BIBLIOGRAPHY AND INDEX

OF

NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY

FOR

THE YEARS 1901–1905, INCLUSIVE

BY

FRED BOUGHTON WEEKS

WASHINGTON

GOVERNMENT PRINTING OFFICE

1906
CONTENTS.

Introduction... 5
List of publications examined.. 6
Bibliography.. 11
Classified key to the index... 383
Index... 393

Page.
BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR 1901-1905, INCLUSIVE.

By Fred Boughton Weeks.

INTRODUCTION.

This bulletin is a combination of the bibliographies published each year from 1901 to 1904, inclusive. These have appeared as Bulletins Nos. 203, 221, 240, and 271. With these the bibliography of the literature for the year 1905 has been combined. The papers have been arranged alphabetically by authors' names and the entries numbered consecutively under each author. In addition to the full title of the paper and an abbreviated reference to the publication in which it appears a brief statement of the contents is given when the title of the paper is not fully explanatory.

The index, in which reference to the bibliography is made by author and number of paper, is preceded by a key to its arrangement, showing the subject headings used and their subdivisions.

Mr. J. M. Nickles, who has assisted for the last three years in the preparation of these bibliographies, has performed similar services in the preparation of this bulletin. Its completeness and accuracy are largely due to his industry and attention to details.
LIST OF PUBLICATIONS EXAMINED.

Alabama Geological Survey: Index to Mineral Resources of Alabama, 1904; Bulletin nos. 7 and 8; Revised Map of the Southeastern Part of the Cahaba Coal Field, 1905. Montgomery, Ala.

American Association for the Advancement of Science: Proceedings, vols. 50-54.

American Institute of Mining Engineers: Transactions, vols. 30-35; Bimonthly Bulletin, nos. 1-6, 1905. New York, N. Y.

American Museum of Natural History: Bulletin, vol. 11, pt. 4; vol. 14; vol. 15, pt. 1; vol. 16; vol. 17; vol. 18, pts. 1 and 2; vols. 19-21; Journal, vols. 3-5; Memoirs; vol. 1, pts. 7 and 8. New York, N. Y.

Appalachia: vol. 9, nos. 3 and 4; vol. 10; vol. 11, no. 1. Boston, Mass.

Apteryx: vol. 1, nos. 1 and 2. Providence, R. I.

Canadian Institute: Transactions, vol. 7 and vol. 8, pt. 1. Toronto, Canada.

Canadian Mining Institute: Journal, vols. 4-7. Ottawa, Canada.

LIST OF PUBLICATIONS EXAMINED.

Canadian Record of Science: vol. 8, no. 5—vol. 9, no. 4. Montreal, Canada.
Centralblatt für Mineralogie, Geologie und Palaeontologie: 1902-1905. Stuttgart, Germany.
Colorado, University of: Studies, vols. 1, 2, and 3 no. 1. Boulder, Colo.
Columbia University, Geological Department: Contributions, nos. 81-106. New York, N. Y.
Greene (George K.), Contribution to Indiana Paleontology, pts. 6-20. New Albany, Ind.
Harvard College, Museum of Comparative Zoology: Bulletin, vol. 33, no. 7; vol. 36, nos. 7 and 8; vol. 37, no. 3; vol. 38, nos. 2-8; vol. 39, nos. 1-9; vol. 40, nos. 2-7; vol. 41, no. 1; vol. 42, nos. 1-4; vol. 43, nos. 1-3; vol. 44; vol. 45, nos. 1-4; vol. 46, nos. 1-10; vol. 47; vol. 48, no. 1; vol. 49, nos. 1 and 2; Memoirs, vol. 25, no. 2; vol. 26, nos. 4 and 5; vol. 30, nos. 1 and 2; vols. 31 and 32. Cambridge, Mass.
Illinois State Laboratory of Natural History: Bulletin, vol. 5, article 12; vol. 6, articles 1 and 2; vol. 7, articles 1-5. Urbana, Ill.
Indiana Academy of Sciences: Proceedings, 1900-1902. Indianapolis, Ind.
Indiana, Department of Geology and Natural Resources: Annual Report, 25th-29th. Indianapolis, Ind.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY.

Iowa State University, Laboratory of Natural History: Bulletin, vol. 5, nos. 2–4. Iowa City, Iowa.

Johns Hopkins University: Circulars, nos. 149–165; 1904 and 1905; the George Huntington Williams Memorial Lectures, vol. 1. Baltimore, Md.

Kansas University Quarterly: vol. 9, no. 4; vol. 10, nos. 1–3; Science Bulletin, vols. 1–3, no. 6. Lawrence, Kans.

Louisiana State Experiment Stations: Geology and Agriculture, pts. 1–4 and 6. Baton Rouge, La.

McGill University, Department of Geology: Papers, nos. 15 and 16. Montreal, Canada.

Maryland Geological Survey: Eocene; Miocene; Garrett County; Cecil County; and vols. 4 and 5. Baltimore, Md.

Mazama: vol. 1–2, no. 4. Portland, Oreg.

Mexico, Secretaria de Fomento: Boletin, 2d época, año 3, 4, 5 nos. 1–5, IV. Mexico, D. F., Mexico.

Mines and Minerals: vol. 21, no. 6–vol. 26, no. 5. Scranton, Pa., and Denver, Colo.

LIST OF PUBLICATIONS EXAMINED.

Neues Jahrbuch für Mineralogie, Geologie, und Paleontologie, 1901–1905; Beilage Band, 14–21. Berlin, Germany.
New Jersey Geological Survey: Annual Reports, 1900–1904; Final Reports, vols. 5 and 6; Report on Paleontology, vol. 3. Trenton, N. J.
New York Botanical Garden: Bulletin, vol. 2 (nos. 6–8); vol. 3 (nos. 9–11); vol. 4, (no. 12); Contributions, nos. 1–73. New York, N. Y.
North Carolina Geological Survey: Biennial Reports, 1901–2, 1903–4; Economic Papers, nos. 6–9; Bulletin no. 19; vol. 1. Raleigh, N. C.
Ohio Geological Survey: Fourth series, Bulletins, nos. 1, 2, 3, and 7. Columbus, Ohio.
Ohio State Academy of Science: Annual Reports, 1st–13th; Special Papers, nos. 1–10 (Proceedings, vols. 1–4). Columbus, Ohio.
St. Louis Academy of Science: Transactions, vols. 11–15, no. 6. St. Louis, Mo.
San Diego Society of Natural History: vol. 1, no. 1. San Diego, Cal.
School of Mines Quarterly: vols. 22, no. 2–27, no. 1. New York, N. Y.
Smithsonian Institution: Annual Reports, 1899–1904; Contributions to Knowledge, nos. 1373, 1413, 1438, 1459; Miscellaneous Collections, 40, 41, 44–49. Washington, D. C.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY.

Société Géologique de Belgique: Annals, t. 27-32. Liege, Belgium.

South Dakota School of Mines: Bulletin, nos. 5-7. Rapid City, S. Dak.

Texas Academy of Science: Transactions, vols. 4 and 5. Austin, Tex.

United States Department of Agriculture: Field Operations of the Bureau of Soils:
Reports, 1st-5th. Washington, D. C.

United States Geological Survey: Annual Reports, 21st-26th; Monographs, 41-48; Professional Papers, nos. 1-43; Bulletins, nos. 177-273, 276; Geologic Atlas of the United States, folios, nos. 60, 70-131, 133, 134; Water-Supply and Irrigation Papers, nos. 41-149, 151, 152; Mineral Resources, 1901-1904. Washington, D. C.

Wisconsin Geological and Natural History Survey: Bulletins, nos. 6-14; Biennial Reports of the Commissioners, 1st-4th. Madison, Wis.

Wyoming University, School of Mines: The Sweetwater Mining District, 1901; Petroleum Series, Bulletins, nos. 4-7. Laramie, Wyo.

BIBLIOGRAPHY.

A.

Abbe (Cleveland, jr.).
1. The physiographic features of Maryland.
2. The physiography of Garrett County [Maryland].
 Describes the topographic and drainage features of the county, and discusses its physio-
 graphic history.
3. Die Fall-Linie der südöstlichen Vereinigten Staaten.
 Vierteljahrsheften fur den geographischen Unterricht (Herausgegeben von Prof. Dr. Heide-
 rich), Wien, Jahrg. 2, pp. 204-216, 2 pis., 1903.
 Describes the position, and discusses the geologic, topographic, geographic, and historic sig-
 nificance of the fall line in the Atlantic coastal plain.
4. Earthquake records from Agana, island of Guam, 1892-1903.
 Terrestrial Magnetism, vol. 9, pp. 81-85, 1904.

Abercrombie (W. R.).
1. The Copper River country, Alaska.
 Includes observations on the general geology, and the occurrence of copper and gold ores in
 Alaska.

Adams (Charles C.).
1. Baseleveling and its faunal significance, with illustrations from southeastern
 United States.
 Describes the process of baseleveling and its influence on the distribution of faunas. Includes
 a bibliography.
2. Post-Glacial origin and migrations of the life of the northeastern United States.

Adams (Frank Dawson).
1. George M. Dawson.
 Gives an account of his life and work.
2. Experimental work on flow of rocks.
 95-96, 1901.
 Gives an account of his life and work.
4. [In discussion of "The origin of ore-deposits."]
5. Haliburton and Bancroft areas, Ontario.
 Describes the author's field work in this region.
Adams (Frank Dawson)—Continued.

 Includes a list of publications compiled by H. M. Ami.

7. The Monteregean Hills—a Canadian petrographical province.
 Jour. Geol., vol. 11, pp. 288-282, 7 figs., 1903; McGill Univ., Dept. Geol., Papers, no. 14, 1903;
 Describes the geographic extent, character, structure, and origin of the elevations in the Province of Quebec for which the term Monteregean Hills is proposed, and the occurrence, characters, chemical composition, and classification of the rocks composing Mount Johnson.

8. On a new nepheline rock from the Province of Ontario, Canada.
 Describes the occurrence, characters, and composition.

 Sets forth lines of investigations of igneous and metamorphic rocks.

10. The artesian and other deep wells on the island of Montreal.
 Includes an account of the geology of the region around Montreal, Canada.

Adams (Frank Dawson) and LeRoy (Osmond E.).

1. An experimental investigation into the flow of marble.
 vol. 27, p. 316, 1901.

2. An experimental investigation into the flow of marble.
 Gives a summary of the authors' investigations.

Adams (Frank Dawson), Ami (H. M.) and Adams (F. D.).

1. Synoptical table of geological formations about Montreal, Canada.
 See Ami (H. M.) and Adams (F. D.), 1.

Adams (George Irving).

1. The Carboniferous and Permian age of the Red Beds of eastern Oklahoma from stratigraphic evidence.
 Describes the extension of these beds from Kansas into Oklahoma and discusses the evidence as to their age.

2. Oil and gas fields of the western interior and northern Texas Coal Measures, and of the Upper Cretaceous and Tertiary of the Western Gulf Coast.
 Describes the general geology of the oil and gas fields of Kansas and Indian Territory, and the developments of the various localities. Describes the stratigraphy of the Texas oil fields and their developments.

3. Physiography and geology of the Ozark region.
 Describes physiographic features, and character and occurrence of igneous rocks and pre-Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Carboniferous strata, and the geologic structure of the region.

4. Geology and water resources of the Patrick and Goshen Hole quadrangles in eastern Wyoming and western Nebraska.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 70, 50 pp., 11 pis., 4 figs., 1902.
 Describes geologic structure and physiographic features.
Adams (George Irving)—Continued.

5. Physiographic divisions of Kansas.
 Describes the characteristics of the several physiographic divisions of the region.

6. Stratigraphic relations of the Red Beds to the Carboniferous and Permian in northern Texas.

7. Lithologic phases of the Pennsylvanian and Permian of Kansas, Indian Territory, and Oklahoma.

8. Note on a Tertiary terrane new in Kansas geology.
 Am. Geol., vol. 29, pp. 301-303, 1 fig., 1902.
 Describes the occurrence and character of the beds.

 Defines the divisions and describes their topographic and geologic features.

10. Principles controlling the geologic deposition of the hydrocarbons.

11. Stratigraphic relations of the Red Beds to the Carboniferous and Permian in northern Texas.
 Describes occurrence, stratigraphy, and lithologic characters of the Red Beds of Texas, Oklahoma, Indian Territory, and Kansas, and discusses their relationships.

12. Zinc and lead deposits of northern Arkansas.
 Gives a brief account of the position, history of development, and geologic structure of the field, and describes the occurrence, character, and source of the ores.

14. Geology, technology, and statistics of gypsum.
 Includes a short discussion of the origin and geologic age of gypsum deposits in general.

15. Zinc and lead deposits of northern Arkansas.
 Describes physiographic features briefly, the occurrence and character of Ordovician, Devonian, and Carboniferous formations, the geological history and structure, and the occurrence and origin of the zinc and lead ore deposits of this region.

16. The Rabbit Hole sulphur mines near Humboldt House, Nev.
 General geology and occurrence and origin of the sulphur.

17. Summary of the water supply of the Ozark region in northern Arkansas.

Adams (George Irving) and Ulrich (E. O.).

1. Fayetteville folio, Arkansas-Missouri.
 Describes the physiography, the occurrence, character, and relations of Ordovician, Devonian, and Carboniferous sedimentary strata, the history of the physical changes, and the economic resources.

Adams (George Irving), Girty (George H.), and White (David).

1. Stratigraphy and paleontology of the upper Carboniferous rocks of the Kansas section.
 U. S. Geol. Surv., Bull. no. 211, 123 pp., 4 pls., 10 figs., 1903.
 Comprises a review of previous work upon the stratigraphy, and a description in detail of the geologic formations, including definition and synonymy, character and extent, and faunal lists of the upper Carboniferous strata of Kansas and northern Indian Territory, by George I. Adams; a discussion and tabulation of the invertebrate fossils, by George H. Girty, and an annotated list of the fossil plants, by David White.
Adams (George Irving), Haworth (Erasmus), and Crane (W. R.).
 U. S. Geol. Surv., Bull. no. 238, 83 pp., 11 pls. and 13 figs., 1904.
 Describes the general character and areal geology of the area, the character, occurrence, and
 relations of the Carboniferous formations, the geologic structure of the field, and in detail
 the occurrence, character, and origin of the natural gas and petroleum, and their utilization
 in the manufacture of cement, brick, and zinc spelter.

Adams (Thomas K.).
1. Lower productive Coal Measures of the bituminous regions of Pennsylvania; the
 importance of a knowledge of their characteristic features.
 Describes the geology of the Coal Measures of the bituminous coal regions of Pennsylvania.

Aguilar y Santillán (Rafael).
1. Bibliography of Mexican geology and mining.

Aguilera (José G.).
1. Distribución geográfica y geológica de los criaderos minerales de la República
 Mexicana.
 Acad. de Ciencias exactas, físicas, y naturales, México, 57 pp., 1901.
 Describes the occurrence of various mineral products in Mexico.
2. Sobre las condiciones tectónicas de la República Mexicana.
 México, Oficina Tip. de la Secretaria de Fomento, 34 pp., 1901.
 Gives a general account of the geologic structure of Mexico.
3. The geographical and geological distribution of the mineral deposits of Mexico.
 Describes the occurrence of mineral deposits.
4. [The great Bacubirito meteorite of Mexico.]
 Am. Geol., vol. 33, p. 267, 1904.
 Gives data in regard to the Bacubirito meteorite.
5. Reseña del desarrollo de la geología en México.
 Reviews in chronologic order the investigations upon the geology of Mexico.

Aiken (P. B.).
1. The mines of Santa Eulalia, Mexico.
 Describes briefly the general geology and the occurrence of the silver-lead ores.

Alcalá (Maximino).
1. Criaderos de petróleo de Pichucalco, Estado de Chiapas. [México].
 Describes the occurrence, geologic relations, and character of petroleum from this locality.

Alden (William C.).
 Describes geographic and topographic features, the general geologic relations, the occurrence
 and character of strata of Cambrian, Silurian, Devonian, and Quaternary age, and the eco-
 nomic resources, chiefly building stones.
2. The stone industry in the vicinity of Chicago, Ill.
 Describes the occurrence and utilization of limestone, sand, and gravel in the vicinity of
 Chicago, Ill.
3. The Delavan lobe of the Lake Michigan glacier of the Wisconsin stage of glacia-
 tion and associated phenomena.
 Describes the character, occurrence, and relations of various glacial deposits and associated
 phenomena, and the physiographic changes and succession of events during the period of
 glaciación in the area investigated.
Alden (William C)—Continued.
4. The drumlins of southeastern Wisconsin.
 Describes the distribution, arrangement, relations to morainal and other glacial features,
 form, structure, composition, and origin of the drumlins in southeastern Wisconsin.

Alden (William C.), Fuller (Myron L.) and.
 See Fuller (M. L.) and Alden (W. C.), 1.
 See Fuller (M. L.) and Alden (W. C.), 2.

Alderson (Matt W.).
1. Genesis of ore deposits.

Aldrich (Truman H.).
1. A Texas oil well fossil.
 Nautilus, vol. 15, p. 74, 2 fgs., 1901.
2. New species of Tertiary fossils from Alabama, Mississippi, and Florida.
4. Two new species of Eocene fossils from the lignitic of Alabama.
5. A new oyster from the Eocene of Alabama.
 Nautilus, vol. 18, p. 61, 1 pl., 1904.

Aldrich (Truman H.), Smith (Eugene A.) and.
1. The Grand Gulf formation.
 See Smith (E. A.) and Aldrich (T. H.), 1.

Allen (E. T.), Day (A. L.) and.
1. The isomorphism and thermal properties of the feldspars.
 See Day (A. L.) and Allen (E. T.), 1.
2. The isomorphism and thermal properties of the feldspars. Part I. Thermal
 studies.
 See Day (A. L.) and Allen (E. T.), 2.

Allen (J. A.).
1. A fossil porcupine from Arizona.

Allen (O. B.) and Comstock (W. J.).
1. Bastnasite and tysonite from Colorado.
 Jour. Sci., vol. 19, pp. 390-393, 1880.)

Althouse (H. W.).
1. The Norton coals of the Big Sandy basin.
 Describes the location, topography, and general geology of the field, and the character, occurrence,
 and geologic relations of the coal seams.

Ami (Henry M.).
1. On the geology of the principal cities in eastern Canada.
 Describes the local geology in the vicinity of several cities.
2. Synopsis of the geology of Canada. (Being a summary of the principal terms
 employed in Canadian geological nomenclature.)
Ami (Henry M.)—Continued.

3. Paleontology and stratigraphy.

4. On a new or hitherto unrecognized geological formation in the Devonian system of Canada.
 Describes the lithologic and faunal characters of the Knoydart formation in Nova Scotia.

5. Addenda and corrigendum to "Progress of geological work in Canada during 1899."

6. The late George Mercer Dawson.
 Gives a sketch of his life and work.

7. Bibliography of Dr. George Mercer Dawson.

 Describes the lithologic and faunal characters of a Devonian formation.

10. Stratigraphical note.
 Contains brief notes on Devonian and Silurian subdivisions in Nova Scotia.

11. The Royal Society of Canada (twentieth meeting).
 Contains abstracts of papers read.

12. Notes on some of the Silurian and Devonian formations of eastern Canada, and their faunas and floras.

13. On the subdivisions of the Cambrian system in Canada.

14. A dual classification required in the nomenclature of the geological formations in different systems in Canada.

15. Brief biographical sketch of Elkanah Billings.
 Am. Geol., vol. 27, pp. 265-281, 1901.
 Gives a brief account of the life and work of Billings and a chronologic list of his publications.

16. Bibliography of Dr. George M. Dawson.
 Am. Geol., vol. 28, pp. 76-86, 1901.

17. Bibliography of E. Billings.
 Am. Geol., vol. 28, p. 132, 1901.
 Gives five additional references to the bibliography of Billings heretofore published.

20. Preliminary lists of the organic remains occurring in the various geological formations comprised in the map of the Ottawa district, including formations in the provinces of Quebec and Ontario, along the Ottawa River.
Ami (Henry M.)—Continued.

21. Lists of fossils obtained from the several formations along the Ottawa River pertaining to the report on Sheet no. 121, Quebec and Ontario (Grenville Sheet).

22. Artesian wells, paleontology, archaeology, bibliographies, etc.
 A report upon the work done by the author.

23. Field notes on the geology of the country about Chelsea, Quebec.
 Ottawa Nat., vol. 16, pp. 149–151, 1902.
 Contains notes on local geology.

24. Brief description of the map of the “Ottawa district.”

25. Annual report of the geological section of the Ottawa Field-Naturalists’ Club, for the year 1901–1902.
 Contains notes on the geology of the vicinity of Ottawa and a list of fossils from the Utica at Ottawa, Ontario.

27. Bibliography of Dr. George M. Dawson.

28. Description of tracks from the fine-grained siliceous mudstones of the Knoydart formation (Eo-Devonian) of Antigonish County, Nova Scotia.

29. On the possible occurrence of a coal area beneath the Neo-Carboniferous or Permian strata of Pictou County, Nova Scotia.
 Describes the geologic structure of this area.

30. The Union and Riversdale formations in Nova Scotia.
 Gives abstract of a paper read before the Geological Society of America with the title “The Meso-Carboniferous age of the Union and Riversdale formations in Nova Scotia.”

31. On the possible occurrence of a coal area beneath the Neo-Carboniferous or Permian strata of Pictou County, Nova Scotia.
 Describes the geologic structure of this area.

33. Esquisse géologique du Canada ou matériaux pour servir à la préparation d’un chronologie géologique pour le Canada.
 Gives a general résumé of the geology of Canada, describing the geographic distribution of the formations of Paleozoic, Mesozoic, Tertiary, and Quaternary age.

34. Bibliography of Canadian geology and paleontology for the year 1901.

35. Bibliography of Dr. George M. Dawson.

36. Paleontology and chronological geology.
 Gives a statement of the paleontological work of the year, discusses records of borings, and gives notes upon the geology of Victoria Cove, Quebec.
Ami (Henry M.)—Continued.
37. On the Upper Cambrian age of the Dictyonema slates of Angus Brook, New Canaan and Kentville, N. S. [Canada].
38. Sketch of the life and work of the late Dr. A. R. C. Selwyn, C. M. G., LL. D., F. R. S., F. G. S., etc., Director of the Geological Survey of Canada from 1869 to 1894.
 Am. Geol., vol. 31; pp. 1-21, 1 pl. (por.), 1903.
 Presents a list of the formations and gives their lithologic characters.
40. Meso-Carboniferous age of the Union and Riversdale formations, Nova Scotia.
 Contains additional data on the age and relations of these formations.
41. The first Eparchean formation.
42. Bibliography of Canadian geology and paleontology for the year 1902.
43. Memorial or sketch of the life of the late Dr. A. R. C. Selwyn, Director of the Geological Survey of Canada from 1869 to 1894.
 Includes a list of his published writings.
44. Bibliography of Canadian geology and paleontology for the year 1903.
45. The late Dr. A. R. C. Selwyn, C. M. G. His work in Canada.
 Gives an outline of Selwyn's work in Canada as director of the geological survey.
46. Preliminary list of the fossils collected by Prof. L. W. Bailey from various localities in the province of New Brunswick during 1904.
47. Notes on a collection of organic remains from the ferruginous and friable shales of Messenger Brook, Torbrook, near county line, Nova Scotia.
48. Description of a species of Bythotrephis from the shales along the Unihani River, Yukon district, Canada.
49. Preliminary lists of fossil organic remains from the Potsdam, Beekmantown (Cal- ciferous), Chazy, Black River, Trenton, Utica, and Pleistocene formations comprised within the Perth Sheet (no. 119) in eastern Ontario.

Ami (Henry M.) and Adams (Frank D.).
1. Synoptical table of geological formations about Montreal, Canada.

Ami (Henry M.), Penhallow (D. P.) and.
1. Determinations of fossil plants from various localities in British Columbia and the Northwest territories, with notes on the geological horizons indicated.
 See Penhallow (D. P.) and Ami (H. M.), 1.

Anderson (Frank M.).
1. The Neocene basins of the Klamath Mountains [California].
 Brief notes on the structural features of the range.
Anderson (Frank M.)—Continued.

2. The physiographic features of the Klamath Mountains.
 Jour. Geol., vol. 10, pp. 144-159, 1902.
 Describes the physiographic features, the general character of the Cretaceous and Tertiary sediments and of the volcanic rocks, and the development of the present drainage.

3. Cretaceous deposits of the Pacific coast.
 Discusses the occurrence, characters, correlation, and faunas of the Cretaceous deposits of the Pacific coast region, and describes a large number of species—many of them new.

4. Ore deposits of Shasta County [California].

5. Physiography and geology of the Siskiyou Range.

6. Stratigraphy of the southern Coast ranges of California.

7. A stratigraphic study in the Mount Diablo Range of California.
 Describes the character, occurrence, fossil content, and relations of Cretaceous and Tertiary strata, and gives systematic descriptions of new species of fossils.

Anderson (Netta C.).

1. A preliminary list of fossil mastodon and mammoth remains [in Illinois and Iowa].
 Augustana Library Publications, no. 5, pp. 3-43, 2 pls., 1905.

Anderson (Tempest).

1. Characteristics of recent volcanic eruptions.
 Describes phenomena exhibited in the eruptions of Soufrière and Mont Pelé.

2. Recent volcanic eruptions in the West Indies.
 Describes volcanic phenomena and physiographic changes produced by the eruptions of 1902 in St. Vincent and Martinique.

Anderson (Tempest) and Flett (John S.).

1. Preliminary report on the recent eruption of the Soufrière in St. Vincent, and of a visit to Mont Pelé, in Martinique.
 Describes physical features of St. Vincent in the vicinity of Soufrière, the eruptions of May and July, 1902, of Soufrière and Mont Pelé, their effects and the character of the ejected materials.

 Describes physiographic features and general geology of St. Vincent, the phenomena of the eruptions of the Soufrière of May, 1902, and geologic and physiographic changes resulting, and discusses and compares the eruption phenomena of the Soufrière and Montagne Pelée.

Andrews (C. L.).

1. Muir glacier [Alaska].
 Describes the appearance of the glacier in 1903. An appended note by G. K. Gilbert gives data in regard to the glacier.

Angermann (Ernesto).

1. Informe acerca de la fisiografía, geología e hidrología de los alrededores de La Paz, Baja California.
 Gives physiographic, geologic, and hydrologic observations upon the environs of La Paz in Lower California.
Angermann (Ernesto)—Continued.
2. Apuntes sobre el Paleozoico en Sonora [México].
 Gives observations upon the occurrence and character of the geologic formations of Sonora,
 particularly upon Paleozoic deposits.

3. El fierro meteórico de Bacubirito (Est. de Sinaloa).
 Observations upon size and occurrence of the meteorite of Bacubirito, Mexico.

4. Observaciones geologicas en una ascencion al Citlaltapetl (Pico de Orizaba) [Mexico].
 Gives observations upon the physiographic features and geology of the volcano Orizaba.

Argall (P. H.).
1. Pelée's obelisk.
 Discusses the formation of the obelisk in the crater of Mont Pelé.

Argall (Philip).
1. Notes on the Santa Eulalia mining district, Chihuahua, Mexico.
 Gives observations on the geology and the occurrence and character of the ore deposits.

2. The Santa Eulalia [Mexico] ore deposits.
 Describes the general geology, the igneous intrusions, the occurrence and character of the
 silver-lead ores, and discusses their origin.

Armstrong (L. K.).
 Gives notes upon the general geology of the region, and describes the occurrence and charac­
 ter of the coal beds, and the character of the coals.

Arnold (Delos) and (Ralph).
1. The marine Pliocene and Pleistocene stratigraphy of the coast of southern Calif­
 ornia.
 Describes the lithologic and faunal character of the strata and the Tertiary and Pleistocene
 history of the region. Discusses the relation of the Merced series with these beds.

Arnold (Ralph).
1. Bibliography of the literature referring to the geology of Washington.

2. The paleontology and stratigraphy of the marine Pliocene and Pleistocene of San
 Pedro, California.
 from the Hopkins Seaside Laboratory, 31, pp. 1-420, 37 pls., 1903.
 Describes the topography and the character and occurrence of Tertiary and Quaternary for­
 mations of California bordering the Pacific, and gives lists of fossils by formations showing
 geographical distribution and relations to existing faunas, and systematic descriptions of the
 genera and species. Includes descriptions of several new species of corals by T. Way­
 land Vaughan and of mollusks by W. H. Dall and Paul Bartsch.

3. Faunal relations of the Carrizo Creek beds of California.

5. Coal in Clallam County, Wash.
 Describes the geography and general geology of the region, and the occurrence and charac­
 ter of the coal.
Arnold (Ralph)—Continued.
6. Some crystalline rocks of the San Gabriel Mountains, near Pasadena, California.

Arnold (Ralph) and Strong (A. M.).
1. Some crystalline rocks of the San Gabriel Mountains, California.
 Describes the location, typography, and age of the San Gabriel Mountains, the general char-
 acter of the rocks, and in detail the occurrence, megascopic charac-
 ters, and constitution of plutonic and metamorphic rocks.

Arnold (Ralph), Haehl (H. L.) and.
1. The Miocene diabase of the Santa Cruz Mountains in San Mateo County, Cali-
 fornia.
 See Haehl (H. L.) and Arnold (Ralph), 1.

Arreola (José Maria).
1. The recent eruptions of Colima [Mexico].
 Jour. Geol., vol. 11, pp. 749-761, 8 figs., 1903.
 Gives a chronologic record of the activity of the volcano Colima and discusses volcanic
 phenomena.

Ashley (George Hall).
1. The eastern interior coal field.
 Describes extent, general geologic relations, stratigraphy and structure of the coal field occup-
 ying parts of Illinois, Indiana, and Kentucky, and the character and occurrence of the
c coal seams.

2. The geology of the Lower Carboniferous area of southern Indiana.
 Describes physiographic and drainage features, the stratigraphy, character, occurrence, and
 geologic relations of Lower Carboniferous formations and economic resources of this area.

3. The Cumberland Gap coal field of Kentucky and Tennessee.
 Describes location, stratigraphy, and geologic structure of the field, the character and geo-
 logic relations of the coal seams, and the mining developments.

4. The Cumberland Gap coal field.
 Mg. Mag., vol. 10, pp. 94-100, 1 pl., 5 figs., 1904.
 Describes the location and general geologic structure of the coal basin occupying parts of
 Kentucky and Tennessee, and the occurrence, character, and mining of the coals.

5. [Geologic structure of the region around Middlesboro, Ky.]

7. Coal in the Nicholas quadrangle, West Virginia.
 Describes the general geology, and the character and occurrence of the coals.

8. Water resources of the Nicholas quadrangle, West Virginia.

Ashley (George Hall), Blatchley (W. S.) and.
1. The lakes of northern Indiana and their associated marl deposits.
 See Blatchley (W. S.) and Ashley (G. H.), 1.

Ashley (George Hall), Fuller (Myron L.) and.
1. Recent work in the coal field of Indiana and Illinois.
 See Fuller (M. L.) and Ashley (G. H.), 1.

Askwith (W. R.).
1. The West Gore antimony deposits [Nova Scotia].
 Describes the character and occurrence of the ore body.
Atkin (Austin J. R.).
1. The genesis of the gold deposits of Baskerville (British Columbia) and the vicinity.
2. Some notes on the gold occurrences on Lightning Creek, British Columbia.
3. An occurrence of scheelite near Baskerville, British Columbia.

Atwood (Wallace W.).
1. Glaciation of San Francisco Mountain, Arizona.
 Jour. Geol., vol. 13, pp. 276-279, 1 fig., 1905.

Austin (W. L.).
1. Some tellurium veins in La Plata Mountains [Colorado].
 Describes the occurrence and character of the veins, and the character of the country rock.
2. Some New Mexico copper deposits.
 Describes the occurrence and discusses the origin of the ore deposits.
3. The ore deposits of Cananea [Mexico].
 Describes the character and occurrence of the copper ore deposits.
4. [In discussion of paper by Walter Harvey Weed, "Ore deposits near igneous contacts."]
 Describes occurrences of some ore deposits and their bearing upon the paper discussed.
5. [In discussion of paper by Waldemar Lindgren, "The geological features of the gold production of North America."]
 Calls attention to the occurrence of a gold deposit of supposed Cambrian age in Colorado.

Babcock (E. J.).
 Describes the physiographic and geologic features and the character and occurrence of clay, coal, and water supply of the State.
2. Water resources of the Devils Lake region [North Dakota].
 Describes topography, geologic structure, and water supply of this region.

Babcock (E. N.) and Minor (Jessie).
1. The Graydon sandstone and its mineral waters.
 Describes the character and occurrence of the sandstone and discusses its origin and bearing upon the geologic history of the region. Describes mineral waters coming from the sandstone.

Bache (Franklin).
1. The Arkansas-Indian Territory coal field.
 Describes the location and extent of the field, the character and occurrence of the coal seams, and the mining developments.

Bacorn (H. C.).
1. A complicated fault system.
 Describes faulting at Gibbonsville, Idaho.
Bagg (Rufus M., jr.).
1. Eocene Protozoa.

2. The genesis of ore deposits in Boulder County, Colorado.

3. The veins of Boulder County, Colorado.
 Discusses the occurrence and the origin of the ore deposits.

4. Earthquakes in New Mexico.
 Am. Geol., vol. 34, pp. 102-104, 1904.

5. Secondary enrichment in the Santa Rita district [New Mexico].
 Describes character and occurrence of copper deposits.

7. Foraminifera collected from the bluffs at Santa Barbara, California.
 Describes the occurrence and gives a list of species identified.

8. The Sahuayacan district, Mexico.
 Contains notes upon the geology of the district.

9. Miocene Foraminifera from the Monterey shale of California.
 U. S. Geol. Surv., Bull. no. 268, 55 pp., 11 pls., 2 figs., 1905.
 Discusses the general relations of the Miocene foraminifera obtained from San Luis Obispo
 County, California, and the occurrence of existing representatives, and gives systematic
 descriptions. In an introductory note, J. C. Branner describes the geology of the Monterey
 shale bed from which the fossils were obtained.

Bailey (Edgar H. S.).
1. Special report on mineral waters [Kansas].

Bailey (Elbert W.), Rath (Charles M.), Grider (Richard L.).
1. A garnetiferous bed in Golden Gate Canyon, Jefferson County, Colorado.
 Describes the general geology of the region, and the occurrence of garnets.

Bailey (Frank).

Bailey (G. E.).
1. The desert dry lakes of California.
 Describes physiographic features and the occurrence and production of borax.

Bailey (J. Trowbridge).
1. The ore deposits of Contact, Nevada.
 Describes observations upon the geology of the region and discusses the occurrence and
 origin of the ore deposits.

Bailey (L. W.).
1. On some modes of occurrence of the mineral albertite.

2. On some geological correlations in New Brunswick.
 Paper read before the Royal Society of Canada.
Bailey (L. W.)—Continued.

3. On some geological correlations in New Brunswick.
 Discusses geologic age of formations previously referred to Cambro-Silurian in the light of
 new evidence.

4. On some modes of occurrence of the mineral albertite.
 Discusses geologic occurrence.

 Discusses geologic age of formations previously referred to Cambro-Silurian in the light of
 new evidence.

 Contains observations on the geology of the region.

7. Report upon the Carboniferous system of New Brunswick with special reference
 to workable coal.
 Describes the occurrence and extent of Carboniferous rocks in various geologic systems in New
 Brunswick, and the character and occurrence, and possible production of the coal beds, gives lists of
 fossils, and discusses the geologic horizon of certain beds.

8. New Brunswick caves.
 Discusses the origin of the various caves described and the geologic formations in which they
 occur.

 Describes the occurrence and extent of volcanic rocks in various geologic systems in Canada.

10. Fossil occurrences and certain economic minerals in New Brunswick.

Bain (H. Foster).

1. The origin of the Joplin ore deposits [Missouri].

2. Preliminary report on the lead and zinc deposits of the Ozark region. With an
 introduction by C. R. Van Hise and chapters on the physiography and geology
 by George I. Adams.
 Discusses relations of ore deposits to the circulation of underground waters and describes the
 character and occurrence of minerals and ore deposits in this region.

3. The western interior coal field.
 Describes the occurrence and extent of coal in various geologic systems in Canada.

 Jour. Geol., vol. 10, pp. 139-143, 1902.
 Discusses the subject of the point of view of the mining geologist.

5. [In discussion of “The origin of ore-deposits.”]

6. Fluorspar deposits of southern Illinois.
 Reviews history of the development of the fluorspar deposits, describes the geology of the
 district, and the character and occurrence of the fluorspar deposits, and discusses their origin.
Bain (H. Foster)—Continued.

7. [Geological nomenclature.]

8. Reported gold deposits of the Wichita Mountains [Oklahoma].
 58th Cong., 2d sess., Sen. Doc. no. 149, 10 pp., 1904.
 Describes the investigation of reputed gold deposits in Oklahoma. Includes a report on the
 assays by E. T. Allen.

9. Reported gold deposits of the Wichita Mountains.
 U. S. Geol. Surv., Bull. no. 225, pp. 120-122, 1904.
 Describes the general geology and the prospecting for gold.

10. Reported ore deposits of the Wichita Mountains.
 U. S. Geol. Surv., Professional Paper no. 81, pp. 82-93, 1904.

11. Lead and zinc deposits of Illinois.
 Describes the geology, character, occurrence, and origin of the lead and zinc ores.

12. Fluorspar deposits of the Kentucky-Illinois district. Grades of ore, geology of
 the district, and genesis of the ores.
 Describes the character, occurrence, geologic relations, genesis, and production of fluorspar
 deposits of southern Illinois and western Kentucky.

13. The zinc deposits of Missouri.
 Describes the general geology of the zinc districts of Missouri, with a generalized section of
 the Boone formation, the geological structure, and the character, occurrence, and origin of
 the zinc-ore deposits.

 U. S. Geol. Surv., Bull. no. 246, 56 pp., 5 pls., 3 figs., 1905.
 Describes topographic features of the region, the general geology, the character, occurrence,
 geologic relations, and origin of the zinc and lead ores, and the mining developments.

15. Portland-cement resources of Iowa.
 U. S. Geol. Surv., Bull. no. 243, pp. 147-165, 1 pl., 1905.
 Describes the geologic relations, distribution, and character of limestones in Iowa suitable
 for the manufacture of Portland cement.

16. Lead and zinc resources of the United States.
 Discusses the production and uses of lead and zinc and describes the character and occurrence
 of lead and zinc deposits in the United States.

17. Structural features of the Joplin district. Discussion of paper by C. E. Siebenthal.
 Econ. Geol., vol. 1, pp. 172-174, 1905.

18. The progress of economic geology in 1905.

19. The fluorspar deposits of southern Illinois.
 U. S. Geol. Surv., Bull. no. 255, 75 pp., 6 pls., 1 fig., 1905.
 Describes the physiography and general geology of the region, the character, occurrence, and
 relations of Devonian, Carboniferous, and Tertiary strata and igneous rocks, the geologic
 structure, and the occurrence, character, and origin of the fluorspar deposits.

Bain (H. Foster) and Ulrich (E. O.).

1. The copper deposits of Missouri.
 Describes the occurrence and geologic relations of copper ores in Missouri.

2. The copper deposits of Missouri.
 U. S. Geol. Surv., Bull. no. 267, 52 pp., 1 pl., 2 figs., 1906.
 Describes the character, occurrence, relations, and nomenclature of Cambrian and Ordovician
 formations of Missouri, and the occurrence and mining of the copper-ore deposits.
Bain (H. Foster), Eckel (E. C.) and.
1. Cement and cement materials of Iowa.
 See Eckel (E. C.) and Bain (H. F.), 1.

Bain (H. Foster), Van Hise (C. R.) and.
1. Lead and zinc deposits of the Mississippi Valley, U. S. A.
 See Van Hise (C. R.) and Bain (H. F.), 1.

Baker (Frank C.)
1. Pleistocene mollusks of White Pond, New Jersey.
 Gives a list of and notes upon the molluscan fauna of this locality.

Baker (M. B.)
1. On the occurrence and development of corundum in Ontario.

Ball (Sydney H.)
1. The deposition of the Carboniferous formations of the north slope of the Ozark uplift.
 Jour. Geol., vol. 12, pp. 335-343, 3 figs., 1904.
 Describes the occurrence and character of Carboniferous strata and the geologic history of their deposition.

Ball (Sydney H.) and Smith (A. F.)
1. The geology of Miller County [Missouri].
 Describes the physiography and drainage, the character, occurrence, geologic relations, and economic resources of Cambro-Ordovician and Carboniferous formations, including numerous sections of strata, and discusses the general geologic structure and the origin of chert and dolomite.

Ball (Sydney H.) and Smith (A. F.), Buckley (E. R.)
1. Glacial bowlders along the Osage River in Missouri.
 See Buckley (E. R.), Ball (S. H.), and Smith (A. F.), 1.

Bancroft (George J.)
1. The Yaqui River country of Sonora, Mexico.
 Contains observations on placer deposits of gold.

Bancroft (J. Austen)
1. Ice-borne sediments in Minas Basin, Nova Scotia.

Barber (William Burton)
1. On the lamprophyres and associated igneous rocks of the Rossland mining district, British Columbia.
 Am. Geol., vol. 33, pp. 333-347, 6 pls., 1904.

Barber (William B.), Nutter (Edward H.) and.
1. On some glauconite and associated schists in the Coast ranges of California.
 See Nutter (E. H.) and Barber (W. B.), 1.

Barbour (Carrie Adeline)
1. Some methods of collecting, preparing, and mounting fossils.
 Contains directions for collecting and preparing remains of fossil vertebrates.

2. Observations on the concretions of the Pierre shale.
 Describes the occurrences and character of the concretions.

Barbour (Erwin Hinckley)
1. The barites of Nebraska and the Bad Lands.
2. Chalcedony-lime nuts from the Bad Lands, Archihicoria siouxensis gen. et sp. nov.

3. Discovery of meteoric iron in Nebraska.
Describes occurrence of a meteorite near York, Nebraska.

4. The unpublished meteorites of Nebraska.
Describes new meteorites.

Gives an account of the work conducted by the State Geological Survey.

Describes the character and occurrence of the crystals and concretionary forms in the Tertiary strata of the Plains region.

7. Volcanic ash in Nebraska soils.
Describes character and occurrence of this substance.

Nebr. Geol. Surv., vol. 1. 258 pp., 13 pls., 166 figs., 1903.
Describes physiography, hydrography, drainage and water resources, stratigraphy and general geological relations of formations, with lists of fossils contained therein, mineral resources and economic products.

Science, new ser., vol. 18, pp. 504-505, 1903.

10. Memoir of Wilbur Clinton Knight.
Includes a list of his published writings.

Science, new ser., vol. 22, pp. 797-798, 1 fig., 1905.

Barbour (Erwin Hinckley) and Fisher (Cassius A.).
1. The geological bibliography of Nebraska.

Describes and figures material from South Dakota and Wyoming. Notes their stratigraphic range.

Barlow (Alfred Ernest).
1. Descriptions of rocks collected in 1900, by J. Mackintosh Bell, M. A., in Great Bear Lake district and thence to Great Slave Lake.

2. Microscopic examination of sections of rocks associated with the iron-ore deposits of the Kingston and Pembroke Railway district.

3. The Sudbury district [Ontario].
Describes observations chiefly of a petrological and mineralogical character made in this area.

4. On the nepheline rocks of Ice River, British Columbia.
Ottawa Nat., vol. 16, pp. 70-76, 1902.
Contains a brief discussion of magmatic differentiation and a description of the rock types of the hand specimens.
Barlow (Alfred Ernest)—Continued.

 Ottawa Nat., vol. 16, pp. 171-177, por., 1902.
 Gives a sketch of the life and work of Dr. Selwyn.

6. The Sudbury mining district [Ontario].
 Describes petrographic characters of rock types and discusses the occurrence, character, and
 origin of nickel and copper ore deposits.

7. The Temagami district [Ontario].
 Gives notes upon the geology of the region examined and the exploration for iron ores.

8. Report on the origin, geological relations, and composition of the nickel and copper
 deposits of the Sudbury mining district, Ontario, Canada.

9. A landslide on the Lievre River [Quebec].
 Ottawa Nat., vol. 18, pp. 181-190, 4 pls., 1905.

10. On corundum in Ontario and on surveys near Lake Temagami.

Barnett (V. H.).
1. Notice of the discovery of a new dike at Ithaca, N. Y.
 Describes the occurrence and character of a newly discovered dike at this locality.

Barney (W. G.).
1. The Silver Bell Mountains, Arizona.
 Describes the occurrence, character, and geologic relations of copper-ore deposits.

Barnum (George).
1. Heat and frost in the weathering of stone.
 Stone, vol. 25, pp. 222-228, 1 pl., 1902.
 Discusses the action of heat and frost in rock disintegration.

Baron (J. Francis Patch-Le).
1. Some geological notes in Honduras, Central America.
 Gives a general account of the geology of this country.

Barrell (Joseph).
1. Microscopical petrography of the Elkhorn mining district, Jefferson County,
 Montana.
 Gives an account of the petrographical characters of the various rock types of the Elkhorn
 mining district, Montana.

2. The physical effects of contact metamorphism.
 Discusses the decomposition of rocks, the changes of mass and volume through metamorphism
 and the results of escape of gases.

Barton (George H.).
1. Outline of elementary lithology.
 Boston, 112 pp., 1901. (Not seen.)

Bartow (Edward).
1. Water supplies of southeastern Kansas.

Bartow (Edward) and McCollum (Elmer V.).
1. Kansas petroleum.
 Gives notes on the character and composition of petroleum from Kansas and other oil fields.
Bartsch (Paul), Dall (W. H.) and.
1. A new Californian Bittium.
 See Dall (W. H.) and Bartsch (Paul), 1.

2. Synopsis of the genera, subgenera, and sections of the family Pyramidellidae.
 See Dall (W. H.) and Bartsch (P.), 2.

Bascom (Florence).
1. The geology of the crystalline rocks of Cecil County [Maryland].
 Discusses the character, composition, and distribution of the crystalline rocks of the county.
 A glossary of technical terms is added by E. B. Matthews.

2. Water resources of the Philadelphia district.
 Includes a short general account of the physiography and stratigraphy, and of the igneous and sedimentary rocks of the area.

 Describes the geography and general geology of the Piedmont district of Pennsylvania, the character, occurrence, and relations of pre-Cambrian, Cambrian, and Ordovician formations, and the petrologic characters and relations of the igneous rocks occurring in the area.

Baskerville (Charles).
1. Kunzite, a new gem.
 Science, new ser., vol. 18, pp. 303-304, 1903.
 Describes characters of the spodumene obtained from San Diego County, California, and gives to this gem the name of kunzite.

Baskerville (Charles) and Kunz (George F.).

Bassler (Ray S.).
1. The structural features of the bryozoan genus Homotrepa, with descriptions of species from the Cincinnatian Group.

2. Portland-cement resources of Virginia.
 U. S. Geol. Surv., Bull. no. 243, pp. 312-328, 1 pl., 1905.
 Describes the character, occurrence, and geologic relations of limestones and shales of Virginia suitable for the manufacture of Portland cement.

3. Cement materials of the valley of Virginia.
 U. S. Geol. Surv., Bull. no. 260, pp. 531-544, 2 figs., 1905.
 Describes the general geology of the region, and the occurrence, character, and location of limestones, shales, and marls suitable for the manufacture of cement.

4. The subdivisions of the Shenandoah limestone.

Bassler (R. S.), Ulrich (E. O.) and.
 See Ulrich (E. O.) and Bassler (R. S.), 1.

 See Ulrich (E. O.) and Bassler (R. S.), 2.

 See Ulrich (E. O.) and Bassler (R. S.), 3.

 See Ulrich (E. O.) and Bassler (R. S.), 4.
Bastin (E. S.).
1. Note on the baked clays and natural slags in eastern Wyoming.
 Describes the occurrence and character of certain strata which have been modified by the
 burning of underlying lignite seams.

Bateman (G. C.).
1. Notes on graphite, its occurrences, uses, and production.

Bather (F. A.).
1. The term Bradfordian.
 Calls attention to the fact that the term Bradfordian has been used for European Mesozoic
 rocks.

Bauer (Max).
1. Jadeit und Chloromelanite in Form prahistorischer Artefakte aus Guatemala.
 Describes the character and structure of jade and chloromelanite used by prehistoric people
 in Guatemala.

Baxter (Floras R.).
1. Petroleum: a class-room talk.
 Rochester, N. Y., Vacuum Oil Company [1905]. 47 pp., 12 figs.
 A general account of petroleum: the history of its discovery, geographic and geologic occur­
 rence, origin, chemical composition, production, and utilization.

Bayley (William Shirley).
1. The Menominee iron-bearing district of Michigan.
 Reviews the literature bearing on the subject, describes the physiography of the region, the
 character and occurrence of Archean, Algonkian, and Paleozoic rocks, and the occurrence,
 character, and mining of the iron ore, and gives an outline of the geologic history.
2. Notes on the wells, springs, and general water resources of Maine.
 Describes the underground water supply of Maine.

Beadle (H. M.).
1. Gold mining in eastern Oregon.
 Eng. & Mg. Jour., vol. 73, p. 136, 1902.

Beard (J. Carter).
1. Three characteristic types of American dinosaurs.
 Sci. Am., vol. 84, pp. 184-185, 1 fig., 1901.
2. Something about ancient American saurians.
 Describes their general characteristics.

Beasley (Walter L.).
1. Evolution of the horse.
 Sci. Am., vol. 88, pp. 451-462, illus., 1903
 Describes the discovery of a large skull of Triceratops, and the probable habits, size, appear­
 dance, etc., of the animal.

Beck (Richard).
1. [In discussion of "The origin of ore deposits."]
Beck (Richard)—Continued.
2. The nature of ore deposits. Translated and revised by Walter Harvey Weed.
Contains descriptions of American ore deposits.

Becke (F.).
Describes crystallographic features of an albite from Amelia, Virginia.

Becker (George F.).
1. Report on the geology of the Philippine Islands, followed by a version of "Ueber Tertiare fossilien von den Philippinen" (1895), by K. Martin.
Describes the character of the igneous rocks and the mineral resources. Includes a bibliography and a translation of a paper by K. Martin on the Tertiary fossils of the Philippines.
2. Construction of geophysical laboratory.
Carnegie Inst. of Wash., Yearb. no. 2, 1903, pp. 185-194, 1904.
3. Experiments on schistosity and slaty cleavage.
Describes experiments to determine the cause of cleavage and schistosity in rocks, and discusses the results obtained.
4. Present problems of geophysics.
Discusses systems of joints of simultaneous origin and how they were produced.
5. The isomorphism and thermal properties of the feldspars. Introduction.
Carnegie Inst. of Wash., Publ. no. 31, pp. 3-12, 1905.
6. Simultaneous joints.
Describes systems of joints of simultaneous origin and how they were produced.

Becker (George F.) and Day (Arthur L.).
1. The linear force of growing crystals.
Beecher (Charles Emerson).
1. Studies in evolution; mainly reprints of occasional papers selected from the publications of the laboratory of invertebrate paleontology, Peabody Museum, Yale University.
Contains discussions on the origin and significance of spines, structure and development of trilobites, studies in the development of the Brachiopoda, development of a Paleozoic poriferous coral, symmetrical cell development in the Favositidae, and development of the shell in the genus Tornoceras Hyatt.
2. Note on the Cambrian fossils of St. Francois County, Missouri.
Discusses the fossil evidence indicating that a considerable thickness of the rocks of this region are to be referred to the Cambrian.
3. Discovery of eurypterid remains in the Cambrian of Missouri.
Describes Strabops thatcheri n. gen. et sp.
4. The ventral integument of trilobites.
Describes the characters of the ventral integuments in Triarthrus which demonstrate that the conclusions of Jaekel in his study of Ptychoparia are erroneous.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Beecher (Charles Emerson)—Continued.

 Am. Geol., vol. 29, pp. 143-146, 1 fig., 1902.
 Describes Prestwichia randalli n. sp.

6. The reconstruction of a Cretaceous dinosaur, Claosaurus annectens Marsh.

7. The ventral integument of trilobites.
 Geol. Mag., dec. 4, vol. 9, pp. 152-162, 3 pls., 8 figs., 1902.
 Discusses the ventral integument and appendages of trilobites.

8. Revision of the Phyllocarida from the Chemung and Waverly groups of Pennsylvania.

 Reviews the history of the genus and type species and describes the type and other species.

Beede (Joshua W.).

1. Carboniferous invertebrates.

 Describes several new species.

3. The age of the Kansas-Oklahoma red beds.
 Am. Geol., vol. 28, pp. 46-47, 1901.
 Describes the occurrence of fossils recently found, indicating the Permian age of the beds.

4. New fossils from the upper Carboniferous of Kansas.

5. Variation of the spiralia in Seminula argentia (Shepard) Hall.

6. Coal Measures faunal studies, II. Fauna of the Shawnee formation (Haworth), the Wabaunsee formation (Prosser), the Cottonwood limestone.
 Describes geologic formations and gives lists of fossils from them.

7. Note on the variation of the spires in Seminula argentia (Shepard) Hall.

8. Invertebrate paleontology of the Red Beds [Oklahoma].
 Discusses the age of the Red Beds and describes fossils collected from them.

Beede (Joshua W.) and Rogers (Austin F.).

1. Coal Measures faunal studies, III. Lower Coal Measures.
 Describes the character and occurrence of lower Coal Measures formations and gives lists of fossils obtained from them.

Beede (Joshua W.) and Sellards (E. H.).

1. Stratigraphy of the eastern outcrop of the Kansas Permian.
 Describes the occurrence and character of Permian formations in Kansas, giving numerous detailed sections.

Beede (Joshua W.), Prosser (Charles S.) and.

1. Cottonwood Falls folio, Kansas.
 See Prosser (Charles S.) and Beede (J. W.), 1.
For the Years 1901-1905, Inclusive.

Beeler (Henry C.).
1. A brief review of the South Pass gold district, Fremont County, Wyoming. 12 pp., 1903. [Privately printed?]
Includes a brief account of the geology of the region.
A general account of the geology and mineral resources of Wyoming.

Beel (J. M.).
Gives a general account of the region of the Klondike, and more especially of the mineral resources, including the general geology, the occurrence of alluvial and vein gold-ore deposits, and the methods of mining.
2. Gites aurifères du Klondike (Yukon, Canada). Bull. trim. Soc. de l’Industrie Min., St. Etienne, 4° ser., t. 4, pp. 275-316, 3 pls. (maps), and 8 figs., 1905.
Describes the occurrence, geologic relations, and mining of gold deposits in the Klondike region.

Bell (J. Macintosh).
Includes observations on the occurrence, character, and geologic relations of pre-Cambrian, Paleozoic, and Pleistocene rocks and deposits, the physiographic features, and the economic resources.
Describes the physiography, stratigraphy; and petrography of the region examined and the occurrence, character, and relations of the deposits of iron ore.

Bell (Ralston).
Includes notes upon the geologic occurrence of copper.

Bell (Robert).
Contains notes on the physiographic features and ancient gneisses and limestones and Silurian strata of the region.
Reviews the operations of the year of the Geological Survey of Canada. Includes reports by officials of the survey.
Describes the character and occurrence of Laurentian and Huronian rocks in this region. Bull. 301-06—3
Bell (Robert)—Continued.
 Outlines the work of the Geological Survey of Canada for the year 1904. Includes the report of the special committee on the Lake Superior region.
9. The advantages of combining topographical with geological surveying in unexplored regions.

Bell (Robert).
2. Thunder Mountain and Mackay, Idaho.
 Describes the occurrence of gold and developments of the region.
3. The origin of the fine gold of Snake River.
 Eng. & Mg. Jour., vol. 73, pp. 143-144, 1902.
 Describes the occurrence of gold bearing terraces of a Tertiary lake.
4. The geology of Thunder Mountain and central Idaho.
 Eng. & Mg. Jour., vol. 73, pp. 791-793, 1902.
 Describes the general geology of the region.
5. Facts about Thunder Mountain [Idaho].
 Contains notes on the geologic structure of the region and sections of strata.

Bell (Robert N.).
1. Tin ledges in Alaska.
 Describes the discovery of ledges containing tin ore in the vicinity of Port Clarence, Alaska.
2. Tin in Alaska.
 Describes the occurrence of tin-ore deposits.
3. The mining industry of Idaho.
 Gives a brief account of the general geology of the state, and the occurrence and production of ores by counties.
4. Geology of Park City, Utah, district.
 Describes the general geology and the occurrence of lead-ore deposits.
5. The geology and mineral resources of Idaho.

Bell (W. T.).
1. The remarkable concretions of Ottawa County, Kansas.
 Describes the occurrence of concretionary masses of crystalline limestone, most of them in place.

Belowsky (Max).
FOR THE YEARS 1901-1905, INCLUSIVE. 35

Bendrat (T. A.).
1. The geology of Lincoln County, South Dakota, and adjacent portions.
 Describes the topography and drainage, the character and occurrence of Algonkian and Cre­
taceous strata and glacial deposits.

Bensley (B. Arthur).
1. On the identification of Meckelian and mylohyoid grooves in the jaws of Mesoz­
oic and recent mammalia.
 Toronto Univ. Studies, Biol. ser., no. 8, 9 pp., 1 pl., 1902.

Bergeat (Alfred).
1. Ein Rückblick auf die vulkanischen Ereignisse in Westindien im Mai 1902.
 Globus, Bd. 82, pp. 125-131, 1902.
 Reviews the volcanic eruptions in the West Indian Islands during 1902.
2. Die Produkte der letzten Eruption am Vulkan S. Maria in Guatemala (Oktober
 1902).
 Describes character and composition of material ejected by the volcano S. Maria.
3. Einige weitere Bemerkungen über die Produkte des Ausbruchs am Sta. Maria,
 Guatemala.
 Gives results of investigations upon the composition of ashes ejected by S. Maria, Guatemala.

Berger (W. F. B.).
1. Bauxite in Arkansas.
 Describes character and occurrence of bauxite, and the mining operations in Arkansas.

Berkey (Charles Peter).
1. A guide to The Dalles of the St. Croix for excursionists and students.
 Minneapolis, 40 pp., illus., 1898. (Private publication.)
 Describes the geologic history and structure of the region, physiographic and erosion features,
 and the character and occurrence of Cambrian strata and igneous rocks.
2. Sacred Heart "geyser spring" [Minnesota].
 Am. Geol., vol. 29, pp. 87-88, 1902.
 Am. Geol., vol. 29, pp. 171-177, 1902.
 Describes the occurrence of the Ordovician, Cretaceous, and glacial clays.
4. Mineral resources of the Uinta Mountains [Utah].
 Discusses the stratigraphy and geologic structure of the Uinta Mountains and their mineral
 resources.
5. A geological reconnaissance of the Uinta Reservation, southeastern Utah.
 Describes stratigraphic succession in this region.
 Jour. Geol., vol. 13, pp. 35-44, 1 fig., 1905.
 Describes the occurrence, character, and composition of clays of this vicinity, and discusses
 their origin, geologic relationships, and manner and time of deposition.
7. Economic geology of the Pembina region of North Dakota.
 Am. Geol., vol. 35, pp. 142-152, 4 figs., 1905.
 Describes the character and occurrence of Cretaceous strata in this region, and the occurrence
 and utilization of cement marls.
8. Stratigraphy of the Uinta Mountains.
 Discusses the occurrence, character, and relations of the formations of the Uinta Mountains
 of Utah, and the correlation of the Wasatch and Uinta sections.
Berkey (Charles Peter)—Continued.
9. [Paleogeography of St. Peter time.]
10. Interpretation of certain laminated clays, with their bearing upon estimates of
 geologic time.
11. The paleogeography of Mid-Ordovicic time.

Berry (Edward Wilber).
1. Notes on the phylogeny of Liriodendron.
2. Notes on sassafras.
3. The American species referred to Thinnfeldia.
4. New species of plants from the Matawan formation.
5. The flora of the Matawan formation (Crosswicks clays).
 Discusses occurrence and lithologic characters of the Matawan formation and its subdivisions
 in New Jersey, the character and relationships of the flora collected near Cliffwood, New
 Jersey, and gives detailed descriptions of the plants.
6. Aralia in American paleobotany.
 Discusses leaf characters in fossil species of Aralia.
7. Additions to the flora of the Matawan formation.
8. The Cretaceous exposure near Cliffwood, N. J.
 Am. Geol., vol. 34, pp. 253-260, 1 pl., 1904.
 Discusses the correlation of the Cretaceous clays at Cliffwood, N. J., in the light of the evi­
 dence of the fossil plants. Gives a table showing the geologic distribution of the fossil spe­
 cies from the Matawan.
9. Additions to the fossil flora from Cliffwood, New Jersey.
10. Fossil grasses and sedges.
 Discusses their geologic occurrence, and describes a new species of Carex.
11. A palm from the mid-Cretaceous.
 Torreya, vol. 5, pp. 30-33, 1 fig., 1905.
12. An old swamp bottom.
 Gives notes upon the fossil plants occurring in Cretaceous deposits in Monmouth County, N. J.
13. The ancestors of the big trees.

Beyer (S. W.).
1. Mineral production of Iowa in 1901.
 Includes a discussion of the occurrence and production of iron ore at Iron Hill, Allamakee
 County, Iowa.
FOR THE YEARS 1901-1905, INCLUSIVE.

Beyer (S. W.)—Continued.

2. Iowa's iron mine.

Eng. & Mg. Jour., vol. 73, pp. 275-276, 2 figs., 1902.

Describes the occurrence, character, and origin of the ore.

Beyer (S. W.) and Williams (I. A.).

1. Technology of clays.

Iowa Geol. Surv., vol. 14, pp. 29-318, 7 pls., 30 figs., 1904.

Discusses the classification, origin, and properties of clays, and manufacture of clay wares.

2. The geology of clays.

Describes in detail the occurrence, by counties, of clays in Iowa, and their geologic horizons.

Beyer (S. W.) and Young (L. E.).

1. Geology of Monroe County [Iowa].

Iowa Geol. Surv., vol. 13, pp. 355-422, 2 pls., 20 figs., 1903.

Describes topography and drainage, the character, occurrence, and geologic relations of Carboniferous strata and glacial deposits, the character and occurrence of coal seams, coal-mining operations in the county, and other economic resources.

Bibbins (Arthur B.).

1. Occurrence of zoisite and thulite near Baltimore [Maryland].

From notes by the late John W. Lee.

2. Stratigraphical position and general nature of the Maryland cycads.

3. The buried cypress forests of the upper Chesapeake.

Bibbins (Arthur B.), Clark (William B.) and.

1. Geology of the Potomac group in the middle Atlantic slope.

See Clark (W. B.) and Bibbins (A. B.), 1.

Biddle (H. C.).

1. The deposition of copper by solutions of ferrous salts.

Jour. Geol., vol. 9, pp. 430-436, 1901.

Describes certain chemical experiments which show that the conditions under which the oxidation of the ferrous salts may result in the deposition of copper are those which are found in the circulation of underground water.

Bilgram, Hugo.

1. Inclusions in quartz.

Billups (A. C.).

1. Fossil land shells of the old forest bed of the Ohio River.

Nautilus, vol. 16, pp. 50-52, 1902.

Describes the occurrence and gives a list of and notes upon the species identified.

Birge (E. A.).

Chiefly administrative, but contains notes on the geology of Wisconsin.

Wis. Geol. & Nat. Hist. Surv., 2d Bienn. Rept. of the Commissioners, pp. 7-86, 1901.

Chiefly administrative, but contains notes on the geology of Wisconsin.

Chiefly administrative, but contains notes on the geology of Wisconsin.
Birge (E. A.)—Continued.

 Chiefly administrative, but contains notes on the geology of Wisconsin.

Bishop (Irving P.).

1. Oil and gas in southwestern New York.
 Describes occurrence of oil, and gives sections at a number of localities.

2. Economic geology of western New York.
 Gives notes on the occurrence of economic products, particularly building stone, clays, salt, natural gas, and petroleum.

Bishop (S. E.).

1. Brevity of tuff-cone eruptions.
 Am. Geol., vol. 27, pp. 1-5, 1 pl., 1901.
 Discusses the origin and mode of formation of Diamond Head, Island of Oahu.

Blackwelder (Eliot), Salisbury (Rollin D.) and.

 See Salisbury (R. D.) and Blackwelder (Eliot), 1.

Blake (John Charles).

1. A mica-andesite of west Sugarloaf Mountain, Boulder County, Colorado.
 Describes occurrence, megascopic and microscopic characters, and composition.

2. Some relations of tetrahedral combinations to crystalline form.

Blake (William P.).

1. Some salient features in the geology of Arizona, with evidences of shallow seas in Paleozoic time.
 Describes the character and occurrence of ancient crystalline Paleozoic and Mesozoic rocks.

2. The evidences of shallow seas in Paleozoic time in southern Arizona.
 Contains notes on probable lower Paleozoic rocks of the region.

3. The caliche of southern Arizona.
 Describes the character and origin of the material.

4. The caliche of southern Arizona; an example of deposition by the vadose circulation.
 Describes the formation of the caliche, a calcareous formation, and gives its chemical composition and that of well waters.

5. The geology of the Galiuro Mountains, Arizona, and of the gold-bearing ledge known as Gold Mountain.
 Eng. & Mg. Jour., vol. 73, pp. 546-547, 5 figs., 1902.
 Describes the general geology of the region and the occurrence and origin of the gold ores.

7. Notes on the mines and minerals of Guanajuato, Mexico.

8. Tombstone and its mines; a report upon the past and present condition of the mines of Tombstone, Cochise County, Arizona, to the Development Company of America.
 New York, 1902. 83 pp., Illus.
 Describes the general geology of the region, the character and occurrence of the stratified rocks and geologic structure, and the occurrence of the ore deposits of precious metals, and discusses their origin.
Blake (William P.)—Continued.

 Gives notes upon and lists of species of diatoms obtained from deposits of diatomaceous earth in the valley of the San Pedro, Arizona.

10. Diatom-earth in Arizona.
 Describes occurrence and character of diatomaceous deposits, and discusses their origin and economic value.

12. Tombstone and its mines.
 Gives observations on the occurrence of ore deposits, and discusses the origin of certain manganese ores.

 Rept. of the governor of Ariz. to the Secretary of the Interior for the year ended June 30, 1903, pp. 126-135, 1903.
 Gives a general outline of the geology of Arizona.

 Describes character and occurrence of gypsum deposits in Arizona.

15. Superficial blackening and discoloration of rocks, especially in desert regions.
 Describes superficial blackening of rocks and discusses its origin.

16. Copper ore and garnet in association.
 Describes occurrences of copper ore and garnet in association, and discusses their origin.

17. Evidences of plication in the rocks of Cananea, Sonora [Arizona].

18. Iodobromite in Arizona.
 Describes the occurrence, characters, and composition.

Blakemore (William).

1. Pioneer work in the Crows Nest coal areas [Canada].
 Describes the occurrence of the coal in Cretaceous strata.

2. The iron ore deposits near Kitchener, B. C.

3. Graham Island coal [British Columbia].
 Describes the occurrence of workable coal beds.

Blasdale (Walter C.).

1. Contribution to the mineralogy of California.
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 327-348, 1901.
 Describes material from the Berkeley Hills, Cal.

Blatchford (John).

1. The Postdam formation of Bald Mountain district [South Dakota].
 Describes the occurrence of the ore deposits.
Blatchford (John)—Continued.

2. The Bald Mountain district in the Black Hills. A description of the flat formation and some of the ore bodies found in connection with it.
 Describes the occurrence of gold-ore deposits.

Blatchley (W. S.).

1. Oolite and oolitic stone for Portland-cement manufacture.
 Describes the occurrence and characters of the materials in Indiana.

2. The petroleum industry in Indiana in 1900.
 Discusses the origin of petroleum oil and contains notes on its occurrence in Indiana.

3. The mineral waters of Indiana: their location, origin, and character.

4. On the petroleum industry in Indiana in 1901.

5. Gold and diamonds in Indiana.
 Describes glacial history in Indiana and discusses the occurrence of gold and diamonds in glacial drift deposits.

6. The petroleum industry in Indiana in 1903.
 Describes the geologic occurrence of petroleum and natural gas, the geologic structure of the oil fields of Indiana, and in detail the production of and exploration for oil by counties.

7. The lime industry in Indiana.

8. The clays and clay industries of Indiana.
 Includes notes on the geologic occurrence and character of clays in Indiana.

Blatchley (W. S.) and Ashley (George H.).

1. The lakes of northern Indiana and their associated marl deposits.
 Describes the characteristics and origin of these lakes and the occurrence, formation, and uses of the marl beds.

Blatchley (W. S.) and Sheak (W. H.).

1. Trenton rock petroleum.
 Discusses occurrence and origin of petroleum in Trenton rock.

Bleiningger (Albert Victor).

1. The manufacture of hydraulic cements.
 Ohio Geol. Surv., 4th ser., Bull. no 3, 391 pp., 81 figs., 1904.
 Includes a discussion of the occurrence and character of clays and other materials in Ohio suitable for the manufacture of cements.

Boehmer (Max).

1. Some practical suggestions concerning the genesis of ore deposits.

[Bogdanović (Karl Ivanović)].

1. [Sketch of Nome.]
 St. Petersburg, 116 pp., Illus., 1901. [Russian.]

Bøggild (O. B.).

1. On ilvaite from Siorarsuit at Julianehaab, Greenland.
 Meddelelser om Grønland, vol. 25, pp. 49-89, 32 figs., 1902; Copenhagen Univ., Min. and Geol. Mus., Cont. to Min., no. 1, 1902.
Böggild (O. B.)—Continued.
2. On some minerals from the nephelite-syenite at Julianehaab, Greenland (erikite and schizolite).
 Describes occurrence, constitution, crystallography, and properties of erikite, a new mineral, and schizolite from Greenland.

3. Samples of the sea-floor along the coast of east Greenland 74°70 N. L.
 Describes the kind and origin of the material deposited on the sea bottom east of Greenland.

4. The minerals from the basalt of east Greenland
 Describes occurrence and crystallographic and other characters.

5. Mineralogia Groenlandica.
 Min. & Geol. Mus. of the Univ., Copenhagen, Contr. to Min., no. 6 (Meddelelser om Groen­land, vol. 32), xix, 625 pp., 119 figs., 1905.
 Gives a full account of the minerals that have been found in Greenland, including a descrip­tion of each species. [In Danish.]

Böggild (O. B.) and Winther (Chr.).
1. On some minerals from the nephelite-syenite at Julianehaab, Greenland (epistolite, britholite, schizolite, and sieenstrupite), collected by G. Flink.

Bolton (L. L.).
1. Round Lake to Abitibi River [Ontario].
 Contains observations on the geography, geology, petrology, and resources of the region, traversed.

Boltwood (Bertram B.).
1. On the ultimate disintegration products of the radio-active elements.
 Includes notes on the occurrence and composition of various minerals in which radio-activity has been discovered.

Bond (Josiah).
1. Copper leaching at the American copper mine.
 Describes experiments made upon copper ores to determine methods of extracting copper.

Bonney (T. G.).
1. On a sodalite syenite (ditroite) from Ice River Valley, Canadian Rocky Mountains.
 Describes mode of occurrence and gives chemical analysis of this mineral.

2. The Canadian Rockies. Part II: On some rock specimens collected by E. Whymper, esq., F. R. S. E., in the Canadian Rocky Mountains.

3. Notes on specimens collected by Professor Collie, F. R. S., in the Canadian Rocky Mountains.
 Discusses occurrence and character of rock specimens from Canadian localities.

4. Note on rock specimens from the Canadian Rocky Mountains.

5. March dust from the Soufrière.
 Describes character of volcanic dust from an eruption of the Soufrière of St. Vincent.
Bordeaux (A.).
1. Les anciens chenaux aurifères de Californie.
Describes the occurrence, character, and origin of the auriferous gravels of the State.

Borgström (L. H.).
1. The Shelburne meteorite.

Boright (Sherman H.)
1. Notes on the geology of the northern portion of the Boisdale Hills anticline [Cape Breton Island].
Describes the location, geographic and topographic features, the general geology, and the character and occurrence of igneous rocks, and Cambrian and Carboniferous strata and economic resources of the region.

Böse (Emilio).
1. Sobre la independencia de los volcanes de grietas preexistentes.
Discusses origin of volcanoes.
2. Ein Profil durch den Ostabfall der Sierra Madre Oriental von Mexico.
Describes the character of the igneous and sedimentary rocks and the geologic structure of the region.
3. Breve noticia sobre el estado actual de volcán de Tacaná (Chiapas) [Mexico].
Describes the present condition of this volcano.
4. Sobre las regiones de temblores México.
Discusses regions in Mexico subject to earthquake movements.
5. Informe sobre el origen probable de los temblores de Zanatepec a fines de septiembre de 1902, y sobre el estado actual del volcán de Tacaná.
Discusses the probable origin of the earthquakes of Zanatepec of September, 1902, and the present condition of the volcano of Tacaná.
6. El área cubierta por la ceniza del volcán de Santa María, octubre 1902.
Describes the area covered by ashes ejected by the volcano of Santa María in October, 1902.
7. Reseña acerca de la geología de Chiapas y Tabasco.
Mex. Inst. Geol., Bol. no. 20, pp. 5-100, 9 pls., 1905.
Describes the geography and drainage, and the character, occurrence, and relations of Archean, Paleozoic, Mesozoic, and Cenozoic deposits, and of igneous rocks, and the geologic structure of the region.

Böse (Emilio) and Angermann (E.).
1. Informe sobre el temblor del 16 de enero de 1902 en el Estado de Guerrero [México].
Describes an earthquake occurring in January, 1902, in Guerrero, Mexico.

Böse (Emilio), Villarello (Juan de D.) and.
1. Criaderos de fierro de la hacienda de Vaquerias, en el estado de Hidalgo.
See Villarello (J. de D.) and Böse (E.), 1.

Boston Society of Natural History.
1. Memorial of Professor Alpheus Hyatt.
Contains remarks of various members at a meeting of the Society, February 5, 1902.
Boutwell (John Mason).
1. Progress report on the Park City mining district, Utah.
 U. S. Geol. Surv., Bull. no. 213, pp. 31-40, 1903.
 Contains a general account of the geology and ore deposits of the region.

2. Ore deposits of Bingham, Utah.
 U. S. Geol. Surv., Bull. no. 213, pp. 105-122, 1903.
 Describes the history of mining developments at this locality, the character and occurrence of sedimentary and igneous rocks, the geologic structure, and the occurrence and character of the ore deposits.

 U. S. Geol. Surv., Bull. no. 223, pp. 102-110, 1 pl., 1904.
 Describes character, occurrence, economic development, and geologic relations of gypsum deposits in Utah.

4. Progress report on the Park City mining district, Utah.
 Describes the character and occurrence of sedimentary, igneous, and metamorphic rocks in this area, the geologic structure, and the occurrence and mining of silver-lead ores.

5. Iron ores in the Uinta Mountains, Utah.
 U. S. Geol. Surv., Bull. no. 225, pp. 221-228, 1904.
 Describes the general geologic structure and stratigraphy of the region, and the occurrence and character of the iron-ore deposits.

6. Rock gypsum at Nephi, Utah.
 Describes the character, occurrence, and development of rock gypsum near Nephi, Utah.

7. Notes on the wells, springs, and general water resources of New Hampshire.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 56-72, 1904.

8. Progress report on Park City mining district, Utah.
 Describes the progress of the mining operations in this district and the occurrence of the ore bodies, producing chiefly gold and silver.

9. Vanadium and uranium in southeastern Utah.
 Describes the occurrence, geologic relations, and character of ore deposits yielding vanadium and uranium.

10. Ore deposits of Bingham, Utah.
 Describes the character, occurrence, and origin of the ores, of which copper is the principal one, and recent mining developments.

11. Oil and asphalt prospects in Salt Lake basin, Utah.
 Describes the general geography and geology, the prospecting for oil, and the occurrence and character of asphalt.

 Describes the history and development of the district, the character, occurrence, and genesis of the ores, chiefly gold, silver, and copper, and in detail the mines and mining operations.

13. Ore deposits of Bingham, Utah.

 Describes the general geology and the character and occurrence of the copper and lead ores and discusses their origin.

Bowman (H. L.).
1. On an occurrence of minerals at Haddam Neck, Connecticut, U. S. A.
 Min. Mag., vol. 18, pp. 97-121, 1 pl., 5 figs., 1902.
Bowman (Isaiah).
1. A typical case of stream capture in Michigan.
 Jour. Geol., vol. 12, pp. 326-334, 4 figs., 1904.
2. Deflection of the Mississippi.
 Describes changes in the channel of the Mississippi and discusses their cause.
3. Pre-Pleistocene deposits at Third Cliff, Massachusetts.

Bownocker (John Adams).
1. History of the Little Miami River [Ohio].
 Ohio State Acad. Sci., Special Papers, no. 3, pp. 32-45, 2 figs., map, 1900.
 Discusses drainage changes in the valley of the Little Miami River.
2. The Corning oil and gas field [Ohio].
3. The oil and gas producing rocks of Ohio.
 Jour. Geol., vol. 10, pp. 822-838, 1902; Univ. Bull., ser. 7, no. 3 (Geol. ser., no. 4), 1902.
 Describes the character and stratigraphic relations of these rocks and the occurrence of oil and gas.
4. The central Ohio natural gas fields.
 Describes location and area, history and development, geological structure of the natural gas fields and sections of the wells bored, and the production and composition of the gas.
5. The occurrence and exploitation of petroleum and natural gas in Ohio.
 Ohio Geol. Surv., 4th ser., Bull. no. 1, pp. 9-320, 6 pls., and 9 maps, 1903.
 Gives a detailed account of the oil and gas producing horizons of Ohio rocks, records of borings, history, development, and production of the various fields, including the stratigraphy and geologic structure.
6. The salt deposits of northeastern Ohio.
 Includes records of deep wells, and discusses the occurrence of beds of rock salt as revealed by deep borings.

Bowron (William M.).
1. The origin of Clinton red fossil-ore in Lookout Mountain, Alabama.

Boyer (C. S.).

Braden (William).
1. Certain conditions in veins and faults in Butte, Montana.
 Describes geological structure and ore deposition in this area.

Bradford (William).
1. Gold deposition by drainage.
 Eng. and Mg. Jour., vol. 78, pp. 554-555, 8 figs., 1904.
 Discusses the origin of gold ores.

Brady (Frank W.).
1. The white sands of New Mexico. A description of a remarkable formation of nearly pure gypsum sand.
Branner (John C.).
1. Origin of ripple marks:
 Jour. Geol., vol. 9, pp. 535-536, 1901.
 Suggests that the origin of large ripple marks may be found in the seaward extension of beach cusps.
2. The zinc and lead deposits of north Arkansas.
 Describes occurrence, mode of formation, and relations of bedded ores to the geologic structure of the region, and gives analyses of some of the ores.
3. [In discussion of paper by Eric Hedburg on "The Missouri and Arkansas zinc mines."]
4. Syllabus of a course of lectures on elementary geology. Ed. 2.
 369 pp., 25 pls., 109 figs., 1902.
5. A topographic feature of the hanging valleys of the Yosemite [California].
 Jour. Geol., vol. 11, pp. 547-553, 5 figs., 1903.
 Gives an explanation for the position of the falls.
 Describes topographic features and discusses their origin.
 Includes a list of papers written by the subject of the memoir.
8. Natural mounds or hog-wallows.
 Discusses the occurrence, character, and origin of these mounds.
9. The university training of engineers in economic geology.
Branner (John C.) and Newsom (John F.).
1. The phosphate rocks of Arkansas.
 Describes the character and geographic and geologic occurrence of phosphate rock in Arkansas.
Branson (E. B.).
1. Notes on some Carboniferous cochliodonts with descriptions of seven new species.
 Jour. Geol., vol. 13, pp. 20-34, 2 pls., 1905.
2. Structure and relationships of American Labyrinthodontidae.
Brauns (R.).
1. Asche des Vulkans Sta. Maria in Guatemala.
 Describes the composition of ashes ejected by St. Maria in Guatemala.
2. Ueber die Asche des Vulkans Sta. Maria in Guatemala.
 Centralbl. f. Min., p. 290, 1903.
 Discusses differences and their explanation in composition of volcanic ashes from St. Maria in Guatemala found by several investigators.
Breed (Robert S.).
 Describes the occurrence, the megascopic and microscopic characters, and the composition.
Breeze (Fred J.).
1. The valley of the lower Tippecanoe River [Indiana].
Breeze (Fred J.)—Continued.

2. Some topographic features in the lower Tippecanoe Valley [Indiana].
 Describes some physiographic features of the region.

Breger (C. L.), Kindle (Edward M.) and.

1. Paleontology of the Niagara of northern Indiana.
 Sée Kindle (Edward M.) and Breger (C. L.), 1.

Brent (Charles).

1. Notes on the gold ores of western Ontario.
 Gives notes on the geology of the region and the occurrence of gold ores.

Brewer (William H.).

1. John Wesley Powell.
 Gives a sketch of Major Powell's life and work.

Brewer (William M.).

1. Texada Island, British Columbia.
 Contains notes on the geology and ore bodies.

2. British Columbia iron and coal. A description of the various known deposits, their locations, qualities, and the extent of development.

3. Mining industry and mineral resources of British Columbia.

4. White Horse mining district, Yukon Territory.
 Describes the general geology of the region and the occurrence of copper and coal.

5. M’Kee Creek, Atlin mining division, British Columbia.
 Describes the placers of the region.

 Eng. & Mg. Jour., vol. 73, pp. 408-410, 1902.
 Describes the occurrence of coal in Vancouver Island.

7. The Crow's Nest Pass coal fields [Canada].
 Eng. and Mg. Jour., vol. 73, pp. 549-552, 2 figs., 1902.
 Describes the geology of the region and the occurrence of coal.

8. British Columbia, Boundary mining district, progress in mining and smelting.
 Eng. & Mg. Jour., vol. 73, pp. 617-623, 4 figs., 1902.
 Describes the general geology and the occurrence of the gold, silver, and copper ores.

 Eng. & Mg. Jour., vol. 73, pp. 757-758, 1902.
 Describes the geology and the development of the coal industry.

10. The rock-slide at Frank, Alberta Territory, Canada.
 Describes the landslide which occurred at Frank, in Alberta Territory, on April 29, 1903.

11. White Horse district, in Yukon Territory—history, geology, present conditions, and future prospects of the mining district.
 Describes the geology of the region and the occurrence of copper ore and coal deposits.

 Gives observations upon the geology and occurrences of ore deposits.
Brewer (William M.)—Continued.

Mg. & ScL Press, vol. 87, pp. 7-8, 2 figs., 1903.

Gives observations on the geology of the district and the occurrence of the copper ores.

14. Mineral resources of Vancouver Island.

Describes the general geology and the occurrence and character of ore bodies, mainly gold, copper-gold, and magnetite.

15. White Horse copper camp, Yukon Territory.

Describes the location, general geology, and occurrence of the copper ores.

16. Bornite ores of British Columbia and the Yukon Territory.

Discusses the occurrence, geologic relations, and origin of the bornite ores carrying gold, silver, and copper.

Brezina (Aristides).

1. The arrangement of collections of meteorites.

2. Ueber Meteoreisen von De Sotoville [Alabama].

Describes occurrence, characters, and composition.

Bridge (Norman).

1. Edward Claypole, the man.

Am. Geol., vol. 29, pp. 30-40, 1902.

2. Address at the presentation of the memorial bronze of Edward Waller Claypole.

Throop Polytechnic Institute, Pasadena, Cal., June 2, 1902. (Not seen.)

Bridgford (John).

1. Analysis of volcanic dust from La Soufrière.

Brigham (Albert Perry).

2. Students' laboratory manual of physical geography.

3. Early interpretations of the physiography of New York State.

Broadhead (G. C.).

1. Geological surveys [of Missouri].

Gives an historical account of the geological surveys of the State of Missouri and their official publications.

2. Mineralogy [of Missouri].

Gives a general account of the minerals and mineral products of Missouri.

3. The New Madrid earthquake.

Am. Geol., vol. 30, pp. 76-87, 1902.

Gives an account of earthquake shocks in the Mississippi Valley in 1811 and 1812.

4. Bituminous and asphalt rocks of the United States.

Am. Geol., vol. 32, pp. 59-60, 1903.
BROADHEAD (G. C.)—Continued.

5. Bitumen and oil rocks.
 A general account of the occurrence of bituminous rocks and the origin and utilization of
 bituminous products.

6. The loess.
 Am. Geol., vol. 33, pp. 393-394, 1904.
 Describes distribution and character of the loess along the Missouri River and discusses its
 origin.

7. Surface deposits of western Missouri and Kansas.
 Am. Geol., vol. 34, pp. 66-67, 1904.
 Describes the distribution of flint gravels in Missouri and Kansas.

8. The saccharoidal sandstone.
 Am. Geol., vol. 94, pp. 105-110, 1904.
 Describes the occurrence and character of the saccharoidal sandstone in Missouri.

BROCK (R. W.).

1. The Boundary Creek district, British Columbia.
 Describes the author's observations in this region.

2. The ore deposits of the Boundary Creek district, British Columbia.
 Describes the rocks of this area and the occurrence of ore bodies.

3. Preliminary report on the Boundary Creek district, British Columbia.
 Describes physiographic features, general geology, character, occurrence, and origin of
 igneous rocks, the occurrence and origin of the copper, gold, and silver ore deposits, and the
 mining operations.

4. Original native gold in igneous rocks.
 Describes occurrences of native gold in igneous rocks of British Columbia.

5. Poplar Creek and other camps of the Lardau district [British Columbia].
 Gives a general account of the geology of the district and the gold-ore deposits.

 Describes the occurrence, character, and geological relations of ore deposits of British Colum­
 bia in which platinum occurs.

7. The Lardau district, British Columbia.
 Describes the physiography, the Glacial and general geology, the geologic structure, the
 occurrence, character, and relations of stratified and eruptive rocks, and the occurrence
 and mining of gold deposits.

8. The Lardau mining district [British Columbia].
 Contains observations on the physiography, general geology, and occurrence of minerals of
 economic value.

BROCK (R. W.), McCONNELL (R. G.) and.

 See McConnell (R. G.) and Brock (R. W.), 1.

BROILI (Ferdinand).

1. Ein Beitrag zur Kenntniss von Diplocaulus Cope.

2. Permische Stegocephalen und Reptilien aus Texas.
 Gives systematic descriptions and discusses the relationships and classification of Stegocephala
 and reptiles from the Permain of Texas.
Broili (Ferdinand)—Continued.

4. Pelycosaurierreste von Texas.
 Describes remains of Pelycosaurs from the Permian of Texas.

Brooks (Alfred Hulse).

 Gives a brief description of occurrence in stream gravels.

 Describes the general geology of the region and the occurrence of the stream tin.

3. The coal resources of Alaska.
 Gives a general account of the Cretaceous and Tertiary geology of Alaska and discusses the character and occurrence of coals in these formations.

 Describes the physiographic and stratigraphic features of the region and the occurrence of gold and copper.

5. Geological reconnaissances in southeastern Alaska.
 Discusses the general stratigraphic relations, geologic history, and correlation of the beds of the region.

 Describes the occurrence of placer gold in different parts of Alaska.

 U. S. Geol. Surv., Bull. no. 213, pp. 92-93, 1903.

 Describes occurrence of gold and the mining developments.

10. The geography of Alaska, with an outline of the geomorphology.
 Describes the geography, physiographic features, and the geologic history.

 Administrative report.
 Reviews the Alaskan work of the U. S. Geological Survey during 1904.

Brooks (Alfred Hulse) and Collier (Arthur J.).

1. Glacial phenomena of the Seward Peninsula [Alaska].
 Bull. 301—06—4
Brooks (Alfred Hulse), assisted by Richardson (George B.) and Collier (Arthur J.).
1. A reconnaissance of the Cape Nome and adjacent gold fields of Seward Peninsula, Alaska, in 1900.
 U. S. Geol Surv. Reconnaissances in the Cape Nome and Norton Bay regions, Alaska, in 1900, 184 pp., 27 pls., 3 figs., 1901.
 Describes the physiography and the surficial, general, and economic geology of the region, and includes detailed descriptions of the various placers.

Brooks (Alfred Hulse), Schrader (F. C.) and.
1. Some notes on the Nome gold region of Alaska.
 See Schrader (F. C.) and Brooks (A. H.), 1.

Brower (Jacob V.).
1. Kakabikansing [Little Falls, Minnesota].
 Contains observations on the geology in the vicinity of Little Falls, Minn.

Brown (Arthur Erwin).
1. On some points in the phylogeny of the primates.

Brown (Barnum).
1. A new genus of ground sloth from the Pleistocene of Nebraska.

2. Stomach stones and food of plesiosaurs.
 Gives observations upon the occurrence of "stomach stones" in connection with the remains of plesiosaurs and their probable use by the animal.

3. Recent exploration of a Pleistocene fissure in northern Arkansas.
 Discusses the occurrence of vertebrate fossils.

Brown (Lucius P.).
1. The phosphate deposits of the Southern States.
 Describes the occurrence and geologic relations of phosphate deposits in various States of the South and the character and composition of the phosphates.

Brown (Robert Marshall).
1. The clays of the Boston Basin.
 Discusses the correlation of the clays of the region.

2. Gaspee Point [Rhode Island]: a type of cuspate foreland.
 Describes the formation and gives a catalogue of cuspate forelands.

3. The Mississippi River from Cape Girardeau to the head of the passes.
 Contains notes on the physiography of the region.

Brown (S. S.).
1. A bibliography of works upon the geology and natural resources of West Virginia, from 1764 to 1901.

Brown (Thomas C.).
1. A new lower Tertiary fauna from Chappaquiddick Island, Martha's Vineyard.
Brumell (H. P. H.).
1. Canadian graphite.
 Describes character and occurrence of graphite deposits in Canada.

Bruncken (Ernest).
1. Physiographical field notes in the town of Wauwatosa [Wisconsin].
 Describes glacial and lacustrine deposits and discusses the origin of a natural exposure of Niagara limestone.

Brunton (D. W.).
1. Geological mine maps and sections.

Brush (George J.).
1. On sussexite, a new borate from Mine Hill, Franklin Furnace, Sussex County, New Jersey.

2. On hortonolite, the chrysolite group.

3. On gahnite from Mine Hill, Franklin Furnace, New Jersey.

4. On the chemical composition of durangite.

Brush (George J.) and Dana (Edward S.).
1. On a new and remarkable mineral locality at Branchville, in Fairfax County, Connecticut; with a description of several new species occurring there. First paper.

2. Second Branchville paper.

3. Third Branchville paper.

4. Fourth Branchville paper—Spodumene and the results of its alteration.

5. Fifth Branchville paper, with analyses of several manganous phosphates by Horace L. Wells.

Bryan (William Alanson).
1. A monograph of Marcus Island.
 Bishop Mus., Honolulu, Occasional Papers, vol. 2, no. 1, pp. 77-139, 8 figs., 1904.
 Includes an account of the physical features, and the general geology and mode of formation of the island.
Buchan (J. S.).
1. Was Mount Royal an active volcano?
Discusses the geologic history of Mount Royal.

2. Some notes on Mount Royal [Quebec].
Describes the general physiography and geology of the region.

3. The Pleistocene of Montreal and the Ottawa Valley from a railway carriage.

Buckley (Ernest Robertson).
1. The clays and clay industries of Wisconsin.
Describes the composition, classification, and properties of clays and the occurrence and distribution of clay deposits in Wisconsin. Includes map of the State, showing the distribution of the various clay beds.

2. Ice ramparts.
Describes the expansion and contraction of ice and their resulting deformations.

3. Highway construction in Wisconsin.
Discusses occurrence and character of road-making materials.

4. Biennial report of the State geologist [of Missouri].
Administrative report for the year 1902. Includes an outline of the mineral resources of the State and an index to the publications of the Missouri Geological Survey.

5. Introduction [to the Geology of Miller County, Missouri].
Discusses the stratigraphy, correlation, etc., of geologic formations in Miller County, Missouri.

6. A system of keeping the records of a State geological survey.

7. Biennial report of the State geologist, transmitted by the Board of Managers of the Bureau of geology and mines to the Forty-third General Assembly [Missouri].
An administrative report. Includes notes on the occurrence of various mineral resources.

8. Introduction to the Geology of Moniteau County [Missouri].
Gives notes upon the occurrence of Paleozoic formations in Missouri, and discusses their nomenclature.

Buckley (E. R.) and Buehler (H. A.).
1. The quarrying industry of Missouri.
Gives an account of investigations upon the occurrence, geologic relations, qualities, and utilization of the building stones of Missouri. Includes a brief geological history of Missouri.

Buckley (E. R.), Ball (S. H.), and Smith (A. F.).
1. Glacial bowlders along the Osage River in Missouri.

Buckman (S. S.), Schuchert (C.) and.
1. The nomenclature of types in natural history.
See Schuchert (C.) and Buckman (S. S.), 1.

Buehler (H. A.), Buckley (E. R.) and.
1. The quarrying industry of Missouri.
See Buckley (E. R.) and Buehler (H. A.), 1,
Buffet (Edward P.).
1. Some glacial conditions and recent changes on Long Island [New York].
Describes physiographic features and the occurrence of drift bowlders.

Burchard (Ernest F.).
1. Lignites of the middle and upper Missouri Valley.
Describes prospecting for coal in northeastern Nebraska, the character and occurrence of lignite seams and the character of the lignite; also the occurrence and character of the lignite of North Dakota.
2. Geology of Dakota County, Nebraska, with special reference to the lignite deposits.
Describes the physiography and drainage features, the character and occurrence of Cretaceous and Quaternary deposits, the geologic history, the economic resources, and the occurrence and character of lignite not of workable quality.
Describes the development of the iron industry of Alabama, the distribution of the ore-bearing formations in the Brookwood quadrangle, and the character, occurrence, and relationships of the iron ores.

Burckhardt (Carlos).
1. Les masses éruptives intrusives et la formation des montagnes.
Discusses the part played by intrusives in the formation of mountains.

Burckhardt (Carlos) and Scalía (Salvador).
1. La fauna marine du Trias Supérieur de Zacatecas [Mexique].
Mexico, Inst. Geol., Bull. no. 21, 44 pp., 8 pls., 1905.

Bureau (Ed.).
1. Sur une collection de végétaux fossiles des États-Unis.
Gives a brief account of a collection of fossil Cretaceous plants from Kansas and Colorado.

Burgess (John D.).
1. Secondary enrichment.
2. Recent discoveries in Arizona.
Describes geologic structure in the region of the Santa Catalina Mountains, and the discovery of gold ores.

Burk (W. E.).
1. The fluor spar mines of western Kentucky and southern Illinois.
Min. Ind.: for 1900, pp. 292-295, 1901.
Describes the general geology of the region and the occurrence of the fluor spar deposits.
2. Asphalt rock in Kentucky.
Describes the occurrence and character of the rock producing asphalt.

Burns (David).
1. On the phenomena accompanying the volcanic eruptions in the West Indies.

Burr (Henry T.).
1. The structural relations of the amygdaloidal melaphyr in Brookline, Newton, and Brighton, Mass.
Discusses the evidence for the intrusive character of the melaphyr.
Burritt (Chas. H.).
1. The Coal Measures of the Philippines.
U. S. War Dept., Rept. of the U. S. Military Governor in the Philippines, 256 pp., 1901.
Describes the coal-mining industry of the Philippine Islands. Includes notes on the occurrence and geologic relations of coal deposits.

Burrows (John Shober).
1. The Barnesboro-Patton field of central Pennsylvania.
Describes location and stratigraphy of the field, the character and occurrence of the coal seams, composition and value of the coal, and the mining developments.

Burwash (E. M.).
1. The geology of Michipicoten Island.
Reviews previous geological work relating to the island, describes its geologic structure, and the character, occurrence, and relations of igneous and pre-Cambrian rocks, and their petrographic characters.

Bush (B. F.).
1. The coal fields of Missouri.

Bush (Lucy P.).
1. Note on the dates of publication of certain genera of fossil vertebrates.

Bushnell (D. L., jr.).
1. The small mounds of the United States.
Discusses the origin of various small mounds.

Butts (Charles).
1. Fossil faunas of the Olean quadrangle.
N. Y. State Mus., Bull. 69, pp. 990-995, 1903.
Gives lists of fossils, showing their distribution by zones in the Devonian and Carboniferous formations of this quadrangle.
2. Recent structural work in western Pennsylvania.
3. Coal mining along the southeastern margin of the Wilmore basin, Cambria County, Pa.
Describes the location and geologic structure of the field and the mining operations.
Describes physiographic features, the character, occurrence, and relations of Carboniferous strata, and particularly of the coal beds, the geologic structure and geologic and geographic history, and the economic resources, mainly coal, petroleum, and natural gas. The section on glacial gravels is contributed by Frank Leverett.
5. The Warrior coal basin in the Brookwood quadrangle, Alabama.
Describes the location, extent, stratigraphy, and structure of the field, and the character, occurrence, and mining of the coal.
Describes the geography and physiography, the occurrence, character, and relations of Carboniferous strata and Quaternary deposits, the geologic history, and the mineral resources, chiefly coal and natural gas.
Describes the physiography, the occurrence, character, and relations of Devonian and Carboniferous strata, the geologic structure and history of the area, and the economic resources chiefly coal.
Byers (Charles Alma).
1. A petrified forest covering thousands of acres.
 Describes the petrified forest near the Painted Desert, Arizona.

Byers (H. G.).
1. The water resources of Washington. Potable and mineral water.

Byrne (John).
1. Geography, history, production, fissure systems, distribution of ores, character of ores [of the Butte, Montana, mining district].
 Includes a brief account of the general geology of the vicinity of Butte, Montana, of the fissures and veins, and the occurrence of the ore deposits of silver and copper ores.

Byrne (P.).
1. Marble formations of the Cahaba River, Alabama.
 Eng. and Mg. Jour., vol. 72, p. 400, 1901.
 Describes the general character and distribution of the marble.
 Describes occurrence and character of marble in this region.

Caballero (Gustavo de J.).
1. Le cobalt au Mexique.
 Describes the occurrence and character of cobalt-bearing ore deposits in Mexico.
2. El vanadio de Charcas, E. de San Luis Potosi, México.
 Describes the occurrence and character of deposits containing vanadium in the state of San Luis Potosi, Mexico.

Cahill (Edward G.).
1. The method used in working the silver-lead mines of Santa Eulalia, Chihuahua, Mexico.
 Gives notes on the occurrence and geologic relations of the silver-lead ore deposits.

Calkins (Frank C.).
1. A contribution to the petrography of the John Day Basin.
 Gives a resume of the geology of the John Day Basin in Oregon, and describes the rocks occurring in the pre-Eocene, Eocene, and Miocene formations in this region.
2. Soils of the wheat lands of Washington.
 Discusses the origin of the soils.
 Describes the general geology and physiographic features, and discusses in detail the water resources of the area, particularly artesian water.

Calkins (Frank C.), Smith (George Otis) and.
1. A geological reconnaissance across the Cascade Range near the Forty-ninth Parallel.
 See Smith (George Otis) and Calkins (Frank C.), 1.

Calvin (Samuel).
1. Geology of Page County [Iowa].
 Iowa Geol. Surv., vol. 11, pp. 400-469, 10 figs. and map, 1901.
 Describes the physiography, the character and occurrence of the Carboniferous, Cretaceous and Pleistocene strata, and the occurrence of economic products.
Calvin (Samuel)—Continued.

2. Concerning the occurrence of gold and some other mineral products in Iowa.
 Describes the origin and occurrence of various minerals and notes some of the popular fallacies that are held concerning them.

3. The geology and geological resources of Iowa.
 Describes the stratigraphic geology and the occurrence of economic products of the State.

4. The geological formations of Iowa.
 Stone, vol. 25, pp. 118-124, 4 figs., 1902.
 Describes briefly the character and distribution of the geologic formations in the State.

5. Tenth annual report of the State geologist [Iowa].
 Gives a nomenclature of the divisions of the Glacial period and discusses the geologic occurrence of oil and gas.

6. Concrete examples from the topography of Howard County, Iowa.
 Am. Geol., vol. 30, pp. 375-381, 3 pl., 1902.
 Describes the topographic forms of the region and reviews its glacial history.

7. The geology and geological resources of Iowa—the formations and their economical values.

8. [In discussion of paper by T. C. Chamberlin on “The geologic relations of the human relics of Lansing, Kan.”]

9. Artesian wells in Iowa.
 Discusses the general conditions for artesian wells and the underground formations of Iowa as sources for artesian water.

10. Geology of Howard County [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 21-79, 15 figs., 1903.
 Describes topography and drainage, the lithologic and faunal characteristics and occurrence of Devonian and Ordovician strata and their geologic relations, the surficial deposits, and the economic resources.

11. Geology of Chickasaw County [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 297-292, 10 figs., 1903.
 Describes topography and drainage, the occurrence, character, and geologic relations of Devonian strata and Glacial deposits, and the economic resources.

12. Geology of Mitchell County [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 293-338, 12 figs., 1903.
 Describes physiographic features, the character, occurrence, and geologic relations of Devonian strata and Glacial deposits, and the economic resources.

13. Physiography of Iowa.
 Iowa Weather and Crop Service, Ann. Rept. for 1902, Appendix, pp. 3-11, 1 pl., 1903.
 Describes topography and drainage. Includes an account of the distribution of the drift deposits and their relation to physiographic features.

14. Twelfth annual report of the State geologist [Iowa].
 Iowa Geol. Surv., vol. 14, pp. 1-6, 3 pls. (maps), 1904.

15. The Aftonian gravels and their relations to the drift sheets in the region about Afton Junction and Thayer [Iowa].

Campbell (C. M.).

1. Mining in the Rossland district [British Columbia].
 Contains notes on the rocks of this area.
Campbell (H. D.).
1. The Cambro-Ordovician limestones of the middle portion of the Valley of Virginia.
 Names and describes Cambrian and Ordovician formations in the Valley of Virginia.

Campbell (H. D.) and Howe (James Lewis).
1. A new (?) meteoric iron from Augusta Co., Virginia.

Campbell (John T.).
1. Evidence of a local subsidence in the interior [Indiana].
 Jour. Geol., vol. 9, pp. 437-438, 1901.
 Difference in levelings made in 1883 and in 1901 show a subsidence in Parke County, Indiana.

Campbell (Marius R.).
1. Hypothesis to account for the extra-Glacial abandoned valleys of the Ohio Basin.
 Discusses their formation as due to formation and persistence of local ice dams.
 2. Charleston folio, West Virginia.
 Describes the geographic and topographic features of the region, the stratigraphy, the character and occurrence of the Carboniferous and Pleistocene strata, the geologic structure, and the mineral resources of the quadrangle.
 3. Recent geological work in western Pennsylvania.
 Eng. & Mg. Jour., vol. 73, p. 245, 1902.
 Abstract of paper read before the Geological Society of Washington.
 4. Reconnaissance of the borax deposits of Death Valley and Mohave Desert [California].
 Describes topography and geology of the region and occurrence of borax deposits.
 5. Raleigh folio, West Virginia.
 Describes geographic and topographic features, general geologic relations, the character and occurrence of Carboniferous formations and coal beds.
 Describes geographic and topographic features, general geologic relations, character and occurrence of Devonian and Carboniferous strata, Quaternary deposits, and the mineral resources, chiefly coal.
 7. Recent geological work in Pennsylvania.
 Describes geographic, physiographic, and geologic relations to Appalachian province, surface features and drainage, physiographic history, geologic structure, character and occurrence of the Carboniferous strata and Quaternary deposits, character and occurrence of the coal beds and other economic resources. The section on natural gas is contributed by Myron L. Fuller.
 Describes physiographic features of this region and discusses the mode and time of their origin.
 10. Variation and equivalence of the Charleston sandstone.
 Jour. Geol., vol. 11, pp. 459-468, 1903.
 Reviews the divergent views as to the correlation of the sandstone of West Virginia, which the writer named the Charleston sandstone, with the Mahoning sandstone of Pennsylvania, and presents additional evidence for the author's view as to their distinctness.
Campbell (Marius R.)—Continued.
11. Recent work in the bituminous coal field of Pennsylvania.
 Discusses the general structure and relations of the coal, natural gas, and oil bearing beds.
12. Borax deposits of eastern California.
 U. S. Geol. Surv., Bull. no. 213, pp. 401-405, 1903.
 Describes the occurrence and utilization of borax deposits in this area.
 Geol., vol. 31, pp. 311-312, 1903.
15. Conglomerate dikes in southern Arizona.
 Describes the general geologic structure of the region, the occurrence and character of the
 dike, and the source of its material.
16. The Deer Creek coal field, Arizona.
 Describes location, stratigraphy, and geologic structure of the field, the character and occurrence
 of coal seams, and the composition and value of the coal.
17. The Meadow Branch coal field of West Virginia.
 Describes location of the field, the stratigraphy and geologic structure, the character and occurrence
 of the coal beds, the quality of the coal and the mining developments. Includes a short report by David White on the fossil plants.
 Describes physiographic features, the general geologic structure and history of the area, the
 character and occurrence of Devonian and Carboniferous strata and Quaternary deposit
 and the mineral resources, chiefly coal.
 Discusses the origin of the present physiographic features of this region.
20. Hypothesis to account for the transformation of vegetable matter into the
 different grades of coal.
 Econ. Geol., vol. 1, pp. 26-38, 1905.
21. The classification of coals.
Campbell (Marius R.) and White (David).
1. The bituminous coal field of Pennsylvania.
 See White (David) and Campbell (M. R.), 1.
Campbell (Marius R.), White (David), and Haseltine (Robert M.).
1. The northern Appalachian coal field.
 See White (David), Campbell (M. R.), and Haseltine (R. M.), 1.
Camseyell (Charles).
1. The region southwest of Fort Smith, Slave River, N. W. T.
 Contains observations on the geology of the region examined.
2. Country around the headwaters of the Severn River.
 Includes observations on the geology of the region examined.
Capilla (Alberto).
1. Los yacimientos de fierro de “Tatitå-la,” Cantón de Jalapa, E. de Vera Cruz
 Describes the character and occurrence of iron-ore deposits in the state of Vera Cruz, Mexico.
Capps (S. R.) and Leffingwell (E. D. K.).
1. Pleistocene geology of the Sawatch Range, near Leadville, Colo.
Jour. Geol., vol. 12, pp. 608-706, 2 figs., 1904.
Discusses the extent in this region of the ice during the Glacial epoch, and describes the drift deposits, terraces, and drainage changes.

Caracristi (C. F. Z.).
1. The trans-Pecos sulphur field. A report on their economic geology and value.
Bloomington, Illinois [1905]. 44 pp., 7 pls. [Private publication.]
Gives notes on the occurrence and geology of the sulphur deposits in El Paso County, Texas.

Carlyle (E. J.).
1. The Pioneer iron mine, Ely, Minn.
Includes some account of the general geology of the region, and of the character, occurrence, and geologic relations of the iron-ore deposits.

Carmody (F. A.).
1. Jefferson County [Nebraska].
Describes topography and drainage and stratigraphic and economic geology.

Carney (Frank).
1. A type case in diversion of drainage.
Jour. Geol., vol. 2, pp. 115-124, 7 figs., 1903.
Discusses physiographic features and drainage changes in Cortland and Tompkins counties, New York.

Am. Geol., vol. 33, pp. 196-198, 1904.
Discusses criticisms of Professor Fairchild upon the writer's paper, "A type case in diversion of drainage."

Carpenter (Franklin R.).
1. The new geology and vein formation.
Discusses ore formation from the standpoint of the planetesimal hypothesis.

2. Vein formation and the new geology.

Carter (O. S. C.).
1. Artesian wells as a water supply for Philadelphia.

2. Anthracite coal near Perkiomen Creek [Pennsylvania].

3. Drilling for oil and natural gas in the vicinity of Philadelphia.

4. A ferruginized tree.

5. The arid district between the Rio Grande and the Pacific traversed by the engineers of the Mexican Boundary Commission in 1892-94.
Contains notes on the physiography of the region.

6. The petrified forests and Painted Desert of Arizona.
Gives observations upon the physiography and geology of the region.

Carter (W. E. H.).
1. The mines of Ontario.
Includes observations on the occurrence in Ontario of deposits of gold, silver, copper, nickel, iron, lead, and zinc ores, corundum, graphite, mica, and other minerals.
Case (E. C.).
 Md. Geol. Surv., Eocene, pp. 95-98, 2 pls., 1901.

2. Paleontological notes.
 Describes Lysorophus tricarinatus and an undetermined Pelycosaurian.

3. On some vertebrate fossils from the Permian beds of Oklahoma.

4. The osteology of Embolophorus dollovianus, Cope, with an attempted restoration.
 Jour. Geol., vol. 11, pp. 1-28, 23 figs., 1903.

5. New or little-known vertebrates from the Permian of Texas.
 Jour. Geol., vol. 11, pp. 394-402, 10 figs., 1903.

6. The structure and relationships of the American Pelycosauria.

7. The osteology of the skull of the pelycosaurian genus, Dimetrodon.
 Jour. Geol., vol. 12, pp. 304-311, 6 figs., 1904.

8. On the structure of the fore foot of Dimetrodon.
 Jour. Geol., vol. 12, pp. 312-315, 3 figs., 1904.

 Md. Geol. Surv., Miocene, pp. 3-70, 18 pls., 1904.

10. A remarkably preserved specimen of a pelycosaur collected during the last summer in Texas.

11. The morphology of the skull of the pelycosaurian genus Dimetrodon.

12. The osteology of the Diadectidae and their relations to the Chelydosauria.

15. Characters of the Chelydosauria.

Casey (Thomas L.).
1. The Jackson outcrops on Red River [Louisiana].
 Describes outcrops and discusses the fauna obtained, describing two new species.

2. On the probable age of the Alabama white limestone.
 Discusses the geologic age and relations of the Alabama white limestone, Jackson and Vicksburg stages and other Tertiary formations in the light of evidence of their fossils.

 Nautilus, vol. 16, pp. 18-19, fig., 1902.

5. Notes on the Pleurotomidæ, with description of some new genera and species.

6. The mutation theory.
 Calls attention to the support which Tertiary mollusca, particularly from Mississippi deposits, give to the mutation theory.
Catherinet (Jules).

Catlett (Charles).

Chalmers (Robert).

Chamberlin (Rollin T.).

Chamberlin (Thomas C.).
Chamberlin (Thomas C.)—Continued.

2. On a possible function of disruptive approach in the formation of meteorites, comets, and nebulae.
 Jour. Geol., vol. 9, pp. 369-392, 1 pl., 1901.
 Discusses the possibility of mass disruption without collision and the probable effects.

3. Report on some studies relative to primal questions in geology.

4. On Lord Kelvin's address on the age of the earth as an abode fitted for life.

5. The geologic relations of the human relics of Lansing, Kansas.
 Discusses certain phases of fluvial action and their bearing on the phenomena at this locality.
 Describes the character of the river deposits and presents the author's interpretations.

6. Distribution of the internal heat of the earth.

7. Has the rate of rotation of the earth changed appreciably during geological history?

8. The criteria requisite for the reference of relics to a glacial age.
 Jour. Geol., vol. 11, pp. 64-85, 1 fig., 1903.

9. Distribution of the internal heat of the earth.
 Brief note on the character of the paper.

10. Has the rate of rotation of the earth changed appreciably during geological history?
 Brief note on the theory of a high rate of terrestrial rotation in early geologic times.

11. The origin of ocean basins on the planetesimal hypothesis.

12. [The geological survey of the Lake Superior region.]
 Jour. Geol., vol. 12, pp. 276-277, 1904.
 Reviews the work and publications of the U. S. Geological Survey upon the Lake Superior
 ore-bearing series.

13. Fundamental problems of geology.
 Discusses lines of research upon fundamental problems of geology.

15. Fundamental problems of geology.

Chamberlin (Thomas C.) and Salisbury (Rollin D.).

Chance (H. M.).

 Describes the peculiar occurrence of gold in the nearly horizontal Cambrian sandstones and
 shales in the vicinity of Deadwood.

2. The iron mines of Hartville, Wyoming.
 Describes the occurrence and character of the ore bodies and gives detailed descriptions of
 the mine workings.
Chaney (L. W.).

Chapman (Robert H.).
1. Our northern Rockies.
 Contains physiographic notes on the Rocky Mountains in Montana.

2. The value of topographic maps.

Charles (H. W.).
1. Dakota sandstone in Washington County [Kansas].
 Describes its general characteristics in this county.

2. The value of topographic maps.

Chatard (T. M.) and Whitehead (Cabell).
 Describes the chemical studies made of these gold and silver ores.

Chazal (Philip E.).
1. The century in phosphates and fertilizers. A sketch of the South Carolina phosphate industry.
 Charleston, S. C., 71 pp., 1904.
 Includes an account of the occurrence, geologic relations, character, origin, and economic development of the phosphate deposits of South Carolina.

Chester (Albert H.).
1. Mineralogical notes and explorations.
 Describes the occurrence and chemical composition of several minerals.

Chibas (Eduardo J.).
1. Manganese mining in Cuba.
 Abstract of report on the manganese mines near Santiago.

Christy (S. B.).
1. Biographical notice of Joseph LeConte.

Church (John A.).
1. The Tombstone, Arizona, mining district.
 Am. Inst. Mg. Engrs., Trans., v.33, pp. 3-37, 12 figs., 1903.
 Describes the character and occurrence of sedimentary strata, the geologic structure, the character and occurrence of eruptive rocks, and the position and relations of the ore bodies of gold, silver, and manganese.

2. [In discussion of paper by Walter P. Jenney, "The chemistry of ore-deposition."]
 Discusses occurrences of ore deposits and their bearing upon the subject of the paper under discussion.

3. Enrichment in veins.

Cilley (Frank H.).
 Discusses briefly the application of the theory to the study of the inner condition of the earth.
1. **Vorkommen und Gewinnung von Asbest in Canada.**

 Zeitsch. f. prak. Geol., Jg. 11, pp. 123-131, 3 figs., 1903.

 Describes occurrence and character of asbestos deposits in Quebec and the mining developments.

2. **Mica deposits.**

 Describes the occurrence and character of mica and phlogopite deposits in Canada and elsewhere and their economic development in Canada.

3. **Asbestos: its occurrence, exploitation, and uses.**

 Can., Dept. of the Interior, Mines Branch, Ottawa, 1905. 169 pp., 38 figs., 1 map, and 2 charts.

4. **Mica: its occurrence, exploitation and uses.**

 Can., Dept. of the Interior, Mines Branch, Ottawa, 1905. 148 pp., 1 pl., 38 figs., and 1 map.

Clapp (Frederick G.).

1. **Geological history of the Charles River [Massachusetts].**

 Describes the various stages of the river’s development and their causes, its relation to the geologic structure and the Tertiary and Glacial history of the region.

2. **Relations of gravel deposits in the northern part of Glacial Lake Charles, Massachusetts.**

 Jour. Geol., vol. 12, pp. 198-214, 3 figs., 1904.

 Describes sand plains, gravel, and other Glacial deposits in the valley of the Charles River in Massachusetts, and discusses their characteristics and formations, the disappearance of the Glacial ice, and connected events.

3. **Water resources of the Curwensville, Patton, Ebensburg, and Barnesboro quadrangles, Pennsylvania.**

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 110, pp. 159-163, 1905.

4. **Limestones of southwestern Pennsylvania.**

 U. S. Geol. Surv., Bull. no. 249, 52 pp., 7 pls., 1905.

 Describes the character, occurrence, and geologic relations of limestones of southwestern Pennsylvania, with especial reference to their availability for the manufacture of cement.

Clapp (Frederick G.), Fuller (M. L.) and.

1. **Marl-loess of the lower Wabash Valley.**

 See Fuller (M. L.) and Clapp (F. G.), 1.

2. **Patoka folio, Indiana-Illinois.**

 See Fuller (Myron L.) and Clapp (Frederick G.), 2.

Clark (P. Edwin), Van Ingen (Gilbert) and.

1. **Disturbed fossiliferous rocks in the vicinity of Rondout, N. Y.**

 See Van Ingen (Gilbert) and Clark (P. E.), 1.

Clark (W. Blair).

1. **Drainage modifications in Knox, Licking, and Coshocton counties [Ohio].**

 Discusses modifications produced in the drainage of this area by the ice of the Glacial period.

Clark (William).

1. **Some new points on the fin attachment of Dinichthys and Cladodus.**

Clark (William Bullock).

1. **Maryland Geological Survey, volume four.**

 Baltimore, The Johns Hopkins Press, 1902. 504 pp., 69 pls., 54 figs.

2. **Reports on Cecil County [Maryland].**

Clark (William Bullock) — Continued.
3. Reports on Garrett County [Maryland].
5. The Matawan formation of Maryland, Delaware, and New Jersey, and its relations to overlying and underlying formations.
 Includes a table showing correlation of Atlantic coast Cretaceous formations with Cretaceous formations of Europe.
6. The Miocene deposits of Maryland. Introduction and general stratigraphic relations.
7. Systematic paleontology of the Miocene deposits of Maryland: Echinodermata.
8. Origin, distribution and uses of coal.
 Gives a general account of the use, origin, occurrence, and production of coal, and the extent, character of the coal, etc., of the Appalachian coal field.
Clark (William Bullock) and Bibbins (A.).
1. Geology of the Potomac group in the middle Atlantic slope.
 Describes the character, occurrence and distribution of the divisions of the Potomac group, the interpretation of these deposits and the surface configuration of the crystalline floor and of the Potomac group. Discusses the age of these deposits.
2. The Potomac group in Maryland.
Clark (William Bullock) and Martin (George Curtis).
1. The Eocene deposits of Maryland.
 Md. Geol. Surv., Eocene, pp. 21-92, 14 pls., 1901.
 Describes the general stratigraphic relations, distribution, characters, origin of the materials, and the stratigraphic and paleontologic characteristics of the Eocene strata. Discusses their correlation.
2. Eocene Mollusca.
3. Eocene Molluscoidea (Brachiopoda).
 Md. Geol. Surv., Eocene, pp. 203-205, 1 pl., 1901.
4. Eocene Echinodermata.
5. Correlation of the Coal Measures of Maryland.
 Describes the subdivisions of the Coal Measures group in Maryland and discusses their correlation with the Coal Measures of other portions of the Appalachian province.
6. Correlation of the formations and members [of the Maryland coal district].
Clark (Wm. Bullock), Martin (George C.) and Rutledge (J. J.).
1. Distribution and character of the Maryland coal beds.
Clarke (C. H.).
1. Notes on the Michipicoten gold-belt.
 Describes the occurrence of gold ores and the mining developments.
 Bull. 301—06—5
Clarke (Frank Wigglesworth).

3. The composition of glauconite and greenalite.

4. Analyses of rocks from the laboratory of the United States Geological Survey.
 U. S. Geol. Surv., Bull. no. 228, 375 pp., 1904.
 Note.—The analyses of rocks have not been listed in the index of this bibliography.

5. A pseudo-serpentine from Stevens County, Washington.
 Describes the occurrence and discusses the chemical composition.

Clarke (Frank Wigglesworth) and Steiger (George).

1. The action of ammonium chloride upon silicates.
 U. S. Geol. Surv., Bull. no. 207, 57 pp., 1902.

2. On "Californite."
 Discusses the chemical composition.

Clarke (John M.).

1. The Oriskany fauna of Becraft Mountain, Columbia County, N. Y.
 See Clarke (J. M.), no. 971, in U. S. Geological Survey Bulletin, no. 188.

2. Limestones of central and western New York interbedded with bituminous shales of the Marcellus stage, with notes on the nature and origin of their faunas.
 N. Y. State Mus., Bull. no. 49, pp. 115-138, 1 pl., 2 figs., 1901.

 N. Y. State Mus., Bull. no. 49, pp. 182-198, 1 pl., 7 figs., 1901.
 Reviews the literature regarding these forms and describes three new species.

 N. Y. State Mus., Bull. no. 49, pp. 199-203, 1 pl., 1901.

5. Report of the State paleontologist, 1901 [N. Y.].
 N. Y. State Mus., Bull. no. 52, pp. 419-450, 1902.
 Contains brief discussion of the results of the studies of the Cambrian, Silurian, and Devonian rocks and fauna of the State in 1901.

 N. Y. State Mus., Bull. no. 52, pp. 457-460, 1902.
 Contains an account of his life and work.

7. Paleontologic results of the areal survey of the Olean quadrangle [N. Y.].
 N. Y. State Mus., Bull. no. 52, pp. 524-528, 1902.
 Discusses the paleontologic aspect of the faunas of the Devonian-Carboniferous beds of the region.

 N. Y. State Mus., Bull. no. 52, pp. 606-610, 4 pls., 2 figs., 1902.

9. [Note on the occurrence and relations of the fauna.] [In Luther (D. D.), Stratigraphic value of the Portage sandstone. N. Y.].
 N. Y. State Mus., Bull. no. 52, pp. 630-631, 1 fig., 1902.

10. The indigene and alien faunas of the New York Devonic.
 N. Y. State Mus., Bull. no. 52, pp. 664-672, 1902.
 Discusses the influence of the supposed barriers in the Devonian seas upon the migrations and distribution of the faunas of that period.

N. Y. State Mus., Bull. no. 69, pp. 851-891, 1903.
Gives a review of the work of the office of the State paleontologist of New York for 1901-2.

N. Y. State Mus., Bull. no. 69, pp. 921-933, 2 pls., 1903.
Describes occurrences of mastodon remains in the State of New York.

N. Y. State Mus., Bull. no. 69, pp. 996-999, 1903.
Discusses the discrepancy of results obtained by stratigraphic and paleontologic work in the Olean quadrangle of New York and the geologic position of the Cattaraugus beds.

17. Torsion of the lamellibranch shell, an illustration of Noetling's law.
N. Y. State Mus., Bull. no. 69, pp. 1229-1233, 7 figs., 1903.

N. Y. State Mus., Bull. no. 69, pp. 1234-1238, 2 pls., 1903.

N. Y. State Mus., Mem. 6, pp. 199-454, 26 pls., 16 figs., 1903.
Discusses conditions of sedimentation and the distribution of land and water prevailing in the area of western New York in later Devonian times, and the stratigraphy of the Portage and character of the fauna, and gives systematic descriptions of the species and tabules of distribution and comparison with faunas of other regions.

N. Y. State Mus., Handbook 19, 28 pp., 1903.
Discusses the nomenclature and classification of the New York series of geologic formations.
Includes a table showing the geologic position and geographic distribution of formations in the State of New York.

Am. Geol., vol. 34, pp. 1-13, 1 pl. (por.), 1904.
Includes a chronologic list of Beecher's published papers, prepared by Lucy P. Bush.

23. With regard to Portage crinoids.
A short note in regard to nomenclature.

24. Prof. James Hall and the Troost manuscript.

N. Y. State Mus., Bull. no. 80, pp. 3-133, 3 pls., 1905.
Reviews the scientific and office work, and publications of the office of the State paleontologist for the year beginning October 1, 1902. Appendices contain list of accessions, new entries of fossil localities, and type specimens of Paleozoic fossils, Supplement I.

N. Y. State Mus., Bull. no. 80, pp. 134-171, 9 pls., 13 figs., 1545.
Describes the physiography and general geology of the locality, and in detail its geological structure and the character and occurrence of the fossil faunas, with faunal lists, contained in the rocks of Perce and vicinity, on the coast of Gaspé, Province of Quebec.

27. Ithaca fauna of central New York.
N. Y. State Mus., Bull. no. 82, pp. 55-70, 1905.
Gives general observations upon the fauna, a list of localities from which collections have been made, and lists of the species with their localities.
Clarke (John M.)—Continued.
28. Report of the director, 1904, with the 24th report of the State geologist and the report of the State paleontologist, 1904.
Includes various geologic data and contains Supplement 2 to the list of type specimens of Paleozoic fossils in the New York State Museum.

Clarke (John M.) and Luther (D. Dana).
1. Stratigraphic and paleontologic map of Canandaigua and Naples quadrangles [New York].
N. Y. State Mus., Bull. no. 63, 76 pp., geol. map, 1904.
Describes in detail the occurrence and the lithologic and faunal characters of the Silurian and Devonian formations included in the area of the map, and gives lists of the fossils of the several formations.

2. Geology of the Watkins and Elmira quadrangles [New York], accompanied by a geologic map.
N. Y. State Mus., Bull. no. 81, pp. 3-29, and map, 1905.
Describes the occurrence, character, development, relations, and fossil contents of the Devonian formations represented on the geologic map of this area.

3. Geologic map of the Tully quadrangle [New York].
N. Y. State Mus., Bull. 82, pp. 35-52, and map, 1905.
Describes the occurrence, character, development, relations, and fossil contents of the Devonian and Silurian formations represented in this area.

Clarke (John M.) and Ruedemann (Rudolf).
N. Y. State Mus., Mem. 5, 195 pp., 21 pis., 1903.
Describes stratigraphy, occurrence, and geologic relations of the Guelph formation in New York, gives systematic descriptions of the fauna, and discusses the conditions of life and sedimentation during the prevalence of the Guelph fauna, and its distribution.

2. Catalogue of type specimens of Paleozoic fossils in New York State Museum.
N. Y. State Mus., Bull. 65, 847 pp., 1903.

Clarke (John M.), Ruedemann (R.), and Luther (D. D.).
1. Contact lines of Upper Siluric formations on the Brockport and Medina quadrangles, N. Y.
N. Y. State Mus., Bull. no. 52, pp. 517-523, 1902.
Describes outcrops of these beds at various localities.

Claypole (Edward W.).
1. On an unrecognized coal-horizon in northeastern Ohio.
Discusses stratigraphic position of coal seams in the vicinity of Massillon, Ohio.

2. On the Salina group in northeastern Ohio.

3. Notes on petroleum in California.
Am. Geol., vol. 27, pp. 150-159, 1901.
Describes the physiographic features of the oil areas, the general geology, and the source of the oil and gas.

4. The Sierra Madre near Pasadena [California].
Contains notes on the Tertiary strata and igneous rocks of the region.

5. The Devonian era in the Ohio basin.
Discusses occurrence, lithologic, stratigraphic, and faunal features of Devonian formations in the Ohio basin, geographic and hypsographic conditions prevailing in Devonian times, and geologic and geographic distribution of the invertebrate and vertebrate faunas, and describes briefly species of Cladodus and Monocladodus.

Clearman (Harriet M.).
1. A geological situation in the lava flow, with reference to the vegetation.
Includes observations upon the lava beds of Idaho.
Cleland (Herdman Fitzgerald).
1. The landslides of Mt. Graylock and Briggsville, Mass.
 Jour. Geol., vol. 10, pp. 513-517, 2 figs., 1902.
 Describes the occurrence of recent landslips.

 U. S. Geol. Surv., Bull. no. 206, 112 pp., 5 pls., 3 figs., 1903.
 Describes the general geology of the Cayuga Lake region in New York and the history, correlation, and facinal zones of the Hamilton formation in this region, and gives a classified list of species found, with notes on their occurrence, general observations and conclusions, and a table showing vertical distribution and relative abundance of Hamilton species.

3. Further notes on the Calciferous (Beekmantown) formation of the Mohawk Valley, with descriptions of new species.
 Am. Pal., Bull. 18, pp. 31-50, 4 pls., 1903.
 Describes character, occurrence, and fossil contents of Calciferous strata in the Mohawk Valley, and gives detailed descriptions of the new species of fossils.

4. The formation of natural bridges.

Clements (J. Morgan).
1. Ellipsoidal structure in the pre-Cambrian basic and intermediate rocks of the Lake Superior region.

2. Vermilion district of Minnesota.
 Describes stratigraphy and geological structure of this region and discusses the origin of the ores.

3. The Vermilion iron-bearing district of Minnesota.
 Reviews the literature regarding the district, describes its physiography, the character, occurrence, and relations of the Archean, Huronian, and Keweenawan rocks and drift, and the occurrence, character, and origin of the ore deposits.

4. Ellipsoidal structure in pre-Cambrian rocks of Lake Superior region.

5. Vermilion district of Minnesota.
 Gives a brief outline of the geology.

Clements (J. Morgan), Van Hise (C. R.) and.
1. The Vermilion iron-bearing district.
 See Van Hise (C. R.) and Clements (J. M.), 1.

Clendenin (W. W.).
1. A preliminary report upon the Florida parishes of east Louisiana and the bluff, prairie, and hill lands of southwest Louisiana.
 La. State Experiment Stations, Geol. & Agric., pt. 3, pp. 159-206 [1896].
 Describes topographic, drainage and geologic features, soils, and other economic resources of this area.

2. A preliminary report upon the bluff and Mississippi alluvial lands of Louisiana.
 La. State Experiment Stations, Geol. & Agric., pt. 4, pp. 257-290 [1897].
 Describes physiographic features and soils of this area.

Clere (M.).
1. The Moctezuma district, Mexico.
 Contains notes on the geology of the district, and the occurrence of the silver and gold ore deposits.
70 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Cobb (Collier).
1. Origin of the sandhill topography of the Carolinas.

2. Recent changes in the North Carolina coast, with special reference to Hatteras Island.

3. A new Palaeotrochis locality, with some notes on the nature of Palaeotrochis.

4. The forms of sand-dunes as influenced by neighboring forests.

Cockerell (T. D. A.).

3. Two Carboniferous genera.
 Calls attention to two generic names that are preoccupied.

Cohen (E.).
 Describes the character and constitution of this meteorite.

2. Das Meteoreisen von Forsyth Co., Georgia, Vereinigte Staaten.
 Describes the occurrence, characters, and constitution of this meteorite from Forsyth County, Georgia.

3. Über das Meteoreisen von Cincinnati, Vereinigte Staaten.
 Describes the characters and constitution of this meteorite.

4. Meteoreisen-Studien. XI.
 Describes meteorites from Illinois Gulch, Mont.; Hammond, Wis.; Cacaria, Mex.; Mesquital, Mex.; Murphy, N. C.; Saint Francois County, Mo.; Cosby's Creek, Tenn.; Canyon Diablo, Ariz.; Kendall County, Tex., and Mount Joy, Pa.

5. Die Meteoreisen von Ranchito und Casas Grandes [Mexico].
 Describes occurrence, characters, and composition of meteorites from Mexico.

6. Die Meteoreisen von Nenntmannsdorf und Persimmon Creek; Unterscheidung von Cohenit und Schreibersit.
 Mittheilungen des Naturwissenschaftlichen Vereins für Neu-Vorpommern und Rügen zu Greifswald, Jahrg. 35, 4 pp., 1903.
 Describes occurrence and characters of a meteorite found in North Carolina.

 Mittheilungen des Naturwissenschaftlichen Vereins für Neu-Vorpommern und Rügen zu Greifswald, Jahrg. 35, 4 pp., 1903.
 Describes occurrence and characters of a meteorite from Pennsylvania.

 Mittheilungen des Naturwissenschaftlichen Vereins für Neu-Vorpommern und Rügen zu Greifswald, Jahrg. 34, 5 pp., 1902.
 Describes occurrence, characters, and composition of meteorites from Mexico and Texas.

Colburn (E. A.).
1. A peculiar ore deposit.
 Describes the occurrence, character, and geologic relations of ore bodies.
Cole (A. D.).
1. Clarence L. Herrick.

Cole (Leon J.).
1. The delta of the St. Clair River.

Coleman (Arthur P.).
1. Glacial and inter-Glacial beds near Toronto [Canada].
Jour. Geol., vol. 9, pp. 285-310, 2 figs., 1901.
Describes the glacial history, the variations in climate and their effect on the then existing faunas and floras, and the glacial deposits of the region.

Describes the marine deposits, shell gravels, and beaches of the region.

3. The Vermilion River placers [Ontario].
Describes the character and distribution of the placers.

Describes the character and occurrence of the iron-ore bodies of various localities, and the petrographic characters of some of the associated rocks. Discusses the origin of some of the ores and includes notes on the Pleistocene geology.

5. Sea beaches of eastern Ontario.
Contains notes on the Leda clay and Saxicava sand, and describes the character and occurrence of the beach sands and gravels and their faunas.

6. The classification of the Archaean.
Reviews the work upon the Archean and the differences of interpretation, and compares and discusses the different schemes of classification proposed.

7. Types of iron-bearing rocks in Ontario.

8. Nepheline and other syenites near Port Coldwell, Ontario.
Describes the megascopic and microscopic characters of these rocks.

9. The duration of the Toronto inter-Glacial period.
Am. Geol., vol. 29, pp. 71-80, 1902.
Reviews a recent paper by Upham and discusses the evidences indicating the duration of this period.

10. The Huronian question.
Am. Geol., vol. 29, pp. 327-334, 1902.
Discusses the relations of the Huronian rocks and the views of various geologists regarding these questions.

11. Rock basins of Helen mine, Michipicoten, Canada.
Describes the topography and the occurrence and origin of the rock basins.

Describes geographic and geologic distribution of the iron-bearing rocks and the stratigraphic position of the ores.

13. Syenites near Port Coldwell [Ontario].
Describes the occurrence and lithologic characters of these rocks.

Describes topography and geology of the region, the occurrence of ore bodies and mining operations, and discusses the character, occurrence, and origin of the ore deposits.
Coleman (Arthur P.)—Continued.

15. Types of iron-bearing rocks in Ontario.

16. Iroquois beach in Ontario.
 Describes location and character of the beach in Ontario of Lake Iroquois and discusses the levels and tilting of the beach, the outlet of the lake, and its geological and time relationships.

17. The Iroquois beach in Ontario.

18. The northern nickel range [Ontario].
 Describes the topography, general geology, and the occurrence, character, and geological relations of nickel and iron-ore deposits.

19. The Sudbury nickel-bearing eruptive.

20. Geology of the Sudbury district [Ontario].

21. Theories of world building.
 Discusses the nebular and planetesimal hypotheses.

22. Glacial lakes and Pleistocene changes in the St. Lawrence Valley.

Coleman (Arthur P.) and Willmott (A. B.).

1. The Michipicoten iron region [Ontario].
 Describes the topography, gives a classification of the Huronian rocks, discusses the geology and formation of the iron ores, and describes the petrology of this region.

2. The Michipicoten iron ranges [Ontario].
 Toronto Univ. Studies, Geol. ser., no. 2, 47 pp., 2 maps, 1902.

Colles (George Wetmore).

1. Mica and the mica industry.
 Describes the characters of micas and discusses the age and origin of pegmatite dikes, the origin of the mica, and the origin and relations of the Canadian mica deposits.

Collie (George Lucius).

1. Wisconsin shore of Lake Superior.
 Describes the general geology of the region, the shore formations and beach phenomena, and the characters of the wave erosion and its topography.

2. Physiography of Wisconsin.

 Describes position, character, stratigraphy, and fauna of Ordovician formations in Center County, Pennsylvania, and describes some new species of Ordovician fossils.

Collier (Arthur J.).

1. A reconnaissance of the northwestern portion of Seward Peninsula, Alaska.
 Describes the geology and physiography of this region and gives notes on the petrology and the occurrence of gold and tin.

2. The coal resources of the Yukon, Alaska.
 U. S. Geol. Surv., Bull. no. 218, 71 pp., 6 pls., 3 figs., 1903.
 Describes the general geology and the occurrence and character of the coal deposits.
Collier (Arthur J.)—Continued.

3. The Glenn Creek gold mining district, Alaska.
 Describes placer deposits and developments in this region.

 Describes the occurrence of coal and gives notes on the character of the coals and the mining developments.

5. Tin in the York region, Alaska.
 Eng. & Mg. Jour., vol. 76, pp. 999-1000, illus., 1903.
 Describes the occurrence of deposits of tin ore.

 Discusses the geologic age of the coal-bearing formations.

 Describes the general geology, and occurrence and character of stream and lode tin deposits.

8. The tin deposits of the York region, Alaska.
 U. S. Geol. Surv., Bull. no. 229, 61 pp., 6 pis., 5 figs., 1904.
 Describes the general geology, the character and occurrence of sedimentary rocks of Silurian age and igneous rocks, and the character and occurrence in detail of tin-ore deposits and the mining operations. Gives a résumé of the occurrence of tin in the United States and other parts of the world.

 Am. Geol., vol. 34, pp. 401-402, 1904.
 Gives a brief account of the situation and geologic age of the coal fields, and the occurrence and character of the coal beds.

10. Auriferous quartz veins on Unalaska Island [Alaska].
 Describes the occurrence of lode and placer tin deposits.

11. Recent development of Alaskan tin deposits.
 U. S. Geol. Surv., Bull. no. 229, pp. 120-127, 1 fig., 1905.
 Describes the occurrence of gold-bearing quartz veins.

12. Coal fields of the Cape Lisburne region [Alaska].
 Describes the general geology, the character and occurrence of Paleozoic and Mesozoic formations, the geology, topography, and extent of the Mesozoic and Paleozoic coal fields of this region, and the character of the coals.

Collier (Arthur J.), Brooks (Alfred H.) and.

1. Glacial phenomena of the Seward Peninsula [Alaska].
 See Brooks (A. H.) and Collier (A. J.), 1.

Collins (Arthur L.).

1. [In discussion of "The origin of ore-deposits."]

Collins (G. E.).

1. Vein structure at the Reynolds mine, Georgia.
 Discusses the vein phenomena in the auriferous crystalline rocks of the region.

Collins (Henry F.).

1. Notes on the wollastonite rock mass and its associated minerals of the Santa Fe mine, State of Chiapas, Mexico.
 Describes occurrence, origin, and crystallographic features of a rock mass of wollastonite.

Colton (Geo. H.).

1. A possible cause of osars.
Combes (Paul).
1. Exploration de l’île d’Anticosti.
Paris, Joseph André et Cie., 1896. 46 pp. and map.
Contains a brief account of the geology of the island of Anticosti.

Comstock (Frank M.).
Am. Geol., vol. 32, pp. 12-14, 3 figs., 1903.
2. Ancient lake beaches on the islands in Georgian Bay.
Am. Geol., vol. 33, pp. 312-318, 2 pls., 1 fig., 1904.
Describes the occurrence and character of elevated beaches.

Comstock (Theodore B.).
1. The geology and vein phenomena of Arizona.
Gives a general description of the mineral regions. Discusses the orographic disturbances and their effects on ore deposition, and describes the stratigraphic succession in the state.
2. Edward Claypole, the scientist.
Am. Geol., vol. 29, pp. 1-23, 1 pl., 1902.
Includes a list of publications.
4. Superficial blackening and discoloration of rocks, especially in desert regions.
Discusses the occurrence of these features and their explanation.

Comstock (W. J.), Alien (O. D.) and.
1. Bastna’site and tysonite from Colorado.
See Alien (O. D.) and Comstock (W. J.), 1.

Concannon (Michael).
1. Relation [regarding the discovery of the Lansing, Kansas, skeleton].
Details the circumstances of the finding of the fossil human remains near Lansing, Kansas.

Condra (George Evart).
1. New Bryozoa from the Coal Measures of Nebraska.
Am. Geol., vol. 30, pp. 337-359, 8 pls., 1902.
2. The Coal Measure bryozoa of Nebraska.
Reviews literature bearing on the subject, gives list of Coal Measure bryozoa in the United States, table of geographic distribution in Nebraska, and systematic descriptions of genera and species.
3. On Rhombopora lepidodendroides Meek.
Am. Geol., vol. 31, pp. 22-24, 2 pls., 1903.
Describes characters and occurrence in the Permian of Nebraska.
4. An old Platte channel [Nebraska].
Am. Geol., vol. 31, pp. 361-369, 2 figs., 1903.
Describes situation, stratigraphic and physiographic features of the valley to which the name Todd Valley is given, and the evidences of its containing a buried channel formerly occupied by the Platte River.
5. Stratigraphic delineation of the Benton and Niobrara formations of Nebraska.
FOR THE YEARS 1901-1905, INCLUSIVE.

Cook (Alfred N.).
1. A new deposit of fuller's earth.
 Describes the chemical composition of a specimen of fuller's earth from the Black Hills of South Dakota.

Cook (Edward H.).
1. La Mina Santa Francisca, Mexico.
 Mg. Mag., vol. 11, pp. 424-429, 5 figs., 1905.
 Gives notes on the geology of the region and the character and occurrence of the ores carrying principally silver.

Cooper (A. S.).
1. The origin and occurrence of petroleum in California.
 Min. Ind. for 1901, pp. 505-509, fig. 1, 1901.
 Describes the occurrence and character of the oil.

Cooper (J. C.).
1. Oxygen in its relation to mineralogy.

Cooper (W. F.).
1. Notes on the wells, springs, and general water resources of lower Michigan.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 489-512, 1904.
 Discusses the water resources of the area. Includes records of wells and borings.
3. The coal formation of Bay County [Michigan].

Corkill (E. T.).
1. Notes on the occurrences, production, and uses of mica.
 Describes the occurrence and mining of mica in India, the United States, and Canada, particularly the occurrence and geologic relations of deposits in Quebec and Ontario.
2. Petroleum and natural gas [in Ontario].
 Reviews the various theories of the origin of petroleum and natural gas, and describes the occurrence and geologic horizon of petroleum and natural gas in Ontario, including numerous records of borings.

Corless (C. V.).
1. The Coal Creek colliery of the Crows Nest Pass Coal Co. [Canada].
 Gives a general description of the geologic occurrence of the coal.
 Describes the geology and occurrence of ore bodies of this area.

Cornwall (H. B.).
1. Occurrence of greenockite on calcite from Joplin, Missouri.

Cros (Frederic).
1. The buried valley of Wyoming [Pennsylvania].
 Describes the position, formation, and filling of a pre-Glacial valley at Wyoming.

Coste (Eugene).
1. Volcanic origin of natural gas and petroleum.
 Abstract from paper read before the Can. Mg. Inst., March, 1903.
Coste (Eugene)—Continued.

2. Volcanic origin of natural gas and petroleum.
 Can. Mg. Inst., Jour., vol. 6, pp. 73-123, 1904.
 Gives a full presentation of facts confirmatory of the theory of the volcanic origin of natural gas and petroleum.

3. The volcanic origin of oil.

4. Volcanic origin of oil.
 Discusses volcanic origin of oil with particular reference to the Texas-Louisiana oil district.

Courtis (W. M.).
1. [In discussion of paper by G. O. Smith and Bailey Willis on "The Clealum iron ores, Washington."]
 Gives additional analyses of these ores.

Cowan (John L.).
1. The arsenic mines at Brinton, Virginia.
 Describes the occurrence of arsenic ores at Brinton, Virginia, and their economic development.

Cowles (Henry C.).
1. The relation between baseleveling and plant distribution.

2. The influence of underlying rocks on the character of the vegetation.

Cragin (Francis Whittemore).
1. A study of some teleosts from the Russell substage of the Platte Cretaceous series.

2. Paleontology of the Malone Jurassic formation of Texas.
 Discusses the occurrence and geologic horizon of Jurassic fossils in the Malone Mountains region of Texas and gives systematic descriptions of the species.

Crane (W. R.).
1. Kansas coal mining.
 Eng. and Mg. Jour., vol. 72, pp. 748-752, 7 figs., 1901.
 Describes the distribution and characters of the coal-bearing strata.

2. The Kansas coal mines of the Missouri Valley.
 Contains notes on the geologic occurrence of the coal seams.

3. Asphalt refining. Methods employed in the Tar Springs Asphalt Co.'s refinery, near Comanche, Ind. T.
 Contains observations on the character and occurrence of asphalt deposits.

4. Coal fields of Kansas. Recent discoveries and developments in the Cretaceous formation in the northern central portion of the State.
 Describes the occurrence of a workable coal seam and gives a section of the strata penetrated by a shaft.

5. Coal mining in the Indian Territory—the southwestern field.
 Describes the character and occurrence of the coal seams and the methods of mining.

6. The Pratt coal mines in Alabama.
 Describes the occurrence of coal and the geologic structure of the coal fields.
Crane (W. R.)—Continued.

7. Coal mining in Arkansas.

Contains notes on the occurrence and character of coal beds in western Arkansas.

Crane (W. R.), Adams (George I.), Haworth (Erasmus), and.

See Adams (George I.), Haworth (Erasmus), and Crane (W. R.), 1.

Crawford (J.).

1. Earthquakes in Nicaragua.

*Am. Geol., vol. 29, p. 328, 1902.

2. Volcanoes and earthquakes in Nicaragua.

*Am. Geol., vol. 29, p. 395, 1902.

3. List of the most important volcanic eruptions and earthquakes in western Nicaragua within historic time.

4. Additions to the list of Nicaragua volcanic eruptions in historic time.

Crevecoeur (F. F.).

1. List of fossil plants collected in the vicinity of Onaga, Kans.

Describes the stratigraphy and occurrence of fossils at this locality.

Crider (A. F.).

1. Cement resources of northeast Mississippi.

2. Volcanoes and earthquakes in Nicaragua.

*Am. Geol., vol. 29, p. 395, 1902.

3. List of the most important volcanic eruptions and earthquakes in western Nicaragua within historic time.

4. Additions to the list of Nicaragua volcanic eruptions in historic time.

Criscle (A. F.), Eckel (E. C.) and.

1. Geology and cement resources of the Tombigbee River district, Mississippi-Alabama.

See Eckel (E. C.) and Crider (A. F.), 1.

Crook (Alja Robinson).

1. The mineralogy of the Chicago area.

Discusses the occurrence and composition of the minerals of this area.

2. Missouri lead and zinc regions visited by the Geological Society of America.

Describes the occurrence of ore deposits.

Describes the occurrence, relations to surrounding rocks, and character of molybdenite ore at Crown Point, Washington.

Crosby (William O.).

1. The tripolite deposits of Fitzgerald Lake, near St. John, New Brunswick

Describes the character and origin of the deposit.

Describes the character, occurrence, and origin of the hematite ores of the region.

3. The origin of eskers.

Describes the characteristics of eskers, discusses the hypotheses as to their origin, and reviews the evidence that has been heretofore presented.
Crosby (William O.)—Continued.

4. Origin and relations of the auriferous veins of Algoma [western Ontario].
 Tech. Quart., vol. 15, pp. 161-180, 8 figs., 1902.
 Presents the author's observations in the region, reviews Dr. Coleman's conclusions, and
discusses the origin of these auriferous veins.

 Describes the character of the glacial gravels and gives the results of penetration tests.

 Describes certain geographic and physiographic features and discusses their origin.

7. A study of the geology of the Charles River estuary and Boston Harbor, with
 special reference to the building of the proposed dam across the tidal portion of
 the river.
 Tech. Quart., vol. 16, pp. 64-92, 1903.
 Describes the geologic formations of the vicinity, the bedded rock and glacial deposits, and
 the processes and conditions of sedimentation prevailing now and in the recent past.

8. Structure and composition of the delta plains formed during the Clinton stage in
 the Glacial lake of the Nashua Valley.
 Tech. Quart., vol. 16, pp. 240-254, 9 figs., map, 1903.

9. Notes on the wells, springs, and general water resources of Rhode Island.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 119-123, 1904.

10. Memoir of Alpheus Hyatt.
 Includes a list of papers published by the subject of the memoir.

11. Structure and composition of the delta plains formed during the Clinton stage in
 the Glacial lake of the Nashua Valley. [Continuation.]
 Describes the structure and process of building of Glacial delta plains and the character and
 occurrence of various Glacial deposits, and discusses their origin.

12. Geology of the Weston aqueduct of the Metropolitan waterworks in Southboro,
 Framingham, Wayland, and Weston, Massachusetts.
 Describes the character and occurrence of the rocks in the tunnels of the Weston aqueduct
 and discusses their geologic relations and their age.

13. Water supply from the delta type of sand plain.
 Includes an account of the formation and structural features of sand plains.

 Gives a brief account of the general geology and the water supply considered by areas.

15. Genetic and structural relations of the igneous rocks of the lower Neponset Valley,
 Massachusetts.
 Describes the occurrence and history of the basal complex of this region, the occurrence and
 relations of Cambrian strata, and the occurrence, geologic relations, age, and petrographic
 characters of the gneissic rocks forming the batholite.

16. The limestone-granite contact deposits of Washington camp, Arizona.
 Tech. Quart., vol. 18, pp. 171-190, 1905; Am. Inst. Mgr. Engrs., Bi-Mo. Bull. no. 6, pp. 1217-1238,
 1905.
 Describes the general geology, the character, occurrence, and origin of the ore deposits, yielding
 chiefly copper, and the metamorphism of the contact rocks.

Crosby (William O.) and La Forge (Lawrence).

1. Notes on the wells, springs, and general water resources of Massachusetts.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 94-117, 1904.
FOR THE YEARS 1901-1905, INCLUSIVE. 79

Crosby (William O.) and Loughlin (G. F.):
1. A descriptive catalogue of the building stones of Boston and vicinity.
 Describes the geologic and geographic occurrence, character, and use in Boston of various building stones.

Cross (Charles Mortimer):
1. The underground water circulation.
 Ores and Metals, vol. 13, no. 15, pp. 21, 37-38; no. 16, p. 22, 1904.
 Discusses ore deposition by circulating waters.

Cross (Whitman):
1. Outline of geology. (Silverton quadrangle, Colorado.)
 Describes the general characteristics of the sedimentary and igneous rocks and the structure of the region.

2. Geologic formations versus lithologic individuals.
 Jour. Geol., vol. 10, pp. 232-244, 1902.
 Reviews papers by Willis and Eckel and discusses geological formations as divisions of rock masses which should be discriminated through the consideration of all the geologic data which each contains.

3. The development of systematic petrography in the nineteenth century.
 Reviews the development of the science of petrography and gives the author's summary of some of the defects of the modern classifications of igneous rocks and of the status of systematic petrography at the close of the nineteenth century.

5. A new Devonian formation in Colorado.
 Describes character, occurrence, and geologic relations of Devonian strata in the San Juan region of Colorado.

 Jour. Geol., vol. 12, pp. 510-523, 1 fig., 1904.
 Describes the occurrence and character of a trachyte rock from the Island of Hawaii, gives chemical analyses of this and allied rocks and its norm, and discusses its bearing upon the geologic history of the island, and the general significance of the occurrence.

7. Geography and general geology of the Rico quadrangle [Colorado].
 Describes the physical features, the occurrence, character, and relations of metamorphic and igneous rocks and of Algonkian, Cambrian, Devonian, Carboniferous, Jurassic, and Cretaceous strata, and the geologic structure and history of the area.

Cross (Whitman) and Howe (Ernest):
 Gives an outline sketch of the physical history and general geology, describes the occurrence, character, and relations of Archean, Algonkian, Cambrian, Devonian, Carboniferous, and Tertiary rocks, of Quaternary deposits, and of eruptive rocks, and the physiography and geologic history and structure, and discusses in detail the petrology of the quadrangle.

2. Red Beds of southwestern Colorado and their correlation.
 Discusses the occurrence, character, and relations of strata, collectively called Red Beds, in southwestern Colorado, their subdivisions and correlation with Red Beds elsewhere.

3. Topography and general geology of the Needle Mountains quadrangle [Colorado].
 Describes the physiographic features, the occurrence, character, and relations of metamorphic and igneous rocks and of Algonkian, Cambrian, Devonian, Carboniferous, and Tertiary strata, and the geologic structure and history of the area.

Cross (Whitman), Iddings (Joseph P.), Pirsson (Louis V.), and Washington (Henry S.).

1. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks.
 Jour. Geol., vol. 10, pp. 555-690, 1902.
 Gives a general summary of the new system and describes the classification and nomenclature proposed. Includes chemical analyses and tables of alferic minerals and the rocks in which they occur.

2. Quantitative classification of igneous rocks based on chemical and mineral characters, with a systematic nomenclature.
 University of Chicago Press, 286 pp., 1903.
 A review of the development of systematic petrography in the nineteenth century, by Whitman Cross, is followed by a discussion of the principles of classification of igneous rocks and an exposition of the new system of classification and nomenclature proposed by the authors and methods of calculation for determining the position of a rock in their system of classification.

Cross (Whitman), assisted by Arthur Coe Spencer.

1. General geology, La Plata-folio, Colorado.
 Describes the geographic and physiographic features, the character and occurrence of the Jurassic, Cretaceous, Eocene, and Pleistocene strata and igneous rocks, and the geological structure. Includes a statement of the general geologic problems of the region.

Crowther (Henry M.).

1. The copper deposits of the Beaver River Range, Utah.
 Describes the geologic structure and the occurrence of the ores.

Culbert (M. T.).

1. The iron belt west of Hutton [Ontario].
 Gives observations upon the geology of the region traversed and the occurrence of iron ores.

Cumings (Edgar Roscoe).

1. The use of Bedford as a forinational name.
 Proposes the name Salem limestone for the Bedford limestone, the latter having been preoccupied.

2. Orthothetes minutus, n. sp. from the Salem limestone of Harrodsburg, Indiana.
 Am. Geol., vol. 27, pp. 147-149, 1 pl., 1901.
 Describes the section at various localities with notes on the faunas.

3. Some developmental stages of Orthothetes minutus n. sp.

4. Lower Silurian system of eastern Montgomery County, New York.
 N. Y. State Mus., Bull., no. 34 [also in 54th Ann. Rept., vol. 1], pp. 418-468, 4 pls., 1 fig., 5 cross sections, geol. map, 1902.

5. A revision of the Bryozoan genera Dekayia, Dekayella, and Heterotrypa of the Cincinnati group.
 Am. Geol., vol. 29, pp. 197-218, 4 pls., 1902.
 Reviews the literature on these genera and describes new species.
Cumings (Edgar Roscoe)—Continued.

8. The morphogenesis of Platystrophia; a study of the evolution of a Paleozoic brachiopod.

 Describes development stages in recent bryozoa and in the fossil genera Fenestella, Unitrypa, and Polyopora.

Cumings (Edgar R.) and Mauck (A. V.).

1. A quantitative study of variation in the fossil brachiopod Platystrophia lynx.

Cumings (Edgar E.), Prosser (Charles S.) and...

1. The Waverly formations of central Ohio.

 See Prosser (Charles S.) and Cumings (Edgar R.), 1.

Cumings (William N.).

1. The Hostotipaquillo district, Jalisco [Mexico].

 Contains notes on the geology of the district.

Currie (P. W.).

1. On the ancient drainage at Niagara Falls.

 Describes the course of the pre-Glacial river and discusses its mode of formation.

Curtis (George Carroll).

 Jour. Geol., vol. 11, pp. 199-215, 12 figs., 1903.
 Describes phenomena connected with volcanic eruptions of 1902 in the West Indies and discusses the character and cause of the eruptions within stream valleys.

2. Note on the West Indian eruptions of 1902.

 Am. Geol., vol. 31, pp. 40-43, 1903.
 Describes and gives an explanation of eruptions in stream beds.

 Am. Geol., vol. 32, pp. 178-182, 2 figs., 1908.

4. Evidence of recent differential movement along the New England coast.

Cushing (H. P.).

1. Origin and age of an Adirondack augite andesite.

 Brief description of character and occurrence.

2. Geology of Rand Hill and vicinity, Clinton County [New York].

 Describes the geologic history of the region, and the pre-Cambrian and Paleozoic rocks.

3. Recent geologic work in Franklin and St. Lawrence counties [New York].

 Discusses topography, geologic structure, and petrology of the area.

4. Pre-Cambrian outlier at Little Falls, Herkimer County [New York].

 Describes exposures and microscopic and chemical characters of rocks.

5. The derivation of the rock name "anorthosite."

 Am. Geol., vol. 29, pp. 190-191, 1902.
 Discusses the use of the name.

Bull. 301—06—0
Cushing (H. P.)—Continued.

6. Accessions to the library [of the Geological Society of America] from June, 1901, to June, 1902.

7. Petrography and age of the Northumberland rock.
 Describes the petrologic characters and discusses the correlation of the igneous rock discovered near Schuylerville, New York.

8. Memoir of Peter Neff.

9. Geology of the vicinity of Little Falls, Herkimer County [New York].
 Describes the petrologic characters and discusses the correlation of the igneous rock discovered near Schuylerville, New York.

10. Geology of the southern Adirondack region.
 N. Y. State Mus., Bull. 77, pp. 271-453, 18 pls., 9 figs., 1905.
 Describes the geologic history of the region; the character, occurrence, and geologic relations of pre-Cambrian igneous and metamorphosed rocks of Cambrian and Ordovician sedimentary deposits, and of Paleozoic igneous rocks; and the geologic structure.

Cushman (Joseph A.).

 Am. Geol., vol. 33, pp. 154-156, 1 pl., 1904.

2. Pleistocene foraminifera from Panama.
 Am. Geol., vol. 33, pp. 265-266, 1904.
 Describes occurrence and gives a list of species identified, with notes as to the occurrence of living forms of the same species.

 Am. Geol., vol. 34, pp. 169-174, 1904.
 Gives a section of the strata and a table showing the occurrence of the fossils in the various beds, and discusses the relations of these faunas.

 Am. Geol., vol. 34, pp. 293-296, 3 figs., 1904.

5. Notes on fossils obtained at Sankaty Head, Nantucket, in July, 1905.

6. Fossil crabs of the Gay Head Miocene.
 Discusses the occurrence of fossil crabs at this locality, and gives descriptions of two species.

D.

Dale (T. Nelson).

1. Structural details in the Green mountain region [Vermont] and in eastern New York (Second paper).
 U. S. Geol. Surv., Bull. no. 199, 22 pp., 4 pls., 8 figs., 1902.
 Discusses geologic phenomena presented in this area.

2. The slate industry at Slatington, Pa., and Martinsburg, W. Va.
 Discusses the character and occurrence of the slates at these localities.

3. The geology of the north end of the Taconic Range.
 Discusses the areal distribution and structural relations of Cambrian and Ordovician formations in the area, and gives an explanation of these facts.

4. Note on Arkansas roofing slates:
 Discusses the occurrence and megascopic and microscopic characters.
Dale (T. Nelson)—Continued.

5. Geology of the Hudson Valley between the Hoosic and the Kinderhook.
 U. S. Geol. Surv., Bull. no. 242, 68 pp., 3 pls., and 17 figs., 1904.
 Describes the occurrence, general and petrographical characters, and geologic structure and
 relations of lower Cambrian, Ordovician, and Silurian strata, and the general geologic
 structure and history of this region.

6. Note on the geological relations of the Brandon lignite deposit.

8. Slate investigations during 1904.
 Describes the occurrence and quarrying of slate in Maine, Vermont, Pennsylvania, Maryland,
 Virginia, and West Virginia.

 U. S. Geol. Surv., Bull. no. 272, 52 pp., 14 pls., 3 figs., 1905.
 Reviews papers giving descriptions of the physiography of the region occupied by the Taconic
 Mountains in western New England, describes in detail the physical characters of the
 underlying rocks and the various physiographic features, and discusses the origin of the
 latter and their relations to the underlying rocks.

Dall (William Healey).

1. The structure of Diamond Head, Oahu.
 Am. Geol., vol. 27, pp. 386-387, 1901.

2. The morphology of the hinge teeth of bivalves.

3. A gigantic fossil Lucina.
 Describes Lucina megamericis from Jamaica.

5. Alpheus Hyatt.
 Gives a sketch of the life and work of Professor Hyatt.

 Discusses the age of this formation.

7. On the true nature of Tamiosoma.
 Science, new ser., vol. 15, pp. 5-7, 1902.

8. Contributions to the Tertiary fauna of Florida, with especial reference to the silex
 beds of Tampa and the Pliocene beds of the Caloosahatchie River, including a
 complete revision of the generic groups treated of and their American Tertiary
 species. Part VI. Concluding the work.
 Gives systematic descriptions of the fauna, including emendatory notes upon the previous
 parts of the work, and describes the geologic history of the region, and the character,
 occurrence, and faunal features of the several Tertiary formations.

 Discusses stratigraphic position and geologic age of the Grand Gulf formation.

10. Neozoic invertebrate fossils. A report on collections made by the [Harriman
 Alaska] expedition.
 Gives systematic descriptions of Eocene fossils from Alaska Peninsula and of Miocene fossils
 from the Shumagin Islands, and a list of Pleistocene fossils from Douglas Island, and
 describes the localities from which fossils were obtained.
Dall (William Healey)—Continued.

 A note in regard to the explanation of certain geologic formations on the Island of Oahu.

 Nautilus, vol. 18, pp. 9-10, 1904.

 Includes observations on Tertiary forms.

14. The relations of the Miocene of Maryland to that of other regions and to the recent fauna.

15. Fossils of the Bahama Islands, with a list of the nonmarine mollusks.
 Discusses the occurrence and relations of the fossil land shells, gives systematic descriptions of a number of forms and a list of all known forms, and discusses the character of the marine fossil fauna and that of the "salt pans."

17. [The time element in stratigraphy and correlation.]

Dall (William Healey) and Bartsch (Paul).

1. A new Californian Bittium.

2. Synopsis of the genera, subgenera, and sections of the family Pyramidellidae.
 Includes a description of a new species from the Oligocene of Florida.

Daly (Reginald Aldworth).

1. The physiography of Acadia.
 Describes the characteristics of the several plateau and lowland areas and their origin.

2. Notes on oceanography.
 Discusses phenomena of marine currents and river deflection.

3. The geology of the northeast coast of Labrador.
 Gives an account of geologic and topographic observations made along the coast of Labrador.

4. The geology of the region adjoining the western part of the International Boundary.
 Describes the author's observations in the southern part of British Columbia.

 Gives observations on the geology of Labrador.

6. Geology of the western part of the international boundary (49th parallel).
 Describes physiographic features and general geology of the region.

7. The geology of Ascutney Mountain, Vermont.
 U. S. Geol. Surv., Bull. no. 209, 122 pp., 7 pls., 1 fig., 1903.
 Describes physiography and general geology, and the character and occurrence of metamorphic and eruptive rocks, and discusses their origin.
Daly (Reginald Aldworth)—Continued.

8. The mechanics of igneous intrusion.
 Discusses origin of igneous rocks.

9. Variolitic pillow lava from Newfoundland.
 Am. Geol., vol. 32, pp. 65-78, 2 pls., 3 figs., 1903.
 Describes occurrence and character of pillow lava and discusses origin of variolite and pillow structure.

11. The secondary origin of certain granites.

12. The classification of igneous intrusive bodies.

13. Geology of the western part of the international boundary (49th parallel).

 Science, new ser., vol. 22, pp. 91-93, 1905.

Dana (Edward S.).

Dana (Edward S.), Brush (George J.) and.

1. On a new and remarkable mineral deposit at Branchville, in Fairfield County, Connecticut; with a description of several new species occurring there. First paper.
 See Brush (G. J.) and Dana (E. S.), 1.

2. Second Branchville paper.
 See Brush (G. J.) and Dana (E. S.), 2.

3. Third Branchville paper.
 See Brush (G. J.) and Dana (E. S.), 3.

4. Fourth Branchville paper—spodumene and the results of its alteration.
 See Brush (G. J.) and Dana (E. S.), 4.

5. Fifth Branchville paper; with analyses of several manganic phosphates, by Horace T. Wells.
 See Brush (G. J.) and Dana (E. S.), 5.

Daniels (L. E.).

1. Notes on the semi-fossil shells of Posey County, Indiana.
 Gives a list of mollusca obtained from alluvial marl deposits.

Darton (Nelson Horatio).

1. Preliminary description of the geology and water resources of the southern half of the Black Hills and adjoining regions in South Dakota and Wyoming.
 Describes the character and occurrence of the Cambrian, Carboniferous, Jurassic, Cretaceous, Tertiary, and Pleistocene strata, the water and mineral resources, and the soils.

2. Comparison of stratigraphy of the Black Hills with that of the front range of the Rocky Mountains.

4. Stratigraphy of the Big Horn Mountains.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Darton (Nelson Horatio)—Continued.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 57, 60 pp., 1902.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 61, 67 pp., 1902.

 Describes the geographic and topographic features, the general geologic relations, and the character and occurrence of Cretaceous, Tertiary, and Quaternary strata, and discusses the soils and underground waters.

8. Oelrichs folio, South Dakota-Nebraska.
 Describes geographic and topographic features, the general geologic relations and history, the characters and occurrence of Carboniferous, Jurassic, Cretaceous, Tertiary and Quaternary strata, and the economic resources.

9. Preliminary report on the geology and water resources of Nebraska west of the one hundred and third meridian.
 This is a reprint of the paper with the above title in the Nineteenth Annual Report of the Director of the U. S. Geological Survey, Part IV, 1899, with a few corrections in some of the maps and a few minor changes in statements regarding geology.

10. Camp Clarke folio, Nebraska.
 Describes geography, topographic features and drainage, general geologic relations, and character and occurrence of formations of Tertiary age; gives a brief geologic history of the central Great Plains region, and discusses the supplies of underground waters and irrigation.

11. Scotts Bluff folio, Nebraska.
 Describes geography, topography and drainage, general geologic relations, and character and occurrence of Tertiary and Quaternary formations; gives a brief geologic history of the central Great Plains region, and discusses underground waters and irrigation.

12. Some relations of Tertiary formations of the northern Great Plains.

13. Comparison of stratigraphy of the Big Horn Mountains, Black Hills, and Rocky Mountain front range.

 Describes physiographic features, the geologic history and structure, the occurrence, character, and stratigraphic relations of Carboniferous, Triassic (?), Jurassic, and Cretaceous strata and Quaternary deposits, and the economic resources, artesian water, coal, petroleum, gypsum, etc.

15. Gypsum deposits in South Dakota.
 U. S. Geol. Surv., Bull. no. 223, pp. 76-78, 1 pl., 2 figs., 1904.
 Describes character, occurrence, and economic development of gypsum deposits in the Black Hills region.

16. Comparison of the stratigraphy of the Black Hills, Bighorn Mountains, and Rocky Mountain front range.
 Describes in detail the occurrence, character, etc., of geologic formations of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, and Cretaceous age, and discusses their relations and correlations.

17. New York City folio, New York-New Jersey.
 See Merrill (F. J. H.) and others. 1.
FOR THE YEARS 1901-1905, INCLUSIVE.

18. Preliminary report on the geology and underground water resources of the central Great Plains.
 Describes the occurrence, character, and relations of Archean, Algonkian, Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous strata and Tertiary deposits, the geologic history of the central Great Plains region, and the underground waters and other economic resources of the area.

19. The Zuni salt lake [Arizona].
 Jour. Geol., vol. 13, pp. 185-193, 5 figs., 1905.
 Describes the situation and physiographic features, and the origin and history of the lake.

 Describes the character, occurrence, and geologic relations of coal beds, and the mining operations.

 Describes the occurrence of salt deposits in west central New Mexico.

 Describes briefly the general geology, the water-bearing horizons, and the water supplies.

23. Age of the Monument Creek formation.
 Gives an account of additional evidence for the Oligocene age of the Monument Creek formation.

 Science, new ser., vol. 22, p. 120, 1905.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 149, 175 pp., 1905.

 Describes the geography, the occurrence, character, and relations of Algonkian, Cambrian, Ordovician, Carboniferous, Triassic (?), Jurassic, Cretaceous, Tertiary, and Quaternary formations and of igneous rocks, the geologic structure and history, and the economic resources of the area.

27. Structure of the Great Plains and the mountains on their western margin.

Darton (Nelson H.) and Fuller (Myron L.).
1. Underground waters of eastern United States: Maryland.
 Describes briefly the general geology and water-bearing horizons of the State, and particularly those of the Baltimore district.

 Describes briefly the general geology and the water-bearing horizons and prospects.

 Describes the general geology and the water horizons.

Darton (Nelson H.) and Keith (Arthur).
 Describes geographic and topographic features, the character and occurrence of Archean rocks and of the Cretaceous, Eocene, Neocene, and Pleistocene strata, the general structure of the Piedmont and Coastal plain regions, and mineral resources of the area.
Darton (Nelson H.) and O'Harra (C. C.).
 Describes the geography, the occurrence, character, and relations of Cambrian, Ordovician,
 Carboniferous, Triassic (?), Jurassic, Cretaceous, Tertiary, and Quaternary formations and
 of igneous rocks, the geologic history, and the economic products.

Darton (Nelson H.) and Smith (W. S. Tangier).
1. Edgemont folio, South Dakota-Nebraska.
 Describes the geography, topography, and drainage, the geologic history and structure of
 the area, the occurrence, character, and relations of Carboniferous, Triassic, Jurassic, Cre­
 taceous, and Tertiary sedimentary strata, and the soils and water resources.

Davidson (George).
1. The glaciers of Alaska that are shown on Russian charts or mentioned in older
 narratives.

Davis (C. Abbott).
1. Check-list of the minerals of Rhode Island.
 Roger Williams Park Mus., Providence, R. I., Bull. no. 8, 12 pp., 1905. The Apteryx, vol. 1,
 pp. 59-72, 1905.
2. A second contribution to the natural history of marl.
3. A contribution to the natural history of marl.
 Discusses sources and theories of formation, character, and composition of marl, and the rôle
 of Chara in marl formation.

Davis (R. O. E.).
1. Analysis of kunzite.

Davis (William Morris).
1. An excursion to the Grand Canyon of the Colorado.
 new ser., vol. 13, p. 125, 1901.
 Describes the denudation and displacements of the region and discusses the origin of the
 drainage system.
2. Peneplains of central France and Brittany.
 Discusses the theory of peneplains.
 Discusses the formation of these terraces.
4. Current notes on physiography.
 Contains notes on the Dalles of the Wisconsin and the islands of southern California.
5. Current notes on physiography.
6. Current notes on physiography.
 Contains abstracts of papers by I. C. Russell on the geology of the Cascade Mountains and by
 W. T. Lee on the glacier of Mt. Arapahoe.
7. Current notes on physiography.
 Contains abstract of paper by Abbe on the physiography of Allegany County, Maryland.
FOR THE YEARS 1901-1905, INCLUSIVE.

Davis (William Morris)—Continued.
8. Current notes on physiography.
Contains abstract of paper by Ganong on the physiography of New Brunswick.

9. Current notes on physiography.
Contains brief abstract of paper by Lindgren, describing the Snake River canyon.

10. Current notes on physiography.

11. Current notes on physiography.
Contains abstracts of second folio of the Topographic atlas of the United States and of paper by Lee on the debris-covered mesa of Boulder, Colorado.

12. Current notes on physiography.
Contains abstracts of the third folio of the Topographic atlas of the United States by R. T. Hill and of a paper by Crosby on the Nashua Valley, Massachusetts.

13. Current notes on physiography.
Gives an abstract of paper by Jones on the Tallulah gorge in Georgia.

Reviews recently published folios of the Geologic atlas of the United States.

15. Current notes on physiography.
Gives an abstract of a paper by Matthes on the glacial sculpture of the Big Horn Mountains.

Gives an abstract of paper by Shattuck on the Pleistocene problem of the North Atlantic Coastal plain.

17. Current notes on physiography.
Reviews paper by Spurr on the structure of the Basin ranges.

18. Current notes on physiography.
Contains remarks on glacial lakes in Minnesota, esker lakes in Indiana and the Ontario coast.

19. Current notes on physiography.
Refers to dikes as topographic features, the character of the plain of St. Lawrence Valley and the question of peneplains.

20. Current notes on physiography.
Reviews papers by Johnson on the High Plains and by Low on the south shore of Hudson Strait.

Reviews Hobbs's paper on the River system of Connecticut and Dowling and Tyrrell on Lake Winnipeg.

22. The geographical cycle.

23. La peneplaine.
See no. 1387 in U. S. Geol. Surv., Bull. no. 188.
Davis (William Morris)—Continued.

24. The drainage of cuestas.
 Cites some American physiographic features in illustration.

 Describes geologic and physiographic features of the Grand Canyon of the Colorado.

26. Baselevel, grade, and peneplain.
 Jour. Geol., vol. 10, pp. 77-109, 1902.
 Discusses the use of these words and the meanings that have been given them.

27. Field work in physical geography.
 Discusses the differences between geography and geology.

28. The terraces of the Westfield River, Massachusetts.
 Describes the local features of these terraces and discusses their origin.

 Discusses the formation of river terraces.

30. Current notes on physiography.
 Science, new ser., vol. 15, pp. 74-75, 1902.
 Contains an abstract of the Washington folio of the U. S. Geological Survey.

31. The walls of the Colorado Canyon.

32. The effect of the shore line on waves.

33. Current notes on physiography.
 Contains an abstract of a paper by Hershey on the ‘Geology of the central portion of the Isthmus of Panama.’

34. Current notes on physiography.
 Contains abstracts of papers by Collie on the physiography of Wisconsin.

35. Current notes on physiography.
 Discusses a paper by Newsom on ‘Drainage of southern Indiana,’ and gives an abstract of paper by Jaggar, ‘The laccoliths of the Black Hills.’

36. Current notes on physiography.
 Gives an abstract of paper by Marbut on ‘The evolution of the northern part of the lowlands of southeastern Missouri.’

37. Current notes on physiography.
 Gives an abstract of a paper by J. E. Todd on the ‘Hydrographic history of South Dakota.’

38. Current notes on physiography.
 Gives an abstract of Daly’s report on ‘The geology of the northeast coast of Labrador.’

 Gives an outline of Fairchild’s work on the ‘Pleistocene geology of western New York.’

40. Current notes on physiography.
 Discusses the physiographic divisions of Kansas.

41. Current notes on physiography.
 Contains a discussion of abandoned channels of the Monongahela.
42. Current notes on physiography.
 Discusses overthrust mountains of northern Montana.

43. Current notes on physiography.
 Contains observations on the physiography of the southern Appalachian region.

44. Current notes on physiography.
 Science, new ser., vol. 17, pp. 672-673, 1903.
 Discusses physiographic features of the Snake River lava plains in Idaho.

45. An excursion to the plateau province of Utah and Arizona.
 Describes physiographic features of this region.

46. The mountain ranges of the Great Basin.
 Discusses the explanations offered for the formation of the mountain ranges of the Great Basin, describes observations made, and reaches the conclusion that the Basin ranges are examples of dissected fault-block mountains.

47. The development of river meanders.

48. The stream contest along the Blue Ridge.
 Describes physiographic features and stream capture in the Blue Ridge region of North Carolina.

49. Effect of shore line on waves.

50. Walls of the Colorado Canyon.
 Contains brief notes.

51. The fresh-water Tertiaries at Green River, Wyoming.

52. Block mountains of the Basin Range province.
 Discusses the mode of their origin.

53. The relations of the earth sciences in view of their progress in the nineteenth century.
 Jour. Geol., vol. 12, pp. 669-687, 1904.

55. The geographical cycle in an arid climate.

56. Complications of the geographical cycle.

57. Bearing of physiography upon Suess's theories.

58. Glaciation of the Sawatch Range, Colorado.
 Discusses various physiographic features and their origin through glacial erosion.

59. The Wasatch, Canyon, and House ranges, Utah.
 Discusses the structure, physiographic features, and mode of formation of these mountains.
Davis (William Morris)—Continued.

60. Leveling without baseleveling.
Discusses the formation of level plains without baseleveling.

61. [The Colorado Canyon.]

Davison (Charles).
1. A study of recent earthquakes.
Includes an account of the Charleston earthquake.

Davison (J. M.).
1. Internal structure of cliftonite.
Describes occurrence and crystallographic characters.

Dawson (George M.).
2. Geological record of the Rocky Mountain region in Canada.
Gives an account of the physiographic features and a table of geologic formations of the region. Describes the character and occurrence of the rocks of the subdivisions of the Archean, Paleozoic, Mesozoic, and Cenozoic eras.
Contains portion of address delivered before the Geological Society of America.
5. Summary report on the operations of the Geological Survey for the year 1899 by the Director.

Day (Arthur L.).
1. The study of minerals in the laboratory.
Describes experiments upon the melting-point determinations of feldspars.

Day (Arthur L.) and Allen (E. T.).
1. The isomorphism and thermal properties of the feldspars.
2. The isomorphism and thermal properties of the feldspars. Part I, Thermal study.
Carnegie Inst. of Wash., Publ. no. 31, pp. 13-75, 24 figs., 1905.

Day (Arthur L.) and Shepherd (E. S.).
1. The phase-rule and conceptions of igneous magmas. Discussion of paper by Mr. T. T. Read.
Econ. Geol., vol. 1, pp. 286-299, 1905.

Day (Arthur L.), Becker (G. F.) and...
1. The linear force of growing crystals.
See Becker (G. F.) and Day (A. L.), 1.

Day (David T.).
Describes the geographic distribution of platinum and its occurrence on the Pacific coast.
2. Experiments on the diffusion of crude petroleum through fuller's earth.
Day (David T.)—Continued.

3. [In discussion of paper by George I. Adams, "Principles controlling the geologic deposition of the hydrocarbons.”].
 Discusses passage of petroleum through fuller's earth, and its bearing upon the subject of Mr. Adams's paper.

 Occurrence and character of a gypsum deposit near Panasoffkee, Florida.

 Contains:
 Alumirnum and bauxite, pp. 267-271.
 Antimony, by Edward W. Parker, pp. 291-297.
 Coal, by Edward W. Parker, pp. 321-326.
 Coke, by Edward W. Parker, pp. 321-326.
 Gold and silver, pp. 119-127.
 Iron ores, by John Birkhbine, pp. 31-67.
 Manganese ores, by John Birkbine, pp. 129-162.
 Nickel and cobalt, pp. 259-280.
 Quicksilver, by Edward W. Parker, pp. 273-283.
 Tungsten, molybdenum, uranium, and vanadium, by Joseph Hyde Pratt, pp. 299-318.
 Zinc, by Charles Kirchhoff, pp. 249-266.

 Contains:
 Abrasive materials, pp. 463-479.
 Asbestos, by Edward W. Parker, pp. 561-564.
 Asphaltum and bituminous rock, by Edward W. Parker, pp. 319-322.
 Barytes, by Edward W. Parker, pp. 587-588.
 Cement:
 Clay, pp. 361-364.
 Clay and clay products at the Paris Exposition of 1900, by Heinrich Ries, pp. 365-392.
 Feldspar and quartz, by Heinrich Ries, pp. 583-596.
 Fluorspar, by Edward W. Parker, pp. 569-569.
 Fuller's earth, pp. 589-592.
 Graphite, pp. 565-568.
 Gypsum, by Edward W. Parker, pp. 522-530.
 Mica, pp. 555-558.
 Mineral paints, by Edward W. Parker, pp. 569-586.
 Natural gas, by F. H. Oliphant, pp. 293-318.
 Phosphate rock, by Edward W. Parker, pp. 481-502.
 Precious stones, by George F. Kunz, pp. 419-462.
 Salt, by Edward W. Parker, pp. 511-554.
 Soapstone, by Edward W. Parker, pp. 413-418.
 Stone, pp. 333-360.
 Sulphur and pyrite, by Edward W. Parker, pp. 503-522.

 Contains:
 Aluminum and bauxite, by Joseph Hyde Pratt, pp. 229-231.
 Antimony, by Joseph Hyde Pratt, pp. 251-255.
Day (David T.)—Continued.

Asphaltum and bituminous rocks, by Edward W. Parker, pp. 653-666.
Barytes, by Edward W. Parker, pp. 891-892.

Cement:
- Slag cement in Alabama, by Edwin C. Eckel, pp. 747-748.

Chromite, or chrome iron ore, pp. 897-898.

- Slag cement in Alabama, by Edwin C. Eckel, pp. 747-748.

Flint and feldspar, p. 816.

Fluorspar, by Edward W. Parker, pp. 877-890.

Graphite, by Joseph Hyde Pratt, pp. 875-877.

Gypsum, by Edward W. Parker, pp. 827-833.

Iron and steel at the close of the nineteenth century, by James M. Swank, pp. 99-104.

Lead, by Charles Kirchhoff, pp. 191-211.

Lithium, pp. 239-243.

Manganese ores, by John Birkinbine, pp. 115-140.

Mica, by Edward W. Parker, pp. 349-856.

Mineral paints, by Edward W. Parker, pp. 879-890.

Nickel and cobalt, pp. 245-249.

Phosphate rock, by Edward W. Parker, pp. 803-814.

Precious stones, by George F. Kunz, pp. 749-778.

Salt, by Edward W. Parker, pp. 835-847.

Stone, pp. 661-692.

Sulphur and pyrite, by Edward W. Parker, pp. 815-826.

Tungsten, molybdenum, uranium, and vanadium, by Joseph Hyde Pratt, pp. 257-265.

Contains:

- Antimony, by Joseph Struthers, pp. 251-256.
- Arsenic, by Joseph Struthers, pp. 257-258.
- Asphaltum and bituminous rocks, by Joseph Struthers, pp. 633-640.
- Barytes, by Joseph Hyde Pratt, pp. 915-919
- Bonax, by Joseph Struthers, pp. 869-872.
- Bromine, by Joseph Struthers, pp. 867-868.
- Cement, pp. 721-728.
- Chromite or chrome iron ore, by Joseph Hyde Pratt, pp. 941-948.
- Coal, by Edward W. Parker, pp. 279-449.
- Coke, by Edward W. Parker, pp. 451-523.
- Flint and feldspar, by Heinrich Ries, pp. 935-939.
- Fluorspar and cryolite, by Joseph Hyde Pratt, pp. 879-885.
- Fuller's earth, pp. 921-964.
Day (David T.)—Continued.

Graphite, by Joseph Struthers, pp. 897-900.
Gypsum, by Joseph Struthers, pp. 843-851.
Iron ores, by John Birkinbine, pp. 43-72.
Lithium, by Joseph Hyde Pratt, pp. 229-240.
Magnesite, by Joseph Struthers, pp. 959-960.
Manganese ores, by John Birkinbine, pp. 127-155.
Mica, by Joseph Hyde Pratt, pp. 872-878.
Mineral paints, by Joseph Struthers, pp. 901-914.
Mineral waters, pp. 951-966.
Natural gas, by F. H. Oliphant, pp. 613-632.
Ores of economic importance, by Edmund O. Hovey, pp. 967-973.
Pétroleum, by F. H. Oliphant, pp. 525-611.
Phosphate rock, by Joseph Struthers, pp. 811-822.
Platinum, by Joseph Struthers, pp. 221-228.
Precious stones, by George F. Kunz, pp. 729-771.
Quicksilver, by Joseph Struthers, pp. 233-238.
Salt, by Joseph Struthers, pp. 853-865.
Sulphur and pyrite, by Joseph Struthers, pp. 829-842.
Talc and soapstone, by Joseph Hyde Pratt, pp. 773-780.
Titanium ores, by W. O. Snelling, pp. 271-278.
Tungsten, molybdenum, uranium, and vanadium, by Joseph Hyde Pratt, pp. 261-270.

Contains:

Aluminum and bauxite, by Joseph Struthers, pp. 911-960.
Anhydrite, by Joseph Struthers, pp. 271-277.
Arsenic, by Joseph Struthers, pp. 279-282.
Asbestos, by Joseph Hyde Pratt, pp. 901-904.
Asphaltum and bituminous rock, by Joseph Struthers, pp. 657-664.
Barytes, by Joseph Hyde Pratt, pp. 945-948.
Bismuth, by Joseph Struthers, pp. 283-284.
Borax, by Joseph Struthers, pp. 891-896.
Bromine, by Joseph Struthers, pp. 897-898.
Cement-in foreign countries, pp. 777-778.
Chromite, or chromic iron ore, by Joseph Hyde Pratt, pp. 967-968.
Coal, by Edward W. Parker, pp. 289-447.
Coke, by Edward W. Parker, pp. 449-515.
Copper, by Charles Kirchhoff, pp. 163-205.
Flint and feldspar, by Heinrich Ries, pp. 971-973.
Fluorspar and cryolite, by Joseph Hyde Pratt, pp. 899-902.
Gas, coke, tar, and ammonia at gas works and in retort coke ovens, by Edward W. Parker, pp. 517-533.
Graphite, by Joseph Struthers, pp. 974-989.
Iron ores, by John Birkinbine, pp. 41-73.
Iron. General statistics of iron and steel, iron ore, and coal, to the year 1901, inclusive, for five leading iron and steel producing countries, by James M. Swank, pp. 101-122.
Magnesite, by Joseph Struthers, pp. 953-984.
Manganese ores, by John Birkinbine, pp. 123-161.
Day (David T.)—Continued.

Mica, by J. A. Holmes, pp. 985-991.
Mineral waters, pp. 999-1002.
Monazite, by Joseph Hyde Pratt, pp. 1003-1006.
Nickel and cobalt, by Joseph Hyde Pratt, pp. 263-270.
Phosphate rock, by Joseph Struthers, pp. 915-920.
Platinum, by Joseph Struthers, pp. 239-243.
Platinum in the Rambler mine, Wyoming, by J. F. Kemp, pp. 244-250.
Precious stones, by George F. Kunz, pp. 813-865.
Quicksilver, by Joseph Struthers, pp. 231-238.
Salt, by Joseph Struthers, pp. 921-932.
Stone, pp. 655-701.
Sulphur and pyrite, by Joseph Struthers, pp. 933-943.
Talc and soapstone, by Joseph Hyde Pratt, pp. 867-872.

Contains:

Aluminum and bauxite, by Joseph Struthers, pp. 265-279.
Antimony, by Joseph Struthers, pp. 317-326.
Arsenic, by Joseph Struthers, pp. 327-334.
Asphaltum and bituminous rock, by Edmund Otis Hovey, pp. 745-754.
Barytes, by Joseph Hyde Pratt, pp. 1089-1094.
Borax, by Charles G. Yale, pp. 1017-1028.
Cement in foreign countries, pp. 900-903.
Coal, by Edward W. Parker, pp. 551-558.
Coke, by Edward W. Parker, pp. 539-606.
Copper, by Charles Kirchhoff, pp. 201-229.
Flint and feldspar, by Heinrich Ries, pp. 1117-1119.
Fluorspar and cryolite, by Joseph Hyde Pratt, pp. 1029-1032.
Gas, coke, tar, and ammonia at gas works and in retort coke ovens, by Edward W. Parker, pp. 609-634.
Gold and silver, pp. 157-159.
Gypsum and gypsum products, pp. 1033-1045.
Iron ores, by John Birkinbine, pp. 41-73.
Magnesite, by Charles G. Yale, pp. 1131-1135.
Manganese ores, by John Birkinbine, pp. 129-156.
Mineral waters, pp. 1137-1162.
Natural gas, by F. H. Oliphant, pp. 719-746.
Phosphate rock, by Edmund O. Hovey, pp. 1047-1058.
Platinum, pp. 311-312.
Precious stones, by George F. Kunz, pp. 911-977.
Quick silver, pp. 281-284.
Salt, by Edmund O. Hovey, pp. 1059-1067.
Stone, pp. 755-789.
Sulphur and pyrite, by Joseph Hyde Pratt, pp. 1073-1087.
Talc and soapstone, by Joseph Hyde Pratt, pp. 979-987.
Zinc, by Charles Kirchhoff, pp. 265-266.
Day (David T.)—Continued.

Contains:

- Antimony, by Edmund Otis Hovey, pp. 363-309.
- Arsenic, by Edmund Otis Hovey, pp. 371-374.
- Asphaltum and bituminous rock, by Edmund Otis Hovey, pp. 789-799.
- Barytes, by Joseph Hyde Pratt, pp. 1095-1102.
- Bismuth, by Edmund Otis Hovey, pp. 375-376.
- Borax, by Charles G. Yale, pp. 1017-1028.
- Bromine, by Frederick J. H. Merrill, pp. 1029-1030.
- Cement, pp. 909-939.
- Coal, by Edward W. Parker, pp. 381-577.
- Coke, by Edward W. Parker, pp. 579-648.
- Copper, by Charles Kirchhoff, pp. 221-257.
- Flint and feldspar, by Heinrich Hies, pp. 1143-1145.
- Fluorspar and cryolite, by Joseph Hyde Pratt, pp. 1031-1036.
- Fuller's earth, pp. 1121-1123.
- Gas, coke, tar, and ammonia at gas works and in retort coke ovens, by Edward W. Parker, pp. 649-674.
- Glass sand and other sand, by A. T. Coons, pp. 1147-1155.
- Gold and silver, by Waldemar Lindgren and others, pp. 141-220.
- Graphite, by Joseph Hyde Pratt, pp. 1157-1167.
- Gypsum and gypsum products, by George Perry Grimsley, pp. 1037-1052.
- Iron ores, by John Birkinbine, pp. 37-68.
- Magnesite, by Charles G. Yale, pp. 1109-1174.
- Manganese ores, by John Birkinbine, pp. 113-140.
- Mineral waters, pp. 1185-1208.
- Monazite, zircon, gadolinite, and columbite, by Joseph Hyde Pratt, pp. 1209-1227.
- Phosphate rock, by Edmund Otis Hovey, pp. 1053-1064.
- Precious stones, by George F. Kunz, pp. 941-987.
- Quicksilver, pp. 295-299.
- Salt, by Edmund Otis Hovey, pp. 1065-1077.
- Steel and iron hardening metals, by Joseph Hyde Pratt, pp. 301-358.
- Stone, pp. 801-841.

Dean (Bashford).

1. On two new Arthrodires from the Cleveland shale of Ohio

N. Y. Acad. Sci., Mem., vol. 2, pp. 86-100, 6 pls., 2 figs., 1901.

2. On the characters of Mylostoma Newberry.

3. Further notes on the relationships of the Arthrognathi.

Discusses the position of the Arthrognathi and the systematic arrangement and nomenclature of the structures.

4. Historical evidence as to the origin of the paired limbs of vertebrates.

Describes the evidence of paleontology on the subject.

Bull. 301—06——7
Dean (Bashford)—Continued.

5. Biometric evidence in the problem of the paired limbs of the vertebrates.
 Discusses studies of the development of paired limbs.

6. The preservation of muscle-fibres in sharks of the Cleveland shale.
 Discusses the processes by which the delicate structures are preserved.

 Science, new ser., vol. 16, pp. 701-703, 1902.
 Contains critical notes on nomenclature and paleontology.

8. The early development of sharks from a comparative standpoint.

Deckert (Emil).

 A general discussion of the occurrences of earthquakes in North America with reference to their morphological relationships.

2. Martinique und sein Vulkanismus.
 Petermanns Mittheilungen, Band 48, pp. 133-136, 1 pl. (map), 1902.
 Gives a description of Martinique and the volcanic eruption of Mont Pelé.

De Cou (Ralph E.), Downer (R. H.) and.

1. A description of the working mines of Ouray County, Colorado.
 See Downer (R. H.) and De Cou (R. E.), 1.

Demaret (Léon).

1. Les principaux gisements de minerais de zinc des États-Unis d’Amérique.
 Revue universelle des Mines [Liége and Paris], 4e sér., t. 6, pp. 221-256, 6 pls., 1904.
 Describes the principal deposits of zinc ore in the United States, including observations on the character, occurrence, geologic relations, origin, etc.

2. Les principaux gisements des minerais de mercure du monde.
 Annales des Mines de Belgique, t. 9, 80 pp., 3 pls., 28 figs., 1904.
 Gives an account of the deposits of quicksilver ores in the world, their occurrence, geologic relations, production, etc. In the United States deposits in California, Oregon, and Texas are considered.

Denis (Theo.).

1. The coal fields of Canada.

Denis (Theo.), Ingall (E. D.) and.

1. Geology of the country around Bruce mines [Ontario].
 See Ingall (E. D.) and Denis (T.), 1.

Dennis (W. B.)

1. A borax mine in southern Oregon.
 Eng. & Mg. Jour., vol. 73, pp. 581-582, 2 figs., 1902.
 Contains brief description of the deposit.

2. The quicksilver deposits of Oregon.
 Describes the occurrence, character, and geologic relations of the quicksilver-ore deposits of Oregon and the mining developments.

Dern (George H.).

1. The geology of Mercur [Utah]. A history of the region. Description of the ores and their peculiar formations. How they were deposited.
 Describes the general geology, the occurrence and character of the gold and silver ledges, and discusses the origin of the ores.
Derr (Homer Munro).
1. A method of petrographic analysis based upon chromatic interference with thin sections of doubly-refracting crystals in parallel polarized light. Thesis presented to the Faculty of Philosophy of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

The Randall Morgan Laboratory of Physics, 1903. 21 pp., 2 pls., 4 figs.

Dickinson (Harold T.).
1. Quarries of bluestone and other sandstones in the upper Devonian of New York State.

N. Y. State Museum, Bull. no. 61, 112 pp., 20 pls., 1903.
Describes the character, occurrence, and quarrying.

Dickson (Charles William).
1. Note on the condition of nickel in nickeliferous pyrrhotite from Sudbury [Ontario].

Eng. & Mg. Jour., vol. 73, p. 660, 1902.
Contains notes on the concentration of some of these ores.

2. The concentration of barium in limestone.

School of Mines Quart., vol. 23, pp. 366-370, 1902.

3. Note on the condition of platinum in the nickel-copper ores from Sudbury [Ontario].

Describes occurrence and crystallographic characters.

4. The ore deposits of Sudbury, Ontario.

Contains a discussion of the origin of the Sudbury nickeliferous ores. Includes a bibliography of the subject.

5. The distribution of the platinum metals in other sources than placers.

Describes the various occurrences of platinum.

Diehl (O. C.).
1. Gypsum.

Describes the occurrence of gypsum in Michigan and Utah.

Diller (Joseph Silas).
1. The Klamath Mountains.

Describes briefly the geologic history of the Klamath Mountains region.

2. The geology of Crater Lake.

Mazama, vol. 1, no. 2, pp. 161-170, 4 pls., 1897.
Describes geologic structure and history of Crater Lake on Mount Mazama, Oregon.

3. Geomorphogeny of the Klamath Mountains [California-Oregon].

Describes the topographic features, the character, and the occurrence of the Cretaceous, Eocene, Neocene, and Pleistocene deposits and igneous rocks, and the occurrence of coal and gold.

5. The copper region of northern California.

Describes the occurrence of auriferous quartz veins and copper deposits of the region.

6. Copper in northern California.

Discusses the geologic occurrence of copper ores.
 Describes the microscopic characters of these specimens.

8. The wreck of Mt. Mazama [Oregon].
 Science, new ser., vol. 15, pp. 203-211, 1902.
 Sketches the geologic history and formation of the Cascade Range, describes the formation and wrecking of Mt. Mazama, and discusses the evidences for the manner of its wrecking.

10. Topographic development of the Klamath Mountains.
 A supplement contains notes on the geologic age of some of the rocks of the Klamath Mountains.

11. Port Orford folio, Oregon.
 Describes topography, geologic history, character, and occurrence of pre-Cretaceous, Cretaceous, Tertiary, and surficial deposits and igneous rocks, coal, gold, and platinum minerals.

12. Klamath Mountains section, California.
 Describes general distribution and structural relations of Paleozoic, Mesozoic, and Cenozoic formations of the Klamath Mountains and occurrence and characters of eruptive rocks. Contains reports on fossils by Charles Schuchert, George H. Girty, Wm. M. Fontaine, David White, F. H. Knowlton, T. W. Stanton, and W. H. Dall.

13. Copper deposits of the Redding region, California.
 Describes sedimentary and igneous rocks of the region and their geologic relations and character and occurrence of the ore deposits.

 Describes character and occurrence of iron ores in this area.

15. Limestone of the Redding district, California.

16. Mining and mineral resources in the Redding quadrangle, California, in 1903.
 Describes the occurrence and character of deposits of gold, silver, copper, chromite, and iron ores.

17. The composition and structure of the Klamath Mountains.

18. The Bragdon formation.
 Describes the lithological characters, stratigraphy, and relations of the Bragdon formation of Shasta and Trinity counties, California, and presents evidence to show its Carboniferous age.

19. Mineral resources of the Indian Valley region, California.
 Describes the development and general geology of the field, the geology of the gold mines, and the occurrence and mining of auriferous gravels.

20. So-called “iron ore” near Portland, Oreg.
 Describes the chemical investigation of a so-called “iron ore” from near Portland, Oreg.

 Describes the occurrence and composition of an Eocene coal near Portland, Oreg.
FOR THE YEARS 1901-1905, INCLUSIVE. 101

Diller (Joseph Silas) and Patton (Horace Bushnell).
1. The geology and petrography of Crater Lake National Park [Oregon].
 Describes the physiographic and dynamic geology of the region and the occurrence and charac­
 ters of the igneous rocks.

Diller (Joseph Silas) and Steiger (George).
1. Volcanic dust and sand from St. Vincent caught at sea and the Barbados.
 Describes the characters and composition of this material.

Divers (Edward).
1. Suggested nature of the phenomena of the eruption of Mount Pelée on July 9.
 Observed by the Royal Society Commission.
 Discusses the phenomena and their explanation.

Dixon (J. D.), Nolan (A. W.) and.
1. Geology of St. Helen's Island [Quebec].
 See Nolan (A. W.) and Dixon (J. D.), 1.

Dodge (Richard E.).
1. Landslides of Echo and Vermillion cliffs.

2. An interesting landslide in the Chaco Cañon, New Mexico.

3. Arroyo formation.

 See Merrill (F. J. H.) and others, 1.

Dominian (Leon).
 Describes briefly the geologic structure and history of the region, and discusses the genesis of
 the gold and silver ores.

2. The Goldfield district, Nevada.
 Discusses the general geology, and the character and occurrence of veins containing gold-ore
 deposits.

Dominian (Leon), Smith (E. Percy) and.
1. Notes on a trip to White Oaks, New Mexico.
 See Smith (E. Percy) and Dominian (Leon), 1.

Donald (J. T.).
1. The limestone of the Philipsburg Railway and Coal Company.
 Eng. & Mg. Jour., vol. 73, p. 657, 1902.
 Describes the occurrence and chemical composition of the limestones.

2. The composition of some Canadian limestones.
 Gives chemical analyses and notes on the economic uses of these limestones.

Douglas (James).
1. Record of borings in the Sulphur Spring Valley, Arizona; and of agricultural
 experiments in the same locality.
 Gives record of well boring in the valley to the depth of 765 feet.
Douglass (Earl).
1. The Neocene lake beds of western Montana and descriptions of some new vertebrates from the Loup Fork.
 Mont. Univ., Missoula, Mont., 27 pp., 4 pls., 1899. (Published by the University.)
2. New species of Merycochoerus in Montana. Part II.
 Describes material from Tertiary beds.
 Describes the lithologic and faunal characters of the beds exposed along the Musselsheen River, and discusses the problem of the transition from the Mesozoic to Cenozoic time.
 Describes the characters of the strata and of the fossil mammals collected.
 Science, new ser., vol. 15, pp. 31-32, 1902.
 Discusses the occurrence of the fossils and the character and origin of the beds in which they are found.
6. The discovery of Torrejon mammals in Montana.
7. Astropecten? montanus—a new star-fish from the Fort Benton; and some geological notes.
 Carnegie Mus., Ann., vol. 2, pp. 5-8, 1 fig., 1903.
8. New vertebrates from the Montana Tertiary.
 A brief account of the stratigraphy of the formations from which the fossils were obtained precedes detailed generic and specific descriptions.
 Describes the remains of fossil mammalia from the White River beds of Montana.
10. Some notes on the geology of southwestern Montana.
 Describes the occurrence, character, and relations of Archean, Algonkian, Cambrian, Devonian, and Carboniferous strata, and gives lists of fossils obtained.
 Contains notes on the geology of the region.

Dowlen (Walton E.).
1. The Turtle Mountain rock slide [Alberta, Canada].
 Describes a rock slide and the geologic conditions which produced it.

Dowling (D. B.).
1. Report on the geology of the west shore and islands of Lake Winnipeg.
 Describes the physiography, the character, occurrence, and faunas of the Ordovician strata and the glacial phenomena of the region.
2. The physical geography of the Red River Valley [Canada].
 Ottawa Nat.; vol. 15, pp. 115-120, 2 pls., 1901.
 Describes the physiographic history of the region.
3. The west side of James Bay.
 Describes the author's observations in this area.
4. Eastern Assiniboia and southern Manitoba.
 Describes observations upon the geology and economic resources of the region examined.
Dowling (D. B.)—Continued.
5. Notes to accompany a contoured plan of the lower slope of Turtle Mountain, Manitoba.
 Gives geologic notes on the occurrence of coal.
6. Report on geological explorations in Athabaska, Saskatchewan, and Keewatin districts, including Moose Lake and the route from Cumberland Lake to the Churchill River, and the upper parts of Burntwood and Grass rivers.
 Can. Geol. Surv., Ann. Rept., new ser., vol. 13, 44 pp., 2 pls., and map, 1903. (Published separately, 1902.)
 Gives observations upon the occurrence and character of Laurentian, Huronian, Cambro-Silurian, Silurian, and Pleistocene deposits and the economic resources, and upon physiographic and geologic features of the region examined.
7. On the coal basins in the Rocky Mountains, Sheep Creek and Cascade troughs northward to the Panther River.
 Describes the character and occurrence of the coal beds in eastern Assinibola, and in detail the stratigraphy of the region.
10. The stratigraphy of the Cascade coal basin.
11. The Cascade and Costigan coal basins and their continuation northward [Alberta].
 Gives observations on the geology, and the occurrence and relations of the coal deposits.

Downer (R. H.).
1. Ore deposits of the American-Nettie mine, Ouray, Colo.
 Describes the character and occurrence of the ore bodies.

Downer (R. H.) and De Cou (Ralph E.).
1. A description of the working mines of Ouray County, Colorado.
 Includes observations on the geology and on the character, occurrence, and origin of the ore bodies.

Drake (Frank V.).
1. Mineral resources and mining in Oregon.

Drake (N. F.), Lindgren (Waldemar) and.
1. Nampa folio, Idaho—Oregon.
 See Lindgren (Waldemar) and Drake (N. F.), 1.
2. Silver City folio, Idaho.
 See Lindgren (Waldemar) and Drake (N. F.), 2.

Draper (Marshall D.).
1. The district of Goldfield, Nevada.
 Gives observations upon the general geology and the occurrence of the gold-ore deposits.

Dresser (John A.).
1. On the physical geography of a northern section of the Appalachian Mountain system.
Dresser (John A.)—Continued.

2. A hornblende lamprophyre dike at Richmond, P. Q.
 Describes the occurrence of the dike and the characters of the dike rock.

3. A preliminary note on an amygdaloidal trap rock in the eastern townships of the Province of Quebec.
 Describes the megascopic and microscopic characters of the rock.

4. On the petrography of Mt. Orford.
 Am. Geol., vol. 27, pp. 14-21, 1901.
 Describes occurrence and character of diabase, gabbro-diorite, serpentine, and ophtialcite, and gives a summary of the geologic history of the region.

5. On the petrography of Shefford Mountain [Quebec].
 Am. Geol., vol. 28, pp. 204-213, 1 pl., 1901.
 Describes petrographic characters of essexite, nordmarkite, and pulaskite, and discusses their relations.

6. A petrographical contribution to the geology of the eastern townships of the Province of Quebec.
 Describes the pre-Cambrian igneous rocks that are regarded as similar to the volcanics of South Mountain, Pa.

7. On the copper-bearing volcanic rocks in the eastern townships of the Province of Quebec.

8. Petrography of Shefford and Brome Mountains [Canada].
 Describes petrologic and other observations.

 Can. Geol. Surv., Ann. Rept., new ser., vol. 13, 35 pp., 6 pls., 1 fig. and 1 map, 1903. (Published separately, 1902.)
 Describes the geology, and the occurrence, relations, and composition of the igneous rocks.

10. An investigation of the copper-bearing rocks of the eastern townships, Province of Quebec.
 Discusses the occurrence, geologic position, and character of copper-ore deposits.

11. Geology of Brome Mountain, one of the Monteregian Hills.
 Describes the position and physiographic origin of the Monteregian Hills, and in detail the petrography of Brome Mountain.

12. A new area of copper-bearing rocks in the eastern townships of the Province of Quebec.
 Describes the occurrence and geologic relations.

13. The copper-bearing rocks of the eastern townships, Quebec.
 Describes investigations upon copper-producing areas in Quebec.

14. The bed-rock of the Gilbert River gold fields, Quebec.
 Discusses the source of the placer gold of this region.

15. The copper-bearing rocks of the Sherbrooke district, P. Q.
 Includes observations on the geology of the region, and the occurrence of minerals of economic importance.

Drevermann (Fr.).
 Discusses morphological characters of various Devonian brachiopods.

Dreyer (Charles Redway).
1. Certain peculiar eskers and esker lakes of northeastern Indiana.
 Discusses glacial phenomena of the region.
2. Lessons in physical geography.
3. The use of the word "geest" in geology.
 Discusses nomenclature of surficial deposits and suggests the use of the term "mantle rock."
 Discusses physiographic features and glacial deposits, particularly moraines, of this region,
 and discusses their interpretation.

Duerden (J. E.).
1. Aggregated colonies in Madreporarian corals.
 Discusses the process of fixation and development of larvae of the West Indian coral Siderastrea radians.
2. Boring algae as agents in the disintegration of corals.
 Reviews the literature and discusses the chemical and physical processes by which the disintegration is effected.
3. Relationships of the Rugosa (Tetracoralla) to the living Zoanthese.
4. The morphology of the Madreporaria.
5. The development of septa in the Paleozoic corals.
7. The morphology of the Madreporaria.
8. The morphology of the Madreporaria. V. Septal sequence.
9. Recent results on the morphology and development of coral polyps.
10. The antiquity of the zoanthid actinians.
11. The development and relationships of the Rugosa (Tetracoralla).
12. The morphology of the Madreporaria. VI. The fossula in rugose corals.

Duffield (M. S.).
1. The Cumberland Plateau coal field [Tennessee].
 Describes the geology of this area and gives a geological section of the Cumberland Plateau.
Dumble (Edwin T.).
1. Physical geography, geology, and resources of Texas.
 Includes a brief account of the geologic history and structure of the State, and describes geographic and physiographic features and mineral resources.

2. Geology of the Beaumont oil field.
 Houston Post, 5 pp., 1901. (Private publication.)
 Describes geologic structure of the region and discusses the geologic horizon of the oil.

3. The iron ores of east Texas.
 Houston Post, 4 pp., 1901. (Private publication.)
 Describes the occurrence of iron ores in eastern Texas and processes necessary for their development.

 Texas Acad. Sci., Trans., vol. 4, p. 81, 1901.
 Gives brief description of the character of the beds.

5. Occurrence of oyster shells in volcanic deposits in Sonora, Mexico.
 Texas Acad. Sci., Trans., vol. 4, p. 82, 1901.
 Gives brief description of occurrence.

6. The iron ores of east Texas.
 Contains brief notes on the character of the ores.

 Describes the occurrence of Cenozoic, Mesozoic, and Paleozoic strata of Cochise County, Arizona, and gives a general section of the rocks.

8. [In discussion of paper by A. F. Lucas "The great oil-well near Beaumont, Texas.”]

 Describes the occurrence and gives a list of fossils.

10. The Tertiary of the Sabine River.
 Discusses the correlation of Tertiary formations in Texas and Louisiana.

11. The red sandstone of the Diabolo Mountains, Texas.
 Discusses the stratigraphic position of this formation.

12. Cretaceous and later rocks of Presidio and Brewster counties [Texas].
 Describes the geologic structure of this region and gives sections of the strata.

 Describes the topography, and the character, occurrence, and geologic relations of formations of Tertiary and Pleistocene age in southwestern Texas.

Duryee (Edward).
1. Cement investigations in Arizona.

Dutton (Clarence Edward).
1. Earthquakes in the light of the new seismology.
 New York, G. F. Putnam’s Sons, 314 pp., 10 pls., 63 figs., 1904.
 A general treatise upon earthquakes, their nature, causes, etc. The Charleston and other American earthquakes are considered.
FOR THE YEARS 1901-1905, INCLUSIVE.

Dwight (W. B.).
1. Fort Cassin beds in the Calciferous limestone of Dutchess County, New York.
 Contains notes on the fauna of these beds.

Dyar (W. W.).
1. The colossal bridges of Utah. A recent discovery of natural wonders.
 Century Mag., vol. 68, pp. 505-511, 1904.

Eakle (Arthur S.).
1. Mineralogical notes, with chemical analyses by W. T. Schaller.
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 315-336, 1 pl., 1901.
 Describes pectolite, zircon crystals, esmeraldaite, coquimbite, and altaite crystals.

2. Colemanite from southern California.
 Describes the crystals and the method of measurement with the two-circle goniometer.

3. Note on the identity of palacheite and botryogen.
 Describes composition, characters, and occurrence.

4. Palacheite.
 Describes occurrence, crystallographic characters, and physical and chemical properties of
 this mineral discovered near Knoxville, California.

5. Mineral tables for the determination of minerals by their physical properties.
 New York, John Wiley & Sons, 73 pp., 1904.

6. Phosphorescent sphalerite.
 Describes the occurrence and characteristics of a sphalerite from Mariposa County, California,
 and its property of phosphorescence.

Eakle (A. S.) and Sharwood (W. J.).
1. Luminescent zinc-blende.
 Describes occurrence in Mariposa County, California, composition, and physical qualities.

Easter (S. E.).
1. Jade.
 Describes characters, occurrences, and uses.

Eastman (Charles R.).

2. On Campodus, Edestus, Helicoprion, Acanthodes, and other Permo-Carboniferous
 sharks.

3. On Campyloprion, a new form of Edestus-like dentition.
 Geol. Mag., dec. 1v, vol. 9, pp. 148-162, 1 pl. and 1 fig., 1902.

 Jour. Geol., vol. 10, pp. 535-541, 6 figs., 1902.
 Describes two species of Acanthodes and one each of Cacacanthus and Eloniichthys, and gives
 a list of the vertebrates found at this locality.

5. On the genus Periopristis, St. John.
 Geol. Mag., dec. 1v, vol. 9, pp. 388-391, 2 figs., 1902.

6. Some Carboniferous cebracions and acanthodian sharks.
Eastman (Charles R.)—Continued.

7. Phylogeny of the cestraciont group of sharks.

 Contains notes on Dinichthys pustulosus and Edestus and Cochliodus.

9. Notice of interesting new forms of Carboniferous fish remains.
 Describes material from the Carboniferous of the Mississippi Valley.

10. Carboniferous fishes from the central Western States.
 A short account of the stratigraphy of the Upper Carboniferous of Kansas and Nebraska precedes the systematic descriptions.

11. A peculiar modification amongst Permian dipnoans.

 279-289, 1 pl., 1903.
 A critical discussion based upon new material lately discovered.

 Includes a description of Rhynchodus pertenuis n. sp.

15. A recent paleontological induction.
 Discusses the association of pebbles with the remains of plesiosaurs.

 Describes the occurrence and character of fish remains from Devonian strata in the San Juan region of Colorado, and gives a systematic description of a new form.

17. Fossil plumage.

 Md. Geol. Surv., Miocene, pp. 71-93, 5 pls., 1904.

19. A brief general account of fossil fishes.

20. The Triassic fishes of New Jersey.

21. Fossil avian remains from Armissan [France].
 Includes a list showing geological distribution of gallinaceous birds.

22. The literature of Edestus.
 Discusses the relationships of Edestus and gives a list of papers dealing with Edestus and related forms.

Eastman (Charles R.) and Barbour (Erwin H.).

1. Synopsis of the Missourian and Permo-Carboniferous fish fauna of Kansas and Nebraska.

Easton (S. A.).

1. Notes on Tonopah, Nevada.
 Eng. & Mg. Jour., vol. 73, p. 697, 1902.
 Contains notes on the geology of the region and the occurrence of the gold ores.
Eaton (George F.).
1. Notes on the collection of Triassic fishes at Yale.
 Gives descriptions and figures of some of the material.
2. The characters of Pteranodon.
3. Characters of Pteranodon (second paper).
4. Obituary—John Bell Hatcher.

Eavenson (H. N.).
1. The Connellsville region. Its mineral resources—the extent of territory—the methods of mining and amount of output.

Eckel (Edwin C.).
1. The formation as the basis for geologic mapping.
 Jour. Geol., vol. 9, pp. 709-717, 1901.
 Discusses the problems involved and the application of the proposed system.
2. The emery deposits of Westchester County, New York.
 Min. Ind. for 1900, pp. 13-17, 1901.
 Describes briefly the character and occurrence of the deposits.
3. A recently discovered extension of the Tennessee white phosphate fields.
 Briefly describes occurrence in Decatur County.
 Describes the development of the industry and the character and occurrence of the raw materials, and discusses the processes of manufacture employed.
5. Chapters on the cement industry in New York.
 N. Y. State Mus., Bull. no. 44, pp. 849-955, 17 pls., map in pocket, 1901.
 Describes character of materials and processes of manufacture of cement in New York.
6. The quarry industry in southeastern New York.
7. The classification of the crystalline cements.
 Am. Geol., vol. 29, pp. 146-154, 1902.
8. The preparation of a geologic map.
 Jour. Geol., vol. 10, pp. 50-56, 1902.
9. Summaries of the literature of structural materials. I.
 Jour. Geol., vol. 10, pp. 442-449, 1902.
10. Summaries of the literature of structural materials. II.
11. Summaries of the literature of structural materials. III.
 Jour. Geol., vol. 11, pp. 86-92, 1903.
12. Summaries of the literature of economic geology.
 Jour. Geol., vol. 11, pp. 716-719, 1903.
13. The materials and manufacture of Portland cement.
 Describes character of materials required and processes of manufacture with particular reference to the industry in Alabama.
Eckel (Edwin C.)—Continued.

15. The Dahlonega gold district of Georgia.

 Describes the general geology of the region, and the character and occurrence of the ore deposits.

 Gives a general account of the geology of the region and the character and occurrence of gold and pyrite deposits.

17. Utilization of iron and steel slags.

 U. S. Geol. Surv., Bull. no. 213, pp. 221-231, 1903.

 Describes occurrence, character, and utilization of clay deposits in this region.

 Describes briefly the stratigraphy and geologic structure of the region, and the occurrence of salt and gypsum deposits and their development.

20. The white phosphates of Decatur County, Tenn.

 Describes occurrence of phosphate deposits in this area.

21. Dahlonega mining district, Georgia.

 Gives observations upon the geology of the region.

 Describes economic development and geologic relations of the gypsum deposits in the Salina group.

 U. S. Geol. Surv., Bull. no. 223, pp. 36-37, 1 pl., 1 fig., 1904.
 Describes economic development and geologic relations of gypsum beds occurring in Carboniferous strata.

24. The slate deposits of California and Utah.

 Describes the occurrence and character of slate deposits in Eldorado County, California, and near Provo, Utah.

 Describes location and general geology of the district, the stratigraphic position and character of the cement rock, methods of manufacturing, and character of the product.

26. The salt industry in Utah and California.

 Describes character and source of materials used and methods of manufacture employed.

27. On a California roofing slate of igneous origin.

 Describes occurrence and character of slate deposits in California and discusses their origin.

 Jour. Geol., vol. 12, pp. 25-29, 1904.

29. The nonmetallic mineral products of the United States.

 Mg. Mag., vol. 10, pp. 167-174, 1 pl., 1904.
 Contains notes on the occurrence of nonmetallic mineral products.

 Describes the general geology of the region and the character and occurrence of the iron ores and discusses their origin.
Eckel (Edwin C.)—Continued.

31. The materials and manufacture of Portland cement.
 Ala. Geol. Surv., Bull. no. 8, pp. 1-59, 1904.
 Includes a discussion of the origin and general characters of limestone and other raw materials used in cement manufacture.

32. Cements, limes, and plasters: their materials, manufacture, and properties.
 New York, John Wiley & Sons, 1905. 712 pp., 165 figs.
 Includes notes on the geologic distribution of cement materials.

33. The Clinton hematite.
 Describes the character, occurrence, and utilization of Clinton iron ores, particularly in the town of Clinton, New York.

34. Cement materials and industry of the United States.
 Describes the character and general occurrence of cement materials and their preparation, and in detail the occurrence, geologic relations, and character of limestones, shales, and marls in the various States.

35. Iron and manganese ores of the United States.
 Describes the production, character, and occurrence of iron and manganese ore deposits of the United States.

 Describes the geology of the region, the mining developments, and discusses the character and origin of the ores.

37. The iron ores of northeastern Texas.
 Describes the general geology, and the occurrence, composition, and origin of the ores.

38. The American cement industry.
 Describes the classification and production of cement, and the geologic relations, occurrence, and character of the raw materials in the United States.

 Describes the occurrence, composition, and geologic relations of cement-making rocks of New York.

40. Pyrite deposits of the western Adirondacks, New York
 Describes the occurrence and character of pyrite deposits, and the mining and milling of the ore.

Eckel (Edwin C.) and Bain (H. F.).

1. Cement and cement materials of Iowa.
 Describes the process of cement manufacture, and the geologic occurrence and character of cement materials in Iowa.

Eckel (Edwin C.) and Crider (A. F.).

1. Geology and cement resources of the Tombigbee River district, Mississippi-Alabama.
 Describes the occurrence and character of limestones and other materials in this region required in the manufacture of Portland cement.

Eckel (Edwin C.), Hayes (C. W.) and.

1. Iron ores of the Cartersville district, Georgia.
 See Hayes (C. W.) and Eckel (E. C.). 1.

2. Occurrence and development of ocher deposits in the Cartersville district, Georgia.
 See Hayes (C. W.) and Eckel (E. C.). 2.
112 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Eckel (E. C.), Johnson (L. C.) and.
1. Notes on wells, springs, and general water resources of Mississippi.
 See Johnson (L. C.) and Eckel (E. C.), 1.

Edman (J. A.).
1. Corundum in Montana.
 Brief notes on occurrence.

Edwards (Henry W.).
1. Notes on the geology of the Isthmus of Panama.
 Eng. & Mg. Jour., vol. 73, pp. 862-863, 1902.
 Contains general notes on the rocks of the region.

Edwards (J. Jep.).
1. Paleontology of Bartholomew County, Indiana, mammalian fossils.
 Discusses the occurrence of Quaternary mammalian remains.

Edwards (W. F.).
1. The new geology and vein formation. Discussion.
 Describes the history of the nebular hypothesis and discusses the relative merits of this and the planetesimal hypothesis.

Eggleston (Julius Wooster).
1. Some glacial remains near Woodstock, Conn.
 Describes local glacial features.

 2. Physiography—an outline of its scope and applications.
 Describes physiographic areas of the United States and various local physiographic features as illustrative of principles set forth in the paper.

Eisele (Martin A.).
 Gives chemical analyses of the water and a brief extract from W. H. Weed's report as to the source of the heat.

Eisen (Gustav.).
1. The earthquake and volcanic eruption in Guatemala in 1902.
 Describes the earthquake of April, 1902, and its effects, the volcanoes and their eruptions, more particularly that of Santa Maria of October 24, 1902, the character of the ejected material, and the physiographic changes produced.

Eldridge (George H.).
1. The asphalt and bituminous rock deposits of the United States.
 Describes the character and geologic occurrence of these materials in the United States.

 2. The petroleum industry of California.
 Eng. & Mg. Jour., vol. 73, p. 41, 1902.
 Describes the general developments in 1901.

 Describes classification, character, occurrence, origin, and distribution of asphalts and bituminous rocks of the United States.

 4. The petroleum fields of California.
 Describes briefly the location and extent of the oil fields and their topographic and geologic structure and production.
Elftman (A. H.).
1. The Highland range in Minnesota.
 Describes the geology of the range.

2. Keewatin and Laurentide ice sheets in Minnesota.
 Notes on the ice invasion.

Ellis (E. E.).
1. Zinc and lead mines near Dodgeville, Wis.
 Describes production, occurrence, and character of zinc and lead ores near Dodgeville, Wis.

Ellis (Mary).
1. Index to publications of the New York State Natural History Survey and New York State Museum, 1837-1902; also including other New York publications on related subjects.
 N. Y. State Mus., Bull. 66, 453 pp., 1903.
 Includes a list of the publications, an alphabetic author and subject index, and an index to descriptions of genera and species of fossils, compiled under the direction of John M. Clarke, State paleontologist.

Ells (R. Hugh).
1. Prince Edward and Hastings counties, Ontario.
 Gives notes upon the geology of these counties.

2. The physical features and geology of the Paleozoic basin between the Lower Ottawa and St. Lawrence rivers.
 Describes the character and occurrence of the Paleozoic rocks and the structure of the region.

3. The Carboniferous basin in New Brunswick.
 Discusses the geologic structure and location of coal seams in this area.

4. The Devonian of the Acadian provinces.
 Reviews previous geologic work on the Devonian strata of the region and discusses the problems involved.

5. Ancient channels of the Ottawa River [Canada].
 Ottawa Nat., vol. 15, pp. 17-30, 1 map, 1901.
 Describes glacial phenomena of the region.

 Describes the general character and distribution of the deposits.

7. Report on the geology and natural resources of the area included in the map of the city of Ottawa and vicinity.
 Describes geologic structure and formations and economic minerals of this area.

8. Report on the geology of Argenteuil, Ottawa, and part of Pontiac counties, Province of Quebec, and portions of Carleton, Russell, and Prescott counties, Province of Quebec.
 Bull. 301-06——8
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Ells (R. W.)—Continued.

 Describes the author's observations in this area.

 Describes the character and occurrence of asbestos deposits in Canada, and the mining operations.

12. The oil fields of Gaspé [Quebec].
 Describes the geologic structure of the field, the conditions requisite for oil production, and the explorations for oil.

 Describes the occurrence and character of the oil shales.

15. Notes on some interesting rock-contacts in the Kingston district, Ontario.
 Describes observations upon the character, occurrence, and geologic relations of formations of Cambrian and Ordovician age in Quebec and Ontario.

16. The recent landslide on the Lièvre River, Province of Quebec.

 Gives notes upon the geology and economic mineral resources of this area.

18. Graphite in Canada.
 Describes the occurrence in Canada, particularly in Ontario, and the mining operations.

 Describes the occurrence of deposits of apatite in Ontario and Quebec, and the mining operations.

 Describes the occurrence, characters, and relations of sedimentary, igneous, and metamorphic rocks, and the occurrence of various ore deposits of economic importance.

 Describes the occurrence of mica in British Columbia, Ontario, and Quebec, and the mining operations.

22. On the ores of copper in Nova Scotia, New Brunswick, and Quebec.

23. Nicola coal-basin, B. C.
 Gives observations on the geology of the region and the occurrence, characters, and relations of Tertiary coal deposits.

25. Some interesting problems in New Brunswick geology.
 Discusses the occurrence and relations of various Paleozoic stratified rocks and rocks of volcanic origin in New Brunswick.
Elmore (C. J.).
1. A comparison of fossil diatoms from Nebraska with similar deposits at St. Joseph, Mo., and at Denver, Colo.
Gives lists of species identified from Tertiary deposits.

Elrod (Morton John).
1. The physiography of the Flathead Lake region [Montana].
Mont. Univ., Bull. no. 16 [17], pp. 197-203, illus., 1903.

Elrod (Moses N.).
1. Niagara group unconformities in Indiana.

Emerson (Benjamin Kendall).
1. Note on corundum and a graphitic essonite from Barkhamsted, Corin.
Describes the occurrence and characters of garnet and corundum.

2. Two cases of metamorphosis without crushing.
Am. Geol., vol. 30, pp. 73-76, 1902.
Describes an amygdaloidal amphibolite and a porphyritic mica schist.

3. Holyokeite, a purely feldspathic diabase from the Trias of Massachusetts.
Describes the mineralogic and chemical characters of the rocks.

4. Glacial cirques and rock-terraces on Mount Toby, Massachusetts.

5. A plumose diabase containing sideromelan and spherulites of caicide and blue quartz.

Harriman Alaska Expedition, vol. 4, pp. 11-56, 5 pls., 13 figs., 1904.
Describes the geology of points visited by the Harriman Alaska expedition, including the occurrence and character of igneous, metamorphic, and sedimentary rocks in Alaska, the petrographic characters of various rocks collected, and the age and correlation of fossil-bearing formations.

Describes the character and occurrence of this rock.

8. Notes on some rocks and minerals from north Greenland and Frobisher Bay.

9. Plumose diabase and palagonite from the Holyoke trap sheet.
Describes the character and occurrence of inclusions in and components of the trap of Holyoke, Mass., and gives an explanation of the formation of the holyokeite and palagonite and their inclusions.

Emerson (Benjamin K.) and Loomis (F. B.).
1. On Stegoumus longipes, a new reptile from the Triassic sandstones of the Connecticut Valley.

Emerson (Benjamin K.), Perry (Joseph H.) and.
1. The geology of Worcester, Massachusetts.
See Perry (J. H.) and Emerson (B. K.), 1.

Emerson (Harrington).
1. The coal resources of the Pacific.
Contains notes on the distribution of coal in this region.
Emerson (J. S.).
1. Some characteristics of Kau [Hawaii].
 Describes the physiography of the region and discusses the evidences regarding the source of certain eruptions.

Emerson (Philip).
1. Note on glacial topography in central New Hampshire.
 Describes physiographic features in central New Hampshire.

Emmens (Newton W.).
1. The Bingham mining camp [Utah].
 Mg. Mag., vol. 12, pp. 457-464, 5 figs., 1905.
 Includes brief notes on the geology, and the occurrence and character of the copper ores.

Emmons (N. H.).
1. The value of ores in Mexico.
 Mg. & Sci. Press., vol. 84, p. 102, 1902.

Emmons (Samuel Franklin).
1. The secondary enrichment of ore deposits.
 Discusses the process of the secondary enrichment of sulphide ore bodies by transference and reconcentration of the alteration products of the original vein materials by descending surface waters and the chemical reactions which take place. Describes the author’s observations in various mining districts and discusses their bearing on these problems.

2. Notes on two desert mines in southern Nevada and Utah.
 Contains abstract of paper read before the Geological Society of Washington.

3. The Delamar and the Horn-Silver mines; two types of ore-deposits in the deserts of Nevada and Utah.
 Describes topography and geologic structure of the region, characters of the ore and history and development of these mines.

4. [In discussion of “The origin of ore-deposits.”]

5. Clarence King.
 Includes an account of his life and work and a bibliography of his publications.

6. Tributes to Clarence King.
 Eng. & Mg. Jour., vol. 73, pp. 3-5, por., 1902.
 Gives an account of his life and work and a list of his publications.

7. The U. S. Geological Survey in its relation to the practical miner.
 Eng. & Mg. Jour., vol. 74, p. 43, 1902.

8. [Discussion of James W. Malcolmson’s paper on “The Sierra Mojado, Coahuila, Mexico, and its ore-deposits.”]
 Discusses the age of the beds, the structure of the mountains, and the distribution of the ores.

9. The Little Cottonwood granite body of the Wasatch Mountains.
 Discusses the geologic relations and age of this granitic mass.

10. Investigation of metalliferous ores.
 Describes the character and scope of the economic work of the U. S. Geological Survey, gives brief outlines of economic publications on metalliferous deposits by the Survey during 1901, and enumerates by geographic areas the work in hand.
Emmons (Samuel Franklin)—Continued.

 U. S. Geol. Surv., Bull. no. 213, pp. 94-97, 1903.
 Gives a brief account of the topography and geology of the Medicine Bow Range in Wyoming and the occurrence of platinum in the copper ores of the New Rambler mine.

12. [In discussion of paper by W. P. Jenney, "The mineral crest, or the hydrostatic level attained by the ore-depositing solutions in certain mining districts of the Great Salt Lake Basin."]

13. The drainage of the valley of Mexico.

15. Theories of ore deposition historically considered.
 Reviews in chronologic order the various theories held at different periods of time regarding the origin of ore deposits.

16. The Virginian mine.
 Gives observations upon the occurrence and geologic relations of the ore bodies of copper and galena.

17. Investigation of metalliferous ores.
 Gives a short summary statement respecting the economic publications of the preceding year relating to metalliferous ores and the field work carried on in this division.

 Reviews the publications of the U. S. Geological Survey during the year 1904 upon metalliferous ores, and the economic work in progress during the year.

 Discusses the occurrence of copper ores in foreign and American Red Beds of Permian and Triassic age, and their origin, and more particularly an occurrence in the Colorado Plateau region of Arizona.

21. The Cactus copper mine, Utah.
 Describes the location and history of the mine, the general geology, and the character and occurrence of the copper ores.

22. Economic geology of the Bingham mining district, Utah.
 Describes the general geology of the region, and the occurrence and character of Carboniferous sedimentary strata, and of igneous rocks.

Emmons (S. F.), Hayes (C. W.), geologists in charge.

1. Contributions to economic geology, 1902.
 U. S. Geol. Surv., Bull. no. 213, 449 pp., 1903.
 Contains reports by different members of the staff of the U. S. Geological Survey of the economic results of investigations made by the Geological Survey, and bibliographies of the subjects treated.

2. Contributions to economic geology, 1903.
Emmons (S. F.), Hayes (C. W.)—Continued.

3. Contributions to economic geology, 1904.

Emmons (S. F.), Hayes (C. W.) Continued.
3. Contributions to economic geology, 1904.

Includes papers by various members of the U. S. Geological Survey on economic resources which they have had under investigation. With each section is given a list of the Survey publications bearing upon the products treated in that section.

Emmons (S. F.), Irving (John Duer) and.

1. Economic resources of the northern Black Hills. Part II. Mining geology.

See Irving (John Duer) and Emmons (S. F.), 1.

Emmons (William H.).

1. The Neglected mine and Nearby properties, Durango quadrangle, Colorado.

Describes the general geology, the character and occurrence of ores containing gold and silver, and the mining operations.

Emmons (W. H.), Irving (J. D.) and.

1. Economic geology of the Needle Mountains quadrangle [Colorado].

See Irving (J. D.) and Emmons (W. H.), 1.

Evans (A. W.).

1. Jellico coal field.

Describes the occurrence, composition, and qualities of coals of the Jellico field in Kentucky and Tennessee.

Evans (H. F.).

1. Canadian geology.

Gives a general account of the geology of Canada.

2. The Adams Lake series, British Columbia.

Describes the occurrence of this formation and the strata associated with it, and discusses its geologic relations and age.

Evans (Herbert M.).

1. A new cestraciont spine from the lower Triassic of Idaho.

Evans (Nevil Norton).

1. Native arsenic from Montreal.

2. Chrysoberyl from Canada.

Describes the occurrence of chrysoberyl in the province of Quebec, and the method and results of a chemical examination thereof.

Eyerman (John).

1. Contributions to mineralogy.

Am. Geol., vol. 34, pp. 43-48, 1904.
Describes the occurrence, characters, and composition of some minerals from New Jersey and Pennsylvania.

F.

Fairbanks (Harold W.).

1. Notes on the geology of the Three Sisters, Oregon.

Brief notes on occurrence of volcanic rocks.

2. Pyramid Lake, Nevada.

Describes the geological history of the lake and adjacent region and the characteristics of the volcanic materials.

3. The physiography of California.

Fairbanks (Harold W.)—Continued.

 Describes physiographic changes which have taken place in this region.

5. The physiography of southern Arizona and New Mexico.

 U. S. Geol. Surv., Bull. no. 225, pp. 119-123, 1 pl., 1904.
 Describes character, occurrence, and geologic relations of the gypsum deposits of California.

7. San Luis folio, California.
 Describes topography and drainage, climate and vegetation, the character, occurrence, and relations of Jurassic (?), Cretaceous, and Tertiary sedimentary rocks and included igneous rocks, the geologic structure and history of the area, the development of the physiographic features, and the economic resources and soils.

Fairchild (Herman Le Roy).

1. Beach structure in Medina sandstone.
 Am. Geol., vol. 28, pp. 9-14, 3 pis., 1901.
 Discusses the evidences indicating the origin of the ripple marks in the Medina sandstone of New York.

 Discusses the occurrence and deformation of the Iroquois shore line and gives results of recent studies in the Syracuse-Oneida and Cattaraugus-Chautauqua districts.

 See Le Conte (Joseph), 4.

4. Latest and lowest pre-Iroquois channels between Syracuse and Rome.
 Describes the occurrence and formation of river channels formed during the Glacial period in central New York.

 Am. Geol., vol. 33, pp. 43-45, 1904.

6. Geology under the new hypothesis of earth origin.
 Am. Geol., vol. 33, pp. 94-116, 1904.
 Compares the sufficiency of the nebular and planetesimal hypotheses and discusses the explanation given by the latter of the origin of the atmosphere and ocean, volcanic phenomena, deposits of hydrocarbons, ores, salt, and gypsum, climate in geologic time, glaciation, crustal movements, and life on the earth.

7. Geology under the planetesimal hypothesis of earth origin.
 See preceding entry. Includes discussion by Edward H. Kraus, Willis T. Lee, Israel C. Russell, and Frederick W. Sadlehn.

8. Glacial waters from Oneida to Little Falls [New York].
 Describes the position and extent of waters along the ice front, and the drainage at different stages of the Glacial epoch in north central New York, as determined from the occurrence, character, etc., of Glacial deposits.

11. Ice erosion theory a fallacy.
 Discusses the character of glacial erosion and presents evidence to show that deep valleys and the finger lakes of New York could not have been produced by erosion.
Fairchild (Herman Le Roy)—Continued.

13. The local glacial features [of the vicinity of Syracuse, N. Y.].

Falconer (J. D.)

1. Volcanic dust from the West Indies.
 Brief note on the character of the dust from recent eruptions.

2. The evolution of the Antilles.
 Discusses the general geologic history of America and more particularly that of Central
 America and the West Indies.

Fall (Delos).

1. Marls and clays in Michigan.
 Discusses occurrence of materials in Michigan for making Portland cement.

 Discusses occurrence, composition, and character of marls and clays in Michigan with especial
 reference to their use in the manufacture of Portland cement.

Faribault (E. Rodolph).

1. Nova Scotia gold fields.
 Describes observations in this area.

 Describes geologic investigations made in the gold-producing districts of Nova Scotia.

 Describes the occurrence and relations of the gold-ore deposits and the mining operations.

Farnsworth (P. J.).

1. When was the Mississippi River Valley formed?
 Am. Geol., vol. 28, pp. 333-396, 1901.
 Discusses the geologic history of the region.

Farrington (Oliver Cummings).

1. On the nature of the metallic veins of the Farmington meteorite.

2. The structure of meteorites.
 Jour. Geol., vol. 9, pp. 51-66, 6 figs., pp. 174-190, 5 figs., 1901.
 Describes the various structural features of meteorites and discusses their origin.

3. The constituents of meteorites.
 Jour. Geol., vol. 9, pp. 533-408 and 522-582, 1901.
 Describes the character and occurrence of the mineral constituents of meteorites.

4. The pre-terrestrial history of meteorites.
 Jour. Geol., vol. 9, pp. 625-632, 1901.
 Discusses the evidences indicating the probable structure of meteorites before reaching the
 earth.

5. Observations on Indiana caves.
Farrington (Oliver Cummings)—Continued.

 Describes meteorites from Kansas, Mexico, and Ohio.

 Gives an account of the discovery and characters of this meteorite.

8. The meteorites of northwestern Kansas.

 The alphabetic list of meteorites includes notes on the character and source of the specimens, some of which are figured.

10. An occurrence of free phosphorus in the Saline Township meteorite.

12. Gems and gem minerals.
 Chicago, A. W. Mumford, 1903. 229 pp., 16 pls., 61 figs.

13. Observations on the geology and geography of western Mexico, including an account of the Cerro Mercado.
 Describes physiographic features, climatic conditions, the general geology and silver-mining developments of this part of Mexico, and in detail the Cerro Mercado (Iron Mountain), particularly the occurrence and characters of the iron ore, minerals, and rocks.

14. The geographical distribution of meteorites.

15. The Rodeo meteorite.
 Describes the history, characters, and composition of this meteorite found in the State of Durango, Mexico.

Farrington (Oliver Cummings), Riggs (Elmer S.) and.

1. The Dinosaur beds of the Grand River Valley of Colorado.
 See Riggs (E. S.) and Farrington (O. C.), 1.

Fawns (Sydney).

1. Tin deposits of the world.
 Includes notes on the occurrence of tin deposits in the United States and Alaska.

Felix (J.).

1. Geologische Stätte vón der Südameriká.
 Geologische Reisezüge aus Nordamerika.
 Gives observations of a geological nature made during a tour through the United States and Canada, particularly upon the glaciers and topography of the Cascade Mountains.

Felix (Johannes) and Lenk (Hans).

1. Bemerkungen zur topographie und geologie von Mexico.
 Contains observations on the topography and geology of Mexico.

Fell (E. Nelson).

1. The Canadian Mining Institute.
 Eng. & Mg. Jour., vol. 73, p. 411, 1902.

Felbows (A. L.).

1. Water resources of the State of Colorado.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 74, 151 pp., 14 pls., 5 figs., 1902.
1. On the lakes of southeastern Wisconsin.
 Discusses the geology, physiography, and formation of lakes of this region.

2. Development of the profile of equilibrium of the subaqueous shore terrace.
 Jour. Geol., vol. 10, pp. 1-32, 10 figs., 1902.

3. The Arapahoe glacier in 1902 [Colorado].
 Jour. Geol., vol. 10, pp. 839-851, 8 figs., 1902.
 Describes the moraines and crevasses of this glacier.

4. The Boulder, Colo., oil field.
 Describes location, general geologic structure and development of the field, the character
 and occurrence of the oil-bearing strata, and the production of oil.

5. Structure of the Boulder oil field, Colorado, with records for the year 1903.
 Describes the location and geologic structure of the field and the occurrence and production
 of petroleum.

6. Effect of cliff erosion on form of contact surfaces.
 Discusses the relations of shore erosion and subsidence and the application to the contact of
 the Archean granite and Wyoming sandstone in the front range of the Rocky Mountains
 in northern Colorado.

7. Oil fields of the Texas-Louisiana coastal plain.
 Mg. Mag., vol. 11, pp. 313-322, 6 figs., 1905.
 Includes a short account of the geological structure of the oil fields.

8. Oil fields of the Texas-Louisiana gulf coast.
 Describes the location and condition of the various oil fields in this region, and discusses the
 prospecting for oil, the surface indications, and the structure and origin of the oil-producing
 mounds.

 Describes the location and structure of the field, the occurrence of the oil, and the economic
 developments.

 U. S. Geol. Surv., Bull. no. 265, 101 pp., 5 pls., 11 figs., 1905.
 Describes the physiography and drainage, the character, occurrence, and relations of Algon-
 kian, Triassic (?), Jurassic, and Cretaceous sedimentary rocks, and of intrusive rocks, the
 geologic history of the area, and the economic geology, particularly the occurrence of oil
 and gas.

Fernie (W. Blakemore).

1. The Frank disaster [Alberta].
 Discusses the cause of the landslide.

Finch (Grant E.).

1. A terrace formation in the Turkey River Valley, in Fayette County, Iowa.
 Describes the structure and formation of the bluffs.

2. Notes on the position of the individuals in a group of Nileus vigilans found at
 Elgin, Iowa.

Finch (John Wellington).

1. The circulation of underground aqueous solutions and the deposition of lode ores.
 pp. 22-24; no. 14, pp. 21-24, 1904.
 Discusses underground water and the formation of ore deposits.
Finch (John Wellington)—Continued.
2. State geological survey for Colorado.

Finlay (George Irving).
1. The granite of Barre, Vermont.
 Briefly describes megascopic and microscopic characters.
2. Preliminary report of field work in the town of Minerva, Essex County [New York].
 Describes geologic structure and petrology of this area.
3. The granite area of Barre, Vermont.
 Discusses topography, geology, and petrology of this area.
4. Igneous rocks of the Algonkian series.
 Describes characters and occurrence of igneous rocks of the Algonkian series in Lewis and Livingston ranges, Montana.
5. Geology of the San Pedro district, San Luis Potosi, Mexico.
 School of Mines Quart., vol. 25, pp. 60-69, illus., 1903; Columbia Univ., Dept. Geol., Contr., vol. 12, no. 108, 1904.
 Describes the general geology of the region, the character and occurrence of the rocks and ore deposits, chiefly gold, silver, and lead, and discusses the origin of the latter.
6. Geological observations along the northern boundary of Montana.
7. The geology of the nephelite syenite area at San José, Tamaulipas, Mexico.
8. The geology of the San José district, Tamaulipas, Mexico.
 Describes the topography and the general geologic structure of the region, the field relations of the igneous rocks, and in detail their petrographic characters.

Finlay (George I.) and Kemp (J. F.).
1. Nepheline syenite area of San José, Tamaulipas, Mexico.

Finlay (J. R.).
1. The mining industry of the Cœur d'Alenes, Idaho.
 Describes the geologic structure of the region, the occurrence and character of the veins and ore deposits, chiefly lead, and the mining operations.
2. Mining and milling in the Cœur d'Alene, Idaho.
 Describes the general geology of the region and the occurrence of ore bodies.
3. The mining industry of the Cœur d'Alene district, Idaho. The ore formation.
 The production and methods of operating.
 Abstract of paper read before the American Institute of Mining Engineers in 1902, together with comments by Arthur Lakes.

Fishback (P. J.).
1. Geological horizon of the petroleum in southeast Texas and southwest Louisiana.

Fisher (Cassius A.).
1. Comparative value of bluff and valley wash deposits as brick material.
Fisher (Cassius A.)—Continued.

2. Directory of the limestone quarries of Nebraska.

3. Discovery of the Laramie in Nebraska.
 Am. Geol., vol. 30, pp. 315-316, 1 pl., 1902.
 Describes occurrence and relations of the Laramie in southeastern Nebraska.

4. Coal fields of the White Mountain region, New Mexico.
 Describes the location of the field and the occurrence and character of the coals.

 Describes the physical properties, occurrence, and geological relations of bentonite, a variety of clay.

Fisher (Cassius A.), Barbour (Erwin H.) and.

1. A new form of calcite-sand crystal.
 See Barbour (E. H.) and Fisher (C. A.), 1.

2. The geological bibliography of Nebraska.
 See Barbour (E. H.) and Fisher (C. A.), 2.

Fisher (Cassius A.), Gould (C. N.) and.

1. The Dakota and Carboniferous clays of Nebraska.
 See Gould (C. N.) and Fisher (C. A.), 1.

Fisher (O.).

1. On rival theories of cosmogony.
 Discusses the meteoric and nebular theories as to the origin of the earth.

2. Mathematical notes to rival theories of cosmogony.
 Contains mathematical notes supplementary to the author’s previous paper.

Fitzhugh (G. D.).

 Describes the occurrence and composition of chalk suitable for the manufacture of cement.

Fletcher (Hugh).

 Discusses the age of the New Glasgow conglomerate.

2. Kings and Hants counties, Nova Scotia.
 Describes the author’s observations in this area.

3. Surveys and explorations in Richmond, Cape Breton, Kings, Cumberland, and other counties in Nova Scotia.
 Describes geologic work in the coal fields of Nova Scotia.

4. Limits of the workable coals of the Cumberland coal fields in Nova Scotia.
 Includes observations upon the geology of the region, and discusses the possibility of workable coal seams being found at certain points in the light of geological facts presented.

5. Northern part of Nova Scotia.
 Gives notes upon the geology and mineral resources of this area.
Fletcher (Hugh)—Continued.

6. The counties of Cumberland, Hants, Kings, and Annapolis, Nova Scotia.

Includes observations on the geology of the region examined, and the occurrence and relations of minerals of economic importance, especially deposits of iron ore.

Flett (John Smith).

1. Note on a preliminary examination of the ash that fell on Barbados after the eruption at St. Vincent [West Indies]. With a chemical analysis by Dr. William Pollard.

2. Preliminary report on the recent eruption of the Soufrière in St. Vincent, and of a visit to Mont Pelée, in Martinique.

See Anderson (Tempest) and Flett (J. S.), 1.

3. Preliminary report on the recent eruption of the Soufrière in St. Vincent, and of a visit to Mont Pelée, in Martinique.

See Anderson (Tempest) and Flett (J. S.), 2.

Flett (John Smith), Anderson (Tempest) and.

1. Report on the eruptions of the Soufrière, in St. Vincent, in 1902, and on a visit to Montagne Pelée, in Martinique.

See Anderson (Tempest) and Flett (J. S.), 3.

Flink (Gust.).

1. Berättelse om en mineralogisk resa i Syd.-Groenland sommaren 1897.

Describes minerals and rocks obtained from Greenland.

2. On the minerals from Narsarsuk on the firth of Tunugdljarfik in southern Greenland.

Describes character and occurrence of minerals in this area.

Flores (Teodoro).

1. Las criaderos argentíferos de “Providencia” y “San Juan de la Chica,” San Felipe (Estado de Guanajuato), [México].

Describes the occurrence, character, and relations of silver deposits.

Fluck (Frank).

1. Lower Coal Measures of central Pennsylvania.

Describes occurrence and character of coal seams of central Pennsylvania.

Fluker (W. H.).

1. Gold mining in McDuffie County, Georgia.

Eng. & M. Jour., vol. 78, pp. 725-726, 1902.
Contains general notes on the geology and gold ores of the county.

2. Gold mining in McDuffie County, Georgia.

Describes the occurrence of gold ore and the mining operations.

Flynn (Benjamin H.) and (Margaret S.).

1. The natural features and economic development of the Sandusky, Maumee, Muskingum, and Miami drainage areas in Ohio.

U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 91, 130 pp., 11 figs., 1904.
Includes a brief account of the topography and general geology of the areas considered.

Foerste (August F.).

1. Silurian and Devonian limestones of Tennessee and Kentucky.

Discusses the occurrence and lithologic character of the Ordovician, Silurian, and Devonian series in the southern portion of the Cincinnati anticline and discusses the evidences of unconformity. Gives lists of fossils from several formations at various points in the region.
Foerste (August F.)—Continued.
2. The Niagara group along the western side of the Cincinnati anticline.
3. The Cincinnati anticline in southern Kentucky.
 Am. Geol., vol. 30, pp. 359-369, 1 pl., 1902.
 Describes the relations of the Devonian, Silurian, and Ordovician formations along the Cin­
cinnati anticline.
4. Bearing of the Clinton and Osgood formations on the age of the Cincinnati anti­
cline.
5. Use of the terms Linden and Clifton limestones in Tennessee geology.
 Jour. Geol., vol. 11, pp. 29-45, 1 fig., 1903.
 Discusses the subdivisions of the Cincinnati group in Ohio, names and describes the subdivi­
sions in Tennessee, and gives localities of outcrops and notes on characteristic fossils.
7. Silurian and Devonian limestones of western Tennessee.
 Jour. Geol., vol. 11, pp. 554-588, 6 figs., pp. 679-715, 4 figs., 1903.
 Describes character, occurrence, and correlation of Silurian strata along the western side of
the Cincinnati geanticline in southern Indiana, Kentucky, and northern Tennessee, and of
Silurian and Devonian strata in the Tennessee River Valley, and discusses evidences for the age
of the Cincinnati geanticline and gives lists of fossils with brief descriptions of some
forms.
8. The Richmond Group along the western side of the Cincinnati anticline in Indi­
ana and Kentucky.
 Am. Geol., vol. 31, pp. 333-361, 3 pls., 1903.
 Discusses occurrence and lithologic, stratigraphic, and faunal features of the subdivisions of
the Cincinnati series, the decrease in thickness of the Richmond group in Indiana and Ken­
tucky, and conditions prevailing in the Cincinnati region in Ordovician times.
9. Variation in thickness of the subdivisions of the Ordovician of Indiana. With
noted on the range of certain fossils.
 Am. Geol., vol. 34, pp. 87-102, 1 pl., 1904.
10. The Ordovician-Silurian contact in the Ripley Island area of southern Indiana,
with notes on the age of the Cincinnati geanticline.
 Discusses the stratigraphic evidence for the time of formation of the Cincinnati geanticline,
the occurrence, character, and relations of Ordovician and Silurian formations in Ohio,
Indiana, and Kentucky, and gives observations upon the stratigraphic position of various
fossils, the relationships of Silurian faunas of Indiana with those of New York, and lists of
Niagara fossils of Indiana.
11. Description of the rocks formed in the different geological periods in Indiana:
Ordovician and Silurian.
12. The classification of the Ordovician rocks of Ohio and Indiana.
 Am. Geol., vol. 36, pp. 244-250, 1905.
 Gives notes upon the geographic distribution and geologic horizons of certain brachiopods
of the Arnheim and Waynesville beds of the upper Ordovician beds of Ohio, Indiana, and
Kentucky.
Fontaine (William M.).
1. The Jurassic flora of Douglas County, Oreg.
2. Report on collections from plant-bearing beds in the Jurassic, or forming the
transition to the lower Cretaceous.
Fontaine (William M.)—Continued.
3. Notes on some fossil plants from the Shasta group of California and Oregon.
4. Notes on some lower Cretaceous (Kootanie) plants from Montana.
5. Report on various collections of fossil plants from the older Potomac of Virginia and Maryland.

Foote (H. W.), Penfield (S. L.) and.
1. On bixbyite, a new mineral.
 See Penfield (S. L.) and Foote (H. W.), 1.
2. On clinohedrite, a new mineral from Franklin, N. J.
 See Penfield (S. L.) and Foote (H. W.), 2.

Foote (H. W.), Pratt (J. H.) and.
1. On wellsite, a new mineral.
 See Pratt (J. H.) and Foote (H. W.), 1.

Foote (W. M.).

Ford (Frederick L.).
1. The trap rock of the Connecticut Valley.
 Describes the character, occurrence, and geologic history of the trap rock in the vicinity of Hartford, Conn.

Ford (W. E.).
1. On the chemical composition of dumortierite.
2. Rickardite, a new mineral.
 Describes occurrence and chemical composition.
3. On the chemical composition of axinite.

Ford (W. E.), Penfield (S. L.) and.
1. On calavarite.
 See Penfield (S. L.) and Ford (W. E.), 1,

Forstner (William).
1. Genesis of ore deposits at the Royal mine, Hodson, Cal.
 Describes the occurrence and geologic relations of the ore bodies and discusses their origin.
2. The quicksilver deposits of California.

Forsyth (Alexander).
1. [In discussion of paper by J. D. Irving "Wolframite in the Black Hills of South Dakota."

Foster (Ernest Le Neve).
1. The Colorado Central lode, a paradox of the mining law.
 Includes some discussion of the occurrence of the ores.
Fowke (Gerard).
1. The preglacial drainage of Ohio—introduction.
 Ohio State Acad. Sci., Special Papers, no. 3, pp. 5-9, 1900.
 Reviews work previously done in deciphering preglacial drainage as an introduction to
papers following.

2. Preglacial drainage conditions in the vicinity of Cincinnati [Ohio].
 Ohio State Acad. Sci., Special Papers, no. 3, pp. 68-75, map, 1900.

Fowler (George L.).
1. The coals and coal-mining methods of the Pocahontas field.
 Describes the geologic occurrence, fuel value, and mining methods of the Pocahontas coal.

Fraas (E.).
1. [Origin of the Oligocene beds of the Bad Lands, South Dakota.]
 Contains quotation from letter to Professor Osborn.

2. Geologische Streifzüge durch die Prärien und Felsengebirge Nordamerikas.
 Württemberg, Jahreshefte des Vereins für vaterländische Naturkunde, Stuttgart, Jahrg. 58,
 pp. LXV-LXVIII, 1902.
 Contains observations on the Jurassic strata of Wyoming and their vertebrate fossils, and the
 Bad Lands of South Dakota.

Franke (Robert P.).
1. Geology of the Cochise mining district, Arizona.

Frazer (Persifor).
1. Alphabetical cross reference catalogue of all the publications of Edward Drinker
 Cope, from 1859 till his death in 1897.

 Gives a brief sketch of his life and a list of his publications.

 Am. Geol., vol. 27, pp. 335-342, 1901.

4. Sketch of Dr. Frenzel.
 Am. Geol., vol. 30, pp. 333-335, 1902.

7. J. Peter Lesley.
 Am. Geol., vol. 32, pp. 133-136, 1 pl. (por.), 1903.

8. History of the Caribbean Islands from a petrographic point of view. (Abstract.)
 Discusses briefly the petrology of Cuba and Anglesey and its bearing on the geologic history
 of the Antillean region.

9. Geogenesis and some of its bearings on economic geology.
 Reviews theories of the origin of the earth and discusses the planetesimal theory and the origin
 of the hydrocarbons.

 Am. Geol., vol. 35, pp. 263-266, 1 pl. (por.), 1905.
 Gives an account of his life.
FOR THE YEARS 1901-1905, INCLUSIVE.

Frech (Fritz).
1. Die geographische Verbreitung und Entwicklung des Cambrium.
 In discussing the geographic distribution and development of the Cambrian, includes the
 Cambrian of North America.

Frizell (Joseph P.).
1. Tidal scour in harbors, or the function of tidal basins with special reference to the
 Harbor of Boston.
 Contains notes on deposition in harbors and its removal by tidal scour.

Fuchs (Th.).
1. Ueber Parapsonema cryptophyza Clarke und deren Stellung im System.
 Discusses the systematic position of this Devonian fossil.

Fuller (H. T.).
1. Corundum and emery.
 Describes occurrence and character of deposits of corundum in Ontario, Canada.

Fuller (Myron L.).
1. Probable representatives of the pre-Wisconsin till in southeastern Massachusetts.
 Describes the occurrence and character of the till at various localities and the occurrence of
 possible interglacial rock disintegration.

2. Etching of quartz in the interior of conglomerates.
 Jour. Geol., vol. 10, pp. 815-821, 3 figs., 1902.
 Discusses the evidences as to the cause and the conditions during the etching.

3. The Gaines oil field of northern Pennsylvania.
 Describes location, topography, extent and development of the field, location, and productiv
 5eness of wells, character and geologic occurrence of oil-producing sands and the stratigraf
 hy and geologic structure of this area.

5. Asphalt, oil, and gas in southwestern Indiana.
 Describes occurrence and production of oil, natural gas, and asphalt in southwestern
 Indiana.

6. Probable pre-Kansan and Iowan deposits of Long Island, N. Y.
 Am. Geol., vol. 32, pp. 308-312, 1903.

 Discusses Glacial deposits and terraces in this region.

8. Ice-retreat in Glacial Lake Neponset and in southeastern Massachusetts.
 Jour. Geol., vol. 12, pp. 181-197, 4 figs., 1904.
 Describes occurrence and character of Glacial deposits in a part of eastern Massachusetts and
 discusses the disappearance and accompanying events of the Glacial ice.

 Describes the occurrence of natural gas in this field and gives the record of one of the
 borings.

10. Water supplies from wells in southern Louisiana.

11. Contributions to the hydrology of eastern United States, 1903. Introduction.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 9-13, 1904.
 Bull. 301—06—9
Fuller (Myron L.)—Continued.

12. Organization of the Division of Hydrology and work of the eastern section.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 15-20, 1904.
 Outlines the work of the United States Geological Survey in the investigation of underground water resources.

13. Notes on the wells, springs, and general water resources of certain eastern and central states. Introduction.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 21-26, 1904.
 Describes the collection, preparation, and utilization of data relating to underground waters, as an introduction to a series of papers by different writers on the underground water resources of certain eastern and central states.

14. Notes on the wells, springs, and general water resources of Florida.

15. Experiments on the pollution of deep wells in Georgia.

17. Introduction to Contributions to the hydrology of eastern United States, 1904.
 Gives summaries of the reports comprised in the second of the series of "Contributions to the hydrology of eastern United States."

18. Triassic rocks of the Connecticut Valley as a source of water supply.
 Describes the water resources of the area. Includes an account of the geologic structure.

 Includes a brief account of the geography, topography, and geology.

21. Occurrence of underground waters.
 Describes the relations of rainfall, run-off, evaporation, and absorption, the occurrence of underground water and its recovery by wells.

 Gives a brief account of the geology and underground waters of the state.

 Describes briefly the general geology and the sources of water supply.

 Describes the underground water resources of the state.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 114, pp. 159-163, 1 fig., 1905.
 Describes briefly the topography, general geology, and underground waters of the state.

 Describes briefly the physiographic belts and their underground water resources.

27. Bibliographic review and index of papers relating to underground waters published by the United States Geological Survey, 1879-1904.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 120, 128 pp., 1905.

28. Audubon's account of the New Madrid earthquake.
 Fuller (Myron L.)—Continued.

 Describes the character, occurrence, and relations of Pleistocene and drift deposits on Fishers
 Island, and discusses their correlation with formations of other regions.

31. Hydrologic work in eastern United States and publications on ground waters.
 Describes briefly the work of the Division of Hydrology of the U. S. Geological Survey in
 eastern United States and the publications relating to underground waters.

32. Two unusual types of artesian flow.

33. Construction of so-called fountain and geyser springs.

34. A ground-water problem in southeastern Michigan.

35. Notes on certain large springs of the Ozark region, Missouri and Arkansas.

36. Objects, development, and results of the work of collecting well records and
 samples.

37. Failure of wells along the lower Huron River, Michigan, in 1904.
 Gives an account of the general geology and of the condition of the water supply of the region.

38. Some results of Geological Survey work in the location of underground waters.

39. Artesian flows from unconfined sandy strata.
 Discusses certain unusual conditions under which flowing wells occur.

40. Pleistocene history of Fishers Island, N. Y.

41. Cause and periods of earthquakes in the New Madrid area, Missouri and
 Arkansas.

 Fuller (Myron L.) and Alden (William C.).

 Describes topography and drainage, character and occurrence of Devonian, Carboniferous,
 and Quaternary deposits, the geologic structure and history, physiography and glacial
 history, economic products, and discovery and development of the Gaines oil field.

 Describes topography and drainage, character and occurrence of Devonian, Carboniferous,
 and Quaternary deposits, the geologic structure, geologic, physiographic, and glacial history
 and economic resources.

 Fuller (Myron L.) and Ashley (George H.).

1. Ditney folio, Indiana.
 Describes geographic and topographic features, general geologic relations, Carboniferous for­
 mations and Quaternary deposits, and economic resources, chiefly coal.
Fuller (Myron L.) and Ashley (George H.)—Continued.

2. Recent work in the coal field of Indiana and Illinois.
 Describes the character and occurrence of the coals in this area, and thickness and relations
 of the coal seams.

Fuller (Myron L.) and Clapp (Frederick G.).
1. Marl-loess of the lower Wabash Valley.
 Describes character and occurrence of loess deposits in this region and discusses evidences
 showing their origin.

