Ann 18, v cont,
pp 1074-1075; Ann 19, vi cont, p 315; Ann 20,
vi cont, pp 555-556; Ann 21, vi cont, p 418
(See, also, British Columbia; Manitoba; Newfoundland; Ontario;
Quebec.)
Canadian Basin, New Mexico, stream measurements in........... Bull 131, p 40
Canadian River, Oklahoma-Indian Territory, flow of, measurements of...... WS 37,
pp 268-270
profile of... WS 44, pp 65-66
Canal lines of Sun River irrigation system, Montana........ Ann 13, iii, pp 383-385
to divert water from Snake River in Idaho........ Ann 11, ii, pp 190-200
Canal routes across Central America, investigations of............... Ann 20, iv, pp 587-592
Canals, water, conveyance of, in flumes, pipes, and.............. WS 43
in Arizona, Gila Basin...................................... WS 2, pp 45-53
in New York, history and description of, and projects for... WS 25, pp 145-173
(See, also, Irrigation; Water storage.)
Cancellariidse from Chico-Tejon series of California........... Bull 51, p 25
from clays and marls of New Jersey........ Mon xvii, pp 95-104, 214
from Colorado formation............................... Bull 106, pp 158-160
from Miocene deposits of New Jersey........ Mon xxiv, pp 112-113
Cancrinite, analysis of, from Maine, Litchfield................. Bull 42,
pp 29, 30; Bull 148, p 66; Bull 150, p 203; Bull 168, p 22
chemical constitution of.................................. Bull 125, pp 22, 23, 102
composition of.. Bull 150, p 37
occurrence of.. MR 1883-84, p 774
Cantwell conglomerate of Alaska, notes on......... Ann 20, vii, p 16; Alaska (2), p 20
Cantwell River and Valley, Alaska, notes on........ Ann 20, vii, pp 13-14
Canyon. (See Grand Canyon.)
Canyon conglomerate of Wyoming.......................... GF 30, p 5
Canyon quadrangle, Wyoming. (See Yellowstone Park.)
Canyons traversing the upthrusts and folds of Uinta and Park ranges... Ann 9,
pp 706-712
Cape Ann, Massachusetts, geology of .. Ann 9, pp 529-611
Cape Beaufort, Alaska, coal measures of .. Ann 17, i, pp 819-820
Cape Cod, brick clays of ... Ann 17, i, p 984
Cape Cod district, geology of ... Ann 18, ii, pp 497-593
Cape Cod peninsula, origin of ... Ann 18, ii, p 504
Cape Fear River, flow of, measurements of .. Ann 18, iv, pp 54-57; Ann 19, iv, pp 192-193; Ann 20, iv, pp 50, 145; Ann 21, iv, pp 118-119; Bull 140, p 69; WS 11, p 16; WS 15, p 31; WS 27, pp 36, 44, 45; WS 36, pp 115-116
profile of .. WS 44, p 25
water powers in basin of .. Ann 19, iv, pp 187-192
Cape Horn slates of California ... GF 66, p 2
Capellini (G.), quoted on Scaly clays of Italy Ann 16, i, pp 500, 501, 502, 503, 505, 510
Capillary movements of ground water ... Ann 19, ii, pp 85-93
Cappelinite, chemical constitution of .. Bull 125, pp 59, 60, 104
Caprifoliaceae of Alaska ... Ann 17, i, p 887
of Amboy clays ... Mon xxxvi, p 125
of Cretaceous of Black Hills ... Ann 19, ii, p 709
of Dakota group .. Mon xvii, pp 119-125
of Laramie group .. Bull 37, pp 106-115
of North America (extinct) .. Mon xxxv, pp 128-131
Caprina limestone. (See Edwards limestone.)
Caprinic acid, compressibility and thermal expansion of Bull 91, p 35
Carbon in stéel .. Bull 25, p 12
Carbon Glacier, Mount Rainier, present condition of Ann 18, ii, pp 363-365, 367, 368, 386-391
Carbon, Mount, Colorado, structure and rocks of Ann 14, ii, pp 191-192
Carbonaceous material, analysis of, from Utah, near Salt Lake MR 1892, p 812
Carbonate, analysis of, from clay slate (anhydrous) Bull 60, p 32
analysis of, from Colorado, Leadville district (hard) Mon xii, pp 557-602
(See, also, Iron ores.)
Carbonate, iron. (See Iron carbonate.)
Carbonate of lime, deposition of .. Ann 9, pp 640-645
solution of, in natural waters .. Ann 9, p 637
Carbonate of soda, analysis of, from Nevada, Ragtown Bull 60, p 51
analysis of, from Wyoming, Carbon County MR 1882, p 601
Sweetwater Valley ... MR 1882, p 602
Carbonate ore, analysis of, from Colorado, Leadville district Mon xii, pp 544, 618
analysis of, from Montana, Sand Coulee district MR 1889-90, p 34
from Spain, Ysabel .. Ann 18, v, p 319
Carbonate rocks, analyses of, from Montana, various localities Bull 110, p 16; Bull 148, p 269; Bull 168, p 269
Carbonate sand, analyses of, from Colorado, Leadville district Mon xii, p 599
Carbonate, Tenderfoot, and Mineral hills, Cripple Creek district, Colorado, character of ore deposits in .. Ann 18, ii, p 167
Carboniferous fauna of Nevada, Eureka district Mon viii, pp 212-267; 279-281; Mon xx, pp 86-91, 94-95, 96, 98, 171, 194, 199
Carboniferous flora of Missouri, southwestern Bull 93
Carboniferous floras, European, relation of Missouri flora to Mon xxxvii, pp 293-307
Carboniferous fossils of Alaska, Kuiu Island Ann 17, i, pp 903-906
of California ... Bull 33, p 11
of Colorado, Rico Mountains ... Ann 21, ii, p 66
of Montana .. Bull 110, pp 32-43
of Nevada, Eureka district, systematic list of Mon xx, pp 330-333
Carboniferous fossils of North America, Mollusca, nonmarine... Ann 3, pp 411-486
of North America, Osteichthyes .. Ann 4, p 288
of Texas, Permian .. Bull 77
of Yellowstone Park ... Mon xxxii, ii, pp 479-599
Carboniferous history of Appalachian region GF 61, p 2
of Black Hills .. Ann 19, ii, pp 587-588; Ann 21, iv, pp 555-556
of California, Mother Lode district GF 63, pp 6-7
of Colorado, Elk Mountains .. GF 9, p 1
Pikes Peak quadrangle .. GF 7, p 5
of Massachusetts, western .. GF 50, p 3
of Montana, Fort Benton quadrangle GF 55, p 5
Little Belt Mountains quadrangle GF 56, p 6
of South Dakota, Black Hills .. Ann 19, ii, pp 587-588; Ann 21, iv, pp 555-556
of Virginia-Tennessee, Bristol quadrangle GF 59, p 2
Carboniferous insects .. Bull 124
Carboniferous invertebrates, bibliographic index of North American ... Bull 153
Carboniferous movement in the Rocky Mountain region Mon xxvii, pp 17-18
Carboniferous paleontology of Alaska, notes on Ann 17, i, pp 565
Carboniferous rocks; Anderson sandstone of Tennessee GF 33, p 3; GF 40, p 3
Aquidneck shales of Narragansett Basin Mon xxxiii, pp 348-363
Archimedes group, geologic name proposed Bull 80, p 169
Atoka formation of Indian Territory Ann 21, ii, pp 273-274
Aubrey group .. Ann 2, pp 114, 116, 151, 163, 217; Ann 6, pp 132-133
Auriferous slates of California ... GF 3, pp 1, 2
age of .. Bull 33, pp 16-18
Badito formation of Colorado .. GF 68, p 1
Bangor limestone of Tennessee, Georgia, and Alabama GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2
Bayard formation of West Virginia and Maryland GF 28, p 4
Berea grit of Ohio .. Bull 150, pp 75-77
Berea sandstone and shale of Ohio as a water carrier Ann 19, iv, pp 647-648, 685-690
Berea shale and grit of Michigan .. WS 30, pp 84-85
Bearwallow conglomerate of Virginia and West Virginia GF 44, p 3
bitumen deposits in .. Ann 11, i, pp 588-589, 638-639
Blackwater formation of Virginia and West Virginia GF 61, p 5
Blackwater sandstone of Maryland, Virginia, and West Virginia GF 28, p 3; GF 32, p 4
Blue Canyon formation of California GF 66, pp 1-2
Bluefield shale of Virginia and West Virginia GF 26, p 3; GF 44, p 3
Blue limestone of Colorado, Leadville district Ann 2, pp 218-219, 237; Mon xii, pp 63-66
(See, also, Leadville limestone.)
Bluestone formation of Virginia and West Virginia GF 26, p 3; GF 44, p 3
Boggy shale of Indian Territory .. Ann 21, ii, pp 278-279
Bonair conglomerate-lentil of Tennessee GF 58, p 3
Braxton formation of West Virginia GF 34, p 2
of West Virginia-Ohio, Huntington quadrangle GF 69, pp 4-5
Breathitt formation of Kentucky GF 47, p 3
Bricovey shale of Tennessee .. GF 25, p 4; GF 33, p 3; GF 40, p 2
Burlington limestone, areas, characters, and divisions of Ann 11, i, pp 312-313; Bull 80, pp 168-159, 160, 224
Carboniferous rocks; Calaveras formation of California. Ann 14, ii, pp 446-447; Ann 17, i, p 549; ii, pp 79-88, 102, 103; GF 3, p 12; GF 5, pp 1, 2; GF 11, pp 1, 3; GF 15, p 1; GF 18, p 3; GF 29, pp 1, 2; GF 31, pp 1, 3-4; GF 37, pp 1, 3, 7; GF 39, p 3; GF 41, pp 1, 3-4; GF 43, pp 1, 3; GF 51, pp 1, 3-4; GF 63, pp 1-2
Canaan formation of Maryland, Virginia, and West Virginia. GF 28, p 3; GF 32, p 4; GF 34, p 2; GF 61, p 5
Cape Horn slates of California. GF 66, p 2
Charleston sandstone of West Virginia, along New-Kanawha River. Ann 17, ii, pp 508-509
of West Virginia–Ohio, Huntington quadrangle. GF 69, p 4
Chester formation of Indiana. Ann 11, i, pp 638-639
Chitistone limestone of Alaska. Ann 21, ii, pp 425, 426, 427
Chouteau group, history of discussions concerning correlation of. Bull 80, pp 173-192
Clark formation of Virginia and West Virginia. GF 26, p 3
of West Virginia, relation of, to the Pottsville. Ann 20, ii, p 814
Clear Fork formation of Texas. Ann 21, vii, p 102
Clipper Gap formation of California. GF 66, p 2
coal field, bituminous, of northern half of the Appalachian field, comparative stratigraphy of. Bull 65
Coal Measures, altitude of base of, in Illinois. Ann 17, ii, pp 792-794
history of development of nomenclature and classification of. Bull 80, pp 83-107
of Ohio as a water bearer. Ann 19, iv, pp 649-650, 693-696
of Rhode Island. Mon xxxiii, pp 159-201
lower, of Missouri, fossil floras of. Mon xxxvii
or Pennsylvania series; development of its nomenclature and classification in the Appalachian provinces. Bull 80, pp 83-107
thickness, proportionate, of divisions of, light on. Ann 19, iii, pp 471
Coal Measures limestone, lower, of Nevada, Eureka district, features and fossils of. Ann 3, pp 268-270; Mon xix, pp 85-86
upper, of Nevada, Eureka district. Mon xix, pp 93-95
Coldwater shales of Michigan. WS 30, p 84
Conglomerate series of West Virginia, name proposed. Bull 80, p 93
conglomerates as products of glaciation. Mon xxxiii, pp 64-67
Conoquenessing sandstone of Pennsylvania. Bull 80, pp 100-101
Corbin conglomerate-lentil of Kentucky. GF 46, p 3; GF 47, p 2
correlation of formations. Bull 80
Cottonwood limestone of Nebraska. Ann 19, iv, p 738
Cranston beds of Narragansett Basin. Mon xxxii, pp 159-164
Cuyahoga shale of Ohio as a water bearer. Ann 19, iv, pp 648, 685-690
Delhi formation of California. GF 66, p 2
Diamond Peak quartzite of Nevada, age, character, and thickness of. Ann 2, p 268; Ann 3, p 253; Mon xix, p 85
Dighton conglomerate group of Narragansett Basin. Mon xxxiii, pp 184-18
Dismal conglomerate-lentil of Virginia and West Virginia. GF 44, p 3
Dismal formation of Virginia and West Virginia. GF 44, pp 3, 5
Dotson sandstone of Virginia and West Virginia. GF 44, pp 3, 5
Double Mountain formation of Texas. Ann 21, vii, pp 102-103
Englewood limestone of Black Hills. Ann 21, iv, p 509
Eureka limestone of Utah. Ann 19, iii, pp 622-624
Carboniferous rocks; Fairfax formation of West Virginia and Maryland...GF 28, p 4
Fayette sandstone along New-Kanawha River, West Virginia........ Ann 17, p 497-499
in southern Appalachians, relation of, to the Pottsville...Ann 20, ii, p 818
Floyd shale of Georgia and Tennessee GF 2, p 2; GF 6, p 2
Fort Payne chert of Tennessee, Georgia, and Alabama....... GF 2, pp 1-2;
GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 19, p 2;
GF 20, p 3; GF 21, p 2; GF 22, p 2; GF 35, p 2
Fountain formation of ColoradoGF 7, pp 2, 4; GF 36, p 2
Genevieve group, geologic name proposed................... Bull 80, p 169
Gladieville sandstone of Kentucky, Virginia, and Tennessee.. Bull 111, pp 33-34; GF 12, p 3; GF 59, p 5
Godiva limestone of Utah Ann 19, iii, pp 624-625; GF 65, p 1
Greenbrier limestone of Maryland, Virginia, and West Virginia...GF 26, p 3; GF 28, p 3; GF 32, p 4; GF 34, p 2; GF 44, p 3; GF 61, p 5
Harlan sandstone of Kentucky, Virginia, and Tennessee.... Bull 111, pp 31-33; GF 12, p 3
Hartshorne sandstone of Indian Territory.................... Ann 19, iii, pp 436, 441; Ann 21, ii, pp 274-275
Hermosa formation of Colorado, Rico Mountains............. Ann 21, ii, pp 27, 48-59
Hinton formation of Virginia and West Virginia..............Ann 17, ii, pp 487-489; GF 26, p 3; GF 44, p 3
Homewood sandstone of Ohio as a water bearer Ann 19, iv, pp 649, 690-693
Humbug formation of Utah GF 65, p 1
Humbug intercalated series of Utah Ann 19, iii, pp 625-626
Jefferson formation of Montana GF 24, p 2
Kanawha formation of West Virginia, along New-Kanawha River...Ann 17, ii, p 559-508
of West Virginia-Ohio, Huntington quadrangle................. GF 69, p 4
Keokuk formation of Iowa and Indiana......................... Ann 11, i, pp 312, 638-639
Kibbey sandstone of Montana.................................. Ann 20, iii, p 285; GF 55, p 2; GF 56, p 2
Kinderhook limestone of Iowa Ann 11, i, p 313
Kinderhook group, history of discussions concerning........ Bull 80, pp 161, 173-192, 262
Kingstown series of Narragansett Basin....................... Mon xxxii, pp 331-347, 361-363
Leadville limestone of Colorado............................... Mon xxxi, pp 22-30; GF 9, p 6; GF 48, p 1
Lee conglomerate, of Virginia, Kentucky, and Tennessee..... Bull 111, pp 36-37, 39-40; GF 12, p 3; GF 25, p 4; GF 33, p 3; GF 40, p 2; GF 46, p 3; GF 47, pp 2, 3; GF 53, p 3; GF 59, p 4
Logan group in Ohio as a water bearer......................... Ann 19, iv, pp 648, 685-690
Lookout formation of southern Appalachians, relation of, to the Pottsville........ Ann 20, ii, pp 817-818
Lookout sandstone of Alabama, Georgia, and Tennessee....... GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2
McAlester shale of Indian Territory.......................... Ann 19, iii, pp 437, 441; Ann 21, ii, pp 275-276
Madison limestone of Montana................................. Ann 20, iii, pp 290-294; Bull 110, pp 33-39; GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2
of Wyoming .. GF 52, p 3
Mammoth limestone of Utah.................................... GF 65, p 1
Carboniferous rocks; Marble Falls limestone of Texas. Ann 21, vii, pp 94-96
Maroon conglomerate of Colorado. Mon xxxi, pp 33-37; GF 9, pp 6, 8, 9; GF 48, pp 1-2
Marshall group, history of discussion concerning. Bull 80, pp 173-192
Marshall sandstone of Michigan. WS 30, pp 78-80, 84
Massillon conglomerate of Ohio as a water bearer. Ann 19, iv, pp 649, 690-693
Millersport limestone of Colorado. GF 7, pp 2, 4; GF 36, p 2
Minnehahta limestone of Black Hills. Ann 21, iii, pp 177-180; iv, pp 514-516
Minnelusa formation of Black Hills. Ann 21, iii, pp 177-180; iv, pp 510-513
of Black Hills, water from. Ann 21, iv, p 567
Mississippian series, coals in.
 development of nomenclature of. Bull 80, pp 135-172, 263-265
 of Kentucky. GF 47, p 2
 of Tennessee. GF 53, p 2
Mountain limestone, development of nomenclature of. Bull 80, pp 135-172
Newman limestone of Virginia, North Carolina, Kentucky, and Tennessee. Bull 111, p 38; GF 12, p 3; GF 16, p 4; GF 25, p 4; GF 27, p 3; GF 33, p 2; GF 40, p 2; GF 46, p 3; GF 47, p 2; GF 53, p 2; GF 59, p 4
Newman sandstone-lentil of Tennessee. Bull 80, pp 135-172
of Alabama, Gadsden quadrangle. GF 35, p 2
 Stevenson quadrangle. GF 19, p 2
of California, character of. Bull 19, pp 21-23
Colfax quadrangle. GF 66, pp 1-2
Downieville quadrangle. GF 37, p 3
fossils of. Bull 33, pp 10-12
Lassen Peak district. Ann 8, i, pp 404-405; GF 5, p 1
northern, character and distribution of (limestone). Bull 33, pp 10-12
Truckee quadrangle. GF 39, pp 3-4
of Colorado. Ann 9, p 688
Anthracite and Crested Butte quadrangles. GF 9, p 6
Aspen district. Mon xxxi, pp 22-37
Gunnison region (nonconformity). Ann 6, pp 65-66
Leadville district. Ann 2, pp 218-220
Mosquito Range. Mon xii, pp 63-70, 278
Pikes Peak quadrangle. GF 7, p 2
Rico Mountains. Ann 21, ii, pp 27, 47-66
Tennmile district. GF 48, pp 1-2
Walsenburg quadrangle. GF 68, p 1
of Georgia, Ringgold quadrangle. GF 2, p 1
Stevenson quadrangle. GF 19, p 2
of Grand Canyon district. Ann 2, pp 64-66; Mon ii, pp 18, 87-89, 178-179
of Idaho. Ann 16, ii, pp 228-230
of Illinois, Danville quadrangle. GF 67, pp 2-3
of Indiana, Danville quadrangle. GF 67, pp 2-3
of Iowa, northeastern. Ann 11, i, pp 308-313
of Kansas, southwestern. Bull 57, pp 13, 19-20
of Kentucky, correlation of. Bull 111, pp 94-104
Estillville quadrangle. GF 12, p 3
London quadrangle. GF 47, p 2
Richmond quadrangle. GF 46, pp 2-3
of Maryland, Piedmont quadrangle. GF 28, pp 3-4
Carboniferous rocks of Missouri region, upper. Ann 6, pp 51-52
Fort Benton quadrangle. GF 55, p 2
Judith Mountains. Ann 18, iii, pp 458, 470-475
Little Belt Mountains. Ann 20, iii, pp 289-298, 301, 383-384; GF 56, p 2
Livingston quadrangle. GF 1, p 2
Three Forks. Bull 110, pp 32-43; GF 24, p 2
of Narragansett Basin. Mon xxxiii, pp 36-37, 133-201, 208-210, 212-380
of Nebraska, southeastern. WS 12, pp 15-16
of Nevada, Eureka district. Ann 3, pp 268-272; Mon xx, pp 63-98
of Ohio, Huntington quadrangle. GF 69, pp 4-5
of Plateau country. Ann 6, pp 132-133, 159-162, 184
of Sierra Nevada. Ann 17, i, p 549
of South Dakota, Black Hills, southern part. Ann 21, iv, pp 508-516
Black Hills, northern. Ann 21, iii, pp 178, 181
of States. (See, also, formation names under this heading.)
of Tennessee, Briceville quadrangle. GF 33, pp 2-3
Bristol quadrangle. GF 59, pp 4-5
Chattanooga quadrangle. GF 6, p 1
Estillville quadrangle. GF 12, p 3
Kingston quadrangle. GF 4, p 2
Loudon quadrangle. GF 25, p 4
McMinnville quadrangle. GF 22, p 2
Morristown quadrangle. GF 27, p 3
phosphate region. Ann 17, ii, pp 521-522
Pikeville quadrangle. GF 21, p 2
Rouge Gold quadrangle. GF 2, p 1
Sewanee quadrangle. GF 8, p 2
Standingstone quadrangle. GF 53, pp 2-3
Stevenson quadrangle. GF 19, p 2
Wartburg quadrangle. GF 40, p 2
of Texas. Ann 21, vii, pp 91-103; Bull 45, pp 56-62; TF 3, p 2
of Utah, Tintic district. GF 65, p 1
Uinta Basin. Ann 17, i, pp 923-924
Uinta Mountains. Ann 9, pp 687-688
of Virginia, Bristol quadrangle. GF 59, pp 4-5
correlation of. Bull 111, pp 94-104
Estillville quadrangle. GF 12, p 3
Franklin quadrangle. GF 32, p 3
Monterey quadrangle. GF 61, pp 4-5
Pocahontas quadrangle. GF 26, p 3
Tazewell quadrangle. GF 44, p 3
of West Virginia. Bull 85
Buckhannon quadrangle. GF 34, p 2
Franklin quadrangle. GF 32, p 3
Huntington quadrangle. GF 69, pp 4-5
Monterey quadrangle. GF 61, pp 4-5
Piedmont quadrangle. GF 28, pp 3-4
Pocahontas quadrangle. GF 26, p 3
Tazewell quadrangle. GF 44, p 3
of Wyoming. Bull 119, pp 19-21
Black Hills, southern part. Ann 21, iv, pp 508-516
of Yellowstone Park. Mon xxxii, ii, pp 7, 22, 23, 25-26, 32, 34
Opeche formation of Black Hills. Ann 21, iv, pp 513-514
206 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Carboniferous rocks; Otter shale of Montana, description of, and fossils from. Ann 20, i, pp 295-296; GF 55, p 2; GF 56, p 2

Oxmoor sandstone of Alabama ... GF 35, p 2

Pahassapa limestone of Black Hills.................................. Ann 21, iv, pp 295-296; GF 55, p 2; GF 56, p 2

Paine shale of Montana, description, fossils, and sections of. Ann 20, i, pp 290-291, 329, 339, 362, 363; GF 55, p 2; GF 56, p 2

Pennington shale of Virginia, Kentucky, and Tennessee......... Bull 111, p 37; GF 12, p 3; GF 27, p 3; GF 33, p 2; GF 40, p 2;

GF 46, p 3; GF 47, p 2; GF 53, p 3; GF 59, p 4

Pennsylvanian series of Kentucky GF 47, p 2

of Tennessee ... GF 53, p 3

peridotite in Kentucky, age of.. Bull 38, pp 28-29

Permian rocks of Grand Canyon district................. Ann 2, pp 64, 91-94; Mon 11, pp 16, 43-46, 117-121

of Kansas and Nebraska and other parts of United States, discussions relative to the correlation of............................ Bull 80, pp 193-212

of Nebraska (limestone)... Ann 19, iv, pp 134-135, 184-185

of Plateau country... Ann 21, vii, pp 102-103

of Texas.. Bull 77

Pickens sandstone of West Virginia................................. GF 34, p 2

Pocahontas formation of Virginia and West Virginia............. GF 26, p 3; GF 44, pp 3, 4-5

Pocono sandstone of Maryland, Virginia, and West Virginia.... GF 44, pp 3-4; GF 46, p 3; GF 47, p 2; GF 53, p 3

Potomac and Roaring Creek coal fields in West Virginia........ Ann 11, pp 137-150

Pottsville formation in Southern Anthracite coal field, Pennsylvania, stratigraphic succession of fossil floras of........ Ann 20, i, pp 749-930

Price sandstone of Virginia and West Virginia.................... GF 26, p 3; GF 44, p 3

Princeton conglomerate of Virginia and West Virginia............. Bull 110, pp 39-43; GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2

of Yellowstone Park... Mon xxxiii, pp 364-374

Quadrant formation of Montana.. Ann 20, iii, pp 294-298; Bull 110, pp 39-43; GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2

of Wyoming... Mon xxxiii, pp 364-374

Quinlin formation of southern Appalachians, relation of, to the Potts-ville.. Ann 20, i, pp 815

of Virginia and West Virginia.. GF 26, p 3

Raleigh sandstone of Virginia and West Virginia.................. Ann 20, i, pp 493-494; GF 26, p 3; GF 44, p 3, 5

Red Wall group of Plateau region, features of.................... Ann 6, pp 132, 183

Red Wall limestone of Grand Canyon district, age, character, and thick ness of... Ann 2, pp 151, 217

Relief quartzite of California... GF 66, p 2

Robinson formation of California.. Ann 14, ii, pp 447-448; Ann 17, i, pp 626-628; GF 5, p 1; GF 31, p 1;

GF 37, pp 1, 3; GF 39, p 1; GF 41, p 1;

GF 43, p 1; GF 51, p 1; Ann 14, ii, pp 447-448

Rockcastle conglomerate-lentil of Kentucky............................ GF 46, p 3; GF 47, p 2

of Tennessee ... GF 53, p 3
Carboniferous rocks; Royal formation along New and Kanawha rivers, West Virginia

Sailor Canyon formation of California

St. Clair black shales of Michigan

St. Louis formation of Indiana

St. Louis limestone of Iowa

Savage formation of West Virginia and Maryland

Savanna formation of Indian Territory

Scott shale of Tennessee

Seekonk beds of Narragansett Basin

Sequoyah formation of Virginia and West Virginia

Sewell formation of southern Appalachians, relation of, to the Pottsville

Sharon conglomerate of Ohio as a water-bearer

Tahkandit series of Alaska

Tellowa formation of Virginia and West Virginia

Tennmile River beds of Narragansett Basin

Uinta sandstone of Colorado

Waverly formation of Indiana

Waverly shale of Kentucky

Wartburg sandstone of Tennessee

Wasatch limestone, age, character, and thickness of

Waverly formation of Indiana, age, character, and thickness of

Waverly group, history of discussions concerning

Weber conglomerate of Nevada, Eureka district, age, character, and thickness of

Weber formation of Colorado

Weber grits of Colorado, Leadville district

Weber quartzite of Colorado, Leadville district, age, character, and thickness of

Weber shales of Colorado, Leadville district

Welch formation of Virginia and West Virginia

Wichita formation of Texas

Wingate sandstones of Plateau region

Wise formation of Kentucky, Virginia, and Tennessee

Wood River formation of Idaho

Woodhurst limestone of Montana, description, fossils, and sections of

Wyoming formation of Colorado

(See, also, Paleozoic.)
Carburets, iron, electric and magnetic properties of.................Bull 14; Bull 27, pp 30-50
physical characteristics of..Ann 4, pp 53-59; Bull 35
Cardiide from Colorado formation...................................Bull 106, pp 99-101
from marl beds of New Jersey.......................................Mon ix, pp 132-143, 214, 236
from Miocene marls of New Jersey..................................Mon xxiv, p 66
from Puget group..Bull 51, p 58
Cardiniide from Cretaceous of Pacific coast.......................Bull 133, p 53-55
Carmon Island, East Indies, tin deposits of.......................Ann 16, iv, p 494
Carlile formation of Black Hills.....................................Ann 21, iv, pp 533-534
Carlile shale of Colorado...Ann 17, ii, pp 565, 571; GF 36, p 3; GF 58, p 1; GF 68, p 1
Carl (J. F.), quoted on natural gas in Pennsylvania..............MR 1887, pp 467-474
Carnallite, crude, analysis of, from Germany, Stassfurt.........MR 1887, p 635
Carnotite, analyses of, from Colorado, La Sal Creek and Rock Creek. Ann 21, vi, p 312
Carolina gneiss of District of Columbia—Virginia—Maryland, Washington quad-
rangle...GF 70, p 2
Carolinian (Upper Atlantic Miocene—Sumter epoch of Dana).....Bull 184, pp 19, 75, 323
Carpholite, chemical constitution of.............................Bull 125, pp 67, 104
Carriso Mountains, Arizona, structure and rocks of...............Ann 14, ii, pp 209-211
Carruthers (William), biographic sketch of........................Ann 5, pp 384-385
Carson River and Valley, Nevada, irrigation surveys of.........Ann 11, ii, pp 179-180
Carson River Basin, Nevada, hydrography of........................Ann 11, ii, pp 65-66, 102, 109; Ann 12, ii, p 325
irrigation engineering works in....................................Ann 13, iii, pp 394-397
Cartographic system for geologic maps............................Ann 7, pp 104-106; Ann 13, i, pp 83-85
Cartography, geologic, color scheme for conference on, and standards adopted..........................Ann 10, i, pp 56-79
work in...Ann 14, i, pp 226-227
Cascade formation of Montana..GF 55, p 2; GF 56, p 2
Cascade Mountains, geology of.....................................Ann 8, i, pp 159-164; Ann 20, ii, pp 83-210
glaciation of...GF 54, p 3
structure of...Mon xiv, pp 205-207
structure and age of, notes on.....................................Ann 20, iii, pp 32-36
(See, also, Oregon; Washington.)
Cascade and Coast ranges, structure of.........................Ann 7, pp 98-102
Cascade, Coast, and Sierra Nevada ranges, relation of............Bull 19, p 20; Bull 33, pp 19-20
Cascade Range Forest Reserve and adjacent regions, report on... Ann 21, v, pp 209-488
Cassidide from clays and marls of New Jersey......................Mon xviii, p 224
Cassidulidae, Mesozoic, of United States...........................Bull 97, pp 59-73
Cassiterite, analyses of, from Dakota, Black Hills...............MR 1888, p 153
analysis of, from Mexico, Potrillos.................................Ann 16, iii, p 620
from North Carolina, Gaston County.................................Bull 74, p 35
occurrence of..MR 1883-84, p 767
Castle granite of Montana, Little Belt Mountains quadrangle....GF 58, p 4
Castle limestone of Montana, description and sections of........Ann 20, iii, pp 293-294, 329, 362, 363; GF 55, p 2
Castle Mountain, Montana, description of..........................GF 56, p 1
geology of, descriptive..GF 56, p 5
Castle Mountain mining district, Montana, geology of...........Bull 139
precious metal deposits in...GF 56, p 7
Castle Mountain series of Canada.................................Bull 81, pp 326-327; Bull 86, p 340
Caswellite, chemical constitution of................................Bull 125, p 51
Catalogue. (See Bibliography.)
Catalogue, annotated and illustrated, of nonmarine Mollusca of North America .. Ann 3, pp 420-550
Catalogue and bibliography of Cretaceous and Tertiary plants of North America ... Bull 152
Catalogue and index of contributions to North American geology, 1732-1891 ... Bull 127
Catapleiite, chemical constitution of ... Bull 125, pp 60, 76, 105
Catarrinite, analysis of ... Bull 113, p 59
water powers in basin of .. Ann 19, iv, pp 204-212
Catlett (C.), native gold from Persia, analysis of Bull 60, p 137
pyroxene and serpentine from Montville, New Jersey, analysis of .. Bull 60, p 137
quoted on iron ores in Potsdam of Valley of Virginia Ann 21, vi, pp 46-48
Catlett (C.) and Clarke (F. W.), a platiniferous nickel ore from Canada .. Bull 64, pp 20-21
Catlinite, occurrence and statistics of MR 1883, p 498; MR 1888-84, pp 778-779, 781;
MR 1885, p 443; MR 1886, p 604; MR 1887, pp 556, 557; MR 1888, pp 584, 585; MR 1889-90, pp 446, 447, 448; MR 1891, p 540; MR 1892, p 781; MR 1893, pp 681, 682; Ann 16, iv, pp 604, 605; Ann 17, iii cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513;
Ann 20, vi cont, p 599; Ann 21, vi cont, pp 456, 461
Catoctin belt, geology of .. Ann 14, ii, pp 285-305
Catoctin schist of Virginia, Maryland, and West Virginia GF 10, p 2
Catekill group, history of discussions concerning correlation of .. Bull 80, pp 121-134, 181-182
Caverns or sink-holes formed by the action of soil water Ann 12, i, p 257
Caves in limestone found in connection with ore bodies Mon vii, pp 73-74, 94-100
formation of, theory of .. Mon vii, pp 94, 189
Cayadutta Creek, New York, flow of, measurements of WS 35, pp 53-54
Cedar formation of California ... Ann 14, ii, p 451; GF 15, p 1; GF 43, p 3
Ann 20, iv, pp 63, 616-617; WS 28, pp 172-173; WS 38, pp 382-383
Cedar Valley limestone of Iowa .. Ann 11, i, pp 314-320
Celasntracce from Alaska .. Ann 17, i, p 889
from Amboy clays of New Jersey Mon xxvi, pp 98-106
from Cretaceous of Black Hills Ann 19, ii, pp 706-707
from Yellowstone Park .. Mon xxiii, ii, pp 732-735
Celasntracce from Dakota group Mon xvii, pp 172-175
from Laramie group ... Bull 37, pp 77-85
Cement, analysis of ancient Mexican Bull 27, p 72
analysis of, from California, South Riverside MR 1889-90, p 463
from Pennsylvania, Kings Rock ANN 17, iii cont, p 890
chemistry of ... MR 1892, pp 746-747
Ann 16, iv, pp 576-585; Ann 17, iii cont, pp 881-893; Ann 18, v cont, pp 1169-1182; Ann 19, vii cont, pp 487-496;
Ann 20, vi cont, pp 539-550; Ann 21, vii cont, pp 393-411
tests, cost, etc., of .. WS 33, pp 82-90

Bull. 177—01—14
Cement, Portland, at World's Columbian Exposition........... MR 1893, pp 622-623
Cement, Portland, industry in America, history ofMR 1891, pp 535-537
Cement, Rosendale, analysis of, from New York MR 1882, p 490
Cement material, analyses of, from Arkansas, White Cliffs.... Ann 18, v cont, p 1174
Cement rock, analysis of, from California, Berkeley MR 1883-84, p 676
analysis of, from Florida, River Junction Bull 168, p 257
from New Jersey, Alpha........................... Ann 21, vi cont, p 404
from New York, Akron..... .Bull 148, p 255; Bull 150, p 134; Bull 168, p 253
from Pennsylvania, NorthamptonAnn 21, vi cont, p 404
Siegfried......................................Ann 21, vi cont, p 404
from Tennessee, Chattanooga Ann 21, vi cont, p 410
from Texas, Uvalde quadrangle....................... Bull 168, p 259
Cement rock, hydraulic, description of, as one of the educational series..... Bull 150, pp 133-135
Cementation and injection of rocks.........................Ann 16, i, pp 684-688
Cenosome, chemical constitution of.........................Bull 125, pp 66,104
Cenozoic. (See Eocene; Neocene; Tertiary.)
Cenozoic beds and formations of the United States, excluding the Laramie,
list of names applied toBull 84, pp 320-336
Cenozoic epoch on Pacific coast of North America, general considerations on... Bull 84, pp 269-273
Cenozoic formations, classification of.......................... Bull 83; Bull 84
list of names applied toBull 84, pp 320-338
Cenozoic history of Washington, D. C., quadrangle.............. GF 70, p 6
Cenozoic sands of New Jersey.................................. Bull 84, pp 43-44
Cenozoic and Mesozoic paleontology of California............. Bull 15
Central America, ship-transit projects inAnn 20, iv, pp 585-592
Central granite in Michigan and Wisconsin, Penokee district.. .Mon xix, pp 111-116
Central Irrigation District canal, California................... .Ann 13, iii, pp 191-164
Cephalaspide of Devonian ageMon xvi, pp 33-37
Cephalopoda, descriptions of.................................. Bull 106, pp 163-189
of Chico-Tejon series of California Bull 51, pp 26-27
of Colorado formation....................................... Bull 106, pp 163-189
of Cretaceous of Arkansas................................... Bull 4, pp 16-17
of New Jersey recognized at other localities, table showing .Mon xviii, p 30
of Pacific coast .. Bull 133, pp 72-85
of Vancouver Island Bull 51, pp 47-48
of Devonian, higher, of Ontario County, New York............ Bull 16, pp 20-22, 47-52
of Eocene of Atlantic slope, middle Bull 141, p 63
of North America.. Bull 83, passim
of Mesozoic of Alaska Bull 51, pp 67-70
of Nevada, Eureka district................................. Mon viii, pp 80-87, 200-204, 265-266; Mon xx, pp 323, 325, 330, 333
of Permian of Texas....................................... Bull 77, pp 19-24
of Raritan clays and greensand marls of New Jersey..............Mon xviii
of Yellowstone ParkMon xxxv, n, pp 630-32, 636, 640
Ceramic arts, bibliography of................................... Bull 143
Ceramics, chromolithography in.................................. Ann 18, v cont, p 1121
Ceratops, remarks on... Ann 16, i, 206-207, 216
Ceratops beds in Denver Basin.................................. Mon xxvii, pp 477-479
in Wyoming ... Ann 21, iv, p 540
Ceratopsidae from Denver Basin, remains of................ .Mon xxvii, pp 509-516
of North America... Ann 16, i, pp 206-219
Ceratosaurus, description and restoration of................ .Ann 16, i, pp 156-163
from Denver Basin, remains of................................ Mon xxvii, pp 503-506
Cerithiasiidse of Laramie and Eocene of Utah ... Bull 34, pp 28-29
 of North America (nonmarine fossil) ... Ann 3, pp 462-465
Ceritheidse of Miocene deposits of New Jersey .. Mon xxiv, pp 133-134
Cerithiidse of Cretaceous of California (new) .. Bull 22, p 13
 of Cretaceous of Pacific coast ... Bull 133, p 71
 of North America (nonmarine fossil) ... Ann 3, p 459
Cerithium rock of Florida ... Bull 84, pp 118, 119, 323
Cernaysian formation of France, correlation of .. Ann 19, ii, p 348
Cessions and purchases, territory of United States acquired by Bull 13, pp 19-32; Bull 171, pp 21-29
Ceylon, graphite mining in ... MR 1891, p 589
 graphite production of ... Ann 19, vi cont, p 630
Chabazite, analysis of, from Bohemia, Aussig ... Bull 125, p 38
 analyses of, from Colorado, Table Mountain .. Bull 20, p 24
 chemical constitution of ... Bull 125, pp 33, 37-40, 44, 81, 102
 from Colorado, Table Mountain, general description and chemical compo-
 sition of .. Bull 20, pp 23, 24
Chadron formation of Nebraska .. Ann 19, iv, pp 736, 759
Chaix Hills, Alaska, geology of ... Ann 13, ii, pp 24-28
Chalcantite in Butte district, Montana ... GF 38, p 6
Chaledony, occurrence and statistics of ... MR 1882, p 491; MR 1883-84, pp 756-759; MR 1886, p 597; Ann 19, vi cont, pp 506, 507; Ann 21, vii cont, p 545
Chalcoite in Montana, Butte district .. GF 38, p 6
Chalcopyrite from Utah .. Bull 55, p 43
Chalcopyrite in Montana, Butte district .. GF 38, p 6
Chalk, analysis of, from Arkansas, Sevier County Ann 18, v, p 174; Bull 150, p 117
 analyses of, from Arkansas, Rocky Comfort, and Texas, Austin Ann 21, vii, p 329
 description of the rock, as one of the educational series Bull 150, pp 115-119
 statistics of .. MR 1883-84, pp 930-932
Chama district, New Mexico, irrigation in ... Ann 12, ii, pp 261-269
Chama River, New Mexico, flow of, measurements of Ann 18, iv, pp 252; Bull 140, pp 173-175; WS 11, p 65; WS 16, p 129
Chamber dust, analysis and composition of ... Mon xvi, pp 711-717
Chamberlain shales of Montana, description and section of Ann 20, iii, pp 282-283
Chamberlin (T. C.), alternative interpretations of history of glacial Lake
 Agassiz .. Mon xxv, pp 244-251
 introduction to Wright's "Glacial boundary" .. Bull 58, pp 13-38
 quoted, on zone of weakness in strata .. Ann 13, ii, p 279
 requisite and qualifying conditions of artesian wells Ann 5, pp 125-173
 rock-scorings of great ice invasions ... Ann 7, pp 147-248
 terminal moraine of second Glacial epoch ... Ann 3, pp 291-402
 work in charge of, 1881-1900 .. Ann 3, pp 17-21; Ann 4, pp 23-27; Ann 5, pp 20-24; Ann 6, pp 33-40; Ann 7, pp 76-85; Ann 8, i, pp 141-144; Ann 9, pp 84-87; Ann 10, i, pp 128, 129; Ann 11, i, pp 74-76; Ann 12, i, pp 88-90; Ann 13, i, pp 121, 122; Ann 14, i, pp 193, 194; Ann 15, pp 179, 180; Ann 16, i, pp 24, 25; Ann 17, i, pp 59-62; Ann 18, i, pp 54-57; Ann 19, i, p 53; Ann 20, i, pp 53, 54; Ann 21, i, pp 85, 86
Chamberlin (T. C.) and Irving (R. D.), observations on junction between Eastern sandstone and Keweenaw series on Keweenaw Point, Lake Superior .. Bull 23
Chamberlin (T. C.) and Salisbury (R. D.), driftless area of Upper Mississippi
 Valley .. Ann 6, pp 199-322
Chamisde from marl beds of New Jersey Mon ix, p 131; Mon xxiv, p 65
of Cretaceous of California (new) Bull 22, pp 9-12
of Texas, aberrant forms of Bull 4, pp 5-9
Chamosite, analysis of Bull 113, p 15
chemical constitution of Bull 125, p 55
Champlain, Lake, trap dikes of region of Bull 107
tributaries of ... WS 24, pp 31-33
Champlain period in western-central Massachusetts Mon xxix, pp 562-721
Chance (H. M.), anthracite coal mining MR 1883-84, pp 104-131
Choctaw coal fields, Indian Territory, description of MR 1889-90, pp 207-214
Chandlar River, Alaska, diabase on Ann 21, ii, pp 479, 480
distances along, table of Ann 21, ii, p 450
routes and trails in basin of Ann 21, ii, pp 453-455
topography and drainage of Ann 21, ii, pp 464-467
Chandlar and Koyukuk rivers, Alaska, reconnaissance along Ann 21, ii, pp 441-486
Chandler (A. E.), water storage on Cache Creek, California WS 45
Chapman sandstone of Maine, Aroostook volcanic area, faunas, etc., of Bull 165,
pp 78-88, 133, 134
Charcoal, analysis of, from Montana, Cascade County MR 1889-90, p 229
used in steel making, analysis of Bull 25, p 34
Charleston earthquake of August 31, 1886 Ann 9, pp 203-528
Charleston quadrangle, West Virginia, physiography of TF 1, pp 1-2
Charleston sandstone of West Virginia, along New-Kanawha River Ann 17, ii, pp 508, 509
Chattahoochee beds, correlation of Ann 18, ii, p 340; Bull 84, pp 83, 105-107
Chattahoochee group of Georgia and Florida Bull 84, pp 83, 105-107, 323
Chattahoochee River, flow of, measurements of Ann 18, iv, pp 85-92;
Ann 19, iv, pp 235-239; Ann 20, iv, pp 51, 182-183; Ann 21, iv, pp 140-142; Bull 140, pp 75-77;
WS 11, pp 23, 24; WS 15, pp 46, 47; WS 27, pp 50, 51, 57, 58; WS 36, pp 139-143
profile of .. WS 44, p 30
Chattahoochee and Coosa rivers, rainfall and run-off in basins of Ann 20, iv, pp 177-181
Chattanooga district, physiography of Ann 19, ii, pp 1-58
Chattanooga quadrangle, Tennessee, geology of GF 6
Chattanooga sandstone in the Southern States GF 2, p 1; GF 4, p 2; GF 6, p 1;
GF 8, p 2; GF 12, p 2; GF 16, p 4; GF 19, p 2; GF 20, p 3;
GF 21, p 2; GF 22, p 2; GF 25, p 4; GF 27, p 3; GF 33, p 2;
GF 35, p 2; GF 40, p 2; GF 47, p 2; GF 53, p 2; GF 59, p 4
Cheat River, West Virginia, flow of, measurements of WS 36, pp 160, 161
Chelan Lake, Washington, height of, measurements of WS 28, pp 163, 164;
WS 38, pp 371, 372
Chemung beds, fauna of, at High Point, New York.................Bull 16, pp 72-76
Chemung group, faunas of, etc.................................Bull 41, pp 51-104

History of discussions concerning correlation of.................Bull 80,
pp 121-134, 147-148, 158, 190-192, 262
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Chemung-Catskill formations, history of discussions concerning correlation of... Bull 80, pp 121-134

Chenevixite, analysis of, from England, Cornwall.......................... Bull 20, p 85

analyses of, from Utah, Tintic mining district............................ Ann 19, iii, p 700; Bull 20, pp 85-86

Cherokee slates of North Carolina, features of............................ Bull 81, p 138

Cherry Creek beds of Montana.. GF 24, p 2

Chert, analysis of, from Colorado, Leadville district.... Mon xiv, pp 557, 602

analysis of, from Kansas, Galena... Bull 90, p 63; Bull 148, p 253; Bull 168, p 250

from Missouri, various localities: Bull 90, p 63; Bull 148, p 252; Bull 168, p 250
description of the rock, as one of the educational series...... Bull 150, pp 124-126

from Lake Superior iron-ore districts (ferruginous, hematitic, and mag-

netitic).. Ann 15, pp 566, 568, 570

in limestone of Penokee series, origin of...................... Ann 10, i, pp 367-369

thin section of, from Michigan, T. 47 N., R. 45 W., sec. 14 (concretionary). Ann 10, i, pp 472-473; Mon xix, pp 480-481

from Michigan, T. 47 N., R. 45 W., sec. 41 (concretionary)........ Mon xix, pp 480-481

T. 47 N., R. 46 W., sec. 13 (sideritic and ferruginous)......... Ann 10, i, pp 480-481; Mon xix, pp 490-491

sec. 16 (sideritic).. Mon xix, pp 502-503

from Michigan-Wisconsin, Montreal River (ferruginous and brecciated). Mon xix, pp 492-493

Montreal River (sideritic)... Ann 10, i, pp 488-489; Mon xix, pp 502-503

from Minnesota, Gunflint beds (concretionary)......... Ann 10, i, pp 490-491;

Mon xix, pp 500-501, 506-507

Gunflint beds (ferruginous)......... Mon xix, pp 500-501

Gunflint beds (sideritic)......... Ann 10, i, pp 480-487; Mon xix, pp 498-499, 500-501

from Ohio, Lawrence County (sideritic)................ Ann 10, i, pp 490-491;

Mon xix, pp 504-505

from Wisconsin, T. 44 N., R. 3 W., sec. 14 (quartzose)........ Ann 10, i, pp 474-475; Mon xix, pp 482-483

T. 45 N., R. 1 W., sec. 24 (ferruginous)......................... Ann 10, i, pp 482-483; Mon xix, pp 494-495

sec. 33, NE. § (magnetitic concretionary)........ Ann 10, i, pp 490-491; Mon xix, pp 504-505

T. 46 N., R. 2 E., sec. 27, SE. § (concretionary)........ Ann 10, i, pp 480-481; Mon xix, pp 492-493

Chert and quartzite, thin section of, from Michigan, T. 47 N., R. 44 W., sec. 23 (ferruginous)........ Mon xix, pp 518-519

Chert conglomerate, thin section of, from Michigan, T. 47 N., R. 45 W., sec. 14, SW. §............................... Mon xix, pp 482-483

Cherty iron carbonates, action of water in formation of........ Ann 10, i, p 395

Cherty limestone of Penokee iron-bearing series, petrographic character, origin, etc............... Ann 10, i, pp 349, 365-369, 446, 472, 480-490; Mon xix, pp 127-142, 443-455

Chesapeake Bay as a harbor...................................... Ann 13, ii, pp 175-178

geology of head of... Ann 7, pp 537-646

Chesapeake formation, correlation of......................... Ann 18, ii, p 339

of Delaware.. Bull 138, p 119

of Maryland-District of Columbia-Virginia, Washington quadrangle... GF 70, p 4

of New Jersey... Bull 138, pp 41-42

of Southern States........ Ann 12, i, pp 410-412; Bull 84, pp 54, 68, 123-126, 323; Bull 138, pp 126, 163-164; GF 13, p 3; GF 23, p 2

Chesapeake stage, geologic and paleontologic conditions during... Bull 84, pp 186-187
CHEMUNG—CHILE.

Cheshire quartzite of Massachusetts, westernGF 50, p 1

Chester (F. D.), gabbros and associated rocks in DelawareBull 59

Chester amphibolite of Massachusetts and ConnecticutGF 50, pp 2-4

Chester amphibolite and serpentines of Massachusetts, western ...Mon xxix, pp 78-155

Chesterfield group of beds in Richmond BasinAnn 19, ii, pp 435-437

Cheyenne River, hydrography of and topography alongAnn 20, iv, pp 251-253

Chiastolite, composition of ...Bull 150, pp 37-38

occurrence of ..MR 1882, p 497

Chiastolite-schist, analysis of, from California, Yaqui GulchBull 148, p 221; Bull 150, p 343; Bull 168, p 210

from California, near Mariposa, description of, as one of the educational seriesBull 150, pp 339-343

of Sierra Nevada ..Ann 17, i, pp 689-690

of Massachusetts, western ...Mon xxix, pp 209-210

Chicago, deaths in, resulting from typhoid feverWS 22, p 40

rainfall at ..WS 24, p 51

Chicago outlet of Lake Michigan, effect of, on size of Des Plaines and Illinois rivers ..Ann 17, ii, pp 711-712

Chicago outlet and beaches of the glacial Lake ChicagoMon xxxviii, pp 418-459

Chickamauga limestone of Southern StatesGF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 16, p 4; GF 19, p 2; GF 20, pp 2-3; GF 21, p 2; GF 22, p 2; GF 25, p 3; GF 26, p 2; GF 27, p 2; GF 33, p 2; GF 35, p 2; GF 44, p 2; GF 59, p 3

Chickasaw Nation, resurvey of lands ofAnn 18, i, p 13

Chickasaw formation, correlation ofAnn 18, ii, pp 344-345

Chico beds, unconformity between the Knoxville andBull 19, pp 12-17

Chico formation of California ..Mon xiii, pp 179, 294-295; GF 5, p 3; GF 15, pp 1, 2; GF 31, p 1; GF 37, p 1; GF 43, p 1; GF 51, p 1; GF 8, p 1

Chico-Shasta group, correlation ofAnn 18, ii, p 348

Chico-Tejon series of Pacific coast region, historical review, local development and stratigraphy, species, etc., ofAnn 17, i, pp 1013-1036

of Pacific Coast region, invertebrate fossils fromBull 51, pp 11-32

localities, correlation, etc., ofAnn 6, pp 68-70, 73; Ann 8, pp 407-409; Mon xiii, pp 214-218, 237-238; Bull 15, pp 11-17; Bull 19, pp 14, 17; Bull 51, pp 28-32; Bull 82, pp 182, 186, 187, 192-195, 200, 241, 250, 264-266; Bull 83, pp 100-101; Bull 84, p 323

Chicopee shale of Massachusetts and ConnecticutMon xxix, p 370; GF 50, p 5

Chignik Bay and River, Alaska, coal onAnn 17, i, pp 801-804

fossil plants of, literature ofAnn 8, ii, pp 820-821

geologic maps of, list of ...Bull 7, pp 156, 157

gold and silver production of, compared with that of other countries ...MR 1883-84, pp 319, 320
Chile, iodine production of..................MR 1883-84, pp 857-858; MR 1885, p 488
iron-ore deposits in......................................Ann 16, iii, p 66
manganese production of..........................MR 1886, p 206; MR 1888, p 139;
MR 1889-90, p 130; MR 1891, pp 138-141; MR 1892, pp 208-212; MR 1893, pp 138, 155;
Ann 16, iii, pp 439-443, 457; Ann 17, iii, pp 208, 224; Ann 18, v, pp 313, 324; Ann 19, vi,
p 108; Ann 20, vi, pp 142-147, 156; Ann 21, vi, pp 152, 162
quicksilver deposits in..........................Mon xiii, p 23
salt peter from, statistics of........................MR 1893, pp 736-738
Chilhowee sandstones of North Carolina..................Bull 81, pp 138, 251
Chilkat River, Alaska, features of..................Ann 21, ii, pp 347-348
Chilmark series of Martha’s Vineyard, section of........Ann 7, p 327; Bull 84, p 37
China, Cambrian rocks of..........................Bull 81, p 377
diamonds in, occurrence of..........................Ann 20, vi cont, p 665
fossil plants of, literature of........................Ann 8, ii, pp 790-792
gas, natural, statistics of..........................MR 1891, pp 448-451
iron and iron ore from, statistics of................Ann 16, iii, pp 22, 23, 24, 25, 26, 27, 28, 169-170;
Ann 20, vi, p 98
petroleum production of............................Ann 21, vi cont, pp 277-282
quicksilver mines of.................................Ann 8, ii, pp 965-966; Mon xiii, pp 4, 6, 14, 46
tin production of..MR 1883-84, p 623
China clay. (See Clay, porcelain; Clay, pottery.)
Chino Creek, California, flow of, measurements of.............WS 39, p 427
Chipola beds of Florida, character and correlation of...............Ann 18, ii, p 340; Bull 84, pp 112-113, 122-123, 323, 324
Chisolm (F. F.), Dakota coal........................MR 1888, p 240
iron in Rocky Mountain division........................MR 1883-84, pp 281-286;
MR 1885, p 196; MR 1887, pp 28-29; MR 1888, pp 33-35
Wyoming coal...MR 1888, pp 390-394
Chispa, Texas, igneous rocks from vicinity of San Carlos and...........Bull 164, pp 88-95
Chitina River, Alaska, geology of region along..............Ann 21, ii, pp 422-425
trails along..Ann 21, ii, pp 416-417
Chitina River Valley, Alaska, topography of..............Ann 21, ii, p 409
Chitina River and Skolai Mountains, Alaska, reconnaissance of........Ann 21, ii, pp 335-440
Chitistone limestone of Alaska........................Ann 21, ii, pp 425, 426, 427
Chittenango Creek, New York, flow of, measurements of........Ann 21, iv, p 181; WS 36, pp 184-186
Chloramide, triphosphonitrilic, analysis of................Bull 167, p 86
Chlorastrolite, analysis of, from Lake Superior...............Ann 20, vi cont, p 503
occurrence and statistics of..........................MR 1882,
p 496; MR 1883-84, pp 774, 781; MR 1885, p 443; MR 1886, p 604; MR 1887, pp 556, 557;
MR 1888, pp 584, 585; MR 1889-90, pp 446, 447, 448; MR 1891, p 540; MR 1892, p 781;
MR 1893, pp 681, 682; Ann 16, iv, pp 604, 605; Ann 17, iii, cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513;
Ann 20, vi cont, pp 592-594, 599; Ann 21, vi cont, p 461
Chlorhydric acid, aqueous, coefficients of volatility for........Bull 60, pp 115-117
Chlorhydride (tetra-), triphosphonitrilic, analyses of........Bull 167, p 85
Chloride, analysis of heptaphosphonitrilic........................Bull 167, p 133
analysis of hexaphosphonitrilic........................Bull 167, p 132
of nitrilo-hexaphosphonitrilic..........................Bull 167, p 135
of pentaphosphonitrilic.................................Bull 167, p 131
of phosphonitrilic..Bull 167, p 89
Chloride, analysis of phosphonitrilic, oily, residual of Bull 167, p 133
analysis of polyphosphonitrilic .. Bull 167, p 134
of tetraphosphonitrilic ... Bull 167, p 87
Chlorides, on tri- and tetraphosphonitrilic Bull 167, pp 77-89
Chlorine in dolomites of Colorado, Mosquito Range Mon xii, p 279
Chlorine, bromine, and iodine, indirect estimation of, by electrolysis of their
silver salts, with experiments on convertibility of silver
salts by the action of alkaline haloid.................................. Bull 42, pp 89-93
Chlorite, analysis of, from North Carolina; Corundum Hill Bull 42, p 56
analysis of, from North Carolina, Iredell County Bull 74, p 68
as a product of weathering .. Bull 62, p 213
formation of, in Comstock lode, Nevada Mon iii, p 211
in decomposition of rocks ... Mon iii, pp 72, 210, 384
in gneisses of Minnesota, southwestern Bull 157, pp 59-60
thin section of, from Michigan, Sturgeon Falls Bull 62, p 71
from Nevada, Sutro Tunnel, from augite-andesite Mon iii, pp 150-151
Washeoe district, from porphyritic diorite Mon iii, pp 150-151
Chlorite and epidote, thin section of, from Nevada, Ophir Ravine, from diorite-
porphry ... Mon iii, pp 150-151
Chlorite-epidote, thin section of, from Michigan, Upper Quinninsee Falls, from
an altered diabase ... Bull 62, pp 228-229
Chlorite group, Tschermak's theory of Bull 113, pp 11-21
Chlorite-schist of Northwestern States Ann 5, pp 211-212
of Sierra Nevada ... Ann 17, i, pp 578, 585, 651
Chlorite-schist with chlorite, analysis of, from Pennsylvania, near Pine
Grove ... Bull 136, p 78
Chlorite-slate, biotitic, thin section of, from Wisconsin, near Pine
Grove ... Bull 136, p 78
Chlorite-slate, biotitic, thin section of, from Wisconsin, NW. ¼ sec. 14, T. 44 N.,
R. 3 W ... Ann 10, i, pp 478-479; Mon xix, pp 456-457
Chlorites, composition of ... Bull 150, p 43
constitution of .. Bull 113, pp 27-33; Bull 125, pp 45-56
in rocks of Pacific slope ... Mon xiii, pp 85-86
Chlorites, micas, and vermiculites, on the constitution of certain Bull 90, pp 11-21
Chloritic dust, analysis of, from North Carolina, Alexander County Bull 55, p 14
Chloritization, a kind of mineralogic metamorphism Bull 62, p 55
Chloritoid, analysis of, from North Carolina, Chatham County Bull 74, p 68
chemical constitution of .. Bull 125, pp 48, 54, 55, 103
Chloro-bromo-iodides of silver, analyses of, from Colorado, Leadville Mon xii, p 600
Chloronitrates of phosphorus and metaphosphinic acids Bull 167, pp 77-153
Chloroporal, analysis of, from Colorado, Cripple Creek district Ann 16, ii, p 123
Chlorophyllite, analysis and chemical constitution of Bull 125, p 83
Chocolocollo or Montevallo shales, origin of name Bull 81, p 247
Chocolate porphyry of Montana, Little Belt Mountains Ann 20, iii, pp 349-351
Choicetite (P.), correlation table of Mesozoic deposits of Portugal, from Ann 16, i, p 525
Chondrite of Amboy clays ... Mon xxvi, p 34
Chondrodite, chemical constitution of Bull 125, pp 69, 104
from Iowa, description and analysis of Bull 78, pp 95-97
occurrence and statistics of .. MR 1883-84, p 767; Ann 16, iv, p 605
Chondrodite-limestone, analysis, etc., of, from Massachusetts, Hinsdale Station Bull 159, pp 31-32
Chouteau group, history of discussions concerning correlation of Bull 80, pp 173-192
Christy (S. B.), quicksilver reduction at New Almaden ME 1883-84, pp 503-534
Chromate of iron, analysis of, from Massachusetts, near Blandford Bull 126, p 55
Chrome iron ore, statistics of.................................MR 1891, pp 171-173;
Ann 19, vi, pp 259-264; Ann 20, vi, pp 291-292

(See, also, Chromium.)

Chrome ores of Turkey, occurrence, cost of mining, etc., of...Ann 19, vi, pp 261-264

Chromic iron, occurrence, character, uses, etc., of..........Ann 17, iii, pp 261-273

Chromic iron ore, analyses of..................................Ann 17, iii, p 263

Chromiferous pseudomorph, analysis of, from Wyoming, Running Water
River ...Bull 20, p 99

Chromite, analysis of, from North Carolina, Corundum Hill..........Bull 42, p 52
analyses of, from North Carolina, Macon CountyBull 74, pp 34, 35
composition of..Bull 150, p 31

Chromium, alloys of iron and, uses of..........................Ann 16, iii, pp 610-614
colorimetric estimation of small amounts of, with special reference to analysis of rocks and ores..Bull 167, pp 37-43
foreign sources of..MR 1882, p 571
separation of, in rock analyses.................................Bull 78, pp 87-90
statistics of..MR 1882, pp 428-430; MR 1883-84, pp 567-573;
MR 1886, pp 357-360; MR 1886, pp 176-179; MR 1887, pp 132-153; MR 1888, pp 119-122; MR 1889-90, pp 137-
140; Ann 16, iii, pp 608-614; (see, also, Chrome iron ore)

Chromolithography in ceramics..................................Ann 18, v cont, p 1121

Chrysohydrates in relation to rock magmas..........................Bull 66, p 27

Chrysoberyl, occurrence and statistics of.........................MR 1888-84, p 778; Ann 16, iv, p 605
Chrysoberyl, analyses of, from North Carolina, Jackson and Macon counties..Bull 74, p 47
chemical constitution of..Bull 125, p 68

Chrysoprase, occurrence and statistics of........................MR 1883-84, p 760; MR 1887, p 561; MR 1889-90, p 448; MR 1891, p 540; MR 1892, p 781; MR 1893, p 682; Ann 16, iv, p 605; Ann 17, iii, cont, p 910, 923; Ann 18, v cont, pp 1207, 1217; Ann 19, vi cont, pp 507, 513; Ann 20, vi cont, pp 589, 599; Ann 21, vi cont, p 461
Chrysotile, analysis of, from New Jersey, Montville.................Bull 78, p 15

Chuar group of rocks of Arizona....................................Bull 86, pp 329-332, 507
Chuar terrane, Grand Canyon of the Colorado, section of........Ann 14, ii, pp 508-510
Chugach Mountains, Alaska, notes on..................................Ann 20, vii, pp 375-376
Chulitna River and Valley, Alaska, notes on.........................Ann 20, vii-pp 12-13
Church (J. A.), quoted on Comstock lode, Nevada.................Mon in, pp 28-31
Cidaridae, Mesozoic, of United States.............................Bull 97, pp 33-39

Cimarron River, Kansas, flow of, measurements of.................Ann 18, iv, pp 243-244; Bull 140, pp 168-168; WS 11, p 64
physiography of valley of..WS 6, pp 21-22

Ciminite, analyses of, from Italy, Monte Cimino and Viterbo........Bull 89, p 66
Cimolite, analysis of, from Maine, Norway...........................Bull 9, p 12; Bull 42, pp 18-19
chemical constitution of...Bull 125, pp 66, 101

Cincinnati arch, course of...Ann 21, vii cont, pp 296-297
features of..Ann 11, i, pp 643-648; GF 69, p 1
relations of..Ann 18, iv, pp 428-429
Cincinnati group in Indiana..Ann 8, ii, pp 637-638
oil in .. Ann 8, ii, p 499
Cincinnati ice dam ... Bull 58, pp 17-38, 76-101
Cinnabar, analysis of, from New South Wales, Yulgilbar Station...Ann 18, v, p 290
distribution of .. Mon xiii, pp 50-52
in Alaska, near Kolmakof, vein of Ann 20, vii, p 261
in British Columbia .. Mon xiii, p 384
in Great Basin .. Mon xiii, p 385
mineral association of ... Mon xiii, p 52
solubility of, in ammoniac solutions Mon xiii, pp 269-270
solution and precipitation of Mon xiii, pp 419-437
Cinnabar and hot springs, association of Mon xiii, p 403
Cinnabar and other ores, solution and precipitation ofMon xiii, pp 269-270, 419-437, 473, 474
Cinnabar, pyrite, and gold of quicksilver mines of Pacific slope, origin of... .Mon xiii, pp 438-450, 475
Cinnabar crystals from California Bull 61, pp 11-22
Cinnabar deposits of Pacific slope and elsewhere Mon xiii
of Sierra Nevada ... Ann 17, i, pp 677-678
(See, also, Quicksilver.)
Cirques, glacial, mode of origin ofAnn 21, ii, pp 173-175, 178-179, 185-190
Cistern water supply in eastern United StatesAnn 14, ii, pp 17-30
Cisterns in eastern United States, types ofAnn 14, ii, pp 17-23
Citico conglomerate of Tennessee and North CarolinaGF 16, pp 1, 2; GF 20, p 2; GF 25, p 2
Civilization, development of, relation of harbors to........Ann 13, ii, pp 100-105
Civilization, roads, and geologic conditions, connection between Ann 15, pp 260-261
Claiborne formation of Alabama and Mississippi, correlation ofAnn 18, ii, p 343; Bull 83, pp 62-64, 68; Bull 84, pp 323, 324
Claiborne stage, Lower, in Louisiana, rocks and fossils ofBull 142, pp 15-21
Claiborne-Meridian deposits .. Bull 142, p 1
Claiborne stage, coral faunas of Mon xxxix, pp 27-30
Cboaaurus, description and restoration of Ann 16, i, pp 219-224
from Denver Basin, remains of Mon xxvii, pp 516-518
Clarion River, Pennsylvania, profile of WS 44, p 44
Clark (F. A.), report on Eureka topographic survey Ann 1, p 36
Clark (W. B.), a correlation essay Eocene Bull 83
Eocene deposits of Middle Atlantic slope in Delaware, Maryland, and
Virginia ... Bull 141
Mesozoic Echinodermata of United States Bull 97
work in charge of, 1893-1900 Ann 15, p 157; Ann 16, i, p 22; Ann 17, i, p 28; Ann 18, i, p 31; Ann 19, i, p 36; Ann 20, i, p 40; Ann 21, i, p 74
Clark formation in Virginia and West VirginiaGF 26, p 3
in West Virginia, relation of, to the PottsvilleAnn 20, ii, p 814
Clarke (F. W.), a new occurrence of gyrolite Bull 64, pp 22-23
a theory of the mica group .. Bull 64, pp 9-19
alkaline reaction of some natural silicates Bull 167, pp 156-158
analyses of jade .. Bull 60, 123-127
analyses of rocks from laboratory of the U. S. Geological Survey Bull 168
chemical constitution of roscocelite Bull 167, pp 73-74
chemical structure of the natural silicates Bull 60, pp 13-20
constitution of the lithia micas Bull 113, pp 22-26
constitution of the silicates .. Bull 125
constitution of tourmaline .. Bull 167, pp 26-36
INDEX TO PUBLICATIONS OF U. S. G. EOL. SURVEY. [BULL. 177.

Clarke (F. W.), iridium, statistics of MR 1882, p 444
mica, statistics of ... MR 1883-84, pp 906-912
minerals of Litchfield, Maine Bull 42, pp 28-38
oligoclase from Bakersville, North Carolina Bull 60, pp 129-130
petalite from Peru, Maine .. Bull 60, p 129
relative abundance of the chemical elements Bull 73, pp 34-42
researches on the lithia micas Bull 42, pp 11-27
some nickel ores from Oregon Bull 60, pp 21-26
spessartite from Amelia County, Virginia Bull 60, p 129
studies in the mica group Bull 55, pp 13-18
topaz from Stoneham, Maine Bull 27, pp 9-15
Tschermak's theory of the chlorite group and its alternative Bull 113, pp 11-21
willemite from the Trotter mine, Franklin, New Jersey Bull 60, p 130
work in charge of, 1883-1900 Ann 5, pp 59-62; Ann 6, pp 86-88; Ann 7, pp 127-130; Ann 8, i, pp 189-193; Ann 9, pp 141-143; Ann 10, i, pp 177-181; Ann 11, i, pp 125-127; Ann 12, i, pp 127-129; Ann 13, i, pp 159-162; Ann 14, i, pp 267-268; Ann 15, pp 195-196; Ann 16, i, pp 42-43; Ann 17, i, pp 69-70; Ann 18, i, pp 69-70; Ann 19, i, pp 68-69; Ann 20, i, pp 68-69; Ann 21, i, pp 94-95; Bulls 9, 27, 42, 55, 60, 64, 78, 90, 113

Clarke (F. W.) and Catlett (C.), a platiniferous nickel ore from Canada. Bull 64, pp 20-21

Clarke (F. W.) and Chatard (T. M.), mineral, rock, ore, and water analyses ... Bull 9, pp 9-35
Clarke (F. W.) and Darton (N. H.) on a hydromica from New Jersey ... Bull 167, pp 154-155
Clarke (F. W.) and Diller (J. S.), turquoise from New Mexico ... Bull 42, pp 39-44
Clarke (F. W.) and Hillebrand (W. F.), analyses of rocks and analytical methods ... Bull 148
Clarke (F. W.) and Schneider (E. A.), experiments upon the constitution of certain micas and chlorites ... Bull 113, pp 27-33
experiments upon the constitution of the natural silicates ... Bull 78, pp 11-33
on the constitution of certain micas, vermiculites, and chlorites ... Bull 90, pp 11-21

Clarke (F. W.) and Steiger (G. H.) experiments relative to the constitution of pectolite, pyrophyllite, calamine, and analcime ... Bull 167, pp 13-25

Clarke (J. M.), higher Devonian faunas of Ontario County, New York. ... Bull 16
Clarksburg formation of Michigan, petrographic character, relations, etc., of. Ann 15, pp 604-607; Mon xxviii, pp 460-486
of Michigan, thin section of sedimentary bed from, sec. 17, T. 47 N., R. 28 W ... Mon xxviii, pp 470-471
Classification, natural method of, as indicated by paleobotany ... Ann 5, pp 431-452
of Cambrian, early, and pre-Cambrian ... Ann 7, pp 365-364
of clays, commercial and natural ... MR 1891, pp 476-484
of cryptogams ... Ann 5, pp 437-439
of drainage basins ... Ann 12, i, pp 232-234
of formations by paleontologic and lithologic characteristics and by unconformity ... Ann 7, pp 371-448
(See, also, Correlation.)
of geology ... Ann 11, i, pp 233-242
of igneous rocks ... Ann 12, i, pp 660-663
from Alaska according to composition ... Ann 20, vii, pp 188-194
of lavas of Nevada, Eureka district ... Mon xx, p 233
Classification of mineral deposits in Idaho.......................... Ann 20, iii, pp 104–106
of rocks .. Bull 160, pp 48–56
of Sierra Nevada .. Ann 17, i, pp 717–735
of sedimentary rocks of Alaska, southwestern........ Ann 20, viii, pp 147–179
of topographic forms by hydrography Ann 7, pp 558–564
work in, by the Survey Ann 14, i, pp 65–122
(See, also, Taxonomy.)

Classification and nomenclature of fossil plants......... Ann 5, pp 425–439
Clastic rocks, classes and divisions of, recognized by Survey.... Ann 10, i, pp 63–67
of Aroostook volcanic area, Maine........................ Bull 165, pp 118–145
Clay, analyses of .. MR 1882, pp 469, 472–474; MR 1883–84, pp 678, 975
analysis of, from Arkansas, various localities (Tertiary)........ Ann 19, vi cont, p 471
from Austria .. Ann 19, vi cont, pp 442, 443
from Belgium, Stoud Maiseroul........................ Ann 19, vi cont, pp 466–467
from Bohemia, Zettlitz.................................. Ann 19, vi cont, p 452
from California, Owens Lake................................ Bull 65, p 89; Bull 60, p 97; Bull 148, p 301; Bull 168, p 304
from Colorado, Golden Bull 148, p 297; Bull 168, p 299
Pueblo quadrangle .. Bull 148, p 290; Bull 168, p 213
from Denmark, Bornholm Ann 19, vi cont, pp 466–467
from England, Anglesea................................. Ann 19, vi cont, p 452
from Florida, Lakeland Bull 90, p 74; Bull 148, pp 290–291; Bull 168, p 293–294
Melbourne Creek ... Bull 60, p 168
from France, various localities.......................... Ann 19, vi cont, pp 452, 464–467
from Georgia, near Augusta Bull 148, p 290; Bull 168, p 213
from Germany, various localities Ann 19, vi cont, pp 420, 421, 425, 426, 445, 452, 456–465
from Idaho, De Lamar Ann 19, vi cont, p 473; Mon xxxvi, p 411
from Illinois, Henry County.............................. Bull 27, pp 66, 67; Bull 148, p 293; Bull 168, p 296
Streator .. Ann 20, iii, p 172
from Indiana, Bristol Ann 21, vi cont, p 400
Indianapolis .. Ann 19, vi cont, p 486
various localities Ann 19, vi cont, p 473; Mon xxxvi, p 411
from Iowa, Des Moines Ann 19, vi cont, pp 475, 476
from Kentucky, Carter County............................ Ann 19, vi cont, p 486
Mayfield ... Ann 17, iii cont, p 871
from Maryland, various localities........................ Bull 168, p 291
from Massachusetts, Martha’s Vineyard Ann 7, p 359;
Bull 55, pp 89, 90; Bull 148, p 287; Bull 168, p 289
from Michigan .. Ann 21, vi cont, p 401
from Minnesota, Lesueur and McLeod counties Ann 19, vi cont, p 486
Minneapolis .. Ann 19, vi cont, p 486
New Ulm .. Bull 60, p 151; Bull 148, p 293; Bull 168, p 296
from Missouri, St. Louis Ann 19, vi cont, p 486
from Nevada, Humboldt Canyon.......................... Mon xi, p 128; Bull 9, p 15; Bull 148, p 300; Bull 168, p 303
various localities Mon ii, opp p 152
from New York, Richfield Springs Bull 64, p 51;
Bull 148, p 288; Bull 168, p 290
from North Dakota, Pembina Mountains................. Ann 21, vi cont, p 402
Clay, analysis of, from Ohio, near Sandusky MR 1892, p 745
analysis of, from Ohio, Trumbull County ... Ann 19, vi cont, p 486
from Ohio, Wellston ... Ann 21, vi cont, p 402
from Pennsylvania, Butler ... Ann 19, vi cont, p 486
Northumberland County. .Bull 64, p 51; Bull 148, p 288; Bull 168, p 290
from Russia, various localities Ann 19, vi cont, pp 452, 454, 455, 466-467
from Sweden, various localities .. Ann 19, vi cont, pp 466-467
from Texas .. MR 1892, p 736
San Antonio ... Ann 19, vi cont, p 486
from Utah, Bonneville region .. Mon i, p 201
from Virginia, Chesterfield County ... Ann 19, vi cont, p 486
from Washington, Stevens County Bull 148, p 301; Bull 168, p 304
from Wisconsin, Hersey .. Ann 19, vi cont, p 486
Milwaukee ... Ann 6, p 250;
Bull 42, pp 143, 144; Bull 148, p 294; Bull 168, p 297
from Wyoming, various localities ("mineral soap") Ann 18, v, p 1146
chemical constitution of .. Bull 125, pp 65-66
kaolin not an essential ingredient in Washoe rock Mon iii, p 217
of California, Sacramento quadrangle GF 5, p 3
of Colorado, Denver Basin .. Mon xxvii, pp 387-392
Elk Mountains ... GF 9, p 2
of District of Columbia .. GF 70, p 7
of Georgia–Tennessee, Ringgold quadrangle GF 2, p 3
of Italy, scaly ... Ann 16, i, pp 500-510
of Maryland, Washington quadrangle ... GF 70, p 7
of Massachusetts and Rhode Island, glacial brick Ann 17, i, pp 951-1004
suitable for paving brick, suggestions concerning Ann 16, ii, pp 324-326
of New Jersey, Raritan, and greensand marls, Brachiopoda, Lamellibranchi-
ata, Gasteropoda, Cephalopoda, of.... Mon ix; Mon xviii
of Porto Rico ... Ann 20, vi cont, pp 771-772
of Rhode Island and Massachusetts, glacial brick Ann 17, i, pp 951-1004
of Tennessee, Chattanooga quadrangle GF 6, p 3
Ringgold quadrangle ... GF 2, p 3
of Utah, Lake Bonneville .. Mon i, pp 200-203
of Virginia, Washington quadrangle .. GF 70, p 7
uses of ... MR 1893, pp 605-609
Clay, ball, analyses of, from England, Poole and Teignmouth. Ann 19, vi cont, p 405
analysis of, from Florida, Edgar .. Ann 17, iii cont, p 845
from Kentucky, Mayfield .. Ann 17, iii cont, p 845
from New Jersey, South Amboy .. Ann 17, iii cont, pp 844-845
uses and localities of ... Ann 17, iii cont, pp 844-845
Clay, bowlder, description of, as one of the educational series Bull 150, pp 69-70
Clay, brick, analysis of, from Alabama, Lacon Ann 16, iv, pp 564-565
analysis of, from Alabama, Montgomery and Elmore Ann 18, iv, pp 564-565
from Arkansas, various localities ... Ann 16, iv, pp 564-565
from California, Placer County .. Ann 16, iv, pp 564-565
from Colorado, Pueblo ... Ann 16, iv, pp 564-565
from District of Columbia, Washington .. Ann 16, iv, pp 564-565
from Florida, Escambia County .. Ann 16, iv, pp 564-565
from Georgia, various localities .. Ann 16, iv, pp 564-565
from Illinois, La Salle .. Ann 16, iv, pp 564-565; Ann 18, v cont, p 1159
various localities .. Ann 16, iv, pp 564-565
from Indiana, various localities .. Ann 16, iv, pp 564-567; Ann 18, v cont, pp 1159-1160
Clay, brick, analysis of, from Iowa, Cerro Gordo County Ann 16, iv, pp 566-567
analysis of, from Iowa, various localities Ann 18, v cont, p 1161
from Kansas, Greenwood County Ann 16, iv, pp 566-567
from Kentucky, various localities Ann 16, iv, pp 566-567
from Louisiana, New Orleans Ann 18, v cont, p 1161
various localities Ann 16, iv, pp 566-567
from Maine, Quinquipa Ann 18, v cont, p 1161
from Maryland, near Baltimore Ann 18, v cont, p 1161
from Massachusetts, Clayton, Berkshire County Ann 18, v cont, p 1161
West Cambridge and Gay Head Ann 16, iv, pp 566-567
from Michigan, Jackson County Ann 18, v cont, p 1161
Marquette and Grand Rapids Ann 16, iv, pp 566-567
Saginaw Ann 18, v cont, p 1161
from Minnesota, Blue Earth County Ann 16, iv, pp 566-567
from Mississippi, Clingscales Ann 16, iv, pp 566-567
from Missouri, Hannibal Ann 16, iv, pp 566-567
various localities Ann 18, v cont, pp 1161-1162
from Montana, Deerlodge County Ann 16, iv, pp 566-567
from Nebraska Ann 18, v cont, p 1162
Omaha Ann 18, v cont, p 1162
from New Jersey, Cumberland County Ann 16, iv, pp 566-567
Middlesex and Burlington counties Ann 16, iv, pp 568-569
from New York, Greene County Ann 18, v cont, p 1168
various localities Ann 16, iv, pp 568-569; Ann 18, v cont, pp 1162-1163
from North Carolina, various localities Ann 16, iv, pp 568-569;
Ann 19, vi cont, pp 482-484
from Ohio, Lake, Lawrence, and Lorain counties Ann 18, v cont, p 1163
Stark and Franklin counties Ann 16, iv, pp 568-569
from Pennsylvania, Beaver, Wayne, and Crawford counties Ann 18,
v cont, p 1164
Corry Ann 18, v cont, p 1164
various localities Ann 16, iv, pp 568-569
from South Dakota, Rapid Ann 16, iv, pp 568-569; Ann 18, v cont, p 1164
from Switzerland, Zürich MR 1893, p 605
from Tennessee, Knox County Ann 18, v cont, p 1164
Scott County Ann 16, iv, pp 570-571
from Texas, various localities Ann 16, iv, pp 570-571
from Washington, Pierce County Ann 16, iv, pp 570-571
from West Virginia, Marshall County Ann 16,
iv, pp 570-571; Ann 18, v cont, p 1164
Morgantown Ann 18, v cont, p 1164
from Wisconsin, Milwaukee Ann 16, iv, pp 570-571; Ann 18, v cont, p 1164
Milwaukee and Dane counties Ann 16, iv, pp 570-571
description of the rock, as one of the educational series Bull 150, pp 66-69
of Rhode Island and Massachusetts, glacial Ann 17, i, pp 951-1004
Clay, china. (See Clay, porcelain; Clay, pottery.)

Clay, fire, analysis of, from Alabama, Marion County Ann 18, v cont, p 1150
analysis of, from Alabama, various localities Ann 16,
iv, pp 554-555; Ann 18, v cont, p 1128
from Arkansas, Lawrence County Ann 18, v cont, p 1150
Poinsett and Greene counties Ann 16, iv, pp 554-555
from Austria, Briesen Ann 19, vi cont, p 441
from California, various localities Ann 16, iv, pp 554-555
Clay, fire, analysis of, from Colorado, Apishapa and Colorado Springs quadrangles..............Bull 148, p 298; Bull 168, pp 300, 301
analysis of, from Colorado, Denver ..Mon xxvii, pp 388-389
from Colorado, Edgemont ..Ann 16, iv, pp 554-555
Golden ...Ann 16, iv, pp 554-555;
Ann 18, v cont, p 1150; Mon xxvii, p 390; Bull 148, p 299; Bull 168, p 301; MR 1882, p 473

Morrison ...MR 1882, p 473
Pueblo quadrangle ..Ann 16, iv, pp 554-555;
Bull 148, pp 297-298; Bull 168, pp 300-301; GF 36, p 7

from Delaware, Wilmington and NewcastleAnn 16, iv, pp 554-555
from England, Stourbridge ..ME, 1882, p 474
from France, Bollène ..Mon xxvii, pp 388-389
from Georgia, Baldwin County ..Ann 16, iv, pp 554-555
from Germany, Frankenthal-on-RhineAnn mxvii, pp 388-389
Hettenleidelheim ..Ann 19, vi cont, p 427
from Indiana, Lawrence and Clay countiesAnn 16, iv, pp 554-555
Parke County ..Ann 16, iv, pp 554-555; Ann 18, v cont, p 1150
Vermilion County ..Ann 18, v cont, p 1150

from Illinois, Geneseo and New WindsorAnn 16, iv, pp 554-555
Winchester ..Ann 16, iv, pp 554-555; MR 1882, pp 468-469
from Iowa, Crills Mills ..Ann 18, v cont, p 1150
Woodbury and Dallas counties ..Ann 16, iv, pp 554-555
from Kentucky, Ballard CountyAnn 12, i, p 505
Carter County ..MR 1888, p 509
Graves County ..Ann 18, v cont, p 1150
Hickman County ..Ann 12, i, p 505

various localities ..Ann 16, iv, pp 554-557

from Maryland, Mount SavageAnn 16, iv, pp 556-557; Ann 18, v cont, p 1150; Mon xxvii, pp 388-389; MR 1882, pp 468-469
from Michigan, Genesee CountyAnn 18, v cont, p 1151
from Minnesota, Blue Earth CountyAnn 16, iv, pp 556-557
from Missouri, Cheltenham ..Ann 16, iv, pp 556-557;
Mon xxvii, pp 388-389; MR 1882, pp 468-469, 474

St. LouisAnn 16, iv, pp 556-557; MR 1882, pp 468-469
various localities ..Ann 18, v cont, pp 1151-1154

from Montana, Deerlodge CountyAnn 16, iv, pp 556-557
from New Jersey, various localitiesAnn 16, iv, pp 556-557; Ann 18, v, p 1154; Mon xxvii, pp 388-389; MR 1882, pp 468-469
from New York, Richmond CountyAnn 16, iv, pp 556-557
from North Carolina, Cleveland and Guilford counties .Ann 19, vi cont, p 485
Moore and Harnett counties ..Ann 16, iv, pp 556-557
from Ohio ..Ann 19, vi cont, p 395

Sciotoville and PortsmouthMon xxvii, pp 388-389
various localities ..Ann 16, iv, pp 556-557; Ann 18, v cont, pp 1154-1155
from Pennsylvania, JohnstownMon xxvii, pp 388-389; MR 1882, pp 468-469
various localities ..Ann 16, iv, pp 556-559; Ann 18, v cont, p 1155
Woodland ..Ann 16, iv, pp 556-557; MR 1882, pp 468-469
from South Dakota, RapidAnn 16, iv, pp 558-559; Ann 18, v cont, p 1155
from Sweden, various localitiesAnn 19, vi cont, p 449
from Texas, Henderson CountyAnn 16, iv, pp 558-559
Montague County ..Ann 18, v cont, p 1155
from Washington, King, Pierce, and Skagit counties .Ann 16, iv, pp 558-559
Clay, fire, analysis of, from West Virginia, Marion County.......................... MR 1888, p 569
analysis of, from West Virginia, various localities........................Ann 16, iv, pp 558-559
from Wyoming, Albany and Crook counties........................Ann 16, iv, pp 558-559
of Colorado, Elmozo quadrangle...GF 58, p 4
Walsenburg quadrangle..GF 68, p 6
(See, also, Clay, glass-pot.)
Clay, glacial, analysis of, from Wisconsin, Milwaukee..........................Ann 6, p 250; Bull 42, pp 143, 144; Bull 148, p 294; Bull 168, p 297
Clay, glass-pot, analysis of, from Belgium, Anendon...Ann 19, vi cont, p 431; MR 1883-84, p 975
analysis of, from Belgium, various localities..................................Ann 19, vi cont, p 429
from Delaware, near Newcastle..MR 1883-84, p 975
from England, Stourbridge..... .Mon xxvii, pp 388-389; MR 1883-84, p 975
from France, La Bouchade...MR 1883-84, p 975
gross-Almerode ...Ann 19, vi cont, p 429; MR 1883-84, p 975
Weisau.. Ann 19, vi cont, p 432
from Missouri, various localities..MR 1883-84, p 975
from New Jersey, Dixon..MR 1883-84, p 975
from Pennsylvania, Blair County and ThomasMR 1883-84, p 975
(See, also, Clay, fire.)
Clay, lacustral, analysis of, from California, Warm Springs..................Ann 8, i, p 307
Clay, paving-brick, analysis of, from Arkansas, Sebastian County..........Ann 16, iv, pp 570-571
analysis of, from California, San Francisco.....................................Ann 16, iv, pp 570-571
from Colorado, Jefferson County..Ann 16, iv, pp 570-571
from Florida, Bartow..Ann 16, iv, pp 570-571; MR 1893, p 614
from Illinois, Springfield, Winchester, Bloomington.. .Ann 16; iv, pp 570-571
from Indiana, various localities.. Ann 16, iv, pp 570-571; Ann 18, v cont, p 1167
from Iowa, Burlington and Clinton..Ann 16, iv, pp 570-571
from Kansas, Leavenworth..Ann 16, iv, pp 570-571
from Maryland, Allegany County..Ann 16, iv, pp 570-571
from Missouri, various localities Ann 16, iv, pp 570-571; Ann 18, v cont, p 1167
from Nebraska, Nebraska City..Ann 16, iv, pp 570-571
from New Jersey, Woodbridge and Phillipsburg Ann 16, iv, pp 570-571
from New York, Warners and HornellsvilleAnn 16, iv, pp 572-573
from Ohio, various localities ...Ann 16, iv, pp 572-573
from Pennsylvania, various localities Ann 16, iv, pp 572-573
from Tennessee, Chattanooga and Robbins. .Ann 16, iv, pp 572-573
from Texas, Henderson County...Ann 16, iv, pp 572-573
from West Virginia, Cumberland and Nuzums Mills ...Ann 16, iv, pp 572-573
Clay, pipe, analysis of, from Georgia, Baldwin County........................Ann 16, iv, pp 574-575
analysis of, from Indiana, Greene and Perry counties.....................Ann 18, v cont, p 1156
from Kentucky, various localities..Ann 16, iv, pp 574-575
from Minnesota, Red Wing ..Ann 18, v cont, p 1156
from Missouri, Henry County and St. Louis. .Ann 18, v cont, p 1156
from New Jersey, Middlesex CountyAnn 16, iv, pp 574-575
from New York, Erie County..Ann 16, iv, pp 574-575
from North Carolina, Guilford County.................................. Ann 19, vi cont, p 484
from North Dakota, Cavalier County..................................Ann 16, iv, pp 574-575
from Ohio, Jefferson and Columbus county... .Ann 16, iv, pp 574-575; Ann 18, v cont, p 1156

Bull. 177—01——15
Clay, plastic, analysis of, from Germany, near Löhain........Ann 19, vi cont, p 417
analysis of, from Germany, Oberjahn........Ann 19, vi cont, p 424
from Germany, Rhine province................Ann 19, vi cont, p 422
Schönbunnr..Ann 19, vi cont, p 423
Westerwald..Ann 19, vi cont, p 420
used in steel refractories......................Bull 25, p 39
Clay, porcelain, analysis of, from China.........Bull 27, pp 71, 72
analysis of, from Indiana, Lawrence County........MR 1882, p 472
from Massachusetts, Norwich..................Bull 126, p 97
Clay, Portland-cement, analysis of, from Kentucky..Ann 20, vi cont, p 545
analysis of, from Illinois........................Ann 20, vi cont, p 544
Clay, pot. (See Clay, glass-pot; Clay, fire.)
Clay, pottery, analysis of........................MR 1883-84, p 690
analysis of, from Alabama, Tuscaloosa County....Ann 18, v cont, p 1156
from Delaware, Hockessin........................MR 1882, p 472
from England..Ann 19, vi cont, p 452
from Georgia, Baldwin County...................Ann 16, iv, pp 560-561
from Illinois, Pope County.....................Ann 16, iv, pp 560-561; MR 1882, p 472
from Indiana, Dubois County.....................Ann 18, v cont, p 1156
Lawrence County......................................MR 1882, p 472
various localities...................................Ann 16, iv, pp 560-561
from Kentucky, various localities..............Ann 16, iv, pp 560-563
from Maryland, Cecil County....................Ann 18, v cont, p 1156
from Minnesota, Blue Earth County..............Ann 16, iv, pp 562-563
from Missouri, various localities...............Ann 18, v cont, pp 1157-1158
from New Jersey, Middlesex County..............MR 1882, p 472
Sussex County..Ann 16, iv, pp 562-563
from New York, Queens and Suffolk counties......Ann 16, iv, pp 562-563
from North Carolina, various localities.........Ann 19, vi cont, p 484
from Ohio, various localities....................Ann 16, iv, pp 562-563
from Pennsylvania, Beaver County..............Ann 16, iv, pp 562-563
from Tennessee, London............................Ann 16, iv, pp 562-563
from Texas, Henderson and Marion counties......Ann 16, iv, pp 562-563
supply of..MR 1892, p 725
Clay, refractory. (See Clay, fire.)
Clay, residual, analysis of, from Alabama, Morrisville......Ann 16, iv, pp 574-575;
Bull 52, p 25; Bull 60, p 159; Bull 148, p 292; Bull 168, p 295
analysis of, from Arkansas......................Ann 16, iv, pp 574-575
from Georgia, Bartow and Polk counties.........Ann 16, iv, pp 574-575
from Kentucky, Graves County...................Ann 16, iv, pp 574-575
from Massachusetts, Hampden County.............Ann 16, iv, pp 574-575
from Missouri, various localities..............Ann 18, v cont, p 1148
from North Carolina, near Raleigh...............Ann 16, iv, pp 574-575;
Bull 52, p 13; Bull 148, p 289; Bull 168, p 292
from Pennsylvania, Lehigh County...............Ann 16, iv, pp 574-575
from Virginia, Lexington.........................Bull 52, p 24; Bull 148, p 289; Bull 168, p 292; WS 4, p 64
Staunton.................................Bull 148, p 289; Bull 150, p 385; Bull 168, p 292
from Wisconsin, near Cobb......................Ann 6, p 250; Bull 27, p 68; Bull 148, p 294; Bull 168, p 297
Dodgeville......Ann 6, p 250; Bull 27, p 67; Bull 148, p 294; Bull 168, p 297
Grand Rapids..............................Ann 16, iv, pp 574-575
characteristics of..................................Bull 52, p 39
Clay, saggar, analysis of, from New Jersey, Woodbridge......Ann 17, iii cont, p 883
analysis of, from New York, Albany. Ann 16, iv, pp 562-563; Ann 17, iv, p 848; Ann 19, vi, p 477
from Ohio, Summit and Hamilton counties. Ann 16, iv, pp 562-563
from Texas, Grimes County. Ann 16, iv, pp 562-563
Clay, stoneware, analyses of, from Alabama, various localities. Ann 18, vi, p 1128
analysis of, from Germany, Bendorf and near Coblenz. Ann 19, vi, p 383
from Indiana, Huntingburg. Ann 17, iv, p 859
(See also, Clay, pottery.)
Clay, tallow, analysis of, from Arkansas, Boone County. Bull 90, p 64; Bull 148, p 296; Bull 168, p 299
analysis of, from Iowa, Lansing. Bull 148, p 293; Bull 168, p 296
from Missouri, various localities. Bull 90, p 64; Bull 148, pp 295-296; Bull 168, pp 298-299
Clay, terra-cotta, analysis of, from California, various places. Ann 16, iv, pp 572-573
analysis of, from Colorado, Jefferson County. Ann 16, iv, pp 572-573
from New York, Alleghany and Saratoga counties. Ann 16, vi, pp 572-573
from Pennsylvania, Beaver County. Ann 16, iv, pp 572-573
from South Dakota, Pennington County. Ann 16, iv, pp 572-573
from Virginia, Augusta County. Ann 16, iv, pp 572-573
Clay, tile, analysis of, from New Jersey, Woodbridge. Ann 17, vi, p 864
Clay deposits of Kansas, extent and use of. MR 1892, pp 731-733
Clay industry, bibliography of technology of. Ann 16, iv, p 527
technology of. Ann 16, iv, pp 523-575
Clay rock, stone, analysis of, from California, Amador and Calaveras counties. Ann 14, ii, p 465
Clay slate. (See Slate.)
Clay-working industry of United States in 1896. Ann 18, v, cont, pp 1105-1168
in 1897. Ann 19, vi, cont, pp 469-486
(See also, Clays, statistics of, below.)
Claystone, analysis of, from Massachusetts. Mon xxxix, p 717
analysis of, from Vermont. Mon xxxix, p 717
description of the rock, as one of the educational series. Bull 150, pp 107-108
Clays, classification of, commercial and natural. MR 1891, pp 476-484
Ann 18, vi, cont, pp 1077-1169; Ann 19, vi, cont, pp 317-486;
Ann 20, vi, cont, pp 465-538; Ann 21, vi, cont, pp 361-364
Clays, fire, and kaolins of Europe. Ann 19, vi, cont, pp 377-467
Clays, sedimentary, of the geologic formations in sequence. MR 1891, pp 490-500
Clays and clay products at Paris Exposition of 1900. Ann 21, vi, cont, pp 365-392
Clays and the ceramic arts, bibliography of. Bull 143
Clayton group of Alabama. Bull 84, p 324
Clear Creek, Colorado, flow of, measurements of. Ann 11, ii, p 86; Ann 12, ii, p 240; Ann 13, iii, p 86; Ann 21, iv, p 205; WS 37, pp 228-229
Clear Creek, Wyoming, flow of, measurements of. Ann 21, iv, pp 190-191; WS 23, pp 30-31
Clear Fork formation of Texas. Ann 21, vi, p 102
Clear Lake, California, heights of, measurements of. Ann 20, iv, p 528
survey of, for reservoir site. Ann 11, ii, pp 150-154; Ann 13, iii, pp 405-409
Cleavage, as illustrated in Green Mountain region Ann 16, i, pp 560-567
at West Rutland, Vermont, plicated Ann 13, ii, pp 319-324
in rocks, discussion of causes of Ann 16, i, pp 868-872
works bearing on subject of, list of Mon xxiii, pp 137-138
Cleavage and fissility, principles of, and relations to other structures Ann 16, i, pp 633-668, 800-801
Cleavage and stratification, relations of Mon xxiii, pp 136-157
Clements (J. M.) and Smyth (H. L.), Crystal Falls iron-bearing district of Michigan Ann 19, iii, pp 1-145; Mon xxxvi, pp 1-457
Clements (J. M.) and Van Hise (C. R.), Vermilion iron-bearing district Ann 21, iii, pp 401-409
Clerc (F. L.), mining and metallurgy of zinc in United States MR 1882, pp 358-386
Cleveite, analysis of ... Bull 78, p 72
Cleveland County red lands of Arkansas Bull 84, p 324
Cleveland quadrangle, Tennessee, geology of GF 20
Cliff talus soils ... Ann 12, i, pp 232-236
Cliffs of various kinds .. Ann 5, pp 112-115; Mon i, pp 75-77
recession of Ann 2, p 58; Mon ii, pp 250-260
Climate, effect of, on topographic form Ann 21, iv, pp 151-152
factors which make up ... Ann 21, iv, pp 658-677
in relation to deformation of Bonneville Basin Mon i, pp 377-378, 425-427
to driftless area .. Ann 6, p 322
to oscillations of surface of Great Salt Lake Mon i, pp 238-239, 244-250
to rise and fall of surface of Lake Bonneville .. Mon 2, pp 186-187; Mon i, pp 265-297, 317-318
to rock decay .. Bull 52, pp 30-34
interpretation of, by lake oscillations Mon i, pp 262-318
of Alaska .. Ann 21, ii, pp 388, 412-414, 458-459
southern .. Ann 18, iii, p 9
southwestern, notes on .. Ann 20, vii, pp 62-63, 67
Sushitna Basin, notes on .. Ann 20, vii, pp 25-27
of California, Pyramid Peak quadrangle GF 31, p 3
of Great Basin, causes of the arid Ann 3, pp 199-201; Mon i, pp 6-10
of Idaho, Boise quadrangle GF 45, p 1
of Nevada, Eureka district, in geologic time Mon xx, p 5
of Newark epoch .. Bull 85, pp 47-53
of Nicaragua .. Ann 20, iv, pp 579-581
of Washington ... Ann 18, ii, pp 356-357; WS 4, pp 10-12; GF 54, pp 1-2
Pleistocene, as revealed by Lake Lahontan records Ann 3, pp 230-232; Mon xi, pp 254-268
Pleistocene, of Mono Basin, California Ann 8, i, pp 390-393
Pleistocene winds in Bonneville Basin, direction of Mon i, pp 322
relation of alluvial cones to aridity Bull 11, pp 38-41
secular changes of, in Kansas Bull 137, pp 29-30
Climate and interior basins Ann 2, pp 173-174; Mon i, pp 3-4
Climate, geologic, of Grand Canyon district Mon ii, pp 99-100, 189-191, 196, 222-229
Climatic conditions, effect of, on barometric hypsometry Ann 2, pp 409-429, 521-534, 562-565
of Newark time ... Ann 19, ii, pp 416-417
Climatic features of the Texas region TF 3, pp 11-12
Clinch River, profile of ... WS 44, p 55
Clinch sandstone of Kentucky, North Carolina, Virginia, West Virginia, and
Tennessee... GF 12, p 2; GF 16, p 4; GF 25, p 4;
GF 26, p 2; GF 27, p 3; GF 44, p 3; GF 59, p 4
Clingman conglomerate of Tennessee and North Carolina...
GF 16, p 3
Clingman conglomerate, analysis of, from Russia, Ural...
Bull 113, p 27
chemical composition of.. Bull 125, pp 53, 56
Clinoclasite, analysis of, from Utah............................... Ann 19, iv, p 697; Bull 55, p 45
Clinohumite, chemical constitution of................................. Bull 125, pp 47, 49, 51, 53, 55, 65, 86, 103
Clinton group in Indiana... Ann 8, pp 559-561
Clinton and Niagara formations in Michigan................................. WS 30, p 89
Clintonite, chemical constitution of.. Bull 125, pp 138
Clipper Gap formation of California.. GF 66, p 2
Cloud Peak quadrangle, Wyoming, forest conditions in........ Ann 21, v, pp 600-601
Coal, analyses of, from Alabama, Cahaba district.................. MR 1883-84, p 156; MR 1887, p 199
analyses of, from Alabama, various localities..........................MR 1886, pp 239-240
from Alabama, Warrior field.. Ann 16, iv, pp 55, 57, 58, 59, 61, 64, 244; MR 1883-84, pp 17, 156; MR 1889, pp 13, 86; MR 1887, pp 194, 195, 200, 201, 202; MR 1892, p 572
from Alaska, Admiralty Island, Brightman & De Groff........ Ann 17, i, p 781
Admiralty Island, Kellesnoo.. MR 1885, p 14
McCluskey claim... Ann 17, i, p 782
Mitchell vein... Ann 17, i, p 781
Point Sullivan... Ann 17, i, p 780
Sephagen mine... Ann 17, i, p 779
Amalik Harbor... Ann 17, i, p 799
American Creek (lignitic).. Alaska (2), p 81
Chignik Bay... Ann 17, i, p 803
Controller Bay... Ann 20, vii, p 263
Cook Inlet... Ann 17, i, p 797; MR 1891, p 210
Herendeen Bay... Ann 17, i, p 807
Icy Bay... Ann 20, vii, p 263
Kachemak Bay, Alaska Coal Company.. Ann 17, i, p 797
Bradley seam... Ann 17, i, p 795; Alaska (2), p 24
Curtis seam... Ann 17, i, p 796
Eastland Canyon... Ann 17, i, pp 785, 796; Ann 20, vii, p 23; Alaska (2), p 24
Red River... Ann 17, i, p 800
Tyonek... Ann 20, vii, p 23; Alaska (2), p 23
Unga Island... Ann 17, i, p 810
Yukon region... Ann 18, iii, p 382

from Arizona, Deer Creek Valley... Bull 27, p 74

from Arkansas, Camden coal field.. Ann 21, ii, pp 326-328
(Ouita)... MR 1882, p 38; MR 1885, p 15; MR 1887, p 208
(Spadra)... MR 1885, p 15
various localities... MR 1888, pp 222-223; MR 1889-90, p 176
from Australia... Ann 21, vii cont, p 574
(containing platinum and vanadium).. Ann 17, iii, p 282
Coal, analysis of, from British Columbia, Nanaimo Ann 17, i, p 783
analysis of, from British Columbia, various localities MR 1886, p 369
from California, Livermore .. MR 1887, p 210; MR 1892, p 310
Mount Diablo .. Ann 17, i, pp 783, 826; MR 1892, p 310
Shasta County .. MR 1891, p 215; MR 1892, p 310
various localities .. Ann 17, i, pp 825-827; MR 1887, p 210; MR 1892, p 310
from Colorado, Boulder County .. MR 1882, p 39; MR 1883-84, p 26; MR 1889-90, p 181
Denver Basin .. Mon xxvii, pp 376-378
El Paso County .. MR 1882, p 40; MR 1883-84, p 27
Fremont County .. MR 1882, p 40; MR 1883-84, p 28; MR 1889-90, p 186
Glenwood .. MR 1886, p 246
Grand County ... MR 1883-84, pp 24, 25
Gunnison County ... Bull 64, pp 55-57; MR 1882, pp 42, 43;
MR 1883-84, pp 31, 32, 159; MR 1885, pp 19, 88; GF 9, p 10
Huerfano County .. MR 1883-84, p 29; MR 1889-90, p 187
Jefferson County ... MR 1882, p 39; MR 1883-84, p 20; MR 1889-90, p 182
La Plata County .. MR 1889-90, p 188
Las Animas County .. MR 1882, p 41; MR 1883-84, pp 29, 158; MR 1889-90, p 187; GF 58, p 5
Porter .. GF 60, p —
Routt County (anthracite) .. MR 1886, p 245
Uncompahgre County .. MR 1882, p 44; MR 1883-84, pp 33, 34
various localities .. MR 1885, pp 19, 20, 21, 22; MR 1892, pp 362-365
Weld County .. MR 1882, p 39; MR 1883-84, p 26
Walsenburg quadrangle .. GF 68, p 6
from England (bituminous) .. Ann 7, p 531
Cardiff .. Ann 21, vi cont, p 574
Durham (coking) .. MR 1886, p 431
from Georgia, Coal City (Dade) .. MR 1888, p 241
from Germany, Meissen .. Ann 19, iii, p 373
from Great Britain, Scotland ... Ann 7, p 531
from Idaho, Boise quadrangle ... Ann 16, ii, p 275; MR 1892, p 367; GF 45, p 6
from Illinois (bituminous, used in steel making) Bull 25, p 34
Gallatin County .. Ann 17, iii, p 578
various localities .. MR 1882, p 51; MR 1883-84, p 42; MR 1892, p 383
Williamson County .. MR 1883-84, p 162
from Indian Territory, Alderson (coking) Ann 19, vi, p 596
Atoka ... MR 1887, p 244; MR 1888, p 261
Eastern Choctaw coal field ... Ann 21, ii, p 308
Lehigh ... Ann 19, iii, p 456; MR 1883-84, p 45; MR 1889-90, p 211
McAlester .. MR 1883-84, p 164; MR 1886, p 206; MR 1887, p 245; MR 1888, p 261
McAlester-Lehigh coal field .. Ann 19, iii, p 456; Ann 21, ii, p 309
Savanna ... MR 1882, p 51; MR 1883-84, p 45
various localities .. MR 1889-90, pp 210, 211
from Indiana .. Ann 7, p 531; MR 1887, p 238
Ayrshire ... MR 1886, p 396
Clay County .. MR 1887, p 240
Daviess County .. MR 1887, p 241
Parke County .. MR 1887, p 239
Pike County ... MR 1887, p 241
various localities .. MR 1882, p 53
Coal, analysis of, from Indiana, Vigo County.................. MR 1892, p 389
Coal, analysis of, from Kansas, Crawford County.............. MR 1883-84, p 165
Coal, analysis of, from Kansas, various localities............ MR 1888, p 275
Coal, analysis of, from Kentucky, Bell County.................. Ann 16, iv, p 259
Coal, analysis of, from Greenup County......................... MR 1882, p 57
Coal, analysis of, from Hopkins County......................... MR 1886, p 399; MR 1887, p 262
Coal, analysis of, from Manning.................................. MR 1887, p 402
Coal, analysis of, from Middleborough......................... Ann 16, iv, p 56
Coal, analysis of, from various localities (coking)........... MR 1886, p 401; MR 1887, pp 257, 262
Coal, analysis of, from Kentucky-Virginia, Big Stone Gap coal field........ Bull 111, p 52
Coal, analysis of, from Mammoth bed (anthracite, used in steel making)......... Bull 25, p 34
Coal, analysis of, from Maryland (bituminous).................. Ann 7, p 530
Coal, analysis of, from Massachusetts, Mansfield area......... Mon xxxiii, p 19
Coal, analysis of, from Martha's Vineyard....................... Bull 55, p 87
Coal, analysis of, from Sunderland (bituminous)................ Bull 126, p 42
Coal, analysis of, from Michigan, Jackson County.............. MR 1886, p 280
Coal, analysis of, from Missouri, Bates County.................. MR 1883-84, p 52
Coal, analysis of, from various localities...................... MR 1887, p 274; MR 1888, p 287
Coal, analysis of, from Montana, Anaconda...................... MR 1883-84, p 54
Coal, analysis of, from Beaverhead County...................... MR 1885, p 39
Coal, analysis of, from Belt Creek field, Sage Creek, and Skull Butte........ GF 55, p 7
Coal, analysis of, from Bozeman.................................. MR 1882, p 62; MR 1883-84, p 53; MR 1885, pp 36, 37
Coal, analysis of, from Cascade County, Sand Coulee........... MR 1885, p 38; MR 1888, p 291; MR 1889-90, p 229
Coal, analysis of, from Judith Mountains........................... Ann 18, iii, p 616
Coal, analysis of, from Park County................................ MR 1889-90, p 230
Coal, analysis of, from various localities...................... MR 1886, pp 285-286
Coal, analysis of, from Nebraska, Dawes County................ MR 1887, p 277
Coal, analysis of, from Nevada, Battle Mountain................. MR 1885, p 40
Coal, analysis of, from Esmeralda formation..................... Ann 21, ii, p 207
Coal, analysis of, from Eureka district......................... Mon xx, p 98
Coal, analysis of, from New Mexico, Cofax County................. MR 1882, p 62; MR 1883-84, p 56
Coal, analysis of, from Grant County............................ MR 1882, p 64; MR 1883-84, p 58
Coal, analysis of, from Lincoln County........................... MR 1889-90, p 232
Coal, analysis of, from Santa Fe County......................... MR 1882, p 63; MR 1883-84, p 57; MR 1889-90, p 233
Coal, analysis of, from New York, Morris Run.................... Ann 17, iii, p 587
Coal, analysis of, from North Carolina, Farmville.............. Bull 85, p 37; MR 1885, p 42
Coal, analysis of, from Gulf and Stokes County.................. Bull 42, p 146
Coal, analysis of, from North Dakota, Sims..................... MR 1887, p 222
Coal, analysis of, from Nova Scotia (bituminous)................ Ann 7, p 531
Coal, analysis of, from Ohio, Athens County..................... MR 1883-84, p 64
Coal, analysis of, from Belmont County........................... MR 1883-84, p 63
Coal, analysis of, from Columbiana County......................... MR 1883-84, pp 62, 63
Coal, analysis of, from Hocking Valley........................... MR 1883-84, p 62
Coal, analysis of, from Jefferson County......................... MR 1883-84, p 63
Coal, analysis of, from Leetonia................................... MR 1883-84, p 172
Coal, analysis of, from Mahoning Valley........................... MR 1883-84, p 60
Coal, analysis of, from Massillon district....................... MR 1883-84, p 61
Coal, analysis of, from Meigs County............................. MR 1883-84, p 64
Coal, analysis of, from Steubenville.............................. MR 1883-84, p 173
Coal, analysis of, from Washingtonville......................... MR 1883-84, p 172
Coal, analysis of, from Oregon, Astoria......................... MR 1882, p 95; MR 1883-84, p 66; MR 1886, p 295
Coal, analysis of, from Coos Bay field............................ Ann 19, iii, pp 367, 371, 372, 373; MR 1882, p 95; MR 1883-84, p 66; MR 1886, p 295; MR 1887, p 289
Coal, analysis of, from Oregon, Coos Bay field (pitch) Ann 19, iii, pp 371-372
analysis of, from Oregon, Pend d'Oreille Bull 60, p 170
from Oregon, Roseburg quadrangle GF 49, p 4
various localities . . . Ann 17, i, pp 503-504; iii, p 478; MR 1886, p 295
from Pennsylvania (bituminous) Ann 7, p 530
Alleghany Mountain district MR 1883-84, p 183, 184
Armstrong County MR 1883-84, p 191
Beaver Falls district MR 1883-84, p 190
Blossburg district MR 1883-84, p 195
Broad Ford MR 1883-84, p 177
Cambria County MR 1883-84, p 183
Center County MR 1886, p 327
Clarion County MR 1886, p 328
Clearfield County MR 1883-84, pp 193, 194
Coketon Ann 16, iv, p 277
Connellsville district Ann 16, iv, pp 271, 273, 277; MR 1883-84; pp 177, 180, 181, 182; MR 1885, p 99; MR 1888, p 433
East Conemaugh MR 1883-84, p 184
Fairmount City MR 1883-84, p 193
Fayette County (Connellsville) MR 1886, p 330; MR 1887, p 334
Irvona Ann 16, iv, p 281
Jefferson County MR 1883-84, p 193
Lawrence County MR 1886, p 334
Pittsburg MR 1882, p 51
Pittsburg (bituminous, used in steel making) Bull 25, p 34
Snowshoe Basin MR 1883-84, p 185; MR 1885, p 104; MR 1886, p 327
various localities (anthracite) Ann 7, pp 530, 531; MR 1883-84, p 69; MR 1886, p 307; MR 1887, p 317
Walston district Ann 16, iv, p 286; MR 1885, p 110
from Philippine Islands, Batan Ann 16, iv, pp 289, 290; MR 1883-84, p 197; MR 1885, p 366; MR 1888, p 366
from Tennessee, Campbell County Bull 64, p 54
Claiborne County Bull 60, p 170
Coal Creek MR 1883-84, p 200
Dayton MR 1887, p 355
Glen Mary MR 1883-84, p 200; MR 1892, p 592
Hamilton County MR 1887, p 354
Jellico Mountain district MR 1887, pp 356, 357
Marion County Ann 16, iv, p 289; MR 1883-84, p 198; MR 1887, p 354
Poplar Creek MR 1885, pp 114, 116
Roane Iron Co Ann 16, iv, p 289
Rockwood MR 1883-84, p 199
Sewanee Ann 16, iv, pp 289, 290; MR 1882-84, p 197
various localities MR 1885, p 67; MR 1886, p 344; MR 1888, p 366
from Texas, Burnet County Bull 55, p 87
Eagle Pass Bull 164, pp 60, 61, 66
Laredo Bull 164, p 66
Presidio County Bull 164, p 88; MR 1893, p 385
San Carlos Bull 164, p 87
Santo Tomas Bull 164, pp 64, 65
various localities MR 1892, p 510
Coal, analysis of, from Utah, Castle Gate ... MR 1892, p 517
analysis of, from Utah, Castle Valley ... MR 1883-84, p 203; MR 1892, p 518
from Utah, Castledale .. MR 1885, p 117
Cedar City .. MR 1885, p 117; MR 1892, p 519
Coalville .. MR 1887, p 360; MR 1892, p 518
Connellsville ... MR 1892, p 514
Emery County (roof) .. MR 1886, p 351
Kanara Mountain ... MR 1882, p 78
New Harmony .. MR 1892, p 520
Pleasant Valley .. MR 1888, p 375; MR 1892, p 516
Salt Lake City .. Bull 90, p 75
San Pete Valley ... MR 1883-84, p 203; MR 1892, p 513
Scofield .. MR 1892, pp 515, 517
Wassatch Mountains .. Bull 90, p 75
from various foreign countries (brown coals) Ann 17, i, p 829
from Virginia (anthracite and bituminous) Ann 7, p 530
Big Stone Gap area .. Bull 111, p 52; MR 1887, p 365; MR 1892, p 528; GF 12, p 5
Farmville .. Bull 84, p 37
Pocahontas ... MR 1883-84, p 205; MR 1892, p 596
Richmond .. MR 1887, p 367
Scott County .. Bull 55, p 87
Tazewell quadrangle .. GF 44, p 6
various localities .. Bull 55, p 87; Bull 85, p 37; MR 1882, p 82
from Washington, Bellingham Bay .. MR 1882, p 96; MR 1883-84, p 99
Skagit County .. MR 1891, p 334
Tacoma ... MR 1893-84, p 206
various localities ... MR 1886, p 359; MR 1887, p 373
from West Virginia, Austen ... Ann 16, iv, p 298; MR 1883-84, p 212; MR 1886, p 429
Barbour County ... Bull 78, p 128
Davis ... Bull 90, p 75
Douglas .. Ann 14, ii, p 584; Ann 16, iv, p 300
Pocahontas-Flat Top district ... Ann 16, iv, p 294
Jefferson County ... Bull 42, p 146
Kanawha County .. Bull 64, p 54; MR 1882, p 84; MR 1883-84, p 208
Logan County ... MR 1893, p 398
Mineral County (Elk Garden) .. Ann 14, ii, p 581
New River district .. Ann 16, iv, p 296
northern district .. MR 1883-84, p 209; MR 1888, p 429; MR 1892, p 597
Piedmont .. Bull 60, p 169
Pittsburg bed ... MR 1883-84, p 211
Pocahontas-Flat Top district .. Ann 16, iv, p 294
Potomac field, upper ... Ann 14, ii, p 584; Ann 16 iv, p 299
Randolph County .. Bull 27, pp 73, 74
Romney .. Bull 60, p 170
(Sewall) .. Ann 17, ii, pp 492, 496-497
Tucker County ... Bull 64, p 54
various localities .. Ann 17, ii, pp 492, 509;
 MR 1886, p 374; MR 1887, p 379; MR 1888, p 389
from West Virginia–Virginia, Tazewell quadrangle GF 44, p 6
from Wyoming .. Ann 16, iv, pp 210-211
Almy ... MR 1882, p 87; MR 1883-84, p 102
Carbon .. MR 1882, p 85; MR 1883-84, p 101; 1889-90, p 282
Coal, analysis of, from Wyoming, Glenrock ... MR 1888, p 391
analysis of, from Wyoming, Rock Spring ... MR 1882, p 86; MR 1883-84, p 101
from Wyoming, Seminole ... MR 1889-90, p 282
Sweetwater County .. MR 1889-90, p 284
Twin Creek ... MR 1882, p 88; MR 1883-84, p 103
various localities ... Bull 119, pp 61-62; MR 1886, p 375
from Yellowstone Park .. MR 1883-84, p 53
anthracite, description of, as one of the educational series Bull 150, pp 144-145
bituminous, description of, as one of the educational series Bull 150, pp 143-144
by-products from the distillation of ... Ann 20, vi cont, pp 225-250
cannel, description of, as one of the educational series Bull 150, pp 141-143
correlation of Appalachian beds of ... Bull 111, pp 95-104
in Alabama, Gadsden quadrangle .. GF 35, p 3
Stevenson quadrangle ... GF 19, p 3
in Alaska Alaska (2), pp 22-24, 36, 48, 61, 71, 81, 95, 103-104, 110, 112, 116
Fortymile River Basin ... Ann 21, p 383
Koyukuk River .. Ann 21, ii, p 485
Matanuska Valley, notes on .. Ann 20, viii, p 324
report on .. Ann 17, i, pp 763-908
southwestern, notes on ... Ann 20, viii, pp 262-264
Yukon district .. Ann 18, iii, pp 380-382; Ann 21, ii, pp 383, 485-486

in Arkansas, Camden coal field .. Ann 21, ii, pp 315-329
in California, Jackson quadrangle .. GF 11, p 6
Marysville quadrangle ... GF 17, p 2
in Colorado, Anthracite and Crested Butte quadrangles GF 9, pp 9-10
Denver Basin, development, mines, areas, etc. Mon xxvii, pp 317-387
Elk Mountains .. GF 9, p 2
Elmoro quadrangle .. GF 58, pp 3-4
La Plata quadrangle .. GF 60, p —
Telluride quadrangle .. Ann 18, iii, p 848
Walsenburg quadrangle .. GF 68, pp 4-5
in Dakota, Great Sioux Reservation ... Bull 21
in Georgia, Ringgold quadrangle ... GF 2, p 2
Stevenson quadrangle ... GF 19, p 3
in Idaho ... Ann 16, ii, pp 274-275
Boise quadrangle ... GF 45, p 6
in Illinois, Danville quadrangle ... GF 67, p 6-7
in Indiana, Eastern Choctaw coal field ... Ann 21, ii, pp 289-311
in Indiana, Danville quadrangle ... GF 67, pp 6-7
in Iowa .. MR 1892, pp 398-404; Ann 16, iv, pp 112-113
in Kentucky, Big Stone Gap field ... Bull 111, pp 39-94
Estillville quadrangle .. GF 12, p 4
London quadrangle ... GF 47, p 3
Richmond quadrangle ... GF 46, p 4
in Maryland, Piedmont quadrangle ... GF 28, p 5
in Missouri, probable stage of lower, in eastern sections Mon xxxvii, pp 287-290
comparative position of lower ... Mon xxxvii, pp 292-293
in Montana .. Bull 137, pp 148-149
Fort Benton quadrangle .. GF 55, pp 6-7
Judith Mountains .. Ann 18, iii, pp 614-616
Little Belt Mountains quadrangle ... GF 56, p 7
Livingston quadrangle .. GF 1, p 3
Three Forks quadrangle .. GF 24, p 5
in Nevada, Esmeralda formation ... Ann 21, ii, pp 206-207
Eureka, of Carboniferous age .. Mon xx, pp 95-98
Coal in North Carolina Ann 16, iv, pp 153-154
in Ohio, Huntington quadrangle GF 69, pp 5-6
in Oregon, Roseburg quadrangle GF 49, p 4
in Philippine Islands .. Ann 19, vi cont, pp 688-690; Ann 21, iv, pp 569-576
in South Dakota, Black Hills, southern part Ann 21, iv, pp 582-584
in Tennessee, Briceville quadrangle GF 33, p 4
 Bristol quadrangle .. GF 59, pp 6-8
 Chattanooga quadrangle GF 6, p 2
 Estillville quadrangle GF 12, p 4
 Kingston quadrangle .. GF 4, p 3
 Loudon quadrangle .. GF 25, p 5
 McMinnville quadrangle GF 22, p 2
 Pikeville quadrangle ... GF 21, p 3
 Ringgold quadrangle ... GF 2, p 2
 Sewanee quadrangle ... GF 8, p 3
 Standingstone quadrangle GF 53, pp 3-4
 Stevenson quadrangle ... GF 19, p 3
 Wartburg quadrangle .. GF 40, p 3

in Texas, Eagle Pass coal field, thickness and character of Bull 164, pp 55-61
 Eocene coal fields, thickness and character of Bull 164, pp 61-66
 Uvalde quadrangle ... GF 64, p 5

in Utah, calorific values of MR 1882, pp 76-81

in Virginia, Big Stone Gap field Bull 111, pp 39-94
 Bristol quadrangle ... GF 59, pp 6-8
 Estillville quadrangle GF 12, p 4
 Franklin quadrangle .. GF 32, p 5
 Monterey quadrangle ... GF 61, p 7
 Pocahontas quadrangle GF 26, pp 4-5
 Richmond Basin ... Ann 19, ii, pp 511-515
 Tazewell quadrangle .. GF 44, pp 4-5

in Washington, Tacoma quadrangle GF 54, pp 7-9

in West Virginia, Buckhannon quadrangle GF 34, p 3
 Franklin quadrangle .. GF 32, p 5
 Huntington quadrangle GF 69, pp 5-6
 Monterey quadrangle ... GF 61, p 7
 Piedmont quadrangle ... GF 28, p 5
 Pocahontas quadrangle GF 26, pp 4-5
 Potomac Basin ... Ann 14, ii, pp 576-577
 Quinimont—Fire Creek, description and analyses of Ann 17, ii, pp 491-493
 Tazewell quadrangle .. GF 44, pp 4-5

in Wyoming .. Bull 118, pp 49-60
 Black Hills, southern part Ann 21, iv, pp 582-584

(See also, Coal fields.)

Juratias .. Bull 85, pp 36-43

labor troubles in 1899 .. Ann 21, vi, pp 517-518

Lykens or Pottsville, quality, nomenclature, etc., of the ... Ann 20, ii, pp 766-769

of Newark system ... Bull 85, pp 36-43

statistics of ... Ann 1, pp 72-73; Ann 2, pp xxvi-xxxi; MR 1882,
 pp 1-107; MR 1883-84, pp 11-213; MR 1885, pp 10-73;
 MR 1886, pp 224-377; MR 1887, pp 168-382; MR
 1888, pp 168-394; MR 1889-90, pp 145-226; MR
 1891, pp 177-356; MR 1892, pp 263-550; MR 1893, pp
 187-414; Ann 16, iii, p 221; iv, pp 1-217; Ann 17, iii, pp
 285-542; Ann 18, v, pp 351-632; Ann 19, vi, pp 273-543;
 Ann 20, vi, pp 295-507; Ann 21, vi, pp 113, 321-519
Coal, tests of, from Cook Inlet, Nanaimo, and Cardiff........Ann 17, i, pp 831-832
(See, also, Lignite.)
Coal, anthracite, description of, as one of the educational series. Bull 150, pp 144-145
Coal, bituminous, description of, as one of the educational series. Bull 150, pp 143-144
Coal, cannel, description of, as one of the educational series. Bull 150, pp 141-143
Coal and coal beds of Narragansett Basin.......................Mon xxxiv, pp 79-88
Coal and lignite of Alaska, notes on. Alaska (1), pp 39-44
Coal ashes, analysis of, from Colorado, Elmo district...............GF 58, p 5
Coal-bearing formations in California................................MR 1892, pp 308-310
Coal-bearing strata of Virginia..Mon vi, pp 1-9
Coal beds, effect of igneous intrusions on..........................Ann 19, ii, pp 499-500
Coal field, Appalachian, extent of..................................Ann 14, ii, pp 573-574
bituminous, of Pennsylvania, Ohio, and West Virginia, stratigraphy of. . . .Bull 65
Coos Bay, Oregon, geology of...Ann 19, iii, pp 309-376
east Appalachian, original distribution of............................Mon xxi, pp 38-39
McAlester-Lehigh, Indian Territory..........................Ann 19, iii, pp 453-456
Coal fields in arid region of United States.............................Ann 11, ii, pp 208-209
Coal of Arkansas...MR 1892, pp 309-306; Ann 16, iv, pp 70-71; Ann 21, ii, pp 313-329
of Colorado..MR 1892, pp 319-365; Ann 16, iv, pp 75-77
of Illinois..MR 1892, pp 382-383; Ann 16, iv, pp 83-85
of Indiana..Ann 16, iv, p 106

Coal of Kansas..Ann 16, iv, pp 122-123
of Kentucky..MR 1892, pp 415-417; Ann 11, iv, pp 126-127
of Maryland..Ann 16, iv, pp 132-133
of Michigan..MR 1892, pp 422-423; Ann 16, iv, p 138
of Montana..Ann 16, iv, pp 144-146
of New Mexico...Ann 16, iv, pp 149-150
of Ohio..Ann 16, iv, p 156
of Oregon, western..Ann 17, i, pp 491-508; ii, pp 472-480
of Pennsylvania, description and production of anthracite....MR 1882, pp 7-24
of Texas..MR 1891, pp 326-328; MR 1892, pp 507-510; MR 1893, pp 384-385; Ann 16, iv, p 193
Coal Measures, nomenclature and classification of, history of development of. .Bull 80, pp 83-107
reconnaissance in Rio Grande..Bull 164
of Utah..MR 1892, pp 511-521
of Virginia..MR 1892, pp 521-528; Ann 16, iv, pp 195-197
of Washington..Ann 16, iv, p 199
Puget Sound..Ann 18, iii, pp 393-436
of West Virginia..MR 1893, pp 403-407; Ann 16, iv, pp 202-203
Potomac and Roaring Creek..Ann 14, ii, pp 567-590
of Wyoming..MR 1893, pp 412-414; Ann 16, iv, pp 208-215
Coal Measures, nomenclature and classification of, history of development of. .Bull 80, pp 83-107
Coal Measures of Alabama .. MR 1892, pp 293-300; Ann 16, iv, p 65
of Alaska, Cape Beaufort.. Bull 84, p 249
of Appalachian region, correlation of...................... Bull 111, pp 94-104
fossils of .. Ann 19, ii, pp 430-435
of Illinois, altitude of base of.................................. Ann 17, ii, pp 792-794
of Indian Territory .. Ann 16, iv, p 110
columnar section of .. MR 1889-90, p 212
of Ohio as a water bearer... Ann 19, iv, pp 649-650, 693-696
of Massachusetts and Rhode Island......................... Mon xxxiii, pp 159-201, 205-208
of Missouri... MR 1892, pp 429-436; Ann 16, iv, pp 139-140
flora of lower .. Mon xxxvii
of Rhode Island and Massachusetts........................... Mon xxxiii, pp 159-201, 205-208
of Tennessee... MR 1892, pp 497-506; Ann 16, iv, p 188
of Virginia, Richmond Basin................................... Ann 19, ii, pp 429-435
thickness, proportionate, of divisions of, light on........ Ann 19, iii, p 471
Coal mines of United States, wages and labor at........ MR 1889-90, pp 169-171;
MR 1891, pp 203, 204; Ann 21, vi, pp 355-357, 517-519
Coal mining, anthracite.. MR 1883-84, pp 104-131
in West Virginia, Kanawha Valley........................... MR 1883-84, pp 131-143
terms used in, to describe lay of the coal................ Ann 18, iii, pp 405-412
Coal-mining industry, general view of....................... MR 1882, pp 1-7
Coal seams in Rosslyn sandstone, Washington............ Ann 20, ii, pp 205-206
Coal series in Texas.. Bull 164, pp 22-26
Coaledo formation of Coos Bay region, Oregon............ Ann 19, iii, pp 320-321
Coast Range of Alaska, features of........................... Ann 21, ii, p 345
of California, metamorphic rocks of......................... Bull 19, pp 7-12
of Oregon, features of... Ann 17, i, pp 448-450
stratigraphy of... Bull 84, pp 200-217
(See, also, California; Oregon.)
Coast and Cascade ranges, structure of....................... Ann 7, pp 98-102
Coast, Cascade, and Sierra Nevada ranges, relation of.. Bull 19, p 20;
Bull 33, pp 19-20
Coast swamp, an example of..................................... TF 2, p 2
Coastal group of rocks of New Brunswick................... Bull 86, pp 232-238
Coastal Plain, configuration and general geology of........ Ann 7,
description of, general.. GF 70, p 1
gеo10гic history and description of......................... GF 13, pp 1, 4-5; GF 23, pp 1, 3
of Texas, general description of............................. Ann 21, vii, pp 48-50
of United States, southeastern, formations of............ Ann 13, i, p 104
Coasts, special topography of Ann 2, pp 171-172;
Mon 1, pp 23-170; Mon xi, pp 87-124
Cobalt and nickel, argentiferous arsenide of, analysis of, from New Mexico,
Grant County... Bull 55, p 54
Cobalt bloom, analysis of, from Nevada, Churchill County...... MR 1885, p 362
Cobalt ore, analysis of, from Nevada, Churchill County (earthy)...... MR 1885, p 362
analysis of, from Nevada, Esmeralda County................ MR 1883-84, p 545
Cobaltite, analysis of, from Nevada, Churchill County.................MR 1885, p 361
Cobosseecontee River, Maine, flow of, measurements of.............Ann 20, iv, p 46; Ann 21, iv, pp 53-55; WS 35, pp 28-33
Cochiti Lake, Massachusetts, yield of watershed of..................WS 35, pp 37-38
Cochrane conglomerate of Tennessee and North Carolina..............GF 16, p 3; GF 20, p 2; GF 25, p 2
Cockroaches, fossil, American..Bull 124
Cocksfield Ferry beds, Louisiana..Bull 142, pp 21-22
Cocelancanthini from Triassic of New Jersey and Connecticut......Mon xiv, pp 70-76
Coelenterata from Eocene of middle Atlantic slope....................Bull 141, pp 89-91
from Yellowstone Park...Mon xxxii, ii, pp 496-501, 508-515
Ccelurus, description of..Ann 16, i, pp 155-156
Coeur d'Alene Lake, Idaho, height of, measurements of............WS 38, pp 369-370
Coffee group of Mississippi..Bull 82, p 105
Coke, analysis of, from Alabama....................................MR 1892, p 572
from Alabama, Birmingham district....................................MR 1886, p 356
from Alabama, Cahaba district..MR 1886, p 391
Helena..MR 1883-84, p 156
Jefferson..Ann 16, iv, p 244; MR 1887, p 205; MR 1892, p 572
Parksville..MR 1887, p 206
St. Clair County...Ann 16, iv, p 245
Tuscaloosa County...Ann 16, iv, p 245; MR 1893, p 435
Warrior field..Ann 16, iv, p 244; MR 1883-84, p 156; MR 1885, p 86; MR 1886, p 391; MR 1887, pp 195-196
from Colorado, Crested Butte and El Moro........................Ann 16, iv, p 250; MR 1882, pp 41, 43; MR 1883-84, p 159; MR 1892, p 573
Leadville district..Mon xii, p 642
various localities...Ann 18, v cont, p 697
from England, Durham...MR 1886, p 431
from Georgia, Atlanta...Ann 17, iii cont, p 576
from Illinois, Gallatin County....................................Ann 17, iii cont, p 578
various localities...MR 1883-84, p 162
from Indian Territory, Alderson....................................Ann 19, vi, p 596
McAlester..Ann 16, iv, p 254; MR 1883-84, p 164; MR 1885, p 90;
MR 1887, pp 245, 400; MR 1888, p 261; MR 1892, p 576
from Indiana, Ayrshire...MR 1886, p 396; MR 1887, p 399
from Kansas, Jellico Mountain.....................................MR 1888, p 411
from Kentucky..MR 1883-84, p 166
Bell County..Ann 16, iv, p 259
Carter County..MR 1883-84, p 166
De Koven..Ann 16, iv, p 258
Hopkins County..MR 1886, p 399; MR 1887, p 262
Mannington..MR 1887, pp 402, 403
St. Bernard...Ann 16, iv, p 257; MR 1883-84, p 167
various localities...MR 1886, p 401; MR 1887, p 258
from Montana, Bozeman...MR 1883-84, p 169
from New Mexico, Purgatory Canyon (natural).........................Bull 42, p 147
from New York, Morris Run......................................Ann 17, iii, p 587
from Ohio, Leetonia...MR 1883-84, p 172
Steubenville..MR 1883-84, p 173
Washingtonville..MR 1883-84, p 172
from Pennsylvania (used in steel making)...........................Bull 25, p 34
Allegheny Mountains...Ann 16, iv, pp 279, 280;
MR 1887, p 414; MR 1888, p 419; MR 1892, p 586
Coke, analysis of, from Pennsylvania, Armstrong County MR 1883-84, p 191
analysis of, from Pennsylvania, Beaver Falls MR 1883-84, p 190
from Pennsylvania, Blessburg district MR 1883-84, p 195
Broad Ford ... MR 1883-84, p 178
Broad Top district .. Ann 16, iv, p 282; MR 1883-84, p 187; MR 1885, p 106
Center County (Snow Shoe region) MR 1887, p 329
Clarion County ... MR 1883-84, p 192
Coketon .. Ann 16, iv, p 277
Connellsville district ... Ann 16, iv, pp 273, 274; MR 1882, p 43; MR 1883-84, pp 167, 175, 176, 182, 187; MR 1886, p 356
Connellsville district, upper Ann 16, iv, pp 277, 278; MR 1892, p 585
Du Bois ... MR 1885, p 109
Fairmount City .. MR 1883-84, p 193
Gallitzin ... MR 1885, p 103
Iriono .. Ann 16, iv, p 281
Jefferson County .. Ann 16, iv, p 286; MR 1883-84, p 193
Latrebe ... Ann 16, iv, p 277; MR 1887, p 427
Monongahela River .. MR 1883-84, p 189
Reynoldsville-Walston district MR 1892, p 590
Snow Shoe district ... MR 1883-84, p 185; MR 1885, p 104
Walston district ... Ann 16, iv, p 285; MR 1885, p 110
from Tennessee, Campbell County .. Bull 64, p 55
Chattanooga district ... MR 1886, pp 356, 421
Claiborne county ... MR 1892, p 592
Dayton .. MR 1887, p 355
Glen Mary .. MR 1883-84, p 200; MR 1892, p 592
Marion County .. Ann 16, iv, p 290; MR 1883-84, p 198; MR 1887, p 354
Oakdale .. MR 1883-84, p 200
Pioneer .. MR 1892, p 592
Poplar Creek ... MR 1885, pp 114, 116
Rockwood .. MR 1883-84, p 199
Sewanee seam .. Ann 16, iv, p 289; MR 1883-84, p 197
various localities .. Ann 16, iv, p 290; MR 1885, p 67; MR 1886, pp 344, 345, 346
from Texas, Presidio County ... Bull 164, p 88; MR 1893, p 385
from the South .. MR 1887, pp 403-404
from Utah, Castle Gate .. MR 1892, p 517
Castle Valley ... MR 1883-84, p 203
Cedar City ... MR 1885, p 117; MR 1892, p 519
San Pete Valley district .. MR 1892, pp 513, 517
from Virginia, Midlothian (natural) Bull 42, p 146; Bull 85, p 37
Pocahontas ... MR 1885, pp 118, 119; MR 1886, pp 356, 423
Pocahontas (ash from) .. MR 1885, p 118
Richmond .. MR 1887, p 367
Scott County ... Bull 55, p 87
Wise County ... Ann 17, iii, p 609
from Washington, Cokedale .. Ann 16, iv, p 293;
Fair Haven ... MR 1892, p 594
Tacoma .. Ann 16, iv, p 292; MR 1888, p 426
(ash from) ... Ann 16, iv, p 292; MR 1888, p 426
from West Virginia, Austen .. Ann 16, iv, p 298;
MR 1883-84, p 212; MR 1886, p 429; MR 1892, p 599
Coketon .. Ann 16, iv, pp 300, 301
Coke, analysis of, from West Virginia, Coketon, Davis seam Ann 14, ii, pp 587, 588
analysis of, from West Virginia, Custer mine Ann 14, ii, p 590
from West Virginia, Davis .. Bull 90, p 75
Flat Top district MR 1885, p 127; MR 1887, p 426; MR 1888, p 439
Kanawha district MR 1886-84, pp 203, 209;
MR 1885, p 121; MR 1887, p 424
Monongah (foundry) Ann 16, iv, p 297; MR 1892, p 599
Montana MR 1887, p 428
New River district Ann 16, iv, p 296;
MR 1883-84, p 210; MR 1892, p 597
Piedmont Bull 60, p 169
Pocahontas, Flat Top district MR 1892, p 596
Potomac coal basin MR 1883-84, p 213; MR 1887, pp 429, 430
Preston County MR 1883-84, p 211; MR 1886, p 428
Tucker County Bull 64, p 54
various localities MR 1886, p 374; MR 1887, p 379
in Virginia (natural) Bull 83, p 37
Richmond Basin Ann 19, ii, p 511
Coke fields in United States, extent and character of, and processes used in MR 1892, pp 551-554; MR 1893, pp 415-417; Ann 16, iv, pp 219-225
Coke making; by-product, development of Ann 19, vi, pp 597-585; Ann 20, vi, pp 544-554; Ann 21, vi, pp 558-567
in upper Potomac region Ann 14, ii, pp 587-588
Coking in Europe and other countries MR 1886, pp 430-437; MR 1887, pp 432-435
Coldbrook group of rocks of New Brunswick Bull 86, pp 230-238
Coldwater shales of Michigan WS 30, p 84
Colemanite, analyses of, from California, Death Valley Bull 55, p 57
Coleoptera, adephagous and clavicorn, from Tertiary deposits at Florissant, Colorado, with descriptions of a few other forms and a systematic list of nonrhynchophorous Tertiary Coleoptera of North America Mon XL
Coleoptera, rhynchophorous, Tertiary, of United States Mon XXI
Coles Brook limestone of western Massachusetts Mon XXIX, p 27
Colfax quadrangle, California, geology of GF 66
Colloidal silver, contribution to knowledge of Bull 113, pp 102-108
Colloidal sulphides of gold Bull 90, pp 56-61
Collyrite, chemical constitution of Bull 125, pp 66, 104
Colombia, gold and silver production of, compared with that of other countries MR 1883-84, pp 319, 320
iron and iron ore from, statistics of Ann 16, iii, pp 24, 63-64
manganese deposits and production of Ann 17, iii, pp 208-209, 224; Ann 18, v, pp 313-316, 328; Ann 20, vi, pp 142, 156; Ann 21, vi, pp 151-152, 162
petroleum in Ann 21, vii cont, p 184
Colombia, platinum from, character of......................Ann 16, iii, pp 630, 631
Color, temper-value, and time of exposure, relation between, in oxide films on steel.......................Bull 27, pp 51-61
Color effect produced by slow oxidation of iron carbonates........Bull 35, pp 51-60
Color scheme for geologic cartography.........................Ann 2, pp xlix-lic; Ann 7, p 105; Ann 10, i, pp 69-79
Colors and conventional symbols adopted for geologic maps and sections...Ann 10, i, pp 67-79
Colorimetric estimation of small amounts of chromium, with special reference to the analysis of rocks and ores........Bull 167, pp 37-43
Colorado, altitudes in. (See "elevations," under this State.)
Animas River, flow of, measurements of.................Ann 18, iv, pp 283-285; Ann 19, iv, pp 414-415; Ann 20, iv, pp 59, 403; Ann 21, iv, p 301; Bull 140, pp 198-200; WS 11, p 72; WS 16, p 146; WS 28, pp 139, 142, 145; WS 38, pp 310-311
profile of...Bull 44, p 85
Animas Valley, glaciation of..........................Mon xxxiv, pp 340-343
Anthracite and Crested Butte quadrangles, geology of............GF 9
irrigation problems relating to basin of..................Ann 11, ii, pp 210-214
irrigation system of Great Plains Water Company in valley of........Ann 21, iv, pp 240-243
mapping of, and surveying of reservoir sites in.........Ann 13, iii, pp 429-444
profile of..WS 44, pp 63-65
surveys for reservoir sites along........................Ann 11, ii, pp 133-144
Aspen mining district, geology of.........................Mon xxxi
Aspen and West Aspen mountains, mines of......................Mon xxxi, pp 151-167
asphalt deposit and production of..........................Ann 18, v cont, pp 935-945; Ann 19, vi cont, pp 190, 194; Ann 20, vi cont, pp 254, 277; Ann 21, vi cont, pp 321, 323-324
atlas sheets of. (See pp 70-71 of this bulletin.)
Battlement Mesa Forest Reserve, report on..............Ann 20, v, pp 181-243
Bear Creek, flow of, measurements of....................Ann 18, iv, pp 167-169; Ann 19, iv, p 317; Ann 20, iv, pp 54, 284-285; Ann 21, iv, p 204; Bull 140, pp 106-107; WS 11, p 54; WS 15, p 90; WS 27, pp 81, 86; WS 37, pp 227-228
Big Thompson Creek, flow of, measurements of........Ann 13, iii, pp 89, 93; Ann 18, iv, pp 174-175; Ann 19, iv, pp 321-322; Ann 20, iv, pp 55, 288-289; Ann 21, iv, pp 209-210; Bull 140, pp 110-112; WS 11, p 56; WS 15, p 94; WS 27, pp 83, 86, 89; WS 37, pp 233-234
Blue Mountains, geology of..........................Ann 17, ii, p 439
rocks of...Ann 17, ii, pp 277, 278, 279, 280, 281
Boulder, geologic structure of region about...............Mon xxvii, pp 105-111
Boulder Creek, flow of, measurements of..................Ann 13, iii, pp 87, 93; Ann 18, iv, pp 169-172; Ann 19, iv, pp 318-320; Ann 20, iv, pp 54, 286-288; Ann 21, iv, pp 206-208; Bull 140, pp 107-109; WS 11, pp 64-55; WS 15, pp 91-92; WS 27, pp 82, 86, 89; WS 37, pp 229-231

Bull. 177—01—16
Colorado, boundary lines of, and admission of... Bull 13, pp 32, 123; Bull 171, p 130

Buffalo Peaks, geologic sketch of... Bull 1, pp 11-17

building stone from, at World's Columbian Exposition... Bull 13, pp 32, 123; Bull 171, p 130

in Denver Basin... Mon xxvii, pp 392-401

in Elk Mountains... GF 9, p 2

in Pueblo quadrangle... GF 36, p 6

butterflies, fossil, of Florissant... Ann 8, i, pp 433-474

Cambrian rocks in, correlation of... Bull 81, pp 209-210, 234, 351-354, 384

cement in Pueblo quadrangle... GF 36, p 6

production of, statistics of... MR 1882, pp 462-463; MR 1883-84, p 674; MR 1885, pp 409; MR 1886, p 564; MR 1889-90, pp 462; MR 1891, pp 536; MR 1892, p 743; MR 1893, p 621; Ann 16, iv, p 581; Ann 17, iv cont, pp 884, 885

Cherry Creek, reservoir on... Ann 20, iv, pp 280-284

clay... Mon xxvii, pp 387-392

clay of Elk Mountains... GF 9, p 2

clay of Pueblo quadrangle... GF 36, p 6

clay of Walsenburg quadrangle... GF 68, p 6

clay, brick, and pottery industry of, statistics of... MR 1882, pp 473-474; MR 1883-84, p 701; MR 1885, p 423; MR 1886, p 571; MR 1887, pp 535, 537, 541; MR 1888, pp 558, 566; MR 1891, p 524; MR 1893, pp 613-614; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iv cont, pp 819 et seq; Ann 18, v cont, pp 1077 et seq; Ann 19, vi cont, pp 318 et seq; Ann 20, vi cont, pp 466 et seq; Ann 21, vi cont, pp 302, 363

Clear Creek, flow of, measurements of... Ann 21, iv, p 205; WS 37, pp 228-229

development, mines, areas, etc... Mon xxvii, pp 317-387

development, mines, areas, etc... Mon xxvii, pp 317-387

Ann 17, iv, pp 287 et seq; Ann 18, v, pp 354 et seq; 473-481; Ann 19, vi, pp 278 et seq; Ann 20, vi, pp 300 et seq; Ann 21, vi, pp 325 et seq; Ann 22, vi, pp 432-435

doest... MR 1892, pp 319-365; Ann 16, iv, pp 75-77

Cache la Poudre Creek, flow of, measurements of... Ann 11, ii, pp 95-96; Ann 12, ii, pp 226, 238-239, 348, 360; Ann 13, iii, pp 18, 21, 94, 98; Ann 20, iv, pp 55, 290-293; Bull 131, pp 30-32; Bull 140, p 112; WS 9, pp 16-27; WS 37, pp 235-237
Colorado, Cache la Poudre Valley, irrigation, settlement, agricultural practice, underground water, etc, in............. "WS 9, pp 29-87
coke in, manufacture of........... MR 1883-84, pp 157-160; MR 1885, pp 80, 87-88;
Ann 16, iv, pp 225 et seq, 247-251; Ann 17, iii cont, pp 543 et seq, 573, 575; Ann 18, v cont, pp 661 et seq, 695-697; Ann 19, vi, pp 548 et seq, 589-591; Ann 20, vi, pp 512 et seq, 557-558; vi cont, p 227; Ann 21, vi, pp 523 et seq, 570-572
Conejos River, flow of, measurements of.................. "WS 37, pp 278-279
constitution of, extracts from the, relating to irrigation... Ann 11, ii, pp 240-241
Crested Butte and Anthracite quadrangles, geology of........ "GF 9
Cripple Creek district, general geology and mining industries of......... "Ann 16, ii, pp 1-209; GF 7, pp 7-8
copper deposits, comparison of, with those of Rosita and Silver Cliff... "Ann 17, ii, pp 469-470
crops raised by irrigation in............................... "WS 9, pp 75-79
Custer County, mines of.............................. "Ann 17, ii, pp 405-472
precious-metal production of................................ "Ann 17, ii, p 420
Denver, rating station for meters at.......................... "Bull 140, p 331
Denver Basin, artesian water in............................... "Ann 11, ii, p 262
gеology of... "Ann 14, ii, pp 211-214
profile of ... "WS 44, p 86
Dolores Plateau, description of.......................... "GF 60, p —
geology of, descriptive.. "GF 60, p —
Eagle River, profile of... "WS 44, p 88
El Late Mountains, structure and rocks of............... "Ann 14, ii, pp 350-359; Ann 19, i, pp 264-270, 314-317; Ann 20, i, pp 420-423; Bull 5, pp 55-70; Bull 76; Bull 160, pp 80-100
Elk Mountains, geology, history, mineral resources, etc., of...... "GF 9, pp 1-3
Elmorode quadrangle, geology of.................. "GF 58
evaporation at various points in "Ann 11, ii, p 34
Fall Creek, flow of, measurements of.......................... "WS 11, p 68
fire clay in Elmore quadrangle................................... "GF 58, p 4
Florida River, flow of, measurements of.................. "Ann 21, iv, pp 300; WS 38, p 311
Florissant, fossil butterflies of.......................... "Ann 8, i, pp 433-474
insects of special interest from................................ "Bull 93
forest reserves in, the five, reports on................................... "Ann 20, v, pp 3-9, 39-243
fossil butterflies of Florissant............................... "Ann 8, i, pp 433-474
fossils from.. "Ann 3 pp 420-470; Ann 4, pp 290, 297, 300; Ann 6, pp 552, 553; Ann 8, ii, pp 911-913; Bull 29, pp 16-22; Bull 37, pp 38, 39, 55
Colorado, fossils from Denver Basin, vertebrate, and plants... Mon xxvii, pp 466-550
fossils from Ouray limestone of southwestern Ann 20, ii, pp 25-81
fuller's earth in, occurrence and production of Ann 18, v cont, pp 133-1334; Ann 19, vi cont, p 655
gas, illuminating and fuel, and by-products in, statistics of........ Ann 20, vi cont, pp 227, 240, 243, 245, 247, 249
geographic positions in Ann 18, i, pp 184, 201; Ann 19, i, p 168;
Ann 21, i, pp 306-320; Bull 123, pp 133-135
geologic maps of, listed Bull 7, pp 131-133, 135, 136, 138, 171
(See Map, geologic, of Colorado.)
geologic sections in. (See Section, geologic, in Colorado.)
geologic and paleontologic work in Ann 2, pp 19-20; Ann 3, pp 22, 26-27;
Ann 4, pp 36-38, 41; Ann 5, pp 44-46, 49, 57; Ann 6, pp 63-66, 72; Ann 7, pp 91-92, 112, 119; Ann 8, i, pp 144-145,
173; Ann 9, pp 78, 88-90, 114, 131; Ann 10, i, pp 25-26,
137-139, 159, 178; Ann 11, i, pp 78, 87-88, 101, 107, 108,
123-124; Ann 12, i, pp 56, 66-85, 107, 114; Ann 13, i, pp 129-130, 136-137; Ann 14, i, pp 245, 249; Ann 15; pp 135-137,
145-146, 165-166; Ann 16, i, pp 25-26, 29-30, 32-33; Ann 17, i, pp 31-33, 39-45, 68, 69; Ann 18, i, pp 40-43, 63; Ann 19,
i, pp 46-47; Ann 20, i, pp 44-46; Ann 21, i, pp 78-79
geology and mining industry of Leadville.............................. Ann 1, pp 20-21; Ann 2, pp 201-290; Mon xii
glaciation of Rocky Mountains in........ Mon xxxiv, pp 358-351
gold in Cripple Creek district. GF 7, p 8
in Denver Basin, placer........................... Mon xxvii, pp 169-172
in La Plata quadrangle. GF 60, p 9
in Leadville district. Mon xii, pp 376, 513-518, 545, 579, 594
Golden, geologic structure of region about Mon xxvii, pp 82-104
Goose Creek, flow of, measurements of...... Ann 21, iv, p 211; WS 37, pp 222-223
Grand River, drainage area of. Bull 140, pp 186-187
flow of, measurements of. Ann 18, iv, pp 260-261; Ann 19, iv, pp 399-401; Ann 20, iv, pp 58, 389; Ann 21, iv, pp 280-281;
profile of. ... WS 44, p 86
granite production of, statistics of MR 1882, p 454;
MR 1886, p 538; MR 1889-90, p 374; MR 1891, pp 457, 458;
MR 1892, p 706; MR 1893, pp 544-545; Ann 16, iv, pp 437,
442, 457, 458-459; Ann 17, iii cont, pp 760, 761, 763, 764; Ann
18, v cont, pp 950, 951, 954, 956, 957; Ann 19, vi cont, pp 208,
209, 211, 213; Ann 20, vi cont, pp 271, 272, 273, 274, 275,
276, 277; Ann 21, vi cont, pp 335, 336, 337, 338, 339, 340
Greeley, irrigation canals and reservoirs near WS 9
Colorado, Gunnison River, flow of, measurements of...............Ann 19, iv, pp 404-406; Ann 20, iv, pp 58, 390; Ann 21, iv, pp 278-279; Bull 131, p 48; Bull 140, pp 189-191; WS 16, pp 140-141; WS 28, pp 136, 142, 144; WS 37, pp 297-298

Gunnison River, profile of..WS 44, p 87
gypsum, deposits, industry, and statistics of...MR 1882, p 528; MR 1883-84, p 812; MR 1885, p 463; MR 1886, p 622; MR 1887, p 601; MR 1889-90, pp 465, 466; MR 1891, pp 580, 581; MR 1892, p 802; MR 1893, p 715; Ann 16, iv, p 664; Ann 17, vi cont, pp 979, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527

in Pueblo quadrangle ..GF 36, p 6

Highline irrigation canal..Ann 13, iii, pp 179-181

Hunter Park, geologic structure of............................Mon xxxi, pp 126-132

insects of special interest from Florissant and other points in the Tertiaries of Colorado and UtahBull 93

irrigation; engineering works in Arkansas Basin........Ann 13, iii, pp 362-370

near Greeley ..WS 9

provisions relating to, in constitution ofAnn 11, ii, pp 240-241

surveys, engineering, hydrography, segregations, etc., in...Ann 10, ii, pp viii, 18, 58, 62-63, 68-71, 86, 93-98; Ann 11, ii, pp 133-144; Ann 12, ii, pp 55-127, 247-251; Ann 13, iii, pp 435-444

water storage for ..Ann 13, iii, pp 302-304, 317-319

weir at head of Arapahoe CanalAnn 13, iii, p 230

at head of Highline CanalAnn 13, iii, pp 224-226

at head of Monte Vista and Del Norte canals...Ann 13, iii, pp 229-230

iron, iron ore, and steel from, statistics ofMR 1882, pp 120, 125, 129, 130, 133, 134, 135, 136, 144-147; MR 1883-84, pp 252, 281-285; MR 1885, pp 182, 184, 186, 196; MR 1886, p 18; MR 1887, pp 11, 28-29, 52-54; MR 1888, pp 15, 33; MR 1889-90, pp 10, 17, 24, 35; MR 1891, pp 12, 26; MR 1892, pp 12, 13, 15, 21, 26, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 35, 38, 39; Ann 16, iii, pp 31, 192, 194, 199, 203, 205, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 60, 63, 68; Ann 18, iv, pp 24, 37, 41, 42; Ann 19, vi, pp 26, 27, 29, 35, 66, 68, 72; Ann 20, vi, pp 29, 41, 43, 44, 74, 75, 81, 84, 85; Ann 21, vi, pp 34, 48-49, 52, 55, 90, 92

iron ore in Pueblo quadrangleGF 36, p 6

occurrence of, in ..Ann 18, v, pp 45-47

Jurassic invertebrates ofBull 128, pp 71-72

kaolin from the Waterfall mine, Gunnison County, description and analysis ofBull 60, p 136

La Plata dome, description ofGF 60, p —

erosion of ..GF 60, p —

origin of ..GF 60, p —

La Plata Mountains, geology of, descriptiveGF 60, p —

glaciation of ..Mon xxxiv, pp 338-340

structure and rocks ofAnn 14, ii, pp 206-209

topography, drainage, etc., ofGF 60, p —

La Plata quadrangle, geology ofGF 60, p —

La Plata River, course and character ofGF 60, p —

profile of ..WS 44, p 85

laccolitic mountain groups of, Utah and ArizonaAnn 14, ii, pp 157-241

Lake Creek, flow of, measurements ofWS 37, pp 250-257

Leadville, geology and mining industry of. Mon xi

Lenado Canyon, Aspen district, geologic structure and mines of. Mon xxi, pp 117-126, 199-203

limestones in Elk Mountains. GF 9, p 2
in Elmoiro quadrangle. GF 58, p 4
in Pueblo quadrangle. GF 36, p 6
in Walsenburg quadrangle. GF 68, p 6

Little Fountain Creek, flow of, measurements of. Ann 18, iv, p 231

profile of. WS 44, p 85
Lost Canyon reservoir site and natural dam. Ann 18, iv, pp 724-725
lumber industry in. Ann 19, iv, pp 21, 22
magnetic declination in. Ann 17, i, pp 317-320
Mancos Canyon, reservoir sites in. Ann 21, iv, pp 280-297
Mancos River, flow of, measurements of. Ann 20, iv, p 404; Ann 21, iv, pp 284-286; WS 28, pp 137, 142, 144; WS 38, p 312

profile of. WS 44, p 84
manganiferous iron ores of, character of. MR 1892, pp 183-184
manganiferous silver ores in. MR 1892, p 184
maps, geologic, of. (See Map, geologic, of Colorado.)
maps, topographic, of. (See Map, topographic, of Colorado.)
meridian marks in. Ann 21, i, p 321
mineral species from, new. Bull 20, pp 100-109
mineral springs in. Ann 14, ii, p 82
Colorado, minerals from basalt of Table Mountain, Golden... Bull 20, pp 13-39
minerals from neighborhood of Pikes Peak.................... Bull 20, pp 40-74
useful, at Cripple Creek, history of............................. Ann 16, ii, pp 113-118
at Leadville... Mon xi, pp 363-584
in Telluride quadrangle... Ann 18, iii, pp 745-850
Mosquito Range, structure and rocks of.................... Ann 14, ii, pp 219-221
uplift in.. GF 48, p 1
natural gas in, localities and statistics of MR 1887, pp 498-499;
 Ann 16, iv, pp 415, 428-429; Ann 17, iii, cont, pp 734, 735, 748-749;
 Ann 18, iv, cont, pp 901, 903, 904, 915; Ann 19, vi cont, pp 169, 171, 172, 173,
 181-182; Ann 20, vii cont, pp 207, 209, 210, 221; Ann 21, vi cont, pp 301, 302, 304
Neocene beds of.. Bull 84, pp 304-309
nickel ore in... MR 1882, p 404; MR 1883-84, p 539
ore deposits in Leadville district......................... Mon xii, pp 367-379
in Telluride quadrangle.. GF 57, pp 16-18
paint, mineral, production of.................................. MR 1889-90, p 508; MR 1891, p 595;
 MR 1892, pp 816, 818; MR 1893, pp 760, 761; Ann 16, iv, pp 696, 698;
 Ann 17, iii, cont, pp 1013, 1014, 1016, 1017; Ann 18, vi cont, pp 1338, 1342;
 Ann 19, vi cont, pp 637, 642; Ann 20, vi cont, pp 723, 728; Ann 21, vi cont, p 573
petroleum localities and statistics of....................... MR 1882, p 211;
 MR 1883-84, pp 216-217; MR 1887, pp 438, 455-456; MR 1888, pp 464-466;
 MR 1889-90, pp 292, 332-340; MR 1891, pp 405, 407, 432; MR 1892, pp 604, 606, 611,
 643-645; MR 1893, pp 465, 466, 507-508; Ann 16, iv, pp 317, 318, 319, 320,
 367, 368; Ann 17, iii, cont, pp 626, 627, 628, 630, 698; Ann 18, v cont, pp 750, 751, 753,
 755, 840; Ann 19, vi cont, pp 5, 6, 7, 8, 9, 11, 101-102; Ann 20, vi cont, pp 5,
 6, 7, 9, 118-120; Ann 21, vi cont, pp 5, 6, 7, 8, 12, 154-155
Piedra River, flow of, measurements of....................... Ann 18, iv, pp 281-283;
 Ann 19, iv, pp 411-413; Ann 20, iv, pp 59, 402; Ann 21, iv, pp 298-299;
 Bull 140, pp 197-198; WS 11, p 71; WS 16, p 145; WS 28, pp 139, 142, 145; WS 38, pp 508-309
Pikes Peak district, bibliography of.......................... GF 7, p 5
Pikes Peak Forest Reserve, report on......................... Ann 20, v, pp 3-5, 63-74
Pikes Peak quadrangle, geology of............................. GF 7
placer deposits of La Plata quadrangle......................... GF 60, p —
plants, fossil, from Denver Basin......................... Mon xxviii, pp 466-473
Platte River, flow of, measurements of..................... Ann 13, iii, pp 84, 85, 93
profile of .. WS 44, p 75
Platte River Basin, hydrography of and irrigation in..... Ann 13, iii, pp 73-91
Plum Creek Timber-Land Reserve, report on............... Ann 20, v, pp 3-6, 74-86
Precious stones in, occurrence of.............................. MR 1882,
 pp 484, 486, 487, 490, 491, 492, 495, 497; MR 1883-84, pp 724, 737, 740, 741, 752, 753,
 757, 760, 762, 777; MR 1885, pp 439, 440; MR 1887, p 559; MR 1888, p 582; MR 1889-90,
 p 445; MR 1891, p 648; MR 1892, p 764; MR 1893, p 695
Pueblo quadrangle, geology of................................. GF 36
Purgatory River, flow of, measurements of.................. Ann 11, ii, p 98; Ann 18,
 iv, pp 231-232; Ann 19, iv, pp 358-360; Ann 20, iv, pp 57, 340-342;
 Ann 21, iv, pp 235-236; WS 11, p 61; WS 16, p 123; WS 28, pp 113, 116, 117; WS 37, p 263
Colorado, rainfall at various points in............. Ann 12, ii, p 244; WS 9, pp 13-16
rainfall in Arkansas Basin................................. Ann 11, ii, pp 24-25
in southwestern... Ann 20, iv, pp 396-400
rainfall and run-off in basin of Arkansas River Ann 20, iv, pp 325-330
in basin of Platte River.................................. Ann 20, iv, pp 256-266
of Upper Colorado River................................. Ann 20, iv, pp 374-380
of Upper Rio Grande..................................... Ann 20, iv, pp 356, 358, 359
reservoir sites in, for irrigation........................ Ann 18, iv, pp 724-726
in Mancos Canyon.. Ann 21, iv, pp 286-297
reservoir sites and irrigable lands in, reported by topographers......... Ann 11, ii, pp 301-302, 310
reservoir surveys in Ann 20, iv, pp 31-32
Rico Mountains, alluvial fans in........................ Ann 21, ii, pp 162-163
bedding faults in.. Ann 21, ii, pp 107-112
deformation by faulting and folding in................ Ann 21, ii, pp 103-107
erosion in.. Ann 21, ii, pp 151-156
faults in.. Ann 21, ii, pp 114-128
gelogic history of, recent................................ Ann 21, ii, pp 160-165
gology of.. Ann 21, ii, pp 7-105
glaciation of... Ann 21, ii, pp 156-159
igneous rocks in.. Ann 21, ii, pp 104-105
landslides in... Ann 21, ii, pp 129-151
origin of.. Ann 21, ii, pp 112-114
physiography of... Ann 21, ii, pp 19-21
hydrography of basin of................................. Ann 12, ii, pp 240-290
irrigation problems relating to basin of.............. Ann 11, ii, pp 215-227
profile of... WS 44, pp 36-37
San Juan Mountains, formation of...................... Ann 18, ii, p 758
structure of... Ann 21, ii, pp 99-101
San Juan Plateau, denudation of........................ GF 57, pp 14-15
San Juan region, geography, topography, and geology of.............. GF 57, pp 1-2
profile of... WS 44, pp 83-84
San Luis Valley, subirrigation in....................... Ann 21, iv, pp 263-265
San Miguel Mountains, structure and rocks of........ Ann 14, ii, pp 203-206
sandstone in Elmore quadrangle......................... GF 58, p 4
Colorado, sandstone in Walsenburg quadrangle ... GF 68, pp 5-6
(See "building stone," under this State.)
sandine in certain rhyolites from, luster exhibited by Bull 20, pp 75-80
sections, geologic, in. (See Section, geologic, in Colorado.)
seepage measurements on Thompson Creek Ann 20, iv, p 289
sewage-disposal plants in .. WS 22, pp 80-81
silver in La Plata quadrangle ... GF 60, p —
(See "gold and silver," under this State.)
Silver Cliff and Rosita Hills, geology of Ann 17, ii, pp 263-403
Silver Mountain, auriferous impregnations of Ann 18, iii, pp 843-846
Smuggler Mountain, mines of ... Mon xxxi, pp 180-199
South Fork reservoir site ... Ann 18, iv, p 726
South Park, Antero reservoir site .. Ann 18, iv, p 726
South Platte Forest Reserve, report on Ann 20, v, pp 3-6, 86-115
South Platte River, flow of, measurements of Ann 18, iv, pp 159-167; Ann 19, iv, pp 312-316; Ann 20, iv, pp 54, 277-280, 283-294; Ann 21, iv, pp 201-203, 210; Bull 140, pp 102-106; WS 11, pp 52-53; WS 15, pp 87-89; WS 27, pp 84, 86, 89; WS 37, pp 223-227
Southern Ute Indian Reservation, water supply of, investigation of Ann 20, iv, pp 408-434
Spanish Peaks, structure of ... Ann 14, ii, p 224
stream measurements in, list of miscellaneous WS 28, p 143
Table Mountain, Golden, minerals from basalt of Bull 20, pp 13-39
Tarryall Creek reservoir site ... Ann 18, iv, p 726
Telluride mining district, history, statistics, etc., of Ann 18, iii, pp 752-758
Telluride quadrangle, geology of ... GF 57
mining industries of .. Ann 18, iii, pp 745-850
Tenmile district, geology of .. GF 48
structure and rocks of ... Ann 14, ii, pp 222-224
tin deposits of .. Ann 16, iii, pp 529-530
topaz from, an unusual occurrence of Bull 20, pp 81-82
topographic maps of. (See Map, topographic, of Colorado.)
topographic work in .. Ann 3, p 22; Ann 4, pp 6-7, 35-36; Ann 5, pp 9, 44-46; Ann 7, p 57; Ann 10, ii, pp 18, 68-71; Ann 11, ii, pp 299-301; Ann 12, i, p 45; Ann 13, i, pp 79, 80; Ann 14, i, pp 178, 180; Ann 15, pp 123-124; Ann 16, i, pp 66, 68, 69-70, 71; Ann 17, i, pp 97, 103-104; Ann 18, i, pp 94, 85, 107; Ann 19, i, pp 89, 90, 104; Ann 20, i, pp 100, 102, 116; Ann 21, i, pp 120-121, 134
Tourtelotte Park, geologic structure and mines of Mon xxxi, pp 84-117, 167-180
trees and shrubs in forest reserves of Ann 20, v, pp 46-63, 109-115, 123-133, 195-209
triangulation in ... Bull 122, pp 287-289, 367
tungsten in, occurrence of .. Ann 21, vi, p 301
Twin Lake Creek, flow of, measurements of Ann 11, ii, p 96
Twin Lakes irrigation reservoir and dam Ann 13, iii, pp 362-370; Ann 21, iv, pp 238-239
profile of .. WS 44, p 87
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Colorado, volcanic activity in Cripple Creek region, evidences, products, age, etc., of .. Ann 16, ii, pp 59-109
Walsenburg quadrangle, geology of .. GF 68
water in, legal control of .. WS 9, pp 60-66
water, artesian, in Elmoror quadrangle .. GF 58, pp 4-5
in Pueblo quadrangle .. GF 36, p 7
water, underground, in .. WS 9, pp 79-87
of Arkansas Valley in eastern .. Ann 17, ii, pp 551-601
water resources of a portion of Great Plains Ann 16, ii, pp 535-588
water supply of, for public lands .. Ann 16, ii, pp 509-511
well records in .. Bull 131, pp 106-114
wells, artesian, of Denver Basin, development, conditions, etc Mon xxvii, pp 401-465

West Denver quadrangle, physiography of TF 2, p 14
West Elk mountains, geology of .. Ann 14, ii, pp 177-203
Wet Mountain Valley, description of Ann 17, ii, pp 270-272
White River, flow of, measurements of Bull 140, p 202; WS 28, p 143
White and Yampa rivers, reconnaissance on Ann 20, iv, pp 383-387
woodland area of .. Ann 19, v, p 11
Yampa and White rivers, reconnaissance on Ann 20, iv, pp 383-387
Colorado Basin, hydrography of ... Ann 12, iv, pp 290-316
irrigation problems relating to .. Ann 11, ii, pp 229-231
stream measurements in .. Ann 18, iv, pp 260-299;
Colorado formation, character, extent, and invertebrate fossils of Bull 106
in Colorado ... GF 7, pp 2, 4
Aspen district ... Mon xxxi, pp 41-42
Denver basin ... Mon xxvii, pp 26, 64-68
in Montana .. GF 24, p 3; GF 35, p 2
in South Dakota ... WS 34, pp 15-16
in Yellowstone Park .. Mon xxxii, ii, pp 37, 51, 53, 156, 605-606; GF 30, pp 2, 5
Colorado group, as a source of coal in Utah MR 1892, p 519
in Montana .. Bull 105, pp 17-18; Bull 139, pp 45-46; GF 1, p 2
in Uinta Mountains ... Ann 9, p 689
in Wyoming .. Bull 119, p 22
Colorado River, Grand Canyon of, pre-Cambrian igneous rocks of Unkar ter- rane ... Ann 14, ii, pp 497-524
profile of .. WS 44, pp 81-83
rainfall and run-off in basin of upper Ann 20, iv, pp 374-380
(See, also, Grand Canyon.)
Colorado River, Texas, flow of, measurements of Ann 18, iv, p 110; Bull 140, pp 83-84, 86; WS 28, pp 122-124, 129, 130; WS 37, pp 274-275
profile of .. WS 44, p 34
Coloradoite from California, mineralogic notes on Bull 167, pp 62-63
Columbellidse of Miocene deposits of New Jersey Mon xxiv, pp 110-111
Columbia formation, correlation of ... Ann 18, i, p 336
description of ... Ann 7, pp 594–612, 635; Ann 12, i, pp 384–407
in Delaware ... Bull 138, p 119
in District of Columbia .. GF 70, pp 4–5
in Maryland ... Ann 7, pp 594–612, 637–639;
Bull 138, p 126; GF 13, p 2; GF 23 pp 1–2; GF 70, pp 4–5
in South Carolina ... Bull 138, p 210
in Virginia ... Bull 138, p 164; GF 13, p 2; GF 23, pp 1–2; GF 70, pp 4–5
relation of, to clays of Rhode Island and Massachusetts Ann 17, i, p 1004
unconformity between Potomac formation and Ann 7, pp 582–583
Columbia River, profile of .. WS 44, p 97
Columbia River lava of Idaho .. Ann 20, iii, pp 90–93
of Washington ... Ann 20, ii, pp 120–134; Bull 108, pp 20–22; WS 4, pp 40–50
Cumbite, analysis of, from Dakota, Etta tin mine MR 1888, p 151
analysis of, from North Carolina, Alexander County Bull 74, p 73 from North Carolina, Mitchell County Bull 74, p 73
Columnar jointing in lava, description of, as one of the educational series of
rock specimens ... Bull 150, pp 256–258
Columnar Juratrias lava of Sierra Nevada Ann 17, i, p 648
Columnar structure of basalt in volcanic necks Ann 6, pp 172–174
of obsidian of Yellowstone Park .. Ann 7, p 257; Mon xxxii, ii, p 257
Comal River, Texas, flow of, measurements of Ann 18, iv, p 110; Bull 140, pp 84, 86; WS 28, p 130
Comanche Peak limestone of Texas Ann 18, ii, p 226; Ann 21, vii, pp 214–216, 223–227; GF 42, p 2; GF 64, p 1
Comanche series of Texas .. Ann 18, ii, pp 218–238; Ann 21, vii, pp 128–192; Bull 164, pp 16–18; Bull 82, pp 116, 118, 119–121,
127, 130, 221, 223, 225, 229, 250, 253–254; GF 64, pp 1–2
Committees, various, appointment of Ann 18, i, pp 14–15
Compressibility of liquids ... Bull 92
Compressibility and thermal expansion, investigations of Ann 14, i, pp 154–156
Compression, Appalachian structure due to Ann 13, ii, p 217
Compsognathus, remarks on, and restoration of Ann 16, i, p 228
Comstock lode, alteration of minerals in Mon iii, p 20
decomposition products from chemical analyses of Mon iii, pp 217–218
description of .. Ann 1, p 89–46
history of ... Ann 1, p 71; Ann 2, pp xxxvii–xxxviii
mechanical appliances used on ... Ann 1, pp 50–52, 72
Comstock lode and Washoe district, geology of Ann 2, pp xxiv–xxvi, 291–330; Mon iii
Comstock mine waters, analyses of Mon iii, p 152
Comstock mining and miners .. Mon iv
Conasauga shale in Alabama, Georgia, and Tennessee GF 2, p 1; GF 4, p 2;
GF 6, p 1; GF 20, p 2; GF 25, p 3; GF 33, p 2; GF 35, p 2
origin of name .. Bull 81, pp 246–247
Concentration, natural, of iron ores in Penokee district Mon xix, pp 285–290
Conchifera of Bear River formation Bull 128, pp 32–41
of Chico-Tejon series of California Bull 51, pp 14–15
of Cretaceous of Vancouver Island Bull 51, pp 36–44
of Mesozoic of Alaska Peninsula Bull 51, pp 65–67
of North America (nonmarine fossil) Ann 3, pp 420–443
of Permian of Texas .. Bull 77, pp 29–29
of Puget group .. Bull 51, pp 58–62
Concho River, Texas, profile of WS 44, p 35
Concretion in loess from Wray, Colorado, analysis of Bull 148, p 297
Concretion, calcareous, description of the rock, as one of the educational series
in Champlain clays of Massachusetts

Concretion, ferruginous, description of the rock, as one of the educational series

Concretion, marcasite, description of the rock, as one of the educational series

Concretions, analysis of
in sandstone, origin of
Conduction, heat, investigations in

Conejos River, Colorado, flow of, measurements of

Conference of geologists and lithologists on geologic nomenclature and map notation, in January, 1889

Congaree River, profile of

Congeria beds of Europe, eastern, correlation of

Conglomerate, analysis of, from Massachusetts, Marlboro
description of the rock, as one of the educational series
faulted pebble of Cretaceous, description of, as one of the educational series
metamorphic, from Hoosac Mountain, Massachusetts, description of, as one of the educational series
thin section of, from Massachusetts, Hoosac Mountain (metamorphic)
from Massachusetts, Stone Hill, Williamstown (quartzite)
from New York, Ashley Hill (limestone)
from Vermont, Bird Mountain
volcanic, in Maine, Aroostook volcanic area
Conglomerates, andesitic pebbles of, in Denver Basin
basal, formation of, and phenomena liable to be mistaken for
Carboniferous, as products of glaciation
evidence from, as to periods of metamorphism
of Keweenaw series, description of
record value of
Conglomerate formation of Michigan, Sturgeon River tongue
Conglomerate series of West Virginia, name proposed
Congress, international, of geologists, fifth triennial session, at Washington, in August, 1891
Conichalcite, analysis of, from Spain
analysis of, from Utah, Tintic district
Conidae from clays and marls of New Jersey
Coniferaj of Alaska
of Amboy clays
of Coal Measures, Lower, of Missouri
of Cretaceous of Black Hills
of Dakota group
of Laramie group
of Mesozoic, of California
of Mesozoic, older, of North Carolina
of Virginia
of North America, extinct
Conjugate functions or conformal transformation, method of. Ann xv, pp 343-346
Connesaugua shale. (See Conesaugua.)
Connecticut, altitudes in. Bull 5, pp 71-72; Bull 76; Bull 160, pp 101-111
atlas sheets of. (See p 71 of this bulletin.)
boundary lines of. Bull 13, p 68; Bull 171, pp 71-75
brick industry of. MR 1887, pp 535, 537; MR 1888, pp 558, 566
building stone at World's Columbian Exposition. MR 1893, p 562
cement production of. Ann 19, vi cont, p 492
cession of territory to General Government. Bull 13, pp 26, 66-70
clay and clay products of, statistics of. MR 1888, pp 558, 566; MR 1891, p 502; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iv cont, p 819 et seq; Ann 18, v cont, p 1077 et seq; Ann 19, vi cont, pp 318 et seq, 354; Ann 20, vi cont, pp 466 et seq, 515; Ann 21, vi cont, pp 362, 363
cobalt deposit in. MR 1883-84, pp 544
coke in, manufacture of. Ann 20, vi cont, p 227
deposition, deformation, and degradation in Triassic area of. Ann 18, iv, pp 19-192
drainage lines, development of, in. Ann 18, ii, pp 154-157, 184
elevations in. (See "altitudes," under this State.)
feldspar from, statistics of. Ann 18, v cont, pp 1365, 1367; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745
gas, illuminating and fuel, and by-products from, statistics of. Ann 20, vi cont, p 227 et seq
geographic dictionary of. Bull 117
geographic positions in. Bull 123, pp 35-44
geologic and paleontologic investigations in. Ann 6, p 36; Ann 7, p 61; Ann 9, p 76; Ann 11, i, p 59; Ann 12, i, pp 62, 66, 121, 125; Ann 13, i, pp 94-95, 100, 101; Ann 14, i, p 185; Ann 15, pp 133, 147, 161; Ann 18, i, p 25; Ann 21, i, p 70
gologic maps of, listed. Bull 7, pp 52, 53, 54
See Map, geologic, of Connecticut.
geologic sections in. (See Section, geologic, in Connecticut.)
glacial investigations in. Ann 3, pp 379, 380; Ann 7, p 157
 glaciation of form and drainage in. Ann 18, ii, pp 179-184
gold and silver from, statistics of. Ann 17, iii, pp 72, 76, 77; Ann 18, v, pp 142, 146, 147, 149; Ann 19, vi, pp 127, 130, 131, 132, 133; Ann 20, vi, pp 106, 107, 108, 109; Ann 21, vi, pp 121, 123
Connecticut, granite quarries of .. Ann 19, vii, cont, pp 232-234
harbors on coast of .. Ann 13, iii, pp 160-170
Housatonic River, profile of ... WS 44, p 14
limestone production of .. MR 1887, p 532; MR 1888, p 555
mica industry in .. MR 1893, p 753
mineral spring resorts in .. Ann 14, iii, p 82
minerals of, useful .. MR 1882, pp 401-402; MR 1883-84, p 539
Naugatuck River, pollution of .. WS 22, pp 21-22
nickel production of .. MR 1882, pp 401-402; MR 1883-84, p 539
Pomperaug Basin, drainage system, physiographic features, erosion history, and glaciation of .. Ann 21, iii, pp 137-160
Pomperaug Valley, Newark system of rocks of Ann 21, iii, pp 7-162
quartz from, statistics of .. Ann 18, v, cont, p 1308; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745; Ann 21, vi cont p 595
Quinnipiac River, pollution of ... WS 22, pp 20-21
sections, geologic, in. (See Section, geologic, in Connecticut.)
sewage-disposal plants in .. WS 22, pp 69-92
survey of, by cooperation of the State Ann 10, i, pp 7, 88; Ann 11, i, p 6; Ann 12, i, p 5
tin deposit in ... Ann 16, iii, p 523
topographic maps of (see Map, topographic, of Connecticut; also p 71 of this bulletin.)
Connecticut, topographic work in . Ann 10, i, pp 86, 88, 89; Ann 11, i, p 35; Ann 12, i, p 25
triangulation in .. Bull 122, pp 19-24
Triassic formation of .. Ann 18, ii, pp 1-192
tungsten in, occurrence of Ann 21, vi, pp 301-303
uplands and lowlands of Ann 18, ii, pp 11-15
woodland area in .. Ann 19, v, p 4
profile of ... WS 44, pp 12-13
rock formations of valley of Bull 80, pp 26-27
Connecticut River and tributaries, pre-Glacial course of . Mon xxix, pp 513-515
Connecticut River sandstone in Massachusetts, western . Mon xxix, pp 351-406, 495-500
Connecticut Valley, fossil fishes and plants of Triassic rocks of . Mon xiv
Newark system in, area of Bull 85, pp 20, 80-81
structure of Triassic formation of Ann 7, pp 455-490
Triassic flora of, review of Ann 20, ii, pp 222-229
(See, also, Massachusetts.)
Conoquenessing sandstone of Pennsylvania Bull 80, pp 100-101
Constitution of pectolite, pyrophyllite, calamine, and analcite, experiments relative to Bull 167, pp 13-25
of tourmaline .. Bull 167, pp 26-36
Contact metamorphism in rocks of Colorado, Mosquito Range, not marked Mon xii, p 307
in rocks of Montana, Judith Mountains Ann 18, iii, pp 583-584
of Sierra Nevada .. Ann 17, i, pp 686-692
synthesis in production of rock types illustrated by . Ann 18, iii, pp 307-308, 310
(See, also, Metamorphism.)
Contact phenomena in Penokee district Mon xix, pp 171-174, 184-185, 297-298
Contoocook River, New Hampshire, profile of WS 44, pp 12
Contraction of substances due to cooling under pressure Bull 92, pp 56-61
Conveyance of water in irrigation canals, flumes, and pipes . WS 43
Convict labor in coal mines Ann 16, iv, pp 188-190
Conway schists of Massachusetts, western . Mon xxix, pp 183-201, 222-225
of Massachusetts and Connecticut GF 50, pp 2, 5
Cooling, effect of sudden, exhibited by glass and steel Bull 42, pp 98-131
under pressure, contractions due to Bull 92, pp 56-61
Cook (G. H.), sketch of the geology of the Cretaceous and Tertiary formations of New Jersey . Mon ix, pp ix-xiii
Cook Inlet, Alaska, coal in Ann 17, i, pp 784-797
gravel of, notes on ... Ann 20, vii, pp 174-175
Cookite, chemical constitution of Bull 125, pp 49, 54, 103
Coon Butte, Arizona, examination of Ann 13, i, p 98; Ann 14, i, p 187
Cooper River marls, South Carolina, correlation of Ann 18, ii, p 342
Cooperation with States in topographic work Ann 15, p 76
(See, also, State names.)
Coos Bay coal field, Oregon, description of Ann 17, i, pp 496-501
geology of .. Ann 19, iii, pp 309-376
Coos Bay quadrangle, Oregon, forest conditions in Ann 21, v, pp 576-577
Coos conglomerate, correlation of Ann 18, ii, p 336
Coos group of New Hampshire Bull 86, pp 351, 352, 353
Coosa River, profile of ... WS 44, p 31
rainfall and run-off in basin of ... Ann 20, iv, pp 177-181
Coosa shales of Alabama .. Bull 81, pp 247, 308
Coosawattee River, Georgia, flow of, measurements of Ann 18, iv, pp 96-98, 110; Ann 19, iv, pp 243-244; Ann 20, iv, pp 51,191-192; Ann 21, iv, pp 146-147; WS 11, p 27; WS 15, p 49; WS 27, pp 52,57, 58; WS 36, pp 144-146
Copiapite, analysis of, from California, Lake County, Knoxville... Bull 61, pp 25-26
Copper; analysis of a sample containing tellurium MR 1886, p 649
metallurgy of MR 1882, pp 257-280
of Alaska, Copper River district, deposits and mines, notes on Ann 20, vii, pp 417-421
Copper River and other regions, notes on Alaska (2), pp 59-60, 71; Ann 21, pp 377-382, 437-439, 482
Tanana-White region, note on .. Ann 20, vii, p 488
of Arizona, cupola smelting of MR 1883-84, pp 387-410
of California, Collax quadrangle GF 66, p 7
Jackson quadrangle.. GF 11, p 6
Smartsville quadrangle... GF 18, p 6
of Idaho, Seven Devils ... Ann 20, iii, pp 249-253
of Maryland-Virginia-West Virginia, Harpers Ferry quadrangle GF 10, p 4
of Montana ... Bull 139, pp 156-157
Butte district ... GF 38, pp 3-4, 5, 7
Three Forks quadrangle.. GF 24, p 5
of Oregon, Roseburg quadrangle GF 49, p 4
of Philippine Islands .. Ann 19, vi cont, pp 691-692; Ann 21, iii, pp 584-590
of Porto Rico.. Ann 20, vi cont, pp 776-777, 784-785
of Sierra Nevada ... Ann 17, i, p 696
Copper-bearing rocks of Lake Superior region Ann 1, pp 70-71; Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v; Bull 81, pp 135-199; Bull 86, passim
(See, also, Animikie; Cupriferous series; Keweenawan; Nipigon.)
Copper minerals of Colorado, Cripple Creek district Ann 16, ii, p 125
of Utah, notes on certain rare .. Bull 55, pp 38-47
Copper ores of Montana, Little Belt Mountains quadrangle GF 56, p 9
Copper ores, sulphurated, composition of typical MR 1882, pp 258
Copper ores and furnace products, roasting of MR 1882, pp 280-297
Copper River, Alaska, trails along Ann 21, ii, p 415-416, 417
Copper River Valley, Alaska, topography of Ann 21, ii, pp 408-409
Copper River district, Alaska, reconnaissance in, in 1898—routes, trails, topography, drainage, physiography Ann 20, vii, pp 341-423
report on ... Alaska (2), pp 51-63, 105-108
Copper River greenstone or amphibolite-schist Alaska (2), pp 57-58
Copper River silts and gravels character, origin, etc., of Ann 20, vii, pp 410-412; Alaska (2), pp 58-59
Copper slags, analyses of ... MR 1883-84, pp 388,405, 408
Copper smelting .. Bull 26
Copper smelting by natives of Philippine Islands, method of...............Ann 21, iii, pp 587-589
Copper sulphide, solubility of...Mon xiii, pp 433-434, 474
Copperas, statistics of..MR 1882,
p 607; MR 1883-84, pp 952-953; MR 1886, pp 684-685
Coquina, analysis of, from Florida, various localities...............Bull 60,
p 163; Bull 168, pp 255, 256
description of the rock, as one of the educational series........Bull 150, pp 121-122
Coral faunas, Eocene and Lower Oligocene, of United States, with descriptions
of a few doubtfully Cretaceous species..........................Mon xxxix
Coral limestone of Alabama...Bull 84, p 382
Coral and shell rocks, analyses of, from Florida, various localities.....Bull 60,
p 162; Bull 148, pp 259-260; Bull 168, pp 255-257
analyses of, from Hawaiian Islands, various localities............Bull 60,
p 164; Bull 148, p 276; Bull 168, p 277
Coral-reef harbors, description of...................................Ann 13, ii, pp 130-134
Coral-reef soils..Ann 12, i, pp 247-250
Coraline deposit, analysis of, from West Indies, Barbados Island.....Bull 60, p 163
Corbiculidse of Great Basin, Pleistocene and recent................Bull 11, p 15
Corbin conglomerate-lentil of Kentucky................................GF 46, p 3; GF 47, p 2
Corbulidse of Bear River formation.................................Bull 128, pp 38-41
of marls of New Jersey........Mon ix, pp 178-181, 239-241; Mon xxxiv, pp 86-89
of North America (nonmarine fossil)'............. .Ann 3, pp 441-443
Corda (August Joseph), biographic sketch of........................Ann 5, p 374
Cordaitales from the Lower Coal Measures of Missouri.........Mon xxxvii, pp 257-271
Cordaitale, Carboniferous, of Missouri............................Bull 98, pp 105-109
Cordierite, thin section of twins of, from cordierite-granite of Massachusetts,
Brimfield...Mon xxxix, pp 208-209
Cordierite-granite of Massachusetts, western.........................Mon xxxix, pp 321-322
Cordierite-hornfels, analysis of, from Vermont, Mount Ascutney........Bull 148,
p 70; Bull 168, p 26
Cordilleran region, map of, topographic, showing distribution of woods and
forests...Ann 19, v, pl ii (atlas)
Cordilleras, pre-Cambrian rocks of....................................Ann 16, i, pp 815-826
Coea, fossil plants of, literature of..................................Ann 8, ii, p 790
Cornaceae of Alaska..Ann 17, ii, p 887
of Amboy clays..Mon xxvi, pp 119-120
of Dakota group..Mon xvii, pp 125-127
of Laramie group...Bull 37, pp 52-56
of North America, extinct..Mon xxxv, pp 124-126
of Yellowstone Park...Mon xxxii, ii, pp 749-750
Cornfield Harbor clays of Maryland, correlation of................Ann 18, ii, p 336
Corniferous limestone in Ohio as a water carrier..................Ann 19, iv, pp 646, 682-683
Corrasion, analysis and laws of......................................Ann 2, pp 157-158; Mon ii, pp 231-233
in Grand Canyon chasm...Ann 2, pp 156-161; Mon ii, pp 230-244
(See, also, Degradation.)
Corrasion and transportation, agency of, in shaping topographic forms....Mon xxii,
p 111-121
Correlation, fossils, use of, in establishing........................Ann 7, pp 374-377
lithologic and physical characters, value of, for purposes of.........Ann 7,
pp 378-390; Bull 19, pp 11-12
of American strata with one another and European systems....Ann 9, pp 16-17
of Carboniferous formations of Appalachian region...............Bull 111, pp 94-104
of eruptive with intrusive rocks...................................Ann 12, i, pp 650-658

Bull. 177—01——17
Correlation of formations of Alaska, table showing.................. Ann 21, ii, p 367
of formations of Marquette, Crystal Falls, and Menominee districts of Michigan...... Ann 19, iii, pp 15-18; Mon xxi, pp xxi-xxiv
of Penokee district of Michigan-Wisconsin............ Mon xix, pp 468-474
of Grand Canyon, Texas, Llano, and Lake Superior Algonkian series...Ann 14, ii, p 519
of Lower Cambrian.. Ann 10, i, pp 595-597
of Marquette and Menominee series... Ann 15, pp 647-650; Mon xxviii, pp 575-579
of metamorphic rocks of Coast Ranges of California........ Mon xiii, pp 182-188
of Missouri coal beds... Mon xxxvii, pp 287-293
of North American Tertiary horizons with one another and with those of western Europe.................Ann 18, ii, pp 323-348
of Paleozoic formations in Acadian province................. Bull 80, pp 226-257
of Pleistocene deposits of Rhode Island and southeastern Massachusetts in relation to glacial brick clays........... Ann 17, i, p 988
of rock groups and unconformities of Lake Superior region........ Ann 7, pp 440-441; Ann 10, i, pp 458-464
of rocks in Massachusetts, general section showing........ Mon xxix, pp 16-18
in Massachusetts, Green Mountains..................... Mon xxix, pp 9-34
of sedimentary formations, nature of and work in.......... Ann 14, i, pp 72-83
of sedimentary series of Alaska...Ann 20, vii, pp 179-187, 316-317, 413, 482-483
of transition beds.. Bull 15, pp 13-17
of western terranes with eastern series by means of fossil plants, difficulties in..............Bull 98, pp 109-110
palaeontologic, necessity of and work in.......................... Ann 14, i, pp 135-136
Paleozoic and Mesozoic types in Texas, mingling of... Bull 77
plan for discussion of, and work in................................. Ann 10, i, pp 10-12, 108-113; Ann 13, i, pp 97-98; Bull 80, pp 7-9
principles of, general... Bull 85, pp 108-116
illustrated by phenomena of the Lake Superior region.... Ann 7, pp 371-448
unconformities, use of, in establishing......................... Ann 7, pp 439-446
Correlation essays published by the United States Geological Survey:
Archean and Algonkian, by C. R. Van Hise......................... Bull 86
Cambrian, by C. D. Walcott....................................... Bull 81
Cretaceous, by C. A. White.. Bull 82
Devonian and Carboniferous, by H. S. Williams................. Bull 80
Eocene, by W. B. Clark... Bull 83
Neocene, by W. H. Dall and G. D. Harris....................... Bull 84
Newark system, by I. C. Russell................................. Bull 85
Corsicana beds of Texas.. Ann 21, vii, pp 342-343
Cortlandt series of New York.................................. Bull 86, pp 395, 397
Cortlandtite, analysis of, from Maryland, Howard County........ Ann 15, p 674; Bull 148, p 84; Bull 168, p 43
from Massachusetts, Belchertown, description and analysis of...Mon xxix, p 347
from New York, Stony Point, description of, as one of the educational series (hornblende-peridotite)........ Bull 150, pp 294-297
Corundophilite, analyses of, from Massachusetts, Chester...... Bull 126, pp 60, 61
chemical constitution of... Bull 125, p 54
Corundum, abrasive efficiency of................................. Ann 21, vi cont, pp 447-448
manufacture and use.. Ann 17, iii cont, pp 943-947
occurrence of... MR 1883-84, pp 733-736;
Ann 19, vi cont, pp 503-504; Ann 20, vi cont, pp 569-573
of southern Appalachian region............................... Ann 17, iii cont, pp 935-943
origin of the gneiss-dunyte contacts of Corundum Hill, North Carolina, in relation to................. Bull 42, pp 45-63

Corundum gems, occurrence, etc., of Ann 21, vi cont, pp 432-449

Coryphodon beds of Utah Bull 84, p 324

Cosolite from Colorado, La Plata County, description and analysis of Bull 20, pp 95-96

Costa Rica, geology of, sketch of Bull 84, p 188

Cosumnes River, California, profile of WS 44, p 94

Coteau des Prairies, section across, etc........................ Mon xxv, pp 36-39

Coticule, or quartz-garnet rock, of Massachusetts, western Mon xxix, p 174

Cottonwood limestone of Nebraska.......................... Ann 19, iv, p 738

Country rock, alteration of, in Idaho Basin and Boise Ridge, Ann 18, vii, pp 638-647

alteration of, in Oregon, Bohemia mining region Ann 20, iii, pp 14-15

altered and bleached, analyses of, from California, Nevada County Bull 148, pp 209, 210; Bull 168, p 195

influence of, on vein values in Colorado, Telluride district Ann 18, iii, pp 815-818

Coutchiching series of rocks of Rainy Lake region........... Bull 86, pp 65-67, 162-167

Covellite, analysis of, from Montana, Butte............. Bull 167, p 64; GF 38, p 6

Cow Creek beds of Texas.. Ann 21, vii, pp 142-143

Cowgill (E. B.), irrigation practice on Great Plains.......................... WS 5

Cowlitz Glacier, Mount Rainier, present condition of Ann 18, ii, pp 398-399

Crag formation, England, correlation of Ann 18, ii, p 338

Craighill (W. P.), improvement of Great Kanawha River MR 1892, pp 540-546

Crandall Basin, Wyoming, dissected volcano of Mon xxxii, i, pp 215-268

Cranston beds of Narragansett Basin Mon xxxii, pp 159-164

Crassatellidse of Colorado formation Bull 106, pp 96

of Cretaceous of Vancouver Island Bull 51, pp 39-40

of marl beds of New Jersey Mon ix, pp 115-124; Mon xx, pp 60-61

Crater, an example of ... TF 2, p 20

Craters of Bonneville Basin, basaltic Mon i, pp 319-330

of California, Mono Valley Ann 8, i, pp 372-389

of Uinkaret Plateau, basaltic Ann 2, pp 118, 121

Crater Lake, Oregon, history of TF 2, p 20

special examination of Ann 8, i, pp 156-158

Crawfish as soil-makers .. Ann 12, i, pp 278-279

Crazy Mountain granite of Montana, Little Belt Mountains quadrangle GF 56, p 4

Crazy Mountains, Montana, description of GF 56, p 1

gEOLOGY OF, DESCRIPTIVE GF 56, pp 5-6

rocks and structure of GF 1, p 1

Crepidula bed of Alaska ... Bull 37, pp 96-100

from Yellowstone Park Mon xxxii, ii, pp 742-743

Crepidula bed of Alaska ... Bull 84, p 324

Crested Butte, Colorado, structure and rocks of Ann 14, ii, pp 193-194

Crested Butte and Anthracite quadrangles, Colorado, geology of GF 9

Cretaceous; a correlation essay, by C. A. White Bull 82

Cretaceous base-level in McAlester-Lehigh region, Indian Terr Ann 19, iii, p 433

Cretaceous fauna; Aucella of California Mon xiii, pp 226-232

birds Ann 3, pp 49-88

Cephalopoda from marls of New Jersey Mon xviii, pp 243-283

dinosaurs of North America Ann 16, 1, pp 203-226
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Cretaceous fauna; Foraminifera of New Jersey ... Bull 88
from Denver Basin, vertebrate ... Mon xxvii, pp 476-479, 509-520
from Pacific coast, Knoxville invertebrate fauna ... Bull 133
Knoxville beds of California ... Bull 15, pp 19-22
Gasteropoda from marl beds of New Jersey ... Mon xviii, pp 19-189
Mollusca of North America, nonmarine ... Ann 3, pp 411-486
North American invertebrate, catalogue and bibliography of Bull 102
of Bear River formation .. Bull 128
of Colorado formation ... Bull 106
of Puget group (Molluscan) .. Bull 51, pp 49-63
Ostreideæ of North America ... Ann 4, pp 290-308
relation of Upper, and Eocene on Pacific coast .. Ann 17, i, pp 1006-1000

Cretaceous flora of Black Hills .. Ann 19, ii, pp 593-946
of Montana formation .. Bull 163
of North America, the latter extinct ... Mon xxxv
of Belly River formation .. Bull 163, pp 9-17
of Portugal ... Ann 16, i, pp 522-535
plants of North America, catalogue and bibliography of Bull 152
Potomac plants, geologic affinities of .. Mon xv, pp 333-348

Cretaceous fossils, description of .. Bull 106
from Alaska .. Bull 4, pp 10-15
from California .. Bull 15; Bull 19; Bull 22; Bull 51, pp 11-27
from Texas, characteristic .. Ann 18, ii, pls li-lixiv
from Vancouver Island region .. Bull 51, pp 33-48
from Yellowstone Park ... Mon xxii, ii, pp 604-607, 632-640, 648-650

Cretaceous history of Alaska, southwestern ... Ann 20, vii, p 244
of Black Hills ... Ann 19, ii, p 589; Ann 21, iv, pp 556-558
of Colorado, Elk Mountains ... GF 9, p 1
Pueblo quadrangle ... GF 36, pp 1-2
of Montana, Fort Benton quadrangle .. GF 55, p 5
Little Belt Mountains quadrangle .. GF 56, pp 6-7
of Sierra Nevada ... GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1;
GF 37, p 1; GF 38, p 1; GF 41, p 1; GF 43, p 1, GF 51, p 1

Cretaceous movements in Rocky Mountains ... Mon xxvii, pp 23-25, 26-27, 32-33

Cretaceous paleontology of Pacific coast ... Bull 133
Cretaceous peneplain of Connecticut, origin, date, etc. Ann 18, ii, pp 157-168
Cretaceous period, conditions in California and Oregon during Ann 14, ii, pp 423-424
Dakota epoch, relations of Woodbine formation of Texas to Ann 21, vii, pp 316-322
erosion of Great Plains during ... Ann 18, ii, pp 571-572
Cretaceous plants of North America, catalogue and bibliography of Bull 152
Cretaceous plateau of Colorado, Telluride quadrangle GF 57, p 12
Cretaceous rocks; Alibirupean of Maryland ... Bull 82, pp 89-90, 94
Amboy clays, flora of ... Mon xxvi
geologic place of .. Bull 82, p 215
Anacacho formation of Texas ... Ann 18, ii, pp 240-241; Bull 164, pp 31-33, 34; GF 64, p 2
of Texas, wells from .. GF 64, p 6
analogies in lower, of Europe and America ... Ann 16, i, pp 463-542
Anona chalk of Texas .. Ann 21, vii, p 340
Antlers sands of Indian Territory ... Ann 21, viii, pp 195-196
of Texas ... Ann 21, vii, pp 192-197
Apishapa formation of Colorado .. Ann 17, ii, pp 567-571; GF 58, p 2; GF 68, p 2
Arapahoe formation of Denver Basin .. Mon xxvii, pp 31-32, 89, 151-155, 206-252; Bull 82, p 231
Arkadelphia beds of Arkansas and Texas .. Ann 21, vii, pp 114, 341; Bull 83, p 75; Bull 84, p 320
Atane formation of Greenland ... Bull 82, p 203
Cretaceous rocks; Austin chalk of Texas. Ann 18, ii, pp 239-240; Ann 21, vii, pp 329-336; Bull 164, pf 19-20; GF 64, p 2

Austin formation of Texas. Bull 82, pp 116, 118, 122 et seq, 221, 223

Basement sands of Texas. Ann 18, vii, pp 132-140, 171, 192

Belly River formation of north interior region. Bull 82, pp 170, 173-177, 191, 239

Benton formation in Colorado. Bull 82, p 191; GF 9, pp 6, 9; GF 58, p 1

in Colorado, Aspen district. Mon xxxi, p 41

Denver Basin. Mon xxvii, pp 26, 65-66, 87, 107

in Montana. GF 1, p 2; GF 55, p 2

Judith Mountains. Ann 18, iii, p 482

in Nebraska. Ann 19, iv, pp 737, 760

southeastern. WS 12, p 19

in Wyoming. GF 30, p 5

Bitter Creek series of Wyoming. Bull 83, pp 117, 118, 121

bituminous deposits of. Ann 11, i, pp 597-598

Brownstown beds of Texas. Ann 21, v, p 340

Buda limestone of Texas. Ann 21, vi, pp 237-238; Bull 164, p 18; GF 64, p 2

Carlite formation of Black Hills. Ann 21, iv, pp 533-534

Carlite shale of Colorado. Ann 17, i, pp 565, 571; GF 36, p 3; GF 58, p 1; GF 68, p 1

Cascade formation of Montana. GF 55, p 2; GF 56, p 2

Ceratops beds of Wyoming. Ann 21, iv, p 540

Chico beds, unconformity between the Knoxville and. Bull 19, pp 12-17

Chico formation of California and Sierra Nevada. Ann 14, ii, pp 458-461; Ann 17, i, p 547; Mon xiii, pp 179, 294-295; GF 3, p 1; GF 5, p 3; GF 15, pp 1, 2; GF 31, p 1; GF 37, p 1; GF 43, p 1; GF 51, p 1

(See, also, main entry Chico-Tejon.)

coal beds in. Bull 82, pp 180-181

correlation of. Bull 164, pp 22-26

Coffee group of Mississippi. Bull 82, pp 105

Colorado formation, correlation of. Bull 82, pp 170, 172-173, 176, 231, 233, 237, 239, 250, 261; GF 7, pp 2, 4

in Colorado, Aspen district. Mon xxxi, p 41-42

Denver Basin. Mon xxvii, pp 26, 64-68

in Montana. GF 1, p 2; GF 24, p 3; GF 55, p 2

in South Dakota. WS 34, pp 15-16

in Yellowstone Park. Mon xxxii, ii, pp 37, 51, 53, 156, 605-606; GF 30, pp 2, 5

Colorado formation and its invertebrate fauna. Bull 106

Colorado group. Ann 9, p 689

Comanche Peak limestone of Texas. Ann 18, ii, p 226; Ann 21, vii, pp 214-216, 223-227; GF 42, p 2; GF 64, p 1

Corsicana beds of Texas. Ann 21, vii, pp 342-343

Cow Creek beds of Texas. Ann 21, vii, pp 142-143

Dakota; origin, definition, and application of the term. Ann 21, vii, pp 316-322

Dakota formation or group. Ann 21, iv, pp 531-532; Bull 82, pp 329-336, 338-340; Bull 164, pp 22-26; GF 42, pp 2, 4; GF 64, pp 1-2

(See, also, main entry Chico-Tejon.)
Cretaceous rocks; Dakota formation or group, flora of .. Ann 19, ii, pp 702-709; Mon xvii

Dakota formation or group in Black Hills, water from .. Ann 21, iv, pp 564-567

Dakota formation or group in Colorado ... Ann 9, p 689

Anthracite-Crested Butte quadrangles ... GF 9, pp 1, 6, 9

Aspen district ... GF 5, p 1

Denver Basin .. Mon xxvii, pp 25-26, 62-64, 86, 106, 469-471

eastern ... Ann 17, ii, pp 562-563, 571

Elmoro quadrangle ... GF 58, p 1

La Plata quadrangle ... GF 60, p 1

Pikes Peak quadrangle .. GF 7, pp 2, 4

Pueblo quadrangle .. GF 36, pp 2-3, 5

Rico Mountains .. Ann 21, ii, p 77

Telluride quadrangle .. GF 57, p 4

Walsenburg quadrangle ... GF 68, p 1

in Dakotas, a water-bearing formation ... Ann 17, ii, pp 612-617

in Kansas, southwestern ... Bull 57, p 27; WS 6, pp 30, 31, 38-43

in Montana, Fort Benton quadrangle ... GF 55, p 2

Judith Mountains .. Ann 18, i, p 482

Little Belt Mountains quadrangle .. GF 56, pp 2-3

Livingston quadrangle ... GF 1, p 2

Three Forks quadrangle ... GF 24, p 3

in Nebraska .. Ann 19, iv, pp 737, 760; WS 12, pp 16-19

in South Dakota ... WS 34, pp 13-14

in Yellowstone Park ... Mon xxxii, ii, pp 37, 38, 46, 48, 49, 51, 54, 156, 604; GF 30, pp 2, 5

of Newton, historical sketch of .. Ann 19, ii, pp 568-570, 590-592, 646-649

plants from .. Mon xxxv, passim

water, saline and alkaline, from ... Mon xxv, pp 527-536

Del Rio clays of Texas ... Ann 18, i, pp 236-237; Ann 21, ii, pp 283-286; Bull 164, p 17; GF 42, pp 2-3; GF 64, p 2

Denison beds of Texas ... Ann 21, vii, pp 266-268

Denton beds of Texas .. Ann 21, vii, pp 272-273

Denver formation of Denver Basin, Colorado .. Mon xxvii, pp 33-36, 89, 155-252, 311-316, 471-473; Bull 82, p 231

Dexter sands of Texas .. Ann 21, vii, pp 302-308

Duck Creek formation of Texas .. Ann 21, vii, pp 257-258

Eagle Ford formation of Texas ... Ann 21, viii, pp 323-328;

Bull 82, pp 116, 118, 122, 123, 127, 130, 221, 223; GF 64, p 2

Eagle Ford shales of Texas .. Ann 18, ii, p 239; Bull 164, pp 18-19

Eagle formation of Montana .. GF 55, p 2

Edwards limestone of Texas .. Ann 18, ii, pp 227-235; Ann 21, vii, pp 214-216, 227-240; Bull 164, p 16; GF 42, p 2; GF 64, p 1

of Texas, Uvalde quadrangle, wells from ... GF 63, p 6

Escondido beds of Texas .. Bull 164, pp 26-28

Eutaw group of Alabama and Mississippi ... Bull 82, pp 105, 106, 107, 114, 217, 219

faunal relations of upper, on Pacific coast ... Ann 17, i, pp 1005-1060

Foraminiferal limestone of Franciscan series, California Ann 15, pp 419-420

Fort Benton group. (See Benton.) .. GF 56, p 3

Fort Pierre group. (See Pierre.) ... GF 56, p 3

Fort Union beds of Montana .. GF 56, p 3
Cretaceous rocks; Fort Worth limestone of Texas............ Ann 18, ii, pp 235-236; Ann 21, vii, pp 259-262; Bull 164, pp 16-17; GF 42, pp 2-3

Fox Hills formation in Black Hills.......................... Ann 21, iv, pp 530-541
in Colorado, Anthracite-Crested Butte...................... GF 9, pp 6, 7, 8
Denver Basin... Mon xxvii, pp 28, 71-72
in Montana.. GF 1, p 2; GF 56, p 3
in North Dakota and South Dakota......................... Bull 144, pp 32, 55-56
in Wyoming.. GF 30, p 5; GF 52, p 3

Fox Hills group... Ann 9, pp 689-690;
Bull 82, pp 145, 155, 156, 157, 158, 166, 191, 211, 229, 233, 237
in Colorado, eastern.................................... Ann 17, ii, p 569
Franciscan series, distribution, petrography, etc., of...... Ann 15, pp 415-444
Fredericksburg division of Texas.......................... Ann 21, vii, pp 199-240
Fuson formation of Black Hills.......................... Ann 21, iv, pp 530-531
Gallisteo group of New Mexico.......................... Bull 84, p 325
Gay Head series of Marthas Vineyard...................... Bull 84, p 326
geomorphology of Catoctin belt.......................... Ann 14, ii, pp 384-394
Georgetown limestone of Texas.......................... Ann 21, vii, pp 262-266; GF 64, pp 1-2
Gillespie formation of Texas.......................... Ann 18, ii, p 221
Glen Rose formation of Texas.......................... Ann 18, ii, pp 221-226; Ann 21, vii, pp 144-160, 374, 381; GF 42, p 2; GF 64, p 1
of Texas, Uvalde quadrangle, wells from.................. GF 64, p 6
Goodland limestone of Texas.......................... Ann 21, vii, pp 210-222
Graneros shale of Black Hills.......................... Ann 21, iv, p 532
of Colorado.. Ann 17, ii, pp 564, 571; GF 36, p 3; GF 58, p 1; GF 68, p 1
Grayson marl of Texas.................................. Ann 21, vii, pp 286-288
Greenhorn limestone of Black Hills...................... Ann 21, iv, pp 532-533
of Colorado...................................... Ann 17, ii, pp 564, 571; GF 36, p 3; GF 58, p 1; GF 68, p 1
gryphaeas of Lower, of Texas region...................... Bull 151
Gulf series of Texas.................................. Ann 21, vii, pp 292-344; GF 64, p 2
Hay Creek coal field compared with Potomac formation..... Ann 19, ii, pp 570-579
Henry Fork group of Utah................................ Bull 82, p 235
Hensell sands of Texas.................................. Ann 21, vii, pp 143-144
Holiknuk series of Alaska............................... Ann 20, vii, pp 159-161, 182, 187
Horsetown beds of California......................... Mon xiii, p 205;
Bull 19, pp 20-21; Bull 82, pp 184, 186, 187; Bull 133, pp 15-23
of California, fossils of.............................. Bull 15, pp 19-22
Kemp clay beds of Texas................................ Ann 21, vii, p 343
Kiamitia clay of Texas................................ Ann 21, vii, pp 252-257
Knoxville beds of California.......................... Bull 82, pp 184, 185, 186, 187; Bull 133
of California, fossils of.............................. Bull 15, pp 19-22

unconformity between Chico and................................ Bull 19, pp 18-20; Bull 133, p 25
comparison of Mariposa and.............................. Bull 19, pp 12-17
Kootanie formation of the great Interior area.............. Bull 82, pp 143, 145, 166, 168-170, 178, 187, 189, 190, 191, 197, 239, 250, 254-255
of Montana, Judith Mountains......................... Ann 18, iii, pp 480-482
Judith River section.................................. Ann 20, iii, p 296

Lakota formation of Black Hills........................ Ann 21, iv, pp 526-529
of Black Hills, water from.............................. Ann 21, iv, pp 564-567
(See main entry Laramie.)
Cretaceous rocks; lavas of Alaska.. Ann 21, ii, p 481
Lewis shale of Colorado, La Plata quadrangle....................... GF 60, p 5
Lewisville beds of Texas.. Ann 21, vii, pp 308-313
Livingston formation of Montana................................. GF 1, pp 1, 2; GF 24, pp 1, 3; GF 56, p 3
Main Street limestone of Texas................................ Ann 21, vii, pp 280-283
Mancos formation of Colorado, La Plata quadrangle................. GF 60, p 4
Mancos shale of Colorado... Ann 21, ii, p 77; GF 57, p 4
Mariposa beds, comparison of Knoxville beds with................. Bull 19, pp 18-20; Bull 133, p 25
Marl beds of New Jersey... Bull 82, pp 82-83, 215
Marthas Vineyard series... Bull 84, p 337
Martinez group of California................................. Mon xiii, p 179; Bull 82, p 193
and its fauna.. Ann 17, i, pp 1028-1030
Matasunka series, Alaska, character, etc., of........................ Ann 20, vii, pp 307-311; Alaska (2), p 46
Matawan formation of Maryland-D. C.-Virginia........................ GF 70, p 4
Mesaverde formation of Colorado, La Plata quadrangle............. GF 60, p 5
Methow formation of Washington, northern........................ Ann 20, ii, pp 114-117
Minnewaste limestone of Black Hills................................ Ann 21, iv, p 529
Mission Creek series, Alaska, distribution, correlation, etc., of... Ann 18, iii, pp 175-184, 257-258
Monmouth formation of Washington (D. C.) quadrangle............... GF 70, p 4
Montana formation, flora of.. Bull 163
in Colorado... GF 7, pp 2, 4; GF 9, pp 1, 6, 8
Aspen district.. Mon xxxi, p 42
Denver Basin.. Mon xxvii, pp 28, 68, 87-89
in Montana.. GF 1, p 2; GF 24, p 3; GF 55, p 2
plants from... Mon xxxv, pp 75, 85
in north Interior region... Bull 82, pp 170, 175-177, 211, 225, 231, 239, 250, 261-262
in Wyoming... GF 52, p 3
in Yellowstone Park.. Mon xxxii, ii, pp 50-51, 53, 606-607; GF 30, p 1, 5
Myrtle formation of Oregon... GF 49, pp 1-2, 4
Nanaimo group of Vancouver district................................. Bull 82, pp 195, 196, 243
Navarro formation of Texas... Ann 21, vii, pp 338-344
Niobrara formation or group in Black Hills region................ Ann 21, iv, pp 594-596; Bull 82, pp 211, 229
in Colorado.. GF 9, pp 6, 8; GF 36, p 3
Aspen district.. Mon xxxi, p 41
Denver Basin.. Mon xxvii, pp 66-68, 87, 107
in Montana.. GF 1, p 2; GF 55, p 2
in Nebraska.. Ann 19, iv, pp 737, 760; WS 12, p 20
in Wyoming.. GF 30, p 5
Niobrara group in Colorado.. Ann 17, ii, pp 566-567, 571; GF 58, pp 1-2
in Kansas, southwestern... Bull 57, pp 30-31
of Alabama... Bull 82, pp 105-114
of Alaska... Bull 51, pp 64-70; Ann 21, ii, pp 476-477, 481
correlation of .. Ann 20, vii, pp 181-183, 187
of any State. (See, also, formation names under this heading.)
of Atlantic slope, middle... Bull 141, pp 30-31
of Arctic America.. Bull 82, pp 202-203
of Black Hills, as indicated by fossil plants......................... Ann 19, ii, pp 521-946
historical review of ... Ann 19, ii, pp 557-551
of California... Ann 8, ii, pp 972-982; Mon xiii, pp 178-180, 460-461;
Bull 51, pp 11-14; Bull 82, pp 182-198; Bull 133, pp 11-22
distribution of... Bull 33, pp 18-19
Cretaceous rocks of California, Lassen Peak district Ann 8, i, pp 407-411
of California, northern, distribution of volcanic, metamorphic, and ... Bull 33, pp 18-19
of Colorado, Anthracite and Crested Butte quadrangles GF 9, p 6
Aspen district ... Mon xxxi, pp 41-43
eastern .. Ann 17, ii, pp 561-574
Elmooro quadrangle .. GF 58, pp 1-2
La Plata quadrangle ... GF 60, p —
northwestern ... Ann 9, pp 689-690
Pikes Peak quadrangle GF 7, p 2
Pueblo quadrangle ... GF 36, p 2
Rice Mountains .. Ann 21, ii, pp 77-78
Telluride quadrangle Ann 18, iii, p 759; GF 57, pp 3-4
Walsenburg quadrangle GF 68, pp 1-2
of Delaware .. Bull 82, pp 87-88
of District of Columbia .. Bull 82, p 89; GF 70, pp 3-4
of glacial Lake Agassiz, area of Mon xxv, pp 81-107
of Grand Canyon district Ann 2, pp 56-60, 65-66, 76-77; Mon ii, pp 16, 31-34, 212-215
of Great Plains, classification of Ann 17, ii, pp 569-570
topography of .. Ann 16, ii, pp 577-578
of Gulf of Mexico region Bull 82, pp 100-114
of Interior region ... Bull 82, pp 140-181
of Iowa, northeastern Ann 11, i, pp 304-308
of Kansas .. Bull 57, pp 27-31; Bull 137, pp 23-24
of Long Island, New York Bull 82, pp 84-86
of Louisiana ... Bull 142, pp 12-14
of Maryland .. Bull 82, pp 88-90
Washington (D. C.) quadrangle GF 70, pp 3-4
of Massachusetts, Martha's Vineyard Ann 7, pp 325-326; Bull 82, pp 86-87, 93, 94, 96
of Mexico .. Bull 82, pp 201-202
of Mississippi .. Bull 82, pp 105-114
of Mississippi embayment (upper) Ann 12, i, pp 419-424
of Montana .. Bull 105, pp 17-18; Bull 139, pp 44-53
Fort Benton quadrangle GF 55, p 2
Little Belt Mountains Ann 20, iii, p 384
Little Belt Mountains quadrangle GF 56, p 2
Livingston quadrangle GF 1, p 2
Three Forks quadrangle GF 24, p 3
of New Jersey ... Bull 82, pp 78-84, 94, 99
of New York, Staten Island Bull 82, pp 84-86
of North Carolina ... Bull 82, pp 91-92, 98, 99
of north Mexican region Bull 82, pp 130-140
of Oregon, northwestern Ann 17, i, p 456
Roseburg quadrangle GF 40, pp 1-2
of Pacific border region Bull 82, pp 181-198
of Pennsylvania ... Bull 82, pp 87-88
of Plateau country Ann 6, pp 138-140, 166-167, 177-178, 185-188
of South Carolina ... Bull 82, p 92; Bull 138, pp 208-209
of South Dakota, Black Hills, northern Ann 21, iii, pp 178, 180
Black Hills, southern Ann 21, iv, pp 526-541
Great Sioux Reservation Bull 21, pp 11-12
southeastern .. WS 34, pp 13-17
of States. (See, also, formation names under this heading.)
Cretaceous rocks of Texas ...Ann 8, i, pp 180-181;

Ann 18, ii, pp 217-243, 321; Ann 21, vii, pp 107-345; Bull 45, pp 71-83; Bull 82, pp 114-130; GF 3, p 3; GF 64, pp 1-2

of Texas, analyses of ..Ann 18, ii, p 301

Chamis, description of certain aberrant forms of, fromBull 4, pp 5-9

Nueces quadrangle ..GF 42, p 2

relation of Eocene to ...Bull 164, pp 35-36

Rio Grande coal fields ...Bull 164, pp 15-36

of Utah, Uinta Basin ..Ann 17, i, pp 923, 924

Uinta Mountains region ...Ann 9, pp 689-690

of Virginia ..Bull 82, pp 90-91, 94

Washington (D. C.) quadrangleGF 70, pp 3-4

of Wyoming ..Bull 119, pp 22-25

Absaroka district ..GF 52, p 3

Black Hills, southern part ..Ann 21, iv, pp 526-541

of Yellowstone Park ..Mon xxxii, ii, pp 37, 38, 46, 48, 49, 50-51, 53, 156; GF 30, pp 2, 5

Ohio formation of Colorado ...GF 9, pp 6, 8

Paluxy formation of Texas ...Ann 21, vii, pp 166-171

Pawpaw formation of GreenlandBull 82, p 203

Pawpaw beds of Texas ..Ann 21, vii, pp 276-280

Pierre clay of Nebraska ...Ann 19, iv, pp 736, 759

Pierre group in Colorado, Denver BasinMon xxvii, pp 69-70

in Colorado, eastern ..Ann 17, ii, pp 567-569, 571

in North Dakota and South DakotaBull 144, pp 56-57

in Rocky Mountain region ...Bull 82, pp 191; GF 36, p 3; GF 58, p 2

Pierre shale in Black Hills ...Ann 21, iv, pp 535-536

in Colorado ..GF 9, pp 6, 8; GF 68, p 2

in Montana ..GF 1, p 2; GF 56, p 3

in Nebraska, southeastern ...WS 12, p 20

in South Dakota ..WS 34, p 17

in Wyoming ..GF 30, p 5; GF 52, p 3

west of glacial Lake Agassiz ..Mon xxv, p 86-100

Pinyon conglomerate of WyomingGF 30, p 5; GF 52, p 3

Point of Rocks group of Uinta MountainsBull 82, p 235; Bull 83, p 121

Ponderosa marls of Texas ..Bull 82, pp 116, 118, 123, 124, 127, 130, 221, 223

Potomac flora, or younger MesozoicMon xv

Potomac formation ..Ann 10, p 174; Bull 82, pp 80-81, 90-91, 215, 250, 251-253

at head of Chesapeake Bay ..Ann 7, pp 546, 613-616

comparison of, with Wealden of EnglandAnn 16, i, pp 471-500

fossil wood and lignite of ..Bull 56

geologic position of ..Bull 145, pp 142-147

Hay creek coal field, Black hills, compared withAnn 19, ii, pp 570-579

location and geology of ..Ann 7, pp 546-547, 613-616, 636;

Ann 12, i, pp 421-424; Mon xv, pp 33-62; Bull 56, pp 38-39

of Virginia and Maryland ...Bull 145; GF 13, p 4; GF 23, p 3

of Washington (D. C.) quadrangleGF 70, pp 3-4

stratigraphic and paleontologic relations ofAnn 15, pp 307-397

unconformity between Columbia formation andAnn 7, pp 582-583

Pottebore beds of Texas ..Ann 21, vii, pp 280-283

Preston beds of Texas ...Ann 21, vii, pp 252-258

Puerco group of the Interior regionBull 82, p 229

Puget group of Washington ...Bull 82, pp 196-197
Cretaceous rocks: Puget group of Washington, molluscan fauna of...Bull 151, pp 49-63
Puget group of Washington, plants from...Mon xxxv, passim
Pulliam formation of Texas...GF 64, p 2
of Texas, Uvalde quadrangle, wells from...GF 64, p 6
Quarry limestone of Texas...Ann 21, vii, pp 275-276
Queen Charlotte formation of Queen Charlotte Islands...Bull 82, p 245
Radiolarian cherts of Franciscan series, California...Ann 15, pp 420-426
Raritan clay of New Jersey...Bull 82, p 215
of New Jersey, Brachiopoda and Lamellibranchiata from...Mon ix
plants from...Mon xxxv, p 59
Ripley formation or group of Alabama, Mississippi, and Texas...Bull 82,
Rockville conglomerate of Iowa...Ann 11, i, pp 304-308
Rotten limestone group of Alabama and Mississippi...Bull 82,
pp 105, 106, 107, 108, 111, 114, 217, 219
Rockton beds of Texas...Ann 21, vii, p 340
Ruby formation of Colorado...GF 9, p 7
Salt Wells group of Utah...Bull 82, p 235
San Francisco sandstone of California...Ann 15, pp 417-419
San Miguel beds of Texas...Bull 164, pp 21-22
Sassafras River greensand of Chesapeake Bay region...Ann 7, p 612
Shasta formation or group of California...Mon xi, p 179;
Bull 15, pp 18-32; Bull 82, pp 182-189, 241, 250, 255-257
Shoal Creek limestone of Texas. (See Buda limestone.)
Similkameen formation. (See Methow formation.)
Sulphur Creek group of Uinta Mountains...Bull 82, p 235
Sycamore sands of Texas...Ann 21, vii, p 142
Taylor formation of Texas...Ann 18, ii, p 240; Ann 21, vii, pp 336-338
Timber Creek formation of Texas...Bull 82, pp 116, 121-122, 127, 130, 221, 223
Timpas formation of Colorado...Ann 17, ii, pp 566, 571; GF 56, pp 1-2; GF 68, pp 1-2
Tombigbee sand of Mississippi...Bull 82, pp 105-107, 114, 219
Tordrillo series of Alaska...Ann 20, vii, pp 155-155, 183, 187
Travis Peak formation of Texas...Ann 18, ii, pp 219-221; Ann 21, vii, pp 140-144
Trinidad formation of Colorado...GF 58, p 2; GF 68, p 2
Trinity division of Texas...Ann 21, vii, pp 129-199, 373-376, 380
Trinity formation of Texas...Bull 82, pp 116, 118, 119, 125, 127, 128, 129, 130, 221, 223
Tuscaloosa group of Alabama...Bull 82, pp 105-108, 114, 127
Upton clays of Texas...Bull 164, pp 20-21, 34
Vancouver group of Vancouver Island...Bull 82, p 195
Vineyard series of Massachusetts...Bull 84, p 337
Wallula group or series of Massachusetts...Mon xi, pp 213-214; Bull 82, pp 182, 187, 192-193, 241
Walnut formation of Texas...Ann 18, ii, p 226; Ann 21, vii, pp 205-213
Washington beds of Texas...Ann 21, vii, p 340
Washita division of Texas...Ann 21, vii, pp 240-292
Webberville formation of Texas...Ann 18, ii, pp 241-243; Ann 21, vii, p 344
Weno beds of Texas...Ann 21, vii, pp 274-280
Whitsett limestone-lentils of Oregon...GF 49, p 2
Winfthrop sandstone of Washington, northern...Ann 20, ii, pp 117-118
Woodbine formation of Texas...Ann 21, vii, pp 293-322
Yellowstone formation of Montana...GF 56, pp 2-3
(See, also, Mesozoic.)
Cretaceous and Tertiary clays of Massachusetts, southeastern...Ann 17, 1, pp 959-964, 999-1000
Cretaceous and Tertiary formations of New Jersey, geology of, sketch of... Mon ix, pp ix-xiii
of Tuscaloosa, Tombigbee, and Alabama rivers........................... Bull 43
Crinoidea of Colorado formation .. Bull 106, pp 52
of Devonian beds of New York .. Bull 16, pp 25,63
of Mesozoic of United States.. Bull 97, pp 21-29
Cripple Creek, Colorado, history of mining at...................... Ann 16, ii, pp 113-118
Cripple Creek district, Colorado, general geology and mining industries of.. Ann 16, ii, pp 1-209; GF 7, pp 7-8
ore deposits of, comparison of, with those of Rosita and Silver Cliff.... Ann 17, ii, pp 469-470
Croatan beds of North Carolina, correlation of...................... Ann 18, ii, p 337
Crocidolite, chemical constitution of Bull 125, pp 91, 92, 106
occurrence of... MR 1883-84, p 775; MR 1887, p 563
Crocodilia from Eocene of middle Atlantic slope..................... Bull 141, p 58
Croffut (W. A.), suggestions for preparation of manuscript. (See p 113 of this bulletin.)
work in charge of, 1888-1894.. Ann 10, i, p 189;
Ann 11, i, pp 131-132; Ann 12, i, pp 141-142; Ann 13, i, pp 182-183; Ann 14, i, pp 276-277; Ann 15, i, p 195; Ann 16, i, p 79
Cronstedtite, analysis of.. Bull 113, p 17
chemical constitution of ... Bull 125, p 55
Crooked Creek Valley, Kansas, physiography of..................... WS 6, pp 22-24
Cross (W.), an unusual occurrence of topaz Bull 20, pp 81-82
general geology of Cripple Creek district, Colorado Ann 16, ii, pp 13-109
general geology of Cripple Creek district, Colorado GF 7, p 7
general geology of La Plata quadrangle, Colorado.................. GF 66
general geology of Pikes Peak quadrangle, Colorado............... GF 7
general geology of Silver Cliff and the Rosita Hills, Colorado.... Ann 17, ii, pp 263-403
general geology of Telluride quadrangle, Colorado.................... GF 57, pp 1-15
hypersthene-andesite and tryclinic pyroxene in augitic rocks... Bull 1, pp 19-38
igneous rocks of Uvalde quadrangle, Texas GF 64, pp 3-4
igneous rocks of Anthracite-Crested Butte quadrangle, Colorado... GF 9, pp 4-6
laccolithic mountain groups of Colorado, Utah, Arizona........... Ann 14, ii, pp 157-241
lists of ores, minerals, and mineral substances of industrial importance in several of the States........ MR 1882, pp 748-759
luster exhibited by sanidine in certain rhyolites Bull 20, pp 75-80
notes upon Henry Mountain rocks...................................... Mon xii, pp 359-362
petrography of Leadville region................................... Mon xii, pp 315-362
quoted on San Juan formation of Colorado......................... Ann 18, iii, pp 761-763
work in charge of, 1892-1900..................................... Ann 14, i, pp 248-249; Ann 15, i, pp 165-166;
Ann 16, i, pp 32-33; Ann 17, i, pp 43-45; Ann 18, i, pp 41-43;
Ann 19, i, p 46; Ann 20, i, pp 45-46; Ann 21, i, pp 78-79
Cross (W.) and Hillebrand (W. F.), minerals from basalt of Table Mountain, Golden, Colorado................................. Bull 20, pp 13-39
minerals from neighborhood of Pikes Peak Bull 20, pp 40-73
Cross (W.), Emmons (S. F.), and Eldridge (G. H.), geology of Denver Basin, Colorado.. Mon xxvii
Cross (W.) and Spencer (A. C.), geology of Rico Mountains, Colorado........ Ann 21, ii, pp 7-165
Cross Timbers of Texas... Ann 21, vii, pp 69-71, 81-84
Crossite, chemical composition of.................................... Bull 125, pp 92, 106
Cretaceous—Crystalline.

Crossopterygidae from Devonian and Carboniferous rocks of North America... Mon xvi, pp 53-57, 112-120, 188-194
Croton River, flow of, measurements of.. Ann 20, iv, pp 47, 81-84;
Ann 21, iv, pp 74-75; WS 35, p 62
Crushing of minerals in albitic granite of Massachusetts, western... Mon xxix, p 329
Crushing tests of granite from Massachusetts, western... Mon xxix, pp 38-38
Crust of the earth, composition of, elementary.......... Bull 78, pp 35-42
of the earth, deformation of, by the ice sheet......... Mon xxv, p 497
nature and physics of.. Ann 13, ii, pp 235-239
relationship of, to the interior............. Mon xxv, pp 493-497
Crusts formed on shores of Lake Tasch-Burun and Red Lake, Armenia, analyses of................................. Bull 60, p 40

Crustacea; catalogue of American Paleozoic nontrilobites...... Bull 56, pp 149-177
catalogue of American Paleozoic Trilobita................... Bull 63, pp 79-148
of Bear River formation................................. Bull 128, pp 61-62
of Cambrian, Lower.. Ann 10, i, pp 690, 625-629
of Cambrian, Middle, of North America........ Bull 30, pp 54, 146-148
of Devonian of Nevada, Eureka district... Mon viii, pp 204-206
of New York.. Bull 16, pp 20, 43-47
of Eocene of Utah................................. Bull 34, p 32
of Great Basin... Bull 11, p 23
of Jurassic of North America.......................... Bull 29, pp 23-24
of Nevada, Eureka district... Mon viii, pp 88, 204-206; Mon xx, pp 323, 330, 333
of Olenellus zone... Ann 10, i, pp 625-629
of Wasatch group.. Bull 34, p 32
of Yellowstone Park............................ Mon xxxii, ii, pp 576-578

Paleozoic, bibliography of, from 1698 to 1889, including list of North American species and systematic arrangement of genera..... Bull 63

Protocaris, a new genus from the Middle Cambrian........... Bull 10, pp 50-51
(See, also, Trilobita.)

Crustacea and Mollusca of Miocene formations of New Jersey........... Mon xxiv

Crustaceans, sedimentation due to, in harbors............... Ann 13, ii, p 158
Cryolite from Pikes Peak, occurrence, composition, etc., of........ Bull 20, pp 41-49
of Greenland.. Ann 19, vi cont, pp 614-617

Cryophyllite, analysis of... Bull 113, p 26
analyses of, from Rockport, Massachusetts................... Bull 42, p 22
chemical constitution of.. Bull 125, p 48
Cryptogams, classification of.. Ann 5, pp 437-439
Cryptogams of Carboniferous basins of Missouri, vascular........ Bull 98, pp 17-104
of Dakota group.. Mon xvii, p 23
of Laramie flora.. Bull 37, pp 13-14
(See, also, Plants, fossil.)

Cryptolite, analysis of, from Norway, Arendal..................... Ann 16, iv, p 676
Crystal Falls iron-bearing district, Michigan, geology of......... Ann 19, iii, pp 1-151; Mon xxxvi
ores of... Ann 21, iv, pp 384-388, 431-432
Crystal Springs reservoir, California, discharge of, measurements of... Ann 18, iv, p 370
Crystalline rocks, ancient, relations of............................. Ann 14, iv, pp 99-101
subaerial decay of.. Bull 52, pp 12-15, 18-20
Crystalline schists, metasomatic origin of..........................Ann 10, i, p 434
of Lake Superior region..Ann 10, i, pp 355-364
of Michigan, Crystal Falls district...............................Ann 19, iii, pp 60-62; Mon xxxvi, pp 148-152
of Montana, Livingston quadrangle..................................GF 1, p 3
Crystalline schists and older massive rocks of Philippine Islands....Ann 21, iii, pp 497-510

Crystallization, degree of, nondependence of, on depth........Ann 18, iii, p 574
development of, in igneous rocks of Nevada, Washoe..............Bull 17
in granite of Lake Superior district...............................Ann 10, i, pp 356-358
in intrusive rocks of Michigan, process and order of.............Mon xxxvi, pp 257-259, 262-263

influence of pressure on, in igneous magmas..........................Bull 66, p 25
of granitic magmas, course of..Mon xix, p 113
of igneous magmas, influence of conditions upon..................Ann 12, i, pp 655-657
of Yellowstone Park rocks, correlation of grades of.............Mon xxxii, ii, pp 144-145, 265-266

Crystallographic determinations of pachnolite from near Pikes Peak. .Bull 20, pp 50-52
Crystallographic study of thinolite of Lake Lahontan.............Bull 12
Crystallography of monazite...Am 16, iv, pp 670-672
plagioclase determinations, methods of............................Ann 18, iii, pp 30-35

Crystals of cinnabar from California.................................Bull 61, pp 11-22
of thinolite, sections of..Bull 12, pp 17-19
Cub River, Utah, flow of, measurements of........................Ann 18, iv, p 318
Cuba, iron and iron ore from, statistics of..........................Ann 16, iii, pp 23, 28, 54-59
iron-ore deposits of..Ann 16, iii, pp 55-59
iron-ore industry of..Ann 19, vi, pp 74-76
iron-ore shipments to United States from, 1884-1899........Ann 21, vi, pp 84-85
manganese mines and deposits of.................................Ann 21, vi, pp 146-149
manganese production of..MR 1887, p 154; MR 1888, pp 137-139; MR 1889-90, p 130; MR 1891, pp 142-143; MR 1892, pp 212-214; MR 1893, pp 138, 155; Ann 16, iii, pp 439, 477; Ann 17, iii, pp 207, 224; Ann 18, vi, pp 312-313, 328; Ann 19, vi, pp 107; Ann 20, vi, pp 139-140, 156; Ann 21, vi, pp 146, 162
petroleum localities in..Ann 20, vi cont, p 134; Ann 21, vi cont, pp 182-183
survey of, estimates and recommendations concerning........Ann 21, i, pp 55-57, 58
Cucamonga quadrangle, California; topography, climate, water supply...TF 2, p 18
Cuchara beds of Colorado...Bull 84, p 324
Culsageeite, analyses of, from North Carolina, Culsagee..........Bull 74, p 65
Cumberland and Georges Creek coal field, extent and production of....Ann 14, ii, p 579
Cumberland Plateau and escarpment, brief description of..........Ann 19, ii, pp 12, 13
Cumberland quartzites of Narragansett Basin......................Mon xxxiii, p 106
Cumberland River, profile of..WS 44, pp 55-57
Cummingtonite, analyses of, from Massachusetts, Cummington......Mon xxxix, p 758; Bull 126, p 19
chemical constitution of..Bull 125, p 90
Cupriferous series of Great Lakes region..........................Bull 86, pp 120-121, 122, passim
(See, also, Copper-bearing series; Keweenaw; Nipigon.)
Cupuliferous from Alaska...Ann 17, i, pp 882-885
from Dakota group..Mon xvii, pp 51-66
from Laramie group..Bull 37, pp 24-52
Curculionide, Tertiary, of United States............................Mon xx, pp 65-145
Currents as agents of littoral transportation
Curtis (J. S.), administrative report for 1884-85
mining geology of Eureka district, Nevada
quantitative determination of silver by means of microscope
silver-lead deposits of Eureka, Nevada
Cuspidine, chemical constitution of
Custer County, Colorado, mines of
Cuvier prize, award of, to Geological Survey, by Academy of Sciences of Institute of France
Cuyahoga shale of Ohio as a water bearer
Cyanite, analysis of, from Arizona, Clip
analysis of, from Massachusetts, Chesterfield
from North Carolina, Gaston County and near Statesville
chemical constitution of
thin section of, from Massachusetts, Becket
Cycadaceae of Alaska
of Amboy clays
of Cretaceous of Black Hills
of Dakota group
of Mesozoic of California
of Mesozoic, Older, from North Carolina
of North America (extinct)
of Triassic of Pennsylvania
of Virginia
Cycadean trunks of Black Hills
of Colorado and Wyoming, Jurassic
of Europe and America
Cyclic twisting
Cylichnidge from clays and marls of New Jersey
Cymatolite, analysis of, from Massachusetts, Goshen
Cypris, analysis of, from Massachusetts, Goshen
Cyprididae from clays and marls of New Jersey
Cyprinidte from clays and marls of New Jersey
Cyprinidae from clays and marls of New Jersey
Cyperaceae from Alaska
from Yellowstone Park
Cyperidae from clays and marls of New Jersey
Cypraeida, Eocene, from Utah
Cypriodonta from clays and marls of New Jersey
from Colorado formation
from Cretaceous of Pacific coast
from Pleistocene of Great Basin
Cyprus, gypsum production of
ocher production of
Cyrenidte of Bear River formation
of Colorado formation
of Laramie of Utah
of North America, nonmarine fossil
of Puget group
Cyrtilite, analyses of, from Colorado, Pikes Peak region
chemical constitution of
Dacite, analysis of, from California, Lassen Peak region
analysis of, from California, San Clemente Island
from Colorado, Bald Mountain, near Rosita
Dacite, analysis of, from Nevada, Eureka district Mon xx, p 264
analysis of, from Nevada, Washoe district Mon xx, p 283;
Bull 17, p 33; Bull 27, p 65; Bull 148, p 188; Bull 168, p 174
from Wyoming, Garfield Peak Bull 148, p 116; Bull 168, p 86
from Yellowstone Park, Sepulchre Mountain Ann 12, i, p 648; Ann 14,
ii, p 227; Mon xxxii, ii, p 135; Bull 148, p 121; Bull 168, p 91
analysis of secretions in, from California, Lassen Peak region Bull 148,
pp 193, 194; Bull 168, pp 178, 179
from California, Bear Creek Falls, description of, as one of the educational
series ... Bull 150, pp 213-215
Lassen Peak, description of, as one of the educational series Bull 150,
pp 217-219
from Nevada, Eureka County, description of, as one of the educational
series ... Bull 150, pp 215-217
of California, San Clemente Island........................ Ann 18, ii, pp 482-485
Lassen Peak quadrangle GF 15, p 2
of Colorado, Rosita Hills, Bald Mountain Ann 17, ii, pp 295-296, 340
of Nevada, Eureka district Ann 3, p 278; Mon xx, pp 236, 368-373
of Philippine Islands Ann 21, iii, pp 516-517
of Yellowstone Park Mon xxxii, ii, pp 172, 288-290; GF 30, pp 3, 6
thin section of, from California, Bear Creek Bull 150, pp 214-215
from Yellowstone Park Mon xxxii, ii, pp 104-105
Dacite-porphyry, analysis of, from California, Shasta County Bull 64,
p 49; Bull 148, p 191; Bull 150, p 236; Bull 168, p 177
analysis of, from Yellowstone Park, Birch Hills Mon xxxii, ii, p 163
from Yellowstone Park, Echo Peak Mon xxxii,
ii, p 65; Bull 148, p 132; Bull 168, p 106
Mount Holmes .. Mon xxxii, ii, p 65; Bull 168, p 106
from California, Clear Creek, description of, as one of the educational
series ... Bull 150, pp 233-236
of Oregon, Bohemia mining region Ann 20, iii, pp 11-12
of Yellowstone Park Mon xxxii, ii, pp 64-69, 84, 86-88; GF 30, p 6
thin section of, from Yellowstone Park Mon xxxii, ii, pp 62-63
Dacite-tuff, analysis of, from California, Lassen Peak ... Bull 148, p 194; Bull 168, p 180
Dacitic rocks in Oregon, Rosebury quadrangle GF 49, p 3
Daggett (E.), analyses and calorific values of some Utah coals MR 1882, pp 76-81
Dakota formation Bull 82, pp 170-172, 176, 191
in Black Hills Ann 21, iv, pp 531-532
water from .. Ann 21, iv, pp 564-567
in Colorado .. GF 7, pp 2, 4; GF 9, pp 1, 6, 9; GF 57, p 4; GF 60, p ——;
Aspen district Mon xxxii, p 41
Denver Basin Mon xxvii, pp 25-26, 62-64, 86, 106, 469-471
in Kansas, southwestern WS 6, pp 30-31
in Montana Bull 105, p 17; Bull 139, p 45; GF 24, p 3; GF 55, p 2
Judith Mountains Ann 18, iii, p 482
in Wyoming Bull 119, p 22
in Yellowstone Park Mon xxxii, ii, pp 37, 38, 46, 48, 49, 51, 54, 156, 604
invertebrate fossils of Bull 128, p 73
origin, definition, and application of the term Ann 21, vii, pp 316-322
Dakota epoch, relations of Woodbine formation of Texas to ... Ann 21, vii, pp 316-322
Dakota group, flora of Ann 19, ii, pp 702-709; Mon xvii
in Colorado, eastern Ann 17, ii, pp 562-563, 571
in Dakota ... Bull 82, pp 211, 213, 225, 229, 231, 233, 237, 250, 257-258
DACITE—DAKOTAS.

Dakota group in Kansas Bull 57, p 27; Bull 137, pp 23-24
in Utah, Uinta Mountains ... Ann 9, p 689
of Newton, historical sketch of, etc. Ann 19, ii, pp 568-570, 590-592, 646-649
plants from .. Mon xxxv, passim
Dakota Lake, the glacial, extent and character of Mon xxv, pp 266-267;
Bull 144, pp 52-53
Dakota sandstone in Colorado, Pueblo quadrangle GF 36, pp 2-3, 5
in Colorado, Rico Mountains Ann 21, iv, p 77
in Dakotas, a water-bearing formation Ann 17, ii, pp 612-617
in Kansas, southwestern, water from, character, occurrence, artesian
properties, etc., of WS 6, pp 38-43
in Montana .. GF 1, p 2; GF 56, pp 2-3
in Nebraska .. Ann 19, iv, pp 737, 760; WS 12, pp 16-19
in South Dakota ... WS 34, pp 13-14
in Wyoming .. GF 30, pp 2-5
water, saline, and alkaline, from Mon xxv, pp 527-536
Dakotas, altitudes in the Bull 5, pp 73-75; Bull 72, pp 195, 196, 201, 217-223; Bull 76
artesian waters in ... Ann 11, ii, pp 257-260, 274
available for power ... Ann 17, ii, p 690
of a portion of, preliminary report on Ann 17, ii, pp 603-694
artesian wells in, list of Ann 11, ii, pp 268-270
boundary lines of, and formation of Territory Bull 13, pp 31,121
building stone from, statistics of MR 1882, p 451; MR 1889-90, pp 374, 429
Cambrian rocks of ... Bull 81, pp 214-216, 347-349
cement production of MR 1891, p 536; MR 1892, p 743; MR 1893,
p 621; Ann 16, iv, p 581; Ann 17, iii cont, pp 884, 885
coal area and statistics of MR 1882, p 49; MR 1883-84, pp 12, 38-39;
MR 1885, pp 11, 26; MR 1886, pp 225, 230, 250-251;
MR 1887, pp 169, 222; MR 1888, pp 169, 171, 240;
MR 1889-90, pp 147, 234; MR 1891, pp 180, 275;
MR 1892, p 265; MR 1893, pp 189, 190, 197
Cretaceous rocks of ... Bull 82, pp 145, 149, 158, 160, 166-179
glacial investigations in Ann 3, pp 19, 21; Ann 4, p 24;
Ann 5, pp 21-22, 27, 28-29, 30, 39, 50, 56; Ann 6, pp 33-34; Ann 7, pp 76-77, 79, 81, 112; Ann 8, i,
pp 143, 174; Ann 9, pp 72, 85, 86, 114; Ann 10,
i, p 159; Ann 11, i, pp 75, 101, 102; Ann 12, i, p 119
lead from, statistics of MR 1887, p 110; MR 1889-90, p 80
lumber industry in .. Ann 19, v, p 22
mica production of .. MR 1882, p 583; MR 1883-84, pp 909-910; MR 1888,
p 614
mineral springs of ... Bull 32, pp 159-161
minerals of, useful .. MR 1882, p 754; MR 1887, pp 716-718
Neocene beds of .. Ann 12, i, p 49
(See, also, North Dakota; South Dakota.)

Bull. 177—01—18
Dale (T. N.), Mount Greylock, its areal and structural geology. Mon xxiii, pp 119-203
structural details in the Green Mountain region and in eastern New York. Ann 16, i, pp 543-570
structure of Monument Mountain in Great Barrington, Massachusetts. Ann 14, ii, pp 551-565

structure of the ridge between the Taconic and Green Mountain ranges in Vermont. Ann 14, ii, pp 523-549
study of Bird Mountain, Vermont. Ann 20, ii, pp 9-23
work in charge of, 1892-1900. Ann 14, i, p 251; Ann 15, i, p 155; Ann 16, i, p 16; Ann 17, i, pp 19-20; Ann 18, i, pp 23-24; Ann 19, i, p 32; Ann 20, i, p 34; Ann 21, i, p 69
Dale (T. N.), Pumpelly (R.), and Wolff (J. E.), geology of Green Mountains in Massachusetts. Ann xxix

Dall (W. H.), list of marine Mollusca. Bull 24
report on coal and lignite of Alaska. Ann 17, i, pp 763-908
table of North American Tertiary horizons, correlated with one another and with those of western Europe, with annotations. Ann 18, ii, pp 323-348
work in charge of, 1884-1900. Ann 6, pp 78-80; Ann 7, pp 120-122; Ann 8, i, pp 181-184; Ann 9, pp 123-127; Ann 10, i, pp 166-169; Ann 11, i, pp 109-113; Ann 12, i, pp 115-118; Ann 13, i, pp 143-146; Ann 14, i, pp 257-258; Ann 15, pp 184-186; Ann 16, i, pp 39-40; Ann 17, i, pp 66-67; Ann 18, i, p 65; Ann 19, i, p 66; Ann 20, i, pp 67-68; Ann 21, i, pp 93-94
Dall (W. H.) and Harris (G. D.), Neocene of North America, a correlation essay. Bull 84
Dalles group of Oregon. Bull 84, pp 285-324
Damourite, analysis of, from Maine, Hebron. Bull 42, p 15
analysis and description of, from Maine, Stoneham. Bull 9, p 11; Bull 27, p 10
Dams for irrigation purposes, diversion and reservoir. Ann 13, iii, pp 234-238, 321-325
for irrigation reservoirs, rock-fill, hydraulic, masonry, etc. Ann 18, iv, pp 627-726
on James River, description of. Ann 19, iv, pp 164-170
(See, also, Hydrography; Irrigation; Reservoirs.)

profile of. WS 44, p 24

Dana (E. S.), crystallographic study of thinolite of Lake Lahontan. Bull 12
Danalite, chemical constitution of. Bull 125, pp 69, 104
Danburite, analyses of, from New York, St. Lawrence County. Bull 55, p 60
chemical constitution of. Bull 125, pp 96-97, 106
occurrence of. MR 1882, p 489; MR 1883-84, p 748

Danian formation of Europe, correlation of. Ann 18, ii, p 348
Dannemorite, chemical constitution of. Bull 125, p 90
Danville quadrangle, Illinois-Indiana, geology of. GF 67
Daphnite, analysis of. Bull 113, p 15
chemical constitution of. Bull 125, p 55
Darton (N. H.), artesian-well prospects in Atlantic Coastal Plain region. Bull 138
bibliography of North American geology for 1886. Bull 44
catalogue and index of contributions to North American geology, 1732-1891. Bull 127
Darton (N. H.), geology of Franklin quadrangle, West Virginia-Virginia. GF 32
geology of Monterey quadrangle, Virginia—West Virginia. GF 61
gеology of Staunton quadrangle, Virginia—West Virginia. GF 14
new developments in well boring and irrigation in eastern South Dakota, 1896. Ann 18, iv, pp 561-615
Pine Ridge timber, Nebraska. Ann 19, v, p 387
preliminary description of geology and water resources of the southern half of the Black Hills and adjoining regions in South Dakota and Wyoming. Ann 21, iv, pp 489-599
preliminary report on artesian waters of a portion of the Dakotas. Ann 17, ii, pp 603-694
preliminary report on geology and water resources of Nebraska west of the one hundred and third meridian. Ann 19, iv, pp 719-785
record of North American geology for 1887 to 1889. Bull 75
record of North American geology for 1890. Bull 91
relations of the traps of the Newark system in the New Jersey region. Bull 67
underground waters of a portion of southeastern Nebraska. WS 12
work in charge of, 1893-1900. Ann 15, pp 153-155; Ann 16, i, p 22; Ann 17, i, pp 25-26, 28-29, 37; Ann 18, i, p 32; Ann 19, i, p 38; Ann 20, i, pp 41, 42; Ann 21, i, pp 74-75
Darton (N. H.) and Clarke (F. W.) on a hydromica from New Jersey. Bull 167, pp 154-155
Darton (N. H.) and Keith (A.), geology of Washington (D. C.) quadrangle. GF 70
Darton (N. H.) and McGee (W. J.), geology of Fredericksburg quadrangle, Virginia-Maryland. GF 23
gеology of Nomini quadrangle, Maryland-Virginia. GF 28
Darton (N. H.), Taff (J. A.), and Willis (B.), geology of Piedmont quadrangle, West Virginia-Maryland. GF 28
Darwin (C. C.), work in charge of, 1884-1900. Ann 6, pp 97-101; Ann 7, pp 138-143; Ann 8, i, pp 203-209; Ann 9, pp 145-151; Ann 10, i, pp 190-198; Ann 11, i, pp 137-140; Ann 12, i, pp 142-144; Ann 13, i, pp 180-182; Ann 14, i, pp 274-275; Ann 15, pp 209-210; Ann 16, i, pp 86-88; Ann 17, i, pp 119-120; Ann 18, i, pp 128, 129; Ann 19, i, pp 140; Ann 20, i, pp 161-162; Ann 21, i, p 188
Datohte, analysis of, from New Jersey, Bergen Hill. Bull 55, p 60
chemical constitution of. Bull 125, pp 70, 104
occurrence of. MR 1883-84, p 774
Davis (A. P.), hydrography of Nicaragua. Ann 20, iv, pp 563-637
irrigation near Phoenix, Arizona. WS 2
report of progress of stream measurements for 1896. Ann 18, iv, pp 1-418
river heights for 1886. WS 11
Davis (H. J.), pyrites, statistics of. MR 1885, pp 501-517
Davis (W. M.), structure of Triassic formation of Connecticut Valley. Ann 7, pp 455-490
Triassic formation of Connecticut. Ann 18, ii, pp 1-192
Dawson (Sir John William), biographic sketch of. Ann 5, pp 377-378
cobalt, statistics of. MR 1883-84, pp 544-549; MR 1885, pp 301-305
feldspar, statistics of. MR 1883-84, pp 933-934
iodine, statistics of. MR 1883-84, pp 854-858; MR 1885, pp 488-490
manufactured fertilizers, statistics of. MR 1883-84, pp 815-826
Day (D. T.), mineral resources of United States in 1886, summary, etc...........MR 1886
mineral resources of United States in 1887, summary, etc........................MR 1887
mineral resources of United States in 1888, summary, etc........................MR 1888
mineral resources of United States in 1889 and 1890, summary, etc............MR 1889-90
mineral resources of United States in 1891, summary, etc........................MR 1891
mineral resources of United States in 1892, summary, etc........................MR 1892
mineral resources of United States in 1893, summary, etc........................MR 1893
mineral resources of United States in 1894, summary, etc.........................Ann 16, i and iv
mineral resources of United States in 1895, summary, etc........................Ann 17, ii and iii cont
mineral resources of United States in 1896, summary, etc........................Ann 18, ii and iii cont
mineral resources of United States in 1897, summary, etc........................Ann 19, ii and iii cont
mineral resources of United States in 1898, summary, etc........................Ann 20, ii and iii cont
mineral resources of United States in 1899, summary, etc........................Ann 21, ii and iii cont
phosphate rock, statistics of..MR 1883-84, pp 783-805; MB 1885, pp 445-455
platinum, statistics of..Ann 19, ii, pp 265-271
sulphur, statistics of..MR 1883, pp 864-876
tungsten, statistics of...MR 1882, pp 431-433
work in charge of, 1886-1900...Ann 8-i, pp 195-201; Ann 9, pp 134-140;
Ann 10, i, pp 182-188; Ann 11, i, pp 130-131; Ann 12, i, pp 129-134; Ann 13, i, p 162; Ann 15, pp 203-209; Ann 16, i, pp 49-61; Ann 17, i, pp 81-93; Ann 18, i, pp 82-91; Ann 19, i, pp 74-85; Ann 20, i, pp 76-90; Ann 21, i, pp 101-113
zirconium, statistics of...MR 1883-84, p 661; MR 1885, pp 393-394
Day (W. C.), chemistry of gilsonite..Ann 18, v cont, pp 937-945
coal and pitch coal of Newport mine, Oregon...Ann 19, ii, pp 370-376
feldspar, statistics of..MR 1885, p 523; MR 1886, p 701
potassium salts, statistics of..MR 1887, pp 628-650
production of an asphalt resembling gilsonite by the distillation of a mixture of fish and wood...Ann 19, ii cont, pp 202-204
sodium salts, statistics of...MR 1887, pp 651-658
structural materials, statistics of..MR 1886, pp 517-580;
MR 1887, pp 503-551; MR 1888, pp 516-575
sulphur, statistics of..MR 1885, pp 494-500;
MR 1886, pp 644-647; MR 1887, pp 604-610
Dayton quadrangle, Wyoming, forest conditions in................................Ann 21, v, pp 597-598
De Lamar and other mining districts in Idaho, veins of................................Ann 20, ii, pp 65-256
De Soto beds of Florida, correlation of..Ann 18, ii, p 337; Bull 84, p 324
Deadman Creek, Washington, description of..WS 4, p 24
Deadwood formation of Black Hills..Ann 21, iv, pp 505-508
of Black Hills, water from..Ann 21, iv, p 567
Decay, subaerial, of rocks and origin of the red color of certain formations....Bull 52
Decay and débris of rocks ..Ann 11, i, pp 275-280
Declination, magnetic, in United States..Ann 17, i, pp 203-440
Decomposition of bisilicate minerals in rocks, course of..........................Mon iii, p 214
of ferromagnesian silicates in rocks...Mon ii, p 384
of rock constituents..Mon iii, pp 214-215, 369-372
of rocks...Bull 52
of Nevada, near Comstock lode...Ann 2, pp 295-297; Mon iii, pp 72-80, 209-218, 369-372
(Washoe district)..Ann 2, pp 295-297; Mon iii, pp 72-80, 209-218, 369-372
(See, also, Metamorphism.)
WARMAN.

DAY—DEGRADATION. 277

Decomposition area; effects, products, etc., in Nevada, Washoe district.....Mon iii, pp 72-80, 209-227, 238-240, 399-372, 383-385

Decomposition products from Nevada, Comstock lode, chemical analyses of ..Mon iii, pp 217-218

of eruptive rocks of Colorado, Silver Cliff and Rosita Hills..............Ann 17, p 313-322, 343

Deep Creek beds of MontanaBull 84, pp 287, 288

Deep River, North Carolina, flow of, measurements ofAnn 21, iv, pp 116-118; WS 27, pp 26, 35, 44; WS 36, pp 113-114

Deep River beds of Montana, correlation ofAnn 18, ii, pp 339; Bull 84, p 297

Deformation in Mississippi Valley..................................Ann 11, i, pp 336-347

in Newark area of Connecticut, Pomperaug Valley........Ann 21, iii, pp 83-136

in Triassic area of ConnecticutAnn 18, ii, pp 84-143

movements of rock materials underAnn 16, i, pp 589-603

of Newark strata ...Bull 85, pp 78-100

of geoid by loading and unloadingMon i, pp 376-377, 379-383; Bull 48

by removal, through evaporation, of the water of Lake Bonneville ..Mon i, pp 379-383, 421-424

(See, also, Diastrophism.)