 Describes topographic features, the general geologic relations, the character and occurrence
 of Carboniferous, Tertiary, and Quaternary formations, the geologic structure and history,
 the economic resources, coal, clay, and building stone, the soils, forest reserves, and water
 supply.

Fuller (Myron L.) and Veatch (A. C.).
1. Results of the resurvey of Long Island, New York.
 Discuss the occurrence of Cretaceous and Quaternary deposits and the source of the water of
 artesian wells.

Fuller (Myron L.), Darton (Nelson H.) and.
1. Underground waters of eastern United States: Maryland.
 See Darton (N. H.) and Fuller (M. L.), 1.

 See Darton (N. H.) and Fuller (M. L.), 2.

 See Darton (N. H.) and Fuller (M. L.), 3.

Fuller (Myron L.), Lines (E. F.), and Veatch (A. C.).
1. Record of deep well drilling for 1904.
 U. S. Geol. Surv., Bull. no. 264, 193 pp., 1905.

Fulton (Charles H.).
1. The cyanide process in the Black Hills of South Dakota.
 S. Dak. School of Mines, Bull. no. 5, pp. 1-77, 1 pl., 1902.

Furlong (Eustace L.).
1. An account of the preliminary excavations in a recently explored Quaternary
 cave in Shasta County, California.
 Describes occurrence of vertebrate remains and gives lists of forms identified.

2. Preptoceras, a new ungulate from the Samwel cave, California.

Furlong (Eustace L.), Sinclair (William J.) and.
1. Euceratherium, a new ungulate from the Quaternary caves of California.
 See Sinclair (William J.) and Furlong (E. L.), 1.

Furman (H. van F.).
 Describes character and occurrence of gold ores in southeastern Alaska.

G.

Gale (Hoyt S.).

Gallaher (John A.).
1. Preliminary report on the structural and economic geology of Missouri.
Gallaher (John A.)—Continued.
2. Geology of Missouri.
 A general account of the geology of the State of Missouri.

Gannett (Henry).
1. Profiles of rivers.
 U. S. Geol. Surv., Water-Supply and Irrigation Papers no. 44, 100 pp., 11 pls., 1901.
2. Geography of Alaska.
3. Lake Chelan and its glacier [Washington].
 Describes the formation of a gorge through glacial erosion.

Ganong (W. F.).
1. Notes on the natural history and physiography of New Brunswick.
2. Notes on the natural history and physiography of New Brunswick.
 Describes physiographic history of various rivers of New Brunswick.
 Describes various physiographic features, in sections, entitled: A measure of the rate of recession of the New Brunswick coast line; on the physiographic characteristics of the Renous River; on the physiographic characteristics of the Southwest Branch of the Little Southwest Miramichi River; on the physiographic characteristics of the Walkemik Basin; on geological boundaries in the Tunadook-Walkemik region.

Gardiner (J. Stanley).
1. The origin of coral reefs, as shown by the Maldives.

Garrey (G. H.), Spurr (J. E.) and.
1. Preliminary report on ore deposits in the Georgetown, Colo., mining district.
 See Spurr (J. E.) and Garrey (G. H.), 1.

Garrison (F. Lynwood).
1. The genesis of limonite ores in the Appalachians.
2. The iron ores of Shady Valley, Tennessee.
 Describes the geology and the occurrence, character, and relations of the iron-ore deposits.
3. Tin in the United States.
 Discusses the occurrence of tin deposits.
 Includes brief notes on the general geology of the island.

Gaudry (Albert).
 Notes the occurrence of Quaternary mammalian remains in Alaska.

Gautier (Armand).
 Discusses the constitution of gases from the fumerolles of Mont Pelée and the cause of volcanic phenomena.
Gay (Ware B.).
1. [In discussion of paper on "The Richmond coal-basin, Virginia," by J. B. Woodworth.]

Geikie (Archibald).
1. The founders of geology.
 Johns Hopkins Univ., George Huntington Williams Memorial lectures, vol. 1, 297 pp., 1901.

Gidley (J. W.).
1. Tooth characters and revision of the North American species of the genus Equus.
3. On two species of Platygonus from the Pliocene of Texas.
 Describes explorations in the Tertiary beds of northwestern Texas, and the character, occurrence, and fossil contents of Pleistocene, Pliocene, and Miocene formations.
5. Proper generic names of Miocene horses.

Gidley (J. W.), Matthew (W. D.) and.
1. New or little-known mammals from the Miocene of South Dakota. American Museum expedition of 1903.
 See Matthew (W. D.) and Gidley (J. W.), 1.

Gilbert (Grove Karl).
1. Physical history of Niagara River [New York].
2. On some joint veins.
 A sketch of his life and work.
4. John Wesley Powell: a memorial to an American explorer and scholar. Comprising articles by Mrs. M. D. Lincoln (Bessie Beach), Grove Karl Gilbert, Marcus Baker, and Paul Carus. Edited by Grove Karl Gilbert. (Reprinted from "The Open Court.")
 Chicago, The Open Court Publishing Company, 75 pp., 4 pls. (por.), 1903.
5. Powell as a geologist.
6. Proposed investigation of subterranean temperatures and gradients.
 Presents a proposition for a deep boring, and states results to be obtained thereby.
7. John Wesley Powell.
 Revised by the author from article published in Science, October 10, 1902. See no. 3 above.
 Contains brief note on joint structures in the House range, Utah.
9. A highly viscous eruption of rhyolite.
Gilbert (Grove Karl)—Continued.

 Discusses the statics of tidal glaciers and their bearing upon the origin of fiords.

 Describes the occurrence and characters of the glaciers and physiographic features of Alaska.

 Harriman Alaska Expedition, vol. 4, pp. 1-8, 1 pl., 1904.
 Describes briefly the itinerary of the Harriman Alaska expedition and the results obtained.

15. Regulation of nomenclature in the work of the U. S. Geological Survey.
 Am. Geol., vol. 33, pp. 138-142, 1904.

16. The mechanism of the Mont Pelée spine.
 Offers an explanation of the formation of the spine of Mont Pelée.

17. Domes and dome structure of the high Sierra.
 1905.
 Discusses dome structure and discusses its origin.

18. Variations of Sierra glaciers.

19. Systematic asymmetry of crest lines in the high Sierra of California.
 Discusses the relations of glaciers and physiographic features in the Sierra Nevada Mountains.

20. The sculpture of massive rocks.

 Carnegie Inst. of Wash., Yearb. no. 3, 1904, pp. 120, 209-260, 1905.

22. Value and feasibility of a determination of subterranean temperature gradient by means of a deep boring.

23. Undulations of certain layers of the Lockport limestone.

24. Terraces of the High Sierra, California.

25. Fault phenomena near Glen Echo, Md.

Gilbert (Grove Karl) and Brigham (Albert Perry).

1. An introduction to physical geography.

Gill (Theodore N.).

1. Origin of fresh-water faunas.

BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Gillespie (P.).
 Includes notes on the occurrence of marls and clays in Ontario.

Gillette (Halbert Powers).
1. Osmosis as a factor in ore formation.

Gilot (H.).
 Discusses the chemical composition of volcanic ash from Martinique.

Gilmore (Charles W.).
1. Discovery of teeth in Baptanodon, an Ichthysosaurian from the Jurassic of Wyoming.
2. Discovery of dental grooves and teeth in the type of Baptanodon (Sauranodon) Marsh.
3. Osteology of Baptanodon (Marsh).
 Carnegie Mus., Mem., vol. 2, pp. 77-129, 6 pls., 26 figs., 1905.
4. The mounted skeleton of Triceratops prorsus.

Gilmore (Charles W.), Peterson (O. A.) and.
1. Elosaurus parvus; a new genus and species of the Sauropoda.
 See Peterson (O. A.) and Gilmore (C. W.), 1.

Gilpin (Edwin, jr.).
1. The minerals of Nova Scotia.
 Halifax, N. S., 1901. 78 pp.
 Describes the economic mineral resources of the province.
2. The building stones of Nova Scotia.

Giraud (J.).
1. Sur l'âge des formations volcaniques anciennes de la Martinique.
 Discusses the geologic age of volcanic formations on the island of Martinique.

Giraud (J.), Lacroix (A.), Rollet de l'Isle and.
1. Sur l'explosion de la Martinique.
 See Lacroix (A.), Rollet de l'Isle and Giraud (J.), 1.

Girty (George H.).
1. The Waverly group in northeastern Ohio.
 *Gives brief notes on the correlation and succession of the subdivisions.
2. The Upper Permian in western Texas.
 Describes the lithologic and faunal characters of the Carboniferous section examined by Shumard in 1855, and proposes the geographic term Guadalupian for the Permian strata of the region.
3. The Carboniferous formations and faunas of Colorado.
 Reviews in chronologic order the literature bearing upon the subject and includes a bibliography. *Gives a résumé of the literature upon the stratigraphic geology of the Carboniferous area of Colorado. Describes the character and occurrence of the Paleozoic formations, discusses the occurrence and correlation of the Carboniferous fossil faunas by geographic areas and localities, with lists of species, and gives systematic descriptions of the species.*
Girty (George H.)—Continued.
4. Tabulated list of invertebrate fossils from the Carboniferous section of Kansas.
 U. S. Geol. Surv., Bull. no. 211, pp. 73-83, 1903.
5. New molluscan genera from the Carboniferous.
 Gives lists of identified fossils with notes upon their occurrence and relations. Some of the more characteristic are figured.
7. The typical species and generic characters of Aviculipecten, McCoy.
 Am. Geol., vol. 33, pp. 291-296, 1 fig., 1904.
8. The type of Aviculipecten.
 Am. Geol., vol. 34, pp. 322-333, 1904.
10. Upper Paleozoic rocks in Ohio and northwestern Pennsylvania.
 Discusses the equivalency of certain Carboniferous formations.
11. The relations of some Carboniferous faunas.
 Discusses the relations and correlations of Carboniferous faunas and formations in the various parts of the United States to one another and to those of other parts of the world.
12. Paleontology of the Bingham mining district, Utah.
 Gives notes upon the occurrence and lists of fossils identified in collections there made.

Glenn (L. C.).
1. Devonian and Carbonic formations of southwestern New York, with stratigraphic map of the Olean quadrangle.
 N. Y. State Mus., Bull. 69, pp. 967-989, 2 pls., 1903.
 Describes occurrence, character, and geologic relations of Devonian and Carboniferous strata of this region and discusses the geologic age of the formations.
3. Notes on a new meteorite from Hendersonville, N. C., and on additional pieces of the Smithville, Tenn., fall.
4. Notes on the wells, springs, and general water resources of Tennessee.
5. Notes on the wells, springs, and general water resources of Kentucky.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 369-373, 1904.
7. The more common minerals of the region about Nashville [Tennessee].
 Discusses the general principles controlling occurrence of minerals, and describes the occurrence and character of minerals from central Tennessee.
 Am. Geol., vol. 35, pp. 72-94, 1 pl. (por.), 1905.
 Includes a discussion of Troost's reports as State geologist and a list of his published writings.
Glenn (L. C.)—Continued.
 Describes the general geology and the character, occurrence, and water-bearing resources of
 the various geologic formations of the State.

 Describes the underground water resources by physiographic provinces.

Goldschmidt (Victor).
1. From the borderland between crystallography and chemistry.

Goldschmidt (Victor) and Nicol (William).
1. New forms of sperrylite.
 Describes crystallographic characters.

Goldthwait (James Walter).
1. The sand plains of Glacial Lake Sudbury.
 Harvard Coll., Mus. Comp. Zool., Bull., vol. 42 (Geol. Ser., vol. 6, no. 6), pp. 263-301, 5 pls., 4
 figs., 1905.
 Describes an investigation upon the sand plains in the Sudbury Valley, Mass., discusses their
 relations, and the hypotheses offered to explain their differences in level, and gives a sketch
 of the probable history of Lake Sudbury.

Goldthwait (James Walter), Huntington (Ellsworth) and.
1. The hurricane fault in southwestern Utah.
 See Huntington (Ellsworth) and Goldthwait (J. W.), 1.

2. The hurricane fault in the Toquerville district, Utah.
 See Huntington (E.) and Goldthwait (J. W.), 2.

Goode (John Paul).
1. The piracy of the Yellowstone.
 See no. 2047 in U. S. Geol. Surv., Bull. no. 188.

Goodwin (J. C.).
1. Reformed copper ores.
 Discusses the occurrence and origin of copper-ore deposits.

Gordon (C. E.).
1. Early stages of some Paleozoic corals.

Gordon (Charles H.).
1. On the origin and classification of gneisses.

2. The Port Huron oil field [Michigan].
 Contains well records of this field and the adjoining region in Canada.

3. Wave-cutting on west shore of Lake Huron, Sanilac County, Mich.
 12, pp. 10-14, illus., 1902.
 Describes the recent encroachment of the lake upon the land.

4. On the paramorphic alteration of pyroxene to compact hornblende.
 Am. Geol., vol. 34, pp. 40-43, 1904.

5. On the pyroxenites of the Grenville series in Ottawa County, Canada.
 Jour. Geol., vol. 32, pp. 310-325, 5 figs., 1904.
 Describes the occurrence and characters of these rocks and discusses their origin and nomen­
 clature.
Gordon (Charles H.)—Continued.
6. The work of rivers.
 Northwest Jour. of Education, vol. 15, no. 7, pp. 3-6, 2 figs., 1904.
 Discusses erosion and sedimentation by running waters.

Gordon (Reginald).
1. Bones of a mastodon found.
 Describes the occurrence of remains of a mastodon near Newburgh, New York.

2. Tree trunks found with mastodon remains.
 Describes occurrence of remains of trunks of trees near Newburgh, New York.

Gorham (Frederic P.).
 The Apteryx, vol. 1, pp. 53-58, 2 pls., 1905; Roger Williams Park Museum, Providence, R. I.
 Bull. no. 9, 6 pp., 2 pls., 1905.
 Describes the occurrence of Cambrian strata at this locality and gives figures of fossils contained in them.

Gottschalk (A. L. M.).
1. Gold fields of eastern Nicaragua.
 Describes the occurrence and production of gold.

Gould (Charles Newton).
1. Notes on the fossils from the Kansas-Oklahoma Red Beds.
 Gives a description of the character of the Red Beds and of the evidences on which they have been assigned to the Permian. Refers to fossils recently found in the beds.

2. Notes on the geology of parts of the Seminole, Creek, Cherokee, and Osage Nations.
 This paper is a contribution to the Red Beds problem of the region, and indicates that the strata are of Permian and Carboniferous age.

3. Tertiary springs of western Kansas and Oklahoma.
 Describes the occurrence of those springs at the contact between the Tertiary and the underlying Cretaceous or Red Bed strata.

 Am. Geol., vol. 27, pp. 188-190, 1901.
 Describes the geologic features of the region and discusses the age of the beds.

5. The Dakota Cretaceous of Kansas and Nebraska.
 Gives a historical sketch of work on the Dakota group, describes its geographic distribution, character, occurrence, and relations, its economic products, and the general characteristics of its fauna and flora. Includes a bibliography.

6. On the southern extension of the Marion and Wellington formations.
 Describes their character and occurrence in Oklahoma.

7. The Oklahoma salt plains.
 Describes the geologic formations of the region and the occurrence and character of the salt plains.

8. Oklahoma limestones.
 Contains notes on the occurrence and character of the limestones.
Gould (Charles Newton)—Continued.

 Describes the drainage, the occurrence, character, and relations of igneous rocks and sedimentary rocks of Carboniferous, Cretaceous, and Tertiary age, including an extended and detailed account of the Red Beds in Oklahoma, and a historical review of investigations upon their stratigraphic position and geologic age in Texas, Kansas, and Oklahoma.

10. Oklahoma gypsum.
 Describes the occurrence, character, and utilization of the gypsum deposits in Oklahoma, and discusses their geologic relations and origin.

 Describes character, occurrence, economic development, and geologic relations of gypsum deposits occurring in Permian strata.

12. Geology of Jacobs Cavern, McDonald County, Missouri.

 Describes the physiography of the region, and the character and occurrence of igneous rocks, and of sedimentary rocks of Cambrian, Ordovician, and Carboniferous age.

14. Geology and water resources of Oklahoma.
 Describes the topography, the character, occurrence, and relations of Cambrian, Ordovician, Carboniferous, Cretaceous, Tertiary, and Quaternary deposits, and the water supply.

Gould (Charles Newton) and Fisher (Cassius A.).

1. The Dakota and Carboniferous clays of Nebraska.

Gowling (F. A.).

1. Notes on geology of Mineral Creek district, Pinal County, Arizona.
 Describes the stratigraphy of the region and the occurrence of the ore deposits.

Grabau (Amadeus W.).

1. Guide to the geology and paleontology of Niagara Falls and vicinity.
 Describes the physiography of the region, the character, occurrence, and distribution of the Silurian and Devonian strata, and the fossils of the Silurian rocks. Includes a bibliography

 Am. Geol., vol. 28, pp. 177-189, 1 pl., 1901.
 Gives a section of a well 1,250 feet in depth and describes the character and occurrence of the Devonian strata of the section exposed.

3. Recent contributions to the problem of Niagara.

4. Studies of gastropoda.
 Describes stages of development of gastropods.

5. Stratigraphy of the Traverse group of Michigan.
 Describes the character and occurrence of the subdivisions of this group and includes lists of fossils at various horizons and localities.

Grantau (Amadeus W.)—Continued.
7. Recent contributions to the problem of Niagara.
8. Notes on the development of the biserial arm in certain crinoids.
 N. Y. State Mus., Bull. 69, pp. 1030-1079, 13 figs., 1903; Columbia Univ., Contr. from Geol. Dept., vol. 11, no. 96, 1903.
 Reviews literature of the region and describes character, occurrence, and fauna of the Ordivician, Silurian, and Devonian strata of Bercraft Mountain.
 Describes coral reefs in the Devonian of Michigan and New York, in the Silurian of Wisconsin and Gotland, and in the Devonian and Carboniferous of Belgium, names and describes varieties of reef limestone, and gives a classification of limestones.
11. Studies of Gastropoda. II. Fulgur and Sycotypus.
 Am. Nat., vol. 37, pp. 515-539, 19 figs., 1903; Columbia Univ., Contr. from Geol. Dept., vol. 11, no. 95, 1903.
 Describes developmental stages, relationships, and phylogeny of Fulgur and Sycotypus.
12. Limestone regions of Michigan.
13. The phylogeny of the Fusidae.
15. On the classification of sedimentary rocks.
 Proposes a classification of sedimentary rocks and sets forth the principles upon which it is based.
 Includes descriptions of American Tertiary forms.
17. Physical characters and history of some New York formations.
 Discusses physiographic changes taking place in New York and other parts of the eastern half of the United States in Paleozoic time.
18. Evolution of some Devonian spirifers.
19. Types of sedimentary overlap.
Grantau (A. W.), Johnson (C. W.) and.
1. A new species of Clavilithes from the Eocene of Texas.
 See Johnson (C. W.) and Grantau (A. W.), 1.
Grantau (Amadeus W.), Kemp (J. F.) and.
 See Kemp (J. F.) and Grantau (A. W.), 1.
Grantau (Amadeus W.), Shimer (Henry W.) and.
1. Hamilton group of Thedford, Ontario.
 See Shimer (H. W.) and Grantau (A. W.), 1.
Granger (Walter), Osborn (Henry F.) and.
1. Fore and hind limbs of Sauropoda from the Bone Cabin quarry [Wyoming].
 See Osborn (H. F.) and Granger (W.), 1.
Grant (C. C.). Opening address.
1. Geological Section [Hamilton Scientific Association].
 Contains notes on fossils collected near Hamilton, Ontario.
2. Niagara Falls as an index of time.
3. Geological notes, etc.
 Hamilton Sci. Assoc., Jour. & Proc., no. 17, pp. 84-96, 1 fig., 1901.
 Discusses certain post-Glacial problems.
4. Opening address, geological section [Hamilton Scientific Association], for session 1901-1902.
 Contains notes on fossils collected near Hamilton, Ontario.
5. Coral reefs—modern and ancient.
 Notes the occurrence of fossil corals in Ontario.
 Contains notes on the occurrence of fossils near Hamilton, Ontario.
7. Geological notes.
 Contains notes on the occurrence of Ordovician and Silurian fossils.
8. The origin of petroleum.
9. Notes on past collecting season.
 Gives notes on the occurrence of Silurian fossils near Hamilton, Ontario.
10. Notes on the late collecting season.
 Contains notes on the occurrence of fossils near Hamilton, Ontario.

Grant (Ulysses Sherman).
 Wis. Geol. & Nat. Hist. Surv., Bull. no. 6 (2d edition), 83 pp., 13 pls., 1 fig., 1901.
 Contains the material of the first edition and the results of the field work of 1900 in the same region.
 Reviews previous investigations and discusses the contact phenomena and the character of the sedimentary rocks.
3. Lake Superior iron ore deposits.
 Am. Geol., vol. 29, pp. 47-51, 1902.
 Reviews recent literature on these ores.
 Gives a short summary of the stratigraphic, economic, physiographic, and Glacial geology of this region.
5. Preliminary report on the lead and zinc deposits of southwestern Wisconsin.
 Wis. Geol. & Nat. Hist. Surv., Bull. no. 9, 103 pp., 4 pls., 8 figs., 1903.
 Describes topography and general geology of the region, and the character, occurrence, and origin of the ore deposits.
6. Investigations on the Lake Superior iron ore deposits.
 Mg. Mag., vol. 10, pp. 175-183, 6 figs., 1904.
 Describes the general geology of the region, and the occurrence, geologic relations, character, and origin of the iron ore deposits.
Grant (Ulysses Sherman)—Continued.

7. A pre-Glacial peneplain in the driftless area.

8. Field work in the Wisconsin lead and zinc district.
 Describes briefly the method adopted in a combined topographic, geographic, and geologic survey in this region.

9. Structural relations of the Wisconsin zinc and lead deposits.
 Econ. Geol., vol. 1, pp. 233-242, 4 figs., 1905.
 Discusses the general and structural geology of the ore deposits, and discusses their origin.

10. Zinc and lead ores of southwestern Wisconsin.
 U. S. Geol. Surv., Bull. no. 260, pp. 304-310, 1905.
 Describes the general geology, and the character and occurrence of zinc and lead deposits.

Gratacap (L. P.).

1. Paleontological speculations.
 Am. Geol., vol. 27, pp. 75-100, 1901.
 Discusses the life history and development of various fossil forms.

2. Paleontological speculations. II.
 Discusses biological crises.

 Contains notes on the characters of meteorites.

4. Paleontological speculations. III.
 Am. Geol., vol. 29, pp. 290-301, 1902.

5. The great Jurassic dinosaur.
 Describes the vertebrate animal life of the Jurassic and the occurrence of remains in Wyoming.

 New York, The Broadway Press, no date. 178 pp., Illus.

7. Geology of the City of New York (Greater New York), with geological map.
 Second edition. For use in schools, institutes, and classes.
 New York, Brentano’s, 1904. 119 pp., 35 figs., and geol. map.

Graton (Louis Caryl).

1. On the petrographical relations of the Laurentian limestones and the granite in the township of Glamorgan, Haliburton County, Ontario.

2. Up and down the Mississaga [Ontario].
 Contains observations on the geography, typograph, geology, petrography, and resources.

3. The Carolina tin belt.
 U. S. Geol. Surv., Bull. no. 260, pp. 188-195, 1 fig., 1905.
 Describes the location and general geology of the region in which tin ores have been discovered, their character and occurrence, and the mining developments.

4. Consanguinity of the eruptive rocks of Cripple Creek.

Graton (L. C.) and Schaller (W. T.).

1. Purpurite, a new mineral.
 Describes occurrence, physical properties, and chemical composition.
Graton (L. C.), Hess (F. L.) and.
1. The occurrence and distribution of tin.
 See Hess (F. L.) and Graton (L. C.), 1.

Grave (Caswell).
1. The oyster reefs of North Carolina; a geological and economic study.
 Johns Hopkins Univ., Circ. no. 151, pp. 50-53, 2 figs., 1901.

Green (Raoul).
1. The Frank disaster [Alberta].
 Describes the landslide at Frank, Alberta, and discusses its cause.

Greene (George K.).
1. Contribution to Indiana paleontology. Part VI.
 Describes Devonian fossils from Indiana.

2. Contribution to Indiana paleontology. Part VII.
 New Albany, Ind., pp. 50-61, 3 pls. 1901.
 Describes Devonian and Carboniferous fossils from Indiana.

3. Contribution to Indiana paleontology. Part VIII.
 Describes fossils from upper Paleozoic rocks.

4. Contribution to Indiana paleontology. Part IX.
 New Albany, Ind., pp. 75-84, 3 pls., 1902.

5. Contribution to Indiana paleontology. Part X.
 Contains descriptions of new corals from the Devonian by Greene and of new species of echinoderms from the Carboniferous and Devonian by Rowley.

6. Contribution to Indiana paleontology. Part XI.
 Includes descriptions of Silurian and Devonian corals and echinoderms, the latter described by Rowley.

7. Contribution to Indiana paleontology. Part XII.
 Contains descriptions of Devonian corals and Devonian and Carboniferous echinoderms, the latter by Rowley.

8. Contribution to Indiana paleontology. Part XIII.
 Contains descriptions of Devonian corals and echinoderms, the latter by Rowley.

9. Contribution to Indiana paleontology. Part XIV.
 Contains descriptions of Devonian corals by Greene and Devonian echinodermata by Rowley.

10. Contribution to Indiana paleontology. Part XV.
 New Albany, Ind., pp. 146-155, 3 pls., 1903.
 Contains descriptions of Devonian corals by Greene and of Devonian echinodermata by Rowley.

11. Contribution to Indiana paleontology. Part XVI.
 Contains descriptions of Devonian corals by Greene and of Devonian and Carboniferous echinodermata by Rowley.

12. Contribution to Indiana paleontology. Part XVII.
 New Albany, Ind., pp. 168-175, 3 pls., 1904.
Greene (George K.)—Continued.

13. Contribution to Indiana paleontology. Part XVIII.
New Albany, Ind., pp. 176-184, 3 pls., 1904.

14. Contribution to Indiana paleontology. Part XIX.
New Albany, Ind., pp. 185-204, 3 pls., 1904.
Contains descriptions of Devonian, Silurian, and Carboniferous corals by G. K. Greene, and of Carboniferous and Devonian echinoderms by W. W. Rowley. The latter contributes a review of Dr. G. Hambach's Revision of the Blastoidae.

15. Contribution to Indiana paleontology. Part XX.
New Albany, Ind., pp. 198-204, 3 pls., 1904.
Contains specific descriptions of Devonian corals by George K. Greene.

Parts I-XX, February, 1898, to September, 1904, form volume I of the "Contribution to Indiana paleontology."

Greger (D. K.).
1. The distribution and synonymy of Ptychospira sexplicata (White and Whitfield).
Am. Geol., vol. 33, pp. 35-47, 1904.

2. On the genus Rhynchopora, King, with notice of a new species.
Am. Geol., vol. 33, pp. 297-301, 12 figs., 1904.

Gregory (Herbert E.).
1. Andesites of the Aroostook volcanic area of Maine.

2. Notes on the wells, springs, and general water resources of Connecticut.

U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 114, pp. 76-81, 1 fig., 1905.
Describes the general geology and the underground water supply of the State.

Gregory (J. W.).
1. The plan of the earth and its causes.
Am. Geol., vol. 27, pp. 100-119, 5 figs. and 134-147, 3 pls., 16 figs., 1901.
Reviews previous discussions as to the origin of the distribution of the irregularities in the surface of the lithosphere and discusses the pentagonal theory of Élie de Beaumont and the tetrahedral of Green.

Gregory (W. K.).
1. The weight of the Brontosaurus.

Gregory (W. M.).
1. Preliminary report on Arenac County and parts of Ogemaw, Iosco and Alcona counties [Michigan].
Describes the occurrence of limestone, gypsum, coal, water supply and clays in these counties.

Discusses the economic geology of this area.

3. The alabaster area [Michigan].
Describes the glacial geology, the physiographic features, and the Paleozoic geological formations exposed in this area.

4. Recent shore forms.
Describes changes in the shore line of Lake Huron.
Bull. 301—06——10
Gresley (W. S.).
1. Possible new coal plants, etc., in coal.
 Am. Geol., vol. 27, pp. 6-14, 6 pis., 1901.
 Describes structures occurring in coal beds which may be of vegetable origin.

Grider (R. L.), Bailey (E. W.), Rath (C. M.).
1. A garnetiferous bed in Golden Gate Canyon, Jefferson County, Colorado.
 See Bailey (E. W.), Rath (C. M.), Grider (R. L.), 1.

Griffith (William).
1. An investigation of the buried valley of Wyoming [Pennsylvania].
 Describes glacial phenomena of the region.

2. The anthracite of the Third Hill Mountain, West Virginia.
 Contains notes on the general geology of the region and the recurrence and character of coal.

3. The anthracite of the Third Hill Mountain, West Virginia; the effect of crushing movements on the quality of the coal.
 Describes the general geology of the region.

4. A Missouri coal field.
 Describes the occurrence and character of coal in Morgan County, Missouri.

Griffiths (A. B.).
1. The volcanic dust of Mont Pelée.

Griggs (Robert F.).
1. The thickness of the Columbus limestone.

Grimsley (G. P.).
1. Kansas mines and minerals.
 Gives an account of the occurrence of the various economic products of the State.

2. Economic geology of Lola [Kansas] and vicinity.
 Describes production of natural gas and the mineral industries of this locality.

3. Oil, gas, and glass, chemical industries, and minerals in Kansas.
 Discusses the origin of oil and gas, the geological conditions of accumulation, duration of supply, and their occurrence in Kansas.

 Describes occurrence, character, economic development, and geologic relations of the gypsum deposits.

5. Gypsum deposits in Kansas.
 U. S. Geol. Surv., Bull. no. 223, pp. 53-59, 1 pl., 3 figs., 1904.
 Describes character, occurrence, economic development, and geologic relations of the gypsum deposits in Kansas.

 Am. Geol., vol. 34, pp. 378-387, 1904.
 Describes the general geology of lower Michigan and the geological history of the Michigan basin, and discusses the conditions under which the gypsum deposits of this area were produced.
Grimsley (G. P.)—Continued.

7. The gypsum of Michigan and the plaster industry.
 Gives an account of the occurrence and utilization of gypsum deposits in other countries and
 States, describes the geology and topography of the Michigan series gypsum, and the min¬
 ing of the gypsum deposits and manufacture into plaster, and discusses the origin of gyp¬
 sum and its various uses.

Griswold (W. T.).

1. The Berea Grit oil sand in the Cadiz quadrangle, Ohio.
 U. S. Geol. Surv., Bull. no. 198, 43 pp., 1 pl., 1 fig., 1902.
 Describes the occurrence of petroleum and the method used in constructing a contour map
 of the Berea grit oil sand in this area.

2. Structural work during 1901 and 1902 in the eastern Ohio oil fields.
 Describes factors controlling accumulation of oil, the method used in constructing a map of
 the oil sand, the structure of the Berea grit, and the development of the field.

 Describes the methods of work, the general geology, and the occurrence and mining of the
 Pittsburg coal in this quadrangle.

Guild (F. N.).

2. El Instituto Geologica de Mexico.
 Am. Geol., vol. 36, pp. 293-296, 1 pl., 1905.
 A brief account of the Geological Survey of Mexico, giving history, organization, etc., and a
 list of its publications.

Gulick (Addison).

1. The fossil land shells of Bermuda.
 Describes the occurrence and gives systematic descriptions of fossil land shells of Bermuda.

Gulliver (F. P.).

1. Joint meetings of the Geological Society of America, Section E, and the National
 Geographic Society.
 Gives titles and abstracts of papers read at the meeting at Pittsburg, Pa., July 1 to 3, 1902.

2. Cutthunk Island.

3. Nantucket shorelines. I.
 Outlines a proposed investigation to determine changes in shore lines.

4. Nantucket shorelines. II.
 Describes recent changes in the shore lines of Nantucket Island.

5. Island tying.
 Describes the method by which islands are connected with one another and the mainland by
 the deposition of sediment.

6. Sudbury basin shore lines [Massachusetts].
Gunther (Charles Godfrey).
1. The gold deposits of Plomo, San Luis Park, Colorado.
 Econ. Geol., vol. 1, pp. 143-154, 7 figs., 1905.
 Describes the general geology, the lithologic characters of the rocks, and the character, occurrence, and relations of the ore bodies.

2. An interesting fault-system [California].

Guppy (R. J. Lechrnere).
1. On the occurrence of gold and coal in Trinidad. With a brief sketch of the geological history of the island.
 Trinidad, Victoria Institute, Industrial Trinidad, pp. 520-531, 1903.

2. On some samples of rock from borings at Sangregrande, Trinidad. Part I.
 Describes the material obtained from borings and gives a list of and notes upon the fossils identified therein.

3. The Sangregrande borings. Part II.

4. Observations on some of the Foraminifera of the oceanic rocks of Trinidad.

5. Preliminary geological notes on the Marbela Manjak mine [Trinidad].

6. Note on the Komuto shell-bed.

 Gives notes on the occurrence of some molluscan shells.

8. The growth of Trinidad.
 Describes the process of formation of the island of Trinidad.

Gwillim (J. C.).
 Discusses physiographic features, geologic structure and petrology of this area, and character and distribution of the gold-bearing gravels.

2. Characteristics of the Atlin gold field [British Columbia].
 Describes the general topography and geology of the region and the occurrence of placer gold.

 Jour. Geol., vol. 10, pp. 182-185, 1902.
 Describes the valleys and local glaciers of the region.

4. Notes on some western coals.
 Gives observations upon the occurrence and character of coals in Alberta and British Columbia, and their geologic horizons.

 Discusses origin of coal and the composition of some Canadian coals.

Haanel (Eugene).
1. Discussion of Mr. W. M. Brewer's paper on "The rock-slide at Frank, Alberta Territory, Canada."
Haas (Hippolyt).
1. Der Vulkan. Die Natur und das Wesen der Feuerberge im Lichte der neueren Anschauungen für die Gebildeten aller Stände in gemeinfasslicher Weise dargestellt.
A general discussion of volcanic activity, its causes, nature, etc. One chapter is devoted to volcanic eruptions in the Lesser Antilles in 1902.

2. Zur Geologie von Canada.

Petermanns Mitteilungen, Bd. 50, pp. 20-28, 47-55, 1904.

Haehl (H. L.) and Arnold (Ralph).
1. The Miocene diabase of the Santa Cruz Mountains in San Mateo County, California.
Describes character and occurrence of Tertiary formations and included igneous rocks, and the petrographic characters of the latter. Includes lists of fossils contained in the Tertiary formations.

Hager (Lee).
1. The mounds of the southern oil fields.
Describes the general geology of the Gulf coastal region of Louisiana and Texas, and the geologic structure of the mounds and salines, discusses the theories of their origin, and presents a new hypothesis.

Hague (Arnold).
1. Note sur les phénomènes volcaniques Tertiaires de la chaîne d'Absaroka [Wyoming].

Halberstadt (Baird).
1. Obituary notice of J. Peter Lesley.

Hale (David J.).
1. Marl (bog lime) and its application to the manufacture of Portland cement.
Describes occurrence and character of marl (bog lime) and discusses the theories of its origin.

Hall (Benjamin M.).
1. Water powers of Alabama, with an appendix on stream measurements in Mississippi.
Includes a brief account of the topographic and geologic features of the State.

Hall (Charles E.).
1. Notes on a geological section from Iguala to San Miguel Totolapa, State of Guerrero, Mexico.
Describes character and occurrence of Tertiary and Cretaceous strata and of igneous rocks and gives several sections showing the geologic relations of these formations.

Hall (Charles M.) and Willard (Daniel E.).
1. Casselton-Fargo folio, North Dakota-Minnesota.
Describes the topography, drainage, and general geology, the geologic history, including a brief account of Lake Agassiz, the character and occurrence of Quaternary deposits, discusses the underground water resources, and gives a large number of well records.

Hall (Charles M.), Todd (J. E.) and.
1. Alexandria folio, South Dakota.
See Todd (J. E.) and Hall (C. M.), 1.
Hall (Charles M.), Todd (J. E.) and—Continued.
2. Geology and water resources of part of the lower James River Valley, South Dakota.
 See Todd (James E.) and Hall (C. M.), 2.
3. De Smet folio, South Dakota.
 See Todd (James E.) and Hall (C. M.), 3.

Hall (Christopher Webber).
1. Exploration for gold in the central States.
 Lake Superior Mg. Inst., Proc., pp. 49-60 [1898].
 Discusses occurrences of gold.
2. Sources of the constituents of Minnesota soils.
 Describes the topography and physiography, relations, associated formations, the occurrence
 of the Keweenawan rocks, and the general characters and petrography of the Chengwatana
 series.
4. Keevatinn area of eastern and central Minnesota.
 Describes the occurrence of the series at various localities and their macroscopic and micro­
 oscopic characters. Discusses the evidences as to the age of the series.
5. The geology of Minnesota.
 Describes the geologic formations of the State and the occurrence of economic minerals in
 each of them.
6. The geography and geology of Minnesota.
 Minneapolis, The H. W. Wilson Company, 1903. xii, 299 pp., 5 pls., 163 figs.
7. The geology of Minnesota. A description of the various formations in the State,
 and an account of their products which are of economic value.
 Describes the distribution, lithology, and economic products of the several geologic systems
 present in the State.
8. Notes on the wells, springs, and general water resources of Minnesota.
 Describes the occurrence, character, and water resources of water-bearing strata underlying
 the State.
10. The structure, lithology, and genesis of the magnesian series of the northwestern
 States. [Abstract.]
 Discusses the nomenclature of the Magnesian series in Minnesota and Wisconsin.

Hallock (William).
1. Peculiar effects due to a lightning discharge on Lake Champlain in August, 1900.
 Jour. Geol., vol. 9, pp. 671-672, 1901.
 Describes the effect upon the rocks struck by the discharge.
2. An ascent of Mt. Whitney, California, with notes on the geology.

Halse (Edward).
1. Some silver-bearing veins of Mexico.
 Contains brief notes on the vein systems of various mines.
3. Gems and precious stones of Mexico.
 Contains notes on the occurrence of precious stones in Mexico.

4. Some silver-bearing veins of Mexico.
 Contains observations upon the geology and occurrence of silver ores.

5. The occurrence of pebbles, concretions, and conglomerates in metalliferous veins.

Hambach (Gustav).
1. Revision of the Blastoidae, with a proposed new classification, and description of new species.

Hamilton (S. Harbert).
1. Troost's survey of Philadelphia.
 Am. Geol., vol. 27, pp. 41-42, 1901.
 Calls attention to the location of a copy of Dr. Gerard Troost’s publication on the survey of the environs of Philadelphia.

2. [Notes on the geology and physiography of Cuba.]

Hamilton (W. R.), Kessler (H. H.) and Withrow (James E.).
1. The orbicular gabbro of Dehesa, California.
 See Kessler (H. H.) and Hamilton (W. R.), 1.

Hanbury (David T.).
1. Through the barren ground of northeastern Canada to the Arctic coast.
 Contains a brief account of the geology of the region traversed.

Hanks (Henry G.).
1. The deep-lying auriferous gravels and table mountains of California.
 San Francisco, 1901. 15 pp., 6 pls.

Hardman (John E.).
1. A new mineral area in Ontario.
 Gives notes on the geology of western Ontario and the occurrence of mineral deposits.

Harper (Henry Winston).
1. A contribution to the chemistry of some of the asphalt rocks found in Texas.
 Discusses the nomenclature of asphalt and presents the results of analyses of many samples.

Harper (Roland M.).
1. Taxodium distichum and related species, with notes on some geological factors influencing their distribution.
 Discusses the influence of certain geologic formations upon the geographic distribution of these plants.

2. Notes on the Lafayette and Columbia formations and some of their botanical features.
 Discusses the use of plants growing in soils derived from these formations in identifying the presence of the latter where surface outcrops are not available.
Harrington (Bernard J.).
 Describes the life and work of Dr. Dawson.
2. On the composition of some Canadian amphiboles.
3. On the formula of bornite.
4. On an interesting variety of fetid calcite and the cause of its odor.
5. On the composition of some Montreal minerals.
Describes the composition of nepheline, acmite, lepidomelane, natrolite, and analcite.

Harrington (Daniel).
1. Coal mining at Sunnyside, Utah.
 Describes the general geology, the occurrence of the coal in the Laramie group, and the
 mining operations.

Harris (Gilbert Dennison).
1. Oil in Texas.
 Contains notes on the thickness of the Tertiary in the vicinity of Beaumont.
2. The geology of the Mississippi embayment, with special reference to the State of
 Louisiana.
 La. Geol. Surv., pt. 6, pp. 5-39, 10 pls., 7 figs., 1902.
 Describes the orographic movements at the close of the Cretaceous, and the character and
 distribution of the Eocene, Oligocene, Miocene, and Quaternary series in the region.
3. Subterranean waters of Louisiana.
 La. Geol. Surv., pt. 6, pp. 203-252, 2 pls., 5 figs., 1902.
 Describes the character and occurrence of the Cretaceous and Tertiary beds, and gives sections
 of many well borings and analyses of the waters.
4. Oil in Louisiana.
 La. Geol. Surv., pt. 6, pp. 265-275, 1 pl., 27 figs., 1902.
 Gives sections and data regarding the horizons of the oil-bearing sands.
5. Eocene outcrops in central Georgia.
 Am. Pal., Bull. no. 16, pp. 1-7, 1902.
 Describes occurrence of Eocene formations in Georgia.
6. Underground waters of southern Louisiana.
 Includes an account of the topography and stratigraphy of southern Louisiana.
7. The Helderberg invasion of the Manlius.
 Describes sections of Devonian rocks at a number of localities in New York, and discusses
 their correlation and the occurrence and faunal relations of the fossils.
8. Underground waters of southern Louisiana.
 Discusses the stratigraphy of southern Louisiana, with especial reference to the underground
 waters, and discusses the occurrence, character, depth, etc., of many wells.
9. The establishment of tidal gage work in Louisiana.
 La. Geol. Surv., Bull. no. 3, 28 pp., 8 pls., 5 figs., 1905.
Hartnagel (C. A.).
1. Preliminary observations on the Cobleskill ("Coralline") limestone of New York.
 N. Y. State Mus., Bull. 69, pp. 1109-1175, 2 pls., 5 figs., 1903.
 Discusses the geologic position, geographic extent, and outcrops of the "Coralline" limestone,
 the distribution and stratigraphic relations of its fauna, giving lists of species by localities
 and its relations to other Silurian formations, its correlation and nomenclature, and the ge­
 ographic conditions prevailing in Silurian times.
2. Notes on the Siluric or Ontaric section of eastern New York.
 N. Y. State Mus., Bull. 80, pp. 342-358, 1905.
 Describes the occurrence, development, character, and relations of Silurian formations in the
 Helderberg region of New York.
3. Structural relations and origin of the limonite beds at Cornwall, N. Y.
Hartzell (Joseph Culver).
1. Das Oberdevon Europas und Nordamerikas.
 Inaugural Dissertation, Ludwig Maximilians-Universität zu München. München, Kastner &
 Callwey, 73 pp., 1904.
 Discusses the occurrence and correlation of Devonian strata in Europe, North America, and
 other parts of the world.
Harwood (F. H.).
1. The fluorspar and zinc mines of Kentucky.
 Describes the occurrence, character, and mining of the fluorspar and zinc deposits in western
 Kentucky and southern Illinois.
Haseltine (Robert M.).
1. Lignite deposits or fields of brown coal in North Dakota.
 Describes character and occurrence of the lignite beds.
2. The bituminous coal field of Ohio.
 Describes extent of field, character, composition, occurrence, and production of coals
Haseltine (Robert M.), White (David), Campbell (Marius R.), and
1. The northern Appalachian coal field.
 See White (David), Campbell (M. R.), and Haseltine (R. M.), 1.
Hasse (Adelaide R.).
1. Reports of explorations printed in the documents of the United States government.
 (A contribution toward a bibliography.)
 Contains titles of papers bearing on geology.
Hatcher (John B.).
1. Diplodocus Marsh, its osteology, taxonomy, and probable habits, with a restoration
 of the skeleton.
 vol. 14, pp. 531-532, 1901.
2. On the structure of the manus in Brontosaurus.
3. On some new and little known fossil vertebrates.
4. On the cranial elements and the deciduous and permanent dentitions of Titanoborn
 therium.
5. Sabal rigida; a new species of palm from the Laramie.
6. The Jurassic Dinosaur deposits near Canyon City, Colorado.
 Describes the mode of occurrence of the saurian remains near Canyon City and the geology of
 the strata in which found.

7. A mounted skeleton of Titanotherium dispar Marsh.

8. Structure of the fore limb and manus of Brontosaurus.

9. The genera and species of the Trachodontidae (Hadrosauridae, Claosauridae) Marsh.

10. Oligocene Canidae.

 Discusses the character, distribution, origin, and correlation of these strata.

12. Discovery of a musk ox skull (Ovibos cavifrons Leidy), in West Virginia, near
 Steubenville, Ohio.

13. A correction of Professor Osborn’s note entitled “New vertebrates of the Mid-
 Cretaceous.”
 Contains notes on the locality of species of Ornithominus and the age of the Judith River
 beds.

14. Osteology of Haplocanthosaurus, with description of a new species, and remarks
 on the probable habits of the Sauropoda and the age and origin of the Atlantosaurus
 beds.

15. Additional remarks on Diplodocus.

16. Discovery of remains of Astrodon (Pleurocoelus) in the Atlantosaurus beds of
 Wyoming.
 Includes with the description a discussion of the synonymy and the age of the beds in which
 it occurs.

17. Relative age of the Lance Creek (Ceratops) beds of Converse County, Wyoming,
 the Judith River beds of Montana, and the Belly River beds of Canada.
 Am. Geol., vol. 31, pp. 369-375, 1903.

19. A new name for the dinosaur Haplocanthus Hatcher.
 Proposes to substitute the name Haplocanthosaurus for Haplocanthus, preoccupied.

20. The Judith River beds.
 Discusses the stratigraphic position of the Judith River beds.

21. An attempt to correlate the marine with the nonmarine formations of the middle
 west.
 p. 717, 1904.
 Discusses conditions governing the formation of marine, brackish, and fresh-water beds and
 their application to the correlation and relative age of various Jurassic and Cretaceous
 horizons of the middle west. A note discussing the views advanced in the paper is added
 by Mr. T. W. Stanton.
FOR THE YEARS 1901-1905, INCLUSIVE. 155

Hatcher (John B.)—Continued.

22. Two new Ceratopsia from the Laramie of Converse County, Wyoming.

Hatcher (John B.) and Stanton (T. W.).
1. The stratigraphic position of the Judith River beds and their correlation with the Belly River beds.

Hatcher (J. B.), Stanton (T. W.) and.
1. Geology and paleontology of the Judith River beds.
 See Stanton (T. W.) and Hatcher (J. B.), 1.

Haverstock (R. S.).
1. Quicksilver.
 Contains general notes on the occurrence and treatment of quicksilver ores, with descriptions of California deposits.

Hawes (George W.).
1. On a group of dissimilar eruptive rocks in Campton, New Hampshire.

2. The Albany granite, New Hampshire, and its contact phenomena.

Haworth (Erasmus).
1. The Galena-Joplin lead and zinc district.
 Min. Ind. for 1899, pp. 658-668, 2 figs., 1900.
 Describes the general geology of the region and the occurrence of the ores.

 Eng. and Mg. Jour., vol. 72, p. 397, 1901.
 Describes the geographic and geologic distribution of the oil and gas.

3. Geology and mining interests of Kansas.
 Describes the occurrence of economic minerals in the State.

4. Oil and gas in Kansas.
 Eng. & Mg. Jour., vol. 73, p. 37, 1902.
 Describes the developments in oil and gas in 1901.

5. The Kansas River flood of 1903.
 Describes geologic effects of the flood of 1903 upon the flood plain of the Kansas River.

Haworth (Erasmus) and McFarland (D. F.).
1. The Dexter, Kansas, nitrogen gas well.
 Describes the occurrence, character, flow, and composition of a natural gas, consisting chiefly of nitrogen, issuing from a well at Dexter, Kansas.

Haworth (Erasmus) and Schrader (F. C.).
 Describes the occurrence and character of the raw materials, and the composition of the product.

Haworth (Erasmus), and Crane (W. R.), Adams (George I.).
 See Adams (George I.), Haworth (Erasmus), and Crane (W. R.), 1.

Haworth (E.), Schrader (F. C.) and.
1. Oil and gas of the Independence quadrangle, Kansas.
 See Schrader (F. C.) and Haworth (E.), 1.
Haworth (E.), Schrader (F. C.) and—Continued.

2. Clay industries of the Independence quadrangle, Kansas
See Schrader (F. C.) and Haworth (E.), 2.

Hay (Oliver Perry).

1. The chronological distribution of the elasmobranchs.

2. Description of a new species of Baëna (B. hatcheri) from the Laramie beds of Wyoming.

4. Description of a new species of Cladodus (C. formosus) from the Devonian of Colorado.
 Am. Geol., vol. 30, pp. 373-374, 1 fig., 1902.

5. Bibliography and catalogue of the fossil vertebrata of North America.
 U. S. Geol. Surv., Bull. no. 179, 868 pp., 1902.

6. The composition of the shells of turtles.

7. On some recent literature bearing on the Laramie formation.
 Am. Geol., vol. 32, pp. 115-120, 1903.

8. Description of a new genus and species of tortoise from the Jurassic of Colorado.

9. Two new species of fossil turtles from Oregon.

11. The snout-fishes of Kansas.

12. On an important but not well-known locality furnishing Cretaceous fishes.

13. On some fossil turtles belonging to the Marsh collection in Yale University Museum.

14. Descriptions of two species of extinct tortoises, one new.

15. On two new species of turtles from the Judith River beds of Montana.

17. A new gigantic tortoise from the Miocene of Colorado.

 Gives an account of the meeting and abstracts of papers presented.

19. [Phylogeny and classification of the Reptilia.]

 Gives a brief account of the meeting and abstracts of papers presented.
 Am. Geol., vol. 35, pp. 31-34, 1905.

22. The fossil turtles of the Bridger basin.
 Am. Geol., vol. 35, pp. 327-342, 1 fig., 1905.
 Describes the location and character of the Bridger beds and gives a general account of their chelonian fauna.

23. On the group of fossil turtles known as the Amphichelydia; with remarks on the origin and relationships of the suborders, superfamilies, and families of Testudines.

24. A revision of the species of the family of fossil turtles called Toxochelyidae, with descriptions of two new species of Toxochelys and a new species of Porthochelys.

25. On the skull of a new trionychid, Conchochelys admirabilis, from the Puerco beds of New Mexico.

Haycock (Ernest).
 Discusses the geologic history and structure of this area.

2. Fossils, possibly Triassic, in glaciated fragments in the boulder-clay of Kings County, Nova Scotia.

3. Geology of the west coast of Vancouver Island.
 Describes physiographic features, the general geology, the character and occurrence of igneous rocks, and the economic resources.

4. Geology of the county of Ottawa [Quebec].

Hayden (Horace Edwin).
1. Mr. Ralph Dupuy Lacoe.
 Gives a sketch of his life.

Hayes (Charles Willard).
1. Geological relations of the iron-ores in the Cartersville district, Georgia.
 Describes the stratigraphy and structure of the region and the character and occurrence of the iron, with notes on the occurrence of ochre and manganese.

2. The Arkansas bauxite deposits.
 Describes the general geologic and physiographic relations of the region, and the character, occurrence, and origin of the bauxite deposits.

3. Tennessee white phosphate.
 Describes the character, occurrence, and origin of the phosphates of Perry County.

4. The asphalt deposits of Pike County, Arkansas.
 Contains notes on the geologic occurrence and gives a section of the strata.
Hayes (Charles Willard)—Continued.

5. Rome folio, Georgia-Alabama.
 Describes the geographic and topographic features, the general geologic structure, the character and occurrence of Cambrian, Silurian, Devonian, Carboniferous, and Neocene (?) strata, and the occurrence of iron, bauxite, slate, and limestone.

6. The coal fields of the United States.
 Describes character, distribution and geologic occurrence of coal in the United States.

7. The southern Appalachian coal field.
 Describes extent, general geologic relations, structure and stratigraphy of the field, the character and occurrence of the coal beds, the composition, properties, and production of coal.

8. Some facts and theories bearing on the accumulation of petroleum.

9. Introduction to contributions to economic geology, 1902.
 U. S. Geol. Surv., Bull. no. 213, pp. 9-14, 1903.
 Describes the publications of the U. S. Geological Survey in which papers treating of economic subjects appear.

10. Investigation of nonmetalliferous economic minerals.
 U. S. Geol. Surv., Bull. no. 213, pp. 29-50, 1903.
 Describes character and scope of work done by the U. S. Geological Survey in the investigation of nonmetalliferous minerals.

11. Manganese ores of the Cartersville district, Georgia.
 Describes briefly the character and occurrence of the manganese ores in this district.

 Describes distribution of coal in the United States, the geologic relations of the coal fields, fuel values of coals, and their development, production, and marketing.

13. Oil fields of the Texas-Louisiana Gulf Coastal Plain.
 Describes topography, stratigraphy, and geologic structure of the region, and the occurrence, character, and utilization of the oil.

 Describes the character and occurrence of deposits of asphalt in sands of the Trinity group.

15. Origin and extent of the Tennessee white phosphates.
 Describes varieties of white phosphate, the origin and extent of the deposits, and possible extensions of the field.

16. Introductions to "Contributions to economic geology, 1903."
 U. S. Geol. Surv., Bull. no. 225, pp. 11-17, 1904.
 Gives a brief statement regarding the publications of the United States Geological Survey bearing upon economic geology. Includes a list of the geologic folios, showing the mineral resources described in each.

17. Investigation of nonmetalliferous economic minerals.
 A brief summary statement regarding investigations of nonmetalliferous economic minerals completed during the past year or in progress.

 U. S. Geol. Surv., Bull. no. 260, pp. 11-18, 1905.
 Explains the purpose of the bulletin and describes the publications of the Survey bearing upon economic geology.

19. Investigation of iron and nonmetalliferous economic minerals.
 Reviews the work during the year 1904 of the U. S. Geological Survey upon iron and nonmetalliferous minerals of economic importance.
Hayes (Charles Willard) and Eckel (E. C.).
1. Iron ores of the Cartersville district, Georgia.
 Describes the stratigraphy and geologic structure of this district and the character and occurrence of the iron ores.

2. Occurrence and development of ocher deposits in the Cartersville district, Georgia.

Hayes (Charles Willard), Emmons (S. F.).
1. Contributions to economic geology, 1902.
 See Emmons (S. F.), Hayes (C. W.), 1.

2. Contributions to economic geology, 1903.
 See Emmons (S. F.), Hayes (C. W.), 2.

3. Contributions to economic geology, 1904.
 See Emmons (S. F.), Hayes (C. W.), 3.

Hayes (Charles Willard) and Kennedy (William).
1. Oil fields of the Texas-Louisiana Gulf Coastal Plain.
 Describes topography and drainage of the Gulf Coastal Plain of Texas and Louisiana, the occurrence and character of Tertiary, Quaternary, and Recent formations, giving numerous sections and records of borings, and the location and development of the oil pools; discusses the origin of petroleum, conditions of accumulation, and structural features in this field, and the constitution, properties, and utilization of the oil.

Hayes (Charles Willard) and Ulrich (Edward O.).
 Describes general relations and topography, character and occurrence of Ordovician, Silurian, Devonian, and Carboniferous strata, geologic structure and history and mineral resources, including the occurrence, character, and origin of the phosphates. Includes a correlation table of Paleozoic formations and a generalized faunal chart for the western side of the Middle Tennessee basin.

Hayes (Charles Willard), Vaughan (T. W.) and Spencer (A. C.).
 Washington, 1901. 323 pp., 29 pis., 17 figs.
 Describes the physiography, the general character and distribution of the igneous and sedimentary rocks, the geologic history and occurrence of gold, copper, manganese, iron, asphalts, oil, and coal.

Hayes (Seth).
1. The Shaw mastodon: an examination and description of mastodon and accompanying mammalian remains found near Cincinnati, June, 1894.

Hayford (John F.).
1. A connection by precise leveling between the Atlantic and Pacific oceans.

Hays (Mabel).
1. Winoka gravels, supposed Tertiary deposits. Description of deposits.
 Describes the character and occurrence of gravel deposits in southwestern Missouri.

Haywood (J. K.).

Headden (William P.).
1. Mineralogical notes.
 Describes the occurrence of tellurium and tellurite in Colorado, and the characters of cuprodescloizite from Arizona.
Headden (William P.)—Continued.

2. Significance of silicic acid in waters of mountain streams.

3. The Doughty springs, a group of radium-bearing springs, Delta County, Colorado.

4. Mineralogical notes, no. 2.
 Describes the characters and composition of minerals from various localities.

Hedburg (Eric).

1. The Missouri and Arkansas zinc mines at the close of 1900.
 Reviews the mining industry of this district, and discusses geologic position and origin of the ores.

Heilprin (Angelo).

1. Fossils and their teachings.

2. How to interpret the facts of geology.
 Abstract of lecture delivered before the Philadelphia Academy of Natural Sciences.

3. Mont Pelée and the tragedy of Martinique.
 Philadelphia, J. B. Lippincott Company, 1905. xiii, 325 pp., illus.

4. The activity of Mont Pelée.

5. The ascending obelisk of the Montagne Pelée.

6. The ascending obelisk of the Montagne Pelée.
 Science, new ser., vol. 18, pp. 184-185, 1903.

7. Mont Pelée—the eruptions of August 24 and 30, 1902.

8. The nature of the Pelée tower.
 Discusses the mode of formation of the spine of Mont Pelée.

10. Tower of Pelée.

11. Uniformity in mountain elevations.

Heine (R. E.).

1. The water resources of Washington. Water power.

Heiney (Wm. M.).

1. River bends and bluffs [Indiana].

Henderson (David B.).

1. Powell as a soldier.

Henderson (Junius).

1. The overturns in the Denver basins [Colorado].
 Gives an explanation of the overturning of strata in this region.
Henderson (Junius)—Continued.

2. The Arapahoe glacier in 1903.
Jour. Geol., vol. 12, pp. 30-33, 1 fig., 1904.
Compares the status of the Arapahoe glacier of Colorado in 1903 with that of 1902.

3. Paleontology of the Boulder area [Colorado].
Gives lists, with notes on their occurrence and character, of fossils found in formations of Cretaceous age in the Boulder, Colorado, area.

4. Extinct glaciers of Colorado.
Discusses the occurrence of evidences of former glaciation in Colorado.

5. Arapahoe glacier in 1905.
Jour. Geol., vol. 13, p. 556, 1905.

Henretta (C. M.).
1. Bankhead coal mines [Alberta, Canada].
Includes notes on the occurrence and character of the coal seams.

Henrich (Carl).
1. The Guanajuato mining district [Mexico].
Describes the occurrence, geologic relations, and mining of the silver ores of this region.

Henry (Carl D.).
1. The white country granite of West Sugar Loaf or Bald Mountain, Boulder County, Colorado.
Describes the occurrence, the megascopic and microscopic characters, and the composition of this rock.

Herrick (Clarence Luther).
1. Applications of geology to economic problems in New Mexico.
Describes some of the geologic features and the occurrence of economic minerals.

2. Secondary enrichment of mineral veins in regions of small erosion.

3. A Coal-Measure forest near Socorro, New Mexico.
Jour. Geol., vol. 12, pp. 237-251, 10 figs., 1904.
Describes the general geologic structure of the Rio Grande Valley and the occurrence, character, and fauna of Coal-Measure strata in vicinity of Socorro, New Mexico.

4. Laws of formation of New Mexico mountain ranges.
Am. Geol., vol. 33, pp. 301-312, 328, 2 pls., 1904.
Describes the geologic structure and physiographic features of various mountain ranges of New Mexico.

5. The clinoplains of the Rio Grande.
Am. Geol., vol. 33, pp. 376-381, 1 fig., 1904.
Describes the character, occurrence, and origin of clinoplains in the vicinity of Socorro, New Mexico.

6. Lake Otero, an ancient salt lake basin in southeastern New Mexico.
Am. Geol., vol. 34, pp. 174-180, 1 pl., 3 figs., 1904.
Describes the geologic structure and history, physiographic features, and economic resources of the region, the character and relations of the formations present, and the extent and history of the ancient lake Otero.

Herrick (H. N.).
1. Gypsum deposits in New Mexico.
Describes character, occurrence, and geologic relations of the gypsum deposits of New Mexico.
Bull. 301—06—11
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Hershey (Oscar H.).
1. Peneplains of the Ozark Highlands.
 Am. Geol., vol. 27, pp. 23-41, 1901.
 Describes the Cretaceous and Tertiary peneplains, the Lafayette baselevel, the Ozarkian
 valleys and the modern valleys.

2. Metamorphic formations of northwestern California.
 Am. Geol., vol. 27, pp. 225-245, 1901.
 Describes the character, occurrence, and distribution of the pre-Cretaceous rocks of the
 Klamath Mountains.

3. On the age of certain granites in the Klamath Mountains.
 Am. Geol., vol. 27, pp. 238-259, 1901.
 Brief discussion of the geology of the region and of the intrusive origin of the granite.

4. The age of the Kansan drift sheet.
 Am. Geol., vol. 28, pp. 20-25, 1901.
 Describes the occurrence of the Kansan drift in Missouri and discusses its age.

5. The geology of the central portion of the Isthmus of Panama.
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 231-267, and map, 1901.
 Describes the physiographic features and the occurrence and character of several formations.
 Discusses the relations of the crust movements of the region.

6. On the age of certain granites in the Klamath Mountains [California].
 Contains notes on the occurrence of the granites and on the geologic history of the region.

7. An unusual type of auriferous deposit.
 Describes occurrence of gold in a semidecomposed rock mass in California and discusses the
 mode of deposition of the gold.

8. The significance of the term Sierran.
 Am. Geol., vol. 29, pp. 88-95, 1902.
 Discusses the recent earth movements in the Sierra Nevada region and the use of the terms
 Ozarkian and Sierran.

9. Some crystalline rocks of Southern California.
 Describes the character, occurrence, and distribution of probable pre-Paleozoic crystalline
 granites, schists, etc., and of certain quartzite and limestone strata in this region.

10. Some Tertiary formations of Southern California.
 Am. Geol., vol. 29, pp. 349-372, 1902.
 Describes volcanic and sedimentary beds of the region.

11. The significance of certain Cretaceous outliers in the Klamath region, California.
 Describes the occurrence and character of the Cretaceous sediment and the geological history
 of this region.

 Discusses topographic development of west central Arkansas and reviews a paper by A. H.
 Purdue on "Physiography of the Boston Mountain, Arkansas."

13. Neocene deposits of the Klamath region, California.
 Describes the occurrence of these deposits and the conditions under which they were
 accumulated.

14. The Quaternary of Southern California.
 Describes orographic movements, erosion phenomena, and deposits of Quaternary time in this
 region.

15. A supposed early Tertiary peneplain in the Klamath region, California.
 Discusses the evidences for the ancient peneplain character of the region and the date of forma-
 tion of the peneplain.
Hershey (Oscar H.)—Continued.

 Am. Geol., vol. 31, pp. 139-156, 1903.
 Describes occurrence of remains of a fossil elephant in glacial deposits, the character and
 occurrence of glacial deposits, the terrace formations, and gorges in this region.

17. Structure of the southern portion of the Klamath Mountains, California.
 Am. Geol., vol. 31, pp. 231-245, 1903.
 Describes the general geologic structure and geologic history of the region.

18. The Sierra valleys of the Klamath region, California.
 Jour. Geol., vol. 11, pp. 155-165, 1903.
 Describes physiographic features and discusses physiographic history of the region.

19. The relation between certain river terraces and the Glacial series in northwestern
 California.
 Jour. Geol., vol. 11, pp. 431-458, 1903.
 Describes location, materials, and characteristics of river terraces, and discusses their relation
 to the stages of the Glacial series and the climatic conditions and causes of glaciation.

20. Certain river terraces of the Klamath region, California.
 Discusses the occurrence, character, and geologic relations of the Bragdon and associated
 formations, and presents evidences for the Jurassic age of the Bragdon.

21. The Bragdon formation in northwestern California.
 Discusses the occurrence, character, and geologic relations of the Bragdon and associated
 formations, and presents evidences for the Jurassic age of the Bragdon.

22. The river terraces of the Orleans basin, California.
 Outlines briefly the bed-rock geology and geomorphogeny of the region, gives detailed descrip­
 tions of the occurrence and characteristic features of the terrace remnants, and discusses
 the problems presented by them and their correlation with the Quaternary terrace system
 of other portions of California.

Herzer (H.).

1. Psaronius.
 Gives description and critical remarks upon this fossil plant.

2. Six new species, including two new genera, of fossil plants.

3. A new fossil sponge from the Coal Measures [Ohio].

4. New fossil plants from the Carboniferous and Devonian.

Hess (Frank L.) and Graton (L. C.).

1. The occurrence and distribution of tin.
 Describes the occurrence of tin ores in various parts of the world and States of the Union,
 and gives a bibliography of tin deposits.

Hess (F. L.), Prindle (L. M.) and.

1. Rampart placer region [Alaska].
 See Prindle (L. M.), and Hess (F. L.), 1.

Hessler (Robert).

1. The medicinal properties and uses of Indiana mineral water.
Heurteau (Ch. E.).
1. Les charbons gras de la Pennsylvanie et de la Virginie occidentale.
 Describes the general geology of the bituminous coal regions of Pennsylvania and West Virginia, the occurrence of the coal seams, the composition and fuel values of the coals, and the mining, transportation, and sale of coal.
2. L'industrie du pétrole en Californie.
 Describes the location and general geology of the petroleum field of southern California, and the character, production, and utilization of the petroleum, and compares it with that produced in Texas.

Hewett (G. C.).
1. Notes on southwestern Utah and its iron ores.
 Contains observations on the geology and occurrence of the iron ores.
2. The age of the homestake lode, South Dakota.
 Discusses the occurrence and the origin of the gold.
3. [Discussion of paper by W. H. Weed, "Section across the Sierra Madre Occidental of Mexico."]
 Adds observations upon the geology of the region.

Hice (Richard R.).
1. Northward flow of ancient Beaver River.
 Describes history of Beaver River and discusses evidence of potholes for showing direction of flow.
2. The clays of the upper Ohio and Beaver River region.
 Describes the general geology of the Carboniferous and Quaternary deposits of western Pennsylvania, and particularly the geologic occurrence and character of the clays.

Hidden (William E.).
1. Some results of late mineral research in Llano County, Texas.
 Describes the occurrence and characters and radio-activity of minerals occurring at Barringer-Hill, Llano County, Texas.

Hijar (Jeronimo).
1. Ligeros datos sobre los criaderos de Peñoles (Oax.) y Tamazula (Jal.), [México].
 Gives some account of the character and occurrence of the ore deposits of these localities, containing principally gold.

Hilgard (E. W.).
1. A historical outline of the geological and agricultural survey of the State of Mississippi.
 Am. Geol., vol. 27, pp. 284-311, 1901.
 Gives an account of the work of this organization and a list of its publications.
2. A sketch of the pedagogical geology of California.
 General notes on the soils of the State.
3. The debris fans of the arid region in their relation to the water supply.
 Describes the structure of fans at the mouths of canyons and their relations to water supply.
Hilgard (E. W.)—Continued.

4. The Grand Gulf formation.
Describes lithologic and other characteristics of the Grand Gulf formation.

5. The valley of southern California.
Abstract: Jour. Geol., vol. 11, p. 96, 1903.

6. The prairie mounds of Louisiana.
Discusses the origin of these mounds.

Hill (Benjamin F.).
1. The Terlingua quicksilver deposits, Brewster County, Texas.
Texas Univ. Mineral Surv., Bull. no. 4, 74 pp., 21 pls., 10 figs., 1902.
Gives a brief account of the physiography, geologic structure, and occurrence of the Cretaceous and igneous rocks. Describes the character and occurrence of the quicksilver deposits and associated minerals and discusses the mode of occurrence of the ores.

2. The occurrence of the Texas mercury minerals.

U. S. Geol. Surv., Bull. no. 223, pp. 68-73, 1 fig., 1904.
Describes character, occurrence, and economic development of gypsum deposits in Texas.

4. Das Vorkommen der texanischen Quecksilbermineralien.
Describes the occurrence in Texas of minerals containing quicksilver.

Hill (B. F.), Kemp (J. F.) and.
See Kemp (J. F.) and Hill (B. F.), 1.

Hill (Robert T.).
1. The coast prairie of Texas.
Describes the evidences of differential movements in this region and its bearing on the occurrence of oil.

2. Geographic and geologic features of Mexico.
Eng. & Mg. Jour., vol. 72, pp. 561-564, 2 figs., 1901.
Describes the physiography and geology of the country.

Describes physiographic and drainage features, the character and occurrence of Azolic, Cambrian, Ordovician, Carboniferous, Pernio-Triasico, and Cretaceous rocks, and the conditions and occurrence of artesian waters. The nomenclature, classification, correlation, character, and occurrence of the Cretaceous rocks are described in detail, with numerous sections, faunal lists, and figures of characteristic fossils and typical exposures, and the geography and conditions of deposition prevailing in Cretaceous times are discussed.

4. The geographic and geologic features and their relation to the mineral products of Mexico.

5. The Beaumont oil field, with notes on other oil fields of the Texas region.
Describes the occurrence and geologic relations of the oil-bearing strata of Texas.

6. [Report to the National Geographic Society on volcanic disturbances in the West Indies.]
Contains an account of the author's observations of the phenomena attending the eruptions in 1902.
Hill (Robert T.)—Continued.

7. The upland placers of La Cienega, Sonora, Mexico.
 Eng. & Mg. Jour., vol. 73, pp. 132-134, 7 figs., 1902.
 Describes the occurrence of the gold and the method of dry washing.

8. The cinnabar deposits of the Big Bend province of Texas.
 Describes the geologic occurrence of the cinnabar deposits in this area.

9. The Beaumont oil-field, with notes on other oil-fields of the Texas region.
 Discusses origin and occurrence of oil, describes geography, occurrence, and character of sedimentary strata of southeastern Texas, the situation, extent, and production of different oil-fields, the discovery, development, geology, and structural features of the Beaumont field, and discusses the origin of its oil.

10. The Santa Eulalia district, Mexico.
 Describes the general geology and the character and occurrence of the ore bodies.

11. The ore deposits of Cananea [Mexico].
 Gives observations upon the general geology, structural features, and the origin of the ores.

 Describes the geology of the region, the occurrence and sequence of the igneous rocks, the fissuring and faulting, and the occurrence and origin of the copper ore deposits.

13. The geologic and physiographic history of the Lesser Antilles.

14. The Guanajuato mining district [Mexico].
 Includes observations on the geology of the region and the occurrence and character of the gold and silver ores.

15. Report upon the geology of the Santo Domingo placer fields, Magdalena district, Sonora, Mexico.
 Greene Consolidated Gold Company [Prospectus], New York, pp. 12-24, 10 pls., 1904.
 Describes the location and general geology of the district, and the character, occurrence, and geologic relations of sedimentary formations, of igneous rocks, and of placer gold deposits, and discusses the source of the gold.

 Outlines the eruption phenomena of Mont Pele, and from the study of these phenomena and data furnished by physiographic, stratigraphic, and paleontologic investigations, deduces the geologic history of the Windward Islands, and discusses the nature and causes of volcanism.

17. Enrichment in fissure veins.

18. Physical history of the Windward Islands as illustrated in the larger story of Pélé—a study of volcanic and oceanic geography.

19. The physical geography of Mexico—an introduction to the social, political, and economic geography of the republic.

Hill (Robert T.) and Vaughan (T. Wayland).

1. Austin folio, Texas.
 Describes geographic and topographic features, general geologic relations, the character and occurrence of Cretaceous, Tertiary, and Quaternary formations, and the occurrence of economic products.
FOR THE YEARS 1901-1905, INCLUSIVE. 167

Hille (F.).
1. The iron ore deposits of western Ontario and their genesis.
 Describes the geologic and geographic position of the ore deposits, and discusses their formation.

2. The Baraboo iron ore.
 Discusses the geologic age and origin of the iron ores of Baraboo, Wisconsin.

3. Genesis of the Animikie iron range [Ontario].
 Discusses the geologic data bearing upon the presence and amount of iron ore north of the International Boundary in this region, the character, occurrence, classification, and nomenclature of Archean and Algonkian formations, the origin, constituents, and metamorphism of their rocks, and the origin of the iron ores.

4. A correction in the classification of our gold formation.
 Discusses the relations of the rocks in which the Algoma gold deposits occur.

Hillebrand (W. F.).
1. Chemical discussion of analyses of volcanic ejecta from Martinique and St. Vincent.

2. The composition of yttrialite, with a criticism of the formula assigned to thalénite.
 Discusses Benedicks' formula for thalénite and presents the author's results of the chemical properties of yttrialite.

4. Emmonsite (?) from a new locality.
 Describes the occurrence, optical and other characters, and chemical composition of a mineral provisionally regarded as emmonsite, from Cripple Creek, Colorado.

5. Red beryl from Utah.

6. Two tellurium minerals from Colorado.
 Describes occurrence and composition of emmonsite (?) and tetradymite.

7. The composition of yttrialite, with a criticism of the formula assigned to thalénite.

8. Preliminary announcement concerning a new mercury mineral from Terlingua, Texas.

Hillebrand (W. F.) and Penfield (S. L.).
1. Some additions to the alunite-jarosite group of minerals.
 Describes the occurrence, optical and other characters, and chemical composition of several alunite-jarosite minerals.

Hillebrand (W. F.) and Ransome (F. L.).
1. On carnottite and associated vanadiferous minerals in western Colorado.
 Describes occurrence, character, origin, and chemical composition.
Hillebrand (W. F.), Lindgren (Waldemar) and.
 See Lindgren (Waldemar) and Hillebrand (W. F.), 1.
Hillebrand (W. F.), Schaller (W. T.) and.
1. Crystallographical and chemical notes on lawsonite.
 See Schaller (W. T.) and Hillebrand (W. F.), 1.
2. Notes on lawsonite.
 See Schaller (W. T.) and Hillebrand (W. F.), 2.
Hills (R. C.).
1. Spanish Peaks folio, Colorado.
 Describes the geographic features, the character and occurrence of the Cretaceous, Eocene, and Neocene strata, the geologic structure, the igneous rocks, and the occurrence of coal and artesian water.
 Discusses the correlation of these beds.
3. The Oscuro Mountain meteorite [New Mexico].
 Describes the occurrence and the characters of this meteorite.
Hind (Wheelton).
1. The type of Aviculipecten.
 Am. Geol., vol. 34, pp. 200-201, 1904.
Hitchcock (A. S.).
1. Controlling sand dunes in the United States and Europe.
Hitchcock (C. H.).
1. Tuff cone at Diamond Head, Hawaiian Islands.
2. The story of Niagara.
 Describes the geological history of the region about Niagara Falls, the geological history of the Niagara Cataract and River, and discusses the rate of recession of the falls and the estimates of age in years.
4. Notice of a species of Acidaspis from a boulder of Marcellus shale, found in drift at West Bloomfield, New Jersey.
 Describes the occurrence, with lists of forms identified, of Silurian fossils, and the occurrence, characters, and geologic relations of Silurian and perhaps other Paleozoic sedimentary strata, in large part metamorphosed, and of igneous rocks. The paper includes a description of Dalmanites lunatus by Avery E. Lambert.
 Montpelier, Vt., Argus and Patriot Press, 1904. 21 pp. [Private publication.]
 Describes various evidences of glacial action upon high summits in the Green Mountains in Vermont and the Adirondacks of New York, and discusses glaciation in New England and New York.
Hitchcock (C. H.)—Continued.

 Notes the renewal of activity of the volcano Kilauea in the Hawaiian Islands.

10. The geology of Littleton, New Hampshire.
 Describes the general geology, the character, occurrence, and relations of igneous and schistose rocks, Silurian and Devonian strata, and Glacial deposits, and the economic resources of the township.

11. Fresh-water springs in the ocean.
 Contains notes upon the geologic structure and underground water conditions of Oahu, one of the Hawaiian Islands, and of Florida.

Hixon (Hiram W.).
1. Geology of the Sudbury district [Ontario].

2. Volcanoes and earthquakes.
 Offers an explanation of these phenomena.

Hobbs (William Herbert).
 Discusses a recent review by W. M. Davis.

2. The Newark system of the Pomperaug Valley, Connecticut.
 Gives a sketch of present knowledge regarding this system, describes the character of the sedimentary and igneous rocks, and discusses the deformation and degradation of the region.

3. The river system of Connecticut.
 Jour. Geol., vol. 9, pp. 409-485, 2 pls., 2 figs., 1901.
 Describes the occurrence and origin of the jointing and faulting in the Pomperaug Valley, the occurrence of certain intersecting series of parallel lines called troughs, which occupy the drainage channels for varying distances.

 Min. Ind. for 1900, pp. 301-304, 1901.
 Briefly describes occurrence and distribution.

5. The old tungsten mine at Trumbull, Conn.
 Describes petrology, geologic structure, and occurrence of ore bodies of this locality.

 Describes the peculiar drainage features of the region and the conditions determining the course of the rivers, and discusses the theories that have been advanced.

7. Edward Orton.

 Describes the occurrence of diamonds in glacial materials, principally in Wisconsin.

9. Former extent of the Newark system.
 Gives a summary of the views of various geologists regarding this series, and discusses the conditions under which the beds were deposited.
 Jour. Geol., vol. 10, pp. 780-792, 1 pl., 1 fig., 1902.
 Describes methods of studying the occurrence, character, and relations of crystalline schists.

11. The mapping of the crystalline schists. II. Basal assumptions.
 Discusses the mechanics of deformation and the criteria for recognizing folds and faults.

12. An instance of the action of the ice sheet upon slender projecting rock masses.
 Describes the glacial phenomena in the Pomperaug Valley (Connecticut).

 Discusses structural features of the region and their origin.

15. Meteorite from Algoma, Wisconsin.
 Describes surface, composition, and texture.

16. Tungsten mining at Trumbull, Conn.
 U. S. Geol. Surv., Bull. no. 213, p. 98, 1903.
 Describes the occurrence of the ore and methods employed in mining and extracting the metal.

17. The frontier of physiography.

18. Geology of the river channels about Manhattan Island.

19. A record of post-Newark depression and subsequent elevation within the area of southwestern New England.

22. Lineaments of the Atlantic border region.
 Discusses the orientation of earth lineaments, namely, mountain ranges, ridges, borders of plateaus, drainage lines, coast lines, boundary lines of geologic formations, fall lines, boundaries of physiographic provinces, etc.

 Discusses the relations of fault systems to one another in the area considered, and related geographic features.

 Discusses in detail various data secured bearing upon the configuration of the surface of the rock beneath the Manhattan Island area, and discusses the origin of the water channels.

25. The correlation of fracture systems and the evidences for planetary dislocations within the earth's crust.

 Jour. Geol., vol. 13, pp. 383-374, 7 figs., 1905.
Hobbs (William Herbert)—Continued.
27. The configuration of the rock floor of Greater New York.
 U. S. Geol. Surv., Bull. no. 270, 96 pp., 5 pls., 6 figs., 1905.
 Reviews the geological studies of the New York City area of previous writers, and describes
 investigations upon the rock floor of Greater New York.
28. Contributions from the mineralogical laboratory of the University of Minnesota.
 Am. Geol., vol. 36, pp. 179-186, 1 pl., 2 figs., 1905.
 Gives notes upon the composition, characters, and crystallographic features of minerals from
 various localities.
Hodgdon (F. W.).
1. [In discussion of paper by J. P. Frizell on "Tidal scour in harbors, etc."]
 Contains notes on scour in Boston Harbor.
Hoeing (J. B.).
1. The oil and gas sands of Kentucky.
 Ky. Geol., Surv., Bull. no. 1 (preliminary part), 233 pp., 10 pls. and 3 maps, 1905.
 Describes the general geology of oil and gas, the geological relations, character, and occur­
 rence of oil and gas bearing strata, and gives numerous well records. An appendix con­
 tains lists of elevations above sea of points in Kentucky.
Hoen (A. B.).
1. Discussion of the requisite qualities of lithographic limestone, with report on tests
 of the lithographic stone of Mitchell County, Iowa.
Hoernes (Rudolf).
1. Die vulkanischen Ausbrüche auf den Kleinen Antillen.
 Describes the volcanic eruptions and the attendant phenomena that took place in the Lesser
 Antilles in 1902.
Hoffmann (G. Christian).
1. Report of the section of chemistry and mineralogy.
2. On some new mineral occurrences in Canada.
3. On some new mineral occurrences in Canada.
 Describes datolite and faujasite.
5. On the occurrence of chrompicotite in Canada.
 Describes its occurrence, characters, and chemical composition.
7. Sousite, a native iron-nickel alloy occurring in the auriferous gravels of the Fra­
 ser, province of British Columbia, Canada.
8. Chemistry and mineralogy.
 Includes notes on the examination and occurrence of various minerals.
Hogarty (Barry).
1. The andesite of Mount Sugar Loaf, Boulder County, Colorado.
 Describes the occurrence, the megascopic and microscopic characters, and the composition of
 the rock.
- **Holder** (Charles F.).
 1. A remarkable salt deposit.
 Describes occurrence of salt on the Salton Desert, in California.
 2. Erosion on the Pacific coast.
 Describes some of the physiographic features of the California coast.
 4. Natural monuments.
 Describes pillars and other features resulting from erosion.

- **Hole** (Allen D.), **Moore** (Joseph) and.
 1. Concerning well-defined ripple marks in the Hudson River limestone, Richmond, Indiana.
 See Moore (J.) and Hole (A. D.), 1.

- **Holland** (W. J.)
 1. In memoriam, John Bell Hatcher.
 2. A new crocodile from the Jurassic of Wyoming.
 3. The hyoid bone in Mastodon americanus.

- **Hollick** (Arthur).
 1. A reconnoissance of the Elizabeth Islands [Massachusetts].
 Describes the physiographic and glacial features of the region.
 2. Discovery of a mastodon’s tooth and the remains of a boreal vegetation in a swamp on Staten Island, N. Y.
 3. Eocene Plantæ.
 Md. Geol. Surv., Eocene, pp. 238-261, 1 pl., 1901.
 Describes the general geologic and botanical features of these localities.
 5. Fossil ferns from the Laramie group of Colorado.
 6. A fossil petal and a fossil fruit from the Cretaceous (Dakota group) of Kansas.
 7. Field work during 1901 in the Cretaceous beds of Long Island.
 Gives a list of Cretaceous fossil plants collected in the vicinity of Glencove on Long Island, New York.
 8. Two additions to our list of drift fossils.
 Notes occurrence of drift bowlders containing Devonian fossils.
 N. Y. Bot. Garden, Jour., vol. 4, pp. 65-68, 4 figs., 1903.
 Gives a brief account of a collection of Cretaceous fossil leaves from Kansas.
 10. Systematic paleontology of the Miocene deposits of Maryland: Angiospermæ.
Hollick (Arthur)—Continued.

11. Additions to the paleobotany of the Cretaceous formation on Long Island. No. II.

12. Some recently discovered facts in regard to Silver Lake [Staten Island, New York].
 Gives records of borings at this locality, and notes upon the character of the material passed through.

 Gives notes upon the occurrence of a submerged peat bed near Staten Island, New York.

15. A canoe trip down the Yukon River from Dawson to Anvik [Alaska].
 Gives observations upon the geology of the region traversed.

16. A recent discovery of amber on Staten Island.
 N. Y. Bot. Garden, Jour., vol. 6, pp. 45-48, 2 figs., 1905.
 Describes the occurrence of amber in Cretaceous strata on Staten Island, and discusses its origin.

17. The occurrence and origin of amber in the eastern United States.

18. The preservation of plants by geologic processes.
 N. Y. Bot. Garden, Jour., vol. 6, pp. 115-118, 3 figs., 1905.

19. Paleobotanical notes.

20. Additional notes on the occurrence of amber at Kreischerville.

 See Merrill (F. J. H.), and others, 1.

Hollister (George B.).

1. Physiographic features of the Susquehanna basin.
 Describes physiographic features of the Susquehanna basin.

3. Waters of a gravel-filled valley near Tully, N. Y.

Holmes (J. A.).

1. Biennial report of the State geologist on the operations of the Geological Survey of North Carolina during the two years ending November 30, 1902.

2. Biennial report of the State geologist on the operations of the North Carolina Geological Survey during the two years ending November 30, 1904.

Holmes (W. H.).

1. Fossil human remains found near Lansing, Kansas.
 Discusses the age of the deposits in which the human remains were found at Lansing, Kansas.
Holway (Ruliff S.).
1. Eclogites in California.
Jour. Geol., vol. 12, pp. 344-358, 5 figs., 1904.
Reviews previous work upon eclogites (garnetiferous augite or hornblende), and describes the occurrence and petrographic characters of eclogites from localities in California and Oregon.

Hopkins (A. D.).
1. Work of the prehistoric scolytid, Phloeosinus squalidens Scudd.

Hopkins (Thomas C.).
Describes character and occurrence of clays and their products manufactured in the State.
Am. Geol., vol. 28, pp. 47-51, 1901.
Reviews the evidences of the formation of fire clays in situ, and states that the occurrence of a considerable portion of them is better explained by considering them as transported clays reduced before deposition.

3. Graphite and garnet.
Describes occurrence in Pennsylvania and other regions.
Describes character and occurrence of clays and products manufactured from them.
5. Fireclays of the Coal Measures, a short discussion of their origin, and the causes of the qualities which render them more or less refractory.

6. The Lower Carboniferous area in Indiana.

Discusses the causes assigned for the climate of Glacial times, especially the hypothesis of the variation in amount of carbon dioxide in the atmosphere.

8. Lower Carboniferous area in Indiana.
Describes briefly the Carboniferous formations of the region.

Describes the occurrence and production of building stones, clays, and other economic resources.

10. The geological map of Indiana.
Describes the preparation of the geologic map of the State of Indiana (scale: 4 miles to the inch) accompanying the Twenty-eighth Annual Report of the Department of Geology and Natural Resources of Indiana.

11. A short description of the topography of Indiana and of the rocks of the different geological periods; to accompany the geological map of the State.
The part on the Ordovician and the Silurian (pp. 21-39) was written by A. F. Foerste.

12. Contents of the published volumes of reports of the Indiana Geological Survey, the Department of Geology and Natural History, and the Department of Geology and Natural Resources.
Hopkins (Thomas C.)—Continued.
13. General index to all the publications of the Indiana Geological Survey, the Department of Geology and Natural History, and the Department of Geology and Natural Resources.

Hopkins (Thomas C.) and Smallwood (Martin).
1. On some anticlinal folds [Pennsylvania].

Hopkins (Thomas C.), Smallwood (W. M.) and.
 See Smallwood (W. M.) and Hopkins (T. C.), 1.

Horton (Robert E.).
1. The drainage of ponds into drilled wells.

Hosea (R. M.).
1. Tercio and Cuatro mines. A description of the coal washing and coking plants of the Colorado Fuel & Iron Co. at Tercio and Cuatro [Colorado].
 Includes observations on the general geology of the region.

Hotchkiss (W. O.).
1. An explanation of the phenomena seen in the Becke method of determining index of refraction.
 Am. Geol., vol. 36, pp. 305-308, 1 fig., 1905.

Hovey (Edmund Otis).
 Contains abstracts of papers read.
2. Geology and geography at the Denver meeting of the American Association for the Advancement of Science.
 Contains brief abstract of some of the papers read.
4. [Abstracts of papers read before the thirtieth annual meeting of the Geological Society of America.]
5. Geology at the fiftieth meeting of the American Association for the Advancement of Science.
 Contains abstracts of papers read.
7. The fourteenth annual meeting of the Geological Society of America.
8. The paleontological collections of the geological department of the American Museum of Natural History.
 Jour. Geol., vol. 10, pp. 252-255, 1902.
Hovey (Edmund Otis)—Continued.

10. The eruptions of La Soufrière, St. Vincent, in May, 1902.
 Describes the author’s observations.

11. A visit to Martinique and St. Vincent after the great eruptions of May and June, 1902.

12. Martinique and St. Vincent; a preliminary report upon the eruptions of 1902.
 Describes the phenomena of these eruptions and the extent of the devastation.

14. A remarkable slab of fossil crinoids [from the Cretaceous of Kansas].

15. [Abstracts of papers on geology and geography read before Section E of the American Association for the Advancement of Science at the Washington meeting.]

16. The annual meeting of the Geological Society of America, and geology and geography at the convention of the American Association for the Advancement of Science.

17. The new cone of Mont Pelée and the gorge of the Rivière Blanche, Martinique.

18. Martinique and St. Vincent revisited.
 Describes phenomena connected with the eruptions of Mont Pelée and La Soufrière.

19. ‘Mount Pelée.’
 Discusses the proper form of the name of this volcano.

20. Mont Pelé from May to October, 1903.
 Describes changes in the spine of Mont Pelé.

21. The marvelous obelisk of Mont Pelé.
 Describes the appearance, character, and formation of the “spine” and other volcanic phenomena.

22. The volcanoes of the Caribbean Islands. Appearance of Mont Pelé, Martinique, and La Soufrière, St. Vincent, one year after the great eruption.

23. The inner cone of the Mont Pelée crater and its relation to the destruction of Morne Rouge.

24. Some erosion phenomena on Mont Pelée and Soufrière.

 Gives abstracts of papers read at the sixteenth annual meeting.

26. Mont Pelé from October 20, 1903, to May 20, 1904.

Hovey (Edmund Otis)—Continued.

 Gives observations upon the geology of the island, and the physical features and volcanic activity of the Grande Soufrière.

29. New cone and obelisk of Mont Pelé.

30. Some erosion phenomena observed on the islands of Saint Vincent and Martinique in 1902 and 1903.

 Describes briefly the present condition of this volcano.

32. Bibliography of literature of the West Indian eruptions published in the United States.

33. The 1902-1903 eruptions of Mont Pelé, Martinique, and the Soufrière, St. Vincent.
 Congr. géol. intern., Compte rendu ix* sess., pp. 707-738, 11 pls. and 6 figs., 1904.

34. The Crystal Cave of South Dakota.

35. Some erosion phenomena in St. Vincent and Martinique.

37. [Report of meeting of] Section E—Geology and Geography [of the American Association for the Advancement of Science, at Philadelphia, December 28, 1904].
 Gives abstracts of some of the papers read.

38. The Geological Society of America.

39. Geology and geography at the American Association for the Advancement of Science.
 Gives a brief account of the meeting and abstracts of some of the papers read.

40. Seventeenth annual meeting of the Geological Society of America.
 Gives abstracts of papers presented.

41. Geological progress.
 Eng. & Mg. Jour., vol. 73, pp. 94-95, 1905.
 Gives abstracts of papers read at the annual meeting of the Geological Society of America.

42. The Cape York meteorites.
 Describes meteorites brought from Greenland.

43. The western Sierra Madre of the State of Chihuahua, Mexico.
 Contains notes on the geology of the region.

44. Volcanoes of Martinique, Guadeloupe, and Saba.
 Bull. 301—00——12
Hovey (Edmund Otis)—Continued.
45. Volcanoes of St. Vincent, St. Kitts, and Statia.
46. The American Association for the Advancement of Science. Summer meeting
 of section C, geology and geography.
 Contains notes on the geology of the vicinity of Syracuse, N. Y., and abstracts of papers pre­
 sented to the meeting.
47. The western Sierra Madre of the State of Chihuahua [Mexico].
Hovey (Horace C.).
1. The lead and silver mines of Newbury [Massachusetts].
 Contains notes on the occurrence of the minerals and the geology of the region.
2. Colossal cavern (Kentucky).
 Spelunca, t. 5, pp. 57-61 (247-251), 2 figs., 1904.
 In the author's separates a copyright plate has been added showing route in the cave.
Howarth (O. H.).
1. Geological features of the Azores; interesting illustrations of peculiar volcanic
 effects, both past and present.
Howe (Ernest).
1. Experiments illustrating intrusion and erosion.
 Describes experiments illustrating the formation of laccoliths and the deformation of the
 invaded strata.
2. Recent tufts of the Soufrière, St. Vincent.
 Describes character and occurrence of deposits of volcanic ejecta.
3. An occurrence of greenstone schists in the San Juan Mountains, Colorado.
 Discusses the occurrence and character of greenstone schists in the San Juan Mountains, dis­
 cusses their age, and compares them with similar rocks from other localities.
Howe (E.), Cross (W.) and.
 See Cross (W.) and Howe (E.), 1.
2. Red Beds of southwestern Colorado and their correlation.
 See Cross (W.) and Howe (E.), 2.
3. Topography and general geology of the Needle Mountains quadrangle [Colorado].
 See Cross (W.) and Howe (E.), 3.
 See Cross (W.) and Howe (E.), 4.
Howe (James Lewis), Campbell (H. D.) and.
1. A new (?) meteoric iron from Augusta Co., Virginia.
 See Campbell (H. D.) and Howe (J. L.), 1.
Howley (James P.).
1. Report of geological exploration in the district of White Bay, N. F., during the
 season of 1902.
 Newfoundland Geol. Surv. 28 pp., 1903.
 Describes observations upon the geology of northern Newfoundland.
Howley (James P.)—Continued.
2. Report on exploration and boring operations in the central Carboniferous basin near Grand Lake [Newfoundland], 1904.
Contains notes on the occurrence of coal in Newfoundland.

Hrdlička (Aleš).
1. The crania of Trenton, New Jersey, and their bearing upon the antiquity of man in that region.
Describes the occurrence and character of the remains.
2. The Lansing skeleton.
Gives a detailed description of the skeleton and its parts, and a comparison with that of the American Indian.

Hubbard (George D.).
Describes distribution of Illinoian and Wisconsin drift deposits in southern Illinois and various physiographic features of the Embarras Valley, and discusses its physiographic history.

Hubbard (Lucius L.).
1. Two new geological cross-sections of Keweenaw Point [Michigan].
Lake Superior Mg. Inst., Proc., vol. 2, pp. 79-96 [1894?].
Describes the geology of this area and gives a section of the strata.
2. The relation of the vein at the Central mine, Keweenaw Point, to the Kearsarge conglomerate [Michigan].
Lake Superior Mg. Inst., Proc., vol. 3, pp. 74-83, 4 pls. [1895?].

Hudson (Edward J.), Mabery (Charles H) and.
1. On the composition of California petroleum.
See Mabery (C. F.) and Hudson (E. J.), 1.

Hudson (George H.).
1. Contributions to the fauna of the Chazy limestone on Valcour Island, Lake Champlain.
N. Y. State Mus., Bull. 80, pp. 270-295, 5 pls. and 7 figs., 1905.

Hulst (Nelson P.).
1. The geology of that portion of the Menominee Range, east of the Menominee River [Michigan].
Lake Superior Mg. Inst., Proc. for 1893, pp. 19-28, 2 figs., geol. map [1893?].
Describes the geologic structure and occurrence of ores in this area.

Hunter (A. F.).
1. The Algonquin shore line in Simcoe County, Ontario.
2. Raised shore lines along the Blue Mountain escarpment [Ontario].

Huntington (Ellsworth) and Goldthwait (James Walter).
1. The Hurricane fault in southwestern Utah.
Jour. Geol., vol. 11, pp. 46-63, 10 figs., 1903.
Gives a table showing the succession of formations in the region, and describes physiographic features and its geologic history.
2. The Hurricane fault in the Toquerville district, Utah.
Describes geographic and physiographic features of the region, the character and occurrence of the geologic formations, the geologic history, embracing deposition, uplift, folding, faulting, erosion, and vulcanism, and the occurrence and effects of lava flows.
Hurley (Thomas Jefferson).
1. Famous gold nuggets of the world.
 64 pp., illus., 1900. (Private publication.)

Hussakoff (L.).
2. On the structure of two imperfectly known Dinichthyids.

Hyatt (Alpheus).
 Discusses briefly structural details of Jurassic Ammonites, and gives systematic descriptions
 of genera and species of Cretaceous Pseudoceratites from North America and other parts of
 the world.
2. The Triassic cephalopod genera of America.
 The systematic descriptions of orders, families, genera, and species are preceded by a synopsis
 of American Triassic stratigraphy, a discussion of the classification of Triassic ammonites
 and a table showing the occurrence of American Triassic cephalopod genera.

Hyatt (Alpheus) and Smith (James Perrin).
1. The Triassic cephalopod genera of America.
 The systematic descriptions of orders, families, genera, and species are preceded by a synopsis
 of American Triassic stratigraphy, a discussion of the classification of Triassic ammonites
 and a table showing the occurrence of American Triassic cephalopod genera.

Hyde (Jesse E.).
1. Changes in the drainage near Lancaster [Ohio].
 Ohio Naturalist, vol. 4, pp. 149-157, 4 tigs., 1904.
 Discusses changes in drainage produced by the ice invasions of the Glacial period.

Iddings (Joseph Paxson).
1. Chemical composition of igneous rocks, expressed by means of diagrams, with
 reference to rock classification on a quantitative chemico-mineralogical basis.
 U. S. Geol. Surv., Professional Paper no. 18, 98 pp., 8 pis. (diagrams), 1903.
 Reviews the use of diagrams in representing the composition of igneous rocks, discusses the
 purpose and construction of the diagrams employed by the writer, gives a classified list of
 analyses used in constructing the diagrams, and a general discussion of igneous rocks as to
 occurrence, composition, correlation, and classification.
2. A fracture valley system.
 Jour. Geol., vol. 12, pp. 94-106, 1 pl., 1904.
 Discusses the relations subsisting between systems of drainage and fractures, and describes,
 in illustration, the drainage system and geologic structure of the Livingston quadrangle,
3. Quartz-feldspar-porphyry (graniphyro liparose-alaskose) from Llano, Texas.
 Describes petrographic characters and chemical composition, and discusses its position in the
 quantitative system of classification.
4. The isomorphism and thermal properties of the feldspars. Part II. Optical study.
 Lime-soda feldspars crystallized in open crucibles from fused constituents.
 Carnegie Inst. of Wash., Publ. no. 31, pp. 77-95, 26 pls., 1 fig., 1905.

Iddings (Joseph P.), Cross (Whitman), Pirsson (Louis V.), and Washington (Henry S.).
1. A quantitative chemico-mineralogical classification and nomenclature of igneous
 rocks.
 See Cross (Whitman) and others, 1.
2. Quantitative classification of igneous rocks.
 See Cross (Whitman) and others, 2.
1. The road-making materials of Pennsylvania.
 Pa. Dept. Agric., Bull. no. 69, 104 pp., illus., 1900.
 Includes notes on the composition and occurrence of rocks suitable for road-making materials.

2. Section of mineral statistics and mines, Annual report for 1898.
 Contains statistics of production and notes on the coal fields of Nova Scotia, Manitoba, Northwestern Territories and British Columbia, and on the occurrence of natural gas and oil in Ontario.

3. Section of mineral statistics and mines, Annual report for 1899.

 Gives a summary of the geology and petrology of the area and describes the character and occurrence of the iron ores.

5. Section of mines, Annual report for 1901.

 Describes the character and occurrence of rocks, the occurrence of copper and iron ore deposits, and the mining operations.

7. Section of mines, Annual report for 1902.

8. Bruce Mines district [Ontario].
 Includes brief notes on the geology of the district.

9. Section of mines, Annual report for 1903.

10. Geology of the country around Bruce Mines [Ontario].
 Describes the occurrence and relations of igneous and sedimentary rocks in this region.

11. Some recently exploited deposits of wolframite in the Black Hills of South Dakota.
 Describes the general geology and occurrence of wolframite in the ore-bearing veins of the region.

12. Ore deposits of the northern Black Hills.
 Describes the general geology of the region and the character and geologic occurrence of the gold ore deposits.

13. The ore deposits of the northern Black Hills.
 Discusses the general geology and the occurrence, geologic relations, and character of the gold, silver, tin, and wolframite ore deposits.

 Discusses the general geology and the character and occurrence of ore deposits, chiefly gold, lead-silver, and wolframite ore deposits, in Algonkian, Cambrian, Carboniferous, and eruptive rocks.
Irving (John Duer)—Continued.
5. Microscopic structure and origin of certain stylolitic structures in limestone.
 Discusses the character and origin of stylolites.
6. Ore deposits of the Ouray district, Colorado.
 U. S. Geol. Surv., Bull. no. 260, pp. 50-77, 4 figs., 1905.
 Discusses the general geology, and the occurrence, relations, and economic development of
 gold and silver-bearing deposits.
7. Ore deposits in the vicinity of Lake City, Colorado.
 Discusses the general geology, and the occurrence, character, and relations of the gold and
 silver-bearing fissure veins.
8. University training of engineers in economic geology.
 Econ. Geol., vol. 1, pp. 77-82, 1905.
9. The ore deposits of the Ouray quadrangle [Colorado].
Irving (John Duer) and Emmons (S. F.).
1. Economic resources of the northern Black Hills. Part II. Mining geology.
 Describes the character, occurrence, and geologic relations of the gold, silver, copper, tin
 and tungsten ores, and their economic development.
Irving (J. D.) and Emmons (W. H.).
1. Economic geology of the Needle Mountains quadrangle [Colorado].
 Discusses the character, occurrence, and relations of the gold and silver ores.
Ishikawa (S.).
1. Latest eruption of Colima volcano, Mexico. [In Japanese.]

Jackson (J. F.).
1. Copper mining in Upper Michigan, a description of the region, the mines, and
 some of the methods and machinery used.
 Contains observations on the occurrence of the copper-ore deposits.

Jackson (Robert T.).
 Gives an account of his life and work, and a list of his published papers.

Jacobs (E.).
1. Ore quarrying in the Boundary district of British Columbia.
 Describes briefly the occurrence and character of copper-ore deposits.
 Eng. Mag., vol. 27, pp. 56-57, illus., 1904.
 Describes the location of the field, the occurrence of the coal, and the mining operations.

Jaekel (O.).
1. Bemerkungen über den Beinbau der Trilobiten.
 Discusses criticisms by C. E. Beecher of a paper by the author on the structure of trilobites.

Jaggar (Thomas Augustus).
1. The laccoliths of the Black Hills [South Dakota].
 Describes the occurrence of the sedimentary and igneous rocks, and the character, occurrence,
 and distribution of the laccolithic intrusives, and discusses the physiographic form of eroded
 domes.
Jaggar (Thomas Augustus)—Continued.

2. Field notes of a geologist in Martinique and St. Vincent.
 Describes recent volcanic phenomena.

3. The next eruption of Pelée.

4. Professor Heilprin on Mont Pelée.
 Reviews the "Mont Pelée and the tragedy of Martinique" of Angelo Heilprin, and discusses phenomena connected with the eruptions.

 Describes topography, stratigraphy, lithology, geologic structure, and characteristic sections.

6. The eruption of Mont Pelée, 1851.
 Translated from the French of LePrieur, Peyraud, and Rufz.

7. The initial stages of the spine on Pelée.
 Describes occurrence and appearance of spines in the crater of Mont Pelée and gives an explanation of their origin.

8. The eruption of Pelée, July 9, 1902.
 Gives details of observations on the eruption of July 9, 1902, and discusses the causes of the phenomena.

Jaggar (T. A., jr.) and Palache (Charles).

1. Bradshaw Mountains folio, Arizona.
 Describes the occurrence, character, and relations of Algonkian sedimentary and metamorphic strata, of igneous rocks, and of Quaternary deposits, the geologic history, and the economic resources, including gold, silver, and copper deposits.

James (F. Wilton).

 Gives notes upon physiographic features of the region.

Jamieson (George S.).

1. On the natural iron-nickel alloy, awaruite.
 Describes character and composition of specimens of natural iron-nickel alloy obtained from Josephine County, Oregon, and from Del Norte County, California.

Jamieson (G. S.), Penfield (S. L.) and.

1. On tychite, a new mineral from Borax Lake, California, and on its artificial production and its relation to noruphite.
 See Penfield (S. L.) and Jamieson (G. S.), 1.

Jefferson (Mark S. W.).

1. Limiting widths of meander belts.
 Describes methods and results of meander studies.

 Discusses the proper writing of the name of this volcano.

3. Some shore features of Lake Huron.

Jeffrey (Edward C.).

1. A fossil Sequoia from the Sierra Nevada.
Jenney (Walter P.).
1. The mineral crest.
 Eng. and Mg. Jour., vol. 73, pp. 825-826, 1902.
 Discusses the occurrence of ore bodies in depth in limestone beneath large masses of barren rock.
2. The mineral crest, or the hydrostatic level attained by the ore-depositing solutions, in certain mining districts of the Great Salt Lake Basin.
3. The mineral crest, or the hydrostatic level attained by the ore-depositing solutions, in certain mining districts of the Great Salt Lake Basin.
4. The chemistry of ore-deposition.
 Discusses the action of carbon and hydrocarbons in the formation of ore deposits.

Jennings (E. P.).
1. The copper deposits of the Kaibab Plateau, Arizona.
 Describes the general geology and occurrence of the ore deposits, containing copper chiefly
2. Origin of the magnetic iron ores of Iron County, Utah.
 Describes the occurrence and character of the magnetic iron-ore deposits and discusses their origin.

Jennings (O. E.).
1. Notes on the vegetable tissues in Daemonelix.

Jennison (W. F.).
1. Notes on the history of manganese mining in part of Nova Scotia and on some of the geological conditions of the manganese belt running through Hants County.
 Discusses the occurrence and geological relations of the manganese ore deposits.

Jewett (J. J.).
1. Notes on the topography and geology of New Mexico.

Johnson (Charles W.).
1. Description of two new Tertiary fossils.
 Nautilus, vol. 17, pp. 143-144, 2 figs., 1904.
2. Annotated list of the types of invertebrate Cretaceous fossils in the collection of the Academy of Natural Science, Philadelphia.

Johnson (C. W.) and Grabau (A. W.).
1. A new species of Clavilithes from the Eocene of Texas.

Johnson (Douglas Wilson).
1. Notes on the geology of the saline basins of central New Mexico.
2. Notes of a geological reconnaissance in eastern Valencia County, New Mexico.
 Am. Geol., vol. 29, pp. 80-87, 2 pls., 1902.
 Describes the general physiographic and geologic features of the region.
3. On some Jurassic fossils from Durango, Mexico.
 Gives a brief description of material collected by E. F. Tuttle.
For the years 1901-1905, inclusive.

Johnson (Douglas Wilson)—Continued.

 School of Mines Quart., vol. 24, pp. 303-350, 7 pls., 7 figs.; pp. 456-500, 10 pls., 6 figs., 1903.
 Describes the geographic and physiographic features, reviews previous geologic work upon the district, gives a detailed account of the stratigraphy, mainly Cretaceous and Tertiary, areal geology and intrusive rocks, discusses the physiographic and general geologic history, and describes the character, occurrence, and production of coal and turquoise.

5. The geology of the Cerrillos Hills, New Mexico. Part II. Paleontology.
 School of Mines Quart., vol. 24, pp. 178-246, 14 pls., 1903.
 Gives a brief description of the geologic formations and faunal lists by localities, and systematic descriptions of the fossils collected.

 School of Mines Quart., vol. 25, pp. 99-98, 5 pls., 1903.
 Describes the occurrence and characters, megascopic and microscopic, of the igneous rocks of this region.

7. Block mountains in New Mexico.
 Am. Geol., vol. 31, pp. 135-139, 1 pl., 1903; Columbia Univ., Contr. from Geol. Dept., vol. 11, no. 93, 1903.
 Gives observations on faulting in the block mountains of New Mexico.

8. The distribution of fresh-water faunas as an evidence of drainage modifications.

 Jour. Geol., vol. 13, pp. 194-231, 9 figs., 1905.

10. The scope of applied geology and its place in the technical school.
 Econ. Geol., vol. 1, pp. 243-256, 1905.

11. Youth, maturity, and old age of topographic forms.

Johnson (J. E., jr.).
1. Origin of the Oriskany limonites [Virginia].
 Describes the general geologic structure of the region and the occurrence and origin of the iron ores.

Johnson (L. C.).
1. Underground waters of eastern United States: Mississippi.
 Describes briefly the geologic formations of the state and their underground water supplies.

Johnson (L. C.) and Eckel (E. C.).
1. Notes on wells, springs, and general water resources of Mississippi.

Johnson (Willard D.).
1. The high plains and their utilization.
 Discusses the origin and structure of the region.

2. The high plains and their utilization. (Conclusion of paper in Twenty-first Annual Report, Part IV.)
 Discusses the origin and structure of the region, and its water resources, especially the ground water as a possible source of supply.

3. The profile of maturity in Alpine glacial erosion.
 Jour. Geol., vol. 12, pp. 569-578, 1904.
 Discusses physiographic characteristics due to glacial erosion of the Sierra Nevada Mountains, and the agencies by which they were produced.

4. The grade profile in Alpine glacial erosion.
 Reprinted with changes by the author, from the Journal of Geology, vol. 12, pp. 569-578, 1904. [See no. 3 above].
Johnson (William H.).
1. The lead and zinc fields of the Ozark uplift.
 Gives a general account of the development of the Missouri-Arkansas-Kansas lead and zinc mining district, and discusses briefly the general geology and the formation and character of the ores.

Johnston (J. F. E.).
1. Eastern part of the Abitibi region.
 Describes the author's observations in this region.

2. Geology of part of the County of Ottawa [Quebec].

Johnston (R. A. A.).
 Describes characters, uses, etc., of molybdenum and tungsten, and gives a list of their occurrences in Canada.

2. The copper claims of Aspen Grove and Aberdeen Camp, B. C.

3. On the meteorite which fell near the village of Shelburne, township of Melancthon, Ontario, in August, 1904.

Joly (Henri).
1. Notice sur le Dr. Professor Charles Othontiel Marsh (29 octobre 1831-18 mars 1899).

Joly (J.).
1. An estimate of the geological age of the earth.

Jonas (Anna I.).
1. Serpentines in the neighborhood of Philadelphia.
 Am. Geol., vol. 36, pp. 296-304, 1905.
 Reviews the occurrence and origin of known serpentines and describes more particularly the serpentine dikes in the neighborhood of Philadelphia, Pa.

Jones (Alfred W.).
1. Further studies in the Mentor beds [Kansas].

2. The fauna of the Mentor.
 A list of the marine fossils found in the Mentor beds of the Kansas Carboniferous.

Jones (Fayette Alexander).
1. New Mexico mines and minerals. World's Fair edition, 1904.
 Santa Fe, N. M., The New Mexican Printing Company, 1904. 349 pp., 50 figs.
 Includes a brief account of the general geology, and observations on the occurrence, geologic relations, and character of various ore deposits, mining and production of metals, etc. Gives a list of minerals occurring in New Mexico.

Jones (F. O.).
1. The formation and geology of the salt deposits.
 Describes the formation and occurrence of deposits of salt.

Jones (S. P.).
1. The geology of the Tallulah Gorge [Georgia].
 Am. Geol., vol. 27, pp. 67-75, 3 pls., 3 figs., 1901.
 Describes the physiographic features of the region and the origin of the gorge.
Jones (T. Rupert).
1. Notes on Dr. G. F. Matthew's Cambrian Ostracoda from northeastern America.
 Geol. Mag., new ser., dec. 4, vol. 9, pp. 401-403, 6 figs., 1902.
2. On some Isochilinae from Canada and elsewhere in North America.
 Geol. Mag., new ser., dec. 4, vol. 10, pp. 300-304, 3 figs., 1903.
 Includes a catalogue of the known Isochilinae, giving geologic occurrence and citation to description.
3. Note on a Paleozoic Cypridina from Canada.
 Describes a new species under the name Cypridina antiqua.
4. Some Paleozoic ostracods from Maryland.
 Johns Hopkins Univ., Circ., 1905, no. 3, pp. 30-33, 7 figs., 1905.

Julien (Alexis A.).
1. A study of the structure of fulgurites.
 Jour. Geol., vol. 9, pp. 673-693, 3 figs., 1901.
 Gives the results of the study of four fulgurites.
2. Erosion by flying sand of the beaches of Cape Cod.
3. The geology of central Cape Cod [Massachusetts].
 Abstract: Am. Geol., vol. 27, p. 44, 1901.
 Contains notes on the glacial phenomena of the region.
4. [Discussion of paper by J. F. Kemp on "The Cambro-Ordovician outlier at Wells-town, Hamilton County, New York."]
 Discusses the origin of the sand in the limestone.
5. On pyrite and marcasite.
6. Erosion by flying sand on the beaches of Cape Cod.
 Describes the character, occurrence, and origin of these rocks and their metamorphic phases and contact alterations.
8. The occlusion of igneous rock within metamorphic schists.
 Defines the term "occlusion" and discusses some of the phenomena of enclosed igneous rocks.
9. Determination of brucite as a rock constituent.
 Describes the characters of brucite by which it may be recognized in rocks.

K.
Kain (Samuel W.).
1. Recent earthquakes in New Brunswick.

Kay (George F.).
1. The Abitibi region [Ontario].
 Includes observations upon the geology, topography, drainage, etc., of the region traversed, and a discussion of the petrography.

Keele (Joseph).
1. The Duncan Creek mining district [Yukon].
 Includes observations on the general geology and the occurrence of placer gold.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Keeley (Frank J.).
1. Inclusions in quartz.

Keith (Arthur).
1. Maynardville folio, Tennessee.
 Describes the geographic features, the stratigraphy, the character and occurrence of the Cambrian, Silurian, Devonian, and Carboniferous rocks, the geologic structure, and the mineral resources of the region.

2. Folded faults in the southern Appalachian.

3. Topography and geology of the southern Appalachians.
 Message from the President of the United States, transmitting a report of the Secretary of Agriculture in relation to the forests, rivers, and mountains of the southern Appalachian region (Senate Doc. no. 84, 57th Cong., 1st sess.), pp. 111-123, 11 pls., 1902.
 Contains a brief account of the general geology of the region.

 Describes geographic and topographic features, general geologic relations and structure, character and occurrence of Archean, Algonkian, Cambrian, and Jurassian (?) rocks, and mineral resources.

 Describes the character and occurrence of the iron ores of this region.

6. Tennessee marbles.
 Describes the occurrence and character of marble deposits in eastern Tennessee, and locations suitable for quarrying.

7. Talc deposits of North Carolina.
 Describes the character, occurrence, and methods of mining the talc deposits.

8. Recent zinc mining in east Tennessee.
 Describes the general geology, character, occurrence, and origin of the zinc-ore deposits.

 Describes the geographic relations and drainage, the geologic history, the character, occurrence, and relations of Archean, Algonkian, Cambrian, and Ordovician rocks, the geologic structure, and the mineral resources of the area.

10. Folded faults of the southern Appalachians.
 Congr. géol. intern., Compte rendu, IX. Sess., pp. 541-545, 1904.
 Discusses the character and occurrence of overthrust faulting in the southern Appalachian region.

 Describes the general relations of the Greeneville quadrangle, its detailed geography, the general geological structure and history of the area, the character, occurrence, and relations of Archean, Cambrian, Ordovician, Silurian, and Carboniferous rocks, and the mineral resources.

 Describes the geography, physiographic features, the general geology, the occurrence, character, and relations of Archean, Cambrian, and Triassic (?) rocks, the geologic structure, and economic resources.

 Describes the geography, topography, the character, occurrence, and relations of Carboniferous strata and of igneous rocks, and the geologic structure of the region.
KEITH (Arthur), DARTON (N. H.) and.
See DARTON (N. H) and KEITH (Arthur), 1.

KEMP (James Furman).
Science, new ser., vol. 13, pp. 96-100, 133-139, 1901.
Contains abstracts of papers presented.

2. The Cambro-Ordovician outlier at Wellstown, Hamilton County, New York.
Contains brief description of occurrence of small outliers of Paleozoic strata within the crystalline area of the region.

3. New asbestos region in northern Vermont.
Describes the occurrence of asbestos associated with serpentine.

4. Physiography of Lake George.
Describes briefly the physiographic history of the region.

5. Calculation of rock analyses.

Abstract of paper read before the N. Y. Academy of Sciences.

Abstract of paper read before the N. Y. Academy of Sciences.

8. Notes on the occurrence of asbestos in Lamoille and Orleans counties, Vermont.

9. The rôle of the igneous rocks in the formation of veins.
Discusses mode of occurrence and formation of ores in igneous, sedimentary, and metamorphic rocks; and the occurrence of groundwater and the part which it plays in the localization of ore deposits.

10. The deposits of copper-ores at Ducktown, Tennessee.
Describes briefly topography of Ducktown, mode of occurrence and character of the ore and associated minerals, and possible origin of the ore bodies.

11. The geological relations and distribution of platinum and associated metals.
U. S. Geol. Surv., Bull. no. 193, 95 pp., 6 pls., 8 figs., 1902; Columbia Univ., Geol. Dept., Contr., vol. 10, no. 81, 1902.

12. Igneous rocks and circulating waters as factors in ore deposition.

15. Notes on the physiography of Lake George.

16. Theodore G. White (Obituary):

17. The anthracite situation and problem.
Contains a brief account of the character and occurrence of anthraeitce and the geologic structure of the anthracite fields of Pennsylvania.
19. Igneous rocks and circulating waters as factors in ore-deposition.

Describes the general geology of the vicinity of the mine and the occurrence of the platinum-bearing ores.

Describes character and occurrence of spheroidal granite in a boulder found near Charlevoix, Michigan.

22. On the differentiation of igneous magmas and the formation of ores.

23. Comments on the geology of Bingham Canyon, Utah.

24. The leucite hills of Wyoming.

25. Genetic classification of ore deposits.

27. Graphite in the eastern Adirondacks, N. Y.
Describes occurrence and character of deposits of graphite.

28. The formation of veins: a brief statement of general principles.
Mg. Mag., vol. 10, pp. 89-93, 1904.
Discusses the general principles of ore deposition.

Describes methods of recording field observations to facilitate easy reference thereto.

Zeitschr. f. prak. Geol., Jahrg. 13, pp. 71-80, 7 figs., 1902.
Describes the occurrence, character, and geological relations of titaniferous magnetite deposits in Wyoming.

32. The copper deposits at San Jose, Tamaulipas, Mexico.
Describes the general geology and the occurrence, character, relations, and composition of eruptive rocks, and discusses the origin of their component minerals, and of the ores.

33. Secondary enrichment in ore deposits of copper.
Econ. Geol., vol. 1, pp. 11-25, 1906.

34. What is a fissure vein?
Econ. Geol., vol. 1, pp. 167-169, 1905.

35. The problem of the metalliferous veins.
Econ. Geol., vol. 1, pp. 207-232, 1905.
Discusses the formation of ore deposits.
Kemp (James Furman)—Continued.

36. The titaniferous magnetite in Wyoming.
 Abstracts: Am. Geol., vol. 35, p. 64, 1905.
 Science, new ser., vol. 21, p. 67, 1905.

37. The physiography of the Adirondacks.

Kemp (James Furman) and Grabau (A. W.).
 Gives abstracts of papers read.

Kemp (James Furman) and Hill (B. F.).

Kemp (James Furman) and Knight (W. C.).
1. Leucite hills of Wyoming.
 Reviews previous work, describes the geographic situation and general character of the region, the general geology, and in detail the twenty-two leucite hills with especial reference to physiographic features and petrographic character.

Kemp (J. F.), Finlay (George I.) and.
1. Nepheline syenite area of San José, Tamaulipas, Mexico.
 See Finlay (George I.) and Kemp (J. F.), 1.

Kendall (J. D.).
1. Ore in sight.

Kennedy (William), Hayes (C. W.) and.
1. Oil fields of the Texas-Louisiana Gulf coastal plain.
 See Hayes (C. W.) and Kennedy (William), 1.

Kerr (D. G.).
1. Corundum in Ontario, Canada: its occurrence, working, milling, concentration, and preparation for the market as an abrasive.

Kerr (Frank M.).
1. The sulphur deposits of Calcasien Parish [Louisiana].
 Describes the occurrence of the sulphur and presents the record of a boring to a depth of 603 feet.

Kessler (H. H.) and Hamilton (W. R.).
1. The orbicular gabbro of Dehesa, California.
 Am. Geol., vol. 34, pp. 133-140, 5 pls., 1904.
 Describes the occurrence, geologic relations, macroscopic and microscopic characters, and constitution.

Kewitsch (Georg).
1. Die Vulkane, Pelé, Krakatau, Etna, Vesuv.
 Norden, Soltan's Verlag, 1902. 35 pp., 6 figs.

Keyes (Charles Rollin).
1. A depositional measure of unconformity.
 Describes the development of the Carboniferous sediments in the Mississippi Valley and Southwestern regions.
Keyes (Charles Rollin)—Continued.

2. Origin and classification of ore deposits.
 Discusses the nature of ore deposits, general methods of ore formation, the classification of ore deposits, and certain other phases of ore deposits.

3. Derivation of the terrestrial spheroid from the rhombic dodecahedron.
 Jour. Geol., vol. 9, pp. 244-249; 1901.
 Discusses Green's hypothesis of the tetrahedral form of the earth.

4. Composite genesis of the Arkansas Valley through the Ozark highlands.
 Jour. Geol., vol. 9, pp. 246-249, 2 figs.; 1901.
 Discusses the evidences which indicate that there has been but one uplift in the region and that the river eroded its bed as fast as the strata were raised.

5. Ore formation on the hypothesis of concentration through surface decomposition.
 Am. Geol., vol. 27, pp. 355-362, 1901.
 Discusses the evidence as to the derivation of the lead and zinc ores of the Ozark region and their bearing on the origin of ore deposits in general.

6. Nomenclature of the Cambrian formations of the St. Francois Mountains [Missouri].
 Discusses the validity of certain names applied to the Cambrian formations of the region.

7. A schematic standard for the American Carboniferous.
 Am. Geol., vol. 28, pp. 299-305, 1 fig.; 1901.
 Presents a general section of the Carboniferous of the Mississippi Valley and discusses its correlation with other regions.

8. Time values of provincial Carboniferous terranes.
 Discusses the time ratios of the several subdivisions of the Carboniferous of the Mississippi Valley region.

9. Note on the correlation of the Clarinda well section with the schematic section of the Carboniferous.
 Iowa Geol. Surv., vol. 11, pp. 461-463, 1901.
 Compares the well section with the general section.

10. A depositional measure of unconformity.

11. On a crinoidal horizon in the Upper Carboniferous.
 Describes its occurrence and its bearing on the stratigraphy of the Mississippi Valley.

12. Zone of maximum richness in ore bodies.
 Contains abstracts of recent papers by Emmons and Weed.

13. Horizons of Arkansas and Indian Territory coals compared with those of other trans-Mississippian coals.
 Discusses the relations of the coal-bearing horizons of the trans-Mississippian region.

14. The stratigraphical location of named trans-Mississippian coals.
 Gives list of geological formations and the coals occurring in each.

15. Contiguity of ore deposits of different generic relationships.

16. Diverse origins and diverse times of formation of the lead and zinc deposits of the Mississippi Valley.

17. Origine eolienne du loess.
 Discusses the origin of the loess of the Mississippi Valley.
Keyes (Charles Rollin)—Continued.

18. Depositional equivalent of hiatus at base of our Coal Measures; and the Arkansan series, a new terrane of the Carboniferous in the western interior basin.

Discusses evidences of denudation prior to the deposition of the Coal Measures in this area, gives tables comparing the thickness of Coal Measures formations, and describes the Arkansan series.

19. Names of coals west of the Mississippi River.

Discusses the Carboniferous deposits of the western interior coal field, tabulates the terranes and percentage of coal production of each, and gives a list of names that have been applied to the coal seams, with place of publication and stratigraphic position.

20. Diverse origins and diverse times of formation of the lead and zinc deposits of the Mississippi Valley.

Discusses mode of formation of these ores.

21. [In discussion of “The origin of ore-deposits.”]

22. Character and stratigraphical peculiarities of the southwestern Iowa coal fields.

Eng. & Mg. Jour., vol. 73, p. 651, 1902.

Describes the stratigraphic position of these coals.

23. Determination of the Cambrian age of the magnesian limestones of Missouri.

Am. Geol., vol. 29, pp. 384-387, 1902.

Reviews previous determinations of the age of these limestones.

Discusses the evidences of the age of the Kansas and Iowa gypsum beds.

25. Cartographic representation of geological formations.

Jour. Geol., vol. 10, pp. 691-699, 2 figs., 1902.

Discusses the criteria by which formations are discriminated and the methods of their cartographic representation.

26. Devonian interval in Missouri.

Discusses lithologic and faunal characters of the strata and the evidence of unconformities.

27. Magmatic differentiation of rocks.

Science, new ser., vol. 15, pp. 32-33, 1902.

Discusses the formation of the Magnet Cove [Arkansas] igneous mass and the classification of rocks.

28. A Devonian hiatus in the continental interior—its character and depositional equivalents.

Discusses the absence of Devonian strata in west central Missouri and the history and meaning of the terms Kinderhook and Chouteau.

29. Geological structure of New Mexican bolson plains.

Describes the characters of these plains and the geologic history of the region.

30. Ephemeral lakes in arid regions.

31. Some recent aspects of the Permian question in America.

Am. Geol., vol. 32, pp. 218-223, 1903.

Discusses questions of nomenclature and taxonomic rank.

32. A remarkable silver pipe.

Discusses the occurrence and origin of “pipe-veins,” and an occurrence in central New Mexico.

Bull. 301—06—13
Keyes (Charles Rollin)—Continued.

33. Geology of the Apache Cañon placers [New Mexico].
 Describes the location of the placers, the discovery of the placer gold, the geology of the
 Sierra de los Caballos Mountains, and the occurrence of fissure veins.

34. Significance of the occurrence of minute quantities of metalliferous minerals in
 rocks.

35. Genesis of certain cherts.

36. Comparative values of different methods of geologic correlation in the Mississippi
 Basin.

37. Note on block mountains in New Mexico.
 Am. Geol., vol. 33, pp. 19-23, 1904.
 Discusses structure and formation of block mountains in New Mexico.

38. Bolson plains and the conditions of their existence.
 Am. Geol., vol. 34, pp. 160-164, 1904.
 Describes the characters of bolson plains and discusses their origin.

 Describes an occurrence of aurichalcite in the Magdalena Mountains in New Mexico.

40. Certain basin features of the high plateau region of southwestern United States.
 Discusses features of bolson plains of New Mexico, and discusses their origin.

41. Note on the Carboniferous faunas of Mississippi Valley in the Rocky Mountain
 region.
 Notes the identity of many of the fossils from the two regions, although they have been
 described under different names.

42. Iron deposits of the Chupadera Mesa [New Mexico].
 Describes the occurrence and geologic relations of iron ores in central New Mexico and
 explains their origin.

43. The Hagan coal field [New Mexico].
 Describes the occurrence and geologic relations of coal beds in central New Mexico.

44. Unconformity of the Cretaceous on older rocks in central New Mexico.
 Discusses the relations of the Cretaceous rocks to the underlying formations. Includes a
 table giving a general geological section for New Mexico, showing the sequence, thickness,
 and lithologic character of the geologic formations.

45. Structures of Basin ranges.
 Jour. Geol., vol. 13, pp. 57-70, 5 figs., 1905.
 Discusses systems of faulting and the general geologic structure of the Basin ranges of New
 Mexico, and the physiographic development of the New Mexican region.

46. The fundamental complex beyond the southern end of the Rocky Mountains.
 Am. Geol., vol. 36, pp. 112-122, 1905.
 Discusses age, relations, and character of igneous and altered clastic rocks occurring in the
 New Mexican portion of the Rocky Mountains.

47. Ore deposits of the Sierra de Los Caballos [New Mexico].
 Eng. & Mg. Jour., vol. 80, pp. 149-151, 3 figs., 1905.
 Describes the general geology of the region, and the occurrence and character of lead deposits.

48. Zinc carbonate ores of the Magdalena Mountains.
 Mg. Mag., vol. 12, pp. 109-114, 5 figs., 1905.
 Describes the geology, and the occurrence and relations of the zinc-ore deposits.
FOR THE YEARS 1901-1905, INCLUSIVE.

Keyes (Charles Rollin)—Continued.

49. Geology and underground water conditions of the Jornada del Muerto, New Mexico.
 Describes the physiographic character of the region, the geologic structure, the occurrence
 and relations of Archean, Algonkian, Carboniferous, Jurassic-Triassic, Cretaceous, and
 Quaternary deposits, and of the eruptive rocks, and the underground water resources.

50. Triassic system in New Mexico.
 Discusses the geologic position of the "Red Beds" of the Great Plains and the Southwest, and
 the occurrence and relationships of the Carboniferous and Triassic "Red Beds" in New
 Mexico.

51. The Jurassic horizon around the southern end of the Rocky Mountains.
 Am. Geol., vol. 36, pp. 289-292, 1 fig., 1905.
 Discusses the stratigraphic and time relations of some Mesozoic formations in New Mexico.

52. Bisection of mountain blocks in the Great Basin region.

53. Geological structure of the Jornada del Muerto and adjoining bolson plains
 [New Mexico].

54. Northward extension of the Lake Valley limestone [New Mexico].
 Describes the occurrence of Carboniferous rocks in New Mexico

Kilham (John T.).

1. The oil wells of the United States.
 An historical account of the discovery of oil and the development of the oil industry.

Killebrew (J. B.), Safford (J. M.) and.

1. The elements of the geology of Tennessee.
 See Safford (J. M.) and Killebrew (J. B.), 1.

Kimball (James P.).

1. Bohemia mining district of western Oregon.
 Eng. & Mg. Jour., vol. 73, pp. 889-890, 3 figs., 1902.
 Contains notes on the geology and mining developments in the district.

Kindle (Edward M.).

1. The Devonian fossils and stratigraphy of Indiana.
 Reviews the nomenclature of the formations and describes the lithologic and faunal character
 of many sections, and the characters of a large number of fossils from the Devonian rocks
 of the State. Discusses the correlation of the formations.

2. The Niagara limestones of Hamilton County, Indiana.
 Describes the lithologic and faunal characters of the limestones and correlates them with the
 Lockport limestone.

3. The Niagara domes of northern Indiana.
 Discusses general structure and deformation of Niagara strata.

4. A series of gentle folds on the border of the Appalachian System.
 Jour. Geol., vol. 12, pp. 281-289, 1 fig., 1904.
 Describes the occurrence and character of anticlinal folds in the Watkins Glen quadrangle in
 southern New York.

5. Note on some concretions in the Chemung of southern New York.
 Am. Geol., vol. 33, pp. 360-363, 3 figs., 1904.
 Describes the occurrence in the Chemung of a bed of concretions in connection with a fos-
 siliferous band, and gives an explanation of their origin.

6. The stratigraphy and paleontology of the Niagara of northern Indiana.
7. Salt and other resources of the Watkins Glen district, New York.
 Describes the location of the salt deposits, the general geology, and the strata penetrated in
 the salt wells; also the occurrence of natural gas.

Kindle (Edward M.) and Breger (C. L.).
1. Paleontology of the Niagara of northern Indiana.

Kingsley (J. S.).
1. The origin of the mammals.

Kinney (Bryce A.).
1. Annual report of the State natural-gas supervisor.
2. Annual report of the State natural-gas supervisor.

Kinzie (Robert A.).
1. Mining at the Alaska Treadwell.
 Describes the occurrence of the ore and the methods of mining.
2. The Treadwell group of mines, Douglas Island, Alaska.
 Includes a brief description of the geology of the district.

Kirby (Edmund B.).
1. Methods of testing and sampling placer deposits.
2. The ore deposits of Rossland, British Columbia.
 Describes the geologic occurrence, relations to surrounding rocks, and character of the gold,
 silver, and copper ore deposits of this locality.

Kirchoffer (William Gray).
1. The sources of water supply in Wisconsin.
 Includes a general account of the geology of Wisconsin.
FOR THE YEARS 1901-1905, INCLUSIVE.

Kirsopp (John, jr.).
 Describes geologic occurrence of coal in Alaska and distribution of coal in Alaska, British
 Columbia, and Washington.

Klein (Carl).
1. Über die am 7. Mai 1902 vom Vulcan Soufrière auf St. Vincent ausgeworfene vul-
 canische Asche.
 Describes the fall of volcanic ash in St. Vincent and its composition.

2. Über das Meteoreisen von Persimmon Creek, bei Hot House, Cherokee Co., Nord-
 Carolina.
 Describes characters of this meteorite.

Klem (Mary J.).
1. A revision of the Paleozoic Paleechinoidea, with a synopsis of all known species.

Knapp (George N.).
 Describes extent and character of the physiographic provinces of New Jersey and their water
 supply, and gives data regarding wells drilled in 1903.

2. The Cliffwood clays and the Matawan.
 Discusses stratigraphic position of the formations occurring at Cliffwood, N. J.

 Describes briefly the general geology, the physiographic provinces, and the underground
 water resources.

Knapp (George N.), Kümmel (Henry B.) and.
1. The stratigraphy of the New Jersey clays.
 See Kümmel (Henry B.) and Knapp (George N.), 1.

Knapp (S. A.).
1. Tonopah [Nevada].
 Describes occurrence of gold and silver at this locality.

Knight (C. W.).
1. Notes on some deposits in the eastern Ontario gold belt.
 Describes the general geology of the district, and in detail the occurrence and character of
 the gold ore deposits and associated rocks of the Belmont and Star of the East gold mines,
 and discusses their origin.

Knight (Nicholas).
1. Some Iowa dolomites.
 Contains chemical analyses of the dolomites.

2. Some recent analyses of Iowa building stones; also of potable waters.

 Am. Geol., vol. 29, p. 189, 1902.

5. The dolomites of eastern Iowa.
 Describes investigations upon the composition of dolomites.
Knight (Nicholas)—Continued.
 Describes composition of examples of dolomite rock from the Niagara of Iowa.
7. Estimation of the silica in the Bedford limestone.
 Am. Geol., vol. 36, pp. 57-60, 1905.
 Describes a chemical examination of the Bedford limestone of Indiana.

Knight (Wilbur Clinton).
1. Description of Bates Hole [Wyoming].
 Describes the physiographic and geologic features of the region.
2. The petroleum fields of Wyoming.
 Eng. and Mg. Jour., vol. 72, pp. 358-359, 628-630, 4 figs., and map, 1901.
 Describes the geology and character and occurrence of the oil in the several oil-bearing districts of the State.
3. The Sweetwater mining district, Fremont County, Wyoming.
 Wyo. Univ., School of Mines, 35 pp., 1 map, 1901.
 Describes occurrence of gold in this district.
 Eng. & Mg. Jour., vol. 73, p. 696, 1902.
 Contains notes on the occurrence of platinum and other rare metals.
5. The petroleum fields of Wyoming, III. The fields of Uinta County.
 Eng. & Mg. Jour., vol. 73, pp. 720-722, 4 figs., 1902.
 Describes the topography, general geology, and occurrence of oil in Uinta County.
6. The Laramie Plains Red Beds and their age.
 Jour. Geol., vol. 10, pp. 412-422, 1902.
 Reviews the literature of the subject, gives a detailed section in Red Mountain, and discusses the age of the Red Beds and their associated strata.
7. Coal fields of southern Uinta County, Wyoming.
 Describes briefly the Cretaceous strata of the region and gives chemical analyses of the coal.
8. Some notes on the genus Baptanodon, with a description of a new species.
 U. S. Geol. Surv., Bull. no. 223, pp. 79-85, 1 pl., 2 figs, 1904.
 Describes character, extent, occurrence, economic development, and geologic relations of the gypsum deposits occurring in the Red Beds in Wyoming.

Knight (Wilbur Clinton) and Slosson (E. E.).
1. Alkali lakes and deposits [Wyoming].
 Describes the character, occurrence, and origin of the deposits of considerable depth.
2. The Dutton, Rattlesnake, Arago, Oil Mountain, and Powder River oil fields [Wyoming].
 Wyo. Univ., School of Mines, Petroleum Ser., Bull. no. 4, 57 pp., 1 fig., 2 maps, 1901.
 Describes the occurrence and character of the oils in the several districts.
3. The Newcastle oil field [Wyoming].
 Describes the topography, geology, and development of oil of this area.
4. The Bonanza, Cottonwood, and Douglas oil fields.
 Wyo. Univ., School of Mines, Petroleum Ser., Bull. no. 6, 30 pp., 1903.
 Describes geographic location and geologic structure of these fields, the character of the oil, and the possibilities of production.

Knight (Wilbur Clinton), Kemp (J. F.) and.
1. Leucite hills of Wyoming.
 See Kemp (J. F.) and Knight (W. C.), I.
FOR THE YEARS 1901-1905, INCLUSIVE.

Knight (William H.).
1. Address at the presentation of the memorial bronze of Edward Waller Claypole, Throop Polytechnic Institute, Passadena, Cal., June 2, 1902. (Not seen.)

Knopf (A.) and Thelen (P.).
1. Sketch of the geology of Mineral King, California.
 Describes the physiography, evidences of glaciation and its effects, the occurrence, character, and relations of igneous and stratified rocks, and their petrography and metamorphism, and discusses the relations of the Mineral King belt to the granite.

Knowlton (Frank Hall).
1. [Report on the Clarno flora, Oregon.]
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 287-291, 1901.
 Gives list of fossil plants collected.
2. [Report on the flora of the Mascall formation, Oregon.]
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 308-309, 1901.
 Gives list of fossils collected.
 Briefly describes material.
4. A fossil nut pine from Idaho.
 Torreya, vol. 1, pp. 113-115, 3 figs., 1901.
 Describes Pinus lindgrenii n. sp.
5. Fossil hickory nuts.
6. A fossil flower.
 Plant World, vol. 4, pp. 73-74, 1901.
7. Fossil sequoias in North America.
 Gives lists of species of fossil plants determined.
 Plant World, vol. 5, pp. 33-34, 2 figs., 1902.
 Describes Pinus lindgrenii.
10. Fossil mosses.
 Plant World, vol. 5, pp. 243-244, 1902.
 Gives a summary of what is known regarding these forms.
11. Notes on the fossil fruits and lignites of Brandon, Vermont.
 U. S. Geol. Surv., Bull. no. 204, 164 pp., 17 pls., 1902.
 Gives a brief description of the geologic formations and localities of this area, describes the fossil plants, and discusses critically the age and relations to other floras.
15. Description of a new fossil species of Chara.
 Torreya, vol. 2, pp. 71-72, 1 fig., 1902.
Knowlton (Frank Hall)—Continued.
16. Fossil plants from Kukak Bay [Alaska].
 Harriman Alaska Expedition, vol. 4, pp. 149-162, 12 pls., 1904.
17. Fossil floras of the Yukon.
18. Fossil plants of the Judith River beds.

Knox (Newton Booth).
1. Dredging and valuing dredging-ground in Oroville, California.
 Contains observations on the occurrence of gold in placer deposits.

Koenig (George A.).
1. The crystallization of mohawkite, domeykite, and other similar arsenides.
2. On the new species melanochalcite and keweenawite, with notes on some other
 known species.
 Describes occurrence and chemical characters of the material.

Kofoid (C. A.).
1. The plankton of the Illinois River, 1894-1899, with introductory notes upon the
 hydrography of the Illinois River and its basin. Part I. Quantitative investiga­
 tions and general results.
 Includes a brief account of geologic and hydrographic features of the Illinois River basin.

Kolderup (Carl Fred.).
1. Guldforekomsterne i Alaska og tilgrænsende strøg. [The occurrence of gold in
 Alaska and adjacent regions.]
2. Nordhavets bund og den gamle landbro mellem Island og Grønland. [The bottom
 of the Arctic Ocean and the old bridge between Iceland and Greenland.]
3. De vulkanske udbrud i Vestindien. [The volcanic eruption in the West Indies.]
 Describes eruptions of La Soufriere in St. Vincent and Mont Pelé in Martinique.
4. The rock name anorthosyte.
 Am. Geol., vol. 31, pp. 392-398, 1903.

Kraus (Edward H.).
1. A new exposure of serpentine at Syracuse, N. Y.
 Describes occurrence, character, and relations to other dike exposures.
2. The occurrence of celestite near Syracuse, N. Y., and its relation to the vermicular
 limestones of the Salina epoch.
3. Some interesting mineral occurrences in the Salina epoch.
 Describes occurrence of hematite and celestite.
4. Occurrence and distribution of celestite-bearing rocks.
 Describes the occurrence and character of celestite-bearing rocks, particularly on Put-in-Bay
 Island, Lake Erie.
5. Celestite-bearing rocks.
 Am. Geol., vol. 35, p. 130, 1905.
 A brief note on the occurrence of celestite and the origin of certain limestones and dolomites.
Kraus (Edward H.)—Continued.

Kraus (E. H.) and Reitinger (J.).
 Describes the chemical and crystallographic characters of the material.

Krebs (Wilhelm).
1. Flutschwankungen und die vulkanischen Ereignisse in Mittelamerika.
 Globus, Bd. 84, pp. 72-74, 1903.
 Discusses connection between high tides in the Pacific Ocean and the volcanic activity in Central America in 1902.

Kroustchoff (K. de).
1. Note sur une roche basaltique de la Sierra Verde [Mexico].

Krusch (P.).
 Describes occurrence of copper-ore bodies.

Kümmler (Henry B.).
 Describes the composition of Portland cement, and the character and occurrence of the lower Paleozoic rocks from which the materials are derived. Includes detailed descriptions of localities.

2. The mining industry. [New Jersey.]
 Contains statistics and notes on iron, zinc, and copper.

3. The mining industry [of New Jersey].
 Contains notes on the occurrence of iron, zinc, and copper ores.

4. Administrative report [of the State geologist of New Jersey].
 Reviews the work of the New Jersey Geological Survey during the year ending October 31, 1902.

5. The iron and zinc mines [New Jersey].
 Describes the occurrence of the ores and the mining operations.

6. A summary of the work of the Geological Survey of New Jersey, with a subject index to its reports.
 N. J. Geol. Surv., Summary and Index to Repts., 27 pp., 1903.

7. Administrative report of the State geologist.
 Outlines the work of the New Jersey Geological Survey for the year ended October 31, 1903.

8. Administrative report [of the State geologist of New Jersey].

9. A report upon some molding sands of New Jersey.
 Describes characters, composition, distribution, and geologic relations.

10. Well records [New Jersey].
 Gives records of strata passed through in borings.
Kümmerl (Henry B.) and Knapp (George N.).
1. The stratigraphy of the New Jersey clays.
 N. J. Geol. Surv., vol. 6, pp. 117-209, 10 pls., 1904.
 Describes the occurrence and geologic relations of clays of Pleistocene, Tertiary, Cretaceous, and older systems of New Jersey.

Kümmerl (Henry B.) and Weller (Stuart).
1. Paleozoic limestones of Kittatiny Valley, New Jersey.
 Describes the lithologic and faunal characters of the subdivisions of the Cambrian and Ordovician series and the structure of the region.

 2. The rocks of the Green Pond Mountain region.
 Describes geologic occurrence and history and geographic distribution of the formations of this area, and gives lists of fossils determined.

Kunz (George F.).
1. Des progrès de la production des pierres précieuses aux États-Unis.

 2. Precious stones in the United States in 1901.
 Eng. & Mg. Jour., vol. 73, p. 38, 1902.

 3. Composition of tourmaline.
 Eng. & Mg. Jour., vol. 73, pp. 482-483, 1902.

 4. Gems and precious stones of Mexico.
 Describes occurrence, properties, etc.

 5. Californite (vesuvianite), a new ornamental stone.
 Describes occurrence, characters, and composition.

 6. Native bismuth and bismite from Pala, California.

 7. On a new lilac-colored transparent spodumene.
 Describes occurrence and characters.

 8. Gem minerals of southern California.
 Describes the occurrence and characters of some gem minerals recently discovered.

 9. Clackamas meteoric iron.
 Describes the occurrence and characters of a meteoric mass recently discovered.

10. The exhibit of the U. S. Geological Survey radium collection shown at the St. Louis Exposition.
 Includes brief notes on the Cañon Diablo meteorite.

Lacroix (A.).
1. Les roches volcaniques de la Martinique.

2. Sur les cendres des éruptions de la Montagne Pelée de 1851 et de 1902.
 Describes characters of volcanic ashes ejected from Mont Pelé.

3. Les roches volcaniques de la Martinique.
 Describes characters of volcanic material from Martinique.
Lacroix (A.)—Continued.

 Describes observations upon Mont Pelé and the surrounding country after the eruptions.

5. Sur les roches rejetées par l’éruption actuelle de la Montagne Pelée.
 Discusses the character of rocks ejected by Mont Pelé.

 Discusses the composition of rocks ejected by Mont Pelé.

7. Nouvelles observations sur les éruptions volcaniques de la Martinique.
 Records observations upon the effects of the volcanic eruptions in Martinique.

8. Sur l’état actuel du volcan de la Montagne, Pelée, à la Martinique.
 Gives observations upon conditions prevailing at the summit of Mont Pelé at the time of the writer’s visit.

9. État actuel du volcan de la Martinique.
 Gives observations made during an ascent of Mont Pelé by the writer on November 8, 1902.

10. Quelques observations minéralogiques faites sur les produits de l’incendie de Saint-Pierre (Martinique).
 Describes effects of the configuration at Saint Pierre upon the andesites used in buildings.

11. Nouvelles observations sur les éruptions volcaniques de la Martinique.
 Describes observations upon volcanic phenomena of Mont Pelé during November and December of 1902.

12. Les éruptions des nuages denses de la Montagne Pelée.
 Describes eruptive phenomena of Mount Pelé.

13. L’éruption de la Montagne Pelée en janvier, 1903.
 Describes an eruption of Mount Pelé that took place in January of 1903.

 Describes the volcanic activity of Soufrière in Guadeloupe.

 Describes observations upon the volcano Soufrière in the island of St. Vincent.

 Discusses volcanic phenomena observed on the island of Martinique.

17. La cordiérite dans les produits éruptifs de la Montagne Pelée et de la Soufrière de St Vincent.
 Describes the composition and mode of formation of some eruptive products of Mont Pelé and the Soufrière of St. Vincent.

18. Les enclaves basiques des volcans de la Martinique et de Saint Vincent.
 Discusses the composition of some eruptive products of Mont Pelé (1902) and of the Soufrière of St. Vincent.

 Describes observations upon volcanic phenomena in the island of St. Vincent.
Lacroix (A.)—Continued.

20. La Montagne Pelée et ses éruptions.
Paris, Masson et Cie., 1904. xxii, 662 pp., 30 pls. and 238 figs., 4to.
Gives a full account of the volcanic phenomena connected with the eruptions of La Montagne Pelée in 1902.

Lacroix (A.), Rollet de l'Isle, and Giraud (J.).

1. Sur l'éruption de la Martinique.
Gives a general account of the eruptions of Mont Pelé, with observations upon various volcanic phenomena, topographic changes, and the character of the ejectaments.

Laflamme (J. C. K.).

1. Modifications remarquables causées à l'embouchure de la Rivière Ste-Anne par l'eboulement de St-Alban.
2. Eboulement à Saint-Luc-de-Vincennes, Rivière Champlain, le 21 Septembre, 1895.
3. Geological exploration of Anticosti [Canada].
Describes the author's observations upon the island.

La Forge (Laurence).

1. Water resources of central and southwestern Highlands of New Jersey.
La Forge (Laurence), Crosby (W. O.) and.

1. Notes on the wells, springs, and general water resources of Massachusetts.
See Crosby (W. O.) and La Forge (Laurence), 1.

Laguerenne (Teodoro L.).

1. Estado de Tabasco [Mexico].
Describes topographic and geologic features and mineral deposits of this State.

Laird (George A.).

1. The gold mines of the San Pedro district, Cerro de San Pedro, State of San Luis Potosi, Mexico.
Describes the general geology, the character and occurrence of the ore deposits in the different mines and openings, and the mining methods and production.

Lakes (Arthur).

1. The American Nettie [Colorado].
Describes the geology of the region and the occurrence of ores in cave deposits.
2. Cripple Creek [Colorado].
Describes volcanic rocks and phenomena of the region.
3. The Curtis coal mine [Colorado].
Brief description of occurrence and character of coal near Colorado Springs
4. Cave ore deposits [Colorado].
Describes character and occurrence of ore bodies in the San Juan region.
5. The Cerrillos anthracite mines [New Mexico].
Describes character and occurrence of coal in this region.
6. A new coal field [New Mexico].
Describes the geology of the region and the occurrence of coal.
7. The turquoise mines [New Mexico].

8. Change of ore bodies with change of country rock.
 Discusses some phenomena accompanying ore deposition.

 Contains notes on the general geology of the region.

10. Oil fields of California.
 Describes the general geology of southern California and the occurrence of oil.

 Describes general geology and occurrence of oil in Colorado.

 Describes the general characters and occurrence of various building stones.

 Describes occurrence and character of building stones from sedimentary strata.

 Describes the occurrence of oil in this region.

15. The geology of the oil fields of Colorado.
 Describes the stratigraphy and geologic structure of the oil fields and the occurrences of oil.

 Contains notes on the occurrence of oil.

17. Oil Springs of Rio Blanco County, Colorado.
 Describes the geologic structure and occurrence of oil.

18. Some Idaho mining districts.
 Contains notes on the geology of the State and the character and occurrence of ore bodies.

19. The geological occurrence of oil in Colorado.

20. The Buckhorn mine and the San Luis Park, Colorado. Peculiar formations which contain some ores and present a striking appearance.

21. Oil in Colorado, the geology of the deposits, and the various horizons in which signs of oil have been found.

22. A lesson on faults. Sketch of the Aspen mining region, Colorado, in which the effects of faulting in the past, and still going on, are shown.

23. The coal, graphite, and oil fields of Raton, New Mexico. The location and geologic character. The coal mines.

 Describes the general geology of the region.
25. Geology along the Animas River, with descriptions of coal and metal mines along its course, including a sketch of the Silver Lake mine [Colorado].
 Describes the character and occurrence of the coal and associated strata.

26. Natural gas in Colorado, a description of some of its occurrences and the conditions which point to the probability of its existence.

27. Prospecting for oil in the region of the cliff dwellers of southeastern Colorado.
 Describes the general geology and structure of the region.

 Gives a summary of R. C. Hill's description of the region.

30. Glacial placer beds on the flanks of the Mosquito Range, South Park, Colorado.

31. Prospecting for coal in the western States—points of resemblance and points of difference between the western and eastern coal fields.

32. The prairie region of northeastern Colorado. A description of some interesting geological occurrences near Sterling.
 Describes the Tertiary strata of the region.

33. Faults in metal mines. The different types and their various manifestations, their effects upon ore deposition.

34. Volcanoes. The manner of their eruption, their effect upon the deposition of minerals.

35. South Park, Colorado. A description of its geology and economic resources in gold, silver, lead, coal, and oil.
 Describes the general geology of the region.

 Describes the Cretaceous and Tertiary strata of the region.

37. Great Salt Lake basin. A description of the terraces which show the shores of the ancient lake when it was much larger than now.

38. Sketching the characteristic features of rocks.

39. Aguilar coal and oil district. A description of the geology, the thickness and quality of the coal veins, and the indications of oil.

40. The soils of Colorado in relation to their geological origin and surroundings, and their availability for irrigation.
Lakes (Arthur)—Continued.
41. The La Plata Mountains. Observations on their formations and the influence of the different igneous rocks upon mineralization.

42. Recent earth movements. An account of some movements in the Rocky Mountains as shown by effects on streams and mines.

43. Summit County placers of Colorado; a description of the great hydraulic works now nearing completion near Breckenridge.
Describes the general geology and the occurrence of placer gold.

44. Redcliff ore deposits. Not unlike in some respects to the ore deposits of the Mancos contact and the American Nettie at Ouray [Colorado].
Describes the occurrence of the gold ore deposits.

45. The Bellevue mining district of Idaho; the geological peculiarities of the veins as shown in the Minnie Moore and the Queen of the Hills mines.

46. Secondary enrichment of ore deposits—its causes and effects—the conclusions of various authorities.

47. The Silver Lake mine, near Silverton, San Juan County, Colo. An instance of successful operation of a large mine at high altitude.
Includes notes on the occurrence and geologic relations of the silver-lead ores.

48. The present oil situation in Colorado; a review of the histories of the several regions, and the discoveries which have been made.
Includes an account of the geology of the Boulder oil field.

49. Geology and economics along the line of the new Moffat railway, to be built from Denver to Salt Lake City.
Gives observations on the geology of the region.

Describes briefly the general geology and occurrence of the silver-lead ores.

51. A trip to Chihuahua, old Mexico. A description of the Descubidoro mine, with some impressions of the country, the people, and the mines.
Contains observations on the geology and the occurrence of the silver and gold ores.

52. Zinc deposits: their geology and origin as shown in Wisconsin, Arkansas, Missouri, and Tennessee.

53. Peculiar mines and ore deposits of the Rosita and Silver Cliff mining district of Colorado. Ore deposits in a volcanic throat.

54. Santa Eulalia mines. A trip to the ancient and very rich silver-lead mines in the Santa Eulalia Mountains, near Chihuahua, Mexico.
Describes the general geology and the occurrence of the silver-lead ore deposits.

55. A remarkable occurrence in the depths of a fissure vein.
Describes the occurrence of a carbonized tree in a fissure vein of quartz.
Lakes (Arthur)—Continued.

56. Geologizing by the seaside. Illustrations of geological phenomena related to mining as shown in the sea cliffs and caves at La Jolla, near San Diego, Cal.
 Describes observations upon the geology and geologic phenomena of the region.

57. The sea and mining. Illustrations shown at seacoast of manner of making and destruction of rocks by action of shellfish and erosion.
 Describes erosion and sedimentation processes and the destructive action of boring seashells.

58. Mud volcanoes. Present-day illustrations of mudflows and formations resembling some older ones in which mineral deposits have been found.

59. Bonanzas and pockets of ore. Some of the causes of their deposition and origin as illustrated in various mines.
 Describes the formation of ore deposits.

60. Coal and asphalt deposits along the Moffat railway. Geological conditions shown which promise valuable deposits at workable depths.
 Describes the general geology and the occurrence and character of coal and asphalt deposits.

61. Gypsum deposits in Colorado.
 U. S. Geol. Surv., Bull. no. 223, pp. 86-88, 2 figs., 1904.
 Describes character, occurrence, and economic development of the gypsum deposits of Colorado.

62. The coal fields of Colorado.
 Describes the formation of the coal, the location, character, and geologic age of the coal fields and the character and occurrence of the coals.

63. Field notes concerning ore shoots and the influence of downhill pressure on the outcrop of veins.

64. Grand Encampment copper district of Wyoming. Some notes on the geology, and a description of some of the development work.

65. The Yampa coal fields. A description of the anthracite, bituminous, and lignite field traversed by the Moffatt Road in Routt County, Colorado.
 Describes the occurrence, character, and geologic relations of the coal beds.

66. The Book Cliff coal mines. Coal seams near Grand Junction, Colorado, which exhibit interesting peculiarities in their locations and formations.
 Describes the occurrence, character, geologic relations, and economic development of these coal beds.

67. A trip through Arizona. Interesting desert scenery and the relation it bears to the geology and mining interests of the region.
 Gives observations on the physiography and geology of parts of Arizona.

68. Tonopah mining camp. Some notes on its location, the geological formations of the region, and the mines in operation.

69. Mines and scenery. A typical Nevada mining region situated in the bottom of an ancient dried up lake bed.
 Gives observations upon the physiography and geology of a part of western Nevada,
Lakes (Arthur)—Continued.
70. Schists and slates as ore carriers.
71. Ore in anticlinals, as at Bendigo, Australia, and Tombstone, Arizona.
72. The Lone Mountain district, near Tonopah, Nevada.
 Discusses physiographic and geologic features of the region and the occurrence of silver-ore deposits.
73. Some of the ore deposits of Colorado.
 Describes the character and occurrence of some ore deposits.
74. Ore shoots and veins that do not come to the surface.
 Describes occurrences of ore bodies.
75. Organic remains in ore deposits.
 Mg. Rep., vol. 50, pp. 113-114, 1904.
76. Ore deposition in the cement of rocks.
77. Volcanic craters and ore deposits.
78. Shear zones or zones of impregnation vs. true quartz fissure veins.
 Discusses the character of veins containing ore deposits.
79. The Rocky Mountain coal fields.
 Mg. Rep., vol. 51, pp. 5-7, 2 figs., 1905.
80. The coal fields of Colorado.
 Mg. Rep., vol. 51, pp. 73-74, 3 figs., 1905.
81. The anthracite situation in Colorado.
82. Coal along the eastern foothills.
83. The geology and coal deposits of the Spanish Peaks district.
84. The La Plata or southwestern Colorado coal field.
85. Coals of the southern Colorado or the Walsenburg and Trinidad region.
86. Disturbances and other peculiarities of the northeastern coal field of Colorado between Ralston Creek and Boulder.
87. The Grand River coal field [Colorado].
88. The Yampa coal field of Routt County, Colorado.
89. The South Park coal field [Colorado].
90. Geology of the hot springs of Colorado and speculations as to their origin and heat.
91. Sketch of the economic resources of the foothills of the front range of Colorado.

Bull. 301—06—14
Lakes (Arthur)—Continued.

92. Faults with special reference to coal and metal mining.
Mg. Rep., vol. 52, pp. 6-7, 4 figs., 1905.

93. Fault phenomena. Signs of faulting below ground.

94. Fault phenomena. Practical consideration of faults in mining.

95. Examples of Colorado faults, both old and recent. Some practical suggestions.

96. Peat and its relation to coal.
Mg. Rep., vol. 52, pp. 208-209, 4 figs., 1905.

97. The hot and mineral springs of Routt County and Middle Park, Colorado.

98. Oil-impregnated volcanic dikes in Colorado.

99. The Occidental and other coal mines of Huerfano County, Colorado. A description of the geology and development of the region.

100. Flints and other hard rocks as material for tube mills.
Contains notes on the occurrence and origin of flint nodules.

101. Organic remains in ore deposits.

102. Igneous rocks in ore deposition.

103. Geology of the hot springs of Colorado and speculations as to their origin and heat.

104. Geology of western ore deposits. (New edition entirely rewritten and enlarged, with 300 illustrations.)

Lamb (George F.).
1. Field geology in the Ohio State University.
Contains brief geological notes upon various Paleozoic formations in Ohio.

Lambe (Lawrence M.).
1. Notes on a turtle from the Cretaceous rocks of Alberta [Canada].

3. New genera and species from the Belly River series (Mid-Cretaceous).

4. Red Deer River, Alberta [Canada].
Discusses the author's field work at this locality.

5. On Trionyx foveatus, Leidy, and Trionyx vagans, Cope, from the Cretaceous rocks of Alberta [Canada].
Describes characters and occurrence of these fossil Chelonia.

6. The lower jaw of Dryptosaurus (Cope).
Ottawa Nat., vol. 17, pp. 138-139, 3 pls., 1908.
FOR THE YEARS 1901-1905, INCLUSIVE. 211

Lambe (Lawrence M.)—Continued.

7. Stegoceras and Stereocephalus.
Science, new ser., vol. 18, p. 60, 1903.

8. On Dryptosaurus incrassatus (Cope), from the Edmonton series of the Northwest Territory.

9. The grasping power of the manus of Ornithomimus altus, Lambe.

Ottawa Nat., vol. 18, pp. 81-84, 2 pls., 1904.

11. On the squamoso-parietal crest of the horned dinosaurs Centrosaurus apertus and Monoclonius canadensis from the Cretaceous of Alberta.

12. The progress of vertebrate paleontology in Canada.
Gives a review of work upon vertebrate fossils discovered in Canada, with a list of Canadian species occurring in each of the systems of the geological scale, and a list of papers containing references to these species.

13. Vertebrate paleontology.
Reviews the work upon vertebrate paleontology during 1903 of the Geological Survey of Canada.

15. Vertebrate paleontology.
Reviews of the work on vertebrate paleontology in 1904 of the Geological Survey of Canada.

17. A new species of Hyracodon (H. priscidens) from the Oligocene of the Cypress hills, Assiniboia.

Lambert (Avery E.).
1. Description of Dalmanites lunatus.

2. A trilobite (Dalmanites lunatus) from Littleton, N. H., with notes on other fossils from the same locality.

Landes (Henry).
1. An outline of the geology of Washington.
Discusses the topography and geologic formations found in the State of Washington.

2. The nonmetaliferous resources of Washington, except coal.

3. The coal deposits of Washington.
Discusses the geologic position and distribution of the coals of the State of Washington.

5. The clay deposits of Washington.
Landes (Henry)—Continued.
6. Field notes on Mt. Rainier [Washington].
 Gives notes on the general geology and the geologic structure of Mt. Rainier.

Landes (Henry) and Ruddy (C. A.).
 Describes character, geographic distribution, and geologic relations of the coal beds of Wash-
 ington, the occurrence, thickness, and value of the coal seams, and constitution and fuel
 value of the coals.

Landes (Henry), Thyng (William S.), Lyon (D. A.) and Roberts (Milnor).
1. The metalliferous resources of Washington, except iron.

Lane (Alfred C.).
1. Michigan limestones and their uses.
 Describes the occurrence, character, and uses of the limestones derived from the several ge-
 ologic horizons in Michigan.
2. The pre-Glacial surface deposits of Lower Michigan.
 Describes briefly the drainage systems and the character of the bed-rock material.
3. Annual report of the State geologist [Michigan].
 Summarizes the geological work done in Michigan.
4. Suggestion from the State geologist.
 Proposes to substitute the term Sagina\ for Jackson as applied to coal beds in Michigan, and
 Antrim for St. Clair as applied to Upper Devonian shales of Thunder Bay and Grand Traverse
 Bay regions.
5. The economic geology of Michigan in its relation to the business world.

6. Asphalt in Delta County, Michigan.
 Eng. & Mg. Jour., vol. 73, p. 50, 1902.
 Gives a section of the Ordovician strata, and describes the character of the asphalt material.

7. Subsurface geology [Alcona County, Michigan].
 Describes the character of the Carboniferous and Devonian rocks as exhibited by the well
 records and the possible occurrence of oil and gas.

8. Economic geology [of Michigan].

9. Limestones [of Michigan].
 Describes the character, composition, and occurrence of limestones in Michigan.

10. Deep wells and prospects for oil and gas [Michigan].
 Gives notes on well records in various parts of the State.

12. Salt [Michigan].
 Contains brief notes on well records and analyses of the brines.

 Contains notes on surface and underground temperatures.
Lane (Alfred C.)—Continued.

 Describes the geologic occurrence, composition, and mining of coal in the Lower Peninsula of Michigan.

15. The northern interior coal field.
 Describes extent, geologic relations and structure of the field, the character and occurrence of the coal beds, the properties, composition, and development of the coal.

17. Queneau on size of grain in igneous rocks.

19. Report on certain lands leased for oil and gas near Cannel City, Morgan County, Kentucky.
 Lansing, 12 pp., 1902. (Private publication.)
 Gives an account of the geologic structure of the region.

 Includes notes on the occurrence of marls and clays and analyses of materials used in the manufacture of cements.

22. Studies of the grain of igneous intrusives.
 Discusses the grain of augite in a group of chemically similar diabases.

23. Porphyritic appearance of rocks.
 Discusses the origin of variation in texture of igneous rocks as the margin is approached.

 Mich. Miner, vol. 5, no. 2, pp. 16-26, 1903; reprinted as separate, 26 pp., 1903.
 Discusses the occurrence and utilization of various economic products found in Michigan.

25. Geological changes now going on.
 Discusses erosion on lake shores and changes in elevation.

27. Variation of geothermal gradient in Michigan.
 Presents data regarding underground variations of temperature.

28. The theory of copper deposition.
 Discusses the theory of copper deposition with especial reference to the copper-ore deposits of the Lake Superior region.

29. The science of raw materials.
 Discusses scope and utility of economic geology.

 Mich. Miner, vol. 6, no. 5, pp. 9-12, no. 6, pp. 9-11, 1904.
 Gives notes on the occurrence, character, and use of materials for Portland cement and cement-brick manufacture, and road making.
Lane (Alfred C.)—Continued.

 Mich. Miner, vol. 6, no. 8, pp. 9-12, no. 9, pp. 9-13, 1904. Includes record of borings and discussion of the strata passed through.

32. The rôle of possible eutectics in rock magmas.
 Jour. Geol., vol. 12, pp. 83-93, 1 fig., 1904. Discusses the quantitative classification of igneous rocks.

33. Magnetic phenomena around deep borings.

34. Our underground wealth. Michigan clays, shales, and paving materials.

35. Gold near Lake Superior.

37. The coarseness of igneous rocks and its meaning.
 Am. Geol., vol. 35, pp. 65-72, 1 pl., 1905. Discusses variation in size of grain of igneous rocks and its causes, and points out applications which may be made of the facts stated.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 114, pp. 242-247, 2 figs., 1905. Describes briefly the general geology, the underground water supplies, and the geologic horizons from which they are obtained.

39. Fifth annual report of the State geologist [Michigan].

40. Waters of the Upper Peninsula of Michigan.

41. Limestones [of Michigan].

42. Transmission of heat into the earth.

43. Grain of rock.

44. The theory of copper deposition.

45. The Tamarrack Mine cross section and the Keweenawan lodes.

46. Deep borings for oil and gas [in Michigan].

47. Comment on the "Report of the special committee on the Lake Superior region."

48. Sixth annual report of the State geologist [of Michigan], for 1904.
Langley (S. P.).
1. Powell as a man.
2. The greatest flying creature.
 Discusses flight in the Ornithostoma, introducing a paper by F. A. Lucas with the same title.

Langworthy (A. E.).
 Gives record of boring, discusses strata penetrated, and includes analyses of coal.

Lasswitz (Rudolf).
1. Die Kreide-Ammoniten von Texas. (Collectio F. Roemer.)
 Geol. und Pal. Abh. (Koken), N. F., Bd. 6, Heft 4, 40 pp., 8 pls., 1901.
 Gives systematic descriptions of Cretaceous ammonites from Texas, a graphic section of strata at Austin, and correlation tables of Cretaceous formations.

Launay (L. de).
1. [Discussion of "The origin of ore-deposits."]

Lawson (Andrew C.).
1. A feldspar-corundum rock from Plumas County, California.
 Gives chemical analysis of the feldspar.
2. The drainage features of California.
 Discusses the causes which have determined the drainage features of the Coast, Klamath, and Sierra Nevada ranges.
3. Joseph Le Conte.
 Gives a sketch of his life and work.
 Discusses the application of the terms Archaean and Algonkian, the correlation of their formations and defines the term Eparchsean interval.
5. Third annual meeting of the Cordilleran section of the Geological Society of America [Proceedings and abstracts of papers].
6. A geological section of the middle Coast ranges of California.
 Gives a table showing succession and character of geologic formations in the Coast ranges in the vicinity of the Bay of San Francisco.
7. On an orbicular gabbro from San Diego County, California.
 Discusses occurrence of corundiferous rocks, and describes the occurrence and characters of this corundum rock discovered on Spanish Peak in Plumas County, California.
9. Geological section of the middle Coast ranges of California.
 In a table gives the names of the formations and their lithologic characters and thickness.
10. The geomorphogeny of the upper Kern basin.
 Discusses the occurrence and general petrographic characters of the rocks and the glaciation and physiographic features of the region, and discusses the origin of the latter.
Lawson (Andrew C.)—Continued.
11. The orbicular gabbro at Dehesa, San Diego Co., California.
 Describes the general geology of the region, the occurrence of the orbicular gabbro and its
 petrographic characters and composition.
12. The relation of geology to the mining industry.
Lawson (Andrew C.) and Palache (Charles).
1. The Berkeley Hills [California]. A detail of Coast Range geology.
 Univ. Cal., Dept Geol., Bull., vol. 2, pp. 349-450, 8 pls., map, 1902.
 Describes the character, occurrence, and relations of the formations of the region, erosion
 intervals, faults, and the microscopic characters of the volcanic rocks.
Lawson (Publius V.).
1. Preliminary notice of the forest beds of the lower Fox [River, Wisconsin].
Lay (H. C.).
1. Recent geological phenomena in the "Telluride quadrangle" of the U. S. Geological
 Survey in Colorado.
 Presents the author’s observations on the glacial phenomena, earth movements, and under-
 ground waters of the region.
Lazo (Augustin M.) and Ordóñez (Ezequiel).
1. Las canteras de San Lorenzo Totolingo y Echagaray [México].
 Describes the character, occurrence, and geologic relations of building stone.
Leach (J. C.).
2. Annual report of the State natural gas supervisor.
Leach (W. W.).
1. Crows Nest coal fields.
 Describes the occurrence of coal seams of Cretaceous age in this area.
2. The Blairmore-Frank coal fields.
 Describes the geologic structure of the area.
Le Conte (Joseph).
1. The origin of transverse mountain valleys and some glacial phenomena in those
 of the Sierra Nevada.
 Describes the geologic history of the Sierra Nevada, the origin of certain mountain valleys,
 and the glacial phenomena in these valleys.
2. A century of geology.
4. Elements of geology: a text-book for colleges and for the general reader. Revised
 and partly rewritten by Herman Le Roy Fairchild. Fifth edition.
 New York, D. Appleton and Company, 1903. xii, 667 pp., 1002 figs.
Le Couppey de la Forest (Max).
1. Quelques grottes des Etats-unis d’Amerique.
 Spelunca, t. 35, no. 35, pp. 3 (117)-21 (135), 2 figs., 1904.
 Describes Mammoth and Colossal caves in Kentucky, Wyandotte Cave in Indiana, and Wind
 Cave and Grand Caverns in Colorado. Includes some account of the Carboniferous forma-
 tions in which the caves occur.
Ledoux (A. R.).
1. Notes on the Oregon nickel prospects.
 Describes the geological relations of the ore bodies and gives a chemical analysis of the ore.

2. The production of copper in the Boundary district, B. C.
 Describes the character and occurrence of the ores.

Lee (Harry A.).
 Denver, 1903. 310 pp., map.
 -Gives a history of precious metal mining by counties in Colorado, with notes upon the geologic occurrence, production, etc., of precious metals and other minerals.

Lee (Leslie A.).
1. The mineral resources of Maine.

Lee (Willis Thomas).
1. The Morrison formation of southwestern Colorado.
 Jour. Geol., vol. 9, pp. 343-362, 4 figs., 1901.
 Describes the character and occurrence of the Jurassic and Cretaceous strata of the region, and discusses the stratigraphic and paleontologic evidences of the age of the Morrison formation.

2. The areal geology of the Castle Rock region, Colorado.
 Am. Geol., vol. 29, pp. 96-110, 1 pl., 1902.
 Describes the occurrence and character of the sedimentary and igneous rocks and the geologic structure of the region.

3. The Morrison shales of southern Colorado and northern New Mexico.
 Jour. Geol., vol. 10, pp. 36-58, 7 figs., 1902.
 Describes the general structure of the region, gives detailed sections and discusses the age and equivalency of the shales.

 Includes sections of the strata cut by some of the canyons described.

 Jour. Geol., vol. 10, pp. 393-396, 1902.
 Gives a detailed section in the Sangre de Cristo Range and a list of the fossils collected.

6. The canyons of northeastern New Mexico.
 Jour. Geol., vol. 2, pp. 63-82, 14 figs., 1903.
 Includes sections of the strata cut by some of the canyons described and gives a general account of the formations exposed.

7. Age of the Atlantosaurus beds.

8. The underground waters of Gila Valley, Arizona.
 Includes sections of wells showing thickness and character of strata passed through.

 Includes an account of the geology and physiography of the region.

10. Note on the glacier of Mount Lyell, California.

Leffingwell (E. D. K.), Capps (S. R.) and.
1. Pleistocene geology of the Sawatch Range, near Leadville, Colo.
 See Capps (S. R.) and Leffingwell (E. D. K.), 1.
Leffmann (Henry).
1. The microscopic structure of building stones.

Leith (Charles Kenneth).
 Jour. Geol., vol. 9, pp. 79-87 and 441-458, 1901.
2. Geology of the Mesabi Iron region.
 Abstract of paper read before the Geological Society of Washington. Discusses the stratigraphic geology and the origin of the ores.
3. Pre-Cambrian summaries for 1901.
 Jour. Geol., vol. 10, pp. 891-913, 1902.
4. The Mesabi iron-bearing district of Minnesota.
 Describes geography and topography, gives a brief history of the opening and development of the district, and reviews the literature bearing on the geology of the region. Describes the lithologic character, occurrence, structure, and geologic relations of Archean, Huronian, Keweenawan, Cretaceous, and Quaternary deposits and discusses the geologic history of the region, the correlation of the formations, the distribution, character, and geologic occurrence of the iron ores, their petrographic relations to adjacent rocks and origin, and the development of the mining industry of the district.
5. Geologic work in the Lake Superior iron district during 1902.
 (Gives observations on the character and occurrence of the iron ores.
 Describes geologic features of the range and discusses the origin of the ore.
7. Summaries of pre-Cambrian literature for 1902-1903.
 Jour. Geol., vol. 12, pp. 52-62, 1903.
8. A comparison of the origin and development of the iron ores of the Mesabi and Gogebic iron ranges.
10. The Lake Superior iron region during 1903.
 Describes the geologic occurrence of the iron-ore deposits in the different districts of the Lake Superior iron region.
11. Iron ores in southern Utah.
 Describes distribution, geologic relations, and character of the iron ores and discusses their origin.
12. Lake Superior iron region in 1903.
 Mg. World, vol. 21, pp. 198-200, 3 figs., 1904.
 Includes observations on the general geology and the occurrence and character of the iron-ore deposits.
 Describes the geology of the Lake Superior iron-bearing and copper-bearing series and the occurrence, relations, and origin of the iron ores.
15. Genesis of Lake Superior iron ores.
 Econ. Geol., vol. 1, pp. 47-66, 1905.
Leith (C. K.), Van Hise (C. R.) and.
1. The Mesabi district.
 See Van Hise (C. R.), 2.

Leonard (Arthur Gray).
1. The basic rocks of northwestern Maryland and their relation to the granite.
 Am. Geol., vol. 28, pp. 135-176, 5 pls., 1901.
 Describes the geologic occurrence and relations and discusses the origin of the various facies.

2. Report of assistant State geologist [Iowa].
 Gives record of a boring at Clarinda, Iowa.

3. Geology of Wapello County [Iowa].
 Describes physiographic features, geologic structure, and occurrence and utilization of economic products.

4. Topographic features and geological formations of North Dakota.

Lerch (Otto).
1. A preliminary report upon the hills of Louisiana, north of the Vicksburg, Shreveport and Pacific Railroad.
 La. State Experiment Stations; Geol. & Agric., pt. 1, pp. 1-52, 6 figs., 2 pls. [1892].
 Describes topography, drainage, and geology of the area and discusses its economic resources.

2. A preliminary report upon the hills of Louisiana, south of the Vicksburg, Shreveport and Pacific Railroad, to Alexandria, Louisiana.
 La. State Experiment Stations; Geol. & Agric., pt. 2, pp. 53-158, 26 figs., 2 pls. (sections) [1893].
 Describes topography, drainage, and geology of the area and discusses its economic resources.

LeRoy (Osmond Edgar).
1. Geology of Rigan Mountain, Canada.
 Describes the topographic and general geologic features of the region and the microscopic characters of the igneous rocks.

LeRoy (Osmond E.), Adams (F. D.) and.
1. The artesian and other deep wells on the Island of Montreal.
 See Adams (F. D.) and LeRoy (O. E.), 1.

Letson (Elizabeth J.).
1. Post-Pliocene fossils of the Niagara River gravels.

Leverett (Frank).
 Ill. Bd. of World's Fair Commissioners, Rept., pp. 77-92, 1 pl., 1895.

2. Old channels of the Mississippi in southeastern Iowa.
 Describes the extent and history of the glaciation, the old drainage of the upper Mississippi, and the changes produced by the glaciation.

 Describes the physiography, glacial deposits and lake history, and the occurrence of marl, clay, and water powers.

4. Glacial formations and drainage features of the Erie and Ohio basins.
 Describes physical features, present and former drainage, character, and occurrence of drift deposits and the glacial history of the region.

Leverett (Frank)—Continued.

7. The loess and its distribution.
 Am. Geol., vol. 33, pp. 56-57, 1904.

 Discusses the physical features of the southern peninsula, the possible extension of the
 Keewatin ice field over Michigan, evidences in Michigan of successive advances of the Lab­
 rador ice field, the location of the ice margin, structure of the drift in Michigan, Glacial
 lakes, and origin of the Great Lakes, and gives a bibliography.

10. Glacial gravels [of the Kittanning quadrangle, Pennsylvania].

 Gives a brief account of the geology, and describes the water-producing qualities of the
 various geologic formations of the State, and localities favorable for artesian wells.

 Describes briefly the geologic column of Indiana, the principal water-bearing horizons, and
 the mineral waters.

 Describes the underground water supplies with reference to the geologic horizons.

Levison (W. G.).
1. Notes on fluorescent gems.
 Am. Geol., vol. 33, pp. 57-58, 1904.

Lewis (J. V.), Pratt (J. H.) and Liddell (Charles A.), Parsons (H. F.) and.
 See Pratt (J. H.) and Lewis (J. V.), 1.

L'Hame (Wm. E.).
1. Thunder Mountain, Idaho.
 Describes briefly occurrence of gold in the region.

2. Thunder Mountain district [Idaho]. A description of the peculiarities of geology
 and situation of the various regions comprised in the district.
 Describes the general geology and the occurrence of gold ore deposits.

Lindgren (Waldemar).
1. Metasomatic processes in fissure veins.
 ser., vol. 11, pp. 253-244, 1901.
 Discusses the general features of the changes in rocks contiguous to ore-bearing fissures, and
 the minerals developed by metasomatic processes in fissure veins. Gives an account of
 fissure veins in various mining regions classified according to metasomatic processes.

2. Trias in northeastern Oregon.
 Describes briefly character and distribution.
Lindgren (Waldemar)—Continued.

3. Rare minerals in gold quartz veins of eastern Oregon.
 Gives a chemical analysis of roscoelite and notes on other minerals.

4. The gold belt of the Blue Mountains of Oregon.
 Describes topography and drainage, general geologic features, the character and occurrence
 of Archean, Paleozoic, Triassic, Neocene, and Quaternary strata and intrusive rocks, the
 character, occurrence, and general geologic relations of the ore deposits and minerals, the
 quartz and placer mining, and production of precious metals in this area.

5. The character and genesis of certain contact deposits.
 Describes the character, origin, and geographic distribution of some ore deposits, discusses
 contact metamorphism and its cause, and gives a genetic classification.

6. The gold production of North America, its geological derivation and probable
 future.

7. Tests for gold and silver in shales from western Kansas.
 Describes the author’s observations in this region.

8. Tests for gold and silver in shales from western Kansas.
 Gives a brief description of the topography and geology, and describes tests made to deter­
 mine presence of gold and silver in certain shales in western Kansas.

9. A deposit of titanic iron ore from Wyoming.

10. Neocene rivers of the Sierra Nevada.
 U. S. Geol. Surv., Bull. no. 213, pp. 64-65, 1903.
 Gives a brief outline of work upon the Neocene gravels of the Sierra Nevada.

 U. S. Geol. Surv., Bull. no. 213, pp. 60-70, 1903.
 Describes briefly the geography and general geology of the region, and the character and dis­
 tribution of the ore deposits.

12. Copper deposits at Clifton, Ariz.
 Describes topographic features and geologic structure, the character and occurrence of copper
 ore deposits, and occurrences of gold-bearing gravels.

13. The water resources of Molokai, Hawaiian Islands.
 Includes observations on the geology of the island.

14. The gold production of North America, its geological derivation and probable
 future.
 Discusses the occurrence and production of gold.

15. The copper deposits of Clifton, Arizona.
 Describes the geological structure and the character and occurrence of the deposits of copper
 ore.

16. The geological features of the gold production of North America.
 Discusses the occurrence and geologic relations of gold-bearing veins and deposits, and pro­
 duction of gold in general and in the several gold-producing States, Alaska, Canada, and
 Mexico.

17. [Classification of ore deposits.]

Lindgren (Waldemar)—Continued.

20. Gypsum deposits in Oregon.
 Describes character, occurrence, economic development, and geologic relations of gypsum deposits in eastern Oregon.

 Describes topography and drainage, character, occurrence, and geologic relations of igneous and sedimentary rocks of Quaternary, Tertiary, and pre-Tertiary age, the geologic structure and history of the area, the character and occurrence of gold, silver, copper, and lead ore deposits, and the mining developments.

22. The genesis of the copper deposits of Clifton-Morenci, Arizona.
 Describes the general geology, and the character and occurrence of copper-ore deposits, and discusses their origin.

23. Chemistry of copper deposits.
 Eng. & Mg. Jour., vol. 73, p. 189, 1905.

24. The occurrence of stibnite at Steamboat Springs, Nevada.

25. The production of gold in the United States in 1904.

27. Ore deposition and deep mining.
 Econ. Geol., vol. 1, pp. 34-46, 1905.
 Discusses the occurrence of various kinds of ore deposits, and the relations of depth to the richness of the deposits.

28. Clifton folio, Arizona.
 Describes the geography and topography, the geologic structure and history of the area, the occurrence, character, and relations of pre-Cambrian, Cambrian, Ordovician, Devonian, Carboniferous, Cretaceous, and Quaternary formations and intrusive rocks, and the mineral resources, chiefly copper.

29. The copper deposits of the Clifton-Morenci district, Arizona.
 Gives a full account of the geology, petrology, character, occurrence, relations, and origin of the copper-ore deposits of this district.

30. The great fault of the Bitterroot Mountains.

31. The subterranean gases of Cripple Creek [Colorado].

Lindgren (Waldemar) and Drake (N. F.).

1. Nampa folio, Idaho-Oregon.
 Describes the geography, the geologic history, the occurrence and character of Tertiary strata and igneous rocks and Quaternary deposits, and the economic resources, chiefly placer gold.

2. Silver City folio, Idaho.
 Describes geography, topography, and drainage, the general geologic history and structure, the character and occurrence of igneous rocks and sedimentary deposits of Tertiary and Quaternary age, and the economic resources, chiefly precious metals.
Lindgren (Waldemar) and Hillebrand (W. F.).
 Describes the occurrence, optical and other characters, and chemical composition of some minerals from copper deposits in Arizona.

Lindgren (Waldemar) and Ransome (Frederick Leslie).
 U. S. Geol. Surv., Bull. no. 254, 36 pp., 1904.
 Describes the general geology and the occurrence and character of the gold-ore deposits.

Lines (E. F.).
1. Well records.
 U. S. Geol. Surv., Bull. no. 264, pp. 41-103, 1905.
 Gives a summary of well drilling reported in 1904.

Lloyd (John Uri).
1. When did the American mammoth and mastodon become extinct?

Lobel (Loicq de).
1. Relation du voyage au Klondyke.

Lobley (J. Logan).
1. Volcanic action and the West Indian eruptions of 1902.
 Describes volcanic phenomena in general and more particularly those of the West Indian eruptions of 1902, and discusses geologic and geographic conditions, and the causes and results of volcanic action.

Logan (W. N.).
1. Economic products of St. Lawrence County [New York].
 Describes the occurrence and production of economic products of this area.

2. Geology of Oktibbeha County [Mississippi].
 Describes drainage, topography, and physiography, the character, occurrence, and relations of the Cretaceous, Tertiary, and Quaternary formations, and the economic resources of the county.

Logan (W. N.) and Perkins (W. R.).
1. The underground waters of Mississippi; a preliminary report.

Loomis (Frederic B.).
1. Die Anatomic und die Verwandtschaft der Ganoid- und Knochen-fische aus der Kreide-formation von Kansas, U. S. A.
 Discusses anatomy and relationships of the ganoid and teleost fishes from the Cretaceous strata of Kansas and gives systematic descriptions of a considerable number of forms.

2. On Jurassic stratigraphy in southeastern Wyoming.
 Describes the geologic structure of the region and the character of the Jurassic and Cretaceous sediment of the region.
Loomis (Frederic B.)—Continued.

3. On Jurassic stratigraphy on the west side of the Black Hills—second paper on American Jurassic stratigraphy.
 Describes the general characters of the Jurassic strata and gives detailed sections.

4. The dwarf fauna of the pyrite layer at the horizon of the Tully limestone in western New York.
 N. Y. State Mus., Bull. 69, pp. 892-920, 5 pls., 1903.
 Describes character and occurrence of the fauna, discusses the causes of its dwarfing, and
gives descriptions and figures of the species determined.

5. Two new river reptiles from the Titanotherium beds.

Loomis (F. B.), Emerson (B. K.) and.

1. On Stegomus longipes, a new reptile from the Triassic sandstones of the Connecticut Valley.
 See Emerson (B. K.) and Loomis (F. B.), 1.

Louderback (George Davis).

1. General geological features of Nevada and their relationships to the prevailing economic deposits.

2. Some gypsum deposits of northwestern Nevada.
 Describes occurrence and character.

3. A structural section of a Basin range.
 Abstract: Jour. Geol., vol. 11, pp. 102-103, 1903.
 Describes the geologic structure and stratigraphic features of Humboldt Lake Range.

4. Basin range structure of the Humboldt region [Nevada].
 Describes the character, occurrence, and general relations of sedimentary and igneous rocks
of the Basin ranges of western Nevada, particularly those of the Humboldt Lake mountains,
and their geologic structure, discusses the mode of their formation and the evidences
thereof, and gives an outline of the geologic history of the region.

5. Gypsum deposits in Nevada.
 U. S. Geol. Surv., Bull. no. 223, pp. 112-118, 1 pl., 1 fig., 1904.
 Describes character, occurrence, economic development, and geologic relations of gypsum
deposits in northwestern Nevada.

6. The Mesozoic of southwestern Oregon.
 Jour. Geol., vol. 13, pp. 514-555, 1 fig., 1905.
 Describes the character, occurrence, and relations of sedimentary rocks of Cretaceous age and
of igneous and sedimentary rocks, the areal distribution of the formations, and their corre-
lation with the standard California type formations.

Loughlin (Gerald Francis).

1. The clays and clay industries of Connecticut.
 Describes the geographic distribution, origin, geological history, composition, and character
of Connecticut clays, and the clay-working industries of the State.

Loughlin (G. F.), Crosby (W. O.) and.

1. A descriptive catalogue of the building stones of Boston and vicinity.
 See Crosby (W. O.) and Loughlin (G. F.), 1.
FOR THE YEARS 1901-1905, INCLUSIVE. 225

Lovewell (J. T.).
1. Gold in Kansas shales.
 Describes the stratigraphy and discusses the evidence for the presence of gold in these shales.

2. Gold in Kansas.
 Describes experiments to determine amount of gold in Kansas shales.

Low (A. P.).
1. Report on an exploration of part of the south shore of Hudson Strait and of Niagara Bay [Canada].
 Describes the physiography and crystalline rocks of the region.

2. Report on an exploration of the east coast of Hudson Bay from Cape Wolstenholme to the south end of James Bay.
 Gives observations on the general geology, the occurrence and character of igneous, Archean, and Cambrian rocks, and economic resources of the area explored. Includes a list of glacial stria.

3. Report on the geology and physical character of the Nastapoka Islands, Hudson Bay.
 Describes the general geology of the Nastapoka Islands, and gives detailed descriptions of the physical features and the geologic formation of each of the larger islands of the group.

4. The government expedition to Hudson Bay and northward by the S. S. Neptune, 1903-04.
 Contains observations on the geology of the region visited.

5. The field work of a physiography class on a glacial problem.

Lowry (J. D.).
1. Mining in Lower California.
 Contains notes on the occurrence of gold, silver, and copper ores.

Lucas (Anthony F.).
1. The great oil well near Beaumont, Texas.
 Describes method used in obtaining control of the well, the character of the oil, and gives section passed through in boring.

Lucas (Frederic A.).
1. A new rhinoceros, Trigonias osborni, from the Miocene of South Dakota.

3. The pelvic girdle of Zeuglodon, Basilosaurus cetoides (Owen), with notes on other portions of the skeleton.
 Includes section of the Zeuglodon beds.

5. A flightless auk, Mancalla californiensis, from the Miocene of California.
 Bull. 301—06——15
Lucas (Frederic A.)—Continued.

6. Vertebrates from the Trias of Arizona.
 Describes briefly material recently collected.

7. Animals of the past.

8. The restoration of extinct animals.
 Smithsonian Inst., Ann. Rept. for 1900, pp. 479-492, 8 pls., 2 figs., 1901.

9. The dinosaurs or terrible lizards.
 Reprinted from "Animals of the past."

10. The greatest flying creature, the pterodactyl Ornithostoma.

11. Paleontological notes—the generic name Omosaurus—a new generic name for
 Stegosaurus marshi.
 Proposes the name Dacentrurus for Omosaurus Owen, preoccupied, and Hoplitosaurus for the
 author's previously described Stegosaurus marshi.

 Gives notes on the occurrence, characters, and synonymy of these fossils.

13. Constructing an extinct monster from fossil remains [Triceratops].

15. Notes on the osteology and relationship of the fossil birds of the genera Hesper-
 ornis, Hargeria, Baptnornis, and Diatryma.

17. A new plesiosaur.

18. The greatest flying creature, the great pterodactyl Ornithostoma.
 Discusses flight in birds and in the Ornithostoma as indicated by its anatomy.

19. A new batrachian and a new reptile from the Trias of Arizona.

21. The dinosaur Trachodon annectens.
 Describes occurrence and characters of fossil remains, and restorations.

22. Eocene whales.
 Note on the occurrence in Eocene deposits of southern United States of fossil remains which
 may throw light upon the ancestry of the whale.

Ludlow (Edwin).

1. The coal fields of Las Esperanzas, Coahuila, Mexico.
 Describes the geology of the area, and character and production of the coal (Cretaceous).

Lull (Richard Swan).

Skull of Triceratops serratus.
Lull (Richard Swan)—Continued.

2. Fossil footprints of the Juratraias of North America.
 Reviews previous work upon fossil footprints, describes their geologic occurrence, gives a
classification and systematic descriptions of genera, species, and higher groups.

3. Note on the probable footprints of Stegomaus longipes.

 Pop. Sci. Mo., vol. 66, pp. 139-149, 8 figs., 1904.
 Gives a general account of the footprints in the Triassic rocks of the Connecticut Valley and
of the animals by which they were made.

5. Megacerops tyleri, a new species of titanothere from the Bad Lands of South
 Dakota.
 Jour. Geol., vol. 13, pp. 443-456, 2 pis., 2 figs., 1905.

6. Restoration of the Titanothere Megacerops.

7. Restoration of the horned dinosaur Diceratops.

8. Footprint interpretation.

Lunt (Horace F.).

1. The copper deposits of the Kaibab Plateau, Arizona.
 Describes the occurrence and character of copper deposits in this region.

Luquer (Lea McIlvaine).

1. On the determination of relative refractive indices of minerals in rock sections by
 the Becke method.
 School of Mines Quart., vol. 33, pp. 127-133, 1902.

2. Bedford cyrtolite.
 Am. Geol., vol. 33, pp. 17-19, 1904.
 Describes occurrence of this mineral at Bedford, New York, and its characters. Appends a
list of additional minerals collected from this locality.

3. Ramosite not a mineral.
 Shows from analysis and structure that ramosite is a basic scoria and not a mineral.

4. Minerals in rock sections. The practical methods of identifying minerals in rock
 sections with the microscope. (Revised edition.)

Luquer (Lea McI.), Moses (Alfred J.) and.

1. Notes on recent mineralogical literature.
 See Moses (A. J.) and Luquer (L. McI.), 1.

2. Notes on recent mineralogical literature.
 See Moses (Alfred J.) and Luquer (L. I.), 2.

3. Notes on recent mineralogical literature.
 See Moses (Alfred J.) and Luquer (Lea McI.), 3.

Luther (D. Dana).

1. Stratigraphic value of the Portage sandstones.
 N. Y. State Mus., Bull. no. 52, pp. 616-631, 1 fig., 1902.
 Describes the characters of these beds at various localities and discusses the relations in
different sections. Includes a note by J. M. Clarke on the occurrence and relations of the
faunas.

2. Stratigraphy of Portage formation between the Genesee Valley and Lake Erie.
 N. Y. State Mus., Bull. 69, pp. 1000-1029, 13 figs., 1903.
 Describes character, occurrence, and geologic relations of Devonian strata in the Genesee
Valley and other localities in western New York.
Luther (D. Dana), Clarke (John M.) and.
1. Stratigraphic and paleontologic map of Canandaigua and Naples quadrangles.
 See Clarke (John M.) and Luther (D. Dana), 1.

2. Geology of the Watkins and Elmira quadrangles [New York], accompanied by a
geologic map.
 See Clarke (J. M.) and Luther (D. D.), 2.

3. Geologic map of the Tully quadrangle [New York].
 See Clarke (J. M.) and Luther (D. D.), 3.

Luther (D. D.), Clarke (J. M.), Ruedemann (R.) and.
1. Contact lines of upper Siluric formations on the Brockport and Medina quadrangles [New York].
 See Clarke (J. M.), Ruedemann (R.), and Luther (D. D.), 1.

Lyman (Benjamin Smith).
1. Accounting for the depth of the Wyoming buried valley [Pennsylvania].
 Discusses explanations offered to account for the depth of the buried valley and advances a
 new hypothesis.

2. Lodel Creek and Skippack Creek.
 Describes the occurrence of ripple marks, footprints, etc., in shales of the New Red in south-
eastern Pennsylvania.

3. The original southern limit of the Pennsylvania anthracite beds.
 Discusses topographic and other evidences that show that the anthracite region of Pennsyl-
vania could never have extended far south of its present limits.

4. Biographical notice of J. Peter Lesley.
 Am. Inst. Mg. Engrs., Trans. (New York meeting, October, 1903), 55 pp., por. [Advance
 separate.]

5. Biographical notice of J. Peter Lesley.

Lyman (K.), Park (E. J.) and.
1. The Springfield water supply. Description of springs and geology of the district.
 See Park (E. J.) and Lyman (K.), 1.

2. The Hannibal formation in Green County [Missouri].
 See Park (E. J.) and Lyman (K.), 2.

Lyon (D. A.).
 Describes the character and occurrence of the serpentine.

Lyon (D. A.), Roberts (Milnor), Landes (Henry), and Thyng (William S.).
1. The metalliferous resources of Washington, except iron.
 See Landes (H.), Thyng (W. S.), Lyon (D. A.), and Roberts (M.).

Mabery (Charles F.).
1. Composition of Texas petroleum.

2. The composition of petroleum. On the hydro-carbons in Pennsylvania petroleum
 with boiling points above 216°.

3. A résumé of the composition and occurrence of petroleum.
 Discusses composition, occurrence in Ohio, Canada, California, and Texas, and the natural
 formation of petroleum.
Mabery (Charles F.) and Hudson (Edward J.).
1. On the composition of California petroleum.
 Gives results of chemical analyses of petroleum oil from various parts of California.

Macallum (A. B.).
1. The paleochemistry of the ocean in relation to animal and vegetable protoplasm.
 Discusses the relative abundance of certain chemical elements in sea water at present and in remote geological ages, and the origin of the physiological relation of the chemical elements in blood plasma.

McBeth (W. A.).
1. The development of the Wabash drainage system and the recession of the ice sheet in Indiana.
 Describes drainage and glacial phenomena.

2. A theory to explain the western Indiana boulder belts.
 Considers they were deposited by floating ice.

3. Wabash River terraces in Tippecanoe County, Indiana.
 Describes topographic features and character of glacial deposits in this area and discusses changes in drainage.

4. History of the Wea Creek in Tippecanoe County, Indiana.
 Discusses drainage changes produced in this region by glacial action.

Macbride (Thomas H.).
1. Geology of Clay and O'Brien counties [Iowa].
 Iowa Geol. Surv., vol. 11, pp. 463-497, 2 figs., and map, 1901.
 Describes physiography, the occurrence and character of the Pleistocene beds and the occurrence of economic products.

2. Geology of Cherokee and Buena Vista counties [Iowa], with notes on the limits of the Wisconsin drift as seen in northwestern Iowa.
 Iowa Geol. Surv., vol. 12, Ann. Rept. for 1901, pp. 305-353, 4 figs., geol. map, 1902.
 Discusses the physiographic and drainage features, geologic structure and economic products of the counties.

3. Geology of Kossuth, Hancock, and Winnebago counties [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 81-122, 2 pls., 3 figs., 1903.
 Describes topography and drainage, deposits of Quaternary age, soils and economic resources.

4. The geology of Emmet, Palo Alto, and Pocahontas counties.
 Discusses the physiographic features, the occurrence, character, and relations of Pleistocene deposits and Carboniferous (Mississippian) strata, and the economic resources.

McCaffery (Richard S.), Yung (Morrison B.) and.
1. The ore deposits of the San Pedro district, New Mexico.
 See Yung (M. B.) and McCaffery (R. S.), 1.

McCalley (Henry).
1. The Alabama coal fields.
 Describes the general occurrence and character of the coal.

McCalley (Henry), Smith (Eugene Allen) and.
1. Index to the mineral resources of Alabama.
 See Smith (Eugene Allen) and McCalley (Henry), 1.

McCallie (S. W.).
1. Some notes on the trap dikes of Georgia.
 Am. Geol., vol. 27, pp. 133-134, 3 pls., 1901.
 Describes the character and occurrence of dike rocks which cut the crystalline rocks.
230 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

McCallie (S. W.)—Continued.
2. Mineral resources of Georgia.
 Gives an account of the various economic products of the State.

 Ga. Geol. Surv., Bull. no. 6, 264 pp., 27 pls., 28 figs., 1901. Abstract: Stone, vol. 24, pp. 316-
 322, 352-353, 1902.

4. The Ducktown copper mining district.
 Contains notes on the geology of this area.

5. An erratic boulder from the Coal Measures of Tennessee.
 Am. Geol., vol. 31, pp. 46-47, 1903.
 Describes the occurrence of a boulder of rhyolite in a coal seam near Chattanooga, Tenn.

6. Sandstone dikes near Columbus, Georgia.
 Describes occurrence and character of sandstone dikes in Cretaceous clays.

7. The Barboursville oil-field, Kentucky.
 Gives a brief sketch of the physiography and general geology of the region and the character and occurrence of the oil.

8. Notes on the wells, springs, and water resources of Georgia.

 Ga. Geol. Surv., Bull. no. 12, 121 pp., 60 figs., 1904.
 Describes the general geology and topography of the northwestern part of Georgia, the geologic structure of the coal fields of that region, the character and occurrence of the coal beds, and the composition of the coals, and in detail the coal deposits and mining developments of Walker, Chattooga, and Dade counties.

10. Experiment relating to problems of well contamination at Quitman, Ga.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 110, pp. 45-54, 1 fig., 1905.
 Gives general notes upon the geology of the region.

11. Underground waters of eastern United States: Georgia.

McCarn (H. L.).
1. The Planet copper mines [Arizona].
 Describes the general geology and the occurrence and character of copper ores on Big Williams Fork, Arizona.

McCaskey (H. D.).
1. Report on a geological reconnaissance of the iron region of Angat, Bulacan [Philippine Islands].
 Describes observations upon the geology, the occurrence of iron-ore deposits, and the mining operations.

2. Sixth annual report of the chief of the Mining Bureau for the year ended August 31, 1905.
 Manila Bureau of Printing, 1905. 66 pp., 3 maps, 13 pls.
 Includes notes upon the occurrence of various ores and building stones.

McCaslin (D. S.).
1. The geology of the artesian basin in South Dakota.

McClung (C. E.).
1. The fossil bison of Kansas.
FOR THE YEARS 1901-1905, INCLUSIVE 231

Macco (Albr.).
1. Die Eisenerzlagerstätten am Lake Superior.
 Describes general geology and occurrence and character of the iron-ore deposits.

McColum (E. V.), Bartow (E.) and.
1. Kansas petroleum.
 See Bartow (E.) and McColum (E. V.), 1.

McConnell (R. G.).
1. Note on the so-called basal granite of the Yukon Valley [Alaska].
 Reviews previous discussion of the age and relations of the granite and presents the author's observations and conclusions.

2. The Yukon district.
 Discusses the occurrence and mining of placer gold in this region.

3. The Macmillan River, Yukon district.
 Describes topography, geology, and occurrences of gold in this area.

4. Kluane mining district, Yukon Territory
 Includes observations on the geography and geology of the region, and the occurrence of placer gold.

5. Report on the Klondike gold fields [Yukon].
 Describes the topography and general geology, the occurrence, character, and relations of stratified, intrusive, and igneous rocks, and the distribution and working of gold-bearing placer gravel beds.

6. The Kluana mining district [Yukon].
 Includes observations on the geography and geology of the region, and the occurrence of placer gold.

McConnell (R. G.) and Brock (R. W.).
 Describes the general geology of Turtle Mountain, and in detail the slide of April 29, 1903, and discusses its cause.

McCormick (E.).
1. The Santa Fe mining district, Nevada.
 Describes the geologic structure of the region and the occurrence of copper and silver ores.

MacDonald (Bernard).
1. The ore deposits of Rossland, British Columbia.
 Describes the geologic structure of the region and the occurrence and origin of the gold-copper ores.

McEvoy (James).
1. Report on the geology and natural resources of the country traversed by the Yellow Head Pass route from Edmonton to Tete Jaune Cache, comprising portions of Alberta and British Columbia.
 Describes the physiography and the general character and occurrence of the Tertiary, Creataceous, Cambrian, and Archean rocks of the region.

2. Notes on the special features of coal mining in the Crow's Nest, B. C.
 Discusses the geologic occurrence and character of the coals of this field.
McFarland (D. F.).
1. Composition of gas from a well at Dexter, Kans.

McFarland (D. F.), Haworth (E.) and.
1. The Dexter, Kans., nitrogen gas well.
 See Haworth (E.) and McFarland (D. F.), 1.

McGee (W J).
1. The New Madrid earthquake.
 Refers to the records of this earthquake described by G. C. Broadhead. See Broadhead, 3.

2. Geest.
 Suggests the restoration of the term "geest," proposed by De Luc for the superficial mantle of rock débris.

3. The Antillean volcanos.
 Reviews descriptions of the recent volcanic phenomena in this region and discusses the geographic distribution of volcanoes.

4. Powell as an anthropologist.

McGregor (J. H.).
1. The relationships of the Phytosauria.

McInnes (William).
1. Region southeast of Lac Seul [Canada].
 Describes author's observations in this region.

2. Region on the northwest side of Lake Nipigon.
 Gives observations on the topography and geology of the region examined.

3. The Winisk River, Keewatin district.
 Gives notes on the geology of the region examined.

4. The upper parts of the Winisk and Attawapiskat rivers.
 Includes observations on the geology of the region examined.

McKee (G. W.).
1. Prismatic crystals of hematite.
 Describes the crystallographic characters.

Mackensen (Bernard).
1. Report on the excavation of Mastodon remains, undertaken by a committee of the Scientific Society of San Antonio [Texas].

Mackenzie (George L.).
1. A quick way of preparing sections of rocks.

Maclaren (J. M.).
1. Ores which are deposited by underground waters.

McLaughlin (J. E.).
1. Barela Mesa coal field [Colorado].
 Describes the occurrence and character of the coal seams, and gives a section of the associated strata.
McLouth (C. D.).
1. Some general remarks on the topography, soils, water resources, flora, etc., of
Muskegon County [Michigan].
Contains brief notes on the subjects mentioned and a statement regarding the recent geolog­
ical history of the region.

McMillan (James G.).
1. Explorations in Abitibi [Ontario].
Includes an account of the petrography of the region examined.

McNairn (W. Harvey).
1. On a large phlogopite crystal.
Briefly describes character and occurrence.

Maddren (A. G.).
1. Smithsonian exploration in Alaska in 1904, in search of mammoth and other fossil
remains:
Contains observations on the geology of the region traversed, and the occurrence of fossil
remains.

Madsen (Victor).
1. On Jurassic fossils from East-Greenland.
Geol., Comm. Paleont., no. 6, 1905.

Magnus (Harry C.).
1. Abrasives of New York State.
Contains notes on their occurrence.

Malcolmson (James W.).
1. The Sierra Mojada, Coahuila, Mexico, and its ore deposits.
Am. Inst. Mg. Engrs., Trans., vol. 32, pp. 100-139, 15 figs., 1902; Eng. and Mg. Jour., vol. 72, pp
705-710, 5 figs., 1901.
Describes geology of the area and character and occurrence of the ore deposits.

Malcolmson (J. W.), Kirk (M. P.) and.
1. A new quicksilver mining district.
See Kirk (M. P.) and Malcolmson (J. W.), 1.

Mallery (Willard).
1. Native gold in igneous rocks.
Describes the occurrence of native gold in Oregon.

Manning (P. C.).
1. Glacial potholes in Maine.
Describes the occurrence and character of the potholes along the coast of Maine and discusses
the evidences indicating their origin.

Manson (Marsden).
1. Evolution of climates.
Revised, enlarged, and reprinted from the American Geologist, vol. 24, nos. 2-4, 1899, 86 pp.,
7 pls., 1903.
2. [On the length of post-Glacial time.]
Am. Geol., vol. 32. pp. 128-139, 1903.
3. The evolution of climate.

Manzano (Jesus P.).
1. The mineral zone of Santa Maria del Rio, San Luis Potosi, Mexico.
Contains observations on the geology and mineral deposits of the region.
Marbut (Curtis F.).
1. The evolution of the northern part of the lowlands of southeastern Missouri.
 Mo. Univ., Studies, vol. 1, no. 3, viii, 63 pp., 5 pls., 2 maps, 1902.
 Describes geology and topography of this area and discusses the mode of formation of the
 physiographic features.
2. The sandstones of the Ozark region in Missouri.
3. Recent studies in the physiography of the Ozark region in Missouri.
4. Geology and physiography [of Missouri].
 The State of Missouri, pp. 68-70, illus. (incl. geol. map), 1904.
 Describes the physiographic features and general geology of the State of Missouri.
5. Physiography in the university.

Marsters (Vernon Freeman).
1. Topography and geography of Bean Blossom Valley, Monroe County, Indiana.
 Describes topographic features and glacial history of this area.
2. A preliminary report on a portion of the serpentine belt of Lamoille and Orleans
 counties [Vermont].
 Describes the occurrence and relations of asbestos to surrounding rocks, and discusses the
 character and origin of the serpentine.
3. Petrography of the amphibolite, serpentine, and associated asbestos deposits of
 Belvidere Mountain, Vermont.
 Includes notes on the general geology of the area and on the occurrence of asbestos and the
 development of the industry, and a discussion of the origin of serpentinous rocks.
4. The serpentine and associated asbestos minerals of Belvidere Mountain, Vermont.

Martel (E. A.).
1. Scientific exploration of caves.
 Contains notes on American caves.

Martin (Daniel S.).
1. [Minerals at Haddam, Maine.]
 Abstract: Am. Geol., vol. 27, p. 44, 1901.
 Mentions occurrence of certain minerals.
2. Geological notes on the neighborhood of Buffalo [New York].

Martin (George Curtis).
1. The geology of Garrett County [Maryland].
 Md. Geol. Surv., Garrett Co., pp. 55-182, 10 pls., 1 fig., 1902.
 Reviews previous geologic work, gives a bibliography, describes the character, distribution
 taxonomy, and history of the geologic formations and occurrence of the anticlines and
 synclines of the county.
2. The mineral resources of Garrett County [Maryland].
 Describes the character, occurrence and stratigraphic position of the coal seams, the distribu-
 tion of fire-clays, clays, limestones, building stones, road materials, and other economic
 products.
 Describes the location, general geology, and structure of the petroleum fields and the Bering
 River coal field, and the character and occurrence of the petroleum and coal.
FOR THE YEARS 1901-1905, INCLUSIVE. 235

Martin (George Curtis)—Continued.
 Md. Geol. Surv., Miocene, pp. 91-97, 2 pls., 1904.
5. Systematic paleontology of the Miocene deposits of Maryland: Mollusca, except Pelecypoda.
 Md. Geol. Surv., Miocene, pp. 130-274, 16 pls., 1904.
7. Systematic paleontology of the Miocene deposits of Maryland: Vermes.
 Md. Geol. Surv., Miocene, p. 430, 1 pl., 1904.
9. Water resources of the Accident and Grantsville quadrangles, Maryland.
10. Water resources of the Frostburg and Flintstone quadrangles, Maryland and West Virginia.
11. The petroleum fields of the Pacific Coast of Alaska, with an account of the Bering River coal deposits.
 U. S. Geol. Surv., Bull. no. 250, 64 pp., 7 pls. and 3 figs., 1905.
 Describes the geography, stratigraphy, and geologic structure of Controller Bay, Cook Inlet, and Cold Bay regions, the indications of petroleum, and attempts at developing the fields, and the character, occurrence, and geologic relations of the coal in the Bering River region.
12. The Cape Yaktag placers [Alaska].
 Describes the general geology, and the occurrence of placer gold.
13. Gold deposits of the Shumagin Islands [Alaska].
 Describes the stratigraphy and geological structure of the petroleum fields, and the progress of development.
15. Bering River coal field [Alaska].
 U. S. Geol. Surv., Bull. no. 259, pp. 140-150, 3 figs., 1905.
 Describes the general geology, the occurrence and geological relations of the coal seams, and the character of the coals.
16. Geology of the Maryland coal district.
 Describes the stratigraphy, geologic structure, and geologic history of the Coal Measures of western Maryland.

Martin (George Curtis), Clark (William Bullock) and.
1. Eocene Echinodermata.
 See Clark (W. B.) and Martin (G. C.), 1.
2. Eocene Molluscoidea (Brachiopoda).
 See Clark (W. B.) and Martin (G. C.), 2.
3. Eocene Mollusca.
 See Clark (W. B.) and Martin (G. C.), 3.
4. The Eocene deposits of Maryland.
 See Clark (W. B.) and Martin (G. C.), 4.
5. Correlation of the Coal Measures of Maryland.
 See Clark (W. B.) and Martin (G. C.), 5.
6. Correlation of the formations and members [of the Maryland coal district].
 See Clark (W. B.) and Martin (G. C.), 6.
Martin (G. C.), and Rutledge (J. J.), Clark (W. B.).
1. Distribution and character of the Maryland coal beds.

See Clark (W. B.), Martin (G. C.), and Rutledge (J. J.), 1.

Martin (G. C.), Stanton (T. W.) and.
1. Mesozoic section on Cook Inlet and Alaska Peninsula.

See Stanton (T. W.) and Martin (G. C.), 1.

Martin (G. C.), Stose (G. W.) and.
1. Water resources of the Pawpaw and Hancock quadrangles, West Virginia, Maryland, and Pennsylvania.

See Stose (G. W.) and Martin (G. C.), 1.

Martin (J. O.).
1. The Ontario coast between Fairhaven and Sodus bays [New York].

Am. Geol., vol. 27, pp. 331-334, 2 pls., 1901.

Describes the lake shore phenomena of the region.

Martin (K.).

See Becker (George F.), 1.

Martin (L.), Tarr (R. S.) and.
1. Recent changes of level in Alaska.

See Tarr (R. S.) and Martin (L.), 1.

Maso (Saderra).
1. Volcanoes and seismic centers of the Philippine Archipelago.

U. S. Dept. Commerce and Labor, Census of the Philippine Islands, Bull. 8, 80 pp., ills., 1904.

Describes briefly the distribution of active and dormant volcanoes, the occurrence and character of volcanic rocks, the general geology, and in detail the seismic activity in the islands.

Mason (F. H.).
1. Potter's clay at Middle Musquodoboit [Nova Scotia].

Describes the occurrence and chemical character of the material.

Mathews (Edward Bennett).
1. The mineral resources of Cecil County [Maryland].

2. Recent work in the Piedmont area of northern Maryland.

3. Abstract of criticism of the quantitative classification of igneous rocks.

Am. Geol., vol. 31, pp. 399-400, 1903.

4. The practical working of the quantitative classification.

Discusses the classification of igneous rocks.

5. The structure of the Piedmont Plateau as shown in Maryland.

Discusses the character and occurrence of the rocks, reviews the explanations by previous writers of the geologic structure, and describes in detail the structural features of the Piedmont Plateau.

6. Correlation of Maryland and Pennsylvania Piedmont formations.

Describes the occurrence, character, and relations of the stratigraphic formations in Maryland, and discusses their correlation with those of Pennsylvania and their extension southward into Virginia.

Mathews (Edward B.) and Miller (W. J.).
1. Cockeyesville marble.

Describes the distribution and character of the geologic formations of the Piedmont region of northeastern Maryland and their structure.
Mathez (Auguste).
1. Geology of the Cananeas [Mexico].
 Describes the geology of the region and the occurrence of the copper-ore deposits.

Matson (George C.).
 Jour. Geol., vol. 12, pp. 133-151, 2 pls., 6 figs., 1904.
 Describes physiographic features of the Finger Lake region of New York, and discusses the origin of the gorges in the streams of that region.
2. Peridotite dikes near Ithaca, N. Y.
 Describes the occurrence of dikes near Ithaca, New York, and the characters and mineral composition of the rock forming the dikes and discusses their age.

Matthes (Francois E.).
1. Glacial erosion in the northern Rockies.

2. The Alps of Montana.
 Contains observations on the physiography, general geology, glaciers, and glaciation in the Rocky Mountain region of Montana.

3. The significance of U-shaped glacier and stream channels.

Matthew (George F.).
1. Preliminary notice of the Etcheminian fauna of Newfoundland.
 Contains descriptions of several new species.

2. Preliminary notice of the Etcheminian fauna of Cape Breton.

3. [Devonian of the Acadian provinces.]
 Discusses recent papers by David White.

4. Are the St. John plant beds Carboniferous?
 Am. Geol., vol. 27, pp. 383-386, 1901.
 Discusses the stratigraphic and faunal evidences of the age of the beds.

5. Les plus anciennes faunes Paleozoiques.
 Gives a résumé of what is known regarding the earliest faunas of eastern Canada.

 Paper read before the Royal Society of Canada.

7. Acrothyra and Hyolithes—a comparison.
 Discusses characters, systematic position, and relation of these genera, and describes several species of Hyolithes.

8. Hyolithes gracilis and related forms from the Lower Cambrian of the St. John group.

9. New species of Cambrian fossils from Cape Breton.
Matthew (George F.)—Continued.
10. Acrothyra, a new genus of Etcheminian brachiopods.
11. Monocraterion and Oldhamia.
12. Additional notes on the Cambrian of Cape Breton, with descriptions of new species.
 Discusses the Cambrian of this area and describes its fauna.
13. Ostracoda of the basal Cambrian rocks in Cape Breton.
 Describes the general characters of ostracods and of a number of new genera and species.
14. Cambrian rocks and fossils of Cape Breton.
 Describes observations in this area and gives a table of geologic formations belonging to the lower portion of the Paleozoic rocks in the maritime provinces of Canada.
 Discusses the comparative age of formations in Nova Scotia and New Brunswick. See White (David), 8.
 Describes the increase in size in successive Cambrian terrains of shells belonging to the genera Acrotreta, Acrothyra, Leptobolus, Lingulepis, Lingulella, and Obolus.
18. Notes on Cambrian faunas. No. 7. Did the upper Etcheminian fauna invade eastern Canada from the southeast?
 Discusses migrations of faunas in Cambrian times.
 Gives a detailed description of the occurrence, fossil contents, and stratigraphic relations of the Cambrian rocks of Cape Breton Island and systematic descriptions of the fossils.
21. New genera of batrachian footprints of the Carboniferous system in eastern Canada.
22. Note in reference to batrachian footprints.
23. On batrachian and other footprints.
24. How long ago was America peopled?
 Describes evidences for the length of post-Glacial time.
25. An attempt to classify Paleozoic batrachian footprints.
 Discusses generic terms proposed for Paleozoic batrachian footprints, and gives a classification in tabular form of genera and species hitherto described.
26. Note on Oliver's cave.
 Describes the cave and discusses its origin and age.
Matthew (George F.)—Continued.

29. Physical aspect of the Cambrian rocks in eastern Canada, with a catalogue of the
 organic remains found in them.
 Describes the occurrence and character of Cambrian rocks and gives a table of the fossils
 occurring in them, showing place of publication, locality, and horizon.

30. New species and a new genus of batrachian footprints of the Carboniferous system in
 eastern Canada.

31. The Cambrian Dictyonema fauna of the slate belt of eastern New York. By
 Rudolf Ruedemann.
 A note in regard to Ruedemann's view and the views of others as to the upper boundary of
 the upper Cambrian.

Matthew (William D.).

1. Additional observations on the Creodonta.
 Discusses the classification of the group and revision of genera.

2. Fossil mammals of the Tertiary of northeastern Colorado.
 Describes character and occurrence of Tertiary beds in Colorado and the vertebrate fauna
 obtained from them.

3. A skull of Dinocyon from the Miocene of Texas.

4. On the skull of Bunolurus, a musteline from the White River Oligocene.

5. New Canide from the Miocene of Colorado.

6. A horned rodent from the Colorado Miocene. With a revision of the Mylagauli,
 beavers and hares of the American Tertiary.

7. The skull of Hypisodus, the smallest of the Artiodactyla, with a revision of the
 Hypertragulidae.

8. List of the Pleistocene fauna from Hay Springs, Nebraska.
 Also describes Capromeryx furcifer n. gen. et sp.

10. A fossil hedgehog from the American Oligocene.

11. The evolution of the horse.
 Am. Mus. Jour., vol. 3, no. 1, supplement, 30 pp., illus., 1903.

12. The collection of fossil vertebrates. A guide leaflet to the exhibition halls of
 vertebrate paleontology in the American Museum of Natural History.
 Am. Mus. Jour., vol. 3, no. 5, supplement, 32 pp., illus., 1903.

13. Recent zoopaleontology. Concerning the ancestry of the dogs.
Matthew (William D.)—Continued.

15. Notice of two new Oligocene camels.

16. The arboreal ancestry of the mammals.

17. Exhibition of the series of foot bones illustrating the evolution of the camel, recently installed in the Hall of Vertebrate Paleontology of the American Museum of Natural History.

18. Outlines of the continents in Tertiary times.

19. Fossil carnivores, marsupials, and small mammals in the American Museum of Natural History.
 Gives a synoptic account of fossil mammals and discusses their origin.

20. Notes on the osteology of Sinopa, a primitive member of the Hyenodontidae.

21. The mounted skeleton of Brontosaurus.
 Describes the collection and mounting of a skeleton of Brontosaurus, and the probable appearance and habits of life of the animal.

22. Notice of two new genera of mammals from the Oligocene of South Dakota.

23. On Eocene Insectivora and on Pantolestes in particular.

Matthew (W. D.) and Gidley (J. W.).

1. New or little known mammals from the Miocene of South Dakota. American Museum expedition of 1903.
 Describes occurrence, character, origin, and faunal contents of Loup Fork beds of South Dakota, and gives systematic descriptions of vertebrate fossils from these beds.

Mauck (A. V.), Cumings (E. R.) and.

1. A quantitative study of variation in the fossil brachiopod Platystrophia lynx.
 See Cumings (E. R.) and Mauck (A. V.), 1.

Maury (Carlotta Joaquina).

 Am. Paleont., Bull. no. 15, pp. 3-94, 10 pls., 1902.
 Describes character and occurrence of Oligocene strata in France, Belgium, Germany, and southern United States, giving faunal lists and sections of strata, and discusses their correlation.

Maxwell (Henry V.).

1. Tennessee iron ores.
 Eng. & Mg. Jour., vol. 78, p. 742, 1904.
 Describes the occurrence, character, and geologic relations of iron-ore deposits in eastern Tennessee.

Mead (Charles S.).

1. [Report on] Field geology in Ohio State University.
 Contains observations on geological formations in central Ohio.

Mead (J. R.).

1. The Flint Hills of Kansas.
 Discusses the origin of these hills.
1. The chemical analysis of Portland cement.

2. Some of the pyrites deposits at Port au Port, Newfoundland.

4. Progress in the phosphate mining industry of the United States during 1900.

5. A reconnaissance in the Norton Bay region, Alaska, in 1900.

6. Notes on the geology of the Klondike.

7. Chitina copper deposits, Alaska.

8. Geology of the central Copper River region, Alaska.

9. The hydrology of San Bernardino Valley, California.

10. The mineral resources of the Mount Wrangell district, Alaska.

Merriam (C. Hart).
1. Bogoslof, our newest volcano.

Merriam (John C.).
1. A contribution to the geology of the John Day basin [Oregon].
 Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 269-314, 3 pls., 1 fig., 1901.
 Gives a sketch of previous explorations and literature of the region, and describes the classification, character, occurrence, relations, and faunas of the Cretaceous, Tertiary, and Pleistocene strata.

2. A geological section through the John Day basin [Oregon].
 Describes the character and occurrence of the John Day beds and the associated strata.

3. The John Day fossil beds [Oregon].
 Describes the general geology and the occurrence of vertebrate fossils.

4. Triassic Ichthyopterygia from California and Nevada.
 Notes the stratigraphic position and describes several new species of Shastasaurus from California, and redescribes Leidy's species of Cymbospondylus from Nevada.

5. Triassic Reptilia from northern California.

6. New Ichthyosaurus from the upper Triassic of California.

7. The Pliocene and Quaternary Canidee of the Great Valley of California.

8. Recent literature on Triassic Ichthyosaurus.
 Science, new ser., vol. 18, pp. 311-312, 1903.

10. A note on the fauna of the lower Miocene in California.
 Describes the character and occurrence of faunas in different beds of Miocene age in California.

 Describes Thalattosaurus alexandre, new genus and species.

13. The types of limb structure in the Triassic Ichthyosaurus.
 Describes characteristics of known types of limbs, and discusses lines of descent among Triassic and Jurassic genera of Ichthyosaurus.

15. The Thalattosaurus, a group of marine reptiles from the Triassic of California.

17. The occurrence of ichthyosaur-like remains in the upper Cretaceous of Wyoming.

Merriam (John C.) and Sinclair (William J.).
1. The correlation of the John Day and the Masclall.
 Abstract: Jour., Geol., vol. 11, p. 95-96, 1903.
 Discusses the age of the beds from a study of the fauna.
Merrill (Frederick J. H.).
1. New York State Museum; report of the director and State geologist, 1900.
 Summary of work done.

2. Description of the State geologic map of 1901.
 N. Y. State Mus., Bull. 56, pp. 3-37, 2 pls. (maps), and a table of formations, 1902.
 Sketches the history of the New York Geological Survey, outlines briefly the geologic provinces and formations of New York, and discusses data used in compiling the geologic map.

3. Report of the director of the State Museum and State geologist for the year 1901.
 Reviews the administrative and scientific work of the year.

4. [Administrative] 56th report of the director of the State Museum and 22d of the State geologist [New York].

5. Report of the Director of the New York State Museum, 1903.
 Gives a summarized account of the work for the year ending September 30, 1903.

6. The northeast extremity of the pre-Cambrian Highlands [New York].
 Gives notes upon the distribution of Ordovician, Cambrian, and pre-Cambrian rocks of this area. The geologic map is by T. Nelson Dale and L. M. Prindle.

7. Geology of Sonora, Mexico.

Merrill (F. J. H.), assisted by Magnus (H. C.).
1. Distribution of Hudson schist and Harrison diorite in the Westchester area of the Oyster Bay quadrangle [New York].

Merrill (Frederick J. H.), Darton (N. H.), Hollick (Arthur), Salisbury (R. D.), Dodge (R. E), Willis (Bailey), and Pressey (H. A.).
1. New York City folio, New York-New Jersey.
 Describes geographic and physiographic features, general geologic relations and history, character and occurrence of pre-Cambrian, Cambrian, Silurian, Juratrias, and Cretaceous strata, Quaternary deposits, and water supply.

Merrill (George P.).
1. The Department of geology in the National Museum.
 Am. Geol., vol. 28, pp. 107-123, 5 pls., 1901.
 Gives an account of the methods employed in caring for and rendering available to students the materials in charge of this department of the Museum, and in displaying the same for the benefit of the public.

2. On a stony meteorite which fell near Felix, Perry County, Alabama, May 15, 1901.

 Describes the character, occurrence, and uses of the nonmetallic minerals.

4. A newly found meteorite from Admire, Lyon County, Kansas.

5. What constitutes a clay.
 Discusses the composition of clay and reviews a paper by Rösler, entitled "Beiträge zur Kenntniss einiger Kaolin Lagerstätten."

 Abstract of paper read before the Geological Society of Washington.
Merrill (George P.)—Continued.

7. A newly found meteorite from Mount Vernon, Christian County, Kentucky.
 Am. Geol., vol. 31, pp. 156-158, 1903.

8. John Wesley Powell.
 Am. Geol., vol. 31, pp. 327-333, 1 pl. (por.), 1903.

9. The quantitative classification of igneous rocks.
 Am. Geol., vol. 32, pp. 48-54, 1903.
 Gives an outline of the nomenclature and classification used in the “Quantitative Classification of Igneous Rocks” of Cross, Iddings, Pirsson, and Washington. Includes a table by E. B. Mathews, showing the new nomenclature and terminology as applied to some of the better known igneous rocks.

 Describes a pothole brought from Maine and the method employed in removing it from its matrix.

 New York, John Wiley & Sons, 1903. xi, 551 pp., 33 pls., 24 figs.

12. The non-metallic minerals, their occurrence and uses.
 Note.—The large number of chemical analyses in this work have not been listed in the index.

13. Catalogue of the type and figured specimens of fossils, minerals, rocks, and ores in the Department of geology, United States National Museum. Part 1.—Fossil invertebrates.
 See Schuchert (Charles) and others, 1.

 Describes the occurrence and character of asbestos veins in massive serpentine from Thetford, Canada, and discusses their origin.

15. Gold and its associations.
 Gives a list of specimens of gold ore, showing conditions of occurrence and locality from which derived.

 Describes the history, scope, organization, and work of the Department of geology of the U. S. National Museum.

Merrill (George P.) and Stokes (H. N.).

1. A new stony meteorite from Allegan, Michigan, and a new iron meteorite from Mart, Texas.
 Describes the occurrence, characters, and chemical composition of the material.

Meunier (Stanislaus).

 Discusses the cause of volcanic phenomena.

Michel-Lévy (Auguste).

1. L’éruption de la montagne Pelée et les volcans des Petites Antilles.
 Revue gén. des Sciences, t. 13, pp. 554-557, 3 figs., 1902.
 Discusses the broad problems of volcanic activity in the West Indies and other parts of the world.

2. Sur la composition des cendres projetées, le 3 mai 1902, par la Montagne Pelée.
 Describes characters of volcanic material ejected from Mont Pelé.
Mickle (G. R.).
1. The iron-bearing rocks of the Nastapokan Islands.
 Describes the occurrence and composition of the iron ores.

2. Volcanic origin of natural gas and petroleum.

Miers (Henry A.).
1. A visit to the Yukon gold fields. Letter from Henry A. Miers [to the Hon. Clifford Sifton, Canadian Minister of the Interior]. 32 pp., 1901. [Private publication.]
 Describes the occurrence of placer gold and the mining operations.

2. Gold mining in Klondike.
 Describes physiographic features, general geology, occurrence of placer gold, mining operations, and prospects in the Klondike region.

Miller (Arthur M.).
1. Preglacial drainage in southwestern Ohio.

2. A new meteorite (Bath Furnace) from Kentucky.

3. Additional facts concerning the Bath Furnace meteoric fall of November 15, 1902.
 Science, new ser., vol. 18, pp. 243-244, 1903.

4. The lead and zinc bearing rocks of central Kentucky, with notes on the mineral veins.
 Ky. Geol. Surv., Bull. no. 2, 35 pp., 8 pls., 1 fig., 1905.
 Describes the occurrence, character, and relations of Ordovician strata of central Kentucky, and of the mineral veins producing lead, zinc, fluorite, r:al barite.

Miller (B. L.).
1. Geology of Marion County [Iowa].
 Iowa Geol. Surv., vol. 11, pp. 130-197, 1 pl. 4 figs. and map, 1901.
 Describes the physiography, the character and occurrence of the Carboniferous and Pleistocene deposits, and the occurrence of coal.

Miller (B. L.), Shattuck (G. B.) and.
1. Physiography and geology of the Bahama Islands.
 See Shattuck (G. B.) and Miller (B. L.), 1.

Miller (Elmer I.).
1. A week in the Mt. Lassen and cinder cone region of northern California.
 Describes physiographic features of this region and discusses the evidences for determining the time of the volcanic activity of Mount Lassen.

Miller (G. W.).
1. The Verde mining district, Yavapai County, Arizona.
 Gives an account of the geology of the district and the occurrence of the copper-ore deposits.

2. Geology of the Butte mining district [Montana].
 Ores & Metals, vol. 15, no. 10, pp. 15-16; no. 11, pp. 19-20, 3 figs., 1904.
 Describes the mining of silver and copper ores, the general geology and the occurrence, character, and origin of the veins and fissures.

Miller (Gerrit S., jr.).
1. Preliminary list of mammals of New York.
 Contains list of fossil species.
Miller (Samuel A.).
1. Strophomena and the type of the genus.

Miller (Willet G.).
1. On some newly discovered areas of nepheline syenite in central Canada.
Am. Geol., vol. 27, pp. 21-25, 1901.
Describes character and occurrence in Ontario.

2. Iron ores of Nipissing district [Ontario].
Describes the physiography of the region and the occurrence and character of the iron ores in Huronian rocks.

3. The iron ore fields of Ontario.
Contains notes on the occurrence and character of iron ore deposits in Ontario.

4. The eastern Ontario gold belt.
Describes the distribution and geologic occurrence of the ore bodies.

5. Lake Temiscaming to the Height of Land [Canada].
Contains notes on the geology of this region.

6. Eastern Ontario; a region of varied mining industries.
Describes the occurrence of mineral deposits.

Am. Geol., vol. 32, pp. 182-185, 1903.
Describes occurrence and composition.

Describes the occurrence and character of these ore bodies.

Describes occurrences of iron ores.

10. [In discussion of paper by Waldemar Lindgren, "The geological features of the gold production of North America."]
Discusses occurrences of gold in Canada and conditions under which they can be worked.

11. Cobalt-nickel arsenides and silver.
Describes the occurrence, character, and geological relations of ore deposits of nickel-cobalt arsenides and silver in the northern part of Ontario.

Discusses the occurrence of minerals of economic value in the Province of Ontario.

13. The cobalt-nickel arsenides and silver deposits of Temiskaming [Ontario].
Discusses the occurrence, character, and geological relations of the cobalt, nickel, and silver ores of Ontario.

A full account of the character, occurrence, geologic relations, and utilization of the limestones of Ontario.

15. Boston township iron range [Ontario].
Describes the occurrence and relations of iron ore deposits.
Miller (Willet G.)—Continued.
16. [Pre-Cambrian rocks in the vicinity of Lake Temiskaming, Ontario.]

Miller (W. J.), Mathews (E. B.) and.
1. Cockeysville marble.
 See Mathews (E. B.) and Miller (W. J.), 1.

Miller (W. W., jr.).
1. Analysis of emery from Virginia.
 Abstract: Am. Geol., vol. 27, pp. 311–315, 1901.
2. Examination of sandstone from Augusta County, Virginia.
3. Analysis of smithsonite from Arkansas.

Mills (Frank S.).
1. River terraces and reversed drainage [New York].
 Jour. Geol., vol. 11, pp. 670–678, 3 figs., 1903.
 Describes physiographic features in the Catatonic River Valley in southern New York and
 their bearing upon pre-Glacial drainage conditions.
2. The delta-plain at Andover, Mass.
 Describes glacial and physiographic features of this locality.

Mills (S. Dillon).
1. Some recent rock movements in the Laurentian and Huronian areas [Ontario].
2. Occurrence of hematite north of Little Current, Georgian Bay [Canada].
 Includes notes on the geology of the locality.

Mills (W. Magoon).
1. A physiographic and ecological study of the Lake Eagle (Winona Lake) region,
 Indiana.
 Includes observations on the physiographic features of the region.

Milne (J.).
1. The recent volcanic eruptions in the West Indies.
 Discusses recent reports regarding these eruptions.
2. West Indian volcanic eruptions.
 Discusses volcanic phenomena and their causes with especial reference to the volcanoes Pelé
 and St. Vincent.

Moffet (Fred H.).
1. The copper mines of Cobre, Santiago de Cuba.
 Abstract: Am. Geol., vol. 32, p. 64, 1903; Science, new ser., vol. 18, p. 18, 1903.
2. The Kotzebue placer-gold field of Seward Peninsula, Alaska.
 Describes the general geology, and the occurrence and mining of placer gold.
3. The Fairhaven gold placers, Seward Peninsula, Alaska.
 U. S. Geol. Surv., Bull. no. 247, 85 pp., 14 pls., 2 figs., 1905.
 Describes the geography, the general geology, the character, occurrence, and relations of
 metamorphic and igneous rocks and of surficial deposits, and the occurrence and mining of
 placer gold in this region.
4. The gold placers of Turnagain arm [Alaska].
 Describes the general geology and the occurrence of placer gold.
Moissan (Henri).
 Describes investigations upon the constitution of gases collected from a fumarole of Mont Pelé.
2. Sur la présence de l’argon dans les gaz des fumerolles de la Guadeloupe.
 Describes the chemical analyses of gas from fumaroles of Guadeloupe.
 Describes the characters and composition of this meteorite.

Monckton (G. F.).
1. Mining districts near Kamloops Lake, British Columbia.
 Contains notes on the geology of this area.
2. Cinnabar-bearing rocks of British Columbia.
 Describes the general geology and the occurrence of quicksilver ores.

Monroe (Charles E.).
1. Notes on a collection of Hamilton fossils from the town of Bethany, Genesee County, N. Y.
 Contains notes on fossils collected and gives faunal lists.

Montessus de Ballore (D. de).
1. Les États-Unis sismiques.
 Gives notes upon and lists of earthquakes that have occurred in various parts of the United States.

Montgomery (Hugh T.).
1. The glacial phenomena as exhibited in northern Indiana and southern Michigan, and the resulting ancient waterways, or the early history of our home.

Montgomery (Thomas H.).
1. Missing links.

Moore (Charles J.).
1. The formation of the Cripple Creek mining district, Teller County, Colorado.
2. The formation of the Leadville mining district, Lake County, Colorado.
3. Geology applied to mining, or the practical use of geology in mining

Moore (Frederick).

Moore (Joseph) and Hole (Allen D.).
1. Concerning well-defined ripple marks in the Hudson River limestone, Richmond, Indiana.
Morgan (William Conger).

1. The origin of bitumen.
 Discusses various theories proposed to explain the origin of bitumen.

Morgan (William Conger) and Tallmon (Marion Clover).

1. A fossil egg from Arizona.

2. A peculiar occurrence of bitumen and evidence as to its origin.
 Describes the occurrence, mode of fossilization, and character and origin of the mineralization of a fossil egg from Arizona.

Morganroth (L. C.).

1. The caves of Huntingdon County, Pennsylvania.
 Describes the character of the caves.

Morris (Henry G.).

1. Hydro-thermal activity in the veins at Wedekind, Nevada.
 Discusses the geologic structure and the origin of the ores.

Morscher (L. N.).

1. Corrading action of river water during high floods.
 Kans. Univ. Geol. Surv., Min. Res. for 1902, pp. 82-97, 8 figs., 1903.
 A study of river erosion based largely upon observations made upon the effects of the Kansas River flood of 1903.

Mosely (E. L.).

1. Submerged valleys in Sandusky Bay [Ohio].
 Discusses the character and occurrence of these valleys and the indications that the tilting of the Great Lakes region is still progressing.

2. Formation of Sandusky Bay and Cedar Point.
 Describes changes in the lake shore in this locality and how they have been produced.

Moses (A. J.).

1. Mineralogical notes.
 Describes crystallographic characters of pectolite, atacamite, realgar, vesuvianite, chrysoberyl, and pyroxene.

2. Eglestonite, terlinguait, and montroydite, new mercury minerals from Terlingua, Texas.
 Describes crystallographic and other characters and composition.

3. The crystallization of molybdenite.
 Describes crystallographic measurements of material from several sources.

4. Eglestonit, Terlinguait und Montroydity, neue Quecksilbermineralien von Terlingua in Texas.
 Describes the composition and crystallographic characters of quicksilver minerals from Texas.

5. The crystallization of luzonite, and other crystallographic studies.

Moses (Alfred J.) and Luquer (Lea McI.).

1. Notes on recent mineralogical literature.
 School of Mines Quart., vol. 23, pp. 290-302, 1902.
Moses (Alfred J.) and Luquer (Lea McL.)—Continued.
2. Notes on recent mineralogical literature.
 School of Mines Quart., vol. 24, pp. 247-266, 1903.
3. Notes on recent mineralogical literature.
 Sch. of Mines Quart., vol. 25, pp. 412-427, 1904.
Moudy (R. B.), Slosson (E. E.) and.
1. The Laramie cement plaster.
 See Slosson (E. E.) and Moudy (R. B.), 1.
Mügge (O.).
1. Ueber die Structur des gronliindischen Inlandeises und ihre Bedeutung fur die
 Theorie der Gletscherbewegung.
 Discusses the structure and movement of ice in the interior of Greenland and its
 bearing upon the theory of the movement of glaciers.
2. Weitere Versuche über die Translationsfähigkeit des Eises, nebst Bemerkungen
 über die Bedeutung der Structure des gronliindischen Inlandeises.
 Discusses the plasticity of ice, and the significance of the structure of the ice-mass in
 Greenland.
Muir (John).
1. Notes on the Pacific coast glaciers.
 Harriman Alaska Expedition, vol. 1, pp. 119-185, illus., 1902.
Murgoci (G. M.).
1. On the genesis of riebeckite and riebeckite rocks.
Murphy (Edward Charles).
1. Accuracy of stream measurements.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 64, 99 pp., 30 figs., 4 pls., 1902.
Musgrave (Robert).
1. Copper deposits of Mt. Sicker, Vancouver [British Columbia].
 Describes the occurrence, character, and geologic relations of copper-ore deposits.
Myers (E. W.), Pressey (H. A.) and;
1. Hydrography of the southern Appalachians.
 See Pressey (H. A.) and Myers (E. W.), 1.
Nansen (Fridtjof).
 Jour. Geol., vol. 9, pp. 273-275, 1901.
2. The bathymetrical features of the north Polar seas, with a discussion of the conti­
 nental shelves and previous oscillations of the shore line.
 The Norwegian North Polar Expedition, 1893-1896; Scientific Results, vol. 4, XIII, 231-pp., 29
 pls., 1904.
 Includes in the discussion an account of the continental shelves of Greenland and the North
 American coast.
Nason (Frank L.).
1. On the presence of a limestone conglomerate in the lead region of St. Francois
 County, Missouri.
 Brief note announcing discovery of limestone conglomerate between the St. Joseph or Bonne
 Terre limestone and the Potosi in Missouri.
Nason (Frank L.)—Continued.

2. The geological relations and the age of the St. Joseph and Potosi limestones of St. Francois County, Missouri.
 Describes occurrence of a conglomerate between the two formations and gives a columnar section.

3. The origin of vein cavities.
 Discusses the origin of these vein phenomena.

4. The disseminated lead ores of southeast Missouri.
 Eng. and Mg. Jour., vol. 73, pp. 478-480, 2 figs., 1902.
 Describes the occurrence and origin of these ores.

5. The geological relations and the age of the St. Joseph and Potosi limestones of Missouri.
 Eng. & Mg. Jour., vol. 73, p. 861, 1902.
 Discusses the relations of these beds.

Nathorst (A. G.).
1. Bidrag till nordostra Grönlands geologi.
 Describes the geology of northeastern Greenland.

Nattress (Thomas).
1. The Corniferous exposure in Anderdon [Ontario].
 Gives notes on the distribution of the Corniferous, describes the geology at this locality, and gives a faunal list.

Nelson (Aven).
1. Wilbur Clinton Knight.
 Gives a short account of his life and work, and a chronologic list of his papers.

Neumayer (L.).
1. Die Koprolithen des Perms von Texas.
 Describes the occurrence and character of coproliths from the Permian of Texas.

Nevius (J. Nelson).
1. Roofing slate quarries of Washington County [New York].
 Describes the slates of the various quarries.

2. Emery mines of Westchester County [New York].

3. The Sain Alto tin deposits [Mexico].
 Describes the occurrence of tin.

Newland (David H.).
1. The serpentines of Manhattan Island and vicinity and their accompanying minerals.
 School of Mines Quart., vol. 22, pp. 307-317, 399-410, 4 figs., 1901.
 Describes the microscopic and chemical characters of the serpentines and the minerals associated with them. Discusses origin of the serpentines.

 N. Y. State Mus., Bull. 93, pp. 909-970, 1905.

Newsom (John F.).
1. Drainage of southern Indiana.
 Jour. Geol., vol. 10, pp. 166-181, 6 pls., 1902.
 Describes the drainage features of this region that are dependent upon the geologic structure.
252 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Newsom (John F.)—Continued.

 Jour. Geol., vol. 10, pp. 803-814, 6 figs., 1902.
 Describes the fissures and fractures caused by the explosion.

3. A geologic and topographic section across southern Indiana from the Ohio River at Hanover to the Wabash River at Vincennes, with a discussion of the general distribution and character of the Knobstone group in the State of Indiana.
 Describes topographic and drainage features, the stratigraphy, character, and geological relations of formations of Ordovician, Silurian, Devonian, and Carboniferous age, and discusses the geologic history of the region.

 Describes location, geologic relations, character, and origin of clastic dikes, chiefly those of California, and gives references to literature in which clastic dikes are described.

Newton (R. Bullen).

1. List of Thomas Say's types of Maryland (U. S.) Tertiary mollusca in the British Museum.
 Geol. Mag., dec. iv, vol. 9, pp. 303-305, 1902.

New York State Museum.

1. Economic geology of New York.
 N. Y. State Mus., Handbook 17, 40 pp., 1904.
 Gives brief accounts of the occurrence and utilization of mineral products of the State of New York.

Nicholls (H. A. Alford).

1. Notes on the recent eruptions of Mt. Pelée [West Indies].
 Contains daily notes of the recent eruptions.

Nichols (Henry W.).

1. Nitrates in cave earths.
 Reviews paper by William H. Hess on the same subject, gives a number of analyses of soil, limestone, and cave earth, and discusses the origin of the nitrates.

2. [In discussion of paper by Eric Hedburg on "The Missouri and Arkansas zinc mines."]

Nichols (J. Clayton).

1. Notes on the Pigholugan and Pigtso gold region, Island of Mindanao, Philippine Islands.
 Describes the occurrence of gold veins and placers.

Nicholson (Frank).

1. The Wisconsin zinc-fields.
 Describes the general geology of the region and the occurrence and character of the zinc and lead ore deposits and the mining operations.

Nickles (John M.).

1. Geological section—St. Louis to Shawneetown [Illinois].
 Describes geology along the line of the section and gives records of borings and sections of outcrops.

2. Geological section in southern Illinois through Waterloo, Sparta, Murphysboro, and Olmstead.
 Ill. Bd. World's Fair Commissioners, Rept., pp. 177-228, 1896.
 Describes the geology along the line of the section, gives records of borings and sections of outcrops, and discusses the occurrence and exploitation of natural gas at Sparta, Illinois.
Nickles (John M.)—Continued.

3. The geology of Cincinnati.
 Describes topography and geology of Cincinnati and the surrounding region, and gives.
 faunal lists.

 beds of the Lorraine group.

5. The Richmond group in Ohio and Indiana and its subdivisions, with a note on the.
 genus Strophomena and its type.

6. The upper Ordovician rocks of Kentucky and their Bryozoa.
 Ky. Geol. Surv., Bull. no. 5, 64 pp., 3 pls., 1905.
 Describes the geological history and stratigraphy of the Ordovician area of Kentucky and
 gives systematic descriptions of characteristic Bryozoa.

Nicol (William).

1. Spinel twins of pyrite.

Nicol (William), Goldschmidt (Victor) and.

1. New forms of sperrylite.
 See Goldschmidt (Victor) and Nicol (William), 1.

Nicolau (Th.).

1. Untersuchungen an den eisenführenden gesteinen der insel Disko.
 Describes the occurrence, characters, and composition of the iron-bearing rocks of the
 Island Disco.

Nicolson (J. T.), Adams (Frank D.) and.

1. An experimental investigation into the flow of marble.
 See Adams (F. D.) and Nicolson (J. T.), 1.

Nolan (A. W.) and Dixon (J. D.).

1. Geology of St. Helen's Island [Quebec].
 Discusses the character and occurrence of Ordovician and Devonian strata, the character,
 occurrence, and origin of the breccia formation of the island, and the petrography of the
 intersecting dikes.

Nordenskjöld (Otto).

1. Notes on some specimens of rocks collected by C. Kruuse on the east coast of
 Greenland, between lat. 65° 35' and 67° 22' N.

Norton (William Harmon).

1. Geology of Cedar County [Iowa].
 Iowa Geol. Surv., vol. 11, pp. 282-396, 6 pls., 12 figs. and maps, 1901.
 Describes the physiographic and drainage features, the character and occurrence of the
 Silurian, Devonian, and Pleistocene deposits and the occurrence of economic products.

2. The relation of physical geography to other science subjects.

 Describes briefly the shallow supplies of water, and the artesian waters with especial reference
 to the geologic horizons from which they are derived.

4. Water supplies at Waterloo, Iowa.

Novarese (Vittorio).

1. Rocks and minerals of south Alaska.
 In Filippo de Filipi's The Ascent of Mount St. Elias, Westminster, Archibald Constable and
 Co., 1900, Appendix E, pp. 252-259.
 Gives observations upon the geology and petrology of this part of Alaska.
Nutter (Edward Hoit).
1. Sketch of the geology of the Salinas Valley, California.
 Jour. Geol., vol. 9, pp. 330-336, 8 figs., 1901.
 Describes the formation of the valley and the character and occurrence of the Tertiary strata
 which were laid down in this trough.

Nutter (Edward Hoit) and Barber (William B.).
1. On some glaucophane and associated schists in the Coast Ranges of California.
 Jour. Geol., vol. 10, pp. 738-744, 1902.
 Describes the occurrence and contact relations of the schists and discusses their origin.

Nylander (Olof O.).
1. Shells of the marl deposits of Aroostook County, Maine, as compared with the
 living forms in the same locality.
 Gives list of fossils determined.

Obalski (J.).
1. Notes on the magnetic iron sand of the north shore of the St. Lawrence [Canada].
 Gives chemical analyses of the sand and describes its distribution.
2. On a mineral containing radium in the Province of Quebec.
 Jour., vol. 7, pp. 245-256, 8 figs., 1905.
 Describes the occurrence and characters of a mineral, cleveite, containing radium.

O'Brien (Charles J.).
1. Igneous rocks: How to identify them.

O'Brien (M. E.).
1. Geology of the district west of Redding, Cal.
 Describes the character and occurrence of the rock formations and ore deposits.

Ochsenius (Carl).
 Zeitsch. für prak. Geol., Jahrg. 1900, p. 21, 1900.
 Describes an occurrence of natural coke.
2. Natronsalpeter in California.
 Gives a general account of deposits of nitrate of soda.

Ogilvie (Ida H.).
 Jour. Geol., vol. 10, pp. 337-412, 1 pt., 1902; Columbia Univ., Geol. Dept., Contrib., vol. 10,
 no. 84, 1902.
 Describes the strie, character of ice movement and glacial deposits of the region, and discusses
 the erosion history of the Adirondacks. Includes table of strie.
2. An analcîte-bearing camptonite from New Mexico.
 Jour. Geol., vol. 10, pp. 500-507, 4 figs., 1902; Columbia Univ., Geol. Dept., Contrib., vol. 10,
 no. 85, 1902.
 Describes the general geology of the region and the occurrence and character of the campto-
 nite and compares with rocks of similar composition from other regions.
3. Geological notes on the vicinity of Banff, Alberta.
 Jour. Geol., vol. 12, pp. 408-414, 4 figs., 1904.
 Describes the general geology and the character and origin of physiographic features of this
 region.
4. The effect of superglacial débris on the advance and retreat of some Canadian
 glaciers.
Ogilvie (Ida H.)—Continued.

5. The high altitude conoplain; a topographic form illustrated in the Ortiz Mountains [New Mexico].
 Am. Geol., vol. 36, pp. 27-34, 1 pl., 1905.
 Discusses the conditions of rainfall and erosion by which the conoplain is produced.

 N. Y. State Mus., Bull. 96, pp. 461-505, 17 pls., 3 figs., and map, 1905.
 Describes the general geology, the character and occurrence of Cambrian strata, and in detail the physiography, glaciology, and petrography of the area.

O'Harra (Cleophas C.).

1. Black Hills ore deposits.
 Int. Mg. Cong., 4th session, pp. 97-100, 1901.
 Describes the occurrence of the gold ores.

2. The mineral wealth of the Black Hills [South Dakota].
 Gives a general geological sketch of the geology of the Black Hills and describes the occurrence of the minerals.

3. The geology and mineralogy of the Black Hills region.
 Describes the general topographic and geologic features and character of the rocks of the region, and gives notes upon the occurrence, character, and geologic relations of the ore deposits, chiefly gold ores.

O'Harra (C. C.), Barton (N. H.) and.

Ohly (J.).

1. The origin of petroleum. Different theories which have been advanced and the circumstances for and against them.

Oliphant (F. H.).

1. [In discussion of paper by R. Pearson on "The discovery of natural gas in Sussex, Heathfield district."]
 A short note in regard to the distribution of natural gas in the United States.

2. Petroleum.
 Includes a table showing the stratigraphic position of petroleum-producing horizons in the Appalachian and Lima-Indiana fields.

Olsson-Seffer (Pehr).

1. Examination of organic remains in post-Glacial deposits.
 Am. Nat., vol. 37, pp. 785-797, 2 figs., 1903.
 Discusses methods of collecting and examining plant remains from Quaternary deposits, particularly from peat-bogs.

Ordóñez (Ezequiel).

1. Las rhyolitas de México.
 México Inst. Geol., Bul. no. 14, 75 pp., 5 pls., 1900; no. 15, 76 pp., 11 pls., 1901.
 Describes the macroscopic and microscopic characters of the rhyolites and their distribution.

2. La industria minera en México.
 Ciencia y Arte, México, 1901, 19 pp. (Not seen.)

3. The mining district of Pachuca, Mexico.
 Contains notes on the geology and mineralization of the region.

4. The onyx-marble deposits of Jimulco, Coahuila [Mexico].
Ordoñez (Ezequiel)—Continued.

5. Les cendres d’un volcan près du Santa Maria (Guatemala).
 Describes materials ejected from a volcano near Santa Maria.

6. The mining district of Pachuca, Mexico.
 Includes an account of the topography and geology of the area and the ore formations.

7. Le Xinantacatl ou volcan Nevado de Toluca [Mexico].
 Describes physiographic features, the character and occurrence of igneous rocks, and the history of its volcanic activity, and compares its physical features with those of other Mexican volcanoes.

8. El Sabacab de Yucatan.
 Describes the character and occurrence of some geologic formations in this part of Mexico.

9. Los volcanes de Zacapu, Michoacan [Mexico].
 Describes physiographic features of the volcanoes of this region and the character and occurrence of igneous rocks.

10. Les dernières éruptions du volcan de Colima [Mexico].
 Describes eruption phenomena and eruptive products of this volcano.

11. El mineral de Angangueo, Michoacan [Mexico].
 Discusses vein phenomena and the occurrence of silver veins in a matrix of pyrite and galena.

12. Las aguas subterráneas de Amozoc [México].
 Discusses the occurrence of underground water in the State of Puebla, Mexico.

13. Las cenizas del volcán de Santa María.
 Describes ashes from the volcano Santa Maria, Guatemala.

14. Descripción de las rocas de los Estados de Chiapas y Tabasco.
 Describes the petrographic characters of igneous and volcanic rocks from the States of Chiapas and Tabasco, Mexico.

15. Los Xalapazcos del Estado de Puebla.
 México, Inst. Geol., Par., t. 1, pp. 293-341, 4 pls. and 1 map, 1905.
 Describes the physiographic features and geologic structure of the district.

16. Las Barrancas de las Minas y de Tatatila [México].
 Includes notes on the geology of the region.

17. Los crateres de Xico [México].
 Describes physiographic features and geologic structure of the Island of Xico in Lake Chalco, Mexico.

18. El Nauchampatepetl ó Cofre de Perote [México].
 Describes the physiographic features and geologic structure.

Ordoñez (Ezequiel) and Bose (E.).

1. Apuntes para la geología del valle de Chilpancingo [Mexico].
 Contains observations on the geology of this area.

Ordoñez (E.), Lazo (A. M.) and.

1. Las canteras de San Lorenzo Totolingo y Echagaray [México].
 See Lazo (A. M.) and Ordóñez (E.), 1.
Orr (William).
1. An outline of eight excursions for the study of the physical geography and geology of Springfield [Massachusetts] and vicinity.
Published for the Springfield Geological Club by the City Library Association, Springfield, Mass., 16 pp., 2 pls., 1901.

Ottmann (Arnold E.).
1. The theories of the origin of the Antarctic faunas and floras.
Reviews the literature on the subject.
2. Ueber die Decapoden-Gattungen Linuparus und Podocrates.
Discusses the relationships of these genera of crustacea.
3. The geographical distribution of freshwater decapods and its bearing upon ancient geography.
Includes a discussion of the geography of the earth’s surface during Cretaceous, Tertiary, and Quaternary times.

Orton (Edward).
See Bull. U. S. Geol. Surv., No. 188, Orton no. 4172.

Orton (Edward, Jr.).
Ohio Geol. Surv., 4th ser., Bull. no. 1, pp. i--xxi, 1903.
Gives an outline of the work and publications of the preceding and present organizations of the geological survey of Ohio.

Orton (Edward, Jr.) and Peppel (S. V.).
1. The lime resources of Ohio available for Portland-cement manufacture.
Discusses the occurrence, character, and geologic relations of limestones in Ohio suitable for use in manufacture of cements. Gives a table with many analyses of limestone.

Osann (A.).
1. Beiträge zur Geologie und Petrographie der Apache (Davis) Mts., Westtexas.
Describes the general geology of the region, the occurrence of igneous and Carboniferous and Cretaceous sedimentary rocks, and the petrographic characters of the igneous rocks.
2. Notes on certain Archaean rocks of the Ottawa Valley [Canada].
Discusses petrology of this region and occurrence and characters of economic minerals.

Osborn (Henry Fairfield).
1. The recent progress of vertebrate paleontology in America.
Abstract of lecture delivered at Trinity College, Hartford, Conn.
2. Recent zoo-paleontology.
Contains notes on papers relating to the John Day beds and to the Kansas chalk.
3. Recent zoo-paleontology.
Reviews Wortman’s work on the Carnivora and Gidley’s work on Pleistocene horses.
5. Corrélation des horizons de mammifères Tertiaires en Europe et en Amérique.
Bull. 301—06——17
Osborn (Henry Fairfield)—Continued.

7. Homoplasy as a law of latent or potential homology.
 Discusses the independent evolution of identical structures in teeth of different families of mammals as a form of homology which has heretofore been defined as homoplasy.

8. The law of adaptive radiation.
 Quotes from the author’s previous papers bearing upon this law and shows how it is exhibited in the geographic distribution of orders, families, and related contemporaneous forms.

9. Dolichocephaly and brachycephaly in the lower mammals.
 Discusses these factors in cranial evolution and their correlation with similar ones in the trunk and limbs.

10. The four phyla of Oligocene Titanotheres. Titanotheres contributions, no. 4.
 Discusses the general characters of the material and their stratigraphic position.

 Points out the synonymous genera and describes the species, including several new ones.

 Discusses relative age and correlation of Cretaceous formations and the relations of their faunas and gives in tabular form the geologic distribution of Cretaceous vertebrates.

13. Recent zoopaleontology—new vertebrates of the mid-Cretaceous.
 Gives an abstract of a report by Henry F. Osborn and Lawrence M. Lambe on "Vertebrata from the mid-Cretaceous Rocks of the Northwest Territory of Canada."

14. Recent zoopaleontology: a remarkable new mammal from Japan, its relationship to the Californian genus Desmostylus, Marsh—progress of the exploration for fossil horses—the perissodactyles typically polyplyetic.

16. Ornitholestes hermanni, a new compsognathoid dinosaur from the upper Jurassic.

17. Glyptotherium texanum, a new glyptodont, from the lower Pleistocene of Texas.

18. The skull of Creosaurus.

19. The reptilian subclasses Diapsida and Synapsida and the early history of the Diapsida.
 Discusses classification, anatomy, and phylogeny of fossil reptiles and defines the major classification groups and genera.

20. Recent zoopaleontology.
 Includes a brief discussion of the age of the Fort Union beds and related formations.

21. Recent zoopaleontology.
 Discusses the age of the typical Judith River beds.
Osborn (Henry Fairfield)—Continued.

22. Recent zoopaleontology.

Gives a comparison of the European and American Eocene horses.

24. On recent models and restorations of a number of extinct animals, with a discussion of their probable habits and mode of life.

Describes the work being done to complete Professor Marsh's monographs on the Titanotheres, Ceratopsia, Stegosauria, and Sauropoda.

Reviews the history and principles of classification of the Reptilia, proposes a new classification, and gives definitions of the higher groups.

27. Paleontological evidence for the original tritubercular theory.

28. Recent zoopaleontology. Field expeditions during the past season.

29. Recent advances in our knowledge of the evolution of the horse.

30. An armadillo from the middle Eocene (Bridger) of North America.

31. New Oligocene horses.

32. Manus, sacrum, and caudals of Sauropoda.

33. Teleorhinus browni—a teleosaur in the Fort Benton.

34. New Miocene rhinoceroses with revision of known species.

35. The great Cretaceous fish Porthesia molossus Cope.

36. Revised list of casts, models, photographs, and restorations of fossil vertebrates of the Department of vertebrate paleontology of the American Museum of Natural History.

37. On the position of the bones of the forearm in the Opisthocoelia or Sauropoda.

38. On the use of the sandblast in cleaning fossils.

40. On the primary components of vertebrae and their relations to ribs.

41. The classification of the Reptilia.

42. Fossil wonders of the West. The dinosaurs of the Bone-cabin quarry, being the first description of the greatest "find" of extinct animals ever made.

Osborn (Henry Fairfield)—Continued.

43. The evolution of the horse in America. First complete account of the American Museum explorations under the William C. Whitney fund.
 The Century Magazine, vol. 69, pp. 3-17, 15 figs., 1905.

44. Ichthyosaurs: The evolution of fitness in ichthyosaurs.
 The Century Magazine, vol. 69, pp. 414-422, 7 figs., 1905.

45. Recent zoozooanatomy.
 Gives an abstract of a lecture delivered by the author before the Society of Naturalists at the Philadelphia meeting upon the evolution and phylogeny of various vertebrate types.

46. Recent vertebrate paleontology. Fossil mammals of Mexico.
 Gives notes upon the fossil mammals of Mexico and the present location of the specimens.

47. Recent vertebrate paleontology.
 Notes on exploration going on for vertebrate fossils and work in progress in museums and laboratories on vertebrate paleontology.

48. The present problems of paleontology.

49. Ten years' progress in the mammalian paleontology of North America.
 Gives a résumé of the progress in mammalian paleontology during the last ten years and indicates lines of exploration and research. Discussed phylogenetic relations of various mammals.

50. Tyrannosaurus and other Cretaceous carnivorous dinosaurs.

51. Skull and skeleton of the sauropodous dinosaurs, Morosaurus and Brontosaurus.

52. The evolution of the horse.

53. Western explorations for fossil vertebrates.

54. [Phylogeny and classification of the Reptilia.]

55. Evolution of the horse. Recent discoveries and studies.

Osborn (Henry Fairfield) and Granger (Walter):

1. Fore and hind limbs of Sauropoda from the Bone Cabin quarry [Wyoming].

Osgood (Wilfred H.).

1. Scaphoceros tyrrelli, an extinct ruminant from the Klondike gravels.

Osmont (Vance C.).

1. A geological section of the Coast Ranges north of the Bay of San Francisco.
 Describes the occurrence, character, and relations of stratified rocks of Jurassic, Cretaceous, Tertiary, and Quaternary age, and of igneous rocks observed in cross sections of the Coast Ranges of California, and the petrographical characters of the igneous rocks, and discusses the correlation of the Eocene strata, the geological structure along the sections, and the geologic history of the region.

2. Areas of the California Neocene.
 Gives systematic descriptions and discusses the occurrence of associated fossils, giving faunal lists.
O'Sullivan (Owen).
1. Survey of the south and west coast of James Bay.
 Includes observations on the geology of the region examined.

Otsuka (S.).
1. A short sketch on the petroleum industry of Europe and America. [In Japanese.]
 Includes observations on the petroleum industry in the Appalachian region, Texas, and California.

Owen (Luella Agnes).
1. The bluffs of the Missouri River.
 Describes loess deposits and discusses evidence as to their origin.
2. More concerning the Lansing skeleton.
 Bibliotheca Sacra, 73d yr., pp. 572-578, 1903.
 Reviews the discussion as to the geological age of the Lansing skeleton.
3. The loess at St. Joseph [Missouri].
 Am. Geol., vol. 33, pp. 223-228, 2 pls., 1904.
 Describes the occurrence and character of loess deposits at this point and discusses the origin of the loess.
4. Cave regions of the Ozarks and Black Hills.
 Cincinnati, The Editor Publishing Co., 1898. 228 pp., illus.
5. Evidence on the deposition of the loess.
 Discusses the occurrence and character of fossil mollusks in the loess at St. Joseph, Mo., and their bearing on the question of the origin of the loess.

Palache (Charles).
1. A description of epidote crystals from Alaska.
 Describes the general geology, the occurrence and petrographic characters of the rocks, the occurrence of the gold ore deposits, and the mining operations.
3. Geology about Chichagof Cove, Stepovak Bay, with notes on Popof and Unga Islands.
 Harriman Alaska Expedition, vol. 4, pp. 69-88, 2 pls., 3 figs., 1904.
 Describes the general geology, the character and occurrence of sedimentary and igneous rocks, and the petrographic characters of the latter.
4. Notes on the minerals collected [by the Harriman Alaska expedition].
 Harriman Alaska Expedition, vol. 4, pp. 91-96, 1904.
 Describes the occurrence and characters of some minerals, and gives a list of minerals obtained and their localities.

Palache (Charles) and Fraprie (F. R.).
1. (1) Babingtonite from Somerville, Massachusetts. (2) Babingtonite from Athol, Massachusetts.
 Describes occurrence, crystallography, and chemical analysis.

Palache (Charles) and Wood (H. O.).
1. A crystallographic study of millerite.

Palache (C.), Jaggar (T. A., jr.) and.
1. Bradshaw Mountains folio, Arizona.
 See Jaggar (T. A., jr.) and Palache (C.), 1.
Palache (Charles), Lawson (Andrew C.) and.
1. The Berkeley Hills [California]. A detail of Coast Range geology.
 See Lawson (A. C.) and Palache (C.), 1.
2. The Berkeley Hills [California]. A detail of Coast Range geology.
 See Lawson (A. C.) and Palache (C.), 2.

Palache (Charles), Wolff (John E.) and.
1. Apatite from Minot, Maine.
 See Wolff (J. E.) and Palache (C.), 1.

Palmer (Charles M.).
 Gives composition and describes absorption of water.

Palmer (T. S.).
 Includes also the fossil forms.

Park (Emma J.).
 Describes gravel deposits of southwestern Missouri and discusses their age.

Park (Emma J.) and Lyman (Kate).
1. The Springfield water supply. Description of springs and the geology of the district.
2. The Hannibal formation in Greene County [Missouri].

Park (James).
1. On the cause of border-segregation in some igneous magmas.

Parker (Charles A.).
1. Evidences of rheumatoid arthritis in the Lansing man.
 Am. Geol., vol. 33, pp. 39-42, 1 fig., 1904.
 Describes anatomical features of the fossil human bones discovered near Lansing, Kansas.

Parkinson (John).
1. The hollow spherulites of the Yellowstone and Great Britain.
 Describes the author's observations in the Yellowstone region and discusses the origin of spherulites.
2. Some lake basins in Alberta and British Columbia.
 Describes the physiography of the region and the character of the lake basins.

Parks (William Arthur).
1. The Huronian of the Moose River Basin [Ontario].
 Toronto Univ., Studies, Geol. Seriés, no. 1, 35 pp., 1 map, 1900.
 Discusses the occurrence, character, and classification of the Huronian rocks of the region.
2. The country east of Nipigon Lake and River [Canada].
 Describes the author's observations in this area.
3. Region lying northeast of Nipigon Lake.
 Gives observations upon the physiography, geology, and economic resources of the region examined.
Parks (William Arthur)—Continued.

 Describes location, lithologic and stratigraphic features of outcrops of Silurian and Devonian
 strata of southwest Ontario, and gives lists of fossils obtained and discusses economic
 resources.

5. Devonian fauna of Kwataboahegan River [Ontario].
 Describes the occurrence of Devonian fossils in the Moose River basin of Ontario, and gives
 systematic descriptions of new species.

6. A remarkable parasite from the Devonian rocks of the Hudson Bay slope.

7. The study of stratigraphy.
 Discusses the necessity of stratigraphy and paleontology in the geologic investigations of eco­
 nomic resources.

8. The geology of a district from Lake Timiskaming northward [Ontario].
 Describes the geology of the district and the occurrence and relations of ore deposits contain­
 ing cobalt.

Parsons (Arthur L.).

1. Recent developments in the gypsum industry in New York State.

2. The gypsum deposits of New York state.

Parsons (H. F.) and Liddell (Charles A.).

1. The coal and mineral resources of Routt County [Colorado].
 Describes the geology, the location of the coal districts, the character and occurrence of the
 Cretaceous coals, and the occurrence of other mineral deposits, chiefly gold.

Patten (William).

1. New facts concerning Bothriolepis.

2. Studies relating to the origin of vertebrates.
 Outlines work upon the ostracoderms and their systematic position.

Patton (Horace Bushnell).

1. Abstracts of papers read before Section E of the American Association for the
 Advancement of Science, August 20–29, 1901.

 Discusses the methods of alteration of minerals and describes dolomite and calcite crystals
 from Colorado.

BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Patton (Horace Bushnell)—Continued.

5. Lecture notes on crystallography. (Revised edition, largely rewritten.)

Patton (Horace Bushnell), Diller (Joseph Silas) and.

1. The geology and petrography of Crater Lake National Park.
 See Diller (J. S.) and Patton (H. B.). 1.

Payne (Henry M.).

1. The Tug River coal field [West Virginia]. A description of the general geology of the region and of the qualities of the coal.

Peale (A. C.).

1. The classification of mineral waters with especial reference to the characteristics and geographic distribution of the medicinal springs of the United States.

Pearce (Richard).

1. Notes on the occurrence of selenium with pyrite rich in gold and silver [from Mexico], and remarks on a gold nugget from Montana.

Pearson (Herbert W.).

1. Oscillations in the sea-level.
 Contains discussions of certain observations in North America.

 Duluth, Minn., J. J. LeTourneau & Co., 1902. 38 pp., 2 figs.

3. The place of the great raised beaches in geology.
 Discusses the occurrence and elevation of raised beaches, the explanation of subsidences and elevations, and the formation and location of coal mines.

Pearson (Karl).

1. The fossil man of Lansing, Kansas.
 Discusses in the light of measurements of the bones the height of the individual.

Peck (Frederick B.).

1. Preliminary notes on the occurrence of serpentine and talc at Easton, Pa.
 Describes the general geology and structure of the region and the occurrence of the crystalline rocks and the alteration products.

2. The basal conglomerate in Lehigh and Northampton counties, Pennsylvania.
 Describes its occurrence and characters.

 Describes the character and occurrence of this formation in the area under consideration.

4. The Atlantosaur and Titanotherium beds of Wyoming.
 Describes a geologic excursion in this region. Includes observations on the geology and paleontology of Jurassic and Cretaceous strata.

5. The cement belt in Lehigh and Northampton counties of Pennsylvania. A description of the geological formations.
 Describes the physiographic features and the general stratigraphy of the region and the character and occurrence of the cement rock.
Peck (Frederick)—Continued.
 Describes the occurrence, quarrying, and uses of talc deposits, and their character and geologic relations.

Peckham (Herbert E.).
1. On the bituminous deposits situated at the south and east of Cardenas, Cuba.
 Describes the occurrence and extent of these bituminous deposits.

Peckham (S. F.).
1. [Remarks on paper by Herbert E. Peckham on the bituminous deposits near Cardenas, Cuba.]

Peet (Charles Emerson).

Penck (Albrecht).
1. Climatic features in the land surface.
 Discusses the shaping of the earth’s surface by river, glacial, and eolian agencies as influenced by climate conditions.

Penfield (Samuel L.).
1. On the chemical composition of childrenite.

2. On the chemical composition of amblygonite.

3. On spangolite, a new copper mineral.

4. On pearcite, a sulphasenite of silver.

5. On the chemical composition of hamlinite and its occurrence with bertrandite at Oxford County, Maine.

6. Tables of minerals, including the uses of minerals and statistics of the domestic production.
 New Haven, Conn., 1903. 77 pp.

7. On crystal drawing.
 Describes methods of representing crystals.

Penfield (Samuel L.) and Foote (H. W.).
1. On bixbyite, a new mineral.

2. On clinohedrite, a new mineral from Franklin, N. J.

Penfield (Samuel L.) and Ford (W. E.).
1. On calaverite.
 Describes occurrence and crystallographic characters of the material.
Penfield (S. L.) and Jamieson (G. S.).
1. On tychite, a new mineral from Borax Lake, California, and on its artificial production and its relations to northupite.
 Describes the occurrence, character, and composition of tychite, a new mineral from California and its relation to northupite.

Penfield (Samuel L.) and Pirsson (L. V.).
1. Contributions to mineralogy and petrography, from the laboratories of the Sheffield Scientific School of Yale University.

Penfield (Samuel L.) and Pratt (J. H.).
1. On the occurrence of thaumasite at West Paterson, New Jersey.

Penfield (Samuel L.) and Warren (C. H.).
1. Some new minerals from the zinc mines at Franklin, N. J., and note concerning the chemical composition of ganomalite.

Penfield (S. L.), Hillebrand (W. F.) and.
1. Some additions to the alunite jarosite group of minerals.
 See Hillebrand (W. F.) and Penfield (S. L.), 1.

Penfield (S. L.), Wells (H. L.) and.
1. On a new occurrence of sperrylite.
 See Wells (H. L.) and Penfield (S. L.), 1.

Penhallow (D. P.).
1. Notes on the North American species of Dadoxylon, with special reference to type material in the collections of the Peter Redpath Museum, McGill College.

 Presidential address before the Society of Plant Morphology and Physiology.

3. Osmundites skidegatensis n. sp.
 Describes megascopic characters and microscopic structure of this fossil plant.

5. Notes on Tertiary plants.
 Gives descriptions of plants, especially of internal structure as revealed by microscopic sections, of early Tertiary age, based upon material obtained by the British North American Boundary Commission.

 Describes two new species and gives notes upon the occurrence of a number of others in Tertiary and Pleistocene deposits.

7. A blazing beach.
 Describes burning of gas upon the beach at Kittery Point and explains its cause.

Penhallow (D. P.) and Ami (H. M.).
1. Determinations of fossil plants from various localities in British Columbia and the Northwest territories, with notes on the geological horizons indicated.
Penrose (R. A. F., jr.).
1. Present condition of gold mining in Arctic America.

Peppel (S. V.).
1. Gypsum deposits in Ohio.
 Describes character and distribution, economic development, and geologic relations of gypsum deposits occurring in Silurian strata of Ohio.

Peppel (S. V.), Orton (Edward, jr.) and.
1. The lime resources of Ohio available for Portland-cement manufacture.
 See Orton (Edward, jr.) and Peppel (S. V.), 1.

Perkins (George H.).
1. Report on the marble, slate, and granite industries of Vermont.
 Describes occurrence and geologic position of the marbles, slates, and granites of Vermont.

 Burlington, Vermont, 1900. 83 pp., 20 figs.
 Describes the occurrence of copper, slate, and building and ornamental stones.

4. Report of the State geologist on the mineral industries and geology of certain areas of Vermont.
 Vt. Geol. Surv., Rept. III (of this series), 191 pp., 64 pls., 1902.

5. List of reports on the geology of Vermont, 1845-1900 [and] List of publications on the geology of Vermont.

 Discusses the occurrence of minerals and building and ornamental stones.

7. The geology of Grand Isle [Vermont].
 Describes the geographic and geologic occurrence and history of the formations of this island.

8. Notes on the wells, springs, and general water resources of Vermont.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 73-93, 1904.

9. List of works on the geology of Vermont.

10. Mineral resources of Vermont.
 Reviews the economic resources and the mining and quarrying industries of Vermont.

11. Geology of Grand Isle County [Vermont].
 Describes the topographic and physiographic features and general geology, and the occurrence, character, and relations of Ordovician strata and Glacial deposits.

12. On the lignite or brown coal of Brandon and its fossils.
 Vt. Geol. Surv., Rept. State Geol., IV, pp. 153-162, 1 fig., 1904:
 Gives a historical sketch of the investigations upon the lignite fossils.

13. Description of species [of fossil fruits] found in the Tertiary lignite of Brandon, Vermont.

Perkins (George H.)—Continued.
 Describes the water supply of Vermont.

17. Tertiary lignite of Brandon, Vermont, and its fossils.
 Gives an account of the location, extent, and character of a deposit of Tertiary lignite in Vermont, and describes the fossils obtained from it.

Perkins (W. R.), Logan (W. N.) and.
1. The underground waters of Mississippi, a preliminary report.
 See Logan (W. N.) and Perkins (W. R.), 1.

Perry (Joseph H.).
1. Notes on the geology of Mount Kearsarge, New Hampshire.
 Jour. Geol., vol. 11, pp. 403-412, 2 figs., 1903.
 Describes the petrologic characters of the rocks composing this mountain.

2. Geology of the Monadnock Mountain, New Hampshire.
 Jour. Geol., vol. 12, pp. 1-14, 5 figs., 1904.
 Describes character, occurrence, and relations of the granites, schists, and other rocks of the Monadnock Mountain, and discusses their age and the reasons for the survival of the mountain.

Perry (Joseph H.) and Emerson (Benjamin K.).
1. The geology of Worcester, Massachusetts.
 Describes character, occurrence, and relations of rocks of Worcester, and gives an account of the general geology of the surrounding region.

Peter (Alfred M.).
1. Report of the Division of Chemistry [of the Kentucky Agricultural Experiment Station].
 Includes chemical analyses of crude petroleum, phosphatic limestone, and mineral waters.

Peters (W. J.).
1. Itinerary and topographic methods [of a reconnaissance in northern Alaska].

Peterson (O. A.).
1. Osteology of Oxydactylus, a new genus of camels from the Loup Fork of Nebraska, with descriptions of two new species.

2. Recent observations upon Daemonelix.

3. Description of new rodents and discussion of the origin of Daemonelix.
 Carnegie Mus., Mem., vol. 2, pp. 139-202, 5 pls., 11 figs., 1905.

4. Preliminary note on a gigantic mammal from the Loup Fork beds of Nebraska.
 Notes the occurrence and gives a brief description of Dinocoherus hollandi n. gen. and sp.

5. A correction of the generic name (Dinochoerus) given to certain fossil remains from the Loup Fork Miocene of Nebraska.
 Proposes the name Dinohyus for Dinochoerus (preoccupied).

Peterson (O. A.) and Gilmore (C. W.).
1. Elosaurus parvus; a new genus and species of the sauropoda.
Phalen (W. C.).
1. Notes on the rocks of Nugsuaks Peninsula and its environs, Greenland.
Describes characters and occurrence of rocks from northern Greenland.

Describes the occurrence and characters of unakite and associated rocks at Milams Gap, Virginia.

Phillips (Alexander H.).
1. Radium in an American ore.
Describes the occurrence and composition of carnotite from Utah and Colorado, and the extraction of radium therefrom.

Phillips (William Battle).
1. Texas petroleum.
Texas Univ. Min. Surv., Bull. no. 1, pp. 1-102, 1901.
Describes the nature and origin of petroleum and the oil and gas-bearing horizons of Texas.

2. The Beaumont oil field, Texas.
Contains notes on the geology of the region.

3. The zinc-lead deposits of southwest Arkansas.
Contains brief notes on the character and occurrence of the ore.

4. The bat guano caves of Texas.
Describes occurrence and chemical character of the material.

Texas Univ. Mineral Surv., Bull. no. 2, 43 pp., map, 1902.
Contains general geologic notes on certain State lands, a description of the sulphur deposits of El Paso County, and of the quicksilver deposits of Brewster County, and includes reports by E. M. Skeates.

6. Coal, lignite, and asphalt rocks [Texas].
Texas Univ. Mineral Surv., Bull. no. 3, 137 pp., 11 pls., 1902.
Describes the character and occurrence of the coals, lignites, and asphalts and associated rocks at various localities in the State. Portions of the report were prepared by R. C. Brooks, B. F. Hill, and H. W. Harper.

7. Report of progress of the University of Texas Mineral Survey for the year ending December 31, 1903.
Tex. Univ. Min. Surv., Bull. no. 7, 14 pp., 1904.
Gives an outline of the geologic work of the survey.

8. A new quicksilver field in Brewster County, Texas.
Describes the occurrence of the ore and the general geology of the district in which it occurs.

9. Lead ore in Burnett County, Texas.
Describes the occurrence of lead ore and gives observations upon the geology of the region.

10. Extension of the quicksilver district in Brewster County, Texas.

11. Condition of the quicksilver industry in Brewster County, Texas.
Contains notes on the occurrence of the quicksilver ores of this region.

12. The coal, lignite, and asphalt rocks of Texas.
Describes the occurrence of coal, lignite, and asphalt in Texas.
Phillips (William Battle)—Continued.

13. A coking coal in Chihuahua [Mexico].
 Describes the occurrence, character, and geological relations of coal beds in Chihuahua, Mexico.

14. The quicksilver deposits of Brewster County, Texas.
 Econ. Geol., vol. 1, pp. 155-162, 3 pls., 1905.
 Describes the general geology, and the character, occurrence, and relations of the ore deposits of cinnabar.

Pierce (S. J.).
1. The Cleveland water-supply tunnel [Ohio].
 Am. Geol., vol. 28, pp. 380-385, 1901.
 Describes the quicksands and clays and other material penetrated in driving this tunnel.

Pilsbry (Henry A.).

Piper (C. V.).
1. The basalt mounds of Columbia lava.
 Describes the occurrence of these mounds in eastern Washington and their nature, and discusses their origin.

Pirsson (Louis Valentine).
1. Petrography of the rocks of Yogo Peak [Montana].

2. On mordenite.

3. On the petrography of Square Butte in the Highwood Mountains of Montana.

4. Petrography and geology of the igneous rocks of the Highwood Mountains, Montana.
 U. S. Geol. Surv., Bull. no. 257, 268, pp., 7 pls. and 8 figs., 1905.

5. The petrographic province of central Montana.
 Defines the province as shown by various evidences of consanguinity, gives its general law, and describes the geographic arrangement of the magmas, their differentiation, and types.

Pirsson (L. V.) and Washington (H. S.).
 Describes the occurrence and characters of a group of igneous rocks.

Pirsson (Louis V.), Cross (Whitman), Iddings (Joseph P.), and Washington (Henry S.).
1. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks.
 See Cross (W.), Iddings (J. P.), Pirsson (L. V.), and Washington (H. S.), 1, 2.

Pirsson (Louis V.), Penfield (Samuel L.) and.
1. Contributions to mineralogy and petrography, from the laboratories of the Sheffield Scientific School of Yale University.
 See Penfield (S. L.) and Pirsson (L. V.), 1.
Pirsson (Louis V.), Weed (Walter H.) and.
1. Missourite, a new leucite rock from the Highwood Mountains of Montana.
 See Weed (Walter H.) and Pirsson (Louis V.), 1.
2. Geology of the Shonkin Sag and Palisade Butte laccoliths in the Highwood Moun­
tains of Montana.
 See Weed (W. H.) and Pirsson (L. V.), 2.

Plotts (William).
1. Origin of petroleum, coal, etc.; being an expert treatise on the actual occurrence
 of those products in strata of the earth crust.
 Whittier, California, 1905. 29 pp. [Private publication.]
 Discusses the occurrence of petroleum and coal, and the reasons therefor.

Plumb (Carlton H.).
1. The Tercio coal mining district, Colorado.
 Contains notes on the occurrence and character of the coal seams.

Pompeckj (J. F.).

Poole (Henry S.).
1. Stigmaria structure.
2. The coal-fields of New Brunswick, Canada.
 Discusses the geologic occurrence of coal in this area.
 Discusses possibilities of coal production in the province.
4. Notes on Dr. Ami’s paper on Dictyonema slates of Angus Brook, New Canaan,
 and Kentville, N. S.
 Describes geologic features developed by the coal mining operations.
6. The Carboniferous rocks of Chignecto Bay.
 Describes results of geologic examination of the Carboniferous area of this region.
7. A submerged tributary to the great pre-Glacial river of the Gulf of St. Lawrence.
 Describes the geologic structure of the Carboniferous field in New Brunswick, its correlation
 with that of Nova Scotia, and the probable location of coal beds and their character. In an
 appendix gives detailed records of borings.
9. A trip to West Virginia.
 Includes observations upon the coals and coal fields of West Virginia.
 Describes the structure and stratigraphy of the field, and the occurrence and character of the
 coal seams, and the mining operations.
Poole (Henry S.)—Continued.
11. Is there coal under Prince Edward Island?
Discusses the indications afforded by the geological structure of the island and adjoining
regions as to the presence of coal in the strata underlying the island.

Porter (Fred B.).
1. Analyses of the Mississippian (Subcarboniferous) limestone from the Atchison
[Kansas] prospect well.

Porter (T. C.).
1. Volcanic dust from the West Indies.
Describes the characters of volcanic dust derived from recent eruptions.

Powers (H. C.).
1. The smoking bluffs of the Missouri River region.
Describes the phenomenon and explains it as due to disintegration under atmospheric action
of the iron pyrites in Cretaceous deposits.

Prather (John K.).
1. On the fossils of the Texas Cretaceous, especially those collected at Austin and
Waco.
Discusses the occurrence of fossils and gives faunal lists.

2. A preliminary report on the Austin chalk underlying Waco, Texas, and the
adjoining territory.
Describes the lithology and stratigraphy of this formation and the underlying marl.

2. Glaucosite.
Jour. Geol., vol. 13, pp. 509-513, 1 pl., 1905.
Describes the occurrence, character, and origin of glauconite from the Cretaceous of New
Jersey.

4. The Atlantic Highlands section of the New Jersey Cretaceous.
Describes the occurrence, relations, and lithologic characters of Cretaceous formations in
eastern New Jersey, and gives a list of the fossils from the Navesink marl.

Pratt (Joseph Hyde).
1. A peculiar iron of supposed meteoric origin from Davidson County, North Caro­
lina.
Describes character of the material and gives chemical analysis.

2. The occurrence and distribution of corundum in the United States.
Describes the modes of occurrence and distribution of corundum and the corundum localities
in the United States.

3. On northupite; pirssonite, a new mineral; gay-lussite and hanksite from Borax
Lake, San Bernardino County, California.

4. The mining industry in North Carolina during 1900.
N. C. Geol. Surv., Economic Papers, no. 4, 36 pp., 1901.
Contains notes on the occurrence of economic products and minerals.

5. Gold deposits of Arizona.
Eng. & Mg. Jour., vol. 73, pp. 795-796, 2 figs., 1902.
Presents a map showing the location of the various gold deposits and describes the occurrence
of gold ores in certain districts.
Pratt (Joseph Hyde)—Continued.

6. Gold mining in the southern Appalachians.

 Describes the occurrence of the talc and accompanying marble.

8. The mining industry in North Carolina during 1901.
 N. C. Geol. Surv., Economic Paper, no. 6, 102 pp., 1902.
 Contains notes on the occurrence of economic products and minerals.

 Contains notes on the occurrence of economic products and minerals.

10. The mining industry in North Carolina during 1903.
 N. C. Geol. Surv., Economic Paper no. 8, 74 pp., 1 pl. (map), 1904.

11. The mining industry in North Carolina during 1904.
 N. C. Geol. Surv., Economic Paper no. 9, 95 pp., 1 pl. (map), 1905.

Pratt (Joseph Hyde) and Foote (H. W.).

1. On wellsites, a new material.
 Yale Bicentennial publications. Cont. to Mineral, and Petrog., pp. 275-282, 1901. (From Am.-
 Jour. Sci., vol. 3, pp. 443-448, 1897.)

Pratt (Joseph Hyde) and Lewis (Joseph Volney).

 N. C. Geol. Surv., vol. 1, 464 pp., 45 pls., 85 figs., 1905.
 Describes the geology, petrology, and mineralogy of the corundum-bearing rocks of western North Carolina, and the character and occurrence of corundum, chromite, and asbestos deposits, and discusses the origin of corundum.

Pratt (Joseph Hyde) and Penfield (S. L.).

1. On the occurrence of thamasite at West Paterson, New Jersey.
 See Penfield (S. L.) and Pratt (J. H.), 1.

Pratt (Joseph Hyde) and Sterrett (Douglass B.).

1. The tin deposits of the Carolinas.
 N. C. Geol. Surv., Bull. no. 19, 64 pp., 8 figs., 1904.
 Describes the occurrence, character, geologic relations, origin, and economic development of the tin-ore deposits of North Carolina and South Carolina.

Pratt (Joseph Hyde) Struthers (Joseph) and.

1. Tin.
 See Struthers (Joseph) and Pratt (Joseph Hyde), 1.

Pressey (Henry Albert).

1. Hydrography of the southern Appalachian Mountain region. Part I.
 Describes briefly the topography and geology of the region.

2. Hydrography of the southern Appalachian region. Part II.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 69, 124 pp., 14 pls., 12 figs., 1902.

Pressey (H. A.) and Myers (E. W.).

1. Hydrography of the southern Appalachians.
 Message from the President of the United States, transmitting a report of the Secretary of Agriculture in relation to the forests, rivers, and mountains of the southern Appalachian region (Senate Doc. no. 84, 57th Cong., 1st sess.), pp. 123-142, 10 pls., 1902.
 Describes physiographic features of the region.

Pressey (Henry Albert) and others. New York City folio, New York-New Jersey.
 See Merritt (F. J. H.) and others, 1.
 Bull. 301—06—18
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Prest (Walter H.).
1. On drift ice as an eroding and transporting agent.
2. Supplementary notes on drift ice as a transporting agent.

Preston (C. H.).
1. Prof. W. H. Barris.
 Am. Geol., vol. 23, pp. 358-361, 1 pl., 1901.
 Gives a sketch of his life and work on the paleontology of Iowa.

Preston (H. L.).
1. Niagara meteorite.
 Describes a meteorite from North Dakota.
 Jour. Geol., vol. 10, pp. 852-857, 3 figs., 1902.
 Describes the dimensions and physical characters of the meteorite.
3. Franceville meteorite.
 Describes characters and occurrence of this meteorite found in El Paso County, Colo., and notes other falls in the State.

Price (J. A.) and Shaaf (Albert).
1. Spy Run and Poinsett lake bottoms [Indiana].
 Describes glacial phenomena.
2. Abandoned meanders of Spy Run Creek [Indiana].
 Describes its drainage modifications.

Prichard (William A.).
1. Observations on Mother Lode gold deposits, California.
 Describes the geologic structure and occurrence of the ore deposits.

Prindle (Louis M.).
 U. S. Geol. Surv., Bull. no. 225, pp. 64-73, 1 fig., 1904.
 Describes the general geology and the occurrence of placer gold and the mining operations.
2. The gold placers of the Fortymile, Birch Creek, and Fairbanks regions, Alaska.
 U. S. Geol. Surv., Bull. no. 251, 89 pp., 16 pls., 1905.
 Describes the topography, the general geology, the character and occurrence of the sedimentary and igneous rocks, and the occurrence and mining of gold-bearing placer gravels.

Prindle (Louis M.) and Hess (F. L.).
1. Rampart placer region [Alaska].
 Describes the topography, drainage, and general geology of the region, and the occurrence and mining of placer gold.

Private-Deschanel (Paul).
1. L'État de Californie.
 Discusses the general geologic structure and topography of California.
Probert (Frank H.).
1. Secondary enrichment.
 Describes the general geology and the origin of the copper-ore deposits of the Clifton-Morenci
district in Arizona.

Prosser (Charles S.).
1. The classification of the Waverly series of central Ohio.
 Jour. Geol., vol. 9, pp. 205-231, 4 figs., 1901.
 Reviews the various classifications of this series that have been published, describes the
 character and occurrence of the strata, and gives the author's classification.
2. (On the use of the term Bedford limestone.)
 Jour. Geol., vol. 9, pp. 270-272, 1901.
 Reviews an article by C. E. Siebenthal on the same subject, and considers the name Bedford
 as applied in Ohio should be accepted.
3. The Paleozoic formations of Allegany County, Maryland.
 Jour. Geol., vol. 9, pp. 409-429, 4 figs., 1901.
 Describes the character and occurrence of the various Paleozoic formations and discusses their
 probable correlations with New York and Pennsylvanian formations.
4. Names for the formations of the Ohio Coal Measures.
 Reviews previous classification and nomenclature of the Coal Measures of Pennsylvania and
 West Virginia and presents a section and the classification of the Coal Measures of Mary-
 land, which has been adopted for the Ohio Coal Measures.
5. Notes on the stratigraphy of the Mohawk Valley and Saratoga County [New York].
6. The Sunbury shale of Ohio.
 Jour. Geol., vol. 10, pp. 262-312, 6 figs., 1902; Ohio State Univ. Bull., ser. 6, no. 13 (Geol. ser., no. 3),
 1902.
 Describes the character and occurrence of this formation and gives a historical review of the
 literature of the subject.
7. Revised classification of the upper Paleozoic formations of Kansas.
 Jour. Geol., vol. 10, pp. 703-717, 1902.
 Describes the lithologic characters of the formations and their stratigraphic relations.
8. The specimen of Nematophyton in the New York State Museum.
 Contains notes on the occurrence and character of the material from the Devonian of New
 York.
 Gives a sketch of his life.
10. The nomenclature of the Ohio geological formations.
 Jour. Geol., vol. 11, pp. 519-546, 1903; Ohio State Univ. Bull., ser. 8, no. 3 (Geol. ser., no. 6), 1903.
 Gives a table of the formations of the geological scale in Ohio and discusses their nomencla-
 ture and correlations.
 Am. Geol., vol. 32, pp. 381-384, 1903.
 Discusses relations and nomenclature of Silurian and Devonian formations in eastern New
 York.
12. Description and correlation of the Romney formation of Maryland.
 Describes character and occurrence of the Romney formation and its members in Maryland,
 and discusses their correlation with Devonian formations of New York on stratigraphic and
 faunal evidence; discusses also the correlation of American Devonian formations with those of Europe.
13. The Delaware limestone.
 Jour. Geol., vol. 13, pp. 413-442, 3 figs., 1905.
 Discusses the nomenclature and correlation by previous writers, and describes the occurrence,
 character, and fossil contents of the Delaware limestone formation of Ohio.
Prosser (Charles S.)—Continued.

 Am. Geol., vol. 36, pp. 142-161, 1905.
 Discusses conflicting views regarding the nomenclature of upper Carboniferous formations of
 Kansas and their correlation.

15. Revised nomenclature of the Ohio geological formations.
 Ohio Geol. Surv., 4th ser., Bull. no. 7, 36 pp., 1905.
 Gives a table of the geologic formations of Ohio and notes upon their nomenclature and
 classification.

Prosser (Charles S.) and Beede (J. W.).

1. Cottonwood Falls folio, Kansas.
 Describes the physiography, the occurrence, character, geologic relations, and stratigraphy
 of Carboniferous formations, the geologic structure and economic resources.

Prosser (Charles S.) and Cumings (Edgar R.).

1. The Waverly formations of central Ohio.
 Am. Geol., vol. 34, pp. 335-361, 3 pls., 1904.
 Describes the occurrence, character, and relations of the various members of the Waverly
 series in central Ohio, giving numerous detailed sections of the strata.

Pultz (John Leggett).

1. The Big Stone Gap coal field of Virginia and Kentucky.
 Includes a description of the geologic conditions existing in the Big Stone Gap coal field of
 Virginia and Kentucky, and the occurrence and character of workable coal seams, with a
 generalized section of the strata.

Purdue (A. H.).

 Jour. Geol., vol. 9, pp. 47-50, 2 figs., 1901.
 Describes the character and occurrence of these valleys and discusses their origin.

2. Illustrated note on a miniature overthrust fault and anticline.
 Jour. Geol., vol. 9, pp. 341-342, 1 fig., 1901.
 Describes a miniature anticline passing into a reversed fault at Ozark, Ark.

 Jour. Geol., vol. 9, pp. 694-701, 2 figs., 1901.
 Describes the structural and topographic features of the region.

4. The saddle-back topography of the Boone chert region, Arkansas.

5. Notes on the wells, springs, and general water resources of Arkansas.

6. Concerning the natural mounds.
 Discusses the origin of these mounds.

 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 114, pp. 188-197, 4 figs., 1905.
 Describes the general geology, and discusses the relations of the underground water supply
 and the geological formations of the State of Arkansas north of the Arkansas River.

8. Water resources of the Winslow quadrangle, Arkansas.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 146, pp. 84-97, 1 fig., 1905.

9. Water resources of the contact region between the Paleozoic and Mississippi
 embayment deposits in northern Arkansas.
 Includes an account of the geologic conditions of the area.
For the years 1901-1905, inclusive.

1. Economic geology. La Plata folio, Colo.
 Purington (Chester Wells).
 Describes the vein systems, the occurrence of gold and silver ores, the placer deposits, and the occurrence of coal.

2. The Contact, Nevada, quaquaversal.
 Describes physiographic features and the geologic structure of the region and the occurrence of ore bodies.

3. The Camp Bird mine, Ouray, Colorado, and the mining and milling of the ore.
 Purington (Chester Wells).
 Describes the vein systems, the occurrence of gold and silver ores, the placer deposits, and the occurrence of coal.

5. The geological structure of the Camp Bird vein [Colorado].
 Describes the veins and fissures and their rock contents, and the character and occurrence of the gold and silver ores.

 Discusses occurrence and origin of gold deposits in various regions of the world.

7. Geology of the Virginius mine [Colorado].
 Discusses the occurrence and origin of the gold ores.

8. Methods and costs of gravel and placer mining in Alaska.

9. Methods and costs of gravel and placer mining in Alaska.
 U. S. Geol. Surv., Bull. no. 263, 273 pp., 42 pls., 49 figs., 1905.

10. The Camp Bird and Smuggler-Union fissures [Colorado].
 Discusses fissuring in the San Juan Mountains region and its explanation.

11. Ore horizons in the veins of the San Juan Mountains, Colorado.
 Econ. Geol., vol. 1, pp. 129-133, 1905.
 Discusses the character, occurrence, and relations of metalliciferous veins in this region.

Pynchon (W. H. C.).
11. Drilled wells of the Triassic area of the Connecticut Valley.
 Includes an account of the general geology, the occurrence and character of Triassic rocks, and the geologic structure of the area.

Queneau (Augustin L.).
1. The gold sands of Cape Nome [Alaska].
 Describes physiographic features of the region and the occurrence of the beach and creek sands.

2. Size of grain in igneous rocks in relation to the distance from the cooling wall.
 Discusses the mathematical treatment of the diffusion of heat and applies the theory to certain dike rocks.

Rabot (Charles).
1. Géologie du Grønland nord-oriental.
 Gives a brief account of the geology of Greenland.
Rafter (George W.).
 N. Y. State Mus., Bull. 85, 902 pp., 45 pls., 74 figs., and 4 maps, 1905.

Randolph (Beverley S.).
1. [Discussion of paper by Charles Catleton, "Coal outcrops."]

Randolph (L. S.).
1. Virginia anthracite coal.
 Cassier's Mag., vol. 27, pp. 328-336, 8 figs., 1905.
 Includes notes on the occurrence and character of the coals in New River field in southwestern Virginia.

Rangel (M. F.).
1. Criadero de fierro del Cerro de Mercado, Durango [Mexico].
 Mexico Inst. Geol., Bull. no. 16, pp. 3-14, 2 pls., 1902.
 Discusses the occurrence of iron ore and associated rocks.

Ransome (Frederick Leslie).
 Describes the lode fissures, the characters of the ores and of the stocks or masses, and the origin of the ore deposits. Includes detailed descriptions of special areas.
 Describes the occurrence, character, and origin of the dike and of the associated ore body.
3. The ore deposits of the Rico Mountains, Colorado.
 Describes general geologic structure and relations of the region, the character and occurrence of ore-bearing veins and fissures, character, occurrence, and origin of the ore bodies and associated minerals, and the mining operations.
4. Recent progress in petrology.
5. Faulting and mountain structure in Arizona.
 Gives an outline of the physiography of Arizona and topography and general geology of the Globe quadrangle, and describes the character and occurrence of igneous rocks and sedimentary strata of Cambrian, Devonian, Carboniferous, Eocene (?), and Quaternary age, the character, occurrence, and origin of the ores, chiefly gold, silver, and copper, and the mining operations.
7. Copper deposits of Bisbee, Ariz.
 U. S. Geol. Surv., Bull. no. 213, pp. 149-157, 1903.
 Describes the general geology of the region, the occurrence and origin of the ores, and the mining operations.
8. The copper deposits of Bisbee, Arizona.
 Describes the geologic structure of the region and the character and occurrence of the ore deposits.
9. Genetic classification of ore deposits.
10. The geology and copper deposits of Bisbee, Arizona.
 Describes the geography and general geology, the character, occurrence, and relations of the Paleozoic and Mesozoic sedimentary strata, the intrusions and deformation, the character, occurrence, and origin of the copper-ore deposits, and the mining operations.
Ransome (Frederick Leslie)—Continued.

11. The geology and ore deposits of the Bisbee quadrangle, Arizona.

U. S. Geol. Surv., Professional Paper no. 21, 168 pp., 29 pls., 5 figs., 1904.

Describes physiographic features and the general geology, the character, occurrence, and geological relations of pre-Cambrian Cambrian, Devonian, Carboniferous, and Cretaceous strata and igneous rocks, the geologic structure and history, and the character, occurrence, economic development, and origin of the copper-ore deposits.

12. The geographic distribution of metalliferous ores within the United States.

U. S. Geol. Surv., Bull. no. 260, pp. 274-393, 4 figs., 1905.

Describes the geographic distribution of the United States and the occurrence and production of ores in them.

Describes the physiographic divisions of Arizona, the topography, climate, and vegetation and general geology of the area, the occurrence, character, and geological relations of pre-Cambrian, Cambrian, Devonian, Carboniferous, Tertiary, and Quaternary deposits and igneous rocks, the geologic structure and history, the occurrence, character, origin, geologic relations, and mining of the ores, chiefly gold, silver, and copper.

Describes the topography and drainage, the general geology, the character, occurrence, and relations of pre-Cambrian metamorphic rocks, Cambrian, Devonian, Carboniferous, and Cretaceous strata, Quaternary deposits, and igneous rocks, the geologic structure and its expression in topography, the geologic history, and the economic resources, principally copper ores.

15. The present standing of applied geology.

Econ. Geol., vol. 1, pp. 1-10, 1905.

Discusses the status of applied geology and certain phases of the question of the origin of ore deposits.

Describes the system of fissures, the relations of the ores to the fissures, the minerals occurring in the lodes, and the character, distribution, origin, and value of the ore deposits containing gold, silver, and lead.

17. Ore deposits of the Coeur d'Alene district, Idaho.

U. S. Geol. Surv., Bull. no. 298, pp. 374-393, 4 figs., 1905.

Describes the geography, general geology, and geological structure of the district, the history of the mining development, the production, character, and occurrence of lead-silver, gold, and copper deposits.

18. The Coeur d'Alene district.

Contains notes on the geology of the region.

Ransome (Frederick Leslie), Hillebrand (W. F.) and.

1. On carnotite and associated vanadiferous minerals in western Colorado.

See Hillebrand (W. F.) and Ransome (F. L.), 1.

Ransome (Frederick Leslie), Lindgren (Waldemar) and.

See Lindgren (W.) and Ransome (F. L.), 1.

2. The geological resurvey of the Cripple Creek district, Colorado.

See Lindgren (W.) and Ransome (F. L.), 2.

Rath (C. M.), Grider (R. L.), Bailey (E. W.).

1. A garnetiferous bed in Golden Gate Canyon, Jefferson County, Colorado.

See Bailey (E. W.), Rath (C. M.), Grider (R. L.), 1.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Ravn (J. P. J.).
1. The Tertiary fauna at Kap Dalton in East Greenland.
 Meddelelser om Greenland, vol. 29, pp. 93-140, 3 pls., 1903; Copenhagen Univ., Mus. Min. et
 Geol., Comm., Paléont., no. 4, 1903.
 Reviews discoveries of fossils in Greenland and the geologic age of the formations from which
 they were obtained, describes a fauna, mainly molluscan, obtained from East Greenland
 and discusses its geologic horizon.

Raymond (Percy E.).
1. The Crown Point section [New York].
 Am. Pal., Bull. no. 14, pp. 3-44, 2 pls., map, 1902.
 Gives an historical sketch of previous work, describes sections of Ordovician strata, giving
 faunal lists, and several new species of fossils from this locality.
2. The faunas of the Trenton at the type section and at Newport, N. Y.
 Am. Pal., Bull. no. 17, pp. 13-26, 1903.
 Discusses the occurrence and range of faunules in Trenton sections.
3. The developmental changes in some common Devonian brachiopods.
4. The Tropidoleptus fauna at Canandaigua Lake, New York, with the ontogeny of
 twenty species.
 Describes the developmental changes of some Devonian brachiopods from the Tripidoleptus
 fauna at Canandaigua Lake, New York, and gives a comparative faunal study of this
 faunule.
5. The trilobites of the Chazy limestone.
7. The fauna of the Chazy limestone.
 Describes the distribution, development, and faunal subdivisions of the Chazy formation, and
 the occurrence and range of its fossils.

Raymond (R. W.).
1. Recent contributions to the science of ore deposits.
 Min. Ind. for 1900, pp. 753-762, 1901.
 Gives a review and summaries of recent important papers on the origin of ore deposits.
2. [In discussion of paper by J. D. Irving on "Wolframite in the Black Hills of
 South Dakota."]
3. Biographical notice of Clarence King.
4. What is a fissure vein?
 Econ. Geol., vol. 1, pp. 169-172, 1905.

Raymond (William James).
1. Writings of James G. Cooper, M. D., on conchology and paleontology, with list
 of species described by him.
 Nautilus, vol. 17, pp. 6-12, 1903.

Read (Thomas Thornton).
1. Preliminary note upon the rare metals in the ore from the Rambler mine,
 Wyoming.
2. Nodular-bearing schists near Pearl, Colorado.
 Jour. Geol., vol. 11, pp. 493-497, 2 figs., 1903.
 Gives observations on the petrology of the area.
Read (Thomas Thornton)—Continued.

3. The alkali deposits of Wyoming.
 Am. Geol., vol. 84, pp. 164-169, 1904.
 Describes their occurrence and discusses their origin.

 Describes the general geology and the occurrence and character of the copper ores.

5. The phase rule and conceptions of igneous magmas—their bearing on ore deposition.

Reade (T. Mellard).

1. The evolution of earth structure, with a theory of geomorphic changes.
 Includes papers by the author on “Denudation of the two Americas” and “The north Atlantic as a geological basin,” reprinted from the Proceedings of the Liverpool Geological Society, vol. 5, pts. 1 and 2, 1885 and 1886.

Reagan (Albert B.).

 Am. Geol., vol. 31, pp. 67-111, 7 pls., 1903.
 Describes general geologic relations and structure, character, and occurrence of strata of Carboniferous, Mesozoic, Tertiary, and Quaternary age, geographic and physiographic features, and economic resources of this region.

2. Age of the lavas of the plateau region [New Mexico and Arizona].
 Am. Geol., vol. 32, pp. 170-177, 1903.
 Gives stratigraphic sections of strata of Permo-Carboniferous, Tertiary, and Quaternary age of this region and discusses age of included lava sheets.

 Am. Geol., vol. 32, pp. 265-308, 2 pls., 1 fig., 1903.
 Describes geography, physiography, drainage, and general geological structure, occurrence, and character of strata of Archean, Algonkian, Silurian, Devonian, Tertiary, and Quaternary age, and intrusive rocks, and discusses origin of Quaternary and Tertiary deposits and the economic resources of the region.

4. The Jemez coal fields [New Mexico].
 Gives a short account of the geology and the occurrence and character of the coal strata.

5. Some geological observations on the central part of the Rosebud Indian Reservation, South Dakota.
 Am. Geol., vol. 36, pp. 229-243, 1 pl. (map), 2 figs., 1905.
 Describes the occurrence, character, and relations of the Cretaceous and Tertiary stratified deposits and physiographic features.

Redway (Jacques W.).

1. A great lava flood.
 Defines types of volcanic outflows and describes the Tertiary lava flows of the Pacific region.

Reid (George D.).

1. The Burro Mountain copper district, New Mexico.

Reid (Harry Fielding).

1. De la progression des glaciers, leur stratification, et leurs veines bleues.

2. The variations of glaciers, VI.
 Jour. Geol., vol. 9, pp. 250-254, 1901.
 Gives a summary of the Fifth annual report of the International Committee on glaciers.

3. The variations of glaciers.
 Gives a summary of the Sixth annual report of the International Committee on glaciers.
Reid (Harry Fielding)—Continued.

4. A reconnaissance of Mt. Hood and Mt. Adams.

5. The variation of glaciers, VIII.
 Gives a summary of the seventh annual report of the International Committee on Glaciers and reports on the glaciers of the United States for 1902.

7. Glaciers.
 Describes formation and phenomena of glaciers.

10. The variations of glaciers. IX.
 Jour. Geol., vol. 12, pp. 252-253, 1904.
 Gives a summary of the eighth annual report of the International Committee on glaciers.
 Includes observations on the glaciers of the United States.

11. The relation of the blue veins of glaciers to the stratification, with a note on the variations of glaciers.

12. The flow of glaciers and their stratification.
 Appalachia, vol. 11, pp. 1-6, 2 pls., 1 fig., 1905.

13. The variations of glaciers. IX.
 Gives a summary of the ninth annual report of the International Committee on glaciers.

15. [In discussion of paper by R. S. Tarr, "Gorges and Waterfalls of central New York."]

16. The reservoir lag in glacier variations.

17. The glaciers of Mt. Hood and Mt. Adams.

Reid (John A.).

1. The igneous rocks near Pajaro [California].
 Describes geologic occurrence and petrographic characters of the granite rocks of the Coast Ranges of California.

2. Preliminary report on the building stones of Nevada, including a brief chapter on road metal.

3. The structure and genesis of the Comstock Lode.

Reitlinger (J.), Kraus (E. H.) and.

1. Hussakite, a new mineral, and its relations to xenotime.
 See Kraus (E. H.) and Reitlinger (J.), 1.
FOR THE YEARS 1901-1905, INCLUSIVE.

Renault (B.).
1. Sur quelques microorganismes des combustibles fossiles.
 vol. 14, livraison 1, pp. 5-160, atlas of 16 pls., 1900.
 Contains descriptions of fossils from the Coal Measures of the Appalachian region.

Rice (William North).
1. The physical geography and geology of Connecticut.
 Describes the physiographic features of Connecticut and their relation to the geologic structure of the State.
2. The proper scope of geological teaching in the high school and academy.
3. The classification of mountains.

Richards (Joseph W.).
1. "Mohawkite."
 Gives results of the author's chemical studies, which prove the existence of the species termed mohawkite and of another species for which the name ledouxite is proposed.

Richards (Ralph W.).
1. A new habit for chalcopyrite.
 Describes occurrence and crystallographic features.

Richardson (C. H.).
1. Analysis of Washington [Vermont] marble, with notes upon the distribution and age.
2. The terranes of Orange County, Vermont.
 Discusses the topographic and geologic features, the occurrence and characters of economic products, and the petrographic and chemical characters of the rocks.

Richardson (Clifford) and Wallace (E. C.).
1. Petroleum from the Beaumont, Texas, field.
 Discusses the occurrence, composition and refining of the oil of the Beaumont field.

Richardson (G. M.).
1. Edward Waller Claypole as a teacher.
 Am. Geol., vol. 29, pp. 24-30, 1902.

Richardson (George Burr).
1. The misnamed Indiana anticline.
 Jour. Geol., vol. 10, pp. 700-702, 1 fig., 1902.
 Describes certain structural phenomena in Pennsylvania.
 Jour. Geol., vol. 11, pp. 365-393, 4 figs., 1903.
 Describes physical characters, geographic extent, general geological relations, and stratigraphy of the Red Beds in the Black Hills, and discusses the origin of their color.
3. Indiana folio, Pennsylvania.
 Describes physiographic features, the character, occurrence, and relations of Carboniferous strata, and general geologic structure, the character and occurrence of the coals, natural gas, and other economic resources.
Richardson (George Burr)—Continued.

 Tex. Univ., Min. Surv., Bull. no. 9, 119 pp., 11 pls., 4 figs., 1904.
 Describes the topography, the character, occurrence, and geologic relations of pre-Cambrian, Cambrian, Ordovician, Silurian, Carboniferous, Triassic, Jurassic, Cretaceous, and Quaternary deposits, the mineral resources, and underground water supply of the region.

5. Stratigraphic sequence in trans-Pecos Texas, north of the Texas and Pacific Railway.

6. Natural gas near Salt Lake City, Utah.
 Describes the occurrence and character of natural gas near Salt Lake City, Utah.

7. Salt, gypsum, and petroleum in trans-Pecos Texas.
 Describes briefly the topography and stratigraphy of the region, and the occurrence of salt, petroleum, and gypsum.

8. Native sulphur in El Paso County, Tex.
 Describes the occurrence of sulphur.

Rickard (Edgar).
1. Tin deposits of the York region, Alaska.
 Describes the geology of the region and the occurrence of tin.

Rickard (Forbes).
1. Notes on Nome, and the outlook for vein mining in that district [Alaska].
 Contains notes on the geology of the region and the occurrence of gold.

2. Copper deposits in Sinaloa and southern Sonora [Mexico].
 Describes the occurrence, geologic relations, and economic development of copper-ore deposits in this part of Mexico.

 Describes the general geology of the Little Dragoon mountains in Arizona, and the geologic relations, occurrence, character, and mining of the deposits of tungsten ores.

Rickard (T. A.)
1. The Cripple Creek volcano [Colorado].
 Gives an account of the various stages of eruption in this volcano and compares it with volcanos in other regions.

2. The telluride ores of Cripple Creek [Colorado] and Kalgoorlie [Australia].
 Describes the characteristics of the ores of these regions.

3. The formation of bonanzas in the upper portions of gold-veins.
 Discusses enrichment by concentration through the action of underground water by solution and precipitation, and the distribution of ore-bonanzas in Australia, Colorado, California, and New Zealand.

4. Recent progress in the study of ore deposits.
 Eng. & Mg. Jour., vol. 73, pp. 106-107, 1902.

5. The Geological Survey and the western mines.

6. An example of the localization of rich ore.
RICKARD (T. A.)—Continued.

7. Across the San Juan Mountains.
 New York, The Engineering and Mining Journal, 116 pp., illus., 1903; appeared serially in the
 Contains observations on the geologic structure, ore deposits, and mining operations of southwestern Colorado.

8. The lodes of Cripple Creek [Colorado].
 Discusses the occurrence of ore bodies.

 Discusses the distribution of water underground and its bearing upon the origin of ore deposits.

10. The syncline as a structural type.
 Discusses the syncline in relation to ore deposits.

11. The veins of Boulder and Kalgoorlie.
 Describes the occurrence, character, and structure of gold-bearing veins of Boulder, Colorado and Kalgoorlie, West Australia.

12. The lodes of Cripple Creek [Colorado].
 Discusses the general geology of the region, the occurrence and character of the lodes and veins, and the position of the ore bodies.

14. Copper mines of Lake Superior.
 Includes a description of the general geology of the region, the character and occurrence of the copper-ore deposits, and the mining operations.

15. The copper mines of Lake Superior.
 New York, The Engineering & Mining Journal, 1905. 164 pp., illus.

RICKERT (Julius).

1. Coal in Alberta, Canada.
 Eng. & Mg. Jour., vol. 73, pp. 766-767, 1902.
 Contains brief notes on the coals of Crow's Nest coal field.

RIES (Heinrich).

1. Clays and shales of Michigan, their properties and uses.
 Contains notes on the geologic occurrence and chemical composition of clays in Michigan.

2. Theodore Greely White.
 Am. Geol., vol. 28, pp. 269-270, 1 pl. (por.), 1901.
 Gives a brief sketch of his life and work, and a list of publications.

3. Clays of New York, their properties and uses.

 Discusses origin, chemical composition and geologic occurrence in New York of lime and cement materials.

 Discusses origin, composition, properties, geologic and geographic distribution, and working of the clays of Maryland.
6. The clays of the United States east of the Mississippi River.
 Discusses origin, geographic and geologic distribution of clays in the United States east of the
 Mississippi River, and their properties, composition, and utilization.

 Describes origin and nature of peat, its utilization, and its occurrence in New York.

8. Magnetite deposits at Mineville, New York, and a description of the new electric
 concentrating plant.
 Describes the character and occurrence of the iron ore deposits.

9. The coal mines at Las Esperanzas, Mexico.
 Describes the character, geologic occurrence, and mining of the Cretaceous coal beds.

 Gives notes on the occurrence of economic materials and a geological section of a deep well.

11. Notes on recent mineral developments at Mineville [New York].
 Brief notes on the occurrence and production of iron ore at this locality.

 N. J. Geol. Surv., vol. 6, pp. 1-115, 15 pls., 34 figs., 1904.
 Discusses mode of occurrence, methods of working, chemical and physical properties.

13. The manufacture of clay products, with special reference to the New Jersey
 industry.
 N. J. Geol. Surv., vol. 6, pp. 211-583, 82 pls., 5 figs., 1904.
 Includes notes on the occurrence and properties of clays.

14. The coal fields of Texas. Locations of the different deposits. Quality of the
 coals as shown by analyses. Production of the State.

15. Economic geology of the United States.

Riggs (Elmer S.).
1. The Dinosaur beds of the Grand River valley of Colorado.
 Describes the general character of the Cretaceous, Jurassic, and Triassic strata, and the occurrence
 of vertebrate remains.

2. The fore leg and pectoral girdle of Morosaurus. With a note on the genus Cama-
 rosaurus.

3 The largest known dinosaur.
 Contains brief description of the skeleton obtained by a recent expedition of the Field Columbian Museum.

4. The vertebral column of Brontosaurus.

5. The use of pneumatic tools in the preparation of fossils.

6. Brachiosaurus altithorax, the largest known dinosaur.
 Gives a description of this Jurassic fossil and discusses its relationships.

7. Structure and relationships of Opisthocoelian dinosaurs. Part I. Apatosaurus
 Marsh.
 Field Col. Mus., Geol. ser., vol. 2, pp. 165-196, 8 pls., 18 figs., 1903.
Riggs (Elmer S.)—Continued.
8. Dinosaur footprints from Arizona.
 Describes occurrence and character of footprints.

Riggs (Elmer S.) and Farrington (Oliver Cummings).
1. The Dinosaur beds of the Grand River Valley of Colorado.

Ritter (Etienne A.).
1. Le district aurifère de Cripple Creek et ses récents développements dans la zone profonde.
 Describes the general geology, the lithology, the veins and their minerals, and the ore deposits of the Cripple Creek gold mining district.

Ritter (Wm. E.).
1. Some observations bearing on the probable subsidence during recent geologic times of the Island of Santa Catalina off the coast of southern California.

Rivers (J. J.).
1. Descriptions of some undescribed fossil shells of Pleistocene and Pliocene formations of the Santa Monica Range [California]

Robbins (F.).
1. Ore occurrence at Leadville, Colo.
 Describes the general stratigraphy of the region and the occurrence of the ore bodies.

Roberts (Milnor).
1. Note on the action of frost on soil.
 Jour. Geol., vol. 11, pp. 314-317, 4 figs., 1903.

Roberts (Milnor), Landes (Henry), Thyng (William S.), Lyon (D. A.), and
1. The metalliferous resources of Washington, except iron.
 See Landes (H.), Thyng (W. S.), Lyon (D. A.), and Roberts (M.), 1.

Robertson (William Fleet).
1. Summary report on the valley of the Flathead River [British Columbia].
 Includes observations upon the physiography, geology, and economic resources of the region examined.

 Includes observations upon the geology and economic resources of the region.

 Includes observations upon the geology of the region.

4. Petrography of rock samples from British Columbia.
 Gives reports upon examinations of rock specimens from British Columbia by A. E. Barlow, J. A. Dresser, and L. P. Silver.

Robinson (H. H.).
1. On octohedrite and brookite from Brindletown, North-Carolina.
 Describes occurrence and crystallographic characters of the minerals.
Robinson (Neil).
1. The Kanawha and New River coal fields of West Virginia, U. S. A.
Charleston, W. Va., 23 pp. 3 pis., 1904. [Private publication].
Includes notes upon the occurrence, geologic relations, composition, fuel values, and production of coal in the Kanawha and New River coal fields of West Virginia.

Rockstroh (Edwin).
1. Recent earthquakes in Guatemala.

Rockwell (Cleveland).
1. The Coos Bay coal fields [Oregon].
Contains notes on the geologic structure of this area.

Rogers (Austin F.).
1. The Pottawatomie and Douglas formations along the Kansas River.
Gives lists of fossils from various localities.
2. Mineralogical notes, no. 2.
Describes crystallographic characters of calcite, galena, pyrite, topaz, leadhillite, ilvaite, caledonite, barite, and celestite.
3. Some new American species of Cyclus from the Coal Measures.
4. Mineralogical notes, no. 3.
School of Mines Quart., vol. 33, pp. 133-139, 4 figs., 1902.
Presents crystallographic notes on gypsum, celestite, barite, anglesite, cerussite, vesuvianite, calcite, dolomite, pyrite, and quartz crystals.
5. The crystallography of the calcites of the New Jersey trap region.
School of Mines Quart., vol. 23, pp. 336-347, 1902.
6. The minerals of the Joplin, Mo., lead and zinc district.
7. A method for the exact expression of crystal habit.
Sch. of Mines Quart., vol. 25, pp. 199-203, 22 figs., 1904.

Rogers (Austin F.), Beede (J. W.) and.
1. Coal Measure faunal studies, III. Lower Coal Measures.
See Beede (J. W.) and Rogers (Austin F.), 1.

Rohn (Oscar).
1. The Baraboo iron range [Wisconsin].
Describes the general geology and the occurrence and character of the iron ore.

Rolfe (Charles W.).
1. The geology of Illinois as related to its water supply.
Ill. Univ., Chemical Survey of the waters of Illinois, pp. 41-56, 2 pls. (geol. maps), 1903.
Gives an outline of the general geology and the geological history of Illinois.

Rollet de l'Isle et Giraud, Lacroix (A.).
1. Sur l'éruption de la Martinique.
See Lacroix (A.), Rollet de l'Isle et Giraud (J.), 1.

Ropes (Leverett S.).
1. [Corundum of North Carolina.]
Min. Ind., 1899, pp. 12-14, 1900.
Notes on occurrence.

Rose (Robert Selden).
1. The geology of some of the lands in the Upper Peninsula [Michigan].
Describes the general geology and the occurrence and character of the iron-ore deposits.
FOR THE YEARS 1901-1905, INCLUSIVE. 289

Rose (Robert Selden)—Continued.

2. The geology of some of the lands in the Upper Peninsula [Michigan].
 Describes the geologic occurrence, character, and location of iron ores in the Upper Peninsula.

Rowe (Jesse Perry).

1. Some volcanic ash beds of Montana.
 Mont. Univ., Bull. no. 17 (Geol. ser. no. 1), 32 pp., 9 pls., 1903.
 Discusses the origin of the volcanic ash of Montana; describes its composition and properties and distribution in the State by counties; gives a list and figures of fossil leaves from the ash of Missoula County.

2. Some Montana coal fields.
 Describes the bituminous and lignite coal resources of Montana and the geographic distribution, by counties, of coal deposits.

3. Nodular barite and selenite crystals of Montana.
 Am. Geol., vol. 33, pp. 185-199, 1904.
 Describes occurrence and composition of selenite crystals and nodular barite in Montana.

4. Pseudomorphs and crystal cavities.
 Describes material from Shoshone, Idaho.

5. Montana gypsum deposits.
 Describes the occurrence, character, and geological relations of gypsum deposits in Montana, and their utilization.

6. The Montana coal fields.
 Mg. Mag., vol. 11, pp. 241-260, 7 figs., 1905.

Rowley (R. R.).

1. Two new genera and some new species of fossils from the upper Paleozoic rocks of Missouri.
 Am. Geol., vol. 27, pp. 343-355, 1 pi., 1901.
 Describes species of two little-known groups of blastoids.

2. New species of fossils from the Subcarboniferous rocks of northeastern Missouri.
 Am. Geol., vol. 29, pp. 303-310, 1902.

3. The Echinodermata of the Missouri Silurian and a new brachiopod.
 Am. Geol., vol. 34, pp. 269-282, 1 pi., 1904.

4. Missouri paleontology.
 Describes various species of fossils, in part new, mainly Echinodermata, from Mississippian formations of Missouri.

See also Greene (G. K.).

Ruddy (C. A.).

1. The water resources of Washington. Artesian water.

Ruddy (C. A.), Landes (Henry) and.

 See Landes (Henry) and Ruddy (C. A.), 1.

Ruedemann (Rudolf).

1. Hudson River beds near Albany and their taxonomic equivalents.
 Reviews previous work on these strata. Describes the lithologic and faunal characters at various localities in the region and discusses the geologic structure and correlation of the beds. Describes the characters of new species of fossils collected.

2. Trenton conglomerate of Rysedorph Hill, Rensselaer County, N. Y., and its fauna.
 N. Y. State Mus., Bull. 49, pp. 3-114, 9 pls., 1901.
 Describes the stratigraphic relations and characters of the fauna.

 Bull. 301—06—19
Ruedemann (Rudolf)—Continued.

3. The graptolite (Levis) facies of the Beekmantown formation in Rensselaer County, New York.
 N. Y. State Mus., Bull. no. 52, pp. 546-576; 1 pl., 1902.
 Describes the lithologic and faunal characters of the beds, and discusses their relations and correlation with Canadian and European strata of the same age.

4. Growth and development of Goniograptus thurau MiCoy.
 N. Y. State Mus., Bull. no. 52, pp. 576-592, 19 figs., 1902.
 Discusses the ontogeny of the species.

5. Noetling on the morphology of the pelecypods.
 Am. Geol., vol. 31, pp. 34-40, 1 pl., 1903.
 Gives a summary of Noetling's views on the "law of torsion" in pelecypod shells and the relations of the animal and the position of its shell.

6. Professor Jackel's theses on the mode of existence of Orthoceras and other cephalopods.
 Am. Geol., vol. 31, pp. 199-217, 1903.
 Gives a translation of Professor Jackel's theses and some of the discussion following (Zeitschrift der Deutschen geologischen Gesellschaft, 54 Bd., 2 Hft. Protokolle, pp. 67-101, 1902), and discusses these propositions. Includes "Annotations" by John M. Clarke.

 N. Y. State Mus., Bull. 69, pp. 934-958, 4 pls., 1903.
 Describes occurrence, character, geologic position, and paleontology of Upper Cambrian strata in Rensselaer County, New York, and discusses the relations of the Dictyonema beds of Scandinavia, Great Britain, and North America, and the bearing of the latter upon paleogeography.

 Gives a review of investigations upon the graptolites, discusses their structure, morphology, classification, phylogeny, range, and distribution, and gives systematic descriptions of the graptolites from the upper Cambrian and lower Ordovician of New York.

9. The structure of some primitive cephalopods.
 N. Y. State Mus., Bull. no. 50, pp. 296-341, 26 figs., 1905.

Ruedemann (Rudolf), Clarke (John M.) and.
 See Clarke (J. M.) and Ruedemann (Rudolf), 1.

Ruedemann (Rudolf), Clarke (J. M.), and Luther (D. D.).
1. Contact lines of Upper Siluric formations on the Brockport and Medina quadrangles [New York].
 See Clarke (J. M.), Ruedemann (R. J.), and Luther (D. D.). 1.

Ruhl (Otto).
1. The King-Ritter fault.
 Describes occurrence and character of faulting along the northern slope of the Ozark uplift in southwestern Missouri.

2. Observations at Pegmatite Hill (Camden County, Missouri).
 Describes the geologic structure at this locality.

Ruhm (H. D.).
1. The present and the future of the Mount Pleasant phosphate field.
 Describes discovery, occurrence, and production of phosphate rock in the Mount Pleasant phosphate field of Tennessee.

Russell (Israel C.).
1. Geology and water resources of Nez Perce County, Idaho. Part I.
 U. S. Geol. Surv., Water-Supply and Irrigation Papers, no. 53, pp. 1-85, 10 pls., 4 figs., 1901.
 Describes the pre-Tertiary terranes, the Columbia lava, the soils, and the physiography.
Russell (Israel C.)—Continued.

2. Geology and water resources of Nez Perce County, Idaho. Part II.
 U. S. Geol. Surv., Water-Supply and Irrigation Papers, no. 54, pp. 95-141, 10 figs., 1901.
 Describes the character and occurrence of the water supply, building stones, and lignite.
 Includes a bibliography of artesian waters and a note concerning Portland cement.

3. [Report to the National Geographic Society on the recent volcanic eruptions in the
 West Indies.]
 Describes the author's observations in Martinique and St. Vincent.

 Contains additional data on the eruptions and a bibliography.

5. Geology and water resources of the Snake River Plains of Idaho.
 U. S. Geol. Surv., Bull. no. 199, 192 pp., 25 pis., 6 figs., 1902.
 Describes topography, geology and resources of this area.

 Describes composition of Portland cement, method of manufacture, the geologic occurrence,
 properties and composition of limestones, shales, marls and clays occurring in Michigan
 suitable for the manufacture of Portland cement, and the development of the industry.

 U. S. Geol. Surv., Bull. no. 217, 83 pp., 18 pis., 2 figs., 1903.
 Describes climatic conditions, topography, hydrography, recent and Tertiary volcanic forma-
 tions, and the geologic structure of this region, and discusses conditions of origin and accumu-
 lation of petroleum.

9. Preliminary report on artesian basins in southwestern Idaho and southeastern
 Oregon.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 78, 51 pp., 2 pis., 3 figs., 1903.
 Includes a short account of the general geology of the region.

 Reprinted by permission, after revision by the author, from the National Geographic Maga-
 zine, vol. 13, no. 12, December, 1902. See no. 4 above.

 Jour. Geol., vol. 11, pp. 783-785, 1 fig., 1903.
 Describes glacier cornices and discusses their origin.

12. The Pele obelisk.

13. Criteria relating to massive-solid volcanic eruptions.
 Describes massive-solid volcanic eruptions, and discusses the character of the evidence neces-
 sary to determine that volcanic masses have been extruded in a solid state.

14. Physiographic problems of to-day.
 Jour. Geol., vol. 12, pp. 524-560, 1904.
 Discusses the scope, nomenclature, and field of investigation of physiography, the use of ideal
 physiographic types, the primary and secondary features of the earth's surface, and the
 relations of physiography to life and man.

 Includes chapters on the margin of the continent, the topography of the land, climate, plant
 life, animal life, geology, the aborigines, and political geography. In the chapter on geol-
 ogy describes the growth of the continent, the distribution and character of the rocks of
 which it is composed, and the occurrence of economic products.

 Gives a brief account of his life.
Russell (Israel C.)—Continued.

17. Bela Hubbard.
 Gives a brief account of his life.

 Am. Geol., vol. 35, pp. 1-4, 1 pl. (por.), 1905.
 Includes a list of his published writings.

19. The influence of caverns on topography.

20. Hanging valleys.
 Gives a classification of hanging valleys, describes their characters and origin, and discusses
 particularly the characteristics and origin of glaciated hanging valleys.

 Describes the general physiographic features and geology of the region, and in detail the phys­
 iographic features, the character and occurrence of volcanic and stratified rocks and the
 water resources of the counties included in the area under consideration.

22. The Pelé obelisk once more.
 Science, new ser., vol. 21, pp. 924-931, 1 fig., 1905.
 Discusses the mode of formation of the spire of Mont Pelé.

23. A geological reconnaissance along the north shore of Lakes Huron and Michigan.
 Describes briefly the character and occurrence of Ordovician, Silurian, and Devonian strata,
 and in detail the extent, character, and origin of Glacial deposits, and various physiographic
 features.

Rutland (Joshua).

1. Mammals and reptiles; or what was the Ice ages?
 Describes their occurrence and characters in geologic times.

Rutledge (J. J.), Clark (W. B.), Martin (G. C.) and

1. Distribution and character of the Maryland coal beds.
 See Clark (W. B.), Martin (G. C.), and Rutledge (J. J.), 1.

Rutley (Frank).

1. Mineralogy.
 p. 923, 1901.

Safford (J. M.).

 Describes the geologic relations of the various phosphate deposit

2. Classification of the geological formations of Tennessee.
 Gives in tabular form a list of the geological formations of Tennessee and includes brief notes
 regarding them.

Safford (J. M.), and Killebrew (J. B.).

1. The elements of the geology of Tennessee.
 Nashville, Tenn., 1900. 294 pp., 45 figs.

Salazar (Leopoldo).

1. Apuntes relativos al mineral de Taxco de Alarcon (Estado de Guerrero) [México].
FOR THE YEARS 1901-1905, INCLUSIVE. 293

Salisbury (Rollin D.).
1. The surface formations in southern New Jersey.
 Describes the character and occurrence of the surface formations of pre-Pleistocene and
 Pleistocene ages in southern New Jersey.

2. Glacial work in the western mountains in 1901.
 Jour. Geol., vol. 9, pp. 718-731, 1901.
 Describes the results of the work of several parties of students in various parts of western
 United States.

3. [In discussion of paper by T. C. Chamberlin on "The geologic relations of the
 human relics of Lansing, Kansas."]

4. Recent progress in glaciology.

5. Three new physiographic terms.
 Defines, discusses, and illustrates the application of the physiographic terms topographic
 unconformity, topographic and structural adjustment, and superimposed youth.

6. The mineral matter of the sea, with some speculations as to the changes which
 have been involved in its production.
 Jour. Geol., vol. 13, pp. 499-484 1905
 Discusses the amounts of various kinds of mineral matter in the sea, and the bearing of these
 facts upon geologic history and geologic time.

Salisbury (Rollin D.) and others.
1. New York City folio, New York-New Jersey.
 See Merrill (F.I.H.) and others, 1.

Salisbury (Rollin D.) and Blackwelder (Eliot).
 Jour. Geol., vol. 11, pp. 216-223, 2 figs., 1903.
 Describes distribution of glaciers in the region, and character, occurrence, and age of the
 glacial deposits.

Salisbury (Rollin D.), assisted by Kümml (Henry B.), Peet (Charles E.), and
Knapp (George N.).
1. The glacial geology of New Jersey.
 N. J. Geol. Surv., Final Rept., vol. 5, xxv+ 802 pp., 66 pls., 102 figs. in text, 4 maps (in pocket),
 1902.
 Discusses character, distribution, and origin of the drift, the development of the ice sheet,
 the topographic and drainage changes produced by it, the history and cause of the Glacial
 period, and describes in detail the drift features of northern New Jersey

Salisbury (Rollin D.), Chamberlin (Thomas C.), and.
 See Chamberlin (Thomas C.) and Salisbury (Rollin D.), 1.

Sapper (Carl).
 Petermanns Mitteilungen, Bd. 46, pp. 149-161, 1 pl., 1900.

2. Die südlichsten Vulkane Mittel-Amerikas.
 Describes volcanoes in the southern part of Central America.

3. Die Alta Verapaz (Guatemala).
 Describes the general geology, the character and occurrence of pre-Paleozoic, Paleozoic,
 Mesozoic, Tertiary, and Cenozoic formations, the geologic history, and the petrology of this
 region.

4. Das Erdbeben in Guatemala vom 18. April, 1902.
 Petermanns Mitteilungen, Band 48, pp. 136-191, 1 pl. (map), 1902.
 Describes the earthquake of April 18, 1902, in Guatemala.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Sapper (Carl)— Continued.

5. Der Ausbruch des Vulkans Santa Maria in Guatemala (Oktober, 1902).
 Describes phenomena connected with the volcanic eruption of Santa Maria in Guatemala in October, 1902.

 Centralbl. f. Min., pp. 71-72, 1903.
 Gives further observations upon the eruption of the volcano St. Maria in Guatemala.

7. Die jüngsten Ereignisse am Vulkan Izalco (Salvador).
 Describes volcanic phenomena in Salvador.

8. Ein Besuch der Insel Grenada.
 Gives observations upon volcanic deposits of this island.

 Centralbl. f. Min., pp. 246-258, 5 figs., 1903.
 Gives observations upon the geology and volcanic phenomena of St. Vincent.

 Gives observations upon the geology and sulphur springs of the island.

11. Ein Besuch der Insel Montserrat (Westindien).
 Centralbl. f. Min., pp. 279-283, 1 fig., 1903.
 Gives observations upon the geology of the island.

 Gives observations upon geologic features of the island.

 Gives observations upon the geology of these islands.

 Centralbl. f. Min., pp. 319-323, 2 figs., 1903.
 Gives observations upon the geology and fumaroles of the island.

15. Ein Besuch von Martinique.
 Centralbl. f. Min., pp. 337-388, 7 figs., 1903.
 Describes observations upon the geology of the island and the phenomena connected with the eruptions of Mont Pelée.

 Centralbl. f. Min., pp. 369-373, 2 figs., 1903.
 Describes the crater of the Soufrière of St. Vincent.

17. Ein Besuch der Inseln Nevis und S. Kitts (S. Christopher) [West Indies].
 Gives observations upon the geologic formations of the island.

 Globus, Bd. 84, pp. 297-303, 377-388, 1903.
 Describes the eruption and its effects of the Soufrière on St. Vincent.

 Discusses volcanic and related phenomena of the Lesser Antilles that took place in 1902 and 1903, the character and occurrence of the volcanic rocks ejected, and the forms of the Antillean volcanoes.

 Neues Jahrb. f. Min., etc., Bd. 1, pp. 59-90, 7 pls., 8 figs., 1904.
 Describes volcanic eruptions of 1902 in Central America.

 Notes the activity of some volcanos in several States of Central America.
FOR THE YEARS 1901-1905, INCLUSIVE.

Sapper (Carl)—Continued.

 Describes briefly the general geologic structure of Central America.

23. Ein neuer Vulkanausbruch in Mittelamerika.
 Centralbl. f. Min., Geol. u. Pal., no. 6, pp. 172-175, 1905.
 Describes an eruption of the volcano Momotombo in Nicaragua that took place in January 1905.

 Stuttgart: Verlag der E. Schweizerbartschen Verlagsbuchhandlung (E. Nigeli), 1905. vi, 334 pp., 33 pls. and 45 figs.
 Describes volcanic eruptions of 1902-3, and physiographic and geologic features of the Lesser Antilles.

Sardeson (Frederick W.).

1. The Saint Peter sandstone.
 Discusses geographic distribution and lithologic characters, and describes the fauna.

2. The fauna of the Magnesian series.

3. Problem of the Monticuliporoidea. I.
 Jour. Geol., vol. 9, pp. 1-27, 1 pl. and 1 fig., 1901.
 Describes the characters of various species of Trachyphyllum and discusses their affinities.

4. Problem of the Monticuliporoidea. II.
 Jour. Geol., vol. 9, pp. 149-178, 1 pl., 1 fig., 1901.
 Describes the general characters of various species of Cryptostomata and discusses their affinities.

5. Note on the western Tertiary.
 Contains notes on the occurrence of fossils as indicating the mode of formation of the strata.

6. Paleozoic fossils in the drift [Minnesota].

7. Fossils in the St. Peter sandstone.

8. The lower Silurian formations of Wisconsin and Minnesota compared.

9. The range and distribution of the lower Silurian fauna of Minnesota, with descriptions of some new species.

10. On the deceptive fossilization of certain pelecypod species and on the genus Eurymya.
 Describes the preservation of Moliolopsis plana Hall.

11. The Carboniferous formations of Humboldt, Iowa.
 Am. Geol., vol. 30, pp. 300-312, 1 pl., 1902.
 Describes the occurrence of the Kinderhook at this locality and the characters of the fossils collected.

13. The phylogenic stage of the Cambrian Gastropoda.
 Jour. Geol., vol. 11, pp. 409-422, 2 pls., 1903.

 Jour. Geol., vol. 13, pp. 351-357, 2 figs., 1905.
Sarle (Clifton J.).
1. Reef structures in Clinton and Niagara strata of western New York.
 Describes occurrence of irregular, hardened masses in the limestone and discusses their origin. Describes similar occurrences in other geologic horizons.

 N. Y. State Mus., Bull. 66, pp. 1080-1108, 21 pls., 1903.

3. Economic geology of Monroe County and contiguous territory [New York].
 Describes the general geology of the county, and the occurrence and utilization of stone, clays, sand, gravel, gypsum, and peat.

4. The burrow origin of Arthropycus and Dedealos (Vexillum).

Savage (T. E.).
1. Drift exposure in Tama County [Iowa].
 Describes the strata exposed in a railroad cutting and refers them to the Kansas drift, Aftonian inter-Glacial period, and pre-Kansan drift.

2. Geology of Henry County [Iowa].
 Describes the physiographic and drainage features, geologic structure, and economic products of this county.

3. Geology of Tama County [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 185-253, 13 figs., 1903.
 Describes topography and drainage, the character, occurrence, and geologic relations of Devonian and Carboniferous strata and Glacial and post-Glacial deposits, and the economic resources.

4. The Toledo lobe of Iowan drift.
 Describes the geographic position, physiographic features, and component materials of this portion of the drift sheet, and the distribution of drift deposits in the lobe, and the sequence of geologic events producing them.

5. A buried peat bed in Dodge Township, Union County, Iowa.
 Describes occurrence and geologic relations of a peat bed in glacial deposits, and discusses its origin.

6. Report of the assistant State geologist [Iowa].
 Outlines the official work carried on by the author.

7. Geology of Benton County [Iowa].
 Describes the physiographic features, the occurrence, character, and relations of Devonian and Mississippian strata and Pleistocene deposits, and the economic products.

8. Geology of Fayette County [Iowa].
 Describes the physiography, the occurrence, character, and relations of Ordovician, Silurian, and Devonian strata and Pleistocene deposits, and the economic resources.

Savicki (Wm. V.).

Scalia (S.), Burckhardt (C.) and.
1. La faune marine du Trias Supérieur de Zacatecas [Mexique].
 See Burckhardt (C.) and Scalia (S.), 1.

Schaller (Waldemar T.).
Schaller (Waldemar T.)—Continued.
2. Spodumene from San Diego Co., California.
 Describes occurrence, crystallization, physical properties, and composition.

3. Notes on some California minerals.
 Describes the character, occurrence, and composition of halloysite, amblygonite, boothite,
 pisanite, and a quartz pseudomorph.

4. The tourmaline localities of southern California.
 Describes the occurrence and character of tourmaline deposits.

5. Dumortierite.
 Describes the general and crystallographic characters, and composition of this mineral.

7. Dumortierite.
 U. S. Geol. Surv., Bull. no. 262, pp. 91-120, 3 figs., 1905.

8. Mineralogical notes.
 U. S. Geol. Surv., Bull. no. 262, pp. 121-144, 4 figs., 1905.
 Describes the occurrence, composition, and optical and other properties of various minerals.

Schaller (W. T.) and Hillebrand (W. F.).
1. Crystallographical and chemical notes on lawsonite.

2. Notes on lawsonite.
 U. S. Geol. Surv., Bull. no. 262, pp. 58-60, 1 fig., 1905.
 Describes the optical characters and chemical composition.

Schaller (W. T.), Graton (L. C.) and.
1. Purpurite, a new mineral.
 See Graton (L. C.) and Schaller (W. T.), 1.

Scherer (George H.).
1. Geology of the Hahatonka district, Camden County [Missouri].
 Gives an account of the occurrence and geologic formations of the region and of the springs.

Schiotz (O. E.).
1. Results of the pendulum observations and some remarks on the constitution of
 the earth’s crust.

Schmeckebier (Laurence F.).
1. Catalogue and index of the publications of the Hayden, King, Powell, and
 Wheeler surveys, namely: Geological and Geographical Survey of the Terri-
 tories, Geological Exploration of the Fortieth Parallel, Geographical and Geo-
 logical Surveys of the Rocky Mountain region, Geographical and Geological
 Surveys west of the One Hundredth Meridian.
 U. S. Geol. Surv., Bull. no. 222, 208 pp., 1904.

Schmidt (C.).
1. Ueber vulkanische Asche, gefallen in San Cristobal L. C. (Süd-Mexiko), am 25
 Oktober 1902.
 Centrbl. f. Min., p. 131, 1703.
 Discusses the composition of volcanic ashes.

Schmitt (Joseph).
Schneider (Philip F.).
1. Notes on the geology of Onondaga County, N. Y.
 Syracuse, N. Y., 47 pp., 1894. (Privately printed.)
 Describes the character, occurrence, and geologic relations of the formations of Silurian and
 Devonian age in this county, and gives observations upon the occurrence of fossils.

2. Limestones in central New York.
 Onondaga Acad. Sci., Science ser., no. 1, 16 pp., 1897.
 Describes the occurrence, character, and utilization of the limestones in central New York.

3. The Marcellus fault.
 Describes faulting in the vicinity of Marcellus, N. Y.

 Describes the occurrence and character of the dike rock.

5. The whetstone industry.
 Describes the occurrence and character of the Labrador whetstone in the Portage group in
 the vicinity of Syracuse, N. Y.

6. The geology of the serpentines of central New York.
 Describes the occurrence and petrologic characters of dikes at Syracuse, N. Y.

8. South Onondaga geology.
 In “The Septuagenary of the South Onondaga Methodist Episcopal Society” by W. W.
 Newmnn (Syracuse, N. Y., C. W. Bardeen, 1903, 108 pp.), pp. 80-84, 1904.
 Reviews previous exploration of the region, describes the geography, character, and occur­
 rence of Silurian, Devonian, Cretaceous, Tertiary, and Quaternary strata, and the mineral
 resources, principally gold and coal.

Scholz (Carl).
1. [Discussion of paper by Charles Catlett on “Coal outcrops.”]

2. The coal fields of Arkansas and Indian Territory.
 Mg. Mag., vol. 11, pp. 520-524, 2 figs., 1905.

Schottler (W.).
1. Bemerkung über die in San Cristobal (S.-Mexico) am 25 Okt. 1902 gefallene
 Asche.
 Describes petrographic characters of volcanic ashes from San Cristobal, in southern Mexico.

Schrader (Frank Charles).
 Describes the character and occurrence of the Silurian, Devonian, Carboniferous and Meso­
 zoic rocks.

2. The geological section of the Rocky Mountains in northern Alaska.

3. Reconnaissance in northern Alaska across the Rocky Mountains, along Koyukuk,
 John, Anaktuvuk, and Colville rivers, and the Arctic coast to Cape Lisburne,
 in 1901.
 U. S. Geol. Surv., Professional Paper no. 20, 139 pp., 16 pls., 4 figs., 1901.
 Reviews previous exploration of the region, describes the geography, character, and occur­
 rence of Silurian, Devonian, Cretaceous, Tertiary, and Quaternary strata, and the mineral
 resources, principally gold and coal.
FOR THE YEARS 1901-1905, INCLUSIVE.

Schrader (F. C.) and Brooks (Alfred H.).
1. Some notes on the Nome gold region of Alaska.
Describes the topography of the region, the occurrence of the placers, and the origin of the beach placers.

Schrader (Frank C.) and Haworth (Erasmus).
1. Oil and gas of the Independence quadrangle, Kansas.
Describes occurrence and character of clays, and their manufacture into brick and other wares.

Schrader (Frank Charles) and Spencer (Arthur Coe).
1. The geology and mineral resources of a portion of the Copper River district, Alaska.
U.S. Geol. Surv. (Special reports on Alaska.) 94 pp., 13 pis., 1901.
Describes the general geography and physiography, the occurrence and character of the sedimentary and igneous rocks, and the occurrence of copper and gold.

Schrader (F. C.), Haworth (E.) and.
See Haworth (E.) and Schrader (P. C.), 1.

Schrader (F. C.), Mendenhall (Walter C.) and.
1. The mineral resources of the Mount Wrangell district, Alaska.
See Mendenhall (W. C.) and Schrader (F. C.), 1.
2. Copper deposits of the Mount Wrangell region, Alaska.
See Mendenhall (W. C.) and Schrader (F. C.), 2.

Schramm (Eck Frank).

Schuchert (Charles).
1. On the Helderbergian fossils near Montreal, Canada.
Am. Geol., vol. 27, pp. 245-256; 4 figs., 1901.
Contains notes on the fossils and probable correlations of the St. Helens Island faunas of New York. Figures two new species.
2. Morse on living brachiopods.
Am. Geol., vol. 31, pp. 112-121, 1903.
Reviews "Observations on living brachiopods," by Edward S. Morse, especially such parts as have a direct bearing on fossil forms. Includes observations on paleozoic forms.
Am. Geol., vol. 31, pp. 131-135, 1 pl. (por.), 1903.
Gives a sketch of the life of Mr. I. H. Harris and an account of the collection which he accumulated.
Am. Geol., vol. 31, pp. 160-178, 3 figs., 1903.
Discusses stratigraphic position of the Coralline limestone of the New York series and gives notes upon its fauna, with descriptions of some species.
5. On the faunal provinces of the middle Devonic of America and the Devonic coral sub-provinces of Russia, with two paleographic maps.
Gives a summary of Lebedew's work on the corals of Russia, describes the faunal provinces of the American middle Devonic and relations of their faunas with one another and with the faunas of European provinces, and tabulates the distribution of American corals in the Mississippian and Dakota seas.
Schuchert (Charles)—Continued.

6. On new Siluric Cystoidea and a new Camarocrinus.

7. On the lower Devonic and Ontaric formations of Maryland.
 Describes character, occurrence, faunal contents, and geologic relationships of Silurian and
 Devonian strata in Allegany County, Maryland, and vicinity.

8. A noteworthy crinoid.
 A brief note on the occurrence of Uintacrinus socialis.

 Gives an account of his life and paleontologic work, and a list of his published papers.

10. The stratigraphy and paleontology of the Niagara of northern Indiana.
 Reviews a paper with the above title in the Twenty-eighth Annual Report of the Geological
 Survey of Indiana by E. M. Kindle, and discusses the subject-matter of the paper.

11. On Siluric and Devonic Cystoidea and Camarocrinus.
 Describes the occurrence near Keyser, West Virginia, of a cystid fauna, and gives a section
 of the strata of the Manlius formation at this locality and systematic descriptions of
 Silurian and Devonian cystids.

 Am. Geol., vol. 33, pp. 143-154, 1904.

 The reviewer includes notes of his own observations upon the occurrence and relations of
 Devonian faunas in the Appalachian region.

15. John Bell Hatcher.
 Am. Geol., vol. 35, pp. 131-141, 1 pl. (por.), 1905.
 Includes a list of his published writings.

Schuchert (Charles), assisted by Dall (W. H.), Stanton (T. W.), and Bassler
 (R. S.).

1. Catalogue of the type specimens of fossil invertebrates in the Department of Geology,
 United States National Museum.
 In the introduction to the catalogue discusses the kinds and nomenclature of type material.

Schuchert (Charles) and Buckman (S. S.).

1. The nomenclature of types in natural history.
 Science, new ser., vol. 21, pp. 899-901, 1905.

Schuchert (Charles), Ulrich (E. O.) and.

1. Paleozoic seas and barriers in eastern North America.
 See Ulrich (E. O.) and Schuchert (C.), 1.

Schultz (Alfred R.).

 Describes briefly the topography, general geology, and the underground water resources.

Schwarz (T. E.).

1. Notes on an occurrence of mica in Boulder County [Colorado].

2. Features of the occurrence of ore at Red Mountain, Ouray County, Colo.
 Discusses the occurrence of the ore bodies.
Scott (A. C.).
1. A brief summary of glacier work.
 Gives a general summary of the literature of glaciology.

Scott (Dunkinfield Henry).
1. Studies on fossil botany.

Scott (O. N.).
1. The ore deposits of Copper Mountain, Similkameen district, British Columbia.
 Describes the rocks of this area, the occurrence of the ore bodies, and their origin.

Scott (W. B.).
1. Historical geology.
 Abstract of lecture delivered at the Wagner Institute, Philadelphia, Pa.

2. Earth carrying.
 Abstract of lecture delivered at the Wagner Institute, Philadelphia, Pa.

3. John Bell Hatcher.
 Science, new ser., vol. 20, pp. 139-142, 1904.
 Gives an account of his life and work.

Scudder (Samuel H.).

Seals (John Henry).
1. The physical geography, geology, mineralogy, and paleontology of Essex County, Massachusetts.
 Salem, Mass., Published by the Essex Institute, 1905. 418 pp., 209 figs., map (in pocket).

Sebbin (E. W.).
1. Geology of Mexico.
 Gives a brief account of the general geology of Mexico.

Seely (Henry M.).
1. Sketch of the life and work of Augustus Wing.
 Describes the life of Augustus Wing and his work on the geology of Vermont.

2. The geology of Vermont.
 The Vermonter, vol. 5, pp. 53-67, Illus., 1901.
 Gives a general account of the geology of Vermont.

3. Some sponges of the Chazy formation.
 Discusses geologic position and gives descriptions of these forms.

5. The Stromatoceria of Isle La Motte, Vermont.

Sellards (E. H.).
1. Permian plants. Tseniopteris of the Permian of Kansas.
Sellards (E. H.)—Continued.

2. Fossil plants in the Permian of Kansas.
 Describes occurrence of the plant remains at various localities.

3. On the fertile fronds of Crossotheca and Myriotheca, and on the spores of other Carboniferous ferns from Mazon Creek, Illinois.

4. On the validity of Idiophyllum rotundifolium Lesquereux, a fossil plant from the Coal Measures of Mazon Creek, Illinois.
 Considers that the characters of this fossil plant agree with Neuropteris marinervis Bumb, and that the genus Idiophyllum has no standing.

5. Some new structural characters of Paleozoic cockroaches.
 Discusses structural features and immature stages, and describes several forms of Carboniferous cockroaches.

6. Codonotheca, a new type of spore-bearing organ from the Coal Measures.

8. A study of the structure of Paleozoic cockroaches, with descriptions of new forms from the Coal Measures.

Sellards (E. H.), Beede (J. W.) and.

1. Stratigraphy of the eastern outcrop of the Kansas Permian.
 See Beede (J. W.) and Sellards (E. H.), 1.

Shaaf (Albert), Price (J. A.) and.

1. Spy Run and Poinsett lake bottoms.
 See Price (J. A.) and Shaaf (A.), 1.

2. Abandoned meanders of Spy Run Creek [Indiana].
 See Price (J. A.) and Shaaf (A.), 2.

Shaler (M. K.), Taff (J. A.) and.

1. Notes on the geology of the Muscogee oil fields, Indian Territory.
 See Taff (J. A.) and Shaler (M. K.), 1.

Shaler (N. S.).

1. Broad valleys of the Cordilleras.
 Discusses the origin and development of these valleys and the bearing of the evidence on the orographic features of the region.

2. A comparison of the features of the earth and the moon.

Sharwood (W. J.), Eakle (A. S.) and.

1. Luminescent zinc-blende.
 See Eakle (A. S.) and Sharwood (W. J.), 1.

Shattuck (C. H.).

1. A fossil forest in Jackson County [Kansas].
 Describes the occurrence of fossil plants in the Carboniferous of Jackson County, Kansas.

Shattuck (George Burbank).

1. The Pleistocene problem of the North Atlantic coastal plain.
 Johns Hopkins Univ., Circular no. 152, pp. 69-75, 1901; Am. Geol., vol. 28, pp. 87-107, 1901.
 Reviews the opinions of various writers on these problems and gives the author's conclusions.

2. Apparent unconformities during periods of continuous sedimentation.
FOR THE YEARS 1901-1905, INCLUSIVE.

3. Development of knowledge concerning the physical features of Cecil County [Maryland], with bibliography.
 Md. Geol. Surv., Cecil Co., pp. 31-62, 3 pls., 3 figs., 1902.

4. The physiography of Cecil County [Maryland].
 Md. Geol. Surv., Cecil Co., pp. 63-82, 4 pls., 1 fig., 1902.
 Discusses topographic features and their origin.

5. The geology of the coastal plain formations [of Cecil County, Maryland].
 Md. Geol. Surv., Cecil Co., pp. 149-194, 5 pls., 4 figs., 1902.
 Describes the character, distribution, and history of geologic formations in this county of Quaternary, Tertiary, and Mesozoic age.

6. The Miocene formation of Maryland.

7. The Pleistocene problem in Maryland.

8. The Mollusca of the Buda limestone, with an appendix on the corals of the Buda limestone.
 U. S. Geol. Surv., Bull. no. 205, 94 pp., 27 pls., 1 fig., 1903.
 Gives a short account of the geology of the Buda limestone in Texas and descriptions of the molluscan fauna found therein.

10. The Miocene deposits of Maryland. Geological and paleontological relations, with a review of earlier investigations.
 Gives a historical review of investigations upon the Maryland Miocene deposits and a bibliography of literature relating thereto, and describes in detail the character, occurrence, relations, etc., of the Miocene formations in Maryland, with sections of strata and a tabular list of fossils, showing geographic and geologic distribution and range.

Shattuck (George Burbank) and Miller (Benjamin Leroy).

1. Physiography and geology of the Bahama Islands.

Sheak (W. H.), Blatchley (W. S.) and.

1. Trenton rock petroleum.
 See Blatchley (W. S.) and Sheak (W. H.), 1.

Shedd (S.).

1. The iron ores of Washington.
 Discusses the distribution, genesis, and working of the iron ores of the State of Washington, and gives chemical analyses.

2. The building and ornamental stones of Washington.
 Discusses physical properties required in building stones, and describes character, occurrence, and utilization of stone deposits of Washington suitable for building and decorative purposes.

Sheldon (George) and (J. M. Arms).

1. Newly exposed geologic features within the old "8,000 Acre Grant."
 New York, 21 pp., 12 pls., 1903. (Private publication.)
 Describes peculiar structural features in sand and clay deposits and columnar trap formations, and discusses their origin.

Sheldon (J. M. Arms).

 Describes the occurrence, character, and constitution of concretions from clay beds in the Connecticut Valley, and discusses their origin.
Shepard (Edward M.).
1. Table of geological formations.
 Gives in tabular form the geologic formations of Missouri correlated with those of Arkansas.
2. Notes on the wells, springs, and general water resources of Missouri.
3. The New Madrid earthquake.
 Jour. Geol., vol. 13, pp. 45-62, 5 figs., 1905.
 Describes the phenomena of the earthquake, features of the earthquake area and associated artesian conditions, and discusses the cause of the earthquake.
4. Spring system of the Decaturville dome, Camden County, Missouri.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 110, pp. 113-125, 4 figs., 1905.
5. Underground waters of eastern United States: Missouri.
 Describes the general geology and the physiographic provinces with particular reference to their underground water supplies.
6. Key to the rocks and geological horizons of Greene County [Missouri].

Day (A. L.) and Shepherd (E. S.).
1. The phase-rule and conceptions of igneous magmas. Discussion of paper by Mr. T. T. Read.
 See Day (A. L.) and Shepherd (E. S.), 1.

Sheridan (Jo E.).
1. Annual report of the mine inspector for the Territory of New Mexico.
 Includes a description of the New Mexico coal fields, showing the occurrence, character, geologic relations, etc., of the coal seams.

Sherwin (R. S.).
1. Notes on the geology of the Antelope Hills [Oklahoma].
 Gives a brief account of the geology of this region.
 Discusses the origin of the gypsum deposits of Kansas and Oklahoma.

Sherzer (William Hittell).
1. Ice work in southeastern Michigan.
 Jour. Geol., vol. 10, pp. 194-216, 8 figs., 1902.
 Describes the general topography, drift and ice action, and scouring in the region.
2. Glacial studies in the Canadian Rockies and Selkirks. (Smithsonian Expedition of 1904.) Preliminary report.

Shimek (B.).
1. Recent decline in the level of Lake Nicaragua.
 Refers to a paper published in 1896 on the same subject.
2. The loess of Iowa City and vicinity [Iowa].
 Gives list of loess and recent fossils, with notes on some of the species.
3. Pyramidula shimekii (Pilsbry) Shimek.
4. The loess of Natchez, Mississippi.
 Am. Geol., vol. 28, pp. 279-299, 7 pls., 1902.
 Gives lists of fossils found in the loess and describes the formation and character of the loess deposits.
Shimek (B.)—Continued.
5. The loess and the Lansing man.
 Am. Geol., vol. 32, pp. 353-369, 1903.
 Discusses the character of the fossil shells occurring in the loess and their bearing upon the question of the origin of the loess.

6. Living plants as geological factors.
 Discusses the action of plants in the disintegration and formation of deposits.

7. Fresh-water shells in the loess.

8. Helicina occulta Say.
 Discusses the geographical and geological distribution of this mollusk, which occurs in a fossil state in the loess.

 Includes the five following papers.

10. The loess of Natchez, Miss.
 This paper appeared in the American Geologist, vol. 30, 1902. See above!

11. The loess and the Lansing man.
 This paper appeared in the American Geologist, vol. 32, 1903. See above.

12. The Lansing deposit not loess.
 Discusses the characters which distinguish loess deposits, and their bearing upon the kind and age of the deposits containing the Lansing human remains.

13. Loess and the Iowan drift.
 Discusses the position of loess deposits with reference to drift deposits, and the bearing of these facts upon the question of the formation of the loess, and points out the stratigraphic position of various loess deposits.

14. Evidences (?) of water-deposition of loess.
 Discusses the evidences advanced for the theory of the deposition of loess by water action.

15. Additional note on Helicina occulta.
 Discusses the occurrence of this shell in the loess and the evidence it gives as to climatic conditions.

Shimer (Hervey Woodburn).
1. Petrographic description of the dikes of Grand Isle, Vermont.
 Discusses the composition and occurrence of the dikes on this island.

 Am. Geol., vol. 31, pp. 62-64, 1903.
 Contains notes on the geology and petrology of Manhattan Island and localities in the vicinity of New York City.

3. [Field work at Larrabee's Point, Vermont.]
 Am. Geol., vol. 32, pp. 130-131, 1903.

 Describes observations in northeastern New Jersey.
 Bull. 801—06——20
Shimer (Hervey Woodburn)—Continued.

5. Upper Siluric and Devonian faunas of Trilobite Mountain, Orange County, New York.

N. Y. State Mus., Bull. 80, pp. 173-269, 3 pls. and 10 figs., 1925.
Describes the situation, general geology and geological structure of Trilobite Mountain, with a brief review of the work previously done, and in detail the character, occurrence, and relations of the Devonian formations and the fossil faunas contained in them.

Shimer (Hervey W.) and Grabau (Amadeus W.).

1. Hamilton group of Thedford, Ontario.

Describes the lithologic and faunal characters of the local sections, discusses the correlation of the beds and presents notes on some of the species.

Siebenthal (C. E.).

1. On the use of the term Bedford limestone.

Jour. Geol., vol. 9, pp. 234-235, 1901.
Discusses the use of the name in Ohio and Indiana and considers that the Bedford of Indiana has priority.

2. The Silver Creek hydraulic limestone of southeastern Indiana.

Reviews the geologic literature regarding the region, describes the stratigraphic and paleontologic features and nomenclature of the Devonian formations, and gives an account of the economic uses of the limestone.

3. The Indiana oolitic limestone industry in 1900.

4. Structural features of the Joplin district [Missouri].

Econ. Geol., vol. 1, pp. 119-128, 1 pl., 1905.
Reviews the views of previous workers in the area regarding the structure of the district and the origin of the ores, and describes the geologic structure of the Cornfield region and discusses its origin.

Silver (L. P.).

1. The sulphide ore bodies of the Sudbury region [Ontario].

Discusses the occurrence and origin of the nickel-bearing ore deposits.

2. Petrography of some igneous rocks of the Kettle River mining division, British Columbia.

Describes their characters and occurrence.

Simmersbach (B.).

1. Die Steinkohlengebiete von Pennsylvanien und Westvirginien.

Zeitsch. f. prak. Geol., vol. 11, pp. 413-423, 1 fig., 1903.
Gives a general account of the Appalachian coal field, describing its geographic extent, and the succession, thickness, character, and distribution of the geologic formations.

Simmons (Jesse).

1. Tungsten ores in the Black Hills.

Describes the occurrence and character of tungsten ores and discusses their origin.

Simonds (Frederic William).

1. The minerals and mineral localities of Texas.

Gives an account of the preparation of a list of Texas minerals and localities.

2. Dr. Ferdinand von Roemer, the father of Texas geology; his life and work.

Am. Geol., vol. 29, pp. 131-140, pl., 1902.

3. The minerals and mineral localities of Texas.

Describes the occurrence of minerals found in Texas.
Simonds (Frederic William)—Continued.
4. The geography of Texas, physical and political.
 Boston, Ginn & Company, 1905. 237 pp., 133 figs.
 Includes a chapter on the geology of Texas.

Simpson (Howard E.).
1. The accretion of flood plains by means of sand bars.

Sinclair (William J.).
1. The discovery of a new fossil tapir in Oregon.
 Jour. Geol., vol. 9, pp. 702-707, 1 fig., 1901.
 Describes Protapirus robustus n. sp. from the John Day beds.
2. A preliminary account of the exploration of the Potter Creek cave, Shasta County, California.
 Describes the situation of the cave, the deposits in it, and the occurrence of vertebrate remains, with a list of the forms identified.
3. Mylagaulodon, a new rodent from the upper John Day of Oregon.
 Describes the characters and relations of a new genus and species.
4. A new tortoise from the auriferous gravels of California.
5. The exploration of the Potter Creek cave (California).
 Describes the general geology and physiography of the region, the stratigraphy of the cave deposits, the occurrence of the remains of Quaternary vertebrates, with a list of identified forms, and their relations to other faunas.
6. New or imperfectly known rodents and ungulates from the John Day series.
7. New Mammalia from the Quaternary caves of California.

Sinclair (William J.) and Furlong (E. L.).
1. Euceratherium, a new ungulate from the Quaternary caves of California.

Sinclair (William J.), Merriam (John C.) and.
1. The correlation of the John Day and the Mascall.
 See Merriam (J. C.) and Sinclair (W. J.), 1.

Skewit (Ethel G.).
1. The Jurassic rocks of East Greenland.
 Gives an historical review of geological exploration in East Greenland, describes the general geologic structure and the occurrence of Jurassic strata and their fossil contents, and discusses the distribution of land and sea during Jurassic time.

Skinner (W. W.).
1. The underground waters of Arizona—their character and uses.

Slichter (Charles S.).
1. The motions of underground waters.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 67, 106 pp., 50 figs., 8 pls., 1902.
2. Field measurements of the rate of movement of underground waters.

Sloan (Earl).
1. The mineral resources of South Carolina.
Slosson (E. E.) and Moody (R. B.).
1. The Laramie cement plaster.
 Describes the occurrence of gypsum beds and the composition and manufacture of cement plaster.

Slosson (E. E.), Knight (W. C.) and.
1. Alkali lakes and deposits [Wyoming].
 See Knight (W. C.) and Slosson (E. E.), 1.

2. The Dutton, Rattlesnake, Arago, Oil Mountain, and Powder River oil fields [Wyoming].
 See Knight (W. C.) and Slosson (E. E.), 2.

3. The Newcastle oil field [Wyoming].
 See Knight (W. C.) and Slosson (E. E.), 3.

4. The Bonanza, Cottonwood, and Douglas oil fields.
 See Knight (W. C.) and Slosson (E. E.), 4.

Smallwood (W. M.) and Hopkins (T. C.).
 Syracuse Univ., Bull., ser. 4, no. 1., pp. 18-24, 1903.
 Describes drainage and geological structure of this region.

Smallwood (Martin), Hopkins (T. C.) and.
1. On some anticlinal folds [Pennsylvania].
 See Hopkins (T. C.) and Smallwood (Martin), 1.

Smith (A. F.), Ball (Sydney H.) and.
1. The geology of Miller County.
 See Ball (Sydney H.) and Smith (A. F.), 1.

Smith (A. F.), Buckley (E. R.), Ball (S. H.), and.
1. Glacial boulders along the Osage River in Missouri.
 See Buckley (E. R.), Ball (S. H.), and Smith (A. F.), 1.

Smith (Alexander H.).
1. "Los Reyes" gold mines, southern Mexico.
 Includes notes on the geology of the region.

Smith (Alva J.).
1. The Americus limestone.
 Describes its distribution in Lyon County, Kansas, and its petrographic and faunal characters.

2. A bulletin on Lyon County geology.
 Emporia, Kansas, 1902. 11 pp., 4 pls. (Private publication.)
 Describes the topography and general geology of Lyon County, Kansas. Parts of the paper were presented to the Kansas Academy of Science, and published in its Transactions, vols. 16 and 17.

3. Geology of Lyon County, Kansas.
 Describes the stratigraphy.

4. Reading blue limestone.

Smith (Burnett).
1. Senility among gastropods.

Smith (Charles E.).
1. Work of the Cornell Summer School of field geology.
 Am. Geol., vol. 30, pp. 396-397, 1902.
Smith (Dwight T.).
1. A geological reconnaissance of the region of the upper main Walker River, Nevada.
2. The geology of the upper region of the main Walker River, Nevada.
 Describes the physical features of the region, the occurrence, character, and geologic relations
 of the sedimentary Tertiary and igneous rocks, the unconformities between formations, the
 geological structure of the area, and the character and occurrence of gold and copper ore
 deposits.

Smith (E. Percy) and Dominian (Leon).
1. Notes on a trip to White Oaks, New Mexico.
 Gives observations on the economic resources and geology of the region.

Smith (Eugene Alien).
1. Carboniferous fossils in “Ocoee” slates in Alabama.
 Science, new ser., vol. 18, pp. 244-246, 1903.
 Discusses the determinations of the age of the Ocoee slates and related formations and the
 occurrence in them of Carboniferous plants in Clay County, Alabama.
2. The Portland-cement materials of central and southern Alabama.
 Describes character and distribution of Cretaceous and Tertiary limestones suitable for use in
 the manufacture of Portland cement. Includes a map showing the distribution of these
 limestones and the coal of northern Alabama.
3. The cement resources of Alabama.
 Describes location, geologic horizon, character, and availability for cement manufacture of
 the limestones and clays of Alabama.
4. The cement resources of Alabama.
 Ala. Geol. Surv., Bull. no. 8, pp. 61-93, 16 pls. (incl. geol. map), 1904.
 Describes the occurrence, character, and geological relations of limestones in Alabama available
 for cement manufacture.
5. Notes on the wells, springs, and general water resources of Alabama.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 102, pp. 276-331, 1904.
 Describes briefly the geologic formations of the State and their water-bearing conditions.
 Am. Geol., vol. 35, pp. 197-201, 1 pl. (por.), 1905.
 Includes a list of his published writings.
 Describes the general geology and the occurrence and geological relations of limestones and
 other cement materials of Alabama.
9. Revised map of the southeastern part of the Cahaba coal field, with columnar
 section.
 Ala. Geol. Surv., 1905

Smith (Eugene Alien) and Aldrich (Truman H.).
1. The Grand Gulf formation.
 Discusses the age of this formation in the light of new data obtained by the authors.
2. The Grand Gulf formation.
 Science, new ser., vol. 18, pp. 20-26, 1903.
 Discusses stratigraphic position of the Grand Gulf formation.
Smith (Eugene Alien) and McCalley (Henry).
1. Index to the mineral resources of Alabama.
 Ala. Geol. Surv., 79 pp., map and 6 pls., 1904.
 Describes the occurrence, geologic relations, and character of the economic resources of Alabama.

Smith (Frank B.).
 Contains notes on the geologic occurrence of the coals.

2. The Frank disaster [Alberta].
 Describes the landlord and attendant disasters at Frank, Alberta.

Smith (Fred D.).
1. The Osceola, Nevada, tungsten deposits.
 Eng. & Mg. Jour., vol. 73, pp. 304-305, 1902.
 Describes the occurrence and character of the ores.

Smith (G. F. Herbert).
1. On the remarkable problem presented by the crystalline development of calaverite.
 Min. Mag., vol. 13, pp. 122-150, 9 figs., 1902.

Smith (G. H.).
1. Stateline mining district, Iron County, Utah.
 Describes the general geology of the region and the mining developments.

Smith (George).
1. [In discussion of paper by S. F. Emmons, "The secondary enrichment of ore deposits."]
 Discusses formation of certain ore deposits.

2. The geology of Mount Rainier.
 Describes geologic history of Mount Rainier and the character and occurrence of its igneous rocks.

3. A geological study of the Fox Islands, Maine.
 Describes the character and occurrence of the sedimentary and igneous rocks and the geologic history of the islands.

4. Geology and water resources of a portion of Yakima County, Washington.
 U. S. Geol. Surv., Water-Supply and Irrigation Papers, no. 55, pp. 1-68, 7 pls., 8 figs., 1901.
 Describes the geographic and geologic features of the region and the water resources.

 Contains notes on the geologic structure of this area and the occurrence of gold.

6. Criticism of Doctor Jenney's paper [The mineral crest].
 Eng. & Mg. Jour., vol. 73, p. 826, 1902.
 Discusses the subject in the light of observations in the Tintic district, Utah.

7. The coal fields of the Pacific coast.
 Describes location, geologic relations, and structure of the Pacific coast coal fields occurring in Washington, California, and Oregon, the number, extent, and occurrence of the workable beds, and the character, composition, mining, and distribution of the coals.

 Describes geographic features, drainage, and water supply of the Ellensburg quadrangle, the geologic history of the Cascade Mountains and of the Ellensburg quadrangle, and the character and occurrence of Miocene strata and igneous rocks, and discusses character and origin of structural and physiographic features and economic resources of the quadrangle.
FOR THE YEARS 1901-1905, INCLUSIVE.

Smith (George Otis)—Continued.

 Reviews previous work upon the region, describes the character, extent, and relations of igneous rocks and sedimentary strata of pre-Eocene, Eocene, and Miocene age, the geologic history and structure, and physiographic features and history.

 U. S. Geol. Surv., Bull. no. 213, pp. 76-80, 1903.
 Describes occurrence of gold in gravel deposits and quartz veins, and the mining operations in the district.

10. Anticlinal mountain ridges in central Washington.
 Jour. Geol., vol. 11, pp. 166-177, 1 fig., 1903.
 Reviews previous work in the area and describes its geological structure.

11. [Discussion of paper by W. P. Jenney, "The mineral crest, or the hydrostatic level attained by the ore-depositing solutions in certain mining districts of the Great Salt Lake Basin."
 "Discusses the presence of silver and copper deposits in the vicinity of York, Maine."

 Describes physiographic features, the geologic history and structure, the occurrence, character, and relations of pre-Tertiary and Tertiary strata and igneous rocks, and the economic resources, chiefly gold and coal.

14. Quartz veins in Maine and Vermont.
 Describes the occurrence and character of quartz veins carrying precious metals.

15. Stratigraphic problems in the northern Cascades.

 Describes the occurrence and character of molybdenite deposits.

17. The granite industry of the Penobscot Bay quadrangle, Maine.
 Describes the occurrence, quarrying, and production of granite in this part of Maine.

 Includes some account of the geologic conditions of the area.

19. Water supply from Glacial gravels near Augusta, Me.

20. Artesian water in crystalline rocks.
 Discusses the presence of artesian water in crystalline rocks in the vicinity of York, Maine.

Smith (George Otis) and Calkins (Frank C.).

1. A geological reconnaissance across the Cascade Range near the Forty-ninth Parallel.
 U. S. Geol. Surv., Bull. no. 235, 103 pp., 4 pis., 1 fig., 1904.
 Describes the topography and general geology of the region, the occurrence, character, and relations of the pre-Cretaceous, Cretaceous, Tertiary, and Quaternary formations, and the occurrence and petrographic characters of the metamorphic and igneous rocks.

Smith (George Otis) and White (David).

1. The geology of the Perry basin in southeastern Maine.
 Reviews previous work in the area, describes the character, occurrence, and geologic relations of Silurian and Devonian sedimentary rocks and associated lavas, gives systematic descriptions of Devonian plant remains, and discusses the search for coal in Maine.
Smith (George Otis) and Willis (Bailey).
 Describes the character, occurrence, and origin of the ores and the general geologic and structural features of the region.

Smith (James Perrin).
1. The border line between the Paleozoic and Mesozoic in western America.
 Jour. Geol., vol. 9, pp. 512-521, 1901.
 Discusses briefly the criteria by which geologic time divisions of the line between this Paleozoic and Mesozoic as influenced by the faunas of certain beds of Idaho and California and their relation to allied Asiatic and European faunas.
2. Über Pelecypodenzonen in dcr Trias Nord-Amerikas.
 Centralbl. f. Min., etc., no. 22, pp. 689-695, 1902.
 Describes the distribution of Trias sediments and gives a table showing the occurrence and relations of pelecypods in the Trias in North America.
3. The Carboniferous ammonoids of America.
 Reviews briefly the occurrence of ammonoids in the different Carboniferous formations of America, gives tables of the correlation of Carboniferous formations, discusses the classification and phylogeny, and describes and figures American genera and species.
4. Periodic migrations between the Asiatic and the American coasts of the Pacific Ocean.
 Discusses geographic distribution and relations, and evidences of migrations and derivations of faunas in various provinces of Paleozoic, Mesozoic, and Tertiary time, and physiographic changes.
5. The comparative stratigraphy of the marine Trias of western America.
 Describes the general development of Triassic formations in the various geographic provinces of the world, their correlation and faunal characteristics, and in detail the Triassic strata of western North America, and gives systematic descriptions of Triassic genera and species of cephalopods.

Smith (James Perrin) and Weller (Stuart).
1. Prodromites, a new ammonite genus from the Lower Carboniferous.
 Jour. Geol., vol. 9, pp. 255-268, 3 pis., 1901.
 Discusses the occurrence of ammonites in upper Paleozoic rocks of the Mississippi Valley, and describes a new genus and two new species.

Smith (J. P.), Hyatt (A.) and.
1. The Triassic cephalopod genera of America.
 See Hyatt (A.) and Smith (J. P.), 1.

Smith (Otto M.) and Standley (Paul C.).
1. The Pierson Creek mines [Missouri].
 Contains notes on the occurrence and geologic relations of lead and zinc ores.

Smith (Philip S.), Smyth (Henry Lloyd) and.
1. The copper deposits of Orange County, Vermont.
 See Smyth (Henry Lloyd) and Smith (Philip S.), 1.

Smith (W. D.).
1. Advance report to the chief of the Mining Bureau upon the coal deposits of Batan Island [Philippine Islands].

Smith (W. D.).
1. The development of Scaphites.
 Jour. Geol., vol. 13, pp. 585-584, 3 pis., 1905.
FOR THE YEARS 1901-1905, INCLUSIVE.

Smith (W. N.).
1. Loon Lake iron-bearing district [Ontario].
 Describes the general geology of the region and the occurrence, character, and relations of deposits of iron ore.

Smith (W. S. Tangier).
 Describes geographic and topographic features, character, and occurrence of igneous rocks and sedimentary deposits of Algonkian, Carboniferous, Jurassiac, Cretaceous, Tertiary, and Quaternary systems, the geologic history and economic products.

2. Lead and zinc deposits of the Joplin district, Missouri-Kansas.
 U. S. Geol. Surv., Bull. no. 213, pp. 197-204, 1903.
 Describes briefly the stratigraphy and geologic structure of the region and the character, occurrence, and origin of the ores.

3. Lead, zinc, and fluor spar deposits of western Kentucky. Part II. Ore deposits and mines.
 Describes the character, occurrence, production, and origin of the lead and zinc ores and fluor deposits and the mining operations.

4. Water resources of the Joplin district, Missouri-Kansas.

5. Igneous rocks of the Sundance folio, Wyoming-South Dakota.
 Describes the character, occurrence, and relations of Algonkian (?) and Tertiary intrusive rocks in the area.

 Describes the occurrence, character, and relations of Algonkian intrusive and Tertiary igneous rocks of this area.

Smith (W. S. Tangier), Darton (N. H.) and.
1. Edgemont folio, South Dakota-Nebraska.
 See Darton (N. H.) and Smith (W. S. T.), 1.

Smith (W. S. Tangier), Ulrich (E. O.) and.
1. Lead, zinc, and fluor spar deposits of western Kentucky.
 See Ulrich (E. O.) and Smith (W. S. T.), 1.

Smock (John C.).
1. Administrative report. (New Jersey Geological Survey.)
 Gives an account of the work of the Survey for the year, and discusses the character and relations of the surface formations of southern New Jersey.

Smyth (C. H., jr.).
1. Geology of the crystalline rocks in the vicinity of the St. Lawrence River.
 Describes the gneiss and associated rocks of the region.

2. Petrography of recently discovered dikes in Syracuse, New York, with note on the presence of melilite in the Green Street dike.
 Describes the megascopic and microscopic characters of the dike rocks.

 Describes the general characters and occurrence of the tourmaline zones and of the associated rocks.

4. The Rosie lead veins [New York].
 School of Mines Quart., vol. 24, pp. 421-429, 1 fig., 1903.
 Describes the character and occurrence of the rocks and galena-bearing veins, and discusses the origin and age of the vein-filling materials.
Smyth (C. H., jr.)—Continued.
5. Notes on the economic geology of Oneida County [New York].
 Describes occurrence and production of the economic resources of this county.

6. Replacement of quartz by pyrite and corrosion of quartz pebbles.

7. The abstraction of oxygen from the atmosphere by iron.

Smyth (H. L.).
1. The origin and classification of placer deposits.

Smyth (Henry Lloyd) and Smith (Philip S.).
1. The copper deposits of Orange County, Vermont.
 Describes the general geology of the region, and the character, occurrence, and origin of the copper ores.

Sollas (W. J.).
1. Evolutional geology.

Souder (Harrison).
1. Mineral deposits of Santiago, Cuba.
 Describes the occurrence and mining of manganese, copper, and iron ores in the vicinity of Santiago, Cuba.

Sovereign (L. Douglas).
1. Gems and rare minerals of southern California.
 Describes the occurrence of valuable mineral deposits in San Diego County, Cal.

Spalding (E. P.).
1. The quicksilver mines of Brewster County, Texas.
 Contains notes on the character and occurrence of the ore.

Spencer (Arthur Coe).
1. The iron ores of Santiago, Cuba.
 Eng. & Mg. Jour., vol. 72, pp. 633-634, 6 figs., 1901.
 Describes the character and geologic relations of the ore bodies.

2. The physiography of the Copper River basin, Alaska.
 Contains abstract of paper read before the Geological Society of Washington.

3. The manganese deposits of Santiago Province, Cuba.

4. The Pacific mountain system of British Columbia and Alaska.
 Discusses physiography of the mountainous region bordering the Pacific Ocean.

5. Pacific mountain system in British Columbia and Alaska.
 Describes physiographic features and discusses their origin.

 Gives an account of the general geology of this region, and the character and occurrence of the deposits of copper ores.

7. Reconnaissance examination of the copper deposits at Pearl, Colo.
 Gives a brief account of the geography and geology of this region, and describes the mining developments.
FOR THE YEARS 1901-1905, INCLUSIVE. 315

Spencer (Arthur Coe)—Continued.

8. Manganese deposits of Santiago, Cuba.
 Describes briefly the geologic structure of the region and the occurrence and probable output
 of manganese ores.

 Describes the general geology and the occurrence and mining of gold.

10. The copper deposits of the Encampment district, Wyoming.
 Describes the general geology and the character and occurrence of Mesozoic, Tertiary, pre-
 Cambrian, and igneous rocks, and copper and silver ore deposits, and discusses the origin
 of the copper-ore bodies.

11. The geology of the Treadwell ore deposits, Douglas Island, Alaska.
 1904.
 Describes the general geology, the occurrence, character, and relations of intrusive, igneous,
 and sedimentary rocks, and the occurrence, geologic relations, character, and origin of the
 gold ore deposits.

 Mg. Mag., vol. 10, pp. 377-381, 4 figs., 1904.

13. Pre-Cambrian rocks of the Franklin Furnace quadrangle [New Jersey].

14. The Treadwell ore deposits, Douglas Island.
 U. S. Geol. Surv., Bull. no. 259, pp. 69-87, 4 figs., 1905.
 Describes the general geology, the character, and occurrence of the gold-ore deposits, and
 surrounding rocks.

15. Progress of work in the pre-Cambrian rocks [of New Jersey].

16. What is a fissure vein?

17. The magmatic origin of vein-forming waters in southeastern Alaska.

Spencer (Arthur Coe), Hayes (C. Willard), Vaughan (T. Wayland), and.
 See Hayes (C. W.), Vaughan (T. W.), and Spencer (A. C.), 1.

Spencer (Arthur Coe), Schrader (Frank C.) and.
1. The geology and mineral resources of a portion of the Copper River district, Alaska.
 See Schrader (F. C.) and Spencer (A. C.), 1.

Spencer (Joseph William Winthrop).
1. On the geological and physical development of Antigua.

2. On the geological and physical development of Guadelupe.

3. On the geological and physical development of Anguilla, St. Martin, St. Bartholo-
 mew, and Sombrero.

4. On the geological and physical development of the St. Christopher chain and
 Saba Banks.
Spencer (Joseph William Winthrop)—Continued.
5. On the geological and physical development of Dominica; with notes on Martinique, St. Lucia, St. Vincent, and the Grenadines.
 Contains notes on physiography and on the volcanic, gravel, and terrace formations.
6. On the geological and physical development of Barbados; with notes on Trinidad.
 Discusses the physiographic and stratigraphic features.
7. The Windward Islands of the West Indies.
 Gives an account of physiographic and geologic features of these islands.
8. On the geological relationship of the volcanoes of the West Indies.
 Discusses physiographic features and changes of the West Indies islands and the submerged plateau upon which they rest, the place of their igneous formations in geologic history, and the evidences of the geologic age of the volcanic activity and its relations to physical changes in the Antillean region.
9. Geological age of the West Indian volcanic formations.
 Am. Geol., vol. 31, pp. 48-51, 1 fig., 1903.
 Discusses the geologic history of the region.
10. Submarine valleys off the American coast and in the North Atlantic.
 Describes the submerged Atlantic coastal plain from Cape Hatteras to Newfoundland and the channels traversing it, discusses geological data and evidences of the age of the submerged valleys, and describes submerged valleys of the North Atlantic and adjacent Arctic basins.
11. A rejoinder to Dr. Dall's criticism on Dr. Spencer's hypothesis concerning the late union of Cuba with Florida.
 Am. Geol., vol. 34, pp. 110-119, 1904.
12. The submarine great canyon of the Hudson River.
 Am. Geol., vol. 84, pp. 292-293, 1904.
 Describes the course, depth, etc., of the Hudson River channel.
13. The submarine great canyon of the Hudson River.
 Reviews previous work upon the subject and gives additional data upon the position, depth, and character of the Hudson River canyon, and discusses its origin.
14. On the physiographic improbability of land at the North Pole.
16. Dr. Nansen's "Bathymetrical features of the north polar sea, with a discussion of the continental shelves and the previous oscillations of the shore-line."
17. [Discussion of paper by R. S. Tarr, "Gorges and waterfalls of central New York."]

Spencer (W. K.).
1. On the structure and affinities of Paleodiscus and Agelacrinus.
 The investigation described is based in part upon specimens of Agelacrinus from the Ordovician of Ohio.

Spillman (W. J.).
1. Natural mounds.
 Discusses the occurrence and origin of these mounds in southwestern Missouri.
Spinks (Charles H.).
1. Magnesite and its uses.
 Describes the occurrence and geologic relations of magnesite deposits in southern California,
 and discusses their origin.

Springer (Ada).
1. On some living and fossil snails of the genus Physa, found at Las Vegas, New
 Mexico.

Springer (Frank).
1. Uintacrinus: its structure and relations.
 Describes occurrence, structure, and relations of this crinoid from Cretaceous strata.
2. On the crinoid genera Sagenocrinus, Forbesiocrinus, and allied forms.
 Am. Geol., vol. 30, pp. 88-97, 1 fig., 1902.
 Includes description of a new species of Sagenocrinus.
3. Cleiocrinus.

Spurr (Josiah Edward).
 98, 1901.
 Describes the structural features of the ranges in the Great Basin region and discusses their
 origin.
 Jour. Geol., vol. 9, pp. 586-606, 1 fig., 1901.
 Describes the character and occurrence of the variations of certain andesitic and rhyolitic
 rocks and gives chemical analyses.
3. The ore deposits of Monte Cristo, Washington.
 Jour., vol. 74, pp. 240-241, 4 figs., 1902.
 Describes petrology, general geologic relations and structure of the area, and character,
 occurrence and origin of the ores.
4. Application of geology to mining.
 Discusses relations of geology and mining.
5. The original source of the Lake Superior iron ores.
 Am. Geol., vol. 29, pp. 355-349, 1902.
 Describes the origin of these ores as being derived from a sedimentary rock containing large
 quantities of glauconite.
6. Descriptive geology of Nevada south of the Fortieth Parallel and adjacent portions
 of California.
 U. S. Geol., Surv., Bull. no. 208, 229 pp., 8 pls., 25 figs., 1903.
 Describes physiographic features, character and occurrence of sedimentary and igneous rocks
 and ore deposits and structure of the region, including résumé of previous publications and
 unpublished data furnished by C. D. Walcott, H. W. Turner, F. B. Weeks, R. B. Rowe, G. H.
 Girty, and E. O. Ulrich.
7. The determination of the feldspars in thin section.
 Am. Geol., vol. 31, pp. 376-383, 1903.
8. Ore deposits of Tonopah and neighboring districts, Nevada.
 U. S. Geol. Surv., Bull. no. 213, pp. 81-87, 1903.
 Discusses the history of the development of the field, the topography, general geology, and
 character and occurrence of the ore deposits.
Spurr (Josiah Edward)—Continued.
 U. S. Geol. Surv., Bull. no. 219, 34 pp., 1 pl., 4 figs., 1903.
 Gives a brief history of the discovery and development of this mining district, and describes
 the geologic structure and history of the region, the periods and nature of mineralization,
 and the occurrence of the ores and their relation to the geologic structure.

10. Relation of rock segregation to ore deposition.
 Discusses the origin of ore deposits.

11. The ore deposits of Tonopah, Nevada.
 Describes the geologic structure of the region and the occurrence of the ore deposits of precious
 metals.

12. A consideration of igneous rocks and their segregation or differentiation as related
 to the occurrence of ores.
 Discusses the relations of igneous rocks and ore deposits, and the origin of the latter.

13. [In discussion of paper by Waldemar Lindgren, "The geological features of the
 gold production of North America."]
 Discusses the age of certain gold deposits in Alaska.

14. The application of geology to mining.

15. [Genetic classification of ore deposits.]

16. The relation of faults to topography.

17. Preliminary report on the ore deposits of Tonopah, Nevada.
 U. S. Geol. Surv., Bull. no. 225, pp. 89-110, 1 pl. (geol. map), 4 figs., 1904.
 See no. 9 above.

18. Ore deposits of Silver Peak quadrangle, Nevada.
 Describes the general geology and the character and occurrence of the gold and silver ore
 deposits and the mining operations.

 Describes the general geology and the occurrence of gold-bearing quartz veins.

20. Coal deposits between Silver Peak and Candelaria, Esmeralda County, Nev.
 Describes the general geology of the region, the character and occurrence of the coal, and
 the outlook for development.

21. Alum deposit near Silver Peak, Esmeralda County, Nev.
 Describes location, occurrence, character, and origin of this deposit.

22. The Silver Peak region, Nevada.
 Describes the character, occurrence, and origin of the gold and silver ore deposits.

23. Geology applied to mining. A concise summary of the chief geological principles,
 a knowledge of which is necessary to the understanding and proper exploitation
 of ore deposits for mining men and students.
 New York, The Engineering and Mining Journal, 326 pp., 70 figs., 1904.

24. Faulting at Tonopah, Nevada.

25. The ores of Goldfield, Nev.
 U. S. Geol. Surv., Bull. no. 269, pp. 132-139, 2 figs., 1905.
 Describes the general geology, and the character and occurrence of the veins and the origin of
 the gold ores.
Spurr (Josiah Edward)—Continued.

Describes recent mining developments in this part of Nevada, and gives data upon the character of the gold ores, and the occurrence, relations, and origin of the veins.

27. Tonopah mining district [Nevada].
Describes the geology of the region, the systems of faulting, and the occurrence and character of the gold-silver ores.

28. Descriptive geology of Nevada south of the Fortieth Parallel, and adjacent portions of California.

29. Geology of the Tonopah mining district, Nevada.
Describes the general geology, the geologic structure, the character, occurrence, and relations of igneous rocks, mineral veins, and deposits of gold and silver ores, the origin of the mineral veins, the economic developments, and the physiographic features of the area.

30. Enrichment in fissure veins.
Discusses the localization of ore deposits in veins and the reasons therefor.

31. Genetic relations of the western Nevada ores.
Discusses the general geology, relations, and origin of gold ores of western Nevada.

Spurr (J. E.) and Garrey (G. H.).

1. Preliminary report on ore deposits in the Georgetown, Colo., mining district.
Describes the general geology and petrology, and the character, occurrence, and geological relations of the gold and silver ore deposits.

Standley (P. C.), Smith (O. M.) and.

1. The Pierson Creek mines [Missouri].
See Smith (O. M.) and Standley (P. C.), 1.

Stanton (Timothy W.).

1. [Report on Cretaceous fossils from the John Day Basin, Oregon.]
Univ. of Cal., Dept. of Geol., Bull., vol. 2, pp. 280-284, 1901.
Gives lists of fossils with notes on some of the species and discusses the faunal relations.

2. Chondrodonta, a new genus of ostreiform mollusks from the Cretaceous, with descriptions of the genotype and a new species.

3. The stratigraphic position of the Judith River beds. A correction of Mr. Hatcher's correction.

4. A new fresh-water molluscan faunule from the Cretaceous of Montana.
Discusses the stratigraphic horizon of this faunule, and the occurrences of Cretaceous formations and their correlation, and describes six new species of fresh-water mollusks.

5. Alpheus Hyatt.

U. S. Geol. Surv., Professional Paper no. 21, p. 70, 1 pl., 1904.
Gives a list of species identified and notes on their occurrence. A few of the more characteristic are figured.

7. Stratigraphic notes on Malone Mountain and the surrounding region near Sierra Blanca, Texas.
U. S. Geol. Surv., Bull. no. 266, pp. 23-33, 1905.
Describes the stratigraphy of Cretaceous and Jurassic formations in western Texas.
Stanton (Timothy W.)—Continued.
8. The Morrison formation and its relations with the Comanche series, and the Dakota formation.
 Discusses the occurrence and character of the Morrison formation in Colorado and Wyoming,
 its relations to associated formations, its correlation, and age.
9. The time element in stratigraphy and correlation.
 See also Schuchert (C.), assisted by Dall (W. H.), Stanton (T. W.), and Basler (R. S.), 1.
Stanton (T. W.) and Hatcher (J. B.).
1. Geology and paleontology of the Judith River beds.
 Gives an historical review of previous work upon the Judith River beds, and discusses their
 stratigraphic position, character, relations, and correlations, and gives systematic descrip­
 tions of the vertebrates (Hatcher), invertebrates (Stanton), and plants (Knowlton).
Stanton (T. W.) and Martin (G. C.)
1. Mesozoic section on Cook Inlet and Alaska Peninsula.
 Describes the general geology, and the occurrence, character, relations, and faunal content
 of Triassic, Jurassic, and Cretaceous formations.
Starbird (H. B.)
1. Secondary enrichment in arid regions.
 Describes occurrence and origin of gold and copper ores.
Stead (Geoffrey).
1. Notes on the surface geology of New Brunswick.
 Describes the process of formation of shore deposits along the coast of New Brunswick.
Stearns (C. H.)
1. Some observations on the topography of Athens and vicinity [Ohio].
 Discusses present and former drainage in the vicinity of Athens, Ohio.
Stearns (Robert E. C.).
1. Fossil land shells of the John Day region, with notes on related living species.
2. The fossil fresh-water shells of the Colorado desert, their distribution, environment,
 and variation.
3. Fossil shells of the John Day region [Oregon].
 Describes two new species.
Steigl (A. A.)
1. The ore deposits of La Cananea [Mexico].
 Gives observations upon the geology and the character and occurrence of the copper-ore
 deposits.
Steere (James H.)
1. The Joplin zinc district of southwestern Missouri.
 Gives observations upon the geology and describes the occurrence of the ores and the mining
 operations.
Steiger (George).
1. Preliminary note on silver chabazite and silver analcite.
 Describes experiments undertaken to replace certain silicates by silver.
FOR THE YEARS 1901-1905, INCLUSIVE.

Steiger (George)—Continued.
2. The action of silver nitrate and thallous nitrate upon certain natural silicates.
 U. S. Geol. Surv., Bull. no. 262, pp. 75-90, 1905.

Steiger (George), Clarke (Frank Wigglesworth) and.
1. The action of ammonium chloride upon silicates.
 See Clarke (F. W.) and Steiger (George), 1.
2. On "californite."
 See Clarke (F. W.) and Steiger (George), 2.

Steiger (George), Diller (J. S.) and.
1. Volcanic dust and sand from St. Vincent caught at sea and the Barbados.
 See Diller (J. S.) and Steiger (George), 1.

Sternberg (Charles H.).
1. Experiences with early man in America.
 Describes association of human relics with fossil bones of animals and discusses evidence as to their age.
2. The Permian life of Texas.
 Describes the occurrence of fossil remains and physical characters of the Permian Red Beds in Baylor County, Texas.
3. Elephas columbi and other mammals in the swamps of Whitman County, Washington.
 Describes the occurrence of mammalian remains.
4. Notes on the Judith River group.
 Discusses the occurrence of vertebrate fossils and the stratigraphic position of the Judith River beds.
5. Protostega gigas and other Cretaceous reptiles and fishes from the Kansas Chalk.
 Gives notes on the character and occurrence of these fossils.

Sterrett (Douglas B.).
1. Tourmaline from San Diego County, California.
 Describes crystallographic features of this mineral.
2. A new type of calcite from the Joplin mining district.
 Describes the occurrence and crystallographic characters.

Sterrett (Douglas B.), Pratt (Joseph Hyde) and.
1. The tin deposits of the Carolinas.
 See Pratt (J. H.) and Sterrett (D. B.), 1.

Stevens (Blamey).
1. Geology of some copper deposits in Alaska.
2. Relation of rock segregation to ore deposition.
3. On the differentiation of igneous magmas and formation of ores.
4. Acidic magmas, their exhalations and residues.

Stevens (E. A.).
1. An occurrence of limburgite in the Cripple Creek district [Colorado].
 Describes the occurrence and character of this rock type.
 Bull. 301—06—21
Stevens (E. A.)—Continued.
2. Basaltic zones as guides to ore deposits in the Cripple Creek district, Colorado.
 Describes the character and occurrence of igneous rocks and the relations of the dikes,
fissures, and ore deposits.

Stevens (Horace J.).
1. General information of the geology and mines of the Lake Superior copper district.
 Includes an account of the geology of the region.

Stevenson (John J.).
1. Notes upon the Mauch Chunk of Pennsylvania.
 Am. Geol., vol. 29, pp. 242-249, 1902.
 Discusses the nomenclature of a portion of the Carboniferous, presents a section in Pennsyl­
vania, giving a list of fossils from the various horizons determined by Weller, and discusses
the correlation of the formations.

2. The Lower Carboniferous of the Appalachian Basin.

4. Lower Carboniferous of the Appalachian Basin.
 Describes occurrence, stratigraphy, lithologic characters, and geologic relations of Lower
Carboniferous formations in the Appalachian region and discusses their nomenclature and
correlation, and the physiographic conditions prevailing during their deposition.

5. J. Peter Lesley.

6. Carboniferous of the Appalachian Basin.
 Describes in detail the distribution, character, and geologic relations of the various beds of
the Pottsville of the Pennsylvania series in the Appalachian region, giving numerous
detailed sections, and discusses their nomenclature and correlation.

7. Memoir of J. Peter Lesley.
 Includes a list of his published writings.

Stevenson (Robert).
1. The deposition of ores from an igneous magma.

2. The deposition of ores from an igneous magma.

3. The deposition of ores from an igneous magma.
 Illustrates the formation of an igneous magma by an example based upon geologic structure
in Alaska.

Stewart (Alban).
1. Teleosts of the upper Cretaceous.

Stewart (John L.).
1. Ore deposits and industrial supremacy.
 Econ. Geol., vol. 1, pp. 257-264, 1905.

Stoek (H. H.).
1. The Pennsylvania anthracite coal field.
 Describes the extent, subdivisions, general geologic relations, and structure of the Pennsyl­
vania anthracite coal field, the number and extent of workable beds, the character, com­
position, production, and marketing of the coal.
Stoess (P. C.).
1. The Kayak coal and oil fields of Alaska.
 Describes the general geology of the region and the occurrence of coal and petroleum.

Stokes (H. N.).
1. On pyrite and marcasite.
 Describes the uncertainty of the methods of distinguishing pyrite and marcasite and a method for the quantitative determination of the minerals when in mixture, and discusses the relations of these sulphides to those of copper.

Stokes (H. N.), Merrill (George P.) and.
1. A new stony meteorite from Allegan, Michigan, and a new iron meteorite from Mart, Texas.

Stone (George H.).
1. Note on the minerals associated with copper in parts of Arizona and New Mexico.
2. Note on the extinct glaciers of New Mexico and Arizona.
 Brief account of occurrence.
3. [Discovery of coal on Turkey Creek, Colorado.]
 Am. Geol., vol. 32, p. 132, 1903.

Stone (Ralph W.).
1. The Elders Ridge coal field, Pennsylvania.
 U. S. Geol. Surv., Bull. no. 225, pp. 311-324, 1904.
 Describes location and geologic structure of the field and the occurrence and character of the coals.

2. Oil and gas fields of eastern Greene County, Pa.
 Describes the location and general geology of the field, the stratigraphic position and character of the oil and gas producing strata, the geologic structure of the region, and the production of oil and gas.

5. Coal resources of southwestern Alaska.
 Describes briefly the general geology and the various occurrences of coal beds and the character of the coals.

 Describes the physiography, geologic structure, the occurrence, character, and relations of Carboniferous strata and Pleistocene deposits, the geologic history, and the mineral resources, chiefly coal, natural gas, and oil.

 Describes the physiographic features, the occurrence, character, and relations of Carboniferous formations, the geologic structure, the geologic history, and the mineral resources, chiefly coal and natural gas.

 U. S. Geol. Surv., Bull. no. 256, 86 pp., 12 pls., 4 figs., 1905.
 Describes the geologic structure, the occurrence, character, and relations of Carboniferous strata, and the mineral resources, principally coal and natural gas.
Stoneham (W. J.).
1. Nevada coal field.
 Describes location and general geology of the field and the occurrence and character of the coal.

Storms (W. H.).
1. Some structural features of the California gold belt.
 Describes the character and occurrence of the lodes and veins yielding gold ore.
2. The genesis and character of ore deposits.
3. The Mother Lode in Tuolumne County, California.
 Describes the geologic relations, occurrence, and character of the Mother Lode, the occurrence of the gold-ore bodies, and the mining operations.
4. Ancient gravel channels of Calaveras County, California.
5. The Golden West mine, Pennington County, South Dakota.
 Describes the occurrence and relations of gold-bearing deposits.

Storrs (Arthur H.).
1. The anthracite coal fields of Pennsylvania.
 Mg. Mag., vol. 11, pp. 211-221, 13 figs., 1905.

Storrs (L. S.).
1. The Rocky Mountain coal fields.
 Describes location, extent, geologic relations and development of coal areas in the Rocky Mountains region, the occurrence, thickness, and extent of coal beds, and the character, composition, and utilization of the coal and lignite.

Stose (George W.).
1. The structure of a part of South Mountain, Pennsylvania.
 Describes the stratigraphy and geologic structure of the Cumberland Valley and the occurrence of barite in this region; describes also the occurrence and quarrying of limestone at Martinsburg, W. Va.
 Jour. Geol., vol. 12, pp. 473-484, 3 figs., 1904.
 Describes physiographic features in the Chambersburg and Mercersburg quadrangles and their origin, including the peneplains and their age.

Stose (George W.) and Martin (George C.).
1. Water resources of the Pawpaw and Hancock quadrangles, West Virginia, Maryland, and Pennsylvania.

Stretch (R. H.).
1. The Silverton mining district, Snohomish County, Washington.
 Eng. and Mg. Jour., vol. 72, p. 105, 1901.
 Describes briefly the occurrence of copper ores.
2. The Independent mine at Silverton, Snohomish County, Washington.
 Eng. & Mg. Jour., vol. 73, p. 892, 1902.
 Briefly describes the vein system and occurrence of gold ores.
Stretch (R. H.)—Continued.
3. The Montezuma district, Nevada.
 Eng. & Mg. Jour., vol. 78, pp. 5-6, 1904.
 Describes the general geology and the occurrence of silver-lead ore deposits.

4. Copper ores in the Cascade Mountains.
 Describes the occurrence, character, and geologic relations of copper-ore deposits in the State of Washington.

Strong (A. M.), Arnold (Ralph), and
1. Some crystalline rocks of the San Gabriel Mountains, California.
 See Arnold (Ralph) and Strong (A. M.), 1.

Struthers (Joseph) and Pratt (Joseph Hyde).
1. Tin.
 Includes an account of the occurrence, character, and geologic relations of the rocks in which the tin ores of North Carolina and South Carolina occur, and of the mineralogical and chemical character of the ores.

Stubb (Wm. C.).
1. Report on the agricultural resources and capabilities of Hawaii.
 U. S. Dept. Agric., Office of Exper. Stations, Bull. no. 95, 100 pp., 27 pis., 1901.
 Includes a brief account of the geology of Hawaii.

Stübel (Alphons).
 Leipzig, Max Weg, 1903. 36 pp., 6 figs., 4to.
2. Rückblick auf die Ausbruchsperiode des Mont Pelé auf Martinique 1902-1903 vom theoretischen Gesichtspunkte aus.
 Leipzig, Max Weg, 1904. 24 pp., 20 figs., 4to. (Not seen.)

Stupart (R. F.).
1. Seismology in Canada.
 Describes briefly earthquake observations by seismographs in Toronto and Victoria, Canada.

Sullivan (Eugene C.).
1. The chemistry of ore-deposition—precipitation of copper by natural silicates.
 Econ. Geol., vol. 1, pp. 67-73, 1905.

Sutton (W. J.).
1. The geology and mining of Vancouver Island.
 Describes the general geology and the occurrence and economic development of coal and copper-ore deposits.

T.

Taff (Joseph A.).
1. A comparison of the Ouachita and Arbuckle Mountain sections, Indian Territory.
 Briefly describes sections of Paleozoic rocks.
2. Colgate folio, Indian Territory.
 Describes the geographic and topographic features, the general geologic relations, the character and occurrence of the Carboniferous, Neocene, and Pleistocene strata, and the occurrence of coal.
3. Atoka folio, Indian Territory.
 Describes geographic and topographic features, the geologic structure, character and occurrence of pre-Cambrian, Cambrian, Cambro-Silurian, Silurian, Devonian, Carboniferous, and Cretaceous strata, and the mineral resources, chiefly coal, granite, and building stones.
326 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Taff (Joseph A.)—Continued.

4. The southwestern coal field.

 Describes location, extent, stratigraphy, and geologic structure of this coal field, occupying parts of Arkansas, Texas, and Indian Territory, the number and extent of workable beds, the character, composition, and production of the coal.

5. Chalk of southwestern Arkansas, with notes on its adaptability to the manufacture of hydraulic cements.

 Describes location, geologic age, and occurrence of the chalk and chalk marl deposits of southwestern Arkansas, the geologic history of the region, character, composition, adaptability, and utilization of the chalk, chalk-marls, and clays of Arkansas in the manufacture of Portland cement.

6. Tishomingo folio, Indian Territory.

 Describes geography, physiography, general relations, pre-Cambrian igneous rocks, Cambrian, Ordovician, Siluro-Devonian, Carboniferous, and Cretaceous sedimentary rocks and Quaternary deposits, geologic structure of the Arbuckle Mountain region, and the mineral resources.

7. Maps of segregated coal lands in the McAlester district, Choctaw Nation, Indian Territory, with descriptions of the unleased segregated coal lands.

 Describes the character and occurrence of the coal beds and the quality of the coal.

8. Maps of segregated coal lands in the Wilburton-Stigler district, Choctaw Nation, Indian Territory, with descriptions of the unleased segregated coal lands.

 Describes the occurrence and character of the coal beds and quality of the coal.

 Describes the occurrence and character of coal beds and quality of the coal.

10. Maps of segregated coal lands in the McCurtain-Massey district, Choctaw Nation, Indian Territory, with description of the unleased segregated coal lands.

 U. S., Dept. Interior, Circular no. 4, 54 pp., 1904.

 Describes the occurrence and character of the coal beds and the quality of the coal.

11. Maps of segregated coal lands in the Lehigh-Ardmore districts, Choctaw and Chickasaw nations, Indian Territory, with descriptions of the unleased segregated coal lands.

 Describes the occurrence and character of the coal beds and the quality of the coal.

12. Description of the unleased segregated asphalt lands in the Chickasaw Nation, Indian Territory.

 U. S., Dept. Interior, Circular no. 6, 14 pp., 1904.

 Describes the occurrence and character of asphalt deposits.

13. Preliminary report on the geology of the Arbuckle and Wichita-mountains in Indian Territory and Oklahoma.

 U. S. Geol. Surv., Professional Paper no. 31, pp. 11-81, 8 pls., 1 fig., 1904.

 Describes the physiographic features and history of the region, the occurrence, character, and relations of pre-Cambrian igneous rocks, and Cambrian, Ordovician, Silurian, Devonian, Carboniferous, and Cretaceous sedimentary rocks, and the geologic structure of the Arbuckle and Wichita mountains.

14. Portland-cement resources of Indian Territory.

 Describes the occurrence of limestones suitable for cement manufacture.

15. Portland-cement resources of Texas.

 Describes the occurrence, geologic relations, and character of limestones in Texas suitable for Portland-cement manufacture.
FOR THE YEARS 1901-1905, INCLUSIVE. 327

Taff (Joseph A.)—Continued.
16. Progress of coal work in Indian Territory.
Describes the location, extent, and stratigraphy of the coal fields, the character and extent of the coal beds, and the mining developments.

17. Tahlequah folio, Indian Territory-Arkansas.
Describes the physiographic relations and features, the character, occurrence, and relations of Ordovician, Silurian, Devonian, and Carboniferous formations, the history of the sedimentation, the geologic structure, and the economic resources.

18. Some erratic boulders in middle Carboniferous shale in Indian Territory.

Taff (Joseph A.) and Shaler (Millard K.).
1. Notes on the geology of the Muscogee oil fields, Indian Territory.
Describes the location and opening of the field, and the character and occurrence of the oil, and discusses the strata penetrated in the wells.

Taff (H. H.).
1. Notes on southern Nevada and Inyo County, California.
Includes notes on the geology of the region.

Talbot (Mignon).
1. A contribution to the list of the fauna of the Stafford limestone of New York.
2. Revision of the New York Helderbergian crinoids.

Talmon (Marion Clover), Morgan (William Conger), and.
1. A fossil egg from Arizona.
See Morgan (W. C.) and Tallmon (M. C.), 1.
2. A peculiar occurrence of bitumen and evidence as to its origin.
See Morgan (W. C.) and Tallmon (M. C.), 2.

Talmage (J. E.).
1. A recent fault slip, Ogden Canyon, Utah.
Gives a brief account of the phenomena.
2. The geology of Utah.
Describes some of the geologic features of the State.

Tarr (Ralph S.).
1. Syllabus for field and laboratory work in dynamic, structural, and physiographic geology (Geology 1) at Cornell University.
Ithaca, New York, 152 pp., 1902.
Contains directions for field and laboratory work in geology and elementary mineralogy and petrology.
2. The physical geography of New York State.
The MacMillan company, New York, 1902. 397 pp., 210 figs.
Describes the general physiographic and drainage features and geologic development, the plains and plateaus, and the influence of the Glacial period upon the topography and drainage systems of the State, and the physiographic and glacial geology of the Great Lakes region.
3. Post-Glacial and Inter-Glacial (?) changes of level at Cape Ann, Massachusetts.
Describes physiographic features and discusses evidences of changes of level.
4. New physical geography.
Tarr (Ralph S.)—Continued.

5. Artesian well sections at Ithaca, N. Y.
 Jour. Geol., vol. 12, pp. 69-82, 4 figs., 1904.
 Gives records of well borings, describes the materials (glacial deposits) passed through, and
 discusses the geologic history of the Ithaca delta.

 Describes various physiographic features bearing on the question of the origin of these
 valleys.

7. Moraines of Seneca and Cayuga Lakes.
 A brief note regarding the occurrence of moraines.

10. Moraines of the Seneca and Cayuga Lake valleys.
 Describes the position and character of the moraines in this region and discusses their rela­
 tions and mode of formation.

 Discusses various peculiarities of drainage in this region and the hypotheses which have been
 advanced in explanation thereof.

12. The gorges and waterfalls of central New York.

Tarr (Ralph S.) and Martin (Lawrence).
1. Recent change of level in Alaska.

Tassin (Wirt).

2. Descriptive catalogue of the meteorite collection in the U. S. National Museum to
 January 1, 1902.

3. The Casas Grandes meteorite.
 Describes occurrence and composition of a meteorite from Casas Grandes, Mexico.

4. The Persimmon Creek meteorite [North Carolina].
 Describes occurrence, characters, and composition.

5. The Mount Vernon meteorite.
 Describes occurrence, general structure, and composition, and mineralogical composition of a
 meteorite found near Mount Vernon, Kentucky.

Taylor (Frank Bursley).
Taylor (Frank Bursley)—Continued.

2. Surface geology of Lapeer County, Michigan; summary report of progress.
 Describes the drift covering of the county and gives a sketch of the Glacial history of the region.

3. The correlation and reconstruction of recessional ice borders in Berkshire County, Massachusetts.
 Jour. Geol., vol. 11, pp. 323-364, 10 figs., 1903.
 Describes topographic and drainage features and moraines, and discusses the evidences as to the movements of the ice sheet and general relations of the ice front to the land relief.

5. Water resources of the Taconic quadrangle, New York, Massachusetts, Vermont.

Taylor (L. H.).
 U.S. Geol. Surv., Water-Supply and Irrigation Paper no. 68, 90 pp. 8 pls., 20 figs., 1902.

Tays (E. A. H.).
1. Genesis of ore deposits.
 Discusses article by M. W. Alderson on the same subject.

Tall (J. J. H.).
1. Volcanic dust from the West Indies.
 Notes on chemical analysis of the dust.

Teggart (Frederick J.).
1. Literature available in the [Mechanics' Institute] Library [San Francisco, California] on petroleum with some references on asphaltum.

Teller (Edgar E.).
1. The Hamilton formation at Milwaukee, Wisconsin.
 Reviews previous descriptions, describes the characters and succession of the strata, and gives notes on the occurrence of characteristic fossils.

Thelen (Paul).
1. The differential thermal conductivities of certain schists.
 Describes methods of experimentation and experiments made to determine the thermal conductivity of certain schists, the results obtained, and the petrographic characters of the schists employed.

Thelen (P.), Knopf (A.) and.
1. Sketch of the geology of Mineral King, California.
 See Knopf (A.) and Thelen (P.), 1.

Thiele (F. C.).
1. Ueber Texas-petroleum.
 Discusses character and composition of oil from Texas.

Thierry (—).
1. Sur l'éruption volcanique du 8 mai à la Martinique.
 Describes phenomena witnessed during an eruption of Mont Pelé.

Thomae (W. F. A.).
1. An ore formation on Prince of Wales Island (S. E. Alaska).
 Describes the occurrence and discusses the origin of ore deposits upon this island.
Thomas (Kirby).
1. Mining developments in eastern Ontario.
2. Glacial gold in Wisconsin.
 Describes the occurrence, character, and methods of mining the iron ores.
4. Notes on the geology of a new iron district in Minnesota.
 Discusses the occurrence of iron-bearing formations.

Thyng (William S.), Lyon (D. A.), and Roberts (Milnor), Landes (Henry).
1. The metalliferous resources of Washington, except iron.
 See Landes (H.), Thyng (W. S.), Lyon (D. A.), and Roberts (M.), 1.

Tight (W. G.).
1. Lake Licking—a contribution to the buried drainage of Ohio.
2. Drainage modifications in Washington and adjacent counties [Ohio].
 Ohio State Acad. Sci., Special Papers no. 3, pp. 11-31, 5 pls., 1900.
 Discusses present drainage system and topographic features of this area and their bearing
 upon pre-Glacial drainage.
3. Pre-Glacial drainage in southwestern Ohio.
 Discusses recent article by A. M. Miller on the same subject.
4. Drainage modifications in southeastern Ohio and adjacent parts of West Virginia
 and Kentucky.
 U. S. Geol. Surv., Professional Paper no. 18, 111 pp., 17 pls., 1 fig., 1905.
 Discusses the present drainage of the region under consideration, the pre-Glacial drainage of
 adjacent regions, the general topographic features and their relation to the Tertiary
 peneplain, the characters of the present river valleys, the reconstruction of the old drainage
 system, relations of present and former drainage systems to one another and to the geologic
 structure, and the geologic events which caused the drainage changes.

5. Clarence Luther Herrick.
 Am. Geol., vol. 36, pp. 1-26, 1 pl. (por.), 1905.
 Includes a list of his published writings.
 Discusses the definition of bolson plains and its application to the intermontane valleys of
 New Mexico.

Tippenhauer (L. Gentil).
1. Beiträge zur Geologie Haitis.
 Petermanns Mitteilungen, Bd. 45, pp. 25-29, 153-155, 201-204, 3 pis. (maps), 2 figs., 1899.
 Describes the geology of portions of the island of Hayti.
2. Beiträge zur Geologie Haitis.
 Petermanns Mitteilungen, Bd. 47, pp. 121-127, 169-178, 193-199, 5 pls. (maps), 5 figs., 1901.
 Describes the general geology of portions of the island of Hayti, and the occurrence and
 character of deposits of iron and copper ores and lignite.

Titcomb (H. A.).
1. The Camp Bird gold mine and mills [Colorado].
 School of Mines Quart., vol. 24, pp. 56-67, 7 figs., 1902.
 Gives a general account of the geology and the occurrence of the gold ore deposits and of the
 mining operations.

Todd (James E.).
1. River action phenomena.
 Discusses the variations in phenomena of river action in time of flood and the formation of
 silt and loess deposits.
Todd (James E.)—Continued.

2. Some problems of the Dakota artesian system.

3. Moraines and maximum diurnal temperature.
 Describes certain glacial phenomena.

4. Hydrographic history of South Dakota.
 Discusses the earth movements that have affected the drainage features of the State.

5. Mineral building material, fuels and waters of South Dakota, with production for 1900.
 S. Dak. Geol. Surv., Bull. no. 3, pp. 81-130, 10 pls., 1902; Stone, vol. 25, pp. 418-418, 521-524, 1903.
 Describes the character and distribution of the building stones, cements, clays, fuels, and mineral waters in the State.

6. Concretions and their geological effects.
 Discusses character, occurrence, and modes of growth of concretions and their influence in producing topographic forms.

 Describes the character and geologic occurrence of building stones.

8. A newly discovered rock at Sioux Falls, South Dakota.
 Describes the occurrence and character of an igneous rock discovered in this vicinity.

9. Olivet folio, South Dakota.
 Describes geography and topography, general geology, character, and occurrence of Algonkian, Cretaceous, and Quaternary deposits, geologic history, economic and water resources.

10. Parker folio, South Dakota.
 Describes geography, general geology, and character and occurrence of Algonkian and Cretaceous strata and Quaternary deposits, the geologic history and economic resources, including underground waters.

11. Mitchell folio, South Dakota.
 Describes geography, general geology, the character and occurrence of deposits belonging to the Algonkian, Cretaceous, and Quaternary systems, the geologic history and economic resources, more particularly the underground waters.

12. The newly discovered rock at Sioux Falls, South Dakota.
 Describes occurrence and characters of a diabasic rock discovered at Sioux Falls.

 Describes the character and occurrence of the Benton formation and its subdivisions in South Dakota, and corrects the former erroneous interpretation of the Greenhorn chalky limestone.

 Gives a general account of the geology of the State of South Dakota.

15. Huron folio, South Dakota.
 Describes the topography, drainage, and general geology, the character, occurrence, and relations of Cretaceous strata and Quaternary deposits and the geologic history, and discusses the underground water resources of the area.
Todd (James E.) and Hall (C. M.).

1. Alexandria folio, South Dakota.
 Describes geography, general geology, Algonkian, Cretaceous and Quaternary deposits, the
 geologic history, and economic and artesian water resources of the Alexandria quadrangle.

2. Geology and water resources of part of the lower James River valley, South
 Dakota.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 90, 47 pp., 23 pls., 1904.
 Describes occurrence and character of Algonkian, Cretaceous, and Quaternary formations,
 the geologic history of the region, and the water supply, especially from artesian wells, giving
 records of borings.

3. De Smet folio, South Dakota.
 Describes the general geology, the character, occurrence, and relations of Cretaceous strata
 and Quaternary deposits, the geologic history, and the economic resources, and discusses in
detail the water resources of the area.

Todd (J. H.).

1. Some observations on the pre-Glacial drainage of Wayne and adjacent counties
 [Ohio].

Tower (Walter S.).

1. The development of cut-off meanders.

2. Topography and travel in Pennsylvania.
 Describes physiographic features of Pennsylvania.

Transeau (Edgar N.).

1. On the geographic distribution and ecological relations of the bog plant societies
 of northern North America.
 Includes a discussion of pre-Glacial distribution and Glacial and later migrations of these
 plant societies.

Treadwell (John C.).

1. The Sahuayacan mining district, Mexico.
 Eng. & Mg. Jour., vol. 80, pp. 1213-1216, 6 figs., 1905.
 Contains notes on the geology of the region.

True (Frederick W.).

1. Diagnosis of a new genus and species of fossil sea-lion from the Miocene of Oregon.

2. The first discovery of fossil seals in America.

True (H. L.).

1. The cause of the Glacial period: being a résumé and discussion of the current
 theories to account for the phenomena of the drift, with a new theory by the
 author.
 Cincinnati, The Robert Clarke Company, 1902. xi, 162 pp., illus.

Trumbull (L. W.).

1. A preliminary report upon the coal resources of Wyoming.
 Includes a general account of the geology of the Cretaceous rocks of Wyoming.

Turnbull (J. M.).

 Describes the general geology, the occurrence of the coal beds of Cretaceous age, and the
 character and mining of the coal.
Turner (Henry W.).

1. The geology of the Great Basin in eastern California and southwestern Nevada.
 Describes the structure of the region and its general stratigraphic features.

2. Perknite (lime-magnesia rocks).
 Jour. Geol., vol. 9, pp. 307-311, 1901.
 Describes the character and occurrence of a new rock type and gives chemical analyses of rocks included in this group.

3. The mines of Esmeralda County, Nevada.
 Mg. & Sci. Press, vol. 82, pp. 73-74, 1901.
 Contains notes on the general geology of portions of the county.

4. Notes on unusual minerals from the Pacific States.
 Describes occurrence and chemical characters of certain mineral phosphates, silicates and sulphates.

5. A sketch of the historical geology of Esmeralda County, Nevada.
 Am. Geol., vol. 29, pp. 261-272, 1902.
 Describes the general characters of the formations from pre-Cambrian time to recent, and discusses the geologic structure of the region.

6. The Greenback copper mine, Kern County, California.

7. Unusual minerals from the Pacific States.
 Describes occurrence of pyromorphite, monazite, apatite and vivianite.

8. An instance of variability in a rock magma.

9. A post-Tertiary elevation of the Sierra Nevada shown by a comparison of the grades of the Neocene and present Tuolumne rivers.

 Discusses the age of the Sierra Nevada uplift.

11. The copper deposits of the Sierra Oscura, New Mexico.
 Describes the geographic features and geologic structure of the region and the occurrence of copper-bearing reefs.

12. The Cretaceous auriferous conglomerate of the Cottonwood mining district, Siskiyou County, California.
 Discusses the character, occurrence, and geological relations of the rock formations, and the source of the gold contained in the conglomerate.

 Describes occurrences of deposits additional to those noted by Mr. Lindgren (Am. Inst. Mg. Engrs., Trans., vol. 31, pp. 230-231).

14. Observations on Mother Lode gold deposits, California. [In discussion of paper of W. A. Prichard.]
 Discusses the time-relations of the diorite intrusions and the fissuring.

15. The geological features of the gold production of North America. [In discussion of paper of Waldemar Lindgren.]
 A note in regard to the geologic position of gold ores in the vicinity of Silver Peak, Nevada.

 Discusses the occurrence and origin of native copper.
Turner (Henry W.)—Continued.
Econ. Geol., vol. 1, pp. 265-281, 3 figs., 1905.
Describes the general geology, the geologic occurrence of the ore deposits, the character and extent of the lodes, the origin of the ores, and associated minerals.

Tuttle (George W.).
1. Recent changes in the elevation of land and sea in the vicinity of New York City.
Discusses detailed investigations upon tidal variation and their bearing upon the question of the elevation or subsidence of the land.

Tutton (C. H.).
1. The laws of river flow.
Contains discussion on the origin and flow of streams.

Tyrrell (J. Burr).
Describes the physiography and drainage of the region and the character of the crystalline rocks.
2. A peculiar artesian well in the Klondike.
Eng. & Mg. Jour., vol. 75, p. 188, 1 fig., 1903.
Describes geologic structure of the region and the conditions producing the artesian flow of water.
3. Report on explorations in the northeastern portion of the district of Saskatchewan and adjacent parts of the district of Keewatin.
Describes the occurrence and characters of Pleistocene deposits and Cambro-Silurian and pre-Cambrian rocks, includes a list of glacial stries and observations on the geologic structure, igneous rocks, and minerals of the region examined.
4. Crystophenes or buried sheets of ice in the Tundra of northern America.
Jour. Geol., vol. 12, pp. 232-236, 1 fig., 1904.
Describes the occurrence, character, and mode of formation of the masses of ice for which the names crystophene and crystocrene are proposed.

Udden (Johan August).
1. A geological section across the northern part of Illinois.
Ill. Bd. of World’s Fair Commissioners, Rept., pp. 117-151, 1 pl. (section), 1895.
Describes geology of northern Illinois and gives records of borings and other sections.
2. Geology of Louisa County [Iowa].
Iowa Geol. Surv., vol. 11, pp. 58-126, 1 pl., 1 fig., 2 maps, 1901.
Describes the physiography, the character and distribution of the Carboniferous and Pleistocene deposits and the occurrence of economic products.
3. Geology of Pottawattamie County [Iowa].
Iowa Geol. Surv., vol. 11, pp. 202-277, 1 pl., 3 figs., and map, 1901.
Describes the physiography, the character and occurrence of the Carboniferous, Cretaceous, and Pleistocene strata and the occurrence of economic products.
4. Loess with horizontal shearing planes.
Jour. Geol., vol. 10, pp. 245-251, 1902.
Describes partings in the loess and discusses their origin.
5. Geology of Jefferson County [Iowa].
Describes physiographic and drainage features, the geologic formations, giving sections and lists of fossils, and the economic products of the county.
Udden (Johan August)—Continued.

 Iowa Acad. Sci., Proc., vol. 9, p. 120, 1902.

7. Pleuroptyx in the Iowa Coal Measures.

8. Geology of Mills and Fremont counties [Iowa].
 Iowa Geol. Surv., vol. 13, pp. 123-185, 4 pls., 1903.
 Describes topography and drainage, character, occurrence, and geologic relations of Carboniferous and Cretaceous strata and surficial deposits, and economic resources. Includes a report by Prof. B. Shimek on the fossils from the loess of these counties.

9. Foraminiferal ooze in the Coal Measures of Iowa.
 Jour. Geol., vol. 11, pp. 238-284, 1903.

10. Note to the article on "Foraminiferal ooze in the Coal Measures of Iowa."
 Jour. Geol., vol. 11, p. 430, 1903.
 Notes the occurrence of a bed of foraminiferal ooze in the upper Carboniferous of Texas.

11. The geology of the Shafter silver-mine district, Presidio County, Texas.
 Tex. Univ. Min. Surv., Bull. no. 8, 60 pp., 11 figs., 2 pls., 1904.
 Describes the physiographic features briefly and in detail the occurrence, character, and geologic relations of Carboniferous and Cretaceous strata, igneous rocks, and mineral deposits, mainly silver ores.

12. On the proboscidean fossils of the Pleistocene deposits in Illinois and Iowa.
 Discusses the occurrences of the fossil remains of elephants and mammoths and their relations to Pleistocene deposits.

Udden (Jon Andreas).

1. Geology of Clinton County [Iowa].
 Describes the physiography, the occurrence, character, and relations of Ordovician, Silurian, and Carboniferous strata and Pleistocene deposits, and the economic resources.

Uhler (P. R.).

1. The Niagara period and its associates near Cumberland, Md.
 Describes Silurian strata in the vicinity of Cumberland, Maryland, and gives lists of fossils obtained.

Ulrich (Edward Oscar).

 Md. Geol. Surv., Eocene, pp. 116-122, 1 pl., 1901.

2. Eocene Molluscoidea (Bryozoa).

3. The lithographic stone deposits of eastern Kentucky.
 Eng. & Mg. Jour., vol. 73, pp. 895-896, 2 figs., 1902.
 Describes the geology of the region and the character of the lithographic stone.

 Discusses the geologic age of the Yakutat formation from the evidence of its fossils and gives systematic descriptions of these.

5. Determination and correlation of formations [of northern Arkansas].
 Discusses the occurrence, character, geologic relations, and correlation of Ordovician, Silurian, Devonian, and Carboniferous formations of northern Arkansas.

7. Portland-cement resources of Tennessee.

Describes the occurrence, geologic relations, and character of limestones in Tennessee suitable for the manufacture of Portland cement.

Describes the character, occurrence, nomenclature, correlation, topography, and paleontology of Devonian and Carboniferous, especially Mississippian, formations in western Kentucky and southern Illinois, giving illustrations of the fossils, the geologic structure, particularly the faulting, and the occurrence and character of the dikes.

9. [The time element in stratigraphy and correlation.]

Ulrich (Edward Oscar) and Bassler (Ray S.).

Ulrich (Edward Oscar) and Schuchert (Charles).

1. Paleozoic seas and barriers in eastern North America.

N. Y. State Mus., Bull. no. 52, pp. 638-663, 1 pl., 1902.

Reviews the evidences of the existence of barriers in the Paleozoic seas of the region, and discusses the relations and migrations of the faunas and the character and extent of the oscillations and their effect on the sedimentation and life.

Ulrich (Edward Oscar) and Smith (W. S. Tangier).

1. Lead, zinc, and fluorspar deposits of western Kentucky.

Describes the mining development and geologic structure of the region and the character and occurrence of the veins and vein minerals.

Ulrich (Edward Oscar), Adams (G. I.) and.

1. Fayetteville folio, Arkansas-Missouri.

See Adams (G. I.) and Ulrich (E. O.), 1.

Ulrich (Edward Oscar), Bain (H. F.) and.

1. The copper deposits of Missouri.

See Bain (H. F.) and Ulrich (E. O.), 1.

2. The copper deposits of Missouri.

See Bain (H. F.) and Ulrich (E. O.), 2.

Ulrich (Edward Oscar), Hayes (C. Willard) and.

See Hayes (C. W.) and Ulrich (E. O.), 1.

Underhill (James).

1. The correlation of Colorado geological formations.

United States Geological Survey.

1. Geology, etc., of the Coosa Valley, Alabama.

56th Cong., 2d sess., Senate Doc. no. 65, 4 pp., 1901.

A letter from the Director of the United States Geological Survey submitting a brief sketch of the geology and natural resources of the Coosa Valley, in the State of Alabama.
United States Geological Survey—Continued.
2. The United States Geological Survey, its origin, development, organization, and operations.
 U. S. Geol. Surv., Bull. no. 227, 205 pp., 9 pls., 5 figs., 1904.
 Describes the organization and work of the U. S. Geological Survey and gives a full list of its publications.

Upham (Warren).
1. Artesian wells in North and South Dakota.

2. Pre-Glacial erosion in the course of the Niagara gorge, and its relation to estimates of post-Glacial time.
 Am. Geol., vol. 28, pp. 235-244, 1901.
 Gives the author's views of the Glacial history of the region and discusses their bearing on estimates of post-Glacial time.

3. The antiquity of the races of mankind.
 Am. Geol., vol. 28, pp. 250-254, 1901.
 Reviews the evidences indicating the pre-Glacial origin of man.

4. The Toronto and Scarboro drift series [Ontario].
 Am. Geol., vol. 28, pp. 306-316, 1901.
 Quotes Coleman's description of these beds and discusses the bearing of the evidences on the existence of interglacial epochs of moderate oscillations of the ice border.

5. Time divisions of the Ice Age.
 Describes glacial phenomena in North America, and discusses the correlation of the glacial deposits and time divisions of North America and Europe and the evidences as to the time of man's appearance upon the earth.

6. New evidence of epeirogenic movements causing and ending the Ice Age.
 Reviews of work of Brøgger and Nansen.

 Am. Geol., vol. 30, pp. 103-111, 1902.
 Gives a historical sketch.

8. Man in the Ice Age of Lansing, Kansas, and Little Falls, Minnesota.
 Describes the deposits in which the remains were found and gives estimates of the duration of the various divisions of the Ice Age.

 Describes the discovery and occurrence of human remains in glacial deposits near Lansing, Kansas.

10. The fossil man of Lansing, Kansas.
 Describes the finding of human remains near Lansing, Kansas, and discusses their antiquity.

 Describes the occurrence of human remains in the loess near Lansing, Kansas.

12. Primitive man in the Ice Age.
 Describes the occurrence of human remains in the loess near Lansing, Kansas, and discusses geological history during the Ice Age.

13. Primitive man in the Ice Age.
 Discusses evidences as to the origin and antiquity of man in Europe and America and his place in the geological scale.
 Bull. 301—06—22
 Am. Geol. vol. 31, pp. 25-34, 1903.
 Discusses distribution and origin of loess deposits and the evidences for the age of the fossiliferous remains found near Lansing, Kansas.

15. The life and work of professor Charles M. Hall.
 Am. Geol., vol. 31, pp. 195-198, pl. 13 (por.), 1903.

16. How long ago was America peopled?
 Am. Geol., vol. 31, pp. 312-315, 1903.
 Discusses time estimates of Glacial and post-Glacial periods and evidences of antiquity of man in America.

17. Glacial Lake Nicolet and the portage between the Fox and Wisconsin rivers.
 Am. Geol., vol. 32, pp. 105-115, 1903.

18. The antiquity of the fossil man of Lansing, Kansas.
 Am. Geol., vol. 32, pp. 185-187, 1903.

19. The Glacial lakes Hudson-Champlain and St. Lawrence.
 Am. Geol., vol. 32, pp. 223-230, 1903.

 Am. Geol., vol. 32, pp. 330-331, 1903.
 As the name Lake Nicolet had been previously used by Winchell, the writer amends his name Lake Nicolet to the form given above.

21. Geology of Prairie Island [Minnesota].

22. The past and future of Niagara Falls.

23. Moraines and eskers of the last glaciation in the White Mountains.
 Am. Geol., vol. 33, pp. 7-14, 1904.
 Calls attention to previous work in this region and describes the character and occurrence of moraines and eskers and distribution of boulders.

24. Boulders due to rock decay.
 Describes occurrence and origin of boulders at Butte, Montana, concludes that many Glacial boulders are the result of rock decay, and discusses the occurrence and distribution of Glacial boulders.

25. Erosion on the Great Plains and on the Cordilleran Mountain belt.
 Am. Geol., vol. 34, pp. 35-39, 1904.
 Discusses the physiographic history of the Great Plains and Cordilleran regions during Tertiary and Quaternary times.

26. Age of the Missouri River.
 Am. Geol., vol. 34, pp. 80-87, 1904.
 Includes observations on the geologic history and physiographic features of the interior portion of the North American Continent.

 Am. Geol., vol. 34, pp. 151-162, 1904.
 Reviews the work of tracing drift boundaries across the United States, and describes the occurrence and character of the Glacial drift deposits in the Northwestern States.

28. Glacial and modified drift in and near Seattle, Tacoma, and Olympia [Washington].
 Am. Geol., vol. 34, pp. 203-214, 1 pl., 1904.
 Describes the probable successive stages in glaciation, and the character and occurrence of Glacial drift deposits.

29. The nebular and planetesimal theories of the earth’s origin.
Upham (Warren)—Continued.

30. Fjords and hanging valleys.

Am. Geol., vol. 35, pp. 312-315, 1905.
Discusses the relations of these physiographic features and their origin, and the evidence they give as to the cause of the Glacial epoch.

31. Age of the St. Croix Dalles.

Discusses various Glacial phenomena of the region and their bearing upon the time and mode of formation of the Dalles of the St. Croix River.

32. Glacial lakes and marine submergence in the Hudson-Champlain valley.

Ussing (N. V.).

Describes mineralogy and petrology of Greenland.

V.

Vaillant (León).

1. Sur la présence du tissu osseux chez certains poissons des terrains paléozoïques de Canyon City, Colorado.

Notes the presence of osseous tissue in certain fish remains from Paleozoic strata near Canyon City, Colorado.

Van der Grinten (Alphons J.).

1. New circular projection of the whole earth's surface.

Van Diest (P. H.).

1. A mineralogical mistake.

Contains observations on occurrence of rocks and ores, and describes the efforts to find tin in the Greenhorn Mountains of Colorado.

Van Hise (Charles R.).

1. Some principles controlling the deposition of ores.

This subject is discussed under the following general heads: Three zones of the lithosphere; the water content and openings in rocks; physico-chemical principles controlling the work of underground waters; general geologic work of underground waters; the precipitation of ores by ascending waters; precipitation of ores by ascending and descending waters combined; the association of certain ores; concentration; enrichment and diminution of richness in depth; special factors affecting the concentration of ores, and the classification of ore deposits.

2. The iron-ore deposits of the Lake Superior region.

Describes the general stratigraphy and occurrence of iron ores in the several districts of the Lake Superior region. The Mesabi district is by C. R. Van Hise and C. K. Leith. The Vermillion iron-bearing district is by C. R. Van Hise and J. Morgan Clements.

3. The geology of ore deposits.

Discusses the evidences that metallic ores and gangue are deposited by underground waters.

4. [Discussion of "Ice ramparts," by E. R. Buckley].

Compares the phenomena of ice deformation with those of crustal deformation.
340 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Van Hise (Charles R.)—Continued.
 Discusses character, origin, and concentration of lead and zinc ores of the upper Mississippi Valley and of the Ozark region of the lower Mississippi Valley.

 Contains brief notes on the geology of the points visited.

7. The training and work of a geologist.

8. Some principles controlling the deposition of ores. [Continuation of paper in vol. 30, 1901.]
 Reviews recent papers that have been published since the author's discussions of the subject, with special reference to the paper by Professor Kemp on "The rôle of the igneous rocks in the formation of veins."

 Discusses the difficulties of geologic work in this region and gives an historical review of the work that has been done.

10. Powell as an explorer.

12. A treatise on metamorphism.

 Discusses establishment of a geophysical laboratory and the work to be done therein.

14. Lake Superior geological work.
 Gives general observations on geologic work in the Lake Superior iron region.
 Extract from paper read before the Lake Superior Mining Institute.

15. The problems of geology.
 Jour. Geol., vol. 12, pp. 589-616, 1904.

16. A correction.
 Jour. Geol., vol. 13, p. 280, 1905.
 Corrects an error occurring in the author's "A treatise on metamorphism."

Van Hise (C. R.) and others.
 Describes the investigations of a special committee of geologists of the Geological Survey of Canada and of the United States Geological Survey upon the relations, classification, and nomenclature of the formations of the Lake Superior region, and gives their conclusions in tabular form. The report is alphabetically signed by Frank D. Adams, Robert Bell, A. C. Lane, C. K. Leith, W. G. Miller, Charles R. Van Hise.

Van Hise (Charles R.) and Bain (H. Foster.)
1. Lead and zinc deposits of the Mississippi Valley, U. S. A.
 Describes the geographic distribution and stratigraphy of the lead and zinc producing areas of the Mississippi Valley and discusses the occurrence and genesis of the ore deposits.
Van Horn (F. B.)

1. The geology of Moniteau County [Missouri].
 Describes the physiography, the occurrence, character, and relations of Cambrian, Ordovician, Devonian, and Carboniferous strata, various structural features, and the economic resources.

Van Ingen (Gilbert)

1. The Silurian fauna near Batesville, Arkansas, I.
 School of Mines Quart., vol. 22, pp. 318-328, 1 fig., 1901. Columbia Univ., Geol. Dept., Contr. vol. 9, no. 76.
 Describes the geologic relations of the strata. Includes a bibliography.

2. The Silurian fauna near Batesville, Arkansas.
 Describes the characters of the various species collected.

3. [Paleozoic rocks of northwestern New Jersey.]
 Contains considerable data on the Paleozoic strata and faunas of New Jersey.

4. Potsdam sandstone of the Lake Champlain Basin.
 N. Y. State Mus., Bull. no. 52, pp. 529-545, geol. map, 1902.
 Describes certain sections and discusses briefly the results of the investigations.

6. The rounded sands of Paleozoic formations.

Van Ingen (Gilbert) and Clark (P. Edwin)

1. Disturbed fossiliferous rocks in the vicinity of Rondout, N. Y.
 N. Y. State Mus., Bull. 69, pp. 1176-1227, 13 pis., 1903.
 Describes location, stratigraphy, paleontology, and structural features of Silurian and Devonian strata in the city of Rondout, New York, and its vicinity.

Van Vleet (A. H.)

1. [Second biennial report of the Department of Geology and Natural History of Oklahoma.]
 Outlines the work and status of the Department of Geology and Natural History of the Territory of Oklahoma.

Vaughan (T. Wayland)

1. Eocene Coelenterata.
 Md. Geol. Surv., Eocene, pp. 222-222, 1 pl., 1901.

2. Some fossil corals from the elevated reefs of Curaçao, Arube, and Bonaire.

3. The stony corals of the Porto Rican waters.
 In addition to describing recent species of corals, gives notes on fossil species from the United States and the West Indies.

4. Shell Bluff, Georgia, one of Lyell's original localities.
 Contains abstract of paper read before the Geological Society of Washington.

5. Review of recent papers on Bahaman corals.

6. The copper mines of Santa Clara Province, Cuba.
 Eng. & Mg. Jour., vol. 72, pp. 814-816, 4 figs., 1901.
 Describes the geology and occurrence and character of the ore bodies.

7. The locality of the type of Prionostrea vaughani, Gregory.
Vaughan (T. Wayland)—Continued.

8. Bitumen in Cuba.
 Eng. & Mg. Jour., vol. 73, pp. 344-347, 2 figs., 1902.
 Describes the occurrence and character of the material.

 Questions the occurrence of certain fossil remains in Cuba and gives a note on the priority of
 Megalocnus Leidy over Myomorphus Pomel.

11. Evidence of recent elevation of the Gulf coast along the westward extension of
 Florida.
 Science, new ser., vol. 16, pp. 5-14, 1902.

12. Fuller's earth of southwestern Georgia and western Florida.
 Describes the occurrence of fuller's earth deposits in Georgia and Florida, and discusses their
 geologic age from the evidence of fossils.

13. Some recent changes in the nomenclature of West Indian corals.

15. A redescriptions of the coral Platytrochus speciosus.

17. The corals of the Buda limestone.

18. Fuller's earth deposits of Florida and Georgia.
 Describes geographic and geologic occurrence and character of deposits of fuller's earth in
 these States.

21. A critical review of the literature on the simple genera of the Madreporaria
 Fungida, with a tentative classification.

Vaughan (T. Wayland) and Spencer (Arthur Coe).

1. The geography of Cuba.
 Describes the mountains, plains, terraces, drainage, and harbors of Cuba.

Vaughan (T. Wayland), Hayes (C. Willard), and Spencer (Arthur Coe).

 See Hayes (C. W.), Vaughan (T. W.), and Spencer (A. C.), 1.

Vaughan (T. Wayland), Hill (Robert T.) and.

1. Austin folio, Texas.
 See Hill (R. T.) and Vaughan (T. W.), 1.

Vaux (George) and (William S., jr.).

1. Observations made in 1900 on glaciers in British Columbia.
 Notes on movements of the glaciers.
Vaux (George) and (William S., jr.).

Veatch (Arthur C.).
1. The salines of north Louisiana.
La. Geol. Surv., pt. 6, pp. 47-100, 13 pls., 2 figs., 1902.
Describes the local geology of the various salt works, and discusses the geological structure and history of the region.
2. The geography and geology of the Sabine River, Louisiana.
La. Geol. Surv., pt. 6, pp. 107-141, 14 pls., 4 figs., 1902.
Describes the physiography and the character and occurrence of the Tertiary strata of the region.
3. Notes on the geology along the Ouachita [Louisiana].
Describes the physiography and Tertiary beds of the region.
4. The diversity of the Glacial period on Long Island.
Jour. Geol., vol. 11, pp. 762-776, 6 figs., 1903.
Discusses character, occurrence, geologic position, and correlation of glacial deposits on Gardiners and Long Islands, New York.
5. Notes on the geology of Long Island.
Discusses the occurrence of Quaternary formations and their relation to pre-Glacial topography.
6. Some peculiar artesian conditions on Long Island, N. Y.
7. The underground waters of northern Louisiana and southern Arkansas.
Describes the character and occurrence of Cretaceous and Tertiary strata in northern Louisiana and their water-bearing properties.
8. Underground waters of eastern United States: Louisiana and southern Arkansas.
Describes the general geology, and the character and occurrence of the geologic formations with particular reference to their water-bearing qualities.
9. Record of deep-well drilling for 1904. General plan and details of work.
10. The question of origin of the natural mounds of Louisiana, Arkansas, and Texas.

Vermeule (C. C.).
1. East Orange wells at White Oak Ridge, Essex County [New Jersey].
Discusses strata passed through in the wells.

Verrill (A. E.).
1. Peculiar character of the eruption of Mt. Pelee, May 8th.
Discusses the cause of the destruction of St. Pierre.

Very (Frank W.).
1. A cosmic cycle.

Vicaire (A.).
1. Développements récents des industries minière et métallurgique en Colombie britannique.
Ann. des Mines, 10e sér., t. 5, pp. 297-388, 10 figs., 1904.
Includes an account of the geology of the Crow's Nest Pass coal field and the Boundary mining district.
Villada (Manuel M.)
1. Breve reseña geológica del terreno comprendido en las obras del Desagüe del Valle de México y en general de toda esta región.
 Gives an account of the geology of the Valley of Mexico.

Villafañe (Andrés).
1. Criaderos cupro-argentiferos en Tâpalpa, Jal. [México].
 Describes the character, occurrence, and relations of silver-copper ores in Jalisco, Mexico.

Villarello (Juan D.).
1. Genesis de los yacimientos mercuriales de Palomas y Huiztucuo, en los estados de Durango y Guerrero de la República Mexicana.
 Discusses origin of mercury-bearing ore deposits.
2. Análisis y clasificación de un granate procedente del mineral de Pihuamo, Jalisco [México].
 México, Inst. Geol., Par., t. 1, pp. 75-80, 1904.
 Describes the chemical composition and discusses the systematic position of a garnet occurring at Pihuamo, Mexico.
3. Estudio de la teoría química propuesta por el Sr. D. Andrés Almaraz para explicar la formación del petróleo de Aragón, México.
 Discusses the chemical theory for the origin of the petroleum of Aragon, proposed by Andrés Almaraz.
4. Estudio de una muestra de mineral asbestiforme procedente del rancho del Ahuacatillo, Distrito de Zinapécuaro, Michoacán [México].
 Gives a description and an analysis, and discusses the classification of an asbestiform mineral occurring in the State of Michoacan, Mexico.
5. Estudio de la hidrología interna de los alrededores de Cadereyta Mendez, Estado de Queretaro [México].
 Discusses the hydrology and geology of the region.
6. Descripción de los criaderos de mercurio de Chiquilistán (Jalisco) [México].
 Describes the occurrence, geologic relations, and character of ore deposits containing mercury in the State of Jalisco, Mexico.
7. Análisis y clasificación de un granate procedente del Mineral de Pihuamo, Jalisco.
8. Distribución de la riqueza en los criaderos metalíferos primarios epigenéticos.
 Discusses the origin of ore deposits.
9. Description de las minas “Santiago y Anexas” de Estado de Michoacan [México].
 Describes briefly the general geology of the region, and the occurrence, character, and origin of the gold and silver ore.
10. Hidrología subterránea de los alrededores de Queretaro [México].
 Describes the physiography, geology, and underground water resources of the region surrounding Queretaro, Mexico.

Villarello (Juan de D.) and Böse (Emilio).
1. Criaderos de fierro de la hacienda de Vaquerías, en el estado de Hidalgo.
 México Inst. Geol., Bull. no. 16, pp. 15-44, 4 pls., 5 figs., 1902.
 Describes the topography, geology, and petrology, and discusses the occurrence of iron ores in this area.
Villaseñor (F.).
1. Análisis de las cenizas de la erupción del volcán de Santa María (Guatemala), ocurrida el 24 de octubre de 1902, recogidas en Comitán. Secretaria de Fomento [México], Bol., 2ª ep., año 2, no. 7, II, pp. 279-280, 1903. Discusses the composition of cinders ejected by the volcano of Santa Maria in Guatemala.

Vogdes (Anthony W.).
1. A bibliography relating to the geology, paleontology, and mineral resources of California.
Cal. State Mg. Bur., Bull. no. 30, pp. 7-258, 1904.
2. Address on books relating to geology, mineral resources, and paleontology of California.

Vogt (J. H. L.).
1. Problems in the geology of ore-deposits.

Von Rosenberg (Leo).
New York, 12 pp., 9 pls., 1903. (Privately printed.) Contains geologic sections of Carboniferous strata and data bearing on coal production.

Voyle (Joseph).
1. Aurite, and a general theory of gold ore genesis.

Wagenen (T. H. van).
1. Nitrate deposits, Humboldt County, Nevada.

Wagner (George).
1. Observations on Platygonus compressus Le Conte.
Jour. Geol., vol. 11, pp. 777-782, 4 figs., 1903.
2. On an interesting fossil Unio from Wisconsin.
Nautilus, vol. 18, pp. 97-100, 1 pi., 1905.

Walcott (Charles D.).
1. Cambrian Brachiopoda; Obolella, subgenus Glyptias; Bicia; Obolus, subgenus Westonia; with description of new species.
2. The work of the United States Geological Survey in relation to the mineral resources of the United States.
4. Sur les formations pré-Cambriennes fossilières.
Intern. Cong. Géol., Compte Rendu, VIII session, pp. 299-312, 1901. Describes the lithologic and faunal characters of the pre-Cambrian strata in various parts of the United States.
Walcott (Charles D.)—Continued.
5. Outlook of the geologist in America.
 Reviews the geologic investigations that have been undertaken in North America by organizations and individuals, broadly outlines the problems that are being studied, and discusses the future prospects of geologists.

6. Cambrian brachiopoda: Acrotreta; Linnarssonella; Obolus; with descriptions of new species.

8. New term for the Upper Cambrian series.
 Jour. Geol., vol. 11, pp. 318-319, 1903.
 Proposes the term Saratogian for Upper Cambrian, and gives a list of formations referred to it.

 The rules governing the nomenclature and classification of geologic formations promulgated in the Tenth Annual Report, pp. 63-79, have been recently revised and, as revised, are given in this report on pp. 21-27.

 Gives an account of the work of the U. S. Geological Survey during the fiscal year 1903-4.

 Outlines the operations of the U. S. Geological Survey for the fiscal year ending June 30, 1905.

Waldo (C. A.).
1. Dikes in the Oklahoma Panhandle.

Walker (B. E.).
1. List of the published writings of Elkanah Billings.

Walker (Bryant).
1. On the shells of marls.
 Describes the occurrence of gastropodous shells in Michigan marl deposits.

Walker (T. L.).
1. The Geological Survey of Canada as an educational institution.

Wallace (E. C.), Richardson (Clifford) and.
1. Petroleum from the Beaumont, Texas, field.
 See Richardson (Clifford) and Wallace (E. C.), 1.
Wanner (Atreus).

Ward (Henry A.).
 Describes occurrence and characters of this meteorite from Ste. Genevieve County, Mo.
 Chicago, 99 pp., 6 pls., 1900; 28 pp., 1901. (Private publication.)
 Contains notes on the character and occurrence of meteorites.
3. Description of four meteorites.
 Describes meteorites from Andover, Me.; Cuernavaca, Mexico; Arispe, Mexico; and from near Williamsport, Pa.
4. On Bacubirito, or the great meteorite of Sinaloa, Mexico.
 Describes occurrence, size, and characters of this meteoric mass.
 Describes fall and characters.
7. The Canyon City meteorite from Trinity County, California.
 Describes source, character, and composition.
 23840, 9 figs., 1904.
 Describes the discovery, location, and characters.
 Chicago, 113 pp., 9 pls., 1904. (Private publication.)
 Contains notes on the character and occurrence of meteorites.
10. The Billings meteorite: A new iron meteorite from southern Missouri.
 Describes the occurrence, characters, and composition.
 Describes the fall, exterior preservation, and character of one piece of the Bath Furnace meteorite, and discusses phenomena connected with the passage of aerolites through the earth's atmosphere, and their source.

Ward (Lester F.).
1. Geology of the Little Colorado Valley [Arizona].
 Describes the character and occurrence of the several subdivisions of the Mesozoic strata of the region.
2. The petrified forests of Arizona.
3. Correlation of the Potomac formation in Maryland and Virginia.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Ward (Lester F.)—Continued.
4. Paleozoic seed plants.
 Describes the stratigraphic and paleontologic relations of the older Mesozoic of Arizona, and
gives an account of the status of knowledge of Triassic, Jurassic, and Cretaceous floras and
a summary of geologic work upon these floras. Includes papers by Fontaine, Bibbins,
and Wieland, giving systematic descriptions of species and notes upon various floras.
6. An example in nomenclature.
 Discusses nomenclature applied to Aneimites fertilis li. sp., David White.

Waring (G. A.).
1. Quartz from San Diego County, California.
 Describes crystallographic features.
2. The pegmatyte veins of Pala, San Diego County [California].
 Describes the occurrence and character of intrusive veins, the types of veins, and the petro-
graphic characters and minerals of the rocks composing them, and discusses their origin.

Warman (Philip Creveling).
1. Catalogue and index of the publications of the United States Geological Survey,
 1880 to 1901.
 U. S. Geol. Surv., Bull. no. 177, 858 pp., 1901.
2. Catalogue and index of the publications of the United States Geological Survey,
 1901 to 1903.

Warren (C. H.).
1. Mineralogical notes. I. Native arsenic from Arizona. II. Anthophyllite with
 the fayalite from Rockport, Mass. III. Cerussite and phosgenite from Colorado.
 Describes occurrence and characters of these minerals.
2. Petrographical notes on the rocks of the Weston aqueduct [Massachusetts].
 Describes their occurrence and petrographic characters.

Warren (C. H.), Penfield (S. L.) and.
1. Some new minerals from the zinc mines at Franklin, N. J., and note concerning
 the chemical composition of ganomalite:
 See Penfield (S. L.) and Warren (C. H.), 1.

Warwick (A. W.).
1. The iron ores of the Uintah Mountains.
 Describes the geology and the character and occurrence of iron-ore deposits.
2. The Leadville district [Colorado].
 Mg. Mag., vol. 11, pp. 430-439, 5 figs., 1905.
 Includes notes on the geology of the district.

Washburne (Chester).
1. Notes on the marine sediments of eastern Oregon.
 Jour. Geol., vol. 11, pp. 224-229, 1903.
 Describes occurrence of fossiliferous limestone of Carboniferous age and gives notes on the
 occurrence of strata and fossils of Triassic, Jurassic, and Cretaceous age. Includes reports
 by George H. Girty on the fossils collected from the Carboniferous limestone and by T. W.
 Stanton on fossils from the Chico formation.
FOR THE YEARS 1901-1905, INCLUSIVE.

Washburne (Chester)—Continued.

2. The distribution of placer gold in Oregon.

3. Beach gold and its source.
 Describes the occurrence of gold in the sands of the coast of Oregon and discusses its source.

Washington (Henry Stephens).

1. The foyaite-ijolite series of Magnet Cove [Arkansas]; a chemical study in differentiation. I.
 Jour. Geol., vol. 9, pp. 607-622, 1901.
 Comprises a study of the chemical composition of several rock types and a discussion of their relations.

2. The foyaite-ijolite series of Magnet Cove [Arkansas]; a chemical study in differentiation. II.
 Jour. Geol., vol. 9, pp. 645-670, 3 figs., 1901.
 Describes the petrographic characters of the rocks and compares them with similar rocks from other regions. Discusses differentiation in laccolithic magmas.

3. The rocks of Lake Winnepesaukee, New Hampshire.
 Abstract: Am. Geol., vol. 27, p. 44, 1901.
 Contains brief notes on the rocks.

4. A chemical study of the glaucochane schists.
 Describes the microscopic and chemical characters of these schists from several foreign countries and from western United States.

5. Igneous rocks from eastern Siberia.
 Compares the characters of some of these rocks with similar rocks occurring in this country.

6. Chemical analyses of igneous rocks published from 1884 to 1900, with a critical discussion of the character and use of analyses.
 Discusses character of chemical analyses of igneous rocks, the construction and nomenclature of the new quantitative classification and its correlation with the qualitative system, and methods of calculation employed, and gives tables embracing nearly all published analyses of igneous rocks, arranged according to the new system.
 Note.—These chemical analyses have not been separately listed in the index of this bibliography.

7. The calculation of center-points in the quantitative classification of igneous rocks.

8. The quantitative distribution of rock magmas.

9. The superior analyses of igneous rocks from Roth's Tabellen, 1869 to 1884, arranged according to the quantitative system of classification.
 Note.—The analyses in this paper have not been listed in the index of this bibliography.

 New York, John Wiley & Sons. 185 pp., 1904.
 Describes fully methods of analysis of rocks.

Washington (Henry S.), Cross (Whitman), Iddings (Joseph P.), Pirsson (Louis V.) and.

1. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks.
 See Cross (W.) and others, 1.

2. Quantitative classification of igneous rocks.
 See Cross (W.) and others, 2.
Washington (H. S.), Pirsson (L. V.) and.
 See Pirsson (L. V.) and Washington (H. S.), 1.

Watson (Lawrence W.).
1. Prince Edward Island.
 Describes the author's field work in this area.

2. Francis Bain, geologist.
 Includes a list of his papers.

Watson (R. Lind).
1. Auriferous deposits of Wreck Bay, Jordan River, and other localities of Vancouver Island [Canada].
 Describes placers of the region.

2. Watson (Thomas Leonard).
 1. The granite rocks of Georgia and their relationships.
 Am. Geol., vol. 27, pp. 199-225, 8 pls., 1901.
 Describes the microscopic and chemical and mineralogic characters of the varieties of granite and discusses the evidence of their intrusive origin.

3. The Georgia bauxite deposits; their chemical constituents and genesis.
 Am. Geol., vol. 28, pp. 25-45, 1 pl., 1901.
 Describes the general geology of the bauxite area and the occurrence, geologic position, and chemical composition of the ore and discusses its origin.

4. On the origin of the phenocrysts in the porphyritic granites of Georgia.
 Jour. Geol., vol. 9, pp. 97-122, 6 figs., 1901.
 Describes the characters of the granites of the several areas studied, their chemical composition, and the genetic relationship of phenocryst to groundmass.

5. Weathering of granitic rocks of Georgia.
 Describes the megascopic, microscopic, and chemical characters of the granite of the State and the phenomena of their weathering.

6. On the occurrence of uranophane in Georgia.
 Describes its occurrence and chemical character.

7. A preliminary report on a part of the granites and gneisses of Georgia.
 Discusses geological age, mode of occurrence, origin, and distribution of granites in Georgia and eastern United States, their chemical and lithologic characteristics, and gives chemical analyses. The geography and physiography of the Georgia portion of the Piedmont Plateau are described.

8. Geological relations of the manganese ore deposits of Georgia.
 Describes the stratigraphy and geologic structure and the character and occurrence of the manganese ores of the Paleozoic and crystalline rocks of northern Georgia, and discusses the origin of the ore deposits.
Watson (Thomas Leonard)—Continued.
10. The yellow ocher deposits of the Cartersville district, Bartow County, Georgia.
 Gives an account of the geology and topography of the district and describes the occurrence, composition, and mining of the ocher deposits.

11. The Seminole copper deposit of Georgia.
 Describes the general geology, structural features, and the character and occurrence of the copper ores.

 Ga. Geol. Surv., Bull. no. 11, 169 pp., 12 pls., 3 figs., and map, 1904.
 Describes the general geology of the bauxite region of Georgia, the character, occurrence, and origin of bauxite deposits, and the mining operations.

14. The leopardite (quartz porphyry) of North Carolina.
 Describes occurrence, megascopic and microscopic characters, and chemical composition.

15. Orbicular gabbro-diorite from Davie County, North Carolina.
 Jour. Geol., vol. 12, pp. 294-305, 2 figs., 1904.
 Describes the occurrence and the megascopic and microscopic characters.

 Describes types of granite occurring in North Carolina, their lithologic characters, structural features, and geographic distribution in the State.

17. Lead and zinc deposits of Virginia.
 Va. Geol. Surv., Geol. Ser., Bull. no. 1, 156 pp., 14 pls., 27 figs., 1905.
 Describes the stratigraphy and geologic structure of the Great Valley of Virginia, and the occurrence, relations, and character of lead and zinc deposits, and discusses the origin of the ores.

Weatherbe (D'Arcy).
1. Recent developments with the calyx drill in the Nictaux iron field [Nova Scotia].
 Contains notes on the geology of the area.

2. Boring machines.
 Contains records of strata passed through in borings in Nova Scotia.

Weatherby (W. J.)
1. The Mogollon range, New Mexico.
 Describes the general geology and mineral resources of the region.

Weaver (Charles E.).
1. Contribution to the paleontology of the Martinez group.
 Gives a discussion of the geographical distribution, stratigraphic relations, and correlations of the Martinez group of the California Eocene formations, followed by systematic descriptions of its fossils.

Webster (Arthur).
1. Geology of the west coast of Vancouver Island.
 Describes observations upon the physical features, general geology, and economic resources of the region.

Webster (Clement L.).
1. Description of a new genus and species of gastropod from the Hackberry group of Iowa.
Webster (Clement L.)—Continued.

2. On some species of fossils from the Hackberry group of Iowa.

3. Contributions to the paleontology of the Iowa Devonian.
 Iowa Nat., vol. 1, pp. 70-71, 1905.

4. Preliminary observations on some of the constituent elements of the glacial drift
 of northern Iowa.
 Iowa Nat., vol. 1, pp. 82-83, 1 fig., 1905.

Weed (Walter Harvey).

1. The enrichment of gold and silver veins.
 Discusses the genesis of rich ore bodies occurring near ground water level and of those found
 in deep mine workings and the chemical reactions which have taken place during the
 process of ore deposition. Describes the author's observations and those of other geologists
 in various mines.

2. Types of copper deposits in the southern United States.
 Describes the character and occurrence of copper ores in certain districts, and discusses relations
 of the ores of the regions with these type deposits.

 Brief notes on the character of the ores.

4. The El Paso tin deposits [Texas].
 U. S. Geol. Surv., Bull. no. 178, pp. 1-16, 1 pl., 4 figs., 1901.
 Describes the general geology of the region and the occurrence and character of the ore-bearing veins.

5. Geology and ore deposits of the Elkhorn mining district, Jefferson County,
 Montana.
 Describes history of mining operations in this district, the character and occurrence of igneous
 and metamorphic rocks and strata of Algonkian, Cambrian, Devonian, Carboniferous, and
 Mesozoic age, and discusses the general geologic structure, relations of the rock masses, the
 character, occurrence, mode of formation, and commercial development of the ore bodies.

 Discusses origin of certain ore deposits.

7. [Discussion of "The origin of ore deposits."]

 Contains notes on the geology of these States, and the character and occurrence of the ores.

9. Notes on a section across the Sierra Madre Occidental of Chihuahua and Sinaloa,
 Mexico.
 Contains observations on the geology and petrology of the region.

10. Recent development of southern copper deposits.
 Eng. & Mg. Jour., vol. 74, pp. 80-81, 1902.

11. Contact metamorphic and other ore deposits near igneous contacts.

12. The Cananea copper deposits, Mexico.

 Describes location, topography, and general geology of the region, and the source, character,
 and geologic relations of the hot springs, and discusses the origin of their heat.
For the years 1901-1905, inclusive.

Weed (Walter Harvey)—Continued.

 Gives a brief history of the development of the field, its geological features, and the occurrence of the ore bodies.

15. Tin deposits at El Paso, Tex.
 Describes briefly the geologic structure and formation of the Franklin Mountains, the character and occurrence of the ores, and the mining developments.

16. Ore deposits at Butte, Mont.
 Describes the mining development of the region, the character and occurrence of the rocks and structural features of the district, and the character, occurrence, and origin of the ore deposits and the vein systems.

17. Copper deposits of the Appalachian States.
 Describes the occurrence of deposits of copper ores in New Jersey, Maryland, Virginia, North Carolina, and Tennessee.

18. Copper deposits of New Jersey.
 Describes the occurrence, character, and structural conditions of the copper ores and the mining operations, and discusses the origin of the ores.

19. Ore deposits near igneous contacts.
 Gives a genetic classification of ore deposits, discusses formation of ores in contact zones, and especially the origin of contact metamorphic deposits.

20. Ore deposition and vein enrichment by ascending hot waters.

21. Secondary enrichment at Cripple Creek [Colorado].
 Eng. & Mg. Jour., vol. 75, pp. 553-554, 1 fig., 1903.

22. Cross vein ore shoots and fractures.
 Describes vein structure and discusses its origin.

23. The Cananea ore deposits [Mexico].
 Gives observations upon the geology and the occurrence of the copper-ore deposits.

24. [Classification of ore deposits.]

25. Gypsum deposits in Montana.
 U. S. Geol. Surv., Bull. no. 223, pp. 74-75, 1904.
 Describes character, occurrence, and geologic relations of gypsum deposits in Montana.

26. Copper deposits in Georgia.
 Describes occurrence and character of copper ores.

27. The Griggstown, N. J., copper deposit.
 Describes the general geology and the occurrence and character of the copper-ore deposits.

 Describes the general geology, the character and occurrence of the copper-ore deposits, and the mining developments.

29. Original native gold in igneous rocks.
 Bull. 301—06—23
Weed (Walter Harvey)—Continued.

30. Occurrence and distribution of copper in the United States.
 Mg. Mag., vol. 10, pp. 185-193, 1 pl., 10 figs., 1904.
 Describes the occurrence, formation, and geologic relations of copper ores in various parts of the United States.

31. Dilation fissures and their contained ores.

32. The Great Flat at Butte, Montana.
 A brief note on physiographic features of this region.

33. Cement resources of Montana.
 Describes the occurrence and character of limestones suitable for cement manufacture.

34. Copper mines near Havana, Cuba.
 Describes the occurrence and character of copper-ore deposits in Cuba.

35. Notes on the gold veins near Great Falls, Maryland.
 Describes the character and occurrence of veins containing gold ore, and the conditions in which it is found.

36. The copper production of the United States.
 U. S. Geol. Surv., Bull. no. 260, pp. 211-216, 1 fig., 1905.
 Discusses production and consumption of copper, and the character, occurrence, and production of copper ores in the United States.

37. The copper deposits of the eastern United States.
 Describes the occurrence and character of copper-ore deposits of the Appalachian region, particularly those of Virginia and Tennessee.

38. Economic value of hot springs and hot-spring deposits.
 Describes general uses of hot springs, and particularly the limonite and travertine deposits of the Anaconda hot springs and the gypsum veins and waters of Hunters Hot Springs, Montana.

 Includes notes on the geologic relations of the thermal waters of Meriwether County, Georgia, and of Hot Springs, Arkansas.

Weed (Walter Harvey) and Pirsson (L. V.).

1. Geology of the Shonkin Sag and Palisade Butte laccoliths in the Highwood Mountains of Montana.
 Describes the physiography of the region, the occurrence and character of the laccoliths, and the chemical characters of the shonkinite and syenite.

2. Missourite, a new leucite rock from the Highwood Mountains of Montana.

Weeks (Fred Boughton).

1. An occurrence of tungsten ore in eastern Nevada.

2. Gold-bearing quartzites of eastern Nevada.

 U. S. Geol. Surv., Bull. no. 188, 717 pp., 1902.
4. Index to North American geology, paleontology, petrology, and mineralogy for the years 1892-1900, inclusive.
 U. S. Geol. Surv., Bull. no. 189, 337 pp., 1902.

 U. S. Geol. Surv., Bull. no. 191, 448 pp., 1902.

 U. S. Geol. Surv., Bull. no. 203, 144 pp., 1902.

 U. S. Geol. Surv., Bull. no. 221, 200 pp., 1903.

8. Tungsten ore in eastern Nevada.
 U. S. Geol. Surv., Bull. no. 213, p. 103, 1903.
 Describes the character and occurrence of hübnerite in the Snake Mountains, Nevada.

 Describes briefly the occurrence and character of pre-Cambrian, Cambrian, Silurian, Devonian, and Carboniferous strata and the general geologic structure.

11. Notes on the wells, springs, and general water resources of New York.

 Describes briefly the general geology of the State and its water resources, particularly the underground waters and the springs.

Weidman (Samuel).

1. The pre-Potsdam peneplain of the pre-Cambrian of north-central Wisconsin.
 Jour. Geol., vol. 11, pp. 289-318, 1 pl. and 3 figs., 1903.
 Describes physiographic features and general structure of the peneplain, and discusses its formation, evidences as to its age, and its subsequent history.

2. Note on the amphibole hudsonite previously called a pyroxene.
 Describes microscopic and chemical characters.

 Wis. Geol. & Nat. Hist. Surv., Bull. no. 11, 68 pp., 10 pls., 1903.
 Describes topography, general geology, water supply, and character and origin of soil formations.

4. Widespread occurrence of fayalite in certain igneous rocks of central Wisconsin.
 Jour. Geol., vol. 12, pp. 551-561, 3 figs., 1904.
 Describes the occurrence in Wisconsin, character, chemical composition, and relations to associated rocks, and discusses the origin and occurrences elsewhere of fayalite.

5. The Baraboo iron-bearing district of Wisconsin.
 Wis. Geol. & Nat. Hist. Surv., Bull. no. 13, 190 pp., 23 pls. (includ. geol. map in pocket), 1904.
 Describes the occurrence, megascopic and microscopic characters, and geologic relations of pre-Cambrian igneous rocks and sedimentary strata, and gives a general account of Cambrian and Ordovician sedimentary rocks and Glacial drift deposits, and discusses the ground water and the occurrence, character, and origin of the iron-ore deposits.
Weidman (Samuel)—Continued.

6. Iron ores of Wisconsin, with special reference to the Baraboo district.
Describes the character, occurrence, and geologic relations of the iron-ore deposits of Wisconsin and the geology of the Baraboo Range.

Weller (Stuart).

1. Correlation of the Kinderhook formations of southwestern Missouri.
Jour. Geol., vol. 9, pp. 130-148, 1901.
Reviews recent correlation of these strata and describes the occurrence and faunas of the several formations which make up the Kinderhook group.

2. Kinderhook faunal studies. III. The faunas of beds no. 3 to no. 7 at Burlington, Iowa.
Describes species collected from the various beds and discusses the correlations.

3. A preliminary report on the Paleozoic formations of the Kittatinny Valley in New Jersey.
Describes the character and occurrence of the subdivisions of the Cambrian and Ordovician strata in New Jersey.

4. The composition, origin, and relationship of the Corniferous fauna in the Appalachian province in North America.
Presents a comparative list of Corniferous and Oriskany faunas, describes the distribution and relations of these faunas, and discusses the origin of the Corniferous fauna.

5. Crotalocrinus cora (Hall).
Jour. Geol., vol. 10, pp. 532-534, 1 pl., 1902.
Describes material from the Niagara group and gives the synonymy of Crotalocrinus cora.

6. The Paleozoic faunas [of New Jersey].
Describes the Paleozoic formations of New Jersey, gives lists of their included fossils, and discusses the characteristics of the faunas and their correlation with those of other areas. Gives systematic descriptions and figures of the fossils of the several formations described.

7. The classification of the Upper Cretaceous formations and faunas of New Jersey.
Discusses previous classifications of the Cretaceous strata of New Jersey and their correlations and the faunas of the various beds.

Jour. Geol., vol. 13, pp. 238-256, 3 figs., 1905.

St. Louis Acad. Sci., Trans., vol. 15, pp. 259-264, 1 pl., 7 figs., 1905.

10. The fauna of the Cliffwood clays.
Describes the occurrence of the fossils, gives notes upon them and descriptions of the new species, a table showing distribution, and an analysis of the fauna and comparison with other faunas.

11. The northern and southern Kinderhook faunas.

12. Classification of the upper Cretaceous formations of New Jersey.

Weller (Stuart), Kümmel (Henry B.) and.

1. Paleozoic limestones of Kittatinny Valley, New Jersey.
See Kümmel (H. B.) and Weller (S.), 1.
FOR THE YEARS 1901-1905, INCLUSIVE. 357

Weller (Stuart), Kümml (Henry B.) and—Continued.
2. The rocks of the Green Pond Mountain region.
 See Kümml (H.B.) and Weller (S.), 2.

Weller (Stuart), Smith (James Perrin) and.
1. Prodomites, a new ammonite genus from the Lower Carboniferous.
 See Smith (J. P.) and Weller (Stuart), 1.

Wells (Horace L.).
1. Sperrylite, a new mineral.
 Jour. Sci., vol. 37, pp. 67-70, 1889.)
2. On the composition of pollucite and its occurrence at Hebron, Me.
 Jour. Sci., vol. 41, pp. 213-220, 1891.)

Wells (H. L.) and Penfield (S. L.).
1. On a new occurrence of sperrylite.
 Describes occurrence in platiniferous copper ore from Wyoming.

Wells (J. Walter).
1. Arsenic in Ontario.
 Describes distribution, manufacture, production, and uses of arsenic.

2. Molybdenite—its occurrence, concentration, and uses.
 1904.
3. Preliminary report on the raw materials, manufacture, and uses of hydraulic
cements in Manitoba.
 Can., Dept. of the Interior, Mines Branch, Ottawa, 1905. 70 pp., 7 pls.
4. Preliminary report on the industrial value of the clays and shales of Manitoba.
 Can., Dept. of the Interior, Mines Branch, Ottawa, 1905. 41 pp., 8 pls.
5. Preliminary report on the limestones and the lime industry of Manitoba.
 Can., Dept. of the Interior, Mines Branch, Ottawa, 1905. 68 pp., 8 pls.

Wells (W. E.).
1. The topography and geology of Clifton Gorge.
 Ohio Nat., vol. 4, pp. 75-79, 2 figs., 1904.

Wendeborn (B. A.).
1. Die Tätigkeit heisser Quellen in den Gängen von Wedekind, Nevada, V. S. N.-A.
 Discusses the ore deposits and their formation by the agency of heated water.

2. Die Quecksilberablagerungen in Oregon.
 Describes occurrence, character, and geologic relations of quicksilver-ore deposits in Oregon.

Wenstrom (Olof).
1. Mineral deposits of Santiago, Cuba. [In discussion of paper of Harrison Souder.]
 Contains observations on the geologic structure of the copper deposits.

Westgate (Lewis G.).
1. The Twin Lakes glaciated area, Colorado.
 Jour. Geol., vol. 13, pp. 265-312, 14 figs., 1905.
 Describes the pre-Glacial topography of the upper Arkansas Valley, the various Glacial fea-
tures of the Twin Lakes region, the Glacial erosion, and the post-Glacial changes, and dis-
cusses mountain form and its origin.

Wheeler (George D.).
1. Zinc in Crittenden County, Kentucky.
 Eng. & Mg. Jour., vol. 74, pp. 413-414, 3 figs., 1902.
Wheeler (H. A.).
1. Notes on the source of the southeast Missouri lead.
 Discusses the origin of the lead-ore deposits of this region.

Wheelock (Charles E.).
1. The Oriskany sandstone.
 Describes distribution, character, and fossil contents of the Oriskany sandstone in Onondaga County, N. Y.
2. [Overturth faults in central New York.]

Whitaker (Milton C.).
1. An olivinite dike of the Magnolia district [Colorado] and the associated picrotitanite.
 Describes the occurrence, the megascopic and microscopic characters, and composition of olivinite, and the characters and composition of the associated picrotitanite.

Whitbeck (E. H.).
1. The pre-Glacial course of the middle portion of the Genesee River [New York].
 Contains notes on the physiography and discusses the evidences regarding the pre-Glacial course of this river.

White (Charles A.).
1. The ancestral origin of the North American Unionidse, or fresh-water mussels.
2. The relation of phylogenesis to historical geology.
 Discusses the bearing of certain paleontologic facts upon the origin of species.

White (Charles Henry).
1. The Appalachian River versus a Tertiary trans-Appalachian River in eastern Tennessee.
 Discusses the evidences for the drainage system of the southern Appalachian region in Cretaceous and Tertiary time.
 Discusses figures of plants made by them upon rocks by their coloring matters and the various evidences of existence of plant life in past geological ages.

White (David).
1. Two new species of Algae from the Upper Silurian of Indiana.
2. Age of the coals at Tipton, Blair County, Pennsylvania.
 Describes the occurrence, character, and structure of the strata associated with the coals and discusses their age as indicated by the fossil flora.
3. Mr. Lacoe's relation to science.
 Gives an account of his geologic and paleontologic labors.
4. The Canadian species of the genus Whittleseyia and their systematic relations.
 Describes the occurrence, relation, systematic position, and characters of the species.
5. Some paleobotanical aspects of the Upper Paleozoic in Nova Scotia.
 Discusses the bearing of the paleobotanical data on the age of certain beds in Nova Scotia.
7. The bituminous coal field of Maryland.
Describes area, structure, and development of the field, and character, occurrence, and pro­duction of the coal beds.

Discusses the age and evidences therefor of certain beds in the region of the Bay of Fundy.

9. Memoir of Ralph Dupuy Lacoe.
Includes a list of publications.

10. Summary of the fossil plants recorded from the upper Carboniferous and Permian formations of Kansas.

12. An anthracite coal field three and a half hours west of Washington.
Describes observations upon the geology and age of the Sleepy Creek Mountain coal basin of West Virginia.

13. Age of the Mercer group.

Describes character and occurrence of Carboniferous deposits of Pottsville age in the Appa­lachian region, and the extent, figure, and general characteristics of the basin in which the sedimentation took place, and sketches the geologic history of the Appalachian region in Pottsville time.

15. Notes on the deposition of the Appalachian Pottsville.

17. The seeds of Aneimites.

18. The geology of the Perry basin in southeastern Maine: Paleontology.
Gives systematic descriptions of Devonian plant remains.

19. Fossil plants of the group Cycadofilices.

20. [The time element in stratigraphy and correlation.]

22. The occurrence of glacial epochs in Paleozoic time.

23. The age of the Wise and Harlan formations of southwestern Virginia.

24. The American range of the Cycadofilices.
White (David) and Campbell (Marius R.).
1. The bituminous coal field of Pennsylvania.
 Describes extent, geologic structure and development of the field, character, occurrence and
 productiveness of the coal beds, gives chemical analyses of the coals, and discusses their eco­
 nomic value.

White (David), Campbell (Marius R.), and Haseltine (Robert M.).
1. The northern Appalachian coal field.

White (D.), Smith (G. O.) and.
1. The geology of the Perry basin in southeastern Maine.
 See Smith (G. O) and White (D.),

White (I. C.).
1. Second edition of the geological map of West Virginia.
 Gives a brief description of the map.

2. Geology of West Virginia. [Paper read before the International Mining Con­
 gress, Boise, Idaho, June, 1901.]
 Describes briefly the character and succession of the sedimentary strata of the State.

3. The geology of West Virginia.
 Presents a summary of the geologic history of the State.

4. Geological horizon of the Kanawha black flint.
 Reviews previous investigations of the stratigraphic problems involved in this discussion,
 presents the author's recent observations, and discusses the relative value of stratigraphic
 and paleobotanic data.

5. List of fossils from the lower half of the Conemaugh formation near Morgantown,
 West Virginia, collected in 1870 by Dr. John J. Stevenson and identified by
 F. B. Meek.

6. The geology of the Pittsburgh district.
 Gives a general sketch of the stratigraphy of the Coal Measures and of geological history dur­
 ing Quaternary times.

7. The Appalachian coal field [West Virginia].
 Gives a detailed account of the Carboniferous system in West Virginia, including geologic
 sections, the extent, character, and geologic position of the various formations, and the
 character, occurrence, constitution, and fuel value of the coals.

8. Map showing occurrence of coal, oil, and gas in West Virginia.

 Gives a historical sketch of the subject and describes the occurrence of petroleum and natural
 gas, including many records of borings and precise surface levels.

10. [Discussion of paper by R. Pearson on "The discovery of natural gas in Sussex,
 Heathfield district."]
 A short note in regard to the occurrence of natural gas in the United States.

White (Mark).
 Gives a section of the Cretaceous strata.
1. [Faunas of the Lower Ordovician at Glens Falls, N. Y.]

 Abstract: Am. Geol., vol. 27, p. 43, 1901.
 Gives results of the author's detailed studies.

2. Description of a new species of Unio from the Cretaceous rocks of the Nanaimo coal field, Vancouver Island.
 Ottawa Nat., vol. 14, pp. 177-179, 1 fig., 1901.

3. Note on a supposed new species of Lytoceras from the Cretaceous rocks at Denman Island in the Strait of Georgia [Canada].
 Ottawa Nat., vol. 15, pp. 31-32, 1901.

4. On the genus Trimerella, with descriptions of two supposed new species of that genus from the Silurian rocks of Keeewatin.
 Ottawa Nat., vol. 16, pp. 139-148, 2 pls., 1902.

5. On the genus Panenka, Barrande, with a description of a second species of that genus from the Devonian rocks of Ontario.

6. Paleontology and zoology.
 Reports upon the paleontological work accomplished by the author's department.

7. Description of a fossil Cyrena from Alberta.
 Ottawa Nat., vol. 16, pp. 231-233, 1 pl., 1903.

8. Crania of extinct bisons from the Klondike Creek gravels.
 Ottawa Nat., vol. 16, pp. 245-249, 1903.

9. Description of a species of Cardioceras from the Crows Nest coal fields.

10. Notes on some Canadian specimens of "Lituites undatus."
 Ottawa Nat., vol. 17, pp. 119-122, 1903.
 Reviews literature bearing on the subject and discusses the generic placement and relationships of Canadian specimens.

11. Additional notes on some Canadian specimens of "Lituites undatus."

12. Mesozoic fossils. Part 5. On some additional fossils from the Vancouver Cretaceous, with a revised list of the species therefrom.

13. The Canadian species of Trocholites.

14. Description of a new genus and species of rugose corals from the Silurian rocks of Manitoba.
 Ottawa Nat., vol. 18, pp. 113-114, 1903.

15. Uintacrinus and Hemiaster in the Vancouver Cretaceous.
 Describes the occurrence and character of fossil echinoderms from Vancouver Island and gives a description of Hemiaster vancouverensis n. sp.

16. Paléontologie and zoology.
 Outlines the work upon paleontology during 1903 of the Geological Survey of Canada.
362 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY

Whiteaves (J. F.)—Continued.

17. Preliminary list of fossils from the Silurian (Upper Silurian) rocks of the Ekwan River, and Sutton Mill lakes, Keewatin, collected by D. B. Dowling in 1901, with descriptions of such species as appear to be new.

18. Paleontology and zoology.

19. Notes on the apical end of the siphuncle in some Canadian Endoceratidae, with descriptions of two supposed new species of Nanno.

Whitehead (Cabell), Chatard (T. M.) and.

See Chatard (T. M.) and Whitehead (C.), 1.

Whitfield (Robert Parr).

1. Note on a very fine example of Helicoceras stevensoni preserving the outer chamber.

2. Description of a new form of Myalina from the Coal Measures of Texas.

4. Description of a new Tereedo-like shell from the Laramie group.

Describes Paleodictyota n. gen.

6. Notice of six new species of Unios from the Laramie group.

9. Notice of a remarkable case of reproduction of lost parts shown on a fossil crinoid.

10. Note on some worm (?) burrows in rocks of the Chemung group of New York.

12. Descriptions of new fossil sponges from the Hamilton group of Indiana.

13. Notice of a new species of Fasciolaria from the Eocene green marls at Shark River, N. J.

Whitfield (R. P.) assisted by Hovey (E. O.).

1. Catalogue of the types and figured specimens in the paleontological collection of the geological department, American Museum of Natural History; Lower Carboniferous to Pleistocene, inclusive.
Whitlock (Herbert P.).
1. Guide to the mineralogic collections of the New York State Museum.
 N. Y. State Mus., Bull. 58, pp. 3-147, 39 pls., 249 figs., 11 models in pocket, 1902.
 Gives an outline of crystallography and describes characters, composition and occurrence of minerals.

2. List of New York mineral localities.
 N. Y. State Mus., Bull. 70, 106 pp., 1903.
 Tabulates the occurrence and geologic association of minerals found in the State of New York.

3. Minerals not commercially important.
 Gives notes on the occurrence of various minerals in the State of New York.

4. Contributions from the mineralogic laboratory.
 N. Y. State Mus., Bull. 98, 36 pp., 7 pls., 1905.
 Describes the crystallographic and other characters of various minerals.

Whitney (Francis I.).
1. The new artesian water supply at Ithaca, N. Y.
 U. S. Geol. Surv., Water-Supply and Irrigation Paper no. 110, pp. 55-64, 1 pl. and 1 fig., 1905.
 Includes notes upon the geology and records of the wells.

Whitney (Milton).
 Ill. Bd. of World's Fair Commissioners, Rept., pp. 93-114, 1895.
2. Field operations of the Division of Soils, 1899.
 U. S. Dept. Agric., Rept. no. 64, Washington, 1900. 198 pp., 29 pls., 19 figs. and 11 maps (in pocket).
 Contains soil surveys of the following areas:
 - Connecticut Valley, by Clarence W. Dorsey and J. A. Bonsteel, pp. 125-140.
 - New Mexico, Pecos Valley, by Thomas H. Means and Frank D. Gardner, pp. 66-76.
 - Utah, Salt Lake Valley, by Frank D. Gardner and John Stewart, pp. 77-114.
 - Utah, Sanpete, Cache, and Utah counties, by Thomas H. Means, pp. 115-120.

3. Field operations of the Division of Soils, 1900.
 Contains soil surveys of the following areas:
 - California, Santa Ana, by J. Garnett Holmes, pp. 385-412.
 - Maryland, Cecil County, by Clarence W. Dorsey and J. A. Bonsteel, pp. 103-124.
 - Maryland, Kent County, by Jay A. Bonsteel, pp. 173-186.
 - Maryland, St. Mary County, by Jay A. Bonsteel, pp. 125-145.
 - Ohio, Montgomery County, by Clarence W. Dorsey and George N. Coffey, pp. 55-102.

4. Field operations of the Bureau of Soils, 1901.
 Contains soil surveys of the following areas:
 - California, San Gabriel area, by J. Garnett Holmes and Louis Mesmer, pp. 569-666.
 - California, Ventura area, by J. Garnett Holmes and Louis Mesmer, pp. 621-657.
 - Georgia, Cobb County, by R. T. Avon Burke and Herbert W. Marean, pp. 317-327.
Whitney (Milton)—Continued.
Contains soil surveys of the following areas—Continued.
Michigan, Allegan County, by Elmer O. Fippin and Thomas D. Rice, pp. 93-124.
Mississippi, Yazoo area, by Jay A. Bonsteel and party, pp. 359-388.
North Carolina, Cary area, by George N. Coffey and W. Edward Hearn, pp. 311-315.
Pennsylvania, Lebanon area, by W. G. Smith and Frank Bennett, jr., pp. 149-171.
5. Field operations of the Bureau of Soils, 1902.
Contains soil surveys of the following areas:
Arizona, Yuma area, by J. Garnett Holmes, pp. 777-791.
Arkansas, Stuttgart area, by J. E. Lapham, pp. 611-622.
Idaho, Lewiston area, by Louis Mesmer, pp. 689-709.
Illinois, Clay County, by George N. Coffey and party, in cooperation with the Illinois Experiment Station, pp. 523-548.
Illinois, Clinton County, by Jay A. Bonsteel and party, in cooperation with the Illinois Experiment Station, pp. 491-505.
Illinois, St. Clair County, by George N. Coffey and party, in cooperation with the Illinois Experiment Station, pp. 507-532.
Illinois, Tazewell County, by Jay A. Bonsteel and party, in cooperation with the Illinois Experiment Station, pp. 465-489.
Indiana, Posey County, by Herbert W. Marean, pp. 441-463.
Iowa, Dubuque area, by Elmer O. Fippin, pp. 571-592.
Kentucky, Union County, by Herbert W. Marean, pp. 425-440.
Missouri, Howell County, by Elmer O. Fippin and J. L. Burgess, pp. 503-509.
North Carolina, Hickory area, by Thomas A. Caine, pp. 239-258.
Ohio, Columbus area, by William G. Smith, pp. 403-423.
Ohio, Toledo area, by William G. Smith, pp. 333-342.
Texas, Brazoria area, by Frank Bennett, jr., and Grove B. Jones, pp. 349-364.
Texas, Vernon area, by J. E. Lapham and party, pp. 365-381.
Virginia, Albemarle area, by Charles N. Mooney and F. E. Bonsteel, pp. 187-238.
Washington, Walla Walla area, by J. Garnett Holmes, pp. 711-728.
Wisconsin, Janesville area, by Jay A. Bonsteel, pp. 549-570.
6. Field operations of the Bureau of Soils, 1903.
Contains soil surveys of the following areas:
Alabama, Huntsville area, by Frank Bennett, jr., and A. M. Giffen, pp. 373-392.
Whitney (Milton)—Continued.

Contains soil surveys of the following areas—Continued.

Alabama, Mobile area, by R. T. Avon Burke and party, pp. 393-403.
California, Imperial area, by J. Garnett Holmes and party, pp. 1219-1248.
California, Indio area, by J. Garnett Holmes and party, pp. 1249-1262.
California, Los Angeles area, by Louis Measner, pp. 1263-1300.
California, San Jose area, by Macy H. Lapham, pp. 1183-1217.
Colorado, San Luis Valley, by J. Garnett Holmes, pp. 1099-1119.
Delaware, Dover area, by F. E. Bonsteel and O. L. Ayres, pp. 143-164.
Florida, Gadsden County, by Elmer O. Fippin and Aldert S. Root, pp. 331-352.
Iowa, Cerro Gordo County, by Herbert W. Marean and Grove B. Jones, pp. 855-873.
Iowa, Story County, by Herbert W. Marean and Grove B. Jones, pp. 833-853.
Kansas, Parsons area, by J. A. Drake, pp. 661-693.
Kansas, Russell area, by A. W. Mangum and J. A. Drake, pp. 911-926.
Kentucky, Mason County, by R. T. Avon Burke, pp. 691-703.
Kentucky, Scott County, by R. T. Avon Burke, pp. 619-630.
Louisiana, Ouachita Parish, by Thomas D. Rice, pp. 419-438.
Missouri, Shelby County, by R. T. Avon Burke and La Mott Ruhlen, pp. 876-899.
Nebraska, Grand Island area, by W. Edward Hearn and James L. Burgess, pp. 927-945.
Nebraska, Stanton area, by W. Edward Hearn, pp. 947-962.
New York, Long Island area, by J. A. Bonsteel and party, pp. 91-128.
New York, Syracuse area, by F. E. Bonsteel and others, pp. 63-89.
North Carolina, Craven area, by William G. Smith and George N. Coffey, pp. 253-278.
Oregon, Salem area, by Charles A. Jensen, pp. 1171-1182.
South Carolina, Campobello area, by A. W. Mangum and Aldert S. Root, pp. 299-316.
South Dakota, Brookings area, by Frank Bennett, Jr., pp. 963-977.
Tennessee, Davidson County, by William G. Smith and Hugh H. Bennett, pp. 605-617.
Tennessee, Pikeville area, by Henry G. Wilder and W. J. Gelb, pp. 577-603.
Texas, Jacksonville area, by W. Edward Hearn and James L. Burgess, pp. 521-531.
Texas, Woodville area, by J. E. Lapham and party, pp. 511-520.
Utah, Provo area, by Alfred M. Sanchez, pp. 1121-1130.
Virginia, Leesburg area, by William T. Carter, Jr., and W. S. Lyman, pp. 191-231.
Virginia, Norfolk area, by J. E. Lapham, pp. 233-252.

Whittemore (Charles A.).

1. The sub-Carboniferous limestone exposure at Grand Rapids, Mich.

Describes the occurrence and character, and notes the fossils occurring therein.
Wiel (Samuel C.).
1. A Nevada ore deposit.
 Describes occurrence, character, and geologic relations of a deposit of manganese, and discusses its origin.

Wieland (G. R.).
 Continues the description of the author's studies of the fructification of Cycadeoidea, which appeared in the American Journal of Science for March, 1899.
3. Notes on the marine turtle Archelon: 1, on the structure of the carapace; 2, associated fossils.
 Describes the rib series of Archelon ischyros from new material.
4. Polar climate in time the major factor in the evolution of plants and animals.
5. Extent and progress of cycad investigation.
7. Structure of the upper Cretaceous turtles of New Jersey: Lytoloma.
8. The proembryo of the Bennettiteae.

Wigmore (H. L.).
1. Report of an examination of the coal deposits of Polillo Island, P. I.

Wilcox (Walter D.).
1. Recent exploration in the Canadian Rockies.
 Contains notes on the physiography of the region.

Wilder (Frank A.).
1. The lignite deposits of North Dakota.
 Eng. & Mg. Jour., vol. 74, pp. 674-675, 8 figs., 1902.
Wilder (Frank A.)—Continued.
2. The lignite coal fields of North Dakota.
 Describes character and occurrence of the deposits of lignite.

3. Geology of Webster County [Iowa].
 Describes physiographic features and geology of the county, and discusses the origin, geologic and geographic occurrence and utilization of gypsum deposits and other economic products.

4. The age and origin of the gypsum of central Iowa.
 Jour. Geol., vol. 11, pp. 723-748, 3 figs., 1903.
 Describes occurrence, character, and geologic position of the gypsum deposits, and discusses their age and mode of formation.

5. Possible origin for the lignites of North Dakota.
 Describes occurrence and characters of lignite beds in North Dakota and Montana and offers an explanation of their origin.

 U. S. Geol. Surv., Bull. no. 223, pp. 49-52, 1 pi., 1 fig., 1904.
 Discusses character, occurrence, economic development, and geologic relations of the gypsum deposits in this State.

7. The Laramie and Fort Union beds in North Dakota.
 Jour. Geol., vol. 12, pp. 290-293, 1904.
 Discusses the evidences observed in field work in regard to the relations of the Fort Union beds and the Laramie.

8. The lignite of North Dakota and its relation to irrigation.
 Discusses the occurrence and character of the lignite of North Dakota, and its use in irrigation work.

9. Thirteenth annual report of the State geologist.
 Outlines the work of the Iowa geological survey during the year 1904.

10. The lignite on the Missouri, Heart and Cannon Ball rivers and its relation to irrigation.
 Contains notes on the character and occurrence of lignite beds.

Willard (Daniel E.).
1. The story of the prairies, or, the landscape geology of North Dakota. Third edition.
 Printed for the author by Rand, McNally & Company, Chicago, 1902. 256 pp., 83 figs.
 Describes the physiography and geology of North Dakota.

Willard (D. E.), Hall (C. M.) and.
1. Casselton-Fargo folio, North Dakota-Minnesota.
 See Hall (C. M.) and Willard (D. E.), 1.

Wilcox (O. W.).
1. On certain aspects of the loess of southwestern Iowa.
 Jour. Geol., vol. 12, pp. 716-721, 1 fig., 1904.
 Describes the character and occurrence of loess deposits in this region differing in color and character, and discusses their origin.

2. The so-called alkali spots of the younger drift-sheets.
 Discusses the occurrence and origin of the so-called alkali spots found upon the surface of fields underlain by Glacial drift in Iowa, Wisconsin, Illinois, and Indiana.

Willey (Day Allen).
1. New Texan oil deposits.
 Contains notes on the occurrence of petroleum deposits.
Willey (Day Allen)—Continued.
2. The oil fields of the West.
 Sci. Am., vol. 93, pp. 484, 4 figs., 1905.
 A discussion of the production of petroleum in the United States.

Williams (E. G.).
1. The manganese industry of the Department of Panama, Republic of Colombia.
 Discusses the character and occurrence of the manganese-ore deposits and the mining operations.

Williams (Edward H., jr.).
1. The alleged Parker channel [Pennsylvania].
 Describes abandoned channel of Allegheny River.

2. Kansas glaciation and its effects on the river system of northern Pennsylvania.
 Discusses drainage modifications produced by the ice of the Glacial period.

3. Connection by precise leveling between the Atlantic and Pacific oceans.
 Science, new ser., vol. 21, p. 862, 1905.

Williams (Henry Shaler).
1. The discrimination of time values in geology.
 Jour. Geol., vol. 9, pp. 570-585, 1901.
 Discusses the criteria upon which the classification of strata should depend and proposes a plan of a biochronic classification and nomenclature.

2. Points involved in the Siluro-Devonian boundary question.
 Gives brief summary of questions in dispute.

3. Fossil faunas and their use in correlating geological formations.
 Discusses methods of employing fossil faunas in correlating definite formations and their limitations.

4. Shifting of faunas as a problem of stratigraphic geology.
 Discusses relationships of faunas in different types of sediments in the Devonian of New York, Pennsylvania, and Ohio and their shifting, and gives rules for the use of fossils in stratigraphy.

5. The correlation of geological faunas, a contribution to Devonian paleontology.
 U. S. Geol. Surv., Bull. no. 210, 147 pp., 1903.
 Discusses faunas of upper Devonian, with especial reference to the statistics of the species the evidences for the shifting of faunas and the consequences thereof, and the value and use of fossils in correlation work.

 Gives a list of fossils identified with their occurrence by localities: A few of the more characteristic are figured.

 Discusses some of the results obtained and the methods, largely paleontologic, used in the stratigraphic work.

8. Bearing of some new paleontologic facts on nomenclature and classification of sedimentary formations.

Williams (Henry Shaler) and Kindle (Edward M.).
1. Contributions to Devonian paleontology, 1903.
 U. S. Geol. Surv., Bull. no. 244, 144 pp., 6 pls., and 3 figs., 1905.
 Describes sections of Devonian and Mississippian rocks of Virginia, West Virginia, Kentucky, and Pennsylvania, gives lists of the species identified in their faunules, and discusses the correlation, range, environment, etc., of these faunules.
Williams (Ira A.).
1. Geology of Jasper County [Iowa].
 Describes physiographic features, the occurrence, character, and relations of Carboniferous
 strata and Pleistocene deposits, and the economic resources.
2. The comparative accuracy of the methods for determining the percentages of the
 several components of an igneous rock.

Williams (I. A.), Beyer (S. W.) and.
1. Technology of clays.
 See Beyer (S. W.) and Williams (I. A.), 1.
2. The geology of clays.
 See Beyer (S. W.) and Williams (I. A.), 2.

Willimott (C. W.).
 Describes the occurrence and characters of lepidolite, serpentine, and fuchsite from the
 Ottawa Valley.
2. Notes on molybdenite.

Willis (Bailey).
1. Paleozoic Appalachia, or the history of Maryland during Paleozoic time.
 Md. Geol. Surv., vol. 4, pp. 23-93, 12 pls., 1 fig., 1902. [Advance separate, 1900.]
 Describes action of dynamic forces upon land surfaces, and history of orographic movements
 and geographic changes during Paleozoic time affecting the area in which Maryland is
 situated.
2. Individuals of stratigraphic classification.
 Jour. Geol., vol. 9, pp. 557-569, 1901.
 Discusses the discrimination of formations by lithologic criteria and the determination of
 faunal and time divisions.
3. Thomas Benton Brooks.
 Gives an account of his life and geologic researches.
4. Oil of the northern Rocky Mountains.
 Eng. and Mag.-Journ., vol. 72, pp. 782-784, 3 figs., 1901.
 Describes the stratigraphy and structure of the region and the probable occurrence of oil.
 See Merrill (F. J. H.) and others, 1.
 Describes the physiography, the occurrence and character of the Algonkian, Carboniferous,
 Cretaceous and Pleistocene formations, and the geologic structure of the region.
7. Structure of the front range, northern Rocky Mountains, Montana.
8. Physiography of the northern Rocky Mountains.
9. Conditions of overthrust in the northern Rockies.
11. Physiography and deformation of the Wenatchee-Chelan District, Cascade Range
 [Washington].
 Describes physiographic features of the region and their history.
 Bull. 301—06——24
Willis (Bailey)—Continued.
 Describes physiographic and glacial evidences showing submergence and re-elevation.

 Congr. géol. intern., Compte rendu IX. Sess., pp. 529-540, 2 figs., 1904.
 Defines various kinds of overthrust, and discusses their origin and time relations.

15. Mountain growth and mountain structure.

Willis (Bailey), Smith (George Otis) and.
 See Smith (G. O.) and Willis (B.), 1.

Williston (S. W.).
 Kans. Univ. Geol. Surv., vol. 6, pp. 257-256, 10 pls., 1900.

2. The dinosaurian genus Creosaurus, Marsh.
 Reviews previous descriptions and describes new material.

3. A new turtle from the Kansas Cretaceous.
 Describes Porthochelys laticeps, n. gen. et sp.

4. On the hind limb of Protostega.

5. An arrow-head found with bones of Bison occidentalis Lucas in western Kansas.
 Am. Geol., vol. 30, pp. 313-315, 1 fig., 1902.
 Gives a section of the locality where the bones were found.

6. On the skull of Nyctodactylus, an Upper Cretaceous Pterodactyl.
 Jour. Geol., vol. 10, pp. 520-534, 2 pls., 1902.
 Describes new material from western Kansas.

7. Winged reptiles.

8. On the skeleton of Nyctodactylus with restoration.

10. Notes on some new or little-known extinct reptiles.

11. On certain homoplastic characters in aquatic air-breathing vertebrates.
 Discussion mainly of fossil forms.

 Describes occurrence of human remains in loess near Lansing, Kansas.

 Discusses age of the Laramie deposits of Converse County, Wyoming, and gives notes on the fossils found in them.

FOR THE YEARS 1901-1905, INCLUSIVE.

Williston (S. W.)—Continued.

15. On the osteology of Nyctosaurus (Nyctodactylus), with notes on American pterosaurs.

17. Some osteological terms.
 Science, new ser., vol. 18, pp. 829-830, 1903.

18. The fossil man of Lansing, Kansas.
 Describes the occurrence of the human remains and discusses the evidences of their age.

19. The relationships and habits of the Mosasaurs.
 Jour. Geol., vol. 12, pp. 48-51, 1904.
 Discusses taxonomy in the vertebrates, and the phylogeny, classification, and mode of life of extinct saurians.

20. Wilbur Clinton Knight.
 Am. Geol., vol. 33, pp. 1-6, 1 pl. (por.), 1904.
 Includes a bibliography of the scientific papers published by the subject of the sketch.

21. The fingers of pterodactyls.

22. The stomach stones of the plesiosaurs.

23. Notice of some new reptiles from the upper Trias of Wyoming.
 Jour. Geol., vol. 12, pp. 688-697, 6 figs., 1904.

 Describes the discovery and mode of occurrence of the Lansing skeleton.

25. The Hallopus, Bapitanodon, and Atlantosaurus beds of Marsh.
 Discusses the age of these beds in the light of the evidence given by vertebrate fossil remains.

27. [Phylogeny and classification of the Reptilia.]

28. [New locality for Triassic vertebrates in Wyoming.]

Wilmott (A. B.).

1. The Michipicoten Huronian area.
 Describes the occurrence of the igneous and sedimentary rocks of the region and discusses the stratigraphic succession and age of the sediments.

2. The nomenclature of the Lake Superior formations.
 Discusses the use of names for the subdivisions of the Archean and Algonkian of the region.

3. The contact of the Archean and post-Archean in the region of the Great Lakes.
 Describes the character of the line of contact of the Archean and overlying formations in the Great Lakes region in Canada and discusses the origin of this character.

4. The exploration of the Ontario iron ranges.
 Describes the general geology of the iron ranges, the character of the rocks, and the occurrence of iron ore deposits.
Willmott (A. B.), Coleman (A. P.) and
1. The Michipicoten iron ranges [Ontario].
 See Coleman (A. P.) and Willmott (A. B.), 1.
2. The Michipicoten iron region [Ontario].
 See Coleman (A. P.) and Willmott (A. B.), 2.

1. The Medford dike area [Massachusetts].
 Describes the petrographic characters of the crystalline rocks and the glacial phenomena of
 the region. Includes a bibliography and geologic map.
 Describes the character of the pre-sedimentary floor of the region, the characters of the Paleozoic
 series, its post-Paleozoic history, and the glacial phenomena.
3. The country west of Nipigon Lake and River [Canada].
 Describes the author's observations upon the geology, topography, and economic resources of
 this region.
4. Some recent folds in the Lorraine shales [Ontario].
 Describes the occurrence and origin of the local folds.
5. A geological reconnaissance about the headwaters of the Albany River [Canada].
 Gives observations upon the topography and geology of the region examined.
6. The Laurentian peneplain.
 Jour. Geol., vol. 11, pp. 615-669, 14 figs., 1903; McGill Univ., Papers from Dept. Geol., no. 15,
 1903.
 Describes location, physiographic control, topographic and drainage features, and discusses
 the origin of the Laurentian peneplain and some of its features.
7. The theory of the formation of sedimentary deposits.
 16, 1904.
 Discusses the conditions and processes of sedimentation and their bearing upon the character
 and correlation of some Ordovician and Silurian formations of Canada.
8. Cuspate forelands along the Bay of Quinte [Ontario].
 Jour. Geol., vol. 12, pp. 106-132, 12 figs., 1904; McGill Univ., Papers from the Dept. of Geol., no
 18, 1904.
 Describes physiographic features in this vicinity, and discusses the mode of their formation
 by wave action.
9. Trent River system and St. Lawrence outlet.
 Describes physiographic features of the country east and northeast of Lake Ontario, and dis­
 cusses their bearing upon the pre-Glacial drainage of that region.
10. Physiography of the Archean areas of Canada.
 Describes the physiographic character of the region, and discusses the origin of various
 features.
11. A forty-mile section of Pleistocene deposits north of Lake Ontario.
 Describes the occurrence and character of Pleistocene deposits along the north shore of Lake
 Ontario.

Wilson (E. B.).
1. The theory of ore deposits applied to prospecting.
Wilson (Herbert M.).
1. Porto Rico; its topography and aspects.
 Describes physiography of the island.

Wilson (J. Howard).
1. The Pleistocene formations of Sankaty Head, Nantucket.
 Jour. Geol., vol. 13, pp. 713-734, 12 figs., 1905.
 Describes the position and character of the successive beds in a section at this point, gives a
 tabulated list of the fossils obtained, with notes on their occurrence elsewhere, and dis­
 cusses the conditions under which the beds were formed.

Wilson (John D.).
1. Fauna of the Agoniatite limestone of Onondaga County, N. Y.
 Describes the occurrence, character, and fossils of the Agoniatite limestone of the Marcellus
 shale in Onondaga County, N. Y.

Wilson (W. J.).
1. Western part of the Abitibi region [Canada].
 Describes the author's observations in this region.
2. Reconnaissance surveys of Four Rivers southwest of James Bay.
 Contains observations upon the geology of the region examined.
3. The Nagagami River and other branches of the Kenogami.
 Gives notes upon the geology of the region examined.
4. The Little Current and Drowning rivers, branches of the Albany, east of Lake
 Nipigon [Ontario].
 Includes observations on the geology of the region examined.

Winchell (Alexander N.).
1. Étude minéralogique et pétrographique des'roches gabbroïques de l’État de Min­
 nesota, États-Unis, et plus spécialement des anorthosites.
2. Note on certain copper minerals.
 Am. Geol., vol. 28, pp. 244-246, 1901.
 Describes occurrence of chalcopyrite and bornite at Butte, Mont.
3. Note on titaniferous pyroxene.
 Am. Geol., vol. 31, pp. 302-310, 1903.
 Discusses composition and optic angle.
4. [Discussion of paper by J. E. Spurr, "A consideration of igneous rocks and their
 segregation or differentiation as related to the occurrence of ores.'"
 Discusses an example of ore concentration in Madison County, Montana.

Winchell (Horace V.).
1. The ore deposits of Monte Cristo, Washington.
 Am. Geol., vol. 30, pp. 113-118, 1902.
 Reviews a paper by J. E. Spurr.
 Discusses occurrence and experiments to determine origin of chalcocite.
3. The Mesabi iron range [Minnesota].
 Discusses geologic work upon the Mesabi iron range.
Winchell (Horace V.)—Continued.

 Eng. & Mg. Jour., vol. 78, pp. 7-8, 1 fig., 1904.
 Describes the general geologic structure and the character and occurrence of the copper-ore deposits.

5. Notes on Goldfield, Nevada.
 Am. Geol., vol. 25, pp. 382-385, 1905.
 Describes the location and character of the mining district, and the occurrence and character of the gold-ore deposits.

Winchell (Newton H.).

1. A new iron-bearing horizon in the Keewatin in Minnesota.
 Contains notes on the geology and occurrence of ore in this region.

2. Geological atlas with synoptical descriptions [Minnesota].

 Describes the retreat of the ice sheets and the occurrence of the several Glacial lakes of the region.

4. Edward Waller Claypole.
 Gives a sketch of the life of Prof. Claypole.

5. The origin of Australian iron ores.
 Reviews paper by J. B. Jaquet on "The iron-ore deposits of New South Wales," and compares them with certain deposits in the State of Washington.

6. Fundamental changes in the Archean and Algonkian, as understood by Prof. Van Hise, of the United States Geological Survey.
 Am. Geol., vol. 25, pp. 385-388, 1901.
 Reviews a recent paper by Prof. Van Hise.

7. Sketch of the iron ores of Minnesota.
 Describes the general geology and the occurrence and origin of the iron ores.

8. The geology of the Mississippi Valley at Little Falls, Minnesota.
 Describes occurrence and character of strata at this locality and sketches their geological history.

 Am. Geol., vol. 30, pp. 62-64, 1902.
 Gives an account of this publication issued in 1831-2.

11. The Sutton Mountain.
 Am. Geol., vol. 30, pp. 118-120, 1902.
 In discussing the geology of the region refers to an article by J. A. Dresser.

 Am. Geol., vol. 30, pp. 159-194, 1902.
 Describes the deposits in which the skeleton was found and gives an estimate of its age.

 Am. Geol., vol. 31, pp. 246-253, 1903.
 Gives a brief summary of the results of this survey.
14. The Pleistocene geology of the Concannon farm, near Lansing, Kansas.

Am. Geol., vol. 31, pp. 283-308, 4 pls., 1903.

Summarizes and discusses Professor Chamberlain's paper on "The geologic relations of the human relics of Lansing, Kansas" (Jour. Geol., vol. 10, pp. 745-779, 1902), describes the general geologic relations and character of the deposits where the human remains were found, and discusses their age and mode of formation. Includes contributions by S. W. Williston, J. E. Todd, and G. Frederick Wright.

15. Regeneration of clastic feldspar.

Reviews previous literature on the subject and discusses three phases of the changes through which feldspars pass.

16. Was man in America in the Glacial period?

Describes conditions prevailing in North America during Tertiary times, discusses character of the pre-Glacial geost covering, the advent of the ice sheets, origin of the loess, and the occurrence and character of the Lansing skeleton.

17. Metamorphism of the Laurentian limestones of Canada.

Am. Geol., vol. 32, pp. 385-392, 1903.

18. Granite. Address at unveiling of the Coronado obelisk at Logan Grove, Kansas, Aug. 12, 1902.

Includes a discussion of Archean geologic history and the origin of granite.

Am. Geol., vol. 33, pp. 116-122, 1904.

States the fundamental ideas involved in the hypothesis of climate in Marsden Manson's "Evolution of Climates" (see Manson, 1) and discusses the objections which have been raised against it.

20. Where did life begin?

Am. Geol., vol. 33, pp. 185-190, 1904.

Reviews works by Wm. F. Warren and G. Hilton Scribner and statements of others regarding the origin of life in the North Polar regions and its distribution southward.

Am. Geol., vol. 33, pp. 319-325, 8 figs., 1904.

Applies the term peléolith to massive-solid volcanic extrusions of the type of the recently formed cone of Mont Pelé and describes various examples of peléoliths.

22. The colossal bridges of Utah.

Am. Geol., vol. 34, pp. 189-192, 1 fig., 1904.

Describes briefly these arches produced by erosion, situated in San Juan County, Utah.

23. The Baraboo iron ore.

Am. Geol., vol. 34, pp. 242-253, 1904.

Describes a report by Dr. Weldman on the Baraboo iron-bearing district of Wisconsin.

24. The geology of the iron ores of Minnesota, U. S. A.

Discusses the character and occurrence of the iron ores of Minnesota and the age and character of the rocks in which they occur.

25. Notes on the geology of the Hellgate and Big Blackfoot valleys, Montana.

Gives a provisional general section of the rocks of the region and brief notes upon the stratification, geologic structure, and igneous rocks.

26. Note on the geology of the Hellgate Valley between Missoula and Elliston, and northward to Placid Lake, in Montana.

Describes briefly the stratigraphy and general geology of the region.
Winchell (Newton H.)—Continued.
27. Deep wells as a source of water supply for Minneapolis.
 Am. Geol., vol. 35, pp. 266-291, 4 pls., 1 fig., 1905.
 Discusses the underground water resources of Minneapolis, Minnesota.

28. Another meteorite in the Supreme Court.
 Discusses the question of ownership of meteorites.

29. The Willamette meteorite.
 Describes surface features of this meteorite and discusses their origin.

Winterton (J.).
1. The volcanic eruptions in Guatemala.
 Sci. Am., vol. 89, p. 84, illus., 1903.

Withrow (James R.), Hamilton (S. Harbert) and.
1. The progress of mineralogy in 1899, an analytical catalogue of the contributions
to science during the year.
 See Hamilton (S. H.) and Withrow (J. R.), 1.

Wittman (Ernest).
1. The geological and topographical features of the city of Monterey, Nuevo Leon,
 Mexico, and its vicinity.

Wolff (John E.).
1. Leucite-tunguante from Beemerville, New Jersey.
 Describes this rock and gives chemical analyses.

2. Zinc and manganese deposits of Franklin Furnace, N. J.
 Describes the character, geologic occurrence, and origin of the zinc deposits.

3. Cambrian and pre-Cambrian of Hoosac Mountains, Massachusetts.

Wolff (John E.) and Palache (Charles).
1. Apatite from Minot, Maine.
 pp. 438-448, 1 pl., 1902.
 Describes occurrence, crystallography, chemical composition, and properties of a specimen
 from Maine.

Wood (Edgar).
1. Eruption of Mauna Loa, 1903.
 Am. Geol., vol. 34, pp. 62-64, 1 fig., 1904.
 Describes phenomena observed during an eruption of Mauna Loa in October, 1903.

Wood (Elvira).
1. Marcellus (Stafford) limestones of Lancaster, Erie County, N. Y.
 N. Y. State Mus., Bull. no. 49, pp. 139-181, 1 pl., 1 fig., 1901.
 Describes stratigraphic relations and lithologic and faunal characters.

 Describes Gennaeocrinus carinatus n. sp.

3. On new and old middle Devonian crinoids.

Wood (H. O.), Palache (Charles), and.
1. A crystallographic study of millerite.
 See Palache (Charles) and Wood (H. O.), 1.
Wood (L. H.).

Woodbridge (Dwight E.).
1. The Mesabi iron ore range.
 Discusses the geology of the Lake Superior iron region.

Woodman (J. Edmund).
 Am. Geol., vol. 33, pp. 364-370, 1901.
 Describes character and occurrence of certain geologic formations in southern Nova Scotia, discusses their nomenclature, and proposes new terms.

 Am. Geol., vol. 34, pp. 13-34, 1904.
 Describes the occurrence and character and the geologic relations and history of the metamorphic formations of southern Nova Scotia.

3. Distribution of bedded leads in relation to mining policy.
 Discusses the structure of the gold fields of Nova Scotia and its relation to the mining industry.

 Describes the geologic structure of the area, and the character, occurrence, and relations of the folds and faults, and of the mineral veins.

Woodward (Henry).
 Geol. Mag., new ser., dec. 4, vol. 9, pp. 502-505, 529-544, 1 pl. and 7 figs., 1902.
 Gives a geological section of Mount Stephen and describes fossils from this locality.

2. Note on some fragmentary remains of fossils from the upper part of Mount Noyes (Canadian Rockies).

Woodward (R. S.) and others.
1. Report of advisory committee on geophysics.
 Discusses problems of geophysics and methods of investigation.

Woodworth (Jay Backus).
1. Original micaceous cross-banding of strata by current action.
 Am. Geol., vol. 27, pp. 281-283, 2 figs., 1901.
 Describes the phenomena occurring in glacial sand of Massachusetts and refers to descriptions of somewhat similar occurrences.

2. Pleistocene geology of portions of Nassau County and Borough of Queens [New York].
 Describes the physiography, and character and occurrence of the Pleistocene strata of the region. Includes a summary of Glacial history and bibliography.

3. The history and conditions of mining in the Richmond coal-basin, Virginia.
 Describes geologic conditions in this coal field.
Woodworth (Jay Backus)—Continued.

4. The Atlantic coast Triassic coal field.
 Describes extent, general geologic relations and structure of this coal field occupying parts of Virginia and North Carolina, the number, thickness and extent of the coal beds, and the character, composition and production of the coal.

6. On the sedentary impression of the animal whose trail is known as Climactichnites.
 N. Y. State Mus., Bull. 69, pp. 959-966, 2 pls., 3 figs., 1903.
 Describes occurrence and character of the trails known as Climactichnites and discusses their formation.

7. The Northumberland volcanic plug.
 Describes the occurrence, character and geologic relations of an igneous rock mass discovered near Schuylerville, New York, to which the name Stark's Knob is given.

8. The Brandon clays.
 Describes the fuel value, occurrence, and geologic relations of the lignites in the Brandon clays of Vermont, and discusses fossil fruits occurring in them.