Deformation and deposition, relation ofAnn 18, ii, pp 82-83

Degradation, agency of, in shaping topographic forms........Mon xxix, pp 110-111, 123-124

atmospheric. Ann 5, pp 75-76

base-leveling, especially along New England coast........Mon xxxii, pp 42, 47-49, 75

by solution ..Bull 84, pp 88-89

cliffs due to ..Ann 5, pp 83-84, 112-115; Mon i, pp 34-35, 75-76

corrosion of Grand Canyon of the ColoradoAnn 2, pp 156-166

cycles of, in Triassic area of Connecticut......................Ann 18, ii, pp 153, 167-168

drainage system of Grand Canyon district in relation to upliftMon ii, pp 72-74, 187-188, 192-196, 218-220

elevation and, of the entire mountain and plateau region of the West in

Tertiary times..Ann 6, pp 189-191

Ferrell’s law of stream erosionMon xxix, p 734

ice erosion of an isolated conical mountain, general laws governing......Ann 18, ii, pp 379-385

illustration of process ofTF 2, p 4

in Alaska in Tertiary timesAnn 20, vii, pp 245-248

in Appalachian province ..GF 44, p 1

in Arizona-Utah ...Ann 2, pp 95-103; Mon ii, pp 230-260

in Arkansas–Indian Territory, Poteau Mountain quadrangleTF 2, p 10

in Black Hills, stages of ..Ann 21, iii, pp 269-277

in California, Big Trees quadrangleGF 51, p 7

Mono Basin (Glacial) ...Ann 8, i, pp 347-358

Piedmont region, in relation to upliftAnn 8, i, pp 425-426

in Coastal Plain ...GF 13, pp 4-5; GF 23, p 3

in Colorado, Anthracite quadrangleGF 9, p 7

Aspen district..Mon xxxi, p 243

Denver Basin, Pleistocene ...Mon xxvii, pp 256-258, 266-269

eastern, with deposition ..Ann 17, ii, pp 575-580

Elk Mountains ...GF 9, pp 1, 2

La Plata quadrangle ..GF 60, p —

Leadville region ...Mon xii, pp 40-44, 126-128

Pueblo quadrangle ...GF 36, pp 1-2, 5

San Juan region ..GF 57, pp 1, 14-15

West Denver quadrangle ..TF 2, p 14
Degradation in Connecticut, Holyoke quadrangle (ice)GF 50, p 6
Triassic area ...Ann 18, 11, pp 144-192
in Connecticut Valley during later Mesozoic time compared with that of
the Glacial period ..Mon xxix, pp 512-517
in driftless area of Upper Mississippi, pre-GlacialAnn 6, pp 221-239
in Grand Canyon district ..Ann 2, pp 95-103; Mon ii, pp 61-77, 220-222, 250-260
in Hawaiian Islands, island of Oahu ..Ann 4, pp 212-216
in Idaho, Boise quadrangle ...GF 45, p 2
in Indian Territory-Arkansas, Poteau Mountain quadrangleTF 2, p 10
in Kansas, Caldwell quadrangle ...TF 1, p 2
in Kentucky, Richmond quadrangle ...GF 46, pp 1, 2
in Maine; glacial sculpture of Mount Desert IslandAnn 8, ii, pp 1005-1009
in Massachusetts, Cape Ann, Glacial and post-GlacialAnn 9, pp 556-567
Holyoke quadrangle (ice) ...GF 50, p 6
Marthas Vineyard (post-Glacial) ..Ann 7, pp 347-351
Narragansett Basin (Glacial) ...Mon xxxiii, pp 71-76
in Michigan, Marquette district ..Ann 15, pp 644-645; Mon xxviii, p 572
in New England, along coast ..Ann 18, 11, pp 514-528
in North Dakota, Cretaceous area in region of glacial Lake Agassiz ..Mon xxxv, pp 102-107
in Pennsylvania, Harrisburg quadrangleTF 2, p 8
in Rhode Island-Massachusetts, Narragansett Basin (Glacial)Mon xxxiii, pp 71-76
in Sierra Nevada ..GF 5, p 1;
GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 2; GF 37, p 2;
GF 39, pp 1-2; GF 41, p 2; GF 43, pp 1-2; GF 51, pp 1-2
in Tennessee, Cleveland quadrangle ..GF 29, p 1
Pikeville quadrangle ..GF 21, p 1
in Texas, Nueces quadrangle ..GF 42, p 3
in Utah-Arizona ..Ann 2, pp 95-103; Mon ii, pp 230-260
in Virginia, Palmyra quadrangle ..TF 1, p 2
in West Virginia, Charleston quadrangleTF 1, pp 1-2
Huntington quadrangle ..GF 69, p 2
in Wyoming, Crandall Volcano ..Mon xxxii, ii, pp 232-237
land forms, relations of ..Ann 14, ii, pp 116-121
of Appalachian province ..GF 44, p 1
of Appalachians, east and west, relativeMon xxxiii, pp 40-46
eastern, extreme ...Ann 19, ii, pp 414-415
of Colorado River Basin ..Ann 2, pp 57-68, 95-102; Mon ii, pp 61-77, 220-229
of Grand Canyon of the Colorado ...Ann 2, pp 95-103; Mon ii, pp 230-260
in relation to climate ..Mon ii, pp 99-100, 189-191, 196, 222-229
in relation to volcanism ..Mon ii, pp 96-98, 107-108
of Great Plains, Cretaceous, Neocene, and laterAnn 16, ii, pp 571-572
the tripartite ..Bull 57, pp 47-48
of Lake Michigan, shore of ...Mon xxxviii, pp 456-459
on Atlantic coast, marine ...Mon xxxiii, pp 42-46
on Pacific coast, ancient base-level ofAnn 14, ii, pp 405-411, 419-421, 429-433
Tertiary revolution in topography ..Ann 14, ii, pp 397-434
on Zuni Plateau; sculpture ..Ann 6, pp 154-159, 189-190
principles, general, of ...Ann 18, ii, pp 144-153
rate of progress of ...Ann 4, p 215
relation of arkoses to ..Mon xxxiii, pp 55-59
rock scorings of the great ice invasionsAnn 7, pp 155-248
Degradation; sculpture, subaerial and littoral, contrasted Ann 2, pp 183–186

shore terraces, origin of Ann 3, pp 206–211; Ann 5, pp 75–89, 112–116; Mon 1, pp 29–37; Mon xi, pp 88–89

subaerial decay of rocks and origin of the red color of certain formations .. Bull 52

terraces due to .. Ann 5, pp 84–85, 115–120; Mon 1, pp 35–37, 78–81, 129

time ratios indicated by post-Tertiary pre-Glacial erosion on Massachu-
setts coast .. Ann 18, ii, pp 588–591

troughs of the east Appalachians Mon xxxiii, pp 11–36

(See, also, Drainage systems.)

Degradation and deposition, Glacial Ann 8, i, pp 355–369

Degradation and drainage, pre-Glacial, in Massachusetts Mon xxix, pp 510–513

Degradation, intrusion and, experiments illustrating Ann 21, iii, pp 291–303

Degradation, transportation, and deposition, littoral Mon 1, pp 29–60; Mon xi, pp 87–89

Del Norte irrigation canal; Colorado Ann 13, iii, pp 171–175

Del Rio, Texas, flow of, measurements of Ann 18, iv, p 110; Bull 140, pp 85, 86

Del Rio clay of Texas Ann 18, ii, pp 236–237; Ann 21, vi, pp 283–286; Bull 164, p 17; GF 42, pp 2–3; GF 64, p 2

Delaware, altitudes in Ann 18, i, pp 279–288; Bull 5, p 76; Bull 76; Bull 160, pp 112–113

artesian-well prospects in Bull 138, p 124

boundary lines of Bull 13, pp 80–82; Bull 171, pp 86–88

brick industry of MR 1887, pp 555, 557

building stone from, statistics of MR 1882, p 451; MR 1889–90, pp 374, 386; MR 1891, pp 457, 458; MR 1892, pp 706, 707; MR 1893, pp 544, 545; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, v cont, p 206 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq

clay products of, statistics of MR 1891, pp 503–504; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 819 et seq; Ann 18, v cont, p 1077 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq; Ann 21, vi cont, pp 362, 363

coke in, manufacture of Ann 20, vi cont, p 227

Cretaceous deposits of Bull 82, pp 87–88

Eocene deposits in .. Bull 83, pp 43, 86; Bull 141

gabbros and associated rocks in Bull 59

geographic positions in Bull 123, p 72

geologic formations in Bull 138, pp 117–119

geologic maps of. (See Map, geologic, of Delaware.)
geologic sections in. (See Section, geologic, in Delaware.)
geologic and paleontologic investigations in Ann 9, p 122; Ann 18, i, p 31

granite production of, statistics of .. MR 1889–90, pp 374, 386; MR 1891, pp 457, 458; MR 1892, pp 706, 707; MR 1893, pp 544, 545; Ann 16, iv, pp 437, 442, 457, 458, 459; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 206 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq

iron, iron ore, and steel from, statistics of Ann 2, p xxviii; MR 1882, pp 120, 125, 133, 134, 135; MR 1886, p 18; MR 1887, p 11; MR 1888, p 14; MR 1889–90, p 12; MR 1891, p 61; MR 1892, pp 15, 17, 36; MR 1893, p 16; Ann 16, iii, pp 31, 194; Ann 17, iii, pp 48, 63; Ann 18, vi, pp 65, 72; Ann 20, vi, p 82

magnetic declination in Ann 17, i, pp 321–322
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Delaware, maps, geologic, of. (See Map, geologic, of Delaware.)
maps, topographic, of. (See Map, topographic, of Delaware.)
mineral springs of ... Bull 32, p 51
minerals of, useful ... MR 1882, pp 674-675; MR 1887, pp 718-719
Neocene beds of .. Bull 84, pp 45-49
paint, mineral, production of ..MR 1891, p 597; MR 1892, p 818; Ann 16, iv, p 698
Potsdam rocks of ... Bull 81, pp 123, 288
sections, geologic, in. (See Section, geologic, in Delaware.)
topographic maps of. (See Map, topographic, of Delaware.)
topographic work in Ann 18, r, pp 94, 95, 102; Ann 19, r, p 90
water horizons in ... Bull 138, p 123
wells, deep, in ... Bull 138, pp 119-123
woodland area in .. Ann 19, v, p 4
Delaware Bay as a harbor Ann 13, r, p 174
Delaware River, elevations on, and drainage area, in New York .WS 24, pp 46-47
flow of, measurements of..Ann 19, iv, p 122; Ann 20, iv, pp 48, 84-86; Ann 21, iv, pp 76-77; WS 15, p 7; WS 27, pp 16, 23, 24; WS 35, pp 62-63
profile of ... WS 44, pp 15-16
Delesite, analysis of ... Bull 113, pp 18, 17
chemical constitution of Bull 125, p 54
Delhi formation of California GF 66, p 2
Delta swamps .. Ann 10, r, pp 271-282
Deltas, deposition of, by glacial streams and ordinary rivers Mon xxxiv, pp 55-57, 469-470
 formation of .. Ann 5, pp 104-108; Mon r, pp 65-70; Mon xi, 96-99
 glacial marine, especially of Maine Mon xxxiv, pp 371-376
 of glacial Lake Agassiz Mon xxv, p 27
Delta and beaches of the glacial Lake Agassiz Mon xxv, pp 276-381; Bull 39
Dendritic tufa of Mono Valley, California Ann 8, r, pp 311-315
Denison beds of Texas Ann 21, vii, pp 266-288
Denmark, clay deposits and industry of Ann 19, vi cont, pp 445-448
clay products of, at Paris Exposition Ann 21, vi cont, p 374
fossil plants of, literature of Ann 8, ii, p 778
Density and electrical resistance, relation between, when varying with temper
 of steel .. Bull 27, pp 30-50
Density, gravity, and pressure, terrestrial, table of variation of Ann 13, r, p 236
Dentaliide from clays and marls of New Jersey Mon xviii, pp 166-177
 from Cretaceous of Pacific coast Bull 133, p 62
Denton beds of Texas Ann 21, vi, pp 272-273
Denudation. (See Degradation.)
Denver Basin, Colorado, geology of Mon xxv
Denver beds, correlation of Ann 18, ii, p 348; Bull 83, pp 136-137, 145-146
 in Denver Basin Mon xxvii, pp 33-36, 89, 156-252, 311-316, 471-473;
 Bull 82, p 231; Bull 83, pp 136-137, 145, 146; Bull 84, p 324
Deposit, analysis of, from Nevada, Providence mine, drain tunnel...Ann 17, r, p 123
 analysis of, from Nevada, Pyramid Lake Bull 168, p 276
Deposition, agency of, in shaping topographic forms Mon xxii, pp 121-124
 in Arizona, Grand Canyon of the Colorado Ann 14, ii, pp 517-518
 in Newark area .. Bull 85, pp 45-53
cycles of, remarks on Mon xxxiii, pp 49-50
effect of, on harbors Ann 13, ii, pp 136-139
Deposition, experiments in .. Ann 14, i, pp 162-163
experiments in precipitation of fine sediments.................... Mon i, pp 205-208; Bull 36; Bull 60, pp 139-145
 genetic classification of glacial drift and associated deposits ...Ann 8, i, pp 355-369
in Alabama, Gadsden quadrangle..................................GF 35, pp 1-2
in Alaska, southwestern, Pleistocene, notes on........ Ann 20, vii, pp 255-257
in Appalachian region ..GF 61, p 2
in California, Lassen Peak quadrangle..........................GF 15, p 2
in Colorado, eastern...Ann 8, i, pp 358-368
Stevenson quadrangle...GF 39, pp 4-5
in Connecticut, Triassic area of.....................................Ann 18, ii, pp 19-83
in District of Columbia... GF 70, pp 1-2
in fresh-water marshes... Ann 10, i, pp 261-294
in Georgia, Stevenson quadrangle................................GF 19, p 2
in Kentucky, Estillville quadrangle.............................GF 12, pp 2-3
in Lake.. Ann 2, p 174
in marine marshes.. Ann 6, pp 359-388
in Maryland, Harpers Ferry quadrangle..........................GF 10, p 1
in Michigan, Marquette series...............................Ann 15, pp 635-640; Mon xxviii, pp 559-566
Menominee district..GF 62, pp 11-12
in Montana, Little Belt Mountains quadrangle..................GF 56, p 6
in North Carolina, Knoxville quadrangle........................GF 16, pp 1-2
in Sierra Nevada ...GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1;
 GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
in Tennessee, Briceville quadrangle............................GF 33, pp 1-2
in Utah, Bonneville Basin, conditions of........................Ann 2, pp 176-180
Tintic district..GF 65, pp 3-4
in Virginia, Estillville quadrangle...............................GF 12, pp 2-3
Deposition in Virginia, Franklin quadrangle GF 32, pp 1-2
in Virginia, Harpers Ferry quadrangle GF 10, p 1
Nomini quadrangle .. GF 23, p 1
Pocahontas quadrangle .. GF 26, p 2
Staunton quadrangle ... GF 14, p 1
Tazewell quadrangle ... GF 44, p 2
Washington (D. C.) quadrangle .. GF 70, pp 1-2
in West Virginia, Buckhannon quadrangle GF 34, pp 1-2
Franklin quadrangle ... GF 23, p 1
Harpers Ferry quadrangle ... GF 10, p 1
Piedmont quadrangle .. GF 28, p 2
Pocahontas quadrangle ... GF 26, p 2
Staunton quadrangle .. GF 14, p 1
Tazewell quadrangle ... GF 44, p 2
in Yellowstone Park ... GF 30, p 1
in running water ... Ann xxxiv, pp 15-18
littoral .. Ann 2, pp 181-182; Ann 3, pp 206-211; Ann 5, pp 90-99; Mon i, pp 46-59, 65-72, 155-166; Mon xi, pp 90-98
loess, origin of .. Ann 6, pp 286-307
long era of, from Carboniferous to Tertiary, in Grand Canyon district Mon ii, pp 208-209
of gold, metallic sulphides, etc., mode of .. Ann 17, ii, pp 182-184
of Newark beds, conditions at time of .. Ann 19, ii, pp 399-407
in Connecticut .. Ann 21, iii, pp 40-59
of ore, theories of the test of ... Ann 17, ii, pp 464-466
of pereonal formations ... Bull 84, pp 98-99
of saline matter by desiccation ... Ann 3, pp 199; Mon i, pp 208-209; Mon xi, pp 223-230
of sand in dunes .. Ann 5, pp 99-100; Ann 9, pp 574-575; Mon i, pp 59-60; Mon xi, pp 153-156
of travertine and sinter by vegetation of hot springs Ann 8, pp 619-676
of tufa in Lake Bonneville ... Ann 2, pp 190-191; Mon i, pp 167-169
in Lake Lahontan ... Ann 3, pp 212-221; Mon xi, pp 188-222; Bull 12, pp 10-14
in Lake Mono, California ... Ann 8, i, pp 289-290, 297, 311-315
petroleum and natural gas, accumulation of .. Ann 8, ii, pp 507-517; Ann 11, ii, pp 654-661
quicksilver ores, origin of .. Ann 8, ii, pp 985; Mon xiii, pp 55, 438, 445
relation of characters of sediments to characters of marine faunas Bull 3
relation of deformation and ... Ann 18, ii, pp 82-83
spits on shore of Nantucket Island, origin of Bull 53, pp 12-15, 49-54
terraces due to ... Ann 5, pp 90-99, 119-120; Mon i, pp 55-57, 65-71, 81-83, 153-166
Depression and deposition in Connecticut, Triassic area Ann 18, ii, pp 34-37
Des Moines River, profile of .. WS 44, p 78
Des Plaines River, flow of, measurements of Ann 20, iv, pp 52, 218-223;
 Ann 21, iv, pp 172-174
Deschutes River Basin, stream measurements in Ann 19, iv, pp 495-499;
 Ann 21, iv, pp 431-434; WS 16, p 181;
 WS 28, pp 167, 169; WS 38, pp 377-379
Desclouzie, analysis of, from Arizona, Tombstone Bull 64, p 27
analysis of, from Montana, Beaverhead County Bull 60, pp 130-131, Bull 64, pp 24-28
from New Mexico, Grant County ... Bull 64, p 26
Deformation—Devonian.

Desert lands in Western States, amount of.................................Ann 16, ii, p 485
Desert, Mount, Maine, geology of..Ann 8, ii, pp 987–1001
Desert varnish from Utah, Tooele Valley, description of, as one of the educa-
tional series...Bull 150, pp 389–391
Desiccation, freshening of lakes by.................................Ann 2, pp 177–180; Ann 3, pp 224–230;

Mon i, pp 208–209, 229, 258; Mon x, pp 224–230

Desiccation products, analyses of, from Utah, Sevier Lake........Ann 3, pp 224–230; Mon x, p 223
of Lahontan Basin..Mon i, p 227
of Sevier Lake, Utah...Mon i, p 225–227
Desmosite, thin section showing passage of spilosite into, from Michigan, Crystal
Falls district...Mon xxxvi, pp 306–307
Detrital rocks of Keweenaw series.................................Mon v, pp 127–133, 151
Devils Head Mountain, Colorado, notes on occurrence of topaz at........Bull 20, pp 73–74
Devitrification, processes and results of.............................Bull 139, pp 122–124
Devonian fauna; fishes...Mon xvi, pp 23–74
of Colorado, southwestern, Ouray limestone........................Ann 20, ii, pp 25–81
of Maine, Mapleton sandstone..Bull 165, p 88
Moose River sandstone..Bull 165, pp 88–92
of Nevada, Eureka district..Mon xx, pp 70–94, 193, 199
of Nevada, New York, falls of Ohio, and Iowa, summary of........Mon viii, p 6
of New York, Genesee section..Bull 41
Ontario County, the higher..Bull 16
upper..Bull 41
of New York and Pennsylvania, upper..................................Bull 3
of North America, Mollusca, nonmarine...............................Ann 3, pp 411–486
Devonian fossils of Alaska, Kvin Island..............................Ann 17, i, p 902
of Alaska, notes on..Ann 17, i, p 864
of Nevada, Eureka district..Mon viii, pp 99–211, 274, 278
Eureka district, systematic list of.....................................Mon xx, pp 325–330
of Pennsylvania, eastern, and New York..............................Bull 120
of Yellowstone Park...Mon xxxii, ii, pp 479–599
Devonian history of Virginia-Tennessee, Bristol quadrangle.......GF 59, p 2
Devonian rocks; Arlington formation of California.................GF 15, p 1
Bernardston formation of Massachusetts and Connecticut........GF 50, p 3
bituminous deposits of...Ann 11, i, pp 599–600
Catskill group, history of discussions concerning correlation of ...Bull 80,
pp 121–134, 181–182
Cedar Valley limestone of Iowa..Ann 11, i, pp 314–320
Chattanooga shale of Alabama...GF 19, p 2; GF 35, p 2
of Georgia...GF 2, p 1; GF 19, p 2
of Kentucky...GF 12, p 2; GF 46, p 2; GF 47, p 2
of North Carolina...GF 16, p 1
of Tennessee...GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2;
GF 16, p 1; GF 19, p 2; GF 20, p 3; GF 21, p 2; GF 22, p 2;
GF 25, p 4; GF 27, p 8; GF 33, p 2; GF 53, p 2; GF 59, p 4
of Virginia...GF 12, p 2; GF 59, p 4
Cheminung group, history of discussions concerning correlation of ...Bull 80,
pp 121–134, 147–148, 158, 190–192, 262
Chitistone limestone of Alaska..Ann 21, ii, pp 425, 426, 427
Pennsylvania limestone of Ohio as a water bearer...............Ann 19, iv, pp 646, 682–683
Correlation of..Bull 80
Genesee beds of New York, petrography and paleontology of....Bull 16, pp 13–34
Giles formation of Virginia and West Virginia.......................GF 44, p 3
goniatite limestone, history of discussions concerning...........Bull 80, pp 161, 189–190
284 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Devonian rocks; Grainger shale of Kentucky Bull 111, p. 38; GF 12, p. 3
Grainger shale of North Carolina GF 16, p. 4
of Tennessee GF 12, p. 3; GF 16, p. 4; GF 25, p. 4; GF 27, p. 3; GF 59, p. 4
of Virginia Bull 111, p. 38; GF 12, p. 3; GF 59, p. 4
Hackberry shale of Iowa ... GF 12, p. 3
Hamilton formation of Indiana GF 12, p. 3
Hampshire formation of Virginia GF 14, p. 2; GF 32, p. 3; GF 61, p. 4
of West Virginia GF 14, p. 2; GF 32, p. 3; GF 34, p. 3; GF 61, p. 4
Helderberg, upper, Ohio, Indiana Ann 8, pp 568-570; Ann 11, t, pp 635-636
Independence shale of Iowa Ann 11, i, pp 320-323
Jefferson formation, of Montana, descriptions and sections of Ann 20, n, pp 287-289, 329, 339, 363, 368; Bull 110, pp 27-32; GF 1, p. 2; GF 24, p. 2; GF 55, p. 2
Jennings formation of Maryland GF 28, p. 3
of Virginia GF 14, p. 2; GF 32, p. 3; GF 61, p. 4
of West Virginia GF 14, p. 2;
GF 28, p. 3; GF 32, p. 3; GF 34, p. 3; GF 61, p. 4
Kimberling shale of Virginia and West Virginia GF 26, pp 2-3; GF 44, p. 3
limestone of Illinois, vicinity of Rock Island Ann 17, t, pp 832-833
Mapleton sandstone of Maine, Aroostook volcanic area Bull 165, pp 136-137
Monarch formation of Montana GF 55, p. 2; GF 56, p. 2
Monterey sandstone of Maryland GF 28, p. 3
of Virginia GF 14, pp 1, 2; GF 32, p. 3; GF 61, p. 4
of West Virginia GF 14, pp 1, 2;
GF 28, p. 3; GF 32, p. 3; GF 34, p. 3; GF 61, p. 4
Naples beds of New York, petrography and paleontology of Bull 16, pp 35-66
Nevada limestone, age, character, thickness, fossils, etc., of Ann 3, pp 253, 264-266; Mon xix, pp 63-65
of Alabama, Gadsden quadrangle GF 35, p. 2
of Alaska Ann 18, n, pp 169-175; Ann 21, n, pp 425, 426, 427, 475-476
of California, Lassen Peak quadrangle GF 15, p. 1
of Colorado, northwestern .. Ann 9, pp 887-888
Rico Mountains Ann 21, n, pp 26-27, 41-47
of Connecticut, Holyoke quadrangle GF 50, p. 3
of Georgia, Ringgold quadrangle GF 2, p. 1
Stevesdon quadrangle ... GF 19, p. 2
of glacial Lake Agassiz, area of Mon xxi, pp 72-81
of Illinois, northwestern .. Ann 17, n, pp 832-833
of Indiana Ann 11, i, pp 634-636
of Iowa, northeastern ... Ann 11, t, pp 314-323
of Kentucky, Estillville quadrangle Bull 111, p. 38; GF 12, pp 2-3
London quadrangle GF 47, p. 2
Richmond quadrangle ... GF 46, p. 2
of Maine, northeastern ... Bull 165, pp 136-137
of Maryland, Piedmont quadrangle GF 28, p. 3
of Massachusetts, Holyoke quadrangle GF 50, p. 3
western Mon xxi, pp 253-299
of Michigan, lower peninsula WS 30, pp 86-87
of Missouri River region, upper Ann 6, p. 51
of Montana Bull 110, pp 25-32; Bull 139, p. 38
Fort Benton quadrangle ... GF 55, p. 2
Judith Mountains Ann 18, n, pp 459, 468-470
Little Belt Mountains ... Ann 20, n, pp 289-289, 329, 339, 363, 368
Livingston quadrangle GF 1, p. 2
Three Forks quadrangle ... GF 24, p. 2
Devonian rocks of Nevada, Eureka district... Ann 3, pp 264–267; Mon xx, pp 63–98
of New York and Pennsylvania (eastern)............Bull 120
of North Carolina, Knoxville quadrangle........GF 16, pp 1, 4
of Ohio...............................Ann 8, pp 570–573
shale as a water carrier.......................Ann 19, iv, pp 647, 684
of Pennsylvania, eastern, and New York........Bull 120
of Tennessee, Briceville quadrangle........GF 33, p 2
Bristol quadrangle...............................GF 59, p 4
Chattanooga quadrangle.........................GF 6, p 1
Cleveland quadrangle..........................GF 20, p 3
Estillville quadrangle.........................GF 12, pp 2–3
Kingston quadrangle............................GF 4, p 2
Knoxville quadrangle...........................GF 16, pp 1, 4
Loudon quadrangle.........................GF 25, p 4
McMinnville quadrangle.......................GF 22, p 2
Morristown quadrangle.........................GF 27, p 3
phosphate region...............................Ann 17, ii, pp 521–522
Pikeville quadrangle..........................GF 21, p 2
Ringgold quadrangle............................GF 2, p 1
Sewanee quadrangle............................GF 8, p 2
Standingstone quadrangle...........................GF 53, p 2
Stevenson quadrangle...........................GF 19, p 2
of Virginia, Estillville quadrangle........GF 12, pp 2–3
Franklin quadrangle............................GF 32, p 3
Monterey quadrangle............................GF 61, p 4
Pocahontas quadrangle.........................GF 26, p 2
Staunton quadrangle............................GF 14, pp 1, 2
Tazewell quadrangle............................GF 44, p 3
of West Virginia, Buckhannon quadrangle........GF 34, pp 2, 3
Franklin quadrangle............................GF 32, p 3
Monterey quadrangle............................GF 61, p 4
Piedmont quadrangle............................GF 28, p 3
Pocahontas quadrangle.........................GF 26, p 2
Staunton quadrangle............................GF 14, pp 1, 2
Tazewell quadrangle............................GF 44, p 3
of Wyoming, Absaroka region..............GF 52, p 2
of Yellowstone Park................................Mon xxxi, ii,
pp 7, 22, 23, 26, 58, 153, 159, 206, 213; GF 30, p 4
Ogden quartzite, age, character, and thickness of........Ann 2, p 217
Old red sandstone of Lake Superior region........Bull 86, pp 51, 52, 84 passim
Ouray limestone of Colorado, Rico Mountains........Ann 21, ii, pp 27, 45–47
Pauola formation of Kentucky....................GF 46, p 2; GF 47, p 2
Parting quartzite series of Aspen district, Colorado........Mon xxxi, pp 13–22
Portage beds of New York, petrography and paleontology of...Bull 16, pp 67–68
Portage sandstone of Western States................Bull 80, p 62
Romney shale of Maryland........................GF 28, p 3
of Virginia... GF 14, pp 1, 2; GF 26, p 2; GF 32, p 3; GF 44, p 3; GF 61, p 4
of West Virginia...............................GF 14, pp 1, 2;
GF 26, p 2; GF 28, p 3; GF 32, p 3; GF 44, p 3; GF 61, p 4
Schoharie formation of Indiana................Ann 11, i, pp 634–635
Tahkandit series of Alaska.....................Ann 18, iii, pp 169–175, 257–258;
Ann 20, vii, pp 157–159, 179, 187, 235
Threeforks limestone of Wyoming....................GF 52, p 2
286 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Devonian rocks; Threeforks limestone of Yellowstone Park Mon xxxii, pp 7, 22, 23, 26, 58, 153, 160, 206, 213; GF 30, p 4
Threeforks shale of Montana GF 1, p 2; GF 24, p 2; GF 55, p 2
Traverse series (Hamilton) of Michigan WS 30, pp 86-87
 Uinta sandstone of Colorado, northwestern Ann 9, pp 687-688
 West Fork series of Chandlar River, Alaska Ann 21, pp 475-476
 White pine shale of Nevada, age, character, thickness, fossils, etc., of ... Ann 3, pp 253, 266-267; Mon xx, pp 58-69
 Devonian-Carboniferous history of Alaska, southwestern Ann 20, vii, p 243
 Devonian-Carboniferous system of Alaska, correlation of ... Ann 20, vii, pp 179, 187
 Devonian and Carboniferous—a correlation essay, by H. S. Williams .. Bull 80
 See, also, Paleozoic.

Deweylite, chemical constitution of Bull 125, pp 74, 105
 Dexter sands of Texas Ann 21, vii, pp 302-308
 Diabantite, analysis of Bull 113, p 17
 chemical constitution of Bull 125, p 55
 Diabase, analysis of, from California, Grass Valley Ann 17, t, p 734;
 Bull 148, p 208; Bull 168, p 194
 analysis of, from California, Mariposa County Ann 17, t, p 694; Bull 148, p 220; Bull 168, p 209
 from California, Mount Diablo .. Bull 90, p 73; Bull 148, p 224; Bull 168, p 213
 Mount St. Helena (pseudo) . Mon xiii, p 98; Bull 148, p 222; Bull 168, p 211
 Sulphur Bank (pseudo) . Mon xiii, p 99; Bull 148, p 222; Bull 168, p 211
 various localities Ann 14, t, p 473
 from Connecticut, Lake Saltonstall Bull 165, p 176
 Middlefield .. Bull 165, p 176
 New Haven .. Bull 150, p 272; Bull 165, p 176
 from Maine, Aroostook Falls Bull 165, p 188; Bull 168, p 20
 Mars Hill ... Bull 165, pp 179, 188
 from Maryland, Rocky Ridge Bull 148, p 90; Bull 168, p 50
 from Massachusetts, Leverett (altered) Bull 148, p 74; Bull 168, p 30
 Medford ... Bull 150, p 381
 Middlesex County, residual sand of Bull 150, p 380
 near Boston .. Bull 107, p 26
 from Michigan, Penokee-Gogebic Range Bull 64,
 p 47; Bull 148, p 103; Bull 168, p 73
 various localities Mon xix, p 357
 from Nevada, Comstock lode Mon iii, opp p 132
 Nevada City and Grass Valley districts Ann 17, t, pp 66, 71, 150
 from New Brunswick, Aroostook Falls Bull 165, p 176
 from New York, Keene Valley Bull 107, p 26
 from North Carolina, near Cranberry, garnetiferous Bull 168, p 52
 from Vermont, Mount Ascutney .. Bull 148, p 69; Bull 168, p 21
 from Washington, Kittitas County .. Bull 168, p 226
 from Wisconsin, Menominee River Bull 55, p 85
 from Yellowstone Park, Absaroka Range Bull 168, p 96
 from New Haven, Connecticut, description of, as one of the educational
 series .. Bull 150, pp 264-273
 of Alaska ... Ann 21, t, pp 479-480
 Funters Bay Ann 18, iii, p 48
 Matanuska Valley Ann 20, vi, p 310
 Yukon district Ann 18, iii, pp 239-242
 of California, Colfax quadrangle GF 66, p 3
 Downieville quadrangle GF 37, p 4
 Jackson quadrangle GF 11, p 3
 Lassen Peak quadrangle GF 15, p 1
Diabase of California, Marysville quadrangle GF 17, p 1
of California, Mother Lode district (meta) .. GF 63, p 4
Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 2-3
Placerville quadrangle ... GF 3, p 2
Sacramento quadrangle ... GF 5, pp 2-3
Smartsville quadrangle .. GF 18, p 3
Sonora quadrangle ... GF 41, p 5
of Colorado (enstatite-bearing) ... Bull 1, p 3
Cripple Creek district .. Ann 16, ii, pp 24, 99
Pikes Peak quadrangle .. GF 7, pp 2, 7
Silver Cliff .. Ann 17, ii, pp 282-283
of Connecticut-Massachusetts, Holyoke quadrangle GF 50
of Lake Champlain region ... Bull 107, pp 24-27
of Maine, Aroostook volcanic area, outcrop and petrography of Bull 105, pp 114-116, 175
of Maryland-Virginia-West Virginia, Harpers Ferry quadrangle GF 10, p 2
of Massachusetts, Holyoke quadrangle ... GF 50, p 6
Narragansett Basin .. Mon xxxiii, p 152
of Michigan, Keweenaw series ... Ann 3, pp 102-104, 106-107; Mon v, pp 37-50, 61-68
Keweenaw series (olivinitic) .. Ann 3, pp 107-108; Mon v, pp 68-77
Marquette region .. Bull 62, pp 138-145, 168-170, 183
Penokee iron-bearing series, petrographic character of Mon xix, pp 348-359, 410-419
of Minnesota, Pigeon Point ... Bull 109, pp 44-48
of Montana, Castle Mountain mining district Bull 139, pp 76-77, 117
Three Forks quadrangle .. GF 24, p 4
of Narragansett Basin .. Mon xxxiii, p 152
of Nevada, Washoe district ... Ann 2, p 300; Mon iii, pp 48-53, 112-116, 197-199, 381
of New Jersey, in traps ... Bull 67
of Oregon, Roseburg quadrangle .. GF 49, p 3
of Rhode Island, Narragansett Basin .. Mon xxxiii, p 152
of Sierra Nevada .. Ann 14, ii, pp 471-473; Ann 17, i, pp 667, 671-673
of West Virginia-Virginia-Maryland, Harpers Ferry quadrangle GF 10, p 2
relations of, to augite-andesite ... Bull 17, pp 12, 16, 20, 40
residual sand of, from Medford, Massachusetts, description of, as one of the educational series ... Bull 150, pp 379-382
thin section of, from California, Grass Valley Ann 17, ii, p 67, 70
from Massachusetts, Meriden (hyalopilitic) .. Mon xix, pp 430-431
from Michigan, Lower Quinnesec Falls .. Bull 62, pp 224-225
from Minnesota, Beaver Bay .. Mon v, pp 34-35
Minnesota River Valley .. Bull 157, pp 152-153
Pigeon Point (from magnetite, idiomorphic secondary) Bull 109, p 45
showing amygdale and poikilitic structure in dike Bull 109, pp 46-47
Split Rock River ... Mon v, pp 60-61
from Nevada, Washoe district ... Mon iii, pp 150-151
from Sierra Nevada .. Ann 17, i, pp 758-759, 760-761
Diabase and porphyrite group of California, Nevada City and Grass Valley districts ... Ann 17, ii, pp 56-75, 152
Diabase and soapstone of Michigan and Wisconsin, Penokee district Mon xix, p 357
Diabase agglomerate in relation to greenstone-schist, Michigan, Marquette region ... Bull 62, pp 185-191
Diabase amygdaloid from Minnesota, Grand Marais, description of, as one of the educational series ... Bull 150, pp 355-357
Diabase amygdaloid, thin section of, from Massachusetts, South Holyoke, showing contact of clayey limestone and... Mon xxix, pp 208–209

Diabase flows and dikes in Catoctin Mountains... Ann 14, ii, pp 315–318, 352–355

Diabase dike, thin section of, showing contact norite wall and, Trembleau Point, New York... Bull 107, p 46

Diabase-porphryite, analysis of, from California, Yuba County... Bull 148, p 228; Bull 168, p 217

analysis of, from Montana, Crazy Mountains... Bull 148, p 143; Bull 168, p 121

of California, Colfax quadrangle... GF 66, p 4

Truckee quadrangle... GF 39, p 4

of Michigan, Keweenaw series... Ann 3, pp 108–110; Mon v, pp 77–87

thin section of, from Michipicoten Island, Ontario... Ann 3, pp 108–109; Mon v, pp 76–77

from Minnesota, Duluth... Ann 3, pp 108–109; Mon v, pp 76–77

Diabase-porphry, analysis of, from California, Downieville quadrangle... Ann 17, i, p 734; Bull 148, p 207; Bull 168, p 192

of Sierra Nevada... Mon 17, i, pp 644–646

Diabase-pseudamygdaloid, thin section of, from Michigan, Porcupine Mountains... Mon v, pp 60–61

thin section of, from Wisconsin, Douglas County... Mon v, pp 60–61

from Wisconsin, Gogogahugun River... Mon v, pp 60–61

Diabase-tuff, analysis of, from California, Butte County... Bull 148, p 205

analysis of, from Philippine Islands... Ann 21, iii, p 500

Diabase-tuffs of Michigan, and their metamorphism to greenstones... Bull 62, pp 133, 158–162

Diabasic amygdaloid of Keweenaw series... Mon v, pp 87–91

Diabasic rocks from Alaska, descriptions of species of... Ann 20, vii, pp 211–216

Diademites, Mesozoic, of United States... Bull 97, pp 44–54

Diagrams, conventional characters for... Ann 2, pp liii, liv; Ann 10, i, pp 77–78

Diallage, analysis of, from Maryland, Gwynns Falls... Bull 28, pp 21, 44; Bull 150, p 280

analysis of, from Minnesota, Pigeon Point... Bull 109, p 36; Bull 148, p 106; Bull 150, p 277; Bull 168, p 76

from Scotland, Balta Islands... Ann 17, i, p 735

from Wisconsin, Ashland County... Bull 60, p 149; Bull 148, p 105; Bull 168, p 75

of Minnesota, southwestern, in gabbro-schists... Bull 157, pp 89–81

thin section of, from Delaware, illustrating alteration into compact green hornblende... Bull 59, p 26

from Michigan, Sturgeon Falls (in gabbro), showing hornblende around... Bull 62, p 70

Diallage-bronzite rock, analysis of, from Maryland, Baltimore County... Bull 64, p 43

Diallage-gabbro, analysis of, from Minnesota, sec. 26, T. 64 N., R. 8 W... Bull 148, p 111; Bull 168, p 81

Diallage-serpentine, analysis of, from Russia, Ural... Bull 113, p 27

Diamond-core drill, cost, method of operating, etc... WS 32, pp 43–48

Diamond Peak quartzite of Nevada, age, character, thickness, etc., of... Ann 3, pp 253, 268; Mon xx, p 85

(See, also, Precious stones.)
Diaspore, analysis of, from Colorado, Custer County..Bull 90, p 62
analyses of, from Massachusetts, Chester...Bull 126, p 75
occurrence and statistics of ...MR 1883-84, p 738; Ann 16, iv, p 605
Diastatic geology, especially of northeastern Iowa..................Ann 11, i, pp 242-244
Diastrophism; Appalachian structure, mechanics of..................Ann 13, ii, pp 211-280
beaches of glacial lake Agassiz, changes in levels of.................Mon xxv, p 474-522
Charleston earthquake...Ann 9, pp 209-528
cleavage, joints, shear zones, etc., in New York-Vermont slate belt........Ann 19, iii, pp 205-219
Connecticut River Trias, formation of basin of..................Mon xxix, pp 372-379
Connecticut Triassic area, deformation of..........................Ann 18, ii, pp 84-143
deformation of geoid by loading and unloading..................Mon 1, pp 370-377, 379-383; Bull 48
by removal, through evaporation, of water of Lake Bonneville.....Mon 1, pp 421-424
dislocation of Vineyard series, Massachusetts............................Ann 7, pp 234-346
dislocations, effects of underlying rocks on.........................Ann 19, ii, p 467
of Cretaceous and Tertiary strata on New England coast........Ann 18, ii, pp 505-513
displacement along fall-line, character and cause of................Ann 7, pp 616-634
drainage and faulting, as illustrated on San Clemente Island.....Ann 18, ii, pp 468-473
dynamic geology of Black Hills..Ann 19, ii, pp 502-503
of Little Belt Mountains, Montana............................Ann 20, iii, pp 385-400
earthquake studies, and researches in deformation...............Ann 14, ii, pp 233-235
earthquakes in California..in 1889, Bull 68; in 1890-91,
Bull 95; in 1892, Bull 112; in 1893, Bull 114; in 1894, Bull 129; in 1895, Bull 147; in 1896-97, Bull 155; in 1898, Bull 161
elevation and subsidence inferred from Cenozoic and Mesozoic rocks of
Alabama..Bull 43, pp 136-138
epeirogenic elevation, dependence of lake levels on...............Mon xxv, pp 227-237
epeirogenic movements apparently dependent on glaciation........Mon xxv, pp 492-501
relationship of, to glaciation..Mon xxv, pp 516-521
fault rock, thin section of, near contact of basalt and arkose conglomerate
in Connecticut..Ann 21, iii, p 68
fault scarps and fault terraces..Mon 1, pp 76-77, 83
faulting, evidence of, sufficiency of, especially in Connecticut...Ann 18, ii, pp 134-137
faulting and fissuring in Colorado, Telluride district........Ann 18, iii, pp 764-771
faulting and folding in Virginia, Richmond Basin, conditions ofAnn 19, ii, pp 409-411
faulting and landslides in California, Bidwell Bar area..............Ann 17, i, pp 553-554, 591-594
faults and flexures, post-Lahontan..............................Mon xi, pp 274-283
faults and folds, analysis of, and diagrams for use in fault analysis........Mon xxvii, pp 116-118
classification of ..Ann 7, pp 469-481; Ann 13, ii, pp 222-224
description and causes of..Bull 150, pp 316-317
drainage, control of, by, in Connecticut..........................Ann 21, iii, pp 143-150
effect of, on trap ridges of Connecticut.................................Ann 18, ii, pp 169-173
tectonic and geographic effects of..Ann 18, ii, p 174
geometric relations of ...Ann 18, ii, pp 89-94
in Alabama, Gadsden quadrangle..GF 35, p 3

Bull. 177—01—19
Diastrophism; faults and folds in Appalachian province
Diastrophism; faults and folds in Virginia, Tazewell quadrangle..GF 44, p 4
faults and folds in West Virginia, Harpers Ferry quadrangle..GF 10, p 4
in West Virginia, Monterey quadrangle...GF 61, pp 6-7
Pocahontas quadrangle...GF 26, p 4
Tazewell quadrangle...GF 44, p 4
lateral displacement in ...Ann 21, iii, p 96
measurement of ..Mon xxxi, pp 251-256
outcrops, crescentic offsetting of ...Ann 21, iii, pp 95-97
systems of, in various regions ..Ann 21, iii, pp 133-136
theory of, especially those in Pomperaug Basin, Connecticut. Ann 21, iii, p 124
throw, distribution of, over a zone of parallel faults ...Ann 21, iii, p 95
tilting of orographic blocks ...Ann 21, iii, p 97
faults and serpentinitization in Massachusetts, western ..Mon xxix, pp 95-96
fissure systems of California, Nevada City and Grass Valley districts, origin of ...Ann 17, ii, pp 169-170
 fissures as fault planes in Colorado, Cripple Creek district. Ann 16, ii, pp 141-143
flow of solids, or behavior of solids under high pressure ..Bull 55, pp 67-75; Bull 64 pp 38-39; Bull 73
flow and fracture of rocks as related to structure...Ann 16, i, pp 845-874
folding in Lake Superior iron-ore region ..Ann 21, ii, pp 416-418
of Archean and Huronian series of Michigan, Crystal Falls district. Ann 19, iii, pp 14, 65-66; Mon xxxvi, p xxiii
folding, faults, and shear zones in Indian Territory, McAlester-Lehigh coal field ...Ann 19, iii, pp 443-448
form and position of sea level ...Bull 48
fractures, in Utah, Tintic district, relation of, to ore bodies, etcAnn 19, iii, pp 676-683
in Alaska in Tertiary time, notes on ..Ann 20, vii, pp 244-245
in California, Mono Basin, post-Pleistocene ...Ann 8, i, pp 389-390
Nevada City and Grass Valley districts, results of ..Ann 17, ii, p 104
San Francisco Peninsula, record of ...Ann 15, pp 405-408
in Newark areas ...Bull 85, pp 78-100
in Sierra Nevada, relation of, to volcanism ...Ann 8, i, pp 428-430
in Utah, Uinta Range, eastern portion of ..Ann 9, pp 691-705
isostasy; movements in shore-land districts ...Ann 13, ii, pp 110-114
remarks on the doctrine of ..Ann 18, ii, p 82
theory and examples of ...Ann 7, pp 616-634; Ann 12, i, p 377; Ann 14, i, p 229; Mon i, pp 357, 371; Mon xii, p 289
isostatic adjustment and contraction of earth’s crust ...Ann 13, ii, pp 280-281
Lake Bonneville and ..Ann 2, pp 192-200; Mon i, pp 340-392
landslides, characters of ..Mon i, pp 77, 83-84
mechanical origin of Triassic monocline in Connecticut ..Ann 7, pp 481-490
monocline, Triassic, in Connecticut, origin of ...Ann 18, ii, pp 140-143
mountain building, nature of process of ..Ann 6, pp 195-197
in Colorado, Elk Mountains ...GF 9, pp 1-2
in Montana, Little Belt Mountains quadrangle ...GF 56, p 7
in Sierra Nevada ...GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
movements, earth, in Alaska ..Ann 18, ii, pp 251-289
in Colorado, resulting in elevation of Mosquito Range. Ann 2, pp 211-214, 277
in Great Lakes region, recent ...Ann 18, iv, pp 595-647
in Montana, Judith Mountains region ...Ann 18, iii, pp 459-464
in Rocky Mountain region ...Mon xxvii, pp 17-40
Diastrophism; origin of Lahontan Basin

orogenic forces and relations in Narragansett Basin

orogeny of Nevada, Eureka district

orographic movements in Colorado, Telluride quadrangle

principles of North American pre-Cambrian geology

Rocky Mountains, origin of the structure of

structural details in Green Mountain region and in eastern New York

structure of Catoctin belt

of Denver Basin, development of, movements producing, etc.

subsidence of Grand Canyon district

on coast of Nantucket Island, evidence of

Tertiary revolution in topography of Pacific coast

uplift of Nantucket Island, post-Glacial

part taken by, in production of topographic forms

uplifts in Coastal Plain

in Colorado, Anthracite quadrangle

Crested Butte quadrangle

Mosquito Range

Pueblo quadrangle

Telluride quadrangle

Teamile district

in Grand Canyon district

in Maryland, Harpers Ferry quadrangle

in Tennessee, Kingston quadrangle

Sewanee quadrangle

in Virginia, Harpers Ferry quadrangle

in Utah, Tintic district

in West Virginia, Harpers Ferry quadrangle

warping in Alaska, recent, as shown by drainage peculiarities

in Connecticut, Triassic, relation of, to volcanism

Diatom earth, description of the rock, as one of the educational series

Dicotyledons of Dakota group

of Laramie flora

the earliest, remarks on

Dictionary of altitudes in United States

Dictionary, geographic, of Connecticut

of Massachusetts

of New Jersey

of Rhode Island

(Dietrich River, Alaska, distances along, table of)

Differentiation of lavas

theory of the origin of magmas by

Dighton conglomerate group of Narragansett Basin

Diimidotriphosphate, tri-silver, penta-silver, and tri-sodium, analyses of

Diimidotriphosphoric acid, consideration of salts of

Dike, stock, sill, laccolith, definitions of

Dike andesites and basic dike rocks in Colorado, Cripple Creek district

(See also Gazetteer.)
Dike rock, analysis of, from California, northern part . . Bull 78, pp 123, 124

- analysis of, from California, Ophir . . Ann 14, ii, p 262
 - from California, Placer County . . Bull 148, p 211; Bull 168, p 197
 - from Colorado, La Plata quadrangle (basic) . . GF 60, p 7
 - from Maryland, Howard County . . Bull 148, p 87; Bull 168, p 47
 - from Montana, Castle Mountain district, monchiquite-like . . Bull 148, p 151
 - Crazy Mountains . . Bull 90, p 71
 - from Nevada, New Ophir claim . . Ann 17, ii, p 75
 - from New York, near Ausable Forks . . Bull 107, p 26
 - near Indian Peak . . Bull 168, p 100
 - Stinkingwater River . . Bull 168, p 102

Dike rocks, chemical variations of . . Ann 18, iii, pp 302–304

- classification of basic . . Bull 107, pp 37–39

Dikes, features of . . Bull 150, pp 145–146

- in Alaska, Fortymile and Rampart series . . Ann 18, iii, pp 146, 166, 225–239
 - Matanuska Valley, etc . . Ann 20, vii, pp 309–311, 314

- in California, Downieville quadrangle . . GF 37, pp 4–5
 - Ophir district . . Ann 14, ii, pp 260–262
 - Sonora quadrangle . . GF 41, pp 5–6

- in Colorado, Cripple Creek district . . Ann 16, ii, p 138
 - Elmoor quadrangle . . GF 58, p 3
 - La Plata quadrangle . . GF 60, p 7
 - Pikes Peak quadrangle, diabase and syenite . . GF 7, p 2
 - granitic . . GF 7, p 1
 - sandstone in granite . . GF 7, p 3

- Ruby Range . . Ann 14, ii, p 200; GF 9, p 4

- Telluride quadrangle . . GF 57, p 7
- Walsenburg quadrangle . . GF 68, p 3

- in Grand Canyon of Colorado . . Ann 14, ii, pp 516–517; Mon ii, pp 95–96
- in Idaho, Boise quadrangle . . GF 45, p 2
 - Idaho Basin, associated with granite . . Ann 18, iii, pp 682–683, 710

- in Lake Champlain region, trap . . Bull 107
- in Lake Superior region . . Mon v, pp 143–144, 370, 379, etc.
- Penokee district, associated with iron ore . . Mon xix, pp 271–275, 276–279
- Mount Desert Island . . Ann 8, ii, pp 1052–1057
- in Massachusetts, Cape Ann district . . Ann 9, pp 579–583, 589–596
- in Michigan, Crystal Falls district, Archean . . Ann 19, iii, pp 32–33, 122; Mon xxxvi, pp 45–49
- in Montana, Butte district, rhyolite . . GF 38, p 2
- Fort Benton quadrangle . . GF 55, p 4
INDEX TO PUBLICATIONS OF U. S. GEOLOGY SURVEY. [BULL. 177.]

Dikes in Montana, Judith Mountains, origin of Ann 18, iii, pp 572, 574
in Montana, Little Belt Mountains. Ann 20, iii, pp 319 et seq, 349–360; GF 56, p 4
porphyry ... Bull 139, pp 65–69
Yogo Peak, cutting shonkinite. .. Ann 20, iii, p 319
in Narragansett Basin Mon xxxiii, pp 27–23
in Nevada, Eureka district, intrusive. Ann 19, iii, pp 222–226, 270
in New York–Vermont slate belt. GF 61, p 5
in South Dakota, Black Hills Ann 21, iii, pp 200–205, 228–231
in Virginia, Monterey quadrangle GF 61, p 5
Richmond Basin .. Ann 19, ii, pp 496–502
in West Virginia, Monterey quadrangle GF 61, p 5
in Wyoming, Black Hills .. Ann 21, iii, pp 200–205, 228–231
mineralizing influence of Ann 18, iii, p 829
Diller (J. S.), a late volcanic eruption in northern California and its peculiar
lava .. Bull 79
Bohemia mining region of western Oregon, with notes on Blue River
mining region and on structure and age of Cascade
Range .. Ann 20, iii, pp 1–36
Coos Bay coal field, Oregon Ann 19, iii, pp 309–376
educational series of rock specimens Bull 150
geologic reconnaissance in northwestern Oregon Ann 17, i, pp 441–520
geology of Lassen Peak district Ann 8, i, pp 395–432
geology of Lassen Peak quadrangle, California GF 15
geology of Roseburg quadrangle, Oregon GF 49
geology of Westfield, Massachusetts, and vicinity Mon xxix, pp 654–656
notes on the geology of northern California Bull 33
peridotite of Elliott County, Kentucky Bull 38
Tertiary revolution in topography of Pacific coast Ann 14, ii, pp 397–434
work in charge of, 1886–1900 Ann 8, i, pp 193–194; Ann 9, pp 98–100; Ann 10, i, pp 144–147; Ann 11, i, pp 90–94; Ann 12, i, pp 100–103;
Ann 13, i, pp 131–133; Ann 14, i, pp 246–248; Ann 15, pp 171–174; Ann 16, i, p 34; Ann 17, i, pp 49–53; Ann 18, i, pp 47–49;
Ann 19, i, p 50; Ann 20, i, p 50; Ann 21, i, p 83
Diller (J. S.) and Clarke (F. W.), turquoise from New Mexico ... Bull 42, pp 39–44
Diller (J. S.) and Whitfield (J. E.), dumortierite from Harlem, New York,
and Clip, Arizona Bull 64, pp 31–33
Dimetasilicates, chemical constitution of Bull 125, pp 85–100
Dinoceras beds .. Bull 84, p 324
Dinocerata, an extinct order of gigantic mammals—classification, bibliogra-
phy, descriptions of genera, etc Ann 5, pp 243–302; Mon x
Dinosaurs from Denver Basin, remains of Mon xxviii, pp 509–520
of North America—affinities, classification, etc Ann 16, i, pp 133–414
restorations of European Ann 16, i, pp 228–231
D'Invilliers (E. V.) and McCreath (A. S.), Clinch Valley coal fields ..MR 1892,
pp 521–526
Diopside, analysis of, from Maryland, near Baltimore Bull 78, p 122;
Bull 148, p 84; Bull 168, p 43
analysis of, from Wyoming, Leucite Hills Bull 168, p 86
chemical constitution of Bull 125, pp 86, 88, 89, 90
Diopside, aegirine-augite, and plagioclase, aqueous deposit of, from Massachusetts, Greenfield, thin section ofMon xxix, pp 430-431
Diopside-diabase of Massachusetts, westernMon xxix, pp 443-444
Dioptase, chemical constitution of..................................Bull 125, p 71
analysis of, from Alaska, Karluk .. Ann 18, iii, p 42
from Alaska, Sitka, and Turnagain Arm (pyroclastic)Ann 18, iii, p 45
Unalaska Island ... Ann 20, iii, p 490; Bull 148, p 232; Bull 168, p 226
various localities ... Bull 148, p 233
from Austria, Silesia .. Ann 20, iii, p 490
from California, Amador County Bull 148, p 215; Bull 168, p 201
Bidwell Bar, Big Trees, and Smartsville quadranglesAnn 17, i, pp 702, 731
Butte County .. Bull 148, p 204; Bull 168, p 190
Knoxville.........................Mon xiii, p 101; Bull 148, p 222; Bull 168, p 211
Shasta County .. Bull 148, p 191; Bull 168, p 177
Sonora ... Ann 20, iii, p 490
Tuolumne County Bull 148, p 218; Bull 168, p 204
from Colorado, Elk Mountains Bullet 150, p 242; Bull 148, p 177; Bull 168, p 159
La Plata MountainsAnn 20, iii, p 490; Bull 148, p 181; Bull 163, p 161; GF 60, p 6
Telluride quadrangle (impregnated diorite) Ann 18, iii, p 807
West Elk Mountains (porphyritic diorite) Ann 14, ii, p 227
from Germany, BadenBull 28, p 30
from Idaho, Seven Devils Ann 20, iii, p 251
from Maryland, Cecil County Bull 168, p 45
from Massachusetts, Leverett Mon xxxix, p 345
from Michigan, Crystal Falls district Mon xxxvi, p 231
from Montana, Castle Mountain district Bull 139, pp 135, 136; Bull 148, p 151; Bull 168, p 130
Crazy Mountains Bull 148, p 144; Bull 168, p 122
Little Belt Mountains Bull 148, p 148; Bull 168, p 127
Neihart .. Ann 20, iii, pp 490, 581
Red MountainBull 168, p 118
from Nevada, Comstock lode (metamorphic, porphyritic)Mon iii, p 152
Grass Valley .. Ann 17, ii, pp 42-43
Mount Davidson Mon iii, p 152
from New York, near Peekskill (inclusion in) Bull 60, p 158
from North Carolina, Mitchell County Bull 168, p 52
from Philippine Islands Ann 21, iii, p 506
from Vermont, Mount Ascutney Bull 148, p 69; Bull 168, p 25
Mount Ascutney (basic segregation in) Bull 168, p 26
from Wisconsin, Wisconsin River Bull 62, p 113
from Yellowstone Park, Absaroka Range Bull 168, p 96
Electric Peak.........Ann 12, i, p 631; Ann 20, iii, p 490; Mon xxxii, ii, p 116; Bull 66, p 30; Bull 150, p 244
Diorite from Colorado, Middle Brush Creek, description of, as one of the educational series: Bull 150, pp 241-243
from Yellowstone Park, Electric Peak, description of, as one of the educational series: Bull 150, pp 243-244
of Alaska, Koyukuk region: Ann 21, ii, pp 480-481
Matanuska Valley: Ann 20, viii, p 309
southern: Ann 18, iii, pp 36-47
of California, Bidwell Bar quadrangle: GF 43, p 4
Colfax quadrangle: GF 66, p 3
Jackson quadrangle: GF 11, p 4
Lassen Peak quadrangle: GF 15, p 1
Mother Lode district (metadiorite): GF 63, p 4
Nevada City and Grass Valley districts: Ann 17, ii, pp 48-51; GF 29, p 3
Pyramid Peak quadrangle: GF 31, p 5
Sonora quadrangle: GF 41, p 5
of Colorado, Anthracite quadrangle: GF 9, p 4
Crested Butte quadrangle: GF 9, p 5
La Plata quadrangle: GF 60, p 6
Mosquito Range: Mon xii, pp 84, 333, 334
Silver Cliff and Rosita Hills: Ann 17, ii, pp 291-295
Telluride quadrangle: GF 57, p 7
of Delaware: Bull 59, pp 29-31
of District of Columbia, Washington quadrangle: GF 70, pp 2-3
of Idaho, Boise quadrangle: GF 45, p 2
of Maryland, near Baltimore, relation of, to gabbro: Bull 28, pp 34-49
Washington quadrangle: GF 70, pp 2-3
of Massachusetts, western: Mon xxix, pp 342-345
of Michigan, Crystal Falls district: Mon xxxvi, pp 222-232
Marquette region: Bull 62, pp 181-183, 198
of Montana, Castle Mountain mining district, occurrence, character, and microscopic petrography of: Bull 139, pp 61-62, 89-91
Little Belt Mountains quadrangle: GF 56, pp 3, 4
Livingston quadrangle: GF 1, p 3
Three Forks quadrangle: GF 24, p 4
of Nevada, Washoe district: Ann 2, pp 299-300; Mon iii, pp 34-45, 93-108, 150, 192-196
of Sierra Nevada: Ann 14, ii, p 477; Ann 17, i, pp 574-575, 641
of Virginia, Washington quadrangle: GF 70, pp 2-3
of Yellowstone Park and vicinity: Ann 12, i, pp 505-507; Mon xxxii, ii, pp 97-103, 252-256; GF 30, p 6
thin section of, from Massachusetts, Packards Mountain: Mon xxix, pp 208-209
from Michigan, lower Quinnesec Falls and near Negaunee: Bull 62, pp 224-225, 230-231
from Minnesota, southwestern (porphyritic): Bull 157, pp 150-151
from Nevada, Washoe district (granular and porphyritic): Mon iii, pp 150-151
from Yellowstone Park: Ann 12, i, pp 606-607; Mon xxxii, ii, pp 104-105, 250-251
Diorite family of rocks, scope and characteristics of: Ann 17, i, pp 730-733
Diorite stocks in Colorado, La Plata quadrangle: GF 60, p 10
of Maryland, Washington quadrangle: GF 70, pp 2-3
of Sierra Nevada: Ann 17, i, p 705
of Virginia, Washington quadrangle: GF 70, pp 2-3
Diorite-monzonite, analysis of, from Colorado, Ophir Needles stock GF 57, p 6
analysis of, from Colorado, San Juan region (gabbroitic) Bull 168, p 163
in Colorado, Telluride quadrangle GF 57, pp 6, 9
Diorite-porphyrite, analysis of, from Montana, Crazy Mountains Bull 148, p 148;
Bull 168, p 121
of California, Nevada City and Grass Valley districts Ann 17, ii, p 47
Diorite-porphyry, analysis of, from California, Amador County Bull 148, p 214;
Bull 168, p 200
analysis of, from California, Plumas County Ann 17, i, p 575
from California, various localities Ann 17, i, p 731
from Colorado, La Plata Mountains ... Bull 148, p 181; Bull 168, p 161; GF 60, p 7
Tenmile district ... Bull 148, p 176; Bull 168, p 158
from Montana, Little Belt Mountains Bull 148, p 148; Bull 168, p 127;
Steamboat Mountain .. Bull 148, p 127;
from Yellowstone Park, Absaroka Range Bull 148, p 96
Electric Peak .. Mon xxxii, ii, p 116
of California, Bidwell Bar quadrangle .. GF 43, p 4
Big Trees quadrangle ... GF 51, p 5
of Colorado, Aspen district .. Mon xxxi, pp 45-48
La Plata quadrangle .. GF 60, p 6
Telluride quadrangle .. GF 57, p 7
Tenmile district .. GF 48, p 2
of Montana, Fort Benton quadrangle .. GF 55, p 3
Judith Mountains ... Ann 18, iii, pp 562-565
Little Belt Mountains ... Ann 20, iii, pp 515-517; GF 56, p 3
of Yellowstone Park and vicinity ... Mon xxxii, ii, pp 242-246, 252-256
thin section of, from California, North Yuba River Ann 17, i, pp 756-757
from Yellowstone Park ... Mon xxxii, ii, pp 104-105, 344-345
Diorite-pyroxenite of California, Nevada City district Ann 17, ii, p 49
Diorite-syenite-porphyry, analyses of, from Montana, Bear Park and Sheep
Mountain ... Ann 20, ii, pp 519, 599, 600
Dioritic rocks from Alaska, descriptions of species of Ann 20, vii, pp 204, 209
Diothrosilicates, chemical constitution of Bull 125, pp 81-84
Dioscoraceae from Dakota group ... Mon xvii, p 41
Dip, apparent divergent, of conformable strata in same cross section (Texas)
owing to increment .. Ann 21, vii, pp 379-382
Diphenylamine, compressibility and thermal expansion of Bull 92, p 34
Diplocodice of North America ... Ann 16, i, pp 175-181
Diplocodon, description of ... Ann 16, i, pp 175-180
from Denver Basin, remains of ... Mon xxvii, pp 494-496
Dipnoi from Carboniferous rocks of North America Mon xvi, pp 85-105
Diracocon, remarks on ... Ann 16, i, p 193
Discinide of Miocene marls of New Jersey Mon xxiv, pp 23-24
Disenchantment Bay, Alaska, exploration of Ann 13, ii, pp 83-91
Disintegration resulting in soils .. Ann 12, i, pp 250-268
Dislocations, effects of underlying rocks on Ann 19, ii, p 467
Dismal conglomerate-lentil of Virginia and West Virginia GF 44, p 3
Dismal formation of Virginia and West Virginia GF 44, pp 3, 5
Dismal Swamp, Virginia—North Carolina, general description of TF 2, p 2
description of (geology, topography, animal life, method of draining,
healthfulness, etc.), and fresh-water morasses of United
States ... Ann 10, i, pp 255-339
Displacements in Atlantic Coastal Plain and Piedmont region Ann 7, pp 616-634
INDEX TO PUBLICATIONS "F U. S. GEOLOGICAL SURVEY." [BULL. 177.

Displacements in Great Basin .. Ann 4, pp 451-453
in Lake Lahontan Basin, recent and more ancient Mon xix, pp 24-28, 274-283
in Plateau country, monoclinal nature of Ann 6, p 118
in Texas ... Ann 21, vii, pp 382-385
in Uinta Mountains region ... Ann 9, pp 691-706
(See, also, Diastrophism; Faults.)

Diplacodon beds ... Bull 84, p 324
Distillation, formation of pitch coal and other bitumens by ... Ann 19, vii, pp 373-376
Distillations, quantitative, convenient form of apparatus for, with method for
separation and estimation of boric acid ... Bull 42, pp 64-72

District of Columbia, altitudes in Bull 5, p 77; Bull 78; Bull 180, pp 114-115
boundary lines of .. Bull 13, pp 85-88; Bull 171, pp 91-94
building stone in ... GF 70, p 7
clay and brick industry of .. MR 1883-84, p 696;
MR 1887, pp 535, 537; MR 1888, p 558; MR 1891, p 504;
Ann 16, iv, pp 518, 519, 520, 521; Ann 17, vi cont, p 519
et seq; Ann 18, vii cont, p 1078 et seq; Ann 19, vi cont, p 318
et seq; Ann 20, vii cont, pp 466 et seq, 515-516; GF 70, p 7

coke in, manufacture of ... Ann 20, vi cont, p 227
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont,
pp 227, 240, 243, 245, 247, 248, 249
geographic positions in ... Bull 123, p 74
geologic investigations in ...
Ann 5, p 41;
Ann 7, p 109; Ann 8, i, pp 166-167; Ann 9, p 102; Ann 10, i, pp 150-152; Ann 11, i, pp 65, 68;
Ann 18, i, p 32; Ann 20, i, pp 39, 41

geology of, Washington quadrangle GF 70

gold in .. GF 70, p 7

iron and steel from, statistics of MR 1882, pp 120, 125, 133, 134, 135; MR 1886, p 18

magnetic declination in .. Ann 17, i, p 322

mineral springs in ... Ann 18, vi cont, pp 1371, 1377, 1386; Ann 19, vi cont, pp 661, 667, 677;
Ann 20, vi cont, pp 750, 756, 766; Ann 21, vi cont, pp 599, 607, 619

Potomac River, flow of, measurements of Ann 14, ii, pp 137-140
road material in .. GF 70, p 7

Rock Creek, flow of, measurements of WS 15, p 22;
WS 27, pp 22, 24; WS 35, pp 94-95

soapstone in ... GF 70, p 7

topographic work in ... Ann 5, p 8, 41;
Ann 6, pp 16, 20; Ann 7, p 109; Ann 8, i, p 100

underground water in .. GF 70, p 7
wells in, deep .. Bull 138, pp 155-161
woodland area in .. Ann 19, vi, p 5

Divining rod, the ... MR 1882, pp 610-626

Dockum beds of Texas .. Ann 21, vii, p 103

Dodwell (A.) and Rixon (T. F.), Olympic Forest Reserve, Washington, report
on, from notes by ... Ann 21, vi, pp 145-208

Doe Run lead mine, Missouri workings at Bull 132, p 24

Dolerite, analysis of, from California, Plumas County Ann 17, i, p 734; Bull 90, p 73; Bull 148, p 203; Bull 168, p 189
analysis of, from California, various localities Ann 14, ii, p 492
from Colorado, Denver Basin, near Valmont Mon xxvii, p 301; Bull 148, p 158; Bull 150, p 264; Bull 168, p 140
Dolerite, analysis of, from Connecticut, Lake Saltonstall (chloritic) ... Bull 165, p 176
analysis of, from New Jersey and Connecticut Valley, Newark system ... Bull 85, pp 66-77
from North Carolina, Wadesboro (decomposed) ... Bull 52, p 18; Bull 148, p 289; Bull 168, p 292
from Valmont, Colorado, description of, as one of the educational series ... Bull 150, pp 261-264
of Sierra Nevada ... Ann 14, n, p 492
Dolomite from clays and marls of New Jersey ... Mon xviii, pp 121-123, 225
Dolomite, analysis of, from Alabama, Morrisville ... Bull 52, p 25; Bull 60, p 159; Bull 148, p 258; Bull 168, p 258
analysis of, from Colorado, Denver Basin, Niobrara ... Mon xxvii, p 67; Bull 148, p 270; Bull 168, p 270
from Colorado, Leadville district ... Mon xi, pp 644, 645, 646
Pitkin, Garfield, and Summit counties ... Bull 148, pp 272, 273, 274; Bull 168, pp 272, 273, 274
from Maryland, Cockeysville ... Bull 90, p 66
from Massachusetts, Charlemon and Webster. Bull 148, p 554; Bull 168, p 252
Lee ... Bull 159, p 99
from Michigan, Felch Mountain Range. Ann 19, n, p 112; Mon xxxvi, p 409
Gogebic district ... Bull 148, p 265; Bull 168, p 264
Michigamme Mountain area ... Mon xxxvi, p 435
from Missouri, Joplin ... Bull 90, p 63; Bull 148, p 264; Bull 168, p 263
from New York, Moriah ... Bull 64, p 43
Natural Bridge ... Ann 18, v cont, p 1062
Pleasantville ... Ann 16, iv, p 408
Tuckahoe ... Bull 60, p 159
from Ohio, Fostoria and Fremont ... Ann 8, n, p 565
Lima ... Ann 8, n, p 553
various localities ... Ann 8, n, pp 586, 619
from Wisconsin, Penokee region ... Bull 148, p 265; Bull 168, p 264
composition of ... Bull 150, p 36
of Colorado, Aspen district ... Mon xxxi, pp 7-28
Mosquito Range ... Mon xi, pp 60, 63-66, 278-281
thin section of, from Massachusetts, Granville (changing into serpentine) ... Mon xxix, pp 106-107
from Wisconsin, NW. 1 sec. 22, T. 44 N., R. 5 W. (tremolitic) ... Ann 10, i, pp 472-473; Mon xix, pp 480-481
(See, also, Marble.)
Dolomite formation of Michigan, Sturgeon River tongue ... Ann 19, in, pp 149-150; Mon xxxvi, pp 479-482
Dolomite-limestone, analysis of, from Colorado, Park County ... Bull 168, p 272
Dolomite-marble, analyses of, from Maryland, Cockeysville ... Bull 60, p 159; Bull 148, p 255; Bull 168, p 253
analysis of, from New York, Westchester County ... Bull 148, p 255; Bull 168, p 253
Dolomitic rock, analyses of, from Colorado, Aspen Mountain and Glenwood Springs ... Mon xxxi, pp 210, 214, 215
Dolomitic sediments, discussion of ... Mon xi, p 276
Dolomization in Colorado, Aspen district ... Mon xxxi, pp 206-216
Dolores formation of Colorado ... Ann 21, ii, pp 23, 67-73; GF 57, pp 2-3, 13; GF 60, pp 2-3
Dolores Plateau, Colorado, descriptive geology of ... GF 60, p 10
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Dolores River, Colorado, profile ofWS 44, p 86
Dome structure, relation of faults and of intrusive rocks to, in Colorado, Rico MountainsAnn 21, ii, pp 23-25, 104-105
Domes in Black Hills, physiographic form of erodedGF 35, p 4
Donacidae from Colorado formationAnn 21, iii, pp 267-279
Donacidae from lower marls of New JerseyMon ix, pp 171-172
Donaldsonville quadrangle, Louisiana, river flood plains inTF 1, pp 3-4
Donner Lake reservoir and canal line, Nevada, engineering plans and estimates forAnn 11, ii, pp 173-174, 182; Ann 13, iii, pp 389-391
Dotson sandstone of Virginia and West VirginiaGF 44, pp 3, 5
Double Mountain formation of TexasAnn 21, vii, pp 102-103
Douglas (E. M.), work in charge of, 1894-1900Ann 15, pp 120, 123, 124; Ann 16, i, pp 65-66; Ann 17, i, pp 103-104; Ann 18, i, pp 106-107, 143; Ann 19, i, pp 103-105, 281-383; Ann 20, i, pp 116-117, 119-121; Ann 21, i, pp 113, 151, 483, 486
Douglas (E. M.) and others; triangulation and spirit leveling dataAnn 18, i, pp 131-422; Ann 19, i, pp 145-408; Ann 20, i, pp 211-530; Ann 21, i, pp 205-582
Douglas (J.), jr., cupola smelting of copper in ArizonaMR 1883-84, pp 397-410
metallurgy of copperMR 1882, pp 257-280
Downieville quadrangle, California, geology ofGF 37
Drainage; divides, migration of, law ofAnn 18, ii, pp 470-472
in Appalachian province..............GF 4, p 1; GF 8, p 1; GF 10, p 1; GF 12, p 1; GF 14, p 1; GF 16, p 1; GF 18, p 1; GF 20, p 1; GF 20, p 1; GF 21, p 1; GF 22, p 1; GF 25, p 1; GF 26, p 1; GF 27, p 1; GF 28, p 1; GF 32, p 1; GF 33, p 1; GF 34, p 1; GF 35, p 1; GF 40, p 1; GF 41, p 1
in Arizona-Utah, Paria PlateauMon xi, pp 200-203
in California, Smartsville quadrangleGF 18, p 3
in Colorado, Green River Basin, in relation to mountain structureAnn 9, pp 703-712
in Connecticut, in relation to fault planesAnn 21, iii, pp 139-140
in Great Basin, PleistoceneMon xi, pp 28-32, 156-157
in Indiana, southwest, changes of, due to ice invasionMon xxxviii, pp 97-104
in Kentucky, Estillville quadrangleGF 12, p 1
in Tennessee, Estillville quadrangleGF 12, p 1
in Texas regionAnn 21, vii, pp 51-58, 64-65; TF 3, pp 9-11
in Virginia, Estillville quadrangleGF 12, p 1
in Washington, changes in, due to glaciationBull 40
influence of drift on, in region of Illinois glacial lobeMon xxxviii, pp 460-541
rivers, origin and persistence ofAnn 2, pp 60-61; Mon ii, pp 72, 219
stream basins in southern Appalachians, types ofAnn 19, ii, pp 34-35
(See, also, Degradation; Hydrography; Irrigation; Physiography.)
Drainage and topography, effect of drift upon, in IllinoisAnn 17, ii, pp 706-711
Drainage-area measurementsBull 140, pp 342-347; WS 11, pp 95-100
of Arkansas RiverBull 140, p 154
of Delaware River and tributaries in New YorkWS 24, p 47
of Grand River, ColoradoBull 140, pp 186-187
of Hudson River and tributariesWS 24, pp 35, 40, 42, 43
of Laramie RiverBull 140, p 95
of Loup RiverBull 140, p 114
of Potomac RiverBull 140, pp 42-43
of St. Lawrence River, tributaries ofWS 24, pp 26, 27-29, 30
of Susquehanna River in New YorkWS 24, pp 45-46
Drainage areas in Kansas Basin .. Bull 140, p 125
in Platte Basin .. Bull 140, pp 95, 103, 114
Drainage basins, classification of ... Ann 7, pp 558-562; Ann 12, ii, pp 232-294
of western United States ... Ann 13, iii, pp 31-34
Drainage districts of arid regions of United States, map showing .. Ann 11, ii, pp 28-31
Drainage features of driftless area ... Ann 6, pp 217-218
Drainage lines in Triassic of Connecticut, development of Ann 18, ii, pp 154-157, 184
Drainage system of district about head of Chesapeake Bay Ann 7, pp 550-551, 553-558
of Grand Canyon district, origin of ... Ann 2, pp 134-135, 138-140; Mon ii, pp 72-74, 187-188, 192-198, 218-220
Drainage systems of Indiana and Ohio ... Ann 18, iv, pp 438-472
Drift, effect of, on topography and drainage in Illinois Ann 17, ii, pp 706-711
in California, Downieville quadrangle .. GF 37, p 7
in Illinois, average thickness of ... Mon xxxviii, pp 542-549
Danville quadrangle .. GF 67, p 1
in Indiana, Danville quadrangle ... GF 67, p 1
southeastern ... WS 26, p 56
in Iowa ... Bull 158, pp 85-91
in Lake Agassiz, region of ... Mon xxv, pp 132-190, 249-250
in Massachusetts, Cape Ann ... Ann 9, p 546
western ... Mon xxxix, pp 533-543
in Montana, Fort Benton quadrangle .. GF 55, p 2
Little Belt Mountains quadrangle .. GF 56, p 3
in Nebraska .. Ann 19, iv, p 734; Bull 158, pp 69-81
in Ohio, thickness of .. Ann 19, iv, pp 712-714
in South Dakota, southeastern ... Bull 158, pp 42-127
in United States, northeastern, map of .. Ann 6, pp 204-205
in Washington, Tacoma quadrangle ... GF 54, pp 4-5
influence of, on drainage in region of Illinois glacial lobe Mon xxxviii, pp 460-541
wells in, in Illinois .. Ann 17, ii, pp 754-759, 770-782
(See, also, Glacial; Pleistocene.)
Drift agencies, transportation and the, especially in Maine Mon xxxiv, pp 10-22
Drift fragments, shapes of ... Mon xxxiv, pp 22-26
Drift sheet, Illinoian, and its relations ... Mon xxxviii, pp 24-118
Iowan, and associated deposits .. Mon xxxviii, pp 131-184
Drift sheets in northeastern Iowa and in Indiana Ann 11, i, pp 472-542, 639-641
Wisconsin, early and late ... Mon xxxviii, pp 191-417
Driftless area of upper Mississippi Valley Ann 6, pp 199-222
Drumlins, cause and localities of .. TF 1, p 3
formation of, theories of ... Mon xxxiv, pp 280-282
in Connecticut, Holyoke quadrangle .. GF 50, p 6
in Maine ... Mon xxxiv, pp 32, 280-282
in Massachusetts, Holyoke quadrangle GF 50, p 6
western ... Mon xxxix, pp 543-549
Dry Creek shale of Montana, description and sections of Ann 20, iii, pp 286, 328, 330, 340, 364, 368; Bull 110, p 24; GF 55, p 2; GF 56, p 2
Dry farming in Western States, areas in which attempted Ann 16, ii, pp 486-487
Dryosaurus, remarks on ... Ann 16, i, pp 198, 201
Dryptosauridae of North America ... Ann 16, i, p 203
Dryptosaurus, remarks on ... Ann 16, i, p 203
Duchesne River, Utah, flow of, measurements of WS 37, pp 291-292
Duck Creek formation of Texas .. Ann 21, vii, pp 257-258
Dudley (W. L.), iridium, statistics of .. MR 1883-84, pp 581-591
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Dudleyite, chemical constitution of ... Bull 123, p 51
Duluth group of Minnesota.. Mon v, pp 275-279
Dunmortierite, analyses of, from Arizona, Yuma County. Bull 60, p 134; Bull 64, p 134
chemical composition of ... Bull 125, pp 20, 63, 102
from New York and Arizona... Bull 60, pp 133-135; Bull 64, pp 31-33
occurrence and statistics of .. MR 1888, p. 582; MR 1889-90, p 448; MR 1891, p 540; MR 1892, p 781; MR 1893, pp 682, 697-698; Ann 16, iv, pp 604, 605; Ann 17, iii cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513; Ann 20, vi cont, p 599; Ann 21, vi cont, p 461
Dune sand, description of, as one of the educational series Bull 150, pp 61-63
in Colorado, eastern... Ann 17, ii, pp 579-580
Dunes, formation of .. Ann 5, pp 99-100
in area of glacial Lake Agassiz... Mon xxi, p 28
in Bonneville Basin, composed of gypsum Mon xi, pp 153-156
in Great Basin ... Mon x, pp 153-156
in Massachusetts, Cape Ann district ... Ann 9, pp 574-575
western-central ... Mon xxix, p 748
in Nebraska .. Ann 19, iv, pp 733, 741
stratification, etc., of ... Mon xxixiv, pp 11-13
Dunes and drifting sand ... Mon i, pp 59-60
Dundee limestone (upper Helderberg) of Michigan WS 30, pp 87-88
Dunite, analysis of, from North Carolina, Corundum Hill Bull 42, pp 55, 56; Bull 148, p 91; Bull 168, p 54
Dunite-gneiss contacts of Corundum Hill, North Carolina, in relation to origin of corundum ... Bull 42, pp 45-63
Duplin beds of North Carolina, correlation of Ann 18, ii, p 338
Durbachite, analysis of, from Germany, Schwarzwald Ann 20, iii, pp 531
Duryee (E.), cement, tests, costs, etc., of WS 33, pp 82-90
Dust, chamber, analyses of, from Colorado, Leadville district Mon xi, pp 712-713, 715-716
Dust, volcanic. See Volcanic dust.
Dutton (C. E.), Charleston earthquake .. Ann 9, pp 203-528
Hawaiian volcanoes ... Ann 4, pp 75-210
Mount Taylor and Zuni Plateau ... Ann 6, pp 105-198
physical geology of Grand Canyon district Ann 2, pp 47-166
quoted on contractional theory of folding Ann 13, ii, pp 277-278
report on hydrographic and engineering branches of irrigation survey during 1888-89 ... Ann 10, pp 2, 65-77
Duty of water in irrigation ... Ann 13, iii, pp 155-158
in southern California and elsewhere ... Ann 19, iv, pp 543-548
Dyad metals, chemical constitution of orthosilicates of Bull 125, pp 68-74
Dynamic action, new rock structures produced by Bull 62, pp 206-208
Dynamic geology of Black Hills .. Ann 19, ii, pp 592-593
of Montana, Judith Mountains .. Ann 18, iii, pp 570-587
Little Belt Mountains ... Ann 20, iii, pp 385-400
(See Degradation; Deposition; Diastrophism; Metamorphism; Volcanism.)
Dynamic metamorphism in eruptive rocks Bull 62
WARMAN.] DUDLEYITE—EBENACÉE. 303

Dynamic movements in Colorado, Leadville district Ann 2, pp 211-214, 277
in Rocky Mountain region .. Mon xii, pp 31-39
Dynamic significance of stratigraphy Ann 21, ii, pp 177-178
Eagle City, Alaska, reconnaissance from Pyramid Harbor to... Ann 21, ii, pp 331-391
Eagle formation of Montana .. GF 55, p 2
Eagle Ford formation of Texas .. Ann 18, ii, p 239; Ann 21, vii, pp 323-328; Bull 82, pp 116, 118, 122, 123, 127, 130, 211, 223; Bull 164, pp 18-19; GF 64, p 2
Eagle Pass and Eocene coal fields of Texas, Middle Rio Grande... Bull 164, pp 13-72
Eagle quadrangle, Wisconsin, glacial phenomena in TF 1, p 3
Eakins (L. G.), kaolin from the Waterfall mine, Colorado Bull 60, p 136
new analyses of astrophyllite and tscheffkinite Bull 90, pp 41-44
seven new meteorites .. Bull 78, pp 91-97
triplite from the Black Hills, Dakota Bull 60, pp 135-136
two new meteorites, description and analyses of Bull 90, pp 45-46
two sulphantimonites from Colorado Bull 60, pp 115-117
xanthitane from North Carolina Bull 60, p 135
Earth, crust of, composition of, elementary Bull 78, pp 35-42
crust of, deformation of, by ice sheet Mon xxv, p 497
relationship of, to interior .. Mon xxv, pp 493-497
rigidity of, considerations concerning, derived from study of Lake Bonneville Mon i, pp 387-392
Earth, white, analysis of, from Alabama, Talladega ... Bull 60, p 158
Earths, residuary, character and constitution of Ann 6, pp 239-251
Earthquake, Charleston, of August 31, 1886 Ann 9, pp 203-528
Earthquake studies ... Ann 14, i, p 233
Earthquake waves, nature and mechanism of Ann 9, pp 400-409
Earthquakes in California during 1889-1898 Bull 88; Bull 96; Bull 112; Bull 114; Bull 129; Bull 147; Bull 155; Bull 161
instruments for measuring ... Bull 155, pp 9-17
methods of recording .. Bull 147, pp 9-12
Earthquakes and fault scarps Mon i, pp 380-362
Earthworks, aboriginal, in region of glacial Lake Agassiz ... Mon xxv, pp 643-645
Earthworms, action of, in producing soils Ann 12, i, pp 274-276
East Canada Creek, New York, flow of, measurements of ... WS 35, p 52
East Indies, petroleum production of Ann 21, vi cont, pp 248-263
Eastern Choctaw coal field, Indian Territory, geology of Ann 21, ii, pp 257-311
Eastern granite of Michigan-Wisconsin, Penokee district Mon xix, p 122
Eastern green schist of Michigan-Wisconsin, Penokee district ... Mon xix, pp 116-122
Eastern sandstone of Lake Superior region Ann 3, pp 136, 147-155; Mon v, pp 351-365; Mon xix, pp 461-463
of Lake Superior region, junction between Keweenaw series and.... Bull 23
origin of name .. Bull 81, p 252
reference to literature of ... Bull 81, pp 197, 198, 199
Ebenaceae from Alaska ... Ann 17, i, p 886
from Amboy clays ... Mon xxvi, p 124
from Dakota group .. Mon xvii, pp 109-113
from Laramie group .. Bull 37, pp 104-106
Ebenaceae from Yellowstone Park............... Mon xxxii, ii, pp 751-753
Echinidae of United States, Mesozoic Bull 97, pp 54-57
Echinococidae of United States, Mesozoic Bull 97, pp 58-59
Echinodermata from Cambrian, lower Ann 10, i, pp 588, 607
from Cambrian, middle, of North America Bull 30, pp 51, 94-95
from Colorado formation Bull 106, p 52
from Devonian, higher, of Ontario County, New York Bull 16, pp 25, 63
from Mesozoic of United States Bull 97
from Olenellus zone Ann 10, i, p 607
from Paleozoic strata of Nevada, Eureka district . Mon viii, pp 212-213; Mon xx, pp 324, 331
from Yellowstone Park............................... Mon xxxii, ii, pp 515-516, 608
Echinoida from Colorado formation Bull 106, p 52
from Yellowstone Park............................... Mon xxxii, ii, p 609
of United States, Mesozoic Bull 97, p 33
Eckart (W. R.), notes on mechanical appliances used in mining and milling on Comstock lode Ann 1, pp 50-52
Economic geology. (See the various substances—Coal; Copper; Iron ore, etc.)
Ecphora bed of Florida T Bull 84, pp 124, 324
Ecuador, petroleum localities and statistics of MR 1893, p 532; Ann 18, v cont, p 892; Ann 21, vi cont, p 184
platinum from, character of Ann 16, iii, p 628
Edingtonite, chemical constitution of Bull 125, p 36
Educational series of rock specimens, bulletin descriptive of ... Bull 150
completion and distribution of Ann 18, i, p 14
Edwards limestone of Texas Ann 18, i, pp 227-232; Ann 21, vii, pp 214-216, 227-240; Bull 164, p 16; GF 42, p 2; GF 64, p 1
wells from, in Uvalde quadrangle GF 64, p 6
Edwards Plateau, Texas, geographic features of Ann 18, ii, pp 204-212
Edwardsite, analysis of, from Connecticut, Norwich Ann 16, iv, p 676
El River, Indiana, profile of WS 44, p 59
Efflorescence, analysis of, from Colorado, Cliff Creek (on sandstone) Bull 60, p 170
Efflorescences, saline, of Lahontan Basin Mon xi, pp 230-232
Effusive rocks of Alaska Ann 21, ii, pp 362-363, 364, 370-371
of Alaska, Yukon gold district Ann 18, iii, pp 239-250
of Montana, Little Belt Mountains Ann 20, iii, pp 556-557
of Sierra Nevada Ann 14, ii, pp 484-493
Egypt, building stone from, at World's Columbian Exposition MR 1893, pp 576-577
fossil plants of, literature of Ann 8, ii, pp 800-802
iron-ore deposits in Ann 16, iii, pp 173-174
petroleum fields and statistics of MR 1886, pp 478-480; Ann 21, vi cont, p 289
El Late Mountains, Colorado, structure and rocks of Ann 14, i, pp 211-214
El Paso reservoir, surveys and plans for Ann 13, iii, pp 410-422
Elakeite, analysis of, from Maine, Litchfield Bull 42, pp 28-29;
Bull 148, p 66; Bull 168, p 21
analysis of, from New Hampshire, Moultonboro .. Bull 148, p 67; Bull 168, p 23
chemical constitution of Bull 125, p 23
occurrence of .. MR 1882, p 496; MR 1883-84, p 770
Elakeite-syenite, analysis of, from Maine, Litchfield Bull 148, p 65; Bull 168, p 21
analysis of, from Montana, Crazy Mountains Bull 90, p 71;
Bull 148, p 145; Bull 168, p 123
from New Hampshire, Moultonboro Bull 148, p 67; Bull 168, p 23
from New Jersey, Beemersville Bull 148, p 80; Bull 168, p 39
association of basic dikes with Bull 107, pp 36-37
(See nephelite-syenite.)
Elasmobranchii from Devonian and Carboniferous rocks of North America. Mon xvi, pp 37-41, 195-210

from Eocene of middle Atlantic slope Bull 141, pp 61-63

Elba, iron ores from, analyses of. MR 1886, p 101

Eldridge (G. H.), Alaskan coast from Lynn Canal to Prince William Sound, Alaska (2), pp 103-104

extreme southeastern coast of Alaska Alaska (2), pp 101-102

gologic reconnaissance across Idaho Ann 16, ii, pp 211-276

gologic reconnaissance in northwest Wyoming Bull 119

reconnaissance in Sushitna Basin and adjacent territory, Alaska, in 1898. Ann 20, vi, pp 1-29

sedimentary formations of Anthracite and Crested Butte quadrangles, Colorado................. GF 9, pp 6-10

Sushitna drainage area Alaska (2), pp 111-112
–untaite (gilsonite) deposits of Utah..................... Ann 17, i, pp 909-949

work in charge of, 1890-1900............................... Ann 12, pp 82-84; Ann 13, i, pp 117-118; Ann 14, i, p 250; Ann 15, pp 158-160; Ann 16, i, pp 23, 29; Ann 17, i, pp 29-39; Ann 18, i, pp 32-33; Ann 19, i, pp 37, 47, 53, 116, 117; Ann 20, i, p 41; Ann 21, i, p 102

Eldridge (G. H.) and Muldrow (R.), report of Sushitna expedition (1898), Alaska (2), pp 15-27

Eldridge (G. H.), Emmons (S. F.), and Cross (W.), geology of Denver Basin, Colorado................. Mon xxvii

Electric activity of ore bodies......................... Ann 2, pp 320-324; Mon iii, pp 309-367, 400-404

Electric conductivity of mercury, effect of pressure on Bull 92, pp 68-77

Electric conductivity and resistance, measurement of Bull 14, pp 36-38

Electric conductivity and temperature, relation between Bull 14, pp 15-27

Electric observation and assays of Eureka ore deposits........ Mon vii, pp 142-144

Electric Peak, Yellowstone Park, descriptive geology and intrusive rocks of... Mon xxxii, ii, pp 50-55, 92-121, 138-148

Electric Peak and Sepulchre Mountain, Yellowstone Park, eruptive rocks of... Ann 12, i, pp 569-664

Electric pyrometers, calibration of............................ Bull 54, pp 84-125, 165-238

Electric resistance and density, relation between, when varying with temper of steel Bull 27, pp 30-50

Electric resistance, strain, temper, and viscosity Bull 94, pp 31-33

Electric and magnetic properties of iron carburets Bull 14

Electro-thermal measurement of high temperatures Ann 4, pp 53-59; Bull 54

Electrolysis in metallurgy of copper, lead, zinc, etc.............. MR 1882, pp 627-658

of their silver salts, indirect estimation of chlorine, bromine, and iodine by, with experiments on convertibility of silver salts by action of alkaline haloids Bull 42, pp 89-93

Elements, chemical, relative abundance of Bull 78, pp 34-42

Elevation of Bonneville Basin, surface of, by expansion due to change of climate Mon i, pp 425-426

of California, northern Sierras Ann 8, i, pp 426-432

of Piedmont region Ann 8, i, pp 425-426

of each State and Territory, mean Ann 13, ii, p 289

of Kansas ... Bull 154, p 12

of Mount Desert Island during and after Glacial period. Ann 8, ii, pp 1009-1034

of United States, average Ann 13, ii, pp 283-289

(See; also, Altitudes; Height; Diastrophism.)

Elevation and subsidence inferred from Cenozoic and Mesozoic rocks of Alabama......................... Bull 43, pp 136-138

Bull. 177—01—20
Elevation and subsidence of Cape Ann district, evidences of recent. Ann 9, pp 567-574.

in United States, dictionaries of. Bull 5; Bull 76; Bull 160.

lists of. (See under names of States.)

Elizabeth or Gosnold Islands, glacial clays of. Ann 17, i, p 893.

Elk Garden coal field, West Virginia, extent, production, etc. Ann 14, ii, pp 579-582.

gеology, mineral resources, etc., of. Ann 14, ii, pp 177-203; GF 9, pp 1-3.

Elkgarden formation of West Virginia and Maryland. GF 28, p 4.

Ellis formation of Montana. GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2.

of Yellowstone Park. Mon xxxii, ii, pp 37, 38, 48, 49, 51, 54, 156; GF 30, p 5.

Elmo quadrangle, Colorado, geology of. GF 58.

Embarkments and terraces; formation of. Ann 2, pp 171-172; Ann 3, pp 206-208; Mon i, pp 36, 46-58, 78-86; Mon xi, pp 88-89.

Embudo gaging station, New Mexico, measurements at, results of. Ann 12, pp 257-258.

MR 1883-84, pp 738-740, 751; MR 1885, pp 437-438, 443;

MR 1886, p 604; MR 1887, pp 556, 557; MR 1888, pp 584, 585; MR 1889-90, pp 446, 447, 448; MR 1891, pp 539, 544;

MR 1892, pp 765-766, 781; MR 1893, pp 681, 682, 696-697; Ann 16, iv, pp 600, 604, 605; Ann 17, iii cont, p 923;

(See, also, Precious stones.)

Emerson (B. K.), geology of eastern Berkshire County, Massachusetts. Bull 159.

gеology of Holyoke quadrangle, Massachusetts-Connecticut. GF 50.

gеology of old Hampshire County, Massachusetts, comprising Franklin, Hampshire, and Hampden counties. Mon xxix.

mineralogic lexicon of Franklin, Hampshire, and Hampden counties. Mon xxix, pp 754-761; Bull 126.

work in charge of, 1892-1900. Ann 14, i, p 250; Ann 15, p 18;

Ann 16, i, pp 15-16; Ann 17, i, pp 18-19; Ann 18, i, p 23;

Ann 19, i, pp 31-32; Ann 20, i, p 33; Ann 21, i, pp 68-69.

Emery bed and mine in Chester, Massachusetts, history, description, etc. .Mon xxix, pp 117-147

Emmons (E.), flora from the Mesozoic of North Carolina, reprint of descriptions of, by Mon vi, pp 97-123

Emmons (S. F.), Aspen mining district, Colorado, development, production, etc., of Mon xxx, pp xvii-xxxiii

Emmons Glacier, Mount Rainier, present condition of Ann 18, ii, pp 378, 396-397

Emmons Glacier, Mount Rainier, present condition of Ann 18, ii, pp 378, 396-397

Empire beds of Oregon, Coos Bay region Ann 18, iii, p 319

Enargite, analysis of, from Montana, Butte Bull 167, p 64

Engineering, American irrigation.............................. Ann 13, ii, pp 101-349

Engineering results of Irrigation Survey organized in 1888 Ann 13, ii, pp 351-427

Englewood limestone of Black Hills Ann 21, iv, p 609

Engaging and printing, division of, organized in Geol. Survey Ann 12, i, p 138
Engraving and printing, report of work in Ann 13, i, pp 28-31, 54, 166-180; Ann 14, i, pp 36-38; Ann 15, i, pp 90-92; Ann 16, i, pp 83-84; Ann 17, i, pp 116-117; Ann 18, i, pp 125-127; Ann 19, i, pp 137-139; Ann 20, i, pp 155-157; Ann 21, i, pp 175-184

Enlargements of mineral fragments in certain detrital rocks of Northwestern States ... Ann 5, pp 218-241

of mineral fragments in certain rocks, secondary Bull 8

Enstatite, analysis of, from California, San Bernardino County (meteoric) ... Bull 148, p 241; Bull 168, p 238

analysis of, from Massachusetts, Granville Mon xxix, p 757; Bull 148, p 72; Bull 168, p 28

from New York, Tilly Foster iron mine Ann 17, i, p 735

from North Carolina, Macon County Bull 42, p 54; Bull 74, p 43

chemical constitution of .. Bull 126, p 86

in diabase from Colorado .. Bull 1, p 35

occurrence of ... MR 1883-84, pp 773-774

from Granville, Massachusetts, thin section of (crystal altered to serpentine) .. Mon xxix, pp 106-107

Enstatite-diabase-porphyry, analysis of, from Colorado, Denver Basin Bull 148, p 159; Bull 168, p 141

Enstatite-serpentines of Massachusetts, western Mon xxix, pp 90-92, 101-114

Eocene, bibliography of works relating to Bull 83, pp 148-159

first application of term to American deposits Bull 83, p 21

origin and etymology of term ... Bull 84, p 325

Eocene fossils; Bridger group .. Bull 34, pp 11-12

butterflies from Colorado, Fiorissant Ann 8, i, pp 439-470

Cephalopoda from marls of New Jersey Mon xviii, pp 284-288

Claibornian stage, coral faunas of Mon xxxix, pp 27-30

coral faunas of United States, with descriptions of a few doubtfully Cretaceous species .. Mon xxxix

Dinocerata .. Ann 5, pp 249-302; Mon x

fauna of Great Basin, relations of, to Laramie Bull 34

Gasteropoda from marl beds of New Jersey Mon xviii, pp 190-239

Green River group ... Bull 34, pp 11-12

Lamellibranchiata from marls of New Jersey Mon ix, pp 222-242

Laramie Molluscan fauna, relation of, to that of succeeding fresh-water

Eocene and other groups ... Bull 34

Mollusca of North America, nonmarine Ann 3, pp 411-486

of western North America, marine, fresh-water Miocene, and other Bull 18

Molluscan fauna of Puget group .. Bull 51, pp 49-63

of Louisiana .. Bull 142, pp 14-24

Ostreide of North America .. Ann 4, pp 309-312

Puerco group .. Bull 34, pp 11-12

Senonian and Laramie plants, table of distribution of, and discussion thereof .. Ann 6, pp 443-536

Tejon (lower) species, descriptions of some Ann 17, i, pp 1038-1060

Wasatch group .. Bull 34, pp 10-13, 20-50

Eocene history of Colorado, Pueblo quadrangle GF 36, pp 2

of Sierra Nevada GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1

Eocene horizons, correlation of .. Ann 18, ii, pp 330-332, 340-348

Eocene island of Florida .. Bull 84, pp 181-182

Eocene period, features of .. Bull 84, pp 20-21

Eocene rocks; Altamaha grits of Georgia, correlation of Ann 18, ii, p 340
Eocene rocks; Amyzon beds of Nevada, correlation of...Bull 83, pp 125, 141, 145, 146
Aquitanian formation of Europe, correlation of...............Ann 18, ii, p 341
Arago beds of Oregon, description, correlation, etc., of...............Ann 17,
i, pp 458-462; Ann 18, ii, p 343; Ann 19, ii, pp 319-320
Arapahoe beds of Colorado...........Bull 83, pp 135-136, 145, 146; Bull 84, p 320
Arkadelphia shales of Arkansas............Bull 83, p 75; Bull 84, p 320
Ashley and Cooper beds of South Carolina...Bull 83, pp 51, 53-54; Bull 84, p 321
Astoria shales of Oregon, correlation of...............Ann 18, ii, p 340
Astringent clay of New Jersey......................................Bull 84, p 321
Atane or Atanekerdluk beds of Greenland, correlation of Ann 18, ii, p 346
Aturia bed of Oregon...................................Ann 18, ii, p 341; Bull 84, p 321
Bartonian beds of England, correlation of...............Ann 18, ii, p 342
Basal clays of Wills Point, Texas...............................Bull 84, p 321
Bashi series of Alabama, correlation of...Ann 18, ii, pp 345-346; Bull 84, pp 321, 338
Bear River beds of interior region................Bull 83, pp 113, 115, 118, 135
Bells Landing series of Alabama.........................Bull 84, p 321
(See Tuscahonna series.)
Bitter Creek series of Wyoming........Bull 83, pp 117, 118, 121; Bull 84, p 322
Black Bluff series of Alabama.........................Bull 84, p 322
(See Succarnochee series.)
Blue marl of New Jersey..........................Bull 83, pp 85-86
boundaries of..Bull 84, pp 20-21
Bowden beds of Jamaica, correlation of...............Ann 18, ii, pp 340-341
Brandon formation of Vermont, Pennsylvania, and Georgia...Bull 83, pp 90-94
Bridger group of Wyoming, correlation of Ann 18, ii, pp 343;
Bull 83, pp 117, 120, 125, 141-142, 144, 145, 146; Bull 84, p 322
Browns Park group of Utah................................Bull 84, p 322
Brule clay of Nebraska....................................Ann 19, iv, pp 736, 755-759
Buff sand of Alabama..Bull 84, p 322
Buhrstone (or Burrstone) formation of Southern States........Bull 83, pp 51-52, 61-62, 68, 87-88; Bull 84, p 322
(See, also, Tallahatta formation.)
Calamite beds of Oregon..........................Bull 84, p 323
Calcaire ostree of Southern Atlantic States..................Bull 84, p 323
Camden series of Arkansas..............................Bull 83, pp 74-75; Bull 84, p 323
Cernaysian formation of France, correlation of...............Ann 18, ii, p 348
Chadron formation of Nebraska.........................Ann 19, iv, pp 756, 759
Chattahoochee beds of Florida, correlation of...............Ann 18, ii, p 340
Chickasawan formation of the South, correlation of...............Ann 18, ii, pp 344-345
Chico-Shasta group. (See Chico-Tejon series.)
Chico-Tejon series..Ann 6, pp 68-70, 73; Ann
18, ii, p 348; Mon xii, pp 214-218, 237-238; Bull 15, pp 11-17; Bull 19, pp 14, 17; Bull 84, p 323
historical review, stratigraphy, notes on species, etc., of................Ann 17, i, pp 1013-1036
of California, invertebrate fossils from...................Bull 51, pp 11-27
of California, Oregon, and Washington, equivalents of...........Bull 51, pp 28-32
(See, also, Tejon.)
Chipola beds of Florida, correlation of...............Ann 18, ii, p 340
Claiborne beds of Alabama and Mississippi, correlation of...Ann 12, i, pp 413-415;
Ann 18, ii, p 343; Bull 83, pp 62-64, 68; Bull 84, pp 323, 324
Claiborne stage, Lower, in Louisiana......................Bull 142, pp 15-21
Clayton group of Alabama..Bull 84, p 324
Cleveland County red lands of Arkansas..............Bull 84, p 324
coc coal fields of Texas, Eagle Pass and Middle Rio Grande region...Bull 164, pp 13-72
Eocene rocks; Coaledo formation of Oregon, Coos Bay region. Ann 19, iii, pp 320-321
contact of Miocene rocks with Bull 84, pp 183-184
Cooper and Ashley beds of South Carolina. Bull 83, pp 51, 53-54; Bull 84, p 321
Cooper River marls of South Carolina, correlation of. Ann 18, ii, p 342
Coral limestone of Alabama. Bull 84, p 324
correlation of. Bull 83
Coryphodon beds. Bull 84, p 324
Cuchara beds of Colorado. Bull 84, p 324
Danian formation of Europe, correlation of. Ann 18, ii, p 348
Denver group, correlation of. Ann 18, ii, p 348; Bull 83, pp 136-137, 145, 146; Bull 84, p 324
Dinoceras beds. Bull 84, p 324
Diplacodon beds. Bull 84, p 324
Eo-Lignitic. Bull 84, p 325
Flatwoods clay of Mississippi. Bull 84, p 325
Flatwoods group of Tennessee. Bull 84, pp 333
Floridite phosphatic rock. Bull 84, p 325
Florissant lake beds of Colorado. Bull 83, p 125
Fort Union group, plants from Mon xxxv, passim of western interior region, correlation of. Ann 18, ii, p 348; Bull 83, pp 113, 114, 116, 120, 135; Bull 84, p 325
Gatun beds of Colombia, correlation of. Ann 18, ii, p 344
Gay Head series of Martha\'s Vineyard. Bull 84, pp 326
Grand Gulf group of the South. Bull 84, pp 326, 335
Great Carolinian marl bed. Bull 84, p 326
Great Lignitic group of North Dakota. Bull 84, p 325
(See, also, Fort Union group.)
Green marl, upper, of New Jersey, correlation of. Ann 18, ii, p. 348
Green River group, plants from Mon xxxv, passim of Wyoming, correlation of. Ann 18, ii, p 343; Bull 83, pp 115, 116, 117, 119, 120, 125, 140, 144, 145, 146; Bull 84, p 326
Green sand of Alabama. Bull 84, p 326
Greggs Landing series of Alabama, correlation of. Ann 18, ii, p 346
Guallavas sandstone of Costa Rica, correlation of. Ann 18, ii, p 342
Hatchetigbee series of Alabama, correlation of. Ann 18, ii, p 345; Bull 84, p 326
Hickman group of Kentucky. Bull 83, pp 71-72; Bull 84, p 327
Huerfano beds of Colorado. Bull 83, pp 142-143, 145, 146; Bull 84, p 327
Intermediate series of Colorado. GF 57, pp 5, 8, 14
Jackson group of Louisiana and Mississippi. Bull 83, pp 68, 76; Bull 84, p 327
John Day system of Washington, southeastern. WS 4, pp 55-56
Kenai formation of Alaska. Ann 17, i, pp 772-821, 836-842; Ann 18, iii, pp 184-196, 258; Ann 20, vii, pp 16-17; Alaska (2), p 20
Kenai group of the Northwest coast, correlation of. Ann 18, ii, p 345
Kenai series of Alaska. Ann 21, ii, p 477
Kittitas system of Kentucky. WS 4, p 40
La Grange group of Kentucky. Bull 83, p 71
Lake beds of Colorado, Pikes Peak quadrangle. GF 7, pp 2, 4, 7
(See main entry, Laramie.)
Eocene rocks; Lignite group of Southern States. Bull 83, pp 57-61, 67-68, 72, 112, 113, 114, 117, 118, 120, 126, 144; Bull 84, p 329

Ligurian formation of Europe, correlation of. Ann 18, ii, p 342
Mansfield group of Louisiana. Bull 83, p 76; Bull 84, p 329
Lisbon beds of Alabama, correlation of. Ann 18, ii, p 344
Manti beds of Utah. Bull 83, pp 125, 141, 145, 146; Bull 84, p 329
Martinez group of California, correlation of. Ann 18, ii, p 347
Martnez group of California and its fauna. Ann 17, ii, pp 1028-1030

Middle Park beds of Colorado. Bull 83, p 137
Midway limestone of Alabama, correlation of. Ann 18, ii, p 348
Midway series of Alabama. Bull 84, p 330
Midway stage, correlation of. Ann 18, ii, p 346
Moodys Branch beds of Mississippi, correlation of. Ann 18, ii, p 342
Myrick formation of Texas. GF 64, pp 2-3, 6
Naheola series of Alabama, correlation of. Ann 18, ii, p 348; Bull 84, p 330
Nanafalia series of Alabama, correlation of.. Ann 18, ii, p 346; Bull 84, p 330
Naparima beds of Trinidad, correlation of. Ann 18, ii, p 341
Nummulitic beds of Florida. Bull 84, pp 320-338
Oakland limestone-lentil of Oregon. GF 49, p 3
Oakland series of any State. (See also, formation names under this heading.)
Oakland series of Atlantic slope, middle. Bull 141, pp 31-32
Oakland series of Arkansas. Bull 83, pp 74-75, 83, 87; Bull 84, p 320, 323
Oakland series of California. Ann 6, pp 68-70, 73; Ann 17, i, pp 1013-1036; Mon xiii, pp 215-217, 237-238, 299-300, 461; Bull 15; Bull 19

Lassen Peak district. Ann 8, pp 413-422
Lassen Peak district of Colorado. Ann 9, pp 690-691; Bull 83, np 135-136, 145, 146; Bull 84, p 320
Pikes Peak quadrangle. GF 7, pp 2, 4, 7
Walsenburg quadrangle. GF 68, p 2
of Dakota. Bull 21
of Delaware. Bull 82, p 43; Bull 141
of District of Columbia, Washington quadrangle. GF 70, p 4
of Florida. Ann 18, ii, p 340; Bull 83, pp 55-57, 82-83, 87-88; Bull 84, pp 101-105

Table of formations. Bull 84, p 157
of Georgia. Ann 18, ii, p 340; Bull 83, pp 54-55, 82, 87, 90-94
of Grand Canyon district. Ann 2, pp 74-76; Mon ii, pp 16, 27-31
of Greenland. Ann 18, ii, p 346
of Illinois. Bull 83, pp 111-146
of Louisiana. Bull 83, pp 75-76, 84, 87-88; Bull 142, pp 14-24
Eocene rocks of Louisiana; bibliography of paleontology of... Bull 142, pp 27-30
of Maryland .. Bull 82, pp 43-45, 80, 86; Bull 141
Washington quadrangle GF 70, p 4
of Massachusetts, Martha's Vineyard Ann 7, pp 326-328
of Mississippi ... Bull 83, pp 66-70, 83, 87-88
of Missouri ... Bull 83, pp 73-74, 83, 87
of Nebraska .. Ann 19, iv, pp 736, 755-759
of New Jersey .. Bull 83, pp 40-43, 80, 85-86; Bull 84, p 331
of North Carolina .. Bull 83, pp 48-50, 81, 87
of Oregon ... Ann 17, i, pp 456-463; Ann 18, ii, pp 340-343; Ann 19, iii, pp 319-320; Bull 84, pp 321, 323
Roseburg quadrangle ... GF 49, pp 2-3
of Pacific coast ... Bull 83, pp 95-110
of Pennsylvania .. Bull 83, p 93
of Philippine Islands ... Ann 21, iii, pp 549-561, passim
of Plateau region .. Ann 6, pp 140, 188-190
of South Carolina ... Bull 83, pp 50-54, 81-82, 87; Bull 84, p 321; Bull 138, p 269
phosphate deposits ... Bull 46
of States. (See, also, formation names under this heading.)
of Tennessee ... Bull 83, pp 70-71, 83, 87-88
of Texas .. Ann 18, ii, p 243;
relation of Cretaceous to Bull 164, pp 35-36
Rio Grande coal fields Bull 164, pp 37-54
Uvalde quadrangle .. GF 64, pp 2-3
of United States, historical sketch of literature ... Bull 83, pp 17-37, 96-100, 112-131
list of names applied to Bull 84, pp 320-338
of Utah .. Bull 84, p 322
Uinta Basin .. Ann 17, i, p 922
of Vermont .. Bull 83, pp 90-93
of Virginia ... Mon xv, p 59; Bull 83, pp 46-48, 80-81, 86; Bull 141
Washington quadrangle GF 70, p 4
of Washington, northern Ann 20, ii, pp 123-127
of Wyoming .. Ann 18, ii, p 343;
of Yellowstone Park ... GF 30, pp 2, 5
Oligocene, inapplicability of, in American nomenclature ... Bull 83, pp 16, 89
Oligocene history of Black Hills Ann 21, iv, pp 558-561
Oligocene horizons, correlation of Ann 18, ii, pp 330-332, 340-342
Oligocene insects from Colorado and Utah Bull 93
Oligocene, Lower, and Eocene coral faunas of United States, with descriptions of a few doubtfully Cretaceous species... Mon xxxix
Oligocene rocks of Florida Bull 84, pp 104-105
of Louisiana .. Bull 142, pp 24-25
of Oregon, northwestern Ann 17, i, pp 464-469
Orbitoides limestone of Alabama and Florida Bull 84, pp 101-103, 331, 332
Orbitolite limestone of Southern States Bull 84, p 332
Oreodon beds of Nebraska Bull 84, p 336
Ostrea selliformis beds of Alabama, correlation of Ann 18, ii, pp 343-344
Pamunkey formation of Maryland and Virginia Ann 18, ii, p 346;
........................ Bull 84, p 333; GF 13, p 3; GF 23, p 3; GF 70, p 4
Pinyon conglomerate of Wyoming and Yellowstone Park Mon xxxii,
ii, pp 184-188; GF 30, p 5; GF 52, p 3
Eocene rocks; Poison Canyon formation of Colorado..................Bull 84, p 333; GF 68, p 2
Porters Creek group of Tennessee..................................Bull 83, p 71; Bull 84, p 333
Potosi rhyolite series of Colorado..................GF 57, pp 5–6, 9, 14
Protoceras bed of South Dakota, correlation of............Ann 18, ii, p 341
Puerco beds of New Mexico, correlation of.............Ann 18, ii, p 347;
Bull 83, pp 119, 120, 122, 126, 127, 137–138, 145, 146
Puget group of Washington, character and age of........Ann 18, iii, pp 400–404; GF 54, pp 2–3
Porters Creek group of Tennessee..................Ann 18, ii, p 347; Bull 83, pp 95, 107–110; Bull 84, p 33
Potosi rhyolite series of Colorado..................GF 57, pp 5–6, 9, 14
Protoceras bed of South Dakota, correlation of............Ann 18, ii, p 341
Puerco beds of New Mexico, correlation of.............Ann 18, ii, p 347;
Bull 83, pp 119, 120, 122, 126, 127, 137–138, 145, 146
Eocene rocks; Washakie group of Wyoming, correlation ofAnn 18, II, p 343; Bull 83, pp 117, 118, 119
White Bluff marl of Arkansas, correlation ofAnn 18, II, p 343
White limestone of Southern States Bull 84, pp 64-66; Bull 84, p 338
White River group of South Dakota, correlation ofAnn 18, II, p 341; Bull 84, p 338
Wilbur tuff-lentil of Oregon .. GF 49, pp 2-3
Willow Creek beds of Colorado (name abandoned.) Bull 84, p 338
Wills Point clays of Texas ... Bull 84, p 321
Wilmington beds of North Carolina, correlation of Ann 18, II, p 344
Wind River group of Wyoming ... Bull 83, pp 113, 114, 120, 125, 140-141, 145, 146; Bull 84, p 338

(See Green River group.)

Woods Bluff series of Alabama Bull 84, pp 321, 338
(See Bashi series.)

Yentna beds of Alaska, southwestern, notes on Ann 20, VII, pp 172, 183, 187
Zeuglodon beds of Alabama, correlation of Ann 18, II, p 342
(See, also, Tertiary.)

Eocene and Upper Cretaceous rocks on Pacific coast, faunal relations of Ann 17, I, pp 1005-1060
Eocene time, conditions in California and Oregon during Ann 14, II, pp 424-425
Eolian. (See Eolian.)

Eo-Lignitic beds .. Bull 84, p 325
Eoarchean proposed as name for system of rocks between Archean and Paleozoic .. Ann 7, pp 454-455; Bull 86, pp 484, 461-462, 475, 493
Epeirogenic elevation, dependence of lake levels on Mon xxv, pp 227-237
Epeirogenic movements, apparent dependence of, on glaciation ... Mon xxv, pp 492-501
relationship of, to glaciation Mon xxv, pp 516-521
Epeirogeny. (See Diastrophism.)

Epichlorite, analysis of .. Bull 113, p 18
Epidiorite, analysis of, from California, San Francisco Peninsula (hornblende facies) Ann 15, p 455
from Michigan, Marquette region Bull 62, p 145
thin section of, from Michigan, Upper Quinnesec Falls Bull 62, pp 230-231
Epiporite a product of mineralogic metamorphism Bull 62, p 211
an alteration product of chlorite Mon XIII, pp 75, 213, 370, 384
of feldspar .. Mon XIV, pp 341, 357;
Bull 28, pp 31-32; Bull 50, p 35; Bull 62, pp 108, 211
analysis of, from Austria, Untersulzbachthal Ann 15, p 707
from Colorado, Gunnison County Bull 113, p 112
from Maine, Phippsburg ... Bull 167, p 70
from Maryland, Woodstock ... Ann 15, p 707; Bull 64, p 42
from Massachusetts, Rowe ... Bull 126, p 79
from North Carolina, Macon County Bull 74, p 59
chemical constitution of ... Bull 125, pp 21, 103
composition of ... Bull 150, p 43
formation of, circumstances favoring Mon XIII, pp 211-213
not at the expense of feldspar Mon XIII, pp 76, 216
in Minnesota, southwestern, in gneisses of Bull 157, p 59
in rocks of Pacific slope ... Mon XIII, p 86
occurrence and statistics of .. MR 1883-84, pp 766-767; MR 1888, p 581;
Ann 17, v cont, p 924; Ann 18, v cont, p 1217; Ann 19, v cont, p 513; Ann 20, v cont, p 599; Ann 21, v cont, p 461
Epidote, thin section of crystals of, from Minnesota, Pigeon Point. Bull 109, p 74
thin section of gabbro-diorite showing, from Maryland, Mount Hope. Bull 28, pp 68-69
thin section of porphyritic diorite showing, from Nevada, Washoe distric.

Epidote and chlorite, thin section of diorite-porphyry showing, from Nevada, Ophir Ravine.

Epidote-gneiss of Massachusetts, eastern Berkshire County. Bull 28, pp 24-27
Epidote-mica-gneiss from New Hampshire, Lebanon, description of, as one of the educational series. Bull 150, pp 353-355

Epidote-schist of Sierra Nevada. Ann 17, i, p 586

Epidotization a kind of mineralogic metamorphism. Bull 62, p 56

Epiphanite, analysis of. Bull 113, p 21
Epistilbite, analysis of. Bull 125, p 40

chemical composition of. Bull 125, pp 40, 44, 102

Equisetaceae from Alaska. Ann 17, i, p 877
from Cretaceous of Black Hills. Ann 19, ii, p 650
from older Mesozoic of North Carolina. Ann 20, ii, pp 288-289
from Triassic of Pennsylvania. Ann 20, ii, p 241
from Yellowstone Park. Mon xxxi, ii, pp 674-676
of North America, extinct. Mon xxxv, pp 14-16

Equisetales from Missour, Lower Coal Measures. Mon xxxvii, pp 144-173
Equisetaceae from older Mesozoic of Virginia. Mon vi, pp 10-18

from Potomac or younger Mesozoic. Mon xv, pp 63-66, 334-335
Equisetaceae from Carboniferous basins of southwestern Missouri. Bull 98, pp 17-43

Mon i, pp 393-402; Bull 84, pp 283-285, 298-299, 317, 325

Ericaceae from Alaska. Ann 17, i, p 887

from Amboy clays of New Jersey. Mon xxxvii, pp 120-122
from Dakota group. Mon xxxvii, pp 115-119
from Yellowstone Park. Mon xxxii, ii, pp 750-751

Eric Canal, decline of. WS 24, pp 13-14
history and description of. WS 25, pp 147-149, 158-156, 157, 158-166
water power on. WS 25, pp 178-184

Erie, Lake, elevation of, mean monthly, at Buffalo. WS 24, p 59

Erinite, analyses of, from Utah, Tintic mining district. Ann 19, iii, p 698; Bull 55, pp 40-41

Erodibility, relation of, to structure and forms of relief. Ann 19, ii, pp 18-19, 21
Erosion. (See Degradation.)

Erosional forms in the Hawaiian Islands. Ann 4, pp 87-88

Eruptions in Nevada, Eureka district, age of. Mon xx, 231-232

Eruptive rock, analysis of, from Arkansas, Hot Springs. Bull 64, p 48

analysis of, from California, Pit River, Great Bend of. Bull 64, p 50

from Colorado, various localities. Mon xi, p 358
from Kentucky, Crittenden County. Bull 90, pp 67-68
from Montana, Castle Mountain. Bull 64, p 49
Madison County, Bear Creek. Bull 78, p 123
from New Mexico, near Grants. Bull 27, p 65
San Mateo Mountains. Bull 27, p 64

from Utah, Henry Mountains. Bull 60, p 154
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL.177.

Eruptive rocks of Colorado, Mosquito Range... Mon xii, pp 74-89, 292-313, 322-354
of Idaho ... Ann 16, ii, pp 234-247
of Michigan-Wisconsin, Penokee series Ann 10, i, pp 436-438
of Sierra Nevada, western slope.. .Bull 89
of Yellowstone ParkAnn 12, i, pp 569-664
origin of, especially those of California Mon xiii, pp 164-175, 459
(See, also, Igneous rocks.)

Eruptive and sedimentary rocks of Minnesota, Pigeon Point, and their contact
phenomena.. .Bull 109
Escondido beds of Texas.................................... Bull 164, pp 26-28
Eskers of Illinois, northwestern............................. Mon xxxviii, pp 76-82
reticulated ... Mon xxxiv, pp 448-467
(See Glaciology, Kames, Osars.)

Eskimos and Indians of Alaska, southwestern, notes on........ Ann 20, viii, pp 71-76
Esmeralda formation of Nevada, character, distribution, age, and fossil con-
tents of .. Ann 21, ii, pp 191-226
Española Valley, New Mexico, irrigation in........ Ann 12, ii, pp 258-261
Essexite, analysis of, from Massachusetts, Salem Neck Bull 165, p 183
analysis of, from Norway.................................. Bull 165, p 176
Essonite, occurrence and statistics of MR 1882, p 488
Estillville quadrangle, Kentucky-Virginia-Tennessee, geology of.............. GF 12

Estimation, colorimetric, of small amounts of chromium, with special refer-
ence to the analysis of rocks and ores Bull 167, pp 37-43
Estimation, volumetric, of vanadium in presence of small amounts of chro-
mium, with special reference to the analysis of rocks and
ores .. Bull 167, pp 44-48
Ether, compressibility and thermal expansion of............... Bull 92, pp 28-30
profile of ... WS 44, p 31
Ettingshausen (Constantin, Freiherr von) biographic sketch of........ Ann 5, pp 380-381
Euchlorite, analyses of, from Massachusetts, Chester................ Bull 126, p 40
Euclase, chemical constitution of.. Bull 125, pp 70, 105
occurrence of .. MR 1883-84, pp 740-741
Encolite, chemical constitution of.......................... Bull 125, pp 76
Eucryptite, chemical constitution of Bull 125, pp 16, 18, 88, 101
Eudialyte, chemical constitution of Bull 125, p 76, 105
Eudidyrmite, chemical constitution of Bull 125, pp 13, 74, 105
Eulimide from clays and marls of New Jersey.................. Mon xviii, pp 150-151
Eulytite, chemical constitution of Bull 125, pp 67, 101
Euralite, analysis of .. Bull 113, p 17
chemical constitution of .. Bull 125, p 17
Eureka district, Nevada, description and history of........ Ann 1, pp 32-35, 38; Ann 2, pp 21-34; Mon viii, pp 1-4
geo...
ERUPTIVE—FASCIOLARIIDÆ.

Eureka series of Nevada ... Bull 86, p 305
Europe, Cambrian rocks of, compared with those of America....Bull 81, pp 373-377
continent of, during deposition of sediment now forming Olenellus zone...Ann 10,
i, pp 562-564
fossil plants of, literature of....................................Ann 8, ii, pp 672-785
kaolins and fire clays of..Ann 19, vi cont, pp 377-467
Lower Cambrian of, literature ofAnn 10, i, pp 545-546, 577-581
quicksilver deposits of ..Ann 8, ii, pp 965-966; Mon xiii, pp 27-43
(See, also, the various countries thereof.)
Eutaw group of Alabama and MississippiBull 82, pp 105, 106, 107, 114, 217, 219
Eutectic substances in relation to rock magmas.......................Bull 66, p 27
Evaporation in Arizona, various localities.........................Ann 11, ii, p 34; Ann 12, ii, p 235; WS 2, pp 83-84; WS 33, pp 32-33
in California, various localities................................Ann 11, ii, p 34;
Ann 140, pp 325-326; WS 18, pp 74-78; WS 39, pp 430-431
in Colorado ..Ann 11, ii, p 34
in Illinois, Desplaines River, watershed of........................WS 24, p 64-65
in Kansas, at Goodland..Ann 140, p 350
in Montana ..Ann 11, ii, p 34
in Nebraska, near Kearney......................................Ann 19, iv, pp 330-337; Bull 140, p 949
in New Mexico ...Ann 11, ii, p 34
in New York, Genesee River, watershed of......................WS 24, p 58
Oatka Creek, drainage area of....................................WS 24, p 70
in Ohio, Muskingum River, watershed of........................WS 24, pp 55-56
in Texas ...Ann 11, ii, p 34; Ann 12, ii, p 235; Ann 14, ii, pp 154-155
in Utah ..Ann 11, ii, p 34;
Ann 12, ii, pp 235, 238; Ann 14, iii, pp 154-155; WS 7, pp 17-24
on Great Plains ...Ann 21, iv, pp 677-679
Evaporation and seepage as related to irrigation construction...Ann 13, iii, pp 152-155
Everglades of Florida..Bull 84, pp 99-101
Everglades limestone of Florida..................................Bull 84, pp 154, 325
Everts, Mount, Yellowstone Park, intrusive sheets of.........Mon xxxii, ii, pp 85-86
Evigtokite, analysis of, from Greenland.........................Bull 20, p 61
Exchanges of geologic and geographic publications, etc., list of..Ann 20, i, pp 163-209
Expansion, thermal, of certain rocks, note on coefficients of...Bull 78, pp 109-118
relations of, to compressibility......................................Ann 14, i, pp 154-156
Experiments relative to constitution of pectolite, pyrophyllite, calamine, and
analcite...Bull 167, pp 13-25
with windmills..WS 20
Extrusive rocks of Montana, Castle Mountain, petrography of...Bull 139, pp 118-131
Factory wastes in Massachusetts, experiments on purification of...WS 22, pp 27-35
Fagaceae from Amboy clays of New Jersey.........................Mon xxvi, p 69
from Cretaceous of Black Hills................................Ann 19, ii, pp 688, 704
from Yellowstone Park...Mon xxxii, ii, pp 700-711
of North America, extinctMon xxxv, pp 68-79
Fairfax formation of West Virginia and Maryland.................GF 28, p 4
Fall Creek, Colorado, flow of, measurements of................WS 11, p 68; WS 38, p 306
Fall River, Idaho, flow of, measurements of.....................Ann 11, ii, pp 105, 110;
Ann 12, ii, pp 344, 356, 361; Ann 13, iii, pp 97, 99
Falls and rapids of irrigation canals..............................Ann 13, iii, pp 249-256
Fargo quadrangle, North Dakota—Minnesota, physiography of.........TF 1, p 1
Farish (J. B.), quoted on ore deposits near Rico, Colorado.....Ann 21, ii, pp 18, 108
Farming. (See Agriculture.)
Fascioliariidse from Chico-Tejon series of California.............Bull 51, p 22
Fasciolariidze from clays and marls of New Jersey

from Miocene deposits of New Jersey

Faujasite, chemical constitution of

Fault, throw, hade, strike, etc., definitions of

Fault basins in western United States

Fault blocks on San Francisco Peninsula, two dominant

Fault planes, Colorado, fissures as, in Cripple Creek district

Fault rock, thin section of, from Connecticut, near contact of basalt and arkose conglomerate

Faulting in Colorado, Telluride quadrangle

in Connecuticut, evidence of, sufficiency of

in Connecticut Valley

in Great Basin

of Sierra Nevada, age of

on Comstock lode, structural results of, discussion of principles involved

topography due to, in Great Basin

(See, also, Diastrophism.)

Faulting and folding in Alaska, Fortymile and Rampart series

in Virginia, Richmond Basin, conditions of

Faulting and landslides in Sierra Nevada

Faulting and uplifting of Sierras, relation of, to volcanic phenomena

Faults and folds; analysis of, and diagrams for use in fault analysis

classification of

description and causes of

drainage, control of, by, in Connecticut

effect of, on trap ridges in Connecticut

geologic and geographic effects of

geometric relations of

in Alabama, Gadsden quadrangle

Tertiary and Cretaceous strata

in Appalachian province

in California, Bidwell Bar quadrangle

Downieville quadrangle

in Catoctin belt

in Colorado, Anthracite quadrangle

Aspen district

Crested Butte quadrangle

Denver Basin

Elk Mountains

La Plata quadrangle

Mosquito Range region

in Connecticut, Triassic area

in Georgia-Tennessee, Ringgold quadrangle

Rico Mountains

Tennmile district

Pomperaug Basin

318 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

in Hawaiian Islands, Kilauea ...Ann 4, pp 121-122
in Indian Territory ...Ann 21, ii, pp 284-285
in Kentucky, Estillville quadrangle ...GF 12, pp 3-4
Richmond quadrangle .. GF 46, p 3
in Lake Lahontan Basin ...Mon xi, pp 163-166, 275-283
in Lake Superior region, at margin of Eastern sandstoneAnn 3, pp 152-155
between Keewenaw series and Eastern sandstone Bull 23

copper district ..Mon v, pp 205, 219, 258-259, 361-365, 416-417
in Maryland–West Virginia–Virginia, Harpers Ferry quadrangle GF 10, p 4
in Massachusetts, eastern Berkshire County ...Bull 159, pp 89-94
in Michigan, Republic trough ..Ann 15, pp 620-625; Mon xxviii, pp 541-547
in Michigan–Wisconsin, Penokee district ...Mon xix, pp 437-441
in Montana, Little Belt Mountains quadrangle GF 56, pp 5, 6
Three Forks quadrangle .. GF 24, p 5
in Nevada, Comstock lode, theory of ..Ann 2, pp 300-304; Mon iii, pp 156-187, 377-378
in New Mexico, at Nutria ...Ann 6, pp 142-145
in North Carolina–Tennessee, Knoxville quadrangle GF 16, p 5
in Tennessee, Bristol quadrangle ..GF 59, pp 5, 6
Bristol quadrangle .. GF 59, pp 5, 6
Chattanooga quadrangle .. GF 6, p 2
Cleveland quadrangle ... GF 20, pp 3-4
Estillville quadrangle .. GF 12, pp 3-4
Kingston quadrangle .. GF 4, p 3
Knoxville quadrangle .. GF 16, p 5
Loudon quadrangle ... GF 25, p 5
Morristown quadrangle .. GF 27, p 4
Ringgold quadrangle ... GF 2, p 2
Sewanee quadrangle .. GF 8, p 3
in Texas, Uvalde quadrangle ...GF 64, p 4
in Utah, Tintic district ..Ann 19, iii, pp 618-619, 671
in Virginia, Bristol quadrangle ..GF 59, pp 5-6
Estillville quadrangle .. GF 10, p 4
Harpers Ferry quadrangle .. GF 10, p 4
Monterey quadrangle ... GF 61, pp 6-7
Pocahontas quadrangle .. GF 26, p 4
Richmond area ..Ann 19, ii, pp 485-487
Tazewell quadrangle ...GF 44, p 4
in West Virginia, Harpers Ferry quadrangle GF 10, p 4
Monterey quadrangle ... GF 61, pp 6-7
Pocahontas quadrangle .. GF 26, p 4
Tazewell quadrangle ...GF 44, p 4
lateral displacement in ...21, iii, p 96
measurement of ...Mon xxxi, pp 251-256
origin and relations of ...Ann 16, i, pp 672-678
outcrops, crescentic offsetting of ..Ann 21, iii, pp 95-97
relation of, to dome structure in Rico Mountains, ColoradoAnn 21, ii, pp 23-24, 105-107, 112-114
systems of, in various regions ...Ann 21, iii, pp 133-136
theory of, especially those in Pomperaug Basin, ConnecticutAnn 21, iii, p 124
Faults and folds; throw, distribution of, over a zone of parallel faults. Ann 21, ii, p 95

tilting of orographic blocks... Ann 21, iii, p 97

topography in Great Basin due to... Ann 4, pp 443-450

Faults and serpentinization in Massachusetts, western Mon xxix, pp 95-96

Fauna in America, vertebrate, section to illustrate................................. Mon x, p 7

of Braintree argillites, Massachusetts... Bull 10, pp 43-49

of Colorado formation, invertebrate.. Bull 106

of Lower Cambrian or Olenellus zone... Ann 10, i, pp 509-763

of Puget Sound region, Molluscan.. Bull 51, pp 49-63

of St. John formation contained in Hartt collection at Cornell University, review of... Bull 10, pp 9-42

relation of Laramie Molluscan, to that of succeeding fresh-water Eocene and other groups... Bull 34

Fauna and flora of Washington, Tacoma quadrangle................................ GF 54, pp 2, 3

Faunal relations of Pacific Eocene and Upper Cretaceous....................... Ann 17, i, pp 1005-1060

Faunas, Cambrian, of North America, studies of .. Bull 10; Bull 30

Devonian, higher, of New York, Ontario County.. Bull 16

Devonian, upper, from Tompkins County, New York, to Bradford County, Pennsylvania... Bull 3

of New York, Genesee section... Bull 41

Paleozoic, of Maine... Bull 165, pp 15-92

recent, of different temperature zones, tables showing number of shell-bearing marine species of mollusks contained in Bull 84, p 26

Favas, analyses of, from Brazil.. Ann 21, vi cont, p 430

Fayalite, analysis of, from Yellowstone Park.. Ann 7, p 272; Bull 27, p 63

chemical constitution of... Bull 125, pp 68, 104

composition of... Bull 150, p 39

in lithophysae from Yellowstone Park.. Ann 7, p 270

in rhyolite, origin of.. Ann 7, pp 279-283

Fayette beds of Texas... Bull 84, pp 172-175, 325

Fayette sandstone in southern Appalachians, relation of, to the Pottsville... Ann 20, n, p 818

of West Virginia, along New-Kanawha River... Ann 17, ii, pp 497-499

Feather River, California, profile of.. WS 44, p 93

Felch Mountain series of Michigan... Bull 86, pp 190, 195

Feldspar a product of mineralogic metamorphism................................... Bull 62, p 209

alteration of, during metamorphism of massive rocks................................. Bull 62, pp 214-216

to zeolite... Bull 28, pp 52-53

analysis of, from Arkansas, Little Rock... Bull 150, p 195

from California, Downieville quadrangle (from diabase-porphyry) Ann 17, i, p 645

from Canada, various localities.. Bull 107, p 21

from Delaware, Brandywine Creek (from gabbro).. Bull 55, p 80;

Bull 59, p 12; Bull 148, p 82; Bull 168, p 41

Iron Hill (from gabbro-diorite)... Bull 59, p 28;

Bull 148, p 82; Bull 168, p 41

Wilmington (from hypersthene-gabbro)... Bull 55, p 80;

Bull 148, p 82; Bull 168, p 41

from Georgia, Laurel Creek (altered)... Bull 42, p 138

from Maine, Litchfield (potash)... Bull 90, p 65; Bull 148, p 65;

Bull 168, p 21

from Maryland, Baltimore, Jones’s Falls... Bull 113, p 110

‘Gwynns Falls ... Bull 28, p 44

Mount Hope Station (powder)... Bull 28, p 27; Bull 150, p 280

near Pikesville (powder).. Bull 28, p 30; Bull 150, p 388
Feldspar, analysis of, from Massachusetts, Greylock Mountain (from mica-schist) ... Mon xxi, p 187; Bull 55, p 79; Bull 148, p 78; Bull 168, p 34
analysis of, from Massachusetts, Hampshire County (siliceous) . . . Bull 126, p 11
from Massachusetts, Hoosac Mountain (from feldspathic schist) . . . Mon xxii, p 60; Bull 55, p 79; Bull 148, p 78;
Bull 150, p 325; Bull 168, p 34
from Michigan, Penokee-Gogebic range Mon xix, p 352;
Bull 64, p 47; Bull 148, pp 103, 104; Bull 168, p 73
from Minnesota, Pigeon Point ... Bull 109, pp 34, 52;
Bull 148, p 107; Bull 168, p 77
various localities (from gabbros) .. Bull 78, p 122;
Bull 148, p 112; Bull 168, p 82
from Nevada, Mount Rose ... Mon iii, p 154
from New Mexico, Mount Taylor region, near Grant’s (from basalt) . Bull 148, p 185; Bull 168, p 170
from New York, Bedford (commercial) Ann 17, iii, p 846
from Oregon, Mount Thielsen . . . Bull 9, p 15; Bull 148, p 230; Bull 168, p 220
from Pennsylvania, Brandywine (commercial) Ann 17, ii, p 846
from Texas, Fayette County (commercial) Ann 17, ii, p 846
from Wisconsin, Ashland County (from gabbro) Bull 60, p 149;
Bull 148, p 105; Bull 168, p 75
Green Lake County (from metarhyolite) Bull 150, p 166
Penokee-Gogebic range ... Mon xix, p 352; Bull 64, p 48; Bull 148, p 104; Bull 168, p 74
from Yellowstone Park, Obsidian Cliff Ann 7, pp 269-270
biotite and quartz yielded by, on decomposition in granite Ann 10, i, p 355
chemical constitution of ... Bull 125, pp 28-32
composition of ... Bull 150, pp 44-46
of the more important varieties of Ann 21, vii cont, p 594
determinations of, by Szabo's method Mon iii, pp 405-408
enlargement of fragments of, in certain Keweenawan sandstones . Bull 8, pp 44-47
secondary, in sandstones ... Ann 5, pp 237-240; Bull 8, p 44
epidote an alteration product of Mon xii, pp 341, 357;
Bull 28, pp 31-32; Bull 59, p 35; Bull 62, pp 108, 211
from Minnesota, southwestern (in gneiss) Bull 157, pp 51-53
from Yellowstone Park, Electric Peak (in porphyrite and in diorite) . Ann 12, i, pp 592, 601-603
in rocks of Pacific slope ... Mon xiii, pp 82-84
production of, statistics of ... MR 1893-84,
pp 953-954; MR 1885, p 523; MR 1886, p 701; MR 1887,
pp 6, 8-9; MR 1888, pp 6, 8, 10-11; MR 1889-90, p 6;
MR 1891, pp 474, 500; Ann 17, iii cont, pp 839-840, 845-846;
Ann 18, vii cont, pp 1365-1367; Ann 19, vii cont, p 657;
Ann 20, vii cont, p 745; Ann 21, vii cont, pp 593-595
thin section of, from Delaware, Iron Hill, showing inclusions within . . . Bull 59, p 30
from Michigan, Crystal Falls district (sheaf-like aggregates) . . . Mon xxxvi,
pp 282-283
Upper Quinnesec Falls (crystal faulted in crushed greenstone) . . . Bull 62, p 105
from Nevada, Eureka district (from rhyolite) Mon xx, pp 396-397
Eureka district (from pyroxene-andesite) Mon xx, pp 396-397
(plagioclase from hornblende-mica-andesite) Mon xx,
pp 400-401, 402-403
Washoe district (from hornblende-andesite) Mon iii, pp 150-151

Bull. 177—01——21
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Feldspar, thin section of, from Pennsylvania, South Mountain (from quartz-porphyry) .. Bull 136, pp 96-97, 98-99, 100-101
thin section of, from Yellowstone Park (microclasts of) Mon xxxii, n, pp 422-423
Feldspar-porphyry, analysis of, from Montana, Castle Mountain district Bull 139, p 135, 136; Bull 148, p 151; Bull 168, p 130
Feldspar rocks, igneous, a classification of Ann 20, vi, pp 185-194
Feldspathic magma of Nevada, Eureka district Mon xx, p 255
Feldspathic rocks, thermal effect of action of aqueous vapor on Ann 2, pp 325-330; Mon iii, pp 290-308, 397-400
Felsite, analysis of, from Pennsylvania, South Mountain (laminated) Bull 136, p 34
analysis of, from Virginia, near Monterey (porphyritic) Bull 108, p 51
of Keweenaw series .. Ann 3, pp 113-114; Mon v, pp 95-112
of Narragansett Basin Mon xxxiii, pp 116, 158-155
of Northwestern States Ann 5, p 214
thin section of, from Minnesota, sec. 28, T. 56 N., R. 7 W. Mon v, pp 100-101
Felsite-porphyry of Montana, microscopic petrography of Bull 139, pp 103-106
Felsophyre, analysis of, from Virginia, near Monterey Bull 168, p 51
Fergusonite, analysis of, from North Carolina, Burke County Bull 74, p 75
Fernandan system of rocks of Texas Bull 86, pp 267-269, 474, 504
Fernow rhyolite of Utah, Tintic district GF 65, p 2
Ferns, Devonian .. Ann 120, pp 49-50
of Cretaceous of Black Hills Ann 19, ii, pp 651-664
of Mesozoic of California Ann 20, ii, pp 349-353
of Mesozoic, older, of North Carolina Ann 20, ii, pp 288-289
of Triassic of Pennsylvania Ann 20, ii, pp 235-241
(See, also, Filices.)
Ferration in Colorado, Aspen district Mon xxxi, pp 221-223
Ferrell’s law of stream erosion Mon xxix, p 734
Ferric sulphates, basic, analyses of Mon xi, p 734
Ferrodolomite, analysis of, from Michigan, Marquette district Bull 148, p 268; Bull 168, p 267
Ferromagnesian minerals in rocks, decomposition of Mon iii, p 384
Ferromanganese, analysis of Ann 18, v, p 207; MR 1883-84, p 564
Ferromanganese and spiegeleisen, production of, 1872-1899 Ann 21, vi, p 93
Fertilizer trade of North Carolina in 1886 MR 1886, pp 611-617
Fertilizers, analyses of, from various localities MR 1883-84, pp 816-819, 821; MR 1885, pp 471-473; MR 1887, pp 593-594
of Porto Rico, occurrence of Ann 20, vi cont, pp 774-775
Ann 16 iv, pp 606-635; Ann 17, iv cont, pp 951-957; Ann 18, vi cont, pp 1233-1242; Ann 19, vi cont, pp 535-556; Ann 20, vi cont, pp 619-639; Ann 21, vi cont, pp 451-502
value of, commercial ... WS 22, pp 35-36
Ferruginous gravel of Florida Bull 84, pp 109,325
Fibrolite, analysis of, from France, Brittany Bull 60, p 127
Fibrolite and fibrolite-schist inclusions in Massachusetts Mon xxix, pp 229, 246-248
Field work, geologic, in complexly folded districts, practical methods of Ann 16, i, pp 739-742
Filicales from Coal Measures of Lower Missouri Mon xxxvii, pp 16-144
from Cretaceous of Black Hills Ann 19, ii, pp 651-664, 704
Filiaceous from Alaska...Ann 17, i, pp 877-878
from Dakota group ...Mon xvii, pp 24-25
from Mesozoic of CaliforniaAnn 20, ii, pp 343-353
from Mesozoic, older, of North CarolinaAnn 20, ii, pp 280-288
of Virginia...Mon vi, pp 18-63
from Potomac or younger MesozoicMon xv, pp 66-166, 335-341
from Triassic of PennsylvaniaAnn 20, ii, pp 235-241
from Yellowstone Park ...Mon xxxii, ii, pp 665-673
Filiaceous of Amboy clays of New JerseyAnn xxvi, pp 36-43
of Carboniferous basins of Missouri, southwesternBull 98, pp 43-103
of North America, extinctMon xxxv, pp 1-14
Filters, water, and related devicesAnn 14, n, pp 27-30
Filtration by means of easily soluble and easily volatile filtersBull 27, pp 27-29
of water through soil, rate ofAnn 19, ii, pp 256-260
Finland, clay products of, at Paris Exposition of 1900Ann 21, vi cont, p 376
Fiord coast, an example ofTF 1, p 4
Fiord or glacial harbors, description ofAnn 13, ii, pp 114-118
Fiords and submarine river valleys, preglacial elevation of North America shown byMon xxv, pp 501-505
Fire clay. (See Clay, fire.)
Fires, forest. (See Forests.)
Firestone, analysis of, from Pennsylvania, MeriontownMR 1893, p 571
Fish Creek, New York, flow of, measurements ofWS 36, pp 186-188
Fish-scale bed, analysis of, from Virginia, MidlothianAnn 19, ii, p 432
Fisher (F. R.), account of Charleston earthquake byAnn 9, pp 242-247
Fisher (O.), quoted, on contraction of earth's crustAnn 13, u, pp 277-278
Fishes from Carboniferous of North AmericaAnn 13, u, pp 277-278
from Devonian of North AmericaMon xvi, pp 75-228
from Devonian, higher, of New YorkBull 16, pp 27-30; Bull 41, pp 62-63
from Esmeralda formation of NevadaAnn 21, ii, pp 223-226
from Newark system ...Bull 85, pp 56-58, 125
from Silurian, upper, of North AmericaMon xiv, pp 17-20
from Triassic rocks of New Jersey and Connecticut Valley, descriptions of genera and speciesMon xiv, pp 24-76
Fissility and cleavage, principles and causes of, and relations to other structuresAnn 16, i, pp 633-668, 800-801, 872-874
Fissurellide from Chico-Tejon series of CaliforniaBull 51, p 16
from Cretaceous of Pacific coastBull 133, p 63
from Miocene deposits of New JerseyMon xxiv, pp 136-137
Fissure veins, gold-bearing, types ofAnn 18, iii, pp 947-950
Fissures in California, systems of Nevada City and Grass Valley districtsAnn 17, ii, pp 164-170, 259
in Colorado, Cripple Creek districtAnn 16, ii, pp 139-144; GF 7, p 8
Custer County, ore-bearingAnn 17, ii, pp 422-429
La Plata quadrangle ...GF 60, p —
Telluride quadrangle ..Ann 18, iii, pp 764-771; GF 57, pp 15-16
faulting of ...Ann 18, iii, pp 779-781
in Montana, Butte districtGF 38, pp 4-5
Fissures and joint planes in rocks of Utah, Mercur district, nature and age ofAnn 16, ii, pp 435-437, 438
Fissuring, effect of country rock on, in ColoradoAnn 18, iii, pp 774-776
relation of, to ore veinsAnn 18, iii, pp 778-779
INDEX TO PUBLICATIONS OP U. S. GEOL. SURVEY. [BOLL. 177.

Fitch (C. H.), forest conditions in Sonora quadrangle, California... Ann 21, v, pp 569-571
forest conditions in Yosemite quadrangle, California... Ann 21, v, pp 571-574
triangulation and spirit leveling in Indian Territory... Bull 175
woodland of Indian Territory... Ann 21, v, pp 603-672
work in charge of, 1894-1899... Ann 16, i, pp 76-77;
Ann 17, i, pp 106-109; Ann 18, i, pp 110-112; Ann 19, i, pp 114-116; Ann 20, i, pp 125-126; Ann 21, i, pp 96, 185, 483

Fitch (C. H.), forest conditions in Yosemite quadrangle, California... Ann 21, v, pp 571-574

Fitton (W. H.), reproduction of section of Portland quarry, from... Ann 16, i, pp 489

Flanagan chert of Kentucky... GF 46, p 2

Flathead Forest Reserve, report on... Ann 20, v, pp 245-316
Flathead formation of Montana, near Three Forks... Bull 110, pp 20-22
of Yellowstone Park and Wyoming... Mon xxxii, ii,
pp 8, 21, 22, 23, 154, 206, 212, 214; GF 30, p 4; GF 52, p 2
Flathead Lake, Montana, description of... Ann 21, iv, pp 421-424
Flathead quarzite of Montana... GF 1, p 2; GF 24, p 2; GF 56, p 2
Flathead River, profile of... WS 44, p 99
Flathead sandstones of Montana, description and sections of... Ann 20, iii, pp 285, 304; GF 55, p 2
Flathead shales of Montana, intrusive rocks in... Bull 110, pp 49-53
Flatswoods clay of Mississippi... Bull 84, p 325
Flatswoods group of Tennessee... Bull 84, p 333
Flexibility and frangibility of sedimentary deposits... Ann 13, ii, pp 238-240
Flexures... (See Faults and folds.)
Flint, analysis of, from Colorado, Buffalo Peaks... Mon xii, p 607; Bull 1, p 15
analysis of, from Illinois, LaSalle County (potters')... Ann 17, iii, p 847
from Kentucky, Calloway County (potters')... Ann 17, iii, p 847
from Tennessee, Cumberland River (potters')... Ann 17, iii, p 847
description of the rock, as one of the educational series... Bull 150, pp 119-121
sources of supply, uses, and statistics of... Ann 17, iii cont, pp 838-839, 846-847
Flint River, Georgia, flow of, measurements of... Ann 19, iv, pp 233-234; Ann 20, iv, pp 51, 184; WS 15, p 45;
WS 27, pp 47-50, 57, 58; WS 36, pp 138-139
Flood plains, river, in Louisiana, Donaldsonville quadrangle... TF 1, pp 3-4
Flood plains and flood-plain soils... Ann 12, i, pp 288-293
Floods on Lower Mississippi River, discussion of... Ann 20, iv, pp 347-352
Flora, fossil... (See Plants, fossil.)
Floras, fossil, of Lower Cretaceous of Europe and America, comparison of... Ann 16, i, pp 480-500
of North America, later extinct... Mon xxxv
Florida, altitudes in... Bull 5, p 78; Bull 76; Bull 160, pp 116-121
atlas sheets of... (See p 72 of this bulletin.)
boundary lines of... Bull 13, pp 101-102; Bull 171, pp 107-108
building stone from, statistics of... MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 496; Ann 17, iii cont, pp 760, 788, 789, 790;
cement production of... Ann 20, vi cont, pp 547, 549-550; Ann 21, vi cont, pp 407
clay deposits, products, and statistics of... MR 1891, p 607; MR 1893, pp 614-615;
Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 819 et seq;
Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq;
Ann 20, vi cont, p 466 et seq; Ann 21, vi cont, pp 362, 363
elevations in... (See "altitudes" under this State.)
fuller's earth in... Ann 18, v cont, pp 1356-1359; Ann 19, vi cont, p 655
Florida, geographic positions in .. Bull 123, p 80
geologic maps of. (See Map, geologic, of Florida.)
geologic sections in. (See Section, geologic, in Florida.)
geologic and paleontologic investigations in...................... Ann 6, p 74; Ann 8, p 182; Ann 9, pp 73-74, 124; Ann 10, t, pp 119, 167; Ann 11, t, pp 67, 102, 111; Ann 12, t, pp 28, 52-53, 55, 71, 75, 82-84, 117; Ann 13, t, pp 117-118; Ann 14, t, p 212; Ann 15, pp 132-133, 141-142, 190; Ann 18, t, pp 32-33, 37; Ann 20, t, p 41; Ann 21, t, pp 94, 98
gypsum in, occurrence of................................. Ann 20, vi cont, pp 662-663
harbors on coast of .. Ann 13, t, pp 185-192
limestone production of, statistics of......................... ME 1893, p 556; Ann 16, iv, pp 437, 494, 495, 496; Ann 17, iii cont, pp 760, 788, 799, 790; Ann 18, v cont, pp 950, 1044, 1045, 1046, 1049; Ann 19, vi cont, pp 206, 280, 282, 283, 287; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 346; Ann 21, vi cont, pp 335, 357, 358, 359, 360
magnetic declination in.................................. Ann 17, t, pp 323-325
maps, geologic, of. (See Map, geologic, of Florida.)
minerals of, useful MR 1882, p 675; MR 1887, pp 719-720
Peace Creek bone bed Bull 84, pp 130-131
purchase of, from Spain, account of................. Bull 13, p 21; Bull 171, pp 23-24
rainfall at Jacksonville (average) Ann 21, iv, p 668
sections, geologic, in. (See Section, geologic, in Florida.)
stratigraphy of.................................. Bull 84, pp 101-158
stream measurements in, list of miscellaneous.......... WS 27, p 45
timber in, estimates of.............................. Ann 19, v, p 17
topographic maps of. (See Map, topographic, of Florida; also list on p 72.)
topographic work in.................................. Ann 11, t, p 38; Ann 14, t, p 173; Ann 18, t, p 95; Ann 19, t, p 90
topography of peninsula of Bull 84, pp 86-101
woodland area in ... Ann 19, v, p 6
Florida River, Colorado, flow of, measurements of........ Ann 21, iv, p 300; WS 38, p 311
Floridian group of Florida Bull 84, p 325
Floridite phosphate rock............................. Bull 84, p 325
Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah,
some insects of special interest from............. Bull 93
fossil butterflies of Ann 8, t, pp 433-474
Flow and fracture of rocks as related to structure........ Ann 16, t, pp 845-874
Flows and sills, distinctive features, etc., of.......... Ann 18, t, pp 52-56, 79-80
Floyd shale of Georgia and Tennessee GF 2, p 2; GF 6, p 2
Fluid inclusions in minerals of igneous rocks, secondary origin of........ Mon iii, pp 79, 119, 371
Fluid volume, its dependence on pressure and temperature........Bull 92, pp 17-67
Fluids, flow of, through porous media, investigations of......... Ann 19, ii, pp 107-206
Flumes, conveyance of water in irrigation canals, pipes, and WS 43
Flumes, siphons, etc., in irrigation works.................. Ann 13, iii, pp 256-267
Fluoriferous hydrogen peroxide, warning against use of, in estimating tita-
nium ... Bull 167, p 56
Fluorite, composition of ... Bull 150, p 31
in ores of Colorado, Cripple Creek district.......... Ann 16, ii, pp 126, 157-158
Foerste (A. F.), Shaler (N. S.), and Woodworth (J. B.), geology of Narrangan-
sett Basin Mon xxxiii
Folded districts, field work in, practical methods of Ann 16, i, pp 739-742
Folding in Alaskan regions in Tertiary timeAnn 20, vii, pp 244-245
in Lake Superior iron-ore region................................ Ann 21, iii, pp 416-418
in Massachusetts, western ...GF 50, p 1
in Michigan, Crystal Falls district, of Archean and Huronian series . Ann 19, iii, pp 14, 65-66; Mon xxxvi, pp xxiii, 158-162
Marquette iron-bearing district Ann 15, pp 518, passim, 640-644; Mon xxv, pp 3-4, passim, 566-571
Menominee district ..GF 62, p 12
in Narrangansett Basin Mon xxxiii, pp 10-27, 101, 121-123, 156-158, 183, 355
in Utah-Colorado, Uinta and Park ranges, region ofAnn 9, pp 692-706
relations of, to unconformity Ann 16, i, pp 632-633
(See, also, Faulting.)
Folds, analysis of, etc.. Ann 16, i, pp 603-633, 800
in Appalachian province .. GF 4, p 3; GF 8, pp 2-3; GF 10, p 3; GF 12, p 3; GF 14, p 3; GF 16, p 5; GF 19, pp 2-3; GF 20, p 3; GF 21, pp 2-3; GF 25, p 4; GF 26, p 4; GF 27, p 3; GF 28, p 4; GF 32, p 4; GF 33, p 3; GF 34, p 3; GF 35, p 3; GF 40, p 3; GF 44, p 4
in Alabama, Gadsden quadrangle GF 35, p 3
Stevenson quadrangle .. GF 19, p 2
in Colorado, Crested Butte quadrangle GF 9, pp 8, 9
Tennmile district ... GF 48, p 3
in Georgia, Ringgold and Stevenson quadrangles GF 2, p 2; GF 19, p 2
in Kentucky, Estillville quadrangle GF 12, pp 3-4
in Maryland, Harpers Ferry quadrangle GF 10, p 4
Piedmont quadrangle ... GF 28, pp 4-5
in Montana, Three Forks quadrangle GF 24, p 5
in New York, eastern, and the Green Mountain region, inclined, overturned, and transverse........ Ann 16, i, pp 549-554
in North Carolina, Knoxville quadrangle GF 16, p 5
in Tennessee, Briceville quadrangle GF 33, p 4
Chattanooga quadrangle .. GF 6, p 2
Cleveland quadrangle .. GF 20, p 3
Estillville quadrangle .. GF 12, pp 3-4
Knoxville quadrangle ... GF 16, p 5
London quadrangle .. GF 25, p 5
WARM AN. FLUID FOKEST. 327

Folds in Tennessee, Morristown quadrangle ... GF 27, p 4
in Tennessee, Ringgold quadrangle .. GF 2, p 2
Stevenson quadrangle .. GF 19, p 2
Wartburg quadrangle ... GF 40, p 3
in Utah, Tintic district ... Ann 19, iii, pp 618–619
in Virginia, Estillville quadrangle ... GF 12, pp 3–4
Franklin quadrangle .. GF 32, pp 4–5
Harpers Ferry quadrangle .. GF 10, p 4
Pocahontas quadrangle .. GF 26, p 4
Staunton quadrangle ... GF 14, p 3
Tazewell quadrangle .. GF 44, p 4
in Washington, Tacoma quadrangle ... GF 54, p 3
in West Virginia, Buckhannon quadrangle .. GF 34, p 3
Franklin quadrangle .. GF 32, pp 4–5
Harpers Ferry quadrangle .. GF 10, p 4
Piedmont quadrangle .. GF 28, pp 4–5
Pocahontas quadrangle .. GF 44, p 4
Staunton quadrangle ... GF 44, p 4
types and varieties of ... Ann 13, ii, pp 219–222

(See, also, Diastrophism; Faults and folds.)

Folsom irrigating canals, California ... Ann 13, iii, pp 210–214

Fontaine (W. M.), notes on fossil plants collected by Dr. E. Emmons from
older Mesozoic rocks of North Carolina .. Ann 19, ii, pp 645–702
notes on Lower Cretaceous plants from Hay Creek coal field, Wyoming ... Ann 19, ii, pp 342–368
older Mesozoic flora of Virginia .. Mon vi
report on Juratrias plants from near Oroville, California Ann 17, i, pp 548–549
Potomac formation in Virginia ... Bull 145
Potomac or younger Mesozoic flora ... Mon xv
work in charge of, 1884–1892, 1900 ... Ann 6, pp 85–86; Ann 9, pp 132–133; Ann 10, i, p 174; Ann 12, i, p 125; Ann 13, i, p 155; Ann 21, i, pp 91–92
Fontaine (W. M.) and Wanner (A.), Triassic flora of York County, Pennsyl-
vania .. Ann 20, ii, pp 233–265
Footprints in Connecticut sandstone, dinosaurian, and the "bird tracks" Ann 16, i, p 151
in Newark strata .. Bull 88, pp 61–62
Foraminifera of New Jersey Cretaceous Bull 88
Foraminiferal limestone of Franciscan series ... Ann 15, pp 419–420
Foresite, chemical constitution of ... Bull 125, pp 34, 35, 45, 103
instructions to surveyors of ... Ann 19, i, pp 122–124
law governing establishment of ... Ann 19, i, pp 15–18
names, locations, and areas of .. Ann 19, i, pp 13–14;
Ann 20, v, pp 1–3; Ann 21, i, pp 15–17; v, pp 13–14
reports on ... Ann 19, i, pp 12–19; Ann 20, v, Ann 21, v
surveys of, appropriations, plans, and progress of the Ann 18, i, pp 13, 115–117;

Forestry; investigations in the Appalachian region......................... Ann 5, pp 64-66; Ann 6, p 93; Ann 7, pp 135-136; Ann 8, i, pp 201-202

of India .. Ann 12, ii, pp 404-405
of Porto Rico .. WS 32, pp 41-43
Forestry work in 1899-1900, summary of Ann 21, v, pp 9-25
Forests; fires, effect of, on reproduction Ann 19, v, pp 235-240, 308-309, 369
fires in northern Idaho, timber destroyed by, amount of Ann 19, v, pp 375-384
management of, especially in Black Hills Ann 19, v, pp 96-99
of arid region, area, timber, destruction, etc. Ann 11, ii, pp 206-208
maps showing ... Ann 11, ii, pp iv-v
of Maine, resources of .. Ann 19, iv, pp 39-41
of Montana, Judith Mountains ... Ann 18, iii, p 455
of United States, résumé of data .. Ann 19, v, pp 1-66; Ann 20, v, pp 1-37
products of, in 1890, amount and value of Ann 19, v, pp 19-20
of Washington, conditions of and standing timber in Ann 20, v, pp 12-37
northern, Cascade Mountains .. Ann 20, ii, pp 92-95
Tacoma quadrangle .. GF 54, p 10
of Western States, character of and map showing Ann 19, v, pp 22-26, pl ii
woodlands, irrigated areas, and relative location and areas of Ann 16, ii, pp 480-483
preservation of, remarks on .. Ann 19, v, pp 348-350
trees, defects and diseases of .. Ann 21, v, pp 109-110
growth of, rate of .. Ann 21, v, pp 22-25, 106-109
trees and shrubs of basin of Red River of the North Mon xxv, pp 603-606
Forests, fossil, of Arizona ... Ann 20, ii, pp 316, 318, 319, 320, 324-332
of Black Hills .. Ann 19, ii, pp 624-645
of Europe and America .. Ann 16, i, pp 488-500
of Yellowstone Park ... Mon xxxii, ii, pp 755-773
Formation, relation of relief to, in Texas region Ann 21, vii, pp 30-37; TF 3, pp 2-3
Formulas and tables to facilitate the construction and use of maps. Bull 50
Forrester (R.), coal fields of Utah .. MR 1892, pp 511-521
Forsterite, chemical constitution of Bull 125, pp 68, 69, 104
Fort Benton formation. (See Benton.)
Fort Benton quadrangle, Montana, geology of GF 55
Fort Ellis beds of Montana ... Bull 84, p 287
Fort Payne chert of Alabama .. GF 19, p 2; GF 55, p 2
of Georgia .. GF 2, pp 1-2; GF 19, p 2
of Tennessee .. GF 2, pp 1-2; GF 4, p 2; GF 6, p 1;
GF 8, p 2; GF 19, p 2; GF 20, p 3; GF 21, p 2; GF 22, p 2
Fort Pierre. (See Pierre.)
Fort Riley Military Reservation, Kansas, geology of Bull 137
Fort Union beds, correlation of .. Ann 18, ii, p 348; Bull 84, p 325
of Missouri River region, upper, correlation of Bull 83, pp 113, 114-130, 135; Bull 84, p 325
of Montana .. Bull 105, pp 35-36; GF 56, p 3
Fort Union beds, plants from .. Mon xxv, passim
Fort Washakie hot springs, Wyoming Bull 119, p 68
Fort Worth limestone of Texas .. Ann 21, vi, pp 259-262; Bull 104, pp 16-17; GF 42, pp 2-3
Fortier (S.), conveyance of water in irrigation canals, flumes, and pipes WS 7
Forty mile expedition (1898), Alaska, report on Alaska (2), pp 76-83
Forty mile gold region of Alaska .. Ann 21, ii, pp 376-377
Forty mile quadrangle, Alaska, forest conditions in Ann 21, v, p 597
Forty mile River, Alaska, features of Ann 21, i, p 535
Forty mile series of Alaska, nature, distribution, etc., of Ann 18, iii, pp 145-155, 255-256; Alaska (1), p 23
Fossil bones, analysis of, from Massachusetts, Martha's Vineyard Ann 7, p 360
Fossiliferous deposits of Nantucket .. Bull 53, pp 28-42
Fossils, use of, in classification and correlation of strata Ann 7, pp 372-377; Ann 11, i, pp 273-275
(See, also, Invertebrates; Vertebrates; Paleontology; Plants, fossil; Insects, fossil; Bryozoa; Mollusca; Paleozoic fossils; Cambrian fossils, etc.)
Fountain formation of Colorado .. GF 7, pp 2, 4; GF 30, p 2
Fourchite, analysis of, from Arkansas, Fourche Mountain Ann 20, iii, p 548
Fourmile formation or group, correlation of Bull 82, pp 211, 229, 233, 237
Fox Hills formation or group, correlation of Bull 82, pp 211, 229, 233, 237
Fracture and flow of rocks as related to structure Ann 16, r, pp 845-874
Fracturing and mashing of mineral particles Ann 16, r, pp 694-698
France, aluminum production of .. MR 1892, p 228
antimony production of .. MR 1883-84, p 645
asphaltum production of .. Ann 18, v cont, p 945; Ann 19, vi cont, pp 198-199, 201; Ann 20, vi cont, pp 265, 268; Ann 21, vi cont, pp 329-330
Auvergne minerals ... Ann 20, vi cont, pp 594-596
bauxite deposits in .. Ann 16, iii, pp 547-549
building stone industry in .. MR 1893, p 596
Cambrian rocks of, correlation of, with those of Wales Ann 10, i, p 581
clay deposits and industry of ... Ann 19, vi cont, pp 401-402
clay products of, at Paris Exposition of 1900 Ann 21, vi cont, pp 376-384
France, copper production of, statistics of.

fossil plants of, literature of.
Ann 8, ii, pp 689-702

gold-bearing conglomerate in.
Ann 18, v, p 178

graphite production of.
Ann 19, vii cont, p 631

gypsum production of.
Ann 19, vi, cont, p 555; Ann 20, vi cont, p 666

iron, iron-ore, and steel production of.

iron-ore deposits of.
Ann 16, iii, pp 89-94

lead production of, statistics of.
MR 1883-84, pp 434, 439; MR 1885, pp 264, 271; MR 1893, p 99; Ann 16, iii, p 372; Ann 17, iii, pp 156, 158; Ann 18, v, pp 256, 257, 258; Ann 19, vi, p 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246, 247

manganese production of.
MR 1888, p 141; MR 1889-90, p 130; MR 1892, p 224; MR 1893, pp 146, 155; Ann 16, iii, pp 445, 457; Ann 17, iii, pp 210-211, 224; Ann 18, v, pp 317, 328; Ann 19, vi, p 111; Ann 20, vi, pp 147-148, 156; Ann 21, vi, pp 153, 162

mining law of.
MR 1883-84, p 998

nickel from, statistics of.
Ann 20, vi, p 281

ocher production of, statistics of.
Ann 19, vi cont, p 641; Ann 20, vi cont, p 727; Ann 21, vi cont, p 578

petroleum localities and statistics of.
MR 1893, p 532

phosphorites and phosphates of.
Bull 46, pp 48-53, 107-112

pyrites mines of.
MR 1883-84, p 885

pyrites production of, statistics of.
Ann 18, vi cont, p 1260; Ann 19, vi cont, p 573; Ann 20, vi cont, p 655; Ann 21, vi cont, p 552

quicksilver occurrences in.
Mon xii, pp 32-33

salt production of.
Ann 19, vi cont, p 611; Ann 20, vi cont, p 687

sewage utilization in.
WS 3, pp 92-98

tin deposits of.
Ann 16, iii, p 516; MR 1883-84, p 617

zinc production of, statistics of.

Franciscan series, petrography, correlation, etc., of.
Ann 15, pp 415-444

Franconia overlap, description and age of.
Ann 15, pp 327-330

Frangibility and flexibility of sedimentary deposits.
Ann 13, ii, pp 238-240

Franklin, Hampshire, and Hampden counties, Massachusetts, mineral lexicon of.
Mon xxix, pp 754-761; Bull 126

Franklin quadrangle, West Virginia-Virginia, geology of.
GF 32

Franklin white limestone of New Jersey, Sussex County, age of.
Ann 18, ii, pp 425-457; Bull 86, pp 399, 403-404

Franklinite, occurrence of.
MR 1883-84, p 773

Fredericksburg division of Texas.
Ann 21, vii, pp 199-240

Fredericksburg quadrangle, Virginia-Maryland, geology of.
GF 13

Fremont limestone of Colorado.
GF 7, p 2
French Broad River, flow of, measurements of.........................Ann 18, iv, p 116; Ann 19, iv, pp 256-259; Ann 20, iv, pp 52, 205; Ann 21, iv, pp 160-161; Bull 140, pp 80-81; WS 11, p 42; WS 15, p 60; WS 27, pp 62, 65, 66; WS 36, pp 165-166
profile of..WS 44, p 52
Frenchman River, flow of, measurements of............................Ann 18, iv, pp 196-199; Ann 20, iv, p 299; Bull 131, pp 33-34; Bull 140, pp 131-136; WS 11, p 56; WS 28, p 88; WS 39, p 439
seepage on, measurements of..................................Bull 140, pp 347-348
Freshening of lakes by desiccation.................................Ann 2, pp 177-180; Ann 3, pp 224-230; Mon i, pp 208-209, 229, 258; Mon xi, pp 224-230
Fresno, California, irrigation near................................WS 18
Friedelite, chemical constitution of..................................Bull 125, pp 71, 105
...rocks of, pre-Cambrian ..Ann 16, i, pp 822-823
Fruits, fossil, from Cretaceous of Black Hills.......................Ann 19, ii, pp 691-696
Fruits, gymnospermous, from Potomac or younger Mesozoic.........Mon xv, pp 262-273
Fry-pan deposits of Texas..Ann 18, ii, p 255
Fuchsite, analysis of, from Maryland, Montgomery County........Bull 64, p 41
chemical constitution of..Bull 125, p 46
Fulgnrite, analysis of, from Illinois, Whiteside County..........Bull 42, p 140
analysis of, from Oregon, Mount Thielsen........................Bull 9, p 16; Bull 148, p 230; Bull 168, p 220
from Colorado, Mount Lincoln....................................Mon xi, p 11
Fuller's earth, analysis of, from Austria, Cilly...................Ann 17, iii cont, p 880
analysis of, from England..Ann' 17, iii cont, p 880
from England, Surrey..Ann 18, vi cont, p 1356; Ann 19, vi cont, p 656
Woburn sands ..Ann 19, vii cont, p 409
from Florida, Ocala..Ann 19, vii cont, p 656; Ann 20, vii cont, p 742
Tampa ..Ann 18, vi cont, p 1359
...various localities ..Ann 17, iii cont, p 880
from Georgia, Decatur County....................................Ann 17, iii cont, p 880
from Germany, Steinjöfrel..Ann 17, iii cont, p 880
from Nebraska, Valentine.......................................Ann 20, vi cont, p 742
from Oklahoma, Enid..Ann 18, vi cont, p 1355
from South Dakota, various localities............................Ann 17, iii, p 880; Ann 18, vi cont, pp 1352, 1355; Ann 21, iv, p 589
in South Dakota, Black Hills, southern part........................Ann 21, iv, pp 588-590
occurrence and statistics of....................................Ann 17, iii cont, pp 876-880; Ann 18, vi cont, pp 1351-1359; Ann 19, vi cont, pp 655-656; Ann 20, vi cont, pp 741-743; Ann 21, vi cont, pp 589-592
Fumarolole action of Cripple Creek Volcano, evidence of..........Ann 16, ii, p 69
Fumarololes in California, Mono Valley............................Ann 8, i, p 372
in Colorado, lavas of Custer County..............................Ann 17, ii, p 436
Fungi from Lower Coal Measures of Missouri.........................Mon xxxvii, pp 13-15
Furnaces, iron, in blast from 1894 to 1899........................Ann 21, vi, p 93
Fuside from clays and marls of New Jersey........................Mon xviii, pp 62-64, 194-202
from Colorado formation..Bull 106, pp 150-155
Fusion, igneous, as related to pressure, investigation of.........Ann 14, i, pp 157-158
Fusion of rocks, experimental work in.............................Bull 103
Fuson formation of Black Hills...................................Ann 21, iv, pp 530-531
Gabbro, analysis of, from Alaska, Douglas Island, Treadwell mine...Ann 18, iii, p 47
Gabbro, analysis of, from California, Bidwell Bar quadrangle: Ann 17, i, pp 570, 734

- from California, Downieville quadrangle: Bull 148, p 225; Bull 168, p 214

- Placer County: Bull 148, p 212; Bull 168, p 198

- Plumas County: Ann 14, ii, p 473

- from Colorado, Stony Mountain: GF 57, p 7

- from Idaho, Hailey: Ann 20, iii, p 81; Bull 168, p 137

- from Maryland (powder from 23 specimens): Bull 28, p 39

- Mount Hope: Ann 15, p 673

- from Michigan, Menominee River: Bull 55, p 81

- Placer County: Bull 148, p 212; Bull 168, p 198

- Plumas County: Ann 14, ii, p 473

- from Missouri, St. Louis: Bull 62, p 76

- from Montana, Livingston quadrangle: GF 1, p 3

- from New York, Adirondack region: Bull 168, pp 36, 37

- from Tennessee, Kittitas County: Bull 168, p 225

- from Wisconsin, Menominee River: Bull 55, p 81

- from Yellowstone Park, Absaroka Range: Mon xxxii, ii, pp 260, 261, 340; Bull 148, p 123; Bull 168, pp 93, 95

- from Granite Falls, Minnesota, description of, as one of the educational series (garnetiferous): Bull 150, pp 282-286

- from Maryland, Mount Hope, description of, as one of the educational series: Bull 150, pp 278-282

- of Adirondacks, association of, with titaniferous iron ores: Ann 19, iii, pp 397-399

- of California, Bidwell Bar quadrangle: GF 43, p 3

- Big Trees quadrangle: GF 51, p 5

- Colfax quadrangle: GF 66, p 3

- Downieville quadrangle: GF 37, p 4

- Jackson quadrangle: GF 11, p 4

- Nevada City and Grass Valley districts: Ann 17, ii, pp 51-52; GF 29, p 4

- Placerville quadrangle: GF 3, p 2

- Pyramid Peak quadrangle: GF 31, p 5

- Sonora quadrangle: GF 41, pp 4-5

- Truckee quadrangle: GF 39, p 4

- of Delaware and associated rocks: Bull 59

- of Keweenaw series: Ann 3, pp 102-105; Mon v, pp 50-56

- of Maryland, near Baltimore, and associated hornblende rocks: Bull 28

- of Michigan, Crystal Falls district: Mon xxxvi, pp 233-249

- of Minnesota, Pigeon Point: Bull 109, pp 22-43, 60-66, 98-102, 105-118

- of Montana, Livingston quadrangle: GF 1, p 3

- of Sierra Nevada: Ann 14, ii, pp 474-476; Ann 17, i, pp 575-576, 641-642, 670

- of Yellowstone Park and vicinity: Mon xxxii, ii, pp 246-252

- thin section of, from Michigan, Sturgeon Falls, showing hornblende around diavage: Bull 62, p 70

- from Michigan, Sturgeon Falls, veins filled with secondary albite in: Bull 62, p 69

- from Minnesota, Granite Falls (garnetiferous): Bull 150, pp 278-279; Bull 157, pp 146-147

- Granite Falls district, showing contact of finely granular dike and hypersthene-free gabbro: Bull 157, pp 154-155

- near Duluth: Mon v, pp 34-35

- Pigeon Point (altered): Bull 109, pp 36-37, 42-43
Gabbro, thin section of, from Minnesota, sec. 12, T. 115 N., R. 39 W. (altered) Bull 157, pp 146-147
thin section of, from New York, Adirondacks Ann 19, i, pp 402-403
from New York, Lincoln Pond Ann 19, i, pp 406-407
from Sierra Nevada Ann 17, i, pp 790-791
(poikilitic) .. Ann 17, i, pp 782-783
from Yellowstone Park Mon xxxii, n, pp 250-251
Gabbro family of rocks, scope and characteristics of Ann 17, i, p 733
Gabbro-diorite, analysis of, from Maryland, Ilchester An 15, p 673; Bull 148, p 85; Bull 168, p 44
analysis of, from Maryland, near Baltimore Bull 28, pp 37, 39
from Maryland near Pikesville Bull 28, p 37; Bull 150, p 369
from Minnesota, Minnesota Falls Bull 148, p 113; Bull 168, p 83
from Wisconsin, Lower Quinnesec Falls Bull 62, p 89; Bull 148, p 101; Bull 168, p 71
of California, Bidwell Bar quadrangle GF 43, p 3
Jackson quadrangle GF 11, p 4
Placerville quadrangle GF 3, p 2
Sacramento quadrangle GF 5, p 2
Smartsville quadrangle GF 18, p 4
of Colorado, Telluride quadrangle GF 57, pp 7, 8, 9
of Delaware ... Bull 59, p 15-19
of Maryland, near Baltimore Bull 28, pp 25-32
near Baltimore, genetic relations of hypersthene-gabbro and Bull 28, pp 32-49
thin section of, from Maryland, Liberty road Bull 28, pp 64-65
from Maryland, Mount Hope, from transitional zone between hypersthene-gabbro and Bull 28, pp 60-61
from Minnesota, Minnesota Falls Bull 157, pp 144-145
Gabbro-gneiss, analysis of, from Minnesota, Yellow Medicine County ... Bull 150, p 572
Gabbro-granite from Delaware Bull 59, pp 19-21
from Minnesota, Minnesota Falls, description of, as one of the educational series, hornblendic (gabbro-diorite) Bull 150, pp 369-372
Gabbro-porphryry, analysis of, from Colorado, near Mount Sneffels Bull 168, p 163; GF 57, p 7
analysis of, from Yellowstone Park, Absaroka Range Mon xxxii, ii, p 260; Bull 148, p 122; Bull 168, pp 92, 97
of Yellowstone Park and vicinity Mon xxxii, ii, pp 242-251
Gabbro-pyroxenite of California, Jackson quadrangle GF 11, p 4
Gabbro-schist, thin section of, from Minnesota, southwestern (hypersthene-free) Bull 157, pp 140-141, 142-143, 148-149
thin section of, from Minnesota, Wabasha Creek area (altered hypersthene-bearing) Bull 157, pp 148-149
Gabbro-schists, gneisses, and associated rocks of Minnesota, southwestern Bull 157
Gadolinite, analysis of, from Texas, Llano County Bull 64, p 40
chemical constitution of Bull 125, pp 70, 71, 105
occurrence and statistics of .. MR 1888, pp 582-583; MR 1889-90, p 448; MR 1891, p 540; MR 1892, p 781; MR 1893, p 682; Ann 16, iv, p 605
Gadsden purchase, account of Bull 171, pp 26-27
Gadsden quadrangle, Alabama, geology of GF 35
Galinite, analysis of, from Maryland, Montgomery County Bull 9, p 9
analysis of, from Massachusetts, Rowe Bull 126, p 82
from North Carolina, Mitchell County Bull 74, p 33
Gale sands of Washington GF 54, p 5
Galena, alteration products of, analysis of, from Colorado, Leadville Mon xi, p 606
(See Lead ore.)
Galena and cerussite, relative richness of. Mon xii, pp 553-556
Galena and pyrite, alteration products of, analysis of. Mon xii, p 606
Galena limestone of Canada. Bull 81, p 334
of Illinois, thickness, etc., of. Ann 17, ii, pp 835-836
of Iowa. Ann 11, i, pp 327-329
Galisteo group of rocks of New Mexico. Bull 84, pp 301-303, 317, 325
Galisteo formation of Montana, Castle Mountain district. Bull 139, p 37
of Montana, Livingston and Three Forks quadrangles. GF 1, p 2; GF 24, p 2
near Three Forks. Bull 110, pp 22-25
of Wyoming. GF 52, p 2
of Yellowstone Park. Mon xxxii, ii, pp 8, 22, 23, 58, 153, 206, 212, 214; GF 30, p 4
Gallatin Mountains, geology and intrusive rocks of. Mon xxxii, ii, pp 1-85
Gallatin quadrangle, Wyoming. (See Yellowstone Park.)
Gallatin Range, Montana, rocks of. GF 1, p 1
hydrography of basin of. Ann 11, ii, pp 38-39, 93
hydrography and irrigation in valley of. Ann 13, iii, pp 41-46
profile of. WS 44, p 71
seepage measurements on. Ann 19, iv, pp 271-275
Galvanic, thermo-electric, and magnetic properties of wrought iron, steel, and cast iron in different states of hardness. Bull 14
Gamopetale of Laramie flora. Bull 37, pp 104-115
analysis of, from New Hampshire, Orford (schistose). Bull 55, p 28
in California, Nevada City and Grass Valley districts, origin and solubility.
of. Ann 17, ii, pp 174, 176
in Oregon, veins of Bohemia region. Ann 20, iii, pp 17-18
Gangue minerals of Alaska known to occur in mines. Ann 18, iii, pp 61-63
Gannett (H.), altitudes in Alaska. Bull 169
average elevation of United States. Ann 13, ii, pp 283-289
boundaries of United States and of the several States and Territories, with historical sketch of Territorial changes. Bull 13
boundaries of United States, States, and Territories, with outline of history of important changes (2d ed.). Bull 171
corundum and emery. MR 1882, pp 476-477
dictionary of altitudes in United States. Bull 5
dictionary of altitudes in United States (2d ed.). Bull 76
dictionary of altitudes in United States (3d ed.). Bull 160
dictionary of geographic positions in United States. Bull 123
gazetteer of Kansas. Bull 154
gazetteer of Utah. Bull 166
geographic dictionary of Connecticut. Bull 117
geographic dictionary of Massachusetts. Bull 116
geographic dictionary of New Jersey. Bull 118
geographic dictionary of Rhode Island. Bull 115
magnetic declination in United States. Ann 17, i, pp 203-440
manual of topographic methods. Mon xxii
Gannett (H.), physiographic types................................. TF 1
physiographic types (continued)................................. TF 2
profiles of rivers in United States............................. WS 44
results of primary triangulation.................................. Bull 122
summary of forestry work in 1899-1900......................... Ann 21, v, pp 9-25
summary of primary triangulation by the Survey between 1882 and 1894... Ann 16, i, pp 875-885

work in charge of, 1882-1900 Ann 4, pp 3-16;
Ann 5, pp 3-14; Ann 6, pp 3-17; Ann 7, pp 45-60; Ann 8, i, pp 97-120; Ann 9, pp 49-67; Ann 10, i, pp 83-105; Ann 11, i, pp 33-48; Ann 12, i, pp 23-42; Ann 13, i, pp 69-74; Ann 14, i, pp 169-175; Ann 15, pp 111-119; Ann 16, i, pp 61-77; Ann 17, i, pp 93-109; Ann 18, i, pp 115-117; Ann 19, i, pp 121-127; Ann 20, i, pp 138-140; Ann 21, i, pp 156-159

Gannett (S. S.), work in charge of.................................. Ann 18, i, p 112;
Ann 19, i, pp 120; Ann 20, i, p 137; Ann 21, i, pp 118, 234

Ganoidei of Devonian age.. Mon xvi, pp 41-45
Ganomalite, chemical constitution of............................ Bull 125, pp 81, 105

Ganophyllite, analysis of... Bull 125, p 52
chemical constitution of... Bull 125, pp 51-52, 103

Garnet, analysis of, from Colorado, Gunnison County........ Bull 113, p 34
from Kentucky, Elliott County dike.............................. Bull 148, p 92; Bull 168, p 56
from Massachusetts, Goshen.. Bull 126, p 85
from Wisconsin, Penokee Gap...................................... Bull 60, p 149
chemical constitution of... Bull 125, pp 20-28, 30, 55, 103
in rocks of Pacific slope.. Mon xiii, p 87
thin section of, from Massachusetts (from pegmatite)........ Mon xxix, pp 106-107
varieties and composition of....................................... Bull 150, pp 31-32
(See, also, Precious stones.)

Garnet, abrasive, occurrence and statistics of.................. Ann 16, iv, pp 593-594; Ann 17, iii cont, pp 948-950; Ann 18, v cont, pp 1230-1231; Ann 19, vi cont, p 528; Ann 20, vi cont, p 608; Ann 21, vi cont, pp 463, 467-468

Garnet, spessartite, from Texas, description and analysis of........ Bull 90, pp 39-40
Garnet-amphibolite, thin section of, from Massachusetts, Plainfield (calcareous)... Mon xxix, pp 302-303
Garnet-biotite-norite of Massachusetts, western................ Mon xxix, pp 345-346
Garnet-epidote lode in Sierra Nevada............................. Ann 17, i, p 706
Garnet-graphite-amphibolite, thin section of, from Massachusetts, Leverett........ Mon xxix, pp 302-303
Garnetiferous gabbro from Minnesota, Granite Falls, description of, as one of the educational series................. Bull 150, pp 282-286
Garnetiferous hornblende-schist from New Hampshire, Hanover, description of, as one of the educational series.......... Bull 150, pp 362-365
Garrard sandstone of Kentucky................................. GF 46, p 2
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Garrison (F. L.), alloys of iron and chromium Ann 16, iii, pp 610-614

alloys of iron and chromiumAnn 16, iii, pp 615-623

Gas, hot spring, analysis of, from California Mon xiii, p 258

Gas, illuminating and fuel, and by-products, statistics ofAnn 20, vi cont, pp 225-250

Gas, natural, analysis of, from California, Mayacmas district ...Mon xiii, p 373

analysis ofMR 1888, p 510

from Canada, PetroliaMR 1883-84, p 235

from Caspian Sea, BakuMR 1883-84, p 235

from Indiana, various localities ...Ann 8, ii, pp 592, 646; Ann 11, i, p 594

from Indiana and OhioAnn 11, i, p 592

from Kansas, Iola .. .Ann 18, v cont, p 912

from New York, various localitiesMR 1883-84, p 235

from Ohio, Findlay, Fostoria, and St. Marys Ann 8, ii, pp 591, 592; Ann 11, i, p 594; MR 1888, p 490; MR 1892, p 654

from Ohio and IndianaAnn 11, i, p 592

from Pennsylvania, various localities ...MR 1883-84, p 235; MR 1892, p 653

from South Wales .. .MR 1883-84, p 235

from Utah, near Salt Lake CityAnn 17, iii cont, p 749; Ann 18, v cont, p 915

from West Virginia, Wirt County MR 1883-84, p 235

conditions and modes of accumulation of Ann 8, ii, pp 507-519; Ann 11, i, pp 654-661

history of use, geologic distribution, storage, transportation, etc., ofMR 1885, pp 169-173; MR 1892, pp 658-676; Ann 16, iv, pp 405-421

in California, Marysville quadrangle GF 17, p 2

in Indiana .. Ann 11, i, pp 579-742

in Japan .. MR 1888, pp 511-512

in Ohio and Indiana, and petroleum, Trenton limestone as source ofAnn 8, ii, pp 475-662

in Pennsylvania, horizons of MR 1892, pp 616, 676-680

in West Virginia, horizons of Ann 20, vi cont, pp 35-36

origin of, theories respecting Ann 8, ii, pp 485-506

origin, constitution, future, etc., of Ann 11, i, pp 589-616

pressure and measurement of Ann 8, ii, pp 593-603; Ann 11, i, pp 662-675

production of, geologic factors in Ann 8, ii, pp 581-589

storage and pumping ofMR 1891, pp 441-443

transportation ofMR 1886, pp 493-496

Gas liquor, analyses of .. .Ann 20, vi cont, pp 239

Gas rock, analyses of, from Indiana, various localitiesAnn 8, ii, pp 556, 641, 661

analyses of, from Ohio, various localitiesAnn 8, ii, pp 550-555, 661; Bull 148, p 261; Bull 168, p 259

Gas wells, care ofAnn 11, i, pp 741-742

of Illinois .. .Mon xxxviii, p 557

pressure and production of MR 1886, pp 491-492

Gases, discharge of, from clay beds Ann 17, i, p 971

from pyrites burners, analysis of MR 1886, p 662
Gases used in steel making, analysis of ... Bull 25, p 34
viscosity of .. Bull 54, pp 239-306
Gassy Creek, Colorado. (See Grassy Creek.)
Gastaldite, chemical constitution of .. Bull 125, p 92
Gasteropoda from Bear River formation .. Bull 128, pp 41-61
from Cambrian, lower .. Ann 10, i, pp 589, 616-619
from Cambrian, middle, of North America Bull 30, pp 125-131
from Carboniferous of Nevada, Eureka district Mon viii, pp 254-263
from Chico-Tejon series of California .. Bull 51, pp 15-26
from Colorado formation ... Bull 106, pp 127-163
from Cretaceous of New Jersey recognized at other localities, table showing

Mon xviii, p 90

of Pacific coast ... Bull 133, pp 65-72
of Vancouver Island ... Bull 51, pp 44-47
from Devonian of Nevada, Eureka district Mon viii, pp 182-196
from Devonian, higher, of New York, Ontario County Bull 16, pp 22-23, 52, 55
from Eocene .. Bull 83
of middle Atlantic slope .. Bull 141, pp 63-72
from Great Basin ... Bull 11, pp 16-22
from marl beds of New Jersey, table showing number of genera and species
under each family ... Mon xxviii, p 26
from Miocene deposits of New Jersey ... Mon xxiv
from Nevada, Eureka district ... Mon viii,
pp 78-85, 182-196, 254-261; Mon xx, pp 323, 329, 332-333
from Olencellus zone .. Ann 10, i, pp 616-619
from Permian of Texan .. Bull 77, pp 24-26
from Pleistocene and Recent of Great Basin Bull 11, pp 16-22
from Puget group .. Bull 51, pp 62-63
from Raritan clays and greensand marls of New Jersey Mon xviii
from Silurian, lower, of Nevada, Eureka district Mon viii, pp 78-84
from Yellowstone Park ... Mon xxxii, ii, pp 505-507, 629-630, 632-633, 639
of North America, nonmarine fossil .. Ann 3, pp 443-471
Gastrochenidae from marls of New Jersey Mon ix, pp 192-193, 203-204
Gates, regulator, in irrigation works ... Ann 13, iii, pp 238-244
Gatun beds of Colombia, correlation of Ann 18, ii, p 344
Gauley River, West Virginia, profile of WS 44, p 48
Gavilan limestone of California.. Mon xiii, p 181
Gay Head sands and gravels of Martha's Vineyard, correlation of.. Ann 18,
i, pp 337, 339; Bull 84, pp 35-37, 326
Gaylussite, occurrence and analysis of, from Nevada, near Ragtown... Mon xi, p 76
pseudomorphs of, relation of Lahontan thinolite to Bull 12, pp 25-28
Gazetteer of Kansas ... Bull 154
of Utah ... Bull 166
(See, also, Dictionary, geographic.)
Gearksutite from near Pikes Peak, Colorado, general description and chemical
investigation of ... Bull 20, pp 58-62
Gedrite, analysis of, from Massachusetts, Warwick Bull 126, p 86
Gehlenite, analysis of, from Hungary .. Bull 125, p 27
chemical constitution of ... Bull 125, pp 26-27, 103
Gems; collections, behavior with Roentgen rays, literature, etc., of........ Ann 17, iii cont, pp 919-923; Ann 18, v cont, pp 1213-1215; Ann 19, vi cont, pp 508-512
in Montana, Little Belt Mountains quadrangle GF 56, p 9

Buli. 177—01—22

(See, also, Precious stones.)

Geinitz (Hans Bruno), biographic sketch of Ann 5, p 374

Genesee beds of New York, petrography and paleontology of Bull 16, pp 13-34

Genesee River, flow of, measurements of Ann 19, iv, pp 262-264;
Ann 20, iv, pp 52, 225-227; WS 24, pp 70-75

Genesee section of New York, fossil faunas of Bull 41

Genevieve group, geologic name proposed Bull 80, p 169

Genth (F. A.), minerals of North Carolina Bull 74

Genthite, analysis of, from Oregon, Douglas County ... Bull 148, p 231; Bull 168, p 22
chemical constitution of .. Bull 125, p 74

Geode, description of, as one of the educational series Bull 150, pp 111-113

Geographic dictionary. (See Dictionary, geographic; also Gazetteer.)

Geographic distribution of fossil plants Ann 8, ii, pp 663-960

Geographic names in Alaska, list of Ann 21, ii, pp 487-509

Geographic positions in United States, dictionary of Bull 123

Geographic. (See, also, Topographic.)

Geoid, form and position of .. Mon 1, pp 421-424; Bull 48

Geologic folios published by Geological Survey, list of. (See pp 64-66 of this bulletin.)

Geologic investigations in States and Territories. (See each State and Territory.)

Geologic map of United States. (See notes on pp 12, 17, 31.)
plan for .. Ann 8, i, pp 74-76; Ann 15, pp 79-90

Geologic maps of portions of United States and of the world. (See Map, geologic, in this index.)

Geologic nomenclature and map notation, conference of geologists and lithologists on, in January, 1889 .. Ann 10, i, pp 56-67

Geological Survey, laws establishing and extending Ann 1, pp 3-4; Ann 4, p xiii
organization of, in 1900 and 1901 ... Ann 21, i, pp 19-22, 60-61
plan and organization of, in earlier years Ann 1, pp 6-14;
Ann 7, pp 3-17; Ann 8, ii, pp 3-69

Geomorphic geology, domain and processes of Ann 11, ii, pp 244-273

Geomorphogeny of Chattanooga district Ann 19, ii, pp 32-58

Geomorphology, a new field in geology Ann 14, i, pp 116-120, 229

Cape Cod Peninsula, origin of Ann 18, ii, pp 504
climate, effect of, on form Ann 18, ii, pp 151-152
divides, migration of, laws of Ann 18, ii, pp 470-472
drainage, relations of, to geomorphogeny Ann 19, ii, pp 38
erosion, marine, on Atlantic coast Mon xxxix, pp 42-46
glacial modification of form and drainage Ann 18, ii, pp 170-184
gradation and stream adjustment, cycles of, in Chattanooga district Ann 19, ii, pp 37-58
harbors, geologic history of Ann 13, ii, pp 93-209
land sculpture, general principles of Ann 18, ii, pp 144-153
monadnocks in Chattanooga district Ann 19, ii, pp 28-30
of Catactin belt ... Ann 14, ii, pp 366-394
of Chattanooga district Ann 19, ii, pp 11-31
of Connecticut; Triassic trough, origin of Ann 18, ii, pp 37-40
of San Francisco Peninsula Ann 15, pp 468-476
peneplains, classification of relief with reference to Ann 19, ii, pp 23-31
Geomorphology; peneplains, origin of .. Ann 19, ii, pp 32-34
physical features of Illinois .. Ann 17, ii, pp 703-717
of Indiana and Ohio .. Ann 18, iv, pp 426-438
physiographic changes, recent, in Cripple Creek region Ann 16, ii, pp 18-19
physiographic terms, definition of Ann 19, ii, pp 21-23
physiographic types .. TF 1, TF 2
San Clemente Island, topography of Ann 18, ii, pp 466-468
terraces of San Clemente Island Ann 18, ii, pp 473-477
topographic forms, origin of .. Mon xxii, pp 108-121
uplands and lowlands of Connecticut Ann 18, ii, pp 11-15
(See, also, Physiography.)

Geornorphy. (See Geomorphology.)

George River limestone of Nova Scotia and Cape Breton Bull 86, pp 242, 243
Georges Creek and Cumberland coal field, extent and production of Ann 14, ii, p 579

Georgetown limestone of Texas .. Ann 21, vii, pp 262-266; GF 64, pp 1-2
Georgia; Altamaha Basin, stream measurements in Ann 18, iv, pp 77-84; Ann 19, iv, pp 227-233; Ann 20, iv, pp 51, 170-172; WS 11, pp 19-23; WS 15, pp 41-44; WS 27, pp 43, 44, 46; WS 36, pp 133-137
Altamaha Basin, water powers in Ann 20, iv, pp 166-169
altitudes in. (See “elevations” under this heading.)
Apalachicola Basin, streams in, list of Ann 20, iv, pp 175-177
artesian and other wells in .. Bull 138, pp 222-224
bauxite deposits in, as source of aluminum MR 1892, pp 237-240
location, structure, origin, geologic relations, etc., of MR 1893, pp 162-167
bauxite region, topography, stratigraphy, geologic history, etc., of Ann 16, iii, pp 551-597
boundary lines of, and cession by, of territory to General Government Bull 13, pp 27, 97-100; Bull 171, pp 103-106
brick industry of .. MR 1887, pp 535, 537; MR 1888, p 558
Broad River, flow of, measurements of Ann 19, iv, pp 225-227; Ann 20, iv, pp 51, 163; Ann 21, iv, pp 132-133; WS 15, p 40; WS 27, pp 42, 44, 46; WS 36, pp 131-132
building stone in Ringgold quadrangle GF 2, p 3
in Stevenson quadrangle ... GF 19, p 3
production of, statistics of MR 1882, pp 451, 452; MR 1886, p 542; MR 1887, pp 514, 518; MR 1888, pp 536, 538, 541, 543; MR 1889-90, pp 374, 386-388; MR 1891, pp 457, 458; MR 1892, pp 706, 707, 709, 710; MR 1893, p 544 et seq; Ann 16, iv, p 437 et seq; Ann 17, iv, cont, p 760 et seq; Ann 18, iv, cont, p 950 et seq; Ann 19, vi, cont, p 206 et seq; Ann 20, vi, cont, p 271 et seq; Ann 21, vi, cont, p 335 et seq
building stone production of, statistics of MR 1892, p 739; MR 1893, p 619; Ann 16, iv, p 577; Ann 17, iv, cont, p 801; Ann 18, iv, cont, p 1178; Ann 19, vi, cont, p 495; Ann 20, vi, cont, pp 539, 547; Ann 21, vi, cont, p 407
Chattanooga district, physiography of Ann 19, ii, pp 1-58
Chestatee River, flow of, measurements of Ann 18, iv, p 92
clay in Ringgold quadrangle ... GF 2, p 3
Georgia; clay deposits and products of, statistics of: MR 1892, p 734; MR 1893, pp 615-616; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, vii cont, pp 819 et seq; Ann 18, vi cont, pp 1078 et seq; Ann 19, vii cont, pp 318 et seq, 355; Ann 20, v cont, pp 468 et seq, 517.

in Ringgold quadrangle: GF 2, p 2.
in Stevenson quadrangle: GF 19, p 3.

elevations in, lists of: Ann 18, i, pp 311–323; Ann 19, i, pp 249–253; Ann 20, i, pp 370–383, 387; Bull 5, pp 79–83; Bull 76; Bull 160, pp 122–131.

fuller’s earth, occurrence of: Ann 18, v cont, p 1359.
geologic and paleontologic investigations in: Ann 6, p 24; Ann 7, p 114; Ann 9, pp 78, 122; Ann 10, 1, p 120; Ann 12, 1, pp 54, 71, 79, 117; Ann 13, 1, p 136; Ann 14, 1, p 222; Ann 15, pp 130, 141, 148–149; Ann 16, 1, p 22; Ann 17, 1, pp 26–28; Ann 18, 1, pp 29–30; Ann 19, 1, pp 34–35, 38; Ann 20, 1, p 38; Ann 21, 1, p 72.
geologic maps of, listed: Bull 7, pp 102, 103.

(See Map, geologic, of Georgia.)
geologic sections in: (See Section, geologic, in Georgia.)
gold belt in, mines, etc: Ann 16, vii, pp 293–300.
Georgia, gold mining in, history of .. Ann 20, vi, pp 112, et seq
gold and silver from, statistics of.. Ann 2, p 385; MR 1882, pp 172, 176, 177, 178; MR 1883-84, pp 312, 313; MR 1885, p 201; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 30, 37; MR 1889-90, p 49; MR 1891, pp 75, 77, 78, 79; MR 1892, pp 51, 52, 53, 54, 55, 56, 88; MR 1893, pp 50, 51, 55, 57, 58, 60, 61; Ann 16, vii, p 258; Ann 17, vii, pp 72, 73, 74, 75, 76, 77; Ann 18, vi, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, p 121 et seq
harbors on coast of... Ann 13, ii, pp 183-184
iron ore in Ringgold quadrangle.. GF 2, pp 2-3
in Stevenson quadrangle... GF 19, p 3
limestone in Ringgold quadrangle.. GF 2, p 3
production of.. MR 1892, p 556; Ann 16, iv, pp 437, 494, 495, 496; Ann 17, iv cont, pp 760, 788, 789, 790; Ann 18, v cont, pp 950, 1044, 1045, 1046, 1049; Ann 19, vi cont, pp 206, 280, 282, 283, 287-288; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 347; Ann 21, vi cont, pp 335, 337, 358, 359, 360
magnetic declination in... Ann 17, i, pp 325-329
in Cartersville region, character of.. MR 1892, p 180
in Ringgold quadrangle.. GF 2, p 3
maps, geologic. (See Map, geologic, of Georgia.)
maps, topographic. (See Map, topographic, of Georgia; also pp 72-73.)
mineral spring resorts in.. Ann 14, ii, p 82
Georgia, mineral springs of... Bull 32, pp 81-85; MR 1888-84, p 981; MR 1885, p 537; MR 1886, p 716; MR 1887, p 683; MR 1888, p 626; MR 1889-90, p 526; MR 1891, pp 603, 604; MR 1892, pp 824, 826; MR 1893, pp 774, 775, 784, 787, 794; Ann 16, iv, pp 709, 712; 720; Ann 17, iii cont, pp 1026, 1052, 1041; Ann 18, v cont, pp 1571, 1377, 1386; Ann 19, vi cont, pp 661, 667, 677; Ann 20, vi cont, pp 749, 756, 766; Ann 21, vi cont, pp 599, 607

minerals of, useful.................................. MR 1882, pp 675-677; MR 1887, pp 720-722
ocher production of.................................. MR 1891, p 595

water powers on.. Ann 20, iv, p 167

profile of.. WS 44, p 29

water powers on.. Ann 20, iv, pp 167-168

paint, mineral, production of, statistics of.. MR 1892, p 816; MR 1893, pp 759, 760; Ann 16, iv, pp 695, 696; Ann 17, iii cont, pp 1013, 1014; Ann 18, v cont, pp 1337, 1383, 1389; Ann 19, vi cont, pp 626, 637, 638; Ann 20, vi cont, pp 722, 723, 724; Ann 21, vi cont, pp 572, 573, 574

pumping water in...................................... Ann 21, iv, pp 142-144
pyrites from.. MR 1883-84, p 880; MR 1885, p 506
rainfall at Atlanta..................................... Ann 18, iv, p 70
at Atlanta and Savannah (average).. Ann 21, iv, p 668
rainfall and run-off in Chattahoochee and Coosa basins........................ Ann 20, iv, pp 177-181
in Savannah and Altamaha basins.. Ann 20, iv, pp 158, 161

Ringgold quadrangle, geology of.. GF 2, p 3
road material in Ringgold quadrangle... GF 2, p 3
in Stevenson quadrangle... GF 19, p 3

sandstone production of, statistics of.................................. MR 1892, p 710; Ann 16, iv, pp 437, 484, 485, 486; Ann 17, iii cont, pp 776, 777; Ann 18, v cont, pp 950, 1012, 1013, 1014; Ann 19, vi cont, pp 265, 266; Ann 20, vi cont, pp 337, 338; Ann 21, vi cont, pp 355, 356

Savannah River, flow of, measurements of.................................. Ann 14, ii, pp 147-149; Ann 18, iv, pp 75-77; Ann 20, iv, pp 50-51, 165; Ann 21, iv, p 135; Bull 140, pp 72-74; WS 27, pp 28-31, 41-42, 44, 46; WS 36, pp 130-131

profile of... WS 44, pp 27-28

water powers in basin of.................................. Ann 20, iv, pp 155-156
sections, geologic, in. (See Section, geologic, in Georgia.)
soapstone production of.................................. Ann 20, vi cont, p 562
soils in Ringgold quadrangle... GF 2, p 3
Georgia; soils in Stevenson quadrangle.................................GF 19, pp 3-4
Stevenson quadrangle, geology of..GF 19
stream measurements in, list of miscellaneous....................WS 27, p 45
streams in, general discussion of....................................Ann 18, iv, pp 68-72
timber in, estimates of...Ann 19, v, p 17
tin deposits of...Ann 16, iv, p 527
Toccoa River, flow of, measurements of............................Ann 21, iv, pp 166-167; WS 27, pp 60, 64, 65, 66; WS 36, pp 171-172
topographic maps of. (See Map, topographic, of Georgia; also pp 72-73.)
topographic work in..Ann 6, p 9; Ann 7, p 52;
Ann 8, p 102; Ann 9, p 53; Ann 10, i, pp 91, 92; Ann 11, i, p 37; Ann 12, i, p 24; Ann 16, i, pp 64, 66, 69, 71; Ann 17, i, pp 97, 100-101; Ann 18, i, pp 94, 95, 103; Ann 19, i, pp 89, 90, 99-100; Ann 20, i, pp 100, 102, 112; Ann 21, i, pp 119, 128
Towaliga River, flow of, measurements of..........................WS 36, p 130
triangulation in..Bull 122, pp 112, 113, 114, 115, 116
Tugaloo River, water powers on......................................Ann 20, iv, p 155
woodland area in...Ann 19, v, p 6
Yellow River, flow of, measurements of.............................Ann 19, iv, pp 229-230; Ann 21, iv, pp 137-138; WS 15, p 43; WS 27, pp 31-32; WS 36, pp 134-135
water powers on..Ann 20, iv, p 166
Georgia formation of Vermont, thickness, fossils, age, etc., of......Bull 30, pp 13-24
Georgia slates of Vermont, literature concerning..................Bull 81, pp 98-114
origin of name..Bull 81, pp 249-250
Gering formation of Nebraska..Ann 19, iv, pp 735, 747-755
Germany, aluminum production of.....................................MR 1892, p 228
antimony production of, statistics of...............................MR 1883-84, pp 645-646
asphaltum production of, statistics of...............................MR 1893, pp 666, 667; Ann 18, v cont, p 946; Ann 19, vi cont, pp 199-201; Ann 20, vi cont, pp 266, 267; Ann 21, vi cont, p 330
building-stone industry in, statistics of...........................MR 1893, p 595
clay deposits and industry of, statistics of........................Ann 19, vi cont, pp 411-435
fossil plants of, literature of..Ann 8, iv, pp 744-775
gold and silver production of, compared with that of other countries...MR 1883-84, pp 319, 320; MR 1889-90, p 49
graphite production of, statistics of................................Ann 19, vi cont, pp 630
gypsum production of, statistics of.................................Ann 19, vi cont, pp 585; Ann 20, vi cont, pp 666
Germany, iron-ore deposits of, character and location of........Ann 16, iii, pp 134-137
mining law of..MR 1883-84, pp 992-996, 1001
nickel production of, statistics of.................................MR 1882, pp 406, 410; MR 1883-84, p 540; Ann 20, vi, p 281; Ann 21, vi, p 289
ocher production of, statistics of.................................Ann 19, vi cont, p 641; Ann 20, vi cont, p 727
petroleum localities and statistics of...............................MR 1893, pp 525-526, 532; Ann 16, iv, pp 395-397; Ann 17, iii, cont, p 715; Ann 18, v cont, pp 868-871; Ann 19, vi, cont, pp 144-146; Ann 20, vi, cont, pp 168-171; Ann 21, vi, cont, pp 227-234
pyrite mines of..MR 1883-84, p 885
quicksilver deposits of..Ann 9, p 628; GF 30, p 4
salt production of, statistics of..................................MR 1883-84, p 849; Ann 19, vi, cont, p 611
sewage utilization in..WS 3, pp 87-92
tin deposits and production of, statistics of.......................MR 1883-84, p 618; Ann 16, iii, pp 460, 465, 512-514
Geyser Basin, upper, of Yellowstone Park, Firehole River........Ann 9, p 651-669
Geyser waters, analyses of..Ann 9, p 665
Geyserite, analysis of, from Iceland................................Ann 9, p 670
analysis of, from New Zealand, Rotorua.............................Bull 64, p 45
occurrence of..MR 1883-84, p 761
Geyserers of Yellowstone Park.....................................Ann 9, p 628; GF 30, p 4
Geyserers and hot springs, laboratory experiments relating to...Ann 14, i, pp 158-159
Gignoux (J. E.), manufacture of bluestone at Lyon mill, Dayton, Nevada...MR 1882, pp 297-305
Gila Basin, Arizona, evaporation in.................................WS 33, pp 32-33
hydrography of..Ann 11, ii, pp 58-63, 100, 108; Ann 12, ii, pp 292-316; Ann 21, iv, pp 334-358
irrigation problems relating to...................................Ann 11, ii, pp 227-229
rainfall, area, temperature, water supply, wind, canals, etc., in......Ann 12, ii, pp 300-301, 307; WS 2, pp 16-55; WS 33, pp 18-21
silt carried by...WS 33, pp 32-33
storage of water on..WS 33, Ann 21, iv, pp 358-379
Gila River Indian Reservation, water supply, conditions, etc., of WS 33, pp 9-18
Gilbert (G. K.), descriptions of rock specimens in educational series Bull 150, pp 58-59, 69-70
gleology of Pueblo quadrangle, Colorado GF 36
Lake Bonneville, geologic history of Ann 2, pp 167-200; Mon 1
new method of barometric hypsometry Ann 2, pp 403-566
recent earth movement in Great Lakes region Ann 18, ii, pp 595-647
sketch of Quaternary lakes of Great Basin Bull 11, pp 9-12
topographic features of lake shores Ann 5, pp 69-123
underground water of Arkansas Valley in eastern Colorado Ann 17, ii, pp 551-601
work in charge of, 1879-1900 .. Ann 1, pp 23-28; Ann 2, pp 10-17; Ann 3, pp 14-16; Ann 4, pp 19-21; Ann 5, pp 30-34; Ann 6, pp 22-25; Ann 7, pp 65-68; Ann 8, i, pp 128-132; Ann 9, pp 76-78; Ann 10, i, pp 108-113; Ann 11, i, pp 49-62; Ann 12, i, pp 52-65; Ann 13, i, pp 83-98; Ann 14, i, pp 182-187; Ann 15, pp 144-148; Ann 16, i, pp 25-27; Ann 17, i, pp 31-34; Ann 18, i, pp 58-60; Ann 19, i, pp 54-56; Ann 20, i, p 36; Ann 21, i, pp 84-85
Giles formation in Virginia and West Virginia GF 26, p 2; GF 44, p 3
Gill (D. W.), work in charge of, 1889-1898 Ann 11, i, pp 133-134; Ann 12, i, pp 136-138; Ann 13, i, pp 164-165; Ann 14, i, pp 270-272; Ann 15, pp 199-200; Ann 16, i, pp 78-79; Ann 17, i, pp 109-110; Ann 18, i, pp 117-118; Ann 19, i, pp 127-128
Gillespie formation of Texas .. Ann 18, ii, p 221
Gilsonite, analyses of .. Ann 17, i, pp 919, 920; Ann 18, v, pp 940, 941
conditions of impregnation .. Ann 17, i, p 938
deposits of, in Utah ... Ann 17, i, pp 909-949
uses of, in commerce .. Ann 17, i, pp 947-949
Girdled Glacier, Alaska, moraines and velocity of Ann 16, i, pp 446-448
Ginkgoaceae, from Mesozoic of California Ann 20, ii, p 361
from older Mesozoic of North Carolina Ann 20, ii, p 304
from Triassic of Pennsylvania Ann 20, ii, p 249
Girty (G. H.), Devonian fossils from southwestern Colorado: fauna of Ouray limestone Ann 20, ii, pp 25-81
Devonian and Carboniferous fossils of Yellowstone Park Mon xxxi, ii, pp 479-599
preliminary report on Paleozoic invertebrate fossils from region of McAlester coal field, Indian Territory . Ann 19, iii, pp 539-600
work in charge of, 1896-1900 Ann 18, i, p 62; Ann 19, i, p 62; Ann 20, i, p 61; Ann 21, i, p 90
Gismondite, chemical constitution of Bull 125, pp 34-35, 44, 102
Glacial action in Maine, Mount Desert Ann 8, ii, pp 1002-1009
in New England, effects of, in development of shore swamps .. Ann 6, pp 362-363
in Sierra Nevada, evidences of Ann 17, i, pp 559-560, 594-597
land forms produced by .. Ann 11, i, pp 249-256
perturbation of drainage by, so as to produce swamps Ann 10, i, pp 295-303
Glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana and Illinois Bull 58
Glacial cirques, mode of origin of Ann 21, ii, pp 173-175, 178-179, 185-190
Glacial clay, analysis of, from Wisconsin, Milwaukee Ann 6, p 250; Bull 42, pp 143, 144; Bull 148, pp 294; Bull 168, p 297
Glacial dam at Cincinnati, hypothesis of Bull 58, pp 76-101
Glacial deposition, agency of, in modifying topographic forms... Mon xxxi, ii, pp 122-123
Glacial deposit of Atlantic slope, middle Ann 7, p 611
Glacial deposit of Marthas Vineyard .. Ann 7, pp 308-325
Glacial epoch, cause of ... Mon xxv, pp 517-520
in Grand Canyon district, character and effect of Mon ii, pp 228-229
in Massachusetts, western ... Mon xxix, pp 518-561
in North America, review of ... Mon xxv, pp 108-109
Pleistocene lakes of Great Basin regarded as contemporaries of ... Ann 2, pp 187, 189
terminal moraine of second .. Ann 3, pp 291-402
Glacial epochs, rock-scorings of .. Ann 7, pp 147-248
(See also, Pleistocene.)
Glacial formations, investigations of .. Ann 14, i, pp 113-116
Glacial gravel, description of, as one of the educational series Bull 150, pp 58-59
Glacial gravels of Maine and their associated deposits Mon xxxiv
Glacial history of California, Mono Basin Ann 8, i, pp 321-371
of Illinois-Indiana, Danville quadrangle GF 67, p 1
of Massachusetts, Cape Cod district ... Ann 18, ii, pp 550-566
Glacial history and phenomena of Iowa, northeastern Ann 11, i, pp 472-577
Glacial Lake Agassiz, monograph on ... Mon xxv
upper beaches and deltas of .. Bull 39
Glacial Lake Chicago, beaches, etc., of .. Mon xxxviii, pp 427-453
Glacial lakes associated with Lake Agassiz Mon xxv, pp 254-275
 evidences of .. Mon xxv, pp 195-202
 of Massachusetts, western-central ... Mon xxix, pp 562-606
 of United States, northern, and Canada, the principal Mon xxv, pp 202-208
Glacial lobe, the Illinois ... Mon xxxviii
Glacial masses, modification of sea level by attraction of Bull 48, pp 60-79
Glacial modification of form and drainage, especially in Connecticut Ann 18, i, pp 179-184
Glacial-moraine harbors, description of Ann 13, ii, pp 119-120
Glacial motion, rate of ... Mon xxv, pp 247-248
Glacial movement, changes of, and cross-striation Ann 7, pp 200-207
temperature and saturation as affecting .. Ann 7, pp 186-187
Glacial ridges of Indiana and Ohio .. Ann 18, iv, pp 434-438
Glacial rivers of Maine, sizes of ... Mon xxxiv, pp 292-294
 phenomena of, in crossing hills and valleys Mon xxxiv, pp 433-440
Glacial sculpture of the Bighorn Mountains, Wyoming Ann 21, ii, pp 167-190
Glacial sediments, especially of Maine Mon xxxiv, pp 291-337
 of Maine, classification of ... Mon xxxiv, pp 359-489
Glacial theory as to Newark system .. Bull 85, pp 47-53
 origin and history of ... Ann 11, i, pp 280-291
Glacialite, analysis of, from Oklahoma, Enid Ann 18, v, p 1355
Glaciated regions of United States, investigations in Ann 3, pp 17-21;
 Ann 4, pp 23-27; Ann 5, pp 20-24; Ann 6, pp 83-40;
 Ann 7, pp 76-85; Ann 8, i, pp 141-144; Ann 9, pp 84-77;
 Ann 10, i, pp 128-129; Ann 11, i, pp 74-76; Ann 12, i, pp 88-90; Ann 13, i, pp 121-122;
 Ann 14, i, pp 193-194; Ann 15, pp 179-180; Ann 16, i, pp 24-25;
 Ann 17, i, pp 59-62; Ann 18, i, pp 54-60; Ann 19, i,
 pp 53-54; Ann 20, i, pp 53-54; Ann 21, i, pp 85-86
Glaciated rock, description of, as one of educational series Bull 150, pp 388-389
Glaciation; drainage in southwestern Indiana, changes of, due to ice invasion .. Mon xxxviii, pp 97-104
drift in Illinois, average thickness of .. Mon xxxviii, pp 542-549
in Illinois, wells in ... Ann 17, ii, pp 754-759, 770-782
in Indiana, southeastern ... WS 26, p 56
Glaciation; drift in Iowa ... Bull 15C, pp 85-91
in Montana, Fort Benton quadrangle Mon xxix, pp 535-543
Little Belt Mountains quadrangle GF 55, p 2
in Nebraska ... Ann 19, iv, p 734; Bull 158, pp 69-81
in Ohio, thickness of ... Ann 19, iv, pp 712-714
in South Dakota ... Bull 158, pp 81-85
influence of, on drainage in region of Illinois glacial lobe Mon xxxviii, pp 490-541
moraines, etc., in Indiana, extent of WS 21, pp 9-13
drift deposits in region of glacial Lake Agassiz Mon xxv, pp 132-190, 249-250
drift sheet, the Illinoian, and its relations Mon xxxviii, pp 24-118
the Iowan, and associated deposits Mon xxxviii, pp 131-184
drift sheets, the Wisconsin .. Mon xxxviii, pp 191-417
driftless area of upper Mississippi Valley Ann 6, pp 199-322
drumlins in Massachusetts, western Mon xxix, pp 543-549
eskers of Illinois, northwestern Mon xxxviii, pp 76-82
ice sheet, the continental, and its recession Mon xxv, pp 110-129
Illinois glacial lobe .. Mon xxxviii
in Alaska—Kenai Peninsula, Matanuska, Copper, and Delta valleys Ann 20, vii, pp 324-331

Pyramid Harbor to Eagle City Ann 21, ii, pp 304-365
southern, notes on .. Ann 18, iii, pp 59-60
southwestern, notes on .. Ann 20, vii, pp 252-255
in California, Bidwell Bar quadrangle GF 43, p 5
Big Trees quadrangle .. GF 51, p 7
Colfax quadrangle .. GF 66, p 7
Downieville quadrangle ... GF 57, p 7
Lassen Peak quadrangle ... GF 15, p 2
Pyramid Peak quadrangle GF 31, pp 7-8
Truckee quadrangle ... GF 39, pp 6-7
Yosemite Valley, evidence of Ann 10, i, pp 142-143
in Colorado, Aspen district .. Mon xxxi, pp 244-250
Leadville district Ann 2, pp 228-230; Mon xii, pp 29-30, 41-42, 92, 120-128
Pikes Peak quadrangle ... GF 7, p 5
Rico Mountains .. Ann 21, ii, pp 156-159
Telluride quadrangle .. GF 57, p 15
in Connecticut-Massachusetts, Holyoke quadrangle GF 50, p 6
in far North, latest ... Mon xxi, p 128
in Greenland, snow and ice, remarks on Mon xxxiv, pp 269-270
in Idaho in Pleistocene time Ann 20, iii, p 100
in Maine; bowlders of glacial gravels Mon xxxiv, pp 333-337
classification of glacial sediments Mon xxxiv, pp 359-489
was there more than one Mon xxxiv, pp 284-291
in Massachusetts, Cape Ann Ann 9, pp 546-559
Holyoke quadrangle .. GF 50, p 6
Nantucket ... Bull 53, pp 15-28, 42-47
western .. GF 50, p 3
in Montana, Castle Mountain Bull 139, pp 143-147
Fort Benton quadrangle .. GF 55, p 5
Livingston quadrangle .. GF 1, p 1
Three Forks quadrangle .. GF 24, pp 1, 3
in Narragansett Basin ... Mon xxxiii, pp 67-71, 102
Glaciation in Rocky Mountains............................ Mon xxxiv, pp 338-355
in Washington, Cascade Mountains, evidences of previous intense........ Ann 20, 11, pp 150-173
Central Range .. GF 54, p 3
Mount Rainier, interglaciers about Ann 18, 11, pp 381, 405-407
Tacoma quadrangle GF 54, p 2
in Wisconsin, Eagle quadrangle TF 1, p 3
in Wyoming, Absaroka district GF 52, p 6
in Yellowstone Park GF 30, p 3
in Yellowstone Valley Bull 104
interglaciers about Mount Rainier Ann 18, 11, pp 381, 405-407
Iowa and Illinois ice lobes, relation of Mon xxxviii, pp 151-158
loess in Massachusetts, western-central Mon xxix, p 729
loess, Iowan, structure, mode of deposition, etc., of ... Mon xxxviii, pp 153-154
Mississippi River, temporary displacement of, by the ice. Mon xxxviii, pp 89-97
moraines of Cape Cod district Ann 18, 11, pp 551-559
moraines, terminal, of region of glacial Lake Agassiz ... Mon xxv, pp 139-179
moraines and bowlder trains in Massachusetts, western Mon xxv, p 549
morainic systems within region of Illinois glacial lobe. . Mon xxxviii, pp 192-417
oscar border clay of Maine Mon xxxiv, pp 170, 180, 408-469
oscar streams and osars in Alaska Mon xxxiv, pp 356-358
Peorian soil and weathered zone Mon xxxviii, pp 185-190
Sangamon soil and weathered zone Mon xxxviii, pp 125-130
striae in district covered by Illinoian lobe . . Mon xxxviii, pp 84-88, 140, 412-417
in Hudson Bay and Lake Superior region and westward, table of... Mon xxv, pp 633-642
in Minnesota River Valley Bull 157, p 45
in South Dakota, Coteau des Prairies region Bull 158, pp 110-112
southeastern .. Bull 158, p 68-69
in United States, eastern, map of Ann 7, pp 154-155
striae, grooves, and notches in Massachusetts, western, list of Mon xxix, pp 522-531
stil in Massachusetts, western Mon xxxix, pp 533-561
in region of glacial Lake Agassiz Mon xxv, pp 134-139
in South Dakota, southeastern Bull 158, pp 65-66
Kansan, pre Illinoian, etc. Mon xxxviii, pp 105-111, 119-123
valley drift of Maine Mon xxxiv, pp 470-489
water, volume of, received and discharged by Lake Agassiz Mon xxv, p 252
Yarmouth soil and weathered zone Mon xxxviii, pp 119-124
Glacier, description of a Ann 5, pp 309-313
Glacier Bay, Alaska, and its glaciers Ann 16, 1, pp 415-461
Glaciers, Muir and Girdled, velocity, melting, etc., of Ann 16, 1, pp 440-450
Glaciers of Alaska ..Ann 5, pp 348-355; Ann 13, 11, pp 1-91; Mon xxxiv, pp 355-358
of Alaska, Glacier Bay Ann 16, 1, pp 415-461
of California, High Sierra, existing and Pleistocene. Ann 8, 1, pp 324-346
Mount Shasta .. TF 1 pp 2-3
of Sierra Nevada, ancient Ann 5, pp 327-328
former and existing, topographic sketch of Ann 5, pp 310-311
of United States, existing Ann 5, pp 303-355
of Washington, Cascade Mountains, existing Ann 20, 11, pp 189-193
Mount Rainier .. Ann 18, 11, pp 349-415
Glaciology; abrasion, condition of, in glacial action Ann 17, 1, pp 965-967
beaches and deltas of glacial Lake Agassiz, locations and changes in levels of Mon xxv, pp 279-522
Glaciology; conglomerates, Carboniferous, as products of glaciation. Mon xxxiii, pp 64-67
contortion, jointing, and faulting in clay and sand, produced by ice in Massachusetts, western-central. Mon xxix, pp 687-696, 707-711
correlation of lake maxima with glaciation. Mon i, pp 265-283
drift agencies and transportation, especially in Maine. Mon xxxiv, pp 10-22
drift fragments, shapes of. Mon xxxiv, pp 22-26
drumlins, formation of, theories of. Mon xxxiv, pp 280-282
englacial and subglacial streams, tunnels, and channels. Mon xxxiv, pp 296-301
epeirogenic movements, relationship of, to glaciation. Mon xxv, pp 516-521
erosion, ice, of an isolated conical mountain, general laws governing. Ann 18, ii, pp 379-385
eskers or kames, reticulated. Mon xxxiv, pp 448-467
fiord or glacial harbors, description of. Mon xiii, pp 114-118
glacier, description of a. Mon v, pp 309-313
glaciers, absence of, almost total, in northern half of Great Basin during Pleistocene time. Ann 4, pp 463-464
cause, movement, etc., of. Mon xxxiv, pp 280-282
testimony of, regarding Pleistocene climate of Great basin. Mon xi, pp 265-268
holes in surface of glaciers, explanations of. Ann 16, i, pp 448-450
kames and osars, formation and characters of, especially in Maine. Mon xxxiv, pp 330-333, 359-369, 413-448
Lake Agassiz, changes of level of, causes of. Mon xxv, pp 487-501
lakes, Pleistocene, two classes of. Mon xxv, pp 192-195
lenticular shape of coastal gravel masses. Mon xxxiv, pp 388-386
moraine, ground, theories of, discussion of. Mon xxxiv, pp 277-284
osars, deposition of, by subglacial or superficial streams. Mon xxxiv, pp 413-448
oscillations of land and sea associated with glaciation. Mon xxv, pp 501-512
potholes, glacial, conditions for formation of, etc. Mon xxxiv, pp 324-330
recession and shrinkage of glaciers of Mount Rainier. Ann 18, ii, pp 407-409
retreatal phenomena in Maine. Mon xxxiv, pp 390-394
river courses in Washington Territory, changes in, due to glaciation. Bull 40
soils and glaciation, relation of. Ann 12, i, 235-239, 268
solar energy, effect of, on glaciation. Mon i, pp 283-297
temperatures, internal, of ice sheets. Mon xxxiv, pp 302-304
time relations, or glacial succession, outline of. Mon xxviii, pp 19-23
transportation by glaciers. Mon xxxiv, pp 20-21
of boulders. Mon xxv, pp 130-131
Glacio-natant drift in Denver Basin. Mon xxvii, p 265
Gladeville sandstone of Kentucky. Bull 111, pp 31-33; GF 12, p 3
of Tennessee. Bull 111, pp 31-33; GF 12, p 3; GF 59, p 5
of Virginia. Bull 111, pp 31-33; GF 12, p 3; GF 59, p 5
Glass, analysis of, from Colorado, Mount Tyndall (rhyolitic residual). Bull 148, p 170
electric resistance of stressed. Bull 94, pp 85-100
of Yellowstone Park (globulitic and microlitic). Mon xxxiii, ii, pp 405-410
thermal expansion and compressibility of. Bull 96, pp 54-55
thin section of, from Massachusetts, Meriden. Mon xxix, pp 430-431
from New York, Split Rock (from ore). Ann 19, ii, pp 402-403
from Yellowstone Park (rhyolitic). Mon xxxiii, ii, pp 406-407
viscosity of electrolyzing. Bull 94, pp 80-84
Glass, volcanic, analysis of, from Idaho, Marsh Creek Valley (pumiceous). Bull 148, p 141; Bull 168, p 115
analysis of, from Montana, Devils Pathway and Little Sage Creek (pumiceous). Bull 148, p 141; Bull 168, p 115
Glass and sand breccia, thin section of, from Massachusetts, GreenfieldMon xxxix, p 422
Glass materials, statistics of MR 1883-84, pp 958-977; MR 1885, pp 544-557
Glass-pot clay. (See Clay, glass-pot.)
Glass sand of New Jersey Bull 84, pp 42, 43
Glass sands, analyses of MR 1883-84, p 662
Glaucolite, analysis of, from New Jersey Bull 88, p 14
composition of Bull 150, p 47
Glaucophane, chemical constitution of Bull 125, pp 91, 92, 106
in metamorphic rocks of Coast ranges of California Mon xiii, p 76
Glaucophane-schist, analysis of, from California, Mount Diablo Bull 148, p 222; Bull 168, p 213
analysis of, from California, Sulphur Bank Mon xiii, p 104; Bull 148, p 222; Bull 168, p 211
Glaucophane-schists of the Coast Ranges of California Mon xiii, pp 102-104
Glazes, majolica, analyses of Ann 19, vi cont, p 384
Glen Rose formation of Texas Ann 18, ii, pp 221-226;
Ann 21, vii, pp 144-166, 374, 381; GF 42, p 2; GF 64, p 1
of Texas Uvalde quadrangle, wells from GF 64, p 6
Glenn (W.), chrome ores of Turkey Ann 19, vi, pp 261-264
iron, chromic, occurrence, character, uses, etc., of Ann 17, iii, pp 261-273
Globe Hill, Cripple Creek district, Colorado, character of ore deposits in Ann 16, ii, pp 170-172
Globe and Ironclad hills, Colorado, rocks of Ann 16, ii, pp 94-95
Globigerinidfls, Cretaceous, from New Jersey Bull 88, pp 63-64
Glossary of rock names GF 3, p 2; GF 5, p 2; GF 11, p 2; GF 18, p 2; GF 31, p 2;
GF 37, p 2; GF 39, p 2; GF 41, p 2; GF 43, p 2; GF 51, p 2
Gmelinite, analysis of ... Bull 125, p 37
chemical constitution of Bull 125, pp 36-37, 44, 102
Gnathodan bed of Mississippi Bull 84, p 326
Gneiss, analysis of, from California, Big Trees quadrangle Ann 17, i, p 702
analysis of, from District of Columbia Ann 15, p 670; Bull 148, p 88; Bull 168, p 48
from Italy, Piedmont Bull 109, p 107
from Maryland, Cabin John Bridge (chloritic) Ann 15, p 670; Bull 148, p 88; Bull 168, p 48
Dorsey Run Ann 15, pp 697, 722; Bull 90, p 67; Bull 148, p 87; Bull 168, p 47
Great Falls Ann 15, p 670; Bull 148, p 88; Bull 168, p 48
from Massachusetts, Monson Mon xxi, p 316
from Michigan, Crystal Falls district Bull 168, p 66
Fels Mountain district Mon xxi, p 391
Marquette district (schistose) Mon xxviii, p 217; Bull 148, p 99; Bull 168, p 65
from Minnesota, near New Ulm (granitoid) Bull 157, p 68
from North Carolina, Corundum Hill (altered) Bull 42, p 50; Bull 148, p 91; Bull 168, p 54
from Vermont, Little Peco and near Lincolns (granitoid) Bull 148, p 71; Bull 168, p 27
from Massachusetts (granitoid), Hoosac Mountain, description of, as one
of the educational series Bull 150, pp 349-353
of California, Big Trees quadrangle GF 51, p 4
of Colorado, Mosquito Range Ann 2, p 215; Mon xii, pp 48-50
Gneiss of Colorado, Pikes Peak quadrangle ... GF 7, pp 1, 3, 4, 7
of Colorado, Telluride quadrangle .. GF 57, p 7
of Connecticut-Massachusetts, Holyoke quadrangle GF 50, p 4
of Lake Superior district, character of ... Ann 10, i, pp 358-360
of Massachusetts, Berkshire County (blue quartz) Bull 159, pp 27, 37-39
of Michigan, Crystal Falls district .. Ann 19, ii, pp 102-103, 398-399
of Minnesota, southwestern .. Bull 157
of Montana, Bridger Range ... Bull 110, pp 47-49
Fort Benton quadrangle ... GF 56, p 1
Little Belt Mountains quadrangle ... GF 56, pp 1-2
of New Jersey, northern .. Ann 18, ii, pp 438-440
of Northwestern States ... Ann 5, p 218
of Sierra Nevada, Archean .. Ann 17, i, pp 533-537, 700-705
of Wisconsin, northern, Archean ... Ann 10, i, pp 358-362
residual clay of, from Delaware, Hockessin, description of, as one of the educational series ... Bull 150, pp 382-384
thin section of, from Massachusetts, Hinsdale Bull 159, pp 26-27
from Massachusetts, Hoosac Mountain .. Mon xxiii, pp 110-113
Pem ... Bull 159, pp 26-27
Washington .. Bull 159, pp 26-27
from Wisconsin, sec. 23, T. 44 N., R. 5 W. (biotitic granitoid) Mon xix, pp 476-477
Gneiss and granite of Colorado, Cripple Creek district, areas of Ann 16, ii, pp 97-99
Gneiss-dunyte contacts of Corundum Hill, North Carolina, in relation to origin of corundum ... Bull 42, pp 45-63
Gneisses, genesis of certain Maryland ... Ann 15, p 734
Gneissic series of Tanana and White basins, Alaska Ann 20, vii, pp 460-465
of Alaska .. Ann 21, ii, pp 350-357
Godiva limestone of Utah ... Ann 19, iii, pp 624-625; GF 65, p 1
Gogebic series. (See Penokee series.)
Gold, analysis of, from Persia (native) .. Bull 60, p 137
auriferous gravels of California ... Bull 84, pp 219-222
auriferous slate series of California, Lassen Peak district Ann 8, i, pp 404-407
colloidal sulphides of .. Bull 90, pp 56-61
discovery of, in California and Nevada .. Mon iv, pp 1-14
in Alaska .. Ann 21, ii, pp 373-377, 436-437, 482-485, 486
deposits and districts of, notes on ... Alaska (2), pp 22, 36, 47-48, 60-61, 70-71, 80, 91-95, 101-102, 110, 112, 116, 125
production of, in 1896, 1897, and 1898, by districts Alaska (2), p 138
Nome region, preliminary report on ... Nome
(See, also, Precious metals, gold.)
in California, Bidwell Bar quadrangle ... GF 43, p 6
Big Trees quadrangle .. GF 51, pp 7-8
Colfax quadrangle .. GF 66, pp 7-10
Downieville quadrangle ... GF 37, p 8
Jackson quadrangle ... GF 11, p 6
Marysville quadrangle .. GF 17, p 2
Mother Lode district ... GF 63, pp 7-10
Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 5-6
Placerville quadrangle .. GF 3, p 3
production of, table of ... Ann 17, ii, p 28
Pyramid Peak quadrangle ... GF 31, p 8
Sacramento quadrangle .. GF 5, p 3
Gold in California, Smartsville quadrangle GF 18, pp 5-6
in California, Sonora quadrangle GF 41, pp 6-7
Truckee quadrangle .. GF 39, p 8
in Colorado, Cripple Creek district GF 7, p 8
Cripple Creek district, free, tellurides of, etc Ann 16, ii, pp 119-122
Leadville district .. Mon xii, pp 376, 513-518, 545, 579, 594
in Idaho, Boise quadrangle GF 45, pp 5-6
in Montana ... Bull 139, pp 150-156
Butte district ... GF 38, p 5
Fort Benton quadrangle GF 55, pp 5-6
Livingston quadrangle GF 1, p 3
Three Forks quadrangle GF 24, p 5
in Nevada, in deposits of Eureka GF 17, ii, pp 120, 131-132, 163, 167, 184, 187
in North Carolina-Tennessee, Knoxville quadrangle GF 46, p 6
in Oregon, Roseburg quadrangle GF 49, p 4
in Philippine Islands, occurrence of Ann 19, vi cont, pp 690-691
in Porto Rico, occurrence of GF 20, vi cont, pp 776, 784
in pyrite and quartz, thin section showing, from California, Grass Valley Ann 17, ii, pp 134-135
in Tennessee-North Carolina, Knoxville quadrangle GF 16, p 6
in Texas, Uvalde quadrangle GF 64, p 5
in Utah, Tintic district, production of GF 65, p 5
solubility of .. Mon xiii, pp 433, 474
solubility and precipitation of Ann 17, ii, pp 179, 181
(See, also, Precious metals.)
Gold and metallic sulphides, deposition of, mode of Ann 17, ii, pp 182-184
Gold and silver, conversion tables Bull 2
discovery of, in Colorado Mon xii, pp 7-10
in California, production of, Nevada City and Grass Valley districts Ann 17, ii, pp 27, 262
in Colorado, Leadville region Mon xii, p 594
in Idaho, mining districts Ann 16, ii, pp 250-274
in Nevada, Comstock lode Mon iii, pp 6-7, 9, 18, 224-225, 268
in United States, production of, since 1792 and 1804 MR 1891, pp 74-75; MR 1888, p 38
(See, also, Precious metals.)
Gold-bearing veins of Alaska, sketch of Alaska (2), pp 21-28
Gold belt in California, extent and geology of GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 21, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
in Georgia ... Ann 16, iii, pp 293-300
in North Carolina .. Ann 16, iii, pp 301-306, 309-316
in South Carolina ... Ann 16, iii, pp 306-309
Gold fields of southern Appalachians, geography, history, geology, etc, of Ann 16, iii, pp 251-331
Gold gravels and vein deposits of Sierra Nevada Ann 17, i, pp 586-590, 653-654, 675-677, 694-696, 706-708, 713
Gold Hill, Cripple Creek district, Colorado, and adjacent ridges, rocks of, and character of ore deposits in Ann 16, ii, pp 91-94, 173-174
Gold ledge of Mercur district, Utah Ann 16, ii, pp 403-455
Gold-mining industry in western Oregon Ann 17, i, pp 515-520
Gold mining and metallurgy in Southern States, history of Ann 20, vi, pp 111-123
Gold ore, analysis of, from Colorado, Leadville district Ann xiv, p 602
analysis of, from Utah, Mercur mine (oxidized) Ann 16, ii, p 426
Gold ores of Mercur district, Utah, theory of genesis of Ann 16, ii, pp 452-454
Gold quartz (precious stone), occurrence and statistics of MR 1883-84, pp 763-765; MR 1891, p 540; MR 1892, p 781; MR 1893, p 682; Ann 16, iv, pp 604, 605; Ann 17, iii cont, p 924; Ann 20, iv cont, p 599
Gold-quartz veins in Appalachians, southern Ann 16, iii, pp 281-289
in California, Colfax quadrangle GF 66, pp 7-8
Mother Lode district GF 63, pp 7-10
Nebraska City and Grass Valley districts Ann 17, ii, pp 1-262
Ophir Ann 14, ii, pp 243-284
in Colorado, Cripple Creek district Ann 16, ii, pp 144-150
Leadville district Mon xi, pp 513-515
Telluride Ann 18, iii, pp 771-781, 800
in Idaho Ann 18, iii, pp 647, 650; Ann 20, iii, pp 75-256
In Montana, Boulder Hot Springs Ann 21, ii, pp 233-255
in Nevada, Comstock lode Mon iii, pp 266-289
in Oregon, Bohemia mining district Ann 20, iii, pp 15-19
Goniolite limestone, history of discussions concerning Bull 80, pp 161, 189-190
Gooch (F. A.), filtration by easily soluble and volatile filters Bull 27, pp 27-29
separation and estimation of boric acid, with account of convenient form of apparatus for quantitative distillations Bull 42, pp 64-72
separation of sodium and potassium from lithium by action of amyl alcohol on chlorides, with some reference to similar separation of same from magnesium and calcium Bull 42, pp 73-88
separation of titanium and aluminum, and titanium and iron Bull 27, pp 16-26
Gooch (F. A.) and Whitfield (J. E.), analyses of waters of Yellowstone Park, with account of methods of analysis employed Bull 47
Goode (R. U.), survey of Idaho-Montana boundary line from international boundary to crest of Bitterroot Mountains Bull 170
work in charge of, 1894-1900 Ann 16, i, p 66; Ann 17, i, pp 104-106; Ann 18, i, pp 108-110, 143; Ann 19, i, pp 105-108, 353-408; Ann 20, i, pp 117-119, 121-125; Ann 21, i, pp 113, 121
Goode (R. U.) and others; triangulation and spirit-leveling data Ann 18, i, pp 131-422; Ann 19, i, pp 145-408; Ann 20, i, pp 211-530; Ann 21, i, pp 205-582
Goodland limestone of Texas Ann 21, vii, pp 216-222
Goodrich (H. B.), history and condition of Yukon gold district, Alaska, to 1897 Ann 18, iii, pp 103-133
recent warpings in Yukon district, Alaska, as shown by drainage peculiarities Ann 18, iii, pp 276-289
Goodrich quartzite, relations, petrographic character, etc., of Ann 15, pp 591-596, 616-618; Mon xxviii, pp 409-416, 535-537
Goose Creek, Wyoming, flow of, measurements of Ann 18, iv, pp 136-138;
Ann 19, iv, pp 295-297; Ann 20, iv, p 53; Bull 140, p 94; WS 11, pp 49-50; WS 15, p 77
Göppert (Heinrich Robert), biographic sketch of Ann 5, pp 373-374
Gore (J. H.), administrative report for 1881-82 Ann 3, pp 30-32
Gorman (M. W.), eastern part of Washington Forest Reserve Ann 19, v, pp 315-350
Bull. 177-01—23
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Goshen schist or flags in New England...... Mon xxix, pp 177-183; GF 50, pp 2, 5
Gossan and mundic ores of Virginia, analyses of........ MR 1891, p 24
Gothic mountain, Colorado, structure and rocks of...... Ann 14, ii, pp 194-197
Gould (E. R. L.), mining law of States east of the Mississippi...... MR 1886, pp 722-790
Graded river, example of...... TF 2, p 4
Gradient, barometric, discussion of............. Ann 2, pp 412-420, 536-540
Grahamite, West Virginia and Mexican veins of, accounts of...... Ann 17, i, pp 939-941
Grain of slates of New York, Vermont, and other regions...... Ann 19, ii, pp 209, 219, 285
Grainger shale of Kentucky.................. Bull 111, p 38; GF 12, p 3
of North Carolina............ GF 16, p 4
of Tennessee........ GF 12, p 3; GF 16, p 4; GF 25, p 4; GF 27, p 3; GF 59, p 4
of Virginia............. Bull 111, p 38; GF 12, p 3; GF 59, p 4
Graumine of Alaska...... Ann 17, i, p 880
of Dakota group........ Mon xvii, p 37
of Laramie group........ Bull 37, pp 16-17
of North America, extinct........ Mon xxxv, p 27
of Triassic of Pennsylvania...... Ann 20, ii, pp 254-255
Granby tuff of Massachusetts and Connecticut...... Mon xxix, p 369; GF 50, p 5
Grand Canyon district, description of........ Ann 1, pp 28-31
physical geology of........ Ann 2, pp 47-166
Tertiary history of............... Ann 2, pp xii-xvi; Mon ii
(See, also, Arizona; Utah.)
Grand Canyon group of rocks in Arizona, literature of...... Bull 86, pp 327-332, 507
Grand Canyon of the Colorado, pre-Cambrian and Cambrian of...... Ann 16, i, p 825
pre-Cambrian igneous rocks of Unkar terrane...... Ann 14, ii, pp 497-524
Grand Canyon sections...... Ann 10, i, p 551;
Bull 30, pp 42-43; Bull 81, pp 356, 357; Mon xx, p 207
Grand Gulf group of Southern States, correlation, physical history, etc., of...... Ann 12, i, pp 408-410; Bull 84, pp 159, 161-165, 167-170, 172-175, 187-189
Grand Gulf stage, geologic and topographic conditions during...... Bull 84, pp 187-189
Grand River, Colorado, flow of, measurements of...... Ann 18, iv, pp 260-261;
Ann 19, iv, pp 399-401; Ann 20, iv, pp 58, 389; Ann 21, iv, pp 280-281;
Bull 131, p 48; Bull 140, pp 186-187; WS 11, p 67;
WS 16, pp 137-138; WS 28, pp 135, 142, 144; WS 37, pp 293-296
profile of................................. WS 44, p 86
Grand River, Indian Territory, flow of, measurements of...... WS 37, p 268
Grand and Black prairies, Texas, geography and geology of...... Ann 21, vii
Grande Ronde River, Washington, description of...... WS 4, pp 25-26
Graneros shale of Black Hills...... Ann 21, iv, p 532
of Colorado...... Ann 17, ii, pp 564, 571; GF 36, p 3; GF 58, p 1; GF 66, p 1
Granite, alteration of, to biotite-quartz-schist........ Ann 10, i, p 355
analysis of, from Arkansas, Fourche Mountain...... MR 1888, p 537
from California, Bidwell Bar, Big Trees, and Downieville quadrangles...... Ann 17, i, pp 570, 633, 702
Exeter...... Ann 19, vi cont, p 212
Mariposa County, Mount Dana (porphyritic)...... Ann 17, i, p 721; Bull 148, p 219; Bull 160, p 339; Bull 168, p 207
Merced-Mariposa district...... Ann 17, i, p 687
Placer County...... Bull 148, p 212; Bull 150, p 172; Bull 168, p 198
Plumas County...... Bull 148, p 201; Bull 168, p 187
Tulare County...... Ann 20, vi cont, p 358
from Colorado, Little Cottonwood Canyon...... Mon xii, p 313
Pikes Peak district...... Bull 148, p 160; Bull 168, p 142
Platte Canyon...... Bull 148, p 179; Bull 168, p 164
Granite, analysis of, from Connecticut, New London County........Ann 19, vi cont, p 214; Ann 20, vi cont, p 364
analysis of, from Delaware, Rockford...Ann 19, vi cont, p 214; Ann 20, vi cont, p 371 from District of Columbia.................Bull 150, p 379
Granite, analysis of, from Wisconsin, Waushara County

v cont, p 975; Ann 19, vi cont, p 228; Ann 20, vi cont, p 460
classification, composition, geographic distribution, methods of quarrying,
uses, etc..Ann 16, iv, pp 438-456
from California, Rocklin, description of, as one of the educational series...Bull
150, pp 170-172
from District of Columbia, residual sand of, description of, as one of the
educational series...........Bull 150, pp 376-379
of Alaska..Ann 21, ii, pp 471-472, 480
intrusive.. .Ann 17, i, p 835
southern, notes on..................................Ann 18, ii, pp 35-36
Sushitna Basin..................... Ann 20, vii, pp 14-15; Alaska (2), p 19
Yukon district (basal)...........Ann 18, ii, pp 134-140, 224-225
of California, Big Trees quadrangle.
Colfax quadrangleGF 51, p 4
Coast Ranges.....................................Mon xiii, p 144
Downieville quadrangle .:............................GF 37, p 4
Jackson quadrangle............................GF 11, p 4
origin of...Mon xiii, pp 174-175
Pyramid Peak quadrangleGF 31, p 4
Truckee quadrangle............................GF 39, p 4
of Catoctin beltAnn 14, ii, pp 299-302
of Colorado, Aspen districtMon xxxi, pp 1-4
Crested Butte quadrangle.............GF 9, p 5
Mosquito Range............................Ann 2, p 215; Mon xi, pp 46-48
Pikes Peak quadrangle.....................GF 7, pp 1, 3, 4, 7
Telluride quadrangle.......................GF 57, p 7
of Connecticut-Massachusetts, Holyoke quadrangleGF 50, p 6
of Idaho, alteration of, hydrothermal Ann 20, iii, p 174
Boise quadrangleGF 45, pp 1, 2
Idaho BasinAnn 18, iii, pp 681-682
western-central...............................Ann 20, iii, pp 80-85, 117-118, 195
of Maine, Aroostook volcanic area, outcrops and petrography of......Bull 165,
pp 105-107, 146-152
of Maryland, central, origin and relations of........Ann 15, pp 685-740
Harpers Ferry quadrangleGF 10, p 2
of Massachusetts, Berkshire County, eastern ...Bull 159, p 99
Holyoke quadrangle.........................GF 50, p 6
western, crushing tests ofMon xxix, pp 36-38
of Michigan, Crystal Falls district......Ann 19, iii, pp 101-102;
Mon xxxvi, pp 190-198, 387-390, 463-464
Keweenaw series.................................Ann 3, p 115
Marquette districtAnn 15, pp 501-504, 512,
Mon xxviii, pp 160-176, 209-211; Bull 62, pp 147-148
Penokee iron-bearing series.............Mon xix, pp 106, 111
of Minnesota, Fort Ridgely district (gneissoid)...Bull 157, pp 25-26
of Montana, Butte districtGF 38, pp 1-2
Castle Mountain mining district, features and microscopic petrography of........Bull 139, pp 58-61, 82-85, 87-89
Little Belt Mountains quadrangleGF 56, p 4
Three Forks quadrangleGF 24, p 4
of Nevada, Eureka districtAnn 3, p 273; Mon xx, pp 218-220, 337-338
Steamboat SpringsMon xiii, pp 141-143
Washoe district..............................Mon iii, pp 34, 91-92, 190
Granite of New England, notes on Ann 19, vi cont, pp 228-237
of Northwestern States .. Ann 5, pp 213-214
of Sierra Nevada older than all sedimentary Mon xiii, pp 164-175
of Utah, Little Cottonwood Canyon, age of Mon xi, pp 309-313
of Virginia—Maryland—West Virginia, Harpers Ferry quadrangle GF 10, p 2
of Washington, Mount Rainier Ann 18, ii, pp 422-423
of northern ... Ann 20, ii, pp 105-108
of Wisconsin, northern Ann 10, i, pp 354-358
Penokee iron-bearing series Mon xix, pp 106,111
Penokee iron-bearing series Ann 17, i, pp 748-749
thin section of, from California, near Lake Tenaya......... Ann 17, i, pp 748-749
from Maryland .. Ann 15, pp 704-705, 710-711
Ellicott City .. Ann 15, pp 702-703, 704
Guilford, Ilchester, and Woodstock Ann 15, pp 702-703
from Michigan, Crystal Falls district (contact) Mon xxxvi, pp 296-297, 300-301
from Montana, Elk Peak Bull 139, pp 86-87
(See Building stone.)
Granite and gneiss of Colorado, Cripple Creek district Ann 16, ii, pp 20-23, 62, 84, 94, 97-99
Granite and quartz-diorite of Sierra Nevada Ann 17, i, pp 550, 570-571, 632-634
Granite family of rocks, scope and characteristics of Ann 17, i, pp 720-723
Granites and metamorphic rocks of Idaho Ann 16, ii, pp 224-226
Granite-felsophyre of Colorado, Walsenburg quadrangle GF 68, p 4
of Virginia—West Virginia, Monroe quadrangle GF 61, p 5
Granite-gneiss, analysis of, from Colorado, Pikes Peak quadrangle Bull 148, p 160; Bull 168, p 142
analysis of, from Minnesota, Ortonville Bull 157, p 63
Granite-porphry, analysis of, from California, Mariposa County Ann 14, ii, p 482; Ann 17, i, p 721; Bull 148, p 219; Bull 168, p 207
analysis of, from Colorado, Tenmile district Bull 148, p 176; Bull 168, p 158
from Montana, Barker Mountain Ann 20, iii, pp 505, 559, 560, 574, 580; Bull 148, p 147; Bull 168, p 125
Big Baldy Mountain Ann 20, iii, pp 580; Bull 148, p 148; Bull 168, p 126
Crazy Mountains Bull 148, p 142; Bull 168, p 120
Thunder Mountain Ann 20, iii, pp 509, 559, 560, 580
Wolf Butte ... Ann 20, iii, pp 499, 559, 560, 574, 580; Bull 148, p 146; Bull 168, p 125
Yogo Peak .. Ann 20, iii, pp 565, 567
from Nevada, Eureka district Mon xx, p 228
from Vermont, Mount Ascutney Bull 148, p 69; Bull 168, p 25
Mount Ascutney (basic segregation in) Bull 168, p 25
from Yellowstone Park, Absaroka Range Bull 168, p 96
of California, Nevada City, and Grass Valley districts Ann 17, ii, pp 45-46
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Granite-porphyry of Colorado, Telluride quadrangle GF 57, pp 7, 9
of Maine, Aroostook volcanic area .. Bull 165, pp 150-151
of Montana, Castle Mountain mining district, microscopic petrography of .. Bull 139, pp 85-87
Fort Benton quadrangle .. GF 55, p 3
Judith Mountains ... Ann 18, ii, pp 558-559
Little Belt Mountains ... Ann 20, ii, pp 498-512; GF 56, p 3
of Nevada, Eureka district .. Ann 3, pp 274-276; Mon xx, pp 221-229, 339-345
of Sierra Nevada ... Ann 14, ii, pp 478-480; Ann 17, i, pp 572, 634
thin section of, from California, near Lake Tenaya Ann 17, i, pp 750-751
from Montana, Castle Mountain district Bull 39, pp 86-87
from Nevada, Eureka district ... Mon xx, pp 402-403
Granite-schist of Alaska .. Alaska (1), p 22
Granite-syenite-aplite, analysis of, from Montana, Little Belt Mountains and Sheep Creek .. Ann 20, ii, pp 497, 500
analysis of, from Montana, Little Belt Mountains Bull 148, p 148;
from Montana, Little Rocky Mountains Bull 148, p 155; Bull 168, p 134
of Montana, Little Belt Mountains .. Ann 20, ii, pp 512-513
Granitell from Keweenaw series .. Ann 3, pp 114-115; Mon v, pp 114-115
Granitite, analysis of, from California, Eldorado County Bull 148, p 218;
analysis of, from Colorado, Pikes Peak quadrangle Bull 148, p 160;
from Maryland, Sykesville .. Bull 90, p 67
from Michigan, the Horse Race .. Bull 62, p 119
from Montana, Crazy Mountains ... Bull 148, p 142; Bull 168, p 120
from Prussia, Landsberg .. Mon xxviii, p 202
from Vermont, Mount Ascutney ... Bull 148, p 68; Bull 168, p 24
Mount Ascutney (basic segregation in) Bull 148, p 68; Bull 168, p 24
of Massachusetts, western ... Mon xxix, pp 318-323
of Michigan, Crystal Falls district Ann 19, ii, pp 29-32;
Mon xxxvi, pp 40-44, 190-193
Granitoid rocks of Sierra Nevada Ann 17, i, pp 699-700
Granodiorite, analysis of, from California, Butte County Bull 148, p 204;
analysis of, from California, Eldorado County Bull 148, p 204;
from California, Grass Valley ... Bull 148, p 208; Bull 168, p 194
Nevada City .. Ann 17, ii, pp 38, 150; Bull 148, p 208; Bull 168, p 194
Ophir, 8 miles west of .. Ann 14, ii, pp 255, 275
Placer County .. Bull 148, pp 211, 212; Bull 168, pp 197, 198
Plumas County .. Bull 148, p 201; Bull 168, p 187
various localities .. Ann 14, ii, p 482
from Idaho, Boise County, Silver Wreath mine Ann 18, iii, pp 640, 708; Ann 20, iii, p 81; Bull 168, p 139
from Sierra Nevada .. Ann 17, i, p 732
from Washington, Kittitas County Bull 168, p 224
Granodiorite of California, Bidwell Bar quadrangle GF 43
of California, Big Trees quadrangle .. GF 51, p 4
Colfax quadrangle .. GF 66, p 4
Downieville quadrangle .. GF 37, p 4
Jackson quadrangle ... GF 11, p 4
Mother Lode district .. GF 63, p 4
Nevada City and Grass Valley districts Ann 17, ii, pp 35-44, 150-152
Nevada City, Grass Valley, and Banner Hill districts GF 29, p 2
Ophir district .. Ann 14, ii, pp 255-256
Placerville quadrangle ... GF 3, p 2
Pyramid Peak quadrangle .. GF 31, p 4
Sacramento quadrangle .. GF 5, p 2
Smartsville quadrangle .. GF 18, pp 3-4
Sonora quadrangle .. GF 41, p 5
Truckee quadrangle .. GF 39, p 4
of Sierra Nevada ... Ann 14, ii, p 473; Ann 17, i, pp 636-637
thin section of, from California, Nevada City, showing metasomatic replace-
ment of quartz in .. Ann 17, ii, pp 134-135
Granodiorite-porphyry, analysis of, from Washington, Kittitas County ... Bull 168, p 224
Granophyre, thin sections of, from Yellowstone Park Ann 7, pp 272-273
Granophyre groups, relation of, to spherulites Ann 7, pp 274-276
“Granular quartz,” account of literature concerning Bull 81, pp 91-96
origin of name ... Bull 81, p 250
Granulite, analysis of, from California, Bidwell Bar quadrangle Ann 17, i, p 572
analysis of, from California, Downieville quadrangle Ann 17, i, pp 635, 721
from California, Sierra County .. Bull 68, p 92; Bull 148, p 206
from Sierra Nevada .. Ann 17, i, p 732
of California, Downieville quadrangle GF 37, p 4
thin sections of, from Sierra Nevada Ann 17, i, pp 744-745, 746-747
Graphite, analysis of, from Bavaria ... MR 1886, p 688
analysis of, from Canada, Buckingham and Grenville MR 1882, p 593
from India, Ceylon .. MR 1882, p 593
composition of ... Bull 150, p 34
foreign sources of ... MR 1886, pp 688-689
occurrence of, in the South ... Ann 17, iii cont, pp 1008-1010
production of, statistics of ... MR 1882, pp 590-594; MR 1883-84, pp 915-919;
MR 1885, p 533; MR 1886, pp 686-689; MR 1887, pp 672-673; MR 1888, pp 152, 361; MR 1889-90, p 507; MR 1891,
pp 589-590; MR 1892, pp 806-807; MR 1893, pp 767-769;
Ann 16, iii, p 11; Ann 17, iii cont, pp 1007-1010; Ann 18,
v cont, pp 1332-1334; Ann 19, vi cont, pp 627-631;
Ann 20, vi cont, pp 715-718; Ann 21, vi cont, pp 565-568
uses of .. MR 1893, pp 767-769; Ann 18, v cont, p 1334
Graptolite shales, faunas of .. Bull 165, pp 45-46
Grass Valley and Nevada City districts, California, gold-quartz veins of Ann 17,
ii, pp 1-262
Grass Valley, Nevada City, and Banner Hill districts, California, geology of .. GF 29
Grassy Creek, Colorado, rocks of ... Ann 16, ii, p 96
Gravel, beach, description of, as one of the educational series Bull 150, pp 56-58
Gravel, coquina, analysis of, from Florida, Key West and Tortugas .. Bull 60, p 102
Gravel, glacial, description of, as one of the educational series Bull 150, pp 58-59
Gravels of Alaska, beach and stream ... Alaska (1), pp 28-33
of Alaska, Kenai Peninsula, Matanuska Valley, etc Ann 20, vii, pp 315-316
Gravels of Maine, glacial, and associated deposits Mon xxxiv
of Sierra Nevada, shore and river .. Ann 14, p 565-569; Ann 17, ii, pp 559-61, 658-659
Graves (H. S.), report on Black Hills Forest Reserve Ann 19, v, pp 67-164
Gravity, specific, of lampblack ... Bull 42, pp 132-135
Gravity, density, and pressure, terrestrial, table of variation of Ann 13, ii, p 236
Gray porphyry of Colorado, Leadville district Ann 2, pp 243-244; Mon xi, pp 80-81, 330-332
Grayson marl of Texas ... Ann 21, vii, pp 286-288
Graywacke, analysis of, from Wisconsin, Hurley Bull 148, pp 105; Bull 150, p 87; Bull 168, p 75
description of the rock, as one of the educational series Bull 150, pp 84-87
of Lake Superior region ... Ann 10, i, pp 426-431
of Michigan, Crystal Falls district .. Ann 19, iii, p 37; Mon xxxvi, p 56
of Northwestern States ... Ann 5, p 210
of Wisconsin, SE. 1/4 sec. 15, T. 45 N., R. 1 W. (biotitic) Mon xix, pp 512-513
thin section of, from Wisconsin, Hurley .. Bull 150, pp 80-87
from Wisconsin, T. 44 N., R. 3 W, sec. 11 (biotitic and muscovitic) Ann 10, i, pp 500-501; Ann xix, pp 512-513
T. 45 N., R. 1 W, sec. 11, SE. 1/4 (micaceous) Mon xix, pp 512-513
sec. 12 (biotitic and chloritic) .. Ann 10, i, pp 500-501; Mon xix, pp 512-513
sec. 15 (biotitic) .. Ann 10, i, pp 500-501
Graywacke slate of Northwestern States ... Ann 5, p 210
thin section of, from Michigan, sec. 10, T. 47 N., R. 45 W Ann 10, i, pp 476-477; Mon xix, pp 484-485
Ann 21, v, pp 39-41, 80, 140-143, 157, 510-511, 552-557
in Western public-land States .. Ann 16, ii, pp 483-484
Great Basin, climatic changes in .. Ann 4, pp 456-457
description of ... Ann 3, pp 190-202; Mon i, pp 5-12; Mon xi, pp 7-15
Paleozoic rocks of ... Mon xx, pp 185-209
Pleistocene lakes of, sketch of ... Bull 11, pp 9-12
Pleistocene and recent Mollusca of .. Bull 11, pp 13-66
structure of mountain ranges of .. Ann 2, pp xviii, 198-200; Ann 3, pp 196-197;
Mon i, pp 340-362; Mon xi, pp 24-28; Mon xx, pp 10, 211
(See, also, California; Nevada; Oregon; Utah.)
Great Britain, aluminum production of .. MR 1892, p 228
building stone from, statistics of ... MR 1893, pp 551-552; Ann 18, v cont, pp 1009-1012
building-stone industry in England and Scotland MR 1893, pp 582-595
Cambrian rocks and fauna of ... Ann 10, i, p 580; Bull 81, pp 373-374, 377
clay deposits and industry of ... Ann 19, vi cont, pp 402-411
coal area and output of, compared with those of other countries MR 1882, p 5; MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 283;
MR 1887, p 189; MR 1888, p 208; MR 1889-90, p 20;
MR 1891, p 73; MR 1892, p 270; MR 1893, p 202; Ann 16, iii, pp 232, 248; iv, p 21; Ann 17, iii, pp 314, 315; Ann 18,
v, pp 92-93, 136, 414, 415; Ann 19, vi, pp 311, 312;
Ann 20, vi, pp 332, 333; Ann 21, vi, pp 113, 363, 365

iron-ore deposits—character, geologic relations, history of mining, etc. Ann 16, iii, pp 70–89.

paraffin oil of Scotland. MR 1886, pp 484–486.

INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Great Carolinian marl bed ... Bull 84, p 326
Great Lakes, harborages of ... Ann 13, ii, pp 203-204
oscillations of ... Ann 13, iii, pp 22-25
Great Lakes region, recent earth movement in Ann 18, ii, pp 595-647

(See, also, names of individual streams.)

Great Lignitic group. (See Fort Union group.)

Great Pedee River, profile of WS 44, pp 25-26
Great Plains, Cretaceous rocks of, classification of Ann 17, ii, pp 569-570
irrigation practice on .. WS 5
origin and structure of .. Ann 21, iv, pp 612-656
relation of arid region to ... Ann 21, iv, p 609
water resources of portion of Ann 16, ii, pp 535-588

(See, also, High Plains and names of individual States.)

Great Plains region in Texas Ann 21, vii, pp 43-44
Great Salt Lake, analysis of water of Mon i, pp 253, 254, 255
fresh waters in basin of, analyses of Mon i, p 207
height of, measurements of .. Ann 13, iii, pp 20, 21
hydrography of basin of .. Ann 11, ii, pp 66-77, 109
rainfall and run-off in basin of Ann 20, iv, pp 454-459
saline deposits of .. Mon xi, pp 185-186

(See, also, names of individual streams.)
surveys, oscillations, fauna, etc., of Mon i, pp 230-259
Great Sioux Indian Reservation, sections, geologic, in Bull 21, pls 1-3, fig 4
Greece, fossil plants of, literature of Ann 8, ii, pp 716-717
iron and iron ore from, statistics of Ann 16, iii, pp 23, 28, 157-158, 246; Ann 20, vi, p 97
lead production of, statistics of MR 1883-84, p 434;
MR 1885, pp 264, 270; MR 1893, p 99; Ann 16, iii, p 372;
Ann 17, iii, p 156; Ann 18, v, pp 256, 257; Ann 19, vi, p 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246, 247
manganese production of, statistics of MR 1888, p 203; MR 1889-90, p 130; MR 1893, pp 151-152, 155;
Ann 16, iii, pp 447, 457; Ann 17, iii, pp 214, 224; Ann 18, v, p 328; Ann 19, vi, p 121; Ann 21, vi, pp 160, 162
mining law of ... MR 1883-84, p 999
zinc production of, statistics of MR 1882, p 358; MR 1885, p 283
Greeley, Colorado, irrigation near WS 9
Green marl of New Jersey, upper, correlation of Ann 18, ii, p 348
Green Mountains, geology of, literature of Bull 86, pp 355-356, 360, 371
in Massachusetts, geology of Mon xxiii
of Vermont, pre-Cambrian rocks in Ann 16, i, pp 827-829
structure of .. Ann 10, i, pp 13-14, 114-115
Green Mountains and eastern New York, structural details in ... Ann 16, i, pp 543-570
Green porphyry of Colorado, Leadville district Mon xi, p 83
Green River, flow of, measurements of Ann 18, iv, pp 272-278, 279; Ann 19, iv, pp 394-398; Ann 20, iv, pp 58, 380-383, 387-388; Ann 21, iv, pp 302-305; Bull 131, p 48;
Bull 140, pp 200-201, 202-203; WS 11, p 70; WS 16, pp 135-136; WS 28, pp 134, 142, 144; WS 37, pp 286-287, 292-293
Green River formation or group, correlation of Ann 18, ii, p 343;
Bull 83, pp 115-120, 123, 140, 145-146; Bull 84, p 326
fauna of .. Bull 34, pp 11-12; Bull 128, pp 79-81
of Uinta Mountains Ann 9, p 690
Greenbrier limestone of Maryland GF 28, p 3
of Virginia ... GF 26, p 3; GF 32, p 4; GF 44, p 3; GF 61, p 5
of West Virginia GF 26, p 3;
GF 28, p 3; GF 32, p 4; GF 34, p 2; GF 44, p 3; GF 61, p 5
Greenbrier River, flow of, measurements of Ann 18, iv, pp 111-113;
Ann 19, iv, pp 253-254; Ann 20, iv, pp 51, 204; Ann 21, iv, pp 158-159; Bull 140, pp 77-78; WS 11,
p 41; WS 15, p 58; WS 27, pp 61, 65; WS 36, pp 163-164
profile of .. WS 44, p 48
Greenhorn limestone of Black Hills Ann 21, iv, pp 532-533
of Colorado .. Ann 17, ii, pp 564-571; GF 36, p 3; GF 58, p 1; GF 68, p 1
Greenland, cryolite production of MR 1882, p 608; MR 1883-84, p 954; MR 1886, p 692; MR 1887,
p 659; MR 1889-90, p 473; Ann 19, vi cont, pp 615-617
fossil plants of, literature of Ann 8, ii, pp 830-834
petroleum in .. Ann 21, vi cont, p 179
snow and ice in, remarks on Mon xxxiv, pp 269-270
Greensand, analyses of, from Alabama, various localities MR 1883-84, pp 798-799
analysis of, from Massachusetts, Marthas Vineyard Ann 7, p 300; Bull 55, p 90
description of the rock, as one of the educational series........ Bull 150, pp 63-64
of Alabama .. Bull 84, p 326
of Massachusetts, Marthas Vineyard Bull 84, p 36
of middle Atlantic slope, origin of Bull 141, pp 37-39
Greenstone, analysis of, from California, Bidwell Bar quadrangle (altered lava) Ann 17, i, p 582
analysis of, from Michigan, Lower Quinnesec Falls Bull 62, pp 91, 104; Bull 148, p 101; Bull 168, p 71
from Michigan, Marquette district Mon xxviii, p 495; Bull 148, p 98; Bull 168, p 64
Sturgeon Falls Bull 62, p 104
Upper Quinnesec Falls ... Bull 62, p 104; Bull 148, p 102; Bull 168, p 72
from Wisconsin, Lower Quinnesec Falls (schistose) Bull 55, p 81; Bull 148, p 101; Bull 168, p 71
of Alaska, Alaskan Range Alaska (2), p 46
Marquette iron-bearing district Mon xxviii, pp 488-524
of Northwestern States Ann 5, pp 214-217
of Washington, northern Ann 20, ii, pp 108-109
thin section of, from Michigan, Carp River Bull 62, pp 234-235
from Michigan, Lower Quinnesec Falls (stretched) Bull 62, pp 228-229
Negaunee (aphanitic) Bull 62, pp 226-227
Republic Mountain Mon xxvii, pp 470-471
Greenstone conglomerate of Penokee iron-bearing series Mon xix, pp 374-387
thin section of, from Michigan, SE. 4 secs. 14 and 15, T. 47 N., R. 44 W......... Mon xix, pp 518-519
Greenstone-schist of Alaska, Copper Mountain and Upper Tanana Basin Ann 20, vii, pp 414-415, 470
of Alaska, White and Tanana valleys Ann 21, ii, p 358
of California, Chico area Ann 17, i, pp 551, 671-673
Greenstone-schist of Michigan, Marquette district Mon xxviii, pp 204-206
of Michigan, Marquette region, relation of, to diabase agglomerate Bull 62
pp 185-191
thin section of, from Michigan, Marquette Bull 62, pp 238-239
Greenstone-schist areas of Menominee and Marquette regions of Michigan, a
contribution to subject of dynamic metamorphism in eruptive rocks Bull 62
Greggs Landing series of Alabama, correlation of Ann 18, ii, p 346
Gregory (H. E.), geology of Aroostook volcanic area, Maine, including account
of clastic rocks of Aroostook County Bull 166, pp 93-188
Grewingk and Bogoslof islands, Alaska Ann 18, iii, pp 25-28
Greylock, Mount, Massachusetts, geology of Mon xxiii, pp 119-203
lithologic horizons in, succession and correlation of Bull 86, pp 375-376
Greylock schist of Mount Greylock, Massachusetts Mon xxiv, pp 186-188, 190
thin section of, showing cross fissility Ann 16, i, p 833; Mon xxiii, p 145
Greyson shale of Montana, description and section of Ann 20, iii, pp 282, 283
Grindstone, analysis of, from Ohio, Amherst and Berea MR 1886, p 583
Griqualandite, chemical constitution of Bull 125, p 92
thin section of, from New York, near Alps Ann 13, ii, p 308
Grizzly formation of California GF 15, pp 1, 2
Grizzly formation and Little Grizzly Creek beds of California, description and
localities of Ann 14, ii, pp 445-446, 448-449
Gros Ventre and Wyoming ranges, Archean and Algonkian rocks of Bull 86, p 280
Grossularite, chemical constitution of Bull 125, pp 16, 21
occurrence of MR 1882, p 488
Ground-ice formation of Alaska Ann 21, ii, p 306
of Alaska, character and origin of Ann 17, i, p 850-860
correlation of Ann 18, ii, p 335; Bull 84, pp 290-295, 326
remarks on Ann 18, iii, p 219
Ground moraine, theories of, discussion of Mon xxxiv, pp 277-284
Ground water, geologic conditions governing, and method of locating WS 6, pp 15-16
in Colorado, eastern, general conditions, etc., of Ann 17, ii, pp 595-601
in Illinois, wells dependent on Ann 17, ii, pp 765-770
in Nebraska, Kearney Ann 21, iv, pp 216-217
in United States, eastern Ann 14, ii, pp 38-42
on Great Plains Ann 21, iv, pp 732-741
supplies of, for irrigation Ann 13, iii, pp 326-332
(See, also, Water.)
Groveland formation of Michigan, Crystal Falls district Ann 19, iii, pp 115-121, 137-
139; Ann 21, iii, pp 385-387; Mon xxxvi, pp 415-429 446-450
Growth of forest trees, rate of Ann 21, v, pp 22-25
Grünsky (C. E.), irrigation near Bakersfield, California. WS 17
irrigation near Fresno, California. WS 18
irrigation near Merced, California. WS 19
Gryphcaes, Lower Cretaceous, of Texas region. Bull 151
Guadalupe River, Texas, flow of, measurements of. WS 28, pp 124, 129; WS 37, pp 275-276
Guallara sandstone of Costa Rica, correlation of. Ann 18, ii, p 342
Guano, analyses of, from Africa, Arabia, Australia, South America, Cuba, and various islands. Bull 46, pp 119, 120, 121, 122, 125, 126
deposits and statistics of. Bull 46, pp 117-125
Guatemala, Azoic formations in. Ann 16, i, p 825
Guertie sand of Indian Territory. Ann 19, ii, pp 439-440
Guiana, diamonds in, occurrence of. Ann 16, iv, p 597
Guitermanite from Colorado, San Juan County, description and analyses of. Bull 20, pp 105-107
Gulf group of Southern States. Bull 84, p 326
of Texas. Ann 18, ii, pp 238-243; Ann 21, vii, pp 299-344; GF 64, p 2
(See, also, names of individual streams.)
Gulf slope, geologic section of coastal plain in eastern part of. Ann 12, i, fig. 36 (p 427)
Gulf States, geologic section of. Bull 43, p 15
Gumbo in Illinois, Iowa, Kansas, and Missouri. Mon xxxviii, pp 28-33
Gummite, analysis of, from North Carolina, Mitchell County. Ann 21, vi, p 310; Bull 74, p 30
Gunnison formation of Colorado, Anthracite-Crested Butte quadrangles. GF 9, pp 6, 8, 9
of Colorado, Aspen district. Mon xxxi, pp 39-41
Gunnison River, flow of, measurements of. Ann 19, iv, pp 404-406; Ann 20, iv, pp 58, 390; Ann 21, iv, pp 278-279; Bull 131, p 48; Bull 146, pp 180-191; WS 16, pp 140-141; WS 28, pp 136, 142, 144; WS 37, pp 297-298
profile of. WS 44, p 87
Gunung Pепandajan Volcano, in Java, eruption of. Ann 17, i, p 539
Guts of Mississippi River. Ann 12, i, pp 434-436
Guyard (A.), metallurgy of Leadville region, Colorado. Ann 2, pp 285-290; Mon xii, pp 609-751
Guyot Hill, Cripple Creek district, Colorado, rocks of, and character of ore deposits in. Ann 16, ii, pp 90-91; 179
Gymnospermas from Carboniferous basins of Missouri, southwestern. Bull 98, pp 160-199
from Potomac or younger Mesozoic, fossil fruits of. Mon xv, pp 262-273
(See, also, Conifera; Cycadeae; Zamiace, etc.)
Gypsum, analysis of. MR 1887, pp 598-600
analysis of, from Colorado, near Woody Creek. Mon xxxi, p 240
from Florida, Bear Island. Ann 20, vi, cont, p 663
from Kansas, various localities. Ann 18, vii, cont, p 1270
from South Dakota, Hot Springs. Ann 21, iv, p 585
Gypsum, composition of ... Bull 150, p 40
in Hawaii, occurrence of ... Ann 19, vi cont, pp 684-685
in Kansas ... Bull 57, pp 22-24, 48
in Montana, Butte district .. GF 38, p 7
Fort Benton quadrangle .. GF 55, p 6
in Ohio .. MR 1887, pp 596-600
in Porto Rico.. Ann 20, vi cont, p 774
production of, statistics of MR 1882, pp 526-531; MR 1883-84, pp 809-815;
MR 1885, pp 458-464; MR 1886, pp 620-623; MR 1887, pp 595-603; MR 1888, pp 6, 8, 10, 11; MR 1889-90, pp 465-467;
Ann 18, v cont, pp 1263-1271; Ann 19, vi cont, pp 577-585;
Ann 20, vi cont, pp 657-666; Ann 21, vi cont, pp 523-530
Gypsum plains district, New Mexico, irrigation possibilities in Ann 12,
i, pp 281-282
Gypsum playa and dunes in Bonneville Basin Mon i, p 223
Gyrolite, analysis of, from California, New Almaden quicksilver mine .. Bull 64, p 22
analysis of, from Nova Scotia................................... Bull 64, p 22
chemical constitution of .. Bull 125, pp 81, 105
occurrence of, new .. Bull 64, pp 22-23
Habitus, value of, in rock determinations.................................. Mon iii, p 85
Hackberry shale of Iowa ... Ann 11, i, p 314
Hade, fault, strike, etc., definition of................................ Ann 4, p 442
Hague (A.), biographic sketch of O.C. Marsh Ann 21, i, pp 189-204
general geology of Yellowstone Park (Gallatin, Canyon, Lake, and Sho­
shone quadrangles) .. GF 30, pp 1-3
geology of Absaroka district, Wyoming GF 52
geology of Eureka district, Nevada . Ann 3, pp 237-290; Mon xx and atlas
quoted on glaciers of Mount Hood .. Ann 6, pp 339-340
quoted on Paleozoic series in western Nevada Ann 17, i, p 534
work in charge of, 1879-1900 .. Ann 1, pp 32-35; Ann 2, pp 21-35; Ann 3,
pp 10-14; Ann 4, pp 16-18; Ann 5, pp 15-19; Ann 6, pp 54-59; Ann 7, pp 87-91; Ann 8, i, pp 149-153; Ann 9, pp
91-96; Ann 10, i, pp 132-137; Ann 11, i, pp 83-87; Ann 12,
pp 92-96; Ann 13, i, pp 125-127; Ann 14, i, pp 188-191;
Ann 15, i, pp 167-169; Ann 16, i, pp 45-46; Ann 17, i,
pp 43-46; Ann 19, i, pp 47; Ann 21, i, p 80
Hague (A.) and Iddings (J. P.), development of crystallization in igneous rocks
of Washoe, Nevada, with notes on geology of district .. Bull 17
Hague (A.), Weed (W. H.), and Iddings (J. P.), geology of Livingston quad­
rangle, Montana .. GF 1
Hague (A.) and others; descriptive geology, petrography, and paleontology of
Yellowstone Park .. Mon xxxii, ii
Hahn (O. H.), smelting of argentiferous lead in the West .. MR 1882, pp 324-345
Hall (C. W.), gneisses, gabbro-schists, and associated rocks of southwestern
Minnesota .. Bull 157
Hall (Sir J.), quoted, on experiments to simulate folded strata Ann 13,
i, pp 291-232
Hallite, analysis of, from Pennsylvania, Chester County Bull 90, p 15
Hallock (W.), chemical action between solids Bull 64, pp 34-37
flow of solids, or behavior of solids under high pressure Bull 55,
pp 67-75; Bull 64, pp 38-39
new method of making alloys Bull 60, pp 147-148
Hallock (W.), preliminary note on coefficients of thermal expansion of certain rocks.. Bull 78, pp 109-118
specific gravity of lampblack... Bull 42, pp 132-135
Hallopus, description of .. Ann 16, i, pp 153-155; Mon xxvii, pp 481-483
Hallopus beds in Denver Basin.. Ann 16, i, p 153; Mon xxvii, p 475
Halloysite, analysis of, from California, near Mono Lake............... Bull 9, p 13
analysis of, from Nevada, Elko County Bull 148, p 300; Bull 168, p 303
from North Carolina, Chatham County............................... Bull 74, p 64
chemical constitution of .. Bull 125, pp 66, 104
Halotrichite, analysis of, from New Mexico, Grant County............ Bull 9, p 14
Hamamelidaceae of Alaska... Mon 17, i, p 888
of North America, extinct.. Mon xxxv, pp 100-102
Hamamelideae of Dakota group.. Mon xvii, pp 139-141
of Laramie group.. Bull 37, pp 64
Hamburg limestone and shale of Eureka, Nevada..............Ann 3, pp 253-256; Mon vii, pp 7-8;
Mon xx, pp 39-41; Bull 81, pp 246, 315-316
Hamilton formation of Indiana.. Ann 11, i, p 636
Hamilton quadrangle, Montana-Idaho, forest conditions in........ Ann 21, v, p 596
Hamden diabase of Massachusetts and Connecticut................. GF 50, p 6
Hampshire formation of Maryland.. GF 14, p 2; GF 32, p 3; GF 61, p 4
of Virginia.. GF 14, p 2; GF 28, p 3; GF 32, p 3; GF 34, p 2; GF 61, p 4
Hampshire, Hampden, and Franklin counties, Massachusetts, geology of.Monoxxix
chemical lexicon of.. Mon xxix, pp 754-761; Bull 126
Hampson (T.), death and biographic sketch of........................ Ann 9, pp 44-46
rules for preparation of manuscript See p 113 of this bulletin
Hampton shale of Virginia and Tennessee.......................GF 59, p 3
Hanbury slate of Michigan, Menominee district.................. GF 62, pp 10-11
Hancock limestone of Kentucky......................................GF 12, p 2; GF 27, p 3
of Virginia and Tennessee...GF 12, p 2; GF 27, p 3; GF 59, p 4
Harbors, geologic history of...Ann 13, ii, pp 93-209
nature and origin of.. Ann 13, ii, pp 105-134
of North America, review of...Ann 13, ii, pp 160-206
Harding sandstone of Colorado.. GF 7, pp 2, 4; GF 36, p 2
Hardistonville quartzite of northern New JerseyAnn 18, ii, pp 442-443, 454-456
Hardwick gneiss or granite of western Massachusetts............ Mon xxix, pp 239-241
Harian sandstone of Kentucky, Virginia, and Tennessee........... Bull 111, pp 31-33; GF 12, p 3
Harmotome, analysis of... .Bull 125, p 41
chemical constitution of... Bull 125, pp 41, 42, 102
Harpers Ferry quadrangle, Virginia—Maryland—West Virginia, geology of....GF 10
Harpers shaft in Catoctin belt ... Ann 14, ii, pp 333-335
in Virginia, Maryland, and West Virginia............................ GF 10, p 3
Harris (G. D.) and Dall (W. H.), Neocene of North America, a correlation
essay ... Bull 84
Harrisburg quadrangle, Pennsylvania, physiography of..........TF 2, p 8
Harroun (P. E.), Rio Grande Valley, near Albuquerque, irrigation in........ Bull 140, pp 180-186
Hartstigite, chemical composition of.................................. Bull 102, pp 64, 103
Hartshorne sandstone of Indian Territory.........................Ann 19, iii, pp 436, 441; Ann 21, ii, pp 274-275
Hassayampa disaster, Arizona (Feb. 22, 1890), causes of................ .Ann 11, ii, pp 228-229; Ann 13, iii, pp 297-302

Gypsum—Hassayampa.
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Hassayampa River, Arizona, new Walnut Grove dam on..........................Ann 18, iv, p 721
Hastings series of rocks of Canada, succession, correlation, etc., of........Ann 16, i, pp 773–775; Bull 86, pp 27–35, 451, 497, 498
Hatchetigbee series of Alabama, correlation of.................................Ann 18, ii, p 945; Bull 84, p 326
Hatchettolite, analysis of, from North Carolina, Mitchell County.........Bull 74, p 72
Hauynite, chemical constitution of..Bull 125, pp 22, 103
composition of..Bull 150, p 82
Hawaiian Islands, climate, vegetation, and geography of.......................Ann 4, pp 81–91
mineral resources, geography, population, etc., of........................Ann 19, vi cont, pp 681–686
survey of, estimates and recommendations concerning.........................Ann 21, i, pp 51–52, 57
volcanoes in..Ann 4, pp 75–219
Hawaiian race, growth of, to full civilization.......................................Ann 4, pp 148–149
Hawley schist of Massachusetts and Connecticut...............................Mon xxix, pp 163–171; GF 50, p 215
Haworth (E.), underground waters of southwestern Kansas....................WS 6
Hawthorne beds of Florida, correlation of..Ann 18, ii, p 340; Bull 84, pp 107–111, 326
Hay (R.), geologic reconnaissance in southwestern Kansas....................Bull 57
geology of Fort Riley Military Reservation and vicinity, Kansas...........Bull 137
water resources of portion of Great Plains......................................Ann 16, ii, pp 535–588
Hay Creek coal field, Wyoming, lower Cretaceous plants from, notes on.....Ann 19, ii, pp 645–702
Hayden (F. V.), death and biographic sketch of....................................Ann 9, pp 31–38
Hayes (C. W.) accompanies Schwatka to Yukon Valley.........................Ann 12, i, p 62
Arkansas bauxite deposits..Ann 21, iii, pp 435–472
bauxite deposits, occurrence, geology, origin, etc., of........................Ann 16, iii, pp 547–597
bauxite deposits, origin, structure, location, etc., of........................MR 1893, pp 159–167
brief reconnaissance of Tennessee phosphate fields..............................Ann 20, vi cont, pp 633–638
explorations in Alaska by..Ann 13, i, pp 36, 91–94
geology of Chattanooga quadrangle, Tennessee....................................GF 6
ageology of Cleveland quadrangle, Tennessee.....................................GF 20
geometry of Gadsden quadrangle, Alabama...GF 35
ageology of Kingston quadrangle, Tennessee......................................GF 4
ageology of McMinnville quadrangle, Tennessee..................................GF 22
ageology of Pikeville quadrangle, Tennessee......................................GF 21
ageology of Ringgold quadrangle, Georgia-Tennessee............................GF 2
ageology of Sewanee quadrangle, Tennessee......................................GF 8
ageology of Stevenson quadrangle, Alabama-Georgia-Tennessee...............GF 19
phosphate of Tennessee, classification, origin, etc., of.........................Ann 16, iv, pp 610–630
physiography of Chattanooga district...Ann 19, ii, pp 1–58
Tennessee phosphates...Ann 17, ii, pp 513–550
Tennessee white phosphate, origin, varieties, etc., of........................Ann 21, iii, pp 473–485
work in charge of, 1893–1900...Ann 15, pp 148–149; Ann 16, i, pp 18–20; Ann 17, i, pp 26–28; Ann 18, i, pp 29–30; Ann 19, i, p 34; Ann 20, i, p 38; Ann 21, i, pp 72–73
Hayes River beds of Alaska, southwestern, notes on..........................Ann 20, vii, pp 172–173, 184, 187
Hazel slate of Tennessee and North Carolina......................................GF 16, p 3
Headworks of irrigation canals...Ann 13, iii, pp 218–238
Health, effect of soils on..Ann 12, i, pp 340–344
Heat, conduction of, in steel...Bull 14, pp 25–27
conduction of, investigations in..Ann 14, i, p 164
within the earth, theory and solution of problem of.........................Ann 4, pp 190–191
Heat, effect of, on solubility of sulphate of lime. Ann 7, pp 502-503
expansion due to, literature on. Bull 92, pp 19-20
of Comstock lode, Nevada. Ann 2, pp 310-314;
Mon iii, pp 228-265, 387-392; Mon iv, pp 389-400
of lava, etc., source of. Mon xiii, p 411
(See, also, Temperature; Thermal.)
Hedenbergite, chemical constitution of. Bull 125, pp 86, 88-89
Heer (Oswald), biographic sketch of. Ann 5, pp 378-379
Heights between Lake Superior and Rocky Mountains. Bull 72
in Bonneville Basin. Mon i, pp 405-419
new method of measuring, with barometer. Ann 2, pp xxxvm-xl, 403-566
(See, also, Elevations.)
Heiderberg, Lower, in Indiana. Ann 11, i, pp 633-634
in Ohio. Ann 8, ii, pp 569-568
Helicole of Bear River formation. Bull 128, p 48
of Eocene of New Mexico. Bull 34, pp 26-27
of John Day group of Oregon. Bull 18, pp 14-16
of Pleistocene of Great Basin. Bull 11, p 22
Helobatis beds. Bull 84, p 326
Helvetic formation, correlation of. Ann 18, ii, p 339
Helvite, chemical constitution of. Bull 125, pp 69,104
Hematite, analysis of, from Alabama, various localities (red). MR 1882, p 157
analysis of, from Colorado, Leadville district (siliceous). Mon xi, pp 557,602
from Colorado, southeastern (brown). MR 1887, p 52
from Maryland, central (brown). MR 1886, p 77
from Minnesota, Mesabi range (brown). MR 1892, p 30
Vermilion range. MR 1887, p 41
from Montana, Willow Creek (specular). MR 1888, p 35
from New Mexico, Mora County (nodule). Bull 78, p 127
from Pennsylvania, various localities. MR 1886, pp 53,54
from Tennessee, eastern belt (brown). MR 1886, p 33
from Virginia (brown). MR 1891, p 24
composition of. Bull 150, p 34
from Marquette County, Michigan, description of, as one of the educational
series (magnetic specular). Bull 150, pp 307-308
occurrence and statistics of. MR 1882, p 492
(See, also, Iron ore.)
Hemlock formation of Michigan, Crystal Falls district. Ann 19, iii, pp 45-63, 133-137; Mon xxxvi, pp 73-154, 440-446
Henry Fork group of Uinta Mountains. Bull 82, pp 156, 235
Henry Mountains, Utah, structure, rocks, etc., of. Ann 14, ii, pp 169-177; Mon xii, pp 359-362
Hensell sands of Texas. Ann 21, vii, pp 143-144
Hepaticie of Amboy clays. Mon xxvi, p 35
Heptaphosphonitrilic chloride, analysis of. Bull 167, p 133
Herendeen Bay, Alaska, coal at. Ann 17, i, pp 805-807
Hermansville limestone of Michigan, Menominee district. GF 62, p 11
Hesperornis, description and restoration of. Ann 3, pp 52-69
Hesse sandstone of Tennessee and North Carolina. GF 16, p 3; GF 25, p 2

Bull. 177—01—24
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Hessite, analysis of, from Mexico, San Sebastian Bull 167, p 63
Hetch Hetchy Reservoir, California, discussion of Ann 21, iv, pp 450-465
Heulandite, analysis of, from Colorado, Gunnison County Bull 90, p 62
chemical constitution of ... Bull 125, pp 33, 40-41, 44, 102
Hewitt (G. C.), coal fields of Wyoming MR 1893, pp 412-414
Hexacorallia from Eocene of Middle Atlantic slope Bull 141, pp 89-91
Hexametaphosphimic acid, constitution, salts, decomposition products, etc., of ... Bull 167, pp 149-151
Hexaphosphonitriolic chloride, analysis of Bull 167, p 326
Hickman group of Kentucky ... Bull 83, pp 71-72; Bull 84, p 326
Hickory series of Texas, origin of name Bull 81, p 246
Hiddenite, the new emerald-green gem MR 1882, pp 502-503
Hiddenite, analysis of, from North Carolina, Alexander County Bull 74, p 44;
MR 1882, p 503
High Park lake beds and grits, Colorado, description and relations of Ann 16, ii, pp 53-55, 107, 109
High Plains and their utilization Ann 21, iv, pp 601-741
climate of, deficiencies of Ann 21, iv, pp 657-679
rainfall of .. Ann 21, iv, pp 658-669
(See, also, Great Plains.)
Highbridge limestone of Kentucky GF 46, p 2
Highland Rim, west of Cumberland Plateau, description of Ann 19, ii, pp 13-14
Highlands of New Jersey and New York, literature of geology of Bull 86, pp 386, 387, 390, 391, 392, 396, 399, 400, 401, 402, 413, 414, 415
Highline irrigation canal, Colorado Ann 13, iii, pp 179-181
Highways. (See Roads.)
Highwood Mountains, Montana, structure and igneous rocks of GF 55, pp 1, 3
Highwood syenite of Montana, Fort Benton quadrangle GF 55, p 3
Hilgard (E. W.), asphaltum deposits of California MR 1883-84, pp 938-948
salines of Louisiana .. MR 1882, pp 554-565
Hill (R. T.), clay materials of the United States MR 1891, pp 474-528; MR 1892, pp 712-738; MR 1893, pp 603-617
col fields of Texas ... MR 1891, pp 328-328; MR 1892, pp 507-510
geography and geology of Black and Grand prairies, Texas Ann 21, vii
mineral resources of Porto Rico Ann 20, vii, cont, pp 771-778
physical geography of Texas region TF 3
present condition of knowledge of geology of Texas Bull 45
work in charge of, 1893-1900 Ann 15, pp 170-171; Ann 16, i, pp 27-28; Ann 17, i, pp 34-37; Ann 18, i, pp 35-37; Ann 19, i, pp 39-39; Ann 20, i, pp 42, 55; Ann 21, i, p 76
work of, in Porto Rico .. Ann 20, i, p 55
Hill (R. T.) and Vaughan (T. W.), geology of Edwards Plateau and Rio Grande Plain adjacent to Austin and San Antonio, Texas, with reference to underground waters Ann 18, ii, pp 193-321
geology of Texas, Nueces quadrangle GF 42
lower Cretaceous gryphseas of Texas region Bull 151
Hillebrand (W. F.), analyses of descloizites from new localities........Bull 64, pp 24–28
associated rare minerals from Utah..Bull 20, pp 83–88
chemical composition of calaverite from Cripple Creek, Colorado......Ann 16, u, pp 133–135
chemical notes on the composition of the roofing slates of eastern New York........Ann 19, iii, pp 301–305
chemistry of rocks and ores of Leadville, Colorado..................Mon xii, pp 585–608
composition of rowlandite and mackintoshite..................Bull 113, pp 44–48
colorimetric estimation of small amounts of chromium, with special reference to the analysis of rocks and ores.........Bull 167, pp 37–43
descloizite (?) from Beaverhead County, Montana...........Bull 60, pp 130–131
distribution and quantitative occurrence of vanadium and molybdenum in rocks of the United States........Bull 167, pp 49–55
further example of the isomorphism of thorium and uranium dioxide....Bull 113, pp 41–43
mineralogic notes..................Bull 55, pp 48–55; Bull 167, pp 57–76
miscellaneous mineral notes..Bull 20, pp 89–99
new analysis of uraninite..Bull 90, pp 22–25
new mineral species from Colorado..........................Bull 20, pp 100–109
occurrence of nitrogen in uraninite, and the composition of uraninite in general.................................Bull 78, pp 43–79
preparation and specific gravity of crystallized uranium dioxide....Bull 113, pp 37–40
some principles and methods of rock analysis..........................Bull 176
uraninites, North American, preliminary remarks on............Bull 60, pp 131–133
volumetric estimation of vanadium in presence of small amounts of chromium, with special reference to the analysis of rocks and ores........Bull 167, pp 44–48
warning against the use of fluoriferous hydrogen peroxide in estimating titanium..Bull 167, p 56
zinc-bearing spring waters from Missouri..........................Bull 113, pp 49–53
Hillebrand (W. F.) and Clarke (F. W.), analyses of rocks and analytical methods...............................Bull 148
Hillebrand (W. F.) and Cross (W.), contributions to the mineralogy of the Rocky Mountains..................Bull 20
minerals from the basalt of Table Mountain, Golden, Colorado...Bull 20, pp 13–39
minerals from the neighborhood of Pikes Peak......................Bull 20, pp 40–73
Hillebrand (W. F.) and Melville (W. H.), on the isomorphism and composition of thorium and uranous sulphates....Bull 90, pp 26–33
Hillebrand (W. F.) and Washington (H. S.), notes on certain rare copper minerals from Utah.............Bull 55, pp 38–47
Hillers (J. K.), work in charge of, 1883–1899..................Ann 5, pp xxxv–xxxvi; Ann 6, pp 96–97; Ann 7, p 137; Ann 8, i, pp 202–203; Ann 9, p 144; Ann 10, i, p 190; Ann 11, i, p 134; Ann 12, i, pp 137–138; Ann 13, i, p 165; Ann 14, i, pp 271–272; Ann 15, p 200; Ann 16, i, p 79; Ann 17, i, p 110; Ann 18, i, p 118; Ann 19, i, p 128; Ann 20, i, pp 140–141
Hills (R. C.), coal fields of Colorado................................MR 1892, pp 319–365
geology of Elmoor quadrangle, Colorado.................................GF 58
geology of Walsenburg quadrangle, Colorado.......................GF 68
work in charge of, 1894–1899..Ann 16, i, p 32; Ann 17, 1, p 45; Ann 18, i, p 40; Ann 19, i, p 46; Ann 20, 1, p 46
Hinckley (F. C.), notes on animal and vegetable life of the region of Sushitna and Kuskokwim rivers, Alaska.........Ann 20, vii, pp 76–85
notes on Yukon-Kuskokwim water route..........................Ann 20, vii, pp 97–99
Hinsdale gneiss of MassachusettsMon xxix, pp 20, 24; Bull 159, pp 22-27
thin section of, from Massachusetts, HinsdaleBull 159, pp 26-27
Hinsdale limestone of MassachusettsMon xxix, pp 20, 25-27; Bull 159, pp 27-32
Hinton formation of Virginia and West VirginiaAnn 17, ii, pp 487-489; GF 26, p 3; GF 44, p 3
Hördahlite, chemical constitution ofBull 125, pp 77, 89, 105
Hisingerite, analysis of, from North Carolina, Alexander CountyBull 74, p 64
chemical constitution ofBull 125, p 66
Historical geology. (See Archean, Algonkian, Cambrian, etc.)
Hitchcock (C. H.), quoted on albertite at Hillsborough, New BrunswickAnn 17, i, pp 941-942
Hiwassee River, flow of, measurements ofAnn 18, iv, p 118;
 Ann 19, iv, pp 259-260; Ann 20, iv, pp 52, 208-209;
 Ann 21, iv, pp 164-165; Bull 140, p 82; WS 11, p 43;
 WS 15, p 63; WS 27, pp 64, 65, 66; WS 36, pp 169-171
profile ofWS 44, p 51
Hobbs (W. H.), Newark system of Pomperaug Valley, ConnecticutAnn 21, iii, pp 7-162
work in charge of, 1895-1897, 1899Ann 17, i, pp 20-21; Ann 18, i, p 26; Ann 21, i, p 70
Hoffman (H. O.), recent improvements in desilverizing lead in the United StatesMR 1883-84, pp 462-473
Hogbacks, examples ofTF 2, p 14
in Colorado, Pueblo quadrangleGF 36, p 5
in New York-Vermont slate quarriesAnn 19, iii, pp 212, 213, 219, 270
Hog-wallow mounds of CaliforniaAnn 17, i, pp 681-683
Holasteridse, Mesozoic, of United StatesBull 97, pp 74-78
Holden (E. S.), earthquakes in California in 1890 and 1891Bull 95
Hoklnuk series of pre-Tertiary rocks, AlaskaAnn 20, vii, pp 159-161, 182, 187
Holland, clay products of, at Paris Exposition of 1900Ann 21, vi cont, p 386
Hollick (A.), editor, flora of Amboy clays, by NewberryMon xxvi
later extinct floras of North America, by NewberryMon xxv
Holmes (J. A.), corundum deposits of the southern Appalachian regionAnn 17, iii cont, pp 935-943
mica deposits in United States, nature, quality, value, etc., ofAnn 20, vii cont, pp 691-707
Holmes (W. H.), quoted on glaciers in Rocky MountainsAnn 5, pp 344-347
work in charge of, 1884-1889Ann 6, pp 94-97; Ann 7, pp 136-137; Ann 8, i, pp 202-203; Ann 9, pp 143-144; Ann 10, i, pp 189-190
Holocene of Devonian ageMon xvi, pp 45-51
Holson River, profile ofWS 44, pp 54-55
Holyoke diabase of Massachusetts and ConnecticutMon xxix, pp 418-464; GF 50, p 6
Holyoke quadrangle, Massachusetts-Connecticut, geology ofGF 50
Homewood sandstone of Ohio as a water bearerAnn 19, iv, pp 649, 690-693
Homilite, chemical constitution ofBull 125, pp 70, 104
Homogeneity, correlation by means ofAnn 12, i, pp 381-384; Ann 14, i, p 230
Honaker limestone of TennesseeGF 44, p 2; GF 59, p 3
of Virginia and West VirginiaGF 44, p 2; GF 59, p 3
Honduras, fossil plants of, literature ofAnn 8, ii, p 824
Hood (O. P.), new tests of certain pumps and water lifts used in irrigationWS 14
Hood River, flow of, measurements ofAnn 21, iv, pp 434-436;
 WS 16, p 181; WS 28, pp 168, 169; WS 38, p 380
irrigation fromAnn 19, iv, pp 498-500
rainfall in basin ofAnn 19, iv, p 500
Hoosac Mountain, literature of geology of.............. Bull 86, pp 361, 363, 371–373
Hoosac Mountain and adjacent territory, geology of........ Mon xxiii, pp 35–118
Hoosac schist in Connecticut.................... GF 50, pp 1–2, 4
in Hoosac Mountain.................................. Mon xxiii, pp 59–63
in Massachusetts........ Mon xxix, pp 66–75; Bull 159, pp 81–83; GF 50, pp 1–2, 4
Hoosac tunnel, rock formations observed in...... Mon xxiii, pp 69–72, 108
Hope Valley, Nevada, engineering plans and estimates for reservoir in..... Ann 13, iii, pp 395–397

irrigation surveys in ... Ann 11, ii, pp 180–181

Hopkins (T. C.), brownstones of Pennsylvania—properties, chemical composi­
tional, structural and textural features, occurrence, use, etc................... Ann 18, v cont, pp 1025–1043

sandstones of western Indiana..................... Ann 17, iv cont, pp 780–787

Hopkins (T. C.) and Siebenthal (C. E.), Bedford oolitic limestone....... Ann 18, v cont, pp 1050–1059

Hornblende a product of mineralogic metamorphism................ .Bull 62, p 210
alteration of, during metamorphism of massive rocks..... Bull 62, p 216
analysis of, from District of Columbia............... Bull 27, p 62
from California, Grass Valley............................ Ann 17, ii, p 43
from Maryland, Gwynns Falls (fibrous).................. Bull 28, p 44
from Montana, Highwood Mountains................ Bull 90, p 70;
Bull 148, p 155; Bull 168, p 134
from New York, Pierrepont.................................. Bull 78, p 119
“black border” of, in igneous rocks......................... Mon iii, pp 59–61
chemical constitution of............................... Bull 125, p 91
in diorite, from Wyoming, Electric Peak......... Ann 12, i, pp 606–608
in gneisses of Minnesota, southwestern............ Bull 157, pp 55–57
in porphyrite, from Wyoming, Electric Peak......... Ann 12, i, pp 592–593
in porphyritic diorite, from Nevada, Washoe district, passing into chlor­
rite... Mon iii, pp 150–151
in rocks of Pacific slope................................. Mon xiii, pp 75–76
thin section of, from Delaware, illustrating alteration of diallage into com­
 pact green hornblende............................... Bull 59, p 26
from Delaware, illustrating alteration of fibrous into compact green
hornblende.. Bull 59, p 29
illustrating alteration of hypersthene into tremolite and fibrous
green hornblende.. Bull 59, p 23
from Michigan, Lower Quinnepec Falls (in porphyrite-diorite)... Bull 62, p 79
Menominee region, showing cores of hornblende surrounded by
fibrous border.. Bull 62, p 126
Sturgeon Falls (around diallage in gabbro).................. Bull 62, p 70
T. 48 N., R. 26 W., sec. 4 (crystal)......................... Bull 62, p 183
from Minnesota, Pigeon Point (fibrous green).............. Bull 109, pp 40–41
Pigeon Point (pseudamygdule in altered gabbro)........ Bull 109, pp 42–43
from Nevada, Silver City (from hornblende andesite).... Mon iii, pp 150–151
Washoe district (from metamorphic diorite)........... Mon iii, pp 150–151
(passing into chlorite, from hornblende-andesite)..... Mon iii, pp 150–151
Hornblende phenocrysts, thin section of, from Nevada, Eureka district.... Mon xx, pp 404–405
Hornblende rocks of Colorado, Telluride quadrangle............... GF 57, p 7
of Maryland, near Baltimore, gabbros and associated......... Bull 28
Hornblende and augite intergrown, analysis of, from Colorado, Blue Moun­
tains.. Ann 17, ii, p 278
Hornblende and partly altered hypersthene from andesitic perlite from Nevada,
Eureka district.. Mon xx, pp 396–397
Hornblende and pyroxene, intergrowth of, in glassy rocksAnn 12, i, pp 610-617
Hornblende and quartz, alteration products of feldspar Mon xix, p 110
Hornblende-andesite, analysis of, from Alaska, Bogoslof IslandBull 27, pp 63, 64; Bull 148, p 233; Bull 168, p 227
analysis of, from California, Lassen Peak region...Bull 148, p 195; Bull 168, p 181
from California, Mount ShastaBull 148, p 190; Bull 150, p 223; Bull 165, p 171; Bull 168, p 176
Plumas CountyBull 148, p 202; Bull 168, p 188
from Nevada, Washoe districtMon iii, opp p 152; Mon xx, p 282; Bull 17, p 33
from Yellowstone Park, Sepulchre MountainAnn 12, i, p 648; Mon xxxii, ii, p 135; Bull 148, p 120; Bull 168, p 90
Tower CreekBull 148, p 134; Bull 168, p 108
from California, Mount Shasta, description of, as one of the educational seriesBull 150, pp 221-223
of California, Lassen Peak quadrangleGF 15, pp 1-2
Mother Lode district (meta-)GF 63, p 4
of Maine, Aroostook volcanic area, petrography ofBull 165, pp 172-173
of Nevada, Eureka districtAnn 3, pp 277-278; Mon xx, p 233
Washoe districtAnn 2, p 300; Mon iii, pp 53-62, 66-70, 116-125, 130-134, 199-201, 203-205; Bull 17, p 23-26
of Yellowstone ParkMon xxxii, ii, p 291
relation of, to pyroxene-andesiteBull 17, p 34
thin section of, from Nevada, Washoe districtMon iii, pp 150-151
Hornblende-andesite-porphry, analysis of, from Yellowstone Park, Electric PeakMon xxxii, ii, p 81
of Yellowstone ParkMon xxxii, ii, pp 77-80
Hornblende-augite-andesite, analysis of, from Yellowstone Park, Absaroka RangeBull 168, p 97
Hornblende-basalt, analysis of, from California, Lassen Peak regionBull 148, p 200; Bull 168, p 186
analysis of, from Yellowstone Park, Stinkingwater Canyon..Mon xxxii, ii, p 340
Hornblende-bearing biotite-granite from Maine, Fox Island, description of, as one of the educational seriesBull 150, pp 177-179
Hornblende-biotite-gneiss, analysis of, from Minnesota, MortonBull 157, p 75
of Minnesota, southwesternBull 157, pp 72-76
thin section of, from Minnesota, southwesternBull 157, pp 142-143
from Minnesota, VestaBull 157, pp 138-139
Hornblende-biotite-gneiss of Minnesota, southwesternBull 157, pp 60-66
thin section of, from Minnesota, OrtonvilleBull 157, pp 140-141
from Minnesota, southwesternBull 157, pp 138-139
Hornblende-biotite-syenite, thin section of, from Michigan, sec. 27, T. 47 N., R. 47 WAnn 10, i, pp 468-469; Mon xix, pp 478-479
Hornblende-dacite, analysis of, from Greece, ÆginaBull 165, p 171
Hornblende-diorite, analysis of, from District of ColumbiaBull 148, p 85; Bull 168, p 44
of Colorado, Telluride quadrangleGF 57, p 7
of Sierra NevadaAnn 17, i, p 583
Hornblende-diorite-porphry, analysis of, from Colorado ..Bull 150, p 232
from Colorado, Buckskin Gulch, description of, as one of the educational seriesBull 150, pp 231-233
Hornblende-gabbro, analysis of, from Michigan, Crystal Falls districtMon xxxvi, pp 242, 263; Bull 168, p 67
analysis of, from Minnesota, DuluthBull 109, p 37
of Michigan, Keweenaw seriesAnn 3, p 106; Mon v, pp 86-88
Hornblende-gabbro of Sierra Nevada: Ann 17, i, pp 576, 583
thin section of, from Michigan, Crystal Falls district (poikilitic, schistose, etc.): Mon xxxvi, pp 312-313, 314-315, 316-317, 318-319
from Wisconsin, Ashland County, and English Lake: Mon v, pp 56-57
Hornblende-gabbro-gneiss from Maryland, Franklin, description of, as one of the educational series (gabbro-diorite): Bull 150, pp 367-369
thin section of, from Minnesota, Minnesota Falls: Bull 150, pp 360-361
Hornblende-gneiss, derivation of, from eruptive rocks: Ann 10, i, pp 360-362
of Michigan, Crystal Falls district: Ann 19, iii, pp 104-105; Mon xxxvi, pp 395-397
thin section of, from Michigan, sec. 16, T. 47 N., R. 45 W.: Ann 10, i, pp 468-469; Mon xix, pp 478-479
from Wisconsin, sec. 33, T. 46 N., R. 2 E.: Ann 10, i, pp 470-471; Mon xix, pp 476-477
Hornblende-granite, analysis of, from Vermont, East Clarendon section: Bull 148, p 71; Bull 168, p 27
from Massachusetts, Cape Ann, description of, as one of the educational series (biotite-bearing): Bull 150, pp 179-181
thin section of, from Michigan, NE. 1/4 SW. 1/4 sec. 23, T. 47 N., R. 47 W.: Ann 10, i, pp 468-469; Mon xix, pp 478-479
Hornblende-granitite, analysis of, from Montana, Big Timber Creek: Bull 148, p 142; Bull 168, p 120
Hornblende-mica-andesite, analysis of, from Nevada, Eureka district: Mon xx, p 264; Bull 150, p 221
analysis of, from Nevada, Washoe district: Mon xx, p 23; Bull 17, p 33
from Yellowstone Park, Crescent Hill: Bull 148, p 134; Bull 168, p 108
Sepulchre Mountain: Ann 12, i, p 648; Ann 14, ii, p 227;
Mon xxxii, ii, p 135; Bull 148, p 121; Bull 168, p 91
from Nevada, Hoosac Mountain, description of, as one of the educational series: Bull 150, pp 219-221
of Nevada, Eureka district: Mon xx, pp 364-368
of New Mexico, Tewan Mountains: Bull 66, pp 13-14
of Yellowstone Park: Mon xxxii, ii, p 290
Hornblende-mica-andesite-porphyry, analysis of, from Yellowstone Park, Absaroka Range: Mon xxxii, ii, p 261; Bull 148, p 124; Bull 168, p 94
analysis of, from Yellowstone Park, Fan Creek: Mon xxxii, ii, p 81; Bull 148, p 133; Bull 168, p 107
from Yellowstone Park, Gray Mountain: Mon xxxii, ii, p 81; Bull 148, p 133; Bull 168, p 107
Indian Creek: Mon xxxii, ii, p 61
of Yellowstone Park and vicinity: Mon xxxii, ii, pp 60-64, 73-77, 256-258
Hornblende-mica-porphyrite, analysis of, from Colorado, Mosquito Range: Ann 14, ii, p 227
analysis of, from Colorado, West Elk Mountains: Ann 14, ii, p 227; Bull 148, p 178; Bull 168, p 160
from Yellowstone Park, Electric Peak: Bull 148, p 119; Bull 168, p 89
Hornblende-mica-syenite, analysis of, from Montana, Castle Mountain district: Bull 148, p 151
Hornblende-picrite, analysis of, from Montana, Crazy Mountains: Bull 90, p 71; Bull 148, p 146; Bull 168, p 124
analysis of, from Montana, North Meadow Creek: Bull 90, p 71; Bull 148, p 140; Bull 168, p 114
Hornblende-porphyrite, analysis of, from Arizona, Sierra Carriso: Ann 14, ii, p 237; Bull 148, p 187; Bull 168, p 173
analysis of, from California, Nevada City: Bull 148, p 208; Bull 168, p 194
Hornblende-porphyrite, analysis of, from Colorado, El Late Mountains... Ann 14, p 227; Bull 148, p 130; Bull 168, p 164
from Utah, Henry Mountains.. Ann 14, p 227; Bull 148, p 183; Bull 168, p 167
from Yellowstone Park, Electric Peak........ Bull 148, p 119; Bull 168, p 89
Hornblende-porphyry, analysis of, from California, Jackson quadrangle.........................GF 11, p 4
Placerville quadrangle... GF 3, p 3
Sonora quadrangle.. GF 41, p 4
of Sierra Nevada.. Ann 14, p 473; Ann 17, i, p 669
-thin section of, from Colorado, Leadville district...... Mon xi, pp 336-337
Hornblende-porphry, analysis of, from Yellowstone Park, Electric Peak........ Bull 148, p 119; Bull 168, p 89
Hornblende-pyroxene of California, Sonora quadrangle.................... GF 41, p 5
Hornblende-pyroxene-andesite, analysis of, from California, Plumas County........ Bull 89, p 67; Bull 148, p 202; Bull 168, p 188
from California, Sierra County........... Bull 148, p 207; Bull 168, p 193
from Yellowstone Park, Absaroka Range............... Bull 168, p 96
Sepulchre Mountain... Ann 12, i, p 648;
from Nevada, Virginia City, description of, as one of the educational... Bull 150, pp 223-224
series of California, Downieville quadrangle.......................GF 37, pp 6-7
of New Mexico, Tewa Mountains.................................. Bull 66, pp 14-15
of Wyoming, Sepulchre Mountain................................. Ann 12, i, pp 638-640
of Yellowstone Park and vicinity............ Mon xxxii, ii, pp 258, 291-294, 300
-thin section of, from California, Downieville area........ Mon 17, i, pp 758-759
Hornblende-pyroxyene-andesite-porphyry of Yellowstone Park......... Mon xxxii, ii, p 80
Hornblende-schist, analysis of, from Massachusetts, Amherst........... Mon xxix, p 221
from New Hampshire, Hanover, description of, as one of the educational... Bull 150, pp 362-365
series (garnetiferous)... Bull 150, pp 331-332
of Michigan, Marquette district..................... Ann 15, p 513; Mon xxvii, pp 203-208
of Sierra Nevada.. Ann 17, i, p 584
-thin section of, from Wisconsin, sec. 35, T. 46 N., R. 2 E... Mon xix, pp 476-477
Hornblende-syenite, analysis of, from California, Inyo County........ Ann 17, i, p 727
Hornfels, analysis of, from California, Mariposa County........... Ann 17, i, p 691;
Bull 148, p 221; Bull 168, p 210
from California, Genesee Valley, description of, as one of the educational... Bull 150, pp 337-338
Hornstone, analysis of, from Maryland, Sykesville, also of dissolved inclusion........ Bull 90, p 67
-analysis of, from Montana, Crazy Mountains........ Bull 148, p 144; Bull 168, p 122
Horseshoe Creek, Wyoming, reservoir sites on........ Ann 20, iv, pp 270-273
Horsetown beds of California................................. Mon xiii, p 205;
Bull 19, pp 20-21; Bull 82, pp 184, 186, 187
-of California, fossils of Bull 15, pp 19-22
Horton (R. E.), report on run-off and water power of Kalamazoo River....WS 30,
pp 22-38
Hoskins (L. M.), flow and fracture of rocks as related to structure.......... Ann 16, i, pp 846-874
Hot-spring deposit, analysis of, from Montana, Boulder Hot Springs........ Ann 21, ii, pp 244
-analysis of, from Nevada, Steamboat Springs (metalliferous)....... Mon xiii, p 344
Hot-spring waters, analysis of........... Bull 9, pp 24, 27, 28, 30-35; Bull 42, p 148; Bull 60, p 174
WARMAN. HORNBLENDE SUMBURG.

Hot-spring waters of Yellowstone Park, character of. Ann 9, pp 638-640
of California, Colusa County. Mon xiii, p 367
Mono Lake. Ann 8, i, pp 278, 288
Sulphur Bank. Mon xiii, p 254
of Nevada, Lahontan Basin. Mon xi, pp 48, 49, 51-54, 60
of Utah, Fumarole Butte. Mon i, p 333
of Wyoming. Bull 119, pp 67-68
of Yellowstone Park. Ann 9, p 628; Mon xxxi, ii, pp 177-178
trailentine and siliceous sinter of. Ann 9, pp 613-676
Hot water, deposits from. Mon xiii, pp 260-261
Hot waters of Comstock lode, Nevada. Ann 2, p 313; Mon iii, pp 286-287
vegetation of. Ann 9, pp 620-628, 657
Housatonic River, profile of. WS 44, pp 13-14
Howe (E.), experiments illustrating intrusion and erosion. Ann 21, iii, pp 291-303
Howe (H. M.), copper smelting. Bull 26
Hiibnerite, description and analysis of, from Colorado, Ouray County. Bull 20, p 96
description and analysis of, from Montana, near Phillipsburg. Bull 20, p 96
Huckleberry Mountain and Big Game Ridge, Yellowstone Park, geology of. Mon xxxii, ii, pp 165-202
Hudson Bay, pre-Cambrian rocks of region about. Bull 86, pp 209-213, 500
Hudson grits of New York-Vermont slate belt. Ann 19, iii, p 189
Hudson quartzites of New York-Vermont. Ann 19, iii, p 186
Hudson River, drainage area of, water powers and elevations on tributaries of. WS 24, pp 33-43
profile of. WS 44, p 14
rainfall in watershed of. WS 25, p 133
trade and commerce on. WS 25, pp 144-145
water storage on. WS 25, pp 125-134
Hudson River formation of Indiana. Ann 11, i, pp 630-631
of Ohio, as a water carrier. Ann 19, iv, p 642
of Illinois, thickness, etc., of. Ann 17, ii, pp 834-835
of Indiana. Ann 8, pp 637-638
of Michigan. WS 30, p 89
Hudson shales and white beds of New York-Vermont. Ann 19, iii, p 185
Hudson slate, red and green, of New York and Vermont. Ann 19, iii, pp 187-189
Huerfano beds of Colorado, correlation of. Bull 83, pp 142-146; Bull 84, p 327
Human remains in auriferous gravels of California. Bull 84, pp 221-222
Humboldt and other mountains of Nevada, geology of, literature of. Bull 86, pp 299-308
Humboldt group of rocks of Utah and Nevada. Bull 84, pp 312-313, 315-316, 317, 327
Humboldt Lake and River, of Nevada, analyses of water of. Mon xi, pp 41, 67
profile of. WS 44, pp 90-91
water storage on. WS 44, pp 90-91
Humbbug formation of Utah. Ann 20, iv, pp 448-454
Humbug intercalated series of Utah. Ann 19, iii, pp 625-626
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [Bull. 177.]

Humidity as a disturbing factor in barometric hypsometry Ann 2, pp 425-427
is it increased by irrigation? .. Ann 12, ii, p 234
Humite, chemical constitution of Bull 125, pp 69, 104
Hungary. (See Austria-Hungary.)
Hunt (A. E.), aluminum, manufacture of, in Europe Ann 17, iii, pp 245-251
aluminum, statistics of .. MR 1892, pp 227-254
Hunt (T. S.), system of classification for pre-Paleozoic groups Ann 7, pp 381-389;
Bull 86, pp 462-466
Huntington quadrangle, West Virginia-Ohio, geology of GF 69
Huntley (D. B.), list of ores, minerals, and mineral substances of industrial
importance in Arizona and Utah ..MR 1882, pp 760-764, 773-775
mining districts of Arizona .. MR 1882, pp 765-766
Huronian, definition of .. Bull 86, p 463
Huronian district, the original, Lake Superior region, succession, correlation,
etc., in ... Ann 3, pp 141, 157-163; Ann
16, i, pp 775-780; Bull 86, pp 23-50, 498-499
Huronian quartzites, genesis of and metamorphism in Ann 5,
pp 236-237; Bull 8, pp 48-52
Huronian rocks, enlargements in Bull 8, pp 23-37
of Great Lakes region ... Ann 3, pp 163-168;
Ann 5, pp 189-194; Ann 10, i, p 348; Ann 15, p 647; Ann 19,
iii, pp 10-14, 34-80, 121-122; Ann 21, iii, pp 354-360; Mon v,
pp 386-394, 402-409; Mon xix, passim; Mon xxviii, passim;
Mon xxxvi, pp xviii-xxiv, 50-186; Bull 86, passim; GF 62
of Northwestern States, metamorphism in Ann 5, pp 241-242
the original .. Ann 3, pp 141, 157-163;
Ann 16, i, p 775; Bull 86, pp 23-50, 498-499
(See, also, Algonkian rocks.)
Huronian system, history of term Bull 86, pp 470-474
Huronian and Laurentian rocks, relations of Keweenawan rocks to Ann 3,
pp 156-173
relations of Penokee iron-bearing series to Ann 10, i, pp 458-464
Hutson (W. F.), irrigation systems of Texas WS 13
Hyalite, occurrence of MR 1883-84, p 761; MR 1891, p 550; Ann 16,
iv, p 603
Hyalotekite, analysis of .. Bull 125, p 99
chemical constitution of Bull 125, pp 98-99, 106
Hyatt (A.), report on Mesozoic fossils from Alaska Ann 17, i, pp 907-908
work in charge of, 1889-1892, 1895-1897 Ann 11, i, pp 97-100; Ann 12, i, pp 111-112;
Ann 13, i, pp 142-143; Ann 17, i, p 66; Ann 18, i, p 68
Hydraulic-cement rock, analysis of, from New York, Akron Bull 168, p 253
Hydrobiotite, chemical constitution of Bull 125, p 49
Hydrocarbons, chemical relations between Ann 17, i, p 918
comparative occurrence of related Ann 17, i, pp 938-942
Hydrocarbons and allied substances, classification of Ann 17, i, pp 916-917
Hydrocastorite, analyses of Bull 125, p 97
chemical constitution of Bull 125, p 97
Hydroclintonite, chemical constitution of Bull 125, p 49
Hydrogen peroxide, fluoriferous, warning against use of, in estimating
titanium ... Bull 167, p 56
Hydrogen sulphide in natural gas of Point Abino, Canada Ann 19, vi cont, pp 184-185
Hydrography; Austin dam, construction and destruction of WS 40
dams on James River, description of Ann 19, iv, pp 164-170
discharge of western rivers, tables of Ann 13, iii, pp 92-99
floods in New York, Chemung River WS 24, pp 87-90
on Lower Mississippi River, discussion of Ann 20, iv, pp 347-352
Hydrography; flow of water through porous soils or rock, theoretical investigation of.

Illinois, water resources of.

Indiana and Ohio, water resources of.

instruments and methods.

jetties at mouth of Mississippi.

Kansas, Fort Riley Military Reservation.

legislation authorizing investigations.

loss of water from artificial channels in New York.

meters, methods of rating.

rating of, in 1896.

rating tables for.

various kinds of.

of Colorado, Denver Basin, rainfall, run-off, evaporation, etc.

White and Yampa rivers, reconnaissance on.

of Great Plains, portion of.

of Nicaragua.

of United States arid region.

potable waters of eastern United States.

pumping water in Georgia.

rating stations for meters, descriptions of.

river heights for 1896.

river stations, operations at, in 1897, 1898, and 1899.

rivers, profiles of, in United States.

sand areas of Long Island, New York, water yield of.

siling in Texas, Lake McDonald.

springs in Idaho, Boise quadrangle.

storage capacity in New York, Croton watershed.

storage of water in Arizona on Gila River.

streams in California, average flow of.

in Georgia, Apalachicola Basin, list of.

subterranean drainage lines, especially in Indiana and Ohio.

topographic forms, classification of, on basis of.

water of eastern United States (potable).

ownership of, in New York.

uses of.

water horizons in southeastern Nebraska.

water measurements, tables for converting units used in.

waters, ownership of inland, by State of New York.

well boring and irrigation in South Dakota, eastern, in 1896.

wells in Arizona.

work in, 1890-1900, reports on.

(See, also, Artesian water; Drainage; Evaporation; Irrigation; Rainfall; Reservoirs; Seepage; Stream measurements; Water; Wells.)
Hydrolite, occurrence of .. MR 1891, p 547; MR 1893, p 697
Hydromica from New Jersey, analysis and constitution of Bull 167, pp 154-155
Hydromica-schist of Massachusetts, western Mon xxxix, pp 76-78, 156-163
of Northwestern States .. Ann 5, p 212
Hydronephelite, analysis of, from Maine, Litchfield Bull 42, pp 31-34; Bull 148, p 66; Bull 168, p 21
chemical constitution of .. Bull 125, pp 18, 33, 44, 101
Hydrophlogopite, chemical constitution of Bull 125, p 49
Hydroplastic rocks ... Bull 86, p 440
Hydrosol, analysis of impure .. Bull 113, pp 105, 106, 107, 108
Hydrosol of silver, preparation of Bull 113, pp 99-101
Hydrothermal alteration of granite, basalt, and rhyolite of Idaho Ann 20, iii, pp 174-186
Hydrozoa of Cambrian, lower .. Ann 10, i, pp 587, 604-606
of Cambrian, middle, of North America Bull 30, pp 51, 91-94
of Olenellus zone ... Ann 10, i, pp 604-606
Hyperite, analysis of, from Sweden Bull 28, p 37
Hypersthene, analysis of, from Colorado, Buffalo Peaks Mon xii, p 589;
Bull 1, p 29; Bull 148, p 171; Bull 150, p 226; Bull 168, p 153
analysis of, from Greece, Santorin Bull 1, p 29
from Labrador, St. Pauls Island Bull 1, p 29
from Maryland, Baltimore Bull 28, pp 23, 44; Bull 150, p 281
Gwynns Falls ... Bull 28, pp 21, 44
from Minnesota, sec. 20, T. 65 N., R. 4 W. ... Bull 148, p 111; Bull 168, p 81
from Oregon, Mount Thielsen Bull 9, p 15
from Pacific coast .. Ann 17, i, p 735
chemical constitution of ... Bull 125, p 86
from Nevada, Eureka district, partly altered Mon xx, pp 396-397
in basalt ... Mon xiii, p 157
in dacite ... Mon xx, p 369
in diorite from Wyoming, Electric Peak Ann 12, i, pp 603-604
in pyroxene-andesite .. Mon xx, p 356
in rhyolitic pumice ... Mon xx, p 381
methods of isolation of ... Bull 1, p 27
thin section of, from Delaware, showing alteration into tremolite and
fibrous green hornblende Bull 59, p 23
from Nevada, Eureka district, from andesite perlite Mon xx, pp 396-397
Hypersthene-andesite, analysis of, from Arizona, San Francisco Mountains Bull 42, p 139; Bull 148, p 188; Bull 168, p 174
analysis of, from California, Bidwell Bar quadrangle Ann 17, i, pp 569, 731; Bull 148, p 202; Bull 168, p 188
from California, Downieville quadrangle Ann 17, i, p 731; Bull 148, p 207; Bull 168, p 193
Lassen Peak region .. Ann 17, i, p 731; Bull 148, pp 196, 197; Bull 165, p 171; Bull 168, pp 182, 186
Mount Shasta ... Bull 148, p 190; Bull 150, p 228; Bull 168, p 173
from Colorado, Buffalo Peaks Mon xii, p 589; Bull 1, p 26;
Bull 148, p 171; Bull 150, p 227; Bull 168, p 153
from Montana, near Red Bluff Bull 90, p 70; Bull 148, p 140; Bull 168, p 114
from Washington, Mount Rainier Ann 18, ii, p 420
from California, Mount Shasta, description of, as one of the educational
series ... Bull 150, pp 227-228
from Colorado, Buffalo Peak, description of, as one of the educational series ... Bull 150, pp 224-227
Hypersthene-andesite in augitic rocks Bull 1, pp 19-38
of Colorado, Buffalo Peaks .. Mon xi, p 354
of Washington, Mount Rainier .. Ann 18, ii, pp 416-422
thin section of, from California, Mount Shasta Bull 150, pp 228-229
Hypersthene-augite-andesite, analysis of, from Oregon, Crater Lake Bull 168, p 222
Hypersthene-basalt, analysis of, from Oregon, Mount Thielsen Bull 148, p 230; Bull 168, p 220
of, from Virginia, Culpeper County Ann 21, iii, p 81
Hypersthene-bearing gabbro-schists in southwestern Minnesota Bull 157, pp 82-98
Hypersthene-gabbro, analysis of, from Maryland, Gwynns Falls Ann 15, p 673; Bull 28, p 37
analysis of, from Maryland, Mount Hope Cut Bull 28, p 37
from Maryland, Wetheredville .. Ann 15, p 673; Bull 148, p 85; Bull 150, p 372; Bull 168, p 44
from Minnesota, Granite Falls (porphyritic hornblendeic) Bull 157, p 89
sec. 20, T. 65 N., R. 4 W (granulitic) Bull 90, p 68; Bull 148, p 111; Bull 168, p 81
of Delaware .. Bull 59, pp 10-15
of Maryland, near Baltimore ... Bull 28, pp 18-26, 32-49
of Minnesota, near Odessa .. Bull 157, pp 136-137
thin section of, from transitional zone between gabbro-diorite and, from Maryland, Mount Hope Bull 28, pp 670-671
from Minnesota, Minnesota Falls Bull 157, pp 144-145
Hypozoic rocks ... Bull 86, pp 357, 404
(See Archean.)
Hypsilophodon, remarks on and restoration of Ann 16, i, p 230
Hypsometry, barometric, new method of Ann 2, pp xxxviii-xl, 403-566
Ice, floating, transportation by Mon xxxiv, p 21
Ice age. (See Glacial; Pleistocene.)
Ice dam, Pleistocene, of the Ohio Bull 58, pp 17-38, 76-101
Ice invasions, the great, rock scorings of Ann 7, pp 147-248
Iceland, fossil plants of, literature of Ann 8, ii, p 830
quicksilver deposits in ... Mon xiii, pp 24-26
Ichthyornis, description and restoration of Ann 3, pp 69-83
Icy Bay, Alaska, description of Ann 13, ii, p 13
Idaho, abrasive material in Boise quadrangle GF 45, p 6
agricultural land in Priest River Forest Reserve Ann 19, v, pp 240-242
agricultural possibilities in .. Ann 16, ii, pp 275-276
altitudes in .. Ann 18, i, pp 391-393; Ann 19, i, pp 355-356; Ann 20, i, pp 471-474; Ann 21, i, pp 517-524; Bull 5, pp 84-86; Bull 72, p 225; Bull 76; Bull 160, pp 132-135
Alturas (Blaine) County, gold, silver, and lead production of, 1880-1898. Ann 20, iii, p 192
Bear River formation in ... Bull 128, pp 30-31
Bitterroot Forest Reserve—lands, timber, fires, etc Ann 19, v, pp 57-59, 253-282
report on ... Ann 20, v, pp 317-410
Black Hornet mining district, geology, mineral deposits, etc. of. Ann 18, iii, pp 703-705
Boise, latitude and longitude of, determination of Ann 11, i, p 129; Bull 70
Boise quadrangle, geology of ... GF 45
Boise mining district, general description of Ann 18, iii, pp 705–706
Boise Valley, seepage measurements in Ann 20, iv, pp 484–488
boundary line between Montana and, survey of, from international boundary to crest of Bitterroot Mountains.. Ann 18, i, p 13; Bull 170
boundary lines of, and formation of Territory Bull 13, pp 32, 177; Bull 170, p 16; Bull 171, pp 134–135
Building stone at World’s Columbian Exposition MR 1893, p 562
in Boise quadrangle .. GF 45, p 6
production of, statistics of ... MR 1892, pp 710, 711; MR 1893, pp 547, 548, 553, 556; Ann 16, iv, pp 437, 463, et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 206 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
clay products of, statistics of .. Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii p 819 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq
in Boise quadrangle .. GF 45, p 6
Cœur d’Alène Lake, flow of, measurements of WS 38, pp 369–370
elevations in ... Ann 17, i, pp 391–393; Ann 19, i, pp 355–356; Ann 20, i, pp 471–474, 522; Ann 21, i, pp 517–524; Bull 5, pp 84–86; Bull 72, p 225; Bull 76, pp 132–135
Fall River, flow of, measurements of Ann 11, ii, pp 105–110; Ann 12, ii, pp 344, 356, 361; Ann 13, iii, pp 97, 99
Flint district, silver veins and mines of Ann 20, iii, pp 187–188
Florence gold-mining district, history, production, veins, etc., of Ann 20, iii, pp 232–237
Idaho; Florida Mountain, silver veins of........ Ann 20, iii, pp 134-147, 160-161
forested areas in northern, condition of............... Ann 19, v, pp 373-386
geographic positions in.................................. Ann 18, i, p 208; Ann 19, i, pp 174-179; Ann 20, i, pp 278-283; Bull 123, pp 141-142
gologic investigations in.................................. Ann 7, p 78
gologic maps of. (See Map, geologic, of Idaho.)
geologic reconnaissance across..........................Ann 16, ii, pp 211-276
gologic sections in. (See Section, geologic, in Idaho.)
geologic and paleontologic work in..................... Ann 16, i, p 29; Ann 17, i, p 38;
Ann 18, i, pp 44-45; Ann 20, i, p 48; Ann 21, i, pp 80-81
gology of western-central......................... Ann 20, iii, pp 79-106, 116-121
glacial investigations in..................................... Ann 7, pp 178-179, 180
gold in Boise quadrangle..................................GF 45, pp 5-6
gold and silver, production of, in Owyhee County, 1863-1898........ Ann 20, iii, pp 111-112
production of, statistics of............................. Ann 2, p 385; MR 1882, p 172 et seq; MR 1883-84, p 312 et seq; MR 1885, pp 201, 203; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 76, 77; MR 1892, p 50 et seq; MR 1893, p 50 et seq; Ann 17, iii, p 72 et seq; Ann 18, v, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, p 121 et seq
granite production of, statistics of..................... Ann 17, iii cont, pp 700, 761, 763; Ann 18, v cont, pp 950, 951, 954, 956; Ann 19, vi cont, pp 206, 208, 209, 211, 215; Ann 20, vi cont, p 276
Hamilton quadrangle, forest conditions in................ Ann 21, v, p 596
Henry Fork, flow of, measurements of.................. Ann 12, ii, pp 344, 355, 361; Ann 13, iii, pp 97, 99
Idaho Basin, geologic history of.......................... Ann 18, iii, pp 688-698
precious metals in, discovery, production, etc., of.......... Ann 18, iii, pp 651-656
Idaho formation, fauna of................................ Ann 20, iii, pp 98-99
Idaho City gold belt.. Ann 18, iii, pp 684-689
Idaho Mining and Irrigating Company's canal............... Ann 13, iii, pp 198-203
iron in Boise quadrangle..................................GF 45, p 6
iron ores from, statistics of............................ MR 1892, p 36; MR 1893, p 26; Ann 16, iii, pp 31, 194; Ann 17, iii, pp 27, 39, 41
irrigation, dam at head of Idaho canal.................... Ann 13, iii, pp 235-236
Pocatello canal, surveys for................................ Ann 13, iii, pp 422-427
problems along Bear and Snake rivers..................... Ann 11, ii, pp 238-239
reservoir sites, survey of, in 1891-92.................... Ann 13, iii, pp 452-458
Snake River drainage.. Ann 12, ii, p 344
surveys, engineering, hydrography, segregations, etc., in........ Ann 10, ii, pp viii, 58, 88-89, 106-108; Ann 11, ii, pp 79-86, 102, 105, 106, 110
limestone in Boise quadrangle..............................GF 45, p 6
limestone production of, statistics of....................MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 496; Ann 17, iii cont, pp 760, 788, 789, 790; Ann 18, v cont, pp 950, 1044, 1045, 1046, 1049; Ann 19, vi cont, pp 206, 281, 282, 283, 288; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 347; Ann 21, vi cont, pp 335, 357-360
Idaho; Little Camas Creek, flow of, measurements of. Ann 18, iv, p 336; WS 11, p 80
Longtom reservoir site. Ann 20, iv, pp 477-481
lumber industry in. Ann 19, v, pp 21, 22
magnetic declination in. Ann 17, i, pp 329-331
Mammoth district, gold and silver veins of. Ann 20, iii, p 188
maps, geologic. (See Map, geologic, of Idaho.)
marble production of, statistics of. Ann 21, vii cont, pp 342, 343
mineral deposits of, character, classification, etc., of. Ann 20, iii, pp 101-106
mineral spring resorts in. Ann 14, iv, pp 79, 82
mining districts of. Ann 16, ii, pp 250-275
of Idaho Basin and Boise Ridge. Ann 18, iii, pp 617-719
monazite sands of Idaho Basin. Ann 18, iii, pp 677-679
Neal mining district, topography, geology, etc., of. Ann 18, iii, pp 699-703
Payette River, flow of, measurements of. Ann 18, iv, pp 400-405; WS 11, p 83; WS 16, p 170; WS 39, p 359
precious metals, production of, 1863-1896. Ann 18, iii, pp 652-653
Priest River Forest Reserve, forest conditions, timber, fires, etc., of. Ann 19, v, pp 59-61, 217-252
Quartzburg-Grimes Pass gold belt. Ann 18, iii, pp 689-695
rainfall at Boise. Ann 13, iv, pp 37-38
rock formations of. Ann 16, ii, pp 224-247
Salmon River Valley, glaciation of. Mon xxxiv, pp 351-354
Sandpoint quadrangle, forest conditions in. Ann 21, v, pp 583-589
sections, geologic, in. (See Section, geologic, in Idaho.)
Seven Devils, copper deposits of. Ann 20, iii, pp 249-253
Shaw Mountain mining district, general description of. Ann 18, iii, p 707
Idaho; Silver City, De Lamar, and other mining districts in, gold and silver veins of. Ann 20, iii, pp 65-256
silver deposits in Boise Mountains.. Ann 18, iii, p 718
in Boise quadrangle.. GF 45, p 6
Snake River, description and history of.................................. WS 4, pp 19-21
gеologic features and events in valley of.................................Ann 18, iii, pp 625-626, 630-637
gеologic history of valley of .. GF 45, pp 1-2
profile of .. WS 44, pp 99-100
reservoirs and canal lines along, survey of, for irrigation purposes. Ann 11, ii, pp 190-200
Snake and Columbia rivers, drainage systems of....................... Ann 16, ii, pp 217-218
soils of Boise quadrangle... GF 45, p 7
South Mountain district, mineral deposits of........................... Ann 20, iii, pp 188-189
springs in Boise quadrangle... GF 45, p 7
Teton River, flow of, measurements of..................................... Ann 11, ii, pp 105, 107, 110; Ann 12, ii, pp 344, 356, 361; Ann 13, iii, pp 97, 99; Ann 20, iv, p 61; Bull 131, pp 62-63
timber, standing, in... Ann 19, v, p 19
tin deposits of ... Ann 16, iii, p 530; MR 1883-84, p 613
topographic maps of. (See Map, topographic, of Idaho; also list on p 73.)
topographic work in... Bull 122, pp 318-326
War Eagle Mountain, gold and silver veins of......................... Ann 20, iii, pp 147-161-163
Warren gold-mining district, history, veins, etc., of.................. Ann 20, iii, pp 237-249
water supply for public lands .. Ann 16, ii, pp 511-512
of Bitterroot Forest Reserve.. Ann 19, v, pp 257-262
of Boise quadrangle.. GF 45, p 1
wells, artesian, in Boise quadrangle... GF 45, p 7
Willow Creek and Rock Creek mining districts, geology and deposits of... Ann 18, iii, pp 707-718
woodland area of ... Ann 19, v, p 12
Wood River, flow of, measurements of.................................. Ann 11, ii, pp 106, 110
Wood River district, mineral deposits and mines of................. Ann 20, iii, pp 190-231
Idaho formation, fauna of.. Ann 20, iii, pp 98-99
Idaho group, correlation of ... Bull 84, pp 282-283, 317, 327
Idaho Mining and Irrigating Company's canal, Idaho............. Ann 13, iii, pp 198-203

Bull. 177—01——25
Idaho-Montana boundary line, law relating to survey of........Ann 19, i, pp 87, 96
surveys for location of..Ann 20, i, pp 106-107

Iddings (J. P.), a group of volcanic rocks from New Mexico, Tewan Mountains, and the occurrence of primary quartz in certain basalts..Bull 66
descriptions of rock specimens in the educational series...............Bull 150,
pp 146-148, 151-163, 177-181, 194-197, 209-211,
215-217, 219-221, 223-224, 228-231, 233-241,
243-244, 254-261, 298, 301-302, 331-333, 353-355

eruptive rocks of Electric Peak and Sepulchre Mountain, Yellowstone National Park............................Ann 12, i, pp 569-664
igneous rocks of Yellowstone National Park......................GF 30, p 6
microscopic petrography of the eruptive rocks of Eureka district, Nevada.............................Mon xx, pp 335-406
Obsidian Cliff, Yellowstone National Park......................Ann 7, pp 249-295
petrographic character of pre-Cambrian lavas of Grand Canyon........Ann 14, ii, pp 520-524

Iddings (J. P.) and Hague (A.), development of crystallization in igneous rocks of Washoe, Nevada, with notes on the geology of the district........Bull 17
Iddings (J. P.) and others; descriptive geology, petrography, and paleontology of the Yellowstone National Park........Mon xxxi, ii
Iddings (J. P.), Weed (W. H.), and Hague (A.), geology of the Livingston quadrangle, Montana.........................GF 1
Idocrase, occurrence and statistics of..........................MR 1882, p 492; MR 1883-84, p 767
Igelströmiter, chemical constitution of..........................Bull 125, pp 68, 104
Igneous fusion as related to pressure, investigation of........Ann 14, i, pp 157-158
Igneous fusion and ebullition, experiments in....................Bull 103
Igneous injections, effect of, on carbonaceous strata in Richmond Basin........Ann 19, ii, pp 411-413
Igneous phenomena of Colorado, La Plata quadrangle......................GF 60, p 11
Igneous rocks; alteration, hydrothermal, of granite, basalt, and rhyolite in Idaho.................................Ann 20, iii, pp 174-186
analysis of, from California, Mariposa County...Bull 148, p 220; Bull 168, p 209
from Utah, Tintic mining district................................Ann 19, iii, p 649
assimilation of sedimentary masses by, discussion of........Mon xii, pp 308-313
classification of, discussion of...............................Mon xii, pp 319-321
facts bearing on, derived from study of rocks of Electric Peak and Sepulchre Mountain, Yellowstone Park...Ann 12, i, pp 660-663
from Alaska, according to composition....................Ann 20, vii, pp 188-194
from Montana, Little Belt Mountains..........................Ann 20, iii, pp 463-464
crystalline rocks, ancient, relations of..........................Ann 14, i, pp 99-101
crystallization in, of Nevada, Washoe, development of..............Bull 17
granite and pegmatite in process of differentiation or segregation........Ann 18, iii, p 311
physical conditions in relation to.................................Bull 66, pp 23-29
unusual course of, in granitic magma..............................Ann 10, i, p 357
decomposition of, in Colorado, Mosquito Range...................Mon xii, p 356
in Nevada, Washoe district, character of...Mon iii, pp 72-80, 209-218, 369-372
of constituents of, by weathering..........................Bull 62, pp 213-214
dike, stock, sill, laccolith, definitions of......................Ann 21, iii, pp 172-173
effusive rocks of Montana, Little Belt Mountains........Ann 20, iii, pp 556-557
of Sierra Nevada..Ann 14, ii, pp 484-493
eruptive origin of certain Maryland granites.......................Ann 15, pp 731-734
Igneous rocks; eruptive rocks of Idaho Ann 16, ii, pp 234-247
flow and fracture of rocks as related to structure Ann 16, i, pp 846-874
fluid inclusions, secondary origin of Mon-xiii, pp 79, 119, 371
invasion in Black Hills, history of Ann 21, iii, pp 282-283
invasion and erosion, experiments illustrating Ann 21, iii, pp 291-303
invasive masses, contact metamorphism not marked about Mon-xii, p 307
force of invasion, discussion of Mon-xii, pp 298-300
of Alaska ... Ann 21, ii, pp 360-362, 370
of Black Hills ... Ann 21, iii, pp 163-303
of California, Sonora area ... Ann 17, i, p 663
of Colorado, Aspen district ... Mon-xxxii, pp 45-53
La Plata Mountains .. GF 60, pp 8-10
Mosquito Range and Leadville district Ann 2, p 226; Mon-xii, pp 295-306
Rico Mountains ... Ann 21, ii, pp 29-32, 79-97
Telluride quadrangle .. GF 57, pp 6-7
of Michigan, Crystal Falls district Ann 19, iii, pp 81-83; Mon-xxxvi, pp 187-265
northern complex .. Mon-xxxvii, pp 178-186
of Montana, Fort Benton quadrangle GF 55, p 4
Little Belt Mountains .. Ann 20, iii, pp 302-303, 313-316, 342-343, 349-360
of New Jersey ... Bull 67
of Rocky Mountains ... Mon-xi, p 305
of Sierra Nevada ... Ann 14, ii, pp 470-483
of Wyoming, Absaroka district GF 52, pp 5-6
of Yellowstone Park, Electric Peak Ann 12, i, pp 582-632
Gallatin Mountains, Bunsen Peak, and Mount Everts Mon-xxxiv, ii, pp 60-88
traps of New Jersey ... Bull 67
(See, also, Laccoliths.)
magmas, absorption of sediments by Ann 20, iii, p 577
considered as solutions ... Bull 66, pp 26-29
discussion of, by graphic methods Ann 20, iii, pp 569-578
metamorphism of .. Ann 16, i, pp 709-716
development of, in Catoctin belt Ann 14, ii, pp 363-365
general discussion of .. Bull 62, pp 34-63
mineral composition, gradations in, between members of a group of ... Bull 66, pp 17-19
of rocks of Montana, Yogo Peak, variation in Ann 20, iii, pp 567-568
mineralogic relations of pegmatites and quartz veins to Ann 18, iii, p 313
nomenclature of; name asperite proposed Mon-xiii, pp 151, 459
Survey rules concerning ... Ann 19, i, pp 22-23
classification and descriptions of Ann 20, viii, pp 188-234
Matanuska Valley .. Ann 20, viii, pp 300-311
Prince William Sound and Copper River district Ann 20, viii, pp 414-417
southwestern ... Ann 20, viii, pp 195-234
Sushitna Basin, notes on ... Ann 20, vii, p 18
Yukon district ... Ann 10, iii, pp 224-250; Ann 18, iii, pp 224-250
of Arizona, Grand Canyon, Unkar terrane, pre-Cambrian Ann 14, ii, pp 497-524
of California, Bidwell Bar quadrangle GF 43, p 3
Big Trees quadrangle .. GF 51, pp 4-5
Colfax quadrangle .. GF 66, pp 3-4
Index to Publications of U. S. Geol. Survey.

Igneous rocks of California, Downieville quadrangle........... GF 37, pp 3-4.
 of California, Jackson quadrangle.......................... GF 11, pp 3-4.
 Lassen Peak quadrangle...................................... GF 15, pp 1-2.
 Marysville quadrangle.. GF 17, p 1.
 Merced-Mariposa area... Ann 17, 1, pp 692-694.
 Mother Lode district.. GF 63, pp 3-5, 6.
 Nevada City and Grass Valley districts.................... Ann 17, 11, pp 35-78.
 Nevada City, Grass Valley, and Banner Hill districts..... GF 29, pp 2-4.
 Placerville quadrangle...................................... GF 3, p 2.
 Pyramid Peak quadrangle................................. GF 31, pp 4-5.
 Sacramento quadrangle...................................... GF 5, pp 2, 3.
 San Clemente Island... Ann 18, 11, pp 478-489.
 San Francisco Peninsula...................................... Ann 15, pp 426-431, 444-457.
 Sierra Nevada, western slope of............................ Bull 89.
 Smartsville quadrangle...................................... GF 18, pp 3-4.
 Sonora quadrangle... Ann 17, 1, pp 663-675; GF 41, pp 4-5.
 Truckee quadrangle... GF 39, pp 4-5.
 of Catoctin belt.. Ann 14, 11, pp 296-318.
 of Colorado, Anthracite quadrangle........................ GF 9, pp 4-5.
 Crested Butte quadrangle................................... GF 9, pp 5-6.
 Cripple Creek district..................................... Ann 16, 11, pp 20-58.
 Denver Basin... Mon xxvii, pp 279-316.
 El Paso quadrangle.. GF 58, pp 2-3.
 La Plata quadrangle... GF 60, pp 6-7.
 Pikes Peak quadrangle...................................... GF 7, pp 2-3, 4, 7.
 Telluride quadrangle....................................... Ann 18, 11, pp 761-763; GF 57, pp 5-7.
 Tennmile district.. GF 48, pp 2-3.
 Walsenburg quadrangle...................................... GF 68, pp 3-4.
 Triassic area.. Ann 18, 11, pp 40-81.
 of Maine, Aroostook volcanic area............................ Bull 165, pp 105-117, 146-185.
 of Maryland, Harpers Ferry quadrangle.................... GF 10, p 2.
 of Massachusetts, Holyoke quadrangle...................... GF 50, p 6.
 Marquette district .. Ann 15, pp 618, 644; Mon xxviii, pp 178-186, 218, 460, 524, 571.
 of Minnesota, Pigeon Point................................ Bull 109.
 of Montana.. Bull 110, pp 43-45; Bull 139, pp 56-142.
 Barker district.. Ann 20, 11, pp 349-360.
 Butte district... GF 38, pp 1-2.
 Castle Mountain district................................. Bull 139, pp 56-79.
 Fort Benton quadrangle.................................... GF 55, pp 2-3, 4.
 Highwood Mountains... GF 55, p 3.
 Judith Mountains... Ann 18, 11, pp 557-575.
 Little Belt Mountains....................................... Ann 20, 11, pp 463-581; GF 55, p 3.
 Little Belt Mountains quadrangle........................ GF 56, pp 3-5.
 Livingston quadrangle.................................... GF 1, p 3.
 Three Forks quadrangle.................................... GF 24, pp 3-4.
Igneous rocks of Narragansett Basin Mon xxxiii, pp 114–118, 152–155
of Newark system, associated Bull 85, pp 66–77
of Oregon, Bohemia mining region Ann 20, iii, pp 11–15
northwestern .. Ann 17, 1, pp 456–458
Roseburg quadrangle GF 49, p 3
of Pennsylvania, South Mountain Bull 136
of Sierra Nevada Ann 14, ii, pp 470–495; Ann 17, 1, pp 550,
GF 3, p 2; GF 5, p 2; GF 11, p 2; GF 18, p 2; GF 31, p 2;
GF 37, p 2; GF 39, p 2; GF 41, p 2; GF 43, p 2; GF 51, p 2
of Tennessee, Chattanooga district Ann 19, ii, p 18
of Texas, kinds and mode of occurrence of Ann 18, ii, pp 256–257
near Austin and Rockwall Ann 21, vii, p 361
relief features of GF 3, p 3
San Carlos coal field Bull 164, pp 88–95
Uvalde quadrangle GF 64, pp 3–4
of Utah, Henry Mountains, correspondence of, to rocks of Colorado... Mon xi, pp 305–306, 359–363
Mercer district Ann 16, ii, pp 377–381
Oquirrh Mountains Ann 16, ii, pp 364–365
Tintic district .. Ann 19, iii, pp 619, 632–650; GF 65, pp 2–3
of Virginia, Harpers Ferry quadrangle GF 10, p 2
Monterey quadrangle GF 61, p 5
Richmond Basin Ann 19, ii, pp 495–504
Staunton quadrangle GF 14, p 3
of Washington, Cascade Mountains Ann 20, ii, pp 105–111
Mount Rainier Ann 18, ii, pp 416–422
southeastern ... WS 4, pp 40–50
Tacoma quadrangle GF 54, p 3
of West Virginia, Harpers Ferry quadrangle .. GF 10, p 2
Monterey quadrangle GF 61, p 5
Staunton quadrangle GF 14, p 3
of Wyoming, Absaroka district GF 52, p 3
of Yellowstone Park and vicinity Mon xxxii, ii,
pp 60–148, 215–439; GF 30, p 6
origin of .. Mon xx, pp 267–289
differences in ... Ann 18, iii, pp 300–308
of massive rocks of California Mon xiii, pp 164–175
petrographic description of, from California, Coast Ranges Mon xiii,
pp 140–164
from Colorado, Leadville district Ann 2, pp 221–224
Mosquito Range Mon xii, pp 74–89, 319–362
from Delaware Bull 59
from Maryland, near Baltimore Bull 28
from Michigan, Menominee and Marquette regions Bull 62
from Michigan-Wisconsin, Keweenaw series Ann 3
pp 101–115; Mon v, pp 34–133
from Nevada, Eureka district Ann 3,
pp 273–280; Mon xx, pp 218, 335–394
Washoe district Ann 2, pp 297–300
from Utah, Henry Mountains Mon xii, pp 359–363
relations between gabbro and diorite in Baltimore region Bull 28, pp 34–49
relations of .. Ann 14, 1, pp 83–87
in Nevada, Washoe Bull 17
of gneiss to granite, in Wisconsin, northern Ann 10, 1, pp 362–364
of traps of Newark system, New Jersey Bull 67
to ore deposits Mon iii, p 32
Igneous rocks, segregation or differentiation in, process and phenomena of...Ann 18, iii, pp 301–312

structural features of Keweenaw series...Ann 3, pp 116–131; Mon v, pp 134–151

definition of...Bull 17, pp 14–15
discussion on...Mon xii, pp 302–304, 319–321
distinct from those of clastic rocks...Bull 62, p 196

importance of understanding...Bull 62, p 196

lamination of acid lavas, cause of...Ann 7, pp 260, 286

lithophysae, origin of...Ann 7, pp 279–290

micropegmatite (granophyre) in relation to spherulites...Ann 7, pp 274–276

spherulites, character and origin of...Ann 7, pp 262–264, 276–278

transitions in...Bull 17

structures of, amygdaloidal...Mon v, pp 134–139

structures of, columnar, in basalt of volcanic necks...Ann 6, pp 172–174

in obsidian...Ann 7, p 257

structures of, granitoid and porphyritic...Mon xiii, pp 162–164

structures of, poikilitic...Bull 62, pp 78, 79, 183, 190

succession of, in Coast Ranges of California...Mon xiii, pp 221–225

in Keweenaw series...Mon v, pp 432–436

in Nevada, Eureka district...Ann 3, pp 273–276, 281–285

Washoe district...Mon iii, pp 188–208, 380–388

means of determining...Mon iii, p 188

synthesis or mixing in, processes of...Ann 18, iii, pp 307–308

Tertiary and Keweenawan eruptives, comparison of...Mon v, p 436

work of Survey on, summary of...Ann 10, i, pp 45–49; Ann 14, i, pp 87–98

(See, also, Eruptive rocks; Lava; Rocks; Volcanic; and names of the various kinds of igneous rocks.)

Iguanodon, remarks on, and restoration of...Ann 16, i, p 230

Ihlseng (M. C.), phosphate prospect in Pennsylvania...Ann 17, iii cont, pp 955–957

Illes (M. W.), lead slags...MR 1883–84, pp 440–462

Iliamna and Clark lakes in Alaska, notes on...Alaska (2), p 118

Illicineae from Alaska...Ann 17, i, p 889

from Dakota group...Mon xvii, pp 176–179

Illinoian drift sheet and associated deposits in area of Illinois glacial lobe...Mon xxxviii, pp 24–118

in Danville quadrangle...GF 67, p 4

Illinois, altitudes in. (See “elevations” under this State.)

artesian wells at Rockford...Ann 11, ii, p 262

Big Muddy River drainage basin...Mon xxxviii, pp 526–527

boundary lines of, and formation of from territory northwest of Ohio River...Bull 13, pp 28, 29, 113; Bull 171, p 119

Buffalo Hart moraine...Mon xxxviii, pp 74–76

cement production of...MR 1892, pp 739, 744; MR 1893, p 619; Ann 16, iv, pp 577, 581; Ann 17, iii cont, pp 884, 885, 891; Ann 18, v cont, pp 1170, 1178; Ann 19, vi cont, pp 487, 492, 495; Ann 20, vi cont, pp 539, 544, 547; Ann 21, vi cont, pp 393, 400, 407

Chicago, deaths in, resulting from typhoid fever...WS 22, p 40
Illinois; Chicago, rainfall at... WS 24, p 51
Chicago outlet, effect of, on size of Des Plaines and Illinois rivers.......Ann 17, n, pp 711-712
Chicago outlet and beaches of the glacial Lake Chicago.................. .Mon xxxviii, pp 418-459
cities and villages using surface water, shallow wells in valleys, wells
from glacial drift, shallow wells in rock, and water from
deep wellsAnn 17, ii, pp 748-764
clay, brick, and pottery industry in, statistics ofMR 1882, pp 467, 471; MR 1883-84, p 700; MR 1886, p 568; MR 1887, pp 535, 537, 546; MR 1888, pp 558-559, 566; MR 1891, p 510; MR 1892, p 735; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 819 et seq, 858; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 356; Ann 20, vi cont, pp 466 et seq, 518; Ann 21, vi cont, pp 362, 363
in Danville quadrangleGF 67, pp 6-7
coal fields ofMR 1892, pp 382-383; Ann 16, iv, pp 83-85
Danville quadrangle, geology of..................................GF 67
rainfall, run off, and evaporation in watershed ofWS 24, pp 64-65
drainage and topography in, effect of drift upon..............Ann 17, ii, pp 706-711
drainage basins of..Ann 17, ii, pp 712-717
driftless area of Upper Mississippi Valley..........................Ann 6, pp 199-322
elevations in ... Ann 18, i, pp 324-325; Ann 19, i, pp 254-257; Ann 20, i, pp 412; Bull 5, pp 87-94; Bull 72, p 205; Bull 76; Bull 160, pp 136-170
eskers of northwestern..................................Mon xxxviii, pp 76-82
gas, illuminating and fuel, and by-products in, statistics of..............Ann 20, vi cont, p 227 et seq
gas wells ofMon xxxviii, p 557
geographic positions in..................................Ann 18, i, pp 157-161;
Ann 19, i, p 158; Bull 123, pp 103-107
geologic maps of. (See Map, geologic, of Illinois.)
geologic sections in. (See Section, geologic, in Illinois.)
Illinois, geologic and paleontologic investigations in...Ann 5,
pp 21, 23; Ann 6, p 35; Ann 7, p 84; Ann 8, i, p 142; Ann 10, i, p 129; Ann 11, i, p 75; Ann 12, i, p 88; Ann 13, i,
p 121, 125; Ann 14, i, p 193; Ann 17, i, pp 61-62; Ann 18, i, pp 55-56; Ann 19, i, p 54; Ann 21, i, pp 25, 30, 31

Illinois glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and

Illinois..Bull 58

Illinois River, drainage area of...Mon xxxviii, pp 496, 523

flow of, measurements of.................................Ann 21, iv, pp 174-178

profile of..WS 44, p 60

iron and steel from, statistics of..........................MR 1882, p 120 et seq; MR 1883-84, p 252; MR 1885, pp 182, 184, 186; MR 1886, p 18; MR 1887, p 11; MR 1888, pp 14, 23, 25; MR 1889-90, pp 10, 12, 17; MR 1891, pp 54, 55, 61; MR 1892, p 12 et seq; MR 1893, pp 15, 20; Ann 16, iv, pp 31, 194, 249, 250; Ann 17, iv, p 47 et seq; Ann 19, iv, p 66 et seq; Ann 20, vi, p 74 et seq; Ann 21, vi, p 90 et seq

Kaskaskia River drainage basin......................................Mon xxxviii, pp 523-526

lead from, statistics of..............................Ann 2, p xxviii; MR 1882, p 312; MR 1883-84, pp 416, 426; MR 1885, p 248; Ann 18, v, p 240; Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229

lime production of, statistics of..........................MR 1888, p 555

magnetic declination in..Ann 17, i, pp 331-334

cal, paleontologic investigations in........................Ann 5, pp 21, 23; Ann 6, p 35; Ann 7, p 84; Ann 8, i, p 142; Ann 10, i, p 129; Ann 11, i, p 75; Ann 12, i, p 88; Ann 13, i, pp 121, 125; Ann 14, i, p 193; Ann 17, i, pp 61-62; Ann 18, i, pp 55-56; Ann 19, i, p 54; Ann 21, i, pp 25, 30, 31

mineral springs of, statistics of..........................MR 1882, pp 677-679; MR 1887, pp 725-727

mining laws of..MR 1886, pp 750-759

Illinois, navigable waters of .. Ann 17, ii, pp 744-745
petroleum localities and statistics of .. MR 1892, pp 606, 612; MR 1893, pp 465, 466; Ann 16, iv, pp 317, 319, 320, 379-380; Ann 17, iii cont, pp 626, 629, 630, 701-702; Ann 18, v cont, pp 750, 751, 754, 755, 850; Ann 19, vi cont, pp 5, 6, 10, 11, 96-97; Ann 20, vi cont, pp 5, 7, 9, 111; Ann 21, vi cont, pp 6, 7, 11, 12, 143-144
physical features of ... Ann 17, ii, pp 703-717; Mon xxxvii, pp 7-18
rainfall at Chicago ... WS 24, p 51
rainfall in, records of ... Ann 17, ii, pp 718-729; WS 29, p 72
rock gorges of northwestern ... Mon xxxvii, pp 493-496
Rock Island and vicinity, Paleozoic rocks explored by deep borings at................................ Ann 17, ii, pp 829-849
Rock River, drainage basin of... Mon xxxvii, pp 483-493
rock gorges of northwestern ... Mon xxxvii, pp 493-496
profile of ... Ann 17, ii, pp 730-743
sandstone production of, statistics of .. MR 1892, pp 710; MR 1893, pp 553; Ann 16, iv, p 647 et seq; Ann 17, iii cont, p 985 et seq; Ann 18, v cont, p 1274 et seq; Ann 19, vi cont, p 888 et seq; Ann 20, vi cont, p 670 et seq; Ann 21, vii cont, pp 540, 541
sections, geologic, in. (See Section, geologic, in Illinois) Ann 11, i, p 39; Ann 12, i, p 29; Ann 13, i, p 73; Ann 18, i, pp 94, 95, 104-105; Ann 19, i, pp 89, 90, 101; Ann 20, i, pp 100, 102, 115; Ann 21, i, p 131
Wabash River drainage basin ... Mon xxxvii, pp 528-537
water power of .. Ann 17, ii, pp 746-747
water supply for towns in ... Mon xxxvii, pp 557-564
wells of, detailed discussion of, by counties Mon xxxvii, pp 564-787
woodland area in ... Ann 19, v, p 8
Illinois and Iowa ice lobes, relation of ... Mon xxxvii, pp 151-153
Illinois River, drainage basin of .. Mon xxxvii, pp 496-523
flow of, measurements of ... Ann 21, iv, pp 174-178
profile of ... WS 44, p 60

Illuminating and fuel gas and by-products, statistics of Ann 20, vi cont, pp 225-250
Ilmenite, analysis of, from Illinois, Macon County ..Bull 74, p 32
analysis of, from Kentucky, Elliott County dike ..Bull 38, pp 24-25; Bull 42, p 136; Bull 148, p 92; Bull 168, p 56
from Massachusetts .. Bull 126, p 107
composition of ... Ann 19, iii, pp 385-386; Bull 150, p 34
in rocks of Pacific slope .. Mon xin, p 84
occurrence of ... MR 1883-84, p 772
thin section of, from Nevada, Washoe district (from augite-andesite)Mon iii, pp 150-151
Ilmenite and titaniferous magnetite, chemical composition of, considered as
minerals .. Ann 19, iii, pp 385-386
Ilvaite, chemical constitution of .. Bull 125, p 70
occurrence of ... MR 1883-84, p 768
Imidodiphosphate (tri- and tetra-silver), analyses of Bull 167, p 114
Imidodiphosphoric acid, analysis of .. Bull 167, p 116
salts of ... Bull 167, pp 113-116
Impregnation, deposition of ore by .. Ann 18, iii, pp 802-809
Inclusion in any substance. (See name of substance.)
Incrustation, analysis of, from Florida, Everglades (formed by evaporating
waters) ... Bull 60, p 163
analysis of, from Nevada, old Walker Lake and near Black RockBull 27, p 70
from Pennsylvania, Kiskiminitas River (from casing of "gravel-bar
gas well") .. Bull 27, p 71
Independence Lake, California, survey of, and plans and estimates for, as a
reservoir site .. Ann 11, ii, pp 174-175, 181; Ann 13, iii, pp 391-392
Independence shale of Iowa ... Ann 11, i, pp 320-323
Index, bibliographic, of North American Carboniferous invertebratesBull 153
Index and bibliography of North American geology, paleontology, petrology,
and mineralogyfor 1895, Bull 146; for 1896, Bull 149;
for 1897, Bull 156; for 1898, Bull 162; for 1899, Bull 172
Index and catalogue of contributions to North American geology, 1732-1891 ..Bull 127
of publications of United States Geological Survey (1880-1893)Bull 100
India, Cambrian rocks of .. Bull 81, p 378
c coal area and output of, compared with those of other countriesMR 1882, p 5; MR 1885, p 11; MR 1886, p 235; MR 1887, p 189; Ann 16, iii, p 247; Ann 17, iii, p 320; Ann 18, v, pp 414, 420; Ann 19, vi, pp 311, 319; Ann 20, vi, pp 332, 340; Ann 21, vi, pp 113, 363, 372
corundum, occurrence, etc., of .. Ann 21, vi cont, pp 441-447
diamond mines of ... MR 1887, p 569
c fossil plants of, literature of .. Ann 8, ii, pp 793-796
c graphite production of, statistics of ... Ann 19, vi cont, pp 631
c gypsum production of, statistics of ... Ann 19,
vi, cont, p 585; Ann 20, vi cont, p 666
c iron and iron ore from, statistics of ... Ann 16, iii, p 23, 160-168; Ann 21, vi, p 113
c iron-ore deposits of, distribution, method of working, etc.Ann 16, iii, pp 160-168
c irrigation in ... Ann 11, ii, p 278; Ann 12, ii, pp 363-561
c manganese-ore deposits and production of, statistics ofAnn 17, iii, pp 220-221;
Ann 15, v, p 328; Ann 19, vi, pp 124-125; Ann 20, vi, pp 154-155, 157; Ann 21, vi, pp 160, 162
c mica production of, statistics of ... Ann 19, vi cont, p 622

c petroleum localities and statistics of ... MR 1893, p 532; Ann 17, iii cont, p 720; Ann 18, v cont, pp 876-877; Ann 19, vi cont, pp 161-163;
Ann 20, vi cont, pp 196-202; Ann 21, vi cont, pp 282-288
India, salt production of..Ann 21, vi cont, p 553
topography, geology, meteorology, and forestry of..................Ann 12, 11, p 399
India rubber, vulcanized, solution of..................................Bull 92, pp 85-94
Indian Territory, altitudes in....................................Bull 5, p 104; Bull 76; Bull 160, pp 192-196
asphaltum production of, statistics of...............................Ann 19, vi cont, pp 190, 194;
Ann 20, vi cont, pp 254, 260; Ann 21, vi cont, pp 321, 324
atlanta sheets of. (See p 74 of this bulletin.)
Canadian River, flow of, measurements of........................WS 37, pp 269-270
profile of..WS 44, p 66
Choctaw coal fields, description of......................................Ann 21, ii, pp 271-279; MR 1889-90, pp 207-214
canada coal measures of..Ann 16, iv, p 110
columnar section of..MR 1889-90, p 212
eastern Choctaw coal field in, geology of..............................Ann 21, ii, pp 257-311
elevations in. (See “altitudes” under this heading.)
faults in...Ann 21, ii, pp 284-285
fuller’s earth in, occurrence and composition of........Ann 18, v cont, pp 1354-1356
geographic positions in..Bull 123, p 99
galic and paleontologic investigations in..............................Ann 13, i, p 123; Ann 18, i, pp 35-36; Ann 19, i, p 40; Ann 20, i, pp 43, 61; Ann 21, i, p 77
Grand River, flow of, measurements of..............................WS 37, p 268
gypsum production of..Ann 19, vi cont, p 579; Ann 20, vi cont, p 658
lands of, character of..Ann 11, vii, p 512
geology of..Ann 21, iii, pp 423-456
magnetic declination in..Ann 17, i, p 338
maps, geologic, of. (See Map, geologic, of Indian Territory.)
maps, topographic, of. (See Map, topographic, of Indian Territory; also p 74 of this bulletin.)
mineral springs of..Bull 32, p 123
Indian Territory, minerals of, useful.................. MR 1882, p 681; MR 1887, p 730
Ouachita Mountains, extent and character of......... TF 3, p 3
Poteau Mountain quadrangle, physiography of........ TF 2, p 10
rainfall at Tulsa................................. Ann 19, iv, p 366
sections, geologic, in. (See Section, geologic, in Indian Territory.)
surveys, topographic, in.......................... Ann 16, i, pp 72–76; Ann 17, i, pp 97, 106–109; Ann 18, i, pp 12, 94, 95, 110–112; Ann 19, i, pp 11–12, 89, 90, 95, 114–116; Ann 20, i, pp 104, 125–126
topographic maps of. (See Map, topographic, of Indian Territory; also p 74 of this bulletin.)
triangulation and spirit leveling in.................... Bull 175
Washita River, flow of, measurements of.............. WS 37, pp 270–271
woodland of, report on............................ Ann 21, v, pp 603–672
woodland area of.................................. Ann 19, v, p 11
Indiana, altitudes in. (See "elevations in.")
atlas sheets of. (See p 74 of this bulletin.)
boundary lines of, and formation of State from territory northwest of Ohio River................. Bull 13, pp 28, 29, 111, 112; Bull 171, pp 117–118
building stone from, at World's Columbian Exposition..... MR 1893, p 562
clay, brick, and pottery industry of, statistics of........ MR 1882, pp 467, 471; MR 1883–84, pp 696, 701; MR 1885, pp 416, 421; MR 1886, pp 568, 575; MR 1887, pp 535, 537, 547; MR 1888, pp 559, 566; MR 1891, p 510; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iv cont, pp 819 et seq; 858–860; Ann 18, v cont, pp 1078 et seq; Ann 19, vi cont, pp 318 et seq; Ann 20, vi cont, pp 466 et seq; Ann 21, vi cont, pp 362, 363
clay deposits and industry of, statistics of........... Ann 18, v cont, pp 1137–1139; Ann 19, vi cont, pp 472–473
Indiana; coal in Danville quadrangle ... GF 67, pp 6-7
coal fields of .. Ann 16, iv, p 106
Danville quadrangle, geology of ... GF 67
Drainage in southeastern, changes of, due to ice invasion Mon xxxviii, pp 97-104
Drainage systems of .. Ann 18, iv, pp 438-472
Drift in southeastern .. WS 26, p 56
Elevation of, the mean .. Ann 18, iv, p 426
Elevations in ... Ann 19, i, pp 254-257; Bull 5, pp 95-103; Bull 76; Bull 160, pp 171-191
Gas, illuminating and fuel, and by-products in, statistics of Ann 20, v cont, p 227 et seq
Gas, inflammable, and petroleum in Ohio and Indiana, Trenton limestone as a source of .. Ann 8, ii, pp 475-662
Geographic positions in .. Ann 21, i, pp 260-261; Bull 123, p 103
Geologic maps of, listed ... Bull 7, pp 80, 82, 87, 88
(See, also, Map, geologic, of Indiana.)
Geologic sections in. (See, also, Section, geologic, in Indiana.)
Geologic and paleontologic investigations in Ann 3, pp 322, 328, 330-333; Ann 5, pp 21, 23; Ann 6, p 35; Ann 7, pp 157, 207; Ann 8, i, p 142; Ann 9, pp 85, 86, 105; Ann 10, i, p 149; Ann 11, i, p 74; Ann 12, i, p 88; Ann 13, i, p 121; Ann 14, i, p 227; Ann 17, i, p 60; Ann 18, i, p 55
Geologic structure of .. Ann 11, i, pp 623-653
Glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois .. Bull 58
Glacial drift, moraines, etc., in, extent of WS 21, pp 9-13
Glacial investigation in. (See "geologic and paleontologic investigations.")
Glacial lobe, the Illinois, a monograph on Mon xxxviii
Glacial ridges in .. Ann 18, iv, pp 434-438
Illinois glacial lobe, monograph on Mon xxxviii
Iron and steel from, statistics of .. MR 1882, pp 120, 125, 129 et seq;
MR 1883-84, p 232; MR 1885, pp 182, 184, 186; MR 1886, p 18; MR 1887, p 11; MR 1888, pp 14, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 54, 55, 61; MR 1892, p 12 et seq;
MR 1893, pp 15, 20; Ann 16, iii, pp 31, 194, 249, 250;
Ann 17, iii, pp 47, 48, 62, 63, 68; Ann 19, vi, pp 66, 72; Ann 20, vi, pp 82, 83, 84, 85; Ann 21, vi cont, pp 99, 104
Kankakee River drainage system .. Ann 18, iv, pp 471-472
Lakes of, remarks on ... Ann 18, iv, pp 472-474
Lime production of .. MR 1887, p 533; MR 1888, p 555; MR 1889-90, p 392
Limestone, Bedford oolitic .. Ann 18 v cont, pp 1050-1059; Ann 19, vi cont, pp 292-296
Maps, geologic, of. (See Map, geologic, of Indiana.)
Maps, topographic, of. (See Map, topographic, of Indiana; also p 74 of this bulletin.)

magnetic declination in ..Ann 17, i, pp 335-338

meridian marks in ...Ann 21, ii, p 262

mineral spring resorts in ...Ann 14, i, p 82

minerals of, the useful ...MR 1882, pp 679-681; MR 1887, pp 727-730

mining laws of ..MR 1886, pp 746-750

natural gas field of ..Ann 11, i, pp 579-742

natural gas localities and statistics of ..MR 1886, pp 508-511; MR 1887, pp 466, 485-489; MR 1888, pp 485-486, 499-506; MR 1889-90, pp 367-372; MR 1891, p 438; MR 1892, pp 676, 690-696; MR 1893, pp 536, 537, 539; Ann 16, iv, p 415 et seq; Ann 17, iii cont, p 734 et seq; Ann 18, v cont, p 900 et seq; Ann 19, vi cont, p 168 et seq; Ann 20, vi cont, p 207 et seq; Ann 21, vi cont, p 299 et seq

Ohio River drainage system ...Ann 18, iv, pp 441-446

petroleum localities and statistics of ..MR 1891, pp 405, 407, 433-434; MR 1892, pp 604, 606, 611, 640-643; MR 1893, pp 465, 466, 504-507; Ann 16, iv, pp 317, 318, 319, 320, 366-367; Ann 17, iii cont, pp 626, 627, 628, 630, 692-698; Ann 18, v cont, pp 750, 751, 753, 755, 828-835; Ann 19, vi cont, pp 5, 6, 7, 8, 9, 11, 86-95; Ann 20, vi cont, pp 5, 6, 7, 9, 82-89, 100-111; Ann 21, vi cont, pp 2-8, 12, 132-143

rainfall in ...Ann 18, iv, pp 555-559; WS 29, p 72

at Logansport ..WS 24, p 51

average annual and seasonal ...Ann 17, ii, p 719

rock formations of ...Bull 80, p 139

St. Joseph River drainage system ..Ann 18, iv, pp 470-471

salt from, statistics of ...MR 1892, pp 793, 794; MR 1893, p 720; Ann 16, iv, p 648; Ann 17, iii cont, p 988; Ann 19, vi cont, p 611; Ann 20, vi cont, pp 674, 675

sections, geologic, in. (See Section, geologic, in Indiana.)
topographic maps of. (See Map, topographic, of Indiana; also p 74 of this bulletin.)
topographic work in ...Ann 19, i, p 93, 101-102; Ann 20, i, p 101; Ann 21, i, pp 115, 116, 120, 132
Indiana, Trenton limestone as a source of petroleum and inflammable gas in.. Ann 8, ii, pp 475-662; MR 1892, pp 690-695

Wabash River, drainage system of .. Ann 18, iv, pp 446-456

profile of .. WS 44, pp 58-59

water resources of .. Ann 18, iv, pp 419-559

water supplies for cities and villages in ... Ann 18, iv, pp 502-544

wells, ground-water, drift, rock, etc., in .. Ann 18, iv, pp 475-493

of northern .. WS 21

of southern .. WS 26

whetstone quarries in .. MR 1886, pp 592-593

Whitewater River drainage system .. Ann 18, iv, p 456

woodland area in .. MR 1892, pp 130, 131; MR 1893, pp 103, 104; Ann 16, iv, p 379; Ann 18, v, pp 264, 265; Ann 19, vi, p 225; Ann 20, vi, pp 250, 251

Induration of sandstones by enlargement of quartz fragments Bull 8, pp 13-17

of sandstones by weathering .. Bull 8, pp 12, 16, 42, 49

Inesite, analysis of .. Bull 125, p 82

chemical constitution of .. Bull 125, pp 82, 105

Infusorial earth, analysis of, from Maryland, Popes Creek MR 1887, p 554

analysis of, from Nevada .. MR 1882, p 479

from New Jersey, Morris County .. MR 1886, p 587

from Virginia, near Richmond .. MR 1883-84, p 721

description of the rock, as one of the educational series Bull 150, pp 136-137

of Virginia .. Bull 84, p 327

Infusorial earth and bog iron ore in swamps Ann 10, i, pp 305-307

Ingraham Glacier, Mount Rainier, present condition of Ann 18, ii, pp 397-398

Insects, fossil .. Bull 124

Aphidse, American Tertiary, with list of American fossil plant lice Ann 13, ii, pp 341-366

bibliography of, classed and annotated .. Bull 69

cockroaches, American .. Bull 124

Coleoptera, Tertiary rynchophorous, of United States Mon xxi

history and distribution of .. Bull 31, pp 102-113

importance and bearing of study of .. Ann 14, i, pp 133-135

in different Western deposits, relative abundance of orders of Mon xxi, p 8

index to the known, including myriapods and arachnids Bull 71

of Florissant, Colorado, and other points in Tertiaries of Colorado and Utah .. Bull 93

of Massachusetts, western .. Mon xxix, p 398

of Rhode Island coal field ... Mon xxxii, pp 202-203; Bull 101

review, systematic, of present knowledge of, including myriapods and arachnids .. Bull 31

study of, importance and bearing of .. Ann 14, i, pp 133-135

(See Invertebrates, fossil.)

Insular surveys, estimates and recommendations concerning Ann 21, i, pp 47-58

Intergrowth of hornblende and pyroxene in glassy rocks Ann 12, i, pp 610-617
Intermediate series of Colorado GF 57, pp 5, 8, 14
International Congress of Geologists, fifth triennial session, at Washington, in
August, 1891 .. Ann 13, i, p 128
Intraformational shale conglomerate of Connecticut Ann 21, iii, pp 60–63
Intrusion in Black Hills, history of Ann 21, iii, pp 282–283
Intrusion and erosion, experiments illustrating Ann 21, iii, pp 291–303
Intrusive rock, analysis of, from Montana, near East Gallatin River ... Bull 110, p 52
analysis of, from Yellowstone Park, Electric Peak Ann 12, i, p 627; Mon xxxii, ii, p 83
from Yellowstone Park, various localities Mon xxxii, ii, p 426
Intrusive rocks, contact metamorphism not marked about Mon xii, pp 298–300
force of intrusion, discussion of Mon xii, pp 298–300
of Alaska .. Ann 21, ii, pp 362–370
of Black Hills .. Ann 21, iii, pp 163–303
of California, Sonora area Ann 17, i, p 663
of Colorado, Aspen district Mon xxxi, ii, pp 45–53
La Plata Mountains ... GF 60, pp 8–10
relation of, to dome structure in Rico Mountains Ann 21, ii, pp 24–25
Mosquito Range and Leadville district Ann 2, pp 226; Mon xii, pp 295–306
Rico Mountains .. Mon xii, pp 29–32
Telluride quadrangle GF 57, pp 6–7
of Michigan, Crystal Falls district Ann 19, iii, pp 81–83; Mon xxxvi, pp 187–265
northern complex ... Mon xxviii, pp 178–186
of Montana, Fort Benton quadrangle GF 55, p 4
of New Jersey .. Bull 67
of Rocky Mountains .. Mon xii, p 305
of Sierra Nevada .. Ann 14, ii, pp 470–483
of Wyoming, Absaroka districtGF 52, pp 5–6
of Yellowstone Park, Electric Peak Ann 12, i, pp 582–632
Gallatin Mountains, Bunsen Peak and Mount Everts Mon xxxii, ii, pp 80–88
traps of New Jersey ... Bull 67
(See, also, Laccoliths.)
Inundated lands in the several States, approximate areas of Ann 10, i, p 311
Invertebrates, fossil; Aphidae, American Tertiary Ann 13, ii, pp 341–366
Aucella of California, remarks on the genus Mon xiii, pp 226–232
beetles, Pleistocene, of Massachusetts, Fort River Mon xxix, pp 740–746
Brachiopoda, American, synopsis of, including bibliography and synonymy Bull 87
Brachiopoda and Lamellibranchiata of Raritan clays and greensand marls of New Jersey Mon ix
Bryozoa, synopsis of American fossil, including bibliography and synonymy Bull 173
butterflies of Colorado, Florissant Ann 8, i, pp 433–474
Cephalopoda and Gasteropoda of Raritan clays and greensand marls of New Jersey Mon xviii
cockroaches, fossil, North American, revision of Bull 124
Coleoptera, adephagous and clavicorn, from the Tertiary deposits at Florissant, Colorado, with descriptions of a few other forms and a systematic list of nonrhynchophorous Tertiary Coleoptera of North America Mon xl
Coleoptera, rhynchophorous, Tertiary, of United States Mon xxi
coral faunas, Eocene and Lower Oligocene, of United States, with descriptions of a few doubtfully Cretaceous species Mon xxxix
Invertebrates, fossil; Crustacea, Paleozoic, bibliography of, from 1698 to 1889. Bull 63
Echinodermata, Mesozoic, of United States. Bull 97
faunal relations of Eocene and Upper Cretaceous on Pacific coast. Ann 17,
i, pp 1005-1060

Gasteropoda and Cephalopoda of Raritan clays and greensand marls of
New Jersey. Mon xvi

Meduse, fossil, monograph on. Mon xxx
Mollusca from Alaska, southern coast of, Mesozoic. Bull 51, pp 64-70
from American localities between Cape Hatteras and Cape Roque,
including the Bermudas, list of marine. Bull 24
from Chico-tejon series of California, new. Bull 51, pp 11-27
from Vancouver Islands, Cretaceous. Bull 51, pp 33-48
of Great Basin, Pleistocene and Recent, with descriptions of new
forms. Bull 11, pp 13-49
of Laramie, relation to succeeding fresh-water Eocene and other
groups. Bull 34
of western North America, marine Eocene, fresh-water Miocene,
and other. Bull 18
Molluscan fauna of glacial Lake Agassiz. Mon xxv, p 237
of Puget group. Bull 51, pp 49-63
Molluscan fauna; Laramie, relation of, to that of the succeeding fresh-water
Eocene. Bull 34
of argillites of Massachusetts, Braintree (fauna). Bull 10, pp 43-49
of Bear River formation. Bull 128
of California, which have been identified with Eastern species. Bull 15, pp 27-29
Mesozoic and Cenozoic, notes on. Bull 15
quicksilver belt, lists of. Mon xiii, pp 176-225
of Cambrian. Bull 81, passim
of Nevada, Eureka district, list of. Mon viii, pp 268-269
of North America. Bull 10; Bull 30

Bull. 177—01—26
Invertebrates, fossil, of Cambrian, Lower, or Olenellus zone... Ann 10, i, pp 509-763
of Cambrian, Middle, table of distribution of.......................... Bull 30, pp 45-48
of Carboniferous, bibliographic index of North America................. Bull 153
of Montana.. Bull 110, pp 34-43
of Nevada, Eureka district, list of.................................. Mon viii, pp 279-281
of coal field, bituminous, of Pennsylvania, Ohio, and West Virginia,
stratigraphy of... Bull 65, passim
of Colorado, Denver field, table of.................................. Mon xxvii, pp 78-79
Rico Mountains... Ann 21, ii, p 66
of Colorado formation...................................... Bull 106
of Cretaceous of California (new).................................. Bull 22
of Texas (characteristic)... Ann 18, ii, pls li-lixiv
of Devonian of Montana.. Bull 110, pp 25-26, 29, 30, 31-32
of Nevada, Eureka district, list of.................................. Mon viii, pp 274-278
of Pennsylvania, eastern, and New York........................... Bull 120
of Devonian, Upper, from Tompkins County, New York, to Bradford
County, Pennsylvania, list of species of.......................... Bull 3, pp 9-29
of New York, Genesee section, list of species of.................. Bull 41, pp 31-102
Ontario County... Bull 16
of Eocene.. Bull 83, passim
of Atlantic slope, Middle... Bull 141, pp 63-93
of Louisiana.. Bull 142
of Jurassic of North America (fresh-water)............................ Bull 29
of Knoxville beds... Bull 150, pp 64-65
of marine sand, description of................................... Bull 53, pp 34-38
of Massachusetts, Nantucket, list of species.......................... Bull 4
of Mesozoic..... catalogue and bibliography of North America........ Bull 102
of Alaska.. Bull 88, passim
of Montana.. Bull 110, pp 22-43
of Neocene.. Bull 84, passim
of Newark system.. Bull 85, passim
of Ouray limestone of Colorado.................................... Ann 20, ii, pp 25-81
of Pacific coast... Bull 51
of Paleozoic of Indian Territory-McAlester coal fields............ Ann 19, iii, pp 539-600
of Maine.. Bull 165, pp 15-92
of Permian of Texas... Bull 77
of Philippine Islands, Tertiary................................. Ann 21, iii, pp 615-625
of Potomac formation.. Ann 15, pp 342-343
of St. John formation contained in Hartt collection at Cornell Univer-
sity.. Bull 10, pp 9-42
of Shasta group... Bull 15, pp 18-22
of Silurian of Montana.. Bull 110, pp 25-26
of Nevada, Eureka district.. Mon viii, pp 270-273
of Tertiary and Cretaceous strata of Tuscaloosa, Tombigbee, and Alabama
rivers (species mentioned)....................................... Bull 43
of Texas (species mentioned)..................................... Bull 45
of Tuscaloosa, Tombigbee, and Alabama rivers........................ Bull 43, passim
of Yellowstone Park... Mon xxxiv, ii, pp 440-882
Ostreide of North America, review of................................ Ann 4, pp 273-340
Pyrgulifera, geographic and time range of.......................... Bull 128, pp 84-96
Tejon (lower) species, description of some........................ Ann 17, i, pp 1036-1060
(See, also, Vertebrates, fossil; Paleontology.)
Investigation, scientific, "logical" method of........................ Ann 18, ii, pp 50-52
Invilliers (E.V. d') and McCreath (A. S.), Clinch Valley coal field. MR 1892, pp 521-526
Inyankara Mountain, Black Hills.................................. Ann 21, iii, pp 249-250
Iodine, analysis of mother liquor of, from South America, Tarapaca. MR 1883-84, p 858
statistics ofMR 1883-84, pp 854-858; MR 1885, pp 488-490
Iodine, bromine, and chlorine, indirect estimation of, by electrolysis of their
silver salts, with experiments on convertibility of silver
salts by action of alkaline haloids Bull 42, pp 89-93
proportional amounts of, in chloride ores from Colorado, Leadville dis-
trict ..Mon xi, p 548
Iolite, chemical constitution of Bull 125, pp 83, 105
occurrence ofMR 1882, p 488; MR 1883-84, p 743
Ione formation of California, correlation of................................Ann 18, ii, p 838
description and localities ofAnn 14, ii, pp 415-419, 462-465; Ann 17, i, pp 546-547; GF 3, p 1; GF 5, pp 1, 3; GF
11, pp 1, 4; GF 15, p 1; GF 18, p 4; GF 37, p 1; GF 41, p 6
Iowa, altitudes inAnn 18, i, pp 326-333; Ann 19, 1,
pp 257-259, 270-273; Ann 20, 1, pp 407, 419; Ann 21, 1, pp
472-473; Bull 5, pp 105-112; Bull 72, pp 195, 201, 214-217;
Bull 76; Bull 158, pp 91-92, 154-167; Bull 160, pp 197-221
artesian wells at Dubuque .. Ann 11, ii, p 262
atlas sheets of. (See pp 74-75 of this bulletin.)
boundary lines of, and formation of StateBull 13,
pp 31, 117-118; Bull 171, pp 123-124
brick industry of MR 1887, pp 535, 538; MR 1888, pp 559-560
building stone from, at World's Columbian Exposition..........MR 1893, p 562
clay deposits, industry, and products of, statistics ofMR 1891,
p 514; MR 1892, p 735; Ann 16, iv, pp 518, 519, 520, 521;
Ann 17, iii cont, pp 819 et seq; Ann 18, v cont, pp
950, 975 et seq, 1012, 1013, 1014, 1023, 1044, 1045, 1046, 1058;
Ann 19, vi cont, pp 207, 239, 240, 264 et seq; Ann 20, vii cont,
pp 271, 282, 283, 336 et seq; Ann 21, vi cont, p 335 et seq
coal area and statistics ofAnn 2, p xxviii;
MR 1882, pp 65-56; MR 1883-84, pp 12, 45, 46; MR 1885,
pp 11, 30; MR 1886, pp 225, 230, 266-268; MR 1887, pp 169,
171, 245-253; MR 1888, pp 169, 171, 262-269; MR 1889-90,
pp 147, 215-217; MR 1891, pp 180, 233-243; MR 1892, pp
265, 267, 268, 390-404; MR 1893, pp 189, 190, 194, 195,
197, 199, 200, 285-294; Ann 16, iv, pp 112-121; Ann 17, iii,
pp 287 et seq, 421-429, 542; Ann 18, v, pp 354 et seq,
515-524; Ann 19, vi, pp 278 et seq, 419-429; Ann 20, vi, pp
300 et seq, 417-420; Ann 21, vi, pp 325 et seq, 446-449
coke in, manufacture ofAnn 20, vi cont, p 227
Davenport, wells at, records of Ann 17, ii, pp 842-845
Des Moines River, profile ofWS 44, p 78
driftless area of Upper Mississippi ValleyAnn 6, pp 199-322
elevations in Ann 18, i, pp 326-333; Ann 19, i,
pp 257-259, 270-273; Ann 20, 1, pp 407, 419; Ann 21, i, pp
472-473; Bull 5, pp 105-112; Bull 72, pp 195, 201, 214-217;
Bull 76; Bull 158, pp 91-92, 154-167; Bull 160, pp 197-221
formations, geologic, of northeasternAnn 11, i, p 234
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Iowa; gas, illuminating and fuel, and by-products in, statistics ofAnn 20, vi cont, p 227 et seq

geographic positions in Ann 18, i, pp 159-161, 164; Bull 123, p 116

geneologic maps of, listed Bull 7, pp 89, 90, 91, 92

(See Map, geologic, of Iowa.)
geologic sections in. (See Section, geologic, in Iowa.)
geologic work in, summary of Ann 14, i, pp 224-225
geologic and paleontologic investigations in Ann 5, p 20; Ann 6, p 31; Ann 7, pp 80, 157; Ann 8, i, p 143; Ann 9, pp 106, 108-109; Ann 10, i, pp 148-149; Ann 11, i, p 104; Ann 14, i, pp 224-225; Ann 15, p 179; Ann 18, i, p 55

gold and silver from, statistics of Ann 18, v, pp 141, 149; Ann 19, vi, pp 128, 129, 132, 133; Ann 20, vi, pp 103, 104, 105, 106, 108

gypsum production of, statistics of MR 1891, pp 580, 581; MR 1892, p 802; MR 1893, pp 714, 715; Ann 16, iv, pp 663, 664; Ann 17, iii cont, pp 979, 980, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527

Iowa River, profile of WS 44, p 79

iron and steel from, statistics of MR 1886, p 18; MR 1887, pp 11, 47-48; MR 1888, p 14; MR 1892, p 15; MR 1893, p 15; Ann 17, iii, pp 48, 63; Ann 19, vi, p 66

lime production of, statistics of MR 1887, p 533; MR 1888, p 555

limestone production of, statistics of MR 1891, pp 464, 466; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 499-503; Ann 17, iii cont, pp 760, 788 et seq; Ann 18, v cont, pp 950, 1044 et seq; Ann 19, vi cont, pp 207, 281, 296 et seq; Ann 20, vi cont, pp 271, 342 et seq; Ann 21, vi cont, pp 335, 357-360

magnetic declination in Ann 17, i, pp 339-342

maps, geologic, of. (See Map, geologic, of Iowa.)

maps, topographic, of. (See Map, topographic, of Iowa; also pp 74-75 of this bulletin.)

marble production of, statistics of Ann 17, iii cont, pp 760, 766, 768-769; Ann 18, v cont, pp 950, 975, 977, 978, 980; Ann 19, vi cont, pp 239, 240; Ann 20, vi cont, pp 282, 283; Ann 21, vi cont, pp 342, 343

mineral spring resorts in Ann 14, ii, p 83

minerals of, useful MR 1882, pp 681-682; MR 1887, pp 731-732

Pleistocene history of northeastern Ann 11, i, pp 189-577

rainfall in WS 29, p 72

average annual and seasonal Ann 17, ii, p 719

rocks in, classification of Bull 80, pp 130-140, 146, 153, 166

Iowa, sections, geologic, in. (See Section, geologic, in Iowa.)
Skunk River, profile of. (See Map, topographic, of Iowa; also pp 74-75 of this bulletin.)
topographic work in...............Ann 9, p 57;
Ann 10, i, pp 93-94; Ann 11, i, p 38; Ann 12, i, p 29;
Ann 18, i, pp 94, 95, 104-105; Ann 19, i, pp 89, 90,
102; Ann 20, i, pp 100, 102, 113, 114; Ann 21, i, p 131
woodland area in........................Ann 19, v, p 9
Iowa and Illinois ice lobes, relation ofMon xxxviii, pp 151-153
Iowa River, profile of........................WS 44, p 79
Iowan drift sheet and associated depositsMon xxxviii, pp 131-184
Iowan loess, distribution, structure, deposition, etc., of. .Mon xxxviii, pp 158-184
Iowan silt in Illinois-Indiana, Danville quadrangleGF 67, pp 4-5
Ireland, Cambrian rocks of.............................Bull 81, p 377
fossil plants of, literature ofAnn 8, ii, pp 687-689
oolite from, comparison of, with Kentucky limestone .MR 1880-90, p 395
(See, also, Great Britain.)
Iridaceae of AlaskaAnn 17, i, p 881
of North America, extinctMon xxxv, p 33
Iridium, bibliography ofMR 1883-84, pp 588-591
Iridium and platinum, statistics ofMR 1882, pp 442-444; MR 1883-84, pp 576-591;
MR 1885, pp 367-369; MR 1886, pp 222-223; MR 1887,
pp 142-143; MR 1888, pp 165-167; MR 1889-90, pp 143-144
Iridosmine, analysis of, from various countries (in crude platinum) .Ann 16, iii, p 633
Iron, alloys of chromium and, uses of................Ann 16, iii, pp 610-614
of tungsten and.................................Ann 16, iii, pp 615-623
analysis of, Abert (metecoric)Bull 148, p 246
American spiegelMR 1883-84, p 564
from a Gruson cast-iron armor plateBull 55, pp 87-88
from Alabama, Woodstock (spiegel)MR 1883-84, p 565
from India, Rajdoha (crude)Ann 16, iii, p 168
from New York, Palmer (from magnetite)MR 1887, p 55
from North Carolina, various localitiesBull 74, pp 15, 16, 17, 19
from Tennessee, Jefferson CountyBull 42, p 97
in California, Jackson quadrangleGF 11, p 6
in Idaho, Boise quadrangleGF 45, p 6
in Montana, Fort Benton quadrangleGF 55, p 6
in Philippine IslandsAnn 19, vi cont, p 692; Ann 21, iii, pp 591-593
method of working, by nativesAnn 21, iii, pp 592-593
in Porto RicoAnn 20, vi cont, pp 777-778, 786-787
in Tennessee, Wartburg quadrangleGF 40, p 4
MR 1883-84, pp 246-311; MR 1885, pp 180-199;
MR 1886, pp 11-103; MR 1887, pp 10-57; MR 1888,
pp 12-35; MR 1889-90, pp 10-22; MR 1891, pp 47-73;
MR 1892, pp 12-22; MR 1893, pp 13-22; Ann 16, iii, pp 219-250;
Ann 17, iii, pp 45-71; Ann 18, v, pp 51-140; Ann 19, vi,
pp 65-89; Ann 20, vi, pp 61-101; Ann 21, vi, pp 69-118
separation of, in rock analysesBull 78, pp 87-90
(See, also, Iron ore; Steel.)
Iron, chromic, occurrence, character, uses, etc., ofAnn 17, iii, pp 261-273
Iron, meteoric. (See Meteoric iron.)
Iron and steel, protection of, against rust, Bower-Barff process of..........MR 1882,
pp 164-171
Iron and titanium, separation of, note on Bull 27, pp 16-26
Iron-bearing carbonates, analysis of, from Penokee district Mon xix, p 192
Iron-bearing district of Michigan, Crystal Falls, geology of Ann 19, iii, pp 1-151; Mon xxxvi
of Michigan, Marquette, geology of Ann 15, pp 477-650; Mon xxviii
Menominee, geology, etc., of .. GF 62
Penokee, geology of ... Ann 10, i, pp 341-507; Mon xix
(See, also, Iron ore.)
Iron-bearing formations of Marquette district, Michigan, conclusions concern­
ing ... Ann 15, pp 163-164; Mon xxviii, passim
Iron-bearing member of Penokee series, origin and petrographic character
of ... Ann 10, i, pp 349, 380-402; Mon xix, pp 190-198, 200-260
Iron belts of California, Ophir district Ann 14, ii, pp 263-264
Iron-biotite, analyses of, from Maine, Auburn Bull 55, pp 16-17
Iron bisulphite, typical composition of MR 1885, p 515
Iron carbonate, analysis of, from Canada, Gunflint Lake Mon xix, p 192; Bull 60, p 151; Bull 148, p 267; Bull 168, p 266
analysis of, from Canada, Kakabikka Falls, Keaministiquia River ... Mon xix, p 192; Bull 148, p 267; Bull 168, p 266
from Michigan, various localities .. Mon xix, p 192;
Bull 60, p 150; Bull 148, p 266; Bull 168, p 265
from Minnesota, sec. 18, T. 47, R. 45 W. Bull 60, p 150
from Wisconsin, Penokee iron range Mon xix, p 192;
Bull 42, p 138; Bull 148, p 267; Bull 168, p 266
origin of (cherty) ... Ann 10, i, p 395
thin section of, from Canada, Port Arthur, Dawson's road (cherty) Ann 10, i, pp 484-485; Mon xix, pp 498-499
from Minnesota, Vermilion Lake (cherty) Ann 10, i, pp 484-485; Mon xix, pp 496-497
from Ohio, Lawrence County (cherty) Ann 10, i, pp 488-489; Mon xix, pp 506-507
Iron carburets, electric and magnetic properties of Bull 14; Bull 27, pp 30-50
physical characteristics of ... Ann 4, pp 58-59; Bull 35
Iron industry, American, from its beginning in 1619 to 1886 MR 1886, pp 23-38
Iron mica, analysis of, from Colorado, Pikes Peak Bull 55, p 18
Iron ore, action of water in formation of Ann 10, i, pp 415-417
analysis of, from Africa, Bona and Tefna MR 1886, pp 102, 103
from Alabama, various localities Ann 19, vi, p 62; Bull 52, p 22; Bull 55, p 86; Bull 78, p 126; MR 1883-84, p 278; MR 1885, p 345; MR 1886, pp 86, 87, 88, 89, 91
Woodstock (manganiferous) ... Ann 16, iii, p 400; MR 1893, p 124
from Algeria (Mokta) .. Ann 16, iii, p 176
from Arkansas, Howard County ... Bull 64, p 53
near Polk-Montgomery county line ... Bull 60, p 168
Sevier County ... Bull 55, p 86
from Brazil, Minas Geraes ... Ann 16, iii, p 69
from British Columbia, Taxada Island Ann 16, iii, p 54
from Canada, Calabogie Lake ... Ann 16, iii, p 52
Lac-a-la-Tortue ... Ann 16, iii, p 49
Moisie River and elsewhere (black sand) Ann 16, iii, p 50
North Crosby (titaniferous) .. Ann 19, iii, p 392
Quebec Bay, St. Paul (titaniferous) Ann 19, iii, p 387
Bedford station (Glendower) ... Ann 16, iii, p 53
Haycock mine .. Ann 16, iii, p 48
Round Lake ... Ann 16, iii, p 52
Iron ore, analysis of, from Canada, Three Rivers district (bog)Ann 16, iii, p 49
analysis of, from Colorado, Cebolla Creek (magnetic)Ann 18, v, p 46; MR 1882, p 146; MR 1883-84, p 283
from Colorado, Chaffee CountyMR 1883-84, pp 282, 283; MR 1887, p 54
Grape Creek (titaniferous)Ann 19, iii, p 387
Leadville district .. Mon xi, pp 557, 602, 647
Sangre de Cristo Range .. MR 1883-84, p 282
various localities (manganiferous)Ann 16, iii, p 409; MR 1889-90, p 133; MR 1892, p 184
from Connecticut, Salisbury districtMR 1883-84, p 271
from Cuba, various localitiesAnn 16, iii, pp 57, 58, 59; MR 1887, p 57
from England, Cleveland and Whitehaven districts, Furness and Lincolnshire Ann 16, iii, pp 72, 76, 77, 79, 80
various localities .. MR 1886, p 103
from France, St. Remy ... MR 1886, p 103
from Georgia, Bartow County Bull 78, p 126
various localities .. MR 1886, pp 84, 85
from Germany (Lorraine and Luxemburg)Ann 16, iii, p 135
from Greece, island of SeraphosAnn 16, iii, p 157; MR 1886, p 103
Mazarron (manganiferous) MR 1886, p 203
from Hungary, Rakos .. Ann 16, iii, p 140
from India (representative East Indian)Ann 16, iii, p 161
from Ireland, County Antrim (pisolitic)Ann 16, iii, p 81
from Italy, Calabria ... MR 1886, p 103
island of Elba ... Ann 16, iii, p 147; MR 1886, p 101
from Kentucky, Bath County MR 1883-84, p 279
Bell and Ohio countiesBull 60, p 107; Bull 64, p 53; Bull 78, p 127
Estill County .. Bull 78, p 126
from Lake Superior region (manganiferous)Ann 16, iii, p 414; Ann 20, vi, p 133; Ann 21, vi, pp 37-43
from Louisiana, various localitiesBull 42, pp 144-145; Bull 60, p 168; MR 1887, p 50
from Maine, Aroostook CountyMR 1886, p 41
Cumberland County (magnetic)MR 1886, p 42
Picataquis County (Katahdin)MR 1886, p 41
from Maryland, near TimoniumBull 27, p 72
from Massachusetts, Hawley (pisolitic specular)Bull 126, p 93
from Mexico, Cerro de MercadoAnn 16, iii, p 60
from Michigan, Crystal Falls districtMon xxxvi, p 181
Gogebic district ..Ann 18, v, pp 28, 31;
Ann 19, v, pp 46, 50; Ann 20, vi, p 33; Mon xix, pp 91, 281;
MR 1883-84, p 268; MR 1886, pp 71, 72, 189; MR 1887, p 38
Marquette district ..Ann 18, v, pp 29-30;
Ann 19, vi, pp 47, 50; Ann 20, vi, p 34; MR 1883-84, pp 264, 265
Menominee district ...Ann 18, v, p 31; Ann 19, vi,
pp 48, 50; Ann 20, vi, p 35; MR 1883-84, p 265; MR 1887, p 39
from Michigan and Wisconsin, Gogebic rangeAnn 18,
v, pp 28, 31; Ann 19, vi, pp 46, 50; Ann 20, vi, p 33; Mon xix, pp 91, 281; MR 1886, pp 71, 72, 189; MR 1887, p 38
Menominee range ...Ann 19, vi, pp 48, 50; Ann 20, vi, p 35; MR 1887, p 39
from Minnesota, Mayhew range (titaniferous)Ann 19, iii, p 388
Mesabi range ..Ann 18, v, pp 31-32; Ann 19, vi,
pp 48-49, 50; Ann 20, vi, pp 35-36; MR 1886, p 76; MR 1887, p 42
northern part of (magnetic) MR 1887, p 42
Iron ore, analysis of, from Minnesota, Vermilion range..................Ann 18, v, p 32; Ann 19, vi, p 49; Ann 20, vi, p 36; MR 1883-84, p 267; MR 1886, p 75; MR 1887, p 41

analysis of, from Mississippi, Clark County..........................MR 1887, p 49

from Missouri, Callaway County..........................MR 1887, p 47

Iron and Simmons mountains..........................MR 1883-84, pp 269, 270

from Montana, Belt Park..................................MR 1888, p 35

Bozeman (magnetic)Bull 9, p 17

Fox and Judith mountainsAnn 20, vi, pp 57, 58

Great Falls (bog) ...MR 1888, p 34

from New Caledonia....................................Ann 16, iii, p 182

from New Jersey, Bethlehem (titaniferous)...............Ann 19, iii, p 388, 392

Sussex County..MR 1883-84, p 275; MR 1886, p 51

from New Mexico, Hanover minesAnn 18, v, pp 48, 49, 50

from New York... MR 1886, p 49

Adirondacks (titaniferous) ..Ann 19, iii, pp 387, 388, 395, 402, 405, 406, 407, 408, 415-416

Chateaugay Lake..MR 1883-84, p 272

Columbia County ..MR 1883-84, p 274; MR 1886, p 50

Crown Point ..MR 1886, p 46

Dutchess County ..MR 1886, p 50

Jefferson County ... MR 1886, p 48

Lake Champlain district......................................MR 1886, p 46

Lyon Mountain ..MR 1887, p 43

Port Henry district ..MR 1883-84, p 272; MR 1886, p 45

Port Leyden..MR 1886, p 47

Putnam County ..Ann 19, vi, p 40; MR 1883-84, p 273; MR 1886, p 48

St. Lawrence County ...MR 1886, pp 48, 49

Sterling mines ...MR 1883-84, p 273; MR 1886, p 49

Westchester County ..Ann 19, iii, p 390

from North Carolina..Ann 19, iii, p 390

Greensboro (titaniferous)Ann 19, iii, pp 387, 388

Mitchell County ...Bull 60, p 168; MR 1883-84, p 277

southwestern part..MR 1886, pp 82, 83

Troy..Bull 78, p 126

from Norway, various localities, titaniferousAnn 19, iii, pp 387, 388

from Nova Scotia, Picton County and Nictaux mine.......Ann 16, iii, p 46

from Ohio, various localitiesMR 1886, pp 56, 58, 59, 60, 61

from Oregon, north fork of Scappoose.................Ann 17, i, p 511

Oswego..Ann 17, i, p 508

from Pennsylvania, Durham Hills.........................MR 1887, p 45

Joanna ...MR 1887, p 45

Lebanon County ...Ann 19, vi, p 41; MR 1883-84, p 270

various localities ..MR 1886, pp 54, 55

from Porto Rico, Juncos and elsewhere................Ann 20, vi cont, pp 777, 786

from Portugal, Alvito ..Ann 16, iii, p 113

from Rhode Island, Cumberland (titaniferous)Ann 19, iii, p 388; MR 1886, p 43

near Providence (hematite)MR 1886, p 43

from Russia (roasted Bakalsky)Ann 16, iii, p 152

from South Carolina, Abbeville County and MariettaBull 78, p 126

Edgefield County ...Bull 64, p 53
Iron ore, analysis of, from Spain, various localities..................Ann 16, iii, pp 95, 96, 100–112; Ann 18, v, p 323; MR 1886, pp 102–103, 201
analysis of, from Sweden, various localities......................Ann 16, iii, pp 122, 123; Ann 19, iii, pp 388, 390
from Switzerland ..Ann 16, iii, pp 142, 144, 145
from Tennessee, Campbell County..................................Bull 64, p 53
Carter, Claiborne, and Unicoi counties..........................Bull 60, pp 167, 168; Bull 78, p 127
Lawrence County (spathic)..................................MR 1893, p 34
Sewannee quadrangleGF 8, p 4
various localities..MR 1886, pp 93, 94, 95, 96
from Texas, Llano County (hematite)......................MR 1887, p 52
Russ County ..Bull 55, p 87
from Utah, Iron and Morgan counties..................MR 1883–84, p 288
Tintic district ...Ann 19, iii, pp 690, 767; MR 1883–84, p 289
from Venezuela, ImatacaAnn 16, iii, p 67
from Virginia, Clarke, Lee, and Scott counties...........Bull 60, pp 165, 166
Craig County and vicinity..................................Bull 78, p 125
Houston (manganiferous)....................................MR 1892, p 183
from Virginia, Pittsylvania and Botetourt counties....MR 1885, pp 311, 320
Rockingham and Spotsylvania counties.......................Bull 55, pp 85, 86
Smyth County (manganiferous).............................Ann 16, iii, p 432
various localities..Bull 64, p 52; MR 1886, pp 78, 79, 80, 81
Wise County ..Bull 55, p 86; Bull 60, p 160
Wytheville ..Bull 60, pp 165, 166
from West Virginia, Cherry Run and Tazewell County........Bull 90, p 74
Jefferson County ...Bull 60, pp 164, 165
Randolph County ...Bull 27, pp 72–73
Shanghai ...Bull 64, p 52
from Wisconsin, AshlandMR 1887, p 37
Dodge County (flaxseed)MR 1886, p 73
Gogebic range ...Ann 18, v, pp 28, 31; Ann 19, vi, pp 46, 50; Ann 20, vi, p 33; Mon xix, pp 91, 231; MR 1883–84, p 268; MR 1886, pp 71, 72, 189; MR 1887, p 38
Lake Superior (manganiferous)..................................MR 1891, pp 128, 129
Wood County ...Bull 60, p 169
Menominee Range ..Ann 18, v, p 31; Ann 19, vi, pp 48, 50; Ann 20, vi, p 35; MR 1887, p 39
from Wyoming, Chugwater Creek (titaniferous)...........Ann 19, iii, p 387
Laramie County ...MR 1882, p 147
classification of...Ann 21, vi, p 32
methods of mining..Ann 19, vi, pp 37–41
of Alabama ..Ann 19, vi, pp 58–63
Gadsden quadrangleGF 35, p 3
geologic relations ofMR 1882, pp 149–161
Stevenson quadrangleGF 19, p 3
of California, Bidwell Bar quadrangle.......................GF 43, p 6
Downieville quadrangleGF 37, p 8
of Colorado, Pueblo quadrangle..............................GF 36, p 6
of Georgia, Ringgold quadrangle............................GF 2, pp 2–3
Stevenson quadrangleGF 19, p 3
of Kentucky, Estillville quadrangle..........................GF 12, p 5
of Lake Superior region, origin of.........................Bull 86, pp 170–173
principles, districts, exploration, etc., of...............Ann 21, iii, pp 305–434
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.]

Iron ore of Lake Superior region, production of, 1891-1900...Ann 21, iii, pp 314-315
of Maryland, Harpers Ferry quadrangle................................GF 10, p 4
Piedmont quadrangle ...GF 28, p 5
of Michigan, Crystal Falls districtAnn 19, iii, pp 40-44, 74-80; Mon xxxvi, passim
Marquette district ..Ann 15, pp 576-589, 625-630; Ann 19, vi, pp 54-58; Mon xxviii, pp 391-407, 547-553
Menominee district ..GF 62, pp 7-9
Penokee district ...Ann 10, i, pp 409-422; Mon xix, passim
of Montana, extent, character, etc., of..............................Ann 20, vi, pp 55-59
Judith Mountains ...Ann 18, iii, p 614
Little Belt Mountains quadrangle Ann 20, iii, pp 459-461; GF 56, p 8
Three Forks quadrangle ...GF 24, p 5
of Narragansett Basin...Mon xxxiii, pp 88-90
of New York, Adirondacks (titaniferous).............................Ann 19, iii, pp 377-422
of North Carolina, Knoxville quadrangle..............................GF 16, p 6
of Oregon ...
of Sierra Nevada ...Ann 17, i, pp 590-655
of Tennessee, Briceville quadrangleGF 33, p 4
Bristol quadrangle ...GF 59, p 8
Chattanooga quadrangle ...GF 6, pp 2-3
Cleveland quadrangle ...GF 20, p 4
Estillville quadrangle ...GF 12, p 5
Kingston quadrangle ..GF 4, p 3
Knoxville quadrangle ..GF 16, p 6
Loudon quadrangle ...GF 25, p 6
McMinnville quadrangle ...GF 22, pp 2-3
Pikeville quadrangle ..GF 21, p 3
Ringgold quadrangle ..GF 2, pp 2-3
Sewanee quadrangle ...GF 8, pp 3-4
Stevenson quadrangle ..GF 19, p 3
of United States ..MR 1883-84, pp 257-281
of Virginia, Bristol quadrangle ..GF 59, p 8
Estillville quadrangle ..GF 12, p 5
Franklin quadrangle ..GF 32, p 5
Harpers Ferry quadrangle ..GF 10, p 4
Monterey quadrangle ..GF 61, p 7
Staunton quadrangle ..GF 14, p 3
Tazewell quadrangle ..GF 14, p 3
of West Virginia, Franklin quadrangleGF 32, p 5
Harpers Ferry quadrangle ..GF 10, p 4
Monterey quadrangle ..GF 61, p 7
Piedmont quadrangle ..GF 28, p 5
Staunton quadrangle ..GF 14, p 3
Tazewell quadrangle ..GF 44, p 4
of Wisconsin and Michigan ..Ann 10, i, pp 409-422
thin section of, from Minnesota, Mayhew Lakes (titaniferous) Ann 19, iii, pp 414-415
from New York, Elizabethtown ..Ann 19, iii, pp 404-405
Iron ore, chromic, statistics of........Ann 19, vi, pp 259-264; Ann 20, vi, pp 291-292
typical analyses of, in bulk.........................Ann 17, iii, p 263
Iron ore, fossiliferous, description of the rock, as one of the educational series..Bull
150, pp 138-140
Iron ore, purple, composition of.....................MR 1883-84, p 898
Iron ore and its products................................MR 1882, pp 108-144
Iron-ore industry, bibliography of..................Ann 16, iii, pp 217-218
Iron-ore knobs of Texas.................................Ann 21, vi, pp 295-296
Iron-ore series of Potomac formation..................Ann 15, pp 330-332
Iron pyrite, of Colorado, in veins of Telluride district........Ann 18, iii, pp 790-793
of Porto Rico, occurrence of............................Ann 20, vii cont, p 785
thin section of, from Colorado, Telluride quadrangle...Ann 18, ii, pp 850-851
Ironclad Hill, Cripple Creek district of Colorado, ore deposits in, character of..Ann 16,
ii, pp 172-173
Ironclad and Globe hills, Colorado, rocks of........Ann 16, ii, pp 94-95
Ironstone, analysis of, from Alabama, Warrior field (clay)........MR 1882, p 159
analysis of, from Colorado, Denver Basin and near Trinidad..Mon xxv, p 66
Ironwood formation of Lake Superior region........Ann 21, iii, pp 341-351
Iroquois, Lake, the glacial, extent, etc., of........Mon xxv, pp 255-264
Irrigation, alkali and drainage as related to........Ann 13, iii, pp 127-130
animal motive powers used in.........................WS 1, pp 20-25
areas irrigated in arid region of United States, map showing..Ann 11, ii, pp ii-iii
in United States, table of, by States..................Ann 11, ii, p 205
areas irrigated and irrigable in United States..........Ann 13, iii, pp 8-10
areas irrigated, forests, and woodlands in Western States, relative location
and areas of..Ann 16, ii, pp 480-483
arid region of United States, location of, and cause of aridity........Ann 12,
ii, pp 219-220
artesian wells as means of.........................Ann 5, pp 148-150; Ann 11, ii, pp 257-278
canals, conveyance of water in flumes, pipes, and........WS 43
escapes of..Ann 13, iii, pp 244-249
headworks of.......................................Ann 13, iii, pp 218-238
falls and rapids of..................................Ann 13, iii, pp 249-256
cost and value of water supply in western United States...Ann 13, iii, pp 30-31
cost, average, by pumping and by gravity, comparisons of........WS 1, p 16
dams for directing water..............................Ann 13, iii, pp 234-238
for reservoirs......................................Ann 13, iii, pp 321-325
rock fill, hydraulic, masonry, etc....................Ann 18, iv, pp 627-726
drainage basins, classification of....................Ann 12, ii, pp 232-234
in western United States.............................Ann 13, iii, pp 31-34
duty of water......................................Ann 13, iii, pp 155-158
in southern California and elsewhere........Ann 19, iv, pp 543-548
engineering, American................................Ann 13, iii, pp 101-349
engineering, results of surveys in 1889-1892........Ann 13, iii, pp 351-427
engines, hot-air, gasoline, and steam, use of........WS 1, pp 45-50
financial and economic aspects of....................Ann 13, iii, pp 121-132
floods, relative amount, time, and intensity of........Ann 12, ii, pp 227-230
fluctuations of various rivers and lakes........Ann 13, iii, pp 15-25
flumes, siphons, etc................................Ann 13, iii, pp 256-267
ground water.......................................Ann 13, iii, pp 28-30
motion of, theoretical investigation of........Ann 19, ii, pp 295-384
movements of, principles and conditions of........Ann 19, ii, pp 59-294
ground-water supplies for............................Ann 13, iii, pp 326-332
humidity as affected by.............................Ann 12, ii, p 234
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Irrigation; hydrography, evaporation, and seepage as related to irrigation construction .. Ann 13, iii, pp 152-155

in arid region of United States, amount of land redeemable by Ann 11, ii, pp 203-205

in Arizona; Arizona irrigation canal Ann 13, iii, pp 175-179

canals in Gila Basin .. WS 2, pp 45-53
evaporation .. WS 2, pp 83-84
measurements of flow of Gila River .. WS 2, pp 40-41
of Queen Creek .. WS 2, p 42
of Salt River .. WS 2, pp 35-37, 39
of Verde River .. WS 2, p 38

near Phoenix .. WS 2

Pecos Valley canals .. Ann 13, iii, pp 187-191
rainfall in Gila Basin .. WS 2, pp 19-30
reservoirs, area, capacity, etc., of .. WS 2, pp 62-77
on the Gila River, discussion of proposed .. WS 33, pp 48, 81
storage of water on Gila River .. WS 33

water, legal control of .. WS 2, pp 55-62

wells ... WS 2, pp 86-90

in California, Cache Creek Basin .. WS 45, pp 19-24

Calloway irrigation canal .. Ann 12, iii, pp 164-168
central irrigation district canal .. Ann 13, iii, pp 191-194
Del Norte irrigation canal .. Ann 13, iii, pp 171-175
evaporation and seepage near Fresno .. WS 18, pp 74-78
Folsom canals .. Ann 13, iii, pp 210-214
Kings River irrigation canals .. Ann 13, iii, pp 164-168
Kraft irrigation district canal .. Ann 13, iii, pp 184-187

near Bakersfield .. WS 17

near Fresno .. WS 18

near Merced .. WS 19

San Bernardino Valley .. Ann 19, iv, pp 540-632

seepage and evaporation near Fresno .. WS 18, pp 74-78
Smartsville quadrangle .. GF 18, p 3
Turlock irrigation canal .. Ann 13, iii, pp 203-210
wells in Pasadena Mesa .. Ann 20, iv, pp 546-549
Wright act .. Ann 13, iii, pp 145-148

in Colorado, canals near Greeley .. WS 9, pp 29-32, 35-36, 41, 42-43, 66-71
crops raised by .. WS 9, pp 75-79
Highline irrigation canal .. Ann 13, iii, pp 179-181

method of applying water .. WS 9, pp 73-75
near Greeley .. WS 9
reservoir on Cherry Creek .. Ann 20, iv, pp 280-284
reservoir sites in Arkansas Basin, survey of........................ Ann 13, iii, pp 435-444

in Mancos Canyon .. Ann 21, iv, pp 286-297
reservoirs near Greeley .. WS 9, pp 33-35, 36-42, 56-59
subirrigation in San Luis Valley .. Ann 21, iv, pp 263-265
system of Great Plains Water Company in Arkansas Valley Ann 21, iv, pp 240-243

Twin Lakes reservoir .. Ann 21, iv, pp 238-239

water, legal control of .. WS 9, pp 60-66
well records .. Bull 131, pp 106-114
White and Yampa rivers, reconnaissance on Ann 20, iv, pp 383-387

in Dakotas, artesian waters for .. Ann 17, ii, pp 603-694
Irrigation in Idaho; canal lines to divert water from Snake RiverAnn 11, ii, pp 190-200
in Idaho; Idaho Mining and Irrigation Company’s canalAnn 13, iii, pp 198-203
reservoir site on Longtom Creek .. Ann 20, iv, pp 477-481
seepage measurements in Boise Valley ... Ann 20, iv, pp 484-488
water supply of Boise quadrangle .. GF 45, p 1
in India .. Ann 12, ii, pp 363-366
list of authors of works on .. Ann 12, ii, pp 371-373
in Kansas, development in southwestern ... WS 6, pp 62-63
methods of applying water .. WS 5, pp 23-27
reservoirs for storm and pumped waters ... WS 5, pp 12-19
subirrigation in western .. Ann 21, iv, p 222
well records .. Bull 131, pp 114-126
wells in Meade County .. WS 6, pp 48-56
in Montana, on Bitterroot River .. Ann 20, iv, pp 492-495
in Nebraska, by underground waters .. WS 12, pp 48-53
well records .. Bull 131, pp 95-106
wells and windmills ... WS 29
western .. Ann 19, iv, pp 772-780
in Nevada, water storage on Humboldt River Ann 20, iv, pp 448-454
water storage on Rock Creek .. Ann 20, iv, pp 441-447
in New Mexico, crops raised by garden .. WS 10, pp 32-34
Mesilla Valley .. WS 10
methods of applying water .. WS 10, pp 24-27
winter .. WS 10, pp 30-32
reservoir surveys .. Ann 21, iv, pp 265-277
Rio Grande Valley, methods of .. Bull 140, pp 180-186
in Oregon, from Hood River .. Ann 19, iv, pp 498-500
from Umatilla River ... Bull 131, pp 69-73
in Porto Rico .. WS 32, pp 28-32
in South Dakota, Black Hills, southern part, surface waters and .. Ann 21, iv, pp 574-478
by artesian waters in 1896 .. Ann 18, iv, pp 597-606
eastern, and well boring in 1896 .. Ann 18, iv, pp 561-615
in Texas, systems of .. WS 13
in United States; history and legislation .. Ann 13, iii, pp 133-151
in Utah ... Bull 140, pp 220-224
Bear River irrigation canal .. Ann 13, iii, pp 194-198
Cache Valley .. WS 7, pp 27-44
northern, seepage water of .. WS 7
reservoir sites, in Southern Ute Indian Reservation, surveys of .. Ann 20, iv, pp 419-433
in Utah and Idaho, reservoir sites, survey of, in 1891-92 .. Ann 13, iii, pp 445-478
in Washington, artesian wells in Moxee Valley, near North Yakima .. Ann 19, iv, p 468
from Wenas Creek ... Ann 20, iv, pp 504-505
reservoir site, in Yakima County .. Ann 20, iv, pp 505-506
southeastern .. WS 4, pp 69-75
Yakima River Basin ... Ann 19, iv, pp 461-477
in Wyoming, Black Hills, southern part, surface waters and .. Ann 21, iv, pp 574-578
from Crazy Woman Creek .. WS 23, pp 18-28
reservoir site, on Horseshoe Creek .. Ann 20, iv, pp 270-273
Irrigation in Wyoming; reservoirs .. WS 23, pp 55-58
in Wyoming; water, legal control of WS 23, pp 14-18
water-right problems of the Bighorn Mountains WS 23
Wyoming Development Company's canal Ann 13, iii, pp 181-183
land values, increase of, by .. Ann 11, ii, p 252
lands, selection and segregation of, importance of, to settlement of best lands .. Ann 11, ii, pp 251, 287-289
literature of, list of books, pamphlets, and articles on irrigation and allied subjects .. Ann 11, ii, pp 345-388
list of publications relating to irrigation Ann 13, iii, pp 346-349
machinery and tools used in constructing works Ann 13, iii, pp 342-346
measurement, units of, used in, with equivalents WS 13, p 21
necessity of, to agriculture .. Ann 21, iv, pp 680-691
of arid lands, considerations touching problem of Ann 10, ii, pp 1-16, 29-33
of High Plains, impossibility of general Ann 21, iv, pp 692-741
on Great Plains, practice of .. WS 5
precipitation in western United States Ann 13, iii, pp 25-28
problems, interdistrict, interstate, and international, and their solution ... Ann 11, ii, pp 252-257
pumping water for ... Ann 13, iii, pp 332-338; WS 1; WS 10, pp 34-36
pumps for, types of ... WS 1, pp 17-19, 50-51
pumps and water lifts used in, new tests of WS 14
rainfall and river flow, relation of .. Ann 12, ii, pp 230-231
regulator gates .. Ann 13, iii, pp 238-244
reservoir sites and irrigable lands in California, Nevada, Utah, Colorado, Idaho, Montana, and New Mexico, reported by topographers .. Ann 10, ii, pp 58-65; Ann 11, ii, pp 297-298, 299-301, 303-304, 305, 306-308, 310; Ann 12, ii, pp 10-212; Ann 13, iii, pp 351-478
reservoir surveys, origin, character, extent, etc., of Ann 20, iv, pp 25-43
reservoirs for .. Ann 16, ii, pp 502-504; Ann 18, iv, pp 617-740
run-off from various drainage basins Ann 13, iii, pp 13-15
sewage .. WS 3; WS 22
silt and sedimentation as related to .. Ann 13, iii, pp 130-132
siphon elevators in, use of ... WS 1, pp 51-53
storage of water for purposes of .. Ann 12, ii, pp 224-226
storage reservoirs in ... WS 1, pp 54-56
streams, size of various ... Ann 13, iii, pp 10-12
subirrigation, pipes and hydrants used in Ann 13, iii, pp 338-341
subsurface supplies of water for ... Ann 13, iii, pp 326-332
underground water of Arkansas Valley in Colorado Ann 17, ii, pp 561-601
water, conveyance of, in irrigation canals, flumes, and pipes WS 43
distribution, measurement, and application of Ann 13, iii, pp 288-283
water-bearing formations of Great Plains Ann 16, ii, pp 550-585
water storage in California, Cache Creek Basin WS 45, pp 19-24
in United States, western ... Ann 13, iii, pp 284-325
water supply for .. Ann 13, iii, pp 1-99
for public lands .. Ann 16, ii, pp 457-533
water resources of portion of Great Plains Ann 16, ii, pp 538-588
water wheels used in, types of .. WS 1, pp 35-45
weirs for diverting water into canals Ann 13, iii, pp 219-234
wells, value of, in reclamation of public lands in Western States ... Ann, 16, ii, pp 499-502
windmills used in ... WS 1, pp 25-35; WS 8; WS 20, pp 11-18; WS 29; WS 41; WS 42
IRRIGATION—ITALY.

Irrigation, works for, classes of......................... Ann 13, ii, pp 162-163
works for, in America and India, comparison of........ Ann 13, ii, pp 116-118
(See, also, Hydrography.)

Irrigation Survey, annual report of Director......for 1888-89, Ann 10, ii; for 1889-90,
Ann 11, ii; for 1890-91, Ann 12, ii; for 1891-92, Ann 13, iii
law establishing, in 1888..................................Ann 10, ii, p 38
plans, methods, underlying principles, and operations of.....Ann 10, ii, pp 33-48;
Ann 11, ii, pp 278-287; Ann 12, ii; Ann 13, iii

Irving formation of Kentucky.............................GP 46, p 3
Irving (R. D.), Archean formations of Northwestern States.....Ann 5, pp 175-242
classification of early Cambrian and pre-Cambrian...........Ann 7, pp 365-454
copper-bearing rocks of Lake Superior..................Ann 3, pp 89-188; Mon v
death and biographic sketch of..........................Ann 9, pp 38-42, 79
introduction to Williams's "Greenstone-schist areas of the Menominee and
Marquette regions of Michigan".............Bull 62, pp 11-30
work in charge of, 1882-1887..........................Ann 4, pp 28-34; Ann 5, pp 24-28;
Ann 6, pp 40-48; Ann 7, pp 68-76; Ann 8, i, pp 132-141
Irving (R. D.) and Chamberlin (T. C.), observations on junction between
Eastern sandstone and Keweenaw series on Keweenaw
Point, Lake Superior.....................................Bull 23
Irving (R. D.) and Van Hise (C. R.), secondary enlargements of mineral frag­
ments in certain rocks.................................Bull 8
Penokee iron-bearing series of Michigan and Wisconsin........Ann 10, i, pp 341-507; Mon xix
Ischpeming formation, relations, petrographic character, etc., of........Ann 15,
pp 590-598; Mon xxviii, pp 409-444
Isocardiidee from the marl beds of New Jersey..........Mon ix, p 200
Isogeotherms, investigation of subject of...............Ann 14, i, pp 150-160
Isometrics of liquids.......................................Bull 96, pp 32-62
Isopyre, occurrence of....................................MR 1882, p 493
Isostasy; movements in shore-land districts...............Ann 13, ii, pp 110-114
remarks on doctrine of.................................Ann 18, ii, p 82
theory and examples of...................................Ann 14, i, p 229;
Mon i, pp 357, 371; Mon xii, p 289; Ann 7, pp 616-634
(See, also, Diastrophism.)
Isostatic adjustment and contraction of earth's crust......Ann 13, ii, pp 280-281
Italy, antimony production of, statistics of.........MR 1883-84, p 646
asphaltum production of, statistics of.................Ann 19, vi cont, pp 200-201;
Ann 20, vi cont, pp 266-268; Ann 21, vi cont, p 330
building stones from, at World's Columbian Exposition...MR 1893, pp 575-576
clay products of, at Paris Exposition of 1900........Ann 21, vi cont, pp 386-388
coal production of, statistics of......................MR 1882, p 5;
MR 1883-84, p 13; MR 1885, p 11; MR 1886, p 235; MR 1887,
p 189; MR 1888, p 208; MR 1891, p 73; MR 1892, p 270;
MR 1893, p 202; Ann 16, ii, p 248; v, p 21; Ann 17, iii, pp
314, 321; Ann 18, v, pp 128-129, 136, 414, 421; Ann 19, vi, pp
311, 320; Ann 20, vi, pp 332, 341; Ann 21, vi, pp 113, 363, 373
copper production of, statistics of....................MR 1883-84, p 356;
MR 1885, p 228; MR 1886, p 128; MR 1887, p 87; MR
1888, p 73; MR 1889-90, p 73; MR 1891, pp 100, 102; MR
1892, p 114; MR 1893, p 86; Ann 16, ii, p 352; Ann 17,
iii, pp 117, 118; Ann 18, v, pp 219, 220; Ann 19, vi, pp
176, 177; Ann 20, vi, pp 202, 203; Ann 21, vi, pp 204, 205
fossil plants of, literature of.........................Ann 8, ii, pp 707-716
Italy, gold and silver production of, compared with that of other countries...MR 1883-84, pp 319-320

graphite production of, statistics of...Ann 19, vi cont, p 630

iron, iron ore, and steel from, statistics of...MR 1882, p 109; MR 1883-84, p 257;
MR 1886, p 21; MR 1887, p 18; MR 1888, pp 28, 29, 30, 31;
MR 1889-90, p 21, MR 1891, p 73; Ann 16, iii, pp 23, 28, 146-149, 245-246, 248; Ann 18, v, pp 127-130, 136, 137; Ann 19, vi, pp 82, 83, 88; Ann 20, vi, pp 96, 101; Ann 21, vi, pp 113, 114

lead production of, statistics of...MR 1883-84, p 434;
MR 1885, pp 264, 269-270; MR 1893, pp 99; Ann 16, iii, pp 372, 376; Ann 17, iii, p 156; Ann 18, v, pp 256, 257; Ann 19, vi, p 220; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246, 247

manganese production of, statistics of...MR 1886, pp 202-203; MR 1887, p 161; MR 1889-90, p 130; MR 1892, p 224; MR 1893, pp 151, 155; Ann 16, iii, pp 446, 457; Ann 17, iii, pp 214-215, 225; Ann 18, v, pp 318, 328; Ann 19, vi, p 121; Ann 20, vi, pp 149-150, 156; Ann 21, vi, pp 155-162

mining law of...MR 1883-84, p 999

petroleum localities and statistics of...MR 1893, pp 526-527, 532; Ann 16, iv, p 397; Ann 17, iii cont, pp 717-718;
Ann 18, v cont, pp 873-875; Ann 19, vi cont, pp 147-150;
Ann 20, vi cont, pp 171-175; Ann 21, vi cont, pp 235-241

pyrite production of, statistics of...Ann 20, vi cont, p 655; Ann 21, vi cont, p 522

quicksilver mines and production of...Ann 12, i, pp 412-413; Ann 16, i, pp 500-510

Scaly Clays of...Ann 16, i, pp 500-510

sulphur production of, statistics of...MR 1882, p 578; MR 1883-84, p 865; MR 1885, p 500; MR 1889-90, pp 515-517; Ann 21, vi cont, pp 507-516

tin deposits and production of, statistics of...Ann 16, iii, p 516; MR 1883-84, p 618

tin production of, statistics of...Ann 16, iii, p 388; MR 1882, p 338

Jack (J. G.), Pikes Peak, Plum Creek, and South Platte forest reserves...Ann 20, v, pp 39-115

Jackson beds, or group, of Mississippi and Louisiana...Bull 83, pp 68-69, 76; Bull 84, p 327

Jackson quadrangle, California, geology of...GF 11

Jackson stage, Louisiana, rocks and fossils of...Bull 142, pp 22-24

Jackson-Vicksburg limestone...Bull 84, pp 124-125, 327

Jacksonville limestone of Florida...Bull 84, pp 124-125, 327

Jade, analysis of, from Alaska, various localities...Bull 9, p 10; Bull 60, p 124

Jadeite, chemical constitution of...Bull 125, pp 87, 104

James River, South Dakota, profile of...WS 44, p 78

James River, Virginia, dams on, description of...Ann 19, vi, pp 164-170

James River, South Dakota, profile of...WS 44, p 22-23

rainfall and run-off in basin of...Ann 20, vi, pp 132-134

coal production of, statistics of..........................MR 1883-84, p 649
eruption of Bandai-san volcano...............................Ann 17, i, pp 538-539
fossil plants of, literature of..............................Ann 8, ii, pp 788-790
gold and silver production of, compared with that of other countries......MR 1883-84, pp 319, 320
iron and iron ore from, statistics of..........................Ann 16, iii, pp 23, 171-173; Ann 21, vi, pp 113, 114
iron-ore deposits in..................................Ann 16, iii, pp 171-173
manganese-ore production of, statistics of..................MR 1893, pp 162, 155; Ann 16, iii, pp 451-452, 457; Ann 17, iii, pp 222, 225; Ann 18, v, pp 325-326, 328; Ann 19, vi, pp 122-123; Ann 20, vi, pp 155, 157; Ann 21, vi, pp 161, 162
natural gas in, statistics of..................................MR 1888, pp 511-512
precious stones of, statistics of..............................Ann 21, vi cont, pp 456-460
quicksilver deposits in......................................Ann 16, iii, pp 465, 516-517; MR 1883-84, p 623
thin section of, from Michigan, sec. 11, T. 47 N., R. 45 W. (banded magnetic)..........Ann 10, i, pp 492-493; Mon xix, pp 504-505
Jasper, analysis of, from Colorado, Cripple Creek district.........Ann 16, ii, p 127
Jasper, analysis of, from Massachusetts, yellow..............Bull 126, p 138
Jasperite, analysis of, from Kansas, Galena....................Bull 90, p 64; Bull 148, p 253; Bull 168, p 250
Jaspilite, analysis of, from Michigan, Marquette district......Mon xxviii, p 363
precipitated series...................................Bull 150, pp 305-307
from Lake Superior iron-ore districts........................Ann 15, pp 567-576; Mon xxviii, pp 354-363, 371-374
Java; eruption of Gunung Pepandajan Volcano
fossil plants of, literature of
manganese ores in, statistics of
petroleum localities and statistics of
MR 1893, pp 530-531; Ann 16, iv, pp 402-403; Ann 17, vi, pp 161, 162
Ann 21, vi, pp 153-155; Ann 20, vi, pp 182-185; Ann 21, vi, pp 250-255
Jefferisite, analysis of, from Pennsylvania, Westchester
Jefferson limestone in Montana
in Montana, description and sections of
features of
near Three Forks
in Wyoming
in Yellowstone Park
Jefferson River, flow of, measurements of
hydrography of, and irrigation in basin of
profile of
Jeffersonite, analysis of, from New Jersey, Franklin Furnace
chemical constitution of
from New Jersey, Franklin Furnace, mineralogic notes on
Jemez River, New Mexico, irrigation possibilities along
Jenks (C. N.), corundum, manufacture and use of
work in charge of, 1889-1892
Jennings formation of Maryland
of Virginia
of West Virginia
Jet in Richmond Basin, Virginia
occurrence of
Jetty at mouth of Mississippi
Johannian series of New Brunswick, origin of name
John Day beds, correlation of
fossil plants of
of Montana, fossils of
of Oregon, fossil Mollusca of
of Washington
Johnson (L. C.), iron regions of northern Louisiana and eastern Texas
(See p. 113 of this bulletin.)
work in charge of, 1882-1883, 1885-1888
Johnson (L. C.) and Smith (E. A.), Tertiary and Cretaceous strata of Tuscaloosa,
Tombigbee, and Alabama rivers
Johnson (W. D.), High Plains and their utilization
Johannstrupite, chemical constitution of
Johore, tin production of
Joint planes in Massachusetts, Cape Ann district
Jointing in Maryland granites .. Ann 15, pp 724-725
Joints in Bonnevile beds .. Mon i, pp 211-213
in Lahontan beds ... Mon xi, pp 132, 162-163
in New-York-Vermont slate belt Ann 19, iii, pp 210, 218, 270, 284; Ann 20, vi cont, p 328
origin and relations of .. Ann 16, i, pp 668-672
Jordan River, Utah, flow of, measurements of WS 38, pp 342-345
Josephinite, a nickel-iron from Oregon, Josephine and Jackson counties, description and analyses of Bull 113, pp 54-60
Judith Mountains, Montana, geology and mineral resources of Ann 18, iii, pp 437-461
Judith region, Montana, geology of Ann 20, iii, pp 310-316
Judith River deposits ... Bull 88, pp 112, 113, 114, 115, 116, 120, 122, 126
Juglandaceae of Alaska ... Ann 17, i, p 885
of Amboy clays .. Mon xxvi, p 62
of Laramie group ... Bull 37, pp 33-34
of North America, extinct ... Mon xxxv, pp 33-36
of Yellowstone Park ... Mon xxxvii, ii, pp 687-692
Juglandese from Dakota group Mon xxvii, pp 68-72
Junghuhn (F.), eruption of Gunung Pepandajan, in Java Ann 17, i, p 539
Juniata formation of Maryland GF 28, p 2
of Virginia ... GF 32, p 2; GF 61, p 3
of West Virginia .. GF 28, p 2; GF 32, p 2; GF 61, p 3
Juniata River, flow of, measurements of Ann 21, iv, p 91; WS 35, pp 79-80
profile of .. WS 44, p 19
Jurassic. (See Juratrias.)
Juratrias flora, Jurassic flora in Older Mesozoic of Virginia and North Carolina Mon vi, pp 92-93, 94, 95, 122-123, 127, 128
Jurassic flora of Portugal .. Ann 16, i, pp 517-522
of United States .. Ann 20, iii, pp 334-422
of North Carolina .. Mon vi, pp 97-128
Rhetic plants, or those nearly allied to such, from Mesozoic of Virginia and North Carolina Mon vi
Triassic flora of Atlantic slope Mon xv of United States Ann 20, ii, pp 218-334
Juratrias fossils; Ancella in California Mon xiii, pp 226-232
from Alaska ... Bull 4, pp 10-15
from Texan Permian, types of Bull 77
from Yellowstone Park ... Mon xxxvii, ii, pp 600-604, 608-632, 642-648
Jurassic fossils, dinosaurs of North America Ann 16, i, pp 152-202
from Colorado ... Bull 128, p 71-72
Denver Basin, vertebrate ... Mon xxvii, pp 475-476, 480-509
from Wyoming .. Bull 128, p 71-72
of North American fresh-water invertebrates Bull 29
Ostreae of North America .. Ann 4, pp 289-290
Mollusca from Alaska, southern coast Bull 51, pp 64-70
of North America, nonmarine Ann 3, pp 411-416
North American invertebrate, catalogue and bibliography of Bull 102
Triassic fishes and plants of New Jersey and Connecticut Valley Mon xiv
Triassic insects found in Leadville district Mon xiv, p 71
Juratrias history of Black Hills Ann 19, ii, pp 588-589
of California, Mother Lode district GF 63, p 7
Juratricias history of California; Nevada City, Grass Valley, and Banner Hill districts .. GF 29, p 1
of Colorado, Pueblo quadrangle .. GF 36, p 1
of Massachusetts, western ... GF 50, p 3
of Montana, Little Belt Mountains quadrangle .. GF 56, p 6
of Rocky Mountain region; Jurassic movement Mon xxvii, pp 21-22
of Sierra Nevada ..GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1;
GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
Juratricias rocks; Auriferous slate series of California and Sierra Nevada Ann 8, i, pp 404-407; Ann 14, ii, pp 445-456; Ann 17, i, pp 569, 621-632, 659-663, 684-686; Bull 33, pp 16-18; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 11, pp 1, 3; GF 15, p 1
Bend formation of California .. GF 15, p 1
Beulah shales of Black Hills ... Ann 21, iv, pp 525-526
bitumen deposits in .. Ann 11, i, p 598
Blackrock diabase of Massachusetts and Connecticut GF 50, p 6
Boscobel beds of Richmond Basin ... Ann 19, ii, pp 424-425
Cedar formation of California .. Ann 14, ii, p 451; GF 15, p 1; GF 43, p 3
Chesterfield group of beds in Richmond Basin Ann 19, ii, pp 435-437
Chicopee shale of Massachusetts and Connecticut Mon xxix, p 379; GF 50, p 5
coal measures of North Carolina, Dan River and Deep River areas Bull 85, pp 41, 42
of Virginia, Farmville area ... Bull 85, p 40
Richmond Basin .. Ann 19, ii, pp 429-435; Bull 85, pp 36-40, 42
Dockum beds of Texas .. Ann 21, vii, p 103
Ellis formation of Montana ... GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2
of Yellowstone Park .. Mon xxxi, ii, pp 37, 38, 49, 51, 54, 156; GF 30, p 5
Gavilan limestone of California ... Mon xiii, p 181
Granby tuff of Massachusetts and Connecticut .. Mon xxx, p 369; GF 50, p 5
Gunnison formation of Colorado, Anthracite–Crested Butte quadrangles,
.. GF 9, pp 6, 8, 9
of Colorado, Aspen district ... Mon xxxi, pp 39-41
Hampden diabase of Massachusetts and Connecticut GF 50, p 6
Holyoke diabase of Massachusetts and Connecticut GF 50, p 6
Jurassic nonconformity in Colorado, Gunnison region Ann 6, pp 64-65
Jurassic rocks of Montana, Judith Mountains .. Ann 18, iii, pp 476-480
Jurassic system of Alaska, correlation of ... Ann 20, vii, pp 179-181, 187
Kenzecott series of Alaska ... Ann 21, ii, pp 428, 429, 432
Knoxville beds, comparison of Mariposa and .. Mon xiii, pp 195-204; Bull 19, pp 18-20; Bull 133, p 25
unconformity between Chico and ... Bull 19, pp 12, 17
La Plata formation of Colorado ... GF 57, pp 3, 13; GF 60, pp 3-4
La Plata sandstone in Colorado, Rico Mountains Ann 21, ii, pp 28, 73-76
Longmeadow sandstone of Massachusetts and Connecticut Mon xxix, pp 364-369; GF 50, p 5
McElmo formation of Colorado .. Ann 21, ii, pp 28, 76-77; GF 57, p 3; GF 60, p 4
Mariposa formation of California .. Ann 14, ii, pp 452-456; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 11, pp 1, 3;
GF 29, pp 1, 2; GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, pp 1, 4; GF 43, p 1; GF 51, p 1; GF 63, pp 2-3; GF 66, p 3
of California, comparison of Knoxville and .. Mon xiii, pp 195-205; Bull 19, pp 18-20; Bull 133, p 25
Nevada City and Grass Valley districts .. Ann 17, ii, pp 88-89, 102, 103
Juratrias rocks; Milton formation of California................GF 31, p 1; GF 37, pp 1, 3; GF 39, p 1; GF 41, p 1; GF 43, p 3; GF 51, p 1
Milton formation of Sierra Nevada..................................Ann 17, i, pp 624-625
Mineral King beds of California.....................................Ann 14, ii, p 451
Monte de Oro formation of California..............................GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 3, GF 51, p 1
Morrison formation of Colorado....................................Mon xxvii, pp 22-23, 60-62; GF 7, pp 2, 4; GF 36, p 2, GF 68, p 1
Mount Toby conglomerate of Massachusetts and Connecticut....Mon xxix, pp 358-363; GF 50, p 5
Naknek series of Alaska..Ann 20, vii, pp 169-171, 179, 187
Newark areas, structure of...Ann 21, iii, pp 25-26
Newark formation, distribution and history of....................Bull 150, p 78
in Catoctin belt..Ann 14, n, pp 345-355
in Virginia, Richmond Basin, and elsewhere, age, conditions of deposition, etc........Ann 19, ii, pp 396-419, 443
in Virginia, Maryland, and West Virginia..........................GF 10, pp 3, 4
Newark sandstones, origin of red color of.......................Bull 52, pp 44-56
Newark system, correlation essay on...............................Bull 85
in Connecticut, Pomperaug Valley.................................Ann 21, iii, pp 7-162
of any State. (See, also, formation names under this heading.)
of California...Ann 8, n, pp 972-982; Bull 19
Colfax quadrangle..GF 66, pp 2-3
Lassen Peak quadrangle...GF 15, p 1
Pyramid Peak quadrangle..GF 31, p 4
Truckee quadrangle..GF 39, p 4
of Colorado, Anthracite-Crested Butte quadrangles..............Ann 9, pp 688-689
Aspen district...Mon xxxi, pp 37-41
eastern..Ann 17, ii, pp 560-561
La Plata quadrangle...GF 60, pp 2-4
Pueblo quadrangle...GF 36, p 2
Rico Mountains..Ann 21, ii, pp 28, 66-77
Telluride quadrangle...Ann 18, iii, p 759; GF 57, pp 2-3
Walsenburg quadrangle..GF 68, p 1
of Connecticut-Massachusetts, Holyoke quadrangle..............GF 50, pp 5, 6
of Grand Canyon district..Ann 2, pp 64, 77-83; Mon ii, pp 16, 34-43, 199
of Kansas, southwestern..Bull 57, pp 20-27
of Massachusetts-Connecticut, Holyoke quadrangle...............GF 50, pp 5, 6
of Montana..Bull 105, pp 16-17; Bull 139, pp 43-44
Little Belt Mountains, sections of..............................Ann 20, iii, pp 297, 301
of New Jersey..Bull 67
of New Mexico..Ann 6, pp 135-136, 184-185
of Sierra Nevada...Ann 14, ii, pp 449-451; Ann 17, i, pp 548-549, 621-624
of South Dakota, Black Hills, northern part.....................Ann 21, iii, pp 178-180
of Yellowstone Park..Mon xxxii, pp 25, 34, 36, 38, 47, 48, 51, 54, 156, 160; GF 30, pp 2, 5
Black Hills, southern part......................................Ann 21, iv, pp 516-526
of States. (See, also, formation names under this heading.)
Juratias rocks; Otterdale sandstones of Richmond Basin........ Ann 19, pp 435-437
Radiolarian chert of Oregon...GF 49, p 1
Red Beds of Kansas, southwestern..WS 6, pp 27-30
red color of, origin of...Bull 52
Rhetic formation of Virginia..Mon xv, pp 34, 58
Rhetic of Germany and France and Triassic of United States, parallelism of.................................Mon xiv, pp 10-11, 13
Sailor Canyon formation of California.................................GF 31, p 1; GF 37, p 1; GF 39, pp 1, 3-4; GF 41, p 1; GF 43, p 1; GF 51, p 1; GF 66, pp 2-3
Shinarump conglomerate of Grand Canyon district...............Ann 2, pp 91-93
Skwentna series of Alaska..Ann 20, vii, pp 149-152, 180, 187, 235
Spearfish formation of Black Hills..Ann 21, iv, pp 516-519
Sugar Loaf arkose of Massachusetts and Connecticut............Mon xxix, pp 354-358; GF 50, p 5
Talcott diabase of Massachusetts and Connecticut..............GF 50, p 6
Teton formation of Yellowstone Park.................................Mon xxxi, pp 25, 34, 36, 38, 47, 48, 51, 54, 160; GF 30, p 5
Triassic rocks of Connecticut...Ann 18, ii, pp 1-192
of Connecticut Valley, structure of....................................Ann 7, pp 455-490
of Kansas, southwestern...Bull 57, pp 20-27
of Massachusetts, western..Mon xxix, pp 351-501
of New Jersey and Connecticut Valley, geologic relations and equivalents of.................................Mon xxiv, pp 1-15
of Texas..Ann 21, vii, p 103
of Virginia and North Carolina, and flora therefrom............Mon vi, pp 2, 92-93, 95, 100-101, 125-126
Tuckahoe group of beds in Richmond Basin.........................Ann 19, ii, pp 423-435
Unkpapa sandstone of Black Hills..........................Ann 21, iv, pp 524-525
Vinita beds of Richmond Basin..Ann 19, ii, p 435
Wyoming formation of Denver Basin.................................Mon xxvii, pp 18-21, 51-60, 84-85
Zufii sandstones of Plateau region.................................Ann 6, pp 136, 137, 146, 157

(K via, also, Mesozoic.)

Kachemak Bay, Alaska, coal on..Ann 17, i, pp 788-797
Kadiak Islands, Alaska, coal on...Ann 17, i, p 800
notes on...Alaska (2), pp 113-114
Kaibab Plateau, Grand Canyon district, description, structural geology, and evolution of...........Ann 2, pp 72, 127-141; Mon ii, pp 10, 183-198
Kainite, analysis of, imported..MR 1883-84, p 817
Kainite, analysis of, from Galicia.......................................MR 1883-84, p 816
Kalamazoo River, water power, run-off, geology, topography, rainfall, etc., in watershed of........WS 30, pp 22-38
Kalant, tin production of..Ann 16, iii, p 479
Kalawa River, Washington, flow of, measurements of........Ann 20, iv, pp 63, 522; Ann 21, iv, pp 441-442; WS 16, p 184; WS 28, pp 175-176; WS 38, p 386
Kaliophilit, chemical constitution of.................................Bull 125, pp 16, 18, 101
Kames and osars, formation and characters of, especially in Maine..Mon xxxiv, pp 330-333, 399-469, 413-448
Kaministiquia series of Lake Superior region.....................Bull 86, pp 181, 182, 185, 195
Kämmererite, analysis of, from Pennsylvania, Texas.............Bull 61, p 29
Kanab Plateau, Grand Canyon district, description of........Ann 2, pp 70, 72, 217; Mon ii, pp 10, 13, 23
section of...Ann 2, p 217; Mon xii, p 57
Kanawha formation along New-Kanawha River, West VirginiaAnn 17, n, pp 499-508

of West Virginia–Ohio, Huntington quadrangle.......................GF 69, p 4
Kanawha River, profile of...WS 44, pp 46-47
rainfall and run-off in basin ofAnn 20, iv, pp 199-202

(See, also, names of individual streams.)

Kanawha and New rivers in West Virginia, geologic section along..........Ann 17, n, pp 473-511

Kanektok River, Alaska, geologic notes taken along................Ann 20, vii, pp 133-139
itinerary of reconnaissance along....................................Ann 20, vii, pp 54-56, 85-87, 99
Kanektok silts and gravels, Alaska, notes on........................Ann 20, vii, p 177
Kansan till of Illinois, Iowa, etc...................................Mon xxxviii, pp 105-106, 119-123
Kansas, animal products of...Bull 154, p 17

Arkansas River, flow of, measurements of.........................Ann 18, iv, pp 232-234;
Ann 19, iv, pp 300-361; Ann 20, iv, pp 57, 342-343;
artesian wells of, list of..Ann 11, ii, p 271; Bull 57, pp 13, 30, 48
atlas sheets of. (See pp 75-77 of this bulletin.)

Blue River, flow of, measurements of..............................Ann 18, iv, pp 215-218;
Ann 19, iv, pp 347-349; Ann 20, iv, pp 56, 319; Ann
21, iv, pp 226-227; Bull 140, pp 144-145; WS 11, p 59;
WS 16, p 115; WS 27, pp 94, 95, 96; WS 37, pp 252-253
boundary lines of, and formation of territory.........................Bull 13,
pp 31, 119; Bull 171, p 125
building stone from, at World's Columbian Exposition............MR 1893, p 562-566

Cimarron River, flow of, measurements of.........................Ann 18, iv, pp 243-244;
Bull 140, pp 166-168; WS 11, p 64

Caldwell quadrangle, physiography of..............................TF 1, p 2
cement production of, statistics of.............................MR 1892, pp 739, 740; MR 1893, p 619;
Ann 16, iv, p 577; Ann 17, iii cont, p 891; Ann 19, vi cont,
p 495; Ann 20, vi cont, p 547; Ann 21, vi cont, pp 401, 407
coal area and statistics of..Ann 2, p xxviii; MR 1883-84, pp 12, 46-47;
MR 1885, pp 11, 30-32; MR 1886, pp 225, 230, 268-270; MR
1887, pp 169, 171, 253-256; MR 1888, pp 169, 171, 269-276;
MR 1889-90, pp 147, 217-218; MR 1891, pp 180, 243-247;
MR 1892, pp 265, 267, 268, 404-408; MR 1893, pp 189, 190
et seq, 294-299; Ann 16, iv, pp 7 et seq, 122-126; Ann 17,
iii, pp 287 et seq, 429-433, 542; Ann 18, v, pp 354 et seq,
524-529; Ann 19, vi, pp 278 et seq, 430-434; Ann 20, vi,
pp 300 et seq, 420-423; Ann 21, vi, pp 325 et seq, 449-452
Kansas, coal fields of .. Ann 16, iv, pp 122-123
coke in, manufacture of .. MR 1888, pp 38, 39, 40;
counties of, with their areas, population, townships, and cities Bull 154, pp 19-22
Crooked Creek Valley, physiography of WS 6, pp 22-24
crops of, amount and value of principal Bull 154, p 16
elevations in Ann 20, i, pp 408-411; Bull 5, pp 113-119; Bull 76; Bull 154, p 12; Bull 160, pp 222-240
gas, illuminating and fuel, and by products in, statistics of Ann 20, vi cont, pp 227, 240, 243, 246, 247, 249
gazetteer of ... Bull 154
geographic positions in Ann 18, i, pp 174-183; Bull 123, pp 123-128
geography of southwestern .. WS 6, pp 19-20
geologic and paleontologic investigations in Ann 3, p 50; Ann 5, p 49; Ann 6, pp 32, 72; Ann 7, pp 110-111; Ann 8, i, pp 169-170; Ann 9, p 104; Ann 10, i, pp 154-155; Ann 13, i, p 123; Ann 14, i, p 243; Ann 15, pp 137, 147-148; Ann 16, i, pp 26-27; Ann 18, i, p 67; Ann 19, i, p 64; Ann 20, i, pp 63-64, 65
geologic maps of. (See Map, geologic, of Kansas.)
geologic reconnaissance in southwestern Bull 57
geologic sections in. (See Section, geologic, in Kansas.)
geology of Fort Riley Military Reservation Bull 137
of southwestern ... WS 6, pp 26-37
Goodland, evaporation at .. Bull 140, p 350
Great Plains, irrigation practice on WS 5
gypsum from, chemical composition of Ann 18, vi cont, pp 1269-1271
production of, statistics of MR 1891, pp 580, 581; MR 1892, pp 801, 802-803; MR 1893, pp 714, 715; Ann 16, iv, pp 663, 664; Ann 17, iii, pp 979, 980, 981; Ann 18, vi cont, pp 1266, 1267, 1269-1271; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527
High Plains, utilization of .. Ann 21, iv, pp 601-741
Iola gas field, extent, character, geology, etc., of Ann 20, vi cont, pp 217-219
iron and steel from, statistics of MR 1882, pp 120, 125, 133, 135, 136, 137; MR 1885, pp 184, 185; MR 1893, p 5; Ann 17, ii, p 48; Ann 18, vi, p 66; Ann 19, vii, pp 83, 85
irrigation development in southwestern WS 6, pp 62-63
profile of ... WS 44, pp 72-73
latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico .. Bull 49
lead from, statistics of .. Ann 2, xxviii; MR 1882, p 312; MR 1883-84, pp 416, 426-427; MR 1885, p 248; MR 1886, p 147; MR 1887, pp 110; MR 1893, p 95; Ann 16, iii, pp 362; Ann 17, iii, pp 137, 151-152; Ann 18, vi, p 240; Ann 19, vi, pp 201, 215; Ann 20, vi, pp 226, 228; Ann 21, vi, p 229

magnetic declination in Ann 17, i, pp 342-346

maps, geologic, of. (See Map, geologic, of Kansas.)

maps, topographic, of. (See Map, topographic, of Kansas; also pp 75-77 of this bulletin.)

Meade Basin, artesian conditions in Ann 21, iv, pp 712-732
Meade County, wells in WS 6, pp 48-56

Medicine River, flow of, measurements of Ann 18, iv, pp 240-242; Bull 140, pp 165-166; WS 11, p 63

mineral spring resorts in Ann 14, u, p 83

minerals of, useful .. MR 1882, pp 682-684; MR 1887, p 732-733
natural gas localities and statistics of MR 1885, p 168; MR 1886, pp 514-515; MR 1887, pp 466, 496-498; MR 1889-90, p 367; MR 1891, p 438; MR 1892, pp 676, 698; MR 1893, pp 536, 540; Ann 16, iv, p 415 et seq; Ann 17, iv cont, p 734 et seq; Ann 18, v cont, pp 900 et seq; Ann 19, vi cont, p 168 et seq; Ann 20, vi cont, p 207 et seq; Ann 21, vi cont, p 299 et seq

profile of .. WS 44, p 66

physiography of southwestern WS 6, pp 20-26
population of .. Bul 154, pp 10-11, 13-15
rainfall in .. WS 29, p 72
at Dodge .. Ann 21, iv, p 666
at Garden (monthly) Ann 21, iv, p 662
at Lawrence (monthly) Ann 21, iv, p 661

rainfall and run-off in basin of Arkansas River Ann 20, iv, pp 325-330
in basin of Kansas River Ann 20, iv, pp 305-313

profile of .. WS 44, p 73
reservoirs for storm and pumped waters in WS 5, pp 12-19
Kansas; Saline River, flow of, measurements of: Ann 18, iv, pp 210-212; Ann 19, iv, pp 343-346; Ann 20, iv, pp 56, 316; Ann 21, iv, pp 224-225; Bull 140, pp 140-142; WS 11, p 58; WS 16, pp 112-113; WS 27, pp 93, 95, 96; WS 37, pp 250-251

salt making in, history of: Ann 18, v cont, pp 1306-1309

sand dunes in: WS 6, pp 24-25

sandstone production of, statistics of: MR 1882, p 451; MR 1888, p 544; MR 1889-90, pp 374, 395; MR 1891, pp 461, 462; MR 1892, p 710; MR 1893, p 553; Ann 16, iv, pp 437, 484 et seq; Ann 17, v cont, pp 760, 775 et seq; Ann 18, v cont, pp 950, 1012 et seq; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353 et seq

sections, geologic, in: (See Section, geologic, in Kansas.)

Spearville, latitude and longitude of: Ann 11, v, p 129; Bull 70 subirrigation in western: Ann 21, iv, p 222

topographic maps of: (See Map, topographic, of Kansas; also pp 75-77.)

triangulation in: Bull 122, pp 149-150, 153-203

profile of: WS 44, p 67

rainfall in watershed of: Ann 19, iv, pp 366-367, 373

water powers on: Ann 19, iv, pp 375-376

water resources of portion of Great Plains: Ann 16, iv, pp 535-588

water supply for, irrigation purposes: Ann 16, iv, pp 512-515

waters, underground, of southwestern: WS 6

well records in: Bull 131, pp 114-126

wells in: Ann 11, iv, p 271

wind movement at Dodge: Ann 21, iv, pp 674-675

woodland area of: Ann 19, v, p 11

Kansas and Colorado, Arkansas River Basin in, irrigation problems relating to.........................Ann 11, iv, pp 210–214
Kansas and Nebraska, Permian problem in........................Bull 80, pp 193–212
Kansas River, drainage areas in basin ofBull 140, p 125
profile of ..WS 44, pp 72–73
rainfall and run-off in basin ofAnn 20, iv, pp 305–313
(See, also, names of individual streams.)

Kaolin, analysis of, from Alabama, Calhoun CountyAnn 18, v cont, p 1148
analysis of, from Alabama, Greenville, Butler CountyBull 78, p 120; Bull 148, p 292; Bull 168, p 295
from Alabama, Talladega County Ann 16, iv, pp 560–561; Bull 64, p 51
various localitiesAnn 18, v, p 1128
from Arizona, Graham CountyAnn 16, iv, pp 560–561
from Arkansas, Garland CountyBull 78, p 120
Ouachita, Pike, and Pulaski countiesMR 1891, pp 517, 518
various localitiesAnn 16, iv, pp 560–561
from Bohemia, PilsenAnn 19, vi cont, pp 436, 439
from Colorado, Cripple Creek districtAnn 16, iv, p 128
Caster County, Security mineAnn 17, ii, p 454
Gunnison CountyBull 60, p 136
Leadville districtMon xii, pp 560, 603
Jefferson County ..Ann 16, iv, pp 560–561
from Delaware, Hockessin ..Bull 148, p 288; Bull 150, p 384; Bull 168, p 290
Newcastle County (mechanical)Bull 150, p 383
from England, Cornwell (washed)Ann 19, vi cont, p 403
from Florida, Edgar, and Palatikahaka River (washed)Ann 17, iii, pp 872, 873
Lake County ..Ann 16, iv, pp 560–561; Ann 18, v, p 1148
from France, Coussac-BonnevalAnn 19, vi cont, p 402
from Georgia, near AugustaBull 78, p 120
from Germany, various localities ..Ann 19, vi cont, pp 412, 415, 416, 423, 425
from Indiana, various localitiesAnn 16, iv, pp 560–561; Ann 17, iii, p 859; Ann 18, v, p 1148
from Massachusetts, Blandford (washed)Ann 17, iii, p 844
Hampden County ..Ann 16, iv, pp 560–561
from Minnesota, Birch Cooley (impure)Bull 157, p 76
from Missouri, various localitiesAnn 18, v, pp 1148–1149
from New Jersey, various localitiesAnn 16, iv, pp 560–561
from New Mexico, Los Cerillos ..Bull 42, p 43
from New York, Richmond CountyAnn 16, iv, pp 560–561
from North Carolina, various localitiesAnn 17, iii, p 844;
Ann 18, v, p 1149; Ann 19, vi cont, p 480; Bull 42, p 50
from Pennsylvania, various localitiesAnn 16, iv, pp 560–561; Ann 17, iii, p 844; Ann 18, v, p 1149; Bull 52, p 40; MR 1891, p 518
from Russia, various localitiesAnn 19, vi cont, pp 453, 455
from South Carolina, AikenAnn 18, v, p 1149; Bull 27, p 63; Bull 148, p 290; Bull 168, p 293
from Texas, various localitiesAnn 16, iv, pp 560–561

clays and the ceramic arts, bibliography of. Bull 143.

from Delaware, Hockessin, description of the rock as one of the educational series. Bull 150, pp 382-384.

in and around ore bodies of Cripple Creek, Colorado, character and source of. Ann 16, ii, pp 127-128, 159.

residual or rock. MR 1891, pp 481-486.

uses and deposits of. Ann 17, iii cont, pp 843-844.

(See, also, Clay.)

analysis of, from Colorado, Pikes Peak region and San Juan County. Bull 20, pp 68, 98.

Kaolinization, experiments on. Mon iii, pp 290-308, 397-400.

investigations in. Ann 14, i, pp 160-162.

Keeler (J. E.), earthquakes in California in 1889. Bull 68.

Keith (A.), geology of Briceville quadrangle, Tennessee. GF 33.

g eojsonography of Harpers Ferry quadrangle, Virginia-Maryland-West Virginia. GF 10.

g eology of Knoxville quadrangle, Tennessee-North Carolina. GF 16.

g eology of Loudon quadrangle, Tennessee. GF 25.

g eology of Morristown quadrangle, Tennessee. GF 27.

g eology of Wartburg quadrangle, Tennessee. GF 40.

work in charge of, 1893-1900. Ann 15, pp 150-151; Ann 16, i, p 20; Ann 17, i, pp 21-22; Ann 18, i, p 30; Ann 19, i, p 35; Ann 20, i, p 39; Ann 21, i, p 73.

Keith (A.) and Darton (N. H.), geology of Washington (D. C.) quadrangle. GF 70.
Kemp (J. F.), titaniferous iron ores of Adirondacks: Ann 19, iii, pp 377-422
work in charge of, 1896-1900: Ann 18, i, p 24; Ann 19, i, p 33; Ann 20, i, p 35; Ann 21, i, p 71
Kemp (J. F.) and Marsters (V. F.), trap dikes of Lake Champlain region: Bull 107
Kemp clay beds of Texas: Ann 21, vii, p 343
Kenai group or series of Alaska, distribution, correlation, etc., of: Ann 17, i, pp 772-821, 836-842; Ann 18, ii, p 345; iii, pp 184-196, 258; Ann 21, ii, pp 476-477; Bull 84, pp 234-252, 327; Alaska (1), p 24; Alaska (2), p 20
in Sushitna Basin, notes on: Ann 20, vii, pp 16-17
Kenai Peninsula, expedition from, to Tanana River, in 1898: Alaska (2), pp 40-50
explorations in, in 1898: Ann 20, vii, pp 273-280, 300-303
notes on: Alaska (2), pp 109-110
Kenai Plateau, Alaska, coal on: Ann 17, i, pp 777-788
Kennebec River, Maine, flow of, measurements of: Ann 20, iv, pp 46, 64-65;
Ann 21, iv, pp 51-53; WS 27, pp 11-14; WS 35, pp 25-26
profile of: WS 44, p 9
water power of, and of tributaries: Ann 19, iv, pp 65-84
Kennicott series of rocks of Alaska: Ann 21, ii, pp 428, 429, 432
Kent (W.), gold and silver, statistics of: MR 3, 889-90, pp 48-55
Kentrolite, chemical constitution of: Bull 125, p 81, 105
Kentucky, altitudes in: Ann 20, i, p 416; Bull 5, pp 120-124; Bull 76; Bull 160, pp 241-249
asphaltum product of: MR 1891, p 452; MR 1892, p 702; MR 1893, p 627; Ann 16, iv, p 433; Ann 17, iii cont, pp 751, 754; Ann 18, v cont, p 929; Ann 19, vi cont, pp 190, 193; Ann 20, vi cont, pp 294, 296; Ann 21, vi cont, pp 321-323
Big Sandy River, profile of: WS 44, pp 45-46
Big Stone Gap coal field of Virginia and: Bull 111
boundary lines of, and admission of State: Bull 13, pp 30, 109-110; Bull 171, p 116
brick, use of, for street paving in: MR 1892, p 724
brick industry of: MR 1887, pp 535, 538; MR 1888, pp 560, 569
building stone from, at World's Columbian Exposition: MR 1893, p 667
in Estillville quadrangle: GF 12, p 5
in London quadrangle: GF 47, p 3
in Richmond quadrangle: GF 46, p 4
production of, statistics of: MR 1882, p 451; MR 1887, p 516; MR 1888, p 540; MR 1889-90, pp 373, 395-396; MR 1891, pp 461, 462, 464, 466; MR 1892, pp 710, 711; MR 1893, pp 553, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, pp 760, 775 et seq; Ann 18, v cont, pp 950, 1012 et seq; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335 et seq
ce ment production of: MR 1887, p 527; MR 1888, p 551; MR 1889-90, p 461; MR 1891, p 532; MR 1892, pp 739, 740; MR 1893, p 619; Ann 16, iv, p 577; Ann 17, iii cont, p 891; Ann 18, v cont, p 1178; Ann 19, vi cont, p 403; Ann 20, vi cont, pp 544-545, 547; Ann 21, vi cont, p 407
clay in Richmond quadrangle: GF 46, p 4
clay products of, statistics of: Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 819 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 359; Ann 20, vi cont, pp 466 et seq, 521; Ann 21, vi cont, pp 362, 363

coal in Big Stone Gap field Bull 111, pp 39-94

in Estillville quadrangle..GF 12, p 4

in London quadrangle..GF 47, p 3

in Richmond quadrangle..GF 48, p 4

Cumberland-River, profile of.................................WS 44, p 55

elevations in. (See "altitudes in.")

Estillville quadrangles, geology of............................GF 12

Gas, illuminating and fuel, and by-products in, statistics of........Ann 20, vi cont, p 227 et seq

geographic positions in...Bull 123, pp 100-101

gleologic and paleontologic investigations in................Ann 6, pp 35, 36; Ann 11, i, pp 75, 104; Ann 12, i, pp 88, 107; Ann 18, i, pp 26, 27-29; Ann 19, i, p 34; Ann 20, i, pp 37-38

(See, also, Estillville; London; Richmond.)
geologic maps of. (See Map, geologic, of Kentucky.)
listed..Bull 7, pp 107, 108, 109, 110, 112, 168
gleologic sections in: (See Section, geologic, in Kentucky.)
gleacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and.

Illinois...Bull 58

ing, iron ores, and steel from, statistics of........Ann 2, p xxviii; MR 1882, p 120 et seq; MR 1883-84, pp 252, 278, 279; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 96; MR 1887, p 11; MR 1888, pp 14, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 27, 61; MR 1892, p 12 et seq; MR 1893, p 15 et seq; Ann 16, iii, pp 31, 42, 192 et seq; Ann 17, iii, p 26 et seq; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 27, 29, 65, 68, 72; Ann 20, vi, pp 29, 43, 44, 74 et seq; Ann 21, vi, pp 34, 51, 52, 53, 90, 92

iron ore in Estillville quadrangle..............................GF 12, p 5

Kentucky River, profile of..................................WS 44, pp 57-58

lime production of..MR 1887, p 533

limestone from Bowling Green, compared with oolite from Ireland...MR 1889-90, p 385

in Estillville quadrangle......................................GF 12, p 5

production of, statistics of................MR 1891, pp 464, 466; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 506; Ann 17, iii cont, pp 760, 788 et seq; Ann 18, v cont, pp 950, 1044 et seq; Ann 19, vi cont, pp 207, 281 et seq; Ann 20, vi cont, pp 271, 342 et seq; Ann 21, vi cont, pp 335, 357-360
Kentucky; London quadrangle, geology of ... GF 47
magnetic declination in .. Ann 17, i, pp 346-350
maps, geologic of. (See Map, geologic of Kentucky.)
maps, topographic of. (See Map, topographic of Kentucky; also p 77
of this bulletin.)

marl deposits in ... MR 1886, p 620
mineral spring resorts in .. Ann 14, i, p 83
mineral springs of, statistics of, Bull 32, pp 106-118; MR 1883-84, p 982; MR 1885,
p 538; MR 1886, p 716; MR 1887, p 684; MR 1888, p 627;
MR 1889-90, p 527; MR 1891, pp 603, 605; MR 1892, pp 824,
827; MR 1893, pp 774, 777-778, 784, 788, 794; Ann 16, iv, pp
709, 713, 720; Ann 17, iv cont, pp 1027, 1033, 1041; Ann 18,
v cont, pp 1371, 1378, 1386; Ann 19, vi cont, pp 661, 668, 677;
Ann 20, vi cont, pp 749, 758, 766; Ann 21, vi cont, pp 609, 619
minerals of, useful ... MR 1882, pp 684-686; MR 1887, pp 733-735
natural gas localities and statistics of. .. MR 1887, pp 489-492; MR 1888, pp 506-509;
MR 1891, p 438; MR 1892, pp 676, 696-697; MR 1893, pp
536, 540; Ann 16, iv, p 415 et seq; Ann 17, iv cont, p 734 et seq;
Ann 18, v cont, p 900 et seq; Ann 19, vi cont, p 108 et seq;
Ann 20, vi cont, p 207 et seq; Ann 21, vi cont, p 299 et seq
paint, mineral, production of .. MR 1892, p 818; Ann 16, iv, p 695
peridotite of Elliott County ... Bull 38; Bull 42, pp 136-137
petroleum, localities and statistics of. .. MR 1882,
pp 189, 216; MR 1883-84, p 216; MR 1885, p 147; MR
1888, p 463; MR 1889-90, pp 292, 350-353; MR 1891, pp
405, 407, 434-435; MR 1892, pp 604, 606, 612; MR 1893,
pp 405, 466; Ann 16, iv, pp 317, 319, 320, 376-378; Ann 17, iv
cont, pp 626, 629, 630, 700-701; Ann 18, v cont, pp 750 et seq,
838-840; Ann 19, vi cont, pp 5 et seq, 26-27, 95-96; Ann 20,
vi cont, pp 7, 9, 42-44; Ann 21, vi cont, pp 6, 7, 12, 60-61
phosphate in Richmond quadrangle .. GF 46, p 4
phosphatic limestones of .. Bull 46, pp 116-117
rainfall in ... Ann 17, ii, p 719; WS 29, p 72
Richmond quadrangle, geology of ... GF 46
road material in Richmond quadrangle .. GF 46, p 4
Rough River, profile of .. WS 44, p 45
salt from, statistics of .. MR 1882, pp 532-534; MR 1891,
p 572; MR 1892, pp 793, 794; MR 1893, p 720; Ann 16, iv,
p 648; Ann 17, iv cont, p 988; Ann 20, vi cont, pp 674, 675
sandstone production of, statistics of .. MR 1889-90,
pp 395-396; MR 1891, pp 461, 462; MR 1892, p 710; MR
1893, p 553; Ann 16, iv, pp 437, 484, 485, 487; Ann 17,
iv cont, pp 760, 775, 776, 777; Ann 18, v cont, pp 900, 1012,
1013, 1014; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vi
cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353-356
sections, geologic in. (See Section, geologic in Kentucky.)
soils in Estillville quadrangle .. GF 12, p 5
in London quadrangle .. GF 47, p 3
in Richmond quadrangle .. GF 46, p 4
topographic maps of. (See Map, topographic of Kentucky; also list on
p 77.)
topographic work in ... Ann 4, pp 13-15; Ann 6, p 9; Ann
8, i, p 102; Ann 9, pp 54, 55; Ann 10, i, p 91; Ann 11, i, p
37; Ann 12, i, p 27; Ann 13, i, p 72; Ann 18, i, p 95; Ann
19, i, pp 89, 90, 98-99; Ann 20, i, pp 100, 102, 111, 115-116
Kentucky; triangulation in Bull 122, pp 76, 80-82, 85-92, 98, 99, 100

Kentucky River, profile of WS 44, pp 57-58

Keokuk formation of Indiana Ann 11, i, pp 638-639

Keweenaw rocks of Lake Superior region .. Ann 3, pp 93-188; Ann 7, pp 20, 419-421; Ann 16, i, pp 794-796; Mon v, pp 24-409; Bull 86, pp 160-162

Killinite, analysis of, from Massachusetts, Hampshire County .. Bull 129, p 167

Kimball (J. P.), quoted on the grahamite vein in the Huesteca, Mexico Ann 17, i, pp 940-941

Kimberling shale of Virginia and West Virginia GF 26, pp 2-3; GF 44, p 3

Kinderhook group, history of discussions concerning .. Bull 80, pp 161, 173-192, 262

Kinderhook limestone of Iowa Ann 11, i, p 313
King (C.), quoted on Comstock lode Mon iii, pp 24-26
quoted on dynamic action in Great Basin Ann 17, i, p 532
quoted on glaciers of Mount Shasta Ann 5, pp 329-331
quoted on Paleozoic series in western Nevada Ann 17, i, p 533
production of precious metals in United States Ann 2, pp 331-401
report as director for 1879-80 Ann 1, pp 3-79
resignation of, from directorship Ann 2, p xi
Survey in charge of, 1880-1882 Ann 2, pp 44-46; Ann 3, pp 3-9

King (F. H.), principles and conditions of movements of ground water.... Ann 19, ii, pp 59-294

Kings River, California, flow of, measurements of Ann 12, i, pp 316-317; Ann 13, i, p 22; Ann 18, iv, pp 390-395;
Ann 19, iv, pp 518-523; Ann 20, iv, pp 63-64, 526, 534-536;
Ann 21, iv, pp 467-468; Bull 131, pp 80-81; Bull 140, pp 283-288;
WS 11, p 92; WS 16, pp 191-192; WS 18, pp 39-41; WS 28, pp 184, 185, 186, 193; WS 39, pp 403-405
irrigation canals along .. Ann 13, iii, pp 164-168

Kingston group of rocks of New Brunswick Bull 86, pp 232-238

Kingston quadrangle, Tennessee, geology of GF 4
Kingstown series of Narragansett Basin Mon xxxiii, pp 331-347, 361-363
(See, also, Cranston beds.)

Kirchhoff (C.), jr., copper, statistics of MR 1882,
pp 213-257; MR 1883-84, pp 322-374; MR 1885, pp 208-243;
MR 1886, pp 100-139; MR 1887, pp 66-97; MR 1888, pp 43-77;
MR 1889-90, pp 56-77; MR 1891, pp 81-102; MR 1892, pp 95-120;
MR 1893, pp 62-88; Ann 16, iii, pp 322-358;
Ann 17, iii, pp 81-129; Ann 18, v, pp 185-235; Ann 19, vi,
pp 137-196; Ann 20, vi, pp 169-220; Ann 21, vi, pp 163-223
lead, statistics of .. MR 1882,
pp 306-323; MR 1883-84, pp 411-440; MR 1885, pp 244-271;
MR 1886, pp 140-153; MR 1887, pp 98-112; MR 1888, pp 79-91;
MR 1889-90, pp 78-87; MR 1891, pp 103-110; MR 1892,
pp 121-129; MR 1893, pp 89-102; Ann 16, iii, pp 359-377;
Ann 17, iii, pp 131-162; Ann 18, v, pp 237-262; Ann 19, vi,
pp 197-222; Ann 20, vi, pp 221-247; Ann 21, vi, pp 225-247
zinc, statistics of .. MR 1882,
pp 346-358; MR 1883-84, pp 474-491; MR 1885, pp 272-283;
MR 1886, pp 154-159; MR 1887, pp 113-117; MR 1888, pp 92-96;
MR 1889-90, pp 88-93; MR 1891, pp 111-116; MR 1892,
pp 190-137; MR 1893, pp 102-110; Ann 16, iii, pp 378-388;
Ann 17, iii, pp 163-177; Ann 18, v, pp 203-290; Ann 19, vi,
pp 223-239; Ann 20, vi, pp 249-266; Ann 21, vi, pp 240-266

Kitchi schists, distribution, relations, petrographic character, etc., of Ann 15,
pp 496-500; Mon xxviii, pp 160-169

Kittitas system of Washington .. Bull 108, p 20; WS 4, p 40
Klamath Mountains, location, topography, etc., of Ann 14, ii, pp 404-405, 408
Klamath River, profile of ... WS 44, p 96
Klementite, analysis of ... Bull 113, p 17
chemical constitution of .. Bull 125, p 55
Kletsan Creek, Alaska, copper deposits on Ann 21, ii, pp 379-381
Klondike district, Alaska, discovery and development Ann 18, iii, pp 123-124, 359
(See, also, Alaska.)

Klutenia series of Alaska .. Ann 20, vii, p 410; Alaska (2), p 58
Knebelite, chemical constitution of Bull 125, pp 68, 104

Bull. 177—01——28
Knowlton (F. H.), catalogue of Cretaceous and Tertiary plants of North America ... Bull 152

Dakota plants from Woodbine, Cooke County, Texas, collected by G. H. Ragsdale, of Gainesville Ann 21, vii, p 315
description of a new genus and species of fossil wood from the Jurassic of the Black Hills Ann 20, ii, pp 420–422
description of a new species of Araucarioxylon from cycad bed of Freeze-out Hills, Carbon County, Wyoming Ann 20, ii, pp 418–419
description of a species of fossil wood from the Black Hills ... Ann 19, ii, pp 644–645
description of a small collection of fossil wood from the Triassic area of North Carolina Ann 20, ii, pp 272–274
flora of Laramie and Livingston formations in Montana Bull 105, pp 43–66
flora of Montana formation Bull 163
fossil flora of Yellowstone Park ... Mon xxxii, ii, pp 651–882
fossil plants associated with lavas of Cascade Range Ann 20, iii, pp 37–64
fossil plants from Alaska, with a table showing their relative distribution ... Ann 17, i, pp 876–897
fossil plants from Arthurs Bluff of Red River, Lamar County, Texas, collected in 1894 by T. W. Vaughan......... Ann 21, vii, pp 314–315
fossil plants from Washington ... Bull 108, pp 103–104
fossil plants of Denver Basin ... Mon xxvii, pp 466–473
fossil plants of the Esmeralda formation Ann 21, ii, pp 209–222
fossil plants of Payette formation Ann 18, iii, pp 721–744
fossil wood and lignite of the Potomac formation Bull 56
Lesquereux’s “Flora of the Dakota group,” edited by ... Mon xvii
preliminary report on a collection of fossil plants from the vicinity of Winthrop, Washington Ann 20, ii, pp 117–118
quoted on the climatic condition of northern California during Miocene time, as indicated by fossil plants .. Ann 14, ii, pp 421–422
quoted on Kenai group of rocks Ann 17, i, pp 839–841
quoted on paleobotanic literature of Alaska Ann 17, i, pp 872–874
report on a collection of fossil plants from the Yukon River, Alaska, obtained by Mr. J. E. Spurr and party during the summer of 1896 Ann 18, iii, pp 194–196
report on fossil wood from Newark formation of South Britain, Connecticut .. Ann 21, iii, pp 161–162
report on some fossil wood from Richmond Basin, Virginia .. Ann 19, ii, pp 516–519
report on two supposed new species of fossil trees from the isles of Portland and Wight Ann 16, i, pp 495–496
small collection of fossil plants from Rhamays Hill, Denison, Texas, collected by Mr. T. V. Munson, of Denison Ann 21, vii, p 316
work in charge of, 1894–1900 .. Ann 16, i, pp 41–42; Ann 17, i, p 68; Ann 18, i, pp 63–64; Ann 19, i, p 65; Ann 20, i, pp 66–67; Ann 21, i, p 92
Knox dolomite of Alabama .. GF 19, p 2; GF 35, p 2
of Georgia .. GF 2, p 1; GF 19, p 2
of Kentucky .. GF 12, p 2
of North Carolina ... GF 16, p 4
of Tennessee .. GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 16, p 4; GF 19, p 2; GF 20, p 2; GF 21, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2; GF 59, p 3
of Virginia .. GF 12, p 2; GF 44, p 2; GF 59, p 3
of West Virginia .. GF 44, p 2
Knox sandstones and shales of Alabama and Tennessee Bull 81, pp 147, 306–307
Knoxville beds of California .. Bull 82, pp 184, 185, 186, 187
fossils of .. Bull 15, pp 19–22; Bull 133
identity of Mariposa and ... Mon xxi, pp 195–204; Bull 19, pp 18–20
unconformity between Chico and Bull 19, pp 12–17

Knoxville quadrangle, Tennessee–North Carolina, geology of .. GF 16

Koch (F.), early history of Judith Mountain region, Montana .. Ann 18, iii, pp 448–449

Kona dolomite, distribution, petrographic character, etc., of .. Bull 61, pp 27–30
Kootanie formation or beds of Montana Bull 82, pp 143, 145, 166, 167–170, 178, 187, 189, 190, 191, 197, 239, 250, 254–255; Bull 139, p 44
of Montana, Judith Mountains ... Ann 18, iii, pp 480–482
Kootnahooo Inlet, Admiralty Island, Alaska, coal at .. Ann 17, i, pp 776–783
Korea, iron industry of .. Ann 16, iii, pp 170–171
Kornerupine, chemical constitution of Bull 125, pp 65, 86
Kotlo series of rocks of Alaska .. Ann 21, ii, pp 357–358, 368
Kotschubeite, analysis of, from Russia, Ural Bull 61, p 29
from California, mineralogy of ... Bull 61, pp 27–30
Kotsina River, Alaska, geology of region near Ann 21, ii, pp 420–422
trail along .. Ann 21, ii, p 416
Kowak clays of Alaska .. Bull 84, pp 265–268, 327
Kowak River, Alaska, notes on .. Alaska (2), pp 127–128
Koyukuk region, Alaska, notes on Nome, pp 55–56
Koyukuk River, Alaska, distances along, table of Ann 21, ii, pp 450–452
routes and trails in basin of ... Ann 21, ii, pp 455–457
South Fork of, distances along, table of Ann 21, ii, p 453
topography and drainage of basin of Ann 21, ii, pp 467–471
Koyukuk and Chandlar rivers, Alaska, reconnaissance along ... Ann 21, ii, pp 441–486
Kraft irrigation district canal, California Ann 13, iii, pp 184–187
Kryptotile, chemical constitution of Bull 125, pp 65, 101
Kübel (S. J.), work in charge of, 1889–1900 Ann 11, i, pp 134–136; Ann 12, i, pp 138–140; Ann 13, i, pp 160–180;
Ann 14, i, pp 272–273; Ann 15, pp 199–202; Ann 16, i, pp 83–84; Ann 17, i, pp 116–117; Ann 18, i, pp 125–127; Ann 19, i, pp 137–139; Ann 20, i, pp 155–157; Ann 21, i, pp 168–184
Kuhi Island, Alaska, coal on ... Ann 17, i, pp 774–776
Kunz (G. F.), American gems and precious stones, statistics of... MR 1882, pp 483–499;
Kuskokwim drainage area, Alaska, notes on Alaska (2), pp 122–123
Kuskokwim expedition (1898), Alaska, report of Alaska (2), pp 28–39
Kuskokwim gravels and silts of Alaska, notes on Ann 20, vii, pp 175–176
Kuskokwim River, Alaska, geologic notes taken along Ann 20, vii, pp 121–133
itinerary of reconnaissance along Ann 20, vii, pp 51–54, 67–76
Kyanite. (See Cyanite.)