9. Pleistocene geology of Mooers quadrangle, being a portion of Clinton County, including parts of the towns of Mooers, Champlain, Altona, Chazy, Dannemora, and Beekmantown, N. Y.
 Describes in detail the character, occurrence, and relations of various Glacial deposits and other Glacial phenomena, and discusses the presence of beaches and marine Pleistocene deposits and their origin.

10. Ancient water levels of the Champlain and Hudson valleys.
 N. Y. State Mus., Bull. 84, 265 pp., 28 pls. and map (in pocket), 33 figs., 1905.
 Describes the physiography of the Hudson and Champlain valleys, the occurrence and character of glacial deposits, and the Pleistocene history of the region.

Woolman (Lewis).

1. Artesian wells. [New Jersey.]
 Gives sections of many artesian wells.

2. Artesian wells.
 Contains records of wells and notes on the strata passed through.

Woolsey (Lester H.).

 Describes occurrence, character, and utilization of the clays of this region.

2. Extra-morainic pebbles in western Pennsylvania.

 Describes the physiography, the occurrence, character, and relations of Carboniferous strata and Pleistocene deposits, the geologic and physiographic history of the quadrangle, and the economic resources, coal, clays, petroleum, and natural gas being the most important.

Wooster (L. C.).

1. The Carboniferous rock system of eastern Kansas.
 Describes the occurrence, character, thickness, and economic resources of the various Carboniferous formations present in Kansas.
Wooster (L. C.)—Continued.

2. Some notes on Kansas geology.
 Brief notes on the occurrence, relations, and character of Carboniferous strata in Kansas.

Wortman (J. L.).

 Describes the characters of the skull and the relations of the Amphicyon group.

 Discusses the relations of the Carnivora and Creodonta, and describes the characters of some forms of Canidae, including a few new species.

 Describes Viverravus Marsh, V. gracilis Marsh, minutus n. sp., and Oōdectes herpestoides n. gen. et sp.

 Gives the important characters by which the Creodonta are distinguished from the Carnassidentia, and describes Harpagolestes macrocephalus n. gen. et sp., and Dromocyon vorax Marsh.

 Continues description of Dromocyon vorax Marsh.

 Describes two new species of Sinopa, discusses certain relations of the creodonts, and gives a summary of the author's previous papers on the Eocene Carnivora in the Marsh collection.

 Describes Mesonyx obtusidens Cope and discusses the origin of the tribucular molar.

 Discusses the character and habits of Patriofelis ferox Marsh.

 Describes Sinopa rapax Leidy and S. agilis Marsh.

 Discusses characters, relationships, classification, origin, and distribution of primates, and gives descriptions of forms belonging to the Cheiromyidae.

Wright (Albert A.).

1. New evidence upon the structure of Dinichthys.
Wright (Albert A.)—Continued.
2. Ohio boulders containing "huronite."

Wright (Charles W.).
1. The Porcupine placer mining district, Alaska.
 Describes briefly the general geology and the occurrence and mining of placer gold.
2. The Porcupine placer district, Alaska.
 U. S. Geol. Surv., Bull. no. 236, 35 pp., 10 pis., 4 figs., 1904.
 Describes the general geology, the character and occurrence of placer gold deposits, and the mining operations.

Wright (Charles W.), Wright (F. E.) and.
 See Wright (F. E.) and Wright (C. W.), 1.

Wright (Fred Eugene).
1. A new combination wedge for use with the petrographical microscope.
2. Two microscopic-petrographical methods.
 Describes methods of determining index of refraction and optical character of minerals.
3. Der Alkalisyenit von Beverly, Massachusetts, U. S. A.
 Describes crystallographic characters and composition of an alkali-syenite from Beverly, Massachusetts.
 Describes the field work of 1903 and gives notes upon the geology.
5. The determination of the optical character of bi-refracting minerals.
 Houghton, 1905. 105 pp., 2 pis., 11 figs.

Wright (F. E.) and Wright (C. W.).
 Describes the general geology and the character and occurrence of placer gold deposits.

Wright (Frederick Bennett).
1. The mastodon and mammoth contemporary with man.

Wright (G. Frederick).
 Ohio State Acad. Sci., 2d Ann. Rept., pp. 5-10 [1894].
 Discusses source and distribution of glacial boulders.
 Ohio State Acad. Sci., 3d Ann. Rept., pp. 6-7 [1896].
 Discusses distribution and source of glacial boulders in Ohio.
3. The rate of lateral erosion at Niagara.
 Am. Geol., vol. 29, pp. 140-143, 1 pl., 2 figs., 1902.
 Gives the results of measurements to determine the rate at which the face of the gorge crumbles away under the influence of sub-aerial agencies.
4. The age of the Lansing skeleton.
5. Glacial man.
FOR THE YEARS 1901-1905, INCLUSIVE. 381

Wright (G. Frederick)—Continued.
6. The Lansing skull and the early history of mankind.
 Bibliotheca Sacra, 73d yr., pp. 28-32, 1903.
7. The revision of geological time.
 Bibliotheca Sacra, 73d yr., pp. 578-582, 1903.
 Reviews and discusses the evidence for the length of post-Glacial time.
8. The problem of the loess in the Missouri Valley compared with that in Europe
 and Asia.
9. Evidence of the agency of water in the distribution of the loess in the Missouri
 Valley.
 Am. Geol., vol. 33, pp. 205-222, 3 pls., 1904.
 Discusses the distribution of the loess and the evidences of its deposition by the agency of
 water. Includes a note by Professor Lane on the flow of flooded rivers.
10. Another Glacial wonder.
 Describes the occurrence of Glacial boulders in the vicinity of Tuscumbia, Mo., and gives an
 explanation as to how they came there, and its bearing on the origin of the loess.
11. Prof. Shimek’s criticism of the aqueous origin of loess.
12. Albert Allen Wright.
 Am. Geol., vol. 36, pp. 65-68, 1 pl. (por.), 1905.
 Includes a list of his published writings.
13. The physical conditions in North America during man’s early occupancy.
 Records of the Past, vol. 4, pp. 15-26, 9 figs., 1905.
14. Recent date of lava flows in California.
15. The ancient gorge of Hudson River.

Wuensch (A. F.).
1. The Arizpe meteorite [Mexico].

Yates (J. A.).
1. The Ottawa [Kansas] gas wells.
 Describes the exploration for natural gas and gives a record of the borings.

Yates (Lorenzo Gordin).
1. Prehistoric California.
 137, 2 pls., 1902; vol. 2, pp. 145-155, 2 pls.; pp. 17-22, 3 figs.; pp. 44-51, 4 pls.; pp. 74-75, 1 pl.;
 pp. 87-93, 3 pls.; pp. 97-101, 2 pls.; pp. 113-118, 2 pls., 1903; vol. 3, pp. 6-10, 1 pl., 1904.
 Describes physiography and general geologic structure and history of southern California, and
 the character of the flora and fauna during Tertiary time, and gives lists and figures of and
 notes upon fossil plants and animals.

Yates (William).
1. Natural history, meteorological and geological notes from Burford township
 [Ontario].
 Includes observations upon glacial phenomena in this region.

Young (George A.).
1. Geology of Yamaska Mountain [Québec].
Young (George A.)—Continued.
2. On surveys between Rabbit and Temagami lakes [Ontario].
 Gives observations on the geology and petrology of the region examined.

Young (L. E.), Beyer (S. W.) and.
1. Geology of Monroe County, Iowa.
 See Beyer (S. W.) and Young (L. E.), 1.

Yung (Morrison B.) and McCaffery (Richard S.).
1. The ore deposits of the San Pedro district, New Mexico.
 297–299, 4 figs., 1903.
 Describes the general geology of the region, and the occurrences, geologic relations, and
 character of the copper, silver-lead, and gold deposits.

Zirkel (Ferdinand).
1. Ueber die gegenseitigen Beziehungen zwischen der Petrographie und angrenzen-
 den Wissenschaften.
 Discusses the scope and methods of petrography and relations to connected sciences.
CLASSIFIED KEY TO THE INDEX.

Alabama .. 293
Alaska .. 293
Archean and Algonkian .. 395
 Alaska ... 395
 Appalachian region ... 395
 Canada .. 395
 Great Basin region ... 395
 Great Lakes region ... 396
 Great Plains region ... 396
 Lake Superior region ... 396
 Mississippi Valley region ... 396
 New England and New York ... 396
 Pacific coast region .. 396
 Rocky Mountain region .. 396
 Southwestern region .. 397
 General .. 397
Arizona .. 397
Arkansas ... 398
Bibliography ... 399
Biography .. 403
California .. 404
Cambrian .. 407
 Appalachian region ... 407
 Canada .. 407
 Great Basin region ... 407
 Great Lakes region ... 407
 Great Plains region ... 407
 Lake Superior region ... 408
 Mississippi Valley region ... 408
 New England and New York ... 408
 Pacific coast region .. 408
 Rocky Mountain region .. 408
 Southwestern region .. 408
 General .. 408
Canada .. 408
 Alberta .. 408
 Assiniboia ... 409
 Athabasca .. 409
 British Columbia ... 409
 Cape Breton Island ... 410
 Franklin ... 410
 Keewatin ... 410
 Labrador ... 410
 Manitoba ... 410
 New Brunswick ... 411
Canada—Continued. Page.
Northwest Territory .. 411
Nova Scotia .. 411
Ontario ... 412
Prince Edward Island .. 414
Quebec .. 414
Saskatchewan .. 415
Ungava .. 415
Yukon Territory ... 415
General ... 415
Carboniferous .. 417
Alaska .. 417
Appalachian region .. 418
Canada ... 418
Great Basin region ... 418
Great Lakes region ... 418
Great Plains region ... 418
Mexico .. 419
Mississippi Valley region .. 419
New England and New York 420
Ohio Valley region .. 420
Pacific coast region .. 420
Rocky Mountain region ... 420
Southwestern region .. 420
General .. 421
Cartography .. 421
Central America .. 421
Chemical analyses .. 421
Classification .. 433
Colorado ... 433
Connecticut .. 436
Correlation ... 436
Cretaceous ... 437
Alaska .. 437
Atlantic coast region ... 437
Canada ... 438
Great Basin region ... 438
Great Plains region ... 438
Gulf region .. 439
Mexico .. 439
Mississippi Valley region .. 439
New England and New York 439
Pacific coast region .. 439
Rocky Mountain region ... 440
Southwestern region .. 440
West Indies .. 440
General ... 440
Delaware ... 440
Devonian ... 441
Alaska .. 441
Appalachian region .. 441
Canada ... 441
Great Basin region ... 441
Great Lakes region ... 441
<table>
<thead>
<tr>
<th>Devonian—Continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenland</td>
<td>441</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>442</td>
</tr>
<tr>
<td>New England and New York</td>
<td>442</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>442</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>443</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>443</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>443</td>
</tr>
<tr>
<td>General</td>
<td>443</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>443</td>
</tr>
</tbody>
</table>

Dynamic and structural geology (geographic divisions)

Alaska	443
Appalachian region	443
Atlantic coast region	443
Canada	443
Central America	444
Great Basin region	444
Great Lakes region	444
Great Plains region	444
Greenland	445
Gulf region	445
Hawaiian Islands	445
Mexico	445
Mississippi Valley region	445
New England and New York	445
Ohio Valley region	446
Pacific coast region	446
Panama	446
Philippine Islands	446
Rocky Mountain region	446
Southwestern region	446
West Indies	447

Dynamic geology (divisions by subject-matter)

Caves	448
Concretions	448
Deformation	448
Earthquakes	448
Erosion	449
Faulting	450
Folding	451
Glaciers	451
Intrusion	452
Jointing	452
Landslides	452
Magmaatic differentiation	452
Metamorphism	452
Ore formation	452
Orogeny	453
Oscillation	453
Sedimentation	453
Underground temperature	454
Volcanoes	454
Weathering	456
General	456

Bull. 301—06—25
Economic geology .. 458
Alabama ... 458
Alaska .. 458
Arizona .. 459
Arkansas .. 460
California .. 460
Canada .. 461
Colorado .. 463
Connecticut .. 465
Delaware .. 465
District of Columbia .. 465
Florida .. 465
Georgia .. 465
Hawaiian Islands ... 465
Idaho ... 465
Illinois ... 465
Indiana .. 466
Indian Territory ... 466
Iowa .. 466
Kansas ... 467
Kentucky ... 467
Louisiana .. 467
Maine .. 468
Maryland .. 468
Massachusetts .. 468
Mexico ... 468
Michigan ... 469
Minnesota .. 470
Mississippi .. 470
Missouri ... 470
Montana .. 471
Nebraska .. 471
Nevada .. 471
Newfoundland .. 471
New Hampshire .. 472
New Jersey .. 472
New Mexico .. 472
New York .. 472
Nicaragua ... 473
North Carolina .. 473
North Dakota .. 473
Ohio .. 473
Oklahoma ... 473
Oregon ... 474
Panama ... 474
Pennsylvania .. 474
 Philippine Islands .. 475
Rhode Island .. 475
South Carolina .. 475
South Dakota .. 475
Tennessee ... 475
Texas ... 476
Utah .. 476
Classified Key to the Index

Economic Geology—Continued.

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermont</td>
<td>477</td>
</tr>
<tr>
<td>Virginia</td>
<td>477</td>
</tr>
<tr>
<td>Washington</td>
<td>477</td>
</tr>
<tr>
<td>West Indies</td>
<td>478</td>
</tr>
<tr>
<td>West Virginia</td>
<td>478</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>478</td>
</tr>
<tr>
<td>Wyoming</td>
<td>479</td>
</tr>
<tr>
<td>General</td>
<td>479</td>
</tr>
</tbody>
</table>

Economic Products Described

<table>
<thead>
<tr>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>495</td>
</tr>
</tbody>
</table>

Geologic Formations Described

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>547</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>547</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>547</td>
</tr>
<tr>
<td>Canada</td>
<td>547</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>547</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>547</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>548</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>548</td>
</tr>
<tr>
<td>New England and New York</td>
<td>549</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>550</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>550</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>550</td>
</tr>
<tr>
<td>General</td>
<td>550</td>
</tr>
</tbody>
</table>

Glacial Geology

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>551</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>551</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>551</td>
</tr>
<tr>
<td>Canada</td>
<td>551</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>551</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>552</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>552</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>552</td>
</tr>
<tr>
<td>New England and New York</td>
<td>553</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>553</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>553</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>553</td>
</tr>
<tr>
<td>General</td>
<td>553</td>
</tr>
</tbody>
</table>

Hydrology

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian region</td>
<td>554</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>554</td>
</tr>
<tr>
<td>Canada</td>
<td>554</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>554</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>554</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>554</td>
</tr>
<tr>
<td>Gulf region</td>
<td>554</td>
</tr>
<tr>
<td>Hawaiian Islands</td>
<td>554</td>
</tr>
<tr>
<td>Lake Superior region</td>
<td>554</td>
</tr>
<tr>
<td>Mexico</td>
<td>554</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>554</td>
</tr>
<tr>
<td>New England and New York</td>
<td>554</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>554</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>554</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>554</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>555</td>
</tr>
<tr>
<td>West Indies</td>
<td>555</td>
</tr>
<tr>
<td>General</td>
<td>555</td>
</tr>
</tbody>
</table>

Idaho

<table>
<thead>
<tr>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>555</td>
</tr>
<tr>
<td>Location</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Illinois</td>
<td>555</td>
</tr>
<tr>
<td>Indiana</td>
<td>556</td>
</tr>
<tr>
<td>Indian Territory</td>
<td>557</td>
</tr>
<tr>
<td>Iowa</td>
<td>557</td>
</tr>
<tr>
<td>Jurassic</td>
<td>558</td>
</tr>
<tr>
<td>Alaska</td>
<td>558</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>558</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>558</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>559</td>
</tr>
<tr>
<td>Greenland</td>
<td>559</td>
</tr>
<tr>
<td>New England and New York</td>
<td>559</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>559</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>559</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>559</td>
</tr>
<tr>
<td>Kansas</td>
<td>561</td>
</tr>
<tr>
<td>Kentucky</td>
<td>562</td>
</tr>
<tr>
<td>Labrador</td>
<td>562</td>
</tr>
<tr>
<td>Louisiana</td>
<td>562</td>
</tr>
<tr>
<td>Maine</td>
<td>562</td>
</tr>
<tr>
<td>Marcus Island</td>
<td>562</td>
</tr>
<tr>
<td>Maryland</td>
<td>562</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>564</td>
</tr>
<tr>
<td>Mexico</td>
<td>565</td>
</tr>
<tr>
<td>Michigan</td>
<td>567</td>
</tr>
<tr>
<td>Mineralogy</td>
<td>568</td>
</tr>
<tr>
<td>Minerals described</td>
<td>573</td>
</tr>
<tr>
<td>Minnesota</td>
<td>587</td>
</tr>
<tr>
<td>Mississippi</td>
<td>588</td>
</tr>
<tr>
<td>Missouri</td>
<td>588</td>
</tr>
<tr>
<td>Montana</td>
<td>589</td>
</tr>
<tr>
<td>Nebraska</td>
<td>590</td>
</tr>
<tr>
<td>Nevada</td>
<td>591</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>592</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>592</td>
</tr>
<tr>
<td>New Jersey</td>
<td>592</td>
</tr>
<tr>
<td>New Mexico</td>
<td>593</td>
</tr>
<tr>
<td>New York</td>
<td>594</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>598</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>598</td>
</tr>
<tr>
<td>North Carolina</td>
<td>599</td>
</tr>
<tr>
<td>North Dakota</td>
<td>599</td>
</tr>
<tr>
<td>Ohio</td>
<td>599</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>600</td>
</tr>
<tr>
<td>Ordovician</td>
<td>601</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>601</td>
</tr>
<tr>
<td>Canada</td>
<td>601</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>601</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>601</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>602</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>602</td>
</tr>
<tr>
<td>New England and New York</td>
<td>602</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>602</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>603</td>
</tr>
</tbody>
</table>
CLASSIFIED KEY TO THE INDEX. 389

<table>
<thead>
<tr>
<th>Ordovician—Continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwestern region</td>
<td>603</td>
</tr>
<tr>
<td>General</td>
<td>603</td>
</tr>
<tr>
<td>Oregon</td>
<td>603</td>
</tr>
<tr>
<td>Paleogeography</td>
<td>604</td>
</tr>
<tr>
<td>Paleontology</td>
<td>604</td>
</tr>
<tr>
<td>Algonkian</td>
<td>604</td>
</tr>
<tr>
<td>Cambrian</td>
<td>604</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>605</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>606</td>
</tr>
<tr>
<td>Devonian</td>
<td>608</td>
</tr>
<tr>
<td>Jurassic</td>
<td>609</td>
</tr>
<tr>
<td>Ordovician</td>
<td>609</td>
</tr>
<tr>
<td>Quaternary</td>
<td>610</td>
</tr>
<tr>
<td>Silurian</td>
<td>611</td>
</tr>
<tr>
<td>Tertiary</td>
<td>612</td>
</tr>
<tr>
<td>Triassic</td>
<td>614</td>
</tr>
<tr>
<td>Invertebrate</td>
<td>614</td>
</tr>
<tr>
<td>Vertebrate</td>
<td>620</td>
</tr>
<tr>
<td>Paleobotany</td>
<td>625</td>
</tr>
<tr>
<td>General</td>
<td>627</td>
</tr>
<tr>
<td>Genera and species described</td>
<td>627</td>
</tr>
<tr>
<td>Panama</td>
<td>729</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>729</td>
</tr>
<tr>
<td>Petrology</td>
<td>731</td>
</tr>
<tr>
<td>Alaska</td>
<td>731</td>
</tr>
<tr>
<td>Arizona</td>
<td>731</td>
</tr>
<tr>
<td>Arkansas</td>
<td>731</td>
</tr>
<tr>
<td>California</td>
<td>731</td>
</tr>
<tr>
<td>Canada</td>
<td>732</td>
</tr>
<tr>
<td>Colorado</td>
<td>732</td>
</tr>
<tr>
<td>Connecticut</td>
<td>733</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>733</td>
</tr>
<tr>
<td>Georgia</td>
<td>733</td>
</tr>
<tr>
<td>Greenland</td>
<td>733</td>
</tr>
<tr>
<td>Guatemala</td>
<td>733</td>
</tr>
<tr>
<td>Hawaiian Islands</td>
<td>733</td>
</tr>
<tr>
<td>Idaho</td>
<td>733</td>
</tr>
<tr>
<td>Iowa</td>
<td>733</td>
</tr>
<tr>
<td>Kentucky</td>
<td>733</td>
</tr>
<tr>
<td>Maine</td>
<td>733</td>
</tr>
<tr>
<td>Maryland</td>
<td>733</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>733</td>
</tr>
<tr>
<td>Mexico</td>
<td>733</td>
</tr>
<tr>
<td>Michigan</td>
<td>734</td>
</tr>
<tr>
<td>Minnesota</td>
<td>734</td>
</tr>
<tr>
<td>Missouri</td>
<td>734</td>
</tr>
<tr>
<td>Montana</td>
<td>734</td>
</tr>
<tr>
<td>Nevada</td>
<td>734</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>734</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>734</td>
</tr>
<tr>
<td>New Jersey</td>
<td>734</td>
</tr>
<tr>
<td>New Mexico</td>
<td>734</td>
</tr>
</tbody>
</table>
Classified Key to the Index

Petrology—Continued.

<table>
<thead>
<tr>
<th>State/Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>734</td>
</tr>
<tr>
<td>North Carolina</td>
<td>735</td>
</tr>
<tr>
<td>Ohio</td>
<td>735</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>735</td>
</tr>
<tr>
<td>Oregon</td>
<td>735</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>735</td>
</tr>
<tr>
<td>Philippine Islands</td>
<td>735</td>
</tr>
<tr>
<td>South Dakota</td>
<td>735</td>
</tr>
<tr>
<td>Tennessee</td>
<td>735</td>
</tr>
<tr>
<td>Texas</td>
<td>735</td>
</tr>
<tr>
<td>Utah</td>
<td>735</td>
</tr>
<tr>
<td>Vermont</td>
<td>735</td>
</tr>
<tr>
<td>Virginia</td>
<td>735</td>
</tr>
<tr>
<td>Washington</td>
<td>735</td>
</tr>
<tr>
<td>West Indies</td>
<td>736</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>736</td>
</tr>
<tr>
<td>Wyoming</td>
<td>736</td>
</tr>
<tr>
<td>General</td>
<td>737</td>
</tr>
<tr>
<td>Rocks described</td>
<td>737</td>
</tr>
</tbody>
</table>

Philippine Islands

- 743

Physiographic geology

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>743</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>744</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>744</td>
</tr>
<tr>
<td>Canada</td>
<td>745</td>
</tr>
<tr>
<td>Central America</td>
<td>745</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>745</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>745</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>746</td>
</tr>
<tr>
<td>Hawaiian Islands</td>
<td>746</td>
</tr>
<tr>
<td>Mexico</td>
<td>746</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>746</td>
</tr>
<tr>
<td>New England and New York</td>
<td>747</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>747</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>748</td>
</tr>
<tr>
<td>Panama</td>
<td>748</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>748</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>749</td>
</tr>
<tr>
<td>West Indies</td>
<td>749</td>
</tr>
<tr>
<td>General</td>
<td>749</td>
</tr>
</tbody>
</table>

Quaternary

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>750</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>750</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>750</td>
</tr>
<tr>
<td>Canada</td>
<td>751</td>
</tr>
<tr>
<td>Central America</td>
<td>751</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>751</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>751</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>751</td>
</tr>
<tr>
<td>Gulf region</td>
<td>751</td>
</tr>
<tr>
<td>Mexico</td>
<td>751</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>751</td>
</tr>
<tr>
<td>New England and New York</td>
<td>752</td>
</tr>
</tbody>
</table>
Quaternary—Continued.

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio Valley region</td>
<td>752</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>752</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>752</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>753</td>
</tr>
<tr>
<td>West Indies</td>
<td>753</td>
</tr>
<tr>
<td>General</td>
<td>753</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>753</td>
</tr>
<tr>
<td>Salvador</td>
<td>753</td>
</tr>
<tr>
<td>Silurian</td>
<td>753</td>
</tr>
<tr>
<td>Alaska</td>
<td>753</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>753</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>753</td>
</tr>
<tr>
<td>Canada</td>
<td>753</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>754</td>
</tr>
<tr>
<td>Great Lakes region</td>
<td>754</td>
</tr>
<tr>
<td>Greenland</td>
<td>754</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>754</td>
</tr>
<tr>
<td>New England and New York</td>
<td>754</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>755</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>755</td>
</tr>
<tr>
<td>General</td>
<td>755</td>
</tr>
<tr>
<td>South Carolina</td>
<td>755</td>
</tr>
<tr>
<td>South Dakota</td>
<td>755</td>
</tr>
<tr>
<td>Tennessee</td>
<td>756</td>
</tr>
<tr>
<td>Tertiary</td>
<td>757</td>
</tr>
<tr>
<td>Alaska</td>
<td>757</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>757</td>
</tr>
<tr>
<td>Canada</td>
<td>757</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>757</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>757</td>
</tr>
<tr>
<td>Greenland</td>
<td>757</td>
</tr>
<tr>
<td>Gulf region</td>
<td>757</td>
</tr>
<tr>
<td>Mexico</td>
<td>758</td>
</tr>
<tr>
<td>Mississippi Valley region</td>
<td>758</td>
</tr>
<tr>
<td>New England and New York</td>
<td>758</td>
</tr>
<tr>
<td>Ohio Valley region</td>
<td>758</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>758</td>
</tr>
<tr>
<td>Panama</td>
<td>759</td>
</tr>
<tr>
<td>Philippine Islands</td>
<td>759</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>759</td>
</tr>
<tr>
<td>Southwestern region</td>
<td>759</td>
</tr>
<tr>
<td>West Indies</td>
<td>759</td>
</tr>
<tr>
<td>General</td>
<td>760</td>
</tr>
<tr>
<td>Texas</td>
<td>760</td>
</tr>
<tr>
<td>Triassic</td>
<td>761</td>
</tr>
<tr>
<td>Alaska</td>
<td>761</td>
</tr>
<tr>
<td>Appalachian region</td>
<td>761</td>
</tr>
<tr>
<td>Atlantic coast region</td>
<td>761</td>
</tr>
<tr>
<td>Canada</td>
<td>761</td>
</tr>
<tr>
<td>Great Basin region</td>
<td>761</td>
</tr>
<tr>
<td>Great Plains region</td>
<td>761</td>
</tr>
<tr>
<td>Pacific coast region</td>
<td>762</td>
</tr>
<tr>
<td>Rocky Mountain region</td>
<td>762</td>
</tr>
</tbody>
</table>
Triassic—Continued.

<table>
<thead>
<tr>
<th>Region/State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwestern region</td>
<td>762</td>
</tr>
<tr>
<td>General</td>
<td>762</td>
</tr>
<tr>
<td>Trinidad</td>
<td>762</td>
</tr>
<tr>
<td>Utah</td>
<td>762</td>
</tr>
<tr>
<td>Vermont</td>
<td>763</td>
</tr>
<tr>
<td>Virginia</td>
<td>764</td>
</tr>
<tr>
<td>Washington</td>
<td>764</td>
</tr>
<tr>
<td>West Indies</td>
<td>765</td>
</tr>
<tr>
<td>West Virginia</td>
<td>767</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>768</td>
</tr>
<tr>
<td>Wyoming</td>
<td>769</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>770</td>
</tr>
</tbody>
</table>
INDEX.

Alabama.

Age of Alabama white limestone, Casey, 2.
Alabama coal fields, McCauley, 1.
Carboniferous fossils in Ocoee slates, Smith (E. A.), 1.
Carboniferous of the Appalachian Basin, Stevenson (J. J.), 6.
Cement resources of Alabama, Smith (E. A.), 3, 4.
Clays of the United States, Ries, 6.
Geology and cement resources of the Tombigbee River district, Eckel and Crider, 1.
Geology of the Coosa Valley, U. S. G. S., 1.
Grand Gulf formation, Smith and Aldrich, 1.
Index to mineral resources of Alabama, Smith and McCauley, 1.
Iron ores in the Brookwood quadrangle, Burchard, 3.
Lower Carboniferous of Appalachian Basin, Stevenson (J. J.), 4.
Marble formations of the Cahaba River, Byrne, 1, 2.
Meteorites von De Sotoville, Brezina and Cohen, 5.
Meteorite which fell near Felix, Alabama, Merrill (G. P.), 2.
New species of Eocene fossils, Aldrich, 4.
New species of Tertiary fossils, Aldrich, 2.
Oligocene of western Europe and southern United States, Maury, 1.
Origin of Clinton red fossil ore in Lookout Mountain, Alabama, Bowron, 1.
Oyster from Eocene of Alabama, Aldrich, 5.
Portland-cement materials of Alabama, Smith (E. A.), 2, 8.
Pratt coal mines, Crane, 6.
Revised map of Cahaba coal fields, Smith (E. A.), 9.
Rome Follo, Hayes (C. W.), 5.
Southern Appalachian coal field, Hayes (C. W.), 7.

Alabama—Continued.

Warrior coal basin in the Brookwood quadrangle, Butts, 5.
Water powers of Alabama, Hall (B. M.), 1.
Water resources of Alabama, Smith (E. A.), 5.

Alaska.

Alaska glaciers and glaciation, Gilbert, 13.
Alaskan tin deposits, Collier, 11.
Alaska's mineral wealth, Brooks, 10, 13.
Alaska-Treadwell mine, Palache, 2.
Auriferous quartz veins on Unalaska Island, Collier, 10.
Bering River coal field, Martin (G. C.), 15.
Bogoslof, our newest volcano, Merriam (C. H.), 1.
Cape Yaktag placers, Martin (G. C.), 12.
Carboniferous section in Copper River Valley, Mendenhall, 6.
Chlatochina gold field, Mendenhall, 4.
Chitina copper deposits, Mendenhall, 7.
Coal-bearing series of the Yukon, Collier, 6.
Coal fields of Cape Lisburne, Collier, 3, 7, 12.
Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirsopp, 1.
Coal resources of Alaska, Brooks, 3.
Coal resources of southwestern Alaska, Stone (R. W.), 5.
Coal resources of the Yukon, Collier, 2, 4.
Copper deposits of Mount Wrangell region, Mendenhall and Schrader, 2.
Copper River country, Abercrombie, 1.
Deposition of ores from an igneous magma, Stevenson (R.), 3.
Economic developments in southeastern Alaska, Wright (F. E. and C. W.), 1.
Epidote crystals from Alaska, Palache, 1.
Fairhaven gold placers, Moffit, 3.
Fossil floras of the Yukon, Knowlton, 17.
Fossil plants from Kukak Bay, Knowlton, 16.
Fossils and age of Yakutat formation, Ulrich, 4.
Geography of Alaska, Brooks, 10.

393
INDEX TO NORTH AMERICAN GEOLOGY

Alaska—Continued.

Geography of Alaska, Gannett, 2.
Geological reconnaissance in southeastern Alaska, Brooks, 5.
Geological section of Rocky Mountains in northern Alaska, Schrader, 1.
Geology about Chichagof Cove, Palache, 3.
Geology and mineral resources of Copper River district, Schrader and Spencer, 1.
Geology and paleontology of the Alaska Harriman expedition, Gilbert, 14.
Geology of copper deposits, Stevens (B.), 1.
Geology of Copper River region, Mendenhall, 8.
Geology of the Klondike, Mendenhall, 3.
Geology of Trendwell ore deposits, Spencer (A. C.), 11, 13.
Glacial phenomena of Seward Peninsula, Brooks and Collier, 1.
Glaciers of Alaska, Davidson, 1.
Glenn Creek gold mining district, Collier, 3.
Gold deposits of Shumagin Islands, Martin (G. C.), 13.
Gold mining in Alaska, Furman, 1.
Gold mining in Arctic America, Penrose, 1.
Gold mining in Klondike, Miers, 2.
Gold placers of the Fairbanks district, Prindle, 1, 2.
Gold placers of Turnagain Arm, Moffit, 4.
Gold production of North America, Lindgren, 16.
Gold sands of Cape Nome, Queneau, 1.
Goldfôrekonerterne i Alaska og tilgrående stenlag, Kolderup, 1.
Juneau gold belt, Spencer (A. C.), 9.
Jura-fossilien aus Alaska, Pompeckj, 1.
Kotzebue placer-gold field, Prindle, 1, 2.
Kotzebue placer-gold field, Moffit, 2.
Magmatic origin of vein-forming waters in southeastern Alaska, Spencer (A. C.), 17.
Mesozoic section on Cook Inlet, Stanton and Martin, 1.
Methods and costs of gravel and placer mining in Alaska, Purington, 9.
Mineral resources of Alaska in 1904, Brooks, 11.
Mineral resources of Mount Wrangell district, Mendenhall and Schrader, 1.
Mineral resources of southeastern Alaska, Brewér (W. M.), 12.
Mining at the Alaska Treadwell, Kinsle, 1.
Muir glacier, Andrews, 1.
Neozoic invertebrate fossils, Dall, 10.
Nome gold region, Schrader and Brooks, 1.

Alaska—Continued.

Notes on Nome, Rickard (F.), 1.
Observations paléontologiques dans l’Alaska, Gaudry, 1.
Occurrence of cassiterite, Brooks, 1.
Occurrence of stream tin, Brooks, 2.
Ore formation on Prince of Wales Island, Thomae, 1.
Outlook for coal mining in Alaska, Brooks, 14.
Pacific coast glaciers, Muir, 1.
Pacific mountain system, Spencer (A. C.), 5.
Pacific mountain system of British Columbia and Alaska, Spencer (A. C.), 4.
Petroleum fields of Pacific coast, Martin (G. C.), 11.
Physiography of the Copper River basin, Spencer (A. C.), 2.
Placer gold mining in Alaska in 1902, Brooks, 7.
Placer mining in Alaska, Brooks 9, 12.
Porcupine placer mining district, Wright (C. W.), 1, 2.
Preliminary report on the Ketchikan mining district, Brooks, 4.
Rampart placer region, Prindle and Hess, 1.
Recent changes of level in Alaska, Tarr and Martin, 1.
Rocks and minerals of south Alaska, Novarese, 1.
Reconnaissance from Fort Hamlin to Kotzebue Sound, Mendenhall, 2.
Reconnaissance in Alaska, Schrader, 3.
Reconnaissance in Mount McKinley region, Alaska, Brooks, 6.
Reconnaissance in northern Alaska, Peters, 1.
Reconnaissance in Norton Bay region, Mendenhall, 1.
Reconnaissance of northwestern portion of Seward Peninsula, Collier, 1.
Reconnaissance of the Cape Nome and adjacent gold fields of Seward Peninsula, Brooks and others, 1.
Relation de voyage au Klondyke, Lobel, 1.
Search for mammoth and other fossil remains, Maddren, 1.
Sketch of Nome, Bogdanovič, 1.
So-called basal granite of Yukon Valley, McConnell, 1.
Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.
Stream tin in Alaska, Brooks, 8.
Tin deposits of York region, Rickard (E.), 1.
Tin deposits of the York region, Collier, 7, 8.
Tin in Alaska, Bell (R. N.), 2.
Tin in the York region, Collier, 5.
Alaska—Continued.
Tin ledges in Alaska, Bell (R. N.), 1.
Treadwell group of mines, Kinzie, 2.
Treadwell ore deposits, Spencer (A. C.), 14.
Variations of glaciers, Reid (H. F.), 3:
Wrangell Mountains, Mendenhall, 5.
Yukon gold fields, Miers, 1.

Archean and Algouklan.
Alaska.
So-called basal granite of Yukon Valley, McConnell, 1.

Appalachian region.
Asheville folio, Keith, 9.
Cockeysville marble, Mathews and Miller, 1.
Copper-bearing rocks of Virgilina copper district, Watson (T. L.), 6.
Correlation of Piedmont formations, Mathews, 6.
Cranberry folio, Keith, 4.
Greenerville folio, Keith, 11.
Mount Mitchell folio, Keith, 12.
Piedmont district of Pennsylvania, Bascom, 3.
Pre-Cambrian rocks of Franklin Furnace quadrangle, Spencer (A. C.), 13.
Pre-Cambrian rocks of New Jersey, Spencer (A. C.), 15.
Topography and geology of southern Appalachians, Keith, 3.
Washington folio, Darton and Keith, 1.

Canada.
Classification of the Archean, Coleman, 1.
Cobalt-nickel arsenides and silver deposits of Temiskaming, Miller (W. G.), 18.
Contact of Archean and post-Archean, Willmott, 3.
Correction in classification of gold formation, Hille, 4.
Economic resources of Moose River basin, Bell (J. M.), 2.
Exploration of east coast of Hudson Bay, Low, 2.
Exploration of Ekwon River, Dowling, 8.
Explorations in Saskatchewan and Keewatin, Tyrrell, 3.
Genesis of Anilikie iron range, Hille, 3.
Geological explorations in Athabaska, Dowling, 6.
Geological exploration in district of White Bay, Howley, 1.
Geological formations about Montreal, Ami and Adams, 1.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology and natural resources of Ottawa and vicinity, Ells (R. W.), 7.

Archean and Algouklan—Continued.
Canada—Continued.
Geology of country around Bruce mines, Ingall and Denis, 1.
Geology of Michipicoten Island, Burwash, 1.
Geology of Nastapoka Islands, Low, 3.
Geology of Nottaway River Basin, Bell (Robert), 5.
Geology of northeast coast of Labrador, Daly, 3.
Geology of principal cities in eastern Canada, Ami, 1.
Geology of Province of Quebec, Ells (R. W.), 8.
Geology of Yellow Head Pass route, McEvoy, 1.
Gold ores of western Ontario, Brent, 1.
Headwaters of Severn River, Camsell, 2.
Huronian question, Coleman, 6.
Iron ores of Nipissing district, Miller (W. G.), 2.
Iron ranges of Michipicoten west, Bell (J. M.), 3.
Iron ranges of northwestern Ontario, Coleman, 12.
Iron ranges of the Lower Huronian, Coleman, 4.
Loun Lake iron-bearing district, Smith (W. N.), 1.
Michipicoten iron region, Coleman and Willmott, 1, 2.
Michipicoten Huronian area, Willmott, 1.
Nickel and copper deposits of Sudbury, Barlow, 8.
Northeastern Canada to the Arctic coast, Hanniby, 1.
Pre-Cambrian rocks of Lake Temiskaming, Miller (W. G.), 18.
Problems in New Brunswick geology, Ells (R. W.), 25.
Round Lake to Abitibi River, Bolton, 1.
Synopsis of geology of Canada, Ami, 2.
Types of iron-bearing rocks in Ontario, Coleman, 7.
Up and down the Mississaga, Graton, 2.

Great Basin region.
Bisbee folio, Ransome, 14.
Bradshaw Mountains folio, Jaggar and Palache, 1.
Clifton folio, Lindgren, 28.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Geology and ore deposits of the Bisbee quadrangle, Ransome, 29.
Geology of ore deposits of the Bisbee quadrangle, Ransome, 11.
Geology and vein phenomena of Arizona, Comstock (T. B.), 1.
Geology of Nevada, Spurr, 6.
Globe folio, Ransome, 13.
Historical geology of Esmeralda County, Nevada, Turner, 5.
Archean and Algonkian—Continued.

Great Basin region—Continued.
Underground waters of Salt River Valley, Lee (W. T.), 9.

Great Lakes region.
Baraboo iron-bearing district of Wisconsin, Weidman, 5.
Ellipsoidal structure in pre-Cambrian basic and intermediate rocks of Lake Superior region, Clements, 1.
Geological cross sections of Keweenaw Point, Hubbard (L. L.), 1.
Geology of Menominee Range, Hulst, 1.
Keeweenawan area of eastern Minnesota, Hall, (C. W.), 3.
Menominee district of Michigan, Bayley, 1.
Relation of vein at Central mine, Keeweenaw Point, to Kearsarge conglomerate, Hubbard (L. L.), 2.
Vermilion district of Minnesota, Clements, 2.

Great Plains region.
Alexandria folio, Todd and Hall, 1.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology and water resources of the James River Valley, Todd and Hall, 2.
Geology of Lincoln County, Bendrat, 1.
Hartville folio, Smith (W. S. T.), 1.
Mitchell folio, Todd (J. E.), 11.
Olivet folio, Todd (J. E.), 9.
Parker folio, Todd (J. E.), 10.
Sundance folio, Darton, 26.
Water resources of Devils Lake region, Babcock, 2.

Lake Superior region.
Comment on report of special committee on Lake Superior, Lane, 47.
Einsenerzlagerstätten am Lake Superior, Macco, 1.
Huronian question, Coleman, 10.
Geological survey of the Lake Superior region, Chamberlin (T. C.), 12.
Geology of the iron ores of Minnesota, Winchell (N. H.), 24.
Lake Superior iron ore deposits, Grant (U. S.), 6.
Mesabi iron-ore range, Woodbridge, 1.
Mesabi Iron Range, Leith, 2.
Mesabi iron-bearing district of Minnesota, Leith, 4.
New iron-bearing horizon in Keewatin in Minnesota, Winchell (N. H.), 1.
Nomenclature of Lake Superior formations, Willmott, 2.
Pioneer iron mine, Ely, Minnesota, Carlyle, 1.
Report on Lake Superior region, Van Hise and others, 1.
Sixth annual report of the State geologist, Lane, 49.
Summary of Lake Superior geology, Leith, 14.

Archean and Algonkian—Continued.

Lake Superior region—Continued.
Vermilion district of Minnesota, Clements, 5.
Vermilion iron-bearing district of Minnesota, Clements, 4.

Mississippi Valley region.
Baraboo iron region, Winchell (N. H.), 23.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Mississippi Valley at Little Falls, Minnesota, Winchell (N. H.), 8.
Physiography and geology of Ozark region, Adams (G. I.), 3.

New England and New York.
Cambrian and pre-Cambrian of Hosac Mountains, Wolff, 3.
Field work in town of Minervia, Finlay (G. I.), 2.
Geology of Adirondack region, Cushing, 10.
Geology of crystalline rocks, Smyth (C. H.), 1.
Geology of Paradox Lake quadrangle, Ogilvie, 6.
Geology of Rock Hill, Cushing, 2.
Geology of vicinity of Little Falls, Cushing, 9.
Igneous rocks of Neponset Valley, Crosby, 15.
New York City folio, Merrill and others, 1.
Physical geography and geology of Connecticut, Rice, 1.
Pre-Cambrian formations, Kemp and Hill, 1.
Pre-Cambrian Highlands, Merrill (F. J. H.), 6.
Pre-Cambrian outlier at Little Falls, Herkimer County, Cushing, 4.
Quarry industry in southeastern New York, Eckel, 6.
Recent geologic work in Franklin and St. Lawrence counties, Cushing, 3.
Terranes of Orange County, Vt., Richardson (C. H.), 1.

Pacific coast region.
Crystalline rocks of southern California, Hershey, 9.

Rocky Mountain region.
Copper deposits of the Encampment district, Spencer (A. C.), 10.
Geology and ore deposits of Elk horn mining district, Montana, Weed, 5.
Geology of Boulder district, Penneman, 10.
Geology of Needle Mountains quadrangle, Cross and Howe, 3.
Geology of Rico quadrangle, Cross (W.), 7.
Geology of southwestern Montana, Douglass, 10.
Igneous rocks of Algonkian series, Douglass, 10.
Oil of the northern Rocky Mountains, Willis, 4.
Archean and Algonkian—Continued.

Rocky Mountain region—Continued.

Silverton folio, Cross and Howe, 1.
Stratigraphy and structure, Lewis and Livingston ranges, Montana, Willis, 6.
Structure of Front Range, northern Rocky Mountains, Montana, Willis, 7.
Sundance folio, Darton, 26.

Southwestern region.

Fundamental complex beyond southern end of Rocky Mountains, Keyes, 46.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Geology of Arbuckle and Wichita mountains, Taft, 12.
Geology of Fort Apache region, Reagan, 3.
Red sandstone of Diabolo Mountains, Dumble, 11.
Tishomingo folio, Taft, 6.

General.

Eparchaean interval, Lawson (A. C.), 4.
Granite, Winchell (N. H.), 18.
Little Cottonwood granite body of Wasatch Mountains, Emmons (S. F.), 9.
Pre-Cambrian literature for 1902–3, Leith, 7.
Pre-Cambrian literature for 1902–3, Leith, 9.
Summaries of current North American Pre-Cambrian literature, Leith, 1.
Sur les formations précambriennes fossilifères, Walcott, 4.

Arizona.

Age of lavas of plateau region, Reagan, 2.
Arizona diatomite, Blake (W. P.), 9.
Bradshaw Mountains folio, Jaggar and Palache, 1.
Callie of southern Arizona, Blake (W. P.), 3.
Carboniferous coal in Arizona, Dumble, 5.
Carboniferous fossils of Bisbee quadrangle, Girty, 6.
Cement investigations in Arizona, Duryee, 1.
Clifton folio, Lindgren, 28.
Conglomerate dikes in southern Arizona, Campbell (M. R.), 15.
Copper deposits of Bisbee, Ransome, 7.
Copper deposits of Clifton, Lindgren, 12, 15.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Copper deposits of the Kaibab Plateau, Jennings (E. P.), 1.
Copper deposits of the Kaibab Plateau, Lunt, 1.

Arizona—Continued.

Copper in the Red Beds of the Colorado Plateau region, Emmons (S. F.), 29.
Cretaceous fossils of Bisbee quadrangle, Stanton, 6.
Deer Creek coal field, Campbell (M. R.), 16.
Devonian fossils of Bisbee quadrangle, Williams (H. S.), 6.
Diatom-earth in Arizona, Blake (W. P.), 10.
Dinosaur footprints from Arizona, Riggs, 8.
Dumortierite, Schaller, 7.
Evidences of shallow seas in Paleozoic time, Blake (W. P.), 2.
Extinct glaciers, Stone (G. H.), 2.
Faulting and mountain structure in Arizona, Ransome, 5.
Fossil egg from Arizona, Morgan and Tallmon, 1.
Genesis of copper deposits of Clifton-Morenci, Lindgren, 22.
Geology and copper deposits of Bisbee, Ransome, 10, 11.
Geology and vein phenomena of Arizona, Comstock (T. B.), 1.
Geology of Arizona, Blake (W. P.), 1, 13.
Geology of Cochise mining district, Franke, 1.
Geology of Fort Apache region, Reagan, 3.
Geology of Galluro Mountains, Blake (W. P.), 5.
Geology of Globe copper district, Ransome, 6.
Geology of Mineral Creek district, Gowing, 1.
Geology of the Little Colorado Valley, Ward (L. F.), 1.
Glaciation of San Francisco Mountain, Atwood, 1.
Globe folio, Ransome, 13.
Gold deposits of Arizona, Pratt, 5.
Gold production of North America, Lindgren, 16.
Grand Canyon of the Colorado, Davis (W. M.), 1.
Gypsum deposits in Arizona, Blake (W. P.), 14.
Iodobromite in Arizona, Blake (W. P.), 18.
Lake Quiburis, an ancient Pliocene lake in Arizona, Blake (W. P.), 6.
Limestone-granite contact deposit of Washington camp, Crosby, 10.
Meteoreisen-Studien, Cohen, 4.
Mineralogical notes, Headden, 1.
Mineralogical notes, Warren, 1.
Minerals associated with copper, Stone (G. H.), 1.
Minerals from the Clifton-Morenci district, Lindgren and Hildebrand, 1.
New batrachian and reptile from Trias of Arizona, Lucas (F. A.), 19.
Arkansas—Continued.

Coal fields of Arkansas and Indian Territory, Scholz, 2.

Coal mining in Arkansas, Crane, 7.

Depositional equivalent of hiatus at base of our Coal Measures, Keyes, 18.

Devonian hiatus in continental interior, Keyes, 28.

Earthquakes in the New Madrid area, Fuller (M. L.), 41.

Fayetteville field, Adams and Ulrich, 1.

Formations of northern Arkansas, Ulrich, 5.

Genesis of the Arkansas Valley, Keyes, 4.

Geological sketch of Hot Springs district, Weed, 13.

Gisements de mineraux de zinc, Demaret, 1.

Hot springs of the southern United States, Weed, 39.

Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.

Lead and zinc deposits of Ozark region, Branner, 3.

Missouri and Arkansas zinc mines, Issel, 1.

Missouri and Arkansas zinc mines, Hedburg, 1.

Missouri and Arkansas zinc mines, Nichols (H. W.), 2.

Names of coals west of Mississippi River, Keyes, 19.

Origin of natural mounds, Veatch, 10.

Penepalns of the Ozark highland, Hershey, 1.

Phosphatic rocks of Arkansas, Branner and Newsom, 1.

Physiography and geology of Ozark region, Adams (G. J.), 3.

Pleistocene fissure in northern Arkansas, Brown (B.), 3.

Portland-cement materials of southwestern Arkansas, Fitzhugh, 1.

Saddle-back topography of the Boone chert region, Purdue, 4.

Siluric fauna near Batesville, Ark., Van Ingen, 1, 2.

Southwestern coal field, Taft, 4.

Springs of the Ozark region, Fuller (M. L.), 35.

Table of geological formations, Shepard, 1.

Tablequah field, Taft, 17.

Underground waters of Louisiana and Arkansas, Veatch, 7.

Underground waters of northern Arkansas, Purdue, 7.

Arkansas—Continued.

Notes on geology of southeastern Arizona, Durable, 7.

Ore in anticlinals, Lakes, 71.

Peculiar occurrence of bitumen, Morgan and Tallmon, 2.

Petrified forest, Byers (C. A.), 1.

Petrified forests of Arizona, Ward (L. F.), 2.

Petrography of the Tucson Mountains, Guild, 1.

Physiography of southern Arizona and New Mexico, Fairbanks, 5.

Planet copper mines, McCarn, 1.

Plateau province of Utah and Arizona, Davis (W. M.), 45.

Plication in the rocks of Cananea, Blake (W. P.), 17.

Recent discoveries in Arizona, Burgess, 1.

Re-formed copper ores, Goodwin, 1.

Secondary enrichment, Probert, 1.

Silver Bell Mountains, Barney, 1.

Status of Mesozoic floras, Ward (L. F.), 5.

Tombstone and its mines, Blake (W. P.), 8, 12.

Tombstone mining district, Church, 1.

Trip through Arizona, Lakes, 67.

Tungsten deposits in Arizona, Rickard (P.), 3.

Underground waters of Arizona, Skinner, 1.

Underground waters of Salt River Valley, Lee (W. T.), 9.

Verde mining district, Miller (G. W.), 1.

Walls of the Colorado Canyon, Davis (W. M.), 50.

Zuni salt lake, Darton, 19.

Arkansas.

Analysis of smithsonite, Miller (W. W.), 3.

Analysis of waters from Hot Springs, Haywood, 1.

Arkansas bauxite deposits, Hayes (C. W.), 2.

Arkansas-Indian Territory coal field, Buche, 1.

Arkansas roofing slates, Dale, 4.

Asphalt deposits of Pike County, Hayes (C. W.), 4, 14.

Bauxite in Arkansas, Berger, 1.

Borings in Silver Spring Valley, Douglas, 1.

Boston Mountain physiography, Hershey, 12.

Cement materials and industry of the United States, Eckel, 34.

Chalk of southwestern Arkansas, Taft, 5.

Arkansas—Continued.

Chalk of southwestern Arkansas, Taft, 5.

Notes on geology of southeastern Arizona, Durable, 7.

Peculiar occurrence of bitumen, Morgan and Tallmon, 2.

Petrified forest, Byers (C. A.), 1.

Petrified forests of Arizona, Ward (L. F.), 2.

Petrography of the Tucson Mountains, Guild, 1.

Physiography of southern Arizona and New Mexico, Fairbanks, 5.

Planet copper mines, McCarn, 1.

Plateau province of Utah and Arizona, Davis (W. M.), 45.

Plication in the rocks of Cananea, Blake (W. P.), 17.

Recent discoveries in Arizona, Burgess, 1.

Re-formed copper ores, Goodwin, 1.

Secondary enrichment, Probert, 1.

Silver Bell Mountains, Barney, 1.

Status of Mesozoic floras, Ward (L. F.), 5.

Tombstone and its mines, Blake (W. P.), 8, 12.

Tombstone mining district, Church, 1.

Trip through Arizona, Lakes, 67.

Tungsten deposits in Arizona, Rickard (P.), 3.

Underground waters of Arizona, Skinner, 1.

Underground waters of Salt River Valley, Lee (W. T.), 9.

Verde mining district, Miller (G. W.), 1.

Walls of the Colorado Canyon, Davis (W. M.), 50.

Zuni salt lake, Darton, 19.
Arkansas—Continued.

Valleys of solution in northern Arkansas, Purdue, 1.
Water resources in northern Arkansas, Purdue, 9.
Water resources of Arkansas, Purdue, 5.
Water resources of the Winslow quadrangle, Purdue, 8.
Water supply of the Ozark region, Adams (G. I.), 17.
Zinc and lead deposits of Arkansas, Adams (G. I.), 12, 15.
Zinc and lead deposits of north Arkansas, Branner, 2.
Zinc-lead deposits of southwest Arkansas, Phillips (W. B.), 3.

Bibliography.

Accessions to library of Geological Society of America, Cushing, 6.
Addenda and corrigenda to progress of geological work in Canada during 1899, Ami, 5.
Alaska's mineral wealth, Brooks, 10, 13.
Albert Allen Wright, Wright (G. F.), 12.
American Eocene primates, Osborn, 11.
Ancient water levels of Champlain and Hudson valleys, Woodworth, 10.
Archjaean rocks of Ottawa Valley, Osann, 2.
Arsenic in Ontario, Wells, 1.
Artesian basins in Idaho and Oregon, Russell, 9.
Asbestos, Cirkel, 3.
Atlantic coast Triassic coal field, Woodworth, 4.
Baraboo iron district of Wisconsin, Weidman, 5.
Base level, grade, and peneplain, Davis, (W. M.), 26.
Base leveling and its faunal significance, Adams (C. C.), 1.
Bauxite deposits of Georgia, Watson, (T. L.), 12.
Bibliographic review and Index of papers relating to underground waters published by the United States Geological Survey 1879–1904, Fuller (M. L.), 27.
Bibilographical sketch of Elkanah Billings, Ami, 15.
Bibliography and catalogue of fossil vertebrata, Dean, 7.
Bibliography and catalogue of fossil vertebrata, Hay, 5.
Bibliography and index of North American geology, paleontology, petrology, and mineralogy, and mineral resources of California, Vogdes, 1.
Bibliography of publications of Edward Drinker Cope, Frazer, 1.
Bibliography of works upon the geology and natural resources of West Virginia, Brown (S. S.), 1.
Biographical notice of Clarence King, Raymond (R. W.), 3.
Biographical notice of Joseph Le Conte, Christy, 1.
Biographical notice of William Henry Irwin, Russel, 18.
Bibliography of submarine valleys, Spencer (J. W.), 15.
Bibliography of West Indian eruptions, Hovey (E. O.), 32.
Bibliography of works upon the geology and natural resources of Washington, Arnold, 1.

Bibliography—Continued.

Bibliography of Canadian geology, paleontology, and mineralogy for 1900, Ami, 19.
Bibliography of Canadian geology and paleontology for 1901, Ami, 34.
Bibliography of Canadian geology and paleontology for 1902, Ami, 42.
Bibliography of Canadian geology and paleontology for 1903, Ami, 44.
Bibliography of Dr. George M. Dawson, Ami, 27, 35.
Bibliography of E. Billings, Ami, 17.
Bibliography of geology, paleontology, and mineral resources of California, Vogdes, 1.
Bibliography of literature referring to geology of Washington, Arnold, 1.
Bibliography of Mexican geology and mining, Aguilar y Santillán, 1.
Bibliography of Sir John William Dawson, Ami, 18.
Bibliography of submarine valleys, Spencer (J. W.), 15.
Bibliography of West Indian eruptions, Hovey (E. O.), 32.
Bibliography of works upon the geology and natural resources of North Carolina, Brown (S. S.), 1.
Biographical notice of Clarence King, Raymond (R. W.), 3.
Biographical notice of Joseph Le Conte, Christy, 1.
Biographical notice of William Henry Irwin, Russel, 18.
Biographical sketch of Henry McCulley, Smith (E. A.), 7.
Bogoslof, our newest volcano, Merriam (C. H.), 1.
Books relating to geology, etc., of California, Vogdes, 1.
Cambrian rocks in eastern Canada, Matthew (G. F.), 29.
Canadian specimens of Lituites, Whittes, 10.
Carboniferous ammonoids of America, Smith (J. P.), 3.
Carboniferous formations and faunas of Colorado, Girty, 3.
Carboniferous system of New Brunswick, Bailey (L. W.), 8.
INDEX TO NORTH AMERICAN GEOLOGY

Catalogue and index of publications of Hayden, King, Powell, and Wheeler surveys, Schmackebier, 1.

Catalogue chronologique des publications de Edward Drinker Cope, Frazer, 6.

Catalogue of published writings of John Wesley Powell, Warman, 3.

Cement materials and industry of the United States, Eckel, 5.

Charles Emerson Beecher, Clarke (J. M.), 1.

Charles Emerson Beecher, Jackson (R. T.), 1.

Charles Emerson Beecher, Schuchert, 9.

Chicago folio, Alden, 1.

Claytes, Brown (R. M.), 4.

Clarence King, Emmons (S. F.), 5, 6.

Clarence Luther Herrick, Tidball, 5.

Clastic dikes, Newsom, 4.

Clays of Maryland, Ries, 5.

Coal fields of Canada, Denis, 1.

Contents of reports of Indiana geological survey, Hopkins (T. C.), 12.

Contributions to economic geology, Emmons, Hayes, 1, 2, 3.

Contributions to economic geology, 1903, Hayes (C. W.), 10.

Contributions to economic geology, 1904, Hayes (C. W.), 18.

Contributions to hydrology of eastern United States, Fuller (M. L.), 11.

Copper deposits of Clifton-Morenci district, Lindgren, 29.

Corundum of North Carolina, Pratt and Lewis, 1.

Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.

Cyclus from Coal Measures, Rogers, 3.

Dakota Cretaceous of Kansas and Nebraska, Gould, 5.

Deposits of copper ores at Ducktown, Tenn., Kemp, 10.

Desarrollo de la geologia en Mexico, Aguilar, 5.

Description of State geologic map [New York], Merrill (F. J. H.), 2.

Development of Scaphites, Smith (W. D.), 1.

Development of some Paleozoic bryo-

zan, Cumings, 9.

Devonian era in Ohio basin, Claypole, 5.

Diplocodocus (Marsh), Hatchett, 1.

Dolichocephaly and brachycephaly in the lower mammals, Osborn, 9.

Dr. Ferdinand von Roemer, the father of Texas geology, his life and work, Simonds, 2.

Dryptosaurus incrassatus, Lambe, 8.

Dumortierite, Schaller, 7.

Eastern interior coal field, Ashley, 1.

Economic geology of the Bingham district, Boutwell, 12.

Eisenführenden Gesteinen der Insel Disko, Nicolau, 1.

Edward Claypole, the man, Bridge, 1.

Eocene deposits of Maryland, Clark and Martin, 1.

Eruptions of Mont Pelé and the Soufrière, Hovey (E. O.), 33.

Eurypterid fauna from the Salina, Sarle, 2.

Extinct glaciers of Colorado, Henderson (J.), 4.

Fossil corals from the elevated reefs of Curagao, Arube, and Bonaire, Vaughan, 2.

Fossil footsteps in the Juratias, Lull, 2.

Fossil mammalia of White River beds, Douglass, 4.

Fossil mammals of Tertiary of northeastern Colorado, Matthew (W. D.), 2.

Fossil turtles, Amphichelydia, Hay, 23.

Fossils from the Vancouver Cretaceous, Whitenes, 12.

Francis Buhl, geologist, Watson (L. W.), 2.

Gebirgbaus von Mittelamerika, Sapper, 22.

Genus Rhyynchopora, Gregor, 2.

Geographical distribution of fresh-water decapods, Ortmann, 3.

Geography of Texas, Simonds, 4.

Geological bibliography of Nebraska, Barbour and Fisher, 1.

Geological relations and distribution of platinum and associated metals, Kemp, 11.

Geological relationship of volcanoes of West Indies, Spencer (J. W.), 8.

Geological Society of America, Hovey (E. O.), 38.

Geological surveys, Broadhead, 1.

Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.

Geology and paleontology of Niagara Falls, Grabau, 1.

Geology and water resources of New Perce County, Part II, Russell, 2.

Geology of Cincinnati, Nickles, 3.

Geology of Garrett County, Martin (G. C.), 1.

Geology of Globe copper district, Arizona, Ransome, 6.

Geology of the Jemez-Albuquerque region, Reagan, 1.

Geology of Black Hills, Darton, 1.

Geology of the Black Hills, Jaggar, 5.

Geology of the Hudson Valley, Dale, 5.

Geology of the Philippine Islands, Becker, 1.

Geology of Vermont, Seely, 2.

George Mercer Dawson, Ami, 7, 16.

Gerard Troost, Glenn, 9.

Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
FOR THE YEARS 1901–1905, INCLUSIVE.

Bibliography—Continued.

Glacial geology of southern peninsula of Michigan, Leverett, 8.
Glaciation of the Green Mountains, Hitchcock (C. I.), 7, 8.
Graptoites of New York, Ruedemann, 8.
Growth of Trinidad, Guppy, 8.
Gypsum industry in New York, Parsons, 4.
Hamilton formation at Milwaukee, Wisconsin, Teller, 1.
Hamilton formation in central New York, Cleland, 2.
Hamilton group of Thedford, Ontario, Shimer and Graham, 1.
Historical outline of the geological and agricultural survey of the State of Mississippi, Hilgard, 1.
Historical review of geology of Michigan, Lane, 36.
Homoplaspy as a law of latent or potential homology, Osborn, 7.
Identification of Meckelian and mylohyoid grooves in mammals, Bensley, 1.
Index generum mammalium, Palmer (T. S.), 1.
Index to mineral resources of Alabama, Smith and McCauley, 1.
Index to North American geology, paleontology, petrology, and mineralogy for 1892–1900, Weeks, 4.
Index to publications of Indiana geological survey, Hopkins (T. C.), 13.
Index to publications of New York State Natural History Survey, Ellis (M.), 1.
Igneous rocks of Highwood Mountains, Pirsson, 4.
Instituto Geologica de Mexico, Guild, 2.
Investigation of metalliferous ores, Emmons (S. F.), 10, 17.
Iron ores of northeastern Texas, Eckel, 37.
Iron ranges of Michipicoten west, Bell (J. M.), 3.
John Bell Hatcher, Schuchert, 15.
Jurassic Fossillen aus Alaska, Pompeckj, 1.
Kreide-Ammoniten von Texas, Lasswitz, 1.
Lacoe (Ralph Dupuy), Hayden, 1.
Lake Superior iron-ore deposits, Grant (U. S.), 3.
Law of adaptive radiation, Osborn, 8.
Lead and zinc deposits of southwestern Wisconsin, Grant (U. S.), 5.
Lead and zinc deposits of Virginia, Watson (T. L.), 17.
Life and work of the late Doctor Selwyn, Ami, 38.
Lime and cement industries of New York, Ries, 4.
Limestones of southwestern Pennsylvania, Clapp, 4.
Bull. 301—06—28

List of reports and publications on the geology of Vermont, Perkins, 5.
List of works on the geology of Vermont, Perkins, 9.
Literature of Edistus, Eastman, 22.
Literature of structural materials, Eckel, 11.
Literature on petroleum, Teggar, 1.
Manufacture of clay products, Ries, 13.
Marble, slate, and granite industries of Vermont, Perkins, 1.
Marl-loess of lower Wabash Valley, Fuller and Clapp, 1.
Marine Pliocene and Pleistocene of San Pedro, Arnold, 2.
Marine Tria of western America, Smith (J. P.), 5.
Marine turtle Archelon, Wieland, 3.
Meeting of Section E of American Association for the Advancement of Science, Hovey, 37.
Memoir of Alpheus Hyatt, Crosby, 10.
Memoir of Edward Weller Claypole, Comstock (T. B.), 1.
Memoir of Franklin Platt, Frazer, 2.
Memoir of J. Peter Lesley, Stevenson (J. J.), 2.
Memoir of James E. Mills, Bronner, 7.
Memoir of Ralph Dupuy Lacoe, White (D.), 9.
Memoir of Theodore Greely White, Kemp, 18.
Memoir of Wilbur Clinton Knight, Barbour (E. H.), 10.
Memorial of the late Dr. Selwyn, Ami, 43.
Menominee district of Michigan, Bayley, 1.
Mesabi iron-bearing district of Minnesota, Leith, 4.
Middle Cambrian fossils, Woodward (E. L.), 1.
Mineral industries and geology of certain areas of Vermont, Perkins, 4.
Mineralogia Granlandica, Büggild, 5.
Mines and minerals of Guanajuato, Blake (W. P.), 7.
Mining in the Richmond coal basin, Virginia, Woodworth, 3.
Miocene deposits of Maryland, Shattuck, 10.
Mississippi River from Cape Girardeau to Head of Passes, Brown (R. M.), 3.
Molding sand, Eckel, 14.
Mollusca of Buda limestone, Shattuck, 8.
Molybdenite, Wells, 2.
La Montagne-Péléé et ses éruptions, Lacroix, 20.
Bibliography—Continued.

Morphogenesis of Platystrophia, Cumnings, 8.

Morphology of Madreporaria, septal sequence, Duerden, 8.

Morphology of the skull of Dimetrodon, Case, 11.

Mountain ranges of Great Basin, Davis (W. M.), 46.

Natural mounds or hog-wallows, Branner, 8.

Names of coals west of Mississippi River, Keyes, 19.

Nature of Edestus and related forms, Eastman, 13.

Newark system of the Pomperaug Valley, Hobbs, 2.

New Niobrara Taxochelys, Wieland, 12.

New York mineral localities, Whitlock, 2.

Nonmetallic minerals, Merrill (G. P.), 12.

North American geologic formation names, Weeks, 5.

North American species of the genus Equus, Gilley, 1.

Notes on mica, Corkill, 1.

Oberdevon Europas und Nordamerikas, Hartzell, 1.

Observations on the Creodonta, Matthew (W. D.), 1.

Old channels of the Mississippi in Iowa, Leverett, 2.

Oligocene titanotheres, Osborn, 10.

Ore deposits of Sudbury, Dickson, 4.

Origin of eskers, Crosby, 3.

Occurrence and distribution of tin, Rees and Graton, 1.

Osteology of Baptistodon, Gilmore, 3.

Osteology of the Diadectidae and relations to Chelysdorania, Case, 12.

Paleozoic Appalachia, Willis, 1.

Papers read before the Geological Society of America, Shattuck, 9.

Peat, Parsons, 3.

Peat and its occurrence in New York, Rees, 7.

Pennsylvania anthracite coal field, Stock, 1.

Permische Stegocephalen und Reptilien aus Texas, Eylert, 2.

Phosphate rocks of Arkansas, Branner and Newsom, 1.

Physical features of Cecil County, Md., Shattuck, 3.

Physical geography, etc., of Essex County, Mass., Sears, 1.

Physical geography of New York State, Tarr, 2.

Bibliography—Continued.

Physiography of Acadia, Daly, 1.

Platan province of Utah and Arizona, Davis (W. M.), 45.

Platyergus compressus Le Conte, Wagner, 1.

Pleistocene features in the Syracuse region, Fairchild, 12.

Pleistocene geology of Nassau County, Woodworth, 2.

Portland-cement industry in Michigan, Russell, 6.

Pre-Cambrian literature for 1902-3, Leith, 9.

Pre-Cambrian summaries for 1901, Leith, 3.

Pre-Glacial course of middle portion of Genesee River, Whitchek, 1.

Pre-Kansan and Iowan deposits of Long Island, N. Y., Fuller (M. L.), 6.

Progress of vertebrate paleontology in Canada, Lambe, 12.

Pseudoceratites of the Cretaceous, Hyatt, 1.

Quantitative classification of igneous rocks, Cross and others, 2.

Recent literature on Laramie formation, Hay, 7.

Recent mineralogical literature, Moses and Luquer, 1, 3.

Reconnaissance in Alaska, Schrader, 3.

Reconnaissance in trans-Pecos Texas, Richardson (G. B.), 4.

Red Beds of Colorado, Cross and Howe, 2.

Relationships of the Rugosa (Tetracorallia) to living Zoantharia, Duerden, 3.

Report of State geologist, Buckley, 4.

Reports of explorations printed in the documents of the United States Government, Haase, 1.

Restoration of Dolichorhyncops osborni, Williston, 9.

Revision of Paleozoic Paleechinoida, Klem, 1.

River terraces in New England, Davis (W. M.), 29.

Rocks of Green Pond Mountain region, Kimmel and Weller, 2.

Rocks of Rondout, Van Ingen and Clark, 1.

St. Peter sandstone, Sardeos, 1.

Sand plains of Glacial Lake Sudbury, Goldthwait, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Bibliography—Continued.
Siluric and Devonic faunas of Trilobite Mountain, Shimer, 5.
Siluric fauna near Batesville, Ark., Van Ingen, 1, 2.
Sketch of life and work of Charles Baker Adams, Seely, 4.
Sketch of the life of Zadoch Thompson, Perkins, 3.
Structural relations of amygdaloidal melaphyre, Burr, 1.
Structure of some primitive cephalopods, Ruedemann, 9.
Studies in evolution, Beecher, 1.
Sulphide ore bodies of Sudbury region, Ontario, Silver, 1.
Summaries of current North American pre-Cambrian literature, Leith, 1.
Summaries of literature of economic geology, Eckel, 12.
Summary of literature of North American Pleistocene geology, Leverett 5.
Surface geology of Alcona County, Mich., Leverett, 3.
Syllabus for field and laboratory work in geology, Tarr, 1.
Taconic physiography, Dale, 9.
Tertiary ignite of Brandon, Perkins, 17.
Terraces of Orange County, Vermont, Richardson (C. H.), 2.
Theories of ore deposition, Emmons (S. F.), 15.
Time divisions of Ice Age, Upham, 15.
Tin deposits of the York region, Alaska, Collier, 8.
Triassic cephalopod genera, Hyatt and Smith, 1.
Triassic Ichthyopterygia from California and Nevada, Meek (J. C.), 4.
Trilobites of Chazy limestone, Raymond, 5.
Tropidoletus fauna at Cannandigua Lake, Raymond (P. E.), 4.
Überschiebungen in den Vereinigten Staaten von Nordamerika, Willis, 14.
Vermilion iron-bearing district of Minnesota, Clements, 3.
Volcanic action and the West Indian eruptions in 1902, Lobley, 1.
Volcanic ash beds of Montana, Rowe, 1.
Volcanic eruptions in Martinique and St. Vincent, Russell, 4.
White (Theodore Greely), Ries, 2.
Wilbur Clinton Knight, Nelson, 1.
Wilbur Clinton Knight, Williston, 20.

Bibliography—Continued.
Writings of James G. Cooper on conchology and paleontology, Raymond (W. J.), 1.
Xinantacatl ou volcan Nevada de Tolula, Ordóñez, 7.
Biography.
Adams, Charles Baker, sketch of life and work of, Seely, 4.
Bain, Francis, Watson (L. W.), 2.
Barris, Prof. W. H., Preston (C. H.), 1.
Beecher, Charles Emerson, Clarke (J. M.), 22.
Beecher, Charles Emerson, Jackson (R. T.), 1.
Beecher, Charles Emerson, Schuchert, 9.
Billings, Elkanah, Ami, 15.
Brooks, Thomas Benton, Willis, 3.
Claypole, address at presentation of memorial bronze of Edward Waller Claypole, Bridge, 2.
Claypole, address at presentation of memorial bronze of Edward Waller Claypole, Knight (W. H.), 1.
Claypole, Edward, the scientist, Comstock (F. B.), 2.
Claypole, Edward Waller, as a teacher, Richardson (G. M.), 1.
Claypole, Edward, the man, Bridge, 1.
Claypole, Edward Waller, memoir of, Comstock (T. B.), 1.
Dawson, George M., Adams (F. D.), 1.
Dawson, George Mercer, Harrington (B. J.), 1, 2.
Frazer, Benjamin West, Frazer, 10.
Frenzel, Dr., Frazer, 4.
Hall, Charles Monroe. Life and work of Professor Charles M. Hall, Upham, 15.
Harris, Israel Hopkins. The I. H. Harris collection of invertebrate fossils in the U. S. National Museum, Schuchert, 3.
Hatcher, John Bell, Eaton, 4.
Hatcher, John Bell, Holland, 1.
Hatcher, John Bell, Schuchert, 15.
Hatcher, John Bell, Scott (W. B.), 3.
Herrick, Clarence L., Cole (A. D.), 1.
Herrick, Clarence Luther, Tight, 5.
Houghton, Douglass, Russell, 16.
Hubbard, Bela, Russell, 17.
Hyatt, Alpheus, Dall, 5.
Hyatt, Alpheus, Crosby, 10.
Hyatt, Alpheus, Stanton, 5.
King, Clarence, Emmons (S. F.), 5, 6.
Biography—Continued.

King, Clarence, biographical notice of, Raynold (R. W.), 3.
Knight, Wilbur Clinton, Barbour (E. H.), 10.
Knight, Wilbur Clinton, Nelson, 1.
Knight, Wilbur Clinton, Williston, 20.
Lacoe, Ralph Dupuy, Hayden, 1.
Lacoe, Ralph Dupuy, memoir of, White (D.), 9.
Lacoe’s relation to science, White (D.), 3.
Le Conte, Joseph, Lawson (A. C.), 3.
Le Conte, Joseph, Stevenson (J. J.), 3.
Lesley, J. Peter, biographical notice of, Lyman, 4.
Lesley, J. Peter, Frazer, 7.
Lesley, J. Peter, Halberstadt, 1.
Lesley, J. Peter, Stevenson (J. T.), 5, 7.
McCalley, Henry, Smith (E. A.), 7.
Marsh, Charles Othniel, Joly (H.), 1.
Memorial of the late Dr. Selwyn, Ami, 43.
Mills, James E., Branner, 7.
Orton, Edward, Hobbs, 7.
Neef, Peter, Cushing, 8.
Pettee, William Henry, Russell, 18.
Powell as an anthropologist, McGee, 4
Powell as an explorer, Van Hise, 10.
Powell as a geologist, Gilbert, 5.
Powell as a man, Langley, 1.
Powell as a soldier, Henderson (D. B.), 1.
Powell, John Wesley, Brewer (W. H.), 1.
Powell, John Wesley, Gilbert, 3, 4.
Powell, John Wesley, Merrill (G. P.), 8.
Powell, John Wesley, Walcott, 9, 10.
Roemer, Dr. Ferdinand von, the father of Texas geology: his life and work, Simonds, 2.
Rowe, Richard Burton, Prosser, 9.
Selwyn, Dr. Alfred R. C., Barlow, 5.
Selwyn, Doctor, life and work of, Ami, 38, 45.
Simpson, George Bancroft, Clarke (J. M.), 9.
Thompson, Zadoch, Perkins, 3.
Troost, Gerard, Glenn, 9.
White, Theodore Greely, Ries, 2.
White, Theodore Greely, memoir of, Kemp, 16, 18.
Wing, Augustus, sketch of life and work of, Seely, 1.
Wright, Albert Allen, Wright (G. F.), 12.

California—Continued.

Arcas of the California Neocene, Osmond, 2.
Ascent of Mt. Whitney, with notes on the geology, Hallock, 2.
Asymmetry of crest lines in the high Sierra of California, Gilibert, 19.
Auriferous gravels and table mountains of California, Hanks, 1.
Basin-range structure in Death Valley region, Campbell (M. R.), 13.
Berkeley Hills, Lawson and Palache, 1.
Bibliography of geology, paleontology, and mineral resources of California, Vogdes, 1.
Bisuth and bismite from Pala, Kunz, 6.
Borax deposits of eastern California, Campbell (M. R.), 12.
Books relating to geology, etc., of California, Vogdes, 2.
Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.
Bragg formation, Diller, 18.
Bragg formation in California, Hersey, 21.
California minerals, Schaller, 3.
California Tertiary coral reef, Vaughan, 20.
Californite, Clarke and Steger, 2.
Californite, a new ornamental stone, Kunz, 5.
Candle of California, Merrim (J. C.), 7.
Canyon City meteorite, Ward (H. A.), 7.
Cement materials and industry of the United States, Eckel, 34.
Clastic dikes, Newsom, 4.
Colemanite from southern California, Eckel, 2.
Composition and occurrence of petroleum, Mabery, 3.
Composition and structure of Klamath Mountains, Diller, 17.
Composition of California petroleum, Mabery and Hudson, 1.
Contact-metamorphic deposits in Sierra Nevada Mountains, Turner, 13.
Contribution to mineralogy of California, Blashfield, 1.
Copper deposits of Redding region, Diller, 13.
Copper region of northern California, Diller, 5, 6.
Cretaceous auriferous conglomerate of Siskiyou County, Turner, 12.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Crystalline rocks of southern California, Hersey, 9.
Crystalline rocks of San Gabriel Mountains, Arnold, 6.
California—Continued.
Crystalline rocks of the San Gabriel Mountains, Arnold and Strong, 1.
Crystallography of lepidolite, Schaller, 6.
Desert dry lakes of California, Bailey (G. E.), 1.
Domes and dome structure of the high Sierra, Gilbert, 17.
Drainage features of California, Lawson (A. C.), 2.
Dredging in Oroville, Knox, 1.
Domes and dome structure of the high Sierra, Gilbert, 17.
Drying of Crater Lake, Stock, 1.
Eclogites in California, Holway, 1.
Erosion on the Pacific coast, Holder, 2.
Etat de Californie, Privat-Deschanel, 1.
Exploration of Potter Creek cave, Shasta County, Sinclair, 2.
Fault-system, Gunther, 2.
Feldspar-corundum rocks from Plumas County, Lawson (A. C.), 1.
Faunal relations of the Carrizo Creek beds, Arnold, 3.
Flightless auk, Mancilla californiensis, Lucas (F. A.), 5.
Foraminifera from Santa Barbara, Bagg, 7.
Formation of bonanzas in upper portions of gold veins, Rickard (T. A.), 3.
Fossil plants from the Shasta group, Fontaine, 3.
Fossil Sequoia from the Sierra Nevada, Jeffrey, 1.
Gems and rare minerals of southern California, Sovereign, 1.
Gem minerals of California, Kunz, S.
Genesis of ore deposits at the Royal mine, Forstner, 1.
Geological section of the middle Coast ranges of California, Lawson (A. C.), 6, 9.
Geological section of the Coast ranges, Osmond, 1.
Geologizing by the seaside, Lakes, 56.
Geology of district west of Redding, O'Brien (C. J.), 1.
Geology of Mineral King, Knopf and Thelen, 1.
Geology of Nevada and adjacent portions of California, Spurr, 6.
Geology of Salinas Valley, Nutter, 1.
Geomorphic origin of Klamath Mountains, Diller, 3.
Gisements des minerals de mercure, Denaret, 2.
Glacial stages in Klamath Mountains, Hershey, 16.
Glacier of Mount Lyell, Lee (W. T.), 10.
Glauconphane and associated schists in Coast ranges of California, Nutter and Barber, 1.

California—Continued.
Gold production of North America, Lindgren, 16.
Great lava flood, Redway, 1.
Greenback copper mine, Turner, 6.
Gypsum deposits in California, Fairbanks, 6.
Hanging valleys of the Yosemite, Branner, 5.
Ichthyosaurus from Triassic of California, Merriam (J. C.), 6.
Identity of palacheite and botryogen, Eakle, 3.
Igneous rocks near Pajaro, Reid (J. A.), 1.
Industrie du pétrole en Californie, Heurteau, 2.
Iron-nickel alloy, awaruite, Jamieson, 1.
Iron ores of the Redding quadrangle, Diller, 14.
Klamath Mountains, Diller, 1, 12.
Lawsonite, Schaller and Hillebrand, 2.
Les anciens chenaux nuriferes de Californie, Bordeaux, 1.
Lilac-colored spodumene, Kunz, 7.
Limestone of the Redding district, Diller, 15.
Luminescent zinc-blend, Eakle and Sharwood, 1.
Magnesite and its uses, Spinks, 1.
Mammalia from Quaternary caves of California, Sinclair, 7.
Marine Pliocene and Pleistocene of San Pedro, Arnold, 2.
Marine Pliocene and Pleistocene stratigraphy of coast of southern California, Arnold and Arnold, 1.
Marine reptiles, Merriam (J. C.), 12.
Marine Trias of western America, Smith (J. P.), 5.
Metamorphic formations of northwestern California, Hershey, 2.
Mioeene diabase of Santa Cruz Mountains, Hecht and Arnold, 1.
Mioeene fauna of California, Merriam (J. C.), 10.
Mineral resources of the Indian Valley region, Diller, 19.
Mineral resources of the Redding quadrangle, Diller, 16.
Minerals from Leona Heights, Shaler, 1.
Mioeene Foraminifera from Monterey shale, Bagg, 9.
Mother Lode gold deposits, Prichard (W. R.), 1.
Mother Lode gold deposits, Turner, 14.
Mother Lode in Tuolumne County, Storms, 3.
Mount Lassen and Cinder cone region, Miller (E. L.), 1.
Mount Diablo Range of California, Anderson (F. M.), 7.
Neogene basins of Klamath Mountains, Anderson (F. M.), 1.
INDEX TO NORTH AMERICAN GEOLOGY

California—Continued.

Neocene deposits of Klamath region, Hershey, 13.
Neocene rivers of the Sierra Nevada, Lindgren, 10.
New Californian Bittium, Dall and Bartsch, 1.
New sabre-tooth from California, Merriam (J. C.), 16.
New species of Pleurotoma from the Pliocene, Raymond (W. J.), 2.
New ungulate from the Quaternary caves of California, Sinclair and Furlong, 1.
Occurrence of platinum, Day (D. T.), 1.
Oil fields of California, Lakes, 10.
On northupite, pirssonite, etc., Pratt, 3.
Orbicular gabbro at Dehesa, Lawson (A. C.), 11.
Orbicular gabbro from San Diego County, Lawson (A. C.), 7.
Orbicular gabbro of Dehesa, Kessler and Hamilton, 1.
Ore deposits of Shasta County, Anderson (F. M.), 4.
Origin and occurrence of petroleum, Cooper (A. S.), 1.
Origin of transverse mountain valleys, Le Conte, 1.
Palacheite, Eakle, 4.
Pedological geology of California, Hilgard, 2.
Pegmatite veins of Pala, Waring, 2.
Petroleum in California, Claypole, 4.
Petroleum industry of California, Eldridge, 2.
Petroleum industry of Europe and America, Otsuba, 1.
Phosphorescent sphalerite, Eakle, 6.
Physiography and geology of the Siskiyou Range, Anderson (F. M.), 5.
Physiography of California, Fairbanks, 3.
Pleistocene and Pliocene fossil shells, Rivers, 1.
Plumsite, Lawson (A. C.), 8.
Post-Tertiary elevation of the Sierra Nevada, Turner, 10.
Post-Tertiary elevation of Sierra Nevada, Turner, 9.
Potter Creek cave, Sinclair, 5.
Prehistoric California, Yates (L. G.), 1.
Preptoceras, a new ungulate, Furlong, 2.
Profile of maturity in Alpine glacial erosion, Johnson (W. D.), 3.
Quartz from San Diego County, Waring, 1.
Quaternary of southern California, Hershey, 14.
Quicksilver, Haverstock, 1.

California—Continued.

Quicksilver deposits of California, Forstner, 2.
Recent date of lava flows in California, Wright (G. F.), 14.
Reconnaissance of borax deposits of Death Valley and Mohave Desert, Campbell (M. R.), 4.
Remarkable salt deposit, Holder, 1.
Reptile from Triassic of California, Merriam (J. C.), 11.
River terraces and Glacial series in California, Hershey, 19.
River terraces of Klamath region, Hershey, 20.
River terraces of the Orleans basin, Hershey, 22.
Roofing slate of igneous origin, Eckel, 27.
Salt industry in Utah and California, Eckel, 26.
San Luis folio, Fairbanks, 7.
Sierra Madre, near Pasadena, Claypole, 4.
Sierran valleys of Klamath region, Hershey, 18.
Significance of Cretaceous outliers in Klamath region, Hershey, 11.
Slate deposits of California and Utah, Eckel, 24.
Southern Nevada and Inyo County, Taft, 1.
Spodumene from San Diego County, Schaller, 2.
Stratigraphy of Coast ranges of California, Anderson (F. M.), 6.
Structural features of California gold belt, Storms, 1.
Structure of Klamath Mountains, Hershey, 17.
Subsidence of Santa Catalina, Ritter (W. E.), 1.
Terraces of the High Sierra, Gilbert, 24.
Tertiary formations of southern California, Hershey, 16.
Tertiary peneplain in Klamath region, California, Hershey, 15.
Thalattosaurus, Merriam (J. C.), 15.
Topographic development of Klamath Mountains, Diller, 10.
Tortoise from the auriferous gravels, Sinclair, 4.
Tourmaline from San Diego County, Sterrett, 1.
Tourmaline localities of southern California, Schaller, 4.
Triassic Ichthyopterygina from California and Nevada, Merriam (J. C.), 4.
Triassic ichthysaur from California and Nevada, Osborn, 15.
Triassic Reptilia from northern California, Merriam, (J. C.), 5.
Tychite, Penfield and Jamieson, 1.
Type of auriferous deposit, Hershey, 7.
Valley of southern California, Hilgard, 5.
California—Continued.
- Variability in a rock magma, Turner, 8.
- Variations of Sierra glaciers, Gilbert, 18.
- Water storage in Truckee Basin, Taylor (L. H.), 1.

Cambrian.

Appalachian region.
- Asbeville folio, Keith, 9.
- Basal conglomerate in Lehigh and Northampton counties, Pa., Peck, 2, 3.
- Bauxite deposits of Georgia, Watson (T. L.), 12.
- Cambro-Ordovician limestones of the Valley of Virginia, Campbell (H. D.), 1.
- Cockeysville marble, Matthews and Miller, 1.
- Correlation of Piedmont formations, Mathews, 6.
- Cranberry folio, Keith, 4.
- Geologic relations of the iron ores in the Cartersville district, Hayes (C. W.), 1.
- Greeneville folio, Keith, 11.
- Lead and zinc deposits of Virginia, Watson (T. L.), 17.
- Manganese ore deposits of Georgia, Watson, 9.
- Maynardville folio, Keith, 1.
- Mount Mitchell folio, Keith, 12.
- Paleozoic Appalachia, Willis, 1.
- Paleozoic formations, Weller, 6.
- Paleozoic limestones of Kittatinny valley, Kimmel and Weller 1.
- Piedmont district of Pennsylvania, Bascom, 3.
- Preliminary report on the Paleozoic formations, Weller, 3.
- Rocks of Green Pond Mountain region, Kimmel and Weller, 2.
- Rome folio, Hayes (C. W.), 5.
- Topography and geology of southern Appalachians, Keith, 3.

Canada.
- Adams Lake series, Evans (H. F.), 2.
- Cambrian age of Dictyonema slates of New Canaan and Kentville, Nova Scotia, Ami, 32.
- Cambrian fossils from Cape Breton, Matthew (G. F.), 9.
- Cambrian of Cape Breton, with descriptions of new species, Matthew (G. F.), 12.
- Cambrian rocks and fossils of Cape Breton, Matthew (G. F.), 14.
- Cambrian rocks in eastern Canada, Matthew (G. F.), 29.
- Exploration in Saskatchewan and Keewatin, Tyrrell, 3.
- Exploration of east coast of Hudson Bay, Low, 2.
- Exploration of Ekwan River, Dowling, 8.

Cambrian—Continued.

Canada—Continued.
- Geological correlations in New Brunswick, Bailey (L. W.), 5.
- Geological explorations in Athabaska, Dowling, 6.
- Geological record of Rocky Mountain region, Dawson, 2.
- Geology of the Canadian Shield, Haas, 2.
- Geology and natural resources of Otawa and vicinity, Ellis (R. W.), 7.
- Geology of Boisbâle Hills anticline, Bourright, 1.
- Geology of Province of Quebec, Ellis (R. W.), 8.
- Geology of Yellow Head Pass route, McEvoy, 1.
- Middle Cambrian fossils, Woodward (H.), 1.
- New Brunswick, Bailey (L. W.), 5.
- Northeastern Canada to the Arctic coast, Hanbury, 1.
- Ostracoda of basal Cambrian rocks in Cape Breton, Matthew (G. F.), 13.
- Rock contacts in the Kingston district, Ellis (R. W.), 15.
- Subdivisions of the Cambrian system, Ami, 13.
- Synopsis of geology of Canada, Ami, 2.
- Upper Cambrian age of Dictyonema slates of Angus Brook, Ami, 37.

Great Basin region.
- Bisbee folio, Ransome, 14.
- Clifton folio, Lindgren, 28.
- Copper deposits of Clifton-Morenci district, Lindgren, 29.
- Evidences of shallow seas in Paleozoic time, Blake (W. P.), 2.
- Geology and copper deposits of Bisbee, Ransome, 10.
- Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.
- Geology and vein phenomena of Arizona, Comstock (T. B.), 1.
- Geology of Arizona, Blake (W. P.), 1.
- Geology of Globe copper district, Ransome, 6.
- Geology of Nevada, Spurr, 6.
- Globe folio, Ransome, 13.
- Historical geology of Esmeralda County, Nev., Turner, 5.
- Stratigraphy of Uinta Mountains, Berry, 8.

Great Lakes region.
- Baraboo iron-bearing district of Wisconsin, Weidman, 5.
- Chicago folio, Alden, 1.
- Geology of Michigan, Lane, 36.
- Menominee district of Michigan, Bayley, 1.

Great Plains region.
- Geology and underground water resources of the central Great Plains, Darton, 18.
INDEX TO NORTH AMERICAN GEOLOGY

Cambrian—Continued.

Great Plains region—Continued.
Geology of the Black Hills, Jaggar, 5.
Sundance folio, Darton, 26.

Lake Superior region.
Junction of Lake Superior sandstone and Keweenawan traps in Wisconsin, Grant (U. S.), 2.
Magnesian series of the northwestern States, Hall (C. W.), 10.

Mississippi Valley region.
Cambrian age of magnesian limestones of Missouri, Keyes, 23.
Cambrian fossils of St. Francois County, Beecher, 2.
Copper deposits of Missouri, Bain and Ulrich, 2.
Dalles of the St. Croix, Berkey, 1.
Geological formations of Iowa, Calvin, 4.
Geological relations and age of St. Joseph and Potosi limestones of Missouri, Nason, 5.
Geology of clays, Beyer and Williams, 2.
Geology of Hahatonka district, Sche rer, 1.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Miller County, Ball and Smith, 1.
Geology of Missouri, Gallaher, 1.
Geology of Moniteau County, Van Horn, 1.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Lead and zinc deposits of southwestern Wisconsin, Grant (U. S.), 5.
Physiography and geology of Ozark region, Adams (G. I.), 3.
Relations and age of the St. Joseph and Potosi limestones, Nason, 2.
Rocks and geological horizons of Greene County, Shepard, 6.
Sedimentary sandstone, Broadhead, 8.

New England and New York.
Cambrian deposits of North Attleboro, Gorham, 1.
Cambrian and pre-Cambrian of Hood Mountains, Wolff, 3.
Cambrian Dictyonema fauna of eastern New York, Ruedemann, 7.
Geology of Adirondack region, Cush ing, 10.
Geology of Paradox Lake quadrangle, Oglivie, 6.
Geology of Rand Hill, Cushing, 2.
Geology of Taconic Range, Dale, 3.
Geology of the Hudson Valley, Dale, 5.
Geology of the vicinity of Little Falls, Cushing, 9.
Geology of the Weston aqueduct, Crosby, 12.
Igneous rocks of Neponset Valley, Crosby, 15.
Physical geography, etc., of Essex County, Mass., Sears, 1.
Pre-Cambrian Highlands, Merrill (F. J. H.), 6.

Cambrian—Continued.

Pottasdam sandstone of Lake Champlain Basin, Van Ingen, 4.
Quarry industry in southeastern New York, Eckel, 6.
Report of State paleontologist, Clarke (J. M.), 5.
Sedimentary impression known as Climactichnites, Woodworth, 6.

Pacific coast region.
Crystalline rocks of southern California, Hershey, 9.

Rocky Mountain region.
Aladdin folio, Darton and O’Harra, 1.
Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.
Carboniferous formations and faunas of Colorado, Girty, 3.
Geology of Black Hills, Darton, 1.
Geology of Castle Rock region, Colorado, Lee (W. T.), 2.
Geology of Needle Mountains quadrangle, Cross and Howe, 3.
Geology of Rico quadrangle, Cross (W.), 7.
Geology of southwestern Montana, Douglass, 10.
Silverton folio, Cross and Howe, 1.
Stratigraphy of Black Hills, Bighorn Mountains, and Rocky Mountain front range, Darton, 10.
Sundance folio, Darton, 26.

Southwestern region.
Atoka folio, Taff, 3.
Geology and water resources of Oklahoma, Gould, 14.
Geology of Arbuckle and Wichita mountains, Taff, 13.
Geology of the Wichita Mountains, Gould, 13.
Nomenclature of the Cambrian formations of the St. Francois Mountains, Keys, 6.
Stratigraphic sequence in trans-Pecos Texas, Richardson (G. B.), 5.
Tishomingo folio, Taff, 6.

General.
Cambrian Brachiopoda, Walcott, 6.
New term for Upper Cambrian series, Walcott, 8.
Physical characters and history of some New York formations, Grabau, 17.
Verbreitung und Entwicklung des Cambrium, Prech, 1.

Canada.

Alberta.
Alberta coal field, Armstrong, 1.
Baukhead coal mines, Henretta, 1.
Cascade and Costigan coal basins, Dow ling, 11.
Coal basins in Rocky Mountains, Dow ling, 7.
Canada—Continued.

Alberta—Continued.
Coal in Alberta, Rickert, 1.
Dinosaurs from the Cretaceous of Alberta, Lambe, 10.
Fossil Cyrena from Alberta, Whiteaves, 6.
Frank disaster, Fernie, 1.
Frank disaster, Green, 1.
Frank disaster, Smith (F. B.), 2.
Geological notes on the vicinity of Banff, Ogilvie, 3.
Geological sketch of the Bankhead coal field, Turnbull, 1.
Geology of Anthracite, Alberta, Poole, 5.
Geology of Yellow Head Pass route, McEvoy, 1.
Grasping power of manus of Ornithomimus, Lambe, 9.
Lake basins in Alberta and British Columbia, Parkinsson, 2.
Notes on western coals, Gwillim, 4.
Red Deer River, Lambe, 4.
Report on landslide at Frank, McConnell and Brock, 4.
Rock slide at Frank, Brewer (W. M.), 10.
Rock slide at Frank, Haanel, 1.
Squamoso-parietal crest of horned dinosaurs, Lambe, 11.
Stratigraphy of the Cascade coal basin, Dowling, 10.
Trionyx foventus, Leidy, and Trionyx vagans, Cope, from Cretaceous rocks, Lambe, 5.
Turtle from the Cretaceous rocks, Lambe, 1.
Turtle Mountain rock slide, Dowlen, 1.
Variations périodiques des glaciers, Vaux and Vaux, 2.

Assiniboia.
Coal field of Souris River, Dowling, 9.
Eastern Assiniboia and southern Manitoba, Dowling, 4.
Fossil horses of the Oligocene, Lambe, 16.
New species of Hyracodon, Lambe, 17.
Tooth structure of Mesohippus westoni (Cope), Lambe, 14.

Athabasca.
Geological explorations in Athabasca, Dowling, 6.

British Columbia.
Adams Lake series, Evans (H. F.), 2.
Atlin mining district, Gwillim, 1.
Auiferous deposits of Vancouver Island, Watson (R. L.), 1.
Bornite ores of British Columbia and Yukon territory, Brewer, 16.
Boundary Creek district, Brock, 1, 3.
Boundary mining district, Brewer (W. M.), 8.
British Columbia coal fields, Brewer (W. M.), 6.

Canada—Continued.

British Columbia—Continued.
British Columbia iron and coal, Brewer (W. M.), 2.
Cambrian Brachiopoda and Mollusca of Mount Stephen, Matthew (G. F.), 19.
Cardioceras from the Crows Nest coal fields, Whiteaves, 9.
Characteristics of Atlin gold fields, Gwillim, 2.
Chinabara-bearing rocks of British Columbia, Monckton, 2.
Coal Creek colliery of Crows Nest Pass, Corless, 1.
Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirssopp, 1.
Coal fields of Crows Nest Pass, Jacobs, 2.
Coal fields of Crows Nest Pass Branch of Canadian Pacific Railway, Brewer (W. M.), 9.
Copper mining in the Crows Nest, McEvoy, 2.
Copper claims of Aspen Grove and Aberdeen Camp, Johnston (R. A. A.), 2.
Copper deposits of Aspen Grove camp, Similkameen, Bailey (F.), 1.
Copper deposits of Mount Sicker, Musgrave, 1.
Copper Mountain, Catherine, 1.
Crows Nest coal fields, Leach (W. W.), 1.
Crows Nest Pass coal field, Brewer (W. M.), 7.
Fossil plants from British Columbia and the Northwest territories, Penhallow and Ami, 1.
Fossils from the Vancouver Cretaceous, Whiteaves, 12.
Genesis of gold deposits of Baskerville, Atkin, 1.
Geology and mining of Vancouver Island, Sutton, 1.
Geology of region adjoining western part of International Boundary, Daly, 4.
Geology of the International Boundary, Daly, 10.
Geology of western part of International Boundary, Daly, 13.
Geology of Yellow Head Pass route, McEvoy, 1.
Geology of Vancouver Island, Haycock, 3.
Geology of Vancouver Island, Webster, 1.
Glaciation in Atlin district, Gwillim, 3.
Glacial studies in the Canadian Rockies, Sherzer, 2.
Gold occurrences on Lightning Creek, Atkin, 2.
Graham Island coal, Blakemore, 3.
Industries minière et métallurgique en Colombie britannique, Vlaire, 1.
Iron-ore deposits near Kitchener, Blakemore, 2.
Canada—Continued.

British Columbia—Continued.

Lake basins in Alberta and British Columbia, Parkinson, 2.

Lamprophyres of the Rossland mining district, Barber, 1.

Lake basins in Alberta and British Columbia, Parkinson, 2.

Lamprophyres of the Rossland mining district, Barber, 1.

Lardeau district, Brock, 7, 8.

M'Kee Creek, Atlin mining division, British Columbia, Brewer (W. M.), 5.

Middle Cambrian fossils, Woodward (H.), 1.

Mineral resources of Vancouver Island, Brewer (W. M.), 14.

Mining districts near Kemloops Lake, Monckton, 1.

Mining in the Rossland district, Campbell (C. M.), 1.

Mining Industry and mineral resources of British Columbia, Brewer (W. M.), 3.

Mount Sicker mining district, Brewer (W. M.), 13.

Native gold in igneous rocks, Brock, 4.

Nepheline rocks of Ice River, Barlow, 4.

New species of Unio, Whiteaves, 1.

Nicola coal basin, Ells (R. W.), 23.

Notes on geology and ore deposits of southeastern British Columbia, Corless, 2.

Notes on western coals, Gwillim, 4.

Observations on glaciers, Vaux, 1.

Occurrence of scheelite, Atkin, 1.

Ordovician succession in eastern Ontario, Ami, 93.

Ore deposits of Boundary Creek district, Brock, 2.

Ore deposits of Copper Mountain, Scott (O. N.), 1.

Ore deposits of Rossland, Kirby, 2.

Ore deposits of Rossland, MacDonald, 1.

Ore quarrying in the Boundary district, Jacobs, 1.

Pacific Mountain system, Spencer (A. C.), 5.

Pacific Mountain system of British Columbia and Alaska, Spencer (A. C.), 4.

Petrography of Kettle River mining division, Silver, 2.

Petrography of rock samples from British Columbia, Robertson, 4.

Pioneer work in Crows Nest coal areas, Blakemore, 1.

Platinum in British Columbia, Brock, 6.

Poplar Creek and other camps of the Lake district, Brock, 5.

Production of copper in Boundary district, Ledoux, 2.

Report on the Lake mining district, Robertson, 3.

Report on the Trout Lake mining division, Robertson, 2.

Report on valley of the Flathead River, Robertson, 1.

Canada—Continued.

British Columbia—Continued.

Secondary origin of certain granites, Daly, 11.

Souséite, a native iron-nickel alloy, Hofmann, 7.

 Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.

Texada Island, Brewer (W. M.), 1.

Uintacrinus and Hemisti in the Vancouver Cretaceous, Whiteaves, 13.

Variations périciöiques des glaciers, Vaux and Vaux, 2.

White Horse mining district, Yukon Territory, Brewer (W. M.), 4.

Cape Breton Island.

Cambrian fossils from Cape Breton, Matthew (G. F.), 9.

Cambrian of Cape Breton, with descriptions of new species, Matthew (G. F.), 12.

Cambrian rocks and fossils of Cape Breton, Matthew (G. F.), 14.

Preliminary notice of Etcheminian fauna, Matthew (G. F.), 2.

Franklin.

Exploration of northern side of Hudson strait, Bell (Robert), 8.

Laurentian limestones, Bell (Robert), 2.

Keewatin.

Exploration of Ekwan River, Dowling, 8.

Explorations in Saskatchewan and Keewatin, Tyrrell, 3.

Genus Trimerella, with descriptions of species from Silurian rocks of Keewatin, Whiteaves, 3.

Geological explorations in Athabasca, Saskatchewan, and Keewatin, Dowling, 6.

Headwaters of Severn River, Camsell, 2.

Report on parts of Manitoba and Keewatin, Tyrrell, 1.

Survey of south and west coast of James Bay, O'Sullivan, 1.

Upper parts of Winisk and Attawapiskat rivers, McInnes, 4.

Winisk River, McInnes, 3.

Labrador.

Drift ice as an eroding and transporting agent, Prest, 1.

Exploration of the south shore of Hudson Strait, Low, 1.

Geology of Labrador, Daly, 5.

Geology of northeast coast of Labrador, Daly, 3.

Manitoba.

Clays and shales of Manitoba, Wells (J. W.), 4.

Eastern Assiniboia and southern Manitoba, Dowling, 4.

Geography of Red River Valley, Dowling, 2.

Geology of west shore of Lake Winnipeg, Dowling, 1.
Canada—Continued.

Manitoba—Continued.

Hydraulic cements in Manitoba, Wells (J. W.), 3.
Limestones and lime industry of Manitoba, Wells (J. W.), 5.
Report on parts of Manitoba and Keewatin, Tyrell, 3.
Turtle Mountain, Manitoba, Dowling, 5.

New Brunswick.

Albert shale deposits, Ells (R. W.), 13.
Are the St. John plant beds Carboniferous?, Matthew (G. F.), 4.
Bothriolepis, Patten, 1.
Cambrian ostracoda from northeastern America, Jones (T. R.), 1.
Cambrian rocks in eastern Canada, Matthew (G. F.), 29.
Carboniferous basin of New Brunswick, Ells (R. W.), 3.
Carboniferous rocks of Chignecto Bay, Poole, 6.
Carboniferous system of New Brunswick, Bailey (L. W.), 8.
Charlotte County, Ells (R. W.), 17.
Coal fields of New Brunswick, Poole, 2.
Coal problem in New Brunswick, Poole, 3.
Coal prospects of New Brunswick, Poole, 8.
Copper ores in Nova Scotia, New Brunswick, and Quebec, Ells (R. W.), 22.
Devonian of the Acadian provinces, Matthew (G. F.), 5.
Earthquakes in New Brunswick, Kain, 1.
Economic minerals in New Brunswick, Bailey (L. W.), 11.
Geological correlations in New Brunswick, Bailey (L. W.), 2, 3.
Geology of Charlotte County, Ells (R. W.), 24.
Highlands of northern New Brunswick, Bailey (L. W.), 7.
List of fossils from New Brunswick, Aml, 46.
Modes of occurrence of mineral albireite, Bailey (L. W.), 4.
Natural history and physiography of New Brunswick, Ganong, 3.
New Brunswick, Bailey (L. W.), 5.
New Brunswick caves, Bailey (L. W.), 9.
Note on Oliver's cave, Matthew (G. F.), 26.
Ostracoda of basal Cambrian rocks in Cape Breton, Matthew (G. F.), 13.
Physiography of New Brunswick, Ganong, 1, 2.
Problems in New Brunswick geology, Ells (R. W.), 25.
Report on surface geology shown on Fredericton and Andover quarter-sheet maps, Chalmers, 3.

New Brunswick—Continued.

Surface geology of New Brunswick, Stead, 1.
Tripolite deposits of Fitzgerald Lake, Crosby, 1.
Volcanic rocks of New Brunswick, Bailey (L. W.), 10.

Northwest Territory.

Coal mining in the Northwest territories, Smith (F. B.), 1.
Dryptosaurus incrassatus, Lambe, 8.
Fossil plants from British Columbia and the Northwest territories, Penhallow and Aml, 1.
Gold mining in Klondike, Miers, 2.
New vertebrates of the Mid-Cretaceous, Osborn, 13.
Region southwest of Fort Smith, Slave River, Cameron, 1.

Nova Scotia.

Batrachian footprints, Matthew (G. F.), 23.
Batrachian footprints of Carboniferous system, Matthew (G. F.), 21.
Bedded leads in relation to mining policy, Woodman, 3.
Boring machines, Weatherbe, 2.
Building stones of Nova Scotia, Gilpin, 2.
Cambrian rocks of Cape Breton, Matthew (G. F.), 20.
Carboniferous rocks of Chignecto Bay, Poole, 6.
Copper ores in Nova Scotia, New Brunswick, and Quebec, Ells (R. W.), 22.
Counties of Cumberland, Hants, Kings, and Annapolis, Fletcher, 6.
Description of tracks from the Knoydart formation, Aml, 3, 25.
Devonian of Canadian provinces, Ells (R. W.), 4.
Dictyonema slates of Angus Brook, New Canaan, and Kentville, Poole, 4.
Fossils, possibly Triassic, in bowlderclay of Kings County, Haycock, 2.
Geological history of Gaspereau Valley, Haycock, 1.
Geological nomenclature in Nova Scotia, Fletcher, 1.
Geology of Boisdale Hills anticline, Bo- right, 1.
Geology of the Moose River gold district, Woodman, 4.
Gold fields of Nova Scotia, Faribault, 3, 4.
Ice-borne sediments in Minas basin, Bancroft (J. A.), 1.
Is there coal under Prince Edward Island?, Poole, 11.
Kings and Hants counties, Fletcher, 2.
Knoydart formation of Nova Scotia, Aml, 8.
Manganese mining in Nova Scotia, Jen- nison, 1.
Canada—Continued.

Nova Scotia—Continued.

Marl deposits, Ellis (R. W.), 6.
Meso-Carboniferous age of the Union and Riversdale formations, Ami, 40.
Minerals of Nova Scotia, Gilpin, 1.
New geological formation in the Devonian, Ami, 4.
Nictaux iron field, Weatherbe, 1.
Northern part of Nova Scotia, Fletcher, 5.
Nova Scotia coals, Gilpin, 3.
Nova Scotia gold fields, Faribault, 1, 2.
Organic remains from Messenger Brook, Ami, 47.
Paleobotanical aspects of the upper Paleozoic, White (D.), 5.
Physiography of Acadia, Daly, 1.
Pictou coal field, Poole, 10.
Possible occurrence of coal area beneath Neo-Carboniferous, Nova Scotia, Ami, 29, 31.
Potter's clay at Middle Musquodoboit, Mason, 1.
Stigmaria structure, Poole, 1.
Stratigraphy versus paleontology in Nova Scotia, Matthew (G. F.), 15.
Surveys and explorations in Nova Scotia, Fletcher, 3.
Tracks from the Knoydart formation, Ami, 3.
Union and Riversdale formations in Nova Scotia, Ami, 30.
Upper Cambrian age of Dictyonema slates of Angus Brook, Ami, 37.
West Gore anthracite deposits, Asquith, 1.
Workable coals of Nova Scotia, Fletcher, 4.

Ontario.

Abitibi region, Kay, 1.
Algonquin shore line in Simcoe County, Hunter, 1.
Ancient channels of Ottawa River, Ellis (R. W.), 5.
Ancient drainage at Niagara Falls, Currie, 1.
Ancient lake beaches on islands in Georgian Bay, Comstock (F. M.), 2.
Annual report of geological section of Ottawa Field-Naturalists' Club, Ami, 25.
Areas of nepheline syenite, Miller (W. G.), 1.
Arsenic in Ontario, Wells (J. W.), 1.
Artesian borings, surface deposits, and ancient beaches in Ontario, Chalmers, 5.
Borings for natural gas, petroleum, and water, Chalmers, 4.

Canada—Continued.

Ontario—Continued.

Boston township iron range, Miller (W. G.), 15.
Bruce Mines district, Ingalls, 8.
Bulletin on apatite, Ellis (R. W.), 19.
Canadian fossil insects, Scudder, 1.
Cement industry of Ontario, Gillespie, 1.
Cobalt-nickel arsenides and silver deposits of Temiskaming, Miller (W. G.), 13.
Cobalt-nickel arsenides and silver in Ontario, Miller (W. G.), 8, 11.
Condition of nickel in nickelif erous pyrrhotite from Sudbury, Dixon, 1.
Coral reefs—modern and ancient, Grant (C. C.), 5.
Cretaceous exposure in Andes, Nightseed, 1.
Corundum and emery, Fuller (H. T.), 1.
Corundum in Ontario, Baker, 1.
Corundum in Ontario, Barlow, 10.
Corundum in Ontario, Kerr (D. G.), 1.
Description of map of Ottawa district, Ami, 24.
Devonian fauna of Kwatabashegan River, Parks, 5.
District around Kingston, Ontario, Ellis (R. W.), 9.
Duration of Toronto interglacial period, Coleman, 9.
Eastern Ontario gold belt, Miller (W. G.), 4.
Economic resources of Moose River basin, Bell (J. M.), 2.
Explorations in Abitibi, McMillan, 1.
Exploration of Ekwan River, Dowling, 8.
Exploration of the Ontario iron ranges, Willmott, 4.
Fossiliferous rocks of southwest Ontario, Parks, 4.
Genus of Animikie iron range, Hille, 3.
Genus Panenka, with description of a species from Devonian rocks of Ontario, Whiteaves, 3.
Glacial beds near Toronto, Coleman, 1.
Glacial phenomena in eastern Ontario, Taylor (F. B.), 1.
Geological notes, etc., Grant (C. C.), 3, 6, 7.
Geology and natural resources of Ottawa and vicinity, Ellis (R. W.), 7.
Geology of Bruce Mines district, Ingalls, 6.
Geology of country around Bruce mines, Ingall and Denis, 1.
Geology of district from Lake Timiskaming northward, Parks, 8.
Geology of Michipicoten Island, Burwash, 1.
Canada—Continued.

Geology of the Sudbury district, Coleman, 20.

Geology of the Sudbury district, Hixon, 1.

Gold near Lake Superior, Lane, 35.

Gold ores of western Ontario, Brent, 1.

Graphite in Canada, Ells (R. W.), 20.

Haliburton and Bancroft areas, Ontario, Adams (F. D.), 5.

Hamilton group of Thedford, Shimer and Grabau, 1.

Iron-bearing rocks in Ontario, Coleman, 15.

Iron belt west of Hutton, Cubert, 1.

Iron-ore deposits of western Ontario, Hille, 1.

Iron ores of Nipissing district, Miller (W. G.), 2.

Iron ranges of Michipicoten west, Bell (J. M.), 3.

Iron ranges of northwestern Ontario, Coleman, 12.

Iron ranges of the Lower Huronian, Coleman, 4.

Iroquois beach in Ontario, Coleman, 16, 17.

Lake Temiscaming to Height of Land, Miller (W. G.), 5.

Laurentian limestones and granite of Haliburton County, Graton, 1.

Limestones of Ontario, Miller (W. G.), 14.

Little Current and Drowning rivers, Wilson (W. J.), 3.

Lists of fossils from Perth sheet, Aml, 49.

Lists of organic remains of Ottawa district, Aml, 50.

Loon Lake iron-bearing district, Smith (W. N.), 1.

Lytoceras from the Cretaceous rocks, Whiteaves, 2.

Marine and fresh-water beaches, Coleman, 2.

Meteorite from Shelburne, Johnston (R. A. A.), 3.

Mica, Cirkel, 4.

Michipicoten iron region, Coleman and Willmott, 1, 2.

Microscopic examination of sections of rocks, Barlow, 2.

Canada—Continued.

Mineral resources of Ontario, Miller (W. G.), 12.

Mineral deposits of Ottawa Valley, Willmott, 1.

Michipicoten gold belt, Clarke (C. H.), 1.

Michipicoten Huronian area, Willmott, 1.

Mining developments in eastern Ontario, Thomas, 1.

Moose Mountain iron range, Leith, 6.

New mineral area in Ontario, Hardman, 1.

New species of Matheria, Whiteaves, 8.

Nepheline and other syenites near Port Coldwell, Ontario, Coleman, 8.

Nepheline rock from Ontario, Adams (P. D.), 8.

Nepheline syenite in western Ontario, Miller (W. G.), 7.

Niagara Falls as an index of time, Grant (C. C.), 2.

Nickel and copper deposits of Sudbury, Barlow, 8.

Northern nickel range, Coleman, 18.

Notes from Burford Township, Yates (W.), 1.

Notes on mica, Corkill, 1.

Notes on past collecting season, Grant (C. C.), 9, 10.

Occurrence of hematite, Mills, 2.

Opening address, geologic section, Grant (C. C.), 1, 4.

Ore deposits of Sudbury, Dickson, 4.

Origin and relations of auriferous veins of Algoma (western Ontario), Crosby, 4.

Origin of veins in asbestosiferous serpentine, Merrill (G. P.), 14.

Parasite from Devonian rocks of Hudson Bay, Parks, 6.

Petroleum and natural gas (in Ontario), Corkill, 2.

Port Huron oil field, Gordon (C. H.), 2.

Pre-Cambrian rocks of Lake Temiskaming, Miller (W. G.), 16.

Prince Edward and Hastings counties, Ells (R. H.), 1.

Raised shore lines along Blue Mountain escarpment, Hunter, 2.

Raised shore lines of St. Lawrence Valley and Great Lakes, Chalmers, 6.

Region northeast of Nipigon Lake, Parks, 5.
Canada—Continued.
Ontario—Continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region northwest of Lake Nipigon, McInnes</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Report on Lake Superior region, Van Hise and others</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rock basins of Helen mine, Michipicoten, Canada, Coleman</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Rock movements in the Laurentian and Huronian areas, Mills (S. D.)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Round Lake to Abitibi River, Bolton</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rock contacts in the Kingston district, Ells (R. W.)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Sea beaches of eastern Ontario, Coleman</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Secondary origin of certain granites, Daly</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Shore features of Lake Huron, Jefferson</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Shelburne meteorite, Borgström</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sperrylite, Wells</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Stratigraphical note, Ami</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Sudbury district, Barlow</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sudbury mining district, Barlow</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Sudbury nickel deposits, Coleman</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Sudbury nickel-bearing eruption, Coleman</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Sulphide ore bodies of Sudbury region, Silver</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Survey of south and west coast of James Bay, O’Sullivan</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Surveys between Rabbit and Tennagami lakes, Young</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Syenites near Port Coldwell, Coleman</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Tennagami district, Barlow</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Trent River system, Wilson (A. W. G.)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Types of iron-bearing rocks in Ontario, Coleman</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Up and down the Mississaga, Graton</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Vermillion River placers, Coleman</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Prince Edward Island.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathynathus borealis Leidy and the Permian of Prince Edward Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology of Prince Edward Island, Ellis (R. W.)</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Prince Edward Island, Watson (L. W.)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quebec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdaloidal trap rock, Dresser</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Artesian wells of Montreal, Adams (F. D.)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Artesian wells of Montreal, Adams and Le Roy</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Asbest in Canada, Cirkel</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Asbestos, Cirkel</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Bed-rock of the Gilbert River gold fields, Dresser</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Bulletin on apatite, Ellis (R. W.)</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Canadian amphiboles, Harrington (B. J.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chrysoberyl from Canada, Evans (N. N.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Copper-bearing rocks in Quebec, Dresser</td>
<td></td>
<td>7, 10, 12, 18</td>
</tr>
</tbody>
</table>

Canada—Continued.
Quebec—Continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper-bearing rocks of Sherbrooke district, Dresser</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Copper ores in Nova Scotia, New Brunswick, and Quebec, Ellis (R. W.)</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Crystallographic study of millerite, Pulache and Wood</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Description of map of Ottawa district, Aml</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Éboulement à Saint-Luc-de-Vincennes, Laflamme</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Exploration de l’île d’Anticosti, Combes</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Field notes on geology of country about Chelsea, Quebec, Aml</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Geological exploration of Anticosti, Laflamme</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geological formations about Montreal, Aml and Adams</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geology and petrography of Shefford Mountain, Dresser,</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Geology of Brome Mountain, Dresser</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Geology of Nottaway River Basin, Bell (Robert)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Geology of county of Ottawa, Haycock</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Geology of county of Ottawa, Johnston (J. F. E.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Geology of Province of Quebec, Ellis (R. W.)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Geology of Rigaud Mountain, Le Roy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology of St. Helens Island, Nolan and Dixon</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geology of the Paleozoic basin, Ellis (R. W.)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geology of the Three Rivers map sheet, Ellis (R. W.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Geology of Yamaska Mountain, Young</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Glaciation of Mount Orford, Chalmers</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Gold-bearing alluvions of Quebec, Chalmers</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Helderbergian fossils near Montreal, Schuchert</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hornblende lamprophyre dike at Richmond, Dresser</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Landslide on the Lièvre River, Barlow</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Landslide on Lièvre River, Ellis (R. W.)</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Limestone of Philipsburg Railway and Coal Company, Donald</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Magnetic iron sand of the St. Lawrence, Obalski</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Marl deposits, Ellis (R. W.)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Mica, Cirkel</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mica deposits of Canada, Ellis (R. W.)</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Mineral containing radium, Obalski</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Minerals of Ottawa Valley, Willmott</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modifications remarquables causées à l’embouchure de la Rivière Ste-Anne, Laflamme</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Canada—Continued.

Quebec—Continued.

Monographie de l'île d'Anticosti, Schmitt, 1.
Monteregian Hills, Adams (F. D.), 7.
Native arsenic from Montreal, Evans (N. N.), 1.
Notes on mica, Corkill, 1.
Notes on Mount Royal, Buchan, 2.
Oil fields of Gaspe, Ells (R. W.), 12.
Percé, sketch of its geology, Clarke (J. M.), 26.
Petrographical contribution to geology of Quebec, Dresser, 6.
Petrography of Belvidere Mountain deposits, Marsters, 3.
Petrography of Mount Orford, Dresser, 4.
Petrography of Shefford Mountain, Dresser, 5.
Pleistocene of Montreal and Ottawa Valley, Buchan, 3.
Pyroxenites of the Grenville series in Ottawa County, Gordon (C. H.), 5.
Rock contacts in the Kingston district, Ells (R. W.), 15.
Shore lines and landslips of St. Lawrence Valley, Chalmers, 1.
Surface geology of eastern Quebec, Chalmers, 10.
Surface geology of southern part of Quebec, Chalmers, 8.
Was Mount Royal an active volcano?, Buchan, 1.
Saskatchewan.
Explorations in Saskatchewan and Keewatin, Tyrrell, 3.
Geological explorations in Athabaska, Saskatchewan, and Keewatin, Dowling, 6.
Ungava.
Exploration of east coast of Hudson Bay, Low, 2.
Geology of Nastapokan Islands, Low, 3.
Iron-bearing rocks of Nastapokan Islands, Mickle, 1.
Yukon Territory.
Artesian well in the Klondike, Tyrrell, 2.
Bornite ores of British Columbia and Yukon Territory, Brewer, 16.
Bythotrephis from the Yukon district, Ami, 48.
Crystosphenes in northern America, Tyrrell, 3.
Duncan Creek mining district, Keeler, 1.
Gites aurifères du Klondike, Bel, 2.
Gold mining in Arctic America, Penrose, 1.
Klondike district, McConnell, 4, 5, 6.
Macmillan River, Yukon district, McConnell, 3.
Scaphoceros tyrrelli, Osgood, 1.
Voyage minier au nord-ouest Canadien, Bel, 1.
White Horse copper camp, Brewer (W. M.), 15.

Canada—Continued.

Yukon Territory—Continued.

White Horse district, Brewer (W. M.), 11.
Yukon district, McConnell, 2.
Yukon gold fields, Miers, 1.
General.
Acrobytha and Hyolithes, a comparison, Matthew (G. F.), 7.
Addenda and corrigenda to progress of geological work in Canada during 1899, Ami, 5.
Advantages of combining topographical with geological surveying in unexplored regions, Bell (R.), 9.
Archean rocks of Ottawa Valley, Osann, 2.
Artesian wells, paleontology, Ami, 22.
Asbestos, Ells (R. W.), 10.
Batrachian footprints, Matthew (G. F.), 30.
Bibliography of Canadian geology and paleontology for 1900, Ami, 19.
Bibliography of Canadian geology and paleontology, Ami, 42.
Bibliography of Canadian geology and paleontology for 1903, Ami, 44.
Blairmore-Frank coal fields, Leach (W. W.), 2.
Cambrian age of Dictyonema slates of New Canaan and Kentville, Nova Scotia, Ami, 32.
Canadian Endoceratidae, Whiteaves, 19.
Canadian geology, Evans (H. F.), 1.
Canadian graphite, Brumell, 1.
Canadian Rockies. Part II, On some rock specimens, Bonney, 2.
Canadian species of Trocholithes, Whiteaves, 13.
Canadian specimens of Lituites, Whiteaves, 10.
Chemistry and mineralogy, Hoffmann, 8.
Classification of the Archean, Coleman, 6.
Coal fields of Canada, Denis, 1.
Composition and occurrence of petroleum, Mabery, 3.
Composition of Canadian limestone, Donald, 2.
Composition of Canadian limestone, Donald, 2.
Composition of Montreal minerals, Harrington (B. J.), 5.
Contact of Archean and post-Archean, Willmott, 3.
Correction in classification of gold formation, Hille, 4.
Country east of Nipigon Lake and River, Parks, 2.
Cretaceous and Tertiary plants of Canada, Penhallow, 4.
Descriptions of rocks collected in 1900, Barlow, 1.
Development in size of the inarticulate brachiopods of the basal Cambrian, Matthew (G. F.), 17.
INDEX TO NORTH AMERICAN GEOLOGY

Canada—Continued.

General—Continued.

Did the upper Etcheminian fauna invade eastern Canada from the southeast? Matthew (G. F.), 18.
Distinctive characters of the Mid-Cretaceous fauna, Osborn, 12.
Eastern part of Abitibi region, Johnston (J. F. E.), 1.
Effect of superficial debris on the advance and retreat of some Canadian glaciers, Ogilvie, 4.
Eisenzerglaserstätten am Lake Superior, Meco, 1.
Esquisse géologique du Canada, Aml, 33.
Expedition to Hudson Bay, Low, 4.
Exploration in Canadian Rockies, Wilcox, 1.
Fauna of Chazy limestone, Raymond (P. E.), 7.
First Eparchean formation, Aml, 41.
Fossils from Mount Noyes (Canadian Rockies), Woodward (H.), 2.
Fossils from the Silurian rocks of Ekwana River, Whiteaves, 17.
Genera and species of Canadian Paleozoic corals, Lambe, 2.
Geological survey of Canada as an educational institution, Walker (T. L.), 1.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geologische Reiseskizzen aus Nordamerika, Felix, 1.
Geology of international boundary, Daly, 6.
Geology of principal cities in eastern Canada, Aml, 1.
Glacial lakes and Pleistocene changes in St. Lawrence Valley, Coleman, 22.
Gold production of North America, Lindgren, 16.
Huronian of Moose River Basin, Parks, 1.
Huronian question, Coleman, 10.
Isochilinae from Canada, Jones (T. R.), 2.
Les plus anciennes faunes paléozoiques, Matthew (G. F.), 5.
Life and work of the late Dr. Selwyn, Aml, 38.
Lists of fossils from formations along Ottawa River, Aml, 21.
Mica and the mica industry, Colles, 1.
Mica deposits, Cirkel, 2.
Mineral statistics, Ingall, 1.
Molybdenite, Wells, 2.

Canada—Continued.

General—Continued.

Molybdenum and tungsten, Johnston, 1.
New genera and species from Belly River series, Lambe, 12.
New mineral occurrences in Canada, Hoffmann, 2.
Northeastern Canada to the Arctic coast, Hanbury, 1.
Notes on molybdenite, Willimott, 2.
Notes on specimens collected in the Canadian Rocky Mountains, Bonney, 3.
Notes on the life history of coal seams, Gwilliam, 5.
Obooloid shells of the Cambrian system in Canada, Matthew (G. F.), 16.
Occurrence of chrompicotite, Hoffmann, 5.
Osmundites skidegatensis n. sp., Penhallow, 3.
Paleozoic Cypridina from Canada, Jones (T. R.), 3.
Paleontology and chronological geology, Aml, 36.
Paleontology and zoology, Whiteaves, 5, 16, 18.
Peat in Canada, Chalmers, 7.
Petrography of Sheffield and Brome Mountains, Dresser, 8.
Physical geography of northern Appalachian system, Dresser, 1.
Physical history of Rocky Mountain region, Dawson, 3.
Progress of vertebrate paleontology in Canada, Lambe, 12.
Published writings of Elkanah Billings, Walker (B. E.), 1.
Reconnaissance surveys of Four Rivers, Wilson (W. J.), 2.
Region southeast of Lac Seul, McInnes, 1.
Report of section of chemistry and mineralogy, Hoffmann, 1, 4, 6.
Revision of genera and species of Canadian Paleozoic corals, Lambe, 2.
Rock specimens from the Canadian Rocky Mountains, Bonney, 4.
Rugose corals from the Silurian rocks of Manitoba, Whiteaves, 14.
Silurian and Devonian formations of eastern Canada, Aml, 12.
Section of mines, annual report, Ingall, 2, 3, 5, 7, 9.
Seismology in Canada, Stupart, 1.
So-called basal granite of Yukon Valley, McConnell, 1.
Sodalite syenite (ditroite) from Ice River Valley, Canadian Rocky Mountains, Bonney, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Canada—Continued.

General—Continued.

Stratigraphic position of Judith River beds, Hatcher and Stanton, 1.

Subdivisions of the Cambrian system, Aml, 13.

Stratigraphy of the Cascade coal basin, Dowling, 10.

Submerged tributary to the pre-Glacial river of the Gulf of St. Lawrence, Poole, 7.

Summary report on operations of Geological Survey, Bell (Robert), 3, 4, 7, 8.

Synopsis of geology of Canada, Aml, 2.

Tertiary plants, Penhallow, 5.

Tertiary plants from Canada and the United States, Penhallow, 6.

Vertebrate paleontology, Lambe, 13, 15.

West side of James Bay, Dowling, 3.

Western part of Ahtibbi region, Wilson (W. J.), 1.

Whitteseyes and their systematic relations, White (D.), 4.

Work of Doctor Selwyn in Canada, Aml, 45.

Work of prehistoric scoli tid, Hopkins (A. D.), 1.

Carboniferous.

Alaska.

Carboniferous section in Copper River Valley, Mendenhall, 6.

Geological section of Rocky Mountains in northern Alaska, Schrader, 1.

Geology of Copper River region, Mendenhall, 8.

Appalachian region.

Age of the coals at Tipton, Pa., White (D.), 2.

Age of the Mercè group, White (D.), 13.

Age of the Wise and Harian formations of southwestern Virginia, White (D.), 23.

Anthracite coal field west of Washington, White (D.), 12.

Anthracite of Third Hill Mountain, West Virginia, Griffith, 3.

Anticlinal folds near Meadville, Pa., Smallwood and Hopkins, 1.

Appalachian coal field, White (I. C.), 7.

Beaver folio, Pennsylvania, Woolsey, 3.

Bituminous coal field of Maryland, White (D.), 7.

Bituminous coal field of Ohio, Haseltine, 2.

Bituminous coal field of Pennsylvania, White and Campbell, 1.

Brownsville-Connelleville folio, Campbell (M. R.), 8.

Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.

Charleston folio, Campbell (M. R.), 2.

Bull. 301—06—27

Carboniferous—Continued.

Appalachian region—Continued.

Classification of the Waverley series, Prosser, 1.

Clays of upper Ot’o and Beaver River region, Hice, 2.

Coal deposits of Georgia, McCallie, 9.

Coal Measures of bituminous regions of Pennsylvania, Adams (T. K.), 1.

Coal Measures of central Pennsylvania, Fluck, 1.

Contributions to Devonian paleontology, Williams and Kindle, 1.

Correlation of Coal Measures of Maryland, Clark and Martin, 5.

Correlation of formations and members [of the Maryland coal district], Clark and Martin, 6.

Cumberland Plateau coal field, Duffield, 1.

Deposition of the Appalachian Pottsville, White (D.), 14, 15.

Distribution and character of Maryland coal beds, Clark, Martin, and Rutledge, 1.

Ebensburg folio, Pennsylvania, Butts, 7.

Elkland-Tioga folio, Fuller and Aiden, 2.

Erratic boulder from the Coal Measures of Tennessee, McCallie, 5.

Gaines folio, Fuller and Aiden, 1.

Gaines oil field of northern Pennsylvania, Fuller (M. L.), 3.

Geological excursion in Pittsburg region, Grant (U. S.), 4.

Geological horizon of the Kanawha black flint, White (I. C.), 4.

Geology of Garrett County, Martin (G. C.), 1.

Geology of the Maryland coal district, Martin, 16.

Greenville folio, Kelth, 11.

Gypsum deposits in Virginia, Eckel, 23.

Indiana folio, Richardson (G. B.), 3.

Kanawha and New River coal fields of West Virginia, Robinson (N.), 1.

Kittanning folio, Butts, 4.

Latronbe folio, Campbell (M. R.), 18.

Limestones of southwestern Pennsylvania, Clapp, 4.

Lower Carboniferous of Appalachian Basin, Stevenson (J. J.), 2, 4.

Masontown-Uniltonown folio, Campbell (M. R.), 6.

Mauch Chunk of Pennsylvania, Stevenson (J. J.), 1.

Maynardville folio, Kelth, 1.

Oil and gas fields of Greene County, Stone (R. W.), 2.

Original southern limit of anthracite beds, Lyman, 3.

Paleozoic Appalachian, Willis, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Carboniferous—Continued.

Appalachian region—Continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleozoic formations of Allegany County, Prosser</td>
<td>3</td>
</tr>
<tr>
<td>Pocono rocks in the Allegheny Valley, Campbell (M. R.)</td>
<td>14</td>
</tr>
<tr>
<td>Raleigh folio, Campbell (M. R.)</td>
<td>5</td>
</tr>
<tr>
<td>Recent geological work in western Pennsylvania, Campbell (M. R.)</td>
<td>3, 7</td>
</tr>
<tr>
<td>Recent structural work in western Pennsylvania, Butts</td>
<td>2</td>
</tr>
<tr>
<td>Rural Valley folio, Butts</td>
<td>6</td>
</tr>
<tr>
<td>Rome folio, Hayes (C. W.)</td>
<td>5</td>
</tr>
<tr>
<td>Southern Appalachian coal field, Hayes (C. W.)</td>
<td>7</td>
</tr>
<tr>
<td>Steinkohlengebiete von Pennsylvanien und Westvirginien, Simmersbach</td>
<td>1</td>
</tr>
<tr>
<td>Tug River coal field, Payne</td>
<td>1</td>
</tr>
<tr>
<td>Upper Paleozoic rocks of Ohio and Pennsylvania, Girty</td>
<td>10</td>
</tr>
<tr>
<td>Use of the term Bedford limestone, Prosser</td>
<td>2</td>
</tr>
<tr>
<td>Variation and equivalence of the Charleston sandstone, Campbell</td>
<td>10</td>
</tr>
<tr>
<td>Waverley group in Ohio, Girty</td>
<td>1</td>
</tr>
<tr>
<td>Waynesburg folio, Stone (R. W.)</td>
<td>6</td>
</tr>
</tbody>
</table>

Canada.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathgnathus borealis Leidy, and the Permian of Prince Edward Island, Case</td>
<td>13</td>
</tr>
<tr>
<td>Carboniferous basin in New Brunswick, Ellis (R. W.)</td>
<td>3</td>
</tr>
<tr>
<td>Carboniferous rocks of Chignecto Bay, Poole</td>
<td>6</td>
</tr>
<tr>
<td>Carboniferous system of New Brunswick, Bailey (L. W.)</td>
<td>8</td>
</tr>
<tr>
<td>Coal fields of New Brunswick, Poole</td>
<td>2</td>
</tr>
<tr>
<td>Coal problem in New Brunswick, Poole</td>
<td>3</td>
</tr>
<tr>
<td>Coal prospects of New Brunswick, Poole</td>
<td>8</td>
</tr>
<tr>
<td>Geological history of Gasperavean Valley, Haycock</td>
<td>1</td>
</tr>
<tr>
<td>Geological nomenclature in Nova Scotia, Fletcher</td>
<td>1</td>
</tr>
<tr>
<td>Geological record of Rocky Mountain region, Dawson</td>
<td>2</td>
</tr>
<tr>
<td>Geologie von Canada, Hans</td>
<td>2</td>
</tr>
<tr>
<td>Geology of Boldsale Hills anticline, Boright</td>
<td>1</td>
</tr>
<tr>
<td>Is there coal under Prince Edward Island, Poole</td>
<td>11</td>
</tr>
<tr>
<td>Kings and Hants counties, Nova Scotia, Fletcher</td>
<td>2</td>
</tr>
<tr>
<td>Meso-Carboniferous age of the Union and Riversdale formations, Nova Scotia, Aml</td>
<td>40</td>
</tr>
<tr>
<td>New Brunswick, Bailey (L. W.)</td>
<td>5</td>
</tr>
<tr>
<td>Picton coal field, Poole, 10</td>
<td></td>
</tr>
<tr>
<td>Possible occurrence of coal beneath Neo-Carboniferous, Nova Scotia, Aml</td>
<td>29, 31</td>
</tr>
<tr>
<td>Problems in New Brunswick geology, Ellis (R. W.)</td>
<td>25</td>
</tr>
<tr>
<td>Stigmaria structure, Poole</td>
<td>1</td>
</tr>
</tbody>
</table>

Great Basin region.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisbee folio, Ransome, 14</td>
<td></td>
</tr>
<tr>
<td>Carboniferous coal in Arizona, Dumble, 9</td>
<td></td>
</tr>
<tr>
<td>Clifton folio, Lindgren, 28</td>
<td></td>
</tr>
<tr>
<td>Copper deposits of Clifton-Morenci district, Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Economic geology of the Bingham mining district, Emmons (S. F.), 22</td>
<td></td>
</tr>
<tr>
<td>Geology and copper deposits of Bisbee, Ransome, 10</td>
<td></td>
</tr>
<tr>
<td>Geology and ore deposits of the Bisbee quadrangle, Ransome, 11</td>
<td></td>
</tr>
<tr>
<td>Geology and vein phenomena of Arizona, Comstock (T. B.), 1</td>
<td></td>
</tr>
<tr>
<td>Geology of Arizona, Blake (W. P.), 1</td>
<td></td>
</tr>
<tr>
<td>Geology of Globe copper district, Ransome, 6</td>
<td></td>
</tr>
<tr>
<td>Geology of Nevada, Spurr, 6</td>
<td></td>
</tr>
<tr>
<td>Historical geology of Esmeralda County, Nev., Turner, 5</td>
<td></td>
</tr>
<tr>
<td>Hurricane fault in southwestern Utah, Huntington and Goldthwait, 1</td>
<td></td>
</tr>
<tr>
<td>Notes on geology of southeastern Arizona, Dumble, 7</td>
<td></td>
</tr>
<tr>
<td>Paleozoic rocks of Great Basin region, Weeks, 9</td>
<td></td>
</tr>
<tr>
<td>Stratigraphy of Uinta Mountains, Berkey, 8</td>
<td></td>
</tr>
<tr>
<td>Underground waters of Salt River Valley, Lee (W. T.), 9</td>
<td></td>
</tr>
</tbody>
</table>

Great Lakes region.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabaster area, Gregory (W. M.), 3</td>
<td></td>
</tr>
<tr>
<td>Coal of Michigan, Lane, 14</td>
<td></td>
</tr>
<tr>
<td>Gypsum and plaster industry of Michigan, Grimsley, 7</td>
<td></td>
</tr>
<tr>
<td>Northern interior coal field, Lane, 15</td>
<td></td>
</tr>
<tr>
<td>Origin of Michigan gypsum deposits, Grimsley, 6</td>
<td></td>
</tr>
<tr>
<td>Subcarboniferous limestone exposure at Grand Rapids, Whittmone, 1</td>
<td></td>
</tr>
<tr>
<td>Subsurface geology of Alcona County, Mich., Lane, 7</td>
<td></td>
</tr>
</tbody>
</table>

Great Plains region.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyses of Mississippian limestone from Atchison prospect well, Porter (F. B.), 1</td>
<td></td>
</tr>
<tr>
<td>Atchison diamond-drill prospect hole, Langworthy, 1</td>
<td></td>
</tr>
<tr>
<td>Carboniferous rocks of Kansas section, Adams, Girty, and White, 1</td>
<td></td>
</tr>
<tr>
<td>Coal Measures faunal studies, II, Beede, 6</td>
<td></td>
</tr>
<tr>
<td>Edgemont folio, Darton and Smith, 1</td>
<td></td>
</tr>
<tr>
<td>Fossil insects in Permian of Kansas, Sellards, 7</td>
<td></td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Carboniferous—Continued.

Great Plains region—Continued.

- Fossil plants from upper Carboniferous and Permian formations of Kansas, White (D.), 10.
- Fossil plants of Onaga, Crevecœur, 1.
- Geology and underground water resources of the central Great Plains, Darton, 18.
- Geology of Lyon County, Smith (A. J.), 3.
- Geology of the Black Hills, Jaggar; 5.
- Gypsum deposits in Oklahoma, Gould, 11.
- Hartville folio, Smith (W. S. T.), 1.
- Invertebrate fossils from Carboniferous section of Kansas, Girty, 4.
- Kansas coal mines of the Missouri Valley, Crane, 2.
- Names of coals west of Mississippi River, Keyes, 19.
- New fossils from Upper Carboniferous of Kansas, Beede, 4.
- Oelrichs folio, Darton, 8.
- Oklahoma salt plains, Gould, 303.
- Red Beds of Black Hills, Richardson (G. B.), 2.
- Southern extension of the Marion and Wellington formations, Gould, 6.
- Stratigraphy of Kansas Permian, Beede and Sellards, 1.
- Variation of spiralia in Seminula argentia (Shepard) Hall, Beede, 5, 7.

Mexico.

Geologfa de Chiapas y Tabasco, Böse, 7.

Mississippi Valley region.

- Carboniferous faunas of Mississippi Valley in the Rocky Mountain region, Keyes, 41.
- Carboniferous fishes from central western States, Eastman, 10.
- Carboniferous formations of Humboldt, Iowa, Sardeson, 11.
- Carboniferous formations of the Ozark uplift, Ball, 1.
- Carboniferous rock system of eastern Kansas, Wooster, 1.
- Coal Measure faunal studies, Beede and Rogers, 1.
- Correlation of the Clarinda well section, Keyes, 9.
- Correlation of the Kinderhook formations, Weller, 1.
- Cottonwood Falls folio, Prosser and Beede, 1.
- Crinoidal horizon in the upper Carboniferous, Keyes, 11.
- Cyclus from Coal Measures, Rogers, 3.
- Depositional equivalent of hiatus at base of our Coal Measures, Keyes, 18.
- Depositional measure of unconformity, Keyes, 1.

Carboniferous—Continued.

Mississippi Valley region—Continued.

- Devonian hiatus in continental interior, Keyes, 28.
- Devonian interval in Missouri, Keyes, 26.
- Eastern interior coal field, Ashley, 1.
- Economic geology of the Iola quadrangle, Adams, Haworth, and Crane, 1.
- Fayetteville folio, Adams and Ulrich, 1.
- Fluorspar deposits of southern Illinois, Bain, 19.
- Foraminiferal ooze in Coal Measures of Iowa, Udden, 9.
- Formations of northern Arkansas, Ulrich, 5.
- Geological age of certain gypsum deposits, Keyes, 24.
- Geological formations of Iowa, Calvin, 4.
- Geological section across northern Illinois, Udden (Johan A.), 1.
- Geological section in southern Illinois, Nickles, 2.
- Geological section, St. Louis to Shawneetown, Nickies, 1.
- Geology of Benton County, Savage, 7.
- Geology of clays, Beyer and Williams, 2.
- Geology of Emmet, Palo Alto, and Pocahontas counties, Machbridge, 4.
- Geology of Henry County, Iowa, Savage, 2.
- Geology of Illinois, Rolfe, 1.
- Geology of Jasper County, Iowa, Williams (I. A.), 1.
- Geology of Jefferson County, Iowa, Udden, 5.
- Geology of Louisa County, Iowa, Udden, 2.
- Geology of Miller County, Ball and Smith, 1.
- Geology of Mills and Fremont counties, Iowa, Udden, 8.
- Geology of Missouri, Gallaher, 1.
- Geology of Monroe County, Iowa, Beyer and Young, 1.
- Geology of Marion County, Miller (B. L.), 1.
- Geology of Page County, Iowa, Calvin, 1.
- Geology of Pottawattamie County, Iowa, Udden, 3.
- Geology of Tama County, Iowa, Savage, 3.
- Geology of Wapello County, Leonard, 3.
- Geology of Webster County, Iowa, Willett, 3.
- Hannibal formation in Green County, Park and Lyman, 2.
- Kansas coal mining, Crane, 1.
- Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
- Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.
INDEX TO NORTH AMERICAN GEOLOGY

Carboniferous—Continued.

Mississippi Valley region—Continued.
Lithologic phases of Pennsylvanian and Permian of Kansas, Indian Territory, and Oklahoma, Adams (G. I.), 7.
Lyon County geology, Smith (A. J.), 2.
Missouri and Arkansas zinc mines. Hedhurg, 1.
Names of coals west of Mississippi River, Keyes, 19.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Oil and gas producing rocks of Ohio, Bownocker, 1.
Permian formations of Kansas, Prosser, 14.
Permische Stegocephalen und Reptilien aus Texas, Broili, 2.
Physiography and geology of the Ozark region, Adams (G. I.), 3.
Reading blue limestone, Smith (A. J.), 4.
Revised classification of Upper Paleozoic formations of Kansas, Prosser, 7.
Rocks and geological horizons of Greene County, Shepard, 6.
Schematic standard for the American Carboniferous, Keyes, 7.
Stratigraphical location of trans-Mississippian coals, Keyes, 14.
Tahlequah folio, Taft, 17.
Time values of provincial Carboniferous terranes, Keyes, 8.
Water resources in Arkansas, Pardue, 9.
Western interior coal field, Bain, 3.
Zinc and lead deposits of Arkansas, Adams (G. I.), 15.

New England and New York.
Devonic and Carbonic formations of southwestern New York, Glenn, 1.
Geology of Monadnock Mountain, Perry, 2.
Olean rock section, Clarke (J. M.), 16.

Ohio Valley region.
Berea Grit oil sand in Cadiz quadrangle, Griswold, 1.
Columbia folio, Hayes and Ulrich, 1.
Contributions to Devonian paleontology, Williams and Kindle, 1.
Cumberland Plateau coal field, Duffield, 1.
Ditney folio, Fuller and Ashley, 1.
Grottes des États-Unis, Le Coupee de la Forest, 1.
Lime resources of Ohio, Orton and Peppel, 1.
Lithographic stone deposits of eastern Kentucky, Ulrich, 3.
Lower Carboniferous area in Indiana, Hopkins (T. C.), 8.
Lower Carboniferous area of southern Indiana, Ashley, 2.

Pacific coast region.
Bragdon formation, Diller, 18.
Klamath Mountain section, Diller, 12.
Marine sediments of eastern Oregon, Washburne, 1.

Rocky Mountain region.
Aladdin folio, Darton and O'Harrar, 1.
Carboniferous faunas of Mississippi Valley in the Rocky Mountain region, Keyes, 41.
Carboniferous formations and faunas of Colorado, Girty, 3.
Carboniferous of Sangre de Cristo Range, Colorado, Lee (W. T.), 5.
Geological reconnaissance in eastern Valencia County, New Mexico, Johnson (D. W.), 2.
Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.
Geology of Black Hills, Darton, 1.
Geology of Castle Rock region, Lee (W. T.), 2.
Geology of Needle Mountains quadrangle, Cross and Howe, 3.
Geology of Rico quadrangle, Cross (W.), 7.
Geology of southwestern Montana, Douglass, 10.
Laramie Plains Red Beds and their age, Knight (W. C.), 6.
Red Beds of Colorado, Cross and Whitman, 2.
Red Beds of southwestern Colorado, Cross and Howe, 4.
Silverton folio, Cross and Howe, 1.
Stratigraphy and structure, Lewis and Livingston ranges, Montana, Willis, 6.
Stratigraphy of Black Hills, Bighorn Mountains, and Rocky Mountain front range, Darton, 16.
Sundance folio, Darton, 26.

Southwestern region.
Age of lavas of Plateau region, Reagan, 2.
Age of Red Beds, Adams (G. I.), 1.
The large number of analyses appearing in Washington's "Chemical analyses of igneous rocks, published from 1884 to 1900," in Clarke's "The analyses of rocks from the laboratory of the United States Geological Survey," in Merrill's "The nonmetallic minerals, their occurrence and uses," and in Washington's "Superior analyses of igneous rocks from Roth's Tabellen," have not been included in the list.
Chemical analyses—Continued.

Algodonite, Koenig, 2.
Alkali deposits, Knight and Slosson, 1.
Alkali-syenite, Wright (P. E.), 3.
Albitite, Boggild, 5.
Albitite, Clarke (F. W.), 1.
Allophane, Bain, 2.
Altaite, Eakle, 1.
Alumite, Clarke (F. W.), 1.
Alumite, Boggild, 5.
Alumite, Schaller, 3, 8.
Amphibole, Clarke (F. W.), 1.
Amphibole, Harrington (B. J.), 2.
Amphibole, Phalen, 1.
Amphibole, Weidman, 2.
Amphibole, Wright (F. E.), 3.
Amphibole granite, Weidman, 4.
Amphibole-peridotite, Pratt and Lewis, 1.
Amphibolite, Tulien, 7.
Amphibolite, Marsters, 3.
Amphibolite, Boggild, 5.
Amphibolite-schist, Tulien, 7.
Amphibolite, Pratt and Lewis, 1.
Analcite, Clarke (F. W.), 1.
Analcite, Pirsson, 4.
Analcite-basalt, Clarke and Steiger, 1.
Analcite-basalt, Pirsson, 4.
Analcite, Steiger, 1, 2.
Analcite-basalt, Clarke and Steiger, 1.
Analcite-basalt, Phalen, 1.
Analcite, Finlay (G. I.), 8.
Anchylite, Boggild, 5.
Andesite, Kolderup, 4.
Andesite, Barrell, 1.
Andesite, Diller, 7, 12.
Andesite, Finlay (G. I.), 8.
Andesite, Gregory (H. E.), 1.
Andesite, Hogarty, 1.
Andesite, Tuwson and Palelbe, 1.
Andesite, Scott (O. N.), 1.
Andesite, Spurr, 29.
Andesite, Weed, 5.
Andesite-granophyre, Fairbanks, 7.
Andradite, Simonds, 3.
Anhydride, Schaller, 8.
Anite, Clarke (F. W.), 1.
Andrite, Searls, 1.
Anorthite, Boggild, 5.
Anorthite, Clarke (F. W.), 1.
Anorthite, Pratt and Lewis, 1.
Anorthoclase, Clarke (F. W.), 1.
Anorthosite, Cushing, 10.
Anthophyllite, Pratt and Lewis, 1.
Antophyllite, Boggild, 5.
Antlerite, Clarke (F. W.), 1.
Apatite, Boggild, 5.
Apatite, Clarke (F. W.), 1.
Apatite, Kneight (N.), 4.
Apatite, Osann, 2.
Apatite, Wolff and Palelbe, 1.

Chemical analyses—Continued.

Aplite, Barrell, 1.
Aplite, Reid (J. A.), 1.
Aplite, Watson (T. L.), 5.
Aphophyllite, Boggild, 5.
Aphophyllite, Clarke (F. W.), 1.
Aphophyllite, Clarke and Steiger, 1.
Aphophyllite, Schaller, 8.
Aragonite, Pratt and Lewis, 1.
Arfvedsonite, Boggild, 5.
Arfvedsonite, Weidman, 2.
Arfvedsonite, Wright (F. E.), 3.
Arkansose, Pirsson, 4.
Arite, Washington, 1, 2.
Arsenic, Evans (N. N.), 1.
Arsenopyrite, Richardson (C. H.), 2.
Artesian water, Blatchley, 3.
Asbestos, Cirkel, 1.
Ash, Barbour (E. H.), 8.
Ash, recent, Calkins, 1.
Asphalt, Boutwell, 11.
Asphalt, Buckley, 3.
Asphalt, Vaughan, 8.
Asphaltum, Simonds, 3.
Astrophyllite, Clarke (F. W.), 1.
Augite, Boggild, 5.
Augite, Clarke (F. W.), 1.
Augite-diorite, Dresser, 5, 9.
Augite-hornblende-syenite, Daly, 7.
Augite-labradorite, Lacroix, 3.
Augite-latte, Clarke and Steiger, 1.
Augite syenite, Coleman, 8, 13.
Augite-syenite, Cross and Spencer, 1.
Augite syenite, Cushing, 3, 10.
Augite-syenite, Peck, 1.
Augite-syenite, Phalen, 2.
Augite-voesgesite, Smith (W. S. T.), 5.
Auvergnose, Phalen, 1.
Awramulite, Jamieson, 1.
Axinite, Clarke (F. W.), 1.
Axinite, Ford (W. E.), 3.
Babingtonite, Jonke, 1.
Barite, Rowe, 3.
Barkevikite, Phalen, 4.
Barkevikite, Weidman, 2.
Barkevikite, Wright (F. E.), 3.
Basalt, Diller and Patton, 1.
Basalt, Finlay (G. I.), 8.
Basalt, Kroustchoff, 1.
Basalt, Lawrence and Palelbe, 1.
Basalt, Lindgren, 21.
Basalt, Merrill, and others, 1.
Basalt, Smith (G. O.), 13.
Basalt, Spurr, 29.
Basalt, Weed, 18.
Basalt-augite, Nicolau, 1.
Basalt cinder buttes, Russell, 13.
Bastnasite, Clarke (F. W.), 1.
Bastnasite and tysonite, Allen and Com- stock, 1.
Bauxite, Clarke (F. W.), 1.
Bauxite, Watson (T. L.), 2, 12.
Bentonite, Carton, 14.
Bergamaskite, Weidman, 2.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotite, Eyerman, 1.</td>
<td>Chabazite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Biotite-diorite, Osmon, 1.</td>
<td>Chalcocite, Steiger, 1.</td>
</tr>
<tr>
<td>Biotite-granite, Daly, 7.</td>
<td>Chalk, Ries, 4.</td>
</tr>
<tr>
<td>Biotite-granite, Spurr, 2.</td>
<td>Chalk, Taffe, 5, 15.</td>
</tr>
<tr>
<td>Biotite-ryholite, Spurr, 2.</td>
<td>Chenevixite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Bismuthinite, Penfield and Foor, 1.</td>
<td>Childrenite, Penfield, 1.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Chlorite, Blasdale, 1.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Chlorite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Chrysocollc, Marsaters, 3.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Chrysocollc, Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Cimolite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Beyer and Williams, 1, 2.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Blakeley, 8.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Buckley, 1, 3.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Fall, 2.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Grant (U. S.), 5.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Lane, 21, 34, 39.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Merrill, and others, 1.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Ries, 1, 4, 5, 6, 12, 13.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Clay, Russell, 6, 23.</td>
</tr>
<tr>
<td>Bismuthinite, Boggild, 5.</td>
<td>Cleverite, Clarke (F. W.), 1.</td>
</tr>
</tbody>
</table>
Chemical analyses—Continued.

Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Authors</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinoclase</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Clinohedrite</td>
<td>Penfield and Foote</td>
<td>2</td>
</tr>
<tr>
<td>Coal, Arnold</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Coal, Ashley</td>
<td>1, 3, 4, 7</td>
<td></td>
</tr>
<tr>
<td>Coal, Barbour</td>
<td>(E. H.)</td>
<td>8</td>
</tr>
<tr>
<td>Coal, Beyer and Young</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Brooks</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coal, Burrows</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Butts</td>
<td>4, 5</td>
<td></td>
</tr>
<tr>
<td>Coal, Campbell</td>
<td>(M. R.), 16, 17</td>
<td></td>
</tr>
<tr>
<td>Coal, Collier</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coal, Cooper</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coal, Darton</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Coal, Diller</td>
<td>11, 21</td>
<td></td>
</tr>
<tr>
<td>Coal, Fisher</td>
<td>(C. A.), 5</td>
<td></td>
</tr>
<tr>
<td>Coal, Fuller and Alden</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Gilpin</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coal, Gwillim</td>
<td>4, 5</td>
<td></td>
</tr>
<tr>
<td>Coal, Hayes</td>
<td>(C. W.), 7</td>
<td></td>
</tr>
<tr>
<td>Coal, Hearteau</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Hoffmann</td>
<td>4, 6</td>
<td></td>
</tr>
<tr>
<td>Coal, Kirsopp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Knight</td>
<td>(W. C.), 7</td>
<td></td>
</tr>
<tr>
<td>Coal, Koons</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Landes and Ruddy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Lane</td>
<td>15, 39, 49</td>
<td></td>
</tr>
<tr>
<td>Coal, Langworthy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Martin</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Coal, Richardson</td>
<td>(G. B.), 3</td>
<td></td>
</tr>
<tr>
<td>Coal, Ries</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Coal, Robinson</td>
<td>(N.), 1</td>
<td></td>
</tr>
<tr>
<td>Coal, Russell</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Coal, Scholz</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coal, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coal, Smith</td>
<td>(F. B.), 1</td>
<td></td>
</tr>
<tr>
<td>Coal, Smith</td>
<td>(G. O.), 6</td>
<td></td>
</tr>
<tr>
<td>Coal, Smith</td>
<td>(W. D.), 1</td>
<td></td>
</tr>
<tr>
<td>Coal, Spencer</td>
<td>(A. C.), 10</td>
<td></td>
</tr>
<tr>
<td>Coal, Spurr</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Coal, Steeck</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Storms</td>
<td>(L. S.), 1</td>
<td></td>
</tr>
<tr>
<td>Coal, Staff</td>
<td>4, 16</td>
<td></td>
</tr>
<tr>
<td>Coal, Trumbull</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Von Rosenburg</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, White</td>
<td>(F. W.), 7</td>
<td></td>
</tr>
<tr>
<td>Coal, White and Campbell</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coal, Wigmore</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Coal, Woodworth</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Colemanite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Columbusite</td>
<td>Böggild, 5</td>
<td></td>
</tr>
<tr>
<td>Columbusite</td>
<td>Hendden, 4</td>
<td></td>
</tr>
<tr>
<td>Conicalchite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Copiapite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Copper carbonate</td>
<td>Gallaher, 1</td>
<td></td>
</tr>
<tr>
<td>Copper ore</td>
<td>Bond, 1</td>
<td></td>
</tr>
<tr>
<td>Copper ore</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Copper ore</td>
<td>Weed, 18</td>
<td></td>
</tr>
<tr>
<td>Copper-pitch ore</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Copper-pitch ore</td>
<td>Lindgren and Hillebrand, 1</td>
<td></td>
</tr>
<tr>
<td>Coquimbite</td>
<td>Ekke, 1</td>
<td></td>
</tr>
<tr>
<td>Cordierite</td>
<td>Böggild, 5</td>
<td></td>
</tr>
<tr>
<td>Cordierite-hornfels</td>
<td>Daly, 7</td>
<td></td>
</tr>
<tr>
<td>Cordierite-hornstone</td>
<td>Leith, 4</td>
<td></td>
</tr>
<tr>
<td>Coronadite</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Coronadite</td>
<td>Lindgren and Hillebrand, 1</td>
<td></td>
</tr>
<tr>
<td>Corundum</td>
<td>Pratt and Lewis, 1</td>
<td></td>
</tr>
<tr>
<td>Cylindrite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Covellite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Covite</td>
<td>Pirsson, 4</td>
<td></td>
</tr>
<tr>
<td>Covite, Washington</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Cryolite, Böggild</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cryolite, Clarke (F. W.), 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryophyllite, Clarke (F. W.), 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryophyllite</td>
<td>Senes, 1</td>
<td></td>
</tr>
<tr>
<td>Cryptoperthite</td>
<td>Dresser, 11</td>
<td></td>
</tr>
<tr>
<td>Cummingtonite</td>
<td>Böggild, 5</td>
<td></td>
</tr>
<tr>
<td>Cupromilamina</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Cuprodesclozite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Cuprodesclozite</td>
<td>Headden, 1</td>
<td></td>
</tr>
<tr>
<td>Custerose</td>
<td>Phalen, 1</td>
<td></td>
</tr>
<tr>
<td>Cynamulite</td>
<td>Brush and Dana, 4</td>
<td></td>
</tr>
<tr>
<td>Cyrtolite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Dacto, Bergent</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dacto, Diller</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Dactite, Lacroix</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dactite, Lindgren and Drake</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dactite, Ransome</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dactite, Spurr</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Dacto-granophyre</td>
<td>Fairbanks, 7</td>
<td></td>
</tr>
<tr>
<td>Danburite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Datolite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Datolite, Clarke and Steiger</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Datolite, Eakle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Datolite, Hoffmann</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td>Delileneose</td>
<td>Phalen, 1</td>
<td></td>
</tr>
<tr>
<td>Desclozite</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Deweylite</td>
<td>Chester, 1</td>
<td></td>
</tr>
<tr>
<td>Deweyrite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diabase</td>
<td>Bascom, 1, 3</td>
<td></td>
</tr>
<tr>
<td>Diabase, Cushion</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Diabase, Daly</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Diabase, Emerson</td>
<td>(B. K.), 3, 9</td>
<td></td>
</tr>
<tr>
<td>Diabase, Fairbanks</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Diabase, Haebl and Arnold</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diabase, Lindgren</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diabase, Ransome</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Diabase, Weed</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Diabase greenstone</td>
<td>Julien, 7</td>
<td></td>
</tr>
<tr>
<td>Diatallage</td>
<td>Clarke (F. W.), 1</td>
<td></td>
</tr>
<tr>
<td>Diaspore, Clarke (F. W.), 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickinsonite, Brush and Dana</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dike-rock (acid)</td>
<td>Bascom, 1</td>
<td></td>
</tr>
<tr>
<td>Diopside, Blasdale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diopside, Clarke (F. W.), 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diopside, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diorite, Cross and Spencer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diorite, Daly</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Diorite, Finlay (G. I.)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Diorite, Jaggar and Palache, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorite, Leonard</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diorite, Lindgren</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Diorite, Phalen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diorite, Reid</td>
<td>(J. A.), 1</td>
<td></td>
</tr>
<tr>
<td>Diorite, Spencer (A. C.), 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorite-porphyrn, Cross and Spencer, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorite-porphyrn, Kemp, 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorite-porphyrn, Lindgren, 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolerite, Kay</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>Bayley, 1</td>
<td></td>
</tr>
<tr>
<td>Dolomite, Böggild</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dolomite, Clarke (F. W.), 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite, Dale</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolomite</td>
<td>Hoffmann</td>
<td>6</td>
</tr>
<tr>
<td>Dolomite, Knight (N.)</td>
<td>1, 5, 6</td>
<td></td>
</tr>
<tr>
<td>Dolomite, Lindgren</td>
<td>28, 29</td>
<td></td>
</tr>
<tr>
<td>Dolomite, Newland</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Domeykite, Koenig</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Doughyrite, Headen</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dudleyite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dumortierite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dumortierite, Ford (W. E.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dumortierite, Schaller</td>
<td>5, 7</td>
<td></td>
</tr>
<tr>
<td>Duolite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Edenite, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Edenite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eglestonite, Finlay (G. L.)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Esmolite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Esmolite, Clarke and Steiger</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Esmolite-syenite, Finlay</td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>Esmolite-syenite, Wolff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Esmolite, Stelger</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elpsolite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elpidite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Embolite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Emmonsite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Emmonsite, Hillebrand</td>
<td>3, 6</td>
<td></td>
</tr>
<tr>
<td>Emargite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Emargite, Headen</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Endolomite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Enstatitite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Enstatitite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Enstatitite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Enstatitite-gabbro, Osann</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Enstatolite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eosphorite, Brush and Dana</td>
<td>1, 3</td>
<td>3</td>
</tr>
<tr>
<td>Epidote, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Epidote, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Epistolite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Epistolite, Bürgsdorf and Wither</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Episomite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Erisoomite, Schaller</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Erikitte, Bürgsdorf</td>
<td>2, 5</td>
<td></td>
</tr>
<tr>
<td>Erylnite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Essemraldaite, Eakle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Essexite, Adams (F. D.)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Essexite, Daly</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Essexite, Dresser</td>
<td>5, 9, 11</td>
<td></td>
</tr>
<tr>
<td>Essexite, Washington</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Endealbite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Euxenite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fairbouldite, Brush and Dana</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Faujasite, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fayallite, Sears</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fayallite, Weidman</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Bascom</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Gallaher</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Hopkins (T. C.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Miller (W. G.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Feldspar, Sears</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Felsite, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fergusonite, Bürgsdorf</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fergusonite, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fergusosse, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fibroferrite, Headen</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pillowite, Brush and Dana</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fire clay, Darton</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Fire clay, Gallaher</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Author(s)</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>Finlay (G. I.)</td>
<td>3</td>
</tr>
<tr>
<td>Granite</td>
<td>Hawes</td>
<td>2</td>
</tr>
<tr>
<td>Granite</td>
<td>Henry</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Jaggar and Palache</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Leonard</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Mathèvs</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Perry</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Phalen</td>
<td>1</td>
</tr>
<tr>
<td>Granite</td>
<td>Pratt</td>
<td>8</td>
</tr>
<tr>
<td>Granite</td>
<td>Ransome</td>
<td>11, 14</td>
</tr>
<tr>
<td>Granite</td>
<td>Shelld</td>
<td>2</td>
</tr>
<tr>
<td>Granite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Granite</td>
<td>Villarrello</td>
<td>7</td>
</tr>
<tr>
<td>Granite</td>
<td>Watson (T. L.)</td>
<td>1, 3, 4, 8, 9</td>
</tr>
<tr>
<td>Granite</td>
<td>We’dman</td>
<td>4</td>
</tr>
<tr>
<td>Granite-gneiss</td>
<td>Bascom</td>
<td>1</td>
</tr>
<tr>
<td>Granite-porphyry</td>
<td>Bayley</td>
<td>1</td>
</tr>
<tr>
<td>Granite-porphyry</td>
<td>Clements</td>
<td>3</td>
</tr>
<tr>
<td>Granite-porphyry</td>
<td>Ransome</td>
<td>6, 11, 14</td>
</tr>
<tr>
<td>Granitite</td>
<td>Bayley</td>
<td>1</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>Arnold and Strong</td>
<td>1</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grano-borolanose</td>
<td>Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Grano-diorite</td>
<td>Arnold and Strong</td>
<td>1</td>
</tr>
<tr>
<td>Grano-diorite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Clarke (F. W.)</td>
<td>3</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Smith (G. O.)</td>
<td>13</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Phalen</td>
<td>2</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Spurr</td>
<td>2</td>
</tr>
<tr>
<td>Greenalite</td>
<td>Spurr</td>
<td>2</td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Chemical analyses—Continued.

Ihwairite, Barlow, 4.
Ijolite, Barlow, 4.
Ijolite, Washington, 1, 2.
Ilmenite, Clarke (F. W.), 1.
Ilmenite, Pratt and Lewis, 1.
Ilvaite, Böggild, 1, 5.
Ilvaite, Clarke (F. W.), 1.
Ilvaite, Clarke and Steiger, 1.
Iloite, Böggild, 5.
Iron ore, Bayley, 1.
Iron ore, Beyer, 1.
Iron ore, Boutwell, 5.
Iron ore, Böggild, 5.
Iron ore, Clements, 3.
Iron ore, Coleman, 12.
Iron ore, Courtis, 1.
Iron ore, Darton, 18.
Iron ore, Diller, 20.
Iron ore, Eckel, 33.
Iron ore, Farrington, 13.
Iron ore, Fuller and Alden, 2.
Iron ore, Gallaher, 1.
Iron ore, Hoffmann, 1, 6.
Iron ore, McCaskey, 1.
Iron ore, Mickel, 1.
Iron ore, Obalski, 1.
Iron ore, Richardson (C. H.), 2.
Iron ore, Sheed, 1.
Iron ore, Warwick, 1.
Iron ore, Weidman, 5.
Itacolumite, Bascom, 3.
Jacupirangite, Washington, 1, 2.
Jade, Clarke (F. W.), 1.
Jadeite, Clarke (F. W.), 1.
Janelrose, Pirsson, 4.
Janelrose (pseudo-leucite-sodalite-tin-guaitite), Cross and others, 1.
Jarosite, Ciarke (F. W.), 1.
Jarosite, Ciarke and Steiger, 1.
Lava, Mendenhall, 8.
Lawsonite, Clarke (F. W.), 1.
Lawsonite, Schaller and Hillebrand, 1, 2.
Lazurlite, Pratt and Lewis, 1.
Ledouxite, Richards (J. W.), 1.
Lepidolite, Clarke (F. W.), 1.
Lepidolite, Hoffmann, 2, 4.
Lepidomelane, Clarke (F. W.), 1.
Lestivarite, Duly, 7.
Lestivarite, Cross (W.), 6.
Leucantenose, Clarke (F. W.), 1.
Leucanterose, Clarke and Steiger, 1.
Leucite, Clarke (F. W.), 1.
Leucite, Clarke and Steiger, 1.
Leucite, Steiger, 2.
Leucite-shonkinose, Pirsson, 4.
Leucite-tinjaite, Wolff, 1.
Leucite, Clarke and Steiger, 1.
Leucospinolith, Böggild, 5.
Leucospinolith, Penfield and Warren, 1.
Levynite, Clarke (F. W.), 1.
Libethenite, Lindgren and Hillebrand, 1.
Lignite, Burchard, 1, 2.
Lignite, Crider, 1.
Lignite, Eckel and Crider, 1.
Lignite, Hoffmann, 4, 6.
Lignite, Mendenhall, 8.
Lignite, Simonds, 3.
Limburgite, Johnson (D. W.), 7.
Limestone, Alden, 2.
Limestone, Ashley, 2.
Limestone, Bain, 19.
Limestone, Bassom, 3.
Limestone, Bussler, 2.
Limestone, Bayley, 1.
Limestone, Blatchley, 7.
Limestone, Buckley, 3.
Limestone, Catlett, 3.
Limestone, Clapp, 4.
Limestone, Crider, 1.
Limestone, Darton, 8, 18.
Limestone, Dickson, 2.
Limestone, Donald, 1, 2.
Limestone, Duryee, 1.
Limestone, Eckel, 4–6, 25, 34, 39.
Limestone, Eckel and Bain, 1.
Limestone, Eckel and Crider, 1.
Limestone, Emerson (B. K.), 8.
Limestone, Gallaher, 1.
Limestone, Gillespie, 1.
Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, Gilpin</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Limestone, Haworth and Schrader</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Hoffmann</td>
<td>1, 4, 6</td>
<td></td>
</tr>
<tr>
<td>Limestone, Hulst</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Ilsen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Knight (N.)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Limestone, Kümmerl</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Landes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Limestone, Lane</td>
<td>9, 41, 49</td>
<td></td>
</tr>
<tr>
<td>Limestone, Leith</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Limestone, Lindgren</td>
<td>28, 29</td>
<td></td>
</tr>
<tr>
<td>Limestone, Miller (W. G.)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Limestone, Newsom</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Limestone, Nichols (H. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Onst and Peppel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Porter (F. B.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limestone, Ransome</td>
<td>3, 11</td>
<td></td>
</tr>
<tr>
<td>Limestone, Ries</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Limestone, Russell</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Limestone, Siebenthal</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Limestone, Smith (A. J.)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Limestone, Smith (E. A.)</td>
<td>2-4, 8</td>
<td></td>
</tr>
<tr>
<td>Limestone, Watson (T. L.)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Limonite, Gallaher</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limonite, Hoffmann</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Limonite, Newland</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Limonite, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Liparosie, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lithicldite, Cross (W.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lithophlitite, Brush and Dana</td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>Lithographic limestone, Hoen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Loess, Fuller and Clapp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Loess, Gallaher</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Loess, Knight</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lollingite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lorenzenite, Böggild</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lucasite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lucasite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ludwigite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mackintoshite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mackintoshite, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Manganese, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magadiite, Clarke and Steiger</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magnesite, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Magnesite, Newland</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magnette, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magnette, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Magnette, Kemp</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Magnette, Leith</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Magnette, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Manganous ore, Gallaher</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manganous ore, Watson (T. L.)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Manganous ore, Williams (E. 3.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marble, Eckel</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Marble, Perkins</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marble, Pratt</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Marble, Richardson (C. H.)</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Marble, Shedde</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Marble, Smith (E. A.)</td>
<td>4, 8</td>
<td></td>
</tr>
<tr>
<td>Marble, Ulrich</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Marcasite, Stokes</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Margarite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Margarite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mariposite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marl, Blatchley and Ashley</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marl, Buckley</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marl, Davis (C. A.)</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Marl, Eckel</td>
<td>4, 5, 34, 39</td>
<td></td>
</tr>
<tr>
<td>Marl, Fall</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Marl, Gillispie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marl (boice lime), Hale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marl, Hoffmann</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Marl, Kümmerl</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Marl, Lane</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Marl, Russell</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Marl, Taft</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Marl, Cies</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Melonite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Melanochalcite, Koenig</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Melanochalcite, Lindgren</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Melanochalcite, Lindgren and Hillebrand</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Melanerite, Schaller</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Melonite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Melonite, Steiger</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meta-andesite, Watson (T. L.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Metacinnabarite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Metagabbro, Bascomb</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Metarhyolite, Diller</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Meteoric iron, Pratt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meteoric iron, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Borgström</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Breslin and Cohen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Campbell and Howe</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Cohen</td>
<td>1-5, 8</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Farrington</td>
<td>6, 16</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Hobbs</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Merrill (G. P.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Merrill and Stokes</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Moissan</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Preston (H. L.)</td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Tassin</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Ward (H. A.)</td>
<td>1, 7, 10</td>
<td></td>
</tr>
<tr>
<td>Missoulo, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mica-andesite, Blake</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mica-gabbro, Barrell</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mica-geiss, Bascomb</td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>Mica-hypersthene-gabbro, Osann</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mica-schist, Bascomb</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Microcline, Böggild</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Microcline, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Microcline, Simonds</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Micromonzonite, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Millerite, Palache and Wood</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mineral water, Gallaher</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mineral water, Lindgren</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mineral water, Richardson (G. B.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mineral waters, Hoffmann</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mineral waters, Lee (H. A.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mineral waters, Peter</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mineral waters, Reagan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mineral wool, Eckel</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Minette, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Missourite, Clarke and Steiger</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Missourite, Washington</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Missourite, Pirsson</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mitchellite, Pratt and Lewis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mixlite, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mizzoulette, Clarke (F. W.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mohawkite, Koenig</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mohawkite, Richards (J. W.)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
For the years 1901-1905, inclusive.

Chemical analyses—Continued.

Molybdenite, Wells, 2.
Morchique, Pirsson, 4.
Monmounite, Adams (F. D.), 8.
Montanose, Pirsson, 4.
Montroydite, Moses, 2, 4.
Monzonite, Cross and Spencer, 1.
Monzonite, Cushing, 3, 10.
Monzonite, Daly, 7.
Monzonite, Pirsson, 1, 4.
Monzonite, Ransome, 6.
Monzonite-porphyry, Jaggar and Pala-
che, 1.
Monzonose, Pirsson, 4.
Mordenite, Pirsson, 2.
Morencite, Lindgren, 29.
Morencite, Lindgren and Hill, 1.
Muscovite, Clarke (F. W.), 1.
Nasonite, Penfield and Warren, 1.
Natrojarosite, Clarke (F. W.), 1.
Natrojarosite, Millcbrand and Penfield,
1.
Natrolite, Boggild, 5.
Natrolite, Clarke (F. W.), 1.
Natrolite, Clarke and Steiger, 1.
Natrolite, Eyerman, 1.
Natrolite, Steiger, 2.
Natron, Hoffman, 1.
Natural gas, Bownocker, 4.
Natural gas, Haworth and McFarland, 1.
Natural gas, McFarland, 1.
Natural gas, Richardson (G. B.), 6.
Nepheline, Boggild, 5.
Nepheline, Bonney, 1.
Nepheline-pyroxene-malignite, Osann, 2.
Nepheline syenite, Adams (F. D.), 8.
Nepheline syenite, Weidman, 4.
Nephelite, Clarke (F. W.), 1.
Nephelite syenite, Finlay (G. L.), 8.
Nephelite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Nephrite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Nephrite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Nephrite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Nephrite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Nephrite-syenite, Kemp, 32.
Nephrite, Clarke (F. W.), 1.
Nephrite, Pirsson, 4.
Nephrite, Spencer (A. C.), 10.
Nephrite, Daly, 7.
Nephrite, Finlay (G. L.), 8.
Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficrolite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Picrotitanite</td>
<td>Whitaker</td>
<td>1</td>
</tr>
<tr>
<td>Piedmontite</td>
<td>(F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pirssonite</td>
<td>Pratt and Lewis</td>
<td>8</td>
</tr>
<tr>
<td>Pisanite</td>
<td>(F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pisanite</td>
<td>Schaller</td>
<td>3</td>
</tr>
<tr>
<td>Plagioclase basalt</td>
<td>Johnson (D. W.)</td>
<td>6</td>
</tr>
<tr>
<td>Placer</td>
<td>Parsons</td>
<td>1</td>
</tr>
<tr>
<td>Pleonaste</td>
<td>(F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Plumbogranite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Plumbogranite</td>
<td>Hillebrand</td>
<td>1</td>
</tr>
<tr>
<td>Pollucite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Eyerman</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Schaller</td>
<td>8</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Eyerman</td>
<td>1</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Prosopite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Protovermiculite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pseudo-diorite</td>
<td>Julien</td>
<td>7</td>
</tr>
<tr>
<td>Pseudo-serpentine</td>
<td>Clarke (F. W.)</td>
<td>5</td>
</tr>
<tr>
<td>Pseudomelanite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Ptiholite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pulaslithite</td>
<td>Adams (P. D.)</td>
<td>7</td>
</tr>
<tr>
<td>Pulaslite</td>
<td>Brock</td>
<td>3</td>
</tr>
<tr>
<td>Pulaslite</td>
<td>Cross (W.)</td>
<td>6</td>
</tr>
<tr>
<td>Pulaslite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Pulaslithite</td>
<td>Dresser</td>
<td>11</td>
</tr>
<tr>
<td>Pulaslithite</td>
<td>Washington</td>
<td>1, 2</td>
</tr>
<tr>
<td>Pulaslithite</td>
<td>Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Pumice</td>
<td>Bergert</td>
<td>3</td>
</tr>
<tr>
<td>Pumice</td>
<td>Diller</td>
<td>7</td>
</tr>
<tr>
<td>Purpurite</td>
<td>Graton and Schaller</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Eickel</td>
<td>16</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Stokes</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Winchell (H. V.)</td>
<td>2</td>
</tr>
<tr>
<td>Pyrope</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Osann</td>
<td>2</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Phalen</td>
<td>1</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Turner</td>
<td>4</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Winchell (A. N.)</td>
<td>3</td>
</tr>
<tr>
<td>Pyroxcene-andesite</td>
<td>Cross and Howell</td>
<td>1</td>
</tr>
<tr>
<td>Pyroxcene-andesite</td>
<td>Watson (T. L.)</td>
<td>6</td>
</tr>
<tr>
<td>Pyroxcene-syenite</td>
<td>Cross (W.)</td>
<td>6</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Bascom</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyroxcene</td>
<td>Turner</td>
<td>2</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Washington</td>
<td>1</td>
</tr>
<tr>
<td>Pyroxcene</td>
<td>Websterite</td>
<td>Bascom</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>Dickson</td>
<td>4</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>Hoffman</td>
<td>8</td>
</tr>
<tr>
<td>Quartz-augite syenite</td>
<td>Cushing</td>
<td>1</td>
</tr>
<tr>
<td>Quartz basalt</td>
<td>Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-biotite-diorite</td>
<td>Osmont</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-biotite-hornblende</td>
<td>Bascom</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-feldspar-porphyr</td>
<td>Siddings</td>
<td>3</td>
</tr>
<tr>
<td>Quartz-diorite</td>
<td>Jaggar and Palache</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-diorite-porphyr</td>
<td>Barrell</td>
<td>1</td>
</tr>
<tr>
<td>Quartzite</td>
<td>Bascom</td>
<td>3</td>
</tr>
<tr>
<td>Quartzite</td>
<td>Watson (T. L.)</td>
<td>9</td>
</tr>
<tr>
<td>Quartzite</td>
<td>Cross and Howe</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-nicla-diorite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Bascom</td>
<td>3</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Cross and Howe</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Lindgren</td>
<td>21</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Phalen</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Ransome</td>
<td>6</td>
</tr>
<tr>
<td>Quartz-monzonite</td>
<td>Weed</td>
<td>5</td>
</tr>
<tr>
<td>Quartz-monzonite-porphyr</td>
<td>Lindgren</td>
<td>28, 29</td>
</tr>
<tr>
<td>Quartz porphyry</td>
<td>Bayley</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-porphyr</td>
<td>Le Roy</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-porphyr</td>
<td>Perry</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-porphyr</td>
<td>Watson (T. L.)</td>
<td>14</td>
</tr>
<tr>
<td>Quartz pseudomorph</td>
<td>Schaller</td>
<td>3</td>
</tr>
<tr>
<td>Quartz-pyroxcene-diorite</td>
<td>Lindgren</td>
<td>1</td>
</tr>
<tr>
<td>Quartz-sericite-schist</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Quartz-syenite-porphyr</td>
<td>Cross (W.)</td>
<td>6</td>
</tr>
<tr>
<td>Quartz-syenite-porphyr</td>
<td>Cross and Howe</td>
<td>1</td>
</tr>
<tr>
<td>Quartz syenite porphyry</td>
<td>Cushing</td>
<td>3</td>
</tr>
<tr>
<td>Quartz-syenite-porphyr</td>
<td>Le Roy</td>
<td>1</td>
</tr>
<tr>
<td>Ralstonite</td>
<td>Boggild</td>
<td>5</td>
</tr>
<tr>
<td>Ramosite</td>
<td>Luquer</td>
<td>3</td>
</tr>
<tr>
<td>Ranite</td>
<td>Barlow</td>
<td>4</td>
</tr>
<tr>
<td>Reddingite</td>
<td>Brush and Dana</td>
<td>2</td>
</tr>
<tr>
<td>Reddingite</td>
<td>Clarke (F. W.)</td>
<td>1</td>
</tr>
<tr>
<td>Rhodochrosite</td>
<td>Boggild</td>
<td>5</td>
</tr>
<tr>
<td>Rhodolite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Rhodonite</td>
<td>Richardson (C. H.)</td>
<td>2</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Cross and Howe</td>
<td>1</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Duryeo</td>
<td>1</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Fairbanks</td>
<td>7</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Farrington</td>
<td>13</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Lindgren and Drake</td>
<td>2</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Ordoñez</td>
<td>1</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Ransome</td>
<td>11</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Reid (J. A.)</td>
<td>1</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Russell</td>
<td>13</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Spurr</td>
<td>2, 29</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Watson (T. L.)</td>
<td>14</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>Weldman</td>
<td>5</td>
</tr>
<tr>
<td>Rhyolitic tuff</td>
<td>Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Rickardite</td>
<td>Ford (W. E.)</td>
<td>2</td>
</tr>
<tr>
<td>Riebeckite</td>
<td>Clark and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Riebeckite</td>
<td>Wright (F. E.)</td>
<td>3</td>
</tr>
<tr>
<td>Riebeckite</td>
<td>Trachyte</td>
<td>Cross (W.)</td>
</tr>
<tr>
<td>Rinkite</td>
<td>Boggild</td>
<td>5</td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Chemical analyses—Continued.

<table>
<thead>
<tr>
<th>Chemical analyses</th>
<th>Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roscoelite, Lindgren, 3, 4.</td>
<td>Slate, Bayley, 1.</td>
</tr>
<tr>
<td>Rutile, Clarke (F. W.), 1.</td>
<td>Slate, Weidman, 5.</td>
</tr>
<tr>
<td>Salt, Richardson (G. B.), 4, 7.</td>
<td>Smithsonian, Branner, 2.</td>
</tr>
<tr>
<td>Salt (commercial), Eckel, 26.</td>
<td>Smithsonian, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Samarskite, Clarke (F. W.), 1.</td>
<td>Soda-granite-porphyry, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Sandstone, Ihlseng, 1.</td>
<td>Sodalite, Bonney, 1.</td>
</tr>
<tr>
<td>Sandstone, Shedd, 2.</td>
<td>Sodalite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Sandstone, Ramsone, 3.</td>
<td>Sodalite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Sapphirine, Boggild, 5.</td>
<td>Sodalite, Pirsson, 4.</td>
</tr>
<tr>
<td>Scapolite, Osann, 2.</td>
<td>Soil, Russell, 6.</td>
</tr>
<tr>
<td>Schizolite, Boggild and Winther. 1.</td>
<td>Sövdesbergite, Sears, 1.</td>
</tr>
<tr>
<td>Scolecite, Clarke (F. W.), 1.</td>
<td>Spangolite, Penfield, 3.</td>
</tr>
<tr>
<td>Scolecite, Clarke and Steiger, 1.</td>
<td>Sperrylite, Wells, 1.</td>
</tr>
<tr>
<td>Scolecite, Steiger, 2.</td>
<td>Sphalerite, Branner, 2.</td>
</tr>
<tr>
<td>Selenite, Rowe, 3.</td>
<td>Spessartite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Sepiolite, Pratt and Lewis, 1.</td>
<td>Spessartite, Simonds, 3.</td>
</tr>
<tr>
<td>Serpentine, Boggild, 5.</td>
<td>Spinel, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Serpentine, Clarke (F. W.), 1, 2.</td>
<td>Spinel, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Serpentine, Clarke and Steiger, 1.</td>
<td>Spodiophyllite, Boggild, 5.</td>
</tr>
<tr>
<td>Serpentine, Eyerman, 1.</td>
<td>Spodumene, Brush and Dana, 4.</td>
</tr>
<tr>
<td>Serpentine, Lyon, 1.</td>
<td>Staurolite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Serpentine, Marsters, 3.</td>
<td>Staurolite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Serpentine, Newland, 1.</td>
<td>Steenstrupite, Boggild, 5.</td>
</tr>
<tr>
<td>Serpentine, Pratt and Lewis, 1.</td>
<td>Stilbite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Serpentine, Sears, 1.</td>
<td>Stilbite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Serpentine, Shedd, 2.</td>
<td>Stilbite, Eyerman, 1.</td>
</tr>
<tr>
<td>Serpentine, Smith and Willis, 1.</td>
<td>Stromeyerite, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Shale, Haworth and Schrader, 1.</td>
<td>Syenite, Kay, 1.</td>
</tr>
<tr>
<td>Shale, Ihlseng, 1.</td>
<td>Syenite, Pirsson, 1.</td>
</tr>
<tr>
<td>Shale, Russell, 6.</td>
<td>Syenite, basic, Cushing, 3.</td>
</tr>
<tr>
<td>Shale, bituminous, Parks, 4.</td>
<td>Tachylite, Emerson (B. K.), 9.</td>
</tr>
<tr>
<td>Shonkinite, Osann, 2.</td>
<td>Tachylyte, Luquier, 3.</td>
</tr>
<tr>
<td>Shonkinite, Pirsson, 1, 3, 4.</td>
<td>Tainiolite, Boggild, 5.</td>
</tr>
<tr>
<td>Shonkinite, Weed and Pirsson, 1.</td>
<td>Talc, Boggild, 5.</td>
</tr>
<tr>
<td>Shonkinite, Pirsson, 4.</td>
<td>Talc, Clarke (F. W.), 1.</td>
</tr>
<tr>
<td>Shoshonite, Pirsson, 4.</td>
<td>Talc, Peck, 6.</td>
</tr>
<tr>
<td>Siebert tuff, Nevada, Spurr, 20.</td>
<td>Talc, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Sillimanite, Clarke (F. W.), 1.</td>
<td>Tallow-clays, Branner, 2.</td>
</tr>
<tr>
<td>Sinter, baritic, Headden, 3.</td>
<td>Tangerite, Hidden, 1.</td>
</tr>
<tr>
<td>Slag, Eckel, 17.</td>
<td>Tephrolite, Simonds, 3.</td>
</tr>
<tr>
<td>Terlinguaite, Moses, 2, 4.</td>
<td>Tertlinguaite, Moses, 2, 4.</td>
</tr>
</tbody>
</table>
Chemical analyses—Continued.
Tetradymite, Hillebrand, 6.
Tetrahedrite, Chester, 1.
Thaumasite, Penfield and Pratt, 1.
Thalinite, Hillebrand, 6.
Thenardite, Boggild, 5.
Theraitie, Adams (F. D.), 7.
Theraitie, Osann, 2.
Theraitie, Washington, 1.
Thomsonite, Adams (F. D.), 7.
Thomsonite, Clarke and Steiger, 1.
Thomsonite, Steiger, 2.
Thorogummite, Simonds, 3.
Tin ore, Collier, 8.
Tinguaite, Dresser, 11.
Tinguaite, Kemp, 32.
Tinguaite, Pirsson, 4.
Tinguaite, Sears, 1.
Tinguaite, Washington, 1.
Tinguaite var., öölsbergite, Dresser, 9.
Tinguaite-porphyr, Pirsson, 4.
Titanite, Clarke (F. W.), 1.
Titano-magnetite, Lindgren, 9.
Tophany rhylite-dacite, Nevada, Spurr, 29.
Topaz, Clarke (F. W.), 1.
Toscanose, Pirsson, 4.
Toscanose (granodiorite), Cross and others, 1.
Tourmaline, Boggild, 5.
Tourmaline, Clarke (F. W.), 1.
Tourmaline, Eyeerman, 1.
Trachyphiro-borolanose, Pirsson, 4.
Trachyphiro-pulaskose, Pirsson, 4.
Trachydolerite, Jagger and Falache, 1.
Trachyte, Breed, 1.
Trachyte, Cross (W.), 6.
Trachyte obsidian, Cross (W.), 6.
Trap, Weed, 18.
Tremolite, Blasdale, 1.
Tremolite, Boggild, 5.
Tremolite, Clarke (F. W.), 1.
Tremolite, Peck, 6.
Triplite, Clarke (F. W.), 1.
Triploidite, Brush and Dana, 1.
Trocottite, Pratt and Lewis, 1.
Tscheffkinite, Clarke (F. W.), 1.
Tufa, Weed, 13.
Tuff, Diller, 12.
Tuff, Shedel, 2.
Turquoise, Clarke (F. W.), 1.
Turquoise, Johnson (D. W.), 6.
Tychite, Penfield and Jamieson, 1.
Tyrrolite, Clarke (F. W.), 1.
Tyrrolite, Allen and Comstock, 1.
Tysonite, Clarke (F. W.), 1.
Ulexite, Clarke (F. W.), 1.
Umpkteite, Adams (F. D.), 7.
Umpkteite, Dresser, 9.
Umpkteite, Sears, 1.
Umpkteose, Pirsson, 4.
Uralite, Weidman, 2.
Uraninite, Clarke (F. W.), 1.
Uranophane, Watson (T. L.), 7.
Urao, Clarke (F. W.), 1.
Vermiculite, Clarke (F. W.), 1.

Chemical analyses—Continued.
Vesuvianite, Clarke (F. W.), 1.
Vesuvianite, Clarke and Steiger, 2.
Vesuvianite, Kunz, 5.
Vesuvianite, Sears, 1.
Vesuvianite, Turner, 4.
Vesuvose-albitose (leucitite), Cross
and others, 1.
Villarsite, Pratt and Lewis, 1.
Volcanic ash, Flett, 1.
Volcanic ash, Gilot, 1.
Volcanic ash, Hovey, 9.
Volcanic ash, Lacroix, 2, 3.
Volcanic ash, Lobley, 1.
Volcanic ash, Rowe, 1.
Volcanic dust, Bridgford, 1.
Volcanic dust, Diller, 7.
Volcanic dust, Diller and Steiger, 1.
Volcanic dust, Griffiths, 1.
Volcanic dust, Hillebrand, 1.
Volcanic dust, Teall, 1.
Volcanic sand, Diller, 7.
Wahvewite, Clarke (F. W.), 1.
Warrenite, Clarke (F. W.), 1.
Warwickite, Clarke (F. W.), 1.
Water, Babcock and Minor, 1.
Water, Bayley, 2.
Water, Blake (W. P.), 4.
Water, Boutwell, 7.
Water, Cooper (W. F.), 1, 2.
Water, Crosby, 9.
Water, Crosby and La Forge, 1.
Water, Darton, 18.
Water, Eckel, 26.
Water, Eizele, 1.
Water, Fuller (M. L.), 13, 18.
Water, Gallaher, 1.
Water, Gould, 14.
Water, Gregory (H. E.), 2.
Water, Hall (C. W.), 8.
Water, Harris, 5.
Water, Harwood, 1.
Water, Headden, 3.
Water, Hoffman, 6.
Water, Keyes, 49.
Water, Kirchoffer, 1.
Water, Lee (W. T.), 9.
Water, Lindgren, 28.
Water, Logan, 2.
Water, Logan and Perkins, 1.
Water, McCullie, 8.
Water, Perkins, 8.
Water, Park and Lyman, 1.
Water, Peter, 1.
Water, Purdu, 5.
Water, Richardson (G. B.), 4.
Water, Russell, 8.
Water, Smith (E. A.), 5.
Water, Smith (W. S. T.), 4.
Water, Shepard, 2, 4.
Water, Tarr, 8.
Water, Tarr, (F. B.), 5.
Water, Weed, 13.
Water, Weeks, 11.
Water, Weidman, 5.
Water (of streams), Headden, 2.
Websterite, Leonard, 1.
FOR THE YEARS 1901–1905, INCLUSIVE. 433

Chemical analyses—Continued.
Websterite, Pratt and Lewis, 1.
Websterite, Turner, 2.
Wellsite, Pratt and Foote, 1.
Wellsite, Pratt and Lewis, 1.
Wilcoxite, Pratt and Lewis, 1.
Willemite, Böggild, 5.
Williamsite, Pratt and Lewis, 1.
Windsorite, Daly, 7.
Wolframite, Böggild, 5.
Wolframite, Irving, 1.
Wolframite, O’Hara, 2.
Wolframite, Simmons, 1.
Wolframite ore, Irving and Emmons, 1.
Wollastonite, Böggild, 5.
Wollastonite, Clarke (F. W.), 1.
Wollastonite, Clarke and Steiger, 1.
Wollastonite, Pratt and Lewis, 1.
Wollastonite, Clarke (F. W.), 1.
Xanthitane, Clarke (F. W.), 1.
Xanthophyllite, Clarke (F. W.), 1.
Xenotime, Clarke (F. W.), 1.
Xenotime, Craus and Reitinger, 1.
Yttrilalite, Clarke (F. W.), 1.
Yttrialite, Hillebrand, 2, 7.
Yttrialite, Simonds, 3.
Zinc-blende, Eakle and Sharwood, 1.
Zinc ore, Demaret, 1.
Zinfenite, Clarke (F. W.), 1.
Zinnwaldite, Böggild, 5.
Zolite, Clarke (F. W.), 1.
Zolite, Pratt and Lewis, 1.
Zolite amphibolite, Julian, 7.
Zunyite, Clarke (F. W.), 1.

Classification—Continued.
Geology of eastern New York, Prosser, 11.
Historical review of geology of Michigan, Lane, 36.
Huronian of Moose River Basin, Parks, 1.
Individuals of stratigraphic classification, Bain, 4.
Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.
Michipicoten iron ranges, Coleman and Willmott, 2.
Nonclasticur and classification of sedimentary formations, Williams (H. S.), 8.
Nomenclature of Ohio geological formations, Prosser, 15.
Oberdevon Europas und Nordamerikas, Hartzell, 1.
Ordovician rocks of Kentucky and its bryozoan, Nickles, 6.
Phylogeny and classification of the Reptilia, Osborn, 54.
Phylogeny and classification of the Reptilia, Williston, 27.
Quantitative chemical-mineralogical classification and nomenclature of igneous rocks, Cross and others, 1.
Relationships and habits of Mosasaurs, Williston, 19.
Report on Lake Superior region, Van Hise and others, 1.
Tenth annual report of State geologist, Calvin, 5.

Colorado.
Across the San Juan Mountains, Rickard (T. A.), 7.
Age of the Monument Creek formation, Dutton, 23.
Aguilar coal and oil district, Lakes, 39.
American Pettie, Lakes, 1.
Andesite of Mount Sugar Loaf, Hart, 1.
Anthracite situation in Colorado, Lakes, 81.
Barela Mesa coal field, McLaughlin, 1.
Basaltic zones as guides to ore deposits, Stevens (E. A.), 2.
Bastnasite and thynnite, Allen and Comstock, 1.
Book Cliff coal mines, Lakes, 66.
Boulder oil field, Fenneman, 4.
Buckhorn mine and San Luis Park, Lakes, 20.
Building and monumental stones, Lakes, 12.
Building stones, Lakes, 13.
Colorado—Continued.

Camp Bird and Smuggler-Union fissures, Purington, 10.
Camp Bird gold mine, Titcomb, 1.
Camp Bird mine, Ouray, Purington, 3.
Canyons of southeastern Colorado, Lee (W. T.), 4.
Carboniferous formations and faunas of Colorado, Girty, 3.
Carboniferous of Sangre de Cristo Range, Lee (W. T.), 5.
Carnotite and associated vanadiferous minerals in western Colorado, Hillebrand and Ransome, 1.
Cave ore deposits, Lakes, 4.
Cement materials and industry of the United States, Eckel, 34.
Coal along the eastern foothills, Lakes, 82.
Coal and asphalt deposits along Moffat Railway, Lakes, 60.
Coal and mineral resources of Routt County, Parsons and Liddell, 1.
Coal field between Ralston Creek and Boulder, Lakes, 96.
Coal fields of Colorado, Lakes, 62, 80.
Coal mines of Huerfano County, Lakes, 90.
Coal on Turkey Creek, Stone (G. H.), 3.
Coals of southern Colorado, Lakes, 85.
Colorado Canyon, Davis (W. M.), 61.
Colorado Central lode, Foster, 1.
Comanche formation in southeastern Colorado, Darton, 24.
Comparison of fossil diatoms, Elmore, 1.
Copper deposits at Pearl, Spencer (A. C.), 7.
Creede mining camp, Lakes, 50.
Copper mining in the Encampment and Pearl districts, Read, 4.
Correlation of Colorado geological formations, Underbill, 1.
Creston mining district in San Luis Park, Lakes, 29.
Cripple Creek, Lakes, 2.
Cripple Creek volcano, Rickard (T. A.), 1.
Crystalline development of calaverite, Smith (G. F. H.), 1.
Curtis coal mine, Lakes, 3.
Development of pseudomorphs, Patton, 2.
Devonian fish remains from Colorado, Eastman, 16.
Devonian formation in Colorado, Cross (W.), 5.
Dinosaur beds of the Grand River Valley, Riggs, 1.
Dinosaur beds of Grand River Valley of Colorado, Riggs and Farrington, 1.
District aurifere de Cripple Creek, Ritter, 1.
Doughty springs, a group of radium-bearing springs, Headden, 3.

Colorado—Continued.

Economic geology, La Plata folio, Purington, 1.
Economic geology of the Silverton quadrangle, Ransome, 1.
Economic resources of the foothills of the front range, Lakes, 91.
Effect of cliff erosion on form of contact surfaces, Fenneman, 6.
Emissaries from a new locality, Hillebrand, 4.
Eruptive rocks of Cripple Creek, Graton, 4.
Example of localization of rich ore, Rickard (T. A.), 6.
Examples of Colorado faults, Lakes, 95.
Extinct glaciers of Colorado, Henderson (J.), 4.
Fault planes in the Dakota fire-clay beds at Golden, Patton, 3.
Faults in Dakota formation at Golden, Patton, 4.
Florence oil field, Fenneman, 9.
Formation of bonanzas in upper portions of gold veins, Rickard (T. A.), 3.
Formation of Cripple Creek mining district, Moore (C. J.), 1.
Formation of Leadville mining district, Moore (C. J.), 2.
Fossil mammals of Tertiary of northeastern Colorado, Matthew (W. D.), 2.
Franceville meteorite, Preston (H. L.), 2, 3.
Garnetiferous led in Golden Gate Canyon, Bailey, Rath, and Gridier, 1.
Genesis of ore deposits in Boulder County, Bagg, 2.
Geological excursion in Colorado, Van Hise, 6.
Geological occurrence of oil, Lakes, 19.
Geological phenomena in the Telluride quadrangle, Lay, 1.
Geological resurvey of the Cripple Creek district, Lindgren and Ransome, 1, 2.
Geological structure of Camp Bird vein, Purington, 5.
Geology along the Animas River, Lakes, 25.
Geology and coal deposits of the Spanish Peaks district, Lakes, 85.
Geology and economics along Moffat Railway, Lakes, 49.
Geology and underground water resources of the central Great Plains, Darton, 15.
Geology of Castle Rock region, Lee (W. T.), 2.
Geology of hot springs of Colorado, Lakes, 90, 103.
Geology of Silverton quadrangle, Cross, 1.
Geology of the Needle Mountains quadrangle, Cross and Howe, 3.
Colorado—Continued.

Geology of the Needle Mountains quadrangle, Irving and Emmons, 1.
Geology of the oil fields of Colorado, Lakes, 15.
Geology of the ore deposits of the Ouray district, Howe, 4.
Geology of the Rico quadrangle, Cross (W.), 7.
Geology of Virginias mine, Purington, 7.
Geology of western ore deposits, Lakes, 104.
Gisements de minerals de zinc, Deima ret, 1.
Glacial erosion in the Sawatch Range, Davis (W. M.), 54.
Glacial placer beds on flanks of Mosquito Range, South Park, Lakes, 30.
Glaciation of the Sawatch Range, Davis (W. M.), 58.
Gold production of North America, Austin, 5.
Gold production of North America, Lindgren, 16.
Gold deposits of Plomo, Gunther, 1.
Grand River coal field, Lakes, 87.
Granite of west Sugar Loaf Mountain, Henry, 1.
Greenstone schists in the San Juan Mountains, Howe, 3.
Grottes des États-Unis, Le Couppey de la Forest, 1.
Gypsum deposits in Colorado, Lakes, 61.
Hallopus, BAPTANODON, AND ATLANTOSAURUS BEDS OF MARSH, WILLISTON, 25.
Hanging valleys of Georgetown, Crosby, 5.
Hot and mineral springs of Rount County, Colorado, Lakes, 97.
Influence of country-rock on mineral veins, Weed, 6.
Jurassic dinosaur deposits near Canyon City, Hatcher, 6.
La Plata coal field, Lakes, 84.
La Plata folio, Cross and Spencer, 1.
La Plata Mountains, Lakes, 41.
Leadville district, Warwick, 2.
Lodes of Cripple Creek, Rickard (T. A.), 8, 12.
Mica-andesite of west Sugar Loaf Mountain, Blake (J. C.), 1.
Mineralogical mistake, Van Diest, 1.
Mineralogical notes, Headden, 1, 4.
Mineralogical notes, Warren, 1.
Mines and ore deposits of the Rosita and Silver Cliff mining district, Lakes, 53.
Mines of Ouray County, Downer and De Cou, 1.
Morrison formation, Lee (W. T.), 1.
Morrison formation, Stanton, 8.
Morrison shales of southern Colorado and northern New Mexico, Lee (W. T.), 3.
Natural gas in Colorado, Lakes, 26.

FOR THE YEARS 1901–1905, INCLUSIVE.
Colorado—Continued.
Rickardite, Ford (W. E.), 2.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Secondary enrichment at Cripple Creek, Weed, 21.
Silver Lake mine, Lakes, 47.
Silverton folio, Cross and Howe, 1.
Silverton folio, Ransome, 16.
Skull of Merycodus, Matthew (W. D.), 14.
Soils of Colorado, Lakes, 40.
South Park coal field, Lakes, 89.
South Park, Lakes, 35.
Spanish Peaks folio, Hills, 1.
Spanish Peaks, Lakes, 28.
Stratigraphy of the Black Hills, Dar­
ton, 2.
State geological survey for Colorado, Finch (J. W.), 2.
Structure of Boulder oil field, Fenne­
man, 5.
Subterranean gases of Cripple Creek, Lindgren, 31.
Summit County placers, Lakes, 43.
Sunset trachyte, Breed, 1.
Telluride ores of Cripple Creek and
Kalgoorlie, Rickard (T. A.), 2.
Tellurium veins in La Plata Moun­
tains, Austin, 1.
Tercio and Cuatro mines, Hosea, 1.
Tercio coal mining district, Plumb, 1.
Tissu osseux chez certains poissons de
Canyon City, Vaillant, 1.
Tortoise from Colorado Miocene, Hay,
17.
Twin Lakes glaciated area, Westgate, 1.
Two tellurium minerals from Colorado, Hillebrand, 6.
Veins of Boulder and Kalgoorlie,
Rickard (T. A.), 11.
Veins of Boulder County, Bagg, 3.
Volcanoes, Lakes, 34.
Water resources of Colorado, Fellows, 1.
Yampa coal fields, Lakes, 65.
Yampa coal field, Lakes, 88.

Connecticut—Continued.
Hematite deposits of New York, Eckel,
30.
Instance of action of ice-sheet upon
projecting rock masses, Hobbs, 12.
Limonite deposits of New York and
New England, Eckel, 36.
Newark system of the Pomperaug Val­
ley, Hobbs, 2.
Occurrence of minerals at Haddam
Neck, Bowman (H. L.), 1.
Physical geography and geology of
Connecticut, Rice, 1.
Post-Newark normal faulting in the
crystalline rocks of southwestern
River system of Connecticut, Hobbs, 3.
Second Branchville paper, Brush and
Dana, 2.
Spodumene and results of its altera­
tion, Brush and Dana, 4.
Tectonic geography of southwestern
New England and southeastern New
York, Hobbs, 23.
Third Branchville paper, Brush and
Dana, 3.
Trap rock of Connecticut Valley, Ford
(F. L.), 1.
Triassic rocks of the Connecticut Val­
ley as a source of water supply, Ful­
ler, 18.
Tungsten mine at Trumbull, Hobbs,
5, 16.
Underground waters of Connecticut,
Gregory (H. E.), 1.
Wells of Triassic area of Connecticut
Valley, Pynchon, 11.
Correlation.
Carboniferous ammonoids of America,
Smith (J. P.), 3.
Carboniferous of the Appalachian basin,
Stevenson (J. F.), 6.
Carboniferous system of New Brunsw­
wick, Bailey (L. W.), 8.
Classification of the Archean, Cole­
man, 6.
Coal prospects of New Brunswick,
Poole, 8.
Cobleskill limestone of New York,
Hartnagel, 1.
Columbia folio, Hayes and Ulrich, 1.
Contributions to Devonian paleontol­
ogy, Williams and Kindle, 1.
Correlation des horizons de mammi­
fères Tertiaires en Europe et en Amérique, Osborn, 5.
Correlation of Colorado geological for­
mations, Underhill, 1.
Correlation of Colorado geological for­
mations and members [of the Maryland coal district], Clark and Martin, 6.
Correlation of formations of the mid­
dle West, Hatcher, 21.
Correlation—Continued.

Correlation of geological faunas, Williams (H. S.), 5.
Correlation of John Day and Mascall, Merriam and Sinclair, 1.
Correlation of Piedmont formations, Mathews, 6.
Correlation of the Potomac formation in Maryland and Virginia, Ward (L. F.), 3.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Cretaceous near Cliffwood, Berry, 8.
Delaware limestone, Prosser, 13.
Distinctive characters of the mid-Cretaceous fauna, Osborn, 12.
Eocene and earlier beds of Huerfano basin, Colorado, Hills, 2.
Fossil faunas and their use in correlating geological formations, Williams (H. S.), 3.
Formations of northern Arkansas, Ulrich, 5.
Fresh-water fauna from Cretaceous of Montana, Stantton, 4.
Geological correlations in New Brunswick, Bailey (L. W.), 3.
Geology and paleontology of the Judith River beds, Stanton and Hatcher, 1.
Geology of eastern New York, Prosser, 11.
Geology of Fishers Island, Fuller, 29.
Helderberg invasion of the Manlius, Harris, 7.
Individuals of stratigraphic classification, Willis, 2.
Jackson outcrops on Red River, Casey, 1.
Kreide-Ammoniten von Texas, Lasswitz, 1.
Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.
Mesabi iron-bearing district of Minnesota, Leith, 4.
Methods of geologic correlation, Keyes, 36.
Mollusca of Bud limestone, Shattuck, 8.
Oberdon Europolis und Nordamerikas, Hartzoll, 1.
Ordovician rocks of Kentucky and their bryoza, Nickles, 6.
Paleontology of Martinez group, Weaver, 1.
Permian formations of Kansas, Prosser, 14.
Petrography and age of the Northumberland rock, Cushing, 7.
Red Beds of Colorado, Cross and Howe, 2.
Report of State paleontologist, Clarke (J. M.), 11.
Report on Lake Superior region, Van Hise and others, 1.

Correlation—Continued.

Romney formation of Maryland, Prosser, 12.
Schematic standard for the American Carboniferous, Keyes, 7.
Siluric or Ontarian section of eastern New York, Hartnagel, 2.
Sixth annual report of the State geologist, Lane, 49.
Stratigraphy of Black Hills, Bighorn Mountain, and Rocky Mountain front range, Darton, 16.
Stratigraphy of Uinta Mountains, Berry, 8.
Südlichsten Vulkane Mittel-Amerikas, Supper, 2.
Summary of Lake Superior geology, Leith, 14.
Table of geological formations, Shepard, 1.
Tertiary of Sabine River, Dumble, 10.
Time divisions of Ice Age, Upham, 5.
Time element in stratigraphy and correlation, Dall, 17.
Time element in stratigraphy and correlation, Stanton, 9.
Time element in stratigraphy and correlation, Ulrich, 9.
Time element in stratigraphy and correlation, White, 20.
Trilassic cephalopod genera, Hyatt and Smith, 1.
Upper Paleozoic rocks of Ohio and Pennsylvania, Girty, 10.

Cretaceous.

Alaska.
Coal resources of Alaska, Brooks, 3.
Geological section of Rocky Mountains in northern Alaska, Schrader, 1.
Geology of Copper River region, Mendenhall, 8.
Mesozoic section on Cook Inlet, Stanton and Martin, 1.
Reconnaissance in Alaska, Schrader, 3.

Atlantic coast region.
Artesian wells, Woolman, 2.
Atlantic Highlands section, Prather, 4.
Classification of upper Cretaceous formations of New Jersey, Weller, 12.
Cliffwood clays and the Matawan, Knapp (G. N.), 2.
Columbia University Geological Department, Shimer, 4.
Correlation of the Potomac formation, Ward (L. F.), 3.
Cretaceous formations and faunas of New Jersey, Weller, 7.
Cretaceous near Cliffwood, N. J., Berry, 8.
Cretaceous-Eocene boundary in the Atlantic coastal plain, Clark (W. B.), 4.
Fauna of Cliffwood clays, Weller, 10.
Flora of the Matawan formation, Berry, 5.
Geology of Coastal Plain formations, Shattuck, 7.
INDEX TO NORTH AMERICAN GEOLOGY

Cretaceous—Continued.

Atlantic coast region—Continued.

Geology of Potomac group in middle
Atlantic slope, Clark and Bibbins, 1.
 Matawan formation, Clark (W. B.), 5.
 Miocene deposits of Maryland, Clark
(W. B.), 6.
 New York City folio, Merrill and oth­
ers, 1.
 Norfolk folio, Darton, 7.
 Paleobotany of the Cretaceous of Long
Island, Hollick, 11.
 Physical features of Cecil County,
Md., Shattuck, 3.
 Position and nature of Maryland Cy­
cads, Bibbins, 2.
 Results of, resurvey of Long Island,
 Fuller and Veatch, 1.
 Status of Mesozoic floras, Ward
(L. F.), 5.
 Stratigraphy of the New Jersey Clays,
Kümmel and Knapp, 1.
 Underground waters of New Jersey,
Knapp (G. N.), 1.
 Washington folio, Darton and Keith, 1.

Canada.

Age of Lance Creek beds of Wyoming,
 Judith River beds of Montana, and
 Belky River beds of Canada, Hatcher,
17.
 Coal basins in Rocky Mountains, Dow­
ing, 7.
 Coal mining in the Northwest Terri­
tories, Smith (F. B.), 1.
 Crow's Nest coal fields, Leach (W. W.),
1.
 Distinctive characters of the Mid­
Cretaceous fauna, Osborn, 12.
 Dryptosaurus incrassatus, Lambe, 8.
 Geological record of Rocky Mountain
 region, Dawson, 2.
 Geologenl sketch of the Bankhead coal
 field, Turnbull, 1.
 Geologie von Canada, Haas, 2.
 Geology of Yellow Head Pass route,
 McEvoy, 1.
 New vertebrates of the mid-Cretaceous,
 Osborn, 13.
 Red Deer River, Alberta, Lambe, 4.
 Stratigraphy of the Cascade coal ba­
sin, Dowling, 10.
 Synopsis of geology of Canada, Ami. 2.
 Trionyx foveatus Leidy and Trionyx
 vagans Cope from Cretaceous rocks
 of Alberta, Lambe, 5.
 Turtle from Cretaceous rocks, Lambe,
1.
 Great Basin region.
 Bisbee folio, Ransome, 14.
 Clifton folio, Lindgren, 28.
 Copper deposits of Clifton-Morenci dis­
 trict, Lindgren, 29.
 Geology and copper deposits of Bisbee,
 Ransome, 10.
 Geology and ore deposits of the Bisbee
 quadrangle, Ransome, 11.
 Geology of Nevada, Spurr, 6.

Cretaceous—Continued.

Great Basin region—Continued.

Notes on geology of southeastern Ari­
zona, Dumble, 7.

Great Plains region.

Age of Atlantosaurus beds, Lee
(W. T.), 7.
 Age of Lance Creek beds of Wyoming,
 Judith River beds of Montana, and
 Belky River beds of Canada, Hatcher,
17.
 Alexandria folio, Todd and Hall, 1.
 Alderdin folio, Darton and O'Harr, 1.
 Baked clays and natural slags in east­
ers Wyoming, Bastin, 1.
 Benton and Niobrara formations of
 Nebraska, Condra, 5.
 Benton formation in eastern South Da­
kota, Todd (J. E.), 13.
 Coal fields of Kansas, Crane, 4.
 Coal resources of Wyoming, Trumbull,
1.
 Concretions of the Pierre shale, Bar­
bour (C. A.), 2.
 Correlation of formations of the mid­
 dle West, Hatcher, 21.
 Dakota Cretaceous of Kansas and Ne­
braska, Goud, 5.
 Dakota sandstone in Washington
 County, Kans., Charles, 1.
 De Smet folio, Todd and Hall, 3.
 Discovery of the Laramie in Nebraska,
 Fisher (C. A.), 3.
 Economic geology of the Pembina re­
gion, Berkey, 7.
 Edgemont folio, Darton and Smith, 1.
 Faults in Dakota formation at Golden,
 Patton, 4.
 Geological observations on the Rose­
bod Indian Reservation, Reagan, 5.
 Geology and paleontology of the Judith
 River beds, Stanton and Hatcher, 1.
 Geology and underground water re­
sources of the central Great Plains,
 Darton, 18.
 Geology and water resources of Patrick
 and Goshen Hole quadrangles, Adams
(G. L.), 4.
 Geology and water resources of the
 James River Valley, Todd and Hall, 2.
 Geology of Lincoln County, S. Dak.,
 Bendrat, 1.
 Hallopus, Baptanodon, and Atlantosau­
rus beds of Marsh, Williston, 25.
 Hartville folio, Smith (W. S. T.), 1.
 Huron folio, Todd (J. E.), 15.
 Jefferson County, Nebr., Carmony, 1.
 Laramie and Fort Union beds in North
 Dakota, Wilder, 7.
 Laramie Cretaceous of Wyoming, Wil­
 liston, 13.
 Leucite hills of Wyoming, Kemp and
 Knight, 1.
 Lignite deposits of North Dakota, Wild­
er, 1, 2.
FOR THE YEARS 1901–1905, INCLUSIVE.

Cretaceous—Continued.

Great Plains region—Continued.

Lignite on the Missouri, Heart, and Cannon Ball rivers, Wilder, 10.
Mitchell folio, Todd (J. E.), 11.
Morrison formation, Stanton, 8.
Morrison shales of southern Colorado and northern New Mexico, Lee (W. T.), 3.
New armored dinosaur, Williston, 26.
Newcastle folio, Darton, 14.
Oelrichs folio, Darton, 8.
Olivet folio, Todd (J. E.), 9.
Parker folio, Todd (J. E.), 10.
Recent zoopaleontology, Osborn, 21.
Report of State geologist of Nebraska, Barhour (E. I.), 8.
Restoration of Dolichorhyncops qeborni, Williston, 9.
Skeleton of Nyctodactylus with restoration, Williston, 8.
Stratigraphic position of Judith River beds, Stanton, 3.
Studies in the Mentor beds, Jones (A. W.), 1.
Sundance folio, Darton, 26.
Tests for gold and silver in shales from western Kansas, Lindgren, 7, 8.
Topographic features and paleontology of Black Hills rim, Wieland, 11.
Water resources of Devils Lake region, Babcock, 2.

Gulf region.

Cement resources of Alabama, Smith (E. A.), 3.
Preliminary report upon Florida parishes of east Louisiana, Clendenin, 1.
Salines of north Louisiana, Veatch, 1.
Subterranean waters of Louisiana, Harris, 3.
Underground waters of Louisiana and Arkansas, Veatch, 7.

Mexico.

Coal mines at Las Esperanzas, Ries, 9.
Coal fields of Las Esperanzas, Ludlow, 1.
Cretaceous of Obispo Canyon, Dumble, 4.
Criaderos de fierro de la hacienda de Vaquerias, Villarello and Böse, 1.
Geographic and geologic features and their relation to the mineral products of Mexico, Hill (R. T.), 4.
Geologia del valle de Chilpancingo, Ordoñez and Böse, 1.
Geologia de Chiapas y Tabasco, Böse, 7.
Cretaceous—Continued.

Mexico—Continued.

Geological section in Guerrero, Hall (C. E.), 1.
 Mines in the states of Chihuahua, Sinaloa, and Sonora, Weed, 8.
Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
Section across the Sierra Madre Occidental of Chihuahua and Sinaloa, Weed, 9.

Mississippi Valley region.

Geological age of certain gypsum deposits, Keyes, 24.
Geological formations of Iowa, Calvin, 4.
Geology of clays, Beger and Williams, 2.
Geology of Dakota County, Nebr., Burchard, 2.
Geology of Mills and Fremont counties, Iowa, Udden, 8.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Mississippi Valley at Little Falls, Minn., Winchell (N. H.), 8.
Geology of Oktibbeha County, Miss., Logan, 2.
Geology of Page County, Iowa, Calvin, 1.
Geology of Pottawattamie County, Iowa, Udden, 3.

New England and New York.

Geological and botanical notes: Cape Cod and Chappaquidick Island, Hollick, 4.
Results of resurvey of Long Island, Fuller and Veatch, 1.

Pacific coast region.

Berkeley Hills, Lawson and Palache, 1.
British Columbia coal fields, Brewer (W. M.), 6.
Coom Bay folio, Diller, 4.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Crows Nest Pass coal field, Brewer (W. M.); 7.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geological section of the Coast ranges, Osmont, 1.
Geology of the John Day Basin, Merrill (J. C.), 1.
Geology of Washington, Landes, 1.
Klamath Mountain section, Diller, 12.
Marine sediments of eastern Oregon, Washburne, 1.
Mesozoic of southwestern Oregon, Luderick, 6.
Mount Diablo Range of California, Anderson (F. M.), 7.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Port Orford folio, Diller, 11.
San Luis folio, Fairbanks, 7.
Significance of Cretaceous outliers in Klamath region, Hershey, 11.

Mexico—Continued.

Geological section in Guerrero, Hall (C. E.), 1.
Mines in the states of Chihuahua, Sinaloa, and Sonora, Weed, 8.
Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
Section across the Sierra Madre Occidental of Chihuahua and Sinaloa, Weed, 9.

Mississippi Valley region.

Geological age of certain gypsum deposits, Keyes, 24.
Geological formations of Iowa, Calvin, 4.
Geology of clays, Beger and Williams, 2.
Geology of Dakota County, Nebr., Burchard, 2.
Geology of Mills and Fremont counties, Iowa, Udden, 8.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Mississippi Valley at Little Falls, Minn., Winchell (N. H.), 8.
Geology of Oktibbeha County, Miss., Logan, 2.
Geology of Page County, Iowa, Calvin, 1.
Geology of Pottawattamie County, Iowa, Udden, 3.

New England and New York.

Geological and botanical notes: Cape Cod and Chappaquidick Island, Hollick, 4.
Results of resurvey of Long Island, Fuller and Veatch, 1.

Pacific coast region.

Berkeley Hills, Lawson and Palache, 1.
British Columbia coal fields, Brewer (W. M.), 6.
Coom Bay folio, Diller, 4.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Crows Nest Pass coal field, Brewer (W. M.); 7.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geological section of the Coast ranges, Osmont, 1.
Geology of the John Day Basin, Merrill (J. C.), 1.
Geology of Washington, Landes, 1.
Klamath Mountain section, Diller, 12.
Marine sediments of eastern Oregon, Washburne, 1.
Mesozoic of southwestern Oregon, Luderick, 6.
Mount Diablo Range of California, Anderson (F. M.), 7.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Port Orford folio, Diller, 11.
San Luis folio, Fairbanks, 7.
Significance of Cretaceous outliers in Klamath region, Hershey, 11.

Mexico—Continued.

Geological section in Guerrero, Hall (C. E.), 1.
Mines in the states of Chihuahua, Sinaloa, and Sonora, Weed, 8.
Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
Section across the Sierra Madre Occidental of Chihuahua and Sinaloa, Weed, 9.

Mississippi Valley region.

Geological age of certain gypsum deposits, Keyes, 24.
Geological formations of Iowa, Calvin, 4.
Geology of clays, Beger and Williams, 2.
Geology of Dakota County, Nebr., Burchard, 2.
Geology of Mills and Fremont counties, Iowa, Udden, 8.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Mississippi Valley at Little Falls, Minn., Winchell (N. H.), 8.
Geology of Oktibbeha County, Miss., Logan, 2.
Geology of Page County, Iowa, Calvin, 1.
Geology of Pottawattamie County, Iowa, Udden, 3.

New England and New York.

Geological and botanical notes: Cape Cod and Chappaquidick Island, Hollick, 4.
Results of resurvey of Long Island, Fuller and Veatch, 1.

Pacific coast region.

Berkeley Hills, Lawson and Palache, 1.
British Columbia coal fields, Brewer (W. M.), 6.
Coom Bay folio, Diller, 4.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Crows Nest Pass coal field, Brewer (W. M.); 7.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geological section of the Coast ranges, Osmont, 1.
Geology of the John Day Basin, Merrill (J. C.), 1.
Geology of Washington, Landes, 1.
Klamath Mountain section, Diller, 12.
Marine sediments of eastern Oregon, Washburne, 1.
Mesozoic of southwestern Oregon, Luderick, 6.
Mount Diablo Range of California, Anderson (F. M.), 7.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Port Orford folio, Diller, 11.
San Luis folio, Fairbanks, 7.
Significance of Cretaceous outliers in Klamath region, Hershey, 11.
INDEX TO NORTH AMERICAN GEOLOGY

Cretaceous—Continued.

Rocky Mountain region.
Age of Lance Creek beds of Wyoming, Judith River beds of Montana, and Belly River beds of Canada, Hatcher, 17.
Aladdin folio, Darton and O’Harra, 1.
Coal fields of Uinta County, Wyo., Knight (W. C.), 7.
Coal on Turkey Creek, Colorado, Stone, (G. H.), 3.
Comanche formation in southeastern Colorado, Darton, 24.
Cretaceous and Lower Tertiary section in south central Montana, Douglass, 3.
Dinosaur beds of the Grand River Valley, Riggs, 1.
FRESH-water molluscen fauna from Cretaceous of Montana, Stanton, 4.
Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.
Geology of Black Hills, Darton, 1.
Geology of Boulder district, Fenneman, 10.
Geology of Castle Rock region, Lee (W. T.), 3.
Geology of Rico quadrangle, Cross (W.), 7.
Geology of southwestern Montana, Douglass, 10.
Hallopus, Baptanodon, and Atlantosaurus beds of Marsh, Williston, 25.
Jurassic beds of the Texa", Cretaceous, Prather, 1.
Jurassic horizon around the southern end of the Rocky Mountains, Keyes, 51.
Kreide-Ammoniten von Texas, Lassowitz, 1.
Mollusca of Buda limestone, Shattuck, 8.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Stratigraphic notes on Malone Mountain, Stanton, 7.
Stratigraphic sequence in trans-Pecos Texas, Richardson (G. B.), 5.
Tishomingo folio, Taff, 6.
Unconformity of the Cretaceous on older rocks in central New Mexico, Keyes, 44.
West Indies.
Geological reconnaissance of Cuba, Hayes, Vaughan, and Spencer, 1.
General.
Geographical distribution of fresh-water decapods, Ortmann, 3.
Recent literature on Laramie formation, Hay, 7.
Recent zoopaleontology, Osborn, 20.
Delaware.
Clays of the United States, Ries, 6.
Matawan formation, Clark (W. B.), 5.
Underground waters of Delaware, Darton, 22.

Cretaceous—Continued.

Southwestern region—Continued.
Atoka folio, Taff, 3.
Austin chalk underlying Waco, Tex., Prather, 2.
Austin folio, Hill and Vaughan, 1.
Cinnabar deposits of Big Bend province, Hill (R. T.), 8.
Chalk of southwestern Arkansas, Taff, 5.
Cretaceous and later rocks of Presidio and Brewster counties, Dumble, 12.
Fossils of the Texas Cretaceous, Prather, 1.
Geologie und Petrographie der Apache Mountains, Osann, 1.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Geology and water resources of Oklahoma, Gould, 14.
Geology of Arbuckle and Wichita Mountains, Taff, 13.
Geology of Shafter silver-mine district, Udden (Johan A.), 11.
Geology of the Cerrillos Hills, Johnson (D. W.), 4, 5.
Geology of the Glass Mountains, White (M.), 1.
Geology of the Jemez-Albuquerque region, Reagan, 1.
Jurassic horizon around the southern end of the Rocky Mountains, Keyes, 51.
Kreide-Ammoniten von Texas, Lassowitz, 1.
Mollusca of Buda limestone, Shattuck, 8.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Stratigraphic notes on Malone Mountain, Stanton, 7.
Stratigraphic sequence in trans-Pecos Texas, Richardson (G. B.), 5.
Tishomingo folio, Taff, 6.
Unconformity of the Cretaceous on older rocks in central New Mexico, Keyes, 44.
West Indies.
Geological reconnaissance of Cuba, Hayes, Vaughan, and Spencer, 1.
General.
Geographical distribution of fresh-water decapods, Ortmann, 3.
Recent literature on Laramie formation, Hay, 7.
Recent zoopaleontology, Osborn, 20.
Delaware.
Clays of the United States, Ries, 6.
Matawan formation, Clark (W. B.), 5.
Underground waters of Delaware, Darton, 22.
FOR THE YEARS 1901–1905, INCLUSIVE. 441

Devonian.

Alaska.
Geological section of Rocky Mountains in northern Alaska, Schrader, 1.
Gold placers of Forty-mile, Birch Creek, and Fairbanks regions, Prindle, 2.
Preliminary report on the Ketchikan mining district, Brooks, 4.
Reconnaissance in Alaska, Schrader, 5.

Appalachian region.
Contributions to Devonian paleontology, Williams and Kindle, 1.
Devonian era in Ohio basin, Claypole, 5.
Devonic and Ontarian formations of Maryland, Schuchert, 7.

Devonian—Continued.

Canada—Continued.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology of Charlotte County, Ellis (R. W.), 24.
Geology of St. Helens Island, Nolan and Dixon, 1.
Geology of the principal cities in eastern Canada, Ami, 1.
Hamilton group of Thedford, Ontario, Shimer and Grabau, 1.
Knoydart formation of Nova Scotia, Ami, 3.
New geological formation in the Devonian, Ami, 4.
Nictaux iron field, Weatherbe, 1.
Perce: Sketch of its geology, Clarke (J. M.), 26.
Petroleum and natural gas in Ontario, Corkill, 2.
Problems in New Brunswick geology, Ellis (R. W.), 25.
Silurian and Devonian formations of eastern Canada, Ami, 12.
Stratigraphical note, Ami, 10.
Stratigraphy versus paleontology in Nova Scotia, Matthew (G. P.), 15.
Synopsis of geology of Canada, Ami, 2.

Great Basin region.
Bisbee folio, Ransome, 14.
Clifton folio, Lindgren, 28.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Evidences of shallow seas in Paleozoic time, Blake (W. P.), 2.
Geology and copper deposits of Bisbee, Ransome, 10.
Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.
Geology of Arizona, Blake (W. P.), 1.
Geology of Globe copper district, Ransome, 6.
Geology of Nevada, Spurr, 6.
Note on geology of southeastern Arizona, Dumble, 7.
Stratigraphy of Uinta Mountains, Berkeley, 8.

Great Lakes region.
Chicago folio, Alden, 1.
Geologic section in Alpena and Presque Isle counties, Grabau, 2.
Hamilton formation at Milwaukee, Teller, 1.
Paleozoic coral reefs, Grabau, 10.
Stratigraphy of Traverse group of Michigan, Grabau, 5.
Subsurface geology of Alcona County, Mich., Lane, 7.
Traverse group of Michigan, Grabau, 14.

Greenland.
Bidrag till nordöstra Grönlands geologi, Nathorst, 1.
Devonian—Continued.

Mississippi Valley region.
- Devonian fossils and stratigraphy of Indiana, Keyes, 1.
- Devonian hiatus in continental interior, Keyes, 28.
- Devonian interval in Missouri, Keyes, 26.
- Fayetteville folio, Adams and Ulrich, 1.
- Fluorspar deposits of southern Illinois, Bain, 10.
- Formations of northern Arkansas, Ulrich, 5.
- Geological formations of Iowa, Calvin, 4.
- Geological section across northern Illinois, Udden (Johan A.), 1.
- Geology of Benton County, Iowa, Savage, 7.
- Geology of Cedar County, Iowa, Norton, 1.
- Geology of Chickasaw County, Iowa, Calvin, 11.
- Geology of clays, Beyer and Williams, 2.
- Geology of Fayette County, Iowa, Savage, 8.
- Geology of Howard County, Iowa, Calvin, 10.
- Geology of Minnesota, Hall (C. W.), 7.
- Geology of Missouri, Gallaher, 1.
- Geology of Mitchell County, Iowa, Calvin, 12.
- Geology of Moniteau County, Mo., Van Horn, 1.
- Geology of Tama County, Iowa, Savage, 3.
- Leat, zinc, and fluorspar deposits of western Kentucky, Ulrich, 8.
- Physiography and geology of the Ozark region, Adams (G. L.), 3.
- Silver Creek hydraulic limestone, Siebenthal, 2.
- Tablequash folio, Taff, 17.
- Water resources in Arkansas, Purdue, 9.
- Zinc and lead deposits of Arkansas, Adams (G. L.), 15.

New England and New York.
- Classification of rocks of Watkins Glen quadrangle, Williams (H. S.), 7.
- Concretions in the Chemung of New York, Kindle, 5.
- Correlation of geological faunas, Williams (H. S.), 5.
- Devonian and Carbonic formations of southwestern New York, Glenn, 1.
- Drift fossils, Hollick, 8.
- Dwarf fauna of Tully limestone, Loomis, 4.
- Fauna of Agoniatite limestone of Onondaga County, N. Y., Wilson (J. D.), 1.
- Fauna of Stafford limestone, Talbot, 1.
- Folds on the border of the Appalachian system, Kindle, 4.
- Geologic map of the Tully quadrangle, Clarke and Luther, 3.

Devonian—Continued.

- Geology and paleontology of Niagara Falls, Grabau, 1.
- Geology of eastern New York, Prosser, 11.
- Geology of Onondaga County, N. Y., Schneider, 1.
- Geology of Perry basin, Smith and White, 1.
- Geology of Watkins and Elmira quadrangles, Clarke and Luther, 2.
- Hamilton fossils from Bethany, N. Y., Monroe, 1.
- Holdberg invasion of the Manlius, Harris, 7.
- Lime and cement industries of New York, Ris, 4.
- Limestones interbedded with shales of Marcellus stage, Clarke (J. M.), 2.
- Limonite beds at Cornwall, Hartnagel, 3.
- Map of Canandaigua and Naples quadrangles, Clarke and Luther, 1.
- Marcellus limestone, Wood (Elvira), 1.
- Oak rock section, Clarke (J. M.), 16.
- Origin of limestone faunas of the Marcellus shales of New York, Clarke (J. M.), 21.
- Oriskany sandstone, Wheelock, 1.
- Paleozoic coral reefs, Grabau, 10.
- Quarry industry in southeastern New York, Eckel, 6.
- Report of State paleontologist, Clarke (J. M.), 5, 11.
- Rocks of Rondout, Van Ingen and Clark, 1.
- Shifting of faunas, Williams (H. S.), 4.
- Siluric and Devonian faunas of Trilobite Mountain, Shimer, 5.
- Stratigraphic value of Portage sandstones, Luther, 1.
- Stratigraphy of Becraft Mountain, Grabau, 9.
- Stratigraphy of Portage formation, Luther, 2.

Ohio Valley region.
- Berea Grit oil sand in Cadiz quadrangle, Griswold, 1.
- Bearing of Clinton and Osgood formations on age of Cincinnati anticline, Foerste, 4.
- Cincinnati anticline in southern Kentucky, Foerste, 3.
- Columbia folio, Hayes and Ulrich, 1.
- Contributions to Devonian paleontology, Williams and Kindle, 1.
- Delaware limestone, Prosser, 13.
- Devonian era in Ohio basin, Claypole, 5.
Devonian—Continued.

Ohio Valley region—Continued.

Field geology in Ohio State University, Mead (C. S.), 1.
New fossil plants from Carboniferous and Devonian, Herzer, 4.
New fossils from Corniferous, Hamilton, and Medina shales, Herzer, 5.
New points on the fin attachment of Dinichthys and Cladosodus, Clark (W.), 1.

Nomenclature of Ohio geological formations, Presser, 10, 15.
Ohio natural-gas fields, Bownocker, 4.
Oil and gas producing rocks of Ohio, Bownocker, 3.
Petroleum and natural gas in Ohio, Bownocker, 5.

Section across southern Indiana, Newson, 3.
Silurian and Devonian limestones of western Tennessee, Foerste, 7.
Structure of Dinichthys, Wright (A. A.), 1.
Thick ness of Columbus limestone, Griggs, 1.
Topography and geology of Indiana, Hopkins (T. C.), 11.

Pacific coast region.

Klamath Mountain section, Diller, 12.

Rocky Mountain region.

Carboniferous formations and faunas of Colorado, Girty, 3.
Devonian formation in Colorado, Cross (W.), 5.
Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.
Geology of the Needle Mountains quadrangle, Cross and Howe, 3.
Geology of Rice quadrangle, Cross (W.), 7.
Geology of southwestern Montana, Douglass, 10.

Silverton folio, Cross and Howe, 1.

Southeastern region.

Geology of Arbuckle and Wichita Mountains, Taff, 13.
Geology of Fort Apache region, Reagan, 3.
Tishomingo folio, Taff, 6.
Texas petroleum, Phillips (W. B.), 1.

General.

Faunal provinces of middle Devon of America, Schuchert, 5.
Oberdövon Europas und Nordamerikas, Hartzell, 1.
Physical characters and history of some New York formations, Grabau, 17.
Siluro-Devonian boundary question, Williams (H. S.), 2.

District of Columbia.

Clays of the United States, Ries, 6.
Underground waters of the District of Columbia, Darton and Fuller, 2.
Washington folio, Darton and Keith, 1.

Dynamic and structural geology (geographic divisions).

Alaska.

Alaska glaciers and glaciation, Gilbert, 13.
Pacific coast glaciers, Muir, 1.
Recent changes of level in Alaska, Tarr and Martin, 1.
Reconnaissance of the Cape Nome and adjacent gold fields of the Seward Peninsula, Brooks and others, 1.

Appalachian region.

Anticlinal folds near Meadville, Pa., Smallwood and Hopkins, 1.
Cockeysville marble, Mathews and Miller, 1.

Folded faults in southern Appalachian, Keith, 2, 10.

Geographic development of northern Pennsylvania and southern New York, Campbell (M. R.), 9.
Geologic relations of the iron ores in the Cartermile district, Hayes (C. W.), 1.

Geology of Rand Hill, Cushing, 2.
Geology of the Tullahulah gorge, Jones (S. P.), 1.

Lineaments of the Atlantic border region, Hobbs, 22.

Maynardville folio, Keith, 1.
Mismaned Indiana anticline, Richardson (G. B.), 1.
Paleozoic Appalachia, Willis, 1.
Paleozoic limestones of Kittatinny Valley, Kimmel and Weller, 1.
Recent work in the bituminous coal field of Pennsylvania, Campbell (M. R.), 11.

Structure of the Piedmont Plateau, Mathews, 5.

Atlantic coast region.

Bathymetrical features of the north polar seas, Nansen, 2.
Submarine canyon of Hudson River, Spencer (J. W.), 12.
Washington folio, Darton and Keith, 1.

Canada.

Composition of Canadian limestone, Donald, 2.
Éboulis a Saint Luc de Vincennes, Lafamme, 2.
Earthquakes in New Brunswick, Kain, 1.
Frank disaster, Fernie, 1.
Frank disaster, Green, 1.

Geology of the Moose River gold district, Woodman, 4.

Geology of the Paleozoic basin, Ellis (R. W.), 1.

Frank disaster, Smith (F. B.), 2.

Landslide at Frank, Alberta, McCon nell and Brock, 1.

Landslide on the Lièvre River, Barlow, 9.
Dynamic and structural geology (geographic divisions)—Continued.

Canada—Continued.
Landslide on Lièvre River, Ells (R. W.), 16.
Modifications remarquables causées à l'embouchure de la Rivière Ste. Anne, Lallamme, 1.
Natural history and physiography of New Brunswick, Ganong, 3.
Physiography of Acadia, Daly, 1.
Raised shore lines of St. Lawrence Valley and Great Lakes, Chalmers, 6.
Rock basins of Helen mine, Michipicoten, Canada, Coleman, 11.
Rock movements in the Laurentian and Huronian areas, Mills (S. D.), 1.
Rock-slide at Alberta, Brewer (W. M.), 10.
Rock-slide at Frank, Han nel, 1.
Seismology in Canada, Stupart, 1.
Shore lines and landslips of St. Lawrence Valley, Chalmers, 1.
Was Mount Royal an active volcano? Buchan, 1.

Central America.
Additions to the list of Nicaragua volcanic eruptions in historic time, Crawford, 4.
Análisis de cenizas del volcán de Santa María, Villaseñor, 1.
Ausbruch des Vulkans St. Maria, Sapper, 5, 6.
Cenizas del volcán de Santa María, Ordóñez, 13.
Earthquake and volcanic eruption in Guatemala, Eisen, 1.
Earthquakes in Nicaragua, Crawford, 1.
Erdbeken in Guatemala, Sapper, 4.
Flutschwankungen und die vulkanischen Ereignisse in Mittelamerika, Krebs, 1.
List of most important volcanic eruptions and earthquakes in western Nicaragua within historic time, Crawford, 3.
Recent earthquakes, Rockstroh, 1.
Südlichsten Vulkane Mittel-Amerikas, Sapper, 2.
Volcanoes and earthquakes in Nicaragua, Crawford, 2.
Volcanic eruptions in Guatemala, Winterton, 1.
Vulkan Izalco, Sapper, 7.
Vulkanausbruch in Mittelamerika, Sapper, 23.
Vulkanischen Ereignisse in Mittelamerika, Sapper, 20, 21.

Great Basin region.
Basin-range structure in the Death Valley region, Campbell (M. R.), 13.
Basin-range structure of the Humboldt region, Louderback, 4.
Colossal bridges of Utah, Dyar, 1.

Great Lakes region.
Beach structure in Medina sandstone, Fairchild, 1.
Delta of St. Clair River, Cole (L. J.), 1.
Ellipsoidal structure in pre-Cambrian rocks of Lake Superior region, Clements, 4.
Evidences of caves of Put-in-Bay on question of land tilting, Fuller (M. L.), 16.
Geothermal gradient in Michigan, Lane, 18, 16, 27.
Hydration caves, Krauss, 7.
Junction of Lake Superior sandstone and Keeweenawan traps, Grant (U. S.), 2.
Wave cutting on west shore of Lake Huron, Gordon (C. H.), 3.
Wisconsin shore of Lake Superior, Collie, 1.

Great Plains region.
Concretions of Ottawa County, Bell (W. T.), 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Dynamic and structural geology (geographic divisions)—Continued.

Great Plains region—Continued.
- Erosion on the Great Plains, Upham, 25.
- Geology of the Black Hills, Jaggar, 5.
- Mountain growths of Great Plains, Willls, 10.

Greenland.
- Samples of the sea floor along the coast of east Greenland, Böggild, 5.

Gulf region.
- Recent elevation of Gulf coast, Vaughan, 11.

Hawaiian Islands.
- Brevity of tuft cone eruptions, Bishop (S. E.), 1.
- Characteristics of Kau, Emerson (J. S.), 1.
- Eruption of Mauna Loa, Wood (Edgar), 1.
- Kilauea again active, Hitchcock (C. H.), 9.

Mexico.
- Área cubierta por la ceniza del volcán de Santa María, Böse, 6.
- Condiciones tectónicas de la República Mexicana, Aguillera, 2.
- Éruptions du volcan de Colima, Ordóñez, 10.
- Erupciones de Colima, Arreola, 1.
- Geographic and geologic features and their relation to the mineral products of Mexico, Hill (R. T.), 4.
- Geology of western Mexico, Farrington, 13.
- Latest eruption of Colima volcano; Ishikawa, 1.
- Orígen de los temblores de Zanatepec, Böse, 5.
- Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
- Regiones de temblores en México, Böse, 2.
- Temblor en Guerreró, Böse and Angermann, 1.
- Volcán de Tancana, Böse, 3.
- Volcenes de Zacapa, Ordóñez, 3.
- Xinantcatl on volcán Nevado de Toluc, Ordóñez, 7.

Mississippi Valley region.
- Age of the Kansan drift sheet, Hershey, 4.
- Corroding action of river water during floods, Morscher, 1.
- Devonian interval in Missouri, Keyes, 20.
- Evidence of local subsidence, Campbell (J. T.), 1.
- Geologic relations of the human relics of Lancing, Kans., Chamberlin (T. C.), 5.

Dynamic and structural geology (geographic divisions)—Continued.

Mississippi Valley region—Continued.
- Geology of Miller County, Ball and Smith, 1.
- Kansas River flood, Haworth, 5.
- King-Bitter fault, Ruhl, 1.
- Loess with horizontal shearing planes, Udden, 4.
- New Madrid earthquake, Brondhead, 3.
- New Madrid earthquake, McGee, 1.
- New Madrid earthquake, Shepard, 3.
- Observations at Pegmatite Hill, Ruhl, 2.

Pre-Glacial drainage in southwestern Ohio, Miller (A. M.), 1.
- River beds and bluffs, Holney, 1.
- Smoking bluffs of the Missouri River region, Powers, 1.
- Terrace formation in Turkey River Valley, Finch (G. E.), 1.

New England and New York.
- Alnoite dikes in East Canada Creek, Schneider, 15.
- Ames Knob, North Haven, Me., Willls, 12.
- Erosion by flying sand, Julien, 2.
- Eruptive dikes near Ithaca, Schneider, 7.
- Folds on the border of the Appalachian system, Kindle, 4.
- Geologic features within the 8,000-acre grant, Sheldon and Sheldon, 1.
- Geology of Ascutney Mountain, Daly, 7.
- Geology of the serpentines of central New York, Schneider, 6.
- Glacial phenomena in Adirondacks and Champlain Valley, Ogilvie, 1.
- Landslides of Mount Greylock and Briggsville, Mass., Cleland, 1.
- Marcellus fault, Schneider, 3.
- Micaceous cross-banding of strata, Woodworth, 1.
- Nantucket shore lines, Gulliver, 3.
- New dike at Ithaca, Barnett, 1.
- Newark system of the Pomperaug Valley, Hobbs, 2.
- Overthrust faults in central New York, Wheelock, 2.
- Overthrust faults in New York, Schneider, 9.
- Rate of lateral erosion at Niagara, Wright (G. F.), 3.

- Representatives of pre-Wisconsin till, Fuller (M. L.), 1.
- River terraces of New England, Davis (W. M.), 3.
- River system of Connecticut, Hobbs, 2.
Dynamic and structural geology (geographic divisions)—Continued.

Rocks of Rondout, Van Ingen and Clark, 1.
Sand plains of Glacial lake Sudbury, Goldthwait, 1.
Taconic physiography, Dale, 9.
Terraces of Westfield River, Mass., Davis (W. M.), 28.
Undulations of the Lockport limestone, Gilbert, 24.
Ohio Valley region.
Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich and Smith, 1.
Natural gas explosion near Waldron, Ind., Newsom, 2.
Pacific coast region.
Anticlinal mountain ridges in central Washington, Smith (G. O.), 10.
Asymmetry of crest lines in the high Sierra of California, Gilbert, 19.
Berkeley Hills, Lawson and Palache, 1.
Clastic dikes, Newsom, 4.
Drainage features of California, Lawson (A. C.), 1.
Ellensburg folio, Smith (G. O.), 7.
Erosion on the Pacific coast, Holder, 2.
Fault-system, Gunther, 2.
Geological section of the coast ranges, Osmont, 1.
Geology of Mineral King, Knopf and Theilen, 1.
Geology of Salinas Valley, Nutter, 1.
Geomorphogeny of Klamath Mountains, Diller, 3.
Glacier of Mount Lyell, Lee (W. T.), 10.
Marine Pliocene and Pleistocene stratigraphy of coast of southern California, Arnold and Arnold, 1.
Origin of transverse mountain valleys, Le Conte, 1.
Post-Tertiary elevation of the Sierra Nevada, Turner, 10.
Profile of maturity in Alpine glacial erosion, Johnson (W. D.), 3.
Significance of Cretaceous outliers in Klamath region, Hershey, 11.
Significance of term Sierran, Hershey, 8.
Structure of Klamath Mountains, Hershey, 17.
Subsidence of Santa Catalina, Ritter (W. E.), 1.
Panama.
Geology of the Isthmus of Panama, Hershey, 5.
Philippine Islands.
Volcanoes and seismic centers of the Philippine Archipelago, Maso, 1.

Dynamic and structural geology (geographic divisions)—Continued.

Rocky Mountain region.
Boston Mountain physiography, Hershey, 12.
Complicated fault system, Bacom, 1.
Cripple Creek, Lakes, 2.
Cripple Creek volcano, Rickard (T. A.), 1.
Effect of cliff erosion on form of contact surfaces, Fenneman, 6.
Erosion on the Great Plains and on the Cordilleran Mountain belt, Upham, 25.
Examples of Colorado faults, Lakes, 95.
Fault planes in the Dakota fire-clay beds at Golden, Patton, 3.
Faults in the Dakota formation at Golden, Patton, 4.
Fracture valley system, Iddings, 2.
Geology of Castle Rock region, Lee (W. T.), 2.
Geology of Black Hills, Darton, 1.
Geology of Silverton quadrangle, Cross, 1.
Geology of the Boulder district, Fenneman, 10.
Glacial erosion in the Sawatch Range, Davis (W. M.), 54.
Glaciation of the Sawatch Range, Davis (W. M.), 58.
Hanging valleys of Georgetown, Crossby, 6.
Hydrographic history of South Dakota, Todd (J. E.), 4.
Laccoliths of the Black Hills, Jaggar, 1.
La Plata folio, Cross and Spencer, 1.
Oil of the northern Rocky Mountains, Willis, 4.
Overturns in the Denver basins, Henderson (J.), 1.
Recent earth movements, Lakes, 42.
Spanish Peaks folio, Hills, 1.
Stratigraphy and structure, Lewis and Livingston ranges, Mont., Willis, 6.
Structure of Front Range, northern Rocky Mountains, Mont., Willis, 7.
Volcanoes, Lakes, 34.
Southwestern region.
Block Mountains in New Mexico, Johnson (D. W.), 7.
Block Mountains in New Mexico, Keyes, 37.
Caliche of southern Arizona, Blake (W. P.), 4.
Coast prairie of Texas, Hill (R. T.), 1.
Colgate folio, Taft, 2.
Depositional measure of unconformity, Keyes, 1.
Earthquakes in New Mexico, Bagg, 4.
Laws of formation of New Mexico mountain ranges, Herrick (C. L.), 4.
Plication in the rocks of Cananea, Blake (W. P.), 17.
Minature overthrust fault and anticline, Purdue, 2.
Dynamic and structural geology (geographic divisions)—Continued.

Southwestern region—Continued.
Penepains of the Ozark highland, Hershey, 1.
Structures of Basin Ranges, Keyes, 45.
Topography and geology of New Mexico, Jewett, 1.
Valleys of solution in northern Arkansas, Purdie, 1.

West Indies.
Activity of Mont Pelée, Heilprin, 4.
Antillean volcanoes, McGee, 3.
Ausbruchspériode des Mont Pelé, Stübel, 2.
Bibliography of West Indian eruptions, Hovey (E. O.), 32.
Composition des gaz des fumerolles du Mont Pelée, Gautier, 1.
Der Vulkan, Hans, 1.
Die vulcanischen Klein Antillen und die Ausbrüche der Jahre, 1902 und 1903, Sapper, 19.
Erosion phenomena in St. Vincent and Martinique, Hovey (E. O.), 35.
Erosion phenomena on islands of St. Vincent and Martinique, Hovey (E. O.), 30.
Eruption de la Martinique, Lacroix, 13.

Eruption of Mont Pelée, Jaggar, 4.
Eruption du volcan de Saint-Vincent, Lacroix, 15.
Eruptions de la Montagne Pelée et ses éruptions, Lacroix, 20.

Eruption de la Montagne Pelée, Michel-Lévy, 1.

Eruption of Mont Pelée, Jaggar, 8.
Eruption of Mount Pelée, Jaggar, 6.

Eruption volcanique à la Martinique, Thierry, 1.

Eruptions de Saint-Vincent, Lacroix, 10.

Éruptions des nuages de la Montagne Pelée, Lacroix, 12.

Eruptions of 1902 of La Soufrière, St. Vincent, and Mont Pelée, Martinique, Hovey (E. O.), 9.

Eruptions of La Soufrière, St. Vincent, 1902, Hovey (E. O.), 10.

Eruptions of Mont Pelée and the Soufrière, Hovey (E. O.), 33.

Eruptions of Soufrière, Anderson and Flett, 2.

Éruptions volcaniques de la Martinique, Lacroix, 11.

État actuel du volcan de la Montagne Pelée, Lacroix, 8.

État actuel de la Soufrière de la Guadeloupe, Lacroix, 14.

Field notes of a geologist in Martinique and St. Vincent, Jaggar, 2.

Gaz des fumerolles du Mont Pelée, Moissan, 1.

Geological and physical development of Antigua, Spencer (J. W.), 1.

Dynamic and structural geology (geographic divisions)—Continued.

West Indies—Continued.

Geological and physical development of Augilla, St. Martin, St. Bartholomew, and Saba banks, Spencer (J. W.), 3.

Geological and physical development of Guadeloupe, Spencer (J. W.), 2.

Geological and physical development of the St. Christopher chain and Saba banks, Spencer (J. W.), 4.

Geological features of Azores, Howarth, 1.

Geological relationship of volcanoes of West Indies, Spencer (J. W.), 8.

Grande Soufrière of Guadeloupe, Hovey (E. O.), 31.

Grand Soufrière of St. Vincent, Hovey (E. O.), 28.

Inner cone of Mont Pelée, Hovey (E. O.), 22.

Krater der Soufrière von St. Vincent, Sapper, 16.

La Montagne Pelée et ses éruptions, Lacroix, 20.

Martinique, Sapper, 15.

Martinique and St. Vincent; preliminary report upon the eruptions of 1902, Hovey (E. O.), 12.

Martinique and St. Vincent revisited, Hovey (E. O.), 18.

Martinique und St. Vincent, Stübel, 1.

Martinique und sein Vulkanismus, Deckert, 2.

Mechanism of Mont Pelé spine, Gilbert, 16.

Mission de la Martinique, Lacroix, 4, 16.

Mont Pelé, Hovey (E. O.), 20.

Mont Pelé, Hovey (E. O.), 26.

Mont Pelé, Jaggar, 7.

Mont Pelé and the tragedy of West Indies, Heilprin, 3.

Mont Pelé—the eruptions of August 24 and 30, 1902, Heilprin, 7.

Nature of Pelé tower, Heilprin, 8.

Nature of phenomena of eruption of Mont Pelé, Divers, 1.

New cone and obelisk of Mont Pelé, Hovey (E. O.), 29.

New cone of Mont Pelé, Hovey (E. O.), 17.

Next eruption of Pelée, Jaggar, 3.

Obelisk of Mont l'elée, Heilprin, 6.

Obelisk of Mont Pelé, Hovey (E. O.), 21.

Obelisk of Montagné Pelée, Heilprin, 5, 6.

Observations sur les éruptions volcaniques, Lacroix, 7.

Peculiar character of eruption of Mont Pelée, Verrill, 1.

Pelé and the evolution of the Windward Archipelago, Hill (R. T.), 16.
Dynamic and structural geology (geographic divisions)—Continued.

West Indies—Continued.
Péle obelisk, Russell, 12, 22.
Péle's obelisk, Argall (P. H.), 1.
Présence de l'argon dans les gaz des fumerolles de la Guadeloupe, Moisan, 2.
Recent eruptions of Mont Pélee, Nicholls, 1.
Recent tufts of the Soufrière, Howe (E.), 2.
Recent volcanic eruptions, Anderson (T.), 1.
Recent volcanic eruptions in West Indies, Milne, 1.
Recent volcanic eruptions in West Indies, Russell, 3.
St. Vincent, Sapper, 18.
St. Vincent, eruptions of 1902, Hovey (E. O.), 36.
Secondary phenomena of West Indian volcanic eruptions, Curtis, 1.
Soufrière of St. Vincent, Hovey (E. O.), 27.
Spine on Mont Pélee, Jaggar, 7.
Tower of Péleé, Heilprin, 9, 10.
Visit to Martinique and St. Vincent after the great eruptions of May and June, 1902, Hovey (E. O.), 11.
Volcanic action and the West Indian eruptions of 1902, Lobley, 1.
Volcanic eruptions in the West Indies, Anderson (T.), 2.
Volcanic eruptions in the West Indies, Burns, 1.
Volcanic eruptions on Martinique and St. Vincent, Russell, 4.
Volcanoes of Caribbean Islands, Hovey (E. O.), 22.
Volcanoes of Martinique, Guadeloupe, and Saba, Hovey (E. O.), 44.
Volcanoes of St. Vincent, St. Kitts, and St. Lucia, Hovey (E. O.), 45.
Vulcanengebiete Mittelamerikas und Westindiens, Sapper, 24.
Vulkei Péleé, Krakatou, Etana, Vesuv, Kewitsch, 1.
Vulkanische Asche vom Vulkan Soufrière, Klein, 1.
Vulkanischen Ausbrüche auf den Kleinen Antillen, Hoernes, 1.
Vulkanischen Ereignisse in Westindien, Berges, 1.
Vulkanski udbrud i Vestindien, Kolderup, 3.
West Indian eruptions of 1902, Curtis, 2.
West Indian volcanic eruptions, Milne, 2.

Dynamic and structural geology (divisions by subject matter)—Continued.

Caves—Continued.
Colossal cavern, Kentucky, Hovey (H. C.), 2.
Crystal cave, South Dakota, Hovey (E. O.), 34.
Geology of Jacobs Cavern, Gould, 12.
Grottes des États-unis d'Amerique, Le Couppey de la Forrest, 1.
Hydration caves, Kraus, 7.
New Brunswick caves, Bailey (L. W.), 9.
Note on Oliver's cave, Matthew (G. F.), 26.
Scientific exploration of caves, Martel, 1.

Concretions—Continued.
Concretions from Connecticut Valley, Sheldon, 1.
Concretions in the Chemung of New York, Kindle, 5.
Concretions of the Pierre shale, Barbour (C. A.), 2.

Deformation—Continued.
Geographic development of northern Pennsylvania and southern New York, Campbell (M. R.), 9.
Niagara domes of northern Indiana, Kindle, 3.
Physiography and deformation of the Wenatchee-Chelan district, Willis, 11.

Earthquakes—Continued.
Audubon's account of the New Madrid earthquake, Fuller (M. L.), 28.
Earthquake and volcanic eruption in Guatemala, Eisen, 1.
Earthquake records from Guam, Abbe, 4.
Earthquakes, Dutton, 1.
Earthquakes in New Mexico, Bagg, 4.
Earthquakes in Nicaragua, Crawford, 1.
Earthquakes in the New Madrid area, Fuller (M. L.), 41.
Erdbeben in Guatemala, Sapper, 4.
Erdbebenherde und Schüttergebiete von Nord-Amerika, Deckert, 1.
Les États-Unis sismiques, Montessus de Ballore, 1.

List of the most important volcanic eruptions and earthquakes in western Nicaragua within historic time, Crawford, 3.
New Madrid earthquake, Broadhead, 3.
New Madrid earthquake, McGee, 1.
New Madrid earthquake, Shepard, 3.
Origen de los temblores de Zanatepec, Böse, 5.
Recent changes of level in Alaska, Tarr and Martin, 1.
Recent earthquakes, Davison (C.), 1.
Recent earthquakes in Guatemala, Rockstroh, 1.
Recent earthquakes in New Brunswick, Kain, 1.
FOR THE YEARS 1901-1905, INCLUSIVE.

Dynamic and structural geology (divisions by subject matter)—Continued.

Earthquakes—Continued.
Records of the seismographs in North America and the Hawaiian Islands, Reid (J. F.), 14.
Regiones de temblores en México, Böse, 4.
Seismology in Canada, Stupart, 1.
Tremor en Guerrero, Böse and Angerman, 1.
Volcanoes and earthquakes, Hixon, 2.
Volcanoes and earthquakes in Nicaragua, Crawford, 2.
Volcanoes and seismic centers of the Philippine Archipelago, Maso, 1.

Erosion.
Age of the Kansan drift sheet, Hershey, 4.
Asymmetry of crest lines in the high Sierra of California, Gilbert, 19.
Broad valleys of the Cordilleras, Shaler, 1.
Colossal bridges of Utah, Dyar, 1.
Colossal bridges of Utah, Winchell (N. H.), 22.
Concreations of Ottawa County, Bell (W. T.), 1.
Corrading action of river water during floods Morscher, 1.
Dunes of the St. Croix, Berkey, 1.
Deflection of Mississippi, Bowman (1. I.), 2.
Depositional equivalent of hiatus at base of our Coal Measures, Keyes, 12.
Development of cut-off meanders, Tower, 1.
Development of river meanders, Davis (W. M.), 47.
Drainage features of California, Lawson (A. C.), 2.
Drift ice as a transporting agent, Prest, 2.
Drift ice as an eroding and transporting agent, Prest, 1.
Eboulement à Saint-Luc-de-Vincennes, Laffanme, 2.
Effect of cliff erosion on form of contact surfaces, Fenneman, 6.
Ellensburg folio, Smith (G. O.), 7.
Erosion by lying sand on beaches of Cape Cod, Julian, 6.
Erosion on the Great Plains, Upham, 25.
Erosion phenomena in St. Vincent and Martinique, Hovey (E. O.), 30, 35.
Erosion phenomena on Mont Pelée and Soufrière, Hovey (E. O.), 24.
Etching of quartz in interior of conglomerates, Fuller (M. L.), 2.
Fjords and hanging valleys, Upham, 30.
Formation of natural bridges, Cleland, 4.
Formation of Sudansky Bay, Moseley, 2.

Bull. 301—06—29
Dynamic and structural geology (divisions by subject matter)—Continued.

Erosion—Continued.

Peneplains of the Ozark highlands, Hershey, 1.

Physiographic features of Klamath Mountains, Anderson (F. M.), 2.

Pre-Glacial drainage in southwestern Ohio, Miller (A. M.), 1.

Preliminary report upon bluff and Mississippi alluvial lands of Louisiana, Clendenin, 2.

Profile of maturity in Alpine glacial erosion, Johnson (W. D.), 3.