La Motte sandstone of Missouri, character and occurrence of...........Bull 132, pp 12-14

La Plata dome, Colorado, description, origin, erosion, etc., of........GF 60, pp 8-11

La Plata formation of Colorado..GF 57, pp 3; GF 60, pp 3-4

La Plata Mountains, Colorado, geology of, literature of.............Bull 86, pp 323-324

geology, topography, etc., of..GF 60, pp 1-2

glaciation of...Mon xxxiv, pp 338-340

structure and rocks of..Ann 14, ii, pp 206-209

La Plata quadrangle, Colorado, geology of.............................GF 60

La Plata River, Colorado, course and character of.....................GF 60, p 1

profile of...WS 44, p 85

La Plata sandstone in Colorado, Rico Mountains.......................Ann 21, ii, pp 28, 73-76

La Sal Mountains, Utah, structure and rocks of.......................Ann 14, ii, pp 217-219

Labrador or Labradorian group..Bull 86, pp 351-352, 381, 446, passim

Labradorian rocks in New Hampshire....................................Bull 86, pp 351-355

Labradorite, analysis of, from Minnesota, Pigeon Point..............Bull 109, p 34

analysis of, from North Carolina, Clay County.................Bull 74, p 54

chemical constitution of...Bull 125, p 28

composition of..Ann 21, vi cont, p 594

collection of...MR 1882, p 495;
MR 1887, p 563; MR 1893, p 700; Ann 17, iii cont, p 916

Labradorite inclusions in diorite-porphyry of Colorado, Ophir Loop......GF 57, p 7

Labradorite-basalt from Philippine Islands.........................Ann 21, in, p 512

Labradorite-porphyrbrite, analysis of, from Michigan, Michigamme......Bull 148, p 97

Laccolithic centers of eruption, comparison of Rico Mountains with.....Ann 21,

ii, pp 94-97

Laccolithic mountain groups of Colorado, Utah, and Arizona.............Ann 14,

ii, pp 157-241; Ann 21, ii, pp 94-96

Laccolithic mountains of Colorado, Telluride quadrangle................GF 57, p 12

Laccolithic rocks, analyses of, from Montana, various localities.......Ann 20,

iii, pp 559, 560

of Colorado, Telluride quadrangle...GF 57, p 7

of Colorado, Utah, and Arizona, intrusive masses, chemical composition

and general discussion of..Ann 14, ii, pp 224-235

Laccoliths in Black Hills..Ann 21, iii, pp 163-303

in California, near San Francisco, the Presidio, etc..............Ann 15, pp 450-456

in Colorado, Anthracite quadrangle.....................................GF 9, pp 7, 8

La Plata Mountains...GF 60, pp 8-11

Mosquito Range..Mon xii, pp 149, 155, 164, 190, 193, 296, 301, 305, 306

Telluride quadrangle..Ann 21, ii, p 96; GF 57, p 14

Walsenburg quadrangle...GF 68, p 3

in Montana, Fort Benton quadrangle.....................................GF 55, p 4

Judith Mountains..Ann 18, iii, pp 576-583

Little Belt Mountains...Ann 20, iii, pp 317, 327, 333, 354-357, 387-396, 559-563

in Yellowstone Park...Mon xxxii, ii, pp 13-16, 60-64, 84

origin and cause of...Ann 18, iii, pp 584-586

theories of, and views of theories......................................Ann 14,

ii, pp 165-168, 236-241; Ann 21, iii, pp 283-290

theory and types of...Ann 20, iii, pp 392-395

types of..Ann 18, iii, pp 579-582

Laccoliths and intrusive sheets, discussion of.........................Mon xii, pp 205-304

Lacoe (R. D.), collection of plants of, secured by National Museum......Ann 13, i, p 154

Lacustral'clay, analysis of, from California Warm Spring..............Ann 8, i, p 307

Lacustral history of Mono Basin, California............................Ann 8, i, pp 287-319
Lacustral sediments, color of .. Mon xi, p 169
Lafayette formation, correlation of .. Ann 18, iv, p 337
in Catoctin belt, description and correlation of........................ Ann 14, ii, pp 366-369
in District of Columbia ... GF 70, p 4
in Southern States, features, history, etc., of......................... Ann 12, i, pp 347-521; Bull 84, pp 66-67, 74, 80-81, 84-85, 157, 159-160, 166-167, 170-172, 175, 189-191, 320, 328-329
in Virginia, Maryland, and West Virginia.............................. Bull 138, pp 126,164; GF 10, p 3; GF 13, pp 2-3; GF 23, p 2; GF 70, p 4
Lagenoclise from Cretaceous of New Jersey............................... Bull 88, pp 34-63
Lagoon and sand-bar harbors, description of.......................... Ann 13, ii, pp 121-127
Lagrange group of Tennessee and Kentucky.............................. Ann 12, i, pp 499-500; Bull 84, pp 170-172, 329
Lahontan, Lake, chemical deposits of......................... Ann 3, pp 211-215; Mon xi, pp 188-222
crystallographic study of thinolite of................................. Bull 12
geologic history of ... Ann 3, 189-235; Mon xi
Lake. (See next word of name.)
Lake basins, formation of ... Mon i, pp 2-5; Mon xi, pp 23-24
in relation to climate ... Ann 2, pp 173-174
of Rocky Mountains, Tertiary, remarks on.............................. GF 1, p 1
Lake beds of California, Downieville quadrangle GF 37, pp 5, 7
of California, Pyramid Peak quadrangle.................................. GF 31, p 8
Truckee quadrangle .. GF 39, pp 6, 7-8
of Colorado, High Park, description and relations of................ Ann 16, ii, pp 53-55
Pikes Peak quadrangle, Eocene.. GF 7, pp 2, 4, 7
of Idaho, Boise quadrangle.. GF 45, pp 2, 3
Idaho Basin ... Ann 18, iii, pp 665-669, 671
of Montana, Butte district .. GF 38, p 3
Lake levels, Pleistocene, dependence of, on erosion and changes of outlets. . Mon xxv, pp 222-227, 250-251
Lake of the Woods, description of.. Mon xxv, p 49
Lake quadrangle of Wyoming. (See Yellowstone Park.)
Lake quartzite-schist of Alaska... Ann 21, ii, pp 474-475
Lake shores, topographic features of...................................... Ann 2, pp 171-174; Ann 3, pp 204-208;
Ann 5, pp 69-123; Mon i, pp 23-80; Mon xi, pp 87-99
Lake Superior region, copper production of...... Ann 21, vi, pp 163-170, 175-184, 199-201
iron ores of, statistics of... Ann 21, vi, pp 36-43, 80-81
iron-ore deposits of—principles, exploration, etc....................... Ann 21, vii, pp 305-434
manganiferous iron ores of, statistics of....................... Ann 21, vi, pp 132, 138-139
Lake Superior sandstone ... Bull 81, pp 188-190, 252, 335-339; Bull 86, pp 157-160; GF 62, pp 129-151
Lake Superior syncline ... Mon v, pp 410-418
Lake Tahoe Forest Reserve. (See Stanislaus and Lake Tahoe forest reserves.)
Lake water, composition of... Mon i, pp 204-208
Lakes, analyses of waters of inclosed................................. Mon xi, p 176
freshening of, by desiccation .. Ann 2, pp 177-180; Ann 3, pp 224-230;
Mon i, pp 208-209, 229, 258; Mon xi, pp 224-230
of Alaska, southwestern, origin of.. Ann 20, vii, pp 257-258
of Great Basin, chemistry of.. Ann 4, pp 454-455
of Great Basin, Pleistocene, sketch of...................................... Bull 11, pp 9-12
of Nevada, soda .. Mon xi, pp 73-80
of Wyoming and Utah, Eocene .. Mon x, pp 1-8
Lakes, Laurentian, history of.. Mon xxv, pp 255-264
Lakota formation of Black Hills .. Ann 21, iv, pp 526-529
Lakota formation of Black Hills, water from Ann 21, iv, pp 564-567
Lamellibranchiata, fossil, from Cambrian, lower Ann 10, i, pp 589, 614-615
from Cambrian, middle....................................... Bull 30, pp 53, 123-125
from Cretaceous rocks of Texas, aberrant forms of Chamidae Bull 4, pp 5-9
from Devonian of New York, Ontario County Bull 16, pp 23, 24, 58-62
from Eocene.. Bull 83
from marl beds of New Jersey, genera and species of Mon xviii, pp 24-25
from Miocene marls of New Jersey Mon xxiv, pp 27-33
from New Jersey formations recognized in other localities.. Mon xviii, pp 28-29
from Olenellus zone..................................... Ann 10, i, pp 614-615
from Paleozoic strata of Nevada, Eureka district Mon viii, pp 76-78, 164-182, 225-254; Mon xx, pp 322, 328-329, 332
from Pleistocene and Recent of Great Basin Bull 11, pp 14-16
from Raritan clays and greensand marls of New Jersey Mon ix, pp 17-25
Lamination of acid lavas, cause of Ann 7, pp 260, 286
Lamination and banding in rhyolite of Yellowstone Park . Mon xxxi, ii, pp 424-425
Lampasas Cut Plain, Texas, character, relations, etc., of Ann 21, vi, pp 77-84
Lampblack, specific gravity of............................... Bull 42, pp 132-135
Lamprophyre, analysis of, from Colorado, Snowstorm Peak . GF 60, p —
from Colorado, Two Buttes (syenitic).......Bull 148, p 182; Bull 168, p 165
from Montana, Cottonwood Creek........................... Bull 55, pp 83-84; Bull 60, p 153; Bull 148, p 138; Bull 168, p 112
between South Bowlder and Antelope creeks Ann 20, iii, p 484; Bull 90, p 70; Bull 148, p 139; Bull 168, p 113
in Colorado, Elmor quadrangle............................... GF 58, p 3
Walsenburg quadrangle....................................... GF 68, p 4
in Montana, Little Belt Mountains Ann 20, iii, pp 526-556
microscopic petrography of............................... Bull 139, pp 110-117
Lamprophyric rocks of Yellowstone park and vicinity Mon xxxii, ii, p 259
Land forms of United States TF 1; TF 2
relations of .. Ann 14, i, p 116-121
Land grants to railroads in western United States Ann 16, ii, pp 488-490
Lands, classification of Ann 21, v, pp 563-601
Lands, public. (See Public lands.)
Landslide areas in Colorado, Telluride quadrangle GF 57, pp 10-11
Landslides, classification of................................ Ann 7, p 631
in Colorado, Rico Mountains............................... Ann 21, ii, pp 129-151
in Washington, Cascade region Ann 20, ii, pp 193-204
theory of .. Mon iii, p 187
Landslides and faulting in California, Sierra Nevada . Ann 17, i, pp 553-554, 591-594
Landslip and soilcap movement, transportation by Mon xxxiv, pp 10-11
Lane (A. C.), Lower Michigan mineral waters WS 31
water resources of Lower Peninsula of Michigan WS 30
Langbanite, chemical constitution of Bull 125, p 100
Laosauridae of North America.............................. Ann 16, i, pp 198-199
Laosaurus, description and restoration of Ann 16, i, pp 199, 201, 202
Lapidary work, aboriginal, in Oregon MR 1891, p 551
Lapilli, analysis of, from California, Lassen Peak region Bull 79, p 29; Bull 148, p 198; Bull 150, p 249; Bull 168, p 184
description of the rock, as one of the educational series.... Bull 150, pp 248-249
Lapis lazuli, occurrence of MR 1893, p 700; Ann 17, iii, cont, p 916
Laramie fauna in Great Basin, relations of, to Eocene fauna Bull 34
invertebrate, list of Bull 128, pp 74-79
Laramie fauna, Molluscan, relation of, to that of succeeding fresh-water Eocene and other groups ... Bull 34

Ostreidse.. Ann 4, pp 307-308

Laramie flora; distribution of Laramie, Senonian, and Eocene plants, table of, and discussion thereof .. Ann 6, pp 443-536

of Yellowstone Park ... Mon xxxii, ii, pp 655-665
types of .. Bull 37

discussion of .. Bull 82, pp 145-153
examinations of .. Ann 9, p 121
flora of, synopsis of ... Ann 6, pp 399-557
types of .. Bull 37
historical review of opinion concerning .. Ann 6, 406-433
in area of glacial Lake Agassiz .. Mon xxv, pp 84-85
in Black Hills ... Ann 21, iv, pp 536-541
in Colorado .. GF 9, pp 6, 7, 8; GF 58, p 2; GF 68, p 2
age, range, features, etc., of the coal-bearing MR 1892, pp 320-358
Anthracite and Crested Butte quadrangles, coal measures GF 9, p 9
Aspen district .. Mon xxxi, p 43
Denver Basin .. Mon xxvii, pp 28, 72-77, 89, 471-473
in Montana .. Bull 105; GF 1, p 2; GF 24, pp 1, 3; GF 56, p 3
features of .. Bull 139, pp 48-49
unconformity between Livingston and .. Bull 105, pp 34-35
in Utah as source of coal .. MR 1892, pp 514-517
Uinta Mountains ... Ann 9, p 690
in Washington, Wenache Valley ... Bull 51, pp 54-63
in Wyoming .. Bull 119, pp 24-25; GF 30, pp 2, 5; GF 52, p 3
in Yellowstone Park .. Mon xxxii, ii, pp 53, 655-665
nature and extent of .. Ann 6, pp 433-436
plants from ... Ann 6, pp 536-557; Mon xxxiv, passim
Puget group of Washington .. Bull 84, p 333
stratigraphy and correlation of ... Bull 82, pp 127, 148; Bull 83, pp 111-134, 145-146
Laramie Hills, geology of, literature of Bull 86, pp 272, 273, 275, 276
(See, also, Black Hills.)
Laramie River, drainage area of .. Bull 140, p 95
hydrography of and irrigation along ... Ann 13, iii, pp 79-81
Las Moras River, Texas, flow of, measurements of Bull 140, pp 85, 86
Laubanite, chemical constitution of .. Bull 125, pp 98, 106
Laumontite, analysis and chemical composition of, from Colorado, Table Mountain ... Bull 20, pp 16-17
chemical constitution of .. Bull 125, pp 42, 44
Lauraceae of Amboy clays .. Mon xxvi, pp 85-89
of Cretaceous of Black Hills .. Ann 19, ii, p 705
of North America, extinct ... Mon xxxiv, pp 98-100
of Yellowstone Park .. Mon xxxii, pp 722-727
Laurentian district, original, succession, correlation, etc. in Ann 16, i, pp 766-771
Laurentian lakes, history of .. Mon xxv, pp 255-264
Laurentian rocks of Canada and the Great Lakes region............. Bull 86, passim
relations of Keweenawan rocks to Huronian and Ann 3, pp 156-173
of Penokee iron-bearing series of Michigan and Wisconsin to Huronian
and... Ann 10, i, pp 458-464; Mon xix, pp 45-46, 58, 59-61, 76-77
(See, also, Algokian; Archean.)
Laurentian system, history of term Bull 86, pp 462, 470-474
Larurine from Dakota group Mon xvii, pp 91-108
from Laramie group .. Bull 37, pp 46-51
Lassen Peak district, California, geology of........ Ann 8, i, pp 139-432; Bull 33
Lassen Peak quadrangle, California, geology of GF 15
Latite, analysis of, from California, near Mill Creek (vitrophyric) ... Bull 89, pp 58, 66
analysis of, from Utah, Tintic district GF 65, p 3
of California, Big Trees quadrangle GF 51, 46-7
chemical composition of .. Bull 89, pp 57-59, 66-67
classification of .. Bull 89, pp 59-65
Mother Lode district .. GF 63, p 6
occurrence and distribution of Bull 89, pp 14-27
petrography of ... Bull 89, pp 27-57
Latitude, determination of, method of, in topographic work...... Mon xxii, pp 21-31
observations for, at Spokane, Washington............... Bull 170, pp 21-22
Latitudes and longitudes of certain points in Missouri, Kansas, and New
Mexico ... Bull 49
of places in the United States.. Bull 123
Lava, aa type of, characteristics of Ann 4, p 95
analysis of, from Alaska, Bogofof and St. Augustine Ann 18, iii, pp 53, 58
from Arizona, near Mount Trumbull (recent) Bull 64, p 48;
Bull 148, p 188; Bull 168, p 174
from California, Butte County (andesite) Bull 55, p 85
near Lassen Peak ... Bull 60, pp 156, 157; Bull 79, p 29; Bull 150, p 218
near Mill Creek (red)... Bull 89, p 58
various localities ... Bull 55, pp 84, 85
from New Mexico, San Mateo Mountains Bull 27, p 64;
Bull 148, p 155; Bull 168, p 170
cascades of, in Grand Canyon of Colorado................. Mon ii, pp 85, 92, 100, 116
columnar jointing in, description of, as one of the educational series of
rock specimens ... Mon ii, pp 256-258
of Alaska, southwestern ... Ann 20, vii, pp 226, 232-233
of Bonneville Basin (basaltic) Mon i, pp 319-336
of California, Coast Ranges Mon xiii, pp 145-164
Lassen Peak quadrangle .. GF 15, p 3
Mono Valley (modern) .. Ann 8, i, pp 372-377
northern, from a late volcanic eruption Bull 79
not fused sediments ... Mon xiii, p 174
Sierra Nevada, western slope Bull 89
of Grand Canyon, pre-Cambrian, petrographic character of. Ann 14, ii, pp 520-524
of Hawaiian Islands, volcanoes of. Ann 4, pp 84-98, etc.
of Maine, Aroostook, volcanic area (vesicular) Bull 165, pp 159-161
of Michigan, Crystal Falls district... Ann 19, iii, pp 50-55; Mon xxxvi, pp 80-135
of Montana .. Bull 139, pp 69-73
of Nevada, Eureka district, chemical composition of......... Mon xx, pp 264-267
Eureka district, manner of occurrence of Mon xx, pp 243-249
of New Mexico, San Jose Valley (recent) Ann 6, pp 179-182
of Washington, Columbia .. Ann 20, ii, pp 129-134
pahoehoe type of, characteristics of Ann 4, p 95
(See Andesite; Basalt, etc.)
Lava soil, analysis of, from Hawaiian Islands Bull 60, p 164; Bull 148, p 301
Lavas, order of succession of .. Ann 18, iii, pp 304-305
Lavasite, chemical constitution of .. Bull 125, pp 77, 89, 105
Law establishing the Irrigation Survey .. Ann 10, ii, p 38
establishing and extending the U. S. Geol. Survey Ann 1, pp 3-4; Ann 4, p xiii
governing the establishment of forest reserves Ann 19, 1, pp 15-18
tariff of March 3, 1883, schedules from MR 1882, pp 777-787
Law, mining, historical sketch of ... MR 1883-84, pp 988-1004
of States east of Mississippi .. MR 1886, pp 722-790
Lawson (A. C.), sketch of geology of San Francisco Peninsula Ann 15, pp 177-178; Ann 16, 1, pp 36-37; Ann 17, 1, p 48; Ann 18, 1, p 46; Ann 20, 1, p 49; Ann 21, 1, p 82
Lazulite, analysis of, from North Carolina, Gaston County Bull 74, 1, p 78
occurrence of ... MR 1883-84, p 773
Lazurite, chemical constitution of ... Bull 125, pp 22, 103
Le Chatelier’s researches on cements .. MR 1891, pp 537-538
Le Conte (Joseph), quoted on formation of Basin ranges Ann 17, 1, p 533
Lead, desilverizing, recent improvements in MR 1883-84, pp 462-473
in eruptive rocks ... Mon xii, p 578
smelting of argentiferous, in far West .. MR 1882, pp 324-345
Lead deposits in Alaska ... Ann 21, ii, p 482
in Colorado, Leadville ... Mon vii, p 66
in Connecticut-Massachusetts, Holyoke quadrangle GF 50, p 8
in Corinthia, Raibl ... Mon vii, pp 68-102
in England, Cumberland and Derbyshire Mon vii, pp 67-68
in Great Basin ... Mon vii, pp 64-65
in Massachusetts-Connecticut, Holyoke quadrangle GF 50, p 8
in Missouri ... Mon vii, p 66
 disseminated lead ores of southeastern Bull 132
in Montana, Butte district .. GF 38, p 5
in Philippine Islands ... Ann 19, vi cont, pp 692; Ann 21, iii, pp 590-591
in Porto Rico ... Ann 20, vi cont, p 784
in Silesia and Westphalia ... Mon vii, p 68
in Tennessee, Briceville quadrangle ... GF 33, p 4
Cleveland quadrangle .. GF 20, p 4
Morristown quadrangle ... GF 27, p 5
in United States ... MR 1887, pp 103-110; MR 1888, pp 85-89
in Upper Mississippi ... Mon vii, p 65
Lead and zinc deposits of Missouri, investigation of Ann 11, i, pp 54, 80-81; Ann 12, 1, pp 56, 90; Ann 13, 1, p 123
Lead minerals of Colorado, Cripple Creek district Ann 16, ii, p 124
Lead-silver deposits of Colorado, Leadville district Mon xii, pp 367-584
of Nevada, Eureka ... Mon vii
Lead slags, analyses and chemical properties of MR 1883-84, pp 447-460
Leadville, Colorado, chemistry of rocks and ores of............... Mon xii, pp 585-608
geology and mining industry of............................... Ann 1, pp 17-22, 69-70;
Ann 2, pp xx-xiii, 201-290; Mon xii
metallurgy of... Mon xii, pp 609-751
petrography of.. Mon xii, pp 315-362
Leadville limestone of Colorado Mon xxxi, pp 22-30; GF 9, p 6; GF 48, p 1
Leadville porphyry of Colorado............... Ann 2, p 222; Mon xn, pp 76-78, 324-326
Lee conglomerate in Kentucky, Virginia, and Tennessee......... Bull 111, pp 36-37, 39-40; GF 12, p 3; GF 25, p 4; GF 33, p 3; GF
40, p 2; GF 46, p 3; GF 47, pp 2-3; GF 53, p 3; GF 59, p 4
coals in... Bull 111, pp 39-40
Lee gneiss in Massachussetts Mon xxix, pp 20, 29-30; Bull 159, pp 33-34
Leguminose of Amboy clays Mon xxvi, pp 90-98
of Dakota group... Mon xvii, pp 145-153
of Laramie group.. Bull 37, p 65
of North America, extinct........................ Mon xxx, pp 113-114
of Yellowstone Park Mon xxxi, pp 145-153
Lehig-McAlester coal field, Indian Territory, geology of.... Ann 19, iii, pp 423-456
Lehig River, Pennsylvania, flow of, measurements of........ Ann 20, iv, pp 86-88
profile of.. WS 44, p 16
Leiberg (J. B.), Bitterroot Forest Reserve................. Ann 19,
v, pp 253-282; Ann 20, v, pp 317-410
Cascade Range Forest Reserve, from T. 28 S. to T. 37 S., inclusive, together
with the Ashland Forest Reserve and adjacent forest
regions from T. 28 S. to T. 41 S., inclusive, and from
R. 2 W. to R. 14 E., Willamette meridian, inclusive... Ann 21,
v, pp 209-498
forest conditions in Sandpoint quadrangle, Idaho Ann 21, v, pp 583-595
present condition of forested areas in northern Idaho outside limits of
Priest River Forest Reserve and north of Clearwater
River .. Ann 19, v, pp 373-386
Prieb River Forest Reserve Ann 19, v, pp 217-252
San Bernardino Forest Reserve... Ann 19, v, pp 359-365; Ann 20, v, pp 429-454
San Jacinto Forest Reserve Ann 19, v, pp 351-357; Ann 20, v, pp 455-478
Leith (C. K.) and Van Hise (C. R.), Mesabi iron-ore district... Ann 21, iii, pp 351-370
Lemmaceae from Laramie group............. Bull 37, p 17
Lenticular shape of coastal gravel masses................... Mon xxxiv, pp 382-386
Leona formation of Texas Ann 18, ii, pp 253-254; GF 42, p 3; GF 64, p 3
Leona River, Texas, flow of, measurements of... Bull 140, pp 85, 86; WS 37, pp 276-277
Leopardite, occurrence of............................ MR 1883-84, p 770
Lepidodendree of Missouri, from Lower Coal Measures... Mon xxxv, pp 187-230
Lepidolite, analysis of............................... Bull 42, p 13; Bull 113, p 23
analysis of, from Austria......................... Bull 64, p 14; Bull 113, p 24
from England, Cornwall.......................... Bull 42, p 20
from Juschakova Bull 113, p 25
from Maine, Auburn, Hebron, Paris, and Rumford Bull 42,
pp 12, 13, 14, 17; Bull 113, p 24
from Norway...................................... Bull 42, p 18; Bull 64, p 14; Bull 113, p 24
from Rozena.. Bull 42, p 20
chemical constitution of......................... Bull 125, pp 48, 49, 103
occurrence of.. MR 1883-84, p 777
Lepidomelane, analysis of, from New York, Port Henry...... Bull 78, p 24
analysis and description of, from Maine, Litchfield... Bull 42, pp 34-35; Bull 55,
pp 15-16; Bull 148, p 66; Bull 150, p 203; Bull 168, p 21
Lepidomelane, analysis and description of, from Maryland, Baltimore... Bull 55, pp 14-15
Lepidosteidae from Triassic of New Jersey and Connecticut... Mon xiv, pp 24-70
Lesquerex (Leo), biographic sketch of... Ann 5, pp 376-377
death and biographic sketch of... Mon xvii, pp 15-18
flora of Dakota group... Mon xvi
Lester River group of Minnesota... Mon v, pp 279-283
Lettering and conventional signs adopted for topographic maps of United States... Ann 6, pp xviii-xix
Lettsomite (cyanotrichite), analysis of, from Utah, Tintic district... Ann 19, III, p 700
Leuchtenbergite, analysis of, from Russia, Slatoust... Bull 78, p 19; Bull 113, p 27
chemical constitution of... Bull 125, pp 53, 56, 104
residuum from, analysis of... Bull 113, p 29
Leucite, chemical constitution of... Bull 125, pp 30, 87, 103
composition of... Bull 150, p 32
Leucite-absarokite, analysis of, from Yellowstone Park... Mon xxxii, II, p 329; Bull 148, p 125; Bull 168, p 97, 99
Leucite-banakite, analysis of, from Yellowstone Park... Mon xxxii, II, p 347; Bull 148, p 128; Bull 168, p 102
Leucite-basalt, analysis of, from Montana, Highwood Mountains... Bull 148, p 153; Bull 168, p 132
Leucite-monchiquite, analysis of, from Montana, Highwood Mountains... Bull 168, p 132
Leucite-shoshonite, analysis of, from Yellowstone Park, Pyramid Peak... Mon xxxii, II, p 340; Bull 168, p 100
Leucite-sodalite-tinguaita, pseudo, analysis of, from Montana, Bearpaw Mountains... Bull 148, p 157; Bull 168, p 136
Leucite-syenite, analysis of, from Montana, Highwood Mountains... Bull 148, pp 153, 154; Bull 168, pp 132, 133
Leucite-tinguaita, analysis of, from Arkansas, Magnet Cove... Ann 18, III, p 569
Leucite, analysis of, from Montana, Bearpaw Mountains... Bull 148, p 157; Bull 168, p 136
Leucophanite, chemical constitution of... Bull 125, pp 96, 106
Leveling. (See Spirit leveling.)
Leverett (F.), Illinois glacial lobe, monograph on... Mon xxxviii
water resources of Illinois... Ann 17, II, pp 695-849
water resources of Indiana and Ohio... Ann 18, IV, pp 419-559
wells of northern Indiana... WS 21
wells of southern Indiana... WS 26
Leverett (F.) and Campbell (M. R.), geology of Danville quadrangle, Illinois-Indiana... GF 67
Levynite, analysis and general description of, from Table Mountain, Colorado... Bull 20, pp 37-38
chemical constitution of... Bull 125, pp 38-39, 44, 102
Lewis shale of Colorado... GF 60, p 5
Lewis and Clarke Forest Reserve, Montana, report on... Ann 21, v, pp 27-80
Levi town limestone in Maryland, Virginia, and West Virginia... GF 14, pp 1, 2; GF 28, pp 2-3; GF 32, p 3; GF 61, p 4
Lewisville beds of Texas... Ann 21, vii, pp 308-313
Lexicon, mineralogic, of Massachusetts, Franklin, Hampden, and Hampshire counties... Mon xxix, pp 754-761; Bull 126
Lexington limestone of Kentucky... GF 46, p 2
Lexington quadrangle, Nebraska, topography of... TF 2, p 6
Leyden argillite of Massachusetts and Connecticut... Mon xxix, pp 201-210; GF 50, pp 3, 5
Lherzolite, analysis of, from Maryland, near Baltimore... Ann 15, p 674; Bull 148, p 83; Bull 168, p 42
Lherzolite from Maryland, near Baltimore, description of........Bull 28, pp 54-59
Liberia, iron-ore deposits of .. Ann 16, iii, p 177
Library of Geological Survey, contents June 30, 1900..........Ann 21, i, p 188
exchanges of geologic and geographic publications, list of.....Ann 20, i, pp 163-209
Lice, plant, American fossil ... Ann 13, ii, pp 341-366
Liebenerite, analysis of, from South Dakota, Rapid CityBull 78, p 120
Life, plant, and geologic formations, with discussionsAnn 5, pp 439-452
Life history of Lake Lahontan.................................Mon xi, pp 238-249
Lignite, analysis of, from Alaska, various localities........Ann 17, i, p 828
analysis of, from Austria, Wildthut............................... Ann 17, i, p 825
from British Columbia, Nanaimo and Wellington......Ann 17, i, p 825
from California, various localities......................Ann 17, i, p 825
from Colorado, Boulder, Golden, and Murphys........Ann 17, i, p 823
from Dakota, Turtle Mountains................................. Bull 27, p 74
various localities ... MR 1886, p 251
from France, Dax ..Ann 17, i, p 823
from Hungary, ZsemleAnn 17, i, p 823
from Massachusetts, Marthas Vineyard......................... Bull 55, p 87
from Montana, Chestnut River.................................. Ann 17, i, p 823
eastern... Ann 16, iv, p 145
various localities ... MR 1886, pp 285-286
from Oregon, various localities..............................Ann 17, i, pp 824-825
from Texas, various localities................................. Bull 164, p 66; MR 1886, pp 348, 350
from Utah, Emery CountyMR 1886, p 351; MR 1887, p 359
from Washington, Bellingham Bay, and Seattle........Ann 17, i, p 825
various localities ... MR 1886, p 359
from Wyoming, Carbon, Evanston, and Van Dyke........Ann 17, i, p 823
in Alaska ..Ann 17, i, pp 783-908; Alaska (1), pp 39-44
in great Sioux Reservation.. Bull 21
in Porto Rico ..Ann 20, vi cont, pp 775, 787
(See, also, Coal.)
Lignite and brown coal, analyses of, from various countries..Ann 17, i, p 829
Lignite and fossil wood of Potomac formation.................. Bull 56
Lignites of Pacific coast, relative values ofAnn 17, i, p 832
Lignitic beds of Aleutian Islands Bull 84, pp 242-249
Lignitic deposits or group of Southern States...............Ann 12, i, pp 415-418; Bull 83, pp 57-61, 67-68, 72-73, 112, 113, 114, 117, 118, 120, 126, 144; Bull 84, p 329; Bull 142, p 15
Ligurian formation of Europe, correlation ofAnn 18, ii, p 542
Liliaceae from Dakota groupMon xvii, pp 39-40
Limburgite, analysis of, from Bohemia Bull 165, p 179
of Colorado, Rosita HillsAnn 17, ii, pp 312-313
of Michigan, Crystal Falls districtMon xxxvi, pp 212-219
Lime, analysis of, from Alabama, Fort Payne, and Longview..Ann 19, vi cont, p 284
analysis of, from Alabama, various localities........Ann 20, vi cont, p 355
from Connecticut, Canaan, Litchfield CountyAnn 20, vi cont, p 370; MR 1885, p 411
from Georgia, Bartow, Jefferson CountyAnn 19, vi cont, p 287; Ann 20, vi cont, p 375
from Illinois, Madison County Ann 20, vi cont, p 378
from Massachusetts, Berkshire CountyAnn 20, vi cont, p 410
New Lenox and RenfrewAnn 17, iii cont, pp 804, 805
from Michigan, Alpena and Charlevoix counties........Ann 20, vi cont, p 413
Lime, analysis of, from New York, Clinton and Onondaga counties........ Ann 19, vi cont, p 301
analysis of, from New York, Glens Falls and Smiths Basin Ann 17, iii cont, pp 801, 802
from New York, Greene and Washington counties................ Ann 18, v cont, p 1063; Ann 19, vi cont, p 301
various localities .. Ann 20, vi cont, p 301
from Ohio, Seneca County Ann 20, vi cont, p 438
from Pennsylvania, Adams and York counties Ann 18, v cont, p 1066
Montgomery County Ann 19, vi cont, p 305; Ann 20, vi cont, pp 440-441
Northumberland County Ann 18, v cont, p 1066;
Ann 19, vi cont, p 305; Ann 20, vi cont, pp 440-441
from Tennessee, Franklin and Houston counties Ann 20, vi cont, pp 443, 444
from Texas, Oglesby................................. Ann 19, vi cont, p 306
Travis County .. Ann 20, vi cont, p 444
from Vermont, North Pownal and Leicester Junction Ann 17, iii cont, pp 806, 810; Ann 20, vi cont, p 455
St. Albans and Highgate Springs...................... Ann 19, vi cont, p 307; Ann 20, vi cont, p 456
Swanton .. Ann 17, iii cont, p 811;
Ann 19, vi cont, p 307; Ann 20, vi cont, p 455
from West Virginia, Berkeley County Ann 20, vi cont, p 459
from Wisconsin, Sheboygan County Ann 20, vi cont, p 464
production of, statistics of MR 1882, pp 458-459;
MR 1883-84, pp 668-670; MR 1885; pp 410-413; MR 1886,
pp 565-566; MR 1887, pp 532-534; MR 1888, pp 554-557
Lime, carbonate of. (See Carbonate of lime.)
Lime, phosphate of, in Porto Rico Ann 20, vi cont, p 787
nature and origin of deposits of Bull 46
Lime, superphosphate of, analysis of, from Wilmington, North Carolina, and
Charleston, South Carolina MR 1883-84, p 819
Lime-sands, analysis of, from Colorado, Fryer Hill Mon xii, p 450
Lime-silicate-hornstone, analysis of, from Maryland, Sykesville area Ann 15, p 727
Limestone, analysis of, from Alabama, Colbert and Shelby counties...... Ann 18, v cont, pp 1047-1048
analysis of, from Alabama, Lee County MR 1889-90, p 377
from Alabama, various localities......................... Ann 19, vi cont, p 285; Ann 20, vi cont, p 354
from Arkansas, Beaver and Johnson Ann 19, vi cont, p 286
Carroll County .. Ann 20, vi cont, pp 357-358
from California, Downieville quadrangle (magnesian) Ann 17, i, p 630
Mount Diablo (Cretaceous) Bull 148, p 275; Bull 168, p 276
San Benito County .. MR 1889-90, p 383
from Canada, Gunflint Lake Bull 60, p 151
from Catoctin belt (Shenandoah) Ann 14, ii, p 337
from Colorado, Deaver Basin Mon xxvii, p 67; Bull 168, p 270
Dyer Mountain and Canyon Mon xii, pp 214, 646
Garfield Park, Pitkin and Summit counties Bull 148,
pp 272, 273, 274; Bull 168, pp 272, 273, 274
Glenwood Springs Mon xxix, p 214
Leadville district Mon xii, pp 64, 65, 557, 596, 602, 607; Bull 148, p 271; Bull 168, p 271
Lenado .. Mon xxxi, p 242
Morrison ... Mon xxvii, p 55; Bull 148, p 270
Pueblo quadrangle GF 36, p 7
Limestone, analysis of, from Connecticut, East Canaan, Litchfield County...Ann 19, vi cont, p 287; Ann 20, vi cont, p 370
analysis of, from Connecticut, Fairfield County............................MR 1889-90, p 386
from Georgia, BartowAnn 19, vi cont, p 288; Ann 20, vi cont, p 378
from Great Britain, Ireland...MR 1889-90, p 395
from Illinois, Cook County..Ann 16, iv, p 497; Ann 19, vi cont, p 289; MR 1889-90, p 390
Joliet ..MR 1886, p 542
Kankakee ..Ann 19, vi cont, p 288; Ann 20, vi cont, p 378
La Salle (hydraulic) ..MR 1891, p 531
various localities..Ann 20, vi cont, pp 277, 544
from Indiana, Adams, Howard, and Lawrence counties............Bull 42, p 140;
Bluffton, Greensburg, Union City, Vernon, and Wabash (Trenton) Ann 16, iv, pp 642, 643
various localities...Ann 8, ii, pp 660-661; Ann 19, vi cont, pp 290-291;
Ann 20, vi cont, pp 381-382; Bull 60, pp 160-162
from Indiana and Kentucky, various localities (Bedford oolitic)....Ann 18, v cont, p 1054
from Iowa, Harrison County (hydraulic)MR 1891, p 531
Jackson County ...Ann 20, vi cont, p 388
from Ireland, Portland ...Ann 16, iv, p 506
from Kansas, Cherokee County ..Bull 78, p 125; Bull 148, p 264; Bull 168, p 263
Iola ..Bull 78, p 124
Silverdale ..Bull 64, p 46;
Bull 148, p 264; Bull 168, p 263; MR 1889-90, p 394
various localities..Ann 16, iv, pp 504-505; Ann 20, vi cont, p 386; MR 1893, pp 563-565
from Kentucky ...Ann 8, ii, p 551
Bowling Green ..Ann 16, iv, p 506;
Ann 20, vi cont, p 388; MR 1889-90, p 395
Clark County (Corniferous)Bull 46, p 16; MR 1887, p 588
Fayette County (phosphatic) ...Bull 46, p 117
(used in Portland cement)..Ann 20, vi cont, p 545
from Kentucky and Indiana, various localities (Bedford oolitic)....Ann 18, v cont, p 1054
from Louisiana, Bienville Parish ...Bull 42, p 145;
Bull 148, p 258; Bull 168, p 258
from Maine, Knox County..Ann 19, vi cont, p 297; Ann 20, vi cont, p 298
from Maryland, Cumberland (hydraulic)MR 1891, p 531
Frederick County ...Ann 20, vi cont, p 401
Howard County ...Ann 18, v cont, p 1059
Sykesville area (inclusions of, in granite)Ann 15, p 728
Washington County ...Ann 19, vi cont, p 298; Ann 20, vi cont, p 401
from Massachusetts, AttleboroMon xxxii, p 150
Becket, Blandford, Coles Brook, and Hinsdale........Mon xxix, pp 26, 27
Berkshire County ...Ann 20, vi cont, pp 410, 411; Bull 159, pp 69, 87; MR 1889-90, p 403
Cheshire and Renfrew ...Ann 17, iii cont, pp 504, 505
Lee ..Bull 148, p 254; Bull 168, p 252
New Lenox ..Ann 19, vi cont, p 298
various localities..Mon xxxix, p 189
from Michigan, Alpena and Emmet countiesAnn 20, vi cont, p 412
Limestone, analysis of, from Michigan, Gogebic district.............. Bull 60, p 150
analysis of, from Michigan, Huron Bay............... Bull 148, p 265; Bull 168, p 264
from Michigan, Huron and Monroe counties.............. Ann 18, v cont, p 1069
Wayne County.. Ann 18, v, p 1060; Ann 20, vi cont, p 412
from Michigan and Wisconsin, Penokee region............. Mon xix, p 131
from Minnesota, Ogiskemannahsis Lake...................... Bull 60, p 151;
Bull 148, p 265; Bull 168, p 264
from Missouri, Green County, Hannibal, and Ralls County..... Ann 18, v cont, pp 1060, 1061
Marion County.. Ann 16, iv, p 508
Newton County.. Bull 148, p 264; Bull 168, p 263
various localities.................................... Ann 19, vi cont, p 299; Ann 20, vi cont, p 415; Bull 78, p 125; MR 1889-90, pp 406-407
from Montana, Helena.................................... Ann 20, vi cont, p 416
various localities.................................... Bull 60, p 154;
Bull 110, pp 25, 33, 36, 40; Bull 148, p 269; Bull 168, p 269
from Nevada, Eureka district................................ Bull 168, p 269
various localities.................................... Bull 60, pp 160-162, MR 1889-90, p 417
from New Jersey, Hunterdon County......................... Ann 20, vi cont, p 420; MR 1889-90, p 410
Vernon, Sussex County.................................. Ann 19, vi cont, p 300
from New York, Glens Falls, Hudson Valley, Sing Sing, Smiths Basin, and Tuckahoe. Ann 17, ii, pp 796, 797, 800, 801, 802
Rosendale, (hydraulic)................................ MR 1891, p 531
Ulster and Onondaga counties................................ Ann 18, v cont, p 1062
various localities.................................... Ann 19, vi cont, p 301; Ann 20, vi cont, p 427
from Ohio.. MR 1887, p 598
Bellaire (hydraulic).................................... MR 1891, p 531
Dayton, Point Pleasant, and Rocky Ridge.................... Ann 19, iv, pp 639, 644, 645
Defiance.. Bull 55, p 80
Fort Recovery, Hamilton, and Lima (Trenton)................. Ann 8, ii, pp 642, 661
Greenfield, Onondaga series............................... Ann 19, iv, p 645
Hocking Valley... MR 1886, p 56
New Vienna (Trenton).................................. Bull 148, p 260; Bull 168, p 259
Sandusky.. MR 1883-84, p 969
Toledo and Hancock County (Trenton)......................... Bull 168, p 259
various localities.................................... Ann 8, ii, pp 550-555; Ann 18, v cont, p 1063; Ann 19, vi cont, p 303; Ann 20, vi cont, p 432; Bull 55, p 80; Bull 60, pp 160-162, MR 1889-90, p 417
Niagara... Ann 19, iv, p 644
Trenton.. Ann 8, ii, pp 586, 655-660; Bull 60, pp 160, 161; Bull 148, pp 261, 262; Bull 168, pp 260-261
Wellston.. Ann 21, vi cont, p 402
from Pennsylvania, Blair County........................ MR 1883-84, p 969
Coplay... Ann 21, vi cont, p 404
Greason... Bull 90, p 66; Bull 150, p 128; Bull 168, pp 253, 255
Lehigh County (hydraulic)................................ MR 1891, p 531
various localities.................................... Ann 18, v cont, p 1065; Ann 19, vi cont, p 305; Ann 20, vi cont, pp 440-441; MR 1889-90, pp 421-424
from Rhode Island, Providence County...................... Ann 20, vi cont, p 442
from South Dakota (Minnekahta)............................ Ann 21, iv, p 515
Lawrence County...................................... Ann 20, vi cont, p 443
from Tennessee, Knoxville................................. Bull 148, p 258; Bull 168, p 258
from Texas, Coryell County............................. Ann 20, vi cont, p 444
Limestone, analysis of, from Texas, El Paso CountyMR 1889-90, p 432
 analysis of, from Utah, Tintic district Ann 19, iii, pp 623, 624, 625, 626, 706
 from Vermont, Franklin County Ann 20, vi cont, p 456
 Highgate Springs ... Ann 17, iii cont, p 811; Ann 19, vi cont, p 307
 from Virginia, Botetourt County Ann 18, v cont, p 1067; Ann 19, vi cont, p 308; Ann 20, vi cont, pp 458-459
 Lexington (Trenton) Bull 42, p 137; Bull 52, p 24; Bull 148, p 256; Bull 168, p 254
 Staunton Ann 18, v cont, p 309
 western part (Trenton) Bull 148, p 256; Bull 150, p 355; Bull 168, p 254
 Warren County Ann 18, v cont, p 1067
 from West Virginia, Greenbrier County Ann 18, v cont, p 1068; Ann 19, vi cont, p 308; Ann 20, vi cont, p 460
 Moundsville Narrows Bull 148, p 256; Bull 168, p 254
 from Alabama, white Ann 17, i, pp 590, 655
 of Colorado, Elmoor quadrangleGF 5, p 3
 of Georgia, Ringgold quadrangleGF 2, p 3
 of Montana, Fort Benton quadrangleGF 55, p 6
 of Oregon of economic importance Ann 17, i, p 514
 of Tennessee, Chattanooga quadrangleGF 6, p 3
 thin section of, from Connecticut (bituminous)Ann 21, iii, p 62
 from Indiana (Trenton) ... Ann 8, ii, pp 644-645
 from Massachusetts, South Holyoke, showing contact of diabase
 amygdaloid Mon xxix, pp 208-209
 from Michigan, SE, sec. 18, T. 47 N., R. 44 W. (cherty)Mon xix, pp 480-481
 weathering of, differential Bull 150, pp 387-388

(See, also, Building stone.)
Limestone, cherty, description of, as one of educational series...Bull 150, pp 123-124
Limestone, compact, description of, as one of educational series...Bull 150, pp 127-132
Limestone, crystalline, from Modoc Peak, Nevada, description of, as one of educational series...Bull 150, p 98
Limestone, magnesian. (See Dolomite.)
Limestone, oolitic, description of, as one of educational series...Bull 150, pp 103-105
Limestone, Patellina, description of, as one of educational series...Bull 150, p 119
Limestone, residual clay of, from Staunton, Virginia, description of, as one of educational series...Bull 150, pp 384-385
Limestone, residual deposit from subaerial decay of, from Lexington, Virginia...Bull 42, p 137
Limestone, shell, from Rochester, New York, description of, as one of educational series...Bull 150, pp 122-123
Limestone quarries of eastern New York, western Vermont, Massachusetts, and Connecticut...Ann 17, iii, cont, pp 795-811
Limide from Colorado formation...Bull 106, p 71
from Cretaceous of Pacific coast...Bull 133, p 36
from Bear River formation...Bull 128, pp 45-47
from Colorado formation...Bull 106, p 163
from Laramie of Wyoming...Bull 34, pp 22-24
from Pleistocene and Recent of Great Basin...Bull 11, pp 16-20, 47-49
nonmarine fossil of North America...Ann 3, pp 444-449
North American Jurassic...Bull 29, pp 20-22
Limon clays of Costa Rica, correlation of...Ann 18, ii, p 337
Limonite, analysis of, from Alabama, Columbiana...MR 1887, p 50
analysis of, from Alabama, various localities...MR 1882, pp 150, 154, 155, 159
from Iowa, Allamakee County...MR 1887, p 48
from Louisiana...MR 1887, p 51
from Maryland, York County...MR 1885, p 343
from Texas, Cherokee County...MR 1887, p 51
from West Virginia, Canaan Mountain, Tucker County...Bull 9, p 18
composition of...Bull 150, p 47
from Lowmoor, Virginia, description of, as one of educational series...Bull 150, pp 105-107
(See, also, Iron ore.)
Lincoln porphyry of Colorado, Leadville district...Ann 2, p 223; Mon xii, pp 78-80, 328-330
Lindgren (W.), descriptions of rock specimens in educational series...Bull 150, pp 148-151, 170-172
geology of Boise quadrangle, Idaho...GF 45
geneology of Colfax quadrangle, California...GF 66
geneology of Nevada City, Grass Valley, and Banner Hill districts, California...GF 29
geology of Pyramid Peak quadrangle, California...GF 31
geology of Truckee quadrangle, California...GF 39
gold-quartz veins of Nevada City and Grass Valley districts, California...Ann 17, ii, pp 1-262
gold and silver veins of Silver City, De Lamar, and other mining districts in Idaho...Ann 20, iii, pp 65-256
gold-silver veins of Ophir, California...Ann 14, ii, pp 243-284
mining districts of Idaho Basin and Boise Ridge, Idaho...Ann 18, ii, pp 617-719
notes on petrographic characters of altered rocks and vein filling at Boulder, Montana...Ann 21, ii, pp 252-255

Bull. 177—01——29
Lindgren (W.), quoted on genesis of ore deposit........ Ann 19, iii, pp 716-718
quoted on origin of auriferous gravels of California........ Ann 14, ii, p 427
work in charge of, 1893-1900......................... Ann 15, pp 174-175;
Ann 16, i, pp 35-36; Ann 17, i, pp 47-48; Ann 18, i, p 44;
Ann 19, i, pp 47-49; Ann 20, i, p 48; Ann 21, i, pp 80-81
Lindgren (W.) and Becker (G. F.), geology of Sacramento quadrangle, California..................... GF 5
Lindgren (W.) and Melville (W. H.), contributions to mineralogy of Pacific coast............................. Bull 61
Lindgren (W.), Turner (H. W.), and Becker (G. F.), description of the Gold Belt................ GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
geology of Marysville quadrangle, California........................ GF 17
geology of Placerville quadrangle, California........................ GF 3
geology of Smartsville quadrangle, California....................... GF 18
Lingula sandstone of Wisconsin................................. Bull 81, p 172
Liparite, analysis of, from Nevada, Hot Springs Hill........ Bull 109, p 107
analysis of, from Nevada, Pinto Peak.......................... Bull 150, p 162
from Pinto Peak, Nevada, description of, as one of educational series.. Bull 150, pp 160-162
Lippincott (J. B.), storage of water on Gila River, Arizona................ WS 33
stream measurements in San Joaquin Basin............... Bull 140, pp 256-310
water supply of San Bernardino Valley............... Ann 19, iv, pp 540-632
Liquid and solid states, continuity of, investigation of........ Ann 14, i, p 156; Bull 96, pp 71-97
Liquids, compressibility of................................ Bull 92
subsidence of fine solid particles in........... Bull 36; Bull 60, pp 139-145
volume thermodynamics of................................ Bull 96
Lisbon beds of Alabama, correlation of.................... Ann 18, ii, p 344
Lists. (See Table.)
Litchfield, Maine, minerals of......................... Bull 42, pp 28-38
Litchfieldite, analysis of, from Litchfield, Maine........ Bull 168, p 21
Literature of various branches of geology, paleontology, etc. (See Bibliography.)
Litharge, statistics of................................. MR 1891, p 598
Lithia micas, constitution of.......................... Bull 113, pp 22-26
researches on.. Bull 42, pp 11-27
Lithium, method for separation of sodium and potassium from, by action of
amyl alcohol on chlorides, with reference to similar separation of same from magnesium and calcium.. Bull 42, pp 73-88
Lithographic stone, analyses of......................... MR 1882, p 596
description of, as one of the educational series........ Bull 150, pp 132-133
from foreign countries..................................... MR 1882, p 596
occurrence and statistics of.......................... MR 1882, pp 595-596; MR 1883-84, pp 935-936; MR 1886, pp 690-691;
MR 1889-90, pp 519-520; Ann 18, v cont, pp 1361-1363
Lithoid tufa of California, Mono Valley.................. Ann 8, i, pp 311-315
Lithoidite, analysis of, from Yellowstone Park........ Bull 150, p 160; Bull 168, p 104
from Yellowstone Park, description of, as one of educational series.. Bull 150, pp 153-160
of New Mexico, Tewan Mountain................................. Bull 66, p 11
of Yellowstone Park, Obsidian Cliff..................... Ann 7, p 264
Lithologic character of Azoic, Laurentian, Huronian, etc.. Bull 86, pp 167-170
of Grand Canyon strata.................................. Mon i, pp 209-210
of Wealden.. Ann 16, i, pp 477-480
Lithologic geology of Pacific slope quicksilver deposits........ Ann 8, ii, pp 967-972
Lithologic structure of Obsidian Cliff, Yellowstone Park.......... Ann 7, pp 257-260
Lithologic studies in Archean of Northwestern States Ann 5, pp 209-242
Lithology, importance of, to theory of ore deposits............ Mon vii, p 32
of coal measures of Iowa .. MR 1892, p 401
of Keweenaw series .. Ann 3, pp 101-115; Mon v, pp 34-133
of Newark system .. Bull 85, pp 32-44
of Pacific slope ... Mon xiii, pp 56-77, 453-460
of Piedmont Plateau, Maryland Ann 15, pp 690-691
of Washoe district, Nevada .. Mon vii, pp 32-155, 369-376
use of, in establishing correlations Ann 7, pp 378-380
in marking off grander groups of strata Ann 7, p 377
(See, also, Petrography.)
Lithophysse, analysis of contents of, from Hungary, Telki-Banya Ann 7, p 291
analysis of, from Mexico, Cerro de las Nevajas Ann 7, p 291
(material forming) from Yellowstone Park Ann 7, pp 282, 291
in obsidian of Yellowstone Park .. Ann 7,
pp 265-272; Mon xxxiv, ii, pp 364-365, 416-422
origin of. .. Ann 7, pp 279-290
thin section of, from Yellowstone Park Ann 7, pp 266-267
Little Belt Mountains, Montana, course, extent, altitude, features, etc., of. -GF 56,
p 5
Little Belt Mountains quadrangle, Montana, geology of GF 56
Little Camas Creek, Idaho, flow of, measurements of ... Ann 18, iv, p 336; WS 11, p 80
Littlerock Creek, California, flow of, measurements of. Ann 18, iv, pp 402-405;
Ann 19, iv, pp 526-528; Ann 20, iv, pp 64,540; Ann 21, iv, pp 470-471; WS 16, p 193; WS 28, pp 189,190,191
Littoral erosion, transportation, and deposition Ann 5, pp 80-99; Mon i, pp 29-60; Mon xi, pp 87-99
Littorinidae from clays and marls of New Jersey Mon xviii, pp 152-153
Lituolidae from Cretaceous of New Jersey Bull 88, pp 27-28
Lituya Bay, Alaska, coal at .. Ann 17, i, pp 783-784
Livingston formation in Montana Bull 105,
Bull 139, pp 49-53; GF 1, pp 1, 2; GF 24, pp 1, 3; GF 56 p 3
in Wyoming ... Bull 119, p 25
unconformity between Laramie and Bull 105, pp 34,35
Livingston quadrangle, Montana, geology of GF 1
Llano Estacado, Texas, geographic features of Ann 18, ii, pp 204-205, pl xxiii
Llano group or series of Texas ... Bull 45, p 56; Bull 86, p 269
Llano River, Texas, profile of ... WS 44, p 35
Loam, analysis of, used in steel refractories Bull 25, p 39
Lockport [Niagara] limestone of Iowa Ann 11, i, pp 323-326
(See, also, Niagara.)
Loco diorite of Montana, Little Belt Mountains quadrangle GF 56, p 4
Lode. (See Comstock lode; Mother lode.)
Lode, horse, etc., discussion of meaning of Mon vii, pp 115-117
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.

Lodes, Montana, in Butte district .. GF 38, pp 7-8

Loess, analysis of, from Colorado, Denver and Highland .. Bull 148, p 297; Bull 168, p 299

analysis of, from Colorado, various localities ... Mon xxvii, p 263
from Germany, Rhine Valley ... Mon xxvii, p 263
from Illinois, Galena .. Mon xxxviii, p 164; Bull 42, p 143; Bull 148, p 293; Bull 168, p 296
Randolph County ... Bull 58, pp 102, 103
from Indiana, near Terre Haute ... Mon xxxvii, p 164
from Iowa, Dubuque .. Mon xxvii, p 263; Mon xxxviii, p 164; Bull 42, p 142; Bull 148, p 293; Bull 168, p 296
from Mississippi, Vicksburg ... Mon xxvii, p 263; Mon xxxviii, p 164; Bull 42, p 143; Bull 148, p 292; Bull 168, p 295
from Missouri, Kansas City ... Mon xxvii, p 263; Mon xxxviii, p 164; Bull 42, p 142; Bull 148, p 295; Bull 168, p 298
Perry County ... Bull 58, p 102
from Wisconsin, Galena .. Mon xxvii, p 263
from Wyoming, Cheyenne ... Mon xxvii, p 263; Bull 148, p 299; Bull 168, p 302
as brick material .. MR 1891, p 496
chemical and mineralogic constitution ... Ann 6, pp 281-283
concretion in, from Wray, Colorado, analysis of ... Bull 148, p 297
description of, as one of educational series ... Bull 150, pp 65-67
distribution of, in Mississippi Valley ... Bull 150, pp 66-67
distribution, structure, mode of deposition, etc., of Iowan .. Mon xxxviii, pp 153-184
in Iowa, northeastern, and contiguous territory ... Ann 11, i, pp 435-471
in Kansas .. Bull 57, pp 41-42
in Massachusetts, western-central .. Mon xxix, pp 720, 748
in Mississippi Valley and elsewhere .. Ann 6, pp 278-307
in Nebraska .. Ann 19, iv, p 733
in South Dakota, southeastern ... Bull 158, pp 50-112
of Lower Mississippi .. Ann 12, i, pp 392-398
origin of .. Mon xxvii, pp 274-278
origin, features, composition, and distribution of ... Ann 6, pp 286-307; Ann 11, i, pp 291-303
relation of, to glacial drift .. Bull 58, pp 101-104

Loess soils of Illinois .. Mon xxxviii, pp 738-794
Loessial epoch in Denver Basin ... Mon xxvii, pp 258-266, 272-278
Logan group in Ohio as water bearer .. Ann 19, iv, pp 649, 685-690
Logan River, flow of, measurements of ... Ann 18, iv, pp 316-318; Ann 19, iv, pp 433-434; Ann 20, iv, pp 60, 462-463, Ann 21, iv, p 397; WS 11, p 77; WS 16, p 158; WS 28, pp 150, 153, 154
Löllingite of Gunnison County, Colorado, occurrence, description, and chemical composition of ... Bull 20, pp 89-93
London quadrangle, Kentucky, geology of ... GF 47
Lone Mountain limestone of Nevada, age, character, fossils, etc., of Ann 3, pp 253, 262-263; Mon xix, pp 57-60; Mon xx, pp 57-62
Long Island, New York, artesian and other wells on .. Bull 138, pp 23-37
hydrography of ... WS 24, pp 14-15, 47; WS 25, pp 191-198
Long Valley reservoir and irrigation-canal lines, Nevada ... Ann 11, ii, pp 177-178, 179, 182; Ann 13, iii, pp 394-395
Longitude, determination of, method of, in topographic work Mon xxii, pp 33-36
Longitude observations in determining Idaho-Montana boundary line........Bull 170, pp 23-24

Longitudes and latitudes of places in Missouri, Kansas, and New Mexico......Bull 49 of places in United States ...Bull 123

Longmeadow sandstone of Massachusetts and Connecticut...........Mon xxix, pp 364-369; GF 50, p 5

Lookout formation in Southern Appalachians, relation of, to PottsvilleAnn 20, ii, pp 817-818

Lookout sandstone of Alabama, Georgia, and Tennessee...............GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2

Lord (E.), Comstock mining and miners..Mon iv report of Tenth Census work.................................Ann 1, pp 48-50

Lord (E. C. E.), report on igneous rocks from vicinity of San Carlos and Chispa, Texas.........Bull 164, pp 88-95

Lord (J. S.), Illinois coal..................................MR 1888, pp 242-256

Los Angeles River, flow of, measurements of..............................Ann 18, iv, pp 413-415; Ann 20, iv, pp 541-543; WS 39, pp 409-410

Los Pinos River, Colorado, flow of, measurements of......................Ann 21, iv, pp 299-300; WS 38, pp 309-310

profile of ...WS 44, p 85

Lost rivers, especially in Indiana and Ohio (subterranean drainage lines) .Ann 18, iv, p 483

Loudon quadrangle, Tennessee, geology of................................GF 25

Loudoun formation in Catoctin belt...........Ann 14, ii, pp 324-329; GF 10, p 2

Louisiana, altitudes in.................Bull 5, p 125; Bull 76; Bull 160, pp 250-255

atlas sheets of. (See pp 77-78 of this bulletin.)

boundary lines of, and admission of State...Bull 18, pp 30, 104-105; Bull 171, pp 110-111

brick industry of................................MR 1887, pp 536, 538; MR 1888, p 560

clay products of, statistics of...MR 1891, p 507; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 819 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq
coke in, manufacture of...Ann 20, vi cont, p 227

Donaldsonville quadrangle, river-flood plains inTF 1, pp 3-4

floods on Mississippi River, discussion of.........................Ann 20, iv, pp 347-352

gas, illuminating and fuel, and by-products in, statistics of............Ann 20, vi cont, pp 227, 240, 243, 246, 247, 249

gas, geographic positions in ...Bull 123, pp 86-92

gas, geologic and paleontologic investigations in.........................Ann 7, pp 103-104; Ann 12, i, p 75; Ann 13, i, p 106

gas, geologic maps of, listed ...Bull 7, p 140

(See Map, geologic, of Louisiana.)
geologic sections in. (See Section, geologic, in Louisiana.)
geology and paleontology of northwestern.................................Bull 142

harbors on coast of...Ann 13, ii, pp 194-195

iron-ore deposits of...MR 1887, pp 50-51

iron regions of northern, and eastern Texas. (See p 113 of this bulletin.)
magnetic declination in...Ann 17, i, pp 350-352

maps, geologic, of. (See Map, geologic, of Louisiana.)
maps, topographic, of. (See Map, topographic, of Louisiana; also pp 77-78 of this bulletin.)
Louisiana, mineral spring resorts in Ann 14, ii, p 83
minerals of, useful MR 1882, pp 686-687; MR 1887, p 736
Ouachita River, profile of WS 44, pp 62-63
purchase of, from France Bull 13, pp 19-21, 30-31; Bull 171, pp 21-23
rainfall at New Orleans and Shreveport (average) Ann 21, iv, p 668
Red River, profile of WS 44, pp 61-62
salines of .. MR 1882, pp 554-556
salt making in, history of Ann 18, v cont, pp 1296-1298
sections, geologic, in (See Section, geologic, in Louisiana.)
sulphur deposits of Ann 17, iii cont, pp 965, 966; MR 1885, p 496
timber in, estimates of Ann 19, v, p 17
topographic maps of (See Map, topographic, of Louisiana; also pp 77-78 of this bulletin.)
topographic work in Ann 11, i, p 40; Ann 12, i, pp 24, 28, 31
woodland area in Ann 19, v, p 7
Louisiana Territory, States formed from Bull 17, pp 36-38
Loup Fork beds of Montana, fossils of Bull 139, p 55
Loup Fork group of South Dakota, Nebraska, and Colorado, correlation of .. Ann 18, ii, p 339; Bull 84, pp 292, 293, 294-298, 304-305, 317, 329, 331
Loup River, drainage area of Bull 140, p 114
Lower Claiborne. (See Claiborne.)
Lower Coal Measures limestone of Nevada, Eureka district Ann 3, pp 268-270; Mon xx, pp 85-86
Lower Helderberg series in Indiana Ann 11, i, pp 633-634
in Ohio ... Ann 8, pp 563-568
Lower Magnesian limestone in Illinois Ann 17, ii, p 839
in Indiana ... Ann 11, i, p 625
Lower Menominee. (See Menominee.)
Lower quartzite of Colorado, Leadville district Mon xii, pp 58-60
Lucas (F. A.), fossil fish from Esmeralda formation, Nevada Ann ii, pp 223-226
Lucasite, analysis of, from North Carolina, Corundum Hill, Macon County . Bull 42, p 53; Bull 74, p 66
Lucinidse from Colorado formation Bull 106, pp 97-98
Lucinidæ from Cretaceous of Pacific coast Bull 133, pp 59-60
from Cretaceous of Vancouver Island Bull 51, pp 41-42
from lower marl beds of New Jersey Mon xx, pp 129-131
from Miocene marls of New Jersey Mon xxv, pp 62-65
Ludwigites, analysis of, from Hungary, Banat Bull 56, p 59
Lumber; forests of the United States, résumé of data concerning Ann 19, v, pp 1-66; Ann 20, v, pp 1-87
Lumber industry in Rocky Mountain and Pacific States Ann 19, v, pp 21-22
Lumbering in Black Hills Forest Reserve Ann 19, v, pp 88-91
Luster exhibited by sanidine in certain rhyolites Bull 20, pp 75-80
Luster-mottling structure in gabbro. (See, also, Poikilitic) Mon v, p 42
Luxemburg, clay products of, at Paris Exposition of 1900 Ann 21, vi cont, p 388
Lycopodiales from Lower Coal Measures of Missouri Mon xxxvii, pp 187-247
Lycopodinae from Carboniferous basins of southwestern Missouri Bull 98, pp 103-104
Lykens or Pottsville coals, quality, nomenclature, etc., of Ann 20, ii, pp 766-769, 854-857
Lytle Creek, California, flow of, measurements of Ann 20, iv, pp 555-557; Ann 21, iv, pp 481-483; WS 39, pp 413-417
Lytoceratidae from Colorado formation Bull 106, pp 164-168
McAlester coal field, Indian Territory, fossil plants and invertebrate fossils from Ann 19, iii, pp 457-600
McAlester shale of Indian Territory Ann 19, iii, pp 437, 441; Ann 21, ii, pp 275-276
McAlester-Lehigh coal field, Indian Territory, geology of Ann 19, iii, pp 423-456
McCarthy Creek shales, Alaska Ann 21, ii, pp 426-427
McChesney (J. D.), work in charge of and disbursements by, 1879-1900 Ann 1, pp 9-13; Ann 8, i, pp 210-257; Ann 9, pp 152-199; Ann 10, i, pp 199-252; Ann 11, i, pp 140-185; Ann 12, i, pp 146-210; Ann 13, i, pp 184-235; Ann 14, i, pp 278-318; Ann 15, pp 212-251; Ann 16, i, pp 88-130; Ann 17, i, pp 121-196; Ann 18, i, pp 129-130; Ann 19, i, pp 141-143; Ann 20, i, pp 159-160; Ann 21, i, pp 186-187
McCrea (A. S.) and d'Invilliers (E. V.), Clinch Valley coal fields, Virginia MR 1892, pp 521-526
McElmo formation in Colorado, Rico Mountains Ann 21, ii, pp 28, 76-77; GF 57, p 3; GF 60, p 4
McGee (W J), geology of head of Chesapeake Bay Ann 7, pp 537-646
investigations relating to Charleston earthquake Ann 9, pp 209, 298-299
Lafayette formation ... Ann 12, i, pp 347-521
map showing areal geology of United States Ann 5, pp xxvii-xxx, 36-38, pl ii; Ann 14, i, pp 212-213; ii, pl ii
Pleistocene history of northeastern Iowa Ann 11, i, pp 189-577
potable waters of eastern United States Ann 14, ii, pp 1-47
rock gas and related bitumens Ann 11, i, pp 559-616
summary of work from July 1, 1882, to June 30, 1893 Ann 14, i, pp 223-244
work in charge of, 1883-1893 Ann 5, pp 34-41; Ann 6, pp 25-32; Ann 7, pp 104-111; Ann 8, i, pp 169-173; Ann 9, pp 102-110; Ann 10, i, pp 148-158; Ann 11, i, pp 65-70; Ann 12, i, pp 70-77; Ann 13, i, pp 103-113; Ann 14, i, pp 210-244
McGee (W J) and Darton (N. H.), geology of Fredericksburg quadrangle, Virginia-Maryland GF 13
geology of Nomini quadrangle, Maryland-Virginia GF 23
McKinley (C.), account of Charleston earthquake Ann 9, pp 212-225
McKinley, Mount, Alaska, height, etc., of .. Ann 20, vn, p 8
McMinnville quadrangle, Tennessee, geology of .. GF 22
Macadam's invention in road making ... Ann 15, pp 267-268
Machinery and tools used in constructing irrigation works Ann 13, iii, pp 342-346
Mackintoshite, analysis of .. Bull 113, p 47
composition of ... Bull 113, pp 44-48
Maconite, analysis of, from North Carolina .. Bull 74, p 66
Macrostructural metamorphism of massive rocks ... Bull 62, pp 43-46, 201-204
Mactrids from Colorado formation .. Bull 106, pp 120-123
from marls of New Jersey .. Mon ix, pp 172-174, 217, 238; Mon xxiv, pp 82-84
Madeira, fossil plants of, literature of ... Ann 8, ii, p 818
Madison limestone, description and components of .. Ann 20, iii, pp 290-294
in Montana .. Bull 110, pp 33-39; Bull 139, pp 39-41; GF 1, p 2; GF 24, p 2; GF 55, p 2; GF 56, p 2
in Wyoming ... GF 52, p 3
hydrography of, and irrigation in valley of ... Ann 13, iii, pp 46-49
profile of .. WS 44, p 71
Madison sandstone of Wisconsin ... Bull 81, pp 245, 331-332
Madupite, analysis of, from Wyoming, Lencite Hills ... Bull 168, p 85
Magmas, absorption of sediments by .. Ann 20, iii, p 577
discussion of, by graphic methods ... Ann 20, iii, pp 569-576
of eruption, two, in Eureka district, Nevada .. Mon xx, pp 253-257
Magmas, molten, considered as solutions .. Bull 66, pp 26-29
Magneisite (from magnesite), analyses of ... MR 1886, pp 695-697
Magnesian limestone, Lower, in Illinois ... Ann 17, ii, p 839
in Indiana ... Ann 11, i, p 625
Magnesian rocks of California, Bidwell Bar quadrangle GF 43, p 3
Magnesite, analysis of ... MR 1886, p 695
statistics of ... Ann 16, iv, pp 514-516
Magnesium, statistics of ... MR 1886, pp 694-698
Magnesium and calcium, separation of sodium and potassium from, by action of
amyl alcohol on chlorides .. Bull 42, pp 73-88
Magnesium salts, analyses of ... Bull 167, p 144
Magnetic declination in United States .. Ann 17, i, pp 203-440, pl ii
Magnetic observations in Crystal Falls district, Michigan Ann 19, iii, pp 21, 95-96, 141-143; Mon xxxvi, pp 24, 336-373
Magnetic rocks; facts of observation and general principles Mon xxxvi, pp 344-356
Magnetic variations in Alaska in 1898 ... Ann 20, vii, pp 13, 61; Alaska (2), pp 27, 39, 75
Magnetic and electric properties of iron carburets .. Bull 14
Magnetite, analysis of, from Alabama, various localities MR 1882, p 150
analysis of, from Colorado, Costilla County .. MR 1887, p 53
from India ... Ann 16, iii, p 167
from Massachusetts, Martha's Vineyard .. Ann 7, p 360
various localities ... Bull 126, pp 103, 104
from Minnesota, Grand Marais (surface) ... MR 1886, p 77
Magnetite, analysis of, from Minnesota, sec. 34, T. 61 N., R. 12 W. Bull 148, p 115; Bull 168, p 83

analysis of, from Nevada, Eureka district. Mon xx, p 107

from New York, Palmer (crude). MR 1887, p 54

St. Lawrence County. MR 1886, p 46

from North Carolina, Mitchell County. Bull 55, p 86

from Pennsylvania, various localities. MR 1886, p 54

from Quebec, Hull. Ann 16, iii, p 47

from Spain, San Mathias. Ann 16, iii, p 108

from Wisconsin, Ashland County. Bull 60, p 149; Bull 148, p 105; Bull 168, p 75

collection of. Bull 150, p 30

from Port Henry, N. Y., description of, as one of the educational series. Bull 150, pp 372-374

(See, also, Iron ores.)

Magnetite, titaniferous, chemical composition of. Ann 19, iii, pp 385-386

of Adirondacks, origin of. Ann 19, iii, pp 417-419

Magnetite and hematite, occurrence of, in Penokee iron-bearing rocks. Ann 10, i, p 391

Magnetite-amphibolite, thin section of, from Massachusetts, Whately. Mon xxix, pp 306-307

Magnetite-griinerite-schists of Lake Superior iron-ore districts. Ann 15, p 569; Mon xxviii, pp 337-344, 368-369

Magnetization, effect of, on viscosity and rigidity of iron and of steel. Bull 73, pp 105-119

influence of hardness on. Bull 14, pp 111-150

thermolectric effect of. Bull 14, pp 104-110

Magnoliaceae from Alaska. Ann 17, i, p 890

from Amboy clays. Mon xxxvi, pp 73-84

from Dakota group. Mon xvi, pp 198-211

from Laramie group. Bull 37, pp 102-104

from Yellowstone Park. Mon xxxii, ii, pp 718-722

of North America, extinct. Mon xxxv, pp 94-97

Magogy formation of Maryland. Bull 138, p 125

Mailloux (C. O.), electrolysis in metallurgy of copper, lead, zinc, and other metals. MR 1882, pp 627-658

Main Street limestone of Texas. Ann 21, viii, pp 280-283

Maine, altitudes in. Bull 5, pp 126-128; Bull 76; Bull 160, pp 256-264

profile of. WS 44, p 10

water power on. Ann 19, iv, pp 84-97

Aroostook volcanic area, geology of, including an account of the classic rocks of Aroostook County. Bull 165, pp 93-188

atlas sheets in. (See pp 78-79 of this bulletin.)

Boothbay quadrangle, physiography of. TF 1, p 4

boundary lines of. Bull 18, pp 32-40; Bull 171, pp 38-46

brick industry of. MR 1887, p 536; MR 1888, pp 560, 566

building stone from, at World's Columbian Exposition. MR 1893, p 567

Maine, clay products of, statistics of...Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iv
cont, p 819 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi
cont, pp 318 et seq, 360; Ann 20, vi cont, pp 466 et seq, 522
Cobosseecontee River, flow of, measurements of...Ann 20, iv, p 46;
Ann 21, iv, pp 53-55; WS 35, pp 28-33
coke in, manufacture of...Ann 20, vi cont, p 27
copper from, statistics of...Ann 2, p xxvii; MR 1882, pp 216, 230; MR 1883-84, p 329;
MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83-84; MR 1892, pp 96, 97; MR 1893, pp 64, 65; Ann 16, iv, pp 333, 334; Ann 17, iii, pp 84, 85, 86; Ann 18, v, pp 189, 190, 191;
Ann 19, vi, pp 140, 141, 142, 143; Ann 20, vi, pp 161, 162, 163, 164, 165; Ann 21, vi, pp 166, 167, 168, 169, 170
feldspar from, statistics of...Ann 18, v cont, p 1365, 1367; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745
forest resources of...Ann 19, iv, pp 39-41
gas, illuminating and fuel, and by-products in, statistics of...Ann 20, vi cont, pp 227, 240, 243, 246, 247, 249
geographic positions in...Ann 21, i, pp 228-234; Bull 123, pp 15-16
geologic maps of, listed...Bull 7, pp 55, 56, 57
(See Map, geologic, of Maine.)
geologic sections in. (See Section, geologic, in Maine.)
geologic and paleontologic investigations in...Ann 6, pp 19, 36; Ann 7, pp 62, 82, 157; Ann 8, i, pp 126, 143;
Ann 9, pp 71, 77; Ann 10, i, p 160; Ann 12, i, p 66; Ann 19, i, p 62; Ann 20, i, pp 35, 62; Ann 21, i, p 70
geology of, contributions to...Bull 165
-glacial gravels of, and their associated deposits...Mon xxxiv
gold and silver from, statistics of...Ann 2, p 385; MR 1882, pp 172, 176, 177, 178; MR 1883-84, p 312; MR 1886, pp 104, 105; MR 1887, p 58; MR 1888, p 36; Ann 21, vi, pp 122, 124, 127
-granite production of, statistics of...MR 1887, p 513; MR 1888, pp 536, 538; MR 1889-90, pp 374, 396; MR 1891, pp 457, 458; MR 1892, pp 706, 707; MR 1893, pp 544, 545;
harbors on coast of...Ann 13, ii, pp 162-163
iron and steel from, statistics of...Ann 2, p xxviii;
MR 1882, pp 120, 125, 129, 131, 133, 134, 135, 136, 137;
MR 1883-84, p 252; MR 1885, pp 182, 184, 186; MR 1886, pp 17, 41-42; MR 1887, pp 11, 42; MR 1888, p 14; MR 1889-90, pp 10, 17; MR 1891, pp 27, 61; MR 1892, pp 15, 36; MR 1893, pp 15, 28; Ann 16, ii, pp 31, 194; Ann 17, iii, pp 26, 48, 63; Ann 19, vi, pp 65, 72; Ann 20, vi, pp 85
Kennebec River, flow of, measurements of...Ann 20, iv, pp 46, 64-65;
Ann 21, iv, pp 51-53; WS 27, pp 11-14; WS 35, pp 25-26
profile of...WS 44, p 9
Kennebec River and tributaries, water power of...Ann 19, iv, pp 65-84
lepidolites of...Bull 42, pp 11-21

Litchfield, minerals of..Bull 42, p 28

magnetic declination in..................................Ann 17, i, pp 352-354

manganese-ore production of................................Ann 16, iv, p 416

maps, geologic, of. (See Map, geologic, of Maine.)

maps, topographic, of. (See Map, topographic, of Maine; also pp 78-79 of this bulletin.)

mineral spring resorts inAnn 14, ii, p 83

mineral springs of..Ann 11, iv, pp 987-1061

Paleozoic faunas of ..Bull 165, pp 15-92

Paleozoic terranes of Aroostook County, classification of..........Bull 165, pp 21-27

Penobscot River, profile of....................................WS 44, p 9

Penobscot River and tributaries, water power on................Ann 19, iv, pp 52-65

precious stones in, occurrence of..........................MR 1882, p 483;

MR 1883-84, pp 723-724, 744; MR 1885, p 437;

MR 1886, p 595; MR 1892, p 765; MR 1893, p 695

Presumpscot River, flow of, measurements of..................Ann 20, iv, p 46

water power on..Ann 19, iv, pp 97-99

quartz from, statistics of..................................Ann 18, v,

cont, p 1368; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745; Ann 21, vi cont, p 595

rainfall at Rumford Falls................................Ann 20, iv, p 72; WS 35, p 27

rivers of, power statistics of................................Ann 19, iv, pp 41-43

rocks of, nature of...Mon xxxiv, pp 6-7; Bull 80, pp 240, 247, 256

Saco River, profile of.....................................WS 44, p 10

water power on..Ann 19, iv, pp 108-111

St. Croix River, profile of..................................WS 44, p 8

water power on..Ann 19, iv, pp 43-52

sea, former height of, in Mon xxxiv, pp 481-485

seacoast swamps of eastern United States..................Ann 6, pp 353-398

Sebago Lake, discharge from, records of....................Ann 19, iv, pp 99-108

sections, geologic, in. (See Section, geologic, in Maine.)

sewage-disposal plant at Augusta..............................WS 22, p 41

slate production of, statistics of..........................MR 1882, p 452; MR 1885, p 398;

Maine, survey of, by cooperation of the State Ann 20, i, p 98

timber in, estimates of .. Ann 19, v, p 16

tin deposits of .. Ann 16, iii, pp 522-523; MR 1883-84, pp 598-599

topographic maps of. (See Map, topographic, of Maine; also pp 78-79

do this bulletin.)

topographic work in .. Ann 10, i, pp 85, 88; Ann 11, i, p 35; Ann 12, i, p 25;

Ann 13, i, p 70; Ann 14, i, p 171; Ann 16, i, pp 64, 68, 69;
Ann 18, i, p 95; Ann 19, i, p 90; Ann 21, i, pp 119, 126

triangulation in .. Bull 122, pp 5, 6-12

water-power streams of Ann 19, iv, pp 34-111

water storage in lakes of Ann 19, iv, pp 37-39

woodland area in .. Ann 19, vi, p 3

Majolica glaze, analysis of Ann 19, vii cont, p 384

Malacca, tin industry in Ann 16, in, p 479

Malachite, analysis of, from North Carolina, Mecklenburg County (pseudo-
malachite) ... Bull 74, p 78

occurrence and statistics of MR 1883-84,

pp 777-778; MR 1886, pp 597-598; MR 1891, p 551;
MR 1892, p 781; MR 1893, p 682; Ann 16, iv, p 605

Malacone, chemical constitution of ... Bull 125, pp 78, 105

Malade River, Idaho, flow of, measurements of Ann 18,
v, pp 337, 338; Ann 19, iv, pp 448-449; Ann 20, iv,
p 62, 477; Ann 21, iv, pp 407-409; WS 11, p 79; WS 16,
p 166; WS 28, pp 160, 168, 169; WS 38, pp 354-355

Malay Peninsula, tin industry and production of Ann 16, iii, pp 465, 467-484

Malheur River, Oregon, flow of, measurements of Ann 11,
ii, p 106; Ann 12, ii, pp 344, 358, 360; Ann 13, iii, pp 98,
99; Ann 18, iv, pp 348-350; Ann 20, iv, p 62; Bull 131
p 66; Bull 140, pp 242-243; WS 11, p 83; WS 16, p 169

hydrography of basin of Ann 11, ii, pp 87-88, 106

Malthite, analysis of, from Germany, Steindorfel Ann 17, in, p 880

Mamainse series of Lake Superior region Bull 86, pp 56, 57, 61

Mammals, an extinct order of gigantic (Dinocerata) Ann 5, pp 243-302; Mon x

extinction of large fossil Mon x, pp 189-190

of Denver Basin, Jurassic and Cretaceous, remains of. .. Mon xxvii, pp 508-509,520

of Eocene in Rocky Mountain region Ann 5, pp 249-254

Mammoth, remains of, in Alaska Ann 17, i, p 857

Mammoth Hot Springs, Yellowstone Park, geologic relations, deposits, etc., of. Ann

9, pp 628-650

(See, also, Yellowstone Park.)

Mammoth limestone of Utah GF 65, p 1

Man; human remains in auriferous gravels of California Bull 84, pp 221-222

in Ohio, interglacial Bull 58, pp 105-108

influence of physiography on Ann 12, i, p 357

Man and soil, action and reaction of Ann 12, i, pp 329-345

Manasquan formation of New Jersey Bull 138, p 41

Manatee River marl of Florida Bull 84, pp 125-126

Mancos Canyon, Colorado, reservoir sites in Ann 21, iv, pp 286-297

Mancos River, Colorado, flow of, measurements of Ann 20, iv, p 404; Ann

21, iv, pp 284-286; WS 28, pp 137, 142, 144; WS 38, p 312

profile of .. WS 44, p 84

Mancos formation or shales in Colorado Ann 21, ii, p 77; GF 57, p 4; GF 60, pp 4-5

Manganese, amount of, in silver ore from Colorado Ann 18, v, pp 303, 304
Manganese carbonate, analysis of, from Indian Territory. Ann 16, iii, p 414
from Spain, Huelva. Ann 18, v, pp 319, 320
from Wales, Merionethshire. MR 1888, p 140
Manganese minerals in Colorado, Cripple Creek district. Ann 16, iii, p 123
Manganese ore, analysis of, from Alabama, Cleburne County. Ann 18, v, p 299
analysis of, from Alabama, various localities. MR 1893, p 124
Polk County. Bull 55, p 86; MR 1887, p 149
various localities. Bull 60, p 168; MR 1883–84, p 553
from Australia. MR 1886, p 207
from Belgium, Chevron. MR 1887, p 158; MR 1892, p 222
from Brazil (average). Ann 21, vi, p 151
from California, Corral Hollow and Red Rock. Ann 16, iii, p 406; MR 1889–90, p 131
from Chile. Ann 20, vi, pp 145, 146; MR 1891, p 140; MR 1892, p 211
from Colombia, various localities. Ann 18, v, pp 314, 315
from Colorado, Leadville district. MR 1885, p 348
(used for manufacture of spiegeleisen). Ann 18, v, p 301
from Cuba, various localities. Ann 18, v, pp 312, 313; Ann 20, vi, p 140; MR 1888, p 138
from England, Derbyshire. MR 1887, p 156; MR 1892, p 220
Merionethshire. MR 1891, p 144; MR 1892, p 222
from France. Ann 19, vi, p 111; MR 1886, p 200
from Georgia, Bartow County. Ann 16, iii, pp 411, 412; Bull 78, p 128; MR 1882, p 425; MR 1885, pp 330, 331; MR 1886, p 186; MR 1892, p 180
Floyd County. MR 1885, p 331; MR 1886, p 188; MR 1891, p 134
from Indian Territory. Ann 16, iii, p 413; MR 1891, p 135; MR 1892, p 197
from Italy, Tuscan. MR 1886, p 203
from Japan. Ann 19, vi, p 123
from Kentucky, Bell County. Bull 78, p 128
from Maine, Blue Hill. Ann 16, iii, p 416; MR 1885, p 342; MR 1892, p 199
from Michigan, Copper Harbor. MR 1885, p 346
Lake Superior. MR 1891, p 135
McComber. Ann 16, iii, p 415; MR 1885, p 346; MR 1892, p 183
from Missouri, Arcadia. Ann 16, iii, p 417; MR 1885, p 348; MR 1892, p 200
Cuthbertson and vicinity. MR 1885, p 347
Reynolds County. MR 1885, p 348
New Brunswick, Hillsboro. Ann 18, v, p 311
Markhamville. Ann 16, iii, p 436; MR 1885, p 351; MR 1888, p 135; MR 1892, p 217
from New Jersey, Franklin. Ann 16, iii, p 419; MR 1892, p 185
from North Carolina, Chatham County. MR 1885, p 344
Gaston County. MR 1888, p 130; MR 1893, p 132
Jackson, and Lincoln counties. MR 1888, pp 129, 130
various localities. MR 1886, pp 191, 192, 193
from Nova Scotia. MR 1885, pp 351, 353, 354
Teny Cape district. Ann 16, iii, p 438; MR 1892, p 219
Manganese ore, analysis of, from Pennsylvania, Cumberland and York counties..................Ann 16, iii, pp 421, 422
analysis of, from Pennsylvania, Lehigh County..Ann 16, iii, pp 420, 421; MR 1885, p 343
from Russia, Chiaturi and Nicopol district..Ann 19, vi, pp 114, 120
from South Carolina, Dorn County.......Ann 17, iii, p 201; MR 1886, p 193
from South Dakota, Custer County..Ann 16, iv, p 423;
MR 1891, p 137; MR 1892, p 202
from Spain, various localities................................Ann 18, v, pp 320, 321, 322, 323
from Tennessee, Johnson City, Washington County..Bull 78, p 128
Monroe County..Ann 16, iii, p 424; MR 1893, p 133
Unicoi County..Bull 60, p 168; MR 1893, p 133
from Vermont, South Wallingford.........Ann 16, iii, p 425; MR 1888, p 132
from Virginia, Augusta County........Ann 16, iv, p 430; Bull 78, p 127; MR 1885, pp 316, 317, 318, 319; MR 1892, p 18
Botetourt, Craig, Pulaski, Shenandoah, Rockbridge, and Wythe counties..................Ann 19, vi, p 101;
Bull 60, pp 165, 166; MR 1885, pp 320, 321, 322, 326, 327
Campbell County..MR 1882, p 245; MR 1885, p 311
Houston, Halifax County............................MR 1892, p 183
Nelson County..Ann 16, iii, p 427; MR 1885, p 312
Page County..Bull 78, p 127; MR 1885, p 314
Rockingham County................Ann 16, iii, p 431; Bull 55, p 86; Bull 60, p 165
Smythe County..Bull 64, pp 51, 52
various localities..Bull 64, pp 51, 52
from Wales..Bull 60, p 169; MR 1887, p 158
from West Virginia, Glenmore........Ann 16, iv, p 434
from Wisconsin, St. Croix..............................MR 1886, p 190
in Georgia-Tennessee, Ringgold quadrangle............GF 2, p 3
in Montana, Butte district............................GF 38, p 5
in Sierra Nevada..Ann 17, i, p 654
of United States, character of..................MR 1892, pp 178-181
localities of...Ann 16, iii,
pp 392-393; Ann 17, iii, pp 185-186; MR 1892, pp 172-177
origin and occurrence of..........................MR 1892,
pp 171-172; Ann 16, iii, pp 391-392; Ann 18, v, p 298
production of, statistics of....................MR 1882, pp 424-427; MR 1883-84,
pp 550-566; MR 1885, pp 303-356; MR 1886, pp 180-213; MR 1887, pp 144-167; MR 1888, pp 123-143; MR 1889-90,
pp 127-136; MR 1891, pp 126-146; MR 1892, pp 169-226; MR 1893, pp 119-155; Ann 16, iii, pp 389-457; Ann 17, iii,
pp 185-225; Ann 18, v, pp 291-328; Ann 19, vi, pp 91-125; Ann 20, vi, pp 125-158; Ann 21, vi, pp 85-86, 129-162
Manganese-silver ore, analysis of, from Montana, Butte district........MR 1883-84,
pp 379, 380
Manganiferous iron ore, analysis of, from Lake Superior.............MR 1891, pp 128-129
Manganiferous iron, silver, and zinc ores of United States, character and produc­tion of..MR 1889-90,
pp 128-129; MR 1891, pp 128-130; MR 1892, pp 181-185,
190-192; MR 1893, pp 121-122; Ann 16, iii, pp 396-399;
Ann 17, iii, pp 188-191; Ann 18, v, pp 293-295; Ann 19, vi,
pp 92-95; Ann 20, vi, pp 127-129; Ann 21, vi, pp 132-134
Manganiferous ore, analysis of, from Colorado, Taylor River........Ann 18, v, p 304
analysis of, from Spain...............................Ann 19, vi, p 120
from Virginia, Page County............................MR 1885, p 313
WARMAN.

MANGANO PHYLL, CHEMICAL CONSTITUTION OF Bull 125, pp 52, 103

MANGROVE SWAMPS .. Ann 10, i, pp 201-205

MANHATTAN GROUP OF ROCKS IN NEW YORK Bull 86, pp 393, 394, 396, 397

MANIGAULT (G. E.), ACCOUNT OF CHARLESTON EARTHQUAKE Ann 9, pp 226-241

MANITOBA, RAINFALL AT WINNIPEG WS 24, p 53

MANITOBA ESCARPMENT, A SERIES OF HIGHLANDS Mon xxv, pp 40-44

MANITOBAN LIMESTONE OF COLORADO GF 7, p 2

MANITOU GROUP OF ROCKS OF HUDSON BAY REGION Bull 86, pp 200-210, 212-213, 500-501

MANSFIELD FORMATION OF MICHIGAN, CRYSTAL FALLS DISTRICT Ann 19, iii, pp 35-44, 114-115, 131-133; Mon xxxvi, pp 54-73, 411-415, 437-440

MANITOBA, RAINFALL AT WINNIPEG WS 24, p 53

MANITOU GROUP OF ROCKS OF HUDSON BAY REGION Bull 86, pp 200-210, 212-213, 500-501

Map, geologic, of Africa, showing occurrence of iron ore Ann 16, iii, pp 158-159
of Africa; Transvaal gold fields Ann 18, v, pp 152-153
of Alabama; Cenozoic and Mesozoic strata, distribution of . Bull 43, pp 134-135
Chattanooga district, southern half, showing drainage at close of Cumberland gradation period and relative development and preservation of three peneplains Ann 19, ii, pp 58-59
Eocene strata, distribution of Bull 83, pp 60-61
faults and folds in parts of Virginia, Tennessee, Georgia, and ... Ann 13, ii, pp 240-241
Gadsden quadrangle; areal, economic, and structural geology GF 35
Mesozoic and Cenozoic strata, distribution of Bull 43, pp 134-135
Stevenson quadrangle; areal, economic, and structural geology GF 19
of Alaska .. Ann 21, ii, p 356
Admiralty Island coal field, showing localities of workings Ann 17, i, pp 776-777

Alexander Archipelago, showing location of mines Ann 18, iii, pp 60-61
Birch Creek gold mining district Ann 18, iii, pocket
Chignik Bay, showing location of coal mine Ann 17, i, p 802
Cook Inlet, coal region near Ann 17, i, pp 786-787
from Tordrillo Mountains to Ann 20, vii, pp 102-103
showing location of mines, fossils, gold, and coal in vicinity of . Ann 18, iii, pp 80-81

Copper River and adjacent territory Ann 20, vii, pocket
Esquimalt River and Nushagak to Katmai Ann 20, vii, pp 140-141
Fortymile Creek, showing relation of present and ancient valleys . Ann 18, iii, pp 278-279
Fortymile gold-mining district, eastern portion of Ann 18, iii, pocket
western portion of Ann 18, iii, pp 318-319
Girdled Glacier, moraines of Ann 16, i, pp 446-447
Glacier Bay region Ann 16, i, pp 434-435
showing glaciers and moraines Ann 16, i, pp 420-421
Herendeen Bay coal field Ann 17, i, pp 806-807
Juneau mining district, showing location of mines Ann 18, iii, pp 62-63
Kanektok and Togiak rivers Ann 20, vii, pp 134-135
Kuskokwim River from above Yukon portage to Kuskokwim Bay Ann 20, vii, pp 132-133
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.

Map, geologic, of Alaska; Kuskokwim River from below Holiknuk to midway between Kolmakof and Yukon portage: Ann 20, vii, pp 126-127 of Alaska; Kuskokwim River from Tordrillo Mountains past the Holiknuk River.............Ann 20, vii, pp 122-123 Mission Creek gold-mining district, portion of........Ann 18, iii, pp 336-337 Mount St. Elias region, showing moraines and glaciers........Ann 13, ii, pp 6-7 Muir Inlet and Muir Glacier.............Ann 16, i, pp 454-455 Neocene formations..............Bull 84, pp 268-269 showing distribution of gold and coal........Ann 18, iii, pp 6-7 Nome mining region.............Nome Shumagin Islands (part of), showing coal fields........Ann 17, i, pp 808-809 showing mineral localities........Ann 18, iii, pp 82-83 Silver Bay and vicinity, showing location of mines........Ann 18, iii, pp 76-77 southwestern.............Ann 20, vii, pp 234-235 Sushitna River and adjacent territory........Ann 20, viii, pocket Tertiary-Pleistocene volcanic activity, localities of........Ann 20, vii, pp 226-227 Tordrillo Mountains..............Ann 20, vii, pp 158-159 White and Tanana river basins, portions of........Ann 20, vii, pp 460-461, 466-467 Wrangell Mountains.............Ann 21, ii, p 404 Yukon gold belt and adjacent regions in Northwest Territory........Ann 18, iii, pp 252-253 showing lines of geologic work........Ann 18, iii, pp 254-255 Yukon River, vicinity of upper, showing northern limit of glaciation........Ann 18, iii, pp 210-211 Zachareffskaja Bay, showing location of coal and lignite........Ann 17, i, p 809 of Appalachian crystalline belt, showing distribution of peridotites, schists, gneisses, and corundum........Ann 17, iii cont, pp 936-937 of Appalachian province, showing physiographic subdivisions of southern, and limits of Chattanooga district........Ann 19, ii, pp 10-11 structural districts of.....................Ann 13, ii, pp 232-233 of Arizona; Colorado Plateau and San Francisco Mountains........Mon ii, atlas sheet xxiii Grand Canyon, eastern section........Ann 14, ii, pp 502-503 Kaibab Plateau.................Mon ii, atlas sheet xiii southern part.................Mon ii, atlas sheets xi, xii, xiv Kanab, Kaibab, Paria, and Marble canyon platforms........Mon ii, atlas sheet xxii Plateau province, western part........Ann ii, pocket; Mon ii, atlas sheet ii western part, showing faults and high plateaus........Mon ii, atlas sheet iii platform of and surrounding Mesozoic formations........Mon ii, pp 28-29 Uinkaret Plateau.................Mon ii, atlas sheets vii, viii part of New Mexico and..............Bull 86, pp 326-327 Plateau province strata and eruptive rocks........Ann 2, pocket volcanic areas around borders of........Ann 6, pp 118-119 of Arkansas, showing bauxite districts........Ann 21, iii, pls lx, lxi, lxii of Asia, showing occurrence of iron ores........Ann 16, iii, pp 158-159 of Banca, northeast part.............Ann 16, iii, 485 of Burma, showing location of tin mines........Ann 16, iii, p 483 of California; Banner Hill and vicinity, economic and structural geology........GF 29 Bear Mountain and vicinity............Ann 14, ii, pp 456-457 Bidwell Bar quadrangle; historical and economic geology........GF 43 Big Trees quadrangle; historical and economic geology........GF 51 Bloody and Parker canyons, morainal embankments of........Ann 8, i, pp 340-341
Map, geologic, of California; Cinder Cone region in northern California; Clear Lake district. (Mon xi, atlas sheet iii)
Colfax quadrangle, historical, economic, and structural geology. (GF 66)
Downieville quadrangle, historical, economic, and structural geology. (GF 37)
Duncan Hill and Ophir mining districts. (Ann 14, ii, pp 248-249)
earthquake area, showing extent of. (Bull 112, p 21)
geologic maps, location of. (Ann 14, ii, pp 442-443)
Golden Gate Hill. (Ann 14, ii, pp 492-493)
Grass Valley, economic and structural geology in vicinity of. (GF 29)
mining districts near Nevada City and. (Ann 17, ii, pocket)
Neocene bed-rock surface in vicinity of Nevada City and. (Ann 17, ii, pp 102-103)
Great Basin, northwestern part, showing fault lines. (Ann 4, pp 442-443)
northwestern part, showing Pleistocene lakes, etc. (Ann 4, pp 438-439)
Great Western quicksilver mine, formations in neighborhood of. (Mon xi, pp 358-359)
Grizzly Peak. (Ann 14, ii, pp 486-487)
Jackson quadrangle, areal, economic, and structural geology. (GF 11)
Klamath Mountains and adjacent regions in Oregon and. (Ann 14, ii, pp 414-415)
Knoxville district. (Mon xi, atlas sheet v)
Lassen Peak quadrangle, areal geology. (Ann 8, i, pp 406-407; GF 15)
economic geology. (GF 15)
Marysville quadrangle, areal, economic, and structural geology. (GF 17)
Mono Basin in Pleistocene time. (Ann 8, i, pp 328-329)
Mother Lode district, economic and structural geology. (GF 63)
Mount Ingalls. (Ann 14, ii, pp 490-491)
Nevada City, claims near. (Ann 17, ii, p 219)
economic and structural geology in vicinity of. (GF 29)
mining districts near Grass Valley and. (Ann 17, ii, pocket)
Neocene bed-rock surface in vicinity of Grass Valley and. (Ann 17, ii, pp 102-103)
New Almaden district. (Mon xi, atlas sheet vii)
New Idria district. (Mon xi, atlas sheet vi)
Oathill quicksilver mine, formations near. (Mon xi, pp 354-355)
Ophir and Duncan Hill mining districts. (Ann 14, ii, pp 238-249)
Parker and Bloody canyons, morainal embankments of. (Ann 8, i, pp 340-341)
Placerville quadrangle, areal, economic, and structural geology. (GF 3)
Pyramid Peak quadrangle, areal, economic, and structural geology. (GF 31)
quicksilver mines, distribution of. (Ann 8, ii, pp 966-967; Mon xi, frontispiece)
Sacramento quadrangle, areal, economic, and structural geology. (GF 5)
San Clemente Island. (Ann 18, ii, pp 464-465)
San Francisco Peninsula. (Ann 15, pp 406-407)
Sierra Nevada, showing bed-rock formation and location of special maps in part of. (Ann 17, ii, pp 12-13)
showing older formations. (Ann 17, i, pp 532-533)
Smartsville quadrangle; areal, economic, and structural geology. (GF 18)
Sonora quadrangle; historical, economic, and structural geology. (GF 41)
Stanislaus River, portion of drainage area of, showing distribution of latites and other Neocene lavas and tuffs. (Bull 89, pp 12-13)
Sulphur Bank district. (Mon xi, atlas sheet iv)
Truckee quadrangle; historical, economic, and structural geology. (GF 39)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Map, geologic, of Canada; Acadian area of Newark systemBull 85, pp 18-19 of Canada; British Columbia, Northwest Territory, and Alaska (part) ...Ann 21, n, p 356

...glacial Lake Agassiz, area of, at times of formation of Itasca and Mesabi moraines. ...Mon xxv, pp 214-215
areas of upper Laurentian lakes and. ...Mon xxv, pp 10-11
...drainage systems in area of. ...Mon xxv, pp 52-53
...drift deposits in southern portion of basin of. ...Mon xxv, pp 132-133
...formations underlying the drift on area of. ...Mon xxv, pp 64-65
...southern portion of, altitudes in. ...Mon xxv, pp 40-41
...showing extent in Gladstone stage. ...Mon xxv, pp 462-463
...in lower Blanchard stage. ...Mon xxv, pp 446-447
...in lower Campbell stage. ...Mon xxv, pp 408-409
...showing moraines and location of other maps. ...Mon xxv, pp 276-277
...western shores from Morden to Assiniboine River. ...Mon xxv, pp 364-365
...near the international boundary, showing moraines and deltas. ...Mon xxv, pp 354-355
...north of Assiniboine River. ...Mon xxv, pp 368-369
...glacial Lake Agassiz and adjoining country, altitudes in area of. ...Mon xxv, pp 36-37

...glacial Lake Souris, showing moraines and deltas. ...Mon xxv, pp 268-269
Manitoba; Assiniboine River Delta, showing glacial lake area, moraines, and delta. ...Mon xxv, pp 370-371
New Brunswick, Nova Scotia, and part of Quebec. ...Bull 86, pp 224-225
Newfoundland. ...Bull 86, pp 248-249
...northern. ...Bull 86, pp 210-211

Northwest Territory; Forty mile gold-mining district, eastern portion of. ...Ann 18, iii, pocket
Yukon gold belt and adjacent regions in Alaska and. ...Ann 18, iii, pp 252-253
...showing lines of geologic work in Alaska and. ...Ann 18, iii, pp 254-255

Nova Scotia, New Brunswick, and part of Quebec. ...Bull 86, pp 224-225
Ontario; Lake Superior, northwestern coast. ...Ann 3, pp 140-141; Mon v, pp 262-263
Lake Superior, region around. ...Ann 3, pp 92-93; Ann 5, pp 180-181; Ann 19, iii, pp 22-23; Mon v, pp 24-25; Mon xix, pp xx-xxi; Mon xxxv, pp 10-11; Bull 86, pp 52-53
...region around Keweenawan trough, structure and extent of. ...Ann 3, pp 172-173; Mon v, pp 410-411
Quebec, part of, and New Brunswick and Nova Scotia. ...Bull 86, pp 224-225
southern portion. ...Bull 86, pp 24-25
of Colorado; Anthracite and Crested Butte quadrangles, areal geology. ...Ann 14, ii, pp 164-165; GF 9

Anthracite and Crested Butte quadrangles, economic and structural geology. ...GF 9
Aspen and vicinity. ...Mon xxxi, atlas sheet ix
Aspen district. ...Mon xxxi, atlas sheet vi
Aspen Mountain. ...Mon xxxi, atlas sheet xxv
Bassick Hill and vicinity. ...Ann 17, ii, pp 362-363
Boulder and adjoining region, showing nonconformities. ...Mon xxvii, pp 106-107

Bull Hill, systems of veins on. ...Ann 16, ii, pp 190-191
Map, geologic, of Colorado; Colorado Range, showing folds in echelon along front............................... Mon xxvii, pp 80-81

of Colorado; Crested Butte and Anthracite quadrangles; areal geology. Ann 14, ii, pp 164-165; GF 9

Crested Butte and Anthracite quadrangles; economic and structural geology.................................. GF 9

Cripple Creek district; economic geology.................. Ann 16, ii, pocket; GF 7
Denver Basin; areal, economic, and structural geology... Mon xxvii, pocket
Elmooro quadrangle; historical, economic and structural geology......GF 58
Golden and vicinity.................................... Mon xxvii, pp 82-83
Hunter Park and vicinity.. Mon xxxi, pp 200-201
Independence and Washington claims, showing veins and dikes..... Ann 16, ii, pp 182-183

La Plata quadrangle; historical, economic, and structural geology...GF 60
Leadville and vicinity. Ann 2, pp 240-241; Mon xi, atlas sheets xiii, xiv
Lenado.. Mon xxxi, atlas sheet xx
Lenado mining district.. Mon xxxi, atlas sheet xxx
Mosquito Range.. Mon xii, atlas sheets vi, vii
Pikes Peak quadrangle; areal, economic, and structural geology......GF 7
plateau country of Utah, Arizona, New Mexico, and volcanic areas around border of........ Ann 6, pp 118-119
portions of New Mexico...................................... Bull 86, pp 308-309
portions of Utah and Wyoming............................. Ann 9, pp 684-685
Pueblo quadrangle; areal, economic, and structural geology..........GF 36
Raven Hill, showing veins and dikes on.......................... Ann 16, ii, pp 182-183
Rico Mountains... Ann 21, ii, pl. xxii, pocket
Silver Cliff and Rosita Hills.. Ann 17, ii, pocket
Smuggler Mountain... Mon xxxi, atlas sheet xxvii
Telluride quadrangle; economic geology.......................... Ann 18, iii, pocket; GF 57
historical and structural geology.................................. GF 57

Tennmile district; economic geology............................... GF 48
Tourtelotte Park and vicinity.................................. Mon xxxi, atlas sheet xii
Tourtelotte Park mining district............................... Mon xxxi, atlas sheet xxi
Uinta Basin of Utah and.. Ann 17, i, pocket
Walsenburg quadrangle; historical, igneous, economic, and structural, and artesian water............... GF 68
Washington and Independence claims, showing veins and dikes...... Ann 16, ii, pp 200-201

White River uintaite (gilsonite) region........................ Ann 17, ii, pp 934-935
of Connecticut; Holyoke quadrangle, surficial, historical, economic, and structural geology............... GF 50

Housatonic quadrangle, eastern half........................... Bull 159, pp 102-103
Newark system, areas occupied by.................................. Ann 21, iii, pp 26,31
Connecticut Valley and Southbury areas.......................... Bull 85, pp 20-21
Percival's (1842) modification of a portion of........ Ann 7, pp 462-463
Orenang Hill.. Ann 21, iii, pp 106-107
Pomperaug River, to illustrate supposed stages in erosion history.. Ann 21, iii, pp 154-155

Pomperaug Valley.. Ann 21, iii, pp 22-23
showing relation of drainage to faults.......................... Ann 21, iii, pp 140-141
South Britain, vicinity of.. Ann 21, iii, pp 84-85
Southbury area, Connecticut Valley.............................. Bull 85, p 82
Triassic area of.. Ann 18, ii, pocket
West Norfolk and vicinity.. Bull 159, pp 76-77
Map, geologic, of Delaware .. Bull 67, pp 62-63
of Delaware; Eocene strata in Maryland, Virginia, and Bull 141, pp 12-13
gabbro area .. Bull 59, pp 6-7
underground waters, relations of, in Coastal Plain region of Maryland and ... Bull 138, pp 118-119
of District of Columbia; areal, economic, structural, physiographic GF 70
Potomac formation in portions of Maryland and Virginia and in ... Bull 145, pp 14-15
underground waters, features of, in Maryland and Bull 138, pp 158-159
of England, Isle of Wight .. Ann 16, i, pp 480-481
southeast ... Ann 16, i, pp 478-479
of Europe; Cambrian and Lower Silurian rocks, comparative thickness and depth of deposition of, in different areas ... Ann 8, ii, pp 566-567
showing occurrence of iron ores Ann 16, ii, pp 70-71
of Florida ... Bull 84, pp 156-157
of Georgia; area of crystalline rocks and location of deep wells in South Carolina and .. Bull 138, pp 208-209
bauxite deposits ... Ann 16, ii, pp 552-553
Chattanooga district, southern half, showing drainage at close of Cumberland gradation period and relative development and preservation of three peneplains Ann 19, ii, pp 58-59
faults and folds in parts of Virginia, Tennessee, Alabama, and Ann 13, ii, pp 240-241
Ringgold quadrangle; areal, economic, and structural geology GF 2
Stevenson quadrangle; areal, economic, and structural geology GF 19
of Grand Canyon; Colorado Plateau and San Francisco Mountains ... Mon n, atlas sheet xxiii
eastern section .. Ann 14, ii, pp 502-503
Kaibab Plateau ... Mon n, atlas sheet xiii
southern part .. Mon n, atlas sheets xi, xii, xiv
Kanab, Kaibab, Paria, and Marble Canyon platforms Mon n, atlas sheet xii
Mesozoic terraces of, and southern portions of high plateaus ... Mon n, atlas sheet xxi
plateau province, western part Ann n, pocket; Mon n, atlas sheet ii
western part, showing faults and high plateaus ... Mon n, atlas sheet iii
platform of, and surrounding Mesozoic formations Mon n, pp 28-29
southwestern portion of Mesozoic terraces and vicinity of Hurricane fault Mon n, atlas sheet xx
Uinkaret Plateau ... Mon n, atlas sheets vii, viii
of Great Plains region, showing shore line of Great Lake Nipissing ... Ann 18, ii, p 605
of Great Plains region, northern, showing factors bearing on prospects for deep underground waters Ann 21, iv, pp 574-575
of Idaho; Bear River formation in Utah, Wyoming, and Bull 128, pp 28-29
Bitterroot Forest Reserve; mineral-bearing areas Ann 20, v, pp 392-393
Boise quadrangle; economic, historical, and structural geology GF 45
Idaho Basin ... Ann 18, iii, pocket
Mineral Hill mining district .. Ann 20, iii, pp 190-191
Neal mining district .. Ann 18, iii, pp 700-701
portions of Montana, Wyoming, North and South Dakota, and Bull 86, pp 258-259
Rock Creek and Willow Creek mining districts Ann 18, iii, pp 708-709
Silver City and vicinity ... Ann 20, iii, pp 116-117
Map, geologic, of Idaho; Snake River Valley, lower. Ann 18, iii, pp 625-626
of Idaho; western-central. Ann 20, iii, pp 76-77
western-central, part of Oregon and. Ann 20, iii, pp 78-79
showing mineral deposits. Ann 20, iii, pp 100-101
Willow Creek and Rock Creek mining districts. Ann 18, iii, pp 708-709
of Illinois; Chicago and vicinity, showing glacial topography. Mon xxxviii, pp 420-421
Danville quadrangle; historic and economic geology. GF 67
drift, depth of, in western Indiana and. Mon 17, ii, pp 768-769
relation to ordinary wells in Indiana and. Mon xxxviii, pp 556-557
drift formations in western Indiana and. Mon 17, ii, pp 788-789; Mon xxxviii, pp 552-553
glacial boundary in southern. Bull 58, pp 70-71
ice lobe in western Indiana, Missouri, Iowa, and. Mon xxxviii, pp 24-25
Kane and Kendall counties, parts of, showing glacial deposits. Mon xxxviii, pp 284-285
northwestern, showing glacial deposits and pre-Glacial drainage. Mon xxxviii, pp 130-131
Pleistocene deposits in western Indiana and. Ann 17, ii, pp 706-707
St. Peter sandstone, elevation of, in western Indiana and. Ann 17, ii, pp 794-795; Mon xxxviii, pp 556-557
main absorbing area in Wisconsin and. Ann 17, ii, pp 786-787; Mon xxxviii, pp 552-557
of Indian Territory; eastern Choctaw coal field. Ann 21, n, pocket
Lehigh district. Ann 19, iii, pocket
McAlester district. Ann 19, iii, pocket
McAlester-Lehigh coal field, showing axes of folds and crops of principal coal beds. Ann 19, iii, pp 440-441
of Indiana; Danville quadrangle; historical and economic geology. GF 67
drift, relation of depth of, to ordinary wells. WS 21, pp 8-9
glacial boundary in southern. Bull 58, p 65
Pleistocene deposits. WS 21, pp 12-13
in Ohio and. Ann 18, iv, pp 428-429
portions of Ohio and. Ann 8, ii, pp 502-521
south-central, showing glacial deposits and pre-Glacial drainage. Mon xxxviii, pp 102-103
southwestern, showing glacial boundary and pre-Glacial and present drainage. Mon xxxviii, pp 96-97
Trenton formation. Ann 11, i, pp 648-649
Trenton limestone in Ohio and, topography of. Ann 8, ii, pp 548-549
western; drift, depth of, in Illinois and. Ann 17, ii, pp 768-769
drift, relation of, to ordinary wells. Mon xxxviii, pp 556-557
drift formations in Illinois and. Mon 17, ii, pp 788-789; Mon xxxviii, pp 552-553
Illinois ice lobe in Iowa, Missouri, Illinois, and. Mon xxxviii, pp 24-25
St. Peter sandstone, elevation of, in Illinois and. Ann 17, ii, pp 794-795; Mon xxxviii, pp 556-557
of Iowa; ice and water, distribution of, in Glacial times. Ann 11, i, pp 564-565, 566-567, 568-569, 570-571
Map, geologic, of Maryland; Baltimore gabbro area Bull 28, pp 73-74
of Maryland; Baltimore region; features of underground waters Bull 138, pp 130-137
Catoctin belt in Pennsylvania, Virginia, West Virginia, and Ann 14, ii, pp 308-309
Tertiary base-level in .. Ann 14, ii, pp 376-377
Chesapeake Bay, head of, showing distribution of Columbia forma­
tion .. Ann 7, pp 552-553
Eocene strata in Delaware, Virginia, and Bull 141, pp 12-13
Fredericksburg quadrangle; areal geology GF 13
granites in central, distribution of Ann 15, pp 692-693
Newark areas in New York, New Jersey, Pennsylvania, Virginia, and Bull 85, pp 20-21
Potomac formation in District of Columbia and portions of Virginia and Bull 145, pp 14-15
Harpers Ferry quadrangle; areal, economic, and structural geology ... GF 10
Nomini quadrangle; areal geology and distribution of water-bearing formations GF 23
Piedmont quadrangle; areal, economic, and structural geology GF 28
underground water, distribution of, in Virginia and Bull 138, pp 162-163
features of, in District of Columbia and Bull 138, pp 158-159
relations of, in Coastal Plain region of Delaware and Bull 139, pp 118-119
Washington (D. C.) quadrangle; areal, economic, structural, physio­
graphic .. GF 70
of Massachusetts; Cape Ann, showing distribution of dikes, etc Ann 9, pp 610-611
Cape Ann, showing distribution of glacial scratches, etc Ann 9, pp 605-607
showing superficial deposits Ann 9, pp 608-609
Cape Cod district, showing position of streams during period of eleva­
tion preceding the last Glacial epoch Ann 18, ii, p 516
East Lee ... Bull 159, pp 86-87
Franklin, Hampshire, and Hampden counties, showing surface geol­
ogy and Pleistocene deposits Mon xxix, pocket
Greylock and Hoosac mountains Mon xxiii, frontispiece
Holyoke quadrangle, showing superficial, historical, economic, and structural geology GF 50
Hoosac Mountain, west crest and slope of Mon xxiii, pp 40-41
Hoosac and Greylock mountains Mon xxiii, frontispiece
Housatonic quadrangle, eastern half of Bull 159, pp 102-103
Marthas Vineyard; surface geology Ann 7, pp 308-309
Millers River, showing rocks near mouth of Mon xxix, p 295
Monument Mountain ... Ann 14, ii, pp 557-558
Mount Holyoke-Mount Tom range, showing posterior diabase sheets, the tuff, and volcanic cores Mon xxix, pp 446-447
Nantucket, Glacial and post-Glacial deposits, distribution of .. Bull 53, pp 2-3
Narragansett Basin, northern and eastern part Mon xxiii, pp 210-211
showing distribution of metamorphosed Carboniferous rocks Mon xxiii, p 120
showing distribution of Upper Cambrian pebbles in Rhode Island and Mon xxiii, p 110
southern part ... Mon xxiii, pp 394-395
North Attleboro, showing Cambrian fossil localities southwest of Mon xxiii, pp 386-387
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Map, geologic, of Massachusetts; Northfield Mountain, showing Benardston series of metamorphosed upper Devonian rocks and faulted syncline of Silurian schist. Mon xxix, pp 260-261 of Massachusetts; relations of Stockbridge limestone, Hudson River shale, and Rensselaer grit in parts of New York and Ann 13, ii, pp 296-297

western, showing pre-Glacial drainage and drift striae. . Mon xxix, pp 510-511

showing relation of Greylock series to Hoosac Mountain rock Mon xxi, pp 10-11

West Norfolk and vicinity Bull 159, pp 76-77

of Michigan; Agogebic Lake to Montreal River (reproduction of Barnes and Whitney’s) Mon xix, pp 13-14

Amasa, vicinity of Mon xxxvi, pp 176-177

Clarkburg, area north of Ann 15, pp 552-553

Crystal Falls, vicinity of Ann 19, iii, pp 68-69

vicinity of, showing distribution of Huronian rocks Mon xxxvi, pp 160-161

vicinity of Mansfield and Mon xxxvi, pp 178-179

Crystal Falls district, portion of Marquette district and Ann 19, iii, pocket; Mon xxxvi, pocket

portion of, showing glacial topography and illustrating the development of Deer River Mon xxxvi, pp 32-33

portion west of Republic Mon xxxvi, pp 450-451

Felch Mountain range Mon xxxvi, pp 374-375

Gogebic range, showing location of iron-ore mines Ann 17, iii, pp 32-33

Huronian rocks, original (after Logan) Bull 86, pp 34-35

Isle Royal and neighboring mainland . . Ann 3, pp 156-157; Mon v, pp 328-329

Keweenaw Point Ann 3, pp 116-117; Mon v, pp 162-163

Lake Superior land district (reproduction of Foster and Whitney’s) Mon xxviii, pp 26-27; Mon xxxvi, p 17

Lake Superior region Ann 3, pp 92-93; Ann 5, pp 180-181; Ann 10, i, pp 348-349; Ann 19, iii, pp 22-23; Ann 21, iii, pp 330-331; Mon v, pp 24-25; Mon xix, p i; Mon xxxvi, pp 10-11; Bull 56, pp 52-53

iron-ore districts, showing location of Ann 17, iii, pp 28-29

Keweenaw trough, structure and extent of Ann 3, pp 172-173; Mon v, pp 410-411

Lower Peninsula WS 31, pp 16-17

Pleistocene deposits WS 30, pp 46-47

showing formations and elevations of rock surface WS 30, pp 78-79

Mansfield, vicinity of Crystal Falls and Mon xxxvi, pp 178-179

portion of, and Crystal Falls district Ann 19, iii, pocket; Mon xxxvi, pocket

showing location of other maps Mon xxviii, atlas sheet iii T. 47 N., R. 25 W., NE. ⅔ of, vicinity of Migisi Bluffs Mon xxviii, atlas sheet xxxix

NW. ⅔ of, vicinity of Ragged Hills Mon xxviii, atlas sheet xxxvii T. 47 N., R. 26 W., NE. ⅔ of, vicinity of Kona Hills Mon xxviii, atlas sheet xxxiv

NW. ⅔ of, vicinity of Negaunee Mon xxviii, atlas sheet xxxi SE. ⅔ of, vicinity of Wewe Hills Mon xxviii, atlas sheet xxxv SW. ⅔ of, vicinity of Ajibik Hills Mon xxviii, atlas sheet xxii
Map, geologic, of Michigan; Marquette district, T. 47 N., R. 27 W., NE. ¼ of, vicinity of Ishpenning Mon xxviii, atlas sheet xxviii of Michigan; Marquette district, T. 47 N., R. 27 W., NW. ¼ of Mon xxviii, atlas sheet xxv

Marquette district, T. 47 N., R. 27 W., SE. ¼ of, vicinity of Summit Mountain Mon xxviii, atlas sheet xxix

T. 47 N., R 27 W., SW. ¼ of Mon xxviii, atlas sheet xxvi

T. 47 N., R. 28 W., NE. ¼ of Mon xxviii, atlas sheet xxii

NW. ¼ of, vicinity of Clarksburg Mon xxviii, atlas sheet xix

SE. ¼ of Mon xxviii, atlas sheet xxiii

SW. ¼ of Mon xxviii, atlas sheet xvi

T. 48 N., R. 25 W., SE. ¼ of, vicinity of Marquette Mon xxviii, atlas sheet xxxiv

SW. ¼ of, vicinity of Mona Hills Mon xxviii, atlas sheet xxxvi

T. 48 N., R. 26 W., SE. ¼ of, vicinity of Eagle Mills Mon xxxvi, atlas sheet xxxiii

SW. ¼ of, vicinity of Makwa Hills Mon xxviii, atlas sheet xxx

T. 48 N., R. 27 W., SE. ¼ of, vicinity of Teal Lake Mon xxviii, atlas sheet xxvii

SW. ¼ of, vicinity of Broken Bluffs Mon xxviii, atlas sheet xviii

T. 48 N., R. 29 W., SE. ¼ of Mon xxviii, atlas sheet xxi

SW. ¼ of, vicinity of Broken Bluffs Mon xxviii, atlas sheet xviii

T. 48 N., R. 29 W., SE. ¼ of, vicinity of Lake Michigamme Mon xxviii, atlas sheet xv

T. 48 N., R. 30 W., SE. ¼ of, vicinity of Mount Humboldt Mon xxviii, atlas sheet vi

Marquette range, showing location of iron-ore mines Ann 17, iii, pp 30-31

Menominee district Ann 21, iii, pp 388-389;

Mon xxxvi, pp 18-19; GF 62; Bull 62, pp 24-25

Menominee range, showing location of iron-ore mines Ann 17, iii, pp 30-31

Mesabi district, more productive part Ann 21, iii, pocket

Montreal River, Agogebic Lake to (reproduction of Barnes and Whitney’s) Mon xix, pp 13-14

Penokee range and surrounding region (reproduction of Whittlesey’s) Mon xix, pp 20-21

Penokee region .. Ann 10, i, pp 350-351;

Ann 21, iii, pp 338-339; Mon xix, pp 2-3

Penokee-Gogebic iron region Ann 7, pp 422-423

Porcupine Mountains Ann 3, pp 132-133; Mon v, pp 208-209

Republic horseshoe Ann 15, pp 624-625

southeast end Mon xxviii, pp 546-547
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Map, geologic, of Michigan; Republic troughAnn 15, pp 608-609 of Michigan; Republic trough, southeast partMon xxviii, atlas sheet xi southwestern, showing glacial depositsMon xxxviii, pp 340-341 Sturgeon River tongueMon xxxvi, pp 458-459 T. 42 N., R. 28 W., sec. 7 and portions of secs. 8, 17, and 18, showing exposures near Sturgeon RiverMon xxxvi, pp 474-475 Ts. 47 and 48, R. 25-30. (See above under Marquette district.)

Map, geologic, of Minnesota; Lakes Traverse and Big Stone... Bull 157, pp 36-37
of Minnesota; Montevideo district. Bull 157, pp 36-37
Morton district. ... Bull 157, pp 26
northeastern.. Ann 7, pp 418-419
Ortonville district. Bull 157, pp 40-41
Pigeon Point. .. Bull 109, pp 108-109, 110-111, 112-113
Pleistocene deposits in parts of Iowa, Nebraska, South Dakota,
and... Bull 158, pp 14-15
Potsdam formation, main absorbing areas for, in Wisconsin, Iowa,
and .. Ann 17, pp 786-787; Mon xxxviii, pp 556-557
Red Lake and vicinity, showing glacial deposits Mon xxv, pp 50-51
Redwood River district Bull 157, pp 42-43
Snake and Kettle rivers, Keweenawan rocks and Potsdam sandstone
along lower portions of Mon v, pp 240-241
southwestern portion, showing outcrops of crystalline rock... Bull 157, pp 8-9
Vicksburg district ... Bull 157, pp 28-29
of Missouri; Illinois ice lobe in western Indiana, Illinois, Iowa, and Mon xxxviii, pp 24-25
disseminated lead-ore subdistrict in southeastern Bull 132, pp 8-9
La Motte mine ... Bull 132, pp 26-27
of Missouri River region, showing factors bearing on prospects for deep
underground waters. .. Ann 17, v, pp 676-677; Ann 19, iv, pp 766-767
of Montana; Bitterroot Forest Reserve, showing mineral-bearing areas... Ann 20, v, pp 392-393
Black Butte ... Ann 18, iii, p 554
Butte and vicinity; economic and structural geology GF 38
Castle Mountain mining district. Bull 139, pp 22-23
Fort Benton quadrangle; historical, economic, and structural geology. GF 55
Judith Mountains ... Ann 18, iii, pp 484-485
Little Belt Mountains quadrangle; historical, economic, and structural
geology ... GF 56
Little Belt Mountains region Ann 20, iii, pp 286-287
Livingston, showing distribution of Cretaceous formations near ... Bull 105, frontispiece
Livingston quadrangle; areal, economic, and structural geology .. GF 1
Missouri River region, outcrops of Dakota sandstone in ... Ann 17, ii, pp 676-677; Ann 19, iv, pp 766-767
portions of Idaho, Wyoming, North and South Dakota, and Bull 86, pp 258-259
Spotted Horse Gulch and vicinity Ann 18, iii, p 526
Three Forks, vicinity of... Bull 110, pp 8-9
Three Forks quadrangle; areal, economic, and structural geology .. GF 24
Yellowstone River, glacial drift in valleys of Bull 104, pp 12-13
of Nebraska ... Ann 19, iv, pp 736-737
Lincoln, elevations of Dakota sandstone in vicinity of WS 12, p 38
Pleistocene deposits in parts of South Dakota, Minnesota, Iowa,
and.. Bull 158, pp 14-15
showing depths to water-bearing formations. WS 6, pp 12-13
west of one hundred and third meridian. Ann 19, iv, pp 738-739
of Nevada ... Bull 86, pp 286-287
Buffalo Springs, showing Lahontan beach and gravel embankments... Mon xi, pp 116-117, 118-119
Map, geologic, of Nevada; Carson Desert, showing Lahontan beach... Mon xi, pp 44-45
of Nevada; Carson Desert, south border of, showing Lahontan beach and
gravel embankments... Mon xi, pp 112-113
Eureka district... Ann 3, pp 240-241; Mon xx, atlas sheet iv
Ruby Hill... Ann 2, pp 22-23; Mon vii, pp 4-5; Mon xx, pp 116-117
Great Basin, northwestern part, showing fault lines... Ann 4, pp 442-443
northwestern part, showing Pleistocene lakes, etc... Ann 4, pp 438-439
Pleistocene lakes in... Ann 8, i, pp 268-269; Mon i, pp 6-7; Mon xi, p 1
Humboldt Lake, showing Lahontan beach and gravel embankment at
west end of... Mon xi, pp 106-107
Lahontan Lake... Ann 3, pp 204-205; Mon xi, pocket
beaches of... Mon xi, pp 44-45, 70-71, 106-107, 112-113
depth of, at highest water stage... Mon xi, pp 32-33
post-Pleistocene fault lines in basin of... Mon xi, pp 274-275
pre-Pleistocene fault lines in basin of... Mon xi, pp 28-29
water area and boundary of hydrographic basin... Mon xi, pp 30-31
water surface at thinolite stage... Mon xi, pp 192-193
Ruby Hill... Ann 2, pp 22-23; Mon vii, pp 4-5; Mon xx, pp 116-117
Steamboat Springs district... Mon xiii, atlas sheet xiv
Virginia and immediate vicinity... Ann 2, pp 292-293
Walker Lake, showing Lahontan beach, etc... Mon xi, pp 70-71
Washoe district... Mon xiii, atlas sheet iv
of New Brunswick. (See Map, geologic, of Canada, New Brunswick.)
of New England and adjacent territory, showing Newark areas... Ann 21, iii, p 31
of New Jersey (greater portion)... Mon ix, pocket
areas underlain by Lower Cretaceous water horizons in... Bull 138, pp 40-41
by Upper Cretaceous and Chesapeake water horizons in... Bull 138,
Cushetunk and Round mountains and vicinity, showing trap... Bull 67, p 63
Delaware and... Bull 67, pp 62-63
Flemington and vicinity, showing extent and position of three trap
masses... Bull 67, p 66
Franklin white limestone, distribution of... Ann 18, ii, p 432
part of area of... Ann 18, ii, pp 430-431
Granton trap, relations of, to Palisade trap... Bull 67, p 54
New Germantown trap region... Bull 67, p 36
New Vernon trap, Long Hill, and the inner side of the terminal hook
of the second Watchung Mountain... Bull 67, pp 34-35
Newark area in New York, Pennsylvania, Maryland, Virginia, and... Bull
85, pp 20-21
Newark, Arlington and Schuyler copper mine near... Bull 67, p 57
northeastern, showing relations of Watchung traps... Bull 67, pp 16-17
Palisade trap near Hoboken, relations of... Bull 67, p 45
relations of, to Granton trap... Bull 67, p 54
parts of New York, Pennsylvania, and... Bull 67, pp 2-3; Bull 85, pp 24-25
Rocky Hill, Tenmile Run Mountain, Lawrence Brook trap, and
vicinity... Bull 67, p 60
Round and Cushetunk mountains and vicinity, showing trap... Bull 67, p 3
Schuyler copper mine north of Newark... Bull 67, p 57
Snake Hill... Bull 67, p 55
of New Mexico, northwestern... Ann 6, pp 128-129
part of Arizona and... Bull 86, pp 326-327
parts of Colorado and... Bull 86, pp 308-309
plateau country of Colorado, Utah, Arizona, and, volcanic areas around
border of... Ann 6, pp 118-119
Map, geologic, of New York; Elizabethtown and Westport, portion ofAnn 19, iii, pp 398-399

of New York; Hampton and Granville, showing situation of slate quar­riesAnn 19, iii, pp 266-267

Lake Champlain region, showing distribution of dikes. Bull 107, frontispiece
Lake Sandford region; location of ore bodiesAnn 19, iii, pp 410-411

Mill Brook, dikes onBull 107, p 40

Newark areas in Pennsylvania, New Jersey, Maryland, Virginia, andBull 85, pp 20-21

parts of New Jersey, Pennsylvania, and ... Bull 67, pp 2-3; Bull 85, pp 24-25

relations of Stockbridge limestone, Hudson River slate, and Rensselaer
grit in parts of Massachusetts andAnn 13, ii, 296-297

Rockland CountyBull 67, p 40

slate belt of Vermont andAnn 19, iii, pp 176-177

Split Rock and vicinity, showing dikesBull 107, p 42

Trembleau Point, near Port Kent, dikes on Bull 107, p 45

Westport and portion of ElizabethtownAnn 19, iii, pp 398-399

of Newfoundland. (See Map geologic, of Canada, Newfoundland.)

of North AmericaAnn 16, i, pp 580-581

Cambrian rocks, distribution of, as shown by surface outcrops, geolog­ic provinces...... Ann 10, i, pp 510-511; Bull 81, pp 358-359

relative amount of sedimentation of, within the typical geologic
provincesAnn 12, i, pp 532-533; Bull 81, pp 364-365

sections illustrating comparative thickness of, in different prov­incesAnn 8, i, pp 558-559

Cambrian time, lower, extent at beginningAnn 12, i, pp 546-547; Bull 81, pp 368-369

Cretaceous formations, distribution ofBull 82, pp 72-73, 268-269

glaciated area..................Mon xxv, pp 110-111; Mon xxxviii, pp 2-3

iron ores, occurrence ofAnn 16, iii, pp 30-31

Lake Agassiz, relation of, to drift-bearing area Mon xxv, p 1

Silurian time, lower (Ordovician), extent at beginningAnn 12, i, pp 566-567

of North Carolina; Kings Mountain, showing occurrence of greisen, etc., nearAnn 16, iii, p 526

Knoxville quadrangle; areal, economic, and structural geologyGF 16

Newark areas in Virginia andBull 85, pp 22-23

phosphate beds............................Bull 46, pp 70-71

of North Dakota; bed-rock surface, altitude ofAnn 17, ii, pp 672-673

Devils and Stump lakes, showing morainesMon xxv, pp 170-171

eastern, increase of temperature in deep wells inAnn 18, iv, pp 608-609

glacial Lake Agassiz, area covered by, at times of formation of Fergus
Falls and Leaf Hills morainesMon xxv, pp 212-213

area covered by, at times of formation of Itasca and Mesabi mo­rainesMon xxv, pp 214-215

drift deposits in southern portion of basin ofMon xxv, pp 132-133

eastern shores of, in Richland and adjoining countiesMon xxv, pp 282-283

Sheyenne delta and contiguous beachesMon xxv, pp 316-317

shores of, near its mouthMon xxv, pp 280-281

southern portion of, altitudes inMon xxv, pp 40-41

showing extent in Gladstone stageMon xxv, pp 462-463

in lower Blanchard stageMon xxv, pp 446-447

in lower Campbell stageMon xxv, pp 408-409

showing moraines and location of other mapsMon xxv, pp 276-277
Map, geologic, of North Dakota; glacial Lake Agassiz, western shores of, from near Wheatland to vicinity of Portland...Mon xxv, pp 222-223 of North Dakota; glacial Lake Agassiz, western shores of, in Grand Forks...County and parts of adjoining counties, showing moraines and deltas...Mon xxv, pp 334-335 glacial Lake Agassiz, western shores of, near the international boundary, showing moraines and deltas...Mon xxv, pp 354-355 glacial Lake Souris, showing moraines and deltas...Mon xxv, pp 268-269 glacial phenomena in South Dakota and...Bull 144, pp 14-15 Lakes Traverse and Big Stone...Mon xxv, pp 280-281 portions of Michigan, Wisconsin, Minnesota, Iowa, South Dakota and...Ann 5, pp 180-181; Mon xix, p 1 portions of South Dakota, Wyoming, Idaho, Montana, and...Bull 86, pp 258-259 Stump and Devils lakes, showing moraines...Mon xxv, pp 170-171 of Northwest Ann 5, pp 180-181; Ann 10, i, pp 348-349; Mon xix, p 1 of Northwest Territory. (See Map geologic, of Canada, Northwest Territory.) of Nova Scotia. (See Map geologic, of Canada, Nova Scotia.) of Oceania, showing occurrence of iron ore...Ann 16, iv, pp 428-429 of Ohio...Ann 18, iv, pp 480-481 Carboniferous formations in bituminous coal regions in West Virginia, Pennsylvania, and, distribution of upper and middle...Bull 65, pp 2-3 drift, relation of, to wells in Indiana and...Bull 65, pp 2-3 glacial boundary in...Bull 58, p 46 Hamilton County, showing situation of glacial terrace in which poleolith was found...Bull 58, p 106 Huntington quadrangle; areal, economic, structural...GF 69 Pleistocene deposits in Indiana and...Ann 18, iv, pp 434-435 portions of Indiana and...Ann 8, ii, pp 520-521 Trenton limestone in Indiana and, topography of...Ann 8, ii, pp 548-549 of Ontario. (See Map geologic, of Canada, Ontario.) of Oregon; Coos Bay coal field, areal geology...Ann 19, iii, pp 326-327 Coos Basin coal field, structural geology...Ann 19, iii, pp 328-329 Great Basin, northwestern part, showing fault lines...Ann 4, pp 442-443 northwestern part, showing Pleistocene lakes, etc...Ann 4, pp 438-439 Klamath Mountains and adjacent regions in California and...Ann 14, ii, pp 414-415 northwestern, showing coal fields and fossil localities...Ann 17, i, pp 448-449 parts of western-central Idaho and...Ann 20, iii, pp 78-79 Roseburg quadrangle; historical, economic, and structural geology...GF 49 of Pennsylvania; Carboniferous formations in bituminous coal regions in West Virginia, Ohio, and, distribution of Upper and Middle...Bull 65, pp 2-3 Catoctin belt in Maryland, Virginia, West Virginia, and...Ann 14, pp 308-309 Tertiary base-level in...Ann 14, ii, pp 376-377 central...Ann 13, ii, pp 234-335 Monterey district...Bull 136, pp 20-21 Newark areas in Virginia, Maryland, New Jersey, New York, and...Bull 85, pp 20-21 parts of New Jersey, New York, and...Bull 67, pp 2-3; Bull 85, pp 24-25 southeastern...Bull 134, pp 8-9 Quebec. (See Map, geologic, of Canada, Quebec.)
Map, geologic, of Rhode Island; Barrington brick-clay area. Ann 17, ii, pp 986-987.

Narragansett Basin; distribution of metamorphosed Carboniferous rocks. Mon xxxiii, p 120.

of Russia, European; phosphate beds. Bull 46, p 112.

of South America, showing occurrence of iron ores in. Ann 16, iii, pp 64-65.

of South Carolina; area of crystal linerocks and location of deep wells in Georgia. Bull 138, pp 208-209.

of South Dakota; "bed rock" surface, altitude of. Ann 17, ii, pp 672-673.

Blackhawk region, showing location of cycad and Atlantosaurus beds. Ann 19, ii, pp 564-565.

Bear Butte and Circus Flats. Ann 21, iii, pp 228-229.

showing distribution of dikes, sills, and laccoliths. Ann 21, iv, pp 562-563.

showing laccolithic intrusives east of Deadwood. Ann 21, iii, pp 182-183.

southern half. Ann 21, iv, pocket.

eastern, showing increase of underground temperature in deep wells. Ann 18, iv, pp 608-609.

showing depths to bed rock. WS 34, pp 14-15.

showing depths to waters at base of till. WS 34, pp 16-17.

glacial Lake Agassiz, area covered by, at time of formation of Fergus Falls and Leaf Hills moraines. Mon xxxv, pp 212-213.

drift deposits in southern portion of basin of. Mon xxxv, pp 132-133.

shores of, near its mouth. Mon xxxv, pp 280-281.

southern portion of, altitudes in. Mon xxxv, pp 40-41.

showing extent in Gladstone stage. Mon xxxv, pp 462-463.

in Lower Campbell stage. Mon xxxv, pp 408-409.

in lower Blanchard stage. Mon xxxv, pp 446-447.

showing moraines and location of other maps. Mon xxxv, pp 276-277.

ice sheet occupying principal moraine in Minnesota and, showing extent of. Bull 158, pp 120-121.

INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.}

Map, geologic, of South Dakota; southeastern part, showing depths to artesian waters .. WS 34, pocket of South Dakota; Sioux Reservation .. Bull 21, at end Turkey Ridge, glacial phenomena near Bull 158, pp 32-33 Union County, showing details of moraine Bull 158, pp 34-35 of Tennessee; Appalachian Basin, relation of Big Stone Gap coal field to central portions of .. Bull 111, pp 12-13 Brickeville quadrangle; areal, economic, and structural geology GF 33 Bristol quadrangle; historical, economic, and structural geology GF 59 Chattanooga district, northern half, showing drainage at close of Cumberland gradation period and relative development and preservation of three peneplains Ann 19, ii, pp 58-59 Chattanooga quadrangle; areal, economic, and structural geology GF 6 Cleveland quadrangle; areal, economic, and structural geology GF 20 faulted district in .. Ann 13, ii, pp 242-243 Estillville quadrangle; areal, economic, and structural geology GF 12 faults and folds in parts of Virginia, Georgia, Alabama, and Ann 13, ii, pp 240-241 Greenville quadrangle, district of close folding in Ann 13, ii, pp 238-239 Kingston quadrangle; areal, economic, and structural geology GF 4 Knoxville quadrangle; areal, economic, and structural geology GF 16 Loudon quadrangle; areal, economic, and structural geology GF 25 McMinnville quadrangle; areal, economic, and structural geology GF 22 Morristown quadrangle; areal, economic, and structural geology GF 27 Perry County phosphate district, showing distribution of black bedded phosphate .. Ann 17, ii, pp 530-531 phosphate districts, showing location of Ann 17, ii, pp 520-521 phosphate region ... Ann 16, iv, pp 610-611 Pikeville quadrangle; areal, economic, and structural geology GF 21 Red Bank and Terrapin creeks, showing location of white phosphate deposits .. Ann 17, ii, pp 542-543 Ringgold quadrangle; areal, economic, and structural geology GF 2 Sewanee quadrangle; areal, economic, and structural geology GF 8 Standingstone quadrangle; historical, economic, and structural geology .. GF 53 Stevenson quadrangle; areal, economic, and structural geology GF 19 Swan Creek phosphate district, showing distribution of black bedded phosphate .. Ann 17, ii, pp 528-529 Terrapin and Red Bank creeks, showing location of white phosphate deposits .. Ann 17, ii, pp 542-543 Wartburg quadrangle; historical, economic, and structural geology GF 40 of Texas ... Ann 21, vii, pp 30, 32; TF 3 artesian areas, by counties .. Ann 21, vii, pp 456, 459, 474, 480, 494, 501, 515, 522, 532, 547, 559, 589, 615, 621 Black and Grand prairies .. Ann 21, vii, pocket Nueces quadrangle; historical geology GF 42 Rio Grande Plain and Edwards Plateau, showing relation of artesian wells, fissure springs, and igneous rocks Ann 18, ii, pp 282-283 Rio Grande region, showing localities where coal is found Bull 164, pp 12-13 Uvalde, alluvial deposits around Ann 18, ii, p 275 Uvalde quadrangle; historical and structural geology GF 64 of United States; areal geology Ann 5, pocket and pp xxviii-xxx, 36-38; Ann 14, i, pp 40-44, 212-213, 226; ii, pocket; Ann 21, i, pocket drift of northeastern, showing relations of driftless area Ann 6, pp 204-205 Columbia and Lafayette formations, areal distribution of Ann 12, i, pocket
Map, geologic, of United States; Eocene, distribution of.........Bull 83, pp 146-147
of United States; fossil plants, geographic distribution of.........Ann 8, i, pp 848-849
glacial Lake Agassiz and adjoining country, altitudes.........Mon xxv, pp 36-37
drainage systems in area of..................................Mon xxv, pp 52-53
formations underlying the drift in area of..................Mon xxv, pp 64-65
glacial region and Pleistocene water bodies of northern and eastern
half..Ann 11, i, pp 188-189
glacial strike of easternAnn 7, pp 154-155
mineral spring resorts, location ofAnn 14, ii, pocket
mineral springs the waters of which are used commercially, location
of..Ann 14, ii, pocket
moraine, terminal, of second Glacial epoch........................Ann 3,
Neocene formations, known distribution ofBull 84, pp 178-179
Newark system, areas occupied byBull 85, pp 2-3
Northeastern States..Bull 86, pp 348-349
plan for ..Ann 8, i, pp 74-76
southeastern; pre-Cambrian and crystalline rocksBull 86, pp 416-417
of Utah..Bull 86, pp 286-287
Fillmore, volcanic district near.................................Mon i, pp 320-321
Fort Duchesne, region about, showing uintaite veinAnn 17, i, p 930
Grand Canyon; Mesozoic terraces, southern portions of the High Pla­
teaus and...Mon ii, atlas sheet xxi
Mesozoic terraces, southwestern portion of, and vicinity of Hurricanec fault..Mon ii, atlas sheet xx
Plateau province, western part of................................Mon ii, atlas sheet iii
western part, showing fault and high plateaus. Mon ii, atlas sheet iii
platform of, and surrounding Mesozoic formations............Mon ii, pp 28-29
Great Basin and its Pleistocene lakes...............................Ann 8, i, pp 268-269; Mon i, pp 6-7; Mon xi, p 1
Lake Bonneville; basalt, showing distribution of.................Mon i, pp 334-335
deformation of Bonneville shoreline................................Mon i, pp 368-369
deformation of Provo shoreline and position of Great Salt Lake on
its plain...Mon i, pp 372-373
extent at date of Provo shoreline................................Mon i, pp 128-129
glaciated districts of Bonneville Basin............................Mon i, pp 374-375
lines of recent faulting.....................................Mon i, pp 352-353
local variations of vertical interval between Bonneville and Provo
shorelines..Mon i, pp 372-373
outlet of, in Idaho..Mon i, pp 174-175
present hydrographic divisions of Bonneville Basin.............Mon i, pp 122-123
Little and Dry Cottonwood canyons, mouth of, showing glacial
moraines and faults..Mon i, pp 346-347
Mercur Basin..Ann 16, ii, pp 370-371
old river bed...Mon i, pp 194-195
showing former connection of Great Salt Lake with Sevier
Lake...Mon i, pp 182-183
Oquirrh Mountains, southern end.........................Ann 16, ii, pp 360-361
Plateau province, strata and eruptive rocks....................Ann 2, pocket
volcanic areas around border of................................Ann 6, pp 118-119
portions of Colorado, Wyoming, and.........................Ann 9, pp 684-685
Tintic district, showing economic and structural geology........GF 65
showing historical geology....................................Ann 19, iii, pocket; GF 65

Bull. 177—01——31
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Map, geologic, of Utah; Uinta Basin of Colorado and Ann 17, i, pocket of Utah; White River uintaite (gideonite) region Ann 17, i, pp 934-935 of Vermont; Bird Mountain region Ann 20, ii, pp 16-17 Burlington, showing dikes and stratigraphy near Bull 107, pp 16-17 Castleton and Poultney, showing situation of slate quarries Ann 19, iii, pp 268-269

Clarendon .. Ann 14, ii, pp 534-535 Danby Township................................. Ann 14, ii, pp 544-545 Lake Champlain region, showing distribution of dikes........ Bull 107, frontispiece Nashs Point, Shelburne, dikes at Bull 107, p 51

Northfield Mountain, showing Bernardston series of metamorphosed upper Devonian rocks and faulted syncline of Silurian schist..................... Mon xxix, pp 260-261 Poultney and Pawlet, showing slate quarries........ Ann 19, iii, pp 266-267 Sandbar Ridge, South Hero, dikes near Bull 107, p 48 slate belt of New York and Ann 19, iii, pp 176-177

Sandbar Ridge, South Hero, dikes near Bull 107, p 48 slate belt of New York and Ann 19, iii, pp 176-177

Wings Point, dikes at.................................. Bull 107, p 53

Tertiary base-level in Ann 14, ii, pp 376-377 Eocene strata in Delaware, Maryland, and Estillville quadrangle; areal, economic, and structural geology GF 12 faults and folds in parts of Tennessee, Georgia, Alabama, and Ann 13, ii, pp 240-241

Map, geologic, of Washington; Mount Rainier, glacier system ofAnn 18, ii, pp 362-363

of Washington; Tacoma quadrangle; historical geologyGF 54

Wilkeson coal field, showing location of minesAnn 18, iii, pocket

Wilkeson-Carbonado district, showing structure of coal bedsAnn 18, iii, pocket; GF 54

of West Virginia; Appalachian Basin, relation of Big Stone Gap coal field
to central portion ofBull 111, pp 12-13

Buckhannon quadrangle; areal, economic, and structural geologyGF 34

Carboniferous formations in bituminous coal regions in Pennsylvania,
Ohio, and; distribution of upper and middleBull 65, pp 2-3

Catoctin belt in Pennsylvania, Maryland, Virginia, andAnn 14, ii, pp 308-309

Tertiary base-level inAnn 14, ii, pp 376-377

Franklin quadrangle; areal, economic, and structural geologyGF 32

Harpers Ferry quadrangle; areal, economic, and structural geologyGF 10

Huntingdon quadrangle; areal, economic, and structural geologyGF 69

Monterey quadrangle; historical, economic, and structural geologyGF 61

Piedmont quadrangle; areal, economic, and structural geologyGF 28

Pocahontas quadrangle; areal, economic, and structural geologyGF 26

Staunton quadrangle; areal, economic, and structural geologyGF 14

Tazewell quadrangle; areal, economic, and structural geologyGF 44

of Wisconsin; Chippewa River, glacial flood plain ofAnn 6, pp 308-309

drift currents adjacent to driftless areaAnn 6, pp 312-313

driftless region of Upper Mississippi and environsAnn 6, pp 220-221, 258-259

Gogebic range, showing location of iron-ore minesAnn 17, iii, pp 32-33

Green Bay loop of terminal moraine of second Glacial epochAnn 3, pp 316-317

Lake Superior regionAnn 3, pp 92-93; Ann 5, pp 180-181; Ann 10, i, pp 348-349; Ann 19, iii, pp 22-23; Ann 21, iii, pp 330-331; Mon v, pp 24-25; Mon xix, p 1; Mon xxxvi, pp 10-11; Bull 86, pp 52-53

iron-ore districts, location ofAnn 17, iii, pp 28-29

Keweenawan trough, structure and extent ofAnn 3, pp 172-173; Mon v, pp 410-411

land surface, ante-Potsdam, character ofAnn 7, pp 404-405

Menominee iron regionBull 62, pp 24-25

Menominee range, showing location of iron-ore minesAnn 17, iii, pp 30-31

Montreal River, west branch of, exposures atMon xix, pp 178-179

Numakagon Lake, region between Ontonagon River, Michigan, andAnn 3, pp 138-139; Mon v, pp 224-225

Penokee Gap, exposures atMon xix, pp 520-521

Penokee range and surrounding region (reproduction of Whittlesey's)Mon xix, pp 20-21

Penokee regionAnn 10, i, pp 350-351; Mon xix, pp 2-3

Penokee-Gogebic iron regionAnn 7, pp 422-423

Potato River, exposures atMon xix, pp 172-173

Potsdam formation, main absorbing area for, in Iowa, Minnesota, andAnn 17, ii, pp 786-787; Mon xxxviii, pp 556-557

St. Croix Valley, upper, exposures of Keweenawan rocks inMon v, pp 246-247

St. Peter sandstone, main absorbing areas for, in Illinois andAnn 17, ii, pp 780-787; Mon xxxviii, pp 556-557

Tylers Fork, Penokee district, rock exposures atMon xix, pp 177-178

of world; quicksilver deposits, distribution ofAnn 8, ii, pp 968-969; Mon xiii, pp 14-15
Map, geologic, of Wyoming; Bear River formation in Utah, Idaho, and... Bull 128, pp 28-29

of Wyoming; Black Hills... Ann 19, ii, pp 538-539; Ann 21, iv, pp 498-499

Black Hills, Hay Creek region... Ann 19, ii, pp 566-567

showing distribution of water in Dakota and underlying sandstones... Ann 21, iv, pp 566-567

southern half... Ann 21, iv, pocket

Cambia coal field... Ann 21, iv, pp 582-583

Canyon quadrangle; areal geology... GF 30

Converse County, showing localities where skulls of Ceratopsidae have been discovered... Mon xxvii, p 478

Crandall Basin, Absaroka Range... Mon xxxii, ii, pp 216-217

Crandall quadrangle; historical geology... GF 52

Gallatin quadrangle; areal geology... GF 52

Ishawooc quadrangle; historical geology... GF 52

Lake quadrangle; areal geology... GF 30

Missouri River region, outcrop of Dakota sandstone in... Ann 17, ii, pp 676-677; Ann 19, iv, pp 766-767

Newcastle, vicinity of, showing relations of oil sand... Ann 21, iv, pp 588-589

northwestern... Bull 119, frontispiece

Old Woman Creek, anticlinal area on... Ann 21, iv, pp 556-557

portions of Colorado, Utah, and... Ann 9, pp 684-685

portions of Idaho, Montana, North and South Dakota, and... Bull 86, pp 258-259

Shoshone quadrangle; areal geology... GF 30

Yellowstone Park; Electric Peak and Sepulchre Mountain... Mon xxxii, ii, pp 96-97

Gallatin Range... Mon xxxii, ii, pp 56-57

Sepulchre Mountain, region of... Ann 12, i, pp 604-605

Teton Range, northern end of... Mon xxxii, ii, pp 150-151

(See also above, Canyon, Gallatin, Lake, and Shoshone quadrangles.)

Map, topographic, description of... TF 1, p 1; TF 2, p 1

of Alabama; atlas sheets covering areas in... (See p 67 of this bulletin.)

Gadsden quadrangle... GF 35

Mobile Bay... Ann 13, ii, pp 110-111

Stevenson quadrangle... GF 19

of Alaska... Ann 13, ii, pp 2-3;

Ann 18, ii, pp 100-101; Ann 20, vii, pp 42-43, 270-271, 346-347; Ann 21, ii, pp 400-401; Alaska (1); Alaska (2)

Admiralty Island coal field... Ann 17, i, pp 776-777

Alexander Archipelago, part of... Ann 17, i, pp 772-773

Birch Creek, portion of... Ann 18, iii, pp 340-341

Chandalar and Koyukuk rivers... Ann 21, ii, pp 448

central... Ann 20, vii, pp 430-431

Cook Inlet... Ann 20, vii, pp 6-7

Cook Inlet and vicinity... Ann 17, i, pp 784-785, 786-787

Copper River and adjacent territory... Ann 20, vii, pocket

Copper River and Klutena Lake... Alaska (2)

Delta and Matanuska rivers... Alaska (2)

Fortymile Creek... Ann 18, iii, pp 316-317

Fortymile quadrangle... Alaska (2)

showing classification of lands... Ann 21, v, atlas

Herendeen Bay coal field... Ann 17, i, pp 806-807

Kaneektok River... Alaska (2)
Map, topographic, of Alaska; Kletsan copper deposits .. Ann 21, ii, p 380
of Alaska; Klutena Lake and Copper River ... Alaska (2)
Koyukuk and Chandlar rivers .. Ann 21, ii, p 448
Kuskokwim River .. Alaska (2)
Kuskokwim River and headwaters of Skwenta River .. Alaska (2)
Lynn Canal, via headwaters of White and Tanana rivers, to Eagle City, route Ann 21, ii, p 380
Matanuska and Delta rivers ... Alaska (2)
Mount Saint Elias region ... Ann 13, ii, pp 6-7
Nome Cape, Seward Peninsula, and adjacent region ... None
Porcupine gold district, location of .. Ann 21, ii, p 374
Prince William Sound ... Ann 20, vii, pocket; Alaska (2)
Pyramid Harbor to Eagle City, route ... Ann 21, ii, p 338
Resurrection Bay to the Tanana ... Ann 20, vii, pp 274-275
Seward Peninsula, Nome Cape, and adjacent region .. None
Shelikof Strait and vicinity ... Ann 17, i, pp 800-801
Shumagin Islands, part of .. Ann 17, i, pp 808-809
Skwentna and Kuskokwim rivers, headwaters of .. Alaska (2)
southern portion, showing altitude of recent physiographic features Ann 20, vii, pp 296-297
Sushitua River and adjacent territory ... Alaska (2)
Tanana River, from Resurrection Bay to ... Ann 20, vii, pp 274-275
White and Tanana river basins, portions of .. Ann 20, vii, pp 444-445; Alaska (2)
Yukon-Kuskokwim water route .. Ann 20, vii, pp 98-99
Yukon, Lower, and vicinity .. Ann 18, iii, pp 190-191
of Arizona; atlas sheets covering areas in. (See p 68 of this bulletin.)
Gila River, basin of, showing hypsography ... Ann 12, ii, pp 292-298
valleys of Salt River and, showing existing and proposed irrigation works Ann 18, iv, pp 718-719; WS 2, pp 96-97
Grand Canyon of the Colorado, portion of ... Mon xxii, pp 116-117
Phenix, vicinity of, showing canal system ... Ann 13, iii, pp 174-175
Salt River, valley of, showing canals constructed and proposed Ann 18, iv, pp 720-721; WS 2, pp 92-93
valleys of Gila River and, showing existing and proposed irrigation works Ann 18, iv, pp 718-719; WS 2, pp 96-97
of Arkansas; atlas sheets covering areas in. (See p 68 of this bulletin.)
Camden coal field ... Ann 21, ii, pp 320-321, 322-323
Marshall quadrangle .. TF 2
Poteau Mountain quadrangle ... TF 2
of Atlantic slope, middle, showing divides and fall line Ann 7, pp 548-549
stereogram of ... Ann 7, pp 586-587
of California; atlas sheets covering areas in. (See pp 68-70 of this bulletin.)
Banner Hill district .. GF 29
Bidwell Bar quadrangle ... GF 43
Big Trees quadrangle .. GF 51
showing classification of lands .. Ann 21, v, atlas sheet
boundaries between Sierra Nevada, Cascade, and Coast ranges and the
Klamath Mountains .. Ann 14, ii, pp 404-405
Cache Creek Basin ... WS 45, p 11
Carson Valley .. Mon iv, pp 66-67
Clear Lake district ... Mon xiii, atlas sheet v
Clear Lake outlet .. WS 45, pp 40-41
Colfax quadrangle ... GF 66
Map, topographic, of California; Cucamonga quadrangle TF 2
of California; Dardanelles quadrangle, showing classification of lands... Ann 21, v, atlas
Downieville quadrangle ... GF 37
Grass Valley district .. GF 29
Great Eastern quicksilver district .. Mon xiii, pp 362-363
Jackson quadrangle .. GF 11
showing classification of lands... Ann 21, v, atlas
Kaweah and Tule rivers, canals from WS 17, pp 78-79; WS 18, pp 10-11
Kern River delta .. WS 17, pp 36-37
Kings River, Lower, canal system ... WS 18, pp 58-59
Lahontan Basin, land classification .. Mon xi, pp 36-37
springs in, location of .. Mon xi, pp 48-49
Lassen Peak quadrangle ... GF 15
Markleeville quadrangle, showing classification of lands............... Ann 21, v, atlas
Marysville quadrangle ... GF 17
Mono Lake, drainage basin of .. Ann 8, i, pp 272-273
showing soundings and sublacustral contours Ann 8, i, pp 286-287
Mother Lode district ... GF 63
Mount Lyell Glacier .. Ann 5, pp 324-325
Mount Lyell quadrangle, showing classification of lands................ Ann 21, v, atlas
Mount Shasta .. TF 1
Mount Shasta district ... Ann 5, pp 330-331
Nevada City district ... GF 29
Placerville quadrangle .. GF 3
showing classification of lands... Ann 21, v, atlas
Placerville route .. Mon iv, pp 8-10
Pyramid Peak quadrangle .. GF 31
showing classification of lands... Ann 21, v, atlas
quicksilver mines, showing distribution of .. Ann 8, ii, pp 966-967
relief ... Ann 19, iv, pp 706-707
reservoir sites in High Sierras ... Ann 11, ii, pp 152-153
rivers, the principal .. WS 17, pp 16-17
Sacramento quadrangle .. GF 5
San Bernardino Forest Reserve, showing distribution of species......... Ann 20, v, pp 432-433
San Diego, vicinity of, showing sources of water supply................ Ann 18, iv, pp 706-707
San Francisco Bay, entrance to .. Ann 13, ii, pp 200-201
San Gabriel Forest Reserve, showing land classification Ann 20, v, pp 414-415
San Jacinto Forest Reserve, showing distribution of species........ Ann 20, v, pp 458-459
San Jacinto quadrangle, showing classification of lands................. Ann 20, v, pp 456-457
San Joaquin Valley, east side of, from Chowchilla River to Merced River ... WS 19, pp 32-33
east side of, from Kings River to Fresno River WS 18, pp 38-39
Smartsville quadrangle .. GF 18
Sonora quadrangle .. GF 41
showing classification of lands... Ann 21, v, atlas
southern, showing limits of forest reserves .. Ann 19, v, pp 352-353
Truckee quadrangle .. GF 39
Tule and Kaweah rivers, canals from WS 17, pp 78-79; WS 18, pp 10-11
Yosemite quadrangle, showing classification of lands Ann 21, v, atlas
Map, topographic, of Canada; Manitoba; glacial Lake Agassiz, southern portion of, showing areas of forest and prairie. Mon xxv, pp 604-605
of Canada; Manitoba; Red River Valley, showing distribution and depths of artesian wells. Mon xxv, pp 522-523
Ontario; Rainy Lake and Lake of the Woods, region near. Mon xxv, pp 48-49
of Central America. Ann 20, iv, pp 586-587
of Colorado. Ann 5, p 250
Anthracite quadrangle. GF 9
Arkansas River Basin. Ann 13, iii, pocket
showing reservoir sites segregated. Ann 11, ii, pp 134-135
Aspen district. Mon xxxi, atlas sheet v
Aspen quadrangle. Mon xxxi, atlas sheet iv
Aspen and vicinity. Mon xxxi, atlas sheet viii
Atlas sheets covering areas in. (See pp 70-71 of this bulletin.)
Battleship Mesa Forest Reserve. Ann 20, v, atlas
Central. Mon xii, atlas sheet iv
Crested Butte quadrangle. GF 9
Cripple Creek district, showing claims. Ann 16, ii, pp 166-167
Del Norte, showing canal system near. Ann 13, iii, p 173
Denver Basin. Mon xxvii, pocket
Elk Mountains, portion of. Mon xxii, pp 124-125
Elmoro quadrangle, showing artesian water areas. GF 58
Great Plains, portion of. Mon xxii, pp 112-113
Hunter Park district. Mon xxxi, atlas sheet xvi
La Plata quadrangle. GF 60
Lenado district. Mon xii, atlas sheets xi and xii
Mesa de Maya. TF 3, illustration sheet viii
Montezuma Valley, canals and irrigated lands in. Ann 20, iv, pp 418-419
Mosquito Range. Mon xii, atlas sheet v parts of Kansas, Nebraska, and, showing depth of wells. Ann 16, ii, pp 544-545
Pikes Peak, Plum Creek, and South Platte forest reserves, showing burned areas, density of forest, and range of principal timber trees. Ann 20, v, atlas
Pikes Peak quadrangle. GF 7
Platte Basin, land classification. Ann 13, iii, pp 74-75
Pueblo quadrangle, showing artesian areas. GF 36
Rio Grande Basin, showing altitudes. Ann 12, ii, pp 244-245
Silver Cliff and Rosita Hills. Ann 17, ii, pocket
Telluride quadrangle. GF 57
Tennmile district. GF 48
Tourtelotte Park district. Mon xxxi, atlas sheet xi
Walsenburg quadrangle. GF 68
West Denver quadrangle. TF 2
White River Plateau Timber Reserve. Ann 20, v, atlas
of Connecticut; atlas sheets covering areas in. (See p 71 of this bulletin.)
Holyoke quadrangle. GF 50
Long Island Sound, east end of. Ann 13, ii, pp 120-121
Orenaug Valley. Ann 21, iii, pp 138-139
Pomperaug Valley. Ann 21, iii, pp 138-139
of Costa Rica, portions of Nicaragua and. Ann 20, iv, pp 592-593
of Delaware; atlas sheets covering areas in. (See p 72 of this bulletin.)
fall line. Ann 7, pp 548-549
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Map, topographic, of District of Columbia ... GF 70
of Florida; atlas sheets covering areas in. (See p 72 of this bulletin.)
Caesars Creek, delta at ... Ann 13, ii, pp 186-187
Cape Canaveral .. Ann 13, ii, pp 126-127
Marquesas Keys .. Ann 13, ii, pp 142-143
Turtle Harbor ... Ann 13, ii, pp 140-141
of Georgia; atlas sheets covering areas in. (See pp 72-73 of this bulletin.)
drainage basins ... Ann 18, iv, pp 70-71
Jekyl Island and vicinity .. Ann 13, ii, pp 184-185
Ringgold quadrangle .. GF 2
Stevenson quadrangle .. GF 19
of Great Basin ... Ann 3, pp 16-17
of Great Plains ... Ann 16, ii, pp 542-543
of Hawaiian Islands .. Ann 4, pp 80-81
Hawaii ... Ann 4, pp 92-93
Kilauea, crater of .. Ann 4, pp 114-115, 118-119
Mokuaweoweo, crater of ... Ann 4, pp 140-141
Maui ... Ann 4, pp 198-199
Haleakala, caldera of .. Ann 4, pp 206-207
Oahu ... Ann 4, pp 212-213
of High Plains ... Ann 21, iv, pp 608-609
of Idaho ... Ann 5, p 250; Ann 16, ii, pp 216-217
Atlanta district ... Ann 16, ii, pp 254-255
atlas sheets covering areas in. (See p 73 of this bulletin.)
Bear Creek district .. Ann 16, ii, p 251
Bear River Basin ... Ann 12, ii, pp 326-327
Bitterroot Forest Reserves, burned areas classification of lands Ann 20, v, pp 384-385
distribution of alpine fir ... Ann 20, v, pp 332-333
of alpine hemlock and Lyall larch .. Ann 20, v, pp 362-363
of Engelmann spruce .. Ann 20, v, pp 340-341
of great silver fir .. Ann 20, v, pp 366-367
of lodgepole pine .. Ann 20, v, pp 348-349
of mountain white pine .. Ann 20, v, pp 356-357
of Pacific arbor vitae .. Ann 20, v, pp 386-387
of red fir .. Ann 20, v, pp 358-359
of western tamarack .. Ann 20, v, pp 368-369
of western yellow and white-bark pine Ann 20, v, pp 350-351
eastern part, areas burned within last thirty-five years Ann 19, v, pp 258-259
density of merchantable timber .. Ann 19, v, pp 254-255
distribution of principal timber species Ann 19, v, pp 256-257
Boise quadrangle .. GF 45
boundary between Montana and ... Bull 170, pp 66-67
Hamilton quadrangle, showing classification of lands Ann 21, v, atlas
Priest River Forest Reserve, showing land classification, density of merchantable timber, and distribution of principal timber species .. Ann 19, v, atlas
Sandpoint quadrangle, showing classification of lands Ann 21, v, atlas
Snake River Basin, upper, showing reservoir and canal sites Ann 11, ii, pp 190-191
Wood River district ... Ann 16, ii, pp 264-265
of Illinois ... Ann 17, ii, pp 704-705; Mon xxxviii, pp 6-7
atlas sheets covering areas in. (See pp 73-74 of this bulletin.)
Map, topographic, of Illinois; Danville quadrangle.......................... GF 67
of Illinois; Fulton, vicinity of.. Mon xxxviii, pocket
Ottawa, vicinity of... Mon xxxviii, pp 508-509
wells, distribution of.. Mon xxxviii, pp 544-545
of India; irrigation canals.. Ann 12, n, pp 374-375
Punjab; Sirhind canal system.. Ann 12, n, pp 448-449
Vigay Valley, showing projected irrigation................................. Ann 12, n, pp 520-521
of Indian Territory.. Bull 175, p 16
atlas sheets covering areas in. (See p 74 of this bulletin.)

Ouachita Mountains..TF 3, sheet vi
Poteau Mountain quadrangle.. TF 2
Choctaw coal field...Ann 21, ii, p 280
Choctaw Nation...Ann 21, ii, p 284
woodland, extent and distribution of..Ann 21, v, atlas

of Indiana...Ann 18, iv, pp 426-427
atlas sheets covering areas in. (See p 74 of this bulletin.)

Danville quadrangle..GF 67
western...Ann 17, ii, pp 704-705; Mon xxxviii, pp 6-7

of Iowa; atlas sheets covering areas in. (See pp 74-75 of this bulletin.)
northeastern (relief)...Ann 11, i, pp 200-201
(stereogram)..Ann 11, i, pp 198-199
drainage basins..Ann 11, i, pp 358-359
hypsography...Ann 11, i, pocket
topographic areas..Ann 11, i, pp 360, 361

of Kansas..Bull 154, p 1
atlas sheets covering areas in. (See pp 75-77 of this bulletin.)
Barber County, portion of..TF 3, sheet vii
Caldwell quadrangle..TF 1
Fort Riley Indian Reservation, vicinity of.................................Bull 137, pp 10-11
Great Plains, portion of...Mon xxii, pp 112-113
Meade artesian basin..Ann 21, iv, pp 724-725
parts of Nebraska, Colorado, and, showing depths of wells.........Ann 16, ii, pp 544-545

southwestern, showing depth of ground water............................WS 6, pp 44-45
territory of..Bull 154, pp 8-9

of Kentucky; atlas sheets covering areas in. (See p 77 of this bulletin.)
Estillville quadrangle..GF 12
London quadrangle...GF 47
Richmond quadrangle...GF 46

of Louisiana; atlas sheets covering areas in. (See pp 77-78 of this bulletin.)
Donaldsonville quadrangle..TF 1
Mississippi River, mouth of...Ann 13, ii, pp 106-107
ridge of...Mon xxii, pp 120-121
of Maine; Androscoggin, Presumpscot, and Saco rivers, drainage basins of...Ann 19, iv, pp 84-85

Aroostook, Allagash, and Penobscot basins, adjacent portions of...Ann 19, iv, pp 58-59

atlas sheets covering areas in. (See pp 79-79 of this bulletin.)
Boothbay quadrangle..TF 1
Casco Bay..Ann 13, ii, pp 116-117
Kennebec and Penobscot rivers..Ann 19, iv, pp 52-53
St. Croix River, drainage basin of..Ann 19, iv, p 44

of Maryland; atlas sheets covering areas in. (See pp 79-80 of this bulletin.)
fall line...Ann 7, pp 548-549
Map, topographic, of Maryland; Fredericksburg quadrangle GF 13
of Maryland; Harpers Ferry quadrangle GF 10
Nomini quadrangle, showing artesian areas GF 23
Piedmont quadrangle .. GF 28
Washington (D. C.) quadrangle GF 70
of Massachusetts .. Ann 8, i, pp 98-99
atlas sheets covering areas in. (See pp 80-81 of this bulletin.)
Boston Harbor Ann 13, ii, pp 144-145
Chatham Harbor Ann 13, ii, pp 122-123
Dalton, vicinity of, showing artesian wells Bull 159, pp 90-91
Holyoke quadrangle .. GF 50
Provincetown Harbor Ann 13, ii, pp 138-139
of Michigan; atlas sheets covering areas in. (See p 81 of this bulletin.)
Crystal Falls district and portion of Marquette district . Mon xxxvi, pocket Lake Michigan, portion of shore of, illustrating tendency of wave action to simplify shore contours Ann 5, pp 102-103
Lower Peninsula WS 30, pp 16-17; WS 31, pp 10-11
Marquette district, portion of, and Crystal Falls district. Mon xxxvi, pocket distribution of alpine fir Ann 20, v, pp 332-333
distribution of great silver fir Ann 20, v, pp 366-367
distribution of mountain white pine Ann 20, v, pp 356-357
distribution of Pacific arbor vitae Ann 20, v, pp 386-387
distribution of red fir Ann 20, v, pp 355-359
distribution of western tamarack Ann 20, v, pp 368-369
distribution of western yellow and white-bark pine...... Ann 20, v, pp 350-351
of great silver fir...........................Ann 20, v, pp 366-367
of Engelmann spruce Ann 20, v, pp 340-341
of classification of lands Ann 20, v, pp 362-363
of mountain white pine Ann 20, v, pp 356-357
of Pacific arbor vitae Ann 20, v, pp 386-387
of red fir Ann 20, v, pp 355-359
of western tamarack Ann 20, v, pp 368-369
of western yellow and white-bark pine...... Ann 20, v, pp 350-351
western part, areas burned within the last thirty-five years ... Ann 19, v, pp 258-259
density of merchantable timber Ann 19, v, pp 254-255
distribution of principal timber species Ann 19, v, pp 256-257
boundary between Idaho and ... Bull 170, pp 66-67
Map, topographic, of Montana; Butte district ...GF 38
of Montana; Castle Mountain district ... Bull 139, pp 16-17
Flathead Forest Reserve, classification of lands Ann 20, v, pp 246-247
distribution of Engelmann spruce and balsam Ann 20, v, pp 260-261
of larch and mountain larch .. Ann 20, v, pp 264-265
of red fir and lodgepole pine .. Ann 20, v, pp 256-257
of yellow, white, nut, and limber pine Ann 20, v, pp 270-271
Fort Benton quadrangle .. GF 55
Judith Mountains and vicinity .. Ann 18, iii, pp 446-447
Hamilton quadrangle, showing classification of lands Ann 21, v, atlas
Lewis and Clarke Forest Reserve, showing distribution of cedar, hem-
lock, white pine, and silver fir .. Ann 21, v, pp 48-49
showing distribution of mountain larch, Western larch, and Pat-
ton hemlock Ann 21, v, pp 70-71
showing distribution of yellow pine, white-bark pine, and limber
pine Ann 21, v, pp 70-71
showing land classification ... Ann 21, v, atlas
Little Belt Mountain region .. Ann 20, iii, pp 270-271
Little Belt Mountains quadrangle .. GF 56
Livingston quadrangle ... GF 1
Missouri Basin, showing land classification Ann 13, iii, pp 44-45
Neihart district ... Ann 20, iii, p 403
Sun River system; reservoirs and canal lines Ann 11, ii, pp 120-121; Ann 13, iii, pp 372-373
Three Forks quadrangle ... GF 24
Yellowstone Basin, showing land classification Ann 13, iii, pp 64-65
of Nebraska ... Ann 19, iv, pp 728-729; WS 12, frontispiece
atlas sheets covering areas in. (See pp 83-84 of this bulletin.)
Lexington quadrangle .. TF 2
Niobrara River, White River, and Hot Creek basins, showing areas
irrigated ... Ann 19, iv, pp 774-775
northwestern, showing distribution of timber Ann 19, v, pp 388-389
Omaha and vicinity, showing relations of artesian water Ann 19, iv, pp 774-775
Platte Basin, land classification ... Ann 13, iii, pp 74-75
portion of southeastern, showing depths of water-bearing formations. WS 12, pp 32-33
portions of Colorado, Kansas; and, showing depth of wells Ann 16, ii, pp 544-545
of South Dakota, Nebraska, and ... Ann 21, iv, pp 496-497
relief .. Ann 19, iv, pp 774-775
west of the 103d meridian, irrigated areas Ann 19, iv, pp 772-773
underground waters, distribution of .. Ann 19, iv, pp 764-765
western, showing distribution of timber Ann 19, iv, pp 782-783
of Nevada; atlas sheets covering areas in. (See p 84 of this bulletin.)
Carson Desert ... Mon xi, pp 44-45
Carson Valley ... Mon iv, pp 66-67
Eureka district ... Mon xx, atlas sheet iii
Lahontan region, land classification ... Mon xi, pp 36-37
Lahontan Basin; springs, location of .. Mon xi, pp 48-49
Lake Mono, drainage basin of ... Ann 8, i, pp 272-273
Markleeville quadrangle, showing classification of lands Ann 21, v, atlas
Placerville route ... Mon iv, pp 8-10
Pyramid and Winnemucca lakes .. Mon xi, pp 56-57
Map, topographic, of Nevada; reservoir sites in High Sierras. Ann 11, ii, pp 152-153
of Nevada; Soda lakes near Ragtown. Mon xi, pp 74-75
Washoe district. Mon iii, atlas sheet iii; Mon iv, pp 352-353
Winnemucca and Pyramid lakes. Mon xi, pp 56-57
of New England, showing river systems. Ann 19, iv, pp 34-35
of New Hampshire; atlas sheets covering areas in. (See p 84 of this bulletin.)
of New Jersey; Atlantic City quadrangle. TF 1
atlas sheets covering areas in. (See pp 85-86 of this bulletin.)
fall line. Ann 7, pp 548-549
surveys, showing progress of. Ann 6, pp 6-7; Ann 7, pp 48-49; Ann 8, i, pp 100-101
of New Mexico; atlas sheets covering areas in. (See pp 86-87 of this bulletin.)
Mesilla Valley. WS 10, pp 10-11
Mount Taylor quadrangle. TF 2
Rio Grande Basin, showing altitudes. Ann 12, ii, pp 244-245
Santa Fe, vicinity of. Mon xxii, pp 116-117; TF 3, sheet vii
of New York; atlas sheets covering areas in. (See pp 87-90 of this bulletin.)
Elizabethtown quadrangle and portion of the Port Henry quadrangle,
showing relief. Ann 19, ii, pp 400-401
Genesee River, drainage area of. WS 24, pp 24-25
Long Island Sound, east end of. Ann 13, ii, pp 120-121
Schroon River, drainage area of. WS 24, pp 44-45
of Nicaragua. Ann 20, iv, pp 568-569
Costa Rica and portions of. Ann 20, iv, pp 592-593
of North Carolina; atlas sheets covering areas in. (See p 90 of this bulletin.)
coast region of South Carolina and. Ann 13, ii, pp 148-149
Dismal Swamp district. Ann 10, i, pp 314-315
drainage basins in South Carolina and. Ann 18, iv, pp 48-49
Knoxville quadrangle. GF 16
Norfolk quadrangle. TF 2
of North Dakota; artesian basin in South Dakota and, showing depth of
wells. Ann 17, ii, pp 610-611
atlas sheets covering areas in. (See pp 90-91 of this bulletin.)
Fargo quadrangle. TF 1
Lake Agassiz, southern portion of, showing areas of forests and
prairie. Mon xxv, pp 604-605
portion of, showing altitudes. Ann 17, ii, pp 612-613
portions of South Dakota and, showing depths to top of principal arte­
sian flows. Ann 17, ii, pp 666-667
showing pressure in wells. Ann 17, ii, pp 668-669, 670-671
showing rates of increase of underground temperatures in deep
wells. Ann 18, iv, pp 608-609
showing relative amounts of saline ingredients in some well
waters. Ann 17, ii, pp 674-675
Red River Valley, showing distribution and depths of artesian
wells. Mon xxv, pp 522-523
wells, relative volumes of flows from. Ann 18, iv, pp 614-615
of Ohio. Ann 18, iv, pp 426-427
atlas sheets covering areas in. (See p 91 of this bulletin.)
Huntington quadrangle. GF 69
of Oklahoma; Kingfisher quadrangle. (See p 91 of this bulletin.)
of Oregon; Ashland quadrangle, showing classification of lands. Ann 21, v, atlas
atlas sheets covering areas in. (See p 91 of this bulletin.)
boundaries between Sierra Nevada, Cascade, and Coast ranges and
Klamath Mountains. Ann 14, ii, pp 404-405
Map, topographic, of Oregon; Coos Bay quadrangle, showing classification of lands..........................Ann 21, v, atlas
of Oregon; Crater Lake district..TF 2
Klamath quadrangle, showing classification of lands.........Ann 21, v, atlas
northwestern...Ann 17, i, pp 448-449
Port Orford quadrangle, showing classification of lands.......Ann 21, v, atlas
Roseburg quadrangle..GF 49
showing classification of lands..................................Ann 21, v, atlas
southern, part of, showing distribution of lodgepole pine....Ann 21, v, pp 440-441
part of, showing distribution of red fir and alpine hemlock...Ann 21, v, pp 248-249
showing distribution of sugar pine, noble fir, western hemlock, and incense cedar..................Ann 21, v, pp 240-241
showing distribution of white fir...............................Ann 21, v, pp 284-285
showing distribution of yellow pine and white-bark pine....Ann 21, v, pp 320-321
western, density of merchantable timber......................Ann 19, v, atlas
of Pennsylvania; atlas sheets covering areas in. (See p 92 of this bulletin.)
fall line...Ann 7, pp 548-549
Harrisburg quadrangle..TF 2
Pottsville, vicinity of..Mon xxn, pp 118-119
southern anthracite coal field....................................Ann 20, n, pp 918-919
of Philippine Islands...Ann 21, in, pp 494-495
(hydrographic)...Ann 21, in, pp 494-495
of Porto Rico...WS 32, pp 10-11
crop lands, showing distribution of...............................WS 32, pp 38-39
of Rhode Island; atlas sheets covering areas in. (See p 93 of this bulletin.)
of South Carolina; atlas sheets covering areas in. (See p 93 of this bulletin.)
Beaufort district..Ann 13, n, pp 160-161
Charleston...Ann 9, pp 230-231
in 1704...Ann 9, pp 226-227
coast region of North Carolina and.........................Ann 13, n, pp 148-149
drainage basins in North Carolina and....................Ann 18, iv, pp 48-49
of South Dakota; artesian basin in North Dakota and, showing depth of
wells...Ann 17, n, pp 610-611
atlas sheets covering areas in. (See pp 93-94 of this bulletin.)
Black Hills, showing distribution of forests..................Ann 21, iv, pp 596-597
Black Hills, northern..Ann 21, iv, pp 174-175
Black Hills Forest Reserve; Rapid, Sundance, Deadwood, Hermosa, and Harney Peak quadrangles, showing land classification and density of standing timber.........Ann 19, v, atlas
Cheyenne River, irrigation canals along......................Ann 21, iv, pp 578-579
Dakota artesian basin, showing elevation of bed-rock surface..........................Ann 18, iv, pp 610-611
Deadwood quadrangle; land classification and standing timber........Ann 19, v, atlas
eastern...WS 34, pp 10-11
Harney Peak quadrangle; land classification and standing timber........Ann 19, v, atlas
Hermosa quadrangle; land classification and density of standing timber..........................Ann 19, v, atlas
Minnekahta region..Ann 19, n, pp 552-553
Newcastle quadrangle, showing classification of lands........Ann 21, v, atlas
Map, topographic, of South Dakota; portion of, showing localities at which artesian-well waters have been employed for irrigation Ann 17, ii, pp 678-679
of South Dakota; portions of North Dakota and, showing altitudes Ann 17, ii, pp 612-613
portions of North Dakota and, showing depths to top of principal artesian flows Ann 7, ii, pp 666-667
showing pressure in wells Ann 17, ii, pp 668-669, 670-671
showing rates of increase of underground temperature in deep wells Ann 18, iv, pp 608-609
showing relative amounts of saline ingredients in some well waters Ann 17, ii, pp 674-675
showing relative volumes of flows from wells Ann 18, iv, pp 614-615
Wyoming, Nebraska, and Ann 21, iv, pp 496-497
Rapid quadrangle; land classification and density of standing timber Ann 19, v, atlas
Sioux reservationBull 21, at end
Sundance quadrangle; land classification and density of standing timber Ann 19, v, atlas
of Tennessee; atlas sheets covering areas in. (See p 94 of this bulletin.)
Briceto quadrangle ... GF 33
Bristol quadrangle..GF 59
Chattooga quadrangle... GF 6
Cleveland quadrangle... GF 20
Estillville quadrangle... GF 2
Kingston quadrangle... GF 4
Knoxville quadrangle... GF 16
Loudon quadrangle... GF 25
McMinnville quadrangle ... GF 22
Morristown quadrangle... GF 27
Pikeville quadrangle... GF 21
Ringgold quadrangle... GF 2
Sewanee quadrangle... GF 8
Standingstone quadrangle .. GF 53
Stevenson quadrangle ... GF 19
Wartburg quadrangle... GF 40
of Texas ... TF 3
Albany, vicinity of...............................TF 3, illustration sheet x
Anson, vicinity of..............................TF 3, illustration sheet vii atlas sheets covering areas in. (See pp 95-96 of this bulletin.)
Balcones fault scarp... TF 3, illustration sheet vii
Black Prairie region, portion of TF 3, illustration sheets viii, x
Black and Grand Prairie regions Ann 21, vii, pocket
Brackett, constructional wash plain near TF 3, illustration sheet vii
Callahan Divide, summits of TF 3, illustration sheet ix
Copano Bay, vicinity of......................... Ann 13, ii, pp 196-197
Davis Mountains ... TF 3, illustration sheet vi
Edwards Plateau, south edge of TF 3, illustration sheet viii
Franklin Mountains and Hueco Bolson TF 3, illustration sheet vi
Grand Prairie, portions of TF 3, illustration sheets viii, x
Kinney County, portion of TF 3, illustration sheet vii
Lampasas Cut Plain, portion of TF 3, illustration sheet vii
Marfa, vicinity of TF 3, illustration sheet ix
Nueces quadrangle... GF 42
Pecos River, vicinity of, showing canal system Ann 13, ii, p 189.
WARMAN. MAP, TOPOG, (OF SOUTH DAKOTA—VIRGINIA). 495

Map, topographic, of Texas; portion of, showing relations of Edwards Plateau, Balcones scarp line, and Rio Grande Plain. Ann 18, ii, pp 200-201 of Texas; portions of, showing types of mountains, plains, scarps, rivers, and canyons. TF 3, illustration sheets vi-x

San Carlos region. Bull 164, pp 74-75
San Miguel County, portion of. TF 3, illustration sheet x
Sierra Blanca. TF 3, illustration sheet vi
Uvalde County, portion of. TF 3, illustration sheet x
Uvalde quadrangle. GF 64
Waco, vicinity of. TF 3, illustration sheet x
of Texas region, showing altitudes. Ann 21, vii, pp ii
showing drainage districts. Ann 11, ii, pp x-xi
showing forest areas. Ann 11, ii, pp iv-v
showing natural provinces. Ann 21, vii, pl i

of United States. Ann 4, p 1; Ann 5, pocket;
Ann 6, pocket; Ann 7, pocket; Ann 8, i, pocket;
Ann 9, pp 50-51; Ann 10, i, pocket; Ann 11, i,
pocket; Ann 12, i, pocket; Ann 13, i, pocket; Ann 14,
i, pocket; Ann 15, pocket; Ann 16, i, pocket; Ann
17, i, pocket; Ann 18, i, pocket; Ann 19, i, pocket;
Ann 20, i, pocket; Ann 21, i, pocket; Bull 171, p 22
arid region, showing areas irrigated. Ann 11, ii, pp ii-iii
altitudes. Ann 13, ii, pocket

atlas sheets. (See pp 67-110 of this bulletin.)
Cordilleran region, showing distribution of woods and forests. Ann 19,
v, atlas
forest reserves and national parks. Ann 19,
v, atlas; Ann 20, v, atlas; Ann 21, v, atlas
magnetic declination. Ann 17, i, pocket
plan and description of. Ann 4, pp xiii-xxiv; Ann 6, pp xvi-xix; Ann 7, pp 3-8
public lands, disposition of. Ann 16, ii, pocket
southeastern, showing submerged contours of Coastal Plain. Ann 12, i,
pocket
western, showing drainage basins. Ann 12, ii, pp 222-223
showing forests, woodlands, and irrigated areas. Ann 16, ii, pp 480-481
showing situation and extent of Plateau country. Ann 6, pp 114-115
of Utah. Ann 5, p 250; Bull 166, pp 8-9
atlas sheets covering areas in. (See p 96 of this bulletin.)
Tintic district. GF 65

of Vermont; atlas sheets covering areas in. (See pp 96-97 of this bulletin.)
of Virginia; atlas sheets covering areas in. (See pp 97-98 of this bulletin.)
Bristol quadrangle. GF 59
Cape Charles, showing lagoon channels. Ann 13, ii, pp 132-133
Dismal Swamp district. Ann 10, i, pp 314-315
drainage basins. Ann 18, iv, pp 36-37
Estillville quadrangle. GF 12
fall line. Ann 7, pp 548-549
Franklin quadrangle. GF 32
Fredericksburg quadrangle. GF 13
Harpers Ferry quadrangle. GF 10
Jetersville, vicinity of. Mon xxii, pp 112-113
Monterey quadrangle. GF 61
Map, topographic, of Virginia; Nomini quadrangle, showing artesian areas...GF 23
of Virginia; Norfolk quadrangle................................GF 2
Palmyra quadrangle..GF 1
Pocahontas quadrangle...GF 26
Staunton quadrangle..GF 14
Tazewell quadrangle..GF 44
Washington (D.C.) quadrangle................................GF 70
of Washington..Ann 20, ii, pp 88–89
atlas sheets covering areas in. (See p 98 of this bulletin.)
Chelan quadrangle, showing classification of lands........Ann 21, v, atlas
classification of lands..Ann 20, v, atlas
distribution of red fir, hemlock, spruce, and pine........Ann 20, v, pp 12–15, 16–17, 18–19, 20–21
Ellensburg quadrangle, showing classification of lands.....Ann 21, v, atlas
Mount Rainier Forest Reserve, showing classification of lands...Ann 21, v, atlas
showing distribution of hemlock...............................Ann 21, v, pp 98–99
showing distribution of red cedar...............................Ann 21, v, pp 104–105
showing distribution of red or yellow fir...................Ann 21, v, pp 94–95
showing distribution of yellow pine.........................Ann 21, v, pp 134–135
Mount Stuart quadrangle, showing classification of lands...Ann 21, v, atlas
Olympic Forest Reserve, showing classification of lands.....Ann 21, v, atlas
showing distribution of red fir, hemlock, cedar, spruce, and silver
classification of lands and density of merchantable timber...Ann 19, v, atlas
showing distribution of red fir, hemlock, cedar, spruce, and spruce..................Ann 19, v, pp 40–41
of West Virginia; atlas sheets covering areas in. (See pp 98–99 of this bulletin.)
Buckhannon quadrangle..GF 34
Charleston quadrangle..TF 1
Cumberland Plateau, portion of................................Mon xxii, pp 114–115
Elk Garden and Upper Potomac coal basins..............Ann 14, ii, pp 580–581
Franklin quadrangle...GF 32
Harpers Ferry quadrangle.................................GF 10
Huntington quadrangle..GF 69
Monterey quadrangle...GF 61
Piedmont quadrangle...GF 28
Pocahontas quadrangle...GF 26
Staunton quadrangle...GF 14
Tazewell quadrangle..GF 44
of Wisconsin; atlas sheets covering areas in. (See p 99 of this bulletin.)
Bass Lake, vicinity of..Mon xxii, pp 122–123
Eagle quadrangle...TF 1
Grant County, portion of.................................Ann 6, pp 224–225
Sun Prairie quadrangle..TF 1
Map, topographic, of Wyoming .. Ann 5, p 250

of Wyoming; atlas sheets covering areas in. (See p 100 of this bulletin.)

Bald Mountain quadrangle, showing classification of lands. Ann 21, iv, atlas

Bear River Basin .. Ann 12, ii, pp 326-327

Beaver Creek, irrigation canal along Ann 21, iv, pp 578-579

Bighorn Basin .. Ann 19, iv, p 291

Bighorn Forest Reserve, showing distribution of woodland. Ann 19, iv, atlas

Black Hills, showing distribution of forests....................... Ann 21, iv, pp 596-597

Cloud Peak quadrangle, showing classification of lands. Ann 21, v, atlas

Crandon quadrangle .. GF 52

Dayton quadrangle, showing classification of lands Ann 21, v, atlas

Ishawooa quadrangle .. GF 52

Newcastle quadrangle, showing classification of lands Ann 21, v, atlas

parts of South Dakota, Nebraska, and Ann 21, iv, pp 496-497

Platte Basin, showing land classification Ann 13, iii, pp 74-75

Snake River Basin, Upper, showing reservoir and canal sites. Ann 11, ii, pp 190-191

Teton Forest Reserve and southern part of Yellowstone Park Forest

Reserve, land classification Ann 19, v, atlas

Yellowstone Basin, land classification............................... Ann 13, iii, pp 64-65

Yellowstone Park (Gallatin, Canyon, Shoshone, and Lake quadrangles) .. GF 30

Map notation and geologic nomenclature, conference of geologists and lithologists on, in January, 1889. Ann 10, i, pp 56-67

Map work by national and State organizations and by corporate and private

take of map work, geologic. (See State names.)

Map work, topographic. (See State names.)

Maps, formulas and tables to facilitate construction and use of Bull 50

Maps, geologic, of America, catalogue of Bull 7

of United States, prepared by Geological Survey. (See pp 64-66 of this

bulletin).

Maps, topographic, of European nations, scales of Mon xxii, p 9

of United States prepared by Geological Survey and engraved to March

1, 1901, list of, by States. (See pp 67-100 of this bulletin.)

Mapleton sandstone of Maine, Aroostook volcanic area. Bull 165, pp 136-137

of Maine, fauna of ... Bull 165, p 88

Maquoketa shales of Canada .. Bull 81, p 334

of Iowa .. Ann 11, i, pp 326-327

Marble, analysis of, from California, Inyo County........ Ann 20, vi cont, pp 359, 360

analysis of, from California, San Bernardino County.......... Ann 19, vi cont, p 240; Ann 20, vi cont, p 360

from Colorado, Pueblo County .. Ann 19, vi cont, p 242; Ann 20, vi cont, p 361

from Georgia, Happy Valley ..Bull 90, p 66; Bull 148, p 257; Bull 168, p 255

Happy Valley quarry ... Bull 78, p 116

residues from ... Bull 78, p 117

Pickens County Ann 20, vi cont, pp 374, 375; MR 1889-90, p 387

various localities .. Ann 16, iv, pp 465, 467; Ann 20, vi cont, p 374

from Louisiana, near Winnfield .. Bull 60, p 160; Bull 148, p 258; Bull 168, p 258

from Maryland, Cockeysville .. Bull 60, p 159; Bull 150, p 301

from Massachusetts, Lee .. Ann 20, vi cont, pp 405, 406;

Bull 90, p 66; Bull 148, p 254; Bull 150, p 299; Bull 168, p 252

Westfield (serpentinic) ...Ann 18, v cont, p 990; Ann 20, vi cont, p 407

Bull. 177—01—32
Marble, analysis of, from New York, Pleasantville Ann 16, iv, p 468; Ann 17, iii cont, p 798; Ann 19, vi cont, p 243; Ann 20, vi cont, p 423
analysis of, from New York, South Dover .. Ann 19, vi cont, p 245; Ann 20, vi cont, p 422
from Pennsylvania, Annville ... Ann 19, vi cont, p 246
Avondale .. Ann 19, vi cont, p 245; MR 1893, p 571
Dauphin County ... Ann 20, vi cont, p 435
from Tennessee, Hawkins County ... Ann 18, v cont, p 983
Knoxville .. Bull 78, p 116; MR 1886, p 543
from Utah, Ontario mine ... Bull 148, p 275; Bull 168, p 275
from Vermont, Proctor .. Ann 16, iv, p 470; Ann 17, iii cont, p 809; Ann 18, v cont, p 986; Ann 20, vi cont, p 447
Rutland .. Bull 78, p 116; Bull 90, p 66; Bull 148, p 254; Bull 168, p 252
residue from ... Bull 78, p 117
West Rutland .. Ann 17, iii cont, p 808; Ann 18, v cont, p 985
from Wisconsin, sec. 14, T. 44 N., R. 3 W. (siliceous) Mon xix, p 39
from Maryland, Cockeysville, description of, as one of the educational series (dolomite) Bull 150, pp 300–301
from Massachusetts, Lee, description of, as one of the educational series Bull 150, pp 299–300
production of, statistics of ... MR 1882, pp 450–457;
MR 1883–84, pp 665, 667; MR 1885, pp 398, 402–404; MR 1886,
pp 539, 541–546, 554, 556; MR 1887, pp 517–520, 525–527; MR
1888, pp 541–543, 550–551; MR 1889–90, pp 375–376, MR 1891,
pp 456, 468–471; MR 1892, pp 705, 709–710; MR 1893, pp 543,
547–549; Ann 16, iv, pp 436, 437, 462–473; Ann 17, iii cont,
pp 759, 760–761, 766–770; Ann 18, v cont, pp 949, 950–951,
975–992; Ann 19, vi cont, pp 238–248; Ann 20, vi cont, pp
270, 271, 281–292; Ann 21, vi cont, pp 334, 335, 341–343
quarrying and manufacturing of, methods of ... Bull 150, pp 471–473
thin section of, from Maryland, Cockeysville Bull 150, pp 300–301
(See, also, Building stone.)
Marble, onyx; characteristics, preparation, occurrence, etc.................. Ann 20, vi cont, pp 286–291
Marble slate, preparation of, method of ... Ann 20, vi cont, pp 291–292
Marble Canyon, Grand Canyon district, description of Ann 2, p 71; Mon ii, p 10
Marble Falls limestone of Texas .. Ann 21, vii, pp 94–96
Marbut (C. F.), Shaler (N. S.), and Woodworth (J. B.), glacial brick clays of Rhode Island and southeastern Massachusetts Ann 17, i, pp 951–1004
Marcasite, composition of ... Bull 150, p 37
concretion of, description of the rock, as one of the educational series ... Bull 150, pp 110–111
Marcellina, Mount, Colorado, geology of .. Ann 14, ii, pp 182–185
Marcou (J.) and Marcou (J. B.), catalogue of geological maps of America Bull 7
Mareniscan series of Canada ... Bull 86, pp 191, 192, 195, 490
(See, also, Coutchiching series.)
Margarite, analysis of, from Georgia, near Gainesville Bull 9, p 11
analysis of, from Massachusetts, Chester ... Bull 126, p 106
from New York, near Peekskill ... Bull 60, p 158
from North Carolina, Iredell County .. Bull 9, p 12
various localities ... Bull 74, p 69
chemical constitution of ... Bull 125, pp 51, 103
Marginellidae of Miocene deposits of New Jersey.................. Mon xxiv, pp 108-109
Marialite, chemical constitution of Bull 125, pp 29, 103
Marine deposits and geologic work of the sea, in Maine........ Mon xxxiv, pp 41-58
Marine Eocene, fresh-water Miocene, and other fossil Mollusca of western North America................................. Bull 18
Marine marshes.. Ann 12, i, pp 317-320
Marine Mollusca, list of... Bull 24
Mariposa formation of California............................... Ann 14, ii, pp 452-456; Ann 17, ii, pp 88-89, 102, 103; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 11, pp 1, 3; GF 29, pp 1, 2; GF 31, pp 1; GF 37, pp 1; GF 39, pp 1, 4; GF 43, pp 1; GF 51, p 1; GF 63, pp 2-3; GF 66, p 3
of California, identity of Knoxville formation and Mon xiii, pp 195-204; Bull 19, pp 18-20
Mariposite, analyses of, from California, Bear Valley.. Ann 17, i, p 679; Bull 167, p 75
of Sierra Nevada... Ann 17, i, pp 678-679
Marke Mills beds, Arkansas, correlation of Ann 18, ii, p 342
Marl, analysis of, from Florida, Tampa section (siliceous).... Bull 84, p 117
analysis of, from Indiana....................................... Ann 21, vi cont, p 400
from Indiana, Kosciusko County Ann 19, vi cont, p 493
from Kansas, Trego County...................................... Bull 27, p 71; Bull 168, p 263
from Kentucky, Grayson County................................. MR 1886, p 620
from Maryland, Winchester...................................... Bull 141, p 36
from Nevada, Pyramid Lake, west shore of..................... Mon xi, p 152; Bull 9, p 14
from New Jersey, various localities (greensand)............. MR 1882, p 526
of New Jersey, various localities (recent calcareous)...... MR 1882, p 526
from North Carolina, New Hanover County (coprolitic). MR 1883-84, p 791
Marl, amorphous; description of the rocks, as one of the educational series ...Bull 150, pp 135-136
Marl, greensand; analyses of, from New Jersey, various localities ...MR 1882, p 525
of New Jersey... Bull 82, p 215
Marl, greensand, and Raritan clays of New Jersey; Brachiopoda and Lamel- libranchiata of Mon ix of New Jersey, Gasteropoda and Cephalopoda of Mon xviii, pp 31, 32
Marl, shell, description of the rock, as one of the educational series ...Bull 150, p 136
Marl clay, analysis of, from North Dakota.................... Ann 21, vi cont, p 402
Maroon conglomerate of Colorado............................... GF 9, pp 6, 8, 9; GF 48, pp 1-2
Maroon formation of Colorado, Aspen district............... Mon xxxi, pp 83-37
Marquette series of Lake Superior region........ Ann 3, pp 166-168; Ann 15, pp 477-650, passim; Ann 16, i, p 784; Ann 19, iii, pp 16,17; Ann 21, iii, p 371; Mon xix, pp 471-473; Mon xxviii, passim; Bull 86, passim

Marquette and Menominee regions of Michigan, greenstone-schist areas of... Bull 62

Mars Hill conglomerate of Maine, Aroostook volcanic area.... Bull 165, pp 134-136

Marsh (O. C.), biographic sketch of......................... Ann 21, i, pp 189-204

birds with teeth... Ann 3, pp 45-88

Dinocerata, a monograph on an extinct order of gigantic mammals....... Mon x

gigantic mammals of the Dinocerata........................ Ann 5, pp 243-302

vertebrate fossils from Denver Basin......................... Mon xxvii, pp 473-550

work in charge of, 1882-1899 Ann 4, pp 41-42; Ann 5, pp 49-50; Ann 6, pp 71-72; Ann 7, pp 111-113; Ann 8, i, pp 173-174; Ann 9, pp 114-115; Ann 10, i, pp 158-159; Ann 11, i, pp 101-102; Ann 12, i, pp 118-119; Ann 13, i, pp 155-157; Ann 14, i, pp 265-267; Ann 15, pp 186-188; Ann 16, i, p 42; Ann 17, i, p 69; Ann 18, i, p 68; Ann 19, i, p 67; Ann 20, i, p 68

Marshall (R. B.), forest conditions in Mount Lyell quadrangle, California... Ann 21, i, pp 574-575

Marshall group, history of discussions concerning.................. Bull 80, pp 173-192

Marshall quadrangle, Arkansas, physiography of................... TF 2, p 12

Marshall quadrangle, Missouri, physiography of.................... TF 2, p 4

Marshall sandstone of Michigan.......................... WS 30, pp 78-80, 84

Marshes, marine, effect of, on harbors......................... Ann 13, ii, pp 149-155

formation and fertility of.................. Ann 12, i, pp 317-320

Marshes, salt, catalogue of larger, of New England and Long Island.. Ann 6, pp 390-398

process of development of.................. Ann 6, pp 363-373

Marshes and swamps of Massachusetts, Cape Cod district........ Ann 18, ii, pp 571-572

(See, also, Swamps.)

Masters (V. F.) and Kemp (J. F.), trap dikes of the Lake Champlain region................. Bull 107

Marthas Vineyard, classification of strata of.................. Bull 84, pp 35-38

clayey beds of... Ann 17, i, pp 960-964, 982

Cretaceous deposits of.................. Bull 82, pp 86-87

diastrophic and ice action on........ Ann 18, ii, pp 505-513

géologie of.................. Ann 7, pp 297-360

phosphates of.................. Bull 46, p 78

surveys of, by H. L. Whiting........ Ann 7, pp 361-363

Tertiary beds of.................. Ann 6, pp 21-22; Bull 84, p 337

Marthas Vineyard series.................. Bull 84, p 337

Martin (K.), concerning Tertiary fossils in the Philippines.................. Ann 21, iii, pp 615-625

Martineau group of California, correlation of.................. Ann 18, ii, p 347; Mon xiii, p 179; Bull 82, p 193

Martinez group of California and its fauna........ Ann 17, i, pp 1028-1030

Martinsburg shale of Virginia, Maryland, and West Virginia......... Ann 14, ii, pp 342-345; GF 10, p 3; GF 14, p 2; GF 32, p 2; GF 61, p 2

Martyn (W.), pyrites, statistics of......... MR 1883-84, pp 877-905

Maryland; altitudes in.................. Ann 18, i, pp 279-288; Ann 19, i, pp 217-219; Ann 20, i, pp 363-379; Ann 21, i, pp 443-445, 446; Bull 5, pp 129-132; Bull 76; Bull 160, pp 265-276

Antietam Creek, flow of, measurements of........ Ann 19, iv, pp 149-150; Ann 20, iv, pp 49, 122; Ann 21, iv, p 95; WS 15, p 16; WS 27, pp 19, 23, 24; WS 35, p 86
Maryland; artesian and other wells in............. Bull 138, pp 126-155
atlas sheets of. (See pp 79-80 of this bulletin.)
boundary lines of Bull 13, pp 82-85; Bull 171, pp 88-91
brick industry of............. MR 1887, pp 536, 538; MR 1888, pp 560, 566
building stone in Fredericksburg quadrangle........GF 13, p 5
in Harpers Ferry quadrangle.....GF 10, pp 4, 5
in Nomini quadrangle............GF 23, p 4
in Piedmont quadrangle..........GF 28, p 5
in Washington (D. C.) quadrangle......GF 70, p 7
production of, statistics of........MR 1882, pp 451-452;
MR 1887, p 518; MR 1888, pp 536, 538, 541; MR 1889-90,
pp 373, 398-400; MR 1891, pp 457, 459, 461, 462, 464, 466;
MR 1892, pp 706, 707, 709, 710, 711; MR 1893, p 544 et
seq; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq;
Ann 18, v cont, p 967 et seq; Ann 19, vi cont, p 207 et seq;
Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
Catoctin belt, geology of........Ann 14, ii, pp 285-395
cement production of, statistics of........MR 1889-90, p 461;
MR 1892, p 739; MR 1893, p 619; Ann 16, iv, p 577; Ann 17,
iii cont, p 891; Ann 18, v cont, p 1178; Ann 19, vi cont, p 496;
Ann 20, vi cont, pp 539, 547; Ann 21, vi cont, pp 393, 407
Chesapeake Bay, geology of head of.........Ann 7, pp 537-646
chromium industry ofMR 1882, p 428; MR 1883-84, p 507;
MR 1885, p 358
clay in Fredericksburg quadrangle........GF 13, p 5
in Harpers Ferry quadrangle.....GF 10, p 4
in Nomini quadrangle............GF 23, p 4
in Piedmont quadrangle..........GF 28, p 5
in Washington (D. C.) quadrangle......GF 70, p 7
production of, statistics of........MR 1891, p 504; Ann 16, iv, pp 518, 519,
520, 521; Ann 17, iii cont, pp 815 et seq, 860-861; Ann 18,
v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 361;
Ann 20, vi cont, pp 466 et seq, 523; Ann 21, vi cont, pp 362, 363
coal in Piedmont quadrangle........GF 28, p 5
coa/ area and statistics of........Ann 2, p xxviii; MR
1882, pp 58-60; MR 1883-84, pp 12, 49-50; MR 1885, pp 11,
39-34; MR 1886, pp 225, 230, 272-279; MR 1887, pp 169,
171, 263-270; MR 1888, pp 169, 171, 280-283; MR 1889-90,
pp 146, 221-225; MR 1891, pp 180, 255-259; MR 1892,
pp 264, 267, 268, 417-421; MR 1893, pp 188, 189, 194, 195,
197, 199, 200, 307-311; Ann 16, iv, pp 7 et seq, 132-137;
Ann 17, iii, pp 287 et seq, 442-447, 542; Ann 18, v, pp 353 et seq,
536-543; Ann 19, vi, pp 277 et seq, 442-447; Ann 20, vi,
pp 299 et seq, 429-433; Ann 21, vi, pp 324 et seq, 457-461
coal fields of........Ann 16, iv, pp 132-133
coke in, manufacture of........Ann 20, vi cont, p 227
Cumberland and Georges Creek coal field, extent and production of.........Ann 14,
ii, p 579
elevations in...............Ann 18, i, pp 279-288; Ann 19, i, pp
217-219; Ann 20, i, pp 363-370; Ann 21, i, pp 443-445,
446; Bull 5, pp 129-132; Bull 76; Bull 160, pp 265-276
feldspar from, statistics of........Ann 18, v cont, p 1367; Ann 19, vi cont, p 657
flags and slates in Harpers Ferry quadrangle........GF 10, p 4
Fredericksburg quadrangle, geology ofGF 13
Maryland; fuller's earth in Fredericksburg quadrangle GF 13, p 4
fuller's earth in Nomini quadrangle GF 23, p 4
gabbros and associated hornblende rocks occurring in the neighborhood of Baltimore ... Bull 28
geographic positions in Ann 19, i, p 158; Ann 20, i, pp 225–233; Ann 21, i, pp 252, 253, 254; Bull 123, pp 72–74
geologic formations of Coastal Plain in Bull 138, pp 124–126
gold in Washington (D.C.) quadrangle GF 70, p 7
gold and silver from, statistics of MR 1892, p 88; MR 1893, pp 50, 51, 55; Ann 16, iv, p 258; Ann 17, iii, pp 73, 74, 75; Ann 18, v, pp 141, 143, 144, 145, 149; Ann 19, vi, pp 128, 129, 132, 133; Ann 20, vi, pp 105, 104, 105, 106, 108; Ann 21, vi, pp 125, 126, 127
gold mining in, history of ... Ann 20, vi, p 112
granite of central, origin and relations of Ann 15, pp 685–74C
Harpers Ferry quadrangle, geology of GF 10
iron ore in Harpers Ferry quadrangle GF 10, p 4
in Piedmont quadrangle ... Bull 140, pp 331–332
Kensington, rating station for meters at Bull 140, pp 331–332
lime production of, statistics of MR 1887, p 533; MR 1888, p 555
limestone in Piedmont quadrangle GF 28, p 5
Maryland; magnetic declination in Ann 17, i, pp 354-355
manganese-ore production of Ann 16, iii, p 416
- maps, geologic, of. (See Map, geologic, of Maryland.)
- maps, topographic, of. (See Map, topographic, of Maryland; also pp 79-80
of this bulletin.)
- marble production of, statistics of MR 1882, p 45;
 MR 1886, p 541; MR 1887, p 518; MR 1888, p 541; MR
 1889-90, pp 400, 575; MR 1891, pp 468-469; MR 1892, p
 709; MR 1893, pp 547, 548; Ann 16, iv, pp 437, 463, 464, 467;
 Ann 17, iii cont, pp 760, 766, 767, 768, 769; Ann 18,
 iv cont, pp 950, 975, 977, 978, 980; Ann 19, vi cont,
 pp 207, 238, 239, 240, 243; Ann 20, vi cont, pp 271,
 281, 282, 283, 284; Ann 21, vi cont, pp 335, 341, 342, 343
- marl in Fredericksburg quadrangle............................... GF 13, p 5
- mineral spring resorts in .. Ann 14, n, p 83
- mineral springs of ... MR 1889-90, pp 522, 523; MR 1891, pp 603, 605; MR
 1892, pp 824, 828; MR 1893, pp 774, 778, 784, 789, 794;
 Ann 16, iv, pp 709, 713, 720; Ann 17, iii cont, pp 1027, 1034, 1041;
 Ann 18, v cont, pp 1371, 1379, 1386; Ann 19, vi cont,
 pp 661, 669, 677; Ann 20, vi cont, pp 749, 758, 766; Ann
 21, vi cont, pp 600, 609-610, 619; Bull 32, pp 51-53
- minerals of, useful.. MR 1882, pp 690-693; MR 1887, pp 739-742
- Monocacy River, flow of, measurements of........................ Ann 18,
 iv, pp 34-35; Ann 19, iv, pp 153-155; Ann 20, iv, pp
 49, 129-130; Ann 21, iv, pp 97-98; WS 11, p 11; WS
- Newark system in ... Bull 85, pp 20, 85
- Nomini quadrangle, geology of .. GF 23
- ochre in Harpers Ferry quadrangle............................... GF 10, p 4
- production of ... MR 1891, p 595
- Octoraro Creek, flow of, measurements of........................ Ann 18, iv, p 16; Ann
 19, iv, pp 128-129; Ann 20, iv, pp 48, 110-111; Ann 21, iv,
 pp 93; WS 15, p 12; WS 27, pp 17, 23, 24; WS 35, pp 81-83
- paint, mineral, production of, statistics of MR 1892, pp 816, 818; MR 1893, p
 760; Ann 16, iv, pp 696, 696, 698; Ann 17, iii cont, pp 1013,
 1014; Ann 18, v cont, pp 1338, 1339: Ann 19, vi cont, pp
 637-638; Ann 20, vi cont, pp 723, 724; Ann 21, vi cont,
 pp 573, 574
- Patapsco River, flow of, measurements of........................ Ann 18, iv, pp 16-17; Ann
 19, iv, pp 129-130; Ann 20, iv, pp 48, 115; Ann 21, iv, pp
 94; WS 11, p 8; WS 15, p 13; WS 27, pp 18, 23, 24; WS 35, p 83
- Patuxent River, flow of, measurements of Ann 18, iv, p 18; Ann
 19, iv, pp 131-132; Ann 20, iv, pp 116; WS 11, p 8; WS
 15, p 14; WS 27, pp 18, 23, 24
- Piedmont Plateau, Middle Atlantic, general relation of granitic rocks in Ann 15,
 pp 660-666
- pre-Cambrian rocks of .. Ann 16, i, p 838
- Piedmont quadrangle, geology of GF 28
- Potomac or younger Mesozoic flora................................ Mon xv
- Potomac River, flow of, measurements of Ann 18, iv, pp 22-24, 29-33; Ann 19, iv, pp 146-147, 152-153;
 Ann 20, iv, pp 49, 130-131; Ann 21, iv, pp 99-100; Bull
 131, p 88; Bull 140, pp 45-48, 54-61; WS 11, pp 8, 10;
 WS 15, pp 15, 21; WS 27, pp 21, 24, 25; WS 35, pp 91-93
Maryland; Potomac River, hydrography of basin of Ann 14, ii, pp 134–136
Potomac River, pollution of .. Ann 19, iv, pp 141–146, 153, 155–156
water power on .. Ann 21, iv, pp 100–106
quartz from, statistics of .. Ann 18, vi cont, p 1868; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745; Ann 21, vi cont, p 595
rainfall in basins of Patapsco and Patuxent rivers Ann 20, iv, pp 48, 49, 112–114
in basin of Potomac River ... Ann 20, iv, pp 117–121
road material in Harpers Ferry quadrangle GF 10, p 4
in Piedmont quadrangle .. GF 28, p 5
in Washington (D. C.) quadrangle GF 70, p 7
sand and gravel in Fredericksburg quadrangle GF 13, p 5
in Nomini quadrangle .. GF 23, p 4
sections, geologic, in. (See Section, geologic, in Maryland.)
soil in Piedmont quadrangle GF 28, pp 5–6
survey of, by cooperation of the State Ann 18, i, pp 100, 102; Ann 19, i, pp 86, 98; Ann 20, i, pp 99, 110
topographic maps of. (See Map, topographic, of Maryland.)
topographic work in .. Ann 5, p 7; Ann 6, p 8; Ann 9, pp 52, 55; Ann 12, i, p 26; Ann 13, i, p 72; Ann 16, i, pp 64, 68, 69; Ann 17, i, pp 97, 99; Ann 18, i, pp 94, 95, 102; Ann 19, i, pp 89, 90, 98; Ann 20, i, pp 100, 102, 110; Ann 21, i, pp 119, 125–126
triangulation in ... Bull 122, pp 65, 68
Washington (D. C.) quadrangles, geology of GF 70
waters, underground, in Fredericksburg quadrangle GF 13, p 6
in Nomini quadrangle ... GF 23, p 4
in Washington (D. C.) quadrangle GF 70, p 7
woodland area in .. Ann 19, v, p 5
Marylandian (Lower Atlantic Miocene) Bull 84, pp 20, 329
Maryville limestone in Kentucky, North Carolina, Virginia, and Tennessee .. GF 12, p 2; GF 16, pp 3–4; GF 25, p 3; GF 27, p 2; GF 33, p 2; GF 59, p 3
Marysville quadrangle, California, geology of GF 17
Mashing and fracturing of mineral particles Ann 16, i, pp 694–698
Massachusetts; altitudes in .. Bull 5, pp 133–137; Bull 76; Bull 160, pp 277–296
Berkshire County, geology of eastern Bull 159
boundary lines of, and cession of territory to general government Bull 13, pp 25–26, 47–64; Bull 171, pp 53–70
boulders, remarkable, in the Connecticut Valley Mon xxix, pp 559–561
Massachusetts; brick, paving, clays suitable for making, suggestions concerning Ann 164, ii, pp 324-326
brick clays of southeastern, and Rhode Island MR 1887, pp 536, 538; MR 1888, pp 560, 566
brick industry of MB 1887, pp 536, 538; MR 1889-90, pp 373, 400-403; MR 1891, pp 457, 459, 461, 462, 464, 466; MR 1892, pp 706, 707, 709, 710, 711; MR 1893, pp 544, 546-546, 553, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
in Holyoke quadrangle GF 50, p 8
production of, statistics of MR 1882, pp 451-452; MR 1887, pp 513, 521; MR 1888, pp 536, 538; MR 1889-90, pp 373, 400-403; MR 1891, pp 457, 459, 461, 462, 464, 466; MR 1892, pp 706, 707, 709, 710, 711; MR 1893, pp 544, 545-546, 553, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
use of Triassic sandstone as Mon xxix, pp 391-394
Cape Ann, geology of Ann 9, pp 529-611
iron lithia micas of Bull 42, pp 21-27
Cape Cod, original eastward extension of Ann 18, ii, pp 578-579
road materials on Ann 18, ii, pp 576-577
ship canal across Ann 18, ii, pp 574-576
Cape Cod district, geology of Ann 18, ii, pp 497-503
Cape Cod Peninsula, origin of Ann 18, ii, p 504
Chester emery bed and mine; history, description, minerals, etc. Mon xxix, pp 117-147
chromite in Holyoke quadrangle GF 50, p 8
Clarksburg Mountain, structure and rocks of Mon xxiii, pp 8-9, 26, 27, 99, 176
clay in Holyoke quadrangle GF 50, p 8
production of, statistics of MR 1891, p 502; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 820 et seq, 861; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 362; Ann 20, vi cont, pp 466 et seq, 524
suitable for paving brick, suggestions concerning Ann 16, ii, pp 324-326
cal area and statistics of MR 1892, p 264; MR 1893, pp 188, 189; Ann 16, iv, pp 7, 8; Ann 17, iii, pp 287, 288, 289; Ann 18, v, pp 353, 355; Ann 19, vi, pp 277, 279, 281; Ann 20, vi, pp 299, 301, 303; Ann 21, vi, pp 324, 326, 328
coal measures of southeastern Mon xxxiii, pp 159-201, 205-208
Cochituate Lake, yield of watershed of WS 35, pp 37-38
coke in, manufacture of Ann 20, vi cont, p 227.
Connecticut River, flow of, measurements of Ann 19, iv, pp 116-117;
Ann 20, iv, pp 47, 76-78; Bull 140, pp 37-41; WS 35, pp 40-42
copper production of, statistics of MR 1882, p 231
degradation along coast of Ann 18, ii, pp 514-528
emery in Holyoke quadrangle GF 50, p 8
Everett, Otto-Hoffman by-product coke plant at Ann 20, vi, pp 548-552
factory wastes, experiment on purification of WS 22, pp 27-35
feldspar from, statistics of Ann 18, v cont, p 1367; Ann 19, vi cont, p 657
flagstones in Holyoke quadrangle GF 50, p 8
fossil fishes and fossil plants of Triassic rocks of New Jersey and Connecticut Valley Mon xiv
Franklin, Hampshire, and Hampden counties, geology of Mon xxix
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, p 227 et seq
geographic dictionary of Bull 116
Massachusetts; geographic positions in Bull 123, p 17-31
geologic maps of, listed .. Bull 7, pp 52, 53, 54, 56, 57
(See, also, Map, geologic, of Massachusetts.)
geologic sections in. (See Section, geologic, in Massachusetts.)
geologic and paleontologic investigations in........ Ann 6, pp 19, 20, 21, 22, 24, 36;
Ann 7, pp 60-61, 63, 84; Ann 8, i, pp 124-125, 126, 127; Ann 9, pp 71, 72, 75, 117, 122; Ann 10, i, pp 115, 116, 117, 118, 170; Ann 11, i, pp 62-63, 64, 115; Ann 12, i, pp 64, 67, 69, 120, 121, 126; Ann 13, i, pp 99, 100, 101, 146; Ann 14, i, pp 194-195, 250-251; Ann 15, pp 133, 161; Ann 16, i, pp 15-16, 39; Ann 17, i, pp 18-19, 20; Ann 18, i, pp 22-23, 25; Ann 19, i, pp 31-32, 64; Ann 20, i, pp 33-34; Ann 21, i, pp 68-70
glacial investigations in .. Ann 3, pp 377, 379, 380; Ann 7, p 157
Green Mountains, geology of .. Mon xxiii
Greylock, Mount, geology of Mon xxiii, pp 119-203
Hampshire County, old, geology of Mon xxix
harbors on coast of .. Ann 13, ii, pp 163-168
Holyoke quadrangle, geology of GF 50
Hoosic Mountain and adjacent territory, geology of Mon xxiii, pp 35-118
Housatonic River, profile of .. WS 44, pp 13-14
iron, iron ore, and steel from, statistics of...................... Ann 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, p 252; MR 1885, pp 182, 184, 186; MR 1886, pp 17, 42; MR 1887, pp 11, 42; MR 1888, p 14; MR 1889-90, pp 10, 17; MR 1891, pp 12, 27, 61; MR 1892, pp 12, 15, 18, 21, 26, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 35, 38, 39; Ann 16, iii, pp 31, 41, 192, 194, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 63, 68; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 27, 29, 65, 68, 72; Ann 20, vi, pp 28, 43, 44, 74, 75, 83, 84, 85; Ann 21, vi, pp 34, 51, 52, 53, 90, 99 Lawrence, rating station for meters at Bull 140, p 332
lead in Holyoke quadrangle .. GF 50, p 8
lime production of ... MR 1887, p 533; MR 1888, p 555
limestone quarries of western Ann 17, iv cont, pp 802-806
manganese production of .. Ann 17, i, pp 355-357
manganese-ore production of Ann 16, iii, p 416
maps, geologic, of. (See Map, geologic, of Massachusetts.)
maps, topographic, of. (See Map, topographic, of Massachusetts; also pp 80-81 of this bulletin.)
Massachusetts; marble production of, statistics of...MR 1882, p 451; MR 1886, p 541; MR 1889-90, pp 375, 403; MR 1892, p 709; Ann 16, iv, p 464; Ann 17, iii cont, pp 760, 766, 767, 768, 769; Ann 18, v cont, pp 950, 975, 977, 978, 980-981, 987-991; Ann 19, vi cont, pp 207, 268, 239, 240, 243; Ann 20, vi cont, pp 271, 281, 282, 283, 284-285; Ann 21, vi cont, pp 335, 341, 342, 343

Marthas Vineyard, Cretaceous deposits of......Bull 82, pp 86-87
diastrophic and ice action on.....................Ann 18, ii, pp 505-513
phosphates of..Bull 46, p 78
report on geology of......................................Ann 7, pp 297-363
profile of...WS 44, p 11
mineralogic lexicon of central....................Bull 126; Mon xxix, pp 754-761
mineral spring resorts in..............................Ann 14, ii, p 83
minerals, useful, of.................................MR 1882, pp 693-695; MR 1887, pp 742-745
Monument Mountain, structure of..............Ann 14, ii, pp 551-565
Mystic Lake, run-off of watershed of...........WS 35, pp 39-40
Nantucket, geology of...............................Bull 53
Narragansett Basin, geology of..................Mon xxxiii
pumice, mineral, production of, statistics of....MR 1891, p 598; MR 1892, p 816; MR 1893, p 760; Ann 16, iv, pp 695, 696; Ann 17, iii cont, pp 1013, 1014; Ann 18, v cont, pp 1338, 1339; Ann 19, vi cont, pp 637, 638; Ann 20, vi cont, pp 723, 724; Ann 21, vi cont, pp 573, 574
pre-Cambrian rocks in western....................Ann 16, i, pp 829-833
pyrites from, statistics of..........................MR 1883-84, p 878; MR 1885, p 503; MR 1886, p 654
quartz from, statistics of............................Ann 18, v cont, p 1368; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745
road-building stones of, and other parts of United States......Ann 16, ii, pp 277-341
road materials of Cape Cod..........................Ann 18, ii, pp 576-577
of Holyoke quadrangle...............................GF 50, p 8
use of trap as, in.................................Mon xxv, pp 500-501
rocks of, correlation of..............................Bull 80, pp 35, 253, 255
correlation of, general section showing..........Mon xxix, pp 16-18
salt from, statistics of..............................MR 1882, pp 532-534
Massachusetts; sea-coast swamps of eastern United States Ann 6, pp 353-398
sections, geologic, in. (See Section, geologic, in Massachusetts.)
sewage-disposal plants in .. WS 22, pp 42-57
slate production of, statistics of Ann 18, v cont, pp 950, 992, 997, 999;
Ann 19, vi cont, pp 254, 256; Ann 20, vi cont, pp 271, 294,
298, 299, 300; Ann 21, vi cont, pp 335, 344, 348, 349, 351
springs, mineral, in western-central Mon xxix, pp 749-752
Sudbury River, flow of, measurements of Ann 20, iv, pp 46, 74-75; Bull 140, pp 35-37; WS 35, p 37
survey of, by cooperation of the State Ann 5, p xviii; Ann 6, p 4; Ann 9, p 4
tin deposits of ... Ann 16, i, p 523
topographic maps of. (See Map, topographic, of Massachusetts.)

topographic work in .. Ann 5, pp 3-4; Ann 6, pp 3-5; Ann 7, pp 46-48;
Ann 8, i, pp 98-99; Ann 9, pp 50-51; Ann 20, i, pp 100, 102, 111

coopération of the State in Ann 5, p xviii; Ann 6, p 4; Ann 9, p 4
trap in Holyoke quadrangle GF 50, p 8
triangulation in .. Bull 122, pp 15-19
Triassic formation of the Connecticut Valley, structure of .. Ann 7, pp 455-490
wells, artesian, on Dalton fault Bull 159, pp 90-92
western, geology of, outlines of GF 50, pp 1-3
whetstones in Holyoke quadrangle GF 50, p 8
woodland area in .. Ann 19, v, p 4

Massalongo (Abramo), biographic sketch of Ann 5, pp 379-380
Massanutten sandstone in Maryland, Virginia, and West Virginia .. GF 14, p 2
Massern Ranges of Ouachita system Ann 21, vi, p 37
Massillon conglomerate in Ohio as a water bearer Ann 19, iv, pp 649, 690-693
Massive rocks, especially those of California, origin of Mon xiii, pp 164-175, 459
gold in, notes on .. Ann 20, vii, pp 321-328
Matanuska series of Alaska Alaska (2), p 46
character, etc., of .. Ann 20, vii, pp 307-311
Matawan formation in New Jersey Bull 138, p 40
in Washington (D. C.) quadrangles GF 70, p 4
Mathews (E. B.), description of biotite-granite as one of the educational series .. Bull 150, pp 172-177

Mato Teepee, Black Hills, geology of Ann 21, iii, pp 253-256, 258-266
Mättès, analysis and assays of, from Colorado, Leadville Mon xii, pp 723-725
Matthes (F. E.), glacial sculpture of Bighorn Mountains, Wyoming .. Ann 21, ii, pp 167-190
Matthews Landing series of Alabama Bull 84, p 330
(Matthews Landing, see also, Naheola series.)

Maunsee River, drainage system of Ann 18, iv, pp 468-469
flow of, measurements of WS 27, pp 66, 67, 68; WS 36, pp 178-179
Maxwell’s theory of viscosity, tensile, drawn, and other strains in their bear­ ing on ... Bull 94, pp 17-29
Mazama, Mount, Oregon, history of TF 2, p 20
Mead (E.), water-right problems of Bighorn Mountains, Wyoming .. WS 23
Meagher limestone of Montana, description and sections of Ann 20, iii, pp 285, 340, 364; GF 55, p 2; GF 56, p 2
Mechanics of Appalachian structure Ann 13, ii, pp 211-281
of intrusion of porphyries in Black Hills Ann 21, iii, pp 187-194
Mechanism of solid viscosity Bull 94
Medicine River, flow of, measurements of Ann 18, iv, pp 240-242; Bull 140, pp 165-166; WS 11, p 63
Medicine Bow Mountains, geology of, literature of ... Bull 86, pp 272-277, 504
pre-Cambrian rocks of .. Ann 16, i, pp 817-818
Medina formation in Indiana .. Ann 11, i, pp 631-632
Medina shale in Ohio.. Ann 8, pp 558-559
in Ohio as a water carrier .. Ann 19, iv, pp 642, 654-656
Medusa, fossil, analysis of ... Mon xxx, p 14
Meduse, fossil, monograph on ... Mon xxx, pp 9-11
Meerschaum, occurrence of .. MR 1883-84, pp 780-781
Megalonyx beds .. Bull 84, p 330
Megaopteridaceae, from Lower Coal Measures of Missouri Mon xxxvii, pp 113-144
Meionite, chemical constitution of Bull 125, pp 29, 102
Melanide of Bear River formation .. Bull 128, pp 50-57
of North America (nonmarine fossil) ... Ann 3, pp 459-462
Melanocerite, chemical constitution of Bull 125, pp 59, 60, 104
Melanolite, analysis of ... Bull 118, p 18
Melanopside from Chico-Tejon series of California Bull 51, p 20
Melanotekite, chemical constitution of Bull 125, pp 81, 105
Melanterite, analysis of, from Montana, near Whitehall Bull 167, p 75
Melaphyr of Keweenaw series .. Mon v, pp 68-77
thin section of, from Minnesota, SE. 1/4 sec. 9, T. 51 N., R. 12 W. Mon v, pp 68-69
from Pennsylvania, South Mountain Bull 136, pp 122-123
Melaphyre-tuff, analysis of, from California, Jackson quadrangle Ann 17, i, p 734; Bull 148, p 215; Bull 168, p 202
Melilite, chemical constitution of .. Bull 125, pp 26-27, 103
Melphanite, chemical constitution of Bull 125, pp 96, 106
Melonite from California, Mother Lode district, analysis of, and mineralogic notes on ... Bull 167, pt 60-62
Melting-point and pressure of mercury, measurement of Bull 92, pp 76-77
Melville (W. H.), josephinite, a new nickel-iron Bull 113, pp 54-60
metacinnabarite from New Almaden, California Bull 78, pp 80-83
mineralogic notes .. Bull 90, pp 38-40
powellite, a new mineral species .. Bull 90, pp 34-37
Melville (W. H.) and Hillebrand (W. F.), on isomorphism and composition of thorium and uranous sulphates Bull 90, pp 26-33
Melville (W. H.) and Lindgren (W.), contributions to mineralogy of Pacific coast ... Bull 61
Memminger (C. G.), commercial development of Tennessee phosphates Ann 16, iv, pp 631-635
Mendenhall (W. C.), Alaska Peninsula and Aleutian Islands, notes on Alaska (2), pp 115-117
Kadiak Islands, notes on .. Alaska (2), pp 113-114
Kenai Peninsula, notes on .. Alaska (2), pp 109-110
reconnaissance from Resurrection Bay to Tanana River, Alaska, in 1898 Ann 20, vii, pp 265-340
report on region between Resurrection Bay and Tanana River Alaska (2), pp 40-50
Mendenhall (W. C.) and Campbell (M. R.), geologic section along New and Kanawha rivers in West Virginia Ann 17, ii, pp 473-511
Mendota group of Wisconsin .. Bull 81, pp 332, 334
Mendota limestone, origin of name ... Bull 81, p 245
Menispermaceae of Amboy clays ... Mon xxvi, pp 84-85
of Dakota group ... Mon xvii, pp 196-198
of Laramie group .. Bull 37, pp 100-102
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Menominee district, Michigan, geology of... Ann 21, ii, pp 388-400, 432-433; GF 62
Menominee River, course and character of... Ann 20, iv, pp 217-218
Menominee series of Lake Superior region. (See p 130.)
Menominee series, Lower, of Michigan, Menominee district... GF 62, pp 2-4
Menominee and Marquette regions of Michigan, greenstone-schist areas of. Bull 62;
Bull 86, passim

Merced, California, irrigation near... WS 19
Merced River, California, hydrography of... Ann 12, ii, p 322
flow of, measurements of... Ann 12, ii, p 320; Bull 140, pp 296-297
Merced series of California, correlation of... Ann 18, ii, pp 336-337
development, of California, petrography, structure, etc., of... Ann 15, pp 459-463
Mercur mining district, Utah, economic geology of... Ann 16, ii, pp 370-455
Mercurial deposits of Pacific slope and elsewhere... Mon xiii
Mercuric sulphide, solution and precipitation of... Mon xiii, pp 209, 419-437, 474
Mercury, electric conductivity of, effect of pressure on... Bull 92, pp 68-77
(See, also, Quicksilver.)

Meridian-Claiborne deposits of the South... Ann 12, i, pp 413-415
Merrill (G. P.), descriptions of specimens of residual rocks in the educational
series... Bull 150, pp 376-385
notes on petrography of Paleozoic section in vicinity of Three Forks,
Montana... Bull 110, pp 47-54

Merrimac River, flow of, measurements of... Ann 19, ii, pp 111-115; Ann 20, iv, pp 46, 73-74; Ann 21, iv, pp 55-60; Bull 140, pp 33-34; WS 35, pp 34-36
profile of... WS 44, p 11

Merrimack group of rocks in New Hampshire... Bull 81, p 70; Bull 86, pp 353-355
Mesabi iron-ore district, Michigan, geology of... Ann 21, iii, pp 351-370, 428-430
Mesas in Plateau country... Ann 6, p 127
Mesas, limestone and gravel, of Colorado, Pueblo quadrangle... GF 38, p 5
Mesaverde formation of Colorado... GF 60, p 5
Mesilla Valley, New Mexico, irrigation in... WS 10
irrigation possibilities and problems in... Ann 12, ii, pp 279-281
Mesnard quartzite of Michigan, distribution, petrographic character, etc., of... Ann 15, pp 517-523; Mon xxviii, pp 221-240
Mesolite, analyses of, from Colorado, Table Mountain... Bull 20, p 35
chemical constitution of... Bull 35, pp 35-36, 45, 103
Mesozoic areas of Virginia, geology of... Mon vi, pp 1-9
Mesozoic deposits of Colorado, San Juan region... GF 57, p 1
subsequent to the Cenozoic, horizons of, remarks on correlation of... Ann 18, ii, pp 333-335

Mesozoic Echinodermata of United States... Bull 97
Mesozoic flora of United States, the older... Ann 20, ii, pp 211-748
of Virginia and North Carolina, the older... Mon vi
Potomac or younger... Mon xv
Mesozoic fossils from Alaska... Ann 17, i, pp 907-908
from Texas and Alaska... Bull 4
invertebrate, North American, catalogue and bibliography of... Bull 102
Mollusca from Alaska, southern coast of Alaska Peninsula... Bull 51, pp 64-70
types from Texan Permian... Bull 77

Mesozoic history of Colorado, Telluride quadrangle... GF 57, p 13
of Utah, Tintic district... GF 65, p 4
of Washington (D. C.) quadrangles... GF 70, p 6
Mesozoic paleontology of Alaska... Ann 17, i, pp 865-872
of California... Bull 15
Mesozoic rocks of California .. Bull 19, pp 9-10, 20-21; Bull 51, pp 11-13
of Texas region .. TF 3, p 3
of Yellowstone Park .. GF 30, pp 2, 5
(See, also, Cretaceous; Juratrias.)
Mesozoic section of Montana .. Bull 105, p 16
Mesozoic, Jurassic, and Cretaceous flora of Portugal Ann 16, i, pp 510-536
Metaandesite, analysis of, from California, Calaveras County Ann 14, ii, p 473; Bull 148, p 216; Bull 168, p 203
Metaandesite-tuff, analysis of, from California, Butte County Bull 168, p 191
Metabasalt, analysis of, from Michigan, Crystal Falls district (porphyritic) Mon xxxvi, pp 106-107; Bull 168, p 68
analysis of, from Michigan, Crystal Falls district (pre-Cambrian, nonporphyritic) Mon xxxvi, p 103; Bull 168, p 68
of Michigan, Crystal Falls district Ann 19, iii, pp 52-55; Mon xxxvi, pp 98-135, 211-212
Metachlorite, analysis of ... Bull 113, p 17
chemical constitution of .. Bull 125, p 55
Metacinnabarite, analyses of, from California, Knoxville Bull 61, p 23
analysis of, from California, Santa Clara County Bull 78, p 81
from California ... Bull 61, pp 22-23
New Almaden .. Bull 78, pp 80-83
Metadacite, analyses of, from California, Calaveras County Ann 14, ii, p 484; Ann 17, i, p 721; Bull 148, p 216; Bull 168, p 203
Metadiorite of California, Downieville quadrangle GF 37, p 3
Metadolerite, analysis of, from Michigan, Crystal Falls district Bull 168, p 68
of Michigan, Crystal Falls district Mon xxxvi, pp 199-211
Metagabbro in District of Columbia, Maryland, and Virginia GF 70, p 3
in Oregon, Roseburg quadrangle GF 49, p 3
Metallic-paint production. (See Mineral paints.)
Metalliferous veins, thermoaqueous origin of Ann 21, ii, pp 233-255
Metallurgy of Colorado, Leadville region Ann 2, pp 285-290; Mon xii, pp 609-751
of copper .. Bull 26; MR 1882, pp 257-280
of copper, lead, zinc, etc., electrolysis in MR 1882, pp 627-668
of Eureka ores, Nevada Mon vii, pp 158-164
of nickel ... MR 1882, pp 415-420
of nickel ores ... MR 1893, pp 174-177; Ann 17, iii, pp 256-259
Metallurgy and mining of zinc in United States MR 1882, pp 358-386
Metals in ores, source of ... Mon xii, p 571
Metals, precious. (See Gold; Precious metals; Silver.)
Metamorphic origin of schistose and massive rocks discussed Ann 10, i, pp 362-364; Mon xix, pp 107-111, 116-126
Metamorphic rock, analysis of, from Kentucky, Marion Bull 64, p 46
analysis of, from Washington, Kittitas County Bull 168, p 224
Metamorphic rocks, comparison of, with Archean Mon xiii, pp 138, 458
crystalline schists, metasomatic origin of Ann 10, i, p 434
flow and fracture of rocks as related to structure Ann 16, i, pp 845-874
of Alaska, Sushitna Basin, granite of Ann 20, vii, pp 14-15
Tanana and White basins Ann 20, vii, pp 460-472
of California, Coast Ranges Mon xiii, pp 56-59, 63, 74-87, 181-182, 455-458; Bull 19, pp 7-12
Pyramid Peak quadrangle GF 31, pp 3-4
of Colorado, Pikes Peak quadrangle GF 7, pp 1, 3, 7
of Idaho ... Ann 16, ii, pp 224-226
Metamorphic rocks of Maryland, central; granites, origin and relations of. Ann 15, pp 685-740
of Maryland, Fredericksburg quadrangle. GF 13, p 4
of Massachusetts, Green Mountains. Mon xxiii, pp 5, 44-69, 179-190
western. Mon xxix, passim
of Michigan, Crystal Falls district. Ann 19, i, pp 9-15, passim
of Michigan, and Wisconsin, Animikie series. Ann 10, i, pp 402-408
of Montana, Little Belt Mountains. Ann 20, iii, pp 278-279, 371-373
Little Belt Mountains quadrangle. GF 56, p 3
of Nevada, Washoe district. Mon ii, pp 190, 380
of Oregon, Roseburg quadrangle. GF 49, p 2
of Tennessee, Chattanooga district. Ann 19, ii, p 18
of Virginia, Fredericksburg quadrangle. GF 13, p 4
of Washington, northern southeastern. WS 4, pp 30-40
review of work of Geological Survey upon... Ann 10, i, pp 49-51
schistose structure, pressure in relation to... Bull 59, p 43
structures in, produced by dynamic action. Bull 62, pp 206-208
Metamorphic igneous rocks, descriptions of specimens of, in the educational series. Bull 150, pp 343-376
of Sierra Nevada. Ann 17, i, pp 576-586, 649-653
Metamorphic sedimentary rocks, descriptions of specimens of, in the educational series. Bull 150, pp 298-343
Metamorphic sedimentary and igneous rocks; forms of relations, etc. Ann 16, i, pp 698-708, 710-716
Metamorphic, volcanic, and Cretaceous rocks of California, northern, general distribution of. Bull 33, pp 18-19
Metamorphism; contact phenomena, effects of, on porphyry of Mercur district, Utah. Ann 16, ii, p 401
in Colorado, Mosquito Range, intrusive rocks. Mon xii, p 307
in Sierra Nevada. Ann 17, i, pp 686-692
in Montana, Castle Mountain mining district. Bull 139, pp 62-65
in Montana, Little Belt Mountains. Ann 20, iii, pp 322-323, 360
criteria for recognition of ancient plutonic rocks in highly metamorphosed terranes. Ann 15, pp 660-666
dikes, mineralizing influence of. Ann 18, iii, p 829
greenstone-schist areas in Michigan, Menominee and Marquette regions. Bull 62, pp 64-217
hydrothermal alteration of granite, basalt, and rhyolite of Idaho. Ann 20, iii, pp 174-186
in Appalachian province. GF 4, p 3; GF 8, p 3; GF 10, p 4; GF 12, p 3; GF 14, p 3; GF 16, p 5; GF 19, p 3; GF 20, p 3; GF 21, p 3; GF 25, p 4; GF 26, p 4; GF 27, p 4; GF 32, p 4; GF 33, p 3; GF 34, p 3; GF 35, p 3; GF 40, p 3; GF 44, p 4
in California, Coast Ranges. Mon xii, pp 56-59, 63, 74-87; Bull 19, pp 7-8
Coast Ranges, conditions attending. Mon xii, pp 129-139
eras of. Mon xii, pp 131, 187, 210
proofs of. Mon xii, p 129
Metamorphism in California; Nevada City and Grass Valley districts.........Ann 17, 11, pp 90-96, 103, 104, 146-157, 250
in California; Ophir, altered wall rock..............................Ann 14, 11, pp 274-278
in Catoctin belt..Ann 14, 11, pp 363-366
in eruptive rocks, a contribution to subject of..........................Bull 62
in Huronian of Northwestern States..................................Ann 5, pp 241-242
in Maine, Aroostook volcanic area...................................Bull 165, pp 151-152
in Marylaodd, Harpers Ferry quadrangle..............................GF 10, p 4
in Massachusetts, Green Mountains....................................Mon xxii, pp 32-34
in Michigan, Crystal Falls district..................................Ann 19, 11, pp 14-15; Mon xxxvi, pp xxiv, 204-211
Marquette district...Ann 15, pp 645-647; Mon xxviii, pp 573-575
Menominee district..GF 62, p 12
Penokee district..Mon xix, pp 65, 467-468
in Minnesota, Pigeon Point..Bull 109, pp 114-118
in Narragansett Basin...Mon xxxii, pp 61, 101, 119-120
in North Carolina, Knoxville quadrangle............................GF 16, p 5
in North Carolina—Tennessee, Smoky Mountains, a district of schistosity..Ann 13, 11, pp 229
in relation to depth..Ann 10, 1, pp 457-458
in Sierra Nevada..Mon xiii, pp 208-213
in Tennessee, Knoxville quadrangle..................................GF 16, p 5
Loudon quadrangle..GF 25, p 5
in Utah, Tintic district...Ann 19, 11, pp 658-664, 705-708
in Virginia, Harpers Ferry quadrangle................................GF 10, p 4
in West Virginia, Harpers Ferry quadrangle..........................GF 10, p 4
in Wisconsin, Penokee region......................................Mon xix, pp 65, 467-468
iron sulphides, formation of, in rocks...............................Ann 17, 11, pp 93-95
microscope in study of, value of..................................Bull 62, pp 34-40
new structures produced by dynamic action...........................Bull 62, pp 206-208
of Archean igneous rocks in Delaware................................Bull 59
of country rock...Mon xiii, pp 392-394
in Oregon, Bohemia mining region.................................Ann 20, 11, pp 14-15
of diorite to gabbro in Maryland, near Baltimore....................Bull 28, pp 33-49
of eruptive rocks...Bull 28, pp 9-11
review of knowledge concerning....................................Bull 62, pp 34-63
of feldspar by hydro-chemical processes.............................Ann 17, 11, pp 93
of gold-ledge porphyry and limestone in Utah, Mercur district........Ann 16, 11, pp 442-445
of igneous rocks of Yellowstone Park................................Ann 12, 1, pp 658-659
of massive rocks (macrostructural)................................Bull 62, pp 46-50, 204-208
(microstructural)..Bull 62, pp 43-46, 201-204
(mineralogic)...Bull 62, pp 50-63, 208-217
three types of..Bull 62, p 43
of sedimentary and igneous rocks..................................Ann 16, 1, pp 683-716, 801-803
processes of...Ann 16, 1, pp 683-698, 709-710
of topaz to daunourite in Maine, at Stoneham.........................Bull 27, pp 9-15
products of...Bull 62, pp 209-213
in California, Nevada City and Grass Valley districts..............Ann 17, 11, pp 94-95
remarks on...Ann 17, 11, pp 90-92
schistosity and bedding in rocks of California, Bidwell Bar area......Ann 17, 11, pp 554-556
secondary enlargements of minerals in rocks..........................Bull 8

Bull. 177—01——33
Metamorphism; serpentine and other rocks in Maryland, near Baltimore, derivation of
soils, physiology of ..Bull 28, pp 50-59
subaerial decay of rocks ..Bull 52, pp 12-34, 39-42
(See, also, Metasomatic; Metasomatism.)
Metaphosphimic acid and phosphorus, on chlorinitrides of......Bull 167, pp 77-153
Metaphosphimic acids, the higher, constitution, salts, etc., of...Bull 167, pp 130-153
Meta-quartz-diorite, analysis of, from Georgia, Gordon County...Bull 168, p 55
Metarhyolite, analysis of, from California, Plumas CountyBull 90, p 73; Bull 148, p 201; Bull 168, p 187
from Wisconsin, Utley, description, analysis, and thin section of, as one of
the educational series ..Bull 150, pp 164-170
Metasilicates, chemical constitution ofBull 125, p 85
Metasomatic alteration of rocksAnn 21, ii, pp 246-247
Metasomatic origin of crystalline schistsAnn 10, i, p 434
Metasomatism, metamorphism of rocks by........................Ann 16, i, p 689
of vein and rock in Idaho, western-centralAnn 20, iii, pp 217-231
(See, also, Metamorphism.)
Meteoric changes, diversity ofAnn 2, pp 410-411
Meteoric iron, analysis of ..Bull 42, p 96
analysis of, Abert ..Bull 148, p 246; Bull 168, p 243
from Arizona, Tucson ..MR 1883-84, p 290
from Arkansas, Johnson CountyBull 55, p 63; Bull 148, p 245; Bull 168, p 242
from California, San Bernardino County ...Bull 60, p 114; MR 1883-84, p 290
from Chile ...Bull 78, pp 95, 97; Bull 148, p 246; Bull 168, p 243
from Georgia, Chattooga and Cherokee countiesBull 60, p 106; Bull 148, pp 244, 245; Bull 168, pp 241, 242
from Iowa, Winnebago CountyBull 78, p 96
from Kansas, Kiowa and Washington counties ...Bull 78, p 94; Bull 90, p 46
from Kentucky, Allen CountyBull 55, p 64; Bull 148, p 245; Bull 168, p 242
from Mexico, Durango ..Bull 164, p 29
Sierra de San Francisco ...Bull 148, p 246; Bull 168, p 243
from Michigan, Grand RapidsBull 42, p 94; Bull 148, p 245; Bull 168, p 242
from New Mexico, AlbuquerqueBull 148, p 246; Bull 168, p 244
near Bonito ...Bull 148, p 246; Bull 168, p 243
from North Carolina, Burke CountyBull 60, p 107; Bull 74, pp 17, 18; Bull 148, p 244; Bull 168, p 241
Rutherford County ..Bull 74, p 18; Bull 78, p 94; Bull 148, p 244; Bull 168, p 241
from Pennsylvania, GettysburgBull 113, p 109; Bull 148, p 244; Bull 168, p 241
from Tennessee, Hamblen CountyBull 113, p 61, 62
from Texas, Hamilton CountyBull 78, p 95; Bull 148, p 245; Bull 168, p 242
from Virginia, Pulaski CountyBull 90, p 45; Bull 148, p 244; Bull 168, p 241
from Wyoming ..Bull 148, p 246; Bull 168, p 244
in Arizona, near Coon ButteAnn 13, i, p 98; Ann 14, i, p 187
Meteoric stones, two new, and an iron of doubtful natureBull 42, pp 94-97
Meteoric stone, analysis of, from North Carolina, Cabarrus and Nash coun-
ties ...Bull 74, pp 19, 20
analysis of, from Texas, Travis CountyBull 78, p 91-92
Meteorite, a new, from MexicoBull 64, pp 29-30
analysis of, from Tennessee, near RockwoodBull 60, pp 104, 105
Meteorite, stony, analysis of, from British Columbia, Beaver CreekBull 148, p 242; Bull 168, p 239
analysis of, from California, San Bernardino CountyBull 148, p 241; Bull 168, p 238
Meteorite, stony, analysis of, from ChileBull 148, p 243; Bull 168, p 240
analysis of, from Iowa, Winnebago County..Bull 148, pp 235, 236; Bull 168, p 233
from Kansas, Kiowa and Washington countiesBull 148, p 237; Bull 168, pp 234, 235
from Missouri, Taney County..Bull 60, pp 106, 107; Bull 148, p 236; Bull 168, p 234
from Tennessee, Cumberland and Hamblen countiesBull 148, pp 234, 235; Bull 168, pp 231, 232
from Texas, Fayette and Travis counties...............Bull 60, pp 109, 111, 113; Bull 148, pp 239, 240-241; Bull 168, pp 236, 237, 238
Meteorites, descriptions and analyses of new............Bull 60, pp 103-104; Bull 78, pp 91-97; Bull 90, pp 45-46
from Arkansas, Johnson County, and Kentucky, Allen County Bull 55, pp 63-64
Meteorology of IndiaAnn 12, ii, pp 403-404
Meters, current, for measuring velocities of streamsAnn 11, ii, pp 6-14; Ann 19, iv, pp 18-30
methods of rating ..Bull 140, pp 333-335
rating tables for ..Bull 140, pp 332-341; WS 11, p 94
Methow formation in Washington, northernAnn 20, ii, pp 114-117
Mexico; bismuthinite from Sinaloa, description and analysis ofBull 90, p 40
building stone from, at World's Columbian ExpositionMR 1893, p 574
cessions of land to United States byBull 171, pp 25-26
Cretaceous deposits ofBull 82, pp 201-202
fossil plants of, literature ofAnn 8, ii, pp 825-826
geologic maps of, list ofAnn 7, pp 144-145
gold and silver production of, compared with that of other countries.MR 1883-84, pp 319-320
grahamite vein in Huasteca, account ofAnn 17, i, pp 940-941
iron and iron ore from, statistics ofAnn 16, iii, pp 23, 59-62
iron-ore deposits ofAnn 16, iii, pp 59-62
mining law ofMR 1883-84, p 999
onyx marble localities inAnn 20, vi cont, pp 288-289
petroleum production ofAnn 19, vi cont, pp 121; Ann 21, vi cont, pp 181-182
quicksilver ores inMon xiii, pp 16-19
tin deposits and production ofMR 1883-84, pp 623-624; Ann 16, iii, pp 519-522
Miami River, profile ofWS 44, p 60
Miami, Great and Little, river systemsAnn 18, iv, pp 457-458
Mica, analysis of, from California, Alpine, Amador, and Mariposa counties ..Bull 168, pp 202, 208, 218
analysis of, from Colorado, Pikes Peak regionBull 20, p 68
from Maryland, Stevenson stationBull 148, p 90; Bull 168, p 50
from Massachusetts, ChesterfieldBull 126, p 115
from New Jersey, MontvilleBull 64, p 44
from Russia, UralBull 113, p 27
Mica, deposits of, in Massachusetts, Cape Ann Bull 42, pp 21-27
in United States, nature, quality, value, etc., of........ Ann 20, vi cont, pp 691-707
production of, statistics of.. MR 1882,
pp 583-584; MR 1883-84, pp 906-912; MR 1885, pp 518-520;
MR 1886, pp 5, 7, 9; MR 1887, pp 660-671; MR 1888, pp
614-615; MR 1889-90, pp 474-475; MR 1893, pp 748-755;
Ann 16, iv, pp 660-661; Ann 17, iii cont, pp 1000-1003;
Ann 18, v cont, pp 1317-1321; Ann 19, vi cont, pp 618-622;
Ann 20, vi cont, pp 689-707; Ann 21, vi cont, pp 555-558

Mica group, a theory of the.. Bull 64, pp 9-19
studies in the... Bull 55, pp 13-18
Mica mining in North Carolina.. MR 1887, pp 661-671
Micas, constitution of.. Bull 113, pp 22-36; Bull 125, pp 45-46; Bull 150, p 42
Micas, vermiculites, and chlorites, on the constitution of certain... Bull 90, pp 11-21
Micas, lithia, researches on....................................... Bull 42, pp 11-27
Mica-andesite, analysis of, from Michigan, Michiganamge district Bull 148, p 97
analysis of, from Nevada, Washoe district................. Mon xx, p 282; Bull 17, p 33
from New Mexico, San Mateo Mountain......................... Bull 27,
p 65; Bull 42, p 139; Bull 148, p 185; Bull 168, p 170
from New Mexico, Tewan Mountains............................... Bull 66, p 13
Mica-basalt, analysis of, from Arizona, Santa Maria Basin............. Bull 90,
p 72; Bull 148, p 187; Bull 168, p 173
Mica-dacite, analysis of, from Colorado............................. Ann 17,
ii, p 324; Bull 148, p 167; Bull 168, p 149
of Colorado, Rosita Hills................................. Ann 17, ii, pp 311-312
Mica-dacite-porphyry, analysis of, from Yellowstone Park, Birch Hills..... Bull 148,
p 133; Bull 168, p 107
analysis of, from Yellowstone Park, Bunsen Peak................ Mon xxxii,
ii, p 87; Bull 148, p 133; Bull 168, p 107
Mica-diorite, analysis of, from Michigan, Crystal Falls district........ Mon xxxvi,
p 263; Bull 168, p 67
analysis of, from Nevada.. Mon iii, opp p 152
Mica-diorite-porphyrite, thin section of, from Michigan, Crystal Falls dis­

Mica-diorite-porphyry, analysis of, from Wisconsin, Upper Quinnesec Falls... Bull 148,
p 102; Bull 168, p 72
Mica-gabbro, analysis of, from Yellowstone Park, Hurricane Ridge........ Bull 148,
p 122; Bull 168, p 92
Mica-gabbro-porphry, analysis of, from Yellowstone Park, Hurricane
Ridge.. Bull 148, p 122; Bull 168, p 92
Mica-granite-gneiss of Colorado, Telluride quadrangle................ GF 57, p 7
Mica-lencities, analyses of, from Wyoming, Leucite Hills Bull 148,
p 116; Bull 168, p 85
Mica-peridotite, analysis of, from Kentucky, Crittenden County dike........ Bull 148,
p 94; Bull 168, p 58
Mica-schist, analysis of, from California, Chowchilla River (feldspathic).... Bull 148,
p 221; Bull 168, p 210
analysis of, from California, Yaqui Gulch.......................... Bull 148,
p 221; Bull 150, p 342; Bull 168, p 210
from Michigan, Felch Mountain district............ Mon xxxvi, p 394; Bull 168, p 66
from Minnesota, near Gunflint Lake................. Bull 148, p 113; Bull 168, p 83
from New Hampshire, Charlestown, description of, as one of educational
series (staurolitic).. Bull 150, pp 333-337
from South Dakota, Black Hills, description of, as one of educational series
(tourmaline-biotite-schist)................................. Bull 150, pp 327-331
Mica-schist in Massachusetts, eastern Berkshire CountyBull 159, pp 81-83
in Massachusetts, Holyoke quadrangleGF 50, pp 4, 5
in Michigan, Crystal Falls districtAnn 19, iii, pp 103-104, 114-115, 121-122; Mon xxxvi, pp 392-395, 423-426
in Northwestern StatesAnn 5, pp 212-213
of Penokee series, derived from graywackeAnn 10, i, pp 431-434
Mica-tinguiate, analysis of, from PortugalAnn 18, iii, p 569
Michaelite, analysis of, from AzoresAnn 9, p 670
Migigamme formation, distribution, petrographic character, etc., ofAnn 15, pp 598-604; Mon xxviii, pp 444-459
Michigan; altitudes inAnn 20, i, p 411; Ann 21, i, p 465; Bull 5, pp 138-146; Bull 72, p 204; Bull 76; Bull 160, pp 297-319
boundary lines of, and formation of, from territory northwest of Ohio RiverBull 13, pp 28-29, 113-114; Bull 171, pp 119-120
brick industry ofMR 1887, pp 536, 538; MR 1888, pp 560-561, 566
bromine industry ofMR 1885, p 487; MR 1886, p 642; MR 1887, p 626; MR 1888, p 613; MR 1889-90, p 493; MR 1891, p 579
building stone from, at World’s Columbian ExpositionMR 1893, p 567
production of, statistics ofMR 1882, p 451;
Ann 17, iii cont, pp 760, 775 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, p 335 et seq
cement production of, statistics ofAnn 17, iii cont, p 885;
Ann 18, v cont, pp 1170, 1175; Ann 19, vi cont, pp 487, 493;
Ann 20, vi cont, pp 539, 545; Ann 21, vi cont, pp 393-401
clay products of, statistics ofAnn 16, iv, pp 518,
519, 520, 521; Ann 17, iii cont, pp 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 363; Ann 20, vi cont, pp 466 et seq, 525; Ann 21, vi cont, pp 362, 363
climate ofWS 30, pp 48-57
coal area and statistics ofAnn 2, p xxviii;
coal fields ofMR 1892, pp 422-423; Ann 16, iv, p 138
coke in, manufacture ofAnn 20, vi cont, p 227
copper from, statistics ofAnn 2, p xxix;
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.

Michigan; copper-bearing rocks of Lake Superior, nature, structure, and extent
of ... Ann 3, pp 93-188; Mon v
Crystal Falls iron-bearing district, geology of .. Ann 19, iii, pp 1-151; Mon xxxvi
production of Ann 21, iii, p 384; Mon xxxvi, p 186
Detroit River drainage, water powers in ... WS 30, p 18
diamonds in, occurrence of ... Ann 16, iv, p 596
Felch Mountain range, geology of .. Ann 19, iii, pp 97-122; Mon xxxvi, pp 374-426
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, p 227 et seq
geographic positions in ... Bull 123, pp 107-112
geologic maps of, listed .. Bull 7, pp 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
(See Map, geologic, of Michigan.)
geologic sections in. (See Section, geologic, in Michigan.)
geologic and paleontologic work in .. Ann 3, p 20; Ann 4, pp 24, 25;
Ann 19, i, p 62; Ann 20, i, pp 41-42, 161; Ann 21, i, pp 74-75
gleology and topography of ... WS 30, pp 57-77
Glacial investigations in ... Ann 3, pp 322-337; Ann 7, p 157
Glacial lobe, the Illinois ... MR 1891, pp 12, 16, 54, 55, 61; Ann 17, ii cont, pp 979, 980, 981; Ann 18, vi cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527
Gypsum production of, statistics of ... MR 1882, pp 176, 177, 178; MR 1887, p 59; MR 1888, p 37; MR 1889-90, pp 49, MR 1891, pp 75, 76; MR 1892, pp 11, 53, 54, 55, 56; MR 1893, pp 50, 51, 55, 57, 58, 59, 60, 61; Ann 17, iii, pp 72, 73, 74, 75, 76, 77; Ann 18, v, pp 141 et seq;
Huron River, water power of ... WS 30, pp 38-41
Iron-ore deposits of Lake Superior region .. Ann 21, iii, pp 305-434
of Menominee district .. GF 62, pp 7-9
Iron-ore mines of, total production to date of larger MR 1891, p 16
Iron ores, manganiferous, of Lake Superior region, character and production
of .. MR 1892, pp 182-183, 198-199
Michigan; Kalamazoo River, water power, run-off, geology, topography, rainfall, etc., in watershed ofWS 30, pp 22-26
Keweenaw series on Keweenaw Point, observations on junction between Eastern sandstone andBull 23
Lake Erie drainage, water powers in WS 30, p 18
Lake Huron drainage, water powers in WS 30, p 20
Lake Michigan drainage, water powers in WS 30, pp 20-22
Lake St. Clair drainage, water powers in WS 30, p 18
Lake Superior region; classification of early Cambrian and pre-Cambrian formations; a brief discussion of principles, illustrated by examples drawn mainly fromAnn 7, pp 365-454
lime production of .. MR 1887, p 533; MR 1888, p 555
magnetic declination in Ann 17, i, pp 587-583
magnetic observations in Crystal Falls district ofAnn 19, iii, pp 95-96, 141-143; Mon xxxvi, pp 24, 336-373
maps, geologic, of. (See Map, geologic, of Michigan.)
maps, topographic, of. (See Map, topographic, of Michigan; also p 81 of this bulletin.)
marble production of .. MR 1893, pp 548-549
Marquette iron district, iron-bearing formations of, conclusions concerningAnn 15, pp 163-164
report on, with chapter on Republic troughAnn 15, pp 477-650; Mon xxxviii
Marquette Range, iron ores ofAnn 19, vi, pp 54-58
Menominee district, geology ofGF 62
Menominee and Marquette regions, greenstone-schist areas ofBull 62
Menominee River, course and character ofAnn 20, iv, pp 217-218
Michigamme Mountain and Fence River areas, geology ofAnn 19, iii, pp 123-139; Mon xxxvi, pp 427-450
mineral spring resorts in .. Ann 14, ii, p 84
mineral waters of, lower .. WS 31
minerals of, useful .. MR 1882, pp 695-697; MR 1887, pp 745-747
natural gas localities and statistics ofMR 1892, p 676; MR 1893, p 536; Ann 16, iv, p 415
natural gas consumption in .. MR 1891, p 438
Michigan; Negaunee iron formation, magnetic line marking .. Ann 19, iii, pp 141-143; Mon xxxvi, pp 339-339
Penokee district, topographic features of, in relation to geology Mon xix, pp 145, 188-189, 301-302
Penokee iron-bearing series of Michigan and Wisconsin Ann 10, 1, pp 341-508; Mon xix
petroleum localities and statistics of .. Ann 20, vi cont, p 111; Ann 21, vi cont, pp 6, 7, 12, 144
rainfall in .. WS 24, pp 51-52; WS 29, p 72; WS 30, pp 26-29, 33, 34, 35, 49, 52, 55
average annual and seasonal .. Ann 17, ii, p 719
road metal in Crystal Falls district ... Ann 19, iii, p 63; Mon xxxvi, p 154
Saginaw River drainage, water powers in .. WS 30, p 19
St. Clair River drainage, water powers in .. WS 30, p 19
salt-making in .. Ann 7, pp 504, 505, 507, 519-521
history of .. Ann 18, v cont, pp 1303-1306
secondary enlargements of mineral fragments in certain rocks, mostly from Michigan, Wisconsin, and Minnesota Bull 8
sections, geologic, in. (See Section, geologic, in Michigan.)
sewage-disposal plants in .. WS 22, p 77
slate production of, statistics of ... MR 1885, p 399; MR 1886, p 550; MR 1887, p 522; MR 1888, p 547; MR 1889-90, pp 376, 403
Sturgeon River tongue, geology of .. Ann 19, pp 146-151; Mon xxxvi, pp 458-487
temperature in ... WS 30, pp 22-29, 33, 50-52
timber in, estimates of ... Ann 19, v, p 16
timber and soil of Michigananee district ... Mon xxxvi, p 36
topographic maps of. (See Map, topographic, of Michigan; also list on p 81.)
topographic work in ... Ann 11, i, p 38; Ann 12, 1, p 27; Ann 17, 1, pp 97, 101; Ann 18, 1, pp 94, 95, 104; Ann 19, 1, p 90; Ann 20, 1, pp 100, 102, 113; Ann 21, 1, pp 131-132
triangulation in .. Bull 122, pp 117-119
water powers in ... WS 30, pp 18-22, 37-41
water resources of Lower Peninsula of ... WS 30
woodland area of. ... Ann 19, v, p 9
Michigan, Lake, drainage basin of ... Mon xxxvii, pp 538-541
present beach of (erosion, etc.) ... Mon xxxvii, pp 453-459
rainfall, relation of lake level to ... WS 30, pp 29-30
stages of, for thirty years, 1860-1889 ... Ann 17, ii, p 739
Middle Park lake beds of Colorado .. Bull 83, p 137; Bull 84, p 307
Midway series of Alabama .. Bull 84, p 330
Miliolite limestone of Florida, measurements of Bull 84, p 104-105
Milk River, Montana, flow of, measurements of Ann 19, iv, pp 286-287; Ann 20, iv, pp 53, 245-246; Ann 21, iv, pp 186-189; WS 15, p 73; WS 27, pp 68, 72, 75, 76; WS 37, pp 209-210
Mill Creek, California, flow of, measurements of Ann 20, iv, p 558; Ann 21, iv, p 485; WS 39, pp 421-422

Mining. (See Mining and milling.)
Milling. (See Mining and milling.)
Millstones, production of, statistics of Ann 21, vii cont, pp 463, 464-465
Mineral, Carbonate, and Tenderfoot hills of Colorado, Cripple Creek district, character of ore deposits in Ann 16, ii, p 167
Mineral deposits; solubility, relation of, to increased pressure and temperature: Ann 17, ii, pp 177-178
Mineral enlargements in rock alteration Bull 8, pp 37-52
Mineral fragments of certain rocks, secondary enlargement of Bull 8
Mineral Hill, Colorado, volcanic breccia of Ann 16, ii, pp 100-101
Mineral King beds of California, description of Ann 14, ii, p 451
Mineral lexicon of Massachusetts, eastern Berkshire County Bull 159, pp 103-127
Mineral paints, analyses of MR 1885, pp 528, 530, 551
in Hawaii, occurrence of Ann 19, vii cont, p 685
Mineral production of United States, statistics of Ann 2, pp xxviii-xxx, xxxv-xxxxvii, 331-401; Ann 4, pp 63-68; Ann 6, pp 88-92; Ann 7, pp 38-39, 131-134; Ann 8, i, pp 85-87, 195-200; Ann 9, pp 27-28, 134-140; Ann 10, i, pp 52-53, 182-188; Ann 11, i, pp 19-21; Ann 12, i, pp 14-16; Ann 13, i, pp 44-49; Ann 15, pp 72-73, 203-209; Ann 16, i, pp 49-61; iii; iv; Ann 17, i, pp 81-93; iii; iii cont; Ann 18, i, pp 83-91; v; v cont; Ann 19, i, pp 75-85; v; vi cont; Ann 20, i, pp 77-90; vi; vi cont; Ann 21, i, pp 101-113; vi; vi cont; MR 1882; MR 1883-84; MR 1885; MR 1886; MR 1887; MR 1888; MR 1889-90; MR 1891; MR 1892; MR 1893
Mineral resources, work of survey in relation to, résumé of Ann 21, i, pp 22-47
Mineral species from Colorado Bull 20, pp 100-109
Mineral spring resorts, American, list of Ann 14, ii, pp 81-89
Mineral springs of United States, eastern (thermo) Ann 14, ii, pp 43-44
of United States, lists of, and analyses of water from Bull 32
origin, flow, and geologic position of Ann 14, ii, pp 58-64
salinity of, in connection with Molluscan life Bull 11, pp 30-38
Mineral waters, action of, in formation of ores Mon xiii, p 563
action of, in silicification Mon xiii, p 137
analyses of Ann 8, ii, p 621; Ann 9, pp 639, 673; Bull 27, pp 75-76; Bull 42, pp 147-149; Bull 55, p 92; Bull 60, pp 171-174
chemical action of Mon xiii, pp 134-138
Mineral waters, economic value of .. WS 31, pp 12-14
of Alaska, Copper River district, notes on .. Ann 20, vii, p 423
of Michigan, Lower Peninsula ... WS 31
of Montana, Little Belt Mountains quadrangle GF 56, pp 8-9
of Porto RicoAnn 20, vii cont, pp 775-776
of United States, chemical composition of .. Ann 14, ii, pp 69-73
natural ... Ann 14, ii, pp 49-88
on veins of Nevada City district........................Ann 17, ii, pp 120-124
treatment of concentrated, in analysis Bull 47, pp 25-28
(See Waters, mineral.)
Mineralization, agents and process of, in Colorado, Aspen district........ Mon xxxi, pp 232-234
in gold ores of Utah, Mercur; locus, age, nature, and process Ann 16, ii, pp 434-452
Mineralizing agents, effects of, on crystallization of igneous magmas Ann 12, i, pp 658-659
Mineralogic character of ore of Colorado, Custer County, Bull-Domingo mine Ann 17, ii, pp 442-444
Mineralogic composition of rock of Maryland Ann 15, pp 698-714
of gabbro-schist and gneisses of Minnesota, southwestern Bull 157, pp 49-60, 80-82
of igneous rocks of Yellowstone Park and vicinity Mon xxxii, ii, pp 105-115, 134, 259-265
of rocks of Montana, Yogo Peak, variation in Ann 20, iii, pp 567-568
of slates of New York-Vermont slate belt Ann 19, iii, pp 226-265, 288-290
Mineralogic composition and structure of peridotite of Kentucky, Elliott County .. Bull 38, pp 10-20
Mineralogic and chemical composition of volcanic rocks of Colorado, Silver Cliff and Rosita Hills .. Ann 17, ii, pp 323-326
Mineralogic constitution of loess .. Ann 6, pp 281-283
Mineralogic metamorphism of massive rocks Bull 62, pp 50-63, 208-217
progress of alteration of original minerals Bull 62, pp 214-217
Mineralogic notesBull 55, pp 48-55; Bull 60, pp 129-137; Bull 167, pp 57-76
Mineralogic relations of pegmatites and quartz veins to igneous rocks in general Ann 18, iii, pp 313-314
Mineralogic variations in volcanic rocks of New Mexico, Tewan Mountains ... Bull 66, pp 17-19
Mineralogy; augite in gneisses of Minnesota, southwestern Bull 157, p 57
bastnäsite from Colorado, Cheyenne Mountain, notes on tysonite and... Bull 167, pp 64-66
bibliography and index of .. for 1892-93, Bull 130; for 1894, Bull 135; for 1895, Bull 146; for 1896, Bull 149; for 1897, Bull 156; for 1898 Bull 162; for 1899, Bull 172
biotite in gneisses of Minnesota, southwestern Bull 157, pp 53-54
calaverite from Colorado, Cripple Creek, mineralogic notes on..Bull 167, pp 57-60
chlorite in gneisses of Minnesota, southwestern Bull 157, pp 59-60
Mineralogy; coloradoite from California, notes on. Bull 167, pp 62-63
contributions to chemistry and, from laboratory of United States Geological Survey. Bull 9; Bull 27; Bull 42; Bull 55; Bull 60; Bull 64; Bull 78; Bull 90; Bull 113; Bull 167
diallage in gabbro-schists of Minnesota, southwestern. Bull 157, pp 80-81
epidote in gneisses of Minnesota, southwestern. Bull 157, p 59
feldspars in gneisses of Minnesota, southwestern. Bull 157, pp 51-53
hornblende in gneisses of Minnesota, southwestern. Bull 157, pp 55-57
hydromica from New Jersey, constitution of. Bull 167, pp 154-155
jeffersonite from New Jersey, Franklin Furnace, notes on. ... Bull 167, pp 68-69
melonite from California, notes on. Bull 167, pp 60-62
muscovite in gneisses of Minnesota, southwestern. Bull 157, p 54
of gold-silver veins of California, Nevada City and Grass Valley districts. . Ann 17, ii, pp 114-120, 146-148
of California, Ophir Ann 14, ii, pp 271-273
of Idaho, western-central Ann 20, iii, pp 166-169, 212-214
of Hawaii .. Ann 19, vi cont, pp 683-684
of Massachusetts, central Bull 126
of Pacific coast, contributions to. Bull 61
of platinum, crude. Ann 16, iii, pp 628-633
of Rocky Mountains, contributions to. Bull 20
of tin ore in North Carolina, at Kings Mountain. MR 1893, pp 178-180
plagioclase determinations, methods of. Ann 18, iii, pp 30-35
prosopite from Utah, Dagway mining district, notes on. ... Bull 167, pp 66-68
quartz in gneisses of Minnesota, southwestern. Bull 157, pp 49-51
rosecelite from California, Placerville, notes on. Bull 167, pp 70-74
tellurides from California, notes on. Bull 167, pp 60-63
tysonite from Colorado, Cheyenne Mountain, notes on bastnasite and. Bull 167, pp 64-66
zeolitic minerals of Colorado, Table Mountain Mon xxvii, pp 292-296
Minerals, alteration of, in Comstock lode. Mon xiii, p 20
composing lithophysae Ann 7, pp 266-272
composing rocks, chemical constitution of Bull 125
contained in deposits of Idaho, western-central. Ann 20, iii, pp 255-256
dynamic action, effects of, on. Bull 62, 205-206
of basults of Colorado, Golden Table Mountain Bull 20, pp 13-19
of California, crystalline metamorphics of Coast Ranges. Mon xiii, pp 74-87
Knoxville district .. Mon xiii, pp 279-280, 284-286
of Colorado, Cripple Creek district Ann 16, iii, pp 123-126
Pikes Peak, neighborhood of. Bull 20, pp 40-73
Telluride district, in veins of Ann 18, iii, pp 781-794, 796-799
of granite of Wisconsin and Michigan. Ann 10, i, p 355
of Maine, Litchfield Bull 42, pp 28-38
of Nevada, Eureka district. Mon x, pp 52-59, 184
of North Carolina. ... Bull 74
of phonolites of Colorado, Cripple Creek district Ann 16, ii, pp 25-33
of Utah, associated rare Bull 20, pp 83-88
certain rare copper, notes on. Bull 55, pp 38-47
Tintic district, in ore deposits. Ann 19, iii, pp 691-704; GF 65, p 6
origin of. .. Mon xii, pp 569-584
Minerals, copper, certain rare, of Utah, notes on. Bull 55, pp 38-47
Minerals, gangue, of gold fields of southern Appalachians. ... Ann 16, iii, pp 272-281
Minerals, ore and gangue, of Montana, Little Belt Mountains. .Ann 20, iii, pp 406-412
Minerals, rock-making, the principal. Bull 150, pp 27-47
Miners' government and laws in AlaskaAnn 18, iii, pp 127-129
Mines, classification of ..Ann 2, p 341
of Colorado, Custer County ..Ann 17, ii, pp 405-472
Tenmile district, history, workings, ores, etc., ofGF 48, pp 4-6
of Montana, Butte district, map showing location ofGF 38
Judith Mountains ..Ann 18, iii, pp 588-616
Little Belt Mountains, notes onAnn 20, iii, pp 423-440, 442-461
of Oregon, Bohemia region ...Ann 20, iii, pp 19-31
of Porto Rico, location, names, etc., ofAnn 20, vii cont, pp 781-783
(See, also, Mining.)

Mines and mining, division of, in Geological Survey, resolution providing for, and report thereonAnn 20, i, pp 13-23; Ann 21, i, pp 22-47
Minette, analysis of, from GermanyAnn 16, iii, p 135
analysis of, from Montana, Sheep CreekAnn 20, iii, pp 572, 581; Bull 148, p 149; Bull 168, p 218
from New Jersey, Franklin Furnace ..Bull 148, p 80; Bull 150, p 238; Bull 168, p 39
from New Jersey, Franklin Furnace, description of, as one of educational series ..Bull 150, pp 236-239
in Montana, Castle Mountain district, microscopic petrography ofBull 139, pp 113-114
Fort Benton quadrangle ..GF 55, p 3
Little Belt Mountains ..Ann 20, iii, pp 308-309, 332-333, 351, 377, 526-539
Mining in Colorado, Aspen district, geology ofMon xxxi
in Colorado, Cripple Creek district, geology, history, etc., ofAnn 16, ii, pp 111, 113-118, 209
Custer County; water course in Geyser mineAnn 17, ii, pp 458-459
Leadville ...Ann 2, pp 201-290; Mon xi
Telluride quadrangle ..Ann 18, iii, pp 745-848
in forest reserves, remarks on ..Ann 19, v, pp 71, 181-183, 265
in Idaho ..Ann 16, ii, pp 250-275
Idaho Basin and Boise Ridge ..Ann 18, iii, pp 617-719
in Montana, Butte district, history ofGF 38, pp 3-4
in Nevada, Eureka district, geology ofAnn 4, pp 221-251; Mon vii
in Oregon, Bohemia district ..Ann 20, ii, pp 1-31
in Utah, Mercur district, economic geology ofAnn 16, ii, pp 370-455
Tintic district, geology and industry ofAnn 19, iii, pp 601-767
in Wyoming, Absaroka district ...GF 52, p 6
milling in Colorado, Telluride districtAnn 18, iii, pp 847-848
timbering in Nevada, Comstock minesMon iii, pp 5-6
in Nevada, Eureka mines ..Mon vii, pp 153-157
Mining, coal, general view of industry ofMR 1882, pp 1-7
Mining, gold, methods of ..Ann 18, iii, pp 389, 392
Mining, iron-ore, methods of ...Ann 19, vi, pp 37-41
Mining and metallurgy of zinc in United StatesMR 1882, pp 358-386
Mining and miners, Comstock ..Mon iv
Mining and milling in California, Nevada City and Grass Valley districts, processes of ..Ann 17, ii, pp 22-25
in Idaho, processes of ..Ann 20, iii, pp 113-116
in Nevada, Comstock lode, mechanical appliances used inAnn 1, pp 50-52, 72; Mon iv, pp 380-345
Mining law, historical sketch ofMR 1883-84, pp 988-1004; MR 1886, pp 722-790
Minnekahta limestone of Black HillsAnn 21, iii, pp 177-180; iv, pp 514-516
Minnelusa formation of Black HillsAnn 21, iii, pp 177-180; iv, pp 510-513, 567
Minnesota; Agassiz, Lake, the glacial .. Mon xxv
agriculture in Red River Valley, development of Mon xxv, pp 610-625
altitudes in .. Ann 19,
I, pp 259-261; Ann 21, I, pp 471-472; Bull 5, pp 147-154;
Bull 72, pp 198-200, 206-214; Bull 76; Bull 160, pp 320-344
Archean formations of Northwestern States Ann 5, pp 175-242
artesian wells of Red River Valley.. Ann 11, II, pp 267-268
atlas sheets in. (See p 82 of this bulletin.)
boundary lines of, and formation of State Bull 13,
pp 118-119; Bull 171, pp 124-125
brick industry of .. MR 1887, pp 536, 538;
MR 1888, p 561
building stone from, at World’s Columbian Exposition MR 1893, p 568
production of, statistics of ... MR 1882,
p 457; MR 1887, p 516; MR 1888, p 540; MR 1889-90, p 373,
403-405; MR 1891, pp 457, 459, 461, 462, 464, 466; MR 1892,
pp 706, 707, 710, 711; MR 1893, pp 544, 546, 553, 556;
Ann 16, IV, p 437 et seq; Ann 17, III cont, p 760 et seq;
Ann 18, V cont, p 950 et seq; Ann 19, VI cont, p 207 et seq;
Ann 20, VI cont, p 271 et seq; Ann 21, VI cont, p 335 et seq
cement production of, statistics of ... MR 1886,
p 556; MR 1887, p 527; MR 1888, p 551; MR 1889-90, p 461;
MR 1891, p 532; MR 1892, p 739; MR 1893, p 619; Ann 16, IV,
p 577; Ann 17, III cont, p 891; Ann 18, V cont, p 1178; Ann 19,
VI cont, p 495; Ann 20, VI cont, pp 547, 550; Ann 21, VI cont,
p 407
clay products of, statistics of .. MR 1891, p 523;
Ann 16, IV, pp 518, 519, 520, 521; Ann 17, III, cont, pp 820
et seq, 862; Ann 18, V cont, p 1078 et seq; Ann 19, VI cont,
pp 318 et seq, 363; Ann 20, VI cont, pp 466 et seq, 526
coal discovered in ... MR 1891, p 260
coke in, manufacture of .. Ann 20, VI cont,
p 227
copper-bearing rocks of Lake Superior, nature, structure, and extent of... Ann 3,
p 93-188; Mon V
Coteau des Prairies, section across, etc .. Mon xxv,
pp 36-39
driftless area of Upper Mississippi Valley Ann 6, pp 199-322
earthworks, aboriginal, in region of glacial Lake Agassiz Mon xxv,
pp 643-645
Fargo quadrangle, physiography of ... TF 1, p 1
Fargo quadrangle, physiography of ... TF 1, p 1
forest trees and shrubs of Red River Basin Ann xxv, pp 603-606
Fargo quadrangle, physiography of ... TF 1, p 1
gas, illuminating and fuel, and by-products in, statistics of Ann 20, VI cont,
pp 227, 240, 244, 246, 247, 248, 249
glacial investigations in ... Ann 18, I,
p 161-162; Ann 21, I, pp 272-276-278; Bull 123, pp 115-116
glacial Lake Agassiz, upper beaches and deltas of Bull 39
geologic maps of, listed .. Bull 7, pp 89, 91, 92,
93, 96, 97, 98, 101
(See Map, geologic, of Minnesota.)
geologic sections in. (See Section, geologic, in Minnesota.)
geologic and paleontologic investigations in Ann 4, pp 30-31; Ann 5,
p 21, 25-26; Ann 6, pp 40-44, 74, 75; Ann 7, pp 69-71, 72,
80, 81; Ann 8, I, pp 135-137, 143; Ann 9, pp 72, 81, 82, 85;
Ann 10, I, pp 123, 124, 125, 126; Ann 11, I, pp 75, 78, 104;
Ann 21, I, pp 74-75
glacial investigations in ... Ann 3, pp 382-384, 388-393
glacial Lake Agassiz, upper beaches and deltas of Bull 39
gneisses, gabbro-schists, and associated rocks of southwestern Bull 157
gold and silver from, statistics of ... Ann 17, III,
pp 72, 76, 77; Ann 18, V, pp 141, 146, 147, 149; Ann 19, VI,
pp 128, 129, 130, 131, 132, 133; Ann 20, VI, pp 103, 104,
105, 106, 107, 108, 109; Ann 21, VI, pp 125, 126
Lake Agassiz, the glacial .. Mon xxv
Lake Superior region; classification of Cambrian and pre-Cambrian formations: a brief discussion of principles, illustrated by examples drawn mainly from .. Ann 7, pp 365-454
Leaf Hills, description of .. Mon xxv, pp 33-34
lignite, natural gas, lime, bricks, etc., of Red River Valley .. Mon xxv, pp 626-631
lime production of ... MR 1887, p 533; MR 1888, p 555
magnetic declination in ... Ann 17, i, pp 364-367
maps, geologic, of. (See Map, geologic, of Minnesota).
maps, topographic, of. (See Map, topographic, of Minnesota; also list on p 82 of this bulletin.)
meridian marks in .. Ann 20, i, p 261
Mesabi range, description of Mon xxv, pp 31-32
mineral spring resorts in .. Mon xxv, pp 31-32
minerals of, useful ... MR 1882, pp 697-698; MR 1887, p 747-749
Mississippi River, flow of, measurements of Ann 19, iv, pp 264-270; Ann 20, iv, pp 52, 230-231; WS 36, pp 194-195
Pigeon Point, sedimentary and eruptive rocks of Bull 109
pine region of, timber conditions in Ann 21, vi, pp 673-689
rainfall in, at various points WS 24, p 50
average annual and seasonal Ann 17, vi, p 719
rainfall, snowfall, and temperature at St. Paul, Duluth, Moorhead, and St. Vincent Mon xxv, pp 592-599

sewage-disposal plants in WS 22, pp 79-80
slate production of Ann 18, v cont, pp 999-1000; Ann 19, vi cont, pp 207, 250, 254, 256; Ann 20, vi cont, pp 271, 294, 298, 299
soils of Red River Valley region Mon xxv, pp 583-591
timber in, estimates of Ann 19, v, p 16
topographic maps of. (See Map, topographic, of Minnesota; also list on p 82 of this bulletin.)
topographic work in.................................... Ann 15, p 117; Ann 16, i, pp 65, 68, 69; Ann 17, i, pp 97, 102; Ann 18, i, p 95; Ann 19, i, pp 89, 90, 101, 102; Ann 20, i, pp 100, 102, 113; Ann 21, i, pp 120, 130
wells on .. Ann 11, a, pp 267-268
wells, artesian and common, of Red River Valley.......Mon xxv, pp 523-581
wheat, hay, stock, etc., raising of, in Red River Valley...Mon xxv, pp 615-625
woodland area in Ann 19, v, p 9

Minnesota, Lake, the glacial, extent, etc., of........ Mon xxv, pp 264-265
Minnesota River, profile of WS 44, pp 79-80
Minnewaste limestone of Black Hills Ann 21, iv, p 529
Miocene; origin of term Bull 84, p 330

(See, also, Neocene.)

Miocene fauna; marine Eocene; fresh-water Miocene, and other fossil Mollusca of western North America................. Bull 18 of New Jersey, Mollusca and Crustacea . Mon xxiv

Miocene fossils of Oregon Ann 17, i, pp 470, 471, 474, 475
Miocene rocks; Amyzon group of Oregon Bull 84, pp 281, 317
Astoria group in Alaska Bull 84, pp 252-259
boundaries of .. Bull 84, pp 21-22
delimitation and faunal peculiarities of Bull 84, pp 21-22
contacts of Eocene rocks with Bull 84, pp 183-184
of Alaska .. Bull 84, pp 234-259
of Atlantic slope, middle Bull 141, p 32
of California .. Mon xiii, pp 218-219, 461
Lassen Peak district Ann 8, pp 413-422
of Florida .. Bull 84, pp 105-127
of Georgia .. Bull 84, pp 81-84
of Maryland .. Bull 84, pp 49-54
of Massachusetts, Marthas Vineyard Bull 84, pp 36-37
of Montana, features and fossils of Bull 139, pp 53-55
Butte district, lake beds GF 38, p 3
of Newfoundland .. Bull 84, p 32
of New Jersey, marls Bull 84, pp 39-43
of North Carolina .. Bull 84, pp 68-73
of Oregon, northwestern Ann 17, i, pp 469-476
of Philippine Islands Ann 21, iii, pp 552-561 passim
of South Carolina Bull 84, pp 75-79; Bull 138, pp 209-210
of Virginia .. Bull 84, pp 55-66
Shiloh marls of New Jersey Bull 84, pp 40-42

Miocene time, conditions in California and Oregon during Ann 14, ii, pp 425-426 deposits and fossils of, warm water and cold water........... Bull 84, pp 184-187
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Miocene time, erosion in Grand Canyon district during Ann 2, p 67
features of .. Bull 84, pp 21-22
geography of northern California during Ann 14, i, pp 422-423
Miohippus series of Oregon .. Bull 84, p 330
Mission Creek series of Alaska, distribution, correlation, etc., of. Ann 18, iii, pp 175-184, 257-258
Mississippi; altitudes in Bull 5, pp 155-156; Bull 76; Bull 160, pp 345-353
atlas sheets of. (See p 82 of this bulletin.)
brick industry of .. MR 1887, p 536; MR 1888, p 561
boundary lines of, and formation of state Bull 13, pp 90, 103-104; Bull 171, pp 109-110
clay deposits of .. MR 1893, p 618
clay products of, statistics of MR 1891, p 508; Ann 16, iv, pp 518, 519, 520, 521;
Ann 17, iv cont, p 820 et seq; Ann 18, v cont, p 1078 et seq;
Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq
coal in, discovery of MR 1891, p 260
coke in, manufacture of Ann 20, vii cont, p 227
floods on Mississippi River, discussion of Ann 20, iv, pp 347-352
geographic positions in Bull 123, pp 81-85
geologic maps of, listed Bull 7, pp 103, 104, 105, 106, 140
(See Map, geologic, of Mississippi.)
geologic sections in. (See Section, geologic, in Mississippi.)
geologic and paleontologic work in Ann 4, pp 43, 48-49; Ann 6, p 74; Ann 8, i, p 165; Ann 9, pp 110-111, 122; Ann 10, i, p 157; Ann 11, i, pp 67, 108; Ann 12, i, p 75; Ann 13, i, pp 106, 107, 148
iron-ore deposits of MR 1887, pp 48-49
magnetic declination in Ann 17, i, pp 367-370
maps, geologic, of. (See Map, geologic, of Mississippi.)
maps, topographic, of. (See Map, topographic, of Mississippi; also list on p 82 of this bulletin.)
marl deposits of .. MR 1885, p 453; MR 1886, p 618
Ann 19, vi cont, pp 661, 670, 677; Ann 20, vi cont, pp 749, 760, 766; Ann 21, vi cont, pp 600, 611, 619; Bull 32, pp 94-97
minerals of, useful .. MR 1882, pp 698-699; MR 1887, pp 749-750
rainfall at Vicksburg (average) Ann 21, iv, p 668
sections, geologic, in. (See Section, geologic, in Mississippi.)
timber in, estimates of .. Ann 19, v, p 17
topographic maps of. (See Map, topographic, of Mississippi; also list on p 82 of this bulletin.)
woodland area in .. Ann 19, v, p 6
Mississippi clays ... Bull 84, p 330
Mississippi River, flood plains of lower TF 1, pp 3-4
floods on lower, discussion of Ann 20, iv, pp 347-352
flow of, measurements of Ann 19, iv, pp 264-270; Ann 20, iv, pp 52, 230-231; WS 36, pp 194-195
jetties at mouth of .. Ann 13, ii, pp 108-109
Mississippi River, profile of..WS 44, pp 38-40
Mississippi Valley, drainage system, pre-Glacial, of........Mon xxxviii, pp 461-477
driftless area of upper..Ann 6, pp 199-322
geologic structure of lower.....................................Ann 20, iv, pp 352-353
Mississippian series, coal in..Bull 111, p 39
in Kentucky ..GF 47, p 2
in Tennessee ..GF 53, p 2
nomenclature of, development of................................Bull 80, pp 135-172, 263-265
Missoula River, Montana, flow of, measurements of........Ann 20, iv,
pp 63, 490-491; Ann 21, iv, pp 418-419; WS 28,
pp 163, 169, 170; WS 38, pp 364-367
Missouri; altitudes in..Ann 18, i, pp
333-337; Ann 20, i, pp 412-413; Ann 21, i, pp 474-475; Bull 5,
pp 157-164; Bull 72, p 217; Bull 76; Bull 160, pp 354-373
atlas sheets of. (See p 82 of this bulletin.)
barytes industry in, statistics of...............................MR 1891, p 599
boundary lines of, and formation of State.....................Ann 13, pp 30, 116-117; Bull 171, pp 122-123
building stone from, at World’s Columbian Exposition........MR 1893, p 568
production of, statistics of................................MR 1882, pp 451; MR 1886, p 541; MR
1887, p 516; MR 1888, p 540; MR 1889-90, pp 373, 405-408;
MR 1892, pp 706, 707, 710, 711; MR 1893, pp 544, 546, 553, 556;
Ann 16, iv, p 437 et seq; Ann 17, iv, cont, p 760 et seq;
Ann 18, v, cont, p 950 et seq; Ann 19, vi, cont, p 207 et seq;
Ann 20, vi, cont, p 271 et seq; Ann 21, vi, cont, p 335 et seq
cement production of, statistics of..............................MR 1887,
p 527; MR 1888, p 551; MR 1892, p 739; MR 1893, p 619
clay products of, statistics of................................MR 1882, pp 466, 470;
MR 1887, pp 536, 538; MR 1888, p 501; MR 1891, pp
511-513; MR 1893, p 616; Ann 16, iv, pp 518, 519, 520, 521;
Ann 17, iv, cont, pp 820, et seq, 862; Ann 18, v, cont, pp 1078 et seq, 1140-1143;
Ann 19, v, cont, pp 318 et seq, 365; Ann 20,
vi, cont, pp 466 et seq, 527; Ann 21, vi, cont, pp 362, 363
coal area and statistics of.....................................Ann 2, p xxviii;
MR 1882, pp 60-61; MR 1883-84, pp 12, 51-52; MR 1885, pp
11, 35-35; MR 1886, pp 225, 230, 280-282; MR 1887, pp
169, 171, 272-275; MR 1888, pp 169, 171, 285-289; MR
1889-90, pp 147, 226-228; MR 1891, pp 180, 261-268; MR
1892, pp 265, 267, 268, 423-436; MR 1893, pp 189, 190, 194,
195, 197, 199, 200, 312-320; Ann 16, iv, pp 7 et seq, 139-144;
Ann 17, iv, pp 287 et seq, 449-454, 542; Ann 18, v, pp 353 et seq, 545-551; Ann 19, vi, pp 278 et seq, 449-456; Ann 20,
vi, pp 300 et seq, 436-440; Ann 21, vi, pp 325 et seq, 464-467
Coal Measures of..MR 1892, pp 429-436; Ann 16, iv, pp 139-140
fossil flora of the lower......................................Mon xxxvii
cobalt deposits in, statistics of...............................MR 1882, p 421; MR
1883-84, p 545; MR 1885, pp 362, 364; MR 1889-90, p 124
coke in, manufacture of, statistics of........................MR 1887, pp 383, 389, 405; MR
1888, pp 395, 400, 411-412; MR 1891, pp 360, 366, 382; MR
1892, pp 555 et seq, 578-579; MR 1893, pp 418 et seq, 439;
Ann 16, iv, pp 225 et seq, 260-261; Ann 17, iv, cont, pp 544 et seq, 584;
Ann 18, v, cont, pp 661 et seq, 705-706; Ann
19, vi, pp 548 et seq, 600-601; Ann 20, vi, pp 512 et seq, 566-567; vi, cont, p 227; Ann 21, vi, pp 523 et seq, 583-584

Bull. 177—01—34
Missouri; magnetic declination in .. Ann 17, i, pp 370-374
manganese ores and manganiferous iron ores, production of MR 1885, pp 346-348; MR 1892, p 200; Ann 16, ii, pp 416-417; Ann 17, ii, p 198; Ann 21, vi, pp 130-139
maps, geologic, of. (See Map, geologic, of Missouri.)
maps, topographic, of. (See Map, topographic, of Missouri.)
Marshall quadrangle, physiography of TF 2, p 4
Meramec River, profile of ... WS 44, p 68
mineral spring resorts in .. Ann 14, ii, p 84
minerals of, useful .. MR 1882, pp 699-702; MR 1887, pp 750-753
natural gas, consumption of, in MR 1891, p 438
localities and statistics of .. MR 1892, pp 676, 697-698; MR 1893, pp 536, 540; Ann 16, iv, pp 415, 418, 419; Ann 17, iii cont, pp 734, 739, 738, 739, 748; Ann 18, v cont, pp 900, 901, 903, 904, 916; Ann 19, vi cont, pp 168, 169, 171, 172, 173, 179; Ann 20, vi cont, pp 207, 209, 210, 222; Ann 21, vi cont, pp 301, 302
petroleum production of, statistics of Ann 21, vi cont, pp 6, 7, 11, 12, 144
nickel production of .. MR 1882, p 403; MR 1883-84, p 539; MR 1889-90, p 124
ocher production of .. MR 1891, p 595
Osage River, profile of ... WS 44, p 72
paint, mineral, production of, statistics of MR 1892, pp 816, 818; MR 1888, pp 759, 760; Ann 16, iv, pp 695, 696, 698; Ann 17, iii cont, pp 1013, 1014, 1017; Ann 18, v cont, pp 1338, 1339, 1342; Ann 19, vi cont, pp 637, 638, 643; Ann 20, vi cont, pp 723, 724, 729; Ann 21, vi cont, pp 573, 574
petroleum localities and statistics of MR 1889-90, pp 292, 361-362; MR 1892, pp 604, 606, 612; MR 1893, pp 465, 466; Ann 16, iv, pp 317, 319, 320, 381; Ann 17, iii cont, pp 626, 629, 630, 631, 702; Ann 18, v cont, pp 750, 751, 754, 755, 849; Ann 19, vi cont, pp 5, 6, 10, 11, 96; Ann 20, vi cont, pp 5, 7, 9, 111; Ann 21, vi cont, pp 6, 7, 10-12, 144
rainfall in .. WS 29, p 72
at St. Louis .. Ann 21, iv, p 662
average annual and seasonal Ann 17, ii, p 719
rocks in, classification of Bull 80, pp 144-145, 147, 151, 157, 168-170
St. Francis River, profile of WS 44, p 86
sections, geologic, in. (See Section, geologic, in Missouri.)
tin in .. Ann 16, ii, p 529
topographic maps of. (See Map, topographic, of Missouri; also list on p 82.)
topographic work in .. Ann 6, p 11; Ann 7, pp 53-54; Ann 8, i, p 103; Ann 9, p 56; Ann 10, i, p 93; Ann 17, i, pp 97, 102; Ann 18, i, pp 94, 95, 105; Ann 19, i, pp 89, 90, 102; Ann 20, i, pp 100, 102, 115; Ann 21, i, p 132
Missouri; triangulation in Bull 122, pp 151-153, 203
woodland area in .. Ann 19, v, p 10
zinc-bearing waters from Bull 113, pp 49-53
zinc deposits of, investigation of Ann 11, i, pp 54, 80-81; Ann 12, i, p 56; Ann 13, i, p 123
Missouri Coteau, moraines of, and attendant deposits Bull 144
Missouri River, age of trough of Bull 158, pp 146-154
discharge of upper, measurements of Ann 14, ii, p 104
profile of .. WS 44, pp 68-70
terraces along, in South Dakota Bull 144, p 44; Bull 158, pp 128-137
Missouri River Basin, hydrography of Ann 11, ii, pp 41-43, 94, 107; Ann 12, ii, pp 236-238
precipitation, irrigation, etc., in Ann 13, iii, pp 34-63
rainfall in upper .. Ann 20, iv, pp 232-235
Missourite, analysis of, from Montana, Highwood Mountains Ann 20, iii, p 574; Bull 48, p 154; Bull 108, p 133
of Montana, Fort Benton quadrangle GF 55, p 3
Mitridae from clays and marls of New Jersey Mon xviii, pp 92-95
Mixite, analyses of, from Utah, Tintic district Ann 19, iii, p 701; Bull 55, p 46
Moccasin limestone of Kentucky, Tennessee, Virginia, and West Virginia GF 12, p 2; GF 26, p 2; GF 27, p 2; GF 44, p 2; GF 59, p 3
Mohave River, flow of, measurements of Ann 21, iv, pp 471-473; Bull 140, p 318; WS 39, pp 408-409
profile of ... WS 44, p 15
supply of water for irrigation from Ann 19, iv, pp 614-632
Mohawk River, stream measurements in basin of Ann 21, iv, pp 64-70; WS 35, pp 45-46, 51, 55-58
Mokelumne River, California, flow of, measurements of Ann 12, ii, pp 322-323; Bull 131, pp 86-87; Bull 140, pp 308-310
profile of ... WS 44, p 95
Moldavite, occurrence of Ann 20, vi cont, p 594
Molecular variation of rocks of Yellowstone Park Mon xxxii, ii, pp 118-120, 136-137
Mollusca, fossil, descriptions of Bull 106, pp 54-189
from Bear River formation Bull 128, pp 32-61
from Chico-tejon series of California Bull 51, pp 4-27
from Colorado formation Bull 106, pp 54-189
from Cretaceous of Pacific coast Bull 133, pp 34-85
from Vancouver Island region Bull 51, pp 33-48
Mollusca, fossil, from Eocene of middle Atlantic slope........Bull 141, pp 63-88
from glacial Lake Agassiz..................................Mon xxv, p 237
from Jurassic, fresh-water, North American...................Bull 29, pp 15-23
from Laramie of Utah......................................Bull 34, pp 20-32
from Mesozoic of Alaska....................................Bull 4, pp 10-15
of Alaska, southern coast..................................Bull 51, pp 64-70
from Miocene of New Jersey..................................Mon xxiv
from Permian of Texas......................................Bull 77, pp 19-29
from Puget group..Bull 51, pp 49-63
from Texas, Black and Grand prairies........................Ann 21, vii, pp 161-165
from Wasatch group...Bull 34, pp 20-32
Gasteropoda and Cephalopoda of Raritan clays and greensand marls of
New Jersey..Mon xviii
marine Eocene, fresh-water Miocene, and other, of western North
America...Bull 18
of North America, review of.................................Ann 3, pp 403-550; Bull 18, pp 17-19
(See, also, Brachiopoda; Cephalopoda; Gasteropoda; Lamellibranchiata, etc.)
Mollusca, fossil and recent, from American localities between Cape Hatteras
and Cape Roque, including Bermudas, list of marine........Bull 24
from Great Basin, description and tables of...................Bull 11, pp 13-49
Molluscoidea from Cretaceous of Pacific coast.................Bull 133, pp 31-34
Mollusks, sedimentation due to, in harbors.....................Ann 13, vi, pp 155-158
Molybdenum, distribution and quantitative occurrence of vanadium and, in
rocks of United States..Bull 167, pp 49-55
occurrence and character of.....................................Ann 21, vi, pp 305-307
statistics of..MR 1882, p 446
Mona schists of Michigan, distribution, relations, petrographic character, etc.,
of..Ann 15, pp 490-496; Mon xxviii, pp 152-160
Monadnocks in Chattanooga district............................Ann 19, ii, pp 28, 30
Monarch district, Montana, geology of........................Ann 20, iii, pp 360-370
Monarch formation of Montana.................................Ann 20, iii, pp 287, 362; GF 55, p 2; GF 56, p 2
Monazite, analysis of, from Brazil, Caravellas.................Ann 16, iv, p 676
analysis of, from Colombia, New Granada......................Ann 16, iv, p 676
from Connecticut, Portland....................................Ann 16, iv, p 676
from New South Wales, county of Gough.........................Ann 16, iv, p 676
from North Carolina, Alexander County.........................Ann 16, iv, p 676
Burke County..Ann 16, iv, p 676; Bull 74, p 77
from Norway, pegmatite veins of southern part of......Ann 16, iv, pp 675, 676
from Quebec, Ottawa County..................................Ann 16, iv, p 676
from Russia, Lake Ilmen......................................Ann 16, iv, p 675
from Siberia, Ilmen Mountains...............................Ann 16, iv, pp 675, 676
from Sweden, various localities..............................Ann 16, iv, pp 675, 676
from Virginia, Amelia County...............................Ann 16, iv, p 676
bibliography of..Ann 16, iv, pp 690-693
chemical composition of......................................Ann 16, iv, pp 673-689
crystallography, composition, occurrence, use, etc., of......Ann 16, iv, pp 677-693
Monazite sands of Idaho Basin................................Ann 18, iii, pp 677-679
Monchiquite, analysis of, from Arkansas, Magnet Cove (amphibole)........Bull 107, p 34
analysis of, from Brazil......................................Bull 107, p 34; Bull 165, p 183
from Montana, Crazy Mountains...............................Bull 168, p 122
Highwood Mountains..Bull 148, p 153; Bull 168, p 132
Little Belt Mountains..Bull 148, p 149; Bull 168, p 128
Willow Creek, Castle Mountain district.......................Bull 139, p 115
from Vermont, Shelburne Point................................Bull 107, p 34; Bull 139, p 116
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.

Monchiquite of Lake Champlain region .. Bull 107, pp 32-35
of Montana, Castle Mountain district, microscopic petrography of Bull 139, pp 114-117

Little Belt Mountains quadrangle .. GF 56, p 4

Monimiaceae from Dakota group ... Mon xvii, pp 108-109
from Laramie group .. Bull 37, pp 51-52
Monclova sandstone of Ohio, age of ... Ann 8, ii, p 566
Monmouth formation in Washington quadrangle, Maryland—Virginia—District of Columbia ... GF 70, p 4

Mono Lake, California, analysis of water from Ann 8, i, p 293; Bull 42, p 149
deposits of .. Mon xi, pp 221-222
description and history of ... Ann 8, i, pp 269-320
obsidian of .. Ann 7, p 292
old shore lines of ... Mon i, p 16

Mono Valley, California, Pleistocene history of Ann 8, i, pp 261-394; Mon i, pp 306, 311, 337
Monoclines in Plateau country .. Ann 6, i, p 118
(See, also, Faulting; Faults.)

Monoclonius, remarks on .. Ann 16, i, p 217
Monocotyledons of Dakota group ... Mon xvii, pp 37-41
of Laramie group .. Bull 37, pp 16-18
Monroe and Salina beds (lower Helderberg) of Michigan WS 30, pp 88-89
Monson gneiss and associated rocks of Massachusetts, western... Mon xxix, pp 41-65
Montana; altitudes in .. Ann 18, i, pp 360-364; Ann 19, i, pp 322-327, 356-362; Ann 20, i, pp 523-530; Bull 5, pp 165-168; Bull 72, pp 196, 223-224; Bull 76; Bull 160, pp 374-381
asphaltum deposits and production of Ann 16, iv, p 433;
Anm 17, iii-cont, p 757; Ann 20, vii cont, pp 260-261
atlases sheets in. (See p 83 of this bulletin.)
Barker district, geology of .. Ann 20, iii, pp 344-360
ore deposits and mines of ... Ann 20, iii, pp 441-446
Beaverhead River, profile of .. WS 44, p 71
Big Baldy Mountain, geology of ... Ann 20, iii, pp 355-341
Big Hole River, profile of .. WS 44, p 70
Bitterroot Forest Reserve, lands, timber, fires, etc., of Ann 19, v, pp 57-59, 253-282
report on .. Ann 20, v, pp 317-410
Bitterroot River, flow of, measurements of Ann 20, iv, pp 62, 495; Ann 21, iv, pp 419-420; WS 28, pp 163, 168-169, 170; WS 38, pp 367-369
irrigation on .. Ann 20, iv, pp 492-495
Boulder Hot Springs, mineral vein formations at Ann 21, ii, pp 227-255
boundary line between Idaho and, law relating to survey of........ Ann 19, i, pp 87, 96
survey of, from international boundary to crest of Bitterroot Mountains ... Bull 170
survey of northern portion of ... Ann 18, i, p 13
surveys for location of ... Ann 20, i, pp 106-107
boundary lines of, and formation of Territory and State Bull 13, pp 32, 122; Bull 170, p 16; Bull 171, pp 129-130
Montana; Bridger, Crazy, Gallatin, and Snowy mountains, rocks and structure
of...GF 1, p 1
building stone at World's Columbian Exposition fromMR 1893, p 568
in Fort Benton quadrangle ..GF 55, p 6
in Livingston quadrangle ...GF 1, p 3
in Three Forks quadrangle ...GF 24, p 5
statistics of................................MR 1889-90, pp 373, 374, 408; MR 1891, pp 457, 461, 462;
MR 1892, pp 706, 708, 710, 711; MR 1893, pp 544, 546, 553,
556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq;
Ann 18, v cont, p 950 et seq; Ann 19, vi cont, p 211 et seq;
Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 355 et seq
Butte, mines and reduction works ofMR 1883-84, pp 374-396
Butte district, geology of..GF 38
Castle Mountain, description of................................GF 56, p 1
geology of, descriptive ...GF 56, p 5
Castle Mountain district, geology of.............................Bull 139
precious-metal deposits inGF 56, p 7
clay products of, statistics of...Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont,
p 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p
318 et seq; Ann 20, vi cont, p 466 et seq; Ann 21, vi cont, p 363
coal, area and statistics of..........................Ann 2, p xxviii;
MR 1882, pp 61-62; MR 1883-84, pp 12, 52-55;
MR 1885, pp 11, 30-39; MR 1886, pp 225, 230, 282-288;
MR 1887, pp 169, 275-276; MR 1888, pp 109, 171, 289-292;
MR 1889-90, pp 147, 228-231; MR 1891, pp 180, 269-271;
MR 1892, pp 265, 267, 268, 436-438; MR 1893, pp 189, 190, 194,
195, 197, 199, 200, 320-324; Ann 16, iv, pp 7 et seq, 144-148;
Ann 17, iii, pp 287 et seq, 454-458, 542; Ann 18, v, pp 354
et seq, 551-556; Ann 19, vi, pp 278 et seq, 456-461; Ann 20,
vi, pp 300 et seq, 440-443; Ann 21, vi, pp 325 et seq, 468-471
in Fort Benton quadrangle ..GF 55, pp 6-7
in Judith Mountains..Ann 18, iii, pp 614-616
in Little Belt Mountains quadrangle..............................GF 56, p 7
in Livingston quadrangle ...GF 1, p 3
in Three Forks quadrangle ..GF 24, p 5
coal fields of..Ann 16, iv, pp 144-146
coke in, manufacture of..................................MR 1883-84, pp 108-109; MR 1885, pp 80, 92-93;
MR 1886, pp 378, 384, 402; MR 1887, pp 383, 389, 405-406;
MR 1888, pp 395, 400, 412; MR 1891, pp 360, 361, 366, 382-
383; MR 1892, pp 555 et seq, 579; MR 1893, pp 418 et seq,
440; Ann 16, iv, pp 225 et seq, 261-262; Ann 17, iii cont, pp
544 et seq, 584-585; Ann 18, v cont, pp 661 et seq, 706-707;
Ann 19, vi, pp 601-602; Ann 20, vi, pp 512 et seq, 567-568;
Ann 20, vi cont, p 227; Ann 21, vi, pp 523 et seq, 585-586
copper from, statistics of......................................Ann 2, p xxix;
MR 1882, pp 216, 224-225; MR 1883-84, pp 329,
336-340; MR 1885, pp 210, 215-217; MR 1886, pp 112, 117-
118; MR 1887, pp 69, 74; MR 1888, pp 54, 57-58; MR 1889-
90, p 60; MR 1891, pp 83, 84, 91-99; MR 1892, pp 96, 97,
103-104; MR 1893, pp 64, 65, 71-73; Ann 16, iii, pp 333,
334, 341-342; Ann 17, iii, pp 83, 84, 85, 86, 99-102;
Ann 18, v, pp 186, 189, 190, 191, 203-205; Ann 19, vi,
pp 140, 141, 142, 143, 156-159; Ann 20, vi, pp 161, 162,
163, 164, 165, 178-180; Ann 21, vi, pp 160-170, 184-185
Montana; copper from, in Butte districtGF 38, pp 3-4, 5, 7
copper from, in Three Forks quadrangleGF 24, p 5
copper ores of Little Belt Mountains quadrangleGF 56, p 9
Crazy Mountains, description of ...GF 56, p 1
ground of, descriptive ...GF 56, pp 5-6
elevations in ...Ann 18, i, pp 360-364; Ann 19, 1, pp 322-327, 356-362; Ann 20, pp 523-530; Bull 5, pp 165-168; Bull 72, pp 196, 223-224; Bull 76; Bull 160, pp 374, 381
evaporation at various points in ..Ann 11, ii, p 34
Flathead Forest Reserve, report onAnn 20, v, pp 245-316
Flathead Lake, description of ...Ann 21, iv, pp 421-424
Flathead River, profile of ..WS 44, p 99
Fort Benton quadrangle, geology ofGF 55
fossil plants from ..Bull 105, pp 43-66
Gallatin Mountains, geology of ..Ann 31, ii, pp 1-85
profile of ...WS 44, p 71
seepage measurements on ..Ann 19, iv, pp 271-275
gas, illuminating and fuel, and by-products in, statistics ofAnn 20, iv cont, pp 227, 241, 244, 246, 247, 249
gems in Little Belt Mountains quadrangleGF 56, p 9
geographic positions in ...Ann 19, 1, pp 169-174; Ann 20, 1, pp 278-283; Bull 123, pp 128-132
gologic maps of, listed ..Bull 7, pp 114, 115, 116
(See Map, geologic, of Montana.)
geologic sections in. (See Section, geologic, in Montana.)
glaciers, existing, of United StatesAnn 5, pp 303-355
gold in Butte district ..GF 38, p 5
in Fort Benton quadrangle ..GF 55, pp 5-6
in Livingston quadrangle ...GF 2, p 3
in Three Forks quadrangle ..GF 24, p 5

Gypsum in Fort Benton quadrangle................................GF 55, p 6

Hamilton quadrangle, forest conditions inAnn 21, v, p 596

Highwood Mountains, igneous rocks ofGF 55, p 3

structure of ..GF 55, p 1

igneous rocks of ..Bull 139, pp 56-79

Iron ore, extent, character, etc., of.......................Ann 20, vi, pp 55-59

in Fort Benton quadrangle ..GF 55, p 6

in Judith Mountains ..Ann 18, iii, p 614

in Little Belt Mountains ...Ann 20, iii, pp 459-461

in Little Belt Mountains quadrangle...............................GF 56, p 8

in Three Forks quadrangle...................................GF 24, p 5

production of, statistics of..MR 1882, p 147; MR 1883-84, p 285; MR 1888, pp 34-35; MR 1891, pp 12, 27; MR 1892, pp 26, 36; MR 1893, pp 26, 28; Ann 16, iii, pp 31, 192, 194, 203, 208; Ann 17, iii, pp 26, 27, 39, 41; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 27, 29; Ann 20, vi, pp 29, 43, 44

irrigation, constitution of State, extract from, relating to.....Ann 11, ii, p 241

irrigation engineering works of Sun River systemAnn 13, ii, pp 371-386

irrigation surveys, engineering, hydrography, segregations, etc., in.....Ann 10, ii, pp viii, 17-18, 58, 59, 60, 61, 71-72, 89, 91-93; Ann 11, ii, pp 113-123; Ann 12, ii, pp 127-165

profile of ..WS 44, p 70

Judith Mountain region, early history of......................Ann 18, iii, pp 448-449

Judith Mountains, geology and mineral resources of.........Ann 18, iii, pp 437-466

Judith region, geology of..Ann 20, iii, pp 310-316

Laramie and Livingston formations inBull 105

Laramie flora, types of, largely from.................................Bull 37

lead in Butte district..GF 38, p 5

Lewis and Clarke Forest Reserve, report on.....................Ann 21, v, pp 27-80

time production of..MR 1888, p 555

limestone in Fort Benton quadrangle..............................GF 55, p 6

production of, statistics of..MR 1889-90, pp 373, 408; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 508; Ann 17, iv cont, pp 760, 788, 789, 790, 794; Ann 18, v cont, pp 950, 1044, 1045, 1047, 1061; Ann 19, vi cont, pp 207, 281, 282, 283, 300; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 349; Ann 21, vi cont, pp 335, 357, 358, 359, 360

Little Belt Mountains, course, extent, altitude, features, etc., of..GF 56, p 1

gold of ...Ann 20, iii, pp 257-461; GF 56, p 5

igneous rocks of ..Ann 20, iii, pp 463-581; GF 55, p 3; GF 56, p 5

deros deposits of ..Ann 20, iii, pp 401-461

structure of ..GF 55, pp 1, 4
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Montana; Little Belt Mountains quadrangle, geology of.................. GF 56
Livingston quadrangle, geology of... GF 1
lumber industry in... Ann 11, p, pp 21, 22
profile of... WS 44, p 71
magnetic declination in.. Ann 17, I, pp 374-376
manganese in Butte district.. GF 38, p 5
manganese ore in... MR 1885, p 349
maps, geologic, of. (See Map, geologic, of Montana.)
maps, topographic, of. (See Map, topographic, of Montana; also list on p 83 of this bulletin.)
Middle Creek, flow of, measurements of...................................... Ann 18, IV, pp 127-128; Ann 20, IV, pp 242-243; Ann 21, IV, pp 182-183; Bull 140, pp 88-89; WS 11, p 48; WS 15, p 67; WS 27, pp 70, 74, 75; WS 36, pp 196-197
Milk River, flow of, measurements of.. Ann 19, IV, pp 286-287; Ann 20, IV, pp 53, 245-246; Ann 21, IV, pp 186-189; WS 15, p 73; WS 27, pp 68, 72, 75, 76; WS 37, pp 209-210
profile of... WS 44, p 77
mineral resin from Livingston, a supposed................................. Bull 78, pp 105-108
mineral spring resorts in... Ann 14, II, p 84
mineral springs of, statistics of.. MR 1883-84, p 983; MR 1891, p 606; MR 1892, pp 824, 829; MR 1893, pp 774, 779, 784, 790, 794; Ann 16, IV, pp 709, 715, 720; Ann 17, III cont, pp 1036, 1042; Ann 18, IV cont, pp 1371, 1380, 1387; Ann 19, VI cont, pp 661, 671, 678; Ann 20, VI cont, pp 750, 760, 767; Ann 21, VI cont, pp 612, 620; Bull 32, pp 177-180
of Three Forks quadrangle.. GF 24, p 5
mineral water in Little Belt Mountains quadrangle......................... GF 56, pp 8-9
minerals of, useful... MR 1882, pp 754-756; MR 1887, pp 753-755
mines in Little Belt Mountains, notes on.................................. Ann 20, III, pp 423-440, 442-461
mining properties in Judith Mountains.. Ann 18, III, pp 599-613
Missoula River, flow of, measurements of.................................... Ann 20, IV, pp 63, 490-491; Ann 21, IV, pp 418-419; WS 28, pp 163, 169, 170; WS 38, pp 364-367
rainfall in basin of... Ann 20, IV, pp 232-235
Monarch district, geology of... Ann 20, III, pp 360-370
Neihart district, geology of... Ann 20, III, pp 371-381
ore deposits and mines of.. Ann 20, III, pp 402-440
precious-metal deposits in.. GF 56, p 8
ores in Butte district, distribution, deposition, etc., of................ GF 38, pp 5-6
Paleozoic section near Three Forks... Bull 110
petroleum in Park County.. Ann 21, VI cont, p 167
Montana; precious-metal deposits in Little Belt Mountains quadrangle...GF 56, pp 7-8
precious stones in, occurrence of..................MR 1892, pp 760-761; MR 1893, p 692; Ann 16, iv, pp 597, 599-600; Ann 18, v cont, pp 1199-1202; Ann 20, vi cont, pp 568; Ann 21, vii cont, pp 448-449
rainfall at Fort Ellis..................................Ann 13, iii, pp 27, 40
Rattlesnake Creek, flow of, measurements of..................Ann 21, iv, p 417; WS 38, pp 363-364
Red Rock Creek, flow of, measurements of..................Ann 11, ii, pp 94, 107; Ann 12, ii, p 228; Ann 13, iii, p 98
reservoir sites and irrigable lands in.....................Ann 11, ii, pp 306, 310
reservoir surveys in....................................Ann 20, iv, pp 33-34
river basins in, hydrography of and irrigation in..........Ann 13, iii, pp 34-73
sapphires in Little Belt Mountains quadrangle.............GF 56, p 9
production of, statistics of..........................Ann 21, vi cont, pp 448-449
sections, geologic, in. (See Section, geologic, in Montana.)
sewage-disposal plant at Helena..........................WS 22, p 81
silver in Butte district..................................GF 38, pp 3, 5, 7-8
in Fort Benton quadrangle................................GF 55, p 6
in Three Forks quadrangle...............................GF 24, p 5
Snowy Range, geology of southern end of..................Mon xxxii, ii, pp 203-214
stream measurements in, miscellaneous.....................WS 15, p 75
sulfur springs of Little Belt Mountains quadrangle.........GF 56, pp 8-9
Sun River, flow of, measurements of........................Ann 11, ii, p 94; Ann 12, ii, pp 294, 347, 360; Ann 13, iii, pp 93, 98; Ann 20, iv, p 531; WS 15, p 72
Three Forks, Paleozoic section near........................Bull 110
Three Forks quadrangle, geology of.......................GF 24
timber, standing, in Bitterroot Forest Reserve..............Ann 19, v, p 19
tin deposits of..Ann 16, iii, p 530
tin ore in...MR 1883-84, p 614
topographic maps of. (See Map, topographic, of Montana; also list on p 83 of this bulletin.)
topographic work in..Ann 4, pp 9-11; Ann 8, i, pp 105-106; Ann 9, p 59; Ann 10, i, p 97; ii, pp 17, 71-72; Ann 11, ii, p 305; Ann 12, i, p 48; Ann 13, i, pp 79-80; Ann 14, i, p 178; Ann 17, i, pp 97, 103; Ann 18, i, pp 94, 95, 106-107; Ann 19, i, pp 89, 90, 104, 110-111; Ann 20, i, pp 100, 102, 116, 120-122; Ann 21, i, pp 133, 136
trees and shrubs in Flathead and Bitterroot forest reserves...............Ann 20, v, pp 247-250, 255-314 (passim), 329-357, 392-405
triangulation in.......................................Bull 122, pp 294-317
water supply for irrigation purposes........................Ann 16, ii, pp 515-516
of Bitterroot Forest Reserve............................Ann 19, v, pp 257-262
Wolf Butte and Taylor Peak, geology of.....................Ann 20, iii, pp 341-343
woodland area of......................................Ann 19, v, p 11
Yellowstone River, flow of, measurements of................Ann 11, ii, pp 93, 107; Ann 12, ii, pp 236, 347, 360; Ann 13, iii, pp 66, 93, 98; Ann 14, ii, pp 101-105; Ann 19, iv, pp 287-289; Ann 20, iv, pp 53, 246-248; Bull 131, pp 26-27; WS 15, p 74; WS 27, pp 73, 76; WS 37, pp 210-211
profile of..WS 44, pp 76-77
Montana; Yogo Creek, sapphire mines on............................. GF 56, p 9
Yogo district, geology of.. Ann 20, iii, pp 317–335
precious-metal deposits in.. GF 56, p 8
Yogo mines, notes on... Ann 20, iii, pp 447–450
Yogo sapphire mines.. Ann 20, iii, pp 454–459, 552–556; Ann 21, vi, cont, pp 448–449
zinc in Butte district.. GF 58, p 5
Montana formation or group, correlation of......................... Bull 82, pp 170, 175–177, 211, 225, 231, 239, 250, 261–262
flora of... Mon xxxv, pp 75, 85; Bull 163
in Colorado... Mon xxvii, pp 28, 68, 87–89; Mon xxxi, p 42; GF 7, pp 2, 4; GF 9, pp 1, 6, 8
in Montana... Bull 105, p 18; Bull 139, pp 47–48; GF 1, p 2; GF 24, p 3; GF 55, p 2
in Utah.. MR 1892, pp 518–519
in Wyoming... Bull 119, p 23; GF 52, p 3
in Yellowstone Park.. Mon xxxv, pp 50–51, 53, 606–607; GF 30, pp 1, 5
Montanite, analysis of, from North Carolina, Davidson County...... Bull 74, p 82
Montara granite of California, petrography, relations, etc., of...... Ann 15, pp 408–415
Monte de Oro formation of California.. Ann 17, i, pp 548–549; GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 3; GF 51, p 1
Monterey beds of California, correlation of........................... Ann 18, ii, pp 338–339
Monterey quadrangle, Virginia–West Virginia, geology of......... GF 61
Monterey sandstone in Maryland, Virginia, and West Virginia...... GF 14, pp 11–12; GF 28, p 3; GF 32, p 3; GF 61, p 4
Monterey shale and Tejon sandstone of California, notes on...... Ann 15, p 458
Montevallo shales of Alabama, origin of name......................... Bull 81, p 247
(See Conasauga shale.)
Monticellite, chemical constitution of.................................... Bull 125, pp 68, 104
Montmorillonite, chemical constitution of............................ Bull 125, p 65
Monument Creek formation or group of Colorado..................... Mon xxvii, pp 38–39, 252–254; Bull 84, pp 308–309, 317, 330
Monument Mountain, Massachusetts, structure of................... Ann 14, ii, pp 551–565
Monuments and bench marks, establishment of, in topographic surveys.... Ann 17, i, pp 7–11
Monzonite, analysis of, from Austria-Hungary......................... Ann 21, ii, p 82; Bull 89, p 67
analysis of, from Colorado, La Plata Mountains, Babcock Peak (augitic) Ann 21, ii, p 82; Bull 168, p 162; GF 60, p 6
from Colorado, La Plata Valley.. Ann 21, ii, p 82
San Miguel Peak, northwest of... Bull 168, p 163; GF 57, p 6
from Montana, Bearpaw Mountains...................................... Ann 20, iii, p 478;
Bull 89, p 67; Bull 148, p 156; Bull 168, p 135
Highwood Mountains... Ann 20, iii, p 478; Bull 148, p 154; Bull 168, p 133
Yogo Peak... Ann 20, iii, pp 565, 567, 478, 581; Mon xxxii, ii, p 354; Bull 89, p 67; Bull 148, p 149; Bull 168, p 128
from Monzoni... Ann 20, iii, p 478
from Utah, Tintic district.. Ann 19, iii, pp 647, 649, 661; Bull 168, p 166; GF 65, p 3
from Yellowstone Park, Hurricane Ridge................................ Mon xxxii, ii, p 261; Bull 148, p 123; Bull 168, p 93
of Alaska, Copper River district.. Ann 20, vii, p 417
of Colorado, La Plata quadrangle.. GF 60, p 6
Rico Mountains... Ann 21, ii, pp 79–82, 91
Telluride quadrangle.. GF 57, p 6
of Montana, Fort Benton quadrangle...................................... GF 55, p 3
Monzonite of Montana, Yogo Peak Ann 20, iii, pp 475-479; GF 56, p 3
of Utah, Tintic district Ann 19, iii, pp 644-648, 759-764; GF 65, p 2
thin section of, from Yellowstone Park Mon xxxvii, ii, pp 250-251
Monzonite-porphyry, analysis of, from Arizona, Sierra Carrizo Ann 21, ii, p 86
analysis of, from Utah, Henry Mountains, Mount Hillers Ann 21, ii, p 86
of Colorado, La Plata quadrangle GF 60, p 6
Rico Mountains (hornblendeic) Ann 21, ii, pp 83-86
Walsenburg quadrangle GF 68, p 4
Moodys Branch beds of Mississippi, correlation of Ann 18, ii, p 342
Ann 17, iii cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513; Ann 20, vi cont, p 596; Ann 21, vi cont, p 461
Moose River sandstone of Maine, faunas of Bull 166, pp 88-92
Mora River, New Mexico, flow of, measurements of Ann 18, iv, 245; Bull 131, p 40; Bull 140, pp 168-169; WS 11, p 64
Moraceae of Amboy clays Mon xxvi, pp 70-71
of Cretaceous of Black Hills Ann 19, ii, p 689
of North America (extinct) Mon xxxv, pp 84-89
Morainal débris of ice sheet in Maine Mon xxxiv, pp 272-277
Moraine. (See Glacial; Glacier.)
Moraine, ground, theories of discussion of Mon xxxiv, pp 277-284
Moraine, terminal, of second Glacial epoch Ann 3, pp 291-402
Moraines in California, Bidwell Bar quadrangle GF 43, p 5
in California, Colfax quadrangle GF 66, p 7
Downieville quadrangle GF 37, p 7
Truckee quadrangle GF 39, pp 6-7
in Colorado, La Plata Mountains GF 60, p 6
in Massachusetts, Cape Cod district Ann 18, ii, pp 551-559
in North Dakota, Missouri Coteau, and their attendant deposits Bull 144
in South Dakota, Missouri Coteau, and attendant deposits Bull 144
southeastern WS 34, pp 21-22
southeastern, and their attendant deposits Bull 158
in Wisconsin, Eagle quadrangle TF 1, p 3
Moraines, terminal, of region of glacial Lake Agassiz Mon xxv, pp 139-179
Moraines and bowlder trains in Massachusetts, western Mon xxxix, p 549
Morainic systems within region of Illinois glacial lobe Mon xxxviii, pp 192-417
Morasses, economic uses of Ann 10, i, pp 303-310
effect of certain plants on formation of Ann 10, i, pp 285-295
(See, also, Swamps.)
Morasses, fresh-water, of United States, with description of Dismal Swamp Ann 10, i, pp 255-339
Mordenite, chemical constitution of Bull 125, pp 98, 106
Morocco, iron-ore deposits of Ann 16, iii, pp 173-174
Morosaurus of North America Ann 16, i, pp 181-183
Morosaurus, description of Ann 16, i, pp 181-183
from Denver Basin, remains of Mon xxvii, pp 496-498
Morrison formation of Colorado Mon xxvii, pp 22-23, 60-62; GF 7, pp 2, 4; GF 36, p 2; GF 68, p 1
Morristown quadrangle, Tennessee, geology of GF 27
Morsell (W. F.), work in charge of, 1890-1893, 1898-1900 Ann 12, i, p 145; Ann 13, i, pp 183-184; Ann 14, i, p 276; Ann 20, i, p 158; Ann 21, i, pp 185-186
Mosandrite, chemical constitution of Bull 125, pp 79, 105
Moseley (E. L.), investigation of enlargement of Lake Erie Ann 18, ii, pp 645-647
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.

Moses (O. A.), phosphate deposits of South Carolina.......... MR 1882, pp 504-521
Mosquito porphyry of Colorado, Leadville district............. Mon xii, p 83
of Colorado, Leadville district, petrography of............. Mon xii, pp 327-328
Mosquito Range, Colorado, general geology, rock formations, and descriptive
geology ofAnn 2, pp 211-214; Mon xii, pp 19-201
structure and rocks of Ann 14, ii, pp 219-221
Mottled rock, thin section of, from Minnesota, Pigeon Point.... Bull 100, pp 86-87
Mother Lode district, California, geology of.................. GF 63
Mounds, aboriginal, in region of glacial Lake Agassiz, notes on........ Mon xxv, pp 643-645
Mount. (See next word of name.)
Mount Axtell mass, Colorado, structure, rocks, etc., of........ Ann 14, ii, pp 188-191
Mount Desert, Maine, geology of Ann 8, ii, pp 987-1061
Mount Lyell quadrangle, California, forest conditions inAnn 21, v, pp 574-575
Mount Rainier Forest Reserve, Washington, report on.......... Ann 21, v, pp 81-143
Mount Rainier National Park, movement to establish...........Ann 18, ii, pp 324-325, 348-360
Mount Zion porphyry of Colorado, Leadville district, petrography of Mon xii,
pp 323-324
Mountain building in Alaska in Tertiary time..................Ann 20, vii, pp 244-245
in Colorado, Elk MountainsGF 9, pp 1-2
Walsenburg quadrangle GF 68, p 2
in Montana, Little Belt Mountains quadrangleGF 56, p 7
in Sierra Nevada GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1;
GF 27, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
in Utah, Bonneville Basin Mon i, pp 359-360
nature of process of Ann 6, pp 195-197
(See, also, Diastrophism; Orogenic; Orographic.)
Mountain limestone, development of nomenclature of...........Bull 80, pp 135-172
Mountain structure, diverse, in United States, westernAnn 6, pp 191-195
Mountain structure and the Rocky Mountain structure.......... Mon xii, pp 24-27
Movements of rock materials under deformationAnn 16, i, pp 589-603
Mud, analysis of, from Nevada, Carson desert (playa)Mon xi, p 83
Muir Glacier, Alaska, changes in, between 1890 and 1892Ann 16, i, pp 440-442
velocity of .. Ann 16, i, pp 445-446
Muir Inlet, Alaska, soundings, temperatures, and analyses of waters of....Ann 16,
i, pp 452-458
Muldrow (R.), magnetic variations, Sushitna River, Alaska, 1898.... Ann 20, vii, p 13
Muldrow (R.) and Eldridge (G. H.), report of Sushitna expedition (1898),
Alaska Alaska (2), pp 15-27
Mudic and gossan ores, analysis of, from Virginia MR 1891, p 24
Muricide of Chico-Tejon series of California Bull 51, p 21
of clays and marls of New JerseyMon xviii, pp 33-57, 172-173, 190-192
of Miocene deposits of New Jersey Mon xxxv, pp 97-98
Murphy (E. C.), the windmill, its efficiency and economic useWS 41; WS 42
windmills for irrigation.............................. WS 8
Murray shale of North Carolina and Tennessee...... GF 6, p 3; GF 20, p 2; GF 25, p 2
Musacete from Yellowstone Park Mon xxiv, ii, pp 686-687
Muscovite, a product of mineralogic metamorphism Bull 62, p 212
analysis of, from East Indies Bull 64, p 12
from India, Bengal. Bull 64, p 12
Muscovite, analysis of, from Maine, Auburn..........................Bull 42, p 17; Bull 90, p 21
 analysis of, from North Carolina, various localities......Bull 55, p 13; Bull 74, p 54
 chemical constitution of..........................Bull 125, pp 16, 19, 22, 29, 45-46, 63, 101
 composition and occurrence of..........................Bull 150, p 42
 in gneisses of Minnesota, southwestern..........................Bull 157, p 54
 in rocks of Pacific slope..................................Mon xiii, p 74
Muscovite-biotite-gneiss, thin section of, from Michigan, Crystal Falls district..........................Mon xxxvi, pp 298-299
Muscovite-biotite-granite of Michigan, Crystal Falls district...........Mon xxxvi, p 193
Muscovite-granite of Massachusetts, western district..................Mon xxix, pp 322-323
 of Michigan, Marquette district..................Mon xxviii, pp 174-175
Muscovite-schists of Michigan, Marquette district..........................Mon xxviii, p 195
Muscovitized rocks of Colorado, Rosita Hills..........................Ann 17, ii, pp 320-322
Muskingum River, profile of..................................WS 44, p 59
Muskingum River drainage system..............................Ann 18, iv, pp 460-463
 from Colorado formation..........................Bull 106, pp 123-125
 from Cretaceous of Pacific coast........................Bull 133, pp 61-62
Myriacidae, American..Bull 124, pp 40-56
Myriapods, index to known fossil, of the world..........................Bull 71
 systematic review of present knowledge of...........Bull 31, pp 9-18
Myriaceae of Alaska..........................Ann 17, i, p 885
 of Amboy clays..................................Mon xxvi, pp 62-65
 of Dakota group..................................Mon xvii, pp 66-68
 of Laramie group..................................Bull 37, p 32
 of North America (extinct)..........................Mon xxxv, p 37
 of Yellowstone Park..................................Mon xxxvii, ii, pp 692-693
Myrick formation of Texas..................................GF 64, pp 2-3
 of Texas, Uvalde quadrangle, wells from...............GF 64, p 6
Myrsinaceae of Amboy clays................................Mon xxvi, pp 122-123
Myrsineae of Dakota group..........................Mon xviii, pp 114-115
Myrtaceae of Amboy clays................................Mon xxvi, pp 110-113
 of Dakota group..................................Mon xvii, pp 136-139
Myrtle formation of Oregon..................................GF 49, pp 1-2, 4
Mystic Lake, Massachusetts, run-off of watershed of...............WS 35, pp 39-40
Mytilidae of Bear River formation..................................Bull 128, p 33
 of Colorado formation..........................Bull 106, pp 86-88
 of Cretaceous of Pacific coast........................Bull 133, p 48
 of marl beds of New Jersey..........................Mon ix, pp 64-68, 197-198, 207
 of Miocene marls of New Jersey................Mon xxiv, pp 37-40
 of North America (non-marine fossil)..........................Ann 3, pp 423-424
Mytilus beds of Washington, correlation of..........................Ann 18, ii, p 336; Bull 84, p 330
Naches River, Washington, flow of, measurements of...........Ann 20, iv, pp 62, 503; Ann 21, iv, pp 425-426; Bull 131, pp 73-74; Bull 140, pp 244-245; WS 11, p 84; WS 16, p 174; WS 28, pp 164, 170
Naheola series of Alabama, correlation of..........................Ann 18, iv, p 346; Bull 84, p 330
Nails, manufacture of, twenty years of progress in..............MR 1891, p 65-66
 production of, statistics of..........................MR 1882, p 134;
 MR 1883-84, p 250; MR 1885, pp 185-186, 187; MR 1886, p 11;
 MR 1887, pp 10, 11; MR 1888, pp 12, 14; MR 1889-90, pp
 13-14; MR 1891, pp 65-66; MR 1892, pp 17-18; Ann 16, ii,
 p 231; Ann 17, iii, p 62; Ann 18, v, pp 72-73, 86; Ann 19,
 vi, pp 71-72; Ann 20, vi, pp 83-84; Ann 21, vi, pp 103-104
Naknek River and Lake, Alaska, geologic notes taken along........Ann 20, vii, p 145
Naknek series of pre-Tertiary rocks of Alaska..................Ann 20, vii, pp 169-171, 179, 187
Nanafalia series of Alabama, correlation of......................Ann 18, ii, p 946; Bull 84, p 330
Nanaimo group of Vancouver Island, correlation of Bull 82, pp 195, 196, 243
Nanosauridae of North America ... Ann 16, ii, pp 199-201
Nanosaurus, description of ... Ann 16, i, pp 199-201, 202
from Denver Basin, remains of ... Mon xxvii, pp 483-485
Nantahala River, North Carolina, profile of WS 44, p 52
Nantucket, beds of, age of ... Bull 84, p 35
geology of ... Bull 53
glacial clays of ... Ann 17, i, p 982
Napalite, a new mineral from California, description of Ann 16, i, pp 372-373
Naparima beds of Trinidad, correlation of Ann 18, ii, pp 536-539; Bull 84, pp 37, 330
Nasina series of Alaska ... Alaska (2), p 67
of Alaska, character, correlation, etc., of Ann 20, vii, pp 465-467
Nassicidae of Miocene deposits of New Jersey Mon xxiv, pp 104-108
Naticidae of Chico-Tejon series of California Bull 51, p 19
of clays and marls of New Jersey ... Bull 106, pp 134-139
of Miocene deposits of New Jersey ... Mon xxiv, pp 118-122
Natrolite, analysis of, from Arkansas, Magnet Cove Bull 47, p 38
analysis of, from Colorado, Table Mountain Ann 20, p 36
chemical constitution of ... Bull 125, pp 16, 18, 20, 35, 36, 45, 102
occurrence of ... MR 1882, p 497; MR 1883-84, pp 774-775
Natural gas. (See Gas, natural.)
Naugus Head series of Massachusetts, correlation of Bull 86, pp 367-368
Naushon, age of the sands of ... Bull 84, p 38
Naushon series of Massachusetts, correlation of Bull 84, pp 38, 330
Nautilidae from Colorado formation Bull 106, pp 163-164
from marls of New Jersey ... Mon xviii, pp 243-248
Navarro formation of Texas ... Ann 21, vii, pp 338-344
Navesink formation of New Jersey Bull 138, p 40-41
Nebo sandstone in Tennessee and North Carolina GF 16, p 3; GF 20, p 2; GF 25, p 2
Nebraska, altitudes in ... Ann 18, i, pp 338-341; Ann 19, i, pp 264-270; iv, pp 782-785; Ann 20, i, pp 413-415, 419; Ann 21, i, pp 479-483; Bull 5, pp 169-172; Bull 72, p 225; Bull 76; Bull 158, pp 91-92, 154-167; Bull 160, pp 382-394.
artesian wells in ... WS 29, pp 18-24
atlas sheets of. (See pp 83-84 of this bulletin.)
boundary lines and formation of ... Bull 13, pp 31, 120-121; Bull 171, pp 126-127
brick industry of ... MR 1887, pp 536, 538; MR 1888, p 561
building stone from, statistics of ... MR 1882, p 451; MR 1888, p 540
MR 1889-90, pp 373, 408-409; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 508; Ann 17, iv, pp 760, 788, 789, 790; Ann 18, v, pp 950, 1044, 1046, 1047, 1061; Ann 19, vi, pp 207, 251, 262, 263, 300; Ann 20, vi, pp 271, 342, 343, 344, 345, 349; Ann 21, vi, pp 335 et seq
clay products of, statistics of ... Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii, pp 820 et seq; Ann 18, v, pp 1078 et seq; Ann 19, vi, pp 318 et seq; Ann 20, vi, pp 466 et seq; Ann 21, vi, pp 363
Nebraska, climate of western ... Ann 19, iv, p 780
coke in, manufacture of ... Ann 20, vi cont, p 227
elevations in .. Ann 18, i, pp 338-341; Ann 19, i, pp 264-270; iv, pp 782-785; Ann 20, i, pp 413-415, 419; Ann 21, i, pp 479-483; Bull 5, pp 169-172; Bull 72, p 225; Bull 76; Bull 158, pp 91-92, 154-167; Bull 160, pp 382-394
Frenchman River, flow of, measurements of Ann 18, iv, pp 196-199; Ann 20, iv, p 299; Bull 131, pp 33-34; Bull 140, pp 131-136; WS 11, p 56
seepage measurements on ... Bull 140, pp 347-348
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, pp 227, 240, 244, 246, 247, 248, 249
gold and silver from, statistics of Ann 17, iii, pp 72, 76, 77; Ann 18, v, pp 142, 146, 147, 149
ground water at Kearney ... Ann 21, iv, pp 216-217
Hat Creek and branches, water supply from Ann 19, iv, p 772
Hat Creek Basin, irrigation in .. Ann 19, iv, pp 778-780
iron and steel from, statistics of .. MR 1882, pp 120, 125, 133, 134; MR 1885, p 186; MR 1886, p 18
irrigation by underground waters in WS 12, pp 48-53
in western ... Ann 19, iv, pp 772-780
Kearney, evaporation and seepage near Ann 19, iv, pp 336-337; Bull 140, p 349
Kearney Canal, seepage measurements on Bull 140, pp 348-349
Lexington quadrangle, topography of TF 2, p 6

Bull. 177—01—35
Nebraska, Lodgepole Creek, drainage and volume of Ann 19, iv, p 770
Lodgepole Creek, irrigation in valley of Ann 19, iv, pp 777-779.
magnetic declination in Ann 17, iv, pp 377-380
maps, geologic, of. (See Map, geologic, of Nebraska.)
maps, topographic, of. (See Map, topographic, of Nebraska; also list on pp 83-84 of this bulletin.)
mineral springs of MR 1889-90, pp 522, 529; MR 1891, p 606; MR 1892, pp 824, 829; Ann 16, iv, pp 709, 715, 720; Ann 17, iii cont, pp 1036, 1042; Ann 18, v cont, pp 1371, 1381, 1387; Ann 19, vi cont, pp 661, 671, 678; Ann 20, vi cont, pp 750, 760, 767; Ann 21, vi cont, pp 612, 620; Bull 32, p 171
minerals of, useful MR 1882, pp 702-703; MR 1887, pp 755-756
Niobrara River, drainage and volume of Ann 19, iv, p 770
irrigation in valley of Ann 19, iv, pp 777-779
stream measurements in basin of Ann 19, iv, pp 299-300; Ann 20, iv, pp 255, 301; WS 15, p 80; WS 37, pp 213-214
North Platte River, drainage and volume of Ann 19, iv, pp 768-769
irrigation in valley of Ann 19, iv, pp 772-774
Permian problem of Kansas and Bull 80, pp 193-212
Platte River, course and character of TF 2, p 6
hydrography of, and irrigation in basin of Ann 13, iii, pp 73-91
profile of ... WS 44, pp 74-75
pumice stone deposits in Ann 19, vi cont, pp 530-531
Pumpkinseed Creek, drainage and volume of Ann 19, iv, p 769
irrigation in valley of Ann 19, iv, p 774
rainfall in ... Ann 13, iii, p 27; WS 29, pp 71-72
western, 1884 to 1897, diagram of Ann 19, iv, pl cxvi, p 780
rainfall and run-off in basin of Kansas River Ann 20, iv, pp 305-313
in basin of Platte River Ann 20, iv, pp 256-266
Salt Creek, flow of, measurements of Bull 140, p 123
sections, geologic in. (See Section, geologic, in Nebraska.)
sewage-disposal plant at Hastings WS 22, p 80
springs of western Ann 19, iv, pp 760-767
stream measurements in, miscellaneous Ann 20, iv, pp 298-304; WS 39, pp 438-440
timber of Pine Ridge Ann 19, v, p 387
of western ... Ann 19, iv, p 781
topographic maps of. (See Map, topographic, of Nebraska; also list on pp 83-84 of this bulletin.)
topographic work in Ann 14, i, pp 173, 179; Ann 15, p 118; Ann 16, i, pp 65, 68, 69, 71; Ann 17, i, pp 97, 102; Ann 18, i, pp 94, 95, 105; Ann 19, i, pp 89, 90, 102-103; Ann 20, i, pp 100, 102, 113, 114; Ann 21, i, pp 120, 131.
Nebraska, topography of southeastern ... WS 12, pp 12-14

underground waters of .. Ann 19, iv, pp 727-731

of portion of southeastern ... WS 12

water resources of a portion of Great Plains Ann 16, ii, pp 533-588

water supply of, for irrigation purposes ... Ann 16, ii, pp 516-517

wells in .. Ann 11, ii, p 270

depth of ... WS 12, pp 24-48

well and windmills in ... WS 29

White River, drainage and volume of .. Ann 19, iv, p 771

flow of, measurements of .. Ann 18, iv, pp 298-299; Ann 20, iv, pp 53, 253-254, 303-304; WS 15, p 79

irrigation in basin of .. Ann 19, iv, pp 775-777

windmills and wells in ... WS 29

windmill irrigation in western .. Ann 19, iv, p 780

woodland area in .. Ann 19, v, p 10

Necks, volcanic, in New Mexico, northwestern Ann 6, pp 167-178

Neguinee formation of Michigan, Menominee district.......................... GF 62, p 4

relations, petrographic character, etc., of .. Ann 15, pp 561-589, 611-614; Ann 21, iii, pp 372-383; Mon xxviii, pp 328-407, 529-532

Neihart district, Montana, geology of .. Ann 20, iii, pp 371-381

ore deposits and mines of .. Ann 20, iii, pp 402-440

precious-metal deposits in .. GF 56, p 8

Neihart porphyry of Montana, Little Belt Mountains Ann 20, iii, pp 375-376; GF 56, p 3

Neihart quartzite of Montana, description and section of Ann 20, iii, pp 281, 284, 382; GF 56, pp 1-2

Neoballartare, American ... Bull 124, pp 143-145

Neocene age of Equus fauna .. Mon i, pp 393-402

Neocene erosion of Great Plains ... Ann 16, ii, pp 571-572

Neocene fossils; Dinocerata of North America Ann 5, pp 252-254; Mon x, pp 6-7

fauna of Denver Basin (vertebrate) ... Mon xxvii, pp 520-525

of Idaho formation .. Ann 20, iii, pp 98-99

fauna and flora of Payette formation .. Ann 20, iii, pp 97-98, 197

Mollusca of John Day group of Oregon .. Bull 18, pp 10-16

of North America (nonmarine) ... Ann 3, pp 411-486

western, marine Eocene, fresh-water Miocene, etc. Bull 18

Mollusca and Crustacea, of Miocene formations of New Jersey Mon xxiv

Ostreide of North America .. Ann 4, pp 312-314

plants of North America (later extinct) .. Mon xxxv, passim

of Payette formation ... Ann 18, iii, pp 721-744; Ann 20, iii, pp 97-98, 197

of Washington ... Bull 108, pp 103-104

Neocene history of California, Mother Lode district GF 63, p 7

of California; Nevada City, Grass Valley, and Banner Hill districts GF 29, p 2

of Colorado, Pueblo quadrangle .. GF 36, p 2

of Montana, Little Belt Mountains quadrangle GF 56, p 7

of Sierra Nevada .. GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2

Neocene movements in Alaska, Yukon district Ann 18, iii, pp 259-265

Neocene rocks; Alachua clays of Florida ... Bull 84, pp 127-130, 320

alluvial deposits of Texas, Black and Grand prairies Ann 21, vii, pp 345-361
Neocene rocks; Altamaha grit of Georgia, correlation of .. Ann 18, ii, p 340; Bull 84, pp 81-82, 320

Alum Bluff beds of Florida ... Bull 84, pp 112-113, 320

American and exotic .. Bull 84, p 178

Amyzon group of Oregon and Nevada ... Bull 83, pp 125, 141, 145, 146; Bull 84, pp 281, 317, 320

Appomattox formation of Virginia ... Bull 84, p 320

(See, also, Lafayette formation.)

Arcadia marl of Florida ... Bull 84, pp 131-132, 320

Arikaree formation of Nebraska ... Ann 19, iv, pp 735, 743-747

Arkansas marls of Colorado ... Bull 84, p 320

Astian formation .. Ann 18, ii, p 337

Astoria group of Alaska, fauna, etc., of .. Bull 84, pp 177, 178, 179, 320

of Oregon .. Ann 18, ii, p 340

Astoria shales of Oregon ... Ann 18, ii, p 340

Auriferous gravels of California ... Ann 14, ii, pp 465-467; Bull 84, pp 219-222, 321; GF 3, p 3; GF 5, pp 1, 3; GF 11, pp 1, 4-5; GF 15, p 1; GF 17, p 1; GF 18, p 5; GF 29, p 4; GF 31, pp 5, 8; GF 37, pp 3-4; GF 38, p 5; GF 41, p 6; GF 43, p 4; GF 51, pp 5-6, 7; GF 63, pp 5-6; GF 66, pp 5-6

correlation of ... Ann 18, ii, p 338

Bishop Mountain conglomerate of Wyoming Bull 84, p 321

Bison beds of Colorado .. Bull 84, p 332

Blanco formation of Texas ... Ann 18, ii, p 337

Bozeman lake beds of Montana ... GF 1, p 2; GF 24, p 3

Brandon deposits of Vermont, Pennsylvania, and Georgia Bull 83, pp 90-94; Bull 84, pp 33-34, 322

Brontotherium beds of the West .. Bull 84, p 322

Bryn Mawr gravel of Pennsylvania .. Bull 84, p 45

Cache Lake beds of California .. Bull 84, pp 201-202, 323

Caloosahatchie beds of Florida and South Carolina Ann 18, ii, p 337; Bull 84, pp 142-149, 323

Canyon conglomerate of Wyoming .. GF 30, p 5

Carolinian of North and South Carolina ... Bull 84, pp 19, 75, 323

Cerithium rock of Florida ... Bull 84, pp 118-119, 323

Chattahoochee group of Florida, correlation of................................. Ann 18, ii, p 340; Bull 84, pp 105-107, 323

of Georgia ... Bull 84, p 83

Chesapeake formation of District of Columbia, Virginia, and Maryland .. GF 13, p 3; GF 23, p 2; GF 70, p 4

correlation of ... Ann 18, ii, p 339; Bull 84, pp 54, 68, 123-124, 323

Chilmark series of Massachusetts ... Bull 84, pp 37-38

Chipola beds of Florida, correlation of ... Ann 18, ii, p 340;

Bull 84, pp 112-113, 122, 323, 324

Columbia River lava of Idaho .. Ann 20, ii, pp 90-93

of Washington, southeastern ... WS 4, pp 40-50

Congeria beds of Europe ... Ann 18, ii, p 338

correlation of the various ... Bull 84

Crag formation of England ... Ann 18, ii, p 338

Crepidula bed of Alaska .. Bull 84, p 324

Croatan beds of North Carolina ... Ann 18, ii, p 337

Dalles group of Oregon .. Bull 84, p 324

De Soto beds of Florida ... Ann 18, ii, p 337; Bull 84, p 324
Neocene rocks; Deep Creek beds of Montana... Bull 84, pp 287-288
Duplin beds of North Carolina... Ann 18, ii, p 338
Ephorah bed of Florida... Bull 84, p 124, 324
Ellensburg sandstone of Washington, northern......................... Ann 20, ii, pp 127-128
Empire beds of Oregon... Ann 18, ii, p 338
Empire formation of Oregon.. Ann 19, ii, p 319
Equus beds of Idaho and Oregon.. Bull 84, pp 283-285, 317
of Nebraska... Bull 84, pp 298, 317, 325
Fayette beds of Texas... Bull 84, pp 172-175, 325
Ferruginous gravel of Florida... Bull 84, pp 109,325
Floridian beds of Florida... Bull 84, pp 142-149
Fort Ellis beds of Montana... Bull 84, p 287
Galahode formation of New Mexico... Bull 84, pp 164-165, 326
Gay Head gravels of Massachusetts... Ann 18, ii, p 330
Gay Head sands of Massachusetts.. Ann 18, ii, p 330
Gay Head series of Massachusetts.. Bull 84, pp 35-37, 326
geographic provinces of, American... Bull 84, pp 22-31
Gering formation of Nebraska.. Ann 19, iv, pp 735, 747-755
Glass sand of New Jersey... Bull 84, pp 42, 43
Gnathodon bed of Mississippi.. Bull 84, pp 164-165, 326
Grand Gulf group of Southern States... Bull 84, pp 159, 161-175, 326, 335
Greenland or Martha's Vineyard.. Bull 84, p 36
Hawthorne beds of Florida.. Ann 18, ii, p 340; Bull 84, pp 107-111, 326
Hayes River beds of Alaska, southwestern, notes on..................... Ann 20, vii, pp 172-173, 184, 187
Helvetic formation... Ann 18, ii, p 339
Humboldt group of Nevada... Bull 84, pp 315-316, 317, 327
of Utah... Bull 84, pp 312-313, 317
Idaho formation, or group of Idaho... Bull 84, pp 282-283, 317, 327
Infusorial earth of Virginia.. Bull 84, p 327
Intermediate series of Colorado.. GF 57, pp 5, 8, 14
Ione formation of California... Ann 18, ii, p 338; GF 3, p 1; GF 5, pp 1, 3;
GF 11, pp 1, 4; GF 15, p 1; GF 18, p 4; GF 37, p 1; GF 41, p 6
of Sierra Nevada... Ann 14, ii, pp 462-465; Ann 17, i, pp 546-547
Irvine formation of Kentucky... GF 46, p 3
Jacksonboro limestone of Georgia.. Bull 84, pp 83-84
Jacksonville limestone of Florida.. Bull 84, pp 124-125, 327
John Day group... Ann 18, ii, p 340
of Oregon... Bull 84, pp 281-282, 327
of Washington, southeastern... WS 4, pp 55-56
Kowak clays of Alaska... Bull 84, pp 265-267, 327
Lafayette formation, area, features, history, etc., of.............. Ann 12, i, pp 347-521
correlation of.. Ann 18, ii, p 337
of Catoctin belt... Ann 14, ii, pp 366-369
of District of Columbia, Virginia, Maryland, and West Virginia...GF 10, p 3;
GF 13, pp 2-3; GF 23, p 2; GF 70, p 4
of southern United States.. Bull 84, pp 66-67,
74, 80-81, 84-85, 157, 159-160, 166-167, 170-172, 175, 328-329
Lagrange group of Kentucky and Tennessee......................... Bull 83, p 71; Bull 84, pp 170-172, 329
lake beds of Florida... Bull 84, p 133
Leona formation of Texas... GF 42, p 3
Limon clays of Costa Rica... Ann 18, ii, p 337
Loup Fork group of Colorado, South Dakota, and Nebraska........ Ann 18, ii, p 339;
Bull 84, pp 292-293, 294-298, 304-305, 317, 329, 331
Neocene rocks; Manatee River marl of Florida.......................... Bull 84, pp 125-126

marl beds of Georgia.. Bull 84, p 84

Marthas Vineyard series of Massachusetts............................. Bull 84, p 337

Marylandian of Maryland.. Bull 84, pp 20, 329

Megalonyx beds.. Bull 84, p 330

Merced series Ann 18, ii, pp 336-337

petrography, structure, etc., of...................................... Ann 15, pp 459-463

Miocene rocks, boundaries of.. Bull 84, pp 21-22

delimitation and faunal peculiarities of.......................... Bull 84, pp 21-22

contacts of Eocene rocks with.. Bull 84, pp 183-184

of Alaska ... Bull 84, pp 234-259

of Atlantic slope, middle.. Bull 141, p 32

of California Mon xiii, pp 218-219, 461;

Ann 8, pp 413-422; Ann 18, ii, pp 489-491

of Florida.. Bull 84, pp 105-127

of Georgia... Bull 84, pp 81-84

of Maryland.. Bull 84, pp 49-54

of Massachusetts, Marthas Vineyard................................. Bull 84, pp 36-37

of Montana, features and fossils of.................................. Bull 139, pp 53-55

Butte district, lake beds.. GF 38, p 3

of New Jersey.. Bull 84, pp 39-43

of Newfoundland... Bull 84, p 32

of North Carolina... Bull 84, pp 68-73

of Oregon, northwestern.. Ann 17, i, pp 469-476

of South Carolina... Bull 84, pp 75-79; Bull 138, pp 209-210

of Virginia... Bull 84, pp 55-66

Miocene time, definition of.. Bull 84, pp 21-22

in Grand Canyon district, erosion in................................. Ann 2, p 67

Miohippus series of Oregon.. Bull 84, p 330

Mississippi clays of Mississippi Valley.................................. Bull 84, p 330

Monterey beds Ann 18, ii, pp 338-339

Monterey shale, notes on... Ann 15, p 458

Monument Creek formation or group of Colorado Mon xxvii, pp 38-39, 252-254; Bull 84, pp 308-309, 317, 330

Mytilus beds of Washington Ann 18, ii, p 336; Bull 84, p 330

Nashaquitsa series of New England coast Ann 18, ii, pp 536-539; Bull 84, pp 37-38, 330

Naushon series of Massachusetts... Bull 84, p 330

Niobrara group of Nebraska.. Bull 84, p 331

nomenclature of formations of.. Bull 84, pp 320-338

North Park lake beds of Colorado... Bull 84, pp 307-308, 317, 331

Nulato sandstones of Alaska Ann 18, iii, p 196; Bull 84, pp 247-248, 331

Nushagak beds of Alaska, southwestern, notes on Ann 20, vii, pp 173-174, 184, 187

Nuesebaum formation of Colorado....................................... GF 36, p 3; GF 58, p 2; GF 68, p 2

Oakville beds of Texas Ann 18, ii, p 339

Ocheesee beds of Florida... Bull 84, pp 105-107, 331

Ocoya Creek beds of Sierra Nevada Ann 14, ii, p 461

of Alabama.. Bull 43; Bull 84, pp 159-160

of Alaska Ann 20, vii, pp 184, 187; Bull 84, pp 232-266, 276-277

of Atlantic coast.. Bull 84, pp 32-158

stratigraphic characters of... Bull 83, pp 39-40

table showing... Bull 84, p 193

of British Columbia.. Bull 84, pp 230-232, 273-276
<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neocene rocks of California</td>
<td>Bull 84, pp 200–222, 269–273</td>
</tr>
<tr>
<td>of California, Bidwell Bar quadrangle</td>
<td>GF 43, p 4</td>
</tr>
<tr>
<td>Big Trees quadrangle</td>
<td>GF 51, pp 5–6</td>
</tr>
<tr>
<td>Colfax quadrangle</td>
<td>GF 66, pp 5–6</td>
</tr>
<tr>
<td>Downieville quadrangle</td>
<td>GF 37, pp 5–6</td>
</tr>
<tr>
<td>lake beds in Truckee quadrangle</td>
<td>GF 39, p 6</td>
</tr>
<tr>
<td>Lassen Peak district</td>
<td>Ann 8, 1, pp 422–424</td>
</tr>
<tr>
<td>Lassen Peak quadrangle</td>
<td>GF 15, p 1</td>
</tr>
<tr>
<td>Mother Lode district</td>
<td>GF 63, pp 5–6</td>
</tr>
<tr>
<td>Nevada City and Grass Valley districts</td>
<td>Ann 17, 11, pp 97–101, 105</td>
</tr>
<tr>
<td>Placerville quadrangle</td>
<td>GF 3, p 3</td>
</tr>
<tr>
<td>Pyramid Peak quadrangle</td>
<td>GF 31, p 5</td>
</tr>
<tr>
<td>Sonoma quadrangle</td>
<td>GF 41, p 6</td>
</tr>
<tr>
<td>Truckee quadrangle</td>
<td>GF 39, pp 5–6</td>
</tr>
<tr>
<td>of Colorado</td>
<td>Ann 9, 2, pp 304–309</td>
</tr>
<tr>
<td>northwestern</td>
<td>Ann 9, pp 690–691</td>
</tr>
<tr>
<td>Walsenburg quadrangle</td>
<td>GF 68, p 2</td>
</tr>
<tr>
<td>of Delaware</td>
<td>Bull 84, pp 45, 49</td>
</tr>
<tr>
<td>of District of Columbia</td>
<td>GF 70, p 4</td>
</tr>
<tr>
<td>of Florida</td>
<td>Bull 84, pp 85–158</td>
</tr>
<tr>
<td>table of</td>
<td>Bull 84, p 157</td>
</tr>
<tr>
<td>of Georgia</td>
<td>Bull 84, pp 81–85</td>
</tr>
<tr>
<td>in Boise quadrangle</td>
<td>Ann 20, 11, pp 93–96</td>
</tr>
<tr>
<td>western-central, lavas, early</td>
<td>Ann 20, 11, pp 190–197</td>
</tr>
<tr>
<td>of Illinois</td>
<td>Bull 84, p 172</td>
</tr>
<tr>
<td>of Indian Territory</td>
<td>Bull 84, p 301</td>
</tr>
<tr>
<td>of interior region of United States, summary of</td>
<td>Bull 84, pp 280–317</td>
</tr>
<tr>
<td>table showing vertical range of</td>
<td>Bull 84, p 317</td>
</tr>
<tr>
<td>of Kansas</td>
<td>Bull 57; Bull 84, pp 290–301</td>
</tr>
<tr>
<td>of Kentucky</td>
<td>Bull 84, pp 171–172</td>
</tr>
<tr>
<td>of Louisiana</td>
<td>Bull 84, pp 167–170</td>
</tr>
<tr>
<td>of Maine</td>
<td>Bull 84, pp 32–33</td>
</tr>
<tr>
<td>of Maryland</td>
<td>Bull 84, pp 49–55</td>
</tr>
<tr>
<td>Frederickburg quadrangle</td>
<td>GF 13, pp 2–3</td>
</tr>
<tr>
<td>Nomini quadrangle</td>
<td>GF 23, p 2</td>
</tr>
<tr>
<td>Washington quadrangle</td>
<td>GF 70, p 4</td>
</tr>
<tr>
<td>of Massachusetts</td>
<td>Bull 84, pp 34–38</td>
</tr>
<tr>
<td>of Mississippi</td>
<td>Bull 84, pp 160–167</td>
</tr>
<tr>
<td>of Montana</td>
<td>Bull 84, pp 287–288</td>
</tr>
<tr>
<td>Livingston quadrangle</td>
<td>GF 1, p 2</td>
</tr>
<tr>
<td>of Nebraska</td>
<td>Bull 84, pp 293–299</td>
</tr>
<tr>
<td>southeastern</td>
<td>WS 12, p 20</td>
</tr>
<tr>
<td>of Nevada</td>
<td>Bull 84, pp 313–316</td>
</tr>
<tr>
<td>of New England</td>
<td>Bull 84, pp 32–38</td>
</tr>
<tr>
<td>of New Jersey</td>
<td>Bull 84, pp 39–44</td>
</tr>
<tr>
<td>of New Mexico</td>
<td>Bull 84, pp 301–303</td>
</tr>
<tr>
<td>of New York</td>
<td>Bull 84, pp 38–39</td>
</tr>
<tr>
<td>of Newfoundland</td>
<td>Bull 84, p 32</td>
</tr>
<tr>
<td>of North America, correlation of</td>
<td>Bull 84</td>
</tr>
<tr>
<td>of North Carolina</td>
<td>Bull 84, pp 68–74</td>
</tr>
<tr>
<td>of North Dakota</td>
<td>Bull 84, pp 288–289</td>
</tr>
</tbody>
</table>
Neocene rocks of Pacific coast, table showing vertical range of: Bull 84, p 279
of Pennsylvania Bull 84, pp 44-45
of Rhode Island Bull 84, p 94
of South Carolina Bull 84, pp 74-81
of South Dakota Bull 84, pp 289-293
of Tennessee Bull 84, pp 170-171
of Texas Bull 84, pp 172-175, 176-177
Nueces quadrangle GF 42, p 3
Uvalde quadrangle GF 64, p 3
of United States, list of names applied to Bull 84, pp 320-338
of Utah Bull 84, pp 312-313
of Vermont Bull 84, pp 33-34
of Virginia Bull 84, pp 55-67
Fredericksburg quadrangle GF 13, pp 2-3
Nomini quadrangle GF 23, p 2
Washington quadrangle GF 70, p 4
of Washington Bull 84, pp 227-230, 269-273
of western interior United States Bull 84, pp 175-177
of Wyoming Bull 84, pp 309-312
of Yellowstone Park GF 30, pp 2, 5
Ogallala formation of Nebraska Ann 19, iv, pp 734, 741-742
Orange sand of Tennessee and Mississippi Bull 84, pp 163-167, 329, 332
Oregon beds of Oregon Bull 84, p 332
Oredon beds of Nebraska Bull 84, pp 332, 336
Oyster marl of Florida Bull 84, pp 132-133, 332
Palisades conglomerates of Alaska, Yukon district Ann 18, iii, p 199
Palo Duro beds of Texas Ann 18, ii, p 338
Pascagoula clays of Mississippi Ann 18, ii, p 339
Patuxent beds of Maryland Bull 84, p 333
Payette formation of Idaho Ann 18, iii, pp 632-634, 711; GF 45, pp 2, 3
Peace Creek bone bed of Florida Bull 84, pp 130-131, 333
Perna beds of Maryland Bull 84, p 333
phosphatic deposits of Florida Bull 84, pp 134-140
Planorbis rock of Florida Bull 84, p 333
Pliocene rocks, boundaries of Bull 84, p 22
of Alaska Bull 84, pp 259-267
of Atlantic slope, middle Bull 141, pp 32-33
of Colorado Bull 84, pp 305-308
of Florida Bull 84, pp 127-134, 140-149
of Georgia Bull 84, pp 84-85
of North Carolina Bull 84, p 74
of Oregon, northwestern Ann 17, i, pp 476-478
of South Carolina Bull 84, pp 80-81
of southern Atlantic coast, geologic history of Bull 84, pp 191-193
of Vermont Bull 84, p 33
of Virginia Bull 84, pp 66-67
Pliocene time, definition of Bull 84, p 22
Pliocene and Miocene horizons Ann 18, ii, pp 328-329, 336-340
Pliocene and post-Pliocene beds of California Mon xiii, pp 219-221, 461
Pliohippus beds Bull 84, p 333
Potosi rhyolite series of Colorado GF 57, pp 5-6, 9, 14
Procamelus beds of Montana Bull 84, p 333
Reynosa limestone of Texas Ann 18, ii, p 337
river gravels of Sierra Nevada Ann 17, i, pp 560-566, 599-612, 658-659
Neocene rocks; St. Marys beds of MarylandBull 84, p 335
Salt Lake group of Nevada and Utah Bull 84, pp 286-287, 317, 334
San Diego beds of California Ann 18, ii, p 337
San Francisco group of California Bull 84, p 334
Santa Fe marls of New Mexico Bull 84, pp 302-303, 317, 334
Shiloh marls of New Jersey Anil 18, ii, p 340; Bull 84, pp 40-42, 334
shore gravels of California, Chico area (auriferous) Ann 17, i, pp 544-546
of Sierra Nevada .. Ann 14, ii, p 468
Smith River lake beds of Montana GF 56, p 3
Solcn beds of Oregon .. Bull 84, p 334
Sooke beds of Vancouver Island Ann 18, ii, p 338
Staked Plains formation of Texas Bull 84, p 335
Sumter beds of South Carolina Bull 84, p 335
surficial deposits of Texas, Black and Grand prairies Ann 21, vii, pp 345-361
Sweetwater Pliocene of Wyoming Bull 84, pp 310-311, 317
Ticholeptus beds of Idaho and Oregon Bull 84, pp 282, 317, 336
Turritella marl of Florida Bull 84, p 336
Tyonek beds of Alaska, southwestern, notes on Ann 20, vii, pp 171-172, 184, 187
Unga conglomerate of Alaska Ann 17, i, p 836; Bull 84, pp 234-235, 336
Uvalde formation of Texas Ann 18, ii, pp 244-247; Ann 21, vii, pp 347-349; GF 42, p 3; GF 64, p 3
Venus cancellata bed of Florida Bull 84, p 336
Vineyard series of Massachusetts Bull 84, p 337
Virginian deposits of Virginia and Maryland Bull 84, p 19
Waccamaw beds of South Carolina Ann 18, ii, p 337
Waldo formation of Florida Bull 84, p 337
Weyquosque series of Massachusetts Bull 84, pp 37-38, 330, 337
White River beds of North and South Dakota Bull 84, pp 288-292, 317
White River group of Nebraska Bull 84, pp 296, 317
of Wyoming .. Bull 84, pp 311-312, 317
Wyoming conglomerate Bull 84, pp 311, 313, 317, 321, 328
Yellow sand of Florida Bull 84, p 338
Yorktown epoch .. Bull 84, p 338
(See, also, Tertiary.)
Neocene topography of California, Colfax quadrangle GF 66, p 6
of California, Downieville quadrangle GF 37, pp 5-6
Nebraska City, Grass Valley, and Banner Hill districts .. GF 29, pp 4-5
Placeerville quadrangle GF 3, p 3
Pyramid Peak quadrangle GF 31, p 6
Truckee quadrangle ... GF 39, p 6
profile of ... WS 44, p 66
Neotocite, chemical constitution of Bull 125, p 100
Neotremata, biologic development of Bull 87, pp 79-81
Nepheline, analysis of, from New Hampshire, Moultonboro .. Bull 148, p 67; Bull 168, p 23
Nepheline-basalt, analysis of, from Colorado, Cripple Creek district Ann 16, ii, p 50; Bull 148, p 162; Bull 168, p 144
analysis of, from Texas, Uvalde County Bull 168, pp 62, 63
Nepheline-basalt of Texas, Uvalde quadrangle ..GF 64, pp 3-4
Nepheline-basanite, analysis of, from New Mexico, Colfax County Bull 168, p 171
Nepheline-melilitite-basalt, analyses of, from Texas, Uvalde County Bull 168, p 63
of Texas, Uvalde quadrangle ...GF 64, p 4
Nepheline-syenite, analysis of, from Colorado, Cripple Creek district Ann 16, ii, p 45; Bull 148, p 162; Bull 168, p 144
analysis of, from New Jersey, Brookville .. Bull 168, p 39
of Colorado, Cripple Creek district Ann 16, ii, pp 43-45, 66, 82, 87; GF 7, p 7
Nephelite, analysis of, from Maine, Litchfield Bull 150, p 202
chemical constitution of ... Bull 125, pp 16, 18-20, 33, 44, 101
composition of ... Bull 150, pp 36-37
Nephelite-minette of Montana, Little Belt Mountains Ann 20, iii, pp 539-541
Nephelite-syenite, analysis of, from Maine, Kennebec County Bull 150, p 208
analysis of, from New Jersey, Sussex County Bull 150, p 211
from Maine, Litchfield, description of, as one of the educational series
(eleolite-syenite) .. Bull 150, pp 201-209
from New Jersey, Beemerville, description of, as one of the educational series (eleolite-syenite) Bull 150, pp 209-211
of Montana, Little Belt Mountains .. Ann 20, iii, pp 469-471
- thin section of, from Maine, Litchfield Bull 150, pp 204-205
Nephrite (so called), analysis of, from Pennsylvania, Easton Bull 64, p 44
Neptunite, chemical composition of ... Bull 125, pp 97, 106
Neritidse of Bear River formation ... Bull 128, pp 49-50
of Colorado formation ... Bull 106, pp 127-130
of Cretaceous of California (new) ... Bull 22, p 12
of North America (nonmarine) .. Ann 3, pp 457-459
Neritopsidse, Cretaceous, from Vancouver Island Bull 51, p 46
Neshaminy Creek, Pennsylvania, flow of, measurements of Ann 20, iv, pp 48, 103-108; Ann 21, iv, pp 85-86; WS 35, pp 64-65
Netherlands, fossil plants of, literature of .. Ann 8, ii, pp 777-778
lead production of, statistics of ... Ann 21, vi, p 247
Neuropteridece from Carboniferous of Missouri Bull 98, pp 68-101
of Rhode Island coal field ... Bull 101, pp 10-11
Neuse River, North Carolina, flow of, measurements of Ann 18, iv, pp 52-53; Ann 19, iv, pp 185-186; Ann 20, iv, pp 50, 144; Ann 21, iv, pp 113-114; WS 11, p 16; WS 15, p 30; WS 27, pp 34, 44; WS 36, pp 111-112
Nevada; altitudes in ... Ann 19, i, pp 404-408; Bull 5, pp 173-181; Bull 76; Bull 160, pp 395-402
antimony in, deposits of .. MR 1882, p 438; MR 1883-84, pp 642-643; MR 1889-90, p 141; MR 1891, p 174
production of ... MR 1892, p 260
atlas sheets of. (See p. 84 of this bulletin.)
bluestone, manufacture of, at Lyon mill, Dayton MR 1882, pp 297-305
borate fields of, principal .. MR 1882, pp 567-570
boundary lines of, and organization of Territory Bull 13, pp 31, 125-127; Bull 171, pp 132-134
building stone at World’s Columbian Exposition MR 1893, p 568
production of, statistics of .. MR 1893, p 544; Ann 16, iv, pp 437, 457, 458; Ann 17, vi cont, pp 760, 761, 763; Ann 18, v cont, pp 905, 951, 964, 965, 969; Ann 19, vi cont, pp 207, 208, 209, 211; Ann 20, vi cont, pp 275, 276; Ann 21, vi, pp 335 et seq
Nevada; Carson River, flow of, measurements of.........Ann 11, ii, pp 102, 109; Ann 12, ii, pp 351, 360; Ann 13, iii, pp 95, 99; Ann 14, ii, pp 116-117; Bull 140, pp 212-213

cobalt deposits in..............................MR 1885, pp 361-362, 364

coke in, manufacture of................................Ann 20, vi cont, p 227
Comstock lode and Washoe district, geology of........Ann 2, pp 293-330; Mon iii and atlas
Comstock mining and miners........................Ann iv

copper from, statistics of............................Ann 2, p xxix; MR 1882, pp 216, 230; MR 1883-84, pp 329, 342; MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83, 84; MR 1892, pp 96, 97; MR 1893, pp 64, 65; Ann 16, iii, pp 333, 334; Ann 17, iv, pp 83, 84, 85, 86; Ann 18, v, pp 189, 190, 191; Ann 19, vi, pp 140, 141, 142, 143; Ann 20, vi, pp 161, 162, 163, 164, 165, 165; Ann 21, vi, pp 166-170, 188

elevations in.......................... Ann 19, i, pp 404-408; Bull 5, pp 173-181, Bull 76; Bull 160, pp 395-402
Esmeralda formation, character, distribution and fossil contents of........Ann 21, ii, pp 191-226

Eureka, silver-lead deposits of..............................Mon vii
Eureka district, geology of........................Ann 3, pp 241-290; Mon xx and atlas
ining geology of..Ann 4, pp 221-251

geologic maps of, listed.......................... Bull 7, pp 133, 134, 137, 138

(See Map, geologic, of Nevada.)

geologic sections in. (See Section, geologic, in Nevada.)

geographic positions in..............................Bull 123, pp 139-141

granite production of, statistics of........................MR 1889-90, pp 374, 409; MR 1893, p 544; Ann 16, iv, pp 437, 457, 458; Ann 17, r cont, pp 760, 761, 763; Ann 18, v cont, pp 950, 951, 954, 956, 969; Ann 19, vi cont, pp 207, 208, 209, 211; Ann 20, vi cont, pp 275, 276; Ann 21, vi cont, pp 335-340
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Nevada; Great Basin, Quaternary and recent Mollusca of, with descriptions of new forms, introduced by a sketch of the Quaternary lakes of the Great Basin.

Humboldt River, flow of, measurements of.

 Profiles of.

Water storage on.

Iron and iron ore from.

Irrigation engineering works on Truckee and Carson rivers.

Irrigation surveys, engineering, hydrography, segregations, etc., in.

Lake Lahontan, a Quaternary lake of northwestern Nevada, geological history of.

Lead from.

Mineral springs of.

Minerals of, useful.

Nickel ore in.

Rainfall in.

Reservoir surveys in.

Reservoir sites and irrigable lands in California and.

Sections, geologic in.

Salt from.

Water storage on.

Rock Creek reservoir on Humboldt River, proposed.

Sodium and saline springs along.

Irrigation needs and problems in.

Manganese ore in.

Maps, geologic, of.

Maps, topographic, of.

Lumber industry in.

Magnetic declination in.

Mica industry in.

Maps, geologic, of.

Maps, topographic, of.

Maps, topographic, of. (See Map, geologic, of Nevada.)

Maps, topographic, of. (See Map, topographic, of Nevada; also list on p 84 of this bulletin.)
Nevada; soda, carbonate and nitrate of, from..MR 1882, pp 599, 601
soda, natural, in...Bull 60, pp 46-53
sulphur in..Ann 21, ii, pp 207-208
sulphur production of, statistics of..MR 1882, p 578;
MR. 1883-84, pp 805-806; MR 1885, p 496; MR 1886, p 644
thinolite of Lake Lahontan, a Quaternary lake, crystallographic study of...Bull 12
topographic maps of. (See Map, topographic, of Nevada; also list on p 84
of this bulletin.)
topographic work in...Ann 1, p 36; Ann
2, p 21; Ann 4, pp 16, 20-21; Ann 10, ii, pp 18, 66-67;
Ann 11, ii, pp 294-296; Ann 12, i, p 45; Ann 13, i, pp
77-78; Ann 18, i, pp 94, 95; Ann 19, i, pp 89, 90, 106-107
triangulation in...Bull 122, pp 327, 333, 335-336, 339, 381-382
Truckee River, flow of, measurements of...Ann 11, ii, pp 101-102, 108; Ann 12, ii,
pp 324-325, 351; Ann 13, iii, pp 95, 99; WS 38, pp 331-332
tungsten ore in, occurrence of..Ann 21, vi, pp 319-320
turquoise in, occurrence of..Ann 20, vi cont, p 580
Walker River, flow of, measurements of...................................Bull 140, pp 213-215
Washoe, igneous rocks of, on development of crystallization, with notes
on the geology of the district...Bull 17
water supply of, for irrigation purposes.................................Ann 16, ii, p 518
woodland area of...Ann 19, v, p 12
Nevada City and Grass Valley districts, California, geology of................GF 29
gold-quartz veins of...Ann 17, ii, pp 1-262
Nevada limestone of Nevada, features and fossils of....................Ann 3,
pp 253, 264-266; Mon xx, pp 63-68
Nevadite, analysis of, from Colorado, Chalk Mountain................Mon xii, pp
349, 589; Bull 148, p 174; Bull 150, p 164; Bull 168, p 156
from Colorado, Chalk Mountain, description of, as one of the educational
series...Bull 150, pp 162-164
of Colorado, Tenmile district...Ge 48, p 3
thin section of, from Colorado, Chalk Mountain........................Mon xii, pp 88-89
New River, flow of, measurements of.....................................Ann 18, iv, pp 113-
115; Ann 19, iv, pp 255-256; Ann 20, iv, pp 51, 203; Ann
21, iv, pp 157-158; Bull 140, pp 78-80; WS 11, p 41; WS 15,
p 59; WS 27, pp 59, 61, 62, 65; WS 36, pp 161-162, 164-165
profile of...WS 44, pp 46-47
New and Kanawha rivers in West Virginia, geologic section along........Ann 17,
i, pp 473-511
New Brunswick; albertite at Hillsborough, occurrence of................Ann 17, i, pp 941-942
Cambrian, Lower, in, literature of..Ann 10, i, pp 529-531, 544
gold-bearing rocks of...Ann 16, iii, p 328
iron-ore deposits and statistics of.......................................Ann 16, iii, p 47
manganese-ore deposits and production of, statistics of................MR
1892, pp 216-217; MR 1893, pp 136-137; Ann 16, iii, pp 435-
436; Ann 17, iii, p 206; Ann 18, v, p 311; Ann 20, vi, p 139
St. John formation in the Hartt collection at Cornell University, review
of the fauna of...Bull 10, pp 9-42
New Caledonia, nickel production of...MR 1882, pp 406-407; MR 1885, pp 299-301
New Guinea, quicksilver-ore deposits in..........................MR 1892, p 162
New Hampshire; altitudes in..Ann 19, i, pp 197-202;
Bull 5, pp 182-186; Bull 76; Bull 160, pp 403-412
atlas sheets of. (See pp 84-85 of this bulletin.)
New Hampshire; boundary lines ofBull 13, pp 40-44; Bull 171, pp 46-50
brick industry ofMR 1887, pp 536, 538; MR 1888, p 561; MR 1891, p 502
building stone from, at World’s Columbian ExpositionMR 1893, p 568
clay products of, statistics ofAnn 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 466 et seq
coke in, manufacture ofAnn 20, vi cont, p 227
Contoocook River, profile ofWS 44, p 12
copper mining and statistics ofAnn 2, p xxix; MR 1882, p 230; MR 1883-84, p 329; MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1889, p 83, 84; MR 1892, pp 86, 97; MR 1893, pp 64, 65; Ann 16, iii, pp 333, 334; Ann 17, iii, pp 84, 85, 86; Ann 18, v, pp 189, 190, 191; Ann 19, vi, pp 140, 141, 142, 143; Ann 20, vi, pp 161, 162, 163, 164, 165; Ann 21, vi, p 166 et seq
corals in ... Bull 80, pp 243
elevations in .. Ann 19, i, pp 197-202; Bull 5, pp 182-186; Bull 76; Bull 160, pp 403-412
gas, illuminating and fuel, and by-products in, statistics ofAnn 20, vi cont, pp 227, 241, 244, 246, 247, 249
goil and silver from, statistics ofAnn 2, p 385; MR 1882, pp 176, 177, 178
granite quarries inAnn 19, vi cont, p 237
iron and steel from, statistics ofMR 1882, pp 120, 125, 133, 134, 135; MR 1886, p 17; MR 1887, p 11; MR 1888, p 14; MR 1891, p 61; MR 1892, pp 15, 17; MR 1893, p 15; Ann 16, iii, pp 31, 194; Ann 17, iii, pp 48, 63; Ann 18, vi, pp 65, 72
magnetic declination inAnn 17, i, pp 382-383
manganese-ore production ofAnn 16, iii, p 418
mineral spring resorts in ...Ann 14, ii, p 85
minerals of, useful .. MR 1882, pp 703-706; MR 1887, pp 757-760
pyrites from, statistics of MR 1883-84, pp 877-878; MR 1885, pp 501-502; MR 1886, pp 652-653
Saco River, profile of .. WS 44, p 10
sandstone production of, statistics of MR 1889-90, pp 374, 409; Ann 17, iii cont, p 776; Ann 18, v cont, p 1013; Ann 19, vi cont, p 295; Ann 20, vii cont, p 337; Ann 21, vii cont, p 355
sections, geologic, in. (See Section, geologic, in New Hampshire.)
sewage-disposal plants in WS 22, pp 41-42
timber in, estimates of ... Ann 19, v, p 16
tin deposits of .. Ann 16, iii, p 523
topographic maps of. (See Map, topographic, of New Hampshire; also list on pp 84-85 of this bulletin.)
topographic work in ... Bull 122, pp 12-15
woodland area in .. Ann 19, v, p 3
New Idria mine, California, ore deposits of, age of Mon xviii, p 307
New Jersey; altitudes in .. TF 1, p 4
building stone from, at World’s Columbian Exposition MR 1893, p 568
coke in, manufacture of .. Ann 20, vi cont, p 228
Cretaceous rocks of, correlation of Bull 82, pp 78-84, 214-215
Cretaceous and Tertiary formations of, sketch of geology of ..Mon ix, pp ix-xiii
Delaware River, flow of, measurements of Ann 20, iv, pp 48, 84-86; Ann 21, iv, pp 76-77; WS 15, p 7; WS 27, pp 16, 23, 24; WS 35, pp 62-63
Foraminifera of, Cretaceous Bull 88
New Jersey; fossil fishes and fossil plants of Triassic rocks of New Jersey and
Connecticut Valley ... Mon xiv
gas, illuminating and fuel, and by-products of, statistics ofAnn 20, vi cont, p 228 et seq
geographic dictionary of .. Bull 118
geographic positions in .. Bull 123, pp 59-67
geologic formations of .. Bull 138, pp 39-42
geologic maps of, listed ... Bull 7, pp 58, 60, 61, 62, 63
(See Map, geologic, of New Jersey.)
geologic sections in. (See Section, geologic, in New Jersey.)
geologic and paleontologic investigations in Ann 6, p 24;
Ann 8, iv, p 130; Ann 9, pp 122, 124, 126, 131; Ann 12, i, pp 53, 54, 69-70; Ann 13, i, pp 102-103, 111, 122; Ann 14, i, pp 220-221; Ann 14, iv, pp 242-243; Ann 15, pp 132, 140, 157-158; Ann 16, i, pp 16, 22; Ann 17, i, pp 21, 28, 60-61; Ann 18, i, pp 25-26, 31; Ann 19, i, p 33; Ann 20, i, p 35; Ann 21, i, p 69
glacial investigations in..................Ann 3, pp 346, 368-369; Ann 7, pp 157, 161
gneisses of northern .. MR 1888, p 536; MR 1889-90, p 410; MR 1891, pp 457, 459; MR 1892, pp 706, 708; MR 1893, pp 544, 546; Ann 16, iv, p 437 et seq; Ann 17, iii, pp 760 et seq; Ann 18, v cont, p 950 et seq; Ann 19, vi cont, pp 271 et seq; Ann 20, vi cont, p 335 et seq
Hardistonville quartzite Ann 18, iv, pp 442-443, 454-456
Highlands of, pre-Cambrian rocks in .. Ann 16, i, pp 836-837
iron, iron ores, and steel from, statistics of Ann 2, pp xxviii;
Ann 20, vi, pp 29, 41, 43, 44, 74 et seq; Ann 21, vi, pp 34, 49 et seq
lime production of .. MR 1888, p 556
limestone production of, statistics of MR 1889-90, pp 373, 410; MR 1891, pp 464, 466; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 508; Ann 17, iii, pp 760, 788, 789, 790, 794; Ann 18, v, pp 950, 1044, 1046, 1047, 1061; Ann 19, vi cont, pp 207, 281, 282, 283, 300; Ann 20, vi cont, pp 271, 342, 343, 344, 345, 349; Ann 21, vi cont, pp 335, 357-360
magnetic declination in .. Ann 17, i, pp 384-387
manganese in zinc ores of ... MR 1885, pp 339-341
manganese-ore production of, statistics of MR 1883, p 132; Ann 16, iii, pp 419-420; Ann 17, iii, p 199; Ann 18, v, p 309
manganiferous zinc ores of Sussex County, character of MR 1892, pp 184-185, 201
maps, geologic, of. (See Map, geologic, of New Jersey.)
maps, topographic, of. (See Map, topographic, of New Jersey; also list on pp 85-86 of this bulletin.)
New Jersey; mineral spring resorts in .. Ann 14, ii, p 85
mineral springs of MR 1889-90, p 530; MR 1892, pp 824, 829; MR 1893, pp 774, 780, 784, 790, 794; Ann 16, iv, pp 709, 715, 720; Ann 17, iii cont, pp 1027, 1036, 1041; Ann 18, v cont, pp 1371, 1381, 1386; Ann 19, vi cont, pp 661, 671, 677; Ann 20, vi cont, pp 749, 760, 766; Ann 21, vi cont, pp 600, 612, 619; Bull 32, pp 42-43
minerals of, useful MR 1882, pp 706-708; MR 1887, pp 760-762
Mollusca and Crustacea of Miocene formations of Mon xxiv
Newark system in Bull 85, pp 20-21, 83-84
relations of traps of Bull 67
nickel works at Camden MR 1883-84, p 537; MR 1885, p 297
ocher production of, statistics of MR 1891, p 595
paint, mineral, production of, statistics of .. MR 1891, p 597; MR 1892, pp 816, 818; MR 1893, p 760; Ann 16, iv, p 696; Ann 17, iii cont, pp 1013, 1014; Ann 18, v cont, pp 1338, 1339; Ann 19, vi cont, pp 637, 638; Ann 20, vi cont, pp 723, 724; Ann 21, vi cont, pp 573, 574
Passaic River, profile of WS 44, p 15
Pochuck Mountain, gneisses of Ann 18, ii, p 440
Raritan clays and greensand marls of, Brachiopoda and Lamellibranchiata of Mon xviii
sections, geologic, in. (See Section, geologic, in New Jersey.)
sewage-disposal plants in WS 22, pp 69-72
slate production of, statistics of MR 1882, p 452; MR 1888, p 547; MR 1889-90, pp 376, 410; MR 1891, p 472; MR 1892, p 710; MR 1893, p 550; Ann 16, iv, pp 437, 476 et seq; Ann 17, iii cont, pp 760, 770 et seq; Ann 18, v cont, pp 950, 992 et seq; Ann 19, vi cont, pp 207, 250 et seq; Ann 20, vi cont, pp 271, 294 et seq; Ann 21, vi cont, pp 335, 344 et seq
survey of, by cooperation of the State Ann 6, pp 5-7; Ann 8, i, pp 72, 99-100
Sussex County, age of Franklin white limestone in Ann 18, ii, pp 425-457
topographic maps of. (See Map, topographic, of New Jersey; also list on pp 85-86 of this bulletin.)
topographic work in Ann 6, pp 5-7; Ann 7, pp 48-49;
Ann 8, i, pp 99-100; Ann 9, p 52; Ann 20, i, pp 100, 102, 111
Wallkill limestone Bull 138, pp 42-115
wells in Bull 138, pp 42-115
woodland area in .. Ann 19, v, p 4
zinc and zinc works in Ann 2, pp xxix;
MR 1882, pp 360-361, 373; MR 1883-84, p 476
New Mexico; altitudes in Bull 5, pp 192-202; Bull 76; Bull 160, pp 452-461
atlas sheets of. (See pp 86-87 of this bulletin.)
bauxite deposits in.............................. Ann 16, iii, pp 549-550
boundary lines of, and formation of Territory Bull 13, pp 31, 123-124; Bull 171, p 131
building stone from, at World's Columbian Exposition MR 1893, p 569

Bull. 177—01——36
New Mexico; building stone from, statistics of MR 1889-90, pp 373, 374, 411; MR 1891, pp 461, 464, 466; MR 1892, pp 710, 711; MR 1893, p 553; Ann 16, iv, pp 437, 484 et seq; Ann 17, iv, cont, pp 760, 775 et seq; Ann 18, v, cont, pp 1013, 1014, 1046, 1047; Ann 19, vi cont, pp 264, 265, 282, 283; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, p 335 et seq

Canadian J isin, stream measurements in Bull 131, p 40

canal system in Mesilla Valley WS 10, pp 21-24

cement production of, statistics of MR 1892, p 739

MR 1893, p 619; Ann 16, iv, p 877; Ann 17, iii cont, p 891; Ann 18, v, cont, p 1178; Ann 21, vi, cont, p 393
cement, hydraulic, production of, statistics of MR 1891, p 532

Chama River, flow of, measurements of Ann 18, iv, p 252; Bull 140, pp 173-175; WS 11, p 65; WS 16, p 129

clay, brick, and pottery industry of MR 1891, p 525

clay products of, statistics of Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 825, 826, 830; Ann 18, v, cont, p 1078 et seq; Ann 19, vi, cont, p 318 et seq; Ann 20, vi cont, p 467 et seq

coal fields of .. Ann 16, iv, pp 149-150

crops raised by irrigation in WS 10, pp 41-48

droughts in Mesilla Valley .. WS 10, pp 17-19

evaporation at Embudo .. Ann 11, ii, p 34

fuller's earth in, occurrence of Ann 18, v, cont, p 1354
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, pp 227, 241, 244, 246, 247, 249

geographic positions in .. Bull 123, pp 135-137

geologic maps of, listed .. Bull 7, pp 140, 141, 142, 143

(See Map geologic, of New Mexico.)
geologic sections in. (See Section, geologic, in New Mexico.)
geologic and paleologic investigations in Ann 6, p 61; Ann 11, i, pp 97-98, 107, 114, 126; Ann 17, i, p 66

Hueco Bolson, description of.. TF 3, p 9
irrigation; dam at head of Pecos Canal............................ Ann 13, iii, pp 236–238
El Paso reservoir, surveys for................................. Ann 13, iii, pp 410–422
in Mesilla Valley.. WS 10
irrigation surveys, engineering, hydrography, segregations, etc., in..... Ann 10, ii, pp viii, 18, 58, 63–64, 72–74, 87, 98–102; Ann 11, ii, pp 145–150; Ann 12, ii, pp 165–209, 251–290
Las Vegas Mesa, description of.................................... TF 3, p 8
Las Vegas Plateau, extent and character of........................ TF 3, p 8
latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico.. Bull 49
lead from, statistics of... MR 1882, p 313; MR 1883–84, pp 416, 425; MR 1885, pp 248, 258; MR 1886, p 146; MR 1887, p 110; MR 1888, p 89; MR 1889–90, p 80; Ann 16, iii, p 362; Ann 17, iii, p 134; Ann 18, v, p 240; Ann 19, vi, pp 201, 215; Ann 20, vi, pp 226, 228; Ann 21, vi, p 229
limestone production of, statistics of............................ MR 1889–90, pp 373, 411; MR 1891, pp 464, 466; MR 1892, pp 711; Ann 16, iv, pp 437, 494, 495, 508; Ann 17, iv cont, pp 760, 788, 789, 790; Ann 18, v cont, pp 1044, 1046, 1047; Ann 19, vi cont, pp 282, 283; Ann 20, vi cont, pp 343, 344; Ann 21, vi cont, pp 357, 358, 359
lumber industry in... Ann 19, v, pp 21, 22
magnetic declination in.. Ann 17, i, pp 387–389
maps, geologic, of. (See Map, geologic, of New Mexico.)
maps, topographic, of. (See Map, topographic, of New Mexico; also list on pp 86–87 of this bulletin.)
Mess de Maya, description of... TF 3, p 8
Mesilla Bolson, description of....................................... TF 3, p 9
Mesilla Valley, climate, water supply, etc., of................. WS 10, pp 14–21
irrigation in... WS 10
mineral spring resorts in... Ann 14, ii, p 85
minerals of, useful.. MR 1882, pp 756–758; MR 1887, pp 762–765
Mora River, flow of, measurements of............................. Ann 18, iv, p 245; Bull 131, p 40; Bull 140, pp 168–169; WS 11, p 64
Mount Taylor and Zuni Plateau....................................... Ann 6, pp 105–198
Mount Taylor quadrangle, physiographic forms in................. TF 2, p 16
Ocate Mesa, description of... TF 3, p 8
New Mexico: Pecos River, profile ofWS 44, p 37
Pecos Valley rock-fill dams.................................MR 1882, p 212; MR 1889-90, p 365
petroleum found in ...Ann 16, iv, p 383
rainfall at various points inAnn 12, ii, pp 244, 248; Ann 13, iii, p 27
rainfall and run-off in upper basin of Rio Grande........Ann 20, iv, pp 356-359
reservoir surveys in ..Ann 20, iv, p 35; Ann 21, iv, pp 265-277
Rio Grande, flow of, measurements of...Ann 11, ii, pp 99, 107; Ann 12, ii, pp 226,
252, 350, 360; Ann 13, iii, pp 94, 99; Ann 14, ii, pp 112-113;
Bull 140, pp 172-178; WS 11, pp 65, 66; WS 16, p 128, 130-
131; WS 28, pp 127-128, 129, 130; WS 37, pp 280-283
irrigation in valley of, method of........Ann 140, pp 180-186
irrigation problems relating to basin...............Ann 11, ii, pp 215-227
Sacramento Range, extent and character ofTF 3, p 4
Sandoval Bolson, description ofTF 3, p 9
sandstone production of, statistics of...MR 1889-90, pp 374, 411; MR 1891, p 461;
MR 1892, p 710; MR 1893, p 553; Ann 16, iv, pp 437, 484,
485; Ann 17, iii cont, pp 760, 775, 776, 778; Ann 18, v cont,
pp 1013, 1014; Ann 19, vi cont, pp 265, 266; Ann 20, vi cont,
pp 271, 336, 337, 338; Ann 21, vi cont, pp 335, 353-356
sections, geologic, in. (See Section, geologic, in New Mexico.)
Snowy Range, extent of.................................TF 3, p 4
soils of Mesilla Valley.................................WS 10, pp 37-39
Tewan Mountains, on a group of volcanic rocks from, and on the occur-
ence of primary quartz in certain basaltsBull 66
topographic maps of. (See Map, topographic, of New Mexico; also list on pp 86-87 of this bulletin.)
topographic work in ..Ann 3, pp 30-40; Ann 4, pp 11-12; Ann 5, pp 11-12; Ann 7, p 57;
Ann 9, p 58; Ann 10, i, p 97; ii, pp 19, 72-74; Ann 11, ii, pp 306-308; Ann 12, i, p 48; Ann 14, i, p 179; Ann 18, i, p 94, 95
Trans-Pecos Province, mountains ofTF 3, pp 3-5
triangulation in ...Bull 122, pp 360, 361-366, 370-373, 375-375
turquoise from ...Bull 42, pp 39-44; MR 1882, pp 493-495
water supply of, for irrigation purposesAnn 16, ii, pp 518-520
woodland area of ..Ann 19, v, p 11
New South Wales; antimony production of........MR 1883-84, p 648
building stone from, at World's Columbian Exposition...MR 1893, pp 577-578
coal production of, statistics ofAnn 16, iii, p 247; Ann 17,
iii, p 319; Ann 18, v, pp 414, 419; Ann 19, vi, pp 311,
317; Ann 20, vi, pp 332, 338; Ann 21, vi, pp 113, 363, 370
iron-ore deposits ofAnn 16, iii, pp 182-185
manganese-ore production of, statistics of........MR 1886,
p 207; MR 1893, pp 153, 155; Ann 16, iii, pp 452, 457;
Ann 17, iii, pp 222-223, 225; Ann 18, v, pp 326, 328
platinum production of, statistics of........Ann 17, iii, pp 281-283
quick silver deposits inAnn 18, v, p 290
tin deposits and production of, statistics of........Ann 16,
iii, pp 465, 494-500; MR 1889-84, pp 619-620
New York; Adirondacks, iron ores, titaniferous, of Ann 19, iii, pp 377-422
Allegany River system, extent of. WS 24, p 44
altitudes in .. Ann 18, i, pp 239-279;
Ann 19, i, pp 202-217; Ann 20, i, pp 297-363; Ann 21, i,
pp 382-419, 431, 437-438; Bull 5, pp 203-222; Bull 76; Bull
160, pp 462-531; WS 24, pp 27, 29-30, 31, 34, 35, 36, 42, 44, 46
artesian and other wells in Bull 138, pp 22-38
atlas sheets of. (See pp 87-90 of this bulletin.)
Battenkill River, drainage area of and water powers on WS 24, pp 40-41
Black River, drainage area of, flow of, altitude of points on, etc......... WS 24,
pp 29-30, 96-97
flow of, measurements of WS 36, pp 191-193
boundary lines of, and cession of territory to General Government by .. Bull 13,
pp 25, 71-76; Bull 171, pp 76-82
bricks, use of, for street paving in
building stone from, at World's Columbian Exposition MR 1892, p 724
statistics of.MR 1882, pp 451, 452; MR 1883-84, pp 171, 518; MR
1888, pp 536, 540, 541, 544; MR 1889-90, pp 373, 411-414;
MR 1891, pp 457, 459, 461, 463, 464, 466, 468, 469; MR 1892,
pp 706, 708, 709, 710, 711; MR 1893, p 544 et seq; Ann 16,
iv, p 437 et seq; Ann 17, iv, cont, p 760 et seq; Ann 18, v
cont, p 960 et seq; Ann 19, vi, cont, p 207 et seq; Ann
20, vii, cont, p 271 et seq; Ann 21, vii, cont, p 335 et seq
Cambrian faunas of North America, studies on the (fossils largely from New
York) Bull 30
Cambrian, Lower, in, literature and fauna of........ Ann 10,
i, pp 534-536, 541-542, 570, 583-584
Canadaway Creek, flow of, measurements of WS 24, pp 94-95
canals in. history and description of, and projects for........ WS 25, pp 145-173
Cayadutta Creek, flow of, measurements of. ...Ann 21, iv, p 69; WS 35, pp 53-54
cement production of, statistics ofMR 1882, p 460;
MR 1883-84, p 671; MR 1886, p 556; MR 1887, p 527; MR
1888, p 551; MR 1889-90, p 461; MR 1891, pp 532, 536; MR
1892, pp 739, 743, 744; MR 1893, pp 619, 621; Ann 16, iv, pp
577, 581, 585; Ann 17, ivi, cont, pp 884, 885, 891; Ann 18, v
cont, pp 1170, 1179; Ann 19, vi, cont, pp 487, 488, 495; Ann
20, vii, cont, pp 539, 540, 547; Ann 21, vi, cont, pp 393, 407
Chemung River, floods in......................... WS 24, pp 87-90
Chittenango Creek, flow of, measurements of Ann 21,
iv, p 181; WS 36, pp 184-186
clay deposits and production of, statistics of. ..MR 1883-84, pp 695, 709; MR 1885,
p 416; MR 1886, p 568; MR 1887, pp 536, 539; MR 1888, pp
562, 566; MR 1892, pp 733-734; Ann 16, iv, pp 518, 519, 520,
521; Ann 17, ivi, cont, pp 820 et seq, 866; Ann 18, v, cont, pp
1078 et seq; Ann 19, vi, cont, pp 318 et seq, 367, 477-478; Ann
20, vii, cont, pp 467 et seq, 529; Ann 21, vii, cont, pp 362, 363
coke in, manufacture of, statistics of.MR 1893,
pp 418 et seq, 460; Ann 16, iv, pp 225 et seq, 263; Ann
17, iv, cont, pp 544 et seq, 587-588; Ann 18, v, cont, pp
661 et seq, 708; Ann 19, vi, pp 548 et seq, 603; Ann 20, vi, pp
512 et seq, 569; vi, cont, p 228; Ann 21, vii, pp 523 et seq, 588
Croton River, flow of, measurements of. Ann 20,
iv, pp 47, 81-84; Ann 21, iv, pp 74-75; WS 35, p 62
rainfall, run-off, and storage capacity in drainage area of... WS 24, pp 82-87, 98
New York; Delaware River, elevations on and drainage area of WS 24, pp 46-47
Devonian system of southeastern .. Bull 120
Devonian, Upper, fossil faunas of Bull 3; Bull 41
dumortierite from .. Bull 60, pp 133-135
East Canada Creek, flow of, measurements of Ann 21, iv, p 68; WS 35, p 52
Eaton Brook, rainfall and run-off of WS 24, p 67
elevations in ... Ann 18, i, pp 239-279; Ann 19, i, pp 202-217; Ann 20, i, pp 297-363; Ann 21, i, pp 382-419, 431, 437-438; Bull 5, pp 203-222; Bull 76; Bull 160, pp 462-531; WS 24, pp 27, 29-30, 31, 34, 35, 36, 42, 44, 46
Erie Canal, decline of ... WS 24, pp 13-14
history and description of .. WS 25, pp 147-149, 155-156, 157, 158-166
water power on .. WS 25, pp 178-184
faunas, fossil, higher Devonian of Ontario County Bull 16
Genesee section .. Bull 41
feldspar from, statistics of .. Ann 18, vi cont, p 1367; Ann 19, vi cont, p 547
Fish Creek, flow of, measurements of WS 36, pp 186-188
fossil meduse of eastern .. Mon xxx, pp 41-46
fuller's earth in, occurrence and production of Ann 18, vi cont, p 1354; Ann 19, vi cont, p 655
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, p 228 et seq
Genesee River, course, drainage area of, and altitudes along ... WS 24, pp 25-27
flow of, measurements of .. Ann 19, iv, pp 262-264; Ann 20, iv, pp 225-227; W 24, pp 70-75
rainfall, run-off, evaporation, etc., of WS 24, pp 58, 90-92
storage reservoir on, proposed ... WS 25, pp 109-125
geographic positions in ... Ann 18, i, pp 148-154; Ann 19, i, pp 155-157; Ann 20, i, pp 222-225; Ann 21, i, pp 234-239; Bull 123, pp 44-59
geologic maps of, listed ... Bull 7, pp 58, 59, 60, 62, 63

(See Map, geologic, of New York.)
geologic sections in (See Section, geologic, in New York.)
geologic and paleontologic investigations in Ann 3, p 20;
Ann 4, p 25; Ann 5, pp 52, 54; Ann 6, pp 24, 28, 32, 74, 75;
Ann 7, pp 65, 83, 85, 113, 114-115; Ann 8, i, pp 128, 130, 174,
175, 176; Ann 9, pp 71, 77, 105, 115, 116, 117, 122; Ann 10, i, p 160; Ann 11, i, pp 103, 104, 114; Ann 12, i, pp 107, 121;
Ann 13, i, pp 101, 109, 136; Ann 14, i, pp 213-214, 219, 251;
Ann 15, pp 131, 140, 154, 179; Ann 16, i, p 16; Ann 17, i, pp 19-20, 28-29, 59-60; Ann 18, i, pp 23-25, 57, 58; Ann 19, i,
pp 32, 33, 54-55; Ann 20, i, pp 34, 35-36; Ann 21, i, p 71

glacial investigations in .. Ann 3,
pp 344, 346, 348-350, 353-377; Ann 7, pp 157, 166, 171
granite production of, statistics of .. MR 1888,
p 536; MR 1889-90, pp 374, 411; MR 1891, pp 457, 459; MR 1892, pp 706, 708; MR 1893, pp 444, 456; Ann 16, iv, pp 437,
443, 457, 458, 460; Ann 17, vi cont, p 760 et seq; Ann 18, v cont, pp 950 et seq, 970; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq

gypsum production of, statistics of........ MR 1889-90, p 465; MR 1891, pp 580, 581; MR 1892, pp 801, 802, 803; MR 1893, pp 714, 715; Ann 16, iv, pp 663, 664; Ann 17, iii cont, pp 979, 980, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527

Hemlock Lake, rainfall on, and measurements of discharge of........ WS 24, pp 75-77, 92-93

Hoosic River, course and drainage area of.................. WS 24, p 40

Hudson River, drainage area of, water powers and elevations on tributaries of........ WS 24, pp 33-43

flow of, measurements of........ Ann 19, iv, pp 117-122; Ann 20, iv, pp 47, 78-81;

profile of.................. WS 44, p 14

rainfall in watershed of.................. WS 25, p 133

trade and commerce on.......................... WS 25, pp 144-145

water storage on.................. WS 25, pp 125-134

iron, iron ores, and steel from, statistics of........ Ann 2, p xxviii; MR 1882, pp 120, 125, 129 et seq; MR 1883-84, pp 252, 271-274; MR 1885, pp 182, 184, 186, 188; MR 1886, pp 14, 18, 43-50; MR 1887, pp 11, 16, 43-44; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 21, 54, 55, 61; MR 1892, p 12 et seq; MR 1893, pp 15, 20, 26 et seq; Ann 16, iii, pp 31, 33-39, 192 et seq, 249, 250; Ann 17, iii, pp 26, 27, 39 et seq; Ann 17, v, pp 24, 37, 41, 42; Ann 19, vi, pp 26, 27, 29, 34, 65 et seq; Ann 20, vi, pp 29, 41, 43, 44, 74 et seq; Ann 21, vi, pp 34, 48, 52, 53, 90 et seq

Lake Champlain, tributaries of.................. WS 24, pp 31-33

lime production of.......................... WS 24, pp 31-33

limestone production of, statistics of........ MR 1882, p 451; MR 1888, p 540; MR 1889-90, pp 373, 413; MR 1891, pp 464, 466; MR 1892, p 711; MR 1893, pp 556, 557; Ann 16, iv, pp 437, 494, 495, 508-509; Ann 17, iii cont, pp 760, 788 et seq; Ann 18, v cont, pp 950, 1044 et seq; Ann 19, vi cont, pp 207, 281 et seq; Ann 20, vi cont, pp 271, 342 et seq; Ann 21, vi cont, pp 335, 357 et seq

limestone quarries of eastern.................. Ann 17, iii cont, pp 795-802

Long Island, water yield of sand areas of........ WS 25, pp 191-198

Madison Brook, rainfall and run-off in basin of........ WS 24, p 67

magnetic declination in.................. Ann 17, i, pp 389-394

maps, geologic, of. (See Map, geologic, of New York.)

maps, topographic, of. (See Map, topographic, of New York; also list on pp 87-90 of this bulletin.)

marble production of, statistics of........ MR 1886, p 541; MR 1887, p 518; MR 1888, p 541; MR 1889-90, pp 375, 414; MR 1891, pp 468, 469; MR 1892, p 709; MR 1893, pp 547, 549; Ann 16, iv, pp 437, 463 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, pp 950, 975 et seq; Ann 19, vi cont, pp 207, 238 et seq; Ann 20, vi cont, pp 271, 281 et seq; Ann 21, vi cont, pp 335, 341 et seq

mineral spring resorts in.................. Ann 14, ii, p 85

minerals of, useful.................. MR 1882, pp 708-713; MR 1887, pp 765-769

mining laws of MR 1886, pp 732-734

Mohawk River, area, elevations, and water powers of basin of........ WS 24, pp 35-40

profile of.. WS 44, p 45

stream measurements in basin of................................ Ann 21, iv, pp 64-70; WS 35, pp 45-46, 51, 55-58

mountains and forests in.. WS 24, pp 16-18

natural gas localities and statistics of................ MR 1883-84, pp 236, 243; MR 1885, pp 169, 174; MR 1886, p 490; MR 1887, pp 466, 474-479; MR 1888, p 489; MR 1889-90, p 367; MR 1891, pp 438, 439, 440; MR 1892, p 676; MR 1893, p 536; Ann 16, iv, pp 415, 418, 419; Ann 17, iii cont, p 734 et seq; Ann 18, v cont, p 900 et seq; Ann 19, vi cont, pp 168 et seq; Ann 20, vi cont, pp 207 et seq; Ann 21, vi cont, p 299 et seq

New York, artesian and other wells at.......................... Bull 138, p 38

Newark system, New York-Virginia area of.................. Bull 85, pp 20-21, 83-85

Niagara River, description of............................... WS 24, pp 24-25

flow of, measurements of................................ Ann 20, iv, p 224; WS 24, p 60; WS 36, pp 181-183

water power on.. WS 25, pp 135-143

Oatka Creek, rainfall, run-off, evaporation, and mean temperature of drainage area of........ WS 24, pp 14, 70

Oneida Creek, flow of, measurements of.......................... WS 36, p 186

Oriskany Creek, flow of, measurements of................ Ann 21, iv, p 66; WS 35, pp 47-48

Oswego River, drainage area and altitudes along.................. WS 24, pp 27-29

flow of, measurements of................................ WS 24, p 96; WS 36, pp 188-190

pyrites from, statistics of.................. MR 1885, p 504

quartz from, statistics of.......................... Ann 19, vi cont, p 657; Ann 20, vi cont, p 745

rainfall in................................ Ann 20, iv, pp 47, 82-83; WS 24, pp 20, 52; WS 29, p 72

rainfall at Buffalo (monthly)................................ Ann 21, iv, p 661

Rensselaer grit plateau, geology of............................ Ann 13, ii, pp 291-340

river systems of................................ WS 24, pp 23-48
New York; rocks of, their classification, etc. Bull 80, pp 32-34, 38-40, 42-43, 45-46, 48-74, 260, 266
Sacandaga River, drainage area of and elevations along. WS 24, p 42
St. Lawrence River, drainage area and altitude of points on tributaries of. WS 24, pp 24-31
water power on. WS 25, pp 143-144
salt making in. Ann 7, pp 504, 505, 506, 507, 510
history of. Ann 18, vi cont, pp 1290-1296
sandstone production of, statistics of. MR 1888, p 544; MR 1889-90, pp 374, 411; MR 1891, pp 461, 463; MR 1892, p 710; MR 1893, p 553; Ann 16, iv, pp 437, 484 et seq; Ann 17, vii cont, pp 760, 775 et seq; Ann 18, vi cont, pp 950, 1012 et seq; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vii cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353 et seq
Sanquoit Creek, flow of, measurements of. Ann 21, iv, p 66; WS 35, pp 48-49
Schoharie Creek, flow of, measurements of. Ann 21, iv, pp 69-70; WS 35, pp 54-55
Schroon River, drainage area of and elevations on. WS 24, p 43
flow of, measurements of. Ann 21, iv, pp 72-73
sections, geologic, in. (See Section, geologic, in New York.)
Seneca River, flow of, measurements of. WS 36, pp 183-184
sewage-disposal plants in. WS 22, pp 62-69
ship-canal projects in. WS 25, pp 166-173
slate from eastern New York and western Vermont, mineral and chemical composition, methods of testing, etc. Ann 20, vi cont, pp 301-338
slate belt of eastern. Ann 19, vii, pp 153-307
Staten and Long islands, Cretaceous deposits of. Bull 82, pp 84-86
structural details in Green Mountain region in eastern New York. Ann 16, iv, pp 543-570
survey of, by cooperation of the State. Ann 17, iv, p 98; Ann 18, iv, pp 100, 101; Ann 19, iv, pp 86, 97-98; Ann 20, iv, pp 99, 109-110; Ann 21, iv, pp 114 et seq, 122-123
Susquehanna River, elevations along, drainage area and tributaries of. WS 24, pp 44-46
swamps, seacoast, of United States, eastern. Ann 6, pp 353-398
talc, deposits of, in Saint Lawrence County. Ann 18, vi cont, pp 1072-1074
production of. MR 1885, pp 534-535; MR 1889-90, p 476
temperature, average, in. WS 24, p 19
timber in, estimates of. Ann 19, vi, p 16
topographic maps of. (See Map, topographic, of New York; also list on pp. 87-90 of this bulletin.)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.]

New York; topographic work in.................................Ann 10, i, pp 85, 86, 87, 89; Ann 11, i, p 38; Ann 12, i, p 26; Ann 13, i, pp 70, 71; Ann 14, i, p 171; Ann 15, p 113, 114-115; Ann 16, i, pp 64, 68, 69, 71; Ann 17, i, pp 97, 98-99; Ann 18, i, pp 94, 95, 101; Ann 19, i, pp 89, 90, 97-98; Ann 20, i, pp 101, 102, 109-110; Ann 21, i, pp 117-118, 122-123

trap dikes in..Bull 107

triangulation in..Ann 18, i, pp 148-154; Ann 19, i, pp 155-157; Ann 20, i, pp 222-225; Ann 21, i, pp 234-239; Bull 122, pp 29-50

water powers in, price and possible development of................WS 25, pp 184-186, 188-190

water resources of...WS 24; WS 25

waters, ownership of inland, by State........................WS 25, pp 186-189

West Canada Creek, flow of, measurements of...................Ann 21, iv, p 67; WS 35, pp 49-50

woodland area in...Ann 19, v, p 4

New York system of rocks..................................Bull 86, pp 393, 394

New Zealand; coal production of, statistics of........MR 1893, p 202; Ann 16, iii, pp 247, iv, p 21; Ann 17, iii, pp 314, 319; Ann 18, v, p 419; Ann 19, vi, pp 311, 318; Ann 20, vi, pp 332, 339; Ann 21, vi, pp 363, 371

fossil plants of, literature of............................Ann 8, ii, pp 815-817

gold-bearing conglomerate in................................Ann 18, v, p 182

iron and iron ore from, statistics of.........................Ann 16, iii, pp 24, 186

manganese production of, statistics of.....................MR 1886, p 207; MR 1888, p 142; MR 1889-90, p 130; MR 1891, p 145; MR 1892, pp 223-224; MR 1893, p 154; Ann 16, iii, pp 452, 457; Ann 17, iii, pp 223, 225; Ann 18, v, pp 327, 328; Ann 21, vi, pp 161, 162

petroleum localities and statistics of.......................MR 1888, p 473; MR 1893, p 531; Ann 19, vi cont, pp 152-153; Ann 21, vi cont, pp 291-292

quicksilver deposits in......................................Mon xiii, p 49

sinters and spring waters of................................Ann 9, pp 672-676

Newark formation of Virginia, Maryland, and West Virginia....GF 10, pp 3, 4

Newark system, areas occupied by..............................Bull 85, pp 19-24

areas occupied by, structure of..............................Ann 21, iii, pp 25-26

bibliography of..Bull 85, pp 133-134

correlation essay on, by I. C. Russell.........................Bull 85

distribution and history of....................................Bull 150, p 78

in Catoctin belt..Ann 14, ii, pp 345-355

in New Jersey region, relations of traps of..................Bull 67

in Pomperaug Valley, Connecticut.............................Ann 21, iii, pp 7-162

in Richmond Basin and elsewhere, age, conditions of deposition, etc........Ann 19, ii, pp 396-419, 443

lithology and stratigraphy of...............................Bull 85, pp 32-44

sandstones of, origin of red color of........................Bull 52, pp 44-56

(See, also, Juratrias.)

Newark type of structure in Catoctin belt......................Ann 14, ii, pp 355-358

Newberry (J. S.), biographic sketch of........................Ann 5, pp 381-382

death and biographic sketch of.............................Ann 14, i, pp 61-64; Mon xxvi, pp 15-20

fossil fishes and fossil plants of Triassic rocks of New Jersey and Connecticut Valley.........................Mon xiv

later extinct floras of North America........................Mon xxv

Paleozoic fishes of North America............................Mon xvi

flora of Amboy clays..Mon xxvi

work in charge of, 1887-1889.................................Ann 9, pp 131-132; Ann 10, i, pp 174-175

Newcastle quadrangle, South Dakota—Wyoming, forest conditions in ..Ann 21, v, p 601

Newell (F. H.), hydrography of arid regions of United States..Ann 12, ii, pp 213-361

irrigation in Texas, general survey ofWS 13, pp 9-16

public lands and their water supplyAnn 16, ii, pp 457-533

report of progress of stream measurements for 1897Ann 19, iv, pp 1-632

reports of division of hydrography during 1893-1895Bull 131; Bull 140

results of stream measurementsAnn 14, ii, pp 89-155

stream measurements for 1898Ann 20, iv, pp 1-562

stream measurements for 1899Ann 21, iv, pp 9-488

topography, rainfall, and water supply of Cache la Poudre Valley, Colorado......................WS 9, pp 9-27

use of windmills in irrigationWS 20, pp 11-18

water supply for irrigationAnn 13, iii, pp 1-99

work in charge of, 1890-1900Ann 12, i, pp 134-136; Ann 13, i, pp 163; Ann 14, i, pp 269-270; Ann 15, pp 196-198; Ann 16, i, pp 43-49; Ann 17, i, pp 70-80; Ann 18, i, pp 70-82; Ann 19, i, pp 69-74; Ann 20, i, pp 69-76; Ann 21, i, pp 96-101

Newell (F. H.), and others, report of progress of stream measurements in 1897Ann 19, iv, pp 1-632

Newfoundland; Cambrian, Lower, in, literature and fauna of........Ann 10, i, pp 528-529, 586

Cambrian rocks of, investigations of........Ann 18, vi, pp 202, 204; Ann 21, vi, pp 204, 206, 210, 211, 222-223

gold-bearing rocks ofAnn 16, iii, pp 320-321

manganese ores from, statistics ofAnn 21, vi, pp 146, 162

petroleum localities and statistics ofAnn 19, vi cont, pp 118; Ann 20, vi cont, pp 133-134; Ann 21, vi cont, pp 178-179

pre-Cambrian rocks ofAnn 16, i, pp 812-813; Bull 86, pp 247-252, 503

pyrites deposits inMR 1883-84, p 507

submarine strata offBull 7, pp 36-38

(See, also, Map, geologic, of Newfoundland.)

gold-bearing rocks ofAnn 16, iii, pp 320-321

manganese ores from, statistics ofAnn 21, vi, pp 146, 162

petroleum localities and statistics ofAnn 19, vi cont, pp 118; Ann 20, vi cont, pp 133-134; Ann 21, vi cont, pp 178-179

pre-Cambrian rocks ofAnn 16, i, pp 812-813; Bull 86, pp 247-252, 503

pyrites deposits inMR 1883-84, p 507

submarine strata offBull 7, pp 36-38

(See, also, Canada.)

Newland limestone of Montana, description and section of ..Ann 20, iii, pp 282, 283

Newman limestone in Kentucky, North Carolina, Tennessee, Virginia, and West Virginia..................Bull 111, pp 38; GF 12, p 3; GF 16, p 4; GF 21, p 4; GF 27, p 3; GF 33, p 2; GF 40, p 2; GF 46, p 3; GF 47, p 2; GF 53, p 2; GF 59, p 4

Newman sandstone-lentil in Tennessee..................GF 53, p 2

Newton Glacier, Alaska, description ofAnn 13, ii, pp 39-41

Newtonite, chemical constitution ofAnn 125, pp 65, 66, 103

Niagara Falls, survey of, by R. S. Woodward, in 1886Ann 8, i, p 122
Niagara formation of Indiana Ann 11, i, pp 632-633
Niagara and Clinton formations of Michigan WS 30, p 89
Niagara group of Ohio .. Ann 8, pp 561-563
of Ohio as a water carrier Ann 19, iv, pp 643-644, 656-664
Niagara River, flow of, measurement of Ann 20, iv, p 224;
WS 24, p 60; WS 30, pp 181-183
history and future of .. Ann 18, i, pp 58-59
water power on .. WS 25, pp 136-143
Nicaragua; boundaries, topography, rainfall, climate, resources, etc., of..... Ann 20, iv, pp 569-585
hydrography of .. Ann 20, iv, pp 563-639
Nicaragua Canal, surveys for Ann 20, iv, pp 589-592
Nicaragua Canal Commission, investigations by Ann 20, iv, pp 592-637
Nichols shale in Tennessee and North Carolina GF 16, p 3; GF 20, p 2; GF 25, p 2
Nickel from foreign localities MR 1882, pp 405-407, 410-11; MR 1883-84, pp 539-540; MR 1885, pp 299-301; MR 1889-90, p 125
sources, manufacture, uses, cost, etc., of Ann 18, v, pp 329-342
statistics of: .. MR 1882, pp 399-420
Nickel and cobalt, analysis of, from New Mexico, Grant County (argentiferous arsenide of) Bull 55, p 54
Nickel-iron, analysis of, from British Columbia, Beaver Creek (meteoric) .. Bull 168, p 239
analysis of, from California, San Bernardino County (meteoric) .. Bull 168, p 238 from Chile, Llano del Inca (meteoric) .. Bull 168, p 240
from Iowa, Winnebago County (meteoric) Bull 168, p 233
from Kansas, Kiowa County (meteoric) Bull 168, p 235
Washington County (meteoric) Bull 168, p 234
from Missouri, Taney County (meteoric) Bull 168, p 234
from Tennessee, Cumberland County (meteoric) Bull 168, p 231
Hamblen County (meteoric) Bull 168, p 232
from Texas, Fayette County Bull 168, p 237
Travis County (meteoric) Bull 168, p 236
Nickel ore, analysis of, from New Caledonia MR 1882, pp 404, 406
analysis of, from Ontario, Sudbury Bull 64, p 20
from Oregon, Riddles Bull 60, p 23; Bull 148, p 231; Bull 168, p 221; MR 1882, p 404
from Canada, mines at Sudbury (platiniferous) Bull 64, pp 20-21
Sudbury, mode of occurrence, treatment, etc MR 1888, pp 110-117
from Oregon Bull 60, pp 21-26
occurrence, origin, metallurgy, etc., of MR 1893, pp 170-177; Ann 17, iii, pp 253-259
Nickles (J. M.) and Bassler (R. S.), a synopsis of American fossil Bryozoa, including bibliography and synonymy Bull 173
Nigrite, analyses of, from Utah Ann 20, vi cont, p 258
from Utah, results of investigation of Ann 20, vi cont, pp 257-260
Nikolai greenstone of Alaska Ann 21, ii, pp 425, 426
Nilkoka formation of Alaska..........................Ann 20, vii, p 472; Alaska (2), p 68
Niobrara Basin, stream measurements inAnn 19, iv, pp 299-300;
Ann 20, iv, pp 255, 301; WS 15, p 80; WS 37, pp 213-214
Niobrara formation or group of Black HillsAnn 21, iv, pp 534-535
of ColoradoAnn 17, ii, pp 566-567, 571; Mon xxvii, pp 66-68, 87, 107;
Mon xxxi, p 41; GF 9, pp 6, 8; GF 36, p 3; GF 58, pp 1-2
of Kansas, southwesternBull 57, pp 30-31
of MontanaBull 139, p 46; GF 1, p 2; GF 55, pp 2, 6, 8
of NebraskaAnn 19, iv, pp 737, 760;
Bull 84, pp 211, 220, 293-296, 331; WS 12, p 20
of WyomingBull 119, pp 22-23; GF 30, p 5
Nipigon group of Lake Superior region..............Bull 86, pp 61, 70, 195, 211, 468
Nisconlith series of CanadaBull 86, p 340
Nisqually Glacier, Mount Rainier, present condition of .Ann 18, ii, pp 309-400
Niter, analysis of, from UtahBull 55, p 88
statistics ofMR 1882, pp 597-598
Nitril-o-hexaphosphonitrilic chloride, analysis ofBull 167, p 135
Nitrogen in uraninite, occurrence of, and composition of uraninite in general
Bull 78, pp 43-79
Nitze (H. B. C.), history of gold mining and metallurgy in the Southern States
Ann 20, vi, pp 111-123
investigations of some of the mineral resources of Porto Rico........Ann 20, vii cont, pp 779-787
monazite; crystallography, occurrence, composition, use, etc., ofAnn 16, iv, pp 667-693
Nivenite, analyses of, from Texas, Llano County ..Bull 78, p 72; Bull 90, p 23
Nizina River, Alaska, features ofAnn 21, ii, pp 409-410
Noatak River, Alaska, notes onAlaska (2), p 129
Nodosauridae of North AmericaAnn 16, i, p 225
Nodosaurus, remarks onAnn 16, i, p 225
Nodules resulting from external attackMon xiii, pp 68-72
Nolichucky River, profile ofWS 44, p 53
Nolichucky shale in Kentucky, North Carolina, Tennessee, Virginia, and West
VirginiaGF 12, p 2; GF 16, p 4;
GF 25, p 3; GF 27, p 3; GF 33, p 2; GF 44, p 2; GF 59, p 3
Nome gold region, Alaska, preliminary report on Nome
Nomenclature, general geologicAnn 2, pp xli-xlivii
of igneous rocks, survey rules concerning.Ann 19, i, pp 22-23
of pre-CambrianBull 86, p 191
(See, also, Correlation.)
Nomenclature and classification of fossil plantsAnn 5, pp 425-439
Nomenclature and taxonomy, geologic, conference of geologists and lithologists
on, in January, 1889Ann 10, i, pp 56-67
Nomini quadrangle, Maryland-Virginia, geology ofGF 23
Nonconformity. (See Unconformity.)
Norfolk quadrangle, Virginia-North Carolina, physiography of .TF 2, p 2
Norian rocks of New England, New York, and Canada ..Bull 86, pp 32,
(See, also, Labradorian.)
Norian terrane definedBull 86, p 462
Norite, analysis of, from California, Plumas CountyAnn 14, ii, p 473
analysis of, from Maryland, Cecil CountyBull 168, p 45
from Michigan, Crystal Falls districtMon xxxvi, pp 245, 263
from New York, Adirondack regionBull 168, p 37
Norite of Delaware described ..Bull 59, p 21
of Michigan, Crystal Falls district............................Mon xxxvi, pp 233-249
of Sierra Nevada ..Ann 14, ii, pp 474-476
thin section of, from New York, Lincoln Pond ...Ann 19, iii, pp 406-407
Norite wall, thin section of, from New York, Trembleau Point, showing contact between diabase dike andBull 107, p 46
Normandy limestone of TennesseeGF 53, p 2
North America; Carboniferous invertebrates of, bibliographic index ofBull 153
Cretaceous and Tertiary plants of, catalogue and bibliography of........Bull 152
fossil plants of, literature ofAnn 8, ii, pp 835-926
geologic maps of, list ofBull 7, pp 23-32, 159-160
Mesozoic invertebrates of, catalogue and bibliography ofBull 102
North Carolina; altitudes inAnn 18, i, pp 295-310; Ann 19, i, pp 242-247; Ann 20, i, pp 370-380, 383-387; Bull 5, pp 223-226; Bull 76; Bull 160, pp 532-543
artesian and other wells inBull 138, pp 190-207
barytes production of ..MR 1891, p 509
Big Pigeon River, profile ofWS 44, p 52
boundary lines of, and cession of territory to General GovernmentBull 13, pp 92-96; Bull 171, pp 98-102
brick industry of ...MR 1888, pp 562, 566
building stone at World's Columbian ExpositionMR 1893, pp 569-570
in Knoxville quadrangleGF 16, pp 5, 6
statistics of ..MR 1889-90, pp 374, 414-415; MR 1891, pp 457, 459, 461, 463, 470; MR 1892, pp 706, 708; MR 1893, pp 544, 546; Ann 16, iv, pp 437 et seq; Ann 17, iii cont, pp 760 et seq; Ann 18, v cont, pp 950 et seq; Ann 19, vi cont, pp 207 et seq; Ann 20, vi cont, pp 271 et seq; Ann 21, vi cont, pp 335 et seq
Cape Fear River, flow of, measurements ofAnn 18, iv, pp 54-57; Ann 19, iv, pp 192-193; Ann 20, iv, pp 50, 145; Ann 21, iv, pp 118-119; Bull 140, p 69; WS 11, p 16; WS 15, p 31; WS 27, pp 36, 44, 45; WS 36, pp 115-116
profile of ..WS 44, p 25
water powers in basin of ..Ann 19, iv, pp 187-192
Catawba River, flow of, measurements ofAnn 18, iv, pp 64-65; Ann 19, iv, p 212; Ann 20, iv, pp 50, 149; Ann 21, iv, pp 122-123; WS 11, p 18; WS 15, p 34; WS 27, pp 38, 44, 45; WS 36, pp 120-121
water powers in basin ofAnn 19, iv, pp 204-212
clay deposits of ..MR 1891, p 505; MR 1892, p 734; MR 1893, pp 616-617; Ann 19, vi cont, pp 478-485
in Knoxville quadrangleGF 16, p 6
production of ..Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 467 et seq; Ann 21, vi cont, pp 362, 363
North Carolina; coke in, manufacture of Ann 20, vi cont, p 228
copper mines and statistics of...................... Ann 2, p xxix; Ann 20, vi, p 186; MR 1882, p 231
corundum and emery in........................... MR 1893, pp 674-678
Corundum Hill, gneiss-dunyte contacts of, in relation to origin of corun-
dum... Bull 42, pp 45-63
Dan River, profile of.. WS 44, p 24
Deep River, flow of, measurements of.................. Ann 21, iv, pp 116-118; WS 27, pp 26, 35, 44; WS 36, pp 113-114
Dismal Swamp, general description of.................. TF 2, p 2
Dismal Swamp district of Virginia and North Carolina, geology of...... Ann 10, i, pp 313-339
elevations in.. Ann 18, i, pp 295-310; Ann 19, i, pp 242-247; Ann 20, i, pp 370-380, 383-387; Bull 5, pp 223-226; Bull 76; Bull 160, pp 532-543
emeralds in, discovery and occurrence of............... Ann 21, vi cont, p 450; MR 1882, pp 500-503
fertilizer trade in, in 1886.......................... MR 1886, pp 611-617
flora of, older Mesozoic.................................. Mon vi, pp 97-128
French Broad River, flow of, measurements of........... Ann 18, iv, p 116; Ann 19, iv, pp 256-259; Ann 20, iv, pp 52, 205; Ann 21, iv, pp 160-161; Bull 140, pp 80-81; WS 11, p 42; WS 15, p 60; WS 27, pp 62, 65, 66; WS 36, pp 165-166
profile of.. WS 44, p 52
gas, illuminating and fuel, and by-products in, statistics of........ Ann 20, vi cont, pp 228, 241, 244, 246, 247, 249
geographic positions in.................................... Bull 123, pp 78-79
geologic maps of, listed.................................. Bull 7, pp 102, 103, 109, 167
(See Map, geologic, of North Carolina.)
geologic sections in. (See Section, geologic, in North Carolina.)
geologic and paleontologic investigations in........ Ann 6, p 24;
Ann 7, pp 66, Ann 8, i, p 129; Ann 10, i, pp 118, 120, 155, 174; Ann 11, i, p 69; Ann 12, i, pp 75, 114, 117;
Ann 13, i, pp 110, 114, 145; Ann 14, i, pp 220, 240; Ann 15, pp 130, 150; Ann 16, i, p 22; Ann 18, i, pp 30-31;
Ann 19, i, p 35; Ann 20, i, p 39; Ann 21, i, pp 73, 79
gold in Knoxville quadrangle.......................... GF 16, p 6
gold and silver from, statistics of.................... Ann 2, p 385; MR 1882, pp 172, 176, 177, 178; MR 1883-84, pp 312, 313; MR 1885; p 201; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 77, 78, 79; MR 1892, pp 51 et seq; MR 1893, p 50 et seq; Ann 16, iii, p 258; Ann 17, iii, p 72 et seq; Ann 18, v, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, pp 122-127
gold belt in, location of mines, etc., in................ Ann 16, iii, pp 301-306, 309-316
gold mining in, history of............................. Ann 20, vi, p 111 et seq
North Carolina; graphite deposits of.................................MR 1887, p 672
Great Pee Dee River, profile of................................WS 44, pp 25-26
Greenville quadrangle, geologic section of.....................Ann 13, ii, pl lxi, p 245
harbors on coast of..Ann 13, ii, pp 178-180
Haw River, flow of, measurements of..............................Ann 21, iv, pp 114-115; WS 27, pp 25-26, 38, 44; WS 36, pp 112-113
Hiwassee River, flow of, measurements of........................Ann 18, iv, p 118; Ann 19, iv, pp 259-260; Ann 20, iv, pp 52, 208-209; Ann 21, iv, pp 164-165; Bull 140, p 82; WS 11, p 43; WS 15, p 63; WS 27, pp 64, 65, 66; WS 36, pp 169-170
profile of..WS 44, p 51
iron, iron ores, and steel from, statistics of..........................Ann 2, p xxviii; MR 1882, pp 120, 129, 131; MR 1883-84, pp 252, 277-278; MR 1885, pp 182, 188; MR 1886, pp 14, 18, 33, 82-83, MR 1887, pp 11, 16; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 17; MR 1891, pp 12, 27, 54, 55; MR 1892, pp 12, 13, 21, 26, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 38, 39; Ann 16, iii, pp 31, 42, 192, 194, 200-201, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 60, 68; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 27, 34, 66, 68; Ann 20, vi, pp 29, 41, 43, 44, 75; Ann 21, vi, pp 34, 51, 52, 53, 90, 92
iron ore in Knoxville quadrangle..................................GF 16, p 6
Knoxville quadrangle, geology of..................................GF 16
lime and cement in Knoxville quadrangle..........................GF 16, p 6
profile of..WS 44, p 51
magnetic declination in..Ann 17, i, pp 394-397
maps, geologic, of. (See Map, geologic, of North Carolina.)
maps, topographic, of. (See Map, topographic, of North Carolina; also p 90.)
marl deposits of..MR 1886, p 619; MR 1888, p 595
mica mining in..MR 1887, pp 661-671
mineral spring resorts in..Ann 14, ii, p 85
minerals of..Bull 74
minor...MR 1882, pp 659-661
useful..MR 1882, pp 713-718; MR 1887, pp 769-774
North Carolina; Nantahala River, profile of........................... WS 44, p 52
Neuse River, flow of, measurements of.............................. Ann 18, iv, pp 52-53; Ann 19, iv, pp 185-186; Ann 20, iv, pp 50, 144; Ann 21, iv, pp 113-114; WS 11, p 16; WS 15, p 30; WS 27, pp 34, 44; WS 36, pp 111-112
nickel deposits in.. MR 1886, p 170; MR 1889-90, p 125; MR 1891, p 168
Norfolk quadrangle, physiography of................................ TF 2, p 2
phosphate deposits and production of, statistics of............. Bull 46, pp 70-75; MR 1883-84, pp 788-793; MR 1885, pp 449-450; MR 1888, p 592; MR 1893, p 712; Ann 18, v cont, p 1234; Ann 19, vi cont, p 536; Ann 20, vi cont, pp 620, 621; Ann 21, vi cont, p 482
precious stones in, occurrence and statistics of................. MR 1882, p 483; MR 1883-84, pp 724, 729, 733-734, 739; MR 1885, p 437; MR 1886, p 505; MR 1892, pp 760-761; MR 1893, pp 693, 765-766; Ann 16, iv, pp 599, 600, 601; Ann 18, vi cont, p 1197; Ann 20, vi cont, pp 570, 584-585; Ann 21, vi cont, pp 432-436, 450
pyrites from, statistics of.. MR 1885, p 505
rainfall at Hatteras, Wilmington, and Lenoir (average)........ Ann 21, iv, p 668
profile of.. WS 44, pp 23-24
sections, geologic, in. (See Section, geologic, in North Carolina.)
slate found in.. MR 1891, p 473
in Knoxville quadrangle.. GF 16, p 6
soapstone in, occurrence of.. MR 1893, p 625
production of.. Ann 20, vi cont, p 552; Ann 21, vi cont, p 414
survey of, by cooperation of the State........................ Ann 18, i, pp 100, 102; Ann 20, i, p 111
Swannanoa River, flow of, measurements of...................... Ann 18, iv, p 123
Tar River, flow of, measurements of.............................. Ann 18, iv, pp 50-52; Ann 19, iv, pp 183-184; Ann 20, iv, pp 50, 143; Ann 21, iv, pp 112-113; WS 11, p 15; WS 15, p 29; WS 27, pp 34, 44; WS 36, p 110
timber in, estimates of.. Ann 19, v, p 17
in Knoxville quadrangle.. GF 16, p 6
tin ore at Kings Mountain, occurrence, mineralogy, etc., of..... MR 1893, pp 178-180; Ann 16, iii, pp 525-527
topographic map of. (See Map, topographic, of North Carolina; also list on p 90 of this bulletin.)
topographic work in.. Ann 4, pp 13-15; Ann 5, pp 4-5; Ann 6, pp 8, 9; Ann 7, p 62; Ann 8, i, p 102; Ann 9, pp 54, 55; Ann 10, i, p 90; Ann 11, i, p 38; Ann 13, i, p 72; Ann 14, i, p 172; Ann 15, pp 115-116; Ann 16, i, p 71; Ann 17, i, pp 97, 100; Ann 18, i, pp 94, 95, 102-103; Ann 19, i, pp 89, 90, 99; Ann 20, i, pp 101, 102, 111; Ann 21, i, p 127
triangulation in.. Bull 122, pp 95-111 (passim)
profile of.. WS 44, p 52

Bull. 177—01—37
North Carolina; tungsten in, occurrence of .. Ann 21, vi, p 303

Valley River, flow of, measurements of .. Ann 18, iv, p 123

water power in eastern ... Bull 140, pp 65-66

in Knoxville quadrangle ... GF 16, p 6

woodland area in ... Ann 19, v, p 5

xanthitane from Green River ... Bull 60, p 135

Yadkin River, flow of, measurements of .. Ann 18, iv, pp 57-61; Ann 19, iv, pp 200-204; Ann 20, iv, pp 50, 146-148; Ann 21, iv, pp 120-122; Bull 140, pp 70-71; WS 11, pp 16-17; WS 15, pp 32-33; WS 27, pp 36-37, 45; WS 36, pp 116-119

water powers in basin of ... Ann 19, iv, pp 194-200

zirconium deposits in ... MR 1885, p 393

North Dakota; agriculture in Red River Valley, development of .. Mon xxv, pp 610-625

altitudes in ... Ann 19, i, pp 274-277; Bull 144, pp 61-69; Bull 160, pp 544-550

Antelope Valley, glacial phenomena and topography of .. Bull 144, pp 18-19, 35

atlas sheets of (See pp 90-91 of this bulletin.)

Bismarck, rainfall, snowfall, and temperature at .. Mon xxv, pp 592, 593, 599

Blue Lake district, glacial phenomena and topography of .. Bull 144, pp 16-18, 34-35

boundaries of ... Bull 171, p 127

cement production of, statistics of .. Ann 21, vi cont, pp 393, 401-402

clay products of, statistics of .. Ann 16, iv, pp 518, 519, 520, 521;

Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1078 et seq;

Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 467 et seq

cal area and statistics of ... MR 1892, pp 267, 268, 443; MR 1893, pp 194, 195, 199, 200, 328-329; Ann 16, iv, pp 7 et seq, 154-156;

Ann 17, iii, pp 295 et seq, 463-464; Ann 18, v, pp 354 et seq, 561, 562; Ann 19, vi, pp 278 et seq, 466-467; Ann 20, vi,

pp 300 et seq, 447-448; Ann 21, vi, pp 325 et seq, 475-476

coke in, manufacture of ... Ann 20, vi cont, p 228

earthworks, aboriginal, in region of glacial lake Agassiz .. Mon xxv, pp 643-645

Fargo quadrangle, physiography of ... TF 1, p 1

forest trees and shrubs of Red River Basin .. Mon xxv, pp 603-606

gas, illuminating and fuel, and by-products of, statistics of .. Ann 20, vi cont, pp 228, 241, 244, 246, 247, 249

gеographic positions in ... Ann 18, i, p 162; Bull 123, pp 119-120

geologic maps of. (See Map, geologic, of North Dakota.)
geologic sections in. (See Section, geologic, in North Dakota.)
geologic and paleontologic investigations in .. Ann 17, i, p 37

glacial Lake Agassiz, a monograph on .. Mon xxv

upper beaches and deltas of .. Bull 39

lignite, natural gas, lime, bricks, etc., of Red River Valley .. Mon xxv, pp 626-631

Long Lake district, glacial phenomena and topography of .. Bull 144, pp 15-16

magnetic declination in ... Ann 17, i, pp 397-399

Manitoba escarpment, a series of highlands .. Mon xxv, pp 40-44

maps, geologic, of. (See Map, geologic, of North Dakota.)

maps, topographic, of. (See Map, topographic, of North Dakota; also list on pp 90-91 of this bulletin.)

meridian marks in ... Ann 20, i, pp 262-263

moraines of the Missouri Coteau and their attendant deposits .. Bull 144

rainfall in ... Ann 13, iii, p 27; WS 29, p 72

sections, geologic, in. (See Section, geologic, in North Dakota.)

soils of Red River Valley region .. Mon xxv, pp 583-589

topographic maps of. (See Map, topographic, of North Dakota; also list on pp 90-91 of this bulletin.)
North Dakota; topographic work in .. Ann 14, i, p 173; Ann 15, pp 116–117; Ann 16, i, pp 65, 68, 69, 71; Ann 17, i, pp 97, 102; Ann 18, i, p 95; Ann 19, i, pp 94, 95, 100–101
water, artesian, use of, for irrigation in Mon xxv, pp 545–547
water supply of, for irrigation purposes Ann 16, ii, pp 520–521
wells in ... Ann 11, ii, pp 268–270; Ann 17, ii, pp 661–665; Bull 144, pp 58–61
wells, artesian and common, of Red River Valley Mon xxv, pp 523–581
wheat, hay, stock, etc., raising of, in Red River Valley Mon xxv, pp 615–625
wind movement at Bismarck ... Ann 21, iv, p 676
woodland area in .. Ann 19, v, p 10

(See, also, Dakotas.)
North Park lake beds of Colorado .. Bull 84, pp 307–308, 317, 331
Northern complex of Michigan, Menominee district GF 62, p 2
Northwest Territory, fossil plants of, literature of Ann 8, ii, pp 838–842
(See, also, Canada.)
Northwest Territories, geologic maps of, list of Bull 7, pp 117–121
Northwestern boundary of United States, survey of Bull 174
Norton formation of Virginia, Kentucky, and Tennessee Bull 111, pp 34–36; GF 12, p 3; GF 59, p 4
Norway; clay deposits of .. Ann 19, vi, cont, pp 450–451
copper production of, statistics of MR 1883–84, p 356; MR 1885, p 228; MR 1886, p 128; MR 1887, p 87; MR 1888, p 73; MR 1889–90, p 73; MR 1891, pp 100, 102; MR 1892, p 114; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii, pp 117, 118; Ann 18, v, pp 219, 220; Ann 19, vi, pp 176, 177; Ann 20, vi, pp 202, 203; Ann 21, vi, pp 204, 205
fauna of Olenellus zone in .. Ann 10, i, p 579
fossil plants of, literature of Ann 8, ii, pp 778–779
iron-ore deposits of .. Ann 16, iii, pp 129–130
iron and iron ore from, statistics of Ann 16, iii, pp 23, 128–130
phosphate deposits of ... Bull 46, pp 42–45
silver production of, compared with that of other countries MR 1883–84, pp 319, 320
Noselite, composition of ... Bull 150, p 32
Nosite, chemical constitution of Bull 125, pp 22, 103
Novaculite, analysis of, from Michigan, Marquette Bull 126, p 151; Bull 126, pp 152; Bull 148, p 99; Bull 168, p 65
Nova Scotia; coal area and output of, compared with those of other countries ... MR 1885, p 11; MR 1886, p 235; MR 1887, p 189
gypsum deposits of, statistics of MR 1883–84, p 809; MR 1885, pp 459–460; MR 1887, pp 602, 603
iron-ore deposits of .. Ann 16, iii, pp 45–46
maps, geologic, of .. (See Map, geologic, of Canada, Nova Scotia.)
sections, geologic, in ...(See Section, geologic, in Canada, Nova Scotia.)
(See, also, Canada.)
Nuculidae from Colorado formation Bull 106, p 94
from Cretaceous of Pacific coast Bull 133, pp 51-53
from marl beds of New Jersey Mon ix, pp 102-112, 227-230
from Miocene marls of New Jersey Mon xxiv, pp 50-52
Nueces quadrangle, Texas, geology of GF 42
Nueces River, Texas, profile of WS 44, p 35
relation of Cretaceous to Eocene along Bull 104, p 36
Nulato sandstone of Alaska Ann 21, ii, p 478; Bull 84, p 331
of Alaska, remarks on .. Ann 18, ii, p 196
Nummulitic beds of Florida Bull 84, pp 103-104, 331
Nuegahak beds of Alaska, southwestern, notes on Ann 20, vii, pp 173-174, 184, 187
Nuegahak River, Alaska, notes on Alaska (2), p 119
Nussbaum formation of Colorado GF 36, p 3; GF 58, p 2; GF 68, p 2
Nuzotin Mountains, Alaska, features of Ann 21, ii, p 346
Nuzotin series of rocks of Alaska Ann 21, ii, pp 359-360, 369
Nymphaeaceae, extinct, of North America Mon xxxv, pp 91-93
Nymphalide of Florissant, Colorado Ann 8, i, pp 441-467
Oak Grove sands of Florida, correlation of Ann 18, ii, p 340
Oakland limestone-lentil of Oregon GF 49, p 3
Oakville beds of Texas, correlation of Ann 18, ii, p 339
Obolella shales of Montana, near Three Forks Bull 110, p 23
Obsidian, analysis of, from California; Borax and Clear lakes Mon xiii, pp 154, 159; Bull 148, p 223; Bull 168, p 212
analysis of, from California, Medicine Lake Bull 64, p 50
from California, Modoc County (rhyolitic) Bull 148, p 228; Bull 168, p 217
Mono Lake (rhyolitic) Ann 7, p 291;
 Bull 148, p 229; Bull 150, p 151; Bull 168, p 219
Mono Valley (scoriaceous) Bull 9, p 14
from Lipari Islands .. Ann 7, p 291
from Mexico, Cerro de las Navajas Ann 7, p 291
from New Mexico, Tewan Mountains Ann 7, p 291;
 Bull 60, p 155; Bull 148, p 186; Bull 168, p 172
from Yellowstone Park, Obsidian Cliff, and near Willow Park Ann 7, pp 282, 291; Bull 148, p 130; Bull 168, p 104
columnar structure in Ann 7, p 257
from California, Mono Lake, description of, as one of the educational
series (rhyolitic) Bull 150, pp 149-151
occurrence and statistics of............................... MR 1882, p 496; MR 1883-84,
p 772; MR 1886, p 597; MR 1893, p 682; Ann 16, iv, p 605
of California, andesitic and basaltic Mon xiii, pp 153-154, 158-161
of New Mexico, Tewan Mountains Bull 66, p 11
of Yellowstone Park, columnar Mon xxxii, ii, pp 360-361
thin sections of, from Yellowstone Park Ann 7, pp 274-275
Obsidian Cliff, Yellowstone Park, geology, petrography, etc., of Ann 7, pp 249-295
rhyolite of .. Mon xxxii, ii, pp 359-366
Ocala group of Florida, correlation of Ann 18, ii, p 341; Bull 84, pp 103-104, 331
Ocean waters, general chemistry of Mon xi, pp 178-181
Ocheesee beds of Florida, correlation of Bull 84, pp 105-107, 331
Ocher, analysis of, from Massachusetts, East Whately Bull 126, p 101
analysis of, from Persian Gulf MR 1883-84, p 926
from Virginia, Marksville MR 1885, p 528
from West Virginia, Jefferson County Bull 60, p 164
of Virginia—Maryland—West Virginia, Harpers Ferry quadrangle GF 10, p 4

Ocherous deposit, analysis of, from Florida, Dade County. Bull 60, p 163

water powers on. Ann 20, iv, p 167

Ocoee conglomerate in Tennessee. Bull 81, pp 143–144

Ocoee series, origin of name. Bull 81, p 252

profile of. WS 44, p 29

water powers on. Ann 20, iv, pp 167–168

Ocoya Creek beds of California, description of and fossils from. Ann 14, ii, p 461

Octahedrite, occurrence of. MR 1883–84, p 772

Octóbehite, analysis of. Bull 113, p 59

Odontornithes, classification of the subclass. Ann 3, p 86

descriptions and restorations of Hesperornis and Ichthyornis. Ann 2, pp 43–88

Oellacherite, chemical constitution of. Bull 125, p 46

Offretite, chemical constitution of. Bull 125, pp 43–44, 102

Ogallala formation of Nebraska. Ann 19, iv, pp 734, 741–742

Ogden quartzite of Utah, age, character, and thickness of. Ann 2, pp 217

Ogden and Weber rivers, Utah, hydrography of. Ann 12, ii, p 334

cellular wells in. Ann 11, ii, p 263

Beaver River drainage system. Ann 18, iv, pp 463–464

Berea grit or sandstone from, statistics of. MR 1882, p 478; MR 1886, p 583

building stone from, at World's Columbian Exposition. MR 1893, p 570

Cincinnati arch or uplift, relations of..Ann 18, iv, pp. 428-429

clay products of, statistics of..Ann 16, iv, pp. 518, 519, 520, 521; Ann 17, iii cont, pp. 820 et seq, 866-869; Ann 18, v cont, p. 1078 et seq; Ann 19, vi cont, pp. 318 et seq, 368; Ann 20, vi cont, pp. 467 et seq, 530; Ann 21, vi cont, pp. 362, 363

Ohio; geologic maps of, listed Bull 7, pp 77, 78, 80, 81, 82, 83, 84, 85, 86, 87
(See Map, geologic, of Ohio.)

geologic sections in. (See Section, geologic, in Ohio.)
geologic and paleontologic investigations in Ann 3, pp 20-21; Ann 4, p 25; Ann 5, p 23; Ann 6, pp 35, 36, 74, 75; Ann 7, p 67; Ann 9, pp 77; Ann 11, i, p 74; Ann 12, i, p 89; Ann 13, i, p 121; Ann 18, i, pp 27, 62-63; Ann 19, i, p 62; Ann 20, i, p 61; Ann 21, i, pp 71-72

glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois.. Bull 58

glacial investigations in Ann 3, pp 334, 337, 339-342; Ann 7, pp 157, 227-228

glacial ridges in..Ann 18, iv, pp 434-438

Hocking River drainage system................................. Ann 18, iv, p 460

Huntington quadrangle, geology ofGF 69

iron, iron ores, and steel from, statistics ofAnn 2, p xxviii; MR 1882, pp 120, 125, 129 et seq; MR 1883-84, pp 252, 275-276; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 56-61; MR 1887, pp 11, 16, 46; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 26, 54, 55, 61; MR 1892, p 12 et seq; MR 1893, pp 15, 20, 26, 28, 35, 38, 39; Ann 16, iii, pp 31, 41, 192, 194, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39 et seq; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 27, 29, 66, 68, 69, 70, 72; Ann 20, vi, pp 29, 41, 43, 44, 74 et seq; Ann 21, vi, pp 34, 51, 52, 53, 90 et seq

lakes of, remarks onAnn 18, iv, pp 472-474

lime production of, statistics ofMR 1887, p 533; MR 1888, p 556

magnetic declination in.................................Ann 17, i, pp 399-402

maps, geologic, of. (See Map, geologic, of Ohio.)

maps, topographic, of. (See Map, topographic, of Ohio; also list on p 91.)

Maumee River, drainage system of Ann 18, iv, pp 468-469

flow of, measurements of WS 27, pp 66, 67, 68; WS 36, pp 178-179

profile of ..WS 44, p 60

Miami, Great and Little, river systemsAnn 18, iv, pp 457-458

mineral spring resorts inAnn 14, ii, p 86

mineral springs ofBull 32, pp 130-134; MR 1883-84, p 984; MR 1885, p 539; MR 1886, p 718; MR 1887, p 685; MR 1888, p 628; MR 1891, pp 603, 607; MR 1892, pp 824, 830; MR 1893, pp 774, 780-781, 784, 791, 794; Ann 16, iv, pp 709, 716, 720; Ann 17, iii cont, pp 1027, 1037, 1041; Ann 18, iv, pp 493-495; Ann 18, v cont, pp 1371, 1382, 1386; Ann 19, vi cont, pp 691, 672-673, 677; Ann 20, vi cont, pp 749, 762, 767; Ann 21, vi cont, pp 600, 614, 619
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Ohio; minerals of, usefulMR 1882, pp 718-721; MR 1887, pp 775-778
mining laws of ..MR 1886, pp 734-740
Muskingum River, drainage system ofAnn 18, iv, pp 460-463
profile of ...WS 44, p 59
rainfall, run-off, evaporation, and mean temperature ofWS 24, pp 55-56
Ohio River drainage systemAnn 18, iv, pp 441-446
Olentangy River, flow of, measurements ofAnn 20, iv, pp 215-216;
Ann 21, iv, p 169; WS 27, pp 60, 65; WS 36, pp 175-176
paint, mineral, production ofMR 1892, p 818; MR 1893, p 761; Ann 16, iv, p 698; Ann 17, ii cont, pp 1016, 1017; Ann 18, v cont, p 1342; Ann 19, vi cont, pp 642, 643; Ann 20, vi cont, pp 728, 729
petroleum and inflammable gas in Ohio and Indiana, the Trenton lime-stone as a source ofAnn 8, ii, pp 475-662
rainfall in ...Ann 18, iv, pp 555-559; WS 24, pp 52, 55-56; WS 29, pp 72
average annual and seasonalAnn 17, ii, p 719
rock waters of ..Ann 19, iv, pp 633-717
rocks of, their classification, etc.Bull 80, pp 41, 43, 87, 94, 101-102, 140, 177, 183, 184-189
salt making in ...Ann 7, pp 504, 508, 509, 522, 525
history of ...Ann 18, v cont, pp 1301-1303
sandstone production ofMR 1882, p 451; MR 1887, p 521; MR 1888, p 545; MR 1889-90, pp 374, 415; MR 1891, pp 461, 463; MR 1892, p 710; MR 1893, pp 553-555; Ann 16, iv, pp 437, 484 et seq; Ann 17, ii cont, pp 760, 775 et seq; Ann 18, v cont, pp 951, 1012 et seq; Ann 19, vi cont, pp 207, 264 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353 et seq
Sandusky River, flow of, measurements ofWS 27, pp 67, 68; WS 36, pp 179-181
Scioto River, drainage system ofAnn 18, iv, pp 458-459
flow of, measurements ofAnn 20, iv, pp 212-215; Ann 21, iv, pp 169-170; WS 27, pp 60, 65; WS 36, pp 176-177
OHIO—OKLAHOMA.

Ohio; sections, geologic, in. (See Section, geologic, in Ohio.)

sewage-disposal plants in .. WS 22, pp 75–77
soils of Huntington quadrangle GF 69, p 6
topographic maps of. (See Map, topographic, of Ohio; also list on p 91.)
topographic work in ...Ann 20, i, pp 101, 102, 111, 115–116; Ann 21, i, pp 120, 126, 131–132
Wabash River, flow of, measurements ofAnn 21, iv, pp 170–171
water resources of ..Ann 18, iv, pp 419–559
water supplies for cities and villages inAnn 18, iv, pp 502–555
waters, rock, of ...Ann 19, iv, pp 633–717
wells of, ground-water, drift, rock, etcAnn 18, iv, pp 475–493
wells, artesian, of, deep channels inAnn 19, iv, pp 716–717
wells, flowing, of ...Ann 19, iv, pp 697–711
woodland area in ...Ann 19, v, p 8

Ohio Basin; extent, structure, and topography of. .GF 46, p 1; GF 47, p 1; GF 53, p 1

stream measurements in ..Ann 18, iv, pp 111–123; Ann 19, iv, pp 253–262;
Ann 20, iv, pp 195–216; Bull 140, pp 77–82; WS 11, pp 41–46;

Ohio formation of Colorado ...GF 9, pp 6, 8
Ohio River, profile of ..WS 44, pp 41–43
Ohio River drainage system ..Ann 18, iv, pp 441–446
Ohio shale as a source of gas in OhioMR 1892, pp 681–682
Oil and gas producing horizons of PennsylvaniaMR 1892, pp 616, 676–680
of West Virginia ...Ann 20, iv, cont, pp 35–38
Oil fields of United States ..MR 1883–84, pp 214–220
of Wyoming, history, geology, etc., ofAnn 17, iii cont, pp 702–707; Bull 119, pp 63–65
(See, also, Petroleum.)

Oil rock, analysis of, from Ohio, LimaBull 148, p 261; Bull 168, p 259
Oilstones and whetstones, statistics ofMR 1891, pp 553–555; MR 1892, pp 750–751; MR 1893, pp 672–674;
Okenite, chemical constitution ofBull 125, p 81, 105
Oklahoma; altitudes in ..Ann 19, i, pp 261–264;
Ann 20, i, pp 416–418; Bull 160, pp 586–587
asphaltum product of, statistics ofAnn 18, v cont, p 929; Ann 19, vi cont, pp 190, 194;
Ann 20, vi cont, p 254; Ann 21, vi cont, p 321
boundaries of ..Bull 171, p 128
boundary line (Oklahoma–Indian Territory), survey ofAnn 20, i, p 99
building stone from, statistics ofAnn 19, vi cont, pp 271, 342, 345; Ann 21, vi cont, p 335 et seq
Canadian River, flow of, measurements ofWS 37, pp 268–269
clay products of, statistics ofAnn 16, iv, pp 518, 519, 520, 521;
Ann 17, iii cont, pp 1078 et seq; Ann 18, v cont, p 318 et seq;
Ann 19, vi cont, pp 467 et seq
geologic maps of. (See Map, geologic, of Oklahoma.)
geologic sections of. (See Section, geologic, of Oklahoma.)
limestone production of, statistics ofAnn 20, vi cont, pp 271, 342, 345; Ann 21, vi cont, pp 335, 357 et seq
magnetic declination in ..Ann 17, i, pp 403–404
maps, geologic, of. (See Map, geologic, of Oklahoma.)
maps, topographic, of. (See Map, topographic, of Oklahoma; also p 91.)
Ouachita Mountains, extent and character ofTF 3, p 3
Oklahoma; salt from, statistics of Ann 19, vi cont, pp 589, 590; Ann 20, vi cont, pp 670, 678; Ann 21, vi cont, p 535
salt making in, history of Ann 19, vi cont, p 608
sections, geologic, in. (See Section, geologic, in Oklahoma.)
topographic maps of. (See Map, topographic, of Oklahoma; also list on p 91 of this bulletin.)
topographic work in ... Ann 14, i, p 174; Ann 15, i, p 117; Ann 18, i, pp 94, 95; Ann 19, i, pp 89, 90, 103; Ann 20, i, p 102
water supply of, for irrigation purposes Ann 16, ii, pp 521-522
woodland area of .. Ann 19, v, p 11

Oklune series of pre-Tertiary rocks of Alaska ..Ann 20, vn, pp 163-169, 181-182, 187

“Old Red Sandstone” of Lake Superior region Bull 81, pp 188, 194; Bull 86, pp 51, 52, 84, passim

Oleacee of Alaska ... Ann 17, i, p 887
of North America, extinct Mon xxxv, pp 127-128
of Yellowstone Park ... Mon xxxii, ii, pp 753-755
Olenellus howelli from Nevada, Eureka district, observations on .. Mon viii, pp 30-39
Olenellus shale of Nevada Mon xx, pp 45-47
Olenellus zone, bibliography of rocks and fossils of Ann 10, i, pp 516-524
fauna of Lower Cambrian Ann 10, i, pp 509-763
genera and species of, notes on Ann 10, i, pp 597-760
geographic distribution of fauna of, in North America and Europe ... Ann 10, i, pp 564-581

geologic description of Ann 10, i, pp 547-564
historical review of, for North America and Europe Ann 10, i, pp 524-547

Olentangy River, Ohio, flow of, measurements of Ann 20, iv, pp 215-216; Ann 21, iv, p 169; WS 27, pp 60, 65; WS 36, pp 175-176

Oligocene, inapplicability of, in American nomenclature .. Bull 83, pp 16, 89
Oligocene fossils; insects from Colorado and Utah Bull 93
of Oregon ... Ann 17, i, pp 465, 466, 467, 468

Oligocene history of Black Hills Ann 21, iv, pp 558-561
Oligocene horizons, correlation of Ann 18, ii, pp 330-332, 340-342
Oligocene, lower, and Eocene coral faunas of United States, with descriptions of a few doubtfully Cretaceous species ... Mon xxxix

Oligocene rocks of Florida Bull 84, pp 104-105
of Louisiana .. Bull 142, pp 24-25
of Oregon, northwestern Ann 17, i, pp 464-469
Oligoclase, analysis of, from Massachusetts, Palmer Bull 126, p 119
analyses of, from North Carolina, Bakerville, and from Macon County ... Bull 60, p 130; Bull 74, p 55

composition of .. Ann 21, vi cont, p 594
occurrence and statistics of MR 1887, p 560; Ann 16, iv, p 605; Ann 17, iii cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513

petroleum, statistics of Ann 18, v cont, pp 747-893; Ann 19, vi cont, pp 1-166; Ann 20, vi cont, pp 1-202; Ann 21, vi cont, pp 1-292

Olive grit of New York–Vermont Ann 19, iii, pp 179-180
Oliveinite from Utah, Tintic mining district, descriptions and analyses of Ann 19, iii, p 697; Bull 20, pp 83-84; Bull 55, pp 39-40

Olividae of Miocene deposits of New Jersey Bull xxiv, p 109

Olivine, analysis of, from Kansas, Kiowa County (meteoric) ... Bull 78, p 94
analysis of, from Kentucky, Elliott County Bull 38, pp 24-25; Bull 42, p 136; Bull 148, p 92; Bull 168, p 56
Olivine, analysis of, from Minnesota, Birch Lake........Bull 148, p 111; Bull 168, p 81
from New Mexico, near Fort Wingate.........................Bull 78, p 13
from Oregon, Riddles...Bull 60,
p 23; Bull 148, p 231; Bull 150, p 298; Bull 168, p 221
chemical constitution of...Bull 125, pp 22, 68, 94
composition of...Bull 150, p 39
in basalts of Nevada, Eureka district..........................Mon xx, pp 258-259
nodule of, from basalt from Arizona, near Mount Trumbull, description of, as one of the educational series........Bull 150, pp 258-261
occurrence of...Ann 20, vi cont, p 586
thin section of, from Nevada, Eureka district (from basalt) Ann xx, pp 396-397
Olivine-basalt, analysis of, from California, Bidwell Bar quadrangle Ann 17, t, p 568; Bull 148, p 203; Bull 168, p 189
from Connecticut, South Britain..Bull 168, p 35
from Virginia, Chatham..Ann 21, iii, p 81
of Connecticut, Pomperaug Valley.........................Ann 21, iii, pp 64-69
Olivine-bearing pyroxene-andesite from Nevada, Virginia City, description of, as one of the educational series..........Bull 150, pp 228-231
Olivine-diabase, analysis of, from Minnesota, Pigeon Point.........Bull 150,
p 275; Bull 168, p 76
analysis of, from Washington, Kittitas County...............Bull 168, p 225
from Alaska..Ann 20, vii, pp 214-216
from Michigan, Keweenaw series.........................An 3, pp 102-104; Mon v, pp 68-77
from Minnesota, Pigeon Point, description of, as one of the educational series..Bull 150, pp 274-278
thin section of, from Minnesota, French River......................Mon v, pp 38-39
from Minnesota, near Sucker River.................................Mon v, pp 38-39
Pigeon Point..Bull 150, pp 278-279
T. 51, R. 12 W., SE. 1/4 sec. 9..Mon v, pp 68-69
Olivine-dolerite of California, Truckee quadrangle........GF 39, p 6
Olivine-gabbro, analysis of, from California, Tuolumne County Bull 168, p 206
analysis of, from Maryland, Orange Grove..........................Ann 15,
p 674; Bull 148, p 85; Bull 168, p 44
from Minnesota, Birch Lake...Bull 90, p 68; Bull 148, p 111; Bull 168, p 81
Pigeon Point..Bull 109, pp 37, 63; Bull 148, p 106
T. 61 N., R. 12 W., sec. 35...Bull 90, p 68; Bull 148, p 112; Bull 168, p 82
from Montana, Big Timber Creek, Crazy Mountains.................Bull 148,
p 144; Bull 168, p 122
of Lake Superior district, Keweenaw series...Ann 3, pp 102-104; Mon v, pp 37-50
of Minnesota, Pigeon Point...Bull 109, pp 32-38
thin section of, from Lake Superior district...............Ann 3, pp 100-101
from Maryland, Howardville...Bull 28, p 53
from Minnesota, French River and near Sucker River...Mon v, pp 38-39
Pigeon Point..Bull 109, pp 36-37, 40-41, 62-63
from Wisconsin, Bladder Lake.......................................Mon v, pp 40-41
Olivine-serpentine of Massachusetts, western.....................Mon xxix, pp 101-114
Olympic Forest Reserve, Washington, report on................Ann 21, v, pp 145-208
Onagrarceae from Alaska..Ann 17, i, p 888
Onagraroeae from Laramie group...................................Bull 37, pp 63-84
Oneida Creek, New York, flow of, measurements of.............WS 36, p 186
Onota limestone of Iowa..Ann 11, i, pp 331-333
Onion Creek marl and allied deposits in Texas................Ann 18, ii, pp 252-253
Onondaga series in Ohio as a water carrier........Ann 19, iv, pp 644-646, 664-682
Ontario; corundum in, occurrence of. Ann 20, vi cont, pp 570–573
iron-ore deposits and statistics of. Ann 16, iii, pp 51–53
maps, geologic, of. (See Map, geologic, of Canada, Ontario.)
maps, topographic, of. (See Map, topographic, of Canada, Ontario.)
rainfall at various points in. WS 24, p 53
sections, geologic, in. (See Section, geologic, in Canada, Ontario.)
(See, also, Canada.)
Onustidæ from clays and marls of New Jersey Mon xviii, pp 135–137, 227–228
Onyx marble, characteristics, preparation, occurrence, etc. Ann 20, vi cont, pp 286–291
Oolite, analysis of, from Pennsylvania, near State College. Bull 150, p 97
from Ireland compared with Kentucky limestone. MR 1889–90, p 395
from Pennsylvania, Center County, description of, as one of the educational
series (siliceous). Bull 150, pp 95–97
thin section of, from Pennsylvania, Center County (siliceous). .. Bull 150, pp 96–97
Oolitic limestone, description of the rock as one of the educational series. .. Bull 150, pp 103–105
Oolitic sand, analysis of, from shore of Great Salt Lake. Bull 27, p 69
description of the rock, as one of the educational series. .. Bull 150, pp 102–103
of Lake Bonneville and of Great Salt Lake. Mon i, p 169
Opal, analysis of, from Colorado, Buffalo Peaks Bull 1, p 15
occurrence and statistics of. MR 1883–84, pp 760–761,
MR 1888, pp 581–582; MR 1891, pp 540, 549–550; MR 1892,
pp 776–777; MR 1893, pp 682, 698; Ann 16, iv, pp 603, 604,
605; Ann 17, iii cont, pp 914–916, 923; Ann 18, v cont, pp 1209–1211, 1217; Ann 19, vi cont, pp 507–508, 513; Ann 20,
vi cont, pp 589–590, 599; Ann 21, vi cont, pp 453, 454, 461
(See Precious stones.)
Opeche formation of Black Hills Ann 21, iv, pp 613–614
Ophir, California, gold-silver veins of. Ann 14, ii, pp 243–284
Ophitoid quartz-augite-diorite of Sierra Nevada Ann 17, i, p 249
Ophiurideæ, Mesozoic, of United States Bull 97, pp 29–31
Optical properties of plagioclase in pyroxene-andesite Mon xx, pp 350–354
Oquirrh Mountains, Utah, geology and economic resources of. Ann 16, ii, pp 349–369
Archean and Algongian rocks of. Bull 86, p 295
rocks of Ann 19, iii, p 630
Orange-sand group of the South Ann 12, i, pp 498–501; Bull 84, pp 163–167, 329, 332
Orangeburg or Tallahatta formation, correlation of Ann 18, ii, p 344
Orangite, chemical constitution of Bull 125, pp 77–78
Orbitolite limestone of the South. Bull 84, p 332
Orbitoides limestone of Alabama and Florida Bull 84, pp 101–103, 331–332
Orca series of Alaska Alaska (2), p 57
of Alaska, character, correlation, etc., of the Ann 20, vii, pp 404–408
Ordovician rocks, correlation of Bull 30, p 44
of Texas. Ann 21, vii, p 90
Ordovician and Cambrian rocks, relations of, in New York–Vermont slate
belt Ann 19, iii, pp 290–297
Ordovician time, North American land in Ann 12, i, pp 565–566
Ore, carbonate. (See Carbonate ore.)
Ore, iron. (See Iron ore.)
Ore, precious-metal; analysis of, from Colorado, Aspen mining district Mon xxxi, p 226

analysis of, from Colorado, Cripple Creek district, Blue Bird mine Ann 16, ii, p 124, 175, 199

from Colorado, Custer County, Bassick mine Ann 17, ii, p 435
Custer County, Geyser mine Ann 17, ii, p 457
Iron Hill (sulphide) .. Mon xii, p 556
Leadville district (chloride) Mon xii, p 619
(siliceous) .. Mon xii, p 602

Mosquito Range .. Mon xii, pp 536, 537

telluride district, Smuggler vein Ann 18, iii, p 835
Tourtelotte Park (oxidized) Mon xxxi, p 238
from Nevada, Comstock lode Mon iii, p 153

Eureka ... Mon vii, pp 60-61
Eureka district .. Mon xx, p 313
from Utah, Mercur mining district, Golden Gate mine (sulphide) .. Ann 16, ii, p 424

Mercur mining district, Marion Hill Ann 16, ii, p 394

Tintic mining district (massive) Bull 20, p 87
deposition of, as sulphides Mon xii, pp 562-565;

by impregnation .. Ann 18, iii, pp 802-809
formation of, mode of .. Mon xii, pp 565-569
of California; Nevada City and Grass Valley districts Ann 17, ii, pp 124-144
of Colorado, Cripple Creek district, occurrence, deposition, source, etc.,
of ... Ann 16, ii, pp 119-166; GF 7, p 8

Elk Mountains, distribution of GF 9, p 3

Leadville district (chloride) Mon xii, pp 548-549
description and composition of Ann 2, p 235; Mon xii, pp 376-377, 543-548, 616-619
manner of occurrence of .. Mon xii, pp 375, 540-543

La Plata quadrangle ... GF 60, p 13
Telluride district, origin and age of Ann 18, iii, pp 819-825
of Montana, Butte district, distribution, deposition, etc., of GF 38, pp 5-6
of Nevada, Comstock mines Mon iii, pp 218-222
Comstock vein, source of Mon vii, p 18

Eureka district, age of .. Mon vii, p 105
arrangement in chambers Mon vii, p 97
comparison of, with deposits of Raibl, Carinthia Mon vii, p 103
deposition of, manner of Mon vii, pp 93-106, 188
miner's classification of Mon vii, pp 59-60
occurrence of .. Ann 4, pp 244-247
Prospect Mountain, source of Mon vii, p 91
Prospect Mountain and Ruby Hill Ann 4, p 250; Mon vii, pp 50-63
reduction of .. Mon vii, p 158
rhyolite as a source of .. Mon vii, p 90
segregation of ... Mon vii, pp 87-89
source of .. Ann 4, pp 247-249; Mon vii, pp 80-92, 187
of Oregon, in veins of Bohemia region Ann 20, iii, pp 18-19
pseudomorphism after limestone, evidences of, in Mon vii, p 98
secondary alteration of Mon xii, pp 550, 553

(See, also, Gold; Silver, etc.)
Ore, quicksilver. (See Quicksilver.)

Ore bodies, precious-metal, caves in connection withMon vii, pp 73, 95

effects of oxidation on bulk ofMon vii, p 100
electrical activity ofAnn 2, pp 320-324; Mon iii, pp 309-367, 400-404

of California, New Almaden, form ofMon xiii, pp 316-317

of Colorado, near Rosita and Silver Cliff, forms ofAnn 17, ii, pp 467-469

of Nevada, Virginia group of bonanzasMon iii, pp 275-276

vein formation, theories ofMon i, pp 18-21, 30; Mon vii, pp 80-106, 187-190; Mon xii, p 378; Mon xiii, pp 407-450, 473-475; Mon xx, pp 310-311

Ore bodies and fissures, precious-metal, connection betweenMon vii, p 75

relative ages ofMon vii, p 76

Ore concentration, precious-metal, by aqueous action in Colorado, Cripple Creek districtAnn 16, ii, pp 160-162

Ore deposition, precious-metal, in Colorado, Aspen districtMon xxxi, pp 224-236

in Colorado, Rico MountainsAnn 21, ii, pp 33-34

Telluride district, manner ofAnn 18, iii, pp 799-802

in Utah, Tintic districtGF 65, pp 5-7

theories of, practical test ofAnn 17, ii, pp 464-466

Ore deposits, precious-metal, age ofMon vii, pp 69, 76

classification ofAnn 2, pp 231-233; Mon xii, pp 367-375

according to different authorsMon vii, pp 117-119

fallacies regardingAnn 4, pp 257-271

of Colorado, LeadvilleAnn 2, pp 234-239

Leadville, Carbonate HillMon xii, p 411

Fryer HillMon xii, p 451

Telluride quadrangleAnn 18, iii, pp 781-809; GF 57, pp 16-18

Tenmile districtMon xii, pp 537-538; GF 48, pp 4-6

of Idaho; Idaho Basin and Boise RidgeAnn 18, iii, pp 638-650, 712, 7, 18

of Montana, Judith MountainsAnn 18, iii, pp 589-598

Little Belt Mountains quadrangleGF 56, pp 7-8

of Nevada, Eureka district, Adams HillMon vii, pp 166-167

Eureka district, classification ofMon vii, pp 68-69, 184

goalogy ofMon xx, pp 292-316

theory in regard to formation ofMon vii, p 80

of Utah, Tintic district, structure, genesis, etcAnn 19, iii, pp 684-704, 709-723

source of metallic minerals inAnn 17, ii, pp 470-472

Ore genesis, theories ofMon xiii, pp 442-445, 475

Ore roastingBull 26, pp 16-18, 22-24, 76

Ore shoots in fissures of Colorado, Cripple Creek district, causes, etc., ofAnn 16, ii, pp 162-166

Ore smelting in shaft-furnace processBull 26, pp 76-77

Ores and slags, classification ofBull 26, pp 70-73

Oregon; aboriginal lapidary work inMR 1891, p 551

altitudes inAnn 18, i, pp 397-403; Ann 19, i, pp 375-381; Ann 20, i, pp 474-483; Ann 21, i, pp 553-570; Bull 5, pp 241-244; Bull 72, p 226; Bull 76; Bull 160, pp 588-595

Ashland Forest Reserve, report onAnn 21, v, pp 472-473

atlas sheets of. (See p 91 of this bulletin.)

Blue River mining region, notes onAnn 20, iii, pp 31-32

Bohemia mining region of westernAnn 20, iii, pp 1-31

borax deposits at ChetcoMR 1889-90, pp 504-505
Oregon; boundary lines of, formation of territory, admission of State Bull 13, pp 31, 128; Bull 171, pp 135-136
building stone, at World’s Columbian Exposition MR 1893, p 570
in Roseburg quadrangle .. GF 49, p 4
Calapooya Mountain, composition, structure, and age of Ann 20, iii, pp 10-11
Cascade Range, structure and age of, notes on Ann 20, iii, pp 32-36
topographic features of Ann 21, v, pp 219-231
Cascade Range Forest Reserve and adjacent regions, report on Ann 21, v, pp 209-498
cement in Roseburg quadrangle GF 49, p 4
Cenozoic epoch in California, Washington, and Bull 84, pp 269-273
Chico-Tejon series of Oregon and Washington, equivalents of Bull 51, pp 28-32
clay in Roseburg quadrangle GF 49, p 4
production of, statistics of Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 467 et seq; Ann 21, vi cont, pp 362, 363
coal, area and statistics of Ann 2, p xxviii; MR 1882, pp 94-95;
in Roseburg quadrangle GF 49, p 4
clean fields, hindrances to development of Ann 17, i, pp 508-509
of western .. Ann 17, i, pp 491-508; iii, pp 473-480
clean industry of .. Ann 17, i, pp 506-508
coke in, manufacture of Ann 20, vi cont, p 228
Coos Bay coal field, geology of Ann 19, iii, pp 309-376
Coos Bay quadrangle, forest conditions in Ann 21, v, pp 576-577
copper in Roseburg quadrangle GF 49, p 4
Crater Lake, history of TF 2, p 20
forest conditions and standing timber of Ann 19, v, pp 42-47
gas, illuminating and fuel, and by-products in, statistics of ... Ann 20, vi cont, pp 228, 241, 244, 246, 247, 249
geographic positions in Ann 18, i, pp 215-224; Ann 19, i, pp 180-183; Ann 20, i, pp 285-289; Bull 123, p 142
geochemistry of, and conditions in southern, during Cretaceous, Eocene, and Miocene time Ann 14, ii, pp 422-426
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Oregon; geologic maps of. (See Map, geologic, of Oregon.)

geologic reconnaissance in northwestern Ann 17, i, pp 411-520
in southern .. Ann 4, pp 431-464

gologic sections in. (See Section, geologic, in Oregon.)

geologic and paleontologic investigations in Ann 4, p 41; Ann 5, p 49; Ann 6, pp 60, 73; Ann 7, p 102; Ann 8, i, pp 156-164; Ann 10, i, p 145; Ann 12, i, pp 57, 100, 116; Ann 13, i, pp 131, 132, 187; Ann 17, i, pp 49-52; Ann 18, i, pp 47-49, 67; Ann 19, i, pp 50-51, 66; Ann 20, i, pp 50-51; Ann 21, i, p 83

glaciers, existing, of United States Ann 5, pp 303-355
gold in Roseburg quadrangle GF 49, p 4

gold and silver from, statistics of Ann 2, p 385; MR 1882, p 172 et seq; MR 1883-84, p 312 et seq; MR 1885, pp 201-203; MR 1886, pp 104, 105; MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 76, 77, 78, 79; MR 1892, pp 50 et seq, 80-81; MR 1893, p 50 et seq; Ann 17, ii, p 72 et seq; Ann 18, v, p 141 et seq; Ann 19, vi, p 127 et seq; Ann 20, vi, p 103 et seq; Ann 21, vi, p 121 et seq
gold-mining industry in western Ann 17, i, pp 515-520

granite production of, statistics of MR 1892, pp 706, 708; MR 1893, pp 544, 546; Ann 16, iv, pp 437, 444, 457, 458, 461; Ann 17, iii cont, pp 760, 761, 763; Ann 18, iv cont, pp 951, 952, 954, 956, 971-973; Ann 19, vi cont, pp 207, 208, 209, 210, 211; Ann 20, vi cont, pp 275, 276; Ann 21, vi cont, p 335 et seq

harbors on coast of Ann 13, ii, pp 201-202

Hood River, flow of, measurements of Ann 21, iv, pp 434-436; WS 16, p 181; WS 28, pp 168, 169; WS 38, p 380

irrigation from Ann 17, i, pp 508-512

iron ores of ... Ann 17, i, pp 508-512

Klamath River, profile of WS 44, p 86

Knoxville beds and fossils in Bull 133, pp 22-23

Lane County, gold production of, 1888-1895 Ann 20, iii, p 8

lead from, statistics of Ann 17, iii, p 134; Ann 18, v, p 240; Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229

limestone production of MR 1889-90, pp 373, 418; MR 1893, p 556; Ann 17, iii cont, pp 760, 788, 789, 791; Ann 18, v cont, pp 951, 1044, 1046, 1047; Ann 19, vi cont, pp 281, 282, 283; Ann 20, vi cont, pp 271, 342 et seq; Ann 21, vi cont, pp 335, 357 et seq

limestone and marble of economic importance in Ann 17, ii, p 514

lumber industry in Ann 19, v, p 21, 22

magnetic declination in Ann 17, i, pp 404-406

maps, geologic, of. (See Maps, geologic, of Oregon.)
Oregon; maps, topographic, of. (See Map, topographic, of Oregon; also list on p. 91 of this bulletin.)

mineral spring resorts in .. Ann 14, ii, p 86
minerals of, useful ... MR 1882, p 773; MR 1887, pp 778-779
Mollusca, fossil, marine Eocene, fresh-water Miocene, and other, of western North America. Bull 18
Mollusca, Pleistocene and recent, of Great Basin, with descriptions of new forms; introduced by sketch of Pleistocene lakes of Great Basin ... Bull 11
Mount Mazama, history of .. TF 2, p 20
nickel ores from ... Bull 60, pp 21-26; MR 1882, pp 403-404; MR 1883-84, pp 537, 539; MR 1887, pp 127-128; MR 1891, p 168
Owyhee River, flow of, measurements of Ann 11, ii, p 106; Ann 12, ii, pp 344, 357, 360; Ann 13, iii, pp 98, 99; Ann 14, ii, pp 130-132; Ann 18, iv, pp 346-347; Ann 20, iv, p 62; Bull 131, pp 66-67; Bull 140, p 242; WS 11, p 82
platinum from, character of ... Ann 16, iii, pp 629, 630, 631
Port Orford quadrangle, forest conditions in Ann 21, v, p 576
Portland waterworks, concrete dams of Ann 18, iv, p 698
quicksilver in Roseburg quadrangle GF 49, p 4
production of, statistics of ... MR 1887, pp 118, 125; MR 1889-90, p 94
road metal, use of basalt as .. Ann 17, i, pp 514-515
Roseburg quadrangle, forest conditions in Ann 21, v, p 577
geologic formations in the ... Ann 18, i, p 48
geology of ... GF 49
sandstone of, of economic importance Ann 17, i, pp 512-513
sandstone production of ... MR 1889-90, pp 374, 418; MR 1892, p 710; MR 1893, p 553; Ann 16, iv, p 485; Ann 17, iii cont, p 777; Ann 18, v cont, p 1013; Ann 19, vi cont, pp 265, 277; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, pp 335, 353 et seq
sections, geologic, in. (See Section, geologic, in Oregon.)
Siskiyou Mountains, topographic features of Ann 21, v, pp 226-227
soda, natural, of Abert and Summer lakes Bull 60, pp 53-55
timber, standing, in .. Ann 19, v, pp 19, 42-47
topographic maps of. (See Map, topographic, of Oregon; also list on p. 91 of this bulletin.)
topographic work in ... Ann 7, p 57; Ann 8, i, p 105; Ann 9, p 59; Ann 10, i, p 97; Ann 15, pp 126-127; Ann 16, i, pp 66, 68, 71; Ann 17, i, pp 97, 105; Ann 18, i, pp 94, 95, 108-109; Ann 19, i, pp 89-91, 106; Ann 20, i, pp 101, 102, 118, 124; Ann 21, i, pp 136-137
topography of Pacific coast, Tertiary revolution in Ann 14, ii, pp 397-434
of western .. Ann 17, i, p 448
triangulation in .. Bull 122, pp 327, 328

Bull. 177—01—38
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Oregon; Umatilla River, irrigation from ... Bull 131, pp 69-73
Umpqua Mountains, topographic features of .. Ann 21, v, pp 227-228
water supply of, for irrigation purposes ... Ann 16, ii, p 522
Willamette River, profile of .. WS 44, p 98
woodland area of .. Ann 19, v, p 12
Oregon beds of Oregon .. Bull 84, p 332
Orendite, analyses of, from Wyoming, Leucite Hills Bull 150, p 190; Bull 168, p 86
from Wyoming, Leucite Hills, description of, as one of educational series Bull 150, pp 186-191
Orendon beds of South Dakota ... Bull 84, pp 332, 336
Organic matter an agent in formation of concretions in sandstones Mon xiii, pp 64-68
Organic processes of soil formation ... Ann 12, t, pp 268-287
Organization of United States Geological Survey Ann 8, i, pp 3-69; Ann 21, i, pp 19-22, 60-61
Organosols, chemical researches in .. Bull 113, pp 95-98
Original Huronian rocks of Canada and Great Lakes region. (See Algokian; Huronian; Laurentian.)
Original Laurentian rocks of Canada and Great Lakes region. (See Laurentian.)
Oriskany Creek, New York, flow of, measurements of WS 35, pp 47-48
Ornithomimidae of North America ... Ann 16, i, pp 203-206
Ornithomimus, description of .. Ann 16, i, pp 204-206
from Denver Basin, remains of .. Mon xxvii, pp 518-520
Ornithopoda, distribution of .. Ann 16, i, p 226
Orogenic action and history in Narragansett Basin Mon xxxiii, pp 7, 8, 9-10, 20-25, 32-36
Orogenic movements in Alaska ... Ann 20, vii, pp 155, 311, 400-404
in Mesocarboniferous of Missouri .. Mon xxxvii, p 8
in New York, Rensselaer Plateau region .. Ann 13, ii, p 335
in Sierra Nevada, evidence of lava flows .. Bull 89, pp 69-70
obliteration of evidence of unconformity by ... Ann 16, i, pp 731-732
Orogeny, discrimination of, from epeirogeny Mon i, p 340
(See, also, Diastrophism.)
Orographic blocks in Connecticut, Pomperaug Basin Ann 21, iii, pp 104-121
in Nevada, Eureka district .. Mon xx, pp 10-11, 19-30
Orographic history of Bonneville Basin ... Ann 2, p 198
Orographic movements in Colorado, Telluride quadrangle GF 57, p 14
in Great Basin, recent .. Ann 2, p 232; Ann 3, p 453
post-Lahontan ... Ann 3, pp 232-233; Mon xi, pp 274-283
(See, also, Diastrophism.)
Orthaulax bed of Florida .. Bull 84, pp 112, 113-114, 332
Orthite in granite, thin section of, from Michigan, Horse Race Rapids . Bull 62, p 117
Orthoclase, analysis of, from Colorado, Leadville region (pink crystals of). Mon xi, p 333; Bull 148, p 173; Bull 168, p 155
analysis of, from Minnesota, Pigeon Point (soda) Bull 55, p 82
from North Carolina, Iredell County .. Bull 74, p 57
chemical constitution of ... Bull 125, pp 28, 39, 43, 44, 101
Orthoclase and albite, mixed, analysis of, from New Hampshire, Moultonboro ... Bull 148, p 67; Bull 168, p 23
Orthoclase and microcline, mixed, analysis of Bull 150, p 207
Orthoclase-gabbro, thin section of, from Lake Superior district Ann 3, pp 104-105
thin section of, from Michigan, Lac La Belle, Keweenaw Point Mon v, pp 50-51
from Minnesota, near Duluth .. Mon v, pp 52-53
Orthoclase-gabbro, thin section of, from Minnesota, near Lester River.......Mon v, pp 50-51
thin section of, from Wisconsin, Brunschweiler River.........Mon v, pp 50-51
Orthoclase-gabbro-diortite, analyses of, from Yellowstone Park, Hurricane
Ridge......Mon xxxi, ii, p 260; Bull 148, p 123; Bull 168, p 93
Orthofelsite, analysis of, from Pennsylvania, various localities......Bull 136, pp 34, 62, 78
Orthophyre tuff, analyses of, from California, Plumas County (apotrachyte). Ann 17, i, p 727
Orthopteroidea from Rhode Island coal field Bull 101, pp 11-21
Orthosilicates of dyad bases, chemical constitution of......Bull 125, pp 68-74
of tetrad bases, chemical constitution of...................... Bull 125, pp 75-80
Orton (E.), gypsum or land plaster in Ohio...............MR 1887, pp 596-601
quoted on Cincinnati arch or anticline........Ann 18, iv, p 428
quoted on natural gas in Ohio............................MR 1887, pp 479-484
rock waters of Ohio...................................Ann 19, iv, pp 633-717
Trenton limestone as source of petroleum and inflammable gas in Ohio
and Indiana..Ann 8, ii, pp 475-602
Osage River, profile of..................................WS 44, p 72
Osar border clay of Maine................................Mon xxxiv, pp 170, 180, 468-469
Osar streams and osars in Alaska........................Mon xxxiv, pp 356-358
Osars, deposition of, by subglacial or superficial streams......Mon xxxiv, pp 420-440
in North and South Dakota................................Bull 144, pp 53-54
Osars and kames, formation and characters of, especially in Maine...Mon xxxiv, pp 330-333, 359-469, 413-448
Oseola till in Washington..................................GF 54, p 4
Osmiridium, analyses of, from Australia, California, Russia, etc...MR 1883-84, p 581
Osmium-iridium, statistics of..............................Ann 19, vi, p 271
Ostracoda from the Pleistocene of Great Basin....................Bull 11, p 23
Ostrea selliformis beds of Alabama, correlation of............Ann 18, ii, pp 343-344
Ostreidæ; life history of the oyster..........................Ann 4, pp 317-333
of Bear River formation....................................Bull 128, pp 32-33
of Carboniferous of North America..........................Ann 4, p 288
of Chico-Tejon series of California........................Bull 51, pp 14-15
of Colorado formation......................................Bull 106, pp 54-66
of Cretaceous of North America............................Ann 4, pp 290-308
of Pacific coast...Bull 133, p 34
of Jurassic of North America..............................Ann 4, pp 289, 290
of marl beds of New Jersey..............................Mon ix, pp 29-41, 194-196, 205-207, 222-224
of Miocene of North America..............................Ann 4, pp 312-314
of Miocene marls of New Jersey............................Mon xxiv, pp 27-30
of North America, review of the (fossil)....................Ann 4, pp 273-430
nonmarine fossil..Ann 3, pp 420-421
of Oligocene of North America..............................Ann 4, pp 311, 312
of Pliocene and post-Pliocene of North America...............Ann 4, pp 314-316
of Tertiary of North America............................Ann 4, pp 308-316
of Texas region..Bull 151, pp 23-32
Oswego River, New York, flow of, measurements of.............WS 36, pp 188-190
Otiorhynchide, Tertiary, of United States.....................Mon xxxi, pp 29-65
Otter shale of Montana, description of and fossils from........Ann 20, iii, pp 295-296; GF 55, p 2; GF 56, p 2
Otterdale sandstones in Richmond Basin........................Ann 19, ii, pp 435-437
Ottrelite, analysis of, from Maryland, Frederick County........Bull 113, p 111; Bull 148, p 90; Bull 168, p 50
Ottrelite, chemical constitution of. Bull 125, pp 48, 103
Ottrelite-phyllite rock, analysis of, from Maryland, Frederick County. Bull 148, p 90; Bull 168, p 60
Ouachita Mountain Range, Arkansas–Indian Territory. Ann 19, ii, p 432
Ouachita Mountain system, general description of. Ann 21, vii, pp 37–38
Ouachita Mountains region, Indian Territory, structure of. Ann 21, ii, p 266
Ouachita River, profile of. WS 44, pp 62–63
Ouachitite, analysis of, from Arkansas, near Maple Spring. Bull 148, p 96; Bull 108, p 60
Ourny limestone in Colorado, Rico Mountains. Ann 21, ii, pp 27, 45–47
Ouvarovite, chemical constitution of. Bull 125, p 21
Overloaded stream, an example of. TF 2, p 6
Overplacenient in soils. Ann 12, i, pp 296–300
Overthrust phenomena in Narragansett Basin. Mon xxxiii, p 25–27
Ann 14, ii, pp 130–132; Ann 18, iv, pp 346–347; Ann 20, iv, p 62; Bull 131, pp 66–67; Bull 140, p 242; WS 11, p 82
hydrography of basin of. Ann 11, ii, pp 85–86, 106
Oxide films on steel, relation between time of exposure, temper value, and color in. Bull 27, pp 51–61
Oxmoor sandstone of Alabama. GF 35, p 2
Oyster marl of Florida. Bull 84, pp 132–133, 332
Oysters, sedimentation due to, in harbors. Ann 13, ii, pp 156–157
Ozark Plateau, Arkansas, physiography of. TF 2, p 12
Ozark ridges, examples of. TF 2, p 10
Ozarkite, analysis of. Bull 42, p 32
Ozocerite, statistics of. MR 1882, p 609; MR 1883–84, pp 955–957; MR 1888, p 515;
MR 1889–90, p 481; Ann 18, v cont, p 946; Ann 19, vi cont, p 200; Ann 20, vi cont, p 267; Ann 21, vi cont, p 331
Pachnolite, analyses of, from Colorado and elsewhere. Bull 20, pp 52, 54
Pacific coast, geology of, general notes on. GF 54, p 1
invertebrate fossils from. Bull 51
mineralogy of, contributions to. Bull 61
palaeontology of, Cretaceous. Bull 133
quicksilver deposits of. Ann 8, ii, pp 961–985
(See, also, California; Oregon; Washington.)
nickel ores, genesis of. MR 1893, pp 170–177
sodium salts, statistics of. MR 1893, pp 728–738
Packard rhyolite of Utah, Tintic district. GF 65, p 2
Pahang, tin production of. Ann 16, iii, p 478
Pahoehoe lava, character of. Ann 4, p 95
Painterite, analysis of, from Pennsylvania, Chester and Delaware counties...Bull 90, p 18

Paisanite, analysis of, from Texas, Mosquez Canyon..........................Bull 164, p 93

Palache (C.), quoted on microscopic character of San Francisco serpentine...Ann 15, pp 448-450

Paleontologic relations of Potomac formation............................Ann 15, pp 341-397

Paleobotanists, biographic sketches of....................................Ann 5, pp 369-385

Paleobotany. (See Plants, fossil.)

Paleontologic work of Survey to 1893, summary of........................Ann 14, vi, pp 123-143

Paleontology; Bear River formation, fauna of.............Bull 142, pp 27-30

bibliography of Eocene of Louisiana..................Bull 142, pp 27-30
of North American, 1888-1892..Bull 121

bibliography and index of North American, 1892-1899........Bulls 130, 135, 146, 149, 156, 162, 172

Cambrian faunas of North America.................................Bull 10; Bull 30
Cambrian, lower, or Olenellus zone, fauna of........Ann 10, i, pp 509-763 classification, paleontologic characters as basis for........Ann 7, pp 372-377 correlation papers: Archean and Algonkian......Bull 86

Cambrian...Bull 81
Cretaceous..Bull 82
Devonian and Carboniferous....................................Bull 80
Eocene..Bull 83
Neocene...Bull 84
Newark...Bull 85
fossils dredged from sea floor near Cape Cod............Ann 18, ii, pp 587-588
fossils, Cretaceous, new, from California..............Bull 22
invertebrates. (See Invertebrates, fossil.)

Knoxville beds of Pacific coast, fauna of......................Bull 133

Lahontan Basin, Nevada, paleontologic contributions from......Mon xi, pp 238-249
Mesozoic fossils..Bull 4
objects of..Ann 5, pp 363-364
of Alaska, notes on..Ann 17, i, pp 864-875
of Atlantic slope, middle, Eocene deposits of..............Bull 141
of California, Mesozoic and Cenozoic.......Bull 15
of Kansas, Fort Riley Military Reservation..............Bull 137, pp 53-54
of Louisiana, Tertiary fossils..........................Bull 142, pp 14-25, 30-62
of Massachusetts, Champlain clays......................Mon xxix, pp 718-721
terrace period..Mon xxix, pp 378-740
western........Ann 3, pp 394-406
of Nevada, Eureka district...............................Ann 3, pp 266-250, 261, 262, 265-267, 269, 270-271; Mon viii; Mon xx, pp 182-184, 319-333
Paleontology of Virginia; coal measures of Richmond Basin... Ann 19, ii, pp 430-435
of Yellowstone Park.. Mon xxxi, ii, pp 440-882
quicksilver belt of California, historic geology of, with lists of fossils... Mon xii, pp 176-225
specialization in, tendency to... Ann 9, p 22
value of, to stratigraphy.. Bull 56, pp 11-12
vertebrates. (See Vertebrates, fossil.)
(See also Plants, fossil; Invertebrates, fossil; Vertebrates, fossil.)

Paleozoic. (See Cambrian; Carboniferous; Devonian; Silurian.)
Paleozoic and subjacent systems, table showing formations of........ Ann 10, p 547
Paleozoic Crustacea, bibliography of, from 1698 to 1889, including list of North American species and systematic arrangement of genera... Bull 63
Paleozoic era in Texas, summary of history of......................... Ann 21, vii, pp 103-106
Paleozoic faunas of Maine.. Bull 165, pp 15-92
Paleozoic fishes of North America..................................... Mon xvi
Paleozoic fossils from Alaska... Ann 17, i, pp 898-906
from Indian Territory, McAlester coal field Ann 19, vii, pp 539-600
from Montana... Bull 110, pp 22-43
from Nevada, Eureka district.. Mon viii; Mon xx, pp 319-333
(See, also, Cambrian, Silurian, Devonian, Carboniferous.)

Paleozoic history of Colorado, Elk Mountains........................ GF 9, p 1
of Colorado, Pikes Peak quadrangle.................................. GF 7, p 5
Pueblo quadrangle.. GF 36, p 1
of Mississippi Valley and of Rocky Mountain region................. Bull 57, pp 11, 12
of Montana, Little Belt Mountains quadrangle...................... GF 56, p 6
of Sierra Nevada GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1;
GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
of Utah, Tintic district... GF 65, pp 3-4
(See, also, Cambrian, Silurian, Devonian, Carboniferous.)

Paleozoic insects, descriptions of.................................. Bull 124
Paleozoic rocks of Acadian province, correlations and classifications of..... Bull 80,
pp 226-257
of California... Bull 19, pp 21-23
of Colorado, Leadville district... Ann 2, pp 216-220; Mon xiv, pp 53-70, 277-278
of Great Basin ... Mon xx, pp 185-209
of Illinois... Ann 17, ii, pp 788-800
Rock Island and vicinity, explored by deep borings... Ann 17, ii, pp 829-849
of Michigan, Menominee district................................. Bull 62, p 11
of Nevada, Eureka district......................... Ann 3, pp 248-272; Mon xx, pp 11-13, 34-185
of Texas .. Ann 21, vii, pp 89-106; Bull 45, pp 56-57; TF 3, p 2
of Wyoming, Absaroka district................................. GF 52, pp 1-2
of Yellowstone Park.. GF 30, pp 1, 4-5
of table of... MR 1892, p 614
(See, also, Cambrian, Silurian, Devonian, Carboniferous.)

Paleozoic rocks and history of northeastern Iowa and contiguous territory ... Ann 11, i, pp 308-334, 347-353
Paleozoic section of Montana, near Three Forks........................ Bull 110
of Nevada, with vertical range of genera............................ Mon viii, pp 284-285
of Wasatch Mountains... Ann 16, ii, p 362; Ann 19, iii, p 629
Paleozoic shore line of Great Basin................................. Mon xx, pp 175-177
Paleozoic terranes of Maine, Aroostook County, classification of... Bull 165, pp 21-27
Palisade porphyry in Michigan Mon v, pp 146-148
Palisades conglomerates of Alaska, Yukon Ann 18, iii, pp 199-200
Pallasite, analysis of, from Kansas, Kiowa County Bull 78, p 94;
Bull 148, p 238; Bull 168, p 235
Palme from Dakota group .. Mon xvii, p 39
Palmer gneiss of Michigan, Marquette district Ann 15, pp 514-515;
Mon xxvii, pp 211-218
Palmitic acid, compressibility and thermal expansion of Bull 92, pp 32-33
Palmyra quadrangle, Virginia, physiography of TF 1, p 2
Palo Duro beds of Texas, correlation of Ann 18, ii, p 338
Palo Pinto Plain, Texas, general description of Ann 21, vii, p 47
Palouse River, description of WS 4, pp 26-27
flow of, measurements of Ann 19, iv, pp 458-460; Ann 20, iv, pp 489-490; Ann 21, iv, pp 414-415;
WS 16, p 172; WS 28, pp 162, 168, 170; WS 38, pp 360-361
rainfall in basins of Wallawalla River and Ann 19, iv, pp 512-514
Paluxy formation of Texas Ann 20, vii, pp 160-171
Pamunkey formation, correlation of Ann 18, ii, p 346; Bull 84, p 333; Bull 138, pp 119, 125, 193; GF 13, p 3; GF 23, p 3
extent and character of ... Ann 12, iv, pp 418-419
in Washington quadrangle, Maryland, Virginia, District of Columbia. . GF 70, p 4
Panama Canal, work on .. Ann 20, iv, pp 588-589
Pandermite, analysis of, from Black Sea, island of Panderma Bull 55, p 58
Panola formation of Kentucky GF 46, p 2; GF 47, p 2
Papilionidae of Florissant, Colorado Ann 8, i, pp 467-469
Paraffin, compressibility and thermal expansion of Bull 92, pp 34-36
Paragenesis of minerals in Massachusetts, western Mon xxxix, pp 143-147, 444-445
of minerals in Montana, Little Belt Mountains Ann 20, iii, pp 410-412
of vein materials of Colorado, Aspen district Mon xxxi, pp 227-229
Paragonite, chemical constitution of Bull 125, pp 16, 19, 46, 101
Paraguay, iron-ore deposits of Ann 16, iii, p 69
Pararhomorphism, general discussion of Bull 28, pp 45-49
in relation to uralitization Bull 62, pp 52-54
of pyroxene to hornblende Bull 28, p 46; Bull 59, pp 25-27
Para-toluidine, compressibility and thermal expansion of Bull 92, pp 33-34
Paria Plateau, Grand Canyon district, description of Ann 2, p 70; Mon ii, pp 10, 199-202
Park Range, Wyoming, geology of, literature of Bull 86, pp 272, 274, 275, 316
Park shale of Montana .. Ann 20, iii, pp 286, 340, 364, 368; GF 55, p 2; GF 56, p 2
Paleoblattarice, American Bull 124, p 39
from Rhode Island coal field Bull 101, pp 11-20
Palms, extinct, of North America Mon xxxv, pp 27-32
Passifloraceae of Amboy clays Mon xxv, pp 109-110
Parker (E. W.), abrasive materials, statistics of... MR 1892, pp 748-755; MR 1893, pp 670-679; Ann 16, iv, pp 586-594; Ann 17, iii cont, pp 927-950;
Ann 18, v cont, pp 1219-1231; Ann 19, vi cont, pp 515-533;
Ann 20, vi cont, pp 603-617; Ann 21, vii cont, pp 463-479
antimony, statistics of .. MR 1891, pp 174-176; Ann 17, iii, pp 275-280; Ann 18, v, pp 343-348; Ann 19, vi, pp 253-255;
Ann 20, vi, pp 283-289; Ann 21, vi, pp 291-297
asbestos, statistics of .. MR 1891, pp 591-592; MR 1892, pp 508-514;
Ann 16, iv, pp 703-706; Ann 17, iii cont, pp 1004-1006;
Ann 18, v cont, pp 1323-1331; Ann 19, vi cont, pp 623-628;
Ann 20, vi cont, pp 711-714; Ann 21, vi cont, pp 561-564

barytes, statistics of ... MR 1891, pp 599-600; Ann 17, iii cont, pp 1023-1024; Ann 18, v cont, pp 1348-1350; Ann 19, vi cont, pp 651-653; Ann 20, vi cont, pp 739-740

buhrstones, statistics of ... MR 1891, p 552

coke, manufacture of, statistics of ... Ann 18, v cont, pp 659-747; Ann 19, vi, pp 545-642; Ann 20, vi, pp 509-608; Ann 21, vi, pp 521-633

diamond, statistics of ... MR 1891, p 556

diopside, minerals of... MR 1891, p 586

dolomite, statistics of.. Ann 18, v cont, pp 1315-1316; Ann 19, vi cont, pp 613-617; Ann 20, vi cont, pp 709-710; Ann 21, vi cont, pp 559-560

graphite, statistics of... MR 1891, pp 589-590

mica, statistics of .. MR 1893, pp 748-755

oilstones and whetstones, statistics of .. MR 1891, pp 554-555

phosphate rock, statistics of ... Ann 21, vi cont, pp 481-502

quicksilver, statistics of ... Ann 21, vi, pp 273-283

soapstone, statistics of ... MR 1891, pp 593-594; Ann 16, iv, pp 511-513; Ann 17, iii cont, pp 813-816; Ann 18, v cont, pp 1069-1075; Ann 19, vi cont, pp 311-315; Ann 20, vi cont, pp 551-556; Ann 21, vi cont, pp 413-418

Parting quartzite of Colorado ... Ann 2, pp 216, 218; Mon xu, pp 61-62; Mon xxxi, pp 13-22

Partschinithe, chemical constitution of ... Bull 125, p 24

Pasadena Mesa, California, underground water obtained from bed of Arroyo Seco and .. Ann 20, iv, pp 543-549
Pascagoula clays of Mississippi, correlation of......................... Ann 18, ii, p 339
Passaic River, profile of.. WS 44, p 15
Pastoria Creek, California, flow of, measurements of........ Bull 140, pp 258-259
Pasturage lands of the West.. Ann 11, ii, p 209
Patawy, Malay Peninsula, tin production of....................... Ann 16, iii, p 479
Patapsco River, flow of, measurements of........................ Ann 18, iv, pp 16-17; Ann 19, iv, pp 129-130; Ann 20, iv, pp 48, 115; Ann 21, iv, p 94; WS 11, p 8; WS 15, p 13; WS 27, pp 18, 23, 24; WS 85, p 831
Patapsco and Patuxent rivers, rainfall and run-off in basins of......Ann 20, iv, pp 48-49, 112-114
Patellidae from clays and marls of New Jersey.................... Mon xviii, pp 153-154
from Cretaceous of Pacific coast................................. Bull 133, p 83
Patoot formation.. Bull 82, p 203
Patuxent beds of Maryland... Bull 84, p 333
Patuxent River, flow of, measurements of......................... Ann 18, iv, p 18; Ann 19, iv, pp 131-132; Ann 20, iv, pp 49, 116; WS 11, p 8; WS 15, p 14; WS 27, pp 18, 23, 24
Patuxent and Patapsco rivers, rainfall and run-off in basins of......Ann 20, iv, pp 48-49, 112-114
Paving blocks of stone, use of, in road making.................... Ann 15, pp 278-279
Paving brick, clays of Massachusetts suitable for making, suggestions concern­ing... Ann 16, ii, pp 324-326
(See also Brick.)
Paving-brick clay. (See Clay, paving-brick.)
Pawpaw beds of Texas.. Ann 21, vii, pp 278-280
Pay shoots of California, Nevada City and Grass Valley districts........ Ann 17, pp 159-163, 261
Payette formation, fossils of.................................... Ann 18, iii, pp 721-744; Ann 20, iii, pp 97-98, 197
of Idaho............................... Ann 18, iii, pp 632-634, 711; GF 45, pp 2, 3
Payette River, Idaho, age and origin of......................... GF 45, p 3
flow of, measurements of... Ann 18, iv, pp 350-352; Ann 19, iv, pp 455-456; Ann 20, iv, p 62; Bull 131, p 66; Bull 140, pp 237-238; WS 11, p 83; WS 16, p 170
Peace Creek bone bed of Florida.. Bull 84, pp 130-131, 333
Peale (A. C.), geology of Three Forks quadrangle, Montana........ Bull 110
lists and analyses of mineral springs of United States............ Bull 32
natural mineral waters of United States......................... Ann 14, ii, pp 49-88
Paleozoic section in vicinity of Three Forks, Montana............ Bull 110
work in charge of, 1886-1892.. Ann 8, i, pp 146-148; Ann 9, pp 111-114; Ann 10, i, pp 130-132; Ann 11, i, p 82; Ann 12, i, pp 91-92; Ann 13, i, p 124
Peat, deposits of, origin, distribution, commercial value, etc., of......Ann 16, iv, pp 305-314
description of the rock, as one of educational series........... Bull 150, pp 140-141
in Porto Rico, occurrence of...................................... Ann 20, vi cont, p 787
of American bogs.. Ann 10, i, pp 303-304
Peckham (S. F.), petroleum in southern California Ann 16, iv, pp 370-374
Pecopterideae of Carboniferous of Missouri Bull 98, pp 60-67
of Coal Measures, Lower, of Missouri Mon xxxvii, pp 74-97
Pecos River, flow of, measurements of WS 28, pp 125-126, 130; WS 37, pp 285-286
irrigation and irrigation canals in valley of Ann 12, ii, pp 282-290; Ann 13, iii, pp 187-191
profile of .. WS 44, p 37
Pectinidae from Colorado formation Bull 106, p 72
from Cretaceous of Pacific coast Bull 133, pp 36-38
from marls of New Jersey Mon ix, pp 224-227
from Miocene marls of New Jersey Mon xxiv, pp 30-34
Pectolite, analysis of, from Alaska Bull 9, p 10
analysis of, from New Jersey, Bergen Hill Bull 113, p 36; Bull 167, p 14
chemical constitution of Bull 125, pp 85, 106
constitution of, experiments relative to Bull 167, pp 14-16
occurrence of .. MR 1883-84, p 774; MR 1887, pp 561-562
Pegmatite of Maryland, origin of
of Massachusetts, western
origin of, theories of Ann 16, i, pp 687-688
thin section of, from California, near Sonora Ann 17, i, pp 748-749
Pegmatite dikes and minerals in Massachusetts, western.. Mon xix, pp 216, 323-330
Pelecypoda, descriptions of
from Colorado formation Bull 106, pp 54-127
from Cretaceous of Pacific coast Bull 133, pp 34-62
from Devonian beds of New York Bull 16, pp 23, 58-62
from Eocene of middle Atlantic slope Bull 141, pp 72-78
from Yellowstone Park Mon xxxiv, ii, pp 610-629, 632, 633-635, 637-639
Pele's hair in Hawaii ... Ann 4, p 108
Pelhamine, analysis of, from Massachusetts, Pelham Bull 126, p 55
Pennine, analyses and chemical constitution of Bull 125, p 53
Pennine system, name proposed Bull 80, p 81
Pennington shale of Kentucky, Virginia, and Tennessee .. Bull 111, p 37; GF 12, p 3; GF 27, p 3; GF 33, p 2; GF 40, p 2; GF 46, p 3; GF 47, p 2; GF 53, p 3; GF 59, p 4
Pennsylvania; Allegheny River, flow of, measurements of . Ann 20, iv, pp 195-197; WS 36, pp 157-159
Allegheny River, profile of WS 44, p 44
altitudes in Ann 19, i, pp 217-219;
Ann 20, i, pp 363-370; Ann 21, i, pp 421-426, 427-436, 437-
444, 446; Bull 5, pp 245-274; Bull 76; Bull 160, pp 596-645
amethyst in, occurrence of Ann 16, iv, p 601
anthracite basins of, structure of Ann 13, ii, pp 256-263
anthracite coal fields of, description and production of .. MR 1882, pp 7-24
atlas sheets of. (See p 92 of this bulletin.)
bituminous coal field in Pennsylvania, Ohio, and West Virginia, stratigraphy of Bull 65
Pennsylvania; boundary lines of................. Bull 13, pp 78–80; Bull 171, pp 84–86
bromine industry of............. MR 1885, p 487; MR 1886, p 642; MR 1887, pp 626, 627;
MR 1888, p 613; MR 1889–90, p 493; MR 1891, p 579
brownstones of, properties, chemical composition, structural and textural
features, occurrence, use, etc., of........Ann 18, v cont, pp 1025–1043
building stone from, at World's Columbian Exposition........ MR 1893, pp 570–572
et seq; Ann 16, iv, p 437 et seq; Ann 17, iii, p 760 et seq;
Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq;
Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
cement production of, statistics of..................MR 1887, p 527;
MR 1888, p 551; MR 1889–90, p 461; MR 1891, pp 532, 536;
MR 1892, pp 739, 743, 745; MR 1893, pp 619, 621; Ann 16, iv, pp 577, 581; Ann 17, iii cont, pp 884, 891; Ann 18, v cont, pp 1170, 1179; Ann 19, vi cont, pp 487, 488, 493, 495; Ann 20, vi cont, pp 539, 540, 547, 550; Ann 21, vi cont, pp 293, 408
Clarion River, profile of...................... WS 44, p 44
cobalt deposit in..................... MR 1882, p 421; MR 1883–84, p 546; MR 1885, p 363
Ann 20, vi cont, p 228; Ann 21, vi, pp 523 et seq, 592–615
Delaware River, flow of, measurements of............... Bull 120
Devonian system in eastern......................... Bull 120
feldspar from, statistics of....................... Ann 18, v cont, p 1387; Ann 19, vi cont, p 657; Ann 20, vi cont, p 746; Ann 21, vi cont, p 543
fossil faunas of upper Devonian along meridian of 76° 30', from Tompkins County, N. Y., to Bradford County, Pa.................. Bull 3
Pennsylvania; geographic positions in Ann 18, i, p 154; Ann 20, i, p 232; Ann 21, i, pp 240-249, 252-253, 254; Bull 123, pp 67-72
geologic maps of, listed Bull 7, pp 64-76, 162, 163
(See Map, geologic, of Pennsylvania.)
geologic sections in. (See Section, geologic, in Pennsylvania.)
geologic and paleontologic investigations in Ann 5, p 52; Ann 6, pp 25, 31, 35, 74, 75; Ann 7, pp 67, 68; Ann 8, i, p 168; Ann 9, pp 77, 122; Ann 13, i, p 146; Ann 14, i, pp 220, 253; Ann 15, i, p 141; Ann 17, i, p 60; Ann 18, i, pp 26-27; Ann 19, i, pp 33-34; Ann 20, i, pp 36-37, 38-39; Ann 21, i, pp 71, 74
glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois Bull 58
glacial investigations in Ann 3, pp 341-343, 346, 348, 351; Ann 7, p 157
graphite mines in .. MR 1886, p 686
granite production of, statistics of MR 1887, p 514;
Harrisburg quadrangle, physiography of TF 2, p 8
iron and steel from, statistics of Ann 2, p xxviii, MR 1882, pp 120, 125, 129, 130, 131, 132, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 270; MR 1885, pp 182, 184, 186, 188; MR 1886, pp 14, 18, 52-56; MR 1887, pp 11, 16, 44-46; MR 1888, pp 14, 17, 23, 25; MR 1889-90, pp 10, 12, 17; MR 1891, pp 12, 20, 54, 55, 61; MR 1892, pp 12, 13, 14, 15, 16, 17, 18, 21, 22, 26, 31-32, 35, 36, 37, 42; MR 1893, pp 15, 20, 26, 28, 30-32, 38, 39; Ann 16, iii, pp 31, 37-38, 192, 194, 197-198, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 58, 60, 62, 63, 68; Ann 18, v, pp 24, 37, 41, 42; Ann 19, vi, pp 26, 28, 29, 32-33, 65, 68, 69, 70, 72; Ann 20, vi, pp 29, 40, 43, 44, 47, et seq; Ann 21, vi, pp 34, 46, 52, 53, 83, 90, 92, 97, 98, 99, 100
Juniata River, flow of, measurements of Ann 21, iv, p 91; WS 35, pp 79-80
profile of .. WS 44, p 19
Lehigh River, flow of, measurements of Ann 20, iv, pp 86-88
profile of .. WS 44, p 16
lime production of, statistics of MR 1887, p 533; MR 1888, p 556
magnetic declination in Ann 17, i, pp 406-410
manganese-ore production of, statistics of MR 1885, pp 342-343;
MR 1888, p 124; Ann 16, iii, pp 420-422; Ann 17, iii, pp 187, 200; Ann 18, v, pp 292, 310; Ann 19, vi, pp 91, 100; Ann 20, vi, pp 126, 128; Ann 21, vi, pp 130, 139-140
maps, geologic, of. (See Map, geologic, of Pennsylvania.)
Pennsylvania; maps, topographic, of. (See Map, topographic, of Pennsylvania; also list on p 92 of this bulletin.)

meridian marks in .. Ann 21, i, pp 250-252

metallic paint production of MR 1891, p 597

mineral springs of, useful ... MR 1882, pp 721-726; MR 1887, pp 779-785

mining laws of ... MR 1886, pp 759-790

Neshaminy Creek, flow of, measurements of Ann 20, iv, pp 48, 103-108; Ann 21, iv, pp 85-86; WS 35, pp 64-65

nickel ore in .. MR 1882, pp 404-405; MR 1883-84, p 537; MR 1889-90, p 124

ocher production of .. MR 1891, p 595

oil- and gas-producing horizons in MR 1892, p 616

Perkiomen Creek, flow of, measurements of Ann 20, iv, pp 48, 89-94; Ann 21, iv, pp 78-80; WS 35, pp 65-73

phosphate rock in, occurrence and statistics of Ann 17, iii cont, pp 955-957; Ann 21, vi cont, pp 482, 494-495
Pennsylvania; Pottsville formation in southern anthracite coal field, stratigraphic succession of fossil floras of........Ann 20, ii, pp 749-930
quartz from, statistics of...Ann 19, vi cont, p 657;
rocks of, their classification, etc.....................Bull 80, pp 42, 83-112, 124-125, 131, 260-261
Ann 16, iv, pp 647, 648, 649, 655; Ann 17, iii cont, pp 985, 986, 987, 990, 991; Ann 18, v cont, pp 1274, 1275, 1276, 1277, 1280, 1281;
Ann 19, vi cont, p 588 et seq; Ann 20, vi cont, pp 670, 671, 676, 677, 678; Ann 21, vi cont, p 534 et seq
Schuylkill River, flow of, measurements of..................Ann 20, iv, pp 48, 88, 96-97; WS 35, pp 74-75
sections, geologic, in (See Section, geologic, in Pennsylvania.)
sewage-disposal plants in..WS 22, pp 72-74
soapstone production of..................Ann 20, vi cont, p 552; Ann 21, vi cont, p 414
South Mountain, pre-Cambrian rocks of...............Ann 16, i, pp 837-838
survey of, by cooperation of State.........................Ann 20, i, pp 98, 110
profile of..WS 44, pp 17-19
timber in, estimates of.......................................Ann 19, v, p 16
Tohickon Creek, flow of, measurements of.............Ann 20, iv, pp 48, 98-103; Ann 21, iv, pp 83-85; WS 35, p 64
topographic maps of. (See Map, topographic, of Pennsylvania; also list on p 92 of this bulletin.)
topographic work in..Ann 10, i, pp 87, 89; Ann 11, i, p 36; Ann 12, i, p 26; Ann 13, i, p 71; Ann 14, i, p 171; Ann 16, i, pp 64, 68, 69; Ann 18, i, pp 94, 96, 102; Ann 19, i, pp 89, 91, 98; Ann 20, i, pp 101, 102, 110; Ann 21, i, pp 118, 123-125
triangulation in..............................Bull 122, pp 50-63
wells in..Bull 138, pp 115-117
Wellsburg coal basin, extent and production of.........Ann 14, ii, p 578
Wissahickon Creek, flow of, measurements of........Ann 20, iv, pp 48, 94-96; Ann 21, iv, pp 81-82; WS 35, p 74
woodland area in.......................................Ann 19, v, p 4
zinc and zinc works in.................................Ann 2, p xxix; MR 1882, pp 361-365, 373; MR 1883-84, p 476
Pennsylvania series in Kentucky ..GF 47, p 2

in Tennessee ...GF 53, p 3

Penobscot River, profile of ...WS 44, p 9

Penobscot River and tributaries, Maine, water power ofAnn 19, iv, pp 52-65

Penokee district, Michigan, topographic features of, in relation to geology. Mon xix, pp 145, 188-189, 301-302

Penokee Huronian rocks, character and thickness ofAnn 3, pp 165-166

Penokee series of Michigan and Wisconsin ..Ann 10, i, pp 341-507; Mon xix; Bull 86, pp 150-154, 187-189, passim

cherty limestone of .. Ann 10, i, pp 349, 365-369

iron-bearing member of .. Ann 10, i, pp 349, 380-422

quartz-slate of ... Ann 10, i, pp 349, 370-379

upper slate of ... Ann 10, i, pp 349, 423-435

Penokee-Gogebic district, Michigan, iron ore inAnn 21, iii, pp 337-351, 427-428

Penrose (R. A. F.), jr., mining geology of Cripple Creek district, ColoradoAnn 16, ii, pp 111-209; GF 7, p 8

nature and origin of deposits of phosphate of lime, with introduction by

N. S. Shaler ... Bull 46

quoted on lignite beds of Texas ..MR 1891, pp 327-328

Pentacrinite, Mesozoic, of United States ..Bull 97, pp 25-29

Pentametaphosphoric acid, constitution, salts, decomposition products, etc.,
of .. Bull 167, pp 142-148

Pentaphosphonitrilic chloride, analysis of ...Bull 167, p 131

Perian soil in Danville quadrangle, Illinois-IndianaGF 67, p 5

Perian soil and weathered zone (Toronto formation?)Mon xxxviii, pp 185-190

Perak, tin deposits and industry of ..Ann 16, iii, pp 469-476

Percolation of underground waters of Great Plains, rate ofAnn 16, ii, pp 556-557

d of water into undisturbed field soil ..Ann 19, ii, pp 260-264

Perezonal formations ..Bull 84, pp 98-99

Ann 17, iii cont, p 923; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513; Ann 20, vi cont, p 599; Ann 21, vi cont, p 461

Peridotite, analysis of, from California, Bidwell Bar quadrangleAnn 17, i, p 577, Bull 148, p 205; Bull 168, p 191

analysis of, from California, Downieville quadrangleAnn 17, i, p 651

from Colorado, Cottonwood Gulch ...Ann 17, ii, p 284; Bull 148, p 165; Bull 168, p 147

from Kentucky, Elliott County ..Bull 38, pp 24-25; Bull 42, p 136; Bull 148, p 92; Bull 168, p 56

Elliott County, slaty inclusion in ..Bull 42, p 137

from Maryland, near Howardville (feldspathic)Bull 28, p 54; Bull 150, p 290

from Massachusetts, Belchertown ...Bull 148, p 74, Bull 168, p 30

from Michigan, Crystal Falls district ..Mon xxxvi, pp 259, 263

near Opin Lake, sec. 27, T. 48 N., R. 27 W.Ann 15, p 511, Mon xxviii, p 186; Bull 148, p 98; Bull 168, p 64

from Montana, near Red Bluff ..Bull 90, p 70; Bull 148, p 140; Bull 168, p 114

from New York, Dewitt ...Mon xxxvi, p 219; Bull 148, p 79; Bull 168, p 38

from Oregon, Douglas County ...Bull 148, p 231; Bull 168, p 220

from Maryland, Sudbrook Park, description of, as one of the educational
series ...Bull 150, pp 288-290
Peridotite of California, Lassen Peak quadrangle........................GF 15, p 1
of California, Placerville quadrangle...............................GF 3, p 2
Smartsville quadrangle..GF 18, p 4
of Colorado, Silver Cliff...Ann 17, ii, pp 283-284
of District of Columbia..GF 70, p 3
of Kentucky, Elliott County, composition, origin, etc., of..............Bull 88;
Bull 42, pp 136-137
of Maryland, Washington (D. C.) quadrangle........................GF 70, p 3
of Michigan, Crystal Falls district.................................Mon xxxvi, pp 249-262
Marquette district...Ann 15, pp 509-511; Mon xxviii, pp 183-186
of Minnesota, southwestern...Bull 157, pp 110-114
of Montana, Three Forks quadrangle................................GF 24, p 4
of Northwestern States ...Ann 5, pp 217-218
of Sierra Nevada...Ann 14, ii, pp 476-477; Ann 17, i, pp 577, 650, 671
of Virginia, Washington (D. C.) quadrangle........................GF 70, p 3
thin section of, from Kentucky, Elliott County....................Bull 38, p 11
from Minnesota, southwestern (saxonite).........................Bull 157, pp 156-157
Peridotite and associated serpentines of Maryland, near Baltimore....Bull 28, p 50
Peridotite family of rocks, scope and characteristics of...........Ann 17, i, pp 733-735
Periods, Tertiary, Pleistocene, and Recent, comparative lengths of........Ann 14,
ii, pp 382-384
Peristerite, occurrence of...MR 1883-84, p 771; MR 1887, p 562
Perkins (J.), lists of ores, minerals, and mineral substances of industrial im-
importance in Alaska, California, Nevada, Oregon, and
Washington................MR 1882, pp 760, 767-769, 772, 773, 775
Perkiomen Creek, flow of, measurements of..............................Ann 20,
v, pp 48, 89-94; Ann 21, iv, pp 78-80; WS 35, pp 65-73
Perlite, analysis of, from Nevada, Eureka (andesitic).................Bull 90,
p 72; Bull 148, p 189; Bull 168, p 175
analysis of, from Yellowstone Park, Midway Geyser Basin (rhyolitic)
Bull 148, p 134; Bull 150, p 153; Bull 168, p 108
from Yellowstone Park, description of, as one of the educational series
(rhyolitic)...Bull 150, pp 151-153
of Yellowstone Park..Mon xxxiv, ii, pp 369-372
Permin fossils of Texas...Bull 77
Permin rocks in Kansas and Nebraska and other parts of United States, dis-
cussions relative to correlation of.................................Bull 80, pp 193-212
of Grand Canyon district....Ann 2, pp 64, 91-94; Mon ii, pp 16, 43-46, 117-121
of Nebraska..Ann 19, iv, p 738
of Plateau country..Ann 6, pp 134-135, 184-185
of Texas...Ann 21, vii, pp 102-103; Bull 45, pp 62-68
and its Mesozoic types of fossils..................................Bull 77
Shinarump conglomerate..Ann 2, pp 91-93
(See, also, Carboniferous.)
Permo-Carboniferous rocks of Colorado, Rico MountainsAnn 21, ii, pp 27-28
Permo-Triassic Red Beds of Texas................................Ann 21, viii, pp 100-103
Perna beds of Maryland..Bull 84, p 333
Perofskite, composition of...Bull 150, p 33
Perrenoud (G. F.), talc, statistics of..............................MR 1885, pp 534-535
Perrine (C. D.), earthquakes in California, 1892-1898.................Bulls 112,
114, 129, 147, 155, 161
Perry (T. O.), experiments with windmills............................WS 20
Persia; fossil plants of, literature of..............................Ann 8, ii, p 797
iron-ore deposits of..Ann 16, iii, pp 159-160
petroleum in..Ann 21, vii cont, p 292
Peru; copper production of, statistics of .. MR 1883-84, p 356;
MR 1885, p 229; MR 1886, p 128; MR 1887, p 88; MR 1888, p 73; MR 1889-90, p 73; MR 1891, pp 101, 102; MR 1892, p 114; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii, pp 117, 119; Ann 18, v, pp 219, 221; Ann 19, vi, pp 176, 178; Ann 20, vi, pp 202, 204; Ann 21, vi, pp 204, 206, 223

iodine production of .. MR 1883-84, pp 856-857; MR 1885, p 488

iron-ore deposits and industry in ... Ann 16, iii, pp 64-65

petroleum localities and statistics of .. MR 1893, pp 516-517, 532; Ann 16, iv, pp 390-391; Ann 17, iii cont, pp 728-731; Ann 18, v cont, pp 891-892; Ann 19, vi cont, pp 119-120; Ann 20, vi cont, pp 135-137; Ann 21, vi cont, pp 179-180

quicksilver mines of .. Ann 8, ii, pp 965-966; Mon xii, pp 4, 6, 7, 14, 20-23

tin production of .. Ann 16, iii, p 461

Peltalite, analysis and description of, from Peru, Maine Bull 60, p 129

chemical constitution of .. Bull 125, pp 97, 98, 106

Peters (E. D.), jr., mines and reduction works of Butte, Montana MR 1883-84, pp 374-396

roasting of copper ores and furnace products MR 1882, pp 280-297

Peters (W. J.) and Brooks (A. H.), report of White River-Tanana expedition (1898), Alaska ... Alaska (2), pp 64-75

Petricolida from marls of New Jersey .. Mon ix, pp 216-217

Petrified forests of Arizona .. Ann 20, ii, pp 324-332

Petrographic character as basis for classification of formations Ann 7, pp 377-390

of Obsidian Cliff, Yellowstone Park .. Ann 7, pp 261-272

Petrographic descriptions; clastic and igneous rocks of Maine, Aroostook volcanic area ... Bull 165, pp 122-126, 128-131, 146-186

ferruginous slates, cherts, etc., of Penokee series Ann 10, i, pp 383-392

Franciscan series .. Ann 15, pp 416-435

general or miscellaneous schists of Penokee series Ann 10, i, pp 354-362, 372-375, 426-434

granite of Montara Mountain, California Ann 15, pp 411-414

graywackes, etc., of Penokee series .. Ann 10, i, pp 427, 429-432

igneous rocks of Colorado, Denver Basin Mon xxvii, pp 297-316

of Montana, Castle Mountain district .. Bull 139, pp 80-142

Little Belt Mountains .. Ann 20, iii, pp 463-578

of Texas, Uvalde quadrangle .. GF 64, pp 3-4

lava of Unkar terrane, Grand Canyon .. Ann 14, ii, pp 520-524

Merced series of California .. Ann 15, pp 459

rocks of Colorado, Denver Basin ... Mon xxvii, pp 297-316

of Lake Superior (copper-bearing) .. Mon v, pp 34-133

of Massachusetts, Hoosac Mountain .. Mon xxiii, pp 44-69

Bull. 177—01—39
rocks of Michigan and Wisconsin.................................. Mon xix, passim
of Minnesota, Pigeon Point.. Bull 109, pp 32-104
of New Mexico, Tewa Mountains................................. Bull 66, pp 10-17
serpentine of San Francisco Peninsula......................... Ann 15, pp 447-450
trap dikes of Lake Champlain region......................... Bull 107, pp 18-36
volcanic rocks of South Mountain, Pennsylvania........ Bull 136, pp 31-81
(See, also, Petrography.)
Petrographic stratigraphy of Monument Mountain, Massachusetts... Ann 14, ii, pp 558-559
Petrographic studies in Archean formations of Northwestern States... Ann 5, pp 209-242
Petrographic work of Geological Survey (to 1889), review of........ Ann 10, i, pp 42-52
Petrography, bibliography of American, 1886,1887-1889. Bull 44, p 27; Bull 75, p 128
bibliography and index of North American, 1732-1891............. Bull 127
of North America, 1887-1899.. Bull 75, 91, 99, 130, 136, 146, 149, 156, 162, 172
Bonneville beds, analysis and description of yellow clay and white marl of......................... Mon i, pp 190, 200-203
crystallization, degree of, nondependence of, on depth.......... Ann 18, iii, p 574
differentiation, theory of, origin of magmas by................ Ann 17, ii, p 528
dike rocks of Lake Champlain region.......................... Bull 107
flow and fracture of rocks as related to structure......... Ann 16, ii, pp 845-857
granite rocks of middle Atlantic Piedmont Plateau, especially central
Maryland, origin and relations of................................ Ann 15, pp 651-740
lithologic notes on Alaska, southern.......................... Ann 18, iii, pp 35-59
mineralogic lexicon of Massachusetts; Franklin, Hampshire, and Hampden
counties... Mon xxix, pp 754-761; Bull 126
of California, Ophir district................................. Ann 14, ii, pp 255-264
San Francisco Peninsula...................................... Ann 15, pp 411-414, 416-435, 447-450, 459
of Colorado, Cripple Creek district......................... Ann 16, ii, pp 20-38
Mosquito Range.. Mon xii, pp 319-362
Rico Mountains, igneous rocks of............................ Ann 21, ii, pp 79-88
of Delaware traps... Bull 59
of Grand Canyon of Colorado................................. Ann 14, ii, pp 520-524
of Keweenaw series.. Ann 3, pp 101-115; Mon v, pp 34-133
of Massachusetts, Cape Ann................................. Ann 9, pp 605-610
Green Mountains... Mon xxiii, pp 45-118, 181-188
of Michigan, Marquette iron-bearing district................ Ann 15, pp 447-650 passim; Mon xxviii passim
of Minnesota, Pigeon Point.................................. Bull 109, pp 32-102
of Montana, Castle Mountain district........................ Bull 139, pp 80-132
Little Belt Mountains, igneous rocks of................. Ann 20, iii, pp 463-581
near Three Forks, rocks of Paleozoic section.................. Bull 110, pp 47-54
of New York, Lake Champlain region, bostonite.................. Bull 107, pp 18-36
Rensselaer grit.. Ann 13, ii, pp 306-310, 333
of Nevada, Eureka district, eruptive rocks.................... Mon xx, pp 335-394
of Newark system.. Bull 85, pp 32-36
in Connecticut... Ann 21, iii, pp 90-92
of Pennsylvania, South Mountain, igneous rocks............... Bull 136
of Penokee iron-bearing series.............................. Mon xix, passim
Petrography of Sierra Nevada, classification of rocks Ann 17, i, pp 717-735
of Texas, San Carlos coal field.................................. Bull 66, pp 89-95
of Wisconsin, northern, basement series.................. Ann 10, i, pp 354-362
of Yellowstone Park... Mon xxxi, ii, pp 237-268
thiolith from Lake Lahontan and Mono Basin.................. Bull 12
transitions in mineralogic composition of igneous rocks........ Bull 66, pp 17-20
(See, also, Lithology.)

Petrography, microscopic, development of.................... Bull 62, p 35
of Great Basin, and mounts Rainier, Hood, Shasta, and Lassen Peak.... Ann 3,
pp 11-14

Petroleum, accumulation of, modes of........................ Ann 8, ii, pp 507-510
analysis of, from California......................... Ann 21, vi cont, pp 163, 164; MR 1892, p 609
from California, Fresno County........................ Anne 19, vi cont, p 100
Puente field.. MR 1889-90, p 346; MR 1892, p 650
Ventura County... Ann 18, vi cont, p 842
from Cuba, Santa Clara....................................... Bull 78, p 99
from Ohio, Lima... MR 1892, pp 606, 609
Macksburg field... Ann 8, ii, p 624
Trenton limestone... Ann 8, vi, pp 624, 625
from Pennsylvania.. MR 1892, p 608
Oil Creek.. Ann 21, vi cont, p 168
from West Virginia.. Ann 21, vi cont, p 168
from Wyoming, Popo Agie.................................. Ann 19, vi cont, p 110
Salt Creek.. Ann 16, iv, p 382
character, composition, and geologic occurrence of, in United States.. MR 1889-90,
pp 288-290; MR 1892, pp 606-610
fields of, in United States................................. MR 1883-84, pp 214-220
foreign sources of.. MR 1883-84, pp 231-232; MR 1886,
pp 463-487; MR 1887, pp 456-463; MR 1888, pp 467-480
from Cuba... Bull 78, pp 98-104
gas and oil production, geologic factors in................ Ann 8, ii, pp 581-589
gas and related bitumens, origin, constitution, future, etc., of........ Ann 11, i,
pp 589-616
in Alaska, Copper River delta, note on...................... Ann 20, vii, p 423

in California, southern.................................... Ann 17, i, p 799
in California, southern...................................... Ann 16, iv, pp 370-374
in Philippine Islands, occurrence of...................... Ann 19, vi cont, p 690
in South Dakota, Black Hills, southern part................ Ann 21, iv, pp 586-587
in Tennessee, Standingstone quadrangle..................... GF 53, p 4
Wartburg quadrangle.. GF 40, pp 3-4
in Wyoming.. Bull 119, pp 63-65
Black Hills, southern part.................................. Ann 21, iv, pp 586-587
production of, statistics of................................. MR 1882, pp 186-212; MR 1883-84, pp 214-232;
MR 1891, pp 403-435; MR 1892, pp 603-653; MR 1893,
pp 461-533; Ann 16, iv, pp 315-404; Ann 17, vi cont, p 621-731; Ann 18, vi cont, pp 747-893; Ann 19, vi cont, pp 1-166; Ann 20, vi cont, pp 1-202; Ann 21, vi cont, pp 1-292
Petroleum and inflammable gas in Ohio and Indiana, Trenton limestone as
source of.. Ann 8, ii, pp 475-662
Petroleum and natural gas, theories respecting origin of........ Ann 8, ii, pp 485-506
Petroleum tank steamers, use of............................ Ann 21, vi cont, pp 19-20
Petrology, bibliography and index of, 1892-1899......... Bulls 130, 135, 146, 149, 156, 162, 172
Petrology of Montana, Castle Mountain mining district Bull 139, pp 132-142
of Montana, Judith Mountains Ann 18, iii, pp 572-575
Little Belt Mountains .. Ann 20, iii, pp 550-556
Petzite, analysis of, from California, Mother Lode region Bull 167, p 63
Phanerogams from Carboniferous basins of Missouri, southwestern Bull 98,
pp 105-109

(See, also, Plants, fossil.)
Phenacite, chemical constitution of Bull 125, pp 68, 69, 104
from Colorado, Crystal Park and Florissant Bull 20, pp 68-70
Phengite, analysis of, from Austria, Zillerthal Bull 64, p 12
chemical constitution of Bull 125, p 46
Phenocrysts, development of, in igneous rocks of Yellowstone Park and vicinity Mon xxxii, ii, pp 266-268
thin section of, from Yellowstone Park Mon xxxii, ii, pp 414-417
Philadelphia, wells at ... Bull 138, pp 115-117
Philippine Islands, bibliography of geology of Ann 21, iii, pp 594-605
coal in .. Ann 21, iii, pp 569-576
copper in .. Ann 21, iii, pp 584-590
fossils, Tertiary, in Ann 21, iii, pp 615-625
geologic investigations in Ann 19, vi cont, pp 687-693; Ann 20, i, pp 54-55; ii, pp 1-7; Ann 21, i, p 87; iii, pp 487-625
gold in ... Ann 21, iii, pp 576-584
iron in .. Ann 21, iii, pp 591-593
lead in .. Ann 21, iii, pp 590-591
mining concessions in Ann 21, iii, pp 606-611
petroleum in ... Ann 21, vii cont, pp 260-263
provinces and districts, areas of Ann 21, iii, pp 496-497
survey of, estimates and recommendations concerning Ann 21, i, pp 52-55, 58
territorial limits of ... Bull 171, p 29
Phillips (W. B.), fertilizer trade in North Carolina in 1886 MR 1886, pp 611-617
illuminating and fuel gas and by-products Ann 20, vi cont, pp 225-250
mica mining in North Carolina MR 1887, pp 661-671
Phillipsite, chemical constitution of Bull 125, pp 41-42, 44, 102
Phinney (A. J.), natural-gas field of Indiana Ann 11, i, pp 579-742
Phlogopite, analyses of .. Bull 125, pp 46, 52
analysis of, from New York, St. Lawrence County Bull 78, p 24
from Ontario, Burgess, and of residue from Bull 78, pp 24, 26
from Wyoming, Leucite Hills Bull 148, p 115; Bull 168, p 85
chemical constitution of Bull 125, pp 16, 45, 46, 49, 52, 53, 103
Phenix, Arizona, irrigation near WS 2
Pholadidee from Chico-Tejon series of California Bull 51, p 15
from Colorado formation Bull 107, pp 125-127
from marls of New Jersey Mon ix, pp 187-191, 241
Pholadomyidee from Colorado formation Bull 106, pp 116-117
Phonolite, analyses of, from Colorado, Cripple Creek district Ann 16, iii, p 43;
Bull 148, pp 161, 162; Bull 150, p 193; Bull 168, pp 143, 144
analysis of, from Germany, Zittau Bull 150, p 193
from Massachusetts, Southborough Bull 148, p 77; Bull 168, p 33
from New Mexico, Colfax County Bull 168, p 171
Phonolite, analysis of, from South Dakota, Black Hills Bull 148, p 114; Bull 150, p 193; Bull 168, p 84
analysis of, from Texas, Uvalde County Bull 168, p 62
of Colorado, Cripple Creek district Ann 16, pp 25-41, 61, 68, 76, 79, 80, 83, 87, 89, 96, 102-109
Fikes Peak quadrangle .. GF 7, pp 3, 4, 7
of Montana, Judith Mountains .. Ann 18, iii, pp 566-572
Little Belt Mountains quadrangle GF 56, p 4
of South Dakota, Black Hills, description of, as one of educational series ... Bull 150, pp 191-194
of Texas, Uvalde quadrangle GF 64, p 4
Phonolitic rocks, thin sections of, from Montana, Judith Mountains Ann 18, iii, pp 570-571
Phosphate, analysis of, from Alabama, various localities (nodular) Bull 46, pp 77-78; MR 1883-84, pp 798-803
analysis of, from Florida, Alachua County MR 1885, p 452
from Great Britain, Belgium, and France (amorphous nodular) Bull 46, pp 83-84, 97-102, 106-107, 110-111
from Navassa ... Bull 46, p 126
from North Carolina, various localities Bull 46, pp 73-75; MR 1883-84, pp 790, 793; MR 1885, p 449; MR 1886, p 616
from Raza Island .. Bull 46, p 126
from Russia, various localities (amorphous nodular) Bull 46, pp 115-116
from South Carolina ... Bull 46, p 70; MR 1882, p 510
from Tennessee, Maury County .. Ann 18, v cont, p 1240
various localities ... Ann 16, iv, pp 628, 634;
Ann 17, ii, p 539; Ann 19, vi cont, p 551; MR 1893, p 711
from West Indies, Sombrero Island Bull 60, p 163
bibliography of .. Bull 46, pp 129-140
foreign sources of ... MR 1883-84, pp 803-804; MR 1885, pp 454-455
of Alabama ... Bull 46, pp 75-78
of Florida ... Ann 13, i, pp 117-118;
Bull 46, pp 78-79; Bull 84, pp 134-140; MR 1891, pp 562-563
of Marthas Vineyard .. Bull 46, pp 78
of North Carolina .. Bull 45, pp 70-75
of South Carolina ... MR 1882,
pp 504-521; MR 1887, pp 580-584; MR 1891, pp 557-562
do of Tennessee, classification, relations, origin, commercial development, etc.,
of Ann 16, iv, pp 610-635; Ann 17, ii, pp 513-550;
Ann 20, vi cont, pp 633-638; Ann 21, iii, pp 473-485
prospect of, in Pennsylvania .. Ann 17, iii cont, pp 955-957
Phosphate of lime in Porto Rico, occurrence of Ann 20, vi cont, p 787
nature and origin of deposits of Bull 46
Phosphate rock, statistics of .. MR 1882, pp 504-521;
Ann 18, v cont, pp 1233-1242; Ann 19, vi cont, pp 535-556;
Ann 20, vi cont, pp 619-639; Ann 21, vi cont, pp 481-502
Phosphatic deposits of Florida, character and correlation of Bull 84,
pp 111-112, 130-131, 134-140
Phosphatic limestone beds of Kentucky Bull 46, pp 116-117
Phosphatic matter, accumulation of, in morasses Ann 10, i, pp 307-308
Phosphonitrilic chlorides, chloramide, and tetrachlorhydrine, analyses of... Bull 167, pp 85, 86, 87, 89, 131, 132, 133, 134, 135

Phosphoric acid, separation of, in rock analyses Bull 78, pp 87-90

Phosphorites, foreign Bull 46, pp 46-59
Phosphorus from iron slag MR 1883-84, p 805
Phosphorus and metaphosphinic acids, chloronitrides of Bull 167, pp 77-153
Phosphorus oxychloride, action of, on ethers and chlorhydrines of silicic acid Bull 90, pp 47-55
Phosphuranylite, analysis of, from North Carolina Bull 74, p 79

Phreatic water supply in eastern United States Ann 14, ii, pp 42-47

(See, also, Well.)