Quaternary of southern California, Hershey, 14.

Rate of lateral erosion at Niagara, Wright (G. F.), 3.

Recent shore forms, Gregory (W. M.), 1.

River action phenomena, Todd (J. E.), 1.

River beds and bluffs, Heiney, 1.

Sea and mining, Lakes, 57.

Sculpture of massive rocks, Gilbert, 20.

Significance of Cretaceous outliers in Klamath region, Hershey, 10.

Significance of U-shaped and stream channels, Matthes, 3.

Taconic physiography, Dale, 9.

Tidal scour in harbors, Frizell, 1.

Tidal scour in harbors, Hodgdon, 1.

Twin lakes glaciated area, Westgate, 1.

Wave cutting on west shore of Lake Huron, Gordon (C. H.), 3.

Faulting.

Basin range structure of the Humboldt region, Londerback, 4.

Bisection of mountain blocks, Keyes, 52.

Block Mountains in New Mexico, Johnson (D. W.), 7.

Camp Bird and Smuggler-Union fissures, Furlong, 10.

Cockeysville marble, Mathews and Miller, 1.

Conditions in veins and faults in Butte, Briden, 1.

Complicated fault system, Bacon, 1.

Copper deposits of Clifton-Morenci district, Lindgren, 29.

Correlation of fracture systems, Hobbs, 25.

Cross-vein ore-shoots and fractures, Weed, 22.

Examples of Colorado faults, Lakes, 95.

Faulting and mountain structure in Arizona, Ransome, 5.

Faulting at Tonopah, Spurr, 24.

Fault phenomena, Lakes, 93, 94.

Faulting—Continued.

Fault phenomena near Glen Echo, Gilbert, 25.

Fault-planes in the Dakota fire-clay beds at Golden, Patton, 3.

Fault slip in Ogden Canyon, Talmage, 1.

Fault system, Gunther, 2.

Faults in the Dakota formation at Golden, Patton, 4.

Faults with special reference to coal and metal mining, Lakes, 92.

Folded faults of southern Appalachians, Keith, 2, 10.

Fracture valley system, Iddings, 2.

Geologic structure of region around Middlesboro, Ky., Ashley, 5.

Geological structure of Jornada del Muerto, Keyes, 53.

Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.

Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.

Geology and vein phenomena of Arizona, Comstock (T. B.), 1.

Geology of Globe copper district, Ransome, 6.

Geology of the Boulder district, Femeran, 10.

Geology of the Moose River gold district, Woodman, 4.

Geology of the Tonopah mining district, Spurr, 29.

Grand Canyon of the Colorado, Davis (W. M.), 1.

Great fault of the Bitterroot Mountains, Lindgren, 30.

Historical geology of Esmeralda County, Nev. Turner, 5.

Hurricane fault in southwestern Utah, Huntington and Goldthwait, 1.

Hurricane fault in the Toquerville district, Huntington and Goldthwait, 2.

King-Ritter fault, Ruhl, 1.

Laws of formation of New Mexico mountain ranges, Herrick (C. L.), 4.

Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich and Smith, 1.

Lineaments of the Atlantic border region, Hobbs, 22.

Marcellus fault, Schueler, 3.

Miniature overthrust fault and anticline, Purdue, 2.

Mountain ranges of Great Basin, Davis (W. M.), 46.

Newark system of the Pomeraug Valley, Hobbs, 2.

Origin and structure of the Basin ranges, Spurr, 1.
Dynamic and structural geology (divisions by subject matter)—Continued.

Faulting—Continued.

Origin of transverse mountain valleys, Le Conte, 1.
Overthrust faults in central New York, Wheelock, 2.
Overthrust faults in New York, Schneider, 9.
Overthrust in northern Rockies, Willis, 9.
Paleozoic limestones of Kittatinny Valley, Kümmel and Weller, 1.
Plateau province of Utah and Arizona, Davis (W. M.), 45.
Relation of faults to topography, Spurr, 16.
River system of Connecticut, Hobbs, 3.
Rocks of Rondout, Van Ingen and Clark, 1.
Stratigraphy and structure, Lewis and Livingston ranges, Montana, Willis, 6.
Stratigraphy of Uinta Mountains, Berkey, 8.
Structural features of the Joplin district, Siebenenthal, 4.
Structure and genesis of the Comstock lode, Reid (J. A.), 3.
Structures of Basin ranges, Keyes, 45.
Überschiebungen in Nordamerika, Wil- lis, 14.
Wasatch, Canyon, and House ranges, Davis (W. M.), 59.

Folding.

Anticlinal folds near Meadville, Pa., Smallwood and Hopkins, 1.
Anticlinal mountain ridges in central Washington, Smith (G. O.), 10.
Basin-range structure in Death Valley region, Campbell (M. R.), 13.
Cockeysville marble, Mathews and Miller, 1.
Ellensburg folio, Smith (G. O.), 7.
Folded faults of southern Appalachians, Keith, 2, 10.
Folds on the border of the Appalachian system, Kindle, 4.
Geologic structure of region around Middleboro, Ky., Ashley, 5.
Geology of Miller County, Ball and Smith, 1.
Geology of the Moose River gold district, Woodman, 4.
Mosaic of crystalline schists, II, Basal assumptions, Hobbs, 11.
Marcellus fault, Schneider, 3.
Miniature overthrust fault and anticline, Purdue, 2.

Dynamic and structural geology (divisions by subject matter)—Continued.

Folding—Continued.

Misnamed Indiana anticline, Richardson (G. B.), 1.
Oil of the northern Rocky Mountains, Willis, 4.
Origin and structure of the Basin ranges, Spurr, 1.
Overtures in the Denver basins, Henderson (J.), 1.
Paleozoic limestones of Kittatinny Valley, Kümmel and Weller, 1.
Plication in the rocks of Cananea, Blake (W. P.), 17.
Recent work in the bituminous coal field of Pennsylvania, Campbell (M. R.), 11.
Stratigraphy and structure, Lewis and Livingston ranges, Montana, Willis, 6.
Structural details in Green Mountain region, Dale, 1.
Structure of Klamath Mountains, Hershey, 17.
Structure of Piedmont Plateau, Mathews, 5.
Syncline as a structural type, Rickard (T. A.), 10.
Überschiebungen in Nordamerika, Wil- lis, 14.

Glaciers.

Alaska glaciers and glaciation, Gilbert, 13.
Arapahoe glacier in 1905, Henderson (J.), 5.
Asymmetry of crest lines in the high Sierra of California, Gilbert, 19.
Effect of superficial débris on the advance and retreat of some Canadian glaciers, Ogilvie, 4.
Flow of glaciers and their stratification, Reid (H. F.), 12.
Glacial erosion in northern Rockies, Matthes, 1.
Glacial erosion in the Sawatch Range, Davis (W. M.), 54.
Glacial exploration in the Montana Rockies, Chaney, 1.
Glacial studies in the Canadian Rockies, Sherzer, 2.
Glacier of Mount Lyell, Lee (W. T.), 10.
Glaciers of Alaska, Davidson, 1.
Glaciers of Mount Hood and Mount Adams, Reid (H. F.), 17.
Lewis Range of Montana and its glaciers, Matthes, 4.
Pacific coast glaciers, Muir, 1.
Profile of maturity in Alpine glacial erosion, Johnson (W. D.), 3.
Reconnaissance of Mount Hood and Mount Adams, Reid (H. F.), 4.
Relation of blue veins of glaciers to the stratification, Reid (H. F.), 11.
Dynamic and structural geology (divisions by subject matter)—Continued.

Glaciers—Continued.
Reservoir lag in glacier variations, Reid (H. F.), 16.
Statics of a tidal glacier, Gilbert, 12.
Theory of glacial motion, Chamberlin (T. C.), 14.
Structur des grönlandischen Inlandeises, Mügge, 1.
Translationsfähigkeit des Eises, Mügge, 2.
Variations of glaciers, Reid (H. F.), 2, 3, 5, 8–10, 13.
Variations périodiques des glaciers, Vaux and Vaux, 2.

Intrusion.
Alunolite dikes in East Canada Creek, Schneider, 10.
Classification of igneous rocks, Daly, 12.
Conglomerate dikes in southern Arizona, Campbell (M. R.), 15.
Eruption of rhyolite, Gilbert, 9.
Eruptive dikes near Ithaca, Schneider, 7.
Fossiliferous sandstone dikes in the Eocene of Tennessee and Kentucky, Glenn, 8.
Geology of the Black Hills, Jaggar, 5.
Geology of the serpentines of central New York, Schneider, 6.
Igneous rocks of Highwood Mountains, Pirsson, 4.
Laccoliths of the Black Hills, Jaggar, 1.
Mechanics of igneous intrusion, Daly, 8.
New dike at Ithaca, Barnett, 1.
Observations at Pegmatite Hill, Ruhl, 2.
Peridote dikes near Ithaca, Matson, 2.

Jointing.
Camp Bird and Smuggler-Union fissures, Purlington, 10.
Fault phenomena near Glen Echo, Gilbert, 25.
Geology of Miller County, Ball and Smith, 1.
Joint veins, Gilbert, 2, 8.
River system of Connecticut, Hobbs, 3.
Simultaneous joints, Becker, 6.

Landslides.
Frank disaster, Fernie, 1.
Frank disaster, Green, 1.
Frank disaster, Smith (F. B.), 2.
Landslide at Frank, Alberta, McConnell and Brock, 1.
Landslide in Chaco Cañon, Dodge, 3.
Landslide on the Lièvre River, Barlow, 9.
Landslide on Lièvre River, Eils (R. W.), 16.
Landslides of Mount Greylock and Briggsville, Mass., Cleland, 1.
Rock slide at Alberta, Brewer (W. M.), 10.

Dynamic and structural geology (divisions by subject matter)—Continued.

Landslides—Continued.
Rock slide at Frank, Hannel, 1.
Turtle Mountain rock slide, Dowlen, 1.

Magmatic differentiation.
Acidic magmas, Stevens (B.), 4.
Cause of border segregation in igneous magmas, Park, 1.
Deposition of ores from an igneous magma, Stevenson (R.), 2.
Differentiation of igneous magmas, Stevens (B.), 3.
Geology of Ascutney Mountain, Daly, 7.
Geology of the Tonopah mining district, Spurr, 29.
Igneous rocks and their segregation, Spurr, 12.
Petrographic province of central Montana, Pirsson, 5.
Phase rule and conceptions of igneous magmas, Read, 5.
Size of grain in igneous rocks, Lane, 24.

Metamorphism.
Geology of Ascutney Mountain, Daly, 7.
Geology of Mineral King, Knopf and Thelen, 1.
Limestone-granite contact deposits of Washington Camp, Crosby, 16.
Physical effects of contact metamorphism, Barrell, 2.
Structure of the Piedmont Plateau, Matthews, 5.
Treatise on metamorphism, Van Hise, 12.

Ore formation.
Chemistry of copper deposits, Lindgren, 23.
Chemistry of ore deposition, Jenney, 4.
Chemistry of ore deposition, Sullivan, 1.
Circulation of underground aqueous solutions and the deposition of lode ores, Finch (J. W.), 1.
Clifton folio, Lindgren, 28.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Copper Mountain, Catherinet, 1.
Deposition of copper by solutions of ferrous salts, Biddle, 1.
Deposition of ores from an igneous magma, Stevenson (R.), 1.
Differentiation of igneous magmas and the formation of ores, Kemp, 22.
Enrichment in fissure veins, Hill (R. T.), 17.
Enrichment in fissure veins, Spurr, 30.
Enrichment in veins, Church, 3.
Formation of lead and zinc deposits of Mississippi Valley, Keyes, 16, 20.
Formation of veins, Kemp, 28.
Genesis of gold deposits of Baskerville, Atkin, 1.
Genesis of Lake Superior iron ores, Leith, 15.
Genesis of the magnetite deposits in Sussex County, N. J., Spencer (A. C.), 12.
Dynamic and structural geology (divisions by subject matter)—Continued.

Ore formation—Continued.
- Genesis of limonite ores, Garrison, 1.
- Genesis of ore deposits, Alderson, 1.
- Genesis of ore deposits, Boehmer, 1.
- Genesis of ore deposits at Bingham, Utah, Boutwell, 14.
- Genetic relations of western Nevada ores, Spurr, 31.
- Gold deposition by drainage, Bradford, 1.
- Igneous rocks and circulating waters as factors in ore deposition, Kemp, 19.
- Limestone-granite contact deposits of Washington Camp, Crosby, 16.
- Maginatic origin of vein-forming waters in southeastern Alaska, Spencer (A. C.), 17.
- Mineral crest, Jenney, 3.
- Ore deposition and deep mining, Lindgren, 27.
- Ore deposition and vein enrichment, Weed, 20.
- Ore deposits, Beck, 2.
- Ore deposits near igneous contacts, Weed, 10.
- Origin of Clinton red fossil ore in Lookout Mountain, Alabama, Bowron, 1.
- Phase rule and conceptions of igneous magmas, Read, 5.
- Present standing of applied geology, Ransome, 15.
- Rock segregation and ore deposition, Stevens (B.), 2.
- Secondary enrichment in ore deposits of copper, Kemp, 33.
- The new geology and vein formation, Carpenter, 1, 2.
- Theory of copper deposition, Lane, 28.
- Underground water circulation, Cross (C. M.), 1.

Orogeny.
- Formation des montagnes, Burckhardt, 1.
- Mountain growth and mountain structure, Willis, 15.

Oscillation.
- Ames Knob, North Haven, Me., Willis, 12.
- Ancient lake beaches on islands in Georgian Bay, Comstock (F. M.), 2.
- Broad valleys of the Cordilleras, Shaler, 1.
- Correlation of formations of middle West, Hatcher, 21.
- Effect of cliff erosion on form of contact surfaces, Fenneman, 6.
- Evidence of local subsidence, Campbell (J. T.), 1.
- Evidences of caves of Put-in-Bay on question of land tilting, Fuller (M. L.), 16.

Dynamic and structural geology (divisions by subject matter)—Continued.

Oscillation—Continued.
- Mountain growths of Great Plains, Willis, 10.
- Geology of Mississippi embayment, Harris, 2.
- Geomorphogeny of Klamath Mountains, Dir., 3.
- Hydrographic history of South Dakota, Todd (J. E.), 4.
- Oscillations in the sea level, Pearson (H. W.), 1.
- Paleozoic seas and barriers in eastern North America, Ulrich and Schuchert, 1.
- Pleistocene geology of Moors quadrangle, Woodworth, 9.
- Post-Newark depression and subsequent elevation within the area of southwestern New England, Hobbs, 19.
- Post-Tertiary elevation of the Sierra Nevada, Turner, 10.
- Raised beaches, Pearson (H. W.), 3.
- Raised shore lines of St. Lawrence Valley and Great Lakes, Chalmers, 6.
- Recent changes in the elevation of land and sea in the vicinity of New York City, Tuttle, 1.
- Recent changes of level in Alaska, Tarr and Martin, 1.
- Recent earth movements, Lakes, 42.
- Recent elevation of Gulf coast, Vaughan, 11.
- Reconnaissance of the Cape Nome and adjacent fields of Seward Peninsula, Brooks and others, 1.
- Sand plains of Glacial Lake Sudbury, Goldthwait, 1.
- Significance of Cretaceous outliers in Klamath region, Hershey, 11.
- Submarine canyon of Hudson River, Spencer (J. W.), 12, 13.
- Submerged valleys in Sandusky Bay, Mosely, 1.
- Terraces of Westfield River, Mass., Davis (W. M.), 28.
- Union of Cuba with Florida, Spencer (J. W.), 11.

Sedimentation.
- Accretion of flood plains by sand bars, Simpson, 1.
- Beach structure in Medina sandstone, Fairchild, 1.
- Caliche of southern Arizona, Blake (W. P.), 4.
- Concretions and their geological effects, Todd (J. E.), 6.
- Delta of St. Clair River, Cole (J. J.), 1.
- Depositional measure of unconformity, Keyes, 1.
- Formation of veins, Kemp, 28.
Dynamic and structural geology (divisions by subject matter)—Continued.

Sedimentation—Continued.

Former extent of Newark system, Hobbs, 9.
Geological relationship of volcanoes of West Indies, Spencer (J. W.), 8.
Geology of Charles River estuary, Crosby, 7.
Ice-borne sediments in Minas basin, Bancroft (J. A.), 1.
Island tuffing, Gulliver, 5.
Loess in the Missouri Valley, Wright (G. F.), 8.
Micaceous cross bedding of strata, Woodworth, 1.
Mineral de Angangueo, Ordonez, 11.
Samples of the sea floor along the coast of east Greenland, Boggild, 3.

Underground temperature.
Determination of subterranean temperature, Gilbert, 22.
Distribution of the internal heat of the earth, Chamberlin (T. C.), 9.
Geothermal gradient, Lane, 13.
Investigation of subterranean temperatures and gradients, Gilbert, 6.
Plans for obtaining subterranean temperatures, Gilbert, 21.
Transmission of heat into the earth, Lane, 42.
Variation of geothermal gradient in Michigan, Lane, 27.

Volcanoes.
Activity of Mont Pelée, Heilprin, 4.
Análisis de cenizas del volcán de Santa María, Villaseñor, 1.
Antillan volcanoes, McGee, 3.
Area cubierta por la ceniza del volcán de Santa María, Böse, 6.
Ausbruch des Vulkans St. Maria, Sapper, 5, 6.
Ausbruchsperiode des Mont Pelé, Stöbel, 2.
Bibliography of West Indian eruptions, Hovey (E. O.), 32.
Bogoslof, our newest volcano, Merriam (C. H.), 1.
Centzas del volcan de Santa Maria, Ordoñez, 13.
Characteristics of Kau, Emerson (J. S.), 1.
Composition des gaz des fumerolles du Mont Pelée, Gautier, 1.
Cripple Creek volcano, Rickard (T. A.), 1.
Der Vulkan, Hans, 1.
Die vulkanischen Kleinen Antillen und die Ausbrüche der Jahre 1902 und 1903, Sapper, 19.

Dynamic and structural geology (divisions by subject matter)—Continued.

Volcanoes—Continued.
Earthquake and volcanic eruption in Guatemala, Eisen., 1.
Éruption de la Martinique, Lacroix and others, 1.
Éruption de la Montagne Pelée, Lacroix, 13.
Éruption de la montagne Pelée, Michel-Lévy, 1.
Éruption du volcan de Saint-Vincent, Lacroix, 15.
Éruption de Pelée, Jaggar, 6.
Éruption of Mount Pelee, Jaggar, 6.
Éruption volcanique à la Martinique Thierry, 1.
Éruptions de Saint-Vincent, Lacroix, 19.
Éruptions des nuages de la Montagne Pelée, Lacroix, 12.
Éruptions du volcan de Colima, Ordoñez, 10.
Éruptions de Colima, Areola, 1.
Éruptions de La Soufrière, St. Vincent, in May, 1902, Hovey (E. O.), 10.
Éruptions de La Soufrière, St. Vincent, and Mont Pelée, Martinique, Hovey (E. O.), 9.
Éruptions de Mont Pelé and the Soufrière, Hovey (E. O.), 33.
Éruptions de Soufrière, Anderson and Platt, 2.
Éruptions volcaniques de la Martinique, Lacroix, 11.
État actuel de la Soufrière de la Guadeloupe, Lacroix, 14.
État actuel du volcan de la Montagne Pelée, Lacroix, 8.
Field notes of a geologist in Martinique and St. Vincent, Jaggar, 2.
Flutschwankungen und die vulkanischen Ereignisse in Mittelamerika, Krebs, 1.
Gaz des fumerolles du Mont Pelée, Moissan, 1.
Geological features of Azores, Howarth, 1.
Geological relationship of volcanoes of West Indies, Spencer (J. W.), 8.
Geology and petrography of Crater Lake National Park, Diller and Patton, 1.
Geology and water resources of Snake River Plains, Russell, 5.
Geology of Crater Lake, Diller, 2.
Grand Soufrière de Guadeloupe, Hovey (E. O.), 28, 31.
Independeza de los volcanes de grietas preexistentes, Böse, 1.
Inner cone of Mont Pelée, Hovey (E. O.), 23.
Kilauea again active, Hitchcock (C. H.), 9.
Dynamic and structural geology (divisions by subject matter)—Continued.

Volcanoes—Continued.

Krater der Soufrière von St. Vincent, Sapper, 16.

La Montagne Pelée et ses éruptions, Lacroix, 20.

Latest eruption of Colima volcano, Ishikawa, 1.

Martinique, Sapper, 15.

Martinique and St. Vincent: preliminary report upon the eruptions of 1902, Hovey (E. O.), 12.

Martinique and St. Vincent revisited, Hovey (E. O.), 18.

Martinique und St. Vincent, Stiibel, 1.

Mechanism of Mont Pelé spine, Gilbert, 16.

Mission de la Martinique, Lacroix, 4, 16.

Moho’oea caldera on Hawaii, Hitchcock (C. H.), 3.

Mont Pelé, Hovey (E. O.), 20, 26.

Mont Pelée, Jaggar, 4.

Mont Pelée and tragedy of Martinique, Heilprin, 3.

Mont Pelée—the eruptions of August 24 and 30, 1902, Heilprin, 7.

Mont Pelée, Hovey (E. O.), 19.

Mont Pelée, Jefferson, 2.

Mud volcanoes, Lakes, 58.

Nature of Pelé tower, Heilprin, 8.

Nature of phenomena of eruption of Mont Pelée, Divers, 1.

New cone and obelisk of Mont Pelé, Hovey (E. O.), 29.

New cone of Mont Pelé, Hovey (E. O.), 17.

Next eruption of Pelée, Jaggar, 3.

Obelisk of Mont Pelé, Hovey (E. O.), 21.

Obelisk of Mont Pelée, Heilprin, 5.

Obelisk of Montagne Pelée, Heilprin, 5.

Observaciones geologicas al Citlaltepetl, Angermann, 4.

Observations sur les éruptions volcaniques, Lacroix, 16.

Origen de los temblores de Zanatepec, Bisse, 5.

Origine de l'activité volcanique, Meunier, 1.

Peculiar character of eruption of Mont Pelée, Verrill, 1.

Pelé and the evolution of the Windward Archipelago, Hill (R. T.), 16.

Pelé obelisk, Russell, 12.

Pelé obelisk, Russell, 22.

Pelée's obelisk, Argall (P. H.), 1.

Preliminary report on recent eruption of Soufrière in St. Vincent, and of a visit to Mont Pelée in Martinique, Anderson and Plett, 1.

Dynamic and structural geology (divisions by subject matter)—Continued.

Volcanoes—Continued.

Présence de l'argon dans les gaz des fumerolles de la Guadeloupe, Moisson, 2.

Recent eruptions in West Indies, Milne, 1.

Recent eruptions of Mont Pelée, Nichols, 1.

Recent tuffs of the Soufrière, Howe (E.), 2.

Recent volcanic eruptions, Anderson (T.), 1.

Recent volcanic eruptions in West Indies, Russell, 3.

Reconnaissance of Mount Hood and Mount Adams, Reid (H. F.), 4.

St. Vincent, Sapper, 18.

St. Vincent, eruptions of 1902, Hovey (E. O.), 36.

Secondary phenomena of West Indian volcanic eruptions, Curtis, 1.

Soufrière of St. Vincent, Hovey (E. O.), 27.

Südlichsten Vulkane Mittel-Amerikas, Sapper, 2.

Tower of Pelée, Heilprin, 9, 10.

Visit to Martinique and St. Vincent after the great eruptions of May and June, 1902, Hovey (E. O.), 11.

Volcan de Tacana, Böse, 3.

Volcanes de Zacapu, Ordonex, 9.

Volcanic action and the West Indian eruptions of 1902, Lobley, 1.

Volcanic eruptions in Guatemala, Wirtenton, 1.

Volcanic eruptions in the West Indies, Anderson (T.), 2.

Volcanic eruptions in the West Indies, Burns, 1.

Volcanic eruptions on Martinique and St. Vincent, Russell, 4.

Volcanoes, Lakes, 34.

Volcanoes and earthquakes, Hixon, 2.

Volcanoes and seismic centers of the Philippine Archipelago, Mason, 1.

Volcanoes of Caribbean Islands, Hovey (E. O.), 22.

Volcanoes of Martinique, Guadeloupe, and Saba, Hovey (E. O.), 44.

Volcanoes of St. Vincent, St. Kitts, and Statin, Hovey (E. O.), 45.

Vulcangebiete Mittelamerikas und Westindiens, Sapper, 24.

Vulkanausbruch in Mittelamerika, Sapper, 23.

Vulkan Izalco, Sapper, 7.

Vulkanische Asche vom Vulkan Soufrière, Klein, 1.
<table>
<thead>
<tr>
<th>Dynamic and structural geology (divisions by subject matter)—Continued.</th>
<th>Dynamic and structural geology (divisions by subject matter)—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanoes—Continued.</td>
<td>General—Continued.</td>
</tr>
<tr>
<td>Vulkanische Ausbrüche auf den Kleinen Antillen, Hoernes, 1.</td>
<td>Derivation of the terrestrial spheroid from the rhombic dodecahedron, Keyes, 3.</td>
</tr>
<tr>
<td>Vulkanische Ereignisse in Westindien, Bergeat, 1.</td>
<td>Differential thermal conductivity of certain schists, Thelen, 1.</td>
</tr>
<tr>
<td>Vulkanske udbrud i Vestindien, Koldrup, 3.</td>
<td>Discoloration of rocks, Comstock (T. B.), 4.</td>
</tr>
<tr>
<td>West Indian eruptions of 1902, Curtis, 2.</td>
<td>Distribution of the internal heat of the earth, Chamberlin (T. C.), 6.</td>
</tr>
<tr>
<td>West Indian volcanic eruptions, Milne, 2.</td>
<td>Domes and dome structure of the high Sierra, Gilbert, 17.</td>
</tr>
<tr>
<td>Xinantacatl ou volcan de To-luca, Ordouez, 7.</td>
<td>Drumlins of southeastern Wisconsin, Alden, 4.</td>
</tr>
<tr>
<td>Weathering.</td>
<td>Earth carving, Scott (W. B.), 2.</td>
</tr>
<tr>
<td>Action of frost on soil, Roberts, 1.</td>
<td>Effect of cliff erosion on form of contact surfaces, Fenneman, 6.</td>
</tr>
<tr>
<td>Bowlders due to rock decay, Upham, 24.</td>
<td>Effect of shore line on waves, Davis (W. M.), 32.</td>
</tr>
<tr>
<td>Heat and frost in weathering of stone, Barnum, 1.</td>
<td>Ellipsoidal structure in pre-Cambrian rocks of Lake Superior region, Clements, 4.</td>
</tr>
<tr>
<td>General.</td>
<td>Evidence (?) of water-deposition of loess, Shimek, 14.</td>
</tr>
<tr>
<td>Autophytography, White (C. E.), 2.</td>
<td>Experiments illustrating intrusion and erosion, Howe, 1.</td>
</tr>
<tr>
<td>Basalt mounds of the Columbia lava, Piper, 1.</td>
<td>Field work of a physiography class, Low, 3.</td>
</tr>
<tr>
<td>Celestite-bearing rocks, Kraus, 5.</td>
<td>Fundamental problems of geology, Chamberlin (T. C.), 13, 15.</td>
</tr>
<tr>
<td>Colorado Canyon, Davis (W. M.), 61.</td>
<td>Geologic deposition of hydrocarbons, Adams (G. I.), 10.</td>
</tr>
<tr>
<td>Comparison of features of the earth and the moon, Shaler, 2.</td>
<td>Geologic features within the 8,000-acre grant, Sheldon and Sheldon, 1.</td>
</tr>
<tr>
<td>Connection by precise leveling between the Atlantic and Pacific oceans, Hayford, 1.</td>
<td>Geological changes now going on, Lane, 25.</td>
</tr>
<tr>
<td>Copper ore and garnet in association, Blake (W. P.), 16.</td>
<td>Geology of hot springs of Colorado, Lakes, 90, 103.</td>
</tr>
<tr>
<td>Correction, Van Hise, 16.</td>
<td></td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

<table>
<thead>
<tr>
<th>Dynamic and structural geology (divisions by subject matter) — Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General—Continued.</td>
</tr>
<tr>
<td>Geophysical investigations suggested, Adams (F. D.), 5.</td>
</tr>
<tr>
<td>Grain of rock, Lane, 43.</td>
</tr>
<tr>
<td>Hanging valleys, Rossell, 20.</td>
</tr>
<tr>
<td>Has the rate of rotation of the earth changed appreciably during geological history? Chamberlin (T. C.), 7, 10.</td>
</tr>
<tr>
<td>Hot and mineral springs of Routt County, Colo., Lakes, 97.</td>
</tr>
<tr>
<td>Hot springs of the southern United States, Weed, 39.</td>
</tr>
<tr>
<td>Hypothesis to account for the transformation of vegetable matter into different grades of coal, Campbell (M. R.), 20.</td>
</tr>
<tr>
<td>Ice ramparts, Buckley, 2.</td>
</tr>
<tr>
<td>Ice ramparts, Van Hise, 4.</td>
</tr>
<tr>
<td>Interpretation of certain laminated clays, with their bearing upon estimates of geologic time, Berkey, 10.</td>
</tr>
<tr>
<td>Isomorphism and thermal properties of the feldspars, Pay and Allen, 1, 2.</td>
</tr>
<tr>
<td>Junction of Lake Superior sandstone and Keweenaw traps in Wisconsin, Grant (U. S.), 2.</td>
</tr>
<tr>
<td>Linear force of growing crystals, Becker and Day, 1.</td>
</tr>
<tr>
<td>Loess and the lovan drift, Shimek, 13.</td>
</tr>
<tr>
<td>Loess with horizontal shearing planes, Uden, 4.</td>
</tr>
<tr>
<td>Lord Kelvin's address on the age of the earth, Chamberlin (T. C.), 4.</td>
</tr>
<tr>
<td>Magnetic phenomena around deep borings, Lane, 32.</td>
</tr>
<tr>
<td>Metamorphosis without crushing, Emerson (B. B.), 12.</td>
</tr>
<tr>
<td>Mica and the mica industry, Colles, 1.</td>
</tr>
<tr>
<td>Mineral matter of the sea, Salisbury, 5.</td>
</tr>
<tr>
<td>Nantucket shore lines, Gulliver, 3.</td>
</tr>
<tr>
<td>Natural mounds, Purdue, 6.</td>
</tr>
<tr>
<td>Natural mounds, Spilman, 1.</td>
</tr>
<tr>
<td>Natural mounds or hog wallows, Banner, 8.</td>
</tr>
<tr>
<td>Nebular and planetesimal theories of the earth's origin, Upham, 29.</td>
</tr>
<tr>
<td>Nitrites in cave earths, Nichols (H. W.), 1.</td>
</tr>
<tr>
<td>Notes on oceanography, Dall, 2.</td>
</tr>
<tr>
<td>Occurrence of pebbles, concretions, and conglomerate in metalliferous veins, Halse, 5.</td>
</tr>
<tr>
<td>Oil-impregnated volcanic dikes, Lakes, 98.</td>
</tr>
<tr>
<td>Origin and classification of placers, Smyth (B. L.), 1.</td>
</tr>
<tr>
<td>Origin of bitumen, Morgan, 1.</td>
</tr>
<tr>
<td>Origin of coral reefs, Gardiner, 1.</td>
</tr>
<tr>
<td>Origin of gypsum, Grimsley, 5.</td>
</tr>
<tr>
<td>Origin of gypsum deposits, Sherwin, 2.</td>
</tr>
<tr>
<td>Origin of natural rocks, Veatch, 10.</td>
</tr>
<tr>
<td>Origin of ocean basins on planetesimal hypothesis, Chamberlin (T. C.), 11.</td>
</tr>
<tr>
<td>Origin of orbicular and concretionary structure, Blake (W. P.), 19.</td>
</tr>
<tr>
<td>Origin of pebble-covered plains in desert regions, Blake (W. P.), 11.</td>
</tr>
<tr>
<td>Origin of petroleum, coal, etc., Flotts, 1.</td>
</tr>
<tr>
<td>Origin of ripple marks, Branner, 1.</td>
</tr>
<tr>
<td>Origin of the Coal-Measure fire clays, Hopkins (T. C.), 2.</td>
</tr>
<tr>
<td>Origin of vein-fissured openings in southeastern Alabama, Spencer, 18.</td>
</tr>
<tr>
<td>Origin of veins in asbestosiferous serpentine, Merrill (G. P.), 14.</td>
</tr>
<tr>
<td>Paleozoic Appalachia, Willis, 1.</td>
</tr>
<tr>
<td>Peat and its relation to coal, Lakes, 96.</td>
</tr>
<tr>
<td>Peneplains of central France, Davis (W. M.), 2.</td>
</tr>
<tr>
<td>Physical geography, etc., of Essex County, Mass., Sears, 1.</td>
</tr>
<tr>
<td>Physical history of the Windward Islands, Hill (R. T.), 18.</td>
</tr>
<tr>
<td>Plan of the earth and its causes, Gregory (J. W.), 1.</td>
</tr>
<tr>
<td>Polar climate in time the major factor in the evolution of plants and animals, Wieland, 4.</td>
</tr>
<tr>
<td>Possible function of disruptive approach in the formation of meteorites, comets, and nebulae, Chamberlin (T. C.), 2.</td>
</tr>
<tr>
<td>Prairie mounds of Louisiana, Hilgard, 6.</td>
</tr>
<tr>
<td>Preservation of plants by geologic processes, Hollick, 18.</td>
</tr>
<tr>
<td>Problems of geophysics, Becker, 4.</td>
</tr>
<tr>
<td>Profiles of rivers, Gannett, 1.</td>
</tr>
<tr>
<td>Recent date of lava flows in California, Wright (G. F.), 14.</td>
</tr>
<tr>
<td>Ripple marks in Hudson River limestone, Moore and Hole, 1.</td>
</tr>
<tr>
<td>Rival theories of cosmogony, Fisher (O.), 1.</td>
</tr>
<tr>
<td>Rock basins of Helen mine, Michigan, Canada, Coleman, 11.</td>
</tr>
<tr>
<td>Rock cleavage, Leith, 13.</td>
</tr>
<tr>
<td>Rock movements in the Laurentian and Huronian areas, Mills (S. B.), 1.</td>
</tr>
<tr>
<td>Rounded sands of Paleozoic formations, Van Ingen, 6.</td>
</tr>
<tr>
<td>Schistosity and slaty cleavage, Becker, 3.</td>
</tr>
<tr>
<td>Secondary origin of certain granites, Daly, 11.</td>
</tr>
<tr>
<td>Shorelines and landlips of St. Lawrence Valley, Chambers, 1.</td>
</tr>
<tr>
<td>Small mounds, Bushnell, 1.</td>
</tr>
<tr>
<td>Smoking bluffs of the Missouri River region, Powers, 1.</td>
</tr>
</tbody>
</table>
Dynamic and structural geology (divisions by subject matter)—Continued.

General—Continued.
So-called alkali spots of drift-sheets, Willcox, 2.
Structure of front range, northern Rocky Mountains, Willis, 7.
Study of the structure of fulgurites, Julien, 1.
Study of hard-packed sand and gravel, Crosby, 5.
Study of minerals in the laboratory, Day (A. L.), 1.
Subterranean gases of Cripple Creek, Lindgren, 31.
Superficial blackening and discoloration of rocks, Comstock (T. B.), 4.
Superficial blackening of rocks in desert regions, Blake (W. P.), 15.
Surface geology of New Brunswick, Stead, 1.
Syllabus for field and laboratory work in geology, Tarr, 1.
Technology of clays, Beyer and Williams, 1.
Teoria quimica para explicar la formación del petróleo de Aragon, Villarello, 3.
Tertiary peneplain in Klamath region, California, Hershey, 23.
Theories of world building, Coleman, 21.
Tidal gage work in Louisiana, Harris, 9.
Types of sedimentary overlap, Grabau, 19.
Undulations of Lockport limestone, Gilbert, 23.
Valleys of solution in northern Arkansas, Purdue, 1.
Volcanic origin of oil, Coste, 3.
Wreck of Mount Mazama, Diller, 8.
Zuni salt lake, Barton, 19.

Economic geology—Continued.
Alabama—Continued.
Pratt coal mines, Crane, 6.
Rome folio, Hayes (C. W.), 5.
Southern Appalachian coal field, Hayes (C. W.), 7.
Warrior coal basin in the Brookwood quadrangle, Butts, 5.
Water powers of Alabama, Hall (B. M.), 1.

Alaska.
Alaskan tin deposits, Collier, 11.
Alabama’s mineral wealth, Brooks, 10, 13.
Alaska-Treadwell mine, Palace, 2.
Auiferous quartz veins on Unalaska Island, Collier, 10.
Bering River coal field, Martin (G. C.), 15.
Cape Yaktag placers, Martin (G. C.), 12.
Chistochina gold field, Mendenhall, 4.
Chitina copper deposits, Mendenhall, 7.
Coal-bearing series of the Yukon, Collier, 6.
Coal fields of Cape Lisburne, Collier, 3, 7.
Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirsoop, 1.
Coal resources of Alaska, Brooks, 3.
Coal resources of southwestern Alaska, Stone (R. W.), 5.
Coal resources of the Yukon, Collier, 2, 4.
Copper deposits of the Mount Wrangell region, Mendenhall and Schrader, 2.
Copper River country, Abercrombie, 1.
Deposition of ores from an igneous magma, Stevenson (R.), 3.
Economic developments in southeastern Alaska, Wright (F. E. and C. W.), 1.
Fairhaven gold placers, Moffit, 3.
Geology and mineral resources of Copper River district, Schrader and Spencer, 1.
Geology of copper deposits, Stevens (B.), 1.
Geology of Copper River region, Mendenhall, 8.
Geology of the Klondike, Mendenhall, 3.
Geology of the Treadwell ore deposits, Spencer (A. C.), 11.
Glenn Creek gold mining district, Collier, 3.
Gold deposits of Shumagin Islands, Martin (G. C.), 13.
Gold mining in Alaska, Furman, 1.
Gold mining in Arctic America, Penrose, 1.
Gold mining in Klondike, Miers, 2.
Gold placers of Fortymile, Birch Creek, and Fairbanks regions, Prindle, 2.
Gold placers of the Fairbanks district, Prindle, 1.
Gold placers of Turnagain arm, Moffit, 4.
FOR THE YEARS 1901–1905, INCLUSIVE.

Economic geology—Continued.

Alaska—Continued.

Gold production of North America, Lindgren, 16.

Gold sands of Cape Nome, Queneau, 1.

Goldforekomsterne i Alaska og tilgræn­sende strøg, Kolderup, 1.

Juneau gold belt, Spencer (A. C.), 9.

Kayak coal and oil fields, Stoess, 1.

Kotzebue placer-gold field, Mofitt, 2.

Magmatic origin of vein-forming waters in southeastern Alaska, Spencer (A. C.), 17.

Methods and costs of gravel and placer mining in Alaska, Purington, 8, 9.

Mineral resources of Alaska in 1904, Brooks, 11.

Mineral resources of southeastern Alas­ka, Brewer (W. M.), 12.

Mineral resources of Mount Wrangell district, Mendenhall and Schrader, 1.

Mining at the Alaska Treadwell, Kinzie, 1.

Nome gold region, Schrader and Brooks, 1.

Notes on Nome, Rickard (P.), 1.

Occurrence of cassiterite, Brooks, 1.

Occurrence of stream tin, Brooks, 2.

Ore formation on Prince of Wales Island, Thomae, 1.

Outlook for coal-mining in Alaska, Brooks, 14.

Petroleum fields of Pacific coast, Martin (G. C.), 11.

Placer mining in Alaska, Brooks, 7, 9, 12.

Porcupine placer mining district, Wright (C. W.), 1, 2.

Preliminary report on the Ketchikan mining district, Brooks, 4.

Rampart placer region, Prindle and Hess, 1.

Reconnaissance from Fort Hamlin to Kotzebue Sound, Mendenhall, 2.

Reconnaissance in Alaska, Schrader, 3.

Reconnaissance in Norton Bay region, Mendenhall, 1.

Reconnaissance of northwestern portion of Seward Peninsula, Collier, 1.

Reconnaissance of the Cape Nome and adjacent gold fields of Seward Peninsula, Brooks and others, 1.

Stream tin in Alaska, Brooks, 9.

Tin deposits of the York region, Collier, 7, 8.

Tin in Alaska, Bell, 2.

Tin in the York region, Collier, 5.

Tin deposits of the York region, Rickard (E.), 1.

Tin ledges in Alaska, Bell (R. N.), 1.

Treadwell group of mines, Kinzie, 2.

Economic geology—Continued.

Alaska—Continued.

Treadwell ore deposits, Spencer (A. C.), 14.

Yukon gold fields, Miers, 1.

Arizona

Bisbee folio, Ransome, 14.

Bradshaw Mountains folio, Jaggar and Palache, 1.

Cement investigations in Arizona, Dur­yee, 1.

Clifton folio, Lindgren, 28.

Coffee deposits of Bisbee, Ransome, 7, 8.

Copper deposits at Clifton, Lindgren, 12, 15.

Copper deposits of Clifton—Morenci district, Lindgren, 29.

Copper deposits of the Kaibab Plateau, Jennings (E. P.), 1.

Copper deposits of the Kaibab Plateau, Lunt, 1.

Copper in the Red Beds of the Colorado Plateau region, Emmons (S. F.), 20.

Deer Creek coal field, Campbell (M. R.), 16.

Diatom-earth in Arizona, Blake (W. P.), 10.

Genesis of copper deposits of Clifton—Morenci, Lindgren, 22.

Geology and copper deposits of Bisbee, Ransome, 10.

Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.

Geology and vein phenomena of Arizona, Comstock ('T. B.'), 1.

Geology of Cochise mining district, Franke, 1.

Geology of Fort Apache region, Rea­gan, 3.

Geology of Globe copper district, Ran­some, 6.

Geology of the Galiuro Mountains, Blake (W. P.), 5.

Geology of Mineral Creek district, Gow­ling, 1.

Globe folio, Ransome, 13.

Gold deposits of Arizona, Pratt, 5.

Gold production of North America, Lindgren, 16.

Gypsum deposits in Arizona, Blake (W. P.), 14.

Limestone-granite contact deposits of Washington Camp, Crosby, 16.

Ore in anticlinals, Lakes, 71.

Ore in the York region, Rickard (E.), 1.

Recent discoveries in Arizona, Bur­gess, 2.

Re-formed copper ores, Goodwin, 1.

Secondary enrichment, Probert, 1.

Silver Bell Mountains, Barney, 1.

Tombstone and its mines, Blake (W. P.), 8, 12.

Tombstone mining district, Church, 1.

Tungsten deposits in Arizona, Rickard (F.), 3.
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

Arizona—Continued.
Underground waters of Arizona, Skinner, 1.
Verde mining district, Miller (G. W.), 1.

Arkansas.
Arkansas bauxite deposits, Hayes (C. W.), 2.
Arkansas-Indian Territory coal field, Bache, 1.
Arkansas roofing slates, Dale, 11.
Asphalt deposits of Pike County, Hayes (C. W.), 4, 14.
Bauxite in Arkansas, Berger, 1.
Cement materials and industry of the United States, Eckel, 34.
Chalk of southwestern Arkansas, Taff, 5.
Coal fields of Arkansas and Indian Territory, Scholz, 2.
Coal mining in Arkansas, Crane, 7.
Fayetteville folio, Adams and Ulrich, 1.
Gisements de minerals de zinc, Demalet, 1.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Lead and zinc deposits of Ozark region, Bain, 2.
Missouri and Arkansas zinc mines, Branner, 3.
Missouri and Arkansas zinc mines, Hedberg, 1.
Missouri and Arkansas zinc mines, Nichols (H. W.), 2.
Phosphate deposits, Brown (L. P.), 1.
Portland-cement materials of southwestern Arkansas, Fitzhugh, 1.
Phosphate rocks of Arkansas, Branner and Newson, 1.
Southwestern coal field, Taff, 4.
Zinc and lead deposits of Arkansas, Adams (G. I.), 12, 15.
Zinc and lead deposits of north Arkansas, Branner, 2.

California.
Borax deposits of eastern California, Campbell (M. R.), 12.
California type of auriferous deposit, Hershey, 7.
Cement materials and industry of the United States, Eckel, 34.
Composition and occurrence of petroleum, Mabery, 3.
Contact-metamorphic deposits in the Sierra Nevada Mountains, Turner, 13.
Copper deposits of Redding region, Diller, 13.
Copper region of northern California, Diller, 5, 6.
Cretaceous auriferous conglomerate of Siskiyou County, Turner, 12.

Economic geology—Continued.

California—Continued.
Desert dry lakes of California, Bailey (G. E.), 1.
Dredging in Oroville, Knox, 1.
Formation of bonanzas in upper portions of gold veins, Rickard (T. A.), 3.
Genesis of ore deposits at the Royal mine, Forstner, 1.
Geological section of the Coast ranges, Osmon, 1.
Geology of district west of Redding, O'Brien (M. E.), 1.
Geology of Nevada and adjacent portions of California, Spurr, 6.
Geology of Salinas Valley, Nutter, 1.
Gisements des minerals de mercure, Demaret, 2.
Gold production of North America, Lindgren, 16.
Greenback copper mine, Turner, 6.
Gypsum deposits in California, Fairbanks, 6.
Industrie du pétrole en Californie, Heurteau, 2.
Iron ores of the Redding quadrangle, Diller, 14.
Les anciens chenaux aurifères de Californie, Bordeaux, 1.
Limestone of the Redding district, Diller, 15.
Magnesite and its uses, Spinks, 1.
Mineral resources of the Indian Valley region, Diller, 19.
Mineral resources of the Redding quadrangle, Diller, 16.
Mother lode gold deposits, Prichard (W. R.), 1.
Mother lode gold deposits, Turner, 14.
Mother lode in Tuolumne County, Storms, 3.
Natroursalt彼得 in Californien, Ochsentus, 2.
Neocene rivers of the Sierra Nevada, Lindgren, 10.
Occurrence of platinum, Day (D. T.), 1.
Oil fields of California, Lakes, 10.
Ore deposits of Shasta County, Anderson (F. M.), 4.
Origin and occurrence of petroleum, Cooper (A. S.), 1.
Petroleum fields of California, Eldridge, 4.
Petroleum in California, Claypole, 3.
Petroleum in California, Prutzman, 1.
Petroleum industry of Europe and America, Otsuka, 1.
Quicksilver, Havertonck, 1.
Quicksilver deposits of California, Forstner, 2.
Reconnaissance of borax deposits of Death Valley and Mohave Desert, Campbell (M. R.), 4.
Remarkable salt deposit, Holder, 1.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>California—Continued.</td>
<td>Canada—Continued.</td>
</tr>
<tr>
<td>Roofing slate of igneous origin, Eckel, 27.</td>
<td>Clays and shales of Manitoba, Wells (J. W.), 3.</td>
</tr>
<tr>
<td>San Luis folio, Fairbanks, 7.</td>
<td>Coal Creek colliery of Crows Nest Pass, Corless, 1.</td>
</tr>
<tr>
<td>Structural features of California gold belt, Storms, 1.</td>
<td>Coal fields of Canada, Denver, 1.</td>
</tr>
<tr>
<td></td>
<td>Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirsopp, 1.</td>
</tr>
<tr>
<td></td>
<td>Coal fields of Crows Nest Pass, Jacobs, 2.</td>
</tr>
<tr>
<td></td>
<td>Coal fields of Crows Nest Pass branch of Canadian Pacific Railway, Brewer (W. M.), 9.</td>
</tr>
<tr>
<td></td>
<td>Coal fields of New Brunswick, Poole, 2.</td>
</tr>
<tr>
<td></td>
<td>Coal in Alberta, Rickert, 1.</td>
</tr>
<tr>
<td></td>
<td>Coal mining in the Crows Nest, McKay, 2.</td>
</tr>
<tr>
<td></td>
<td>Coal mining in the Northwest Territories, Smith (F. B.), 1.</td>
</tr>
<tr>
<td></td>
<td>Coal problem in New Brunswick, Poole, 3.</td>
</tr>
<tr>
<td></td>
<td>Coal prospects of New Brunswick, Poole, 8.</td>
</tr>
<tr>
<td>Artesian well in the Klondike, Tyrell, 2.</td>
<td>Copper-bearing rocks in Quebec, Desser, 7, 10, 12, 13.</td>
</tr>
<tr>
<td>Artesian wells, paleontology, Aml, 22.</td>
<td>Copper-bearing rocks of Sherbrooke district, Desser, 15.</td>
</tr>
<tr>
<td>Asbestos, Ells, 10.</td>
<td>Copper deposits of Mt. Sicker, Musgrave, 1.</td>
</tr>
<tr>
<td>Atlin mining district, Gwillim, 1.</td>
<td>Copper Mountain, Catherinet, 1.</td>
</tr>
<tr>
<td>Borings for natural gas, petroleum, and water, Chalmers, 4.</td>
<td>Corundum in Ontario, Barlow, 10.</td>
</tr>
<tr>
<td>Boston Township iron range, Miller (W. G.), 15.</td>
<td>Counties of Cumberland, Hants, Kings, and Annapolis, Fletcher, 6.</td>
</tr>
<tr>
<td>Boundary Creek district, British Columbia, Brock, 1, 3.</td>
<td>Crows Nest coal fields, Leach, (W. W.), 1.</td>
</tr>
<tr>
<td>British Columbia coal fields, Brewer, (W. M.), 6.</td>
<td>Duncan Creek mining district, Keele, 1.</td>
</tr>
<tr>
<td>British Columbia iron and coal, Brewer (W. M.), 2.</td>
<td>Eastern Assiniboia and southern Manitoba, Dowling, 4.</td>
</tr>
<tr>
<td>Carboniferous basin in New Brunswick, Ells (R. W.), 3.</td>
<td>Canadian graphite, Brunelle, 1.</td>
</tr>
<tr>
<td>Cinnabar-bearing rocks of British Columbia, Monckton, 2.</td>
<td>Correction in classification of gold formation, Hille, 4.</td>
</tr>
</tbody>
</table>
INDEX TO NORTH AMERICAN GEOLOGY:

Economic geology—Continued.

Canada—Continued.

Economic geology—Continued.

Canada—Continued.
Economic geology—Continued.

Canada—Continued.

Minerals of Nova Scotia, Gilpin, 1.
Mining developments in eastern Ontario, Thomas, 1.
Mining districts near Kamloops Lake, Monckton, 1.
Mining in the Rossland district, Campbell (C. M.), 1.
Mining industry and mineral resources of British Columbia, Brewer (W. M.), 3.
Modes of occurrence of mineral albertite, Bailey (L. W.), 4.
Molybdenum and tungsten, Johnston, 1.
Moose Mountain iron range, Leith, 6.
Mount Sicker mining district, Brewer (W. M.), 13.
Native gold in igneous rocks, Brock, 4.
New Brunswick, Bailey (L. W.), 5.
New mining area in Ontario, Hardman, 1.
Nickel and copper deposits of Sudbury, Barlow, 8.
Nicola coal basin, Ellis (R. W.), 23.
Nictaux iron field, Weatherbe, 1.
Northern nickel range, Coleman, 18.
Northern part of Nova Scotia, Fletcher, 5.
Notes on geology and ore deposits of southeastern British Columbia, Corless, 2.
Notes on mica, Corkill, 1.
Notes on molybdenite, Willimott, 2.
Notes on the life history of coal seams, Gwillim, 5.
Notes on western coals, Gwillim, 4.
Nova Scotia gold, Gilpin, 3.
Nova Scotia gold fields, Faribault, 1, 2.
Occurrence of hematite, Mills, 2.
Occurrence of scheelite, Atkin, 1.
Oil fields of Gaspe, Ellis (R. W.), 12.
Ore deposits of Boundary Creek district, Brock, 2.
Ore deposits of Copper Mountain, Scott (O. N.), 1.
Ore deposits of Rossland, Kirby, 2.
Ore deposits of Rossland, MacDonald, 1.
Ore deposits of Sudbury, Dickson, 4.
Ore quarrying in the Boundary district, British Columbia, Jacobs, 1.
Origin and relations of auriferous veins of Algoma (western Ontario), Crosby, 4.
Pecit in Canada, Chalmers, 7.
Petrography of Belvidere Mountain deposits, Marsters, 3.
Petroleum and natural gas [in Ontario], Corkill, 2.
Pictou coal field, Poole, 10.
Pioneer work in Crow's Nest coal area, Blakemore, 1.
Platinum in British Columbia, Brock, 6.

Economic geology—Continued.

Canada—Continued.

Poplar Creek and other camps of the Lardeau district, Brock, 5.
Port Huron oil field, Gordon (C. H.), 2.
Possible occurrence of coal area beneath Neo-Carboniferous, Nova Scotia, Ami, 29, 31.
Pottor's clay at Middle Musquodoboit, Mason, 1.
Production of copper in Boundary district, Ledoux, 2.
Report on the Lardeau mining district, Robertson, 3.
Report on the Trout Lake Mining division, Robertson, 2.
Report on the valley of the Flathead River, Robertson, 1.
Section of mineral statistics and mines, annual report, Ingall, 2.
Section of mining, annual report, Ingall, 3, 5, 7, 9.
Stratigraphy of the Cascade coal basin, Dowling, 10.
Sudbury district, Barlow, 3.
Sudbury mining district, Barlow, 6.
Sudbury nickel-bearing eruptive, Coleman, 19.
Sudbury nickel deposits, Coleman, 14.
Sulphide ore bodies of Sudbury region, Silver, 1.
Surveys and explorations in Nova Scotia, Fletcher, 5.
Temagami district, Barlow, 7.
Teceda Island, Brewer (W. M.), 1.
Tripolite deposits of Fitzgerald Lake, Crosby, 1.
Turtle Mountain, Manitoba, Dowling, 5.
Types of iron-bearing rocks in Ontario, Coleman, 7.
Vermillion River placers, Coleman, 3.
Voyage minier au nord-ouest Canadien, Bel, 1.
West Gore anthracite deposits, Asquith, 1.
White Horse copper camp, Brewer (W. M.), 15.
White Horse district, Brewer (W. M.), 11.
White Horse mining district, Yukon Territory, Brewer (W. M.), 4.
Workable coals of Nova Scotia, McConnell, 1.
Yukon district, McConnell, 2.
Yukon gold fields, Miers, 1.

Colorado.

Across the San Juan Mountains, Richard (T. A.), 7.
Aguilar coal and oil district, Lakes, 39.
American Nettie, Lakes, 1.
Anthracite situation in Colorado, Lakes, 81.
Barela Mesa coal field, McLaughlin, 1.
Basaltic zones as guides to ore deposition, Stevens (E. A.), 2.
Book Cliff coal mines, Lakes, 66.
Boulder oil field, Fenneman, 4.
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

Colorado—Continued.

Building and monumental stones, Lakes, 12.
Building stones, Lakes, 13.
Camp Bird gold mine, Titcomb, 1.
Camp Bird mine, Ouray, Purington, 3.
Cave ore deposits, Lakes, 4.
Cement materials and industry of the United States, Eckel, 34.
Coal along the eastern foothills, Lakes, 82.
Coal and asphalt deposits along Moffat railway, Lakes, 60.
Coal and mineral resources of Routt County, Parsons and Liddell, 1.
Coal field between Ralston Creek and Boulder, Lakes, 86.
Coal fields of Colorado, Lakes, 62, 80.
Coal mines of Huerfano County, Lakes, 99.
Coals of southern Colorado, Lakes, 85.
Colorado Central lode, Foster, 1.
Copper deposits at Pearl, Spencer (A. C.), 7.
Copper mining in the Pearl district, Read, 4.
Creede mining camp, Lakes, 50.
Cripple Creek volcano, Rickard (T. A.), 1.
Curtis coal mine, Lakes, 3.
District aurifère de Cripple Creek, Ritter, 1.
Economic geology, La Plata folio, Purington, 1.
Economic geology of the Silverton quadrangle, Ransome, 1.
Example of localization of rich ore, Rickard (T. A.), 6.
Florence oil field, Fenneman, 9.
Formation of bonanzas in upper portions of gold veins, Rickard (T. A.), 3.
Formation of Cripple Creek mining district, Moore (C. J.), 1.
Formation of Leadville mining district, Moore (C. J.), 2.
Genesis of ore deposits in Boulder County, Bagg, 2.
Geological resurvey of the Cripple Creek district, Lindgren and Ransome, 1, 2.
Geological structure of Camp Bird vein, Purington, 5.
Geology along the Animas River, Lakes, 25.
Geology and coal deposits of the Spanish Peaks district, Lakes, 83.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology of the Needle Mountains quadrangle, Irving and Emmons, 1.
Geology of the oil fields of Colorado, Lakes, 15.

Economic geology—Continued.

Colorado—Continued.

Geology of Virginius mine, Purington, 7.
Gisements de minerals de zinc, De Marecet, 1.
Gold deposits of Plomo, Gunther, 1.
Gold production of North America, Austin, 5.
Gold production of North America, Lindgren, 16.
Grand River coal field, Lakes, 87.
Gypsum deposits in Colorado, Lakes, 61.
Influence of country rock on mineral veins, Weed, 6.
La Plata coal field, Lakes, 84.
Leadville district, Warwick, 2.
Lodes of Cripple Creek, Rickard (T. A.), 8, 12.
Mineralogical mistake, Van Diest, 1.
Mines and ore deposits of the Rosita and Silver Cliff mining district, Lakes, 53.
Mines of Ouray County, Downer and De Cou, 1.
Neglected mine and Near-by properties, Emmons (W. H.), 1.
Occurrence of ore at Red Mountain, Schwarz, 2.
Oil field of Mesa and Rio Blanco counties, Lakes, 24.
Oil in Colorado, Lakes, 21.
Oil situation in Colorado, Lakes, 48.
Oil springs of Rio Blanco County, Lakes, 17.
Ore deposits in Georgetown mining district, Spurr and Garrey, 1.
Ore deposits near Lake City, Irving, 7.
Ore deposits of Colorado, Lakes, 73.
Ore deposits of Rico Mountains, Ransome, 3.
Ore deposits of the American-Nettie mine, Quay, Downer, 1.
Ore deposits of the Ouray district, Irving, 6, 9.
Ore horizons in San Juan Mountains, Purington, 11.
Ore occurrence at Leadville, Robbins, 1.
Plastic dike near Ouray, Ransome, 2.
Prospecting for oil, Lakes, 11, 16.
Peculiar ore deposit, Colburn, 1.
Redcliff ore deposits, Lakes, 44.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Secondary enrichment at Cripple Creek, Weed, 21.
Silver Lake mine, Lakes, 47.
Silverton folio, Ransome, 16.
Soils of Colorado, Lakes, 40.
South Park coal field, Lakes, 89.
Spanish Peaks folio, Hills, 1.
Structure of Boulder oil field, Fenneman, 5.
Summit County placers, Lakes, 43.
Economic geology—Continued.
Colorado—Continued.
- Telluride ores of Cripple Creek and Kalgoorlie, Rickard (T. A.), 2.
- Tellurium veins in La Plata Mountains, Austin, 1.
- Tercio and Cuatro mines, Hossen, 1.
- Tercio coal mining district, Plumb, 1.
- Veins of Boulder and Kalgoorlie, Rickard (T. A.), 11.
- Veins of Boulder County, Bugg, 3.

Connecticut.
- Clays of Connecticut, Loughlin, 1.
- Clays of the United States, Ries, 6.

District of Columbia.
- Clays of the United States, Ries, 6.
- Washington folio, Darton and Keith, 1.

Florida.
- Cement materials and industry of the United States, Eckel, 34.
- Clays of the United States, Ries, 6.
- Fuller's earth deposits of Florida and Georgia, Vaughan, 18.
- Fuller's earth of Georgia and Florida, Vaughan, 12.
- Phosphate deposits, Brown (L. F.), 1.

Georgia.
- Bauxite deposits of Georgia, Watson (T. L.), 12.
- Cement materials and industry of the United States, Eckel, 24.
- Clays of the United States, Ries, 6.
- Coal deposits of Georgia, McCaffie, 9.
- Copper deposits in Georgia, Weed, 26.
- Dahlonega gold district, Eckel, 15.
- Dahlonega mining district, Eckel, 21.
- Fuller's earth deposits of Florida and Georgia, Vaughan, 18.
- Fuller's earth of Georgia and Florida, Vaughan, 12.
- Geologic relations of the iron ores in the Cartersville district, Hayes (C. W.), 1.
- Georgia bauxite deposits, Watson (T. L.), 2.
- Gold and pyrite deposits of the Dahlonega district, Eckel, 16.
- Gold mining in McDuffie County, Flunker, 1.
- Gold mining in McDuffie County, Ga., Flunker, 2.
- Granites and gneissas of Georgia, Watson (T. L.), 8.

Hawaiian Islands.
- Geology of Hawaiian Islands, Branner, 6.

Idaho.
- Artesian basins in Idaho and Oregon, Russell, 9.
- Bellevue mining district, Lakes, 45.
- Butte copper veins, Winchell (H. V.), 4.
- Cœur d'Alene district, Ransome, 16.
- Facts about Thunder Mountain, Bell (R.), 5.
- Geologic reconnaissance across the Bitterroot Range and Clearwater Mountains, Lindgren, 21.
- Geology and mineral resources, Bell (R. N.), 5.
- Geology and water resources of Nez Perces County, Part II, Russell, 2.
- Geology of Thunder Mountain and central Idaho, Bell (R.), 4.
- Gold production of North America, Lindgren, 16.
- Idaho mining districts, Lakes, 18.
- Mining industry of Cœur d'Alenes, Finlay (J. R.), 1–3.
- Mining industry of Idaho, Bell (R. N.), 3.
- Nampa folio, Lindgren and Drake, 1.
- Ore deposits of Cœur d'Alene district, Ransome, 17.
- Outline of Idaho geology and of principal ore deposits of Lemhi and Custer counties, Idaho, Bell (R.), 1.
- Silver City folio, Lindgren and Drake, 2.
- Thunder Mountain, L'Hame, 1.
- Thunder Mountain and Mackay, Idaho, Bell (R.), 2.
- Thunder Mountain district, L'Hame, 2.

Illinois.
- Cement materials and industry of the United States, Eckel, 34.

FOR THE YEARS 1901–1905, INCLUSIVE.
Bull. 301—06—30
Economic geology—Continued.

Illinois—Continued.
- Chicago folio, Alden, 1.
- Clays of the United States, Ries, 6.
- Coal field of Indiana and Illinois, Fuller and Ashley, 2.
- Eastern interior coal field, Ashley, 1.
- Fluorspar and zinc mines of Kentucky, Harwood, 1.
- Fluorspar deposits of Kentucky-Illinois district, Bain, 12.
- Fluorspar deposits of southeastern Illinois, Bain, 6, 19.
- Geological section across northern Illinois, Udden (Johan A.), 1.
- Lead and zinc deposits of Illinois, Bain, 11.
- Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
- Patoka folio, Fuller and Clapp, 2.
- Stone industry in vicinity of Chicago, Alden, 2.
- Zinc and lead deposits of northwestern Illinois, Bain, 14.

Indiana.
- Asphalt, oil, and gas in southwestern Indiana, Fuller (M. L.), 5.
- Cement materials and industry of the United States, Eckel, 34.
- Clays of Indiana, Blatchley, 8.
- Clays of the United States, Ries, 6.
- Coal field of Indiana and Illinois, Fuller and Ashley, 2.
- Ditney folio, Fuller and Ashley, 1.
- Eastern interior coal field, Ashley, 1.
- Estimation of the silica in the Bedford limestone, Knight (N.), 7.
- Lakes of Indiana and their marl deposits, Blatchley and Ashley, 1.
- Lime industry in Indiana, Blatchley, 7.
- Lower Carboniferous area of southern Indiana, Ashley, 2.
- Medicinal properties and uses of Indiana mineral waters, Hessler, 1.
- Mineral waters of Indiana, Blatchley, 3.
- Oolitic stone for Portland cement, Blatchley, 1.
- Oolitic limestone industry, Siebenthal, 3.
- Patoka folio, Fuller and Clapp, 2.
- Petroleum industry in Indiana, Blatchley, 2, 4, 6.
- Report of natural gas supervisor, Kinney, 1, 2.
- Report of natural gas supervisor, Leach (J. C.), 1, 2.
- Silver Creek hydraulic limestone, Siebenthal, 2.

Indian Territory—Continued.
- Asphalt refining, Crane, 3.
- Atoka folio, Taff, 3.
- Calgate folio, Taff, 2.
- Coal fields of Arkansas and Indian Territory, Scholz, 1.
- Coal lands of Indian Territory, Taff, 7-11.
- Coal mining in Indian Territory, Crane, 5.
- Coal work in Indian Territory, Taff, 16.
- Geology of Muscogee oil fields, Taff and Shaler, 1.
- Oil and gas fields of western interior and Gulf coast, Adams (G. L.), 2.
- Portland-cement resources of Indian Territory, Taff, 14.
- Southwestern coal field, Taff, 4.
- Tishomingo folio, Taff, 17.

Iowa.
- Analyses of Iowa building stones, Knight (N.), 2.
- Artesian wells in Iowa, Calvin, 9.
- Cement and cement materials of Iowa, Eckel and Bain, 1.
- Geology and geological resources of Iowa, Calvin, 3, 7.
- Geology of Benton County, Savage, 7.
- Geology of Cedar County, Norton, 1.
- Geology of Cherokee and Buena Vista counties, Macbride, 2.
- Geology of Chickasaw County, Calvin, 11.
- Geology of clays, Beyer and Williams, 2.
- Geology of Clinton County, Udden (Jon A.), 1.
- Geology of Emmet, Palo Alto, and Pocahontas counties, Macbride, 4.
- Geology of Fayette County, Savage, 8.
- Geology of Henry County, Savage, 1.
- Geology of Howard County, Iowa, Calvin, 10.
- Geology of Jasper County, Williams (J. A.), 3.
- Geology of Jefferson County, Udden, 5.
- Geology of Louisa County, Udden, 2.
- Geology of Marion County, Miller (B. L.), 1.
- Geology of Mills and Fremont counties, Udden, 8.
- Geology of Mitchell County, Calvin, 12.
- Geology of Monroe County, Iowa, Beyer and Young, 1.
- Geology of Page County, Calvin, 1.
- Geology of Pottawattamie County, Udden, 3.
- Geology of Tama County, Savage, 3.
- Geology of Wapello County, Leonard, 3.
- Geology of Webster County, Wilder, 3.
- Gisements de minerais de zinc, Demaret, 1.
- Gypsum deposits in Iowa, Wilder, 6.
- Gypsum of central Iowa, Wilder, 4.
- Iowa's iron mine, Beyer, 2.
Economic geology—Continued.

Kansas—Continued.

- Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
- Oil and gas of Independence quadrangle, Schrader and Haworth, 1.
- Oil, gas, glass, etc., in Kansas, Grimsley, 1.
- Origin of gypsum deposits, Sherwin, 2.
- Ottawa gas wells, Yates (J. A.), 1.
- Petroleum and natural gas, Haworth, 2.
- Portland-cement resources of the Independence quadrangle, Haworth and Schrader, 1.
- Springs of Kansas and Oklahoma, Gould, 3.
- Tests for gold and silver in shales from western Kansas, Lindgren, 7, 8.
- Western interior coal field, Bain, 3.

Kentucky.

- Asphalt rock in Kentucky, Burk, 2.
- Barboursville oil field, McCallie, 7.
- Big Stone Gap coal field, Pultz, 1.
- Clays of the United States, Ries, 6.
- Cumberland Gap coal field, Ashley, 3, 4.
- Eastern Interior coal field, Ashley, 1.
- Fluorspar and zinc mines of Kentucky, Harwood, 1.
- Fluorspar deposits of Kentucky-Illinois district, Bain, 12.
- Fluorspar mines of Kentucky and Illinois, Burk, 1.
- Gisements de minéraux de zinc, Demaret, 1.
- Jellico coal field, Evans (N. N.), 2.
- Lead and zinc bearing rocks of Kentucky, Miller (A. M.), 4.
- Lead, zinc, and fluorspar deposits of western Kentucky, Smith (W. S. T.), 3.
- Lead, zinc, and fluorspar deposits of western Kentucky, Ulrich and Smith, 1.
- Lithographic stone deposits of eastern Kentucky, Ulrich, 3.
- Norton coals of Big Sandy Basin, Althouse, 1.
- Oil and gas sands of Kentucky, Hoeing, 1.
- Report of division of chemistry, Peter, 1.
- Report on lands leased for oil and gas near Cannel City, Lane, 19.
- Southern Appalachian coal field, Hayes (C. W.), 7.
- Zinc in Crittenden County, Wheeler (G. D.), 1.

Louisiana.

- Accumulation of petroleum, Hayes (C. W.), 8.
- Cement materials and industry of the United States, Eckel, 34.
- Geological horizon of petroleum, Fishback, 1.

Economic geology—Continued.

Iowa—Continued.

- Lead and zinc deposits of Mississippi Valley, Van Ilise and Bain, 1.
- Mineral production in 1901, Beyer, 1.
- Mineral production in 1902, Beyer, 3.
- Occurrence of gold and other mineral products in Iowa, Calvin, 2.
- Portland-cement resources of Iowa, Bain, 15.
- Southwestern Iowa coal fields, Keyes, 22.
- Technology of clays, Beyer and Williams, 1.
- Tenth annual report of State geologist, Calvin, 5.
- Tests of lithographic limestone of Mitchell County, Hoen, 1.
- Western interior coal field, Bain, 3.

Kansas.

- Americus limestone, Smith (A. J.), 1.
- Atchison diamond-drill prospect hole, Langworthy, 1.
- Cement materials and industry of the United States, Eckel, 34.
- Clay industries of Independence quadrangle, Schrader and Haworth, 2.
- Coal fields of Kansas, Crane, 4.
- Composition of gas from a well at Dexter, McFarland, 1.
- Cottonwood Falls folio, Prosser and Beede, 1.
- Dakota Cretaceous of Kansas and Nebraska, Gould, 5.
- Dexter nitrogen gas well, Haworth and McFarland, 1.
- Economic geology of Iola and vicinity, Grimsley, 2.
- Economic geology of the Iola quadrangle, Adams, Haworth, and Crane, 1.
- Galeana-Joplin lead and zinc district, Haworth, 1.
- Geology and mining interests of Kansas, Haworth, 3.
- Geology and underground water resources of the central Great Plains, Darton, 18.
- Gisements de minéraux de zinc, Demaret, 1.
- Gold in Kansas, Lovewell, 2.
- Gold in Kansas shales, Lovewell, 1.
- Gypsum deposits in Kansas, Grimsley, 5.
- Kansas coal mines of the Missouri Valley, Crane, 2.
- Kansas coal mining, Crane, 1.
- Kansas mines and minerals, Grimsley, 1.
- Kansas petroleum, Bartow and McCollum, 1.
- Lead and zinc deposits of the Joplin district, Smith (W. S. T.), 2.
- Oil and gas in Kansas, Haworth, 4.
Economic geology—Continued.

Louisiana—Continued.

Hills of Louisiana south of V. S. and P. Railroad, Letcher, 2.
Oil fields of the Texas-Louisiana gulf coast, Fenneman, 8.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes (C. W.), 13.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes and Kennedy, 1.
Oil in Louisiana, Harris, 4.
Preliminary report upon bluff and Mississippi alluvial lands of Louisiana, Clendenin, 2.
Preliminary report upon Florida parishes of east Louisiana, Clendenin, 1.
Sulphur deposits of Calcasieu Parish, Kerr, 1.
Underground waters of Louisiana, Harris, 6.
Volcanic origin of oil, Coste, 4.
Water supplies in Louisiana, Fuller (M. L.), 10.

Maine.

Clays of the United States, Ries, 6.
Geology of Perry Basin, Smith and White, 1.
Granite industry of Penobscot Bay quadrangle, Smith (G. O.), 17.
Mineral resources, Lee (L. A.), 1.
Molybdenite deposit in eastern Maine, Smith (G. O.), 16.
Quarts veins in Maine and Vermont, Smith (G. O.), 14.
State investigations during 1904, Dale, 8.
Water powers of Maine, Pressey, 3.

Maryland.

Bituminous coal fields of Maryland, White (D.), 7.
Cement materials and industry of the United States, Eckel, 34.
Clays of Maryland, Ries, 5.
Clays of the United States, Ries, 6.
Copper deposits of Appalachian States, Weed, 17.
Distribution and character of Maryland coal beds, Clark, Martin, and Rutledge, 1.
Geology of the Maryland coal district, Martin (G. C.), 16.
Gold veins near Great Falls, Weed, 35.
Mineral resources of Cecil County, Mathews, 1.
Mineral resources of Garrett County, Martin (G. C.), 2.
State investigations during 1904, Dale, 8.

Massachusetts.

Building stones of Boston, Crosby and Loughlin, 1.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Hematite deposits of New York, Eckel, 30.
Mexico.

Aguas subterraneas de Amozoc, Ordoñez, 12.
Cananea copper deposits, Weed, 12.
Cananea ore deposits, Weed, 23.
Cananea revisited, Hill (R. T.), 12.
Canteras de San Lorenzo Totolinga, Lazaro and Ordoñez, 1.
Coal fields of Las Esperanzas, Ludlow, 1.
Coal mines at Las Esperanzas, Ries, 9.
Cobalt au Mexico, Caballero, 1.
Copper deposits of San Jose, Kemp, 32.
Copper deposits in Sinaloa and Sonora, Rickard (F.), 2.
Criadero de fierro del Cerro de Mercado, Durango, Rangel, 1.
Criaderos argentiferos, Flores, 1.
Criaderos cupro-argentiferos en Tapalpa, Vilalco, 1.
Criaderos de fierro de la hacienda de Vaquerias, Villarello and Böse, 1.
Criaderos de mercurio de Chiquilistan, Villarello, 6.
Criaderos de petroleo de Pichucalco, Alcala, 1.
Distribucion geografica y geologica de los criaderos minerales, Aguilera, 1.
Estado de Tabasco, Laguerenne, 1.
Fierro de Tatatalia, Veracruz, Capilla, 1.
Genesis de los yacimientos mercuriales de Palomas, Villarello, 1.
Geographic and geologic features, and their relation to the mineral products of Mexico, Hill (R. T.), 4.
Geographieale and geological distribution of mineral deposits of Mexico, Aguilera, 3.
Geology of San Pedro district, Finlay (G. I.), 5.
Geology of Santo Domingo placer fields, Hill (R. T.), 15.
Geology of the Cananeas, Mathez, 1.
Geology of western Mexico, Fannington, 13.
Gold mines of the San Pedro district, Laird, 1.
Gold production of North America, Lindgren, 16.
Guanajuato mining district, Henrich, 1.
Guanajuato mining district, Hill (R. T.), 14.
Hostotipaquillo district, Cummings, 10.
La industria minera, Ordoñez, 2.
Kupfererzagerstätte in Nieder-Californien, Kruezch, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Economic geology—Continued.

Mexico—Continued.

Ligeros datos sobre los criaderos de Peñoles, Hijar, 1.

"Los Reyes" gold mines, Smith (A. H.), 1.

Mina Santa Francisca, Cook (E. H.), 1.

Mineral de Angangueo, Ordofiez, 11.

Mineral zone of Santa Maria del Rio, Munzano, 1.

Mines and minerals of Guanajuato, Blake (W. P.), 7.

Mines in the states of Chihuahua, Sinaloa, and Sonora, Weed, 8.

Mines of Santa Eulalia; Aiken, 1.

Mining industry of Pachuca, Ordofiez, 3, 6.

Mining in Lower California, Lowry, 1.

Montezuma district, Clerc, 1.

Occurrence of selenium with pyrite, Pearce, 5.

Onyx-marble deposits of Jimulco, Ordofiez, 4.

Ore deposits of Cananea, Austin, 1.

Ore deposits of Cananea, Hill (R. T.), 11.

Ore deposits of La Cananea, Steel, 1.

San Antonio district, Baggs, 6.

Salt, Lane, 12.

Santa Eulalia district, Hill (R. T.), 10.

Santa Eulalia mines, Lakes, 54.

Santa Eulalia mining district, Argall (P.), 1.

Santa Eulalia ore deposits, Argall (P.), 2.

Sierra Mojada and its ore deposits, Emmons (S. F.), 8.

Sierra Mojada and its ore deposits, Malcolmson, 1.

Silver-bearing veins of Mexico, Halse, 1, 4, 5.

Silver-lead mines of Santa Eulalia, Cahill, 1.

Structure of ore-bearing veins in Mexico, Halse, 2.

Teoría química para explicar la formación del petróleo de Aragon, Villarello, 3.

Trip to Chihuahua, Lakes, 51.

Upland placer's, of La Cienega, Sonora, Hill (R. T.), 7.

Value of ores in Mexico, Emmons (N. H.), 1.

Vanadio de Charcas, Caballero, 2.

Yaqui River country of Sonora, Bancroft, 1.

Michigan—Continued.

Alabaster area, Gregory (W. M.), 3.

Asphalt in Delta County, Lane, 6.

Cement materials and industry of the United States, Eckel, 34.

Clays and shales of Michigan, Ries, 1.

Clays of the United States, Ries, 6.

Economic geology—Continued.

Michigan—Continued.

Coal formation of Bay County, Cooper (W. F.), 3.

Coal of Michigan, Lane, 14.

Copper mines of Lake Superior, Richard (T. A.), 14, 16.

Copper mining in Upper Michigan, Jackson (J. F.), 1.

Deep borings for oil and gas, Lane, 40.

Deep wells and prospects for oil and gas, Lane, 10.

Economic geology of Michigan, Lane, 5, 8, 26.

Eisenerzlagerstätten am Lake Superior, Macco, 1.

Explanations for oil and gas, Lane, 31.

Fifth annual report of State geologist, Lane, 30.

Geology of lands in Upper Peninsula, Rose, 2.

Geology of Menominee Range, Hulst, 1.

Geology of some lands in Michigan, Rose, 1.

Gold near Lake Superior, Lane, 35.

Gypsum, Diehl, 1.

Gypsum and plaster industry of Michigan, Grimsley, 7.

Gypsum deposits in Michigan, Grimsley, 4.

Lake Superior geological work, Van Hise, 14.

Lake Superior iron-ore deposits, Grant (U. S.), 6.

Lake Superior iron region, Leith, 10.

Limestones of Michigan, Lane, 1, 9, 41.

Localities and mills manufacturing Portland cement, Lane, 21.

Marl and the manufacture of Portland cement, Hale, 1.

Marls and clays in Michigan, Fall, 1, 2.

Menominee district of Michigan, Bayley, 1.

Michigan clay, shales, and paving materials, Lane, 34.

Northern interior coal field, Lané, 15.

Origin of gypsum, Grimsley, 8.

Origin of Michigan bog limes, Lane, 20.

Origin of Michigan gypsum deposits, Grimsley, 6.

Pot Euron oil field, Gordon (C. H.), 2.

Portland-cement industry in Michigan, Russell, 6.

Relation of vein at Central mine, Keweenaw Point, to Kearsarge conglomerate, Hubbard (L. L.), 2.

Report on Arenac County, Gregory (W. M.), 1, 2.

Salt, Lane, 12.

Sixth annual report of the State geologist, Lane, 49.

Summary of Lake Superior geology, Leith, 14.
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

Michigan—Continued.
- Surface geology of Alcona County, Leverett, 3.
- Topography, soils, water resources, etc., of Muskegon County, McLouth, 1.

Minnesota.
- Baraboo iron ore, Winchell (N. H.), 23.
- Casselton-Fargo folio, Hall and Willard, 1.
- Cement materials and industry of the United States, Eckel, 34.
- Constituents of Minnesota soils, Hall (C. W.), 2.
- Deep wells as a source of water supply for Minneapolis, Winchell (N. H.), 27.
- Eissenerzlagerstätten am Lake Superior, Macco, 1.
- Geologic work on Lake Superior iron district, Leith, 5.
- Geology and mines of Lake Superior copper district, Stevens (H. J.), 1.
- Geology of a new iron district in Minnesota, Thomas, 4.
- Geology of Minnesota, Hall (C. W.), 5, 7.
- Geology of the iron ores of Minnesota, Winchell (N. H.), 24.
- Iron ores of Mesabi and Gogebic ranges, Leith, 8.
- Lake Superior iron ore deposits, Grant (U. S.), 6.
- Lake Superior iron region during 1903, Leith, 12.
- Mesabi iron-bearing district, Leith, 4.
- Mesabi iron ore range, Woodbridge, 1.
- Mesabi iron range, Winchell (H. V.), 3.
- Mining in the Vermilion iron district of Minnesota, Thomas, 3.
- Origin and distribution of Minnesota clays, Berkey, 3.
- Original source of Lake Superior iron ores, Spurr, 5.
- Pioneer iron mine, Ely, Minn., Carlyle, 1.
- Vermilion district of Minnesota, Clements, 2.
- Vermilion iron-bearing district of Minnesota, Clements, 3.

Mississippi.
- Cement and cement resources of the Tombigbee River district, Eckel and Crider, 1.
- Cement materials and industry of the United States, Eckel, 34.
- Cement resources of northeast Mississippi, Crider, 1.
- Clays of the United States, Ries, 6.
- Geology of Oktibbeha County, Logan, 2.
- Loess of Natchez, Miss., Shimek, 4.

Missouri.
- Biennial report of State geologist, Buckley, 7.
- Bituminous and asphalt rocks, Broadhead, 4.
- Cement materials and industry of the United States, Eckel, 34.
- Coal fields of Missouri, Bush, 1.
- Copper deposits of Missouri, Bain and Ulrich, 1, 2.
- Disseminated lead ores of southeast Missouri, Nason, 4.
- Galena-Joplin lead and zinc district, Haworth, 1.
- Geology of Miller County, Ball and Smith, 1.
- Geology of Moniteau County, Van Horn, 1.
- Gisements de minerals de zinc, Demaillet, 1.
- Graydon sandstone, Babcock and Minor, 1.
- Joplin zinc district, Steele, 1.
- Lead and zinc deposits of Mississippi Valley, Keyes, 20.
- Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
- Lead and zinc deposits of Ozark region, Bain, 2.
- Lead and zinc deposits of Ozark region, Van Hise, 5.
- Lead and zinc deposits of the Joplin district, Smith (W. S. T.), 2.
- Missouri and Arkansas zinc mines, Branner, 3.
- Missouri and Arkansas zinc mines, Hedburg, 1.
- Missouri and Arkansas zinc mines, Nichols (H. W.), 2.
- Missouri coal field, Griffith, 4.
- Missouri lead and zinc regions, Crook, 2.
- Origin of Joplin ore deposits, Bain, 1.
- Quarrying industry of Missouri, Buckley and Buehler, 1.
- Pierson Creek mines, Smith and Standley, 1.
- Source of Missouri lead, Wheeler (H. A.), 1.
- Structural features of Joplin district, Bain, 17.
- Western interior coal field, Bain, 3.
- Zinc deposits of Missouri, Bain, 13.

Montana.
- Cement resources of Montana, Weed, 33.
- Chalcolite at Butte, Winchell (H. V.), 2.
- Conditions in veins and faults in Butte, Braden, 1.
- Corundum in Montana, Edman, 1.
- Economic value of hot springs, Weed, 88.
Economic geology—Continued.

Montana—Continued.

Geological reconnaissance across the Bitterroot Range and Clearwater Mountains, Lindgren, 21.

Geology and ore deposits of Elkhorn mining district, Weed, 5.

Geology of the Butte mining district, Miller (G. W.), 2.

Gold mines of Marysville district, Weed, 14.

Gold nugget from Montana, Pearce, 1.

Gold production of North America, Lindgren, 16.

Gypsum deposits, Rowe, 5.

Gypsum deposits in Montana, Weed, 25.

Igneous rocks and their segregation, Winchell (A. N.), 4.

Influence of country rock on mineral veins, Weed, 6.

Mineral deposits of Bitterroot Range and Clearwater Mountains, Lindgren, 11.

Montana coal fields, Rowe, 2, 6.

Oil of the northern Rocky Mountains, Willis, 4.

Ore deposits at Rutte, Weed, 16.

Ores of Rutte mining district, Byrne, 3.

Rocky Mountain coal fields, Storrs (L. S.), 1.

Sources of placer gold in Alder Gulch, Douglass, 11.

Volcanic ash beds of Montana, Rowe, 1.

Nebraska.

Cement materials and industry of the United States, Eckel, 34.

Comparative value of bluff and valley wash deposits as brick material, Fisher (C. A.), 1.

Dakota and Carboniferous clays of Nebraska, Gould and Fisher, 1.

Dakota Cretaceous of Kansas and Nebraska, Gould, 5.

Geology and underground water resources of the central Great Plains, Darton, 18.

Geology of Dakota County, Burchard, 2.

Jefferson County, Carmony, 1.

Lignite beds of the Missouri Valley, Burchard, 1.

Limestone quarries of Nebraska, Fisher (C. A.), 2.

Scotts Bluff folio, Darton, 11.

Nevada.

Alum deposit near Silver Peak, Spurr, 21.

Building stones of Nevada, Reid (J. A.), 2.

Cement materials and industry of the United States, Eckel, 34.

Coal deposits between Silver Creek and Candelaria, Spurr, 20.

Contact metamorphism, Purling, 2.

Delamar and Horn-Silver mines, Emmons (S. F.), 3.

Economic geology—Continued.

Nevada—Continued.

Developments at Tonopah during 1904, Spurr, 26.

District of Goldfield, Draper, 1.

Genetic relations of western Nevada ores, Spurr, 31.

Geological features of Nevada, Louderback, 1.

Geology of Goldfield, Dominian, 1, 2.

Geology of Goldfields district, Spurr, 19.

Geology of Nevada, Spurr, 6.

Geology of the Tonopah mining district, Spurr, 29.

Gold-bearing quartzites of eastern Nevada, Weeks, 2.

Gold production of North America, Lindgren, 16.

Gypsum deposits in Nevada, Louderback, 5.

Gypsum deposits of Nevada, Louderback, 2.

Hydrothermal activity in veins at Wedekind, Morris, 1.

Lone Mountain district, Lakes, 72.

Mines of Esmeralda County, Turner, 3.

Montezuma district, Stretch, 3.

Nevada coal field, Stoneham, 1.

Nevada ore deposit, Wiel, 1.

Nitrate deposits, Humboldt County, Wagenen, 1.

Notes on Goldfield, Winchell (H. V.), 5.

Notes on Tonopah, Easton, 1.

Notes on two desert mines, Emmons (S. F.), 2.

Occurrence of tungsten ore, Weeks, 1.

Ore deposits of Contact, Bailey (J. T.), 3.

Ore deposits of Silver Peak quadrangle, Spurr, 18.

Ore deposits of Tonopah, Spurr, 8, 9, 11.

Ores of Goldfield, Spurr, 25.

Osceola tungsten deposits, Smith (F. D.), 1.

Rabbit Hole sulphur mines, Adams (G. L.), 16.

Santa Fe mining district, McCormick, 1.

Silver Peak region, Spurr, 22.

Tätigkeit heisser Quellen in den Gängen von Wedekind, Wendeborn, 1.

Tonopah, Knapp (S. A.), 1.

Tonopah mining camp, Lakes, 68.

Tonopah mining district, Spurr, 27.

Tungsten ore in eastern Nevada, Weeks, 8.

Newfoundland.

Exploration in Carboniferous basin near Grand Lake, Howley, 2.

Pyrites deposits at Port au Port, Meissner, 1.
Economic geology—Continued.

New Hampshire.

New Jersey.
Artesian wells, Woolman, 1–3.
Cement materials and industry of the United States, Eckel, 34.
Cement-rock deposits of the Lehigh district, Eckel, 25.
Clay and its properties, Ries, 12.
Clays of the United States, Ries, 6.
Copper deposits of Appalachian States, Weed, 17.
Copper deposits of New Jersey, Weed, 18.
Copper leaching at the American copper mine, Bond, 1.
Gisements de minerais de zinc, Demaret, 1.
Griggstown copper deposit, Weed, 27.
Iron and zinc mines, Kimmel, 5.
Magnetite deposits in Sussex County, Spencer (A. C.), 12.
Manufacture of clay products, Ries, 13.
Molding sands of New Jersey, Kimmel, 2, 3.
Portland-cement industry, Kimmel, 1.
Stratigraphy of New Jersey clays, Kimmel and Knapp, 1.
Talc deposits of Phillipsburg, Peck, 6.
Underground waters of New Jersey, Knapp (G. N.), 1.
Zinc and manganese deposits of Franklin Furnace, Wolff, 2.

New Mexico.
Application of geology to economic problems in New Mexico, Herrick (C. L.), 1.
Burro Mountain copper district, Reid (G. D.), 1.
Cerrillos anthracite mine, Lakes, 5.
Coal fields of the White Mountain region, Fisher (C. A.), 4.
Coal, graphite, and oil field of Raton, Lakes, 23.
Copper deposits of Sierra Oscura, Turner, 11.
Curtis mines, Lakes, 7.
Geology of Apache Canyon placers, Keyes, 33.
Geology of the Cerrillos Hills, Johnson (D. W.), 4.
Geology of the Jemez-Albuquerque region, Reagan, 1.
Gisements de minerais de zinc, Demaret, 1.
Gold production of North America, Lindgren, 16.
Gypsum deposits in New Mexico, Herrick (H. N.), 1.
Hagan coal field, Keyes, 43.
Iron deposits of the Chupadera Mesa, Keyes, 42.
Jemez coal fields, Reagan, 4.
Lake Otero, Herrick (C. L.), 6.

Economic geology—Continued.

New Mexico—Continued.
Mogollon range, Weatherby, 1.
New coal field, Lakes, 6.
New Mexico copper deposits, Austin, 2.
New Mexico mines and minerals, Jones (F. A.), 1.
Ore deposits of San Pedro district, Yung and McCaffrey, 1.
Ore deposits of the Sierra de Los Caballos, Keyes, 47.
Remarkable silver pipe, Keyes, 32.
Report of mine inspector, Sheridan, 1.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Secondary enrichment in the Santa Rita district, Bagg, 5.
Trip to White Oaks, Smith and Dominian, 1.
White sands of New Mexico, Brady, 1.
Zinc carbonate ores of the Magdalena Mountains, Keyes, 48.

New York.
Abrasives of New York State, Magnus, 1.
Artesian conditions on Long Island, Veatch, 6.
Artesian-well sections at Ithaca, Tarr, 5.
Cement industry in New York, Eckel, 5.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Clinton hematite, Eckel, 33.
Economic geology of Monroe County, Sarle, 3.
Economic geology of New York, New York State Museum, 1.
Economic geology of Oneida County, Smyth (C. H.), 5.
Economic geology of western New York, Bishop (T. F.), 2.
Economic products of St. Lawrence County, Logan, 1.
Emery deposits of Westchester County, Eckel, 2.
Geological history of hematite iron ores of Antwerp and Fowler belt In New York, Crosby, 3.
Geology of the Paradox Lake quadrangle, Ogilvie, 6.
Graphite in the Adirondacks, Kemp, 27.
Gypsum deposits in New York, Eckel, 22.
Gypsum deposits of New York State, Parsons, 2.
Gypsum industry in New York, Parsons, 1, 4.
Hematite deposits of New York, Eckel, 30.
Hematite iron ores of Antwerp and Fowler belt, Crosby, 2.
Hydrology of New York, Rafter, 1.
Lime and cement industries of New York, Ries, 4.
Limestones in central New York, Schneider, 2.
Economic geology—Continued.

New York—Continued.

Magnetite deposits at Mineville, Ries, 8.
Mineral developments around Ithaca, Ries, 10.
Mineral developments at Mineville, Ries, 11.
Mineral resources of Onondaga County, Hopkins (T. C.), 9.
Minerals not commercially important, Whitlock, 3.
Mining and quarry industry during 1904, Newland, 2.
New York City folio, Merrill and others.

Oil and gas in New York, Bishop (T. P.), 1.
Peat, Parsons, 3.
Portland-cement resources of New York, Eckel, 39.
Pyrite deposits of the western Adirondacks, Eckel, 40.
Quarries of bluestone, Dickinson, 1.
Quarry industry in southeastern New York, Eckel, 6.
Rossie lead veins, Smyth (C. H.), 4.
Salt and other resources of the Watkins Glen quadrangle, Kindl.e, 7.
State quarries of Washington County, Nevius, 1.
Whetstone industry, Schneider, 5.

Nicaragua.
Gold fields of eastern Nicaragua, Gottschalk, 3.

North Carolina.
Asheville folio, Keith, 9.
Atlantic coast Triassic coal field, Woodworth, 4.
Biennial report of the State geologist, Holmes (J. A.), 1, 2.
Carolina gold deposits, Weed, 3.
Carolina tin belt, Graton, 3.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Composition and occurrence of petroleum, Mabery, 3.
Corning oil and gas field, Bownocker, 2.
Eastern Ohio oil fields, Griswold, 2.
Gypsum deposits in Ohio, Peppel, 1.
Lime resources of Ohio, Orton and Peppel, 1.
Manufacture of hydraulic cements, Bleilinger, 1.
Natural features, and economic development of drainage areas in Ohio, Flynn (B. H. and M. S.), 1.
Ohio natural-gas fields, Bownocker, 4.
Oil and gas producing rocks of Ohio, Bownocker, 3.
Origin of gypsum deposits, Sherwin, 2.
Petroleum and natural gas in Ohio, Bownocker, 5.
Salt deposits of northeastern Ohio, Bownocker, 6.

Oklahoma.
Building stone of Oklahoma, Schramm, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

Oklahoma—Continued.

Cement materials and industry of the United States, Eckel, 34.
Contact ofPermian with Pennsylvanian in Oklahoma, Kirk, 1.
Gypsum deposits in Oklahoma, Gould, 11.
Oklahoma gypsum, Gould, 10.
Oklahoma limestones, Gould, 8.
Oklahoma salt plains, Gould, 7.
Reported gold deposits of the Wichita Mountains, Bain, 8, 9.
Reported ore deposits of Wichita Mountains, Bain, 10.
Springs of Kansas and Oklahoma, Gould, 9.

Oregon.

Artesian basins in Idaho and Oregon, Russell, 9.
Beach gold and its source, Washburne, 3.
Bohemia mining district of western Oregon, Kimball, 1.
Borax mine in southern Oregon, Dennis, 1.
Cement materials and industry of the United States, Eckel, 34.
Coal fields of Pacífic coast, Smith (G. O.), 6.
Coal in Washington, near Portland, Diller, 21.
Coos Bay coal fields, Rockwell, 1.
Coos Bay folio, Diller, 4.
Gisements des minéraux de mercure, Desmaret, 2.
Gold belt of Blue Mountains, Lindgren, 4.
Gold mining in eastern Oregon, Beadle, 1.
Gold production of North America, Lindgren, 10.
Mesozoic of southwestern Oregon, Louderback, 6.
Mineral resources and mining in Oregon, Drake, 1.
Nampa folio, Lindgren and Drake, 1.
Native gold in igneous rocks, Mallery, 1.
Oregon nickel prospects, Ledoux, 1.
Placer gold in Oregon, Washburne, 2.
Port Orford folio, Diller, 11.
Quicksilverablagerungen in Oregon, Wendeborn, 2.
Quicksilver deposits of Oregon, Dennis, 2.
So-called iron ore near Portland, Diller, 20.

Panama.

Manganese industry of Panama, Williams (E. G.), 1.

Pennsylvania.

Anthracite coal fields, Storrs (A. H.), 1.

Economic geology—Continued.

Pennsylvania—Continued.

Anthracite coal near Perklopen Creek, Carter (O. S. C.), 2.
Anthracite situation, Kemp, 17.
Barite in Pennsylvania, Stose, 2.
Barnesboro-l'atton field, Burrows, 1.
Beaver folio, Pennsylvania, Woolsey, 3.
Bituminous coal field of Pennsylvania, White and Campbell, 1.
Brownsville-Connelsville folio, Campbell (M. R.), 8.
Cement belt in Lehigh and Northampton counties, Peck, 5.
Cement, materials and industry of the United States, Eckel, 34.
Cement-rock deposits of the Lehigh district, Eckel, 25.
Charbons gras de la Pennsylvanie et de la Virginie occidentale, Hourteau, 1.
Clays of Great Valley and South Mountain areas, Hopkins (T. C.), 4.
Clays of Pennsylvanian, Woolsey, 1.
Clays of southeastern Pennsylvania, Hopkins (T. C.), 1.
Clays of the United States, Ries, 6.
Clays of upper Ohio and Beaver River region, Hice, 2.
Coal Measures of bituminous regions, Adams (T. K.), 1.
Coal Measures of central Pennsylvania, Ficek, 1.
Coal mining in the Wilmore basin, Butts, 3.
Connelsville region mineral resources, Eavenson, 1.
Ebensburg folio, Pennsylvania, Butts, 7.
Elders Ridge coal field, Stone (R. W.), 1.
Eikland-Tloga folio, Fuller and Alden, 2.
Gaines folio, Fuller and Alden, 1.
Gaines oil field, Fuller (M. L.), 2.
Gisements des minéraux de zinc, Desmaret, 1.
Hyner gas pool, Fuller (M. L.), 9.
Indiana folio, Richardson (G. B.), 3.
Kittanning folio, Butts, 4.
Latrobe folio, Campbell (M. R.), 18.
Limestones of southwestern Pennsylvania, Clapp, 4.
Masontown-Uniontown folio, Campbell (M. R.), 6.
Oil and gas fields of Greene County, Stone (R. W.), 2.
Pennsylvania anthracite coal fields, Stock, 1.
Pittsburgh coal in the Burgettstown quadrangle, Griswold, 3.
Economic geology—Continued.
Pennsylvania—Continued.
Recent work in the bituminous coal field of Pennsylvania, Campbell (M. R.), 11.
Rural valley folio, Butts, 6.
State industry at Shintoning, Dale, 2.
State investigations during 1904, Dale, 8.
Philippine Islands.
Coal deposits of Bataan Island, Smith (W. D.), 1.
Coal deposits of Pobillo Island, Wigmore, 1.
Coal deposits on the Bataan military reservation, Wigmore, 1.
Coal Measures of the Philippine Islands, Burritt, 1.
Geological reconnaissance of Bulacan, McCaskey, 1.
Geology of the Philippine Islands, Becker, 1.
Pigoholgan and Pigtao gold regions, Island of Mindanao, Nichols (J. C.), 1.
Sixth annual report of the mining bureau, McCaskey, 2.
Rhode Island.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
South Carolina.
Carolina gold deposits, Weed, 3.
Carolina tin belt, Graton, 3.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Mineral resources, Sloan, 1.
Phosphate deposits, Brown (L. P.), 1.
Phosphate industry, Chazal, 1.
Tin, Struthers and Pratt, 1.
Tin deposits of the Carolinas, Pratt and Sterrett, 1.
South Dakota.
Age of Homestake lode, Hewett, 2.
Alexandria folio, Todd and Hall, 1.
Artesian wells in North and South Dakota, Upham, 1.
Bald Mountain district in the Black Hills, Blatchford, 2.
Black Hills ore deposits, O’Harra, 1.
Building stones of South Dakota, Todd (J. E.), 7.
Cement materials and industry of the United States, Eckel, 34.
Deposit of fuller’s earth, Cook, 1.
Deposits of wolframite in the Black Hills, Irving, 1.
De Smet folio, Todd and Hall, 3.
Economic resources of Black Hills, Irving and Eames, 1.
Edgemont folio, Darton and Smith, 1.
Geology and mineralogy of the Black Hills, O’Harra, 3.
Tennessee.
Asheville folio, Keith, 9.
Clays of the United States, Ries, 6.
Cumberland Gap coal field, Ashley, 3, 4.
Cumberland Plateau coal field, Duffield, 1.
Deposits of copper ores at Ducktown, Kemp, 10.
Ducktown copper-mining district, McCulley, 4.
Gisements de minerals de zinc, Demaret, 1.
Greeneville folio, Keith, 11.
Horizons of phosphate rocks, Safford, 1.
Iron ore deposits of the Cranberry district, Keith, 5.
Iron ores of Shady Valley, Garrison, 2.
Economic geology—Continued.
South Dakota—Continued.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology and water resources of James River Valley, Todd and Hall, 2.
Geology of artesian basins, McCaslin, 1.
Geology of Black Hills, Darton, 1.
Geology of the Black Hills, Jaggar, 5.
Gold ores of the Black Hills, Chance, 1.
Gold production of North America, Lindgren, 16.
Golden West mine, Storms, 5.
Gypsum deposits in South Dakota, Darton, 15.
Huron folio, Todd (J. E.), 15.
Mineral building materials, fuels, and waters of South Dakota, Todd (J. E.), 5.
Mineral wealth of Black Hills, O’Harra, 2.
Mitchell folio, Todd (J. E.), 11.
Newcastle folio, Darton, 14.
Oelrichs folio, Darton, 8.
Olivet folio, Todd (J. E.), 9.
Ore deposits of northern Black Hills, Irving, 2.
Ore deposits of the Black Hills, Irving, 3, 4.
Parker folio, Todd (J. E.), 10.
Potash formation of Bald Mountain district, Blatchford, 1.
Problems of the Dakota artesian system, Todd (J. E.), 2.
Sundance folio, Darton, 26.
Tungsten ores in the Black Hills, Simmons, 1.
Wolframite in Black Hills, Forsyth, 1.
Wolframite in Black Hills, Raymond (R. W.), 2.
Economic geology—Continued.

Tennessee—Continued.
Jellico coal field, Evans (N. N.), 2.
Maynardville folio, Keith, 1.
Phosphate deposits, Brown (L. P.), 1.
Portland-cement resources of Tennes­
see, Ulrich, 7.
Southern Appalachian coal field,
Hayes (C. W.), 7.
Stoneware and brick clays, Eckel, 18.
Tennessee iron ores, Maxwell, 1.
Tennessee marbles, Keith, 6.
Tennessee white phosphate, Eckel, 3.
Tennessee white phosphate, Hayes
(C. W.), 3, 15.
White phosphates of Decatur County,
Eckel, 20.
Zinc mining in east Tennessee, Keith,
8.

Texas.
Accumulation of petroleum, Hayes
(C. W.), 8.
Austin folio, Hill and Vaughan, 1.
Bat guano caves in Texas, Phillips
(W. B.), 1.
Beaumont oil field, Phillips (W. B.), 2.
Chemistry of asphalt rocks, Harper
(H. W.), 1.
Cinnabar deposits of Big Bend prov­
ince, Hill (R. T.), 8.
Coal fields of Texas, Ries, 14.
Coal, lignite, and asphalt rocks, Phil­
lips (W. B.), 6, 12.
Composition and occurrence of petro­
leum, Mabery, 3.
Composition of Texas petroleum, Ma­
bery, 1.
El Paso tin deposits, Weed, 4.
Geography and geology of Black and
Grand prairies, Hill (R. T.), 3.
Geological horizon of petroleum, Fish­
back, 1.
Geology of Beaumont oil field, Dum­
ble, 2.
Geology of Shafter silver mine dis­
trict, Udden (Johan A.), 11.
Gisements des minerais de mercure,
Demaret, 2.
Great oil well near Beaumont, Dumble,
8.
Great oil well near Beaumont, Lucas
(A. F.), 1.
Gypsum deposits in Texas, Hill
(B. F.), 3.
Industrie du pétrole en Californie,
Heurteau, 2.
Iron ores of east Texas, Dumble, 3, 6.
Iron ores of northeastern Texas, Eckel,
37.
Lead ore in Burnett County, Phillips
(W. B.), 9.
Mount Pleasant phosphate field, Ruhm,
1.
Native sulphur in El Paso County,
Richardson (G. B.), 8.

Economic geology—Continued.

Texas—Continued.
New quicksilver field in Brewster
County, Phillips (W. B.), 8.
New quicksilver mining district, Kirk
and Malcolmson, 1.
Oil and gas fields of western interior
and Gulf coast, Adams (G. L.), 2.
Oil fields of the Texas-Louisiana gulf
coast, Fenman, 7, 8.
Oil fields of Texas-Louisiana Gulf
coastal plain, Hayes (C. W.), 13.
Oil fields of Texas-Louisiana Gulf
coastal plain, Hayes and Kennedy, 1.
Petroleum from the Beaumont field,
Richardson and Wallace, 1.
Petroleum industry of Europe and
America, Otsuka, 1.
Physical geography, geology, and re­
sources of Texas, Dumble, 1.
Portland-cement resources of Texas:
Taff, 15.
Quicksilver deposits of Brewster
County, Phillips (W. B.), 14.
Quicksilver district in Brewster
County, Phillips (W. B.), 10, 11.
Quicksilver mines of Brewster County,
Spalding, 1.
Reconnaissance in trans-Pecos Texas,
Richardson (G. B.), 4.
Salt, gypsum, and petroleum in trans-
Pecos Texas, Richardson (G. B.), 7.
Southern oil fields, Hagar, 1.
Southwestern coal field, Taff, 15.
Sulphur, oil, and quicksilver in trans-
Pecos Texas, Phillips (W. B.), 5.
Terlingua quicksilver deposits, Brews­
ter County, Hjll (B. F.), 1.
Terlingua quicksilver deposits, Turner,
17.
Terlingua quicksilver district, Kirk, 1.
Texan oil deposits, Willey, 1.
Texas petroleum, Phillips (W. B.), 1.
Texas petroleum, Thiele, 1.
Tin deposits at El Paso, Weed, 15.
Trans-Pecos sulphur field, Caracristi,
1.
Volcanic origin of oil, Coste, 4.

Utah.
Bingham mining camp, Emmens, 1.
Cactus copper mine, Emmens (S. F.),
21.
Cement materials and industry of the
United States, Eckel, 34.
Coal mining at Sunnyside, Harrington
(D.), 1.
Copper deposits of Beaver River
Range, Crowther, 1.
Delamar and Horn-Silver mines, Em­
mens (S. F.), 3.
Economic geology of the Bingham dis­
trict, Boutwell, 12.
Genesis of ore deposits at Bingham,
Utah, Boutwell, 14.
Geology of Mercur, Durn, 1.
Geology of Park City district, Bell
(R. N.), 4.
Economic geology—Continued.

Utah—Continued.

Gypsum, Diehl, 1.
Gypsum deposits in Utah, Boutwell, 3.
Iron ores in Utah, Leith, 11.
Iron ores in the Uinta Mountains, Boutwell, 5.
Iron ores of the Uinta Mountains, Warwick, 1.
Mineral crest, Emmons (S. F.), 12.
Mineral crest, Jenney, 3.
Mineral crest, Smith (G. O.), 11.
Mineral resources of the Uinta Mountains, Berkey, 4.
Natural gas near Salt Lake City, Richard­son (G. B.), 6.
Notes on two desert mines, Emmons (S. F.), 2.
Oil and asphalt prospects in Salt Lake basin, Utah, Boutwell, 11.
Ore deposits of Bingham, Boutwell, 2, 10, 13.
Origin of magnetic iron ores of Iron County, Jennings (E. P.), 2.
Park City mining district, Boutwell, 1, 4, 8.
Rock gypsum at Nephi, Boutwell, 6.
Rocky Mountain gold fields, Storrs (L. S.), 1.
Salt industry in Utah and California, Eckel, 26.
Slate deposits of Culliford and Utah, Eckel, 24.
Slate mining district, Smith (G. H.), 1.
Southwestern Utah and its iron ores, Hewett, 1.
Vanadium and uranium in southeastern Utah, Boutwell, 9.

Vermont.

Arsenic mines at Brinton, Cowan, 1.
Asbestos region in northern Vermont, Kemp, 3, 6, 14.
Big Stone Gap coal field, Pultz, 1.
Brandon clays, Woodworth, 8.
Cement materials and industry of the United States, Eckel, 34.
Coals of Pocahontas field, Fowler, 1.
Copper deposits of Orange County, Smyth and Smith, 1.
Copper mines of Vermont, Weed, 28.
Gisements de minerais de zinc, Demaret, 1.
Granite area of Barre, Finlay (G. L.), 3.
Gypsum deposits in Virginia, Eckel, 23.
Marble, slate, and granite industries, Perkins, 1.
Mineral industries, Perkins, 6.
Mineral resources of Vermont, Perkins, 2, 10, 10.
Norton coals of Big Sandy basin, Alt­house, 1.
Occurrence of asbestos, Kemp, 8.
Petrography of Belvidere Mountain de­posits, Marsters, 3.

Economic geology—Continued.

Vermont—Continued.

Quarts veins in Maine and Vermont, Smith (G. O.), 14.
Gypsum, Diehl, 1.
Gypsum deposits in Utah, Boutwell, 3.
Iron ores in Utah, Leith, 11.
Iron ores in the Uinta Mountains, Boutwell, 5.
Iron ores of the Uinta Mountains, Warwick, 1.
Mineral crest, Emmons (S. F.), 12.
Mineral crest, Jenney, 3.
Mineral crest, Smith (G. O.), 11.
Mineral resources of the Uinta Mountains, Berkey, 4.
Natural gas near Salt Lake City, Richard­son (G. B.), 6.
Notes on two desert mines, Emmons (S. F.), 2.
Oil and asphalt prospects in Salt Lake basin, Utah, Boutwell, 11.
Ore deposits of Bingham, Boutwell, 2, 10, 13.
Origin of magnetic iron ores of Iron County, Jennings (E. P.), 2.
Park City mining district, Boutwell, 1, 4, 8.
Rock gypsum at Nephi, Boutwell, 6.
Rocky Mountain gold fields, Storrs (L. S.), 1.
Salt industry in Utah and California, Eckel, 26.
Slate deposits of Culliford and Utah, Eckel, 24.
Slate mining district, Smith (G. H.), 1.
Southwestern Utah and its iron ores, Hewett, 1.
Vanadium and uranium in southeastern Utah, Boutwell, 9.

Vermont.

Arsenic mines at Brinton, Cowan, 1.
Asbestos region in northern Vermont, Kemp, 3, 6, 14.
Big Stone Gap coal field, Pultz, 1.
Brandon clays, Woodworth, 8.
Cement materials and industry of the United States, Eckel, 34.
Coals of Pocahontas field, Fowler, 1.
Copper deposits of Orange County, Smyth and Smith, 1.
Copper mines of Vermont, Weed, 28.
Gisements de minerais de zinc, Demaret, 1.
Granite area of Barre, Finlay (G. L.), 3.
Gypsum deposits in Virginia, Eckel, 23.
Marble, slate, and granite industries, Perkins, 1.
Mineral industries, Perkins, 6.
Mineral resources of Vermont, Perkins, 2, 10, 10.
Norton coals of Big Sandy basin, Alt­house, 1.
Occurrence of asbestos, Kemp, 8.
Petrography of Belvidere Mountain de­posits, Marsters, 3.
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

Washington—Continued.

- Gold placers of the coast of Washington, Arnold, 4.
- Independent mine at Silverton, Stretch, 2.
- Iron ores of Washington, Shedd, 1.
- Metalliferous resources of Washington, Landes and others, 1.
- Molybdenite at Crown Point, Crook, 3.
- Nonmetalliferous resources of Washington, Landes, 2.
- Ore deposits of Monte Cristo, Spurr, 3.
- Ore deposits of Monte Cristo, Winchell (H. V.), 1.
- Ores of the Republic mine, Chatard and Whitehead, 1.
- Silverton mining district, Stretch, 1.
- Washington serpentine marbles, Lyon, 1.
- Water resources of Washington, Byers (H. G.), 1.
- Water resources of Washington, Heine, 1.
- Water resources of Washington, Ruddy, 1.

West Indies.

- Bitumen in Cuba, Vaughan, 8.
- Bituminous deposits of Cardenas, Cuba, Peckham (H. E.), 1.
- Copper mines near Habana, Weed, 34.
- Copper mines of Cobre, Santiago de Cuba, Moffet, 1.
- Copper mines of Santa Clara Province, Cuba, Vaughan, 6.
- Geological reconnaissance of Cuba, Hayos, Vaughan, and Spencer, 1.
- Geologie Haiti, Tippenhauer, 1.
- Gold in Santo Domingo, Garrison, 4.
- Iron ores of Cuba, Spencer (A. C.), 1.
- Manganese deposits of Santiago Province, Cuba, Spencer (A. C.), 3.
- Manganese deposits of Santiago, Spencer (A. C.), 8.
- Manganese mining in Cuba, Chibas, 1.
- Mineral deposits of Santiago, Cuba, Souder, 1.
- Mineral deposits of Santiago, Cuba, Wensstrom, 1.
- Occurrence of gold and coal in Trinidad, Guppy, 1.

West Virginia.

- Anthracite coal field west of Washington, White (I. C.), 12.
- Anthracite of Third Hill Mountain, Griffith, 2.
- Anthracite of Third Hill Mountain, O'Brien (C. J.), 1.
- Appalachian coal field, White (I. C.), 7.

Economic geology—Continued.

West Virginia—Continued.

- Cement materials and industry of the United States, Eckel, 34.
- Charbons gras de la Pennsylvanie et de la Virginie occidentale, Heurteau, 1.
- Charleston folio, Campbell (M. R.), 2.
- Clays of the United States, Ries, 6.
- Coal in the Nicholas quadrangle, Ashley, 7.
- Coals of Pocahontas field, Fowler, 1.
- Kanawha and New River coal fields of West Virginia, Robinson (N.), 1.
- Map of coal, oil, and gas in West Virginia, White (I. C.), 8.
- Meadow Branch coal field, Campbell (M. R.), 17.
- Petroleum and natural gas, White (I. C.), 9.
- Properties of Summit Coal Company in Marshall County, Von Rosenberg, 1.
- Pure limestone in Berkeley County, Stone, 2.
- Raleigh folio, Campbell (M. R.), 5.
- Slate industry at Martinsburg, Dale, 2.
- Slate investigations during 1904, Dale, 8.
- Trip to West Virginia, Poole, 9.
- Tug River coal field, Payne, 1.

Wisconsin.

- Baraboo iron-bearing district of Wisconsin, Weldman, 5.
- Baraboo iron ore, Hille, 2.
- Baraboo iron ore, Winchell (N. H.), 23.
- Baraboo iron range, Rohn, 1.
- Cement materials and industry of the United States, Eckel, 34.
- Clays and clay industries, Buckley, 1.
- Clays of the United States, Ries, 6.
- Copper-bearing rocks of Douglas County, Grant (U. S.), 1.
- Eisenerzglattertten am Lake Superior, Mocco, 1.
- Gisements de minerais de zinc, Demaret, 1.
- Glacial gold in Wisconsin, Thomas, 2.
- Highway construction in Wisconsin, Buckley, 3.
- Iron ores of the Baraboo district, Weldman, 6.
- Lake Superior geological work, Van Hise, 14.
- Lake Superior iron-ore deposits, Grant (U. S.), 6.
- Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
- Lead and zinc deposits of Ozark region, Van Hise, 5.
- Lead and zinc deposits of southwestern Wisconsin, Grant (U. S.), 5.
- Soils of Wisconsin, Weldman, 3.
- Summary of Lake Superior geology, Leith, 14.
- Wisconsin zinc fields, Nicholson, 1.
Economic geology—Continued.

Wisconsin—Continued.

Zinc and lead deposits, Grant (U.S.), 9.
Zinc and lead deposits of north Arkansas, Branner, 2.
Zinc and lead mines near Dodgeville, Ellis (E. E.), 1.
Zinc and lead ores of southwestern Wisconsin, Grant (U.S.), 10.

Wyoming.

Aladdin folio, Darton and O’Harra, 1.
Alkali deposits of Wyoming, Read, 3.
Alkali lakes and deposits, Knight and Slosson, 1.
Bonanza, Cottonwood, and Douglas oil fields, Knight and Slosson, 4.
Cement materials and industry of the United States, Eckel, 34.
Coal fields of Uinta County, Knight (W. C.), 7.
Coal of the Bighorn basin, Fisher (C. A.), 5.
Coal of the Black Hills, Darton, 20.
Copper deposits of the Encampment district, Spencer (A. C.), 10.
Copper mining in the Encampment district, Read, 4.
Deposit of titanic iron ore, Lindgren, 9.
Dutton, Rattlesnake, Arago, Oil Mountain, and Powder River oil fields, Knight and Slosson, 2.
Geology and mineral resources, Beeler, 3.
Geology and underground water resources of the central Great Plains, Darton, 18.
Gold production of North America, Lindgren, 16.
Grand Encampment copper district, Lakes, 64.
Gypsum deposits in Wyoming, Knight (W. C.), 9.
Hartville folio, Smith (W. S. T.), 1.
Iron mines of Hartville, Chance, 2.
Lagerstätten titanaltigen Eisenerzes im Laramie Range, Kemp, 31.
Laramie cement plaster, Slosson and Moudy, 1.
Mineral resources of Encampment copper region, Spencer (A. C.), 6.
New occurrence of sperrylite, Wells and Penfield, 1.
Newcastle folio, Darton, 14.
Newcastle oil field, Knight and Slosson, 3.
Occurrence of rare metals in Rambler mine, Knight (W. C.), 4.
Platinum in copper ores in Wyoming, Emmons (S. F.), 11.
Platinum in the Rambler mine, Kemp, 20.
Petroleum fields, Knight (W. C.), 2.
Report by the State geologist, Beeler, 2.
Rocky Mountain coal fields, Storrs (L. S.), 1.

Economic geology—Continued.

Wyoming—Continued.

South Pass gold district, Fremont County, Beeler, 1.
Sundance folio, Darton, 26.
Sweetwater mining district, Knight (W. C.), 3.
Titaniferous magnetite in Wyoming, Kemp, 36.

General.

American cement industry, Eckel, 38.
Anthracite situation, Kemp, 17.
Application of geology to mining, Spurr, 4, 14.
Arkansas and Indian Territory coals, Keyes, 13.
Asphalt and bituminous rock deposits, Eldridge, 1, 3.
Aurite, and a general theory of gold ore genesis, Voyle, 1.
Bitumen and oilrocks, Broadhead, 5.
Bonanzas and pockets of ore, Lakes, 59.
Building and road materials, Lane, 30.
Cements, limes, and plasters, their materials, manufacture, and properties, Eckel, 32.
Change of ore bodies with change of country rock, Lakes, 8.
Character and genesis of certain contact deposits, Lindgren, 5.
Chemical composition of shales and roofing slates, Eckel, 28.
Chemistry of ore deposition, Church, 2.
Chemistry of ore deposition, Jenney, 4.
Chemistry of ore deposition, Sullivan, 1.
Circulation of underground aqueous solutions and the deposition of lode ores, Finch (J. W.), 1.
Classification of coals, Campbell (M. R.), 21.
Classification of crystalline cements, Eckel, 7.
Classification of ore deposits, Lindgren, 17.
Classification of ore deposits, Weed, 24.
Clays of the United States, Ries, 6.
Coal fields of the United States, Hayes (C. W.), 6.
Coal fields of the United States, Hayes (C. W.), 12.
Coal outcrops, Catlett, 1.
Coal outcrops, Randolph, 1.
Coal outcrops, Scholz, 1.
Coal resources of Pacific, Emerson (H.), 1.
Coal resources of Wyoming, Trumbull, 1.
Composition and occurrence of petroleum, Malbery, 3.
Contact metamorphic and other ore deposits near igneous contacts, Weed, 11.
Contiguity of ore deposits of different generic relationships, Keyes, 15.
Contribution to the natural history of marl, Davis (C. A.), 1.
Economic geology—Continued.

General—Continued.

Contributions to economic geology, Emmons, Hayes, 1-3.
Contributions to economic geology, 1902, Hayes (C. W.), 9.
Contributions to economic geology, 1903, Hayes (C. W.), 16.
Contributions to economic geology, 1904, Hayes (C. W.), 18.
Copper ore and garnet in association, Blake (W. P.), 10.
Copper production of the United States, Weed, 36.
Criticism of Dr. Jenney's paper on the mineral crest, Smith (G. O.), 5.
Cross-vein ore-shoots and fractures, Weed, 22.
Débris fans of the arid region, Hilgard, 3.
Deposition of copper by solutions of ferrous salts, Biddle, 1.
Deposition of ores in limestone, Jenney, 4.
Deposition of ores from an igneous magma, Stevenson (R.), 1-3.
Diamoniferous deposits in the United States, Hobbs, 4.
Differentiation of igneous magmas and the formation of ores, Kemp, 22.
Differentiation of igneous magmas, Stevens (B.), 3.
Diffusion of petroleum through fuller's earth, Day (D. T.), 2.
Dilatation fissures and their contained ores, Weed, 31.
Distribucion de la riqueza en los criaderos metalferos primarios epigenéticos, Villarello, 8.
Distribution of copper in the United States, Weed, 30.
Distribution of platinum metals, Dickson, 5.
Economic geology of the United States, Ries, 15.
Economic value of hot springs, Weed, 38.
Enrichment in fissure veins, Hill (R. T.), 17.
Enrichment in fissure veins, Spurr, 30.
Enrichment in veins, Church, 3.
Enrichment of gold and silver veins, Weed, 1.
Exploration for gold in central States, Hall (C. W.), 1.
Faults in metal mines, Lakes, 33.
Field operations of the Bureau of Soils, Whitney, 2-6.
Fire clays of Coal Measures, Hopkins (T. C.), 5.
Formation and geology of salt deposits, Jones (F. O.), 1.
Formation of bonanzas in upper portions of gold veins, Rickard (T. A.), 3.
Formation of lead and zinc deposits of Mississippi Valley, Keyes, 16, 20.

Economic geology—Continued.

General—Continued.

Formation of veins, Kemp, 28.
Genesis and character of ore deposits, Storms, 2.
Genesis of Lake Superior iron ores, Leith, 15.
Genesis of limonite ores, Garrison, 1.
Genesis of ore deposits, Alderson, 1.
Genesis of ore deposits, Boehmer, 1.
Genesis of ore deposits, Tays, 1.
Genetic classification of ore deposits, Emmons (S. F.), 14.
Genetic classification of ore deposits, Kemp, 25.
Genetic classification of ore deposits, Ransome, 9.
Genetic classification of ore deposits, Rickard (T. A.), 13.
Geogenesis and its bearings on economic geology, Frazer, 9.
Geographic distribution of metalliferous ores within the United States, Ransome, 12.
Geologic deposition of hydrocarbons, Adams (G. I.), 10.
Geologic deposition of hydrocarbons, Day (D. T.), 3.
Geological relations and distribution of platinum and associated metals, Kemp, 11.
Geological survey and the western miner, Rickard (T. A.), 5.
Geological work in Lake Superior region, Van Hise, 9.
Geology and water resources of Snake River Plains, Russell, 5.
Geology applied to mining, Moore (C. J.), 3.
Geology applied to mining, Spurr, 23.
Geology of Idaho and Oregon, Russell, 8.
Geology of ore deposits, Van Hise, 3.
Geology of western ore deposits, Lakes, 104.
Geology, technology, and statistics of gypsum, Adams (G. I.), 14.
Gold and its associations, Merrill, 15.
Gold deposition by drainage, Bradford, 1.
Gold mining in southern Appalachians, Pratt, 6.
Gold production of North America, Lindgren, 6, 14.
Graphite, Bateman, 1.
Graphite and garnet, Hopkins (T. C.), 3.
High plains and their utilization, Johnson (W. D.), 1.
How copper is produced, Bell (Ralston), 1.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis to account for the transformation of vegetable matter into different grades of coal, Campbell (M. R.), 20.</td>
</tr>
<tr>
<td>Igneous rocks and circulating waters as factors in ore deposition, Kemp, 12, 19.</td>
</tr>
<tr>
<td>Igneous rocks and their segregation, Spurr, 12.</td>
</tr>
<tr>
<td>Igneous rocks in ore deposition, Lakes, 100.</td>
</tr>
<tr>
<td>Investigation of iron and nonmetaliferous economic minerals, Hayes (C. W.), 19.</td>
</tr>
<tr>
<td>Investigation of metalliferous ores, Emmons (S. F.), 10, 17, 19.</td>
</tr>
<tr>
<td>Investigation of nonmetaliferous economic minerals, Hayes (C. W.), 10, 17.</td>
</tr>
<tr>
<td>Iron and manganese ores of the United States, Eckel, 35.</td>
</tr>
<tr>
<td>Lake Superior iron ore deposits, Grant (U. S.), 4.</td>
</tr>
<tr>
<td>Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.</td>
</tr>
<tr>
<td>Lead and zinc resources of the United States, Bain, 16.</td>
</tr>
<tr>
<td>Literature of structural materials, Eckel, 11.</td>
</tr>
<tr>
<td>Literature on petroleum, Teggart, 1.</td>
</tr>
<tr>
<td>Mesabi Iron Range, Leith, 2.</td>
</tr>
<tr>
<td>Metasomatic processes in fissure veins, Lindgren, 1.</td>
</tr>
<tr>
<td>Methods of testing and sampling placer deposits, Kirby, 1.</td>
</tr>
<tr>
<td>Mica deposits, Cirkel, 2.</td>
</tr>
<tr>
<td>Microscopic structure of building stones, Leffmann, 1.</td>
</tr>
<tr>
<td>Mineral crest, Emmons (S. F.), 12.</td>
</tr>
<tr>
<td>Mineral crest, Jenney, 1, 2.</td>
</tr>
<tr>
<td>Mineral crest, Smith (G. O.), 11.</td>
</tr>
<tr>
<td>Molding sand, Eckel, 14.</td>
</tr>
<tr>
<td>Motions of underground waters, Slichter, 1.</td>
</tr>
<tr>
<td>North America, Russell, 15.</td>
</tr>
</tbody>
</table>

Bull. 301—06—31
INDEX TO NORTH AMERICAN GEOLOGY

Economic geology—Continued.

General—Continued.

Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Origin of petroleum, coal, etc., Plotts, 1.
Origin of the Coal Measure fire clays, Hopkins (T. C.), 2.
Origin of vein cavities, Nason, 3.
Economic products described—Continued.

Asbestos, Aguilera, 3.
Asbestos, Ball and Smith, 1.
Asbestos, Ells (R. W.), 7, 8.
Asbestos, Keith, 9.
Asbestos, Miller (A. M.), 4.
Asbestos, Stone, 2.
Asbestos; heavy spar, Merrill (G. P.), 3.
Asbestos, Perkins, G.
Asbestos, Pratt, 8.

Barytes, Day, 6-11.

Barytes, Pratt, 10, 11.
Barytes, Pratt, 10.
Barytes, Pratt, 11.
Barytes, Pratt, 12.
Barytes, Pratt, 13.
Barytes, Pratt, 14.
Barytes, Pratt, 15.
Barytes, Pratt, 16.
Barytes, Pratt, 17.
Barytes, Pratt, 18.
Barytes, Pratt, 19.
Barytes, Pratt, 20.
Barytes, Pratt, 21.
Barytes, Pratt, 22.
Barytes, Pratt, 23.
Barytes, Pratt, 24.
Barytes, Pratt, 25.
Barytes, Pratt, 26.
Barytes, Pratt, 27.
Barytes, Pratt, 28.
Barytes, Pratt, 29.
Barytes, Pratt, 30.
Barytes, Pratt, 31.
Barytes, Pratt, 32.
Barytes, Pratt, 33.
Barytes, Pratt, 34.
Barytes, Pratt, 35.
Barytes, Pratt, 36.
Barytes, Pratt, 37.
Barytes, Pratt, 38.
Barytes, Pratt, 39.
Barytes, Pratt, 40.
Barytes, Pratt, 41.
Barytes, Pratt, 42.
Barytes, Pratt, 43.
Barytes, Pratt, 44.
Barytes, Pratt, 45.
Barytes, Pratt, 46.
Barytes, Pratt, 47.
Barytes, Pratt, 48.
Barytes, Pratt, 49.
Barytes, Pratt, 50.
Barytes, Pratt, 51.
Barytes, Pratt, 52.
Barytes, Pratt, 53.
Barytes, Pratt, 54.
Barytes, Pratt, 55.
Barytes, Pratt, 56.
Barytes, Pratt, 57.
Barytes, Pratt, 58.
Barytes, Pratt, 59.
Barytes, Pratt, 60.
Barytes, Pratt, 61.
Barytes, Pratt, 62.
Barytes, Pratt, 63.
Barytes, Pratt, 64.
Barytes, Pratt, 65.
Barytes, Pratt, 66.
Barytes, Pratt, 67.
Barytes, Pratt, 68.
Barytes, Pratt, 69.
Barytes, Pratt, 70.
Barytes, Pratt, 71.
Barytes, Pratt, 72.
Barytes, Pratt, 73.
Barytes, Pratt, 74.
Barytes, Pratt, 75.
Barytes, Pratt, 76.
Barytes, Pratt, 77.
Barytes, Pratt, 78.
Barytes, Pratt, 79.
Barytes, Pratt, 80.
Barytes, Pratt, 81.
Barytes, Pratt, 82.
Barytes, Pratt, 83.
Barytes, Pratt, 84.
Barytes, Pratt, 85.
Barytes, Pratt, 86.
Barytes, Pratt, 87.
Barytes, Pratt, 88.
Barytes, Pratt, 89.
Barytes, Pratt, 90.
Barytes, Pratt, 91.
Barytes, Pratt, 92.
Barytes, Pratt, 93.
Barytes, Pratt, 94.
Barytes, Pratt, 95.
Barytes, Pratt, 96.
Barytes, Pratt, 97.
Barytes, Pratt, 98.
Barytes, Pratt, 99.
Barytes, Pratt, 100.
Barytes, Pratt, 101.
Barytes, Pratt, 102.
Barytes, Pratt, 103.
Barytes, Pratt, 104.
Barytes, Pratt, 105.
Barytes, Pratt, 106.
Barytes, Pratt, 107.
Barytes, Pratt, 108.
Barytes, Pratt, 109.
Barytes, Pratt, 110.
Barytes, Pratt, 111.
Barytes, Pratt, 112.
Barytes, Pratt, 113.
Barytes, Pratt, 114.
Barytes, Pratt, 115.
Barytes, Pratt, 116.
Barytes, Pratt, 117.
Barytes, Pratt, 118.
Barytes, Pratt, 119.
Barytes, Pratt, 120.
Barytes, Pratt, 121.
Barytes, Pratt, 122.
Barytes, Pratt, 123.
Barytes, Pratt, 124.
Barytes, Pratt, 125.
Barytes, Pratt, 126.
Barytes, Pratt, 127.
Barytes, Pratt, 128.
Barytes, Pratt, 129.
Barytes, Pratt, 130.
Barytes, Pratt, 131.
Barytes, Pratt, 132.
Barytes, Pratt, 133.
Barytes, Pratt, 134.
Barytes, Pratt, 135.
Barytes, Pratt, 136.
Barytes, Pratt, 137.
Barytes, Pratt, 138.
Barytes, Pratt, 139.
Barytes, Pratt, 140.
Barytes, Pratt, 141.
Barytes, Pratt, 142.
Barytes, Pratt, 143.
Barytes, Pratt, 144.
Barytes, Pratt, 145.
Barytes, Pratt, 146.
Barytes, Pratt, 147.
Barytes, Pratt, 148.
Barytes, Pratt, 149.
Barytes, Pratt, 150.
Barytes, Pratt, 151.
Barytes, Pratt, 152.
Barytes, Pratt, 153.
Barytes, Pratt, 154.
Barytes, Pratt, 155.
Barytes, Pratt, 156.
Barytes, Pratt, 157.
Barytes, Pratt, 158.
Barytes, Pratt, 159.
Barytes, Pratt, 160.
Economic products described—Continued.

Building stone, Buckley and Buehler, 1.
Building stone, Campbell (M. R.), 8.
Building stone, Crosby and Loughlin, 1.
Building stone, Darton and Keith, 1.
Building stone, Ells (R. W.), 8.
Building stone, Fuller and Clapp, 2.
Building stone, Gilpin, 2.
Building stone, Gould, 5, 8.
Building stone, Hopkins (T. C.), 9.
Building stone, Keith, 9, 12.
Building stone, Knight (N.), 2.
Building stone, Lakes, 12, 13.
Building stone, Lazo and Ordóñez, 1.
Building stone, Lofmann, 1.
Building stone, Leonard, 3.
Building stone, Merrill (G. P.), 11.
Building stone, Miller (B. L.), 1.
Building stone, Norton, 1.
Building stone, Perkins, 2.
Building stone, Prosser and Beede, 1.
Building stone, Pratt, 5, 10, 11.
Building stone, Reid (J. A.), 2.
Building stone, Russell, 2.
Building stone, Sarle, 3.
Building stone, Schrader and Haworth, 2.
Building stone, Smith (A. J.), 1.
Building stone, Smith (G. O.), 7.
Building stone, Smith and McCulley, 1.
Building stone, Taff, 3, 6.
Building stone, Todd (J. E.), 5, 9-11.
Building stone, Wells (J. W.), 3.
Cement plaster, Slosson and Moudy, 1.
Centred, Merrill (G. P.), 3.
Chalk, Merrill (G. P.), 3, 12.
Chalk, Taff, 5.
Chalkstone, Todd (J. E.), 9.
Chromite, Merrill (G. P.), 3.
Chrome, Mathews, 1.
Chromite, Day, 7-9.
Chromite, Diller, 10.
Chromite, Keith, 9.
Chromite, Lindgren, 4.
Chromite, Merrill (G. P.), 3, 12.
Clay, Ashley, 2.
Clay, Babcock, 1.
Clay, Harbour (E. H.), 8.
Clay, Berkey, 3.
Clay, Beyer and Williams, 1, 2.
Clay, Beyer and Young, 1.
Clay, Bishop (J. P.), 2.
Clay, Blatchley, 5.
Clay, Bleininger, 1.
Clay, Buckley, 1.
Clay, Campbell (M. R.), 8.
Clay, Darton and Keith, 1.
Clay, Day, 6-11.
Clay, Eckel, 18.
Clay, Fass, 2.
Clay, Fuller and Clapp, 2.
Clay, Gould, 5.
Clay, Gould and Fisher, 1.
Clay, Gregory (W. M.), 1.
Clay, Hice, 2.
Clay, Hopkins (T. C.), 1, 2, 9.
Clay, Keith, 9.
Clay, Kümmel and Knapp, 1.
Clay, Landes, 2, 5.
Clay, Lee, 21, 34, 39.
Clay, Leonard, 3.
Clay, Leverett, 3.
Clay, Lindgren, 4.
Clay, Loughlin, 1.
Clay, Martin (G. C.), 2.
Clay, Mason, 1.
Clay, Mathews, 1.
Clay, Merrill (G. P.), 3, 5, 12.
Clay, Miller (B. L.), 1.
Clay, Newland, 2.
Clay, Pratt, 8, 10, 11.
Clay, Ries, 1, 5, 6, 12, 13.
Clay, Sarle, 3.
Clay, Schrader and Haworth, 2.
Clay, Smith and McCulley, 1.
Clay, Taff, 5.
Clay, Todd (J. E.), 5, 11.
Clay, Udden, 2, 3.
Clay, Wells (J. W.), 4.
Clay, Wilder, 3.
Clay, Woolsey, 1, 3.
Coal, Adams (T. K.), 1.
Coal, Aguilera, 3.
Economic products described—Continued.

Coal, Althouse, 1.
Coal, Armstrong, 1.
Coal, Arnold, 5.
Coal, Ashley, 1, 3, 4, 7.
Coal, Babcock, 1.
Coal, Bache, 1.
Coal, Bailey (L. W.), 8.
Coal, Bain, 3.
Coal, Ball and Smith, 1.
Coal, Barbour (E. H.), 8.
Coal, Becker, 1.
Coal, Beyer and Young, 1.
Coal, Blakemore, 1, 3.
Coal, Brewer (W. M.), 2, 4, 6–8, 11.
Coal, Brooks, 3, 14.
Coal, Burritt, 1.
Coal, Burrows, 1.
Coal, Bush, 1.
Coal, Butts, 3–7.
Coal, Calvin, 1.
Coal, Campbell (M. R.), 2, 5, 6, 8, 11, 16–18, 20, 21.
Coal, Carter (O. S. C.), 2.
Coal, Catlett, 1.
Coal, Clark (W. B.), 8.
Coal, Clark, Martin, and Rutledge, 1.
Coal, Collier, 2, 3, 4, 6.
Coal, Cooper, 3.
Coal, Corless, 1.
Coal, Crane, 1, 2, 4–7.
Coal, Darton, 1, 14, 18, 20, 26.
Coal, Darton and O’Harra, 1.
Coal, Day, 5, 7–11.
Coal, Denis, 1.
Coal, Diller, 4, 11, 21.
Coal, Dowling, 7, 9, 10, 11.
Coal, Duffield, 1.
Coal, Vanvosen, 1.
Coal, Eilts (R. W.), 3, 23.
Coal, Emerson (H.), 1.
Coal, Elyias (A. W.), 1.
Coal, Fisher (C. A.), 4, 5.
Coal, Fletcher, 4, 6.
Coal, Fluck, 1.
Coal, Fowler, 1.
Coal, Fuller and Alden, 1.
Coal, Fuller and Ashley, 1, 2.
Coal, Fuller and Clapp, 2.
Coal, Gay, 1.
Coal, Gilpin, 1, 3.
Coal, Gould, 5.
Coal, Gregory (W. M.), 1, 2.
Coal, Griffith, 2–4.
Coal, Griswold, 3.
Coal, Guppy, 1.
Coal, Gwillim, 4, 5.
Coal, Harrington (D.), 1.
Coal, Haseltine, 1, 2.
Coal, Hayes (C. W.), 6, 7, 12.
Coal, Hayes, Vaughan, and Spencer, 1.
Coal, Henretta, 1.
Coal, Heuerter, 1.
Coal, Hills, 1.
Coal, Hoesa, 1.
Coal, Howley, 2.
Coal, Ingall, 1.

Economic products described—Continued.

Coal, Jacobs, 2.
Coal, Johnson (D. W.), 4.
Coal, Kemp, 17.
Coal, Keyes, 13, 22, 43.
Coal, Knight (W. C.), 7.
Coal, Laquemenno, 1.
Coal, Landes, 3.
Coal, Landes and Ruddy, 1.
Coal, Lane, 14, 15, 39, 49.
Coal, Leach (W. W.), 1.
Coal, Leonard, 3.
Coal, Lindgren, 4.
Coal, Ludlow, 1.
Coal, McCallie, 1.
Coal, McCallie, 9.
Coal, McEvoy, 2.
Coal, McLaughlin, 1.
Coal, Martin (G. C.), 2, 3, 11, 15, 16.
Coal, Merrill (G. P.), 12.
Coal, Miller (B. L.), 1.
Coal, Parsons and Liddell, 1.
Coal, Payne, 1.
Coal, Phillips (W. B.), 6, 12, 13.
Coal, Plotts, 1.
Coal, Plumb, 1.
Coal, Poole, 2, 3, 8–10.
Coal, Pratt, 8, 10, 11.
Coal, Pultz, 1.
Coal, Purinton, 1.
Coal, Randolph, 1.
Coal, Rengan, 4.
Coal, Richardson (G. B.), 3.
Coal, Rickert, 1.
Coal, Ries, 9, 14.
Coal, Robinson (N.), 1.
Coal, Rockwell, 1.
Coal, Rowe, 2, 6.
Coal, Scholz, 2.
Coal, Scharber, 3.
Coal, Sheridan, 1.
Coal, Smith (F. B.), 1.
Coal, Smith (G. O.), 6, 13.
Coal, Smith (W. D.), 1.
Coal, Smith and McCalley, 1.
Coal, Smith and White, 1.
Coal, Spurr, 20.
Coal, Stoess, 1.
Coal, Stoeck, 1.
Coal, Stone (R. W.), 1, 5, 6–9.
Coal, Stoneham, 1.
Coal, Storrs (A. H.), 1.
Coal, Storrs (L. S.), 1.
Coal, Sutton, 1.
Coal, Taff, 3, 4, 7–11, 14.
Coal, Todd (J. E.), 5.
Coal, Trumbull, 1.
Coal, Turnbull, 1.
Coal, Vicaire, 1.
Coal, Von Rosenberg, 1.
Coal, White (D.), 7, 12.
Coal, White (I. C.), 7.
Coal, Wigmore, 1, 2.
Coal, Wilder, 3.
Coal, Williams (I. A.), 1.
Coal, Woodworth, 4.
Coal, Woolsey, 3.
Coal series, Merril (G. P.), 3.
Cobalt, Caballero, 1.
Cobalt, Day, 5, 7–9.
Cobalt, Dickson, 4.
Cobalt, Merril (G. P.), 12.
Cobalt, Miller (W. G.), 8, 11, 13.
Cobaltite, Day, 5, 7–11.
Columbite, Merril (G. P.), 3.
Columbite, Merril (G. P.), 3.
Cobaltite, Merril (G. P.), 3.
Cobalt, Caballero, 1.
Cobalt, Day, 5, 7–9.
Cobalt, Dickson, 4.
Cobalt, Merrill (G. P.), 12.
Cobalt, Miller (W. G.), 8, 11, 13.
Cobaltite, Merrill (G. P.), 3.
Coke, Day, 5, 7–11.
Columbia, Merril (G. P.), 3.
Columbia, Day, 11.
Columbia and tantalite, Merrill (G. P.), 3.
Copper, Abercrombie, 1.
Copper, Aguilera, 3.
Copper, Austin, 3.
Copper, Bagg, 5.
Copper, Bailey (F.), 1.
Copper, Bain and Ulrich, 1, 2.
Copper, Barlow, 6, 8.
Copper, Barnum, 1.
Copper, Becker, 1.
Copper, Bell (Ralston), 1.
Copper, Bell (R. N.), 3.
Copper, Biddle, 1.
Copper, Blake (W. P.), 16.
Copper, Bond, 1.
Copper, Boutwell, 10, 12–14.
Copper, Brewer (W. M.), 4, 11, 13–16.
Copper, Brook, 8.
Copper, Brook, 3.
Copper, Brooks, 4.
Copper, Byrne, 3.
Copper, Carter (W. E. H.), 1.
Copper, Catherinet, 1.
Copper, Crosby, 16.
Copper, Crowther, 1.
Copper, Davenport, 18, 26.
Copper, Day, 5, 7–11.
Copper, Diller, 5, 6, 13, 16.
Copper, Dresser, 7, 10, 12, 13, 15.
Copper, Ellis (R. W.), 17, 20, 22.
Copper, Emmens, 1.
Copper, Emmons (S. F.), 3, 16, 20, 21.
Copper, Franke, 1.
Copper, Goodwin, 1.
Copper, Grant (U. S.), 1.
Copper, Hayes, Vaughan, and Spencer, 1.
Copper, Hill (R. T.), 4, 11, 12.
Copper, Hitchcock (C. H.), 10.
Copper, Irving and Emmens, 1.
Copper, Jackson (J. F.), 1.
Copper, Jacobs, 1.
Copper, Jagger and Palache, 1.
Copper, Jennings (E. P.), 1.
Copper, Johnston (R. A. A.), 2.
Copper, Kemp, 32, 33.
Copper, Kirby, 2.
Copper, Kusch, 1.
Copper, Klumel, 2, 3.
Copper, Lakes, 64.
Copper, Lane, 8, 28, 44.
Economic products described—Continued.
Desclozite, Merrill (G. P.), 3.
Diamond, Hobbs, 4, 8.
Diamond, Kunz, 2.
Diamond, Pratt, 8.
Diaspore, Merrill (G. P.), 3.
Diatom-earth, Blake (W. P.), 10.
Diatomaceous earth, Merrill (G. P.), 12.
Diatomaceous or infusorial earth, Merrill (G. P.), 3.
Dolomite, Merrill (G. P.), 3.
Elaterite, mineral caoutchouc, Merrill (G. P.), 3.
Emerald, Kunz, 2.
Emerald, Eckel, 2.
Emerald, Fuller (H. T.), 1.
Emerald, Magnus, 1.
Emerald, Merrill (G. P.), 12.
Emerald, Newland, 2.
Epsomite, Epsom salts, Merrill (G. P.), 3.
Erythrite or cobalt bloom, Merrill (G. P.), 3.
Feldspar, Day, 6-11.
Feldspar, Ells (R. W.), 7, 8.
Feldspar, Hopkins (T. C.), 1.
Feldspar, Mathews, 1.
Feldspar, Merrill (G. P.), 3, 12.
Feldspar, Miller (W. G.), 6.
Feldspar, Newland, 2.
Feldspar, Pratt, 8.
Fireclay, Campbell (M. R.), 6.
Fireclay, Darton, 18.
Fireclay, Hopkins (T. C.), 2, 5.
Fireclay, Martin (G. C.), 2.
Fireclay, Mathews, 1.
Flagstone, Fuller and Alden, 2.
Flint, Barbour (E. H.), 8.
Flint, Day, 7-11.
Flint, Hopkins (T. C.), 1.
Flint, Mathews, 1.
Flint, Merrill (G. P.), 3.
Fluorite, Aguilera, 3.
Fluorite, Merrill (G. P.), 3.
Fluorite, Miller (A. M.), 4.
Fluor spar, Bain, 6, 12, 19.
Fluor spar, Burk, 1.
Fluor spar, Day, 6-11.
Fluor spar, Harwood, 1.
Fluor spar, Smith (W. S. T.), 3.
Fluor spar, Ulrich and Smith, 1.
Franklinite, Merrill (G. P.), 3.
Fuller's earth, Cook, 1.
Fuller's earth, Darton, 1, 18.
Fuller's earth, Day, 6-8, 11.
Fuller's earth, Merrill (G. P.), 12.
Fuller's earth, Vaughan, 15, 18.
Gadolinite, Day, 11.
Gadolinite, Merrill (G. P.), 3.
Garnet, Aguilera, 3.
Garnet, Keith, 9.
Garnet, Magnus, 1.
Garnet, Merrill (G. P.), 3.
Garnet, Newland, 2.
Garnet, Pratt, 8.
Garnet gems, Pratt, 8.
Gem minerals, Pratt, 8.
Gibbsite, hydargillite, Merrill (G. P.), 3.
Gilsonite, Merrill (G. P.), 12.
Glass sand, Campbell (M. R.), 8.
Glass sand, Day, 9-11.
Glauberite, Merrill (G. P.), 3.
Glaucodot, Merrill (G. P.), 3.
Gneiss, Watson (T. L.), 8.
Gold, Abercrombie, 1.
Gold, Aguilar, 3.
Gold, Arnold, 8.
Gold, Atkin, 1, 2.
Gold, Austin, 5.
Gold, Bancroft, 1.
Gold, Beardie, 1.
Gold, Becker, 1.
Gold, Bel, 1, 2.
Gold, Bell (R.), 2, 3.
Gold, Bell (R. N.), 3.
Gold, Blake (W. P.), 5, 8.
Gold, Blatchford, 1.
Gold, Berdeau, 1.
Gold, Boutwell, 2, 8, 12, 13.
Gold, Brent, 1.
Gold, Brewer (W. M.), 14, 16.
Gold, Brock, 4, 5, 7.
Gold, Brooks, 4, 7, 9, 12.
Gold, Brooks and others, 1.
Gold, Burgess, 2.
Gold, Chalmers, 2.
Gold, Chance, 1.
Gold, Church, 1.
Gold, Clarke (C. H.), 1.
Gold, Clerc, 1.
Gold, Coleman, 3.
Gold, Collier, 1, 3, 10.
Gold, Comstock (T. B.), 1.
Gold, Crosby, 4.
Gold, Cummings, 1.
Gold, Darton, 18, 20.
Gold, Day, 5, 7-11.
Gold, Dorninlan, 1, 2.
Gold, Douglas, 11.
Gold, Draper, 1.
Gold, Dresser, 14.
Gold, Easton, 1.
Gold, Eckel, 15, 16.
Gold, Ells (R. W.), 20.
Gold, Eammons (S. F.), 3.
Gold, Eammons (W. H.), 1.
Gold, Farisbuch, 1-4.
Gold, Flaker, 1, 2.
Gold, Fowey, 1.
Gold, Furman, 1.
Gold, Garrison, 4.
Gold, Gilpin, 1.
Gold, Gottschalk, 1.
Gold, Gunther, 1.
Gold, Guppy, 1.
Gold, Gwillim, 1, 2.
Gold, Hall (C. W.), 1.
Gold, Hayes, Vaughan, and Spencer, 1.
Gold, Hershey, 7.
Economic products described—Continued.

Gold, Hewett, 2.
Gold, Hjør, 1.
Gold, Hill (R. T.), 7, 14, 15.
Gold, Hilt, 4.
Gold, Howley, 1.
Gold, Irving, 2-4, 6, 7.
Gold, Irving and Emmons, 1.
Gold, Jaggar and Palache, 1.
Gold, Keele, 1.
Gold, Keith, 4.
Gold, Keyes, 33.
Gold, Kinzie, 1, 2.
Gold, Kirby, 2.
Gold, Knapp (S. A.), 1.
Gold, Knight (W. C.), 3.
Gold, Knox, 1.
Gold, Kolderup, 1.
Gold, Laird, 1.
Gold, Lakes, 1, 43, 44, 51, 68.
Gold, Lane, 35.
Gold, Lee (H. A.), 1.
Gold, L’Hame, 1, 2.
Gold, Lindgren, 4, 6, 7, 8, 12, 14, 16, 21, 25, 28.
Gold, Lindgren and Drake, 1, 2.
Gold, Lindgren and Ransome, 1, 2.
Gold, Lovewell, 1, 2.
Gold, Lowry, 1.
Gold, McConnell, 2, 4-6.
Gold, MacDonald, 1.
Gold, Mallory, 1.
Gold, Martin, 12, 13.
Gold, Mendenhall, 1, 3, 8.
Gold, Mendenhall and Schrader, 1.
Gold, Miers, 1.
Gold, Miller (W. G.), 4, 6, 10.
Gold, Moffitt, 2-4.
Gold, Moore (F.), 1.
Gold, Nichols (J. C.), 1.
Gold, O’Harra, 1-3.
Gold, Palache, 2.
Gold, Parsons and Liddell, 1.
Gold, Penrose, 1.
Gold, Pratt, 5, 6, 8, 10, 11.
Gold, Prichard (W. R.), 1.
Gold, Prindle, 1, 2.
Gold, Prindle and Hess, 1.
Gold, Purington, 1, 3, 5-7, 8, 9.
Gold, Queneau, 1.
Gold, Ransome, 1, 6, 13, 16, 17.
Gold, Rickard (F.), 1.
Gold, Rickard (T. A.), 2, 6, 11, 12.
Gold, Ritter, 1.
Gold, Schrader, 3.
Gold, Schrader and Brooks, 1.
Gold, Schrader and Spencer, 1.
Gold, Smith (A. H.), 1.
Gold, Smith (J. T.), 2.
Gold, Smith (G. D.), 4, 9, 13.
Gold, Smith and McCalley, 1.
Gold, Spencer (A. C.), 9, 11, 13, 14.
Gold, Spurr, 9, 11-13, 18, 19, 22, 25-27, 29, 31.
Gold, Spurr and Garrey, 1.
Gold, Storms, 1, 3, 5.
Gold, Stretch, 2.

Economic products described—Continued.

Gold, Sutton, 1.
Gold, Thomas, 2.
Gold, Titcomb, 1.
Gold, Turner, 12, 14, 15.
Gold, Vicaire, 1.
Gold, Villalillo, 9.
Gold, Washburne, 2, 3.
Gold, Weatherby, 1.
Gold, Weed, 3, 5, 14, 19, 29, 35.
Gold, Weeks, 2.
Gold, Winchell (H. V.), 5.
Gold, Woodman, 3, 4.
Gold, Wright (F. E. and C. W.), 1.
Gold, Wright (C. W.), 1, 2.
Gold, Yung and McCaffery, 1.
Grahamite, Eldridge, 1.
Grahamite, Merrill (G. P.), 3.
Graphite, Eckel, 6.
Graphite, Finlay (G. L.), 3.
Graphite, Mathews, 1.
Graphite, Newland, 2.
Graphite, Perkins, 1, 6.
Graphite, Pratt, 8.
Graphite, Richardson (C. H.), 2.
Graphite, Shedd, 2.
Graphite, Smith (G. O.), 17.
Graphite, Taft, 3.
Graphite, Watson (T. L.), 8.
Graphite, Bateman, 1.
Graphite, Brumell, 1.
Graphite, Carter (W. E. H.), 1.
Graphite, Day, 6-11.
Graphite, Ellis (R. W.), 8, 18, 20.
Graphite, Ke’th, 12.
Graphite, Kemp, 27.
Graphite, Merrill (G. P.), 12.
Graphite, Miller (W. G.), 6.
Graphite, Newland, 2.
Graphite, Ogilvie, 6.
Graphite, O’Harra, 2.
Graphite, Pratt, 8, 10, 11.
Gravel, Sarle, 3.
Greensand marl, Day, 8.
Grindstones, whetstones, and hones, Merrill (G. P.), 3.
Guano, Merrill (G. P.), 12.
Gum copal, Merrill (G. P.), 3.
Gypsum, Adams (G. L.), 14.
Gypsum, Bell (J. M.), 2.
Gypsum, Blake (W. P.), 14.
Gypsum, Boutwell, 3, 6.
Gypsum, Brady, 1.
Gypsum, Darton, 1, 14, 15, 18.
Gypsum, Darton and O’Harra, 1.
Gypsum, Day, 6-11.
Gypsum, Diehl, 1.
Gypsum, Eckel, 19, 22, 23.
Gypsum, Fairbanks, 6.
Gypsum, Gould, 10, 11.
Gypsum, Gregory (W. M.), 1-3.
Gypsum, Grimsley, 4-7, 8.
Gypsum, Herrick (C. L.), 6.
Gypsum, Herrick (H. N.), 1.
Gypsum, Hill (J. F.), 3.
Economic products described—Continued.

<table>
<thead>
<tr>
<th>Product</th>
<th>Author</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum</td>
<td>Knight (W. C.)</td>
<td>9</td>
<td>489</td>
</tr>
<tr>
<td>Gypsum</td>
<td>Lakes</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Lindgren</td>
<td>4, 20</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Louderback</td>
<td>2, 5</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Merrill (G. P.)</td>
<td>3, 12</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Newland</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Parsons</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Pepel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Richardson (G. B.)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Rowe</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Sarle</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Sherwin</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Slosson and Moudy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Weed</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>Wilder</td>
<td>3, 4, 6</td>
<td></td>
</tr>
<tr>
<td>Halite</td>
<td>sodium chloride or common salt</td>
<td>Merrill (G. P.)</td>
<td>3</td>
</tr>
<tr>
<td>Hausmannite</td>
<td>Merrill (G. P.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td>Keith</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Hiddenite</td>
<td>Pratt</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>Aguilera</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ilmenite</td>
<td>memanecnite or titanic iron</td>
<td>Merrill (G. P.)</td>
<td>3</td>
</tr>
<tr>
<td>Iron</td>
<td>Aguilera</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ball and Smith</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Barlow</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Bayley</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Bell (J. M.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Beyer</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Blakemore</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Bowron</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Boutwell</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Brewer (W. M.)</td>
<td>2, 14</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Burchard</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Capilla</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Carlyle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Carter (W. E. H.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Chance</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Clements</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Coleman</td>
<td>4, 7, 18</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Coleman and Willmott</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Courtis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Crosby</td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Culbert</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Darton</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Day</td>
<td>5, 7-11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Diller</td>
<td>14, 16, 20</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Dumble</td>
<td>3, 6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Eckel</td>
<td>30, 33, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ellis (R. W.)</td>
<td>7, 8, 20</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Fairbank</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Farrington</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Fletcher</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Garrison</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Gilpin</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Grant (U. S.)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hayes (C. W.)</td>
<td>1, 5</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hayes and Eckel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hayes and Ulrich</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hayes, Vaughan, and Spencer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hille</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Hulst</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ingall</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Jennings (E. P.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Johnson (J. E., jr.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Keith</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Economic products described—Continued.

<table>
<thead>
<tr>
<th>Product</th>
<th>Author</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Kemp</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Kayes</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Klimmel</td>
<td>3, 5</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Lane</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Leith</td>
<td>4-6, 10-12, 14, 15</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Lindgren</td>
<td>4, 9, 28</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>McCaskey</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Macco</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Mathews</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Maxwell</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Mickle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Miller (W. G.)</td>
<td>2, 3, 6, 9, 15</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Mills</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Newland</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Obalski</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ogilvie</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>O'Harrara</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Pratt</td>
<td>8, 10, 11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Rangell</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ries</td>
<td>8, 11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Rohn</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Ruffo</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Sheldon</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Smith (W. D.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Smith (W. N.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Smith (W. S. T.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Smith and McCallie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Smith and Willis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Souder</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Spencer (A. C.)</td>
<td>1, 12</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Spurr</td>
<td>5, 12</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Thomas</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Tippenehauer</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Van Hise</td>
<td>2, 14</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Viitarello and Bose</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Warwick</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Weatherbe</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Weidman</td>
<td>5, 6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Willmott</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Winchell (H. V.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Winchell (N. H.)</td>
<td>7, 23, 24</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Woodbridge</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kainite</td>
<td>Merrill (G. P.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kainite</td>
<td>Merrill (G. P.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kaulin</td>
<td>Aguilera</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kaulin</td>
<td>Hopkins (T. C.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kaulin</td>
<td>Lindgren</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Kaulin</td>
<td>Mathews</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kaulin</td>
<td>Smith and McCallie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kiesrite</td>
<td>Merrill (G. P.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lazurite</td>
<td>lapis lazuli, or native ultramarine</td>
<td>Merrill (G. P.)</td>
<td>3</td>
</tr>
<tr>
<td>Lead</td>
<td>Adams (G. I.)</td>
<td>12, 15</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Aguilera</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Alken</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Argall (P.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Hain</td>
<td>2, 11, 12, 14, 16</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Ball and Smith</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Bell (R. N.)</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Boutwell</td>
<td>4, 14</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Branner</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Cahill</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Carter (W. E. H.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Crook</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Day</td>
<td>5, 7-11</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Ellis (E. E.)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Economic products described—Continued.
Lead, Emmons (S. F.), 3.
Lead, Finlay (J. R.), 1, 3.
Lead, Grant (U. S.), 5, 9, 10.
Lead, Haworth, 1.
Lead, Hedburg, 1.
Lead, Keith, 1.
Lead, Keyes, 20, 47.
Lead, Lakes, 45, 47, 50, 54.
Lead, Lee (H. A.), 1.
Lead, Hedburg, 1.
Lead, Keith, 1.
Lead, Keyes, 20, 47.
Lead, Lakes, 45, 47, 50, 54.
Lead, Lee (H. A.), 1.
Lead, Lindgren, 21.
Lead, Malcomson, 1.
Lead, Miller (A. M.), 4.
Lead, Nason, 4.
Lead, Nicholson, 1.
Lead, O’Harra, 2.
Lead, Kansome, 16-18.
Lead, Smith (W. S. T.), 2, 3.
Lead, Smith and Standley, 1.
Lead, Ulrich and Smith, 1.
Lead, Van Hise and Bain, 1.
Lead, Van Hise, 1.
Lead, Watson (T. L.), 17.
Lead, Yung and McCaffery, 1.
Lignite, Bell (J. M.), 2.
Lignite, Burchard, 1, 2.
Lignite, Merrill (G. P.), 12.
Lignite, Phillips (W. B.), 12.
Lignite, Russell, 2.
Lignite, Storrs (L. S.), 1.
Lignite, Tippenhauer, 2.
Lignite, Wilder, 1, 2, 8, 10.
Lignite, Wood (L. H.), 1.
Lignite, Woolworth, 1.
Lime, Blatchley, 7.
Lime, Keith, 9.
Lime, Norton, 1.
Lime, Ries, 4.
Limestone, Ashley, 2.
Limestone, Bussler, 2.
Limestone, Campbell (M. R.), 8.
Limestone, Clapp, 4.
Limestone, Darton, 18.
Limestone, Diller, 15.
Limestone, Donald, 1, 2.
Limestone, Eckel, 6, 34.
Limestone, Fisher (C. A.), 2.
Limestone, Fuller and Alden, 2.
Limestone, Gregory (W. M.), 1, 2.
Limestone, Hayes (C. W.), 5.
Limestone, Knight (N.), 7.
Limestone, Landes, 2.
Limestone, Lane, 8, 9, 41.
Limestone, Lindgren, 4.
Limestone, Martin (G. C.), 2.
Limestone, Merrill (G. P.), 12.
Limestone, Miller (W. G.), 13.
Limestone, Newland, 2.
Limestone, Orton and Peppel, 1.
Limestone, Pratt, 8.
Limestone, Ries, 4.
Limestone, Schneider, 2.
Limestone, Shedd, 2.
Limestone, Siebenthal, 3.

Economic products described—Continued.
Limestone, Smith (W. S. T.), 1.
Limestone, Stone, 2.
Limestone, Taff, 14.
Limestone, Ulrich, 7.
Limestone, Wells (J. W.), 5.
Limestone, bituminous, Taff, 6.
Limestone, lithographic, Hoen, 1.
Limestone, mortars, and cements, Merrill (G. P.), 3.
Limonite, Weed, 38.
Limpelite, Merrill (G. P.), 3.
Lithographic limestones, Merrill (G. P.), 3.
Lithium, Day, 7-11.
Lithographic stone, Day, 7.
Lithographic stone, Ulrich, 3.
Löllingite, leucopyrite, Merrill (G. P.), 3.
Magnesite, Day, 8-11.
Magnesite, Merrill (G. P.), 3.
Magnesite, Spinks, 1.
Magnetiet, Keith, 4.
Magnetite, Kemp, 11.
Manganese, Aguilera, 3.
Manganese, Blake (W. P.), 12.
Manganese, Catlett, 2.
Manganese, Chibas, 1.
Manganese, Church, 1.
Manganese, Darton, 18.
Manganese, Day, 5, 7-11.
Manganese, Eckel, 35.
Manganese, Hayes (C. W.), 11.
Manganese, Hayes, Vaughan, and Spencer, 1.
Manganese, Jennison, 1.
Manganese, Lindgren, 4.
Manganese, Merrill (G. P.), 3, 12.
Manganese, O’Harra, 2.
Manganese, Pratt, 8.
Manganese, Souder, 1.
Manganese, Spencer (A. C.), 3, 8.
Manganese, Watson (T. L.), 9.
Manganese, Wiel, 1.
Manganese, Williams (E. G.), 1.
Manganese, Wolff, 2.
Manganite, Merrill (G. P.), 3.
Manjak, Merrill (G. P.), 3.
Marble, Byrne, 1, 2.
Marble, Eckel, 6, 34.
Marble, Keith, 1, 6, 9.
Marble, Lyon, 1.
Marble, Newland, 2.
Marble, Perkins, 1, 6.
Marble, Pratt, 7, 8.
Marble, Richardson (C. H.), 2.
Marble, Shedd, 2.
Marble, Smith and McCawley, 1.
Marl, Blatchley and Ashley, 1.
Marl, Davis (C. A.), 1, 2.
Marl, Eckel, 34.
Marl, Ellis (R. W.), 6.
Marl, Fall, 1, 2.
Marl, Lane, 21.
Marl, Leverett, 3.
Marl (bog lime), Hale, 1.
Mercury, Aguilera, 3.
Economic products described—Continued.

Mercury, Villarello, 1, 6.
Mica, Carter (W. E. H.), 1.
Mica, Cirkel, 2, 4.
Mica, Colles, 1.
Mica, Corkill, 1.
Mica, Day, 6–9, 11.
Mica, Ellis (R. W.), 7, 8, 20, 21.
Mica, Keith, 4, 12.
Mica, Merrill (G. P.), 8, 12.
Mica, Miller (W. G.), 6.
Mica, O'Barr, 2.
Mica, Perkins, 6.
Mica, Pratt, 8, 10, 11.
Mica, Smith and McCalley, 1.
Millstones, Newland, 2.
Mineral paint, Day, 6–11.
Mineral paint, Newland, 2.
Mineral water, Babcock and Minor, 1.
Mineral water, Blatchley, 3.
Mineral water, Day, 6–11.
Mineral water, Eisele, 1.
Mineral water, Hessler, 1.
Mineral water, Merrill (G. P.), 12.
Mineral water, Newland, 2.
Mineral water, Peter, 1.
Mineral water, Todd (J. E.), 5.
Mirabilite, or Glauber salt, Merrill (G. P.), 3.
Molybdenite, Crook, 3.
Molybdenite, Merrill (G. P.), 3.
Molybdenite, Wells, 2.
Molybdenum, Aguilera, 3.
Molybdenum, Day, 7–9.
Molybdenum, Johnston, 1.
Molybdenum, Smith (G. O.), 10.
Molybdenum, Willmott, 2.
Monazite, Day, 8–11.
Monazite, Merrill (G. P.), 3.
Monazite, Pratt, 8, 10, 11.
Natron, the nitrum of the ancients, Merrill (G. P.), 3.
Natural gas, Adams (G. I.), 10.
Natural gas, Adams, Haworth, and Crane, 1.
Natural gas, Bell (Robert), 6.
Natural gas, Bishop (I. P.), 1, 2.
Natural gas, Blatchley, 6.
Natural gas, Bownocker, 2, 3, 5.
Natural gas, Butts, 4, 6.
Natural gas, Campbell (M. R.), 8, 9.
Natural gas, Chalmers, 4.
Natural gas, Corkill, 2.
Natural gas, Coste, 1–3.
Natural gas, Darton, 18.
Natural gas, Day, 6–11.
Natural gas, Fuller (M. L.), 5, 9.
Natural gas, Grimsley, 1, 2.
Natural gas, Haworth, 2.
Natural gas, Haworth and McFarland, 1.
Natural gas, Hoeing, 1.
Natural gas, Ingall, 1.
Natural gas, Kinley, 7.
Natural gas, Kinney, 1, 2.
Natural gas, Lane, 10, 31, 46.
Natural gas, Leach (J. C.), 1, 2.

Economic products described—Continued.

Natural gas, McFarland, 1.
Natural gas, Merrill (G. P.), 12.
Natural gas, Mickle, 2.
Natural gas, Newland, 2.
Natural gas, Nickles, 2.
Natural gas, Oliphant, 1.
Natural gas, Richardson (G. B.), 3, 6.
Natural gas, Schrader and Haworth, 1.
Natural gas, Stone (R. W.), 2, 6–8.
Natural gas, Todd (J. E.), 5.
Natural gas, Udlen, 2.
Natural gas, White (I. C.), 9, 10.
Natural gas, Woolsey, 3.
Natural gas, Yates (J. A.), 1.
Nickel, Aguilera, 3.
Nickel, Barlow, 6, 8.
Nickel, Coleman, 14, 18, 19.
Nickel, Dickson, 4.
Nickel, Ellis (R. W.), 17.
Nickel, Kelth, 9.
Nickel, Ledoux, 1.
Nickel, Miller (W. G.), 6, 8, 11, 13.
Nickel, Silver, 1.
Nickel, Spurr, 12.
Niter, potassium nitrate, Merrill (G. P.), 3.
Nitre, Merrill (G. P.), 12.
Nitrates, Wagenen, 1.
Nitro-caléctte, Merrill (G. P.), 3.
Ocher, Chester, 1.
Ocher, Ellis (R. W.), 5.
Ocher, Hayes (C. W.), 1.
Ocher, Merrill (G. P.), 3, 12.
Ocher, Pratt, 8.
Ocher, Watson (T. L.), 10.
Oil, Adams (G. I.), 2.
Oil, Bishop (I. P.), 1.
Oil, Blatchley, 2.
Oil, Bownocker, 3.
Oil, Cooper (A. S.), 1.
Oil, Gordon (C. H.), 2.
Oil, Harris, 4.
Oil, Hayes, Vaughan, and Spencer, 1.
Oil, Hill (R. T.), 5.
Oil, Hager, 1.
Oil, Haworth, 2.
Oil, Ingall, 1.
Oil, Knight and Stossor, 2.
Oil, Knight (W. C.), 2, 5.
Oil, Lakes, 10, 11, 14, 15, 17, 21, 24.
Oil, Lane, 10.
Oil, Mabery, 1.
Oil, Ouly, 1.
Oil, Phillips (W. B.), 2.
Oil, Richardson and Wallace, 1.
Oil, Thiele, 1.
Oil, Willis, 4.
Onyx-marble, Ordoñez, 4.
Opal, Aguilera, 3.
Ornamental stone, Sheeld, 2.
Orange, auripigment, Merrill (G. P.), 3.
Ozokerite, Merrill (G. P.), 12.
INDEX TO NORTH AMERICAN GEOLOGY

Economic products described—Continued.

Ozokerite, mineral wax; native paraffin, Merrill (G. P.), 3.
Peat, Chalmers, 5, 7.
Peat, Day, 11.
Peat, Ellis (R. W.), 8.
Peat, Lakes, 96.
Peat, Merrill (G. P.), 12.
Peat, Parsons, 3.
Peat, Reis, 7.
Peat, Sarle, 3.
Petroleum, Adams, Haworth, and Crane, 1.
Petroleum, Alcalá, 1.
Petroleum, Bartow and McCollum, 1.
Petroleum, Baxter, 1.
Petroleum, Bell (Robert), 6.
Petroleum, Bishop (T. F.), 2.
Petroleum, Blatchley, 4, 6.
Petroleum, Blatchley and Sheak, 1.
Petroleum, Bowdwell, 11.
Petroleum, Bowknotter, 2, 5.
Petroleum, Butts, 4.
Petroleum, Campbell (M. R.), 11.
Petroleum, Chalmers, 4.
Petroleum, Claypole, 3.
Petroleum, Corkill, 2.
Petroleum, Coste, 1–4.
Petroleum, Darton, 1, 14, 18.
Petroleum, Day (D. T.), 2, 3.
Petroleum, Day, 6–11.
Petroleum, Dumble, 2, 8.
Petroleum, Eldridge, 4.
Petroleum, Ellis (R. W.), 12.
Petroleum, Fenneman, 4, 5, 7–9.
Petroleum, Fishback, 1.
Petroleum, Frazer, 9.
Petroleum, Fuller and Alden, 1.
Petroleum, Grimsley, 1.
Petroleum, Griswold, 1, 2.
Petroleum, Hayes (C. W.), 8, 13.
Petroleum, Hayes and Kennedy, 1.
Petroleum, Heurteau, 1.
Petroleum, Hoeing, 1.
Petroleum, Kilham, 1.
Petroleum, Knight and Slosson, 4.
Petroleum, Laguerne, 1.
Petroleum, Lakes, 15, 39, 48.
Petroleum, Landes, 2.
Petroleum, Lane, 31, 46.
Petroleum, McCallie, 7.
Petroleum, Merrill (G. P.), 3, 12.
Petroleum, Mickle, 2.
Petroleum, Newland, 2.
Petroleum, Oliphant, 2.
Petroleum, Otsuka, 1.
Petroleum, Phillips (W. B.), 1.
Petroleum, Plotts, 1.
Petroleum, Prutzman, 1.
Petroleum, Richardson (G. B.), 7.
Petroleum, Russell, 8.
Petroleum, Schrader and Haworth, 1.

Phosphate, Branner and Newsom, 1.
Phosphate, Brown (L. P.), 1.
Phosphate, Chazal, 1.
Phosphate, Day, 6–11.
Phosphate, Eckel, 3, 19.
Phosphate, Hayes (C. W.), 3, 15.
Phosphate, Hayes and Ulrich, 1.
Phosphate, Memminger, 1.
Phosphate, Merrill (G. P.), 12.
Phosphate, Ochsenius, 2.
Phosphate, Phillips (W. B.), 4.
Phosphate, Ruhm, 1.
Phosphate, Safford, 1.
Phosphate, Smith and McCalley, 1.
Pilgrim, Brock, 6.
Pilgrim, Day, 1, 7–11.
Pilgrim, Emmons (S. F.), 11.
Pilgrim, Kemp, 11, 20.
Pilgrim, Knight, 4.
Pilgrim, Dickson, 5.
Pilgrim, Spurr, 12.
Pilgrim, Wells and Penfield, 1.
Pilgrim minerals, Diller, 11.
Pililmanite, Merrill (G. P.), 3.
Polyhalite, Merrill (G. P.), 3.
Portland cement, Bain, 15.
Portland cement, Bassler, 2.
Portland cement, Catlett, 3.
Portland cement, Day, 6, 7, 10.
Portland cement, Eckel and Crider, 1.
Portland cement, Fitzhugh, 1.
Portland cement, Haworth and Schrader, 1.
Portland cement, Merrill (G. P.), 3, 12.
Portland cement, Russell, 6.
Portland cement, Smith (E. A.), 3, 8.
Portland cement, Taff, 5, 14, 15.
Portland cement, Ulrich, 7.
Portland cement, Wilder, 3.
Precious stones, Day, 6–11.
Precious stones, Keith, 12.
Precious stones, Pratt, 10, 11.
Precious stones, Pratt, 10, 11.
Psilomelane, Merrill (G. P.), 3.
Pumice, Merrill (G. P.), 3, 12.
Pyrite, Day, 6–11.
Pyrite, Eckel, 16, 40.
Pyrite, Meissner, 1.
Pyrite, Merrill (G. P.), 12.
Pyrite, Miller (W. G.), 6.
Pyrite, Newland, 2.
Pyrite, Pratt, 8.
Pyrite, Smith and McCalley, 1.
Pyrites, Merrill (G. P.), 3.
Pyromelane, Merrill (G. P.), 3.
Pyrophyllite, Pratt, 8, 10.
FOR THE YEARS 1901-1905, INCLUSIVE.

Economic products described—Continued.

<table>
<thead>
<tr>
<th>Product</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrophyllite, agalmatolite, and pagonite, Merrill (G. P.),</td>
<td>3</td>
</tr>
<tr>
<td>Quartz, Day, 6</td>
<td></td>
</tr>
<tr>
<td>Quartz, Merrill (G. P.), 3</td>
<td></td>
</tr>
<tr>
<td>Quartz, Newland, 2</td>
<td></td>
</tr>
<tr>
<td>Quartz, Pratt, 8, 10, 11</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Day, 5, 7-11</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Demaret, 2</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Dennis, 2</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Forstner, 2</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Hanoverstock, 1</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Hill (B. F.),</td>
<td>1</td>
</tr>
<tr>
<td>Quicksilver, Hill (R. T.),</td>
<td>8</td>
</tr>
<tr>
<td>Quicksilver, Kirk, 1</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Kirk and Malcolmson, 1</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Monckton, 2</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Osmont, 1</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Phillips (W. B.), 6, 8, 10, 11, 14</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Spalding, 1</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Turner, 17</td>
<td></td>
</tr>
<tr>
<td>Quicksilver, Wendeborn, 2</td>
<td></td>
</tr>
<tr>
<td>Realgar, Merrill (G. P.),</td>
<td>3</td>
</tr>
<tr>
<td>Retinite, Merrill (G. P.), 3, 12</td>
<td></td>
</tr>
<tr>
<td>Rhodochrosite; dolomite, Merrill (G. P.),</td>
<td>3</td>
</tr>
<tr>
<td>Rhodonite, Pratt, 8</td>
<td></td>
</tr>
<tr>
<td>Road material, Darton and Keith, 1</td>
<td></td>
</tr>
<tr>
<td>Road materials, Buckley, 3</td>
<td></td>
</tr>
<tr>
<td>Road materials, Landes, 2</td>
<td></td>
</tr>
<tr>
<td>Road materials, McCullie, 3</td>
<td></td>
</tr>
<tr>
<td>Road materials, Martin (G. C.), 2</td>
<td></td>
</tr>
<tr>
<td>Road materials, Mathews, 1</td>
<td></td>
</tr>
<tr>
<td>Roman cement, Merrill (G. P.), 3</td>
<td></td>
</tr>
<tr>
<td>Roofing slate, Nevis, 1</td>
<td></td>
</tr>
<tr>
<td>Ruby, Kunz, 2</td>
<td></td>
</tr>
<tr>
<td>Ruby, Pratt, 8</td>
<td></td>
</tr>
<tr>
<td>Rutile, Merrill (G. P.), 3, 6, 12</td>
<td></td>
</tr>
<tr>
<td>Salt, Aguilera, 3</td>
<td></td>
</tr>
<tr>
<td>Salt, Bishop (E. P.), 2</td>
<td></td>
</tr>
<tr>
<td>Salt, Bownocker, 6</td>
<td></td>
</tr>
<tr>
<td>Salt, Clendenin, 1</td>
<td></td>
</tr>
<tr>
<td>Salt, Darton, 18, 21</td>
<td></td>
</tr>
<tr>
<td>Salt, Day, 6-11</td>
<td></td>
</tr>
<tr>
<td>Salt, Eckel, 11, 19</td>
<td></td>
</tr>
<tr>
<td>Salt, Gould, 7</td>
<td></td>
</tr>
<tr>
<td>Salt, Hager, 1</td>
<td></td>
</tr>
<tr>
<td>Salt, Herrick (C. L.), 6</td>
<td></td>
</tr>
<tr>
<td>Salt, Holder, 1</td>
<td></td>
</tr>
<tr>
<td>Salt, Kindel, 7</td>
<td></td>
</tr>
<tr>
<td>Salt, Lane, 8, 12</td>
<td></td>
</tr>
<tr>
<td>Salt, Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Salt, Newland, 2</td>
<td></td>
</tr>
<tr>
<td>Salt, Richardson (G. B.), 4, 7</td>
<td></td>
</tr>
<tr>
<td>Salt, Vechtch, 1</td>
<td></td>
</tr>
<tr>
<td>Samarskite, Merrill (G. P.),</td>
<td>3</td>
</tr>
<tr>
<td>Sand, Ashley, 2</td>
<td></td>
</tr>
<tr>
<td>Sand, Barbour (E. H.), 8</td>
<td></td>
</tr>
<tr>
<td>Sand, Kummel, 9</td>
<td></td>
</tr>
<tr>
<td>Sand, Newland, 2</td>
<td></td>
</tr>
<tr>
<td>Sand, Sarte, 3</td>
<td></td>
</tr>
<tr>
<td>Sand, molding, Eckel, 14</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Ashley, 2</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Dickinson, 1</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Eckel, 6</td>
<td></td>
</tr>
</tbody>
</table>

Economic products described—Continued.

<table>
<thead>
<tr>
<th>Product</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone, Lane, 8</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Martin (G. C.), 2</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Newland, 2</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Richardson (G. B.), 3</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Shed, 2</td>
<td></td>
</tr>
<tr>
<td>Sandstone, Smith (W. S. T.), 1</td>
<td></td>
</tr>
<tr>
<td>Sandstone, bituminous, Taff, 6</td>
<td></td>
</tr>
<tr>
<td>Sapphire, Kunz, 3</td>
<td></td>
</tr>
<tr>
<td>Sapphire, Pratt, 8</td>
<td></td>
</tr>
<tr>
<td>Scheelite, Merrill (G. P.), 3</td>
<td></td>
</tr>
<tr>
<td>Selenium, Aguillera, 3</td>
<td></td>
</tr>
<tr>
<td>Sepiolite; meerschaum, Merrill (G. P.), 3</td>
<td></td>
</tr>
<tr>
<td>Serpentine, Marsters, 2, 4</td>
<td></td>
</tr>
<tr>
<td>Serpentine, Pratt, 8</td>
<td></td>
</tr>
<tr>
<td>Serpentine, Shed, 2</td>
<td></td>
</tr>
<tr>
<td>Shale, Eckel, 34</td>
<td></td>
</tr>
<tr>
<td>Silver, Aguillera, 3</td>
<td></td>
</tr>
<tr>
<td>Silver, Alken, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Argall (P.), 2</td>
<td></td>
</tr>
<tr>
<td>Silver, Bagg, 8</td>
<td></td>
</tr>
<tr>
<td>Silver, Bell (R. N.), 3</td>
<td></td>
</tr>
<tr>
<td>Silver, Blake (W. P.), 8</td>
<td></td>
</tr>
<tr>
<td>Silver, Boutweil, 4, 8, 12, 13</td>
<td></td>
</tr>
<tr>
<td>Silver, Brewer, 19</td>
<td></td>
</tr>
<tr>
<td>Silver, Byrne, 3</td>
<td></td>
</tr>
<tr>
<td>Silver, Brock, 8</td>
<td></td>
</tr>
<tr>
<td>Silver, Cahill, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Carter (W. E. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Church, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Clerc, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Comstock (T. B.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Cummings, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Cook (E. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Darton, 18</td>
<td></td>
</tr>
<tr>
<td>Silver, Day, 5, 7-11</td>
<td></td>
</tr>
<tr>
<td>Silver, Denn, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Diller, 16</td>
<td></td>
</tr>
<tr>
<td>Silver, Dominian, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Elles, 20</td>
<td></td>
</tr>
<tr>
<td>Silver, Emmons (S. F.), 3, 10</td>
<td></td>
</tr>
<tr>
<td>Silver, Emmons (W. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Farrington, 13</td>
<td></td>
</tr>
<tr>
<td>Silver, Finlay (J. R.), 1, 3</td>
<td></td>
</tr>
<tr>
<td>Silver, Flores, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Halee, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Silver, Hardman, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Henrich, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Hill (R. T.), 4, 10, 14</td>
<td></td>
</tr>
<tr>
<td>Silver, Irving, 3, 4, 6, 7</td>
<td></td>
</tr>
<tr>
<td>Silver, Irving and Emmons, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Jaggar and Palache, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Keyses, 32</td>
<td></td>
</tr>
<tr>
<td>Silver, Kirby, 2</td>
<td></td>
</tr>
<tr>
<td>Silver, Knapp (S. A.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Lakes, 45, 47, 50, 51, 54, 68, 72</td>
<td></td>
</tr>
<tr>
<td>Silver, Lee (H. A.), 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Lindgren, 4, 7, 8, 21, 26</td>
<td></td>
</tr>
<tr>
<td>Silver, Lindgren and Drake, 2</td>
<td></td>
</tr>
<tr>
<td>Silver, Lowry, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, McCormick, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Malcolmson, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Mendenhall, 1</td>
<td></td>
</tr>
<tr>
<td>Silver, Miller (G. W.), 2</td>
<td></td>
</tr>
<tr>
<td>Silver, Miller (W. G.), 8, 11, 13</td>
<td></td>
</tr>
<tr>
<td>Silver, O’Harra, 2</td>
<td></td>
</tr>
<tr>
<td>Economic products described—Continued.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Silver, Ordoñez, 3, 11.</td>
<td></td>
</tr>
<tr>
<td>Silver, Pratt, 8, 10, 11.</td>
<td></td>
</tr>
<tr>
<td>Silver, Purington, 1, 3, 5.</td>
<td></td>
</tr>
<tr>
<td>Silver, Ransome, 1–3, 6, 13, 16–18.</td>
<td></td>
</tr>
<tr>
<td>Silver, Spencer (A. C.), 10.</td>
<td></td>
</tr>
<tr>
<td>Silver, Spurr, 9, 11, 18, 27, 29.</td>
<td></td>
</tr>
<tr>
<td>Silver, Spurr and Garrey, 1.</td>
<td></td>
</tr>
<tr>
<td>Silver, Stretch, 3.</td>
<td></td>
</tr>
<tr>
<td>Silver, Udden (Johan A.), 1.</td>
<td></td>
</tr>
<tr>
<td>Silver, Vicente, 1.</td>
<td></td>
</tr>
<tr>
<td>Silver, Villafañn, 1.</td>
<td></td>
</tr>
<tr>
<td>Silver, Villarello, 9.</td>
<td></td>
</tr>
<tr>
<td>Silver, Weatherby, 1.</td>
<td></td>
</tr>
<tr>
<td>Silver, Weed, 5.</td>
<td></td>
</tr>
<tr>
<td>Silver, Yung and McCaffery, 1.</td>
<td></td>
</tr>
<tr>
<td>Skutecudite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Slate, Dale, 2, 4, 8.</td>
<td></td>
</tr>
<tr>
<td>Slate, Eckel, 24, 27, 28.</td>
<td></td>
</tr>
<tr>
<td>Slate, Hayes (C. W.), 5.</td>
<td></td>
</tr>
<tr>
<td>Slate, Hitchcock (C. H.), 10.</td>
<td></td>
</tr>
<tr>
<td>Slate, Newland, 2.</td>
<td></td>
</tr>
<tr>
<td>Slate, Perkins, 1, 2, 6.</td>
<td></td>
</tr>
<tr>
<td>Slate, Richardson (C. H.), 2.</td>
<td></td>
</tr>
<tr>
<td>Smaltite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Soapstone, Day, 6–11.</td>
<td></td>
</tr>
<tr>
<td>Soapstone, Keith, 4, 9, 12.</td>
<td></td>
</tr>
<tr>
<td>Soapstone, Pratt, 11.</td>
<td></td>
</tr>
<tr>
<td>Soda, Darton, 18.</td>
<td></td>
</tr>
<tr>
<td>Soda niter, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Soils, Darton, 7, 8, 26.</td>
<td></td>
</tr>
<tr>
<td>Soils, Darton and O’Harra, 1.</td>
<td></td>
</tr>
<tr>
<td>Soils, Darton and Smith, 1.</td>
<td></td>
</tr>
<tr>
<td>Soils, Fairbanks, 7.</td>
<td></td>
</tr>
<tr>
<td>Soils, Fuller and Clapp, 2.</td>
<td></td>
</tr>
<tr>
<td>Soils, Hall (C. W.), 2.</td>
<td></td>
</tr>
<tr>
<td>Soils, Hayes (C. W.), 5.</td>
<td></td>
</tr>
<tr>
<td>Soils, Hayes and Ulrich, 1.</td>
<td></td>
</tr>
<tr>
<td>Soils, Lakes, 40.</td>
<td></td>
</tr>
<tr>
<td>Soils, Norton, 1.</td>
<td></td>
</tr>
<tr>
<td>Soils, Russell, 23.</td>
<td></td>
</tr>
<tr>
<td>Soils, Smith and McCalley, 1.</td>
<td></td>
</tr>
<tr>
<td>Soils, Taff, 6.</td>
<td></td>
</tr>
<tr>
<td>Soils, Todd (J. E.), 10, 11.</td>
<td></td>
</tr>
<tr>
<td>Soils, Weidman, 3.</td>
<td></td>
</tr>
<tr>
<td>Spodumene, O’Harra, 2.</td>
<td></td>
</tr>
<tr>
<td>Spodumene and petalite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Steatite, talc, and soapstone, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Steel-hardening metals, Day, 11.</td>
<td></td>
</tr>
<tr>
<td>Stone, Day, 6–11.</td>
<td></td>
</tr>
<tr>
<td>Stone, Newland, 2.</td>
<td></td>
</tr>
<tr>
<td>Strontianite, Ellis (R. W.), 7.</td>
<td></td>
</tr>
<tr>
<td>Strontianite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Strontium, Aguilera, 3.</td>
<td></td>
</tr>
<tr>
<td>Strontium, Day, 8.</td>
<td></td>
</tr>
<tr>
<td>Succinite; amber, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Adams (G. I.), 16.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Aguilera, 3.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Caracristi, 1.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Day, 6–11.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Kerr, 1.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Merrill (G. P.), 12.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Phillips (W. B.), 5.</td>
<td></td>
</tr>
<tr>
<td>Sulphur, Richardson (G. B.), 4, 8.</td>
<td></td>
</tr>
<tr>
<td>Synchrodynite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic products described—Continued.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tale, Blasdale, 1.</td>
<td></td>
</tr>
<tr>
<td>Tale, Day, 7–11.</td>
<td></td>
</tr>
<tr>
<td>Tale, Keith, 7, 9, 12.</td>
<td></td>
</tr>
<tr>
<td>Tale, Merrill (G. P.), 12.</td>
<td></td>
</tr>
<tr>
<td>Tale, Miller (W. G.), 6.</td>
<td></td>
</tr>
<tr>
<td>Tale, Newland, 2.</td>
<td></td>
</tr>
<tr>
<td>Tale, Peck, 6.</td>
<td></td>
</tr>
<tr>
<td>Tale, Pratt, 7, 8, 10, 11.</td>
<td></td>
</tr>
<tr>
<td>Tantalum, Pratt, 11.</td>
<td></td>
</tr>
<tr>
<td>Tar, Day, 9–11.</td>
<td></td>
</tr>
<tr>
<td>Tellurium, Aguilera, 3.</td>
<td></td>
</tr>
<tr>
<td>Thenardite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, Aguilera, 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, Bell (R. N.), 2.</td>
<td></td>
</tr>
<tr>
<td>Tin, Bell (Robert), 4.</td>
<td></td>
</tr>
<tr>
<td>Tin, Brooks, 1, 2, 8.</td>
<td></td>
</tr>
<tr>
<td>Tin, Collier, 1, 5, 7, 11.</td>
<td></td>
</tr>
<tr>
<td>Tin, Darton, 18, 26.</td>
<td></td>
</tr>
<tr>
<td>Tin, Day, 7, 11.</td>
<td></td>
</tr>
<tr>
<td>Tin, Fawns, 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Garrison, 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, Graton, 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, Hals and Graton, 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Irving, 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, Irving and Emmons, 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Nevius, 3.</td>
<td></td>
</tr>
<tr>
<td>Tin, O’Harra, 2.</td>
<td></td>
</tr>
<tr>
<td>Tin, Pratt, 10, 11.</td>
<td></td>
</tr>
<tr>
<td>Tin, Pratt and Sterrett, 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Rickard (E.), 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Struthers and Pratt, 1.</td>
<td></td>
</tr>
<tr>
<td>Tin, Weed, 4, 15.</td>
<td></td>
</tr>
<tr>
<td>Titanum, Day, 8.</td>
<td></td>
</tr>
<tr>
<td>Topaz, Aguilera, 3.</td>
<td></td>
</tr>
<tr>
<td>Tourmaline, Kunz, 2.</td>
<td></td>
</tr>
<tr>
<td>Trap, Newland, 2.</td>
<td></td>
</tr>
<tr>
<td>Tripolite and lithiophyllite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Tripolite, Crosby, 1.</td>
<td></td>
</tr>
<tr>
<td>Trona; urao, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Tachermigate, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Tufa, Shedd, 2.</td>
<td></td>
</tr>
<tr>
<td>Tuff, Shedd, 2.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Day, 5, 7–9.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Hobbs, 16.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Irving and Emmons, 1.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Johnstone, 1.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Merrill (G. P.), 12.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, O’Harra, 2.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Rickard (F.), 3.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Simmons, 1.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Smith (F. D.), 1.</td>
<td></td>
</tr>
<tr>
<td>Tungsten, Weeks, 1, 8.</td>
<td></td>
</tr>
<tr>
<td>Turquoise, Johnson (D. W.), 4.</td>
<td></td>
</tr>
<tr>
<td>Ulexite; boronatrocacite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Uintaite, Eldridge, 1.</td>
<td></td>
</tr>
<tr>
<td>Uintaite; gisouite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Uraninite; pitchblende, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Uranium, Boutwell, 9.</td>
<td></td>
</tr>
<tr>
<td>Uranium, Day, 7–9.</td>
<td></td>
</tr>
<tr>
<td>Uranium, Pratt, 11.</td>
<td></td>
</tr>
<tr>
<td>Vanadinite, Merrill (G. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Vanadium, Aguilera, 3.</td>
<td></td>
</tr>
</tbody>
</table>

Economic products described—Continued.

Vanadium, Boutwell, 9.
Vanadium, Caballero, 2.
Vanadium, Day, 7-9.
Volcanic ash, Darton, 18.
Volcanic ash, Rowe, 1.
Water power, Ashley, 2.
Water power, Flynn and Flynn, 1.
Water power, Hall (B. M.), 1.
Water power, Leverett, 3.
Water power, Pressoy, 3.
Water supply, Babcock, 1, 2.
Water supply, Calvin, 1.
Water supply, Chalmers, 4.
Water supply, Darton, 1, 6, 8.
Water supply, Darton and Keith, 1.
Water supply, Gould, 3, 5.
Water supply, Gregory (W. M.), 1, 2.
Water supply, Harris, 3.
Water supply, Hills, 1.
Water supply, Johnson (W. D.), 1.
Water supply, McCaslin, 2.
Water supply, Udden, 3.
Water supply, Upham, 1.
Water supply, Woolman, 1.
Waterstone, Schneider, 5.
Whetstone, Merrill (G. P.), 3.
Zinc, Adams (G. I.), 12, 15.
Zinc, Bain, 2, 11, 13, 14, 16.
Zinc, Barlow, 1.
Zinc, Breden, 3.
Zinc, Carter (W. E. II.), 1.
Zinc, Crook, 2.
Zinc, Crosby, 18.
Zinc, Day, 5, 7-11.
Zinc, Demaret, 1.
Zinc, Ellis (E. E.), 1.
Zinc, Emmons (S. F.), 3.
Zinc, Grant (U. S.), 5, 9, 10.
Zinc, Harwood, 1.
Zinc, Haworth, 1.
Zinc, Hedberg, 1.
Zinc, Higgins, 1.
Zinc, Keith, 1, 8.
Zinc, Keyes, 20, 48.
Zinc, Klümmel, 3, 5.
Zinc, Lakes, 52.
Zinc, Lindgren, 28.
Zinc, Miller (A. M.), 4.
Zinc, Newland, 2.
Zinc, Nicholson, 1.
Zinc, Phillips (W. B.), 3.
Zinc, Smith (W. S. T.), 2, 3.
Zinc, Smith and Standley, 1.
Zinc, Steele, 1.
Zinc, Ulrich and Smith, 1.

Florida.

Clays of the United States, Ries, 6.
Cement materials and industry of the United States, Eckel, 34.
Fresh-water springs in the ocean, Hitchcock (C. H.), 11.
Fuller's earth of Georgia and Florida, Vaughan, 12, 13.
Genera, subgenera, and sections of Pyramideilide, Dall and Bartisch, 2.
New Conus from Tertiary, Aldrich, 3.
New species of Tertiary fossils, Aldrich, 2.
Oligocene of western Europe and southern United States, Maury, 1.
Recent elevation of Gulf coast, Vaughan, 11.
Tertiary fauna of Florida, Dall, 8.
Underground waters of Florida, Fuller, 25.
Union of Cuba with Florida, Spencer (J. W.), 11.
Water resources of Florida, Fuller (M. L.), 13.

Geologic formations described.

Abram's formation, pre-Cretaceous, California, Hershey, 2.
Abrigo Limestone, Cambrian, Arizona, Ransome, 9, 11, 14.
Acadian, Cambrian, New York, Clarke, 20.
Acadian division, Cambrian, Canada, Matthew (G. F.), 20.
Adams Lake series, Cambrian, Canada, Evans (H. F.), 2.
Admire shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Aftonian, Pleistocene, Iowa, Udden, 2.
Aftonian, Quaternary, New Jersey, Salisbury and others, 1.
Aftonian, Pleistocene, Iowa, Calvin, 15.
Aftonian stage, Pleistocene, Iowa, Savage, 8.
Agawa formation, Algonkian, Minnesota, Clements, 3.
Agostites limestone, Devonian, New York, Clarke (J. M.), 2.
Agua Dulce formation, Devonian, Panama, Hershey, 6.
Ahtell diorite, Alaska, Mendenhall, 8.
Ajax quartzite, Arizona, Church, 1.
Akins shale member, Carbohiferous, Indian Territory, Taff, 17.
Geologic formations described—Continued.

Alabama white limestone, Tertiary, Alabama, Casey, 2.

Albany granite, New Hampshire, Hawes, 2.

Albany division, Carboniferous, Texas, Taff, 4.

Albert shales, Carboniferous, Canada, Bailey (L. W.), 8.

Albertan, Pleistocene, Iowa, Udden, 2.

Albertan, Quaternary, New Jersey, Salisbury and others, 1.

Albertan, Pleistocene, Iowa, Beyer and Williams, 2.

Albuquerque marls, Pliocene, Tertiary, New Mexico, Reagan, 1.

Allegheny formation, Carboniferous, Maryland, Prosser, 3, 4.

Allegheny formation, Carboniferous, Maryland. Included in Coal Measures. Includes Brookville coal, Clarion coal, Clarion sandstone, Ferrifereous limestone, Kittanning limestone, Kittanning sandstone, "Split-six" coal, Lower Kittanning coal, Middle Kittanning coal, Upper Kittanning coal, Lower Freeport sandstone, Lower Freeport limestone, Lower Freeport coal, Upper Freeport sandstone, Upper Freeport limestone and Bollvar clay, and Upper Freeport coal, Clark and Martin, 5.

Allegheny formation, Carboniferous, Maryland, Martin (G. C.), 1.

Allegheny formation, Carboniferous, Pennsylvania, Campbell, 6.

Allegheny formation (includes Bluebaugh coal, Parker coal, Davis coal, Thomas coal), Carboniferous, Pennsylvania, White (D.), 7.

Allegheny formation (includes Brookville coal, Clarion coal, Lower Kittanning coal, Middle Kittanning coal, Upper Kittanning coal, Lower Freeport coal, Upper Freeport coal), Carboniferous, Pennsylvania, White and Campbell, 1.

Allegheny formation, Carboniferous, Pennsylvania, Campbell (M. R.), 8.

Allegheny formation (Lower Productive Coal Measures), Carboniferous, Ohio, Prosser, 10.

Allegheny series, Carboniferous, West Virginia, White (I. C.), 7.

Allegheny formation, Carboniferous, Pennsylvania, Campbell (M. R.), 18.

Allegheny formation, Carboniferous, Pennsylvania, Butts, 4, 6, 7.

Allegheny formation, Carboniferous, Pennsylvania, Richardson (G. R.), 3.

Allegheny formation, Carboniferous, Maryland, Clark and Martin, 6.

Allegheny formation, Carboniferous, Maryland, Martin, 16.

Geologic formations described—Continued.

Allegheny formation, Carboniferous (Pennsylvanian), Pennsylvania, Woolsey, 3.

Allen limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Alloway clay, Tertiary, New Jersey, K ümmel and Knapp, 1.

Alma limestone, Carboniferous, Kansas, Prosser, 7.

Alpena limestone, Devonian, included in Traverse group, Michigan, Grabau, 5.

Alpreston quartzites (Flathead quartzites), Cambrian, Montana, Weed, 5.

Altamaha grits, Tertiary, Georgia, Maury, 1.

Alta beds, Carboniferous, Texas, Udden (John A.), 11.

Altamaha grits, Tertiary, Georgia, Maury, 1.

Altmont (Parsons) limestone, Carboniferous, Kansas, Beede and Rogers, 1.

Altoma dolomite, Permian, Oklahoma, Gould, 9.

Allyn limestone, Algonkian, Montana, Willis, 6.

Alum Bluff beds, Tertiary, Florida, Maury, 1.

Amboy sandstone clay, Cretaceous, New Jersey, K ümmel and Knapp, 1.

American limestone, Carboniferous, Kansas, Prosser, 7.

American limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.

American limestone, Carboniferous, Kansas, Smith (A. J.), 1, 2.

American beds, Carboniferous, Kansas, Wooster, 1, 2.

Ames, or Crinoidal limestone, Carboniferous, West Virginia, White (I. C.), 7.

Ames limestone, Carboniferous, Ohio, Orton and Pappel, 1.

Ames limestone, Carboniferous, Pennsylvania, Butts, 4.

Ames, or Crinoidal, limestone, Carboniferous, Maryland, Clark and Martin, 6.

Ames limestone, Carboniferous, Pennsylvania, Clapp, 4.

Amson formation, Carboniferous, Wyoming, Darton, 16, 18.

Amacacho formation, Cretaceous, Texas, Hill (R. T.), 3.

Anaktuvuk series, Cretaceous, Alaska, Schrader, 1, 3.

Angola shale, Devonian, New York, Clarke, 19, 20.

Animikie formations, Canada, Smith (W. N.), 1.

Antigua formation=Whte limestone, West Indies, Spencer (J. W.), 1, 3.

Antigua formation, West Indies, Spencer (J. W.), 6.
Geologic formations described—Continued.

<table>
<thead>
<tr>
<th>Formation</th>
<th>Age</th>
<th>Location</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antlers sands</td>
<td>Cretaceous</td>
<td>Texas, Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Antrim shales</td>
<td>Devonian</td>
<td>Michigan, Lane</td>
<td>4</td>
</tr>
<tr>
<td>Apache group, Cambrian (?)</td>
<td>Arizona</td>
<td>Ransome</td>
<td>6, 13</td>
</tr>
<tr>
<td>Apache group, pre-Cambrian</td>
<td>Arizona</td>
<td>Lee (W. T.)</td>
<td>9</td>
</tr>
<tr>
<td>Apishapa formation</td>
<td>Cretaceous</td>
<td>Colorado, Hills</td>
<td>1</td>
</tr>
<tr>
<td>Appanoose beds</td>
<td>Pennsylvania</td>
<td>Iowa, Beyer and Young</td>
<td>1</td>
</tr>
<tr>
<td>Aquila formation</td>
<td>Eocene</td>
<td>Maryland, Shattuck</td>
<td>1</td>
</tr>
<tr>
<td>Aquila formation or stage</td>
<td>Eocene</td>
<td>Maryland, includes placataway</td>
<td>1</td>
</tr>
<tr>
<td>Arizona formation</td>
<td>Cretaceous</td>
<td>Oregon, Diller</td>
<td>11</td>
</tr>
<tr>
<td>Arapahoe formation</td>
<td>Tertiary</td>
<td>Colorado, Lee (W. T.)</td>
<td>2</td>
</tr>
<tr>
<td>Avonel sandstones</td>
<td>Tertiary</td>
<td>California, Anderson</td>
<td>7</td>
</tr>
<tr>
<td>Avenal sandstones</td>
<td>Tertiary</td>
<td>California, Diller</td>
<td>12</td>
</tr>
<tr>
<td>Bakken gabbro</td>
<td>Triassic (?)</td>
<td>North Carolina, Keith</td>
<td>4</td>
</tr>
<tr>
<td>Bakken gabbro</td>
<td>Triassic (?)</td>
<td>North Carolina, Mathews</td>
<td>5</td>
</tr>
<tr>
<td>Baltimore gneiss</td>
<td>Algonkian</td>
<td>Pennsylvania, Bascom</td>
<td>2</td>
</tr>
<tr>
<td>Baltimore gneiss</td>
<td>Ordovician</td>
<td>Pennsylvania, Bascom</td>
<td>3</td>
</tr>
<tr>
<td>Baltimore gneiss</td>
<td>Ordovician</td>
<td>Pennsylvania, Bascom</td>
<td>6</td>
</tr>
<tr>
<td>Bandera shales</td>
<td>Carboniferous</td>
<td>Kansas, Adams</td>
<td>18</td>
</tr>
<tr>
<td>Bandera shale</td>
<td>Carboniferous</td>
<td>Kansas, Adams</td>
<td>1</td>
</tr>
<tr>
<td>Bangor limestone</td>
<td>Carboniferous</td>
<td>New York, Haworth, and Crane</td>
<td>1</td>
</tr>
<tr>
<td>Bangor limestone</td>
<td>Carboniferous</td>
<td>Kansas, Beede and Rogers</td>
<td>1</td>
</tr>
<tr>
<td>Bangor limestone</td>
<td>Carboniferous</td>
<td>Kansas, McCallie</td>
<td>5</td>
</tr>
<tr>
<td>Baptanodon beds</td>
<td>Jurassic</td>
<td>Wyoming, Stevenson</td>
<td>4</td>
</tr>
<tr>
<td>Baptanodon beds</td>
<td>Jurassic</td>
<td>Wyoming, McCallie</td>
<td>9</td>
</tr>
<tr>
<td>Bataan formation</td>
<td>Cretaceous</td>
<td>California, Fairbanks</td>
<td>7</td>
</tr>
<tr>
<td>Atchison shales</td>
<td>Carboniferous</td>
<td>Nebraska, Barbour (E. H.)</td>
<td>8</td>
</tr>
<tr>
<td>Athens shale</td>
<td>Devonian</td>
<td>Tennessee, Keith</td>
<td>9, 11</td>
</tr>
<tr>
<td>Atlantosaurus beds</td>
<td>Cretaceous</td>
<td>Rocky Mountain, Lee (W. T.)</td>
<td>7</td>
</tr>
<tr>
<td>Atlantic formation</td>
<td>Sandstone</td>
<td>Colorado, Wyoming, Hatcher</td>
<td>14</td>
</tr>
<tr>
<td>Atwell sand</td>
<td>Devonian</td>
<td>Pennsylvania, Fuller</td>
<td>3</td>
</tr>
<tr>
<td>Aubrey formation</td>
<td>Carboniferous</td>
<td>Utah, Huntington and Goldthwait</td>
<td>1</td>
</tr>
<tr>
<td>Aubrey formation</td>
<td>Cretaceous</td>
<td>Texas, Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Aubrey formation</td>
<td>Cretaceous</td>
<td>Texas, Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Augusta formation</td>
<td>Carboniferous</td>
<td>Iowa, Eckel and Baint</td>
<td>1</td>
</tr>
<tr>
<td>Austin chalk</td>
<td>Cretaceous</td>
<td>Texas, Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>August formation</td>
<td>Carboniferous</td>
<td>Iowa, Eckel and Baint</td>
<td>1</td>
</tr>
<tr>
<td>Austin chalk</td>
<td>Carboniferous</td>
<td>North Carolina, Keith</td>
<td>4</td>
</tr>
<tr>
<td>Austin chalk</td>
<td>Carboniferous</td>
<td>North Carolina, Keith</td>
<td>12</td>
</tr>
<tr>
<td>Austin chalk</td>
<td>Carboniferous</td>
<td>North Carolina, McCallie</td>
<td>4</td>
</tr>
<tr>
<td>Austin chalk</td>
<td>Carboniferous</td>
<td>North Carolina, Mathews</td>
<td>2</td>
</tr>
<tr>
<td>August formation</td>
<td>Carboniferous</td>
<td>North Carolina, McCallie</td>
<td>3</td>
</tr>
<tr>
<td>Austin formation</td>
<td>Carboniferous</td>
<td>North Carolina, McCallie</td>
<td>6</td>
</tr>
<tr>
<td>August formation</td>
<td>Carboniferous</td>
<td>Kansas, Adams, Girly, and White</td>
<td>1</td>
</tr>
<tr>
<td>Austin formation</td>
<td>Carboniferous</td>
<td>Kansas, Adams, Girly, and White</td>
<td>1</td>
</tr>
<tr>
<td>Arkansas series</td>
<td>Carboniferous</td>
<td>Arkansas, Keyes</td>
<td>18</td>
</tr>
<tr>
<td>Arlington diabase</td>
<td>Jurassic</td>
<td>New Jersey, Merritt and others</td>
<td>1</td>
</tr>
<tr>
<td>Armuchoe chert</td>
<td>Devonian</td>
<td>Georgia, Hayes</td>
<td>5</td>
</tr>
<tr>
<td>Arnhem beds</td>
<td>Devonian</td>
<td>Ohio, Indiana, and Kentucky</td>
<td>12</td>
</tr>
<tr>
<td>Arnhem beds</td>
<td>Devonian</td>
<td>Ohio, Indiana, and Kentucky</td>
<td>1</td>
</tr>
<tr>
<td>Arundel formation</td>
<td>Cretaceous</td>
<td>Maryland, Clark and Babbins</td>
<td>1</td>
</tr>
<tr>
<td>Asbury clay</td>
<td>Tertiary</td>
<td>New Jersey, Klimmel, and Knapp</td>
<td>1</td>
</tr>
</tbody>
</table>

Bull. 301—06——32
Baraboo quartzite, pre-Cambrian, Wisconsin, Weidman, 5.

Barclay limestone, Carboniferous, Kansas, Beede, 6.

Barclay limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.

Barnebey limestone, Cambro-Silurian, New York, Eckel, 6.

Barnes conglomerate, Cambrian (?), Arizona, Ransome, 13.

Barstow series, Tertiary, California, Hershey, 10.

Basal limestone, Carboniferous, Texas, Hill (R. T.), 3.

Basal beds, Eocene, Texas, Dumble, 13.

Basal conglomerate, Pennsylvania, Peck, 3.

Batesville sandstone, Carboniferous, Arkansas, Adams (C. I.), 3, 15.

Batesville sandstone, Carboniferous, Arkansas, Ulrich, 9.

Batesville oolitic limestone, Carboniferous, Indiana, Hopkins (T. C.), 8.

Batsford shale, Carboniferous, Ohio, Prosser, 1, 2.

Bedford limestone, Carboniferous, Pennsylvania, Stevenson (J. J.), 4.

Bedford limestone, Carboniferous, Indiana, Newsom, 3.

Bedford oolitic limestone, Carboniferous, Indiana, Hopkins (T. C.), 8.

Bedford oolitic limestone, Lower Carboniferous, Indiana, Ashley, 2.

Bedford shale, Carboniferous, Ohio, Prosser, 10.

Beekmantown, Ordovician, Vermont, Perkins, 7, 11.

Beekmantown limestone, Champlainic, New York, Clarke, 20.

Beekmantown stage, Ordovician, Pennsylvania, Collie, 3.

Beekmantown, Ordovician, New York, Dale, 5.

Beekmantown (Calcareous) formation, Ordovician, New York, Cushing, 10.

Beekmantown formation, Ordovician, New York, Cushing, 9.

Beefland bed, Silurian, Ohio, Prosser, 10.

Bell shale, included in Traverse group, Devil, 6.

Bell Lake beds, Carboniferous, West Virginia, White (T. C.), 7.

Bellevue beds, Carboniferous, Ohio and Indiana, Nickles, 3.

Bellevue beds, Ordovician, Indiana, Foerste, 11.

Bellevue beds, Ordovician, Kentucky, Nickles, 6.

Bellvale flags, Devonian, New York, Eckel, 6.

Bellvale flags, Devonian, New Jersey, Kümmer and Weller, 2.

Bellvale flags, Devonian, New York, Clarke, 20.

Bell River beds, Cretaceous, Canada, Hatchet, 17.

Belly River beds, Cretaceous, Canada, Hatchet and Stanton, 1.

Benezette limestone, Carboniferous, Pennsylvania, Clapp, 4.

Bensington limestone, Cretaceous, Indiana Territory, Taff, 3, 6.

Benton, Cretaceous, Montana, Willis, 3.

Benton formation, Cretaceous, North Dakota, Babcock, 2.

Benton group, Cretaceous, Kansas, Lindgren, 8.

Benton sand, Tertiary, Missouri, Marbut, 1.

Benton shales, Cretaceous, Colorado, Hatchet, 6.

Benton formation, Cretaceous, Nebraska, Barbour (E. H.), 8.
Geologic formations described—Continued.

Benton formation, Cretaceous, Nebraska, Carmony, 1.
Benton formation, Cretaceous, South Dakota, Todd (J. E.), 9-11, 13, 15.
Benton formation, Cretaceous, South Dakota, Todd and Hall, 1, 2, 3.
Benton shale, Cretaceous, Black Hills region, Jaggar, 5.
Benton group, Cretaceous, Nebraska, Burchard, 2.
Benton formation, Cretaceous, North Dakota, Leonard, 4.
Benton formation, Cretaceous, Colorado, Bownocker, 3, 5.
Berea grit, Carboniferous, Ohio, Prosser, 1, 10.
Berea grit, Carboniferous, Ohio, Bownocker, 3, 5.
Berea grit, Carboniferous, Ohio, Stevenson (J. J.), 4.
Berea sandstone, Carboniferous, Ohio, Prosser and Cumings, 1.
Berea sandstone, Carboniferous, Pennsylvania, Wooley, 3.
Bergman series, Cretaceous (?), Alaska, Schrader, 1, 3.
Bergman series, probably Mesozoic, Alaska, Mendenhall, 2.
Berkeleayan series, California, included in Pliocene, Lawson and Palache, 1.
Berkeleayan series, California, Lawson and Palache, 1.
Berkeley, California, Lawson (A. C.), 9.
Bertie formation (lower Waterline), Silurian, New York, proposed for Rondout, Schuchert, 4.
Bertie waterline, Ontario, New York, Clarke, 20.
Bertie water line, Silurian, New York, Clarke and Lither, 1.
Bertie dolomite, Silurian, New York, Clarke and Lither, 3.
Bethany Falls limestone, Carboniferous, Missouri, Callaher, 1.
Beulah shales, Jurassic, Black Hills, Darton, 1.
Bigby limestone, Ordovician, Tennessee, Hayes and Ulrich, 1.
Bigby beds, Ordovician, Kentucky, Miller (A. M.), 4.
Bighorn limestone, Ordovician, Wyoming, Darton, 18.
Geologic formations described—Continued.

Bolinas sandstone, California, Lawson (A. C.), 9.
Bolin Creek sandstone member of Elizabeth formation, Ordovician, Missouri, Ball and Smith, 1.
Bolsa quartzite, Cambrian, Arizona, Ransome, 9, 11, 14.
Bolton gneiss, Massachusetts, Perry and Emerson, 1.
Bonita sandstone, California, Lawson (A. C.), 9.
Bonnette limestone, Cambrian, Missouri, Bain and Ulrich, 2.
Boone formation, Carboniferous, Arkansas, Adams (G. I.), 3.
Boone formation, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Boone formation, Carboniferous, Arkansas, Ulrich, 5.
Boone limestone and chert, Carboniferous, Arkansas, Adams (G. I.), 15.
Boone beds, Carboniferous (Mississippian), Kansas, Wooster, 1, 2.
Boone formation, Carboniferous, Indian Territory, Taff, 17.
Boscobel bowlder beds, Triassic, Virginia, Woodworth, 4.
Boswell beds, Carboniferous, Kansas, Wooster, 1, 2.
Boswell formation, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Brownsport bed, Silurian, Tennessee, Foerste, 7.
Brownstown beds, Cretaceous, Texas, Hill (R. T.), 3.
Brownwood division (Canyon division), Carboniferous, Texas, Hill (R. T.), 3.
Buda limestone, Cretaceous, Texas, Hill and Vaughan, 11.
Buda limestone, Cretaceous, Texas, Huntington, 10.
Buda limestone, Cretaceous, Texas, Udden (Johan A.), 11.
Buda limestone (Muddy Limestone), Cretaceous, Texas, Udden (Johan A.), 11.
Buckeye limestone, Mississippian, Ohio, Long and Swart, 1.
Buckeye sandstone, Cretaceous, Iowa, Eek, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Buck Eye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Buckeye limestone, Mississippian, Ohio, Long and Swart, 1.
Buckeye sandstone, Cretaceous, Iowa, Eek, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Buckeye limestone, Mississippian, Ohio, Long and Swart, 1.
Buckeye sandstone, Cretaceous, Iowa, Eek, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Buckeye limestone, Mississippian, Ohio, Long and Swart, 1.
Buckeye sandstone, Cretaceous, Iowa, Eek, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Buckeye limestone, Mississippian, Ohio, Long and Swart, 1.
Buckeye sandstone, Cretaceous, Iowa, Eek, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden, 1.
Buckeye sandstone, Cretaceous, Iowa, Udden (Johan A.), 11.
Geologic formations described—Continued.

Burgoo sandstone, Carboniferous, Pennsylvania, Butts, 7.
Burgoo sandstone, Carboniferous, Pennsylvania, Woolsey, 3.
Burlingame limestone and shale, Carboniferous, Kansas, Prosser, 7.
Burlingame shales, Carboniferous, Kansas, Beede, 6.
Burlingame shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Burlingame limestone, Carboniferous, Smith (A. J.), 2.
Burlington limestone, Carboniferous, Missouri, Adams (G. I.), 3.
Burlington-Keokuk or Carthage limestone, Carboniferous, Missouri, Galagher, 1.
Burlington limestone, Carboniferous, Missouri, Ball, 1.
Burlington (upper) limestone, Carboniferous, Missouri, Ball and Smith, 1.
Burlington limestone, Mississippian, Missouri, Van Horn, 1.
Burns latite complex, Colorado, Cross and Howe, 1.
Butler sandstone, Carboniferous, Pennsylvania, Butts, 6.
Butler sandstone, Carboniferous, Pennsylvania, Woolsey, 3.
Butler sandstone, Carboniferous, Pennsylvania, Butts, 4.
Butterfield limestone member, Carboniferous, Utah, Keith, 13.
Byram beds, Tertiary, Mississippi, Van Horn, 1.
Calaveras limestone, Devonian, Missouri, Gallaher, 1.
Calera limestone, California, Lawson (A. C.), 9.
Calhoun shales, Carboniferous, Kansas, Beede, 6.
Calhoun shales, Carboniferous, Kansas, Adams and Le Roy, 1.
Califoon's Neck schists, Maine, Smith (G. O.), 2.
Calera limestone, California, Lawson (A. C.), 9.
Calhoun shales, Carboniferous, Kansas, Beede, 6.
Callaway limestone, Devonian, Missouri, Galagher, 1.
Calico Mountain rhyolite, Mexico, Hill (R. T.), 15.
Callaway limestone, Devonian, Missouri, Galagher, 1.
Calmar sandstone, Carboniferous, Indian Territory, Taft, 2.
Calvert formation, Miocene, Maryland, Shuttsuck, 10.
Cambridge, Upper and Lower, limestone, Carboniferous, West Virginia, White (I. C.), 7.
Cambridge limestone, Carboniferous, Ohio, Orton and Peppel, 1.
Cambridge limestone, Carboniferous, Maryland, Clark and Martin, 6.
Camden chert, Devonian, Tennessee, Forerste, 7.
Camillus shale, Ontario, New York, Clarke, 20.
Camillus shale, Silurian, New York, Clarke and Luther, 1, 3.
Campagnarde formation, Cretaceous, Texas, Richardson (G. B.), 4.
Campan series, Pliocene, California, Lawson and Palache, 1.
Campbell Creek, Carthage limestone, Carboniferous, West Virginia, White (I. C.), 7.
Camp Nelson beds, Ordovician, Kentucky, Miller (A. M.), 4.
Canadina shales, Carboniferous, West Virginia, Stevenson (J. J.), 4.
Canadian, Champlainic, New York, Clarke, 20.
Canandaigua shale, Devonian, New York, Clarke, 20.
Canandaigua shale, Devonian, New York, Clarke and Luther, 1.
Canada shale, Carboniferous, Indian Territory, Taft, 2, 3, 6, 13.
Cannelton (Stockton) limestone, Carboniferous, West Virginia, White (I. C.), 7.
Canyon division, Carboniferous, Texas, Taft, 4.
Caparré beds, Devonian, Canada, Clarke (J. M.), 26.
Cape May formation, New Jersey, Smock, 1.
Cape May formation, Pleistocene, New Jersey, Salisbury, 1.
Cape May formation, Pleistocene, New Jersey, Kimmell and Knapp, 1.
Capitan limestone, Permian, Texas, Richardson (G. B.), 4.
Capote limestone, Arizona, Blake (W. P.), 17.
Cardiff quartzite, Ordovician (?), Maryland, Mathews, 6.
Cardiff shale, Devonian, New York, Clarke and Luther, 1, 3.
Cariboo schists, lower Paleozoic, Canada, Atkin, 1.
Carlile formation, Cretaceous, Black Hills, Darton, 1.
Carlile formation, Cretaceous, South Dakota, Darton, 8.
Carlile formation, Cretaceous, Black Hills region and Colorado, Darton, 18.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

- **Carlile formation**, Cretaceous, South Dakota, Dalton and Smith, 1.
- **Carlile shales**, Cretaceous, South Dakota, Todd (J. E.), 13.
- **Carlile formation**, Cretaceous, Wyoming and South Dakota, Darton and O'Harra, 1.
- **Carmichael clay**, Quaternary, Pennsylvania, Campbell (M. R.), 6, 8, 18.
- **Carmichaels formation**, Quaternary, Pennsylvania, Butts, 4, 6.
- **Carrassa formation**, Quaternary, Pennsylvania, Woolsey, 3.
- **Carrigaline gneiss**, Archean, Piedmont region, Darton and Keith, 1.
- **Cassville plant shale**, Carboniferous, West Virginia, White (I. C.), 7.
- **Cedar Valley stage**, Devonian, Iowa, Eckel and Bain, 1.
- **Cedar Valley stage**, Devonian, Iowa, Savage, 7, 8.
- **Cedarville limestone**, Silurian, Ohio, Prosser, 10.
- **Cemetery limestone**, Cambrian, Montana, Weed, 5.
- **Chadron formation**, Tertiary, Nebraska, Barbour (E. H.), 8.
- **Chadron formation**, Tertiary, Nebraska, Darton, 10.
- **Chadron formation** (Oligocene), Tertiary, Wyoming, Smith (W. S. T.), 1.
- **Chadron formation**, Tertiary, South Dakota, Darton and Smith, 1.
- **Chagrin formation**, Devonian, Ohio, Prosser, 10.
- **Champlainic**, New York, Clarke, 20.
- **Chandler formation**, Carboniferous, Oklahoma, Kirk, 1.
- **Chanute shales**, Carboniferous, Kansas, Adams, Girty, and White, 1.
- **Chanute shale**, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
- **Chariton conglomerate**, Pennsylvania series, Beyer and Young, 1.
- **Charleston sandstone**, Carboniferous, West Virginia, Campbell (M. R.), 2, 5, 10.
- **Chase stage**, Carboniferous, Kansas, Prosser, 7.
FOR THE YEARS 1901–1905, INCLUSIVE. 503

Geologic formations described—Continued.

Chattahoochee group, Tertiary, Florida, Dall, 8.
Chattahoochee limestones and clays, Tertiary, Florida, Georgia, and Alabama, Maury, 1.
Chattanooga black shale, Devonian, Kentucky and Tennessee, Foerste, 1.
Chattanooga shale, Devonian, Tennessee, Keith, 1.
Chattanooga shale, Devonian, Tennessee, Hayes and Ulrich, 1.
Chattanooga black shale, Devonian, Tennessee, Foerste, 7.
Chattanooga shale, Devonian, Georgia, Hayes, 5.
Chattanooga formation, Devonian, Arkansas, Adams and Ulrich, 1.
Chattanooga formation, Devonian, Indian Territory, Taff, 17.
Chattanooga shale, Devonian, Tennessee, Keith, 11.
Chautauquan, Ordovician, New York, Clarke, 20.
Chazy, Ordovician, Vermont, Perkins, 7.
Chazy formation, Ordovician, Canada, Ellis (R. W.), 8, 20.
Chazy limestone, Ordovician, Canada, Ellis, 7.
Chazy shales, Ordovician, Canada, Ellis, 7.
Chazy, Ordovician, Vermont, Perkins, 11.
Chazy formation, Ordovician, New York, Cushing, 10.
Chazy limestone, Ordovician, Canada, Adams and Le Roy, 1.
Chazy limestone, Ordovician, New York, Vermont, and Canada, Raymond (P. E.), 7.
Chemung formation, Devonian, Pennsylvania, Fuller, 3.
Chemung beds, Devonian, New York, Clarke, 20.
Chemung formation, Devonian, Pennsylvania, Fuller and Alden, 1, 2.
Chemung shales, Devonian, New York, Glenn, 1.
Chemung period, Devonian, New York, Schneider, 1.
Chemung formation, Devonian, Pennsylvania, Campbell (M. R.), 18.
Chemung formation, Devonian, Pennsylvania, Butts, 7.
Chemung group, Devonian, New York, Clarke and Luther, 2.
Chewgatawa series, Minnesota, Hall (C. W.), 3.
Cherokee shale, Carboniferous, Kansas, Iowa, Bain, 3.
Cherokee shales, Carboniferous, Missouri, Adams (G. I.), 3.
Cherokee shales, Carboniferous, Kansas, Adams, Girly, and White, 1.
Cherokee shale, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Cherokee shales, Carboniferous, Kansas, Beede and Rogers, 1.
Cherokee beds, Carboniferous, Kansas, Wooster, 1, 2.
Cherry Creek formation, Algonkian (?), Montana, Douglass, 10.
Cherryvile shale, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Cherryville shales, Carboniferous, Kansas, Adams, Girly, and White, 1.
Chesapeake formation, Tertiary, Atlantic coast region, Darton and Keith, 1.
Chesapeake formation, Tertiary, Virginia, North Carolina, Darton, 7.
Chesapeake group, Miocene, Maryland, Clark (W. B.), 6.
Chesapeake group, Miocene, Maryland, Slattuck, 10.
Chester group, Carboniferous, Kentucky, Ulrich and Smith, 1.
Chester group, Mississippian, Mississippi Valley, Ulrich, 8.
Chester Valley limestone, Cambro-Ordovician, Pennsylvania, Bascom, 2, 3.
Chickachoe chert lentil, Carboniferous, Indian Territory, Taff, 2, 3.
Chickamauga limestone, Silurian, Tennessee, Keith, 1.
Chickamauga limestone, Silurian, Alabama and Georgia, Hayes, 5.
Chickamauga limestone, Ordovician, Tennessee, Keith, 11.
Chickamauga limestone, Ordovician, Virginia, Watson (T. L.), 17.
Chickies quartzite, Cambrian, Pennsylvania, Bascom, 2.
Chickies quartzite, Pre-Cambrian, Pennsylvania, Bascom, 3.
Chico, California, Lawson (A. C.), 9.
Chico formation, Cretaceous, Oregon, Washburne, 1.
Chico beds, Cretaceous, Oregon, Knowlton, 14.
Chico sandstones, Cretaceous, California, Lawson and Palache, 1.
Chico division, Cretaceous, California, Anderson, 7.
Chininti series, Permian (?) and Carboniferous, Texas, Udden (Johan A.), 11.
Chipola beds, Tertiary, Florida, Dall, 8.
Chipola marl, Tertiary, Florida, Maury, 1.
Chisna formation, lower Carboniferous or Devonian, Alaska, Mendenhall, 8.
Chitistone limestone, Carboniferous, Alaska, Schrader and Spencer, 1.
Chitistone limestone, probably Permian, Alaska, Mendenhall and Schrader, 1.
Chocolate limestone, Carboniferous, Kansas, Beede, 6.
Choptank formation, Miocene, Maryland, Clark (W. B.), 6.
Geologic formations described—Continued.

Geologic formations described—Continued.

Choptank formation, Miocene, Maryland, Shattuck, 10.
Chouteau formation, Carboniferous, Mississippi Valley region, Keyes, 28.
Chouteau limestones, Carboniferous, Missouri, Adams (G. I.), 3.
Chouteau beds, Carboniferous, Missouri, Gallaher, 1.
Chouteau limestone, Carboniferous, Missouri, Ball, 1.
Chouteau, Carboniferous, Missouri, Ball and Smith, 1.
Chouteau limestone, Mississippian, Missouri, Van Horn, 1.
Chuar series, Nevada, Spurr, 6.
Chugwater formation, Triassic (?) and Permian (?), Colorado and Wyoming, Darton, 16.
Chugwater formation, Triassic (?) or Permian, Wyoming, Darton, 16.
Chugwater formation, Triassic (?), Wyoming, Darton, 18.
Clifflwood clays, Cretaceous, New Jersey, Knapp (G. N.), 2.
Clifflwood lignitic sands and clays, Cretaceous, New Jersey, Kümmler and Knapp, 1.
Clifflwood clays, Cretaceous, New Jersey, Weller, 10.
Clifton limestone, Silurian, Tennessee, Hayes and Ulrich, 1.
Clifton limestone, Tennessee, Foerste, 5.
Clifton limestone, equivalent to Niagara, Silurian, Tennessee, Foerste, 7.
Clinch sandstone, Silurian, Tennessee, Keith, 1, 11.
Clifton beds, Silurian, Missouri, Gallaher, 1.
Clifton formation, Silurian, Ohio, Bowdockey, 3–5.
Clifton, Silurian, New York, Grabau, 1.
Clifton formation, Silurian, Maryland, Prosser, 3.
Clifton limestone, Silurian, Kentucky and Tennessee, Foerste, 1.
Clifton group, Silurian, New York, Seider, 1.
Clifton limestone, Silurian, Indiana, Newsom, 3.
Clifton limestone, Silurian, Ohio, Prosser, 10.
Clifton limestone, Silurian, Tennessee, Foerste, 7.
Clifton limestone, Silurian, Indiana, Prosser, 11.
Clifton formation, Silurian, Canada, Corkill, 2.
Cloverly formation, Cretaceous, Wyoming, Darton, 16.
Coledo schist, pre-Cretaceous, Oregon, Diller, 11.
Coledo formation, Eocene, Oregon, Diller, 1.
Coledo formation, Tertiary, Oregon, Smith (G. O.), 6.

Clarion sandstone, Carboniferous, Pennsylvanian, Butts, 4, 6, 7.
Clark formation, Carboniferous, West Virginia, Campbell, 5.
Clarksburg limestone, Carboniferous, Maryland, Clark and Martin, 6.
Clarksburg limestone, Carboniferous, West Virginia, White (I. C.), 7.
Clarno formation, Tertiary, Oregon, included in Eocene, Merriam (J. C.), 1, 2.
Clarno formation, Oregon, Knowlton, 14.
Clear Creek formation, Pre-Cretaceous, California, Hershey, 2.
Clear Creek volcanic series, Tertiary, California, Hershey, 21.
Clear Fork formation, Carboniferous, Texas, Hill (R. T.), 3.
Cleveland shale, Devonian, Ohio, Claypole, 5.
Cleveland shale, Devonian, Ohio, Prosser, 10.
Clifflwood clays, Cretaceous, New Jersey, Knapp (G. N.), 2.
Clifflwood lignitic sands and clays, Cretaceous, New Jersey, Kümmler and Knapp, 1.
Clifflwood clays, Cretaceous, New Jersey, Weller, 10.
Clifton limestone, Silurian, Tennessee, Hayes and Ulrich, 1.
Clifton limestone, Tennessee, Foerste, 5.
Clifton limestone, equivalent to Niagara, Silurian, Tennessee, Foerste, 7.
Clinch sandstone, Silurian, Tennessee, Keith, 1, 11.
Clifton beds, Silurian, Missouri, Gallaher, 1.
Clifton formation, Silurian, Ohio, Bowdockey, 3–5.
Clifton, Silurian, New York, Grabau, 1.
Clifton formation, Silurian, Maryland, Prosser, 3.
Clifton limestone, Silurian, Kentucky and Tennessee, Foerste, 1.
Clifton group, Silurian, New York, Seider, 1.
Clifton limestone, Silurian, Indiana, Newsom, 3.
Clifton limestone, Silurian, Ohio, Prosser, 10.
Clifton limestone, Silurian, Tennessee, Foerste, 7.
Clifton limestone, Silurian, Indiana, Foerste, 11.
Clifton formation, Silurian, Canada, Corkill, 2.
Cloverly formation, Cretaceous, Wyoming, Darton, 16.
Coledo schist, pre-Cretaceous, Oregon, Diller, 11.
Coledo formation, Eocene, Oregon, Diller, 4.
Coledo formation, Tertiary, Oregon, Smith (G. O.), 6.
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic formations described—Continued.

Coalinga beds, Tertiary, California, Anderson, 7.
Coast clays, Pleistocene, Texas, Dumble, 13.
Coal Measures, Carboniferous, Maryland. Includes Pottsville, Allegheny, Conemaugh, Monongahela, and Dunkard formations, Clark and Martin, 5.
Coal Measures, Carboniferous, Ohio, Bownocker, 3.
Coal Measures, Carboniferous, Missouri, Gallaher, 1.
Coal Measures, Carboniferous, Ohio, Bownocker, 5.
Coal Measure formation, Carboniferous, Missouri, Ball and Smith, 1.
Coal Measures, Carboniferous, Missouri, Geologic formations described—Continued.

Coldbrook terrane, Cambrian, Canada, Matthew (G. F.), 20.
Coldwater shales, Carboniferous, Michigan, Russell, 6.
Coleman division, Carboniferous, Texas, Hill (R. T.), 3.
Collingsworth gypsum, Permian, Oklahoma, Gould, 9.
Collingsworth gypsum member, Carboniferous (Permian), Oklahoma, Gould, 14.
Colob sandstone, Jurassic, Utah, Huntington and Goldthwait, 1.
Colomb formation, Utah, Huntington and Goldthwait, 2.
Colorado group, Cretaceous, South Dakota, Todd (J. E.), 9–11, 15.
Colorado group, Cretaceous, South Dakota, Todd and Hall, 1, 3.
Colorado formation, Cretaceous, Montana, Pirsson, 4.
Columbia formation, Pleistocene, Atlantic coast region, Darton and Keith, 1.
Columbia lava, Oregon, Merriman (J. C.), 1.
Columbia, Pleistocene Quaternary, Virginia, North Carolina, Darton, 7.
Columbia formation, Tertiary, Louisi­ana, Darton, 1.
Colorado formation, Cretaceous, Montana, Knapp (G. N.), 1.
Colorado formation, Cretaceous, New Jersey, Knapp, 1.
Colville series, Tertiary, Alaska, Schraorc, 3.
Colville series, Tertiary, Alaska, Schraorc, 1.
Colville series, Tertiary, Alaska, Schraorc, 1.
Comanche formation, Cretaceous, New Jersey, Knapp (G. N.), 1.
Comanche formation, Cretaceous, Colorado, Darton, 16.
Comanche series, Cretaceous, Texas, Hill (R. T.), 3.
Comanche series, Cretaceous, Texas, Hill and Vaughan, 1.
Comanche series, Cretaceous, Colorado, Darton, 16.
Comanche series, Cretaceous, Texas, Richardson (G. B.), 4.
Comanche formation, Cretaceous, Colorado, Darton, 24.
Comanche series, Colorado and Wyoming, Stanton, 8.
Comanche series, Cretaceous, Colorado and Kansas; Darton, 18.
Comanche series, Cretaceous, Oklahoma, Gould, 14.

Coffee sand, Tennessee, Foerste, 7.
Coggan limestone, Devonian, Iowa, Norton, 1.
Coffee sand, Tennessee, Foerste, 7.
Coggan beds, Devonian, Iowa, Savage, 7.
Cohansy formation, Tertiary, New Jersey, Knapp (G. N.), 1.
Cohansy formation, Tertiary, New Jersey, Kimmel and Knapp, 1.
Cocksfield, Silurian, New York, Van Ingen and Clarke, 1.
Cocksfield, Silurian, New York, Schuchert, 4.
Cocksfield limestone, Ontario, New York, Clarke, 20.
Cocksfield limestone, Silurian, New York, Hartnagel, 1.
Cocksfield shale and dolomite, Silurian.
New York, Clarke and Luther, 1.
Cocksfield dolomite, Silurian, New York, Clarke and Luther, 3.
Cochnon conglomerate, Cambrian, North Carolina and Tennessee, Keith, 9.
Cochnon conglomerate, Cambrian, North Carolina and Tennessee, Keith, 11.
Cockeysville marble, Maryland, Mathews and Miller, 1.
Cockeysville marble, Cambro-Ordovician, Maryland, Mathews, 6.
Cockfield, Tertiary, Louisiana, Veatch, 7.
Cocksfield, Eocene, Louisiana, Veatch, 3.
Cocksfield beds, included in Eocene, Tertiary, Louisiana, Harris, 2.
Cocksfield Ferry beds, Eocene, Tertiary, Louisiana, Veatch, 2.
Cowmans limestone, Devonian, New Jersey, Weller, 6.
Cowmans limestone, Devonian, New York, Grabau, 9.
Cowmans limestone, Devonian, New York, Van Ingen and Clarke, 1.
Cowmans limestone, Devonian, Maryland, Schuchert, 7.
Cowmans limestone, Devonian, New York, Clarke, 20.
Cowmans limestone, New York, Shimer, 5.
Coffee sand, Tennessee, Foerste, 7.
Coggan limestone, Devonian, Iowa, Norton, 1.
Coggan beds, Devonian, Iowa, Savage, 7.
Cohansy formation, Tertiary, New Jersey, Knapp (G. N.), 1.
Index to North American Geology

Geologic formations described—Continued.

Comanche Peak beds, Cretaceous, Texas, Hill (R. T.), 3.
Comanche Peak limestone, Cretaceous, Texas, Hill and Vaughan, 1.
Commercial limestone member, Carboniferous, Utah, Keith, 13.
Como beds, exact synonym Atlantosaurus beds, Cretaceous, Wyoming, Williston, 2.
Como beds, Jurassic, Wyoming, Stanton, 4.
Conasauga shale, Cambrian, Tennessee, Keith, 1.
Conasauga formation, Cambrian, Alabama, Hayes (C. W.), 5.
Conasauga shale, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Conemaugh formation, Carboniferous, Maryland, Prosser, 3, 4.
Conemaugh formation, Carboniferous, Maryland, Prosser, 10.
Conemaugh series, Carboniferous, West Virginia, White (I. C.), 7.
Connellsville sandstone, Carboniferous, Ohio, Claypole, 5.
Corniferous period, Devonian, New York, Schneider, 1.
Corniferous limestone, Devonian, Missouri, Gallaher, 1.
Contention series, Arizona, Blake (W. P.), 8.
Contention-shale, Arizona, Church, 1.
Contra Costa beds, Tertiary, California, Anderson, 7.
Corwin series, Mesozoic, Alaska, Schraeder, 1, 3.
Corwin group, Mesozoic, Alaska, Collier, 12.
Corcoran beds, Ordovician, Ohio, Nicholas, 6.
Cottonwood beds, Ordovician, Ohio, Nicholas, 8.
Cottonwood limestone, Carboniferous, Kansas, Beede, 6.
Cottonwood limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Cottonwood limestone, Carboniferous, Nebraska, Barbour (E. H.), 8.
Geologic formations described—Continued.
Cottonwood formation, Carboniferous, Kansas, Smith (A. J.), 2, 3.
Cottonwood limestone, Carboniferous, Kansas, Prosser and Beedle, 1.
Cottonwood limestone, Carboniferous, Kansas, Beede and Sellards, 1.
Couchiching rocks, Canada, Coleman, 12.
Council Grove stage, Carboniferous, Kansas, Grosser, 7.
Cow Creek beds, Cretaceous, Texas, Hill (R. T.), 3.
Cowiche gravels, Quaternary, Washington, Smith (G. O.), 7.
Cox formation, Cretaceous, Texas, Richardson (G. B.), 4.
Cranberry granite, Archean, North Carolina and Tennessee, Keith, 4, 9, 12.
Cranberry granite, Archean, North Carolina, Keith, 9.
Cranberry granite, Archean, North Carolina and Tennessee, Keith, 11.
Crooks complex, Arizona, Jaggar and Palache, 1.
Crosswicks clays included in Matawan formation, Cretaceous, New Jersey, Berry, 5.
Crow Ridge series, Mesozoic, Montana, Weed, 5.
Crystal City sandstone, Ordovician, Missouri, Ulrich, 5.
Cuba sandstone, Devonian, New York, Clarke, 20.
Cuba sandstone lentil, included in Chemung shales, Devonian, New York, Glenn, 1.
Cuchara formation, Eocene (?), Colorado, Hills, 1.
Cuesta diabase, California, Fairbanks, 7.
Cumberland sandstone, Ordovician, Kentucky, Foerste, 1, 3.
Curdsville bed, Ordovician, Kentucky, Miller (A. M.), 4.
Curry member of Vulcan formation, Algonkian, Michigan, Bayley, 1.
Curzen’s limestone, Carboniferous, Missouri, Gullifer, 1.
Cusewago sandstone, member of Oil Lake group, Devonian, Pennsylvania, Stevenson (J. J.), 4.
Cutler formation, Carboniferous, Colorado, Cross and Howe, 1–3.
Cutler formation, Permian, Colorado, Cross and Howe, 4.
Cutler formation, Carboniferous (Permian ?), Colorado, Cross (W.), 7.
Cuyahoga formation, Carboniferous, Ohio, Prosser, 1, 10.
Cuyahoga shales, Carboniferous, Ohio, Stevenson (J. J.), 4.
Cuyahoga formation, Carboniferous, Ohio, Prosser and Cumings, 1.
Cypress sandstone, Carboniferous (Mississippian), Illinois, Bain, 19.

Geologic formations described—Continued.
Cypress sandstone, Mississippian, Mississippi Valley, Ulrich, 8.
Dadina schists, pre-Silurian, Alaska, Mendenhall, 8.
Dakota formation, Cretaceous, Black Hills, Darton, 1.
Dakota formation, Cretaceous, Colorado, Lee (W. T.), 1.
Dakota sandstone, Kansas, Charles, 1.
Dakota sandstone, Cretaceous, Colorado, Cross and Spencer, 1.
Dakota, Cretaceous, Montana, Willis, 6.
Dakota formation, Cretaceous, North Dakota, Babcock, 2.
Dakota sandstone, Cretaceous, South Dakota, Darton, 8.
Dakota sandstones, Cretaceous, Colorado, Hatcher, 6.
Dakota formation, Cretaceous, Great Plains region, Stanton, 4.
Dakota, Cretaceous, Kansas, Jones (A. W.), 1.
Dakota formation, Cretaceous, Nebraska, Barbour (E. H.), 8.
Dakota formation, Cretaceous, Nebraska, Carmony, 1.
Dakota formation, Cretaceous, South Dakota, Todd (J. E.), 9–11, 15.
Dakota formation, Cretaceous, South Dakota, Todd and Hall, 1–3.
Dakota group, Cretaceous, New Mexico, Johnson (D. W.), 4.
Dakota, Cretaceous, Nebraska, Bur- chard, 2.
Dakota sandstone, Cretaceous, Black Hills region, Jaggar, 5.
Dakota sandstone, Cretaceous, Black Hills region, Wyoming and Colorado, Darton, 16.
Dakota sandstone, Cretaceous, South Dakota, Darton and Smith, 1.
Dakota formation, Cretaceous, Colorado, Fenneman, 10.
Dakota formation, Cretaceous, Colorado, Patton, 4.
Dakota formation, Cretaceous, Colorado and Wyoming, Stanton, 8.
Dakota formation, Cretaceous, Montana, Pirsson, 4.
Dakota formation, Cretaceous, North Dakota, Leonard, 4.
Dakota sandstone, Cretaceous, Colorado, Cross (W.), 7.
Dakota sandstone, Cretaceous, Oklahoma, Gould, 14.
Dakota sandstone, Cretaceous, Wyoming and South Dakota, Darton and O’Harra, 1.
<table>
<thead>
<tr>
<th>formation description</th>
<th>location</th>
<th>author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dakota stage, Cretaceous, Wyoming</td>
<td>Trumbull</td>
<td>1</td>
</tr>
<tr>
<td>Dannemara formation, Algonkian, New York</td>
<td>Cushing</td>
<td>2</td>
</tr>
<tr>
<td>Davenport (upper and lower), Devonian, Iowa</td>
<td>Norton</td>
<td>1</td>
</tr>
<tr>
<td>Day Creek dolomite, Permian, Oklahoma</td>
<td>Gould, 9, 14</td>
<td></td>
</tr>
<tr>
<td>Dayton limestone, Silurian, Ohio</td>
<td>Prosser</td>
<td>10</td>
</tr>
<tr>
<td>Deadwood formation, Cambrian, Black Hills</td>
<td>Darton</td>
<td>1</td>
</tr>
<tr>
<td>Deadwood formation, Cambrian, Black Hills region</td>
<td>Jaggar</td>
<td>5</td>
</tr>
<tr>
<td>Deadwood formation, Cambrian, Black Hills region and Wyoming</td>
<td>Darton and O'Harra</td>
<td>1, 16, 18</td>
</tr>
<tr>
<td>Deadwood formation, Cambrian, Wyoming</td>
<td>Darton</td>
<td>26</td>
</tr>
<tr>
<td>Decker Ferry limestone, Silurian, New Jersey</td>
<td>Kiimmel and Weller</td>
<td>2</td>
</tr>
<tr>
<td>Decker Ferry formation, Silurian, New Jersey</td>
<td>Weller</td>
<td>6</td>
</tr>
<tr>
<td>Deeplull shale, Champlainic</td>
<td>Clarke</td>
<td>20</td>
</tr>
<tr>
<td>Deep River beds, Tertiary, Montana</td>
<td>Douglass</td>
<td>1, 8</td>
</tr>
<tr>
<td>Deer Creek limestone, Carboniferous, Kansas</td>
<td>Beede</td>
<td>6</td>
</tr>
<tr>
<td>Deer Creek limestone, Carboniferous, Kansas</td>
<td>Adams, Girty, and White</td>
<td>1</td>
</tr>
<tr>
<td>Delaware Mountain formation, Permian, Texas</td>
<td>Richardson (G. B.)</td>
<td>4</td>
</tr>
<tr>
<td>Delaware limestone, Devonian, Ohio</td>
<td>Prosser</td>
<td>13</td>
</tr>
<tr>
<td>Delaware stage, Silurian, Iowa</td>
<td>Hartnagel</td>
<td>2</td>
</tr>
<tr>
<td>Delphi dolomite, Permian, Oklahoma</td>
<td>Gould</td>
<td>9</td>
</tr>
<tr>
<td>Del Rio clay, Cretaceous, Texas</td>
<td>Hill and Vaughan</td>
<td>1</td>
</tr>
<tr>
<td>Del Rio formation, Cretaceous, Texas</td>
<td>Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Del Rio clay (?), Cretaceous, Texas</td>
<td>Udden (Johan A.)</td>
<td>11</td>
</tr>
<tr>
<td>Denison beds, Cretaceous, Texas</td>
<td>Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Dennis limestone, Carboniferous, Kansas</td>
<td>Adams, Girty, and White</td>
<td>1</td>
</tr>
<tr>
<td>Dennis limestone, Carboniferous, Kansas</td>
<td>Adams, Haworth, and Crane</td>
<td>1</td>
</tr>
<tr>
<td>Denton subgroup, Cretaceous, Texas</td>
<td>Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Denver formation, Tertiary</td>
<td>Colorado, Darton</td>
<td>16</td>
</tr>
<tr>
<td>Denver formation, Tertiary</td>
<td>Colorado, Darton</td>
<td>15</td>
</tr>
<tr>
<td>Des Moines stage, Upper Carboniferous or Pennsylvanian series</td>
<td>Iowa, Savage</td>
<td>3</td>
</tr>
<tr>
<td>Des Moines stage, Pennsylvanian series</td>
<td>Iowa, Beyer and Young</td>
<td>1</td>
</tr>
<tr>
<td>Des Moines formation, Carboniferous, Iowa</td>
<td>Eckel and Bain</td>
<td>1</td>
</tr>
<tr>
<td>Des Moines stage, Pennsylvanian series, Carboniferous, Iowa</td>
<td>Wilder</td>
<td>3</td>
</tr>
<tr>
<td>Des Moines stage, Carboniferous, Iowa</td>
<td>Udden (Jon A.)</td>
<td>1</td>
</tr>
<tr>
<td>Des Moines stage, Carboniferous, Iowa</td>
<td>Williams (I. A.)</td>
<td>1</td>
</tr>
<tr>
<td>Dexter sands, Cretaceous, Texas</td>
<td>Hill (R. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Diamond Peak quartzite, Nevada</td>
<td>Spurr</td>
<td>6</td>
</tr>
<tr>
<td>Dillard series, Cretaceous, Oregon</td>
<td>Louderback</td>
<td>6</td>
</tr>
<tr>
<td>Ditney formation, Carboniferous, Indiana</td>
<td>Fuller and Ashley</td>
<td>1</td>
</tr>
<tr>
<td>Ditney formation, Carboniferous, Indiana</td>
<td>Fuller and Clapp</td>
<td>2</td>
</tr>
<tr>
<td>Dixon clay, Silurian, Tennessee</td>
<td>Foerste</td>
<td>7</td>
</tr>
<tr>
<td>Dog Creek shales, Permian, Oklahoma</td>
<td>Gould</td>
<td>9</td>
</tr>
<tr>
<td>Dolores formation, Juratrias, Colorado, Cross and Spencer</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dolores formation, Triassic (?)</td>
<td>Colorado, Cross (W.)</td>
<td>7</td>
</tr>
<tr>
<td>Dolores formation, Triassic, Colorado</td>
<td>Cross and Howe</td>
<td>2</td>
</tr>
<tr>
<td>Domijean sands, Tertiary, California</td>
<td>Anderson</td>
<td>7</td>
</tr>
<tr>
<td>Dorans Cove sandstone, Carboniferous, Alabama, Stevenson (J. J.)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Doré conglomerate, Huronian, Canada</td>
<td>Coleman and Willmott</td>
<td>1, 2</td>
</tr>
<tr>
<td>Doré formation, Canada, Bell (J. M.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Doyle Mountain formation, Carboniferous, Texas, Hill (R. T.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Douglas formation, Carboniferous, Kansas</td>
<td>Rozzers</td>
<td>1</td>
</tr>
<tr>
<td>Dover limestone, Carboniferous, Kansas</td>
<td>Beede</td>
<td>6</td>
</tr>
<tr>
<td>Doyle shales, Carboniferous, Kansas</td>
<td>Prosser</td>
<td>7</td>
</tr>
<tr>
<td>Doyle shales, Carboniferous, Kansas, Adams, Girty, and White</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Doyle shales, Carboniferous, Kansas</td>
<td>Prosser and Beede</td>
<td>1</td>
</tr>
<tr>
<td>Dressbach formation, Cambrian, Upper Wisconsin and Minnesota</td>
<td>Berkey</td>
<td>1</td>
</tr>
<tr>
<td>Dripping Spring quartzite, Cambrian (?)</td>
<td>Arizona, Ransome</td>
<td>13</td>
</tr>
<tr>
<td>Drum limestone, Carboniferous, Indian Territory, Adams, Girty, and White</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drum shales, Carboniferous, Kansas, Adams, Girty, and White</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drum limestone, Carboniferous, Kansas, Adams, Haworth, and Crane</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Duck Creek formation, Cretaceous, Texas</td>
<td>Hill (R. T.)</td>
<td>3</td>
</tr>
</tbody>
</table>
Geologic formations described—Continued.

Dudley shale, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Dudley shales, Carboniferous, Kansas, Beede and Rogers, 1.
Dudley shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Duluth gabbro, included in Keweenawan, Minnesota, Clements, 5.
Duluth gabbro, included in Keweenawan, Minnesota, Leith, 4.
Dundee limestone, Devonian, Michigan, Russell, 6.
Dundee limestone, included in Traverse group, Devonian, Michigan, Grabau, 5.
Dunkard formation, Permian (?), Maryland, Prosser, 3, 4.
Dunkard formation, Carboniferous, Pennsylvania, Campbell (M. R.), 6, 8, 18.
Dunkard formation, Carboniferous, Maryland, Martin (G. C.), 1.
Dunkard formation, Carboniferous, Pennsylvania, White and Campbell, 1.
Dunkard formation (Upper Barren Coal Measures), Carboniferous, Ohio, Prosser, 10.
Dunkard series, Carboniferous, West Virginia, White (I. C.), 7.
Dunkard formation, Carboniferous, Pennsylvania, Stone (R. W.), 2, 6, 7.
Dunkard formation, Carboniferous, Maryland, Clark and Martin, 6.
Dunkard formation, Carboniferous, Maryland, Martin, 16.
Dunkirk shales, Devonian, New York, Clarke, 19, 29.
Durango formation, Mexico, Hill (R. T.), 15.
Eagle formation, Cretaceous, Montana, Hatcher and Stanton, 1.
Eagle limestone, Carboniferous, West Virginia, White (I. C.), 7.
Eagle formation, Cretaceous, Montana, Pirson, 4.
Eagle Ford formation, Cretaceous, Texas, Dumble, 12.
Eagle Ford formation, Cretaceous, Texas, Hill and Vaughan, 1.
Ebensburg sandstone, Carboniferous, Pennsylvania, Butts, 7.
Eden, Ordovician, Ohio, Indiana, and Kentucky, Foerste, 12.
<table>
<thead>
<tr>
<th>Geologic formations described—Continued.</th>
<th>Geologic formations described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englewood limestone, Carboniferous (Mississippian), Black Hills region, Jaggar, 5.</td>
<td>Fayette sands, Eocene, Tertiary, Texas, Hayes and Kennedy, 1.</td>
</tr>
<tr>
<td>Enochkin formation, Jurassic, Alaska, Stanton and Martin, 1.</td>
<td>Fayette breccia, Devonian, Iowa, Savage, 7.</td>
</tr>
<tr>
<td>Erlian, Devonian, New York, Clarke, 20.</td>
<td>Fayetteville formation, Carboniferous, Indian Territory, Taft, 17.</td>
</tr>
<tr>
<td>Erle shale, Devonian, Ohio, Stevenson (J. J.), 4.</td>
<td>Fayetteville formation, Mississippian, Arkansas, Adams and Ulrich, 1.</td>
</tr>
<tr>
<td>Erle (Bronson) beds, Carboniferous, Kansas, Wooster, 1, 2.</td>
<td>Ferguson gyspum, Permian, Oklahoma, Gould, 9.</td>
</tr>
<tr>
<td>Erwin quartzite, Cambrian, Tennessee, Keith, 4, 12.</td>
<td>Ferguson gyspum member, Carboniferous (Permian), Oklahoma, Gould, 14.</td>
</tr>
<tr>
<td>Escalosa limestone, Carboniferous, Arizona, Kansas, 10, 11, 14.</td>
<td>Fernvale formation, Ordovician, Tennessee, Hayes and Ulrich, 1.</td>
</tr>
<tr>
<td>Escamela limestone, Cretaceous, Mexico, Hall (C. E.), 1.</td>
<td>Fickett series, Carboniferous, Alaska, Schrader, 1, 3.</td>
</tr>
<tr>
<td>Escourdo series, Tertiary, California, Hershey, 10.</td>
<td>Finlay formation, Cretaceous, Texas, Richardson (G. B.), 4.</td>
</tr>
<tr>
<td>Eskridge shales, Carboniferous, Kansas, Beede, 6.</td>
<td>Fish Creek sandstone, Carboniferous, West Virginia, White (I. C.), 7.</td>
</tr>
<tr>
<td>Eskridge shales, Carboniferous, Kansas, Prosser, 7.</td>
<td>Fish-House clays, Pleistocene, New Jersey, Kimmell and Knapp, 1.</td>
</tr>
<tr>
<td>Eskridge shales, Carboniferous, Kansas, Adams, Girty, and White, 1.</td>
<td>Flint Creek beds, Tertiary, Canada, McConnell, 5.</td>
</tr>
<tr>
<td>Eskridge shale, Carboniferous, Kansas, Prosser and Beede, 1.</td>
<td>Flattop schist, Algokian (?), North Carolina, Keith, 4.</td>
</tr>
<tr>
<td>Esopus grit, Devonian, New York, Van Ingen and Clark, 1.</td>
<td>Florence shales, Carboniferous, Kansas, Beede and Sellards, 1.</td>
</tr>
<tr>
<td>Etchegoin beds, Tertiary, California, Anderson, 7.</td>
<td>Florence flint, Carboniferous, Kansas, Prosser and Beede, 1.</td>
</tr>
<tr>
<td>Etcheminian terrane, Cambrian, Canada, Matthew (G. F.), 20.</td>
<td>Florence beds, Carboniferous, Kansas, Wooster, 1, 2.</td>
</tr>
<tr>
<td>Eureka shale, Carboniferous, Missouri, Weller, 1.</td>
<td>Florence flint, Carboniferous, Kansas, Beede and Sellards, 1.</td>
</tr>
<tr>
<td>Eureka quartzite, Nevada, Spurr, 6.</td>
<td>Floyd shale, Carboniferous, Georgia, McCallie, 9.</td>
</tr>
<tr>
<td>Eureka shales, Mississippian, Missouri, Gould, 12.</td>
<td>Floyd shale, Carboniferous, Alabama and Georgia, Hayes, 5.</td>
</tr>
<tr>
<td>Eureka beds, Carboniferous, Kansas, Wooster, 1, 2.</td>
<td>Floyd shale, Carboniferous, Tennessee, Stevenson (J. J.), 4.</td>
</tr>
<tr>
<td>Eureka rhyolite, Colorado, Cross and Howe, 1.</td>
<td>Forbes limestone, Carboniferous, Missouri, Gallaher, 1.</td>
</tr>
<tr>
<td>Eutaw formation, Cretaceous, Alabama, Smith (E. A.), 2.</td>
<td>Forest City sandstone, Carboniferous, Missouri, Gallaher, 1.</td>
</tr>
<tr>
<td>Fairhaven diatomaceous earth, Miocene, Maryland, Shattuck, 10.</td>
<td>Fordham gneiss, New York, Eckel, 6.</td>
</tr>
<tr>
<td>Fairmount beds, Ordovician, Ohio and Indiana, Nickles, 3.</td>
<td>Fordham gneiss, pre-Cambrian, New York, Merrill and others, 1.</td>
</tr>
<tr>
<td>Fairmount beds, Ordovician, Kentucky, Nickles, 6.</td>
<td>Fort Benton group, Cretaceous, New Mexico, Johnson (D. W.), 4.</td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic formations described—Continued.

Fort Benton stage, Cretaceous, Wyoming, Trumbull, 1.

Fort Logan Beds, Tertiary, Montana, Douglass, 8.

Fort Payne chert, Carboniferous, Alabama and Georgia, Hayes, 5.

Fort Payne chert, Carboniferous, Tennessee, Stevenson (J. J.), 4.

Fort Payne chert, Carboniferous, Georgia, McCullie, 9.

Fort Pierre group, Cretaceous, New Mexico, Johnson (D. W.), 4.

Fort Pierre stage, Cretaceous, Wyoming, Trumbull, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Riley limestone, Carboniferous, Kansas, Prossor and Breed, 1.

Fort Scott limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Fort Scott limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Fort Scott limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Fort Scott limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Fort Worth formation, Cretaceous, Texas, Hill (R. T.), 3.

Fort Worth formation, Cretaceous, Texas, Hill (R. T.), 3.

Forty mile series, Alaska, Collier, 2.

Forty mile series, Alaska, Collier, 2.

Forty mile formation, pre-Devonian, Alaska, Frinkie, 2.

Forty mile formation, pre-Devonian, Alaska, Frinkie, 2.

Fountain formation, Carboniferous (Pennsylvania), Colorado, Darton, 16.

Fountain formation, Carboniferous (Pennsylvania), Colorado, Darton, 16.

Fountain sandstone, Triassic (?), Colorado, Fenneman, 10.

Fowler limestone, Ordovician, Kentucky, included in Richmond group, Foerste, 1.

Fox Hills formation, Cretaceous, Black Hills, Darton, 1.

Fox Hills formation, Cretaceous, Colorado, Fenneman, 10.

Franciscan series, California, Lawson and Palache, 1.

Franciscan, California, Lawson (A. C.), 9.

Franciscan series, California, Osmond, 1.

Franconia sandstone, Upper Cambrian, Wisconsin and Minnesota, Berkey, 1.

Franks conglomerate, Carboniferous, Indian Territory, Tuff, 6, 13.

Frederickburg division, Cretaceous, Texas, Hill (R. T.), 3.

Frederickburg limestone, Cretaceous, Texas, Dumble, 12.

Frederickburg group, Cretaceous, Texas, Richardson (G. R.), 4.

Fredericktown limestone, Cambrian, Missouri, Adams (G. I.), 3.

Fredericktown dolomite, Cambrian, Missouri, Keyes, 6.

Frederia limestone, Mississippian, Kentucky, Ulrich, 8.

Fredonia member, Carboniferous (Mississippian), Illinois, Bain, 10.

Freedom formation, pre-Cambrian, Wisconsin, Weldman, 5.

Fremont limestone, Ordovician, Colorado, Darton, 16, 18.

Freeport limestone, Carboniferous, Pennsylvania, Butts, 4, 6, 7.

Freeport sandstone, Carboniferous, Pennsylvania, Butts, 4.

Freeport (Lower) limestone, Carboniferous, Pennsylvania, Clapp, 4.

Freeport (Upper) limestone, Carboniferous, Pennsylvania, Clapp, 4.

Freeport sandstone, Carboniferous, Maryland, Clark and Martin, 6.

Freeport sandstone, Carboniferous, Pennsylvania, Butts, 6.

Freeport sandstone, Carboniferous, Pennsylvania, Woolsey, 3.

Freeport (Lower), sandstone, Carboniferous, West Virginia, White (I. C.), 7.

Freeport (Upper), limestone, Carboniferous, West Virginia, White (I. C.), 7.

Frans' Hill series, West Indies, Spencer (J. W.), 1.

Frio clays, Oligocene, Tertiary, Louisiana, Veatch, 2.

Frio clays, Tertiary, Texas and Louisiana, Veatch, 2.

Frio clays, Tertiary, Texas and Louisiana, Veatch, 2.

Frio clays, Eocene, Texas, Dumble, 13.

Frio clays, Eocene, Tertiary, Texas, Hayes and Kennedy, 1.

Frio clays, Tertiary, Texas, Maury, 1.

Frog Mountain limestone, Devonian, Alabama, Hayes, 5.

Fulton layer, Ordovician, Devonian, Kentucky, Foerste, 12.

Fuson formation, Cretaceous, Black Hills, Darton, 1, 8, 14, 16, 18.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.
Fuson formation, Cretaceous, South Dakota, Darton and Smith, 1.
Fuson formation, Cretaceous, Wyoming and South Dakota, Darton and O’Harra, 1.
Gakona formation, Tertiary, Alaska, Mendenhall, 8.
Galena limestone, Ordovician, Illinois, Baillie, 11.
Galena (Boone) beds, Carboniferous, Kansas, Wooster, 1.
Galena (Boone), beds, Carboniferous, (Mississippian), Kansas, Wooster, 2.
Galena-Trenton formation, Ordovician, Iowa, Calvin, 10.
Galena-Trenton, Iowa, Beyer and Williams, 2.
Galena-Trenton stage, Ordovician, Iowa, Beyer and Williams, 12.
Galesburg shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Galesburg shale, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Gallio sand group, Cretaceous, New Mexico, Johnson (D. W.), 4.
Gardena flags, Devonian, New York, Clarke, 20.
Gardena flags and flags, Devonian, New York, Luther, 2.
Gardner clay, Quaternary, New York, Fuller, 29.
Garrard sandstone, Ordovician, Kentucky, Foerste, 12.
Garrard sandstone, Ordovician, Kentucky, Nickles, 6.
Garrison formation, Carboniferous, Kansas, Prosser, 7.
Garrison formation, Carboniferous, Kansas, Prosser and Beede, 1.
Garrison formation, Carboniferous, Kansas, Adams, Girty, and White, 1.
Garrison formation, Carboniferous, Kansas, Beede and Sellards, 1.
Gasconade limestone, Ordovician, Missouri, Adams (G. I.), 3.
Gasconade limestone, Cambro-Ordovician, Missouri, Ball, 1.
Gasconade limestone, Ordovician, Missouri, Ball and Smith, 1.
Gasconade limestone, Cambrian, Missouri, Ball and Ulrich, 2.
Gaspe sandstone, Devonian, Canada, Clarke (J. M.), 26.
Genesee black shale, Devonian, Missouri, Galloway, 1.
Genesee shale, Devonian, New York, Clarke, 20.
Genesee shales, Ontario, Parks, 4.
Genesee shales, Devonian, New York, Luther, 2.
Genesee slate, Devonian, New York, Schneider, 1.
Genesee shale, Devonian, New York, Clarke and Luther, 1-3.

Geologic formations described—Continued.
Genesee shale, Devonian, Pennsylvania, Butts, 7.
Geneva limestone, Devonian, Indiana, Newsom, 3.
Geneva limestone, exact synonym (?), Shelby bed, Devonian, Indiana, Kindle, 1.
Genundewa limestone, Devonian, New York, Luther, 2.
Genundewa limestone, Devonian, New York, Clarke and Luther, 1, 2.
Georgetown formation, Cretaceous, Texas, Hill (R. T.), 3.
Georgetown limestone, Cretaceous, Texas, Hill and Vaughan, 1.
Georgia slates, Cambrian, New York, Clarke, 20.
Gering formation, Miocene, Tertiary, Nebraska, Barbour (E. H.), 8.
Gering formation, Tertiary, Nebraska, Darton, 10, 19.
Gering sandstones, Tertiary, Nebraska, Peterson, 1.
Geron marl, Cuba, Hayes, Vaughan, and Spencer, 1.
Giants Range granite, Algonkian, Minnesota, Clements, 3.
Gila conglomerate, Pleistocene (?), Arizona, Ransome, 6.
Gila conglomerate, Quaternary, Arizona, Ransome, 13.
Gila conglomerate, Quaternary, Arizona, Lindgren, 28, 29.
Gilroy sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Gilmore sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Glance conglomerate, Cretaceous, Arizona, Ransome, 9, 11, 14.
Glenkirk limestone, Silurian, Tennessee, Foerste, 7.
Glenn formation, Pennsylvania, Carboniferous, Indian Territory, Taff, 6.
Glen Rose beds, Cretaceous, Texas, Hill (R. T.), 3.
Glen Rose formation, Cretaceous, Texas, Hill and Vaughan, 1.
Globe limestone, Devonian and Carboniferous, Arizona, Ransome, 6, 13.
Golden Bar andesite, Mexico, Hill (R. T.), 15.
Goldenville formation, Nova Scotia, Woodman, 1, 2.
Goodland limestone, Cretaceous, Indian Territory, Taff, 3, 6.
Goodland limestone, Cretaceous, Texas, Hill (R. T.), 3.
Goodnight (Paloduro) beds, Miocene, Tertiary, Texas, Gidley, 4.
Gower limestone, Silurian, Iowa, included in Niagara, Norton, 1.
Grainger shale, Devonian, Tennessee, Keith, 1, 11.
Grainger shale, Devonian, Virginia and Tennessee, Stevenson (J. J.), 4.
Grand Canyon group, Nevada, Sporr, 6.
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic formations described—Continued.

Grand Gulf, Oligocene, Tertiary, Louisiana, Veatch, 2, 3.
Grand Gulf formation, post-Tertiary, Gulf region, Smith and Aldrich, 1.
Grand Gulf formation, Tertiary, Dull, 6.
Grand Gulf group, Tertiary, Louisiana, Leach, 2.
Grand Gulf stage, included in Oligocene, Tertiary, Louisiana, Harris, 2.
Grand Gulf formation, Tertiary, Gulf region, Smith and Aldrich, 2.
Grand Gulf formation, Tertiary, Gulf region, Dull, 9.
Grand Gulf formation, Tertiary, Gulf region, Hilgard, 4.
Grand Gulf sandstones, Tertiary, Alabama, Mississippi, and Louisiana, Maury, 1.
Grand Rapids group, Carboniferous, Michigan, Gregory (W. M.), 3.
Grande Greve limestones, Devonian, Canada, Clarke (J. M.), 26.
Graneros shale, Cretaceous, Black Hills, Barton, 1, 8.
Graneros formation, Cretaceous, Wyoming, South Dakota, Barton, 14.
Graneros shale, Cretaceous, Black Hills region and Colorado, Barton, 16.
Graneros shale, Cretaceous, South Dakota, Barton and Smith, 1.
Graneros shales, Cretaceous, South Dakota, Todd (J. E.), 13.
Graneros shale, Cretaceous, Wyoming and South Dakota, Barton and O'Hara, 1.
Granton diabase, Juratrias, New Jersey, Merrill and others, 1.
Gravina series, Mesozoic, Alaska, Brooks, 4.
Graydon sandstone, Carboniferous, Missouri, Adams (G. I.), 3.
Graydon sandstone, Carboniferous, Missouri, Ball, 1.
Graydon sandstone, Carboniferous, Missouri, Ball and Smith, 1.
Graydon sandstone, Missouri, Babcock and Minor, 1.
Graydon sandstone, Pennsylvanian, Missouri, Van Horn, 1.
Grayson formation, Cretaceous, Texas, Hill (B. T.), 3.
Great limestone, Carboniferous, West Virginia, White (I. C.), 7.
Great Smoky conglomerate, Cambrian, North Carolina and Tennessee, Keith, 9.

Bull. 301—06——33
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Guadalupian, Carboniferous, Texas, Girty, 2. Exact synonym Permian.
Guibik sand, Quaternary, Alaska, Schrader, 3.
Guelph, Silurian, New York and Ontario, Clarke and Ruedemann, 1.
Guelph dolomite, Ontarie, New York, Clarke, 20.
Guelph formation, Silurian, Canada, Corkill, 2.
Guernsey formation, Carboniferous (Mississippian), Wyoming, Darton, 16, 18.
Guertie sand, Neocene, Indian Territory, Taff, 2.
Gulf series, Cretaceous, Texas, Hill and Vaughan, 1.
Gunflint formation, included in Upper Huronian (Animikie), Minnesota, Clements, 3.
Gunter sandstone, Cambro-Ordovician, Missouri, Ball, 1.
Gunter sandstone, Ordovician, Missouri, Ball and Smith, 1.
Guyantot sandstone, Carboniferous, West Virginia, Campbell, 5.
Gwynedd shales, Pennsylvania, Lyman, 2.
Gypsum series, New Mexico, Reagan, 1.
Hale sandstone lentil, Carboniferous, Indian Territory, Taff, 17.
Hale sandstone member, Carboniferous, Arkansas, Adams and Ulrich, 1.
Halifax formation, Nova Scotia, Woodman, 1, 2.
Hamburg limestone and shale, Nevada, Spurr, 6.
Hamilton beds, Devonie, New York, Clarke, 20.
Hamilton formation, Devonian, New York, Cleland, 2.
Hamilton formation, Ontario, Parks, 4.
Hamilton group, Devonian, New York, Schneider, 1.
Hamilton (Callaway) limestone, Devonian, Missouri, Gallaher, 1.
Hamilton formation, Devonian, Canada, Corkill, 2.
Hamilton formation, Devonian, Pennsylvania, Butts, 7.
Hampshire formation, Devonian, Maryland, Proser, 3.
Hampshire formation, Devonian, Maryland, Martin (G. C.), 1.
Hampshire for Catskill, Devonian, Appalachian region, Stevenson (J. J.), 4.
Hampton shale, Cambrian, North Carolina and Tennessee, Keith, 4.
Hampton shale, Cambrian, North Carolina, Keith, 12.
Hanbury slate, Algonkin, Michigan, Bayley, 1.
Hannibal sandstone and shales, Carboniferous, Missouri, Adams (G. I.), 3.
Hannibal shales, Devonian, Missouri, Gallaher, 1.
Hannibal formation, Carboniferous, Missouri, Park and Lyman, 2.
Hardin sandstone, Devonian, Tennessee, Poer, 7.
Harding sandstone, Ordovician, Colorado, Darton, 16, 18.
Hardiston quartzite, Cambrian, New Jersey, Klummel and Weller, 1.
Hardiston quartzite, Cambrian, New Jersey, Weller, 3.
Hardyton quartzite, Cambrian, New Jersey, Klummel and Weller, 2.
Harlan formation, White, 23.
Harpers beds, Carboniferous, Kansas, Wooster, 1, 2.
Harrison diorite, post-Hudson, New York, Merrill and others, 1.
Harrison beds, Tertiary, Nebraska, Peterson, 1.
Harrison diorite, New York, Merrill and Magnus, 1.
Harrodsburg limestone, Carboniferous, Indiana, Newsom, 3.
Harrodsburg limestone, Lower Carboniferous, Indiana, Ashley, 2.
Harrodsburg limestones and shales, Carboniferous, Indiana, Hopkins (T. C.), 8.
Harrodsburg limestone, Mississippian, Indiana, Hopkins (T. C.), 11.
Hartford (Topeka) limestone, Carboniferous, Kansas, Beede, 6.
Hartford limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Hartsville sandstones, Carboniferous, Alabama, Stevenson (J. J.), 4.
Hartshorn sandstone, Carboniferous, Indian Territory, Taff, 2.
Hartshorne sandstone, Carboniferous, Indian Territory, Taff, 3, 4.
Hartville formation, Carboniferous, Wyoming, Smith (W. S. T.), 1.
Hartville formation, Carboniferous, Wyoming, Darton, 16, 18.
Harvey conglomerate, Carboniferous, West Virginia, Campbell, 5.
Hastings series, Canada, Coleman, 6.
Hastings series, Canada, Ellis, 20.
Hatch flags and sands, Devonian, New York, Luther, 2.
Hatch shales and flags, Devonian, New York, Clarke, 10.
Hatch shale and flags, Devonian, New York, Clarke and Luther, 1, 2.
Hawkins formation, pre-Bocene, Washington, Smith (G. O.), 8.
Geologic formations described—Continued.

Haysotk gypsum, Permian, Oklahoma, Gould, 9.
Haysotk gypsum member, Carboniferous (Permian), Oklahoma, Gould, 14.
Haylet sands, included in Matawan formation, Cretaceous, New Jersey, Berry, 5.
Helderberg limestone, Devonian, Maryland, Prosser, 3.
Helderbergian, Devonian, New York, Clarke, 20.
Helderbergian limestone, Devonian, New York, Clarke and Luther, 3.
Helderberg (Lower) formation, Silurian, Canada, Corkill, 2.
Helen formation, Canada, Bell (J. M.), 3.
Helen iron formation, Huronian, Canada, Coleman and Willmott, 1.
Henderson granite, Archean, North Carolina, Keith, 12.
Hensell sands, Cretaceous, Texas, Hill (R. T.), 3.
Hermitage formation, Ordovician, Tennessee, Hayes and Ulrich, 1.
Hermitage beds, Ordovician, Kentucky, Miller (A. M.), 4.
Hermosa formation, Carboniferous, Colorado, Cross and Howe, 1, 3.
Hermosa formation, Carboniferous (Pennsylvanian), Colorado, Cross (W.), 7.
Herod gravels, Quaternary, New York, Fuller, 20.
Hermansville limestone, Ordovician, Michigan, Bayley, 1.
Hershel quartzite, Arizona, Church, 1.
Hertha limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Hertha limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.
Hesse quartzite, Cambrian, North Carolina and Tennessee, Keith, 9.
Hesse quartzite, Cambrian, Tennessee, Keith, 11.
Highland Boy limestone member, Carboniferous, Utah, Keith, 12.
Highpoint sandstone, Devonian, New York, Clarke, 20.
Highpoint sandstone, Devonian, New York, Clarke and Luther, 1, 2.
Hilliard formation, Cretaceous, Wyoming, Knight (W. C.), 7.
Hillsboro sandstone, Silurian, Ohio, Prosser, 10.
Hinton formation, Carboniferous, West Virginia, Campbell, 5.
Hinton formation, Carboniferous, West Virginia, Stevenson (J. J.), 4.
Hiawasse slate, Cambrian, North Carolina and Tennessee, Keith, 9, 11.
Hobo-Gulch lime-shale, Cambrian, Montana, Weed, 5.

Geologic formations described—Continued.

Hedges Hill sandstone, West Indies, Spencer (J. W.), 1.
Heldenville shale, Carboniferous, Indiana Territory, Taft, 2.
Holston marble, Silurian, Tennessee, Keith, 1.
Holston marble member of Chickamauga limestone, Ordovician, Tennessee, Keith, 11.
Homewood sandstone, Carboniferous, Pennsylvania, Butts, 4, 6.
Homewood sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Hunaker limestone, Cambrian, Tennessee, Keith, 9, 11.
Horseollow Creek beds, Tertiary, Colorado, Matthew (W. D.), 2.
Horton series, Canada, Fletcher, 2.
Horton slates, Devonian or Carboniferous, Canada, Haycock, 1.
Hosselkiss limestone, Triassic, California, Diller, 12.
Howard limestone, Carboniferous, Kansas, Beede, 6.
Howard limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Hudson River beds, Ordovician, New York, Ruedemann, 1.
Hudson River formation, Ordovician, New Jersey, Weller, 3.
Hudson formation, Ordovician, New York, Eckel, 6.
Hudson River group, Ordovician, New York, Clarke (J. M.), 11.
Hudson River shale?, Ordovician, New Jersey, Kimmell and Weller, 2.
Hudson schist, Silurian, New York, Merrill and others, 1.
Hudson River beds, Ordovician, Missouri, Gallacher, 1.
Hudson River (or Cincinnati) group, Ordovician, Indiana, Newsom, 3.
Hudson River shales, Ordovician, New York, Grubau, 9.
Hudson River slates, Ordovician, New Jersey, Weller, 6.
Hudson shale and Hudson schist, Ordovician, New York, Dale, 5.
Hudson River formation, Cambro-Silurian, Canada, Corkill, 2.
Hudson River or Lorraine shale, Ordovician, Canada, Adams and Le Roy, 1.
Hudson schist, Ordovician, New York, Merrill and Magnus, 1.
Hueco formation, Carboniferous, Texas, Richardson (G. B.), 4.
Huerfano formation, Eocene, Colorado, Hills, 1.
Humboldt series, Nevada, Spurr, 6.
Huntingdon, Carboniferous, Pennsylvania, Stevenson (J. J.), 4.
Huntington series, Triassic (?), Oregon, Lindgren, 4.
Huntington limestone, Silurian, Indiana, Kindle, 6.
<table>
<thead>
<tr>
<th>Geologic formations described—Continued.</th>
<th>Geologic formations described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunton limestone, Indian Territory, Taff, 3.</td>
<td>Iowan, Quaternary, New Jersey, Salisbury and others, 1.</td>
</tr>
<tr>
<td>Hunton limestone, Siluro-Devonian, Indian Territory, Taff, 6, 13.</td>
<td>Iowan drift, Quaternary, Iowa, Savage, 3.</td>
</tr>
<tr>
<td>Huron group, Mississippian, Indiana, Hopkins (T. C.), 11.</td>
<td>Iowan drift (?), Quaternary, Ohio, Presser, 10.</td>
</tr>
<tr>
<td>Huron group, Lower Carboniferous, Indiana, Ashley, 2.</td>
<td>Iowin loess, Quaternary, Iowa, Calvin, 10.</td>
</tr>
<tr>
<td>Huron limestone and sandstone, Carboniferous, Indiana, Hopkins (T. C.), 8.</td>
<td>Iowan till, Quaternary, Iowa, Calvins, 10.</td>
</tr>
<tr>
<td>Huron shale, Devonian, Ohio, Presser, 10.</td>
<td>Iowan, Pleistocene, Iowa, Beyer and Williams, 2.</td>
</tr>
<tr>
<td>Huronian, Ontario, Bolton, 1.</td>
<td>Iowan deposits, Quaternary, Indiana and Illinois, Fuller and Clapp, 2.</td>
</tr>
<tr>
<td>Huronian, Canada, Coleman, 6.</td>
<td>Iowan stage, Quaternary, Iowa, Savage, 7, 8.</td>
</tr>
<tr>
<td>Huronian, Willmott, 2.</td>
<td>Iowan stage, Pleistocene, Iowa, Udden (Jon A.), 1.</td>
</tr>
<tr>
<td>Huronian (Lower), Minnesota, Clements, 3.</td>
<td>Iowan stage, Pleistocene, Iowa, Williams (I. A.), 1.</td>
</tr>
<tr>
<td>Huronian, Ontario, Graton, 2.</td>
<td>Irondale limestone, Carboniferous, West Virginia, White (I. C.), 7.</td>
</tr>
<tr>
<td>Huronian series (Lower), Algonkian, Minnesota, Leith, 4.</td>
<td>Iron Mountain porphyry, pre-Cambrian, Missouri, Adams (G. I.), 8.</td>
</tr>
<tr>
<td>Huronian series (Upper), Algonkian, Minnesota, Leith, 4.</td>
<td>Irving formation, Colorado, Howe, 3.</td>
</tr>
<tr>
<td>Huronian, Canada, Barlow, 8.</td>
<td>Irving greenstone, Colorado, Cross and Howe, 3.</td>
</tr>
<tr>
<td>Idaho shale, Tertiary, Missouri, Marbut, 1.</td>
<td>Ithaca flags and sandstone, Devonian, New York, Clarke and Lather, 3.</td>
</tr>
<tr>
<td>Illinoisan, Pleistocene, Iowa, Udden, 2.</td>
<td>Izard limestone, Ordovician, Arkansas, Ulrich, 5.</td>
</tr>
<tr>
<td>Illinoisan drift, Quaternary, Leverett, 4.</td>
<td>Jackfork sandstone, Silurian, Indian Territory, Taff, 3.</td>
</tr>
<tr>
<td>Illinoisan drift, Quaternary, Ohio, Presser, 10.</td>
<td>Jackson, Tertiary, Louisiana, Veatch, 2, 3.</td>
</tr>
<tr>
<td>Illinoisan, Pleistocene, Iowa, Beyer and Williams, 2.</td>
<td>Jackson stage, included in Eocene, Tertiary, Louisiana, Harris, 2.</td>
</tr>
<tr>
<td>Illinoisan drift, Quaternary, Indiana and Illinois, Fuller and Clapp, 2.</td>
<td>Jackson stage, Tertiary, Louisiana, Casey, 1.</td>
</tr>
<tr>
<td>Illinoisan stage, Pleistocene, Iowa, Udden (Jon A.), 1.</td>
<td>Jackson stage, Tertiary, Louisiana, Casey, 2.</td>
</tr>
<tr>
<td>Independence shales, Devonian, Iowa, Beyer and Williams, 2.</td>
<td>Jacob sands, Quaternary, New York, Fuller, 28.</td>
</tr>
<tr>
<td>Iola limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.</td>
<td>Jameco gravel, Quaternary, New York, Fuller, 29.</td>
</tr>
<tr>
<td>Iola limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.</td>
<td>Jefferson City formation, Cambro-Ordovician, Missouri, Ball, 1.</td>
</tr>
<tr>
<td>Iola beds, Carboniferous, Kansas, Wooster, 1, 2.</td>
<td>Jefferson City formation, Ordovician, Missouri, Ball and Smith, 1.</td>
</tr>
<tr>
<td>Iowan drift, Pleistocene, Iowa, Norton, 1.</td>
<td></td>
</tr>
</tbody>
</table>
Geologic formations described—Continued.

Jefferson City formation, Cambro-Ordo-
vician, Missouri, Van Horn, 1.
Jefferson City limestone, Ordovician,
Missouri, Bain and Ulrich, 2.
Jeffersonville limestone, Devonian, In-
diana, Hopkins (T. C.), 11.
Jeffersonville limestone, Devonian, In-
diana, Newson, 3.
Jeffersonville limestone, Devonian, In-
diana, Kindl, 1.
Jeffersonville limestone, Devonian, In-
diana, Siebenthal, 2.
Jeffersonville limestone, Devonian, In-
diana, Smith, 1.
Jeffersonville limestone, Devonian, In-
diana, Newsom, 3.
Jeffersonville limestone, Devonian, In-
diana, Jenkins (H. C.), 1.
Jeffersonville limestone, Devonian, In-
diana, Martin (G. C.), 1.
Jeffersonville limestone, Devonian, In-
diana, Simpson, 1.
Jeffersonville limestone, Devonian, In-
diana, Smith, 1.
Jeffersonville limestone, Devonian, In-
diana, Stebbins, 1.
Jemez marls, Pliocene, Tertiary, New
Mexico, Reagan, 1.
Jennings formation, Devonian, Mary-
land, Prosser, 3.
Jennings formation, Devonian, Mary-
land, Martin (G. C.), 1.
Jennings for Cheynung, Devonian, Appa-
lachian region, Stevenson (J. J.), 4.
Joachim limestone, Cambro-Ordovician,
Missouri, Van Horn, 1.
Joachim limestone, Ordovician, Mis-
souri, Bain and Ulrich, 2.
Johannian division, Cambrian, Canada,
Matthew (G. F.), 20.
John Day series, Tertiary, Oregon,
Merriam (J. C.), 1, 2.
John Day series, Tertiary, Oregon,
Knowlton, 13.
John Day formation, Russell, 21.
John Day series, Tertiary, Oregon, Mc-
Clung, 1.
Johnstown limestone, Carboniferous,
Pennsylvania, Clapp, 4.
Jollytown limestone, Carboniferous,
Maryland, Clark and Martin, 6.
Jollytown limestone, Carboniferous,
Jordan limestone member, Carbonifer-
ous, Utah, Keith, 13.
Judith River beds, Cretaceous, Hatcher,
13.
Judith River beds, Cretaceous, Stanton,
3.
Judith River beds, Cretaceous, Monta-
tana, Hatcher, 17, 20.
Judith River beds, Cretaceous, Monta-
tana, Hatcher and Stanton, 1.
Judith River beds, Cretaceous, Monta-
tana, Osborn, 21.
Judith River beds, Montana, Stern-
berg, 4.
Junata formation, Silurian, Mary-
land, Prosser, 3.
Kanab, Upper and Lower, Triassic,
Utah, Huntington and Goldthwait, 1.
Kanab, Utah, Huntington and Gold-
thwait, 2.
Kanawha formation, Carboniferous,
West Virginia, Campbell (M. R.), 2.
Kanawha black flint, Carboniferous,
West Virginia, White (I. C.), 4.
Kanawha formation, Carboniferous,
West Virginia, Campbell (M. R.), 5.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Kennebeck series (?), Tertiary, Canada, McConnell, 5.

Kenneck formation, Jurassic-Cretaceous, Alaska, Mendenhall and Schrader, 1.

Kenneck formation, Upper Jurassic or Lower Cretaceous, Alaska, Schrader and Spencer, 1.

Kenneck formation, Cretaceous or Jurassic, Alaska, Mendenhall, 8.

Keokuk limestone, Mississippian series, Carboniferous, Iowa, Savage, 2.

Kern River beds, Tertiary, California, Anderson, 7.

Kessler limestone lentil, Carboniferous, Arkansas, Adams and Ulrich, 1.

Kessler limestone, Carboniferous, Arkansas, Ulrich, 5.

Ketchikan series, Upper Paleozoic, Alaska, Brooks, 4.

Keweenawan, Algonkian, Minnesota, Clements, 3.

Keweenawan, Minnesota, Leith, 4.

Keweenawan, Canada, Burwash, 1.

Keweenawan formation, Canada, Smith (W. N.), 1.

Key sandstone, Ordovician, Arkansas, Adams (G. I.), 15.

Kigluaik series, older than Silurian, Alaska, Collier, 1.

Kilbuck conglomerate, Carbonic, New York, Clarke, 20.

Knobstone, Carboniferous, Kentucky, Stevenson (J. J.), 4.

Kobstone, Lower Carboniferous, Indiana, Ashley, 2.

Knobstone group, Carboniferous, Indiana, Newsom, 3.

Knobstone sandstone, Carboniferous, Indiana, Hopkins, 8.

Kokomo formation, Carboniferous, Indiana, Sardeson, 11.

Kodak series, Carboniferous, Indiana, Siebenthal, 2.

Klondike series, Canada, McConnell, 5.

Klutan series, pre-Silurian (?), Alaska, Schrader and Spencer, 1.

Klondike series, Canada, McConnell, 5.

Klondike series, New Jersey, Kimmel and Weller, 1.

Klondike series, Cambrian, New Jersey, Weller, 3.

Knotianna limestone, Cambrian, New Jersey, Kimmel and Weller, 2.

Knotianna limestone, Cambrian and Ordovician, New Jersey, Weller, 6.

Kuttawa argillite, Algonkian, Montana, Willis, 6.

Kutuita argillite, pre-Silurian (?), Alaska, Schrader and Spencer, 1.

Kutuita argillite, pre-Silurian (?), Alaska, Schrader and Spencer, 1.

Kuttawa argillite, pre-Silurian (?), Alaska, Schrader and Spencer, 1.
FOR THE YEARS 1901—1905, INCLUSIVE.

Geologic formations described—Continued.

Knoxville shales, Cretaceous, California, Lawson and Palache, 1.

Knoxville division, Cretaceous, California, Anderson, 7.

Knoydart formation, Devonian, Canada, Ami, 4, 8, 10.

Kolpato formation, Nevada, Spurr, 6.

Kokomo (Waterlime) limestone, Silurian, Indiana, Foerste, 11.

Kootenay series, Cretaceous, Alberta, Canada, Dowling, 10.

Kowak clay, Quaternary, Alaska, Schrader, 3.

Koyukuk, Cretaceous, Alaska, Schrader, 3.

Koyukuk series, Cretaceous, Alaska, Schrader, 1.

Kreyenhagen shales, Tertiary, California, Anderson, 7.

Kugruk group, Silurian or Devonian, Alaska, Collier, 1.

Kushatka formation, Alaska, Martin, 15.

Kushatka formation, Tertiary, Alaska, Martin, 11.

Kuzitrin series, Alaska, Brooks and others, 1.

Kuzitrin series, older than Silurian, Alaska, Collier, 1.

Labette shales, Carboniferous, Kansas, Adams, Girty, and White, 1.

Labette shales, Carboniferous, Kansas, Adams, Girty, and White, 1.

Labette shales, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Labette shales, Carboniferous, Kansas, Beede and Rogers, 1.

Labette beds, Carboniferous, Kansas, Wooster, 1, 2.

Labrador formation, Pleistocene, Canada, exact synonym, Bowlder Clay, Ami, 1.

La Bricca formation, Hill (R. T.), 15.

Lafayette formation, Tertiary, Atlantic coast region, Darton and Keith, 1.

Lafayette, Louisiana, Veatch, 2.

Lafayette formation, Neocene, Maryland, Shattuck, 6.

Lafayette (?) formation, Neocene (?), Tertiary, Georgia and Alabama, Hayes, 5.

Lafayette formation, Tertiary, Quaternary (?), Louisiana, Clendening, 1.

Lafayette sands, Neocene, Texas, Hayes and Kennedy, 1.

Lafayette formation, Pliocene, Atlantic coast region, Clark (W. B.), 6.

Lafond gravel and marl, West Indies, Spencer (J. W.), 2.

Lagarto beds, Neocene, Texas, Dumble, 13.

Lagarto clays, Texas, Dumble, 2.

Lahontan beds, Nevada, Louderback, 4.

Lake beds, Tertiary, Idaho, Lindgren and Drake, 1.

Lake Superior sandstone, Burwash, 1.

Lake Superior sandstone, Cambrian, Wisconsin, Collie, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Laramie formation, Cretaceous, Colorado, Fenneman, 10.
Laramie formation, Cretaceous, North Dakota, Leonard, 4.
Laramie stage, Cretaceous, Wyoming, Trumbull, 1.
Lauderdale chert, Carboniferous, Alabama, Stevenson (J. J.), 4.
Laurel limestone, Silurian, Kentucky and Tennessee, Foerste, 1.
Laurel limestone, Silurian, Indiana, Foerste, 11.
Laurel limestone, Silurian, Tennessee, Foerste, 7.
Laurentian, Ontario, Bolton, 1.
Laurentian, Ontario, Graton, 2.
Lawrence beds, Carboniferous, Kansas, Wooster, 1, 2.
Lebanon limestone, Ordovician, Tennessee, Hayes and Ulrich, 1.
Lecompton limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Lecompton limestone, Carboniferous, Kansas, Beede, 6.
Lecompton beds, Carboniferous, Kansas, Wooster, 1, 2.
Leda clay, Canada, Coleman, 5.
Lee conglomerate, Carboniferous, Tennessee, Keith, 1.
Lego limestone, Silurian, Tennessee, Foerste, 7.
Leipers formation, Ordovician, Tennessee, Hayes and Ulrich, 1.
Leipers Creek limestone, Cincinnati group, Ordovician, Tennessee, Foerste, 6.
Lenox limestone member, Carboniferous, Utah, Keith, 13.
Leroux member, Triassic, Arizona, Ward (L. F.), 5.
Le Roy shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Le Sueur dolomite, Cambrian, Missouri, Keyes, 6.
Le Sueur limestone, Cambrian, Missouri, Adams (G. I.), 3.
Lewis shale, Cretaceous, Colorado, Cross and Spencer, 1.
Lewisville beds, Cretaceous, Texas, Hill (R. T.), 3.
Lexington group, Ordovician, Kentucky, Nickles, 6.
Lexington limestone, Ordovician, Kentucky, Miller (A. M.), 4.
Liberty beds, included in Richmond group, Ordovician, Ohio and Indiana, Nickles, 5.
Liberty beds, Ordovician, Indiana, Foerste, 11.
Liberty Hall limestone, Ordovician, Virginia, Campbell (H. D.), 1.

Geologic formations described—Continued.

Lignitic, Eocene, Tertiary, Louisiana, Veatch, 2.
Lignitic stage, included in Eocene, Tertiary, Louisiana, Harris, 2.
Lignitic formation, Eocene, Louisiana, Harris, 3.
Lignitic stage, Eocene, Texas, Dumble, 13.
Lignitic clay, Tertiary (Eocene), Mississippi, Logan, 2.
Lime Creek shales, Devonian, Iowa, Beyer and Williams, 2.
Lime Creek shales, Devonian, Iowa, Eckel and Bain, 1.
Linden bed, Devonian, Tennessee, Foerste, 7.
Linden limestone, Tennessee, Foerste, 5.
Linnville metadiabase, Algonklan (?), North Carolina and Tennessee, Keith, 4.
Lisburne formation, Devonian, Alaska, Schrader, 1, 3.
Lisburne division, Triassic, Arizona, Dumble, 7.
Lithodendron member, Triassic, Arizona, Ward (L. F.), 5.
Little Cottonwood granite, Utah, Emmons (S. F.), 9.
Little Falls dolomite, Champlainic, New York, Clarke, 20.
Littleton limestone, Carboniferous, Wyoming, Darton, 16, 18.
Llanfair sandstone, Carboniferous, Pennsylvania, Butts, 7.
Lockatong, included in Newark, New Jersey, Knapp (G. N.), 1.
Lockport limestone, Silurian, New York. Synonym, Niagara limestone, Grabau, 1.
Lockport limestone, Silurian, Indiana, Kindle, 2.
Lockport dolomite, Ontario, New York, Clarke, 20.
Logan formation, Carboniferous, Ohio, Prosser, 1, 10.
Logan group, Carboniferous, Ohio, Bowunner, 3, 5.
Logan, Carboniferous, Ohio, Stevenson (J. J.), 4.
Logan, upper part of Pocono, Carboniferous, Appalachian region, Stevenson (J. J.), 4.
Logan sills, Minnesota, included in Keewenaw, Clements, 3.
Logana bed, Ordovician, Kentucky, Miller (A. M.), 4.
Lone Mountain limestone, Nevada, Spurr, 6.
Long Beards riffs sandstone, Devonian, New York, Luther, 2.
Longbeards riffs sandstone, Devonian, New York, Clarke, 20.
Long Branch sand, Cretaceous, New Jersey, Prather, 4.
FOR THE YEARS 1901-1905, INCLUSIVE.

Geologic formations described—Continued.

Long Branch sand, Cretaceous, New Jersey, Wellier, 7.

Longfellow formation, Ordovician, Arizona, Lindgren, 28, 29.

Longwood red shales, Silurian, New York, Eckel, 6.

Longwood shale, Silurian, New Jersey, Kimmel and Wellier, 2.

Longwood sandstone, Silurian, New Jersey, Wellier, 6.

Lookout sandstone, Carboniferous, Georgia, Hayes, 5.

Lookout sandstone, Carboniferous, Georgia, McCallie, 9.

Lorraine formation, Ordovician, Canada, Elhs (R. W.), 7.

Lorraine formation, Ordovician, Kentucky, Foerste, 3.

Lorraine group, Ordovician, Ohio and Indiana, Nickles, 3.

Lorraine beds, Champlainic, New York, Coville, 20.

Lorraine formation, Ordovician, Ohio, Prosser, 10.

Lorraine stage, Ordovician, Pennsylvania, Collie, 3.

Lorraine formation, Ordovician, Michigan, Russell, 23.

Lorraine formation, Ordovician, New York, Cushing, 10.

Los Angelan epoch, Quaternary, California, Horsley, 14.

Lost Gulch monzonite, pre-Cambrian, Arizona, Ransome, 6, 13.

Louisiana limestone, Devonian, Missouri, Gallaher, 1.

Louisiana limestone, Carboniferous, Missouri, Adams (G. I.), 3.

Louisville limestone, Silurian, Tennessee, Foerste, 7.

Louisville limestone, Silurian, Indiana, Fosier, 11.

Loup Fork formation, Tertiary, Colorado, Matthew (W. D.), 2.

Loup Fork beds, Tertiary, Nebraska, Barbour (E. H.), 8.

Loup Fork formation, Tertiary, Montana, Douglass, 8.

Loup Fork stage, Miocene, Tertiary, Texas, Gidley, 4.

Loup Fork beds, Miocene, Montana, Douglass, 1.

Loup Fork beds, Miocene, South Dakota, Matthew and Gidley, 1.

Loup Fork series, Tertiary, Nebraska, Peterson, 1.

Lower Helderberg, Silurian, Ohio, Bow- nocker, 3, 5.

Lower Helderberg period, Silurian, New York, Schneider, 1.

Lower Helderberg or Waterline formation, Ontario, Parks, 4.

Lower Magnesian group, Silurian, Illinois, Alden, 1.

Lowville limestone, Champlainic, New York, Clarke, 20.

Lowville limestone, Ordovician, New York, Cushing, 9.

Lowville (Birdseye) limestone, Ordovician, New York, Cushing, 10.

Loyalhanna limestone, Carboniferous, Pennsylvania, Butts, 4, 7.

Loyalhanna limestone, Carboniferous, Pennsylvania, Clapp, 4.

Lucas limestone, Silurian, Ohio, Prosser, 10.

Lucky Cuss limestone, Arizona, Church, 1.

Ludlowville limestone, Devonian, New York, Clarke and Luther, 3.

Luftin deposits (Yegua), Tertiary, Texas, Hill (R. T.), 9.

Lykins formation, Triassic (?), Colorado, Fenneman, 10.

Lyons sandstone, Triassic (?), Colorado, Fenneman, 10.

Lyttton formation, Eocene, Tertiary, Texas, Hill and Vaughan, 1.

McAdam formation, Silurian, Canada, Ami, 10.

McAlester shale, Carboniferous, Indian Territory, Taff, 2, 3, 4.

McCloud limestone, Carboniferous, California, Diller, 12.

McCloud shale, Carboniferous, California, Diller, 7.

McElmo formation, Jura-Trias, Colorado, Cross and Spencer, 1.

McElmo formation, Colorado, Cross and Howe, 2.

McElmo formation, Jurassic, Colorado, Cross (W.), 7.

Madera diorite, pre-Cambrian, Arizona, Ransome, 6, 13.

Madison bed, Ordovician, Indiana, Foerste, 11.

Madison limestone, Carboniferous, Montana, Weed, 5.

Madison formation, included in Richmond group, Ordovician, Ohio and Indiana, Nickles, 5.

Madison Valley beds, Tertiary, Montana, Douglass, 8.

Madrid coal group, Cretaceous, New Mexico, Johnson (D. W.), 4.

Magnesian formation, Wisconsin, Weldman, 5.

Magpie dolomite, Permian, Oklahoma, Gould, 9.

Mahoning limestone, Carboniferous, West Virginia, White (I. C.), 7.

Mahoning sandstone, Carboniferous, Missouri, Gallaher, 1.

Mahoning sandstone, member of Conemaugh formation, Carboniferous, Pennsylvania, Campbell (M. R.), 8.

Mahoning sandstone stage, Carboniferous, West Virginia, White (I. C.), 7.
<table>
<thead>
<tr>
<th>Geologic formations described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahoning sandstone, Carboniferous, Pennsylvania, Butts, 4, 6, 7.</td>
</tr>
<tr>
<td>Mahoning sandstone, Carboniferous, Pennsylvania, Richardson (G. B.), 3.</td>
</tr>
<tr>
<td>Mahoning sandstone, member of the Conemaugh formation, Carboniferous, Pennsylvania, Campbell (M. E.), 18.</td>
</tr>
<tr>
<td>Mahoning limestone, Carboniferous, Maryland, Clark and Martin, 6.</td>
</tr>
<tr>
<td>Mahoning sandstone, Carboniferous, Pennsylvania, Stone (R. W.), 7, 8.</td>
</tr>
<tr>
<td>Mahoning sandstone, Carboniferous, Pennsylvania, Woolsey, 3.</td>
</tr>
<tr>
<td>Main Street limestone, Cretaceous, Texas, Hill (R. T.), 3.</td>
</tr>
<tr>
<td>Malone formation, Jurassic, Texas, Richardson (G. B.), 4.</td>
</tr>
<tr>
<td>Malone formation, Jurassic, Texas, Cragin, 2.</td>
</tr>
<tr>
<td>Mal Pais gravel, Cuba, Hayes, Vaughan, and Spencer, 1.</td>
</tr>
<tr>
<td>Maltrata, Cretaceous, Mexico, Villarelo and Bose, 1.</td>
</tr>
<tr>
<td>Maltrata limestone, Cretaceous, Mexico, Hall (C. E.), 1.</td>
</tr>
<tr>
<td>Mancos shale, Carboniferous, Colorado, Cross and Spencer, 1.</td>
</tr>
<tr>
<td>Mancos shale, Cretaceous, Colorado, Cross (W.), 7.</td>
</tr>
<tr>
<td>Mangum dolomite member, Carboniferous (Permian), Oklahoma, Gould, 14.</td>
</tr>
<tr>
<td>Manhattan beds, Quaternary, New York, Veach, 4.</td>
</tr>
<tr>
<td>Manitou limestone, Ordovician, Colorado, Darton, 16, 18.</td>
</tr>
<tr>
<td>Mankomen formation, Carboniferous (Permian), Alaska, Mundenhall, 8.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New York, Graham, 1, 9.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New Jersey, Weller, 6.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New York, Hartnagel, 1.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New York, Schuchert, 4.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New York, Van Ingen and Clark, 1.</td>
</tr>
<tr>
<td>Maliaus formation, Ordovician, Maryland, Schuchert, 7.</td>
</tr>
<tr>
<td>Maliaus limestone, Ordovician, New York, Clarke, 20.</td>
</tr>
<tr>
<td>Maliaus limestone, New York, Shimer, 5.</td>
</tr>
<tr>
<td>Maliaus limestone, Silurian, New York, Clarke and Luther, 3.</td>
</tr>
<tr>
<td>Manette gravel, Quaternary, New York, Fuller, 29.</td>
</tr>
<tr>
<td>Mannie shale, included in Richmond, Ordovician, Tennessee, Foerste, 6.</td>
</tr>
<tr>
<td>Mansfield group, Carboniferous, Indiana, Ashley, 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geologic formations described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansfield sandstone, Carboniferous, Indiana, Newsom, 3.</td>
</tr>
<tr>
<td>Mansfield sandstone, Carboniferous, Indiana, Hopkins (T. C.), 11.</td>
</tr>
<tr>
<td>Mansfield sandstone, Carboniferous, Kentucky, Ulrich, 8.</td>
</tr>
<tr>
<td>Mansfield sandstone, Carboniferous (Mississippian), Illinois, Bain, 10.</td>
</tr>
<tr>
<td>Maquoketa or Hudson River, Ordovician, Iowa, Calvin, 10.</td>
</tr>
<tr>
<td>Maquoketa shales, Iowa, Beyer and Williams, 2.</td>
</tr>
<tr>
<td>Maquoketa shale, Ordovician, Illinois, Bain, 11.</td>
</tr>
<tr>
<td>Maquoketa stage, Ordovician, Iowa, Savage, 8.</td>
</tr>
<tr>
<td>Maquoketa shales, Ordovician, Iowa, Udden (Jon A.), 1.</td>
</tr>
<tr>
<td>Marble Falls limestone, Carboniferous, Texas, Hill (R. T.), 3.</td>
</tr>
<tr>
<td>Marcellus shale, Devonian, New York, Schneider, 1.</td>
</tr>
<tr>
<td>Marcellus shales, included in Hamilton, Devonian, New York, Cleland, 2.</td>
</tr>
<tr>
<td>Marcellus shale, Devonian, New York, Clarke and Luther, 1–3.</td>
</tr>
<tr>
<td>Mariato formation, Pleistocene, Panama, Hershey, 5.</td>
</tr>
<tr>
<td>Marietta sandstones, Carboniferous, West Virginia, White (I. C.), 7.</td>
</tr>
<tr>
<td>Marine beds, Eocene, Texas, Dumble, 13.</td>
</tr>
<tr>
<td>Marion formation, Permian, Oklahoma, Gould, 6.</td>
</tr>
<tr>
<td>Marion formation, Carboniferous, Kansas, Prosser, 7.</td>
</tr>
<tr>
<td>Marion formation, Carboniferous, Kansas, Adams, Girty, and White, 1.</td>
</tr>
<tr>
<td>Marion formation, Carboniferous, Kansas, Prosser and Beede, 1.</td>
</tr>
<tr>
<td>Marion beds, Carboniferous, Kansas, Wooster, 1, 2.</td>
</tr>
<tr>
<td>Mark West andesite, Tertiary, California, Osmond, 1.</td>
</tr>
<tr>
<td>Marshall, Carboniferous, Michigan, Gregory (W. M.), 3.</td>
</tr>
<tr>
<td>Marshalltown bed, Cretaceous, New Jersey, Kümmler and Knapp, 1.</td>
</tr>
<tr>
<td>Marshalltown clay, Cretaceous, New Jersey, Prather, 4.</td>
</tr>
<tr>
<td>Martin Canyon beds, Tertiary, Colorado, Matthew (W. D.), 2.</td>
</tr>
<tr>
<td>Martin limestone, Devonian, Arizona, Ransome, 10, 11, 14.</td>
</tr>
<tr>
<td>Martinez, California, Lawson (A. C.), 9.</td>
</tr>
<tr>
<td>Martinsburg shale, Ordovician, Virginia, Watson (T. L.), 17.</td>
</tr>
<tr>
<td>Maryville limestone, Cambrian, Tennessee, Keith, 1, 11.</td>
</tr>
<tr>
<td>Mascall formation, Tertiary, Oregon. Included in Miocene, Merriam (J. C.), 1.</td>
</tr>
<tr>
<td>Mascall formation, Tertiary, Oregon, Knowlton, 13.</td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901-1905, INCLUSIVE.

Geologic formations described—Continued.

Mascarene series, Devonian, Canada, Ells (R. W.), 17.

Mason shales, Carboniferous, West Virginia, White (I. C.), 7.

Matawan formation, Cretaceous, Dar­ton and Kelth, 1.

Matawan formation, Upper Cretaceous, Maryland, Shattuck, 5.

Matawan formation, Cretaceous, New Jersey, Berry, 5.

Matawan formation, Cretaceous, Atl­antie coast region, Clark (W. B.), 6.

Matawan formation, Cretaceous, Mary­land, Delaware, and New Jersey, Clark (W. B.), 6.

Matawan formation, Cretaceous, New Jersey, Knapp (G. N.), 2.

Matawan formation, Cretaceous, New Jersey, Prather, 4.

Mattfield shales, Carboniferous, Kansas, Prosser, 7.

Mattfield shales, Carboniferous, Kansas, Adams, Girty, and White, 1.

Mattfield shale, Carboniferous, Kansas, Prosser and Beede, 1.

Mattfield formation, Carboniferous, Kansas, Beebe and Sellards, 1.

Mauch Chunk formation, Carbonifer­ous, Maryland, Prosser, 3.

Mauch Chunk, Carboniferous, Pennsylvania, Stevenson (J. J.), 1.

Mauch Chunk formation, Carbonifer­ous, Maryland, Martin (G. C.), 1.

Mauch Chunk formation, Carbonifer­ous, Pennsylvania, Fuller (M. L.), 3.

Mauch Chunk, Lower Carboniferous, Appalachian region, Stevenson (J. J.), 4.

Mauch Chunk formation, Carbonifer­ous, Pennsylvania, Campbell (M. R.), 6, 8, 18.

Mauch Chunk shale, Carboniferous, Pennsylvania, Fuller and Alden, 1, 2.

Mauch Chunk formation, Carbonifer­ous, Pennsylvania, Butts, 4, 6, 7.

Mauch Chunk shale, Carboniferous, Pennsylvania, Richardson (G. B.), 3.

Mauch Chunk formation, Carbonifer­ous (Mississippian), Pennsylvania, Woolsey, 3.

Max Patch granite, Archean, North Carolina and Tennessee, Keith, 9, 11.

Maxville limestone, Carboniferous, Ohio, Prosser, 10.

Maxville limestone, Lower Carbonifer­ous, Ohio, Stevenson (J. J.), 4.

Maxville limestone, Carboniferous, Ohio, Orton and Peppel, 1.

Maysville, Ordovician, Ohio, Indiana, and Kentucky, Foerste, 12.

Maysville group, Ordovician, Kentucky, Nickles, 6.

Geologic formations described—Continued.

Meadville shales, Carboniferous, Penn­sylvania, Stevenson (J. J.), 4.

Medicine Lodge gypsum, Permian, Oklahoma, Gould, 9.

Medicine Lodge beds, Carboniferous, Kansas, Wooster, 1, 2.

Medicine Lodge gypsum member, Car­boniferous (Permian), Oklahoma, Gould, 14.

Medina, Silurian, New York, Grabau, 1.

Medina shales, Silurian, Canada, Ells (R. W.), 7.

Medina sandstone, Silurian, New Jersey, Weller, 6.

Medina shales, Silurian, Ohio, Prosser, 10.

Medina formation, Silurian, Canada, Cor­khill, 2.

Meguma series, Nova Scotia, Woodward, 1, 2.

Mellenia series, Tertiary, California, Hershey, 10.

Menominee series, Algonkian, Michigan, Bayley, 1.

Mentch limestone, Devonian, New York, Clarke and Luther, 1.

Mentor beds, included in the Dakota Cretaceous, Kansas, Jones (A. W.), 1.

Meramec group, Mississippian, Missis­sipi Valley, Ulrich, 8.

Merced series, California, Arnold and Arnold, 1.

Merced, California, Lawson (A. C.), 9.

Mercer group, included in Pottsville, Carboniferous, Pennsylvania, White and Campbell, 1.

Mercer group, Carboniferous, Appala­chian region, White (D.), 13.

Mercer limestone, Carboniferous, Ohio, Orton and Peppel, 1.

Merce shale, Carboniferous, Pennsylv­ania, Butts, 4, 6.

Merce (Tionesta) limestone, Carboniferous, Pennsylvania, Clapp, 4.

Merchantville clay, Cretaceous, New Jersey, Kimmel and Knapp, 1.

Merom group, Carboniferous, Illinois, Ashley, 1.

Merom sandstone, Carboniferous (?), Indiana, Newsom, 3.

Merom sandstone, Carboniferous, Indi­ana, Hopkins (T. C.), 11.

Mesa Verde formation, Cretaceous, Col­orado, Cross and Spencer, 1.

Michigan series, Carboniferous, Michi­gan, Russell, 6.

Michigan group, Carboniferous, Michi­gan, Grimsley, 6.

Michigan series, Carboniferous, Michi­gan, Gregory (W. M.), 3.

Michipicoten schists, Canada, Bell (J. M.), 3.

Middlesex shales, Devonian, New York, Clarke, 19, 20.

Middlesex black shale, Devonian, New York, Clarke and Luther, 1.
Geologic formations described—Continued.

Midway stage, included in Eocene, Tertiary, Louisiana, Harris, 2.

Milburn beds, Carboniferous, Texas, Hil1 (R. T.), 3.

Mibury limestone, Massachusetts, Perry and Emerson, 1.

Millersburg formation, Carboniferous, Indiana, Fuller and Ashley, 1.

Millersburg formation, Carboniferous, Indiana, Fuller and Clapp, 2.

Million beds, Ordovician, Kentucky, Nickles, 6.

Millsap division, Carboniferous, Texas, Taft, 4.

Millsap limestone, Carboniferous, Texas, Hill (R. T.), 3.

Millsap limestone, Carboniferous-Triassic, Colorado, Darton, 18.

Millstone grit, Carboniferous, Missouri, Adams (G. I.), 3.

Minnekahta limestone (Permian?), Carboniferous, Wyoming, Smith (W. S. T.), 1.

Minnekahta limestone, Carboniferous, Black Hills region and Wyoming, Jaggar, 5.

Minnekahta limestone, Carboniferous, South Dakota, Darton and Smith, 1.

Minnekahta limestone, Carboniferous (Permian), Black Hills region, Jaggar, 5.

Minnelusa formation, Carboniferous, Atlantic coast region, Darton and Keith, 1.

Monmouth formation, Cretaceous, Atlantic coast region, Darton and Keith, 1.

Monmouth formation, Cretaceous, Maryland, Shattuck, 5.

Mondale formation, Cretaceous, Atlantic coast region, Clarke (W. B.), 6.

Monongahela formation, Carboniferous, Maryland, Pressor, 3, 4.

Monongahela formation, Carboniferous, Maryland (included in Coal Measures, includes Pittsburg coal, Redstone limestone, Redstone coal, Sewickley limestone, Lower Sewickley coal, Upper Sewickley or Tyson coal, Sewickley sandstone, Uniontown coal, Uniontown sandstone, Waynesburg limestone, and Waynesburg coal), Clark and Martin, 5.

Monongahela formation, Carboniferous, Maryland, Martin (G. C.), 1.

Monongahela formation (includes Elk Garden coal, Tyson coal, Koontz coal), Carboniferous, Maryland, White (D.), 7.

Monongahela formation (includes Pittsburg coal, Redstone coal, Sewickley coal, Uniontown coal, Waynesburg coal), Carboniferous, Pennsylvania, White and Campbell, 1.

Monongahela formation, Carboniferous, Pennsylvania, Campbell (M. R.), 6, 8, 18.

Monongahela formation (Upper Productive Coal Measures), Carboniferous, Ohio, Pressor, 10.

Monongahela formation, Carboniferous, West Virginia, White (I. C.), 7.

Monongahela formation, Carboniferous, Maryland, Clark and Martin, 6.

Monongahela formation, Carboniferous, Maryland, Martin, 10.
Geologic formations described—Continued.

Monongahela formation, Carboniferous, Pennsylvania, Butts, 7.
Monongahela formation, Carboniferous, (Pennsylvanian), Pennsylvania, Woolsey, 3.

Monroe formation, Silurian, Michigan, Russell, 6, 23, 45.
Monroe shales, Devonian, New Jersey, Kimmell and Weller, 2.
Monroe beds, Pennsylvania series, Iowa, Boyer and Young, 1.
Monroe formation, Silurian, Ohio, Prosser, 10.
Monroe shale, Devonian, New York, Clarke, 20.
Monroe Creek beds, Tertiary, Nebraska, Peterson, 1.
Montana group, Cretaceous, Nebraska, Barbour (E. H.), 8.
Montana group, Cretaceous, South Dakota, Todd (J. E.), 15.
Montana group, Cretaceous, South Dakota, Todd and Hall, 3.
Montana formation, Cretaceous, Montana, Pirsson, 4.
Montauk drift, Quaternary, New York, Fuller, 29.
Monte Cristo diorite, probably pre-Permian, Alaska, Mendenhall and Schrader, 1.
Monterey series, California, Lawson and Palache, 1.
Monterey, California, Lawson (A. C.), 9.
Monterey, California, Osmon, 1.
Monterey series, Miocene, California, Arnold, 2.
Monterey shales, Miocene, California, Anderson (F. M.), 6.
Monterey shale, Miocene, California, Haehl and Arnold, 1.
Monterey shale, Neocene, California, Fairbanks, 7.
Monterey shales, Tertiary, California, Anderson, 7.
Monterey shale, Tertiary, California, Bagg, 9.
Montezuma schist, Algonkian?, North Carolina, Keith, 4.
Montijo conglomerate, Panama, Hershey, 5.
Monument Creek formation, Colorado, Lee (W. T.), 2.
Monument Creek formation, Tertiary, Darton, 23.
Moorefield shale, Carboniferous, Arkansas, Adams (G. I.), 15.

Geologic formations described—Continued.

Moorefield shale, Carboniferous, Arkansas, Ulrich, 5.
Mooselid diabase, Canada, McConnell, 5.
Moreau sandstone, Ordovician, Missouri, Gallagher, 1.
Morenci formation, Devonian, Arizona, Lindsen, 28, 29.
Morgantown sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Morgantown sandstone, member of Conemaugh formation, Carboniferous, Pennsylvania, Campbell (M. R.), 8, 18.
Morgantown sandstone, Carboniferous, Pennsylvania, Richardson (G. B.), 3.
Morgantown sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Morgantown sandstone, Carboniferous, Pennsylvania, Stone (R. W.), 7, 8.
Morita formation, Cretaceous, Arizona, Ransome, 10, 11, 14.
Morris granite, New York, Cushing, 10.
Morrison formation, Jurassic, Colorado, Lee (W. T.), 1.
Morrison shales, Cretaceous, Colorado, Lee (W. T.), 3.
Morrison clay, Jurassic or Lower Cretaceous, Wyoming, Smith (W. S. T.), 1.
Morrison formation, Cretaceous, South Dakota, Darton and Smith, 1.
Morrison formation, Jurassic, Black Hills region, Jaggar, 5.
Morrison shales, Cretaceous, Black Hills region and Wyoming, Darton, 16.
Morrison shale, Cretaceous, Wyoming, South Dakota, Darton, 14.
Morrison formation, Colorado and Wyoming, Stanton, 8.
Morrison formation, Jurassic, Colorado, Fenneman, 10.
Morrison shale, Cretaceous, Black Hills region, Darton, 18.
Morrison shale, Cretaceous, Wyoming and South Dakota, Darton and O'Farra, 1.
Morrow formation, Carboniferous, Arkansas, Adams (G. L.), 15.
Morrow formation, Carboniferous, Arkansas, Ulrich, 5.
Morrow formation, Carboniferous, Arkansas, Adams and Ulrich, 1.
Morrow formation, Carboniferous, Indiana Territory, Taff, 17.
Moscow shale, Devonian, New York, Clarke, 20.
Moscow shales, included in Hamilton Devonian, New York, Cleland, 2.
Moscow shale, Devonian, New York, Clarke and Luther, 1–3.
Mottled limestone (upper and lower), Ordovician, Canada, Dowling, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.
Mount Auburn beds, Ordovician, Ohio and Indiana, Nickles, 3.
Mount Auburn bed, Cincinnati series, Ordovician, Foerste, 8, 11.
Mount Auburn beds, Ordovician, Kentucky, Nickles, 6.
Mount Baker lava, Quaternary, Washington, Smith and Calkins, 1.
Mount Hope beds, Ordovician, Ohio and Indiana, Nickles, 3.
Mount Hope beds, Ordovician, Kentucky, Nickles, 6.
Mount Laurel sand, Cretaceous, New Jersey, Prather, 4.
Mount Pleasant conglomerate, Carboniferous, Pennsylvania, Stevenson (J. J.), 4.
Mural limestone, Cretaceous, Arizona, Ransome, 10, 11, 14.
Murat limestone, Ordovician, Virginia, Campbell (H. D.), 1.
Murray slate, Cambrian, North Carolina and Tennessee, Keith, 9, 11.
Myrtle formation, Cretaceous, Oregon, Diller, 4, 11.
Myrtle group, Cretaceous, Oregon, Louderback, 6.
Nabesna limestone, Permian, Alaska, Mendenhall and Schrader.
Nacotcho (Washington) sand, Louisiana, Ventch.
Naco limestone, Carboniferous, Arizona, Ransome, 11, 14.
Naknek formation, Jurassic, Alaska, Martin, 11.
Naknek formation, Jurassic, Alaska, Stanton and Martin, 1.
Nanjemoy formation or stage, Eocene, Maryland. Includes Patapsco and Woodstock members or substages.
Nantahala slate, Cambrian, North Carolina and Tennessee, Keith, 9.
Nanushak series, Cretaceous, Alaska, Schrader, 1, 3.
Naples beds, Devonian, New York, Clarke, 20.
Napoleon, Carboniferous, Michigan, Gregory (W. M.), 3.
Nasima series, Canada, McConnell, 5.
Natural Bridge limestone, Cambrian and Ordovician, Virginia, Campbell (H. D.), 1.
Navesink marls, included in Monmouth formation, Cretaceous, Maryland, Shattuck, 5.
Navesink marl, Cretaceous, New Jersey, Prather, 4.
Nebo quartzite, Cambrian, North Carolina and Tennessee, Keith, 9, 11.

Geologic formations described—Continued.
Nebraska beds, Tertiary, Nebraska, Peterson, 1.
Neocottla, Cretaceous, Mexico, Villarelo and Böse, 1.
Neocottla slates, Cretaceous, Mexico, Hall (C. E.), 1.
Needle Mountains group, Algonkian, Colorado, Cross and Howe, 3.
Negaunee formation, Algonkian, Bayley, 1.
Neosho member, Carboniferous, Kansas, Prosser and Beebe, 1.
Neosho member, Carboniferous, Kansas, Beebe and Sellsards, 1.
Neva limestone, Carboniferous, Kansas, Beebe, 6.
Neva limestone, Carboniferous, Kansas, Prosser, 7.
Neva limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Nebraska formation, Carboniferous, Kansas, Crevecoeur, 1.
Neva limestone, Carboniferous, Kansas, Prosser and Beebe, 1.
Nevada limestone, Nevada, Spurr, 6.
New Albany shale, Devonian of Indiana, Kindle, 1.
New Albany black shale, Devonian, Indiana, Siebenthal, 2.
New Albany black shale, Devonian, Indiana, Ashley, 2.
New Albany black shale (Genesee), Devonian, Indiana, Newsom, 3.
New Albany black shale, Devonian, Indiana, Hopkins (T. C.), 11.
Newark beds, Juratrias, New York, Eckel, 6.
Newark group, Juratrias, New Jersey, Merrill and others, 1.
Newark system, Atlantic coast region, Hobbs, 6.
Newark system, New Jersey, Knapp (C. N.), 1.
Newfoundland grit, Devonian, New Jersey, Kümmel and Weller, 2.
Newfoundland grit, Devonian, New Jersey, Weller, 6.
Newfoundland quartzite, Devonian, New York, Eckel, 6.
New Glasgow conglomerate, Pernian, Carboniferous, Canada, Fletcher, 1.
New Providence shale, included in Knobstone group, Carboniferous, Indiana, Newsom, 3.
Newman limestone, Carboniferous, Virginia, Stevenson (J. J.), 4.
Newman limestone, Carboniferous, Tennessee, Keith, 1, 11.
New Richmond sandstone, Ordovician, Illinois, Bain, 11.
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic formations described—Continued.

New Scotland beds, Devonian, New York, Van Ingen and Clark, 1.
New Scotland limestone, Devonian, Maryland, Schuchert, 7.
New Scotland beds, New York, Shinier, 5.
New Scotland beds, New York, Clarke, 20.
New Scotland limestone, Devonian, Maryland, Schuchert, 7.
Niagara formation, Silurian, Maryland, Prosser, 3.
Niagara group, Silurian, Illinois, Alden, 1.
Niagara beds, Silurian, Indiana, Kindle, 3.
Niagara group, Silurian, Indiana, Newson, 3.
Niagara group, Silurian, New York, Schneider, 1.
Niagara group, Silurian, Ohio, Prosser, 10.
Niagara limestone, Ontario, Parks, 4.
Niagara limestone, Silurian, Missouri, Gallaher, 1.
Niagara, Ontario, New York, Clarke, 20.
Niagara group, Silurian, Indiana, Kindle, 6.
Niagara limestone, Silurian, Indiana, Foerste, 11.
Niagara dolomite, Silurian, Illinois, Bain, 11.
Niagara formation, Silurian, Canada, Corkill, 2.
Niagara formation, Silurian, Maryland, Uhler, 1.
Niagara limestone, Silurian, Iowa, Udden (J. A.), 1.
Niagara limestone, Silurian, Michigan, Russell, 23, 45.
Niagara series, Silurian, Iowa, Savage, 8.
Nichols slate, Cambrian, North Carolina and Tennessee, Kelth, 9, 11.
Nikolai greenstone, Alaska, Schrader and Spencer, 1.
Nikolai greenstone, probably Carboniferous, Alaska, Mendenhall and Schrader, 1.
Nikolai greenstone, Carboniferous, Alaska, Mendenhall, 8.
Nineveh sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Nineveh limestone, Carboniferous, West Virginia, White (I. C.), 7.
Niobrara formation, Cretaceous, Black Hills, Darton, 1, 8.
Niobrara formation, Cretaceous, North Dakota, Babcock, 2.
Niobrara formation, Cretaceous, Colorado, Hatcher, 6.
Niobrara group, Cretaceous, Kansas, Lindgren, 8.

Niobrara formation, Cretaceous, South Dakota, Todd (J. E.), 9–11, 15.
Niobrara formation, Cretaceous, Nebraska, Barbour (E. H.), 8.
Niobrara formation, Cretaceous, South Dakota, Todd and Hall, 1–3.
Niobrara formation, Cretaceous, South Dakota, Darton and Smith, 1.
Niobrara formation, Cretaceous, Wyoming, Darton, 14.
Niobrara formation, Cretaceous, North Dakota, Leonard, 4.
Niobrara formation, Cretaceous, Colorado, Penneman, 10.
Niobrara formation, Cretaceous, Wyoming and South Dakota, Darton and O’Harra, 1.
Niobrara stage, Cretaceous, Wyoming, Trumbull, 1.
Nipigon series, Canada, Smith (W. N.), 1.
Nishnabotna stage, Cretaceous, Iowa, Udden, 8.
Noblesville dolomite, Silurian, Indiana, Kindle, 6.
Noel shale, Carboniferous, Arkansas, Adams (G. L.), 15.
Noel shale, Carboniferous, Arkansas, Ulrich, 5.
Nogales division, Tertiary, Arizona, Dumble, 7.
Nolichucky shale, Cambrian, Tennessee, Kelth, 1, 9, 11.
Nome series, Alaska, Brooks and others, 1.
Nome series, Paleozoic and Mesozoic, Alaska, Collier, 1.
Normanskill shale, Champlainic, New York, Clarke, 20.
Northbridge gneiss, Massachusetts, Perry and Emerson, 1.
North Haven greenstones, Maine, Smith (G. O.), 2.
North View sandstone and shale, Carboniferous, Missouri, Weller, 1.
Nulato sandstone, Alaska, Schrader and Spencer, 1.
Nunda formation, Devonian, Pennsylvania, Butts, 7.
Nussbaum formation, Neocene, Colorado, Hills, 1.
Nuttall sandstone, Carboniferous, West Virginia, Campbell (M. R.), 5.
Nuttall sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Oak Grove sands, Tertiary, Florida, Dall, 8.
Oak Grove sands, Tertiary, Florida, Maury, 1.
Oakland, California, Lawson (A. C.), 9.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Oakville Beds, Neocene, Texas, Dumble, 13.
Ocala limestone, Tertiary, Florida, Dall, 8.
Ocala nummulitic limestone, Tertiary, Florida, Maury, 1.
Ocoee formation, upper Paleozoic, Alabama, Smith (E. A.), 1.
Ogallala formation, Pliocene (?), Tertiary, Nebraska, Barbour (E. H.), 8.
Ogallala formation, Tertiary, Nebraska, Darton, 10, 18.
Ogallala (?) formation, Tertiary, South Dakota, Reagan, 5.
Ogden quartzite, Nevada, Spurr, 6.
Ogden quartzite, Devonian, Utah and Nevada, Berkey, 8.
Ogishke conglomerate, Algonkian, Minnesota, Clements, 3.
Ohara limestone, Mississippian, Kentucky, Ulrich, 8.
Ohara member, Carboniferous (Mississippian), Illinois, Bain, 19.
Ohio shale, Devonian, Ohio, Claypole, 5.
Ohio shale, Devonian, Ohio, Prosser, 10, 13.
Ohio shale, Devonian, Illinois, Bain, 19.
Ohio shale, Devonian, Illinois, Ulrich, 8.
Ohio River formation, post-Carboniferous (Tertiary?), Indiana, Ashley, 2.
Oil Lake group, Devonian, Pennsylvania, Stevenson (J. J.), 4.
Olean conglomerate, Carbonic, New York, Clarke, 20.
Olean conglomerate, Carboniferous, New York, Glenn, 1.
Olentangy shale, Devonian, Ohio, Prosser, 10, 13.
Olpe shales, Carboniferous, Kansas, Beede, 6.
Olpe shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Onaga limestone, Carboniferous, Kansas, Crevecoeur, 1.
Oneida Conglomerate, Champlainic, New York, Clarke, 20.
Oneonta beds, Devonian, New York, Clarke, 20.
Oneota limestone, Iowa, Beyer and Williams, 2.
Oneota dolomite, Ordovician, Illinois, Bain, 11.
Onondaga limestone, Devonian, New York, Grabau, 1, 9.
Onondaga, Ontario, Parks, 4.
Onondaga limestone, Devonian, New Jersey, Weller, 6.
Onondaga limestone, Devonian, New York, Schneider, 1.
Onondaga limestone, Devonian, New York, Van Ingen and Clark, 1.
Onondaga limestone, Devonian, New York, Clarke, 20.
Onondaga limestone, Devonian, Tennessee, Foerste, 7.
Onondaga limestone, Devonian, New York, Clarke and Luther, 1–3.
Onondaga formation, Silurian, Canada, Corkill, 2.
Onondaga limestone, New York, Shimer, 5.
Ontario, New York, Clarke, 20.
Oorang limestone, Carboniferous, Indiana Territory, Adams, Girty, and White, 1.
Opeche formation, Carboniferous, Black Hills, Darton, 1, 8.
Opeche, Permian, Carboniferous, South Dakota, Richardson (S. B.), 2.
Opeche formation (Permian?), Carboniferous, Wyoming, Smith (W. S. T.), 1.
Opeche formation, Carboniferous, Black Hills region and Wyoming, Darton, 16.
Opeche formation, Carboniferous, South Dakota; Darton and Smith, 1.
Opeche formation, Carboniferous, Wyoming, South Dakota, Darton, 14.
Opeche formation, Carboniferous, Black Hills region and Wyoming, Darton, 18.
Opeche formation, Carboniferous, Wyoming, and O'Harra, 1.
Opeche formation, Carboniferous, Wyoming and South Dakota, Darton, 26.
Orange sands, Texas, Dumble, 2.
Orange sand (Lafayette) formation, Tertiary (Pliocene), Mississippi, Logan, 2.
Orea series, Alaska, Schrader and Spencer, 1.
Oread limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.
Oregon bed, Ordovician, Kentucky, Miller (A. M.), 4.
Ordonian formation, California, Lawson and Palache, 1.
Orindan, California, Osmond, 1.
Oriskanian, Devonic, New York, Clarke, 20.
Oriskany sandstone, Devonian, Maryland, Prosser, 3.
Oriskany, Ontario, Parks, 4.
Oriskany beds, Devonian, New York, Grabau, 9.
Oriskany beds, Devonian, New York, Van Ingen and Clark, 1.
Oriskany beds, Devonic, New York, Clarke, 20.
Oriskany formation, Devonian, New Jersey, Weller, 6.
Oriskany formation, Devonic, Maryland, Schuchert, 7.
Oriskany formation, Devonian, Canada, Corkill, 2.
Oriskany limestone, New York, Shimer, 5.
Geologic formations described—Continued.

Oriskany period, Devonian, New York, Clarke and Luther, 3.

Oriskany quartzite, Devonian, New York, Clarke and Luther, 1.

Oriskany sandstone, Devonian, Missouri, Gallaher, 1.

Oriskany sandstone, Devonian, New York, Clarke and Luther, 1.

Osgood bed, Silurian, Kentucky and Tennessee, Foerste, 7.

Osgood bed, Silurian, Indiana, Foerste, 11.

Osgood beds, Silurian, Ohio, Prosser, 10.

Oso basalt, California, Fairbanks, 7.

Oswayo beds, Carbonic, New York, Clarke, 20.

Oswayo beds, Carboniferous, New York, Glenn, 1.

Oswayo formation, Devonico-Carboniferous, Pennsylvania, Fuller and Alden, 1, 2.

Oswego, Ontario, New York, Clarke, 20.

Otter marble, Tertiary (?), New Mexico, Herrick (C. L.), 6.

Otselic shale and sandstone, Devonian, New York, Clarke, 20.

Otterdale sandstones, Triassic, Virginia, Woodworth, 4.

Ouray limestones, Devonian, Colorado, Purlington, 3.

Ouray limestone, Devonian and Mississippian, Colorado, Cross (W.), 1, 3.

Ouray limestone, Devonian and Mississippian, Colorado, Cross and Howe, 1, 3.

Oxmoor sandstone, Carboniferous, Georgia, Hayes, 5.

Oxmoor, Carboniferous, Alabama, Stevenson (J. J.), 4.

Ozarkian, Hershey, 8.

Pacific sandstone, Cambro-Ordovician, Missouri, Bail, 1.

Pacific sandstone, Ordovician, Missouri, Ball and Smith, 1.

Pahasapa formation, Carboniferous, Black Hills region, Jaggar, 5.

Pahasapa limestone, Carboniferous, Black Hills, Darton, 1, 16, 18.

Pahasapa limestone, Carboniferous, Wyoming, South Dakota, Darton, 14.

Pahasapa limestone, Carboniferous, Wyoming, Darton and O'Hara, 1.

Pahasapa limestone, Carboniferous, Wyoming and South Dakota, Darton, 26.

Painted Desert beds, Triassic, Arizona, Ward (L. F.), 1, 5.

Painted Desert formation, Utah, Huntington and Goldthwait, 2.

Pasilade conglomerate, Tertiary, Alaska, Collier, 2.

Bull. 301—06—34

Geologic formations described—Continued.

Palisade diabase, Jurassic, New Jersey, Merrill and others, 1.

Galaxy sands, Cretaceous, Texas, Hill (A. T.), 3.

Paloduro beds, Miocene, Tertiary, Texas, Gidley, 4.

Pamunkey formation, Tertiary, Atlantic coast region, Darton and Keith, 1.

Pamunkey formation, Tertiary, Virginia, North Carolina, Darton, 7.

Pana formation, Hershey, 5.

Panama conglomerate, Carbonic, New York, Clarke, 20.

Panhandle beds, Miocene, Tertiary, Texas, Gidley, 4.

Parkville limestone, Carboniferous, Missouri, Gallaher, 1.

Parish limestone, Devonian, New York, Clarke and Luther, 1, 2.

Parsons limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Parsons limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.

Parting quartzite, Devonian, Colorado, Cross (W.), 5.

Passeyton formation, Cretaceous, Washington, Smith and Calkins, 1.

Paso Robles formation, Neocene, California, Fairbanks, 7.

Paspotansa member or substage, Eocene, Maryland. Included in Aquia formation or stage. Clark and Martin, 1.

Patapasco, Cretaceous, Maryland, Clark and Bibbins, 1.

Patapasco formation, lower Cretaceous, Maryland, Shattuck, 5.

Patton shale, Carboniferous, Pennsylvania, Butts, 7.

Patton shale, Carboniferous, Pennsylvania, Butts, 4.

Patton shale lentil of the Pocono formation, Carboniferous, Pennsylvania, Campbell (M. R.), 18.

Patuxent formation, Cretaceous, Maryland, Clark and Bibbins, 1.

Patuxent formation, Jurassic, Maryland, Shattuck, 5.

Patuxent formation, Cretaceous, Atlantic coast region, Clark (W. B.), 6.

Pawhuska limestone, Carboniferous, Indian Territory, Adams, Girty, and White, 1.

Pawnee Creek beds, Tertiary, Colorado, Matthew (W. D.), 2.

Pawnee limestone, Carboniferous, Kansas, Adams, Girty, and White, 1.

Pawnee limestone, Carboniferous, Kansas, Adams, Haworth, and Crane, 1.

Pawnee limestone, Carboniferous, Kansas, Beede and Rogers, 1.

Pawpaw formation, Cretaceous, Texas, Hill (R. T.), 3.

Paxton schist, Massachusetts, Perry and Emerson, 1.
Geologic formations described—Continued.

Payette formation, Tertiary, Idaho, Lindgren and Drake, 2.
Payne formation, Carboniferous, Oklahoma, Kirk, 1.
Peachbottom slates, Ordovician (?), Maryland, Mathews, 6.
Pegram limestone, Devonian, Kentucky and Tennessee, Foerste, 1.
Pella beds, included in St. Louis, Carboniferous, Iowa, Udden, 5.
Pella beds, included in St. Louis, Mississippian series, Iowa, Savage, 2.
Pelly gneisses, Alaska, Collier, 2.
Pelly gneiss, Archean (?), Alaska, Prindle, 2.
Pelona schist series, California, Hershey, 8.
Pendleton sandstone, Devonian, Indiana, Siebenthal, 2.
Pendleton sandstone, Devonian, Indiana, Hopkins (T. C.), 11.
Pennington shale, Carboniferous, Tennessee, Keith, 1.
Pennington shales, Carboniferous, Virginia, Stevenson (J. J.), 4.
Pensauken, Quaternary, New York, Veatch, 4.
Pensauken formation, Pleistocene, New Jersey, Salisbury, 1.
Pensauken formation, Quaternary, New Jersey, Kummel and Knapp, 1.
Peorian soil, Quaternary, Ohio, Prosser, 10.
Perry formation, Devonian, Maine, Smith and Perry, 1.
Perry group, Devonian, Canada, Eills (R. W.), 17.
Pescadero sandstones, Miocene, California, Anderson (F. M.), 6.
Petersburg formation, Carboniferous, Indiana, Fuller and Snyder, 1.
Petit Bourg series, West Indies, Spencer (J. W.), 2.
Phelps sandstone, Carboniferous, Missouri, Weller, 1.
Phelps sandstone, Carboniferous, Missouri, Adams (G. I.), 3.
Phoenix limestone lentil, Carboniferous, Utah, Keith, 13.
Pleaux andesite, Colorado, Cross and Howe, 1.
Pierre shale, Cretaceous, Black Hills, Dartin, 1, 8.
Pierre shale, Cretaceous, Colorado, Hills, 1.
Pierre formation, Cretaceous, North Dakota, Babcock, 2.
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic formations described—Continued.

Pittsburg limestone, Carboniferous, Maryland, Clark and Martin, 6.
Pittsburg limestone, Carboniferous, Pennsylvania, Clapp, 4.
Pittsford shale, Ontario, New York, Clarke, 20.
Pittsford shale, Silurian, New York, Hartnagel, 1.
Placita marl, Quaternary, New Mexico, Reagan, 1.
Platteville limestone, Ordovician, Illinois, Bain, 11.
Pluesonton beds, Carboniferous, Kansas, Wooster, 1, 2.
Plum Point marls, Miocene, Maryland, Shattuck, 10.
Pocahontas formation, Carboniferous, West Virginia, Campbell (M. R.), 5.
Pocono sandstone, Carboniferous, Maryland, Prosser, 3.
Pocono formation, Carboniferous, Maryland, Martin (G. C.), 1.
Pocono formation, Carboniferous, Pennsylvania, Fuller (M. L.), 3.
Pocono formation, Lower Carboniferous, Appalachian region, Stevenson (J. J.), 4.
Pocono sandstone, Carboniferous, Pennsylvania, Campbell (M. R.), 6, 8, 12.
Pocono formation, Carboniferous, Pennsylvania, Butts, 4, 6, 7.
Pocono formation, Carboniferous (Mississippian), Pennsylvania, Woolsey, 3.
Pocono formation, Carboniferous, Pennsylvania, Stone (R. W.), 6, 7.
Pogonip formation, Nevada, Spurr, 6.
Point Pleasant beds, Ordovician, Ohio, Nickles, 3.
Point Pleasant beds, Ordovician, Ohio, Foerste, 12.
Poison Canyon formation, Eocene (?), Colorado, Hills, 1.
Pokegama quartzite, included in Upper Huronian series, Algokian, Minnesota, Leith, 4.
Polk Bayou limestone, Ordovician, Missouri, Adams (G. I.), 3.
Polk Bayou limestone, Ordovician, Arkansas, Adams (G. I.), 15.
Polk Bayou limestone, Ordovician, Arkansas, Ulrich, 5.
Portage formation, Devonian, New York, Luther, 2.
Portage sandstone, Devonian, New York, Clarke, 19, 20.
Portage sandstones, Devonian, New York, Luther, 1, 2.
Portage-Chemung formation, Devonian, Canada, Corkill, 2.
Port Clarence limestone, Ordovician, Alaska, Collier, 1, 8.

Geologic formations described—Continued.

Port Ewen limestone, Devonian, New York, Van Ingen and Clark, 1.
Port Ewen limestone, Devonian, New York, Clarke, 20.
Port Ewen (Kingston) beds, Devonian, New York, Grafton, 9.
Port Ewen beds, New York, Shimer, 5.
Port Hudson, Louisiana, Vezch, 2.
Port Hudson clays, Columbia, Tertiary, Louisiana, Clendenin, 1.
Port Hudson stage, Quaternary, Louisiana, Harris, 2.
Port Hudson clays, Recent, Texas, Hayes and Kennedy, 1.
Portland shale, Devonian, New York, Clarke, 19, 20.
Potapaco member or substage, Eocene, Maryland, included in Nanjemoy formation or stage, Clark and Martin, 1.
Poteau group, Carboniferous, Indian Territory and Arkansas, Tall, 4.
Potomac formation, Cretaceous, Atlantic coast region, Darby and Keith, 1.
Potomac formation, Cretaceous, Virginia-North Carolina, Darby, 7.
Potomac group, Cretaceous, Jurassic, Maryland, Shattuck, 5.
Potomac group, Jurassic and Cretaceous, Maryland, Clark and Bibbins, 2.
Potomac group, Maryland. Includes Patuxent, Arundel, Patapsco, and Harritan formations, Clark and Bibbins, 1.
Potomac group, Mesozoic, Maryland, Shattuck, 3.
Potomac group, Cretaceous, Atlantic coast region, Clark (W. B.), 6.
Potosi limestone, Cambrian, Missouri, Kyes, 6.
Potosi limestone, Cambrian, Missouri, Nason, 2.
Potosi series, Cross (W.), 1.
Potosi limestone, Cambrian, Missouri, Nason, 5.
Potosi series, Colorado, Purlington, 3.
Potosi group, Cambrian and Ordovician, Missouri, Blanc and Urich, 2.
Potosi volcanic series, Colorado, Cross and Howe, 1.
Potsdam formation, Cambrian, New York, Cushing, 2.
Potsdam group, Cambrian, Illinois, Alden, 1.
Potsdam sandstone, Cambrian, Canada, Elles, 8.
Potsdam formation, Cambrian, Wisconsin, Weldman, 5.
Potsdam, Ordovician, Canada, Elles, 20.
Potsdam sandstone, Ordovician, Canada, Adams and LeRoy, 1.
Potsdam sandstone, Cambrian, New York, Cushing, 9, 10.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Potsdam sandstone, Cambrian, New York, Ogilvie, 6.
Pottawattamie formation, Carboniferous, Kansas, Rogers, 1.
Pottsville formation, Carboniferous, Maryland, Prosser, 3.
Pottsville formation, Carboniferous, Maryland. Included in Coal Measures. Includes Sharon sandstone, Sharon coal, Lower Connoquenessing sandstone, Quakertown coal, Upper Connoquenessing sandstone, Lower Mercer coal, Mount Savage fire-clay, Mount Savage or Upper Mercer coal, and Homewood sandstone, Clark and Martin, 5.
Pottsville formation, Carboniferous, Maryland, Martin (G. C.), 1.
Pottsville formation, Carboniferous, Pennsylvania, Fuller (M. L.), 3.
Pottsville formation, Carboniferous, Pennsylvania, Fuller (M. L.), 3.
Pottsville formation, Carboniferous, Pennsylvania, White and Campbell, 1.
Pottsville series, Carboniferous, West Virginia, Campbell, 5.
Pottsville beds, Carboniferous, New York, Glenn, 1.
Pottsville formation, Carboniferous, Ohio, Prosser, 10.
Pottsville formation, Carboniferous, Pennsylvania, Fuller and Alden, 1.
Pottsville conglomerate, Carboniferous, Pennsylvania and Ohio, Stevenson (J. J.), 4.
Pottsville series, Carboniferous, West Virginia, White (I. C.), 7.
Pottsville, Carboniferous, Appalachian region, Stevenson, 4.
Pulaski formation, Eocene, Oregon, Diller, 4.
Purisima formation, Pliocene, Tertiary, California, Haebl and Arnold, 7.
Putnam Hill limestone, Carboniferous, Ohio, Orton and Poppel, 1.
Pyburn limestone, subdivision of Linden bed, Devonian, Tennessee, Foerste, 7.
Quadrant formation, Carboniferous, Montana, Weed, 5.
Quartermaster division, Permian, Oklahoma, Gould, 9.
Quartermaster formation, Carboniferous (Permian), Oklahoma, Gould, 14.
Quinlivan formation, Carboniferous, West Virginia, Campbell, 5.
Ragged Point series, West Indies, Spencer (J. W.), 6.
Raleigh sandstone, Carboniferous, West Virginia, Campbell (M. R.), 5.
Raleigh sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Geologic formations described—Continued.

Rampart series, Devonian?, Alaska, Collier, 2.
Rampart formation, Devonian, Alaska, Prindle, 2.
Rancocas formation, Cretaceous, Atlantic coast region, Clark (W. B.), 6.
Randolph limestone, Arizona, Church, 1.
Randville dolomite, Algonkian, Michigan, Bayley, 1.
Raritan formation, Cretaceous, New York, Merrill and others, 1.
Raritan formation, Lower Cretaceous, Maryland, Shattuck, 5.
Raritan clay series, Cretaceous, New Jersey, Kümmel and Knapp, 1.
Raritan formation, Cretaceous, New Jersey, Knapp (G. N.), 2.
Rattlesnake formation, Tertiary, Oregon, included in Pliocene, Merriam (J. C.), 1.
Rattlesnake formation, Tertiary, Oregon, Knowlton, 14.
Ravenna plutonic series, California, Hersey, 9.
Reading blue limestone, Carboniferous, Kansas, Smith (A. J.), 4.
Reagan sandstone, Cambrian, Indian Territory, Taff, 3, 6.
Reagan sandstone, Cambrian, Indian Territory and Oklahoma, Taff, 13.
Red Bank sands, included in Monmouth formation, Cretaceous, Maryland, Shattuck, 5.
Redbank formation, Cretaceous, New Jersey, Prather, 4.
Red Beds, Permian, New Mexico, Reagan, 1.
Red Beds, Permian (?), Indian Territory and Oklahoma, Taff, 13.
Red Beds, Texas, Richardson (G. B.), 4.
Red Beds, Triassic, Black Hills region, Jayzag, 5.
Red Beds, Oklahoma, Gould, 14.
Red Beds, Carboniferous and Triassic, New Mexico, Keyes, 50.
Red Bluff epoch, Quaternary, California, Hershey, 14.
Red Bluff bed, Tertiary, Mississippi, Casey, 2.

Geologic formations described—Continued.

Red Bluff sandstone, Permian, Oklahoma, Gould, 9.
Red Bluff beds, Tertiary, Mississippi, Maury, 1.
Red Rock sandstone, Carboniferous, Iowa, included in Des Moines formation, Miller (B. L.), 1.
Redstone limestone, Carboniferous, West Virginia, White (J. C.), 7.
Redstone limestone, Carboniferous, Maryland, Clark and Martin, 6.
Redstone limestone, Carboniferous, Pennsylvania, Clapp, 4.
Red Wall group, Upper and Lower, Arizona, Reagan, 3.
Red Wall limestone, Nevada, Spurr, 6.
Reef bed, Tertiary, California, Anderson, 7.
Rensselaer grit, Silurian, New York, Dale, 5.
Reynosa beds, Neocene, Texas, Dumble, 13.
Reynosa limestone, Pliocene, Texas, Hayes and Kennedy, 1.
Rhinestreet black shales, Devonian, New York, Luther, 2.
Rhinestreet shales, Devonian, New York, Clarke, 19, 20.
Rhinestreet black shale, Devonian, New York, Clarke and Luther, 1.
Rhinestreet shale, Devonian, New York, Clarke and Luther, 2.
Riceville shales, included in Chemung, Devonian, Pennsylvania, Stevenson (J. J.), 4.
Richfield division, Carboniferous, Texas, Hill (R. T.), 3.
Richmond group, Ordovician, Kentucky and Tennessee, Foerste, 1.
Richmond formation, Ordovician, Kentucky, Foerste, 3.
Richmond group, Ordovician, Ohio and Indiana, Nickles, 3.
Richmond formation, Ordovician, Ohio, Prosser, 10.
Richmond group, Cincinnati series, Ordovician, Foerste, 8.
Richmond group, Ordovician, Ohio and Indiana, Nickles, 5.
Richmond limestone, Ordovician, Tennessee, Foerste, 6, 7.
Richmond formations, Ordovician, Indiana, Foerste, 11.
Richmond group, Ordovician, Kentucky, Nickles, 6.
Rico formation, Carboniferous, Colorado, Cross and Howe, 1.
Rico formation, Carboniferous (Pennsylvanian), Colorado, Cross (W.), 7.
Rico formation, Carboniferous (Pennsylvanian), Colorado, Cross and Howe, 3.
Rio Grande marls, Quaternary, New Mexico, Reagan, 1.
Río Grande drift, Pleistocene, Texas, Udden (John A.), 11.
Geologic formations described—Continued.

Ripley formation, Cretaceous, Alabama, Smith (E. A.), 2.
Ripley formation, Cretaceous, Missis-
ippi, Logan, 2.
Riversdale formation, Carboniferous, Can-
da, Aml, 40.
Roan gneiss, Archean, North Carolina, Ke-
ith, 4, 0, 12.
Roaring Creek sandstone (Upper Free-
port sandstone), Carboniferous, West
Virginia, White (I. C.), 7.
Rochester shale, Silurian, New York, Grabau, 1.
Rock Creek beds, Pleistocene, Texas, Gidley, 4.
Rockford limestone, Carboniferous, In-
diana, Siebenthal, 2.
Rockford goniatite limestone, Carbon-i-
ferous, Indiana, Newsom, 3.
Rockford goniatite limestone Missis-
sippian, Indiana, Hopkins (T. C.), 11.
Rockmart slate, Silurian, Georgia, Hay-
es, 5.
Rockwood formation, Silurian, Ten-
essee, Keith, 1.
Rockwood formation, Silurian, Ala-
abama and Georgia, Hayes, 5.
Rockwood formation, Cambrian and
Ordovician, Missouri, Bain and Ul-
rich, 2.
Rogersville shale, Cambrian, Ten-
essee, Keith, 1, 11.
Rome formation, Cambrian, Tennessee, Ke-
ith, 1, 11.
Rome formation, Cambrian, Alabama, Hayes, 5.
Romney formation, Devonian, Mary-
land, Prosser, 3.
Romney formation, Devonian, Mary-
land, Prosser, 12.
Roundout water lime, Silurian, New
York, Grabau, 1.
Roundout beds, Silurian, New
York, Van Ingen and Clark, 1.
Roundout formation, Silurian, New
York, Weller, 6.
Roundout formation, Silurian, New
York, Hartnagel, 1.
Roundout waterlime, Ontario, New
York, Clarke, 20.
Roundout waterlime, Silurian, New
York, Clarke and Luther, 3.
Rosamond series, Tertiary, California,
Hershey, 10.
Rosedale beds, Miocene, South Dakota,
Matthew and Gidley, 1.
Rosiclare member, Carboniferous (Mis-
sissippian), Illinois, Bahn, 19.
Rosiclare sandstone, Mississippian,
Kentucky, Ulrich, 8.
Roslyn formation, Tertiary, Wash-
ington, Smith (G. O.), 8, 13.
Ross limestone, subdivision of Linden
bed, Devonian, Tennessee, Foerste, 7.
Roubidoux sandstone, Ordovician, Mis-
souri, Gallaher, 1.
Geologic formations described—Continued.

St. Joe limestone, Mississippian, Missouri, Gould, 1, 2.
St. Joseph limestone, Cambrian, Missouri, Keyes, 6.
St. Joseph limestone, Cambrian, Missouri, Nason, 2, 5.
St. John beds, Devonian, New Brunswick, Matthew (G. F.), 4.
St. John terrane, Cambrian, Canada, Matthew (G. F.), 20.
St. Kitts gravels, West Indies, Spencer (J. W.), 4.
St. Louis, Carboniferous, Missouri, included in Mississippian series, Miller (B. L.), 1.
St. Louis, Mississippian series, Iowa, Leonard, 3.
St. Louis limestone, Mississippian series, Carboniferous, Iowa, Wilder, 3.
St. Louis limestone, Carboniferous, Kentucky, Ulrich and Smith, 1.
St. Louis limestone, Carboniferous, Missouri, Gallaher, 1.
St. Louis limestone, Carboniferous, Tennessee, Hayes and Ulrich, 1.
St. Louis stage, Mississippian series, Iowa, Beyer and Young, 1, 11.
St. Louis limestone, Carboniferous, Iowa, Eckel and Bain, 1.
St. Louis limestone, Carboniferous, Iowa, Machride, 4.
St. Louis limestone, Carboniferous (Mississippian), Illinois, Bain, 19.
St. Louis limestone, Mississippian, Mississippi Valley, Ulrich, 8.
St. Mary's formation, Miocene, Maryland, Clark (W. B.), 6.
St. Mary's formation, Miocene, Maryland, Shattuck, 10.
St. Peter group, Silurian, Illinois, Alden, 1.
St. Peter sandstone, Ordovician, Sardegan, 1.
St. Peter sandstone, Ordovician, Missouri, Gallaher, 1.
St. Peter sandstone, Ordovician, Ulrich, 5.
St. Peter sandstone, Wisconsin, Weidman, 5.
St. Peter sandstone, Ordovician, Illinois, Bain, 11.
St. Peter (“Crystal City”) sandstone, Ordovician, Missouri, Bain and Ulrich, 2.
St. Peters (Pacific) sandstone, Cambro-Ordovician, Van Horn, 1.
St. Stephens limestone, Tertiary, Alabama, Smith (E. A.), 2, 3.
St. Thomas sandstone, Ordovician, Missouri, Gallaher, 1.
Salamanca conglomerate, Carbonic, New York, Clarke, 20.
Salamanca conglomerate lentil, included in Cattaraugus beds, Devonian, New York, Glenn, 1.

Geologic formations described—Continued.

Salem limestone, Carboniferous, Indiana, Cumings, 1, 2.
Salina formation, Silurian, Maryland, Prosser, 3.
Salina formation, Silurian, New York, Van Ingen and Clark, 1.
Salina beds, Ontario, New York, Clarke, 20.
Salina formation, Ontario, Maryland, Schuchert, 7.
Salina formation, Silurian, New York, Serle, 2.
Salina period, Silurian, New York, Schaeider, 1.
Salmon formation, pre-Cretaceous, California, Hershey, 2.
Saltville limestone, Cincinnati group, Ordovician, Tennessee, Foerste, 6.
Saline Creek cave-conglomerate, Carboniferous, Missouri, Ball, 1.
Saline Creek cave-conglomerate, Carboniferous, Missouri, Ball and Smith, 1.
Saline Creek cave-conglomerate, Pennsylvanian, Missouri, Van Horn, 1.
Salt Mountain limestone, Tertiary, Alabama, Maury, 1.
Saltsburg sandstone, member of Conemaugh formation, Carboniferous, Pennsylvania, Campbell (M. R.), 8, 18.
Saltsburg sandstone, Carboniferous, Pennsylvania, Butts, 4, 6, 7.
Saltsburg sandstone, Carboniferous, Pennsylvania, Richardson (G. B.), 3.
Saltsburg sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Saltsburg sandstone, Carboniferous, Pennsylvania, Stone (R. W.), 7, 8.
Saltsburg sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Saluda bed, Ordovician, Kentucky, Foerste, 3.
Saluda bed, Ordovician, Ohio, Prosser, 10.
Saluda beds, Ordovician, Kentucky, Nickles, 6.
San Carlos formation, Pleistocene, Panama, Hershey, 5.
San Salvador series, Carboniferous, New Mexico, Herrick (C. L.), 3.
San Diego formation, Pliocene, California, Arnold, 2.
Sandusky limestone, Devonian, Ohio, Prosser, 10, 13.
San Emidio series, California, Hershey, 9.
San Francisco sandstone, California, Osmond, 1.
Sangamon soil, Quaternary, Ohio, Prosser, 10.
Sangamon, Pleistocene, Iowa, Udden, 2.
Sangamon deposits, Quaternary, Indiana and Illinois, Fuller and Clapp, 2.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

San Joaquin clays, Tertiary, California, Anderson, 7.
San Juan formation, Colorado, Cross (W.), 1.
San Juan tuff, Tertiary volcanic, Colorado, Cross and Howe, 1.
San Juan breccias, Colorado, Purington, 3.
Sankaty beds, Quaternary, New York, Veatch, 4.
Sankaty beds, Quaternary, Massachusetts, Fuller, 29.
San Luis formation, Juratrices ?, California, Fairbanks, 7.
San Miguel cherts, California, Lawson (A. C.), 9.
San Pablo, California, Lawson (A. C.), 9.
San Pablo, California, Osmont, 1.
San Pedro epoch, Quaternary, California, Hershey, 14.
San Pedro series, Pleistocene, California, Arnold and Arnold, 1.
Santa Clara epoch, Quaternary, California, Hershey, 14.
San Felé schists, Cuba, Hayes, Vaughan, and Spencer, 1.
Santa Margarita formation, Neocene, California, Fairbanks, 7.
Santo Domingo rhyolite, Mexico, Hill (R. T.), 15.
Saracachi formation, Mexico, Hill (R. T.), 15.
Saranac formation, New York, Cushing, 10.
Saratoga formation, Cretaceous, Arkansas, Taff, 5.
Saratogian, Cambrian, New York, Clarke, 20.
Saratogian, proposed for Upper Cambrian, Walcott, 8.
Saugus division, Pliocene, Tertiary, California, Hershey, 10.
Sausalito cherts, California, Lawson (A. C.), 9.
Savanna sandstone, Carboniferous, Indiana Territory, Taff, 2–4.
Saxicava sand, Canada, Coleman, 6.
Scanlan conglomerate, Cambrian ?, Arizona, Ransome, 13.
Schultze granite, pre-Cambrian, Arizona, Ransome, 6, 13.
Schunnenuck conglomerate, Devonian, New York, Eckel, 6.
Seafort limestone, West Indies, Spencer (J. W.), 1.
Secret Canyon shales, Nevada, Spurr, 6.
Seeley slate, pre-Cambrian, Wisconsin, Weldman, 5.
Sellersburg beds, Devonian, Indiana, Kindle, 1.

Geologic formations described—Continued.

Sellersburg limestone, Devonian, Indiana, Siebenthal, 2.
Sellersburg limestone, included in Hamilton, Devonian, Indiana, Newsom, 3.
Sellersburg limestone, Devonian, Indiana, Hopkins (T. C.), 11.
Seminole conglomerate, Carboniferous, Indian Territory, Taff, 2.
Selma chalk, Cretaceous, Alabama, Smith (E. A.), 2, 3.
Selma chalk (Rotten limestone), Cretaceous, Mississippi, Logan, 2.
Seneca group, Devonian, New York, Schneider, 1.
Senee, Devonian, New York, Clarke, 20.
Senora formation, Carboniferous, Indian Territory, Taff, 2.
Setters quartzite, Maryland, Mathews and Miller, 1.
Setters quartzite, Cambrian, Maryland, Mathews, 6.
Severy shales, Carboniferous, Kansas, Beede, 6.
Severy shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Sevier shale, Ordovician, Tennessee, Keith, 1, 11.
Sewell formation, Carboniferous, West Virginia, Campbell (M. R.), 2, 5.
Sewickley limestone, Carboniferous, West Virginia, White (I. C.), 7.
Sewickley sandstone, Carboniferous, West Virginia, White (I. C.), 7.
Sewickley limestone, Carboniferous, Maryland, Clark and Martin, 6.
Sewickley sandstone, Carboniferous, Pennsylvania, Clapp, 4.
Sewickley sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Shady limestone, Cambrian, Tennessee, Keith, 4, 9, 11.
Shady marble, Cambrian, North Carolina, Keith, 12.
Shaffer shale, Devonian, New York, Clarke, 20.
Shaffer beds, Cretaceous, Texas, Udden (Johan A.), 11.
Shakopee dolomite, Ordovician, Illinois, Bain, 11.
Sharon conglomerate, Carboniferous, Ohio, Prosser, 10.
Sharon conglomerate, member of Pots ville formation, Carboniferous, Pennsylvania, Fuller and Alden, 1, 2.
Sharpsville sandstone, Carboniferous, Pennsylvania, Stevenson (J. J.), 4.
Sharon sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Shasta-Chico, California, Lawson (A. C.), 9.
Shasta-Chico series, Cretaceous, California, Lawson and Palache, 1.
Shasta-Chico series, Cretaceous, California, Osmont, 1.
Geologic formations described—Continued.

Shawangunk conglomerate, Silurian, New Jersey, Weller, 6.
Shawangunk grit and conglomerate, Silurian, New York, Hartnagel, 2.
Shell Bluff group, Tertiary, Georgia, Manry, 1.
Shell Bluff group, Tertiary, Florida, Dall, 8.
Shenandoah limestone, Cambro-Ordovician, Virginia, Watson (T. L.), 17.
Shenandoah limestone, Devonian, Virginia, Weller, 6.
Shell Bluff group, Tertiary, New York, Dall, 8.
Shell Bluff group, Tertiary, New York, Hartnagel, 2.
Shell Bluff group, Tertiary, New York, Clarke and Luther, 3.
Sheppard quartzite, Algonkian, Montana, Willis, 6.
Sherburne flags, Devonian, New York, Clarke and Luther, 3.
Sherburne sandstone, Devonian, New York, Soper, 20.
Sheridan (Equus) beds, Pleistocene, Texas, Gidley, 4.
Sherwood limestone, Cambrian, Virginia, Campbell (H. D.), 1.
Shiloh marl, Tertiary, New Jersey, Kümmel and Knapp, 1.
Shimler gyspum, Permian, Oklahoma, Gould, 9.
Shimler gyspum member, Carboniferous (Permian), Oklahoma, Gould, 14.
Shinarump, Triassic, Arizona, Ward (L. P.), 5.
Shinarump, Triassic, Arizona, Ward (L. F.), 5.
Shumla sandstone, Devonian, New York, Clarke, 20.
Sierian, Hershey, 8.
Siesta formation, California, Lawson and Palache, 1.
Silo sandstone, Cretaceous, Idaho Territory, Taff, 3, 6.
Silver Creek shale, Devonian, New York, Clarke, 19.
Silver Creek limestone, Devonian, Indiana, Siebenthal, 2.
Silver Creek hydraulic limestone, included in: Hamilton, Devonian, Indiana, Newsom, 3.
Silver Creek hydraulic limestone, Devonian, Indiana, Hopkins (T. C.), 11.
Silverton series, Colorado, Purington, 3.
Silverton series, Colorado, Cross (W.), 1.
Silverton volcanic series, Colorado, Cross and Howe, 1.
Simpson formation, Ordovician, Indian Territory, Taff, 3, 6, 13.
Sioux quartzite, Algonkian, South Dakota, Todd (J. E.), 9–11.
Sioux quartzite, Algonkian, South Dakota, Todd and Hall, 1.
Siyuh limestone, Algonkian, Montana, Willis, 6.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Stafford limestone, Devonian, New York, Wood (Elvira), 1.

Stafford limestone, Devonian, New York, Talbot, 1.

Stafford limestone, Devonian, New York, Clarke and Luther, 1.

Standish flags and shales, Devonian, New York, Clarke and Luther, 1.

Standley shale, Silurian, Indian Territory, Taft, 3.

Stanton limestone, Carboniferous, Kansas, Adams, Girty and White, 1.

Stark Peak formation, Nevada, Spurr, 6.

Starmount limestones, Cambrian, Montana, Weed, 5.

Stepovak series, Eocene, Alaska, Palache, 3.

Stewart shale, Carboniferous, Indian Territory, Taff, 2.

Stockbridge dolomite, Silurian, New York, Merrill and others, 1.

Stockbridge limestone, Cambro-Silurian, New York, Eckel, 6.

Stockbridge limestone, New York, Eckel, 30.

Stockton, included in Newark, New Jersey, Knapp (G. N.), 1.

Stormville sandstone, Devonian, New Jersey, Weller, 6.

Strawn division, Carboniferous, Texas, Taft, 4.

Stringtown shale, Silurian, Indian Territory, Taft, 3.

Strong City beds, Carboniferous, Kansas, Wooster, 1, 2.

Sturgeon quartzite, Algonkian, Michigan, Bayley, 1.

Stuver series, pre-Devonian, Alaska, Schrader, 1, 3.

Stylolol or Genundewa limestone, Devonian, New York, Luther, 2.

Sub-Blairsville shale, member of the Chemung formation, Devonian, Pennsylvania, Campbell (M. R.), 18.

Summerhill sandstone, Carboniferous, Pennsylvania, Butts, 7.

Summer stage, Carboniferous, Kansas, Prosser, 7.

Sunbury shale, Carboniferous, Ohio, Prosser, 1, 6, 10.

Sunbury shale, Carboniferous, Ohio, Prosser and Cumings, 1.

Sundance formation, Jurassic, Black Hills, Dorton, 1, 8.

Sundance formation, Jurassic, Wyoming, Smith (W. S. T.), 1.

Sundance formation, Jurassic, Black Hills region, Wyoming and Colorado, Dorton, 16.

Sundance formation, Jurassic, South Dakota, Dorton and Smith, 1.

Sundance formation, Jurassic, Wyoming and South Dakota, Dorton, 14.

Sundance formation, Jurassic, Black Hills region and Wyoming, Dorton, 18.

Sundance formation, Jurassic, Wyoming, Dorton, 26.

Sundance formation, Jurassic, Wyoming and South Dakota, Dorton and O'Hara, 1.

Sunderland formation, Quaternary, Maryland, Shattuck, 5.

Swan Creek limestone, Cincinnati group, Ordovician, Tennessee, Poerste, 6.

Swauk formation, Tertiary, Washington, Smith and Calkins, 1.

Sycamore sandstone, Carboniferous, Indiana Territory, Taft, 6, 13.

Sylvania sandstone, Silurian, Ohio, Prosser, 10.

Syracuse salt, Ontario, New York, Clarke, 20.

Taconic, New York, Clarke, 20.

Tahkandit series, Permian, Alaska, Collier, 2.

Talbot formation, Pleistocene, Atlantic coast region, Clark (W. R.), 6.

Talbot formation, Quaternary, Maryland, Shattuck, 5.

Talihina chert, Silurian, Indian Territory, Taft, 3.

Tampa limestone, or Orbitolite bed, Tertiary, Florida, Dall, 8.

Tampa silex beds, Tertiary, Florida, Dall, 8.

Tampa limestone, Tertiary, Florida, Maury, 1.

Tanana schists, pre-Silurian, Alaska, Mendenhall, 8.
Geologic formations described—Continued.

Taylor formation, Cretaceous, Texas, Hill (R. T.), 3.
Taylor marl, Cretaceous, Texas, Hill and Vaughan, 1.
Teay formation, Pleistocene, West Virginia, Campbell (M. R.), 2.
Tecumseh shales, Carboniferous, Kansas, Beede, 6.
Tecumseh shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Tejon, California, Lawson (A. C.), 9.
Tejon, Tertiary, California, Osmont, 1.
Tellico sandstone, Ordovician, Tennessee, Keith, 1, 11.
Telluride conglomerate, Tertiary, Colorado, Cross and Howe, 1, 3.
Temblor beds, Tertiary, California, Anderson, 7.
Tensleep sandstone, Carboniferous, Wyoming, Darton, 16, 18.
Tetelna volcanics, Upper Paleozoic, Alaska, Mendenhall, 8.
Thessalon series, Canada, Van Hise and others, 1.
Thetis group, Mesozoic, Alaska, Collier, 8.
Thompson Creek beds, Tertiary, Montana, Douglass, 4.
Thoroughfare volcanics, Maine, Smith (G. O.), 2.
Thurmond sandstone, Carboniferous, Indiana Territory, Taff, 2.
Thurmond formation, Carboniferous, West Virginia, Campbell, 5.
Tichenor limestone, Devonian, New York, Clarke, 20.
Tichenor limestone, Devonian, New York, Clarke and Luther, 1.
Titectonandesite, Quaternary, Washington, Smith (G. O.), 7.
Tilton limestone lentil, Carboniferous, Utah, Keith, 13.
Timpas formation, Cretaceous, Colorado, Hills, 1.
Tishbury sands, referred to Iowan glacial stage, Fuller (M. L.), 40.
Tishomingo granite, pre-Cambrian, Indiana Territory, Taff, 3, 6.
Tombstone beds, Carboniferous, Arizona, Church, 1.
Tonto formation, Arizona, Reagan, 3.
Tonto shale and sandstone, Nevada, Spurr, 6.
Toro limestone, Panama, Hershey, 5.
Toro formation, Cretaceous, California, Fairbanks, 7.
Totson series, Silurian, Alaska, Schrader, 1, 3.
Toughnut quartzite, Arizona, Church, 1.

Geologic formations described—Continued.

Toughnut series, Arizona, Blake (W. P.), 8.
Traders member of Vulcan formation, Algokian, Michigan, Bayley, 1.
Traverse group, Devonian, Michigan, Graham, 2, 5.
Traverse group, Devonian, Michigan, Russell, 6.
Traverse series, Upper Devonian, Michigan. Exact synonym, Thunder Bay series, Grabau, 5.
Travis Peak formation, Cretaceous, Texas, Hill (R. T.), 3.
Travis Peak formation, Cretaceous, Texas, Hill and Vaughan, 1.
Trenton limestone, Ordovician, New Jersey, Kümmel and Weller, 1.
Trenton limestone, Ordovician, New Jersey, Weller, 3.
Trenton, Silurian, Illinois, Alden, 1.
Trenton formation, Ordovician, Ohio, Nickles, 3.
Trenton limestone, Ordovician, Canada, Ells (R. W.), 7, 8.
Trenton limestone, Ordovician, Ohio, Bownocker, 3, 5.
Trenton limestone, Ordovician, Ohio, Perkins, 7, 11.
Trenton limestone, Champlainic, New York, Clarke, 20.
Trenton limestone, Ordovician, Missouri, Gallacher, 1.
Trenton limestone, Ordovician, New Jersey, Weller, 6.
Trenton limestone, Ordovician, Ohio, Prosser, 10.
Trenton stage, Ordovician, Pennsylvania, Collie, 3.
Trenton, Ordovician, Indiana, Foerste, 11.
Trenton clays, Cretaceous, New Jersey, Kümmel and Knapp, 1.
Trenton limestone, Ordovician, Alabama, Smith (E. A.), 3.
Trenton, Ordovician, Kentucky, Miller (A. M.), 4.
Trenton formation, Ordovician, New York, Cushing, 10.
Trenton group, Ordovician, Canada, Adams and Le Roy, 1.
Trenton limestone, Ordovician, Canada, Ells (R. W.), 20.
Trenton limestone, Ordovician, Michigan, Russell, 23.
Trenton limestone, Ordovician, New York, Cushing, 9.
Trenton limestone, Ordovician, New York, Ogilvie, 6.
Tribune limestone, Carboniferous (Mississippian), Illinois, Bain, 19.
Tribune limestone, Mississippian, Illinois Valley, Ulrich, 8.
Trincheras division, Tertiary, Arizona, Dumble, 7.
Trinidad sandstone, Cretaceous, Colorado, Hills, 1.
<table>
<thead>
<tr>
<th>Geologic formations described—Continued.</th>
<th>Geologic formations described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity division, Cretaceous, Texas,</td>
<td>Unkar formation, Nevada, Spurr, 6.</td>
</tr>
<tr>
<td>Hill (R. T.), 3.</td>
<td>Unkppapa sandstone, Jurassic, Black</td>
</tr>
<tr>
<td>Trinity sand, Cretaceous, Arkansas,</td>
<td>Hills, Darton, 1, 8, 10, 15.</td>
</tr>
<tr>
<td>Taff, 5.</td>
<td>Unkppapa sandstone, Jurassic, South</td>
</tr>
<tr>
<td>Trinity sandstone, Cretaceous, Indian</td>
<td>Dakota, Darton and Smith, 1.</td>
</tr>
<tr>
<td>Territory, Taff, 3, 6.</td>
<td></td>
</tr>
<tr>
<td>Truckee formation, Nevada, Spurr, 6.</td>
<td>Unte limestone, Silurian, Utah and Ne-</td>
</tr>
<tr>
<td>Truckee beds, Nevada, Louderback, 4.</td>
<td>va, Dakota, Perkey, 8.</td>
</tr>
<tr>
<td>Tulare formation, Tertiary, California,</td>
<td>Untica, Ordovician, Vermont, Perkins, 7,</td>
</tr>
<tr>
<td>Anderson, 7.</td>
<td>11.</td>
</tr>
<tr>
<td>Tularosa formation, New Mexico, Herr-</td>
<td>Untica shale, Ordovician, Ohio and In-</td>
</tr>
<tr>
<td>rick (C. L.), 6.</td>
<td>dia, Nickles, 3.</td>
</tr>
<tr>
<td>Tule Spring limestone, Carboniferous,</td>
<td>Untica shale, Ordovician, Canada, Ellis</td>
</tr>
<tr>
<td>Arizona, Lindgren, 28, 29.</td>
<td>(R. W.), 7, 8.</td>
</tr>
<tr>
<td>Tulahoma formation, Carboniferous,</td>
<td>Untica formation, Ordovician, Canada,</td>
</tr>
<tr>
<td>Tulahoma formation, Carboniferous</td>
<td>Untica shale, Ordovician, Ohio, Prosser,</td>
</tr>
<tr>
<td>(Mississippian), Illinois, Bain, 19.</td>
<td>10.</td>
</tr>
<tr>
<td>Tulahoma formation, Mississippian</td>
<td>Untica stage, Ordovician, Pennsylvania,</td>
</tr>
<tr>
<td>Mississippi Valley, Ulrich, 8.</td>
<td>Collis, 3.</td>
</tr>
<tr>
<td>Tully limestone, Devoniann, New York,</td>
<td>Untica formation, Ordovician, Indiana,</td>
</tr>
<tr>
<td>Claypole, 5.</td>
<td>Foerste, 11.</td>
</tr>
<tr>
<td>Tully limestone, Devoniann, New York,</td>
<td>Untica formation, Cambro-Silurian, Can-</td>
</tr>
<tr>
<td>Loomis, 4.</td>
<td>ada, Corkill, 2.</td>
</tr>
<tr>
<td>Tully limestone, Devoniann, New York,</td>
<td>Untica formation, Ordovician, Michi-</td>
</tr>
<tr>
<td>Schneider, 1.</td>
<td>gan, Russell, 23.</td>
</tr>
<tr>
<td>Tully limestone, Devonic, New York,</td>
<td>Untica formation, Ordovician, New York,</td>
</tr>
<tr>
<td>Clarke, 20.</td>
<td>Cushing, 9, 10.</td>
</tr>
<tr>
<td>Tully limestone, Devonian, New York,</td>
<td>Untica shale, Ordovician, Canada, Ad-</td>
</tr>
<tr>
<td>Clarke and Luther, 1, 3.</td>
<td>ms and Le Roy, 1.</td>
</tr>
<tr>
<td>Turnley hornstones (Spokane shale?),</td>
<td>Untica shale, Ordovician, Canada, Ellis</td>
</tr>
<tr>
<td>Tuscaloosa formation, Cretaceous, Ala-</td>
<td>Uvalde formation, Neocene, Tertiary,</td>
</tr>
<tr>
<td>Tuscan tuft, California, Anderson (F.</td>
<td>Valdes series, Silurian?, Alaska,</td>
</tr>
<tr>
<td>M.), 2.</td>
<td>Schrader and Spencer, 1.</td>
</tr>
<tr>
<td>Tuscarora formation, Silurian, Mary-</td>
<td>Valdez formation, Silurian, Alaska,</td>
</tr>
<tr>
<td>land, Prosser, 3.</td>
<td>Mendenhall, 8.</td>
</tr>
<tr>
<td>Tuscumbia, Carboniferous, Alabama,</td>
<td>Valliceto conglomerate, Algonkian,</td>
</tr>
<tr>
<td>Stevenson (J. J.), 4.</td>
<td>Colorado, Cross and Howe, 3.</td>
</tr>
<tr>
<td>Twelvemile beds, Tertiary, Alaska, Col-</td>
<td>Vallienar series, Upper Paleozoic?,</td>
</tr>
<tr>
<td>Tynoeelchee member (?) Silurian, Ohio,</td>
<td>Vancouver series, Triassic, Canada,</td>
</tr>
<tr>
<td>Prosser, 10.</td>
<td>Haycock, 3.</td>
</tr>
<tr>
<td>Tyner formation, Ordovician, Indian</td>
<td>Vancouver series, Triassic, Canada,</td>
</tr>
<tr>
<td>Territory, Taff, 17.</td>
<td>Webster, 1.</td>
</tr>
<tr>
<td>Tyrooe beds, Ordovician, Kentucky,</td>
<td>Vancouver series, Triassic and Jurassic,</td>
</tr>
<tr>
<td>Uffligton shale, Carboniferous, West</td>
<td>Van Horn formation, Cambrian, Texas,</td>
</tr>
<tr>
<td>Usterlan, Devonic, New York, Clarke, 20</td>
<td>Vanport limestone, Carboniferous, West</td>
</tr>
<tr>
<td>York, Prosser, 11.</td>
<td>Vanport or Ferriferous limestone, Car-</td>
</tr>
<tr>
<td>Uncompaghre formation, Algonkian, Colo-</td>
<td>boniferous, Maryland, Clark and Mar-</td>
</tr>
<tr>
<td>rado, Cross (W.), 7.</td>
<td>tin, 6.</td>
</tr>
<tr>
<td>Uncompaghre formation, Algonkian, Co-</td>
<td>Vanport limestone, Carboniferous, Pen-</td>
</tr>
<tr>
<td>lorado, Cross and Howe, 1, 3.</td>
<td>nsylvania, Clapp, 4.</td>
</tr>
<tr>
<td>Unicol formation, Cambrian, North</td>
<td>Vanport limestone, Carboniferous, Pen-</td>
</tr>
<tr>
<td>Carolina and Tennessee, Keith, 4.</td>
<td>nsylvania, Stone, 8.</td>
</tr>
<tr>
<td>Union shale, Devoniann, Montana, Weed, 5</td>
<td>Vanport limestone, Carboniferous, Pen-</td>
</tr>
<tr>
<td>Union formation, Carboniferous, Can-</td>
<td>nsylvania, Woolsey, 3.</td>
</tr>
<tr>
<td>ada, Ami, 40.</td>
<td>Vanport limestone lentil, Carbonifer-</td>
</tr>
<tr>
<td>Maryland, Clark and Martin, 6.</td>
<td>Vanport limestone, Carboniferous, Pen-</td>
</tr>
<tr>
<td></td>
<td>nsylvania, Butts, 4, 6.</td>
</tr>
<tr>
<td></td>
<td>Vaquero sandstone, Miocene, Tertiary,</td>
</tr>
<tr>
<td></td>
<td>California, Haeil and Arnold, 1.</td>
</tr>
</tbody>
</table>
Geologic formations described—Continued.

Vaguer sandstone, Neocene, California, Fairbanks, 7.

Verdi beds, included in St. Louis, Mississippian series, Iowa, Savage, 2.

Verdi beds, Upper and Lower, included in St. Louis, Carboniferous, Iowa, Udden, 5.

Verkin, Upper and Lower, Permian, Utah, Huntington and Goldthwait, 1.

Vernon shale, Ontarian, New York, Clarke, 20.

Versailles beds, Ordovician, Kentucky, Nickles, 6.

Versailles bed, Ordovician, Ohio, Indiana, and Kentucky, Foerste, 12.

Vicksburg group, Tertiary, Louisiana, Lerch, 2.

Vicksburg stage, included in Oligocene, Tertiary, Louisiana, Harris, 2.

Vicksburg limestone, Tertiary, Florida, Dall, 9.

Vicksburg stage, Tertiary, Mississippi, Casey, 2.

Vicksburg limestone, Tertiary, Gulf region, Maury, 1.

Vilas shales, Carboniferous, Kansas, Adams, Girty, and White, 1.

Vilas shale, Carboniferous, Kansas, Adams, Havworth, and Crane, 1.

Vinal Haven acid volcanics, Maine, Smith (G. O.), 2.

Vinita beds, Triassic, Virginia, Woodworth, 4.

Viola limestone, Ordovician, Indiana Territory, Taff, 3, 6.

Viola limestone, Ordovician, Indiana Territory and Oklahoma, Taff, 13.

Viola limestone, Ordovician, Oklahoma, Gould, 13, 14.

Virginia slate, included in Upper Huronian series, Algonkian, Minnesota, Leith, 4.

Vola limestone, Cretaceous, Texas, Dumble, 12.

Vulcan formation, Algonkian, Michigan, Bayley, 1.

Wabash group, Carboniferous, Illinois, Indiana, Ashley, 1.

Wabash formation, Carboniferous, Indiana, Fuller and Clapp, 2.

Wabaunsee stage, Carboniferous, Kansas, Prosser, 7.

Walden sandstone, Carboniferous, Georgia, McCallie, 9.

Waldrup division, Carboniferous, Texas, Hill (R. T.), 3.

Waldron shaly clay, Silurian, Tennessee, Foerste, 7.

Waldron clay, Silurian, Indiana, Foerste, 11.

Wales series, Lower Paleozoic?, Alaska, Brooks, 4.

Walnut clay, Cretaceous, Texas, Hill and Vaughan, 1.

Washington limestone, Ordovician, Vermont, Richardson (C. H.), 2.

Washington limestone, Carboniferous, West Virginia, White (I. C.), 7.

Washington stage, Carboniferous, West Virginia, White (I. C.), 7.

Washington shale and sandstone, Carboniferous, Arkansas, Ulrich, 5.

Washington limestone, Carboniferous, Maryland, Clark and Martin, 8.

Washington division, Cretaceous, Texas, Dumble, 12.

Washington group, Cretaceous, Texas, Richardson (G. B.), 4.

Warahga shale, Cambrian, Tennessee, Keith, 4, 9.

Watchung basalt, Juratris, New Jersey, Merrill and others, 1.

Waverly series, Carboniferous, Ohio, Prosser, 1.

Waverly, Carboniferous, Ohio and Kentucky, Stevenson (J. J.), 4.

Waverly series, Carboniferous, Ohio, Prosser and Cumings, 1.

Waynesburg sandstone, Carboniferous, West Virginia, White (I. C.), 7.

Waynesburg formation, Carboniferous, Pennsylvania, Campbell (M. R.), 8.

Waynesburg limestone, Carboniferous, Maryland, Clark and Martin, 6.

Waynesburg limestone, Carboniferous, Pennsylvania, Clapp, 4.

INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Waynesburg sandstone, Carboniferous, Maryland, Clark and Martin, 6.
Waynesville beds, Ordovician, Ohio and Indiana, Nickies, 5.
Waynesville beds, Ordovician, Kentucky, Nickies, 6.
Waynesville beds, Ordovician, Indiana, Peersie, 11.
Wayna tuffs, Huronian, Canada, Coleman and Willmott, 1, 2.
Webberville formation, Cretaceous, Texas, Hill (R. T.), 3.
Webberville formation, Cretaceous, Texas, Hill and Vaughn, 1.
Weber conglomerate, Nevada and California, Spurr, 6.
Weber quartzite, Carboniferous, Utah and Nevada, Berkey, 8.
Wedington sandstone, Carboniferous, Arkansas, Adams (G. I.), 15.
Wedington sandstone, Carboniferous, Arkansas, Ulrich, 5.
Wedington sandstone member, Carboniferous, Indiana Territory, Taff, 17.
Wedington sandstone member, Mississippian, Arkansas, Adams and Ulrich, 1.
Wedelner quartzite, Cambrian, Georgia, Watson (T. L.), 10, 11.
Wedelner quartzite, Cambrian, Alabama and Georgia, Hayes (C. W.), 5.
Wellington formation, Permian, Oklahoma, Gould, 6.
Wellington shales, Carboniferous, Kansas, Adams, Girty, and White, 1.
Wellington shales, Carboniferous, Kansas, Prosser, 7.
Wellington beds, Carboniferous, Kansas, Wooster, 1, 2.
Wenonah sand, Cretaceous, New Jersey, Kümml and Knapp, 1.
West Fork series, Alaska, Schrader and Spencer, 1.
Westhill flags, Devonian, New York, Clarke, 20.
West Hill sands, Devonian, New York, Clarke, 10.
West Hill flags and shale, Devonian, New York, Clarke and Luther, 1, 2.
Weston limestone, Carboniferous, Missouri, Gallaher, 1.
West River shale, Devonian, New York, Clarke and Luther, 1, 2.
West Union limestone, Mississippian, Ohio, Prosser, 10.
Wetumka shale, Carboniferous, Indian Territory, Taff, 2.
Wewoka formation, Carboniferous, Indian Territory, Taff, 2.

Geologic formations described—Continued.

White limestone, Tertiary, Alabama, Maury, 1.
Whitecliffs formation, Cretaceous, Arkansas, Taff, 5.
Whiteface anorthosite, New York, Cushing, 10.
Whitehorse sandstone member, Carboniferous (Permian), Oklahoma, Gould, 14.
White Pine shale, Nevada, Spurr, 6.
White River group, Tertiary, Black Hills, Darton, 1.
White River formation, Tertiary, Colorado, Matthew (W. D.), 3.
White River formation, Tertiary, Montana, Douglas, 8.
White River group, Tertiary, Black Hills region, Darton, 18.
White River series, Tertiary, Great Plains region, Hatcher, 11.
White River beds, Miocene, Montana, Douglas, 1.
White River formation, Tertiary, Black Hills region, Jaggar, 5.
Whitetail formation, Tertiary, Arizona, Kansome, 6, 13.
Whitewater beds, included in Richmond group, Ordovician, Ohio and Indiana, Nickies, 5.
Whitewood limestone, Ordovician, Black Hills region, Darton, 16, 18.
Whitewood limestone, Ordovician, Black Hills region, Jaggar, 5.
Whitewood limestone, Ordovician, Wyoming, Darton and O'Harr, 1.
Whitewood limestone, Ordovician, Wyoming and South Dakota, Darton, 26.
Wichita formation, Carboniferous, Texas, Hill (R. T.), 3.
Wichita beds, Permian, Texas, Broii, 2.
Wicomico formation, Pleistocene, Atlantic coast region, Clark (W. B.), 6.
Wicomico formation, Quaternary, Maryland, Shattuck, 5.
Wilbur limestone, Ontario, New York, Clarke, 20.
Wilbur limestone, Silurian, New York, Hartnagel, 1.
Wilbur limestone, Silurian, New York, Van Ingen and Clark, 1.
Willard shales, Carboniferous, Kansas, Beebe, 6.
Willow Spring granite, Arizona, Runsome, 6, 13.
Wills Creek formation, Silurian, Maryland, Uhler, 1.
Wills Point clays, Eocene, Tertiary, Texas, Hayes and Kennedy, 1.
Wilmore sandstone, Carboniferous, Pennsylvania, Butts, 7.
Wilson Ranch beds, Tertiary, California, Osmond, 1.
Winchester bed, Ordovician, Kentucky, Miller (A. M.), 4.
Geologic formations described—Continued.

Winchester group, Ordovician, Kentucky, Nickles, 6.

Windy Gap limestone, Carboniferous, West Virginia, White (I. C.), 7.

Winfield formation, Carboniferous, Kansas, Adams, Girty, and White, 1.

Winfield formation Carboniferous, Kansas, Prosser, 7.

Winfield formation Carboniferous, Kansas, Prosser and Beede, 1.

Winnipeg sandstone, Ordovician, Canada, Dowling, 1.

Winoka gravels, Tertiary, Missouri, Hays, 1.

Winslow formation, Carboniferous, Arkansas, Adams and Ulrich, 1.

Wisconsin, Pleistocene, Iowa, Macbride, 1.

Wisconsin, Quaternary, New York, Veatch, 4.

Wisconsin drift, Quaternary, Iowa, Macbride, 3.

Wisconsin drift, Quaternary, Ohio, Prosser, 10.

Wisconsin gravels, Quaternary, Iowa, Macbride, 3.

Wisconsin, Quaternary, New Jersey, Salisbury and others, 1.

Wisconsin drift, Quaternary, Leverett, 4.

Wisconsin, Pleistocene, Iowa, Bauer and Williams, 2.

Wisconsin deposits, Quaternary, Indiana and Illinois, Fuller and Clapp, 2.

Wisconsin drift, Quaternary, Pennsylvania, Leverett, 10.

Wisconsin stage, Pleistocene, Iowa, Macbride, 4.

Wisconsin stage, Pleistocene, Iowa, Williams (I. A.), 1.

Wisconsin beds, included in Portage, Devonian, New York, Luther, 1.

Wisconsin shales, Devonian, New York, Clarke, 19, 20.

Wisconsin shales, Devonian, New York, Luther, 2.

Wise formation, White, 23.

Wissahickon mica-schist, Ordovician?, Maryland, Mathews, 6.

Wissahickon mica-gneiss, Ordovician, Pennsylvania, Bascom, 3.

Wissahickon schist, Maryland, Mathews and Miller, 1.

Wissahickon mica-gneiss and mica-schist (Hudson), Ordovician, Pennsylvania, Bascom, 2.

Wolf Creek conglomerate, Carbonic, New York, Clarke, 20.
INDEX TO NORTH AMERICAN GEOLOGY

Geologic formations described—Continued.

Yellow loam, Pleistocene, Mississippi, Logan, 2.
Yellville formation, Ordovician, Arkansas, Adams and Ulrich, 1.
Yellville formation, Ordovician, Arkansas, Adams (G. I.), 15.
Yellville limestone, Ordovician, Arkansas, Ulrich, 5.
Yonkers gneiss, New York, Eckel, 6.
Yonkers gneiss, post-Hudson, New York, Merrill and others, 1.
Yukon silts, Quaternary, Alaska, Collier, 2.

Geologic maps—Continued.

Geologic maps.

Alabama, Eckel and Crider, 1.
Alabama, Smith (E. A.), 2, 8, 9.
Alabama, Smith and McCalley, 1.
Alaska, Brooks, 4.
Alaska, Brooks and others, 1.
Alaska, Collier, 1, 2, 8.
Alaska, Mendenhall, 1, 2, 8.
Alaska, Mendenhall and Schrader, 1.
Alaska, Moffit, 3.
Alaska, Prindle, 2.
Alaska, Schrader, 3.
Alaska, Schrader and Spencer, 1.
Alaska, Stanton and Martin, 1.
Alaska, Wright (C. W.), 2.
Arizona, Juggar and Palache, 1.
Arizona, Lee (W. T.), 9.
Arizona, Lindgren, 29, 29.
Arizona, Ransome, 6, 13, 14.
Arkansas, Adams (G. I.), 15.
Arkansas, Adams and Ulrich, 1.
Arkansas, Branner, 2.
Arkansas, Hayes (C. W.), 2.
Arkansas, Taff, 5, 17.
Arkansas, Van Ingen, 1.
California, Campbell (M. R.), 4.
California, Diller, 18.
California, Fairbanks, 7.
California, Hershey, 14.
California, Lawson and Palache, 1.
California, Nutter, 1.
California, Spurr, 14.
Canada, Adams and LeRoy, 1.
Canada, Ami, 8.
Canada, Barlow, 7.
Canada, Bel, 2.
Canada, Bell (Robert), 1, 3, 5.
Canada, Borth, 1.
Canada, Brewer (W. M.), 6.
Canada, Buchan, 2.
Canada, Burwash, 1.
Canada, Clirkel, 4.
Canada, Coleman, 2.
Canada, Coleman and Willmott, 1.
Canada, Corkill, 1.
Canada, Daly, 1.
Canada, Dawson, 4, 5.
Canada, Dowling, 1, 6, 11.
Canada, Dresser, 9.
Canada, Ellis (R. W.), 2, 7, 12, 20, 23.
Canada, Fletcher, 3, 6.
Canada, Gwillim, 1.
Canada, Ingall and Denis, 1.

* Includes geologic maps of the whole or any part of the States mentioned.
FOR THE YEARS 1901–1905, INCLUSIVE.

Geologic maps—Continued.

Iowa, Williams (1. A.), 1.
Kansas, Adams (G.), 2.
Kansas, Adams, Girty, and White, 1.
Kansas, Adams, Haworth, and Crane, 1.
Kansas, Bailey (E. D. S.), 1.
Kansas, Beede and Selliards, 1.
Kansas, Darton, 18.
Kansas, Gould, 5.
Kansas, Fosser and Beede, 1.
Kansas, Smith (A. J.), 1, 4.
Kentucky, Bain, 10.
Kentucky, Eckel, 34.
Kentucky, Tipton, 4.
Kentucky, Ulrich, 8.
Lake Superior region, Leith, 14.
Louisiana, Adams (G. I.), 2.
Louisiana, Adams and Ulrich, 1.
Mississippi, Eckel, 34.
Mississippi, Eckel and Crider, 1.
Mississippi, Logan, 2.
Missouri, Adams and Ulrich, 1.
Missouri, Ball and Smith, 1.
Missouri, Buckley and Buehler, 1.
Missouri, Eckel, 34.
Missouri, Marbut, 1.
Missouri, Van Horn, 1.
Montana, Douglass, 4.
Montana, Lindgren, 21.
Montana, Rows, 2.
Montana, Willis, 6.
Nebraska, Adams (G. I.), 4.
Nebraska, Barbour (E. H.), 8.
Nebraska, Burchard, 2.
Nebraska, Carmony, 1.
Nebraska, Darton, 10, 11, 18.
Nebraska, Gould, 5.
New Hampshire, Hitchcock (C. H.), 6, 10.
New Hampshire, Plierson and Washington, 1.
New Jersey, Kimmell, 1.
New Jersey, Ries, 12.
New Jersey, Salisbury and others, 1.
New Mexico, Johnson (D. W.), 2, 4.
New Mexico, Keyes, 49.
New Mexico, Reagan, 1.
New Mexico, Yung and McCaffery, 1.
New York, Bishop (J. P.), 1.
New York, Clarke (J. M.), 19.
New York, Clarke and Luther, 1–3.
New York, Cleland, 2.
New York, Cumings, 6.
New York, Cushing, 2, 3, 9, 10.
New York, Dale, 5.
New York, Eckel, 5, 6, 34.
New York, Fairchild, 2.
New York, Finlay (G. L.), 2.
New York, Glenn, 1.
New York, Grabau, 1, 9.
New York, Gratacap, 7.
New York, Hartnagel, 1.
New York, Kemp and Hill, 1.
New York, Kindle, 4.
New York, Luther, 2.
New York, Merrill (F. J. H.), 1.
New York, Merrill and Magnus, 1.
New York, Merrill and others, 1.
New York, Rafter, 1.
New York, Ries, 4.
New York, Schneider, 8.
New York, Van Ingen and Clark, 1.
New York, Woodworth, 2, 9, 10.
North Carolina, Keith, 4, 9, 11, 12.
North Carolina, Pratt, 10, 11.
North Carolina, Pratt and Lewis, 1.
North Dakota, Hall and Willard, 1.
Ohio, Bownocker, 1, 4.
Ohio, Eckel, 34.
Ohio, Foerste, 10.
Ohio, Powke, 2.
Ohio, Griswold, 1.

Bull. 301–06—35
<table>
<thead>
<tr>
<th>Location</th>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>Hyde</td>
<td>1</td>
</tr>
<tr>
<td>Ohio</td>
<td>Leverett</td>
<td>4</td>
</tr>
<tr>
<td>Ohio</td>
<td>Tight</td>
<td>2, 4</td>
</tr>
<tr>
<td>Ohio</td>
<td>Todd (J. H.)</td>
<td>1</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Gould</td>
<td>14</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Taft</td>
<td>13</td>
</tr>
<tr>
<td>Oregon</td>
<td>Diller</td>
<td>4, 11</td>
</tr>
<tr>
<td>Oregon</td>
<td>Lindgren</td>
<td>4</td>
</tr>
<tr>
<td>Oregon</td>
<td>Lindgren and Drake</td>
<td>1</td>
</tr>
<tr>
<td>Panama</td>
<td>Hershey</td>
<td>5</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Butts</td>
<td>4, 6, 7</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Campbell (M. R.)</td>
<td>8, 18</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Clapp</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Eckel</td>
<td>34</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Fuller and Alden</td>
<td>1, 2</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Ilseng</td>
<td>1</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Leverett</td>
<td>4</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Peck</td>
<td>1</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Richardson (G. B.)</td>
<td>3</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Stone (R. W.)</td>
<td>6-8</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Woolsey</td>
<td>3</td>
</tr>
<tr>
<td>Philippine Islands</td>
<td>Burritt</td>
<td>1</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Bendrat</td>
<td>1</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Darton</td>
<td>1, 14, 18, 26</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Darton and O’Harra</td>
<td>1</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Darton and Smith</td>
<td>1</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Jaggar</td>
<td>1, 5</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Reagan</td>
<td>5</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Todd (J. E.)</td>
<td>9-11, 15</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Todd and Hall</td>
<td>1, 3</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Eckel</td>
<td>34</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Hayes and Ulrich</td>
<td>1</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Keith</td>
<td>4, 9, 11, 12</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Ulrich</td>
<td>7</td>
</tr>
<tr>
<td>Texas</td>
<td>Adams (G. L.)</td>
<td>2, 11</td>
</tr>
<tr>
<td>Texas</td>
<td>Dumble</td>
<td>13</td>
</tr>
<tr>
<td>Texas</td>
<td>Gidley</td>
<td>4</td>
</tr>
<tr>
<td>Texas</td>
<td>Hager</td>
<td>1</td>
</tr>
<tr>
<td>Texas</td>
<td>Hayes and Kennedy</td>
<td>1</td>
</tr>
<tr>
<td>Texas</td>
<td>Hill (R. T.)</td>
<td>3, 5</td>
</tr>
<tr>
<td>Texas</td>
<td>Richardson (G. B.)</td>
<td>4</td>
</tr>
<tr>
<td>Texas</td>
<td>Taft</td>
<td>4, 15</td>
</tr>
<tr>
<td>Texas</td>
<td>Udden (Johan A.)</td>
<td>11</td>
</tr>
<tr>
<td>United States</td>
<td>Hayes (C. W.)</td>
<td>6, 7</td>
</tr>
<tr>
<td>United States</td>
<td>Maury</td>
<td>1</td>
</tr>
<tr>
<td>United States (in part)</td>
<td>White (D.)</td>
<td>14</td>
</tr>
<tr>
<td>United States (east of Mississippi River)</td>
<td>Ries</td>
<td>6</td>
</tr>
<tr>
<td>Utah</td>
<td>Berkey</td>
<td>8</td>
</tr>
<tr>
<td>Utah</td>
<td>Huntington and Goldthwait</td>
<td>2</td>
</tr>
<tr>
<td>Utah</td>
<td>Keith</td>
<td>13</td>
</tr>
<tr>
<td>Vermont</td>
<td>Dale</td>
<td>3</td>
</tr>
<tr>
<td>Vermont</td>
<td>Daly</td>
<td>7</td>
</tr>
<tr>
<td>Vermont</td>
<td>Marsters</td>
<td>3</td>
</tr>
<tr>
<td>Vermont</td>
<td>Perkins</td>
<td>6, 11</td>
</tr>
<tr>
<td>Virginia</td>
<td>Eckel</td>
<td>23</td>
</tr>
<tr>
<td>Virginia</td>
<td>Darton and Keith</td>
<td>1</td>
</tr>
<tr>
<td>Virginia</td>
<td>Woodworth</td>
<td>3, 4</td>
</tr>
<tr>
<td>Washington</td>
<td>Landes and Ruddy</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>Smith (G. O.)</td>
<td>3, 6-8, 13</td>
</tr>
<tr>
<td>Washington</td>
<td>Smith and Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>Smith and Willis</td>
<td>1</td>
</tr>
<tr>
<td>Washington</td>
<td>Spurr</td>
<td>3</td>
</tr>
<tr>
<td>Washington</td>
<td>Willis</td>
<td>11</td>
</tr>
<tr>
<td>West Indies</td>
<td>Spencer (J. W.)</td>
<td>5</td>
</tr>
</tbody>
</table>

Georgia

Aplitic, pegmatitic, and tourmaline bunches in Stone Mountain granite, Watson (T. L.), 5.

Bauxite deposits of Georgia, Watson (T. L.), 12.

Cement materials and industry of the United States, Eckel, 34.

Clays of the United States, Ries, 6.

Coal deposits of Georgia, McCallie, 9.

Copper deposits in Georgia, Weed, 26.

Dahlonega gold district, Eckel, 15.

Dahlonega mining district, Eckel, 21.

Eocene outcrops in central Georgia, Harris, 5.

Fuller’s earth deposits of Florida and Georgia, Vaughan, 18.

Geologic relations of the iron ores in the Cartersville district, Hayes (C. W.), 1.

Geology of the Tallulah gorge, Jones (S. P.), 1.

Georgia bauxite deposits, Watson (T. L.), 2.

Gold and pyrite deposits of the Dahlonega district, Eckel, 16.

Gold mining in McDuffie County, Fluker, 1, 2.

Granites and gneisses of Georgia, Watson (T. L.), 8.

Granitic rocks of Georgia, Watson (T. L.), 1.

Hot springs of the southern United States, Weed, 29.

Iron ores of Cartersville district, Hayes and Eckel, 1.

Manganese ore deposits of Georgia, Cattlett, 2.

Manganese ore deposits of Georgia, Watson (T. L.), 9.
Glacial Geology—Continued.

Atlantic coast region—Continued.

Glacial geology of New Jersey, Salisbury and others, 1.
Glacial period on Long Island, Veatch, 4.
New York City folio, Merrill and others, 1.

Canada.

Ancient channels of Ottawa River, Ellis (R. W.), 5.
Ancient drainage at Niagara Falls, Currie, 1.
Duration of Toronto interglacial period, Coleman, 9.
Economic resources of Moose River basin, Bell (J. M.), 2.
Effect of superficial debris on the advance and retreat of some Canadian glaciers, Ogilvie, 2.
Exploration de l’ile d’Anticosti, Combes, 1.
Exploration of east coast of Hudson Bay, Low, 2.
Geologische Reisekizzen aus Nordamerika, Felix, 1.
Glacial beds near Toronto, Coleman, 1.
Glacial lakes and Pleistocene changes in St. Lawrence Valley, Coleman, 22.
Glaciation in Atlin district, Gwillim, 3.
Glaciation of Mount Orford, Chalmers, 9.
Iroquois beach in Ontario, Coleman, 16, 17.
Macmillan River, Yukon district, McConnell, 3.
Marine and fresh water beaches, Coleman, 2.
Notes from Burford Township, Yates (W.), 1.
Observations on glaciers, Vaux, 1.
Raised shore lines of St. Lawrence Valley and Great Lakes, Chalmers, 6.
Variations périodiques des glaciers, Vaux and Vaux, 2.

Great Basin region.

Extinct glaciers, Stone (G. H.), 2.
Glaciation of San Francisco Mountain, Atwood, 1.

Great Lakes region.

Alabaster area, Gregory (W. M.), 3.
Contributions to the problem of Niagara, Grabau, 3.
Development of Wabash drainage system, McBeth, 1.
Drumlin areas in Michigan, Russell, 24.
Drumlins of southeastern Wisconsin, Alden, 4.
Drumlins of the Grand Traverse region, Leverett, 14.

Glacial Geology.

Alaska.

Alaska glaciers and glaciation, Gilbert, 15.
Glacial phenomena of Seward Peninsula, Brooks and Collier, 1.
Glaciers of Alaska, Davidson, 1.

Appalachian region.

Buried valley of Wyoming, Corss, 1.
Buried valley of Wyoming, Griffith, 1.
Elkland-Logan folio, Fuller and Alden, 2.
Extra-morainic pebbles in Pennsylvania, Woolsey, 2.
Gaines folio, Fuller and Alden, 1.
Geological excursion in Pittsburg region, Grant (U. S.), 4.
Glacial gravels of the Kittanning quadrangle, Leverett, 10.
Kansas glaciation and its effects on the river system of northern Pennsylvania, Williams (E. H.), 2.
Kittanning folio, Butts, 4.

Atlantic coast region.

Geology of Long Island, Veatch, 5.
Glacial conditions on Long Island, Buffalo, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Glacial Geology—Continued.

Great Lakes region—Continued.

Emigrant diamonds in America, Hobbs, 8.

Eskers and esker lakes of Indiana, Dryer, 9.

Geological reconnaissance along north shore, Russell, 23.

Glacial features of Lower Michigan, Leverett, 6.

Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.

Glacial geology of Grand Rapids area, Leverett, 9.

Glacial geology of southern peninsula of Michigan, Leverett, 8.

Glacial lake Nicolet, Upham, 17.

Glacial phenomena in Indiana and Michigan, Montgomery (H. T.), 1.

Ice work in southeastern Michigan, Sherzer, 1.

Minerology of Chicago area, Crook, 1.

Physiographical field notes in the town of Wauwatosa, Wis., Bruncken, 1.

Physical geography of New York State, Tarr, 2.

Preglacial erosion in the course of the Niagara gorge, Upham, 2.

Report of bowlder committee, Wright (G. F.), 1, 2.

So-called alkali spots of drift sheets, Willcox, 2.

Spy Run and Polunsett Lake bottoms, Price and Shanf, 1.

Story of Niagara, Hitchcock (C. H.), 2.

Surface geology of Alcona County, Mich., Leverett, 3.

Surface geology of Lapeer County, Mich., Taylor (F. B.), 2.

Vermillion iron-bearing district of Minnesota, Clements, 3.

Western Indiana bowlder belts, McBeth, 1.

Great Plains region.

Alexandria folio, Todd and Hall, 1.

Geology and water resources of the James River Valley, Todd and Hall, 2.

Geology of Lincoln County, S. Dak., Bendrat, 1.

Mitchell folio, Todd (J. E.), 11.

Olivet folio, Todd (J. E.), 9.

Parker folio, Todd (J. E.), 10.

Region between the Northern Pacific Railroad and Missouri River, Wood (L. H.), 1.

Mississippi Valley region.

Aftonian gravels, Calvin, 15.

Age of Lansing skeleton, Wright (G. F.), 4.

Age of St. Croix Dalles, Upham, 31.

Age of the Kansan drift sheet, Hershey, 4.

Glacial Geology—Continued.

Mississippi Valley region—Continued.

Another glacial wonder, Wright (G. F.), 10.

Bluffs of Missouri River, Owen, 1.

Buried peat bed in Dodge township, Savage, 5.

Concrete examples from topography of Howard County, Calvin, 6.

Dalles of the St. Croix, Berkey, 1.

Deposition of the loess, Owen, 5.

Drift exposure in Tama County, Iowa, Savage, 1.

Evidences (?) of water deposition of loess, Shimak, 7.

Geography and geology of Minnesota, Hall (C. W.), 6.

Geologic relations of the human relics of Lansing, Kans., Chamberlin (T. C.), 5.

Geology of Benton County, Savage, 7.

Geology of Chucksaw County, Iowa, Calvin, 11.

Geology of Clinton County, Udden (Jon A.), 1.

Geology of Emmet, Palo Alto, and Polchontas counties, Macbride, 4.

Geology of Fayette County, Savage, 8.

Geology of Howard County, Iowa, Calvin, 10.

Geology of Illinois, Rolfe, 1.

Geology of Jasper County, Iowa, Williams (I. A.), 1.

Geology of Kossuth, Hancock, and Winneshago counties, Macbride, 3.

Geology of Mills and Fremont counties, Udden, 8.

Geology of Mitchell County, Iowa, Calvin, 12.

Geology of Prairie Island, Upham, 21.

Geology of Tama County, Iowa, Savage, 3.

Glacial bowlders along Osage River, in Missouri, Buckley, Ball, and Smith, 1.

Glacial drift of northern Iowa, Webster, 4.

Glacial drift in the Dakotas, Montana, Idaho, and Washington, Upham, 27.

Glacial features of the St. Croix Dalles region, Chamberlin (R. T.), 1.

Interglacial clays of Grantsburg, Berkey, 6.

Keewatin and Laurentide sheets in Minnesota, Elftman, 2.

Lansing deposit not loess, Shimak, 12.

Lansing skeleton, Owen, 2.

Lansing skeleton, Winchell (N. H.), 12.

Loess, Broghhead, 6.

Loess and the Iowan drift, Shimak, 13.
Glacial Geology—Continued.

Mississippi Valley region—Continued.
Loess and the Lansing man, Shimk, 5.
Loess at St. Joseph, Owen, 3.
Loess in the Missouri Valley, Wright (G. F.), 9.
Loess of southwestern Iowa, Wilcox, 1.
Man in the Ice Age at Lansing, Kans., and Little Falls, Minn., Upham, 8.
Old channels of the Mississippi in Iowa, Leverett, 2.
Particular case of glacial erosion, Sar- deson, 14.
Physiography of Iowa, Calvin, 13.
Pleistocene geology of the Concannon farm, near Lansing, Kans., Winchell (N. H.), 14.
Proibiscltodian fossils of Pleistocene de­ posits in Illinois and Iowa, Uddin, 11.
So-called alkali spots of drift-sheets, Wilcox, 2.
Toledo lobe of Iowan drift, Savage, 4.
Valley loess and fossil man of Lansing, Upham, 14.
Was man in America in the Glacial period, Winchell (N. H.), 16.

New England and New York.
Artesian well sections at Ithaca, Tarr, 5.
Ancient water levels of Champlain and Hudson valleys, Woodworth, 10.
Clays of Connecticut, Loughlin, 1.
Delta plains of Nashua Valley, Crosby, 8.
Drainage features of central New York, Tarr, 11.
Drainage features of southern central New York, Tarr, 14.
Drift fossils, Hollick, 8.
Esker in western New York, Comstock (F. M.), 1.
Finger Lake region of western New York, Dryer, 4.
Geological history of Charles River, Clapp, 1.
Geology and paleontology of Niagara Falls, Grabaun, 1.
Geology of central Cape Cod, Julien, 3.
Geology of Charles River estuary, Crosby, 7.
Geology of Fishers Island, Fuller, 29.
Geology of Grand Isle County, Perkins, 11.
Geology of Long Island, Veatch, 5.
Geology of Paradox Lake quadrangle, Oglivie, 6.
Geology of the vicinity of Little Falls, Cushing, 9.
Geological and post-Glacial history of the Hudson and Champlain valleys, Peet, 1.

Glacial Geology—Continued.

Glacial conditions on Long Island, Buffet, 1.
Glacial erosion in Finger Lake region, Campbell (M. R.), 19.
Glacial features of Syracuse, Fairchild, 13.
Glacial lakes and marine submergence in the Hudson-Champlain Valley, Upham, 32.
Glacial lakes, Hudson-Champlain and St. Lawrence, Upham, 19.
Glacial period on Long Island, Veatch, 4.
Glacial phenomena in Adirondacks and Champlain Valley, Oglivie, 1.
Glacial pot holes in Maine, Manning, 1.
Glacial remains near Woodstock, Connecticut, Eggleston, 1.
Glacial waters from Oneida to Little Falls, Fairchild, 8.
Glaciation of the Berkshire Hills, Taylor (F. B.), 4.
Glaciation of the Green Mountains, Hitchcock (C. H.), 7, 8.
Gravel deposits in Glacial Lake Charles, Clapp, 2.
HangHGNG valleys in the Finger Lake region of New York, Tarr, 6.
Ice erosion theory a fallacy, Fairchild, 11.
Instance of action of ice sheet upon projecting rock masses, Hobbs, 12.
Instances of moderate glacial erosion, Tarr, 9.
Inter-Glacial gorge problem, Matson, 1.
Moraines and eskers in the White Mountains, Upham, 23.
Moraines of Seneca and Cayuga Lake valleys, Tarr, 7, 10.
New problems in glaciology, Fairchild, 14.
Physical geography, etc., of Essex County, Mass., Sears, 1.
Pleistocene features in the Syracuse region, Fairchild, 12.
Pleistocene geology of Mooers quadrangle, Woodworth, 9.
Pleistocene geology of western New York, Fairchild, 2.
Pleistocene history of Fishers Island, Fuller (M. L.), 40.
Pre-Glacial stream flow in central New York, Curney, 2.
Pre-Iroquois channels between Syracuse and Rome, Fairchild, 4.
Pre-Kansan and Iowan deposits of Long Island, Fuller (M. L.), 6.
Recessional ice borders in Berkshire County, Mass., Taylor (F. B.), 3.
INDEX TO NORTH AMERICAN GEOLOGY

Glacial Geology—Continued.

Representatives of pre-Wisconsin till,
Fuller (M. L.), 1.
River terraces and reversed drainage,
Mills (F. S.), 1.
Sand plains of Glacial Lake Sudbury,
Goldthwait, 1.
Structure and composition of delta
plains, Crosby, 11.
Water supply from delta type of sand
plain, Crosby, 13.
Ohio Valley region.
Changes in drainage near Lancaster,
Hyde, 1.
Ditney folio, Fuller and Ashley, 1.
Drainage modifications in Knox, Licking,
and Coshocton counties, Clark
(W. Blair), 1.
Drainage modifications in Washington
and adjacent counties, Ohio, Tight, 2.
Extra-Glacial abandoned valleys of
Ohio basin, Campbell (M. R.), 1.
Glacial formations and drainage fea-
tures of Erie and Ohio basins, Lever-
ett, 4.
Gold and diamonds in Indiana, Blatch-
ley, 5.
History of Little Miami River, Bow-
nocker, 1.
Inter-Glacial valley in Illinois, Hub-
bard (G. D.), 1.
Lake Licking, a contribution to the
buried drainage of Ohio, Tight, 1.
Mari-foes of lower Wabash Valley,
Fuller and Clapp, 1.
Pre-Glacial drainage conditions in vic-
inity of Cincinnati, Fowke, 2.
Pre-Glacial drainage of Ohio, Fowke, 1.
Pre-Glacial drainage of Wayne and ad-
jacent counties, Ohio, Todd (J. H.),
1.
Report of bowlder committee, Wright
(G. F.), 1, 2.
Topography and geography of Bean
Blossom Valley, Monroe County, Ind.,
Marsters, 1.
Topography of Athens and vicinity,
Ohio, Stearns (R. E. C.), 3.
Valley of lower Tippecanoe River,
Breeze, 1.
Wabash River terraces in Tippecanoe
County, Indiana, McBeth, 3.
Pacific coast region.
Geomorphogeny of Kern basin, Lawson
(A. C.), 10.
Glacial drift in the Dakotas, Montana,
Idaho, and Washington, Upham, 27.
Glacial drift in Washington, Upham,
28.
Glacial stages in Klamath Mountains,
Hershey, 16.
Glacial work in the western moun-
tains, Salisburv, 2.
Glaciers of Mount Hood and Mount
Adams, Reid (H. F.), 17.

Glacial Geology—Continued.

Pacific coast region—Continued.
Mounts Hood and Adams and their
glaciers, Reid (H. F.), 6.
Origin of transverse mountain valleys,
Le Conte, 1.
River terraces and Glacial series in
California, Hershey, 19.
River terraces of the Orleans basin,
Hershey, 22.
Variations of Sierra glaciers, Gilbert,
18.
Rocky Mountain region.
Alps of Montana, Matthes, 2.
Arapahoe glacier in 1902, Fenneman, 3.
Arapahoe glacier in 1903, Henderson
(J.), 2.
Current notes on physiography, Davis
(W. M.), 15.
Extinct glaciers of Colorado, Hender-
son (J.), 4.
Geological reconnaissance in Montana
and Idaho, Lindgren, 21.
Glacial drift in the Dakotas, Montana,
Idaho, and Washington, Upham, 27.
Glacial work in the western mountains,
Salisburv, 2.
Glaciation in Bighorn Mountains, Salis-
bury and Blackwelder, 1.
Glaciation of the Sawatch Range, Da-
vis (W. M.), 58.
Pleistocene geology of the Sawatch
Range, near Leadville, Colo., Capps
and Fowke, 1.
Twin Lakes glaciated area, Westgate, 1.
General.
Bog plant societies of North America,
Transeau, 1.
Boulders due to rock decay, Upham, 24.
Cause of Glacial period, True (H. L.),
1.
Cause of osars, Colton, 1.
Criteria requisite for reference of relics
to a Glacial age, Chamberlin (T. C.),
8.
Pjords and hanging valleys, Upham, 30.
Glacial climate, Hopkins (T. C.), 7.
Glacial epochs in Paleozoic time,
White (D.), 22.
Glacial Lake Jean Nicolet, Upham, 20.
Glacial man, Wright (G. F.), 5.
Glacial pothole in National Museum,
Merrill (G. P.), 10.
Glacier work, Scott (A. C.), 1.
Glacier corncles, Russell, 11.
Glaciers, Reid (H. F.), 7.
How long ago was America peopled?
Upham, 16.
Ice ramparts, Buckley, 2.
Ice-reatreat in Glacial Lake Neponset,
Fuller (M. L.), 8.
Instances of moderate glacial erosion,
Hershey, 16.
Lake Chelan and its glacier, Gannett, 3.
Length of post-Glacial time, Manson, 2.
Loess and its distribution, Leverett, 7.
Mammals and reptiles, Rutland, 1.
Greenland—Continued.

Samples of the sea floor along the coast of east Greenland, Böttger, 3.

Structur des grönländischen Inlandes, Møgge, 1.

Tertiary fauna at Kap Dalton, Ramsey, 1.

Translationsfähigkeit des Eisens, Møgge, 2.

Guam.

Earthquake records from Guam, Abbe, 4.

Guatemala.

Alta Verapaz, Sapper, 3.

Análisis de las cenizas del volcán de Santa María, Villaseñor, 1.

Asche des Vulkans Sta. Maria, Braunns, 1, 2.

Ausbruch des Vulkans St. Maria; Sapper, 5, 6.

Cendres d’un volcan près du Santa María, Ordoiniez, 5.

Cenizas del volcán de Santa María, Ordoñez, 13.

Erdeben in Guatemala, Sapper, 4.

Jadeit und Chloromelanit aus Guatemala, Bauer, 1.

Produkte des Ausbruchs am St. Maria, Bergeat, 3.

Produkte des Ausbruchs am St. Maria, Bergeat, 2.

Recent earthquakes, Rockstroh, 1.

Volcanic dust from Guatemala, Diller, 9.

Volcanic eruptions in Guatemala, Winterton, 1.

Vulkanische Ereignisse in Mittelamerika, Sapper, 20, 21.

Hawaiian Islands.

Agricultural resources of Hawaii, Stubbins, 1.

Brevity of tuff cone eruptions, Bishop (S. E.), 1.

Characteristics of Kau, Emerson (J. S.), 1.

Eruption of Mauna Loa, Wood (Edgar), 1.

Fresh-water springs in the ocean, Hitchcock (C. H.), 11.

Geology of Hawaiian Islands, Branner, 6.

Geology of Hawaiian Islands, Dall, 11.

Geology of Molokai, Lindgren, 18.

Kilauea again active, Hitchcock (C. H.), 9.

Observations on Hawaiian geology, Cross (W.), 4.

Structure of Diamond Head, Dall, 1.

Trachyte in Hawaii, Cross (W.), 6.

Tuff cone at Diamond Head, Hitchcock (C. H.), 1.

Water resources of Molokai, Lindgren, 18.
INDEX TO NORTH AMERICAN GEOLOGY

Honduras.
Geological notes in Honduras, Baron, 1.

Hydrology.

Appalachian region.
Hydrography of southern Appalachian region, Pressey, 1, 2.
Underground waters of Maryland, Darton and Fuller, 1.
Underground waters of New Jersey, Knapp (G. N.), 3.
Underground waters of Georgia, McCallie, 11.
Underground waters of South Carolina, Glenn, 10.
Underground waters of Virginia, Darton and Fuller, 3.
Underground waters of West Virginia, Fuller (M. L.), 26.
Water resources of Chambersburg and Mercersburg quadrangles, Stose, 4.
Water resources of Cowee and Pisgah quadrangles, North Carolina, Gale, 1.
Water resources of Frostburg and Flintstone quadrangles, Martin (G. C.), 10.
Water resources of Georgia, McCallie, 8.
Water resources of New Jersey, La Forge, 1.
Water resources of the Accident and Grantsville quadrangles, Martin (G. C.), 9.
Water resources of the Curwensville, Patton, Ebensburg, and Barnesboro quadrangles, Clapp, 3.
Water resources of the Middleboro-Harlan region, Ashley, 6.
Water resources of the Nicholas quadrangle, Ashley, 8.
Water resources of the Pawpaw and Hancock quadrangles, Stose and Martin, 1.
Water resources of the Philadelphia district, Bascom, 2.
Water resources of the Waynesburg quadrangle, Stone (R. W.), 4.
Wells at White Oak Ridge, Vermeule, 1.

Atlantic coast region.
Artesian conditions on Long Island, Veatch, 6.
Artesian wells, Woolman, 3.
Fresh-water springs in the ocean, Hitchcock (C. H.), 11.
New York City folio, Merrill and others, 1.
Results of resurvey of Long Island, Fuller and Veatch, 1.
Underground waters of Delaware, Darton, 22.

Hydrology—Continued.

Atlantic coast region—Continued.
Underground waters of the District of Columbia, Darton and Fuller, 2.
Underground waters of Georgia, McCallie, 11.
Underground waters of Maryland, Darton and Fuller, 1.
Underground waters of New Jersey, Knapp (G. N.), 1.
Underground waters of New Jersey, Knapp (G. N.), 3.
Underground waters of South Carolina, Glenn, 10.
Underground waters of Virginia, Darton and Fuller, 3.
Water resources of Georgia, McCallie, 8.
Water resources of the Philadelphia district, Bascom, 2.

Canada.
Artesian well in the Klondike, Tyrrell, 2.
Artesian wells of Montreal, Adams (F. D.), 10.
Artesian wells of Montreal, Adams and Le Roy, 1.

Great Basin region.
Clifton folio, Lindgren, 28.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Underground waters of Salt River Valley, Lee (W. T.), 9.

Great Lakes region.
Artesian flows from unconfined sandy strata, Fuller (M. L.), 39.
Failure of wells in Michigan, Fuller (M. L.), 37.
Ground-water problem in southeastern Michigan, Fuller (M. L.), 34.
Natural features and economic development of drainage areas in Ohio, Flynn and Flynn, 1.
Soils of Wisconsin, Weidman, 3.
Sources of water supply in Wisconsin, Kirchoffer, 1.
Underground waters of Indiana, Leverett, 12.
Underground waters of lower Michigan, Lane, 38.
Underground waters of Ohio, Leverett, 13.
Water resources of Michigan, Cooper (W. F.), 1.
Water supply of the lower peninsula of Michigan, Cooper (W. F.), 2.
Waters of upper peninsula of Michigan, Lane, 40.

Great Plains region.
Aladdin folio, Darton and O'Harra, 1.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Plains region—Continued.</td>
<td>Lake Superior region—Continued.</td>
</tr>
<tr>
<td>Alexandria folio, Todd and Hall, 1.</td>
<td>Underground waters of Wisconsin district, Schultz, 1.</td>
</tr>
<tr>
<td>Camp Clarke folio, Darton, 10.</td>
<td>Water resources of Minnesota, Hall (C. W.), 8.</td>
</tr>
<tr>
<td>Casselton-Fargo folio, Hall and Willard, 1.</td>
<td>Mexico.</td>
</tr>
<tr>
<td>De Smet folio, Todd and Hall, 3.</td>
<td>Aguas subterráneas de Amozoc, Ordóñez, 12.</td>
</tr>
<tr>
<td>Edgemont folio, Darton and Smith, 1.</td>
<td>Fisiógrafía, geología, e hidrología de la Paz, Angermann, 1.</td>
</tr>
<tr>
<td>Geology and underground water resources of the central Great Plains, Darton, 18.</td>
<td>Hidrología interna de Queretaro, Villa-relo, 5.</td>
</tr>
<tr>
<td>Geology and water resources of Patrick and Goshen Hole quadrangles, Adams (G. L.), 4.</td>
<td>Hidrología subterránea de Queretaro, Villarelio, 10.</td>
</tr>
<tr>
<td>Geology and water resources of the James River Valley, Todd and Hall, 2.</td>
<td>Mississippi Valley region.</td>
</tr>
<tr>
<td>Huron folio, Todd (J. E.), 15.</td>
<td>Artesian wells in Iowa, Calvin, 9.</td>
</tr>
<tr>
<td>Olivet folio, Todd (J. E.), 9.</td>
<td>Graydon sandstone and its mineral waters, Babcock and Minor, 1.</td>
</tr>
<tr>
<td>Sundance folio, Darton, 26.</td>
<td>Sources of water supply in Wisconsin, Kirchoffer, 1.</td>
</tr>
<tr>
<td>Water resources of Devils Lake region, Babcock, 2.</td>
<td>Spring system of the Decaturville dome, Shepard, 4.</td>
</tr>
<tr>
<td>Gulf region.</td>
<td>Springfield water supply, Park and Lyman, 1.</td>
</tr>
<tr>
<td>Hot springs of southern United States, Weed, 39.</td>
<td>Springs of the Ozark region, Fuller (M. L.), 35.</td>
</tr>
<tr>
<td>Subterranean waters of Louisiana, Harris, 5.</td>
<td>Underground waters of Iowa, Norton, 3.</td>
</tr>
<tr>
<td>Underground waters of Louisiana, Harris, 6.</td>
<td>Underground waters of Mississippi, Johnson (L. C.), 1.</td>
</tr>
<tr>
<td>Underground waters of Mississippi, Johnson (L. C.), 1.</td>
<td>Underground waters of northern Arkansas, Purdue, 7.</td>
</tr>
<tr>
<td>Underground waters of southern Louisiana, Harris, 6, 8.</td>
<td>Underground waters of Wisconsin district, Schultz, 1.</td>
</tr>
<tr>
<td>Water resources of Alabama, Smith (E. A.), 5.</td>
<td>Water resources in northern Arkansas, Purdue, 9.</td>
</tr>
<tr>
<td>Water resources of Mississippi, Johnson and Eckel, 1.</td>
<td>Water resources of Kentucky, Glenn, 5.</td>
</tr>
<tr>
<td>Water supplies from wells in southern Louisiana, Fuller (M. L.), 10.</td>
<td>Water resources of Minnesota, Hall (C. W.), 8.</td>
</tr>
<tr>
<td>Well contamination at Quitman, McCallie, 10.</td>
<td>Water resources of Missouri, Shepard, 2.</td>
</tr>
<tr>
<td>Hawaiian Islands.</td>
<td>Water resources of Tennessee, Glenn, 4.</td>
</tr>
<tr>
<td>Geology of Hawaiian Islands, Branner, 6.</td>
<td></td>
</tr>
</tbody>
</table>
Hydrology—Continued.

Mississippi Valley region—Continued.
Water resources of the Mineral Point quadrangle, Grant (U. S.), 11.
Water resources of the Winslow quadrangle, Purdue, 8.
Water supplies at Waterloo, Norton, 4.
Water supplies of southeastern Kansas, Bartow, 1.
Water supply of the Ozark region, Adams (G. I.), 17.

New England and New York.
Artesian flows from unconfined sandy strata, Fuller (M. L.), 39.
Artesian water in crystalline rocks, Smith (G. O.), 20.
Artesian water supply at Ithaca, Whitney, 1.
Artesian well sections at Ithaca, Tarr, 5.
Underground waters of Massachusetts and Rhode Island, Fuller (M. L.), 12.
Underground waters of New Hampshire, Fuller (M. L.), 22.
Underground waters of New York, Weeks, 11.
Underground waters of Vermont, Perkins, 15.
Water powers of Maine, Pressey, 3.
Water resources of Connecticut, Gregory (H. E.), 2.
Water resources of Fort Ticonderoga quadrangle, Dale, 7.
Water resources of Maine, Bayley, 2.
Water resources of Massachusetts, Crosby and La Forge, 1.
Water resources of New Hampshire, Boutwell, 7.
Water resources of New York, Weeks, 11.
Water resources of Rhode Island, Crosby, 9.
Water resources of Taconic quadrangle, Taylor (F. B.), 5.
Water resources of the Catatonk area, Kindle, 8.
Water resources of the Portsmouth-York region, Smith (G. O.), 18.
Water resources of Vermont, Perkins, 8, 14.
Water resources of Watkins Glen quadrangle, Tarr, 8.
Water supply from Glacial gravels near Augusta, Smith (G. O.), 19.
Waters of a gravel-filled valley near Tully, Hollister, 3.

Hydrology—Continued.

Wells of Triassic area of Connecticut Valley, Pychon, 11.
Ohio Valley region.
Geology of Lower Carboniferous area of southern Indiana, Ashley, 2.
Medicinal properties and uses of Indiana mineral waters, Hessler, 1.
Mineral waters of Indiana, Blatchley, 3.
Natural features and economic development of drainage areas in Ohio, Flynn and Flynn, 1.
Ohio natural gas fields, Bownocker, 4.
Underground waters of Indiana, Leverett, 12.
Underground waters of Ohio, Leverett, 13.
Underground waters of Tennessee and Kentucky, Glenn, 11.
Underground waters of West Virginia, Fuller (M. L.), 26.
Water resources of Kentucky, Glenn, 5.
Water resources of Tennessee, Glenn, 4.

Pacific coast region.
Ellensburg folio, Smith (G. O.), 7.
Geology and water resources of central Oregon, Russell, 21.
Geology and water resources of eastern central Washington, Calkins, 3.
Water resources of Washington, Ruddy, 1.
Water storage in Truckee Basin, Taylor (L. H.), 1.

Rocky Mountain region.
Aladdin folio, Darton and O'Harras, 1.
Artesian basins in Idaho and Oregon, Russell, 2.
Doughty springs, a group of radium-bearing springs, Headden, 3.
Geology and water resources of Snake River Plains, Russell, 5.
Geology of Idaho and Oregon, Russell, 8.
Geology of hot springs of Colorado, Lakes, 103.

Hot and mineral springs of Routt County, Colo., Lakes, 97.
Hydrographic history of South Dakota, Todd (J. E.), 4.
Sundance folio, Darton, 26.
Water resources of State of Colorado, Fellows, 1.

Southwestern region.
Geological sketch of Hot Springs district, Weed, 13.
Geology and water resources of Oklahoma, Gould, 14.
Geology of Fort Apache region, Reagan, 3.
Silicic acid in waters of mountain streams, Headden, 2.
Hydrology—Continued.
Southwestern region—Continued.
Underground waters of Arizona, Skinner, 1.
West Indies.
Hydrology of Cuba, Fuller (M. L.), 19.

General.
Accuracy of stream measurements, Murphy, 1.
Analysis of waters from Hot Springs, Haywood, 1.
Bibliographic review and index of papers relating to underground waters published by the U. S. Geological Survey 1879-1904, Fuller (M. L.), 27.
Classification of mineral waters, Peale, 1.
Construction of so-called fountain and geyser springs, Fuller (M. L.), 33.
Contributions to hydrology of eastern United States, Fuller (M. L.), 11.
Dolcis fans of the arid region, Hilgard, 3.
Drainage of ponds into drilled wells, Horton, 1.
High plains and their utilization, Johnson (W. D.), 2.
Hydrologic work in the eastern United States, Fuller (M. L.), 30, 31.
Hydrology of eastern United States, 1904, Fuller (M. L.), 17.
Motions of underground waters, Slichter, 1.
Occurrence of underground waters, Fuller (M. L.), 21.
Organization of the Division of Hydrology, Fuller (M. L.), 11.
Preliminary list of deep borings in United States, Darton, 5, 6.
Rate of movement of underground waters, Slichter, 2.
Record of deep well drilling for 1904, Fuller, Lines, and Veatch, 1.
Record of deep well drilling for 1904, Veatch, 9.
Two unusual types of artesian flow, Fuller (M. L.), 32.
Underground waters of eastern United States, Fuller (M. L.), 20.
Water resources of eastern and central States, Fuller (M. L.), 12.
Well records, Lines, 1.

Idaho.
Artesian basins in Idaho and Oregon, Russell, 9.
Bellevue mining district, Lakes, 45.
Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.
Butte copper veins, Winchell (H. V.), 4.
Cestradont spine from Triassic of Idaho, Evans (H. M.), 1.
Cœur d'Alene district, Ransome, 16.
Complicated fault system, Bacorn, 1.
External notes on physiography, Davis (W. D.), 44.
Facts about Thunder Mountain, Bell (R.), 5.
Geological reconnaissance across the Bitterroot Range and Clearwater Mountains, Lindgren, 21.
Geological situation in the lava flow, with reference to the vegetation, Clearman, 1.
Geology and mineral resources, Bell (R. N.), 5.
Geology and water resources of Nez Perces County, Part II, Russell, 2.
Geology and water resources of Snake River Plains, Russell, 5.
Geology of Idaho and Oregon, Russell, 8.
Geology of Snake River Plains, Russell, 7.
Geology of Thunder Mountain and central Idaho, Bell (R.), 4.
Glacial drift in the Dakotas, Montana, Idaho, and Washington, Upham, 37.
Gold production of North America, Lindgren, 16.
Idaho mining districts, Lakes, 18.
Marine Trias of western America, Smith (J. P.), 5.
Mining and milling in the Cœur d'Alene, Finlay (J. R.), 2.
Mining industry of the Cœur d'Alenes, Finlay (J. R.), 1, 3.
Mining industry of Idaho, Bell (R. N.), 3.
Nampa folio, Lindgren and Drake, 1.
Ore deposits of Cœur d'Alene district, Ransome, 17.
Origin of fine gold of Snake River, Bell (R.), 3.
Outline of Idaho geology and principal ore deposits of Lemhi and Custer counties, Idaho, Bell (R.), 1.
Pseudomorphs and crystal cavities, Rowe, 4.
Silver City folio, Lindgren and Drake, 2.
Thunder Mountain and Mackay, Idaho, Bell (R.), 2.
Thunder Mountain, L'Hame, 1.
Thunder Mountain district, L'Hame, 2.

Illinois.
Carboniferous ferns from Mazon Creek, Sellards, 3.
Carboniferous fishes from central Western States, Eastman, 10.
Carboniferous fish fauna of Mazon Creek, Eastman, 4.
Carboniferous terrestrial arthropod fauna of Illinois, Melander, 1.
Cement materials and industry of the United States, Eckel, 34.
Chicago folio, Alden, 1.
Clays of the United States, Ries, 6.
INDEX TO NORTH AMERICAN GEOLOGY

Illinois—Continued.
Coal field of Indiana and Illinois, Fuller and Ashley, 2.
Eastern interior coal field, Ashley, 1.
Examination of soils from Illinois, Whitney (M.), 1.
Fluorspar and zinc mines of Kentucky, Harwood, 1.
Fluorspar deposits of Kentucky-Illinois district, Bain, 12.
Fluorspar deposits of southern Illinois, Bain, 6, 19.
Geological section across northern Illinois, Udden (Johan A.), 1.
Geological section in southern Illinois, Nickles, 2.
Geological section, St. Louis to Shawnee-town, Nickles, 1.
Geology of Illinois, Rolfe, 1.
Inter-Glacial valley in Illinois, Hubbard (G. D.), 1.
Lead and zinc deposits of Illinois, Bain, 11.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Lead, zinc, and fluorspar deposits of western Kentucky, Ulrich, 8.
Mineralogy of Chicago area, Crook, 1.
New forms of Carboniferous fish remains, Eastman, 9.
Patoka folio, Fuller and Clapp, 2.
Permische Stegocephalen und Reptilien aus Texas, Broili, 2.
Plankton of the Illinois River, Kofold, 1.
So-called alkali spots of drift-sheets, Wilcox, 2.
Soils of Illinois, Leverett, 1.
Stone industry in vicinity of Chicago, Alden, 2.
Underground waters of Illinois, Leverett, 11.
Validity of Idiophyllum rotundifolium, Sellards, 4.
Zinc and lead deposits of northwestern Illinois, Bain, 14.

Indiana—Continued.
Development of Wabash drainage system, McBeth, 1.
Developmental stages of Orthothetes minutus, Cummings, 5.
Devonian fossils and stratigraphy of Indiana, Keyes, 1.
Ditney folio, Fuller and Ashley, 1.
Drainage of southern Indiana, Newsom, 1.
Eastern interior coal field, Ashley, 1.
Eskers and esker lakes in Indiana, Dryer, 1.
Estimation of the silica in the Bedford limestone, Knight (N.), 7.
Evidence of local subsidence, Campbell (J. T.), 1.
Fluorspar mines of Kentucky and Illinois, Burk, 2.
Fossil land shells of old forest bed, Billups, 1.
Geological map of Indiana, Hopkins (T. C.), 10.
Geology of Cincinnati, Nickles, 3.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Glacial phenomena in Indiana and Michigan, Montgomery (H. T.), 1.
Gold and diamonds in Indiana, Blatchley, 5.
Grottes des États-unis, Le Couppey de la Forest, 1.
Hydol bone in Mastodon americanus, Holland, 3.
Index to publications of Indiana geological survey, Hopkins (T. C.), 13.
Indiana paleontology, Greene, 1-15.
Lakes of Indiana and their marl deposits, Blatchley and Ashley, 1.
Lime industry in Indiana, Blatchley, 7.
Lower Carboniferous area in Indiana, Hopkins (T. C.), 6, 8.
Lower Carboniferous area of southern Indiana, Ashley, 2.
Marl-loess of lower Wabash Valley, Fuller and Clapp, 1.
Medicinal properties and uses of Indiana mineral waters, Hessley, 1.
Mineral waters of Indiana, Blatchley, 3.
Natural gas explosion near Waldron, Newsom, 2.
New crinoid from the Hamilton, Wood (Elvira), 2.
New species of algae, White (D.), 1.
Niagara group unconformities, Elrod (M. N.), 1.
Niagara domes of northern Indiana, Kindle, 3.
Niagara limestones of Hamilton County, Kindle, 2.
Observations in Indiana caves, Farrington, 5.
Oolitic stone for Portland cement, Blatchley, 1.
Oolitic limestone industry, Siebenthal, 3.
Indiana—Continued.

Ordovician and Silurian rocks of Indiana, Foerste, 11.
Ordovician rocks of southern Indiana, Cumings, 4.
Orthothetes minutus n. sp. from the Salem Limestone, Cumings, 2.
Paleontology of Bartholomeu County, Ind., mammalian fossils, Edwards (J. J.), 1.
Paleontology of the Niagara of northern Indiana, Kindle and Breger, 1.
Patoka folio, Fuller and Clapp, 2.
Petroleum industry in Indiana, Blatchley, 2, 4, 6.
Physiographic and ecological study of the Lake Eagle region, Mills (W. M.), 1.
Report of natural-gas supervisor, Leach (J. C.), 1, 2.
Richmond group and its subdivisions, Nickles, 5.
Richmond group of Cincinnati anticline, Foerste, 9.
Ripple marks in Hudson limestone of Jefferson County, Culbertson, 1.
Ripple marks in Hudson River limestone, Moore and Hole, 1.
River beds and bluffs, Heiney, 1.
Section across southern Indiana, Newson, 3.
Semi-fossil shells of Posey County, Ind., Daniels, 1.
Silver Creek hydraulic limestone, Siblehant, 2.
Silurian and Devonian limestones of western Tennessee, Foerste, 7.
So-called alkali spots of drift-sheets, Wilcox, 2.
Sponges from the Hamilton group of Indiana, Whitfield, 12.
Spy Run and Poinsett Lake bottoms, Price and Shaaf, 1.
Subdivisions of the Ordovician of Indiana, Foerste, 9.
Stratigraphy and paleontology of the Niagara of northern Indiana, Kindle, 6.
Stratigraphy and paleontology of the Niagara of northern Indiana, Schuchert, 10.
Topographic features in lower Tippecanoe Valley, Breeze, 2.
Topography and geography of Bean Blossom Valley, Monroe County, Marsters, 1.
Topography and geology of Indiana, Hopkins (T. C.), 11.
Underground waters of Indiana, Laveett, 12.
Upper Ordovician at Vevay, Cumings, 3.
Valley of lower Tippecanoe River, Breeze, 1.

Indiana—Continued.

Wabash River terraces in Tippecanoe County, McBeth, 3.
Western Indiana bowlder belts, McBeth, 2.

Indian Territory.

Arkansas-Indian Territory coal field, Bach, 1.
Asphalt lands of Indian Territory, Taft, 12.
Asphalt refining, Crane, 3.
Atoka folio, Taft, 3.
Coal lands of Indian Territory, Taft, 7-11.
Carboniferous rocks of Kansas section, Adams, Girty, and White, 1.
Coal fields of Arkansas and Indian Territory, Schols, 2.
Coal mining in Indian Territory, Crane, 5.
Coal work in Indian Territory, Taft, 16.
Colgate folio, Taft, 2.
Erratic bowlders in Carboniferous shale, Taft, 18.
Geology of Arbuckle and Wichita mountains, Taft, 13.
Geology of Muscogee oil fields, Taft and Shaler, 1.
Geology of Seminole Creek, Cherokee and Osage nations, Gould, 2.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Ounachita and Arbuckle Mountain sections, Taft, 1.
Portland-cement resources of Indian Territory, Taft, 14.
Southwestern coal field, Taft, 4.
Stratigraphic relations of Red Beds, Adams (G. I.), 11.
Tahlequah folio, Taft, 17.
Tishomingo folio, Taft, 6.

Iowa.

Accretion of flood plains by sand bars, Simpson, 1.
Aftonian gravels, Calvin, 15.
Analyses of Iowa building stones, Knight (N.), 2.
Analysis of dolomite rock, Knight (N.), 6.
Analysis of Mount Vernon loess, Knight (N.), 3.
Artesian wells in Iowa, Calvin, 9.
Buried peat bed in Dodge Township, Savage, 5.
Carboniferous formations of Humboldt, Sardeson, 11.
Cement and cement materials of Iowa, Eckel and Bain, 1.
Concrete examples from the topography of Howard County, Calvin, 6.
Depositional equivalent of hiatus at base of our Coal Measures, Keyes, 18.
Devonian fish fauna of Iowa, Eastman, 11.
Devonian hiatus in continental interior, Keyes, 28.
Iowa—Continued.
Dolomites of eastern Iowa, Knight (N.), 5.
Drift exposure in Tama County, Savage, 1.
Fossils from the Hackberry group of Iowa, Webster, 2.
Foraminiferal ooze in Coal Measures, Udden, 9.
Gastropod from the Hackberry group of Iowa, Webster, 1.
Geological age of certain gypsum deposits, Keyes, 24.
Geological formations of Iowa, Calvin, 4.
Geology and geological resources of Iowa, Calvin, 3, 7.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology of Benton County, Savage, 7.
Geology of Cedar County, Norton, 1.
Geology of Cherokee and Buena Vista counties, Macbride, 2.
Geology of Chickasaw County, Calvin, 11.
Geology of Clay and O'Brien counties, Macbride, 1.
Geology of clays, Beyer and Williams, 2.
Geology of Clinton County, Udden (Jone A.), 1.
Geology of Emmet, Palo Alto, and Pocahontas counties, Macbride, 4.
Geology of Fayette County, Savage, 8.
Geology of Henry County, Savage, 2.
Geology of Howard County, Calvin, 10.
Geology of Jasper County, Williams (J. A.), 1.
Geology of Jefferson County, Udden, 5.
Geology of Kosseuth, Hancock, and Winnabago counties, Macbride, 3.
Geology of Louisa County, Udden, 2.
Geology of Marion County, Miller (B. L.), 1.
Geology of Mills and Fremont counties, Udden, 8.
Geology of Mitchell County, Calvin, 12.
Geology of Monroe County, Beyer and Young, 1.
Geology of Page County, Calvin, 1.
Geology of Pottawattamie County, Udden, 3.
Geology of Tama County, Savage, 3.
Geology of Wapello County, Leonard, 3.
Geology of Webster County, Wilder, 3.
Glacial drift of northern Iowa, Webster, 4.
Gisements de minerais de zinc Demaret, 1.
Gypsum deposits in Iowa, Wilder, 6.
Gypsum of central Iowa, Wilder, 4.
Iowa's iron mine, Beyer, 2.
Kinderhook faunal studies, Weller, 2.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Location of underground waters, Fuller (M. L.), 38.

Iowa—Continued.
Locals of Iowa City, Shimek, 2.
Loss of southwestern Iowa, Willcox, 1.
Mineral production of Iowa, Beyer, 1, 3, 4.
Names of coals west of Mississippi River, Keyes, 19.
New genus and species of Lower Carboniferous bryozoan, Whitfield, 8.
Nileus vigilans from Elgin, Finch (G. E.), 2.
Occurrence of gold and other mineral products in Iowa, Calvin, 2.
Old channels of the Mississippi in Iowa, Leverett, 2.
Paleontology of the Iowa Devonian, Webster, 3.
Physiography of Iowa, Calvin, 13.
Pleuroptyx in Iowa Coal Measures, Udden, 7.
Portland-cement resources of Iowa, Bain, 15.
Report of State geologist, Calvin, 14.
Rhizopods in Pella beds, Udden, 6.
Smoking bluffs of the Missouri River region, Powers, 1.
So-called alkali spots of drift-sheets, Willcox, 2.
Southwestern Iowa coal fields, Keyes, 22.
Technology of clays, Beyer and Williams, 1.
Tenth annual report of State geologist, Calvin, 5.
Terrace formation in Turkey River Valley, Finch (G. E.), 1.
Tests of lithographic limestone of Mitchell County, Hoen, 1.
Toledo lobe of Iowan drift, Savage, 4.
Underground waters of Iowa, Norton, 3.
Water supplies at Waterloo, Norton, 4.
Western interior coal fields, Bain, 3.

Jurassic.
Alaska.
Fossils and age of Yakutat formation, Ulrich, 4.
Geology of Copper River region, Menendez Hall, 8.
Mesozoic section on Cook Inlet, Stanton and Martin, 1.
Petroleum fields of Pacific coast, Martin (G. C.), 11.
Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.

Atlantic coast region.
Former extent of Newark system, Hobbs, 9.
Geology of Coastal Plain formations, Shattuck, 5.
Lodel Creek and Skippack Creek, Lyman, 2.
Jurassic—Continued.

Atlantic coast region—Continued.

New York City folio, Merrill and others, 1.

Geologie von Canada, Haas, 2.

Great Basin region.

Basin range structure of the Humboldt region, Louderback, 4.

Geology of Nevada, Spurr, 6.

Historical geology of Esmeralda County, Nev., Turner, 5.

Hurricane fault in southwestern Utah, Huntington and Goldthwait, 1.

Great Plains region.

Aladdin folio, Barton and O’Harra, 1.

Atlanticosaur and Titanotherium beds of Wyoming, Peck, 4.

Correlation of the formations of the Middle West, Hatcher, 21.

Edgemont folio, Barton and Smith, 1.

Geologische Streifzüge durch die Präri en und Felsenengebirge Nordamerikas, Fraas, 2.

Geology and underground water resources of the central Great Plains, Barton, 18.

Hallipus, Bapitanodon, and Atlantosaurus beds of Wyoming, Peck, 4.

Jurassic dinosaurs, Gratacap, 5.

Morrison formation, Stanton, 8.

Newcastle folio, Barton, 14.

Oelrichs folio, Barton, 8.

Osteology of Haplocanthosaurus, Hatcher, 14.

Sundance folio, Barton, 26.

Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 13.

Greenland.

Bidrag till nordøstra Grønlands geologi, Nathorst, 1.

Jurassic rocks of east Greenland, Skeat, 1.

New England and New York.

Newark system of the Pomperaug Valley, Hobbs, 2.

Pacific coast region.

Bragg formation in California, Hershey, 21.

Geological section of the coast ranges, Osmont, 1.

Klamath Mountain section, Diller, 12.

Marine sediments of eastern Oregon, Washburne, 1.

San Luis folio, Fairbanks, 7.

Rocky Mountain region.

Aladdin folio, Barton and O’Harr a, 1.

Copper deposits of the Encampment district, Spencer (A. C.), 10.

Dinosaur beds of Grand River Valley of Colorado, Riggs and Farrington, 1.

Dinosaur beds of the Grand River Valley, Riggs, 1.

Forelimb and manus of Brontosaurus, Hatcher, 8.

Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.

Jurassic—Continued.

Rocky Mountain region—Continued.

Geology of Black Hills, Darton, 1.

Geology of the Boulder district, Fenneman, 10.

Geology of the Hellgate and Big Blackfoot valleys, Winchell (N. H.), 25.

Geology of the Rico quadrangle, Cross (W.), 7.

Hallipus, Bapitanodon, and Atlantosaurus beds of Marsh, Williston, 25.

Jurassic dinosaur deposits near Canyon City, Hatcher, 6.

Jurassic stratigraphy in Wyoming, Loomis, 2.

Jurassic stratigraphy on west side of Black Hills, Loomis, 3.

La Plata folio, Cross and Spencer, 1.

Morrison formation, Lee (W. T.), 1.

Stratigraphy of Black Hills, Bighorn Mountains, and Rocky Mountain front range, Darton, 16.

Sundance folio, Barton, 26.

Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 6.

Southwestern region.

Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.

Geology of the Jemez-Albuquerque region, Reagan, 1.

Jurassic horizon around the southern end of the Rocky Mountains, Keyes, 51.

Paleontology of the Malone Jurassic formation, Cragin, 2.

Stratigraphic notes on Malone Mountain, Stanton, 7.

Kansas.

Age of Lansing skeleton, Wright (G. F.), 4.

Age of Red Beds, Adams (G. J.), 1.

Age of the Red Beds, Beede, 3.

Americus limestone, Smith (A. J.), 1.

Analyses of Mississippian limestone from the Atchison prospect well, Porter (P. B.), 1.

Antiquity of fossil man of Lansing, Upham, 18.

Arrow-head found with bones of Bison occidentalis Lucas in western Kansas, Williston, 5.

Atchison diamond-drill prospect hole, Langworthy, 1.

Carboniferous fishes from central Western States, Eastman, 10.

Carboniferous invertebrates, Beede, 1.

Carboniferous rock system of eastern Kansas, Wooster, 1.

Carboniferous rocks of Kansas section, Adams, Girty, and White, 1.

Cement materials and industry of the United States, Eckel, 84.

Clay Industries of Independence quadrangle, Schrader and Haworth, 2.

Coal fields of Kansas, Crane, 4.
INDEX TO NORTH AMERICAN GEOLOGY

Kansas—Continued.

Coal Measures faunal studies, Beede and Rogers, 1.
Coal Measures faunal studies, II, Beede, 6.
Composition of gas from a well at Dexter, McFarland, 1.
Concretions of Ottawa County, Bell (W. T.), 1.
Corroding action of river water during floods, Morscher, 1.
Cottonwood Falls fossil, Prosser and Beede, 1.
Cretaceous fishes, Williston, 1.
Current notes on physiography, Davis (W. M.), 40.
Cyclus from Coal Measures, Rogers, 3.
Dakota Cretaceous of Kansas and Nebraska, Gould, 5.
Dakota sandstone in Washington County, Charles, 1.
Dexter nitrogen gas well, Haworth and McFarland, 1.
Economic geology of Jola and vicinity, Davis (W. M.), 60.
Economic geology of the Jola quadrangle, Adams, Haworth, and Crane, 1.
Fauna of the Mentor, Jones (A. W.), 2.
Flint hills of Kansas, Mead (W. R.), 1.
Fossil bison of Kansas, McClung, 1.
Fossil forest in Jackson County (Kansas), Shattuck, 1.
Fossil human remains found near Lansing, Holmes, 1.
Fossil insects in Permian of Kansas, Sellards, 7.
Fossil man from Kansas, Williston, 12.
Fossil man of Lansing, Pearson (K.), 1.
Fossil man of Lansing, Upham, 10.
Fossil man of Lansing, Williston, 18.
Fossil plants from Kansas, Hollick, 4.
Fossil plants from Upper Carboniferous and Permian formations of Kansas, White (D.), 10.
Fossil plants in the Permian, Sellards, 2.
Fossil plants of Onaga, Crevecoeur, 1.
Fossils from the Red Beds, Gould, 1.
Galena-Joplin lead and zinc district, Haworth, 1.
Ganoid- und Knochen-fische aus der Kreide formation von Kansas, Loomis, 1.
Geologic relations of human relics of Lansing, Calvin, 8.
Geologic relations of the human relics of Lansing, Chamberlin (T. C.), 5.
Geological age of certain gypsum deposits, Keyes, 24.
Geology and mining interests of Kansas, Haworth, 3.
Geology and groundwater resources of the central Great Plains, Darton, 18.

Kansas—Continued.

Geology of Lyon County, Smith (A. J.), 3.
Gisements de minerals de zinc, Demaret, 1.
Gold in Kansas, Lovewell, 2.
Gold in Kansas shales, Lovewell, 1.
Gypsum deposits in Kansas, Grimsley, 5.
High plains and their utilization, Johnson (W. D.), 1.
Invertebrate fossils from Carboniferous section of Kansas, Girty, 4.
Kansas coal mines of the Missouri Valley, Crane, 2.
Kansas coal mining, Crane, 1.
Kansas mines and minerals, Grimsley, 1.
Kansas-Oklahoma-Texas gypsum hills, Gould, 4.
Kansas petroleum, Bartow and McCol- lum, 1.
Kansas River flood, Haworth, 5.
Lansing deposit not loess, Shimek, 12.
Lansing man, Williston, 24.
Lansing skeleton, Owen, 2.
Lansing skeleton, Winchell (N. H.), 11.
Lead and zinc deposits of the Joplin district, Smith (W. S. T.), 2.
Lyon County geology, Smith (A. J.), 2.
Man in Kansas during the lowan stage of the Glacial period, Upham, 9.
Man in the Ice Age at Lansing, Kans., and Little Falls, Minn., Upham, 8.
Meteorite from Admire, Lyon County, Merriil (G. P.), 4.
Meteorites of Kansas, Farrington, 11.
Meteorites of northwestern Kansas, Farrington, 8.
Missourian and Permo-Carboniferous fish fauna of Kansas and Nebraska, Eastman and Barbour, 1.
Names of coals west of Mississippi River, Keys, 19.
New fossils from Upper Carboniferous, of Kansas, Beede, 4.
New meteorite, Farrington, 7.
New turtle from the Kansas Cretaceous, Williston, 3.
Notes on Kansas geology, Wooster, 2.
Oil and gas fields of western Interior and Gulf coasts, Adams (G. I.), 2.
Oil and gas in Kansas, Haworth, 4.
Oil and gas of Independence quadrangle, Schrader and Haworth, 1.
Oil, gas, glass, etc., in Kansas, Grimsley, 1.
Origin of gypsum deposits, Sherwin, 2.
Ottawa gas wells, Yates (J. A.), 1.
Permian formations of Kansas, Prosser, 14.
Permian Xiphosuran from Kansas, Beecher, 10.
Petroleum and natural gas, Haworth, 2.
Physiographic divisions of Kansas, Adams (G. I.), 5, 9.
Kansas—Continued.

Pleistocene geology of the Concannon farm, near Lansing, Winchell (N. H.), 14.

Portland-cement resources of the Independence quadrangle, Haworth and Schrader, 1.

Pottawattamie and Douglas formations, Rogers, 1.

Primitive man in the Ice Age, Upham, 12.

Protocestega gigan and other Cretaceous reptiles, Sternberg, 5.

Reading blue limestone, Smith (A. J.), 4.

Remarkable slab of crinoids, Hovey (E. C.), 14.

Restoration of Dolichorhyncops osborni, Williston, 9.

Revised classification of upper Paleozoic formations of Kansas, Prosser, 7.

Skull of Nyctodactylus, Williston, 6.

Southern extension of the Marion and Wellington formations, Gould, 6.

Stratigraphic relations of Red Beds, Adams (G. I.), 11.

Stratigraphy of Kansas Permian, Beede and Sellards, 1.

Studios in the Mentor beds, Jones (A. W.), 1.

Surface deposits of Missouri and Kansas, Broadhead, 7.

Tetanopteris of the Permian, Sellards, 1.

Telos of the upper Cretaceous, Stewart, 1.

Tertiary springs of Kansas and Oklahoma, Gould, 3.

Tertiary terrane new in Kansas geology, Adams (G. I.), 8.

Tests for gold and silver in shales from western Kansas, Lindgren, 7, 8.

Ulnacrinus, Springer (F.), 2.

Valley loess and fossil man of Lansing, Upham, 14.

Variation of spiralia in Seminula argentina (Shepard) Hall, Bee, 5, 7.

Western interior coal field, Bain, 3.

Winged reptiles, Williston, 7.

Kentucky—Continued.

Big Stone Gap coal field, Puttz, 1.

Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.

Cincinnati anticline in southern Kentucky, Foerste, 3.

Cincinnati geanticline, Foerste, 10.

Classification of the Ordovician rocks of Ohio and Indiana, Foerste, 12.

Clays of the United States, Ries, 6.

Colossal cavern, Hovey (H. C.), 2.

Contributions to Devonian paleontology, Williams and Kindle, 1.

Cumberland Gap coal field, Ashley, 3, 4.

Drainage modifications in Ohio, West Virginia, and Kentucky, Tight, 4.

Eastern Interior coal field, Ashley, 1.

Fluorspar and zinc mines of Kentucky, Harwood, 1.

Fluorspar deposits of Kentucky-Illinois districts, Bain, 12.

Fluorspar mines of Kentucky and Illinois, Burk, 1.

Fossiliferous sandstone dikes in Eocene of Tennessee and Kentucky, Glenn, 8.

Geologic structure of region around Middlesboro, Ky., Ashley, 5.

Gisements de minerais de zinc, Demaret, 1.

Grottes des États-unis, Le Couppey de la Forest, 1.

Jollico coal field, Evans (N. N.), 2.

Lead and zinc bearing rocks of Kentucky, Miller (A. M.), 4.

Lead, zinc, and fluor spar deposits of western Kentucky, Smith (W. S. T.), 3.

Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.

Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich and Smith, 1.

Lithographic stone deposits of eastern Kentucky, Ulrich, 3.

Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.

Meteorite from Mount Vernon, Merrill (G. P.), 7.

Mount Vernon meteorite, Tassin, 5.

New meteorite from Kentucky, Miller (A. M.), 2.

Norton coals of Big Sandy basin, Althouse, 1.

Oil and gas sands of Kentucky, Hoeing, 1.

Ortovician rocks of Kentucky and their bryozoa, Nickles, 6.

Southern Appalachian coal field, Hayes (C. W.), 7.

Report of division of chemistry, Peter, 1.

Report on lands leased for oil and gas near Cannel City, Lane, 19.

Richmond group of Cincinnati anticline, Foerste, 8.
Kentucky—Continued.

Slurian and Devonian limestone, Foerste, 1.
Slurian and Devonian limestones of western Tennessee, Foerste, 7.
Underground waters of Tennessee and Kentucky, Glenn, 11.
Water resources of Kentucky, Glenn, 5.
Water resources of the Middleboro-Harlan region, Ashley, 6.
Zinc in Crittenden County, Wheeler (G. D.), 1.

Labrador.

Instances of moderate glacial erosion, Tarr, 9.

Louisiana.

Accumulation of petroleum, Hayes (C. W.), 8.
Age of Alabama white limestone, Casey, 2.
Cement materials and industry of the United States, Eckel, 34.
Eocene Eulimidae, Casey, 3.
Geography and geology of Sabine River, Veatch, 2.
Geological horizon of petroleum, Fishback, 1.
Geology along the Ouachita, Veatch, 3.
Geology of Mississippi embayment, Harris, 2.
Jackson outcrops on Red River, Casey, 1.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes (C. W.), 13.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes and Kennedy, 1.
Oil fields of the Texas-Louisiana Gulf coast, Fenneman, 8.
Oil in Louisiana, Harris, 4.
Oligocene of western Europe and southern United States, Maury, 1.
Origin of natural mounds, Veatch, 10.
Prairie mounds of Louisiana, Hilgard, 6.
Preliminary report upon bluff and Mississippi alluvial lands of Louisiana, Clendenin, 2.
Preliminary report upon Florida parishes of east Louisiana, Clendenin, 1.
Salines of north Louisiana, Veatch, 1.
Southern oil fields, Hager, 1.
Subterranean waters of Louisiana, Harris, 3.
Sulphur deposits of Calcasieu Parish, Kerr, 1.
Tertiary of Sabine River, Dumble, 10.
Tidal gage work in Louisiana, Harris, 9.
Underground waters of Louisiana, Harris, 6.
Underground waters of Louisiana and Arkansas, Veatch, 7, 8.

Louisiana—Continued.

Underground waters of southern Louisiana, Harris, 8.
Volcanic origin of oil, Coste, 4.
Water supplies in Louisiana, Fuller (M. L.), 10.

Maine.

Amen Knob, North Haven, Willis, 12.
Andesites of the Aroostook volcanic area, Gregory (H. E.), 1.
Apatite from Minot, Wolff and Pallache, 1.
Artesian water in crystalline rocks, Smith (G. O.), 20.
Blazing beach, Penhallow, 7.
Clays of the United States, Ries, 6.
Composition and occurrence of pollucite, Wells, 2.
Description of four meteorites, Ward (H. A.), 3.
Geological study of the Fox Islands, Smith (G. O.), 2.
Geology of Perry basin, Smith and White, 1.
Geology of Perry basin, White (D.), 18.
Glacial potholes in Maine, Manning, 1.
Granite industry of Penobscot Bay quadrangle, Smith (G. O.), 17.
Mineral resources, Lee (L. A.), 1.
Minerals at Haddam, Martin (D. S.), 1.
Molybdenite deposit in eastern Maine, Smith (G. O.), 16.
Quartz veins in Maine and Vermont, Smith (G. O.), 14.
Shells of the marl deposits of Aroostook County, Nylander, 1.
Slate investigations during 1904, Dale, 8.
Water powers of Maine, Pressey, 3.
Water resources of Maine, Bayley, 2.
Underground waters of Maine, Bayley, 3.
Water resources of the Portsmouth-York region, Smith (G. O.), 18.
Water supply from Glacial gravels near Augusta, Smith (G. O.), 19.

Marcus Island.

Monograph of Marcus Island, Bryan, 1.

Maryland.

Addition to coral fauna of Aquia Eocene formation of Maryland, Vaughan, 14.
Basic rocks of northeastern Maryland, Leonard, 1.
Bituminous coal field of Maryland, White (D.), 7.
Buried cypress forests, Bibbins, 3.
Cement materials and industry of the United States, Eckel, 34.
Clays of Maryland, Ries, 5.
Clays of the United States, Ries, 6.
Cockeysville marble, Mathews and Miller, 1.
Maryland—Continued.

Copper deposits of Appalachian States, Weed, 17.
Correlation of Coal Measures of Maryland, Clark and Martin, 5.
Correlation of formations and members [of the Maryland coal district], Clark and Martin, 6.
Correlation of Piedmont formations, Mathews, 6.
Correlation of the Potomac formation, Ward (L. F.), 3.
Devonic and Ordovician formations of Maryland, Schuchert, 7.
Distribution and character of Maryland coal beds, Clark, Martin, and Rutledge, 1.
Eocene Arthropoda, Ulrich, 1.
Eocene Bryozoa, Ulrich, 2.
Eocene Coelenterata, Vaughan, 1.
Eocene deposits of Maryland, Clark and Martin, 1.
Eocene Echinodermata, Clark and Martin, 4.
Eocene Mollusca, Clark and Martin, 2.
Eocene Molluscoidea (Brachipoda), Clark and Martin, 3.
Eocene Pisces, Eastman, 1.
Eocene Plantae, Hollick, 3.
Eocene Protozoa, Bagg, 1.
Fault phenomena near Glen Echo, Gilbert, 25.
First discovery of fossil seals in America, True (F. W.), 2.
Fossil grasses and sedges, Berry, 10.
Geology of Coastal Plain formations, Shattuck, 5.
Geology of crystalline rocks of Cecil County, Bascom, 1.
Geology of Garrett County, Martin (G. C.), 1.
Geology of Potomac group in middle Atlantic slope, Clark and Bibbins, 1.
Geology of the Maryland coal district, Martin, 16.
Gold veins near Great Falls, Weed, 35.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.
Maryland Geological Survey, volume 4, Clark (W. B.), 1.
Matawan formation, Clark (W. B.), 5.
Mineral resources of Cecil County, Mathews, 1.
Mineral resources of Garrett County, Martin (G. C.), 2.
Miocene deposits of Maryland, Clark (W. B.), 6.
Miocene deposits of Maryland, Shattuck, 10.
Miocene formation of Maryland, Shattuck, 6.
Names for the formations of the Ohio Coal Measures, Prosser, 4.
Niagara period near Cumberland, Ulrich, 1.
Occurrence of zoisite and thulite, Bibbins, 1.

Maryland—Continued.

Paleontology of the Maryland Miocene deposits, Angularperma, Hollick, 10.
Paleontology of the Maryland Miocene deposits, Anthozoa, Vaughan, 19.
Paleontology of the Maryland Miocene deposits, Brachiopoda, Martin (G. C.), 6.
Paleontology of the Maryland Miocene deposits, Bryozoa, Ulrich and Bassler, 4.
Paleontology of the Maryland Miocene deposits, Echinodermata, Clark (W. B.), 7.
Paleontology of the Maryland Miocene deposits, Foraminifera, Bagg, 6.
Paleontology of the Maryland Miocene deposits, Hydroida, Ulrich, 6.
Paleontology of the Maryland Miocene deposits, Malacostraca et Cirripedia, Martin (G. C.), 4.
Paleontology of the Maryland Miocene deposits, Mammalia, Aves, Reptilia, Case, 9.
Paleontology of the Maryland Miocene deposits, Ostracoda, Ulrich and Bassler, 3.
Paleontology of the Maryland Miocene deposits, Pelecypoda, Glenn, 6.
Paleontology of the Maryland Miocene deposits, Pisces, Eastman, 18.
Paleontology of the Maryland Miocene deposits, Radiolaria, Martin (G. C.), 8.
Paleontology of the Maryland Miocene deposits, Thallophyta-Diatomaceae, Boyer, 1.
Paleontology of the Maryland Miocene deposits, Vermes, Martin (G. C.), 7.
Paleozoic Appalachia, Willis, 1.
Paleozoic formations of Allegany County, Prosser, 3.
Paleozoic ostracods from Maryland, Jones (T. R.), 4.
Physical features of Cecil County, Shattuck, 3.
Physiographic features of Maryland, Abbe, 1.
Physiography of Cecil County, Shattuck, 4.
Physiography of Garrett County, Abbe, 2.
Pliocene problem in Maryland, Abbe, 2.
Pleistocene problem in Maryland, Shattuck, 7.
Potomac group in Maryland, Clark and Bibbins, 2.
Position and nature of Maryland cycads, Bibbins, 2.
Recent work in Piedmont area of northern Maryland, Mathews, 2.
Relations of Maryland Miocene, Dall, 14.
Maryland—Continued.

- Report on various collections of fossil plants from the older Potomac of Virginia and Maryland, Fontaine, 5.
- Reports on Cecil County, Clark (W. B.), 2.
- Reports on Garrett County, Clark (W. B.), 3.
- Romney formation of Maryland, Prosser, 12.
- Slate investigations during 1904, Dale, 8.
- Structure of Piedmont Plateau, Mathews, 5.
- Systematic paleontology, Eocene Reptilia, Case, 1.
- Types of Maryland Tertiary Mollusca in British Museum, Newton, 1.
- Underground waters of Maryland, Darton and Fuller, 1.
- Washington folio, Darton and Keith, 1.
- Water resources of Frostburg and Flintstone quadrangles, Martin (G. C.), 10.
- Water resources of Pawpaw and Hancock quadrangles, Stose and Martin, 1.
- Water resources of the Accident and Grantsville quadrangles, Martin (G. C.), 9.

Massachusetts—Continued.

- Alkalisyenit von Beverly, Wright (F. E.), 3.
- Babingtonite from Somerville, Palache and Fraprie, 1.
- Building stones of Boston, Crosby and Loughlin, 1.
- Calcite-prehnite cement rock from the Holyoke Range, Emerson (B. K.), 6.
- Cambrian and pre-Cambrian of Hoosac Mountains, Wolf, 3.
- Cambrian deposits of North Attleboro, Gorham, 1.
- Cement materials and industry of the United States, Eckel, 54.
- Changes of level at Cape Ann, Tarr, 3.
- Clays of Boston Basin, Brown (H. M.), 1.
- Clays of the United States, Ries, 6.
- Concretions from the Champlain clays, Sheldon, 1.
- Contributions from the mineralogic laboratory, Whitlock, 4.
- Cuttyhunk Island, Guildriver, 2.
- Delta plain at Andover, Mills (P. S.), 2.
- Delta plains of the Nashua Valley, Crosby, 8.
- Elevated beaches of Cape Ann, Woodworth, 5.
- Erosion by flying sand on beaches of Cape Cod, Julien, 6.
- Formation of natural bridges, Cleland, 4.
- Fossil crabs of the Gay Head Miocene, Cushman, 6.
- Fossils from Sankaty Head, Cushman, 5.
- Geologic features within the 8,000-acre grant, Sheldon and Sheldon, 1.
- Geological and botanical notes, Cape Cod and Chappaquiddick Island, Hollick, 4.
- Geological history of Charles River, Clapp, 1.
- Geology of central Cape Cod, Julien, 3.
- Geology of Charles River estuary, Crosby, 7.
- Geology of Weston aqueduct, Crosby, 12.
- Geology of Worcester, Perry and Emerson, 1.
- Glacial and post-Glacial history of the Hudson and Champlain valleys, Peet, 1.
- Glacial cirques and rock terraces on Mount Toby, Emerson (B. K.), 4.
- Glaciation of the Berkshire Hills, Taylor (F. B.), 4.
- Glacial deposits in Glacial Lake Charles, Clapp, 2.
- Hematite deposits of New York, Eckel, 30.
- Holyokeite from the Trias of Massachusetts, Emerson (B. K.), 3.
- Ice retreat in Glacial Lake Neponset, Fuller (M. L.), 8.
- Igneous rocks of Neponset Valley, Crosby, 15.
- Instances of moderate glacial erosion, Tarr, 9.
- Island tying, Guildriver, 5.
- Landslides of Mount Greylock and Briggsville, Massachusetts, Cleland, 1.
- Lead and silver mines, Newbury, Hovey (H. C.), 1.
- Micaceous cross-banding of strata, Woodworth, 1.
- Mineralogical notes, Warren, 1.
- Miocene barnacles from Gay Head, Cushman, 4.
- Nantucket shore lines, Guildriver, 3.
- New habit for chalcopryite, Richards (R. W.), 1.
- Physical geography and geology of Springfield, Orr, 1.
- Physical geography, etc., of Essex County, Massachusetts, Sears, 1.
- Pleistocene fauna of Sankaty Head, Cushman, 3.
- Pleistocene formations of Sankaty Head, Nantucket, Wilson (J. H.), 1.
- Plumose diabase and palagonite from Holyoke trap sheet, Emerson (B. K.), 9.
- Pre-Pleistocene deposits at Third Cliff, Bowman (I.), 3.
- Recessional ice borders in Berkshire County, Taylor (F. B.), 3.
FOR THE YEARS 1901–1905, INCLUSIVE.

Massachusetts—Continued.
Fossils from Sankaty Head, Cushman, 5.
Reconnaissance of the Elizabeth Islands, Hollick, 1.
Representatives of pre-Wisconsin till, Fuller (M. L.), 1.
Rocks of the Weston aqueduct, Warren, 2.
Sand plains of Glacial Lake Sudbury, Goldthwait, 1.
Structural relations of amygdaloidal melaphyre, Burr, 1.
Structure and composition of delta plains, Crosby, 11.
Study of hard-packed sand and gravel, Crosby, 5.
Sudbury basin shore lines, Gulliver, 6.
Taconic physiography, Dale, 9.
Tributaries of Westfield River, Davis (W. M.), 28.
Tertiary fauna from Chappaquiddick Island, Brown (T. C.), 1.
Tidal scour in harbors, Przibill, 1.
Tidal scour in harbors, Hodgson, 1.
Trassic rocks of the Connecticut Valley as a source of water supply, Fuller (M. L.), 18.
Underground waters of Massachusetts and Rhode Island, Crosby, 14.
Wells of Triassic area of Connecticut Valley, Fynchon, 11.
Mexico.
Aguas subterráneas de Amozoc, Ordóñez, 12.
Análisis y clasificación de granate, Villarello, 7.
Análisis y clasificación de un granate de I'huamo, Villarello, 2.
Apuntes relativos al mineral de Taxco de Alarcon, Salazar, 1.
Area cubierta por la ceniza del volcán de Santa María, Böse, 5.
Ariape meteorito, Waensch, 1.
Bacubiritó meteorito, Aguillera, 4.
Bacubiritó, or the great meteorite of Sinaloa, Ward (H. A.), 4.
Barrancos de Las Minas, Ordóñez, 16.
Bibliography of Mexican geology and mining, Aguillera y Santillán, 1.
Caliche de southern Arizona, Blake (W. F.), 4.
Cananea copper deposits, Weed, 12.
Cananea ore deposits, Weed, 23.
Cananea revisited, Hill (R. T.), 12.
Canteras de San Lorenzo Tolotinga, Lazo and Ordóñez, 1.
Casas Grandes meteorite, Tassin, 3.
Coal fields of Las Esperanzas, Ludlow, 1.
Coal mines at Las Esperanzas, Ries, 9.
Mexico—Continued.
Caballero, 1.
Condiciones tectónicas de la República Mexicana, Aguillera, 2.
Copper deposits at San Jose, Kemp, 32.
Copper deposits in Sinaloa and Sonora, Rickard (F.), 2.
Criaderos de fierro del Cerro de Mercado, Durango, Rangel, 1.
Criaderos argentíferos, Flores, 1.
Criaderos cupro-argentíferos en Tapalpa, Villarello, 1.
Criaderos de fierro de la hacienda de Vaquerías, Villarello and Böse, 1.
Criaderos de mercurio de Chiquitilistán, Villarello, 6.
Criaderos de petróleo de pichucalco, Alcalá, 1.
Descripción de la geología en México, Aguillera, 5.
Distribución geográfica y geológica de los criaderos minerales, Aguillera, 1.
Drainage of Valley of Mexico, Emmons (S. P.), 13.
Eruptions of Volcan de Colima, Ordóñez, 10.
Eruptions of Colima, Arreola, 1.
Estado de Tabasco, Lagueurre, 1.
Fisiografía, geología e hidrología de la Paz, Angermann, 1.
Formation des montagnes, Burckhardt, 1.
Gems and precious stones of Mexico, Halse, 3.
Gems and precious stones of Mexico, Kunz, 4.
Genesis de los yacimientos mercuriales de Palomas, Villarello, 1.
Geologica del valle de Chihuahua, Ordóñez and Bose, 1.
Geological and topographical features of city of Monterey, Wittmau, 1.
Geological and topographical features of city of Monterrey, Wittmau, 1.
Geology of Mexico, Sebbia, 1.
Mexico—Continued.
Geology of nepheline syenite area at San José, Tamaulipas, Finlay (G. I.), 7.
Geology of San José district, Finlay (G. I.), 8.
Geology of San Pedro district, Finlay (G. I.), 5.
Geology of Santo Domingo placer fields, Hill (R. T.), 15.
Geology of Sonora, Merril (F. J. H.), 7.
Geology of the Cananeas, Mathez, 1.
Geology of western Mexico, Farrington, 13.
Gold mines of the San Pedro district, Laird, 1.
Gold production of North America, Lindgren, 16.
Guanaquito mining district, Henrich, 1.
Guanaquito mining district, Hill (R. T.), 14.
Hydrologia Interna de Queretaro, Villarello, 5.
Hidrologia subterranæa de Queretaro, Villarello, 10.
Hostotipaquillo district, Cummings, 1.
In San Cristobal gefallene Asche, Schottler, 1.
Independencia de los volcanes de grietas preexistentes, Böse, 1.
La industria minera, Ordóñez, 2.
Instituto Geologico de Mexico, Guild, 2.
Jurassic fossils from Durango, Johnson (D. W.), 3.
Kupfererzlagerstatte in Nieder-Californien, Krusch, 1.
Latest eruption of Colima volcano, Ishikawa, 1.
Ligeros datos sobre los criaderos de Pññoles, Hijar, 1.
"Los Reyes" gold mines, Smith (A. H.), 1.
Meteoreisen-Studien, Cohen, 4.
Meteoreisen von Cuernavaca und Iredell, Cohen, 8.
Mina Santa Francisca, Cook (E. H.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral de Angangueo, Ordóñez, 11.
Mineral zone of Santa Maria del Rio, Manzano, 1.
Mineralogical notes, Headden, 4.
Mines and minerals of Guanaquito, Blake (W. P.), 7.
Mines of Santa Eulalia, Aiken, 1.
Mining district of Pachuca, Ordóñez, 6.
Mining in lower California, Lowry, 1.
Mining industry of Pachuca, Ordóñez, 3.
Moctezuma district, Clere, 1.

Mexico—Continued.
Naturlicher Koks in den Santa Clara Kohlenfeldern, Sonora, Ochsenius, 1.
Nauhcampatepetl 6 Cofre de Perote, Ordóñez, 18.
Nepheline syenite area of San José, Finlay and Kemp, 1.
Observaciones geologicas al Citlaltepetl, Angermann, 4.
Occurrence of selenium with pyrite, Pearce, 1.
Onyx-marble deposits of Jimulco, Ordóñez, 4.
Ore deposits of Cananea, Austin, 3.
Ore deposits of Cananea, Hill (R. T.), 11.
Ore deposits of La Cananea, Steel, 1.
Origen de los temblores de Zanatepec, Böse, 5.
Oyster shells in volcanic deposits, Dumble, 5.
Paleozoico en México, Angermann, 2.
Physical geography of Mexico, Hill, 19.
Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
Ramosite not a mineral, Luquer, 3.
Recent vertebrate paleontology, Osborn, 46.
Regiones de temblores en México, Böse, 4.
Rosa geológica del Desague del Valle de México, Villada, 1.
Las rhyolitas, Ordóñez, 1.
Rocas de Chipas y Tabasco, Ordóñez, 14.
Roche basaltique de la Sierra Verde, Kroustchoff, 1.
Rodeo meteorite, Farrington, 16.
Sahcab de Yucatan, Ordóñez, 8.
Sahuyacan district, Bagg, 5.
Sahuyacan mining district, Treadwell, 1.
Sain Alto tin deposits, Nevius, 3.
Santa Eulalia district, Hill (R. T.), 10.
Santa Eulalia mines, Lakes, 54.
Santa Eulalia mining district, Argall (P.), 1.
Santa Eulalia ore deposits, Argall (P.), 2.
Sierra Madre of the State of Chihuahua, Hewett, 1.
Section across the Sierra Madre Occidental of Chihuahua and Sinaloa, Weed, 9.
Sierra Madre of the State of Chihuahua, Hovey (E. O.), 48.
Sierra Mojada and its ore deposits, Emmons (S. F.), 8.
Sierra Mojada and its ore deposits, Malcolmson, 1.
Silver-bearing veins of Mexico, Halse, 1, 4.
Silver-lead mines of Santa Eulalia, Halse, 2.
Mexico—Continued.
Temblor en Guerrero, Böse and Angermann, 1.
Teoría química para explicar la formación del petróleo de Aragon, Villarello, 3.
Topographie und Geologie von México, Felix and Lenk, 1.
Trip to Chihuahua, Lakes, 51.
Upland placers in México, Emmons (N. H.), 1.
Valle de Charcas, Caballero, 2.
Volcan de Tacana, Bose, 3.
Volcanes de Zacapu, Ordofiez, 9.
Western Sierra Madre of the State of Chihuahua, Howey, 47.
Wollastonite rock mass, Collins (H. F.), 1.
Los Xalapazcos del Estado de Puebla, Ordofiez, 15.
Xinantacatl ou volcán Nevado de Toluca, Ordofiez, 7.
Yaqi River country of Sonora, Bankcroft, 1.
Michigan.
Alabaster area, Gregory (W. M.), 3.
Artesian flows from unconfined sandy strata, Fuller (M. L.), 39.
Asphalt in Delta County, Lane, 6.
Cement materials and industry of the United States, Eckel, 34.
Clays and shales of Michigan, Ries, 1.
Clays of the United States, Ries, 6.
Coal formation of Bay County, Cooper (W. F.), 3.
Coal of Michigan, Lane, 14.
Comment on report of special committee on Lake Superior, Lane, 47.
Copper mines of Lake Superior, Rickard (T. A.), 4, 16.
Copper mining in upper Michigan, Jackson (J. F.), 1.
Deep borings for oil and gas, Lane, 46.
Deep wells and prospects for oil and gas, Lane, 10.
Delta of St. Clair River, Cole (L. J.), 1.
Drainage of ponds into drilled wells, Horton, 1.
Drumlin areas in Michigan, Russell, 24.
Drumlins of the Grand Traverse region, Leverett, 14.
Eisenerzlagerstätten am Lake Superior, Macco, 1.
Explorations for oil and gas, Lane, 31.
Failure of wells in Michigan, Fuller (M. L.), 37.
Fifth annual report of State geologist, Lane, 39.
Geologic section in Alpena and Presque Isle counties, Grabau, 2.
Michigan—Continued.
Geological cross sections of Keeweenaw Point, Hubbard (L. L.), 1.
Geological map of Michigan, Lane, 11.
Geological reconnaissance along north shore, Ittseill, 23.
Geological Survey of Michigan, field work of 1000, Savicki, 1.
Geology of lands in upper peninsula, Rose, 2.
Geology of Menominee Range, Halst, 1.
Geology of some lands in Michigan, Rose, 1.
Geothermal gradient in Michigan, Lane, 16.
Glacial features of lower Michigan, Leverett, 6.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Glacial geology of Grand Rapids area, Leverett, 9.
Glacial geology of southern peninsula of Michigan, Leverett, 8.
Glacial phenomena in Indiana and Michigan, Montgomery (H. T.), 1.
Gold near Lake Superior, Lane, 35.
Ground-water problem in southeastern Michigan, Fuller (M. L.), 34.
Gypsum, Diehl, 1.
Gypsum and plaster industry of Michigan, Grimsley, 7.
Gypsum deposits in Michigan, Grimsley, 4.
Historical review of geology of Michigan, Lane, 36.
Ice work in southeastern Michigan, Sherzer, 1.
Lake Superior geological work, Van Hise, 14.
Lake Superior iron-ore deposits, Grant (U. S.), 6.
Lake Superior iron region, Leith, 10.
Limestone regions of Michigan, Grabau, 12.
Limestones of Michigan, Lane, 9, 41.
Localities and mills manufacturing cement, Lane, 21.
Marl and the manufacture of Portland cement, Hale, 1.
Marls and clays, Fall, 1.
Marls and clays in Michigan, Fall, 2.
Menominee district of Michigan, Bayley, 1.
Meteorite from Allegan, Michigan, and Mart, Texas, Merritt and Stokes, 1.
Michigan clay, shales, and paving materials, Lane, 34.
Michigan limestones, Lane, 1.
Northern interior coal field, Lane, 15.
Notes on rocks and minerals of Michigan, Wright (F. E.), 6.
Origin of gyspum, Grimsley, 8.
Origin of Michigan beglimes, Lane, 20.
Michigan—Continued.

Origin of Michigan gypsum deposits, Grimsley, 6.
Paleozoic coral reefs, Grabau, 10.
Platygonus compressus Le Conte, Wagner, 1.
Port Huron oil field, Gordon (C. H.), 2.
Portland cement industry in Michigan, Russell, 6.
Pre-Glacial surface deposits, Lane, 2.
Recent work of geological survey, Lane, 18.
Reed City meteorite, Preston (H. L.), 4.
Relation of vein at Central mine, Keewenaw Point, to Kearsage conglomerate, Hubbard (L. L.), 2.
Report of Michigan geological survey, Lane, 17.
Report of State geologist, Lane, 3.
Report on Arenac County, Gregory (W. M.), 2.
Report on Lake Superior region, Van Hise and others, 1.
Salt, Lane, 12.
Shells of marls, Walker (B.), 1.
Sixth annual report of State geologist, Lane, 48, 49.
Stratigraphy of Traverse group, Grabau, 5.
Stream capture in Michigan, Bowman (I.), 1.
Sub-Carboniferous limestone exposure at Grand Rapids, Whittemore, 1.
Subsurface geology of Alcona County, Lane, 7.
Suggestion from State geologist, Lane, 4.
Summary of Lake Superior geology, Leith, 14.
Surface geology of Alcona County, Leeverett, 3.
Surface geology of Lapeer County, Taylor (F. B.), 2.
Tamarack mine cross section, Lane, 45.
Theory of copper deposition, Lane, 28.
Topography, soils, water resources, etc., of Muskegon County, McLaughlin, 1.
Traverse group of Michigan, Grabau, 14.
Underground waters of lower Michigan, Lane, 38.
Variation of geothermal gradient, Lane, 27.
Water resources of Michigan, Cooper (W. F.), 1.
Water supply of the lower peninsula of Michigan, Cooper (W. F.), 2.
Waters of upper peninsula of Michigan, Lane, 40.
Wave cutting on west shore of Lake Huron, Gordon (C. H.), 3.

Mineralogy.

Action of ammonium chloride upon silicates, Clarke and Steiger, 1.
Action of silver nitrate and thallous nitrate upon certain natural silicates, Steiger, 2.
Alunite-jarosite group of minerals, Hillebrand and Funfkel, 1.
Amphibole hudsonite, Weldman, 2.
Analisys y clasificacion de un granate de Pihuamo, Villarello, 2.
Analysis of kunzite, Davis (R. O. E.), 1.
Apatite crystals, Antwerp, N. Y., Knight (N.), 4.
Apatite, from Minot, Me., Wolff and Palache, 1.
Archean rocks of Ottawa Valley, Osann, 2.
Aripe meteorite, Wuenach, 1.
Arrangement of collections of meteorites, Brezina, 1.
Babingtonite from Massachusetts, Palache and Fraprie, 1.
Bacubirito meteorite, Aguillen, 4.
Bacubirito, or the great meteorite of Sinaloa, Mexico, Ward (H. A.), 4.
Barite and selenite crystals, Rowe, 3.
Barites of Nebraska and Bad Lands, Barbour (E. H.), 1.
Bastnasite and tysonite, Allen and Comstock, 1.
Bath Furnace aerolite, Ward (H. A.), 12.
Bath Furnace meteoric fall, Miller (A. M.), 3.
Bastnasite and tysonite, Allen and Comstock, 1.
Bauxite deposits of Georgia, Watson (T. L.), 12.
Bedford cyrtolite, Luquer, 2.
Bibliography and index of North American geology, paleontology, petrology, and mineralogy, Weeks, 3, 4, 6, 7, 10, 15.
Billings meteorite, Ward (H. A.), 10.
Bismuth and bismite from Pula, Cal., Kunz, 6.
Borderland between crystallography and chemistry, Goldschmidt, 1.
Calcite from the Joplin mining district, Sterrett, 2.
California minerals, Schaller, 3.
Californite, a new ornamental stone, Kunz, 5.
Canadian amphiboles, Harrington (B. J.), 2.
Canyon City meteorite, Ward (H. A.), 7.
Cape York meteorites, Hovey (E. O.), 42.
Carnotite and associated vanadiferous minerals in western Colorado, Hillebrand and Ransone, 1.
Cass Grandes meteorite, Tassin, 3.
Mineralogy—Continued.
Catalogue of meteorites, Farrington, 9.
Celestite near Syracuse, Kruss, 2.
Chemical composition of ambygonite, Penfleld, 2.
Chemical composition of axinite, Ford (W. E.), 3.
Chemical composition of chilrenite, Penfleld, 1.
Chemical composition of durangite, Brush, 4.
Chemical composition of hamulinite and its occurrence with bertrandite, Penfleld, 5.
Chemistry and mineralogy, Hoffmann, 8.
Chrysoberyl from Canada, Evans (N. N.), 2.
Chrysocolla: a remarkable case of hydration, Palmer (C. M.), 1.
Clackamns meteoric iron, Kunz, 9.
Colemanite from southern California, Enkle, 2.
Composition and occurrence of pollucite, Wells, 2.
Composition of Montreal minerals, Harrington (B. J.), 5.
Composition of tourmaline, Kunz, 3.
Composition of yttrilatite, Hillebrand, 2.
Composition of yttrilatite, with a criticism of the formula assigned to thalénite, Hillebrand, 7.
Concentration of barium in limestone, Dickson, 2.
Condition of nickel in nickeliferous pyrrhotite from Sudbury, Dickson, 1.
Constituents of meteorites, Farrington, 3.
Contribution to mineralogy of California, Blasdale, 1.
Contributions from the mineralogic laboratory, Whitlock, 4.
Contributions from mineralogical laboratory of University of Minnesota, Hobbs, 28.
Contributions to mineralogy, Eyerman, 1.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Copper ore and garnet in association, Blake (W. P.), 16.
Corundum of North Carolina, Pratt and Lewis, 1.
Crystal drawing, Penfleld, 7.
Crystal line development of calaverite, Smith (G. F. H.), 1.
Crystallization of mohawkite, dowsy-kite, and other similar arsenides, Koenig, 1.
Crystallization of luzonite, Moses, 5.
Crystallization of molybdenite, Moses, 3.

Mineralogy—Continued.
Crystallographic study of millerite, Palache and Wood, 1.
Crystallographical and chemical notes on lawsonite, Schaller and Hillebrand, 1.
Crystallography of calcites of New Jersey trap region, Rogers, 5.
Crystallography of lepidolite, Schaller, 6.
Deposits of copper ores at Ducktown, Tenn., Kemp, 10.
Deposits of wolframite in the Black Hills, Irving, 1.
Description of four meteorites, Ward (H. A.), 3.
Description of new species from Branchville, Brush and Dana, 1.
Descriptive catalogue of meteorite collection in U. S. National Museum, Tassin, 2.
Determination of brucite as a rock constituent, Julien, 9.
Determination of feldspars in thin section, Spurr, 7.
Determination of optical character of bi-refracting minerals, Wright (F. E.), 5.
Determination of relative refractive indices of minerals, Luquer, 1.
Determining index of refraction, Hotchkiss, 1.
Development of pseudomorphs, Patton, 2.
Discovery of meteoric iron in Nebraska, Barbour (E. H.), 3.
Doughy springs, a group of radium-bearing springs, Hsedden, 3.
Dumortierite, Schaller, 5, 7.
Economic geology of the Silverton quadrangle, Ransome, 1.
Emmonsite from a new locality, Hillebrand, 4.
Epidote crystals from Alaska, Palache, 1.
Exhibit of radium collection at the St. Louis Exposition, Kunz, 10.
Famous gold nuggets of the world, Hurley, 1.
Fierro meteorico de Bacubirito, Angermann, 3.
Fifth Branchville paper, Brush and Dana, 5.
Fluorescent gems, Levison, 1.
Formula of bornite, Harrington (B. J.), 3.
Franceville meteorite, Preston (H. L.), 2, 3.
Garnetiferous bed in Golden Gate Canyon, Bailey, Rath, and Gridor, 1.
Gem minerals of California, Kunz, S.
Gems and gem minerals, Farrington, 12.
INDEX TO NORTH AMERICAN GEOLOGY

Mineralogy—Continued.
Gems and precious stones of Mexico, Halse, 3.
Gems and precious stones of Mexico, Kunz, 4.
Gems and rare minerals of southern California, Sovereign, 1.
Geographical distribution of meteorites, Farrington, 14.
Geological relations and distribution of platinum and associated metals, Kemp, 11.
Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.
Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.
Geology of western Mexico, Farrington, 13.
Globe folio, Ransome, 13.
Guide to mineral collections, Gratacap, 6.
Guide to mineralogic collections of New York State Museum, Whitlock, 1.
Guide to mineralogic collections of New York State Museum, Whitlock, 1.
Guide to mineralogic collections of New York State Museum, Whitlock, 1.
Highway' construction in Wisconsin, Buckley, 3.
Hussakite, a new mineral, and its relation to xenotime, Kraus and Reitinger, 1.
Identity of palacheite and botryogen, Eakle, 3.
Ilvaite from Siorarsuit at Julianehaab, Boggild, 1.
Inclusions in quartz, Keeley, 1.
Inclusions in quartz, Bilgram, 1.
Index to North American geology, paleontology, petrology, and mineralogy for 1892-1900, Weeks, 4.
Internal structure of cliftonite, Davidson, 1.
Iodobromite in Arizona, Blake, 18.
Iron of meteoric origin, Pratt, 1.
Iron-nickel alloy, awaruite, Jamieson, 1.
Isomorphism and thermal properties of the feldspars, Becker, 5.
Isomorphism and thermal properties of the feldspars, Day and Allen, 2.
Isomorphism and thermal properties of the feldspars. Optical study, Iddings, 4.
Jade, Easter, 1.
Jadeite und Chloromelanit aus Guatemala, Bauer, 1.
Kunzite, Baskerville, 1.
Kunzite and its unique properties, Baskerville and Kunz, 1.
Lawsonite, Schaller and Hillebrand, 2.
Lead and zinc deposits of Ozark region, Bain, 2.
Lecture notes on crystallography, Patton, 5.
Lilac-colored transparent spodumene, Kunz, 7.
Linear force of growing crystals, Becker and Day, 1.
Luminous east zinc-blende, Eakle and Sharwood, 1.
Marte and Bluff meteorites, Charlton, 1.
Melanochalcite and keweenawite, Koezig, 2.
Mercury minerals from Terlingua, Texas, Moses, 2.
Metallic veins of Farmington meteorite, Farrington, 1.
Metasonatic processes in fissure veins, Lindgren, 1.
Meteorites-Studien, Cohen, 4.
Meteorites von Cincinnati, Cohen, 3.
Meteorites von Cuernavaca und Tresdoll, Cohen, 8.
Meteorites von De Sotoville, Brezina and Cohen, 5.
Meteorites von Forsyth County, Georgia, Cohen, 2.
Meteorites von Millers Run bei Pittsburgh, Cohen, 7.
Meteorites von Nenntraannsdorf und Persimmon Creek, Cohen, 6.
Meteorites von Persimmon Creek, Klein, 2.
Meteorite iron from Augusta County Virginia, Campbell and Howe, 1.
Meteorite collection, Ward (H. A.), 11.
Meteorite de Caion Diablo, Moissan, 3.
Meteorite from Admire, Kansas, Merrill (G. F.), 4.
Meteorite from Algoma, Kewaunee County, Wisconsin, Hobbs, 13, 15.
Meteorite from Allegan, Michigan, and Mart, Texas, Merrill and Stokes, 1.
Meteorite from Hendersonville, Glenn, 3.
Meteorite from Mount Vernon, Kentucky, Merrill (G. F.), 7.
Meteorite from Shelburne, Johnston (H. A. A.), 3.
Meteorite in Supreme Court, Winchester (N. H.), 28.
Meteorite studies, Farrington, 6.
Mineralogy—Continued.
Meteorite which fell near Felix, Alabama, Merrill (G. P.), 2.
Meteorites and their collectors, Holder, 3.
Meteorites of Kansas, Farrington, 11.
Meteorites of Nebraska, Barbour (E. H.), 4.
Meteorites of northwestern Kansas, Farrington, 8.
Method for the exact expression of crystal habit, Rogers, 7.
Method of petrographic analysis, Derr, 1.
Microscopic-petrographical methods, Wright (F. E.), 2.
Mineral analyses, Clarke (F. W.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral catalog, Foote, 1.
Mineral containing radium, Obalski, 2.
Mineral occurrences in the Salina epoch, Kraus, 3.
Mineral tables, Eakle, 5.
Mineralogia Groenlandica, Bøggild, 5.
Mineralogical notes, Chester, 1.
Mineralogical notes, Endicken, 1, 4.
Mineralogical notes, Moses, 1.
Mineralogical notes, Rogers, 2, 4.
Mineralogical notes, Schaller, 8.
Mineralogical notes, Warren, 1.
Mineralogisk resa i Syd-Groenland, Flink, 1.
Mineralogisk-petrografiske undersøgelser af Groenlandske nefelin syeniters og their collectors, Holder, 3.
Meteorites of Kansas, Farrington, 11.
Meteorites of Nebraska, Barbour (E. H.), 4.
Meteorites of northwestern Kansas, Farrington, 8.
Method for the exact expression of crystal habit, Rogers, 7.
Method of petrographic analysis, Derr, 1.
Microscopic-petrographical methods, Wright (F. E.), 2.
Mineral analyses, Clarke (F. W.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral catalog, Foote, 1.
Mineral containing radium, Obalski, 2.
Mineral occurrences in the Salina epoch, Kraus, 3.
Mineral tables, Eakle, 5.
Mineralogia Groenlandica, Bøggild, 5.
Mineralogical notes, Chester, 1.
Mineralogical notes, Endicken, 1, 4.
Mineralogical notes, Moses, 1.
Mineralogical notes, Rogers, 2, 4.
Mineralogical notes, Schaller, 8.
Mineralogical notes, Warren, 1.
Mineralogisk resa i Syd-Groenland, Flink, 1.
Mineralogisk-petrografiske undersøgelser af Groenlandske nefelin syeniter og their collectors, Holder, 3.
Meteorites of Kansas, Farrington, 11.
Meteorites of Nebraska, Barbour (E. H.), 4.
Meteorites of northwestern Kansas, Farrington, 8.
Method for the exact expression of crystal habit, Rogers, 7.
Method of petrographic analysis, Derr, 1.
Microscopic-petrographical methods, Wright (F. E.), 2.
Mineral analyses, Clarke (F. W.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral catalog, Foote, 1.
Mineral containing radium, Obalski, 2.
Mineral occurrences in the Salina epoch, Kraus, 3.
Mineral tables, Eakle, 5.
Mineralogia Groenlandica, Bøggild, 5.
Mineralogical notes, Chester, 1.
Mineralogical notes, Endicken, 1, 4.
Mineralogical notes, Moses, 1.
Mineralogical notes, Rogers, 2, 4.
Mineralogical notes, Schaller, 8.
Mineralogical notes, Warren, 1.
Mineralogisk resa i Syd-Groenland, Flink, 1.
Mineralogisk-petrografiske undersøgelser af Groenlandske nefelin syeniter og their collectors, Holder, 3.
Meteorites of Kansas, Farrington, 11.
Meteorites of Nebraska, Barbour (E. H.), 4.
Meteorites of northwestern Kansas, Farrington, 8.
Method for the exact expression of crystal habit, Rogers, 7.
Method of petrographic analysis, Derr, 1.
Microscopic-petrographical methods, Wright (F. E.), 2.
Mineral analyses, Clarke (F. W.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral catalog, Foote, 1.
Mineral containing radium, Obalski, 2.
Mineral occurrences in the Salina epoch, Kraus, 3.
Mineral tables, Eakle, 5.
Mineralogia Groenlandica, Bøggild, 5.
Mineralogical notes, Chester, 1.
Mineralogical notes, Endicken, 1, 4.
Mineralogical notes, Moses, 1.
Mineralogical notes, Rogers, 2, 4.
Mineralogical notes, Schaller, 8.
Mineralogical notes, Warren, 1.
Mineralogisk resa i Syd-Groenland, Flink, 1.
Mineralogisk-petrografiske undersøgelser af Groenlandske nefelin syeniter og their collectors, Holder, 3.
Meteorites of Kansas, Farrington, 11.
Meteorites of Nebraska, Barbour (E. H.), 4.
Meteorites of northwestern Kansas, Farrington, 8.
Method for the exact expression of crystal habit, Rogers, 7.
Method of petrographic analysis, Derr, 1.
Microscopic-petrographical methods, Wright (F. E.), 2.
Mineral analyses, Clarke (F. W.), 1.
Mineral asbestiforme, Villarello, 4.
Mineral catalog, Foote, 1.
Mineralogy—Continued.

Occurrence of thaumasite, Penfield and Pratt, 1.
Occurrence of zoisite and thulite, Bibbins, 1.
Octahedrite and brookite, Robinson (H. H.), 1.
On bixbyte, Penfield and Foote, 1.
On calaverite, Penfield and Ford, 1.
On californite, Clarke and Steiger, 2.
On clinohedrite, Penfield and Foote, 2.
On garnite, Brush, 3.
On hortonolite, Brush, 1.
On mordenite, Pirsson, 2.
On northupite, pirssonite, etc., Pratt, 3.
On pearcelite, Penfield, 4.
On spangolite, Penfield, 3.
On sussexite, Brush, 2.
On wellsite, Pratt and Foote, 1.
Optische Orientirung des Albit von Amelia, Becke, 1.
Ore deposits of Rico Mountains, Colorado, Ransome, 3.
Ore deposits of Monte Cristo, Spurr, 3.
Osseo Mountain meteorite, Hills, 3.
Oxygen in its relation to mineralogy, Cooper (J. C.), 1.
Palacheite, Eakle, 4.
Persimmon Creek meteorite, Tassin, 4.
Phlogopite crystal, McNairn, 1.
Phosphorescent sphalerite, Eakle, 6.
Phosphorus in Saline Township meteorite, Farrington, 10.
Physical geography, etc., of Essex County, Mass., Sears, 1.
Platinum in nickel-copper ores from Sudbury, Dickson, 3.
Pre-terrestial history of meteorites, Farrington, 4.
Pricamatic crystals of hematite, McKee, 1.
Production des pierres precieuses aux Etats-Unis, Kunz, 1.
Progress of mineralogy in 1899, Hamilton and Withrow, 1.
Pseudomorphs and crystal cavities, Rowe, 4.
Purpurite, a new mineral, Graton and Schaller, 1.
Pyrite and marcasite, Julian, 5.
Pyrite and marcasite, Stokcs, 1.
Quartz from San Diego County, Waring, 1.
Quecksilbermineralien von Terlingua in Texas, Moses, 4.
Rare metals from Rambler mine, Womong, Rend, 1.
Recent mineralogical literature, Moses and Luquer, 2, 3.
Red beryl from Utah, Hillebrand, 5.
Reed City meteorite, Preston (H. L.), 4.

Mineralogy—Continued.

Relations of tetrahedral combinations to crystalline form, Blake (J. C.), 2.
Replacement of quartz by pyrite and corrosion of quartz pebbles, Smyth, 6.
Report of section of chemistry and mineralogy, Hoffmann, 1, 4, 6.
Report of State geologist of Nebraska, Barbour (E. H.), 5.
Results of late mineral research in Llano County, Hidden, 1.
Rickardite, Ford (W. E.), 2.
Road-making materials of Pennsylvania, Ihlseng, 1.
Rodeo meteorite, Farrantong, 16.
Second Branchville paper, Brush and Dana, 2.
Secondary enrichment in ore deposits of copper, Kemp, 33.
Serpentines of Manhattan Island, Newland, 1.
Sheburne meteorite, Borgström, 1.
Silverton folio, Ransome, 16.
Sodalite syenite (ditroite) from Ice River Valley, Canadian Rocky Mountains, Bonney, 1.
Sonesite, a native iron-nickel alloy, Hoffmann, 7.
Sperrylite, Wells, 1.
Spinel twins of pyrite, Nicol, 1.
Spodumene, and results of its alteration, Brush and Dana, 4.
Spodummene from San Diego County, Schaller, 2.
Stibnite at Steamboat Springs, Lindgren, 24.
Structure of meteorites, Farrantong, 2.
Study of minerals in the laboratory, Day (A. L.), 1.
Synthesis of chalcoite and its genesis at Butte, Mont., Winchell (H. V.), 2.
Tables of minerals, Penfield, 6.
Third Branchville paper, Brush and Dana, 3.
Titaniferous magnetite in Wyoming, Kemp, 36.
Titaniferous pyroxene, Winchell (A. N.), 3.
Tourmaline from San Diego County, Sterrett, 1.
Tourmaline localities of southern California, Schaller, 4.
Treatise on metamorphism, Van Hise, 12.
Tungsten mine at Trumbull, Conn., Hobbs, 5.
Two tellurium minerals from Colorado, Hillebrand, 6.
Tyctite, Penfield and Jamieson, 1.
Ultimate disintegration products of the radio-active elements, Boltwood, 1.
Uranophane in Georgia, Watson (T. L.), 7.
Mineralogy—Continued.

Variety of fetid calcite and cause of its odor, Harrington, 1.
Vorkommen der texanischen Quecksilbermineralien, Hill (B. F.), 4.
Ward-Cooley collection of meteorites, Gratacap, 3.
Williamette meteorite, Ward (M. A.), 8.
Williamette meteorite, Winchell (N. H.), 20.
Wollastonite rock mass, Collins (H. F.), 1.
Zinc and lead deposits of northern Arkansas, Branner, 2.

Minerals described.

Acmite Boggild, 5.
Acmite, Harrington (B. J.), 5.
Acmite, Van Hise, 12.
Actinolite, Boggild, 5.
Actinolite, Perry and Emerson, 1.
Actinolite, Pratt and Lewis, 1.
Actinolite, Simonds, 3.
Actinolite, Van Hise, 12.
Actinolite, Whitlock, 1.
Adularia, Simonds, 3.
Aegirine, Boggild, 5.
Aegirine, Flink, 2.
Aegirite, Clarke and Steiger, 1.
Aegirite, Steiger, 2.
Aegyptnite, Boggild, 5.
Aerolite, Whitlock, 1.
Agate, Barbour (E. H.), 8.
Agate, Simonds, 3.
Alabaster, Farrington, 12.
Alabaster, Whitlock, 1.
Alumadite, Simonds, 3.
Alberthite, Bailey (L. W.), 1.
Alberthite, Merrill (G. P.), 12.
Alberthite, Whitlock, 1.
Albite, Becke, 1.
Albite, Boggild, 5.
Albite, Bowman (H. L.), 1.
Albite, Clarke and Steiger, 1.
Albite, Day and Allen, 2.
Albite, Pulnache, 4.
Albite, Pratt and Lewis, 1.
Albite, Simonds, 3.
Albite, Tassin, 1.
Albite, Van Hise, 12.
Albite, Whitlock, 1.
Albozonite, Koenig, 2.
Allanite, Boggild, 5.
Allanite, Farrington, 12.
Allanite, Merrill (G. P.), 12.
Allanite, Perry and Emerson, 1.
Allanite, Simonds, 3.
Allanite, Van Hise, 12.
Allemonbite, Merrill (G. P.), 12.
Allophane, Bahn, 2.
Allophane, Hoffmann, 4.
Almandite, Pratt and Lewis, 1.
Almandite, Van Hise, 12.
Almandite, Whitlock, 1.
Altaite, Eakle, 1.
Altaite, Hoffmann, 4.

Minerals described—Continued.

Alunite, Hillebrand and Penfield, 1.
Alunite, Lindgren, 29.
Alunite, Merrill (G. P.), 12.
Alunite, Whitlock, 1.
Alunogen, Heiden, 4.
Amazonstone, Hoffmann, 4.
Amber, Farrington, 12.
Amber, Kunz, 4.
Amber, Tassin, 1.
Amber, Whitlock, 1.
Amblygonite, Schaller, 3, 8.
Amblygonite, Sovereign, 1.
Amethyst, Van Hise, 12.
Amethyst, Simonds, 3.
Amphibole, Buckley, 3.
Amphibole, Eyerman, 1.
Amphibole, Harrington (B. J.), 2.
Amphibole, Hilseng, 1.
Amphibole, Kenz, 10.
Amphibole, Lindgren, 29.
Amphibole, Pratt and Lewis, 1.
Amphibole, Simonds, 3.
Amphibole, Spurr, 3.
Amphibole, Whitlock, 1.
Amphibole, Wright (F. E.), 6.
Analcime, Boggild, 4, 5.
Analcime, Flink, 2.
Analcite, Clarke and Steiger, 1.
Analcite, Harrington (B. J.), 5.
Analcite, Steiger, 2.
Analcite, Van Hise, 12.
Analcite, Whitlock, 1.
Analcite, Wright (F. E.), 6.
Analcylite, Boggild, 5.
Analcylite, Flink, 2.
Andalusite, Boggild, 5.
Andalusite, Farrington, 12.
Andalusite, Tassin, 1.
Andalusite, Van Hise, 12.
Andalusite, Whitlock, 1.
Andesine, Boggild, 5.
Andesine, Iddings, 4.
Andesine, Pratt and Lewis, 1.
Andesine-labradorite, Iddings, 4.
Andesine, Van Hise, 12.
Andradite, Pratt and Lewis, 1.
Andradite, Simonds, 3.
Andradite, Whitlock, 1.
Anglesite, Grant (U. S.), 5.
Anglesite, Whitlock, 1.
Anhydrite, Schaller, 8.
Anhydrite, Tassin, 1.
Anhydrite, Van Hise, 12.
Anhydrite, Whitlock, 1.
Ankerite, Boggild, 5.
Ankerite, Simonds, 3.
Ankerite, Smith (W. S. T.), 3.
Ankerite, Van Hise, 12.
Annabergite, Barlow, 8.
Anorthite, Boggild, 5.
Anorthite, Day and Allen, 2.
Anorthite, Iddings, 4.
Anorthite, Van Hise, 12.
Anorthite, Whitlock, 1.
Anorthoclase, Van Hise, 12.
Minerals described—Continued.
Antophyllite, Boggild, 5.
Antophyllite, Pratt and Lewis, 1.
Antophyllite, Van Hise, 12.
Antophyllite, Warren, 1.
Anthracite, Hoffmann, 4.
Anthracite, Whitlock, 1.
Antimony, Hoffmann, 6.
Antimony, Whitlock, 1.
Apatite, Boggild, 5.
Apatite, Bowman (H. L.), 1.
Apatite, Crook, 1.
Apatite, Farrington, 12.
Apatite, Flink, 2.
Apatite, Kemp, 10.
Apatite, Knight (N.), 4.
Apatite, Pratt and Lewis, 1.
Apatite, Simonds, 3.
Apatite, Turner, 4, 7.
Apatite, Van Hise, 12.
Apatite, Whitlock, 1.
Apatite, Wolf and Palache, 1.
Apatite, Wright (F. E.), 6.
Apophyllite, Boggild, 4, 5.
Apophyllite, Clarke and Steiger, 1.
Apophyllite, Schaller, 8.
Apophyllite, Tassin, 1.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Aragonite, Tassin, 1.
Aragonite, Van Hise, 12.
Aragonite, Whitlock, 1.
Aragonite, Wright (F. E.), 6.
Aragonite, Boggild, 4, 5.
Aragonite, Crook, 1.
Aragonite, Pratt and Lewis, 1.
Aragonite, Simonds, 3.
Minerals described—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birimite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>Boltwood, 1</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>Kunz, 6</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Bismuthiate</td>
<td>Hoffmann, 6</td>
<td></td>
</tr>
<tr>
<td>Bismuthiate</td>
<td>Ransome, 16</td>
<td></td>
</tr>
<tr>
<td>Bismuthiate</td>
<td>Headden, 4</td>
<td></td>
</tr>
<tr>
<td>Bismuthite</td>
<td>Weed, 5</td>
<td></td>
</tr>
<tr>
<td>Bitumen</td>
<td>Bain, 2</td>
<td></td>
</tr>
<tr>
<td>Bixbyite</td>
<td>Penfield and Foote, 1</td>
<td></td>
</tr>
<tr>
<td>Blende</td>
<td>Spurr, 3</td>
<td></td>
</tr>
<tr>
<td>Blende</td>
<td>Weed, 5</td>
<td></td>
</tr>
<tr>
<td>Boothite</td>
<td>Schaller, 1, 3, 8</td>
<td></td>
</tr>
<tr>
<td>Boracite</td>
<td>Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Boracite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Boracite</td>
<td>Boggild, 5</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Harrington (B. J.), 3</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Kemp, 33</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Ransome, 16</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Winchell (A. N.), 2</td>
<td></td>
</tr>
<tr>
<td>Bornite</td>
<td>Wright (F. E.), 6</td>
<td></td>
</tr>
<tr>
<td>Botryogen</td>
<td>Eakle, 3</td>
<td></td>
</tr>
<tr>
<td>Bournonite</td>
<td>Ransome, 16</td>
<td></td>
</tr>
<tr>
<td>Bournonite</td>
<td>Schaller, 8</td>
<td></td>
</tr>
<tr>
<td>Bournonite</td>
<td>Weed, 5</td>
<td></td>
</tr>
<tr>
<td>Brannerite</td>
<td>Branner, 3</td>
<td></td>
</tr>
<tr>
<td>Brannerite</td>
<td>Bedburg, 1</td>
<td></td>
</tr>
<tr>
<td>Braunite</td>
<td>Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Braunite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Britelite</td>
<td>Boggild, 5</td>
<td></td>
</tr>
<tr>
<td>Britholtite</td>
<td>Boggild and Winther, 1</td>
<td></td>
</tr>
<tr>
<td>Brochantte</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Brochantte</td>
<td>Lindgren and Hillebrand, 1</td>
<td></td>
</tr>
<tr>
<td>Brochantte</td>
<td>Ransome, 11</td>
<td></td>
</tr>
<tr>
<td>Brochantte</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Bromyrite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Bronzite</td>
<td>Harrington, 12</td>
<td></td>
</tr>
<tr>
<td>Bronzite</td>
<td>Pratt and Lewis, 1</td>
<td></td>
</tr>
<tr>
<td>Bronzite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Bronzite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Brookite</td>
<td>Robinson (H. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Brookite</td>
<td>Tassin, 1</td>
<td></td>
</tr>
<tr>
<td>Brookite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Brucite</td>
<td>Julien, 9</td>
<td></td>
</tr>
<tr>
<td>Brucite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Brucite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Bytownite</td>
<td>Iddings, 4</td>
<td></td>
</tr>
<tr>
<td>Bytownite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Barlow, 2</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Branner, 2</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Clarke and Steiger, 1</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Grant (U. S.), 5</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Lindgren and Hillebrand, 1</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Smith (W. S. T.), 3</td>
<td></td>
</tr>
<tr>
<td>Cerussite</td>
<td>Watson (T. L.), 17</td>
<td></td>
</tr>
<tr>
<td>Calamine</td>
<td>Weed, 5</td>
<td></td>
</tr>
<tr>
<td>Calaverite</td>
<td>Penfield and Foote, 1</td>
<td></td>
</tr>
</tbody>
</table>

Minerals described—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calaverite</td>
<td>Smith (G. F. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Calciodony</td>
<td>Boggild, 4</td>
<td></td>
</tr>
<tr>
<td>Calciolovolcaninite</td>
<td>Lindgren, 4</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Rain, 2</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Barbour (E. H.), 8</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Boggild, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Buckley, 3</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Crook, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Ransome, 4, 6</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Glenn, 7</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Grant (U. S.), 5</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Harrington (B. J.), 4</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Hobbs, 28</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Ihlsgen, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Kemp, 10</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Lindgren, 29</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Puluche, 4</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Patton, 2</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Ferry and Emerson, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Pratt and Lewis, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Ransome, 4, 6</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Rogers, 2, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Smith (W. S. T.), 3</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Spurr, 3</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Sterrett, 2</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Tassin, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Ulrich and Smith, 1</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Watson (T. L.), 17</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Weed, 5</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Whitlock, 1, 4</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>Wright (F. E.), 6</td>
<td></td>
</tr>
<tr>
<td>Calcite-sand crystal</td>
<td>Barbour and Fisher, 2</td>
<td></td>
</tr>
<tr>
<td>Californite</td>
<td>Ransome, 13</td>
<td></td>
</tr>
<tr>
<td>Californite</td>
<td>Clarke and Steiger, 2</td>
<td></td>
</tr>
<tr>
<td>Californite</td>
<td>Vesuvianite, Kunz, 5</td>
<td></td>
</tr>
<tr>
<td>Callalite</td>
<td>Harrington, 12</td>
<td></td>
</tr>
<tr>
<td>Calolom, Simonds, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caneclinite</td>
<td>Boggild, 5</td>
<td></td>
</tr>
<tr>
<td>Caneclinite</td>
<td>Clarke and Steiger, 1</td>
<td></td>
</tr>
<tr>
<td>Caneclinite</td>
<td>Tassin, 1</td>
<td></td>
</tr>
<tr>
<td>Caneclinite</td>
<td>Van Hise, 12</td>
<td></td>
</tr>
<tr>
<td>Caneclinite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Carbonite</td>
<td>Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Carnelian, Simonds, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnotite</td>
<td>Hillebrand and Ransome, 1</td>
<td></td>
</tr>
<tr>
<td>Carnotite</td>
<td>Merrill (G. P.), 12</td>
<td></td>
</tr>
<tr>
<td>Carnotite</td>
<td>Phillips (A. H.), 1</td>
<td></td>
</tr>
<tr>
<td>Carphosiderite</td>
<td>Boggild, 5</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Barlow, 8</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Boggild, 5</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Hoffmann, 4</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Pratt and Sterrett, 1</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Schaller, 8</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Simonds, 3</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Tassin, 1</td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td>Whitlock, 1</td>
<td></td>
</tr>
<tr>
<td>Catapleiite</td>
<td>Flink, 2</td>
<td></td>
</tr>
<tr>
<td>Catallite</td>
<td>Tassin, 1</td>
<td></td>
</tr>
<tr>
<td>Celestite</td>
<td>Bogue (E. H.), 8</td>
<td></td>
</tr>
<tr>
<td>Celestite</td>
<td>Glenn, 7</td>
<td></td>
</tr>
<tr>
<td>Celestite</td>
<td>Hoffmann, 4</td>
<td></td>
</tr>
</tbody>
</table>
INDEX TO NORTH AMERICAN GEOLOGY

Minerals described—Continued.