Phthanite of Coast Ranges of California Mon XIII, pp 105-108
Phyllite, analysis of, from Maryland, Frederick County Bull 150, p 320
Phylopora, middle Cambrian, new genus and species of ... Bull 10, pp 50-51

Phylopora, middle Cambrian, new genus and species of ... Bull 10, pp 50-51
Physical analysis of rocks, methods of Bull 150, pp 18-27
Physical effect of precipitants Bull 36, pp 24-26

Physical geography of Texas region TF 3

(See, also, Physiography.)

Physical geology of Grand Canyon district Ann 2, pp 47-166
Physical history of Naranagassett Basin Mon xxxiii, pp 30-36
Physical properties of iron carburets Bull 14; Bull 27; Bull 35
Physical and chemical effect of sudden cooling of glass ... Bull 42, pp 98-131

Physics, terrestrial, work in, summary of Ann 14, i, pp 143-165

Physics and chemistry, work in, 1884-1891 Ann 6, pp 86-88; Bull 27; Ann 7, pp 127-130; Bull 42; Ann 8, i, pp 189-193; Bull 55; Ann 9, pp 141-143; Bull 60; Ann 10, i, pp 177-181; Bull 64; Ann 11, i, pp 125-127; Bull 78; Ann 12, i, pp 127-129; Bull 90

Physics and nature of earth's crust Ann 13, ii, pp 235-239

Physiography; Coniston lode, effect of faulting on topography near Mon in, pp 150, 181-182

Physiographic changes, recent, in Colorado, Cripple Creek Ann 16, ii, pp 18-19
Physiographic development of Alaska—Kenai Peninsula, Matanuska Valley, Copper River Plateau, etc Ann 20, vii, pp 331-335

Physiographic forms of New Mexico, Mount Taylor quadrangle TF 2, p 16

Physiographic terms, definition of Ann 19, ii, pp 21-23

Physiographic types TF 1; TF 2

Physiography; Comstock lode, effect of faulting on topography near Mon in, pp 150, 181-182
Physiography; earth movement in Great Lakes region, geographic changes resulting from..Ann 18, ii, pp 639-640
Grand Canyon, walls of ..Mon 11, pp 140-170, 173-178
Grand Canyon district, Kaibab Plateau, surface of ...Mon 11, pp 135-139, 192-198
Paria Plateau, drainage of Mon 11, pp 200-203
plateaus of ...Mon 11, pp 9-19
terraces of ... Mon 11, pp 32, 35-37, 40, 42, 46-47
Toroweap Valley, cliffs ofMon 11, pp 84-88
interior basins, origin ofMon 1, pp 2-5
Lake Agassiz, beach ridges and deltas ofBull 39
of Alaska, Copper River countryAnn 20, vii, pp 400-404
of Arkansas, Marshall quadrangleTF 2, p 12
Poteau Mountain quadrangle TF 2, p 10
of California, Mount Shasta TF 1, p 2-3
colorado, West Denver quadrangleTF 2, p 4
colorado, Utah, and Wyoming, portions ofAnn 9, pp 677-712
copper-bearing rocks of Lake Superior, in relation to structure......Mon v, pp 165-166
of Grand Canyon districtAnn 2, pp 69-73
of Hawaiian Islands ..Ann 4, pp 81-89, 212-219
of Indian Territory, Poteau Mountain quadrangleTF 2, p 10
of Kansas, Caldwell quadrangleTF 1, p 2
Palmrya quadrangle ..TF 1, p 2
of Maine, Boothbay quadrangleTF 1, p 4
of Maryland, Chesapeake Bay, region aboutAnn 7, pp 548-564
Fredericksburg quadrangleGF 13, p 1
Nomini quadrangle ..GF 23, p 1
of Massachusetts, Martha’s VineyardAnn 7, pp 306-307
of Minnesota, Fargo quadrangleTF 1, p 1
of Missouri, Marshall quadrangleTF 2, p 4
of New Jersey, Atlantic City quadrangleTF 1, p 4
of New York, eastern, and Vermont, westernAnn 19, iii, p 175
of North Carolina, Norfolk quadrangleTF 2, p 2
of North Dakota, Fargo quadrangleTF 1, p 1
of Oregon, Roseburg quadrangleGF 49, pp 3-4
of Pennsylvania, Harrisburg quadrangleTF 2, p 8
of Tennessee, Chattanooga districtAnn 19, ii, pp 1-58
Kingston quadrangle ..GF 4, p 1
portion of ...Ann 17, ii, p 520
Sewanee quadrangle ...GF 8, p 1
of Texas ..Bull 45, pp 45-54
of Utah, southern, Vermilion CliffsMon 11, pp 51-60
of Vermont, western, and New York, easternAnn 19, iii, p 175
of Virginia, Fredericksburg quadrangleGF 13, p 1
Nomini quadrangle ..GF 23, p 1
Norfolk quadrangle ..TF 2, p 2
of Washington, river courses, changes in, due to glaciation ..Bull 40
Tacoma quadrangle ...GF 54, pp 5-6
of West Virginia, Charleston quadrangleTF 1, p 1-2
Ohio River district, terraces of upperBull 58, pp 22-38, 80-96
playa lakes and playas ..Mon xi, pp 81-86
topographic features of shore linesAnn 5, pp 75-123;
Mon i, pp 23-170; Mon xi, pp 87-124
(See, also, Geomorphology.)
Pickens sandstone in West Virginia GF 34, p 2
Pic rallumogene, analysis of, from New Mexico, Las Vegas Bull 78, p 121
Picrite-porphry, analysis of, from Michigan, Crystal Falls district ... Mon xxxvi, pp 212, 219; Bull 168, p 67
analyses of, from New York, Dewitt Mon xxxvi, p 219; Bull 168, p 38
Picr olite, analysis of, from North Carolina, Buck Creek ... Bull 74, p 63; Bull 78, p 15
analysis of, from New Jersey, Montville (residue from) Bull 78, p 18
Piedmont Plain, brief description of Ann 19, i, pp 11, 16
Piedmont Plateau, general description of GF 70, p 1
of Maryland, pre-Cambrian rocks of Ann 16, i, p 838
of middle Atlantic coast, general relations of granitic rocks in Ann 15, pp 657-684
remarks on ... GF 13, p 1
Piedmont quadrangle, West Virginia–Maryland, geology of GF 28
Piedmont region of middle Atlantic slope Ann 7, pp 548-550
Piedmontite, analysis of, from Maryland, Pine Mountain Bull 113, p 111
thin section of, from Pennsylvania, South Mountain (in aporhyolite) ... Bull 136, pp 116-117
Piedra River, flow of, measurements of Ann 18, iv, pp 281-283; Ann 19, iv, pp 411-413; Ann 20, iv, pp 59, 402; Ann 21, iv, pp 298-299; Bull 140, pp 197-198; WS 11, p 71; WS 16, p 145; WS 28, pp 139, 142, 145; WS 38, pp 308-309
Pierre beds, southeastern limit of, on Great Plains Ann 16, ii, p 573
Pierre clay in Nebraska Ann 19, iv, pp 736, 759
Pierre formation or group Bull 82, pp 211, 220
in Colorado .. Ann 17, ii, pp 567-569, 571; Mon xxvii, pp 69-70; Bull 82, p 191; GF 36, p 8; GF 58, p 2
in North Dakota and South Dakota Bull 144, pp 56-57
in Wyoming ... Bull 119, pp 23-24
Pierre shale in Black Hills Ann 21, iv, pp 555-563
in Colorado .. GF 9, pp 6, 8; GF 68, p 2
in Montana .. Bull 139, p 47; GF 1, p 2; GF 56, p 3
in Nebraska, southeastern WS 12, p 20
in South Dakota ... WE 34, p 17
in Wyoming .. GF 30, p 5; GF 52, p 3
west of glacial Lake Agassiz Mon xxv, pp 86-100
Piezonietry, investigations in Ann 14, i, pp 153-154
Pig iron. (See Iron.)
Pigeon Point, Minnesota, eruptive and sedimentary rocks on Bull 109
Pigeon slate in Tennessee and North Carolina GF 16, p 2; GF 20, p 2; GF 25, p 2
Pikes Peak, Colorado, minerals from neighborhood of ... Bull 20, pp 40-73
Pikes Peak district, Colorado, bibliography of GF 7, p 5
Pikes Peak Forest Reserve, Colorado, boundaries, timber, fires, mining, etc., in Ann 20, v, pp 3-5, 63-74
Pikes Peak quadrangle, Colorado, geology of GF 7
Pikeville quadrangle, Tennessee, geology of GF 21
Pilarcitos and San Andreas reservoirs, California, discharge of, measurements of ... Ann 18, iv, p 370
Pilgrim limestone in Montana, description and sections of Ann 20, iii, pp 286, 330, 340, 364, 368; GF 55, p 2; GF 56, p 2
Pilinite, chemical composition of Bull 125, p 98
Pilling (J. C.), resignation of, from office of chief clerk Ann 12, i, p 19
Pinacese of Cretaceous of Black Hills Ann 19, ii, pp 644-645
of Mesozoic of California Ann 20, ii, pp 362-363
of Mesozoic, older, of North Carolina Ann 20, ii, pp 306-310
Pinaceae of Triassic of Pennsylvania Ann 20, ii, pp 249-254

Pine, yellow, reproduction and growth of Ann 19, v, pp 91-95

Pine zones in Washington Forest Reserve Ann 19, v, pp 327-330

(Pine diorite of Montana, Little Belt Mountains. Ann 20, iii, pp 81-82

Pinto diorite of Montana, Little Belt Mountains. Bull 106, pp 88-89

Pinyon conglomerate of Wyoming GF 30, p 5; GF 52, p 3

Pinyon Peak conglomerate in Yellowstone Park Mon xxxii, ii, pp 184-188

Pitch coal of Oregon, Coos Bay coal field Ann 19, iii, pp 368-376

Pitchstone, analysis of, from Colorado Bull 148, p 168; Bull 168, p 150

Pirsson (L. V.), description of diabase, as one of rocks of educational series. .Bull 150, pp 264-273

Pirsson (L. V.), and Weed (W. H.), geology and mineral resources of Judith Mountains, Montana Ann 18, iii, pp 437-616

Placerville quadrangle, California, geology of GF 3

Plagioclase, analysis of, from Minnesota, Pigeon Point Bull 109, p 34

Plagioclase-basalt, analysis of, from Colorado, Pikes Peak district Bull 148, p 163; Bull 168, p 145
Plagioclase-basalt, analysis of, from New Mexico, Colfax County. Bull 168, p 171
analysis of, from Texas, Uvalde County. Bull 168, p 61
of Colorado, Telluride quadrangle. GF 57, p 7
of Texas, Uvalde quadrangle. GF 64, p 3
Plagioclase feldspar, thin section of, from Nevada, Eureka district (hornblende-
mica-andesite). Mon xx, pp 400-401, 402-403
Plagioclase feldspars and phenocrysts, thin section of, from Nevada, Eureka
district. (hornblende in hornblende-bearing pyroxene-
andesite). Mon xx, pp 404-405
Plagioclase-gneiss, analyses of, from California, Amador County. Ann 17,
t, p 702; Bull 148, p 215; Bull 168, p 201
of Sierra Nevada. Ann 17, t, p 703
Plagioclase-pyroxene-gneiss, thin section of, from Sierra Nevada. Ann 17,
t, pp 742-743
of Texas region. Ann 21, vii, pp 39-50
(See also, Great Plains; High Plains.)
Planorbis rock of Florida. Bull 84, p 333
Plant lice, American fossil. Ann 13, ii, pp 341-366
Plant life, effects of, on harbors. Ann 13, ii, pp 147-165
of earth, past and present, table and diagrams of, by types and geologic
formations, with discussions thereof. Ann 5, pp 439-452
Plants as rock-builders. Ann 9, pp 619-620
descent of. Ann 5, p 452
of Red River of the North, basin of. Mon xxv, pp 601-610
of Texas, Edwards Plateau. Ann 18, ii, pp 210-211
of Washington, Tacoma quadrangle. GF 54, pp 2, 3
travertine and siliceous sinter, formation of, by vegetation of hot springs. Ann 9,
pp 613-676
types of, synoptic view of. Ann 5, pp 432-433
Plants and animals, relation of, to soil formation. Ann 12, i, pp 268-287
Plants, fossil; bituminous coal fields of Pennsylvania, Ohio, and West Vir-
ginia, stratigraphy of (fossil plants mentioned). Bull 65
classification in paleobotany, natural method of. Ann 5, pp 431-452
Cretaceous formation of Black hills as indicated by. Ann 19, ii, pp 521-546
Cretaceous, Lower, of Europe and America, analogies in. Ann 16, i, pp 463-542
Cretaceous and Tertiary plants of North America, catalogue and bibliog-
raphy of. Bull 152
cycadean trunks, fossil, from Black Hills. Ann 19, ii, pp 594-641
Devonian ferns. Bull 120
forests, petrified, of Arizona. Ann 20, ii, pp 316, 318, 319, 320, 324-332
of Black Hills. Ann 19, ii, pp 642-645
of Europe and America. Ann 16, i, pp 488-500
of Yellowstone Park. Mon xxxii, ii, pp 755-773
geographic distribution of. Ann 8, ii, pp 663-960
internal structure of, value of study of, with review of progress. Bull 56,
pp 11-38
Mesozoic flora of United States, older. Ann 20, ii, pp 211-748
of Virginia and North Carolina, older. Mon vi
Missouri coal measures flora, general range of coal measures of United
States. Mon xxxvii, pp 282-284
relation of, to European floras. Mon xxxvii, pp 298-307
nomenclature and classification of. Ann 5, pp 425-431
Plants, fossil; of Alaska, enumeration and distribution of.....Ann 17, i, pp 872–897
of Amboy clays..Mon xxvi
of auriferous gravels of California, altitude and climate indicated by...Ann 14, ii, pp 421–422
of bituminous coal fields of Pennsylvania, Ohio, and West Virginia,
stratigraphy of, with mention of species...........Bull 65
of Black Hills, Cretaceous formation as indicated by.....Ann 19, ii, pp 521–546
of Carboniferous basins of southwestern MissouriBull 98
of Cascade Range, associated with lavas..................Ann 20, iii, pp 37–64
of Champlain clays in Massachusetts.....................Mon xxix, pp 718–720
of Coal Measures, lower, of Missouri......................Mon xxxii
of Colorado, Denver Basin.................................Mon xxvii, pp 466–473
of Cretaceous of Black Hills.................................Ann 19, ii, pp 593–594
of Cretaceous and Tertiary of North America, catalogue and bibliography
of...Ann 152
of Cretaceous, lower, of England, table of distribution of...Ann 16, i, pp 482–483
of Portugal, lists of..Ann 16, i, pp 526–532
of Dakota group..Ann 19, ii, pp 702–709; Mon xvii
of Danville quadrangle, Illinois-Indiana.....................GF 67, p 3
of Devonian..Bull 120, pp 49–50
of Nevada, Eureka district.....................................Mon xx, pp 69–70
of New York..Bull 16, pp 25–33, 63–66
of Eocene ..Bull 83
of Esmeralda formation of Nevada.........................Ann 21, ii, pp 209–222
of Indian Territory, McAlester coal field................Ann 19, iii, pp 457–538
of Laramie age, distribution of, table of and discussion thereof.....Ann 6,
pp 440–536
of localities other than those of Potomac formation at which Potomac spe-
cies or their allies have been found.........................Mon xv, pp 368–372
of Massachusetts during terrace period..................Mon xxix, pp 739–740
of western..Mon xxix, pp 394–398
of Mesozoic, older, of North Carolina.......................Mon vi, pp 97–128
of Virginia...Mon vi, pp 1–96
of Montana, Boxeman coal field.............................Bull 105, pp 43–66
of Montana formation...Bull 163
of Narragansett Basin...Mon xxxii, pp 203–204, 347
of Newark system..Bull 85, pp 62–65, 126–129
of North America, later extinct.................................Mon xxxv
of Payette formation...Ann 18, iii, pp 721–744
of Potomac formation.....Ann 15, pp 344–397; Mon xv, pp 63–325; Bull 56, pp 43–52
geologic affinities of...Mon xv, pp 338–348
identical with or allied to species described from other localities and
formations...Mon xv, pp 358–367
of Texas...Ann 21, vii, pl xxxix
Black and Grand prairies.................................Ann 21, vii, pp 164–166, 314–316, pl xxxix
of Triassic rocks of New Jersey and Connecticut Valley......Mon xiv, pp 77–95
of Wamsutta group in Narragansett Basin................Mon xxxii, p 158
of Washington...Bull 108, pp 103–104
of Yellowstone Park..Mon xxxii, ii, pp 651–682
paleobotany, definition of..................................Ann 5, p 363
paleobotany; future prospects of.........................Ann 5, pp 365–366
Plants, fossil; paleobotany, sketch of Ann 5, pp 357-452
paleobotany and botany, interdependence of Ann 5, pp 366-367
Potomac formation, lignite and fossil wood of Bull 56
Potomac or younger Mesozoic flora, monograph on Mon xv
Pottsville formation in southern anthracite coal field, Pennsylvania, stratigraphic succession of fossil flora of Ann 20, ii, pp 749-930
species of, from each geologic formation, table of number of .. Ann 5, pp 440-441
structure of, internal, value of study of Bull 56, pp 11-38
travertine and siliceous sinter, formation of, by vegetation of hot springs
Ann 9, pp 613-676
types of, synoptic view of Ann 5, pp 432-433
wood, fossil, from Virginia, Richmond Basin MR 1887, p 600
analysis of, from Virginia, Richmond Basin Ann 19, ii, pp 516-519
Plastic, analysis of, from Michigan (land) MR 1887, p 600
analysis of, from Ohio (calcined) MR 1887, p 600
Plastic clay. (See Clay, plastic.)
Platanacese of Cretaceous of Black Hills Ann 19, ii, p 706
of Dakota group.. Mon xvii, pp 72-75
of North America (extinct)... Mon xxxv, pp 102-110
of Laramie group.. Bull 37, pp 34-37
of Yellowstone Park.. Mon xxxv, ii, pp 727-729
Plateau province of western United States Ann 2, pp 49-68; Ann 6, pp 113-124; Mon ii, pp 9-15, 217-218
(See, also, Arizona; Colorado; New Mexico; Utah; Wyoming.)
Platiniferous nickel ore from Canada Bull 64, pp 20-21
Platiniridium, analyses of, from Brazil and Russia MR 1883-84, p 581
Platinum, foreign sources of MR 1883-84, pp 576-577; MR 1885, pp 367-368
in Alaska, Yukon district, occurrence of Ann 18, iii, p 366
in Russia... MR 1883-84, pp 577
Ann 18, v, p 349; Ann 19, vi, pp 269-271; Ann 20, vi, p 293
pyro-electric qualities of alloys of Bull 54, pp 126-164
Platinum ore, analysis of, from Australia, California, Russia, and South America .. MR 1883-84, p 577
analysis of, from Oregon .. MR 1885, p 367
from various countries ... Ann 16, iii, p 633
Platte River, course and character of TF 2, p 6
drainage areas in basin of .. Bull 140, pp 95, 103, 114
hydrography of basin of .. Ann 12, ii, pp 238-240
hydrography of and irrigation in basin of Ann 13, iii, pp 73-91
profile of ... WS 44, pp 74-76
rainfall and run-off in basin of Ann 20, iv, pp 256-266
stream measurements in basin of Ann 13, iii, pp 83, 84, 85, 93; Ann 18, iv, pp 141-193; Ann 19, iv, pp 300-337; Ann 20, iv, pp 54, 55, 255-304; Ann 21, iv, pp 192-219;
Bull 131, pp 28-32; Bull 140, pp 95-123; WS 11, pp 50-56; WS 15, pp 81-100; WS 27, pp 76-89; WS 37, pp 214-244
Playa lakes and playas, especially those in Lahontan Basin Mon xi, pp 81-85
Playa mud, analysis of, from Nevada, Carson Desert Mon xi, p 83
Pleistocene, Quaternary, and Glacial, remarks on use of the names Mon i, pp 22, 385-396
Pleistocene base-levels in Catoctin belt ...Ann 14, ii, pp 380-382
Pleistocene climate as revealed by Lake Lahontan records Mon xi, pp 255-268
especially of Great Basin .. Ann 4, pp 463-464; Mon i, pp 265-318
Pleistocene drainage in Great Basin Mon xi, pp 28-32
Pleistocene epochs, provisional classification of, with attendant or character-istic phenomena................ Ann 6, p 212; Mon i, p 273
Pleistocene erosion in Colorado, La Plata quadrangle.................. GF 60, p 12
Pleistocene fossils; Equus fauna, age of Mon i, pp 393-402
from American localities between Cape Hatteras and Cape Roque, includ-ing the Bermudas Bull 24
mammalian fauna of Great Britain ... Mon i, pp 399, 400, 401
Mollusca of Great Basin ... Bull 11, pp 13-66; Mon i, pp 298-299
of Lake Lahontan sediments ... Mori xi, pp 238-249
Ostreiidae of North America .. Ann 4, pp 314-316
Pleistocene history of Black Hills ... Ann 21, iv, pp 561-562
of California, Mono Valley .. Ann 8, i, pp 261-394
of Colorado, Pikes Peak quadrangle GF 7, p 5
of Iowa, northeastern ... Ann 11, i, pp 189-577
of Massachusetts, western .. GF 50, p 3
of Sierra Nevada .. GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, p 2; GF 37, p 2; GF 39, p 2; GF 41, p 2; GF 43, p 2; GF 51, p 2
record of, in Columbia formation Ann 7, pp 637-639
Pleistocene lakes, classes (two) of .. Mon xxv, pp 192-195
of Great Basin, map showing .. Ann 8, i, pp 268-269; Mon i, pp 6-7
sketch of ... Bull 11, pp 9-12
Pleistocene movements in Alaska, Yukon district Ann 18, iii, pp 265-275
Pleistocene oscillations of land and sea, review of Mon xxv, pp 501-516
Pleistocene period, denudation in Grand Canyon during Ann 2, pp 95-101
in Alaska, remarks on ... Ann 17, i, p 863
southwestern, history of .. Ann 20, vii, pp 248-258
in Massachusetts, western ... Mon xxxix, pp 508-753
Lake Bonneville, geologic history of Ann 2, pp 167-200; Mon i
Lake De Soto, geologic history of ... Bull 84, pp 133, 324
Lake Lahontan, geologic history of ... Ann 3, pp 195-235; Mon xi
morasses, fresh-water, of United States Ann 10, i, pp 201-339
swamps, sea-coast, of eastern United States Ann 6, pp 359-398
Pleistocene rocks; Admiralty till of Washington GF 54, p 4
Æolian sand rock of Florida .. Bull 84, p 320
alluvial deposits of Texas, Black and Grand prairies Ann 21, vii, pp 345-361
alluvial formations in Nebraska .. Ann 19, iv, pp 732, 740
alluvium in California, Marysville quadrangle GF 17, p 1
in Washington, Tacoma quadrangle GF 54, p 5
Barnstable series of New England coast Ann 18, ii, pp 539-541
bitumen, deposits of ... Ann 11, i, pp 595-596
Bonneville beds in Utah .. GF 65, p 3
Bonneville beds in Utah ... Mon i, pp 188-213; GF 65, p 3
Bulla striata marls of Florida .. Bull 84, pp 147, 322
Columbia formation in Virginia, District of Columbia, and Maryland Ann 7, pp 594-612, 635, 637-639; Ann 12, i, pp 384-407; GF 13, p 2; GF 23, pp 1-2; GF 70, pp 4-5
correlation of ... Ann 18, ii, p 386
relation of, to clays of New England Ann 17, i, p 1004
to Lafayette formation ... Ann 12, i, pp 430-496
Coos conglomerate of Oregon, correlation of Ann 18, ii, p 336
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY (BULL. 177)

Pleistocene rocks; Cornfield Harbor clays of Maryland, correlation of. Ann 18, ii, p 336

correlation of .. Ann 18, ii, pp 328, 335-336

decay, subaerial, of rocks, and origin of red color of certain formations. Bull 52

drift in Illinois, average thickness of. Mon xxxviii, pp 542-549

in Illinois, Danville quadrangle GF 67, p 4

in Nebraska ... Ann 19, iv, p 734

influence of, on drainage in region of Illinois glacial lobe. Mon xxxviii, pp 460-541

drift sheet, Illinoian, and its relations. Mon xxxviii, pp 24-118

drift sheet, Iowan, and associated deposits. Mon xxxviii, pp 131-184

drift sheet, Wisconsin .. Mon xxxviii, pp 191-417

driftless area of Upper Mississippi................................. Ann 6, pp 205-322

dunes, sand, in Nebraska .. Ann 19, iv, pp 733, 741

earth movement in Great Lakes region Ann 18, ii, pp 595-647

earthquake, Charleston .. Ann 9, pp 209-258

earthquakes in California, 1889-1898 Bulls 68, 95, 112, 114, 129, 147, 155, 161

Equus beds, correlation of .. Ann 18, ii, p 336; Bull 84, pp 283, 285, 317

Everglades limestone of Florida ... Bull 84, pp 154, 325

Gale sands of Washington .. GF 54, p 5

glacial boundary in Pennsylvania, Ohio, Kentucky, Indiana, and Illinois .. Bull 58

glacial history and post-glacial deposits of Cape Cod district. Ann 18, ii, pp 550-574

glacial Lake Agassiz, beaches and deltas of. Bull 39

monograph on .. Mon xxv

glacial lobe, Illinois, monograph on Mon xxxviii

glacial phenomena about Leadville, Colorado Ann 2, pp 228-230

glaciation; ice invasions, rock scorings of the great. Ann 7, pp 155-248

moraine, terminal, of second Glacial epoch Ann 3, pp 295-402

river courses in Washington, changes in, due to Bull 40

(See, also, main entries Glaciation; Glaciology.)

Glacier Bay, Alaska, and its glaciers Ann 16, i, pp 415-461

Glaciers. (See main entry Glaciers.)

gravels, shore and river, of Sierra Nevada Ann 14, ii, pp 465-469

Ground-ice formation of Alaska Ann 17, i, pp 850-860; Ann 18, ii, p 335; iii, p 219

Illinoian drift in Danville quadrangle, Illinois-Indiana GF 67, p 4

Iowan silt in Danville quadrangle, Illinois-Indiana GF 67, pp 4-5

Kansan till of Illinois, Iowa, etc. Mon xxxviii, pp 105-106, 119-123

hot springs, deposits of .. Ann 9, pp 619-676

Kowak clays of Alaska, description and correlation of Ann 17, i, p 856; Ann 18, ii, p 335; iii, p 219; Bull 84, pp 265-268, 327

lacustrine formations in Mexico Mon 1, p 402

lake beds in California, Truckee quadrangle GF 39, pp 7-8

lake shores, topographic features of Ann 5, pp 75-123

Leona formation of Texas .. Ann 18, ii, pp 253-254; GF 42, p 3; GF 64, p 3

loess in Nebraska .. Ann 19, iv, p 733

origin of .. Mon xxvii, pp 274-278

loess, Iowan, structure, mode of deposition, etc., of Mon xxxviii, pp 153-184

loess soils of Illinois .. Mon xxxviii, pp 793-794

loessial epoch in Denver Basin Mon xxvii, pp 258-266, 272-278

Midland sands in Washington GF 54, p 5

morainic systems within region of Illinois glacial lobe. Mon xxxviii, pp 192-417

Naushon series of Massachusetts .. Bull 84, p 330
Warman, PLEISTOCENE. 623

Pleistocene rocks; nomenclature of beds ofBull 84, pp 320-338

of Alaska ..Ann 21, ii, pp 363-364, 478-479
southwestern, notes onAnn 20, vii, pp 174-179, 184-187, 237
Sushitna Basin, notes onAnn 20, vii, pp 16-17
Tanana and White river basinsAnn 20, vii, pp 473-477
of Atlantic slope, middleBull 141, p 33
of California, Bidwell Bar quadrangleGF 43, pp 5-6
Big Trees quadrangleGF 51, p 7
Colfax quadrangle ...GF 66, pp 6-7
Downieville quadrangleGF 37, p 7
Jackson quadrangle ..GF 11, p 5
Lassen Peak districtAnn 8, pp 422-424
Lassen Peak quadrangleGF 15, p 1
Marysville quadrangleGF 17, p 1
Nevada City, Grass Valley, and Banner Hill districts ..GF 29, p 5
Placerville quadrangleGF 3, p 5
Pyramid Peak quadrangleGF 31, pp 6-8
Sacramento quadrangleGF 5, p 3
San Clemente Island ...Ann 18, ii, pp 491-493
Smartsville quadrangleGF 18, p 5
Truckee quadrangle ..GF 39, pp 6-7
of coastal plain of southeastern United StatesAnn 13, i, p 104
of Colorado, Denver BasinMon xxvii, pp 40-42, 255-278
La Plata quadrangle ..GF 60, pp 5-6
Leadville district ...Ann 2, pp 220-221, 256; Mon xi, pp 40-42, 71-72
Pueblo quadrangle ..GF 36, p 4
Silver Cliff and Rosita HillsAnn 17, ii, pp 322-323, 392-393
of District of ColumbiaGF 70, pp 4-5
of Florida ..Bull 84, pp 149-156
of Idaho ..Ann 16, ii, pp 233-234; Ann 20, iii, pp 100-101, 107-198
Boise quadrangle ..GF 45, p 5
Idaho Basin ..Ann 18, iii, pp 657-675
of Illinois, beneath Illinoian till sheetMon xxxviii, pp 105-118
of Illinois-Indiana, Danville quadrangleGF 67, p 1
of Kansas ..Bull 57, pp 38-45; Bull 137, pp 24-28
of Louisiana ..Bull 142, p 26
of Maine, Mount DesertAnn 8, ii, pp 994-1034
of Maryland, Chesapeake Bay, vicinity of Washington (D. C.) quadrangleGF 70, pp 4-5
of Massachusetts ..Ann 17, i, pp 1000-1003
Cape Ann ..Ann 9, pp 546-576
Holyoke quadrangle ...GF 50, p 6
Marthas Vineyard ...Ann 7, pp 306-325, 347-353
Nantucket Island ..Bull 53
southeastern, in relation to glacial brick claysAnn 17, i, p 998
of Montana, Livingston quadrangleGF 1, p 3
of Nebraska, southeasternWS 12, pp 21-24
of Nevada, Eureka districtMon xx, pp 31-33
of Ohio, Huntington quadrangleGF 69, p 5
of Oregon, central northwesternAnn 4, pp 435-464
of Rhode Island and southeastern Massachusetts, correlation of, in relation to glacial brick claysAnn 17, i, pp 988
of Sierra Nevada ...Ann 17, i, pp 556-559, 594-598
Pleistocene rocks of South Dakota; Black Hills, southern part. Ann 21, iv, pp 545–549
of South Dakota, southeastern ... WS 34, pp 17–22
of Texas ... Bull 45, pp 86–87
Nueces quadrangle .. GF 42, p 3
Uvalde quadrangle .. GF 64, p 3
of United States, names applied to, list of Bull 84, pp 320–338
of Utah, Uinta Basin ... Ann 17, i, p 922
of Virginia, Washington (D. C.) quadrangle GF 70, pp 4–5
of Washington, Tacoma quadrangle GF 54, pp 3–5
of West Virginia, Huntington quadrangle GF 69, p 5
of Wyoming .. Bull 119, p 27
Absaroka district .. GF 52, p 6
Black Hills, southern part .. Ann 21, iv, pp 545–549
of Yellowstone Park ... GF 30, pp 3–4, 5
Onion Creek marl and allied deposits in Texas Ann 18, ii, pp 252–253
Osceola till in Washington ... GF 54, p 4
Peorian soil in Illinois-Indiana, Danville quadrangle GF 67, p 5
Peorian soil and weathered zone ... Mon xxxviii, pp 135–190
relations of ... Ann 14, i, pp 110–113
San Pedro beds, correlation of .. Ann 18, ii, p 335
sands and gravels, upland, terrace, and dune, in eastern Colorado Ann 17, ii, pp 574–580
Sangamon soil and weathered zone Mon xxxviii, pp 125–130
Sankaty beds of New England .. Ann 17, i, p 976
shore and river gravels and moraines of Sierra Nevada Ann 14, ii, pp 468–470
Silveria formation and other silt deposits Mon xxxviii, pp 111–118
Simmons Bluff beds, South Carolina, correlation of Ann 18, ii, p 335
soils of Alabama, Gadsden quadrangle GF 35, pp 3–4
of Alabama, Stevenson quadrangle GF 19, pp 3–4
of California, Jackson quadrangle GF 11, p 6
Placeville quadrangle .. GF 3, p 3
Pyramid Peak quadrangle .. GF 31, p 8
Sacramento quadrangle ... GF 5, p 3
Smartsville quadrangle ... GF 18, p 6
of Georgia, Ringgold quadrangle .. GF 2, p 3
Stevenson quadrangle .. GF 19, pp 3–4
of Idaho, Boise quadrangle .. GF 45, p 7
of Illinois-Indiana, Danville quadrangle GF 67, p 6
of Kentucky, Estillville quadrangle GF 12, p 5
London quadrangle ... GF 47, p 3
Richmond quadrangle ... GF 46, p 4
of Maryland, Piedmont quadrangle GF 12, p 5
of New Mexico, Mesilla Valley ... WS 10, pp 37–39
of Ohio, Huntington quadrangle ... GF 69, p 6
of Porto Rico .. WS 32, pp 32–33
of South Dakota, Black Hills, southern part Ann 21, iv, pp 578–582
of Tennessee, Chattanooga quadrangle GF 6, p 3
Cleveland quadrangle ... GF 20, p 4
Estillville quadrangle ... GF 12, p 5
Kingston quadrangle ... GF 4, p 4
McMinnville quadrangle ... GF 22, p 3
Pikeville quadrangle .. GF 21, pp 3–4
Ringgold quadrangle .. GF 2, p 3
Pleistocene rocks; soils of Tennessee, Sewanee quadrangle........GF 8, p 4
soils of Tennessee, Standingstone quadrangle................GF 53, pp 4-5
of Tennessee, Stevenson quadrangle........................GF 19, pp 3-4
of Utah, surficial formations of Tintic district...Ann 19, iii, pp 666-669, 673
of Virginia, Estillville quadrangle.........................GF 12, p 5
Franklin quadrangle..GF 32, pp 5-6
Pocahontas quadrangle....................................GF 26, p 5
Staunton quadrangle......................................GF 14, p 4
Tazewell quadrangle......................................GF 44, pp 5-6
of Washington, southeastern...............................WS 4, pp 57-64
Tacoma quadrangle..GF 54, pp 9-10
of West Virginia, Buckhannon quadrangle..................GF 34, p 4
Franklin quadrangle..GF 32, pp 5-6
Huntington quadrangle...................................GF 69, p 6
Piedmont quadrangle......................................GF 28, pp 5-6
Pocahontas quadrangle...................................GF 26, pp 15
Staunton quadrangle......................................GF 14, p 4
Tazewell quadrangle......................................GF 44, pp 5-6
of Wyoming, Black Hills, southern part.................Ann 21, iv, pp 578-582
Steilacoom gravel of Washington..................GF 54, p 5
stratified drift in Washington.......................GF 54, p 4
surficial deposits of Texas, Black and Grand prairies...Ann 21, vii, pp 345-361
Teay formation of Huntington quadrangle, West Virginia-Ohio...GF 69, p 5
Tehuelche formation of South America, correlation of.........Ann 18, ii, p 336
terrace formations of San Francisco Peninsula........Ann 15, pp 463-465
terraces in California, Truckee quadrangle............GF 39, pp 7-8
in Texas, along Colorado, Rio Grande, etc...........Ann 18,
n, pp 247-256; Bull 164, p 55
terraces, river, in Washington, southeastern..........WS 4, pp 56-57
terraces and modern deposits of Massachusetts, western-central...Mon xxix,
pp 722-753
thinolite, crystallographic study of.......................Bull 12
Tisbury beds of Martha's Vineyard....................Ann 17, i, p 977
Toronto formation in region of Illinois glacial lobe...Mon xxxviii, pp 185-190
Truro series of New England coast...................Ann 18, ii, pp 541-548
Uvalde formation of Texas..................................GF 42, p 3
Vashon drift in Washington................................GF 54, p 4
Vermetus rock of Florida...............................Bull 84, p 337
volcanic eruption, a late, in northern California, and its peculiar lava....Bull 79
volcanic eruptions in western United States........Mon 1, pp 323, 326, 330, 336-338
of Uinkaret Plateau.....................................Mon 11, pp 111-112
wells in Michigan, Lower Peninsula....................WS 30, pp 67-69
White sand of Florida....................................Bull 84, p 338
Wisconsin drift in Illinois-Indiana, Danville quadrangle.....GF 67, p 5
Yarmouth soil and weathered zone.....................Mon xxxviii, pp 119-124
Yukon silts of Alaska.................................Ann 18, iii, pp 200-201
Pleistocene winds in Lake Bonneville Basin.........Mon 1, p 332
Pleurocelidae of North America.........................Ann 16, i, pp 183-185
Pleurocelus, description of...........................Ann 16, i, pp 183-185
Pleurotomariidse from Chico-Tejon series of California....Bull 51, pp 25-26
from clays and marls of New Jersey....................Mon xviii,
from Cretaceous of Pacific coast.......................Bull 133, p 64

Bull. 177—01—40
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Pleurotomariidse from Colorado formation Bull 106, p 161
from Miocene deposits of New Jersey ... Mon xxiv, pp 114-117
Pliocene, boundaries of .. Bull 84, p 22
origin of name .. Bull 84, p 333
(See, also, Neocene.)
Pliocene fossils of Oregon ... Ann 17, i, pp 476, 477, 478

Pliocene period, definition and features of Bull 84, p 22
Pliocene rocks; Auriferous gravels of California............................ Bull 84, pp 219-222
of Alaska ... Bull 84, pp 259-267
of Atlantic slope, middle ... Bull 141, pp 32-33
of California ... Mon xiii, pp 219-221, 461
of Colorado .. Bull 84, pp 305-308
of Florida ... Bull 84, pp 127-134, 140-149
of Georgia .. Bull 84, pp 84-85
of North Carolina .. Bull 84, p 74
of Oregon, northwestern ... Ann 17, i, pp 476-478
of South Carolina ... Bull 84, pp 80-81
of southern Atlantic coast, geologic history of Bull 84, pp 191-193
of Virginia .. Bull 84, pp 66-67
(See, also, Neocene.)
Pliohippus beds in Denver Basin .. Mon xxvii, p 480; Bull 84, p 333
Plombierite, chemical constitution of ... Bull 125, pp 82-105
Plum Creek Timber Land Reserve; boundaries, timber, fires, mining, lumbering, etc., in ... Ann 20, v, pp 3, 6, 74-86
Plummer (F. G.), Mount Rainier Forest Reserve, Washington. Ann 21, v, pp 81-143
Pocahontas formation of Virginia and West Virginia GF 26, p 3; GF 44, pp 3, 4-5
Pocahontas quadrangle, Virginia-West Virginia, geology of GF 98
Pocatello irrigation canal, Idaho, surveys for Ann 13, iii, pp 422-427
Pocono sandstone of Maryland, Virginia, and West Virginia GF 14, pp 2-3; GF 28, p 3; GF 32, pp 3-4; GF 34, p 2; GF 61, pp 4-5
Pocilopoda from middle Cambrian of North America Bull 30, pp 54-58, 149-222
from Nevada, Eureka district .. GF 18, pp 89-98, 207-211, 266-267; Mon xx, pp 321, 323-324, 325, 330, 333
Poquinip limestone of Nevada, age, character, and thickness of Ann 3, p 253; Mon vii, p 8; Mon xx, pp 48-54
features and fossils of .. Ann 3, pp 260-262
fauna of .. Mon xx, pp 49-54
Poikilitic structure of igneous rocks of Michigan Bull 62, pp 78, 79, 183, 196
of igneous rocks of Yellowstone Park .. Mon xxxi, ii, passim
Point Gardner, Alaska, coal near ... Ann 17, i, p 773
Point of Rocks group of Uinta Mountains Bull 82, p 235; Bull 83, p 121
Poison Canyon series of Colorado .. Bull 84, p 333
Poison Canyon formation of Colorado .. GF 68, p 2
Pokewa formation of Lake Superior region Ann 21, iii, pp 357-358
Pollock (W. C.), digest of decisions relating to use and control of water in the arid region. (See p 113 of this bulletin.)
Pollucite, chemical composition of ... Bull 125, p 31, 103
Pollution of Naugatuck River, Connecticut WS 22, pp 21-22
of Potomac River ... Ann 19, iv, pp 134-146, 147-149, 153, 155, 156-161
of Quinnipiac River, Connecticut ... WS 22, pp 20-21
of Shenandoah River ... Ann 19, iv, pp 136-139, 156-161
of streams, discussion of ... WS 3, pp 18-23; WS 22, pp 15-22
Polybasite, analysis of, from Colorado, Aspen mining district Mon xxxi, p 225
Polycrase, analysis of, from North Carolina, Henderson County Bull 74, p 75
Polylithionite, analysis of ... Bull 113, p 23
chemical constitution of .. Bull 125, p 48
Polymignite, chemical constitution of .. Bull 125, p 80
Polyphosphonitrilic chloride, analysis of Bull 167, p 134
Polypodiaceae from Dakota group .. Mon xvii, pp 24-25
Polyzoa from Paleozoic strata of Nevada, Eureka district Mon xx, pp 322, 326, 331
Ponderang Valley, Connecticut, Newark system in Ann 21, ii, pp 7-162
Ponderosa marls of Texas .. Bull 82, pp 116, 118, 123, 124, 127, 130, 221, 223
Pondville group of Narrangansett Basin Mon xxxiii, pp 135-141
Porcelain clay. (See Clay, porcelain.)
Porcupine beds of Alaska, correlation, etc., of Ann 18, iii, pp 197-199
Porcupine gold district of Alaska, placer deposits of Ann 21, ii, pp 374-376
Porcupine porphyry of Michigan .. Mon v, pp 200-212
Porcupine River, Alaska, notes on .. Alaska (2), pp 88
Pore space in soil and rock, determinations of Ann 19, ii, pp 208-218
Porifera from Nevada, Eureka district Mon viii, pp 11-12, 99-106; Mon xx, pp 320, 325, 330
from Yellowstone Park .. Mon xxx, ii, p 508
Porphyrite, analysis of, from California, Banner Hill Ann 17, ii, p 59
from California, Eldorado County ... Ann 14, ii, p 473; Bull 148, p 216; Bull 168, p 203
from California, Eldorado County ... Ann 17, i, p 731; Bull 148, p 213; Bull 168, p 199
from Colorado, Leadville district ... Mon xii, pp 340,589; Bull 148, p 173; Bull 168, p 155
West Elk Mountains, Storm Ridge .. Ann 14, ii, p 227;
Bull 148, p 178; Bull 168, p 160
from Montana, Crazy Mountains ... Bull 148, pp 142,143; Bull 168, pp 120,121
near East Gallatin River (highly altered) Bull 60, p 152;
Bull 148, p 138; Bull 168, p 112
in California, Colfax quadrangle ... GF 66, p 3
Jackson quadrangle ... GF 11, pp 3-4
Lassen Peak quadrangle .. GF 15, p 1
Marysville quadrangle .. GF 17, p 1
Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 2-3
Placerville quadrangle .. GF 3, p 3
Smartsville quadrangle ... GF 18, p 3
Sonora quadrangle ... GF 41, p 4
in Colorado, Anthracite quadrangle .. GF 9, p 4
Crested Butte quadrangle .. GF 9, p 5
Mosquito Range ... Ann 2, p 224; Mon xi, pp 85,334-344
in Montana, Livingston quadrangle .. GF 1, p 3
Three Forks quadrangle .. GF 24, p 4
in Sierra Nevada ... Ann 14, ii, pp 471-473
in Utah, Henry Mountains .. Ann 14, ii, pp 175-177; Mon xi, pp 359-363
in Wyoming, Electric Peak ... Ann 12, i pp 588-595
thin section of, from Colorado, Leadville district Mon xi, pp 336-337
Porphyrite and porphyry, use of the terms Ann 12, i, p 582
Porphyrite and diabase group of Nevada City and Grass Valley districts,
California ... Ann 17, ii, pp 56-75
Porphyrite-brecia of California, Grass Valley district Ann 17, ii, p 78
Porphyrite-diorite, analysis of, from Colorado, West Elk Mountains, Mount
Marcellina ... Bull 148, p 178; Bull 168, p 160
Porphyritic red rock, thin section of, from Minnesota, Pigeon Point. Bull 109, pp 54-55
Porphyroid, analysis of, from Wisconsin, Menominee River. Bull 55, p 81
Porphyry, analysis of, from California, Knoxville. Mon xxi, p 144
analysis of, from Colorado, Iron Hill. Mon xii, pp 326, 589
from Colorado, Leadville, vicinity of. Mon xii, pp 326, 589; Bull 148, p 173; Bull 168, p 155
Leadville district (alteration products) Mon xii, p 603
(altered white) Mon xii, p 607
Mount Lincoln Mon xii, pp 332-589; Bull 148, p 172; Bull 168, p 154
Mount Zion Mon xii, pp 326, 589; Bull 148, p 172; Bull 168, p 154
from Germany, Muldenstein Ann 19, vii cont, p 412
from Michigan, Upper Quinnesec Falls (schistose) Bull 62, p 120, 121
from Minnesota, Pigeon Point (red) Bull 64, p 46; Bull 109, p 58; Bull 148, p 107; Bull 168, p 77
from Montana, Big Baldy Mountain Bull 139, p 106
from Missouri, near Ironton Bull 148, p 95; Bull 168, p 59
from New Mexico, Los Cerrillos Bull 42, p 43
from Utah, Henry Mountains Bull 60, p 154; Bull 148, p 183; Bull 168, p 167
in California, Downieville quadrangle GF 37, p 4
in Colorado, Cripple Creek district (augite-syenite) Ann 16, ii, pp 45-46, 66, 93
La Plata quadrangle GF 60, pp 8-9
Mosquito Range Ann 2, pp 222-224, 243-244
Rico Mountains, associated with the monzonite Ann 21, ii, pp 83, 88-90
Tenmile district GF 48, p 2
in Lake Superior region, Keweenaw series (quartziferous) Ann 3, pp 113-114
(quartzless) Ann 3, pp 112-113; Mon v, pp 91-95
in Montana, Fort Benton quadrangle GF 55, p 3
Little Belt Mountains (acidic felspathic) Ann 20, iii, pp 498-525
Little Belt Mountains quadrangle GF 56, p 3
microscopic petrography of Bull 139, pp 97-109
in South Dakota, Black Hills (intrusive) Ann iii, pp 182-194
in Utah, Mercur district Ann 16, ii, pp 377-381, 434
in Yellowstone Park Mon xxxii, ii, pp 94-97
reservation of the term, for the designation of rock structure Ann 19, i, p 22; Ann 21, ii, p 95
thin section of, from Colorado, Chalk Mountains (white) Mon xii, pp 88-89
from Michigan, Eagle Harbor sandstone Ann 5, p 239
from Minnesota, Baptism River Point (quartziferous) Mon v, pp 100-101
Carp River (felsitic) Mon v, pp 100-101
Duluth (granitic) Mon v, pp 112-113
Eagle Mountain (granitic) Mon v, pp 112-113
Great Palisades Mon v, pp 100-101
Rice Point (granitic) Mon v, pp 112-113
from Ontario, Bead Island (quartziferous) Mon v, pp 100-101
Michipicoten Island (quartziferous) Mon v, pp 100-101
from Wisconsin, Ashland County, Ironton trail (granitic). Mon v, pp 114-115
Porphyry dikes and intruded sheets of Montana, Castle Mountain mining district Bull 139, pp 64-69
Porphyry, granitic. (See Granitell.)
Porphyry-trachyte, dikes of, in Lake Champlain region Bull 107, pp 18-22
Port Camden, Alaska, coal at .. Ann 17, i, p 774
Port Graham, Alaska, Cook Inlet, coal at Ann 17, i, pp 785-787
Port Orford quadrangle, Oregon, forest conditions in Ann 21, v, p 576
Portage beds of New York, petrography and paleontology of Bull 16, pp 67-68
Portage sandstone of Western States ... Bull 80, p 62
Porter (D.), water-power streams of Maine Ann 19, iv, pp 34-111
Porters Creek group of Tennessee ... Bull 83, p 71; Bull 84, p 333
Portland cement at World’s Columbian Exposition MR 1893, pp 622-623
in America, history of ... MR 1891, pp 535-537
Portland group of rocks of New Brunswick Bull 86, pp 230-238
Porto Rico, geologic investigations in Ann 20, i, pp 55-56
mineral resources of ... Ann 20, vi cont, pp 771-787
petroleum in .. Ann 21, vii, pp 182-183
survey of, estimates and recommendations concerning Ann 21, i, pp 49-51, 57
water resources, topography, climate, irrigation, etc., of WS 32
Portugal, antimony production of ... MR 1883-84, p 645
clay products of, at Paris Exposition of 1900 Ann 21, vi cont, p 389
fossil plants of, literature of ... Ann 8, ii, pp 705-707
iron-ore deposits of ... Ann 16, iii, p 113
Jurassic and Cretaceous flora of .. Ann 16, i, pp 510-536
manganese mines and production of .. MR 1886, p 201; MR 1889-90, p 130; MR 1892, p 226; MR 1893, pp 146, 155; Ann 16, iii, pp 447, 457; Ann 17, iii, pp 215, 225; Ann 18, v, p 328; Ann 19, vi, p 121; Ann 21, vi, pp 160, 162
pyrites production of .. MR 1883-84, pp 882-884; MR 1885, pp 507-508; MR 1886, pp 654-656
tin deposits and production of ... Ann 16, iii, pp 465, 512; MR 1883-84, p 618
Poso Creek, California, flow of, measurements of Bull 140, pp 274-276
Post (W. S.) and Spurr (J. E.), report of Kuskokwim expedition (1898), Alaska .. Alaska (2), pp 28-39
Potable waters of eastern United States Ann 14, ii, pp 1-47
Potassium and sodium, method for separation of, from lithium by action of amyl alcohol on chlorides, with reference to similar separation from magnesium and calcium Bull 42, pp 73-88
Potassium salts, analyses of ... MR 1887, pp 632-639
statistics of ... MR 1887, pp 628-660
Poteau Mountain quadrangle, Arkansas–Indian Territory, physiography of TF 2, p 10
Potholes, glacial, conditions for formation of, etc Mon xxxiv, pp 324-330
in western Massachusetts .. Mon xxix, pp 532-533, 664-672
Potomac beds, location and geology of Ann 7, pp 546-547, 613-616, 638; Mon xv, pp 33-62; Bull 56, pp 38-39
Potomac clays, description of ..MR 1891, p 492
Potomac coal field of West Virginia ..Ann 14, ii, pp 573-588
Potomac formation, comparison of, with Wealden of EnglandAnn 16, i, pp 471-500
fossil wood and lignite of ..Bull 56
geologic position of ..Bull 82, p 250; Bull 145, pp 142-147
Hay Creek coal field, Black Hills, compared withAnn 19, ii, pp 570-579
in District of Columbia ..GF 70, pp 3-4
in Maryland ..Ann 7, pp 546, 613-616;
Bull 138, p 125; GF 13, p 4; GF 23, p 3; GF 70, pp 3-4
in New Jersey ..Bull 82, p 215
in North Carolina ..Ann 10, p 174; Bull 82, p 91
in Pennsylvania ..Bull 84, p 45
in South Carolina ..Bull 138, p 208
in Virginia ..Bull 82, pp 90-91; Bull 138, pp 162-163; Bull 145; GF 13, p 4; GF 23, p 3; GF 70, pp 3-4
stratigraphic and paleontologic relations ofAnn 15, pp 307-397
unconformity between Columbia formation andAnn 7, pp 582-583
Potomac and Tuscaloosa formationsAnn 12, i, pp 421-424
Potomac or younger Mesozoic floraMon xv
Potomac plants, geologic affinities ofMon xv, pp 333-348
Potomac River, drainage area ofBull 140, p 43
geologic conditions determining location ofAnn 14, ii, pp 391-393
hydrography of basin of ..Ann 14, ii, pp 134-140
profile of ..WS 44, pp 20-21
rainfall and run-off in basin ofAnn 20 iv, pp 117-121
water power on ..Ann 21, iv, pp 100-106
Potosi limestone of Missouri, character and occurrence ofBull 132, pp 17-18
Potosi rhyolite series of ColoradoGF 57, pp 5-6, 9, 14
Potsdam horizon of Nevada, fossils ofBull 30, pp 32-33
Potsdam horizon and pre-Potsdam land surface in Grand Canyon regionAnn 7, p 414
Potsdam sandstone, description of the rock as one of the educational seriesBull 150, pp 79-80
fossils from ..Bull 81, pp 222-235
in Alabama ..Bull 81, pp 305-307
in Arizona, literature of, references toBull 81, pp 219-221
in Black Hills region ..Bull 86, p 257
in Canada and Great Lakes regionBull 81, pp 207-208; Bull 86, passim
in Colorado ..Bull 81, pp 209-210, 352-354
in Dakota, references to literature ofBull 81, pp 214-216
in Delaware ..Bull 81, p 123
in Iowa ..Ann 11, i, pp 333-334; Bull 81, pp 187-188
sections showing relations ofAnn 10, i, pp 559, 560, 561, 562, 564
in Lake Superior region ...Bull 81, pp 190-199
in Maryland ..Bull 81, pp 289-290
in Michigan, Crystal Falls districtAnn 19, ii, p 151; Mon xxxvi, p 481
in Minnesota ..Bull 81, pp 181-187
in Missouri ..Bull 81, pp 199-201, 340-341
in Montana ..Bull 81, p 326
Potsdam sandstone in Nevada and Utah, equivalents of Bull 81, pp 316-319
in New Jersey Bull 81, pp 122-123; Bull 86, pp 401, 414
in Newfoundland Bull 81, pp 81-85
in Nova Scotia Bull 81, pp 56, 57
in Pennsylvania Bull 81, pp 124-132, 288-289; Bull 86, pp 408, 409
in South Dakota Bull 81, pp 347-349
in Tennessee Bull 81, pp 142-143
in Texas Bull 81, pp 216-219, 355-356
in Upper Mississippi Valley Bull 81, pp 330-334
in Utah and Nevada, equivalents of Bull 81, pp 316-319
in Vermont Bull 86, p 358
in Virginia Bull 81, pp 134-138, 294, 296, 298
in Wisconsin Mon xix, p 29; Bull 81, pp 172, 175, 176-181
in Wyoming Bull 81, pp 211-214, 349-350
Lingula sandstone of Wisconsin Bull 81, p 172
origin of name Bull 81, p 244
thin section of, from Wisconsin, Ableman Bull 150, pp 80-81
Potsdam sandstone and limestone of Texas, Packsaddle Mountain Ann 21, vii, p 89
Potsdam sandstone and pre-Potsdam surface, Lake Superior region Ann 7, pp 399-414
Potsdam series in Illinois, thickness, etc., of Ann 17, ii, pp 839-840
stratigraphic relations of Georgia formation to Bull 30, pp 20-24
Potsdamic rocks, origin of name Bull 81, p 252
Pottery at Paris Exposition of 1900 Ann 21, vi cont, pp 369-372
raw materials, methods of molding, trade-marks, etc. of Ann 17, iii cont, pp 842-880; MR 1892, pp 726-731
technology of manufacture of Ann 18, iv, pp 550-553; Ann 18, v cont, pp 1020-1021
Pottery clay. (See Clay, pottery.)
Pottery industry of United States Ann 17, iii cont, pp 842-880
Pottery materials, preparation of Ann 19, vi cont, pp 378-400
Pottsboro beds of Texas Ann 21, vii, pp 280-283
Pottsville formation of Pennsylvania southern anthracite coal field, stratigraphic succession of fossil floras of Ann 20, ii, pp 749-930
Poverty Gulch, Cripple Creek district, Colorado, character of ore deposits in Ann 16, ii, pp 168-170
Poverty Gulch and Tenderfoot Hill, Colorado, rocks of Ann 16, ii, pp 95-96
Powder River, Wyoming, irrigation along Ann 13, iii, pp 71-72
Powell (J. W.), appointment of, to Directorship Ann 2, pp xi-xii
reports of Director, 1880-1894 Ann 2, pp 11-55; Ann 3, pp 15-18; Ann 4, pp 13-32; Ann 5, pp 17-36; Ann 6, pp 15-29; Ann 7, pp 3-42; Ann 8, pp 3-93; Ann 9, pp 3-46; Ann 10, i, pp 3-80; Ann 11, i, pp 3-30; Ann 12, i, pp 3-19; Ann 13, i, pp 3-66; Ann 14, i, pp 11-165; Ann 15, pp 9-108
reports of Director on the Irrigation Survey during 1888-1891 Ann 10, ii, pp 1-68; Ann 11, i, pp 3-30; Ann 11, ii, pp 1-200; Ann 12, i, pp 3-19; Ann 12, ii
Powell (J. W.), resignation of, from Directorship of the Survey, valedictory remarks prompted by...Ann 15, p 7
Powell River, West Virginia, profile of..WS 44, p 55
Powellite, a new mineral species, description and analysis of........Bull 90, pp 34-37
Power, motive, used in irrigation..WS 1, pp 17-25
Power, water, in California, Kern RiverAnn 19, iv, pp 524-526
in California, San Bernardino ValleyAnn 19, iv, pp 548, 551
San Joaquin River..Ann 19, iv, pp 516-518
in Georgia, Altamaha Basin..Ann 20, iv, pp 166-169
Ocmulgee River...Ann 20, iv, p 167
Oconee River..Ann 20, iv, pp 167-168
Savannah Basin...Ann 20, iv, pp 155-156
Tugaloo River..Ann 20, iv, p 155
Yellow River..Ann 20, iv, p 166
in Kansas, Verdigris River..Ann 19, iv, pp 375-376
in Maine..Ann 19, iv, pp 34-111
in Michigan..WS 30, pp 18-22, 37-41
in New York, Erie Canal...WS 25, pp 178-184
Hudson River, tributaries of...WS 24, pp 37, 40, 41
Niagara River...WS 25, pp 135-143
price and possible developments of.................................WS 25, pp 184-186
St. Lawrence River...WS 25, pp 143-144
in North Carolina, Cape Fear River Basin.........................Ann 19, iv, pp 187-192
eastern...Bull 140, pp 65-66
Knoxville quadrangle...GF 16, p 6
Roanoke River Basin..Ann 19, iv, pp 174-178
Yadkin River Basin..Ann 19, iv, pp 194-200
in Shenandoah Basin...Ann 19, iv, pp 136-139, 156-161
in South Carolina, Broad River Basin................................Ann 19, iv, pp 215-219
Catawba River Basin..Ann 19, iv, pp 204-212
Saluda River..Ann 19, iv, pp 221-222
Yadkin River Basin..Ann 19, iv, pp 194-200
in Tennessee, Knoxville quadrangle...GF 16, p 6
Loudon quadrangle...GF 25, p 6
Morristown quadrangle..GF 27, p 5
on Potomac River..Ann 21, iv, pp 100-106
Pozzuolana, analysis of, from Contra Costa County, California, and Rome, Italy..MR 1883-84, p 676
Prairie soils..Ann 12, i, pp 323-326
Prase, occurrence and statistics of.................................MR 1883-84, p 753; Ann 17, iii cont, p 923; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513
Pratt (J. H.), tungsten, molybdenum, uranium, and vanadium in United States...Ann 21, vi, pp 299-318
Pre-Cambrian geology, North American, principles of......Ann 16, i, pp 571-843
Pre-Cambrian rocks of North America, review of present state of knowledge of...Bull 86
Precious-metal industry in United States from 1880 to 1892, review of...MR 1892, pp 46-94
Precious-metal ore. (See Ore, precious metal.)
Precious-metal production of Colorado, Custer County...............Ann 17, ii, p 420
Precious metals; auriferous beach sands of Alaska................Ann 18, iii, pp 85-86
Precious metals; Auriferous gravels of California. Ann 14, ii, pp 425-429, 465-467; Ann 17, i, pp 544-546; ii, pp 97, 109; Ann 18, ii, p 338; Bull 84, pp 219-222, 321; GF 3, p 3; GF 5, pp 1, 3; GF 11, pp 1, 4-5; GF 15, p 1; GF 17, p 1; GF 18, p 5; GF 29, p 4; GF 31, pp 5, 8; GF 37, pp 3-4; GF 39, pp 5, 7; GF 41, p 6; GF 49, p 4; GF 51, pp 5-6, 7; GF 63, pp 5-6; GF 66, pp 5-6.

auriferous quartz veins, genesis of. Ann 18, iii, pp 297-316

Auriferous slate series of California and Sierra Nevada. Ann 8, i, pp 404, 407; Ann 14, ii, pp 445-456; Ann 17, i, pp 569, 621-632, 659-663, 684-686; Bull 33, pp 16-18; GF 3, pp 1, 2; GF 5, pp 1, 2; GF 11, pp 1, 3; GF 15, p 1.
gangue minerals known to occur in Alaska mines Ann 18, iii, pp 61-63.
gold, concentration of, manner of. Ann 18, iii, p 314.
colloidal sulphides of. Bull 90, pp 56-61.
discovery of, in California and Nevada. Mon iv, pp 1-14.
Nome region, preliminary report on. Nome.
Prince William Sound and Copper River district, notes on Ann 20, vii, pp 421-422.
statistics of. Ann 18, iii, pp 11-12.
southwestern, notes on. Ann 20, vii, pp 259-261.
Downieville quadrangle GF 37, p 8.
Marysville quadrangle GF 17, p 2.
Mother Lode district GF 63, pp 7-10.
Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 5-6.
Placerville quadrangle GF 3, p 3.
Pyramid Peak quadrangle GF 31, p 8.
Sacramento quadrangle GF 5, p 3.
Smartsville quadrangle GF 18, pp 5-6.
Sonora quadrangle GF 41, pp 6-7.
in Colorado, Cripple Creek district GF 7, p 8.
Cripple Creek district, free, tellurides of, etc. Ann 16, ii, pp 119-122.
Denver Basin (placer) Mon xxvii, pp 269-272.
Leadville district Mon xii, pp 376, 513-518, 545, 579, 594.
in Idaho, Boise quadrangle GF 45, pp 5-6.
in Montana, Butte district GF 38, p 5.
Fort Benton quadrangle GF 55, pp 5-6.
Livingston quadrangle GF 1, p 3.
Three Forks quadrangle GF 24, p 5.
Precious metals; gold in quartz veins, source of Ann 18, iii, pp 312–314

- gold in Tennessee, Knoxville quadrangle GF 16, p 6
- in Texas, Uvalde quadrangle GF 64, p 5
- in Utah, Tintic district, production of GF 65, p 5
- solution and precipitation of, manner of Ann 18, iii, p 314
- gold-bearing veins of Alaska, sketch of Alaska (2), pp 21–28
- gold belt in California, extent and geology of GF 3, pp 1–2;
 - GF 5, pp 1–2; GF 11, pp 1–2; GF 18, pp 1–2;
 - GF 21, pp 1–2; GF 37, pp 1–2; GF 39, pp 1–2;
 - GF 41, pp 1–2; GF 43, pp 1–2; GF 51, pp 1–2
- in Georgia .. Ann 16, iii, pp 293–300
- in South Carolina .. Ann 16, iii, pp 306–309
- gold fields of southern Alaska, reconnaissance of, with some notes on general geology Ann 18, iii, pp 1–86
- of southern Appalachians, geography, history, geology, etc., of Ann 16, iii, pp 251–331
- gold ledge of Mercur district, Utah Ann 16, ii, pp 403–455
- gold-mining industry in western Oregon Ann 17, i, pp 515–520
- gold mining and metallurgy in Southern States, history of Ann 20, vi, pp 111–123
- gold ore, analysis of, from Colorado, Leadville district Mon xi, p 602
- analysis of, from Utah, Mercur mine, oxidized Ann 16, ii, p 426
- gold ores of Mercur district, Utah, theory of genesis of Ann 16, ii, pp 452–454
- gold-quartz veins in Appalachians, southern Ann 16, iii, pp 281–289
- in California, Colfax quadrangle GF 66, pp 7–8
- Mother Lode district ... GF 63, pp 7–10
- Nevada City and Grass Valley districts Ann 17, ii, pp 1–262
- Ophir ... Ann 14, ii, pp 243–284
- in Colorado, Cripple Creek district Ann 16, ii, pp 144–150
- Leadville district ... Mon xi, pp 513–515
- Telluride ... Ann 18, iii, pp 771–781, 800
- in Montana, Boulder Hot Springs Ann 21, ii, pp 233–255
- in Nevada, Comstock lode Mon iii, pp 266–289
- in Oregon, Bohemia district Ann 20, iii, pp 15–19
- observed connection of, with intrusive rocks Ann 18, iii, p 315
- gold and metallic sulphides, deposition of, mode of Ann 17, ii, pp 182–184
- gold and silver, conversion tables Bull 2
- in British Columbia, production of, 1858–1895 Ann 18, iii, pp 133
- in California, production of, Nevada City and Grass Valley districts Ann 17, ii, pp 27–262
- in Colorado; Custer County, genesis of ore of Ann 17, ii, pp 435–438, 445–447
- Custer County, mines and mining in Ann 17, ii, pp 405–472
- discovery of .. Mon xi, ii, pp 7–10
- in Elk Mountains .. GF 9, pp 2–3
- Leadville region .. Mon xi, p 594
- Telluride quadrangle, mining industries of Ann 18, iii, pp 745–850
- in eruptive rocks .. Mon xi, p 579
- in Idaho, mining districts Ann 16, ii, pp 250–274
- Silver City, De Lamar, and other mining districts Ann 20, ii, pp 65–256
- in Idaho Basin, discovery, production, etc., of Ann 18, iii, pp 651–656
Precious metals in Nevada, Comstock lode Mon iii, pp 6-7, 9, 18, 224-225, 268
in Nevada, Eureka Mon vii, passim
in Oregon, Blue River mining region, notes on........ Ann 20, iii, pp 31-32
Bohemia mining region Ann 20, iii, pp 1-31
in United States, production of, since 1792 and 1804 MR 1891,
pp 74-75; MR 1888, p 38
in Utah, Tintic district, production of, 1880-1896 Ann 19, iii, pp 614-616
Klondike district, Alaska Ann 18, iii, pp 123-124, 359
milling in Colorado, Telluride district Ann 18, iii, pp 847-848
mineral deposits in Idaho, classification of Ann 20, iii, pp 104-106
mining, gold, methods of............................ Ann 18, iii, pp 389-392
Nome region, preliminary report on...................... None
ore-bearing fissures in Colorado, Custer County Ann 17, ii, pp 422-429
ore deposition, theories of, test of...................... Ann 17, ii, pp 464-466
ore deposits in Colorado, Leadville district, source or genesis of Mon xi,
pp 367-584, 594
in Montana, Little Belt Mountains quadrangle GF 56, pp 7-8
in Nevada, Comstock lode, source or genesis of Mon iii, pp 18-21, 285-288
popular fallacies regarding Ann 4, pp 253-271
placer deposits of Alaska Ann 18, iii, pp 317-379, 364-366
of Colorado, Cripple Creek district Ann 16, ii, pp 150-151
La Plata quadrangle GF 60, pp 12, 13
Telluride district Ann 18, iii, pp 830-831
of Idaho, Boise Ridge Ann 18, iii, pp 718-719
western-central .. Ann 20, iii, pp 113-163, 234-235, 240-244
placer gold in Alaska, Yukon district, origin of Ann 18, iii, pp 366-379
quartz veins in Idaho Basin Ann 18, iii, pp 684-696
quartz veins and mineralized shear zones in Alaska, Yukon district Ann 18, iii, pp 290-316
silver, discovery of, in western United States Mon iii, pp 26-25
in country rock, determination of Ann 6, pp 345-348
in Idaho, Boise Mountains Ann 18, iii, p 718
Boise quadrangle GF 45, p 6
in Montana, Butte district GF 38, pp 3, 5, 7-8
Fort Benton quadrangle GF 55, p 6
Three Forks quadrangle GF 24, p 5
in Philippine Islands Ann 19, vi cont, p 692
in Texas, Uvalde quadrangle GF 64, p 5
in Utah, Tintic district, production of GF 65, p 5
quantitative determination of, by means of microscope Ann 6, pp 323-352
(See, also, main entry Silver.)
statistics of .. Ann 1, p 73; Ann 2, pp xxxiv-xxxvii, 331-401;
Ann 17, iii, pp 72-79; Ann 18, v, pp 141-151; Ann 19, vi, pp 127-135; Ann 20, vi, pp 103-111; Ann 21, vi, pp 119-127
veins, fissure, types of Ann 18, iii, pp 647-650
Yukon gold district, Alaska, geology of Ann 18, iii, pp 87-392
(See, also, Gold; Silver; Ores; Ore deposits; etc.)
Precious stones, foreign sources of MR 1887, pp 563-579
localities of, in United States MR 1882, pp 483-499, 728-781

Precipitation. (See Rainfall.)

Predentata of North America Ann 16, i, pp 186-202, 206-225

Prehnite, analysis of, from Tyrol, Fassa Bull 113, p 112

chemical constitution of Bull 125, pp 16, 20-21, 45, 102

composition of Bull 150, p 40

occurrence and statistics of MR 1882, p 493; MR 1893, p 682; Ann 16, iv, p 605; Ann 17, iv cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513

Preston (R. E.), gold and silver, statistics of MR 1893, pp 50-61

Preston beds of Texas Ann 21, vii, pp 252-258

Presumpscot River, Maine, flow of, measurements of Ann 20, iv, p 46

water power of Ann 19, iv, pp 97-99

Pressure, behavior of solids under high Bull 55, pp 67-75

contractions due to cooling under Bull 92, pp 50-61

effect of, on electrical conductivity of mercury Bull 92, pp 68-77

experiments showing relation of fusion and ebullition to Bull 103

fluence of, on crystallization of igneous magmas Bull 66, p 25

investigations in relation to high Ann 14, i, pp 153-154

method of obtaining and of measuring very high Bull 96, pp 17-32

relation of, to schistose structure Bull 59, p 43

Pressure and igneous fusion, relation of, investigation of Ann 14, i, pp 157-158

Pressure and temperature, dependence of fluid volume on Bull 92, pp 17-67

Pressure, density, and gravity, terrestrial, table of variation of Ann 13, ii, p 236

Pressure (high-) chemistry, investigations in Ann 14, i, pp 160-162

Pribilof Islands, Alaska, notes on Alaska (2), p 121

Price formation of Virginia and West Virginia GF 28, p 3; GF 44, p 3

Priceite, analyses of, from Oregon, Curry County Bull 55, p 58; MR 1889-90, p 505

Priest River Forest Reserve, forest conditions, timber, fires, etc., of Ann 19, v, pp 59-61, 217-252

Primal series, origin of name Bull 81, p 251

Primary rocks. (See Archean.)

Primeval rocks, possible character of Mon xiii, pp 171-174

Primitive rocks, history of term Bull 86, p 470

Primordial, origin of term Bull 81, p 243

Prince Edward Island, presence or absence of Newark rocks on Bull 85, pp 25-31

Prince William Sound, Alaska, topography of and drainage into Ann 20, vii, pp 375-384

Prince William Sound and Copper River region, Alaska, reconnaissance in, in 1898 Ann 20, vii, pp 341-423

report on Alaska (2), pp 51-63, 105-108

Princeton conglomerate in Virginia and West Virginia Ann 17, ii, pp 489-490; GF 26, p 3; GF 44, p 3

Principles of North American pre-Cambrian geology Ann 16, i, pp 571-843

Principles and definitions in geologic science Ann 11, i, pp 238-303

Principles and methods of rock analysis Bull 176

Procamelus beds of Montana Bull 84, p 333

Prochlorite, analysis of, from District of Columbia Bull 9, p 13; Bull 78, p 19

analysis of, from North Carolina, Culisagee Bull 74, p 67

chemical constitution of Bull 125, pp 54, 104
Procter (J. R.), coal fields of Kentucky MR 1892, pp 415-417
list of ores, minerals, and mineral substances of industrial importance in Kentucky ...
MR 1882, pp 684-686
Profiles of rivers in United States WS 44
Propylite, a decomposition product of various rocks Ann 2, p 297;
Mon iii, pp 81-90, 135-144, 375; Bull 17, p 30
analyses of, from Nevada, Washoe district Mon iii, opp p 152
Prosopite, analysis of, from Colorado, Pikes Peak region Ann 20,
vi cont, p 591; Bull 20, p 64; Bull 167, p 68
analysis of, from Saxony, Altenberg Ann 20,
vi cont, p 591; Bull 20, p 63; Bull 167, p 68
from Utah, Tooele ... Ann 20, vi cont, p 591; Bull 167, p 68
from Colorado, near Pikes Peak, occurrence, chemical investigation, etc.,
of ... Bull 20, pp 62-66
from Utah, Dugway mining district, mineralogic notes on Bull 167, pp 66-68
occurrence of .. Ann 20, vi cont, p 591
Prospect Mountain quartzite of Nevada and Utah Ann 3, p 254;
Ann 4, pp 230, 233; Mon xx, p 35; Bull 81, pp 252, 313-314
Prospecting, methods of, in Nevada, Eureka district Mon vii, pp 139-149
Prospecting rules for Penokee district Mon xix, pp 276-279
Prosser (C. S.), clay deposits of Kansas MR 1892, pp 731-733
Devonian system of eastern Pennsylvania and New York Bull 120
Proterozoic, adoption of term .. Bull 86, p 493
Protoceras bed of South Dakota, correlation of Ann 18, ii, p 341
Protophasmida from Rhode Island coal field Bull 101, pp 20-21
Protovermiculite, analysis of, from Arkansas, Magnet Cove Bull 90, pp 11, 12
chemical constitution of ... Bull 125, p 50
Protozoa from Cretaceous of New Jersey Bull 88
from Yellowstone Park .. Mon xxxvi, ii, p 507
Protremata, biologic development of Bul 87, pp 81-85
Ann 14, ii, pp 123-124; Ann 18, iv, pp 325, 327, 328; Ann 19, iv, pp 441-442; Ann 20, iv, pp 61, 468; Ann 21, iv, pp 398-399; Bull 131, pp 59-60; Bull 140, pp 234-235; WS 11, p 79;
WS 16, p 162; WS 28, pp 152, 153, 154; WS 38, pp 338-339
Prozoic rocks, use of term ... Bull 86, p 323
Pryor Mountains, Wyoming, structure of Bull 119, pp 45-46
Pseudobrookite, chemical constitution of Bull 125, p 67
Pseudodatabase of California, Coast Ranges Mon xiv, pp 94-99, 101-102
Pseudodiorite of California, Coast Ranges Mon xiv, pp 99-101
Pseudomorphism after limestone, evidences of, in ores Mon viii, p 98
Pseudomorphs of calcite and dolomite in Massachusetts, western Mon xxix, pp 389-391
Psilomelane, analysis of, from Colorado, Round Mountain, on rhyolite Ann 17, ii, p 451
analysis of, from East Indies, Gosalpur Ann 17, iii, p 221
Pteranodon from Denver Basin, remains of Mon xxvii, pp 509
Pteranodon beds in Denver Basin Mon xxvii, pp 476-477
Pteridophyta from Lower Coal Measures of Missouri Mon xxxvii, pp 16-256
Pteridae from marl beds of New Jersey Mon ix, pp 68-81, 198
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL.177.]

Pteropoda; Matthevia from upper Cambrian of New York, description of...... Bull 30, pp 223-225

of Cambrian of Nevada, Eureka district............................... Mon viii, pp 23-24

of Cambrian of North America... Ann 10, i, pp 590, 620-624; Bull 30, pp 54, 131-146, 223-225

of Carboniferous of Nevada, Eureka district....................... Mon viii, p 264

devonian of Nevada, Eureka district............................. Mon viii, pp 196-200

development of New York.. Bull 16, pp 22, 56-57

Ontario County.. Bull 16, pp 22, 56-57

of Nevada, Eureka district...... Mon viii, pp 23-24, 85-86, 196-200, 264

of Olenellus zone... Ann 10, i, pp 620-625

of Paleozoic strata of Nevada, Eureka district........ Mon xx, pp 320, 323, 330, 333

of Silurian, lower, of Nevada, Eureka district..................... Mon viii, pp 85-86

Ptilolite, chemical constitution of.. Bull 125, pp 98, 106

Public domain, history of.. Bull 171, pp 30-38

Public-land surveys, system of... Mon xxii, pp 101-105

Public lands, area and rate of disposal of................................. Ann 16, ii, pp 476-479

areas vacant, reserved, and disposed of in the West... Ann 16, ii, pp 479, 487-488

in the Western States, water supply for......................... Ann 16, ii, pp 496-533

location and extent of.. Ann 16, ii, pp 463-468

vacant, in Western States, classification, rate of disposal, etc., of...... Ann 16, ii, pp 467, 492-496

water supply, etc., of... Ann 16, ii, pp 457-533

Pueblo quadrangle, Colorado, geology of.................................. GF 36

Puerco beds of Colorado and New Mexico, literature and correlation of. Ann 18, ii, p 347; Bull 82, p 229; Bull 83, pp 119-129, 137-138, 145-146

Puerco group of Colorado and New Mexico, fossils of............... Bull 34, pp 11-12

Puerco River, New Mexico, irrigation possibilities along........ Ann 12, ii, pp 275-277

Puget formation or group of Washington and British Columbia, character and age of.. Ann 18, ii, pp 400-404

correlation, etc., of.. Ann 18, ii, p 347; Bull 82, pp 196-197; Bull 83, pp 95, 107-110; Bull 84, pp 229-230, 333; GF 54, pp 2-3

literature pertaining to, digest of................................... Bull 83, pp 107-110

molluscan fauna of ... Bull 51, pp 49-63

plants from.. Mon xxxv

Puget Sound, coal fields of.. Ann 18, iii, pp 393-436

Puget Sound region, forests of, remarks on.......................... Ann 18, ii, pp 362-363

molluscan fauna from... Bull 51, pp 49-63

Pugh formation of West Virginia.. GF 34, p 2

Pulaski formation of Oregon, Coos Bay region......................... Ann 18, iii, p 320

Pulaski shale in Virginia and West Virginia......................... GF 26, p 3

Pulaskite from Arkansas, Little Rock, description of, as one of the educational series (eleolite-hornblende-syenite)......... Bull 150, pp 194-196

Pulliam formation of Texas, Uvalde quadrangle...................... GF 64, p 2

of Texas, Uvalde quadrangle, wells from............................. GF 64, p 6

Pulmonifera from Nevada, Eureka district............................. Mon viii, pp 261-263

from Paleozoic strata of Nevada, Eureka district............... Mon xx, pp 333

Pulp, analysis of, from Maryland, Luke (effluent from).............. Ann 19, iv, p 143

Pumice, analysis of, from California, Mono Lake.................... Bull 148, p 229; Bull 150, p 149; Bull 168, p 219

analysis of, from Nebraska... Ann 19, vi cont, p 532

from Utah.. Ann 19, vi cont, p 532

in Hawaii, occurrence of... Ann 19, vi cont, p 686

re-fused by basalt.. Mon xx, pp 381-385

from California, Mono Lake, description of, as one of the educational series (rhyolitic)... Bull 150, pp 148-149

of Nevada, Eureka district (rhyolitic)................................ Mon xx, pp 380-385
Pumice stone, deposits and statistics of... MR 1882, pp 480; MR 1883–84, p 721; MR 1885, p 433; Ann 19, viicont, pp 529–532; Ann 20, viicont, pp 615

Pumpelly (R.), report on chemical work in 1879–80 Ann 1, pp 47–48

Pumpelly (R.), Wolff (J.E.), and Dale (T.N.), geology of Green Mountains in Massachusetts Mon xxiii

Pumping water for irrigation Ann 13, iii, pp 332–333; WS 1; WS 10, pp 34–36

Pumps for irrigation, types of WS 1, pp 17–19, 50–51

Pumps and water lifts used in irrigation, new tests of WS 14

Pupide of Eocene of New Mexico Bull 34, p 27

of North America (nonmarine fossil) Ann 3, pp 455–457

of Pleistocene of Great Basin Bull 11, p 22

Purgatory conglomerate of Narragansett Basin Mon xxxiii, pp 364–374

Purification of factory wastes in Massachusetts, experiments on WS 22, pp 27–35

of sewage at manufacturing establishments WS 22, pp 22–26

at towns on Great Lakes, necessity of WS 22, pp 36–41

Purington (C.W.), economic geology of La Plata quadrangle, Colorado GF 60, pp 12–14

economic geology of Telluride quadrangle, Colorado GF 57, pp 15–18

preliminary report on mining industries of Telluride quadrangle, Colorado Ann 18, iii, pp 745–850

Purpuridae from clays and marls of New Jersey Mon xviii, pp 193–194

Pyramid Harbor, Alaska, reconnaissance to Eagle City from Ann 21, ii, pp 331–391

Pyramid Lake, analysis of water of Mon xi, pp 57–58

Pyramid Peak quadrangle, California, geology of GF 31

Pyramidellidae from clays and marls of New Jersey Mon xviii, pp 151–152

from Colorado formation Bull 106, pp 140–143

from Cretaceous of Pacific coast Bull 138, p 70

Pyrenomycteeae, from Lower Coal Measures of Missouri Mon xxxvii, pp 13–14

Pyrite, analyses of MR 1886, p 652

analysis of, from Canada, Capelton MR 1883–84, p 881; MR 1885, p 507

from Colorado, Leadville district Mon xii, pp 557, 602

Leadville district, alteration products of Mon xii, p 606

from France, near Lyon MR 1883–84, p 885

from Georgia MR 1883–84, p 880; MR 1885, p 506

from Germany, Westphalia MR 1883–84, p 885

from Massachusetts, Rowe MR 1883–84, p 878; MR 1885, p 503

from New Hampshire, Milan MR 1883–84, p 877; MR 1885, p 501

from New York, Rockland County, nickeliferous MR 1886, p 712

St. Lawrence County MR 1885, p 504

Ulster County MR 1885, p 504

from North Carolina, Gaston County MR 1885, p 505

from Portugal, San Domingo mine MR 1885, p 508

from Spain, Rio Tinto mine MR 1883–84, p 884; MR 1885, p 508

Tharsis mine MR 1885, p 508

from Tennessee, Ducktown MR 1885, p 506

from Vermont, South Strafford and Walcoitville MR 1885, pp 502, 503

from Virginia, Louisa County MR 1883–84, p 879; MR 1885, p 505
Pyrite, analysis of residue from MR 1885, p 514
composition of .. Bull 150, p 30
foreign deposits of ... MR 1883–84, pp 881–886;
MR 1885, pp 506–508; MR 1886, pp 654–656
formation of, in Comstock lode Mon ii, p 210
in Montana, Butte district .. GF 38, p 6
in Porto Rico .. Ann 20, vi cont, p 778
occurrence of (precious stone) MR 1882, p 498; MR 1883–84, pp 768–769, 781;
MR 1885, p 443; MR 1886, p 604; MR 1887, pp 556–557;
MR 1888, pp 584–585; MR 1889–90, pp 446, 447, 448; MR 1891,
p 540; MR 1892, p 781; MR 1893, pp 681–682; Ann 16, iv,
pp 604–605; Ann 17, iii cont, p 924; Ann 18, v cont, p 1217; Ann 19, vi cont, p 513; Ann 20, vi cont, p 599
solubility of .. Mon xiii, pp 432–433, 474
statistics of (iron pyrite) .. MR 1883–84, pp 877–905; MR 1885, pp 501–517;
MR 1886, pp 650–675; MR 1887, pp 95, 556, 609–610; MR
1888, pp 5, 584; MR 1889–90, p 518; MR 1891, pp 570–571;
MR 1892, p 791; MR 1893, pp 742–745; Ann 16, iv, pp 644–
645; Ann 17, iii cont, pp 973, 977; Ann 18, v cont, pp 1259–
1261; Ann 19, vi cont, pp 572–576 Ann 20, vi cont, pp 652–655
thin section of, from California, Grass Valley, showing gold in quartz
and .. Ann 17, ii, pp 134–135
from Colorado, Telluride quadrangle, Cimarron mine, iron, of doubt­
ful genesis .. Ann 18, iii, pp 880–881
Telluride quadrangle, Gold King mine, showing partial replace­
ment of a ferromagnesian silicate by Ann 18, iii, pp 880–881
Pyrites and sulphur, relative merits in the manufacture of sulphuric acid.. MR 1893,
pp 743–745
Pyritiferous porphyry of Colorado, Leadville Ann 2, p 344; Mon xi, pp 82–83
of Colorado, Leadville district, petrography of Mon xi, pp 326–327
Pyrochlore, analysis of, from Massachusetts, Chesterfield Bull 126, p 111
Pyroclastics of Michigan, Crystal Falls district Ann 19, iii,
pp 52, 55–60; Mon xxxvi, pp 94, 135–148
Pyrocrystalline rocks .. Bull 86, p 440
Pyroelectric qualities of alloys of platinum Bull 54, pp 126–164
Pyrolusite, analysis of, from East Indies, Gosalpur Ann 17, iii, p 221
analyses of, from Georgia, Etowah MR 1883–84, p 552
from Virginia, Crimora station MR 1883–84, p 551
Pyrometric use of viscosity .. Bull 54, pp 239–306
Pyrometry, investigations in Ann 14, i, pp 150–153
methods of, general account of Bull 54, pp 23–55
Pyrope, analysis of, from Kentucky; Elliott County (from peridotite) Bull 38,
pp 24–25; Bull 42, p 136
chemical constitution of .. Bull 125, p 21
thin section of, from Kentucky, Elliott County (from peridotite) Bull 38, p 16
Pyrophosphate, analysis of silver Bull 167, p 116
analysis of sodium .. Bull 167, p 116
Pyrophyllite, analysis of, from North Carolina, Carbonton (schistose) Bull 74, p 62
analysis of, from North Carolina, Deep River (schistose) Bull 74,
p 62; Bull 167, p 16
from Vermont, Ira .. Ann 19, iii, p 191
chemical constitution of .. Bull 125, pp 95, 106
experiments relative to constitution of Bull 167, pp 16–17
Pyroplastic rocks, one of E. Emmons's divisions Bull 86, p 440
Pyrosmalite, chemical constitution of Bull 125, p 71, 105
Pyroxene, analysis of, from Colorado, Gunnison County Bull 113, p 112
Pyroxene, analysis of, from Colorado, Two Buttes Bull 148, p 182; Bull 168, p 165
Pyroxene, analysis of, from Connecticut, New Haven Bull 150, p 269
Pyroxene, analysis of, from Montana, Bozeman Creek Bull 148, p 137; Bull 168, p 111
Pyroxene, analysis of, from New Jersey, Montville Bull 60, p 137
Pyroxene, analysis of, from New York, Morris Bull 64, p 43
Pyroxene, analysis of, from Oregon, Mount Thielsen Bull 148, p 230; Bull 168, p 220
Pyroxene, analysis of, from Wyoming, Black Hills Bull 148, p 116
Pyroxene magna in Nevada, Eureka district Mon xx, pp 255-258
Pyroxene rocks free from feldspar and olivine Bull 28, p 55
Pyroxene-andesite, analysis of, from California, Lassen Peak region Bull 148, p 195; Bull 168, p 181
Pyroxene-andesite, analysis of, from Colorado, Pikes Peak district Bull 148, p 163; Bull 168, p 145
Pyroxene-andesite, analysis of, from Nevada, Eureka district Mon xx, pp 294-356
Pyroxene-andsite, analysis of, from Colombia Bull 165, p 171
Pyroxene-andsite, analysis of, from New Mexico, Colfax County Bull 168, p 171
Pyroxene-andsite, paleontology of, from Yellowstone Park, Agate Creek Bull 148, p 134;
Pyroxene-andsite, paleontology of, from Yellowstone Park, Dunraven Peak Bull 148, p 135; Bull 168, p 108
Pyroxene-andsite, paleontology of, from Yellowstone Park, Sepulchre Mountain .. Ann 12, i, p 648;
Pyroxene-andsite, paleontology of, from Yellowstone Park, Sepulchre Mountain, thin section of Ann 12, i, pp 636-637
Pyroxene-andsite, paleontology of, from Yellowstone Park, Sepulchre Mountain, thin section of, showing phenocrysts of black-bordered hornblende and plagioclase feldspars (hornblende-bearing) Mon xx, pp 404-405
Pyroxene-andsite, paleontology of, from Yellowstone Park, Sepulchre Mountain, thin section of, from Nevada, Virginia City, description of, as one of the educational series (olivine bearing) Bull 150, pp 228-231
Pyroxene-andsite, paleontology of, from Yellowstone Park, Sepulchre Mountain, thin section of, from Nevada, Virginia City, description of, as one of the educational series (olivine bearing) Bull 150, pp 228-231
Pyroxene-diorite, analyses of, from California, Downieville quadrangle .. Ann 17, i, pp 104-105
Pyroxene-diorite, analyses of, from California, Downieville quadrangle Ann 17, i, pp 104-105
Pyroxene-diorite, analyses of, from California, Downieville quadrangle Ann 17, i, pp 104-105
Pyroxene-diorite-porphyrny, analysis of, from Yellowstone Park, Crandall volcano Mon xxxi, ii, p 261
Pyroxene-mica-diorites, analyses of, from Yellowstone Park, Electric Peak ... Bull 148, p 117; Bull 168, p 87
Pyroxene-olivine, analysis of, from California Bull 148, p 117; Bull 168, p 87
Pyroxene-olivine, analysis of, from California Bull 148, p 117; Bull 168, p 87
Pyroxene-porphyrny, analysis of, from Yellowstone Park, Electric Peak .. Bull 148, p 117; Bull 168, p 87
Pyroxene-schist, analysis of, from Minnesota, Odessa Bull 148, p 113; Bull 168, p 83
Pyroxene-syenite of Sierra Nevada

Pyroxenite, analysis of, from California, Mount Diablo

analysis of, from Maryland, Baltimore County

from Montana, near Meadow Creek

from North Carolina, Webster

from Maryland, Pikesville, description of, as one of the educational series

of California, Big Trees quadrangle

Jackson quadrangle

Nevada City district

Placerville quadrangle

Sacramento quadrangle

Smartsville quadrangle

of Maryland-District of Columbia-Virginia, Washington quadrangle

of Sierra Nevada

Pyrrohotite, composition of

typical composition of

Quadrant formation, description and section of

in Montana

in Yellowstone Park

Quadrant quartzite in Montana

in Wyoming

Quantitative determination of silver by means of the microscope

Quarry and geologic terms, glossary of

Quarry limestone of Texas

Quartz, analysis of, from California, Big Trees quadrangle

analysis of, from Colorado, Leadville district (granular)

from North Carolina, Montgomery County

from Wisconsin, Marathon County

as a product of mineralogical metamorphism

composition of

conversion of, to serpentine

from Wyoming, Electric Peak, in diorite

in basalt

in gneisses of southwestern Minnesota

in Montana, Butte district

occurrence and statistics of

primary, occurrence of, in certain basalts

secondary enlargement of, in sandstones

from California, near Sonora, pegmatoid intergrowth of tourmaline.
Quartz, thin section of, from California, Nevada City, crushed vein, and incipient ribbon structure.............. Ann 17, ii, pp 136-137
thin section of, from California, Nevada City, in granodiorite, showing metasomatic replacement............... Ann 17, ii, pp 134-135
from Lake Superior district, in quartziferous porphyry Mon v, pp 100-101
from Minnesota, Pigeon Point, from mottled quartzite, broken crystals of.................................. Bull 109, p 86
southwestern, in biotite from hypersthene-free gabbro-schist... Bull 157, pp 142-143
from Nevada, Eureka district, from rhyolite, showing fractures about glass inclusions in.................... Mon xx, pp 388-399
Quartz conglomerate, thin section of, from Nevada, Eureka district.......... Mon xx, pp 388-399
thin section of, from Minnesota, Pigeon Point, corroded in red quartzite.................................. Bull 109, p 93
Quartz lenses in bedding planes of sericite-schist, origin of..... Ann 16, i, pp 556-558
Quartz phenocryst, thin section of, from Michigan, Crystal Falls district........... Mon xxxvi, pp 268-269
Quartz rock, analysis of, from Lake Superior, used in steel refractories... Bull 25, p 39
Quartz and chlorite, thin section of, from Nevada, Washoe district, from porphyritic diorite............. Mon iii, pp 150-151
Quartz and feldspar, statistics of.......................... Ann 18, vi cont, pp 1365-1368; Ann 19, vi cont, p 657; Ann 20, vi cont, p 745; Ann 21, vi cont, pp 593-596
Quartz, vein, of Alaska, Yukon district.......................... Ann 18, iii, pp 290-294
of Colorado, Telluride district............................... Ann 18, iii, pp 787-788
thin section of, from California, Grass Valley........ Ann 17, ii, pp 132-133
from California, Nevada City............................. Ann 17, ii, pp 132-133
from Colorado, Telluride quadrangle, Fairview mine, showing arrangements of inclusions in........ Ann 18, iii, p 787
Quartz-alunite, analysis of, from Colorado, Democrat Hill and Mount Robinson, Ann 17, ii, pp 315, 316; Bull 148, p 169; Bull 168, p 151
Quartz-alunite rocks, of Colorado, Rosita Hills......................... Ann 17, ii, pp 314-319
Quartz-augite-diorite, thin section of, from Sierra Nevada Ann 17, i, pp 760-761
Quartz-banakite, analysis of, from Yellowstone Park, Stinkingwater River...Mon xxxxi, ii, p 347; Bull 89, p 67; Bull 148, p 128; Bull 168, p 102
thin section of, from Yellowstone Park........ Mon xxxii, ii, pp 350-351
Quartz-basalt, analyses of, from California, Lassen Peak region......... Bull 148, pp 198, 199; Bull 150, p 253; Bull 168, pp 184, 185
analysis of, from Virginia, Chatham.......................... Ann 21, iii, p 81
from California, Snag Lake Cinder Cone, description of, as one of the educational series........ Bull 150, pp 252-254
in California, Lassen Peak quadrangle.......................... GF 15, p 2
Quartz-bearing basalt, distribution of.......................... Bull 79, pp 30-33
from Arizona... Bull 66, p 21
from California, northern.................................. Bull 79
from Colorado... Bull 66, p 22
from New Mexico, Tewan Mountains......................... Bull 68, pp 16, 20
Quartz-biotite-hornblende-diorite, analyses of, from Maryland, Cecil County... Bull 168, p 45
Quartz-bostonite, analysis of, from Norway.............. Bull 165, p 166
Quartz-diaspore, analysis of, from Colorado, Mount Robinson.... Ann 17, ii, p 317;
Bull 148, p 169; Bull 168, p 151
Quartz-diorite, analysis of, from California, Bidwell Bar quadrangle. Ann 17, i, p 570; Bull 148, p 204; Bull 168, p 190
analysis of, from California, Big Trees quadrangle Ann 17, i, pp 702, 724
from Montana, Crazy Mountains, Sweet Grass Creek Ann 20, ii, p 490; Bull 148, p 143; Bull 168, p 121
from Yellowstone Park, Crandall Volcano Mon xxxix, ii, p 261
of California, Mother Lode district GF 63, p 4
Quartz-diorite family of rocks, scope and characteristics of Ann 17, i, pp 723-725
Quartz-diorite and granite of Sierra Nevada Ann 17, i, pp 550, 570-571
Quartz-diorite-gneiss, analysis of, from California, Big Trees quadrangle. Ann 17, i, p 702; Bull 148, p 214; Bull 168, p 200
of Sierra Nevada.. Ann 17, i, p 703
Quartz-diorite-porphry, analysis of, from California, Downieville quadrangle Ann 17, i, pp 639, 724; Bull 148, p 206; Bull 168, p 192
analysis of, from California, Jackson quadrangle........ Ann 17, i, p 724
from Yellowstone Park, Hurricane Ridge Bull 148, p 124; Bull 168, p 94
of Montana, Little Belt Mountains Ann 20, ii, p 518
of Sierra Nevada.. Ann 17, i, pp 638-640
thin section of, from California, North Yuba River Ann 17, i, pp 756-757
Quartz filtrate, analysis of, from Nevada, Providence mine Ann 17, ii, p 131
analysis of, from Nevada, Providence mine, residue from Ann 17, ii, p 131
Quartz-gabbro, analysis of, from Georgia, Cherokee County. Bull 168, p 55
Quartz-gabbro and quartz-diorite of western Massachusetts Mon xxix, pp 331-342
Quartz-hornblende-mica-porphyrite, analysis of, from Colorado, Tenmile dis-
trict........ Ann 14, ii, p 227; Bull 148, p 175; Bull 168, p 157
Quartz-keratophyre of Minnesota, Pigeon Point Bull 109, pp 53-59, 60-66, 105-118
Quartz-mica-diorite, analysis of, from California, Mariposa County Ann 17, i,
pp 691, 724; Bull 148, p 220; Bull 150, p 342; Bull 168, p 209
analysis of, from California, Sierra County Ann 17, i, pp 638, 724; Bull 148, p 206; Bull 168, p 192
from California, Smartsville and Big Trees quadrangle, and Yosemite
Valley Ann 17, i, p 724
from Yellowstone Park, Electric Peak Bull 148, p 118; Bull 168, p 87
Hurricane Ridge. Mon xxxix, ii, p 261; Bull 148, p 124; Bull 168, p 94
of California, Downieville quadrangle GF 37, p 4
Jackson quadrangle................................. GF 11, p 4
of Sierra Nevada Ann 14, ii, p 478; Ann 17, i, pp 636-637, 667-669, 693, 704
of Yellowstone Park and vicinity Mon xxxix, ii, pp 252-256
thin section of, from Sierra Nevada Ann 17, i, pp 752-753
Quartz-mica-diorite-porphryite, analysis of, from Yellowstone Park, Electric
Peak Ann 14, ii, p 227; Bull 148, p 119; Bull 168, p 89
of Yellowstone Park, Electric Peak Ann 12, i, pp 617-618
Quartz-mica-diorite-porphry, analysis of, from Yellowstone Park, Electric
Peak Ann 14, ii, p 227; Bull 148, p 119; Bull 168, p 89
analysis of, from Yellowstone Park, Hurricane Ridge Mon xxxix,
ii, p 261; Bull 148, p 124; Bull 168, p 94
of Yellowstone Park Mon xxxix, ii, pp 103-105
Quartz-monzonite, analysis of, from California, Amador County Bull 168, p 200
analysis of, from Colorado, near Silverton Ann 21, ii, p 82
from Colorado, Telluride quadrangle, San Miguel Peak Ann 21,
ii, p 82; Bull 168, p 163; GF 57, p 6
Quartz-monzonite, analysis of, from Idaho, Boise County and Hailey. Ann 20, 111, p 81; Bull 168, pp 137, 139

Quartz-muscovite, from Montana, near Butte. Bull 168, p 118

Quartz-muscovite-schist of California, Jackson quadrangle. GF 11, p 4

Quartz-norite-gneiss, analysis of, from Minnesota, Odessa. Bull 148, p 113; Bull 150, p 362; Bull 168, p 83

from Minnesota, Odessa, description of, as one of the educational series. Bull 150, pp 358-362

thin section of, from Minnesota, Odessa. Bull 150, pp 360-361

analysis of, from Texas, Presidio County. Bull 148, p 96; Bull 164, p 92; Bull 168, p 60

from Texas, near San Carlos. Bull 164, p 83

San Carlos coal field. Bull 164, pp 90-95

Quartz-porphyrite, from California, Calaveras County. Ann 14, 11, p 484; Ann 17, 1, p 721; Bull 148, p 216; Bull 168, p 203

analysis of, from California, Nevada County. Ann 17, 11, p 75; Bull 148, p 208; Bull 168, p 194

from California, Plumas County. Ann 14, 11, p 484; Ann 17, 1, p 647; Bull 90, p 73; Bull 148, p 201; Bull 168, p 187

from Colorado, Tenmile district. Ann 14, 11, p 227; Bull 148, p 175; Bull 168, p 157

West Elk Mountains. Ann 14, 11, p 227; Bull 148, p 178; Bull 168, p 160

of California, Grass Valley district. GF 29, p 3

Jackson quadrangle. GF 11, p 4

Placerville quadrangle. GF 3, p 3

of Sierra Nevada. Ann 14, 11, pp 482-483

Quartz-porphyrite dikes of California, Grass Valley district. Ann 17, 11, pp 74-75

Quartz-porphyrite-schist, analysis of, from California, Amador County. Ann 14, 11, p 484; Ann 17, 1, p 721; Bull 148, p 214; Bull 168, p 200

of California, Jackson quadrangle. GF 11, p 4

from California, Amador County. Ann 14, 11, p 484; Ann 17, 1, p 721; Bull 148, p 214; Bull 168, p 200

Calaveras County Ann 14, 11, p 484; Ann 17, 1, p 721; Bull 148, p 216; Bull 168, p 203

Plumas County Ann 14, 11, p 484; Ann 17, 1, pp 647, 721; Bull 90, p 73; Bull 148, p 201; Bull 168, p 187

from Catoctin belt. Ann 14, 11, pp 303

from Colorado, Mosquito Range. Ann 14, 11, p 227

from Minnesota, Pigeon Point. Bull 55, p 82; Bull 109, p 56

from Montana, Butte district. Bull 168, p 119

Castle Mountain district. Bull 139, pp 99, 103, 135, 136; Bull 148, p 150; Bull 168, p 129

Yogo Peak. Ann 20, 111, pp 523, 574, 580; Bull 148, p 146; Bull 168, p 125

from Nevada, Washoe district. Ann 14, 11, pp 523, 574, 580

from North Carolina, Wataugaset County. Bull 168, p 52

from Pennsylvania, Franklin County. Bull 148, p 81; Bull 168, p 40

from Utah, Tintic district. Ann 19, 11, pp 637, 649; Bull 168, p 166
Quartz-porphyry, analysis of, from Wisconsin, Upper Quinnesec Falls (schistose) ... Bull 148, p 102; Bull 168, p 72
of California, Bidwell Bar quadrangle .. GF 43, p 4
of California, Downieville quadrangle .. GF 37, p 4
Grass Valley district ... GF 29, p 2
of Catoctin belt .. Ann 14, ii, pp 302–304
of Colorado, Aspen district ... Mon xxxi, pp 48–53
Mosquito Range .. Mon xii, pp 76–81, 323–332
of Keweenaw series .. Mon v, pp 95–112
of Maryland, Harpers Ferry quadrangle GF 10, p 2
of Michigan, Marquette region .. Bull 62, pp 148–151
of Montana, Butte district ... GF 38, p 2
Little Belt Mountains .. Ann 20, iii, pp 520–524
microscopical petrography of .. Bull 139, pp 97–103
of Nevada, Eureka district ... Ann 3, pp 273–274; Mon xx, pp 220–221, 345
Washoe district .. Ann 2, p 299; Mon iii, pp 45–48, 108–112, 150, 196
of Sierra Nevada ... Ann 14, ii, pp 483–484; Ann 17, i, pp 573–646, 649, 669
of Utah, Tintic district .. Ann 19, iii, pp 635–638, 757–759
of Virginia, Harpers Ferry quadrangle GF 10, p 2
of West Virginia, Harpers Ferry quadrangle GF 10, p 2
thin section of .. Ann 16, i, p 595
from Lake Superior district .. Ann 3, pp 112–113
from Michigan, Keweenaw Point .. Mon v, pp 94–95
near Marquette .. Bull 62, pp 236–237
from Minnesota, Great Palisades .. Mon v, pp 94–95, 100–101
from Nevada, Washoe district ... Mon iii, pp 150–151
from Ontario, Bead Island ... Mon v, pp 100–101
Michipicoten Island ... Mon v, pp 101–102
from Pennsylvania, South Mountain .. Bull 136, pp 100–101
from Sierra Nevada .. Ann 17, i, pp 750–751
(See, also, Rhyolite-porphyry.)
Quartz-porphyr-schist, analysis of, from California, Downieville quadrangle .. Ann 17, i, p 721
Quartz-pyroxene-diorite, analysis of, from California, Sonora quadrangle ... Ann 17, i, p 724; Bull 148, p 218; Bull 168, p 204
of Sierra Nevada .. Ann 17, i, p 663
Quartz-pyroxene-mica-diorite, analysis of, from Yellowstone Park, Electric Peak ... Bull 148, p 117; Bull 168, p 87
Quartz-schist, analysis of, from Maryland, Green Spring Valley .. Bull 148, p 90; Bull 168, p 50
from Maryland, Green Spring Valley, description of, as one of the educational series .. Bull 150, pp 302–305
Quartz-slate member of the Penokee series Ann 10, i, pp 349, 370–378; Mon xix, pp 146–171
Quartz-syenite, analysis of, from Montana, Bearpaw Mountains .. Bull 148, p 156; Bull 168, p 135
analysis of, from Yellowstone Park, Absaroka Range Bull 168, p 95
Quartz-syenite group of rocks from Alaska Ann 20, viii, pp 200–201
Quartz-syenite-porphyry, analysis of, from Montana, Bearpaw Mountains .. Bull 148, p 156; Bull 168, p 135
analysis of, from Montana, Little Belt Mountains .. Bull 148, p 148; Bull 168, p 127
Quartz-tourmaline-porphyry, analysis of, from Montana, Castle Mountain district, Fourmile Creek .. Bull 139, pp 101, 135, 136; Bull 148, p 150; Bull 168, p 129
Quartz-trachyte, analysis of, from Maine, Aroostook County, Quoggy Joe Mountain... Bull 165, pp 166, 167, 188; Bull 168, p 19
in Maine, Aroostook volcanic area, outcrops of... Bull 165, pp 110-111
Aroostook volcanic area, petrography of... Bull 165, pp 164-168
Quartzite, analysis of, from Minnesota, Pigeon Point... Bull 165, pp 82, 83; Bull 109, pp 69, 76, 84; Bull 148, pp 108, 109, 110; Bull 168, pp 78, 79, 80
analysis of, from Minnesota, Pigeon Point, green mottlings from... Bull 168, p 80
from Minnesota, Pipestone... Ann 16, iv, p 483
from Pennsylvania, South Mountain... Bull 136, p 34
Eureka... Mon xx, pp 54-57
from Nevada, Caribou Hill, description of, as one of the educational series... Bull 150, pp 301-302

genesis of... Bull 8, pp 11-43, 48-52
of Colorado, Mosquito Range (Cambrian)... Mon xii, pp 58-60
Telluride quadrangle... GF 57, p 2
of Massachusetts, eastern Berkshire County... Bull 159, pp 78-79, 85-86, 88
of western... Mon xxix, pp 258-299
of Michigan, Crystal Falls district (Upper Huronian)... Ann 19, iii, pp 121-122; Mon xxxvi, pp 423-426
of Minnesota, Courtland district... Bull 157, pp 20-24
Pigeon Point... Bull 109, pp 67-104
of Penokee series... Ann 10, i, p 375
thin section of, from California, Calaveras... Ann 17, i, pp 744-745
from California, Pinoli Peak... Ann 17, i, pp 742-743
from Lake Huron region... Bull 8, pp 24-25
from Michigan, Marquette... Bull 8, pp 28-29
from Minnesota, Pigeon Point... Bull 109, pp 62-63, 68-69
Pigeon Point, mottled red... Bull 109, pp 94-95
Portage Bay Island... Bull 8, pp 14-15
Prairie River Falls... Bull 8, pp 22-23, 28-29
from Pennsylvania, South Mountain... Bull 136, pp 96-97
from the Northwest... Ann 5, pp 226-227
from Wisconsin, Arlington... Bull 8, pp 14-15
T 45 N, R 1 E, sec 19... Ann 10, i, pp 478-479; Mon xix, pp 488-489
T 46 N, R 2 E, sec 27, SW ¼ (ferruginous)... Mon xix, pp 488-489
Quartzite and chert, thin section of, from Michigan, sec 23, T 47 N, R 44 W (ferruginous)... Mon xix, pp 518-519
Quartzite conglomerate, thin section of, from Massachusetts, Stone Hill... Mon xxiii, pp 116-117
Quartzite Mountains, Colorado, geology of, literature of... Bull 86, pp 319-323, 570
Quaternary. (See Pleistocene.)
Quebec, gold belt in... Ann 16, iii, pp 328-329
iron-ore deposits and statistics of... Ann 16, iii, pp 47-51
(See also, Canada.)
Quebec group in Canada... Bull 86, pp 223, 224, 225, 231
in Idaho... Bull 81, pp 161, 321
in Utah, reference to... Bull 81, p 159
in Wyoming, identifications of... Bull 81, pp 212-214
Queen Charlotte formation, correlation of... Bull 82, p 245
Queen Creek, Arizona, flow of, measurements of... Ann 18, iv, pp 292-297; Ann 19, iv, pp 417-418; Ann 21, iv, pp 383-385; WS 2, p 42; WS 38, p 520
Queensland, coal production of, statistics of... Ann 16, iii, p 247; Ann 17, iii, p 319; Ann 18, iv, pp 414, 419; Ann 19, vi, pp 311, 317; Ann 20, vi, pp 332, 338; Ann 21, vi, pp 363, 370
Queensland, manganese-ore production of ... MR 1893, pp 153-154, 155; Ann 16, iii, pp 453, 457; Ann 17, ii, pp 223, 225; Ann 18, v, pp 326, 328; Ann 19, vi, pp 121-122; Ann 20, vi, pp 156, 157; Ann 21, vi, p 162

tin deposits and production of ... Ann 16, iii, pp 465, 501-502

Quicksilver, African localities of ... Mon xiii, pp 43-44

Asian localities of ... Mon xiii, pp 44-48

Australian localities of ... Mon xiii, pp 48-50

European localities of ... Mon xiii, pp 27-43

foreign occurrences of, notes on ... Mon xiii, pp 14-55, 452-453

in California, Sonora quadrangle .. GF 41, p 7

in Oregon, Roseburg quadrangle .. GF 49, p 4

in Philippine Islands, occurrence of ... Ann 19, vi cont, p 692

North American localities of ... Mon xiii, pp 15-19

on Pacific slope .. Ann 8, ii, pp 961-985; Mon xiii, pp 1-13, 451-452

Quicksilver mines in California and throughout the world, maps showing dis-tribution of .. Ann 8, ii, pp 966-967, 968-969; Mon xiii, pls 1, 2

Quicksilver ore, genesis and source of .. Ann 8, ii, p 985; Mon xiii, pp 55, 438-450

minerals associated with .. MR 1892, pp 145-149

occurrence, association, classification, etc., of .. MR 1892, pp 139-168

of Coast Ranges, age of .. Mon xiii, p 225

of Pacific slope, mineralogic character of .. Mon xiii, pp 388-394

of Peru, Huancavelica .. Mon xiii, p 6

solution and precipitation of .. Mon xiii, pp 269-270, 419-437, 473-474

theoretic inferences concerning—transportation, substitution, osmotic hypothesis, origin, etc .. MR 1892, pp 149-159

Quicksilver reduction in California, New Almaden .. MR 1888-84, pp 503-536

Quinnimont-Fire Creek coal, West Virginia, description and analyses of Ann 17, ii, pp 491-493

Quinnimont formation in Southern Appalachians, relation of, to Pottsville Ann 20, ii, p 815

in Virginia and West Virginia ... GF 26, p 3

Raborg (W. A.), buhrstones, statistics of .. MR 1886, pp 581-582

corundum, statistics of ... MR 1886, pp 585-586

graphite, statistics of ... MR 1886, pp 686-689

grindstones, statistics of .. MR 1886, pp 582-585

salt, statistics of .. MR 1886, pp 628-641; MR 1887, pp 611-625; MR 1888, pp 597-612; MR 1889-90, pp 482-492

Radiolarian chert in Oregon .. GF 49, p 1

in California, Franciscan series .. Ann 15, pp 420-426

Rafter (G. W.), sewage irrigation .. WS 3; WS 22

water resources of State of New York .. WS 24 and 25
Ragged Mountain, Colorado, geology of .. Ann 14, ii, pp 181-182
Railroads, land grants to, in Western States Ann 16, iii, pp 488-490
mileage of, in United States ... Ann 19, v, pp 76-77
mileage of, in world .. Ann 18, v, pp 137-138
Rails, iron and steel, twenty years of changes in manufacture of... MR 1891, pp 62-65
production, etc., of, statistics of .. MR 1892, pp 16, 22;
MR 1893, pp 21-22; Ann 16, iii, pp 226-229; Ann 17, iii, p 59;
Ann 18, v, pp 62-65, 66, 71, 85; Ann 19, vi, pp 70-71;
Ann 20, vi, pp 80-81; Ann 21, vi, pp 100-101, 109, 116
Rainfall in Alabama, Mobile and Montgomery (average) Ann 21, iv, p 668
in Arizona, Gila Basin.. Ann 12, ii, pp 300-301, 307;
Ann 13, iii, p 27; WS 2, pp 19-30; WS 33, pp 18-21
Prescott (monthly) .. Ann 21, iv, p 661
in California.. Ann 13, iii, p 27; Ann 18, iv, pp 363, 381, 396, 399, 400, 407, 418;
Ann 19, iv, pp 532-535, 539;
Cache Creek Basin.. WS 45, pp 12-18
mountains .. Ann 20, iv, pp 560-561; WS 39, pp 437-438
relation to altitude ... Bull 140, pp 328-330
San Francisco (monthly) .. Ann 21, iv, p 661
in Colorado, Arkansas Basin .. Ann 11, ii, pp 24-25;
Ann 20, iv, pp 325-330
Cache la Poudre Basin .. WS 9, pp 13-16
Fort Lewis and Fort Garland ... Ann 12, ii, p 244
southwestern ... Ann 20, iv, pp 396-400
in Florida, Jacksonville (average) .. Ann 21, iv, p 668
in Georgia, Atlanta .. Ann 18, iv, p 70
Atlanta and Savannah (average) .. Ann 21, iv, p 668
in Great Lakes drainage area ... WS 24, pp 50-53
in High Plains region .. Ann 21, iv, pp 658-669
in Idaho, Boise .. Ann 13, iii, p 27
in Illinois .. Ann 17, ii, pp 718-729;
WS 29, p 72
Desplains River watershed .. WS 24, pp 64-65
in Indian Territory, Tulsa ... Ann 10, iv, p 366
in Indiana .. Ann 18, iv, p 556;
WS 29, p 72
in Iowa ... WS 29, p 72
in Kansas .. WS 29, p 72
Dodge .. Ann 21, iv, p 666
Garden .. Ann 21, iv, p 662
Lawrence (monthly) ... Ann 21, iv, p 661
in Kansas-Indian Territory, Verdigris River watershed Ann 19, iv, pp 366-367, 373
in Kentucky .. WS 29, p 72
in Louisiana, New Orleans and Shreveport (average) Ann 21, iv, p 668
in Maine, Rumford Falls ... Ann 20, iv, p 72;
WS 35, p 27
in Maryland, Patapsco and Patuxent drainage basins Ann 20, iv, pp 48-49, 112, 114
in Michigan .. WS 29, p 72;
WS 30, pp 49, 52-55
KalaniIZEDoriver watershed .. WS 30, pp 26-29, 33, 34, 35
in Mississippi, Vicksburg ... Ann 21, iv, p 668
in Missouri .. WS 29, p 72
St. Louis .. Ann 21, iv, p 662
in Montana, Missouri River Basin .. Ann 13, iii, pp 27, 40;
Ann 20, iv, pp 232-235
in Nebraska .. WS 29, pp 71-72
North Platte ... Ann 13, iii, p 27
Rainfall in Nevada, Reno and Beowawe .. Ann 13, iv, p 27

Winnemucca (monthly) .. Ann 21, iv, p 662

in New England ... WS 13, pp 82-83

in New Mexico, Rio Grande Basin .. Ann 12, iv, pp 244, 248; Ann 13, iv, p 27

Mesilla Valley .. WS 10, p 14

in New York ... WS 29, p 72

average .. WS 24, p 86

Boyd’s Corners .. Ann 20, iv, pp 47, 82-83

Buffalo (monthly) ... Ann 21, iv, p 661

Croton River watershed .. WS 24, pp 83-86

Eaton Brook watershed .. WS 7, p 67

Genesee River watershed ... WS 24, p 88

Hemlock Lake watershed .. WS 24, pp 55-56

Hudson River watershed ... WS 25, p 133

Oatka Creek watershed .. WS 24, p 70

Madison Brook watershed ... WS 24, p 67

in Nicaragua ... Ann 20, iv, pp 574-578

in North Carolina; Lenoir, Hatteras, and Wilmington (average) Ann 21, iv, p 668

in North Dakota ... WS 29, p 72

Fort Totten ... Ann 13, iv, p 27

in Ohio .. Ann 18, iv, pp 557-568; WS 29, p 72

Muskogee River watershed ... WS 24, pp 55-56

in Oregon, Hood River Basin .. Ann 19, iv, p 500

in Porto Rico .. WS 32, pp 22-24

in South Carolina, Charleston (average) .. Ann 21, iv, p 668

in South Dakota ... WS 29, p 72

Black Hills ... Ann 21, iv, pp 594-597

in Tennessee, Memphis (average) .. Ann 21, iv, p 668

in Texas ... Ann 12, iv, p 244; Ann 13, iv, p 27; Bull 164, p 15; WS 13, pp 21-24; GF 42, p 2

Amarillo .. Ann 21, iv, p 667

Austin ... WS 40, p 22

Galveston (average) .. Ann 21, iv, p 668

in Texas region .. TF 3, pp 11-12

in United States, map showing mean annual .. Ann 14, iv, pp 152-153

western .. Ann 11, iv, pp 214-215; Ann 13, iv, p 25-28

in Utah .. Ann 13, iv, p 27; WS 7, p 15-17

Port Duchesne, Vernal, and Heber ... Ann 21, iv, pp 320-321

in Washington .. Ann 19, iv, p 508; GF 54, pp 1-2

southeastern ... WS 4, pp 11-12

Wallawalla ... Ann 13, iv, pp 27; Ann 19, iv, p 492; Ann 20, iv, p 514; WS 4, p 11

in Wisconsin ... WS 29, p 72

in Wyoming ... WS 29, p 72

Cheyenne ... Ann 13, iv, p 27; WS 9, p 14

measurements of .. Ann 11, iv, pp 23-30

percentage of, which penetrates the soil ... Ann 19, iv, pp 94-95

roof area, quantity of water collected on .. Ann 14, iv, p 26

Rainfall and run-off in Arkansas River Basin .. Ann 20, iv, pp 325-330

in Chattahoochee and Coosa river basins .. Ann 20, iv, pp 177-181

in Colorado River Basin, Upper .. Ann 20, iv, pp 374-380

in Great Salt Lake watershed .. Ann 20, iv, pp 454-459

in James River Basin, Virginia ... Ann 20, iv, pp 132-134

in Kanawha River Basin .. Ann 20, iv, pp 199-202
Rainfall and run-off in Kansas River Basin Ann 20, iv, pp 305-313
in Palouse and Wallawalla river basins Ann 20, iv, pp 512-514
in Platte River Basin .. Ann 20, iv, pp 256-266
in Potomac River Basin .. Ann 20, iv, pp 117-121
in Rio Grande Basin, Upper Ann 20, iv, pp 356-359
in Roanoke River Basin Ann 20, iv, pp 137-139
in Savannah and Altamaha river basins Ann 20, iv, pp 158-161
in Snake River Basin ... Ann 20, iv, pp 469-474
in United States ... Ann 14, ii, pp 149-154
in Yakima River Basin Ann 20, iv, pp 496-500
Rainier, Mount, glaciers of Ann 18, ii, pp 349-415
position, elevation, discovery, characteristics, etc., of Ann 18, ii, pp 357-361
rocks of, volcanic and granite Ann 18, ii, pp 416-423
Rainy Lake, description of Mon xxv, p 49
Raleigh sandstone in Virginia and West Virginia Ann 17, ii, pp 493-494; GF 26, p 3; GF 44, pp 3, 5
Ralstonite from near Pikes Peak, Colorado Bull 20, p 56
Rancheria Creek, California, flow of, measurements of Bull 140, pp 262-264
Rancocas formation of New Jersey Bull 138, p 41
of Michigan, Menominee district GF 62, p 3
Ransome (F. L.), geology of Mother Lode district, California . GF 63
some lava flows of the western slope of the Sierra Nevada, California ... Bull 89
Ransome (F. L.) and Turner (H. W.), geology of Big Trees quadrangle, California . GF 51
ground of Sonora quadrangle, California GF 41
Rappahannock series of deposits and flora Ann 15, pp 321-324, 347-348
Raritan clays of New Jersey Bull 82, p 215
plants from ... Mon xxxv, p 59
Raritan clays and greensand marls of New Jersey, Brachiopoda and Lamellibranchiata of .. Mon xix
Gasteropoda and Cephalopoda of Mon xviii
Raritan formation of New Jersey Bull 138, p 40
Rating meters, methods of Bull 140, pp 333-335
Rating stations for meters, descriptions of Bull 140, pp 331-332
Rating tables for meters Bull 140, pp 332-341; WS 11, p 94
Ration list for Alaskan parties Ann 20, vii, p 44; Alaska (2), p 138; Nome, p 53
Rattlesnake Creek, Montana, flow of, measurements of Ann 21, iv, p 417; WS 38, pp 363-364
Rattlesnake Mountains, Wyoming, literature of geology of ... Bull 86, p 278
Rauite, analysis of .. Bull 42, p 32
Raven Hill, Cripple Creek district, Colorado, character of ore deposits in Ann 16, ii, pp 180-189
rocks of .. Ann 16, ii, pp 88-90
Raymond (R. W.), historical sketch of mining law MR 1883-84, pp 998-1004
the divining rod .. MR 1882, pp 610-626
Read (M. C.), Berea grit ... MR 1882, pp 478-479
Reade (T. M.), quoted, on origin of mountain ranges Ann 13, ii, pp 275-276
Realgar, occurrence of Ann 17, iii cont, pp 916-917
Recent rocks; Everglades limestone of Florida............... Bull 84, p 325
Recent rocks of Florida .. Bul 84, pp 152-156
White sand of Florida .. Bul 84, pp 156-238
Yellow sand of Florida .. Bul 84, pp 154-156
Recent stream gravels of Alaska Ann 21, ii, p 479
Recession of cliffs .. Ann 2, p 58; Mon ii, pp 250-260
Record of North American geology. (See Bibliography.)
Rectorite, chemical constitution of Bull 125, pp 66,101
Red beds of Colorado, Rico Mountains Ann 21, ii, pp 27-28
of Kansas, southwestern WS 6, pp 27-30
of Texas ... Ann 21, vii, pp 100-103
(See Wyoming formation.)
Red Bluff formation or group of Mississippi, correlation of .. Ann 18, ii, p. 341; Bul 84, p 334
Red color of Cambrian and Carboniferous rocks Mon xxxiii, pp 62-63
Red color of certain formations, origin of the, and subaerial decay of rocks Bull 52
Red Creed quartzite of Wyoming Bull 86, pp 287-289
Red Hills of South Carolina .. Bul 84, p 334
Red Lake, description of .. Mon xxv, p 49
Red River, Texas, profile of WS 44, pp 61-62
Red River of the North, profile of WS 44, pp 61-62
sections across valley of, etc Mon xxv, pp 19-25
Red rock from Pigeon Point, Minnesota, thin section of intermediate rock on contact between olivine-gabbro and .. Bull 109, pp 62-63
Red rock, porphyritic, from Pigeon Point, Minnesota, thin section of Bull 109, pp 54-55
"Red sandrock," account of literature concerning Bull 81, pp 96-98
origin of name ... Bull 81, pp 250-251
Red Wall group of Plateau region, features of Ann 6, pp 132,183
Red Wall limestone, age, character, and thickness of Ann 2, pp 151, 217
Redbank formation of New Jersey Ann 18, p 341
Refractory clay. (See Clay, refractory.)
Regulator gates in irrigation works Ann 13, iii, pp 238-244
Regule, blue metal, analysis of Bul 26, p 66
Reibungsbreccia of Newark area in Pomperaug Valley, Connecticut .. Ann 21, iii, pp 71-72
Reid (H. F.), Glacier Bay and its glaciers Ann 16, i, pp 415-461
Relief, classification of, with reference to peneplains Ann 19, ii, pp 23-31
forms of, in southern Appalachians Ann 19, ii, pp 13-16
relation of erodibility to forms of Ann 19, ii, pp 18-19
formations in Texas region Ann 21, vii, pp 30-37, 63-65; TF 3, pp 2-3
to lithologic composition ... Ann 19, ii, p 19
Relief quartzite of California GF 66, p 2
Renschaw (J. H.), work in charge of, 1894-1900 Ann 16, i, pp 64-65; Ann 17, i, pp 101-103; Ann 18, i, pp 104-106, 143; Ann 19, i, pp 101-103, 254-280; Ann 20, i, pp 112-116; Ann 21, i, pp 465-482
Rensselaer grit in New York, description of Ann 13, ii, pp 306-312, 333
Rensselaer grit plateau in New York, geology of Ann 13, ii, pp 291-340
Reptilia, fossil, of Denver Basin Mon xxvii, pp 481-508
of Eocene of middle Atlantic slope Bul 141, pp 58-60
Republic formation of Lake Superior region Bul 86, p 102
Republic trough, Michigan, geology of Ann 15, pp 808-830; Mon xxviii, pp 525-553
Republican River, profile of ...WS 44, p 73
Reservations, Indian, forest, and military, in Western States. Ann 16, n, pp 491-492
Reservoir in Colorado, on Cherry Creek.Ann 20, iv, pp 280-284
Reservoir, artesian, depth of, formula for ascertainingAnn 21, vii, p 422
Reservoir areas, comparison of. ..Ann 21, iv, pp 46-50
Reservoir sites in Colorado surveyed for irrigation purposesAnn 11, n, pp 133-144; Ann 12, n, pp 55-127
in Colorado, Mancos Canyon ..Ann 21, iv, pp 286-297
in Idaho, on Longtom Creek ..Ann 20, iv, pp 477-481
in Southern Ute Indian Reservation, surveys ofAnn 20, iv, pp 419-433
in Washington, Yakima CountyAnn 20, iv, pp 505-508
in Wyoming, Horseshoe CreekAnn 20, iv, pp 270-275
seggregated in California ...Ann 11, n, pp 150-168; Ann 12, n, pp 10-54
Reservoir sites and canal lines in Montana surveyed for irrigation purposes. Ann 11, n, pp 113-133; Ann 12, n, pp 127-165
in Colorado, Mancos Canyon ..Ann 21, iv, pp 286-297
in Idaho, on Longtom Creek ..Ann 20, iv, pp 477-481
in Southern Ute Indian Reservation, surveys ofAnn 20, iv, pp 419-433
in Washington, Yakima CountyAnn 20, iv, pp 505-508
in Wyoming, Horseshoe CreekAnn 20, iv, pp 270-275
seggregated in California ...Ann 11, n, pp 150-168; Ann 12, n, pp 10-54
Reservoir sites and canal lines in Montana surveyed for irrigation purposes. Ann 11, n, pp 113-133; Ann 12, n, pp 127-165
in Nevada surveyed for irrigation purposesAnn 11, n, pp 168-183; Ann 12, n, pp 45, 209-212
of Snake River Basin ...Ann 11, n, pp 190-200
Reservoir sites, canals and irrigable lands in New MexicoAnn 11, n, pp 145-150; Ann 12, n, pp 165-209
Reservoir survey in, California, Tuolumne RiverAnn 12, iv, pp 450-465
origin, character, extent, etc., ofAnn 20, iv, pp 25-43
Reservoir surveys in New MexicoAnn 21, iv, pp 265-277
Reservoir system of Utah LakeAnn 11, n, pp 184-189
Reservoirs for irrigation ..Ann 18, iv, pp 617-740; WS 1, pp 54-56
for storage of water for irrigation, discussion ofAnn 16, ii, pp 502-504
for storm and pumped waters in KansasWS 5, pp 12-19
in Arizona, area, capacity, etc., ofWS 2, pp 62-77
Gila River, discussion of proposedWS 33, pp 48-81
in California, Cache Creek BasinWS 45
in Colorado, Greeley ..WS 9, pp 33-35, 36-42, 56-59
in Montana, Sun River irrigation systemAnn 13, iv, pp 374-383
in Wyoming ..WS 23, pp 55-58
(See, also, Water storage; Irrigation.)
Residual clay. (See Clay, residual.)
Residual deposit from subaerial decay of chloritic schist from eight miles west
of Cary, North Carolina, analysis ofBull 42, p 137
Residual products from decay of rocksBull 52, pp 12-43
Residual rocks, descriptions of specimens of, in the educational series ...Bull 150,
pp 376-385
Residuary products of erosion in driftless area of Upper Mississippi, character
and constitution of ..Ann 6, pp 239-258
Resin, a supposed mineral, analysis and description of, from Montana,
Livingston ..Bull 78, pp 105-108
Resurrection Bay, Alaska, reconnaissance from, to Tanana RiverAnn 20, iv, pp 265-340
Resorption of quartz crystals in basaltBull 79, p 25
Reynosa limestone of Texas, correlation ofAnn 18, ii, p 337
Rhetic of Germany and France and Triassic of United States, parallelism of ...Mon xiv, pp 10-11, 13
(See, also, Juratrias.)
Rhetic formation of VirginiaMon xv, pp 34, 58
Rhetic plants, or those nearly allied to such, from Mesozoic of Virginia and
North Carolina ...Mon vi
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Rhamnaceae of Alaska ... Ann 17, i, p 889
of Amboy clays .. Mon xxvi, pp 106-107
of North America (extinct) .. Mon xxxv, pp 117-120
of Yellowstone Park ... Mon xxxii, i, p 740
Rhamnace from Dakota group ... Mon xvii, pp 165-172
from Laramie group ... Bull 37, pp 72-77
Rhizopoda from Cretaceous of New Jersey Bull 88
from Nevada, Eureka district .. Mon viii, pp 65-67
from Paleozoic strata of Nevada, Eureka district Mon xx, pp 322, 330
from Silurian, lower, of Nevada, Eureka district Mon viii, pp 65-67
Rhode Island; altitudes in ... Bull 5, p 275; Bull 76; Bull 160, pp 646-650
boundary lines of ... Bull 13, pp 65-66; Bull 171, pp 70-71
brick clays of southeastern Massachusetts and Ann 17, i, pp 951-1004
brick industry of .. MR 1887, pp 536, 539
clay products of, statistics of .. MR 1891, p 502; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vii cont, pp 318 et seq, 354; Ann 19, vii cont, p 318 et seq; Ann 20, vii cont, pp 467 et seq, 515
coal area and statistics of ... Ann 2, p xxviii; MR 1883-84, pp 12, 87; MR 1885, p 11; MR 1886, p 224; MR 1887, pp 169, 351-352; MR 1888, pp 169, 171, 361; MR 1892, p 264; MR 1893, pp 188, 189, 195, 197, 199, 200; Ann 16, iv, pp 7, 8, 14, 15, 16; Ann 17, iii, pp 287, 288, 290, 301, 302, 303, 304, 305; Ann 18, v, pp 353, 355, 368, 369, 370; Ann 19, vi, pp 277, 279, 281, 296, 297, 298; Ann 20, vi, pp 299, 301, 303; Ann 21, vi, pp 324, 326
coal measures of ... Mon xxxiii, pp 159-201, 205-208
coals and coal beds of Narragansett Basin Mon xxxiii, pp 79-88
coke in, manufacture of ... Ann 20, vi cont, p 228
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vii cont, p 228 et seq
geographic dictionary of .. Bull 115
geographic positions in .. Bull 123, pp 32-35
geologic maps of, listed .. Bull 7, pp 53, 54, 55
(See Map, geologic, of Rhode Island.)
geologic sections in. (See Section, geologic, in Rhode Island.)
geologic and paleontologic investigations in Ann 6, pp 19-20; Ann 9, pp 72, 76; Ann 10, i, p 118; Ann 11, i, p 63; Ann 12, i, p 66; Ann 13, i, p 99; Ann 14, i, p 195; Ann 17, i, p 18; Ann 20, i, pp 33-34
 glaciation investigations in ... Ann 3, pp 377, 380; Ann 7, p 157
granite quarries in .. Ann 19, vii cont, p 234-236
Rhode Island; graphitic carbon mine near Cranston Ann 13, ii, pp 168-169
insect fauna of coal fields of ... Bull 101
iron and steel from, statistics of .. MR 1882, pp 120, 125, 133,
134, 135; MR 1886, pp 17, 42-43; MR 1887, p 11; MR 1888,
p 14; MR 1891, p 61; MR 1892, p 15; MR 1893, p 16; Ann
17, iii, pp 48, 63; Ann 19, vi, pp 65, 72; Ann 20, vi, pp 83, 85
iron ores of Narragansett Basin ... Mon xxxiii, pp 88-90
limestone production of .. MR 1889-90, pp 373, 428; MR
1891, pp 464, 467; MR 1892, p 711; MR 1893, p 566; Ann 16,
iv, pp 437, 494, 495, 500; Ann 17, iii cont, pp 790, 791; Ann
18, v cont, pp 951, 1044, 1046, 1047, 1066; Ann 19, vi cont,
pp 207, 281, 282, 283, 306; Ann 20, vi cont, pp 271, 342,
343, 344, 345, 350; Ann 21, vi cont, pp 335, 357, 358, 359, 360
magnetic declination in .. Ann 17, i, p 410
mineral-spring resorts in ... Ann 14, ii, p 86
mineral springs of .. MR 1885, p 540; MR
1886, p 718; MR 1887, p 685; MR 1888, p 628; MR 1889-
90, p 532; MR 1891, pp 603, 607; MR 1892, pp 824, 831;
MR 1893, pp 774, 781, 784, 792, 794; Ann 16, iv, pp 709, 717,
720; Ann 17, iii cont, pp 1027, 1038, 1041; Ann 18, v cont,
pp 1371, 1383, 1386; Ann 19, vi cont, pp 661, 673, 677; Ann
20, vi cont, pp 749, 763, 766; Ann 21, vi cont, pp 600, 615, 619
minerals of, useful .. MR 1882, p 727; MR 1887, pp 785-786
Narragansett Basin, geology of .. Mon xxxiii
sandstone production of .. Ann 17,
iii cont, p 777; Ann 18, v cont, p 1013; Ann 19, vi cont,
p 265; Ann 20, vi cont, p 337; Ann 21, vi cont, p 355
sections, geologic, in. (See Section, geologic, in Rhode Island.)
sewage-disposal plants in .. WS 22, pp 57-59
soils of Narragansett Basin .. Mon xxxiii, pp 77-79
survey of, by cooperation of the State ... Ann 9, p 51; Ann 10, ii, pp 7, 58-58
Topographic maps of. (See Map, Topographic, of Rhode Island; also list
on p 93 of this bulletin.)
section, geologic, in. (See Section, geologic, in Rhode Island.)
triangulation in ... Bull 122, pp 25-28
woodland area in ... Ann 19, v, p 4
Rhodochrosite, analysis of, from Massachusetts, Hawley Bull 128, p 139
analysis of, from New York-Vermont slate belt Ann 19, iii, p 260;
Ann 20, vi cont, p 321
in Montana, Butte district .. GF 38, p 6
occurrence of ... Ann 17, iii cont, p 916
Rhodonite, chemical constitution of Bull 125, p 86
in Montana, Butte district .. GF 38, p 6
occurrence and statistics of .. MR 1882, pp 496-497; MR 1883-84, p 766;
MR 1887, p 562; MR 1888, p 582; Ann 16, iv, p 605
Rhodonite and rhodochrosite beds in western Massachusetts Mon xxix, pp 171-174
Rhyolite, alteration of, hydrothermal, in Idaho Ann 20, iii, pp 177-186
analysis of, from California, Amador County Ann 17, i, pp 614, 721;
Bull 148, p 214; Bull 168, p 200
from California, Lassen Peak region Bull 148, p 192; Bull 168, p 178
Mono County .. Ann 8, i, p 380; Mon xi, p 147;
Bull 148, p 229; Bull 168, p 219; MR 1893, p 731
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.

Rhyolite, analysis of, from California, Plumas County.............Ann 17, ii, p 721;
Bull 148, p 202; Bull 168, p 188

analysis of, from California, San Clemente Island, Northwest Harbor...Ann 18,
ii, p 488
from California, Sierra Nevada..Ann 14, ii, p 487
from Colorado, Chalk Mountain..Mon xi, p 589;
Bull 148, p 174; Bull 168, p 156
Crested Butte district..Bull 148, p 177; Bull 168, p 159
Custer County...Bull 90, p 69
Nathrop...Bull 148, p 179; Bull 168, p 164
Pennsylvania Hill...Ann 17, ii, p 324; Bull 148, p 167; Bull 168, p 149
Round Mountain.................................Ann 17, ii, p 324;
Bull 148, p 167; Bull 165, p 155; Bull 168, p 149
San Juan region...Bull 148, p 179; Bull 168, p 161
Silver Cliff...Ann 17, ii, p 324; Bull 148, p 167; Bull 168, p 149
from Hungary, Genczer Pass and Telki-Banya.....................Ann 7, p 291
from Idaho, Silver City (altered)..................................Ann 20, iii,
pp 179-180, 181; Bull 168, p 138
from Maine, Haystack Mountain.......................Bull 165, pp 155, 188; Bull 168, p 20
from Montana, Butte district..Bull 168, p 119
Checkerboard Creek..Bull 139, pp 125, 135, 136;
Bull 148, p 150; Bull 168, p 129
Rimini...Bull 168, p 119
Smith River..Bull 139, p 120;
Bull 148, p 150; Bull 165, p 155; Bull 168, p 129
from Nevada, Rescue Canyon..Mon xx, p 264; Bull 165, p 155
Washoe..Mon xx, p 282; Bull 17, p 33;
Bull 27, p 66; Bull 148, p 188; Bull 168, p 174
from North Carolina, Montgomery County (spherulitic)........Bull 168, p 53
Watauga County (porphyritic)..Bull 168, p 52
from Oregon, Crater Lake..Bull 168, pp 221, 222
from Utah, Henry Mountains.................................Bull 148, p 184; Bull 168, p 168
Tintic mining district..Ann 19,
iii, pp 634-635, 637, 649; Bull 168, p 166; GF 65, p 3
from Yellowstone Park, Elk Creek (trachytic)....................Mon xxxii,
ii, p 325; Bull 168, p 105
Madison Plateau...Mon xxxii,
ii, p 426; Bull 148, p 131; Bull 150, p 147; Bull 168, p 105
Sunset Peak...Mon xxxii, ii, p 325; Bull 168, p 106
various localities...Mon xxxii,
ii, p 426; Bull 148, pp 130, 131, 132; Bull 168, pp 104, 105, 106
in Maine, Aroostook volcanic area, outcrops of..................Bull 165, pp 107-109
luster exhibited by sanidine in certain..................................Bull 20, pp 75-80
of Alaska, Wrangell Mountains......................................Ann 20, vii, p 416
of Bonneville Basin, age of..Mon i, p 337
of California, Big Trees quadrangle.................................GF 51, p 6
Colfax quadrangle..GF 66, p 6
Downieville quadrangle...GF 37, p 6
Jackson quadrangle..GF 11, p 5
Lassen Peak quadrangle..GF 15, p 2
Mother Lode district...GF 63, p 6
Placerville quadrangle..GF 3, p 3
Pyramid Peak quadrangle...GF 31, p 6
San Clemente Island..Ann 18, ii, pp 485-488
Smartsville quadrangle...GF 18, p 5
Truckee quadrangle..GF 39, p 5
Rhyolite of Colorado, Crested Butte quadrangle GF 9, pp 2, 5
of Colorado, Cripple Creek district .. Ann 16, ii, p 53
Mosquito Range .. Mon xi, pp 87, 345-352
Pikes Peak quadrangle .. GF 7, pp 3, 4, 7
Silver Cliff and Rosita Hills .. Ann 17, ii, pp 296-303, 341-342, 358-359, 383, 398-400, 402, 448-466
Telluride quadrangle ... GF 57, pp 5-6, 7
Tenmile district ... GF 48, p 3
of Idaho, Boise quadrangle .. GF 45, pp 3-4
western-central ... Ann 20, iii, pp 120-121
of Maine, Aroostook volcanic area, petrography of Bull 165, pp 152-161
of Montana ... Bull 139, pp 69-71
Butte district ... GF 38, pp 1, 2
Little Belt Mountains quadrangle GF 56, pp 4-5
Livingstone quadrangle .. GF 1, p 3
microscopic petrography of ... Bull 139, pp 118-128
Three Forks quadrangle .. GF 24, p 4
of Nevada, Eureka district .. Ann 3, pp 278-279; Mon xx, pp 237, 374-385
of New Mexico, Tewan Mountains Bull 62, pp 10-12
of Oregon, Roseburg quadrangle GF 49, p 3
of Philippine Islands .. Ann 21, iii, pp 518, 522
of Sierra Nevada ... Ann 14, ii, pp 484-487; Ann 17, i, pp 613-614
of Utah, Tintic district ... Ann 19, iii, pp 632-635; GF 65, p 2
of Wyoming, Absaroka district GF 52, p 5
of Yellowstone Park ... Mon xxxii, ii, pp 172, 321-325, 356-432; GF 30 pp 3, 6
fayalite in ... Ann 7, p 270
thin section of, from Nevada, Eureka district Mon xx, pp 400-407
from Nevada, Eureka district, micropegmatitic phenocryst in Mon xx, pp 400-401
topaz in ... Mon xi, p 347; Bull 20, p 81
Rhyolite breccia from Texas, San Carlos coal field Bull 164, pp 89-90
Rhyolite-felsite, analysis of, from Yellowstone Park, Echo Peak Mon xxxii, ii, p 65; Bull 148, p 132; Bull 168, p 106
Rhyolite-pitchstone, analysis of, from Montana, Castle Mountain district Bull 139, pp 125, 135, 136; Bull 148, p 150; Bull 168, p 129
Rhyolite-porphyry, analysis of, from Montana, Yogo Ridge Ann 20, iii, pp 523, 574, 580; Bull 148, p 146; Bull 168, p 125
california, Bidwell Bar quadrangle GF 43, p 4
Downieville quadrangle ... GF 37, p 4
of Michigan, Crystal Falls district Ann 19, iii, pp 50-51, 86-88; Mon xxxvi, pp 81-87
of Montana, Judith Mountains .. Ann 18, iii, p 560
Little Belt Mountains .. Ann 20, iii, pp 375, 520-524
Little Belt Mountains quadrangle GF 56, pp 3, 4
of Sierra Nevada .. Ann 17, i, pp 640-649
thin section of, from Michigan, Crystal Falls district Ann 19, iii, pp 86-87, 88-89; Mon xxxvi, pp 270-271, 272-273
Rhyolite-porphyry, schistose, thin section of, from Michigan, Crystal Falls district Mon xxxvi, pp 276-277, 278-279
Rhyolite-tuff, analysis of, from California, Lassen County Bull 148, p 192; Bull 168, p 178
analysis of, from Yellowstone Park, Two Ocean Pass (trachytic) Bull 148, p 132; Bull 168, p 106
Rhyolite Mountain, Colorado, volcanic breccia of Ann 16, ii, p 101

Bull. 177—01——42
Rhylotic glass, analysis of, from Colorado, Mount Tyndall (residual) ... Bull 168, p 152
analysis of, from Montana, Gallatin Valley ... Bull 168, p 115
from Utah, near Marysvale ... Bull 168, p 168
thin section of, from Yellowstone Park ... Mon xxxii, ii, pp 406-407.

Rhyolitic structure in aporhyolite, thin section showing, from Pennsylvania,
South Mountain ... Bull 136, pp 114-115, 116-117

Rhyolitidae of United States (Tertiary) ... Mon xxxi, pp 11-29
Rhyolophyte from Cretaceous of Pacific Coast ... Bull 133, pp 31-33
from Cretaceous of Vancouver Island ... Bull 51, p 36

Rhynchosphora, recent and fossil, comparative table of ... Mon xxxi, p 4
Rhynchosphoroth Cordolepta, Tertiary, of United States ... Mon xxxi

Ribbon structure in ore deposits of Montana, Little Belt Mountains ... Ann 20, iii, p 417
Richmond Basin, Virginia, geology of ... Ann 19, ii, pp 389-515
Richmond quadrangle, Kentucky, geology of ... GF 46

Richterite, chemical constitution of ... Bull 125, p 90
Richthofen (F.), quoted on Comstock lode ... Mon iii, pp 12-24
Rickard (T. A.), cited on ore deposits near Rico, Colorado ... Ann 21, ii, pp 18, 108-109
Rico, Colorado, section near ... Ann 21, ii, p 98
Rico dome, Colorado, structure of ... Ann 21, ii, pp 98-128
Rico formation in Colorado, Rico Mountains ... Ann 21, ii, pp 28, 59-66
Rico Mountains, Colorado, geology of ... Ann 21, ii, pp 7-165

Ridgway (J. L.), work in charge of during 1898-1900 ... Ann 20, i, pp 140-141; Ann 21, i, pp 159-160
Riebeckite, chemical constitution of ... Bull 125, p 92
Ries (H.), clay industry, technology of ... Ann 16, iv, pp 523-575
clays and clay products at Paris Exposition of 1900 ... Ann 21, vi cont, pp 396-392
clay-working industry in 1886 ... Ann 18, v cont, pp 1105-1168

clay-working industry of United States in 1897 ... Ann 19, vi cont, p 469
feldspar and quartz, statistics of ... Ann 18, v cont, pp 1365-1368; Ann 19, vi cont, pp 657; Ann 20, vi cont, p 745; Ann 21, vi cont, pp 593-596
kaolins and fire clays of Europe ... Ann 19, vi cont, pp 377-467
limestone quarries of eastern New York, western Vermont, Massachusetts, and Connecticut ... Ann 17, iii cont, pp 795-811
pottery industry of United States ... Ann 17, iii cont, pp 842-880
Rifting in rocks of Massachusetts, Cape Ann ... Ann 9, pp 602-605

Rigidity, investigations of ... Ann 14, i, pp 143-150
of earth, considerations concerning, derived from a study of Lake Bonneville ... Mon i, pp 387-392

Riggs (R. B.), analysis and composition of tourmaline ... Bull 55, pp 19-37
two new meteoric irons and an iron of doubtful nature ... Bull 42, p 94-97
Riley series, origin of name ... Bull 81, p 246
Ringgold quadrangle, Georgia-Tennessee, geology of ... GF 2

Rinkite, chemical constitution of ... Bull 125, pp 78, 105
Rio Grande, hydrography of basin of ... Ann 11, ii, pp 52-57, 99, 107; Ann 12, ii, pp 240-290
irrigation in valley of, method of ... Bull 140, pp 180-186
irrigation problems relating to basin of ... Ann 11, ii, pp 215-227
Pleistocene origin of ... Ann 12, i, pp 517-518
profile of ... WS 44, pp 36-37
rainfall and run-off in upper basin of ... Ann 20, iv, pp 356-359
relation of Cretaceous to Eocene along ... Bull 164, p 35
reservoir sites and canals in basin of, surveys for ... Ann 11, ii, pp 145-150
Rio Grande, stream measurements in basin of Ann 11
11, pp 98, 99, 107; Ann 12, 11, pp 226, 250, 252, 280, 349, 350,
360; Ann 13, 11, pp 94, 99; Ann 14, 11, pp 110–115; Ann 18,
14, pp 245–259; Ann 19, iv, pp 381–390; Ann 20, iv, pp 57–59,
360–373; Ann 21, iv, pp 255–263; Bull 131, pp 41–47; Bull
140, pp 169–179; WS 10, pp 15–17; WS 11, pp 157–158; WS 16,
pp 127–133; WS 23, pp 120, 125–130; WS 37, pp 277–286
water supply of valley of ... Ann 12, 11, pp 277–278
Rio Grande coal fields, Texas, bibliography of Bull 164, pp 67–72
reconnaissance in ... Bull 164
Rio Grande Plain, Texas, geographic features of Ann 18, 11, pp 202–203
Ripidolite, analysis of, from Pennsylvania, Westchester Bull 78, p 19
analysis of, from Pennsylvania, Westchester, residue from Bull 78,
p 21; Bull 113, p 29
Ripley formation of Texas .. Bull 82, pp 116, 117, 118, 124, 126, 127, 130
Ripley group of Alabama, correlation of Ann 18, 11, p 438
of Alabama and Mississippi Bull 82, pp 105, 106, 108, 114, 117, 119, 221
Ripple marks, assistance of, in deciphering stratigraphy Ann 16, 1, pp 720–721
Rissoidite of Bear River formation Bull 128, pp 57–59
of Chico-Tejon series of California Bull 51, p 21
of Colorado formation .. Bull 106, pp 139–140
of Eocene of Utah and Wyoming Bull 34, pp 30–31
of Great Basin, Pleistocene and recent Bull 11, pp 20–21, 45–47
of North America (nonmarine fossil) Ann 3, pp 465–466
River, graded, example of ... TF 2, p 4
River courses in Washington, changes in, due to glaciation Bull 40
(See, also, Drainage.)
River flood plains in Louisiana, Donaldsonville quadrangle TF 1, pp 3–4
River stations, operations at, 1896–1899 WS 11, 16, 27, 28, 35, 36, 37, 38, 39
(See, also, Hydrography; Stream measurements.)
River terraces in Maine ... Mon xxxiv, pp 61, 68
in Washington, southeastern WS 4, pp 56–57
River water, analyses of ... Mon xi, p 176; Bull 52, p 38; Bull 55, pp 91–93
general chemistry of .. Mon xi, pp 172–174
Rivers, bars in, manner of formation of Ann 18, 11, pp 360–362
origin and persistence of Ann 2, pp 60–61; Mon 11, pp 72, 219
profiles of, in United States WS 44
Rivers and waste streams, development of Ann 18, 11, pp 145–150
Rivers, “lost” (subterranean drainage lines), especially in Indiana and
Ohio ... Ann 18, 14, p 483
Rixon (T. F.) and Dodwell (A.), Olympic Forest Reserve, Washington, re-
port on, from notes by .. Ann 21, v, pp 145–208
Rizer (H. C.), appointment of, to office of chief clerk Ann 12, 1, pp 19
work in charge of, 1894–1899 Ann 16, 1, pp 84–86; Ann 17, 1, pp 118–119; Ann 18, 1, pp 127–128; Ann 19,
1, pp 139–140; Ann 20, 1, pp 157–158; Ann 21, 1, pp 184–186
Road building in Massachusetts, effect of topographic conditions on Ann 16,
11, pp 322–324
methods of using stone in Ann 15, pp 266–268
rocks suitable for, distribution of Ann 15, pp 270–277
stones for, relative value of Ann 15, pp 266–268
Road material in Massachusetts, Cape Cod Ann 18, 11, pp 576–577
Road material in Massachusetts, use of trap as Mon xxi, pp 500-501
in Massachusetts and other parts of United States Ann 16, ii, pp 277-341
in Oregon, use of basalt as ... Ann 17, i, pp 514-515
in Virginia, Richmond Basin, dikes suitable for Ann 19, ii, p 501
resistance to wear of, statistics concerning Ann 16, ii, pp 328-341
sources of supply of ... Ann 15, pp 288-305
testing, method of .. Ann 16, ii, pp 285-290
Roads, action of rain, frost, and wind on Ann 15, pp 281-283
block pavements and paving brick for Ann 15, pp 278-281
grade of, effect of-geologic structure on Ann 15, pp 283-288
history of American, outline of Ann 15, pp 262-286
of United States, geology of ... Ann 15, pp 255-306
Roads, geologic conditions, and civilization, connection between Ann 15, pp 260-261
profile of ... WS 44, pp 23-24
rainfall and run-off in basin .. Ann 20, iv, pp 137-139
water powers in basin .. Ann 19, iv, pp 174-178
Roaring Creek coal field in West Virginia Ann 14, ii, pp 588-590
Robinson formation in California .. Ann 14, ii, pp 447-448; Ann 17, i, pp 626-628; GF 15, p 1; GF 31, p 1; GF 37, pp 1, 3; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
Robinson diorite in Montana, Little Belt Mountains quadrangle . GF 56, p 4
Robinson quartzite of Utah ... Ann 19, i, pp 260-262
Rock, analysis of, from Montana, Cottonwood Creek Bull 60, p 154
analysis of, from New York, Adirondacks (dark basic) Ann 19, ii, p 404
thin section of, from Michigan, SW. 1 sec. 32, T. 48 N., R. 29 W., fragmental from Clarksburg formation Mon xxi, pp 470-471
Rock, dike. (See Dike rock.)
Rock, wall (see Wall rock).
Rock Creek, District of Columbia, flow of, measurements of WS 15, p 22; WS 27, pp 22, 24; WS 35, pp 94-95
Rock Creek, Nevada, flow of, measurements of Ann 18, iv, pp 308-310; WS 11, p 75
water storage on Ann 20, iv, pp 441-447
Rock-forming minerals, chemical constitution of Bull 125
principal ... Bull 150, pp 27-47
Rock names, glossary of .. Ann 17, i, pp 736-740;
GF 3, p 2; GF 5, p 2; GF 11, p 2; GF 18, p 2; GF 31, p 2;
GF 37, p 2; GF 39, p 2; GF 41, p 2; GF 43, p 2; GF 51, p 2
Rock phosphates, classes, nature, and localities of Bull 46, pp 59-116
(See, also, Phosphates.)
Rock River, Illinois, profile of .. WS 44, p 60
Rock-scorings of the great ice invasions Ann 7, pp 147-248
Rock saturation, nature of .. Ann 21, vii, pp 388-389
Rock specimens, educational series of Bull 150
Rock structures, importance of understanding significance of Bull 62, p 196
produced by dynamic action .. Bull 62, pp 206-208
Rock temperatures of Nevada, Comstock lode Mon i, pp 246-258
Rockcastle conglomerate lentil in Kentucky GF 46, p 3; GF 47, p 2
in Tennessee .. GF 53, p 3
Rockingham group of rocks in New Hampshire Bull 86, pp 353-355
ROCKS, analyses of, from laboratory of United States Geological Survey Bull 168
analysis of, principles and methods ofBull 176
analyses, physical, of, methods of ... Bull 150, pp 18-27
as source of soils .. Ann 12, i, pp 293-296, 300-306
capacity of, for absorbing water .. Ann 21, vii, pp 389-390
chemical alteration of .. Bull 52, p 37
chemical analysis of; separation of titanium, chromium, aluminum, iron, barium, and phosphoric acid Bull 78, pp 87-90
classification of .. Ann 11, i, pp 504-508
constituents of, decomposition of Mon iii, pp 214-215, 369-372
educational series of .. Ann 12, i, pp 102-103; Bull 150
flow and fracture of, as related to structure Ann 16, i, pp 845-874
flows of water through ... Ann 21, vii, p 391
of Colorado, Leadville district, general description of Ann 2, pp 215-224; Mon xii, pp 45-89, 276-294, 292-362
of gold fields of southern AppalachiansAnn 16, iii, pp 259-265
of Lake Superior, copper-bearing ..Ann 8, n, pp 1037-1047
of Maine, Mount Desert Island (stratified) ... Mon iii,
pp 32-80, 372-376
of Nevada, Washoe district, nature and decomposition ofMon iii,
pp 56-175, 453-460
physical constants of, investigations intoAnn 3, pp 3-9
plants as builders of .. Ann 9, p 619
structure of .. Bull 150, pp 13-18
subaerial decay of, and origin of red color of certain formations Bull 52
of Pacific slope (sedimentary and massive)Mon xiii, pp 338-355
of Rocky Mountains, glaciation of Mon xxxiv, pp 338-355
of Rocky Mountain province, literature and fauna of Lower Cambrian in...Ann 10, pp 537-538, 542-543, 571, 584-586
of Rogers (H. D. and W. B.), quoted on relations of faults to foldsAnn 13, ii, p 227
Rogersville, analyses of, from North Carolina, Mitchell CountyBull 74, p 75
Rogersville shale of Kentucky, North Carolina, Tennessee, and Virginia .. .GF 12, p 2; GF 16, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
of Rocky Mountains, structure of Mon xii, pp 19-27
Rohn (O.), reconnaissance of Chitina River and Skolai Mountains, Alaska . .Ann 21, ii, pp 393-440
of Rolling mill development, twenty years ofMR 1891, pp 60-62
of Rome formation of North Carolina, Georgia, and TennesseeGF 2, p 1; GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2
of Rockwood formation of Alabama, Georgia, Kentucky, Maryland, Tennessee, Virginia, and West Virginia ...GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 14, p 1, 2; GF 19, p 2; GF 20, p 3; GF 21, p 2; GF 25, p 4; GF 26, p 2; GF 27, p 3; GF 28, p 2; GF 32, p 3; GF 33, p 2; GF 35, p 2; GF 44, p 3; GF 59, p 4; GF 61, pp 3-4
of Rome formation of North Carolina, Georgia, and TennesseeGF 2, p 1; GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2
(See, also, Igneous; Petrography; Sedimentary, etc.)
Rocks, primeval, possible character ofAnn 11, i, pp 504-508
Rockville conglomerate of Iowa ...Ann 11, i, pp 504-508
Rockwood formation of Alabama, Georgia, Kentucky, Maryland, Tennessee, Virginia, and West Virginia ...GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 14, p 1, 2; GF 19, p 2; GF 20, p 3; GF 21, p 2; GF 25, p 4; GF 26, p 2; GF 27, p 3; GF 28, p 2; GF 32, p 3; GF 33, p 2; GF 35, p 2; GF 44, p 3; GF 59, p 4; GF 61, pp 3-4
Rocky Mountains, glaciation of ... Mon xxxiv, pp 338-355
Rogers (H. D. and W. B.), quoted on relations of faults to foldsAnn 13, ii, p 227
Rogersville, analyses of, from North Carolina, Mitchell CountyBull 74, p 75
Rogersville shale of Kentucky, North Carolina, Tennessee, and Virginia .. .GF 12, p 2; GF 16, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
Rohn (O.), reconnaissance of Chitina River and Skolai Mountains, Alaska . .Ann 21, ii, pp 393-440
Roolker (C. M.), tin, production ofAnn 16, iii, pp 458-538
Rolling mill development, twenty years ofMR 1891, pp 60-62
Rome formation of North Carolina, Georgia, and TennesseeGF 2, p 1; GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2
(See, also, Colorado; Montana; New Mexico; Wyoming.)
Rocky Mountain province, literature and fauna of Lower Cambrian in...Ann 10, pp 537-538, 542-543, 571, 584-586
Rogers (H. D. and W. B.), quoted on relations of faults to foldsAnn 13, ii, p 227
Rogersville, analyses of, from North Carolina, Mitchell CountyBull 74, p 75
Rogersville shale of Kentucky, North Carolina, Tennessee, and Virginia .. .GF 12, p 2; GF 16, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
Rohn (O.), reconnaissance of Chitina River and Skolai Mountains, Alaska . .Ann 21, ii, pp 393-440
Roolker (C. M.), tin, production ofAnn 16, iii, pp 458-538
Rolling mill development, twenty years ofMR 1891, pp 60-62
Rome formation of North Carolina, Georgia, and TennesseeGF 2, p 1; GF 4, p 2; GF 6, p 1; GF 16, p 3; GF 20, p 2; GF 25, p 3; GF 27, p 2; GF 33, p 2
Rome sandstone, origin of name. .. Bull 81, p 247
Romney shale of Maryland, Virginia, and West Virginia. GF 14, pp 1, 2;
GF 26, p 2; GF 28, p 3; GF 32, p 3; GF 44, p 3; GF 61, p 4
Roof areas, quantity of rain water collected on. Ann 14, ii, p 26
Roofing slate. (See Slate, roofing.)
Roots as agents of soil formation Ann 12, ii, pp 269-274
Rosaceae of Alaska .. Ann 17, i, p 88
of Amboy clays .. Mon xxxvi, p 90
of Dakota group .. Mon xvii, pp 142-146
of North America (extinct) ... Mon xxxv, pp 110-113
Roscoelite, analysis of, from California, Placerville Bull 167, p 72
chemical constitution of .. Bull 125, p 51
from California, Placerville, mineralogic notes on Bull 167, pp 70-74
Rose Bud Hill, Colorado, Cripple Creek district, character of ore deposits in Ann 16, ii, p 177
Roseburg quadrangle, Oregon, forest conditions in Ann 21, v, p 577
geology of .. GF 49
Rooseite, chemical constitution of Bull 125, p 50
Rosenbuschite, analysis of .. Bull 125, p 89
chemical constitution of .. Bull 125, pp 77, 89, 105
Rosita Hills and Silver Cliff districts, Colorado, geology of Ann 17, ii, pp 263-403
mines of .. Ann 17, ii, pp 405-472
Roslyn sandstone of Washington, northern Ann 20, ii, pp 123-127
Rotalidse from Cretaceous of New Jersey Bull 88, pp 64-68
Rothwell (R. P.), pyrites, statistics of MR 1886, pp 650-675
Rotten limestone of Alabama and Mississippi Bull 82, pp 105, 106, 107, 108, 111, 114, 217, 219
Rotten stone, statistics of .. WS 44, p 45
Roumania, clay products of, at Paris Exposition of 1900 Ann 21, vi cont, p 389
petroleum localities and statistics of Ann 17, iii cont, pp 718-720;
Ann 18, v cont, pp 865-888; Ann 19, vi cont, pp 142-144;
Ann 20, vi cont, pp 165-168; Ann 21, vi cont, pp 225-227
Rowe schist in Connecticut .. GF 50, pp 2, 4
in Massachusetts ... Mon xxxix, pp 76-78; Bull 169, p 84; GF 50, pp 2, 4
Rowlandite, analysis of .. Bull 113, p 44
chemical constitution of .. Bull 125, pp 84, 106
composition of ... Bull 113, pp 44-48
Roxton beds of Texas .. Ann 21, vii, p 340
Royal formation along New-Kanawha River, West Virginia Ann 17, ii, pp 490-493
Rubellite, analysis of, from Maine, Hebron, alteration product from .. Bull 55, pp 25, 30
occurrence of ... MR 1887, p 560
Ruby, occurrence and statistics of MR 1882, pp 485-486; MR 1893, p 693; Ann 16, iv,
pp 599, 604; Ann 17, iii cont, pp 905-909, 923; Ann 18, v
cont, pp 1197-1198, 1217; Ann 20, vi cont, pp 573, 576, 599
Ruby formation in Colorado ... GF 9, p 7
Ruby Range, Colorado, structure and rocks of Ann 14, ii, pp 199-200
Rudiste from Colorado formation Bull 106, p 96
Ruffner (W. H.), coal fields of Washington MR 1891, pp 334-341
Rührmann (R.), hypsometric method of Ann 2, pp 550-552
Ruley (W. W.), anthracite coal, statistics of Ann 18, v, pp 573-597; Ann 19, vi, pp 480-505
Rumpfite, analysis of ... Bull 113, p 18
chemical constitution of .. Bull 125, v 54
Run-off from various drainage basins. Ann 13, ii, pp 13-15
of Illinois. .. Ann 17, ii, pp 730-743
(See, also, Rainfall and run-off.)
Russell (I. C.), a geological reconnaissance in central Washington Bull 108
a reconnaissance in southeastern Washington WS 4
existing glaciers of United States. Ann 5, pp 303-355
explorations in Alaska. Ann 11, i, pp 57-58; Ann 12, i, pp 59-61; Ann 13, i, pp 36, 90-91
glacial history of Lake Lahontan. Ann 3, pp 189-235; Mon xi
geological reconnaissance in southern Oregon Ann 4, pp 431-464
glacial history of Mount Rainier. Ann 20, ii, pp 83-210
Newark system, a correlation essay Bull 85
Quaternary history of Mono Valley, California ... Ann 13, n, pp 1-91
subaerial decay of rocks and origin of red color of certain formations Bull 52
work in charge of, 1898-99 Ann 20, i, p 52
Russell formation of Kentucky, Tennessee, Virginia, and West Virginia GF 12
p 2; GF 26, p 2; GF 44, p 2; GF 59, p 3,
Russia; clay deposits of Ann 19, vi cont, pp 451-455
clay products of, at Paris Exposition of 1900 Ann 21, vi cont, p 390
fauna of Olenellus zone in Ann 10, i, pp 579-580
fossil plants of, literature of Ann 8, vi, pp 781-785
gold and silver production of, compared with that of other countries MR 1883-84, p 319, 320
iron-ore deposits of, character and location of Ann 16, iii, pp 149-155
lead production of ... MR 1883-84, p 434; MR 1885, pp 264, 270; Ann 21, vi, pp 247
mining law of ... MR 1883-84, p 1002
Russia; osmium-iridium, production of

petroleum localities and production of, statistics of

phosphates of

phosphorus production of

platinum from, character of

platinum mines and production of, statistics of

precious stones in, occurrence of

quicksilver deposits in

quick silver deposits and production of

salt production of, statistics of

tin deposits and production of

zinc production of, statistics of

Rust, Boner-Barff process of protecting iron and steel from

Rutherfordite, analysis of, from North Carolina

Rutile, composition of

in rocks of Pacific slope

occurrence and statistics of

Rutledge limestone of Kentucky, North Carolina, Tennessee, and Virginia

Ryder (J. A.), life-history of the oyster

Sabinal River, Texas, flow of, measurements of

Sabine River beds of Texas

Saco River, Maine, profile of

water power of

Sacramento porphyrite of Colorado, Leadville district, petrography of

Sacramento porphyry of Colorado, Leadville district

Sacramento quadrangle, California, geology of
profile of ...WS 44, pp 91-92
Sacramento and San Joaquin basins, California, hydrography of........Ann 12, ii, pp 316-324
Safford (J. M.), coal measures of TennesseeMR 1892, pp 497-506
Sagenite, occurrence and statistics ofMR 1882, p 491; MR 1892, pp 773-774, 781
Saggar clay, analysis of, from New Jersey, Woodbridge.........Ann 17, p iii, 863
Sahlite, chemical constitution of....................................Bull 125, p 86
thin section of, from Massachusetts, Blandford (changing into tremolite) ..Mon xxix, pp 106-107
Sailor Canyon formation of California...............GF 31, p 1; GF 37, p 1; GF 39, pp 1, 3; GF 41, p 1; GF 43, p 1; GF 51, p 1; GF 66, pp 2-3
Saint Augustine Volcano, AlaskaAnn 18, iii, pp 28-30
Saint Clair black shales of Michigan.........................WS 30, pp 85-86
Saint Croix River, Maine, profile ofWS 44, p 8
water power of ..Ann 19, iv, pp 43-52
Saint Croix sandstone of Upper Mississippi ValleyBull 81, pp 245, 330-334
Saint Elias, Mount, second expedition to, by Russell, in 1891....Ann 13, ii, pp 1-91
Saint Elias Range, Alaska, features ofAnn 21, ii, pp 345-346
notes on ..Ann 20, vii, pp 374-375, 378
Saint John Baptist Bay, Alaska, coal on shores ofAnn 17, i, pp 772-773
Saint John formation, fauna of, in Harter collection, review ofBull 10, pp 9-42
Saint John group of New Brunswick and Cape BretonBull 81, pp 61-67; Bull 86, pp 230, 231
Saint John’s slate of Newfoundland..........................Bull 81, pp 50-55, 248-249
Saint Joseph limestone of Missouri, character and occurrence of...Bull 132, pp 14-17
Saint Lawrence River, drainage area, altitude of points on tributaries, etc.,
of ..WS 24, pp 24-31
flow of, measurements ofWS 36, pp 193-194
water power on ..WS 25, pp 143-144
Saint Louis formation of Indiana...........................Ann 11, i, pp 638-639
Saint Louis gabbro of MinnesotaMon v, pp 268-275
Saint Louis limestone of Iowa..............................Ann 11, i, p 312
Saint Louis slates of Lake Superior regionBull 86, pp 186-187
Saint Mary’s beds of MarylandBull 84, p 335
Saint Peter sandstone of Canada.................Bull 81, p 334
of Illinois, altitude, thickness, etc., ofAnn 17, ii, pp 794-795, 837-838
of Indiana, .Ann 11, i, pp 625-626
of Iowa, .Ann 11, i, pp 330-331
Saint Stephens group of AlabamaBull 84, p 335
Salangore, tin deposits and industry ofAnn 16, iii, pp 476-477
Salenidae, Mesozoic, of United StatesBull 97, pp 40-44
Salicaceae of AlaskaAnn 17, i, pp 881-882
of Amboy claysMon xxvi, pp 65-69
of Dakota groupMon xvii, pp 42-51
of Laramie groupBull 37, pp 18-24
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Salicaceae of North America (extinct) .. Mon xxxv, pp 37-59
of Yellowstone Park .. Mon xxxii, ii, pp 694-698
Salina and Monroe beds (lower Helderberg) of Michigan WS 30, pp 88-89
Saline contents of Great Salt Lake ... Mon i, pp 251-258
Saline efflorescences of Lahontan Basin .. Mon xi, pp 230-232
Saline River, flow of, measurements of ... Ann 18, iv, pp 210-212; Ann 19, iv, pp 343-346; Ann 20, iv, pp 56, 916; Ann 21, iv, pp 224-225; Bull 140, pp 140-142; WS 11, p 58; WS 16, pp 112-113; WS 27, pp 93, 95, 96; WS 37, pp 250-251
Salines of Louisiana .. MR 1882, pp 554-565
Salines and refineries of California .. MR 1882, pp 570-571
Salisbury (R. D.) and Chamberlin (T. C.), driftless area of the Upper Mississippi Valley .. Ann 6, pp 199-322
Salt, analysis of (sea) .. Bull 78, p 35
analysis of, from Africa, Algeria (rock) ... MR 1883-84, p 849
from Austria, various localities (rock) ... MR 1883-84, p 849
from California, Los Angeles .. MR 1885, p 482
from England, Ashton and Higgins (dairy) .. MR 1887, p 614
Cheshire and Droitwich ... MR 1883-84, p 849
from Germany, Lorraine .. MR 1883-84, p 849
Stassfurt (rock) .. MR 1883-84, p 849
Stassfurt (mother liquor from) ... MR 1887, p 439
from Ireland, Carrickfergus (rock) .. MR 1883-84, p 849
from Kansas, Hutchinson ... Bull 66, p 171
from Louisiana, Lake Bistineau .. MR 1882, p 555
Petite Anse (rock) .. MR 1883-84, pp 841, 849
T. 12, R. 17 W., sec. 22 .. MR 1882, p 557
from Michigan, East Saginaw (dairy) .. MR 1887, p 614
Saginaw ... MR 1883-84, p 849
from New York, Livingston County .. MR 1885, p 479
Onondaga .. MR 1883-84, p 849
Onondaga district (dairy) ... MR 1887, p 614
Warsaw .. Bull 55, p 88; MR 1883-84, p 634; MR 1886, p 636
from Ohio, Canal Dover ... MR 1887, p 619
Hocking Valley .. MR 1883-84, p 849
Pomeroy ... MR 1887, p 619
from Ontario, Goderich ... MR 1883-84, p 849
from Pennsylvania, Pittsburg ... MR 1883-84, p 849
from Santo Domingo .. MR 1883-84, p 849
from Utah, Deep Creek Valley ... Bull 66, p 56
from Virginia, Smythe County (rock) .. MR 1883-84, p 840
from West Virginia, Kanawha .. MR 1883-84, p 849
from Wyoming, Carbon County (dry) .. Bull 66, p 44, MR 1885, p 553
deposits of, in inclosed basins .. Mon xi, pp 84-86
in Utah, Sevier Basin and Snake Valley ... Mon i, pp 223-228
foreign commerce in .. MR 1882, pp 550-553; MR 1883-84, pp 848-849
in Kansas .. Bull 57, pp 25-26, 48
in Porto Rico .. Ann 20, vii cont, p 775
salines of Louisiana ... MR 1882, pp 554-565
statistics of .. MR 1882, pp 532-565; MR 1883-84, pp 827-850;
MR 1891, pp 572-578; MR 1892, pp 792-800; MR 1893, pp 717-727; Ann 16, iv, pp 646-657; Ann 17, VII cont, pp 984-997;
Ann 18, v cont, pp 1273-1313; Ann 19, vii cont, pp 587-612;
Ann 20, vii cont, pp 667-688; Ann 21, vii cont, pp 531-554
Salt Creek, Nebraska, flow of, measurements of Bull 140, p 123
Salt Lake, Great, analysis of the water of................ Mon i, pp 207, 253, 254, 255
hydrography of basin of Ann 11, i, pp 66-77, 109
 saline deposits of .. Mon xi, pp 185-186
 surveys, oscillations, fauna, etc., of Mon i, pp 230-259
 Salt Lake group of rocks of Idaho.......................... Bull 84, pp 286-287, 317, 334
 Salt making in United States, history of Ann 18, v cont, pp 1288-1313
 processes of, in the United States Ann 7, pp 491-535
 Salt River, Arizona, flow of, measurements of Ann 18, iv, pp 100; Ann 12, ii, pp 308, 360;
 Ann 13, iii, pp 95, 99; Ann 18, iv, p 298; Ann 19, iv, pp 418-420, 423; Ann 20, iv, pp 59, 405-406; Ann 21, iv, pp 386-387;
 hydrography of basin of Ann 11, i, pp 61-63, 100
 Salt Spring Valley reservoir, California, discharge of, measurements of Ann 18, iv, pp 375-377
 Salt Wells group, Uinta Mountains.......................... Bull 82, p 295
 Salt with 4 atoms of silver, analyses of Bull 167, p 103
 Salt works in Lahontan Basin Ann 3, pp 226-227; Mon xi, pp 232-235
 Salt peter, analyses of, from Chile, Atacama Desert ... MR 1893, p 737
 statistics of ... MR 1893, pp 736-737
 Salts, analyses of, from California, Mono Lake Bull 60, p 66
 analyses of, from California, Owens Lake Bull 60, pp 63, 64
 from Nevada, various localities Bull 60, p 56
 from sodium sulphate Bull 60, p 29
 with 6 atoms of silver, analyses of Bull 167, p 106
 Salts deposited on evaporation Mon xi, pp 182-187
 Saluda River, South Carolina, flow of, measurements of . Ann 18, iv, p 68;
 Ann 20, iv, pp 50, 153-154; Ann 21, iv, pp 129-130; WS 11, p 19; WS 15, p 38; WS 27, pp 39, 44, 46; WS 36, pp 126-127
 profile of .. WS 44, p 27
 water powers on .. Ann 19, iv, pp 221-222
 Samarskite, analysis of, from Colorado, Pikes Peak region .. Bull 55, p 49
 analyses of, from North Carolina, various localities Bull 74, pp 73, 74
 from Colorado ... Bull 55, pp 48-51
 Sanoite, chemical constitution of Bull 125, pp 66, 101
 Samovar Hills, Alaska, description of Ann 13, ii, pp 34-37
 San Andreas and Pilicotos reservoirs, California, discharge of, measurements of Ann 18, iv, p 370
 San Antonio River, flow of, measurements of Ann 18, iv, p 110; Bull 140, pp 84, 86; WS 28, p 130
 San Bernardino Forest Reserve, reports on Ann 19, iv, pp 65, 390-398; Ann 20, v, pp 429-554
 San Bernardino Valley, California, miscellaneous discharge measurements WS 39, pp 423-425
 water supply of .. Ann 19, iv, pp 540-632
 San Bias, project for interoceanic canal by way of Ann 20, v, p 588
 San Carlos, Texas, igneous rocks from vicinity of Chispa and, report on Bull 164, pp 88-95
 San Carlos coal field, Texas, geology and character of coal in Bull 164, pp 73-88
 San Clemente Island, California, geologic sketch of Ann 18, ii, pp 459-496
 San Diego beds of California, correlation of Ann 18, ii, p 337
 San Diego River, proposed dam on Ann 21, iv, pp 486-488
 San Francisco Bay drainage, stream measurements in Ann 18, iv, pp 361-397;
 Ann 19, iv, pp 508-539; Ann 20, iv, pp 63, 524-538; Ann 21, iv, pp 444-468; Bull 131, pp 75-87; Bull 140, pp 249-309;
 WS 11, pp 89-92; WS 16, pp 185-192; WS 28, pp 177-186
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.]

San Francisco district, Utah, reconnaissance of Ann i, pp 37-38
San Francisco group of California. Bull 84, p 334
San Francisco Peninsula, California, geology of, sketch of. Ann 15, pp 399-476
San Francisco sandstone, description of Ann 15, pp 417-419
San Gabriel Forest Reserve, reports on Ann 19, v, pp 66, 367-371; Ann 20, v, pp 411-428
San Gabriel River, flow of, measurements of. Ann 18, iv, pp 405-411;
Ann 19, iv, pp 528-531; Ann 20, iv, pp 64, 549-552; Ann
21, iv, pp 475-480; Bull 140, pp 315-318; WS 16, pp 194–
195; WS 28, pp 189, 190-191, 196; WS 39, pp 410-413
San Jacinto Forest Reserve, reports on Ann 19, v, pp 65, 351-357; Ann 20, v, pp 455-478
San Jacinto quadrangle, California, forest conditions in Ann 21, v, pp 575-576
San Joaquin River, flow of, measurements of Ann 12, ii, pp 226, 318-319, 322-323; Ann 13, iii, p 22; Ann 18, iv, pp 371-397; Ann 19, iv, pp 510-528; Ann 20, iv, pp 63, 526, 529-530; Ann 21, iv, pp 466-467; Bull 131, pp 78-87; Bull
water power on WS 44, pp 83-84
San Joaquin and Sacramento rivers, hydrography of basins of... Ann 12, ii, pp 316-324
San Juan formation of Colorado Ann 18, iii, pp 761-763; GF 57, pp 5, 8, 13
San Juan Mountains, Colorado, formation of Ann 18, iii, p 758
San Juan Plateau, Colorado, denudation of GF 57, pp 14-15
San Juan region, Colorado, geography, topography, and geology of.... GF 57, pp 1-2
San Juan River, Colorado, flow of, measurements of Ann 18, iv, pp 278-281; Ann 19, iv, pp 409-410; Ann 20, iv, pp 58, 400-401;
Ann 21, iv, pp 297-298; Bull 140, pp 195-196; WS 11, p 71;
WS 16, p 144; WS 28, pp 138, 142, 145; WS 38, pp 307-308
profile of ... WS 44, pp 83-84
San Luis Rey River, flow of, measurements of Ann 19, iv, pp 532-535;
Bull 140, p 321; WS 39, pp 428-429
San Luis Valley, Colorado, hydrography and irrigation in Ann 11, ii, p 146;
Ann 12, ii, pp 247-251
San Marcos River, Texas, flow of, measurements of Ann 18, iv, p 110;
Bull 140, pp 83, 86; WS 28, p 130
San Mateo Creek, California, flow of, measurements of WS 38, pp 389-390
San Miguel formation, correlation of GF 57, p 13
of Colorado Ann 18, iii, p 760; GF 57, pp 4, 8, 10, 13
of Texas Bull 164, pp 21-22
San Miguel Mountains, Colorado, structure and rocks of Ann 14, ii, pp 203-206
San Miguel River, Colorado, flow of, measurements of Ann 18, iv, pp 264-265;
Ann 19, iv, pp 406-407; Ann 20, iv, pp 58, 395-396;
Ann 21, iv, pp 283-284; Bull 140, pp 193-194; WS 16, p 142;
WS 28, pp 137, 142, 144; WS 38, pp 306-307
San Pedro beds of California, correlation of Ann 18, ii, p 335
San Pedro River, flow of, measurements of Ann 11, ii, p 99;
Ann 18, iv, p 110; WS 140, pp 84, 86
hydrography of basin of Ann 11, ii, pp 59-61, 99
San Saba River, profile of WS 44, p 35
Sand, analysis of, from Canada, various localities (iron) Ann 16, iii, p 51
analysis of, from England (glass) MR 1883-84, p 962
from Florida, Lakeland Bull 84, p 155
from France, Fontainebleau (glass) MR 1883-84, p 962
Sand, analysis of, from Germany (glass) .. MR 1883-84, p 962
analysis of, from Germany, Adolf's Hütte (clayey) .. Ann 19, vi cont, p 425
from Massachusetts, Berkshire County (glass) .. MR 1883-84, p 962
from Missouri (glass) ... MR 1883-84, p 962
from New Jersey (glass) ... MR 1883-84, p 962
from New York, Long Island (magnetic) ... Ann 19, iii, p 392
from Pennsylvania (glass) ... MR 1883-84, p 962
from Rhode Island, Block Island (magnetic iron) .. Bull 27, p 69; Bull 168, p 275
from West Virginia, Hancock County (glass) .. MR 1883-84, p 962
thin section of, from Michigan, Crystal Falls district (water deposited) Mon xxxvi, pp 296-297
Sand and glass breccia, thin section of, from Massachusetts, Greenfield Mon xxix, p 422
Sand and soil grains, diameter of, determinations of Ann 19, ii, pp 218-227
effect of size of, on rate of flow of ground water .. Ann 19, ii, pp 228-242
Sand, soil, and rock, pore space in, determinations of Ann 19, ii, pp 208-218
Sand, aeolian, of Lake Lahontan Basin ... Mon xi, pp 153-156
Sand, beach, description of the rock, as one of the educational series Bull 150, pp 59-61
Sand, building, statistics of ... MR 1883-84, pp 667-668; MR 1885, pp 404-405
Sand, dune, description of the rock, as one of the educational series Bull 150, pp 61-63
Sand, oölitic, description of the rock, as one of the educational series Bull 150, pp 102-103
Sand, volcanic, from California, Snag Lake cinder cone, description of, as one of the educational series Bull 150, pp 245-248
(See Volcanic sand.)
Sand areas of Long Island, New York, water yield of WS 25, pp 191-198
Sand dunes, constitution of ... Mon i, p 59
in Great Basin ... Mon xi, pp 153-156
in Kansas .. WS 6, pp 24-25
in Massachusetts, Cape Ann district .. Ann 9, pp 574-575
in Nebraska .. Ann 19, iv, pp 733, 741
Sand Hills of South Carolina ... Bull 84, p 334
Sandpoint quadrangle, Idaho, forest conditions in Ann 21, v, pp 583-595
Sand-spit harbors, description of ... Ann 13, ii, pp 127-129
Sandstone, analysis of, from Arizona, Flagstaff ... Ann 18, v cont, pp 1015, 1016; Ann 20, vi cont, p 356; Bull 78, p 124; Bull 148, p 252; Bull 168, p 249
analysis of, from California, Colusa County .. Ann 20, vi cont, p 361
from California, Ione formation (pearly scales in) Ann 14, ii, p 464
Mount Diablo .. Bull 148, p 248; Bull 168, p 245
New Idria. (concretions in) ... Mon xiii, p 65
Shasta County .. Bull 64, p 50; Bull 78, p 123-124; Bull 148, pp 249, 250; Bull 168, pp 246, 247
Sulphur Bank .. Mon xiii, p 92; Bull 148, p 250; Bull 168, p 247
from Colorado, Armejo quarry (yellow) .. Bull 42, p 141; Bull 148, p 251; Bull 168, p 248
Boulder County .. MR 1889-90, p 384
Buckhorn quarry .. MR 1886, p 547
Gunnison County (efflorescence on) ... Bull 60, p 170
Stout quarry .. MR 1886, p 547
Summit County .. Bull 148, p 252; Bull 168, p 249
Sandstone, analysis of, from Connecticut, Cromwell

from Indiana, Cannelton

various localities

Worthy (Portland)

from Kansas, Jefferson County

various localities

from Kentucky, Elliott County (calcareous)

from Maine, Aroostook County (calciferous)

from Maryland, Frostburg

from Massachusetts, East Long Meadow, Kibbe, Maynard, and Worcester quarries

from Michigan, Stony Point

from Minnesota, Fond du Lac

from New Jersey, Essex County

from New York, Niagara County

from North Carolina, Moore County

Sanford (brown)

from Ohio, Berea

Buena Vista

Cleveland

Freeport

Lancaster

Portsmouth ("Peebles-Henley")

various localities

Wayne County

from Oregon, Lincoln County

Washington County

from Pennsylvania, Blair and Fayette counties

Edge Hill

Hummelstown

Laurel Run

Rough Run

various localities

from Utah, Peoa (banded)

Utah County
Sandstone, analysis of, from Wisconsin, Ableman ...
Bull 90, p 65; Bull 148, p 252; Bull 150, p 80; Bull 168, p 249
analysis of, from Wisconsin, Ashland ...
Ann 19, vi cont, p 280; Ann 20, vi cont, p 461
concretions in, origin of ...
Mon xiii, pp 64-68
induration of ...
Bull 8, i, pp 12-18, 48-52
of California, Coast Ranges, metamorphism of ...
Mon xiii, pp 63, 87-93
Coast Ranges, petrography of ...
Mon xiii, pp 59-63
of Colorado, Elmo quadragrante ...
GF 58, p 4
Walsenburg quadrangle ...
GF 68, pp 5-6
of Indiana, western ...
Ann 17, iii cont, pp 780-787
of Lake Superior region, Keweenawan series ...
Mon v, pp 127-133
of Nevada, Eureka district (metamorphosed) ...
Mon xx, p 346
of Oregon, of economic importance ...
Ann 17, i, pp 512-513
of South Dakota, tests of ...
MR 1889-90, p 429
red color of, origin of ...
Bull 52, pp 44-55
secondary enlargement of mineral fragments in ...
Ann 5, pp 218-241
of quartz and feldspar grains ...
Bull 8, pp 11, 44
statistics of ...
MR 1882, pp 451, 457; MR 1885, p 403;
Ann 16, iv, pp 436, 437, 482-492; Ann 17, iii cont, pp 759, 760-761, 775-787; Ann 18, v cont, pp 949, 950-951, 1012-1043;
tests of, from South Dakota ...
MR 1889-90, p 429
thin section of, from Massachusetts, Greenfield (scoriaceous) ...
Mon xxix, pp 430-431
from Michigan, from the "Calumet conglomerate " ...
Mon v, pp 126-127
Eagle Harbor ...
Ann 5; Bull 8, p 45
Keweenaw Point, near Copper Falls mine ...
Mon v, pp 126-127
Nonesuch mine (cupriferous) ...
Mon v, pp 126-127
NW. 1/2 sec 27, T. 47 N., R. 45 W ...
Mon xix, pp 486-487
from Oregon, Barron (pebbly) ...
Bull 150, pp 76-77
from Pennsylvania, Hummelstown (brown) ...
Bull 150, pp 76-77
from Wisconsin, Ableman (Potsdam) ...
Bull 150, pp 80-81
Gibraltar Bluff ...
Bull 8, pp 24-25
Montreal River (basic) ...
Mon v, pp 126-127
Westfield ...
Bull 8, pp 28-29
transformation of, to serpentine ...
Mon xiii, pp 121-126, 277-278
varieties, uses, etc., of ...
Ann 16, iv, pp 482-494
(See, also, Building stone.)
Sandstone, composite, analyses of ...
Bull 168, pp 16-17
Sandstone, banded, from Utah, Peca, description of the rock, as one of the ...
Bull 150, pp 80-81
Sandstone, brown, description of the rock, as one of the educational series ...
Bull 150, pp 77-78
Sandstone, Eastern, junction between, and Keweenaw series on Keweenaw ...
Point, Lake Superior, observations on ...
Bull 23
Sandstone, Potsdam, description of the rock, as one of the educational series ...
Bull 150, pp 79-80
Sandstone, fossiliferous, description of the rock, as one of the educational ...
series ...
Bull 150, pp 83-84
Sandstone, gray, description of the rock, as one of the educational series ...
Bull 150, pp 75-77
Sandstone, laminated, from Massachusetts, Holyoke, description of, as one of the educational series.................................Bull 150, pp 81-82
Sandstone, pebbly, description of the rock, as one of the educational series... Bull 150, pp 74-75.
Sandstone, ripple-marked, description of the rock, as one of the educational series..................................Bull 150, pp 82-83
Sandstone dikes of Colorado, Pikes Peak quadrangle (in granite)GF 7, p 3
Sandsock shale of Tennessee and North Carolina........................ .GF 16, p 3; GF 20, p 2; GF 25, p 2
Sandusky River, Ohio, flow of, measurements of..............................WS 27, 27, pp 67, 68; WS 36, pp 179-181
Sandwich Islands. (See Hawaiian.)
Sanganon soil and weathered zone..................................Mon xxxvii, pp 125-130
Sangre de Cristo and Wet mountains, Colorado, geology of..............Bull 86, pp 313-314
Sanidine, analysis of, from Colorado, Chalk Mountain................... .Mon xiv, p 589; Bull 148, p 174; Bull 150, p 164; Bull 168, p 156
luster exhibited by, in certain rhyolites.....................................Bull 20, pp 75-80
luster of, in nevadite...Mon xi, p 348
Sanitary conditions of soils..................................Ann 12, i, pp 340-344
San Juan dome, Colorado, structure of..................................Ann 21, ii, pp 99-101
Sankaty beds of New England..Ann 17, i, p 976
Santa Ana River, California, flow of, measurements of............Ann 18, iv, pp 411-412; Ann 20, iv, pp 64, 552-555; Ann 21, iv, pp 483-484;
Bull 140, pp 318-321; WS 11, p 93; WS 16, pp 195-196;
WS 28, pp 190, 191, 194-195; WS 39, pp 418-420, 427-428
Santa Clara River, California, flow of, measurements of.........Ann 20, iv, pp 540-541
Santa Cruz formation of Patagonia, correlation ofAnn 18, ii, p 342
Santa Fe district, New Mexico, irrigation in..............................Ann 11, ii, pp 149, 219, 224; Ann 12, ii, pp 169-270
Santa Fe marls of New Mexico, correlation of...........................Bull 84, pp 302-303, 317, 334
Santee beds of South Carolina, correlation of...........................Ann 18, ii, pp 342; Bull 83, pp 51, 52-53; Bull 84, p 334
Santee River, South Carolina, profile of..............................WS 44, p 26
Sapindaceae of Alaska..Ann 17, i, p 888
of Cretaceous of Black Hills......................................Ann 19, ii, p 690
of Dakota group..Mon xvii, pp 158-159
of Laramie group..Bull 37, pp 65-69
of North America (extinct)......................................Mon xxxv, pp 116-117
of Yellowstone Park..Mon xxxii, ii, pp 736-739
Saponite, chemical constitution of.....................................Bull 125, pp 83, 105
Saporta (Marquis Gaston de), biographic sketch of.......................Ann 5, pp 333-384
quoted on Lower Cretaceous flora of Portugal............................Ann 16, i, pp 514-515
Sapotaceae of Amboy clays..Mon xxvi, p 123
of Dakota group..Mon xvii, pp 113-114
of North America (extinct)......................................Mon xxxv, pp 126-127
(See, also, Precious stones.)
Sapphire mines in Montana, Yogo, description of Ann 20, iii, pp 454-459, 552-556; Ann 21, iv cont, pp 448-449
Sapphires in Montana, Little Belt Mountains quadrangle Bull 56, p 9
Saphirine, chemical constitution of ... Bull 125, pp 65, 104
Saprolite deposits in gold fields of southern Appalachians Ann 16, iii, pp 289-293
Sardinite, chemical constitution of .. Bull 125, pp 21, 104
Sardinia, iron and iron ore from, statistics of .. Ann 16, iii, p 23, 113
Saskatchewan, Lake, the glacial, extent, etc., of Mon xxv, pp 272-274
Sassafras River greensand of Chesapeake Bay region Ann 7, p 612
Satin spar, analysis of, from Massachusetts, Chicopee Bull 126, p 46
Sault Ste. Marie sandstone, correlation of ... Bull 86, pp 55, 56, 57
Sauquoit Creek, New York, flow of, measurements of WS 35, pp 48-49
Sauropoda of North America .. Ann 16, i, pp 164-186
Savannas beds of France, correlation of .. Ann 18, ii, p 340
Sausurite, analysis of, from California, Shasta County Bull 9, p 10
Sausurite-gabbro, analysis of, from Michigan, Sturgeon Falls Bull 62, pp 226-227
Sausurite-gabbro, thin section of, from Michigan, Sturgeon Falls Bull 148, p 100; Bull 168, p 70
Savage formation in West Virginia and Maryland Bull 62, pp 58-60
Savannah River, water powers in basin of ... Ann 19, iii, pp 437, 444; Ann 21, ii, pp 276-278
Savannah and Altamaha rivers, rainfall and run-off in basins of Ann 20, iv, pp 155-156
Savoy schist in Connecticut ... GF 50, pp 2, 5
Sawatch Mountains, Colorado, Archean and Algonkian rocks of Bull 86, pp 3, 6
Sawatch quartzite of Colorado .. GF 9, pp 6, 9; GF 48, pp 1-12
Saxicavidae of marls of New Jersey ... Mon xi, pp 181-182, 219; Mon xxiv, pp 89-93
Saxicavidae of Miocene marls of New Jersey .. Mon xxiv, p 1
Scaleliride of clays and marls of New Jersey ... Ann 19, i, pp 181-182, 219
Scaphopoda from Cretaceous of Pacific coast ... Bull 133, p 62
Scaphopoda from Eocene of middle Atlantic slope Bull 141, p 72
Scapellite, occurrence of .. MR 1888-89, p 773
Scapellite rocks from southwestern Alaska and elsewhere Ann 20, vii, pp 217-221

Bull. 177—01—43
Scapolites, chemical constitution of .. Bull 125, pp 28-32
Scaly clays of Italy ... Ann 11, pp 506-510
Scelidosaurus, remarks on and restoration of Ann 16, i, p 229
Schardt (H.), quoted, on experiments to simulate folded strata Ann 13, ii, p 233
Scheelite, analysis of, from North Carolina, Cabarrus County Bull 74, p 80
Schefferite, chemical constitution of ... Bull 125, p 86
Schenk (August), biographic sketch of .. Ann 5, pp 382-383
Scheuchzer (Johann Jacob), biographic sketch of Ann 5, p 370
Schimper (Wilhelm Philipp), biographic sketch of Ann 5, pp 375-376
Schist, analysis of, from Brazil, near Diamantina (kyanitic) Bull 168, p 230
from California, Bidwell Bar quadrangle (chloritic) Ann 17, i, p 582
from California, Merced-Maripea district .. Ann 17, i, p 691
Yuba County (amphibolitic) ... Bull 148, p 228; Bull 168, p 217
from Catoctin belt ... Ann 14, ii, p 307
from Maryland, near Point of Rocks .. Ann 14, ii, p 307
from Massachusetts, Hoosac tunnel (feldspathic) Bull 148, p 78
from Michigan, Aragon iron mine (talcose) Bull 168, p 72
Lower Quinnesec Falls .. Bull 55, p 81; Bull 62, p 89; Bull 148, p 101; Bull 168, p 71
Marquette district, T. 47 N., R. 30 W., sec. 3 Mon xxviii, p 203
T. 47 N., R. 30 W., sec. 30 .. Mon xxviii, p 202; Bull 148, p 99; Bull 168, p 65
T. 48 N., R. 27 W., sec. 34 (Kitche) .. Ann 15, p 500; Mon xxviii, p 168; Bull 148, p 99; Bull 168, p 65
T. 48 N., R. 30 W., sec. 19 (Kitch) ... Mon xxviii, p 418
sec. 35, near southwest corner of ... Mon xxviii, p 203
Sturgeon Falls (silvery) ... Bull 62, p 76; Bull 148, p 100; Bull 168, p 70
from Pennsylvania, South Mountain (chloritic) Ann 14, ii, p 307; Bull 136, p 80
South Mountain (fissile green) .. Bull 136, p 61
from South Dakota, Black Hills ... Bull 150, p 331
from Virginia, near Browntown (Catoctin) Ann 14, ii, p 307
from West Virginia, near Harpers Ferry (Catoctin) Ann 14, ii, p 307
from Wisconsin, Lower Quinnesec Falls .. Bull 55, p 81; Bull 148, p 101; Bull 168, p 71
of Alaska, southern ... Ann 18, iii, pp 48-50
of California, Pyramid Peak quadrangle .. GF 31, pp 3, 4
of Colorado, Cripple Creek district .. Ann 16, ii, pp 23-24, 29, 93
Pikes Peak quadrangle .. GF 7, pp 1, 7
Pueblo quadrangle .. GF 36, p 2
of Connecticut, Holyoke triangle .. GF 50, pp 4, 5
of Maryland, Catoctin belt ... Ann 14, ii, pp 306-309
Harpers Ferry quadrangle ... GF 10, p 2
of Massachusetts, Holyoke quadrangle .. GF 50, pp 4, 5
of Montana, Fort Benton quadrangle ... GF 55, pp 1-2
Little Belt Mountains quadrangle ... GF 56, p 1
of Virginia, Catoctin belt ... Ann 14, ii, pp 306-309
Harpers Ferry quadrangle ... GF 10, p 2
of West Virginia, Harpers Ferry quadrangle GF 10, p 2
residual deposit from subaerial decay of, from North Carolina (chloritic)
from Massachusetts, Bald Mountain ... Mon xxiii, p 155
from Massachusetts, East Mountain ... Mon xxiii, p 146
Mount Greylock ... Ann 16, i, p 833; Mon xxiii, pp 145, 147
Schist, thin section of, from Massachusetts, Mount ProspectMon xxiii, p 145
thin section of, from Massachusetts, New Ashford, Quarry Hill..Mon xxiii, p 140
from Wisconsin, Penokee Gap (actinolitic)Ann 10, i, pp 482-483
T. 44 N., R. 3 W., sec. 14, NW. ¼, Penokee Gap (actinolitic). Mon xix, pp 494-495
T. 45 N., R. 1 E., sec. 19, SE. ¼ (green and conglomerate) .Mon xix, pp 482-483

Schist areas, greenstone, of Menominee and Marquette regions of Michigan, a contribution to the subject of dynamic metamorphism in eruptive rocks .. Bull 62

Schists, crystalline, of Lake Superior regionAnn 10, i, pp 355-364
Schists, metamorphic, of Penokee iron-bearing series, origin of .Mon xix, pp 107-111, 116-126

Schistose rocks, relation of, to massive rocks in WisconsinAnn 10, i, pp 363
Schistose structure in relation to pressure Bull 59, p 43

Schistosity. (See Metamorphism.)

Schlotheim (Ernst Friedrich, Baron von), biographic sketch of .Ann 5, pp 370-371

Schneider (E. A.), contribution to the knowledge of colloidal silverBull 113, pp 102-108
on colloidal sulphides of gold Bull 90, pp 56-61
on preparation of a pure hydrosol of silver Bull 113, pp 99-101
on some organosols .. Bull 113, pp 95-98

Schneider (E. A.) and Clarke (F. W.) experiments upon the constitution of certain micas and chloritesBull 113, pp 27-33
experiments upon the constitution of the natural silicates ..Bull 78, pp 11-33
notes on action of ammonium chloride upon silicatesBull 113, pp 34-36
notes on constitution of micas, vermiculites, and chlorites ..Bull 90, pp 11-21

Schoharie Creek, New York, flow of, measurements ofWS 35, pp 54-55
Schoharie formation in Indiana .. Ann 11, i, pp 634-635
Schorlomite, chemical constitution of Bull 125, p 21
occurrence of ... MR 1883-84, p 742

Schrader (F. C.), Koyukuk region, Alaska, notes onNome, pp 55-56
reconnaissance along Chandlar and Koyukuk rivers, Alaska .Ann 21, ii, pp 441-486
reconnaissance of part of Prince William Sound and Copper River district in 1898 .Ann 20, vii, pp 341-423
report on Prince William Sound and Copper River regionAlaska (2), pp 51-63, 105-108

Schrader (F. C.) and Brooks (A. H.), preliminary report on Cape Nome gold region, Alaska, with maps and illustrationsNome

Schrötterite, chemical constitution of Bull 125, pp 66, 104

Schuchert (C.), report on Paleozoic fossils from AlaskaAnn 17, i, pp 898-906
synopsis of American fossil Brachiopoda, including bibliography and synonymy ... Bull 87

Schuyler (J. D.), reservoirs for irrigationAnn 18, iv, pp 617-740
water storage for irrigation on Gila River, ArizonaAnn 21, iv, pp 358-379
Schuykill River, flow of, measurements ofAnn 20, iv, pp 48, 88, 96-97; WS 35, pp 74-75
profile of ... WS 44, p 17

Schwatka (F.), exploration of Yukon Valley, etc., byAnn 12, i, p 62
Scientific investigation, "logical" method ofAnn 11, ii, pp 50-52
Scioto River, drainage system ofAnn 18, iv, pp 458-459
flow of, measurements of ..Ann 20, iv, pp 212-215; Ann 21, iv, pp 169-170; WS 27, pp 60, 65; WS 36, pp 176-177
Scolecite, analysis of, from Colorado, Italian Peak Bull 113, p 112
analysis of, from Colorado, Table Mountain Bull 20, p 37
chemical constitution of ... Bull 125, pp 35-36, 45-102
description and analysis of, from Colorado, Table Mountain Bull 20, pp 36-37
Scolytidae, Tertiary, of United States Mon xxi, pp 156-159
Scoria, description of the rock, as one of the educational series ... Bull 150
pp 249-250
Scorings, rock, of the great ice invasions Ann 7, pp 147-248
Scorodite, analysis of, from Yellowstone Park; Broad Creek, and Norris Basin
from Nevada, Steamboat Springs .Bull 60, p 30
Scotland, fossil plants of, literature of Ann 8, n, pp 684-687
(See also, Great Britain.)
Scott shale in Tennessee ... GF 33, p 3; GF 40, p 2
Scudder (S. H.), adephagous and clavicorn Coleoptera from the Tertiary
deposits at Florissant, Colorado, with descriptions of a
few other forms, and a systematic list of nonrnych-
ophorous Tertiary Coleoptera of North America ... Mon xl
American Tertiary Aphideae .. Ann 13, n, pp 341-366
bibliography of fossil insects, classed and annotated Bull 69
fossil butterflies of Florissant Ann 8, i, pp 433-474
index to the known fossil insects of the world, including myriapods and
arachnids ... Bull 71
insect fauna of Rhode Island coal field Bull 101
Pleistocene beetles of Fort River, Massachusetts Mon xxix, pp 740-746
revision of American fossil cockroaches, with descriptions of new forms .. Bull 124
some insects of special interest from Florissant, Colorado, and other points
in the Tertiaries of Colorado and Utah Bull 93
systematic review of our present knowledge of fossil insects, including
myriapods and arachnids .. Bull 31
Tertiary rhynchophorous Coleoptera of the United States Mon xxvi
work in charge of, during 1885-1892 Ann 7, p 127;
Ann 8, i, pp 188-189; Ann 9, p 133; Ann 10, i, p 176; Ann
11, i, pp 123-125; Ann 12, i, pp 125-127; Ann 13, i, pp 157-159
Sculpture, land, general principles of Ann 18, n, pp 144-153
Sea-coast swamps of eastern United States Ann 6, pp 353-398
Sea level, effects of ice accumulation on Mon xxv, pp 515-516
form and position of ... Bull 48
Seattle quadrangle, Washington, forest conditions in Ann 21, v, pp 579-580
Sebago Lake, Maine, discharge from, records of Ann 19, iv, pp 99-108
Secondary enlargements of amphibole and pyroxene in diabase ... Mon xiv,
pp 353, 354, 411-413
of mineral fragments in certain rocks Bull 8
Secret Canyon shale of Nevada and Utah Ann 3, pp 253-255; Ann 4, pp 229,
231, 233; Mon vii, p 7; Mon xx, p 39; Bull 81, pp 246, 315
Section, geologic, in Acadian province Bull 80, p 226
in Alabama (Cretaceous) .. Bull 82, fig 5 (p 108)
Alabama River ... Bull 43, pp 15, 24, 28, 29-30, 31, 45,
47, 48, 53-54, 57, 60, 74-75, 77, 78, 132, fig 1 (p 132), pp 141-
142, pl 12 (p 142), pp 145-148, pl 13 (p 146), p 150, pl 14 (p
150), pp 157, 158, pl 16 (p 158), pp 161-162, pl 17 (p 162), pp
165-166, pl 18 (p 166), pp 169-170, pl 19 (p 170), pp 173-174,
pl 20 (p 174), pp 177-179, pl 21 (p 182); Bull 83, pp 62-64
Autauga County ... Bull 43, pp 93, 112, 113, 177, pl 21 (p 182)
Section, geologic, in Alabama; Bashi Creek

in Alabama; Bibb County

Cahaba River

Chattahoochee River to Mississippi border

Choctaw County

Clarke County

Coatopa

Dallas County

East Red Mountain, folds and faults

Fosters Creek

Gadsden to Rome, Georgia

Gadsden quadrangle

Gaines Hill bauxite bank

Grampian Hills

Hale County

Hamburg

Landrums Creek

Marengo County

Montgomery

Pine Barren Creek

Salt Creek

Salt Mountain

Snow Hill

Stevenson quadrangle

Sumter County

Tear Up Creek

Tombigbee River

T. 9 N., R. 4 W, sec. 13

Wilcox County

in Alaska; Alaska-Treadwell mine

Bonanza Creek, at mouth of

Chaix Hills, showing glacial terraces

Davis Creek, near mouth of

Fortymile Creek, showing faults in Fortymile series

Fortymile Post, showing disturbed strata of Mission Creek series

Glacier Creek, above Discovery claim

Kuskokwim River

Norton Sound coast

Nunivak Island

Port Chatham

Skwentna River
Section, geologic, in Alaska; southwestern Ann 20, vii, map 14 (p 234)

in Alaska; Tordrillo Range........ Ann 20, vii, fig 7 (p 116), map 14 (p 158)

Tyonek............................ Ann 20, vii, figs 2 and 3 (p 103), fig 4 (p 104)

Ulukak River Ann 17, i, p 816; Bull 84, p 246

Unga Island........................ Ann 17, i, p 807; Bull 84, p 241

White and Tanana river basins Ann 20, vii, map 25 (p 466)

Yukon River, showing Palisades conglomerate underlying silts Ann 18, iii, fig 11 (p 199)

in Appalachian coal basin......................... GF 69, p 5

in Arizona; Grand Canyon......................... Bull 81, p 356

... showing relations of Tonto sandstone to Grand Canyon series ... Ann 7, fig 89 (p 414)

Grand Canyon district Ann 12, i, fig 78 (p 553); Mon 1, pl 2 (p 10), pl 3 (p 16), fig 11 (p 88)

Kaibab Plateau......................... Ann 2, figs 11 and 12 (p 128)

Kanab Valley Ann 3, p 272

northern part................................. Bull 80, p 216

Nunkoweap Butte.......................... Ann 14, ii, pp 508-510

Nunkoweap Valley.......................... Ann 14, ii, p 516

at head of Ann 10, i, p 584

Queantoweap Valley......................... Ann 2, pl 28 (p 126)

San Rafael swell............................ Ann 2, pl 11 (p 56)

Zuñi Plateau............................... Ann 6, pl 16 (p 136), pl 18 (p 144), fig 14 (p 157)

in Arkansas; Camden coal field............. Bull 83, pp 74-75

Center Point, north of Ann 21, vii, p 195

in Atlantic Coastal Plain...................... Bull 138, fig 1 (p 18)

middle of Ann 12, i, fig 34 (p 420)

southern part of............................ Ann 12, i, fig 35 (p 427)

in California; Amador County, across Gold Belt........ Ann 14, ii, fig 51 (p 486)

Bear Mountain............................. Ann 14, ii, fig 49 (p 457)

Bidwell Bar quadrangle....................... GF 43, p 2

Big Pine, vicinity of Ann 17, i, p 534

Big Trees quadrangle......................... GF 51, p 2

Camanche, vicinity of........................ Ann 14, ii, pl 50 (p 464)

Canyon del Hambre to near Pacheco......... Bull 84, fig 32 (p 204)

Colfax quadrangle.......................... GF 66

Gray Eagle shaft, New York Canyon, and Reed mine.......... GF 66, p 6

Deer Creek mines, showing auriferous gravels, slates, tufa Ann 8, i, p 416

Downieville quadrangle...................... GF 37

Fort Point, through Presidio laccolite........ Ann 15, fig 6 (p 451)

Honey Lake to Sacramento Valley........... Ann 8, i, fig 19 (p 426)

Jackson quadrangle........................ GF 11

Lake Bidwell and vicinity.................. Bull 79, pl 10 (p 20)

Laporte, vicinity of Ann 17, i, pp 606, 607

Lassen Peak quadrangle...................... GF 15, p 3

Leevining Creek to Rush Creek.............. Ann 8, i, p 306

Marysville quadrangle....................... GF 17

Mill Creek Canyon.......................... Ann 8, i, fig 17 (p 423)

Mission Valley, through Potrero laccolite.......... Ann 15, fig 7 (p 452)

Mohawk, showing unconformity of Pleistocene gravelly beds on Tertiary beds Ann 17, i, pl 24 (p 508)
Section, geologic, in California; Mother Lode district. GF 63
in California; Mount Dana quadrangle. Ann 17, i, p 712
Nevada City....................... Ann 17, ii, fig 4 (p 98), fig 5 (p 99)
Nevada City district.............. GF 29
Ocoya Creek....................... Bull 84, pp 218–219
Pacheco to Canyon del Hambre.... Bull 84, fig 32 (p 204)
Pentz, vicinity of................ Ann 17, i, p 542
Pacific Ocean to Santa Barbara.. Bull 84, fig 39 (p 213)
Pilot Peak........................... Ann 17, i, p 605
Placer County........................ Ann 18, v cont, p 1130
Placerville quadrangle........... GF 3
Pyramid Peak quadrangle........ GF 31
Rush Creek to Leeving Creek.... Ann 8, i, p 306
Sacramento Valley, Honey Lake to.Showing Piedmont monocline near Antelope Creek. Ann 8, i, fig 19 (p 426)
showing Piedmont monocline near Antelope Creek. Ann 8, i, fig 18 (p 425)
Sacramento quadrangle........... GF 5
San Clemente Island, various localities. Ann 18, ii, pl 96 (p 494)
San Emidio Canyon................ Bull 84, fig 40 (p 213)
San Francisco Peninsula.......... Ann 15, pl 7 (p 436), pl 8 (p 438)
through Las Pulgas laccolite.... Ann 15, fig 8 (p 456)
San Miguel.......................... Bull 84, fig 33 (p 210)
San Pablo Bay....................... Bull 84, fig 31 (p 203)
San Luis Bay to Santa Margarita Valley.Bull 84, fig 34 (p 211)
Santa Barbara to Pacific Ocean... Bull 84, fig 39 (p 213)
Santa Inez Mountains............. Bull 84, figs 36, 37, and 38 (p 212)
Santa Lucia Range................ Bull 84, fig 35 (p 211)
Santa Margarita Valley to San Luis Bay.Bull 84, fig 34 (p 211)
Santa Monica and Santa Susanna ranges.Bull 84, figs 41, 42 (p 214)
Shasta County...................... Ann 14, ii, pl 44 (p 412); Bull 82, p 186
Gas Point.......................... Ann 14, ii, fig 48 (p 424)
Sierra Nevada, northern end of... Bull 32, p 13
Smartsville quadrangle.......... GF 18
Sonora quadrangle................. GF 41
Tehama County..................... Ann 14, ii, pl 44 (p 412); Bull 82, p 186
on branch of Mill Creek........ Ann 14, ii, fig 47 (p 415)
through Bald Hill................ Ann 14, ii, fig 45 (p 412)
Truckee quadrangle.............. GF 39
in Canada; Acadian Province.... Bull 80, p 226
British Columbia................ Bull 82, p 191
Cathedral Mountain and Mount Stephens Ann 10, i, fig 47 (p 550)
eastern border of interior plateau.Bull 86, p 340
Selkirk Range..................... Bull 86, p 340
Manitoba, Arden to Gladstone.... Mon xxv, fig 30 (p 441)
Assiniboine River, across delta of... Mon xxv, fig 16 (p 373)
Birds Hill.......................... Mon xxv, fig 10 (p 185)
Gladstone to Arden............... Mon xxv, fig 30 (p 441)
international boundary.......... Mon xxv, fig 28 (p 430); fig 29 (p 440)
Morden.............................. Mon xxv, pl 15 (p 74)
Rosendal............................ Mon xxv, pl 15 (p 74), pp 79–80
Winnipeg............................ Mon xxv, p 577
New Brunswick, Hanford Brook, St. Martins.Ann 10, i, p 565
McLean Brook....................... Bull 81, pp 266–267
Portland and St. John........... Bull 81, p 263
St. John............................. Bull 80, p 227
Index to Publications of U. S. Geol. Survey.

Section, geologic, in Canada; New Brunswick, St. John and Portland—Bull 81, p 263
in Canada; New Brunswick, St. John County—Bull 81, pp 264-265

Newfoundland—Bull 81, pp 257-258

Canada Bay—Bull 81, p 257

Great Bell Isle—Bull 81, pp 258-259

from St. Johns to—Ann 12, 1, p 547

Manuels Brook—Ann 10, 1, figs 51 and 52 (p 554); Ann 12, 1, p 548; Bull 81, pp 260-261

northwestern part of—Bull 81, p 253

St. Johns to Great Bell Island, Conception Bay—Ann 12, 1, fig 74 (p 547)

west-coast of—Bull 81, pp 255-256

Northwest Territory, British Columbia, and adjacent parts—Bull 82, p 191

Nova Scotia, Colchester County—Ann 18, v, p 179

Ontario, Gunflint and Loon lakes, showing relations of Animikie series
to older schists and granite and to newer Keweenawan gabbro—Ann 7, fig 91 (p 421)

Isle Royale—Ann 3, pl 15 (p 157)

Lake Huron—Ann 3, p 164

Oil Springs—MR 1893, p 512

Petrolia—MR 1893, p 512

Pigeon Bay—Mon v, fig 33 (p 373)

St. Joseph and Campement d’Ours islands—Ann 7, figs 86, 87 (pp 411, 412)

Welland County—Ann 18, v cont, p 917

Quebec—MR 1887, p 501

Rigaud to Chateaugay Four Corners, Franklin County, New York—Ann 12, 1, fig 76 (p 549)

St. Armand to Swanton, Vermont—Bull 30, p 18

Ottawa County—Bull 46, fig 3 (p 25), fig 19 (p 36), fig 21 (p 39)

in China; Sze Chuen gas fields—MR 1891, p 448

in Colorado; Animas River Valley—Bull 106, p 32

Anthracite quadrangle—GF 9

Arapahoe County—Ann 16, 11, p 583

Arikaree River, Chimney Rock Canyon—Ann 16, 11, fig 64 (p 582)

Arkansas River to Wet Mountains, showing relation of Dakota sandstone to surface of country—Ann 17, 11, fig 48 (p 583)

Arkansas Valley, across a terrace—Ann 17, 11, fig 47 (p 578)

showing arrangement of Cretaceous rocks—Ann 17, 11, pl 68 (p 574)

Bassick Hill and vicinity—Ann 17, 11, pl 34 (p 364)

Boulder and vicinity—Mon xxvii, pl 12 (p 110)

Boulder Valley region—Mon xxvii, fig 10 (p 129), fig 11 (p 136)

Buffalo Peaks—Bull 1, p 14

Burnt Knoll—Mon xxvii, fig 8 (p 123)

central part—Bull 106, pp 26-27

Cheyenne County—Ann 16, 11, p 563

Cheyenne Wells—Bull 131, p 109

Coal Creek—Mon xxvii, fig 12 (p 338)

Crested Butte quadrangle—GF 9

Cripple Creek district, Anna Lee mine, showing relation of ore shoot
to dike—Ann 16, 11, fig 37 (p 206)

Blue Bird mine, showing mode of occurrence of ore—Ann 16, 11, figs 32 and 33 (p 199)

C. O. D. mine, showing faulting of ore-bearing fissures—Ann 16, 11, fig 14 (p 170)
Section, geologic, in Colorado; Cripple Creek district, C. O. D. mine, showing main fissure and subordinate fissuring. Ann 16, ii, fig 13 (p 169)

Cripple Creek district, C. O. D. mine, mode of occurrence of ore. Ann 16, ii, figs 10, 11, 12 (p 168)

Elkton mine, showing relation of vein to dike. Ann 16, ii, figs 19 and 20 (p 185)

Granite mine, showing relation of vein to dike. Ann 16, ii, figs 34 and 35 (p 203)

Independence mine, showing relation of veins to dikes. Ann 16, ii, pl 14 (p 200)

Ingham mine, showing intersecting veins. Ann 16, ii, fig 17 (p 183)

Moose mine, showing mode of occurrence of ore shoots. Ann 16, ii, fig 18 (p 184)

North Star mine, showing relation of vein to dike. Ann 16, ii, fig 21 (p 186)

Orpha May mines, showing mode of occurrence of ore shoots. Ann 16, ii, fig 22 (p 188)

Pikes Peak mine, showing relation of vein and dike. Ann 16, ii, fig 29 (p 197)

Raven shaft, showing relation of vein to dike. Ann 16, ii, fig 30 (p 197)

Victor, Smuggler, Lee, and Buena Vista vein, showing mode of occurrence of ore. Ann 16, ii, figs 23, 24, and 25 (p 192)

Zenobia and Pharmacist mines, showing mode of occurrence of ore. Ann 16, ii, figs 26, 27, and 28 (p 195)

Davidson district. Mon xxvii, fig 14 (p 342)

Denver. Mon xxvii, fig 3 (p 80)

Dyer Mountain. Mon xxxi, pp 13-14

eastern part. Bull 84, fig 43 (p 304)

Cretaceous rocks, arrangement of. Ann 17, ii, fig 46 (p 571)

Eightmile Canyon, showing sheeted zone in granite. Ann 16, ii, pl 3 (p 140), pl 4 (p 142)

Eldorado quadrangle. GF 58

Erie district. Mon xxvii, pl 17 (p 360)

Frenchman River, showing water-bearing strata and wells. Ann 16, ii, pl 42 (p 548)

Golden. Ann 18, v cont, p 1135; Mon xxvii, p 334

Mount Carbon to. Mon xxvii, p 332

Gothic Mountain, showing contact between laccolite and shales. Ann 14, ii, figs 35 and 36 (p 196)

Gunnison River. Bull 106, p 33

Huerfano and Las Animas counties. Bull 88, p 143

Iron Hill. Mon xii, p 381

Junction and Yampa Mountain upthrusts. Ann 9, fig 61 (p 703)

Kanab. Ann 2, p 217; Mon xii, p 57

La Plata quadrangle. GF 60

Lafayette district. Mon xxvii, pl 17 (p 30)

Section, geologic, in Colorado; Leadville
in Colorado; Louisville
Louisville district
Mancos River
Marshall district
Mesaverde formation
Morrison
Mosquito Range
Mount Axtell
Mount Bross
Mount Carbon to Golden
Mount Zion
Muddy Creek
North Mosquito section
North Table Mountain
Parkdale, vicinity of
Pennsylvania Hill
Pikes Peak quadrangle
Printer Boy Hill
Pueblo quadrangle
Raven Park, Midland Ridge, Yampa Plateau, and a portion of Main Uinta Range
Rico dome
Rico Mountains
Rosita Hills and Silver Cliff
Scranton
Sheep Mountain
Silver Cliff and Rosita Hills
South Boulder Peaks
South Evans
South Mosquito section
South Table Mountain
Taylor Hill
Telluride, through Smuggler vein
Telluride quadrangle, various localities
Tennmile district
Trout Creek
Uinta fold, generalized transverse section of
Danforth Hills uplift and inceptive portion of
Uinta Range, eastern end of
Venango
Victor, vicinity of, showing vent in granite
Walsenburg quadrangle
Wasatch Range
water-bearing strata and wells
West Elk Mountains, through Mount Marcellina
Wet Mountains to Arkansas River, showing relation of Dakota sandstone to surface of country
Wray
Yampa and Junction Mountain upthrusts
Yule Creek
in Connecticut; basal strata, showing original attitude of
breccia and dragged strata caused by fault
cliff on back slope of trap ridge near a fault
Section, geologic, in Connecticut; Connecticut ValleyAnn 7, p 467
in Connecticut; dike, slantingAnn 18, n, fig 9 (p 61)
Hartford, showing trap on sandstonesAnn 18, n, pl 11 (p 74)
Higby Mountain, showing north-bounding faultAnn 18, n, fig 21 (p 103)
Holyoke quadrangle .. GF 50
Lamentation Mountain, showing fragments of posterior trap sheet in
north-bounding fault ofAnn 18, n, fig 22 (p 106)
peneplains, pre-Triassic and Cretaceous, relation of ...Ann 18, n, fig 38 (p 158)
shore line, showing position of, at various periods ..Ann 18, n, fig 42 (p 167)
sill, oblique .. Ann 18, n, fig 8 (p 61)
Southington, showing basal contact at Roaring Brook ..Ann 18, n, fig 2 (p 19)
trap sheets, denudation ofAnn 18, n, fig 39 (p 160)
in Delaware; Cretaceous marl series Bull 138, p 118
Dover .. Bull 138, p 121
Kent County ... Bull 84, fig 5 (p 47), fig 6 (p 48); Bull 138, p 122
Newcastle County .. Bull 84, fig 3 (p 46); Bull 138, pp 120, 121
northern part, showing relations of glacial deposits .Ann 7, fig 112 (p 611)
Smyrna, vicinity of Bull 84, fig 4 (p 47)
Sussex County ... Bull 138, p 123
Wilmington to Ocean City, Maryland Bull 138, pl 6 (p 122)
in Denmark; Hasle .. Ann 19, vi cont, p 447
in District of Columbia .. Bull 138, pl 14 (p 160); GF 70
Eckington ... Bull 138, p 159
Insane Asylum .. Bull 138, p 157
Rives station, vicinity of Bull 138, p 159
Washington ... Bull 138, pp 157, 158, 159, 160
from Crisfield, Maryland, to Bull 138, pl 6 (p 122)
from Point of Rocks, Maryland, toAnn 15, pl 37 (p 694)
showing relations of glacial deposits Ann 7, fig 112 (p 611)
in England; Portland, from Fitton's strata below the chalk ..Ann 16,
1, fig 68 (p 489)
in Florida; Alachua County Bull 46, fig 31 (p 79)
Alum Bluff .. Bull 84, p 113
Caloosahatchie River Bull 84, p 144; fig 22 (p 144)
central part ... Bull 84, fig 21 (p 108)
Edgar, through kaolin deposit Ann 17, n, p 872
Everglades, showing effect of mangroves on shore line. Ann 10, 1, fig 20 (p 295)
Fort Thompson .. Bull 84, p 143
Hillsboro River .. Bull 84, p 118
Lake City, in vicinity of Bull 84, p 110
Manatee River .. Bull 84, p 113
Peace Creek ... Bull 84, pp 131, 132
Quincy .. Ann 17, n, p 877
Tallahassee, vicinity of Bull 84, p 120
Tampa ... Bull 84, p 113
White Springs ... Bull 84, p 110
in France; near Baux, showing relations of bauxite beds Ann 16, n, fig 6 (p 547)
in Georgia; bauxite field Ann 16, n, pl 21 (p 556)
evidence of ablation ... Ann 10, 1, fig 3 (p 267)
imperfect drainage produced by solution of strata Ann 10, 1, fig 2 (p 267)
Mary bauxite bank ... Ann 16, n, fig 7 (p 571)
Richmond County .. Bull 83, p 94
Ringgold quadrangle .. GF 2
Rome to Gadsden, Alabama Bull 81, p 304
Section, geologic, in Georgia; Shell Bluff

Bull 83, p 55

Telfair County

Bull 138, p 224

in Germany; Nassau

Bull 46, p 46, fig 22 (p 47)

in Great Britain; England, Bedfordshire

Bull 46, fig 36 (p 91)

England, Cambridgeshire

Bull 46, figs 34 and 35 (p 90)

Spinney Abbey

Bull 46, pp 91-92

North Wales

Bull 46, fig 32 (p 80), fig 33 (p 81)

in Great Plains region

Ann 11, ii, p 273; Ann 21, iv, fig 307 (p 659)

in Gulf States

Bull 43, p 15

coastal plain in eastern part of

Ann 12, i, fig. 36 (p 427)

in Idaho (Lower Paleozoic)

Bull 81, p 323

Bear River district

Bull 128, p 21

Boise quadrangle

GF 45

De Lamar

Ann 20, ii, pi 22 (p 128)

Idaho City, at and near

Ann 18, iii, fig 55 (p 661), fig 56 (p 662), fig 57 (p 663), fig 58 (p 665), fig 59 (p 666)

Horseshoe Bend, Valley of the Payette

Ann 16, ii, p 275

Kirtley Creek

Ann 16, ii, p 232

Lemhi placer mine

Ann 16, ii, fig 38 (p 233)

Malade City, vicinity of

Bull 81, p 321

Pionerville, vicinity of

Ann 18, iii, fig 60 (p 671)

Placerville

Ann 18, iii, fig 61 (p 674)

in Illinois

Bull 80, pp 156, 160, 190

Adams County

Mon xxxviii, pp 59, 60, 61, 62, 715, 716

Ashland

Mon xxxviii, p 127

Atlanta

Mon xxxviii, p 206

Bloomington

Mon xxxviii, p 108

Bond County

Mon xxxviii, p 751

Bureau County

Mon xxxviii, pp 628, 629

Cairo

Mon xxxviii, p 786

Cap au Grèg to Wisconsin River, Wisconsin

Mon xxxviii, fig 7 (p 554)

Carbon Cliff

Ann 17, ii, p 849

to Davenport, Iowa

Ann 17, ii, fig 73 (p 831)

Carroll County

Mon xxxviii, pp 612, 613

Champaign

Mon xxxviii, p 234

Champaign County

Mon xxxviii, p 703

Chicago, in and near

Ann 17, ii, p 800

Christian County

Mon xxxviii, pp 720-727

Clay County

Mon xxxviii, p 758

Clinton, at and near

Mon xxxviii, pp 205, 705-706

Cook County

Mon xxxviii, pp 556, 558

Coles County

Mon xxxviii, p 755

Cumberland County

Mon xxxviii, p 737

Danville and vicinity

GF 67, p 2

Decatur

Mon xxxviii, p 204

Dekalb County

Mon xxxviii, p 287

Delavan

Mon xxxviii, p 206

East Moline

Ann 17, ii, p 848

Evanston

Mon xxxviii, pp 450-451

Farmer City

Mon xxxviii, p 216

Freeport

Mon xxxviii, fig 1 (p 112)

Fulton County

Mon xxxviii, p 687

Galena to Olney

Ann 17, ii, fig 68 (p 787); Mon xxxviii, fig 8 (p 554)
<table>
<thead>
<tr>
<th>Section, geologic, in Illinois; Greene County</th>
<th>Mon xxxviii, p 745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hancock County</td>
<td>Mon xxxviii, p 682</td>
</tr>
<tr>
<td>Henderson County</td>
<td>Mon xxxviii, p 680</td>
</tr>
<tr>
<td>Henry County</td>
<td>Mon xxxviii, pp 624, 625</td>
</tr>
<tr>
<td>Heyworth</td>
<td>Mon xxxviii, p 215</td>
</tr>
<tr>
<td>Iroquois County</td>
<td>Mon xxxviii, pp 142-143, 658, 660, 661</td>
</tr>
<tr>
<td>Jersey County</td>
<td>Mon xxxviii, p 747</td>
</tr>
<tr>
<td>Joliet to Davenport, Iowa</td>
<td>Ann 17, ii, p 799</td>
</tr>
<tr>
<td>Lake County</td>
<td>Mon xxxviii, p 386</td>
</tr>
<tr>
<td>Lake Zurich, vicinity of</td>
<td>Mon xxxviii, p 581</td>
</tr>
<tr>
<td>Lee County</td>
<td>Mon xxxviii, p 609</td>
</tr>
<tr>
<td>Lily Lake, vicinity of</td>
<td>Mon xxxviii, p 294</td>
</tr>
<tr>
<td>Livingston County</td>
<td>Mon xxxviii, p 665</td>
</tr>
<tr>
<td>Logan County</td>
<td>Mon xxxviii, pp 708, 709</td>
</tr>
<tr>
<td>McDonough County</td>
<td>Mon xxxviii, p 686</td>
</tr>
<tr>
<td>McHenry County</td>
<td>Mon xxxviii, p 576</td>
</tr>
<tr>
<td>McLean County</td>
<td>Mon xxxviii, p 694</td>
</tr>
<tr>
<td>Macoupin County</td>
<td>Mon xxxviii, p 728</td>
</tr>
<tr>
<td>Mahomet, in vicinity of</td>
<td>Mon xxxviii, p 216</td>
</tr>
<tr>
<td>Marion County</td>
<td>Mon xxxviii, p 759</td>
</tr>
<tr>
<td>Marysville, vicinity of</td>
<td>Ann 17, ii, p 778</td>
</tr>
<tr>
<td>Mason County</td>
<td>Mon xxxviii, p 687</td>
</tr>
<tr>
<td>Mattoon</td>
<td>Mon xxxviii, p 202</td>
</tr>
<tr>
<td>Menard County</td>
<td>Mon xxxviii, p 710</td>
</tr>
<tr>
<td>Mercer County, between Rock Island County and</td>
<td>Mon xxxviii, p 115</td>
</tr>
<tr>
<td>Milan to Davenport, Iowa</td>
<td>Ann 17, ii, fig 72 (p 830)</td>
</tr>
<tr>
<td>Mississippi River to Wisconsin River, Wisconsin</td>
<td>Ann 17, ii, fig 67 (p 787)</td>
</tr>
<tr>
<td>Moline</td>
<td>Ann 17, ii, pp 847-848</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>Mon xxxviii, p 741</td>
</tr>
<tr>
<td>Monticello</td>
<td>Mon xxxviii, p 220</td>
</tr>
<tr>
<td>Morgan County</td>
<td>Mon xxxviii, pp 723, 724</td>
</tr>
<tr>
<td>Oak Park</td>
<td>Mon xxxviii, p 438</td>
</tr>
<tr>
<td>Olney to Galena</td>
<td>Ann 17, ii, fig 68 (p 787); Mon xxxviii, fig 8 (p 554)</td>
</tr>
<tr>
<td>Ottawa</td>
<td>Ann 17, ii, pp 798-799</td>
</tr>
<tr>
<td>Pana</td>
<td>Mon xxxviii, p 107</td>
</tr>
<tr>
<td>Perry County</td>
<td>Mon xxxviii, pp 772-773</td>
</tr>
<tr>
<td>Philo</td>
<td>Mon xxxviii, p 235</td>
</tr>
<tr>
<td>Pike County</td>
<td>Mon xxxviii, pp 63, 720</td>
</tr>
<tr>
<td>Rock Island</td>
<td>Mon xxxviii, p 114</td>
</tr>
<tr>
<td>Rock Island County, between Mercer County and</td>
<td>Mon xxxviii, p 115</td>
</tr>
<tr>
<td>Round Grove</td>
<td>Mon xxxviii, p 139</td>
</tr>
<tr>
<td>St. Clair County</td>
<td>Mon xxxviii, pp 763, 764</td>
</tr>
<tr>
<td>Salt Fork</td>
<td>GF 67, p 7</td>
</tr>
<tr>
<td>Sanford</td>
<td>Mon xxxviii, p 201</td>
</tr>
<tr>
<td>Shelby County</td>
<td>Mon xxxviii, pp 738, 739</td>
</tr>
<tr>
<td>Sidney</td>
<td>Mon xxxviii, p 236</td>
</tr>
<tr>
<td>Sonora to Argyle, Iowa</td>
<td>Mon xxxviii, fig 5 (p 469)</td>
</tr>
<tr>
<td>Sparta, vicinity of</td>
<td>Mon xxxviii, p 117</td>
</tr>
<tr>
<td>Springfield, vicinity of</td>
<td>Mon xxxviii, p 125</td>
</tr>
</tbody>
</table>
686 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Section, geologic, in Illinois; Streator Ann 17, ii, p 798
in Illinois; Tazewell County .. Mon xxxviii, p 691
T. 17 N., R. 1 W., sec. 7, between T. 17 N., R. 2 W., sec. 12 and .. Mon xxxviii,
p 114

Union County ... Bull 80, pp 161-162
Urbana ... Mon xxxviii, p 234
various localities .. Ann 11, i, pp 535-540; Ann 17, ii, p 841
Vermilion County ... Mon xxxviii, pp 699, 700
Washington, vicinity of ... Mon xxxviii, p 32
Will County .. Mon xxxviii, p 377
Whiteside County ... Mon xxxviii, p 616
Woodford County .. Mon xxxviii, p 671
in Indian Territory; Cedar Spring Bull 84, p 301

Choctaw coal fields .. MR 1889-90, p 212
Eastern Choctaw coal field .. Ann 21, ii, p 274, fig
14 (p 287), fig 15 (p 288), fig 16 (p 289), fig 17 (p 290), fig
18 (p 291), fig 19 (p 292), fig 20 (p 295), fig 37 (in pocket)
Kansas City, Pittsburg and Gulf Railroad Ann 21, ii, p 274

McAlester-Lehigh coal field .. Ann 19, iii,
figs 78 and 79 (p 449), fig 80 (p 451)

in Indiana .. Ann 11, i, pp 624-625
Albany ... Ann 11, i, p 715
Albion ... Ann 11, i, pp 632, 737
Allen County .. WS 21, p 50
Anderson, vicinity of .. Ann 11, i, p 711
Arcadia ... Ann 11, i, p 699
Aurora ... Ann 11, i, p 708
Bailey ... Mon xxxviii, p 396
Bartholomew County .. WS 26, p 52
Benton County .. WS 21, pp 62, 63, 64, 65
Bluffton ... Ann 11, i, p 740
Boone County .. WS 26, pp 14, 15, 16, 17
Bridgeport .. Ann 11, i, p 701
Brownstown .. Ann 11, i, pp 638, 726
Butler ... Ann 11, i, p 738
Carmi ... Ann 11, i, p 704
Cass County ... WS 21, p 59
Chesterfield, vicinity of ... Mon xxxviii, p 396
Clay County ... WS 26, p 45
Clinton County .. WS 21, pp 72, 73
Coal Measures .. Ann 18, v cont, p 1138
Columbia City .. Ann 11, i, p 736
Columbus .. Ann 11, i, pp 638, 722
Connersville ... Ann 11, i, p 721
Corydon ... Ann 11, i, p 725
Crawfordsville ... Ann 11, i, pp 728-729
Crown Point .. Ann 11, i, p 734
Davide quadrangle ... GF 67
Decatur ... Ann 11, i, p 740
Decatur County .. WS 26, p 50
Dekalb County .. WS 21, pp 30, 31
Delaware County .. WS 26, p 10
Delphi ... Ann 11, i, p 731
Dyer ... Mon xxxviii, p 439
<table>
<thead>
<tr>
<th>Place</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton</td>
<td>Ann 11, i, p 713</td>
</tr>
<tr>
<td>Edinburg</td>
<td>Ann 11, i, p 728</td>
</tr>
<tr>
<td>Elkhart</td>
<td>Ann 11, i, p 735</td>
</tr>
<tr>
<td>Eugene</td>
<td>Mon xxxviii, p 236</td>
</tr>
<tr>
<td>Fairmount</td>
<td>Ann 11, i, p 688</td>
</tr>
<tr>
<td>Farmland</td>
<td>Ann 11, i, p 685</td>
</tr>
<tr>
<td>Frankfort</td>
<td>Ann 11, i, p 730</td>
</tr>
<tr>
<td>Franklin</td>
<td>Ann 11, i, p 727</td>
</tr>
<tr>
<td>Goshen</td>
<td>Ann 11, i, p 735</td>
</tr>
<tr>
<td>Greenfield</td>
<td>Ann 11, i, p 701</td>
</tr>
<tr>
<td>Greensburg</td>
<td>Ann 11, i, p 703</td>
</tr>
<tr>
<td>Greenwood</td>
<td>Ann 11, i, p 728</td>
</tr>
<tr>
<td>Hamilton County</td>
<td>WS 26, p 649; Ann 11, i, p 679</td>
</tr>
<tr>
<td>Hartford</td>
<td>WS 26, p 26</td>
</tr>
<tr>
<td>Hendricks County</td>
<td>WS 26, p 30</td>
</tr>
<tr>
<td>Henry County</td>
<td>WS 21, p 14</td>
</tr>
<tr>
<td>Hobart</td>
<td>Ann 11, i, p 695</td>
</tr>
<tr>
<td>Hobbs Station</td>
<td>WS 21, p 74</td>
</tr>
<tr>
<td>Howard County</td>
<td>Ann 11, i, p 739</td>
</tr>
<tr>
<td>Huntington</td>
<td>WS 26, pp 63, 54</td>
</tr>
<tr>
<td>Jasper County</td>
<td>WS 21, p 45</td>
</tr>
<tr>
<td>Jeffersonville, vicinity of</td>
<td>Ann 11, i, p 724</td>
</tr>
<tr>
<td>Jennings County</td>
<td>Bull 53, p 67; WS 26, p 59</td>
</tr>
<tr>
<td>Johnson County</td>
<td>WS 26, p 41</td>
</tr>
<tr>
<td>Jonesboro</td>
<td>Ann 11, i, p 688</td>
</tr>
<tr>
<td>Kempton</td>
<td>Ann 11, i, p 696</td>
</tr>
<tr>
<td>Kewanna</td>
<td>Ann 11, i, p 733</td>
</tr>
<tr>
<td>Kokomo</td>
<td>Ann 8, ii, p 660; Ann 11, i, p 692</td>
</tr>
<tr>
<td>Kosciusko County</td>
<td>WS 21, p 36</td>
</tr>
<tr>
<td>La Fontaine</td>
<td>Ann 11, i, p 690</td>
</tr>
<tr>
<td>Lagrange County</td>
<td>WS 21, pp 26, 27</td>
</tr>
<tr>
<td>Laporte County</td>
<td>WS 21, pp 19, 20</td>
</tr>
<tr>
<td>Larwell</td>
<td>Ann 11, i, pp 640, 736</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Ann 11, i, p 730</td>
</tr>
<tr>
<td>Liberty</td>
<td>Ann 11, i, p 720</td>
</tr>
<tr>
<td>Logansport</td>
<td>Ann 8, ii, pp 567, 569, 633, 635; Ann 11, i, pp 635, 732</td>
</tr>
<tr>
<td>Madison</td>
<td>Ann 11, i, p 723</td>
</tr>
<tr>
<td>Madison County</td>
<td>WS 26, p 11</td>
</tr>
<tr>
<td>Marion</td>
<td>Ann 11, i, p 687</td>
</tr>
<tr>
<td>Marion County</td>
<td>WS 26, p 28</td>
</tr>
<tr>
<td>Marshall County</td>
<td>WS 21, pp 38, 39</td>
</tr>
<tr>
<td>Michigan City</td>
<td>Ann 11, i, p 640; Mon xxxviii, pp 397, 398</td>
</tr>
<tr>
<td>Monon</td>
<td>Ann 11, i, p 731</td>
</tr>
<tr>
<td>Montgomery County</td>
<td>WS 26, p 15</td>
</tr>
<tr>
<td>Monticello</td>
<td>Ann 11, i, p 731</td>
</tr>
<tr>
<td>Montpelier</td>
<td>Ann 11, i, p 680</td>
</tr>
<tr>
<td>Morristown</td>
<td>Ann 11, i, p 703</td>
</tr>
<tr>
<td>Mount Summit</td>
<td>Ann 11, i, p 706</td>
</tr>
<tr>
<td>Muncie</td>
<td>Ann 11, i, p 717</td>
</tr>
<tr>
<td>Newport, vicinity of</td>
<td>Mon xxxviii, p 237</td>
</tr>
<tr>
<td>Newton County</td>
<td>WS 21, pp 41, 42, 43</td>
</tr>
<tr>
<td>Noble County</td>
<td>WS 21, pp 32, 33, 34</td>
</tr>
</tbody>
</table>
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Section, geologic, in Indiana; Noblesville Ann 8, ii, p 650; Ann 11, i, p 697 in Indiana; North Manchester Ann 11, i, p 739
North Vernon ... Ann 11, i, p 723
northern part .. MR 1888, p 505
Ohio County .. WS 26, p 58
oil fields ... Ann 18, v cont, p 829
Palestine .. Ann 11, i, p 702
Parke County .. WS 26, pp 22, 24
Pendleton ... Ann 11, i, p 710
Peru .. Ann 11, i, p 732
Porter County Mon xxxviii, p 397; WS 21, pp 16, 17, 18
Portland .. Ann 11, i, p 681
Ripley County Bull 58, p 66; WS 26, p 59
Rochester ... Ann 11, i, p 733
Rockville ... Ann 11, i, p 729
Rushville ... Ann 11, i, p 704
St. Joseph County WS 21, p 22
Salem .. Ann 11, i, p 725
Scott County .. WS 26, p 55
Selma .. Ann 11, i, p 715
Seymour ... Ann 11, i, pp 638, 726–727
Sharpsville .. Ann 11, i, p 696
Shelby County WS 26, pp 38, 39
Shelbyville, vicinity of Ann 11, i, p 702
South Bend .. Ann 11, i, pp 640, 734
Spiceland ... Ann 11, i, p 707
Springport .. Ann 11, i, p 706
Starke County WS 21, p 40
Steuben County WS 21, p 29
Summitville .. Ann 11, i, p 709
Switzerland County WS 26, p 59
Tippecanoe County WS 21, pp 68, 69, 70
Tipton ... Ann 11, i, p 695
Tipton County WS 21, pp 75, 76
Tobacco Landing Ann 11, i, p 725
Trail Creek ... Mon xxxviii, p 398
Union City .. Ann 11, i, p 684
Union County WS 26, p 34
Union Grove ... Ann 11, i, p 714
Valparaiso .. Ann 11, i, p 733
Van Buren .. Ann 11, i, p 689
various localities Ann 18, iv, pl 35 (p 430)
Vigo County .. WS 26, pp 46, 47
Wabash County Ann 11, i, p 738; WS 21, p 57
Warren .. Ann 11, i, p 739
Warsaw ... Ann 11, i, p 736
Wheeler, vicinity of Mon xxxviii, p 396
Whitewater River Valley Ann 11, i, p 707
Whitley County WS 21, p 48
Winchester ... Ann 11, i, p 683
Xenia ... Ann 11, i, p 690
Zionsville ... Ann 11, i, p 730

in Iowa ... Ann 11, i, p 332; Bull 80, pp 146, 156, 166, 190
Albia, showing position of forest bed Ann 11, i, fig 78 (p 493)
Section, geologic, in Iowa; Allamakee County, showing typical exposure of residuary clays of Trenton terrane...Ann 11, i, fig 104 (p 549)
in Iowa; Anamosa, vicinity of, glacial deposits........Ann 11, i, fig 100 (p 512)
Argyle to Sonora, IllinoisMon xxxvii, fig 5 (p 469)
Benton County ...Ann 11, i, p 529
showing deposition of loess and drift.........Ann 11, i, fig 51 (p 445)
Boonsboro to Missouri RiverBull 158, fig 22 (p 101)
Buchanan CountyAnn 11, i, pp 519-520
showing normal position of forest bed........Ann 11, i, fig 76 (p 489)
Canton, vicinity of ... Bull 158, p 86
Cedar County ..Ann 11, i, p 517
showing ferruginous banding of loess..Ann 11, i, figs 42 and 43 (p 441)
hygroscopic banding of loess and superposition of alluvium..Ann 11, i, fig 40 (p 440)
relation of tills toward easternmost margin..Ann 11, i, fig 81 (p 500)
unconformity between loess and residuary clays.........Ann 11, i, fig 105 (p 549)
Clinton County ..Ann 11, i, p 533
Columbus Junction, vicinity ofMon xxxviii, p 50
Council Bluffs, in vicinity ofBull 158, p 89
Davenport, at and nearAnn 17, ii, pp 843-844; Mon xxxviii, p 50
showing relations of forest bed........Ann 11, i, fig 77 (p 491)
to Carbon Cliff, IllinoisAnn 17, ii, fig 73 (p 831)
to Joliet, Illinois...Ann 17, ii, fig. 69, p 792; Mon xxxviii, fig 9 (p 554)
to Milan, IllinoisAnn 17, ii, fig 72 (p 830)
Decorah, glacial deposits nearAnn 11, i, fig 102 (p 512)
Delaware, showing deposition of residuary clays by glacial action..Ann 11, i, fig 114 (p 556)
Delaware CountyAnn 11, i, pp 520-521
showing contortion of lower till by later ice invasion........Ann 11, i, fig 91 (p 506)
partial removal of lower till by later ice work.........Ann 11, i, fig 60 (p 473)
relation of drift sheets to topography........Ann 11, i, fig 89 (p 505)
Denmark, at and nearMon xxxviii, pp 54, 55
Des Moines CountyMon xxxviii, p 42
Dubuque, Farley toAnn 11, i, fig 63 (p 476)
showing local bowlder deposit beneath loess..Ann 11, i, fig 103 (p 513)
residuary clays of Galena limestone...............Ann 11, i, fig 106, p 550; fig 107, p 551
Dubuque CountyAnn 11, i, fig 65 (p 478), pp 521-522
showing bowlder-charged loess-base........Ann 11, i, fig 44 (p 443)
contortion of lower till by later ice invasion........Ann 11, i, fig 90 (p 505)
deformation of earlier drift sheet and subjacent rock by later ice invasion.........Ann 11, i, fig 83 (p 501)
discordant deposition of loess and drift........Ann 11, i, fig 49 (p 446)
ferruginous banding of loess........Ann 11, i, fig 41 (p 441)
obduracy of lower till..........................Ann 11, i, fig 85 (p 502)
relation between loess, residuary clay, and Niagara limestone..Ann 11, i, fig 110 (p 553)
Section, geologic, in Iowa; Dubuque County, showing relation of loess to basal pebble bed. Ann 11, i, figs 45 and 46 (p 444), fig 48 (p 445) in Iowa; Dubuque County, showing relation of tills toward easternmost margin. Ann 11, i, fig 82 (p 500) Dubuque County, showing relation of tills near easternmost margin. Ann 11, i, fig 80 (p 499) showing relations of upper and lower drift sheets. Ann 11, i, fig 84 (p 501) resistance of residuary clays to glacial action. Ann 11, i, fig 113 (p 555) sand pocket in lower drift sheet. Ann 11, i, fig 86 (p 502) Dyersville, showing deformation of earlier glacial deposits by later ice work. Ann 11, i, fig 92 (p 508) showing pebbly residuary accumulation. Ann 11, i, fig 120 (p 560) Elkader, showing typical exposure of residuary clays of the Galena limestone. Ann 11, i, fig 108 (p 552) Farley, Dubuque to, showing apparent transition between drift and residuary clays. Ann 11, i, fig 112 (p 554) Farley drift basin. Ann 11, i, fig 50 (p 447) Fayette, showing intercalation of forest bed below summit of lower till near. Ann 11, i, fig 74 (p 488) showing relations of Devonian and Silurian formations. Ann 11, i, fig 14 (p 316) Fayette County. Ann 11, i, pp 517-519 showing apparent intergradation of drift sheets. Ann 11, i, fig 88 (p 504) hydroscopic banding and contortion of loess. Ann 11, i, fig 39 (p 439) normal position of forest bed. Ann 11, i, fig 75 (p 488) Floyd County. Ann 11, i, fig 61 (p 474), fig 62 (p 475), p 517 Iowa City, vicinity of. Ann 11, i, p 490 showing partial incorporation of residuary clays in glacial drift. Ann 11, i, fig 118 (p 559) relation between residuary clays and glacial drift. Ann 11, i, fig 119 (p 559) Iowa County. Ann 11, i, pp 533-534 showing normal relations between upper and lower tills. Ann 11, i, fig 87 (p 503) Jackson County. Ann 11, i, pp 532-533 showing unconformity between loess and residuary clays. Ann 11, i, fig 111 (p 554) Jasper County, showing relations of lower till toward its southern margin. Ann 11, i, fig 96 (p 508) Johnson County. Ann 11, i, pp 490, 534 Jones County. Ann 11, i, pp 529-531 showing glacial deposit of local materials. Ann 11, i, fig 101 (p 512) intercalation of forest bed within lower till. Ann 11, i, fig 79 (p 494) transition of loess to sand. Ann 11, i, fig 47 (p 445) Keg Creek, between Summit Creek and vicinity of. Bull 158, fig 20 (p 94) Keokuk, vicinity of. Mon xxxviii, p 94 Lattner's, vicinity of. Ann 11, i, fig 64 (p 477) Linn County. Ann 11, i, fig 72 (p 485), p 532 showing discordant deposition of loess and drift. Ann 11, i, fig 52 (p 465)
Section, geologic, in Iowa; Mad Creek, vicinity of.................Ann 11, i, p 492
in Iowa; Maquoketa to Onslow..........................Ann 11, i, fig 55 (p 457)
Milan ... Ann 17, n, p 846
Mills CountyBull 158, fig 21 (p 94)
Mississippi River to the Wapsipinnicon, showing surface planes of
loess..Ann 11, i, fig 57 (p 466)
Missouri River to Boonsboro..........................Bull 158, fig 22 (p 101)
Missouri Valley...Bull 158, p 88
Mitchell County Ann 11, i, pp 515-516
Mount Vernon, showing contortion of earlier glacial deposits by later
ice sheet..................................Ann 11, i, fig 93 (p 507)
Muscatine ..Mon xxxviii, pp 47-48
showing clay bowlder embedded in sand bowlder........Ann 11,
stratification and contortion of loess base...Ann 11, i, fig 59 (p 469)
Muscatine CountyAnn 11, i, p 535
showing relations of lower till in southeastern...Ann 11, i, fig 97 (p 509)
New London, vicinity of.............................Mon xxxvii, pp 51, 52
northeastern part......................Ann 11, i, pp 234, 334
showing general stratigraphy of Devonian and SilurianAnn 11,
fig 17 (p 322)
Onslow to Maquoketa River..........................Ann 11, i, fig 55 (p 457)
Osage, vicinity of, showing residuary clays of Cedar Valley ter-
rane..................................Ann 11, i, fig 117 (p 558)
Pacific Junction, vicinity ofBull 158, pp 89, 90
Pleistocene deposits, showing representative well sections inAnn 11,
pl 51 (p 514)
Riverside Station, vicinity ofBull 158, p 88
Roberts Ferry, showing fault and flexure in Devonian strataAnn 11,
fig 20 (p 337)
Rockdale, vicinity of, showing structure of terrace on Catfish Creek..Ann 11,
fig 37 (p 429)
Scott County ... Ann 11, i, p 535
Sioux City, vicinity ofBull 158, p 87
Stone County, showing discordance between loess surface and rock
surface..................................Ann 11, i, fig 53 (p 455)
Summit Creek, between Keg Creek and..................Bull 158, fig 20 (p 94)
Tama County ... Ann 11, i, pp 528-529
T. 78 N., R. 7 W., sec. 10, SW. .jasper NW. 1. .Ann 11, i, pp 467, 490
T. 79 N., R. 7 W., sec. 11, SE. 1 SE. 1 .Ann 11, i, p 467
T. 88 N., R. 1 W....................................Ann 11, i, pp 525-527
T. 89 N., R. 1 W....................................Ann 11, i, pp 522-523
T. 89 N., R. 2 W....................................Ann 11, i, pp 523-525
various localities..........................Ann 11, i, pp 527-528; Ann 17, ii, p 841
Wapsipinicon RiverAnn 11, i, p 315
from Mississippi River to, showing surface planes of loess....Ann 11, i,
fig 57 (p 466)
West Point, vicinity ofMon xxxviii, pp 53, 70
western part ofBull 106, p 21
Winnesheik CountyAnn 11, i, p 519
showing relation of loess to subjacent deposits...Ann 11, i, fig 38 (p 438)
Yarmouth, in vicinity of............................Mon xxxviii, p 51
in KansasBull 80, p 194; Bull 106, p 22; Bull 151, pl 35 (p 138)
Arkansas RiverBull 57, fig 15 (p 37)
Section, geologic, in Kansas; Arkansas Valley... Bull 57, fig 21 (p 47)

in Kansas; Barber County ... Bull 57, pl 2 (p 14)

Cheyenne County ... Ann 16, ii, p 583; Ann 21, iv, p 652

Cimarron to Wellington ... Bull 57, pl 2 (p 14)

Comanche County ... Bull 57, fig 11 (p 36)

Fort Riley .. Bull 136, pp 17-18

Goodland .. Ann 16, ii, p 583

Goodland and Wheeler counties, showing water-bearing strata and wells................................ Ann 16, ii, pl 42 (p 548)

Hamilton County ... Bull 57, figs 16 and 17 (p 38)

Harper County .. Bull 57, p 25, figs 7 and 8 (p 33)

Junction, across Smoky Hill Valley ... Bull 136, pl 2 (p 16)

Kansas City ... MR 1889-90, p 357

Lawrence ... WS 6, p 16

Meade Basin .. Ann 21, iv, fig 318 (p 718)

Meade County ... Bull 57, fig 6 (p 28), fig 10 (p 34)

Miami County ... MR 1889-90, p 356

Morris County ... Bull 136, fig 4 (p 20)

Norton County .. Bull 57, fig 14 (p 37)

Saw Log Creek .. Bull 57, figs 12 and 13 (p 36)

southwestern part of ... WS 6, pl 4 (p 42)

Sun City, vicinity of ... Bull 57, fig 5 (p 28)

T. 31 S., R. 27 W., sec. 6 ... WS 6, p 51

Wallace County .. Ann 16, ii, p 583; Ann 21, iv, p 652

water-bearing strata and wells ... Ann 16, ii, pl 42 (p 548)

Wellington ... Bull 57, fig 19 (p 40)

Cimarron to .. Bull 57, pl 2 (p 14)

Wheeler and Goodland counties, showing water-bearing strata and wells................................ Ann 16, ii, pl 42 (p 548)

Wichita, vicinity of ... Bull 57, fig 1 (p 19), fig 9 (p 34)

in Kentucky ... Bull 83, p 72

Bath County ... Bull 46, fig 1 (p 15)

Blaine Creek ... GF 69, p 4

Brandenburg, vicinity of .. Ann 11, i, p 725

Catlettsburg .. GF 69, p 3

central part of, showing effect of a layer of rock yielding fertilizing elements to soil ... Ann 12, i, fig 15 (p 296)

showing successive variations of fertility of soils................................ Ann 12, i, fig 19 (p 302)

Estillville quadrangle .. Ann 13, ii, pl 61 (p 245); GF 12

Lawrence County .. Bull 65, p 144, fig 118 (p 144),

p 145, fig 119 (p 145), pp 163, 194, fig 148 (p 194)

London quadrangle .. GF 47

Meade County ... MR 1887, p 491

Richmond quadrangle ... GF 46

Big Stone Gap coal field ... Bull 111, passim

Warfield, vicinity of .. Bull 65, p 146, fig 120 (p 146)

Warren County ... MR 1887, p 492

Whitley County .. Ann 18, v cont, pp 839-840

in Louisiana; Chalk Hills ... Bull 84, fig 28 (p 169)

Harrisonburg ... Bull 84, fig 27 (p 168)

Petite Anse ... MR 1882, pp 559-560

T. 15, R. 17 W., sec. 34 ... MR 1882, p 556
Section, geologic, in Maine; Aroostook County

in Maine; Big Brassua Lake

Brassua Stream

Cranberry Island, showing junction of granite and slates at Bunkers Head

Haystack Mountain

Little Brassua Lake

Mapleton-Presque Isle road

Mars Hill

Mount Desert Island, cliff at the Ovens

Echo Lake, showing position of Lida clays on eastern side

Seal Cove, to mouth of Bear Brook

Seal Harbor, showing 90-foot bench at

Western Mountain, showing bench on east peak of

in Maine; Big Brassua Lake

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 21

Bull 165, p 92

Bull 165, p 92

Ann 8, ii, fig 44 (p 1053)

Bull 165, fig 3 (p 109)

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Ann 8, ii, fig 23 (p 995)

Ann 8, ii, fig 35 (p 1016)

Ann 8, ii, fig 42 (p 1042)

Ann 8, ii, fig 41 (p 1038)

Ann 8, ii, fig 24 (p 999)

Ann 8, ii, fig 27 (p 1001)

Ann 8, ii, fig 45 (p 1056)

Ann 8, ii, figs 38 and 39 (p 1023)

Mon xxxiv, fig 3 (p 32)

Mon xxxiv, fig 2 (p 32)

Bull 165, fig 2 (p 32)

Bull 165, p 89

Bull 165, fig 8 (p 137)

Ann 8, ii, figs 42 and 39 (p 1023)

Bull 165, pl 8 (p 142), pp 143, 144, 145, 146

Ann 16, iii, p 470, pl 19 (p 478)

in Maine; Big Brassua Lake

Bull 165, fig 11 (p 109)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, fig 3 (p 109)

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, fig 3 (p 109)

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)

Bull 165, pp 21, 23

Bull 165, p 92

Bull 165, p 91

Bull 165, fig 4 (p 113)

Bull 165, fig 7 (p 124)

Ann 8, ii, fig 43 (p 1050)

Ann 8, ii, fig 26 (p 1001)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.