Celestite, Kraus, 2-4.
Celestite, Merrill (G. P.), 12.
Celestite, Rogers, 2, 4.
Celestite, Simonds, 3.
Celestite, Wright (F. E.), 6.
Cerargyrite, Simonds, 3.
Cerargyrite, Whitlock, 1.
Cerite, Merrill (G. P.), 12.
Cerolite, Pratt and Lewis, 1.
Cerussite, Bain, 2.
Cerussite, Grant (U. S.), 5.
Cerussite, Rogers, 4.
Cerussite, Simonds, 3.
Cerussite, Warren, 1.
Cerussite, Weed, 5.
Calamine, Watson (T. L.), 17.
Chabazite, Clarke and Steiger, 1.
Chabazite, Simonds, 3.
Chalcanthite, Lindgren, 29.
Chalcopyrite, Bain, 2.
Chalcopyrite, Barlow, 8.
Chalcopyrite, Kemp, 33.
Chalcopyrite, Lindgren, 29.
Chalcopyrite, Lindgren and Hillebrand, 1.
Chalcopyrite, Ransome, 11, 16.
Chalcopyrite, Simonds, 3.
Chalcopyrite, Whitlock, 1.
Chalcopyrite, Whitlock, 1.
Chalcopyrite, Whitlock, 1.
Chalcopyrite, Van Hise, 12.
Chalcopyrite, Whitlock, 1.
Chalcopyrite, Whitlock, 1.
Chromite, Boggild, 5.
Chromite, Merrill (G. P.), 12.
Chromite, Pratt and Lewis, 1.
Chromite, Van Hise, 12.
Chromite, Whitlock, 1.
<table>
<thead>
<tr>
<th>Minerals described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, Boggild, 5.</td>
</tr>
<tr>
<td>Copper, Crook, 1.</td>
</tr>
<tr>
<td>Copper, Kemp, 33.</td>
</tr>
<tr>
<td>Copper, Lindgren, 29.</td>
</tr>
<tr>
<td>Copper, Ransome, 11, 16.</td>
</tr>
<tr>
<td>Copper, Whitlock, 1.</td>
</tr>
<tr>
<td>Copper, Wright (F. E.), 6.</td>
</tr>
<tr>
<td>Copper, native, Hoffmann, 1, 2.</td>
</tr>
<tr>
<td>Copper, native, Simonds, 3.</td>
</tr>
<tr>
<td>Copper-pitch ore, Lindgren and Hillebrand, 1.</td>
</tr>
<tr>
<td>Coquimbite, Eakle, 1.</td>
</tr>
<tr>
<td>Coral, precious, Farrington, 12.</td>
</tr>
<tr>
<td>Cordierite, Boggild, 5.</td>
</tr>
<tr>
<td>Cordierite, Van Hise, 12.</td>
</tr>
<tr>
<td>Cordylite, Flink, 2.</td>
</tr>
<tr>
<td>Coronadite, Lindgren and Hillebrand, 1.</td>
</tr>
<tr>
<td>Corundophillite, Van Hise, 12.</td>
</tr>
<tr>
<td>Corundum, Boggild, 5.</td>
</tr>
<tr>
<td>Corundum, Crook, 1.</td>
</tr>
<tr>
<td>Corundum, Emerson (B. K.), 1.</td>
</tr>
<tr>
<td>Corundum, Farrington, 12.</td>
</tr>
<tr>
<td>Corundum, Pratt, 2.</td>
</tr>
<tr>
<td>Corundum, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Corundum, Tassin, 1.</td>
</tr>
<tr>
<td>Corundum, Van Hise, 12.</td>
</tr>
<tr>
<td>Corundum, Whitlock, 1.</td>
</tr>
<tr>
<td>Covellite, Kemp, 33.</td>
</tr>
<tr>
<td>Crednerite, Simonds, 3.</td>
</tr>
<tr>
<td>Crocidolite, Flink, 2.</td>
</tr>
<tr>
<td>Crocidolite, Tassin, 1.</td>
</tr>
<tr>
<td>Crocidolite, Whitlock, 1.</td>
</tr>
<tr>
<td>Crocoite, Whitlock, 1.</td>
</tr>
<tr>
<td>Cryolytite, Boggild, 5.</td>
</tr>
<tr>
<td>Cryolite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Cryolite, Whitlock, 1.</td>
</tr>
<tr>
<td>Cryolitionite, Boggild, 5.</td>
</tr>
<tr>
<td>Cryophyllite, Sears, 1.</td>
</tr>
<tr>
<td>Cryosytile, Willmott, 1.</td>
</tr>
<tr>
<td>Cubanite, Barlow, 8.</td>
</tr>
<tr>
<td>Cummingonite, Boggild, 5.</td>
</tr>
<tr>
<td>Cummingonite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Cummingonite, Van Hise, 12.</td>
</tr>
<tr>
<td>Cuprite, Crook, 1.</td>
</tr>
<tr>
<td>Cuprite, Hoffmann, 6.</td>
</tr>
<tr>
<td>Cuprite, Kemp, 33.</td>
</tr>
<tr>
<td>Cuprite, Lindgren, 29.</td>
</tr>
<tr>
<td>Cuprite, Ransome, 11.</td>
</tr>
<tr>
<td>Cuprite, Simonds, 3.</td>
</tr>
<tr>
<td>Cuprite, Whitlock, 1.</td>
</tr>
<tr>
<td>Cuprite, Wright (F. E.), 6.</td>
</tr>
<tr>
<td>Cuprodioctite, Headden, 1.</td>
</tr>
<tr>
<td>Cyanite, Boggild, 5.</td>
</tr>
<tr>
<td>Cyanite, Farrington, 12.</td>
</tr>
<tr>
<td>Cyanite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Cyanite, Van Hise, 12.</td>
</tr>
<tr>
<td>Cyanite, Whitlock, 1.</td>
</tr>
<tr>
<td>Cyanotrichite, Simonds, 3.</td>
</tr>
<tr>
<td>Cymnololite, Brush and Dana, 4.</td>
</tr>
<tr>
<td>Cyprite, Simonds, 3.</td>
</tr>
<tr>
<td>Cyrtolite, Hidden, 1.</td>
</tr>
<tr>
<td>Cyrtolite, Luquer, 2.</td>
</tr>
<tr>
<td>Cyrtolite, Simonds, 3.</td>
</tr>
<tr>
<td>Bull. 301—06—37</td>
</tr>
</tbody>
</table>
Minerals described—Continued.

Eglestonite, Moses, 2, 4.
Elamolite, Clarke and Steiger, 1.
Elatrite, Merrill (G. P.), 12.
Elpidite, Böggild, 5.
Elpidite, Flink, 2.
Emerald, Pratt and Lewis, 1.
Emery, Pratt and Lewis, 1.
Emmonsite, Hillebrand, 4, 6.
Enargite, Headen, 4.
Enargite, Kemp, 33.
Enargite, Moses, 5.
Enargite, Ransome, 16.
Enargite, Whitlock, 1.
Endelolite, Böggild, 5.
Endelolite, Flink, 2.
Enstatite, Böggild, 5.
Enstatite, Pratt and Lewis, 1.
Enstatite, Simonds, 3.
Enstatite, Tassin, 1.
Enstatite, Van Hise, 12.
Enstatite, Whitlock, 1.
Eosopherinite, Brush and Dana, 1, 3.
Epididymite, Böggild, 5.
Epididymite, Flink, 2.
Epidolite, Böggild, 5.
Epidolite, Flink, 2.
Epidote, Böggild, 5.
Epidote, Flink, 2.
Epidote, Simonds, 3.
Epidote, Spurr, 3.
Epidote, Van Hise, 12.
Epidote, Weed, 5.
Epidote, Whitlock, 1.
Epidote, Wright (F. E.), 6.
Epirelbitite, Van Hise, 12.
Episkolite, Böggild, 5.
Episkolite, Böggild and Winther, 1.
Epsomite, Böggild, 5.
Epsomite, Ransome, 3, 16.
Epsomite, Simonds, 3.
Epsomite, Tassin, 1.
Epsomite, Van Hise, 12.
Epsomite, Whitlock, 1.
Epsomite, Willimott, 1.
Epsomite, Winther, 1.
Epsomite, Schaller, 1.
Epsomite, Simonds, 3.
Epsomite, Whitlock, 1.
Erikite, Böggild, 2, 5.
Erythrite, Hoffmann, 4.
Erythrite, Whitlock, 1.
Esmeraldite, Eakle, 1.
Euclase, Farrington, 12.
Euclase, Tassin, 1.
Eudialyte, Böggild, 5.
Eudialyte, Flink, 2.
Eudidymite, Böggild, 5.
Eudidymite, Flink, 2.
Euphylite, Pratt and Lewis, 1.
Euxenite, Böggild, 5.
Euxenite, Farrington, 12.
Fairfieldite, Brush and Dana, 2, 5.
Fasanite, Simonds, 3.
Faujasite, Hoffmann, 3, 4, 6.
Faylite, Searls, 1.
Faylite, Van Hise, 12.
Faylite, Warren, 1.

Minerals described—Continued.

Fayalite, Weideman, 4.
Feldspar, Buckley, 3.
Feldspar, Farrington, 12.
Feldspar, Ihlseng, 1.
Feldspar, Spurr, 7.
Feldspar, Wright (F. E.), 6.
Fergusonite, Böggild, 5.
Fergusonite, Farrington, 12.
Fergusonite, Hidden, 1.
Fergusonite, Simonds, 3.
Fibroferrite, Headen, 4.
Fibrolite, Perry and Emerson, 1.
Fibrolite, Pratt and Lewis, 1.
Fibrolite, Simonds, 3.
Fillowite, Van Hise, 2, 5.
Flinite, Simonds, 3.
Fluor, Bowman (H. L.), 1.
Fluorite, Böggild, 5.
Fluorite, Farrington, 12.
Fluorite, Flink, 2.
Fluorite, Glenn, 7.
Fluorite, Hidden, 1.
Fluorite, Ransome, 3, 16.
Fluorite, Simonds, 3.
Fluorite, Smith (W. S. T.), 3.
Fluorite, Tassin, 1.
Fluorite, Ulrich and Smith, 1.
Fluorite, Van Hise, 12.
Fluorite, Watson (T. L.), 17.
Fluorite, Whitlock, 1.
Footite, Ransome, 11.
Footite, Van Hise, 12.
Franklinite, Merrill (G. P.), 12.
Franklinite, Simonds, 3.
Franklinite, Whitlock, 1.
Fuchsite, Willimott, 1.
Gadolinite, Hidden, 1.
Gadolinite, Böggild, 5.
Gadolinite, Farrington, 12.
Gadolinite, Merrill (G. P.), 12.
Gadolinite, Simonds, 3.
Gadolinite, Tassin, 1.
Gahnite, Brush, 3.
Gahnite, Pratt and Lewis, 1.
Galenite, Böggild, 5.
Galenite, Flink, 2.
Galenite, Grant (U. S.), 5.
Galenite, Watson (T. L.), 17.
Garnet, Blake (W. P.), 16.
Garnet, Clarke and Steiger, 2.
Garnet, Crook, 1.
Minerals described—Continued.

Garnet, Emser (B. K.), 1.
Garnet, Eyerman, 1.
Garnet, Farrington, 12.
Garnet, Kemp, 12.
Garnet, Kunz, 4.
Garnet, Lindgren, 29.
Garnet, Merrill (G. P.), 12.
Garnet, Pratt and Lewis, 1.
Garnet, Tassin, 1.
Garnet, Villaré (P.), 2.
Garnet, Weed, 5.
Garnet, Whitlock, 1.
Garnet, Wright (F. E.), 6.
Goethite, Böggild, 5.
Goethite, Böggild, 5.
Goethite, Van Hise, 12.
Grahamite, Van Hise, 12.
Grahamite, Van Hise, 12.
Grahamite, Wright (F. E.), 6.
Gummite, Simonds, 3.
Gypsum, Barbour (E. H.), 8.
Gypsum, Böggild, 5.
Gypsum, Crook, 1.
Gypsum, Glenn, 7.
Gypsum, Rogers, 4.
Gypsum, Simonds, 3.
Gypsum, Tassin, 1.
Gypsum, Van Hise, 12.
Gypsum, Whitlock, 1.
Gypsum, Wright (F. E.), 6.
Gyrolite, Schaller, 8.
Hamalite, Böggild, 5.
Hagemannite, Böggild, 5.
Halite, Merrill (G. P.), 12.
Halite, Whitlock, 1.
Halloysite, Schaller, 3.
Hammondite, Van Hise, 12.
Hammonnite, Merrill (G. P.), 12.
Halylinitite, Van Hise, 12.
Halylnite, White, 1.
Hedenbergite, Van Hise, 12.
Hedenbergite, Whitlock, 1.
Hematite, Buckley, 3.
Hematite, Crook, 1.
Hematite, Farrington, 12.
Hematite, Hoffmann, 4.
Hematite, Kraus, 3.
Hematite, McKee, 1.
Hematite, Moses, 5.
Hematite, Pratt and Lewis, 1.
Hematite, Ransome, 15.
Hematite, Simonds, 13.
Hematite, Tassin, 1.
Hematite, Van Hise, 12.
Hematite, Whitlock, 1.
Hematite, Wright (F. E.), 6.
Heulandite, Böggild, 4.
Heulandite, Clarke and Steiger, 1.
Heulandite, Van Hise, 12.
Heulandite, Whitlock, 1.
Hedonite, Sovereign, 1.
Hedonite, Schaller, 2.
Hisingerite, Böggild, 5.
Hornblende, Blasdale, 1.
Hornblende, Böggild, 5.
Hornblende, Crook, 1.
Hornblende, Pratt and Lewis, 1.
Hornblende, Schaller, 8.
Hornblende, Tassin, 1.
Hornblende, Van Hise, 12.
Hornblende, Whitlock, 1.
Hortonolite, Brush, 1.
Huebnerite, Hobbs, 28.
Hübnerite, Merrill (G. P.), 12.
Hübnerite, Ransome, 16.
Rudsonite, Weidman, 2.
<table>
<thead>
<tr>
<th>Minerals described—Continued.</th>
<th>Minerals described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hussakite, Kraus and Reitinger, 1.</td>
<td>Kornerrupine, Böggild, 5.</td>
</tr>
<tr>
<td>Hydromagnesite, Hoffmann, 4.</td>
<td>Kunzite, Baskerville and Kunz, 1.</td>
</tr>
<tr>
<td>Hydronephelite, Hoffmann, 4.</td>
<td>Kunzite, Sovereign, 1.</td>
</tr>
<tr>
<td>Hydrozincite, Grant (U. S.), 5.</td>
<td>Labradorite, Böggild, 5.</td>
</tr>
<tr>
<td>Hypersthene, Böggild, 5.</td>
<td>Labradorite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Hypersthene, Crook, 1.</td>
<td>Labradorite, Simonds, 3.</td>
</tr>
<tr>
<td>Hypersthene, Farrington, 12.</td>
<td>Labradorite, Van Hise, 12.</td>
</tr>
<tr>
<td>Hypersthene, Pratt and Lewis, 1.</td>
<td>Labradorite, Whitlock, 1.</td>
</tr>
<tr>
<td>Hypersthene, Simonds, 3.</td>
<td>Lampadite, Hoffmann, 6.</td>
</tr>
<tr>
<td>Hypersthene, Van Hise, 12.</td>
<td>Lampadite, Simonds, 3.</td>
</tr>
<tr>
<td>Hypersthene, Whitlock, 1.</td>
<td>Lapis lazuli, Farrington, 12.</td>
</tr>
<tr>
<td>Ilmenite, Böggild, 1.</td>
<td>Lapis-lazuli, Tassin, 1.</td>
</tr>
<tr>
<td>Ilmenite, Chester, 1.</td>
<td>Laumontite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Ilmenite, Crook, 1.</td>
<td>Laumontite, Böggild, 4, 5.</td>
</tr>
<tr>
<td>Ilmenite, Merrill (G. P.), 12.</td>
<td>Laumontite, Palache, 4.</td>
</tr>
<tr>
<td>Ilmenite, Pratt and Lewis, 1.</td>
<td>Laumontite, Van Hise, 12.</td>
</tr>
<tr>
<td>Ilmenite, Simonds, 3.</td>
<td>Lawsonite, Schaller and Hillebrand, 1, 2.</td>
</tr>
<tr>
<td>Ilmenite, Tassin, 1.</td>
<td>Lazulite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Ilmenite, Van Hise, 12.</td>
<td>Lazulite, Whitlock, 1.</td>
</tr>
<tr>
<td>Ilmenite, Whitlock, 1.</td>
<td>Lazurite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Iolite, Farrington, 12.</td>
<td>Lead, Boltwood, 1.</td>
</tr>
<tr>
<td>Iolite, Tassin, 1.</td>
<td>Leadhillite, Rogers, 2.</td>
</tr>
<tr>
<td>Iolite, Van Hise, 12.</td>
<td>Ledouxite, Richards (J. W.), 1.</td>
</tr>
<tr>
<td>Iolite, Whitlock, 1.</td>
<td>Lepidolite, Bowman (H. L.), 1.</td>
</tr>
<tr>
<td>Isopyrre, Tassin, 1.</td>
<td>Lepidolite, Hoffmann, 2, 4.</td>
</tr>
<tr>
<td>Ivigtite, Böggild, 18.</td>
<td>Lepidolite, Schaller, 6, 8.</td>
</tr>
<tr>
<td>Jade, Bauer, 1.</td>
<td>Lepidolite, Sovereign, 1.</td>
</tr>
<tr>
<td>Jade, Farrington, 12.</td>
<td>Lepidolite, Tassin, 1.</td>
</tr>
<tr>
<td>Jade, Tassin, 1.</td>
<td>Lepidolite, Willemott, 1.</td>
</tr>
<tr>
<td>Jadeite, Easter, 1.</td>
<td>Lepidolomelane, Harrington (B. J.), 5.</td>
</tr>
<tr>
<td>Jadeite, Whitlock, 1.</td>
<td>Lesleyite, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Jamesonite, Hoffmann, 4.</td>
<td>Leuchtenbergite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Jarosite, Hillebrand and Penfield, 1.</td>
<td>Leucite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Jarosite, Turner, 4.</td>
<td>Leucite, Steiger, 2.</td>
</tr>
<tr>
<td>Jasper, Simonds, 3.</td>
<td>Leucite, Van Hise, 12.</td>
</tr>
<tr>
<td>Jefferisite, Pratt and Lewis, 1.</td>
<td>Leucite, Whitlock, 1.</td>
</tr>
<tr>
<td>Jefferisite, Simonds, 3.</td>
<td>Leucophane, Böggild, 5.</td>
</tr>
<tr>
<td>Jet, Farrington, 12.</td>
<td>Leucophenite, Böggild, 5.</td>
</tr>
<tr>
<td>Kämmerite, Pratt and Lewis, 1.</td>
<td>Leucophenite, Flink, 2.</td>
</tr>
<tr>
<td>Kaolin, Ibseng, 1.</td>
<td>Levynite, Böggild, 4, 5.</td>
</tr>
<tr>
<td>Kaolinite, Crook, 1.</td>
<td>Libethenite, Schaller, 8.</td>
</tr>
<tr>
<td>Kaolinite, Pratt and Lewis, 1.</td>
<td>Libethenite, Whitlock, 1.</td>
</tr>
<tr>
<td>Kaolinite, Simonds, 3.</td>
<td>Lignite, Hoffmann, 4.</td>
</tr>
<tr>
<td>Kaolinite, Van Hise, 12.</td>
<td>Limestone, Hoffmann, 4.</td>
</tr>
<tr>
<td>Kaolinite, Whitlock, 1.</td>
<td>Linnite, Simonds, 3.</td>
</tr>
<tr>
<td>Kataplite, Böggild, 5.</td>
<td>Limonite, Böggild, 5.</td>
</tr>
<tr>
<td>Kellhauite, Simonds, 3.</td>
<td>Limonite, Buckley, 3.</td>
</tr>
</tbody>
</table>
Minerals described—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limonite</td>
<td>Crook, 1</td>
</tr>
<tr>
<td>Limonite</td>
<td>Glenn, 7</td>
</tr>
<tr>
<td>Limonite</td>
<td>Hoffmann, 4, 6</td>
</tr>
<tr>
<td>Limonite</td>
<td>Lindgren, 29</td>
</tr>
<tr>
<td>Limonite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Limonite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Limonite</td>
<td>Smith (W. S. T.), 3</td>
</tr>
<tr>
<td>Limonite</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Limonite</td>
<td>Whitlock, 1</td>
</tr>
<tr>
<td>Limonite</td>
<td>Wright (F. E.), 6</td>
</tr>
<tr>
<td>Linarite</td>
<td>Rogers, 2</td>
</tr>
<tr>
<td>Linarite</td>
<td>Weed, 5</td>
</tr>
<tr>
<td>Lithiophilite</td>
<td>Brush and Dana, 1, 3</td>
</tr>
<tr>
<td>Lithiophilite</td>
<td>Merrill (G. P.), 12</td>
</tr>
<tr>
<td>Lithomarge</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Loellingite</td>
<td>Boggild, 5</td>
</tr>
<tr>
<td>Lorenzenite</td>
<td>Boggild, 5</td>
</tr>
<tr>
<td>Lorenzenite</td>
<td>Flink, 2</td>
</tr>
<tr>
<td>Lucite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Lucanite</td>
<td>Moses, 5</td>
</tr>
<tr>
<td>Mackintoshite</td>
<td>Hidden, 1</td>
</tr>
<tr>
<td>Mackintoshite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Mancosite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Manganese</td>
<td>Hoffmann, 4, 6</td>
</tr>
<tr>
<td>Manganese</td>
<td>Merril (G. P.), 12</td>
</tr>
<tr>
<td>Manganese</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Manganese</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Manganese</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Boggild, 5</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Buckley, 3</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Crook, 1</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Flink, 2</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Hoffmann, 6</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Kemp, 36</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Lindgren, 29</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Ransome, 4</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Whitlock, 1</td>
</tr>
<tr>
<td>Manganite</td>
<td>Merrill (G. P.), 12</td>
</tr>
<tr>
<td>Manganite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Manganite</td>
<td>Whitlock, 1</td>
</tr>
<tr>
<td>Manganite</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Manganite</td>
<td>Wright (F. E.), 6</td>
</tr>
<tr>
<td>Manganite</td>
<td>Crook, 1</td>
</tr>
<tr>
<td>Manganite</td>
<td>Schaller, 1</td>
</tr>
<tr>
<td>Manganite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Melanite</td>
<td>Boggild, 5</td>
</tr>
<tr>
<td>Melilite</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Menaccanite</td>
<td>Merril (G. P.), 12</td>
</tr>
<tr>
<td>Menaccanite</td>
<td>Pratt and Lewis, 1</td>
</tr>
<tr>
<td>Menacnatite</td>
<td>Whitlock, 1</td>
</tr>
<tr>
<td>Mercury</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Mesolite</td>
<td>Boggild, 4, 5</td>
</tr>
<tr>
<td>Mesolite</td>
<td>Steiniger, 2</td>
</tr>
<tr>
<td>Mesolite</td>
<td>Van Hise, 12</td>
</tr>
<tr>
<td>Metacinnabarite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Metacinnabarite</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Meteoric iron</td>
<td>Pratt, 1</td>
</tr>
<tr>
<td>Meteoric iron</td>
<td>Simonds, 3</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Angermann, 3</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Aguilera, 4</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Barbour (E. H.), 3, 4, 8</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Borgerström, 1</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Brezina, 1</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Brezina and Cohen, 1</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Campbell and Howe, 1</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Charlton, 1</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Cohen, 1–8</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Farrington, 1–4, 6–8, 9–11; 16</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Glenn, 3</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Hills, 3</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Hobbs, 13, 15</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Howe (E. O.), 42</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Johnston (R. A. A.), 3</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Klein, 2</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Kunz, 9, 10</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Merrill (G. P.), 2, 4, 7</td>
</tr>
<tr>
<td>Meteorite</td>
<td>Merrill and Stokes, 1</td>
</tr>
<tr>
<td>Minerals described—Continued.</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Miller (A. M.), 2, 3.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Tassin, 4.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Preston (H. L.), 1–3, 4.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Tassin, 2, 3, 5.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Ward (H. A.), 1–10, 12.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Winchell (N. H.), 28, 29.</td>
<td></td>
</tr>
<tr>
<td>Meteorite, Wuensch, 1.</td>
<td></td>
</tr>
<tr>
<td>Mica, Buckley, 3.</td>
<td></td>
</tr>
<tr>
<td>Mica, Ihlseng, 1.</td>
<td></td>
</tr>
<tr>
<td>Mica, Schwartz, 1.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Bowman (H. L.), 1.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Crook, 1.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Simonds, 3.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Tassin, 1.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Van Hise, 12.</td>
<td></td>
</tr>
<tr>
<td>Microcline, Weed, 5.</td>
<td></td>
</tr>
<tr>
<td>Microlite, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Microlite, Bowman (H. L.), 1.</td>
<td></td>
</tr>
<tr>
<td>Microlite, Flink, 2.</td>
<td></td>
</tr>
<tr>
<td>Microlite, Tassin, 1.</td>
<td></td>
</tr>
<tr>
<td>Microperthite, Crook, 1.</td>
<td></td>
</tr>
<tr>
<td>Millerite, Barlow, 8.</td>
<td></td>
</tr>
<tr>
<td>Millerite, Crook, 1.</td>
<td></td>
</tr>
<tr>
<td>Millerite, Palache and Wood, 1.</td>
<td></td>
</tr>
<tr>
<td>Mimetite, Whitlock, 1.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Crook, 3.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Hoffmann, 4.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Merrill (G. P.), 12.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Moses, 3.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Ransome, 16.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Simonds, 3.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Spurr, 3.</td>
<td></td>
</tr>
<tr>
<td>Molybdenite, Wright (F. E.), 6.</td>
<td></td>
</tr>
<tr>
<td>Monazite, Hoffmann, 4.</td>
<td></td>
</tr>
<tr>
<td>Monazite, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Monazite, Merrill (G. P.), 12.</td>
<td></td>
</tr>
<tr>
<td>Monazite, Turner, 4, 7.</td>
<td></td>
</tr>
<tr>
<td>Monazite, Whitlock, 1.</td>
<td></td>
</tr>
<tr>
<td>Montorydite, Moses, 2, 4.</td>
<td></td>
</tr>
<tr>
<td>Mordenite, Pirsson, 2.</td>
<td></td>
</tr>
<tr>
<td>Morencite, Lindgren, 29.</td>
<td></td>
</tr>
<tr>
<td>Morencite, Lindgren and Hillebrand, 1.</td>
<td></td>
</tr>
<tr>
<td>Morrosite, Barlow, 8.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Bowman (H. L.), 1.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Crook, 1.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Lindgren, 29.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Pratt and Lewis, 1.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Simonds, 3.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Van Hise, 12.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Whitlock, 1.</td>
<td></td>
</tr>
<tr>
<td>Muscovite, Wright (F. E.), 6.</td>
<td></td>
</tr>
<tr>
<td>Nararsukite, Boggild, 5.</td>
<td></td>
</tr>
<tr>
<td>Nararsukite, Flink, 2.</td>
<td></td>
</tr>
<tr>
<td>Nasonite, Penfleld and Warren, 1.</td>
<td></td>
</tr>
<tr>
<td>Natrojarosite, Hillebrand and Penfleld, 1.</td>
<td></td>
</tr>
</tbody>
</table>
Minerals described—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoclase</td>
<td>Crook</td>
<td>1</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>Eyerman</td>
<td>1</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>Tassin</td>
<td>1</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Ositeolite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Ositeolite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Otechonolite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Painterite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Palachite</td>
<td>Eakle</td>
<td>3, 4</td>
</tr>
<tr>
<td>Palladum</td>
<td>Headden</td>
<td>4</td>
</tr>
<tr>
<td>Paragonite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Paragonite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Paragonite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Parankerite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Paranthite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Parilite</td>
<td>Filz</td>
<td>2</td>
</tr>
<tr>
<td>Pattersonite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Peardolite</td>
<td>Penfield</td>
<td>4</td>
</tr>
<tr>
<td>Peurl, Farrington</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Pectolite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Eakle</td>
<td>1</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Moses</td>
<td>1</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Steiger</td>
<td>2</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Pectolite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Pegmatite</td>
<td>Tassin</td>
<td>1</td>
</tr>
<tr>
<td>Penninite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Penninite</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Penninite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Pentlandite</td>
<td>Barlow</td>
<td>8</td>
</tr>
<tr>
<td>Pervskite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Pervskite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Crook</td>
<td>1</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Glenn</td>
<td>7</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Phenacite</td>
<td>Farrington</td>
<td>12</td>
</tr>
<tr>
<td>Phenacite</td>
<td>Tassin</td>
<td>1</td>
</tr>
<tr>
<td>Phenacite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Phillipseilite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Phillipseilite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Crook</td>
<td>1</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>McNairn</td>
<td>1</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Osann</td>
<td>2</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Phosgenite</td>
<td>Warren</td>
<td>1</td>
</tr>
<tr>
<td>Phosphate</td>
<td>Glenn</td>
<td>7</td>
</tr>
<tr>
<td>Phosphorite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Pickeringite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Piccolite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Piccolite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Piedmontite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Pigeonite</td>
<td>Winchell</td>
<td>(A. N.)</td>
</tr>
<tr>
<td>Plarsonite</td>
<td>Pratt</td>
<td>3</td>
</tr>
<tr>
<td>Pissante</td>
<td>Schaller</td>
<td>1, 3, 8</td>
</tr>
<tr>
<td>Pitch blende</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>Crook</td>
<td>1</td>
</tr>
<tr>
<td>Platinum</td>
<td>Dickinson</td>
<td>3</td>
</tr>
<tr>
<td>Platinum</td>
<td>Kemp</td>
<td>11</td>
</tr>
</tbody>
</table>

Minerals described—Continued.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Author(s)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Platinum</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Plumbojasorite</td>
<td>Hillbrand and Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Pollaniite</td>
<td>Merril</td>
<td>(G. P.)</td>
</tr>
<tr>
<td>Pollucite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Pollucite</td>
<td>Wells</td>
<td>2</td>
</tr>
<tr>
<td>Polybasite</td>
<td>Ransome</td>
<td>16</td>
</tr>
<tr>
<td>Polycrase</td>
<td>Farrington</td>
<td>12</td>
</tr>
<tr>
<td>Polydydrite</td>
<td>Barlow</td>
<td>8</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Eyerman</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Farrington</td>
<td>12</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Perry and Emerson</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Schaller</td>
<td>8</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Tassin</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Van Hise</td>
<td>2</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Wright (F. E.)</td>
<td>6</td>
</tr>
<tr>
<td>Pybramite</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Prochlohrite</td>
<td>Eyerman</td>
<td>1</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Perry and Emerson</td>
<td>1</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Prochlorite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Prostulite</td>
<td>Ransome</td>
<td>16</td>
</tr>
<tr>
<td>Prostulite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomaltilite</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Psilomelane</td>
<td>Merril</td>
<td>(G. F.)</td>
</tr>
<tr>
<td>Psilomelane</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Psilomelane</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Puresilite</td>
<td>Brush and Dana</td>
<td>5</td>
</tr>
<tr>
<td>Purpurilite</td>
<td>Graton and Schaller</td>
<td>1</td>
</tr>
<tr>
<td>Pyrargyrinite</td>
<td>Whitlock</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Balm</td>
<td>2</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Barbour</td>
<td>(E. H.)</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Barlow</td>
<td>8</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Böggild</td>
<td>5</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Buckley</td>
<td>3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Crook</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Farrington</td>
<td>12</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Glenn</td>
<td>7</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Grant (U. S.)</td>
<td>5</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Ibseng</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Julian</td>
<td>5</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Kemp</td>
<td>10</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Kunz</td>
<td>4</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Lindgren</td>
<td>29</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Nicol</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Pinche</td>
<td>4</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Ransome</td>
<td>3, 11, 16</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Rogers</td>
<td>2, 4</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Schaller</td>
<td>1, 8</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Simonds</td>
<td>3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Smith (W. S. T.)</td>
<td>3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Smyth (C. H.)</td>
<td>6</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Spurr</td>
<td>3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Stokes</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Tassin</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Weed</td>
<td>5</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Whitlock</td>
<td>1, 4</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Wright (F. E.)</td>
<td>6</td>
</tr>
<tr>
<td>Pyrites</td>
<td>Merril</td>
<td>(G. P.)</td>
</tr>
</tbody>
</table>
Minerals described—Continued.

Pyroaurite, Simonds, 3.
Pyrolusite, Barbour (E. H.), 8.
Pyrolusite, Merrill (G. P.), 12.
Pyrolusite, Simonds, 3.
Pyrolusite, Weed, 5.
Pyrolusite, Whitlock, 1.
Pyrolusite, Wright (F. E.), 6.
Pyromorphite, Smith (W. S. T.), 3.
Pyromorphite, Turner, 4, 7.
Pyromorphite, Whitlock, 1.
Pyrope, Van Hise, 12.
Pyrope, Whitlock, 1.
Pyrophyllite, Clarke and Steiger, 1.
Pyrophyllite, Merrill (G. P.), 12.
Pyrophyllite, Pratt and Lewis, 1.
Pyrophyllite, Whitlock, 1.
Pyroxene, Buckley, 3.
Pyroxene, Ihlseng, 1.
Pyroxene, Kemp, 10.
Pyroxene, Lindgren, 29.
Pyroxene, Moses, 1.
Pyroxene, Osann, 2.
Pyroxene, Pratt and Lewis, 1.
Pyroxene, Simonds, 3.
Pyroxene, Whitlock, 1.
Pyrope, Wechell (A. N.), 3.
Pyrrobolite, Böggild, 5.
Pyrrohite, Barlow, 8.
Pyrrohite, Hoffmann, 6.
Pyrrohite, Kemp, 10.
Pyrrohite, Pratt and Emerson, 1.
Pyrrohite, Spurr, 3.
Pyrrohite, Van Hise, 12.
Pyrrohite, Weed, 5.
Pyrrohite, Whitlock, 1.
Quartz, Böggild, 4, 5.
Quartz, Bowmay (H. L.), 1.
Quartz, Bucklcy, 3.
Quartz, Crook, 1.
Quartz, Farrington, 12.
Quartz, Flink, 2.
Quartz, Glenn, 7.
Quartz, Grant (U. S.), 5.
Quartz, Hobbs, 28.
Quartz, Ihlseng, 1.
Quartz, Kemp, 10.
Quartz, Lindgren, 29.
Quartz, Merrill (G. P.), 12.
Quartz, Osann, 2.
Quartz, Pratt and Lewis, 1.
Quartz, Ransome, 5, 16.
Quartz, Rogers, 4.
Quartz, Simonds, 3.
Quartz, Smith (W. S. T.), 3.
Quartz, Spurr, 3.
Quartz, Tassin, 1.
Quartz, Van Hise, 12.
Quartz, Waring, 1.
Quartz, Weed, 5.
Quartz, Whitlock, 1, 4.
Quartz, Wright (F. E.), 6.
Quartz gems, Kunz, 4.
Quartz pseudomorph, Schaller, 3.
Ralstonite, Böggild, 5.
Realgar, Merrill (G. P.), 12.
<table>
<thead>
<tr>
<th>Minerals described—Continued.</th>
<th>Minerals described—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepiolite, Pratt and Lewis, 1.</td>
<td>Sphalerite, Branner, 2.</td>
</tr>
<tr>
<td>Sepiolite, Whitlock, 1.</td>
<td>Sphalerite, Crook, 2.</td>
</tr>
<tr>
<td>Serpentine, Boggild, 5.</td>
<td>Sphalerite, Flink, 2.</td>
</tr>
<tr>
<td>Serpentine, Clarke and Steiger, 1.</td>
<td>Sphalerite, Glenn, 7.</td>
</tr>
<tr>
<td>Serpentine, Crook, 1.</td>
<td>Sphalerite, Grant (U. S.), 5.</td>
</tr>
<tr>
<td>Serpentine, Eyerman, 1.</td>
<td>Sphalerite, Hoffmann, 4.</td>
</tr>
<tr>
<td>Serpentine, Pratt and Lewis, 1.</td>
<td>Sphalerite, Simonds, 3.</td>
</tr>
<tr>
<td>Serpentine, Tassin, 1.</td>
<td>Sphalerite, Ulrich and Smith, 1.</td>
</tr>
<tr>
<td>Serpentine, Willimott, 1.</td>
<td>Spinel, Boggild, 5.</td>
</tr>
<tr>
<td>Siderite, Boggild, 5.</td>
<td>Spinel, Farrington, 12.</td>
</tr>
<tr>
<td>Siderite, Crook, 1.</td>
<td>Spinel, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Siderite, Hoffmann, 4.</td>
<td>Spinel, Tassin, 1.</td>
</tr>
<tr>
<td>Sillimanite, Pratt and Lewis, 1.</td>
<td>Spodophyllite, Boggild, 5.</td>
</tr>
<tr>
<td>Sillimanite, Van Hise, 12.</td>
<td>Spodophyllite, Flink, 2.</td>
</tr>
<tr>
<td>Sillimanite, Whitlock, 1.</td>
<td>Spodumene, Baskerville, 1.</td>
</tr>
<tr>
<td>Silver, Boggild, 5.</td>
<td>Spodumene, Brush and Dann, 4.</td>
</tr>
<tr>
<td>Silver, Crook, 2.</td>
<td>Spodumene, Farrington, 12.</td>
</tr>
<tr>
<td>Silver, Hoffmann, 4, 16.</td>
<td>Spodumene, Hoffmann, 2, 4.</td>
</tr>
<tr>
<td>Silver, Weed, 5.</td>
<td>Spodumene, Kunz, 7.</td>
</tr>
<tr>
<td>Silver, Whitlock, 1.</td>
<td>Spodumene, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Silver, native, Simonds, 3.</td>
<td>Spodumene, Schaller, 2.</td>
</tr>
<tr>
<td>Smaltite, Barlow, 8.</td>
<td>Spodumene, Sovereign, 1.</td>
</tr>
<tr>
<td>Smaltite, Whitlock, 1.</td>
<td>Spodumene, Tassin, 1.</td>
</tr>
<tr>
<td>Smithsonite, Bain, 2.</td>
<td>Spodumene, Van Hise, 12.</td>
</tr>
<tr>
<td>Smithsonite, Branner, 2.</td>
<td>Spodumene, Whitlock, 1.</td>
</tr>
<tr>
<td>Smithsonite, Farrington, 12.</td>
<td>Staurolite, Boggild, 5.</td>
</tr>
<tr>
<td>Smithsonite, Grant (U. S.), 5.</td>
<td>Staurolite, Farrington, 12.</td>
</tr>
<tr>
<td>Smithsonite, Tassin, 1.</td>
<td>Staurolite, Tassin, 1.</td>
</tr>
<tr>
<td>Smithsonite, Whitlock, 1.</td>
<td>Steatolite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Sedalite, Boggild, 5.</td>
<td>Steenstrupite, Boggild, 5.</td>
</tr>
<tr>
<td>Sedalite, Clarke and Steiger, 1.</td>
<td>Steenstrupite, Boggild and Winther, 1.</td>
</tr>
<tr>
<td>Sedalite, Pratt and Lewis, 1.</td>
<td>Stephanite, Whitlock, 1.</td>
</tr>
<tr>
<td>Sedalite, Tassin, 1.</td>
<td>Stibnite, Hoffmann, 4.</td>
</tr>
<tr>
<td>Sedalite, Whitlock, 1.</td>
<td>Stibnite, Ransome, 16.</td>
</tr>
<tr>
<td>Sperrylite, Barlow, 8.</td>
<td>Stilbite, Boggild, 4, 5.</td>
</tr>
<tr>
<td>Sperrylite, Boggild and Nicol, 1.</td>
<td>Stilbite, Clarke and Steiger, 1.</td>
</tr>
<tr>
<td>Sperrylite, Wells, 1.</td>
<td>Stilbite, Everman, 1.</td>
</tr>
<tr>
<td>Sperrylite, Boggild and Penfield, 1.</td>
<td>Stilbite, Perry and Emerson, 1.</td>
</tr>
<tr>
<td>Spessartite, Hoffmann, 4.</td>
<td>Stilbite, Steiger, 2.</td>
</tr>
<tr>
<td>Spessartite, Kunz, 8.</td>
<td>Stilbite, Van Hise, 12.</td>
</tr>
<tr>
<td>Spessartite, Van Hise, 12.</td>
<td>Stromeyerite, Ransome, 16.</td>
</tr>
<tr>
<td>Spessartite, Whitlock, 1.</td>
<td>Stromeyerite, Simonds, 3.</td>
</tr>
<tr>
<td>Sphelelitie, Boggild, 5.</td>
<td>Stromtitanite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Sphelelitie, Whitlock, 1.</td>
<td>Stromtitanite, Simonds, 3.</td>
</tr>
<tr>
<td>Struvite, Hoffmann, 2, 4.</td>
<td>Sulphur, Whitlock, 1.</td>
</tr>
<tr>
<td>Struvite, Hoffmann, 2, 4.</td>
<td>Sulphur, Boggild, 5.</td>
</tr>
<tr>
<td>Minerals described—Continued.</td>
<td>Minerals described—Continued.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Sulphur, Crook, 1.</td>
<td>Tourmaline, Bowman (H. L.), 1.</td>
</tr>
<tr>
<td>Sulphur, Grant (U. S.), 5.</td>
<td>Tourmaline, Crook, 1.</td>
</tr>
<tr>
<td>Sulphur, native, Simonds, 3.</td>
<td>Tourmaline, Eyerman, 1.</td>
</tr>
<tr>
<td>Sussexite, Brush, 2.</td>
<td>Tourmaline, Farrington, 12.</td>
</tr>
<tr>
<td>Sylvanite, Moses, 5.</td>
<td>Tourmaline, Kunz, 3.</td>
</tr>
<tr>
<td>Sylvanite, Whitlock, 1.</td>
<td>Tourmaline, Pratt and Lewis, 1.</td>
</tr>
<tr>
<td>Synchysite, Böggild, 5.</td>
<td>Tourmaline, Schaller, 4.</td>
</tr>
<tr>
<td>Tainolite, Böggild, 5.</td>
<td>Tourmaline, Simonds, 3.</td>
</tr>
<tr>
<td>Talc, Böggild, 5.</td>
<td>Tourmaline, Sterrett, 1.</td>
</tr>
<tr>
<td>Talc, Crook, 1.</td>
<td>Tourmaline, Tassin, 1.</td>
</tr>
<tr>
<td>Talc, Pratt and Lewis, 1.</td>
<td>Tourmaline, Van Hise, 12.</td>
</tr>
<tr>
<td>Talc, Simonds, 3.</td>
<td>Tourmaline, Weed, 5.</td>
</tr>
<tr>
<td>Tantalite, Merrill (G. P.), 12.</td>
<td>Travertine, Simonds, 3.</td>
</tr>
<tr>
<td>Tantalite, Whitlock, 1.</td>
<td>Tremolite, Blasdale, 1.</td>
</tr>
<tr>
<td>Tellurite, Headden, 1.</td>
<td>Tremolite, Böggild, 5.</td>
</tr>
<tr>
<td>Tellurite, Schaller, 8.</td>
<td>Tremolite, Hoffmann, 6.</td>
</tr>
<tr>
<td>Tellurium, Headden, 1.</td>
<td>Tremolite, Simonds, 3.</td>
</tr>
<tr>
<td>Tellurium, native, Hoffmann, 6.</td>
<td>Tremolite, Van Hise, 12.</td>
</tr>
<tr>
<td>Tengerite, Hidden, 1.</td>
<td>Tridymite, Schaller, 8.</td>
</tr>
<tr>
<td>Tengerite, Simonds, 3.</td>
<td>Tridymite, Van Hise, 12.</td>
</tr>
<tr>
<td>Tenorite, Ransome, 11.</td>
<td>Triphylite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Tephroilite, Simonds, 3.</td>
<td>Tripliodite, Brush and Dana, 1.</td>
</tr>
<tr>
<td>Tephroilite, Simonds, 3.</td>
<td>Trolite, Böggild, 5.</td>
</tr>
<tr>
<td>Terlingualite, Moses, 2, 4.</td>
<td>Turcite, Simonds, 3.</td>
</tr>
<tr>
<td>Tetradymite, Hillebrand, 6.</td>
<td>Turquoise, Farrington, 12.</td>
</tr>
<tr>
<td>Tetrahedrite, Chester, 1.</td>
<td>Turquoise, Kunz, 4.</td>
</tr>
<tr>
<td>Tetrahedrite, Kemp, 33.</td>
<td>Turquoise, Simonds, 3.</td>
</tr>
<tr>
<td>Tetrahedrite, Ransome, 3, 16.</td>
<td>Turquoise, Tassin, 1.</td>
</tr>
<tr>
<td>Tetrahedrite, Simonds, 3.</td>
<td>Turquoise, Whitlock, 1.</td>
</tr>
<tr>
<td>Tetrahedrite, Weed, 5.</td>
<td>Tychite, Penfield and Jamieson, 1.</td>
</tr>
<tr>
<td>Thenardite, Böggild, 5.</td>
<td>Uintaite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Thomasenolite, Böggild, 5.</td>
<td>Ulexite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Thomasite, Böggild, 4, 5.</td>
<td>Ulexite, Whitlock, 1.</td>
</tr>
<tr>
<td>Thomasite, Clarke and Steiger, 1.</td>
<td>Uralite?, Simonds, 3.</td>
</tr>
<tr>
<td>Thomasite, Farrington, 12.</td>
<td>Uralolithic, Simonds, 3.</td>
</tr>
<tr>
<td>Thomasite, Steiger, 2.</td>
<td>Uraninite, Boltwood, 1.</td>
</tr>
<tr>
<td>Thomasite, Tassin, 1.</td>
<td>Uraninite, Simonds, 3.</td>
</tr>
<tr>
<td>Thorium, Boltwood, 1.</td>
<td>Uranium, Simonds, 3.</td>
</tr>
<tr>
<td>Thorogummite, Hidden, 1.</td>
<td>Uranium, Simonds, 3.</td>
</tr>
<tr>
<td>Thorogummite, Simonds, 3.</td>
<td>Uranocche, Simonds, 3.</td>
</tr>
<tr>
<td>Titanite, Böggild, 5.</td>
<td>Uranophane, Hoffmann, 2, 4.</td>
</tr>
<tr>
<td>Titanite, Osann, 2.</td>
<td>Urantite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Titanite, Simonds, 3.</td>
<td>Uvarovite, Hoffmann, 6.</td>
</tr>
<tr>
<td>Titanite, Tassin, 1.</td>
<td>Uvarovite, Van Hise, 12.</td>
</tr>
<tr>
<td>Titanite, Whitlock, 1.</td>
<td>Vanadinite, Merrill (G. P.), 12.</td>
</tr>
<tr>
<td>Topaz, Farrington, 12.</td>
<td>Vanadinite, Schaller, 8.</td>
</tr>
<tr>
<td>Topaz, Kunz, 4, 8.</td>
<td>Vanadinite, Whitlock, 1.</td>
</tr>
<tr>
<td>Topaz, Rogers, 2.</td>
<td>Variscite, Farrington, 12.</td>
</tr>
<tr>
<td>Topaz, Schaller, 8.</td>
<td>Variscite, Tassin, 1.</td>
</tr>
<tr>
<td>Topaz, Simonds, 3.</td>
<td>Vermiculite, Chester, 1.</td>
</tr>
<tr>
<td>Topaz, Tassin, 1.</td>
<td>Vermiculite, Perry and Emerson, 1.</td>
</tr>
<tr>
<td>Topaz, Van Hise, 12.</td>
<td>Vermiculite, Simonds, 3.</td>
</tr>
<tr>
<td>Topaz, Whitlock, 1.</td>
<td>Vermiculites, Crook, 1.</td>
</tr>
<tr>
<td>Torbernite, Whitlock, 1.</td>
<td>Vesuvianite, Clark and Steiger, 2.</td>
</tr>
<tr>
<td>Tourmaline, Whitlock, 1.</td>
<td>Vesuvianite, Farrington, 12.</td>
</tr>
<tr>
<td>Tourmaline, Böggild, 5.</td>
<td>Vesuvianite, Moses, 1.</td>
</tr>
<tr>
<td></td>
<td>Vesuvianite, Rogers, 4.</td>
</tr>
</tbody>
</table>
Minerals described—Continued.

Vesuvianite, Simonds, 3.
Vesuvianite, Tassin, 1.
Vesuvianite, Turner, 4.
Vesuvianite, Van Hise, 12.
Vesuvianite, Whitlock, 1.
Villasite, Pratt and Lewis, 1.
Vivianite, Turner, 7.
Vivianite, Whitlock, 1.
Wad, Simonds, 3.
Wad, Smith (W. S. T.), 3.
Wavellite, Whitlock, 1.
Wellsite, Pratt and Foote, 1.
Wellsite, Pratt and Lewis, 1.
Wernerite, Turner, 7.
Wernerite, Whitlock, 1.
Wilcoxite, Pratt and Lewis, 1.
Willemite, Böggild, 5.
Willemite, Lindgren, 29.
Willemite, Lindgren and Hillebrand, 1.
Willemite, Tassin, 1.
Willemite, Whitlock, 1.
Wolframine, Böggild, 5.
Wolframine, Hobbs, 5.
Wolframine, Irving, 1.
Wolframine, Merrill (G. P.), 12.
Wolframine, Moses, 5.
Wolframine, Simonds, 3.
Wolframine, Whitlock, 1.
Wollastonite, Böggild, 5.
Wollastonite, Clarke and Steiger, 1.
Wollastonite, Collins (H. F.), 1.
Wollastonite, Simonds, 3.
Wollastonite, Van Hise, 12.
Wollastonite, Weed, 5.
Wollastonite, Whitlock, 1.
Wulfenite, Böggild, 5.
Wulfenite, Clarke and Steiger, 1.
Wulfenite, Merrill (G. P.), 12.
Xanthophyllite, Clarke and Steiger, 1.
Xenotime, Kraus and Keitinger, 1.
Yttrialite, Hidden, 1.
Yttrialite, Hillebrand, 2, 7.
Yttrialite, Simonds, 8.
Yttrorerelite, Böggild, 5.
Yttrotantalilite, Merrill (G. P.), 12.
Zarattite, Böggild, 5.
Zinc-blende, Eakle and Sharwood, 1.
Zinchen, Kemp, 10.
Zinche, Whitlock, 1.
Zinkenite, Ransome, 16.
Zinnwaldite, Böggild, 5.
Zinnwaldite (Polythionitile), Flink, 2.
Zinnwaldite, Schaller, 8.
Zircon, Böggild, 5.
Zircon, Eakle, 1.
Zircon, Farrington, 12.
Zircon, Flink, 2.
Zircon, Merrill (G. P.), 12.
Zircon, Osann, 2.
Zircon, Perry and Emerson, 1.
Zircon, Pratt and Lewis, 1.

Minnesota.

Age of St. Croix Dalles, Upham, 31.
Baraboo iron ore, Winchell (N. H.), 23.
Cassettion-Fargo folio, Hall and Willard, 1.
Cement materials and industry of the United States, Eckel, 34.
Comment on report of special committee on Lake Superior, Lane, 47.
Constituents of Minnesota soils, Hall (C. W.), 2.
Dalles of the St. Croix, Berkey, 1.
Deep wells as a source of water supply for Minneapolis, Winchell (N. H.), 27.
Eisenerzlagerstätten am Lake Superior, Macco, 1.
Geography and geology of Minnesota, Hall (C. W.), 6.
Geologic work in Lake Superior iron district, Leith, 5.
Geological atlas with synoptical descriptions, Winchell (N. H.), 2.
Geological history of the Vermilion iron-bearing district, Clements, 7.
Geology and mines of Lake Superior copper district, Stevens (H. J.), 1.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology of a new iron district in Minnesota, Thomas, 4.
Geology of Mesabi iron region, Leith, 2.
Geology of Minnesota, Hall (C. W.), 5, 7.
Geology of Mississippi Valley at Little Falls, Winchell (N. H.), 8.
Geology of Prairie Island, Upham, 21.
Geology of the iron ores of Minnesota, Winchell (N. H.), 24.
Glacial features of the St. Croix Dalles region, Chamberlin (R. T.), 1.
Highland range in Minnesota, Elftman, 1.
Iron ores of Mesabi and Gogebic ranges, Leith, 8.
Kakabikassing, Brower, 1.
Minnesota—Continued.
Keewatin and Laurentide ice sheets in Minnesota, Elftman, 2.
Keewatin area of eastern and central Minnesota, Hall (C. W.), 4.
Keeweenawan area of eastern Minnesota, Hall (C. W.), 3.
Lake Superior iron-ore deposits, Grant (U. S.), 6.
Lake Superior iron region during 1903, Leith, 12.
Lower Silurian fauna of Minnesota, Sardeson, 9.
Lower Silurian formations of Wisconsin and Minnesota, Sardeson, 8.
Magnesian series of the northwestern States, Hall (C. W.), 10.
Man in the Ice Age at Lansing, Kan., and Little Falls, Minn., Upham, 8.
Mesabi iron-bearing district, Leith, 4.
Mesabi iron-ore range, Woodbridge, 1.
Mesabi iron range, Leith, 2.
Mesabi iron range, Winchell (H. V.), 3.
Mining in the Vermilion iron district, Thomas, 3.
New iron-bearing horizon in Keewatin in Minnesota, Winchell (N. H.), 1.
Origin and distribution of Minnesota clays, Berkey, 3.
Original source of Lake Superior iron ores, Spurr, 5.
Paleozoic fossils in the drift, Sardeson, 6.
Particular case of glacial erosion, Sardeson, 14.
Pioneer iron mine, Ely, Minn., Carlyle, 1.
Report on Lake Superior region, Van Hise and others, 1.
Results of the late Minnesota geological survey, Winchell (N. H.), 13.
Sacred Heart geyser spring, Berkey, 2.
Secondary origin of certain granites, Daly, 11.
Spherulitic texture in the Archean greenstones of Minnesota, Clements, 6.
Underground waters of Minnesota, Hall (C. W.), 9.
Vermilion district of Minnesota, Clements, 2, 3, 5.
Water resources of Minnesota, Hall (C. W.), 8.

Mississippi—Continued.
New species of Tertiary fossils, Aldrich, 2.
Oligocene of western Europe and southern United States, Maury, 1.
Stoneware and brick clays, Eckel, 18.
Underground waters of Mississippi, Johnson (L. C.), 1.
Underground waters of Mississippi, Logan and Perkins, 1.
Water resources of Mississippi, Johnson and Eckel, 1.

Missouri.
Age of the Kansan drift sheet, Hershey, 4.
Another glacial wonder, Wright (G. F.), 10.
Audubon's account of the New Madrid earthquake, Fuller (M. L.), 28.
Biennial report of State geologist, Buckley, 7.
Billings meteorite, Ward (H. A.), 10.
Bituminous and asphalt rocks, Broadhead, 4.
Bluffs of Missouri River, Owen, 1.
Calcite from the Joplin mining district, Sterrett, 2.
Cambrian age of magnesian limestones of Missouri, Keyes, 23.
Cambrian fossils of St. Francois County, Beecher, 2.
Carboniferous formations of the Ozark uplift, Ball, 1.
Cave regions of the Ozarks and Black Hills, Owen, 4.
Cement materials and industry of the United States, Eckel, 34.
Coal fields of Missouri, Bush, 1.
Comparison of fossil diatoms, Elmore, 1.
Copper deposits of Missouri, Bain and Ulrich, 1, 2.
Correlation of the Kinderhook formations, Weller, 1.
Cyclos from Coal Measures, Rogers, 3.
Deposition of the loess, Owen, 5.
Depositional equivalent of hiatus at base of our Coal Measures, Keyes, 18.
Devonian hiatus in continental interior, Keyes, 28.
Devonian interval in Missouri, Keyes, 26.
Disseminated lead ores of southeast Missouri, Nason, 4.
Distribution and synonymy of Ptychospirula sexplicata, Greger, 1.
Echinodermata of the Missouri Silurian, Rowley, 3.
Eurypterid remains in the Cambrian, Beecher, 3.
Evolution of lowlands of southeastern Missouri, Marbut, 1.
Earthquakes in the New Madrid area, Fuller (M. L.), 41.
Fayetteville folio, Adams and Ulrich, 1.
Fossils from Subcarboniferous rocks of northeastern Missouri, Rowley, 2.

Missouri.
Age of Alabama white limestone, Caycey, 2.
Cement and cement resources of the Tombigbee River district, Eckel and Crider, 1.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Geology of Oktibbeha County, Logan, 2.
Historical outline of the geological and agricultural survey of the State of Mississippi, Hilgard, 1.
Loess of Natchez, Shimek, 4.

Missouri.
Age of Alabama white limestone, Caycey, 2.
Cement and cement resources of the Tombigbee River district, Eckel and Crider, 1.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Geology of Oktibbeha County, Logan, 2.
Historical outline of the geological and agricultural survey of the State of Mississippi, Hilgard, 1.
Loess of Natchez, Shimek, 4.
Missouri—Continued.

Fossils from the upper Paleozoic rocks, Rowley, 1.
Galena-Joplin lead and zinc district, Haworth, 1.
Geological surveys in Missouri, Broadhead, 1.
Geological relations and age of St. Joseph and Potosi limestones of Missouri, Nason, 5.
Geology and mineralogy, Broadhead, 3.
Geology and physiography of Missouri, Marbut, 4.
Geology of Jacobs Cavern, Gould, 12.
Geology of Miller County, Ball and Smith, 1.
Geology of Missouri, Broadhead, 2.
Geology of Missouri, Gallaher, 1, 2.
Geology of Monteau County, Van Horn, 1.
Geology of the Hahatonka district, Scherer, 1.
Glacials bowlders along Osage River in Missouri, Buckley, Ball, and Smith, 1.
Graydon sandstone, Bahcock and Minor, 1.
Hannibal formation in Greene County, Park and Lyman, 2.
Introduction to geology of Missouri, Broadhead, 1.
Introduction to geology of Miller County, Buckley, 5.
Introduction to geology of Monteau County, Buckley, 8.
Joplin lead district, Steele, 1.
King-Ritter fault, Ruhl, 1.
Lead and zinc deposits of Mississippi Valley, Keyes, 20.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Lead and zinc deposits of Ozark region, Bain, 2.
Lead and zinc deposits of Ozark region, Van Hise, 5.
Lead and zinc deposits of the Joplin district, Smith (W. S. T.), 2.
Limestone conglomerate in the lead region, Nason, 1.
Lees, Broadhead, 6.
Mineralogy [of Missouri], Broadhead, 2.
Minerals of Joplin district, Rogers, 6.
Missouri and Arkansas lead and zinc mines, Branner, 3.
Missouri and Arkansas zinc mines, Hedburg, 1.
Missouri and Arkansas zinc mines, Nichols (H. W.), 2.
Missouri coal field, Griffith, 4.
Missouri lead and zinc districts, Crook, 2.
Missouri paleontology, Rowley, 4.
Names of coals west of Mississippi River, Keyes, 19.
Natural bowlders, Spillman, 1.

Montana

Aladdin folio, Darton and O'Hara, 1.
Alps of Montana, Matties, 2.
Barite and selenite crystals, Rowe, 3.
Bowlders due to rock decay, Upham, 24.
Cement resources of Montana, Weed, 33.
Chalcopyrite at Butte, Winchell (H. V.), 2.

Missouri—Continued.

New forms of Carboniferous fish remains, Eastman, 9.
New Madrid earthquake, Broadhead, 3.
New Madrid earthquake, Shepard, 3.
Nomenclature of the Cambrian formations of the St. Francois Mountains, Keyes, 6.
Observations at Pegmatite Hill, Ruhl, 2.
Occurrence of greenockite on calcite from Joplin, Cornwall, 1.
Origin of Joplin ore deposits, Bain, 1.
Physiography and geology of Ozark region, Adams (G. I.), 3.
Physiography of Ozark region, Marbut, 2.
Pierson Creek mines, Smith and Standley, 1.
Quarrying industry of Missouri, Buckley and Buehler, 1.
Relations and age of the St. Joseph and Potosi limestones, Nason, 2.
Report of State geologist, Buckley, 4.
Rocks and geological horizons of Greene County, Shepard, 6.
Saccharoidal sandstone, Broadhead, 8.
Sandstones of Ozark region, Marbut, 2.
Small bowlders, Bushnell, 1.
Source of Missouri lead, Wheeler (H. A.), 1.
Spring system of the Decaturville dome, Shepard, 4.
Springfield water supply, Park and Lyman, 1.
Springs of the Ozark region, Fuller (M. L.), 35.
Structural features of Joplin district, Bain, 17.
Structural features of the Joplin district, Siebenthal, 4.
Surface deposits of Missouri and Kansas, Broadhead, 7.
Table of geological formations, Shepard, 5.
Underground waters of Missouri, Shepard, 5.
Water resources of Missouri, Shepard, 2.
Water resources of the Joplin district, Smith (W. S. T.), 4.
Western interior coal field, Bain, 3.
Winoka gravels, Hays, 1.
Winoka gravels, Park (E. J.), 1.
Zinc deposits of Missouri, Bain, 13.
Montana—Continued.

Conditions in veins and faults in Butte, Braden, 1.
Corundum in Montana, Edman, 1.
Cretaceous and Lower Tertiary section in south central Montana, Douglass, 3.
Current notes on physiography, Davis (W. M.), 42.
Dinosaurs in Fort Pierre shales, Douglass, 5.
Discovery of Torrejon mammals in Montana, Douglass, 6.
Economic value of hot springs, Weed, 38.
Fossil plants from vicinity of Porcupine Butte, Knowlton, 12.
Fossil plants of the Judith River beds, Knowlton, 18.
Fossil Mammals of White River beds, Douglass, 4.
Fracture valley system, Iddings, 2.
Fresh-water fauna from Cretaceous of Montana, Stanton, 4.
Geological observations along northern boundary of Montana, Finlay (G. I.), 6.
Geological reconnaissance across the Bitter Root Range and Clearwater Mountains, Lindgren, 21.
Geology and ore deposits of Elkhorn mining district, Weed, 5.
Geology and paleontology of the Judith River beds, Stanton and Hatcher, 1.
Geology of Butte mining district, Miller (G. W.), 2.
Geology of southwestern Montana, Douglass, 10.
Geology of the Hellgate and Big Blackfoot valleys, Winchell (N. H.), 25.
Glacial drift in the Dakotas, Montana, Idaho, and Washington, Upham, 27.
Glacial exploration in the Montana Rockies, Chaney, 1.
Gold mines of Marysville district, Weed, 14.
Gold nugget from Montana, Pearce, 1.
Great fault of the Bitter Root Mountains, Lindgren, 30.
Great Flat at Butte, Weed, 32.
Gypsum deposits, Rowe, 5.
Gypsum deposits in Montana, Weed, 25.
Igneous rocks and their segregation, Winchell (A. N.), 4.
Igneous rocks of Algonkian series, Finlay (G. I.), 4.
Igneous rocks of Highwood Mountains, Pirsson, 4.
Influence of country rock on mineral veins, Weed, 6.

Montana—Continued.

Lewis Range of Montana and its glaciers, Matthes, 4.
Lower Cretaceous plants from Montana, Fontaine, 4.
Meteoreisen-Studien, Cohen, 4.
Microscopical petrography of Elkhorn mining district, Barrell, 1.
Mineral deposits of Bitter Root Range and Clearwater Mountains, Lindgren, 11.
Missourite, a new leucite rock, Weed and Pirsson, 2.
Montana coal fields, Rowe, 2, 6.
Neocene lake beds of Montana, Douglass, 1.
New species of Mercycocerus, Douglass, 2.
New turtles from Judith River beds of Montana, Hay, 15.
Note on certain copper minerals, Winchell (A. N.), 2.
Oil of the northern Rocky Mountains, Willis, 4.
Ore deposits at Butte, Weed, 16.
Ores of Butte mining district, Byrne, 3.
Origin of North Dakota lignites, Wilder, 5.
Our northern Rockies, Chapmann, 1.
Overthrust in northern Rockies, Willis, 9.
Petrographic province of central Montana, Pirsson, 5.
Petrography of Square Butte, Pirsson, 3.
Petrography of Yogo Peak, Pirsson, 1.
Physiography of Flathead Lake region, Elrod (M. J.), 1.
Physiography of northern Rocky Mountains, Willis, 8.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Shonkin Sag and Pallaise Butte laccoliths in the Highwood Mountains, Weed and Pirsson, 1.
Source of placer gold in Alder Gulch, Douglass, 11.
Stratigraphic position of Judith River beds, Hatcher and Stanton, 1.
Stratigraphy and structure of Lewis and Livingston ranges, Willis, 6.
Structure of front range, northern Rocky Mountains, Willis, 7.
Synthesis of chalocite and its genesis at Butte, Winchell (H. V.), 2.
Tertiary of Montana, Douglass, 9.
Vertebrates from the Montana Tertiary, Douglass, 8.
Volcanic ash beds of Montana, Rowe, 1.

Nebraska.

Barites of Nebraska and Bad Lands, Barbour (E. H.), 1.
Benton and Niobrara formations of Nebraska, Condra, 5.
Camp Clarke folio, Darton, 10.
Carboniferous fishes from central western States, Eastman, 10.
Nebraska—Continued.
Cement materials and industry of the United States, Eckel, 34.
Chalcedony-lime nuts from Bad Lands, Barbour (E. H.), 2.
Coal Measure Bryozoa of Nebraska, Condra, 2.
Comparison of fossil diatoms, Elmore, 1.
Concretions of the Pierre shale, Barbour (C. A.), 2.
Dakota and Carboniferous clays of Nebraska, Gould and Fisher, 1.
Dakota Cretaceous of Kansas and Nebraska, Gould, 5.
Discovery of meteoric iron in Nebraska, Barbour (E. H.), 8.
Discovery of the Larainie in Nebraska, Fisher (C. A.), 3.
Fauna of the Permian, Beede, 2.
Geological bibliography of Nebraska, Barbour and Fisher, 1.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology and water resources of Patrick and Goshen Hole quadrangles, Adams (G. I.), 4.
Geology of Dakota County, Burchard, 2.
Gigantic mammal from Loup Fork beds, Peterson, 4.
Ground sloth from Nebraska Pleistocene, Brown (B.), 1.
Jefferson County, Carmony, 1.
Lignite deposits of the Missouri Valley, Burchard, 1.
Limestone quarries of Nebraska, Fisher (C. A.), 2.
Meteorites of Nebraska, Barbour (E. H.), 4.
Missourian and Permo-Carboniferous fish fauna of Kansas and Nebraska, Eastman and Barbour, 1.
New Bryozoa from Coal Measures of Nebraska, Condra, 1.
New Miocene artiodactyl, Barbour (E. H.), 11.
Old Platte channel, Condra, 4.
Osteology of Oxydactylus, Peterson, 1.
Pleistocene fauna from Hay Springs, Matthew (W. D.), 8.
Rhombopora lepidodendroides Meek, Condra, 3.
Scots Bluff folio, Darton, 11.
Value of bluff and valley wash deposits as brick material, Fisher (C. A.), 1.
Volcanic ash in Nebraska soils, Barbour (E. H.), 7.

Nevada.
Alum deposit near Silver Peak, Spurr, 21.

Nevada—Continued.
Alunite-jarosite group of minerals, Hillebrand and Penfield, 1.
Basin range structure of the Humboldt region, Louderback, 4.
Building stones of Nevada, Reid (J. A.), 2.
Cement materials and industry of the United States, Eckel, 34.
Coal deposits between Silver Peak and Candelaria, Spurr, 20.
Contact quaquaversal, Purington, 2.
Delamar and Hors-Silver mines, Emmons (S. F.), 3.
Developments at Tonopah during 1904, Spurr, 26.
District of Goldfield, Draper, 1.
Faulting at Tonopah, Spurr, 24.
Genetic relations of western Nevada ores, Spurr, 31.
Geological features of Nevada, Louderback, 1.
Geology of Goldfield, Dominian, 1, 2.
Geology of Goldfields district, Spurr, 19.
Geology of Nevada, Spurr, 6.
Geology of Nevada south of fortieth parallel, Spurr, 28.
Geology of the Tonopah mining district, Spurr, 29.
Gold-bearing quartzites of eastern Nevada, Weeks, 2.
Gold production of North America, Lindgren, 16.
Gypaum deposits of Nevada, Louderback, 2, 5.
Historical geology of Esmeralda County, Turner, 5.
Hydro-thermal activity in veins at Wedekind, Morris, 1.
Ichthyosaurian limb from Triassic of Nevada, Merriman (J. C.), 14.
Lone Mountain district, Lakes, 72.
Marine Trilobites of western America, Smith (J. P.), 5.
Metallic sulphides from Steamboat Springs, Lindgren, 19.
Minerals from Pacific States, Turner, 4.
Mines of Esmeralda County, Turner, 3.
Montezuma district, Stretch, 3.
Nevada coal field, Stoneham, 1.
Nevada ore deposit, Wiel, 1.
Nitrate deposits, Humboldt County, Wagenen, 1.
Notes on Goldfield, Winchell (H. V.), 5.
Notes on Tonopah, Buxton, 1.
Nevada—Continued.
Notes on two desert mines, Emmons (S. F.), 2.
Occurrence of tungsten ore, Weeks, 1.
Ore deposits of Contact, Bailey (J. T.), 1.
Ore deposits at Silver Peak quadrangle, Spurr, 18.
Ore deposits of Tonopah, Spurr, 8, 9, 11.
Ores of Goldfield, Spurr, 25.
Osceola tungsten deposits, Smith (F. B.), 1.
Pyramid Lake, Fairbanks, 2.
Rabbit Hole sulphur mines, Adams (G. I.), 16.
Santa Fe mining district, McCormick, 1.
Silver Peak region, Spurr, 22.
Southern Nevada and Inyo County, Taft, 1.
Stibnite at Steamboat Springs, Lindgren, 24.
Stratigraphy of Uinta Mountains, Berkey, 8.
Structural section of a Basin range, Louderback, 3.
Structure and genesis of the Comstock lode, Reid (J. A.), 3.
Tätigkeit heisser Quellen in den Gängen von Wedekind, Wendeborn, 1.
Tonopah, Knapp (S. A.), 1.
Tonopah mining camp, Lakes, 68.
Triassic Ichthyopterygia from California and Nevada, Smith (F. B.), 1.
Triassic Ichthyosaurs from California and Nevada, Osborn, 15.
Tungsten ore in eastern Nevada, Weeks, 8.
Typical Nevada mining region, Lakes, 69.

New Hampshire—Continued.
Geology of Monadnock Mountain, Perry, 2.
Geology of Mount Kearsarge, Perry, 1.
Geology of the Belknap Mountains, Pirsson and Washington, 1.
Glacial topography in central New Hampshire, Emerson (P.), 1.
Moraines and eskers in the White Mountains, Upham, 23.
Rocks of Lake Winnipesaukee, Washington, 3.
Trilobite (Dalmanites lunatus) from Littleton, Lambert, 2.
Underground waters of New Hampshire, Fuller (M. L.), 22.
Water resources of New Hampshire, Boutwell, 7.
Water resources of the Portsmouth-York region, Smith (G. O.), 18.

New Jersey.
Acidaspis from a boulder of Marcellus shale, Hitchcock (C. H.), 4.
Administrative report, New Jersey geological survey, Smock, 1.
Administrative report of State geologist, Kimmel, 4.
Administrative report of State geologist, Kimmel, 7.
Artesian wells, Woolman, 1–3.
Atlantic Highlands section, Prather, 4.
Cement materials and industry of the United States, Eckel, 34.
Cement-rock deposits of the Lehigh district, Eckel, 25.
Classification of Upper Cretaceous formations of New Jersey, Weller, 12.
Clay and its properties, Res, 12.
Clays of the United States, Res, 6.
Cliffwood clays and the Matawan, Knapp (G. N.), 2.
Columbia University geological department, Shimer, 4.
Contributions to mineralogy, Eyerman, 1.
Copper deposits of Appalachian States, Weed, 17.
Copper deposits of New Jersey, Weed, 18.
Copper leaching at the American copper mine, Bond, 1.
Crana of Trenton, Hrdlicka, 1.
Cretaceous near Cliffwood, Berry, 8.
Cretaceous formations and faunas of New Jersey, Weller, 7.
Cretaceous turtles of New Jersey, Wieland, 6, 7.
Cretaceous and eskers of New Jersey, Pilsbry, 1.
Crystallography of calcites of New Jersey trap region, Rogers, 5.
Paciolaria from the Eocene green marls at Shark River, N. J., Whittfield, 13.
New Jersey—Continued.

Flora of the Matawan formation, Berry, 5.

Fossil flora from Cliffwood, Berry, 9.

Gisements de minerales de zinc, Demaret, 1.

Glacial geology of New Jersey, Salisbury and others, 1.

Glaucodite, Prather, 3.

Griggstown copper deposit, Weed, 27.

Iron and zinc mines, Kimmel, 5.

Leucite-tinguitaite from Beemerville, Wolff, 1.

Magnetite deposits in Sussex County, Spencer (A. C.), 11.

Manufacture of clay products, Lies, 13.

Matawan formation, Clark (W. B.), 5.

Mineralogical notes, Chester, 1.

Mining industry, Kimmel, 2, 3.

Molding sands of New Jersey, Kimmel, 9.

New minerals from Franklin, Penfield and Warren, 1.

New York City folio, Merrill and others, 1.

Occurrence of thasamicite, Penfield and Pratt, 1.

Old swamp bottom, Berry, 12.

On clinozodrite, Penfield and Foote, 2.

On gahnrite, Brush, 3.

On sussexite, Brush, 2.

Paleozoic faunas, Weller, 6.

Paleozoic limestones of Kittatinny Valley, Kimmel and Weller, 1.

Paleozoic rocks of northwestern New Jersey, Van Ingen, 3.

Plants from the Matawan formation, Berry, 4.

Pliocene molusks of White Pond, Baker, 1.

Portland-cement industry, Kimmel, 1.

Pre-Cambrian rocks of New Jersey, Spencer (A. C.), 15.

Pre-Cambrian rocks of the Franklin Furnace quadrangle, Spencer (A. C.), 13.

Report of State geologist, Kimmel, 8.

Rocks of Green Pond Mountain region, Kimmel and Weller, 2.

Serpentines of Manhattan Island, New- land, 1.

Stratigraphy of New Jersey clays, Kimmel and Knapp, 1.

Summary and index of reports of New Jersey geological survey, Kimmel, 6.

Surface formations in southern New Jersey, Salisbury, 1.

Tale deposits of Phillipburg, Peak, 6.

Triassic fishes of New Jersey, Eastman, 20.

Underground waters of New Jersey, Knapp (G. N.), 1, 3.

Bull. 301—06—38

New Jersey—Continued.

Water resources of New Jersey, Laforge, 1.

Well records, Kimmel, 10.

Wells at White Oak Ridge, Vermeule, 1.

Zinc and manganese deposits of Franklin Furnace, Wolff, 2.

New Mexico.

Age of lavas of plateau region, Reagan, 2.

Alunite-jarosite group of minerals, Hillbrand and Penfield, 1.

Analcite-bearing camptonite from New Mexico, Ogilvie, 2.

Applications of geology to economic problems in New Mexico, Herrick (C. L.), 1.

Basin features of southwestern United States, Keyes, 40.

Bisection of mountain blocks, Keyes, 52.

Block mountains in New Mexico, Johnson (D. W.), 7.

Block mountains in New Mexico, Keyes, 37.

Bolson plains, Keyes, 38.

Bolson plains, Tight, 6.

Burro Mountain copper district, Reid (G. D.), 1.

Canons of northeastern New Mexico, Lee (W. T.), 6.

Cerro anthracite mine, Lakes, 5.

Clinopains of the Rio Grande, Herrick (C. L.), 5.

Coal fields of White Mountain region, Fisher (C. A.), 4.

Coal, graphite, and oil field of Raton, Lakes, 23.

Coal Measure forest near Socorro, Herrick (C. L.), 3.

Copper deposits of Sierra Oscura, Turner, 11.

Curtis mines, Lakes, 7.

Earthquakes in New Mexico, Bag, 4.

Ephemeral lakes in arid regions, Keyes, 30.

Extinct glaciers, Stone (G. H.), 2.

Fossil form of Orohelia yavapai Pilsbury, Cockerell, 2.

Fundamental complex beyond southern end of Rocky Mountains, Keyes, 46.

Geological reconnaissance in eastern Valencia County, Johnson (D. W.), 2.

Geological structure of Jornada del Muerto, Keyes, 53.

Geological structure of New Mexicanbolson plains, Keyes, 29.

Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.

Geology of Apache Canyon placers, Keyes, 33.

Geology of the Cerrillos Hills, Johnson (D. W.), 4–6.

Geology of the Jemez-Albuquerque region, Reagan, 1.

Geology of the saline basins of central New Mexico, Johnson (D. W.), 1.
INDEX TO NORTH AMERICAN GEOLOGY

New Mexico—Continued.
Jisements de minerals de zinc, Demarest, 1.
Gold production of North America, Lindgren, 16.
Gypsum deposits in New Mexico, Herrick (H. N.), 1.
Hagan coal field, Keyes, 43.
High altitude conoplain, Ogilvie, 5.
Iron deposits of Chupadera Mesa, Keyes, 42.
Jimenez coal fields, Reagan, 4.
Jurassic horizon around the southern end of the Rocky Mountains, Keyes, 51.
Lake Otero, Herrick (C. L.), 6.
Lake Valley limestone, Keyes, 54.
Landslide in Chaco Canon, Dodge, 2.
Laws of formation of New Mexico mountain ranges, Herrick (C. L.), 4.
Minerals associated with copper, Stone (G. H.), 1.
Mogollon range, Weatherhy, 1.
Morrison shales of southern Colorado and northern New Mexico, Lee (W. T.), 3.
New coal field, Lakes, 6.
New fossil Ashmunella, Cockerell, 1.
New Mexico copper deposits, Austin, 2.
New Mexico mines and minerals, Jones (P. A.), 1.
Occurrence of aurichalcite, Keyes, 39.
Occurrence of aurichalcite, Keyes, 39.
Ore deposits of San Pedro district, Yung and McCaffery, 1.
Ore deposits of the Sierra de Los Caballos, Keyes, 47.
Oscuro Mountain meteorite, Hills, 3.
Physiography of southern Arizona and New Mexico, Fairbanks, 2.
Report of mine inspector, Sheridan, 1.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Secondary enrichment in the Santa Rita district, Bagg, 5.
Snails of the genus Physa found at Las Vegas, Springer (A.), 1.
Structures of Basin ranges, Keyes, 45.
Topography and geology of New Mexico, Jewett, 1.
Triassic system in New Mexico, Keyes, 50.
Trilobid, Conchochelys admirabilis, from the Puertol beds, Hay, 25.
Trip to White Oaks, Smith and Dominian, 1.
Unconformity of the Cretaceous on older rocks in central New Mexico, Keyes, 44.
White sands of New Mexico, Brady, 1.
Zinc carbonate ores of the Magdalena Mountains, Keyes, 48.

New York—Continued.
Abrasives of New York State, Magnus, 1.
Adirondack augite-andesite, Cushing, 1.
Aline dikes in East Canada Creek, Schneider, 10.
American Association for Advancement of Science, summer meeting, Hovey, 46.
Ancient gorge of Hudson River, Wright (G. F.), 15.
Ancient water levels of Champlain and Hudson valleys, Woodworth, 10.
Apatite crystals, Antwerp, New York, Knight (N.), 4.
Artesian conditions on Long Island, Ventch, 6.
Artesian flows from unconfined sandy strata, Fuller (M. L.), 39.
Artesian water supply at Ithaca, Whitney, 1.
Artesian well sections at Ithaca, Tarr, 5.
Bedford cyrtolite, Luquer, 2.
Bones of a mastodon found, Gordon (R.), 1.
Calciferous formation of Mohawk Valley, Cieland, 3.
Cambrian Dictyonema fauna, Ruedemann, 7.
Cambro-Ordovician outlier at Wells-town, Julian, 4.
Cambro-Ordovician outlier at Wells-town, Kemp, 2, 13.
Celestite near Syracuse, Knauz, 2.
Cement industry in New York, Eckel, 5.
Cement materials and industry of the United States, Eckel, 34.
Classification of New York geologic formations, Clarke (J. M.), 20.
Classification of rocks of Watkins Glen quadrangle, Williams (H. S.), 7.
Clays of the United States, Ries, 6.
Clinton hematite, Eckel, 33.
Cobleskill limestone of New York, Hargnagel, 1.
Concretions in the Chemung of New York, Kindle, 5.
Configuration of rock floor of Greater New York, Hobbs, 27.
Contact lines of Upper Siluric formations on the Brockport and Medina quadrangles, Clarke, Ruedemann, and Luther, 1.
Contributions from the mineralogic laboratory, Whitlock, 4.
Cretaceous beds of Long Island, Hollyck, 7.
Crinoid and mollusk from the Portage rocks of New York, Whitfield, 11.
Crown Point section, Raymond (F. E.), 3.
Description of State geologic map, Merrill (F. J. H.), 2.
Devonic and Carbonic formations of southwestern New York, Glenn, 1.
Devonic worms, Clarke (J. M.), 18.
FOR THE YEARS 1901–1905, INCLUSIVE.

New York—Continued.

Discovery of a mastodon's tooth and the remains of a boreal vegetation on Staten Island, Hollick, 2.

Discovery of amber on Staten Island, Hollick, 12.

Distribution of Hudson schist in Oyster Bay quadrangle, Merrill and Magnus, 11.

Drainage features of central New York, Tarr, 11.

Drainage features of southern central New York, Tarr, 14.

Drift fossils, Hollick, 8.

Dumortierite, Schaller, 7.

Dwarf fauna of Tully limestone, Loomis, 4.

Economic geology of Monroe County, Sarle, 3.

Economic geology of New York, New York State Museum, 1.

Economic geology of Oneida County, Smyth (C. H.), 5.

Economic geology of western New York, Bishop (I. P.), 2.

Economic products of St. Lawrence County, Logan, 1.

Emery deposits of Westchester County, Eckel, 2.

Emery mines of Westchester County, Nevis, 2.

Eruptive dikes in Syracuse, Schneider, 4.

Eruptive dikes near Ithaca, Schneider, 7.

Esker in western New York, Comstock (F. M.), 1.

Eurypterid fauna from the Salina, Sarle, 2.

Examples of joint-controlled drainage, Hobbs, 26.

Exposure of serpentine at Syracuse, Kraus, 1.

Fauna of Agoniatite limestone of Onondaga County, Wilson (J. D.), 1.

Fauna of Stafford limestone, Talbot, 1.

Fauna of the Chazy limestone, Raymond (P. E.), 7.

Fauna of the Chazy limestone on Valcour Island, Hudson, 1.

Faunas of the Ordovician at Glens Falls, White (T. G.), 1.

Faunas of the Trenton, Raymond (P. E.), 2.

Field work in town of Minerva, Finlay (G. L.), 2.

Finger lake region of western New York, Dryer, 4.

Folds on the border of the Appalachian system, Kindle, 4.

Fossil faunas of Olean quadrangle, Butts, 1.

Fossil plant remains at Krelsherville, Hollick, 14.

New York—Continued.

Fort Cassin beds in the Calciferous limestone, Dwight, 1.

Gaines folio, Fuller and Alden, 1.

Genesis of amphibole schists and serpentines of Manhattan Island, Julien, 7.

Geographic development of northern Pennsylvania and southern New York, Campbell (M. R.), 2.

Geologic map of the Tully quadrangle, Clarke and Luther, 3.

Geologic notes on the neighborhood of Buffalo, Martin (D. S.), 2.

Geological history of hematite iron ores of Antwerp and Fowler belt in New York, Crosby, 3.

Geological notes, Hollick, 13.

Geological notes on the neighborhood of Buffalo, Martin (D. S.), 3.

Geology and paleontology of Niagara Falls, Grant, 1.

Geology of Adirondack region, Cushing, 19.

Geology of eastern New York, Prosser, 11.

Geology of crystalline rocks, Smyth (C. H.), 1.

Geology of Fishers Island, Fuller (M. L.), 29.

Geology of Long Island, Veatch, 5.

Geology of Onondaga County, Schneider, 1.

Geology of Paradox Lake quadrangle, Ogilvie, 6.

Geology of Rand Hill, Cushing, 2.

Geology of river channels about Manhattan Island, Hobbs, 18.

Geology of the city of New York, Gratacap, 7.

Geology of the Syracuse region, Hopkins (T. C.), 13.

Geology of the Hudson Valley, Dale, 5.

Geology of the serpentines of central New York, Schneider, 6.

Geology of the vicinity of Little Falls, Cushing, 9.

Geology of Watkins and Elmira quadrangles, Clarke and Luther, 2.

Glacial and post-Glacial history of the Hudson and Champlain valleys, Peet, 1.

Glacial conditions on Long Island, Buffet, 1.

Glacial erosion in the Finger Lake region, Campbell (M. R.), 19.

Glacial features of Syracuse, Fairchild, 13.

Glacial lakes and marine submergence in the Hudson-Champlain Valley, Upham, 32.

Glacial period on Long Island, Veatch, 4.

Glacial phenomena in Adirondacks and Champlain Valley, Ogilvie, 1.

Glacial waters from Onondaga to Little Falls, Fairchild, 8.
New York—Continued.
Gorges and waterfalls of New York, Reid (H. F.), 13.
Gorges and waterfalls of New York, Spencer (J. W.), 17.
Gorges and waterfalls of central New York, Tarr, 19.
Gorges and waterfalls of New York, Tarr, 17.
Graphite in the Adirondacks, Kerap, 27.
Graptolite (Levis) facies of Beekmantown formation in Rensselaer County, Ruedemann, 3.
Graptolites of New York, Ruedemann, 8.
Growth and development of Goneplagrus thureaui McCoy, Ruedemann, 4.
Guelph fauna of New York, Clarke and Ruedemann, 1.
Guide to mineralogic collections of New York State Museum, Whitlock, 1.
Gypsum deposits in New York, Eckel, 22.
Gypsum deposits of New York State, Parsons, 2.
Gypsum industry in New York State, Parsons, 1, 4.
Hamilton formation in central New York, Cleland, 2.
Hemlock fossils from Bethany, Munroe, 1.
Hanging valleys in the Finger Lake region, Tarr, 6.
Helderberg invasion of the Manlius, Harris, 7.
Hematite deposits of New York, Eckel, 30.
Hematite iron ores of Antwerp and Fowler belt, Crosby, 2.
Horseheads outlet of Glacial lakes of central New York, Fuller (M. L.), 7.
Hudson River beds near Albany, Ruedemann, 1.
Hydrology of New York, Rafter, 1.
Ice erosion theory a fallacy, Fairchild, 11.
Index to publications of New York State Natural History Survey, Ellis (M.), 1.
Indigene and alien faunas of New York Devonian, Clarke (J. M.), 10.
Instances of moderate glacial erosion, Tarr, 9.
Inter-Glacial gorge problem, Matson, 1.
Interpretations of physiography of New York State, Brigham, 3.
Iroquois beach in Ontario, Coleman, 13.
Ithaca fauna of central New York, Clarke (J. M.), 27.
Lime and cement industries of New York, Ries, 4.
Limestones in central New York, Schneider, 2.

New York—Continued.
Limestones interbedded with shales of Marcellus stage, Clarke (J. M.), 2.
Limonite beds at Cornwall, Hartnagel, 3.
List of mammals of New York, Miller (G. S.), 1.
Lower Silurian system of eastern Montgomery County, Cummins, 6.
Magnette deposits at Mineville, Ries, 8.
Manlius formation of New York, Schuchert, 4.
Map of Canandaigua and Naples quadrangles, Clarke and Luther, 1.
Marcellus fault, Schneider, 3.
Marcellus limestone, Wood (Elvira), 1.
Mastodons of New York, Clarke (J. M.), 15.
Mineral developments around Ithaca, Ries, 10.
Mineral developments at Mineville, Ries, 11.
Mineral occurrences in the Salina epoch, Kraus, 3.
Mineral resources of Onondaga County, Hopkins (T. C.), 9.
Minerals not commercially important, Whitlock, 3.
Mining and quarry industry during 1904, Newland, 2.
Minnewaska region, James, 1.
Moraines of Seneca and Cayuga Lake valleys, Tarr, 10.
Moraines of Seneca and Cayuga lakes, Tarr, 7.
Naples fauna in western New York, Clarke (J. M.), 19.
Nematophyton in New York State Museum, Prosser, 8.
New Agehelcrinites, Clarke (J. M.), 3.
New dike at Ithaca, Barnett, 1.
New genus of Paleozoic brachiopods, Eunoa, Clarke (J. M.), 8.
New problems in glaciology, Fairchild, 14.
New term for Upper Cambrian series, Walcott, 8.
New York City folio, Merrill and others, 1.
New York mineral localities, Whitlock, 2.
Northumberland volcanic plug, Woodworth, 7.
Notes on Paleozoic crustaceans, Clarke (J. M.), 12.
Occurrence of amber at Keichersville, Hollick, 20.
Oil and gas in New York, Bishop (I. P.), 1.
Olean rock section, Clarke (J. M.), 16.
On hortonolite, Brush, 1.
Ontario coast, Martin (J. O.), 1.
New York—Continued.

Origin of faunas of Marcellus shales of New York, Clarke (J. M.), 21.
Oriskany fauna and Beecraft Mountain, Clarke (J. M.), 2.
Oriskany sandstone, Wheelock, 1.
Overthrust faults in central New York, Wheelock, 2.
Overthrust faults in New York, Schneider, 9.
Paleobotany of the Cretaceous of Long Island, Hollick, 11.
Paleontologic results of areal survey of Olean quadrangle, Clarke (J. M.), 7.
Paleozoic coral reefs, Grabau, 10.
Peat, Parsons, 3.
Peridotite dikes near Ithaca, Matson, 2.
Petrography and age of the Northumberland rock, Cushing, 7.
Petrography of dikes in Syracuse, Smyth (C. H.), 2.
Petrology and natural gas, Orton, 1.
Physical characters and history of some New York formations, Grabau, 17.
Physical geography of New York State, Tarr, 2.
Physiographic belts in western New York, Gilbert, 10.
Physiography of Lake George, Kemp, 4, 7.
Physiography of the Adirondacks, Kemp, 37.
Pleistocene features in the Syracuse region, Fairchild, 12.
Pleistocene geology of Moers quadrangle, Woodworth, 9.
Pleistocene geology of Nassau County, Woodworth, 2.
Pleistocene geology of western New York, Fairchild, 2.
Pleistocene history of Fishers Island, Fuller (M. L.), 40.
Portland-cement resources of New York, Eckel, 39.
Post-Pliocene fossils of the Niagara River gravels, Letson, 1.
Potsdam sandstone of Lake Champlain basin, Van Ingen, 4.
Pre-Cambrian formations, Kemp and Ehl, 1.
Pre-Cambrian Highlands, Merrill (F. J. H.), 6.
Pre-Cambrian outlier at Little Falls, Herkimer County, Cushing, 4.
Pre-Glacial course of middle portion of Genesee River, Whitbeck, 1.
Pre-Glacial stream flow in central New York, Carney, 2.

Pre-Iroquois channels between Syracuse and Rome, Fairchild, 4.
Pre-Kansan and Iowa deposits of Long Island, Fuller (M. L.), 6.
Preservation of plants by geologic processes, Hollick, 18.
Problem of Niagara, Grabau, 7.
Pyrite deposits of the western Adirondacks, Eckel, 40.
Quarries of bluestone, Dickinson, 1.
Quarry industry in southeastern New York, Eckel, 6.
Rate of lateral erosion at Niagara, Wright (G. F.), 3.
Recent geologic work in Franklin and St. Lawrence counties, Cushing, 3.
Recently discovered facts in regard to Silver Lake, Hollick, 12.
Reef structures in the Clinton and Niagara strata, Sarle, 1.
Replacement of quartz by pyrite and corrosion of quartz pebbles, Smyth, 6.
Report of director of State Museum, Merrill (F. J. H.), 3-5.
Report of State paleontologist, Clarke (J. M.), 5, 11, 14, 25.
Results of resurvey of Long Island, Fuller and Veatch, 1.
Revision of New York Helderbergian crinoids, Talbot, 2.
River terraces and reversed drainage, Mills (F. S.), 1.
Rock floor of the vicinity of New York, Hobbs, 21.
Rocks of Roundout, Van Ingen and Clark, 1.
Rossie lead veins, Smyth (C. H.), 4.
Salt and other resources of the Watkins Glen quadrangle, Kindele, 7.
Sedimentary impression known as Climactichnites, Woodworth, 6.
Serpentines of Manhattan Island, Newland, 1.
Shifting of faunas, Williams (H. S.), 4.
Siluric and Devonian faunas of Trilobite Mountain, Shinier, 5.
Siluric or Ontaric section of eastern New York, Hartmangel, 2.
Slate quarries of Washington County, Nevius, 1.
South Onondaga geology, Schneider, 8.
Story of Niagara, Hitchcock (C. H.), 2.
Stratigraphic value of Portage sandstones, Luther, 1.
Stratigraphy of Beecraft Mountain, Grabau, 9.
Stratigraphy of Mohawk Valley, Proser, 5.
Stratigraphy of Portage formation, Luther, 2.
Structural details in Green Mountain region, Dale, 1.
New York—Continued.
Structure of some primitive cephalopods, Ruedemann, 9.
Syllabus for field and laboratory work in geology, Tarr, 1.
Tourmaline contact zones near Alexandria Bay, Smyth (C. H.), 3.
Tree trunks found with mastodon remains, Gordon (R.), 2.
Trenton conglomerate of Rysedorph Hill, Ruedemann, 2.
Trilobites of Chazy limestone, Raymond (P. E.), 5.
Tropidoleptus fauna at Canandaigua Lake, Raymond (P. E.), 4.
Type case in diversion of drainage, Carney, 1.
Type specimens of Paleozoic fossils in York State Museum, Clarke and Ruedemann, 2.
Underground waters of New York, Weeks, 12.
Undulations of the Lockport limestone, Gilbert, 23.
Water resources of Fort Ticonderoga quadrangle, Dale, 7.
Water resources of New York, Weeks, 11.
Water resources of Taconic quadrangle, Taylor (F. B.), 5.
Water resources of the Catatonk area, Kindle, 8.
Water resources of Watkins Glen quadrangle, Tarr, 8.
Waters of a gravel-filled valley near Tully, Hollister, 3.
Whetstone industry, Schneider, 5.
Worn burrows in Chemung of New York, Whitfield, 10.

Nicaragua.
Additions to the list of Nicaragua volcanic eruptions in historic time, Crawford, 4.
Earthquakes in Nicaragua, Crawford, 1.
Gold fields of eastern Nicaragua, Gottschalk, 1.
List of most important volcanic eruptions and earthquakes in western Nicaragua within historic time, Crawford, 3.
Recent decline in the level of Lake Nicaragua, Shimek, 1.
Volcanoes and earthquakes in Nicaragua, Crawford, 2.
Vulkanasbruch in Mittelamerika, Sapper, 23.
Vulkanische Ereignisse in Mittelamerika, Sapper, 20, 21.

Nomenclature—Continued.
Catalogue of type specimens of fossil invertebrates in National Museum, Schuchert and others, 1.
Classification of New York geologic formations, Clarke (J. M.), 20.
Cobleskill limestone of New York, Hartnagel, 1.
Copper deposits of Missouri, Bain and Ulrich, 2.
Dates of publication of certain genera of fossil vertebrates, Bush (L. P.), 1.
Delaware limestone, Prosser, 13.
Eocene interval, Lawson (A. C.), 4.
Formations of northern Arkansas, Ulrich, 5.
Geest, McGee, 2.
Genesis of Animikie iron range, Hille, 3.
Geological nomenclature, Bain, 7.
Geological structure of New Mexican bolson plains, Keyes, 29.
Geology of eastern New York, Prosser, 11.
Glacial Lake Jean Nicolet, Upham, 20.
Introduction to geology of Moniteau County, Buckley, 8.
Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.
Magnesian series of the Northwestern States, Hall (C. W.), 10.
Mauch Chunk of Pennsylvania, Stevenson (J. J.), 1.
Names of coals west of Mississippi River, Keyes, 19.
New term for Upper Cambrian series, Waleott, 8.
Nomenclature and classification of sedimentary formations, Williams (H. S.), 8.
Nomenclature of Lake Superior formations, Willmott, 2.
Nomenclature of Ohio geological formations, Prosser, 10, 15.
Nomenclature of types in natural history, Schuchert and Buckman, 1.
Ordovician rocks of Kentucky and their Bryozoa, Nickles, 6.
Pernian formations of Kansas, Prosser, 14.
Pernian question in America, Keyes, 31.
Portage crinoids, Clarke (J. M.), 23.
Quantitative classification of igneous rocks, Cross and others, 2.
Regulation of nomenclature in work of United States Geological Survey, Gilbert, 15.
Report on Lake Superior region, Van Hise and others, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Nomenclature—Continued.

Results of the late Minnesota geological survey, Winchell (N. H.), 13.
Significance of term Sierran, Hershey, 8.
Suggestion from the State geologist, Lane, 4.
Term Bradfordian, Bather, 1.
Word geest in geology, Dryer, 3.

North Carolina—Continued.

Asheville folio, Keith, 9.
Atlantic coast Triassic coal field, Woodworth, 4.
Biennial report of the State geologist, Holmes (J. A.), 1, 2.
Carolina gold deposits, Weed, 3.
Carolina tin belt, Graton, 3.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Copper-bearing rocks of Virginia copper district, Watson (T. L.), 6.
Copper deposits of Appalachian States, Weed, 17.
Copper deposits of southern United States, Weed, 2.
Corundum of North Carolina, Pratt and Lewis, 1.
Corundum in North Carolina, Ropes, 1.
Craberry folio, Keith, 4.
Forms of sand dunes, Cobb, 4.
Gold in North Carolina, Moore (F.), 1.
Granites of North Carolina, Watson (T. L.), 13, 16.
Greeneville folio, Keith, 11.
Iron of meteoric origin, Pratt, 1.
Iron-ore deposits of the Cranberry district, Keith, 5.
Leopardite, Watson (T. L.), 14.
Marble and talc of North Carolina, Pratt, 7.
Meteoriten von Locust Grove, Cohen, 1.
Meteoriten von Nennmannsdorf und Persimmon Creek, Cohen, 6.
Meteoriten von Persimmon Creek, Klein, 2.
Meteoriten-Studien, Cohen, 4.
Meteorite from Hendersonville, Glenn, 3.
Mining industry in North Carolina, Pratt, 4, 8, 9–11.
Mount Mitchell folio, Keith, 12.
New Patmotschloch locality, Cobb, 3.
Norfolk folio, Daroton, 7.
Octahedrite and brookite, Robinson (H. E.), 1.
Orbicular gabbro-diorite from Davie County, Watson (T. L.), 15.
Oyster reefs of North Carolina, Grave, 1.
Persimmon Creek meteorite, Tassin, 4.
Purpurite, a new mineral, Graton and Schaller, 1.

Recent changes in North Carolina coast, Cobb, 2.
Stream contest along the Blue Ridge, Davis (W. M.), 48.
Talc deposits of North Carolina, Keith, 7.
Tin, Struthers and Pratt, 1.
Tin deposits of the Carolinas, Pratt and Sterrett, 1.
Water resources of Cowee and Pisgah quadrangles, North Carolina, Gale, 1.

North Dakota.

Casselton-Fargo folio, Hall and Willard, 1.
Cement materials and industry of the United States, Eckel, 34.
Economic geology of the Pembina region, Berkey, 8.
Glacial drift in the Dakotas, Upham, 27.
Lignite and Fort Union beds, Wilder, 7.
Lignite coal fields of North Dakota, Wilder, 2.
Lignite deposits, Haseltine, 1.
Lignite deposits of North Dakota, Wilder, 1.
Lignite of North Dakota, Wilder, 8.
Lignite on the Missouri, Heart, and Cannon Ball rivers, Wilder, 10.
Lignites of the Missouri Valley, Burchard, 1.
Niagara meteorite, Preston (H. L.), 1.
Origin of North Dakota lignites, Wilder, 5.
Region between the Northern Pacific Railroad and Missouri River, Wood (L. H.), 1.
Rocky Mountain coal fields, Storms (L. S.), 1.
Story of the prairies, Willard, 1.
Topographic features and geological formations of North Dakota, Leonard, 4.
Water resources of Devils Lake region, Babcock, 2.

Ohio.

Arthrodira from the Cleveland shale, Dean, 1.
Berea grit oil sand in Cadiz quadrangle, Griswold, 1.
Bituminous coal field of Ohio, Haseltine, 2.
Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.
Cement materials and industry of the United States, Eckel, 34.
Changes in drainage near Lancaster, Hyde, 1.
Cincinnati geanticline, Foerste, 10.
Cincinnati group in western Tennessee, Foerste, 6.
INDEX TO NORTH AMERICAN GEOLOGY

Ohio—Continued.
Classification of the Ordovician rocks of Ohio and Indiana, Foerste, 12.
Classification of the Waverly series, Prosser, 1.
Clays of the United States, Ries, 6.
Cleveland water-supply tunnel, Pierce, 1.
Composition and occurrence of petroleum, Mabery, 3.
Corning oil and gas field, Bowacker, 2.
Delaware limestone, Prosser, 13.
Devonian era in Ohio basin, Claypole, 5.
Drainage modifications in Ohio, West Virginia, and Kentucky, Tight, 4.
Drainage modifications in Washington and adjacent counties, Tight, 2.
Eastern Ohio oil fields, Griswold, 2.
Field geology in Ohio State University, Lamb, 1.
Field geology in Ohio State University, Mead (C. S.), 1.
Formation of Sandusky Bay, Moseley, 2.
Geology of Cincinnati, Nickles, 3.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Gypsum deposits in Ohio, Peppel, 1.
History of Little Miami River, Bowacker, 1.
Hydration caves, Kraus, 7.
Lake Licking, a contribution to the buried drainage of Ohio, Tight, 1.
Lime resources of Ohio, Orton and Peppel, 1.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.
Manufacture of hydraulic cements, Bleininger, 1.
Metereisen von Cincinnati, Cohen, 3.
Names for the formations of the Ohio Coal Measures, Prosser, 4.
Natural features and economic development of drainage areas in Ohio, Fylan and Flynn, 1.
New fossil plants from Carboniferous and Devonian, Herzer, 4.
New fossil sponge from Coal Measures, Herzer, 3.
New fossils from Corniferous, Hamilton, and Medina shales, Herzer, 5.
New points on the fin attachment of Dinichthys and Cladodus, Clark (W.), 1.
Nomenclature of Ohio geological formations, Prosser, 10, 15.
Occurrences and distribution of colestite-bearing rocks, Kraus, 4.
Ohio bowlders containing huronite, Wright (A. A.), 2.
Ohio natural-gas fields, Bowacker, 4.
Oil and gas producing rocks of Ohio, Bowacker, 3.
On an unrecognized coal horizon in northeastern Ohio, Claypole, 1.
On the Salina group in northeastern Ohio, Claypole, 2.
Ordovician rocks of Kentucky and their Bryozoan, Nickles, 6.
Organization and work of the geological survey of Ohio, Orton, 1.
Petroleum and natural gas in Ohio, Bowacker, 5.
Pre-Glacial drainage conditions in vicinity of Cincinnati, Fowke, 2.
Pre-Glacial drainage in southwestern Ohio, Miller (A. M.), 1.
Pre-Glacial drainage of Ohio, Fowke, 1.
Pre-Glacial drainage of Wayne and adjacent counties, Todd (J. H.), 1.
Panorulus, Herzer, 1.
Report of bowlder committee, Wright (G. F.), 1, 2.
Richmond group and its subdivisions, Nickles, 5.
Richmond Group of Cincinnati anticline, Foerste, 8.
Salt deposits of northeastern Ohio, Bowacker, 6.
Shaw mastodon, Hayes (S.), 1.
Shifting of faunas, Williams (H. S.), 4.
Six new species, including two new genera, of fossil plants, Herzer, 2.
Structure of Dinichthys, Wright (A. A.), 1.
Structure of two Dinichthyds, Hussakof, 2.
Subdivisions of the Ordovician of Indiana, Foerste, 9.
Sunbury shale of Ohio, Prosser, 6.
Thickness of Columbus limestone, Griggs, 1.
Topography and geology of Clifton Gorge, Wells (W. E.), 1.
Topography of Athens and vicinity, Stearns (R. E. C.), 3.
Underground waters of Ohio, Leverett, 13.
Upper Paleozoic rocks of Ohio and Pennsylvania, Girty, 10.
Use of the term Bedford limestone, Prosser, 2.
Waverly formations of central Ohio, Prosser and Cumings, 1.

Oklahoma.
Age of Red Beds, Adams (G. I.), 1.
Age of the Red Beds, Beede, 3.
Building stone of Oklahoma, Schramm, 1.
Cement materials and industry of the United States, Eckel, 34.
Contact of Permian with Pennsylvania in Oklahoma, Kirk (C. T.), 1.
Dikes in the Oklahoma Panhandle, Waldo, 1.
Oklahoma—Continued.
Fossils from the Red Beds, Gould, 601.
Geology and underground water resources of the central Great Plains,
Darton, 13.
Geology and water resources of Oklahoma, Gould, 14.
Geology of the Arbuckle and Wichita mountains, Taff, 13.
Geology of Oklahoma, Gould, 60.
Geology of Seminole, Creek, Cherokee, and Osage nations, Gould, 2.
Geology of the Antelope Hills, Sherwin, 1.
Geology of the Glass Mountains, White (M.), 1.
Geology of the Wichita Mountains, Gould, 13.
Gypsum deposits in Oklahoma, Gould, 61.
Invertebrate paleontology of Red Beds, Beede, 8.
Kansas-Oklahoma-Texas gypsum hills, Gould, 4.
Oklahoma gypsum, Gould, 60.
Oklahoma limestones, Gould, 8.
Oklahoma salt plains, Gould, 7.
Origin of gypsum deposits, Sherwin, 2.
Ounchita and Arbuckle Mountain sections, Taff, 1.
Reported gold deposits of the Wichita Mountains, Bain, 6.
Reported ore deposits of Wichita Mountains, Bain, 10.
Southern extension of the Marion and Wellington formations, Gould, 6.
Springs of Kansas and Oklahoma, Gould, 3.
Stratigraphic relations of Red Beds, Adams (G. L.), 11.
Vertebrate fossils from Permian beds of Oklahoma, Case, 3.

Ordovician.
Appalachian region.
Asheville folio, Keith, 9.
Bauxite deposits of Georgia, Watson (T. L.), 12.
Cambro-Ordovician limestones of the Valley of Virginia, Campbell (H. D.), 1.
Cockeysville marble, Mathews and Miller, 1.
Correlation of Piedmont formations, Mathews, 6.
Greenville folio, Keith, 11.
Lead and zinc deposits of Virginia, Watson (T. L.), 17.
Manganese ore deposits of Georgia, Watson (T. L.), 9.
Maynardville folio, Keith, 1.
Ordovician section near Bellefonte, Collie, 3.
Paleozoic Appalachi, Willis, 1.
Paleozoic faunas, Weller, 6.

Ordovician—Continued.
Appalachian region—Continued.
Paleozoic limestones of Kittatinny Valley, Kummel and Weller, 1.
Piedmont district of Pennsylvania, Bascom, 3.
Rocks of Green Pond Mountain region, Kummel and Weller, 2.
Subdivisions of Shenandoah limestone, Bassler, 4.

Canada.
Artesian wells of Montreal, Adams and Le Roy, 1.
Annual report of geological section of Ottawa Field-Naturalists' Club, Ami, 25.
Exploration of northern side of Hudson Strait, Bell (Robert), 1.
First Eparchean formation, Ami, 41.
Geological correlations in New Brunswick, Bailey (L. W.), 3.
Geological exploration in district of White Bay, Howley, 1.
Geological formations about Montreal, Ami and Adams, 1.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology and natural resources of Ontario and vicinity, Ells (R. W.), 7.
Geology of Province of Quebec, Ells (R. W.), 8.
Geology of St. Helen's Island, Nolan and Dixon, 1.
Geology of the principal cities in eastern Canada, Ami, 1.
Geology of the Three Rivers map sheet, Ells (R. W.), 2.
Geology of west shore of Lake Winnipeg, Dowling, 1.
Monographie de l'île d'Anticosti, Schmitt, 1.
New Brunswick, Bailey (L. W.), 5.
Ordovician succession in eastern Ontario, Ami, 39.
Perce: sketch of its geology, Clarke (J. M.), 26.
Petroleum and natural gas [in Ontario], Corkill, 2.
Rock contacts in the Kingston district, Ells (R. W.), 15.
Synopsis of geology of Canada, Ami, 2.

Great Basin region.
Clifton folio, Lindgren, 28.
Copper deposits of Clifton-Morenci district, Lindgren, 29.
Geology of Nevada, Spurr, 6.

Great Lakes region.
Baraboo iron-bearing district of Wisconsin, Weldman, 5.
INDEX TO NORTH AMERICAN GEOLOGY

Ordovician—Continued.

Great Lakes region—Continued.
Geological reconnaissance along north shore, Russell, 23.
Menominee district of Michigan, Bayley, 1.

Great Plains region.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology of the Black Hills, Jaggar, 5.
Sundance folio, Darton, 26.

Mississippi Valley region.
Copper deposits of Missouri, Bain and Ulrich, 2.
Evolution of lowlands of southeastern Missouri, Marbut, 1.
Fauna of Magnesian series, Sardeson, 2.
Fayetteville folio, Adams and Ulrich, 1.
Formations of northern Arkansas, Ulrich, 5.
Geological formations of Iowa, Calvin, 4.
Geological section across northern Illinois, Udden (Johan A.), 1.
Geology of clays, Beyer and Williams, 2.
Geology of Clinton County, Udden (Johan A.), 1.
Geology of Fayette County, Savage, 8.
Geology of Howard County, Iowa, Calvin, 10.
Geology of Illinois, Rolfe, 1.
Geology of Miller County, Ball and Smith, 1.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Missouri, Gallaher, 1.
Geology of Moniteau County, Van Horn, 1.
Lead and zinc deposits of Mississippi Valley, Van Hise and Bain, 1.
Lower Silurian formations of Wisconsin and Minnesota, Sardeson, 8.
Ordovician rocks of southern Indiana, Cumings, 4.
Physiography and geology of the Ozark region, Adams (G. I.), 3.
Saccharoidal sandstone, Broadhead, 8.
St. Peter sandstone, Sardeson, 1.
Tablequah folio, Taff, 17.
Upper Ordovician at Vevay, Cumings, 3.
Zinc and lead deposits of Arkansas, Adams (G. I.), 15.
Zinc and lead deposits of northwestern Illinois, Bain, 14.

New England and New York.
Analysis of Washington marble, Richardson (C. H.), 1.
Calciferous formation of Mohawk Valley, Cleland, 3.
Crown Point section, Raymond (P. E.), 1.
Fauna of the Ordovician at Glen Falls, White (T. G.), 1.

Ordovician—Continued.

Faunas of the Trenton, Raymond (P. E.), 2.
Field work at Larrabee’s Point, Vermont, Shiloe, 5.
Geology of Adirondack region, Cushing, 10.
Geology of Grand Isle, Perkins, 7, 11.
Geology of Paradox Lake quadrangle, Ogilvie, 6.
Geology of Taconic Range, Dale, 3.
Geology of the Hudson Valley, Dale, 5.
Geology of the vicinity of Little Falls, Cushing, 9.
Hudson River beds near Albany, Ruedemann, 1.
Lime and cement industries of New York, Ries, 4.
Lower Silurian system of eastern Montgomery County, N. Y., Cumings, 6.
Pre-Cambrian Highlands, Merrill (F. J. H.), 6.
Quarry industry in southeastern New York, Eckel, 6.
Report of State paleontologist, Clarke (J. M.), 11.
Stratigraphy of Becraft Mountain, Graebau, 9.
Stratigraphy of Mohawk Valley, Prosser, 5.
Terranes of Orange County, Vt., Richardson (C. H.), 2.
Trenton conglomerate of Rysedorph hill, Ruedemann, 2.

Ohio Valley region.
Cement resources of Alabama, Smith (E. A.), 3.
Cincinnati geanticline, Foerste, 10.
Cincinnati group in western Tennessee, Foerste, 6.
Classification of the Ordovician rocks of Ohio and Indiana, Foerste, 12.
Columbia folio, Hayes and Ulrich, 1.
Geology of Cincinnati, Nickles, 3.
Lead and zinc bearing rocks of Kentucky, Miller (A. M.), 4.
Nomenclature of Ohio geological formations, Prosser, 10, 15.
Oil and gas producing rocks of Ohio, Bowmacker, 3.
Ordovician and Silurian rocks of Indiana, Foerste, 11.
Ordovician rocks of Kentucky and their Bryson, Nickles, 6.
Petroleum and natural gas in Ohio, Bowmacker, 5.
Richmond group and its subdivisions, Nickles, 5.
Richmond group of Cincinnati anticline, Foerste, 8.
Ripple marks in Hudson limestone of Jefferson County, Cubertson, 1.
Ripple marks in Hudson River limestone, Moore and Hole, 1.
Section across southern Indiana, Newsom, 3.
FOR THE YEARS 1901–1905, INCLUSIVE. 608

Oxfordian—Continued.
Ohio Valley—Continued.
Silurian and Devonian limestones of western Tennessee, Foerste, 7.
Structural features of Homotrypa, Bassler, 1.
Subdivisions of the Ordovician of Indiana, Foerste, 9.
Topography and geology of Indiana, Hopkins (T. C.), 11.
Trouton rock petroleum, Blatchley and Sheak, 1.
Rocky Mountain region.
Aladdin folio, Barton and O’Harra, 1.
Carboniferous formations and faunas of Colorado, Girty, 3.
Geology of Castle Rock region, Colorado, Lee (W. T.), 2.
Stratigraphy of Black Hills, Bighorn Mountains, and Rocky Mountain front range, Barton, 16.
Sundance folio, Barton, 26.
Southwestern region.
Geology and water resources of Oklahoma, Gould, 14.
Geology of Arbuckle and Wichita mountains, Taff, 13.
Geology of the Wichita Mountains, Gould, 14.
Stratigraphic sequence in trans-Pecos Texas, Richardson (G. B.), 5.
Tishomingo folio, Taff, 6.
General.
Paleogeography of mid-Ordovician time, Berkey, 11.
Physical characters and history of some New York formations, Grabau, 17.

Oregon.
Artesian basins in Idaho and Oregon, Russell, 9.
Beach gold and its source, Washburne, 3.
Bohemia mining district of western Oregon, Kimball, 1.
Boyax mine in southern Oregon, Dennis, 1.
Cement materials and industry of the United States, Eckel, 34.
Clackamas meteoric iron, Kunz, 9.
Coal in Washington near Portland, Diller, 21.
Composition and structure of Klamath Mountains, Diller, 17.
Contribution to petrography of John Day Basin, Calkins, 1.
Coos Bay coal fields, Rockwell, 1.
Coos Bay folio, Diller, 4.
Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.
Cretaceous fossils from John Day Basin, Stanton, 1.
Eclorites in California, Holway, 1.
Fossil flora of John Day basin, Knowlton, 14.
Oregon—Continued.
Fossil land shells of the John Day basin, Stearns (R. E. C.), 1.
Fossil plants from the Shasta group, Fontaine, 3.
Fossil sea lion from Miocene, True, 1.
Fossil turtles from Oregon, Hay, 9.
Geological section through John Day Basin, Merriam (J. C.), 2.
Geology and petrography of Crater Lake National Park, Diller and Patton, 1.
Geology of Crater Lake, Diller, 2.
Geology of Idaho and Oregon, Russell, 8.
Geology of John Day Basin, Merriam (J. C.), 1.
Geology of the Three Sisters, Fairbanks, 1.
Geology and water resources of central Oregon, Russell, 21.
Glaciers des minerals de mercure, Demaret, 2.
Glaciers of Mount Hood and Mount Adams, Reid (H. F.), 17.
Gold belt of Blue Mountains, Lindgren, 4.
Gold mining in eastern Oregon, Beadle, 1.
Gold production of North America, Lindgren, 16.
Great lava-flood, Redway, 1.
Hanging valleys, Russell, 20.
Iron-nickel alloy, awaruite, Jamieson, 1.
John Day fossil beds, Merriam (J. C.), 3.
Jurassic flora of Douglas County, Oregon, Fontaine, 1.
Klamath Mountains, Diller, 1.
Marine sediments of eastern Oregon, Washburne, 1.
Mesozoic of southwestern Oregon, Loudereck, 6.
Meteorite in Supreme Court, Winchell (N. H.), 28.
Mineral resources and mining in Oregon, Drake, 1.
Minerals in gold quartz veins, Lindgren, 3.
Mounts Hood and Adams and their glaciers, Reid (H. F.), 6.
Nampa folio, Lindgren and Drake, 1.
Native gold in igneous rocks, Mallery, 1.
New fossil tapir in Oregon, Sinclair, 1.
Oregon nickel prospects, Ledoux, 1.
Place gold in Oregon, Washburne, 2.
Port Orford folio, Diller, 11.
Quecksilberablagerungen in Oregon, Wendeborn, 2.
Index to North American Geology

Oregon—Continued.

Quicksilver deposits of Oregon, Dennis, 2.
Reconnaissance of Mount Hood and Mount Adams, Reid (H. F.), 4.
Report on the flora of the Mascall formation, Knowlton, 2.
Rodents and ungulates from the John Day series, Sinclair, 6.
So-called iron ore near Portland, Diller, 20.
Status of Mesozoic floras, Ward, 5.
Topographic development of Klamath Mountains, Diller, 10.
Trias in northeastern Oregon, Lindgren, 2.
Two islands, Condon, 1.
Willamette meteorite, Ward (H. A.), 8.
Willamette meteorite, Winchell (N. H.), 29.
Wreck of Mount Mazama, Diller, 8.

Paleogeneography.

Age of the Missouri River, Upham, 26.
Cobleskill limestone of New York, Hartnagel, 1.
Columbia folio, Tennessee, Hayes and Ulrich, 1.
Devonian era in Ohio basin, Claypole, 5.
Devonic and Ontaric formations of Maryland, Schuchert, 7.
Deposition of the Appalachian Pottsville, White (D.), 14.
Evolution of the Antilles, Falconer, 2.
Formations of northern Arkansas, Ulrich, 5.
Glacial waters from Oneida to Little Falls, Fairchild, 8.
Graptolites of New York, Ruedemann, 8.
Iroquois beach in Ontario, Coleman, 16, 17.
Jurassic rocks of East Greenland, Skeat, 1.
Lake Glubirs, an ancient Pliocene lake in Arizona, Blake (W. P.), 6.
Marine Trias of western America, Smith (J. P.), 5.
Naples fauna in western New York, Clarke (J. M.), 19.
Outlines of continents in Tertiary times, Matthew (W. D.), 18.
Paleogeneography of mid-Ordovician time, Berkey, 11.
Paleogeneography of St. Peter time, Berkey, 9.
Periodic migrations between the Asiatic and American coasts of the Pacific Ocean, Smith (J. P.), 4.
Physical characters and history of some New York formations, Grabau, 17.
Submerged tributary to the pre-Glacial river of the Gulf of St. Lawrence, Pool, 7.

Paleontology.

Algonkian.

Sur les formations précambréennes fossilières, Walcott, 4.

Cambrian.

Acreothyra, a new genus of Etcheminian brachiopods, Matthew (G. F.), 12.
Acreothyra and Hyolithes, a comparison, Matthew (G. F.), 7.
Cambrian Brachiopoda, Walcott, 1, 6, 12.
Cambrian Brachiopoda and Mollusca of Mount Stephen, Matthew (G. F.), 19.
Cambrian deposits of North Attleboro, Gorham, 1.
Cambrian faunas : Protolenus, Matthew (G. F.), 27.
Cambrian fossils from Cape Breton, Matthew (G. F.), 9.
Cambrian fossils of St. François County, Beecher, 2.
Cambrian of Cape Breton, with descriptions of new species, Matthew (G. F.), 12.
Cambrian Ostracoda from northeastern America, Jones (T. R.), 1.
Cambrian rocks and fossils of Cape Breton, Matthew (G. F.), 14.
Cambrian rocks in eastern Canada, Matthew (G. F.), 29.
Cambrian rocks of Cape Breton, Matthew (G. F.), 20.
Cambrian Dictyonema fauna of eastern New York, Ruedemann, 7.
Development in size of the inarticulate brachiopods of the basal Cambrian, Matthew (G. F.), 17.
Did the upper Etcheminian fauna invade eastern Canada from the southeast? Matthew (G. F.), 18.
Eurypterid remains in the Cambrian, Beecher, 3.
Graptolites of New York, Ruedemann, 8.
Hyolithes gracilis and related forms, Matthew (G. F.), 8.
Les plus anciennes faunes paléozoiques, Matthew (G. F.), 5.
Middle Cambrian fossils, Woodward (H.), 1.
New species of Olenellus, Wanner, 1.
Oboolid shells of the Cambrian system in Canada, Matthew (G. F.), 16.
Ostracoda of basal Cambrian rocks in Cape Breton, Matthew (G. F.), 13.
Paleozoic faunas, Weller, 6.
Paleozoic rocks of northwestern New Jersey, Van Ingen, 3.
Phylogenetic stage of Cambrian Gastrospoda, Sarsden, 12.
Physical geography, etc., of Essex County, Mass., Sears, 1.
Preliminary notice of Etcheminian fauna, Matthew (G. F.), 1.
Report of State paleontologist, Clarke (J. M.), 5.
Paleontology—Continued.

Carboniferous.

- Batrachian footprints, Matthew (G. F.), 23, 50.
- Batrachian footprints of Carboniferous system, Matthew (G. F.), 24.
- Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.
- Campylopleuron, a new form of Edestus-like dentition, Eastman, 3.
- Carboniferous ammonoids of America, Smith (J. P.), 3.
- Carboniferous cestraciont and acanthodan sharks, Eastman, 6.
- Carboniferous cochliodonts, Branson, 1.
- Carboniferous cophytes from Mazon Creek, Illinois, Sellards, 3.
- Carboniferous fish fauna of Mazon Creek, Eastman, 4.
- Carboniferous fishes from central Western States, Eastman, 10.
- Carboniferous formations and faunas of Colorado, Girty, 3.
- Carboniferous formations of Humboldt, Iowa, Sarleson, 11.
- Carboniferous fossils of Bisbee quadrangle, Girty, 6.
- Carboniferous invertebrates, Beede, 1.
- Carboniferous of Sangre de Cristo Range, Colorado, Lee (W. T.), 5.
- Carboniferous rocks of Kansas section, Adams, Girty, and White, 10.
- Carboniferous sections of Kansas, Girty, 4.
- Coal Measures Bryozoa of Nebraska, Condra, 2.
- Coal Measures faunal studies, Beede and Rogers, 1.
- Coal Measures forest near Socorro, Herrick (C. L.), 3.
- Coal Measures faunal studies, Beede, 6.
- Codonotheca, new type of spore-bearing organ from Coal Measures, Sellards, 6.
- Columbia folio, Tennessee, Hayes and Ulrich, 1.
- Contributions to Indian paleontology, Greene, 2, 3, 5, 7, 11–14.
- Correlation of the Kinderhook formations, Wellar, 1.
- Contributions to Devonian paleontology, Williams and Kindle, 1.
- Cyclos from Coal Measures, Rogers, 3.
- Developmental stages of Orthothetes minutus, Cumings, 5.
- Distribution and synonymy of Ptychoplia sexplicata, Greger, 1.
- Fauna of the Mentor, Jones (A. W.), 2.
- Fauna of the Permian, Beede, 2.
- Fossil faunas of Olean quadrangle, Butts, 1.

Paleontology—Continued.

Carboniferous—Continued.

- Fossil insects in Permian of Kansas, Sellards, 7.
- Fossil plants from Carboniferous and Permian formations of Kansas, White (D.), 10.
- Fossil plants in the Permian, Sellards, 2.
- Fossil plants of Onaga, Crevecour, 1.
- Fossils from Subcarboniferous rocks of northeastern Missouri, Rowley, 2.
- Fossils from the Red Beds, Gould, 1.
- Fossils from the upper Paleozoic rocks, Rowley, 1.
- Genus Rhyolophora, Greger, 2.
- Geologic horizon of the Kanawha black flint, White (I. C.), 4.
- Geology of Copper River region, Mendenhall, 8.
- Invertebrate fossils from Carboniferous section of Kansas, Girty, 4.
- Invertebrate paleontology of Red Beds, Beede, 8.
- Kinderhook faunal studies, Wellar, 2.
- Kinderhook faunas, Wellar, 11.
- Klamath Mountain section, Diller, 12.
- Korpilinthe des Perms von Texas, Neumeyer, 1.
- Lead, zinc, and fluorspar deposits of western Kentucky, Ulrich, 8.
- List of fossils from lower half of Conemaugh formation near Morgantown, W. Va., White (I. C.), 5.
- Lyon County geology, Smith (A. J.), 2.
- Mauch Chunk of Pennsylvania, Stevenson (J. J.), 1.
- Micro-organismes des combustibles fossiles, Renault, 1.
- Missouri paleontology, Rowley, 4.
- Missourian and Permo-Carboniferous fish fauna of Kansas and Nebraska, Eastman and Barbour, 1.
- Morphology of the skull of Dimetrodon, Case, 11.
- Myallina from Coal Measures of Texas, Whitfield, 2.
- New Bryozoa from Coal Measures of Nebraska, Condra, 1.
- New forms of Carboniferous fish remains, Eastman, 9.
- New genus and species of Lower Carboniferous bryozoan, Whitfield, 8.
- New fossil plants from Carboniferous and Devonian, Herzer, 4.
- New fossil sponge from Coal Measures, Herzer, 3.
- New fossils from Upper Carboniferous of Kansas, Beede, 4.
- New molluscan genera from the Carboniferous, Girty, 5.
- Note on Hylopus of Dawson, Matthew (G. F.), 28.
- Orthothetes minutus n. sp., from the Salem limestone, Cumings, 2.
- Osteology of Embolophorus dolovlinus, Case, 4.
Paleontology—Continued.

Carboniferous—Continued.

Osteology of skull of Dimetrodon, Case, 7.

Paleobotanical aspects of the upper Paleozoic in Nova Scotia, White (D.), 5.

Paleontologic results of areal survey of Olean quadrangle, Clarke (J. M.), 7.

Paleontology of the Bingham mining district, Girty, 12.

Paleozoic batrachian footprints, Matthew (G. F.), 25.

Paleozoic cockroaches, Sellards, 5, 8.

Paleozoic ostracods from Maryland, Jones (T. R.), 4.

Paleozoic footprints of Labyrinthodon, Case, 3.

Pleuroptyx in Iowa Coal Measures, Udoden, 7.

Possible new coal plants, Gresley, 1.

Pottawattamie and Douglas formations, Rogers, 1.

Prodromites, a new ammonite genus, Smith and Weller, 1.

Psaronius, Herzer, 1.

Revision of Paleozoic Paleechinoidea, Klem, 1.

Revision of Phyllocarida from Chemung and Waverly groups of Pennsylvania, Beecher, 8.

Rhombopora lepidodendroides Meek, Condra, 3.

Six new species, Knowlton, 13.

Six new species, including two new genera of fossil plants, Herzer, 2.

Species of Whittleseya and their systematic relations, White (D.), 4.

Stigmaria structure, Poole, 1.

Structure of fore foot of Dimetrodon, Case, 8.

Taniopteris of the Permian, Sellards, 1.

Triticitites, new genus of Carboniferous foraminifera, Girty, 9.

Two Carboniferous genera, Cockerell, 3.

Ubeir Diacranodus texensis Cope, Broili, 3.

Upper Permian in western Texas, Girty, 2.

Paleontology—Continued.

Validity of Idiophyllum rotundifolium, Sellards, 4.

Vertebrate fossils from Permian beds of Oklahoma, Case, 5.

Vertebrates from Permian of Texas, Case, 5.

Cretaceous.

Atlantic highlands section, Prather, 4.

Ceratopsia from the Laramie, Wyoming, Hatcher, 22.

Chondrodonta, Stanton, 2.

Coal resources of Wyoming, Trumbull, 1.

Corals of Buda limestone, Vaughan, 17.

Correction of Professor Osborn's note, Hatcher, 13.

Cretaceous actinopterygian fishes, Hay, 10.

Cretaceous and Tertiary plants of Canada, Penhallow, 4.

Cretaceous and Tertiary section in Montana, Douglass, 3.

Cretaceous beds of Long Island, Hollick, 7.

Cretaceous deposits of Pacific coast, Anderson (F. M.), 3.

Cretaceous fish Portheus molossus, Osborn, 35.

Cretaceous fishes, Williston, 1.

Cretaceous formations and faunas of New Jersey, Weller, 7.

Cretaceous fossils from the John Day basin, Stanton, 1.

Cretaceous fossils of the Bisbee quadrangle, Stanton, 6.

Cretaceous turtles, Wieland, 2.

Cretaceous turtles of New Jersey, Wieland, 6, 7.

Cretacea of the Cretaceous, Pilsbry, 1.

Dakota Cretaceous of Kansas and Nebraska, Gould, 5.

Development of Scaphites, Smith (W. D.), 1.

Dinosaurian genus Creosaurus Marsh, Williston, 2.

Dinosaurs from the Cretaceous of Alberta, Lambe, 10.

Dinosaurs in Fort Pierre shales, Douglass, 5.

Discovery of amber on Staten Island, Hollick, 16.

Distinctive characters of the mid-Cretaceous fauna, Osborn, 12.

Eosaurus parvus, a new genus and species of Sauropoda, Peterson and Gilmore, 1.

Flora of the Matawan formation, Berry, 5.

Fossil Cyrena from Alberta, Whiteaves, 6.
Paleontology—Continued.

Cretaceous—Continued.

Fossil ferns from the Laramie group of Colorado, Hollick, 5.
Fossil floras of the Yukon, Knowlton, 17.
Fossil grasses and sedges, Berry, 10.
Fossil petal and fruit from Kansas, Hollick, 6.
Fossil plant remains at Kreisherville, Hollick, 14.
Fossil plants from British Columbia and the Northwest Territories, Penhallow and Ami, 1.
Fossil plants from Kansas, Hollick, 9.
Fossil plants from the Shasta group, Fontaine, 3.
Fossil plants of the Judith River beds, Knowlton, 18.
Fossils from the Vancouver Cretaceous, Whiteaves, 12.
Fossils of the Texas Cretaceous, Prather, 1.
Fresh-water molluscan faunule from Cretaceous of Montana, Stantoii, 4.
Ganoid- und Knochen-flsche aus der Kreide formation von Kansas, Loomis, 1.
Geological and botanical notes: Cape Cod and Chappaquidick Island, Hollick, 4.
Geology and paleontology of the Judith River beds, Stanton and Hatcher, 1.
Geology of Cerrillos Hills, Johnson (D. W.), 5.
Geology of Potomac group in middle Atlantic slope, Clark and Bibbins, 1.
Geology of the John Day Basin, Merriam (J. C.), 1.
Grasping power of manus of Ornithomimus, Lambe, 9.
Greatest flying creature, the great pterodactyl Ornithostoma, Lucas (F. A.), 10.
Heteroceras simplicostatum, Whiteaves, 2.
Hind limb of Protostega, Williston, 4.
Interesting Cretaceous Chimaeroid egg-case, Gill, 2.
Kreide-Ammoniten von Texas, Lasswitz, 1.
Lower Cretaceous plants from Montana, Fontaine, 4.
Lytoceras from the Cretaceous rocks, Whiteaves, 2.
Marine turtle Archelon, Wieland, 3.
Megalocerops tyleri, Lull, 5.
Mollusca of Buda limestone, Shattuck, 8.
New and little-known fossil vertebrates, Hatcher, 3.
New armed dinosaur, Williston, 26.

Paleontology—Continued.

Cretaceous—Continued.

New genera and species from Belly River series, Lambe, 3.
New Niohrara Taphochelys, Wieland, 12.
New or little-known extinct reptiles, Williston, 10.
New species of Baena from Laramie beds of Wyoming, Hay, 2.
New species of Unio, Whiteaves, 1.
New turtle from the Kansas Cretaceous, Williston, 3.
New turtles from Judith River beds of Montana, Hay, 15.
New vertebrates of the mid-Cretaceous, Osborn, 13.
New Unios from the Laramie, Whitfield, 6.
Occurrence of ichthyosaur-like remains, Merriam (J. C.), 17.
Old swamp bottom, Berry, 12.
Paleobotany of Cretaceous of Long Island, Hollick, 11.
Paleontology of the Boulder area, Henderson (J.), 3.
Palm from mid-Cretaceous, berry, 11.
Plants from the Matawan formation, Berry, 4.
Position and nature of Maryland Cycads, Bibbins, 2.
Protostega gigas and other Cretaceous reptiles, Sternberg, 5.
Pseudoceratites of the Cretaceous, Hyatt, 1.
Recent literature on Laramie formation, Hay, 7.
Remarable slab of crinoids, Hovey (E. O.), 14.
Report on various collections of fossil plants from the older Potomac of Virginia and Maryland, Fontaine, 5.
Restoration of Dolichorhynchops osborni, Williston, 9.
Sabal rigida, Hatcher, 5.
Skelehow of Nycrodactylus with restoration, Williston, 8.
Squamoo-parietal crest of horned dinosaurs, Lambe, 11.
Starfish, from Cretaceous of Wyoming, Weller, 8.
Starfish from the Fort Benton, Douglass, 7.
Status of Mesozoic floras, Ward (L. F.), 5.
Stratigraphy and paleontology of Black Hills rim, Wieland, 11.
Telechilus browni, Osborn, 33.
Teleosteos from the Platte Cretaceous series, Craigin, 1.
Paleontology—Continued.

Cretaceous—Continued.
Teledosts of the upper Cretaceous, Stewart, 1.
Teredo-like shell from Laramie group, Whitfield, 4.
Trionyx foveatus Leidy and Trionyx vagans Cope from Cretaceous rocks of Alberta, Lambe, 5.
Turtle from Cretaceous rocks, Lambe, 1.
Types of invertebrate Cretaceous fossils in the collection of the Academy of Natural Science, Philadelphia, Johnson (C. W.), 2.
Tyrannosaurus and other Cretaceous carnivorous dinosaurs, Osborn, 50.

Devonian.
Acidaspis from Marcellus shale, Hitchcock (C. H.), 4.
Amnigenia as an indicator of freshwater deposits, Clarke (J. M.), 4.
Are the St. John plant beds Carboniferous?, Matthew (G. P.), 4.
Arthrodires from the Cleveland shale, Dean, 1.
Beschreibung der Naples-Fauna, Drevermann, 1.
Columbia folio, Tennessee, Hayes and Ulrich, 1.
Contributions to Devonian paleontology, Williams and Kindle, 1.
Contributions to Indiana paleontology, Greene, 115.
Coral reefs, ancient and modern, Grant (C. C.), 5.
Corniferous exposure in Anderdon, Nattress, 1.
Corniferous fauna in Appalachian province in North America, Weller, 4.
Correlation of geological faunas, Williams (H. S.), 5.
Crinoid and mollusk from the Portage rocks of New York, Whitfield, 11.
Dentition of Rhynchodus, Eastman, 14.
Description of tracks from mudstones of Knoydart formation, Ami, 28.
Devonian era in Ohio basin, Claypole, 5.
Development of Fenestella, Cumings, 10.
Developmental changes in Devonian brachiopods, Raymond (P. E.), 3.
Devonian fauna of Kwataboahagan River, Parks, 5.
Devonian fish fauna of Iowa, Eastman, 11.
Devonian fossils and stratigraphy of Indiana, Keyes, 1.
Devonian fish remains from Colorado, Eastman, 16.

Paleontology—Continued.

Devonian—Continued.
Devonian fossils of Bisbee quadrangle, Williams (H. S.), 6.
Devonian paleontology, Schuchert, 13.
Devonic crinoids, Wood (Elvira), 3.
Devonic worms, Clarke (J. M.), 18.
Drift fossils, Hollick, 8.
Dwarf fauna of Tully limestone, Loomis, 4.
Evolution of some Devonian spirifers, Grabau, 18.
Fauna of Stafford limestone of New York, Talbot, 1.
Fauna of the Agoniatite limestone of Onondaga County, N. Y., Wilson (J. D.), 1.
Faunal provinces of middle Devonian of America, Schuchert, 5.
Fossil faunas of Olean quadrangle, Butts, 1.
Fossils from the Hackberry group of Iowa, Webster, 2.
Gastropod from the Hackberry group of Iowa, Webster, 1.
Genus Panenka, with description of a new species from Devonian rocks of Ontario, Whiteaves, 4.
Geology of Onondaga County, N. Y., Schneider, 1.
Geology of Perry basin, White (D.), 18.
Geology of Watkins and Elmira quadrangles, Clarke and Luther, 2.
Hamilton formation in central New York, Cleland, 2.
Hamilton fossils from Bethany, New York, Monroe, 1.
Hamilton group of Theford, Ontario, Shimer and Grabau, 1.
Helderberg invasion of the Manlius, Harris, 7.
Helderbergian fossils near Montreal, Schuchert, 2.
Indigene and alien faunas of New York Devonian, Clarke (J. M.), 10.
Ithaqua fauna of central New York, Clarke (J. M.), 27.
Klamath Mountain section, Diller, 12.
Knoydart formation of Nova Scotia, Ami, 8.
Limestones interbedded with shales of Marcellus stage, Clarke (J. M.), 2.
Map of Canandaigua and Naples quadrangles, Clarke and Luther, 1.
Marcellus limestone, Wood (Elvira), 1.
Naples fauna in western New York, Clarke (J. M.), 18.
Neumastophytin in New York State Museum, Prosser, 8.
New Ageilacrinites, Clarke (J. M.), 3.
New crinoid from the Hamilton, Wood (Elvira), 2.
New fossil plants from Carboniferous and Devonian, Herzer, 4.
Paleontology—Continued.

Devonian—Continued.

New fossils from Corniferous, Hamilton, and Medina shales, Herzer, 5.
New geological formation in the Devonian, Aml, 4.
New points on the fin attachment of Dinichthys and Cladodus, Clark (W.), 1.
Notes on Paleozoic crustaceans, Clarke (J. M.), 12.
Observations on Romingeria, Beecher, 9.
Opening address, geologic section, Grant (C. C.), 1.
Organic remains from Messenger Brook, Aml, 47.
Paleontologic results of areal survey of Olean quadrangle, Clarke (J. M.), 7.
Paleontology of the Iowa Devonian, Webster, 3.
Paleozoic faunas, Weller, 6.
Paleozoic rocks of northwestern New Jersey, Van Ingen, 3.
Parapsinema cryptophylla Clarke and deren Stellung im System, Fuchs, 1.
Parasite from Devonian rocks of Hudson Bay, Parks, 6.
Perce: sketch of its geology, Clarke (J. M.), 26.
Preservation of muscle fibers in sharks of Cleveland shale, Dean, 6.
Report of State paleontologist, Clarke (J. M.), 5.
Revision of generic and species of Canadian Paleozoic corals, Lambe, 2.
Revision of New York Helderbergian crinoids, Talbot, 2.
Revision of Phyllocarida from Chemung and Waverly groups of Pennsylvania, Beecher, 8.
Rhizopods in Pella beds in Iowa, Uden, 6.
Rocks of Rondout, Van Ingen and Clark, 1.
Shifting of faunas, Williams (H. S.), 4.
Silurian and Devonian limestones, Foerste, 1.
Siluric and Devonic faunas of Trilobite Mountain, Shimer, 5.
Siluric Cystoida, Schuchert, 6.
Silver Creek hydralic limestone, Siebenthal, 2.
Sponges from the Hamilton group of Indiana, Whitfield, 12.
Stratigraphy of Becket Mountain, Grabau, 9.
Structure of Dinichthys, Wright (A. A.), 1.
Structure of two Dinichthys, Hussakof, 2.

Bull. 301—06—39
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

 Ordovician—Continued.

Columbia folio, Tennessee, Hayes and Ulrich, 1.
Crown Point section, Raymond (P. E.), 1.
Fauna of Magnesian series, Sardeson, 2.
Fauna of the Chazy limestone, Raymond (P. E.), 7.
Fauna of the Chazy limestone on Valcour Island, Hudson, 1.
Faunas of the Trenton, Raymond (P. E.), 2.
Fort Cassin beds in the Calciferous limestone, Dwight, 1.
Fossils in the Saint Peter sandstone, Sardeson, 7.
Geological notes, Grant (C. C.), 7.
Geology of Cincinnati, Nickles, 3.
Geology of Howard County, Iowa, Calvin, 10.
Geology of west shore of Lake Winnipeg, Dowling, 1.
Graptolites of New York, Ruedemann, 8.
Harris collection of invertebrate fossils, Schuchert, 3.
Hudson River beds near Albany, Ruedemann, 1.
Isochilinae from Canada, Jones (T. R.), 2.
List of fossils from New Brunswick, Aml, 46.
List of fossils from formations along Ottawa River, Aml, 21.
List of fossils from Perth sheet, Aml, 49.
Lists of organic remains of Ottawa district, Aml, 20.
Lower Silurian fauna of Minnesota, Sardeson, 9.
Morphogenesis of Platystrophia, Cumings, 8.
New bryozoan Homotrypa bassleri, Nickles, 4.
New species of Matheria, Whiteaves, 8.
Nilesus vigilans from Elgin, Iowa, Finch (G. E.), 2.
Ordovician at Vevay, Indiana, Cumings, 3.
Ordovician rocks of Kentucky and their bryozoan, Nickles, 6.
Ordovician rocks of southern Indiana, Cumings, 4.
Ordovician section near Bellefonte, Pa., Collie, 3.
Paleozoic Cypridina from Canada, Jones (T. R.), 3.
Paleozoic faunas, Weller, 6.
Paleozoic rocks of northwestern New Jersey, Van Ingen, 3.
Quantitative study of variation in the fossil brachiopod Platystrophia lynx, Cumings and Mauck, 1.

Quaternary.

Arthritis in the Lansing man, Parker, 1.
Canadian fossil insects, Scudder, 1.
Canidae of California, Merriam (J. C.), 7.
Crana of Trenton, New Jersey, Hrdlicka, 1.
Discovery of a musk ox skull, Hatcher, 12.
Discovery of the Lansing skeleton, Conknon, 1.
Euceratherium, a new ungulate from the Quaternary caves of California, Sinclair and Furlong, 1.
Excavations in a Quaternary cave in Shasta County, Furlong, 1.
Exploration of Potter Creek cave, Shasta County, Cal., Sinclair, 2.
Fossil form of Orohelix yavapai Pilsbry, Cockerell, 2.
Fossil land shells of old forest bed of Ohio River, Billups, 1.
Fossil nut pine, Knowlton, 9.
Fossil Unio from Wisconsin, Wagner, 2.
Geologic relations of the human relics of Lansing, Kans., Chamberlin (T. C.), 5.
Geology of Pottawattamie County, Iowa, Udden, 3.
Geology of the Philippine Islands, Becker, 1.
Glyptodont from Texas Pleistocene, Osborn, 17.
Ground sloth from Nebraska Pleistocene, Brown (B.), 1.
Helicina occulta Say, Shimek, 8.
Hyoid bone in Mastodon americanus, Holland, 3.
Lists of organic remains of Ottawa district, Aml, 20.
Loess of Iowa City, Shimek, 2.
Loess of Natchez, Shimek, 4.
Paleontology—Continued.

Quaternary—Continued.

- Mammalia from Quaternary caves of California, Sinclair, 7.
- Marine Pliocene and Pleistocene of California, Arnold, 2.
- Mastodonts of New York, Clarke (J. M.), 15.
- New Californian Bittium, Dall and Bartsch, 1.
- Observations paléontologiques dans l'Alaska, Gaudry, 1.
- Paleontology of Bartholomew County, Indiana, mammalian fossils, Edwards (J. J.), 1.
- Physical geography, etc., of Essex County, Mass., Sears, 1.
- Platygonus compressus Le Conte, Wagener, 1.
- Pleistocene fauna from Hay Springs, Nebraska, Matthew (W. D.), 8.
- Pleistocene foraminifera from Panama, Cushman, 2.
- Pleistocene fauna of Sankaty Head, Cushman, 3.
- Pleistocene formations of Sankaty Head, Nantucket, Wilson (J. H.), 1.
- Pleistocene mollusks of White Pond, Baker, 1.
- Post-Glacial origin and migrations of life of northeastern United States, Adams (C. C.), 2.
- Post-Pliocene fossils of the Niagara River gravels, Letson, 1.
- Potter Creek cave, Sinclair, 5.
- Preptoceras, a new ungulate, Furlong, 2.
- Sea beaches of eastern Ontario, Coleman, 5.
- Search for mammoh and other fossil remains, Maddren, 1.
- Semifossil shells of Posey County, Ind., Daniels, 1.
- Shaw mastodon, Hayes (S.), 1.
- Valley loess and fossil man of Lansing, Upham, 14.

Silurian.

- Cincinnati geanticline, Foerste, 10.
- Columbia folio, Tennessee, Hayes and Ulrich, 1.
- Cobiaeskil limestone of New York, Hartnagel, 1.
- Contributions to Indiana paleontology, Greece, 1, 3, 6, 14.
- Crotalocerinus cora (Hall), Weller, 5.
- Description of Dalmanites lunatus, Lambert, 1.

Echinodermata of the Missouri Silurian, Rowley, 3.

Eurypterid fauna from the Salina, Sarle, 2.

Fossils from the Silurian rocks of Ekwai River, Whetwells, 17.

Genus Trimerella, with descriptions of species from Silurian rocks of Keewatin, Whiteaves, 3.

Geological notes, Grant (C. C.), 6, 7.

Geology and paleontology of Niagara Falls, Grabau, 1.

Geology of Onondaga County, N. Y., Schneider, 1.

Geology of west shore of Lake Winnipeg, Dowling, 1.

Graptoleite (Levis) facies of Beekmantown formation in Rensselaer County, N. Y., Ruedemann, 3.

Growth and development of Gonograptus thuricai McCory, Ruedemann, 4.

Guelph fauna of New York, Clarke and Ruedemann, 1.

Indigene and alien fauna of New York Devonie, Clarke (J. M.), 10.

Manlius formation of New York, Schuchert, 4.

Map of Canandaigua and Naples quadrangles, Clarke and Luther, 1.

New fossils from Corruigenous, Hamilton and Medina shales, Herzog, 5.

New genus of Paleozoic crachiopods, Eumia, Clarke (J. M.), 8.

New species of algin, White (D.), 1.

Notes on Paleozoic crustaceans, Clarke (J. M.), 12.

Notes on post collecting season, Grant (C. C.), 9.

Notes on the late collecting season, Grant (C. C.), 10.

Observations on Halysites, Whitfield, 7.

Opening address, geologic section, Grant (C. C.), 1, 4.

Organic remains from Messenger Brook, Aml, 47.

Paleontology of the Niagara of northern Indiana, Kindle and Breger, 1.

Paleozoic faunas, Weller, 6.

Report of State paleontologist, Clarke (J. M.), 5.

Revision of New York Helderbergian crinoids, Talbot, 2.

Rocks of Rondout, Van Ingen and Clark, 1.

Rugose corals from the Silurian rocks of Manitoba, Wettewes, 14.

Silurian and Devonian limestones, Foerste, 1.

Silurian and Devonian limestones of western Tennessee, Foerste, 7.

Silurian and Devonian Cystidea and Camacrinus, Schuchert, 11.

Silurian fauna near Batesville, Ark., Van Ingen, 2.
Paleontology—Continued.

Silurian—Continued.

Stratigraphic value of Portage sandstones, Luther, 1.

Stratigraphy and paleontology of the Niagara of northern Indiana, Schuchert, 10.

Stratigraphy of Becraft Mountain, Grabau, 9.

Trilobite (Dalmanites lunatus) from Littleton, Lambert, 2.

Tertiary.

Addition to coral fauna of the Aquia Eocene formation of Maryland, Vaughan, 14.

American Eocene primates, Osborn, 11.

Arcas of the California Neocene, Osmond, 2.

Armadillo from middle Eocene, Osborn, 30.

Camellia of California, Merriam (J. C.), 7.

Chalcedony-lime nuts from Bad Lands, Barbour (E. H.), 2.

Clavilithes from the Texas Eocene, Johnson and Grabau, 1.

Comparison of fossil diatoms, Elmore, 1.

Conrad collection of Vicksburg fossils, Casey, 4.

Corrections to nomenclature of Eocene corals, Vaughan, 16.

Correlation des horizons de mammiferes tertiaires in Europe et en Amerique, Osborn, 5.

Cranial elements and dentitions of Titanotherium, Hatcher, 4.

Cretaceous and Tertiary plants of Canada, Penhallow, 4.

Cretaceous and Tertiary section in Montana, Douglass, 3.

Eocene Tertiary fauna of Florida, Schuchert, 12.

Description of two new Tertiary fossils, Johnson (C. W.), 1.

Discovery of Torrington mammals in Montana, Douglass, 6.

Dryopsaurus incrassatus, Lambe, 8.

Earliest Tertiary coral reefs in Antilles and United States, Vaughan, 10.

Eocene Arthropoda, Ulrich, 1.

Eocene Bryozoa, Ulrich, 2.

Eocene Cephalopoda, Ulrich, 2.

Eocene deposits of Maryland, Clark and Martin, 1.

Eocene Echinodermata, Clark and Martin, 4.

Eocene Insectivora, Matthew (W. D.), 23.

Eocene Mammalia in Marsh collection, Wortman, 2-6, 8-16.

Eocene Mollusca, Clark and Martin, 2.

Eocene Molluscooldea (Brachiopoda), Clark and Martin, 3.

Eocene Pisces, Eastman, 1.

Eocene Plants, Hollick, 3.

Eocene Protozoa, Bagg, 1.
FOR THE YEARS 1901-1905, INCLUSIVE.

Paleontology—Continued.

Hedgehog from American Oligocene.
Matthew (W. D.), 10.
Hyopsodidae of Wasatch and Wind River basins, Loomis, 7.
Jackson outcrops on Red River, Casey, 1.
Klamath Mountain section, Diller, 12.
Koimito shell bed, Guppy, 6.
Locality of type of Prionastreva vaugha.nl, Gregory, Vaughan, 7.
Mammals from Oligocene of South Dakota, Matthew (W. D.), 22.
Marine Pliocene and Pleistocene of California, Arnold, 2.
Miocene baroncles from Gay Head, Cushman, 4.
Miocene deposits of Maryland, Shattuck, 10.
Miocene fauna in California, Merriam (J. C.), 10.
Miocene foraminifera from the Monterey shale, Bagg, 9.
Miocene mammals of South Dakota, Matthew and Gidley, 1.
Miocene rhinocerous, Osborn, 34.
Mount Diablo Range of California, Anderson (F. M.), 7.
Mylagaulodon from upper John Day of Oregon, Sinclair, 3.
Neogene lake beds of Montana, Douglass, 1.
Neozoic invertebrate fossils, Dall, 10.
New American species of Amphicyon, Wortman, 1.
New Canidse from Miocene of Colorado, Matthew (W. D.), 5.
New Conus from Tertiary of Florida, Aldrich, 3.
New fossil tapir in Oregon, Sinclair, 1.
New genus of Eocene Euliniidaj, Casey, 3.
New Lyropecten, Dall, 4.
New Miocene artiodactyl, Barbour (E. H.), 11.
New Oligocene camels, Matthew (W. D.), 15.
New rhinoceros, Trigonias osborni, Lucas (F. A.), 1.
New sabre tooth from California, Merriam (J. C.), 16.
New species of Equus, Gidley, 1.
New species of Pleurotomidae, Casey, 5.
New Oligocene Canidae, Hatcher, 10.
Oligocene horses, Osborn, 31.
Oligocene of western Europe and southern United States, Manry, 1.
Oligocene titanotheres, Osborn, 9.
Origin of Oligocene and Miocene deposits of Great Plains, Hatcher, 11.
Osteology of Oxydactylus, Peterson, 1.
Osteology of Sinopia, Matthew (W. D.), 20.
Oyster from Eocene of Alabama, Aldrich, 5.
Paleontology of Martinez group, Weaver, 1.
Paleontology of the Maryland Miocene deposits, Englomerata, Clark (W. B.), 7.
Paleontology of the Maryland Miocene deposits, Foraminifera, Bagg, 6.
Paleontology of the Maryland Miocene deposits, Hydrozoa, Ulrich, 6.
Paleontology of the Maryland Miocene deposits, Malacostraca and Cirripedia, Martin (G. C.), 4.
Paleontology of the Maryland Miocene deposits, Mollusca, except Pelecypoda, Martin (G. C.), 5.
Paleontology of the Maryland Miocene deposits, Ostracoda, Ulrich and Bassler, 3.
Paleontology of the Maryland Miocene deposits, Ostracoda, Urania, Ulrich and Bassler, 3.
Paleontology of the Maryland Miocene deposits, Pelecypoda, Glenn, 6.
Paleontology of the Maryland Miocene deposits, Pisces, Eastman, 18.
Paleontology of the Maryland Miocene deposits, Radiolaria, Martin (G. C.), 8.
Paleontology of the Maryland Miocene deposits, Thallophya - Diatomacea, Boyer, 1.
Paleontology of the Maryland Miocene deposits, Vermeas, Martin (G. C.), 7.
Pelvic girdle of Zeuglodon Basilosaurus cetoides (Owen), Lucas (F. A.), 2.
Phylogeny of Fusus, Grabau, 10.
Platygonus from Texas Pliocene, Gidley, 3.
Paleontology—Continued.

Tertiary—Continued.

Pleistocene and Pliocene fossil shells, Rivers, 1.
Proper generic names of Miocene horses, Gidley, 5.
Recent zoopaleontology, Osborn, 22.
Redescription of the coral Platytrochus speciosus, Vaughan, 15.
Relations of Maryland Miocene, Dall, 14.
Report on the flora of the Mascal formation, Knowlton, 2.
Reptiles from the Titanotherium beds, Loomis, 5.
Restoration of Megacerops, Lull, 6.
Rodent from Colorado Miocene, Matthew (W. D.), 6.
Rodents and ungulates from the John Day series, Stilwell, 6.
Shell Bluff, one of Lyell's original localities, Vaughan, 4.
Skeleton of Merycodus, Matthew (W. D.), 14.
Skeleton of Titanotherium dispar Marsh, Hatcher, 7.
Skull of Bunolurus, Matthew (W. D.), 4.
Skull of Dinocyon from Miocene of Texas, Matthew (W. D.), 3.
Skulls of Trionychide in Bridger deposits of Wyoming, Hay, 16.
Snails of the genus Physa found at Las Vegas, Springer (A.), 1.
Studies of Gastropoda, Grabau, 11.
Successors of certain North American primates, Wortman, 7.
Ten years' progress in mammalian paleontology of North America, Osborn, 49.
Tertiary fauna at Kap Dalton, Ravn, 1.
Tertiary fauna from Chappaquiddick Island, Brown (T. C.), 1.
Tertiary fauna of Florida, Dall, 8.
Tertiary of Montana, Douglass, 9.
Tertiary plants from Canada and the United States, Pennalow, 6.
Texas oil well fossil, Aldrich, 1.
Tobagan fossils, Guppy, 7.
Tooth-structure of Mesohippus westoni (Cope), Lambe, 14.
Tortoise from Colorado Miocene, Hay, 17.
Triassic ichthyosaurs from California and Nevada, Osborn, 15.
Trionychide, Conchochelys admirabilis, from the Puercan beds, Hay, 25.
Types of Marylard Tertiary Mollusca in British Museum, Newton, 1.
Vertebrates from the Montana Tertiary, Douglass, 8.

Triassic.

American Labyrinthodontidae, Branson, 2.

Paleontology—Continued.

Triassic—Continued.

Atlantosaurus and Titanotherium beds of Wyoming, Peck, 4.
Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.
Cestracodont spine from Triassic of Idaho, Evans (H. M.), 1.
Collection of Triassic fishes at Yule, Eaton, 1.
Famne marine du Trias Superior de Zacatecas, Burkhardt and Scala, 1.
Footprint from Connecticut Valley, Cushman, 1.
Footprints of Stegomus longipes, Lull, 3.
Fossil footprints of the Juratias, Lull, 2.
Fossils from the Red Beds, Gould, 1.
Fossils, possibly Triassic, in bowlder clay of Kings County, Haycock, 2.
Ichthyosaurusian limb from Triassic of Nevada, Merriam (J. C.), 14.
Ichthyosaurusia from Triassic of California, Merriam (J. C.), 6.
Marine reptiles, Merriam (J. C.), 12.
Marine Trias of western America, Smith (J. P.), 5.
Nature's hieroglyphics, Lull, 4.
New batrachian and reptile from Arizona, Lucas (F. A.), 19.
New reptile from Triassic of Connecticut Valley, Emerson and Loonins, 1.
New reptiles from Tria of Wyoming, Williston, 23.
Primitive characters of the Triassic Ichthyosaurus, Merriam (J. C.), 9.
Recent literature on Triassic Ichthyosauria, Merriam (J. C.), 8.
Reptile from Triassic of California, Merriam (J. C.), 11.
Status of Mesoic floras, Ward (L. F.), 5.
Thalattosaurus, Merriam (J. C.), 15.
Triassic cephalopod genera, Hyatt and Smith, 1.
Triassic fishes of New Jersey, Eastman, 29.
Triassic Ichthyopterygia from California and Nevada, Merriam (J. C.), 4.
Triassic ichthyosaurus from California and Nevada, Osborn, 15.
Types of limb structure in Triassic Ichthyosaurus, Merriam (J. C.), 13.

Invertebrata.

Acidaspis from Marcellus shale, Hitchcock (C. H.), 4.
Acrothrya, a new genus of Etcheminian brachiopods, Matthew (G. F.), 12.
Acrothrya and Hylolithes, a comparison, Matthew (G. F.), 7.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.
Invertebrate—Continued.

Addition to coral fauna of the Aquia Eocene formation of Maryland, Vaughan, 14.

Annelisia as an indicator of freshwater deposits, Clarke (J. M.), 4.

Amphion, Harpina, and Platymetopus, Raymond (F. E.), 6.

Antiquity of the zoanthid actiniaria, Duerdien, 10.

Arcas of the California Neocene, Osmond, 2.

Arizona diatomite, Blake (W. P.), 9.

Brachiopoda of the Arnhelm and Waynesville beds, Foerste, 13.

Burrow origin of Arthrophycus and Dedalus, Sarle, 4.

Bythotrephes from the Yukon district, Ami, 48.

Calciferous formation of Mohawk Valley, Cleland, 3.

Cambrian Brachiopoda, Walcott, 1, G., 12.

Cambrian Brachiopoda and Mollusca of Mount Stephen, Matthew (G. F.), 19.

Cambrian faunas, Protolevisen, Matthew (G. F.), 27.

Cambrian fossils from Cape Breton, Matthew (G. F.), 9.

Cambrian fossils of St. Francois County, Beecher, 2.

Cambrian of Cape Breton, with descriptions of new species, Matthew (G. F.), 12.

Cambrian Ostracoda from northeastern America, Jones (T. R.), 1.

Cambrian rocks and fossils of Cape Breton, Matthew (3. P.), 14.

Cambrian rocks in eastern Canada, Matthew (G. F.), 29.

Cambrian rocks of Cape Breton, Matthew (3. P.), 20.

Canadian Endoceratidne, Whiteaves, 10.

Canadian fossils insects, Scudder, 1.

Canadian species of Trocholites, Whiteaves, 13.

Canadian specimens of Lituites, Whiteaves, 10.

Carboniferous ammonoids of America, Smith (J. P.), 3.

Carboniferous formations and faunas of Colorado, Girty, 3.

Carboniferous fossils of Bisbee quadrangle, Girty, 6.

Carboniferous invertebrates, Beeche, 1.

Carboniferous rocks of Kansas section, Adams, Girty, and White, 1.

Carboniferous terrestrial arthropod fauna of Illinois, Melander, 1.

Cardioceras from the Crows Nest coal fields, Whiteaves, 9.

Paleontology—Continued.
Invertebrate—Continued.

Catalogue of type specimens of fossil invertebrates in National Museum, Schuchert and others, 1.

Catalogue of type specimens of Paleozoic fossils in New York State Museum, Clark and Ruedemann, 1.

Changes in nomenclature of West Indian corals, Vaughan, 13.

Chondrodonula, Stanton, 2.

Cincinnati geanticline, Foerste, 10.

Chavallithes from the Texas Eocene, Johnson and Grabau, 1.

Clodocrinus, Springer, 3.

Coal Measures Bryozoa of Nebraska, Condra, 2.

Coal Measures faunal studies, Beeche and Rogers, 1.

Coal Measures faunal studies, Beeche, 6.

Coal resources of Wyoming, Trumbull, 1.

Columbia folio, Tennessee, Hayes and Ulrich, 1.

Conrad collection of Vicksburg fossils, Casey, 4.

Contributions to Devonian paleontology, Williams and Kindle, 1.

Contribution to Indiana paleontology, Greene, 1–15.

Corals of Buda limestone, Vaughan, 17.

Cretaceous formations and faunas of New Jersey, Weller, 7.

Cretaceous fossils from the John Day basin, Stanton, 1.

Cretaceous fossils of the Bisbee quadrangle, Stanton, 6.

Crinoid and mollusk from the Portage rocks of New York, Whitfield, 11.

Crinoid genera Sagenocrinus, Forsbesocrinus, and allied forms, Springer (F.), 2.

Crotalocrinus cora (Hall), Weller, 5.

Crustacea of the Cretaceous formation of New Jersey, Pillsbury, 1.

Cyclopus from Coal Measures, Rogers, 3.

Dal's Tertiary fauna of Florida, Schuchert, 12.

Decapoden-Gattungen Linuparus und Pseudocrates, Ortman, 2.

Defective fossilization of certain pelecypod species, Sarsden, 10.

Deposition of the loess, Owen, 5.

Description of Dalmanites lunatus, Lambert, 1.

Description of two new Tertiary fossils of John (C. W.), 1.

Development and morphology of Fenestella, Cumings, 11.

Development and relationships of the Rugosa, Duerdien, 11.
Paleontology—Continued.

Invertebrate—Continued.

Development of Fenestella, Cumings, 10.

Development in size of the inarticulate brachiopods of the basal Cambrian, Matthew (G. F.), 17.

Development of biserial arm in certain crinoids, Grabau, 8.

Development of Scaphites, Smith (W. D.), 1.

Development of septa in Paleozoic corals, Duerden, 5.

Development of some Paleozoic bryozoa, Cumings, 9.

Developmental changes in Devonian brachiopods, Raymond (P. E.), 3.

Developmental stages of Orthothetes minutus, 5.

Devonian era in Ohio basin, Claypole, 5.

Devonian fauna of the Chazy limestone on Valcour Island, Hudson, 1.

Devonian fauna of the Chazy limestone, Raymond (P. E.), 7.

Devonian fauna of the Mentor, Jones (A. W.), 2.

Devonian fauna of the Permian, Beede, 2.

Devonian fauna of the Trias Superieur de Zacatecas, Burckhardt and Scalia, 1.

Devonian fossils of Bisbee quadrangle, Williams (H. S.), 6.

Devonian paleontology, Schuchert, 13.

Devonian crinoids, Wood (Elvira), 3.

Devonian worms, Clarke (T. M.), 18.

Diatom-earth in Arizona, Blake (W. P.), 10.

Did the upper Etcheminian fauna invade eastern Canada from the southeast? Matthew (G. F.), 18.

Distribution and synonymy of Ptycho spir a sexplicata, Greger, 1.

Drift fossils, Hollick, 8.

Dwarf fauna of Tully limestone, Loomis, 4.

Earliest Tertiary coral reefs in Antilles and United States, Vaughan, 10.

Early stages of some Paleozoic corals, Gordon (C. E.), 1.

Echinodermata of the Missouri Silurian, Rowley, 3.

Eocene Arthropoda, Ulrich, 1.

Eocene Bryozoa, Ulrich, 2.

Eocene Coelenterata, Ulrich, 4.

Eocene Echinodermata, Clark and Martin, 4.

Eocene Mollusca, Clark and Martin, 2.

Eocene Molluscoidea (Brachiopoda), Clark and Martin, 3.

Eocene Pisces, Eastman, 1.

Eocene Protozoa, Bagg, 1.

Eocene Turbellaria, Dall, 12.

Eurypterid fauna from the Salina, Sarle, 2.

Eurypterid remains in the Cambrian of Missouri, Beecher, 3.

Evolution of some Devonian spiriferids, Grabau, 18.

Fauna of Cliffwood clays, Weller, 10.

Fauna of magnesian series, Sardeson, 2.

Paleontology—Continued.

Invertebrate—Continued.

Fauna of Stafford limestone of New York, Talbot, 1.

Fauna of the Agoniatite limestone of Onondaga County, N. Y., Wilson (J. D.), 1.

Fauna of the Chazy limestone of Valcour Island, Hudson, 1.

Fauna of the Chazy limestone, Raymond (P. E.), 7.

Fauna of the Mentor, Jones (A. W.), 2.

Fauna of the Permian, Beede, 2.

Fossil marine du Trias Superieur de Zacatecas, Burckhardt and Scalia, 1.

Foraminifera from Santa Barbara, Bagg, 7.

Foraminifera of Trinidad, Guppy, 4.

Fort Cassin beds in the Calefierous limestone, Dwight, 1.

Fossil corals from reefs of Curacao, Aruba, and Bonaire, Vaughan, 2.

Fossil Cyrena from Alberta, Whiteaves, 6.

Fossil crabs of the Gay Head Miocene, Cushman, 6.

Fossil form of Orohelix yavapai Pilsbury, Cockrell, 2.

Fossil insects in Permian of Kansas, Seliards, 7.

Fossil land shells of Bermuda, Gulick, 1.

Fossil land shells of old forest bed of Ohio River, Billups, 1.

Fossil land shells of the John Day region, Stearns (R. E. C.), 1.

Fossil Unio from Wisconsin, Wagner, 2.

Fossils and age of Yakutat formation, Ulrich, 4.

Fossils from Mount Noyes (Canadian Rockies), Woodward (H.), 2.

Fossils from Sankaty Head, Cushman, 5.

Fossils from Subcarboniferous rocks of northeastern Missouri, Rowley, 2.

Fossils from the Hackberry group of Iowa, Webster, 2.

Fossils from the Silurian rocks of Ekwian River, Whiteaves, 17.

Fossils from the upper Paleozoic rocks of Missouri, Rowley, 1.

Fossils from the Vancouver Cretaceous, Whiteaves, 12.

Fossils in the St. Peter sandstone, Sardeson, 6.

Fossils of the St. Mary Islands, Dall, 15.

Fossils of the Bahamas, Dall, 16.

Fossils of the Texas Cretaceous, Prather, 1.

Fossil shell of the Texas Cretaceous, Praether, 1.

Fossils in rugose corals, Duerden, 12.

Fresh-water molluscan faunule from Cretaceous of Montana, Stanton, 4.
Paleontology—Continued.

Invertebrate—Continued.

Frogshells and tritons, Dall, 13.

Gastropod from the Hackberry group of Iowa, Webster, 1.

Genera and species of Canadian Paleozoic corals, Lambe, 2.

Genera, subgenera, and sections of Pyramidellidae, Dall and Bartsch, 2.

Genus Panenka, with description of a new species from Devonian rocks of Ontario, Whiteaves, 4.

Genus Rhynchopora, Greger, 2.

Genus Trimerella, with descriptions of species from Silurian rocks of Keewatin, Whiteaves, 3.

Geology and paleontology of the Judith River beds, Stanton and Hatcher, 1.

Geology of Cerrillos Hills, Johnson (D. W.), 5.

Geology of Howard County, Iowa, Calvin, 10.

Geology of Onondaga County, N. Y., Schneider, 1.

Gigantic fossil Lucina, Dall, 3.

Graptolites of New York, Ruedemann, 8.

Growth and development of Gonio-graptus threasia McCoy, Ruedemann, 4.

Guelph fauna of New York, Clarke and Ruedemann, 1.

Hamilton formation in central New York, Celand, 2.

Hamilton fossils from Bethany, N. Y., Monroe, 1.

Hamilton group of Thedford, Ontario, Shimer and Graham, 1.

Harris collection of invertebrate fossils, Schuchert, 3.

Helderberghian fossils near Montreal, Schuchert, 1.

Hollicina occulta Say, Shimek, 8.

Holloceras stevensonii, Whitfield, 1.

Heteroceras simplicostatum, Whitfield, 3.

Hudson River beds near Albany, Schuchert, 1.

Hylolites gracilis and related forms, Matthew (G. F.), 8.

Index to publications of New York State Natural History Survey, Ellis (M.), 1.

Indigene and alien faunas of New York Devonite, Clarke (J. M.), 10.

Invertebrate fossils from Carboniferous section of Kansas, Girty, 4.

Invertebrate paleontology of Red Beds, Bussey, 8.

Isochilino! from Canada, Jones (T. R.), 2.

Ithaca fauna of central New York, Clarke (J. M.), 27.

Jura-fossilien aus Alaska, Pompeckj, 1.

Jurassic fossils from east Greenland, Madsen, 1.

Kinderhook faunal studies, Weller, 2.

Paleontology—Continued.

Invertebrate—Continued.

Kinderhook faunas, Weller, 11.

Komuto shell-bed, Guppy, 6.

Kreide-Ammoniten von Texas, Laswitz, 1.

Lead, zinc, and fluor spar deposits of western Kentucky, Ulrich, 8.

Limestones interbedded with shales of Marcellus stage, Clarke (J. M.), 2.

List of fossils from New Brunswick, Aml, 45.

List of fossils from Perth sheet, Aml, 45.

Literature on Madreporaria Fungida, Vaughan, 21.

Locality of type of Prionastrea vaughani Gregory, Vaughan, 7.

Lower Silurian fauna of Minnesota, Sarde son, 9.

Lyon County geology, Smith (A. J.), 2.

Lytoceras from the Cretaceous rocks, Whiteaves, 2.

Manlius formation of New York, Schuchert, 4.

Map of Cannandigua and Naples quadrangles, Clarke and Luth er, 1.

Marcellus limestone, Wood (Elvira), 1.

Marine Pliocene and Pleistocene of San Pedro, Arnold, 2.

Marine Tries of western America, Smith (J. P.), 5.

Middle Cambrian fossils, Woodward (H.), 1.

Miocene barnacles from Gay Head, Cushman, 4.

Miocene deposits of Maryland, Shattuck, 10.

Miocene fauna in California, Merriam (J. C.), 10.

Miocene Foraminifera from the Monte-ray shale, Bagg, 9.

Missouri palaeontology; Rowley, 4.

Mode of existence of Orthoceras, Ruedemann, 6.

Mullosca of Buda limestone, Shattuck, 8.

Monocelidon and Oldhamia, Matthew (G. F.), 11.

Morphology and development of corals, Duerden, 9.

Morphogenesis of Platystrophia, Cumings, 8.

Morphology of the Madreporaria, Duerden, 4, 7, 8.

Morphology of the hinge teeth of bivalves, Dall, 2.

Morse on living brachiopods, Schuchert, 2.

Mount Diablo Range of California, Anderson (F. M.), 7.
Paleontology—Continued.

Invertebrate—Continued.

Myalina from Coal Measures of Texas,
Whitfield, 2.

Naples fauna in western New York,
Clarke (J. M.), 19.

Neozoic invertebrate fossils, Dall, 10.

New Agelascribites, Clarke (J. M.), 3.

New Bryozoa from Coal Measures of
Nebraska, Condra, 1.

New bryozon Homotrypa basaleri,
Nickles, 4.

New California Bittium, Dall and
Bartsch, 1.

New Conus from Tertiary of Florida,
Wood (Elvira), 2.

New Conus from the Hamilton, Wood
(Elvira), 2.

New fossil Ashmunella, Cockerell, 1.

New fossil sponge from Coal Measures,
Herzer, 3.

New fossils from Upper Carboniferous
of Kansas, Beede, 4.

New genus and species of Lower Car­
boniferous bryozoa, Whitfield, 8.

New genus of Eocene Eulimidae, Casey,
3.

New genus of Paleozoic brachiopods,
Eunoa, Clarke (J. M.), 8.

New New Lyropecten, Dall, 4.

New Molluscan genera from the Car­
boniferous, Girty, 5.

New species of Eocene fossils, Aldrich,
4.

New species of Matheria, Whiteaves, 8.

New species of Olenellus, Wanner, 1.

New species of Pleurotomaria from the
Pliocene of California, Raymond (W.
J.), 2.

New species of Tertiary fossils, Aldrich,
2.

New species of Unio, Whiteaves, 1.

New Unios from the Laramie, Whit­
field, 6.

Nileus vigilans from Elgin, Iowa, Finch
(G. E.), 2.

Nomenclature and classification of sedi­
mentary formations, Williams (H.
S.), 8.

Notes on Paleozoic crustaceans, Clarke
(J. M.), 12.

Notes on past collecting season, Grant
(C. C.), 9.

Notes on the late collecting season,
Grant (C. C.), 10.

Notes on the Pleurotomida, Casey, 5.

Noteworthy crinoid, Schuchert, 8.

Oboloid shells of the Cambrian system
In Canada, Matthew (G. F.), 16.

Observations on genus Romingeria,
Beecher, 9.

Observations on Romingeria, Sardeson,
12.

Observations upon Demonelix, Peters­
son, 2.

Paleontology—Continued.

Invertebrate—Continued.

Oligocene of western Europe and south­
ern United States, Maury, 1.

Ordovician at Vevay, Ind., Cumings, 3.

Ordovician rocks of Kentucky and their
Bryozoa, Nickles, 6.

Ordovician section near Bellefonte, Pa.,
Collie, 3.

Organic remains from Messenger Brook,
Ault, 47.

Origin of North American Unionidae,
White (C. A.), 1.

Ostracoda of basal Cambrian rocks in
Cape Breton, Matthew (J. F.), 13.

Oyster from Eocene of Alabama, Al­
drich, 5.

Paleontology and zoology, Whiteaves,
18.

Paleontology of Martinez group,
Weaver, 1.

Paleontology of the Bingham mining
district, Girty, 12.

Paleontology of the Boulder area, Hen­
derson (J.), 3.

Paleontology of the Iowa Devonian,
Webster, 3.

Paleontology of the Malone Jurassic
formation, Cragin, 2.

Paleontology of the Maryland Miocene
deposits, Anthonoza, Vaughan, 19.

Paleontology of the Maryland Miocene
deposits, Brachiopoda, Martin (G.
C.), 6.

Paleontology of the Maryland Miocene
deposits, Bryozoa, Ulrich and Bass­
lé, 4.

Paleontology of the Maryland Miocene
deposits, Echinodermata, Clark (W.
B.), 7.

Paleontology of the Maryland Miocene
deposits, Foraminifera, Bagg, 6.

Paleontology of the Maryland Miocene
deposits, Hydrozoa, Ulrich, 6.

Paleontology of the Maryland Miocene
deposits, Malacostraca and Cirripedi­
a, Martin (G. C.), 4.

Paleontology of the Maryland Miocene
deposits, Mollusca, except Pelecyp­
oda, Martin (J. C.), 5.

Paleontology of the Maryland Miocene
deposits, Ostracoda, Ulrich and Bass­
lé, 3.

Paleontology of the Maryland Miocene
deposits, Ostracoda, Ulrich and Bass­
lé, 3.

Paleontology of the Maryland Miocene
deposits, Pelecypoda, Martin (J. C.), 5.

Paleontology of the Maryland Miocene
deposits, Radiolaria, Martin (G. C.),
8.

Paleontology of the Maryland Miocene
deposits, Vermes, Martin (G. C.), 7.

Paleontology of the Niagara of north­
ern Indiana, Kindle and Breger, 1.

Paleozoic cockroaches, Sellards, 5.

Paleozoic Cypridina from Canada,
Jones (T. R.), 3.

Paleozoic faunas, Weller, 6.
Paleontology—Continued.

Invertebrate—Continued.

Paleozoic ostracods from Maryland, Jones (T. R.), 4.

Parasite from Devonian rocks of Hudson Bay, Parks, 6.

Percé: sketch of its geology, Clarke (J. M.), 26.

Periodic migrations between Asiatic and American coasts of the Pacific Ocean, Smith (J. F.), 4.

Permain Xiphosuran from Kansas, Beecher, 10.

Phylogenic stage of Cambrian Gastropoda, Sardeson, 12.

Phylogeny of Fusus, Graban, 13.

Phylogeny of Fusus, Weller, 16.

Physical geography, etc., of Essex County, Mass., Sears, 1.

Pleistocene and Pliocene fossil shells, Ulvers, 1.

Pleistocene fauna of Sankaty Head, Cushman, 3.

Pleistocene fauna of Sankaty Head, Cushman, 3.

Pleistocene mollusks of White Pond, Baker, 1.

Portage crinoids, Clarke (J. M.), 23.

Post-Pliocene gravels of the Niagara River gravel, Letson, 1.

Portage crinoids, Clarke (J. M.), 23.

Pottsawatomie and Douglas formations, Rogers, 1.

Preliminary notice of Etcheminian fauna of Newfoundland, Matthew (G. F.), 1.

Problem of the Monticuliporoidea, Sardeson, 3, 4.

Predromites, a new ammonite genus, Smith and Weller, 1.

Pseudoceratites of the Cretaceous, Hyatt, 1.

Quantitative study of variation in the fossil brachiopod Platystrophia lynx, Cumings and Mauck, 1.

Redescription of the coral Platytrochus speciosus, Vaughan, 15.

Reef structures in the Clinton and Niagara strata, Sarle, 1.

Relations of Maryland Miocene, Dall, 14.

Relationships of the Rugosa (Tetra- corallina) to living Zoanthae, Duerden, 6.

Remarkable slab of crinoids, Hovey (E. O.), 14.

Report of State paleontologist, Clarke (J. M.), 25.

Reproduction of lost parts in a fossil crinoid, Whithfield, 9.

Paleontology—Continued.

Invertebrate—Continued.

Review of recent papers on Bahaman corals, Vaughan, 5.

Revision of bryozoan genera Dekayia, Dekayella, and Heterotrypa of the Cincinnati group, Cumings, 7.

Revision of genera and species of Canadian Paleozoic corals, Lambe, 2.

Revision of New York Helderbergian crinoids, Talbot, 2.

Revision of Paleozoic Ctenostomata, Ulrich and Bassler, 1.

Revision of Paleozoic Paleechinoidea, Kiem, 1.

Revision of Paleozoic Trepostomata, Ulrich and Bassler, 2.

Revision of Phyllocarida from Che- mungh and Waverly groups of Pennsyl- vania, Beecher, 8.

Revision of the Blastoidea, Hambach, 1.

Rhzopods in Pella beds in Iowa, Ud- den, 6.

Rhombopora lepidodendroides, Meek, Condra, 3.

Richmond group and its subdivisions, Nickles, 5.

Rugose corals from the Silurian rocks of Manitoba, Whiteaves, 14.

Sedimentary impression known as Clima- xichnites, Woodworth, 6.

Semi-fossil shells of Posey County, Ind., Daniels, 1.

Senility among gastropods, Smith (B.), 1.

Septal sequence in Paleozoic corals, Duerden, 6.

Shells of marls, Walker (B.), 1.

Shells of the marl deposits of Aroostook County, Me., Nylander, 1.

Siluric and Devonic Cystidea and Cam- acocrinida, Schuchert, 11.

Siluric and Devonic faunas of Trilobite Mountain, Shimer, 5.

Siluric Cystoidea, Schuchert, 6.

Siluric fauna near Batesville, Ark., Van ingen, 2.

Snails of the genus Physa found at Las Vegas, Springer (A.), 1.

Sponges from the Hamilton group of Indiana, Whitfield, 12.

Sponges of Chazy formation, Seely, 3.

Starfish from Cretaceous of Wyoming, Weller, 8.

Star-fish from the Fort Benton, Doug- lass, 7.

Stony corals of the Porto Rican waters, Vaughan, 3.

Stratigraphy and paleontology of the Ni- auga of northern Indiana, Schuch- bert, 10.

Stratigraphy of Beaver Mountain, Gra- bau, 9.

Stromatoceria of Isle la Motte, Seely, 5.

Strophomena and the type of the genus, Miller (S. A.), 1.
Paleontology—Continued.

Invertebrate—Continued.

Structural features of Homotrepa, Bassler, 1.
Structure and affinities of Palaeodiscus and Agelacrinus, Spencer (W. K.), 1.
Structure of some primitive cephalopods, Ruedemann, 9.
Studies of Gastropoda, Grabau, 1, 11.
Subdivisions of the Ordovician of Indiana, Foerste, 9.
Teredo-like shell from Laramie group, Whitfield, 4.
Tertiary fauna at Kap Dalton, Ravn, 1.
Tertiary fauna from Chappaquiddick Island, Brown (T. C.), 1.
Tertiary fauna of Florida, Dall, 8.
Texas oil well fossil, Aldrich, 1.
Time element in stratigraphy and correlation, Dall, 17.
Time element in stratigraphy and correlation, Ulrich, 9.
Tobagan fossils, Guppy, 7.
Torsion of the lamellibranch shell, Clarke (J. M.), 17.
Tracks from the Knoydart formation, Ami, 3.
Trenton conglomerate of Rysedorph Hill, Ruedemann, 2.
Triassic cephalopod genera, Hyatt and Smith, 1.
Trilobite (Dalmanites lunatus) from Littleton, Lambert, 2.
Trilobites of Chazy limestone, Raymond (P. E.), 5.
Trititica, new genus of Carboniferous foraminifers, Girty, 9.
Tropidoleptus fauna at Canandaigua Lake, Raymond (P. E.), 5.
True nature of Tasmisoma, Dall, 7.
Two Carboniferous genera, Cockerell, 3.
Type of Aviculipecten, Girty, 8.
Type of Aviculipecten, Hind, 1.
Types of invertebrate Cretaceous fossils in the collection of the Academy of Natural Science, Philadelphia, Johnson (C. W.), 2.
Types of Maryland Tertiary mollusca in British Museum, Newbun, 1.
Typical species and generic characters of Aviculipecten, Girty, 7.
Ulnacrinus, Springer (F.), 1.
Ulnacrinus and Hemister in the Vancouver Cretaceous, Whiteaves, 15.
Upper Permian in western Texas, Girty, 2.
Validity of Idiophyllum rotundifolium, Sellards, 4.
Variation of spiralia in Seminula argenta (Shepard) Hall, Beede, 5, 7.
Ventral integuments of trilobites, Beecher, 4, 7.
Worm burrows in Chemung of New York, Whitfield, 10.

Paleontology—Continued.

Vertebrate.

Additional remarks on Diplodocus, Hatcher, 15.
American Eocene primates, Osborn, 11.
American Labyrinthodontidae, Branson, 2.
American Polycoelosaurus, Case, 6.
Ancestry of the dogs, Matthew (W. D.), 13.
Ancient American saurians, Beard, 2.
Arboreal ancestry of the Mammalia, Matthew (W. D.), 14.
Armadillo from Middle Eocene, Osborn, 30.
Arthritis in the Lansing man, Parker, 1.
Arthrodes from the Cleveland shale, Dean, 1.
Astrodon (Fluoreoculus) in the Atlantosaur beds of Wyoming, Hatcher, 16.
Atlantosaur and Titanotherium beds of Wyoming, Peck, 4.
Batrachian footprints, Matthew (G. F.), 22, 23, 30.
Batrachian footprints of Carboniferous system, Matthew (G. F.), 21.
Beitrag zur Kenntniss von Diplacaulus Cope, Broili, 1.
Bibliography and catalogue of fossil vertebrata, Hay, 5.
Bibliography and catalogue of fossil vertebrates, Dean, 7.
Biometric evidence in problem of paired limbs of vertebrates, Dean, 5.
Bones of a mastodon found, Gordon (R.), 1.
Bones of forearm in Opisthostomia, Osborn, 37.
Bothriolepis, Patten, 1.
Brachiosaurus altithorax, Riggs, 6.
Campylopion, a new form of Edestus-like dentition, Eastman, 3.
Canide of California, Merriam (J. C.), 7.
Carboniferous cestraciont and acaulodont sharks, Eastman, 6.
Carboniferous cochlodonts, Branson, 13.
Carboniferous fish fauna of Mazon Creek, Eastman, 4.
Carboniferous fishes from central Western States, Eastman, 10.
Ceratopsia from the Laramie, Wyoming, Hatcher, 22.
Ceratopsia from Idaho, Evans (H. M.), 1.
Characteristic types of American dinosaurs, Beard, 1.
Characters of Chelydrosaurus, Case, 15.
Characters of Mylostoma Newberry, Dean, 2.
Paleontology—Continued.

Vertebrate—Continued.

Characters of Pteranodon, Eaton, 2, 3.
Chronological distribution of the elas­mobranchs, Hay, 1.
Classification of the Reptilia, Osborn, 26, 39, 41.
Collection of fossil vertebrates in American Museum of Natural History, Matthew (W. D.), 12.
Collection of Triassic fishes at Yale, Eaton, 1.
Composition of shells of turtles, Hay, 6.
Constructing an extinct monster from fossil remains, Lucas (F. A.), 13.
Correction of generic name, Peterson, 5.
Correction of Professor Osborn's not, Hatcher, 19.
Correlation des horizons de mammiferes terriers en Europe et en Amerique, Osborn, 5.
Crana of extinct bisons from the Kon­diatike Creek gravels, Whitoaves, 7.
Crana of Trenton, N. J., Hrdlička, 1.
Cretaceous actinopterous fishes, Hay, 10.
Cretaceous fish Portheus molossus, Os­born, 35.
Cretaceous fishes, Williston, 1.
Cretaceous turtles of New Jersey, Wiel­land, 6, 7, 13.
Crocodile from Wyoming, Jurassic, Hol­land, 2.
Cuban fossil mammals, Vaughan, 9.
Dates of publication of certain genera of fossil vertebrates, Bush (L. P.), 1.
Dental grooves and teeth in Baptanodon, Gilmore, 2.
Dentition of Rhynchosaurus, Eastman, 14.
Development of sharks, Dean, 8.
Devonian era in Ohio basin, Claypole, 5.
Devonian fish fauna of Iowa, Eastman, 11.
Devonian fish remains from Colorado, Eastman, 16.
Dinosaur beds of the Grand River Valley, Riggs, 1.
Dinosaur Hoplocanthus, Hatcher, 19.
Dinosaur footprints from Arizona, Riggs, 8.
Dinosaur from Upper Jurassic, Os­born, 16.
Dinosaurian genus Creosaurus Marsh, Williston, 2.
Dinosaurs from the Cretaceous of Al­berta, Lambe, 10.
Dinosaurs in Fort Pierre shales, Doug­liss, 5.
Dinosaurs or terrible lizards, Lucas (F. A.), 9.
Diplodocus Marsh, Hatcher, 1.
Discovery of a muskox skull, Hatcher, 12.

Paleontology—Continued.

Vertebrate—Continued.

Discovery of teeth in Baptanodon, Gil­more, 1.
Discovery of the Lansing skeleton, Con­cannon, 1.
Discovery of Torrejon mammals in Montana, Douglass, 6.
Distinctive characters of the mid-Cre­taceous fauna, Osborn, 12.
Dolichocephaly and brachycephaly in the lower mammals, Osborn, 9.
Dryptosaurus incrasstata, Lambe, 8.
Elosaurus parvus, a new genus and species of Sauropoda, Peterson and Gilmore, 1.
Eocene Insectivora, Matthew (W. D.), 23.
Eocene Mammalia in Marsh collection, Wortman, 2–6, 8–14.
Eocene Reptilia, Case, 1.
Eocene whales, Lucas (F. A.), 22.
Euocatherium, a new ungulate from the Quaternary caves of California, Sinclair and Furlong, 1.
Evolution of fitness in ichthyosaurs, Osborn, 44.
Evolution of the camel, Matthew (W. D.), 17.
Evolution of the horse, Beasley, 1.
Evolution of the horse, Matthew (W. D.), 11.
Evolution of the horse, Osborn, 29, 52, 55.
Evolution of horse in America, Osborn, 43.
Evolution of the Proboscidea in North America, Osborn, 22.
Excavation of mastodon remains, Mack­ensen, 1.
Excavations in a Quaternary cave in Shasta County, Furlong, 1.
Exploration of Potter Creek cave, Shas­ta County, Cal., Sinclair, 2.
Extinct tortoises, Hay, 14.
Fauna of Titanotherium beds, Matthew (W. D.), 9.
Fingers of pterodactyls, Williston, 21.
First discovery of fossil seals in Amer­ica, True (F. W.), 2.
Flightless auk, Mancalla Gæliforniensis, Lucas (F. A.), 5.
Footprint from Connecticut Valley, Cushman, 1.
Footprint interpretation, Lull, 8.
Footprints of Stegomus longipes, Lull, 3.
Fore and hind limbs of the Sauropoda, Osborn and Granger, 1.
Foreleg and pectoral girdle of Moro­saurus, Riggs, 2.
Fore limb and manus of Brontosaurus, Hatcher, 8.
Fossil avian remains from Arniassan, Eastman, 21.
Fossil bison of Kansas, McClung, 1.
Paleontology—Continued.

Vertebrate—Continued.

<table>
<thead>
<tr>
<th>Wildlife</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil carnivores, marsupials, and mammals in the American Museum of Natural History, Matthew (W. D.), 19.</td>
<td></td>
</tr>
<tr>
<td>Fossil egg from Arizona, Morgan and Tallmon, 1.</td>
<td></td>
</tr>
<tr>
<td>Fossil footprints of the Juratrias, Lull, 2.</td>
<td></td>
</tr>
<tr>
<td>Fossil horses of the Oligocenia, Lambe, 16.</td>
<td></td>
</tr>
<tr>
<td>Fossil Mammalia of White River beds, Douglass, 4.</td>
<td></td>
</tr>
<tr>
<td>Fossil mammals of Tertiary of northeastern Colorado, Matthew (W. D.), 2.</td>
<td></td>
</tr>
<tr>
<td>Fossil man of Lansing, Kans., Williston, 18.</td>
<td></td>
</tr>
<tr>
<td>Fossil plumage, Eastman, 17.</td>
<td></td>
</tr>
<tr>
<td>Fossil sea lion of Miocene, True, 1.</td>
<td></td>
</tr>
<tr>
<td>Fossil turtles, Hay, 13.</td>
<td></td>
</tr>
<tr>
<td>Fossil turtles: Amphibichelydse, Hay, 23.</td>
<td></td>
</tr>
<tr>
<td>Fossil turtles of the Bridger basin, Hay, 22.</td>
<td></td>
</tr>
<tr>
<td>Fossil turtles from Oregon, Hay, 9.</td>
<td></td>
</tr>
<tr>
<td>Fossil wonders of the West, Osborn, 42.</td>
<td></td>
</tr>
<tr>
<td>Ganoid- und Knochen-flsche aus der Kreide formation von Kansas, Loomis, 1.</td>
<td></td>
</tr>
<tr>
<td>General account of fossil fishes, Eastman, 19.</td>
<td></td>
</tr>
<tr>
<td>Genus Baptanodon, with description of new species, Knight (W. C.), 8.</td>
<td></td>
</tr>
<tr>
<td>Geology and paleontology of the Judith River beds, Stanton and Hatcher, 1.</td>
<td></td>
</tr>
<tr>
<td>Gigantic mammal from Loup Fork beds, Peterson, 4.</td>
<td></td>
</tr>
<tr>
<td>Glyptodont from Texas Pleistocene, Osborn, 17.</td>
<td></td>
</tr>
<tr>
<td>Grasping power of manus of Ornithomimus, Lambe, 9.</td>
<td></td>
</tr>
<tr>
<td>Greatest flying creature, Langley, 2.</td>
<td></td>
</tr>
<tr>
<td>Greatest flying creature, Lucas (F. A.), 18.</td>
<td></td>
</tr>
<tr>
<td>Greatest flying creature, the great pterodactyl Ornithostoma, Lucas (F. A.), 10.</td>
<td></td>
</tr>
<tr>
<td>Ground sloth from Nebraska Pleistocene, Brown (B.), 1.</td>
<td></td>
</tr>
<tr>
<td>Hallopus, Baptanodon, and Atlantosaurus beds of Marsh, Williston, 25.</td>
<td></td>
</tr>
<tr>
<td>Historical evidence as to origin of paired limbs of vertebrates, Dean, 4.</td>
<td></td>
</tr>
<tr>
<td>Hedgehog from American Oligocene, Matthew (W. D.), 10.</td>
<td></td>
</tr>
<tr>
<td>Hind limb of Protostega, Williston, 4.</td>
<td></td>
</tr>
<tr>
<td>Homoplastic characters in aquatic air-breathing vertebrates, Williston, 11.</td>
<td></td>
</tr>
<tr>
<td>Hyoid bone in Mastodon americanus, Holland, 3.</td>
<td></td>
</tr>
<tr>
<td>Hyopsodidae of Wasatch and Wind River basins, Loomis, 7.</td>
<td></td>
</tr>
<tr>
<td>Ichthyosaurus from Triassic of California, Merriam (J. C.), 6.</td>
<td></td>
</tr>
<tr>
<td>Ichthyosaurus limb from Triassic of Nevada, Merriam (J. C.), 14.</td>
<td></td>
</tr>
<tr>
<td>Identification of Meckelian and mylohyoid grooves in mammals, Bensley, 1.</td>
<td></td>
</tr>
<tr>
<td>Index generum mammalium, Palmer (T. S.), 1.</td>
<td></td>
</tr>
<tr>
<td>Interesting Cretaceous Chimaeroid egg case, Gill, 2.</td>
<td></td>
</tr>
<tr>
<td>Jaw of Dryptosaurus, Lambe, 6.</td>
<td></td>
</tr>
<tr>
<td>John Day fossil beds, Merriam (J. C.), 3.</td>
<td></td>
</tr>
<tr>
<td>Jurassic dinosaur deposits near Canon City, Hatcher, 6.</td>
<td></td>
</tr>
<tr>
<td>Jurassic dinosaurs, Gratacap, 5.</td>
<td></td>
</tr>
<tr>
<td>Jurassic fossils from Durango, Mexico, Johnson (D. W.), 3.</td>
<td></td>
</tr>
<tr>
<td>Kropolithen des Perms von Texas, Neuuyer, 1.</td>
<td></td>
</tr>
<tr>
<td>Lansing man, Williston, 24.</td>
<td></td>
</tr>
<tr>
<td>Largest known dinosaur, Rigg, 3.</td>
<td></td>
</tr>
<tr>
<td>List of mammals of New York, Miller (G. S., Jr.), 1.</td>
<td></td>
</tr>
<tr>
<td>Literature of Edestus, Eastman, 22.</td>
<td></td>
</tr>
<tr>
<td>Locality furnishing Cretaceous fishes, Hay, 12.</td>
<td></td>
</tr>
<tr>
<td>Mammalia from Quaternary caves of California, Sinclair, 7.</td>
<td></td>
</tr>
<tr>
<td>Mammals and reptiles, Rutland, 1.</td>
<td></td>
</tr>
<tr>
<td>Mammals from Oligocene of South Dakota, Matthew (W. D.), 22.</td>
<td></td>
</tr>
<tr>
<td>Mammals in the swamps of Whitman County, Sternberg, 3.</td>
<td></td>
</tr>
<tr>
<td>Manus, sacrum, and caudal of Sauropoda, Osborn, 32.</td>
<td></td>
</tr>
<tr>
<td>Marine reptiles, Merriam (J. C.), 12.</td>
<td></td>
</tr>
<tr>
<td>Marine turtle Archelon, Wieland, 3.</td>
<td></td>
</tr>
<tr>
<td>Mastodon and mammoth remains, Anderson (N. C.), 1.</td>
<td></td>
</tr>
<tr>
<td>Mastodons of New York, Clarke (J. M.), 15.</td>
<td></td>
</tr>
<tr>
<td>Meeting of Section A of the American Paleontological Society, Hay, 20.</td>
<td></td>
</tr>
<tr>
<td>Megaceros tyleri, Lull, 5.</td>
<td></td>
</tr>
<tr>
<td>Méthodes précises mises actuellement en œuvre dans l'étude des vertébrés fossiles des Etats-Unis d'Amérique, Osborn, 4.</td>
<td></td>
</tr>
<tr>
<td>Miocene mammals of South Dakota, Matthew and Gidley, 1.</td>
<td></td>
</tr>
<tr>
<td>Miocene rhinoceroses, Osborn, 34.</td>
<td></td>
</tr>
<tr>
<td>Missing links, Montgomery, 1.</td>
<td></td>
</tr>
<tr>
<td>Missourian and Permo-Carboniferous fish fauna of Kansas and Nebraska, Eastman and Barbour, 1.</td>
<td></td>
</tr>
<tr>
<td>Models and restorations of extinct animals, Osborn, 24.</td>
<td></td>
</tr>
<tr>
<td>Morphology of the skull of Dimetrodon, Case, 11.</td>
<td></td>
</tr>
</tbody>
</table>
Paleontology—Continued.
Vertebrate—Continued.

Mounted skeleton of Brontosaurus, Matthew (W. D.), 21.
Mylagaulodon from upper John Day of Oregon, Sinclair, 3.
Nature of Edestus and related forms, Eastman, 13.
Nature's hieroglyphics, Lull, 4.
Neocene lake beds of Montana, Douglass, 1.
New American species of Amphicyon, Wortman, 1.
New and little-known fossil vertebrates, Hatcher, 5.
New armed dinosaur, Williston, 26.
New batrachian and reptile from Trias of Arizona, Lucas (F. A.), 19.
New Canide from Miocene of Colorado, Matthew (W. D.), 5.
New fossil tapir in Oregon, Sinclair, 1.
New genus and species from Jurassic of Colorado, Hay, 8.
New Miocene artiodactyl, Barbour, 11.
New Niobrara Taxochelys, Wieland, 12.
New fossil tapir in Oregon, Sinclair, 1.
New plesiosaur, Lucas, 17.
New points on the fin attachment of Dinichthys and Cladodus, Clark (W.), 1.
New reptile from Triassic of Connecticut Valley, Emerson and Loonias, 1.
New reptiles from Trias of Wyoming, Williston, 23.
New rhinoceros, Trigonias osborni, Lucas (F. A.), 1.
New rodents and origin of Daemonelix, Peterson, 3.
New sabre-tooth from California, Merriam (J. C.), 16.
New sauropod dinosaur from Jurassic of Colorado, Hatcher, 18.
New species of Balnea from Laramie beds of Wyoming, Hay, 2.
New species of Hyracodon, Lambe, 17.
New species of Merycochoerus in Montana, Douglass, 2.
New three-toed horse, Gidley, 2.
New turtle from the Kansas Cretaceous, Williston, 3.
New turtles from Judith River beds of Montana, Hay, 15.
New vertebrates of the mid-Cretaceous, Osborn, 13.

Paleontology—Continued.
Vertebrate—Continued.

North American species of Equus, Gidley, 1.
Note on Hyliopus of Dawson, Matthew (W. D.), 17.
Notes on Judith River group, Sternberg, 4.
Observations of Orestes St. John on Paleozoic fishes, Eastman, 8.
Observations on the Creodonta, Matthew (W. D.), 1.
Observations paléontologiques dans l'Alaska, Gaudry, 1.
Observations upon Daemonelix, Peterson, 2.
Occurrence of Ichthyosaur-like remains, Merriam (J. C.), 17.
Oligocene Canide, Hatcher, 10.
Oligocene horses, Osborn, 31.
Oligocene titanotheres, Osborn, 9.
On the genus Peripristis, St. John, Eastman, 5.
Ophiocanalian dinosaurs, Apatosaurus, Riggs, 7.
Origin of the mammals, Kingsley, 1.
Osteology and relationship of fossil birds, Lucas, 15.
Osteology of Bantamodon, Gilmore, 3.
Osteology of Embolophorus dolloi-vanus, Case, 4.
Osteology of Haplocanthosaurus, Hatcher, 14.
Osteology of Nyctosaurus, Williston, 15.
Osteology of Oxydactylus, Peterson, 1.
Osteology of Sinopia, Matthew (W. D.), 20.
Osteology of skull of Dimetrodon, Case, 7.
Osteology of the Diadectidae and relations to Chelysdorina. Case, 12.
Paleontology of Bartholomew County, Ind., mammalian fossils, Edwards (J. J.), 1.
Paleontology of Maryland Miocene deposits, Mammalia, Aves, Reptilia, Case, 9.
Paleontology of Maryland Miocene deposits, Pisces, Eastman, 18.
Paleozoic batrachian footprints, Matthew (G. F.), 25.
Peculiar modification amongst Permian dipnoans, Eastman, 11.
Peculiar occurrence of bitumen, Morgan and Taliman, 2.
Pelycosaur from Texas, Case, 10.
Pelycosaurierreste von Texas, Broili, 4.
Pelvic girdle of Zeuglodon, Basilosaurus cetoides (Owen), Lucas (F. A.), 2.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Vertebrate—Continued.

Permische Stegocephalen und Reptilien aus Texas, Brolli, 2.
Perm-Carboniferous sharks, Eastman, 2.
Phylogeny and classification of the Reptilia, Osborn, 54.
Phylogeny and classification of the Reptilia, Williston, 27.
Phylogeny of the cestraciont group of sharks, Eastman, 7.
Phylogeny of the primates, Brown (A.E.), 1.
Platygonus compressus Le Conte, Wagner, 1.
Platygonus from Texas Pliocene, Gidley, 3.
Pleistocene fissure in northern Arkansas, Brown (B.), 3.
Potter Creek cave, Sinclair, 5.
Prehistoric California, Yates (L.G.), 1.
Preptoceras, a new ungulate, Furlong, 2.
Present problems of paleontology, Osborn, 48.
Preservation of muscle fibers in sharks of Cleveland shale, Dean, 6.
Primary components of vertebrae and their relations to ribs, Osborn, 49.
Primitive characters of the Triassic Ichthyosaurus, Merriam (J.C.), 9.
Proboscidean fossils of Pleistocene deposits in Illinois and Iowa, Udden, 11.
Progress of vertebrate paleontology in America, Osborn, 1.
Progress of vertebrate paleontology in Canada, Lambe, 12.
Proper generic names of Miocene horses, Gidley, 5.
Protostega gigas and other Cretaceous reptiles, Sternberg, 5.
Recent vertebrate paleontology, Osborn, 49.
Recent literature on Laramie formation, Hay, 7.
Recent literature on Triassic Ichthyosauria, Merriam (J.C.), 8.
Recent paleontological induction, Eastman, 15.
Recent vertebrate paleontology, Osborn, 47.
Recent zoopaleontology, Osborn, 2, 3, 22, 28, 45.
Reclassification of Reptilia, Osborn, 28.
Relationships and habits of mosasaurs, Williston, 19.
Relationships of the Arthrognathi, Dean, 3.
Relationships of the Phytosauria, McGregor, 1.

Paleontology—Continued.

Vertebrate—Continued.

Remarkable fossil discovery, Beasley, 2.
Reptile from Triassic of California, Merriam (J.C.), 11.
Reptiles from the Titanotherium beds, Loomis, 5.
Reptilian subclasses Diapsida and Synapsida and early history of the Diapsida, Osborn, 19.
Restoration of Diceratops, Lull, 7.
Restoration of Dolichorhynchos osborni, Williston, 9.
Restoration of extinct animals, Lucas (F.A.), 9.
Restoration of Megacerops, Lull, 6.
Revised list of casts, etc., in American Museum of Natural History, Osborn, 36.
Revision of Phyllocarida from Chemung and Waverly groups of Pennsylvania, Beecher, 8.
Rodent from Colorado Miocene, Matthew (W.D.), 6.
Rodents and ungulates from the John Day series, Sinclair, 6.
Scaphoceros tyrrelli, Osgood, 1.
Search for mammoth and other fossil remains, Maddren, 1.
Shaw mastodon, Hayes (S.), 1.
Skeleton of Hesperornis, Lucas, 16.
Skeleton of Merycodus, Matthew (W.D.), 14.
Skeleton of Nyctodactylus with restoration, Williston, 8.
Skeleton of Titanotherium dispar Marsh, Hatcher, 7.
Skull and skeleton of sauropodous dinosaurs, Osborn, 51.
Skull of Bunanurus, Matthew (W.D.), 4.
Skull of Creosaurus, Osborn, 18.
Skull of Dinocyon from Miocene of Texas, Matthew (W.D.), 3.
Skull of Hypsilodocus, Matthew (W.D.), 7.
Skull of Nyctodactylus, Williston, 6.
Skull of Triceratops serratus, Lull, 1.
Skulls of Trionychidae in Bridger deposits of Wyoming, Hay, 16.
Snoutfihses of Kansas, Hay, 3, 11.
Some osteological terms, Williston, 17.
Squamoso-parietal crest of horned dinosaurs, Lambe, 11.
Stegoceras and Stereoccephalus, Lambe, 7.
Stomach stones and food of plesiosaurs, Brown (B.), 2.
Stomach stones of the plesiosaurs, Williston, 22.
Structure and relationships of Ophthalmocelion dinosaurs, Brachiosauri, 9.
Paleontology—Continued.

Vertebrate—Continued.

Structure of Dinichthys, Wright (A. A.), 1.
Structure of forefoot of Dimetrodon, Case, 8.
Structure of pleiosaurian skull, Williston, 16.
Structure of the manus in Brontosaurus, Hatcher, 2.
Structure of two Dinichthyds, Hussakof, 2.
Studies relating to the origin of vertebrates, Patton, 2.
Successors of certain North American primates, Wortman, 7.
Teleoclinus browni, Osborn, 33.
Teleosts from the Platte Cretaceous series, Cragin, 1.
Teleosts of the upper Cretaceous, Stewart, 1.
Ten years' progress in mammalian paleontology of North America, Osborn, 49.
Tertiary of Montana, Douglass, 9.
Thalattosaurus, Merriam (J. C.), 15.
Tissu osseux chez certains poissons des terrains paléozoïques de Canyon City, Vaillant, 1.
Tooth structure of Mesohippus wesstoni (Cope), Lambe, 14.
Toxotes from Colorado Miocene, Hay, 17.
Toxotes from the Tertiary of California, Osborn, 15.
Trassic fishes of New Jersey, Eastman, 20.
Trassic Ichthyoterygia from California and Nevada, Merriam (J. C.), 4.
Trassic ichthyosaurs from California and Nevada, Osborn, 15.
Trassic Reptilia from northern California, Merriam (J. C.), 5.
Triceratops prorsus, Gilmore, 4.
Triceratops prorsus, Schuchert, 14.
Trionychid, Conchochelys admirableis, from the Fuerco beds, Hay, 25.
Trionyx foventus Leidy and Trionyx vagans Cope from Cretaceous rocks of Alberta, Lambe, 5.
Tritubercular theory, Osborn, 27.
Turtle from Cretaceous rocks, Lambe, 1.
Two islands, Condon, 1.
Types of limb structure in Triassic Ichthyosaurus, Merriam (J. C.), 13.
Tyrannosaurus and other Cretaceous carnivorous dinosaurs, Osborn, 50.
Ueber Diacranodus texensis Cope, Brom, 3.
Use of pneumatic tools in preparation of fossils, Riggs, 5.
Valley loci and fossil man of Lansing, Upham, 14.
Vegetable tissues in Daeonelix, Jennings (O. E.), 1.

Bull. 301—06—40

Paleontology—Continued.

Vertebrate—Continued.

Vertebral column of Brontosaurus, Riggs, 4.
Vertebrate fossils from Permian beds of Oklahoma, Case, 3.
Vertebrate paleontology, Lambe, 13, 15.
Vertebrate paleontology at the American Museum of Natural History, Hay, 21.
Vertebrates from Permian of Texas, Case, 5.
Vertebrates from the Montana Tertiary, Douglass, 8.
Weight of Brontosaurus, Gregory (W. K.), 1.
Western explorations for fossil vertebrates, Osborn, 53.
When did the American mammoth and mastodon become extinct?, Lloyd, 1.
Winged reptiles, Williston, 7.

Paleobotany.

American fossil cycads, Wieland, 1.
Aralia in American paleobotany, Berry, 6.
American range of the Cycadofilices, White (D.), 24.
American species of Thynnfeldia, Berry, 3.
Ancestors of big trees, Berry, 13.
Autophytography, White (C. H.), 2.
Backward step in paleobotany, Matthew (G. F.), 6.
Bog plant societies of northern North America, Transeau, 1.
Brandon clays, Woodworth, 8.
Buried cypress forests, Bibbins, 3.
Carboniferous ferns from Mazon Creek, Illinois, Sollards, 3.
Carboniferous fossils in Ocoee slates, Smith (E. A.), 1.
Chalcedony-lime nuts from Bad Lands, Barbour (E. H.), 2.
Coal Measure forest near Socorro, Herrick (C. L.), 3.
Codonotheca, new type of spore-bearing organ from Coal Measures, Sollards, 6.
Collection de végétaux fossiles des États-Unis, Bureau, 1.
Cretaceous and Tertiary plants of Canada, Penhallow, 4.
Cretaceous beds of Long Island, Hollick, 7.
Cretaceous near Cliffwood, Berry, 8.
Cycad investigation, Wieland, 5.
Cycads from Black Hills, Wieland, 10.
Discovery of amber on Staten Island, Hollick, 16.
Eocene Plantea, Hollick, 3.
Paleontology—Continued.

Paleobotany—Continued.

Ficus confused with Proteoides, Berry, 14.
Flora of the Matawan formation, Berry, 5, 7.
Foliage of Cycadella, Wieland, 9.
Fossil alga from Chemung, N. Y., White (D.), 6.
Fossil ferns from the Laramie group of Colorado, Hollick, 5.
Fossil flora from Cliffwood, Berry, 9.
Fossil flora of John Day basin, Oregon, Knowlton, 14.
Fossil floras of the Yukon, Knowlton, 17.
Fossil flower, Knowlton, 6.
Fossil forests in Jackson County (Kansas), Shattuck, 1.
Fossil fruits and lignites of Brandon, Vt., Knowlton, 11.
Fossil fruits of Tertiary lignite of Brandon, Perkins, 13.
Fossil grasses and sedges, Berry, 10.
Fossil hickory nuts, Knowlton, 5.
Fossil mosseae, Knowlton, 10.
Fossil nut pine, Knowlton, 9.
Fossil nut pine from Idaho, Knowlton, 4.
Fossil petal and fruit from Kansas, Hollick, 6.
Fossil plant remains at Kreisherville, Hollick, 14.
Fossil plants from British Columbia and the Northwest Territories, Penhallow and Ami, 1.
Fossil plants from Carboniferous and Permian formations of Kansas, White (D.), 10.
Fossil plants from Kansas, Hollick, 9.
Fossil plants from Kukak Bay, Knowlton, 16.
Fossil plants from State of Washington, Knowlton, 8.
Fossil plants from the Shasta group. Fontaine, 3.
Fossil plants from vicinity of Porcupine Butte, Montana, Knowlton, 12.
Fossil plants in the Kansas Permian, Sellards, 2.
Fossil plants of group Cycadofilices. White (D.), 19, 21.
Fossil plants of the Judith River beds, Knowlton, 18.
Fossil Sequoia from the Sierra Nevada, Jeffrey, 1.
Fossil Sequoias in North America, Knowlton, 7.
Fossil wood from the Newark formation, Knowlton, 3.
Geology of Cerrillos Hills, Johnson (D. W.), 5.
Geology of Perry basin, White (D.), 18.
Jurassic flora of Douglas County, Oregon, Fontaine, 1.
Lignite of Brandon and its fossils, Perkins, 12.

Paleontology—Continued.

Paleobotany—Continued.

Lower Cretaceous plants from Montana, Fontaine, 4.
New fossil plants from Carboniferous and Devonian, Herzer, 4.
New fossil species of Chara, Knowlton, 15.
New seed-bearing fern, White (D.), 16.
New species of Algae, White (D.), 1.
North American paleobotany, 1890–1900, Penhallow, 2.
North American species of Dadoxylon, Penhallow, 1.
Notes on sassafras, Berry, 2.
Occurrence and origin of amber in eastern United States, Hollick, 17.
Occurrence of amber at Kreisherville, Hollick, 20.
Old swamp bottom, Berry, 12.
Organic remains in post-Glacial deposits, Oxon-Seefer, 1.
Osmandites skidegateanus n. sp., Penhallow, 3.
Paleobotanical aspects of the upper Paleozoic in Nova Scotia, White (D.), 5.
Paleobotanical notes, Hollick, 19.
Paleobotany of Cretaceous of Long Island, Hollick, 11.
Paleontology of the Maryland Miocene deposits, Angiospermae, Hollick, 10.
Paleontology of the Maryland Miocene deposits, Thallopithyta-Diatomaceae, Boyer, 1.
Paleozoic seed plants, Ward (L. F.), 4.
Palm from mid-Cretaceous, Berry, 11.
Permian elements in the Dunkard flora, White (D.), 11.
Petrified forest, Byers (C. A.), 1.
Phylogeny of Liriodendron, Berry, 1.
Plants from the Matawan formation, Berry, 4.
Position and nature of Maryland cycads, Robbins, 2.
Possible new coal plants, Gresley, 1.
Prehistoric California, Yates (L. G.), 1.
Proembryo of the Bennettiteum, Wieland, 8.
Psaronius, Herzer, 1.
Report on collections from plant-bearing beds in the Jurassic, Fontaine, 2.
Report on the flora of the Mascall formation, Knowlton, 2.
Report on various collections of fossil plants from the older Potomac of Virginia and Maryland, Fontaine, 5.
Sabal rigidia; a palm from the Laramie, Hatchler, 5.
Seeds of Aneimites, White (D.), 17.
Six new species, Knowlton, 13.
Paleontology—Continued.
Paleobotany—Continued.

Six new species, including two new genera, of fossil plants, Herzer, 2.
Species of Whittleseya and their systematic relations, White (D.), 4.
Status of Mesozoic floras, Ward (L. F.), 5.
Stigma:ia structure, Poole, 1.
Stratigraphy and paleontology of Black Hills rim, Wieland, 11.
Teniapteris from the Kansas Permian, Sellards, 1.
Tertiary lignite of Brandon, Perkins, 17.
Tertiary plants, Penhallow, 5.
Tertiary plants from Canada and the United States, Penhallow, 6.
Vegetable tissues in Dagonel, Jenkins (O. E.), 1.
Volcanic ash beds of Montana, Rowe, 1.

General.
Aggregated colonies in Madreporarian corals, Duerden, 1.
Animals of the past, Lucas (F. A.), 7.
Bibliography and index of North American geology, paleontology, petrology, and mineralogy, Weeks, 6, 7, 10, 15.
Bibliography of North American geology, paleontology, petrology, and mineralogy for 1892-1900, Weeks, 3.
Boring Algæ as agents in disintegration of corals, Duerden, 2.
Catalogue of types and figured specimens in the collection of the American Museum of Natural History, Whitfield and Hovey, 1.
Distribution of Dagonel, Barbour (E. H.), 9.
Fossils and their teaching, Heilprin, 1.
Homoplasys as a law of latent or potential homology, Osborn, 7.
Index to North American geology, paleontology, petrology, and mineralogy for 1892-1900, Weeks, 4.
Law of adaptive radiation, Osborn, 8.
Methods of collecting, preparing, and mounting fossils, Barbour (C. A.), 1.
Missing links, Montgomery, 6.
Mutation theory, Casey, 6.
Nomenclature of types in natural history, Schuchert and Buckman, 1.
Oecological features of evolution, Casey, 11.
Organic remains in ore deposits, Lakes, 75.
Origin of fresh-water faunas, Gill, 1.
Origin of the Antarctic faunas and floras, Ortmann, 1.
Paleontological collections of geological department of American Museum of Natural History, Hovey (E. O.), 8.
Paleontological notes, Casey, 2.
Paleontology—Continued.

Genera and species described—Continued.

Acervularia Schweigger, Lambe, 2.
daivdsoni Mule Edwards and
Haine, Lambe, 2.
gracilis Billings (sp.), Lambe, 2.

Acheloma, Broili, 2.

Achithecium minutum n. sp., Douglas, 1.

Acidaspis obsoleta n. sp., Van Ingen, 2.
quinq. espl.osa Salter-Lake, Van
Ingen, 2.

whitfieldi n. sp., Hitchcock (C.

Acidota crenata Fabr., var. nigra, n.
var., Scudder, 1.

Acila H. and A. Adams, Arnold, 2.

Acipenser aibertensis n. sp., Lambe, 3.

Acisina stevensiana Meek and
Wortlien?, Girty, 3.

Acrnea Eschscholtz, Arnold, 2.

cerrillosensis n. sp., Johnson (D.

Acrocrinus amphora Wachsmuth and
Springer, Grabau, 8.
cassedayi Lyon, Rowley, Greene, 2.
cassedayi, var. charlestownensis, n.
var. (Rowley), Greene, 2.
depressus n. sp. (Rowley), Greene,
2.
wachsmuthi n. sp., Rowley, 1.

Acrophyllum Thomson and Nicholson,
Lambe, 3.
onedilense Billings (sp.), Lambe, 3.
rugosum n. sp., Greene, 1.

Acrostichopteris parvifolia Fontaine,
Fontaine, 5.

Acrostichum haddeni n. sp., Hollick, 5.

Acreothoe s lavia n. sp., Matt’ ew (G.
F.), 12, 20.
avia n. sp., Matthew (G. F.), 2, 12,
20.
avia-puteis n. mut., Matthew (G.
F.), 12, 20.

? minuta n. sp., Walcott, 12.

proavia n. sp., Matthew (G. F.), 2.
proaes n. sp., Matthew (G. F.), 12.
proles, Matthew (G. F.), 20.
rarus n. sp., Walcott, 12.

subsida White, Matthew (G. F.), 10.

Acrothyra n. gen., Matthew (G. F.), 7,
10, 20.

minor n. sp., Walcott, 12.

proavilia, Matthew (G. F.), 12, 20.

proavia-crassa n. mut., Matthew
(G. F.), 12, 20.

proavia-prima n. mut., Matthew
(G. F.), 10, 12, 20.

signata n. sp., Matthew (G. F.),
12, 20.

signata-orta, Matthew (G. F.), 12,
20.

signata-prima, Matthew (G. F.), 12,
20.

signata-sera, Matthew (G. F.), 12,
20.

signata-tarda, Matthew (G. F.),
12, 20.

Acrotreta Kutorga, Walcott, 6.

argenta n. sp., Walcott, 6.

attenuata Meek, Walcott, 12.

attenuata var., Walcott, 12.

baileyi, Matthew, Walcott, 6.

cf. baileyi, Matthew, Walcott, 12.

bisecta n. sp., Matthew (G. F.), 9,
12, 20.

bisecta Matthew, Walcott, 6, 12.

? cancellata n. sp., Walcott, 12.

concentrica n. sp., Walcott, 6.

convexa n. sp., Walcott, 6.

curvata n. sp., Walcott, 6.

definita n. sp., Walcott, 6.

eggrungensis Wimaan, Walcott,
12.

emmonsii n. sp., Walcott, 12.

gemma Billings, Walcott, 6.

gemmi var. depressa Walcott, Mat­
thew (G. F.), 10.

gracia n. sp., Walcott, 6.

idahoensis n. sp., Walcott, 6.

idahoensis alta n. var., Walcott, 6.

idahoensis sulcosa n. var., Walcott,
6.

infesta Matthew, Walcott, 6.

kutorgai n. sp., Walcott, 6.

llani n. sp., Walcott, 6.

microsclera missouriensis n. var.,
Walcott, 6.

microsclera tefonnensis n. var.,
Walcott, 6.

miser Billings, Walcott, 6.

miser Billings, Walcott, 6.

neboensis n. sp., Walcott, 12.

nox n. sp., Walcott, 12.

ophriensis n. sp., Walcott, 6.

ophriensis rugosus n. var., Wal­
cott, 6.

ovalis n. sp., Walcott, 6.

pacifica n. sp., Walcott, 6.

papillata n. sp., Matthew (G. F.),
12, 20.

papillata var. lata, Matthew (G.
F.), 20.

papillata-prima n. mut., Matthew
(G. F.), 12, 20.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Acrotreta papillata var., Matthew (G. F.), 12.

parvula Wallerius, Walcott, 6.

primaga n. sp., Walcott, 6.

sagittalis Saltier, Walcott, 6.

sagittalis magna Matthew, Walcott, 6.

sagittalis taconica Walcott, Walcott, 6.

sagittalis transversa, Hartt, Walcott, 6.

schmalensei n. sp., Walcott, 6.

seebachi n. sp., Walcott, 6.

signalis n. sp., Walcott, 6.

shantungensis n. sp., Walcott, 12.

sipo n. sp., Matthew (G. F.), 12, 20.

sagittalis inagnis Matthew, Walcott, 6.

sagittalis parvula Wallerius, Walcott, 6.

sagittalis sagittalis Salter, Walcott, 6.

sagittalis transversa, Hartt, Walcott, 6.

spinosa n. sp., Walcott, 6.

subconica Kutorga, Walcott, 6.

uplandensis Wiman, Walcott, 6.

uplandica limonensis Wiman, Walcott, 12.

sp., Matthew (G. F.), 12.

Actaeon Montfort, Arnold, 2.

calvertensis n. sp., Martin, 5.

lawsoni n. sp., Weaver, 1.

odoxes Conrad, Martin, 5.

(Helctaxis) punctococelata Carpenter, Arnold, 2.

pusillus (Forbes), Martin, 5.

shilohensis Whitfield, Martin, 5.

traskii Stearns, Arnold, 2.

Actaeonina? maloniana n. sp., Cragin, 2.

Actinoceras keewatinense nom. prov., Whiteaves, 17.

Actinocrinus multiramosus var. altidorsatus n. var., Rowley, Greene, 14.

Actinocyclotheces Grunow, Boyer, 1.

moniliformis Rafs, Boyer, 1.

Actinocystis Lindström, Lambe, 2.

variballis Whiteaves, Lambe, 2.

Actinopteria boydi (Conrad), Kindle, 1.

communis (Hall), Weller, 6.

decussata Hall, Weller, 6.

Insignis Clarke?, Weller, 6.

reticulata n. sp., Weller, 6.

sola n. sp., Clarke, 19.

TEXTILIS (Hall), Weller, 6.

TEXTILIS (Hall) var. arenaria (Hall), Weller, 6.

Actinophyctes heliopelta Grunow, Boyer, 1.

undulatus Kitzing, Boyer, 1.

Actinostroma moosensis n. sp., Parks, 5.

trentonensis n. sp., Weller, 6.

Adeneolopis umbilicata (Lonsdale), Ulrich and Bassler, 4.

Aeiseus supranitidus S. Wood, Martin, 5.
Paleontology—Continued.

Genera and species described—Continued.

Agnostus trisectus Salt, mut. germanus, Matthew (G. F.), 9, 20.
trisectus Salt., mut. ponentius n. mut., Matthew (G. F.), 9, 20.

Agomphus Cope, Wieland, 13.
masculinus Wieland n. sp., Wieland, 13.
tardus Wieland n. sp., Wieland, 13.
turgidus Cope, Wieland, 13.

Agoniatites Meek, Smith (J. F.), 3.
expansus, Clarke, 2.
opimus White and Whifield, Smith (J. F.), 3.

Agraulos saratogensis Walcott, Weller, 6.

Agriochcerus maximus n. sp., Douglass, 4.
minimus n. sp., Douglass, 4.

Agriophorus Say, Letson, 1.
calceola (Lea) Simpson, Letson, 1.
truncata (Wright) Simpson, Letson, 1.

Albertosaurus sarcophagus n. gen. and sp., Osborn, 50.

Aldrichiella nom. nov., Vaughan, 16.

Algmna Einslea, Arnold, 2.
sequata var. nuda Dall, Glenn, 6.
cerritensis u. sp., Arnold, 2.
pustulosa Dall, Glenn, 6.

Allerisma terminate Hall, Girty, 3.

Allogramma Dall, Ball, 8.

Allomeryx planiceps n. gen., and sp., Sinclair, 6.

Allonema n. gen., Ulrich and Bassler, 1.
fusiforme (Nicholson and Ethridge, Jr.), Ulrich and Bassler, 1.
? minimum n. sp., Ulrich and Bassler, 1.
moniliforme (Whiteaves) and var. aggregatum n. var., Ulrich and Bassler, 1.
waldronense n. sp., Ulrich and Bassler, 1.

Allops amplus Marsh, Osborn, 10.
eparcicornis Marsh, Osborn, 10.
serotinus Marsh, Osborn, 10.

Allorisma costatum Meek and Worthen, Beede, 1.
gelintzi Meek, Beede, 1.
granosum (Shumard), Beede, 1.
kansassensis n. sp., Beede, 74.
subcuneatum Meek, Beede, 1.

Alnus coryfolia Lesq., Knowlton, 16.

INDEX TO NORTH AMERICAN GEOLOGY
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Amphilla ventricosa n. sp., Arnold, 2.
v. versicolor Arnold, 2.
Amphisteginia lessonii d’Orbigny, Bagg, 1.
Amplexopora Ulrich, Ulrich and Bassler, 2.
ampla n. sp., Ulrich and Bassler, 2.
crugulata Ulrich, Nickles, 6.
columbiana Ulrich and Bassler, 2.
columbiana n. sp., Ulrich and Bassler, 2.
cylindracea n. sp., Ulrich and Bassler, 2.
fiolla (D’Orbigny), Ulrich and Bassler, 2.
multispinosa n. sp., C.grug, 3.
persimilis n. sp., Nickles, 6.
Amplexus Sowerby, Lambe, 2.
archimediformis n. sp., Rowley, 4.
cingulatus Billings, Lambe, 2.

columbiana Ulrich and Bassler, 2.
columbiana n. sp., Ulrich and Bassler, 2.
cylindracea n. sp., Ulrich and Bassler, 2.
fiolla (D’Orbigny), Ulrich and Bassler, 2.
multispinosa n. sp., C.grug, 3.
persimilis n. sp., Nickles, 6.
Ampyx niagarensis n. sp., van Ingen, 2.
(Lonchodonatus) hastatus n. sp., Rucdemann, 2.
Anachis H. and A. Adams, Arnold, 2.
Anaphotidemys n. sp., for Chelonides, Hay, 23.
Anaphragma n. gen., Ulrich and Bassler, 2.
mirabile n. sp., Ulrich and Bassler, 2.
Anaptomorphus Cope, Wortman, 14.
amulus Cope, Wortman, 14.
amulus Cope, Osborn, 11.
homunculus Cope, Osborn, 11.
Anasclrsina n. gen., Branson, 2.
brachygnatha n. sp., Branson, 2.
brwni n. sp., Branson, 2.
Anastrophin Hall, Grabau, 1.
brvirostropis Hall, Grabau, 1.
internascens Hall, Kindle and Breger, 1.
internascens Hall 1879, Beecher, 1.
interplexta (Hall), Grabau, 1.
Anatina austriensis n. sp., Shattuck, 8.
oquiquiplicata n. sp., Cragin, 2.
?pliculifera n. sp., Cragin, 2.
Anatomites Mojsisovics, Hyatt and Smith, 1.
subculindracea n. sp., Whiteaves, 12.
taxa n. sp., Shattuck, 8.
Archippus Leidy, Gidley, 5.
Anchisauripus n. gen., Lull, 2.
danunn (E. Hitchcock), Lull, 2.
Paleontology—Continued.
Genera and species described—Continued.
Anomalocardia chipolana n. sp., Dall, S. 8.
dupliniana n. sp., Dall, 8.
floridana Conrad, Dall, 8.
Anomalocaris n. gen., Woodward (H), 1.
canadensis Whiteaves, Woodward (H), 1.
Anomalocystites, Hall, Schuchert, 11.
cornutus Hall, Schuchert, 11.
?disparilis Hall, Schuchert, 11.
Anomalodiscus Dall, 8.
Anomia Linne, Arnold, 2.
aculeata Gmelin, Glenn, 6.
lampe, Gray, Arnold, 2.
limatula Dall, Arnold, 2.
marylandica n. sp., Clark and Martin, 2.
ccegi Clark, Clark and Martin, 2.
navicelloides Aldr., Aldrich, 2.
paucistriata n. sp., Brown (T. C.), 1.
simplex d'Orbigny, Glenn, 6.
simplexformis n. sp., Brown (T. C.), 1.
Anomocare parvula n. sp., Weller, 6.
Anomoepus E. Hitchcock, Lull, 2.
crassus (C. H. Hitchcock), Lull, 2.
cuneatus C. H. Hitchcock, Lull, 2.
curvatus E. Hitchcock, Lull, 2.
gracilinus (E. Hitchcock), Lull, 2.
intermedius E. Hitchcock, Lull, 2.
isodactylus C. H. Hitchcock, Lull, 2.
iminus E. Hitchcock, Lull, 2.
scambus E. Hitchcock, Lull, 2.
Anoplia nucleata Hall, Weller, 6.
Anoplotheca Sandberger, Grabau, 1.
cucitplicata (Con.), Weller, 6.
concava (Hall), Weller, 6.
congregata n. sp., Kindle and Breger, 1.
dichotoma (Hall), Weller, 6.
stabellites (Con.), Weller, 6.
hemispherica (Sowerby), Grabau, 1.
plicatula (Hall), Grabau, 1.
Anthocystites E. Hitchcock, Lull, 2.
Apteragnostus medisevus n. gen. and sp., Matthew (W. D.), 9.
Apteryxita terranovicus, Matthew (G. F.), 1.
Arachnichus E. Hitchcock, Lull, 2.
hehiscus E. Hitchcock, Lull, 2.
Arachnophyllum Dana, Lambe, 2.
diffuus Mine Edwards and Haines (sp.), Lambe, 2.
exstium Billings (sp.), Lambe, 2.
ramilare Dole Owen (sp.), Lambe, 2.
placoides Knowlton, Knowlton, 14.
sp. Knowlton, Knowlton, 14.
sp. Knowlton, Knowlton, 14.
Araucarioxylon prosseri n. sp., Penhallow, 1.
Arabianum, Knowlton, 3.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Araucarites ovatus Hollick, Berry, 5.

virginicus Fontaine, Fontaine, 5.

? sp., Fontaine, 1.

Arca (Linnaë) Lamarck, Arnold, 2.

(Scapharca) arata Say, Glenn, 6.

bilateralis n. sp., Weaver, 1.

camouensis n. sp., Osmont, 2.

canalis Conrad, Osmont, 2.

(Scapharca) clisea Dall, Glenn, 6.

delicatula n. sp., Casey, 4.

? dumblei n. sp., Cragin, 2.

(Scapharca) elenia n. sp., Glenn, 6.

(Scapharca) idonea Conrad, Glenn, 6.

(Arca) incurva Say, Glenn, 6.

invidiosa n. sp., Casey, 4.

labiata Sowerby, Arnold, 2.

madrilensis n. sp., Johnson (D. W.), 5.

(Barbatia) marylandica Conrad, Glenn, 6.

microdonta Conrad, Osmont, 2.

montereyana n. sp., Osmont, 2.

(Scapharca) staminea Say, Glenn, 6.

(Scapharca) subrostrata Conrad, Glenn, 6.

tafflina n. sp., Cragin, 2.

trilineata Conrad, Osmont, 2.

vancouverensis Meeke, Whiteaves, 12.

vaughani n. sp., Casey, 4.

(Barbatia) virginiae Wagner, Glenn, 6.

Acestes Suess, Hyatt and Smith, 1.

andersoni, Hyatt and Smith, 1.

(Arcestes) pacificus n. sp., Hyatt and Smith, 1.

Arestidae Mojsisovics, Hyatt and Smith, 1.

Archaeocidaris aculeatus Shumard, Klem, 1.

tafoni Hall, Beede, 1.

trochile Hall, Beede, 1.

Archaeocharidium scouleri n. gen. and n. sp., Barbour (E. H.), 2.

(Archeocidaris) ourayensis n. sp., Girty, 3.

shumardanus Hall, Klem, 1.

spinocavatus Worthen and Miller, Klem, 1.

triplex White?, Girty, 3.

triplex White, Klem, 1.

triserratus Meeke, Klem, 1.

truddfer White, Beede, 1.

truddfer White, Klem, 1.

wortheni Hall, Klem, 1.

wortheni Hall, Ulrich, 8.

Archaeoplax signifera Simpson, Cushman, 6.

Archaeopithecus hitchcocki (Dn.) D. W., White (D.), 18.

jacksonii Dn., White (D.), 18.

roglarica Dn., White (D.), 18.

Archegosaurus Goldfuss, Branson, 2.

Archelon ischyrus, Wieland, 2.

Archichioria scouleri n. gen. and n. sp., Barbour (E. H.), 2.

siouxensis Barbour, Knowlton, 5.

Archimedes confertus n. sp., Ulrich, 8.

lativoltix n. sp., Ulrich, 8.

meekanus Hall, Ulrich, 8.

swollenopus Hall, Ulrich, 8.

Archinacionella? deformativa (Hall), Raymond (F. E.), 7.

Architectonica tuberculata n. sp., Weaver, 1.

Archonatalina, Sellards, 8.

beecheri, Sellards, 8.

Arctocyonidae, Matthew (W. D.), 19.

Arimaceras n. gen., Herzer, 5.

ohioense n. sp., Herzer, 5.

termixeratum n. sp., Herzer, 5.

Arenicolites chemungensis n. sp., Whitefield, 10.

Arges arkansanus n. sp., Van Ingen, 2.

phyctenoides (Green) 1837, Van Ingen, 2.

sp., Van Ingen, 2.

Argolides E. Hitchcock, Lull, 2.

isosactyletes (E. Hitchcock), Lull, 2.

Archaeocidaris m'coy, Klem, 1.

tafoni Hall, Beede, 1.

Architectonica tuberculata n. sp., Weaver, 1.
Paleontology—Continued.

Genera and species described—Continued.

Aristolochites dubius n. sp., Perkins, 13.
elegans n. sp., Perkins, 13, 17.
excavatus, n. sp., Perkins, 13.
globosus n. sp., Perkins, 13.
irregularis n. sp., Perkins, 13.
latisulcatus n. sp., Perkins, 13.
majus n. sp., Perkins, 13, 17.
ovoideus n. sp., Perkins, 13.
rugosus n. sp., Perkins, 13.
sulcatus n. sp., Perkins, 13, 17.
Arpadites Mojsisovics, Hyatt and Smith, 1.
gabbi n. sp., Hyatt and Smith, 1.
Arretotherium acutidens n. gen. and sp., Douglass, 4.
Arthracantha punctobrachiata Williams, Wood (Elvira), 3.
Arthroclema armatum Urv., Sardeson, 4.
Arthrodendron n. gen., Ulrich, 4.
diffusum n. sp., Ulrich, 4.
Arthrophyllum Hall, Grabau, 1.
Arthrophyllum Hall, Sarle, 4.
elegans n. sp., Herzer, 2.
harian (Conrad), Grabau, 1.
Asaphellus homfrayi var., Matthew (G. F.), 12, 20.
(?) planus n. sp., Matthew (G. F.), 12, 20.
Asaphis centenaria (Conrad), Glenn, G.
Asaphus marginalis Hall, Raymond (P. E.), 5.
sp. alpha, Raymond (P. E.), 5.
sp. beta, Raymond (P. E.), 5.
sp. gamma, Raymond (P. E.), 5.
Ascoceras gibberosum n. sp., Sardeson, 2.
floreae n. sp., Ulrich and Bassler, 1.
parvulum n. sp., Ulrich and Bassler, 1.
suturifera Vine, Ulrich and Bassler, 1.
spinum n. sp., Ulrich and Bassler, 1.
stellatum Nicholson and Etheridge, jr., Ulrich and Bassler, 1.
Ashmunella thompsoniana pecosensis n. subsp., Cockerell, 1.
Ashstarotha Dall, Dall, 8.
Aspides n. gen., Hyatt and Smith, 1.
cacus n. sp., Hyatt and Smith, 1.
Asperides n. gen., Matthew (G. F.), 21, 30.
avipes n. sp., Matthew (G. F.), 21, 30.
caudifer Dawson sp., Matthew (G. F.), 30.
flexilis n. sp., Matthew (G. F.), 30.
Aspideretes beecheri n. sp., Hay, 13.
beecheri Hay, Hay, 15.

Paleontology—Continued.

Genera and species described—Continued.

Aspidites Waagen, Hyatt and Smith, 1.
hooveri n. sp., Hyatt and Smith, 1.
Aspidoceras alamitocensis Castillo and Aguilera, Cragin, 2.
Aspidonecetes tritor, Hay, 16.
Aspidosaurus chiton n. gen. and sp., Broili, 2.
Aspilium magnus Knowlton, Hollick, 5.
subimplex (Lesq.) Knowlton, Knowlton, 14.
Astarte Sowerby, Arnold, 2.
Astarte Sowerby, Dall, 8.
section Ashtarotha Dall, Dall, 8.
section Astarte s. a., Dall, 8.
section Crenimargo Cossmann, Dall, 8.
section Digitaria Wood, Dall, 8.
section Gonililla Stoliczka, Dall, 8.
section Microstagon Cossmann, Dall, 8.
section Neocrassina Fischer, Dall, 8.
section Rictocyma Dall, Dall, 8.
section Tridonta Schuchacher, Dall, 8.
(Goodallia?) americana n. sp., Dall, 8.
bayi Lundgren, Madsen, 1.
(Crasinella) branneri n. sp., Arnold, 2.
breviaca n. sp., Cragin, 2.
calvertensis n. sp., Glenn, 6.
canstra n. sp., Glenn, 6.
coten Conrad, Dall, 8.
concentrica var. bella Conrad, Dall, 8.
Astarte? craticula n. sp., Cragin, 2.
cuneiformis Conrad, Glenn, 6.
(Ashtarotha) cuneiformis Conrad, Dall, 8.
(Ashtarotha) distans Conrad, Dall, 8.
sp. cf. elegans Sowerby, Madsen, 1.
evansi (H. and M.) Whitfleld, Johnson (D. W.), 5.
exaltata Conrad, Dall, 8.
(distans var.?) floridana Dall, Dall, 8.
gleeni n. sp., Dall, 8.
hartzi Lundgren, Madsen, 1.
isodontoides n. sp., Cragin, 2.
lauritiana Lyell, Dall, 8.
malolensis Cragin, Cragin, 2.
mariandica Clark, Clark and Martin, 2.
meridionalis Gabb, Dall, 8.
obrauta Conrad, Glenn, 6.
(Ashtarotha) obruta Conrad, Dall, 8.
opulentora n. sp., Dall, 8.
parma Dall, Glenn, 6.
(Ashtarotha) parma n. sp., Dall, 8.
perplana Conrad, Glenn, 6.
Paleontology—Continued.

Genera and species described—Continued.

Astarte (Ashtarotha) perplana Conrad, Dall, 8.

posticalva n. sp., Cragin, 2.

symmetrica Conrad, Dall, 8.

symmetrica Cragin, Glenn, 6.

cfr. tenera Morris, Ravin, 1.

thiophila n. sp., Glenn, 6.

thomassii Conrad, Glenn, 6.

(Ashtarotha) undulata Say, Dall, 8.

undulata var. vaginulata Dall, 8.

vielna Say, Glenn, 6.

vielna Say, Dall, 8.

wagneri n. sp., Dall, 8.

Astartella vera Hall, Beede, 1.

Asthenotoma Harr. et Burr, Casey, 5.

eximia n. sp., Casey, 5.

shaleri Vgn., Casey, 5.

strigosa n. sp., Casey, 5.

texana Gabb, Casey, 5.

Astartia (Comangia) conradi n. sp., Vaughan, 10.

lineata (Conrad), Vaughan, 19.

Astrhelia palmata (Goldfuss), Vaughan, 19.

Astrodon, Lucas, 20.

Aublysodon mirandus Leidy, Stantou and Hatcher, 1.

Aulacodiscus rogersii (Bailey), Boyer, 1.

Aulacophyllum enormis n. sp., Herzer, 5.

Aucella pallasii Keyserling, Madsen, 1.

strongi n. sp., Johnson (D. W.), 5.

sp. indet., Pompeckj, 1.

Aulacopterina disparilla Hall, Weller, 6.

Atrypa reticularis Linnaeus 1767, Beecher, 1.

reticularis (Linnaeus), Grabau, 1.

reticularis Linnaeus, Kindl, 1.

reticularis var. elliptoidea (Nettletroth), Kindl, 1.

rugosa Hall, Grabau, 1.

spinosa Hall, Kindl, 1.

Atrypica disparilla Hall 1852, Beecher, 1.

imbricata (Hall), Weller, 6.

Aulopora amplexa n. sp., Rowley, 1.

Aulopora coxanii n. sp., Rowley, 1.

Aulopora coxanii var. bowleyi (Swallow), Kindle, 1.

Aulopora coxanii var. bowleyi (Swallow), Kindle, 1.

Aulopora coxanii var. bowleyi (Swallow), Kindle, 1.

coxanii Meek and Worthen, Beeche, 1.

cossatia Hall, Kindl, 1.

exactus Hall, Kindl, 1.

fasciculatus Hall, Kindl, 1.

germanus Miller and Faber, Beeche, 1.

hertzeri Meek, Beeche, 1.

interlineatus Meek and Worthen, Beeche, 1.
?
interlineatus Meek and Worthen, Beeche, 1.

occidentalis, Beeche, 8.

occidentalis (Shumard), Beeche, 1.

pellucidus Meek and Worthen, Beeche, 1.

princeps (Conrad) Hall, Kindl, 1.

providencensis (Cox), Beeche, 1.

rectilatarius (Cox), Beeche, 1.

rectilatarius Cox, Girty, 3.

sculptilis Miller, Beeche, 1.

subequivulans n. sp., Beeche, 4.

(Pterinopecten?) terminals Hall, Kindl, 1.

vanvleeti n. sp., Beeche, 8.

sp., Girty, 3.
Paleontology—Continued.

Genera and species described—Continued.

Aviculohippina americana Meek, Beede, 1.

Hillotensis Worthen, Beede, 1.

Knight n. sp., Beede, 2.

nebrascensis n. sp., Beede, 2.

nebraskensis Beede, Girty, 3.

? percuta Shumard, Girty, 3.

Axinopsis G. O. Sars, Dall, 8.

Axinuliiis Yerrill and Bush, Dall, 8.

Axophyllum? alleni n. sp., Rowley, 1.

Baculites Sandberger, Smith (J. P.), 3.

carbonarius n. sp., Smith (J. P.), 3.

(sp.) mut. parvus nov., Loomis, 4.

(sp.) mut. pygmaeus nov., Loomis, 4.

Bacculites anceps Lamarck, Johnson (D. W.), 5.

aspero-anceps n. sp., Lasswitz, 1.

chicoensis, Smith (W. D.), 1.

fairbanksi n. sp., Anderson, 3.

Badistrt antecursor n. sp., Scudder, 1.

Bae'na antiqua n. sp., Lambe, 3.

antiqua Lambe, Stanton and Hatcher, 1.

Bailer gracilis (Bean) Bunbury, Fontaine, 2.

Baleropsis foliosa Fontaine, Fontaine, 5.

longifolia Fontaine, Fontaine, 5.

pluripartita Fontaine, Fontaine, 5.

Bairdia sp., Girty, 3.

Bakewellia gouldii n. sp., Matthew (G. F.), 21, 30.

Balsena affinis Owen, Case, 9.

Balanophyllia desmophyllum Milne-Edwards and Haime, Vaughan, 1.

Balanus Lister, Arnold, 2.

concavus Bronn, Cushman, 9.

concavus Bronn, Martin, 4.

proteus Conrad, Cushman, 4.

Balantonites Mojsisovics, Hyatt and Smith, 1.

shoshonensis n. sp., Hyatt and Smith, 1.

Batiscan Marsh, Gilmore, 3.

Baptanodon Merriam (J. C.), 6.

Baptanodon Marsh, Knight (W. C.), 8.

Baptanodon (Sauranodon) Marsh, Gilmore, 2.

discus Marsh, Gilmore, 3.

discus?, Gilmore, 1.

marshi, Merriam (J. C.), 13.

marshi Knight, Gilmore, 3.

marshi n. sp., Knight (W. C.), 8.

natans Marsh, Gilmore, 3.

Baptensys wyomingensis Leidy, Hay, 13.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Batemcrinus davisi var. lanesvillensis n. var., Rowley, Greene, 12.

davisi var. sculptus n. var., Rowley, Greene, 12.

icosidactylus Casseday, Rowley, Greene, 12.

irregularis Casseday, Rowley, Greene, 12.

magnirostris, n. sp., Rowley, Greene, 12.

icosidactylus Casseday, Rowley, Greene, 12.

irregularis Casseday, Rowley, Greene, 12.

magnirostris, n. sp., Howley, Greene, 12.

spergenensis Miller, Rowley, Greene, 14.

Batostoma fertile Ulr., Sardeson, 3.

impllcatum (Nicholson), Nickles, 6.

maysvillensis n. sp., Nickles, 6.

varians (James), Nickles, 6.

Batostomella Ulrich, Grabau, 1.

Batostomella Ulrich, Condra, 2.

granulifera (Hall), Grabau, 1.

leia n. sp., Condra, 1, 2.

Batrachichnus Woodworth, Matthew (G. F.), 30.

Batrachopus E. Hitchcock, Lull, 2.

bellus (B. Hitchcock), Lull, 2.

deweyanus E. Hitchcock, Lull, 2.

dispar n. sp., Lull, 2.

gracilior (E. Hitchcock), Lull, 2.

gracilis (E. Hitchcock), Lull, 2.

Beachia suessana (Hall), Weller, 6.

Beguina Bolten, Ball, 8.

Bela Gray, Arnold, 2.

cretacea n. sp., Whiteaves, 12.

flidicula Gould, Arnold, 2.

sancte-monice n. sp., Arnold, 2.

Belemnitella sp., Pompeckj, 1.

Bellerophon bretonensis n. sp., Matthew (G. F.), 12, 20.

clausus Ulrich, Hayes and Ulrich, 1.

crassus Meek and Worthen, Dirty, 3.

curvillaeus Con., Klindle, 1.

denckmanni n. sp., Clarke, 19.

giganteus Worthen?, Dirty, 3.

insulum n. sp., Matthew (G. F.), 12, 20.

Koeneni n. sp., Clarke, 19.

leda Hall, Kindie, 1.

lyra Hall, Kindie, 1.

panneus White, Weller, 2.

patulus Hall, Kindie, 1.

pelops Hall, Kindie, 1.

pelops Hall, Parks, 5.

percarninus Conrad?, Dirty, 3.

shelbienis n. sp., Clarke and Ruedemann, 1.

semisculptus n. sp., Matthew (G. F.), 12, 20.

subdivis Hall, Sardeson, 11.

sp., Dirty, 3.

sp., Kindie, 1.

sp. undet., Weller, 2.

Bellucina Da//, Da//, 8.

Beyrichia barreti n. sp., Weller, 6.

dagon Clarke, Lo mis, 4.

derkerensia n. sp., Weller, 6.

jerseyensis n. sp., Weller, 6.

kümmeii n. sp., Weller, 6.

montagensis n. sp., Weller, 6.

nearpasi n. sp., Weller, 6.

perinflata n. sp., Weller, 6.

smocki n. sp., Weller, 6.

sussexensis n. sp., Weller, 6.

triceps n. sp., Matthew (G. F.), 20.

Wallpackensis n. sp., Weller, 6.

sp., Dirty, 3.

Beyrichites Waagen, Hyatt and Smith, 1.

Beyrichites, Waagen, Smith (J. F.), 5.

rotelliformis Meek, Smith (J. F.), 5.

rotelliformis Meek, Hyatt and Smith, 1.

gratiana (Lx., sp.), Perkins, 13.

knowtoni n. sp., Perkins, 13, 17.

minimalis n. sp., Perkins, 13.

obesus n. sp., Perkins, 13.

rotundus n. sp., Perkins, 13.

rugosus n. sp., Perkins, 13.

vermutanans (Lx.), Perkins, 13.

Bica n. gen., Walcott, 1.

gemma Billings, Walcott, 1.

Biddulphia torta Gabb. and Horn, Ulrich, 2.

Billingsella Hall and Clarke, Walcott, 12.

Billosella Hall and Clarke, Walcott, 12.

? anomalus n. sp., Walcott, 12.

? appalachia n. sp., Walcott, 12.

coloradoensis Shumard, Walcott, 12.

dice n. sp., Walcott, 12.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Billingsella excrecata Linnarsson, Walcott, 12.

excrecata var. rugescostata n. var., Walcott, 12.

harlanensis n. sp., Walcott, 12.

hicksi (Salter) Davidson, Walcott, 12.

highlandensis Walcott, Walcott, 12.

lindstromi Linnarsson, Walcott, 12.

major n. sp., Walcott, 12.

obscura n. sp., Walcott, 12.

orientalis Whitfield, Walcott, 12.

pumpellyi n. sp., Walcott, 12.

retroflexa, Matthew (G. F.), 20.

richthofeni Barr, Walcott, 12.

saffordi n. sp., Walcott, 12.

salemens Linnarsson, Walcott, 12.

shoemakeri (Otusia) sandbergi Winchell, Walcott, 12.

whitfieldi Walcott, Walcott, 12.

Bilobites varica (Con.), Weller, 6.

varicus, Beeclier, 1.

Bison Smith, McClung, 1.

cornute n. sp., McClung, 1.

Bittium Leach, Arnold, 2.

asperum Gabb, Arnold, 2.

California n. sp., Gabb, Arnold, 2.

beyrichii var. alata Seguenza, Bagg, 6.

dilatata Reuss, Bagg, 9.

dilatata var. angusta Egger, Bagg, 9.

punctata d'Orbigny, Bagg, 9.

punctata var. substriata Egger, Bagg, 9.

textilarioides Reuss, Bagg, 9.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genus and species described—Continued.

Bradorcura perspicator n. sp., Matthew (G. F.), 13, 20.

perspicator mut. magna, Matthew (G. F.), 20.

perspicator mut. major, Matthew (G. F.), 20.

spectator var. acuta, Matthew (G. P.), 20.

spectator mut. oquata, Matthew (G. P.), 20.

spectator mut. spinosa, Matthew (G. F.), 20.

globulus n. sp., Perkins, 13, 17.

Brimonosaurus Leidy, Williston, 14.

Brongniartia trentonensis (Simpson) 1.

aqulonius n. sp., Whiteaves, 17.

ekwanesis n. sp., Whiteaves, 17.

lunatus Bill., Weller, 6.

lunatus Billings, Ruedemann, 2.

niagarensis Hall, Grabau, 1.

Brontosaurus, Osborn and Granger, 1.

Brontosaurus, Hatcher, 2, 8.

Brontosaurus, Gregory (W. K.), 1.

Brontosaurus, Matthew (W. D.), 4.

Brontosaurus, Osborn, 51.

sp., Osborn, 32.

Brontotherium bucco Cope, Osborn, 10.

curtum Marsh, Osborn, 10.

dolichoceras Scott and Osborn, Osborn, 10.

gigas Marsh, Osborn, 10.

hypoceras Cope, Osborn, 10.

leidyi n. sp., Osborn, 10.

Bryograptus Lapworth, Ruedemann, 2.

Bryograptus Lapworth, Ruedemann, 2.

Buccinofusus parilis Conrad, Martin, 5.

Buccinum? sp., Dall, 10.

Bulimina affinis d’Orbigny, Bagg, 9.

Bullinula subglobosus n. sp., Weaver, 1.

Bulliopsis Integrat Conrad, Martin, 5.

Bulliopsis Integrat Conrad, Martin, 5.

Bullotryphus diversicostatus n. sp., White (D.), 1.

Bunostegus, Matthew (W. D.), 21.

Bunostegus, Matthew (W. D.), 21.

Bythocypris cylindrica Hall sp., Ruedemann, 2.

Bythocypris cylindrica Hall sp., Ruedemann, 2.

Bythocypris gracilis Hall, Grabau, 1.

Bythocypris gracilis Hall, Grabau, 1.

Cadoceras Fischer, Pompeckj, 1.

catostoma n. sp., Pompeckj, 1.

crassum n. sp., Madsen, 1.

grewingki n. sp., Pompeckj, 1.

petelini n. sp., Pompeckj, 1.

stenocephaleSn. sp., Pompeckj, 1.

wessensensi Grew, sp., Pompeckj, 1.

sp., Pompeckj, 1.

sp. indet., Pompeckj, 1.

Cadulus Philippi, Arnold, 2.

abruptus Meyer and Aldrich, Clark and Martin, 2.

newtonensis Meyer and Aldrich, Martin, 5.

nitentior Carpenter, Arnold, 2.

thallus (Conrad), Martin, 5.

Cacum Fleming, Arnold, 2.

californicum Dall, Arnold, 2.
Paleontology—Continued.

Genera and species described—Continued.
Cecum calvertense n. sp., Martin, 5.
cubricinctum Carpenter, Arnold, 2.
greenboroense n. sp., Martin, 5.
magnum Stearns, Arnold, 2.
patuuentum n. sp., Martin, 5.
Cenopus persistsens n. sp., Osborn, 34.
Casalpinia ovalifolia n. sp., Hollick, 10.
Caleccrinus alleni n. sp., Rowley, 3.
granuliferus n. sp., Rowley, Green, 7.
Californites n. gen., Hyatt and Smith, 1.
caledonius bellatula Hall, Parks, 5.
californicus bellatula Hall, Kindle, 1.
calinus nitelliferus (Hall and Whitf.), Kindle, 1.
california Callistoma Swainson, Arnold, 2.
annulatum Martyn, Arnold, 2.
apheleum Dall, Martin, 5.
bellum (Conrad), Martin, 5.
calverntatum n. sp., Martin, 5.
caniclellumaturn Martyn, Arnold, 2.
costatum Martyn, Arnold, 2.
distans (Conrad), Martin, 5.
ecolueum (Wagner), Martin, 5.
gemmatum Carpenter, Arnold, 2.
humilis (Conrad), Martin, 5.
marylandicum n. sp., Martin, 5.
paralveatum (Conrad), Martin, 5.
philanthropus (Conrad), Martin, 5.
philanthropus var., Martin, 5.
reclusum (Conrad), Martin, 5.
tricolor Gabb, Arnold, 2.
william (Conrad), Martin, 5.
wagneri Dall, Martin, 5.
sp., Clark and Martin, 2.
Callistoma Callistula Poll, Arnold, 2.
(Amiantis) callosa Conrad, Arnold, 2.
novomexicana Gabb, Arnold, 2.
subdijaflana Carpenter, Arnold, 2.
subdiaphana Pedroana, n. var., Arnold, 2.
Callithaca Ball, Dall, 8.
Callocardia A. Adams, Dall, 8.
(Agiropoma) gatunensis n. sp., Dall, 8.
gatunensis var. multiflora Dall, Dall, 8.
(Pitaria) kincidi n. sp., Dall, 10.
(Agiropoma) morchuna Linsley, Dall, 8.
(Agiropoma) parkeria Glenn, Dall, 8.
(Agiropoma) prunensis n. sp., Glenn, 6.
(Agiropoma) sayana (Conrad), Glenn, 6.
(Agiropoma) sayana Conrad, Dall, 8.
(Agiropoma) sinceræ n. sp., Dall, 8.
(Agiropoma) subsanata (Conrad), Glenn, 6.

Paleontology—Continued.
Genera and species described—Continued.
Callocardia (Agiropoma) subsanata Conrad, Dall, 8.
Callocystites Hall, Grabau, 1.
Callocystites Hall, Schuchert, 11.
caledonius (Billing), Schuchert, 11.
jevettii Hall, Schuchert, 11.
jevettii Hall, Grabau, 1.
Callognaptus Hall, Ruedemann, 8.
cf. dianthus Hall, Ruedemann, 8.
salteri Hall, Ruedemann, 8.
Callogenmata Carpenter, Arnold, 2.
Callonema bellatula Hall, Parks, 5.
bellatula Hall, Kindle, 1.
clarki Nettleroth, Kindle, 1.
conus n. sp., Kindle, 1.
flora n. sp., Hall, Clarke, 19.
imitator (Hall and Whitz), Kindle, 1.
chelas Hall, Kindle, 1.
Callopora Hall, Grabau, 1.
elegantula Hall, Grabau, 1.
multitubulate U!. Sardeson, 3.
multitubula (Ulich), Nickles, 6.
notulosa (Nicholson), Nickles, 6.
sigillarioides (Nicholson), Nickles, 6.
sp. undet., Weller, 6.
Callopina n. gen., Ulrich and Bassler, 2.
parva n. sp., Ulrich and Bassler, 2.
Calucina Dall, Dall, 8.
Calycites alatus n. sp., Hollick, 11.
Calymene Brongt., Grabau, 1.
blumenbachi niagrensis Hall, Grabau, 1.
camerata, Con., Weller, 6.
niagrensis Hall, Clarke and Ruedemann, 1.
platys Green, Kindle, 1.
platys Green, Parks, 5.
enaria Con., Weller; 6.
cf. vogesii Foerste, Kindle and Breger, 1.
Calypgtena Dall, Dall, 8.
Calyptraea aperta (Solander), Clark and Martin, 2.
aperta (Solander), Martin, 5.
centra (Conrad), Martin, 5.
greenboroense n. sp., Martin, 5.
Calyptraphorus Jacksoni Clark, Clark and Martin, 2.
trinodiferus Conrad, Clark and Martin, 2.
trinodiferus var. (?), Clark and Martin, 2.
Camarella bernensis n. sp., Sardeson, 9.
inornata n. sp., Weller, 6.
owatoneassa n. sp., Sardeson, 9.
Cameroeceras protiforme (Hall), Weller, 6.
Camurocrinus Hall, Schuchert, 11.
saffordi Hall, Schuchert, 11.
stelatus Hall, Schuchert, 11.
ulrichi Schuchert, Schuchert, 11.
Paleontology—Continued.