Section, geologic, in Maryland; Ordinary Point
in Maryland; Patuxent River
Piedmont Plateau
Piedmont quadrangle
Point of Rocks to Washington, District of Columbia
Popes Creek
Potomac Basin, Upper, showing Upper and Lower Productive Coal Measures
Potomac River region
Prince George County
St. Marys River
Salisbury
Somerset County
Upper Marlboro
Washington quadrangle
Wicomico County
in Massachusetts
Amherst
Athol
Attleboro, at and near
Becket
Belchertown, vicinity of
Bristol County
Cape Cod, showing general structure of area west of Orleans
Cambridge
Chester
Cochesett station, vicinity of
College Hill, vicinity of
Dennis, showing position of folded clays
East Lee
East Mountain
East Saugus, showing relations of till to brick clays
Eving, at and near
Franklin County
Gibb Pond, vicinity of
Green River Basin, north end of
Greylock Mountain
Hoosac Mountain
Hudson Valley at Poestenkill, New York, to
Hadley, vicinity of
Hampden County
Holyoke

Ann 7, pl 70 (p 591)
Bull 84, fig 7 (p 54)
Ann 15, pl 37 (p 694)
GF 28
Ann 16, pl 37 (p 694)
Bull 141, pl 4 (pp 40, 41)
Ann 14, ii, fig 73 (p 579)
Bull 141, pl 5 (p 42), pl 6 (p 44)
Bull 138, pi 134
Bull 84, p 53
Bull 138, pl 176
Bull 138, pp 129-130
Bull 141, p 45
GF 70
Bull 138, pi 132
Ann 10, i, p 115; Mon xxix, pp 16-18
Mon xxix, pl 12 (p 550), fig 37 (p 667)
Mon xxix, p 572
Mon xxiii, pp 153, 177, 182
Bull 159, fig 7 (p 43)
Mon xxix, fig 14 (p 244), p 245
Mon xxix, p 566
Mon xxiii, pp 170-172
Mon xxix, fig 35 (p 983)
Mon xxix, fig 37 (p 990)
Ann 17, i, fig 91 (p 535)
Ann 6, fig 54 (p 377)
Ann 6, fig 52 (p 370)
Mon xxix, pp 141, 160
Mon xxix, fig 1 (p 22), fig 2 (p 23)
Mon xxix, p 557
Bull 159, pp 90, 91
Ann 18, ii, fig 88 (p 532)
Bull 159, pl 7 (p 86)
Mon xxix, p 190
Mon xxix, p 192
Ann 17, i, fig 43 (p 997)
Mon xxix, fig 13 (p 217), figs 20 and 21 (p 295), fig 22 (p 296)
Mon xxix, p 80
Bull 53, fig 8 (p 21)
Mon xxix, fig 36 (p 631)
Mon xxiii, pp 20, 190, pl 18 (p 192), pl 19 (p 192), pl 20 (p 192), pl 21 (p 192), pl 22 (p 192), pl 23 (p 192)
Mon xxix, fig 48 (p 737)
Mon xxix, pp 77, 85, fig 5 (p 87)
Mon xxix, fig 23 (p 371), pp 383-384, 384-385

694
Section, geologic, in Massachusetts; Holyoke quadrangle...

Hoosac Mountain, Greylock Mountain and...Ann 16, i, fig 157 (p 831)

Lilypad Pond...Bull 159, fig 8 (p 44)

Mansfield area..Mon xxxiii, p 188, fig 27 (p 190)

Martha's Vineyard...Ann 7, fig 59 (p 327), pl 26 (p 328)

Gay Head, showing interbedded and overbedded conglomerates..................Ann 7, fig 61 (p 335)

showing part of Weyquosque series...............Ann 7, fig 58 (p 320)

through from Buzzards Bay to Atlantic Ocean...Ann 7, fig 55 (p 305)

Middlefield...Bull 159, fig 5 (p 41)

Millers Falls, vicinity of..Mon xxix, fig 40 (p 666)

Montague...Mon xxix, fig 36 (p 629)

Monument Mountain..............................Ann 14, ii, p 559, pl 72 (p 559)

Mount Washington..Ann 16, i, fig 158 (p 831)

Nantucket, vicinity of...............................Bull 53, fig 9 (p 28), fig 14 (p 45)

Narragansett Basin..Mon xxxiii, passim

No Mans Land..Ann 7, fig 63 (p 352)

Norfolk...Bull 159, pl 5 (p 76)

Norfolk County..Mon xxxiii, p 136

Northfield Mountain...............................Mon xxix, fig 19 (p 278)

Northampton..Mon xxix, pp 385-388,

fig 25 (p 466), fig 26 (p 470), fig 31 (p 540), pl 15 (p 678)

Norton, at and near..Mon xxxiii, pp 196,197

Oyster Pond to Pauls Point..............................Ann 7, fig 56 (p 309)

Pauls Point to Oyster Pond.............................Ann 7, fig 56 (p 309)

Pelham...Mon xxix, fig 3 (p 48)

Pelham Lake ..Mon xxix, fig 32 (p 578)

Plainville, at and near.........Mon xxix, pp 700, 701; Mon xxxiii, pp 180-181

Plum Island Marsh..............................Ann 6, fig 54 (p 377), fig 55 (p 382)

Plymouth, through Manomet Hill..............Ann 18, ii, fig 92 (p 555)

Quarry Hill..Mon xxix, fig 79 (p 203)

Raynham and Taunton, showing effect of moraines in forming swamps...Ann 10, i, fig 22 (p 298)

Sankaty Head...Bull 53, fig 10 (p 32), fig 11 (p 39), fig 12 (p 41)

Saugus marshes..Ann 6, fig 52 (p 370), fig 54 (p 377)

Shutesbury...Mon xxix, p 230

Somerville..Ann 17, i, fig 41 (p 996)

showing drumlin till overlying eroded surface of brick clays...Ann 17, i, fig 40 (p 965)

relations of brick clays and till............Ann 17, i, fig 42 (p 996)

South Attleboro..Mon xxxiii, p 149

South Hadley...Mon xxix, p 382

southeastern part of..............................Ann 17, i, fig 34 (p 979)

Squam Head..Bull 53, fig 3 (p 16)

Stone Hill...Mon xxix, p 190, fig 76 (p 198)

Taunton, at and near................Mon xxxiii, pp 198-199, fig 28 (p 199)

Raynham and, showing effect of moraines in forming swamps...Ann 10, i, fig 22 (p 298)

Town Cove, showing post-Glacial clays........Ann 18, ii, fig 89 (p 533)

Truro...Ann 18, ii, fig 90 (p 534)

Turners Falls..Mon xxix, pp 380-381
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Section, geologic, in Massachusetts: various localities. Mon xxiii, pl 3 (p 14); Mon xxix, pl 9, (p 464) pls 24, 25, 26, 27, 28, 29, 30, 31, 32 (p 780)

in Massachusetts; Vineyard Haven and Buzzards Bay, showing position of Tisbury beds Ann 17, t, fig 35 (p 983)
Washington station .. Bull 159, fig 3 (p 36)
Weewocket .. Bull 53, fig 4 (p 16)
West Hawley .. Mon xxix, p 173
West Mountain, vicinity of Mon xxix, p 262, figs 16 and 17 (p 264), fig 18 (p 266)
Westfield .. Ann 18, v cont, p 988; Mon xxix, p 92
Westfield River ... Mon xxix, fig 33 (p 607)
Williamstown, showing longitudinal folding, faulting, and cleavage of "Bullock's cobble" Ann 16, t, figs 77 and 78 (p 555)
Windsor .. Bull 159, fig 1 (p 29)
in Mexico; Fuente ... Bull 164, p 24
Huasteca, through grahamite vein Ann 17, t, fig 33 (p 940)
in Michigan; Allegan, at and near
Allegan County ... Mon xxxviii, pp 362, 363, 364, 402
Alma ... WS 31, fig 2 (p 83)
Berrien County .. Mon xxxviii, pp 369, 373, 374, 385
Bête Grise Bay .. Mon v, fig 30 (p 353)
Bloomingdale, vicinity of Mon xxxviii, p 365
Charlevoix ... WS 30, fig 13 (p 87)
Columbia station, vicinity of Mon xxxviii, p 365
Crystal Falls district .. Ann 19, iii, pl 3 (p 26), pl 4 (p 26), p 75, pl 9 (p 82); Mon xxxvi, pl 7 (p 30), pp 172–173, 177
northwestern part of .. Mon xxxvi, pl 5 (p 28)
southern part of .. Mon xxxvi, pl 6 (p 28)
Granite Point, showing Potsdam sandstone lying on eroded surface of granite Ann 7, fig 82 (p 409)
Gunflint and Loon lakes, showing relations of Animikie series to older schists and granite and to newer Keweenawan gabbro. Ann 7, fig 91 (p 421)
Isle Royale to Keweenaw Point Bull 23, fig 17 (p 75)
Goodrich mine, showing plane of contact of Goodrich quartzite on plicated Negaunee jaspilite Ann 15, fig 18 (p 564), fig 19 (p 565)
Hungarian River ... Ann 3, fig 41 (p 150)
Huron County ... WS 30, fig 12 (p 85)
Keweenaw Point ... Ann 3, pl 9 (p 122), fig 38 (p 123), fig 41 (p 150); Mon v, pl 18 (p 166), pp 180–187; Bull 23, fig 20 (p 88), fig 21 (p 91), fig 22 (p 92)
Copper Harbor to Lac la Belle Bull 23, fig 15 (p 74)
eastern part of .. Bull 23, fig 18 (p 79)
showing relations of Eastern sandstone and Keweenaw series Bull 23, fig 1 (p 16), pl 1 (p 17), pl 5 (p 19), pl 6 (p 21), fig 2 (p 22), pl 7 (p 23), fig 3 (p 26), pl 10 (p 29), pl 12 (p 37), fig 4 (p 38), fig 5 (p 39), fig 6 (p 40), fig 9 (p 56), pl 14 (p 59), fig 10 (p 61), p 62, fig 11 (p 65), fig 23 (p 106)
to Isle Royale .. Bull 23, fig 17 (p 75)
western part of .. Bull 23, fig 19 (p 80)
Lake Agogebic to Lake Numakagon, Wisconsin Mon v, pp 391–398
Lake Huron, north shore of Mon v, pp 386–388
Lake Superior Basin ... Ann 3, pl 17 (p 178); Mon v, pl 29 (p 416)
Section, geologic, in Michigan; L'Anse, vicinity of, showing unconformity between Potsdam sandstone and Huronian slates. Ann 7, fig 83 (p 410)

in Michigan; Lee station. Mon xxxviii, p 364

Loon and Gunflint lakes, showing relations of Animikie series to older schists and granite and to newer Keweenawan gabbro. Ann 7, fig 91 (p 421)

Lower Peninsula. Bull 80, p 177; WS 30, fig 10 (p 79)
Marquette, vicinity of, showing contact of Potsdam sandstone and Huronian quartzite. Ann 7, fig 84 (p 410)
Marquette district. Ann 7, fig 96 (p 436); Ann 15, pl 14 (p 488), pl 15 (p 490), p 649; Ann 21, m, pl 53 (p 372), pl 54 (p 376); Mon xxviii, pl 29 (p 398), p 578
showing chert-breccia resting upon truncated minor folds of limestone. Ann 16, 1, fig 153 (p 806)
showing part of abnormal synclinorium of. Ann 16, 1, fig 146 (p 800)
showing ore deposits. Ann 15, pl 22 (p 578), pl 23 (p 580)
Menominee district. Ann 7, fig 96 (p 436); Ann 15, p 649; Mon xxviii, p 578; Bull 62, p 64
mines in. Ann 21, m, pls 56, 57 (pp 394, 398); GF 62, pp 7, 8
Midland. WS 30, fig 11 (p 82)
Montreal River. Mon v, pp 227-228; Mon xix, p 29
Negaunee, vicinity of. Mon xxviii, fig 18 (p 332)
New Buffalo, vicinity of. Mon xxviii, p 394
Norway, vicinity of, showing Potsdam sandstone overlying ferruginous schist and ore of Huronian series. Ann 7, fig 85 (p 410); Ann 10, 1, fig 56 (p 560)
Ohio Corners. Mon xxviii, p 361
Paw Paw Lake, vicinity of. Mon xxviii, p 370
Penokee Range. Ann 3, pp 165-166; Mon xix, pl 3 (p 18)
Penokee-Gogebic district. Ann 21, m, pl 50 (p 342), pl 54 (p 376)
Porcupine Mountains. Ann 3, pl 11 (p 135), pl 12 (p 137); Mon v, pl 20 (p 210), pl 21 (p 214), figs 5 and 6 (p 216)
Portage Lake. Mon v, pp 194-195
Quinnesec Falls, Upper. Bull 62, p 120
Rose City, vicinity of. WS 30, fig 8 (p 86)
St. Clair River. WS 30, p 86
Sawyer. Mon xxviii, p 399
South Haven. Mon xxviii, p 401
Teal Lake, showing Ishpeming quartzite resting unconformably upon Kitchi schist. Ann 15, fig 15 (p 551)
Thunder Bay. Ann 3, pl 15 (p 157); Mon v, pp 332, 380
T. 1 N., R. 17 W., sec. 6. Mon xxviii, p 402
T. 2 N., R. 17 W., sec. 18. Mon xxviii, p 396
T. 30 N., R. 39 W. Mon v, fig 32 (p 359)
T. 47 N., R. 42 W., sec. 28, showing basal conglomerate in contact with granite. Ann 10, 1, fig 43 (p 450)
T. 50 N., R. 39 W., secs. 23 and 24, showing relations of Eastern sandstone and Keweenaw diabase. Bull 23, fig 13 (p 69)
T. 54, R. 33 W., sec. 6, showing relations of Eastern sandstone and Keweenaw series. Bull 23, fig 12 (p 68)
Upper Peninsula. Bull 81, p 189
Upper Quinnesec Falls. Bull 62, p 120
Van Buren County. Mon xxviii, pp 364, 366, 367, 368, 370, 371
in Minnesota. Ann 11, 1, p 332; Bull 81, p 334
Section, geologic, in Minnesota; Agate Bay, at and near Ann 3,
fig 36 (p 122); Mon v, pp 288-290, fig 12 (p 290)

in Minnesota; Baptism River, vicinity of Mon v, fig 29 (p 326)

Coteau des Prairies .. Mon xxv, fig 8 (p 38)

Courtland to Minneopa Bull 157, fig 4 (p 24)
to Pipestone ... Bull 157, fig 3 (p 16)

Glacial Lake Agassiz, beach ridge of Bull 39, fig 1 (p 11)

Great Palisades ... Mon v, fig 24 (p 316)

Gunflint Lake and vicinity Mon xix, pi 37

Humboldt .. Mon xxv, pl 15 (p 74), p 75

Kettle River .. Mon v, fig 9 (p 245)

Leverne to Medicine Butte, South Dakota Bull 158, pl 24 (p 144)

Lyle and vicinity .. Ann 11, i, p 516

Mineopa to Courtland Bull 157, fig 4 (p 24)

Minneapolis ... Bull 81, p 184

Montevideo, vicinity of Bull 157, fig 6 (p 37)

Palisade, south cliff of Ann 3, fig 39 (p 126)

Pipestone to Big Bend, South Dakota Bull 158, pl 24 (p 144)
to Courtland ... Bull 157, fig 3 (p 16)

Portage Bay Island Mon v, fig 42 (p 158); Mon v, fig 16 (p 297)

Red River Valley .. Mon xxv, fig 2 (p 22);
figs 3 and 4 (p 23); fig 5 (p 24); figs 32 and 33 (p 527)

St. Paul, showing contortion of lower part of drift by ice action Ann 11,
figs 94 and 95 (p 507)
showing deformation of Paleozoic clays by glacial action Ann 11,
fig 115 (p 556)

Sand Hill River, at delta of Mon xxv, fig 12 (p 298)

Split Rock River ... Mon v, pp 301-303

Temperance River, on and near Mon v, fig 27 (p 325); fig 28 (p 326)

T. 56 N., R. 7 W., sec. 32 Mon v, fig 21 (p 311)

T. 60 N., R. 2 W., sec. 19 Mon v, p 328

T. 120 N., R. 45 W., sec. 15 Bull 157, fig 7 (p 39)

Vermilion district, ore deposits.......................... Ann 21, ii, pl 59 (p 406)
in Mississippi ... Bull 83, p 67

Coastal Plain .. Ann 12, i, fig 38 (p 427)

Durant, vicinity of, showing relations between Columbia and Lafayette formations ... Ann 12, i, fig 55 (p 450)

Fort Adams .. Bull 84, fig 25 (p 163)

vicinity of, showing relations of Columbia, Lafayette, and Grand Gulf formations Ann 12, i, fig 48 (p 438)

Grand Gulf .. Bull 84, fig 23 (p 162)

Jackson, vicinity of, showing relations of Columbia and Lafayette formations Ann 12, i, fig 54 (p 448)

Marion County .. Bull 84, fig 26 (p 163)

Oxford, showing structure of Lafayette formation Ann 12, i, fig 58 (p 457)

Terry, vicinity of .. Bull 84, fig 24 (p 162)

Winchester, vicinity of Bull 84, p 164

Vicksburg Bluff .. Bull 85, p 70

in Missouri ... Bull 80, pp 147, 156, 190

Bonne Terre .. Bull 132, pp 13-14, 16

Doe Run ... Bull 132, p 14

Gilkersons Ford .. Mon xxxvii, p 7

Henry County ... Mon xxxviii, p 6

mine La Motte ... Bull 132, pp 13, 15
Section, geologic, in Minnesota; Ste. Genevieve County Bull 80, p 168
in Missouri; Simms Mountain .. Bull 132, p 14
southeastern part ... Bull 132, pl 2 (p 10)
T. 36 N., R. 5 E., sec. 29, SE. ¼ ... Bull 132, p 17
sec. 32, NE. ¼ ... Bull 132, p 17
in Montana; Alpine Creek, vicinity of, through Silurian and Devonian
rocks ... Ann 18, iii, pp 469-470
Alpine Gulch, through Cambrian strata Ann 18,
i, pp 466-467, fig 34 (p 468)
Barker Mountain .. Ann 20, iii, fig 43 (p 355)
Big Baldy Mountain and Storr Peak ... Ann 20, iii, fig 41 (p 336)
Big Park .. Ann 20, iii, pp 339-340
Black Butte ... Ann 18, iii, fig 49 (p 555)
Bowers mine .. Bull 105, p 20
Bridger Range ... Bull 110, pl 2 (p 12)
Burnett Creek, through Burnett Creek dome and laccolith Ann 18,
iii, fig 37 (p 490)
Butte quadrangle .. GF 38
Castle Mountain mining district .. Bull 139,
pl 4 (p 24), figs 3 and 4 (p 25), pp 31, 34, 36, fig 5 (p 37)
p 38, fig 6 (p 40), pp 41-42, 47-48, 49-51, 52-53, fig 7 (p 60)
Cinnabar Mountain ... Bull 106, pp 24-25
Cokedale .. Bull 105, p 16
Cone Butte, vicinity of .. Ann 18, iii, p 550
Dirty Creek ... Ann 20, iii, p 301
Dry Fork Belt Creek ... Ann 20, iii, p 362
East Gallatin River, between Missouri River and Bull 110, pl 3 (p 14)
Flagstaff Creek ... Bull 139, fig 2 (p 24)
Florida Mountain ... Ann 20, iii, pl 25 (p 140)
Fort Benton quadrangle .. GF 55
Gallatin .. Bull 81, p 324
Gallatin River, north side of ... Bull 110, pl 5 (p 20)
Giltedge, vicinity of, through Jura-Cretaceous beds Ann 18,
iii, pp 477-478
Giltedge Peak and Alpine laccolith ... Ann 18, iii, fig 42 (p 509)
Hunter’s hot springs ... Bull 105, fig 1 (p 29)
Judith Mountains ... Ann 18, iii, pl 82 (p 578), pl 83 (p 586)
Maginnis mine .. Ann 18, iii, fig 54 (p 600)
showing Mesozoic rocks .. Ann 18, iii, fig 35 (p 480)
Judith Peak, vicinity of .. Ann 18, iii, fig 46 (p 522)
Judith Plateau region .. Ann 20, iii, fig 38 (p 311)
Judith River Basin .. Mon xxvii, pp 239-240
Kelly Hill ... Ann 18, iii, fig 41 (p 499)
Lewistown coal mines .. Ann 18, iii, p 615
Little Belt Mountains quadrangle .. GF 56
Livingston, vicinity of ... Bull 105, p 15
Livingston quadrangle ... GF 1
Madison Range .. Bull 110, pl 2 (p 12)
Maiden Gulch, through Carboniferous strata Ann 18, iii, pp 471-472
Missouri River, between East Gallatin River and Bull 110, pl 3 (p 14)
Monarch, vicinity of ... Ann 20, iii, pp 285,363-364
Neihart, vicinity of ... Ann 20, iii, pp 283-284
Neihart district ... Ann 20, iii, fig 53 (p 405)
New Years and Pyramid peaks .. Ann 18, iii, fig 39 (p 495)
Section, geologic, in Montana; Pilgrim Creek ... Ann 20, III, p 368
in Montana; Pyramid Peak, peak east of ... Ann 18, III, fig 40 (p 498)
Pyramid and New Years peaks ... Ann 18, III, fig 39 (p 495)
Rose Pass .. Ann 18, III, pp 482-484
Spring Coulee, vicinity of .. Ann 20, III, p 294
Storr Peak and Big Baldy Mountain ... Ann 20, III, fig 41 (p 336)
Three Forks .. Bull 110, pl 4 (p 16)
Three Forks quadrangle .. GF 24
Thunder Mountain .. Ann 20, III, figs 44 and 45 (p 365), fig 46 (p 366)
Utica, vicinity of .. Ann 20, III, pp 296-298
various localities .. Ann 20, III, pl 40 (p 284), pl 46 (p 296)
Warm Spring anticline .. Ann 18, III, fig 44 (p 519)
West Arnell Canyon ... Ann 18, III, p 524
West Boulder River .. Bull 105, p 23
Yogo, vicinity of .. Ann 20, III, pp 328-330
in Nebraska .. Bull 106, pp 14-15
Ashford, vicinity of .. Ann 19, iv, fig 224 (p 755)
Banner County .. Ann 19, iv, fig 208 (p 742)
Bennett ... WS 12, fig 3 (p 18)
Berks, vicinity of .. Bull 158, p 80
central plains region, showing usual relations of underground waters WS 12, fig 5 (p 25)
Chadron .. Ann 19, iv, fig 227 (p 758)
Champion ... Bull 131, p 97
Cheyenne County ... Ann 19, iv, pl 99 (p 754)
Chimney Rock, Castle Rock to vicinity of Horseshoe Flat and Ann 19, iv, pl 100 (p 754)
Colfax County .. Bull 158, p 78
Deuel County ... Ann 16, ii, p 582
Dorrington, vicinity of .. Ann 19, iv, fig 223 (p 754)
 vicinity of, showing relations of conglomerate in Arikaree formation Ann 19, iv, fig 211 (p 745)
 Fairmont ... WS 12, fig 9 (p 35)
 Florence, vicinity of .. Bull 158, pp 78, 79
 Fremont .. Bull 158, pp 79, 135
 Frenchman River, showing water-bearing strata and wells Ann 16, ii, pl 42 (p 548)
 Gering, showing relations of Arikaree and Brule formations Ann 19, iv, fig 209 (p 743)
 vicinity of ... Ann 19, iv, figs 216 and 217 (p 750), fig 218 (p 751), fig 219 (p 752), figs 220 and 221 (p 753), showing relations of conglomerate in Arikaree formations Ann 19, iv, fig 212 (p 746)
 Hastings .. WS 12, fig 10 (p 38)
 Herrick, vicinity of ... Bull 158, fig 16 (p 72)
 Howard County .. WS 12, fig 14 (p 47)
 Imperial .. Ann 16, ii, p 583
 Langs Point and vicinity ... Ann 19, iv, pl 88 (p 742)
 Larissa, vicinity of .. Ann 19, iv, pl 101 (p 756)
 Lawrence Fork, showing unconformity between Brule clay and sup- posed Gering deposits .. Ann 19, iv, fig 215 (p 749)
 Lincoln, showing relations of Dakota sandstone WS 12, pl 21 (p 40)
 vicinity of .. WS 12, pp 18-19, fig 7 (p 29)
 McCool ... WS 12, p 34
Section, geologic, in Nebraska; Milford, vicinity of..Bull 158, pp 80–81
in Nebraska; Nebraska City ...Bull 158, pl 27 (p 150)
Niobrara, opposite ...Bull 158, p 134
Norfolk to Spencer, South Dakota ...Bull 158, pl 25 (p 146)
North Branch River, mouth of ...Bull 84, p 294
North Platte River, showing relation of Arikaree and Brule formationsAnn 19, iv, fig 210 (p 744)
Ogallala, vicinity of, through Tertiary grit along the North Platte............Ann 16, ii, p 580
Omaha ...Bull 158, pl 27 (p 150)
to Rocky Mountains ...Ann 19, iv, pl 83 (p 736); WS 12, pl 4 (p 14)
Osmond, vicinity of ..Bull 158, fig 17 (p 75), fig 18 (p 76)
Paxton ...Ann 16, ii, p 581
Platte Valley to and down valley of West Blue River, showing probable cause of flowWS 12, fig 6 (p 26)
Plattsmonth ..Bull 158, pl 27 (p 150)
Pleasant Hill, vicinity of ...Bull 158, p 80
Ponca ..Bull 158, p 74
Prairie Home station, vicinity of, showing glacial formationsWS 12, fig 4 (p 22)
Roca, vicinity of, showing Carboniferous beds in quarry.....................WS 12, fig 2 (p 15)
Scotts Bluff..Ann 19, iv, fig 225 (p 756)
Scotts Bluff County ..Ann 19, iv, fig 222 (p 754)
Seward ..WS 12, fig 8 (p 31)
Sioux County ...Ann 19, iv, fig 226 (p 757)
showing relations of supposed Gering formationAnn 19, iv, fig 214 (p 748)
South Branch River ...Bull 84, p 295
south-central part of ..WS 12, pl 18 (p 34)
South Platte, south side of ...Ann 16, ii, p 581
Spoon Butte to Sturdivant ranch, showing relations of conglomerate in Arikaree formationsAnn 19, iv, fig 213 (p 746)
T. 32 N., R. 3 W. ..Bull 158, p 71
water-bearing strata and wells ..Ann 16, ii, pl 42 (p 548)
West Point, vicinity of ..Bull 158, pp 77, 78
west of the 103d meridian ...Ann 19, iv, pl 85 (p 738)
in Nevada ..Mon viii, p 284
central part of ..Bull 80, p 220
Deer Creek ...Ann 17, ii, fig 1 (p 63)
Silver Peak quadrangle, Esmeralda formationAnn 21, ii, fig 5 (p 199), pp 200–202
Eureka ..Ann 3, p 253; Bull 80, p 222
Consolidated mine ...Ann 4, pl 33 (p 252)
Eureka district ...Ann 3, pl 25 (p 272); Ann 10, i, fig 45 (p 549); Mon xx, p 13, fig 1 (p 56), fig 2 (p 262), pp 61–62, fig 3 (p 66), pp 67, 68, 81, 82, 102, 104, 158, 167–168, pl 2 (p 174), pp 178, 187–188, 189, 191–192, 196–197, 197–199, fig 4 (p 201), pp 202, 206, 207; Bull 30, p 301, fig 3 (p 31)
Highland Range ...Bull 30, pp 33–34; Bull 81, pp 317–318
Hot Spring station ...Mon xi, p 49
Humboldt Canyon ..Mon xi, pl 23 (p 128), p 143
Kawsoh Mountains ..Bull 84, p 314
Lahontan Basin ...Mon xi, p 149
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [Bull. 177.]

Section, geologic, in Nevada; Lake Lahontan. Mon xi, fig 14 (p 102)

in Nevada; Mill City, at and near. Ann 3, fig 52 (p 222); Mon xi, p 131

Oreana, vicinity of Mon xi, pp 129-130

Prospect Mountain .. Mon vii, pl 2 (p 12), pp 13, 16-17, 178

Pyramid Lake .. Mon xi, p 66, fig 24 (p 151); Bull 11, fig 1 (p 11); Bull 12, fig 1 (p 11)

Richmond mine .. Ann 4, pl 32 (p 248)

Rye Patch .. Mon xi, p 130

Soda lakes .. Mon xi, pl 17 (p 76)

Truckee Canyon .. Mon xi, p 132, pl 24 (p 132), p 133, pl 25 (p 134), pl 27 (p 137), p 143

Truckee River .. Ann 3, p 223; Mon xi, pl 26 (p 136)

Walker River Canyon .. Mon xi, pl 28 (p 140), pp 141, 143

Washoe mining district .. Ann 2, pl 47 (p 292)

in New Brunswick. (See under Canada, p. 679.)

in New England .. Bull 81, p 72

showing the history of a talus Ann 12, i, fig 1 (p 233)

in New Hampshire .. Bull 81, p 71; Bull 86, p 380

in New Jersey (Cretaceous) Bull 67, fig 1 (p 18), fig 3 (p 22)

Arlington and vicinity Bull 67, fig 33 (p 57), figs 34 and 35 (p 58)

Atlantic City .. Bull 84, fig 2 (p 42); Bull 138, pp 48, 50, pl 4 (p 52)

to Philadelphia, Pennsylvania Bull 82, fig 2 (p 80)

Atlantic County ... Bull 138, pp 73, 82, 93

Barnegat Bay .. Bull 138, pp 63-64

Bernardsville station .. Bull 67, fig 4 (p 24)

Burlington County ... Bull 138, pp 53-54, 55, 57, 58-59, 60-66, 70-71, 72, 74, 75-77, 88

Camden County ... Bull 138, pp 55, 56-57, 58, 59, 70, 76, 81, 89, 91, 95

Cape May to Metuchen .. Bull 82, fig 3 (p 82)

Cape May County ... Bull 82, fig 2 (p 52)

Cranefield River ... Bull 82, fig 2 (p 52)

Cumberland County .. Bull 138, pp 64, 65, 75, 83, 91

Delaware River, from Titusville to Stockton Bull 67, fig 39 (p 61)

eastern part ... Mon ix, fig 1 (p x); fig 2 (p x)

Feltville, vicinity of ... Bull 67, fig 6 (p 27)

Franklin Furnace, showing band of quartzite in white limestone. .. Ann 18, u, p 454

Gloucester County ... Bull 138, pp 62-63, 65, 92, 96, 97

Great Egg Harbor Bay ... Bull 138, p 60

Hoboken, vicinity of ... Bull 67, fig 20 (p 44)

Jersey City .. Bull 67, fig 18 (p 42)

Monmouth County ... Bull 138, pp 60-61, 69, 79, 86, 87

Mercer County .. Bull 138, pp 66-67

Metuchen to Cape May .. Bull 82, fig 3 (p 82)

Middlesex County .. Bull 138, pp 67-68, 81, 90

New Germantown to Second Watchung Mountain Bull 67, fig 11 (p 35)

northeastern part, showing relations of Watchung traps. Bull 67, pl 3, p 18

Ocean County .. Bull 138, pp 52, 92

Passaic River, north side of. Bull 67, fig 10 (p 32)

Paterson and vicinity .. Bull 67, fig 1 (p 18), fig 3 (p 22)

Pompton Lake, southeastern shore of Bull 67, fig 5 (p 25)

Raritan River, near Martins Dock Bull 67, fig 42 (p 65)

Rocky Hill to Sourland Mountain Bull 67, fig 36 (p 59)

Salem County ... Bull 138, pp 41, 84, 97, 98
Section, geologic, in New Jersey; Second Watchung Mountain to New German-town

in New Jersey; Shiloh
Snake Hill, western side of
Sourland Mountain to Rocky Hill
southern part
Stockton to Titusville
Titusville to Stockton
Trenton, showing relations of glacial deposits
various localities
Weehawken, vicinity of
Woodbridge, through clay bank

in New Mexico (Cretaceous)

in New York, Albany, showing relations of glacial deposits
Albany and Greene counties
Allegany County
Astoria to Far Rockaway Beach
Attica, vicinity of
Ausable Chasm
Chateaugay Four Corners, Franklin County, to Rigaud, Canada
Columbia County
Cumberland County
eastern
Far Rockaway Beach to Astoria
Franklin County
Glens Falls
Granville
Greene and Albany counties
Hampton
Haverstraw, vicinity of, showing structure of Palisade trap
Hudson River to Hoosac Mountains, Massachusetts
Hudson Valley at Poestenkill to Greylock, Massachusetts
Ladentown, vicinity of
Long Island
Olean, vicinity of
Poestenkill Falls, showing anticlines
Poestenkill Gorge, showing syncline
Rensselaer County, showing ledge of grit and red slate in Grafton
Rensselaer Plateau, eastern and western edges of
Rensselaer Plateau and Taconic Range
Saratoga
Saratoga Village, vicinity of
Staten Island
Steuben County
Suffern, vicinity of
Varysburg

MR 1882, p 196
Ann 10, i, fig 44 (p 525)
Ann 13, ii, pl 98 (p 316); Ann 16, i, pl 116 (p 830)
Ann 13, ii, pl 99 (p 318)
Ann 13, ii, pl 98 (p 317)
Ann 81, p 346
Ann 30, p 22
Ann 138, p 37
Ann 67, fig 28 (p 53)
Ann 41, pp 40-45
704 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Section, geologic, in New York; Warsaw, vicinity of............. Bull 41, pp 36-37
in New York; Washington County Bull 30, p 28
Washington County, showing ledge of alternating beds of limestone and shale Ann 16, i, fig 87 (p 561)
Whitehall .. Bull 81, p 345
Wyoming County .. Bull 41, pp 47-48, 49-50, 52-54
in Newfoundland. (See under Canada, p 680.)
in North Carolina; Cape Fear River Bull 84,
figs 13, 14, and 16 (p 70); fig 16 (p 71)
Cascade, vicinity of .. Bull 85, p 87
Coastal Plain region .. Bull 138, fig 8 (p 194)
Corunum Hill .. Bull 42, pp 48-49
Craven County .. Bull 138, p 199
Duplin County .. Bull 46, p 71; Bull 84, p 72
Egypt .. Bull 85, p 41
Farmville, at and near .. Bull 85, p 41; MR 1885, p 42
Greenville quadrangle ... Ann 13, ii, pl 41 (p 245)
Haywood to Newbern .. Bull 82, fig 4, p 92
Hyde County .. Bull 138, p 197
Knoxville quadrangle ... GF 16
Neuse River .. Bull 84, fig 12 (p 70)
Newbern to Haywood ... Bull 82, fig 4 (p 92)
New Hanover County ... Bull 46, p 72, fig 30 (p 73); Bull 138, p 207
Pamlico County .. Bull 138, p 199
Pasquotank County ... Bull 138, p 193
Pender County .. Bull 138, p 204
Roanoke River ... Bull 84, fig 9 (p 68)
Sampson County ... Bull 46, p 71
Tar River ... Bull 84, figs 10 and 11 (p 69)
Wadesborough ... Bull 85, pl 9 (p 90)
Washington County ... Bull 138, p 196
Wayne County .. Bull 138, pp 202-203
Wilmington, vicinity of .. Bull 46, p 72
in North Dakota; Arvilla and Larimore Mon xxv, fig 25 (p 436)
Buffalo River, at delta of .. Mon xxv, fig 11 (p 290)
Campbell escarpment .. Mon xxv, fig 17 (p 419), fig 18 (p 420), fig 19 (p 421)
Cleveland, vicinity of .. Bull 144, fig 3 (p 40)
Devils Lake ... Mon xxv, p 529
to Vermilion ... Mon xxv, fig 34 (p 532)
Dickinson and Medora ... Ann 17, ii, fig 60 (p 664)
eastern artesian basin in eastern Dakotas Ann 17, ii, pl 71 (p 614)
Elk Valley delta .. Mon xxv, fig 14 (p 334)
glacial Lake Agassiz, beach ridge of Bull 39, fig 1 (p 11)
Grafton ... Mon xxv, pl 15 (p 74), p 77
Grandin ... Mon xxv, fig 31 (p 529)
Harold to Huron .. Mon xxv, fig 35 (p 532)
Inkster ... Mon xxv fig 26 (p 437)
James River Valley .. Ann 17, ii, pl 96 (p 664)
Larimore and Arvilla .. Mon xxv, fig 25 (p 436)
Medina, vicinity of ... Bull 144, fig 1 (p 39), fig 2 (p 40)
Medora and Dickinson .. Ann 17, ii, fig 60 (p 664)
Moorhead to Medora ... Ann 17, ii, fig 59 (p 663)
Pembina River, across delta of Mon xxv, fig 15 (p 358)
Red River Valley .. Mon xxv, fig 2 (p 22),
figs 3 and 4 (p 23), fig 5 (p 24), figs 32 and 33 (p 527)
Section, geologic, in North Dakota; Sheyenne River, across delta of......Mon xxv, fig 13 (p 316)

in North Dakota; Sims Station......................................Ann 17, ii, fig 61 (p 664)

various localities ... Bull 144, pp 58-61

Vermilion to Devils Lake... Mon xxv, fig 34 (p 532)

Wheatland, at and near.. Mon xxv, fig 23 (p 435)

in Northwest Territory. (See under Canada, p 680.)

in Norway; Dokka Valley... Ann 10, i, fig 59 (p 563)

Fugelberg, Lake Miosen and Ulven..............................Ann 10, i, p 579

in Nova Scotia. (See under Canada, p 680.)

in Ohio...Ann 19, iv, p 638; Bull 80, pp 184, 188-189

Appalachian coal fields... Bull 65, pl 2 (p 16), pl 3 (p 18)

Athens County ...Bull 65, pp 66, 67, 133, fig 106 (p 133), p 134, fig 107 (p 104)

Belmont County...Bull 65, p 501, fig 20 (p 50), p 51, fig 22 (p 51), pp 67, 68

Cincinnati...Ann 8, ii, p 557

Cleveland..Bull 80, p 184

Columbiana County..Bull 65, p 131, fig 102 (p 131), p 132, fig 103 (p 132)

in Delaware..Ann 19, iv, pp 671-672; Bull 80, p 184

Findlay ...Ann 8, ii, p 548, pl 59 (p 610)

Guernsey County.. Bull 65, p 83, fig 46 (p 83)

Hicksville..Ann 19, iv, p 705

Hocking Valley..Bull 65 p 168

Holmes County..Bull 65 p 191, fig 142 (p 191)

* Huntington quadrangleGF 69

Ironton and vicinity ...Bull 65, p 135, figs 109 and 110 (p 135)

Jackson County..Bull 65, p 193, fig 146 (p 193)

Jefferson County...Bull 65, pp 68, 104, fig 54 (p 104)

Lima..Ann 18, v, p 829

Lima district..Ann 16, iv, p 350

Little Beaver River, mouth of.....................................Bull 65, p 130, fig 101 (p 130)

Mahoning County..Bull 65, p 191, fig 141 (p 191)

Meigs County..Bull 65, p 53, fig 26 (p 53), p 66

Monroe County..Bull 65, p 28, fig 7 (p 28)

Morgan County..Bull 65, p 67

Muskingum County..Bull 65, p 132, fig 104 (p 132)

Nimishihlen Creek, middle fork of................................Ann 19, iv, p 695

northeastern part...Mon xvi, p 120

Oberlin...Bull 58, p 47

Perry County...Bull 65, p 133, fig 105 (p 133), p 168

Sandusky, vicinity of..MR 1887, p 597

Scioto County..Bull 65, p 134, fig 108 (p 134), p 193, fig 147 (p 193)

Sidney..Ann 19, iv, p 657

Stryker, vicinity of...Ann 19, iv, p 702

Swanton, vicinity of..Ann 19, iv, p 706

various localities..Ann 18, iv, pl 35 (p 430)

Washington County..Bull 65, p 291, fig 8 (p 29), p 52, fig 23 (p 52), p 192, fig 143 (p 192)

western part..Ann 8, ii, pl 57 (p 570), pl 58 (p 604)

in Ontario. (See under Canada, p 680.)

in Oregon; Albino..Ann 17, i, fig 16 (p 486)

Coos Bay coal field..Ann 19, iii, pp 315-376 passim

Fossil Rock..Ann 17, i, fig 7 (p 477)

Callahans to crest of Coast Range..............................Ann 17, i, fig 5 (p 460)

Ilwaco, vicinity of...Ann 17, i, fig 8 (p 479)

Bull. 177—01—45
Section, geologic, in Oregon; Meares Point light-house, vicinity of........ Ann 17, i, fig 10 (p 480)

in Oregon; Mist, vicinity of, left bank of Nehalem River........ Ann 17, i, fig 6 (p 470)

Nehalem River, below mouth of.. Ann 17, i, fig 9 (p 480)

Newport Point, vicinity of... Ann 17, i, fig 14 (p 482)

Nye Beach Cliff... Ann 17, i, fig 11 (p 480), figs 12 and 13 (p 481)

Portland Heights.. Ann 17, i, fig 15 (p 485)

Prosper mine.. Ann 17, i, fig 17 (p 509)

Roseburg quadrangle... GF 49

in Pennsylvania... Bull 80, pp 84-85, 118, 124

Allegheny County............. Bull 65, p 73, fig 34 (p 73), p 112, fig 68 (p 112)

Appalachian coal fields .. Bull 65, pl 2 (p 16), pl 3 (p 18)

Appalachian syncline ... TF 2, p 8

Armstrong County... Bull 65, p 107, fig 60 (p 107), p 108, figs 61 and 62 (p 108), p 110, fig 65 (p 110), p 111, fig 66 (p 111), p 184, fig 126, (p 184)

Beaver County... Bull 65, p 112, fig 67 (p 112)

Beaver River and Conoquenessing Creek Bull 80, p 101

Bedford County................. Bull 65, p 77, fig 38 (p 77), p 126, fig 91 (p 126), p 149

Black Spring Gap... Ann 20, u, pi 186 (p 918)

Blair County... Bull 65, p 122, fig 85 (p 122)

Butler County... Bull 65, p 107, fig 59 (p 107)

Cambria County... Bull 65, p 118, fig 78 (p 118), p 119, fig 80 (p 119), p 120, fig 81 (p 120), p 122, fig 84 (p 122), p 149

Clarion County... Bull 65, p 105, figs 55 and 56 (p 105), p 106, figs 57 and 58 (p 106), p 183, fig 125 (p 183)

Clearfield County................. Bull 65, p 103, fig 52 (p 103), p 123, figs 86 and 87 (p 123), p 124, fig 88 (p 124); p 183, fig 123 (p 183)

Conemaugh River................................. Bull 80, p 124

Conoquenessing Creek and Beaver River................................. Bull 80, p 101

East Stroudsburg to Pocono Mountain.. Bull 120, fig 1 (p 45)

eastern part... Bull 120, p 78

Elk County................................. Bull 65, p 104, fig 53 (p 104), p 182, fig 122 (p 182)

Emigsville through Red Lyon station.. Bull 134, pp 15-16

Fayette County... Bull 65, p 44, fig 11 (p 44), p 74, fig 35 (p 74), p 86, fig 76 (p 116)

Fishing Creek Gap... Ann 20, u, pi 186 (p 918)

Gap, vicinity of................................. Bull 134, p 28

Georgetown, vicinity of... Bull 80, p 125

Gold Mine Gap... Ann 20, u, pi 186 (p 918)

Greene County... Bull 65, p 22, fig 1 (p 22), p 23, fig 2 (p 23), p 24, fig 3 (p 24), p 45, fig 14 (p 45); Bull 80, p 116

Huntingdon County... Bull 65, p 125, figs 89 and 90 (p 125), p 185, fig 130 (p 185); Bull 80, pp 113-114

Indiana County... Bull 65, p 115, figs 73 and 74 (p 115)

Jefferson County... Bull 65, p 183, fig 124 (p 183)

Johnstown, vicinity of... Bull 65, p 119, fig 79 (p 119)

Kittanning, vicinity of... Bull 65, p 109, figs 63 and 64 (p 109)

Lincoln mining district.. Ann 20, u, pls 183 and 184 (p 918)

Little Beaver River, mouth of.. Bull 65, p 130, fig 10 (p 130)

Locust Mountain Gap.. Ann 20, u, pl 185 (p 918)

Lorberry Gap... Ann 20, u, pl 185 (p 918)

Mahanoy and Panther Creek basins, showing thickness of Pottsville conglomerate.. Ann 13, u, pl 69 (p 264)

Mercer County... Bull 65, p 190, fig 140 (p 190)
Section, geologic, in Pennsylvania; Monterey district. Bull 136, pl 5 (p 24)

in Pennsylvania; Montgomery County. Bull 83, p 93

natural-gas district. MR 1887, p 469

Panther Creek and Mahanoy basins, showing thickness of Pottsville conglomerate. Ann 13, ii, pl 69 (p 264)

showing relations of glacial deposits to Atlantic City, New Jersey. Bull 82, fig 2 (p 80)

Pittsburg. Bull 65, p 184, fig 127 (p 184)

Pittsburg region. Bull 65, p 72, fig 33 (p 72)

Pocono Mountain to East Stroudsburg. Bull 120, fig 1 (p 45)

Rausch Gap, Lebanon County. Ann 20, ii, pl 187 (p 918)

Rausch Gap, Schuylkill County. Ann 20, ii, pl 185 (p 918)

Selingsrove, vicinity of. Bull 80, p 125

Sharp Mountain Gap. Ann 20, ii, pls 181 and 182 (p 918)

Somerset County. Bull 65, p 76, fig 37 (p 76), p 121, figs 82 and 83 (p 121), p 186, fig 131 (p 186)

Tioga County. Bull 65, p 102, fig 50 (p 102), p 103, fig 51 (p 103)

Washington. Bull 65, p 29, fig 9 (p 29) p 78, fig 40, fig 113, fig 69 (p 113), p 185, fig 129 (p 185)

Washington County. Bull 65, p 30, fig 10 (p 30), p 45, fig 13 (p 45), p 78, fig 41 (p 78)

Westmoreland County. Bull 65, pp 44, 68, 75, fig 36 (p 75), p 113, fig 70 (p 113), p 114, figs 71 and 72 (p 114), p 116, figs 75 (p 116), p 185, fig 128 (p 185)

Wilkesbarre. Ann 13, ii, pl 73 (p 272)

in Portugal. Ann 16, i, pl 105, (524)

in Rhode Island. Bull 86, p 377

Arnolds Mills. Mon xxxiii, fig 16, p 157

Barrington. Ann 17, i, fig 36 (987)

Hunts Mills. Mon xxxiii, p 169

Narragansett Basin. Mon xxxiii, passim

Pawtucket, vicinity of. Mon xxxiii, fig 13 (p 148)

Portsmouth, at and near. Mon xxxii, pp 320-321, 322-325

Providence. Ann 17, i, p 986; Mon xxxiii, p 161

Riverside to Watchemucket Cove. Mon xxxiii, fig 20 (p 166)

Silver Spring station, vicinity of. Mon xxxiii, p 166, figs 21 and 22 (p 167)

Watchemucket Cove to Riverside. Mon xxxiii, fig 20 (p 166)

in Russia, Jablovsck. Bull 46, p 113

Kursk, vicinity of. Bull 46, p 113

Orel. Bull 46, p 113

in South Carolina. Bull 46, pp 65-66

Aiken. Bull 138, p 220

Barnwell County. Bull 138, p 221

Berkeley County. Bull 46, figs 27 and 28 (p 64)

Charleston. Bull 138, pl 19 (p 216)

eastern part. Bull 138, pl 18 (p 212)

Florence. Bull 138, p 218

Harpers and Potters Landing. Bull 84, p 78

Nixonville, vicinity of. Bull 84, p 78

Orangeburg. Bull 138, p 220

Port Royal. Bull 138, p 217

Potters Landing and Harpers. Bull 84, p 78

Sineaths Station. Bull 138, p 215
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Section, geologic, in South Dakota; Alexandria to Cherokee, Iowa..............Bull 158, pl 25 (p 146)
in South Dakota; Ancient Island, vicinity ofBull 158, p 131
Andover .. Ann 17, ii, fig 52 (p 620)
Argyle, vicinity of Ann 18, v, p 1353
Artesian, vicinity of Ann 18, iv, fig 81 (p 575)
Aurora County Ann 17, ii, pl 88 (p 648); Ann 18, iv, pl 40 (p 574)
Bad Lands .. Bull 84, p 290
Beadle County Ann 17, ii, pl 76 (p 624)
Beaver Canyon, north of Hot Springs Ann 21, iv, fig 276 (p 512)
Big Bend to Pipestone, MinnesotaBull 158, pl 24 (p 144)
Black Hills Ann 19, ii, opp p 593; Bull 106, p 23
Blackhawk, vicinity of Ann 19, ii, p 564
Chilson Creek, across divide between Red Canyon and........ Ann 19, ii, fig 119 (p 554)
Evans quarry Ann 19, ii, p 559-560
French Creek, showing unconformity between Upper Cambrian sandstone and subjacent Archean rocks...Ann 10, i, fig 54 (p 559)
Hay Creek region.................................. Ann 19, ii, pp 566-567
Matties Peak Ann 19, ii, p 554
Minnekahta Canyon Ann 19, ii, fig 120 (p 560)
Minnekahta limestone, at surface of Ann 21, iv, pl 90 (p 554)
northern Ann 21, iii, pp 178-182
Parkers Peak Ann 19, ii, p 558
spur east of Ann 19, ii, p 557
Pine Ridge to .. Ann 19, iv, fig 228 (p 764)
Rapid Creek, showing Upper Cambrian sandstone, conglomerate at base and its unconformity with subjacent Archean schists Ann 10, i, fig 53 (p 559)
Red Canyon, across divide between, and Chilson Creek Ann 19, ii, fig 119 (p 554)
Red Valley, at Camp Jenney Ann 19, ii, fig 117 (p 558)
on Amphibious CreekAnn 19, ii, fig 118 (p 558)
Sioux River to eastern portion of Ann 17, ii, fig 50 (p 611); Ann 21, iv, p 565 (fig 289)
Black Hills region.................. Ann 21, iv, pp 503-504, fig 288 (p 563)
Black Hills upliftAnn 21, iv, pl 88 (p 550), fig 286 (p 561)
Blair Bull 158, pl 26 (p 148)
Bonhomme County Ann 17, ii, pl 93 (p 658); Ann 18, iv, fig 82 (p 587); WS 34, pl 7 (p 20)
Britton.. Ann 17, ii, fig 51 (p 620)
Brown County, northern half Ann 17, ii, pl 73 (p 618)
southern half Ann 17, ii, pl 72 (p 618)
Brule County Ann 17, ii, pl 89 (p 650)
Buffalo County Ann 18, iv, fig 80 (p 573)
Buffalo Gap Ann 21, iv, pp 522, 534
Catholicion Springs Hotel Ann 21, iv, p 521
Chamberlain.......................... Bull 158, pl 26 (p 148)
Charles Mix County Ann 17, ii, fig 56 (p 647); Ann 18, iv, pl 38 (p 570)
Cheyenne Falls Ann 21, iv, pp 530, 534
Cheyenne River Bull 84, p 291
near Edgemont Ann 21, iv, p 531
to White River Bull 84, p 291
Clark and Spink counties: Ann 17, ii, pl 74 (p 620)
Clay County Ann 17, ii, pl 95 (p 662); WS 34, pl 8 (p 22)
Section, geologic, in South Dakota; Cold Spring Brook. Ann 21, iv, fig 297 (p 585)

in South Dakota; Coteau des Prairies. Mon xxv, fig 8 (p 38)

Davison County. Ann 17, ii, pl 87 (p 646)

Day County. Ann 18, iv, p 591

De Smet. Ann 18, iv, fig 85 (p 595)

Dewey County. Ann 18, iv, fig 83 (p 588)

Douglas County. Ann 17, ii, pl 90 (p 652)

eastern, artesian basin in eastern North Dakota and. Ann 17, ii, pl 71 (p 614)

Edgemont. Ann 21, iv, fig 291 (p 568); fig 293 (p 571)

to Pringle. Ann 21, iv, pl 66 (p 504)

Egan, vicinity of. Bull 158, p 138

Elmspring. WS 34, p 14

Fairburn. Ann 18, v cont, p 1352

region around. Ann 21, iv, pl 66 (p 504)

Fairview, vicinity of. Bull 158, p 83

forty-ninth parallel. Bull 158, pl 24 (p 144)

French Creek. Ann 21, iv, p 523

Great Sioux Indian Reservation, Black Horse Creek and Grand River. Bull 21, pl 3 (p 16)

Flint Creek. Bull 21, pl 2 (p 16)

Rabbit Creek and Moreau River. Bull 21, pl 1 (p 16)

through lignite beds. Bull 21, fig 4 (p 13)

Hanson County. Ann 17, ii, pl 84 (p 640)

Hat Mountain to Newcastle, Wyoming. Ann 21, iv, pl 66 (p 504)

Hermosa. Ann 21, iv, pl 531

to Spring Creek. Ann 21, iv, pl 66 (p 504)

Hot Brook. Ann 21, iv, pp 511-512

Hot Springs. Ann 21, iv, p 522

to Beaver Canyon, Wyoming. Ann 21, iv, pl 66 (p 504)

Hutchinson County. Ann 17, ii, pl 91 (p 654);

Ann 18, iv, pl 42 (p 584); WS 34, pl 6 (p 18), pl 7 (p 20)

Hyde and Hughes counties. Ann 17, ii, pl 77 (p 626)

Jerauld County. Ann 17, ii, fig 55 (p 632)

Lame Johnny Creek. Ann 21, iv, pl 523

Letcher. Bull 158, p 125

McCook, vicinity of. Bull 158, fig 19 (p 86)

McCook County. Ann 17, ii, pl 83 (p 638)

Medicine Butte to Luverne, Minnesota. Bull 158, pl 24 (p 144)

Miller, Hand County. Ann 17, ii, fig 54 (p 629)

Miner County. Ann 17, ii, pl 82 (p 636)

Minnekahta. Ann 21, iv, p 524, fig 296 (p 573)

Mitchell to Missouri River. Bull 158, pl 25 (p 146)

Orient, Faulk County, vicinity of. Ann 17, ii, fig 53 (p 624)

Pine Ridge to Black Hills. Ann 19, iv, fig 228 (p 764)

Pleasant Valley to Clifton, Wyoming. Ann 21, iv, pl 66 (p 504)

Pringle to Edgemont. Ann 21, iv, pl 66 (p 504)

Pukwana, vicinity of. Ann 18, iv, fig 78 (p 568)

Rosebud Reservation. Ann 18, iv, fig 84 (p 589)

Sanborn County. Ann 17, ii, pl 79 (p 630), pl 80 (p 632), pl 81 (p 634)

Sioux City. Bull 158, pl 26 (p 148)

Sioux Falls, at and near. Bull 158, p 84, fig 25 (p 102), fig 26 (p 103)

Sioux River to eastern portion of Black Hills. Ann 17, ii, fig 50 (p 611); Ann 21, iv, fig 289 (p 565)

Spencer to Norfolk, Nebraska. Bull 158, pl 25 (p 146)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.]

Section, geologic, in South Dakota; Spink and Clark counties. Ann 17, ii, pl 74 (p 620)
in South Dakota; Spokane, 2 miles from. Ann 21, iv, p 508
Spring Creek. Ann 21, iv, p 523
to Hermosa. Ann 21, iv, pl 66 (p 504)
Spring Creek Canyon. Bull 81, pl 348
Todd County. Ann 17, ii, fig 58 (p 660)
Turner County. Ann 17, ii, pl 92 (p 656)
Turtle Ridge. Bull 138, fig 3 (p 21)
various localities. Bull 144, pp 58-61
Vermilion, at and near. Bull 158, pp 74, 134
White River to Cheyenne River. Bull 84, p 291
Yankton County. Ann 17, ii, pl 94 (p 660); WS 34, pi 8 (p 22)
in Spain, from Truxillo to Logrosan. Bull 46, fig 24 (p 54)
in Straits Settlements. Ann 16, iii, p 470, pl 19 (p 478)
in Sweden, Andrarum. Ann 10, i, pp 578-579
Scania. Ann 10, i, p 578
in Switzerland; Alps, from St. Gothard massif south. Ann 16, i, pi 109 (p 624)
in Tennessee; Briceville quadrangle. GF 33
Bristol quadrangle. GF 59
Central Basin. MR 1887, p 493
Chattanooga quadrangle. GF 6
Cleveland quadrangle. GF 20
Estillville quadrangle. Ann 13, ii, pl 41 (p 245); GF 12
Greenville quadrangle. Ann 13, ii, pl 41 (p 245)
Kingston quadrangle. GF 4
Knoxville quadrangle. GF 16
Loudon quadrangle. Ann 13, ii, pl 41 (p 245); GF 25
McMinnville quadrangle. GF 22
Maynardville quadrangle. Ann 13, ii, pl 41 (p 245)
Memphis. Ann 12, i, fig 67 (p 468)
Morristown quadrangle. GF 27
Pikeville quadrangle. GF 21
phosphate district. Ann 17, ii, p 521
Ringgold quadrangle. GF 2
Scott County. Ann 18, v cont, pp 836-838
Sewanee quadrangle. GF 8
Standingstone quadrangle. GF 53
Stevenson quadrangle. GF 19
Swan Creek. MR 1893, p 710
various localities showing the relations of the Tennessee phosphate to
adjacent formations. Ann 16, iv, pl 6 (p 616)
showing variations in thickness of phosphate bed and its relations
to adjacent formations. Ann 17, ii, plsa 51 and 52 (p 522)
Wartburg quadrangle. GF 40
in Texas. Bull 151, pl 35 (p 138); TF 3, p 2
Anacacho Mountains. Bull 104, pp 31-32, fig 4 (p 32)
Asphalt Falls. Bull 104, p 34
Aue, vicinity of. Ann 18, ii, p 272
Austin, at and near. Ann 18, ii, fig 57 (p 230), fig 58
(p 236), pl 35 (p 246), pp 280, 281-282, 283, 284, pl 41 (p 286)
Barton Creek, mouth of. Bull 84, fig 29 (p 173)
Bee Creek, mouth of. Ann 18, ii, pp 232-233
Bexar County. Ann 18, ii, p 272
Black and Grand prairies (many). Ann 21 viii
Section, geologic, in Texas; Burleson County................. Bull 84, fig 30 (p 174)
in Texas; Burnet County................. Ann 18, ii, pp 218-220; Bull 81, pp 354, 355
Carizzo Springs, vicinity of.................. Bull 84, p 50
Chispa, vicinity of.......................... Bull 151, p 32 (p 132)
De Rio.. Bull 151, p 32 (p 132)
Denison, near.................................. Bull 151, p 32 (p 132)
Eagle Pass, at and near....................... Bull 151, pp 22, 23, 24, 25, fig 3 (p 25), pp 26, 30, 57-59; Ann 18, ii, fig 62 (p 243)
Edwards County, canyons of the Nueces........ Ann 18, ii, pp 234-235
Edwards and Uvalde counties, showing monoclinal fold......... Ann 18, ii, fig 66 (p 259)
Edwards, Kinney, and Uvalde counties................ Ann 18, ii, p 277
Edwards Plateau and Rio Grande Plain........ Ann 18, ii, fig 65 (p 258)
Fredericksburg, vicinity of................... Ann 18, ii, p 221, fig 55 (p 221)
Frio River.. Bull 164, pp 51-53; GF 64, p 2
Gettysburg Peak................................ Bull 164, pl 11 (p 84)
Grand and Black prairies (many)...................... Ann 21, vii
Grayson County.................................... Bull 45, p 79
Guajolote ranch, at and near................... Bull 164, pp 39, 40
Kerrville.. Ann 18, ii, fig 68 (p 270)
Kinney County.................................... Ann 18, ii, fig 59 (p 237), fig 60 (p 238), fig 61 (p 240), p 241
Kinney, Edwards, and Uvalde counties........ Ann 18, ii, p 277
Leona and Nueces rivers, valleys of and highland between......... Ann 18, ii, fig 71 (p 275)
Llano County..................................... Bull 81, p 355
Lohmanns Crossing and Hickory Creek Ann 18, ii, fig 56 (p 223)
Manor.. Ann 18, ii, p 285
Millsap, vicinity of........................... MR 1888, p 370
Navarro County to Parker County............ Bull 82, fig 6 (p 118)
Nueces quadrangle................................ GF 42
Nueces River................................. Ann 18, v, p 933; Bull 164, pp 47-49, 51, 62; GF 64, p 5
valleys of Leona River and..................... Ann 18, ii, fig 71 (p 275)
Packsaddle Mountain................................ Ann 10, i, fig 49 (p 552)
Palafax, at and near........................... Bull 164, p 40, fig 7 (p 55)
showing Rio Grande terraces..................... Ann 18, ii, fig 64 (p 252)
Parker County to Navarro County............... Bull 82, fig 6 (p 118)
Rio Grande Plain, showing wells in gravel beds........ Ann 18, ii, fig 69 (p 274)
western portion.................................. Ann 18, ii, pp 277-279
Rio Grande Plain and Edwards Plateau........ Ann 18, ii, fig 65 (p 258)
Rio Grande terraces between Del Rio and Laredo................ Ann 18, ii, fig 63 (p 252)
Salado Creek..................................... Bull 164, p 28
San Ambrosia Creek............................... Bull 164, p 38
San Antonio and vicinity......................... Ann 18, ii, pp 292, 293, pi 43 (p 294)
San Carlos, vicinity of......................... Bull 164, pp 76, 77, 78, 79-80, 81, pi 11 (p 84)
San Marcos....................................... Bull 18, ii, pp 287-289
showing fault at springs......................... Ann 18, ii, fig 72 (p 308)
San Pedro Springs, vicinity of................... Ann 18, ii, p 293
Santo Tomas, at and near........................ Bull 164, pp 41-44, 63
Sierra San Carlos............................... Bull 82, fig 7 (p 134)
Travis County.................................... Ann 18, ii, pp 224-225, 231-232
showing displacement at Mount Bonnel............... Ann 18, ii, fig 76 (p 315)
Turkey Creek..................................... Bull 164, pp 32-33
Upson, vicinity of.............................. Bull 164, p 20
Section, geologic, in Texas; Uvalde quadrangle.................GF 64
in Texas; Uvalde, Kinney, and Edwards counties..............Ann 18, II, p 277
Vieja Mountains.. Bull 164, pp 76, 77, 78, 79-80, pl xi (p 84)
Waxy Falls..GF 64, p 3
Weatherford, vicinity of.................................. Bull 151, pl 34 (p 136)
Webb County... Bull 164, p 39
Young County... Bull 45, pp 58-59
Utah; American Fork Canyon.................................. Mon i, fig 26 (p 156)
Anselope Spring... Bull 30, p 40; Bull 81, p 320
Bear River district.. Bull 128, p 21
Coalville, at and near...................................... Bull 106, pp 38-39, 44
Kanab.. Bull 80, p 221
Kanaba Valley, Upper.. Bull 106, p 34
Kanara Mountain... MR 1882, pp 77, 78
Lake Bonneville region..................................... Mon i, fig 29 (p 194)
Leamington.. Mon i, fig 28 (p 192)
showing alternation of lacustrine and alluvial deposits........Ann 2, fig 17 (p 217)
Logan.. Mon i, fig 27 (p 162)
Mercur Basin... Ann 16, II, pl 27 (p 372)
Mercur mine.. Ann 16, II, pl 34 (p 418)
Mercur mining district, Geyser tunnel Ann 16, II, fig 45 (p 422)
Oquirrh Mountains, southern end................................ Ann 16, II, pl 25 (p 360)
Sevier Lake salt bed.. Mon i, p 226
Sulphur Creek.. Bull 106, p 45
Tintic mining district....................................... Ann 19, III, pl 75 (p 616), pl 77 (p 618), pp 622-623, 624-625, 626; GF 65
Wasatch Mountains.. Ann 3, p 271;
Ann 10, I, fig 46 (p 550); Ann 16, II, pl 362; Ann 19, III, p 629; Bull 30, fig 4 (p 37), pp 38-39; Bull 81, p 157
in Vermont... Ann 19, III, opp p 178, pl 16 (p 184); Bull 86, p 380
Bird Mountain... Ann 20, II, pl 1 (p 16)
Castleton.. Ann 19, III, fig 8 (p 184)
Clarendon, showing structure of saddle in ridge..............Ann 14, II, fig 62 (p 542)
showing nearly horizontal cleavage foliation in mica-schist.....Ann 13, II, fig 25 (p 319)
East Hubbardton... Ann 19, III, fig 7 (p 182)
Franklin County... Bull 30, pp 15-17, fig 1 (p 16); Bull 81, pp 278-279
Georgia to Lake Champlain.................................. Ann 10, I, fig 50 (p 553)
Jamaica, vicinity of, showing false bedding............... Ann 16, I, fig 83 (p 558)
Lake Champlain to Georgia.................................. Ann 10, I, fig 50 (p 553)
Pond Mountain.. Ann 19, III, fig 10 (p 197)
Salem.. Bull 81, pp 282-283
Rutland, vicinity of, showing probable structure at Pine Hill over- thrust.................................Ann 14, II, fig 63 (p 546)
South Vernon.. Mon xxix, p 616
Swanton to St. Armand, Quebec................................ Bull 30, p 18
Taconic Range and Mount Greylock.............................. Ann 13, II, pl 98 (p 317)
various localities... Ann 14, II, pl 68 (p 536)
Washington County.. Bull 81, pp 281-282
West Castleton.. Ann 19, III, fig 9 (p 194)
West Rutland.. Ann 17, III, p 807; Ann 18, v, p 985
showing ledges of sericite-schist..........................Ann 13, II, fig 28 (p 322)
Section, geologic, in Virginia; Accomac County

in Virginia; Aquia Creek

Back River, at North End Point

Balcony Falls

Big Stone Gap coal field

Bristol quadrangle

Brooke

Bullpasture Mountain

Carbon Hill

Cherry Point, vicinity of

Chesterfield County

Clinch Valley

Cloverhill

Cockpit Point

Coles Point

Dismal Swamp

Dutch Gap Canal

eastern part

Estillville quadrangle

Fort Monroe

Franklin quadrangle

Gayton, showing relations of dike and sill to coke

Hanover County

Harpers Ferry quadrangle

Hazel Run, vicinity of

High Hill

James River

Jones Creek

Lancaster

Manakin, vicinity of

Midlothian

Midlothian district

Monterey

Nansemond, vicinity of, showing general relations of Nansemond escarpment

Neabsco Run

New Kent County

Monterey quadrangle

Norfolk, vicinity of

Pamunkey River

Pocahontas quadrangle

Potomac Church, vicinity of

Potomac Creek

Potomac formation

Potomac River

Potomac River region

Powells Run

Rappahannock River

Richmond

vicinity of, through bituminous coal field
Section, geologic, in Virginia; Richmond Basin .. Ann 19, ii, pl 25 (p 432); Ann 19, ii, fig 94 (p 446) in Virginia; Richmond Basin, showing structure of James River section Ann 19, ii, fig 102 (p 467)

Rockfish Gap .. Bull 81, pp 292-293
Shockoe Creek Valley .. Bull 84, pp 62-63
Springman, vicinity of, showing stratigraphic relations of Mount Vernon clays Ann 15, fig 2 (p 326)
Staunton quadrangle .. GF 14
Suffolk, vicinity of, showing relations of fossiliferous sands Ann 10, i, fig 27 (p 316)

Surry County .. Bull 138, p 174
Swift Creek, Turkey Branch Ann 19, ii, pp 478-482, pl 38 (p 478)
Tazewell quadrangle .. GF 44, p 6
Three Chop road section Ann 19, ii, fig 103 (p 475)
various localities .. Bull 141, p 46
Virginia City, vicinity of GF 59, p 7
Warm Springs, vicinity of GF 81, p 4
Washington quadrangle GF 70
West Point region ... Bull 138, p 175
West Sappony Creek, showing unconformity ... Ann 19, ii, fig 91 (p 441)
Winterpock, at and near Ann 19, ii, pl 24 (p 430), fig 106 (p 483)
Woodstock .. Bull 141, pi 40, pl 4 (p 40)
in Wales; Nuns-Well Bay, St. Davids ... Ann 10, i, fig 58 (p 563)
in Washington; Carbon River Canyon ... Ann 18, iii, pl 62, 63, and 64 (p 426)
Columbia River .. Bull 108, p 98
Cowlitz Valley ... Ann 21, v, p 91
Garfield, vicinity of .. WS 4, p 82
Gilman mine ... Ann 18, iii, pl 55 (p 414)
Green River, through McKay or Light Ash vein ... Ann 18, iii, fig 31 (p 419)
Horseheaven Plateau ... Bull 108, p 44
Naches and Wenas Valley .. Bull 108, pp 62-63
North Yakima, vicinity of .. Bull 108, p 54
Palouse ... WS 4, p 82
Panther Creek .. Ann 18, iii, p 416
Pasco .. Bull 108, p 39
Pierce County, on South Prairie Creek ... Ann 18, iii, pl 61 (p 424)
Wilkeson mine ... Ann 18, iii, pl 65 (p 428)
Renton district .. Bull 108, p 44
Satas Creek .. Bull 108, fig 7 (p 46)
Satas Ridge .. Bull 108, fig 7 (p 46)
Spokane, showing lava flow and lake beds ... WS 4, p 53
Snipes Mountain ... Bull 108, fig 8 (p 49)
Tacoma quadrangle ... GF 54
T. 11 N., R. 7 E., sec. 2 Ann 21, v, p 92
T. 12 N., R. 20 E., sec. 3 Ann 21, v, p 92
sec. 4 .. Bull 108, pp 56, 57
T. 13 N., R. 20 E., sec. 31 Bull 108, p 57
T. 14 N., R. 8 E., sec. 8 Ann 21, v, p 91
Wenas and Naches Valley .. Bull 108, pp 62-63
Wilkeson coal field ... Ann 18, iii, pls 67 and 68 (p 436)
in West Virginia .. Ann 17, ii, p 510
Appalachian coal fields .. Bull 65, pl 2 (p 16)
Barbour County ... Bull 65, p 128, fig 95 (p 128), p 161
Brooke County ... Bull 65, p 190, fig 139 (p 190)
Brownstown, vicinity of .. Bull 65, p 189, fig 14 (p 189)
Section, geologic, in West Virginia; Buckhannon quadrangle

in West Virginia; Cabell County

Central City

Charleston, vicinity of

Coalburg

Coketon

Crane Creek

Dingess

Fairfax Knob

Fayette County

Franklin quadrangle

Gilmer County

Greenbottom

Guyandot River

Harpers Ferry quadrangle

Harrison County

Huntington, vicinity of

Huntington quadrangle

Kanawha County

Kenova, vicinity of

Lewis County

Logan County

McDowell County

Marion County

Marshall County

Mason County

Mercer County

Mineral County

Monongalia County

Monterey quadrangle

Nicholas County

Parkersburg

Piedmont quadrangle

Pocahontas quadrangle

Preston County

Putnam County

Raleigh County

Randolph County

Ritchie County

Roaring Creek district

Staunton quadrangle

Steubenville, Ohio, opposite

Taylor County

Tazewell quadrangle

Thomas, vicinity of

Thomas mine
Section, geologic, in West Virginia; Tucker County Bull 65, pp 65, 82, fig 45 (p 82), p 127, fig 94 (p 127), p 187, fig 133 (p 187)

in West Virginia; Twelvepole Creek GF 69, p 4

Upshur County .. Bull 65, pp 151, 152
Wayne County .. Bull 65, pp 156, 157, 158
Webster County .. Bull 65, p 153

in West Virginia; Twelvepole Creek GF 69, p 4

Wheeling ... Bull 65, p 49, fig 19 (p 49), p 130, fig 100 (p 130)

Winfield .. GF 69, p 4

in West Virginia; Twelvepole Creek GF 69, p 4

in Wisconsin Ann 7, fig 67 (p 394); Ann 11, i, p 332; Bull 81, pp 174-175, 336

Ableman, vicinity of, showing contact of Huronian quartzite and Potsdam sandstone ... Ann 7, fig 76 (p 404); Ann 10, i, fig 57 (p 560)
Baraboo Ranges ... Ann 10, i, fig 55 (p 559)
Baraboo River, lower narrows .. Ann 7, fig 79 (p 406)
upper narrows .. Ann 7, fig 80 (p 407); Ann 12, i, pl 44 (p 556), fig 2 (p 556)
showing unconformity between Potsdam sandstone and subjacent Huronian quartzite Ann 10, i, pl 45 (p 560)

Black River Falls, vicinity of .. Ann 12, i, pl 44 (p 556), fig 3 (p 556)

previous references to vicinity of showing Potsdam sandstone resting on eroded surface of granite, gneiss, and ferruginous schist Ann 7, fig 75 (p 403); Ann 10, i, pl 45 (p 560)
central part ... Bull 81, p 334

Devils Lake, showing basal boulder conglomerate of Potsdam sandstone lying on layers of Huronian quartzite Ann 7, fig 77 (p 405)
Douglas County Mon v, fig 10 (p 253), fig 11 (p 255), fig 37 (p 442)
eastern part .. Bull 81, p 331

showing eroded upper surface of lower Magnesian limestone Ann 7, fig 66 (p 393)

Lake Numakagon to Lake Agogebic, Michigan Mon v, pp 391-392
Laughing Whitefish River ... Bull 81, p 337
Madison, vicinity of ... Bull 81, p 332
Marquette and Menominee iron districts Ann 7, fig 96 (p 436); Ann 21, iii, pls 53, 54, 56, 57 (pp 372, 376, 394, 398)
Milwaukee to Prairie du Chien .. Ann 17, ii, fig 70 (p 797)
Montreal River .. Mon xix, p 29
north-central part ... Ann 12, i, pl 44 (p 556), fig 1 (p 556)
Penokee Gap .. Mon xix, pl 36
Penokee Range ... Ann 3, p 165-166; Mon xix, pl 3 (p 18)
Penokee region ... Ann 21, iii, pls 50, 54 (pp 342, 376); Mon xiii, pp 51-52
Point Bass, vicinity of, showing unconformity of Potsdam sandstone to Archean gneiss Ann 7, fig 74 (p 402)
Portage Lake to St. Croix River ... Mon v, pl 23 (p 234)
Potato River, gorge of, showing basal conglomerate at contact of iron-bearing series and older schists Ann 7, fig 92 (p 426)

showing basal conglomerate of Upper Huronian resting on green schist of Archean Ann 16, i, fig 144 (p 722)
Prairie du Chien to Milwaukee .. Ann 17, ii, fig 70 (p 797)
St Croix River to Portage Lake .. Mon v, pl 23 (p 234)
St. Croix River region .. Ann 12, i, pl 44 (p 556), fig 4 (p 556)
Section, geologic, in Wisconsin; St. Croix River region, showing Keweenaw series and Potsdam sandstone. Ann 7, fig 88 (p 413); Ann 10, pl 45 (p 560)

in Wisconsin; Wisconsin River to Cap au Grès, Illinois. Mon xxxviii, fig 7 (p 554)

Wisconsin River to Mississippi River, Illinois. Ann 17, fig 67 (p 787)

in Wyoming; Absaroka district. GF 52

Alkali Butte. Ann 21, iv, p 539

Beaver Canyon to Hot Springs, Wyoming. Ann 21, iv, p 504

Black Hills. Ann 19, ii, opp p 593; Bull 106, p 23

Barrett, vicinity of. Ann 19, ii, pp 584, 555, 586-587

Forks, vicinity of. Ann 19, ii, p 585

Hay Creek, South Fork of. Ann 19, ii, pp 582, 583

Hay Creek coal field. Ann 19, ii, fig 122 (p 592)

Hay Creek region. Ann 19, ii, pp 566-567, 646

Minnekahta limestone, at surface of. Ann 21, iv, pl 90 (p 554)

Oak Creek. Ann 19, ii, p 581
canyon of. Ann 19, ii, p 579

Pine Creek, north side of. Ann 19, ii, pp 579-580

south side of. Ann 19, ii, p 580

Rollins tunnel. Ann 19, ii, p 581

Black Hills region. Ann 21, iii, pp 178-182; iv, pp 503-504, fig 288 (p 563)

Black Hills uplift. Ann 21, iv, pl 88 (p 550), fig 286 (p 561)

Buck Creek. Ann 21, iv, pp 540-541

Cambria. Ann 21, iv, pp 514, 518, 524, 528, fig 295 (p 572)

Cambria coal field. Ann 21, iv, pl 104 (p 582)

Camp Canyon. Ann 21, iv, p 583

Clifton to Pleasant Valley, South Dakota. Ann 21, iv, pl 66 (p 504)

Converse and Weston counties, Fox Hills escarpment. Ann 21, iv, fig 277 (p 537)

Jerome. Ann 21, iv, p 571

Mount Zion ranch. Ann 21, iv, pp 529, 583

Newcastle. Ann 21, iv, pp 524, 534

to Hat Mountain, South Dakota. Ann 21, iv, pl 66 (p 504)

Niobrara River. Bull 81, p 850

Old Woman Creek. Ann 21, iv, fig 283 (p 553)

Rocky Mountains to Omaha, Nebraska. WS 12, pl 4 (p 14)

Pedro. Ann 21, iv, p 534

Salt Creek. Ann 21, iv, p 591

water-bearing strata and wells. Ann 16, ii, pl 42 (p 548)

Weston and Converse counties, Fox Hills escarpment. Ann 21, iv, fig 277 (p 537)

Whoopup. Ann 21, iv, fig 294 (p 571)

in Yellowstone Park. Mon xxxii, ii, p 483; GF 30, p 3

Abiathar Peak. Mon xxxii, ii, pp 213-214

Antler Peak. Mon xxxii, ii, p 22

Bannock Peak. Mon xxxii, ii, p 32

Berry Creek Canyon. Mon xxxii, ii, pp 153-154

Bighorn Pass. Mon xxxii, ii, pp 25-26

Cinnabar Mountain and Electric Peak. Mon xxxii, ii, pp 53-54

Crandall Basin. Mon xxxii, ii, p 232

Crowfoot Ridge. Mon xxxii, ii, pp 7-8

Electric Peak. Mon xxxii, ii, pp 50-51

Electric Peak and Cinnabar Mountain. Mon xxxii, ii, pp 53-54

Excelsior Crater, wall of. Ann 9, pp 665-666

Fan Creek. Mon xxxii, ii, pp 48, 58

Fan Pass. Mon xxxii, ii, p 49
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Section, geologic, in Yellowstone Park; Fawn Creek Valley. Mon xxxii, ii, p 38
in Yellowstone Park; Gallatin Range. Mon xxxii, ii, pl 3 (p 12), pl 9 (p 50)
Gray Peak, vicinity of. Mon xxxii, ii, p 46
Indian Creek. Mon xxxii, ii, p 21
Joseph Peak. Mon xxxii, ii, p 47
Little Quadrant Mountain. Mon xxxii, ii, pp 36, 37
Mount Holmes. Mon xxxii, ii, pl 5 (p 18)
Quadrant Mountain. Mon xxxii, ii, pp 34-35
Snake River, vicinity of. Mon xxxii, ii, p 156
Snowy Mountain. Mon xxxii, ii, p 206
Soda Butte Creek. Mon xxxii, ii, p 212
Survey Peak. Mon xxxii, ii, p 160
Three River Peak. Mon xxxii, ii, p 23

Section, thin. (See the various substances.)

Sedimentary rocks, assimilation of, by igneous magmas. Mon xi, pp 308-313
chemical deposits of Lake Lahontan. Mon xi, pp 188-222
chlorine in dolomite. Mon xii, p 579
concretions in sandstone, origin of. Mon xiii, pp 64-88
correlation of, nature of and work in. Ann 14, i, pp 72-83
dolomitic rocks, discussion of. Mon xii, p 276
flexibility and fractangility of. Ann 13, ii, pp 238-240
flow and fracture of rocks as related to structure. Ann 16, i, pp 845-874
induration of, by enlargement of mineral fragments. Bull 8, pp 13-17
metamorphism of. Ann 16, ii, pp 683-708

of Alabama, bauxite region. Ann 16, iii, pp 554-555
Gadsden quadrangle. GF 35, p 2
Stevenson quadrangle. GF 19, p 2
of Alaska; Chandlar and Koyukuk rivers. Ann 21, ii, pp 472-479
Chitina River and Skolai Mountains. Ann 21, ii, pp 422-429, 431-433
Prince William Sound and Copper River region. Ann 20, vii, pp 404-413

southwestern. Ann 20, vii, pp 147-179, 234-238
Sushitna Basin. Ann 20, vii, pp 14-17
Yukon district. Ann 18, iii, pp 134-223

of California; Bidwell Bar quadrangle. GF 43, p 3
Big Trees quadrangle. GF 51, p 34
Coast Ranges. Mon xiii, pp 56-139; Bull 84, pp 200-217
Colfax quadrangle. GF 66, pp 1-3
Downieville quadrangle. GF 37, p 3
Franciscan series. Ann 15, pp 435-442
Jackson quadrangle. GF 11, pp 3, 4-5
Lassen Peak quadrangle. Ann 8, i, pp 403-425; GF 10, p 1
Marysville quadrangle. GF 17, p 1
Mother Lode district. GF 63, pp 1-3, 5-7
Nevada City and Grass Valley districts. Ann 17, ii, pp 79-89, 102-111
Nevada City, Grass Valley, and Banner Hill districts. GF 29, p 2
Pyramid Peak quadrangle. GF 31, pp 3-4
Sacramento quadrangle. GF 5, pp 2, 3
San Clemente Island. Ann 18, ii, pp 489-493
Sierra Nevada. Ann 14, ii, pp 445-470; Ann 17, i, pp 546-549, 569, 594, 597-612, 621-632, 658-663, 683, 684; GF 3, pp 1-2; GF 5, pp 1-2; GF 11 pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
Smartsville quadrangle. GF 18, pp 3, 4-5
Sonora quadrangle. GF 41, pp 3-4
Truckee quadrangle. GF 39, pp 3-4
Sedimentary rocks of Catoctin belt .. Ann 14, ii, pp 318-352
of chemical origin, description of, unaltered Bull 150, pp 91-115
of Colorado; Anthracite and Crested Butte quadrangles........ GF 9, pp 6-10
Aspen district .. Mon xxxi, pp 4-44
Denver Basin .. Mon xvii, pp 10-42, 51-76, 151-254
eastern .. Ann 17, ii, pp 560-570
Elmoor quadrangle .. GF 58, pp 1-2
La Plata quadrangle .. GF 60, pp 2-5
Leadville district .. Ann 2, pp 215-226; Mon xii, pp 45-73, 276-281
northeastern, and parts of Utah and Wyoming Ann 9, pp 685-691
Pikes Peak quadrangle .. GF 7, pp 1-2, 4
Pueblo quadrangle ... GF 36, p 2
Rico Mountains .. Ann 21, ii, pp 25-29, 37-78
Spanish Peaks quadrangle .. GF 71, pp 1-2
Telluride district .. Ann 18, iii, pp 759-760; GF 57, pp 2-5
Tennille district ... GF 48, p 1
Walsenburg quadrangle ... GF 83, pp 1-3
of Connecticut; Holyoke quadrangle GF 49, pp 4-5
of Georgia; bauxite region .. Ann 16, iii, pp 554-555
Ringgold quadrangle .. GF 2, pp 1-2
Stevenson quadrangle .. GF 19, p 2
of glacial Lake Agassiz ... Mon xxv, pp 65-107
of Idaho .. Ann 16, ii, pp 224-234
Idaho Basin; Danville quadrangle .. GF 67, p 1
of Illinois-Indiana; Danville quadrangle GF 7, pp 1-2
of Indiana; natural gas field ... Ann 11, i, pp 594-601, 624-639
of Iowa; northeastern ... Ann 11, i, pp 304-335
of Kansas; Fort Riley Military Reservation Bull 137, pp 16-28
southwestern .. Bull 57, pp 18-44; WS 6, pp 27-37
of Kentucky; Big Stone Gap coal field Bull 111, pp 31-38
Estillville quadrangle ... GF 12, pp 2-3
London quadrangle ... GF 47, p 2
Richmond quadrangle ... GF 46, pp 2-3
of Lake Superior region .. Bull 86, pp 173-174
of Maryland; Chesapeake Bay, head of Ann 7, pp 593-616
Fredericksburg quadrangle ... GF 13, pp 2-4
Harpers Ferry quadrangle .. GF 10, p 1
Nominini quadrangle .. GF 23, pp 1-2
Piedmont quadrangle ... GF 28, pp 2-4
Washington (D. C.) quadrangle .. GF 70, pp 3-5
of Massachusetts; Holyoke quadrangle GF 50, pp 4-5
Martha's Vineyard ... Ann 7, pp 325-343
western ... Mon xxix, passim; GF 50, pp 1-3
of mechanical origin, description of specimens of unaltered... Bull 150, pp 56-91
of Michigan; Crystal Falls district .. Ann 19, iii, pp 62, 70-73; Mon xxxvi, pp 152-153, 165-174
Marquette district ... Mon xxvii, pp 221-487
Penokee series .. Ann 10, i, pp 365-402, 423-455, 439-444
of Minnesota; Keweenaw series ... Mon v, pp 127-133, 151
of Mississippi Valley, driftless area of upper Ann 6, pp 219-220
of Montana; Castle Mountain district Bull 139, pp 30-55
Fort Benton quadrangle .. GF 55, pp 2, 4
Judith Mountains ... Ann 18, iii, pp 464-484
Little Belt Mountains ... Ann 20, iii, pp 279-296; GF 56, pp 1-3
Livingston quadrangle .. GF 1, p 2
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Sedimentary rocks of Montana; Three Forks quadrangle.................GF 24, pp 2-3
of Nebraska; southeastern..WS 12, pp 15-24
west of 103d meridian...Ann 19, iv, pp 731-760
of Nevada; Eureka district...Ann 3, pp 248-273; Mon vii, pp 5-11; Mon xx, pp 34-98
Silver Peak quadrangle, Esmeralda formation.................Ann 21, ii, pp 191-226
of New Jersey; Franklin white limestone, age of.............Ann 18, ii, pp 425-457
of New York; eastern, and Vermont, western..................Ann 19, iii, pp 177-192
of North Carolina; Knoxville quadrangle........................GF 16, pp 2-5
of Ohio..Ann 19, iv, pp 638-649
Huntington quadrangle...GF 69, pp 3-5
of Oregon; northwestern..Ann 17, i, pp 454-479
Roseburg quadrangle..GF 49, pp 1-3
of organic origin, description of specimens of unaltered...Bull 150, pp 115-145
of Plateau country...Ann 6, pp 131-140
of Rhode Island; Narragansett Basin..Mon xxxiii, pp 104-114, 119-200, 331-394
of South Dakota; Black Hills, northern.........................Ann 21, iii, p 117-182
Black Hills, southern part......................................Ann 21, iv, pp 505-549
southeastern portion of...WS 34, pp 11-22
of Tennessee; Briceville quadrangle...............................GF 33, pp 2-3
Bristol quadrangle...GF 59, pp 2-4
Chattanooga district...Ann 19, ii, pp 16-18; GF 6, pp 1-2
Cleveland quadrangle...GF 20, pp 2-3
Estillville quadrangle..GF 12, pp 2-3
Kingston quadrangle..GF 4, p 2
Knoxville quadrangle..GF 16, pp 2-5
Loudon quadrangle..GF 25, pp 2-4
McMinnville quadrangle..GF 22, p 1
Morrstown quadrangle...GF 27, pp 2-3
phosphate region...Ann 17, ii, pp 521-523
Pikeville quadrangle..GF 21, p 2
Ringgold quadrangle..GF 2, p 2
Sewanee quadrangle..GF 8, p 2
Standingstone quadrangle...GF 53, pp 2-3
Stevenson quadrangle...GF 19, p 2
Wartburg quadrangle..GF 40, pp 1-2
of Texas..TF 3, pp 2-3
Black and Grand prairies..Ann 21, vii, pp 89-344
Edwards Plateau and Rio Grande Plain.........................Ann 18, ii, pp 215-256
Nueces quadrangle..GF 42, pp 2-3
Rio Grande coal field...Bull 164, pp 15-55
Uvalde quadrangle...GF 64, pp 1-3
of Utah; Mercurn district...Ann 16, ii, pp 370-377
Oquirrh Mountains...Ann 16, ii, pp 361-364
portions of Colorado, Wyoming, and.................Ann 9, pp 685-691
Tintic district..Ann 19, iii, pp 618-631, 670, 673; GF 65, p 1
of Vermont, western, and New York, eastern................Ann 19, iii, pp 177-192
of Virginia; Big Stone Gap coal field.........................Ann 19, iii, pp 31-38
Bristol quadrangle..GF 59, pp 2-4
Estillville quadrangle..GF 12, pp 2-3
Franklin quadrangle..GF 32, pp 2-4
Fredericksburg quadrangle..GF 13, pp 2-4
Harpers Ferry quadrangle...GF 10, pp 2-3
Monterey quadrangle..GF 61, pp 2-5
Nomini quadrangle..GF 23, pp 1-2
Pocahontas quadrangle..GF 26, pp 2-3
Sedimentary rocks of Virginia; Richmond Basin

Sedimentary rocks of Virginia; Staunton quadrangle

of Virginia; Tazewell quadrangle

of Washington; northern

Puget group, character and age of southeastern

Tazewell quadrangle

of West Virginia; Buckhannon quadrangle

Franklin quadrangle

Harpers Ferry quadrangle

Huntington quadrangle

Monterey quadrangle

New and Kanawha rivers

Piedmont quadrangle

Pocahontas quadrangle

Staunton quadrangle

Tazewell quadrangle

of Wisconsin; Keweenaw series

Penokee series

of Wyoming; Absaroka district

Black Hills, southern part

northwest portions of Utah, Colorado, and

of Yellowstone Park

(See, also, Limestone; Marl; Quartzite; Sandstone; Tufa.)

Sedimentation. (See Deposition.)

Sediments of Lake Bonneville, chemical analyses of

of Lake Lahontan

of Mono Lake (lacustral)

Seekonk beds of Narragansett Basin

Seepage, increase of water supply for irrigation by

in Arizona, near Phoenix measurements of

in Colorado, on Thompson Creek

in Idaho, Boise Valley

in Montana, on Gallatin River

in Nebraska, on Frenchman River

on Kearney Canal

in Washington, on Atanum Creek

on Gila River, Arizona

principles and conditions governing

rate of, as shown by growth of rivers, etc

Seepage and evaporation as related to irrigation construction

in California, near Fresno

in Nebraska, near Kearney

Seepage water in Utah

Seepage waters, method of passage into drainage channels

Segregation or differentiation in igneous rocks

Seismology. (See Earthquakes.)

Sekiya (S.) and Kikuchi (Y.), eruption of Bandai-san Volcano, in Japan

Selkirk Range, comparative table of formations in and near

Selkirk series of Canada

Seneca River, New York, flow of, measurements of

Bull. 177—01—46
Senonian, Laramie, and Eocene plants, table of distribution of, and discussion thereof ... Ann 6, pp 443-536

Scripilite, chemical constitution of .. Bull 125, p 74

Sepulchre Mountain, Yellowstone Park, volcanic rocks of Mon xxxi, pp 121-148

Sepulchre Mountain and Electric Peak, Yellowstone Park, eruptive rocks of .. Ann 12, pp 569-664

Scripilite formation in Virginia and West Virginia GF 44, pp 4, 5

Scripilite in Montana, Butte district .. GF 38, p 7

thin section showing metasomatic replacement of quartz in granodiorite of California by calcite and Ann 17, ii, p 134

Scripilite-chlorite-schist, thin sections of, from Massachusetts, Green Mountains and Mount Greylock Mon xxiii, pp 150, 152, 153

Scripilite-gneiss of Massachusetts, western Mon xxix, pp 206-209

Scripilite-porphyry, thin section of, from Michigan, below Upper Quinnesec Falls Bull 62, pp 234-235

Scripilite-chist, analyses of, from Maryland, Ladiesburg .. Bull 148, p 90; Bull 168, p 50

analysis of, from Michigan, Marquette district Ann 15, p 500; Bull 148, p 99; Bull 168, p 65

of Massachusetts, western .. Mon xxix, pp 76-78, 156-163

thin section of, from Massachusetts, Mount Greylock (albitic) Ann 16, i, p 567; Mon xxiii, p 188

See Phyllite.

Scripilization, a kind of mineralogic metamorphism Bull 62, pp 60-62

of rock in Colorado, Telluride district Ann 18, iii, pp 788-789

Serpentine, analysis of, from California, Angel Island Ann 15, p 450

analysis of, from California, Butte County Ann 17, i, p 735

from California, Greenville .. Ann 17, i, p 735; Bull 148, p 203; Bull 150, p 374; Bull 168, p 189

Mount Diablo .. Ann 17, i, p 735; Bull 148, pp 226-227; Bull 168, pp 215, 216

New Idria and Sulphur Bank .. Mon xiii, pp 110, 111; Bull 148, p 223; Bull 168, p 212

San Francisco .. Ann 15, p 450

from Colorado, Leadville district Mon xiii, p 598

from Maryland, Harford County MR 1889-90, p 400

from Massachusetts, Connecticut Valley Mon xxix, pp 88, 116, 760;

Bull 126, pp 151, 153; Bull 148, pp 72, 73; Bull 168, pp 28, 29

Hampshire County (pseudomorphs of) Mon xxix, p 84

Newburyport .. Bull 27, p 63; Bull 78, p 15

from Michigan, Ishpeming MR 1893, p 567

Presque Isle Ann 15, p 510; Mon xxviii, p 184

from New Jersey, Montville Bull 60, p 137; Bull 64, p 44; Bull 78, p 15

from New York, Moriah and New York City Bull 64, p 43

from North Carolina; Corundum Hill and Buck Creek Bull 74, p 69; Bull 78, p 15

various localities Bull 74, p 63

from Washington, Kittitas County Bull 168, p 224

association of, with Franciscan series Ann 15, pp 444-457

chemical constitution of Bull 125, pp 71, 72, 73, 94, 105

composition of .. Bull 150, pp 46-47

decomposition of Mon xiii, pp 127-128

from Greenville, California, description of, as one of the educational series Bull 150, pp 372-374
Serpentine in California, Colfax quadrangle... GF 66, p 3
in California, Downieville quadrangle... GF 37, pp 3-4
Jackson quadrangle.. GF 11, p 4
Lassen Peak district.. Ann 8, i, p 406
Nevada City and Grass Valley districts... Ann 17, ii, pp 52-55, 153; GF 29, p 4
Placerville quadrangle... GF 3, p 2
Sacramento quadrangle.. GF 5, p 2
Sierra Nevada.. Ann 17, i, pp 550, 578, 674-675
Smartsville quadrangle.. GF 18, p 4
Sonora quadrangle.. GF 41, p 5
in Colorado, Mosquito Range... Mon xx, pp 282-284
in Maryland, near Baltimore, origin of.. Bull 28, pp 56-58
in Massachusetts, Holyoke quadrangle.. GF 50, p 4
western.. Mon xxix, pp 54-56, 78-155
in New Jersey, Montville.. Bull 60, p 137
in Oregon, Roseburg quadrangle... GF 49, p 3
in Washington, northern.. Ann 20, ii, pp 109-111
microstructure of ... Mon xiii, pp 114-117
occurrence of... MR 1883-84, pp 775-776
origin of .. Mon xi, pp 282-284; Mon xii, pp 117-126
pseudomorphic ... Mon xii, pp 123-126
thin section of, from southwestern Minnesota, derived from alteration of
saxonite... Bull 157, pp 156-157
Serpentine and serpentinization in California, especially in Coast Ranges.. Mon xiii, pp 108-128, 251, 276-278, 293, 311, 359, 457-458
Serpentinization, character of... Mon xiii, pp 120-127
Seven Devils, Idaho, copper deposits of.. Ann 20, iii, pp 249-253
Severn formation of Maryland... Ann 12, i, p 421; Bull 138, p 125
Sevier Lake, Utah, analyses of products and brine of................................ Mon i, p 227
Sevier River, Utah, flow of, measurements of.. Ann 11, ii, pp 105, 109; Ann 12, ii, pp 342, 355, 361; Ann 13, iii, pp 97, 99; Ann 14, ii, pp 125-126; Bull 131, pp 60-61
hydrography of basin of... Ann 11, ii, pp 74-77, 105; Ann 12, ii, pp 339-344
profile of... WS 44, p 89
Sevier shale in Kentucky, North Carolina, Tennessee, Virginia, and West Virginia... GF 12, p 2; GF 16, p 4; GF 20, p 3; GF 25, p 3; GF 26, p 2; GF 27, p 3; GF 44, p 3; GF 59, p 3
Sewage, analyses of, from Ohio, Canton.. WS 22, p 75
disposal of, methods of.. WS 3, pp 25
plants for, in America.. WS 22, pp 41-89
English and American, comparison of... WS 22, pp 13-15
purification of, at manufacturing establishments.................................... WS 22, pp 22-26
at towns on Great Lakes, necessity of... WS 22, pp 36-41
in United States.. WS 3, p 98
utilization of, in France.. WS 3, pp 92-98
in Germany.. WS 3, pp 87-92
utilization and disposal of, bibliography of.. WS 22, pp 89-98
Sewage farming in England... WS 3, pp 71-87
Sewage irrigation... WS 3; WS 22
Sewanee quadrangle, Tennessee, geology of... GF 8
Sewell formation in southern Appalachians, relation of, to Pottsville........ Ann 20, ii, pp 816-817
in Virginia and West Virginia.. GF 26, p 3
in West Virginia, along New-Kanawha River.. Ann 17, ii, pp 494-497
Seybertite, chemical constitution of.. Bull 125, p 47
Shale, analysis of, from Alabama, Cherokee County (middle Cambrian)Mon xxx, p 14; Bull 148, p 282; Bull 168, p 283
analysis of, from Arkansas, various localities (Carboniferous clay)Ann 19, vi cont, p 470
from Austria, JohnsdorfAnn 19, vi cont, p 442
from Bohemia, various localitiesAnn 19, vi cont, p 444
from California, Mount Diablo (Cretaceous)Bull 148, pp 285-286; Bull 168, pp 287-288
from Colorado, Fairplay, Park County (calcareous)Bull 148, p 284; Bull 168, p 286
Pueblo quadrangleBull 148, p 284; Bull 168, p 286; GF 36, p 7
from Georgia, Dug Gap Bull 148, p 282; Bull 150, p 90; Bull 168, p 283
from Germany, Neurode (refractory)Ann 19, vi cont, p 426
from Indiana, various localitiesAnn 18, v cont, pp 1164-1166
from Kentucky, Elliott CountyBull 32, pp 24-25; Bull 42, p 137; Bull 148, pp 92, 282; Bull 168, pp 57, 283
from Missouri, various localitiesAnn 18, v cont, pp 1166-1167
from Ohio ..MR 1887, p 598
Bowling Green, Fostoria, and Springfield (Utica)Ann 8, ii, p 556
New Vienna (Utica) Bull 60, p 160; Bull 148, p 283; Bull 168, p 284
analysis, composite, of 27 samples of Cenozoic and Mesozoic .Bull 168, pp 16-17
of 51 samples of PaleozoicBull 168, pp 16-17
description of the rock, as one of the educational seriesBull 150, pp 87-89
spheroidal weathering in, from California, Dry Creek, description of, as one of the educational series of rocksBull 150, p 387
thin section of, from Michigan, NE. § sec. 15, T. 47 N., R. 45 W. (argillaceous)Mon xix, pp 486-487
from Vermont, Green MountainsAnn 16, i, p 546
Shale, carbonaceous, description of, as one of the educational series.. Bull 150, pp 90-91
Shale, crumpled, from North Carolina Hot Springs, description of, as one of the educational series of rocksBull 150, pp 315-316
Shale, indurated jointed, from Massachusetts, Somerville, description of, as one of the educational series of rocksBull 150, pp 313-315
Shaler (N. S.), fresh-water morasses of United States, with description of Dismal SwampAnn 10, i, pp 255-339
geologic history of harborsAnn 13, ii, pp 93-209
g eo logic of Cape Ann, MassachusettsAnn 9, pp 529-611
g eo logic of Cape Cod districtAnn 18, ii, pp 497-593
g eo logic of Martha's VineyardAnn 7, pp 297-360
g eo logic of Mount Desert, MaineAnn 8, ii, pp 987-1001
g eo logic of NantucketBull 53
geologic of road-building stones of Massachusetts, with some consideration of similar materials from other parts of United States..Ann 16, ii, pp 277-341
introduction to Penrose's "Nature and origin of deposits of phosphate of lime"Bull 46, pp 9-20
origin and nature of soilsAnn 12, i, pp 213-345
peat deposits; origin, distribution, and commercial value. ..Ann 16, iv, pp 305-314
preliminary report on geology of common roads of United StatesAnn 15, pp 255-306
seacoast swamps of eastern United StatesAnn 6, pp 353-398
work in charge of, 1884-1900Ann 6, pp 18-22; Ann 7, p 61-69; Ann 8, i, pp 125-128; Ann 9, pp 71-74; Ann 10, i, pp 117-119; Ann 11, i, pp 62-64; Ann 12, i, pp 66-67; Ann 13, i, pp 99-100; Ann 14, i, pp 194-197; Ann 15, pp 160-162; Ann 16, i, pp 14-15; Ann 17, i, pp 18, 29; Ann 18, i, pp 22, 23; Ann 19, i, pp 31, 36; Ann 20, i, p 33; Ann 21, i, pp 68-69
WARMAN.

SHALE—SHONKINITE. 725

Shaler (N. S.) and Woodworth (J. B.), geology of Richmond Basin, Virginia...Ann 19, ii, pp 385-315

Shaler (N. S.), Woodworth (J. B.), and Foerste (A. F.), geology of Narragansett Basin...........................Mon xxxiii

Shaler (N. S.), Woodworth (J. B.), and Marbut (C. F.), glacial brick clays of Rhode Island and southeast Massachusetts. Ann 17, i, pp 951-1004

Shark River formation of New Jersey.......... Bull 138, p 41

of New Jersey, correlation of..........................Ann 18, ii, p 344

Sharon conglomerate in Ohio as a water bearer......Ann 19, iv, pp 649, 690

Shasta formation or group of California...........Mon xiii, p 179;
Bull 15, pp 18-32; Bull 82, pp 182-189, 241, 250, 255-257

Shasta, Mount, California, physiography of........TF 1, pp 2-3

topographic sketch of.................................Ann 5, pp 330-340

Shear zones in Alaska, Yukon district...........Ann 18, iii, pp 294-297

in New York—Vermont slate quarries.........Ann 19, iii, pp 212, 213, 219

Sheawvite Plateau, Grand Canyon district, description of........Ann 2, pp 72, 126; Mon ii, pp 10, 101

Sheets, intrusive, in Colorado, La Plata quadrangle........Ann 18, ii, pp 48-56

in Montana, Little Belt Mountains...............GF 60, pp 7, 8-9

in Montana, Little Belt Mountains...............Ann 20, iii, pp 323-325, 349-360, 379, 385-387; GF 56, p 4

(See, also, Dikes.)

Sheets, trap, in Triassic area of Connecticut........Ann 18, ii, pp 48-56

Shelf, silicified, description of the rock, as one of the educational series...Bull 150, pp 114-115

Shell and coral rocks, analyses of, from Florida, various localities.........Bull 60, p 162; Bull 148, pp 259-260; Bull 168, pp 255-257

analyses of, from Hawaiian Islands, various localities.........Bull 148, p 276; Bull 168, p 277

Shell Bluff group of Georgia, correlation of.....Ann 18, ii, pp 341, 342; Bull 84, p 334

Shenandoah Basin, pollution and water powers in..Ann 19, iv, pp 136-139, 156-161

Shenandoah limestone in Catoctin belt.............Ann 14, ii, pp 337-342

in Maryland, Tennessee, Virginia, and West Virginia.....GF 10, p 3; GF 14, pp 1, 2; GF 26, p 2; GF 32, p 2; GF 59, p 3; GF 61, p 2

profile of..WS 44, pp 21-22

Shepard (C. U.), description of emery mine at Chester, Hampden County, Massachusetts..............Mon xxxix, pp 122-135

Sheridan quartzite of Wyoming...............GF 30, p 4

Sheridan sandstone of Maine...................Bull 165, pp 47-49, 132-133

Shiloh marls of New Jersey, stratigraphy and correlation of........Ann 18, ii, p 340; Bull 84, pp 40-43, 334

Shinarump conglomerate of Grand Canyon district, age of..........Ann 2, pp 91-93

Shipbuilding, iron and steel, in 1899, statistics of........Ann 21, vi, p 107

twenty years of..MR 1891, pp 68-69

Shoal Creek limestone of Texas. (See Buda limestone.)

Shonkinite, analysis of, from Montana, Bearpaw Mountains...............Ann 20, iii, p 484; Bull 148, p 157; Bull 168, p 138

analysis of, from Montana, Highwood Mountains........Ann 20, iii, p 484; Mon xxxii, ii, p 354

from Montana, Little Belt Mountains........Ann 20, iii, pp 484, 565, 567, 581; Mon xxxii, ii, p 354; Bull 148, p 149; Bull 168, p 128

from Tyrol, Monzoni.................................Ann 20, iii, p 484
Shonkinite in Montana, Fort Benton quadrangle.......................GF 55, p 3
in Montana, Little Belt Mountains.......................Ann 20, iii, pp 318-319, 479-488; GF 56, p 3
Shoots, pay, of Nevada City and Grass Valley districts, California........Ann 17, ii, pp 159-163, 261
Shore features, formations, and phenomena........Ann 2, pp 171-172; Ann 3, pp 204-208; Ann 5, pp 69-123; Mon i, pp 23-89; Mon xi, pp 87-99
Shore line of Great Basin, Paleozoic.................Mon xx, pp 175-177
of Marthas Vineyard, recent changes in...............Ann 7, pp 361-363
Shore lines of glacial Lake Agassiz................Mon xxv, pp 26-27, 221-222
of Mount Desert, Maine...............................Ann 8, ii, pp 1009-1034
Shoshone quadrangle, Wyoming. (See Yellowstone Park.)
Shoshone Range, Wyoming, structure of.................Bull 119, pp 32-33
Shoshone River, flow of, measurements of........Ann 19, iv, pp 290-293; Ann 20, iv, pp 53, 249; WS 15, p 76; WS 27, pp 73, 76; WS 36, p 212
Shoshonite, analysis of, from Yellowstone Park, various localities........Mon xxxii, ii, p 340; Bull 148, pp 126, 129; Bull 168, pp 100, 103
of Yellowstone Park.................................Mon xxxii, ii, pp 339-347
thin section of, from Yellowstone Park...............Mon xxxii, ii, pp 344-345
Shumagin Islands, Alaska, coal on......................Ann 17, i, pp 807-811
Shuswap series of Canada.................................Bull 86, p 340
Shutt (G. W.), work in charge of, 1883-1887........Ann 5, pp 64-66; Ann 6, p 93; Ann 7, pp 135-136; Ann 8, i, pp 201-202
Siam, ruby in, occurrence of........................Ann 20, vi cont, pp 573-576
tin production of.....................................Ann 16, iii, p 479
Siamo slate, petrographic character, relations, etc., of...Ann 15, pp 554-561; Ann 19, iii, pp 16, 17; Mon xxviii, pp 313-328; Mon xxxvi, pp 451
Siberia, fossil plants of, literature of...........Ann 8, ii, pp 780-788
quickalver deposits of................................Mon xiii, pp 44-46
Sicily, asphaltum from, statistics of..................MR 1891, p 455
Siderite, cherty, from Lake Superior iron-ore districts..........Ann 15, p 566;
Mon xix, pp 490, 498, 500; Mon xxviii, pp 337, 340, 366-368
Siderite slate of Michigan, Crystal Falls district..............Ann 19, iii, pp 38, 71; Mon xxxvi, pp 62-63, 168
Siebenthal (C. E.), the Bedford oolitic limestone........Ann 19, vi cont, pp 292-296
Siebenthal (C. E.) and Hopkins (T. C.), the Bedford oolitic limestone........Ann 18, v cont, pp 1050-1059
Sienna, analysis of, from Massachusetts, East Whately............Bull 126, p 101
statistics of..MR 1892, pp 815, 816;
MR 1893, pp 758, 759, 760; Ann 16, iv, pp 695, 696; Ann 17, iii cont, pp 1012, 1013, 1014; Ann 18, v cont, pp 1337, 1338, 1339; Ann 19, vi cont, pp 635, 637, 638, 640; Ann 20, vi cont, pp 721-724, 726; Ann 21, vi cont, pp 571-575, 578
Sierra, the high, in California, description of........Ann 8, i, pp 321-324
Sierra Nevada, age and formation of....................Ann 17, i, pp 532-533
gEOLOGY OF CONTRIBUTIONS TO................................Ann 17, i, pp 521-762
lava flows of..Bull 89
rocks of..Ann 14, ii, pp 435-495
rocks and history of....................................GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
structure of..Ann 8, i, pp 426-428; Bull 33, pp 12-15
(See, also, California; Nevada.)
Sierra Nevada, Coast, and Cascade ranges, relation of... Bull 19, p 20; Bull 33, pp 19-20
Sigillaria of Missouri, Carboniferous... Mon xxxvii, pp 230-247; Bull 98, pp 103-104
Silica, source of, in ferruginous cherts......... Ann 10, 1, pp 398-399
Silica and alkali determinations in eruptive rocks... Mon xii, p 590
Silicate, analysis of, from California, Santa Clara County... Bull 78, p 80
Silicates, alkalies in, estimation of... Bull 9, pp 30-37
Silicification... Mon xiii, pp 137, 392-394; Bull 19, p 8
Silicified shell, description of the rock, as one of the educational series... Bull 150, pp 91-93
Silicic acid, action of phosphorus oxychloride on the ethers and chlorhydrines... Bull 90, pp 47-55
Silicified wood, description of, as one of the educational series... Bull 150, pp 113-114
Sillimanite, chemical constitution of... Bull 125, pp 49, 101
Silt, analyses of, from Illinois, Galatia, Greenup, and Moweaqua (Iowan)... GF 67, p 5
Silts in Black Hills... Ann 21, iii, pp 205-209, 231-235
(See, also, Laccoliths.)
Silurian faunas; fishes of Upper Silurian... Mon xvi, pp 19-20
Silurian fossils of Nevada, Eureka District... Ann 3, pp 262-263; Mon viii, pp 65-98, 270-273; Mon xx, pp 322-325
Silurian history of Appalachian region... GF 59, p 2; GF 61, p 2
Silurian rocks; Amherst feldspathic mica-schist of Massachusetts and Connecticut... GF 50, p 5
Silt and sedimentation as related to irrigation... Ann 13, iii, pp 130-132
Silting in Texas, Lake McDonald... WS 40, pp 36-41
Silt or sedimentation, methods of... Ann 18, ii, pp 52-56, 79-80
Silt, analyses of, from Illinois, Galatia, Greenup, and Moweaqua (Iowan)... GF 67, p 5
Silurian history of Appalachian region... GF 59, p 2; GF 61, p 2
Silurian rocks; Amherst feldspathic mica-schist of Massachusetts and Connecti- cut... GF 50, p 5
Aroostook limestone of Maine... Bull 165, pp 44-45, 141-143
Ashland shales and limestone of Maine... Bull 165, pp 49-54
Athens shale of North Carolina, Tennessee, and Virginia... GF 4, p 2; GF 16, p 4; GF 20, p 3; GF 25, p 3; GF 27, p 2; GF 59, p 3
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Silurian rocks; Bays limestone of Tennessee. GF 33, p 2
Bays sandstone of North Carolina, Virginia, and Tennessee GF 12, p 2; GF 16, p 4; GF 25, p 4; GF 26, p 2; GF 27, p 3; GF 44, p 3; GF 59, p 4
Bellowspipe limestone of Massachusetts, Mount Greylock. Mon xxiii, pp 184–186, 190
Chickamanga limestone of Alabama, Georgia, North Carolina, Tennessee, Virginia, and West Virginia. GF 2, p 1; GF 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 16, p 4; GF 19, p 2; GF 20, pp 2–3; GF 21, p 2; GF 22, p 2; GF 25, p 3; GF 26, p 2; GF 27, p 2; GF 33, p 2; GF 35, p 2; GF 44, p 2; GF 59, p 3
Cincinnati group, oil in of Indiana. Ann 8, ii, p 499 of North Carolina, Tennessee, Virginia, and West Virginia. GF 12, p 2; GF 16, p 4; GF 25, p 4; GF 26, p 2; GF 27, p 3; GF 44, p 3; GF 59, p 4
Flanagan chert of Kentucky. GF 46, p 2
Fremont limestone of Colorado. GF 7, p 2
Garrard sandstone of Kentucky. GF 46, p 2
Giles formation of Virginia and West Virginia. GF 26, p 2; GF 44, p 3
Goshen schist of Massachusetts and Connecticut. Mon xxix, pp 177–183; GF 50, pp 2, 5
Greylock schist of Massachusetts, Mount Greylock. Mon xxiii, pp 188–188, 190 Grizzly formation of California. Ann 14, iii, pp 445–446; GF 15, pp 1, 2 Hancock limestone of Virginia and Tennessee. GF 12, p 2; GF 27, p 3; GF 59, p 4 Harding sandstone of Colorado. GF 7, pp 2, 4; GF 36, p 2
Hermansville limestone of Michigan, Menominee district. GF 62, p 11
Silurian rocks; Highbridge limestone of Kentucky.GF 46, p 2
Hoosac schist of Massachusetts and Connecticut.Mon xxiii, pp 59-63;
 Mon xxxix, pp 66-75; Bull 169, pp 81-83; GF 50, pp 1-2, 4
Hudson grits of New York–Vermont.Ann 19, iii, pp 187-189
Hudson red and green slate of New York–Vermont.Ann 19, iii, p 189
Hudson River shale in Illinois, thickness, etc. ofAnn 17, ii, pp 834-835
 in IndianaAnn 8, pp 637-638; Ann 11, i, pp 630-631
 in MichiganWS 30, p 89
 in New YorkAnn 13, ii, pp 315-316, 333
 in New York–VermontAnn 19, iii, p 185
 in Ohio as a water carrierAnn 19, iv, p 642
Hudson thin quartzites in New York–Vermont.Ann 19, iii, p 186
Hudson white beds in New York–Vermont.Ann 19, iii, p 185
Jefferson limestone in Montana, description and sections ofAnn 20,
 iii, pp 287-289, 329, 339, 363, 368
 in WyomingGF 30, p 4; GF 52, p 2
 in Yellowstone ParkMon xxxii, ii, pp 7-8, 22, 26, 58, 153, 206, 212, 213
Juniata formation of Maryland, Virginia, and West VirginiaGF 28, p 2;
 GF 32, p 2; GF 61, p 3
Knox dolomite of Alabama, Georgia, Kentucky, North Carolina, Ten-
 nessee, Virginia, and West VirginiaGF 2, p 1; GF
 4, p 2; GF 6, p 1; GF 8, p 2; GF 12, p 2; GF 16, p 4;
 GF 19, p 2; GF 20, p 2; GF 21, p 2; GF 25, p 3; GF
 27, p 2; GF 33, p 2; GF 35, p 2; GF 44, p 2; GF 59, p 3
Lake Superior sandstone of Michigan, Menominee districtGF 62, p 11
Lexington limestone of KentuckyGF 46, p 2
Leyden argillite of Massachusetts and ConnecticutMon xxix,
 pp 201-210; GF 50, pp 3, 5
Lockport [Niagara] limestone of IowaAnn 11, i, pp 323-326
 (See, also, Niagara.)
Lone Mountain limestone of Nevada, Eureka districtAnn 3,
 pp 253, 262-263; Mon xix, pp 57-60
Lower Helderberg series in IndianaAnn 11, i, pp 633-634
 in OhioAnn 8, ii, pp 563-568
Lower Magnesian limestone in Illinois, thickness, etc. ofAnn 17, ii, p 839
 in IndianaAnn 11, i, p 625
Manitou limestone of ColoradoGF 7, pp 2, 4
Maquoketa shale of IowaAnn 11, i, pp 326-327
Martinsburg shale in Catoctin beltAnn 14, ii, pp 343-345
 in Virginia and West VirginiaGF 14, p 2; GF 32, p 2; GF 61, p 2
Massanutten sandstone in Catoctin beltAnn 14, ii, p 312
 in Virginia and West VirginiaGF 14, p 2
Medina shale in IndianaAnn 11, i, pp 631-632
 in OhioAnn 8, ii, pp 558-559
 as a water carrierAnn 19, iv, pp 642, 654-666
Moccasin limestone of Tennessee, Virginia, and West VirginiaGF 12,
 p 2; GF 26, p 2; GF 29, p 2; GF 44, p 2; GF 59, p 3
Monarch formation of MontanaGF 55, p 2; GF 56, p 2
Moneclova sandstone of Ohio, age ofAnn 8, ii, p 566
Monroe and Salina beds (Lower Helderberg) of MichiganWS 30, pp 88-89
Niagara group of OhioAnn 8, ii, pp 561-563
Niagara limestone. (See Lockport limestone.)
Silurian rocks; Niagara series of Ohio as a water carrier

Nikolai greenstone of Alaska

Normandy limestone of Tennessee

of Alabama, Gadsden quadrangle

Stevenson quadrangle

of any State. (See, also, formation names under this heading.)

of Colorado, Aspen district

Denver Basin

Leadville district

Mosquito Range

Pikes Peak quadrangle

of Georgia, Ringgold quadrangle

Stevenson quadrangle

of glacial Lake Agassiz

of Iowa, northeastern

of Kentucky, Richmond quadrangle

of Lake Superior region

of Massachusetts, western

of Missouri region, upper

of Montana

of Nevada, Eureka district

of South Dakota, Black Hills, northern

of Tennessee, Briceville quadrangle

Bristol quadrangle

Chattanooga quadrangle

Cleveland quadrangle

Estillville quadrangle

Kingston quadrangle

Knoxville quadrangle

Loudon quadrangle

McMinnville quadrangle

Morristown quadrangle

phosphate region

Pikeville quadrangle

Ringgold quadrangle

Sewanee quadrangle

Stevenson quadrangle

of Texas

of Virginia, Bristol quadrangle

Estillville quadrangle

Franklin quadrangle

Monterey quadrangle

Pocahontas quadrangle

Staunton quadrangle

Tazewell quadrangle

of West Virginia, Franklin quadrangle

Monterey quadrangle

Piedmont quadrangle

Staunton quadrangle

of Wyoming

of Yellowstone Park

Oneota limestone of Iowa

Onondaga series of Ohio as a water carrier

Ordovician rocks in Texas
Silurian rocks; Ordovician and Cambrian, relations of, in New York-Vermont

Panola formation of Kentucky
Parting quartzite of Colorado, Leadville district
Pogonip limestone of Nevada, age, character, thickness, etc., of
Quebec group of Canada
of Idaho
of Utah, reference to
of Wyoming
Rensselaer grit of New York
Richmond shales of Kentucky
Rockwood formation of Alabama, Georgia, Maryland, Tennessee, Virginia, and West Virginia
Rowe schist of Connecticut and Massachusetts
St. Peter sandstone of Illinois, altitude, thickness, etc., of
of Indiana
of Iowa
Salina and Monroe beds of Michigan
Sault Ste. Marie sandstone
Savoy schist of Massachusetts and Connecticut
Shenandoah limestone of Catoctin belt
of Tennessee, Virginia, and West Virginia
Shenandoah limestone in Illinois, thickness, etc., of
in Indiana
in Iowa
in Michigan
in New York-Vermont
in Ohio as a source of petroleum and inflammable gas
as a water carrier
Tuscarora quartzite of Maryland, Virginia, and West Virginia

Trenton limestone in Illinois, thickness, etc., of
in Indiana
in Iowa
in Michigan
in New York-Vermont
in Ohio as a source of petroleum and inflammable gas
as a water carrier

Tuscarora quartzite of Maryland, Virginia, and West Virginia
Silurian rocks; Uinta sandstone of Colorado, northwestern........ Ann 9, pp 687-688
Ute shale of Indiana........ Ann 8, ii, pp 638-639; Ann 11, i, pp 629-630
Utica shale of Indiana........ Ann 8, ii, pp 549, 556-558, 638-639; Ann 19, iv, p 641
White limestone of Colorado, Leadville........ Ann 2, pp 216, 218; Mon xii, pp 60-61
Winchester limestone of Kentucky.................. GF 46, p 2
Yule limestone of Colorado.................. GF 9, p 6; GF 48, p 1
(See also, Paleozoic.)

Siluro-Devonian rocks of Montana, Judith Mountains........ Ann 18, iii, pp 459, 468-470
of Montana, Little Belt Mountains.................. Ann 20, iii, pp 287-289, 383
Silver, discovery of, in western United States........ Mon iii, pp 26-28
in California, Nevada City and Grass Valley districts.... Ann 17, ii, pp 27, 262
in Colorado, discovery of.......................... Mon xii, pp 7-10
La Plata quadrangle.................. GF 60, pp 12-14
in country rocks, determination of Ann 6, pp 345-348
in eruptive rocks.................................... Mon xii, p 579
in Idaho, Boise Mountains............................ Ann 18, iii, p 718
Boise quadrangle.................. GF 45, p 6
in Montana, Butte district.......................... GF 38, pp 3, 5, 7-8
Castle Mountain district.................. Bull 139, pp 150-156
Fort Benton quadrangle.......................... GF 55, p 6
Neihart district.......................... Ann 20, iii, p 408
Three Forks quadrangle.................. GF 24, p 5
in Nevada, Comstock lode........ Mon iii, pp 6-7, 9, 18, 224-225, 268
in Philippine Islands.................. Ann 19, vii cont, p 692
in Texas, Uvalde quadrangle.................. GF 64, p 5
in Utah, Mercen district.................. Ann 16, ii, pp 393-394
Tintic district, production of.................. Ann 19, iii, pp 615-616; GF 65, p 5
quantitative determination of, by means of microscope... Ann 6, pp 323-352
Silver and gold, conversion tables of.................. Bull 2
in United States, production of, since 1792........ MR 1888, p 38; MR 1891, pp 74-75
(See also, Precious metals.)

Silver and gold districts of Idaho........ Ann 16, ii, pp 250-274; Ann 20, iii, pp 65-256
Silver, colloidal, contribution to knowledge of........ Bull 113, pp 102-108
Silver-gold veins of California, Ophir.................. Ann 14, ii, pp 243-284
Silver, hydrosol of, preparation of.................. Bull 113, pp 99-101
Silver-lead deposits of Colorado, Leadville district.... Ann 20, iii, pp 198-206, 214-217
of Idaho... Ann 17, iii, pp 406-413
of Montana, Neihart district.................. Ann 20, iii, pp 136-137
of Nevada, Eureka.......................... Mon vii
Silver minerals in Colorado, Cripple Creek district..... Ann 16, ii, p 124
in Utah, Tintic district.................. Ann 19, iii, pp 691, 694-695
Silver ore, analysis of, from Colorado, Cripple Creek district..... Ann 16, ii, p 124
analysis of, from Colorado, various (manganiferous)........ Ann 18, v, pp 302-303
from Montana (manganiferous)........ Ann 16, iii, p 418; MR 1893, p 131
of Utah, Mercur district, occurrence, nature and genesis of.. Ann 16, ii, pp 383-402
Silver salts, analyses of .. Bull 167, pp 145, 152
indirect estimation of chlorine, bromine, and iodine by electrolysis of their, with experiments on convertibility of silver salts by action of alkaline haloids Bull 42, pp 89-93
Silver City, De Lamar, and other mining districts of Idaho, gold and silver veins of .. Ann 20, iii, pp 66-256
Silver Cliff and Rosita districts, Colorado, mines and mining in Ann 17, ii, pp 405-472
Silver Cliff and Rosita Hills, Colorado, geology of Ann 17, ii, pp 263-403
Silverheels porphyry in Colorado, Leadville district, petrography of Mon xi, pp 342-343
Silverheels porphyry in Colorado, Leadville district Mon xi, pp 83-84
Silveria formation and other silt deposits ... Mon xxvii, pp 111-118
Singkep, Eastern Archipelago, tin deposits of .. Ann 16, iv, p 492; Ann 17, iii, p 242
Sinter, analysis of, from Australia, Queensland .. Bull 90, p 74; Bull 168, p 251
analysis of, from Colorado, Geyser mine .. Ann 17, ii, pp 459-460
from Nevada, Steamboat Springs .. Ann 9, p 670
from New Zealand ... Ann 9, pp 670, 679; Bull 168, p 251
from Yellowstone Park .. Ann 9, p 670; Bull 168, p 251
of Nevada, Steamboat Springs ... Mon xiii, p 341
Sinter, algous .. Ann 9, p 665
Sinter, dendritic .. Mon xiii, pp 266-268
Sinter, moss ... Ann 9, p 667
Sinter, siliceous, deposition of, rate of ... Ann 9, p 666
formation of, by vegetation of hot springs .. Ann 9, p 613
from Yellowstone Park, description of, as one of the educational series of rocks .. Bull 150, pp 91-93
nature and origin of ... Ann 9, pp 650, 655-657, 669-676
of New Zealand .. Ann 9, pp 672-676
of Yellowstone Park ... Ann 9, pp 650; GF 30, pp 4, 5
Sioux quartzite of Lake Superior region .. Bull 86, pp 186-187, 194
of South Dakota .. WS 34, p 12
Sioux Reservation, lignites of .. Bull 21
Siphon elevators in irrigation .. WS 1, pp 51-53
Skolai Pass, Alaska, trail by way of .. Ann 21, ii, p 417
Skolai Range, Alaska, topography, structure, etc., of Ann 21, ii, pp 393-440
Skwentna River, Alaska, reconnaissance along ... Ann 20, vii, pp 48-49
Skwentna series of pre-Tertiary rocks, Alaska .. Ann 20, vii, pp 149-152, 235
Slag, analysis of (argentiferous lead) .. MR 1883-84, pp 454-456
analysis of (black copper shaft furnace) .. Bull 26, p 99
(blue metal) .. Bull 26, p 66
from Arizona .. Bull 26, pp 78, 79; MR 1883-84, pp 405, 408
from Colorado .. Mon xi, pp 701, 704-705, 739; Bull 26, p 48
from Germany .. Bull 26, pp 48, 78
from India .. Ann 16, iii, p 168
from Malay Peninsula (tin) ... Ann 16, iii, p 476
from Michigan, Hancock .. Bull 26, p 78
from Montana (reverberatory ore furnace) ... Bull 26, p 48; MR 1883-84, p 388
from Nevada, Eureka ... Mon vii, p 160
from New York, Laurel Hill .. Bull 26, p 78
from North Carolina, Ore Knob .. Bull 26, p 79
from Norway, Kaafird ... Bull 26, pp 48, 59, 70
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.

Slag, analysis of, from Tasmania, Mount Bischoff (tin)Ann 16, ii, p 505
analysis of, from Utah, Horn Silver WorksMR 1882, p 329
from Vermont, South StraffordBull 26, p 79
from Wales ..Bull 26, pp 48, 59, 70
(ore cupola) ..Bull 26, p 94
analysis and composition of, from Colorado, LeadvilleMon xi, pp 698-709
utilization of blast-furnaceMR 1882, pp 161-164
Slags, lead, statistics ofMR 1883-84, pp 440-462
Slate, analysis of, from Austria, Silesia (bluish roofing)Ann 19,
iii, p 261; Ann 20, vi cont, pp 322, 452
analysis of, from California, Yaqui GulchBull 150, p 342
from Canada, OntarioBull 42, p 139
from England, Cornwall (gray roofing)Ann 19,
iii, p 261; Ann 20, vi cont, pp 322, 452
from France, Ardennes (roofing)Ann 19,
iii, p 261; Ann 20, vi cont, pp 322, 452
from Georgia, Polk CountyAnn 18, v cont, p 998; Ann 20, vi cont, p 376
from Germany, Westphalia (black roofing)Ann 19,
iii, p 261; Ann 20, vi cont, pp 322, 452
from Maine, Bangor (roofing)Ann 18, v cont, p 1001
MonsonAnn 19, vi cont, p 255; Ann 20, vi cont, p 394
from Maryland, Harford County (Peach Bottom)Ann 20, vi cont, p 399
from Massachusetts, Worcester CountyAnn 18, v cont, p 999
from Michigan, Ishpeming and Neguane (sideritic)Ann 15, p 566
MansfieldMon xxxvi, pp 59, 61, 210; Bull 168, p 284
from Minnesota, Pigeon PointBull 109, pp 84, 90; Bull 148, p 109; Bull 168, p 79
from New York, Erie CountyAnn 20, vi cont, p 423
Washington County ..Ann 19, iii, pp 250, 252, 257; Ann 20, vi cont, pp 311, 313, 318, 448-449, 450-451;
Mon xxxvi, p 61; Bull 148, pp 280-281; Bull 168, pp 281-282
from New York–Vermont slate belt (roofing)Ann 19,
iii, pp 264, 304, 305; Ann 20, vi cont, p 324
from Pennsylvania, Northampton CountyAnn 19,
vi cont, pp 256, 262; Ann 20, vi cont, p 436
York County ..Ann 19,
iii, p 261; Ann 20, vi cont, pp 314, 399, 436; Bull 150, p 313
from Prussia, ClausthalBull 150, p 320
Goslar (roofing) ...Ann 19, iii, p 261; Ann 20, vi cont, pp 322, 452
from Quebec, Melbourne (Cambrian)Mon xxvi, p 202
from Vermont, Rutland CountyAnn 19,
from Vermont–New York slate belt (roofing)Ann 19,
iii, pp 264, 304, 305; Ann 20, vi cont, p 324
from Virginia, Buckingham County, ArvoniaAnn 19,
vi cont, p 264; Ann 20, vi cont, p 458
from Wales ..Ann 19, iii, p 261; Ann 20, vi cont, pp 322, 452
from Wisconsin, Gogebic-Penokee regionMon xix, p 306; Bull 64, p 47; Bull 148, p 283; Bull 168, p 285
various localities ..Mon xix, p 197
from various regions ..Ann 19, iii, pp 280-283
bibliography of ...Ann 19, iii, pp 168-174
from Monson, Maine, description of, as one of educational seriesBull 150, pp 308-313
Slate of Alaska, Prince William Sound, notes on Ann 20, vii, p 422
of Michigan-Wisconsin, Penokee iron-bearing series, origin and petro-
graphic character of. Ann 10, i, pp 370-379; Mon xix, pp 302-345
of Minnesota, Pigeon Point T. 65 N., R. 4 W., SW. § sec. 23 (actinolitic) Mon xix, pp 506-507
of Northwestern States. Ann 5, pp 210-211
of Vermont-New York; structure, chemical composition, history, etc., of
the belt. Ann 19, iii, pp 153-307; Ann 20, vi cont, pp 301-336
of Washington, northern prospecting for, use of geologic map and compass in Ann 19, iii, pp 271-272
quarry and geologic terms, glossary of Ann 19, iii, pp 306-307
statistics of. MR 1882, p 457; MR 1883-84, p 929; MR 1885, pp 398-401, 532-
533; MR 1886, pp 549-553; MR 1887, pp 522-527; MR 1888,
pp 547-551; MR 1889-90, p 376; MR 1891, pp 456, 472-473;
MR 1892, pp 705, 710; MR 1893, pp 543, 549-552; Ann 16,
iv, pp 436, 437, 473-482; Ann 17, iii cont, pp 759, 760-
761, 770-775; Ann 18, v cont, pp 949, 950-951, 992-1012;
Ann 19, vi cont, pp 206-207, 248-264; Ann 20, vi cont,
pp 270, 271, 290-336; Ann 21, vii cont, pp 334, 335, 344-352
test of Ann 18, v cont, pp 1002-1009
methods of Ann 19, iii, pp 272-277
thin section of, from Michigan, T. 47 N., R. 26 W., sec. 21, NE. §. Mon xxviii,
pp 292, 293
from Michigan, T. 47 N., R. 45 W., sec. 10, SW. § (graywacke) Ann 10,
i, pp 476-477; Mon xix, pp 484-485
T. 47 N., R. 46 W., sec. 13, NW. § (cherty) Ann 10,
i, pp 474-475; Mon xix, pp 484-485
sec. 16, SE. § (sericitic and chloritic) Ann 10,
i, pp 476-477; Mon xix, pp 484-485
from Minnesota, Gunflint beds (actinolitic and sideritic) Ann 10,
i, pp 492-493; Mon xix, pp 506-507
Gunflint Lake, east side of north arm (actinolite-siderite) Ann 10,
i, pp 486-487
T. 65 N., R. 4 W., sec. 23 (actinolitic) Ann 10, i, pp 494-495
from New York, Hoosick (black roofing) Ann 19, iii, pp 240-241
Washington County (red roofing) Ann 19, iii, pp 240-241
from Vermont, Benson (black roofing) Ann 19, iii, pp 242-243
Eddy Hill (showing zones of shearing) Ann 19, iii, pp 212-213
Fair Haven (showing false cleavage) Ann 19, iii, pp 208-209
Pawlet (purple) Ann 19, iii, pp 238-239
Poultney (unfading green) Ann 19, iii, pp 236-237
South Poultney (sea green and purple) Ann 19,
iii, pp 234, 235, 238-239
Wells (sea green, showing zone of shearing) Ann 19, iii, pp 212-213
West Pawlet (sea green) Ann 19, iii, pp 234-235
(showing false cleavage) Ann 19, iii, pp 208-209
from Wisconsin, T. 44 N., R. 3 W., sec. 9 (biotite) Ann 10,
i, pp 502-503, 504-505
sec. 11, NW. § (actinolitic) Ann 10, i, pp 494-495; Mon xix, pp 504-505
sec. 14, NW. § (biotite-chlorite) Ann 10, i, pp 478-479; Mon xix, pp 486-487
T. 44 N., R. 5 W., sec. 20, NE. § (actinolitic) Mon xix, pp 496-497
INDEX TO PUBLICATIONS OF U.S. GEOLOGICAL SURVEY. [BULL. 177.]

Slate, thin section of, from Wisconsin, T. 45 N., R. 2 E., sec. 6, NE. 4 (sideritic)................................Mon xix, pp 490-491
thin section of, from Wisconsin, T. 45 N., R. 1 W., sec. 33, NE. 4 (actinolitic)................................Mon xix, pp 504, 505
uses, methods of quarrying, etc.Ann 16, iv, pp 473-476
Slate, clay, anhydrous carbonate of, analysis of........................Bull 60, p 32
Slate, marble, method of preparing.................................Ann 20, vi cont, pp 291-292
Slate, roofing, of New York-Vermont, composition of, chemical notes on the................................Ann 19, iii, pp 301-305
present state of science on...Ann 19, iii, pp 278-288
Slate Creek, Alaska, distances along, table ofAnn 21, ii, p 453
Slate quarry, technical description of a..........................Ann 19, iii, p 277
Slate quarrying, bedding and cleavage, how distinguished in difficulties in ..Ann 19, iii, p 268
Slate series, Auriferous, of California. (See Auriferous slate series.)
Slaty rock, analysis of, from Pennsylvania, near Dillersburg........Ann 136, p 62
Slichter (C. S.), theoretical investigation of motion of ground watersAnn 19, xi, pp 295-384
Slip clay. (See Clay, slip.)
Sloan (E.), investigations relating to Charleston earthquakeAnn 9, pp 210, 294-295, 297, 305, 312
Smaltite, analysis of, from Colorado, Gunnison CountyMR 1883-84, p 544
Smaragdite, analysis of, from Maryland, Baltimore CountyBull 64, p 42; Bull 168, p 42
analysis of, from North Carolina, Clay County..................Bull 74, p 45
Smartsville quadrangle, California, geology ofGF 18
Sneectite, analysis of, from Cilly, AustriaAnn 17, iii cont, p 880
Smelting at Leadville, ColoradoMon xii, pp 609-751
materials used in ..Mon xii, pp 638-659
of argentiferous lead in far WestMR 1882, pp 324-345
of copper ...Bull 26
products of..Mon xii, pp 692, 731
Smilaceae from Yellowstone ParkMon xxxi, ii, pp 685-686
of North America, extinct..Mon xxxvi, pp 32-33
Smith (E. A.), Coal Measures of AlabamaMR 1892, pp 293-300
iron ores of Alabama in their geologic relationsMR 1882, pp 149-161
list of ores, minerals, and mineral substances of industrial importance in AlabamaMR 1882, pp 667-670
Smith (E. A.) and Johnson (L. C.), Tertiary and Cretaceous strata of Tuscaloosa, Tombigbee, and Alabama riversBull 43
Smith (G. O.), descriptions of rock specimens in educational series.........Bull 150, pp 140-145
rocks of Mount Rainier...Ann 18, ii, pp 418-423
work in charge of, 1898-1900..................................Ann 20, i, p 51; Ann 21, i, p 84
Smith (G. O.) and Tower (G. W., jr.), geology and mining industry of Tintic district, UtahAnn 19, iii, pp 601-767
Smith (G. O.), Tower (G. W., jr.), and Emmons (S. F.), geology and mining industry of Tintic district, UtahGF 65
Smith (G. O.) and Willis (B.), geology of Tacoma quadrangle, Washington ..GF 54
Smith (W. B.), notes on occurrence of topaz at Devil'shead Mountain, ColoradoBull 20, pp 73-74
Smith (W. S. T.), geologic sketch of San Clemente IslandAnn 18, ii, pp 459-496
Smith River beds. (See Deep River beds.)
Smith River Lake beds of MontanaGF 56, p 3
Smithfield limestones of Narragansett BasinMon xxxiii, pp 107-109
Smithsonite, analysis of, from Arkansas, Marion County. Bull 90, p 62
occurrence of.. Ann 18, v cont, p 1212

Smock (J. C.), lists of ores, minerals, and mineral substances of industrial
importance in several of the States.......................... MR 1882, pp 665-747

Smoke, consumption of, devices for, and city ordinances relating to, etc.. MR
1893, pp 224-240

Smoky Hill River, Kansas, flow of, measurements of.......................... Ann 18, iv, pp
212-215; Ann 19, iv, pp 346-347; Ann 20, iv, pp 56, 315; Ann
21, iv, pp 225-226; Bull 140, pp 138, 142-143; WS 11, p 58;
WS 16, p 114; WS 27, pp 93, 95, 96; WS 37, pp 251-252

Smoky Mountains, a district of schistosity.................................. Bull 13, ii, p 229

Smoky Mountains, geology of, literature of.................................. Bull 86, pp 421, 422

Smyny (H. L.), Republic trough, Michigan.................................. Ann 15, pp 608-630; Mon xxviii, pp 525-553

Smynthesis (J. M.), Crystal Falls iron-bearing district of Michigan........ Ann 19, iii, pp 1-145; Mon xxxvi, pp 1-457

Snake River, description and history of.. WS 4, pp 19-21

geologic features and events in valley of..................................... Ann 18, iii, pp 625-626, 630-637

irrigation problems in valley of.. Ann 11, ii, p 239

profile of.. WS 44, pp 99-100

rainfall and run-off in basin of.. Ann 20, iv, pp 467-474

reservoir sites and canal lines surveyed in basin of, for irrigation purposes. Ann 11, ii, pp 190-200

stream measurements in basin of.. Ann 11, ii, pp 77-92, 105, 106, 110;
Ann 12, ii, pp 344, 357, 361; Ann 13, iii, pp 98, 99; Ann 14, ii, pp 127-130; Ann 18, iv, pp 330-354; Ann 19, iv, pp 444-
448; Ann 20, iv, pp 61-62, 474-490; Ann 21, iv, pp 405-409;
Bull 131, pp 64-65; Bull 140, pp 235-243; WS 11, p 50; WS
16, p 165; WS 28, pp 160, 168, 169; WS 38, pp 349-352

Snowy Range, Montana and Wyoming, geology of.................................. Mon xxxii, ii, pp 203-214

structure of.. GF 1, p 1

Soapstone, analysis of, from Michigan, T. 47 N., R. 47 W., sec. 23.... Mon xix, p 357

from New Hampshire, Francestown, description of, as one of educational
series of rocks... Bull 150, pp 365-367

occurrence and use of .. Ann 16, iv, pp 511-512

statistics of.. MR 1891, p 593; MR 1892, pp 813-814; MR 1893,
pp 623-626; Ann 16, iv, pp 511-513; Ann 17, iii cont, pp 813-
816; Ann 18, v cont, pp 1069-1075; Ann 19, vi cont, pp 311-
315; Ann 20, vi cont, pp 551-556; Ann 21, vi cont, pp 413-418

Soapstone and diabases from Michigan and Wisconsin, Penokee district.... Mon
xix, p 357

Soapstone (pigment), statistics of.. MR 1892, pp 815, 818; MR 1893, pp 758, 762; Ann 16,
iv, pp 695; Ann 17, iii cont, pp 1012; Ann 18, v cont, p 1387

Soda, analysis of (pure).. MR 1883-84, p 965

analysis of, from Egypt.. Bull 60, p 39

from Hungary... Bull 60, p 37

from Nevada, Ragtown, Soda Lakes.. Mon xi, p 78; Bull 60, p 52

from Pennsylvania, near Wilkesbarre....................................... MR 1885, p 554

from Wyoming, Carbon County... Bull 60, pp 44, 45; MR 1885, p 553

Soda, ammonia, analysis of.. MR 1883-84, p 965

Soda, carbonate of. (See Carbonate of soda.)

Soda, natural, occurrence and production of................................ MR 1893, pp 728-734
occurrence and utilization of... Bull 60, pp 27-101

Bull. 177—01—47
Soda, natural, occurrence and utilization of .. Bull 60, pp 27-101
Soda, nitrate of, statistics of ... MR 1882, pp 599-600
Soda, sulphate of. (See Sulphate of soda.)
Soda ash, analyses of ... MR 1883-84, pp 965, 966
Soda-feldspar dikes of California, Sonora quadrangle, description, analyses, etc., of .. Ann 17, i, pp 683-687
Soda-granite, analysis of, from California, Bidwell Bar quadrangle. Ann 17, i, p 721
Soda-granite, analysis of, from California, Merced area Ann 17, i, p 721
Soda-granite, analysis of, from Minnesota, Pigeon Point Bull 148, p 107; Bull 168, p 77
Soda-granite-porphyry, analysis of, from California, Mariposa County... Bull 148, p 217; Bull 168, p 207
Soda-granite-granophyre, of California, Mother Lode district GF 63, p 5
Sodium and potassium, method for separation of, from lithium by action of, amyl alcohol on chlorides; with reference to similar separation of same from magnesium and calcium. . Bull 42, pp 73-88
Sodium carbonate, analysis of, from Utah, near Great Salt Lake MR 1893, p 733
Sodium salt, analysis of .. Bull 167, pp 99, 143, 151
Sodium salts, statistics of ... MR 1887, pp 651-658; MR 1893, pp 728-738
Sodium sulphate. (See Sulphate of soda.)
Soil, analysis of, from Bermuda, and of coral from which it was derived.. Bull 52, p 29
Soil, analysis of, from California, Owens Lake Bull 60, p 93
Soda Lakes of Nevada, near Ragnown ... Mon xi, pp 73-80
Soda-syenite, analysis of, from California, Plumas County Ann 17, i, p 727
Soda-syenite, analysis of, from California, Sonora quadrangle GF 41, p 5
Soda-syenite-granophyre, of California, Mother Lode district GF 63, p 5
Sodium carbonate, analysis of, from Utah, near Great Salt Lake MR 1893, p 733
Sodium salt, analysis of .. Bull 167, pp 99, 143, 151
Sodium salts, statistics of ... MR 1887, pp 651-658; MR 1893, pp 728-738
Sodium sulphate. (See Sulphate of soda.)
Soil, analysis of, from Texas, Uvalde quadrangle................................GF 64, p 6
analysis of, from Utah, Salt Lake City (adobe)................................Ann 16, iv, pp 562-563; Bull 64, p 51; Bull 148, p 299
from Washington, near Dayton..WS 4, p 61
Soil and man, action and reaction of..Ann 12, i, pp 329-345
Soil, sand, and rock, pore space in, diameter of grains of, etc. Ann 19, ii, pp 208-242
Soil, volcanic, origin and nature of..Ann 12, i, pp 239-245
Soil formation, processes of...Ann 12, i, pp 230-250
Soil movement...Ann 12, i, pp 260-300
Soils, effects of animals and plants on...Ann 12, i, pp 268-287
effects of, on health...Ann 12, i, pp 340-344
nature and origin of...Ann 12, i, pp 213-345
of Alabama, Gadsden quadrangle...GF 35, pp 3-4
Stevenson quadrangle..GF 19, pp 3-4
of California, Jackson quadrangle...GF 11, p 6
Placerville quadrangle..GF 3, p 3
Pyramid Peak quadrangle..GF 31, p 8
Sacramento quadrangle..GF 5, p 3
Smartsville quadrangle...GF 18, p 6
of Georgia, Ringgold quadrangle...GF 2, p 3
Stevenson quadrangle..GF 19, pp 3-4
of Hawaii..Ann 19, vi cont, p 684
of Idaho, Boise quadrangle..GF 45, p 6
sources, classes, etc., of..Mon xxxviii, pp 788-797
of Indiana, Danville quadrangle..GF 67, p 6
of Kentucky, Estillville quadrangle..GF 12, p 5
London quadrangle...GF 47, p 3
Richmond quadrangle..GF 46, p 4
of Maryland, Piedmont quadrangle..GF 28, pp 5-6
of New Mexico, Mesilla Valley..WS 10, pp 37-39
of Ohio, Huntington quadrangle...GF 69, p 6
of Porto Rico..Ann 20, vi cont, p 774; WS 32, pp 32-33
of South Dakota, Black Hills, southern part..Ann 21, iv, pp 578-582
of Tennessee, Bristol quadrangle..GF 59, p 8
Chattanooga quadrangle..GF 6, p 3
Cleveland quadrangle...GF 20, p 4
Estillville quadrangle..GF 12, p 5
Kingston quadrangle...GF 4, p 4
McMinnville quadrangle..GF 22, p 3
Pikeville quadrangle..GF 21, pp 3-4
Ringgold quadrangle...GF 2, p 3
Sewanee quadrangle...GF 8, p 4
Standingstone quadrangle..GF 53, pp 4-5
Stevenson quadrangle...GF 19, pp 3-4
of Texas region..TF 3, p 12
of Virginia, Bristol quadrangle..GF 59, p 8
Estillville quadrangle..GF 12, p 5
Franklin quadrangle...GF 32, pp 5-6
Monterey quadrangle...GF 61, p 7
Pocahontas quadrangle..GF 26, p 5
Staunton quadrangle...GF 14, p 4
Tazewell quadrangle..GF 44, pp 5-6
of Washington, southeastern..WS 4, pp 57-64
Tacoma quadrangle...GF 54, pp 9-10
INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.]

Soils of West Virginia, Buckhannon quadrangle GF 34, p 4
of West Virginia, Franklin quadrangle GF 32, pp 5-6
Huntington quadrangle .. GF 69, p 6
Monterey quadrangle .. GF 61, p 7
Piedmont quadrangle .. GF 28, pp 5-6
Pocahontas quadrangle GF 26, p 5
Staunton quadrangle .. GF 14, p 4
Tazewell quadrangle ... GF 44, pp 5-6
of Wyoming, Black Hills, southern part Ann 21, iv, pp 578-582
Solarite from clays and marls of New Jersey Mon xviii, pp 228-229
from Cretaceous of California Bull 22, p 14
Soleduck River, Washington, flow of, measurements of...... Ann 20, iv, pp 63, 523; Ann 21, iv, pp 442-443; WS 16, p 184; WS 28, pp 175, 176; WS 38, pp 386-387
Solemyidae from Colorado formation Bull 106, p 95
from Cretaceous of Pacific coast Bull 133, pp 55-56
Solen beds of Oregon .. Bull 84, p 334
Solenide from Colorado formation Bull 106, pp 114-115
from Cretaceous of Pacific coast Bull 133, p 61
from lower marls of New Jersey Mon ix, pp 182-187
Solfataric action in California, Sulphur Bank Mon xiii, pp 253, 258-259
in Colorado, Leadville district Mon xii, p 563
Rico Mountains .. Ann 21, ii, pp 32-33, 92-93
in Nevada, Comstock lode and Washoe district Ann 2, p 313; Mon iii, pp 21, 206, 238, 240, 389
Eureka district, cause of Mon vii, pp 89, 188
in Wyoming, Absaroka district GF 52, p 6
Solfataric emanations in Nevada, Steamboat Springs Mon xiii, pp 342-343
Solfataric gases in California, Knoxville Mon xiii, pp 287-288
Solid and liquid states, continuity of, investigation of......... Ann 14, p 166; Bull 96, pp 71-97
Solid viscosity, mechanism of Bull 94
Solids, chemical action between Bull 64, pp 34-37
flow of, or behavior of solids under high pressure Bull 55, pp 67-75; Bull 64, pp 38-39
viscosity of .. Bull 73
Solomon River, Kansas, flow of, measurements of...... Ann 18, iv, pp 207-210;
Ann 19, iv, pp 341-343; Ann 20, iv, pp 55-56, 314; Ann 21, iv, pp 223-224; Bull 140, pp 138-140; WS 11, p 57; WS 16, pp 110-111; WS 27, pp 92, 95, 96; WS 37, pp 249-250
Solubility in water of certain natural silicates Bull 167, pp 159-160
of gold and of sulphide minerals Ann 17, ii, pp 179-180
of substances, relation of, to pressure and temperature...... Ann 17, ii, pp 177-178
Solution as affecting topography Bull 84, pp 88-89
Solutions, molten magmas considered as Bull 66, pp 26-29
Sölsbergite, analyses of, from Montana, Crazy Mountains Bull 168, p 123
Sonora quadrangle, California, forest conditions in Ann 21, v, pp 569-571
geology of .. GF 41
Sooke beds of Vancouver Island, correlation of Ann 18, ii, p 338
Sopchoppy limestone of Florida Bull 84, pp 119-122, 334
Soudan formation of Lake Superior region Ann 21, iii, pp 403-408
Souri, Lake, the glacial, description and map of Mon xxv, pp 267-272
South African Republic. (See Transvaal.)
SOILS—SOUTH CAROLINA.

South America; asphaltum deposit in.. MR 1893, p 666
Cambrian rocks of... Bull 81, p 379
Fossil plants of, literature of.. Ann 8, ii, pp 820-823
Geologic maps of, list of... Bull 7, pp 150-157
Lead production of, statistics of.. MR 1883-84, p 434; MR 1885, p 264
Quicksilver deposits of.. Mon xiv, pp 19-24
Tin production of, statistics of.. MR 1883-84, p 625
(See, also, each country thereof.)

South Australia; iron industry in.. Ann 16, iii, p 185
Manganese-ore production of, statistics of................................ MR 1893, pp 153, 155; Ann 16, iii, pp 453, 457; Ann 17, iii, p 224; Ann 18, v, pp 326-327, 328; Ann 19, vi, p 122
Tin production of.. Ann 11, iii, p 503
(See, also, Australia.)

South Carolina; altitudes in... Ann 18, t, pp 301-310; Bull 5, pp 276-278; Bull 76; Bull 160, pp 651-655
Artesian and other wells in.. Bull 138, pp 210-222
Atlas sheets of. (See list on p 93 of this bulletin.)
Boundary lines of, and cession of territory to General Government..... Bull 13, pp 26, 96-97; Bull 171, pp 102-103
Brick industry of... MR 1888, p 563
Profile of... WS 44, p 27
Water powers in basin of... Ann 19, iv, pp 215-219
Building stone from, at World’s Columbian Exposition................ MR 1893, p 572
Charleston earthquake of August 31, 1886................................. Ann 9, pp 203-528
Clay deposits of... MR 1891, p 506
Clay products of, statistics of.. Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1079 et seq; Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 467 et seq; Ann 21, vi cont, pp 362, 363
Coke in, manufacture of.. Ann 20, vi cont, pp 228
Congaree River, profile of.. WS 44, p 27
Gas, illuminating and fuel, and by-products, statistics of............. Ann 20, vi cont, pp 228, 241, 244, 246, 247, 249
South Carolina; geographic positions in Bull 123, p 79
geologic formations in eastern .. Bull 138, pp 207-210
geologic maps of, listed ... Bull 7, pp 102, 104, 105, 106, 107

(See Map, geologic, of South Carolina.)
geologic sections in. (See Section, geologic, in South Carolina.)
geologic and paleontologic investigations in............................ Ann 7, p 121; Ann 8, i, pp 168-169; Ann 10, i, p 155; Ann 11, i, p 69; Ann 12, i, pp 75, 76, 82; Ann 13, i, p 145; Ann 14, i, p 246; Ann 16, i, p 22; Ann 18, i, pp 60-67

gold and silver from, statistics of................................... Ann 2, p 385;
MR 1882, pp 172, 176, 177, 178; MR 1883-84, pp 312, 313;
MR 1885, p 101; MR 1886, pp 104, 105; MR 1887, pp 58, 59;
MR 1888, pp 36, 37; MR 1889-90, p 49; MR 1891, pp 75, 77;
MR 1892, pp 51, 52, 53, 54, 55, 56, 88; MR 1893, pp 50, 51, 55, 57, 58, 59, 60, 61; Ann 16, iii, p 258; Ann 17, iii, pp 72, 73, 74, 75, 76, 77; Ann 18, v, p 141 et seq;

gold belt in, location of mines, etc Ann 16, iii, pp 306-309

gold mining in, history of ... Ann 20, vi, p 111 et seq

Great Pedee River, profile of ..WS 44, pp 25-26

harbors on the coast .. Ann 13, ii, pp 180-183

magnetic declination in .. Ann 17, i, pp 411-412

maps, geologic, of. (See Map, geologic, of South Carolina.)
maps, topographic, of. (See Map, topographic, of South Carolina; also list on p 93 of this bulletin.)

marine Cretaceous formation in Bull 138, p 209

mineral spring resorts in .. Ann 14, ii, p 86

minerals of, useful .. MR 1882, pp 728-729; MR 1887, pp 786-788
South Dakota; Blue Blanket district, glacial phenomena and topography of.. Bull 144, pp 24-25, 36

Bowdle Hills, glacial phenomena and topography of.. Bull 144, pp 24-25, 36-37

Boxelder Creek district, glacial phenomena and topography of.. Bull 144, pp 28-30, 38-39

Brule County, artesian wells in, map showing location, depth, and yield of.. Ann 18, iv, p 569

building stone from, at World's Columbian Exposition... MR 1893, p 572

in Black Hills, southern part... Ann 21, iv, p 590

statistiscs of... MR 1892, pp 706, 708, 710; MR 1893, pp 544, 547, 553, 556;

Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq;

Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq;

Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq

Cascade Creek, course and character of.. Ann 11, iv, p 573

cement production of, statistics of.. Ann 18, v cont, p 1170; Ann 19, vi cont, p 487;

Ann 20, vi cont, p 539; Ann 21, vi cont, p 393

Cheyenne River, course and character of.. Ann 21, iv, pp 574-575

hydrography of and topography along.. Ann 20, iv, pp 251-253

clay products of, statistics of.. Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq;

Ann 18, v cont, p 1078 et seq;

Ann 19, vi cont, p 318 et seq; Ann 20, vi cont, p 467 et seq

climate of Black Hills, southern part.. Ann 21, iv, pp 591-597

coal, area and statistics of.. Ann 17, iii, pp 297, 298, 315

in Black Hills, southern part.. Ann 21, iv, pp 582-584

copper from, statistics of.. Ann 19, vi, p 143;

Ann 20, vi, p 165; Ann 21, vi cont, p 170

Coteau des Prairies, section across, etc.. Mon xxv, pp 36-39

Fall River, course and character of.. Ann 21, iv, pp 574-575

Faulkton Hills, glacial phenomena and topography of.. Bull 144, pp 37-38

fuller's earth in, occurrence and character of.. Ann 18, v cont, pp 1351-1353; Ann 21, iv, pp 588-589

gold and silver from.. Ann 18, i, pp 163-165; Ann 19, i, pp 161-164; Ann 20, i, pp 265-266; Bull 123, pp 120-121

gold and silver from, statistics of.. MR 1892,

pp 51, 53, 55, 56, 69-71; MR 1893, pp 50, 51, 55, 60, 61;

Ann 17, iii, pp 72, 73, 74, 75, 76, 77; Ann 18, v, p 141 et seq;

Ann 19, vi, pp 127, 128, 129, 130, 131, 132, 133; Ann 20, vi,

gold and silver from, statistics of.. MR 1892,

pp 706, 708; MR 1893, pp 544, 547; Ann 16, iv, pp 437,

444, 457, 468; Ann 17, iii cont, pp 760, 761, 763; Ann 18,

v cont, pp 951, 952, 954, 956, 974; Ann 19, vi cont, pp 207,

208, 209, 210, 211, 223; Ann 20, vi cont, pp 271, 272, 273, 274,

275, 276, 280; Ann 21, vi cont, pp 335, 336, 337, 338, 339, 340

grazing land in Black Hills.. Ann 19, v, p 71

gypsum deposits and production of.. MR 1886, p 622; MR 1889-90, pp 465, 466; MR 1891, pp 580, 582; MR 1892, p 802; MR 1893, pp 714, 715; Ann 16, iv, pp 663, 664; Ann 17, iii cont, pp 979, 980, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 679, 681, 682; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 526, 527
South Dakota; gypsum in Black Hills, southern part
Hat Creek, course and character of
irrigation by artesian waters in
James River, profile of
Koto Hills, glacial phenomena and topography of
Lame Johnny Creek, course and character of
lead from, statistics of
lignites of Great Sioux Reservation, a report on the region between Grand and Moreau rivers
limestone production of, statistics of
manganese-ore production of, statistics of
mineral resources of Black Hills, southern part
mineral springs of
mining in Black Hills, remarks on
Missouri Coteau, moraines of, and their attendant deposits
moraines of southeastern, and their attendant deposits
natural gas localities and statistics of
Newcastle quadrangle, forest conditions in
nickel industry in
oil in Black Hills, southern part
rainfall in Black Hills
Ree Hills, glacial phenomena and topography of
sandstone from, tests of
sandstone production of, statistics of
sections, geologic, in
Spring Creek, course and character of
stream measurements in (miscellaneous)
timber in Black Hills
in Black Hills Forest Reserve (standing)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

South Dakota; tin deposits and production of.MR 1883-84, pp 602-613; MR 1885, p 370; MR 1886, p 214; MR 1887, pp 134-136; MR 1888, pp 144-156; MR 1889-90, p 120; MR 1891, p 164; Ann 16, iii, pp 530-535
topographic maps of. (See Map, topographic, of South Dakota; also list on pp 93-94 of this bulletin.)

South Mountain, Pennsylvania, ancient volcanic rocks of................. Bull 136
pre-Cambrian rocks of Ann 16, i, pp 837-838

South Platte Forest Reserve; boundaries, timber, fires, mining, lumbering, etc., in.................. Ann 20, v, pp 3-8, 86-115
Southern complex of Michigan-Wisconsin................. Mon xix, pp 103-126, 441-454; Mon xxviii, pp 190-220, 225, 554, 567
Southern States, gold mining and metallurgy in, history of... Ann 20, vi, pp 111-123
Southern Ute Indian Reservation, investigation of water supply of........ Ann 20, iv, pp 408-434
Southern Ute Indians, history of Ann 20, iv, pp 412-417
Spadaite, chemical constitution of................. Bull 125, pp 83, 105
Spain; antimony production of, statistics of........ MR 1883-84, p 645
asphaltum production of, statistics of................. Ann 19, vi cont, p 201; Ann 20, vi cont, p 268; Ann 21, vt cont, p 322
fauna of Olenellus zone......................... Ann 10, i, p 580
fossil plants of, literature of......................... Ann 8, ii, pp 702-705
Spain; iron-ore deposits of, location, character, etc., of........Ann 16, iii, pp 94-112
iron-ore product of Bilboa district compared with that of Michigan ...MR 1891,
pp 18, 38
lead production of.......MR 1882, p 322; MR 1883-84, pp 434, 436; MR 1885, pp
264-267; MR 1893, p 99; Ann 16, iii, pp 372, 375-376; Ann
17, iii, pp 156, 157; Ann 18, v, pp 256, 257-258; Ann 19,
vi, pp 220-221; Ann 20, vi, p 246; Ann 21, vi, pp 245, 246
manganese deposits and production of, statistics of.................MR 1886,
p 201; MR 1887, pp 159-160; MR 1889-90, p 139; MR 1893,
pp 145-146, 155; Ann 16, iii, pp 453-457; Ann 17, iii, pp
217, 225; Ann 18, v, pp 318-324, 328; Ann 19, vi, p 120;
Ann 20, vi, pp 151-152, 157; Ann 21, vi, pp 166-167, 162
mining law of..MR 1883-84, p 1000
other production of, statistics of..............................Ann 19, vi cont, p 641;
Ann 20, vi cont, p 727; Ann 21, vi cont, p 578
phosphate deposits of....................................Bull 46, pp 45, 53-59
pyrites production of, statistics of..............................MR 1883-84,
pp 882-884; MR 1885, pp 507-508; MR 1886, pp 654-
656; Ann 18, vi cont, p 1260; Ann 19, vi cont, p
573; Ann 20, vi cont, p 655; Ann 21, vi cont, p 522
quicksilver mines of.............Ann 8, ii, pp 965, 966; Mon xiii, pp 4, 7, 14, 27-32
quicksilver production of, statistics of..........................MR 1882, pp 392, 393;
MR 1883-84, p 496; MR 1885, pp 290-292; MR 1887, p 125; MR
1888, pp 105, 106; MR 1891, pp 123, 124; MR 1893, p 118
salt production of, statistics of...Ann 16, iii, pp 217, 225; Ann 18, v, pp 120;
Ann 19, vi, pp 151-152, 157; Ann 21, vi, pp 166-167, 162
silver production of, compared with that of other countries......MR 1883-84
pp 319, 320
tin deposits and production ofMR 1883-84, p 618; Ann 16, iii, pp 465, 512
zinc production of, statistics of..............................MR 1882, p 358; MR
1883-84, pp 480, 489-490; MR 1885, p 277; MR 1886, p 159; MR 1887, p 117;
MR 1888, pp 95; MR 1890, pp 113, 114; MR 1892, pp 135,
136; MR 1893, pp 107, 108; Ann 16, iii, pp 383, 385; Ann 17,
iii, pp 171, 173, 175; Ann 18, v, pp 274, 276, 278; Ann 19,
vi, pp 234, 236; Ann 20, vi, pp 263, 265; Ann 21, vi, p 266
Spanish Peaks, Colorado, structure of............................Ann 14, ii, p 224
Spar, analysis of, from Missouri, Sainte Genevieve County....Ann 18, v cont, p 1366
analysis of, from New York, near Bedford........................Ann 18, v cont, p 1366
Sparganiaceae from Yellowstone Park................................Mon xxxii, ii, pp 683-684
Sparras sands of Louisiana, features of.........................Bull 142, pp 23-26
Spatangidæ, Mesozoic, of United States.........................Bull 97, pp 78-92
Spearfish formation of Black Hills................................Ann 21, iv, pp 516-519
Speiss, analysis of, from Colorado, Leadville district........Mon xi, pp 719, 720
analysis of, from Nevada, Eureka.................................Mon vii, p 160
Spencer (A. C.), erosional history of La Plata quadrangle, Colorado ..GF 60, p 11
Spencer (A. C.) and Cross (W.), geology of Rico Mountains, Colorado....Ann 21,
ii, pp 7-165
Spencer (J. W.), elevations in Dominion of Canada..................Bull 6
Spessartite, analysis of, from North Carolina, Forsyth and Yancey counties...Bull
74, p 48
analysis of, from Virginia, Amelia County.....................Bull 60, p 129
chemical constitution of..Bull 125, pp 21, 24
garnet from, analysis and description of, from Texas, Llano County....Bull 90,
pp 39-40
Sphaeropsidæ from Lower Coal Measures of Missouri................Mon xxxvii, p 15
Sphalerite in Montana, Butte district .. GF 38, p 6
Sphene, analysis of, from District of Columbia Bull 27, p 262
chemical constitution of ... Bull 125, pp 79, 105
crystal of, around ilmenite, thin section of, from Michigan, above Upper Quinnesec Falls (from dioritic rock) Bull 62, pp 232-233

(See, also, Titanite.)
Sphenoclase, chemical constitution of Bull 125, pp 84, 106
Sphenophyllales from Lower Coal Measures of Missouri Mon xxxvii, pp 173-187
Spheneopteridaceae from Carboniferous of Missouri Mon xxxvii, pp 35-74; Bull 98, pp 45-60
Spheral paring in greenstones .. Bull 62, pp 166-168, 177
Spheralid weathering in igneous rocks, description and illustration of Bull 150, pp 385-387

in shale from Dry Creek, California, description of, as one of educational series Bull 150, p 387
Spherulite, thin section of, from Pennsylvania, South Mountain (in aporhyolite) Bull 136, pp 110, 111, 112, 113; Bull 150, pp 346-347
thin section of, from Yellowstone Park................................. Ann 7, pp 272-273, 276-277; Mon xxxii, ii, pp 414-415; Bull 150, pp 156-157
Spherulites, analyses of, from Colorado, various localities Bull 90, p 69; Bull 148, p 170; Bull 168, p 152
analyses of, from Yellowstone Park, Obsidian Cliff Ann 7, pp 282, 291
description and figures of .. Bull 150, pp 153-160
of Yellowstone Park ... Ann 7, pp 262-264, 276-278; Mon xxxii, ii, pp 410-416
relation of granophyre groups to Ann 7, pp 274-276
Spherulitic structure, thin section of, from Yellowstone Park Mon xxxii, ii, pp 422-423
Sphinx conglomerate of Montana .. GF 24, p 3
Spiegel, imported, analyses of ... MR 1883-84, p 561, 562
Spiegelgeisen, production of .. MR 1891, p 56; Ann 21, vi, p 93
Spilosite, analysis of, from Germany, Harz Mountains Mon xxxvi, p 207
analysis of, from Michigan .. Mon xxxvi, pp 207, 210; Bull 148, p 97; Bull 168, p 69
thin sections of, from Michigan, Crystal Falls district Mon xxxvi, pp 302-303, 304-305, 306-307
Spinel, analyses of, from North Carolina, Madison County Bull 74, p 33
chemical constitution of ... Bull 125, pp 47-48, 56
composition of .. Bull 150, p 31
occurrence of ... MR 1882, p 486; MR 1883-84, p 737; MR 1892, pp 762-763
Spirit leveling in Indian Territory, triangulation and Bull 175
in the various States, results of, 1896-1900 Ann 18, i, pp 225-422; Ann 19, i, pp 191-408; Ann 20, i, pp 292-530; Ann 21, i, pp 376-582
Spodumene, analysis of, from Massachusetts, Norwich Bull 126, pp 156, 157
analysis of, from North Carolina, Alexander County Bull 74, p 44
chemical constitution of ... Bull 125, pp 87, 88, 104
occurrence and statistics of ... MR 1882, pp 488-489; MR 1889-90, p 448; MR 1891, p 540; MR 1892, pp 781; MR 1893, p 682; Ann 16, iv, p 605
Spokane quadrangle, Washington, forest conditions in Ann 21, v, pp 582
Spokane River, Washington, description of WS 4, pp 27-28
Spokane shale of Montana, description and section of Ann 20, iii, pp 282-283
Spondylide from Colorado formation Bull 106, pp 69-70
from Cretaceous of Pacific coast Bull 133, p 25
from lower marl beds of New Jersey Mon ix, pp 57-64
Spondylidæ from Miocene marls of New Jersey

Sponges, relation of fossil meduse to

Spongia from Cambrian and Devonian of Nevada, Eureka district.

SPHALERITE—STANFORD.

SPONGES, relation of fossil meduse to

Spring section, ideal

Springs, classes of, and those in Lahontan Basin

Springs, hot, character and cause of

Springs, mineral. (See Mineral Springs.)

Springs and spring deposits of Rico Mountains, Colorado

Springs and subterranean streams, erosion and transportation by

Sproull (H. S.), gypsum, statistics of

structural materials, statistics of

Spurr (J. E.), coast of Alaska from Bristol Bay to Yukon

Kuskokwim drainage area

Lakes Iliamna and Clark

Noatak River

Nushagak River

reconnaissance in southwestern Alaska, in 1898

work in charge of, 1886–1900

Spurr (J. E.) and Post (W. S.), report of Kuskokwim expedition (1898),

Square Lake limestone of Maine, faunas of

Squaw Gulch, Cripple Creek district, Colorado, character of ore deposits in

Squaw Mountain, Cripple Creek district, Colorado, character of ore deposits in

Stadia and transit work in survey of Idaho-Montana boundary line

Stahl (E.) and Huntley (D. B.), list of ores, minerals, and mineral substances of industrial importance in Arizona

Staked Plains formation

Stalactite, analysis of, from Montana, near Butte (sky-blue)

description of, as one of the educational series of rocks

Stamford gneiss in Massachusetts, Hoosac Mountain

Stanford conglomerate of Montana

SEPARATION OF SILICA FROM CALCIUM CARBONATE.
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.

profile of

Stanislaus and Lake Tahoe forest reserves, California, and adjacent territory, report on..........................Ann 21, v, pp 499-651

Stanton (T. W.), Colorado formation and its invertebrate fauna........Bull 106 contributions to Cretaceous paleontology of Pacific coast; fauna of Knox-
vilie beds..Bull 133

faunal relations of Eocene and Upper Cretaceous on Pacific coast......Ann 17, i, pp 1005-1060

Mesozoic fossils of Yellowstone Park Mon xxxi, ii, pp 600-650

work in charge of, 1892-1900........Ann 14, i pp 255-256; Ann 15, pp 182-

184; Ann 16, i, pp 38-39; Ann 17, i, pp 64-66; Ann 18, i, pp 63-64; Ann 19, i, p 63; Ann 20, i, pp 63-65; Ann 21, i, p 90

Starr conglomerate of Tennessee................................GF 20, p 2

Staten Island, New York; wells on................................Bull 138, p 37

States, surveys of, by their cooperation. (See Surveys of States.)

the various, area of land surface of.......................Ann 16, ii, pp 474-476

Statistics of mineral production of United States. (See Mineral production.)

Staunton quadrangle, Virginia–West Virginia, geology of........GF 14

Staunton River, Virginia, flow of, measurements of................Ann 18, iv, pp 45-47; Ann 19, iv, pp 180-181; Ann 20, iv, p 50; Bull 140, p 68; WS 11, p 13; WS 15, pp 26-27; WS 27, pp 33, 44

Staurolite, analysis of..Bull 125, p 64

analysis of, from Massachusetts, Chesterfield......................Bull 128, p 160

from North Carolina..Bull 74, p 60

chemical constitution of..Bull 125, pp 63-64, 103

composition of...Bull 150, p 38

occurrence and statistics of...................................MR 1883-84, pp 742-743; MR 1893, pp 682, 699; Ann 16, iv, p 605

Standingstone quadrangle, Tennessee, geology of...................GF 53

Steamboat Springs, Nevada, scorodite from.........................Bull 61, p 30

Steamboat Springs district, Nevada, springs of....................Mon xiii, pp 339-340

Steatite, analysis of, from Massachusetts (crystallized).................Bull 126, p 91

from New Hampshire, Francestown, description of, as one of educational

series..Bull 150, pp 365-367

Steel, analysis of (tungsten).....................................Ann 16, iii, p 619

analysis of, from Krupp shell..................................Bull 55, pp 87-88

carburation of, effect of mechanical strain on......................Bull 94, pp 40-47

cooling, sudden, exhibited by, effect of.........................Bull 42, pp 98-131

electric resistance and density, relation between, when varying with tem-

der of..Bull 27, pp 30-50

galvanic, thermo-electric, and magnetic properties of, etc.........Bull 14

oxide films on, relation between time of exposure, temper value, and color

in..Bull 27, pp 51-61

physical definition of......................................Bull 14, p 173

solution of, effect of strain on rate of........................Bull 94, pp 48-62

structure, internal, of tempered................................Bull 35, pp 11-50

viscosity of, and its relations to temper and to temperature........Bull 73, pp 1-73

(See, also, Iron.)

Steel and iron in United States, twenty-one years of progress in manufacture of................................MR 1885, pp 180-195
Steel and iron in United States, twenty years of progress in manufacture
of..MR 1891, pp 47-73
Steel and iron industries in United States, statistics of...MR 1883–84, pp 246–257; MR
MR 1892, pp 12–22; MR 1893, pp 13–22; Ann 16, iii, pp 219–
250; Ann 17, iii, pp 45–71; Ann 18, v, pp 51–140; Ann 19,
v, pp 65–89; Ann 20, vi, pp 61–101; Ann 21, vi, pp 69–118
Steel and iron and allied industries in all countries................Ann 16,
iii, pp 219–250; Ann 18, v, pp 51–140
Steel industry of United States.................................Bull 25
Steenstrupine, chemical constitution of.........................Bull 125, p 78
Steep rock series of Ontario...................................Bull 86, pp 70–72
Stegosaurid of North America.................................Ann 16, i, pp 186–196
from Denver Basin, remains of...............................Mon xxvii, pp 498–502
Steiger (G.), solubility in water of certain natural silicates...Bull 167, pp 159–160
Steiger (G.) and Clarke (F. W.), experiments relative to constitution of pec-
tolite, pyrophyllite, calamine, and analcite...Bull 167, pp 13–25
Stilacoom gravels of Washington.................................GF 54, p 5
Stelleridae, Mesozoic, of United States....Bull 97, pp 31–32
Stephanoceratid from Colorado formation........................Bull 106, pp 181–189
Sterculiaceae from Dakota group..............................Mon xvii, pp 182–195
from Laramie group...Bull 37, pp 83–96
from Yellowstone Park..Mon xxxii, ii, p 742
Sternberg (Kaspar Maria, Graf von), biographic sketch of....Ann 5, p 371
Sterrhophus, remarks on......................................Ann 16, i, p 216
Stevenson (James), death and biographic sketch of..............Ann 9, pp 42–44
Stevenson quadrangle, Alabama-Georgia-Tennessee, geology of....GF 19
Stilbite, analysis of (typical)................................Bull 125, pp 39, 40, 41, 44, 102
analysis of, from Montana, Boulder Hot Springs..............Ann 21, ii, p 243
analysis, description, etc., of, from Colorado, Table Mountain...Bull 20, pp 19–23
chemical constitution of......................................Bull 125, pp 39, 40, 41, 44, 102
Stilpnomelane, analysis of....................................Bull 113, p 20
chemical constitution of....................................Bull 125, pp 54–55, 103
Stinking Water Hot Springs, Wyoming.........................Bull 119, p 67
Stock eruptions in Colorado, La Plata quadrangle..............GF 60, p 10
in Colorado, Telluride quadrangle.............................GF 57, p 14
Stockbridge limestone in Massachusetts................................Mon xxi, pp 64, 181–182, 190; Bull 86, p 365, passim; Bull 159, pp 84–85
in New York..Ann 13, ii, pp 301–303, 333
Stocks in Colorado, Rico Mountains, cross-cutting in........Ann 21, ii, pp 30–31
in Colorado, Telluride quadrangle............................Ann 21, ii, p 96
in Montana, Fort Benton quadrangle...........................GF 55, p 4
in South Dakota–Wyoming, Black Hills.................Ann 21, iii, pp 227–228
in Yellowstone Park...Mon xxxii, ii, pp 92–94, 97–105
Stokes (H. N.), on a petroleum from Cuba.......................Bull 75, pp 98–104
on a supposed mineral resin from Livingston, Montana......Bull 78, pp 105–108
on action of phosphorus oxychloride on ethers and chlorhydrines of silicic
acid..Bull 90, pp 47–55
on amidophosphoric acid....................................Bull 113, pp 80–94
on catalytic action of aluminum chloride on silicic ethers....Bull 113, pp 63–76
on chloronitriles of phosphorus and metaphosphinic acids..Bull 167, pp 77–153
Stomatellidæ from Chico-Tejon series of California..............Bull 51, p 17
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Stone (G. H.), glacial gravels of Maine and their associated depositsMon xxxiv

Stone, building, analysis of, from Kansas, various localities... Ann 16, iv, pp 504–505

exhibit of, at World’s Columbian ExpositionMR 1893, pp 560–602

in Alabama-Georgia-Tennessee, Stevenson quadrangle...........GF 19

in California, Big Trees quadrangle.GF 51, p 8

Jackson quadrangle..GF 11, p 6

Mother Lode district..GF 63, p 11

Placerville quadrangle..GF 3, p 3

Sacramento quadrangleGF 5, p 3

Sonora quadrangle ..GF 41, p 7

in Colorado, Denver Basin....................................Mon xxvii, pp 392–401

Pueblo quadrangle..GF 36, p 6

in Connecticut-Massachusetts, Holyoke quadrangle..............GF 50, p 8

in District of Columbia....................................GF 70, p 7

in Georgia, Ringgold quadrangle..............................GF 2, p 3

Stevenson quadrangle..GF 19, p 3

in Idaho, Boise quadrangle....................................GF 45, p 6

in Kentucky, Estillville quadrangle..........................GF 12, p 5

London quadrangle...GF 47, p 3

Richmond quadrangle..GF 46, p 4

in Maryland, Fredericksburg quadrangle.......................GF 13, p 5

Harpers Ferry quadrangle................................GF 10, p 4

Nomini quadrangle..GF 23, p 4

Piedmont quadrangle..GF 28, p 5

Washington (D. C.) quadrangle.............................GF 70, p 7

in Massachusetts-Connecticut, Holyoke quadrangle............GF 50, p 8

in Montana, Fort Benton quadrangle..........................GF 55, p 6

Livingston quadrangle......................................GF 1, p 3

Three Forks quadrangle....................................GF 24, p 5

in North Carolina-Tennessee, Knoxville quadrangle...........GF 16, pp 5,6

in Oregon, Roseburg quadrangle.............................GF 49, p 4

in Porto Rico...Ann 20, vi cont, pp 772–774

in South Dakota, Black Hills, southern part.................Ann 21, iv, p 590

in Tennessee, Briceville quadrangle........................GF 33, p 4

Chattanooga quadrangle....................................GF 6, p 3

Estillville quadrangle.....................................GF 12, p 5

Knoxville quadrangle.......................................GF 16, pp 5–6

Loudon quadrangle...GF 25, p 5

McMinnville quadrangle....................................GF 22, p 3

Morristown quadrangle.....................................GF 27, p 4

Pikeville quadrangle..GF 21, p 3

Ringgold quadrangle..GF 2, p 3

Sewanee quadrangle...GF 8, p 4

Stevenson quadrangle.......................................GF 19, p 3

in Texas, Uvalde quadrangle..................................GF 64, p 5

in Virginia, Estillville quadrangle........................GF 12, p 5

Franklin quadrangle.......................................GF 32, p 5

Fredericksburg quadrangle.................................GF 13, p 5

Harpers Ferry quadrangle................................GF 10, p 4

Monterey quadrangle.......................................GF 61, p 7

Nomini quadrangle...GF 23, p 4

Pocahontas quadrangle.....................................GF 26, p 5

Washington (D. C.) quadrangle.........................GF 70, p 7

in Washington, Tacoma quadrangle........................GF 54, p 9
Stone, building, in West Virginia, Buckhannon quadrangle..................GF 34, pp 3-4
in West Virginia, Franklin quadrangle..GF 32, p 5
Harpers Ferry quadrangle...GF 10, p 4
Monterey quadrangle..GF 61, p 7
Piedmont quadrangle..GF 28, p 5
Pocahontas quadrangle..GF 26, p 5
in Wyoming, Black Hills, southern part......................................Ann 21, iv, p 590
statistics of..MR 1882, pp 450-457; MR 1883-84, pp 662-667;
MR 1885, pp 396-404; MR 1886, pp 536-556; MR 1887, pp
511-527; MR 1888, pp 521-547; MR 1889-90, pp 373-440; MR
1891, pp 456-473; MR 1892, pp 704-711; MR 1893, pp 542-
602; Ann 16, iv, pp 436-510; Ann 17, vii cont, pp 759-811;
Ann 18, vii cont, pp 949-1068; Ann 19, vi cont, pp 205-309;
Ann 20, vii cont, pp 269-404; Ann 21, vi cont, pp 333-360

tests and analyses of...Ann 20, vi cont, pp 351-464
Stone, lithographic, analysis of, from Bavaria..................................MR 1882, p 596
analysis of, from Missouri...MR 1882, p 596
description of, as one of educational series of rocks..........................Bull 150, pp 132-133
Stone, meteoric. (See Meteoric stone; Meteorite, stony.)

Stones, precious. (See Precious stones.)

Stones, road-building, method of testing.......................................Ann 16, ii, pp 285-290
sources of supply of...Ann 15, pp 288-305
of Massachusetts and other parts of United States........................Ann 16, ii, pp 277-341

Stoneware clay. (See Clay, stoneware.)

Storage, water, in Arizona, Gila River..WS 33
in Maine lakes..Ann 19, iv, pp 37-39
in Nevada, Humboldt River...Ann 20, iv, pp 448-454
Rock Creek..Ann 20, iv, pp 441-447
in New Mexico, Mesilla Valley..WS 10, pp 19-20
in New York..WS 24, p 12; WS 25, pp 109-134
Croton watershed..WS 24, pp 86-87
Genesee River...WS 25, pp 109-125
Hudson River...WS 25, pp 125-134

(See also, Irrigation; Reservoirs.)

Storage reservoirs in irrigation...WS 1, pp 54-56
Storm Ridge, Colorado, sketch of..Ann 14, ii, p 197
Stose (G. W.), work in charge of, 1897-1900.................................Ann 19, ii, pp 130-132;
Ann 20, i, pp 146-149; Ann 21, i, pp 164-168
Stowell (S. H.), petroleum, statistics of..MR 1882, pp 186-211;
MR 1883-84, pp 214-232; MR 1885, pp 130-154

Strain and stress in bodies..Ann 16, i, pp 860-888
Strains under experimental conditions, theory of........................Ann 13, ii, pp 244-245
Strains, tensile, drawn, and other, in their bearing on Maxwell's theory of
viscosity...Bull 94, pp 17-29
Stratigraphic relations of, Potomac formation.................................Ann 15, pp 318-341
Stratigraphy, dynamic significance of..Ann 21, iii, pp 177-178
of Alabama, bauxite region...Ann 16, iii, pp 554-555
Gadsden quadrangle...GF 35, pp 1-2
Stevenson quadrangle..GF 19, p 2
of Alaska, Chandlar and Koyukuk rivers.....................................Ann 21, ii, pp 472-479
Chitina River and Skolai Mountains..Ann 21, ii, pp 422-429, 431-433

Bull. 177—01—48
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Stratigraphy of Alaska, Prince William Sound and Copper River region...... Ann 20, vii, pp 404-413

of Alaska, Pyramid Harbor to Eagle City.. Ann 21, ii, pp 357-360, 362, 363-364, 367, 368-373

southwestern, classification and distribution of................................. Ann 20, vii, pp 147-179, 234-238

Sushitna Basin.. Ann 20, vii, pp 14-17
Tanana-White region.. Ann 20, vii, pp 477-482
Yukon district.. Ann 18, iii, pp 134-223

of California, Bidwell Bar quadrangle.. GF 43, p 3

Big Trees quadrangle.. GF 51, p 34

Coast Ranges.. Mon xiii, pp 56-139; Bull 84, pp 200-217

Colfax quadrangle.. GF 66, pp 1-3

Downieville quadrangle.. GF 37, pp 3

Jackson quadrangle.. GF 11, pp 3, 4-5

Lassen Peak quadrangle.. Ann 8, i, pp 403-425; GF 15, p 1

Marysville quadrangle.. GF 17, p 1

Mother Lode district.. GF 63, pp 1-3, 5-7

Nevada City and Grass Valley districts................................. Ann 17, ii, pp 79-89, 102-111

Nevada City, Grass Valley, and Banner Hill districts......................... GF 29, p 2

notes on... Bull 19

Pyramid Peak quadrangle.. GF 51, p 3

Sacramento quadrangle.. GF 5, pp 2, 3

San Clemente Island.. Ann 18, ii, pp 489-493

Sierra Nevada.. Ann 14, ii, pp 445-470; Ann 17, i, pp 546-549, 569, 594, 597-612,
621-632, 658-663, 683, 684; GF 3, pp 1-2; GF 5, p 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2;
GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2

Smartsville quadrangle.. GF 18, pp 3, 4-5

Sonora quadrangle.. GF 41, pp 3-4

Truckee quadrangle.. GF 39, pp 3-4

of Catoctin belt.. Ann 14, ii, pp 318-352

of Colorado, Anthracite and Crested Butte quadrangles......................... GF 9, pp 6-10

Aspen district.. Mon xxxi, pp 4-44

Denver Basin.. Mon xxvii, pp 10-42, 51-76, 151-254

eastern.. Ann 17, ii, pp 560-570

Franciscan series.. Ann 15, pp 435-442

Elmoro quadrangle.. GF 58, pp 1-2

La Plata quadrangle.. GF 60

Leadville district.. Ann 2, pp 215-226; Mon xi, pp 45-73, 276-281

northwestern, and parts of Utah and Wyoming.................................. Ann 9, pp 685-691

Pikes Peak quadrangle.. GF 7, pp 1-2, 4

Pueblo quadrangle.. GF 36, p 2

Rico Mountains.. Ann 21, ii, pp 25-29, 37-78

Spanish Peaks quadrangle.. GF 71, pp 1-2

Telluride district.. Ann 18, iii, pp 759-760; GF 57, pp 2-5

Tenmile district.. GF 48, p 1

Walsenburg quadrangle.. GF 68, pp 1-3

of Connecticut, Holyoke quadrangle.. GF 50, pp 4-5

of Georgia, bauxite region.. Ann 16, iii, pp 554-555

Ringgold quadrangle.. GF 2, pp 1-2

Stevenson quadrangle.. GF 19, p 2

of glacial Lake Agassiz.. Mon xxv, pp 65-107
Stratigraphy of Idaho .. Ann 16, ii, pp 224-234
of Idaho; Idaho Basin, Neocene and Pleistocene formations Ann 18, iii, pp 632–634, 657–675
of Illinois-Indiana, Danville quadrangle GF 67, p 1
of Indiana Territory, Eastern Choctaw coal field Ann 21, ii, pp 271–279
of Indiana, natural-gas field Ann 11, i, pp 504–601, 624–630
of Iowa, northeastern ... Ann 11, i, pp 304–335
of Kansas, Fort Riley Military Reservation Bull 137, pp 16–28
southwestern ... Bull 57, pp 18–44; WS 6, pp 27–37
of Kentucky, Big Stone Gap coal field Bull 111, pp 31–38
Estillville quadrangle ... GF 12, pp 2–3
London quadrangle .. GF 47, p 2
Richmond quadrangle .. GF 48, pp 2–3
of Lake Superior region ... Ann 21, iii, pp 316–318; Bull 86, pp 173–174
of Maryland, Chesapeake Bay, head of................................ Ann 7, pp 593–616
Fredericksburg quadrangle ... GF 13, pp 2–4
Harpers Ferry quadrangle .. GF 10, p 1
Nomini quadrangle ... GF 23, pp 1–2
Piedmont quadrangle ... GF 28, pp 2–4
Washington (D. C.) quadrangle GF 70, pp 3–5
of Massachusetts, Holyoke quadrangle GF 50, pp 4–5
Marthas Vineyard .. Ann 7, pp 325–343
western ... Mon xxix, passim; GF 50, pp 1–3
Marquette district ... Mon xxviii, pp 221–487
of Minnesota, Keweenaw series Mon v, pp 127–133, 151
of Mississippi Valley, driftless area of Upper Ann 6, pp 219–220
of Missouri, Coal Measures .. MR 1892, p 431
of Montana, Castle Mountain district Bull 139, pp 30–55
Fort Benton quadrangle ... GF 55, pp 2, 4
Judith Mountains ... Ann 18, iii, pp 464–484
Little Belt Mountains ... Ann 20, iii, pp 279–296
Little Belt Mountains quadrangle GF 56, pp 1–8
Livingston quadrangle ... GF 1, p 2
Three Forks quadrangle ... GF 24, pp 2–3
of Nebraska, southeastern .. WS 12, pp 15–24
west of 109d meridian .. Ann 19, iv, pp 731–760
of Nevada, Eureka district .. Ann 3, pp 248–273; Mon vii, pp 5–11; Mon xx, pp 84–98
of New Jersey, Cretaceous and Tertiary formations Mon ix, pp ix–xii
of Newark system .. Bull 85, pp 32–44
of New York, eastern, and Vermont, western Ann 19, iii, pp 177–192
of North Carolina, Knoxville quadrangle GF 16, pp 1–5
of Ohio ... Ann 19, iv, pp 638–649
bituminous coal field .. Bull 65
Huntington quadrangle ... GF 69, pp 2–5
of Oregon, northwestern ... Ann 17, i, pp 454–479
Roseburg quadrangle .. GF 49, pp 1–3
of Pennsylvania, bituminous coal field Bull 65
of Plateau country .. Ann 6, pp 131–140
of South Dakota, Black Hills, northern Ann 21, iii, pp 117–182
Black Hills, southern part ... Ann 21, iv, pp 505–549
southeastern portion of .. WS 94, pp 11–22
756 INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Stratigraphy of Tennessee, Briceville quadrangle GF 33, pp 1-3
of Tennessee, Bristol quadrangle GF 59, pp 2-5
Chattanooga district .. Ann 19, ii, pp 16-19
Chattanooga quadrangle .. GF 6, pp 1-2
Cleveland quadrangle ... GF 20, pp 2-3
Estillville quadrangle GF 12, pp 2-3
Kingston quadrangle .. GF 4, p 2
Knoxville quadrangle .. GF 16, pp 1-5
Louder quadrangle ... GF 25, pp 1-4
McMinnville quadrangle GF 22, pp 1-2
Morristown quadrangle GF 27, pp 1-3
phosphate region ... Ann 17, ii, pp 521-523
Pikeville quadrangle GF 21, pp 1-2
Ringgold quadrangle .. GF 2, pp 1-2
Sewanee quadrangle ... GF 8, p 2
Standingstone quadrangle GF 53, pp 2-3
Stevenson quadrangle GF 19, p 2
Wartburg quadrangle .. GF 40, pp 1-2
of Texas .. TF 3, pp 2-3
Black and Grand prairies Ann 21, vii, pp 89-344
Edwards Plateau and Rio Grande Plain Ann 18, ii, pp 215-256
Nueces quadrangle .. GF 42, pp 2-3
Rio Grande coal field Bull 164, pp 15-55
Uvalde quadrangle .. GF 64, pp 1-3
of Utah, Mercur district. Ann 16, ii, pp 370-377
Oquirrh Mountains .. Ann 16, ii, pp 361-364
portions of Colorado, Wyoming, and Ann 9, pp 685-691
Tintic district .. Ann 19, iii, pp 618-631, 670, 673; GF 65, p 1
of Vermont, western, and New York, eastern........ Ann 19, iii, pp 177-192
of Virginia, Big Stone Gap coal field.................. Bull iii, pp 31-38
Bristol quadrangle ... GF 59, pp 2-5
Estillville quadrangle GF 12, pp 2-3
Franklin quadrangle .. GF 32, pp 1-4
Fredericksburg quadrangle GF 13, pp 2-4
Harpers Ferry quadrangle GF 10, p 1
Monterey quadrangle GF 61, pp 2-5
Pocahontas quadrangle GF 26, pp 2-3
Richmond Basin ... Ann 19, ii, pp 422-444
Staunton quadrangle GF 14, pp 1-2
Tazewell quadrangle GF 44, pp 2-3
of Washington, northern Ann 20, ii, pp 112-128
Puget Sound .. Ann 18, iii, pp 400-404
southeastern .. WS 4, pp 50-56
Tacoma quadrangle .. GF 54, pp 2-3
of West Virginia, bituminous coal field................ Bull 65
Buckhannon quadrangle GF 34, pp 1-2
Franklin quadrangle .. GF 32, pp 1-4
Harpers Ferry quadrangle GF 10, p 1
Huntington quadrangle GF 69, pp 3-5
Monterey quadrangle GF 61, pp 2-5
New and Kanawha rivers Ann 17, ii, pp 487-509
Piedmont quadrangle GF 28, pp 2-4
Pocahontas quadrangle GF 26, pp 2-3
Stratigraphy of West Virginia, Staunton quadrangle GF 14, pp 1–2
of West Virginia, Tazewell quadrangle GF 44, pp 2–3
principles of pre-Cambrian North American Ann 16, i, pp 716–742
relations of cleavage and fissility, joints, and faults to .. Ann 16, i, pp 668, 672, 678
of metamorphic sedimentary and igneous rocks to Ann 16, i, pp 707–708, 714–716

(See, also, Algonkian; Archean; Cambrian; Carboniferous; Cretaceous; Devonian; Eocene; Jurachias; Neocene; Pleistocene; Silurian.)

Straub Mountain, Colorado, rocks of......................... Ann 16, ii, p 100
Stream, overloaded, example of................................. TF 2, p 6
Stream basins, types of, in southern Appalachians Ann 19, ii, pp 34–35
Stream capture in West Virginia, Buckhannon quadrangle GF 34, p 1

in Nicaragua .. Ann 20, iv, pp 594–637
in Porto Rico .. WS 32, pp 24–28
methods of Ann 11, ii, pp 6–10; Ann 14, ii, pp 96–100; Ann 19, iv, pp 18–27; Ann 20, iv, pp 20–22; Ann 21, iv, pp 28–41
methods and results of Ann 14, ii, pp 89–155
Stream water supply of eastern United States Ann 14, ii, pp 30–38
Stream work in relation to soils Ann 12, i, pp 288–293
Streams, adjustment of, to structures, especially in Connecticut Ann 18, ii, pp 162–163, 175–178
adjustments of, in Colorado, La Plata quadrangle GF 60, p 12
asymmetry of, causes of Ann 18, iii, pp 285–289
drainage areas of, measurements of Bull 140, pp 342–347; WS 11, pp 95–100
erosion of, Ferrell’s law Mon xxix, p 734
in Georgia, Apalachicola Basin, list of Ann 20, iv, pp 175–177
general discussion of Ann 18, iv, pp 68–72
migration of .. Ann 12, i, pp 303–304
pollution of, consideration of WS 3, pp 18–23; WS 22, pp 15–22
repulsion of tributaries, theory of Mon xxix, p 746
superposition (possible) of certain, in Connecticut . Ann 18, ii, pp 165–166
terraces of construction and destruction formed by ... Ann 11, i, pp 256–273
Stress and strain in bodies Ann 16, i, pp 860–868
Striae, glacial, in Connecticut, Holyoke quadrangle GF 50, p 6
in Hudson Bay and Lake Superior region and westward, table of Mon xxxviii, pp 633–642
in Illinois, etc., district covered by Illinois lobe Mon xxxviii, pp 84–88, 140, 412–417
in Massachusetts, Holyoke quadrangle GF 50, p 6
in Minnesota, Minnesota River Valley Bull 157, p 45
in South Dakota, southeastern Bull 158, pp 68–69, 110–112
in United States, eastern, map of Ann 7, pp 154–155
of the great ice invasions Ann 7, pp 155–248
Striation, cross, and changes of glacier movement Ann 7, pp 200–207
Strigovite, analysis of Bull 113, p 18
chemical constitution of Bull 125, pp 55, 103
INDEX TO PUBLICATIONS OF U. S. GEO. SURVEY. [Bull. 177.]

Strike, hade, throw, etc., definitions of................................Ann 4, p 442
Strikes in coal mines in 1890, 1897, and 1898............................MR 1891, pp 184, 185, 219-220, 262; Ann 19, vi, pp 324-328
Strombidse from clays and marls of New Jersey........................Mon xvin, pp 108-119, 186-187, 222
from Colorado formation.................Bull 106, pp 146-149
Stromeyerite, from California, San Bernardino County, description and analysis of........Bull 61, p 27
Strontium, statistics ofMR 1882, p 582; MR 1886, pp 699-700
Strouhal (V.) and Barns (C.), effect of sudden cooling exhibited by glass and
by steel ..Bull 42, pp 98-131
electric and magnetic properties of iron carburetsBull 14
physical properties of iron carburetsBull 35
relation between electric resistance and density when varying with temper
of steel ..Bull 27, pp 30-50
relation between time of exposure, temper value, and color in oxide films
on steel ..Bull 27, pp 51-61
Structural features of rocksBull 150, pp 13-18
Structural geology. (See Faults; Folds; Igneous rocks; Metamorphic rocks;
Sedimentary rocks.)
Structural principles applicable to metamorphic rocks........Mon xxvii, pp 157-158
Structural work in iron, fossiliferous rocks, principles ofAnn 16, i, pp 734-739
Structure, bearing of, on topography of Great PlainsAnn 16, ii, pp 573-579
flow and fracture of rocks as related toAnn 16, i, pp 845-874
folding and faulting in Narragansett Basin......................Mon xxvi,
mechanics of Appalachian................................Ann 13, ii, pp 211-281
of Alabama, bauxite regionAnn 16, iii, pp 556-560
of Gadsden quadrangle,GF 35, pp 2-3
Stevenson quadrangle.................GF 19, pp 2-3
of Alaska, Skolai RangeAnn 21, ii, pp 434-435
Sushitna Basin, notes onAnn 20, vii, pp 19-20
Tanana-White region,Ann 20, vii, pp 477-482
of Appalachian Mountain region..............Bull 111, pp 19-27
mechanics of Appalachian, southern, gold fields ofAnn 16, iii, pp 265-272
of Arizona, Kaibab PlateauMon ii, pp 140-157
of Basin RangesAnn 17, i, pp 533
of Black Hills, southern partAnn 21, iv, pp 549-554
of California, Bidwell Bar areaAnn 17, i, pp 554-556
Colfax quadrangle,GF 66, p 4
Downieville quadrangleGF 37, pp 5-6
Franciscan series,Ann 15, pp 435-442
Lassen Peak quadrangleGF 15, p 2
Mother Lode district,GF 63, p 6
of Cascade Range, notes onAnn 20, iii, pp 32-36
of Catoctin belt,Ann 14, ii, pp 355-366
of Colorado, Anthracite-Crested Butte quadrangles...............GF 9, pp 7-8
Aspen districtMon xxvii, pp 42-50, 79-150, 410-412
eastern, Cretaceous rocks ofAnn 17, ii, pp 572-574
Leadville regionAnn 2, pp 240-244
Mosquito Range,Mon xii, pp 34-39, 202-203, 284-291
WARMAN.

Structure of Colorado, Pikes Peak quadrangle..GF 7, p 4

of Colorado, portions of Utah, Wyoming, and.................................Ann 9, pp 691-706

Pueblo quadrangle..GF 36, p 4

Rico Mountains..Ann 21, II, pp 21-25, 98-128

San Juan Mountains, relation of Rico structure to..............Ann 21, II, p 23

Spanish Peaks quadrangle......................................GF 71, pp 2-3

Telluride quadrangle..GF 57, pp 10-13

Tennille quadrangle..GF 48, pp 3-4

Walsenburg quadrangle..GF 68, pp 2-3

of Connecticut, Trias in................................Ann 7, pp 461-495; Mon xiv, pp 5-8

of District of Columbia..GF 70, pp 5-6

of Georgia, bauxite region................................Ann 16, III, pp 556-560

Ringgold quadrangle..GF 2, p 2

Stevenson quadrangle..GF 19, pp 2-3

of Great Basin..Ann 2, pp xviii, 198-200; Ann 3, pp 196-197; Ann 17, p 533; Mon 1, pp 340-362; Mon xx, pp 10, 211

of Idaho..Ann 16, II, pp 248-250

of Indiana...Ann 11, I, pp 623-653

gas and oil fields..Ann 8, I, pp 573-580, 639

of Kentucky, Estillville quadrangle...GF 12, pp 3-4

London quadrangle..GF 47, p 3

Richmond quadrangle..GF 46, p 3

of Lake Superior Basin...Ann 3, pp 174-179; Mon v, pp 410-418

of Maine, Mount Desert Island....................................Ann 8, II, pp 1035-1060

of Maryland, Harpers Ferry quadrangle...GF 10, pp 3-4

Piedmont quadrangle..GF 28, pp 4-5

southern, Piedmont Plateau..Ann 15, pp 691-695

Washington (D. C.) quadrangle..GF 70, pp 5-6

of Massachusetts, Green Mountains in....................................Mon xxiii, pp 7-9

Monument Mountain..Mon xxiv, pp 136-180

Mount Greylock...Mon xxv, pp 181-185

Nantucket..Bull 53, pp 15-26

of Michigan, Crystal Falls district..Ann 19, III, pp 22-25, 68; Mon xxxvi, pp 25-29, 158-162

Keweenaw series..Ann 3, pp 116-127; Mon v, pp 134-151

Penokee series..Ann 10, I, pp 445-458

of Montana, Fort Benton quadrangle.......................................GF 55, p 4

Judith Mountains..Ann 18, III, pp 576-587

Little Belt Mountains...Ann 20, III, pp 384-385

of mountains, especially of Rocky Mountains........................Mon xii, pp 24-27

of Nevada, Prospect Mountain and Ruby Hill............................Ann 4, pp 223-250; Mon vii, pp 11-50

of New Jersey, Trias in.....................................Mon xiv, pp 5-8

of New York, eastern, and Vermont, western............................Ann 19, III, pp 192-226, 297-298

Rensselaer grit plateau..Ann 13, II, pp 316-334

of Newark areas...Ann 21, III, pp 25-26

of North Carolina, Knoxville quadrangle................................GF 16, p 3

of Ohio, gas and oil fields......................................Ann 8, I, pp 573-580, 639

Huntington quadrangle..GF 69, p 5

of Oregon, Coos Bay coal field...................................Ann 19, III, pp 321-387

STRIKE—STRUCTURE.

759
Structure of Potomac formation Mon xv, pp 47-53
of Sierra Nevada Bull 33, pp 12-16, 21
of Tennessee, Briceville quadrangle GF 33, pp 3-4
Bristol quadrangle GF 59, pp 5-6
Chattanooga district Ann 19, ii, pp 19-21
Chattanooga quadrangle GF 6, p 2
Cleveland quadrangle GF 20, p 3
Estillville quadrangle GF 12, pp 3-4
Kingston quadrangle GF 4, pp 2-3
Knoxville quadrangle GF 16, p 3
Loudon quadrangle GF 25, p 4
McMinnville quadrangle GF 22, p 2
Morristown quadrangle GF 27, pp 3-4
Pikeville quadrangle GF 21, pp 2-3
Ringgold quadrangle GF 2, p 2
Sewanee quadrangle GF 8, p 2
Standingstone quadrangle GF 53, p 3
Stevenson quadrangle GF 19, pp 2-3
Wartburg quadrangle GF 40, p 3
of Texas, Black and Grand prairies .. Ann 21, vii, pp 361-386
Nueces quadrangle GF 42, p 3
Uvalde quadrangle GF 64, p 4
of Utah, Mercur district Ann 16, ii, pp 370-377
Oquirrh Mountains Ann 16, ii, pp 360-361
portions of Colorado, Wyoming, and ... Ann 9, pp 691-706
Tintic district GF 65, p 1
Uinta Basin Ann 17, i, pp 927-929
of Vermont, Green Mountain region, and eastern New York Ann 16, i, pp 543-570
ridge between Taconic and Green Mountain ranges ... Ann 14, ii, pp 525-549
of Virginia, Bristol quadrangle GF 59, pp 5-6
Estillville quadrangle GF 12, pp 3-4
Franklin quadrangle GF 32, pp 4-5
Harpers Ferry quadrangle GF 10, pp 3-4
Monterey quadrangle GF 61, pp 5-6
Pocahontas quadrangle GF 26, pp 3-4
Richmond Basin GF 65, p 1
Staunton quadrangle GF 14, p 3
Tazewell quadrangle GF 44, p 4
Washington (D. C.) quadrangle GF 70, pp 5-6
of Washington, Puget Sound coal fields Ann 18, iii, pp 404-405, 424-436
of West Virginia, Buckhannon quadrangle ... GF 34, pp 2-3
Franklin quadrangle GF 32, pp 4-5
Harpers Ferry quadrangle GF 10, pp 3-4
Huntington quadrangle GF 69, p 5
Monterey quadrangle GF 61, pp 5-6
New-Kanawha River region Ann 17, ii, pp 484-486
Friedmont quadrangle GF 28, pp 4-5
Pocahontas quadrangle GF 26, pp 3-4
Staunton quadrangle GF 14, p 3
Tazewell quadrangle GF 44, p 4
of Wyoming, Absaroka Range Bull 119, pp 29-49
parts of Colorado, Utah, and .. Ann 9, pp 691-706
Structure, relation of vein systems to, in Nevada City and Grass Valley districts. Ann 17, ii, pp 167-168, 260
(See, also, Diastrophism; Fault; Unconformity.)
Stubs (W. C.), phosphate rock in Alabama. MR 1883-84, pp 794-803
Stuntz (G. R.), observations on Lake Superior by. Ann 18, iii, pp 601-602
Sturgeon quartzite of Michigan, Crystal Falls district. Ann 19, iii, pp 105-110, 125; Mon xxxvi, pp 398-405, 430-431
of Michigan, Menominee district. GF 62, pp 2-3
Sturgeon River tongue, Michigan, geology of. Ann 19, iii, pp 146-151; Mon xxxvi, pp 458-487
Subaerial decay of rocks and origin of red color of certain formations. Bull 52
Subirrigation in Colorado, San Luis Valley. Ann 21, iv, pp 263-265
in Kansas, western. Ann 21, iv, p 222
pipes and hydrants used in. Ann 13, iii, pp 338-341
Subsidence in Coastal Plain. GF 13, p 5; GF 23, p 3
in Texas, Nueces quadrangle. GF 42, p 3
of fine solid particles in liquids. Bull 36; Bull 60, pp 139-145
of Mount Desert, Maine, during and after Glacial period, evidences of. Ann 8, ii, pp 1009-1034
Subsidence and elevation in Massachusetts, Cape Ann district, evidences of recent. Ann 9, pp 567-574
inferred from Cenozoic and Mesozoic rocks of Alabama. Bull 43, pp 136-138
(See, also, Diastrophism.)
Substitution theory of formation of quicksilver ores. Mon xiii, pp 394-401
Sucarnoochee series of Alabama, correlation of. Ann 18, ii, p 348
Succinidse, nonmarine fossil, of North America. Ann 3, p 457
Sudbury River, Massachusetts, flow of, measurements of. Ann 20, iv, pp 46, 74-75; Bull 140, pp 35-37; WS 35, p 37
Sudworth (G. B.), Battlement Mesa Forest Reserve. Ann 20, v, pp 181-243
Stanislaus and Lake Tahoe forest reserves, California, and adjacent territory. Ann 21, v, pp 499-561
Suessonian formation of England and France, correlation of. Ann 18, ii, p 346
Sugarloaf arkose of Connecticut and Massachusetts. Mon xxi, pp 354-358; GF 50, p 5
Sulphate, analyses of, from Arizona, Mohave County (cupric). Bull 55, p 55
analysis of, from California, Knoxville. Bull 61, p 24
from Colorado, Leadville district (basic). Mon xii, p 550
from Utah, Tintic mining district (basic). Ann 19, iii, p 707
Sulphate of lime as an impurity of brines. Ann 7, pp 500-504
Sulphate of soda, analysis of, from Colorado, Morrison. MR 1882, p 604
analysis of, from Wyoming, various localities. MR 1882, p 603
residue from. MR 1887, p 639
salts from. Bull 60, p 29
statistics of. MR 1882, pp 603-604
Sulphates. (See the various minerals.)
Sulphates, basic ferric. Mon xii, pp 549-550
Sulphide minerals, solubility of. Ann 17, ii, p 179
Sulphur in California, Sulphur Bank, deposition of. Mon xiii, p 254
Sulphur in Hawaii, occurrence of..........................Ann 19, vi cont, pp 684-685
in Nevada..Ann 21, vi, pp 207-208

statistics of..MR 1882, pp 578-579; MR 1883-84, pp 864-876; MR
1885, pp 494-500; MR 1886, pp 644-647; MR 1887, pp 604-
610; MR 1888, pp 5, 10-11; MR 1889-90, pp 515-517; MR
1891, pp 564-571; MR 1892, pp 784-791; MR 1893, pp 739-
742; Ann 16, iv, pp 636-644; Ann 17, iii cont, pp 958-972;
Ann 18, v cont, pp 1243-1258; Ann 19, vi cont, pp 557-572;
Ann 20, vi cont, pp 641-652; Ann 21, vi cont, pp 503-518

Sulphur and pyrites, relative merits of, in manufacture of sulphuric acid .MR 1893,
pp 743-745

Sulphur Creek group of Uinta MountainsBull 82, p 235

Sulphur ore, reduction of, method of, in Italy...........Ann 21, vi cont, pp 511-516

Sulphur springs in Montana, Little Belt Mountains quadrangleGF 56, pp 8-9

Sulphurets, analyses of, from Nevada, various localities (concentrated)Ann 17,
ii, pp 126-127

Sulphuric acid, analysis of..................................MR 1886, p 670

Sumatra, fossil plants of, literature of.........................Ann 8, n, p 805

Sun Prairie quadrangle, Wisconsin, glacial phenomena inTF 1, p 3

Sun River, Montana, flow of, measurements of...Ann 11, ii, p 94; Ann 12, ii, pp 234,
347, 360; Ann 13, iii, pp 93, 98; Ann 20, iv, p 53; WS 15, p 72
hydrography and surveys of basin of.................Ann 11, ii, pp 43-94, 120, 123
irrigation engineering works of the system........Ann 13, iii, pp 571-586

Sunstone, occurrence and statistics of....................................MR 1882, p 495; MR 1883-84,
pp 771-772, 781; MR 1885, p 443; MR 1886, p 604; MR 1887,
pp 556, 557; MR 1888, pp 584, 585; MR 1889-90, pp 446, 447;
MR 1891, p 540; MR 1892, p 781; MR 1893, p 681; Ann 16, iv,
pp 604

Superior, Lake, copper-bearing rocks of region of........Ann 1, pp 70-71;
Ann 2, pp xxxi-xxxiv; Ann 3, pp 89-188; Mon v
fluctuations of, from 1870 to 1888..........................Bull 72, p 18
gelogic maps of parts of basin of.........................Ann 3, pp 92-93, 172-173
outflow of, measurements of..........................WS 36, pp 177-178
rocks in region of, succession, correlation, etc., of..........Ann 16, i, pp 780-807

(See, also, Michigan; Minnesota; Wisconsin.)

Superjacent series of California..........................GF 3, pp 1, 3; GF 5, pp 1, 3; GF 11,
pp 1, 4; GF 17, p 1; GF 18, pp 4-5; GF 31, pp 1-2, 5-8; GF
37, pp 1, 5-6; GF 39, pp 1-2, 5-8; GF 41, pp 1-2, 6; GF 43,
pp 1, 4-6; GF 51, pp 1, 5-7; GF 63, pp 5-6; GF 66, pp 5-7
relation of Bed-rock series to...........................GF 29, p 1

Surficial deposits of Texas, Black and Grand prairies.......Ann 21, vii, pp 345-361
(See Pleistocene.)

Survey of boundary line between Idaho and Montana, from international
boundary to crest of Bitterroot Mountains.................Bull 170
of northwestern boundary of United States...................Bull 174
Survey, United States Geological, laws establishing and extending to...

plan and organization of.. Ann 1, pp 6-14; Ann 7, pp 3-17;

Surveying, topographic, manual on.................................. Mon xxii

Surveys of public lands, system of.................................. Mon xxii, pp 101-105

of States by their cooperation:

Alabama.............................. Ann 20, i, pp 98, 111-112; Ann 21, i, pp 114, 128
Connecticut.......................... Ann 10, i, pp 7, 88; Ann 11, i, p 6; Ann 12, i, p 5
Maine.............................. Ann 20, i, p 98; Ann 21, i, pp 114, 128
Maryland............................... Ann 18, i, pp 100, 102; Ann 19, i, pp 86, 98; Ann 20, i, pp 99, 110; Ann 21, i, pp 114, 125
Massachusetts.......................... Ann 5, p xviii; Ann 6, p 4; Ann 9, p 4
New Jersey............................. Ann 6, pp 5-7; Ann 8, i, pp 72, 99-100
New York.............................. Ann 17, i, p 98; Ann 18, i, pp 100, 101; Ann 19, i, pp 86, 97-98; Ann 20, i, pp 99, 100-110; Ann 21, i, pp 114, 122-123
North Carolina.......................... Ann 18, i, pp 100, 102; Ann 20, i, p 111
Pennsylvania............................ Ann 20, i, pp 98, 110; Ann 21, i, pp 114, 123-125
Rhode Island.............................. Ann 9, p 51; Ann 10, i, pp 7, 85-86
West Virginia.............................. Ann 20, i, pp 99, 110

under the United States and State governments................. Mon xxii, pp 2-5

Sushitna Basin, Alaska, reconnaissance in, in 1898........ Ann 20, vii, pp 1-29
Sushitna drainage area, Alaska, notes on.......................... Alaska (2), pp 111-112
Sushitna expedition (1898), Alaska, report of..................... Alaska (2), pp 15-27
Sushitna slate series of Alaska................................. Ann 20, vii, pp 15-16; Alaska (2), p 20
Susquehanna River, flow of, measurements of................... Ann 19, iv, pp 122-127; Ann 20, iv, pp 48, 100-110; Ann 21, iv, pp 87-92; WS 15, pp 8-11; WS 27, pp 17, 23, 24; WS 35, pp 75-79, 80-81

profile of.. WS 44, pp 17-19

Swamp, coast, an example of.. TF 21, p 2
Swamp reclamation in India.. Ann 12, i, p 561
Swamp soils, character of.. Ann 12, i, pp 311-317
fertility of, after drainage and removal of peat........ Ann 10, i, pp 308-310
Swamp and marsh deposits of Cape Cod district........ Ann 18, ii, pp 571-572
Swamps, classification of.. Ann 10, i, pp 261-285
development of, process of.. Ann 6, pp 363-373
economic problems connected with marine........................ Ann 6, pp 374-380
marshes, salt, of New England and Long Island, catalogue of the larger. Ann 6, pp 390-398
morasses, economic uses of.. Ann 10, i, pp 303-310
effect of certain plants on formation of........................ Ann 10, i, pp 285-295
morasses, fresh-water, of United States, with description of Dismal Swamp. Ann 10, i, pp 255-339
of eastern United States, seacoast................................ Ann 6, pp 353-398
which owe their origin to glacial action........................ Ann 10, i, pp 295-303
Swank (J. M.), American iron industry from beginning, in 1619, to 1886... MR 1886, pp 23-38

American and foreign iron trades in 1899.......................... Ann 21, vi, pp 69-118
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Swank (J. M.), iron and steel and allied industries in all countries........Ann 16, iii, pp 219-250; Ann 18, v, pp 51-140

iron ores in United States.....................................MR 1883-84, pp 257-281

iron ore and its products......................................MR 1882, pp 108-144

iron trade in 1897, 1898, and 1899, and immediately preceding years, the

foreign..Ann 19, vi, pp 84-89; Ann 20, vi, pp 89-101; Ann 21, vi, pp 69-118

twenty-one years of progress in manufacture of iron and steel in United

States...MR 1885, pp 180-195

twenty years of progress in manufacture of iron and steel in United

States...MR 1891, pp 47-73

Swansea rhyolite of Utah, Tintic district........................GF 65, p 2

Swauk sandstone of Washington, northern....................Ann 20, ii, pp 118-123

Sweden, building-stone industry in............................MR 1893, pp 579-582

clay deposits of..Ann 19, vii cont, pp 448-449

clay products of, at Paris Exposition of 1900........Ann 21, vi cont, pp 390-391

coil production of, statistics of..................................MR 1882, p 5; MR 1883-84,

copper production of, statistics of..............................MR 1883-84,
p 356; MR 1885, p 228; MR 1886, p 128; MR 1887, p 87;
MR 1888, p 73; MR 1889-90, p 73; MR 1891, p 100; MR 1892, p 114; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii, pp 117, 118; Ann 18, v, pp 219, 220; Ann 19, vi, pp 176, 177; Ann 20, vi, pp 202, 203; Ann 21, vi, pp 204, 205

fauna of Olenellus zone in..Ann 10, i, pp 577-578

fossil medusas of..Mon xxx, pp 47-65

fossil plants of, literature of....................................Ann 8, ii, pp 779-781

gold and silver production of, compared with that of other countries...MR 1883-1884, pp 319, 320

iron, iron ore, and steel from, statistics of..................MR 1882, p 108; MR 1883-84,
p 257; MR 1885, p 193; MR 1886, p 21; MR 1887, p 18;

iron-ore deposits of; character, distribution, methods of mining, etc........Ann 16, iii, pp 113-129

lead production of, statistics of...............................MR 1883-84, p 434; MR 1885, p 264

nickel production of, statistics of.............................MR 1882, pp 405-406

tin production of, statistics of..................................MR 1883-84, p 619

zinc production of, statistics of................................Ann 16, iii, p 388

Sweetwater River, California, flow of, measurements of................Ann 18, iv, pp 415-416; Ann 21, iv, pp 485-486; Bull 140, pp 322-327; WS 39, pp 429-430

Sweetwater and adjacent mountains, geology of, literature of........Bull 86, pp 275-279

Sweetwater Pliocene of Wyoming................................Bull 84, pp 310-311, 317, 335

Switzerland, aluminum production of, statistics of...............MR 1892, p 228

iron and iron ore from, statistics of..........................Ann 16, iii, pp 23, 141-146
Sycamore sands of Texas...Ann 21, vi, p 142
Syenite, analysis of, from Alaska, Alaska-Treadwell mine..........Ann 18, iii, p 39
 analysis of, from Colorado, Blue Mountains..................Ann 20, iii, p 467
 from Colorado, San Juan region..............................Bull 168, p 162
Silver Cliff..Ann 17, ii, p 281; Bull 148, p 169; Bull 150, p 185; Bull 168, p 151
 from Hungary, Hodritsch Vale..................................Ann 20, iii, p 473
from Kentucky, Elliott County, inclusion of, in peridotite........Bull 42, p 137
 from Montana, Barker...Ann 20, iii, pp 466, 580
 Bearpaw Mountains...GF 7, p 2
 Crazy Mountains..GF 60, p 10
 Highwood Mountains..GF 5, p 3

Little Belt Mountains..
 from Arkansas, tests of, results of............................MR 1889-90, p 379
 from Colorado, Custer County, description of, as one of the educational series........Bull 150, pp 183-186
 in Alaska, southern..Ann 18, iii, pp 36-47
 in California, Big Trees quadrangle................................GF 51, p 5
 in Colorado, La Plata quadrangle................................GF 56, p 3
 Silver Cliff...Ann 17, ii, pp 280-282
 in Maine, Aroostook volcanic area..............................Bull 165, p 149
 in Montana, Fort Benton quadrangle............................GF 55, p 3
 Judith Mountains..Ann 18, iii, p 561
 Little Belt Mountains quadrangle................................GF 56, p 3
Syenite family of rocks, scope and characteristics ofAnn 17, i, pp 726-729
Syenite group of rocks from Alaska..Ann 20, vi, pp 201-204
Syenite, augite-, of Keweenaw series....................................Mon v, pp 112-124
Syenite-diorite-porphyry, analysis of, from Montana, Bear Park....Ann 20, iii, pp 573, 580
 analysis of, from Montana, Little Belt Mountains...............Ann 20, iii, pp 518-520; Bull 148, p 148; Bull 168, p 127
Syenite, hornblende-, of Michigan, Marquette district................Ann 15, pp 504-505; Mon xxvii, pp 176-177
Syenite, nepheline-, of Montana, Cripple Creek district...............Ann 16, ii, pp 43-45, 66, 82, 87
Syenite-porphyry, analysis of, from Montana, Little Belt Mountains........Ann 20, iii, p 514; Bull 148, p 147; Bull 168, p 125
 analysis of, from Montana, Yogo-Big Baldy Peak..............Ann 20, iii, p 581
 from Vermont, Mount Ascutney....................................Bull 148, pp 68, 69; Bull 168, pp 24, 25
 from Yellowstone Park, Absaroka Range..........................Bull 168, p 95
 in Colorado, Cripple Creek district............................Ann 16, ii, pp 66, 93; GF 7, p 7
 La Plata quadrangle..GF 60, p 7
 in Montana, Fort Benton quadrangle................................GF 55, p 3
 Judith Mountains...Ann 18, iii, pp 562-565
 Little Belt Mountains...Ann 20, iii, pp 513-515
 Little Belt Mountains quadrangle................................GF 56, p 3
Syenite-porphyry in Montana, microscopic petrography of... Bull 139, pp 106-108
Syenitic rocks, thin section of, from Montana, Threeforks........... Bull 110, p 53
Syenite-porphyry in Montana, microscopic petrography of... Bull 139, pp 106-108
Syenitic inclusions in granite, analysis of, from Montana, Castle Mountain district.......... Bull 139, pp 135, 136; Bull 168, p 130
Syenitic rocks, thin section of, from Montana, Threeforks........... Bull 110, p 53
Sylvania sandstone of Ohio....................................... Ann 8, p 565
Syncline of Lake Superior Basin......................... Ann 3, pp 174-179; Mon v, pp 410-418
Synopsis of American fossil Bryozoa, including bibliography and synonymy... Bull 173
Syntagmatite, chemical constitution of.......................... Bull 125, p 91
Synthesis or mixing in igneous rocks, processes of........... Ann 18, iii, pp 307-308
Syria, asphaltum industry in, statistics of MR 1893, pp 667-669
Sezko, analysis of, from Hungary.................................. Bull 60, p 36
Table Mountain, Colorado, minerals from basalt of.............. Bull 20, pp 13-39
Tachatna series of pre-Tertiary rocks of Alaska........ Ann 20, vii, pp 157, 159, 179, 187, 235
Tachylite-basalt, analysis of, from Connecticut, near Meriden.................. Ann 21, iii, p 81; Bull 148, p 79; Bull 168, p 35

Taconic, Mount. (See Rainier, Mount.)
Tacoma quadrangle, Washington, forest conditions in........... Ann 21, v, pp 578-579
giology of ... GF 54
Taconian or Taconic system.................. Ann 8, pp 243, 379, 390, 464-468, 474, passim
Taconic, on use of name... Bull 30, pp 65-70
Taconic Range in Vermont................................. Ann 13, ii, pp 339-340
giology of, literature of.............................. Bull 86, pp 361, 363, 379, 390, 393
Taconic synclinorium, description of................ Ann 13, ii, pp 317-319
Teniophyllum from Lower Coal Measures of Missouri Mon xxxvii, pp 247-256
Taff (J. A.), Camden coal field of southwestern Arkansas........ Ann 21, ii, 313-329
giology of McAlester-Lehigh coal field, Indian Territory........ Ann 19, iii, pp 423-456
work in charge of, 1895-1900.. Ann 17, i, pp 22-23; Ann 19, i, p 40; Ann 20, i, p 43; Ann 21, i, p 77
Taff (J. A.) and Adams (G. I.), geology of eastern Choctaw coal field, Indian Territory........ Ann 21, ii, pp 257-311
Taff (J. A.) and Brooks (A. H.), geology of Buckhannon quadrangle, West Virginia......................... GF 34
Taff (J. A.), Willis (B.), and Darton (N. H.), geology of Piedmont quadrangle, Maryland-West Virginia............... GF 28
Tahkandit series of Alaska, distribution, correlation, etc., of........ Ann 18, iii, pp 169-175, 257-258; Alaska (1), p 23
Tahoe Lake as a reservoir for irrigation purposes.......... Ann 11, ii, pp 169-173
water of, analysis of.. Mon xi, p 42
Talc, analysis of, from Colorado, Leadville district (Chinese)......... Mon xi, pp 560-603
analysis of, from North Carolina, Jackson County............ Bull 74, p 61
from North Carolina, Nantahala River, near mouth of........ Bull 74, p 61
from Virginia, Fairfax County..................................... Bull 78, p 13
chemical constitution of... Bull 125, pp 94-95, 106
composition of... Bull 150, p 40
deposits of, in New York, St. Lawrence County........ Ann 18, v, cont, pp 1072-1074
Ann 18, v, cont, pp 1071-1075; Ann 19, vi, cont, pp 313-314;
Ann 20, vi, cont, pp 553-555; Ann 21, vi, cont, pp 415-417
Talc-schist of Sierra Nevada.. Ann 17, i, p 579
Talcott diabase in Holyoke quadrangle, Connecticut and Massachusetts........ GF 50, p 6
Tallahatta or Orangeburg formation, correlation of........... Ann 18, ii, p 344
Tallapoosa River, flow of, measurements of... Ann 18, iv, p 110; Ann 19, iv, pp 249-250; Ann 20, iv, pp 51, 193-194; Ann 21, iv, pp 151-152; WS 15, p 56; WS 27, pp 56, 57, 58; WS 36, pp 152-153

WARMAN.]

SYENITE—TEJON. 767

profile of..WS 44, p 32

Talus, formation of, process of..Ann 12, i, pp 232-236

Tampa group of rocks of Florida, correlation of......................Ann 18, n, p 340; Bull 84, pp 112-123, 332, 335

Tanana River, Alaska, expeditions to, in 1898................Alaska (2), pp 40-50, 64-75

evaluations in basin of, sketch of . Ann 20, vii, pp 436-439

features of...Ann 21, ii, pp 351-352

reconnaissance from Resurrection Bay to............................Ann 20, vii, pp 265-340

routes and distances along..Ann 21, ii, pp 384-386

Tanana and White River basins of Alaska, reconnaissance in, in 1898......Ann 20, vii pp 425-494

Tanana schists of Alaska, character, correlation, etc., ofAnn 20, vii, pp 313-315, 468-469; Alaska (2), pp 46, 68

Tank steamers, petroleum ..Ann 21, vii cont, pp 19-20

Tantallite, analysis of, from Dakota, Etta tin mineMR 1888, p 151
.Analysis of, from North Carolina, Yancey County.................Bull 74, p 72

Taoe district of Rio Grande, hydrography and irrigation in.........Ann 12, ii, pp 251-256

Tar as a by-product from distillation of coal, statistics of..........Ann 20, vii cont, pp 227-229-231

Tariff of March 3, 1883, certain schedules from...................MR 1882, pp 777-787

Tasmania, coal production of, statistics of.........................Ann 16, iii, p 247; Ann 18, v, p 414; Ann 19, vi, p 311; Ann 20, vii, p 332

iron-ore deposits of..Ann 16, iii, p 185

coral plants of, literature of..................................Ann 8, ii, pp 814-815

tin deposits and production of................................Ann 16, iii, pp 455, 503-509

Taxaceae from Lower Coal Measures of Missouri...........Mon xxxvii, pp 271-274

from Older Mesozoic of North Carolina..........................Ann 20, ii, pp 304-305

Taxonomy of lower part of geologic column.........................Ann 7, pp 448-454

work in, by the Survey..Ann 14, i, pp 65-122, 217, 238-239

Tazewell quadrangle, Virginia—West Virginia, geology of..........GF 44

Teay formation of West Virginia and Ohio.........................GF 69, p 5

Tejuelche formation of South America, correlation of................Ann 18, ii, p 336

Tejon formation or group, correlation of............................Ann 18, ii, pp 346-347

in California..Mon xiii, pp 179, 299; Bull 82, pp 182, 192-195, 197, 200; Bull 83, pp 95, 98, 99, 100-106, 108-110; Bull 84, p 335; GF 3, p 1; GF 17, p 2; GF 31, p 1; GF 37, p 1; GF 41, p 6; GF 43, p 1; GF 51, p 1

(See Correlation; Nomenclature.)

Taylor (F. W.), cobalt, statistics of............................MR 1882, pp 421-423

Taylor (T. U.), the Austin (Texas) dam................................WS 40

Taylor formation of Texas......................................Ann 18, ii, p 240; Ann 21, vii, pp 336-338

Taylor, Mount, and Tuzú Plateau................................Ann 6, pp 105-198

Taylor Peak and Wolf Butte, Montana, geology of................Ann 20, iii, pp 341-343

Tazewell quadrangle, Virginia—West Virginia, geology of..........GF 44

Teay formation of West Virginia and Ohio.........................GF 69, p 5

Tejuelche formation of South America, correlation of................Ann 18, ii, p 336

Tejon formation or group, correlation of............................Ann 18, ii, pp 346-347
Tejon formation or group in Sierra Nevada........................ Ann 17, i, p 659
literature relating to, digest of.................................. Bull 83, pp 100-110
localities of ..Ann 17, i, pp 461
Tejon (lower) species, descriptions of some................ Ann 17, i, pp 1036-1060
Tejon (?) sandstone and Monterey shale, notes on........ Ann 15, p 458
Tejon, Chico, series.................................. Ann 16, pp 68-70, 73;
Bull 15, pp 11-17; Bull 19, pp 14, 17; Bull 83, pp 100-110
historical review, local development and stratigraphy, notes on species,
etc., of .. Ann 17, i, pp 1013-1036
in Oregon and Washington, equivalents of.................. Bull 51, pp 28-32
of California, new fossil Mollusca from....................... Bull 51, pp 11-27
Tejon House Creek, flow of, measurements of.............. Ann 18, iv, pp 400-402;
Bull 131, p 79; Bull 140, pp 260-262
Teleostomi from Eocene of middle Atlantic slope........... Bull 141, p 60
Tellico sandstone in North Carolina, Tennessee, and Virginia GF 16, p 4;
GF 20, p 3; GF 25, p 3; GF 27, p 3; GF 59, p 4
Tellinidae from Colorado formation.......................... Bull 106, pp 111-114
from lower marls of New Jersey............................. Mon ix, pp 164-171
from Puget group... Bull 51, p 61
from Miocene marls of New Jersey......................... Mon xxv, pp 77-79
Tellowa formation in Virginia and West Virginia............ GF 44, pp 4, 5
Telluride quadrangle, Colorado, geology of.................. GF 57
mining industries of.................................. Ann 18, ii, pp 745-850
Tellurides from California, mineralogic notes on........... Bull 167, pp 60-63
of gold in Colorado, Cripple Creek district.................. Ann 16, ii, p 121
Tellurium, statistics of.................................. MR 1882, p 447; MR 1886, pp 648-649
Telotremata, biologic development of......................... Bull 87, pp 85-88
Temescal Creek, California, flow of, measurements of..... WS 39, pp 425-426
Temper, chemical interpretation of.......................... Bull 14, pp 77-79, 88, 98
in steel, hydroelectric effect of.......................... Bull 42, pp 121-129
Temper and viscosity of steel, relation between............ Bull 73, pp 1-52
Temper, electric resistance, and viscosity.................... Bull 94, pp 31-33
Temperance River group in Minnesota........................ Mon v, pp 323-329
Temperature, effect of, in production of petroleum and natural gas Ann 8,
ii, pp 493, 495-496
effect of, in subsidence of fine solid particles in liquids.... Bull 36, pp 20-24
on glaciation.. Mon 1, pp 276-283
on molluscan life.. Bull 11, p 38
in Arizona, Gila Basin.................................. WS 2, pp 17-19
in Michigan.. WS 39, pp 22-29, 33, 50-52
in mines of Comstock lode, Nevada......................... Ann 2, p 312; Mon iii, pp 228-265, 387-392; Mon iv, pp 389-400
of Nevada City and Grass Valley districts, California.. Ann 17, ii, pp 170-171
in New Mexico, Mesilla Valley........................... WS 10, p 14
in New York (average)................................... WS 24, p 19
Oatka Creek drainage area (mean).......................... WS 24, p 70
in Porto Rico... WS 32, pp 22-24
in Texas... Bull 164, p 15; TF 3, pp 11-12
in Washington... GF 54, p 1
southeastern.. WS 4, pp 11-12
inequalities of, as cause of errors in barometric hypsometry Ann 2, pp 420-425, 536
influence of, on crystallization of igneous magmas........... Bull 66, p 25
Temperature, influence and effect of, in annealing of steel............Bull 14, pp 43-59
of artesian water .. Ann 5, pp 165-167
of artesian waters, deeper, in South Dakota.............Ann 18, iv, pp 606-616
of Genesee River, New York.................................. WS 24, p 58
of Lake Tahoe at different depths Mon xi, p 72
of Muskingum River, Ohio (mean).......................... WS 24, pp 55-56
(See, also, Heat; Thermal.)
Temperature and electric conductivity, relation betweenBull 14, pp 15-27
Temperature and pressure, dependence of fluid volume onBull 92, pp 17-67
Temperature and relative humidity in Nicaragua............ Ann 20, iv, pp 579-581
Temperature and strain from sudden cooling, relations between . .Bull 42, pp 98-112
Temperature and viscosity of steel, relation betweenBull 73, pp 53-73
Temperature, high, experimental work on rock fusion in Bull 103
investigations in relation to Ann 14, i, pp 150-153
thermo-electric measurement of ..Ann.4, pp 53-59; Ann 10, pp 179-180; Bull 54
Temperature, constant high, degree of, attained in metallic vapor baths of large
dimensions .. Bull 54, pp 56-83
Temperature coefficient of steel................................ Bull 14, pp 15-24
Temperature data for color effect in oxidation of iron carburets ...Bull 35, pp 51-67
Temperature gradient of rocks in Richmond Basin............... Ann 19, ii, p 503
Temperature gradients, underground, at Wheeling deep well (4,771 feet),
West Virginia Ann 12, i, p 63; Ann 13, i, pp 95-97
at Wheeling deep well and Comstock lode Ann 14, i, pp 159-160
Tempering of steel, conditions which determine efficacy of operation of.....Bull 14,
pp 28-75
Tempering of steel and magnetic retention and stability............Bull 14, pp 151-172
Tenderfoot Hill and Poverty Gulch, Colorado, rocks of.........Ann 16, ii, pp 95-96
Tenderfoot, Mineral, and Carbonate hills, Cripple Creek district, Colorado,
character of ore deposits in Ann 16, ii, p 167
Tennille district, Colorado, geology of...................... GF 48
structure and rocks of.................................. Ann 14, ii, pp 222-224
Tennille River beds of Narragansett Basin.................. Mon xxxiii, pp 164-173
Tennantite, analysis of, from Colorado, Aspen mining district....... Mon xxxi, p 224
Tennessee; altitudes in. (See “elevations” under this State.)
atlas sheets of. (See list on p 94 of this bulletin.)
barite in Bristol quadrangle GF 59, p 8
Bays Mountains, structure of Ann 13, ii, p 255
Big Pigeon River, profile of WS 44, p 83
boundary lines of, and formation of State Bull 13, pp 30, 108-109; Bull 171, pp 114-115
Bricville quadrangle, geology of GF 33
brick industry of, statistics of.......................... MR 1887, pp 536, 539; MR 1888, p 563
Bristol quadrangle, geology of GF 59
building stone at World’s Columbian Exposition from............. MR 1893, p 572
in Bricville quadrangle GF 33, p 4
in Chattanooga quadrangle GF 6, p 3
in Cleveland quadrangle GF 20, p 4
in Estillville quadrangle GF 12, p 5
in Knoxville quadrangle GF 16, pp 5-6
in Loudon quadrangle GF 25, p 5
in McMinnville quadrangle GF 22, p 3
in Morristown quadrangle GF 27, p 4

Bull. 177—01——49
Tennessee; building stone in Pikeville quadrangle GF 21, p 3
building stone in Ringgold quadrangle GF 2, p 3
in Sewanee quadrangle ... GF 8, p 3
in Stevenson quadrangle .. GF 19, p 3
production and statistics of MR 1882, p 451; MR 1886, pp 543-544; MR 1887, p 518; MR 1888, pp 533, 541, 543; MR 1889-90, pp 373, 429-430; MR 1891, pp 464, 467, 468, 470; MR 1892, pp 709, 711; MR 1893, pp 547, 549, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, pp 760, 766, et seq; Ann 18, v cont, pp 951, 975 et seq; Ann 19, vi cont, p 237 et seq; Ann 20, vi cont, pp 271, 281 et seq; Ann 21, vi cont, p 335 et seq
cement production of ... Ann 20, vi cont, p 547; Ann 21, vi cont, p 408
Chattanooga district, physiography of Ann 19, ii, pp 1-58
Chattanooga quadrangle, geology of GF 6
clay in Briceville quadrangle GF 33, p 4
in Chattanooga quadrangle GF 6, p 3
in Knoxville quadrangle GF 16, p 6
in Loudon quadrangle .. GF 25, p 6
in McMinnville quadrangle GF 22, p 3
in Morristown quadrangle GF 27, p 5
in Pikeville quadrangle GF 21, p 3
in Ringgold quadrangle .. GF 2, p 3
in Sewanee quadrangle .. GF 8, p 4
in Wartburg quadrangle GF 40, p 4
clay and brick industry in, statistics of MR 1893, pp 609-610
clay products of, statistics of Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 820 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 318 et seq, 370; Ann 20, vi cont, pp 467 et seq, 532; Ann 21, vi cont, pp 362, 363
Cleveland quadrangle, geology of ... GF 20
Clinch River, profile of WS 44, p 55
coal in Briceville quadrangle GF 33, p 4
in Chattanooga quadrangle GF 6, p 2
in Estillville quadrangle GF 12, p 4
in Kingston quadrangle .. GF 4, p 3
in Loudon quadrangle .. GF 25, p 5
in McMinnville quadrangle GF 22, p 2
in Pikeville quadrangle GF 21, p 3
in Ringgold quadrangle GF 2, p 2
in Sewanee quadrangle .. GF 8, p 3
in Standingstone quadrangle GF 53, pp 3-4
in Stevenson quadrangle GF 19, p 3
in Wartburg quadrangle GF 40, p 3
coal area and statistics of Ann 2, p xxvii;
copper deposits and statistics of .. Ann 2, p xxix;
MR 1882, p 231; Ann 20, vi, p 186; Ann 21, vi, p 188
Cumberland River, profile of .. WS 44, pp 55-57
elevations in, lists of .. Ann 19, i, pp 247-249; Ann 20, i, pp 370-380; Bull 5, pp 279-282; Bull 76; Bull 160, pp 666-669
diamonds in, occurrence of .. Ann 21, vi cont, p 422
Estillville quadrangle, geology of ... GF 12
floods on Mississippi River, discussion of .. Ann 20, iv, pp 347-352
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi cont, p 228 et seq
geographic positions in .. Ann 18, i, pp 154-156; Ann 20, i, p 257; Bull 123, pp 99-100
geologic and paleontologic investigations in .. Ann 5, pp 52, 53; Ann 6, pp 24, 25; Ann 7, pp 67, 114; Ann 8, i, p 175; Ann 9, p 76; Ann 10, i, pp 120, 157; Ann 11, i, pp 58, 71, 72, 75; Ann 12, i, pp 54, 62, 75, 78, 79; Ann 13, i, pp 94, 106, 114, 115, 136; Ann 14, i, pp 184-185; Ann 15, pp 130, 141, 147, 149, 150; Ann 16, i, pp 18-20; Ann 18, i, pp 26, 27-29; Ann 19, i, pp 35; Ann 20, i, pp 39-40; Ann 21, i, pp 71, 72, 73, 79
geologic maps of, listed .. Bull 7, pp 102, 103, 104, 107
(See Map, geologic, of Tennessee.)
geologic sections in. (See Section, geologic, in Tennessee.)
gold in Knoxville quadrangle .. GF 16, p 6
gold mining in, history of .. Ann 20, vi, p 112 et seq
Hiwassee River, flow of, measurements of .. WS 36, pp 170-171
Holston River, profile of .. WS 44, pp 64-55
iron, iron ore, and steel from, statistics of .. Ann 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, pp 252, 278; MR 1885, pp 182, 184, 186, 188; MR 1886, pp 14, 18, 33, 92-96, 98; MR 1887, pp 11, 16; MR 1888, pp 14, 17, 22; MR 1889-90, pp 10, 17, 24, 40; MR 1891, pp 12, 25, 54, 55, 61; MR 1892, pp 12, 13, 15, 21, 26, 33, 35, 36, 37, 42; MR 1893, pp 15, 20, 26, 28, 34-35, 38, 39; Ann 16, iii, pp 31, 37, 192, 194, 198-199, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 60, 63, 68; Ann 18, v, pp 24, 37, 41, 42; Ann 19, vi, pp 26, 28, 29, 33, 65, 68, 72; Ann 20, vi, pp 29, 40, 63, 44, 74, 75, 85; Ann 21, vi, pp 34, 48, 52, 53, 90, 92
iron ore in Briceville quadrangle .. GF 33, p 4
Tennessee; iron ore in Bristol quadrangle GF 59, p 8
iron ore in Chattanooga quadrangle ... GF 6, pp 2-3
 in Cleveland quadrangle ... GF 20, p 4
 in Estillville quadrangle .. GF 12, p 5
 in Kingston quadrangle .. GF 4, p 3
 in Knoxville quadrangle ... GF 16, p 6
 in Loudon quadrangle .. GF 25, p 6
 in McMinnville quadrangle .. GF 22, pp 2-3
 in Pikeville quadrangle ... GF 21, p 3
 in Ringgold quadrangle ... GF 2, pp 2-3
 in Sewanee quadrangle ... GF 8, pp 3-4
 in Stevenson quadrangle ... GF 19, p 3
 in Wartburg quadrangle .. GF 40, p 4
Kingston quadrangle, geology of ... GF 4
Knoxville quadrangle, geology of .. GF 6
lead in Briceville quadrangle ... GF 33, p 4
 in Cleveland quadrangle ... GF 20, p 4
 in Morristown quadrangle .. GF 27, p 5
production of, statistics of ... Ann 16, iv, p 382
lime production of, statistics of .. MR 1887, p 533; MR 1888, p 556
lime and cement in Knoxville quadrangle GF 16, p 6
 in Loudon quadrangle .. GF 25, p 6
 in Morristown quadrangle .. GF 27, p 5
limestone in Bristol quadrangle .. GF 59, p 8
 in Chattanooga quadrangle .. GF 6, p 3
 in Estillville quadrangle .. GF 12, p 5
 in Ringgold quadrangle ... GF 2, p 3
production of, statistics of .. MR 1891,
 pp 464, 467; MR 1892, p 711; MR 1893, p 557; Ann 16, iv, p 711;
 pp 437, 494, 495, 509; Ann 17, iii cont, pp 760, 788, 790, 791,
 795; Ann 18, v cont, pp 951, 1044, 1046, 1047, 1066; Ann 19, vi
 cont, pp 207, 281, 282, 283, 306; Ann 20, vi cont, pp 271, 342,
 343, 344, 345, 350; Ann 21, vi cont, pp 335, 357, 358, 359, 360
London quadrangle, geology of .. GF 25
McMinnville quadrangle, geology of GF 22
magnetic declination in .. Ann 17, i, pp 415-417
manganese ore in Ringgold quadrangle GF 2, p 3
production of, statistics of .. MR 1885, p 344; MR 1886, pp 181, 193-194;
 MR 1888, pp 124, 131; MR 1889-90, pp 127, 135; MR 1891,
 p 137; MR 1893, pp 120, 133-134; Ann 16, iv, pp 395, 423-424;
 Ann 17, iii, pp 187, 201-203; Ann 18, v, p 310; Ann 19, vi,
 p 91; Ann 20, vi, pp 126, 135; Ann 21, vi, pp 130, 140
Maps, geologic, of, listed .. Bull 7, pp 102, 103, 104, 107
(See Map, geologic, of Tennessee.)
Maps, topographic, of. (See Map, topographic, of Tennessee; also list on p 94 of this bulletin.)
marble in Bristol quadrangle ... GF 59, p 8
production of, statistics of .. MR 1882, p 461; MR 1886, pp 541, 543; MR 1887,
 p 518; MR 1888, pp 541, 543; MR 1889-90, pp 375, 429; MR
 1891, pp 468, 470; MR 1892, p 709; MR 1893, pp 547, 549; Ann
 16, iv, pp 437, 463, 464, 468-469; Ann 17, iii cont, pp 760, 766,
 767, 768, 769; Ann 18, v cont, pp 951, 975, 977, 978, 981-984;
 Ann 19, vi cont, pp 207, 238, 239, 240, 246; Ann 20, vi cont, pp
 271, 281, 282, 283, 285; Ann 21, vi cont, pp 335, 341, 342, 343
(See "building stone" under this State.)

mineral spring resorts in Ann 14, iv, p 86

minerals of, useful .. MR 1882, pp 730-733; MR 1887, pp 788-792
Morristown quadrangle, geology of .. GF 27

paint, mineral, production of, statistics of MR 1885, p 530; MR 1886, p 711; MR 1889-90, p 510; MR 1891, p 597; MR 1892, p 818; MR 1893, p 761; Ann 16, iv, p 608; Ann 17, iii cont, pp 1016, 1017; Ann 18, v cont, p 1342; Ann 19, vi cont, pp 642, 643; Ann 20, vi cont, pp 728, 729; Ann 21, vi cont, p 579

Nolichucky River, profile of ... WS 44, p 53

petroleum in Standingstone quadrangle GF 53, p 4
in Wartburg quadrangle .. GF 40, pp 3-4
phosphate; classification, location, origin, commercial developments, etc., of ... Ann 16, iv, pp 610-635; Ann 17, ii, pp 513-550
deposits and production of, statistics of MR 1893, pp 709-711; Ann 16, iv, p 607; Ann 17, iii cont, p 951; Ann 18, v cont, pp 1234, 1238-1241; Ann 19, vi cont, pp 536, 547-555; Ann 20, vi cont, pp 620, 621; Ann 21, vi cont, pp 481, 482, 501-502
phosphate, white; origin, extent, varieties, etc........ Ann 21, iii, pp 473-485
phosphate fields, brief reconnaissance of Ann 20, vi cont, pp 633-638
phosphate region, physiography of Ann 17, ii, p 520
Pikeville quadrangle, geology of .. GF 21
Powell River, profile of .. WS 44, p 55
rainfall at Memphis (average) .. Ann 21, iv, p 668
Ringgold quadrangle, geology of .. GF 2
road material in Bricceville quadrangle GF 33, p 4
in Chattanooga quadrangle .. GF 8, p 3
in Loudon quadrangle .. GF 25, p 5
in McMinnville quadrangle .. GF 22, p 3
in Morristown quadrangle ... GF 27, p 4
in Pikeville quadrangle ... GF 21, p 3
in Ringgold quadrangle .. GF 2, p 3
in Sewane quadrangle .. GF 8, p 4
in Stevenson quadrangle ... GF 19, p 3
rocks of, their classification, etc Bull 80, pp 37, 41, 164-166
salt from statistics of .. MR 1892, pp 793, 794; MR 1893, p 720; Ann 16, iv, p 648; Ann 17, iii cont, p 988; Ann 20, vi cont, pp 674, 675
sections, geologic in. (See Section, geologic, in Tennessee.)
Tennessee; Sequatchie River, profile of ... WS 44, p 51
Sewanee quadrangle, geology of .. GF 8
slate in Knoxville quadrangle ... GF 16, p 6
in Loudon quadrangle .. GF 25, p 5
production of, statistics of ... Ann 18,
 v cont, pp 950, 992, 997, 1001; Ann 19, vi cont, p 254; Ann 20,
 vi cont, p 298; Ann 21, vi cont, pp 335, 344, 349, 351
soils in Bristol quadrangle ... GF 59, p 8
in Chattanooga quadrangle ... GF 6, p 3
in Cleveland quadrangle .. GF 20, p 4
in Estillville quadrangle .. GF 12, p 5
in Kingston quadrangle .. GF 4, p 4
in McMinnville quadrangle ... GF 22, p 3
in Pikeville quadrangle .. GF 21, pp 3-4
in Ringgold quadrangle .. GF 2, p 3
in Sewanee quadrangle .. GF 8, p 4
in Stevenson quadrangle ... GF 19, pp 3-4
in Standingstone quadrangle ... GF 53, pp 4-5
Standingstone quadrangle, geology of .. GF 53
Stevenson quadrangle, geology of ... GF 19
Tennessee River, flow of, measurements of .. Ann 18,
 iv, pp 119-122; Ann 19, iv, pp 260-262; Ann 20, iv, pp 52, 210-211; Ann 21, iv, pp 167-168; WS 11, pp 43-46;
 WS 15, p 64; WS 27, pp 64, 65, 66; WS 36, pp 172-175
profile of ... WS 44, pp 49-50
timber in Bricville quadrangle ... GF 33, p 4
in Knoxville quadrangle ... GF 16, p 6
in Loudon quadrangle .. GF 25, p 6
in Morristown quadrangle ... GF 27, p 5
in Wartburg quadrangle .. GF 40, p 4
topographic maps of. (See Map, topographic, of Tennessee; also list on
 p 94 of this bulletin.)
topographic work in .. Ann 4, pp 13-15; Ann 5, pp 4-5; Ann 6, pp 8, 9, 10;
 Ann 7, pp 50, 52; Ann 8, i, p 102; Ann 9, p 55; Ann 10,
 i, p 89; Ann 12, i, pp 27-28; Ann 13, i, p 72; Ann 14, i, p 172;
 Ann 15, i, p 116; Ann 16, i, pp 64, 68, 71; Ann 19, i, pp 97, 100;
 Ann 18, i, p 96; Ann 19, i, pp 89, 91, 99; Ann 21, i, pp 127-128
triangulation in .. Bull 122,
 pp 92-93, 97, 99, 100, 101, 102, 103, 104, 108, 109, 110, 111
Wartburg quadrangle, geology of .. GF 40
water power in Knoxville quadrangle .. GF 16, p 6
in London quadrangle ... GF 25, p 6
in Morristown quadrangle ... GF 27, p 5
woodland area in .. Ann 19, v, p 8
zinc deposits in Bristol quadrangle .. GF 59, p 8
in Morristown quadrangle ... GF 27, p 5
statistics of .. Ann 2, p xxix; MR 1882, p 367
Tennessee Basin, stream measurements in .. Ann 18, iv, pp 116-123; Ann 19,
 iv, pp 256-262; Ann 20, iv, pp 52, 205-211; Ann 21, iv, pp
 163-164, 167-168; Bull 140, pp 80-82; WS 11, pp 42-46; WS
 15, pp 60-64; WS 27, pp 63-64, 65, 66; WS 36, pp 165-175
Tennessee River, profile of ... WS 44, pp 49-50
Tepetate, a crust of white-lime material, in Texas Ann 18, ii, p 256
Tephoirte, chemical constitution of .. Bull 125, pp 66, 104
Terebratellid from Cretaceous of Pacific coast

Terebratulid from Cretaceous of Pacific coast

from marl beds of New Jersey

Terebride from Miocene deposits of New Jersey

Teredid from marls of New Jersey

Teredinide from Puget group

Terra cotta, manufacture and use of

Terra-cotta clay. (See Clay, terra-cotta.)

Terra rossa of southern Europe, equivalent of, in America

Terrace formations of San Francisco Peninsula

Terraces in Alaska, south-western, marine

in Alaska, various parts

in California, San Clemente Island

Truckee quadrangle

in Colorado, Pueblo quadrangle (limestone and gravel)

in Connecticut and Massachusetts, Holyoke quadrangle (alluvial)

in District of Columbia

in Grand Canyon district

in Idaho, gravel

in Maine (river)

in Maryland, Washington (D. C.) quadrangle

in Massachusetts, western-central, and modern deposits

in Mississippi Valley (glacial flood deposits)

in South Dakota

in Texas, along the Colorado, Rio Grande, etc., Pleistocene and Recent

in Virginia, Washington (D. C.) quadrangle

in Washington, northern (stream)

of Lake Agassiz

of various kinds

Terraces, stream-formed, analysis and classification of

Terraces and embankments, formation of

Terraces, embankments, deltas, etc., of shore topography

Terranes, Paleozoic, of Aroostook County, Maine, classification of

Territorial changes in United States, historical sketch of

Tertiary; Neocene, a correlation essay on the

Tertiary erosion in Colorado, La Plata quadrangle

Tertiary fauna; Aphidæ, American, list of known species of

Coleoptera, rhynchophorous, of United States

Ostreidæ, North American

Tertiary flora of North America, the later extinct

of Yellowstone Park

plants of North America, catalogue and bibliography of Cretaceous and

Tertiary fossils of Louisiana

Tertiary geology of Alaska, general notes on

tennese—Tertiary.
Tertiary history of Alaska ... Ann 20, vii, pp 244-248
of Colorado, San Juan region GF 57, p 1
of Grand Canyon district .. Ann 2, pp xii-xvi, 47-166; Mon xi
of Utah, Tintic district ... GF 65, p 4
Tertiary horizons, North American, correlation of, with one another and with
those of western Europe ... Ann 18, ii, pp 323-348
Tertiary lake basins of Rocky Mountains, remarks on GF 1, p 1
Tertiary revolution in topography of Pacific coast Ann 14, ii, pp 397-434
Tertiary rocks; Atlantic group Bull 84, p 321
Bluff lignitic group of Mississippi River Bull 84, p 322
Branden deposits of Vermont Bull 84, pp 33-34
bitumens, deposits of .. Ann 11, i, pp 596-597
Bridger group of the West .. Ann 9, pp 690-691
Browns Park group of the West Ann 9, p 691
Bryn Mawr gravel of Pennsylvania Bull 84, p 45
Cache Lake beds of California Bull 84, pp 201-202
Chilmark series of Massachusetts, Martha's Vineyard Bull 84, pp 37-38
section of .. Ann 7, p 327
Gay Head series of Massachusetts, Martha's Vineyard Bull 84, pp 35-37
Green River group ... Ann 9, p 690
grit of Great Plains, a water-bearing formation Ann 16, ii, pp 580-584
topography of. .. Ann 16, ii, pp 574-577
of Kansas ... Bull 84, p 300
Gulf group of Southern States Bull 84, p 326
Lafayette formation of eastern United States, correlation of Ann 18, ii, p 337; Bull 84, pp 66-67, 74, 80-81, 157, 159-160, 166-167, 170-172, 175
in Catoctin belt .. Ann 14, ii, pp 366-369
in District of Columbia ... GF 70, p 4
in Southern States .. Ann 12, i, pp 547-521; Bull 84, passim
in Virginia, Maryland, and West Virginia Bull 138, pp 126, 164;
GF 10, p 3; GF 13, pp 2-3; GF 23, p 2; GF 70, p 4
lake beds in Sierra Nevada Ann 17, i, pp 598-599
marl of Colorado .. Bull 84, p 305
of Kansas ... Bull 84, p 300
Nashaquitsa series of Massachusetts, Martha's Vineyard Ann 7, p 327; Bull 84, pp 37-38
Neocene, a correlation essay on the Bull 84
of Alabama ... Bull 84, pp 159-160
of Alaska ... Bull 84, pp 232-268, 276-277
Chandler and Koyukuk rivers Ann 21, ii, pp 481-482
Pyramid Harbor to Eagle City (effusives) Ann 21, i, pp 362-363, 370
southwestern, notes on .. Ann 20, vii, pp 171-174
of America, western, divisions and fauna of Ann 5, pp 252-254; Mon x, pp 5-8
of Atlantic coast ... Bull 84, pp 32-158
of Black Hills .. Ann 21, iv, pp 541-545
of British Columbia .. Bull 84, pp 230-232, 273-276
of California ... Bull 15, pp 15-16, 32; Bull 19, pp 10, 13, 17; Bull 51, pp 11-14; Bull 84, pp 200-222, 269-273; Mon xiii, pp 214-221, 461
Lassen Peak district .. Ann 8, ii, pp 413-424
of Canada, British Columbia Bull 84, pp 230-232, 273-276
of Colorado ... Bull 84, pp 304-309
Telluride quadrangle, orographic movements in GF 57, p 14
of Delaware ... Bull 84, pp 45-49, 338
of Florida ... Bull 84, pp 85-158
Tertiary rocks of Georgia .. Bull 84, pp 81-85
of Illinois .. Bull 84, p 172
of Kansas .. Bull 84, pp 31-38; Bull 84, pp 299-301; Bull 137, p 24; WS 6, pp 32-37
of Kentucky .. Bull 84, pp 171-172
of Louisiana ... Bull 142, pp 14-25
of Maryland ... Bull 84, pp 49-55
of Massachusetts, Marthas Vineyard Ann 6, pp 21-22; Bull 84, pp 35-38
Marthas Vineyard, upper limit of Ann 17, i, p 975
Vineyard series, stratigraphy, origin, nature, dips, and dislocations of Ann 7, pp 328-347
Weyquosque series Ann 7, pp 320-321, 340-342; Ann 17, i, pp 960-964; Bull 84, pp 37-38
Nantucket .. Bull 84, p 35
Naushon .. Bull 84, p 38
of Mississippi Bull 84, pp 160-167
of Missouri .. Bull 84, p 172
of Montana, Stanford conglomerate GF 55, p 2
of New England Bull 84, pp 32-38
of New Jersey Bull 84, pp 39-44
of New York, Long Island Bull 84, pp 38-39
of North Carolina Bull 84, pp 68-74
of Oregon Bull 84, pp 223-227, 269-273
of Pacific coast, table showing vertical range of Bull 84, p 279
of Pennsylvania Bull 84, pp 44-45
of Rhode Island Bull 84, p 34
of Sierra Nevada, volcanic, succession of Ann 14, ii, pp 493-495
of South Carolina Bull 84, pp 74-81
of Tennessee Bull 84, pp 170-171
of Texas Bull 45, pp 84-86; Bull 84, pp 172-175, 176-177
Rio Grande coal fields Bull 164, pp 37-54
of Utah, region of Uinta Mountains Ann 9, pp 690-691
of Vermont .. Bull 84, pp 33-34
of Virginia .. Bull 84, pp 55-67
of Washington Bull 84, pp 227-230, 269-273
of western interior region Bull 84, pp 175-177
Shiloh marls of New Jersey Bull 84, pp 40-42
Stanford conglomerate in Montana GF 55, p 2
Tok sandstone of Alaska Ann 21, ii, pp 362, 370
Wasatch group of the West Ann 9, p 690
Weyquosque series of Massachusetts, Marthas Vineyard Bull 84, pp 37-38
yellow clays of Delaware Bull 84, p 338
(See, also, Eocene; Neocene.)
Tertiary and Cretaceous clays of southeastern Massachusetts Ann 17, i, pp 959-964, 999-1000
Tertiary and Cretaceous formations of New Jersey, geology of, sketch of Mon ix, pp ix-xiii
Tertiary and Cretaceous strata of Tuscaloosa, Tombigbee, and Alabama rivers .. Bull 43
Tertiary and later volcanic eruptives of Sierra Nevada Ann 17, i, pp 613-620, 683
Tertiary and Mesozoic paleontology of California Bull 15
Tertiary and post-Tertiary volcanic rocks of Nevada, Eureka district Ann 3, pp 277-287
Teschenite, analysis of, from Maine, Aroostook County, and near Mapleton
village .. Bul 165, pp 183, 188; Bull 168, p 19
analysis of, from Silesia Bull 165, p 183
of Maine, Aroostook volcanic area, outcrops and petrography of Bull 165, pp 116-117, 179-186
Tests of pumps and water lifts used in irrigation..............................WS 14
Tests and analyses of building stone..Ann 20, vi cont, pp 351-464
Teton Forest Reserve, timber, agricultural lands, forests, etc.; ofAnn 19, v, pp 54-56, 191-212
Teton formation of Wyoming..GF 30, p 5
of Yellowstone Park..Mon xxxii, ii, pp 25, 34, 36, 38, 47, 48, 51, 54, 160
Teton Range, Archean and Algonkian literature of.............................Bull 86, p 281
gleology of northern end of..Mon xxxii, ii, pp 149-164
Teton River, flow of. measurements of......................................Ann 11, ii, pp 105, 107, 110; Ann 12, ii, pp 344, 356, 361; Ann 13, iii, pp 97, 99;
Ann 14, ii, pp 127-128; Ann 20, iv, p 61; Bull 131, pp 62-63
Tetra-sodium salt, analysis of..Bull 167, p 99
Tetrad bases, chemical constitution of orthosilicates of......................Bull 125, pp 75-80
Tetradymite, analysis of, from North Carolina, Cabarrus and Davidson
 counties...Bull 74, p 21
in Montana, Butte district..GF 38, p 6
Tetrametaphosphimic acid, analyses of.......................................Bull 167, p 119
preparation, composition, salts, etc., of...................................Bull 167, pp 116-124
Tetraphosphonitrilic chloride, analyses of..................................Bull 167, p 87
Tetraphosphonitrilic chlorides, tri- and......................................Bull 167, pp 77-89
Tewan Mountains, New Mexico, a group of volcanic rocks from, and occurrence
 of primary quartz in certain basalts...................................Bull 66
Texan formations, diagram showing interrelation of..........................Bull 82, p 127
Texan Permian and its Mesozoic types of fossils................................Bull 77
Texan system of rocks...Bull 86, pp 267-269
Texas; altitudes in...Ann 18, i, pp 364-391;
 Ann 19, i, pp 327-353; Ann 20, i, pp 423-457; Ann 21, i, pp 483-495; Bull 5, pp 283-289; Bull 76; Bull 160, pp 680-707
altitudes in Black and Grand prairies, by counties.........................Ann 21, vii, pp 646-649
area of, natural and artificial subdivisions of................................TF 3, pp 1-2
artesian conditions of Black and Grand prairies..............................Ann 21, vii, pp 452-469
artesian reservoirs, depths of, beneath outcrop, table of...................Ann 21, vii, p 423
artesian waters, chemical qualities of.......................................Ann 21, vii, pp 447-451
of Black and Grand prairies..Ann 21, vii, pp 387-451
artesian well systems of..Ann 21, vii, pp 394-447
artesian wells, list of, in..Ann 11, ii, p 272
of Black and Grand prairies, locations and depths of......................Ann 21, vii, pl lviii
asphalt in Uvalde quadrangle..GF 64, p 5
in western...Ann 18, v cont, pp 930-935
asphaltum deposits and production of, statistics of........................MR 1893,
p 637; Ann 16, iv, p 433; Ann 17, iii cont, pp 751, 754-755;
Ann 18, v cont, pp 920, 929-935; Ann 19, vi cont, pp 190, 194;
Ann 20, vi cont, pp 254, 260; Ann 21, vi cont, pp 321, 324
atlas sheets of. (See list on p 95 of this bulletin.).........................WS 40
Austin dam construction and destruction of..................................WS 40
Texas; Balcones scarp line and fault zone..............................Ann 18, v, pp 201, 203, 258-260, pl xxi; Ann 21, vii, pp 382-384; GF 64, p 1
Basement rocks of Black and Grand prairiesAnn 21, vii, pp 86-106
Black and Grand prairies, geography and geology ofAnn 21, vii
structure of rocks of ..Ann 21, vii, pp 361-368
Bosqueville Prairie, general description ofAnn 21, vii, p 76
boundary lines of, and admission of Republic ofBull 13, pp 21, 105-106; Bull 171, pp 111-112; TF 3, p 1
Brazos River, flow of, measurements of.............................WS 28, pp 121, 129, 130; WS 37, pp 272-273
profile of ..WS 44, pp 33-34
brick industry of ..MR 1887, pp 536, 539; MR 1888, pp 563, 566
Ann 17, iii cont, p 760 et seq; Ann 18, v cont, pp 951, 954, 1012 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, pp 271 et seq; Ann 21, vi cont, pp 335 et seq
in Uvalde quadrangle..GF 64, p 5
Burnet country, general description ofAnn 21, vii, p 48
Callahan divide, general description ofAnn 21, vii, pp 46-47; TF 3, p 7
Canadian River, course and character ofTF 3, p 10
cement production of, statistics ofMR 1887, p 511; MR 1888, p 551; MR 1889-90, p 461; MR 1891, p 532; MR 1892, p 739; MR 1893, pp 619, 621; Ann 16, iv, pp 577, 581; Ann 17, iii cont, pp 884, 891; Ann 18, v cont, pp 1170, 1179; Ann 19, vi cont, pp 487, 495; Ann 20, vi cont, pp 539, 547; Ann 21, vi cont, pp 393, 408
Chispa, igneous rocks from vicinity of San Carlos and, report on Bull 164, pp 88-95
clay deposits and production of, statistics ofMR 1891, pp 518-522; MR 1892, pp 735-737; MR 1893, p 610; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 821 et seq; Ann 18, v cont, pp 1078 et seq; Ann 19, vi cont, pp 319 et seq, 371; Ann 20, vi cont, pp 467 et seq, 533; Ann 21, vi cont, pp 362, 363
in Eagle Pass coal field, thickness and character ofBull 164, pp 55-61
in Eocene coal fields, thickness and character ofBull 164, pp 61-66
in Uvalde quadrangle..GF 64, p 5
Rio Grande, reconnaissance inBull 164
Coastal Plain of, general description ofAnn 21, vii, pp 48-50
coke in, manufacture of ..MR 1892, pp 557, 558, 567; MR 1893, p 420; Ann 16, iv, pp 228, 238; Ann 17, iii cont, pp 544 et seq, 667-608; Ann 18, v cont, pp 661 et seq, 732; Ann 19, vi, pp 548 et seq, 627; Ann 20, vi cont, p 228
Texas; Colorado River, flow of, measurements of...Ann 18, iv, p 110; Bull 140, pp 83-84, 86; WS 28, pp 122-124, 129, 130; WS 37, pp 274-275
Colorado River, profile of..WS 44, p 34
Concho River, flow of, measurements of........Ann 18, iv, p 110; Bull 140, pp 84, 86; WS 28, p 130
Copper deposits of..MR 1883-84, pp 342-343
Counties, areas of, in Black and Grand prairies........Ann 21, vii, p 647
Cross Timbers of..Cam 21, vii, pp 80-81, 84
Del Rio, flow of, measurements of........Ann 18, vi, p 110; Bull 140, pp 85, 86
Drainage of...Ann 21, vii, pp 51-58, 64-65
Edwards Plateau, character and extent of........GF 64, p 1
rivers of..TF 3, pp 10-11
water supply of..Ann 18, ii, pp 264-273
Edwards Plateau and Rio Grande Plain adjacent to Austin and San
Antonio, geology of, with reference to occurrence of
underground waters...Ann 18, ii, pp 193-321
El Paso County, fixation of 105th meridian in........Ann 21, vi, pp 193-321
Evaporation at Fort Bliss..Ann 70, pp 71-79
Fort Worth Prairie, general description of........Ann 21, vii, p 77
Frio River, relation of Cretaceous to Eocene along.....Bull 164, p 36
Fry-pan deposits in..Ann 18, ii, p 255
Gainesville Prairie, general description of........Ann 21, vii, p 76
Galisteo Plateau, position and character of........TF 3, p 8
Galveston, deep-well section at........................Ann 21, vii, pp 402-406
gas, illuminating and fuel, and by-products in, statistics of.........Ann 20, vii cont, pp 228, 241, 243, 244, 246, 247, 250
Geographic positions in..Ann 18, i, pp 201-205;
Ann 19, i, p 168; Ann 21, i, pp 321-339; Bull 123, pp 93-96
Geography of..Ann 21, vii, pp 25-85
Geologic and paleontologic investigations in..........Ann 6, pp 75-76;
Ann 8, i, pp 179-180; Ann 9, pp 120-121; Ann 10, i, pp 163-164; Ann 11, i, pp 55, 107; Ann 12, i, p 114; Ann 13, i, p 148; Ann 15, pp 137, 171; Ann 16, i, pp 27-28; Ann 17, i, pp 34-37, 64-65; Ann 18, i, pp 35-37; Ann 19, i, pp 38-40, 63; Ann 20, i, pp 42-43, 63; Ann 21, i, p 76
geologic maps of, listed..Bull 7, pp 139, 140, 141
(See, also, Map, geologic, of Texas.)
geologic sections in. (See Section, geologic, in Texas.)
Geology of, present (1887) condition of knowledge of........Bull 45
Glen Rose Prairie, general description of........Ann 21, vii, p 84
gold in Uvalde quadrangle..GF 64, p 5
gold and silver from, statistics of...............................MR 1889-90, pp 49;
MR 1891, p 77; Ann 21, vi, pp 121-127
Grand and Black prairies, geography and geology of.......Ann 21, vii
Gryphseas of Lower Cretaceous of.......................Bull 151
Guadalupe River, flow of, measurements of..............WS 28, pp 124, 129; WS 37, pp 275-276
Texas; gypsum production of, statistics of........ MR 1891, p 582; Ann 16, iv cont, pp 663, 664; Ann 17, iii cont, pp 979, 980, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 579, 581, 582; Ann 20, vi cont, pp 665, 661; Ann 21, vi cont, pp 526, 527
harbors on coast of...Ann 13, ii, pp 195-197
Howard Bolson, description of..TF 3, p 9
Hueco Bolson, description of..TF 3, p 9
iron, iron ore, and steel from, statistics of........ MR 1882, pp 120, 129, 131; MR 1883-84, p 252; MR 1885, pp 182, 184; MR 1886, pp 18, 33; MR 1887, pp 11, 51-52; MR 1888, pp 14, 23; MR 1889-90, pp 10, 17, 24, 40; MR 1891, pp 12, 27, 54, 55; MR 1892, pp 12, 13, 15, 21, 26, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 38, 39; Ann 16, iii, pp 31, 42, 192, 194, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 68; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 28, 29, 66, 68; Ann 20, vi, pp 29, 43, 44, 75; Ann 21, vi, pp 34, 51, 52, 53, 90
iron-ore knobs ...Ann 21, vii, pp 295-296
of Grayson County..Ann 21, vii, p 71
iron regions of northern Louisiana and eastern Texas, report on, by Lawrence C. Johnson. (See p 113 of this bulletin.)
irrigation, El Paso reservoir, surveys for................................Ann 13, iii, pp 410-422
irrigation systems in...WS 13
Lake McDonald, siting of..WS 40, pp 36-41
Lampasas Cut Plain, character, relations, etc., of........ Ann 21, vii, pp 77-84
Las Moras River, flow of, measurements of..........................Bull 140, pp 85, 86
latitudes and longitudes of Cisco and Sierra Blanca, determination of...Ann 11, i, p 129; Bull 70
lead from, statistics of..Ann 18, v, p 240;
Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229
Leona River, flow of, measurements of... Bull 140, pp 85, 86; WS 37, pp 276-277
lignite beds of ..MR 1891, pp 327-328
lime production of............................... MR 1887, p 533; MR 1888, p 556
limestone production of, statistics of...............................MR 1892, p 711;
lithographic stone in Blanco County.................................MR 1889-90, p 619
Llano Estacado, extent and character of...............................TF 3, p 6
geographic features of...Ann 18, ii, pp 204-205
Llano River, profile of..WS 44, p 35
magnetic declination in..Ann 17, i, pp 418-424
maps, geologic, of. (See Map, geologic, of Texas.)
maps, topographic, of. (See Map, topographic, of Texas; also pp 95-96 and 111 of this bulletin.)
mineral resources of..TF 3, p 12
mineral spring resorts in..Ann 14, ii, p 87
mineral springs of...Bull 32, pp 124-125;
Texas; minerals of, useful MR 1882, pp 733–736; MR 1887, pp 792–794
mountain systems of .. Ann 21, vii, pp 37–39
natural gas localities and statistics of MR 1892, pp 676;
MR 1893, p 536; Ann 16, iv, pp 419, 418, 419; Ann 17, iii cont, pp 734, 735, 738, 739; Ann 18, v cont, pp 900, 901,
916; Ann 19, vi cont, pp 168, 169; Ann 20, vii cont, pp 207, 209, 210, 222; Ann 21, vii cont, pp 299, 301, 302, 304, 315
Nueces quadrangle, geology of .. GF 42
Nueces River, irrigation on WS 13, pp 50–56
profile of .. WS 44, p 35
relation of Cretaceous to Eocene along Bull 164, p 36
Paleozoic era in, summary of history of Ann 21, vii, pp 103–106
Palo Pinto Plain, general description of Ann 21, vii, p 47
Paluxy Cross Timbers, general descriptions of Ann 21, vii, p 83
Pecos River, course and character of TF 3, p 10
flow of, measurements of WS 28, pp 125–126, 130; WS 37, pp 285–286
irrigation on .. WS 13, pp 62–65
profile of .. WS 44, p 37
petroleum localities and statistics of MR 1889–90, pp 292, 359–361;
MR 1892, pp 604, 606, 612; MR 1893, pp 465, 466; Ann 16, iv, pp 517, 519, 520, 378–379; Ann 17, iii cont, pp 626, 629,
630, 631, 701; Ann 18, v cont, pp 750, 751, 754, 755, 848–849;
Ann 19, vi cont, pp 5, 6, 7, 10, 11, 102–105; Ann 20, vi cont,
pp 5, 6, 7, 9, 115–116; Ann 21, vii, pp 2, 6, 7, 8, 11, 12, 148–153
physical geography of .. TF 3
plains of the Texas region .. Ann 21, vii, pp 39–50
Plateau of the Plains, character and extent of GF 64, p 1
population of, distribution of TF 3, p 12
quicksilver deposits in Ann 16, iii, pp 601–604; Ann 21, vii, pp 278–280
rainfall at Amarillo .. Ann 21, iv, p 667
at Austin .. WS 40, p 32
at Galveston (average) .. Ann 21, iv, p 668
at various points in Ann 12, ii, p 244; Ann 13, iii, p 27; Bull 164, p 45; WS 13, pp 21–24
in Nueces quadrangle .. GF 42, p 2
Red River, profile of WS 44, pp 61–62
sections along .. Ann 21, vii, pp 246–249
Red River fault zone .. Ann 21, vii, pp 384–385
Rio Grande, course and character of TF 3, p 10
flow of, measurements of Ann 11, ii, p 99; Ann 12, ii,
pp 280, 350, 360; Ann 13, iii, pp 94, 99; Ann 14, ii, pp 114–115;
Ann 18, iv, pp 257–259; Ann 19, iv, pp 389–390; Ann
20, iv, pp 58, 372; Ann 21, iv, pp 262–263; Bull 131, pp
WS 16, pp 132–133; WS 28, pp 120, 128; WS 37, pp 283–284
irrigation on .. WS 13, pp 56–59
profile of .. WS 44, pp 36–37
Rio Grande coal fields, reconnaissance in Bull 164
Rio Grande Plain, character and extent of GF 64, p 1
geographic features of Ann 18, ii, pp 202–203
water of .. Ann 18, ii, pp 274–321
Sacramento Range, extent and character of TF 3, p 4
Sabine River, flow of, measurements of Bull 140, pp 84–85, 86
salt making in, history of Ann 18, v, cont, p 1309
San Antonio River, flow of, measurements ofAnn 18, iv, p 110; Bull 140, pp 84, 86; WS 28, p 130
San Carlos, igneous rocks from vicinity of Chispa and.......Bull 164, pp 88-95
San Marcos River, flow of, measurements ofAnn 18, iv, p 110; Bull 140, pp 88, 86; WS 28, p 130
San Pedro River, flow of, measurements ofAnn 18, iv, p 110; Bull 140, pp 84, 86
San Saba River, profile ofWS 44, p 35
sections, geologic, in. (See Section, geologic, in Texas.)
sewage-disposal plants inWS 22, pp 74-75
silver from, statistics ofMR 1887, p 59; MR 1888, p 37; MR 1889-90, p 49; MR 1892, p 51; MR 1893, pp 50, 51, 55, 57, 58, 59, 60, 61; Ann 17, iv, pp 72, 73, 74, 75, 76, 77; Ann 18, v, p 142 et seq; Ann 19, vi, pp 104, 105, 106, 107, 108, 109, 127, 128, 129, 130, 131, 132, 133; Ann 20, vi, p 103 et seq; Ann 21, vi, p 121 et seq
in Uvalde quadrangle..GF 64, p 5
soils of ..TF 3, p 12
springs, fissure, of Rio Grande Plain..................Ann 18, ii, pp 307-312
springs, gravity, of Edwards Plateau and Rio Grande Plain Ann 18, ii, pp 267-270, 274
stream measurements inAnn 18, iv, p 110;
Ann 19, iv, pp 376-380; Bull 140, pp 82-86; WS 28, p 130
sulphur deposits of ..Ann 17, iv cont, pp 966-967
temperature in ...Bull 164, p 15
tepetate, a crust of white lime material found inAnn 18, ii, p 256
Terrell, well section atAnn 21, vi, p 446
timber in, estimates ofAnn 19, v, p 17
tin deposits of ..Ann 16, iv, pp 528-529
topographic maps of. (See Map, topographic, of Texas; also pp 95-96, 111 of this bulletin.)
topographic provinces ofAnn 18, ii, p 201
topographic work in ..Ann 6, pp 12-13; Ann 7, p 55;
Ann 8, i, p 104; Ann 9, pp 57-58; Ann 10, i, pp 95-96; Ann 11, i, p 40; Ann 12, i, pp 30, 47; Ann 13, i, p 80; Ann 14, i, p 179; Ann 15, pp 126-127; Ann 16, i, pp 66, 68, 70, 71; Ann 17, i, pp 97, 104; Ann 18, i, pp 94, 96, 107; Ann 19, i, pp 89, 91, 105; Ann 20, ii, pp 101, 102, 117; Ann 21, i, p 135
Trans-Pecos province, mountains of..................TF 3, p 8-5
triangulation in ...Bull 122, pp 204-278
Trinity River, flow of, measurements ofWS 28, pp 121, 129, 130; WS 37, pp 271-272
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.

Texas; Trinity River, profile of .. WS 44, p 33
Tyler, reservoir dam at.. Ann 18, iv, pp 654-655
Uvalde quadrangle, geology of.. GF 64
vegetation of.. TF 3, p 12
Walnut Prairie, general description of.. Ann 21, vi, p 81
wash, character and appearance of.. Ann 18, ii, p 254
water, capacity of various rock sheets for..................................... Ann 18, ii, pp 260-264
water supply of, for irrigation purposes.. Ann 16, ii, p 524
of Uvalde quadrangle... GF 64, pp 5-6
waters, underground, in Nueces quadrangle................................. GF 42, pp 3-4
of portion of... Ann 18, ii, pp 264-321
well drilling, practical suggestions for.. Ann 18, ii, pp 319-321
wells in... Ann 11, ii, p 272
in counties of Black and Grand prairies, lists of.......................... Ann 21, vii, pp 456, 458 et seq
in Uvalde quadrangle .. GF 64, p 6
Wichita paleoplain, restoration, structure, etc., of....................... Ann 21, vii, pp 363-367
woodland area in.. Ann 19, v, p 7
Yoakum well section .. Ann 21, vii, p 409
Texian system .. Bull 86, pp 269, 474, 504
TextularidEe, Cretaceous, from New Jersey.. Bull 88, pp 28-34
Thaumasite, chemical composition of... Bull 125, p 100
Thermal. (See Heat; Temperature.)
Thermal action in Yellowstone Park... GF 30, pp 3-4, 5
Thermal effect of action of aqueous vapor on feldspathic rocks........ Ann 2, pp 325-330; Mon in, pp 290-308, 397-400
Thermal expansion, literature and measurement of....................... Bull 92, pp 17-18, 27
of certain rocks, preliminary note on coefficients of.................... Bull 78, pp 109-118
Thermal expansion and compressibility, investigations in relation to Ann 14, i, pp 154-156
Thermal movements of ground water, principles of....................... Ann 19, ii, pp 81-85
Thermal springs, character and cause of...................................... Ann 14, ii, pp 68-69
Thermal springs and molluscan life.. Bull 11, p 40
Thermal survey of Comstock lode, Nevada...................................... Mon iii, pp 244-265
Thermodynamics of liquids, the volume.. Bull 96
Thermoelectric data of alloys... Bull 14, pp 80-88
Thermoelectric effect of magnetization... Bull 14, pp 104-110
Thermoelectric measurement of high temperatures......................... Ann 4, pp 53-59; Bull 54
Thermoelectric power, measurement of.. Bull 14, pp 31-36
Thermoelectric power and specific resistance of steel, relation between Bull 14, pp 62-70
Thermoelectric properties, specific resistance, and hardness of steel, relation of... Bull 14, pp 203-226
Thermoelectric pyrometry, methods of... Bull 103, pp 13-16
Thermoelectric, galvanic, and magnetic properties of wrought iron, steel, and cast iron in different states of hardness.................. Bull 14
Thermo-mineral springs in United States (eastern)Ann 14, ii, pp 43-44
Theropoda of North AmericaAnn 16, i, pp 146-151, 153-163, 203-206
remarks on EuropeanAnn 16, i, p 163
Thetis hair stone, occurrence and statistics ofMR 1882, p 491
Thibet, quicksilver-ore deposits inMR 1892, p 161
Thinolite, chemical nature ofBull 12, pp 22-25
crystalline form of originalBull 12, pp 20-22
crystallographic study of ..Ann 8, i, pp 315-318; Mon xi, pp 194-201; Bull 12, p 14
of California, Mono BasinAnn 8, i, pp 315-317, 320; Bull 12, pp 19-20
of Nevada, Lake Lahontan, crystallographic study ofAnn 8, i,

Walker Lake ..Bull 12, p 20
relation of, to gaylussite pseudomorphsBull 12, pp 25-28

Thomsonite, analysis ofBull 125, p 35
analysis of spherules of, from Colorado, Table Mountain.....Bull 20, pp 18, 25
chemical constitution of..............................Bull 125, pp 34, 35, 44, 102
from Table Mountain, Colorado, chemical identification of....Bull 20, pp 18-19
general description and chemical composition of..........Bull 20, pp 24-27
occurrence and statistics ofMR 1882,
p 496; MR 1883-84, p 774; MR 1885, p 443; MR 1886,
p 604; MR 1887, pp 556-557; MR 1888, pp 584-585; MR
1889-90, pp 446, 447, 448; MR 1891, p 540; MR 1892, p 781;
MR 1893, pp 681, 682; Ann 16, iv, pp 604, 605; Ann 17,
i, cont, p 924; Ann 18, v, cont, p 1217; Ann 19, vi, cont, p 513;
Ann 20, vii, cont, pp 591-592, 599; Ann 21, vii, cont, p 461

Thomsenolite, analysis ofBull 20, pp 52, 54

from Colorado, near Pikes Peak, occurrence and description of.Bull 20, pp 55-56
Thonstein (tuff), analyses of, from Saxony, near ChemnitzBull 62, p 153
Thoria, isomorphism ofBull 113, pp 41-43
Thorite, chemical constitution ofBull 125, pp 77-78, 105
Thorium and uranous sulphates, isomorphism and composition of.. Bull 90, pp 26-33
Three Forks, Montana, Paleozoic section near ...Bull 110
Three Forks quadrangle, Montana, geology ofGF 24
Three Forks shales in WyomingGF 30, p 4; GF 52, p 2
in Yellowstone ParkMon xxxii, ii, pp 7, 22, 23, 26, 58, 153, 160, 206, 213
Three Forks limestone in WyomingGF 30, p 4; GF 52, p 2
Three Forks, types and diagrams ofAnn 13, ii, pp 226-230

Bull. 177—01—50
Thunderhead conglomerate in Tennessee and North Carolina. GF 16, p 2; G F 20, p 2
Thurman sandstone in Indian Territory

Tidal observations in Alaska, Glacier Bay

Till in Maine, character, distribution, etc., of
in Massachusetts, western
in Montana, Fort Benton quadrangle
in region of glacial Lake Agassiz
in South Dakota, southeastern
summary of facts concerning
the Kansan, pre-Illinoian, etc.

Timber, consumption of, in United States
destruction of, by depredation, fires, etc., in Colorado
forests of United States, résumé of data concerning
in Alaska
in South Dakota, southeastern
in United States, merchantable standing, amount of
in Washington, standing
Tacoama quadrangle
in Wyoming, Absaroka district

Timber Belt beds of Texas
Timber Creek formation of Texas
Timber trees, defects and diseases of
Time since Glacial period, measurements of
WAKMAN. THUNDERHEAD—TITANITE. 787

Time ratios of Coastal PlainAnn 12, t, pp 428-429
Timpas formation in ColoradoAnn 17, u, pp 566, 571; GF 58, pp 1-2; GF 68, pp 1-2
Tin, analysis of (disaggregated)MR 1883-84, p 629
from Australia, Queensland (ingot)MR 1883-84, p 626
from Malay Peninsula, Perak (black)Ann 16, u, p 475
from South Dakota, Black Hills (stream)MR 1888, p 154
from various countriesAnn 16, u, p 466
foreign sources ofMR 1882, p 436; MR 1883-84, pp 615-625; MR 1885, pp 376-383; MR 1889-90, p 121
physical properties ofMR 1883-84, pp 625-629
Tin ore, analysis of, from California, San Jacinto grant (Temescal)Ann 16, u, p 537; MR 1882, p 434; MR 1883-84, p 614
analysis of, from Great Britain, England (Cornish)MR 1888, p 154
assays ofMR 1888, pp 146-147
in North Carolina, Kings Mountain, occurrence, mineralogy, etc., ofMR 1893, pp 178-180
in Virginia, near Vesuvius, occurrence, geologic relations, etc., ofMR 1893, pp 180-182
Tin-plate industry, efforts to establishMR 1891, p 69
statistics ofMR 1883-84, pp 633-637; MR 1888, pp 20-22; MR 1892, pp 16-17; MR 1893, p 22; Ann 16, u, pp 229-230; Ann 17, u, pp 61, 70-71; Ann 18, v, pp 71-72, 87-88; Ann 19, vi, pp 76-77; Ann 20, vi, pp 87-88; Ann 21, vi, pp 106-107
Tinguaite, analysis of, from Colorado, Two ButtesBull 148, p 182; Bull 168, p 165
analysis of, from Montana, Bearpaw MountainsBull 148, p 157; Bull 168, p 136
from Montana, Crazy MountainsBull 90, p 71; Bull 148, p 145; Bull 168, p 123
from Norway, Hedrum ..Ann 18, u, p 569
from Portugal, various localitiesAnn 18, u, p 569
from Russia, Kaola ..Ann 18, u, p 569
thin section of, from Montana, Cone Butte (nonporphyritic)Ann 18, u, pp 570-571
Tinguaite-porphyry, analyses of, from Montana, Bearpaw and Judith mountainsAnn 18, u, pp 569
thin section of, from Montana, Cone ButteAnn 18, u, pp 570-571
Tinguaite-porphyry and nonporphyritic tinguaite of Montana, Judith MountainsAnn 18, u, pp 567-572
Tintic district, Utah, geology and mining industry ofAnn 19, u, pp 601-767; GF 65
Tintic Mountains, Utah, beds of, correlation of, with Wasatch and Oquirrh bedsAnn 19, u, pp 629-631
Tintic quartzite of Utah ..GF 65, p 1
Tisbury beds of Massachusetts, Martha's VineyardAnn 17, i, p 977
Titaniferous iron ores of AdirondacksAnn 19, u, pp 377-422
of Adirondacks, chemical composition ofAnn 19, u, pp 387-397
Titaniferous ores in United States and foreign countries, brief review ofAnn 19, u, pp 419-422
Titanite, analysis of, from North Carolina, Iredell CountyBull 74, p 60
Titanite, composition of .. Bull 150, pp 43-44
in rocks of Pacific slope .. Mon xiii, p 85
occurrence and statistics of MR 1883-84, p 774;
MR 1891, p 551; MR 1892, pp 780-781; Ann 16, iv, p 605

(See, also, Sphene.)

Titanium, separation of, in rock analyses Bull 78, pp 87-90
warning against use of fluoriferous hydrogen peroxide in estimating .. Bull 167, p 56
Titanium and aluminum, separation of, and of titanium and iron .. Bull 27, pp 16-26
Titanotherium bed ... Bull 84, p 336
Tobacco, cultivation of, in Porto Rico WS 32, pp 36-37
Toccoa River, Georgia, flow of, measurements of Ann 21, iv, pp 166-167; WS 27, pp 60, 64, 65, 66; WS 36, pp 171-172
Todd (J. E.), geology and water resources of a portion of southeastern South Dakota .. WS 34
moraines of Missouri Coteau and their attendant deposits Bull 144
moraines of southeastern South Dakota and their attendant deposits .. Bull 158
Togiak gravels of Alaska, notes on Ann 20, vii, p 177
Togiak River, Alaska, geologic notes taken along Ann 20, vii, pp 139-140
itinerary of a reconnaissance along Ann 20, vii, pp 56-57, 87-89, 99
Tohickon Creek, flow of, measurements of Ann 20, iv, pp 48, 98-103; Ann 21, iv, pp 83-85; WS 35, p 64
Tombigbee, Tuscaloosa, and Alabama rivers, Tertiary and Cretaceous strata of ... Bull 43
Tok sandstone of Alaska, notes on Ann 20, vii, p 473; Ann 21, ii, pp 362, 370
Tokanoni River, Washington, description of WS 4, pp 23-24
Tombigbee sand of Mississippi Bull 82, pp 105-107, 114, 219
Tonalite, analysis of, from Massachusetts, South Leverett Mon xxix, p 336; Bull 148, p 74; Bull 168, p 30
of Massachusetts, western Mon xxix, pp 331-342
Tonalite group of igneous rocks, definition of and descriptions of species from Alaska .. Ann 20; vii, pp 189, 204-206
Tonalite-aplite, analysis of, from Alaska, Yukon River Bull 168, p 229
Tongrion formation, correlation of Ann 18, ii, p 841
Tongue River, irrigation along Ann 13, iii, pp 70-71
Tonsina River, Alaska trails along Ann 21, ii, pp 415-416
Tonto group, or series, of Grand Canyon of the Colorado .. Bull 81, pp 220-221, 356-357
origin of name .. Bull 81, p 245
Tonto sandstone of Grand Canyon district Bull 86, pp 330, 331, passim
Topaz, an unusual occurrence of Bull 20, pp 81-82
analysis of, from Colorado, Pikes Peak region Bull 20, p 71
from Japan, Omi .. Ann 21, vi cont, p 450
from Maine, Stoneham ... Bull 27, p 9, 10
chemical constitution of .. Bull 125, pp 16, 19, 101
composition of ... Bull 150, p 38
from Maine, Stoneham ... Bull 27, pp 9-15
in Colorado, Florissant and Devils Head Mountain Bull 20, pp 70, 74
in nevadite from Colorado, Chalk Mountain Mon xii, p 347
in rhyolite .. Bull 20, p 81
Topinich River, Washington, flow of, measurements of Bull 131, p 74; Bull 140, p 248

Topographic forms, classification of, by hydrography Ann 7, pp 558-564
origin of .. Mon xxxi, pp 108-121
Topographic map, description of TF 1, p 1; TF 2, p 1
of United States; atlas sheets engraved (See pp 67-110 of this bulletin.
plan and description of the .. Ann 4,
pp xiii-xxiv; Ann 6, pp xvi-xix; Ann 7, pp 8-8
(See, also, Map, topographic.)

Topographic methods, manual of Mon xxii
Topographic surveying, monuments and bench marks in connection with Ann 17,
i, pp 7-11
Topographic surveys, present condition of, by States Ann 20, i, pp 101-102; Ann 21, i, pp 116-117
Topographic types in California, Lassen Peak quadrangle GF 15, p 1
in Maryland-Virginia, Fredericksburg quadrangle GF 13, p 1
Nomini quadrangle ... GF 23, p 1

Topographic work in the various States and Territories. (See each State and
Territory.)
in United States done by national and State organizations and by corpo­
rate and private enterprise, sketch of........ Ann 4, pp xiv-xx
of United States Geological Survey, historical review of Ann 20, i, pp 90-98
reports on ... Ann 3, pp xv-xvi; Ann 4, pp xiii-xxiv,
3-16; Ann 5, pp xvii-xx, 3-14; Ann 6, pp xv-xix, 3-17; Ann
7, pp 3-8, 45-60; Ann 8, i, pp 70-74, 97-122; Ann 9, pp
3-7, 49-69; Ann 10, i, pp 5-9, 83-108; Ann 11, i, pp 4-10,
33-48; Ann 12, i, pp 3-8, 23-52; Ann 13, i, pp 25-27, 69-83;
Ann 13, i, pp 4-9, 25-31, Ann 14, i, pp 33-38, 169-182; Ann
15, i, pp 27-65; Ann 16, i, pp 61-77; Ann 17, i, pp 93-109; Ann
18, i, pp 92-117; Ann 20, i, pp 98-138; Ann 21, i, pp 113-156

Topography, analysis of .. Ann 7, pp 558-564
as affected by solution .. Bull 84, pp 88-89
due to faulting ... Ann 4, pp 443-450
of Great Plains, effect of geologic structure on Ann 16, ii, pp 573-579
of Pacific coast, Tertiary revolution in Ann 14, ii, pp 397-434
relation of veins to .. Ann 18, iii, pp 776-778
(See, also, Map; Physiography.)

Topography and geology, interdependence of Mon xii, p 29
of India .. Ann 12, ii, pp 399-403
Tordrillite, analysis of, from Alaska, Tordrillo Mountains Bull 168, p 229
Tordrillo Mountains, Alaska, geologic notes on Ann 20, vii, pp 109-121
portage across, notes on Ann 20, vii, pp 49-51
Tornatellides from clays and marls of New Jersey Mon xviii, pp 155-164, 236-239
of Miocene deposits of New Jersey Mon xxxiv, p 137

Toronto formation (between Iowan and Wisconsin stages of glaciation) Mon
xxxviii, pp 185-190

Torosaurus, description of Ann 16, i, pp 214-216

Toroweap Valley, Arizona, and middle portion of Grand Canyon Ann 2,
pp 104-121; Mon ii, pp 78-100

Torridon sandstone of Scotland Bull 86, p 525

Tourmaline, analysis of Bull 125, pp 57, 58, 59
analysis of, from Baffin Land, Nantic Gulf Bull 55, pp 29, 30; Bull 167, p 32
Tourmaline, analysis of, from Brazil Bull 55, pp 26, 30; Bull 167, p 31
analysis of, from California, Nevada County Bull 90, p 39
from Connecticut, Haddam Neck Bull 55, pp 29, 30; Bull 167, p 32
Monroe .. Bull 55, pp 27, 30; Bull 167, p 30
from Maine, Auburn Bull 55, pp 24, 30; Bull 167, pp 31, 33
Auburn, alteration product from Bull 55, pp 25, 30
Paris ... Bull 55, pp 24, 30; Bull 167, p 31
Rumford .. Bull 55, pp 24, 30; Bull 167, p 33
alteration product from Bull 55, pp 25, 30
from Maryland, Montgomery County (chrome) Bull 64, p 41
from Massachusetts, Chesterfield Bull 128, p 169
from New Hampshire, Oxford Bull 55, pp 27, 30; Bull 167, p 30
from New Jersey, Hamburg Bull 55, pp 26, 30
from New York, Dekalb Bull 55, pp 26, 30; Bull 167, p 30
Gouverneur Bull 55, pp 25, 30; Bull 167, p 29
St. Lawrence County Bull 55, pp 29, 30; Bull 167, p 31
from North Carolina, Alexander County Bull 55, pp 29, 30; Bull 74, p 58; Bull 167, p 31
from Russia, Ural Bull 55, p 32
from various localities Bull 55, pp 31-32
analysis and composition of Bull 55, pp 19-37
analysis and description of, from California, Nevada County Bull 90, p 39
chemical constitution of Bull 125, pp 56-62, 104
composition of Bull 150, p 37; Bull 167, pp 26-36
thin section of, from California, near Sonora, showing pegmatoid inter-
growth of quartz and Ann 17, i, pp 748-749
(See, also, Precious stones.)
Tourmaline-biotite-schist, analysis of, from South Dakota, Black Hills Bull 148, p 114; Bull 168, p 84
thin section of, from South Dakota, Black Hills Bull 150, pp 328-329
(See Mica-schist.)
Towaliga River, Georgia, flow of, measurements of WS 36, p 136
Tower (G. W., jr.), and Emmons (S. F.), economic geology of Butte district, Montana GF 38, pp 3-8
Tower (G. W., jr.), and Smith (G. O.), geology and mining industry of Utah, Tintic district Ann 19, iii, pp 601-767
Tower (G. W., jr.), Smith (G. O.), and Emmons (S. F.), geology and mining industry of Tintic district, Utah GF 65
Town (F. E.), report on Bighorn Forest Reserve Ann 19, v, pp 165-190
Trachodontidse of North America Ann 16, i, pp 224-225
Trachyte, analyses of, from California, Big Trees quadrangle Ann 17, i, p 698
analysis of, from California, Tuolumne County Ann 17, i, p 727
from Colorado, Game ridge Ann 17, ii, p 324; Bull 148, p 165; Bull 150, p 182; Bull 168, p 147
Pikes Peak district Bull 148, p 163; Bull 168, p 145
from France, Auvergne Bull 89, p 67
Trachyte, analysis of, from Italy, Balsena..................Ann 17, i, p 727; Bull 89, p 66
analysis of, from Montana, Highwood Mountains.................Bull 148, p 152; Bull 167, p 131
from New Mexico, Los Cerrillos..................Bull 148, p 186; Bull 168, p 172
from Tuscany, Mount Amiata (glass inclusion in)............Mon xiii, ii, p 325; Bull 148, p 132; Bull 168, p 106
from Colorado, Game Ridge, description of, as one of the educational series of rocks.............Bull 150, pp 181-182
of Colorado, Pikes Peak quadrangle...........................GF 7, p 3
of Maine, Aroostook volcanic area, outcrops and petrography of.........Bull 165, pp 109-110, 161-164
of Montana, Little Belt MountainsAnn 20, iii, pp 524-525
of Philippine Islands..................................Ann 21, iv, pp 517-518, 521-522
of Sierra Nevada ..Ann 17, i, pp 677-699
Trachyte-andesite, analysis of, from California, Tuolumne County.........Bull 148, p 217; Bull 168, p 205
analysis of, from Yellowstone Park, Absaroka range........Bull 168, p 98
Trachyte-andesite-tuff, analysis of, from California, Tuolumne County.....Bull 148, p 217; Bull 168, p 205
Trachyte-porphyry in Montana, Little Belt Mountains quadrangle;GF 55, p 3
Trachytic dikes and sheets in Montana, Fort Benton quadrangle...........GF 55, p 3
Trachytic phonolite of Colorado, Cripple Creek district................Ann 16, ii, pp 41-49, 95, 84, 85-86
Trachytic rock, analysis of, from Pantelleria..................Bull 107, p 21
Trade-marks of American potters............................Ann 17, iii cont, p 852
Trade wind confined within narrow vertical limitsAnn 4, p 145
Trails in Alaska..Ann 21, ii, pp 415-418
Trails, burrows, and tracks in Lower Cambrian........Ann 10, i, pp 588, 602-604
Transit and stadia work in survey of Idaho-Montana boundary line.........Bull 170, pp 40-47
Transportation by landslip, wind, water, and ice, especially in Maine........Mon xxxiv, pp 10-22
Transportation, littoral...Ann 5, pp 85-90
(See, also, Degradation.)
Transporting power of different rates of river flow.............Mon xxxiv, p 14
Transvaal, coal production of..................................Ann 21, vi, pp 113, 363, 373
gold fields in..Ann 18, v, pp 156-167
Main Reef series inAnn 18, v, pp 158-160
quicksilver-ore deposits in..................................MR 1892, p 162
Witwatersrand banket, with notes on other gold-bearing pudding stones........Ann 18, v, pp 153-184
Trap dikes of Lake Champlain region......................Bull 107
Trap dikes and sheets, characteristics of....................Bull 85, p 69
Trap ranges, dikes, and sheets of Connecticut..................Ann 18, ii, pp 41-81, 159-161
Trap rock, analysis of, from Connecticut, Hartford and New Haven counties...Ann 20, vi cont, pp 364, 365
analysis of, from Connecticut, Meriden..........................Ann 18, v cont, p 858
from Massachusetts, Hampden County..........................Ann 20, vi cont, p 405
Mount Holyoke...Mon xxxix, p 464
from New Jersey, various localities..........................Ann 20, vi cont, p 419
from North Carolina near Sanford (decomposed)..................Bull 42, p 138
Index to Publications of U. S. Geol. Survey. [Bull. 177.]

Trap rock, analysis of, from Pennsylvania, Berks County. Ann 19, vi cont, p 222; Ann 20, vi cont, p 435
as data for correlation of Newark areas. Bull 85, pp 30-31
decay of. Bull 52, pp 16-18
geographic distribution of, in eastern United States. Bull 85, pp 70-72
in New Jersey region, Newark system, relations of. Bull 67
of Newark system. Bull 85, pp 66-77
thin section of, from Massachusetts, Greenfield (red hematitic). Mon xxix, pp 430-431

(See, also, Basalt.)

Trap sheets, origin of, conclusion as to. Ann 18, ii, pp 76-77
Traverse series (Hamilton) in Michigan. WS 30, pp 86-87
Travertine, analysis of, from Arkansas, Arkansas hot springs. Ann 9, p 646
analysis of, from Asia Minor, Hierapolis. Ann 9, p 646
from Yellowstone Park. Ann 9, p 646; Bull 150, p 101; Bull 168, p 268
formation of, by hot springs. Ann 9, pp 613-676
from Yellowstone Park, description of, as one of the educational series. Bull 150, pp 99-101

(See, also, Tufa.)

Travis Peak formation in Texas. Ann 18, ii, pp 219-221; Ann 21, vii, pp 140-144
Trees as agents of soil formation. Ann 12, i, pp 269-274
(See, Forests.)

in Flathead and Bitterroot forest reserves. Ann 20, v, pp 247-250, 255-314 (passim), 329-357, 392-405
Tremolite, analysis of, from Pennsylvania, Easton. Bull 64, p 44
chemical constitution of. Bull 125, p 90
thin section, showing alteration of hypersthene into fibrous green hornblende and. Bull 59, p 23

Trenton limestone in Canada. Bull 81, p 334
in Illinois, thickness, etc., of. Ann 17, ii, pp 836-837
in Indiana. Ann 11, i, pp 627-629
as a source of gas and oil. Ann 8, ii, pp 475-662; MR 1892, pp 690-695
topography of. Ann 11, i, pp 648-651
in Michigan. WS 30, p 90
in New York-Vermont. Ann 19, iii, p 190
in Ohio as a source of gas and oil. Ann 8, ii, pp 475-662; MR 1892, pp 687-690
as a water carrier. Ann 19, iv, pp 639-641, 651-654
thin sections of, from Indiana. Ann 8, ii, pp 644-645
Trenton limestone and shale of Iowa. Ann 11, i, pp 329-330
Tres Piedras Mesa, Rio Grande Basin, irrigation on. Ann 12, ii, p 256
Tri- and tetraphosphonitrilic chlorides. Bull 167, pp 77-89
Triangulation, primary, executed by Survey between 1882 and 1894. Ann 16, i, pp 875-885
in 1894-1900, results of, in various States. Ann 16, i, pp 62-63; Ann 17, i, pp 94-96; Ann 18, i, pp 96-97, 143-225; Ann 19, i, pp 153-191;
Ann 20, i, pp 221-291; Ann 21, i, pp 227-375; Bull 122
in topographic work, method of. Mon xxix, pp 41-75
Triangulation and spirit leveling in Indian Territory. Bull 175
Trias of Atlantic slope, flora of... .Mon xv
of Kansas, southwestern.. Bull 57, pp 20-27
of Virginia and North Carolina and flora therefrom.................. Mon vi,
pp 2, 92-93, 95, 100-101, 125-126

(See, also, Juratrias.)

Triassic fossils; dinosaurs of North America.................... Ann 16, i, pp 146-152
fossils and plants of New-Jersey and Connecticut Valley.......... Mon xiv
insects found in Colorado, Leadville district...................... Mon xii, p 71

Triassic rocks of Alaska, McCarthy Creek shales................. Ann 21, ii, pp 426-427
of Colorado, Aspen district... Mon xxi, pp 37-41
of Connecticut, deposition, deformation, denudation............. Ann 18, ii, pp 1-192
of Connecticut Valley, fossil fishes and plants of................ Mon xiv
geologic relations and equivalents of.............................. Mon xiv, pp 1-15
structure of.. Ann 7, pp 455-490
of Massachusetts, western... Mon xxix, pp 351-501
of New Jersey and Connecticut Valley, fossil fishes and plants of...... Mon xiv
geologic relations and equivalents of.............................. Mon xiv, pp 1-15
of Plateau region... Ann 6, pp 135-137
of South Dakota, Black Hills, southern part......................... Ann 21, iv, pp 516-519
of Wyoming... Bull 119, p 21

(See, also, Juratrias; Newark.)

Tributaries, repulsion of, theory of..................................... Mon xxix, p 746
Triceratops, description and restoration of............................ Ann 16, i, pp 208-214, 218
Trichotropidse of Miocene deposits of New Jersey................... Mon xxiv, p 127
Tridymite, composition of.. Bull 150, p 35
Trigonidse from Colorado formation.. .Bull 106, p 95
from lower marl beds of New Jersey.. Mon ix, pp 112-115
Trilobita, catalogue of American Paleozoic......................... Bull 63, pp 79-148
from Cambrian of Nevada, Eureka district.......................... Mon viii, pp 24-64
from Cambrian, Lower.. Ann 10, i, pp 590-593, 629-658
from Cambrian, Middle, of North America.......................... Bull 30, pp 149-222
from Carboniferous of Nevada, Eureka district..................... Mon viii, pp 266-267
from Devonian of Nevada, Eureka district.............................. Mon viii, pp 207-211
from Olenellus zone.. Ann 10, i, pp 629-658
from Silurian, Lower, of Nevada, Eureka district.................. Mon viii, pp 89-98

Trilobite limestones of Montana, near Threeforks..................... Bull 110, pp 22-23
Triniditetetraphosphate (silver), analysis of....................... Bull 167, p 148
Trimerite, chemical constitution of..................................... Bull 125, pp 68, 69, 104
Trimetaphosphinite (ammonium), analysis of.......................... Bull 167, p 100
(barium), analysis of.. Bull 167, p 102
(sodium), analysis of.. Bull 167, pp 97, 98
(trisilver), analysis of... Bull 167, p 103

Trimetaphosphinic acid, constitution, preparation, decomposition products,
salts, etc., of... Bull 167, pp 89-116

Tringano, Malay Peninsula, tin deposits of............................ Ann 16, iii, p 478
Trinity formation of Texas.. Bull 82, pp 116, 118, 119, 125, 127, 128, 129, 130, 221, 223
Trinidad, asphaltum production of, statistics of................. MR 1882,
p 605; MR 1883-84, p 937; MR 1889-90, p 478; MR 1891,
pp 453-454; MR 1892, p 702; MR 1893, pp 640-642; Ann 18,
vi cont, pp 946-948; Ann 19, vi cont, pp 196-198, 201; Ann
20, vi cont, pp 262-265, 267; Ann 21, vi cont, pp 327-329
petroleum localities in... Ann 19, vi cont, p 120

Trinidad asphalt pavements, cities where used...................... MR 1891, p 545
Trinidad formation in Colorado... GF 58, p 2; GF 68, p 2

Trinity division of Texas... Ann 21, vii, pp 129-199, 373-376, 380
Trinity River, Texas, flow of, measurements ofWS 28, pp 121, 129, 130; WS 37, pp 271-272
profile of ..WS 44, p 33
Triphosphonitric chloramide, analysis of Bull 167, p 86
Triphosphonitric tetrachlorhydrine, analysis of Bull 167, p 85
Triphylite, analyses of, from Massachusetts, Norwich Bull 126, pp 171, 172
Triphylopteridaceae from Lower Coal Measures of Missouri Mon xxxvii, pp 16-34
Triplite, analysis of, from South Dakota, Black Hills Bull 60, p 136
Tripoli, analysis of, from Missouri, Newton County Bull 90, p 64
occurrence and statistics of MR 1892, pp 752-753; MR 1893, p 679; Ann 16, iv, p 594; Ann 17, vii cont, p 950; Ann 18, v cont, p 1231; Ann 19, vi cont, pp 527-528; Ann 21, vi cont, pp 463, 472
Tripolite, description of the rock, as one of the educational series Bull 150, pp 136-137
Tritonite, chemical constitution of ... Bull 125, p 60
Tritionidae of clays and marls of New Jersey Mon xviii, pp 58-61, 192-193
of Colorado formation .. Bull 106, p 150
Trochididae of Chico-Tejon series of California Bull 51, pp 17-19
of clays and marls of New Jersey .. Mon xviii, pp 133-135
of Cretaceous of California (new) .. Bull 22, p 12
of Miocene deposits of New Jersey .. Mon xxiv, pp 134-135
Troilite, analyses of, from Mexico, Sierra de San Francisco (meteoric) Bull 168, p 243
typical composition of .. MR 1885, p 517
Trona, analysis of, from Africa, Desert of Sahara Bull 60, pp 69, 70
from Egypt ... Bull 60, p 71
from Nevada, near Ragnown, soda lakes Mon xi, p 77; Bull 60, p 46
Troostite, chemical constitution of ... Bull 125, p 69
Truckee quadrangle, California, geology of GF 39
Truckee reservoir sites and canal line .. Ann 11, ii, pp 172, 175, 176
Truckee River, flow of, measurements of Ann 11, ii, pp 101-102, 108; Ann 12, iii, pp 324-325, 351; Ann 13, iii, pp 98, 99; Bull 140, pp 210-212; WS 38, pp 331-332
hydrography of basin of .. Ann 11, ii, pp 63-65, 101, 108; Ann 12, ii, pp 324-325
irrigation engineering works in basin ... Ann 13, iii, pp 389-394
Truro series of New England coast .. Ann 18, ii, pp 541-548
Tscheffkinite, analysis of, from Virginia, Roanoke Bull 90, p 43
chemical constitution of ... Bull 125, p 79, 105
Tuckahoe group of beds in Richmond Basin Ann 19, ii, pp 423-435
profile of .. WS 44, p 52
Tufa, calcareous, analyses of, from Nevada, Lahontan Basin, Pyramid Lake. Ann 3, p 216; Mon xi, p 203; Bull 12, p 12
analysis of, from Utah, Salt Lake desert Mon 1, p 108
of California, Borax Lake ... Mon xiii, pp 266-268
Mono Valley, varieties and formation of Ann 8, i, pp 297, 310-318
of Lake Bonneville Basin ... Mon t, pp 167-169
of Lake Lahontan ... Ann 3, pp 215-221; Mon xi, pp 189-222; Bull 12, pp 10-14
of New Mexico, Tewan Mountains ... Bull 66, p 12
of Pleistocene lakes of Great Basin ... Mon i, pp 167-169
TRINITY—TULE.

Tufa, dendritic, of Lake Lahontan: Ann 3, pp 214–215; Mon xi, pp 201–203
Tufa, lithoid, of Lake Lahontan: Ann 3, pp 212–213; Mon xi, pp 190–192
Tufa, thinolitic, nature and origin of: Bull 12, pp 20–28
of California, Mono Valley: Ann 8, i, pp 315–318
of Lake Lahontan: Ann 3, pp 213–214; Mon xi, pp 192–200
Tufa and sinter of hot springs: Ann 9, pp 613–676
Tufa, andesitic, from Massachusetts, South Hadley, on arte­sian well tube: Bull 126, p 46
Tuff, analysis of, from California, Downieville quadrangle: Ann 17, i, p 627
analysis of, from California, Genesee Valley: Ann 17, i, p 627
from California, Lassen Peak region (andesitic): Bull 148, p 197; Bull 150, p 212; Bull 168, p 183
Smartsville quadrangle (pre-Cretaceous): Ann 17, i, p 734
Trinity County: Bull 148, p 228; Bull 168, p 217
from Colorado, Blue Mountains (rhyolitic): Ann 17, ii, p 322;
Bull 148, p 168; Bull 168, p 150
Table Mountain: Mon xxvii, p 314
from Germany, Oelberg and Kesselberg (silicified): Bull 62, p 153
from Maine, Aroostook County (volcanic): Bull 165, pp 124, 188; Bull 168, p 20
from Montana, Castle Mountain district (rhyolitic): Bull 139, p 128; Bull 148, p 151; Bull 168, p 150
from Oregon, Douglas County: Bull 168, p 223; GF 40, p 4
of acid rocks: Bull 62, pp 151–154
Telluride quadrangle: GF 57, p 5
of Lake Bonneville Basin: Ann 2, pp 190–191
of Maine, Aroostook volcanic area: Bull 165, pp 119–126
of Michigan, Crystal Falls district: Ann 19, iii, pp 55–59; Mon xxxvi, pp 136–145
of Montana, Little Belt Mountains quadrangle: GF 56, p 5
of Oregon, Bohemia mining region: Ann 20, iii, p 14
thin section of, from Michigan, Clarksburg formation, T. 47 N., R. 29 W., SE. 1 sec 4 (banded): Mon xxviii, pp 470–471
from Michigan, Crystal Falls district: Mon xxxvi, pp 294–295
from Sierra Nevada: Ann 17, i, pp 746–747
Tuff, andesitic, from California, Stillwater Creek, description of, as one of the educational series of rocks: Bull 150, pp 211–213
Tuff, basalt, from California, Battle Creek Meadows, description of, as one of the educational series of rocks: Bull 150, pp 251–252
Tuff, basaltic, of Bonneville Basin: Ann 2, pp 190–191; Mon i, pp 319–336
Tuff, diabase: Bull 62, pp 133, 158–162, 175–177
Tuff, rhyolitic and andesitic, of Nevada City and Grass Valley districts, California: Ann 17, ii, pp 98–101
Tuff, volcanic, of Denver Basin: Mon xxvii, pp 311–315
Tuff and breccia of Colorado, Cripple Creek district: Ann 16, ii, pp 50–53, 60–65, 73–74, 75, 81, 86, 88, 92, 94, 95, 100–102
of Montana, Castle Mountain mining district: Bull 139, pp 73–76
of Sierra Nevada, mode of formation of (andesite): Ann 17, i, pp 537–538
of Utah, Tintic district: Ann 19, iii, pp 644
Tuff and tuffaceous agglomerates of Massachusetts, western: Mon xxix, pp 476–481
waters powers on: Ann 20, iv, p 155
Tule lands, formation and fertility of: Ann 12, i, pp 320–321
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Tule River, California, flow of, measurements of ..Ann 12, ii, p 319; Bull 140, pp 276-279; WS 28, p 193
hydrography of Bull 140, pp 276-279; WS 28, p 193
Tundra of Alaska, Nome region .. Nome, pp 11, 14-15, 19-20, 22, 30
Tungsten, alloys, uses, characteristics, etc., of ..Ann 16, iii, pp 615-623; Ann 21, vi, pp 299-305
occurrence of, in eastern Nevada .. Ann 21, vi, pp 319-320
Tunis, iron-ore deposits of .. Ann 16, iii, pp 176-177
Tunis Creek, California, flow of, measurements of ..Bull 140, p 260
Tunnel Point bed of Oregon, correlation of .. Ann 18, n, p 340
hydrography of .. Ann 12, n, pp 322-323
profile of .. WS 44, p 96
reservoir project on .. Ann 21, iv, pp 450-465
Turbellidae from clays and marls of New Jersey Mon xviii, pp 80-84, 182-183
Turbiniidae from clays and marls of New Jersey Mon xviii, pp 205-207
from Cretaceous of Pacific coast .. Bull 133, pp 64-69
Turekestan, fossil plants of, literature of .. Ann 8, ii, pp 796-797
Turkey, coal production of .. Ann 16, iii, p 247
chrome ores of, occurrence, cost of mining, etc., of .. Ann 19, vi, pp 261-264
gold and silver production of, compared with that of other countries MR 1883-84, pp 319, 320
iron and iron ore from, statistics of .. Ann 16, iii, pp 23, 156
lead production of .. MR 1883-84, pp 434; MR 1885, p 264
manganese-ore production of, statistics of .. MR 1886, pp 205; MR 1888, p 142; MR 1889-90, p 130; MR 1893, p 152; Ann 16, iii, p 451; Ann 17, iii, pp 222, 225; Ann 18, v, pp 325, 328; Ann 20, vi, p 157; Ann 21, vi, pp 159, 162
petroleum production of .. Ann 21, vi cont, p 288
quicksilver deposits in .. Mon xxi, p 42
Turlock irrigation canal, California .. Ann 13, iii, pp 203-210
Turner (G. M.), novaculite, statistics of .. MR 1885, pp 433-436; MR 1886, pp 589-594
phosphorus, statistics of .. MR 1886, pp 676-677
Turner (H. W.), coal deposits of California .. MR 1892, pp 308-310
descriptions of rock specimens in the educational series .. Bull 150, pp 337-343
Esmeralda formation, a fresh-water lake deposit of Nevada Ann 21, ii, pp 191-226
further contributions to geology of Sierra Nevada .. Ann 17, i, pp 521-762
geology of Bidwell Bar quadrangle, California .. GF 43
geology of Downieville quadrangle, California .. GF 37
rocks of Sierra Nevada .. Ann 14, ii, pp 435-495
work in charge of, 1893-1900 .. Ann 15, pp 175-176; Ann 16, i, p 35; Ann 17, i, pp 46-47; Ann 18, i, pp 45-46; Ann 19, i, p 49; Ann 20, i, p 49; Ann 21, i, pp 82-83
Turner (H. W.) and Becker (G. F.), geology of Jackson quadrangle, California .. GF 11
Turner (H. W.) and Ransome (F. L.), geology of Big Trees quadrangle, California .. GF 51
geology of Sonora quadrangle, California .. GF 41
Turner (H. W.), Lindgren (W.), and Becker (G. F.), description of the Gold Belt ..GF 3, pp 1-2; GF 5, pp 1-2; GF 11, pp 1-2; GF 18, pp 1-2; GF 31, pp 1-2; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2

geology of Marysville quadrangle, California ..GF 17
geology of Placerville quadrangle, California ..GF 3
geology of Smartsville quadrangle, California ..GF 18

Turnerite, analysis of, from Switzerland, Luzerne..Ann 16, iv, p 676

Turquoise, analysis of, from Arizona, Burro Mountains.................................Ann 18, v cont, p 1211
analysis of, from California, Fresno County..Bull 42, p 40

from New Mexico, Los Cerrillos..Bull 42, p 40
from Persia ..Ann 18, v cont, p 1211; Bull 42, p 40
from Russia, Karalinsk..Bull 42, p 40
from New Mexico ..Bull 42, pp 39-44

(See, also, Precious stones.)

Turritella marl of Florida ..Bull 84, p 336

Turritellid from Chico-Tejon series of California..Bull 51, p 20
from clays and marls of New Jersey..Mon xviii, pp 142-149, 187, 200-231
from Colorado formation..Bull 106, pp 130-133
from Cretaceous of Pacific coast..Bull 133, p 69
from Miocene deposits of New Jersey..Mon xxiv, pp 128-131

Turtle and Oreodon beds of South Dakota..Bull 84, p 336

Tuscahoma series of Alabama, correlation of..Ann 18, ii, p 346; Bull 84, pp 321, 336

Tuscaloosa group of Alabama..Bull 82, pp 105-108, 114, 217

Tuscaloosa and Potomac formations..Ann 12, i, pp 421-424

Tuscaloosa, Tombigbee, and Alabama rivers, Tertiary and Cretaceous strata of..Bull 43

Tuscan tuff of California..Ann 14, ii, pp 412-414; Ann 17, i, pp 540-543; GF 15, p 1

Tuscarrora quartzite of Maryland, Virginia, and West Virginia..GF 28, p 2; GF 32, p 2; GF 61, p 3

Twelvernile beds of Alaska, correlation, etc., of..Ann 18, ii, pp 196-199

Twin Lakes, Colorado, irrigation reservoir and dam..Ann 13, iii, pp 362-370
survey for reservoir site at..Ann 11, ii, pp 135-139

Tyee sandstone of Oregon..GF 49, p 3

Tyonek beds of Alaska, southwestern, notes on..Ann 20, vii, pp 171-172, 184, 187

Typhaeace from Laramie group..Bull 37, p 17

from Yellowstone Park..Mon xxxii, ii, p 683

Tyringham gneiss of Massachusetts, eastern Berkshire County..Bull 159, p 34

Tyrrolite, analyses of, from Utah..Bull 55, p 41
analyses of, from Utah, Tintic mining district..Ann 19, iii, p 698; Bull 64, p 40

Tysonite, analysis of, from Colorado, Cheyenne Mountain..Bull 167, p 66

from Colorado, Cheyenne Mountain, minerologic notes on bastninite and..Bull 167, pp 64-66

Udden (J. A.), account of Paleozoic rocks explored by deep borings at Rock Island, Illinois, and vicinity..Ann 17, ii, pp 829-849
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY.

Uinkaret Plateau, Arizona Ann 2, pp 72, 121-126; Mon ii, pp 10, 101-121

Uinta Basin, geology of Ann 17, i, pp 920-946

Uinta fold, the Ann 9, pp 692-697

Uinta group of Utah Ann 18, ii, p 342; Bull 83, pp 126, 143-146, Bull 84, p 336; Bull 86, pp 286-289, 505

Uinta Indian Reservation, Utah, water supply of Ann 21, iv, pp 305-330

Uinta Mountains, Archean and Algonkian literature of Bull 86, pp 286-289, 505

pre-Cambrian rocks of Ann 16, i, pp 820-821

Uinta River, flow of, measurements of WS 37, pp 288-289, 290-291

Uinta sandstone of Colorado Ann 9, pp 687-688; Bull 86, pp 287-289

Uintaite, analyses of Ann 17, i, pp 919, 920; Ann 18, v cont, pp 940, 941

conditions of impregnation Ann 17, i, p 938

deposits of Ann 17, i, pp 909-949

uses of, in commerce Ann 17, i, pp 947-949

Uintacrinidae, Mesozoic, of United States Bull 97, pp 21-24

Ulexite, analysis of, from Nevada, Esmeralda County Bull 55, p 59

Ulke (T.), tin ore at Kings Mountain, North Carolina MR 1893, pp 178-180

Ulmacese of Amboy clays Mon xxvi, p 69

of Cretaceous of Black Hills Ann 19, ii, p 689

of North America (extinct) Mon xxxv, pp 80-84

of Yellowstone Park Mon xxxiv, ii, pp 711-712

Umatilla River, flow of, measurements of Ann 18, iv, pp 361; Ann 19, iv, pp 493-494; Ann 20, iv, pp 63, 515;

Ann 21, iv, pp 429-430; Bull 131, pp 68-69; WS 11, p 88;

WS 16, p 180; WS 28, pp 167, 169, 170; WS 38, pp 376-377

irrigation from Bull 131, pp 69-73

Umber, occurrence and statistics of .. MR 1882, pp 743, 769; MR 1883-84, pp 927-928;

MR 1885, p 532; MR 1886, p 713; MR 1887, pp 678, 707, 722,

803; MR 1889-90, pp 619, 620, 622; MR 1892, pp 815, 816;

MR 1893, pp 758, 759, 760, 761; Ann 16, iv, pp 695, 696, 697;

Ann 17, iv cont, pp 1012, 1013, 1014; Ann 18, v cont, pp 1337,

1338, 1339, 1341; Ann 19, vi cont, pp 635, 637, 638, 640; Ann

20, vi cont, pp 721, 724, 726; Ann 21, vi cont, pp 571-578

Umpqua formation of Oregon GF 49, pp 2, 4

Unakas in Chattanooga district Ann 19, ii, pp 30, 31

Uncompahgre Mountains, pre-Cambrian rocks of Ann 16, i, p 824

Ann 21, iv, pp 279-480; Bull 140, pp 188-189; WS 11, p 69;

WS 16, p 139; WS 28, pp 136, 142, 144; WS 37, pp 296-297

profile of ... WS 44, p 87

Unconformity above and below Potomac formation Mon xv, pp 58-59

distinguishing characters of Ann 7, pp 395-437

in California, Coast Ranges Mon xiii, pp 188-195, 295-299

in Colorado, near Gunnison Mon 6, pp 64-66

in Grand Canyon of Colorado Mon 11, pp 178-182, 207

in Lake Superior region Ann 7, pp 399-414, 417-428, 429-437;

Ann 10, i, pp 453-458; Ann 15, pp 633-635, 637-638; Mon

xix, pp 444-463; Mon xxxvii passim; Bull 86, pp 174-183

in Montana, between Laramie and Livingston formations .. Bull 105, pp 34-35

in Nevada, Silurian rocks at Eureka Ann 3, p 267

in Sierra Nevada, between Mariposa and Calaveras Ann 14, ii, pp 456-458

of Keweenaw series Ann 3, pp 152-156; Mon v, pp 251-259; Bull 23
Unconformity, phenomena indicating, time represented by, etc. Ann 16, i, pp 724-734
relations of folding to .. Ann 16, i, pp 632-633, 804-807
Underground waters, action of WS 29, pp 14-18
classification of ... Mon xxxviii, pp 550-552
of California, Arroyo Seco and Pasadena Mesa Ann 20, iv, pp 543-549
of Colorado .. WS 9, pp 79-87
Arkansas Valley .. Ann 17, ii, pp 551-601
of Great Plains, portion of Ann 16, ii, pp 548-556, 557-565
of Illinois-Indiana, Danville quadrangle GF 67, pp 7-9
of Kansas, southwestern .. WS 6
of Maryland, Fredericksburg quadrangle GF 13, p 6
Nomini quadrangle ... GF 23, p 4
Washington quadrangle ... GF 70, p 7
of Nebraska, portion of southeastern WS 12
of South Dakota, Black Hills, southern part Ann 21, iv, pp 563-574
of Texas, Edwards Plateau and Rio Grande Plain Ann 18, ii, pp 264-321
Nueces quadrangle .. GF 42, pp 3-4
of Virginia, Fredericksburg quadrangle GF 13, p 6
Nomini quadrangle ... GF 23, p 4
Washington (D. C.) quadrangle GF 70, p 7
of Wyoming, Black Hills, southern part Ann 21, iv, pp 563-574
principles governing ... Ann 21, vi, pp 387-394
(See Water, artesian; Water, ground.)
Undertow, function of, in littoral erosion Ann 5, pp 82-83; Mon 1, pp 33, 38
Unga conglomerate of Alaska Bull 84, pp 234-235, 336
remarks on ... Ann 17, i, p 836
Unger (Franz), biographic sketch of Ann 5, p 375
Ungulinidae of Miocene marls of New Jersey Mon xxiv, pp 61-62
Unkpapa sandstone of Black Hills Ann 21, iv, pp 524-525
Unicoi sandstone of Virginia and Tennessee GF 59, p 3
Unionidae of Bear River formation Bull 128, pp 34-36
of clays near Camden, New Jersey Mon ix, pp 243-252
of Colorado formation ... Bull 106, p 95
of Great Basin, Pleistocene and recent Bull 11, pp 14-15
of John Day group of Oregon................................. Bull 18, pp 13-14
of Jurassic of North America Bull 34, pp 15-19
of Laramie of Utah .. Bull 34, pp 20-21
of North America (nonmarine fossil) Ann 3, pp 424-435
United States, boundaries of Bull 171, pp 11-29
clay products of, at Paris Exposition of 1900 Ann 21, vi cont, pp 391-392
elevation of, average .. Ann 13, ii, pp 283-289
survey of northwestern boundary of, 1857-1861 Bull 174
(See each State and Territory.)
United States Geological Survey, bibliography and index of publications of . . . Bull 100
laws establishing and extending Ann 1, pp 3-4; Ann 4, p xiii
relating to publications of Bull 100, pp 11-14
plan and organization of Ann 1, pp 6-14; Ann 7, pp 3-17; Ann 8, 9, pp 3-69; Ann 10, 1, pp 3-5; Ann 11, 1, pp 3-4; Ann 12, 1, pp 5-7; Ann 13, 1, pp 23-25; Ann 14, 1, pp 38; Ann 15, pp 29, 66; Ann 16, 1, pp 13; Ann 17, 1, pp 17; Ann 18, 1, pp 18; Ann 19, 1, pp 27; Ann 20, 1, pp 25; Ann 21, 1, pp 19-22, 60-61
Unkar terrane, Grand Canyon of Colorado, pre-Cambrian rocks of Ann 14, ii, pp 497-524
section of .. Ann 14, ii, pp 510-512
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Upham (W.), altitudes between Lake Superior and Rocky MountainsBull 72

Glacial Lake Agassiz ... Mon xxv

Uplift in Coastal Plain .. GF 3, p 5; GF 23, p 8

in Colorado, Anthracite quadrangleGF 9, p 7

Crested Butte quadrangle ...GF 9, pp 8-9

La Plata quadrangle ...GF 60

Mosquito Range ...GF 48, p 1

Pueblo quadrangle ...GF 36, pp 1-2, 4

Telluride quadrangle ...GF 57, p 13

Tennmile district ..GF 48, p 3

in Maryland, Harpers Ferry quadrangleGF 10, pp 1, 4

in Montana, Little Belt Mountains quadrangleGF 56, pp 6-7

in Philippine Islands ...Ann 21, iii, pp 563-566

in Tennessee, Kingston quadrangleGF 4, p 2

Sewance quadrangle ..GF 8, p 2

in Utah, Tintic district ..GF 65, p 4

in Virginia, Harpers Ferry quadrangleGF 10, pp 1, 4

in West Virginia, Harpers Ferry quadrangleGF 10, pp 1, 4

(See Diastrophism; Elevation.)

Upper Coal Measure limestone of Colorado, LeadvilleAnn 2, pp 28, 216, 219-220

of Nevada, features and fossils ofAnn 3, p 270

Upper Coal Measures of Nevada, Eureka districtMon xix, pp 93-95

Upper Helderberg formation in IndianaAnn 11, i, pp 635-636

Upper Helderberg limestone in OhioAnn 8, pp 568-570

Upper Menominee series of Michigan, Menominee districtGF 62, pp 4-11

Upper slate of Penokee series of Lake Superior regionAnn 10, pp 349, 423-435; Mon xix, pp 290-345, passim

Upshur sandstone of West VirginiaGF 34, p 2

Upson clays of Texas ..Bull 164, pp 20-21, 34

Uralite-diabase dikes of California; Nevada City and Grass Valley districts ..Ann 17, ii, pp 64-65

Uralite-diorite, analysis of, from California, Bidwell Bar quadrangleAnn 17, i, pp 582, 731; Bull 148, p 205; Bull 168, p 191

of Sierra Nevada ..Ann 17, i, p 582

Uralite-gabbro of Sierra NevadaAnn 17, i, p 670

Uralite-schist of Sierra NevadaAnn 17, i, p 584-586

Uralitization, cause, nature, etc., ofBull 28, pp 40-43, 49; Bull 59, p 24; Bull 62, pp 52-55

Uraninite, analysis of (decomposed)Bull 90, p 27

analyses of, from Colorado ..Ann 21, vi, p 310; Bull 78, p 65

from Connecticut, Glastonbury and BranchvilleAnn 21, vi, p 310; Bull 78, pp 62, 64

Glastonbury, residue from ...Bull 78, p 74

from North Carolina ..Ann 21, vi, p 310; Bull 78, p 65

from Norway, various localitiesBull 78, p 67

from Quebec, Villeneuve ...Bull 90, p 23

from Saxony, JohanngeorgenstadtBull 90, p 23

from South Carolina, Greenville CountyBull 90, p 23

occurrence of nitrogen in, and composition of uraninite in generalBull 78, pp 43-79

of North America, remarks onBull 60, pp 131-133

Uranite, analyses of, from North Carolina, Mitchell CountyBull 74, p 36

Uranium, statistics of ..MR 1882, p 448

uses, occurrence, composition, etc., ofAnn 21, vi, pp 308-314, 318
Uranium dioxide, isomorphism of .. Bull 113, pp 41-43
preparation and specific gravity of Bull 113, pp 37-40
Uranium sulphate, analysis of ... Bull 90, p 28
Uranophane, analysis of, from North Carolina Ann 21, vi, p 310
chemical constitution of .. Bull 125, p 100
Uranotil, analysis of, from North Carolina, Mitchell County Bull 74, p 70
Uranous sulphates, isomorphism and composition of thorium and .. Bull 90, pp 26-33
Uranium, analyses of, from California, Owens Lake Bull 60, p 76
analysis of, from Egypt .. Bull 60, p 69
from Venezuela ... Ann 17, i, p 886
from Dakota group ... Mon xvn, pp 76-87
from Laramie group .. Bull 37, pp 37-46
from Yellowstone Park ... Mon xxxii, ii, pp 712-718
Urago, analyses of, from California, Owens Lake.................. Bull 60, p 76
from Venezuela ... Ann 17, i, p 886
from Dakota group ... Mon xvn, pp 76-87
from Laramie group .. Bull 37, pp 37-46
from Venezuela ... Bull 60, pp 41, 67
Uruguay, iron-ore deposits of .. Ann 16, iii, p 69
Utah; Abajo Mountains, structure and rocks of Ann 14, ii, pp 215-217
altitudes in ... Bull 19, i, pp 353-355; Bull 5, pp 290-300; Bull 76; Bull 160, pp 708-716
antimony deposits in .. MR 1883-84, pp 643-644; MR 1891, p 174
atlas sheets of. (See list on p 96 of this bulletin.)
Bear River, flow of, measurements of Ann 11, ii, pp 103-109; Ann 12, ii, pp 332, 352, 360; Ann 13, iii, pp 96, 99; Ann 14, ii, pp 120-121; Ann 18, iv, pp 319-320; Ann 19, iv, pp 434-435; Ann 20, iv, pp 60, 460-462; Ann 21, iv, pp 396-398; Bull 131, pp 55-57; Bull 140, pp 227-229; WS 11, p 77; WS 16, p 159; WS 28, pp 150, 153, 154; WS 38, pp 334-336
irrigation canal on ... Ann 13, iii, pp 194-198
profile of ... WS 44, pp 89-90
Blacksmith Fork, irrigation on WS 7, pp 32-35
Bonneville, a Pleistocene lake of Utah Ann 2, pp 169-200; Mon i
boundary lines of, and formation of Territory and State Bull 13, pp 31, 124-125; Bull 171, pp 131-132
building stone from, at World’s Columbian Exposition MR 1893, p 572
statistics of ... MR 1889-90, pp 374, 432; MR 1891, pp 461, 463; MR 1892, pp 706, 708, 710, 711; MR 1893, pp 544, 550, 551, 553, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, pp 335 et seq
Cache Valley, irrigation, stream measurements, etc., in WS 7, pp 27-44
cement industry at Salt Lake City MR 1891, p 532
cement production of, statistics of MR 1889-90, p 461; MR 1892, p 739; MR 1893, p 619; Ann 16, iv, pp 577, 581; Ann 17, iii cont, p 84; Ann 18, v cont, p 1170; Ann 19, vi cont, p 487; Ann 20, vi cont, p 539; Ann 21, vi cont, pp 393, 408
clay products of, statistics of Ann 16, iv, pp 518, 519, 520, 521
Ann 17, iii cont, p 821 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, p 319 et seq; Ann 20, vi cont, p 467 et seq

Bull. 177—01——51
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

copper minerals from, notes on certain rare: Bull 55, pp 38-47.

cub river, flow of, measurements of: Ann 18, iv, pp 518.

duchesne river, flow of, measurements of: WS 37, pp 291-292.

at fort douglas: Ann 14, vii, p 154.

at various points: Ann 11, vi, p 34; Ann 12, vi, pp 235, 238.

gas, illuminating and fuel, and by-products in, statistics of: Ann 20, vi, etc., pp 228, 241, 244, 246, 247, 249.

gazetteer of: Bull 166.

geographic positions in: Ann 18, i, pp 205-208; Ann 19, i, pp 183-188; Ann 20, vii, pp 268-277; Ann 21, i, pp 348-349; Bull 123, pp 138-139.

(See Map, geographic, of Utah.)

gologie sections in: (See Section, geologic, in Utah.)

gologic and paleontologic investigations in: Ann 1, pp 24-25, 37-38; Ann 2, pp 11-13; Ann 3, pp 28-29; Ann 7, pp 115-116, 118; Ann 13, i, p 140; Ann 14, i, p 255; Ann 16, i, p 31; Ann 17, i, p 39; Ann 19, i, pp 40-42, 47-49; Ann 21, i, p 81.

in Tintic district, production of: GF 65, p 5.

Utah; Grand Canyon district, physical geology of Ann 2, pp 49-166

Great Salt Lake, height of, measurements of Ann 13, iv, pp 20, 21

Green River, flow of, measurements of Ann 18, iv, pp 275-278, 279; Ann 19, iv, pp 396-398; Ann 20, iv, pp 58, 387-388; Ann 21, iv, pp 304-305; Bull 131, p 48; Bull 140, pp 202-203; WS 11, p 70; WS 16, p 136; WS 28, pp 134, 142, 144; WS 37, pp 292-293

gypsum production of MR 1892, pp 802, 803; MR 1893, p 714; Ann 16, iv, p 664

Henry Mountains, structure, rocks, etc., of Ann 14, ii, pp 169-177

High Creek, irrigation on WS 7, p 37

irrigation in Bull 140, pp 220-224

La Sal Mountains, structure and rocks of Ann 14, ii, pp 217-219

laccolithic mountain groups of Colorado, Arizona, and Ann 14, ii, pp 157-241

Lake Bonneville, a Pleistocene lake of Utah Ann 2, pp 169-200; Mon i

lumber industry in Ann 19, v, pp 21, 22

magnetic declination in Ann 17, i, pp 424-426

maps, geologic, of. (See Map, geologic, of Utah.)

maps, topographic, of. (See Map, topographic, of Utah; also p 96 of this bulletin.)

marble production of, statistics of Ann 18, v, cont, pp 991-992; Ann 19, vi cont, p 246; Ann 21, vi cont, pp 335, 341, 342, 343

Logan River, flow of, measurements of Ann 18, iv, pp 316-318; Ann 19, iv, pp 433-434; Ann 20, iv, pp 60, 460-462; Ann 21, iv, p 397; WS ii, p 77; WS 16, p 158; WS 28, pp 150, 153, 154

irrigation on WS 7, pp 29-32
Utah; Mercur mining district, economic geology ofAnn 16, ii, pp 370-455
mineral springs of, statistics ofMR 1893, pp 782, 784, 793, 794; Ann 16, iv, pp 708, 718, 720; Ann 17, iii cont, pp 1039, 1042; Ann 18, v cont, pp 1371, 1384, 1387; Ann 19, vi cont, pp 661, 674, 678; Ann 20, vi cont, pp 750, 764, 767; Ann 21, vi cont, pp 600, 616, 620; Bull 32, pp 185-187
minerals of, associated rareBull 20, pp 83-88
useful ...MR 1882, pp 773-775; MR 1887, pp 794-796
natural gas localities and statistics ofMR 1892, pp 676; MR 1893, p 536; Ann 16, iv, p 415; Ann 17, iii cont, pp 734, 735; Ann 18, v cont, pp 900, 901, 903, 904, 915; Ann 19, vi cont, pp 168, 169, 171, 172, 173, 182; Ann 20, vi cont, pp 207, 209, 210, 221; Ann 21, vi cont, pp 299, 301, 302, 304, 315-316
nitrates from, results of an investigation ofAnn 20, vi cont, pp 257-260
onyx-marble localities inAnn 20, vi cont, p 288
Oquirrh Mountains, geology and economic resources ofAnn 16, ii, pp 349-369
ozocerite deposit in ..MR 1883-84, pp 955-957; MR 1888, p 515; MR 1889-90, p 481
precious stones in, occurrence ofAnn 16, iv, pp 602, 603
puumice-stone deposits inAnn 19, vi cont, pp 531-532
quicksilver production of ..MR 1886, p 168
rainfall in ..WS 7, pp 15-17
at Fort Duchesne, Vernal, and HeberAnn 21, iv, pp 320-321
at Promontory ..Ann 13, iii, p 27
rainfall and run-off in basin of Great Salt LakeAnn 20, iv, pp 454-459
in basin of Upper Colorado RiverAnn 20, iv, pp 374-380
reservoir surveys in ..Ann 20, iv, p 36
(See " irrigation " on p 803.)
salt making in, history ofAnn 18, v cont, pp 313-1313; Ann 19, vi cont, pp 608-610
Utah; sections, geologic, in. (See Section, geologic, in Utah.)

Sevier River, flow of, measurements of ..Ann 11, ii, pp 105, 109; Ann 12, ii, pp 342, 355, 361; Ann 13, iii, pp 97, 99; Ann 14, ii, pp 125-126; Bull 131, pp 60-61

profile of ...WS 44, p 89

sewage-disposal plant at Salt Lake City ..WS 22, pp 81-82

silver in Tintic district ..Ann 16, ii, pp 363-402

in Tintic district ...GF 65, p 5

silver and gold from, statistics of. (See "gold and silver," p 802.)

sulphur production of, statistics of.......MR 1885, pp 494-496; MR 1886, p 644;
MR 1887, p 604; MR 1889-90, p 515; MR 1891, p 564

Summit Creek, irrigation on ..WS 7, p 38

Tintic district, geology and mining industry of. ..Ann 19, ii, pp 601-767; GF 65 topographic maps of. (See Map, topographic, of Utah; also p 96 of this bulletin.)

topographic work in Ann 2, pp 13-15; Ann 18, i, pp 94, 96, 109; Ann 19, i, pp 89, 91, 106, 110; Ann 20, i, p 121; Ann 21, i, pp 121, 137, 141
triangulation in Dodds 122, pp 360, 366, 367, 383-397

Uinta Basin, geology of ..Ann 17, i, pp 920-946

Uinta Indian Reservation, water supply of ..Ann 21, iv, pp 305-330

Uinta River, flow of, measurements of ..WS 37, pp 288-289, 290-291

Uintaite (gilsonite), deposits of ..Ann 17, i, pp 909-949

Ute Indian Reservation, Southern, water supply of Ann 20, iv, pp 408-434

Ute Indians, Southern, history of ..Ann 16, iv, pp 443-444; WS 16, p 163; WS 28, p 152; WS 38, pp 339-341

Utah Lake. (See main entry Utah Lake, below.)

water supply and public lands of ..Ann 16, ii, pp 524-530

Weber River, flow of, measurements of ...Ann 11, ii, p 103; Ann 12, ii, pp 336, 353, 360; Ann 13, iii, pp 96, 99; Ann 14, ii, pp 122-123; Ann 18, iv, pp 323-325; Ann 19, iv, pp 440-441; Ann 20, iv, pp 60, 61, 466; Ann 21, iv, pp 397-398; Bull 131, pp 57-58; Bull 140, pp 231-233; WS 11, p 78; WS 16, p 161; WS 28, pp 151, 153, 154; WS 38, pp 337-338

White Rock River, flow of, measurements ofWS 37, p 289-290

woodland area of ...Ann 19, v, p 12

Utah Lake, height of, measurements of ...Ann 12, ii, p 336;
Ann 13, iii, pp 19, 21; Ann 18, iv, pp 328-330; Ann 19, iv, pp 443-444; WS 16, p 163; WS 28, p 152; WS 38, pp 339-341

hydrography of basin of ..Ann 11, ii, pp 70-74; Ann 12, ii, pp 334-339

reservoir system at ...Ann 11, ii, pp 184-189

Utahlite, occurrence and statistics of ..Ann 16, iv, p 602; Ann 17, iii cont, p 924; Ann 18, v, cont, p 1217; Ann 19, vi cont, p 513; Ann 20, vi cont, p 599

Utica shale in Indiana ..Ann 8, ii, pp 638-639; Ann 11, i, pp 629-630

in Ohio ..Ann 8, ii, pp 549, 556-558, 638-639

as a water carrier ...Ann 19, iv, p 641

Utica and Hudson River shales in Michigan ..WS 30, p 89

Uvalde formation of Texas ..Ann 18, ii, pp 244-247; Ann 21, vii pp 447-449; GF 42, p 3; GF 64, p 3
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Uvalde quadrangle, Texas, geology of ..GF 64
Uwarowite from California, mineralogic description of Bull 61, p 30
Vaalite, chemical constitution of .. Bull 125, p 50
Vacant public lands in Western States, classification, rate of disposal, etc., of Ann 16, v, pp 467, 492-496
Valdes Port and Glacier, Alaska, notes on Ann 20, vi, pp 380-382
Valdes series of Alaska ... Alaska (2), p 57
of Alaska, character, correlation, etc., of Ann 20, viii, pp 408-410
Valley drift of Maine ... Mon xxxiv, pp 58-69, 470-489
Valvatidae of Great Basin, Pleistocene and recent Bull 11, pp 21, 44-45
of Jurassic of North America .. Bull 29, pp 22-23
of North America, nonmarine fossil ... Ann 3 pp 470-471
Van Diest (P. H.), estimate by, of artesian-water yield of Denver Basin Mon xxvii, pp 426-427
Van Hise (C. R.), cited on road-building materials of Wisconsin Ann 15, p 302
principles of North American pre-Cambrian geology Ann 16, i, pp 571-584
work in charge of, 1887-1900 .. Ann 19, iii, pp 9-18; Mon xxxvi, pp xvii-xxvii
Van Hise (C. R.) and Bayley (W. S.), geology of the Menominee district, Michigan GF 62
Van Hise (C. R.) and Irving (R. D.), Penokee iron-bearing series of Michigan and Wisconsin Ann 10, i, pp 341-507; Mon xix
nonmarine fossil .. Ann 21, in, pp 305-318
secondary enlargements of mineral fragments in certain rocks Bull 8
Vanadium, distribution and quantitative occurrence of molybdenum and, in rocks of United States Bull 167, pp 49-55
Vancouver group. (See Nanaimo.)
Vancouver Island region, Cretaceous fossils from Bull 51, pp 33-48
Vancouver series of rocks .. Bull 86, pp 338-339
Van der Wyck (O. H.), tin ore in Banca and Billiton, occurrence, geologic relations, treatment, etc., of Ann 17, iii, pp 227-242
Vapor, aqueous, thermal effect of action of, on feldspathic rocks Ann 2, pp 325-330; Mon iii, pp 290-308
Variolitic facies of minette in Little Belt Mountains Ann 20, iii, pp 532-535
Vashon drift in Washington .. GF 54, p 4
Vaughan (T. W.), a brief contribution to the geology and paleontology of northwestern Louisiana Bull 142
asphalt deposits of western Texas .. Ann 18, v, pp 930-935
Eocene and Lower Oligocene coral faunas of United States, with descriptions of a few dubiously Cretaceous species Mon xxxix
Vaughan (T. W.), geology of Uvalde quadrangle, Texas GF 64
reconnaissance in Rio Grande coal fields of Texas Bull 164
work in charge of ... Ann 19, ii, p 39; Ann 20, i, p 43
Vaughan (T. W.) and Hill (R. T.), geology of Edwards Plateau and Rio Grande
Plain adjacent to Austin and San Antonio, Texas, with
reference to occurrence of underground waters Ann 18, ii, pp 193-321
geology of Nueces quadrangle, Texas GF 42
Lower Cretaceous gryphtes of the Texas region Bull 151
Vein formation, theories of Mon xi, pp 18-21, 30; Mon xii, pp 80-106, 187-190; Mon xiii, p 378; Mon xiv, pp 407-450, 473-475; Mon xv, pp 292-316
(See, also, Ore deposits.)
Vein materials, analysis of, from Colorado, Custer County (earthy) Ann 17, ii, p 458
analysis of, from Colorado, Leadville district Mon xiv, p 857
Vein rocks, description of, as members of the educational series. .. Bull 150, pp 93-95
Vein structure of Nevada City and Grass Valley districts, California.......... Ann 17, ii, pp 158-159
Vein systems, relation of, to structure in Nevada City and Grass Valley dis-
tricts .. Ann 17, ii, pp 167-168
relative age and genesis of Ann 14, ii, pp 283-284
Veins, thin section illustrating microscopic structure of, from Colorado, Tel-
luride quadrangle, Royal mine Ann 18, iii, p 800
Veins, gold-quartz, in Appalachians, southern Ann 16, iii, pp 281-289
in California, Bidwell Bar quadrangle GF 43, p 6
Big Trees quadrangle .. GF 51, p 8
Colfax quadrangle .. GF 66, pp 7-8
Downieville quadrangle GF 37, p 8
Jackson quadrangle ... GF 11, p 6
Mother Lode district GF 63, pp 7-10
Nevada City and Grass Valley districts, genesis and general features
of .. Ann 17, ii, pp 112-113, 172-184, 261
Nevada City, Grass Valley, and Banner Hill districts GF 29, pp 6-7
Ophir .. Ann 14, ii, pp. 243-284
Placerville quadrangle GF 3, p 3
Pyramid Peak quadrangle GF 31, p 8
Sacramento quadrangle GF 5, p 3
Smartsville quadrangle GF 18, p 6
Sonora quadrangle ... GF 41, pp 6-7
Truckee quadrangle .. GF 39, p 8
in Colorado, Cripple Creek district Ann 16, ii, pp 144-150; GF 7, p 8
La Plata quadrangle ... GF 60
Leadville district .. Mon xiv, pp 513-515
Telluride quadrangle Ann 18, iii, pp 771-781, 800; GF 57, p 16
in Idaho .. Ann 18, iii, pp 647, 650; Ann 20, iii, pp 75-256
Boise quadrangle .. GF 45, pp 5-6
in Montana, Boulder Hot Springs Ann 21, ii, pp 233-255
in Nevada, Comstock lode Mon iv, pp 266-289
in Oregon, Bohemia mining district Ann 20, iii, pp 15-19
in Sierra Nevada .. GF 31, p 1; GF 37, p 1; GF 39, p 1; GF 41, p 1; GF 43, p 1; GF 51, p 1
types of .. Ann 18, iii, pp 647-650
Veins, gold-silver, of Ophir, California Ann 14, ii, pp 243-284
Veins, granite, in Colorado, Pikes Peak quadrangle GF 7, p 1
Veins, quartz, in New York-Vermont slate belt Ann 19, iii, p 217
Veins, silver-lead, of Idaho Ann 20, iii, pp 198-206
of Montana, Little Belt Mountains Ann 20, iii, pp 405-422
Venasquinite, chemical constitution of Bull 125, p 48
Venerida from Colorado formation Bull 106, pp 106-109
from marls of New Jersey Mon ix, pp 153-164, 218-219, 237-238
from Miocene marls of New Jersey Mon xxiv, pp 67-75
Venetian red, statistics of MR 1892, pp 815, 818; MR 1893, pp 758, 762;
Ann 16, iv, pp 695, 698; Ann 17, iii cont, pp 1012, 1018;
Ann 18, v cont, pp 1337, 1343; Ann 19, vi cont, pp 635, 643-
644; Ann 20, vi cont, pp 721, 730; Ann 21, vi cont, p 580
Ventura formation in Washington, northern Ann 20, ii, pp 113-114
Venezuela; asphaltum from, technology of MR 1893, pp 665-666
copper production of, statistics of MR 1883-84, pp 356, 374; MR 1885, pp 229,
243; MR 1886, pp 128, 139; MR 1887, pp 88, 96; MR 1888,
p 73; MR 1889-90, p 73; MR 1891, p 101; MR 1892, pp
114, 116; MR 1893, p 86; Ann 16, iii, p 352; Ann 17, iii,
pp 118, 119; Ann 18, v, pp 219, 221; Ann 19, vi, pp
176, 178; Ann 20, vi, pp 202, 204; Ann 21, vi, pp 204, 206
gold production of, compared with that of other countries MR 1883-84,
pp 319, 320
iron-ore deposits of .. Ann 16, iii, pp 66-67
petroleum localities in MR 1886, pp 486-487; Ann 21, vi cont, p 184
Venus cancellata bed of Florida Bull 84, p 336
Verde River, Arizona, flow of, measurements of Ann 11, ii, pp 100,
108; Ann 18, iv, pp 297, 298; Ann 19, iv, pp 420-423;
Ann 20, iv, pp 59, 407; Ann 21, iv, pp 387-388; Bull
131, p 51; Bull 140, p 206; WS 2, p 38; WS 16,
p 150; WS 28, pp 141, 143, 145; WS 38, pp 323-324
Verdigris River, Kansas, flow of, measurements of Ann 18,
iv, pp 235-237; Ann 19, iv, pp 363-373; Ann 20, iv, pp 57,
344; Ann 21, iv, p 237; Bull 140, pp 162-163; WS 11, p 62;
WS 16, p 125; WS 28, pp 115, 116, 117; WS 37, pp 265-266
profile of ... WS 44, p 67
rainfall in watershed of Ann 19, iv, pp 366-367, 373
water powers on ... Ann 19, iv, pp 375-376
Vermes from Colorado formation, description of Bull 106, p 53
Vermetidae from clays and marls of New Jersey Mon xviii, p 149
from Miocene deposits of New Jersey Mon xxiv, pp 131-133
Vermetus rock of Florida Bull 84, p 336
Vermiculite, analysis of, from Massachusetts, Pelham Bull 126, p 97
analysis of, from North Carolina, Corundum Hill Bull 42, p 51
from Pennsylvania, Delaware County Bull 90, p 15
Easton ... Bull 64, p 44; Bull 90, p 20
Easton (chloritic, residue from) Bull 90, p 20
chemical constitution of Bull 125, pp 49, 50, 102, 103
Vermiculites, micas, and chlorites, on constitution of certain ... Bull 90, pp 11-21
Vermilion Cliffs and Valley of the Virgen, Grand Canyon district, description of Ann 2, pp 83-91; Mon ii, pp 51-60
Vermilion Creek group of Colorado Bull 83, p 124; Bull 84, p 337
Vermilion iron-bearing district, Lake Superior Ann 21, iii, pp 401-409, 433-434
Vermilion series of Great Lakes region... Bull 86, pp 129, 130, 181-182, 185-186, passim Vermont; altitudes in... Ann 18, i, pp 225-225; Ann 19, i, pp 197-198; Bull 5, pp 301-303; Bull 76; Bull 160, pp 717-723 atlas sheets of. (See list on pp 96-97 of this bulletin.)

Bird Mountain, a study of... Ann 20, ii, pp 9-23 boundary lines of... Bull 13, pp 45-47; Bull 171, pp 50-53 building stone from, at World’s Columbian Exposition... Bull 1893, pp 572-573 statistics of... MR 1882, pp 451, 452; MR 1886, p 541; MR 1887, pp 513, 518; MR 1888, pp 536, 541; MR 1889-90, pp 373, 432-435; MR 1891, pp 457, 460, 464, 467; MR 1892, pp 706, 708, 709, 710, 711; MR 1893, pp 544, 547, 549, 550, 551, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 760 et seq; Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq clay products of, statistics of... MR 1882, pp 465, 469; MR 1888, p 563; MR 1891, p 502; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 821 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 319 et seq, 372; Ann 20, vi cont, p 467 et seq; Ann 21, vi cont, pp 362, 363 copper from, statistics of... Ann 2, p xxix; MR 1882, pp 216, 231; MR 1883-84, pp 329, 343; MR 1885, p 210; MR 1886, p 112; MR 1887, p 69; MR 1888, p 54; MR 1889-90, p 60; MR 1891, pp 83, 84; MR 1892, pp 96, 97; MR 1893, pp 64, 65; Ann 16, iii, pp 333, 334; Ann 17, iii, pp 84, 85, 86; Ann 18, v, pp 189, 190, 191; Ann 19, vi, pp 140, 141, 142, 143; Ann 20, vi, pp 161, 162, 163, 164, 165, 186; Ann 21, vi, pp 166-170, 188 geographic positions in... Bull 123, p 17 geologic maps of, listed... Bull 7, pp 54, 55, 56, 57, 161 (See, also, Map, geologic, of Vermont.)

geologic sections in. (See Section, geologic, in Vermont.)
geologic and paleontologic investigations in... Ann 5, pp 52, 54; Ann 6, pp 74, 75, 76; Ann 7, pp 60, 157; Ann 8, i, pp 125, 175, 176; Ann 9, p 116; Ann 10, i, pp 114, 160; Ann 11, i, pp 64, 104, 114; Ann 12, i, pp 66, 68, 69, 72, 76, 122; Ann 13, i, p 100; Ann 17, i, pp 19-20; Ann 18, i, pp 23-24; Ann 19, i, p 32; Ann 20, i, p 34; Ann 21, i, pp 69-70 gold and silver from, statistics of... Ann 17, iii, pp 74, 75; Ann 18, v, p 142 et seq; Ann 19, vi, pp 128, 129, 132, 133; Ann 20, vi, pp 104, 105, 106, 108 gold-bearing rocks in Green Mountains... Ann 16, iii, pp 330-331 granite production of, statistics of... MR 1887, p 518; MR 1888, pp 536, 539; MR 1889-90, pp 374, 443; MR 1892, pp 706, 708; MR 1893, pp 544, 547; Ann 16, iv, pp 437, 444, 457, 458, 462; Ann 17, iii cont, pp 760, 761, 792, 783, 766; Ann 18, v cont, pp 951, 952, 954, 956, 974; Ann 19, vi cont, pp 207, 208, 209, 210, 211, 223-227; Ann 20, vi cont, pp 271, 272, 273, 274, 275, 276, 280; Ann 21, vi cont, pp 335, 336, 337, 338, 339, 340 granite quarries in... Ann 19, vi cont, pp 234-236 Green Mountains, pre-Cambrian rocks in... Ann 16, i, pp 827-829 Green Mountain region and eastern New York, structural details in... Ann 16, i, pp 583-583 iron, iron ore, and steel from, statistics of... Ann 2, p xxviii; MR 1882, pp 120, 129, 131, 133, 136, 137; MR 1883-84, p 252; MR 1885, pp 182, 184; MR 1886, pp 17, 42; MR 1891, p 61; Ann 16, iii, pp 31, 194; Ann 19, vi, pp 26, 27, 29; Ann 20, vi, p 44; Ann 21, vi, p 53
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Vermont; lime production of.................................MR 1887, p 533; MR 1888, p 556
limestone production of.. MR 1889-90, pp 373, 433; MR 1891, pp 464, 467; MR 1892, p 711; MR 1893, p 556; Ann 16, iv, pp 437, 494, 495, 510;
Ann 17, iii cont, pp 760, 788, 790, 791, 795; Ann 18, v cont,
limestone quarries of western............................Ann 17, iii cont, pp 802, 806-811
magnetic declination in..Ann 17, i, pp 426-427
MR 1892, pp 189, 202; MR 1893, pp 120, 134; Ann 16, iii, pp 424-426; Ann 17, iii, p 204; Ann 18, v, p 310
maps, geologic, of. (See Map, geologic, of Vermont.)
maps, topographic, of. (See Map, topographic, of Vermont; also list on pp 96-97 of this bulletin.)
marble production of, statistics of........................MR 1882, p 451; MR 1886, p 541; MR 1887, p 518; MR 1888, p 541;
mineral spring resorts in.......................................Ann 14, ii, p 87
minerals of, useful..MR 1882, pp 736-738; MR 1887, pp 796-799
paint, mineral, production of, statistics of............MR 1892, pp 816, 818; MR 1893, pp 759, 760, 761; Ann 16, iv, pp 695, 696, 698; Ann 17, iii cont, pp 1013, 1014, 1016, 1017; Ann 18, v cont, pp 1338, 1339, 1342;
Ann 19, vi cont, pp 636, 637, 638, 642, 643; Ann 20, vi cont, pp 722, 723, 724, 728, 729; Ann 21, vi cont, pp 572, 573, 574
pyrites from, statistics of..................................MR 1885, pp 502-503
sections, geologic, in. (See Section, geologic, in Vermont.)
slate belt of western..Ann 19, iii, pp 153-307
Stamford and Clarksburg Mountain, geology of region around...........Mon xxiii, pp 98-102
structure of ridge between Taconic and Green Mountain ranges.........Ann 14, ii, pp 525-549
timber in, estimates of..Ann 19, v, p 16
topographic maps of. (See Map, topographic, of Vermont; also list on pp 96-97 of this bulletin.)
Vermont; topographic work in .. Ann 9, p 76; Ann 12, i, p 35; Ann 13, i, pp 70, 71; Ann 14, i, p 171; Ann 15, p 113; Ann 16, i, pp 64, 68, 69; Ann 17, i, pp 97, 98; Ann 18, i, pp 94, 96, 100-101; Ann 19, i, pp 89, 91, 97

trap dikes in .. Bull 107

triangulation in .. Bull 122, p 43

woodland area in .. Ann 19, v, p 3

Vermont, western, and New York, eastern; slate from, mineral and chemical composition, methods of testing, etc. Ann 20, vi cont, pp 301-336

Vermont formation in Massachusetts, Green Mountains Mon xxiii, pp 48-59, 181, 190; Bull 86, pp 372, 373

Vertebrate life in America, section illustrating Ann 5, p 253; Ann 16, i, p 145; Mon x, p 7; Mon xxvii, p 474

Vertebrates, fossil; Alaskan localities of .. Ann 17, i, p 856

bibliography and index of North American geology, paleontology, etc., 1892-1899 Bulls 130, 135, 146, 149, 156, 162, 172

birds with teeth .. Ann 3, pp 45-88

Dinocerata, an extinct order of gigantic mammals Ann 5, pp 243-302; Mon x

dinosaurs of North America .. Ann 16, i, pp 133-414

fishes of Devonian, upper, of New York, description of two species of Bull 41, pp 62-63

of Esmeralda formation of Nevada .. Ann 21, ii, pp 223-226

of Paleozoic of North America .. Mon xvi

of Triassic of New Jersey and Connecticut Valley Mon xiv, pp 17-76

fishes and reptiles of western Massachusetts Mon xxiii, pp 398-400, 405-406

geologic horizons of, Cretaceous to Pliocene .. Ann 18, ii, p 334

in North America ... Bull 84, p 266

of Alaska, distribution of ... Bull 84, p 145

of Denver Basin .. Mon xxvii, pp 473-550

of Devonian, higher, of Ontario County, New York Bull 16, pp 17-20, 40-43

of Eocene of middle Atlantic slope .. Bull 141, pp 58-63

of Miocene of Montana Bull 139, p 55

of Neocene of Florida;....... Bull 84, pp 127-131

of Newark system .. Bull 85

of Potomac formation .. Ann 15, p 343

Vessels, number and tonnage of iron and steel, built since 1868 Ann 18, v, p 78

Vesuvianite, analysis of .. Bull 125, p 25

chemical constitution of Bull 125, pp 25-27, 103

Vesuvius, Mount, eruptions and structure of GF 15, p 4

Vicksburg group of Louisiana, Mississippi, and Florida Bull 83, pp 69-70, 76, 101-103; Bull 84, pp 101-103, 337

Vicksburg stage, rocks and fossils of Bull 142, pp 22-24

Vicksburg-Jackson limestone .. Ann 12, i, pp 412-413

Vicklesburgian group, correlation of .. Ann 18, ii, p 341

Victoria, Australia; antimony production of MR 1883-84, pp 646-648

coal production of .. Ann 17, iii, p 320; Ann 18, v, pp 414, 420; Ann 19, vi, pp 311, 318; Ann 20, vi, pp 332, 339; Ann 21, vi, pp 363, 371

tin deposits and production of Ann 16, iii, pp 465, 502-503

Villarsite, chemical constitution of .. Bull 125, pp 72, 105

Vineyard series of Massachusetts, correlation of Bull 84, p 337

of Massachusetts, dips of .. Ann 7, pp 330-333

dislocation of .. Ann 7, pp 343-347

origin and nature of .. Ann 7, pp 333-340

stratigraphy of .. Ann 7, pp 328-330

Vinita beds in Richmond Basin .. Ann 19, ii, p 435
Virgen, Valley of the, and Vermilion Cliffs, Grand Canyon district, description of. Ann 2, pp 83–91; Mon n, pp 51–60

Virginia; altitudes in ... Bull 5, pp 304–311; Bull 76; Bull 160, pp 724–737

Appomattox River, profile of ... WS 44, p 23

artesian and other wells in eastern Bull 138, pp 164–190

atlas sheets of. (See list on pp 97–98 of this bulletin.)

barite in Bristol quadrangle ... GF 59, p 8

in Tazewell quadrangle .. GF 44, p 4

Big Stone Gap coal field of Kentucky and......................... Bull 111

boundary lines of ... Bull 13, pp 88–92; Bull 171, pp 94–98

brick industry of ... MR 1887, pp 536, 539; MR 1888, pp 563–564

Bristol quadrangle, geology of .. GF 59

building stone, at World’s Columbian Exposition MR 1893, p 573

in Estillville quadrangle .. GF 12, p 5

in Franklin quadrangle .. GF 32, p 5

in Fredericksburg quadrangle .. GF 13, p 5

in Harpers Ferry quadrangle ... GF 10, pp 4–5

in Monterey quadrangle .. GF 61, p 7

in Nomini quadrangle .. GF 23, p 4

in Pocahontas quadrangle ... GF 20, p 5

in Washington (D. C.) quadrangle GF 70, pp 7

statistics of .. MR 1882, pp 451, 452; MR 1887, p 514; MR 1888, p 536; MR 1889–90, pp 373, 435–437; MR 1891, pp 457, 460, 461, 463, 467; MR 1892, pp 706, 708, 710, 711; MR 1893, pp 544, 547, 549, 550, 551, 553, 556; Ann 16, iv, pp 437 et seq; Ann 17, iii cont, p 761 et seq; Ann 18, v cont, p 951 et seq; Ann 19, vi cont, pp 207 et seq; Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, pp 335 et seq

Catoctin belt, geology of ... Ann 14, ii, pp 285–395

cement production of, statistics of MR 1891, p 532; MR 1892, pp 739–740; MR 1893, p 619; Ann 16, iv, p 577; Ann 17, iii cont, p 891; Ann 18, v cont, p 1179; Ann 19, vi cont, p 495; Ann 20, vi cont, pp 547, 550; Ann 21, vi cont, p 408

clay in Franklin quadrangle .. GF 32, p 5

in Fredericksburg quadrangle .. GF 13, p 5

in Monterey quadrangle .. GF 61, p 7

in Nomini quadrangle .. GF 23, p 4

in Washington (D. C.) quadrangle GF 70, p 7

clay deposits and production of, statistics of MR 1882, p 743; MR 1883–84, p 678; MR 1887, p 803; MR 1891, p 505; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, p 821 et seq; Ann 18, v cont, p 1078 et seq; Ann 19, vi cont, pp 319 et seq, 372; Ann 20, vi cont, pp 467 et seq, 534; Ann 21, vi cont, p 398

clay and brick industry in ... MR 1893, pp 610–611

clay, lime, and cement in Harpers Ferry quadrangle GF 10, p 4

Clinch River, course and character of GF 59, p 1

profile of ... WS 44, p 55

Virginia; coal in Big Stone Gap coal field Bull 111, pp 39-94
coal in Bristol quadrangle .. GF 59, pp 6-8
in Estillville quadrangle ... GF 12, p 4
in Franklin quadrangle ... GF 32, p 5
in Monterey quadrangle ... GF 61, p 7
in Pocahontas quadrangle ... GF 26, pp 4-5
in Richmond Basin ... Ann 19, ii, pp 511, 515
in Tazewell quadrangle ... GF 44, pp 4-5
coal fields of ... MR 1892, pp 521-528; Ann 16, iv, pp 195-197
coal in Richmond Basin .. Ann 19, ii, p 511
manufacture of ... MR 1883-84, pp 204-205; MR 1885, pp 80, 117-119;
MR 1886, pp 378, 384, 422-423; MR 1887, pp 383, 389, 421;
MR 1892, pp 555 et seq, 593-594; MR 1893, pp 418 et seq,
458; Ann 16, iv, pp 225 et seq, 291-292; Ann 17, iv, pp 544
et seq, 608-610; Ann 18, v, cont, pp 661 et seq, 733-734; Ann
19, vi, pp 548 et seq, 628-629; Ann 20, vi, pp 512 et seq, 595-
597; Ann 20, vi, cont, p 228; Ann 21, vi, pp 523 et seq, 618-620
copper in Harpers Ferry quadrangle GF 10, p 4
Copper Creek, character of .. GF 59, p 1
copper mining in ... MR 1882, p 231
Dan River, flow of, measurements of Ann 18, iv, pp 43-45;
Ann 19, iv, pp 178-179; Ann 20, iv, p 50; Bull 140, pp 66-68;
WS 11, p 12; WS 15, pp 26-27; WS 27, pp 33, 44
Dismal Swamp, general description of TF 2, p 2
Dismal Swamp district, geology of .. Ann 10, i, pp 313-339
eastern, artesian and other wells in Bull 138, pp 164-190
Estillville quadrangle, geology of .. GF 12
flags and slates in Harpers Ferry quadrangle GF 10, p 4
forestry investigations in .. Ann 5, pp 64-66; Ann 6, p 99; Ann 7, p 135
fossil wood from Richmond Basin ... Ann 19, ii, pp 516-519
Franklin quadrangle, geology of ... GF 32
Fredericksburg quadrangle, geology of GF 13
fuller's earth in Fredericksburg quadrangle GF 13, p 5
in Nomini quadrangle .. GF 23, p 4
gas, illuminating and fuel, and by-products in, statistics of Ann 20, vi, cont, p 228 et seq
geographic positions in .. Bull 123, pp 74-77
geologic formations of Coastal Plain region of Bull 138, pp 162-190
(See Map, geologic, of Virginia.)
geologic sections in ... (See Section, geologic, in Virginia.)
geologic and paleontologic investigations in Ann 5, p 53; Ann 6, pp 24
31, 86; Ann 7, pp 63, 66, 110, 123, 124; Ann 8, i, pp 170,
188; Ann 9, pp 77, 78; Ann 10, i, pp 118, 120, 121, 156; Ann
11, i, pp 71, 72, 109, 116, 117; Ann 12, i, pp 94, 79, 125; Ann
13, i, pp 107, 108, 109, 136, 145, 149-150; Ann 14, i, pp 259;
Ann 15, pp 131, 141, 142, 152, 154; Ann 16, i, pp 17-18, 21;
Ann 17, i, pp 21-22, 29; Ann 18, i, pp 30-31, 32, 65; Ann 19, i,
pp 35, 36-37, 38; Ann 20, i, pp 39, 41; Ann 21, i, pp 70, 73, 79
gold from, statistics of .. Ann 2, p 385; MR 1882, pp 172, 176, 177, 178;
MR 1883-84, pp 312, 313; MR 1885, p 201; MR 1886, p 104;
MR 1887, pp 58, 59; MR 1888, pp 36, 37; MR 1889-90, p 49;
MR 1891, pp 76, 77; MR 1892, pp 52, 53, 88; MR 1893, pp 50,
51, 55, 57, 58; Ann 16, ii, p 258; Ann 17, ii, pp 72, 73, 74, 75,
76, 77; Ann 18, v, pp 142 et seq; Ann 19, vi, pp 127, 128, 129,
130, 131, 132, 133; Ann 20, vi, pp 104, 105, 106, 107, 108, 109
Virginia; gold mining in, history of..........................Ann 20, vi, p 111 et seq.
Guest River, history of..GF 59, p 1
gypsum production of, statistics of......................MR 1891, pp 580, 582; MR 1892, pp 601, 802, 803; MR 1893, pp 714, 715; Ann 16, iv, pp 663, 664; Ann 17, iii cont, pp 979, 980, 981; Ann 18, v cont, pp 1266, 1267; Ann 19, vi cont, pp 578, 579, 581, 582; Ann 20, vi cont, pp 658, 661; Ann 21, vi cont, pp 524, 526, 527
harbors on coast of....................................Ann 13, ii, pp 176–178
Harpers Ferry quadrangle, geology of..................GF 10
Holston River, physiography of basin of................GF 59, p 1–2
iron, iron ore, and steel from, statistics of..........Ann 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883–84, pp 252, 276–277; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 77–81, 98; MR 1887, pp 11, 16; MR 1888, pp 14, 17, 23; MR 1889–90, pp 10, 12, 17, 24, 40; MR 1891, pp 12, 23, 54, 55, 61; MR 1892, pp 12, 13, 15, 18, 21, 26, 33, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 32–33, 38, 39; Ann 16, iv, pp 31, 40, 192, 194, 197, 203, 208, 249, 250; Ann 17, iii, pp 26, 27, 39, 41, 47, 48, 57, 63, 68; Ann 18, v, pp 24, 41, 42; Ann 19, vi, pp 26, 28, 29, 33, 65, 68, 72; Ann 20, vi, pp 29, 40, 43, 44, 74, 75, 84, 85; Ann 21, vi, pp 34, 46–48, 52, 53, 90, 92
iron ore in Bristol quadrangle...............................GF 59, p 8
in Estillville quadrangle..GF 12, p 5
in Franklinville quadrangle.................................GF 32, p 5
in Harpers Ferry quadrangle................................GF 10, p 4
in Monterey quadrangle......................................GF 61, p 7
in Staunton quadrangle.......................................GF 14, p 3
in Tazewell quadrangle.....................................GF 44, p 4
James River, dams on, description of....................Ann 19, iv, pp 164–170
profile of...WS 44, pp 22–23
jet in Richmond Basin..Ann 19, iv, p 510
lead from, statistics of...Ann 2, pp xxviii; MR 1883–84, p 416; MR 1885, p 248; Ann 18, v, p 240; Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229
lime production of...MR 1888, p 556
limestone in Bristol quadrangle.............................GF 59, p 8
in Estillville quadrangle.....................................GF 12, p 5
in Franklinville quadrangle.................................GF 32, p 5
in Monterey quadrangle......................................GF 61, p 7
Virginia; magnetic declination in .. Ann 17, i, pp 428-431

manganese at Crimora, Augusta County MR 1892, pp 174-177, 181

in Franklin quadrangle .. GF 32, p 5

manganiferous iron ores of, character of MR 1892, p 183

maps, geologic, of. (See Map, geologic, of Virginia.)

maps, topographic, of. (See Map, topographic, of Virginia; also pp 97-98.)

marble in Bristol quadrangle .. GF 54, p 8

production of, statistics of MR 1891, p 470; MR 1893, p 549

marl in Fredericksburg quadrangle GF 13, p 5

in Nomini quadrangle .. GF 23, p 3

Massanutten Mountain, structure of Ann 13, ii, pp 254-255

Mesozoic flora of, older ... Mon vi

mineral spring resorts in .. Ann 14, ii, p 87

minerals found in Richmond Basin Ann 19, ii, pp 502-503

minerals of, useful .. MR 1882, pp 738-743; MR 1887, pp 799-803

Monterey quadrangle, geology of GF 61

Nomini quadrangle, geology of GF 23

Norfolk quadrangle, physiography of TF 2, p 2

ocher in Harpers Ferry quadrangle GF 10, p 4

production of ... MR 1891, p 595

paint, mineral; production of, statistics of MR 1892, pp 816, 818; MR 1893, p 760; Ann 16, iv, pp 695, 696; Ann 17, iii cont, pp 1013, 1014; Ann 18, v cont, pp 1338, 1339; Ann 19, vi cont, pp 637, 638; Ann 20, vi cont, pp 723, 724; Ann 21, vi cont, pp 573, 574

Palmyn quadrangle, physiography of TF 1, p 2

Pocahontas, Newton-Chambers by-product coke ovens at Ann 20, vi, pp 552-553

Pocahontas quadrangle, geology of GF 26

Potomac formation in .. Bull 145

Potomac or younger Mesozoic flora Mon xv

Potomac River, pollution of .. Ann 19, iv, pp 136-140, 157-161

rainfall and run-off in basin of Ann 20, iv, pp 117-121

Powell River, profile of .. WS 44, p 55

pyrites from, statistics of .. MR 1883-84, pp 879-880; MR 1885, pp 504-505; MR 1886, pp 653-654

rainfall and run-off in basin of James River Ann 20, iv, pp 132-134

in basin of Potomac River ... Ann 20, iv, pp 117-121

do Roanoke River ... Ann 20, iv, pp 137-139

Richmond Basin, geology of Ann 19, ii, pp 385-515
Virginia; road metal, dikes suitable for, in Franklin quadrangleGF 32, p 5
road metal in Harper's Ferry quadrangleGF 10, p 4
in Monterey quadrangle ...GF 61, p 7
in Richmond Basin ..Ann 19, iv, p 501
in Washington (D. C.) quadrangleGF 70, p 7
profile of ..WS 44, pp 22-24
rocks and coal of ...Bull 80, pp 29, 86, 112-113
sand and gravel in Fredericksburg quadrangleGF 13, p 5
in Nomini quadrangle ..GF 23, p 4
sections, geologic, in ...(See Section, geologic, in Virginia.)
pollution in basin of ...Ann 19, iv, pp 137-139, 157-161
profile of ...WS 44, pp 21-22
water powers in basin ofAnn 19, iv, pp 137-139, 157-161
soapstone in Washington (D. C.) quadrangleGF 70, p 7
production of ..GF 59, p 8
soils in Bristol quadrangleGF 12, p 5
in Estillville quadrangleGF 32, pp 5-6
in Monterey quadrangleGF 61, p 7
in Pocahontas quadrangleGF 26, p 5
in Staunton quadrangleGF 14, p 4
in Tazewell quadrangleGF 44, pp 5-6
Staunton quadrangle, geology ofGF 14
Staunton River, flow of, measurements ofAnn 18, iv, pp 45-47; Ann 19, iv, pp 180-181; Ann 20, iv, p 50; Bull 140, p 68; WS 11, p 13; WS 15, pp 26-27; WS 27, pp 33, 44
stereogram of Middle Atlantic slopeAnn 7, pp 586-587
Tazewell quadrangle, geology ofGF 44
tin deposits in, statistics ofMR 1883-84, pp 599-601; MR 1885, pp 371-376; MR 1891, p 164
Virginia; tin ore from near Vesuvius, mineralogy, geologic relations, etc.,
of..MR 1893, pp 180-182
topographic maps of. (See Map, topographic, of Virginia; also list on pp
97-98 of this bulletin.)
topographic work in
Ann 4, pp 13-15; Ann 5, p 5;
Ann 6, p 8; Ann 7, pp 50, 51; Ann 8, i, p 101;
Ann 9, pp 52-53, 54, 55; Ann 10, i, p 90; Ann 11, i, p
36; Ann 12, i, p 27; Ann 14, i, p 172; Ann 15, i, p 116;
Ann 16, i, pp 64, 68, 71; Ann 17, i, pp 97, 99; Ann
18, i, pp 94, 96, 102; Ann 19, i, p 91; Ann 20, i, p 102
triangulation in
Bull 122, pp 66, 69, 70, 73, 76, 77-80, 93-95, 96, 98, 99
Washington (D. C.) quadrangle, geology of.
GF 70
waters, underground, in Fredericksburg quadrangle.
GF 13, p 6
in Nomini quadrangle
GF 23, p 4
in Washington (D. C.) quadrangle.
GF 70, p 7
well, artesian, at Fort Monroe.
Bull 145, pp 44-45
woodland area in
Ann 19, v, p 5
zinc in Bristol quadrangle
GF 59, p 8
zinc and zinc works in.
...Ann 2, pp xxix; MR 1882, p 365
Virginia slate of Lake Superior region
Ann 21, ii, p 360
Virginian (Middle Atlantic Miocene, Yorktown epoch of Dana)
Bull 84, pp 19, 337
Viscosity, investigations of.
Ann 14, i, pp 143-150
of solids.
Bull 73
pyrometric use of principle of.
Bull 54, pp 239-306
Viscosity, solid, mechanism of.
Bull 94
Vishnu series of rocks of Arizona
Bull 86, pp 330-332, 507
Vitaceae of Alaska
Ann 17, i, p 889
of Aniboy clays.
Mon xxvi, pp 107-109
of Cretaceous of Black Hills.
Ann 19, ii, pp 707-708
of North America (extinct).
Mon xxxv, p 120
of Yellowstone Park
Mon xxxv, p 741
Vitrinite, non-marine fossil, of North America.
Ann 3, p 452
Vitrophyre, analysis of, from Colorado, Rio Grande County (rhyolitic)
Bull 148, p 179; Bull 168, p 161
from Colorado, Telluride quadrangle.
GF 87, p 6
Viviparite of Bear River formation
Bull 128, pp 59-61
of Laramie and Eocene of Utah.
Bull 34, pp 31-32
of North America (non-marine fossil).
Ann 3, pp 466-470
Vogdes (A. W.), bibliography of Paleozoic Crustacea from 1698 to 1889,
including list of North American species and systematic arrange­
ment of genera.
Bull 63
Vogesite, analysis of, from Germany, Alsace
Ann 20, iii, p 548
analysis of, from Montana, Castle Mountain district.
Bull 139, pp 135, 136
in Colorado, Telluride quadrangle.
GF 57, p 7
in Montana, Fort Benton quadrangle.
GF 55, p 3
Little Belt Mountains (sheets of).
Ann 20, iii, pp 552, 541-542
Volatility, coefficients of, for aqueous chlorhydric acid.
Bull 60, pp 115-117
Volcanic action in California, Lassen Peak quadrangle.
GF 15, pp 2, 3-4
in California, Marysville quadrangle.
GF 17, pp 1-2
Nevada City, Grass Valley, and Banner Hill districts.
GF 29, p 2
in Colorado, Cripple Creek region, evidences, products, age, etc., of.
Ann 16,
ii, pp 59-109
San Juan region.
GF 87, p 1
Bull. 177—01—52
Volcanic action in Grand Canyon district .. Ann 2, pp 118-119; Mon n, pp 81-83, 94-97, 104-112, 120-121
in Great Basin during epoch of Lake Bonneville Ann 2, pp 190-192; Mon i, pp 319-339
in Montana, Little Belt Mountains quadrangle GF 56, p 7
in Narragansett Basin in Carboniferous time Mon xxxiii, p 155
in Nevada, Eureka district .. Mon xx, pp 230-291
in Sierra Nevada ... GF 3, p 1; GF 5, p 1; GF 11, p 1; GF 18, p 1; GF 31, p 1; GF 37, pp 1-2; GF 39, pp 1-2; GF 41, pp 1-2; GF 43, pp 1-2; GF 51, pp 1-2
(See, also, Solfataric action.)
Volcanic areas around borders of Plateau country, description of, and map showing .. Ann 6, pp 118-121
Volcanic ash, analysis of, from California, Owens Lake Bull 148, p 229; Bull 168, p 219
deposits of, in western Nebraska .. Ann 19, iv, pp 760-761
of Alaska, Upper Yukon .. Ann 18, iii, p 223
Volcanic bomb, analysis of, from California, Lassen Peak region Bull 79, pp 29; Bull 148, p 198; Bull 168, p 184
description of, as one of the educational series of rocks.................. Bull 150, pp 250-251
Volcanic center in Nevada, Eureka .. Mon xx, p 230
Volcanic centers in Utah, Tintic district Ann 19, iii, pp 651-657, 672
Volcanic cone, form of, discussion of Ann 18, iii, pp 20-25
Volcanic cones and craters of Uinkaret Plateau (basaltic) Ann 2, pp 118, 121-124; Mon n, pp 104-109
Volcanic conglomerate in Maine, Aroostook volcanic area Ann 17, iv, pp 146-148
Volcanic cores in Montana, Fort Benton quadrangle GF 55, p 4
Volcanic-crater harbors, description of Ann 13, ii, pp 129-130
Volcanic dust, analysis of, from Idaho, Marsh Creek Valley Bull 42, p 141; Bull 148, p 141; Bull 168, p 115
analysis of, from Montana, Gallatin Valley Bull 42, p 141; Bull 148, p 141; Bull 150, p 147; Bull 168, p 115
from Nebraska, Bazile Creek ... Bull 42, p 142
from Nevada, Lahontan lake beds ... Mon xi, p 147; Bull 9, p 14
from Lahontan beds, description and analysis of Mon xi, pp 146-149; Bull 9, p 14
from Montana, Gallatin Valley, description of, as one of the educational series of rocks Bull 150, pp 146-148
Volcanic eruption in northern California (a late one) and its peculiar lava ... Bull 79
Volcanic eruptions, examples of ... Bull 150, pp 245-247
in Alaska, list of ... Ann 18, iii, pp 14-17
in Montana, Fort Laramie ... Bull 105, pp 38-40
of western United States, Pleistocene Mon i, pp 336-337
Volcanic flows in California; Nevada City and Grass Valley districts Ann 17, ii, pp 110-111
Volcanic lavas of Nevada, Eureka district, manner of occurrence of Mon xx, pp 243-249
Volcanic layer, analysis of, from California, Bidwell Bar quadrangle, from Gopher Hill gravels ... Ann 17, i, p 557
Volcanic mountain, example of .. TF 1, p 2-3
Volcanic necks, columnar structure of basalt in Ann 6, pp 172-174
in New Mexico, northwestern .. Ann 6, pp 167-178
Volcanic peaks, plateaus, and necks, examples of TF 2, p 16
Volcanic phenomena, deposition of quicksilver in relation to Mon xiii, pp 52, 417
Volcanic phenomena in Colorado, Rico Mountains Ann 21, ii, pp 32-33
recent and Pleistocene, in California, Mono Valley Ann 8, i, pp 371-389
WARMIN.

VOLCANIC—VOLCANO.

819

Volcanic plugs in Colorado, Elmore quadrangle. GF 58, p 3
Volcanic region of Northwest .. GF 15, p 4
Volcanic rocks; chemical analysis of, from Nevada, Washoe GF 17, p 33
from Tewan Mountains, New Mexico, a group of, and occurrence of primary quartz in certain basaits. Bull 66
Yukon district Ann 18, iii, pp 239–250
of California, Bidwell Bar quadrangle. GF 43, p 5
Franciscan series. Ann 15, pp 420–431
Jackson quadrangle. GF 11, p 5
Sierra Nevada, western slope of .. Bull 89
Truckee quadrangle GF 39, pp 5–6
of Catoctin belt. Bull 14, ii, pp 302–318
of Colorado, Pikes Peak quadrangle GF 7, pp 3, 4, 7
Silver Cliff and Rosita Hills Ann 17, ii, pp 284–313, 323–331
of Lake Superior district, Penokee series. Ann 10, i, pp 439–444
of Montana, Livingston quadrangle. GF 1, p 1
of Nevada, Eureka district. ... Ann 3, pp 277–287; Mon xx, pp 230, 249–253, 348–394
of Pennsylvania, South Mountain. Bull 136
of Philippine Islands Ann 21, iii, pp 510–525
of Sierra Nevada (Tertiary) Ann 17, i, pp 566–569, 613–620, 683
succession of. Ann 14, ii, pp 493–495
of Washington, Cascade Mountains in northern Ann 20, ii, pp 129–137
of Yellowstone Park GF 30, pp 2–3
Sepulchre Mountain Ann 12, i, pp 634–650; Mon xxxii, ii, pp 121–148
(See, also, Igneous rocks.)
Volcanic rocks, stratified, of Maine, Mount Desert Island Ann 8, ii, pp 1037, 1040–1047, 1051
Volcanic sand, analysis of, from California, Lassen Peak region Bull 79, p 29; Bull 148, p 198; Bull 168, p 184
analysis of, from Montana, various localities Bull 42, p 141; Bull 148, p 141; Bull 168, p 115
from California, Snag Lake Cinder Cone, description of, as one of the educational series of rocks Bull 150, pp 245–248
Volcanic sediment, thin section of, from Michigan, Crystal Falls district Mon xxxvi, pp 296–297
Volcanic soils, origin and nature of Ann 12, i, pp 239–245
of Colorado, Denver Basin. Mon xxvii, pp 311–315
Volcanism; eruption of Bandai-san Volcano, Japan Ann 17, i, pp 538–539
eruption of Gunung Pepandajan Volcano, Java Ann 17, i, p 539
fumaroles in lavas of Colorado, Custer County Ann 17, ii, p 436
geyser and hot springs, laboratory experiments relating to Ann 14, i, pp 158–159
in Alaska Bull 84, p 268
in Connecticut, relation of Triassic warping to Ann 18, ii, pp 81–82
in Sierra Nevada, in relation to diastrophism Ann 8, i, pp 428–430
in Utah, Tintic district. GF 65, p 4
Mount Rainier, characteristics of. Ann 18, ii, pp 359–361
traps of Newark system, New Jersey region, relations of Bull 67
(See, also, Volcanic, above.)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Volcanoes, cause of, problem of .. Ann 4, pp 183-198
Paleozoic or pre-Paleozoic, existence of Ann 19, pp 48-49; Mon xxxvi, pp 78-79
of Hawaiian Islands ... Ann 4, pp 75-219
of Philippine Islands ... Ann 21, pp 525-542
relation of, to mountain structure in Rocky Mountains Mon xii, p 27
(See, also, Igneous rocks.)

Volumetric estimation of vanadium in presence of small amounts of chromium, with special reference to analysis of rocks and ores... Bull 167, pp 44-48

Volutidae from Chico-Tejon series of California Bull 51, pp 23-25
from clays and marls of New Jersey ... Mon xviii, pp 84-92, 173-174, 183-185, 207-214
from Colorado formation .. Bull 106, pp 155-158
Vulcan formation of Michigan, Menominee district Ann 21, pp 390-400; GF 62, pp 4-10
Vulcanized india rubber, solution of ... Bull 92, pp 85-94
Vulsinite, analysis of, from Italy, Bolsena and San Magno Bull 89, p 69
Wabash River, drainage system of .. Ann 18, pp 446-450
flow of, measurements of .. Ann 21, pp 170-171
profile of .. WS 44, pp 58-59
Wabansee formation of Nebraska ... Ann 19, pp 738
Waccamaw beds of South Carolina, correlation of Ann 18, pp 337
Wages and labor at coal mines of United States MR 1890, pp 169-171; MR 1891, pp 203-204; Ann 21, pp 517-518
Wainwright Inlet, Alaska, coal on ... Ann 17, pp 820
Walcott (C. D.), Cambrian faunas of North America Bull 10; Bull 30
Cambrian fossils of Yellowstone National Park Mon xxxii, pp 440-478
Cambrian rocks of Pennsylvania .. Bull 134
correlation papers—Cambrian ... Bull 81
fauna of Lower Cambrian or Olenellus zone Ann 10, pp 509-763
fossil medusa ... Mon xxx
North American continent during Cambrian time Ann 12, pp 523-568
paleontology of Eureka district, Nevada ... Mon viii
pre-Cambrian igneous rocks of the Unkar terrane, Grand Canyon of the Colorado .. Ann 14, pp 497-519
quoted on Cambrian rocks of Inyo County, California Ann 17, pp 534
quoted on structure of ranges of southern Nevada Ann 17, pp 532
report by, on Teton Forest Reserve and adjacent territory Ann 20, pp 58-60
report by, on Yellowstone Park: roads, protection, etc.................... Ann 19, pp 56-59
report by, on Yosemite Park: roads, administration, etc Ann 19, pp 59-60
report of Director on joint resolution providing for a division of mines and mining .. Ann 20, pp 15-23
systematic list of fossils of each geologic formation in Eureka district, Nevada .. Mon xx, pp 317-333
Walden sandstone of Alabama, Georgia, and Tennessee GF 2, p 2; GF 4, p 2; GF 6, p 2; GF 8, p 2; GF 19, p 2; GF 21, p 2; GF 22, p 2; GF 35, p 2
Waldheimite, chemical constitution of ... Bull 125, pp 91, 106
Waldo formation of Florida, correlation of Bull 84, pp 111, 337
Wales, Cambrian rocks of .. Bull 81, pp 373-374
fossil plants of, literature of ... Ann 8, ii, pp 683-684
Lower Cambrian strata and fauna of..................................... Ann 10, i, p 580
phosphate deposits of ... Bull 46, pp 80-84

(See, also, Great Britain.)

Walker Lake and River, Nevada, analysis of water of Mon xi, pp 46, 70
Walker River, Nevada, flow of, measurements of Bull 140, pp 213-215
Walker (J. A.), graphite, statistics of MR 1882, pp 590-594; MR 1883-84, pp 915-919

Wall rock, analyses of, from California, Nevada County Ann 17, ii, pp 81, 149, 150; Bull 148, pp 209, 210; Bull 168, pp 195, 196
analysis of, from California .. Ann 14, ii, pp 275-277; Bull 148, p 211; Bull 168, p 197
from Idaho, Hailey ... Ann 20, iii, pp 219-221
from New York, Adirondacks ... Ann 19, iii, pp 402, 407; Bull 168, pp 36, 37
from Utah, Tintic mining district .. Ann 19, iii, p 706
Walla series of California ... Mon xiii, pp 213-214; Bull 82, pp 182, 187, 192-193, 241
Walla Walla, Washington, rainfall at Ann 19, iv, p 492
Walla Walla River, Washington, description of WS 4, pp 21-23
flow of, measurements of .. Ann 19, iv, pp 489-490; WS 16, p 179; WS 28, p 166; WS 38, pp 375-376
rainfall in basins of Palouse River and Ann 20, iv, pp 512-514
Wallkill limestone of northern New Jersey Ann 18, ii, pp 443-456
Walnut formation of Texas ... Ann 18, ii, p 226; Ann 21, vi, pp 205-213
Walsenburg quadrangle, Colorado, geology of GF 68
Walsh (J. R.), work in charge of, 1893-1899 Ann 15, pp 211-212; Ann 16, i, p 86; Ann 17, i, p 119; Ann 18, i, pp 127, 128; Ann 19, i, p 140; Ann 20, i, p 158
Walusnewite, analysis of .. Bull 113, p 32
analysis of residuum from ... Bull 113, p 29
Wamsutta group of Narragansett Basin Mon xxxiii, pp 141-158
Wanner (A.) and Fontaine (W. M.), Triassic flora of York County, Pennsylvania Ann 20, ii, pp 233-255
Ward (L. F.), Cretaceous formation of the Black Hills as indicated by fossil plants ... Ann 19, ii, pp 521-946
geographic distribution of fossil plants Ann 8, ii, pp 663-960
Potomac formation ... Ann 15, pp 307-397
sketch of paleobotany ... Ann 5, pp 357-452
some analogies in Lower Cretaceous of Europe and America Ann 16, i, pp 463-542
status of Mesozoic floras of United States; first paper, the Older Mesozoic ... Ann 20, ii, pp 211-748

Warder (R. B.), coefficients of volatility for aqueous chlorhydric acid ... Bull 60, pp 115-117

Warder (R. B.), coefficients of volatility for aqueous chlorhydric acid ... Bull 60, pp 115-117
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Warman (P. C.), bibliography and index of publications of United States Geological Survey

INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Warman (P. C.), bibliography and index of publications of United States Geological Survey

Wardite, occurrence ofAnn 18, v cont, pp 1211-1212

Warm Creek, California, flow of, measurements ofAnn 20, iv, pp 558-559

Warman (P. C.), bibliography and index of publications of United States Geological Survey

Warp in Triassic area of Connecticut.........................Ann 18, n, pp 85-87

Warren Lake, glacial, extent, etc., ofMon xxv, pp 255-264

Warren River, glacial..................................Mon xxv, pp 15-19

Wartburg quadrangle, Tennessee, geology ofGF 33, p 3; GF 40, p 2

Wartburg sandstone of TennesseeGF 33, p 3; GF 40, p 2

Warwickite, analysis of, from New York, Orange CountyBull 64, p 41

Wasatch formation or group in WyomingBull 119, pp 25-27

in Utah, as a source of coalMR 1892, pp 513-514

fossil fauna of ..Bull 34, pp 10-13, 20-50; Bull 128, pp 79-81

literature and correlation ofAnn 18, ii, pp 345; Bull 83, pp 117-120, 139, 144-146; Bull 84, pp 337, 338; Bull 86, pp 299, 487, 505

Uinta MountainsAnn 9, p 690

Wasatch limestone, age, character, and thickness ofAnn 2, p 217

Wasatch Mountains, Archean and Algonkian literature ofBull 86, pp 289-295

gologic section of ..Ann 2, p 217; Ann 10, i, pp 549-550;

Mon xii, p 58; Mon x, p 206; Bull 30, p 37; Bull 81, p 157

Paleozoic section inAnn 18, ii, p 382; Ann 19, ii, p 629

pre-Cambrian rocks ofAnn 16, i, p 821

recent growth of, testimony of Bonneville shore lines toAnn 2, pp 197-200; Mon i, p 359

Wash, the, in Texas, character and appearance ofAnn 18, ii, p 254

Washakie (Washakee) beds or group of WyomingAnn 18, ii, p 343; Bull 83, pp 117, 118, 119; Bull 84, p 337

Washington; altitudes inAnn 18, i, pp 394-399; Ann 19, i, pp 362-375;

Ann 20, i, pp 483-520; Ann 21, i, pp 570-582; Bull 5, pp 312, 313; Bull 72, pp 196, 225-226; Bull 76; Bull 160 pp 738-744

artesian water supply in southeasternWS 4, pp 75-87

Atanum Creek, flow of, measurements ofAnn 19, iv, pp 470-473

seepage measurements onAnn 19, iv 469-473

atlas sheets of. (See list on p 98 of this bulletin.)

boundary lines of, and formation of Territory..............Bull 13, pp 31, 128-129; Bull 171, p 136

brick industry of, statistics ofMR 1888, p 564

building stone at World's Columbian Exposition fromMR 1893, p 573

in Tacoma quadrangleGF 54, p 9

production of statistics ofMR 1882, p 451;

MR 1889-90, pp 373, 437; MR 1891, pp 461, 463, 464, 468; MR 1892, pp 710, 711; MR 1893, pp 553, 556; Ann 16, iv, p 437

et seq; Ann 17, iii cont, pp 761, 775, 777, 778, 788, 790, 791;

Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq;

Ann 20, vi cont, p 271 et seq; Ann 21, vi cont, p 335 et seq

Cascade Mountains in northern, geology ofAnn 20, ii, pp 83-210

Glaciation of ...GF 54, p 3

central, geology ofBull 108

Chelan Lake, height of, measurements ofWS 28, pp 163-164; WS 38, pp 371-372

Chelan quadrangle, forest conditions inAnn 21, v, pp 581-582
Washington; Chico-Tejon series of rocks in ... Bull 51, pp 28-32
clay deposits of ... MR 1891, pp 525-526
in Tacoma quadrangle ... GF 54, p 9
clay products of, statistics of .. Ann 17, iv, cont, p 821 et seq; Ann 18, v, cont, p 1078 et seq
Ann 16, v, cont, p 319 et seq; Ann 20, vi, cont, p 467 et seq
climate of .. Ann 18, v, pp 356-357; GF 54, pp 1-2
coal in, area and statistics of ... Ann 2, p xxviii;
in Tacoma quadrangle .. GF 54, pp 7-9
copper from, statistics of ... MR 1893, p 65; Ann 16, iii, p 334; Ann 17, iii, pp 85-86; Ann 18, v, pp 190, 191; Ann 19, vi, pp 141, 142; Ann 20, vi, pp 163, 164; Ann 21, vi, pp 168, 169
Deadman Creek, description of.. WS 4, p 24
drainage and topography in southeastern WS 4, pp 14-29
Ellensburg quadrangle, forest conditions in Ann 21, v, pp 580-581
Elwha River, flow of, measurements of Ann 20, iv, pp 63, 519-521; Ann 21, iv, pp 439-441; WS 16, pp 183; WS 28, pp 174, 176; WS 38, pp 384-385
forest conditions and standing timber of Ann 19, v, pp 26-42; Ann 20, vi, pp 12-37
forest reserves. (See Mount Rainier, Olympic, Washington, under this State.) forests of Cascade Mountains in northern Ann 20, iv, pp 92-95
of Puget Sound region, remarks on ... Ann 18, ii, pp 362-363
fossil plants from .. Bull 108, pp 103-104
gas, illuminating and fuel, and by-products in, statistics of Ann 20, iv, cont, pp 228, 241, 244, 246, 247, 250
gasoline positions in .. Ann 18, iv, pp 208-215; Ann 19, iv, p 179; Ann 20, iv, pp 283-285; Ann 21, v, pp 349-374; Bull 123, p 142
gasoline formations in southeastern ... WS 4, pp 29-69
gasoline history of southeastern, outline sketch of WS 4, pp 88-93
gasoline maps of. (See Map, geologic, of Washington.)
gasoline sections in. (See Section, geologic, in Washington.)
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Washington; geologic and paleontologic investigations in......Ann 13, i, pp 131-132;
Ann 17, i, pp 48, 53-55; Ann 18, i, pp 49-52; Ann 19, i, pp 51-52; Ann 20, i, pp 51-52, 66-67; Ann 21, i, pp 80-81, 84-85

Glaciers, existing, of United States..........................Ann 5, pp 303-355
Glaciers, existing, and former intense glaciation in Cascade Mountains...Ann 20, ii, pp 150-193

Glacier Peak, Cascade Mountains, rocks of...................Ann 20, ii, pp 134-135
gold in northern Cascades.................................Ann 20, ii, pp 206-210

Grande Ronde River, description of..........................WS 4, pp 25-26

granite of Cascade Mountains in northern....................Ann 20, ii, pp 105-108

grazing land in Washington Forest Reserve......................Ann 19, v, pp 322-324

habitats on coast of.....................................Ann 13, ii, pp 202-203

irrigation, extract from constitution relating to..............Ann 11, i, p 241
in southeastern...WS 4, pp 69-75

Kalawa River, flow of, measurements of.......................Ann 20, iv, pp 63, 522; Ann 21, pp 441-442; WS 16, p 184; WS 28, pp 175, 176; WS 38, pp 386

lead from, statistics of..................................Ann 17, iii, p 134; Ann 18, v, p 240; Ann 19, p 201; Ann 20, vi, pp 226-228; Ann 21, vi, p 229

lumber industry in...Ann 19, v, p 21, 22

magnetic declination in......................................Ann 17, i, pp 431-433

maps, geologic, of. (See Map, geologic, of Washington.)

maps, topographic, of. (See Map, topographic, of Washington; also p 98.)

marble production of, statistics of............................Ann 20, vi, cont, pp 271, 281, 283; Ann 21, vi, cont, pp 335, 341, 342, 343

mineral spring resorts in..................................Ann 14, ii, p 88

mineral springs of..Bull 32, pp 217-218; MR 1889-90, p 534; MR 1891, pp 603, 608; MR 1892, pp 824, 832; MR 1893, pp 774, 783, 784, 794; Ann 16, iv, pp 709, 719, 720; Ann 17, iii, cont, pp 1027, 1040, 1042; Ann 18, v, cont, pp 1371, 1385, 1387; Ann 19, vi, cont, pp 661, 676, 678; Ann 20, vi, cont, pp 750, 765, 767; Ann 21, vi, cont, p 617

minerals of, useful..MR 1882, p 775; MR 1887, pp 803-804
Washington; Mount Rainier, elevation, exploration, etc. Ann 18, ii, pp 357-361
Mount Rainier, glaciers of. Ann 18, ii, pp 349-415
Mount Rainier, rocks of. Ann 18, ii, pp 416-423
Mount Rainier Forest Reserve, report on. Ann 21, v, pp 81-143
Mount Rainier National Park, movement to establish. Ann 18, ii, pp 410-415
Mount Stuart quadrangle, forest conditions in. Ann 21, v, p 580
Moxee Valley, artesian wells in. Ann 19, iv, p 468
Naches River, flow of, measurements of. Ann 20, iv, pp 62, 503; Ann 21, iv, pp 425-426; Bull 131, pp 73-74; Bull 140, pp 244-245; WS 11, p 84; WS 16, p 174; WS 28, pp 164, 170
Olympic Forest Reserve, report on. Ann 21, v, pp 145, 208
Palouse River, description of. WS 4, pp 26-27
physical features of. Ann 18, ii, pp 335-357
Puget Sound, some coal fields of. Ann 18, iii, pp 393-436
rainfall at Olympia, Tacoma, and Seattle. GF 54, pp 1-2
at various localities in Ann 19, iv, p 508
at Wallawalla. Ann 13, iii, p 27
in basins of Palouse and Wallawalla rivers. Ann 20, iv, pp 512-514
in southeastern. WS 4, pp 11-12
rainfall and run-off in basin of Yakima River. Ann 20, iv, pp 496-500
river courses in, changes in, due to glaciation. Bull 40
river terraces in southeastern. WS 4, pp 56-57
Seattle quadrangle, forest conditions in. Ann 21, v, pp 579-580
sections, geologic, in. (See Section, geologic, in Washington.)
silver and gold from. (See "gold and silver," on p 824.)
Snake River, description and history of. WS 4, pp 19-21
soils of southeastern. WS 4, pp 57-64
of Tacoma quadrangle. GF 54, pp 9-10
Soleduck River, flow of, measurements of. Ann 20, iv, pp 63, 523; Ann 21, iv, pp 442-443; WS 16, p 184; WS 28, pp 175, 176; WS 38, pp 386-387
southeastern, climate and vegetation of. WS 4, pp 10-14
reconnaissance in. WS 4
Spokane quadrangle, forest conditions in. Ann 21, v, pp 582
Spokane River, description of. WS 4, pp 27-28
Steptoe Butte, geologic formations of. WS 4, pp 38-40
Tacoma quadrangle, forest conditions in. Ann 21, v, pp 578-579
gеology of. GF 54
temperature in. GF 54, p 1
in southeastern. WS 4, pp 11-12
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [Bull. 177.

Washington; timber in Tacoma quadrangle.........................GF 54, p 10
timber, merchantable, in, by counties.........................Ann 19, v, pp 28-42
timber, standing, in...................................Ann 19, v, pp 18, 26-42
Tokanon River, description of..WS 4, pp 23-24
Topinish River, flow of, measurements of . . Bull 131, p 74; Bull 140, p 248
topographic maps of. (See Map, topographic, of Washington; also p 98.)
topographic work in...Ann 15, p 127; Ann 16, i, pp 66, 68, 71; Ann 17, i, pp 97, 105; Ann 18, i, pp 94, 96, 108; Ann 19, i, pp 89, 91, 105-106, 112-113; Ann 20, i, pp 101, 102, 117, 122-124; Ann 21, i, pp 121, 143-144
topography and drainage in southeastern......................WS 4, pp 14-29
vegetation in southeastern..WS 4, pp 12-14
Wallawalla, rainfall at......................................Ann 19, iv, p 492
Wallawalla River, description of................................WS 4, pp 21-23
flow of, measurements of..Ann 19, iv, pp 489-490; WS 16, p 179; WS 28, p 166; WS 38, pp 375-376
Washington Forest Reserve, limits, timber, trees, fires, etc., of........Ann 19, v, pp 61-65, 283-350
water supply of, for irrigation purposes........Ann 16, ii, pp 530-532
wells, artesian, in Moxee Valley........................Ann 20, iv, pp 508-509
in southeastern..WS 4, pp 79-83
Wenatche River, flow of, measurements of........Ann 19, iv, pp 489-490; WS 16, p 178
Wenas Creek, irrigation from.................................Ann 20, iv, pp 504-505
wheat land in southeastern, topography of..............WS 4, pp 64-69
White River, flow of, measurements of........................Ann 21, iv, pp 436-437; WS 38, pp 381-382
woodland area of..Ann 19, v, p 12
Yakima County, reservoir sites in..............................Ann 20, iv, pp 505-508
hydrography of basin ofAnn 14, ii, pp 132-139
irrigation in basin of ..Ann 19, iv, pp 461-477
Washington, Oregon, and California, Cenozoic epoch in, general considerations on. . . Bull 84, pp 269-273

Washington, D. C. (See District of Columbia.)
Washington quadrangle, Maryland-Virginia-District of Columbia, geology ofGF 70
Washington (H. S.) and Hillebrand (W. F.), notes on certain rare copper minerals from UtahBull 55, pp 38-47
Washington beds of Texas ..Ann 21, vii, p 340
Washington gneiss in Massachusetts, eastern, Berkshire CountyBull 159, pp 34-39
in Massachusetts, western..Mon xxix, p 20
in Massachusetts and Connecticut...............................GF 50, pp 1, 4
thin section of, from Massachusetts, Peru......................Bull 159, pp 26-27
from Massachusetts, Washington...............................Bull 159, pp 26-27
Washita division of Texas..Ann 21, vii, pp 240-292
Washita River, Indian Territory, flow of, measurements ofWS 37, pp 270-271
Washoe district, Nevada, crystallization in igneous rocks of, development ofBull 17
(See, also, Comstock lode.)
Washoe district and Comstock lode, Nevada, geology ofAnn 2, pp xxiv-xxvi, 291-330; Mon iii and atlas
Water, action of, in formation of cherty iron carbonates............Ann 10, i, p 395
action of, in formation of iron oresAnn 10, i, pp 415-417
analysis of, from Alabama, Fitzpatrick (artesian).................Bull 55, p 91
from Alabama, various localities (mineral spring).................Bull 32, pp 92-94
from Alaska, Muir Inlet ..Ann 16, i, p 454
from Arizona, various localities (mineral spring).....................Bull 32, p 197
from Arkansas, Hominy Hill (spring)Bull 60, p 173
Hot Springs (hot and mineral spring)..................................Bull 55, p 92
various localities (mineral spring)Bull 32, p 122
from Armenia...Bull 60, p 40
from Asia, Bogdo Lake ...Mon xi, opp p 176
from California, Borax Lake ..Bull 32, p 265
Clear Lake...WS 45, p 33
Honey Lake Valley (hot spring) ..Mon xi, pp 51, 176; Bull 9, p 28
Lake Tahoe ..Bull 9, p 28
Los Angeles (spring) ..Mon xi, opp p 176
Los Angeles River at Los Angeles ..Bull 32, p 176
Mono Lake Ann 8, i, pp 290, 293, 296; Mon xi, opp p 176; Bull 9, p 26, 27; Bull 42, p 49; Bull 60, p 53; Bull 108, p 93
(residue from) ..MR 1893, p 730
Nevada County, Black Prince, Providence, and Federal Loan mines (mineral)Ann 17, ii, pp 121, 122, 123
Owens Lake ...Ann 8, i, p 295; Mon xi, opp p 176; Bull 55, p 93; Bull 60, pp 58, 94; Bull 108, p 93
Sacramento River at Sacramento ..Mon xi, opp p 176
San Buenaventura (hot spring) ..Bull 60, p 174
Sulphur Bank (hot spring) ..Mon xiu, p 259
Warm Spring Station (warm spring)Ann 8, i, p 288; Mon xi, opp p 176; Bull 9, p 27
various localities (mineral spring) ..Bull 32, pp 210-214
from Canada, Bothwell (Devonian limestone)Ann 8, ii, p 620
Ottawa River at Montreal ..Mon xi, opp p 176
St. Lawrence River ...Mon xi, opp p 176
various localities (Trenton limestone)Ann 19, iv, p 652
from Caspian Sea ..Mon xi, opp p 176
from Colorado, Custer County ..Ann 17, ii, pp 460, 461, 462, 463
Denver (artesian) ...Mon xxi, p 462-463
(spring) ..Bull 60, p 174
Glenwood Springs (mineral spring)Mon xxi, p 213
Manitou (spring) ...Mon xi, opp p 176
various localities ...Ann 17, ii, pp 588-589
from Connecticut, various localities (mineral spring)Bull 32, p 26
from Dakota Basin (artesian) ...Ann 17, ii, p 677
from Dakota s, various localities (mineral spring)Bull 32, p 161
from Dead Sea ...Mon xi, opp p 176
from District of Columbia, Washington (well)Bull 138, p 158
from Florida, St. Augustine (artesian)Bull 64, p 59, 60
St. Augustine (surface drainage) ...Bull 60, p 171
various localities (mineral spring) ...Bull 32, p 87
from Georgia, Lumber City (well) ...Bull 138, p 224
Savannah ...Bull 64, p 59
(well) ...Bull 138, p 223
Savannah River, at Savannah ..Bull 55, p 91
various localities (artesian) ..Bull 55, p 91
(mineral spring) ..Bull 32, pp 83-85
Water, analysis of, from Iceland (geyser) .. Ann 9, p 655
analysis of, from Illinois, McLeansborough (spring) Bull 60, p 172
from Illinois, Nashville (spring) Bull 113, p 113
various localities .. Ann 17, n, pp 820-822, 824, 826, 827-828; Bull 32, p 144
from Indiana, Brookville .. Ann 18, iv, p 537
Edinburg (salt) .. Ann 11, i, p 728
Fort Wayne .. Ann 18, iv, p 538
Frankfort, Garrett, and Greensburg Ann 18, iv, p 539
Lafayette .. Ann 18, iv, pp 540-541
Montezuma (artesian) ... Ann 17, n, p 828
New Albany .. Ann 18, iv, p 542
South Bend and Terre Haute .. Ann 18, iv, p 543
various localities .. Ann 18, iv, pp 498-499
(mineral spring) .. Bull 32, pp 138-141
from Idaho, various localities (mineral spring) Bull 32, p 182
from Iowa, Story County (artesian) Bull 42, p 148
various localities .. Ann 17, n, p 827
(mineral spring) .. Bull 32, pp 162-163
from Kansas, various localities (mineral spring) Bull 32, pp 173-175
from Kentucky, Bowling Green ... Ann 8, n, p 621
Frankfort (well) ... Bull 64, p 57
Lexington (artesian) .. Mon xi, opp p 176
Newport .. Ann 8, n, p 621; Ann 19, iv, p 654
various localities (mineral spring) Bull 32, pp 110-118
from Louisiana, Mississippi River at New Orleans Mon xi, opp p 176
from Maine, Paris (spring) Bull 55, p 91
various localities (mineral spring) Bull 32, pp 15-16
from Manitoba, Assiniboine and Red rivers, near junction Mon xxv, pp 541, 542
from Maryland, Baltimore and Salisbury (well) Bull 138, pp 131, 143, 148
Crisfield (artesian) .. Bull 138, p 131
Westernport .. Ann 19, iv, p 144
various localities (mineral spring) Bull 32, p 53
from Massachusetts, Dalton (artesian) Bull 159, p 91
Shutesbury (mineral spring) Mon xxxix, p 750
Springfield (spring) .. Mon xxxix, pp 751, 752
Turners Falls (artesian) Mon xxxix, p 750
various localities (mineral spring) Bull 32, p 23
from Mexico, Rio Grande del Norte Mon xi, opp p 176
from Michigan, various localities WS 31, passim
various localities (mineral spring) Bull 32, pp 147-150
from Minnesota, Big Stone Lake Mon xxv, p 543
Browns Valley (artesian) .. Mon xxv, p 539
Lake Superior at Grand Marais Mon xxv, p 544
Mississippi River at Brainerd Mon xxv, p 543
Polk County (artesian) ... Mon xxv, p 540
Red River at Fergus Falls and St. Vincent Mon xxv, pp 540, 541
various localities (mineral spring) Bull 32, p 159
from Mississippi, Hinds County (well) Bull 64, p 60
various localities (mineral spring) Bull 32, p 97
from Missouri (mineral spring) Bull 113, p 50
Laclede County (well) ... Bull 60, p 172
Webster Grove (spring) .. Bull 78, p 129
WATER.

from Montana, Bozeman (hot spring) Bull 27, p 75
Giant Spring, near Great Falls Ann 18, iv, pp 612, 613
Helena (hot springs) .. Bull 9, p 32
Livingston Springs (hot springs) Bull 9, p 31
Missouri River, near Great Falls Ann 18, iv, p 612
White Sulphur Springs .. .Bull 27, p 75; Bull 139, p 150; GF 56, p 8
various localities (mineral spring) Bull 32, p 180
Yellowstone Valley, Emigrant Gulch (hot springs) Bull 9, p 31
Mill Creek (spring) .. Bull 9, p 32
from Nevada, Comstock mines Mon xi, p 152
Granite Mountain, foot of (hot spring) Mon xi,
pp 53, 176; Bull 9, p 24
Hot Spring station (hot spring) Mon xi, pp 49, 176; Bull 9, p 24
Humboldt Lake ... Mon xi, pp 67, 176; Bull 108, p 93
Humboldt River ... Mon xi, pp 176, 225; Bull 9, p 23
Lake Mono .. Ann 21, iv, pp 648, 649
Pyramid Lake ... Mon xi,
pp 57, 58, 176, 225; Bull 9, pp 20–21; Bull 108, p 94
Soda Lake, near Ragtown Mon xi, pp 77, 176; Bull 9,
p 25; Bull 60, pp 48, 49; Bull 108, p 93; MR 1893, p 729
Steamboat Springs (hot spring) Mon xi, p 347
Truckee River ... Mon xi, pp 176, 225
various localities (mineral spring) Bull 32, p 202
Walker Lake .. Mon xi, pp 70, 176, 225; Bull 9, p 22; Bull 108, p 94
Walker River .. Mon xi, pp 46, 176, 225; Bull 9, p 23
Winnebago Lake . .Mon xi, pp 63, 176, 225; Bull 9, p 21; Bull 108, p 94
from New Hampshire, various localities (mineral spring) .Bull 32, pp 17–18
from New Jersey, Atlantic City (well) Bull 138, p 51
Berkeley Arms (well) Bull 138, p 53
Camden (well) ... Bull 138, p 56
Delaware River at Trenton Mon xi, opp p 176
Freehold (well) .. Bull 138, p 61
Great Sledge Island (well)Bull 138, p 64
Lakewood (well) .. Bull 138, p 69
Ocean Grove (artesian) Bull 138, p 80
Passaic River at Newark Mon xi, opp p 176
Riverside (well) .. Bull 138, p 85
Seven Islands (well) Bull 138, p 88
various localities (mineral spring) Bull 32, p 43
Winslow (well) .. Bull 138, p 95
from New Mexico, Fort Wingate (spring) Bull 55, p 92
Ojo Caliente (hot spring) Bull 113, p 114
Santa Fe (mineral spring) Bull 27, p 76
various localities (mineral spring) Bull 32, p 195
from New York, Caledonia (spring) Bull 113, p 113
Chautauqua, chemical-precipitation works at WS 22, p 63
Croton River .. Mon xi, opp p 176
Genesee River at Rochester Mon xi, opp p 176
Hudson River ... Mon xi, opp p 176
Mohawk River at Utica Mon xi, opp p 176
Saratoga (artesian) ... Mon xi, opp p 171
various localities (mineral spring) Bull 32, pp 32–46
Water, analysis of, from New Zealand (geyser and spring) Ann 9, pp 655, 673
analysis of, from North Carolina, Lincoln County (spring) Bull 60, p 171
from North Carolina, various localities (mineral spring) Bull 32, pp 77–78
from North Dakota, Jamestown (artesian) Mon xxx, p 538
from Ohio, Bellefontaine (well) .. Ann 19, iv, p 676
Castalia Springs .. Ann 19, iv, p 681
Celina (well) .. Ann 19, iv, p 659
Delaware (well) ... Ann 19, iv, p 672
Delphos (well) .. Ann 19, iv, p 666
Fountain Park (well) .. Ann 19, iv, pp 661, 662
Franklin .. Ann 18, iv, p 547
Greenville .. Ann 18, iv, pp 548
Harrisburg (well) ... Ann 19, iv, p 664
Kenton (well) .. Ann 19, iv, p 669
Lancaster ... Ann 18, iv, p 549
Lima (well) .. Ann 19, iv, p 668
Madisonville ... Ann 19, iv, p 546
Marysville (well) ... Ann 19, iv, p 674
Massillon (well) ... Ann 19, iv, p 691
Maumee River .. .Mon xi, opp p 176
 Medina (well) .. Ann 19, iv, p 686
Mount Vernon ... Ann 18, iv, p 550
Oberlin ... Ann 18, iv, p 551
Orrville (well) .. Ann 19, iv, p 668
Plain City (well) ... Ann 19, iv, p 663
Ripley (Trenton limestone) .. Ann 19, iv, p 653
Scioto River .. WS 22, p 26
Sidney (well) .. Ann 19, iv, p 658
Stryker (well) ... Ann 19, iv, p 704
Upper Sandusky (well) ... Ann 19, iv, p 670
various localities .. Ann 18, iv, pp 499–501
(mineral spring) ... Bull 32, pp 133–134
Wapakoneta ... Ann 18, iv, p 554
Wooster .. Ann 18, iv, p 555
from Oregon, Abert Lake ... Ann 4, p 454; Mon xi, opp p 176; Bull 9, p 29; Bull 60, pp 54, 55; Bull 108, p 93
various localities (mineral spring) Bull 32, p 217
from Pennsylvania, various localities (mineral spring) Bull 32, pp 46–49
from Porto Rico, Coamo (mineral) Ann 20, vi cont, pp 775, 776
from South Carolina, Beaufort (well) Bull 138, p 217
Bulow phosphate mines (well) Bull 138, p 216
Charleston (well) ... Bull 138, pp 212, 213, 214
Florence (well) .. Bull 138, p 218
Lake City (well) ... Bull 138, p 220
Sineath's Station (well) .. Bull 138, p 215
various localities (mineral spring) Bull 32, p 80
from South Dakota, Argentine (artesian) Ann 21, iv, p 570
Cascade Creek ... Ann 21, iv, p 577
Hanson County (artesian) ... Ann 18, iv, p 611
Highmore .. Ann 18, iv, p 613
Jerome (artesian) .. Ann 21, iv, p 571
Miner County (artesian) .. Ann 18, iv, p 611
Sanborn County (artesian) Ann 18, iv, p 611
Water, analysis of, from Tennessee, Cumberland River at Nashville. Mon xi, opp p 176

analysis of, from Tennessee, Mountain City and vicinity (spring) ... Bull 64, p 58

from Tennessee, various localities (mineral spring) Bull 32, pp 103-106

from Texas, Austin and vicinity Ann 18, ii, pp 302, 303, 304

San Antonio Ann 18, ii, p 302

Waco Ann 18, ii, p 302

various localities (mineral spring) Bull 32, pp 127-128

from Utah, Bear River Mon i, p 207; Bull 9, p 30

City Creek Mon i, p 207; Bull 9, p 29

Great Salt Lake Mon i, p 253;

Mon xi, opp p 176; Bull 108, p 93; MR 1883-84, p 845

Jordan River Mon xi, opp p 176

Ogden (hot springs) Bull 9, p 30

Salt Lake City (hot spring) Bull 42, p 148

Sevier Lake Mon xi, opp p 176; Bull 108, p 94

Utah Lake Mon i, p 207; Bull 9, p 29

various localities (mineral spring) Bull 32, p 187

from Vermont, various localities (mineral spring) Bull 32, pp 20-21

from Virginia, Bath County (hot spring) Bull 9, pp 33-35

Loudoun County (spring) Bull 42, p 147

James River at Richmond Mon xi, opp p 176; Bull 52, p 38

Virginia, Rockbridge County (spring) Mon xi, p 177

various localities (mineral spring) Bull 32, pp 58-68

from Washington, Medical Lake (mineral spring) Bull 32, p 218

Soap Lake Bull 108, pp 93, 94; Bull 113, p 113

T. 15 N., R. 8 E., secs. 29 and 32 Ann 21, iv, p 95

from West Virginia, various localities (mineral spring) ... Bull 32, pp 71-73

from Wisconsin, Sheboygan (artesian) Mon xi, opp p 176

various localities (mineral spring) Bull 32, pp 153-157

from Wyoming, Bear River Mon xi, opp p 176

various localities (mineral spring) Bull 32, p 184

from Yellowstone Park, Alum Creek Bull 47, p 75

Crater Hill (hot spring) Bull 47, pp 76, 86

Firehole River Bull 47, pp 57, 73

Hillside Springs (hot spring) Bull 47, pp 71, 82

Lower Geyser Basin (geyser and hot spring) Bull 47, pp 53, 54, 55, 82

Mammoth Hot Springs (hot spring) Ann 9, p 639; Bull 47, pp 36, 37, 38, 39, 40, 41, 42, 43, 82

Midway Basin (geyser) Bull 47, pp 58, 82

Mount Washburn (hot spring) Bull 47, p 80

Norris Geyser Basin (geyser and hot spring) Bull 47, pp 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 82

Opal Spring Mon xi, opp p 176

Pelican Creek (hot spring) Bull 47, pp 78, 82

Shoshone Basin (geyser) Bull 47, pp 70, 82

Soda Butte (hot spring) Bull 47, p 81

Terrace Springs (hot spring) Bull 47, pp 56, 82

Upper Geyser Basin (geyser and hot spring) Ann 9, p 655;

Bull 47, pp 60, 62, 64, 65, 66, 67, 68, 69, 72, 82

Yellowstone Lake Bull 47, p 74

capacity of rocks for absorbing Ann 21, vii, pp 389-390

of various rock sheets in Texas for Ann 18, ii, pp 260-264

compressibility of, above 100°, and its solvent action on glass. Bull 92, pp 78-84

conveyance of, in irrigation canals, flumes, and pipes WS 43
Water, determination of, in mineral analysis, apparatus for........Bull 78, pp 84-86
flow of, through porous soils or rock, theoretical investigation of........Ann 19,
n, pp 295-384
through rocks... Ann 21, vii, p 391
through sand, rate of Ann 19, n, pp 242-245
through sand and rock, rate ofAnn 19, n, pp 297-294
through wire gauze, sandstone, sand, capillary tubes, etc., experi­
m ents on .. Ann 19, n, pp 109-189
flow of, lateral, through sands, rate of Ann 19, n, pp 264-269
legal control of, in Arizona WS 2, pp 55-62
in Colorado..WS 9, pp 60-66
in Wyoming .. WS 23, pp 14-18
loss of, from artificial channels, in New York.......... WS 25, pp 173-178
measurements of, tables for converting units used in........ WS 27, pp 96-100
ownership of, in New York WS 24, pp 14-15
percolation of, into undisturbed field soil Ann 19, n, pp 200-264
pumping, for irrigation WS 1; WS 10, pp 34-36
residue from, analysis of, from Philippine Island, Taal Volcano. .Ann 21, n, p 535
solubility of certain natural silicates in Bull 167, pp 159-160
storage of, for irrigation purposesAnn 13, n, pp 284-325
in Arizona, Gila River Ann 21, iv, pp 358-379; WS 33
in California, Cache Creek WS 45
in Maine lakes Ann 19, iv, pp 37-39
in Nevada, on Humboldt River Ann 20, iv, pp 448-454
on Rock Creek Ann 20, iv, pp 441-447
in New Mexico, Mesilla Valley WS 10, pp 19-20
in New York .. WS 24, p 12; WS 25, pp 109-134
on Genesee River WS 25, pp 109-125
on Hudson River WS 28, pp 125-134
(See, also, Irrigation; Reservoir.)
stored in the ground, amount of......................... Ann 19, n, pp 69-71
uses of.................................... WS 3, p 16; WS 30, pp 11-22, 41-47
weight of, apparent, at different temperatures........ Ann 14, n, p 72
Water, artesian, chemical impregnations of................. Ann 5, pp 165-167
conditions, requisite and qualifying, of artesian wells Ann 5, pp 125-173
general principles of.................................. Ann 18, ii, pp 212-215
in Colorado, eastern, distribution, quality, etc., of.....Ann 17, ii, pp 580-595
Elmoro quadrangle GF 58, pp 4-5
Pueblo quadrangle GF 36, p 7
Walsenburg quadrangle................................ GF 68, p 6
in Great Plains region Ann 21, iv, pp 698-741
in North and South Dakota, use of, for irrigation Mon xxi, pp 545-547
in Red River Valley, sources of...................... Mon xxi, pp 525-536
in western United States, for irrigation, and in various countries.... Ann 11,
ii, pp 257-278
temperature of.. .Ann 5, p 165
(See, also, Water, underground.)
Water, ground, depth to which it penetrates.................. Ann 19, ii, p 71
effect of precipitation on Ann 19, ii, pp 100-106
geologic conditions governing, and method of locating WS 6, pp 15-19
in eastern Colorado, general conditions, etc., of........ Ann 17, ii, pp 595-601
in Great Plains region Ann 21, iv, pp 732-741
Water, motion of, theoretical investigation of.. Ann 19, ii, pp 295–384
movements of, gravitational, thermal, and capillary.. Ann 19, ii, pp 71–93
movements of, principles and conditions of.. Ann 19, ii, pp 59–294
Water, river, general chemistry of.. Mon xi, pp 172–174
Water, running, transportation by.. Mon xxxiv, pp 13–18
Water, sea, analysis of.. Bull 78, p 35
Water, seepage, of northern Utah.. WS 7
Water, spring, general chemistry of.. Mon xi, pp 175–178
Water, underground, action of.. WS 29, pp 14–18
classification of.. Ann 18, iv, p 474; Mon xxxvii, pp 550–552
in California, Arroyo Seco and Pasadena Mesa.. Ann 20, iv, pp 543–549
in Colorado.. WS 9, pp 79–87
Arkansas Valley.. Ann 17, ii, pp 551–601
in District of Columbia.. GF 70, p 7
in Great Plains, a portion of.. Ann 16, ii, pp 548–550, 557–565
in Illinois-Indiana, Danville quadrangle.. GF 67, pp 7–9
in Kansas, southwestern.. WS 6
in Maryland, Fredericksburg quadrangle.. GF 13, p 6
Nomini quadrangle.. GF 23, p 4
Washington (D. C.) quadrangle.. GF 70, p 7
in Nebraska, southeastern, portion of.. WS 12
in South Dakota, Black Hills, southern part.. Ann 21, iv, pp 563–574
Nueces quadrangle.. GF 42, pp 3–4
in Virginia, Fredericksburg quadrangle.. GF 13, p 6
Nomini quadrangle.. GF 23, p 4
Washington (D. C.) quadrangle.. GF 70, p 7
in Wyoming, Black Hills, southern part.. Ann 21, iv, pp 563–574
principles governing.. Ann 21, vii, pp 387–394
Water-bearing formations, character of.. Ann 5, pp 135–137
of Great Plains.. Ann 16, ii, pp 580–585
Water horizons in southeastern Nebraska.. WS 12, pp 24–48
Water lifts and pumps used in irrigation, new tests of.. WS 14
Water-power streams of Maine.. Ann 19, iv, pp 34–111
Water powers in California, Kern River.. Ann 19, iv, pp 524–526
in California, San Bernardino Valley.. Ann 19, iv, pp 548–551
San Joaquin River.. Ann 19, iv, pp 516–518
in Georgia, Altamaha Basin.. Ann 20, iv, pp 166–169
Ocmulgee River.. Ann 20, iv, p 167
Oconee River.. Ann 20, iv, pp 167–168
Savannah Basin.. Ann 20, iv, pp 155–156
Tugaloo River.. Ann 20, iv, p 155
Yellow River.. Ann 20, iv, p 156
in Kansas, Verdigris River.. Ann 19, iv, pp 375–376
in Michigan.. WS 30, pp 18–22, 37–41
in New York, Erie Canal.. WS 25, pp 178–184
Hudson River, tributaries of.. WS 24, pp 37, 40, 41
Niagara River.. WS 25, pp 135–143
price and possible development of.. WS 25, pp 184–186, 188–190
St. Lawrence River.. WS 25, pp 143–144
in North Carolina, Cape Fear River Basin.. Ann 19, iv, pp 187–192
Catawba River Basin.. Ann 19, iv, pp 204–212
eastern.. Bull 140, pp 65–66
Knoxville quadrangle.. GF 16, p 6

Bull. 177—01—53
834 INDEX TO PUBLICATIONS OF U. S. GEOLOGICAL SURVEY. [BULL. 177.

Water powers in North Carolina, Roanoke River Basin........ Ann 19, iv, pp 174-178
in North Carolina, Yadkin River Basin.......................... Ann 19, iv, pp 194-200
in South Carolina, Broad River Basin............................ Ann 19, iv, pp 215-219
Catawba River Basin .. Ann 19, iv, pp 204-212
Saluda River ... Ann 19, iv, pp 221-222
Yadkin River Basin ... Ann 19, iv, pp 194-200
in Tennessee, Knoxville quadrangle............................. GF 16, p 6
Loudon quadrangle .. GF 25, p 6
Morristown quadrangle .. GF 27, p 5
in Virginia, Roanoke River Basin.............................. Ann 19, iv, pp 174-178
in Virginia–West Virginia, Shenandoah Basin Ann 19, iv, pp 136-139, 156-161
on Potomac River ... Ann 21, iv, pp 100-106

Water resources of Great Plains, portion of Ann 16, ii, pp 535-588
of Illinois .. Ann 17, ii, pp 695-849
of Indiana and Ohio .. Ann 18, iv, pp 419-559
of Michigan, Lower Peninsula WS 30
of Nebraska, west of 103d meridian Ann 19, iv, pp 719-785
of New York .. WS 24 and 25
of Ohio and Indiana .. Ann 18, iv, pp 419-559
of Porto Rico .. WS 32
of South Dakota, Black Hills, southern part.................. Ann 21, iv, pp 563-578
southeastern portion of ... WS 34
of Wyoming, Black Hills, southern part....................... Ann 21, iv, pp 563-578

Water resources of Great Plains, portion of Ann 16, ii, pp 535-588
of Illinois .. Ann 17, ii, pp 695-849
of Indiana and Ohio .. Ann 18, iv, pp 419-559
of Michigan, Lower Peninsula WS 30
of Nebraska, west of 103d meridian Ann 19, iv, pp 719-785
of New York .. WS 24 and 25
of Ohio and Indiana .. Ann 18, iv, pp 419-559
of Porto Rico .. WS 32
of South Dakota, Black Hills, southern part.................. Ann 21, iv, pp 563-578
southeastern portion of ... WS 34
of Wyoming, Black Hills, southern part....................... Ann 21, iv, pp 563-578

Water-right problems of Bighorn Mountains WS 23
Water supply, conditions of, dangerous Ann 12, i, pp 342-344
for irrigation .. Ann 13, iii, pp 1-99
for Southern Ute Indian Reservation, investigation of Ann 20, iv, pp 408-434
of Bitterroot Forest Reserve Ann 19, v, pp 257-262
of California, Marysville quadrangle............................ GF 17, p 2
Mono Lake .. Ann 8, i, p 287
San Bernardino Valley ... Ann 19, iv, pp 540-632
of Colorado River .. Mon ii, pp 234-235
of Idaho, Boise quadrangle GF 45, p 1
of public lands .. Ann 16, iii, pp 457-533
of Texas, Uvalde quadrangle GF 64, pp 5-6
of United States, eastern (cistern) Ann 14, ii, pp 17-30
of Utah, Uinta Indian Reservation Ann 21, iv, pp 305-330
(See, also, Hydrography; Irrigation.)

Water vapor, influence of, in producing Fayalite and various structures in obsidian Ann 7, p 280-287
role of, in molten magmas Bull 66, pp 26-29
Water wheels in irrigation, types of WS 1, pp 35-45
Waterline formation of Indiana Ann 8, pp 633; Ann 11, i, pp 633-634
of Ohio ... Ann 8, p 507
Waters from different depths, characteristics of Ann 19, iv, p 650
of Comstock lode, source and temperatures of Mon iii, pp 241-243, 252, 390
of Muir Inlet, Alaska, soundings, temperatures, and analyses of Ann 16, i, pp 452-458
of rivers, springs, oceans, and inland seas, chemistry of Mon xi, pp 172-187
of Yellowstone Park, analyses of, with account of methods employed .. Bull 47
ownership of inland, by State of New York WS 25, pp 186-188

Waters and wells, artesian, for irrigation in western United States and in various countries Ann 11, ii, pp 257-278
Waters, mineral, economic value of...

of California, on veins of Nevada City district.

of Michigan, lower...

of Montana, Little Belt Mountains quadrangle...

of Porto Rico...

of United States, chemical composition of...

lists and analyses of...

Waters, natural, treatment of, in analysis...

Waters, potable, of eastern United States...

Waters, rock, of Ohio...

Waters, surface, and irrigation in Black Hills, southern part...

Wave motion, especially in solid media, nature and mechanism of...

Waverly formation of Indiana...

of Kentucky...

of Tennessee...

Waverly group, history of discussions concerning...

in Ohio, as a water bearer...

Waves, effect of, on harbors...

work of, on shores...

Wealden of England, comparison of Potomac formation of America with...

origin, mode of deposition, and lithologic character of...

Weathering of igneous rocks, description and illustration of spheroidal...

of limestone, differential...

of rocks, and origin of red color of certain formations...

of California, Nevada City and Grass Valley districts...

of Grand Canyon, analysis and results of...

of limestone, differential...

of Maryland (granites)...

of Utah, Tintic district...

of Virginia, Richmond Basin...

producing nodules, discussion of...

of shale from Dry Creek, California, description of spheroidal...

products of, in massive rocks...

(See, also, Degradation.)

Webber Lake, engineering plans and estimates for reservoir at...

Webberville formation in Texas...

Weber conglomerate of Eureka district, Nevada, age, character, thickness, etc.,

of...

Weber formation of Colorado...

Weber grits, shales, and quartzite of Colorado, Leadville district...

An 13, iii, p 392

survey of, for reservoir site...

An 11, ii, pp 175, 181-182

An 18, ii, pp 241-243; An 21, vii, p 344

An 3, pp 253, 270, 271; Mon xx, pp 91-92

Mon xxxi, pp 30-33; GF 9, pp 6, 9; GF 48, p 1

pp 216, 217, 219; Mon xii, pp 67, 68-69
Weber River, Utah, flow of, measurements of..............Ann 11, ii, p 103; Ann 12, ii, pp 334, 336, 353, 360; Ann 13, iii, pp 96, 99; Ann 14, ii, pp 122-123; Ann 18, iv, pp 323-325; Ann 19, iv, pp 440-441; Ann 20, iv, pp 60, 61, 466; Ann 21, iv, pp 397-398; Bull 131, pp 57-58; Bull 140, pp 231-233; WS 11, p 78; WS 16, p 161; WS 28, pp 151, 153, 154; WS 38, pp 357-338
Weber (A. L.), altitudes and their determinationMon i, pp 405-419
Weber (T.), quoted on fossil forests of Isle of Wight Ann 16, i, p 491
Websterite, analyses of, from Maryland, Baltimore, vicinity of Ann 15, p 674; Bull 78, p 122, Bull 148, p 84; Bull 168, p 43
analysis of, from Maryland, Cecil County Bull 168, p 43
from North Carolina, Webster.....Ann 15, p 674; Bull 78, p 122; Bull 148, p 92; Bull 168, p 53
Webb (W. H.), descriptions of rock specimens in educational series by.....Bull 150, pp 91-93, 99-101
geology of Butte district, Montana GF 38, pp 1-3
geology of Fort Benton quadrangle, Montana........................ GF 55
geology of Little Belt Mountains, Montana, with notes on mineral deposits of Neihart, Barker, Yogo, and other districtsAnn 20, iii, pp 257-261
geology of Little Belt Mountains quadrangle, Montana GF 56
glaciation of Yellowstone Valley north of the park........... Bull 104
Laramie and Livingston formations in Montana Bull 105
mineral vein formation at Boulder Hot Springs, Montana.......... Ann 21, ii, pp 227-255
sedimentary rocks of Yellowstone Park......................... GF 30, pp 4-5
travertine and siliceous sinter of hot springs............... Ann 9, pp 613-676
work in charge of, 1893-1900................................ Ann 15, pp 169-170;
Ann 16, i, pp 28-29; Ann 17, i, pp 38-39; Ann 18, i, pp 37-40; Ann 19, i, p 42; Ann 20, i, p 46; Ann 21, i, pp 79-80
Weed (W. H.) and others; descriptive geology, petrography, and paleontology of Yellowstone Park........................ Mon xxxi, ii
Weed (W. H.) and Pirsson (L. V.), geology and mineral resources of Judith Mountains, Montana.................. Ann 18, iii, pp 437-616
geology of Castle Mountain mining district, Montana............. Bull 139
Weed (W. H.), Iddings (J. P.), and Hague (A.), geology of Livingston quadrangle, Montana................................ GF 1
Weeks (F. B.), bibliography and index of North American geology, paleontology, petrology, and mineralogy......for 1892-1893, Bull 130; for 1894, Bull 135; for 1895, Bull 146; for 1896, Bull 149; for 1897, Bull 156; for 1898, Bull 162; for 1899, Bull 172 occurrence of tungsten ore in eastern Nevada.......... Ann 21, vi, pp 319-320
Weeks (J. D.), glass materials, statistics of................... MR 1883-84, pp 958-977; MR 1885, pp 544-557

Potomac and Roaring Creek coal fields in West Virginia......... Ann 14, iv, pp 567-590

Wehrlite, analysis of, from Massachusetts, New Braintree.............. Bull 148, p 77; Bull 168, p 67

analysis of, from Michigan, Crystal Falls district Bull 148, p 140; Bull 168, p 114

thin section of, from Michigan, Crystal Falls district Mon xxxv, pp 320-321

Weidman (S.), description of metarhyolite, as one of educational series of rocks ... Bull 150, pp 164-170

Weirs for diverting water into irrigating canals................. Ann 13, iv, pp 219-234

Weiser quartzite of Alabama... Bull 81, p 251

Welch formation of Virginia and West Virginia......................... GF 44, pp 3, 5

Well boring and irrigation in eastern South Dakota in 1896........ Ann 18, iv, pp 561-615

Well drilling, especially in Texas, practical suggestions for Ann 18, ii, pp 319-321

Weller (S.), bibliographic index of North American Carboniferous invertebrates................................. Bull 153

Wells, conditions, requisite and qualifying of artesian Ann 5, pp 125-173; Mon xxxviii, pp 555-556

construction and management of artesian, remarks on Ann 17, ii, pp 691-694

flow of artesian, and their mutual interference, theoretical investigation of ... Ann 17, ii, pp 558-380

flow of water into, rate of .. Ann 19, ii, pp 279-289

interference of two, in sandstone Ann 19, ii, pp 276-279

irrigation by artesian ... Ann 5, pp 148-150; Ann 11, ii, pp 257-278

of Arizona ... WS 2, pp 80-90

of Atlantic Coastal Plain (artesian) Bul 138

of California, Pasadena Mesa Ann 20, iv, pp 546-549

San Bernardino Valley .. Ann 20, iv, p 559

of Colorado, Denver Basin (artesian), development, conditions, etc. ... Mon xxvii, pp 401-406

records of ... Bull 131, pp 106-114

of Great Plains, portion of .. Ann 16, ii, pp 558-568

of Idaho, Boise quadrangle (artesian)................................. GF 45, p 7

of Illinois, artesian and other Ann 17, ii, pp 751-818

discussion of, by counties .. Mon xxxviii, pp 564-787

of Illinois-Indiana, Danville quadrangle, tabulated data concerning.GF 67, pp 9-10
Wells of Indiana, northern.. WS 21
of Indiana, southern.. WS 26
of Indiana and Ohio... Ann 18, iv, pp 475-493
of Kansas (artesian)... Ann 11, ii, p 271; Bull 57, pp 13, 30, 48
Meade County .. WS 6, pp 48-56
records of.. Bull 131, pp 114-126
of Massachusetts, Dalton fault (artesian). Bull 159, pp 90-92
western (artesian).. Mon xxix, pp 380-389
of Michigan, in Pleistocene WS 30, pp 56-57
temperatures of.. Ann 11, ii, pp 267-268
of Minnesota.. Ann 18, n, pp 270-273, 279-307
Red River Valley (artesian and common) Mon xxv, pp 523-581
salt in, sources of (artesian)................................ Mon xxv, pp 533-535
of Nebraska .. Ann 5, pp 168-170
records of.. Bull 131, pp 95-106
southeastern, depth of.. WS 12, pp 24-48
of North Dakota ... Ann 11, ii, pp 268-270; Bull 144, pp 58-61
 Red River Valley (artesian and common) Mon xxv, pp 523-581
 salt in, sources of (artesian).............................. Mon xxv, pp 533-535
of Ohio (flowing).. Ann 19, iv, pp 697-711
of Ohio and Indiana... Ann 18, iv, pp 475-493
of South Dakota... Ann 11, ii, pp 268-270; Bull 144, pp 58-61
 southeastern (artesian)................................ WS 34, pp 26-31
of Texas .. Ann 11, ii, p 272
 (artesian) ... Ann 18, ii, pp 270-273, 279-307
 Uvalde quadrangle .. GF 64, p 6
United States, eastern (artesian and deep pump) Ann 14, ii, pp 44-47
of Virginia, Fort Monroe (artesian)......................... Bull 145, pp 44-45
of Washington, Moxee Valley (artesian)..................... Ann 19, iv, p 468; Ann 20, iv, p 508
 southeastern (artesian)................................ WS 4, pp 79-83
sinking of, art of... Ann 5, pp 168-170
 methods of, in Michigan WS 30, pp 69-70
value of, in reclamation of public lands in Western States. Ann 16, ii, pp 499-502
(See Artesian.)
Wells and well prospects in the Dakotas....................Ann 17, ii, pp 617-665
Wells and windmills in Nebraska WS 29
Wenache River, flow of, measurements of Ann 19, iv, pp 489-490; WS 16, pp 178
Wenas Creek, Washington, irrigation from Ann 20, iv, pp 504-505
Weno beds of Texas.. Ann 21, iv, pp 274-280
West Canada Creek, New York, flow of, measurements of...... WS 35, pp 49-50
West Denver quadrangle, Colorado, physiography of TF 2, p 14
West Elk Mountains, Colorado, geology of Ann 14, ii, pp 177-203
West Fork series of rocks of Alaska......................... Ann 21, ii, pp 475-476
West Indies, fossil plants of, literature of............... Ann 8, ii, pp 819-820
geologic maps of, listed.. Bull 7, pp 146-148
West Virginia, altitudes in Ann 18, i, pp 288-295; Ann 19, i,
 pp 217-229; Ann 20, i, pp 363-370; Ann 21, i, pp 426-427, 446,
 447-455; Bull 5, pp 314-316; Bull 76; Bull 160, pp 745-751
atlas sheets of. (See pp 98-99 of this bulletin.)
barite in Tazewell quadrangle GF 44, p 4
bituminous coal field in Pennsylvania, Ohio, and West Virginia, stratig-rapy of................. Bull 65
boundary lines of... Bull 13, p 92; Bull 171, p 98
West Virginia; brick, use of, for street paving MR 1892, p 724
brick industry of ... MR 1887, p 536; MR 1888, pp 564, 566, 569
Buckhannon quadrangle, geology of GF 34
building stone at World's Columbian Exposition MR 1893, p 573
in Buckhannon quadrangle .. GF 34, pp 3–4
in Franklin quadrangle .. GF 32, p 5
in Harpers Ferry quadrangle .. GF 10, pp 4, 5
in Monterey quadrangle .. GF 61, p 7
in Piedmont quadrangle .. GF 28, p 5
in Pocahontas quadrangle .. GF 26, p 5
statistics of .. MR 1882, p 451; MR 1887, p 521; MR 1889–90, pp 373, 437–438; MR 1891, pp 463, 464, 468; MR 1892, pp 710–711; MR 1893, pp 553, 556; Ann 16, iv, p 437 et seq; Ann 17, iii cont, p 761 et seq; Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq; Ann 20, vi cont, pp 271, 336 et seq; Ann 21, vi cont, p 335 et seq
cement production of, statistics of MR 1889–90, p 461; MR 1892, p 739; MR 1893, p 619; Ann 16, iv, p 577; Ann 17, iii cont, p 891; Ann 18, v cont, p 1178; Ann 19, vi cont, p 496; Ann 20, vi cont, p 547; Ann 21, vi cont, p 408
Charleston quadrangle, physiography of TF 1, pp 1–2
Cheat River, flow of, measurements of WS 36, p 160–161
clay in Buckhannon quadrangle GF 34, p 4
in Franklin quadrangle .. GF 32, p 5
in Harpers Ferry quadrangle GF 10, p 4
in Monterey quadrangle .. GF 61, p 7
in Piedmont quadrangle .. GF 28, p 5
clay deposits and production of, statistics of MR 1891, p 515; MR 1893, p 611; Ann 16, iv, pp 518, 519, 520, 521; Ann 17, iii cont, pp 821 et seq, 869–870; Ann 18, v cont, p 1078 et seq; Ann 16, vi cont, pp 319 et seq, 373; Ann 20, vi cont, pp 467 et seq, 535; Ann 21, vi cont, pp 362, 363
coal, area and statistics of Ann 2, p xxviii;
description and analyses of Quinnimont-Fire Creek Ann 17, ii, pp 491–493
(Sewell) .. Ann 17, ii, pp 496–497
in Buckhannon quadrangle GF 34, p 3
in Franklin quadrangle .. GF 32, p 5
in Huntington quadrangle .. GF 69, pp 5–6
in Monterey quadrangle .. GF 61, p 7
in Piedmont quadrangle .. GF 28, p 5
in Pocahontas quadrangle GF 26, pp 4–5
in Tazewell quadrangle .. GF 44, pp 4–5
West Virginia; coal fields ofMR 1893, pp 403-407; Ann 16, iv, pp 202-203
coal fields of, Potomac and Roaring CreekAnn 14, ii, pp 567-590
Coal Measures of ... Bull 80, pp 87-88
coal mining in Kanawha Valley MR 1883-84, pp 131-143
coke, manufacture of, in the Upper Potomac region Ann 14, ii, pp 587-588
manufacture of, statistics ofMR 1883-84, pp 207-213;
MR 1885, pp 80, 120-129; MR 1886, pp 378, 384, 424-429;
MR 1887, pp 383, 389, 422-431; MR 1888, pp 395, 427-441;
MR 1891, pp 360, 366, 396-401; MR 1892, pp 555 et seq, 595, 601;
MR 1893, pp 418 et seq, 454-459; Ann 16, iv, pp 225 et seq, 293-303;
Ann 17, iii cont, pp 544 et seq, 611-618; Ann 18, v cont, pp 661 et seq, 736-744;
Ann 19, vi, pp 548 et seq, 631-640; Ann 20, vi, pp 512 et seq, 598-606;
vi cont, p 228; Ann 21, vi, pp 523 et seq, 622-630
copper in Harpers Ferry quadrangleGF 10, p 4
Elk Garden coal field, extent, production, etc., ofAnn 14, ii, pp 579-582
flags and slates in Harpers Ferry quadrangleGF 10, p 4
forestry investigations inAnn 5, pp 64-66; Ann 6, p 93
Franklin quadrangle, geology ofGF 32
gas, illuminating and fuel, and by-products in, statistics ofAnn 20, vi, cont, p 228 et seq
Gauley River, profile ofWS 44, p 48
geographic positions inAnn 20, i, pp 227-231; Bull 123, pp 77-78
geologic maps of, listedBull 7, pp 109, 111, 112
(See, also, Map, geologic, of West Virginia.)
geologic sections in. (See Section, geologic, in West Virginia.)
geologic and paleontologic investigations inAnn 5, p 52, 53;
Ann 6, pp 24, 25, 31, 36; Ann 7, pp 65, 67; Ann 8, i, p 130;
Ann 9, p 77; Ann 10, i, pp 119-120; Ann 12, i, pp 55-78;
Ann 15, p 141; Ann 16, i, pp 17-18; Ann 17, i, pp 22-25, 29;
Ann 19, i, p 34; Ann 20, i, pp 37-38; Ann 21, i, pp 70, 71-72
Georges Creek and Cumberland coal field, extent and production of Ann 14, ii, p 579
grahamite vein in Ritchie County, account ofAnn 17, i, p 939
Greenbrier River flow of, measurements ofAnn 18, iv, pp 111-113; Ann 19, iv, pp 253-254; Ann 20, iv, pp 51, 204; Ann 21, iv, pp 158-159; Bull 140, pp 77-78; WS 11, p 41; WS 15, p 58; WS 27, pp 61, 65; WS 36, pp 163-164
profile ofWS 44, p 48
Guyandot River, profile ofWS 44, p 46
Harpers Ferry quadrangle, geology ofGF 10
Huntington quadrangle, geology ofGF 69
iron and steel from, statistics ofAnn 2, p xxviii; MR 1882, pp 120, 125, 129, 130, 131, 133, 134, 135, 136, 137; MR 1883-84, p 252; MR 1885, pp 182, 184, 186; MR 1886, pp 18, 33, 81; MR 1887, pp 11, 16; MR 1888, pp 14, 17, 23; MR 1889-90, pp 10, 12, 17, 24, 34; MR 1891, pp 12, 27, 54, 55, 61; MR 1892, pp 12, 13, 15, 17, 18, 21, 26, 35, 36, 37; MR 1893, pp 15, 20, 26, 28, 38, 39; Ann 16, iii, pp 31, 41, 192, 194, 197, 203, 208, 249, 250; Ann 17, iii, pp 26, 47, 48, 57, 63, 68; Ann 19, vi, pp 65, 68, 72; Ann 20, vi, pp 74, 75, 82, 83, 84, 85; Ann 21, vi, pp 34, 46-48, 52, 53, 90, 92
iron ore in Franklin quadrangleGF 32, p 5
in Harpers Ferry quadrangleGF 10, p 4
West Virginia; iron ore in Monterey quadrangle GF 61, p 7
iron ore in Piedmont quadrangle GF 28, p 5
in Staunton quadrangle GF 14, p 3
in Tazewell quadrangle GF 44, p 4
Kanawha River, improvement of.......................... MR 1892, pp 540-546
profile of ... WS 44, pp 46-47
limestone in Buckhannon quadrangle..................... GF 34, p 3
in Franklin quadrangle GF 32, p 5
in Monterey quadrangle GF 61, p 7
in Piedmont quadrangle GF 28, p 5
Little Kanawha River, profile of........................ WS 44, p 49
manganese in Franklin quadrangle GF 32, p 5
manganese-ore production of, statistics of.............. Ann 16, iii, pp 395, 434; Ann 17, iii, pp 187, 205; Ann 18, v, p 292; Ann 19, vi, p 91; Ann 20, vi, p 126; Ann 21, vi, p 130
maps, geologic, of. (See Map, geologic, of West Virginia.)
maps, topographic, of. (See Map, topographic, of West Virginia; also list on pp 98-99 of this bulletin.)
marble production of, statistics of Ann 19, vi cont, pp 246-248
meridian marks in Ann 20, i, pp 233-254
mineral-spring resorts in Ann 14, ii, p 88
minerals of, useful MR 1882, pp 743-745; MR 1887, pp 804-806
mining laws of .. MR 1886, pp 741-746
Monterey quadrangle, geology of GF 61
profile of .. WS 44, pp 46-47
New and Kanawha rivers, geologic section along........ Ann 17, ii, pp 473-511
ocher in Harpers Ferry quadrangle GF 10, p 4
oil and gas horizons in Ann 20, vi cont, pp 35-36
West Virginia; petroleum localities and statistics of

Piedmont quadrangle, geology of

GF 28

Pocahontas quadrangle, geology of

GF 26

Potomac River, flow of, measurements of

Ann 18, iv, pp 19-21; Bull 131, p 88; Bull 140, pp 44-45; WS 15, pp 17-18; WS 35, pp 84-85

pollution of

Ann 19, iv, pp 136-140, 156-161

rainfall and run-off in the basin of Kanawha River

Ann 20, iv, pp 199-202

in basin of Potomac River

Ann 20, iv, pp 117-121

road material in Franklin quadrangle

GF 32, p 5

in Harpers Ferry quadrangle

GF 10, p 4

in Monterey quadrangle

GF 61, p 7

in Piedmont quadrangle

GF 28, p 5

salt from, statistics of

salt making in, history of

Ann 18, v, cont, pp 1298-1301

sandstone production of, statistics of

sections, geologic, in

(See Section, geologic, in West Virginia.)

sewage-disposal plant at Weston

WS 22, p 74

Shenandoah River, flow of, measurements of

pollution and water powers in basin of

Ann 19, iv, pp 136, 156-157

soils of Buckhannon quadrangle

GF 34, p 4

of Franklin quadrangle

GF 32, pp 5-6

of Huntington quadrangle

GF 60, p 6

of Monterey quadrangle

GF 61, p 7

of Piedmont quadrangle

GF 28, pp 5-6

of Pocahontas quadrangle

GF 26, p 5

of Staunton quadrangle

GF 14, p 4

of Tazewell quadrangle

GF 44, pp 5-6

Staunton quadrangle, geology of

GF 14
West Virginia; survey of, by cooperation of the State......... Ann 20, i, pp 99, 110
Tazewell quadrangle, geology of .. GF 44
timber in, estimates of .. Ann 19, v, p 16
topographic maps of. (See Map, topographic, of West Virginia; also list on pp 98–99 of this bulletin.)
topographic work in .. Ann 5, pp 6–8; Ann 6, pp 8, 9, 10;
Ann 7, pp 50, 51, 53; Ann 8, i, p 101; Ann 9, p 53; Ann 10, i, p 92; Ann 11, i, p 37; Ann 12, i, p 27; Ann 13, i, p 72; Ann 14, i, p 172; Ann 16, i, pp 64, 68, 69, 71; Ann 17, i, pp 97, 99–100; Ann 18, i, pp 94, 96, 102; Ann 19, i, pp 89, 91, 98–99; Ann 20, i, pp 101, 102, 110, 111; Ann 21, i, pp 119, 125–126, 127

Wheeling, deep well (4,471 feet) at, determination of underground temperature gradients at........ Ann 12, i, p 63; Ann 13, i, pp 95–97; Ann 14, i, p 159
Semet-Solvay by-product coke ovens at Ann 20, vi, pp 547–548
woodland area in .. Ann 19, v, p 5
Westanite, chemical constitution of Bull 125, pp 65, 66, 103
Western granite in Michigan and Wisconsin, Penokee district........ Mon xix, pp 106–107
Western green schist in Michigan and Wisconsin, Penokee district............... Mon xix, pp 107–111
Western sandstone of Lake Superior region Ann 3, pp 155–156; Mon v, pp 365–366; Bull 81, pp 197, 198, 252
Wet and Sangre de Cristo mountains, Colorado, Archean and Algonkian literature of Bull 86, pp 313–314
Weverton sandstone in Virginia, Maryland, and West Virginia Ann 14, ii, pp 329–333; GF 10, pp 2–3
Wewe slate of Michigan, petrographic character, relations, etc., of........ Ann 15, pp 530–540; Mon xxvii, pp 256–282; Mon xxxvi, pp xxv, xxvi
Weyquosque series of Massachusetts, Martha’s Vineyard, age, distribution, character, etc., of Ann 7, pp 320, 340–342; Ann 17, i, pp 960–964; Bull 84, pp 37, 330, 337
Wharton (J.), nickel and cobalt, statistics of Ann 18, v, pp 329–342
Wheatstone, Mount, Colorado, structure and rocks of Ann 14, ii, pp 192–193
Whetstone-schist of Massachusetts, western........ Mon xxix, pp 186–187, 220–221
White (C. A.), Bear River formation and its characteristic fauna Bull 128
correlation papers, Cretaceous Bull 82
fossil Ostreidacea of North America Ann 4, pp 273–430
fresh-water invertebrates of North American Jurassic Bull 29
geology and physiography of portions of Colorado, Utah, and Wyoming..... Ann 9, pp 677–712
invertebrate fossils from Pacific coast Bull 51
marine Eocene, fresh-water Miocene, and other fossil Mollusca of western
North America .. Bull 18
Mesozoic and Cenozoic paleontology of California Bull 15
Mesozoic fossils .. Bull 4
new Cretaceous fossils from California Bull 22
White (C. A.), nonmarine fossil Mollusca of North America Ann 3, pp 403-550; Bull 18, pp 17-19

quoted on fossils from Alaska Ann 17, i, pp 867-869

relation of Laramie Molluscan fauna to that of succeeding fresh-water

Eocene and other groups Bull 34

remarks on genus Aucella, with especial reference to its occurrence in Cali-

fornia .. Mon xiii, pp 226-232

Texan Permian and its Mesozoic types of fossils Bull 77

work in charge of, 1882-92 Ann 4, pp 42-44; Ann 5, pp 50-51;

An 6, pp 72-74; Ann 7, pp 117-120; Ann 8, i, pp 178-181;

Ann 9, pp 120-123; Ann 10, i, pp 162-165; Ann 11, i, pp 107-109;

Ann 12, i, pp 112-115; Ann 13, i, pp 140-142

White (D.), flora of outlying Carboniferous basins of southwestern Missouri... Bull 98

fossil flora of Lower Coal Measures of Missouri Mon xxxvii

fossil plants of Danville quadrangle, Illinois-Indiana GF 67, p 3

report on fossil plants from McAlester coal field, Indian Territory, col-

lected in 1897 Ann 19, iii, pp 457-538

stratigraphic succession of fossil floras of Pottsville formation in southern

anchroic coal field, Pennsylvania Ann 20, ii, pp 749-930

work in charge of, 1893-1900 Ann 15, pp 180-182; Ann 16, i, pp 20-21; Ann 17, i, pp 24-25; Ann 18,

i, pp 26-27; Ann 19, i, p 33; Ann 20, i, p 36; Ann 21, i, p 71

White (I. C.), comparative stratigraphy of bituminous coal field of northern

half of Appalachian field Bull 65

White Beach sand rock of Florida Bull 84, pp 114-115, 337

White Bluff marl of Arkansas, correlation of Ann 18, ii, p 343

White lead. (See Lead, white and red.)

White limestone of Colorado Ann 2, pp 216, 218; Mon xii, pp 60-61

White limestone of Southern States Bull 83, pp 64-66; Bull 84, p 338

White Mountains, Archean and Algonkian literature of Bull 86, pp 350-352

White Pine shale of Nevada, age, character, thickness, etc., of Ann 3, pp 253,

266-267; Mon xx, pp 68-73, 153-154

White porphyry of Colorado, Leadville district Ann 2, pp 226-227,

270; Mon xii, pp 76-78, 324-326

White River, Alaska, expedition to Tanana River and (1898), report on .. Ann 20,

vii, pp 425-494; Alaska (2), pp 64-75

explorations in basin of, and routes and distances along Ann 21,

ii, pp 350-351, 384-386

White River, Arkansas, profile of WS 44, p 67

White River, Colorado, flow of, measurements of Bull 140, p 202; WS 28, p 143

reconnaissance on Yampa River and Ann 20, iv, pp 338-387

White River, Nebraska, flow of, measurements of Ann 18, iv, pp 298-299;

Ann 20, iv, pp 54, 253-254, 303-304; WS 15, p 79

White River, Washington, flow of, measurements of Ann 21,

iv, pp 436-437; WS 38, pp 381-382

White River group of rocks of North and South Dakota, Colorado, and Wyo-

ming ... Ann 18, ii, p 341; Ann 21, iv, pp 542-545;

Bull 84, pp 289-292, 296, 304-305, 311-312, 317, 338

White River Plateau Timber Land Reserve, report on Ann 20, v, pp 117-179

Whiterocks River, Utah, flow of, measurements of WS 37, pp 289-290

Whitewater River, California, flow of, measurements of Bull 140, p 318

Whitfield (J. E.), a new meteorite from Mexico Bull 64, pp 29-30

analyses of natural borates and borosilicates Bull 55, pp 56-62

analyses of six new meteorites Bull 60, pp 103-114
Whitfield (J. E.), dumortierite from New York and Arizona....Bull 60, pp 133-135
indirect estimation of chlorine, bromine, and iodine by electrolysis of their
silver salts, with experiments on convertibility of silver
salts by action of alkaline haloids.Bull 42, pp 89-93
meteorites from Johnson County, Arkansas, and Allen County, Ken-
tuckyBull 55, pp 63-64
scorodite from Yellowstone ParkBull 55, pp 65-66
Whitfield (J. E.) and Diller (J. S.), dumortierite from Harlem, New York, and
Clip, ArizonaBull 64, pp 31-33
Whitfield (J. E.) and Gooch (F. A.), analyses of waters of Yellowstone Park,
with account of methods of analysis employed.Bull 47
Whitfield (R. P.), Brachiopoda and Lamellibranchiata of Raritan clays and
greensand marls of New JerseyMon ix
Gasteropoda and Cephalopoda of Raritan clays and greensand marls of
New JerseyMon xviii
Mollusca and Crustacea of Miocene formations of New JerseyMon xxiv
Whiting (H. L.), successive surveys in Marthas Vineyard byAnn 7, pp 361-363
Whitney (J. D.), hypsometric method ofAnn 2, pp 465-479
quoted on gneissic areas in southern Sierra NevadaAnn 17, i, p 535
Whitsett limestone-lentils in OregonGF 49, p 49
Wichita formation of TexasAnn 21, vii, p 102
Wichita Mountains of Ouachita systemAnn 21, vii, p 38
Wichita paleoplain, restoration, structure, etc., ofAnn 21, vii, pp 363-367
Wilber (F. A.), apatite, statistics ofMR 1882, p 521
clays, statistics ofMR 1883-84, pp 676-711
fire clay in eastern divisionMR 1882, pp 465-469
gypsum, statistics ofMR 1883-84, pp 809-815
marls, statistics ofMR 1882, pp 522-526; MR 1883-84, p 808
Wilbur tuff-lentil in OregonGF 49, pp 2-3
Willhite slate in Tennessee and North CarolinaGF 16, p 2; GF 20, p 2; GF 25, p 2
Willamette River, Oregon, profile ofWS 44, p 98
Willcoxite, analyses of, from North Carolina, Clay CountyBull 74, p 68
chemical constitution ofBull 125, p 51
Willemite, analysis of, from New Jersey, Franklin FurnaceBull 60, p 130
chemical constitution ofBull 125, pp 68, 69, 104
occurrence and statistics ofMR 1882, p 496; MR 1883-84, p 773; Ann 16, iv, p 605
Williams (A.), jr., gold and silver conversion tablesBull 2
list of ores, minerals, and mineral substances of industrial importance in
IdahoMR 1882, pp 770-771
mineral resources of United States in 1882MR 1882
mineral resources of United States in 1883 and 1884MR 1883-84
popular fallacies regarding precious-metal ore depositsAnn 4, pp 253-271
useful minerals of United States; list by States........MR 1887, pp 688-812
work in charge of, 1882-1886Ann 4, pp 59-72;
Ann 5, pp 63-64; Ann 6, pp 88-93; Ann 7, pp 130-134
Williams (G. H.), descriptions of rock specimens in educational seriesBull 150,
gabbros and associated hornblende rocks near Baltimore, MarylandBull 28
general relations of granitic rocks in middle Atlantic Piedmont PlateauAnn 15,
pp 657-684
reports on studies of crystalline rocks of MarylandAnn 10,
1, pp 152-154; Ann 11, 1, pp 66-67; Ann 12, 1, pp 73-74
report on Piedmont crystallinesAnn 13, 1, pp 112-113
Williams (G. H.), greenstone-schist areas of Menominee and Marquette regions of Michigan, a contribution to subject of dynamic metamorphism in eruptive rocks

work in charge of, 1893-94

Willis (B.), changes in river courses in Washington due to glaciation

lignites of Great Sioux Reservation

Willis Glacier, Mount Rainier, present condition of

Willow Creek beds of Colorado

pumping water for irrigation

Winchell (H. V.), quoted on varieties of Mesabi iron ore

Winchester limestone in Kentucky

Wind-blown soils

Wind in Lake Bonneville Basin in Pleistocene time

on Great Plains

narrow vertical limits of the trade

transportation by

velocity of, at various places in United States

Wind River group of Wyoming, correlation of

Wind River Mountains, Archean and Algonkian literature of

Wind River Mountains and Basin, structure of
Windmill, efficiency and economic use of .. WS 41 and 42
Windmills, capacity of ... WS 1, p 28
experiments with ... WS 20
irrigation by ... Ann 19, iv, p 780; WS 1, pp 29-35; WS 8; WS 20, pp 11-18
in Nebraska, wells and .. WS 29
Wingate sandstones of Plateau region Ann 6, pp 133, 135, 136-137, 146, 150, 157
Winnipeg, Lake, description of ... Mon xxv, pp 47-48
Winnipegosis, Lake, description of .. Mon xxv, p 48
Winslow (A.), Arkansas coal MR 1888, pp 216-224
coal measure of Missouri ... MR 1892, pp 429-436
disseminated lead ores of southeastern Missouri Bull 132
Winthrop Glacier, Mount Rainier, present condition of Ann 18, ii, pp 369, 370, 391-396
Winthrop sandstone in Washington, northern Ann 20, ii, pp 117-118
wire rods, statistics of production of, in 1899 Ann 21, vi, p 102
Wirt (W. D.), work in charge of, 1894-1900 Ann 16, i, pp 84-86; Ann 17, i, pp 118-119; Ann 18, i, pp 127-128;
Ann 19, i, p 139; Ann 20, i, p 157; Ann 21, i, pp 184-185
Wisconsin; altitudes in .. Ann 19, i, pp 257-261; Ann 20, i, pp 407, 419; Ann 21, i, pp 468-471; Bull 5, pp 317-320;
Bull 72, pp 197-198, 204-205; Bull 76; Bull 160, pp 752-769
Archean formation of Northwestern States Ann 5, pp 175-242
'atlas sheets of. (See list on p 99 of this bulletin.)
boundary lines of, and formation of, from territory northwest of Ohio
River Bull 13, pp 28, 29,114-116; Bull 171, pp 120-121
brick industry of MR 1886, p 535; MR 1887, pp 536, 539; MR 1888, p 564
building stone from, at World's Columbian Exposition MR 1893, pp 573-574
production of, statistics of .. MR 1882, p 451; MR 1886, p 535;
MR 1887, pp 514, 516; MR 1888, pp 536, 541, 545, 546; MR
1889-90, pp 373, 438-439; MR 1891, pp 461, 463, 464, 468;
MR 1892, pp 766, 792, 710, 711; MR 1893, pp 544, 547, 553,
556; Ann 16, iv, p 437 et seq; Ann 17, iv cont, p 761 et seq;
Ann 18, v cont, p 951 et seq; Ann 19, vi cont, p 207 et seq;
Ann 20, vii cont, p 271 et seq; Ann 21, vi cont, p 335 et seq
cement production of, statistics of MR 1883-84, p 672; MR 1885, p 406; MR
1887, p 529; MR 1888, p 551; MR 1889-90, p 461; MR 1891, p
532; MR 1892, pp 730-740; MR 1893, p 619; Ann 16, iv, p
577; Ann 17, vii cont, p 591; Ann 18, v cont, p 1179; Ann 19, vii cont, p 495; Ann 20, vi cont, p 547; Ann 21, vi cont, p 408
clay deposits of .. MR 1891, pp 522-523
clay products of, statistics of .. MR 1882,
p 746; MR 1887, p 806; MR 1891, p 522; Ann 16, iv, p 518,
519, 520, 521; Ann 17, vii cont, pp 521 et seq; Ann 18, vi cont, p 1078 et seq; Ann 19, vi cont, pp 319 et seq, 374; Ann 20, vi cont, pp 467 et seq, 535; Ann 21, vi cont, pp 362, 363
coke in, manufacture of .. MR 1888,
pp 395, 400, 441; MR 1891, pp 361, 366, 401-402; MR
1892, pp 555 et seq, 602; MR 1893, pp 418 et seq, 459;
Ann 16, iv, pp 225 et seq, 303; Ann 17, iv cont, pp 544 et seq, 619; Ann 18, v cont, pp 661 et seq, 744-745; Ann 19, vi, pp 548 et seq, 640-641; Ann 20, vi, pp 512 et seq, 607;
Ann 20, vi cont, p 228; Ann 21, vi, pp 523 et seq, 630-631
copper-bearing rocks of Lake Superior, nature, structure, and extent of. Ann 3, pp 93-188; Mon v
Wisconsin; diamonds in, occurrence of............MR 1883–84, p 732; MR 1892, p 759; MR 1893, pp 682–683; Ann 16, iv, pp 595–596; Ann 17, i, cont, p 896; Ann 18, v, cont, p 1183; Ann 21, vi, cont, p 420

driftless area of Upper Mississippi Valley................Ann 6, pp 199–322

eagle quadrangle, glacial phenomena in................ TF 1, p 3

gas, illuminating and fuel, and by-products in, statistics of........ Ann 20, vi, cont, p 228 et seq

drilling for oil in...Ann 16, i, pp 161–162; Ann 21, i, pp 468–471; Bull 123, pp 112–115

lead from, statistics of..................................Ann 2, p xxviii; MR 1882, p 312; MR 1883–84, pp 416, 425; MR 1885, p 248; MR 1886, p 148; MR 1892, pp 124, 125; Ann 16, iii, p 362; Ann 17, iii, p 134; Ann 18, v, p 240; Ann 19, vi, p 201; Ann 20, vi, p 226; Ann 21, vi, p 229

lime production of, statistics of.......................MR 1887, p 533; MR 1888, p 556

magnetic declination in.....................................Ann 17, i, pp 435–438

manganese deposits in..................................MR 1886, pp 188–190; MR 1887, p 151; MR 1888, p 128

maps, geologic, of. (See Map, geologic, of Wisconsin.)

maps, topographic, of. (See Map, topographic, of Wisconsin; also p 99)
Wisconsin; Menominee River, course and character of. Ann 20, iv, pp 217-218
meridian marks in. Ann 14, i, p 88
mineral spring resorts in. Ann 21, i, pp 270-272
minerals of, useful. MR 1882, pp 745-747; MR 1887, pp 806-808
other production of. MR 1882, pp 746; MR 1887, p 807; MR 1889-90, p 508; MR 1891, p 595; MR 1892, p 816; Ann 16, iv, pp 695, 696; Ann 17, iii cont, p 1012, 1013, 1014
on classification of early Cambrian and pre-Cambrian formations; a brief discussion of principles, illustrated by examples drawn mainly from Lake Superior region. Ann 7, pp 365-454
on secondary enlargements of mineral fragments in certain rocks (mostly from Michigan, Wisconsin, and Minnesota). Bull 8
paint, mineral, production of. MR 1886, p 141;
MR 1889-90, p 510; MR 1891, p 597; MR 1892, pp 816, 818;
MR 1893, pp 760, 761; Ann 16, iv, pp 695, 696, 698;
Ann 17, iii cont, pp 1013, 1014, 1016, 1017;
Ann 18, v cont, pp 1338, 1342; Ann 19, vi cont, pp 637, 642, 643;
Ann 20, vi cont, pp 723, 728, 729; Ann 21, vi cont, pp 569-586
Penokee iron-bearing series of Michigan and ... Ann 10, i, pp 341-508; Mon xix quartz from, statistics of. Ann 19, vi cont, p 657; Ann 20, vi cont, p 745
rainfall in, at various points. WS 24, p 50; WS 29, p 72
average annual and seasonal. Ann 17, ii, p 719
sections, geologic, in. (See Section, geologic, in Wisconsin.)
Sun Prairie quadrangle, glacial phenomena in. TF 1, p 3
timber in, estimates of. Ann 19, v, p 16
topographic maps of. (See Map, topographic, of Wisconsin; also p 99.)
topographic work in. Ann 9, p 57; Ann 10, i, p 94; Ann 11, i, p 38; Ann 12, i, p 29; Ann 13, i, p 73;
Ann 14, i, p 173; Ann 18, i, p 96; Ann 19, i, pp 89, 91, 101, 102; Ann 20, i, pp 101, 102, 114; Ann 21, i, pp 120, 129-130
woodland area in. Ann 19, v, p 9
(See, also, Lake Superior region.)
Wisconsin drift in Danville quadrangle, Illinois-Indiana. GF 67, p 5
Wisconsin drift sheets, early and late. Mon xxxvii, pp 191-417
Cambrian rocks in, correlation of. Bull 81, pp 171-181, 331
Wise formation of Kentucky, Virginia, and Tennessee. Bull 111, p 94; GF 12, p 3; GF 59, p 5
Wissahickon Creek, Pennsylvania, flow of, measurements of. Ann 20, iv, pp 48, 94-96; Ann 21, iv, pp 81-82; WS 38, p 74

Bull. 177—01——54
INDEX TO PUBLICATIONS OF U. S. GEOL. SURVEY. [BULL. 177.

Witham (Henry T. M.), biographic sketch of Ann 5, pp 372-373
Witewater and banket, with notes on other gold-bearing pudding stones Ann 18, v, pp 153-184
Worthington, chemical constitution of .. Bull 125, pp 65, 66
Wöhlerite, chemical constitution of ... Bull 125, p 77, 89, 104
Wolf Butte and Taylor Peak, Montana, geology of Ann 20, iii, pp 341-342
Wolf porphyry of Montana, Fort Benton quadrangle GF 55, p 35
of Montana, Little Belt Mountains .. Ann 20, iii, p 35
Wolf (J. E.), descriptions of rock specimens in educational series Bull 15, pp 197-201, 323-327, 349-354
geology of Hoosac Mountain and adjacent territory.................. Mon xxii, pp 35-111
study of geology of Crazy Mountains, Montana Ann 11, i, p 5
work in charge of, 1893-1900 .. Ann 15, p 158; Ann 16, i, p 16; Ann 17, i, p 2;
Ann 18, i, p 25; Ann 19, i, p 33; Ann 20, i, p 34; Ann 21, i, p 6;
Wolff (J. E.) and Brooks (A. H.), age of Franklin white limestone of Sussex
County, New Jersey .. Ann 18, ii, pp 425-441
Wolff (J. E.), Pumpelly (R.), and Dale (T. N.), geology of Green Mountains
in Massachusetts Mon xxii
Wolfram, analysis of, from North Carolina Bull 74, p 89
Wolframite, analysis of, from Germany MR 1883-84, p 570
Wollastonite, analysis of, from New York, Diana Bull 113, p 36
Wollastonite-gneiss, analysis of, from California, Amador County Ann 17, i, p 702; Bull 148, p 216; Bull 168, p 202
of Sierres Nevada .. Ann 17, i, p 703
Wolsey shale of Montana ... GF 55, p 2; GF 56, p 2
of Montana, description and sections of Ann 20, iii, pp 285, 340, 364
Wood used in steel making, analysis of Bull 25, p 34
Wood River, Idaho, flow of, measurements of Ann 11, ii, pp 83-85, 106, 110
Wood River formation of Idaho .. Ann 20, iii, pp 80-90, 139-195
Wood, fossil, from Connecticut, South Britain Ann 21, iii, pp 161-162
from Virginia, Richmond Basin .. Ann 19, ii, pp 516-519
Wood, fossil, and lignite of Potomac formation Bull 56
Wood, silicified, description of, as one of educational series Bull 150, pp 113-114
(See, also, Forests, fossil.)
Woodbine formation of Texas ... Ann 21, vii, pp 293-322
Wooded areas in United States, by States Ann 19, v, pp 2-14
(See, also, Forests.)
Woodhurst limestone of Montana ... GF 55, p 2; GF 56, p 2
of Montana, description, fossils, and sections of Ann 20, iii, pp 291-293, 329, 362, 363
Woodlands, forests, and irrigated areas in the Western States, relative location
and areas of .. Ann 16, ii, pp 480-483
Woods Bluff series. (See Bashi series.)
Woodward (R. S.), calculation of variation of terrestrial density, gravity, and
pressure .. Ann 13, ii, p 236
deforation of geoid by removal, through evaporation, of water of Lake
Bonneville .. Mon i, pp 421-424
Woodward (R. S.), elevation of surface of Bonneville Basin by expansion due to change of climate............ Mon 1, pp 425-426
form and position of sea level.. Bull 48
formulas and tables to facilitate construction and use of maps........... Bull 50
latitudes and longitudes of certain points in Missouri, Kansas, and New Mexico .. Bull 49
report on astronomic work of 1889 and 1890 Ann 8, i, pp 121-124; Ann 9, pp 68-71; Ann 10, i, pp 106-108; Ann 11, i, pp 128-129
Woodworth (J. B.) and Shaler (N. S.), geology of Richmond Basin, Virginia. Ann 19, 11, pp 385-515
Woodworth (J. B.), Shaler (N. S.), and Foerste (A. F.), geology of Narragansett Basin............................... Mon xxxiii
Woodworth (J. B.), Shaler (N. S.), and Marbut (C. F.), glacial brick clays of Rhode Island and southeastern Massachusetts Ann 17, 11, pp 951-1004
World's Columbian Exposition, building stone at, exhibit of MR 1893, pp 560-602
cement, Portland, at MR 1893, pp 622-623
Worms, earth-, action of, in producing soils Ann 12, i, pp 274-276
Wrangell Mountains, Alaska, geologic map of Ann 21, ii, p 404
notes on... Ann 20, vi, pp 377-378
topography of ... Ann 21, ii, pp 410-411
Wright (G. F.), glacial boundary in western Pennsylvania, Ohio, Kentucky, Indiana, and Illinois Bull 58
Wright act, California irrigation legislation, provisions of........ Ann 13, iii, pp 145-148
Wurtz (H.), quoted on West Virginia vein of grahamite Ann 17, i, p 939
Wyoming; Absaroka district, geology of................................. GF 52
Absaroka Range, structure of.. Bull 119, pp 29-32
agate in, occurrence of .. Ann 16, iv, p 601
altitudes in .. Ann 18, i, pp 348-349, 360-362; Ann 19, i, pp 277-280, 317-321; Ann 21, i, pp 502-514, 515-517; Bull 5, pp 321-325; Bull 72, pp 196, 225; Bull 76, pp 770-775
atlas sheets of. (See list on p 100 of this bulletin.)
Bald Mountain quadrangle, forest conditions in Ann 21, v, pp 598-600
Bear River formation in Bull 128, pp 30-31
Beaver Creek, course and character of Ann 21, iv, p 578
Bighorn Basin, stream measurements in Ann 19, iv, pp 290-295; WS 15, pp 75-76; WS 37, pp 211-213
Bighorn Forest Reserve, limits, condition, timber, fires, mining, grazing, etc .. Ann 19, v, pp 52-54
Bighorn Mountains, glacial sculpture in Ann 21, ii, pp 167-190
water rights, problems of WS 23
Black Fork, flow of, measurements of Ann 18, iv, pp 268-272; Ann 19, iv, pp 391-393; Ann 20, iv, pp 58, 381-382; Ann 21, iv, pp 303-304; WS 11, p 69; WS 16, p 134; WS 28, pp 133, 142, 144; WS 37, pp 287-288
Black Hills, Cretaceous formation of, as indicated by fossil plants Ann 19, 11, pp 521-946
geologic history of.. Ann 19, ii, pp 587-592
geology and water resources of southern half of, and adjacent regions, preliminary description of Ann 21, iv, pp 489-599
laccoliths of .. Ann 21, iii, pp 163-303
topography of southern Ann 21, iv, pp 498-502
Wyoming; Black Hills Forest Reserve; limits, lands, fires, lumbering, management, etc. Ann 19, v, pp 49-52, 67-164
boundary lines of, and formation of territory...Bull 13, pp 32, 123; Bull 171, p 130
building stone at World's Columbian Exposition.............MR 1893, p 574
Canyon quadrangle. (See Yellowstone National Park.)
Cheyenne, rainfall at.. WS 9, p 14
clay deposits and production of, statistics of.................MR 1887, pp 806, 810;
MR 1891, p 524; Ann 16, iv, pp 518, 519, 520, 521; Ann
17, iii cont, p 821 et seq; Ann 18, v, cont, p 1078 et seq;
Ann 19, vi cont, p 319 et seq; Ann 20, vi cont, p 467 et seq
Clear Creek, flow of, measurements of............................Ann 18, iv, pp 138-141; Ann 19, iv, pp 297-298; Ann 20, iv, pp 53,
250-251; Ann 21, iv, pp 190-191; WS 11, p 50; WS 15, p 78;
WS 23, pp 90-91; WS 27, pp 73-74, 76; WS 37, pp 212-213
climate of Black Hills, southern part................ Ann 21, iv, pp 591-597
Cloud Peak quadrangle, forest conditions................ Ann 21, v, pp 600-601
coal in.. Bull 119, pp 49-60
in Black Hills, southern part............................ Ann 21, iv, pp 582-584
coal area and statistics of................................. Ann 2, p xxviii;
MR 1882, pp 85-89; 1883-84, pp 12, 100-104; MR 1885, pp
11, 71-73; MR 1886, pp 225, 230, 374-377; MR 1887, pp
169, 171, 380-382; MR 1888, pp 169, 171, 390-394; MR 1889-
90, pp 147, 280-286; MR 1891, pp 180, 351-356; MR 1892,
pp 265, 267, 288, 546-550; MR 1893, pp 189, 190, 194, 195,
197, 199, 200, 407-414; Ann 16, iv, pp 7 et seq, 208-217; Ann
17, iii, pp 287 et seq, 536-540, 542; Ann 18, v, pp 353 et
seq, 629-632; Ann 19, vi, pp 278 et seq, 539-543; Ann 20, vi,
pp 300 et seq 504-507; Ann 21, vi, pp 325 et seq, 514-517
canopy of, and formation of territory.........................MR 1893, pp 412-414; Ann 16, iv, pp 208-215
coke in, manufacture of, statistics of.........................MR 1891, pp 360, 366, 402;
MR 1892, pp 555 et seq, 602; MR 1893, pp 418 et seq, 460;
Ann 16, iv, pp 225 et seq, 303-304; Ann 17, iii cont, pp 544
et seq, 619-620; Ann 18, v, cont, pp 661 et seq, 745-746; Ann
19, vi, pp 548 et seq, 641-642; Ann 20, vi, pp 612 et seq, 608;
Ann 20, vi cont, p 228; Ann 21, vi, pp 523 et seq, 632-633
copper from, statistics of.................................. MR 1882, pp 216, 229;
MR 1883-84, pp 329, 342; MR 1885, pp 210; MR 1886, p 112;
MR 1887, pp 69, 76; MR 1888, p 54; MR 1889-90, p 60;
MR 1891, pp 83-84; MR 1892, pp 96, 97; MR 1893, pp 64, 65;
Ann 16, iii, pp 333, 334; Ann 17, iii, pp 83, 84, 85, 86; Ann
18, v, pp 189, 190, 191; Ann 19, vi, pp 140, 141, 142, 143;
Ann 20, vi, pp 161, 162, 163, 164, 165; Ann 21, vi, pp 166-170, 178
Crandall Basin, dissected volcano of......................... Mon xxxiii, ii, pp 215-268
Crazy Woman Creek, irrigation from.........................WS 23, pp 18-28
Dayton quadrangle, forest conditions in........................ Ann 21, v, pp 597-598
Dinocerata, an extinct order of gigantic mammals (remains found in
Wyoming).. Ann 5, pp 243-302; Mon x
Wyoming; elevations in, lists of........ Ann 18, i, pp 348-349, 360-362; Ann 19, i, pp 277-280, 317-321; Ann 21, i, pp 502-514, 515-517; Bull 5, pp 321-325; Bull 72, pp 196, 225; Bull 76; Bull 160, pp 770-775
fuller's earth in Black Hills, southern part............. Ann 21, iv, pp 588-589
Gallatin quadrangle. (See Yellowstone National Park.)
gas, illuminating and fuel, and by-products in, statistics of............. Ann 20, vi cont, pp 228, 241, 244, 246, 247, 249
geographic positions in Ann 18, i, p 183; Ann 19, i, p 164; Ann 20, i, pp 260-277; Ann 21, i, pp 280-306; Bull 123, pp 132-133
gleologic maps of, listed Bull 7, pp 115, 116, 109, 170
(See Map, geologic, of Wyoming.)
gleologic sections in. (See Section, geologic, in Wyoming.)
gleologic and paleontologic investigations in... Ann 4, p 41; Ann 5, pp 49-57; Ann 6, p 72; Ann 7, pp 112, 118, 119; Ann 8, i, p 173; Ann 9, p 114; Ann 10, i, p 159; Ann 11, i, pp 101, 123; Ann 12, i, p 118; Ann 13, i, pp 125, 140; Ann 14, i, p 266; Ann 15, pp 134-135, 159, 167-168; Ann 16, i, p 33; Ann 17, i, p 68; Ann 18, i, pp 63-64; Ann 19, i, pp 45-46; Ann 20, i, pp 47-48; Ann 21, i, pp 75-76, 80
gleology and physiography of a portion of northwestern Colorado and adjacent parts of Utah and WyomingAnn 9, pp 677-712
Goose Creek, flow of, measurements of........ Ann 18, iv, pp 136-138; Ann 19, iv, pp 295-297; Ann 20, vi, p 53; Bull 140, p 94; WS 11, pp 49-50; WS 15, p 77
grazing in Bighorn Reserve............................. Ann 19, v, pp 183-185
Green River, flow of, measurements of........ Ann 18, iv, pp 272-275; Ann 19, iv, pp 394-396; Ann 20, iv, pp 58, 380-383; Ann 21, iv, pp 302-304; Bull 140, pp 200-201; WS 11, p 70; WS 16, p 135; WS 28, pp 134, 142, 144; WS 37, pp 286-287
Grey Bull River, flow of, measurements of........ Ann 19, iv, pp 293-295; Ann 20, iv, p 53; WS 15, p 75
gritstone in Black Hills, southern part.............. Ann 21, iv, pp 584-585
Hay Creek coal field, Lower Cretaceous plants from, notes on....... Ann 19, ii, pp 645-702
Horseshoe Creek, reservoir sites on........ Ann 20, iv, pp 270-273
irrigation in.................. Bull 119, pp 67-68
iron, iron ore, and steel from, statistics of........ MR 1882, pp 120, 125, 133, 135, 136, 137, 147; MR 1883-84, p 285; MR 1885, p 184; MR 1886, p 18; MR 1887, p 11; MR 1888, pp 15, 35, 36; MR 1892, pp 15, 18; MR 1893, p 15; Ann 17, ii, pp 27, 39, 41, 45, 63; Ann 18, v, pp 24, 41, 42, 47; Ann 19, vi, pp 26, 27, 29, 66, 72; Ann 20, vi, pp 84-85; Ann 21, vi, pp 34, 51, 52, 53
Jurassic invertebrates of........ Bull 128, pp 71-72
Wyoming; Lake quadrangle. (See Yellowstone National Park.)

Laramie flora (largely from Wyoming), types of Bull 37

limestone, production of, statistics of Ann 17, iii cont, pp 761, 788, 790, 791; Ann 18, v cont, pp 1046, 1047; Ann 19, vi cont, pp 282, 283; Ann 20, vi cont, pp 343, 344; Ann 21, vi cont, pp 335, 357, 358, 359, 360

lumber industry in ... Ann 19, v, pp 21, 22

magnetic declination in .. Ann 17, i, pp 438-440

maps, geologic, of. (See Map, geologic, of Wyoming.)

maps, topographic, of. (See Map, topographic, of Wyoming; also list on p 100.)

mineral resources of Black Hills, southern part Ann 21, iv, pp 582-591

mineral springs of ... Bull 32, pp 183-184

minerals of, useful .. MR 1882, pp 758-759; MR 1887, pp 808-810

mining in Bighorn Forest Reserve ... Ann 19, v, pp 181-183

Neocene beds of ... Bull 84, pp 309-312

Newcastle quadrangle, forest conditions in Ann 21, v, pp 601

No Wood River, irrigation from .. WS 23, pp 50-55

northwest, geologic reconnaissance in ... Bull 119

oil fields of, history, geology, etc., of Ann 17, iii cont, pp 702-707

Old Woman Creek, anticlinal area on Ann 21, iv, pp 552-554

Owl-Rattlesnake Range, structure of ... Bull 119, pp 37-41

petroleum in Black Hills, southern part Ann 21, iv, pp 586-587

Platte River, hydrography of and irrigation in basin of Ann 13, iii, pp 73-91

(See, also, North Platte River.)

Pryor Mountains, structure of ... Bull 119, pp 45-46

rainfall in ... WS 29, p 72

Cheyenne ... Ann 13, iii, p 27

rainfall and run-off in basin of Platte River Ann 20, iv, pp 257, 268, 265

reservoirs in ... WS 23, pp 55-58

salt from, statistics of .. MR 1882, pp 532-534, 541

sections, geologic, in. (See Section, geologic, in Wyoming.)

Shoshone quadrangle. (See Section, geologic, in Wyoming.)

(See Yellowstone National Park.)
Wyoming; Shoshone Range, structure of.................................. Bull 119, pp 32-33
Shoshone River, flow of, measurements of.................................. Ann 19, iv, pp 290-293; Ann 20, iv, pp 53, 249; WS 15, p 76; WS 27, pp 73, 76; WS 36, p 212
Snake River, flow of, measurements of..................................... WS 38, pp 349-350
soda deposits worked in... Bull 60, pp 42-46; MR 1885, pp 550-554
Stockade Beaver Creek, course and character of.......................... Ann 21, iv, pp 577-578
stream measurements in (miscellaneous)..................................... Ann 21, iv, p 599
Sunshine district, structure of.. Bull 119, pp 33-37
Teton Forest Reserve, limits, lands, timber, sawmills, etc., of........ Ann 19, v, pp 54-56, 191-212
Teton Range, northern end of, geology of.................................. Mon xxxii, ii, pp 149-164
timber in Absaraka district... Ann 19, v, pp 54-56, 191-212
tin ore in... MR 1883-84, p 613; MR 1885, p 370; Ann 16, iii, p 530
topographic maps of. (See Map, topographic, of Wyoming; also list on p 100.)
topographic work in... Ann 13, i, p 79; Ann 15, p 127; Ann 16, i, pp 65, 68, 69; Ann 17, i, pp 97, 102, 103; Ann 18, i, pp 94, 96, 106, 107; Ann 19, i, pp 89, 91, 103, 109-110; Ann 20, i, pp 101, 102, 119-120; Ann 21, i, pp 133, 140
triangulation in... Bull 122, pp 290-293, 300, 301
water, legal control of... WS 23, pp 14-18
water supply and public lands of.. Ann 16, ii, pp 532-533
woodland area of.. Ann 19, v, p 11
Wyoming Development Company’s irrigation canal................. Ann 13, iii, pp 181-183
Yellowstone Park (Gallatin, Canyon, Lake, and Shoshone quadrangles), geology of... GF 30
(See, also, Yellowstone National Park.)
Wyoming Development Company’s irrigation canal.................. Ann 13, iii, pp 181-183
Wyoming conglomerate of Wyoming and Utah............................ Bull 84, pp 311, 313, 317, 321, 338
Wyoming formation in Colorado.. Mon xxvii, pp 18-21, 51-60, 84-85; GF 48, p 2
Wyoming and Gros Ventre ranges, Archean and Algokian literature of........ Bull 86, p 280
Wyomingite, analysis of, from Wyoming, Leucite Hills................. Bull 148, p 115; Bull 168, p 85
Xanthitane, analysis of, from North Carolina, Henderson County........ Bull 60, p 135; Bull 74, p 71
chemical constitution of... Bull 125, p 79
Xanthophyllite, analysis of, from Russia, Ural........................... Bull 113, p 27
chemical constitution of... Bull 125, pp 47-48
Xenolite, chemical composition of... Bull 125, pp 16, 101
Xenophoride from Colorado formation................................. Bull 106, pp 133-134
Xenotime, analysis of, from North Carolina, Brindletown.............. Bull 113, p 112
Yadkin River, North Carolina, flow of, measurements of........ Ann 18, iv, pp 57-61; Ann 19, iv, pp 200-204; Ann 20, iv, pp 50, 146-148; Ann 21, iv, pp 120-122; Bull 140, pp 70-71; WS 11, pp 16-17; WS 15, pp 32-33; WS 27, pp 36-37, 44; WS 36, pp 116-119
water powers in basin of... Ann 19, iv, pp 194-200
hydrography of basin of.. Ann 14, ii, pp 132-134
irrigation in basin of.. Ann 19, iv, pp 461-477
rainfall and run-off in basin of.. Ann 20, iv, pp 496-500
Yakutat Bay, Alaska, coal at Ann 17, i, p 784
Yale (C. G.), borax ... MR 1889-90, pp 484-506
iron on Pacific coast MR 1888-89, pp 288-290; MR 1885, pp 196-199
minor minerals of Pacific coast MR 1882, pp 662-663
Yampa and White rivers, Colorado, reconnaissance on... Ann 20, iv, pp 383-387
Yarmouth soil and weathered zone Mon xxxviii, pp 119-124
Yellow River, Georgia, flow of, measurements of Ann 19, iv, pp 229-230; Ann 21, iv, pp 137-138; WS 15, p 43; WS 27, pp 31-32; WS 36, pp 134-135
water powers on ... Ann 20, iv, p 166
Yellowstone formation of Montana GF 56, pp 2-3
Yellowstone Lake, altitude, area, discharge, etc., of Ann 9, p 93
Yellowstone National Park, geologic and paleontologic investigations in Ann 5, pp 15-18; Ann 6, pp 54-58; Ann 7, pp 87-89; Ann 8, i, pp 149-151; Ann 9, pp 91-94, 128-129; Ann 10, i, pp 23-25, 132-136, 169-170; Ann 11, i, pp 83-85; Ann 12, i, pp 56, 94; Ann 21, i, p 80
gologic maps of, listed Bull 7, p 169
geology of .. GF 30
gology, petrography, and paleontology of Mon xxxiv, ii, pp 628-672
maintenance of, reasons for Ann 5, pp 17-18
Obsidian Cliff ... Ann 7, pp 249-295
report on, by Director Walcott, concerning roads, protection, etc. Ann 19, i, pp 58-59
scorodite from .. Bull 55, pp 65-66
topographic maps of. (See Map, topographic, of Wyoming.)
topographic work in Ann 5, pp 9-10; Ann 6, pp 14-15; Ann 7, p 57; Ann 9, p 60
travertine and siliceous sinter, formation of, by vegetation of hot springs. Ann 9, pp 613-676
triangulation in .. Bull 122, pp 300, 301
Yellowstone Park Forest Reserve, limits, timber, etc., of Ann 19, v, pp 54-56, 213-216
Yellowstone River, flow of, measurements of Ann 11, ii, pp 93, 107; Ann 12, ii, pp 236, 347, 360; Ann 13, iii, pp 66, 93, 98; Ann 14, ii, pp 104-105
glaciation of valley of .. Bull 104
hydrography of basin of Ann 11, ii, pp 36-38, 93, 107; Ann 12, ii, pp 236-238; Ann 13, iii, pp 63-73
profile of .. WS 44, pp 76-77
stream measurements in basin of Ann 18, iv, pp 130-141; Ann 19, iv, pp 287-300; Ann 20, iv, pp 246-251; Ann 20, iv, pp 190-192; Bull 131, pp 26-27; WS 11, pp 49-50; WS 15, pp 74-80; WS 27, pp 73-74, 76; WS 37, pp 210-211
Yentna beds of Alaska, southwestern, notes on Ann 20, vii, pp 172, 183, 187
Yentna River, Alaska, itinerary of reconnaissance along Ann 20, vii, pp 46-48
Yogo, Montana, mines at, notes on Ann 20, iii, pp 447-450
sapphire mines at, description of Ann 20, iii, pp 454-459, 552-556
Yogo district, Montana, geology of Ann 20, iii, pp 317-335
Yogo limestone of Montana GF 55, pp 2; GF 56, p 2
of Montana, description and sections of Ann 20, iii, pp 286, 328, 329, 339, 363, 368
Yogo Peak, Montana, rocks of, variation in mineral composition of Ann 20, iii, pp 567-568
Yorktown epoch ... Bull 84, p 338
Yosemite National Park, report on, by Director Walcott, concerning roads, administration, etc Ann 19, i, pp 59–60
Yosemite quadrangle, California, forest conditions in Ann 21, v, pp 571–574
Yosemite Valley, origin of Ann 8, i, pp 330–331
Yttrialite, chemical constitution of Bull 125, pp 78–105
Yuba River, California, profile of WS 44, p 93
Yukon gold district, Alaska, coal in, localities of Ann 17, i, pp 815–819
general information concerning Alaska (2), pp 85–100
geology of .. Ann 18, iii, pp 87–90
history and condition of, to 1897 Ann 18, iii, pp 103–133
Yukon silts of Alaska, distribution, correlation, etc., of Ann 18, iii, pp 200–221
Yukon Valley, Alaska, notes on Ann 17, i, pp 860–863
Yukon-Kuskokwim water route, notes on Ann 20, vii, pp 97–99
Yule limestone of Colorado GF 9, p 6; GF 48, p 1
Zamiese of Mesozoic, older, of Virginia Mon vi, pp 63–84
of Potomac, or younger Mesozoic Mon xv, pp 166–193
Zeolites, analyses of, from Colorado, Table Mountain Bull 20, p 18
analysis of, from Maine, Litchfield Bull 42, p 34
from Montana, Boulder Hot Springs Ann 21, i, p 243
chemical constitution of Bull 125, pp 33–45
composition of ... Bull 150, p 44
derivation of, from feldspar Bull 28, p 52
from Colorado, basalt of Table Mountain Bull 20, pp 15–38
Zeolitic gems, occurrence and statistics of MR 1892, pp 779–780
Zeolitic minerals of Colorado, Table Mountain Mon xxvii, pp 292–308
Zenglodon beds of Alabama, correlation of Ann 18, ii, p 342
Zickenite from Colorado, San Juan County Bull 20, pp 93–95
Zinc in Missouri, investigation of Ann 11, i, pp 64, 80–81; Ann 12, i, pp 56, 90; Ann 13, i, pp 13, 87, 128
in Montana, Butte district GF 38, p 5
in Porto Rico ... Ann 20, vii cont, p 777
in Tennessee, Bristol quadrangle GF 59, p 8
Morristown quadrangle GF 27, p 5
in Virginia, Bristol quadrangle GF 59, p 8
mining and metallurgy of, in United States MR 1882, pp 358–386
MR 1885, pp 276–283; MR 1886, p 159; MR 1888, pp 95–96
statistics of .. MR 1882, pp 346–386;
Ann 17, iii, pp 163–177; Ann 18, v, pp 263–280; Ann 19, vi, pp 223–239; Ann 20, vi, pp 249–266; Ann 21, vi, pp 249–266
Zinc-bearing spring waters from Missouri Bull 113, pp 49–53
Zinc clinkers, manganiferous, analyses of, from New Jersey Ann 16, iii, p 419; MR 1892, p 185
Zinc minerals in Colorado, Cripple Creek district Ann 16, ii, p 125
Zinc ore, analysis of, from Colorado, Cripple Creek district Ann 16, ii, p 125
analysis of, from New Jersey MR 1885, p 337

Bull. 177—01——55
Zinc-oxide clinkers from furnaces, analyses of, from New Jersey... MR 1885, p 338
(See, also, Zinc white.)
Zinc residuum from furnace, analysis of, from New Jersey, Hudson County... MR 1885, p 339
Zinc sulphide, solubility of.................................. Mon xi, pp 434, 474
Zincite, occurrence of.. MR 1883-84, p 773
Zinckenite, analyses of, from Colorado, San Juan County......... Bull 20, p 93
Zinnwaldite, analyses of........... Bull 42, p 24; Bull 113, p 26
chemical constitution of.. Bull 125, p 48-49
Zircon, analysis of, from Maine, Litchfield......................... Bull 150, p 204
chemical constitution of.. Bull 125, p 75, 105
composition of.. Bull 150, p 33
from Colorado, near Pikes Peak.................................. Bull 20, pp 66-67
from diorite from Wyoming, Electric Peak......................... Ann 12, i, p 609
occurrence and statistics of................................... MR 1883-84, p 741; MR 1887, p 559; MR 1889-90, p 448; MR 1891, p 540; MR 1892, p 781; MR 1893, p 682; Ann 16, iv, p 605; Ann 20, vi cont, p 586
thin section of, from andesitic perlite from Nevada, Eureka district...... Mon xx, pp 396-397
from rhyolite from Nevada, Eureka district......................... Mon xx, pp 396-397
Zircon crystal, analysis of, from North Carolina, Madison County... Bull 74, p 49
thin section of, from mottled rock from Minnesota, Pigeon Point... Bull 109, p 95
from schistose porphyry from Michigan, Upper Quinnesec Falls........ Bull 62, p 122
Zirconium, statistics of... MR 1883-84, p 661; MR 1885, pp 393-394
Zirconium mineral from Colorado, an ill-defined................... Bull 55, p 52
Zirkel (F.), quoted on a lithologic collection from Washoe district, Nevada. . Mon iii, pp 26-28
Zoisite, a component of metamorphic rocks in Coast Ranges of California.. Mon xiii, pp 77-82
a product of mineralogic metamorphism............................ Bull 62, p 210
an evidence of metamorphism.................................... Mon xiii, pp 129-130
analysis of, from Massachusetts, Goshen, Pelham, and Williamstown... Bull 126, pp 178, 180
from North Carolina, Mitchell County................................ Bull 74, p 52
Yancey County.. Bull 113, p 111
from Pacific coast... Mon xiii, pp 79, 80
composition of.. Bull 150, p 39-40
in rocks of Pacific slope...................................... Mon xiii, pp 77-82
Zoisite crystals, thin sections showing, in coarse saussurite from altered gabbro of Michigan, Sturgeon Falls................. Bull 62, pp 69, 70
Zonochlorite, occurrence of..................................... MR 1882, p 493
Zuñi Plateau, Mount Taylor and................................. Ann 6, pp 105-198
Zuñi sandstones of Plateau region................................. Ann 6, pp 136, 137, 146, 157
Zunyite, analysis and description of, from Colorado, San Juan County...... Bull 20, pp 102-105
black inclusions in, analyses of, from Colorado, San Juan County... Bull 20, p 104
chemical constitution of....................................... Bull 125, pp 20, 25, 102