Camarocrinus ulrichi n. sp., Schuchert, 6.

ulrichi stellifer n. var., Schuchert, 11.

Camarophorella lenticularis (W. and W.), Weller, 2.

Camarophoria caput-testudinis (White), Weller, 2.

Camarospira eucharis Hall, Kindle, 1.

Camarotcechia Hall and Clarke, Gra-hau, 1.

acinus Hall 1863, Beecher, 1.

acinus Hall, Grabau, 1.

cf. acinus Hall, Kindle and Breger, 1.

carolina Hall, Kindle, 1.

congregata (Conrad), Kindle, 1.
ekwanaensis n. sp., Whiteaves, 12.
heteropsis (Win.), Weller, 2.
hudsonica n. sp., Grabau, 9.

indianensis Hall, Clarke and Ruedemann, 1.

Indiansinus Hall 1863, Beecher, 1.

major n. sp., Raymond (P. E.), 7.

metallica White, Girty, 3.

neglecta Hall 1852, Beecher, 1.

neglecta Hall, Grabau, 1.

nitida n. sp., Kindle, 1.

obtusiplicata Hall, Grabau, 1.

pacilicata n. sp., Wood (Elvira), 1.

persinuata (Win.), Weller, 2.

pristina n. sp., Raymond (P. E.), 7.

prolifica (?) Hall, Wood (Elvira), 1.

sappho Hall, Kindle, 1.

tethys (Billings), Kindle, 1.

whitii Hall 1863, Beecher, 1.

Cameosaurus Cope, Riggs, 2.

(Proterocameroceras) branneri! Whitfield (sp.), Ruedemann, 9.

Campeloma Rafinesque, Letson, 1.

decisus Say, Letson, 1.

harlowensis n. sp., Stanton, 4.

jovenatiana n. sp., Clarke and Martin, 2.

joaquinensis n. sp., Anderson, 7.

lunata Conrad, Martin, 5.

trifida n. sp., Anderson, 7.

vespertina n. sp., Anderson, 7.

Campylophycus rhombicum n. sp., Ulrich, 4.

Cancer Linne', Arnold, 2.

breweri Gabb, Arnold, 2.

proavitus Packard, Cushman, 6.

? sp., Weaver, 1.

Campode, Matthew (W. D.), 19.

Canis indianensis Leldy, Merriam (J. C.), 7.

Cannartidium sp., Martin, 8.

Cannartiscus amphicylindricus Haeckel, Martin, 8.

Cannelaria biplicifera Conrad, Martin, 5.

(Cancellariella) neritoidea n. sp., Martin, 5.

pacificus n. sp., Anderson, 7.

(Sveltia) parvexcens n. sp., Martin, 5.

(Prionodon) egertoni (Agassiz), Eastman, 18.

Incidens n. sp., Eastman, 18.

Capromeryx furcifer n. gen. and sp., Matthew (W. D.), 8.

Capromeryx Matthew, Matthew (W. D.), 14.

Capulus Cassensis n. sp., Kindle, 1.

Carcharias collata n. sp., Eastman, 18.

Carabocrinus geometricus n. sp., Hudson, 1.

Carcarias collata n. sp., Eastman, 18.

Trionodon egeroni (Agassiz), Eastman, 18.

Incidentes n. sp., Eastman, 18.
Paleontology—Continued.
Genera and species described—Continued.
Carcharias laevissimus (Cope), Eastman, 18.
magna (Cope), Eastman, 18.
Carcharodon auriculatus (Blainville), Eastman, 1.
megalodon (Charlesworth), Eastman, 18.
Cardiocardita Anton, Dall, 8.
Cardiocaris, Clarke, 8.
Cardiocephalus sternbergi n. gen. and sp., Broili, 2.
Cardioceras canadense nom. prov., Whiteaves, 9.
Cardiomorpha missouriensis Shumard, Beede, 1.
Cardiomya A. Adams, Dall, 8.
Cardiopsis crassicostata Hall and Whiteaves, 1.
section Cardita s. s. Dall, 8.
section Carditamera Conrad, Dall, 8.
section Glans, Megerle, Dall, 8.
aldrichi n. sp., Casey, 4.
(Carditamera) arata Conrad, Dall, 8.
(Carditamera) catharia n. sp., Dall, 8.
(Carditamera) guppyi Dall, Dall, 8.
(Carditamera) prestoni n. sp., Dall, 8.
protracta (Conrad), Glenn, 6.
(Carditamera) recta Conrad, Dall, 8.
(Carditamera) tegea n. sp., Dall, 8.
(Carditamera) vaughani n. sp., Dall, 8.
Carditamera Conrad, Dall, 8.
Carditella E. A. Smith, Dall, 8.
Cardites Link, Dall, 8.
Carditopsis Smith, Dall, 8.
Carex clarkii n. sp., Berry, 10.
Cardium (Linné) Lamarck, Arnold, 2.
section Cardium s. s. Conrad, Dall, 8.
section Glans, Megerle, Dall, 8.
(Ceriocardia) procerum Sowerby, Arnold, 2.
(Trachycardium) quadrigenarium Conrad, Arnold, 2.
(Lavocardium) substratum Conrad, Arnold, 2.
(Protocardia) texanum Conrad, Shattuck, 8.
(Protocardia) vaughani n. sp., Shattuck, 8.
Carticella pyruloides (?), (Conrad), Clark and Martin, 2.
Carinopsis carinata Hall, Ruedemann, 2.
deleta n. sp., Sardeson, 9.
(or Bellerophon) phalera n. sp., Sardeson, 9.
Carpenteroblastus n. gen., Rowley, 1.
(Carpites) Schimper, Perkins, 13.
(alatus n. sp., Knowlton, 18.
inequals n. sp., Perkins, 13.
judithae n. sp., Knowlton, 18.
inmutulus Lesq., Berry, 6.
ovalis n. sp., Perkins, 13.
pruni n. sp., Knowlton, 18.
trigonus n. sp., Perkins, 13.
(Carpothes) Schoelthim, Perkins, 13.
brandonianus Lx., Perkins, 13.
brandonianus Lesquerues, Knowlton, 11.
confinis D. W., White (D.), 18.
elongatus n. sp., Perkins, 13.
emarginatus n. sp., Perkins, 13.
grandis n. sp., Perkins, 13.
hitchcockii n. sp., Perkins, 13.
juglandiformis Berry, Berry, 7.
lunatus Dn., White (D.), 18.
mucronatus n. sp., Perkins, 13.
opus n. sp., Perkins, 13.
ovo n. sp., Perkins, 13.
parvus n. sp., Perkins, 13.
simplex n. sp., Perkins, 13.
solidus n. sp., Perkins, 13.
vermontanus n. sp., Perkins, 13.
Carpolithes bucklandii Williamson, 'Fontaine, 1.
cilifloraeformis n. sp., Berry, 5.
douglasensis n. sp., Fontaine, 1.
dubius n. sp., Berry, 5.
elongatus n. sp., Fontaine, 1.
juglandiformis n. sp., Berry, 5.
marylandicus n. sp., Hollick, 3.
var. rugosus n. var., Hollick, 3.
mattewanensis n. sp., Berry, 6.
olallensis Ward n. sp., Fontaine, 1.
oregonensis n. sp., Fontaine, 1.
sophoraeformis nom. nov., Berry, 6.
Carstenia n. gen., Hyatt, 1.
Carychium bermudense n. sp., Gulick, 1.
Caryocaris Saltier, Ruedemann, 8.
oblongus Gurley, Ruedemann, 8.
Caryocrinus Say, Grabau, 1.
orlatus Say, Grabau, 1.
Paleontology—Continued.

Genera and species described—Continued.

Caryophyllia arnoldi Vaughan, Arnold, 2.
 california Vaughan n. sp., Arnold, 2.
 pedroensis Vaughan n. sp., Arnold, 2.
Cassidulina californicus n. sp., Anderson.
Cassis calata Conrad, Martin, 5.
 sp. Dall, 10.
Castalia stantoni n. sp., Knowlton, 18.
Catopterus J. H. Redfield, Eaton, 1.
 gracilis H. Redfield, Eastman, 20.
Caulinites inquirendus n. sp., Hollick, 11.
Caulopteris magnifica n. sp., Herzer, 2.
Cavaria dumosa n. sp., Ulrich, 2.
Cavulicina Fischer, Dall, 8.
Celastrophyllum acutidens Fontaine, 5.
 albedomus' Ward n. sp., Fontaine, 5.
 brockianum Hollick, Fontaine, 5.
 brookense Fontaine?, Fontaine 5.
 elegans, n. sp., Berry, 5, 6.
 hunteri Ward, Fontaine, 5.
 latifolium Fontaine, Fontaine, 5.
 marylandicum n. sp., Fontaine, 5.
 obovatum Fontaine, Fontaine, 5.
 ? saliciforme Ward n. sp., Fontaine, 5.
Celastrus arctica Heer, Hollick, 11.
Cenosphera porosissima Vinassa, Martin, 8.
Ceramopora, Hall, Grabau, 1.
 imbrica Hall, Grabau, 1.
 incurvata Hall, Grabau, 1.
Ceratoderma Mo'rcb, Arnold, 2.
Ceratiocaris McCoy, Grabau, 1.
 acuminata Hall, Grabau, 1.
 (Phasganocaris?) deweyi Hall, Grabau, 1.
 (Limnocaris) precedens n. sp., Clarke, 12.
Ceratites de Haan, Hyatt and Smith, 1.
 de Haan, Smith (J. P.), 5.
 (Gymnotoceras) blakei Gabb, Smith (J. P.), 5.
 humboldtensis n. sp. (Gra­
 vanigen), Greene, 2.
 conglomerata n. sp., Greene, 4.
 flabellata n. sp., Greene, 4.
 nanae n. sp., Greene, 4.
 recurvirostra n. sp., Greene, 4.
Ceratops Marsh, Stanton and Hatcher, 1.
 hieroglyphus Cope, Stanton and Hatcher, 1.
 hieroglyphus Cope, Stanton and Hatcher, 1.
Ceratocephalus contescens n. sp., Van
 Ingen, 2.
 goniatita Warder, Van Ingen, 2.
 goniatita Warder, kindle and Breger, 1.
 nodulata n. sp., Van Ingen, 2.
Ceratops eruciferus Cope, Stanton and
 Hatcher, 1.
 recurvicoberus Cope, Stanton and Hatcher, 1.
Paleontology—Continued.

Genera and species described—Continued.
Ceratopus hudsoni n. sp., Raymond (P. E.), 5.

(Crotalocephalus) niagarensis Hall, Kindle and Breger, 1.
pleuraxanthemus Green, Weller, 6.
pomphilus Billings, Raymond (P. E.), 5.

Ceriocrinus craigi (Worthen), Beede, 1.

harshbargeri n. sp.; Beede, 4.
heinisphericus (Shumard), Beede.

rnissouriensis (Miller and Gurley), Beede, 1.

? monticulatus Beede, Beede, 1.

? prisca n. sp., Rowley, Greene, 11.

Cerion (Strophiops) agassizii Dall, 15.

(Strophiops) blandi Pilkey and Vanatta, Dall, 15.

(Strophiops) eleuthere 1. and V., var. drupium Dall nov., Dall, 15.

(Strophiops) glans Küster, Dall, 15.

(Strophiops) grayi Maynard, Dall, 15.

(Strophiops) lentiginosum, Maynard, Dall, 15.

(Strophiops) maynardi Pilkey and Vanatta, Dall, 15.

(Strophiops) rhyssum n. sp., Dall, 7.

Ceriopora micropora Goldfuss, Ulrich, 2.

Cerithidea Swainson, Arnold, 2.

californica Haldemann, Arnold, 2.

Cerithiopsis calvertensis n. sp., Martin, 5.

subulata (Montagu), Martin, 5.

Cerithium arcuferum n. sp., Cragin, 5.

harveyi n. sp., Whiteaves, 12.

Cerithimonas n. sp., Ball, 10.

Cerithium Willcoxi Ball, Ball, 10.

Cervalces americanus (Harlan), Osborn, 36.

Cetophis heteroclitus Cope, Case, 9.

Cetotherium cephalum Cope, Case, 9.

megalophysum Cope, Case, 9.

parvum Trouessart, Case, 9.

Chesnoidiola Holzapfel, Clarke, 15.

Chesnomya leavenworthensis (Meek and Hayden), Beede, 1.

Chlamys springerensis n. sp., Knowitton, 15.

Chetopodora aculeata (Say) Martin, 5.

Cheirodus orbicularis (Newberry and Worthen), Eastman, 10.

Cheirurus mars n. sp., Hudson, 1.

Cheirotheroides E. Hitchcock, Lull, 2.

pigilatus E. Hitchcock, Lull, 2.

Chelonoides E. Hitchcock, Lull, 2.

Chelonoides E. Hitchcock, Lull, 2.

Chelodina apiculata (Say) Martin, 5.

Cheloceras sp., Clarke, 19.

Chione Megerle, Arnold, 2.

Cheystosaurus Cope, Osborn, 19.

Chonopeneus Cope, Stanton and Hatcher, 1.

Chonopus Cope, Osborn, 19.

Chondracanthus Cope, Osborn, 19.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Chione (Lirophora) latilirata Conrad, Dall, 8.

latilirata (Conrad), Glenn, 6.

(Lirophora) mactropsis Conrad, Dall, 8.

(Chamelea) nuciformis Heilprin, Dall, 8.

parkeria n. sp., Glenn, 6.

(Chamelea) rhodia n. sp., Dall, 8.

(Chamelea) spada n. sp., Dall, 8.

(Lirophora) ulocyma Dall, Dall, 8.

(Lirophora) victoria n. sp., Conrad, Dall, 8.

sp. indet., Dall, 8.

Chlonella Cossmann, Dall, 8.

Chilotrypa Ulrich, Grabau, 1.

ostiolata (Hall), Grabau, 1.

Chlamys Bolten, Arnold, 2.

Chlidouophora Dall, Dall, 8.

Chlorostoma Swainson, Arnold, 2.

aureotinctum Forbes, Arnold, 2.

brunnenm. 1'hilippi, Arnold, 2.

funebrale A. Adams, Arnold, 2.

funebrale A. Adams var. subaper-tatum Carpenter, Arnold, 2.

gallina Forbes, Arnold, 2.

montereyi Kiener, Arnold, 2.

(Omphallus) viridulum var. ligu-latum Menke, Arnold, 2.

Choffaticeras n. gen., Tyatt, 1.

Chomatodus inconstans St. John and Worthen, Eastman, 10.

Chondrites alpestris Heer, Ulrich, 4.

divaricatus Fischer-Ooster, Ulrich, 4.

Chondrodonta n. gen., Stanton, 2.

glabra n. sp., Stanton, 2.

Chonetes Fischer de Waldheim, Grabau, 1.

arcatus Hall, Kindle, 1.

arcatus Hall, Weller, 6.

burlingtonensis n. sp., Weller, 2.

cinctatus n. sp., Herzer, 5.

coronatus Conrad, Raymond (P. E.), 3, 4.

coronatus (Con.)?, Weller, 6.

cornutus (Hall), Grabau, 1.

cornutus Hall, Kindle and Breger, 1.

flemingi Norwood and Pratten, Girty, 3.

flemingi var. verneuiliana Norwood and Pratten, Girty, 3.

gleitzianus Waagen, Girty, 3.

glaber Geinitz, Beede, 1.

granulifer Owen, Beede, 1.

granulifer Owen, Girty, 3.

gregarius n. sp., Weller, 2.

hudsonica Clarke, Weller, 6.

illinoisensis Whiteaves, Kindle, 1.

mesolobus Norwood and Pratten, Beede, 1.

mesolobus Norwood and Pratten, Girty, 3.

micronatus Hall, Kindle, 1.

micronatus Hall, Wood (Elvira), 1.

micronatus Hall, Raymond (P. E.), 3, 4.

robustus n. sp., Raymond (P. E.), 3, 4.

sceltulus Hall, Raymond (P. E.), 3, 4.

sceltulus Hall, Wood (Elvira), 1.

subquadritus Netterloth, Kindle, 1.

verneuiliana Norwood and Pratten, Beede, 1.

victorina (Castelnau), Kindle, 1.

yandellanus Hall, Shimer, 5.

yandellanus Hall, Kindle, 1.

sp. indet., Weller, 6.

Chonopictes fischarti (N. & P.), Weller, 2.

Chonoplyllum Edwards and Haine, Grabau, 1.

Chonoplyllum Milne. Edwards and Haine, Lambe, 2.

belli Billings, Lambe, 2.

candens Billings (sp.), Lambe, 2.

curvatum n. sp., Herzer, 5.

cylindricum n. sp., Herzer, 5.

infundibulum n. sp., Greene, 1.

magnificum Billings, Lambe, 2.

niagarensis Hall, Grabau, 1.

nymphae Billings (sp.), Lambe, 2.

pygmaeus n. sp., Greene, 8.

typecum n. sp., Greene, 1.

Chonostrophia complanata (Hall), Weller, 6.

jervensis Schuchert, Weller, 6.

Chonostrophia jervensis n. sp., Schuchert, 1.

jervensis Schuchert, Shimer, 5.

montrenensis n. sp., Schuchert, 1.

Chorus Gray, Arnold, 2.

belcheri Hinds, Arnold, 2.

cariaensis n. sp., Anderson, 7.

Christiania trentonensis n. sp., Ruedemann, 2.

Chrysalisida Carpenter, Arnold, 2.

Chrysemys (G. E.) n. sp., Loomis, 5.

womingensis Leidy, Hay, 13.

Chryzosomus Swainson, Arnold, 2.

aphelus Dall, Rivers, 1.

arnoldi n. sp., Rivers, 1.

engonatus (Heilprin), Clark and Martin, 2.

griseus Dall, Rivers, 1.

merriami n. sp., Rivers, 1.

patuxentensis n. sp., Martin, 5.

rectirostris Carpenter, Arnold, 2.

tabulatus Baird, Arnold, 2.
Paleontology—Continued.

Genera and species described—Continued.

Chrysodomus sp., Dall, 10.
parvus sp., Dall, 2.
Cidaroblastus Hambach, 1.
Cimoliasaurus Leidy, Williston, 14.
Cimolichthys Leidy, Loomis, 1.
Cinnamomum bendirei n. sp., Knowlton, 14.
Cladopora Hall, Grabau, 1.
Cladopora multipora Hall, Grabau, 1.
multipora Hall, Clarke and Ruedemann, 1.
multiseriata n. sp., Weller, 6.
Cladopora Hall, Grabau, 1.
cladopora Hall, Clarke and Ruedemann, 1.
Clathrodictyon problematicum n. sp., Parks.
Clathrodictyon ostiolatum Nicholson, 1.
Clathropora Hall, Grabau, 1.
Clathrospira subconica Hall, Ruedemann, 2.
Clathurella Carpenter, Arnold, 2.
Clavilithes chamberlaiui n. sp., Johnson and Grabau, 1.
Clavulina soldanii, Guppy, 4.
Clavulites n. gen., Girty, 5.
Clausina Brown, Ball, 8.
Clausinella Gray, Ball, 8.
Clemmys hesperia n. sp., Hay, 9.
clementia Gray, Ball, 8.
Clepsydrops natalis, Case, 6.
Clepsydrops hettersheimi Wagner, Dall, 9.
Clepsydrops hesperia n. sp., Hay, 9.
saxa n. sp., Hay, 9.
Clepsydrops natalis, Case, 6.
Clidastus stenops Cope, Williston, 10.
FOR THE YEARS 1901-1905, INCLUSIVE. 647

Paleontology—Continued.
Genera and species described—Continued.
Cleithryis hirsuta Hall, Weller, 2.
Clementina inocrifformis (Wagner), Glenn, 6.
Clidophorus obscurus n. sp., Raymond (P. E.), 7.
Clmacograptus Hall, Ruedemann, 8.
? antennarius Hall sp., Ruedemann, 8.
pungenus n. sp., Ruedemann, 8.
scharenbergi, Ruedemann, 2.
Clinopistha antiqua Meek, Kindle, 1.
striata Nettleroth, Kindle, 1.
subasuta Hall and Whitfield, Kindle, 1.
Clona alaskana Dall, Dall, 10.
Clionites Mojsisovics, Hyatt and Smith, 1.
(Neantites) californicus n. sp., Hyatt and Smith, 1.
(Shastites) compressus n. sp., Hyatt and Smith, 1.
fairbanksi n. sp., Hyatt and Smith, 1.
(Traskites) robustus n. sp., Hyatt and Smith, 1.
(Stauroites) rugosus n. sp., Hyatt and Smith, 1.
sp. ind., Burckhardt and Scalia, 1.
Clonichia marginalis n. sp., Raymond (P. E.), 7.
Clisiphyllynum Dana, Lambe, 2.
billingis Dawson (sp.), Lambe, 2.
Clypida bimaculata Dall, Arnold, 2.
Clypites Waagen, Hyatt and Smith, 1.
tenuis n. sp., Hyatt and Smith, 1.
Cocculus minutus n. sp., Hollick, 11.
Cochlespira Con., Casey, 5.
Cochlespiropsis n. gen., Casey, 5.
blanda n. sp., Casey, 5.
engonata Con., Casey, 5.
Cochliusus, Eastman, 8.
Cochliodes striata Dall, Martin, 5.
Cochliodesma Couplon, Dall, 8.
Codakia Scopol, Dall, 8.
(Jagonia) chipolana n. sp., Dall, 8.
(Jagonia) erosa n. sp., Dall, 8.
(Jagonia) magnoliana n. sp., Dall, 8.
orbicularis Linneé, Dall, 8.
(Jagonia) orbiculata Montagu, Dall, 8.
(Jagonia) pertonica n. sp., Dall, 8.
(Jagonia) speciosa Rogers, Dall, 8.
spinulosa n. sp., Dall, 8.
(Jagonia) textilis Guppy, Dall, 8.
(Jagonia) vendryesi n. sp., Dall, 8.
(Jagonia) sp. Indet., Dall, 8.
Codaster Maccoy, Hammbach, 1.
atenuatus Lyon, Rowley, Greene, 5, 7.

Paleontology—Continued.
Genera and species described—Continued.
Codaster attenuatus? Lyon, Rowley, Greene, 5.
attenuatus var. robustus n. var., Rowley, Greene, 5.
gracilimus Rowley, 4.
grandis Rowley, Rowley, 4.
laviculus Rowley, Rowley, 4.
pyramidatus Shumard, Rowley, Greene, 5.
superbus n. sp., Rowley, 4.
sp.?, Rowley, Greene, 5.
Codonites Meek and Worthen, Hambach, 1.
Codonocadua cadoea n. gen. and sp., Sellards, 6.
Coalacanthide, Eastman, 20.
Coalacanthus exigius n. sp., Eastman, 4, 10.
Coalambus cribriarius n. sp., Scudder, 1.
derelictus n. sp., Scudder, 1.
disjectus n. sp., Scudder, 1.
deferolata n. sp., Scudder, 1.
Coalium nom. nov., Clarke and Ruedemann, 1.
macrospira Hall (sp.), Clarke and Ruedemann, 1.
cf. vitellia Billings, Clarke and Ruedemann, 1.
Coleycistis n. gen., Schuchert, 6, 11.
subglobosus Hall, Schuchert, 11.
Coelodon Carpenter, Dall, 8.
Coeolus browni Cope, Williston, 1.
stantoni n. sp., Williston, 1.
Coaloma bicarinatum n. sp., Ravn, 1.
Colospira grabau n. sp., Shimer, 5.
Coilmograpthus gracilis (Hall), Weller, 6.
Colilopoceras n. gen., Hyatt, 1.
colleti n. sp., Hyatt, 1.
novimexicanum n. sp., Hyatt, 1.
springeri n. sp., Hyatt, 1.
Coleoides typicus Walc, Matthew (G. F.), 1.
Coleoles tenuicinctum Hall, Kindle, 1.
tenuistriatus n. sp., Parks, 5.
sp., Parks, 5.
Colophyllyum? greeni n. sp., Rowley, 1.
Colodon cingulatus n. sp., Douglass, 4.
sp., Douglass, 4.
Colophyllia gyroa (Ellis and Solander), Vaughan, 2.
Columella Lamarck, Arnold, 2.
(Astyrus) californiana Gaskoin, Arnold, 2.
calvertensis n. sp., Martin, 5.
(Eopospus) chrysaloides Carpenter, Arnold, 2.
(Astyrus) communis (Conrad), Martin, 5.
(Astyrus) gausapata Gould, Arnold, 2.
(Astyrus) gausapata Gould, var. carinata Hinds, Arnold, 2.
(Anachis) minima n. sp., Arnold, 2.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.
Columbella (Espotus) oldroydi n. sp., Arnold, 2.
solidula Reeve, var. precurso n. var. Arnold, 2.
(Astyris) tuberosa Carpenter, Arnold, 2.
Columbites n. gen., Hyatt and Smith, 1.
parisianus n. sp., Hyatt and Smith, 1.
Colummilla Goldfuss, Lambe, 2.
alveolata Goldfuss, Hayes and Ulrich, 1.
calicina Nicholson, Lambe, 2.
disjuncta Whiteaves, Lambe, 2.
halli Nicholson, Hayes and Ulrich, 1.
halli Nicholson, Lambe, 2.
waltzogusa Billings (sp.), Lambe, 2.
Compsemys plicatula, Hay, 23.
Comptichnus B. Hitchcock, Lull, 2.
obesus E. Hitchcock, Lull, 2.
Conchidium knighti (Netleroth) ? Kindle, 1.
laqueatum Conrad, Kindle and Breger, 1.
cf. littoni Hall, Kindle and Breger, 1.
trilobatum n. sp., Kindle and Breger, 1.
unguiformis Ulrich (?), Kindle and Breger, 1.
Conchochelys admirabilis n. sp., Hay, 25.
Conchopeltis (or Metoptoma) obtusa n. sp., Sarodison, 9.
Condylocardia Bernard, Dall, 8.
Confervites dubius n. sp., Berry, 4.
Coniopteris bymenophylloides (Bronnart) Seward?, Fontaine, 1.
Conocardium beecheri n. sp., Raymond (P. E.), 7.
cuneus Hall, Kindle, 1.
cbora Hall, Kindle, 1.
gowanense n. sp., Clarke, 19.
multistriatum n. sp., Kindle and Breger, 1.
ohio Meek, Kindle, 1.
oklahomaensis n. sp., Beede, 8.
pulchellum W. and W., Weller, 2.
sp. undet, Weller, 6.
Constellaria emacata Ulrich and Bassler, Nickles, 6.
Florida var. emacata Ulrich and Bassler, Hayes and Ulrich, 1.
Paleontology—Continued.

Genera and species described—Continued.

Cordaites brandlingi, Penhallow, 1.
C. clarkii Dn., Penhallow, 1.
C. flexuosus Dn., White (D.), 18.
C. halli Dn., Penhallow, 1.
C. hamiltonense n. sp., Penhallow, 1.
C. illinoiseus Dn., n. sp., Penhallow, 1.
C. materiarium Dn., Penhallow, 1.
C. matriode Dn., n. sp., Penhallow, 1.
C. newberryi (Dn.), Knowlton, Penhallow, 1.
C. ohloence Dn., n. sp., Penhallow, 1.
C. pennsylvanicum Dn., n. sp., Penhallow, 1.
C. quangondianum Dn., Penhallow, 1.
C. recentium Dn., n. sp., Penhallow, 1.

Cordillerites n. gen., Hyatt and Smith, 1.
C. angulatus n. sp., Hyatt and Smith, 1.
C. dubius n. sp., Rowley, 3.
C. plumosus (Hall), Talbot, 2.
Corneocyclas (Perussac), Dall, 8.
section Corneocyclas s. s., Dall, 8.
section Cyclocalyx Dall, Dall, 8.
section Phyminesoda Rafinesque, Dall, 8.
section Pisidium C. Pfeiffier, Dall, 8.
Cornulites, Schlotheim, Grabau, 1.
C. arcuatus Conrad, Clarke and Ruedemann, 1.
C. bellistriatus Hall, Grabau, 1.
C. cintulatus Hall, Weller, 6.
C. sp. undet., Weller, 6.
Corvipes E. Hitchcock, Lull, 2.
C. lacertoideus E. Hitchcock, Lull, 2.
C. eugilis n. sp., Knowlton, 1.

Crania? columbiana Walcott, Matthew (C. F.), 19.
C. crenulata Hall, Kindale, 1.

Crania hamiltonae Hall, Kindle, 1.
C. harrimani n. sp., Knowlton, 16.
C. palaeo Utsp., Knowlton, 16.
C. recta n. sp., Wood (Elvira), 1.
C. reversa n. sp., Rowley, 3.
C. robusta n. sp. (Rowley), Greene, 2.
C. siluriana Hall 1863, Beecher, 1.

Craspedodiscus coscinodiscus Ehrenberg, Boyer, 1.
C. elegans Ehrenberg, Boyer, 1.
C. Bowley, Arnold, 2.
C. Guppy, Dall, 8.
C. Krüger, Dall, 8.
section Crassatellites s. s., Dall, 8.
section Scambula Conrad, Dall, 8.
C. acutus n. sp., Dall, 8.
C. deformis (Conrad), Clark and Martin, 2.
C. gibbesii Tuomey and Holmes, Dall, 8.

Crosophus elegans n. sp., Evans (H. M.), 1.
Cosmacanthus elegans n. sp., Evans (H. M.), 1.
Cosmorrinus ornatus Ehrenberg, Hall, sp., Whitfield, 11.
Cosmosulina n. gen., Hyatt and Smith, 1.
C. sileri n. sp., Hyatt and Smith, 1.
C. agilis n. sp., Douglass, 1.
Cosmoclypea Mayer Eymar, Dall, 8.
C. romingeri Hall, Kindale, 1.
C. subelliptica var. hardingensis n. var., Gliry, 3.

Crania? columbiana Walcott, Matthew (C. F.), 19.
C. crenulata Hall, Kindale, 1.
Paleontology—Continued.

Genera and species described—Continued.

Crassestelles (Scambula) marylandicus Conrad, Dall, 8.
marylandicus (Conrad), Glenn, 6.
melinus (Conrad), Glenn, 6.
(micromeris) minutissimus Lea, Dall, 8.
(Crassatellus) parvus Lea, Dall, 8.
(Crassula) psychopterus Dall, Dall, 8.
(Crassina) tanicus n. sp., Dall, 8.
turgidulus (Conrad), Glenn, 6.
(Crassinella) triangulatus n. sp., Dall, 8.
undulatus var. cyclopterus Dall, Dall, 8.
sp., Clark and Martin, 2.

Cratægus flavescens Newb., Knowlton, 14.

imparilis n. sp., Knowlton, 14.

Crenella gubernatoria n. sp., Glenn, 6.
virida n. sp., Glenn, 6.

Crenimargo, Cossmann, Dall, 8.

Crenipora venusta (Ulrich), Nickles, 6.

Cribellina crassula n. sp., Ulrich, 2.
modesta n. sp., Ulrich, 2.

Cribroblasus, Hambach, 1.
incisus n. sp., Hambach, 1.
schucherti n. sp., Hambach, 1.
tenuis n. sp., Hambach, 1.
tenuistriatus n. sp., Hambach, 1.
verrucosus n. sp., Hambach, 1.

Cricoius, Broili, 2.

Crisina striatopora n. sp., Ulrich and Bassler, 4.

Cristellarina Lamarck, Bagg, 6.
aculeata, Guppy, 4.
articulata (Reuss), Bagg, 9.
cassis (Fichtel and Moll), Bagg, 9.

Paleontology—Continued.

Genera and species described—Continued.

Cristellarla crepidula (Fichtel and Moll), Bagg, 9.
crepidula (F. and M.) var. gladius
Philippi, Bagg, 9.
cultrata (Montfort), Bagg, 6.
(Robulinia) gerlandiana Andreæ, Bagg, 9.

gibba (d'Orbigny), Bagg, 1, 9.
radiata (Bornemann), Bagg, 1.
rotulata (Lamarck), Bagg, 1, 9.
rotulata, Guppy, 4.
wetherelli Jones, Bagg, 6.

Crocodillus humilis Leidy, Lambe, 3.
humilis Leidy, Stanton and Hatcher, 1.

Crossoeltos annulatus n. gen. and sp., Case, 3.

Crossotheca sagittata, Sellards, 3.

tristesia n. sp., Sellards, 3.

Crotalocrinus cora (Hali), Weller, 5.

Cruclium Schumacher, Arnold, 2.
constrictum Conrad, Martin, 5.
costatum (Say), Martin, 5.
costatum var. pileolum (H. C. Lea), Martin, 5.
multilineatum Conrad, Martin, 5.
spinosum, Sowerby, Arnold, 2.

Crypthaus boothi var. calliteles Green, Loomis, 4.

Cryptobium cinctum n. sp., Scudder, 1.
detectum n. sp., Scudder, 1.

Cryptoblastus melo O. and S., Rowley, 4.

Cryptochiton Midd. and Gray, Arnold, 2.
stelleri Middendorff, Arnold, 2.

Cryptodon cfr. unicolorinus Nyst. sp., Raven, 1.

Cryptomya Conrad, Arnold, 2.
californica Conrad, Arnold, 2.

Crotaniocrinus Dall, Arnold, 2.

Cryptochiton Midd. and Gray, Arnold, 2.

Ctenacanthus, Eastman, 6.
amblyxiphias Cope, Eastman, 10.
coxianus St. John and Worthen, Eastman, 6.
decussatus n. sp., Eastman, 6.
gracillimus N. and W., Eastman, 6.
longinodosus n. sp., Eastman, 6.
lucasi n. sp., Eastman, 6.
semicosstatus St. John and Worthen, Eastman, 6.
solidus n. sp., Eastman, 6.
spectabilis St. John and Worthen, Eastman, 6.

Ctenochiton varians St. John and Worthen, Eastman, 6.

venustus n. sp., Eastman, 6.
sp. indet., Eastman, 6.

Paleontology—Continued.
Genera and species described—Continued.
Ctenis auriculata Fontaine, Fontaine, 1.
grandifolia Fontaine, Fontaine, 1.
orovillensis Fontaine, Fontaine, 1.
sulcaulis (Phillips) Ward n. comb., Fontaine, 1, 2.
Ctenobolbina ciliata, Ruedemann, 1.
ciliata var. cornula n. var., Ruedemann, 1.
subrotunda n. sp., Ruedemann, 1.
Ctenodonta cf. astartaformis Salter, Ruedemann, 2.
dubiforaminis n. sp., Raymond (P. E.), 7.
jerseyensis n. sp., Weller, 6.
limbata n. sp., Raymond (P. E.), 7.
nasuta (Hall), Weller, 6.
parvidens n. sp., Raymond (P. E.), 7.
peracuta n. sp., Raymond (P. E.), 7.
subovata n. sp., Whiteaves, 1.
sulcicaulis (Phillips) Ward n. comb., Fontaine, 1, 2.
Ctenophyllum angustifolium Fontaine, Fontaine, 1.
latifolium, Fontaine?, Fontaine, 3.
pachynerve n. sp., Fontaine, 1.
wardii Fontaine, Fontaine, 3.
Ctenopteris columbiensis n. sp., Penhallow, 4.
insignis Fontaine?, Fontaine, 5.
Ctenopora occidentalis (St. John and Worthen), Eastman, 10.
Cenophyllum angustifolium Fontaine, Fontaine, 1.
latifolium Fontaine?, Fontaine, 3.
pachynerve n. sp., Fontaine, 1.
wardii Fontaine, Fontaine, 3.
? n. sp.?, Fontaine, 2.
Ctenopteris columbiensis n. sp., Penhallow, 4.
insignis Fontaine?, Fontaine, 5.
Ctenopycnites occidentalis (St. John and Worthen), Eastman, 10.
Ctenophyllum angustifolium Fontaine, Fontaine, 1.
latifolium Fontaine?, Fontaine, 3.
pachynerve n. sp., Fontaine, 1.
wardii Fontaine, Fontaine, 3.
? n. sp.?, Fontaine, 2.
Paleontology—Continued.

Genera and species described—Continued.

Cyathophyllum pasithea Billings, Lambe, 2.
Cyathophyllum pennanti Billings, Lambe, 2.
Cyathophyllum petraioides Whiteaves, Lambe, 2.
Cyathophyllum quadrigeininuin Goldfuss, Lambe, 2.
Cyathophyllum richardsoni Meek (sp.), Lambe, 2.
Cyathophyllum spenceri Lambe, Lambe, 2.
Cyathophyllum tenueispetatum Billings (sp.), Lambe, 2.
Cyathophyllum thoroldense n. sp., Lambe, 2.
Cyathophyllum vei-miculare Goldfuss, var. precursor Frech, Lambe, 2.
Cyathophyllum wahlenbergi Billings, Lambe, 2.
Cyathophyllum waskasense Whiteaves, Lambe, 2.
Cyathophyllum zenkeri Billings, Lambe, 2.
Cybele valcourensis n. sp., Raymond (P. E.), 5.
Cybele sp., Ruedemann, 2.
Cycadella, Wieland, 9.
Cycadella beecheriana Ward, Ward (L. F.), 5.
Cycadella cirrata Ward, Ward (L. F.), 5.
Cycadella compressa Ward, Ward (L. F.), 5.
Cycadella contracta Ward, Ward (L. F.), 5.
Cycadella crepidaria Ward, Ward (L. F.), 5.
Cycadella exogena Ward, Ward (L. F.), 5.
Cycadella ferrnginea Ward, Ward (L. F.), 5.
Cycadella knightii Ward, Ward (L. F.), 5.
Cycadella knowltoniana Ward, Ward (L. F.), 5.
Cycadella jediuna Ward, Ward (L. F.), 5.
Cycadella jurassica Ward, Ward (L. F.), 5.
Cycadella nodosa Ward, Ward (L. F.), 5.
Cycadella ramen tosa Ward, Ward (L. F.), 5.
Cycadella reedii Ward, Ward (L. F.), 5.
Cycadella wyomingensis Ward, Ward (L. F.), 5.
Cycadella californicnm n. sp., Fontaine, 3.
Cycadella montanense n. sp., Fontaine, 4.
Cycadella obovatum Fontaine, Fontaine, 5.
Cycadella ovatnm n. sp., Fontaine, 1.
Cycadella cylichna Loven, Arnold, 2.
Cycadella alba Brown, Arnold, 2.
Cycadella calvertensis n. sp., Martin, 5.
Cycadella costata Gabb, Whiteaves, 12.
Cycadella greensboroensis n. sp., Martin, 5.
Cycadella oriza Stimpson, Sears, 1.
Cycadella venusta Clark, Clark and Martin, 2.
Cyclorhina nobilis Hall, Kind and Breger, 1.
Cyclorhina communis n. sp., Rogers, 3.
Cyclorhina limbatus n. sp., Rogers, 3.
Cyclorhina minutus n. sp., Rogers, 3.
Cyclorhina packardii n. sp., Rogers, 3.
Cyclorhina permarginatus n. sp., Rogers, 3.
Cyclorhina loveni, Arnold, 2.
Cyclorhina alba Brown, Arnold, 2.
Cyclorhina calvertensis n. sp., Martin, 5.
Cyclorhina costata Gabb, Whiteaves, 12.
Cyclorhina greensboroensis n. sp., Martin, 5.
Cyclorhina oriza Stimpson, Sears, 1.
Cyclorhina venusta Clark, Clark and Martin, 2.
Cyclorhina wyomingensis Ward, Ward (L. F.), 5.
Cyclorhina californicnm n. sp., Fontaine, 3.
Cyclorhina montanense n. sp., Fontaine, 4.
Cyclorhina obovatum Fontaine, Fontaine, 5.
Cyclorhina ovatnm n. sp., Fontaine, 1.
Cyclorhina cylichna Loven, Arnold, 2.
Cyclorhina alba Brown, Arnold, 2.
Cyclorhina calvertensis n. sp., Martin, 5.
Cyclorhina costata Gabb, Whiteaves, 12.
Cyclorhina greensboroensis n. sp., Martin, 5.
Cyclorhina oriza Stimpson, Sears, 1.
Cyclorhina venusta Clark, Clark and Martin, 2.
Paleontology—Continued.

Genus and species described—Continued.

Cyphaspis hudsonica n. sp., Ruedemann, 2.

matutina n. sp., Ruedemann, 2.

trentensis n. sp., Welser, 6.

Cyphotrypa n. gen., Ulrich and Bassler, 2.

acervulosa (Ulrich), Ulrich and Bassler, 2.

frankfortensis n. sp., Ulrich and Bassler, 2.

wiltoniensis n. sp., Ulrich and Bassler, 2.

Cyphaspis hudsohica n. sp., Ruedemann, 2.

*matutina n. sp., Ruedemann, 2.

trentonensis n. sp., Weller, 6.

Cyphaspis n. gen., Ulrich and Bassler, 2.

acervulosa (Ulrich), Ulrich and Bassler, 2.

*frankfortensis n. sp., Ulrich and Bassler, 2.

wiltoniensis n. sp., Ulrich and Bassler, 2.

Cypraea Linné, Arnold, 2.

fresnoensis n. sp., Anderson, 7.

nuculoides n. sp., Aldrich, 2.

smithii Aldrich, Clark and Martin, 2.

spadicea Gray, Arnold, 2.

snailensis Whiteaves, Whiteaves, 12.

Cypricardinia? carbonaria Meek, Beede, 1.

carbonaria Meek, Gilty, 3.

catacaracta Conrad, Kindle, 1.

? *cylindrica H. and W., Kindle, 1.*

indenta Conrad, Kindle, 1.

sublamellosa Hall, Weller, 6.

Cypricardites descriptus n. sp., Sardeson, 1.

dignus n. sp., Sardeson, 1.

finitimus n. sp., Sardeson, 1.

*(Vanuxemia) fragosus n. sp., Sar­

deson, 1.*

lucentus n. sp., Sardeson, 9.

minnesotensis n. sp., Sardeson, 9.

triangularis n. sp., Sardeson, 9.

vicinus n. sp., Sardeson, 9.

Cypridina antiqua n. sp., Jones (T. R.), 3.

Cypriceria Conrad, Dall, 8.

lens Whiteaves, Whiteaves, 12.

? *sulcata n. sp., Johnson (D. W.), 5.*

Cyprina? anthracicola n. sp., Whit­

eaves, 12.

*coterol Castillo and Aguillera, Cra­

gin, 2.*

denmanensis n. sp., Whiteaves, 12.

? *streeruvitzii Cragin, Cragin, 2.*

albertensis n. sp., Whiteaves, 6.

(Corbicula) dumblei n. sp., Ander­

son, 7.

(Pseudocyrena) duplinianna n. sp., Dall, 8.

Cyrena (Pseudocyrena) floridana Con­

rad, Dall, 8.

gravesi Deshayes, Rayn, 1.

pompholyx Dall, Dall, 8.

cyrenestrum Bourguignat, Dall, 8.

cyrenodonax Dall, Dall, 8.

cyrenolda Joannis, Dall, 8.

caloosaensis Dall, Dall, 8.

cyrtina Davidson, Grabau, 1.

acutirostris (Shum.), Welser, 2.

crassa Hall, Kindle, 1.

hamiltonensis Hall, Raymond (1', E.), 3, 4.

hamiltonensis Hall, Weller, 6.

hamiltonensis Hall, Kindle, 1.

var. recta Hall, Kindle, 1.

hamiltonensis Hall, mut. pygmea nov., Loomis, 4.

magnaplicata n. sp., Weller, 6.

pyramidalis (Hall), Grabau, 1.

rostrata Hall, Weller, 6.

varia Clarke, Weller, 6.

sp. undet., Welser, 6.

cyrtoceras Goldfuss, Grabau, 1.

arcticameratum Hall, Clarke and Ruedemann, 1.

bovinum n. sp., Clarke and Ruedemann, 1.

cf. brevicorne Hall, Clarke and Ruedemann, 1.

bolivianum n. sp., Herzer, 5.

crecescens n. sp., Herzer, 5.

dresbachense n. sp., Sardeson, 2.

expansum n. sp., Kindle, 1.

graclus n. sp., Cieland, 3.

orodes Billings, Clarke and Ruedemann, 1.

subcampanulatum Hall, Grabau, 1.

? *winonicum n. sp., Sardeson, 2.*

sp. undet., Kindle, 1.

cyrtodonta billingsi Ulr., Weller, 6.

canadensis Bill., Weller, 6.

? *lamellosa n. sp., Hudson, 1.*

solitaria n. sp., Raymond (P. E.), 7.

tranceps n. sp., Raymond (P. E.), 7.

cyrtolites bennetti n. sp., Rowley, 1.

oratus var. minor U. & S. Welser, 6.

sinatus H. & W., Welser, 8.

cytonella mitella Hall, Weller, 6.

cyrtorhizoceras curvicameratum n. sp., Clarke and Ruedemann, 1.

cyrtospira attenuata n. sp., Ruedemann, 2.

*cystelasma quinqueseptatum n. sp., Ul­

rich, 8.*

cysthiphyllum Goldfuss, Grabau, 1.

* solitude n. sp., Greene, 2.*

cythiphryllum Goldfuss, Grabau, 1.
Paleontology—Continued.
Genera and species described—Continued.
Cyrtophyllum Lonsdale, Lambe, 2.
aggregatum Billings, Lambe, 2.
basalis n. sp., Herzer, 5.
clavatum n. sp., Greene, 12.
conspicuum n. sp., Greene, 15.
crenatum n. sp., Greene, 15.
discoideum n. sp., Herzer, 5.
diversum n. sp., Greene, 1.
expansum n. sp., Greene, 1.
fulcratum n. sp., Greene, 12.
gemmiferum n. sp., Greene, 15.
hydraulicum Simpson, Grabau, 1.
louisvillensis n. sp., Greene, 1.
maritimum Billings, Lambe, 2.
multicrenatum n. sp., Greene, 2.
miagarensi Hall (sp.), Lambe, 2.
periamellosum n. sp., Herzer, 5.
prostratum n. sp., Herzer, 5.
retorsum n. sp., Herzer, 5.
sphyus n. sp., Herzer, 5.
sulcatum Billings, Lambe, 2.
vesiculosum Goldfuss (sp.), Lambe, 2.
vesiculosum Phillips, Greene, 15.
Cystodictya Ulrich, Condra, 2.
anisopora u. sp., Condra, 1, 2.
inequamarginata Rogers, Condra, 2.
lophodes n. sp., Condra, 1, 2.
Cytherea Bolten, Dall, 8.
Cystodictya Ulrich, Condra, 2.
anisopora n. sp., Condra, 1, 2.
inequamarginata Rogers, Condra, 2.
lophodes n. sp., Condra, 1, 2.
Cythere burmii n. sp., Ulrich and Bassler, 3.
calverti n. sp., Ulrich and Bassler, 3.
clarkana n. sp., Ulrich and Bassler, 3.
clarkana var. minuscula n. var., Ulrich and Bassler, 3.
dorsicornis n. sp., Ulrich and Bassler, 3.
dorsicornis var. bicornis n. var., Ulrich and Bassler, 3.
evax n. sp., Ulrich and Bassler, 3.
evax var. oblongula n. var., Ulrich and Bassler, 3.
exanthemata n. sp., Ulrich and Bassler, 3.
franchea n. sp., Ulrich and Bassler, 3.
inequivalvis n. sp., Ulrich and Bassler, 3.
llenkenklasli n. sp., Ulrich and Bassler, 3.
martini n. sp., Ulrich and Bassler, 3.
marylandica n. sp., Ulrich, 1.
micula n. sp., Ulrich and Bassler, 3.
nitidula n. sp., Ulrich and Bassler, 3.
nitidula var. calvertensis n. var., Ulrich and Bassler, 3.
pyaipunctata n. sp., Ulrich and Bassler, 3.
Cythereidella ashermani n. sp., Ulrich and Bassler, 3.
cylindrica n. sp., Ulrich and Bassler, 3.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Cytherideis longula n. sp., Ulrich and Bassler, 3.
sonicircularis n. sp., Ulrich and Bassler, 3.
subaequalis n. sp., Ulrich and Bassler, 3.
Cytheropteron nodusom n. sp., Ulrich and Bassler, 3.

Dacentrurus nov. nom., Lucas, 11.

Dadoxylon antiquum Dn., Penhallow, 1.
edwardanum Dn., Penhallow, 1.
proseri n. sp., Penhallow, 1.

Daedalus Roualt, Sarle, 4.

Dsemonelix, Peterson, 3.

Daemonelix, Jennings (O. E.), 1.

Dalmanella Hall and Clarke, Grabau, 1.
elegantula Dalman, Kindle and Breger, 1.
elegantula Dalman, Grabau, 1.
elegantula Dalman 1827, Beecher, 1.
cf. elegantula Dalman (sp.), Clarke and Ruedemann, 1.
cf. hybrida Sowerby (sp.), Clarke and Ruedemann, 1.

Dalmanites Barrande, Grabau, 1.

achates Billings, Ruedemann, 2.

(Chasmops) ageria Hall, Kindle, 1.
(Chasmops) anchio (Green), Kindle, 1.

(Symphoria) arkansanus n. sp., Van Ingen, 2.
asphelona n. sp., Weller, 6.
(Cryphaeus) booth var., callites Green (H. and C.), Kindle, 1.

(Cryphaeus) calypso H. and W., Kindle, 1.
dentatus Barrett, Weller, 6.
electra (Bill.), Weller, 6.
limulurus (Green), Grabau, 1.

lunatus n. sp., Lambert, 1, 2.

(Cryphaeus) piolone Hall and Clarke, Kindle, 1.
pleuroptyx (Green), Weller, 6.
(Hausmannia) pleuroptyx Green (Hall?), Kindle, 1.

(Chasmops) solenurus (Hall and Clarke), Kindle, 1.

(Symphoria) vigilans Hall, Kindle and Breger, 1.
(Symphoria) vigilans Hall, Van Ingen, 2.
sp. cf. anchio (Green), Weller, 6.
sp. undet. Weller, 6.

Dalmanites acicularis n. sp., Knowlton, 18.

cliffwoodensis, Hollick, Berry, 5.

northportensis n. sp., Hollick, 11.

Danneopsis storiell n. sp., Fontaine, 1.

Danubites Mojsisovics, Hyatt and Smith, 1.

strongi n. sp., Hyatt and Smith, 1.

Damonella Mojsisovics, Smith (J. P.), 5.
dubia Gabb, Smith (J. P.), 5.

Daphænus Leidy, Hatcher, 10.
dodgel Scott, Hatcher, 10.
felini Scott, Hatcher, 10.

Dawsonia Nicholson, Ruedemann, 8.

monodon Gurlie, Ruedemann, 8.

Dawsonoceras annulatum Sowerby var. americanum Pood, Clarke and Ruedemann, 1.

Delnodon Leidy, Osborn, 50.

Delnodon Leidy, Stanton and Hatcher, 1.

 explanatus Cope (sp.) Lambe, 3.
horridus Leidy, Lambe, 3.

Dekayella, Cumings, 7.

Dekayella Ulrich, Ulrich and Bassler, 2.

foliacea n. sp., Ulrich and Bassler, 2.
trentonensis (Ulrich), Nickies, 6.
ulrichi (Nicholson), Nickies, 6.

Dekayia, Cumings, 7.

Dekayia Edwards and Halme, Ulrich and Bassler, 2.
aspera Edwards and Halme, Nickies, 6.
cystata n. sp., Cumings, 3.
magnan. sp., Cumings, 3.

perfrondosa n. n., Cumings, 7.

subfrondosa n. sp., Cumings, 7.
ulrichi-lotata n. var., Cumings, 7.

Delphinodon Leidy, Case, 9.
leidy (Hay), Case 9.
memento Cope, Case, 9.

Delphinoida Brown, Arnold, 2.
coronadoensis n. sp., Arnold, 2.

Delphinosaurus, Herr (J. C.), 13.
perrini, Herr (J. C.), 13.

Delphnula stantoni n. sp., Cragin, 2.

Deltthyris consobrinus d’Orbigny, Raymond (P. E.), 3, 4.
rarecosta Conrad, Kindle, 1.

sculptilis Hall, Kindle, 1.

Deltoodus Newberry and Worthen, Brans on, 1.
angularis Newberry and Worthen, Eastman, 10.
attenuatus n. sp., Brans on, 1.
contortus (St. John and Worthen), Eastman, 10.

costatus (Newberry and Worthen), Eastman, 10.
occidentalis (Leidy), Eastman, 10.

spatulatus Newberry and Worthen, Eastman, 10.
Paleontology—Continued.

Genera and species described—Continued.

Deltodus spatulatus Newberry and Worthen, Branson, 3.

Dendrograptus Hall, Ruedemann, 7.

Dentalium Linne, Arnold, 2.

Dentifera Linear, Arnold, 2.

D. attenuatuni Say, Martin, 5.

D. caduloide ball, Martin, 5.

D. danai Meyer, Martin, 5.

D. grandavum Win., Weller, 2.

D. hexagonum Sowerby, Arnold, 2.

D. indinator Carpenter, Arnold, 2.

D. minutistratum Gabb, Clark and Martin, 2.

D. mississippiensis Gabb, Clark and Martin, 2.

D. opaculum n. sp., Casey, 4.

D. polygonum n. sp., Casey, 4.

D. pseudohexagonum ball, Arnold, 2.

D. sublaeve Hall, Girty, 3.

D. zephyrinum n. sp., Casey, 4.

D. sp., Ball, 10.

D. berbya Waagen, Beede, 1.

D. bennetti Hall and Clarke, Beede, 1.

D. crassa (Meek and Hayden), Beede, 1.

D. crassa Meek and Hayden, Girty, 3.

D. cymbula Hall and Clarke, Beede, 1.

D. cymbula Meek and Hayden, Girty, 3.

D. cymbula Hall, Grabau, 1.

D. niagarense Hall, Grabau, 1.

D. perforatum n. sp., Whiteaves, 17.

D. pugnus n. sp., Clarke, 19.

D. (Naticopsis) rotundatum n. sp., Clarke, 19.

D. Diastoma Deshayes, Arnold, 2.

D. Diatrype gigantea, Lucas, 15.

D. Diectonurus Hall, Walcott, 12.

D. appalachia n. sp., Walcott, 12.

D. danai Meyer, Martin, 5.

D. danai Win., Weller, 2.

D. diameopora Hall, Grabau, 1.

D. dichotoma Hall, Grabau, 1.

D. biaphorostoma niagarense Hall, Grabau, 1.

D. perforatum n. sp., Clarke and Ruedemann, 1.

D. pectenoides Whitfield, Walcott, 12.

D. politus Hall, Walcott, 12.

D. Diceratops Lull, Lull, 7.

D. Diceratops hatcheri Lull, n. gen. and sp., Hatcher, 22.

D. Dichocrinus inoratus Wachsmuth and Springer, Grabau, 8.

D. Dichocryptus Salter, Ruedemann, 8.

D. octobrachiatus Hall (sp.), Ruedemann, 8.

D. Dicraea montanensis n. sp., Fontaine, 4.

D. ortogonensis n. sp., Fontaine, 1, 2.

D. pachyphylia n. sp., Fontaine, 3, 4.

D. saportana Heer, Fontaine, 2.

D. Dicranograptus ramosus (Hall), Weller, 6.

D. Dictyoccephalus Leidy, Branson, 2.

D. Dictyocoryne profunda Ehrenberg, Martin, 8.

D. Dictyomella Hall, Grabau, 1.

D. coralifera Hall, Grabau, 1.

D. Dictyonema Hall, Grabau, 1.

D. Dictyonema Hall, Ruedemann, 8.

D. flabelliforme Eichwald (sp.), Ruedemann, 8.

D. furciferum n. sp., Ruedemann, 8.

D. rectilinatum n. sp., Ruedemann, 8.

D. Dictyopyge Egerton, Eastman, 20.

D. Dictyoretmon n. gen., Whitfield, 8.

D. Didymograptus McCoy, Ruedemann, 8.

D. acutidenis Lapworth ms., Elles and Wood em., Ruedemann, 8.

D. bifidus Hall sp., Ruedemann, 8.

D. (Isograptus) cudceus Salter em., Ruedemann, Ruedemann, 8.

D. ceadceus Salter nanus n. mut., Ruedemann, 8.

D. cancerinus Hopkinson, Ruedemann, 8.

D. cancellatus Hopk. (sp.), Ruedemann, 8.

D. intricatus n. sp., Ruedemann, 8.

D. Dewalquea greelandica Heer, Berry, 5.

D. Dextobla hall Win., Weller, 2.

D. ovata (Hall), Weller, 2.

D. Diacranodus texensis Cope, Broili, 3.

D. Diadectidse Cope, Case, 12.

D. Diamesopora Hall, Grabau, 1.

D. dichotoma Hall, Grabau, 1.

Diaphorostoma Fischer, Grabau, 1.

D. desmatum Clarke, Shimer, 5.

D. lineatum Conrad, mut. bellal

Clarke, Loomis, 4.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Diodemograpthus gracilis Tornquist, Ruedemann, 8.

filiformis Tuliberg, Ruedemann, 8.

forcipifromis n. sp., Ruedemann, 8.

icertus n. sp., Ruedemann, 8.

nanus Lapworth, Ruedemann, 8.

nicholsoni Lapworth var. planus Elles and Wood, Ruedemann, 8.

nittidus Hall sp., Ruedemann, 8.

patulus Hall sp., Ruedemann, 8.

similis Hall sp., Ruedemann, 8.

spinulosus n. sp., Ruedemann, 8.

tornquisti n. sp., Ruedemann, 8.

Dielasma, Beecher, 1.

bovidens (Morton), Beede, 1.

bovidens Morton?, Girty, 3.

? pediculus n. sp., Rowley, 1.

schucherti n. sp., Beede, 8.

zellei (Win.), Weller, 2.

Dileneria n. gen., Hyatt and Smith, 1.

arthaberi n. sp., Hyatt and Smith, 1.

Dilectites Wood, Dall, 8.

Dilecalocephalus minnesotensis Owen, Sardeson, 2.

newtonensis n. sp., Weller, 6.

Dimeripteris incerta (Dn.) D. W., White (D.), 18.

recurva (Dn.) D. W., White (D.), 18.

Dimetrodon, Sternberg, 2.

Dimetrodon, Case, 7, 8, 11.

gigas Cope, Case, 7, 11.

incisivus Cope, Broili, 2.

sp. near incisivus Cope, Case, 11.

Dimorpbocercus, Hyatt and Smith (J. P.), 3.

texamim n. sp., Smith (J. P.), 3.

Dinarites Mojsisovics, Hyatt and Smith (J. P.), 3.

bona-vista n. sp., Hyatt and Smith, 1.

Dinichthys, Clark (W.), 1.

Dinichthys, Wright (A. A.), 1.

clarki Claypole, Hussakof, 2.

curtus Newb., Hussakof, 2.

intermedius Newb., Hussakof, 1.

pustulosus, Eastman, 8.

Dinctis, Matthew (W. D.), 19.

bombifrons Adams, Matthew (W. D.), 2.

fortis Adams, Matthew (W. D.), 2.

squalidens Cope, Matthew (W. D.), 2.

Dinobolas conradi Hall, Kindle and Breger, 1.

Dinocelurus hollandi n. gen. and sp., Peterson, 4.

Dinocyon (Borophagus) diversidens (Cope), Matthew (W. D.), 5.

(B o r o p h a g u s) gidielyi n. sp., Matthew (W. D.), 3.

(D o r o p h a g u s) mammarius (Hatcher), Matthew (W. D.), 5.

ostiragus n. sp., Dowchass, 8.

Bull. 301—06—42

Paleontology—Continued.

Genera and species described—Continued.

Dinonyx (n. u.), for Dinocherus, Peterson, 5.

Dinorthis pectinella (Emm.), Weller, 6.

subquadrata (Hall), Hayes and Ulrich, 1.

Dionoites buchanianus (Ettingshausen).

Bornemann, Fontaine, 3, 5.

buchanianus abietinus (Göppert).

Ward n. comb., Fontaine, 3, 5.

buchanianus rarinervis Fontaine?, Fontaine, 3.

Dipteropus (Göppert) Miquel, Fontaine, 3.

Diopeus leptocephalus, Case, 6.

Diospyros elliptica n. sp., Knowlton, 14.

judithis n. sp., Knowlton, 18.

primavera Heer, Berry, 6.

Diphyodus longirostris n. sp., Lambe, 3.

Diphyphysis Lonsdale, Lambe, 2.

arundinaceaum Billings, Lambe, 2.

bilingis n. sp., Greene, 6.

integumentum Barrett, Weller, 6.

cassipitum Hall (sp.), Lambe, 2.

dilatum n. sp., Greene, 15.

multicorne Hall (sp.), Lambe, 2.

rugosum Milne Edwards and Haine (sp.), Lambe, 2.

simcoense Billings (sp.), Lambe, 2.

strictum Milne Edwards and Haine (sp.), Lambe, 2.

verneualnum Milne Edwards and Haine (sp.), Lambe, 2.

Diploclema Ulrich, Grabau, 1.

bursa (Hall), Grabau, 1.

Diplocaulus Cope, Broili, 1, 2.

Diplocaulus Cope, Case, 3.

copel n. sp., Broili, 2.

magnicornis, Broili, 1.

magncicornis Cope, Broili, 2.

puslilus n. sp., Broili, 2.

Diplodocus, Hatcher, 15.

Diplodocus (Marsh), Hatcher, 1.

Diplodocus Osborn and Granger, 1.

longus Osborn, 32.

Diplodonta Brown, Arnold, 2.

acclinis Conrad, Glenn, 6.

harfordi n. sp., Anderson, 7.

hopkinsensis Clark, Clark and Martin, 2.

maritoborensis n. sp., Clark and Martin, 2.

orbein Gould, Arnold, 2.

sericata Reeve, Arnold, 2.

shilohensis Dall, Glenn, 6.

subverex (Conrad), Glenn, 6.

sp., Dall, 10.

Diploraptus McCoy, Ruedemann, 8.

angustifolius (Hall), Weller, 6.

dentatus Bronnstriart sp., Ruedemann, 8.

foliacus (Murch.), Weller, 6.

inutilis Hall, Ruedemann, 8.

laxus n. sp., Ruedemann, 8.
Paleontology—Continued.

Genera and species described—Continued.

Diplograptus longicaudatus n. sp., Ruedemann, 8.

Diplomoceras notabile n. sp., Whiteaves, 12.

Diploneis microtatos var. christianii Cleve, Boyer, 1.

Diplophyllum Hall, Grabau, 1.

cspitosum Hall, Grabau, 1.

cspitosum Hall, Clarke and Ruedemann, 1.

Diploria labyrinthiformis (Linn.) emend Esper, Vaughan, 2.

Diplotrypa limitaris Ulr., Sardeson, 3.

Diplurus Newberry, Eastman, 20.

clongicaudatus Newberry, Eastman, 20.

Diploides Jäger, Matthew and Gidley, 1.

tortus (Leidy), Matthew and Gidley, 1.

Discina concordensis n. sp., Sardeson, 9.

Discinisca lugubris Conrad, Dall, 8.

lugubris (Conrad), Martin, 6.

Discinocaris, Clarke, 8.

Discohelix californicus n. sp., Weaver, 1.

costatus n. sp., Weaver, 1.

Discorbina Parker and Jones, Bagg, 6.

allomorphoides (Reuss), Bagg, 9.

bertheloti (d'Orbigny), Bagg, 1.

orbicularis (Terquem), Bagg, 6.
turbo (d'Orbigny), Bagg, 1.

Discosaurus Leidy, Williston, 14.

costatus n. sp., Wood (Elvira), 3.
costatus W. and Sp., Rowley, Greene, 8.
costatus W. & S., Rowley, Greene, 8.
costatus var. incarinatus n. var., Rowley, Greene, 10.
costatus n. sp., Wood (Elvira), 3.
curriei n. sp., Rowley, Greene, 9.
elegantulus n. sp., Rowley, Greene, 8.

Dolatocrinus Lyon, Wood (Elvira), 3.

aplatus M. & G., Rowley, Greene, 8.

arrosus var. cognatus n. var., Rowley, Greene, 8.

asterias n. sp., Wood (Elvira), 3.
celatus M. & G., Rowley, Greene, 11.

charlestownensis M. & G., Rowley, Greene, 10.

charlestownensis Miller and Gurley, Wood (Elvira), 3.
corbuliformis n. sp., Rowley, Greene, 10.
corpuscorpus var. concinnus n. var., Rowley, Greene, 10.
costatus n. sp., Wood (Elvira), 3.
curcie n. sp., Rowley, Greene, 9.
elegantulus n. sp., Rowley, Greene, 8.
exicavatus W. and Sp., Rowley, Greene, 14.
exicavatus Wachsmuth and Springer, Wood (Elvira), 3.
exicavatus W. & S., Rowley, Greene, 8.
exicavatus var. incarinatus n. var., Rowley, Greene, 7.
fungiferus n. sp., Rowley, Greene, 8.
greenii M. & G., Rowley, Greene, 11.
greenii Miller and Gurley, Wood (Elvira), 3.
hammelli Miller and Gurley, Wood (Elvira), 3.
major Wachsmuth and Springer, Wood (Elvira), 3.
marsli Lyon, Rowley, Greene, 11.
multibrachiatus n. sp., Rowley, Greene, 9.
multinodosus n. sp., Rowley, Greene, 10.
nodosus M. & G., Rowley, Greene, 11.
noduliferus n. sp., Rowley, Greene, 9.
ornatus Meek, Wood (Elvira), 3.
preciosus M. & G., Rowley, Greene, 10.
pulchellus M. & G., Rowley, Greene, 6.
salebrosus Miller and Gurley, Wood (Elvira), 3.
spinulosus M. & G., Rowley, Greene, 11.
springeri n. sp., Rowley, Greene, 8.
triadactylus Barris, Wood (Elvira), 3.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genra and species described—Continued.

Dolatocrinus venustus M. & G., Rowley, Greene, 11.

wachamuthi n. nom., Wood (Elvira), 3.

welleri n. sp., Rowley, Greene, 9.

sp. ?, Rowley, Greene, 6.

sp., Wood (Elvira), 3.

Dolcereris pennsylvanica Dn. sp., White (D.), 10.

Dolichobrachium gracile n. gen. and sp., Williston, 23.

Dolichopterus Hall, Grabau, 1.

macrocrothallus Hall, Grabau, 1.

Dolichorynchops Williston, Williston, 14.

osborni Williston, Williston, 14.

osborni n. sp., Williston, 9.

Dolichotoma Bellardi, Arnold, 2.

Donacopsis Sandberger, Dall, 8.

Dolichorhynchops Williston, Williston, 9.

Dolichopterus Hall, Grabau, 1.

Dolichopterus Hall, Grabau, 1.
Paleontology—Continued.
Genera and species described—Continued.
Echinocaris clariki n. sp., Beecher, 8.
randalli n. sp., Beecher, 8.
socialis, Beecher, 8.
Echinocanthera Fischer, Dall, 8.
antiquata n. sp., Dall, 8.
arcinella Linné, Dall, 8.
Ephora Conrad, Martin, 5.
quadrastata (Say), Martin, 5.
quadrastata var. umbilicata (Wagner), Martin, 5.
tampensis (Dall), Martin, 5.
tricostata n. sp., Martin, 5.
Edaphosaurus pogonias, Case, 6.
Edestus, Eastman, 6, 8, 13, 22.
heinrichi N. & P., Eastman, 6.
Edmondia (?) arcuata n. sp., Cleland, 3.
aspinallensis Meeck, Beede, 1.
? dockeri n. sp., Weller, 6.
gibbsa Geinitz, Girty, 3.
mortonis Meeck, Girty, 3.
nebrascensis (Meeck), Girty, 3.
nuptialis Win., Weller, 2.
strigilata Win., Weller, 2.
subtruncata Meeck, Girty, 3.
Ecorthes (7 sp.), Girty, 3.
Ediocrinus Hall, Talbot, 2.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
? aspinwallensis Meek, Beede, 1.
gibbosa Geinitz, Girty, 3.
mortonensis Geinitz?, Girty, 3.
tricostata n. sp., Martin, 5.
? sp., Girty, 3.
Egleria dolosy, Dall, 8.
section Egleria s. s., Dall, 8.
section Prosephleria Dall, 8.
paradoxa (Born.), Dall, 8.
Elastatium n. gen., Clarke, 19.
? arcuata n. sp., Cleland, 3.
aspinallensis Meeck, Beede, 1.
gibbsa Geinitz, Girty, 3.
mortonis Meeck, Girty, 3.
nebrascensis (Meeck), Girty, 3.
nuptialis W., Weller, 2.
strigilata W., Weller, 2.
subtruncata Meeck, Girty, 3.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Eoelastodus Cope, Williston, 14.
Eleutheroblastus, Hambach, 1.
Eleutherocrinus cassedayi Y. & S., Rowley, 11.
cassedayi Shumard and Yandell, 11.
Paleontology—Continued.

Genera and species described—Continued.

Enclis directus (Conrad), Glenn, 6.

Enclisiformis Conrad, Glenn, 6.

Entelethes hemiplicata (Hall), Beede. 1.

hemiiplicata Hall, Girty, 3.

Enteroelasma Simpson, Grubau, 1.

caliculus (Hall), Grubau, 1.

ci. caliculus Hall (sp.), Clarke and Ruedemann, 1.

Entodesma Philippi, Dall, 8.

Entolium aviculatum (Swallow), Beede, 1.

Entomis prosephina nov., Loomis, 4.

serratostrata Sandberger, Clarke, 19.

vairasistra Clarke, Clarke, 19.

Entophtyes rostratus n. sp., Sinclair, 6.

Enslis directus (Conrad), Glenn, 6.

Enslisiformis Conrad, Glenn, 6.

Enteletes hemiplicata (Hall), Beede. 1.

uemiplicatus Hall, Girty, 3.

Enterolasma Siinpson, Grabau, 1.

caliculus (Hall), Grabau, 1.

ci. caliculus Hall (sp.), Clarke and Ruedemann, 1.

Entodesma Philippi, Dall, 8.

Entolium aviculatum (Swallow), Beede, 1.

Entomis prosephina nov., Loomis, 4.

serratostrata Sandberger, Clarke, 19.

vairasistra Clarke, Clarke, 19.

Entophtyes rostratus n. sp., Sinclair, 6.

Equisetum phillipsii (Bunker) Brongniart, Fontaine, 4.

texense Fontaine?, Fontaine, 3.

? sp., Fontaine, 1.

Eospongia Billings, Seely, 3.

? sp., Knowlton, 14.

Equus barccmei Cope, Gidley, 1.

complicatus (Leidy), Gidley, 1.

conversidens Owen, Gidley, 1.

crenidens Cope, Gidley, 1.

fraternus Leidy, Gidley, 1.

giganteus n. sp., Gidley, 1.

occidentalis Leidy, Gidley, 1.

pachicus Leidy, Gidley, 1.

pectinatus (Cope), Gidley, 1.

scotti Gidley, Gidley, 1.

Eosurcula n. gen., Casey, 5.

cconcina n. sp., Casey, 5.

helicoidea n. sp., Casey, 5.

obesa n. sp., Casey, 5.

Eospongia Billings, Seely, 3.

varius Billings, Seely, 3.

Eostrophomena n. subg. of Strophomena, Walcott, 12.

Eoscurula n. gen., Casey, 5.

concina n. sp., Casey, 5.

helicoidea n. sp., Casey, 5.

moorei Gabb, Casey, 5.

pulcherrima Helip., Casey, 5.

tuomeyi Ald., Casey, 5.

Eotomaria areyi n. sp., Clarke and Ruedemann, 1.

dorhamensis Whiteaves (sp.), Clarke and Ruedemann, 1.

galtensis Billings (sp.), Clarke and Ruedemann, 1.

kayseri n. sp., Clarke and Ruedemann, 1.

obsoletum n. sp., Raymond (P. E.), 7.

Ephedrites? vernonensis n. sp., Fontaine, 5.

Ephedrites? vernonensis n. sp., Fontaine, 5.

Eriphyla Gabb., Ball, 8.

Eriphyla Gabb., Ball, 8.

Eridotrypa briareus (Nicholson), Nickles, 6.

mutabilis Ulr., Sardeson, 3.

Eridotrypa briareus (Nicholson), Nickles, 6.

mutabilis Ulr., Sardeson, 3.

Eritoma Risso, Arnold, 2.

columella Menke, Arnold, 2.

Eretmocrinus brevis n. sp., Rowley, 2.

nodosus, Rowley, 4.

Eretmocrinus brevis n. sp., Rowley, 2.

nodosus, Rowley, 4.

Erisocrinus megalobrachius Beede, Beede, 1.

Eryphyla Gabb., Ball, 8.

Eryops Cope, Case, 5.

latus n. sp., Case, 5.

megacephalus, Sternberg, 2.

megacephalus Cope, Case, 3.
Paleontology—Continued.

Genera and species described—Continued.

Escasona, Matthew (G. F.), 20.

Eugyrichnites minutus n. gen. and sp., Aml, 46.

Euhaplos platyceps n. gen. and sp., Peterson, 3.

Gallima Risso, Arnold, 2.

Eupachycrinus magister Miller and Gurley, Beede, 1.

Eupalamosphyllum var., Kinddle and Breger, 1.

Eupalympachys grangeri, Kinddle and Breger, 1.

Eupaleitherium n. gen., Sinclair and Furlong, 1.

collinsum n. sp., Sinclair and Furlong, 1.

collinsum Furlong and Sinclair, 7.

Euchilodon Gabb, Casey, 5.

crenocrinatum Hulpe, Casey, 5.

gabbianum n. sp., Casey, 5.

Euhaplos platyceps n. gen. and sp., Peterson, 3.

Eupalaemopus Hay, Lull, 2.

dananus (E. Hitchcock), Lull, 2.

Eupatagaposia bicarinata McChesney, Girty, 3.

taggarti Meek, Girty, 3.

Euvampyrion australis n. sp., Hudson, 1.

cretaceum Whiteaves, Whiteaves, 12.

Euphegma nodocarinatum Hall, Girty, 3.

Euphegma subpapillosus White?, Girty, 3.

Euphyllopidae var., Kinddle and Breger, 1.

Euphyllum var., americanus n. var., Kinddle and Breger, 1.

Euphegma nodocarinatum Hall, Girty, 3.

Euphyllopidae var., americanus n. var., Kinddle and Breger, 1.

Euphyllopidae var., americanus n. var., Kinddle and Breger, 1.
Paleontology—Continued.

Genera and species described—Continued.

Eupodiscus inconspicuus Rattray, Boyer, 1.
Euprotogonia puercensis (Cope), Douglass, 3.
puercensis (Cope), Marsh, Osborn, 36.
Eupsammia conradi Vaughan, Vaughan, 1.
elaborata (Conrad). Vaughan, 1.
Euryacodon lepidus Marsh, Wortman, 14.
Eurychilina bulbifera n. sp., Ruedemann, 2.
dianthus n. sp., Ruedemann, 2.
Eurypterus De Kay, Grabau, 1.
dekayi Hall, Grabau, 1.
Eutbydesma Hall, Clarke, 19.
s threatile Hall, Clarke, 19.
Eutivela Dall, Ball, 8.
Eutomoceras Hyatt, Hyatt and Smith, 1.
Eutomoceras Hyatt, Smith (J. P.), 5.
dunni n. sp., Smith (J. P.), 5.
Eutypomys n. gen., Mathew (W. D.), 22.
thomsoni n. sp., Matthew (W. D.), 22.
Evalen A. Adams, Arnold, 2.
Eoxenampe E. Hitchcock, Luell, 2.
arcata E. Hitchcock, Luell, 2.
minima E. Hitchcock, Luell, 2.
oruna E. Hitchcock, Luell, 2.
Exogyra clarkei n. sp., Shattuck, 8.
potosina Castillo and Agullera, Cragin, 2.
subplicifera Felix, Cragin, 2.
Falsifusus n. gen., Grabau, 16.
? apicallis (Johnson) Grabau, 16.
? houstonensis (Johnson), Grabau, 16.
ludovicianus (Johnson), Grabau, 16.
meyeri (Aldrich), Grabau, 16.

Paleontology—Continued.

Genera and species described—Continued.

Fasciolaria crookiana n. sp., Whittfield, 13.
rondi n. sp. Mather, 1.
Fasciopora subramosa n. sp., Ulrich, 2.
Favia Oken, 1815, Vaughan, 2.
Favosites Lamark, Grabau, 1.
clusius Rominger, Greene, 12.
constriterius (Hall), Grabau, 1.
corrugatus n. sp., Weller, 6.
cystoides n. sp., Herzer, 5.
favosus, Hayes and Ulrich, 1.
forbesi Edwards and Halme, Clarke and Ruedemann, 1.
gibsoni n. sp., Parks, 5.
gothis Ulmark, Clarke and
Ruedemann, 1.
heldberggic Hall, Shimer, 5.
heldberggic Hall, Weller, 6.
heldberggic precedens, n. var.,
Schuchert, 4.

bisnigeri Edwards and Halme,
Clarke and Ruedemann, 1.
iouisillenensis n. sp., Greene, 14.
niagarensis Hall, Clarke and Ruedemann, 1.
niagarensis Hall, Grabau, 1.
parasiticus (Hall), Grabau, 1.
pyriformae (Hall), Weller, 6.
pyriformis (Hall), Grabau, 1.
seanami n. sp., Greene, 4.
sphericus Hall, Shimer, 5.

Feistmantelia virginica n. sp., Fontaine, 5.

Felida, Matthew (W. D.), 19.

Fenestella, Cumings, 9, 10.

Fenestella Lonsdale, Grabau, 1.

Fenestella Lonsdale, Condra, 2.
binodata n. sp., Condra, 1, 2.
conradi Ulrich, Condra, 2.
conradi var. compactis n. var.,
Condra, 1, 2.
cyclofensuetra n. sp., Condra, 1, 2.
granilles n. sp., Condra, 1, 2.
kansanensis Rogers, Condra, 2.
limbata Foerste, Condra, 2.
mimica Ulrich, Condra, 2.
puripora n. sp., Condra, 1, 2.
puregans Meek, Condra, 2.
polyoporoites n. sp., Condra, 1, 2.
silicosa n. sp., Condra, 1, 2.
subarctica n. sp., Whitcaves, 17.
sufrutes n. sp., Condra, 1, 2.
tenax Ulrich, Ulrich, 8.
tenax Ulrich (?), Condra, 2.
tenax Ulrich, Hayes and Ulrich, 1.
cf. tenax Ulrich, Glrty, 3.
sp., Glrty, 3.
sp. (?), Condra, 1.

Fenestrella st. ludovicl Prout, Ulrich, 8.

Ficopsis angustulata n. sp., Weaver, 1.
Flcus atavina Heer, Berry, 7.
daphnogenlides (Heer), Berry, 14.
Paleontology—Continued.

Genera and species described—Continued.

Ficus myricoides Hollick, Fontaine, 5.
neurocarpa n. sp., Hollick, 6.
proteoides Lesq., Hollick, 9.
sapidifolia sp., Hollick, 11.
uncata Lesq., Johnson (D. W.), 5.
woolsoni Newb., Berry, 5.

Finkelnburgia n. subg. of Orthis, Walt.

Fissipedia Matthew (W. D.), 19.
Fissodus St. John and Worthen, Eastman, 10.
dentatus n. sp., Eastman, 10.
equalis (St. John and Worthen), Eastman, 10.

Fissurella volcano Reeve, Arnold, 2.
Tissuridea Swainson, Arnold, 2.
alticosta (Conrad), Martin, 5.
aspera Eschscholtz, Arnold, 2.
griscomi (Conrad), Martin, 5.
inaequalis Sowerby, Arnold, 2.
infrequens n. sp., Aldrich, 2.
marilboroensis n. sp., Clark and Martin, 2.
marylandica (Conrad), Martin, 5.
murina (Carpenter) Ball, Arnold, 2.
nassula (Conrad), Martin, 5.
redimicula (Say), Martin, 5.

Fistulipora McCoy, Condra, 2.
carbonaria Ulrich, Condra, 2.
carbonaria Ulrich, Girty, 3.
carbonaria (Ulrich), Sardeson, 3.
carbonaria var. nebrascensis n. var., Condra, 1, 2.
nodulifera Meek, Condra, 2.

Flabellaria magothiensis n. sp., Berry, 11.
Flabellum sp., Vaughan, 1.
Flemingites Waagen, Hyatt and Smith, 1.
Waagen, Smith (J. P.), 5.
russelli n. sp., Hyatt and Smith, 1.
russelli Hyatt and Smith, Smith (J. P.), 5.

Floydia n. gen., Webster, 1.
concentrica n. sp., Webster, 1.
Fluminicola columbiana (Hemphill) Plabry, Stearns (R. E. C.), 2.

Forbeslocrinus, Springer (F.), 2.
Fordinla troynsis Walcott, Sears, 1.

Fossarvs Philippi, Arnold, 2.
(Isapis) dallii (Whitfield), Martin, 5.
(Isapis) fenestrata Carpenter, Arnold, 2.
Fraxinus integrifolia Newb., Knowlton, 14.
Paleontology—Continued.

Genera and species described—Continued.

Galeocerdo contortus Gibbes, Eastman, 18.
latidens Agassiz, Eastman, 1, 18.
triqeter n. sp., Eastman, 18.
Galesaurus, Case, 6.
Gastrioceras Hyatt, Smith (J. P.), 3.
branneri Smith, Smith (J. P.), 3.
carbonarium von Buch, Smith (J. P.), 3.
compressum Hyatt, Smith (J. P.), 3.
etonogonum Gabb, Smith (J. P.), 3.
triqueter n. sp., Eastman, 18.
latidens Agassiz, Eastman, 18.
Galeocerdo contortus Gibbes, Eastman, 18.

Paleontology—Continued.

Genera and species described—Continued.

Gennecocrinus kentuckiensis (Shumard), Wood (Elvira), 3.
sculptus, n. sp., Rowley, Greene, 6.
simulans, n. sp., Rowley, Greene, 6.
Genota riversiana n. sp., Raymond (W. J.), 2.
Gephyrocera cf. domicenica Holzapel, Clarke, 19.
Gerablattina arcuata n. sp., Sellards, 8.
Gerasaphes ulrichana Clarke, Rueckemann, 2.
Gerhardtia n. gen., Hyatt, 1.
Gervillia cinderella n. sp., Cragin, 2.
corrugata n. sp., Cragin, 2.
Gerviliopsis invaginata (?) White, Shattuck, 8.
Gibbula glandula (Conrad), Clark and Martin, 2.
Gilbertina n. gen., Ulrich, 4.
spiralis n. sp., Ulrich, 4.
Gigandipus E. Hitchcock, Lull, 2.
Gibbula arcuatus (Cope), Stewart, 1.
digitata (Brougalart) Heer, Fontaine, 1, 2.
huttoni (Sternberg) Heer, Fontaine, 1, 2.
huttoni magnifolia Fontaine n. var., Fontaine, 1, 2.
leida, Heer, Fontaine, 1.
pusilla Dn., Penhallow, 4.
siberica Heer, Fontaine, 1.
sp., Fontaine, 1.
sp., Knowlton, 14.
Galeocerdo contortus Gibbes, Eastman, 18.
latidens Agassiz, Eastman, 18.
triqeter n. sp., Eastman, 18.
Galesaurus, Case, 6.
Gastrioceras Hyatt, Smith (J. P.), 3.
branneri Smith, Smith (J. P.), 3.
carbonarium von Buch, Smith (J. P.), 3.
compressum Hyatt, Smith (J. P.), 3.
etonogonum Gabb, Smith (J. P.), 3.
triqueter n. sp., Eastman, 18.
latidens Agassiz, Eastman, 18.
Paleontology—Continued.

Genera and species described—Continued.

Globoblastus Hambach, 1.
magnificus n. sp., Hambach, 1.
ornatus n. sp., Hambach, 1.
spathatus n. sp., Hambach, 1.
Glossina spilota (Hall)?, Weller, 6.
trianulata Nettleroth, Kindle, 1.
Glossarcopelites n. gen., Perkins, 17.
elongatus (Lesquereux) Perkins,
Perkins, 17.
Globosptagus Emmons, Ruedemann, 8.
ehinatus n. sp., Ruedemann, 8.
hystrix n. sp., Ruedemann, 8.
Glotheid Dall, Arnold, 2.
albida Hinds, Arnold, 2.
Glycymeris Da Costa, Arnold, 2.
barbarensis Conrad, Arnold, 2.
idoneus (Conrad), Clark and Martin,
parilis (Conrad), Glenn, 6.
septemtrionalis Middendorf, Arnold,
subovata (Say), Glenn, 6.
Glyptodoma n. sp., Whiteaves, 12.
Glyptocrinus decadactylus Hall, Hayes
and Ulrich, 1.
dyeri Meek, Springer (F.), 3.
insperatus n. sp., Rowley, 3.
isperatus? var. carinatus n. var.,
Rowley, 3.
isperatus var. pentagonus n. var.,
Rowley, 3.
plumosus Hall, Grabau, 1.
Glyptodesma cancellata Nettleroth,
Kindle, 1.
Glyptocrinus decadactylus Hall, Hayes
and Ulrich, 1.
dyeri Meek, Springer (F.), 3.
isperatus n. sp., Rowley, 3.
isperatus? var. carinatus n. var.,
Rowley, 3.
isperatus var. pentagonus n. var.,
Rowley, 3.
plumosus Hall, Grabau, 1.
Glyptodesma cancellata Nettleroth,
Kindle, 1.
Glyptocrinus decadactylus Hall, Hayes
and Ulrich, 1.
dyeri Meek, Springer (F.), 3.
isperatus n. sp., Rowley, 3.
isperatus? var. carinatus n. var.,
Rowley, 3.
isperatus var. pentagonus n. var.,
Rowley, 3.
plumosus Hall, Grabau, 1.
Glyptodesma cancellata Nettleroth,
Kindle, 1.
ecretum Hall, Kindle, 1.
occidentale Hall, Kindle, 1.
Glyptostrobus (Taxodium) brookensis
(Fontaine), Ward, Fontaine, 5.
brookensis? angustifolius (Fontaine)
Knowlton, Fontaine, 5.
europeanus ungeri Heer, Knowlton,
ungeri Heer, Knowlton, 12.
Glyptotherium texanum n. gen. and sp.
Osborn, 16.

Paleontology—Continued.

Genera and species described—Continued.

Glyptotoma n. gen., Casey, 5.
conradiana Aid., Casey, 5.
crassiplicata Gabb, Casey, 5.
parvula n. sp., Casey, 5.
Gomphina Mörch, Dall, 8.
Gomphoceras Sowerby, Grabau, 1.
heliatulm n. sp. (Rowley), Greene,
2.
facetum n. sp. (Rowley), Greene,
2.
isotelodes n. sp., Herzer, 5.
minum Hall, Kindle, 1.
oviforme Hall sp., Rowley, Greene,
2.
oviforme Hall, Kindle, 1.
parallelum n. sp., Herzer, 5.
ruphanus Hall?, Kindle, 1.
striatum n. sp. (Rowley), Greene,
2.
turbiniforme M. and W., Kindle, 1.
wabashensis Newell, Kindle and
Breger, 1.

Glyptotheca, Case, 6.
Gomphothenum serrus n. sp., Douglass,
1.
Gonatosphera prolata, Guppy, 4.
Goniatites de Haan, Smith (J. P.), 3.
choctawensis Shumard, Smith (J. P.),
3.
colubrellus Morton, Smith (J. P.),
3.
crenistria Phillips, Smith (J. P.),
3.
dolphens n. sp., Kindle, 1.
discoideus var. ohiensis Hall,
Kindle, 1.
greenestensia Miller and Gurley,
Smith (J. P.), 3.
kentuckiensis Miller, Smith (J. P.),
3.
lunatus Miller and Gurley, Smith
(J. P.), 3.
minimus Shumard, Smith (J. P.),
3.
newsoni n. sp., Smith (J. P.), 3.
parvus Shumard, Smith (J. P.),
3.
politus Shumard, Smith (J. P.),
3.
sphaericus Martin, Smith (J. P.), 3.
striatus Sowerby, Smith (J. P.), 3.
subcircularis Miller, Smith (J. P.),
3.
wabashensis n. sp., Kindle, 1.
Gonilina Stoliczka, Dall, 8.
Goniobasis Lea, Letson, 1.
haldemani Tyron, Letson, 1.
judithensis n. sp., Stanton, Stan-
ton and Hatcher, 1.
levescens (Menke) Tyron, Letson,
1.
var. niagarensis (Lea) Tyron, Let-
son, 1.
marylandica n. sp., Martin, 5.
Paleontology—Continued.

Genera and species described—Continued.

Goniobasis ? ortmanni n. sp., Stanton, 4.
? silberlingi n. sp., Stanton, 4.

Goniocystites McCoy, Ruedemann, 8.
geometricus n. sp., Ruedemann, 8.
perflexilis n. sp., Ruedemann, 8.
thuracu McCoy, Ruedemann, 4, 8.

Gonioloboceras ? aleie Winchell, Smith (J. P.), 3.
goniolobum Meek, Smith (J. P.), 3.
? silberlingi n. sp., Stanton, 4.

Goniograptus McCoy, Ruedemann, 8.
geometricus n. sp., Ruedemann, 8.
perflexilis n. sp., Ruedemann, 8.
thureaui McCoy, Ruedemann, 4, 8.

Goniopholis? gilmorei n. sp., Holland, 2.
Goniophora carinatus (Hall), Weller, 6.
hamiltonensis Hall, Kindle, 1.
truncata Hall, Kindle, 1.
sp. undet., Weller, 6.
sp. indet., Parks, 5.

Goodallia Turton, Dall, 8.
Gouldia C. B. Adams, Dall, 8.
Gradilucina Cossniann, Dall, 8.

Graillator E. Hitchcock, Lull, 2.
cuneatus E. Hitchcock, Lull, 2.
cursorius E. Hitchcock, Lull, 2.
formosus E. Hitchcock, Lull, 2.
gracilis C. H. Hitchcock, Lull, 2.
tenus E. Hitchcock, Lull, 2.

Granmysla arcuata Hall, Kindle, 1.
constricta Hall, mat. pygmaea nov.,
Lounis, 4.
Imbricata Rowley, Greene, 2.
secunda var. gibbosa H. and W.,
Kindle, 1.
subarcuata Hall?, Kindle, 1.
n. sp., Shimer, 5.
sp. undet., Weller, 6.

Granatocrinites mihi, n. 'gen., Troost,
Hambach, 1.
cordiformis mihi, Troost, Hambach, 1.
globosus mihi, Troost, Hambach, 1.

Gratelouopia Desmoulins, Dall, 8.
(Cytheriopsis) alunensia n. sp.,
Dall, 8.

Graya argonauta Grove and Brun, Boyer, 1.

Gresslyia aducta Phillips sp., Madsen; 1.
gregaria (Zieten) Goldfuss sp.,
Madsen, 1.
peregrina Phillips sp., Madsen, 1.

Gryphaea mexicana Felix, Cragn, 2.
mucronata Gabb, Shattuck, 8.
vesicularis Lamarck, Whiteaves, 12.
vesicularis Lamarck, Clark and Martin, 2.

Gymnolophus, Hyatt and Smith, 1.
Gymnoptychus minus n. sp., Matthew (W. D.), 9.

Paleontology—Continued.

Genera and species described—Continued.

Gymnoptychus minor (Douglas), Matthew (W. D.), 9.

Gymnoceras Hyatt, Hyatt and Smith, 1.
Gymnoceras Hyatt, Smith (J. P.), 5.
Gymnotropites n. subg., Hyatt and Smith, 1.

Gymnusa (?) absens n. sp., Scudder, 1.
Gypidula angulata n. sp., Weller, 6.
galeata (Dal.), Weller, 6.
galeata (Dal.) var., Weller, 6.
(Sieberella) galeatus Dalman, Kindle and Breger, 1.
(Sieberella) nucleus Hall and Whitfield, Kindle and Breger, 1.
romingeri var. indiianensis nov. var., Kindle, 1.

Gyrinus comminus LeC., Scudder, 1.

Gyrosomas burlingtonensis Owen, Weller, 2.
farcimen n. sp., Clarke and Ruedemann, 1.
indianense n. sp., Kindle, 1.
inlegans Meek?, Kindle, 1.
jason Hall, Kindle, 1.

Gyrodes (conradiana? Gabb, var.) canadensis, Whiteaves, 12.
isklyonensis n. sp., Anderson, 3.

Gyronema brevispina n. sp., Whiteaves, 17.
dowlingii n. sp., Whiteaves, 17.
speciosum n. sp., Whiteaves, 17.

Gyriones Waagen, Smith (J. P.), 5.
Gyriones Waagen, Hyatt and Smith, 1.

Hadrianus majusculus n. sp., Hay, 13.
Hadrocrinus plenissimus Lyon, Rowley, Greene, 11.

Hadrophyllum linguloides n. sp., Herzer, 5.

Halmopythyllum ordinatum Billings, Greene, 15.

Hallieysia Jaekel, Schuchert, 11.
elongata Jaekel, Schuchert, 11.
imago (Hallj, Schuchert, 11.

Hallotis Linné, Arnold, 2.
fulgens Philipp, Arnold, 2.
omaénus n. sp., Anderson, 3.

Halobia Bronn, Smith (J. P.), 5.

Halonymphida Mojsisovics, Smith (J. P.), 5.

Halyides Fischer, Grabau, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Halysites agglomeratus Hall (sp.), Clarke and Ruedemann, 1.
agglomeratus Hall, Whitfield, 7.
catenularia (Linn.), Weller, 6.
catenularius Linne (sp.), Clarke and Ruedemann, 1.
catenulatus, Hayes and Ulrich, 1.
catenulatus Linne., Whitfield, 7.
radius n. sp., Whitfield, 7.

Haminea Leach, Arnold, 2.
virescens Sowerby, Arnold, 2.

obstrictus Jimbo, Whiteaves, 12.
solitaria Say, Sears, 1.

Hamites (Ptychoceras) sequicostatum Gabb, Anderson, 3.
arniatus n. sp., Anderson, 3.
cylindraceus de France, Anderson, 3.
ellipticus n. sp., Anderson, 3.
phoenixensis n. sp., Anderson, 3.
solanoense n. sp., Anderson, 3.

Haplocanthosaurus Hatcher, Riggs, 9.
Haplocanthesaurus, Hatcher, 14, 19.
priscus, Hatcher, 14.
utterbachi n. sp., Hatcher, 14.

Haplocanthus priscus n. gen. and sp., Hatcher, 18.

Hargeria n. gen., Lucas, 15.

Harpagodes shumardi (Bill.), Shattuck, 8.

Harpagoletes macrocephalus n. gen. et sp., Wortman, 5.
Harpalodon sylvestris Marsh, Wortman, 4.
Harpa condi tus n. sp., Scudder, 1.
Harpeda ctylus E. Hitchcock, Lull, 2.
cras sus E. Hitchcock, Lull, 2.
gracilior E. Hitchcock, Lull, 2.
theniissimus E. Hitchcock, Lull, 2.

Harpina antiquatus Billings, Raymond (P. E.), 5.
tenuissimus n. sp., Raymond (P. E.), 5.

Harrisia parabola Cleland, Cleland, 3.
Hauericeras garden (Bally), Whiteaves, 12.
Hauerites Mojsisovics, Hyatt and Smith, 1.

asheleyi n. sp., Hyatt and Smith, 1.

Hausmannia? californica n. sp., Fontaine, 3.

Heliolites Guettard, Grabau, 1.

Helicina occulta Say, Shimek, 8.
rawsoni Pfeiffer, Dall, 15.

Helicoceras indicum (?) Stol., Anderson, 3.
pariense White ?, Johnson (D. W.), 5.
stenonsoni, Whitfield, 1.

Heliolitus Guettard, Grabau, 1.
elegans Hall, Grabau, 1.

Helicotrema? peccatonica n. sp., Sardeson, 2.
vagrans n. sp., Raymond (P. E.), 7.

Helicosoma? peccatonica n. sp., Sardeson, 2.
vagrans n. sp., Raymond (P. E.), 7.

Heliophyllum adnascens n. sp., Greene, 5.
ampliatum n. sp., Greene, 3.
collatum n. sp., Greene, 2.
conditum n. sp., Greene, 15.
conglomeratum n. sp., Greene, 10.
congregatum n. sp., Greene, 10.
conigerum n. sp., Greene, 2.
dispansum n. sp., Greene, 7.
gradatum n. sp., Greene, 14.

Heliophyllum adnascens n. sp., Greene, 5.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Heliopllyllum vesiculatum (Hall), Greene, 11.

zenkeri (Billings), Greene, 9.

(Epiphragmophora) sp. indet., Arnold, 2.

Helminthoida Schafhutl, Ulrich, 4.

abnormis n. sp., Ulrich, 4.

ejecta n. sp., Ulrich, 4.

subcrassa n. sp., Ulrich, 4.

vaga n. sp., Ulrich, 4.

magna Heer, Ulrich, 4.

Heloderma tuberculatus n. gen. and sp., Douglass, 8.

Helodus incisus n. sp., Eastman, 10.

rugosus Newberry and Worthen, Eastman, 10.

Helopora Hall, Grabau, 1.

fragilis Hall, Grabau, 1.

Hemieadon gracilis Marsh, Wortman, 14.

pygaeus n. sp., Wortman, 14.

Hemistten vancouverensis n. sp., Whiteaves, 18.

Hexalouche multisphera Vinassa, Martin, 8.

Hexastylus simplex Vinassa, Martin, 8.

Hicoria bilacuminata n. sp., Perkins, 13, 17.

magnifica n. sp., Knowlton, 16.

Hicoroides n. gen., Perkins, 13, 17.

angulata n. sp., Perkins, 13, 17.

eellipsoida n. sp., Perkins, 13, 17.

globulus n. sp., Perkins, 13.

parva n. sp., Perkins, 13.

triangularis n. sp., Perkins, 13.

Hindia fibrosa (Roemer), Weller, 6.

Indianensis n. sp., Whitfield, 12.

nudosus, Whiteaves, 12.

parva Ulrich, Weller, 6.

parva Ulrich, Weller, 6.

Hindsiella acuta Dall, Glenn, 6.

Hinnites Defrance, Arnold, 2.

Hipparion Christol, Gidley, 5.

eurystylus (Cope), Gidley, 1.

Hipparionyx proximus (Van.), Weller, 6.

Hipponyx De France, Arnold, 2.

antiquatus Linnaeus, Arnold, 2.

cranoides Carpenter, Arnold, 2.

tumens Carpenter, Arnold, 2.

Holasaphus, Matthew (G. F.), 20.

centropyge, Matthew (G. F.), 20.

Holocodiscus cfr. theobaldianus Stol., Anderson, 3.

Holocystis pachytautis n. sp., Cragin, 2.

Holopa antigua (Van.), Weller, 6.

conica Win., Weller, 2.

Hudsoni Hall, Weller, 6.

microclathrata n. sp., Hudson, 1.

obesa Whitfield, Sardeson, 2.

cfr. obligatus Hall, Sardeson, 1.

? raymondia n. sp., Cleland, 3.

? voluta n. sp., Cleland, 3.

sp., Parks, 5.

Homanthius Agassiz, Eastman, 10.

acmiformis n. sp., Eastman, 10.

delictulus n. sp., Eastman, 10.

Homanthius Koenig, Grabau, 1.

dolphinocoilus (Green), Grabau, 1.

Paleontology—Continued.

Genera and species described—Continued.

Homerites Mojsisovics, Hyatt and Smith, 1.
Homocrinus scoparius Hall, Talbot, 2.
Homoeophragma Hall and Clarke, Grabau, 1.
apriniformis Hall, Grabau, 1.
eyax Hall 1863, Beecher, 1.
sorebra n. sp., Beecher, 1.
Homomya austinitensis n. sp., Shattuck, 8.
vulgaris n. sp., Shattuck, 8.
Homotrypa Ulrich, Bassler, 1.
austini n. sp., Bassler, 1.
bassleri n. sp., Nickles, 4.
bassleri Nickles, Bassler, 1.
cincinnatensis n. sp., Bassler, 1.
communis n. sp., Bassler, 1.
curvata Ulrich, Bassler, 1.
curvata var, precipita n. var., Bassler, 1.
cylindrica n. sp., Bassler, 1.
dawsoni (Nicholson), Bassler, 1.
flabellaris Ulrich, Bassler, 1.
flabellaris var. splifera n. var., Bassler, 1.
frondosa n. sp., Bassler, 1.
frondosa (Edwards and Haime), Cumings, 7.
gelasinosa Ulrich, Bassler, 1.
grandis n. sp., Bassler, 1.
libana n. sp., Bassler, 1.
massesotensis Ulr., Sardeson, 3.
nicklesi n. sp., Bassler, 1.
nodulosa n. sp., Bassler, 1.
nitida n. sp., Bassler, 1.
obliqua Ulrich, Bassler, 1.
pulchra n. sp., Bassler, 1.
ramulos a n. sp., Bassler, 1.
richmondensis n. sp., Bassler, 1.
splendens n. sp., Bassler, 1.
wortheni (James), Bassler, 1.
wortheni var. intercellata n. var., Bassler, 1.
wortheni var. prominens n. var., Bassler, 1.

Homotrypella nodosa n. sp., Ulrich and Bassler, 2.
nodosa Ulrich and Bassler, Hayes and Ulrich, 1.
norwoodii n. sp., Nickles, 6.
Honeyeaa n. gen., Clarke, 19.
desmata n. sp., Clarke, 19.
erinaea n. sp., Clarke, 19.
major n. sp., Clarke, 19.
simplex n. sp., Clarke, 19.
stylophilae n. sp., Clarke, 19.
Hoplichea E. Hitchcock, Lull, 2.
quadrupedans E. Hitchcock, Lull, 2.
Hoplitosaurus n. gen., Lucas, 11.
Hoploparia McCoy, Pilbry, 1.
bennettii Woodward, Whiteaves, 12.
gabbi n. sp., Pilbry, 1.

Paleontology—Continued.

Genera and species described—Continued.

Hoploparia (integerlandia n. sp., Raven, 1.
Hoplophoneus, Matthew (G. F.), 19.
Hormotoma saltleri Ulrich, Weller, 6.
whiteavesi n. sp., Clarke and Ruedemann, 1.
Hughmilleria n. gen., Sarle, 2.
socialis n. sp., Sarle, 2.
socialis var. robusta n. var., Sarle, 2.
Hungrarites Mojsisovics, Hyatt and Smith, 1.
yatesi n. sp., Hyatt and Smith, 1.
Hungraritidae, Hyatt and Smith, 1.
Hustedia mormoni (Marcou), Beede, 1.
mormoni Marcou, Girty, 3.
Hyænodon, Matthew (G. D.), 19, 20.
cruentus Leidy, Matthew (G. D.), 1.
montanus n. sp., Douglass, 4.
minutus n. sp., Douglass, 4.
Hyænodontidae, Matthew (G. D.), 19.
Hymnomphalus? (Porthocyon n. gen.?)
dubius n. sp., Merriam (J. C.), 7.
pachyodon n. gen. and n. sp., Merr­
iam (J. C.), 7.
Hyalostelia sp., Girty, 3.
Hyattella Hall and Clarke, Grabau, 1.
congesta (Conrad), Grabau, 1.
? lamellosa n. sp., Weller, 6.
Hyalea tricuspidia n. sp., Rivers, 1.
Hydractinia multispinosa n. sp., Ul­
rich, 16.
Hydrangea (bendirei (Ward) Knowlton, 14.
Hydrenocrinus depressus (Troost),
Grabau, 8.
kansasensis Weller, Beede, 1.
subsinatus Miller and Gurley, Beede, 1.
Hydroporus inanimatus n. sp., Scudder, 1.
inundatus n. sp., Scudder, 1.
sectus n. sp., Scudder, 1.
Hylopus Dawson, Matthew (G. F.), 28, 30.
caudifer Dawson, Matthew (G. F.),
25.
hardingi Dawson, Matthew (G. F.), 25, 28.
logani Dawson, Matthew (G. F.),
28.
? minor Dawson, Matthew (G. F.),
30.
Hyolithellus? flexuosus n. sp., Mat­
thew (G. F.), 1.
micans Billings, Matthew (G. F.),
1.
micans Billings, Ruedemann, 2.
micans Billings, Sears, 1.
Hyolithes acadicus, Matthew (G. F.),
7.
americanus Billings, Sears, 1.
carinatus, Matthew (G. F.), 7.
caudatus, Matthew (G. F.), 7.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Hyolithes centennialis Barrett, Weller, 6.

cosmopolitanis Billings, Sears, 1.
daniatus, Matthew (G. F.), 7.

 excellens Bill., Matthew (G. F.), 1.

 excellens Billings, Sears, 1.
gracilis, Matthew (G. F.), 7.
gracilissimus, Matthew (G. F.), 8.
gracilissimus n. mut., Matthew (G. F.), 7.

Impar Ford, Sears, 1.
neoplis Clarke, Clarke, 19.
 princeps Billings, Sears, 1.
 princeps forma pingreel Sears, 1.
rhino n. sp., Ruedemann, 2.
rugosus n. sp., Matthew (G. F.), 1.
searali Grabau, Sears, 1.
soronicus, Matthew (G. F.), 7.

(cf. tenuisarticulatus Linus, Matthew (G. F.), 20.

Hyopsodidae Schlosser, Loomis, 7.

Hyopsodus Leidy, Loomis, 7.

Hyopsodus Leidy, Osborn, 11.
browni n. sp., Loomis, 7.

(Lemuravus) distans Marsh, Osborn, 11.
jacksoni n. sp., Loomis, 7.
laticuneus Cope, Loomis, 7.
lemoianus Cope, Loomis, 7.
lemoianus Cope, Osborn, 11.
marshi n. sp., Osborn, 11.
minor n. sp., Loomis, 7.
misticus Cope, Loomis, 7.

(Estherox) ? misticus Cope, Osborn, 11.
pautus, Osborn, 11.
powellianus Cope, Osborn, 11.
powellianus Cope, Loomis, 11.
simplex n. sp., Loomis, 7.
uintensis n. sp., Osborn, 11.
vicarius Cope, Osborn, 11.
wortmai n. sp., Osborn, 11.
wortmai Osborn, Loomis, 7.

Hypertragulus, Matthew (W. D.), 22.
Hypertragulus Cope, Matthew (W. D.), 7.

sp., Sinclair, 6.

Hyphantosoma Dall, Dall, 8.
Hyphepus E. Hitchcock, Lull, 2.
field E. Hitchcock, Lull, 2.

Hyposodi Cope, Matthew (W. D.), 2.

minimus Cope, Matthew (W. D.), 7.

Hypocetus Lydekker, Case, 9.

mediatlanticus (Cope), Case, 9.

Hypohippus Leidy, Gidley, 5.

Ichthyosaurus Merriam (J. C.), 6, 9.

Ichthyosaurus Merriam (J. C.), 6, 9.
Paleontology—Continued.

Genera and species described—Continued.

Indiana, Matthew (G. F.), 20.

Iippa n. sp., Matthew (G. F.), 13, 20.

ovalia n. sp., Matthew (G. F.), 13, 20.

ovalis mut. prima, Matthew (G. F.), 20.

Indrodon malaris Cope, Osborn, 11.

Inoceramus adunca n. sp., Anderson, 3.

baili M. and H., Johnson (D. W.), 5.

crispis var. barabini Morton, Johnson (D. W.), 5.

digitatus (Sowerby) Schmidt, Whiteaves, 12.

dimidiatus White, Johnson (D. W.), 5.

fragilis H. and M., Johnson (D. W.), 5.

Irregularis n. sp., Johnson (D. W.), 5.

klamathensis n. sp., Anderson, 3.

labiatus Schlotheim, Johnson (D. W.), 5.

simpsoni Meek, Johnson (D. W.), 5.

"vanuxemi M. and H., Johnson (D. W.), 5.

sp., Shattuck, 8.

Insectivora Matthew (W. D.), 19.

Isapidia n. gen., Arnold, 2.

Ischnochiton Gray, Arnold, 2.

regularis Carpenter, Arnold, 2.

Ischyrocyon n. gen., Matthew, Matthew and Gidley, 1.

hyanodus n. sp., Matthew, Matthew and Gidley, 1.

Ischyromyidae, Matthew (W. D.), 19.

Ischyromys vetlor n. sp., Matthew (W. D.), 9.

Isocampe E. Hitchcock, Lull, 2.

strata E. Hitchcock, Lull, 2.

Isocardia cliffwoodensis n. sp., Weller, 10.

fraterna Say, Glenn, 6.

ignolen n. sp., Glenn, 6.

Isocardia markoei Conrad, Glenn, 6.

mazlei n. sp., Glenn, 6.

medialis (Conrad), Shattuck, 8.

Isocorypha Jones, Grabau, 1.

armata var. pygmaea n. var., Ruedemann, 2.

cylindrica (Hall), Grabau, 1.

gregarin Whitfield, var. (?), Jones (T. R.), 2.

gregarin (Whitfield), var. utrichiana, nov., Jones (T. R.), 2.

sp. ?, Jones (T. R.), 2.

Isodomo (Deshayes) Cossmann, Dall, 8.

Isocorypha n. gen., Arnold, 2.

Isocorypha n. gen., Walcott, 12.

labradorica orientalis n. var., Walcott, 12.

labradorica utahensis n. var., Walcott, 12.

major n. sp., Walcott, 12.

nisus n. sp., Walcott, 12.

pannula maladensis n. var., Walcott, 12.

pannula ophirensis n. var., Walcott, 12.

sp. und., Walcott, 12.

Isapis H. and A. Adams, Arnold, 2.

Ischnochiton Gray, Arnold, 2.

regularis Carpenter, Arnold, 2.

Ischyrocyon 1. gen., Matthew, Matthew and Gidley, 1.

hyanodus n. sp., Matthew, Matthew and Gidley, 1.

Ischyromyidae, Matthew (W. D.), 19.

Ischyromys velitor n. sp., Matthew (W. D.), 9.

Isocampe E. Hitchcock, Lull, 2.

strata E. Hitchcock, Lull, 2.

Isocardia cliffwoodensis n. sp., Weller, 10.

fraterna Say, Glenn, 6.

ignolen n. sp., Glenn, 6.
Paleontology—Continued.

Genera and species described—Continued.

Juvavitites (Anatomites) mojavari n. sp., Burchhardt and Scala, 1.

(Anatomites) subintermitens n. sp., Hyatt and Smith, 1.

subinterruptus Mojsisovics, Hyatt and Smith, 1.

Kadallosaurus Credner, Osborn, 19.

Katelysia (Römer) Tryon, Dall, 8.

Kellia Turton, Arnold, 2.

laperoussii Deshayes, Arnold, 2.

rotundula n. sp., Glenn, 6.

suborbicularis Montagu, Arnold, 2.

Kadallosaurus Credner, Osborn, 19.

Katelysia (Römer) Tryon, Dall, 8.

Kellia Turton, Arnold, 2.

laperoussii Deshayes, Arnold, 2.

Kadallosaurus Credner, Osborn, 19.

Katelysia (Römer) Tryon, Dall, 8.

Kellia Turton, Arnold, 2.

laperoussii Deshayes, Arnold, 2.

Kadallosaurus Credner, Osborn, 19.

Katelysia (Römer) Tryon, Dall, 8.

Kellia Turton, Arnold, 2.

laperoussii Deshayes, Arnold, 2.

Kadallosaurus Credner, Osborn, 19.

Katelysia (Römer) Tryon, Dall, 8.
Paleontology—Continued.
Genera and species described—Continued.
Leda minuta Fabr. var. precursor n. var., Arnold, 2.
7 navicula n. sp., Cragin, 2.
parilis (Conrad), Clark and Martin, 2.
var., Clark and Martin, 2.
parva (Rogers), Clark and Martin, 2.
potomacensis n. sp., Clark and Martin, 2.
restellata Conrad, mut. pygmaea nov., Loomis, 4.
saccata (Win.), Weller, 2.
tysoni n. sp., Clark and Martin, 2.
sp., Dall, 10.
Leiomya A. Adams, Dall, 8.
Leiocfema? sp., Girty, 3.
Leiorhynchus liuronensis Nicholson, Shimer and Grabau, 1.
laura Billings, Shimer and Grabau, 1.
limiteare (Vanuxem), Kindle, 1.
multicostus Hall, Shimer and Grabau, 1.
quadricostatum (Vanuxem), Kindle, 1.
Lepidodendron keyesi ji. sp., Herrick (C. L.), 3.
soconoroense n. sp., Herrick (C. L.), 3.
thwaitesi n. sp., Herrick (C. L.), 3.
? thwaitesi var. striolatum n. var., Herrick (C. L.), 3.
sp.? Herrick (C. L.), 3.
Lepidodiscus alleganius n. sp., Clarke, 3.
Lepidodrobus, Smith, 1.
7 globosus Du., White (D.), 18.
Lepidopterus haydeni Leidy, Stanton and Hatcher, 1.
Lepidopterus occidentalis Leidy, Lamb, 3.
? occidentalis Leidy, Stanton and Hatcher, 1.
Leporocinetes Conrad, Schuchert, 11.
gebardi Conrad, Schuchert, 11.
manilus n. sp., Schuchert, 11.
Lepralia labiosa n. sp., Ulrich, 2.
maculata n. sp., Ulrich and Bassler, 4.
monticola n. sp., Ulrich and Bassler, 4.
reversa n. sp., Ulrich and Bassler, 4.
splana n. sp., Ulrich, 2.
Leptena Dalman, Grabau, 1.
innescentensis n. sp., Sardeson, 9.
pracosis n. sp., Sardeson, 9.
recens n. sp., Sardeson, 9.
rhomboidalis (Wahlenberg), Grabau, 1.
saxea n. sp., Sardeson, 9.
rhomboidalis Wilckens, 1769, Beecher, 1.
rhomboidalis (Wilckens), Kindle, 1.
rhomboidalis Wilckens, Ruedemann, 1.
rhomboidalis Wilckens, Ruedemann, 2.
rhomboidalis Wilckens, Ruedemann, 6.
rhomboidalis (Wilck.), Weller, 6.
rhomboidalis (Wilck.), var. ventricosa (Hall), Weller, 6.
Leptixinus Verrill and Bush, Dall, 8.
Leptixinus Meek, Dall, 8.
agilis n. sp., Stewart, 1.
Paleontology—Continued.

Genera and species described—Continued.

flumenis n. sp., Matthew (G. F.), 20.
gemmulus, Matthew (G. F.), 20.
cf. grandis, Matthew (G. F.), 19.
cf. linguloides, Matthew (G. F.), 12, 20.
torrentis n. sp., Matthew (G. F.), 20.
walcotti n. sp., Ruudemann, 1.

Leptocheirus n. gen., Merriam (J. C.), 6.
zittel n. sp., Merriam (J. C.), 6.
Leptocherus Leidy, Matthew (W. D.), 2.
quadricuspis n. sp., Hatcher, 3.
Leptocodon rectus Williston, Stewart, 1.
Leptodesma marcellus Hall, Wood (Elvira), 1.
rogersi Hall, Kindle, 1.
Leptodonus interlucatus n. sp., Clarke, 19.
multiplex n. sp., Clarke, 19.
Leptomeryx, Matthew (W. D.), 9.
Leptomeryx Leidy, Matthew (W. D.), 7.
esnlicatus Cope, Matthew (W. D.), 7.
Leptomeryx ? esnlicatus Cope, Matthew (W. D.), 9.
mammifer Cope, Matthew (W. D.), 7, 9.
semicinctus Cope, Matthew (W. D.), 7.
transmontanus n. sp., Douglass, 8.
sp. indesc., Matthew (W. D.), 7.
Leptophloeum rhombicun Du., White (D.), 18.
Leptophylia sp. (No. 1), Vaughan, 17.
Leptopora ramosa n. sp., Rowley, 1.
procera n. sp., Rowley, 1.
typa Win., Weller, 2.
winchelli White, Girty, 3.
Leptopsis levettel, White, Rowley, Greene, 2.
Leptosomus March, Hay, 10.
linearis (Cope), Hay, 10.
nasutus (Cope), Hay, 10.
percrassus (Cope), Hay, 10.
Leptostrobobus longifolius Fontaine, Fontaine, 5.
Leptostyrax bicuspidatus, Willisson, Williston, 1.
Leptosarcna n. gen., Casey, 5.
Leptothyra Carpenter, Arnold, 2.
bacula Carpenter, Arnold, 2.
carpenteri Plieby, Arnold, 2.
plecostata Dall, Arnold, 2.
Leptotracbylus longipinnis Cope, Hay, 10.
<table>
<thead>
<tr>
<th>Genera and species described</th>
<th>Continuous.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limopteria subalata (Beede and Rogers), Beede, 1.</td>
<td></td>
</tr>
<tr>
<td>Lindigia (?) nodosum n. sp., Anderson, 3.</td>
<td></td>
</tr>
<tr>
<td>Linearia ? diversicata n. sp., Johnson (C. W.), 1.</td>
<td></td>
</tr>
<tr>
<td>Lingula Bruguiere, Grabau, 1.</td>
<td></td>
</tr>
<tr>
<td>aurora Hall, Sardeson, 2.</td>
<td></td>
</tr>
<tr>
<td>brainerdi n. sp., Raymond (P. E.), 1.</td>
<td></td>
</tr>
<tr>
<td>carbonaria Shumard, Girty, 3.</td>
<td></td>
</tr>
<tr>
<td>columna n. sp., Raymond (P. E.), 7.</td>
<td></td>
</tr>
<tr>
<td>cuneata Conrad, Grabau, 1.</td>
<td></td>
</tr>
<tr>
<td>dolata n. sp., Sardeson, 2.</td>
<td></td>
</tr>
<tr>
<td>? lens n. sp., Matthew (G. F.), 9.</td>
<td></td>
</tr>
<tr>
<td>morsii N. H. Winchell, Sardeson, 1.</td>
<td></td>
</tr>
<tr>
<td>mosia Hall, Sardeson, 2.</td>
<td></td>
</tr>
<tr>
<td>mytiloides Sowerby, Beede, 1.</td>
<td></td>
</tr>
<tr>
<td>? ovata n. sp., Cleland, 3.</td>
<td></td>
</tr>
<tr>
<td>? lens n. sp., Matthew (G. F.), 9.</td>
<td></td>
</tr>
<tr>
<td>? escasoni n. sp., Matthew (G. F.), 9.</td>
<td></td>
</tr>
<tr>
<td>gregwa n. sp., Matthew (G. F.), 2.</td>
<td></td>
</tr>
<tr>
<td>Isevis var. grandis n. var., Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>Uevis var. lens, Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>cfr. lepis, Matthew (G. F.), 12.</td>
<td></td>
</tr>
<tr>
<td>longinervis n. sp., Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>pumila n. sp., Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>rotunda n. sp., Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>starri var. Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>starri mut. exigua n. mut., Matthew (G. F.), 20.</td>
<td></td>
</tr>
<tr>
<td>Lingulopsis norwoodi (James), Hayes and Ulrich, 1.</td>
<td></td>
</tr>
</tbody>
</table>
Paleontology—Continued.

Genera and species described—Continued.

Lithostrotion harmodites Edwards and Halme, Ulrich, 8.
macouni Lambe, Lambe, 2.
? proliferum Hall, Ulrich, 8.
Litiopa marylandica n. sp., Clark and Martin, 2.
Littorina Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
Lithostrotion narmodites Edwards and Haime, Ulrich, 8.
macouni Lambe, Lambe, 2.
? proliferum Hall, Ulrich, 8.
Litiopa marylandica n. sp., Clark and Martin, 2.
Lithostrion Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
Litiopa raarylandica n. sp., Clark and Martin, 2.
Lithostrion Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
Lithostrion Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
Litiopa raarylandica n. sp., Clark and Martin, 2.
Lithostrion Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
Litiopa raarylandica n. sp., Clark and Martin, 2.
Lithostrion Perussac, Arnold, 2.
irrorata (Say), Martin, 5.
planaxis (Nuttall) Philippi, Arnold, 2.
sculptata Gould, Arnold, 2.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Lunatia marylandica Conrad, Clark and Martin, 2.

Lunulites reversa n. sp., Ulrich, 2.

Lyriopecten Hall, Grabau, 1.

Lyrosurciila n. gen., Casey, 2.

Machasrodus? ischyrus n. sp., Merriam, 16.

Macoma Leach, Arnold, 2.

Macridiscus Dall, Dall, 8.

Macrocallista Meek, Dall, 8.

section Chionella Cossmann, Dall, 8.

section Macrocalliasta s. s., Dall, 8.

acuminata n. sp., Dall, 8.

albairia Say, Dall, 8.

(Clionella?) giberti n. sp., Dall, 10.

(Clionella) maculata Linne", Dall, 8.

marylandica (Conrad), Glenn, 6.

(Clionella) marylandica Conrad, Dall, 8.

reposta Conrad, Dall, 8.

(Clionella) sp., Dall, 10.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.
Macrocephalites ishamae Keysorling sp., Madson, 1.
sp. cf. macrocephalus Schloethem sp., Madson, 1.
pompeckjii n. sp., Madson, 1.
Macrocheilina carinatus Nettleroth, Kindle, 1.
Macrophilia hamiltoni Hall, mut.
pygmea Clarke, Loomis, 4.
pygmea Hall, mut. pygmea nov., Loomis, 4.
pygmea Hall, Kindle, 1.
pygmea seneca n. sp., Clarke, 19.
sp., Kindle, 1.
sp. indet., Clarke and Ruedemann, 1.
sp., Kindle, 1.
Macrodon cf. cocklelars Winchell, Sanders, 11.
Macrodon obsoletus Meek, Beede, 1.
parvus W. & W., Weller, 2.
sangamonensis Worthen?, Beede, 1.
Macron H. and A. Adams, Arnold, 2.
kellettii A. Adams, Arnold, 2.
lividus A. Adams, Arnold, 2.
Macronotella fragaria n. sp., lluede-manu, 2.
ulrichi n. sp., Ruedemann, 2.
Mangilia (Clathurella) conradiana Gabb, Arnold, 2.
corvariella n. sp., Martin, 5.
corvariella var. pedroana n. var., Arnold, 2.
corvariella Stearns, Arnold, 2.
(Mangilia) bellistriata, Clark and Martin, 2.
(Mangilia) breani n. sp., Arnold, 2.
Paleontology—Continued.

Genera and species described—Continued.

Martesia maloniana n. sp., Cragin, 2.

ovalis (Say), Glenn, 6.

parvula n. sp., Cragin, 12.

Martini subumbona (Hall), Kindle, 1.

williamsi n. sp., Kindle, 1.

Mastodon, Douglass, 8.

americanus, Holland, 3.

Matheria brevis n. sp., Cragin, 8.

Matonidium althausii (Dunker) Ward, 3.

Martiniola Lamarck, Vaughan, 2.

niffiandrites (Linnaeus), Vaughan, 2.

Medlicottia, Waagen, Smith (J. P.), 3.

copei White, Smith (J. P.), 3.

Medullosa stellata var. gigantea, White (D.), 19.

stellata var. typica, White (D.), 19.

Meekella striatocostata Cox, Girty, 3.

stratocostata (Cox), Beede, 1.

Meekoceras Hyatt, Hyatt and Smith, 1.

(Gyronites) aplanatum White, Hyatt and Smith, 1.

(Gyronites) aplanatum White, Smith (J. P.), 5.

gracilitatis White, Smith (J. P.), 5.

gracilitatis White, Hyatt and Smith, 1.

(Pronolobus) Jacksoni n. sp., Hyatt and Smith, 1.

(Koninckites) mushbachianus White, Smith (J. P.), 5.

(Pronolobus) waageni n. sp., Hyatt and Smith, 1.

Meekoceratididae, Hyatt and Smith, 1.

Meekokopora Ulrich, Condra, 2.

proseri Ulrich n. sp., Condra, 1, 2.

Meglina maxillata (Deshayes) Glenn, 6.

Mellina maxillata (Deshayes) Glenn, 6.

Melocrinus clarkei (Hall) Williams, 19.

nobilissimus (Hall), Talbot, 2.

Melampus Montfort, Arnold, 2.

amplus Marsh, Lull, 5.

angustigena Cope, Osborn, 10.

avus Marsh, Osborn, 10.

bicorneus Osborn, Lull, 5.

bicorneus n. sp., Osborn, 10.

brachycephalus n. sp., Osborn, 10.

coloradensis Leidy, Osborn, 10.

dispar Marsh, Osborn, 10.

mushl n. sp., Osborn, 10.

robustus Marsh, Osborn, 10.

? selwynianus Cope, Osborn, 10.

tichoceras Scott and Osborn, Osborn, 10.

tyleri n. sp., Lull, 5.

Megalosaurus Knight, Williston, 14.

Megalocephalus Leidy, Vaughan, 9.

Megalophasa robusta n. sp., Whiteaves, 17.
Paleontology—Continued.

Genera and species described—Continued.

Melocrinus pachyductylus (Conrad),
Talbot, 2.

wittenbergensis n. sp., Rowley, 3.

Melonites Owen and Norwood, Klem, 1.
cransus Hambach, Klem, 1.
irregularis Hambach, Klem, 1.
multiporus Norwood and Owen,
Klem, 1.
multiporus? O. & N., Ulrich, 8.
septenarius Jackson, Klem, 1.

Membranipora angusta n. sp., Ulrich, 2.
bifollata n. sp., Ulrich and Bassler,
4.
caminoasa n. sp., Ulrich and Bassler,
4.
flava n. sp., Ulrich and Bassler, 4.
foliulifera n. sp., Ulrich and Bassler,
4.
germana n. sp., Ulrich and Bassler,
4.
nittulata n. sp., Ulrich and Bassler,
4.
oblunga n. sp., Ulrich and Bassler,
4.
parva n. sp., Ulrich and Bassler, 4.
rigulata n. sp., Ulrich, 2.
spleniosa n. sp., Ulrich, 2.

Meniscoeytis californicus n. sp., Fontaine,
3.
tenunervis Fontaine, Fontaine, 5.

Menophyllum ulrichanum n. sp., Girty,
3.

Mercimonia Ball, Dall, 8.

Menophyllum ulrichanum n. sp., Girty,
3.

Merychius elegans Leidy, Matthew (W. D.), 2.

furcatus (Leidy), Matthew (W. D.), 14.

fuscus Douglass, Matthew (W. D.), 14.

fuscus n. sp., Douglas, 2.

fuscus? Leidy, Matthew (W. D.), 14.

fuscus var. ovata (Rogers), Clark and Martin, 2.

fuscus var. pyga Conrad, Clark and Martin, 2.
Paleontology—Continued.

Genera and species described—Continued.

Mesoshippus westoni, Cope, Matthew (W. D.), 9.

westoni (Cope), Lambe, 14.
westoni Cope, Lambe, 16.

Mesonychidae, Matthew (W. D.), 19.

Mesonyx obtusidens Cope, Wortman, 9.

Mesostoma? _intermedium_ n. sp., Whiteaves, 12.

? _newcombii_ n. sp., Whiteaves, 12.
suciense n. sp., Whiteaves, 12.

Mesostryx angularis n. sp., Ulrich and Bassler, 2.
echinata n. sp., Ulrich and Bassler, 2.

Metablastus bipyramidalis Hall, Rowley, 4.
bipyramidalis ? Hall, Rowley, Greene, 5.
bipyramidalis Hall, Rowley, Greene, 11.
lineatus Shumard, Rowley, 4.
nitidulus M. and G., Rowley, Greene, 1.

Metachelomys marshi n. gen. and sp., Wortman, 13.

Metamynodon?, Douglass, 8.

Metaplasia plicata n. sp., Weller, 6.

Pleurotoma (Hall), Weller, 6.

Metasigaloceras n. gen., Hyatt, 1.

Metatis? _harrisi_ Aid., Casey, 4.

Metacyclus Meek and Worthen, Lambe, 9.

discus Meek and Worthen, Lambe, 9.

Microcyclos Meek and Worden, Lambe, 2.

_discus Meek and Worthen, Lambe, 2.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisi Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 9.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 2.

_discus Meek and Worthen, Lambe, 2.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 9.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 2.

_discus Meek and Worthen, Lambe, 2.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 9.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 2.

_discus Meek and Worthen, Lambe, 2.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 9.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.

Microcyclos Meek and Worthen, Lambe, 2.

_discus Meek and Worthen, Lambe, 2.

Microcerus Conrad, Dall, 8.

Microcorella? _bifoliata_ n. sp., Ulrich and Bassler, 4.

Inflata n. sp., Ulrich and Bassler, 4.

elongatula n. sp., Casey, 4.

Glyphostoma harrisia Ald., Casey, 4.

Pleurotomona infans Meyer, Casey, 4.

Pleurotomona lerchi Vgn., Casey, 4.

minutissima n. sp., Casey, 4.

robustula n. sp., Casey, 4.

rostratula n. sp., Casey, 4.
solidula n. sp., Casey, 4.

vicksburgella n. sp., Casey, 4.
Paleontology—Continued.

Genera and species described—Continued.

Mioclcenus acolytus (Cope), Douglass, 3.

Miodontiscus Dall, Dall, 8.

Miiolina Williamson, Bagg, 6.

Mildontopsis (Linné), Bagg, 6.

Milleaster n. gen., Ulrich, 6.

Miliolina macilenta, Guppy, 4.

Miliolina seminulum (Linne”), Bagg, 6.

Miiolina incrustans n. sp., Ulrich, 6.

Miiolina subramosus n. sp., Ulrich, 6.

Miolabis, Matthew (W. D.), 15.

Miantylopus (Paratylopus) cameloides, Matthew (W. D.), 15.

Miantylopus (Paratylopus) primsevus n. subg. and sp., Matthew (W. D.), 15.

Miantylopus sternbergi, Matthew (W. D.), 15.

Mirtomorpha A. Adams, Arnold, 2.

Mixodectes Cope, Wortman, 13.

Mixodectes crassiusculus Cope, Osborn, 11.

Mixosaurus, Merriam (J. C.), 6, 13.

Modiella sp. ?, Clarke, 19.

Modiolopsis fabaformis n. sp., Raymond (P. E.), 7.

Modiolopsis fprocessed on page 592. Incorrect file size. Continued:

Modiolus Lamarck, Arnold, 2.

Modiolus mariana n. sp., Martin, 5.

Modiolus marylandica Clark, Clark and Martin, 2.

Modiolus maura Swalnson, Arnold, 2.

Modiolus mononokensis n. sp., Clark and Martin, 2.

Modiolus potomakensis n. sp., Clark and Martin, 2.

Modiolus alabamensis Aldrich, Clark and Martin, 2.

Modiolus alaskanus n. sp., Dall, 10.

Modiolus dalli n. sp., Glenn, 6.

Modiolus ducatellus Conrad, Glenn, 6.

Modiolus ferunicatus Carpenter, Arnold, 2.

Modiolus harrimani n. sp., Dall, 10.

Modiolus litoralis n. sp., Sardeson, 1.

Modiolus primigenia (Conrad), Grabau, 1.

Modiolus rectus Conrad, Arnold, 2.

Modiolus virginicus (Conrad), Glenn, 6.

Modiolus, Dall, 10.

Modiolus (Botula?) sp., Dall, 10.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.

Modiolus charlestonensis Nettleroth, Kindle, 1.

Modiolus conceotrica Hall, Kindle, 1.

Modiolus myteloides Con., Kindle, 1.

Modiolus recta Hall, Kindle, 1.

Modiolus affinis Hall, Kindle, 1.

Modiolus alta Hall, Kindle, 1.
Paleontology—Continued.

Genera and species described—Continued.
Monoceros Lamarck, Arnold, 2.

Monocladodus Claypole, Claypole, 5.

Monoclonius Cope, Stanton and Hatcher, 1.

Monocraterion, Matthew (G. P.), 12.

Monomorella noveboracum n. sp., Clarke and Ruedemann, 1.

Monophyllites Mojsisovics, Hyatt and Smith, 1.

Monopterla alata Beede, Girty, 3.

Monotrypa corrugata n. sp., Weller, 6.

Monotrypella Ulrich, Ulrich and Bassler, 2.

Montacuta mariana Ball, Glenn, 6.

Monticulipora D'Orbigny, Ulrich and Bassler, 2.

Mopalia Gray, Arnold, 2.

Murex Linne, Arnold, 2.

Murchisonia argyrella n. sp., Sarde-

Murex Linne, Arnold, 2.

Murchisonia argyrella n. sp., Sarde-

Mya crassa Grewingk, Ball, 10.

Myalina? abstemia n. sp., Sardeson, 11.

Mycelium n. gen., Ulrich, 4.

Mycelium n. gen., Ulrich, 4.

Myeloophycus n. gen., Ulrich, 4.
Paleontology—Continued.

Genera and species described—Continued.

Mylagaulodon angulatus n. gen. and sp., Sinclair, 3.

Mylagaulidae, Matthew (W. D.), 19.

Mylagaulus Cope, Douglass, 8.

(Mesogaulus) ballensis Riggs, Matthew (W. D.), 6.

laevis n. sp., Matthew (W. D.), 6.

monodon Cope, Matthew (W. D.), 2, 6.

panieus n. sp., Matthew (W. D.), 6.

? pristinus sp., Matthew, Douglass, 8.

proximus n. sp., Douglass, 8.

sesquipedalis Cope, Matthew (W. D.), 6.

Myledaphus bipartitus Cope, Lambe, 3.

Myliobatis Cuvier, Eastman, 18.

copeanus Clark, Eastman, 1.

frangens n. sp., Eastman, 18.

gigas, Eastman, 18.

magister Leidy, Eastman, 1.

Mylostoma Newberry, Dean, 2.

Mylosa crassa Lesq., Berry, 5.

elongata Newb., Hollick, 4.

Myrsne, Sellards, 3.

Myrsyna crassa Lesq., Berry, 5.

gelongata Newb., Hollick, 4.

Myrsus H. and A. Adams, Dean, 8.

Myxatopidites sp., Matthew (G. F.), 23.

Myrica brittoniana nov. nom., Berry, 6.

brookensis Fontaine, Fontaine, 5.

ciffwoodensis n. sp., Berry, 7.

heerli n. sp., Berry, 4.

oregoniana n. sp., Knowlton, 14.

? personata n. sp., Knowlton, 14.

Myriotheca, Sellards, 3.

Nageiopsis angustifolia Fontaine, Fontaine, 5.

heterophylla Fontaine, Fontaine, 5.

Nanopus caudatus Marsh, Matthew (G. F.), 25.

Nannites Mojsisovics, Hyatt and Smith, 1.

Nannitinae Diener, Hyatt and Smith, 1.

Nanno kingstonensis n. sp., Whiteaves, 19.

primus n. sp., Whiteaves, 19.

Nassa Lamarck, Arnold, 2.

arnoldi n. sp., Anderson, 7.

Natica (Adanson) Scopoli, Arnold, 2.

bilablata n. sp., Cragin, 2.

clausa Broderip and Sowerby, Arnold, 2.

ciffwoodensis Cope, Douglass, 8.

Natica (Clawson) Clausa Boederip and Sowerby, Arnold, 2.

ciffwoodensis Clark, Douglass, 8.

Natica (Natica) clausa Broderip and Sowerby, Arnold, 2.

Natica (Natica) clausa Weller, 6.

Natica (Sowerby) clausa Weller, 6.
Paleontology—Continued.

Genera and species described—Continued.

Naticopsis monilifera White, Girty, 3.
sp., Beede, 8.
sp., Kindle, 1.
Nautilus burkarti Castillo and Aguilaria, Cragin, 2.
charlottensis Whiteaves, Anderson, 3.
gabbi n. sp., Anderson, 3.
hilli n. sp., Shattuck, 8.
maximus (Conrad), Kindle, 1.
nafragus n. sp., Cragin, 2.
texanus Shumard, Shattuck, 8.
Necera Gray, Arnold, 2.
pectinata Carpenter, Arnold, 2.
Neanites n. subg., Hyatt and Smith, 1.
Nebria abstract a n. sp., Scudder, 1.
Necromerus, Wortman, 14.
Nectosaurus halius n. gen. and sp., Mercian (J. C.), 15.
Nelumbo kempfi (Hollick), Hollick, 11.
primavera n. sp., Berry, 5.
Nematophy whole Caruthers, Grabau, 1.
crassus (Penhallow), Grabau, 1.
Nematophyton, Prosser, 8.
Neocardia Sowerby, Ball, 8.
Neocrassina Fischer, Dall, 8.
Neohipparion whitneyi n. gen. and sp., Gidley, 3.
Neolenus serratus Rominger sp., Woodward (H.), 1.
Neovulpavus washakius n. gen. et sp., Wortman, 2.
Nerinea circumvoluta n. sp., Cragin, 2.
dispar? Gabb, var., Whiteaves, 12.
goodellii n. sp., Cragin, 2.
Nerinea stantoni n. sp., Cragin, 2.
Nerita fimayensis n. sp., Cragin, 2.
nodiflora n. sp., Cragin, 2.
peroblena n. sp., Cragin, 2.
Neunkythus n. gen., Lambe, 3.
eximius n. sp., Lambe, 3.
eximius Lambe, Stanton and Hatcher, 1.
Neuropteris carceraria n. sp., White (D.), 10.
hastata n. sp., White (D.), 10.
lindahl n. sp., White (D.), 10.
raritervis Eumb, Sellards, cf. smithii, White (D.), 19.
Nerita rivae Risso, Arnold, 2.
Niclesia n. gen., Hyatt, 1.
Nileus vigilans Meek and Worthen, Finch (G. E.), 2.
Nelisia parvula (Heer) Fontaine n. comb., Fontaine, 1.
Nilosia parvula (Heer) Fontaine n. comb., Fontaine, 1.
polymera cretacea (Sch.), Penhallow, 4.
pterophyllodes Nathorst non Yokoyama, Fontaine, 1.
? sambucensis Ward n. sp., Fontaine, 3.
shaumburgensis (Dunker) Nathorst, Fontaine, 4.
stantoni Ward n. sp., Fontaine, 3.
Nisa lineata Conrad, Martin, 5.
Nisoschisma Risso, Arnold, 2.
Nisusia n. gen., Walcott, 12.
alia Walcott, Walcott, 12.
(Jamesella) amii n. sp., Walcott, 12.
(Jamesella) argenta n. sp., Walcott, 12.
(Jamesella) erecta n. sp., Walcott, 12.
festinata Billings, Walcott, 12.
festinata transversa Walcott, Walcott, 12.
(Jamesella) kuthani Pompeckj, Walcott, 12.
(Jamesella) perpasta Pompeckj, Walcott, 12.
(Jamesella) perpasta macra Pompeckj, Walcott, 12.
(Jamesella) perpasta subquadrata Pompeckj, Walcott, 12.
(Jamesella) utahensis n. sp., Walcott, 12.
(Jamesella) sp. und., Walcott, 12.
Nodicepsen Dall, Arnold, 2.
Nodophy whole halloformis n. gen. and sp., Herzer, 2.
Nodosaria abyssorum, Guppy, 4.
adolphina d'Orbigny, Bagg, 9.
affinis (d'Orbigny), Bagg, 1.
aramudinea, Guppy, 4.
bacillum Defrance, Bagg, 1.
communis (d'Orbigny), Bagg, 9.
consobrina d'Orbigny, Bagg, 9.
communis (d'Orbigny), Bagg, 9.
consobrina var. emacillata (Reuss), Bagg, 1.
consobrina var. emacillata Reuss, Bagg, 9.
farcimen (Soldani), Bagg, 9.
filiformis (d'Orbigny), Bagg, 9.
hispida, Guppy, 4.
lontiscata, Guppy, 4.
obliqua (Linné), Bagg, 1.
obliqua (Linné), Bagg, 9.
obliqua, Guppy, 4.
pauperata (d'Orbigny), Bagg, 9.
radicula (Linné), Bagg, 9.
ruphanilstrum, Guppy, 4.
roemerl (Neugeboren), Bagg, 9.
sandbergeri (Reuss), Bagg, 1.
soluta (Reuss), Bagg, 9.
FOR THE YEARS 1901-1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Nodosaria soluta, Guppy, 4.
Nomisoceras Hyatt, Smith (J. P.), 3.
Nodosoceras ? monroense Worthen, Smith (J. P.), 3.
Nodosoceras d'Orbigny, Bagg, 6.
affinis Reuss, Bagg, 1.
benea d'Orbigny, Bagg, 9.
communis d'Orbigny, Bagg, 9.
pomplioides (Fichtel and Moll), Bagg, 9.
umbilicata (Montagu), Bagg, 9.
scapha (Fichtel and Moll), Bagg, 6.

Nornorix Bayle, Arnold, 2.
norrisi Sowerby, Arnold, 2.
Nostharcus (Thinolestes) anceps Marsh, Osborn, 11.
(Telmatolestes) crassus Marsh, Osborn, 11.
(Hyssodus) gracilis Marsh, Osborn, 11.
nucleus Cope, Osborn, 11.
(Tomithereum) rostratum Cope, Osborn, 11.
tenebrosus Leidy, Osborn, 11.
(Limnotherium) tyrannus Marsh, Osborn, 11.
ventralis n. sp., Osborn, 11.
Notidanus primigenius Agassiz, Bastin, 18.
Notolacerta missouriensis Butts, Matthews (G. F.), 25.
Nucleocrinus angularis Lyon, Rowley, Greene, 4, 14.
cucullatus n. sp., Rowley, Greene, 4.
imperator n. sp., Rowley, Greene, 4, 14.
lucina Hall, Rowley, Greene, 14.
stichleri n. sp., Rowley, Greene, 4.
venustus M. & G., Rowley, Greene, 4.
verneuill Troost, Rowley, Greene, 4.
verneuill-var. inflatus n. var., Rowley, Greene, 4.
verneuill Troost, Rowley, Greene, 7.
verneuill var. pomum (?) Etheridge and Carpenter, Rowley, Greene, 4.
verneuill var. sulcatus n. var., Rowley, Greene, 4.
Nucleospira barrisi (White), Rowley, 1.
barrisi White, Weller, 2.
conchina Hall, Kindle, 1.
conchina Hall, mut. pygmaea nov., Loomis, 4.
plafonis Hall, Kindle and Berger, 1.
ventricosa Hall, Weller, 6.
Paleontology—Continued.

Genera and species described—Continued.

Nyssa laevigata Lx., Perkins, 13.

lamerlosa n. sp., Perkins, 13, 17.

microparla Lx., Perkins, 13.

multicostata n. sp., Perkins, 13.

ovata n. sp., Perkins, 13.

solea n. sp., Perkins, 13.

Obolella Billings 1861, Walcott, 1.

asiatica n. sp., Walcott, 12.

Obolella Billings 1861, Walcott, 1.

cf. chromatica Billings, Matthew (G. P.), 12.

lindstroemi n. sp., Walcott, 1.

inobergi n. sp. Walcott, 1.

(Lingulella) faviola Linnarssson, Walcott, 1.

Obolella Billings 1861, Walcott, 1.

asiatica n. sp., Walcott, 12.

Obolella Billings 1861, Walcott, 1.

(Lingulella) lens Matthew (G. F.), 12.

(Lingulella) faviola Linnarssson, Walcott, 12.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens-primus, Matthew (G. F.), 16.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.

(Lingulella) lens var. longus n. var., Matthew (G. F.), 20.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Oclnebra Leach, Arnold, 2.

barbarensis Gabb, Arnold, 2.

foveolata Hinds, Arnold, 2.

interfossa Carpenter, Arnold, 2.

keep! n. sp., Arnold, 2.

lurida Middendorf, Arnold, 2.

lurida Midd., var. aspera Baird, Arnold, 2.

lurida Midd., var. cancellina Philippi, Arnold, 2.

lurida Midd., var. cerritensis n. var., Arnold, 2.

lurida Midd., var. munda Carpenter, Arnold, 2.

micheli Ford, Arnold, 2.

perita Hinds, Arnold, 2.

poulsoni Nuttall, Arnold, 2.

Odontasplis cuspidata (Agassiz), Bastman, 18.

cuspidata (Agassiz), Case, Eastman, 1.

elegans (Agassiz), Eastman, 18.

elegans (Agassiz), Case, Eastman, 1.

macrota (Agassiz), Case, Eastman, 1.

Odontopleura arkansana n. sp., Van Ingen, 2.

tonio Foerste, Kindie and Breger, 1.

Odontopterus papilionacea n. sp., White (D.), 10.

Odostomia Fleming, Arnold, 2.

(Oscilla) aguleculpta Carpenter, Arnold, 2.

(Pyrugulina) calveriensis n. sp., Martin, 5.

conoida (Brocchi), Martin, 5.

crenulata n. sp., Brown (T. C.), 1.

? cretacea n. sp., Whiteaves, 12.

(Chrysallida) diegensis D. & B., n. sp., Arnold, 2.

? inornata n. sp., Whiteaves, 12.

(Evallea) gouldi Carpenter, Arnold, 2.

(Oscilla) grammatespira D. & B., n. sp., Arnold, 2.

(Evallea) mariana n. sp., Martin, 5.

(Symnola) marylandica n. sp., Martin, 5.

(Chrysallida) melanoide (Conrad), Martin, 5.

(Amaura) nuciformis, var. avelana Carpenter, Arnold, 2.

(Amaura) pupiform Carpenter, Arnold, 2.

semicostata n. sp., Brown (T. C.), 1.

(Evallea) stearnsii D. & B., n. sp., Arnold, 2.

tenuis-Carpenter, Arnold, 2.

(Ivara) terricula (Carpenter) D. & B., Arnold, 2.

Bull. 301—06—44

Paleontology—Continued.

Genera and species described—Continued.

Odostonia trapauquara (Harris), Clark and Martin, 2.

Ogyropsis klotzi Rom. sp., Woodward (H.), 1.

Ogmophus arenarum n. sp., Douglass, 8.

Olbodotes Osborn, Wortman, 13.

Olbodotes copei n. gen. and sp., Osborn, 11.

Olocostephannus maloniana n. sp., Craig, 2.

(? Simbruskites Pavlov and Lamplugh) n. sp., Madson, 1.

Olentius thompsoni (Hall), Weller, 6.

(Holmia) walcottanus n. sp., Wanner, 1.

Oligoporites Meek and Worthen, Klem, 1.

coreyi Meek and Worthen, Klem, 1.

dane Meek and Worthen, Klem, 1.

Oligoporites Meek and Worthen, Klem, 1.

? minutus Beede, Beede, 1.

mostissiensis Jackson, Klem, 1.

mutatus Keyes, Klem, 1.

nobilis Meek and Worthen, Klem, 1.

parvus Hambach, Klem, 1.

Oligosimus Leidy, Williston, 14.

Olistodus arcanum n. sp., Scudder, 1.

celatum n. sp., Scudder, 1.

dejectum n. sp., Scudder, 1.

Omonyx ameghini n. sp., Wortman, 14.

Ommatophora mariana n. sp., Martin, 5.

Ommatophora mariana n. sp., Martin, 5.

Onchosaurus Gervais, Eastman, 14.

Onoclea sensibilis fossilis Newb., Knowlton, 12.

Ontaria n. gen., Clarke, 19.

accincta n. sp., Clarke, 19.

affiliata n. sp., Clarke, 19.

clarkei Beushausen (sp.), Clarke, 19.

concentrica von Buch, Clarke, 19.

halli n. sp., Clarke, 19.

poniiaca n. sp., Clarke, 19.

suborbicularis Hall (sp.), Clarke, 19.

Onychiopsis psilotoidea (Stokes and Webb) Ward, Fontaine, 5.

psilotoidea (Stokes and Webb) Ward n. comb., Fontaine, 2.

Onychocardium n. gen., Whitfield, 11.

portlandicum n. sp., Whitfield, 11.
Paleontology—Continued.

Genera and species described—Continued.

Onychochilus (?) nitidulus? Clarke, Wood (Elvira), 1.

Ooedectes perpeetoides n. gen. et sp., Wofrman, 3, 4.

Opalia H. and A. Adams, Arnold, 2.

anomalia Stearns, Arnold, 2.

corealis Gould, Arnold, 2.

crenatoidees Carpenter var. in-

sculpta Carpenter, Arnold, 2.

varicostata Stearns, Arnold, 2.

Ophiceras Griesbach, Hyatt and Smith, 1.

dieneri n. sp., Hyatt and Smith, 1.

spenceri n. sp., Hyatt and Smith, 1.

Ophileta alturaensis n. sp., Sardeson, 2.

complanata Vanuxem, Cleland, 3.

levata Vanuxem, Cleland, 3.

? sp. undet., Weller, 6.

Ophioderma? sp., Clark (W. B.), 7.

Ophthalmosaurus, Gilmore, 3.

Ophthalmosaurus, Merriam, 6.

Opbioderma? sp., Clark (W. B.), 7.

Orbicella Dana 1846, Vaughan, 2.

acropora (Linnaeus), Vaughan, 2.

cavernosa (Linnaeus), Vaughan, 2.

tenuis Euncan, Vaughan, 2.

? texana n. sp., Vaughan, 17.

Orbiculoides ampla (Hall), Weller, 6.

cosvexa (Shumard), Beede, 1.

doria Hall, Kindel, 1.

jervensis Barrett, Weller, 6.

lamellosa (Hall), Weller, 6.

iodiogenes (Vanuxem)?, Kindel, 1.

manhattanensis (Meeck and Hay-

den), Beede, 1.

manhattanensis Meeck and Hayden,

Girty, 3.

missourienesis (Shumard), Beede, 1.

parva n. sp. (Rowley), Greene, 2.

sp., Girty, 3.

sp. undet., Weller, 6.

Orbiculus Megere, Dale, 8.

Oribuyella n. gen., Ulrich and Bassier, 2.

sublamellosa n. sp., Ulrich and Bassier, 2.

Orbitremites grandis n. sp., Rowley,

Greene, 5.

oppelti n. sp., Rowley, Greene, 5.

Orbulina universa d'Orbigny, Bagg, 9.

Orchestes avus n. sp., Rowley,

(tetragona) Newbould, 2.

rubustum n. sp., Douglas, 4.

uroboliix yavapai compactula n. subsp.,

Cockerell, 2.

Urocardius sheari Cope, Hay, 10.

tortus Cope, Hay, 10.

Oriostoma huntingtonensis n. sp., Kin-

dle and Breger, 1.

huntingtonensis var. alternatum n. var., Kindle and Breger, 1.

? opercula, Kindle and Breger, 1.

Paleontology—Continued.

Genera and species described—Continued.

Oriostoma plana n. sp., Kindle and Breger, 1.

sp. undet., Kindle and Breger, 1.

Orrnithichuites gallinuoids King,

Matthew (G. F.), 25.

Orrnithoides n. gen., Matthew (G. F.),

21, 30.

? adamsi n. sp., Matthew (G. F.),

30.

tridens Dawson, Matthew (G. F.),

30.

Orrnitholestes hermanni n. gen. and sp.,

Osborn, 16.

hermanni Osborn, Lambe, 9.

Orrnithomimus altus n. sp., Lambe, 3, 9.

dens Marsh, Lambe, 9.

Orrnithostoma, Lawley, 2.

Orrnithostoma, Lucas, 18.

Ings Williston, Lucas, 10.

Orodictes intermedius n. sp., Eastman, 10.

Orohippus? sp., Hatcher, 3.

Orophocrinus conicus? W. & Sp., Row-

ley, 4.

stelliformis O. & S., Rowley, 4.

Orophosaurus Cope, Williston, 14.

Orthidium lamellosa n. sp., Raymond

(P. E.), 7.

Othris Dalmian, Grabau, 1.

acutiplicata n. sp., Raymond (P. E.), 7.

corpulentæ n. sp., Sardeson, 9.

(Orusia?) eureknus Walcott, Walcott, 12.

(Finkelnburgia) finkelnburgi n.

sp., Walcott, 12.

fiabellites Foerste, Grabau, 1.

fiabellites Foerste, Kindle and Bre-

ger, 1.

fiabellites Foerste, Weller, 6.

Igncula n. sp., Raymond (P. E.), 7.

lenticularis Dalmian, Matthew (G. F.),

20.

(Orusia) lenticularis Wahlenberg,

Walcott, 12.

(Orusia) lenticularis atrypoïdes

Matthew, Walcott, 12.

(Orusia) lenticularis lyncloldes

Matthew, Walcott, 12.

macrior n. sp., Sardeson, 9.

minnesotensis n. sp., Sardeson, 9.

newtonensis n. sp., Weller, 6.

(Finkelnburgia) osceola n. sp.,

Walcott, 12.

(Finkelnburgia) osceola corrugata

n. var., Walcott, 12.

(Blillingsella) pepina Hall, Sardes-

ton, 2.

petrae n. sp., Sardeson, 9.

? punctostrata Hall, Grabau, 1.

rogata n. sp. or var., Sardeson, 9.

? subnodosa Hall, Kindle and Bre-

ger, 1.

tersus n. sp., Sardeson, 9.

(Dalmianella) testudinarla, Hayes

and Ulrich, 1.
Paleontology—Continued.
Genera and species described—Continued.
Orthis tricenaria Conrad, Weiler, 6, trecenaria Conrad, Ruedemann, 2.
See also Plectothor.
Orthisa alberta Walcott, Matthew (G. F.), 10.
Orthoceras Breyn, Grabau, 1.
Orthoceras Breyn, Hyatt and Smith, 1.
algomense n. sp., Parks, 5.
anulatum Sowerby, Grabau, 1.
(Klonoceras) angulatum Wahlen-
berg, Kindle and Breger, 1.
(Dawsonoceras) cf. annulatum
Sowerby, Kindle and Breger, 1.
(Dawsonoceras) annulatum var.
americannum Ford, Kindle and
Breger, 1.
caldwellensis Miller and Gurley,
Kindle, 1.
crebescens Hall, Clarke and Rued-
emann, 1.
(Klonoceras) dephiensis n. sp.,
Kindle and Breger, 1.
ekwamense n. sp., Whiteaves, 17.
extremum n. sp., Parks, 5.
Indianense Hall, Weller, 2.
(Klonoceras) Kentlandensis n. sp.,
Kindle and Breger, 1.
marcellense Vanuxeni, Wood (El-
vira), 1.
medullare Hall, Grabau, 1.
medullare Hall, Kindle and Breger,
1.
minnesotense n. sp., Sardeson, 1.
multipectum Hall, Grabau, 1.
(Gelsonoceras) nagaronense Hall,
Kindle and Breger, 1.
natium Hall, Loomis, 4.
(Klonoceras) ornus Hall, Kindle
and Breger, 1.
primigenium Vanuxen, Cieiden, 3.
pulcher n. sp., Parks, 5.
rectum Worten, Clarke and
Ruedemann, 1.
sentilla Hall (?), mut. mephisto
Clarke, Loomis, 4.
shastense n. sp., Hyatt and Smith,
1.
sulcatum Hall, mut. pygmaeum
nov., Loomis, 4.
tenuistratum (Hall), Weller, 6.
tenuistextum (Hall), Weller, 6.
thoas Hall, Kindle, 1.
trusitum n. sp., Clarke and Ruede-
mann, 1.
sp., Parks, 5.
sp., Kindle, 1.
sp. undet., Sandersen, 1.
sp. undet., Weller, 6.
Orthodactylus E. Hitchcock, Lull, 2.
floriferus E. Hitchcock, Lull, 2.
introvergens E. Hitchcock, Lull, 2.
linearis E. Hitchcock, Lull, 2.
Orthodesma canaliculatum Ulrich, Wel-
er, 6.
Paleontology—Continued.
Genera and species described—Continued.
Orthonychia formosa Keyes?, Girty, 3.
bobus n. sp., Whiteaves, 17.
Orthostrophia Hall, Grabau, 1.
(?) fasciata Hall, Grabau, 1.
stromphenooides (Hall), Weller, 6.
Orthosulcata n. gen., Casey, 5.
Orthotheca 'bayonet n. sp., Matthew (G. F.), 1.
cylindrica Grabau, Sears, 1.
enmonsi Ford, Sears, 1.
pugio n. sp., Matthew (G. F.), 1.
sica n. sp., Matthew (G. F.), 1.
stillletto, Matthew (G. F.), 1.
Orthothetes Fischer de Waldheim, Gra-
baun, 1.
bellulus Clarke, Raymond (P. E.),
3, 4.
chechungensis Conrad, Raymond
(P. E.), 4.
chemungensis var. arctistriatus
Hall, Raymond (P. E.), 3.
chemungensis arctistriatus Hall,
Kindle, 1.
chemungensis var. pectinacea Hall,
Raymond (P. E.), 3.
deckerensis n. sp., Weller, 6.
hydraulicus Whitfield), Grabau, 1.
incaquis (Hall), Weller, 2.
incaquis (W. and W.), Weller, 2.
incaquis Hall, Girty, 3.
interstriatus (Hall), Weller, 6.
mindus n. sp., Cumings, 2.
pandora (Bill.), Weller, 6.
subplanus Conrad, Kindle and Bre-
ger, 1.
subplanus Conrad 1842, Beecher, 1.
subplanus (Conrad), Grabau, 1.
woolworthani Hall, Shimer, 5.
woolworthana (Hall), Weller, 6.
sp. undet., Weller, 2, 6.
Orthotichia schuchertensis n. sp., Girty,
3.
Oryctes n. subg. of Orthis, Walcott, 12.
Oryctoceratites Leidy, Case, 9.
crocodilinus (?) Cope, Case, 9.
Oryctomya clabornensis Dall, Dall, 8.
Osmeroides Agassiz, Loomis, 1.
evolutus Cope?, Loomis, 1.
polymerus Stewart, Loomis, 1.
Osmunda montane{n. sp., Knowl-
ton, 18.
Osmundites skidegatensis n. sp., Pen-
hallow, 3.
skidegatensis Penh., Penhallow, 4.
Osteoglyptes Cope, Wieland, 6.
gibbi n. sp., Wieland, 6.
Ostrea (Linne) Lamarck, Arnold, 2.
anomala val. nanus n. var.,
Johnson (D. W.), 5.
arrosis n. sp., Aldrich, 5.
aviculariformis n. sp., Anderson, 7.
carolineus Conrad, Glenn, 6.
compressirostra Say, Clark and
Martin, 2.
Paleontology—Continued.

Genera and species described—Continued.

Ostrea var. alepitiota Ball, Clark and Martin, 2.
Ostrea eduliformis Schlotheim, Madsen, 1.
Ostrea lugubris Conrad, Johnson (D. W.), 5.
Ostrea lurida Carpenter, Arnold, 2.
Ostrea percrassa Conrad, Glenn, 6.
Ostrea sellasformis var. thomasii (Conrad), Glenn, 5.
Ostrea trigonalis Conrad, Glenn, G. v (Gryphaeostrea) vomer (Morton), Clark and Martin, 2.
Ostrea sp., Glenn, 6.
Ostrea sp., Shattuck, 8.
Ostrea sp., Cragin, 2.
Otidophyton hymenophylloides u. sp., White (D.), 18.
Otocoelidfe Cope, Case, 12.
Otodus obliquus Agassiz, Eastman, 18.
Otouphocps n. gen., Cushman, 1.
Otozamites oregonensis n. sp., Foutaine, 2.
Otozoum E. Hitchcock, Lull, 2.
Oxycena, Matthew (W. D.), 19.
Oxysenidffi, Matthew (W. D.), 19.
Oxyclsenidae, Matthew (W. D.), 19.
Oxydactylus n. gen., Peterson, 1.
Oxydactylus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxydiscus newberryanus Meek (not Gabb), Anderson, 3.
Pachydiscus osetocodens Stoliczka sp., Whiteaves, 12.
Pachydiscus otacodensis Stoliczka sp., Whiteaves, 12.
Pachydiscus sacramentoanus Meek sp., Lasswitz, 1.
Pachydystia foliata Ul., Sardeson, 4.
Pachymya austenensis (?) Shumard, Shattuck, 8.
Pachyphyllum Milne Edwards and Halme, Lambe, 2.
Otdophyton hymenophylloides n. sp., White (D.), 18.
Otocellide Cope, Case, 12.
Otodus obliquus Agassiz, Eastman, 1.
Otocephus n. gen., Cushman, 1.
Otozamites oregonensis n. sp., Fontaine, 2.
Otozoon E. Hitchcock, Lull, 2.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxydiscus newberryanus Meek (not Gabb), Anderson, 3.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus brachyodontus n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus longipes, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxydiscus newberryanus Meek (not Gabb), Anderson, 3.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus cristatus Safford, Hayes and Ulrich, 1.
Oxysenidffi, Matthew (W. D.), 19.
Oxydiscus curveus n. sp., Loomis, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Oxydiscus longipes n. sp., Peterson, 1.
Oxydiscus branchyodontus, Matthew (W. D.), 15.
Paleontology—Continued.
Palaenoglossus brachyodon n. sp., Matthew (W. D.), 6.
haydeni Cope, Matthew (W. D.), 6.
terminus Matthew, Matthew (W. D.), 2, 6.
temmudon n. sp., Douglass, 4.
temmudon Douglass, Matthew (W. D.), 6.
turgidus Cope, Matthew (W. D.), 6.
Palaenomeryx, Douglass, 1.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.
? borealis?, Douglass, 8.
borealis Cope, Matthew (W. D.), 14.
intermedius Matthew, Matthew (W. D.), 2, 6.
intermedius Douglass, Matthew (W. D.), 6.
turniens, Matthew (W. D.), 6.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.

Palaenomeryx, Matthew (W. D.), 14.
americanus n. sp., Douglass, 1.
americanus Douglass, Matthew (W. D.), 14.
antipilin Thomas, Matthew (W. D.), 14.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Pandora (Kennerlia) bizarriata Carpenter, Arnold, 2.

(Clidiophora) crassidens Conrad, Glenn, 6.

(Kennerleya) crassidens Conrad, Dall, 8.

(Kennerleya) dodona n. sp., Dall, 8.

(Kennerlia) filosa Carpenter, Arnold, 2.

(Clidiophora) goulcliaua Ball, Ball, 8.

(Kennerleyia) lata n. sp., Dall, 8.

(Kennerleyia) dodona n. sp., Ball, 8.

(Kennerleyia) lata Ball, Glenn, 6.

(Heteroclidus) punctata Conrad, Dall, 8.

(Clidiophora) trilineata Say, Ball, 8.

Panenka canadensis n. sp., Whiteaves, 4.

Panomya Gray, Arnold, 2.

Panopea Meand, Arnold, 2.

Pantolambda (?), Bouglass, 3.

Pantolestes Cope, Matthew (W. B.), 23.

Pantosaurus Marsh, Williston, 14.

Paphia Bolten, Dall, 8.

Paragonides n. gen., Hyatt and Smith, 1.

Parahippus Leidy, Gidley, 5.

Paralecanites Diener, Hyatt and Smith, 1.

Paralegoceras Hyatt, Smith (J. P.), 3.

Parasolpseudites Hyatt, Smith (J. P.), 3.

Parasomaculites Hyatt, Smith (J. P.), 3.

Paratropites Mojsisovic, Hyatt and Smith, 1.

Paratanites n. gen., Hyatt and Smith, 1.

Paratinnipites cryptophysa Clarke, Fuchs, 1.

Paratypx n. gen., Clarke, 19.

Parasomaculites cryptophysa Clarke, Fuchs, 1.

Parasomaculites texana n. sp., Vaughan, 17.

Parastarte Conrad, Dall, 8.

Parasomaculites cryptophysa Clarke, Fuchs, 1.

Paratropites Mojsisovic, Hyatt and Smith, 1.

Paratropites Mojsisovic, Smith (J. P.), 5.
Paleontology—Continued.

Genera and species described—Continued.

Paratropites (Gymnotropites) americanus n. sp., Hyatt and Smith, 1.

Parmally Mojsisovics, Smith (J. F.), 5.

sellai Mojsisovics, Hyatt and Smith, 1.

Parazyga hirsuta Hall, Kindle, 1.

Pariostegus Cope, Branson, 2.

myops Cope, Branson, 2.

Pariotichus Cope, Broili, 2.

aduncus Cope, Broili, 2.

aguti Cope, Broili, 2.

brachyops Cope, Broili, 2.

incisivus Cope, Broili, 2.

Isolomus Cope, Broili, 2.

ordinatus Cope, Broili, 2.

ordinatus Cope, Case, 3.

Pariotichus sp., Cope, Case, 3.

Parmophorella (?) paupera Bill., Matthew (G. P.), 1.

Parmulina Dall, Dall, 8.

Paronychodon lacustris Cope, Stanton and Hatcher, 1.

Paxilucina Dall, Dall, 8.

Patella sp., Shattuck, 8.

Patellostium bellum Keyes, Girty, 3.

ourayense Gurley, Girty, 3.

Paterula amii Schuchert, Ruedemann, 1.

Patinopecten Dall, Arnold, 2.

Patriofelis ferox (Marsh), Osborn, 36.

(Amantis) ferox Marsh, Wortman, 10.

Patrobus decessus n. sp., Scudder, 1.

(Chlamys) coccymelus Dall, Glenn, 6.

clintonius Say, Glenn, 6.

coalingaensis Arnold, Anderson, 7.

(Clamys) dalli Clark, Clark and Martin, 2.

(Clamys) dentatus Sowerby, Arnold, 2.

(Lyropecten) dilleri n. sp., Dall, 4.

duplicicosta (?) Roemer, Shattuck, 8.

etchebolini n. sp., Anderson, 7.

(Patinopecten) expansus Dall, Arnold, 2.

(Hinnites) giganteus Gray, Arnold, 2.

(Chlamys) hastatus Sowerby, Arnold, 2.

Pecten (Pecten) hemphilli Dall, Arnold, 2.

(Chlamys) hericeps Gould, Arnold, 2.

(Chlamys) hericeps var. stragutus Dall, Arnold, 2.

(Amusium) humbreysii Conrad, Glenn, 6.

(Pecten) humbreysii Conrad, Glenn, 6.

(Camptonectes) Insutus n. sp., Cragin, 2.

(Chlamys) jeffersonius Say, Glenn, 6.

jeffersonius var. edgecombensis (Conrad), Glenn, 6.

jeffersonius var. septenarius Say, Glenn, 6.

johnsoni Clark, Clark and Martin, 2.

(Chlamys) Jordani n. sp., Arnold, 2.

(Chlamys) latiauritus Conrad, Arnold, 2.

(Chlamys) latiauritus Con., var. fragilis n. var., Arnold, 2.

(Chlamys) latiauritus Con., var. monotimeris Con., Arnold, 2.

(Chlamys) madisonius Say, Glenn, 6.

(Chlamys) marylandicus Wagner, Glenn, 6.

(Amusium) mortoni Ravenel, Glenn, 6.

(Plagioctenium) newsomi n. sp., Arnold, 2.

(Chlamys) opuntia Dall, Arnold, 2.

quinquecostatus? (Sowerby), Shattuck, 8.

roemerii (Hill), Shattuck, 8.

(Chlamys) rogersi Conrad, Glenn, 6.

(Pecten) stearnsii Dall, Arnold, 2.

(Pseudamusium) subminutus n. sp., Aldrich, 2.

(Nodipecten) subnodosus Sowerby, Arnold, 2.

(Plagioctenium) ventricosus Dall, Arnold, 2.

sp., Clark and Martin, 2.

sp., Madsen, 1.

(Chlamys) sp., Dall, 10.

Pectunculus pacificus n. sp., Anderson, 3.

septentrionalis Middendorf, Anderson, 7.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genera and species described—Continued.</td>
<td>Genera and species described—Continued.</td>
</tr>
<tr>
<td>Pectunculus veatchii Gabb sp., Whitt-</td>
<td>Pentremites koninckanus Hall, Rowley,</td>
</tr>
<tr>
<td>eaves, 12.</td>
<td>Greene, 14.</td>
</tr>
<tr>
<td>Pelycosaurus Cope, Osborn, 11.</td>
<td>koninckanus Hall, Rowley, Greene,</td>
</tr>
<tr>
<td>frigivorus Cope, Osborn, 11.</td>
<td>7.</td>
</tr>
<tr>
<td>tutus Cope, Osborn, 11.</td>
<td>obesus Lyon, Ulrich, 8.</td>
</tr>
<tr>
<td>Pelecorapis Cope, Cragin, 1.</td>
<td>obesus Lyon, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>microlepis n. sp., Cragin, 1.</td>
<td>obtusus n. sp., Hambach, 1.</td>
</tr>
<tr>
<td>Pelycosauria, Case, 2.</td>
<td>pyriformis Say, Ulrich, 8.</td>
</tr>
<tr>
<td>Pelecyora Ball, Dall, 8.</td>
<td>pyriformis Say, Rowley, Greene, 5.</td>
</tr>
<tr>
<td>Pentagonaster sp. cf. andrese de Loriol,</td>
<td>pyriformis Say, Hambach, 1.</td>
</tr>
<tr>
<td>Pentamerella arata (Conrad),</td>
<td>kanaricus Lyon, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>Pentamerella pavilinensis Hall, Kindle,</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>oblongus var. compressa n. var., Kindle</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>oblongus var. cylindricus Hall and</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>altus n. sp. (Rowley), Greene, 2.</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>chesterensis, Hambach, Rowley,</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>Pentremites conoideus Hall, Rowley,</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>conoideus var. amplus n. var., Rowley,</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
<tr>
<td>fohsi var. marionensis n. var., Ul-</td>
<td>Pythosaurus Sowerby, Rowley, Greene, 7.</td>
</tr>
</tbody>
</table>
Paleontology—Continued.
Genera and species described—Continued.

Phacoides (Miltha) disciformis Heilprin, Dall, 8.
Phacoides (Miltha) domingensis n. sp., Dall, 8.
(Pseudomiltha) floridanus Conrad, Dall, 8.
(Pseudomiltha) foremani (Conrad), Glen, 6.
(Pseudomiltha) foremani Conrad, Dall, 8.
(Here) glenni n. sp., Dall, 8.
(Here) humatus n. sp., Dall, 8.
(Miltha) heracleus n. sp., Dall, 8.
(Miltha) hillsbororhees Heilprin, Dall, 8.
(Parvilucina) intensus n. sp., Dall, 8.
(Parvilucina) multilinatus Tousney and Holmes, Dall, 8.
(Lucinisa) muscatus Spengler, Dall, 8.
nasula var. caloosana Dall, Dall, 8.
(Miltha) ocalanus n. sp., Dall, 8.
(Parvilucina) piliformis n. sp., Dall, 8.
(Lucinisa) plesiolophus Dall, Dall, 8.
(Here) podagrinus n. sp., Dall, 8.
(Parvilucina) prunus Dall, Glenn, 8.
(Parvilucina) prunus n. sp., Dall, 8.
(Pleurilucina) quadricostatus n. sp., Dall, 8.
(Cavilucina) recurvus n. sp., Dall, 8.
(Here) richthofeni Gabb, Dall, 8.
(Parvilucina) spheriolus n. sp., Dall, 8.
(Here) tithonis n. sp., Dall, 8.
(Here) trisulcatus (Conrad), Glenn, 6.
trisulcatus var., multistriatus Conrad, Dall, 8.
(Bellucina) tueomyt n. sp., Dall, 8.
(Bellucina) wacissanus n. sp., Dall, 8.
(Parvilucina) yaquensis Gabb, Dall, 8.
? sp., Dall, 10.
(Here) sp. undet., Dall, 8.

Phacops cristata Hall, Kindle, 1.
cristata var. pips H. and C., Kindle, 1.

Phanodella n. gen., Casey, 4.
Phanerotinus paradoxus Win., Weller, 2.
Paleontology—Continued.

Genera and species described—Continued.

Phanerotrema cf. grayvillense Norwood and Pratten, Girty, 3.

Phaneta? decorata n. sp., Girty, 3.

Phaneta? decorata n. sp., Whiteaves, 12.

Phasianella Lamarck, Arnold, 2.

Phencodonites magnificus (Miller and Gurley), Beede, 1.

Phenacodus primsevus Cope, Osborn, 36.

Phenacoida petrosa (Conrad), Clark and Martin, 2.

Phialocystus magnificus (Miller and Gurley), Beede, 1.

Phillipina Dall, Dall, 8.

Phillipsastræa d’Orbigny, Lambe, 2.

Phillipsia major Shumard, Girty, 3.

Philonthus claudus n. sp., Scudder, 1.

Philippia (?) cliffwoodensis n. sp., Berry, 5.

Phragmoceras angustum Newell, Kindle and Breger, 1.

Phragmoceras cliffwoodensis n. sp., Berry, 5.

Phragmoceras cliffwoodensis n. sp., Berry, 5.
Genera and species described—Continued.

Pithecosaurus Leidy, Williston, 14.

Placites Mojsisovics, Hyatt and Smith, 1.

Placites section Tivelina Cosman, Dall, 8.

Lamelliconcha asartiformis Conrad, Dall, 8.

Lamelliconcha. calcanea n. sp., Dall, 8.

(Hyphantosoma) carbasea Guppy, Dall, 8.

Lamelliconcha filosina n. sp., Dall, 8.

Lamelliconcha floridana n. sp., Dall, 8.

(Hyphantosoma) opisthogrammata n. sp., Dall, 8.

Pityoxylon chasenes n. sp., Penhallow, 1.

micropororum. brandonianum n. var., Knowlton, 11.

Pleaceras n. gen., Lucas, 19.

besterus n. sp., Lucas, 19.

Placentacranus Meek, Hyatt, 1.

californicum n. sp., Anderson, 3.

glandulapa (Roemer), Hyatt, 1.

intercalare Meek, Hyatt, 1.

? intermedium n. sp., Johnson (D. W.), 5.

newberryi n. sp., Hyatt, 1.

californicum Smith, Anderson, 3.

placenta De Kay, Lasswitz, 1.

planum n. sp., Hyatt, 1.

placenta (DeKay), Hyatt, 1.

placenta (DeKay) sp? Johnson (D. W.), 5.

? rotundatum n. sp., Johnson (D. W.), 5.

pseudoplacenta, Hyatt, 1.

californicum var. occidentale, Hyatt, 1.

californicum var. pseudosyrta, Hyatt, 1.

Pleurodon Mojsisovics, Hyatt and Smith, 1.

sancarlosense n. sp., Hyatt, 1.

sancarlosense var. pseudosyrta, Hyatt, 1.

spilmani n. sp., Hyatt, 1.

stontoni n. sp., Hyatt, 1.

stontoni var. bolli, Hyatt, 1.

whitfieldi n. sp., Hyatt, 1.

whitfieldi var. tuberculatum, Hyatt, 1.

syrta (Morton), Hyatt, 1.

syrta var. halei, Hyatt, 1.

? sp. undet., Johnson (D. W.), 5.

Placentacranus Meek, Hyatt and Smith, 1.

sancarlosense n. sp., Hyatt, 1.

sancarlosense var. pseudosyrta, Hyatt, 1.

spilmani n. sp., Hyatt, 1.

stontoni n. sp., Hyatt, 1.

stontoni var. bolli, Hyatt, 1.

whitfieldi n. sp., Hyatt, 1.

whitfieldi var. tuberculatum, Hyatt, 1.

syrta (Morton), Hyatt, 1.

syrta var. halei, Hyatt, 1.

? sp. undet., Johnson (D. W.), 5.

Placites Mojsisovics, Hyatt and Smith, 1.

humboldtensis n. sp., Hyatt and Smith, 1.

Placentacranus Meek and Worthen, Beede, 1.

Placentacranus carbonaria n. sp., Whiteaves, 1.

Placentacranus strophomenoides n. sp., Raymond (P. E.), 7.

Plagiocephalum Dall, Arnold, 2.

Plagiolophus vancouverensis Woodward, Whiteaves, 12.
Paleontology—Continued.
Genera and species described—Continued.

Planoorbis Guettard, Letson, 1.
planorbis Say, Letson, 1.
tumidus Pfeiffer, Arnold, 2.
vermicularis Gould, Arnold, 2.

Planorbina, d’Orbigny, Bagg, 6.
elegans, Guppy, 4.
mediterraneus d’Orbigny, Bagg, 6.

Plantaginopsis n. gen., Fontaine, 5.
marylandica n. sp., Fontaine, 5.

Platocodon nanus Marsh, Hatcher, 3.
platanus aceroides? (Goppert) Heer, 1.
condoni (Newb.) Knowlton, Knowlton, 14.

Platecarpus, Sternberg, 5.

Platidia marylandica n. sp., Clark and Martin, 3.

Platyceras Conrad, Girty, 4.

Platyceras ric'tum Hall, Kindle, 1.
rictum var. spinosa n. var., Kindle, 1.

Platycrinus devonicus n. sp., Rowley, 7.

Platyzomus circularis Newberry and Worthen, Eastman, 10.

Platyphyllum brownianum Dn., White (D.), 18.

Platysoma desmatum (Clarke), Wel-ler, 6.
linea Conrad, Parks, 5.
lineatum var. callosum Hall, Kindle, 1.

Platyzyga Ehrenberg 1834, Vaughan, 2.
clioidea (Ellis and Solander), Vaughan, 2.

Platyzyga bicuspidata Cope, Gidley, 3.
compressus Le Conte, Wagner, 1.

Platysomus circularis Newberry and Worthen, Eastman, 10.

Platystrophia biforata Schlotheim sp., Ruedemann, 2.
biforata, Cumings, 8.

Platyzyga bicuspidata Cope, Gidley, 3.
compressus Le Conte, Wagner, 1.

Platysma bicuspidata Cope, Gidley, 3.
compressus Le Conte, Wagner, 1.

Platysoma desmatum (Clarke), Wel-ler, 6.
linea Conrad, Parks, 5.
lineatum var. callosum Hall, Kindle, 1.

Platysoma bicuspidata Cope, Gidley, 3.
compressus Le Conte, Wagner, 1.

Platysoma desmatum (Clarke), Wel-ler, 6.
linea Conrad, Parks, 5.
lineatum var. callosum Hall, Kindle, 1.

Platysoma bicuspidata Cope, Gidley, 3.
compressus Le Conte, Wagner, 1.

Platysoma desmatum (Clarke), Wel-ler, 6.
Palaeontology—Continued.

Genera and species described—Continued.

Platystryphus lynx von Buch, Hayes and Ulrich, 1.

lynx, Cumings and Mauck, 1.

Platyopylemus densirrve Fontaine, Fontaine, 5.

Platystrophia lynx von Buch, Hayes and Ulrich, 1.

lynx, Cumings and Mauck, 1.

Platypterygium densinerve Fontaine, Fontaine, 5.

Platypterna E. Hitchcock, Lull, 2.

concarnara (E. Hitchcock), Lull, 2.

deanana E. Hitchcock, Lull, 2.

delictula (E. Hitchcock), Lull, 2.

digitigrada E. Hitchcock, Lull, 2.

gracilima E. Hitchcock, Lull, 2.

recta (E. Hitchcock), Lull, 2.

tenuis E. Hitchcock, Lull, 2.

Platytychos speciosus Gabb and Horn, Vaughan, 15.

Platyxystrodus occidentalis (St. John), Eastman, 10.

Pectambonites Pander, Grabau, 1.

pisimi n. sp., Ruedemann, 2.

serleca (Sowerby), Grabau, 1.

sericeus (Sowerby), Weller, 6.

cf. sericeus Sowerby, Kindle and Breger, 1.

sericeus Sowerby var. asper James, Ruedemann, 2.

transversalis (Wahlenberg), Grabau, 1.

Plectodon Carpenter, Dall, 8.

Plectorthis Hall and Clarke, subg. of Orth, Walcott, 12.

? stava Matthew, Walcott, 12.

christianæ Matthew, Walcott, 12.

daunus n. sp., Walcott, 12.

desmopleura Meek, Walcott, 12.

remnicha Winchell, Walcott, 12.

remnicha sulcata n. var., Walcott, 12.

remnicha texana n. var., Walcott, 12.

remnicha winfieldensis n. var., Walcott, 12.

retroflexa Matthew, Walcott, 12.

sultensis Kiyser, Walcott, 12.

tullbergi n. sp., Walcott, 12.

wichitaensis n. sp., Walcott, 12.

wichitaensis leviusculus n. var., Walcott, 12.

wichitaensis loeviusculus n. var., Walcott, 12.

wimani n. sp., Walcott, 12.

Plectorthis 2 sp.?, Walcott, 12.

Plesiastarte Fischer, Dall, 8.

Plesiornis E. Hitchcock, Lull, 2.

mirabilis E. Hitchcock, Lull, 2.

pilatus E. Hitchcock, Lull, 2.

Plesiosaurus gouldi Williston, Williston, 14.

Plethomytilus cuneatus n. sp., Kindle and Breger, 1.

Plethosoma socialis Girty?, Kindle, 1.

Pleuracanthus (Diplodus) compressus Newberry, Eastman, 10.

Pleuriston brachyceratus n. gen. et sp., Case, 3.

Pleuroceras Rafinesque, Letson, 1.

subulare Lea, Letson, 1.

Pleurocatus, Lucas, 20.

Pleurodictyum lenticulare, Beecher, 1.

Pleurofusia De Greg., Casey, 5.

Pleurolinna De Greg., Casey, 5.

Pleuropachydiscus hoffmannii (Gabb), var., Whiteaves, 12.

Pleurophorella n. gen., Girty, 5.

Pleurophorus angulatus Meek and Worthen?, Girty, 3.

Pleurotoma Lamarck, Arnold, 2.

(Hemipleurotoma) albida Perry, Martin, 5.

arnica n. sp., Casey, 4.

(Hemipleurotoma) bellacrenata Conrad, Martin, 5.

(Hemipleurotoma) calvertensis n. sp., Martin, 5.

(Dolichotoma) carpenteriana Gabb, Arnold, 2.
Paleontology—Continued.

Genera and species described—Continued.

Pleurotomaria (Drillia) caseyi n. sp., Aldrich, 2.

(Hemipleurotomaria) choptankensis n. sp., Martin, 5.

(Hemipleurotomaria) childreni Lea, Clark and Martin, 2.

collaris n. sp., Casey, 4.

(Hemipleurotomaria) communis Conrad, Martin, 5.

(Hemipleurotomaria) communis var. protocommunis n. var., Martin, 5.

(Dichotoma) cooperi n. sp., Arnold, 2.

(Borsonia) dalli n. sp., Arnold, 2.

ducateli n. sp., Clark and Martin, 2.

(Clasthurella) dumblei n. sp., Anderson, 7.

evanescens n. sp., Casey, 4.

harrisi Clark, Clark and Martin, 2.

(hilgardi n. sp., Casey, 4.

(Borsonia) hooveri n. sp., Arnold, 2.

intacta n. sp., Casey, 4.

oblia n. sp., Casey, 4.

(Spirostra) pedraeana n. sp., Arnold, 2.

(Persevera) gabb, Arnold, 2.

placatens n. sp., Clark and Martin, 2.

plutonica n. sp., Casey, 4.

potomacensis n. sp., Clark and Martin, 2.

servata Conrad, Casey, 4.

(Spirotropha) smithi n. sp., Arnold, 2.

(Dolichotoma) tryoniana, Gabb, Arnold, 2.

tysoni n. sp., Clark and Martin, 2.

vicksburgensis n. sp., Casey, 4.

Pleurotomaria De France, Grabau, 1.

adjutor Hall, Parks, 5.

silens n. sp., Sardeson, 1.

? axon Hall, Kindle and Breger, 1.

(capillaria Conrad cognata mut. nov., Clarke, 19.

capillaria Conrad, mut. pygmaea nov., Loomis, 4.

? cf. carbonaria Norwood and Pratt, Girty, 3.

ciliata n. sp., Clarke, 19.

cirkurntrunca n. sp., Cragin, 2.

cordifonia n. sp., Sardeson, 9.

delicatula var. camera n. var., Parks, 5.

eloridea n. sp., Kindle and Breger, 1.

cf. eloridea, Kindle and Breger, 1.

genundewa n. sp., Clarke, 19.

hoyi Hall, Kindle and Breger, 1.

hunterensis Cleland, Cleland, 3.

?t idia Hall, Kindle and Breger, 1.

itylus n. sp., Clarke, 19.

Pleurotomaria itys Hall, mut. pygmaea nov., Loomis, 4.

laphamii Whitfield, Kindle and Breger, 1.

littorea Hall, Grabau, 1.

lucina var. perfasciata Hall, Kindle, 1.

pauper Hall, Kindle and Breger, 1.

pertussata (Conrad), Grabau, 1.

(stantoni n. sp., Shattuck, 8.

(sulcomarginata Conrad, Kindle, 1.

sweeti Whitfield, Sardeson, 2.

? sp., Girty, 3.

sp., Kindle, 1.

? sp. undet., Weller, 2.

? sp. undet., Kindle and Breger, 1.

(Euomphalopoeus) sp. indet., Whiteaves, 17.

Plicatula densata Conrad, Glenn, 6.

sportella n. sp., Cragain, 2.

Pliothoea angularis Lx. sp., White (D.), 10.

Pliohippus Marsh, Gidley, 5.

simplidens Cope, Gidley, 1.

Plomera Angelin, Raymond (P. E.), 6.

Pliomerops n. gen., Raymond (P. E.), 6.

canadensis, Raymond (P. E.), 6.

Poacites sp., Hollick, 11.

Poatrepheus?, Douglas, 8.

paludicola n. gen. and sp., Douglas, 8.

Pododesmus Philippi, Arnold, 2.

(Monia) macrorchisma Deshayes, Arnold, 2.

Podozamites angustifoliolus • (Eichw.) Schimp., Hollick, 11.

distantinervis Fontaine, Fontaine, 2.

grandifolius Fontaine?, Fontaine, 2.

lanceolatus (Lindley and Hutton) Friedrich Braun non Emmons, Fontaine, 1.

lanceolatus Jatifolius (Friedrich Braun) Heer, Fontaine, 1.

lanceolatus minor (Schbenk) Heer, Fontaine, 1.

marginatus Heer, Berry, 5.

pachynervis n. sp., Fontaine, 1.

pachyphyllus n. sp., Fontaine, 1.

delicatula var. camera n. var., Parks, 5.

Poebrotherum, Matthew (W. D.), 15.

Poeclodus McCoy, Eastman, 10.

rugosus Newberry and Worthen, Eastman, 10.
Paleontology—Continued.

Genera and species described—Continued.

Polycodon tribulis (St. John and Worthen), Eastman, 10.

Polydus (Bd.), Gulick, 1.

bermudensis Pfr., Gulick, 1.

bermudensis var. zonatus Verrill, Gulick, 1.

circumferuatus Redf., Gulick, 1.

circumferuatus var. discrepans Pfr., Gulick, 1.

cupula n. sp., Gulick, 1.

dalli n. sp., Gulick, 1.

eunsoni var. callosus n. var., Gulick, 1.

relinatus Pfr., Gulick, 1.

Polymachus E. Hitchcock, Lull, 2.

gigas E. Hitchcock, Lull, 2.

Polomita nom. nov., Clarke and Ruedemann, 1.

crenulata Whiteaves (sp.), Clarke and Ruedemann, 1.

scamnata n. sp., Clarke and Ruedemann, 1.

(?) sulcata Hall (sp.), Clarke and Ruedemann, 1.

Polititapes Chiamenti, Dall, 8.

Polystichum hillsianum n. sp., Handley, 5.

Polyteca Hall and Clarke, Walcott, 12.

Polytictabia Hall and Clarke, Walcott, 12.

Pomatiopsis Tryon, Letson, 1.

Pomatia Dall, Dall, 8.

Pontobdellopsis cometa n. gen. et sp., Ruedemann, 1.

Ponotomus Hyatt, Smith, 1.

Polyotzites (St. John and Worthen), Eastman, 10.

Polyctenites (Bd.), Gulick, 1.

bermudensis Pfr., Gulick, 1.

bermudensis var. zonatus Verrill, Gulick, 1.

circumferuatus Redf., Gulick, 1.

Polydus (Bd.), Gulick, 1.

bermudensis var. zonatus Verrill, Gulick, 1.

circumferuatus Redf., Gulick, 1.

Polydus (Bd.), Gulick, 1.

circumferuatus var. discrepans Pfr., Gulick, 1.

cupula n. sp., Gulick, 1.

dalli n. sp., Gulick, 1.

eunsoni var. callosus n. var., Gulick, 1.

relinatus Pfr., Gulick, 1.

Polymachus E. Hitchcock, Lull, 2.

gigas E. Hitchcock, Lull, 2.

Polomita nom. nov., Clarke and Ruedemann, 1.

crenulata Whiteaves (sp.), Clarke and Ruedemann, 1.

scamnata n. sp., Clarke and Ruedemann, 1.

(?) sulcata Hall (sp.), Clarke and Ruedemann, 1.

Polititapes Chiamenti, Dall, 8.

Polystichum hillsianum n. sp., Handley, 5.

Polyteca Hall and Clarke, Walcott, 12.

Polytictabia Hall and Clarke, Walcott, 12.

Pomatiopsis Tryon, Letson, 1.

Pomatia Dall, Dall, 8.

Pontobdellopsis cometa n. gen. et sp., Ruedemann, 1.

Ponotomus Hyatt, Smith, 1.

Polyotzites (St. John and Worthen), Eastman, 10.
Paleontology—Continued

Genera and species described—Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Author(s) and Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porites</td>
<td></td>
</tr>
<tr>
<td>Porites astreoides Lamarck, Vaughan, 2.</td>
<td></td>
</tr>
<tr>
<td>Porites (Pallas), Vaughan, 2.</td>
<td></td>
</tr>
<tr>
<td>Porodiscus concentricus (Ehrenberg), Martin, 8.</td>
<td></td>
</tr>
<tr>
<td>Poromya jamaicensis n. sp., Dall, 8.</td>
<td></td>
</tr>
<tr>
<td>mississippiensis Meyer and Aldrich, Dall, 8.</td>
<td></td>
</tr>
<tr>
<td>Porthocelys laticeps n. gen. et sp., Williston, 3.</td>
<td></td>
</tr>
<tr>
<td>browni n. sp., Hay, 24.</td>
<td></td>
</tr>
<tr>
<td>laticeps Williston, Hay, 24.</td>
<td></td>
</tr>
<tr>
<td>Portlandia arctica Gray, Sears, 1.</td>
<td></td>
</tr>
<tr>
<td>Potamides tenuis Gabb, Whiteaves, 12.</td>
<td></td>
</tr>
<tr>
<td>Potamogetophyllum n. gen., Fontaine, 5.</td>
<td></td>
</tr>
<tr>
<td>Potamotherium E. Geoffroy, Matthew and Gidley, 1.</td>
<td></td>
</tr>
<tr>
<td>lacota n. sp., Matthew, Matthew and Gidley, 1.</td>
<td></td>
</tr>
<tr>
<td>Poterioceras sauridens n. sp., Clarke and Ruedemann, 1.</td>
<td></td>
</tr>
<tr>
<td>sp., Clarke and Ruedemann, 1.</td>
<td></td>
</tr>
<tr>
<td>Precardium Barrande, Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>duplicatum Münster (sp.), Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>melletes n. sp., Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>multilocatum n. sp., Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>vetustum Hall, Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>patera n. sp., Ulrich and Bassler, 2.</td>
<td></td>
</tr>
<tr>
<td>patera Ulrich and Bassler, Hayes and Ulrich, 1.</td>
<td></td>
</tr>
<tr>
<td>simulatrix Ulrich, Nickles, 6.</td>
<td></td>
</tr>
<tr>
<td>simulatrix Ulr., Sardeson, 3.</td>
<td></td>
</tr>
<tr>
<td>simulatrix var. orientalis Ulrich, Ruedemann, 2.</td>
<td></td>
</tr>
<tr>
<td>Preptoceras Sinclair? n. gen. and sp., Furlong, 2.</td>
<td></td>
</tr>
<tr>
<td>Premnophyllum trigonum Vel., Hollick, 11.</td>
<td></td>
</tr>
<tr>
<td>Prestowichia randalli n. sp., Beecher, 5.</td>
<td></td>
</tr>
<tr>
<td>signata n. sp., Beecher, 10.</td>
<td></td>
</tr>
<tr>
<td>Priene H. & A. Adams, Arnold, 2.</td>
<td></td>
</tr>
<tr>
<td>latimarginata n. sp., Raymond (P. E.), 7.</td>
<td></td>
</tr>
<tr>
<td>Primostracum vaughani, Gregory, Vaughan, 7.</td>
<td></td>
</tr>
<tr>
<td>Prionocyclus macombi Meek, Johnson (D. W.), 5.</td>
<td></td>
</tr>
<tr>
<td>wyomingensis Meek, Johnson (D. W.), 5.</td>
<td></td>
</tr>
<tr>
<td>n. sp., Johnson (D. W.), 5.</td>
<td></td>
</tr>
<tr>
<td>Prionocyclus? hyatt, Smith (J. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>andrewsi Winchell, Smith (J. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>brownense Miller, Smith (J. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>ohiense Winchell, Smith (J. P.), 3.</td>
<td></td>
</tr>
<tr>
<td>Prionocyclus? crassangulum n. sp., Case, 9.</td>
<td></td>
</tr>
<tr>
<td>gabbii Cope, Case, 9.</td>
<td></td>
</tr>
<tr>
<td>grandiceps Leidy, Case, 9.</td>
<td></td>
</tr>
<tr>
<td>lacertosus Cope, Case, 9.</td>
<td></td>
</tr>
<tr>
<td>ruschenbergerii Cope, Case, 9.</td>
<td></td>
</tr>
<tr>
<td>uraeus Cope, Case, 9.</td>
<td></td>
</tr>
<tr>
<td>Prionocyclus? inaequalis (Hall), Weller, 6.</td>
<td></td>
</tr>
<tr>
<td>triangularata White, Girly, 3.</td>
<td></td>
</tr>
<tr>
<td>sp., Girly, 3.</td>
<td></td>
</tr>
<tr>
<td>Priscodelphinus? nebrascensis n. gen. and sp., Hatcher, 10.</td>
<td></td>
</tr>
<tr>
<td>Proamphicyon nebrascensis n. gen. and sp., Hatcher, 10.</td>
<td></td>
</tr>
<tr>
<td>Proarchestes Mojsisovics, Hyatt and Smith, 1.</td>
<td></td>
</tr>
<tr>
<td>Probaena n. gen., Hay, 8.</td>
<td></td>
</tr>
<tr>
<td>sculpta n. sp., Hay, 9.</td>
<td></td>
</tr>
<tr>
<td>Procamelus, Matthew (W. D.), 15.</td>
<td></td>
</tr>
<tr>
<td>Procamelus Leidy, Matthew (W. D.), 2.</td>
<td></td>
</tr>
<tr>
<td>assidens Cope, Matthew (W. D.), 2.</td>
<td></td>
</tr>
<tr>
<td>iacustris n. sp., Douglass, 1.</td>
<td></td>
</tr>
<tr>
<td>madsonius n. sp., Douglass, 1.</td>
<td></td>
</tr>
<tr>
<td>robustus Leidy, Matthew (W. D.), 2.</td>
<td></td>
</tr>
<tr>
<td>Prochasma Benshausen, Clarke, 19.</td>
<td></td>
</tr>
<tr>
<td>Procyonidae, Matthew (W. D.), 19.</td>
<td></td>
</tr>
<tr>
<td>Procyonidae, Matthew (W. D.), 19.</td>
<td></td>
</tr>
<tr>
<td>Proscaphonous Wortman and Matthew, Wortman, 2.</td>
<td></td>
</tr>
<tr>
<td>Prodrumites Smith and Weller, Smith (J. P.), 3.</td>
<td></td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Prodromites n. gen., Smith and Weller, 1.

gorbí Miller, Smith and Weller, 1.
gorbí Miller, Smith (J. P.), 3.
onatus n. sp., Smith (J. P.), 3.
præmaturus Smith and Weller, sp., Smith and Weller, 3.
pæmaturus n. sp., Smith and Weller, 1.

Productella concentrica Hall, Girty, 3.

Productus Sowerby, Beede, 1.
arcuatus Hall, Weller, 2.
cora d'Orbigny, Beede, 1.
cora d'Orbigny, Girty, 3.
cora americanus Swallow, Beede, 1.
costatus Sowerby, Beede, 1.
galitarianis Girty, 3.
inflatus McChesney, Girty, 3.
lavicosta White, Girty, 3.
longispinus Sowerby?, Beede, 1.
morrilissimus Win., Weller, 2.
nebrascensis Owen, Beede, 1.

Productus Sowerby, Beede, 1.
costatus Sowerby, Beede, 1.
gallitarianis Girty, 3.
inflatus McChesney, Girty, 3.
lavicosta White, Girty, 3.
longispinus Sowerby?, Beede, 1.
morrilissimus Win., Weller, 2.
nebrascensis Owen, Beede, 1.
nebrascensis Owen, Girty, 3.
parvicostatus n. sp. (Rowley), Girty, 3.
parviformis Girty, Girty, 3.
parvulus Win., Weller, 2.
perennis Meek, Beede, 1.
perennis Meek?, Girty, 3.
portlockianus Norwood and Pratt, Girty, 3.
punctatus Martin, Weller, 2.
punctatus (Martin), Beede, 1.
punctatus Martin, Girty, 3.
cf. pustulosus Phillips, Girty, 3.
samiriculatus (Martin), Beede, 1.
samiriculatus var., Girty, 3.
samiriculatus var. hermosanus n. var., Girty, 3.
symmetricus McChesney, Beede, 1.
sp., Girty, 3.

Promacrus cuneatus Hall, Weller, 2.

Promercochoerus minor n. sp., Douglass, 8.

Profischeria Ball, Ball, 8.

Prolecanites Mojsisovics, Smith (J. P.), 3.

Protapes Dall, Dall, 8.

Protapirus robustus n. sp., Sinclair, 1.

Protentrodon latilobum n. sp., Matthew (W. D.), 1.

Protoxylon inflatum n. gen. and sp., Hatcher, 10.

Protoxylon inflatum n. gen. and sp., Hatcher, 10.
Paleontology—Continued.

Genera and species described—Continued.

Protoalyptus Clarke, Clarke, 19.

marshallii Clarke, Clarke, 19.
styliophila Clarke, Clarke, 19.

Protcadilla Berrich, Arnold, 2.
centiflosa Carpenter, Arnold, 2.

lenis Conrad, Clark and Martin, 2.
salmaensis Meek, Jones (A. W.), 2.

Protoceras, Matthew (W. D.), 22.

Protolophites Leidy, Gidley, 5.
curnminsii (Cope), x Gidley, 1.
phlegon (Hay), Gidley, 1.

Protolabis, Matthew (W. D.), 15.
angustidens Cope, Matthew (W. D.), 2.
heterodontus Cope, Matthew (W. D.), 2.
tauranus Douglass, Matthew (W. D.), 2.

Protolenus, Matthew (G. F.), 27.

Protomeryx Matthew (W. D.), 15.
hallii, Matthew (W. D.), 15.

Protophyllocladus n. gen., Berry, 3.
lanceolatus (Knowlton), Berry, 3.
polymorphus (Lesq.), Berry, 3.
subintegriori (Lesq.), Berry, 3.

Protosphyraena obliquidens n. sp., Loomis, 1.
penetrans Cope, Loomis, 1.
penetrans Cope, Stewart, 1.

perniciosa (Cope), Hay, 10.
recurvirostris Stewart, Stewart, 1.
sequax n. sp., Hay, 10.
tenus n. sp., Loomis, 1.
tenus Loomis, Hay, 10.
ziphyoides (Cope), Hay, 10.

Pseudocrinites Pearce, Schuchert, 11.
abnormulis n. sp., Schuchert, 11.
Paleontology—Continued.

Genera and species described—Continued.

Pseudocrinites clarki n. sp., Schuchert, 6.

clarki Schuchert, Schuchert, 11.
claypolei n. sp., Schuchert, 11.
elongatus n. sp., Schuchert, 11.
gordoni n. sp., Schuchert, 6, 11.
perdewi n. sp., Schuchert, 6, 11.
stellatus n. sp., Schuchert, 6, 11.
subbudquadratus n. sp., Schuchert, 11.

Pseudocyrena Bourquinigat, Dall, 8.

PseudolivA sp., Clark and Martin, 2.

Pseudolabis, Matthew (W. D.), 15.
dakotensis n. gen. nud sp., Matthew (W. D.), 15.
dakotensis, Matthew (W. D.), 15.

Pseudomelania goodelli n. sp., Cragin, 15.

Psilocochlis n. subg., Dall, 12.
mccallie n. sp., Dall, 12.

cf. princeps Dn., White (D.), 18.

Paleontology—Continued.

Genera and species described—Continued.

Pteranodon Marsh, Eaton, 3.

longiceps Marsh, Eaton, 3.

Pteraulina n. gen., Casey, 3.
elegans n. sp., Casey, 3.
Pteria limula (Conrad), Clark and Martin, 2.

longa (Gelnitz), Beede, 1.
sulcata (Selmitz), Beede, 1.
Pterlinea Goldfuss, Grabau, 1.

camacerata (Conrad), Grabau, 1.
camacerata (Con.), Weller, 6.
flabella (Con.), Weller, 6.
flabella (Con.) Hall, Kindle, 1.
grandis Hall, Kindle, 1.
Pterinopecten nodosocostatus (W. and W.), Weller, 2.
nodosus Hall, Kindle, 1.
reflexus Hall, Kindle, 1.
subplana Hall (sp.), Clarke and Ruedemann, 1.
undata Hall (sp.), Clarke and Ruedemann, 1.
undosus Hall, Kindle, 1.
sinuosa n. sp., Clarke, 19.
Pteronotus Swainson, Arnold, 2.
Pteromeris Conrad, Dall, 8.
Pteronotus? subplana (Hall), Weller, 1.
Pteropelyx grallipes Cope, Stanton and Hatcher, 1.
Pterophyllum plicatus n. gen. and sp., Herzer, 4.
Pterophyllum aequale (Bromgliart) Nathorst, Fontaine, 1.

alaskense n. sp., Fontaine, 2.
contiguum Schenk, Fontaine, 1.

lowryanum Ward n. sp., Fontaine, 3.
minus Brongniart?, Fontaine, 1.
rathorlii Schenk, Fontaine, 1.
rajarhahianse Morris, Fontaine, 1.
Pterorhysis Conrad, Arnold, 2.
Pteroperimites alaskana n. sp., Knowlton, 16.
magnifolia n. sp., Knowlton, 16.
Pterostichus depletus n. sp., Scudder, 1.
Pterotheca expansa (Emm.) ?, Weller, 6.

expansa Emmons, Raymond (P. E.), 1.
Pterotocrinus acutus Wetherby, Ulrich, 8.
capitalis Lyon, Ulrich, 8.
Paleontology—Continued.

Genera and species described—Continued.

Pterygotus Agassiz, Grabau, 1.

Ptychitellus Mojsisovics, Hyatt and Smith, 1.

Ptychodesma knappianum H. and W., Kindle, 1.

Ptychodus, Williston, 1.

Ptychopyge jerseyensis n. sp., Weller, 6.

Ptycholepis Agassiz, Eastman, 20.

Ptychnoparia blairi n. sp., Weller, 6.

Ptychospira sexplicata (White and Whitfield), Greger, 1.

Ptychoxylon levyi, White (D.), 19.

INDEX TO NORTH AMERICAN GEOLOGY

Paleontology Continued.

Genera and species described—Continued.

Ptygognathus annulatus n. sp., Raymond (P. E.), 6.

Pterygotus Agassiz, Grabau, 1.

cobbi Hall, Grabau, 1.

callicephalus (Hall), Weller, 6.

callicephalus (Hall), Weller, 6.

Eborea agassiziana n. sp., Weller, 6.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.

Ptygognathus Agassiz, Grabau, 1.

Eubodia Hall, Grabau, 1.

eubodia Hall, Grabau, 1.

eubodius Hall, Grabau, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Quercus horniana Lesq., Knowlton, 14.
juditha n. sp., Knowlton, 18.
leuhaniil n. sp., Hollick, 10.
merriamil n. sp., Knowlton, 14.
montana n. sp., Knowlton, 18.
morrisoniana Lesq., Hollick, 11.
oregoniana n. sp., Knowlton, 14.
pseudo-tyrata Lesq., Knowlton, 14.
simplex Newb., Knowlton, 14.
ursina n. sp., Knowlton, 14.
? sp., Knowlton, 14.
? sp., Johnson (D. W.), 5.

Radiocrista Dall, Dall, 8.

Raeta Gray, Arnold, 2.

Rafinesquina alternata (Emmons) Hall and Clarke, Ruedemann, 2.
alternata (Emm.), Weller, 6.
alternata var. ponderosa, Hayes and Ulrich, 1.
champlainensis n. sp., Raymond (P. E.), 1.
deltoida Conrad var., Ruedemann, 2.
Raja dux Cope, Eastman, 18.

Randomia n. gen., Matthew (G. F.), 1.
aurora n. sp., Matthew (G. F.), 1.

Ranella Lamarck, Arnold, 2.
californica Hinds, Arnold, 2.

Raphistoma columbiana n. sp., Weller, 6.
lelosomellum n. sp., Sardeson, 2.
leuctylare Emmons, Raymond (P. E.), 1.
lewistonense n. sp., Sardeson, 2.
minnesotense Owen, Sardeson, 2.

Raphoines jennifera Ehrenberg, Boyer, 1.
Racella? fucoida n. sp., Sardeson, 1.
Receptaculites occidentalis Salter, Weller, 6.

Remipleurides canadensis Billings, Raymond (P. E.), 1.

Remipleurides timidus n. sp., Ruedemann, 2.

Remia (Cylchnina) conulus (Deshayes), Martin, 5.
(Cylchnina) marylandica n. sp., Martin, 5.
(Cylchnina) subspissa (Conrad), Martin, 5.

Rhabdoceras Hauer, Hyatt and Smith, 1.
russell Hyatt, Hyatt and Smith, 1.

Rhabdocetes Hauer, Hyatt and Smith, 1.

Rhamnacenium porcupinianum n. sp., Penhallow, 5.

Rhamnus nova>casaire, n. sp., Berry, 5.

Rhophorhynchus, Williston, 7.
Rhapnorhynchus gemmeus n. sp., Hudson, 7.

Rhineastes crueferus Cope (sp.), Lambe, 3.
Rhinelius tenuirostris (Cope), Hay, 10.

Rhindictya mutabilis Ulr., Sardeson, 4.

sp. undet., Weller, 6.

Rhinoclama and Smith, Dall, 8.

Rhinoceros crassus Leidy, Osborn, 34.
hesperius Leidy, Osborn, 34.
longipes Leidy, Osborn, 34.
meridians Leidy, Osborn, 34.
proterus, Leidy, Osborn, 34.

Rhinopora Hall, Grabau, 1.
tuberculosa Hall, Grabau, 1.

Rhiphidomella Oehlert, Grabau, 1.
burlingtonensis (Hall), Weller, 2.

Rhiphodornella Gehlert, Grabau, 1.

burlingtonensis (Hall), Weller, 2.
circularis Hall (?), Kindle and Breger, 1.
circularis Hall, Grabau, 1.
eminens (Hall), Weller, 6.
goodwini Nettiroth, Kindle, 1.

Paleontology—Continued.

Genera and species described—Continued.

Reticularia bicostata Vanuxem 1842, var. petilii Hall, 1879, Beecher, 1.
coperennis (Swallow), Weller, 2.

fimbriata (Con.), Weller, 6.

fimbriata (Conrad), Shimer, 5.

fimbriata (Conrad), Kindle, 1.

knappianum Nettiroth, Kindle, 1.

perplexa (McChesney), Beede, 1.

Reticularia proxima n. sp., Kindle and Breger, 1.

septentrionalis n. sp., Whiteaves, 17.
wabashensis n. sp., Kindle, 1.

sp. Kindle and Breger, 1.

Reticularia? sp. indet., Whiteaves, 17.

Reticulipora dichotoma Gabb and Hall, Ulrich, 2.

Reticulipora Hall, Ruedemann, 8.
tentaeculatus Hall, Ruedemann, 8.

Retiphycus hexagonale n. gen. and sp., Ulrich, 4.

Retusa (Cylchnina) conulus (Deshayes), Martin, 5.

(Cylchnina) marylandica n. sp., Martin, 5.

(Cylchnina) subspissa (Conrad), Martin, 5.

Rhabdoceras Hauer, Hyatt and Smith, 1.
russell Hyatt, Hyatt and Smith, 1.

Rhabdocetes Hauer, Hyatt and Smith, 1.

Rhamnacenium porcupinianum n. sp., Penhallow, 5.

Rhamnus nova>casaire, n. sp., Berry, 5.

Rhamphorhynchus, Williston, 7.
Rhapnorhynchus gemmeus n. sp., Hudson, 7.

Rhineastes crueferus Cope (sp.), Lambe, 3.
Rhinelius tenuirostris (Cope), Hay, 10.

Rhindictya mutabilis Ulr., Sardeson, 4.

sp. undet., Weller, 6.

Rhinoclama and Smith, Dall, 8.

Rhinoceros crassus Leidy, Osborn, 34.
hesperius Leidy, Osborn, 34.
longipes Leidy, Osborn, 34.
meridians Leidy, Osborn, 34.
proterus, Leidy, Osborn, 34.

Rhinopora Hall, Grabau, 1.
tuberculosa Hall, Grabau, 1.

Rhiphidomella Oehlert, Grabau, 1.
burlingtonensis (Hall), Weller, 2.
circularis Hall (?), Kindle and Breger, 1.
circularis Hall, Grabau, 1.
eminens (Hall), Weller, 6.
goodwini Nettiroth, Kindle, 1.

Paleontology—Continued.

Genera and species described—Continued.

Rhiphidomella hybrida Sowerby, Kindle and Breger, 1.

hybrida Sowerby, 1839, Beecher, 1.

hybrida (Sowerby), Grabau, 1.

tenuis Hall, Kindle, 1.

lvia (Billings?), Kindle, 1.

sp. cf. musculosa (Hall), Weller, 6.

oblata (Hall), Weller, 6.

pecosi (Marcou), Beede, 1.

pecosi Marcou, Girty, 3.

preoblata n. sp., Weller, 6.

pulchella Herrick, Girty, 3.

vanuxemi Hall, Kindle, 1.

vanuxemi Hall, Raymond (P. E.), 4.

vanuxemi (Hall), Weller, 6.

Rhodocrinus sp., Girty, 3.

Rhoechinus Keeping, Klein, 1.

burlingtonensis Meek and Worthen, Klem, 1.

gracilis Meek and Worthen, Klem, 1.

greefis Meek and Worthen, Klem, 1.

Rhombopora Meek, Condra, 2.

lepidodendroides Meek, Condra, 2, 3.

lepidodendroides Meek, Girty, 3.

lepidodendroides Meek, Sardeson, 4.

Rhombopteria clathratus n. sp., Weller, 6.

clathratus var., Weller, 6.

Rhombotrypa n. gen., Ulrich and Bassler, 2.

quadra (Rominger), Nickles, 6.

Rhopulonaria Ulrich, Ulrich and Bassler, 1.

attenuata n. sp., Ulrich and Bassler, 1.

Rhopalodictyum calvertense n. sp., Martin, 8.

keokukensis n. sp., Ulrich and Bassler, 1.

marylandicum n. sp., Martin, 8.

medialis n. sp., Ulrich and Bassler, 1.

robusta n. sp., Ulrich and Bassler, 1.

tenuis n. sp., Ulrich and Bassler, 1.

venos Ulrich, Ulrich and Bassler, 1.

Rhus bendirei Lesq., Knowlton, 14.

milleri n. sp., Hollick, 10.

Rhychochaeta Hall, Grabau, 1.

cuneata Dalman 1827, var. americana Hall 1879, Beecher, 1.

var. americana Hall, Grabau, 1.

cuneata americana Hall, Clarke and Ruedemann, 1.

transversa n. sp., Weller, 6.

Ribeiria parva n. sp., Collie, 3.

turgida n. sp., Cleland, 3.

sp. (?), Cleland, 3.

Rictaxis Dall, Arnold, 2.

Rictocyma Dall, Dall, 8.

Ringicardium Fischer, Arnold, 2.

Ringicula dalli Clark, Clark and Martin, 2.

Rissoa Freminville, Arnold, 2.

acutelirata Carpenter, Arnold, 2.

(Onoba) marylandica n. sp., Martin, 5.

sp. Martin, 5.

Rodentia, Matthew (W. D.), 19.

Rogersia angustifolia parva n. var., Fontaine, 5.

longifolia Fontaine, Fontaine, 5.

Paleontology—Continued.

Genera and species described—Continued.

Rhynochonella breviplicata n. sp., Weller, 6.

deckerensis n. sp., Decker, Weller, 6.

densiloba n. sp., Anderson, 3.

depressa n. sp., Kindbl, 1.

gainesi Netterthor, Kindle, 1.

var. cassensis n. var., Kindle, 1.

holmesi n. sp., Doll, 8.

(l?) litchfieldensis n. sp., Schuchert, 4.

louisviensis Netterthor, Kindle, 1.

minnesotensis n. sp., Sardeson, 9.

robusta Hall, Grabau, 1.

salpinx n. sp., Doll, 8.

sancta n. sp., Sardeson, 9.

semiplicata (Con.), Weller, 6.

columna Whitesaves, Whitesaves, 12.

tenuistrata Netterthor, Kindle, 1.

transversa Hall, Weller, 6.

whitena n. sp., Anderson, 3.

Rhynchospora King, Greger, 2.

boccheri n. sp., Greger, 2.

illinoensis (Worthen), Greger, 2.

postulosa (White), Weller, 2.

Rhychostraia excavata n. sp., Grabau, 9.

formosa Hall, Weller, 6.

Rhychotrema dentata (Hall), Weller, 6.

formosa (Hall), Weller, 6.

formosa (Hall)?, Weller, 6.

insequivalvis (Castel.), Weller, 6.

inrebecens (Hall), Hayes and Ulrich, 1.

Rhychothretia Hall, Grabau, 1.

cuneata Dalman 1827, var. americana Hall 1879, Beecher, 1.

var. americana Hall, Grabau, 1.

cuneata americana Hall, Clarke and Ruedemann, 1.

transversa n. sp., Weller, 6.

Ribeiria parva n. sp., Collie, 3.

turgida n. sp., Cleland, 3.

sp. (?), Cleland, 3.

Rictaxis Dall, Arnold, 2.

Rictocyma Dall, Dall, 8.

Ringicardium Fischer, Arnold, 2.

Ringicula dalli Clark, Clark and Martin, 2.

Rissoa Freminville, Arnold, 2.

acutelirata Carpenter, Arnold, 2.

(Onoba) marylandica n. sp., Martin, 5.

sp. Martin, 5.

Rodentia, Matthew (W. D.), 19.

Rogersia angustifolia parva n. var., Fontaine, 5.

longifolia Fontaine, Fontaine, 5.
Paleontology—Continued.

Genera and species described—Continued.

Romingeria commutata n. sp., Beecher, 9.

- cystoides n. sp. (Grajau), Greene, 2.
- jacksoni n. sp., Beecher, 9.
- umbellifera (Billings), Beecher, 9.
- cfr. umbellifera, Sarsden, 12.

Rostellaria? texana Conrad, Johnson (D. W.), 5.

- Rostellites cf. ambigua Stanton, Johnson (U. W.), 5.
- Ruffordia goepperti (Dunkei 1) Seward, Fontaine, 1.
- Rulac crataegifoliuin n. sp., Knowlton, 14.
- Rupellaria Flenrian, Arnold, 2.
- Russula n. gen., Casey, 5.
- extricata n. sp., Casey, 5.
- plicata Lcen, Casey, 5.
- Rustellaria n. gen., Walcott, 12.

Sagenopteris oregonensis Fontaine n. comb., Fontaine, 3.

- paucifolia (Phill.) Ward n. comb., Fontaine, 1.
- Sagenopteris gabbi Mojsisovics, Smith (J. P.), 5.
- (Tracbyysagenites) herbichi Mojsisovics, Smith (J. P.), 5.

Sagenopteris alaskensis n. sp., Fontaine, 2.

- elliptica Fontaine, Fontaine, 3.
- gepertiana Zigmo, Fontaine, 1.
- grandifolia n. sp., Fontaine, 1.
- mantelli (Dunker) Schenk, Fontaine, 3.
- nervosa n. sp., Fontaine, 3.
- nilsonianana (Brongn.), Ward, Penhallow, 4.
- oblongofolia n. sp., Penhallow, 4.

Sagenopteris variabilis Fontaine, Fontaine, 5.

Sapindopsis imperfectus n. sp., Hollick, 11.
Paleontology—Continued.

Genera and species described—Continued.
Sapindus merriami n. sp., Knowlton, 14.

morrisoni Lesq., Berry, 5.
oenostaphylus Lesq., Knowlton, 14.
oregonianus n. sp., Knowlton, 14.

Sarcocemur furcatus Cope, Osborn, 11.
pygmaeus Cope, Osborn, 11.

Sardinius? n. sp., Imbells n. sp., Hay, 10.

Sassafra, Berry, 2.

acutifolium Lesq., Berry, 5.
bilobatum Fontaine?, Fontaine, 5.
hastatum Newb., Hollick, 11.
progenitor Newb., Berry, 7.

Saurocephalus Harlan, Hay, 10.

Saurocephalus Harlan, Stewart, 1.
broadhead Stewart, Loomis, 1.
dentatus Stewart, Stewart, 1.
goodenius (Cope), Hay, 10.
lanciformis Harlan, Hay, 10.
lanciformis Harlan, Loomis, 1.

phlebotomus Cope, Hay, 10.
xiphirostris (Stewart), Hay, 10.

Sauroidon Hays, Loomis, 1.

Sauroidon Hays, Stewart, 1.
broadhead (Stewart), Stewart, 1.
ferox Stewart, Stewart, 1.
phlebotomus Cope, Loomis, 1.
phlebotomus (Cope), Stewart, 1.
pygmaeus n. sp., Loomis, 1.
xiphirostris Stewart, Stewart, 1.

Sauropus ungulifer Dawson, Matthew (G. F.), 30.

Saxicava arctica (Linne), Glenn, 6.

Saxidomus Conrad, Arnold, 2.

aratus Gould, Arnold, 2.
popofianus n. sp., Dall, 10.

Scala Humphrey, Arnold, 2.

belastriata Carpenter, Arnold, 2.

(calvertensis n. sp., Martin, 5.
carinata Lea, Clark and Martin, 2.
crebricostata Carpenter, Arnold, 2.

(Stenoryphysis) expansa Conrad, Martin, 5.
hemphili Dall, Arnold, 2.

hindsii Carpenter, Arnold, 2.

Indianorum Carpenter, Arnold, 2.
marylandica n. sp., Martin, 5.

(pachycleura Conrad, Martin, 6.

potomacensis n. sp., Clark and Martin, 2.

(Prunica) prunicola n. sp., Martin, 5.

(reticulata n. sp., Martin, 5.

sayana Dall, Martin, 5.

sessilis Conrad, Clark and Martin, 2.

tincta Carpenter, Arnold, 2.

virginiana Clark, Clark and Martin, 2.

Paleontology—Continued.

Genera and species described—Continued.

Sclaspira Conrad, Martin, 5.

strumosa Conrad, Martin, 5.

Scaparhyncheus Woodward, Williston, 1.

rhaphiodon (Agassiz), Williston, 1.

Scaphella (Aurinia) mutabilis (Conrad), Martin, 5.

(Aurinia) obtusa (Emmons), Martin, 5.

solitaria (Conrad), Martin, 5.

(Aurinia) typus (Conrad), Martin, 5.

Scapherpeton Cope, Stanton and Hatcher, 1.

tectum Cope, Lambe, 3.

Scaphiocrinus? longiventriculatus n. sp. (Rowley), Greene, 2.

? washburni Beede, Beede, 1.

Scaphites condoni, Smith (W. D.), 1.

condoni n. sp., Anderson, 3.

condoni var. appressus n. var., Anderson, 3.
gillisii n. sp., Anderson, 3.
inermis, Smith (W. D.), 1.
inermis n. sp., Anderson, 3.

klamathensis n. sp., Anderson, 3.

Scaphites nodosus Owen, Smith (W. D.), 1.
nodosus brevis, Smith (W. D.), 1.
nodosus plenus, Smith (W. D.), 1.
nodosus quadrangularis, Smith (W. D.), 1.
perrini n. sp., Anderson, 3.
roguenia n. sp., Anderson, 3.
warreni M. and H., Johnson (D. W.), 5.

Scaphoceros tyrrelli n. gen. and sp., Osgood, 1.

Scenella pretensa n. sp., Raymond (P. E.), 7.

robinsoni Sears, Sears, 1.

robusta n. sp., Raymond (P. E.), 7.

cf. reticulata Billings, Matthew (G. F.), 1.

cf. retusa Ford, Matthew (G. F.), 1.

varians Walcott, Sears, 1.

Scenidium Hall, Grabau, 1.

anthonensis Sard., Weller, 6.

inigne (Hall), Weller, 6.

pyramidale Hall, Grabau, 1.

Sceptronels cadiues Ehrenberg, Boyer, 1.

Schistoceras Hyatt, Smith (J. P.), 3.
fultonense Miller and Gurley, Smith (J. P.), 3.
hildrethi Morton, Smith (J. P.), 3.

hyatti n. sp., Smith (J. P.), 3.

missouriensis Miller and Faber, Smith (J. P.), 3.
FOR THE YEARS 1901-1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Schizambus duplicinuratus n. sp.; Hudson, 1.

priscus n. sp., Matthew (G. F.), 9, 20.

Schizoblastus sayi Shumard, Rowley, 4.

Schizoblatina n. gen., Sellards, 8.

multinervia n. sp., Sellards, 8.

Schizobolus concentricus (Vanuxem), Kindl, 1.

Schizocrania superincreta Barrett, Wel­ler, 0.

Schizodus compressus n. sp., Beede, 1.

cuneatus Meek?, Girty, 3.

hari Miller, Beede, 1.

wheeleri (Swallow), Beede, 1.

subcircularis Herrick, Beede, 1.

trigonalis (Wm.), Weller, 2.

sp., Beede, 8.

Schizolopha sp., Kindle and Breger, 1.

Schizophorifi bisinuata n. sp., Weller, 1.

multistriata (Hall), Weller, 6.

sp. cf. striatula (Schlotheim), Kindle, 1.

subelliptica (W. and W.), Weller, 2.

Schizoporella cumulata n. sp., Ulrich and Bassler, 4.

doverensis n. sp., Ulrich and Bass­ler, 4.

hyalina Linn., Sears, 1.

hyalina, var. danversiensis' Sears, 1.

informata (Lonsdale), Ulrich and Bassler, 4.

latissinuata n. sp., Ulrich and Bass­ler, 4.

sulquadrata n. sp., Ulrich and Bassler, 4.

Schizotreta papilliformis n. sp., Ruedemann, 1.

Schloenbachia dentito-carinata F. Roe­mer, Lasswitz, 1.

evæ n. sp., Lasswitz, 1.

freichi n. sp., Lasswitz, 1.

frechi var. curvata n. var., Lass­witz, 1.

gabrielli n. sp., Anderson, 3.

haberfelderi v. Hauer, Lasswitz, 1.

kiliani n. sp., Lasswitz, 1.

knighteni n. sp., Anderson, 3.

leonensis Conrad, Lasswitz, 1.

leonensis Conrad, var. nov. maxi­ma, Lasswitz, 1.

multicosta n. sp., Anderson, 3.

oregonensis n. sp., Anderson, 3.

propinquata Stol., Anderson, 3.

quattuornodosa n. sp., Lasswitz, 1.

quattuornodosa var. planata n. var., Lasswitz, 1.

quinquenodosa Redtenbacher var. minuta n. var., Lasswitz, 1.

roemeri n. sp., Lasswitz, 1.

roemeri var. elegantior n. var., Lass­witz, 1.

roemeri var. harpax, n. var., Lass­witz, 1.

sequens Gross, Lasswitz, 1.

Scleropteris oregonensis n. sp., Anderson, 3.

Sclerophyllina dichotoma Heer (?) Hollick, 4.

Schluetericeras n. gen., Hyatt, 1.

Schmidteilla Ulrich, Matthew (G. F.), 20.

crassimarginata var. ventrilabiata n. var., Ruedemann, 2.

Schloenbachia austeniensis F. Roemer, Lasswitz, 1.

austeniensis Roemer var. nov. mini­ma, Lasswitz, 1.

bakeri n. sp., Anderson, 3.

blanfydiana Stol. (?), Anderson, 3.

butterns n. sp., Anderson, 3.

chloeoësis Trask, Anderson, 3.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.
Genera and species described—Continued.

Sella A. Adams, Arnold, 2.
adamii (H. C. Lea), Martin, 5.
asimilata C. B. Adams, Arnold, 2.
Selaginella marylandica n. sp., Fontaine, 5.
Selenichnus E. Hitchcock, Lull, 2.
breviusculus E. Hitchcock, Lull, 2.
falcatus E. Hitchcock, Lull, 2.
Selenoesteus kepleri n. gen. et sp., Dean, 1.
Semele Schumacher, Arnold, 2.
carinata (Conrad), Glenn, 6.
carinata var. compacta Hall, Glenn, 6.
declis Conrad, Arnold, 2.
pulchra Sowerby, Arnold, 2.
pulchra Sowerby, montereyi n. var., Arnold, 2.
subovata (Say), Glenn, 6.
Semicoscinium Prout, Grabau, 1.
tenuiceps (Hall), Grabau, 1.
Seminula argentia (Shepard) Hall, Beede, 5, 7.
argentea (Shepherd), Beede, 1.
claytoni Hall and Whittfield, Girty, 3.
humilis Girty ?, Girty, 3.
subquadruta Hall ?, Girty, 3.
subtilita Hall, Girty, 3.
Semionotidae, Eastman, 20.
Semionotus Agassiz, Eastman, 20.
agassizii (W. C. Redfield), Eastman, 20.
brunii (Newberry), Eastman, 20.
elegans (Newberry), Eastman, 20.
fultus (Agassiz), Eastman, 20.
fultus Agassiz, Eaton, 1.
gigas (Newberry), Eastman, 20.
lineatus (Newberry), Eastman, 20.
marshi W. C. Redfield, Eaton, 1.
micropterus Newberry, Eaton, 1.
micropterus (Newberry), Eastman, 20.
nilssonii Agassiz, Eastman, 20.
ovatus W. C. Redfield, Eaton, 1.
ovatus (W. C. Redfield), Eastman, 20.
robustus (Newberry), Eastman, 20.
tenueceps Agassiz, Eaton, 1.
tenueceps (Agassiz), Eastman, 20.
Serpula gordialis Schlotheim, Cragin, 2.
Serpula sp., Cragin, 2.
Serpulorbis Sassi, Arnold, 2.
squamigerus Carpenter, Arnold, 2.
(Vermicularia) sp. indet., Arnold, 2.
Seymouria baylorensis n. gen. and sp Broili, 2.
Sharpeiceras n. gen., Hyatt, 1.
Shastasaurus, Merriam (J. C.), 4, 5, 6.
alexandrea n. sp., Merriam (J. C.), 4.
alitispinus 95 sp., Merriam (J. C.), 4.
careyi n. sp., Merriam (J. C.), 4.
emonti n. sp., Merriam (J. C.), 4, 13.
pacificus n. sp., Merriam (J. C.), 4.
percini n. sp., Merriam (J. C.), 4.
Shastites n. subg., Hyatt and Smith, 1.
Shepardia E. Hitchcock, Lull, 2.
palmipes E. Hitchcock, Lull, 2.
Shizocrania filosa (Hall), Weller, 6.
Shumardites n. gen., Smith (J. P.), 3.
simondsi n. sp., Smith (J. P.), 3.
Sibirites Mojsisovics, Hyatt and Smith, 1.
noetlingi n. sp., Hyatt and Smith, 1.
Sibiritidae Mojsisovics, Hyatt and Smith, 1.
Sibyllites Mojsisovics, Hyatt and Smith, 1.
Siderastrea radians (Pallas), Vaughan, 2.
siderea (Ellis and Solander), Vaughan, 2.

Sela A. Adams, Arnold, 2.
adamsii (H. C. Lea), Martin, 5.
assimilata C. B. Adams, Arnold, 2.
Selaginella marylandica n. sp., Fontaine, 5.
Selenichnus E. Hitchcock, Lull, 2.
breviusculus E. Hitchcock, Lull, 2.
falcatus E. Hitchcock, Lull, 2.
Selenoesteus kepleri n. gen. et sp., Dean, 1.
Semele Schumacher, Arnold, 2.
carinata (Conrad), Glenn, 6.
carinata var. compacta Hall, Glenn, 6.
declis Conrad, Arnold, 2.
pulchra Sowerby, Arnold, 2.
pulchra Sowerby, montereyi n. var., Arnold, 2.
subovata (Say), Glenn, 6.
Semicoscinium Prout, Grabau, 1.
tenuiceps (Hall), Grabau, 1.
Seminula argentia (Shepard) Hall, Beede, 5, 7.
argentea (Shepherd), Beede, 1.
claytoni Hall and Whittfield, Girty, 3.
humilis Girty ?, Girty, 3.
subquadruta Hall ?, Girty, 3.
subtilita Hall, Girty, 3.
Semionotidae, Eastman, 20.
Semionotus Agassiz, Eastman, 20.
agassizii (W. C. Redfield), Eastman, 20.
brunii (Newberry), Eastman, 20.
elegans (Newberry), Eastman, 20.
fultus (Agassiz), Eastman, 20.
fultus Agassiz, Eaton, 1.
gigas (Newberry), Eastman, 20.
lineatus (Newberry), Eastman, 20.
marshi W. C. Redfield, Eaton, 1.
micropterus Newberry, Eaton, 1.
micropterus (Newberry), Eastman, 20.
nilssonii Agassiz, Eastman, 20.
ovatus W. C. Redfield, Eaton, 1.
ovatus (W. C. Redfield), Eastman, 20.
robustus (Newberry), Eastman, 20.
tenueceps Agassiz, Eaton, 1.
tenueceps (Agassiz), Eastman, 20.
Septastrea marylandica (Conrad), Vaughan, 10.
Septifer, Reclus, Arnold, 2.
bifurcatus Conrad, Arnold, 2.
Septopora Prout, Condra, 2.
biseriata (Swall.), Sanderson, 4.
biseriata (Swallow), Condra, 2.
biseriata-nervata Ulrich, Condra, 2.
castriensis Prout, Condra, 2.
decipiens Ulrich, Condra, 2.
multipora (Rogers), Condra, 2.
pinnata Ulrich, Condra, 2.
robusta Ulrich, Condra, 2.
Paleontology—Continued.

Genera and species described—Continued.

Siphonalia A. Adams, Arnold, 2.
? calvertana n. sp., Martin, 5.
? calvertana (Conrad), Martin, 5.
Siphonocetus clarkianus Cope, Case, 1.
Siphonospora compacta, Seely, 3.
Siphonopleura bretonensis n. sp., Mat­
they (G. P.), 20.
Siphonophoria cosmansi Hall, Kindle, 1.
Siphonofora bretonensis n. sp., Mat­
they (G. P.), 20.
? calveriana n. sp., Martin, 5.
? calveriana (Conrad), Martin, 5.
Kellettii Forbes, Arnold, 2.
Spathocharis emersoni Clark, Kindle, 1.
Spathocystites Hall, Schuchert, 6, 11.
Spathocystites minor n. sp., Ruedemann, 2.
Spathocystites bloomfleldensis n. sp., Schuchert, 11.
Spathocystites globularis n. sp., Schuchert, 5.
Spathocystites major n. sp., Ruedemann, 2.
Spathocystites bloomfleldensis n. sp., Schuchert, 11.
Spathocystites globularis n. sp., Schuchert, 6, 11.
Paleontology—Continued.

Genera and species described—Continued.

Sphaerocystites globularis ovalis n. var., Schuchert, 11.

multifasciatus Hall, Schuchert, 11.

Sphaerophthalum alatus Boeck, Matthew (G. F.), 20.

fletcheri n. sp., Matthew (G. F.), 9, 20.

Sphera nobia (H. C. Lea), Glenn, 6.

Sphenops Sandberger, Dall, 8.

Sphenodictya cornigera n. gen. and sp., Herzer, 3.

Sphenodiscus Meek, Hyatt, 1, beecheri n. sp., Hyatt, 1.

lenticularis (Owen), Hyatt, 1.

lenticularis var. mississippiensis, Hyatt, 1.

lobatus (Tuomey), Hyatt, 1.

pleurisept'a Conrad, Lasswitz, 1.

plenrisepta (Conrad), Hyatt, 1.

stantoni n. sp., Hyatt, 1.

Sphenodon Günther, Osborn, 19.

Sphenophyllum emarginatum minor D. W., White (D.), 10.

Sphenopteridium sp., White (D.), 18.

Sphenopteris filicula (Dn.) D. W., hoeninghausii, White (D.), 19.

Sphyrna prisca Agassiz, Eastman, 1, 18.

Spiloblattina, Sellards, 8.

Spirifer, Sowerby, Beede, 1.

Spirifer var. simplex Hall 1879, Beecher, 1.

(Reticularia) crispus var. simplex Hall, Kindle and Breger, 1.

cyclopteris Hall, Shimer, 5.

cyclopteris Hall, Weller, 6.

davius Nettleroth, Kindle, 1.

divaricatus Hall, Kindle, 1.

duodenarius (Hall), Kindle, 1.

eriensis Grabau, Grabau, 9.

eriensis Grabau, Schuchert, 4.

eriensis Grabau var., Grabau, 9.

fimbriatus Conrad, mut. pygmaeus nov., Loomis, 4.

fimbriatus Conrad, mut. simplicissimus nov., Loomis, 4.

focgi Nettleroth, Kindle and Breger, 1.

fornacula Hall, Kindle, 1.

granulosus Conrad, mut. pluto Clarke, Loomis, 4.

granulosus (Con.), Kindle, 1.

gregarius Clapp, Kindle, 1.

var. greeni n. var., Kindle, 1.

grieri Hall, Kindle, 1.

iowensis Owen, Kindle, 1.

lateralis, var. delicatus, n. var., (Rowley), Greene, 2.

macconathell Nettleroth, Kindle, 1.

macroleurus (Con.), Weller, 6.

macroythris Hall, Weller, 6.

macr Hall, Kindle, 1.

marionensis Shumard, Weller, 2.

marcy Hall, mut. pygmaeus nov., Loomis, 4.

medallia Hall, mut. pygmaeus nov., Loomis, 4.

modestus corallinensis (Grabau), Schuchert, 4.

mucronatus Conrad, Raymond (P. E.), 3, 4.

mucronatus var. arkonensis n. var., Shimer and Grabau, 1.

mucronatus Conrad, mut. hecate Clarke, Loomis, 4.

mucronatus var. thefordsensis n. var., Shimer and Grabau, 1.

murchisoni Castelnau, Shimer, 5.

murchisoni Castelnau, Weller, 6.

nearceri n. sp., Weller, 6.

niagarensis Conrad, Grabau, 1.

nobilis Barrande, Kindle and Breger, 1.

ocotocostatus Hall, Weller, 6.

peculiaris Shumard?, Girty, 3.

peculiaris Shum.? Weller, 2.

Pennatus (Atwater), Kindle, 1.

perlamellosus Hall, Weller, 6.

pikensis n. sp., Rowley, 2.

radialis Sowerby, Kindle and Breger, 1.

radius Sowerby 1825, Beecher, 1.

radialis Sowerby, Grabau, 1.

rockymontanus Marcou, Girty, 3.
Paleontology—Continued.
Genera and species described—Continued.
Spirifer segmentum Hall, Kindle, 1.
(Delthyris) sulcatus Hall, Grabau, 1.
tullius Hall, mut. behnegor Clarke, Loomis, 4.
vanguem Hall, Shimer, 5.
vanguem Hall, Grabau, 9.
vanguemi Hall, Weller, 6.
vanguem Hall, var. minor n. var., Weller, 6.
virgicus Hall, Kindle, 1.
vircosa var. hobbsi (Netterlooth), Kindle, 1.
sp., Girty, 3.
sp. undet., Weller, 6.
Spiriferina campestris White, Girty, 3.
cristata (Schlotheim), Beede, 1.
horizontalis n. sp. (Rowley), Greene, 2.
kentuckyensis Shumard, Girty, 3.
solidirostris White?, Girty, 3.
solidirostris (White), Weller, 2.
Spirogyphus lltuella Mörch, Arnold, 2.
Spiroloculina d'Orbigny, Bagg, 6.
grata Terquem, Bagg, 6.
tenuis (Czjzek), Bagg, 6.
tenuisepata, Guppy, 4.
Sproplecta clarkii Bagg, Bagg, 1.
Sprotopsis Sars, Arnold, 2.
Spirotrichus sawdawsoni Dawson, Girty, 3.
calvertensis n. sp., Martin, 7.
? dubius n. sp., Rowley, 1.
Ibricatus n. sp., Ulrich, 8.
sp., Girty, 3.
Spsila Gray, Arnold, 2.
callisteformis n. sp., Dall, 10.
(Hemimactra?) chesapeakeus n. sp., Glenn, 6.
(Hemimactra) confra (Conrad), Glenn, 6.
(Hemimactra) curtidens Dall, Glenn, 6.
(Hemimactra) delubris (Conrad), Glenn, 6.
(Hemimactra) marylandica Dall, Glenn, 6.
(Hemimactra) subparllis (Conrad), Glenn, 6.
sp., Glenn, 6.
Spongasteriscus marylandicus n. sp., Martin, 8.
Spondylius carlsensis n. sp., Anderson, 7.
(sp. uncertain), Whiteaves, 12.
sp., Shattuck, 8.
Sporangites jacksoni D. W., White (D.), 18.
Sportella patuxentia n. sp., Glenn, 6.
pex Dall, Glenn, 6.
pepositann Dall, Glenn, 6.
recessa n. sp., Glenn, 6.
whitefieldi Dall, Glenn, 6.
Paleontology—Continued.
Genera and species described—Continued.
Spyroceras anellus Conrad sp., Ruedemann, 2.
Squalodon atlanticus Leidy, Case, 9.
protervus Cope, Case, 9.
Squanularia Gemmellaro, Girty, 3.
perplexa McChesney, Girty, 3.
Squatina Dume"ril, Eastman, 18.
ocidentalis n. sp., Eastman, 18.
Stantonites n. subg., Hyatt and Smith, 1.
Stenococeras a gen., Johnson (D. W.), 5.
pseudocostatum n. sp., Johnson (D. W.), 5.
guadalupana Roemer (sp.) ?, Johnson (D. W.), 5.
Staurocystis Haackel, Schuchert, 11.
Staurograptus Emmons, Ruedemann, 8.
dichotomus Emmons, Ruedemann, 8.
dichotomus var. apertus n. var., Ruedemann, 8.
Stegoceras a gen., Lambe, 3.
Stegomus longipes, Emerson and Loomis, 1.
longipes, Lull, 3.
validus n. sp., Lambe, 3.
Stegopteria landerensis, Williston, 26.
Stegosaurus marshi n. sp., Lucas, 2.
Stellipora antheloidea Hall, Sardeson, 3.
Stemmatoecrinus? very? n. sp., Rowley, Greene, 8.
Stemmatopteris distans n. sp., Herzer, 4.
Steneofibcr Geoffrey, Matthew (W. D.), 6.
barbouri n. sp., Gilmore, 3.
complexus, Matthew (W. D.), 6.
complexus n. sp., Douglass, 4.
complexus Douglas, Peterson, 3.
fosor n. sp., Peterson, 3.
gradatus Cope, Peterson, 3.
gradatus, Matthew (W. D.), 6.
hesperus, Matthew (W. D.), 6.
hesperus n. sp., Douglass, 4.
hesperus-Douglas, Peterson, 3.
montanus, Matthew (W. D.), 6.
pansus Cope, Peterson, 3.
pansus Cope, Matthew and Gidley, 3.
pansus, Matthew (W. D.), 6.
peninsulatus, Matthew (W. D.), 6.
peninsulatus Cope, Peterson, 3.
Stenopteris? cretanac n. sp., Hollick, 5.
Stenonyx nom. nov., Lull, 2.
lateralis (E. Hitchcock), Lull, 2.
Stenopora Lonsdale, Condra, 2.
carbonaria (Worthen), Condra, 2.
carbonaria - conferta Ulrich, Condra, 2.
cestrifensis Ulrich, Girty, 3.
Paleontology—Continued.

Genera and species described—Continued.

Stenopora distans Condra, Condra, 1, 2.

heteropora Condra, Condra, 1, 2.

? polysphosa (provisional) Condra, Condra, 1, 2.

spinulosa Rogers, Condra, 2.

tuberculata (Prout), Condra, 2.

tuberculata, Prout, Girty, 3.

? sp., Girty, 3.

Stenosteus glaber n. gen. et sp., Dean, 1.

Stenotheca abrupta Shaler and Poerste (?), Sears, 1.

Stephanocrinus Conrad, Grabau, 1.

gregangulatus Conrad, Grabau, 1.

deformis n. sp., Rowley, Greene, 6.

gemmiformis Hall, Rowley, Greene, 6.

hammelli Miller, Rowley, Greene, 6.

osgoodensis Miller, Rowley, Greene, 6.

quinquepartitus n. sp., Rowley, Greene, 6.

Stephanopyxis corona (Ehrenberg), Boyer, 1.

Sterculia cliffwoodensis n. sp., Berry, 5.

elegans Fontaine?, Fontaine, 5.

niucronata Lesq., Berry, 5.

snowii bilobata var. nov., Berry, 5.

Stereocephalus tutus n. sp., Lainbe, 3.

Steropoides E. Hitchcock, Lull, 2.

elegans E. Hitchcock, Lull, 2.

infelix Hay, Lull, 2.

ingens E. Hitchcock, Lull, 2.

loripes (E. Hitchcock), Lull, 2.

uncus (E. Hitchcock), Lull, 2.

Stethaca’nthus Newberry, Eastman, 10.

altonensis (St. John and Wor-then), Eastman, 10.

depressus (St. John and Wor-then), Eastman, 10.

erectus n. sp., Eastman, 10.

productus Newberry, Eastman, 10.

Stibarus montanus n. sp., Matthew, (W. D.), 9.

Stichocapsa macropora Vinassa, Martin, 8.

Stictoporella cribrosa Ulr., Sardeson, 4.

Stigmatoria. Poole, 1.

Stigmatella n. gen., Ulrich and Bassier, 2.

clavis (Ulrich), Ulrich and Bassier, 2.

crenulata n. sp., Ulrich and Bassier, 2.

interporosa n. sp., Ulrich and Bassier, 2.

irregularis (Ulrich), Ulrich and Bassier, 2.

nana n. sp., Ulrich and Bassier, 2.

Paleontology—Continued.

Genera and species described—Continued.

Stigmatella nicklesi n. sp., Ulrich and Bassier, 2.

personata n. sp., Ulrich and Bassier, 2.

spinosa n. sp., Ulrich and Bassier, 2.

Stoliczkia ex. aff. dispar d’Orb., Lass-witz, 1.

Stoliczkia dispar (d’Orb.) Stoliczka, Anderson (F. M.), 3.

Stomatopora inflata, Hall, Ruedemann, 2.

Strabops thatcheri n. gen. et sp., Beecher, 3.

Straparollia harpa n. sp., Hudson, 1.

Straparollia cyclostomus (Hall), Kid-le, 1.

Stigmatella nicklesi n. sp., Ulrich and Bassier, 2.

personata n. sp., Ulrich and Bassier, 2.

spinosa n. sp., Ulrich and Bassier, 2.

Stoliczkia ex. aff. dispar d’Orb., Lass-witz, 1.

S. A. Miller, Seely, 3.

Streptidura subscalarina Heilprin, Clark and Martin, 2.

Streptelasma Hall, Lambe, 2.

calculus Hall, Lambe, 2.

corniculum Hall, Ruedemann, 2.

corniculum Hall, Weller, 6.

corniculum Hall, Lambe, 2.

latusculum var. trilobatum Whit- eaves, Lambe, 2.

prolificum Billings (sp.), Lambe, 2.

rectum Hall, Lambe, 2.

robusatum Whitewaves, Lambe, 2.

rusticum Billings (sp.), Lambe, 2.

selectum Billings (sp.), Lambe, 2.

strictum Hall, Weller, 6.

Streptomytilus n. gen., Kindle and Bre-ger, 1.
Paleontology—Continued.

Genera and species described—Continued.

Streptomytilus wabashensis n. sp., Kind
dle and Breger, 1.

Streptorhynchus subsulcatum n. sp.,
Sardeson, 9.

Striatomytilus bellistriata n. sp., Greenc, 7.

flexuosa Hall, Grabau, 1.

Striancostrophia elongata Rowley, 3.

missouriensis Rowley, Rowley, 3.

Striatum n. gen., Raymond (P. E.), 3.

Stribalocystis? elongatus Kowley, 3.

raissouriensis Rowlcy, Rowley, 3.

Striatopora Hall, Grabau, 1.

Stribroctonilla Sacco, Arnold, 2.

Stribrionatocerium Hall, Seely, 5.

Stribracon Hall, Weller, 6.

Stribracon bipartita (Hall), Weller, 6.

Stribracon concava Hall, Raymond (P. E.), 4.

Stribracon corrugata Conrad, Grabau, 1.

Stribracon demissa Hall, Raymond (P. E.), 4.

Stribracon demissa (Conrad), Kindle, 1.

Stribracon demissa var. chazianum, Seely, 5.

Stribracon elongata Saffiord, Hayes and Uli
rich, 1.

Stribracon flexuosa Hall, Seely, 5.

Stribracon? moniliferum n. sp., Seely, 5.

Stribracon pustulosum Saffiord, Hayes and Ul
rich, 1.

Stribracon rugosum Hall, Seely, 5.

Stribracon seton Hall, Grabau, 1.

Stribracon seton concentrica Goldfuss Hall, Grabau, 1.

Stribracon seton constellata Hall, Schuchert, 4.

Stribracon seton galtensis Dawson (sp.), Clarke and Ruedemann, 1.

Stribracon seton tubulifera n. sp., Parks, 5.

Stribracon stronglocentrotus Brandt, Arnold, 2.

Stribracon truncata Hall, Raymond (P. E.), 3.

Stribracon truncata Hall, nim. pygmae nov., Loomis, 4.

Stribracon truncata Hall, Grabau, 1.

Stribracon beckei Hall, Weller, 6.

Stribracon bipartita (Hall), Weller, 6.

Stribracon concava Hall, Raymond (P. E.), 4.

Stribracon corrugata Conrad, Grabau, 1.

Stribracon demissa Hall, Raymond (P. E.), 4.

Stribracon demissa (Conrad), Kindle, 1.

Stribracon demissa hemispherica Hall, Kindle, 1.

Stribracon demissa indenta (Con.), Weller, 6.

Stribracon inequiradiata Hall, Weller, 6.

Stribracon inequiradiata (Conrad), Kindle, 1.

Stribracon inequiradiata Conrad, Raymond (P. E.), 3.

Stribracon inequiradiata Hall, Raymond (P. E.), 4.

Stribracon inequiradiata (Conrad), Kindle, 1.

Stribracon inequiradiata Conrad, Raymond (P. E.), 3.

Stribracon inequiradiata Hall, Raymond (P. E.), 4.

Stribracon inequiradiata magnifica (Hall), Weller, 6.

Stribracon perplana Conrad, Raymond (P. E.), 3.

Stribracon perplana (Conrad), Kindle, 1.

Stribracon perplana Hall, Raymond (P. E.), 4.

Stribracon perplana (Con.), Weller, 6.

Stribracon planulata Hall, Weller, 6.

Stribracon planulata Hall, Kindle, 1.

Stribracon profunda Hall, Grabau, 1.

Stribracon varisstriata (Con.), Weller, 6.

Stribracon varisstriata (Conrad), Kindle, 1.

Stribracon varisstriata var. arata Hall, Shil
er, 6.

Stribracon varisstriata var. arata H., Weller, 6.
Paleontology—Continued.

Genera and species described—Continued.

Syringopora aculeata Girty, Girty, 3.

Paleontology—Continued.

Genera and species described—Continued.

Syringothyris carteri Hall, Girty, 3.

Tellina aequistriata Say, Glenn, 6.

(Angelus) buttoni Dall, Arnold, 2.

(Aniscus) declivis Conrad, Glenn, 6.

(Aniscus) dupliniana Ball, Glenn, 6.

(Aniscus) idae Dall, Arnold, 2.

Tellina agilis Hall, Weller, 2.

(Aniscus) bodegensis Hinds, Arnold, 2.

(Aniscus) declivis Conrad, Glenn, 6.

(Aniscus) dupliniana Dall, Glenn, 6.

(Aniscus) idae Dall, Arnold, 2.

Telescopodaceae famili, Osborn, 33.

Telloina (Agulia) papryra, Conrad, 5.

Tellina agilis Hall, Weller, 2.

(Aniscus) bodegensis Hinds, Arnold, 2.

(Aniscus) declivis Conrad, Glenn, 6.

(Aniscus) dupliniana Dall, Glenn, 6.
Paleontology—Continued.

Genera and species described—Continued.

Tellina pilsbryi n. sp., Casey, 4.

(Angulus) producta Conrad, Glenn, 6.

(Angulus) rubescens Hanley, Arnold, 2.

(Morelia) salmonica Carpenter, Arnold, 2.

(Angulus) umbræ Dall, Glenn, 6.

sp., Dall, 10.

(Angulus) virginiana Clark, Clark and Martin, 1.

(Peronidia?) williamsi Clark, Clark and Martin, 1.

Tellinocyclas Dall, Dall, 8.

Tellinomya absimilis n. sp., Sarsden, 1.

candens n. sp., Sarsden, 9.

(or Nucula) lepida n. sp., Sar­
dson, 9.

cf. nasuta Hall, Kindle and Bre­
ger, 1.

novitiosa n. sp., Sarsden, 1.

Tellinocyclas Dall, Dall, 8.

Tellinomya absimilis n. sp., Sarsden, 1.

candens n. sp., Sarsden, 9.

(or Nucula) lepida n. sp., Sar­
dson, 9.

cf. nasuta Hall, Kindle and Bre­
ger, 1.

novitiosa n. sp., Sarsden, 1.

Teoeculia acu1 Hall?, Weller, 6.

bellerus Hall (?) mut. stebos
Clarke, Loomis, 4.

dexitha Hall, Kindle, 1.

elagatous Hall, Weller, 6.

graci1striatus Hall, Clarke, 10.

graci1striatus Hall, mut. asmode­us Clarke, Loomis, 4.

grycanthus (Eaton), Weller, 6.

clariformis Hall, Kindle, 1.

tenuicnl tus F. A. Roemer, Clarke, 19.

Teonoma speleca n. sp., Sinclair, 7.

Terebellina n. gen., Ulrich, 4.

palaclie n. sp., Ulrich, 4.

Terebra Bruguëre, Arnold, 2.

coo1eri n. sp., Anderson, 7.

(Acus) curvilineata Dall, Martin, 5.

(Acus) curvilineata var. calvert­ensia n. var., Martin, 5.

(Acus) curvilineata var. dalli n.

var., Martin, 5.

(Acus) curvilineata var. whitfieldi
n. var., Martin, 5.

(Acus) curvillata Conrad, Mar­
tin, 5.

(Hastula) inornata Whitfield, Martin, 3.

juvenilcostata n. sp., Brown (T.

C.). 1.

(Hastula) patuxentia n. sp., Mar­
tin, 5.

Bull. 301—06—46

Paleontology—Continued.

Genera and species described—Continued.

Terebra (Hastula) simplex Conrad, Martin, 5.

(Acus) simplex Carpenter, Arnold, 2.

(Hastula) simplex var. sublirata, Conrad, Martin, 5.

(Acus) sincera Dall, Martin, 5.

unilineata Conrad, Martin, 5.

sp.?, Brown (T. C.), 1.

Terebratulæ Beecher, Arnold, 2.

hemphilli Dall, Arnold, 2.

smithi n. sp., Arnold, 2.

Terebratella harveyi n. sp., Whiteaves, 12.

Terebratula (Childonophora) filosa
Conrad, Dall, 8.

harlanl Morton, Clark and Martin, 3.

jucunda Hall, Kindle, 1.

obsoleta Dall, Beecher, 1.

wilmingtonensis Lyell and Sower­by, Dall, 8.

Teredo virginiana Clark, Clark and Martin, 2.

? sp., Dall, 10.

sp., Ravn, 1.

Terminonaris n. n., Osborn, 33.

Terrapene euryygla (Cope), Hay, 14.

Testudo atascosse n. sp., Hay, 14.

osborniana n. sp., Hay, 17.

Tetragonites timothyanus? Mayor,
Whiteaves, 12.

Tetragraptus Salter, Ruedemann, 8.

amill Lapworth ms., Elles and
Wood, em., Ruedemann, 8.

clarkei n. sp., Ruedemann, 8.

fruticosus Hall sp., Ruedemann, 8.

(Etagraptus) lentus n. sp., Ruede­mann, 8.

pends Elles, Ruedemann, 8.

pygneus n. sp., Ruedemann, 8.

quadribrachiatus Hall (sp.), Rue­demann, 8.

serra Brongniart sp., Ruedemann, 8.

sinalis Hall (sp.), Ruedemann, 8.

taraxacum Ruedemann, Ruede­mann, 8.

woodii n. sp., Ruedemann, 8.

Tetranota b'lorata (Hall), Weller, 6.

Textivenus Cossmann, Dall, 8.

Textularia Defrance, Bagg, 6.

abbrevibus d'Orbigny, Bagg, 6.

glutinians d'Orbigny, Bagg, 6.

articulata d'Orbigny, Bagg, 6.

aspera, Guppy, 4.

carinata d'Orbigny, Bagg, 6.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Textularia carinatus, Guppy, 4.

[...]

Thalassoceratidae, Hyatt and Smith, 1.
Thalattosaurus, Merriam (J. C.), 15.
Thalattosaurusidae, Merriam (J. C.), 15.
Thalattosaurus Merriam, Merriam (J. C.), 15.
Thalattosaurus alexandrae n. gen. and n. sp., Merriam (J. C.), 11, 12, 15.

...
Paleontology—Continued.

Genera and species described—Continued.

Tivela jamaicensis n. sp., Dall, 8.

Calpionella n. gen., Hyatt, 1.

Tornoceras Hyntt, Beecher, 1.

Tornquistites n. gen., Hyatt and Smith, 1.

Trachycardium Morch, Arnold, 2.

Trachyceras Laube, Hyatt and Smith, 1.

Trachyceras n. subg., Hyatt and Smith, 1.

Trachycardium Mörch, Arnold, 2.

T. austini AYorthen, Beecher, 1.

Trachyceras n. sp., Weller, G.

Trachycardium Mörch, Arnold, 2.

T. austini AYorthen, Beecher, 1.

Trachyceras n. sp., Weller, G.

Trachycardium Mörch, Arnold, 2.

T. austini AYorthen, Beecher, 1.

Trachyceras n. sp., Weller, G.

Trachycardium Mörch, Arnold, 2.

T. austini AYorthen, Beecher, 1.

Trachyceras n. sp., Weller, G.

Trachycardium Mörch, Arnold, 2.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Tricarpelettes pringlei n. sp., Perkins, 13.
rostratus n. sp., Perkins, 13.
rugosus n. sp., Perkins, 13.
seelyi n. sp., Perkins, 13.

Triceratops, Beasley, 2.
levicoronicus n. sp., Hatcher, 22.

Tricelocrinus woodmani M. & G., Rowley, 5.

Tridonta Schumacher, Ball, 8.

Triforis Bechayes, Arnold, 2.
adversa Montagu, Arnold, 2.

Ingenious socialis n. gen. and sp., Douglass, 8.

Trigeria ? carriei n. sp., Rowley, 1.
lepida Hall, Raymond (P. B.), 3, 4.
lepida Hall, mut. pygmea nov., Loomis, 4.

Trigonia calderoni (Castillo and Aguilera), Cragin, 2.
conferticostata n. sp., Cragin, 2.
emoryi Conrad, Jones (A. W.), 2.

Trigonias osborni n. sp., Lucas (F. A.), 1.

osborni Lucas, Hatcher, 3.

Trigonocera decisa (Conrad) var., Clark and Martin, 2.

Trigonograpthus Nicholson, Ruedemann, 8.

Trigonias oscerns n. sp., Lucas (F. A.), 1.

osborni Lucas, Hatcher, 3.

Tripleuria gracilis n. sp., Raymond (Elvria), 3.

elevans Leidy, Stanton and Hatcher, 1.
foveatus Leidy, Lambe, 3, 5.
vagans Cope, Lambe, 5, 3.
vagans Cope, Stanton and Hatcher, 1.

Virginia Clark, Case, 9.

Virginia ? Leidy, Lambe, 3, 5.
vagans Cope, Lambe, 5, 3.
vagans Cope, Stanton and Hatcher, 1.

indecisus Say, Girty, 9.

Trionyx Link, Arnold, 2.
centrum (Conrad), Martin, 5.
californica Gray, Arnold, 2.
solandri Gray, Arnold, 2.

Trochacton semicostatus n. sp., Whiteaves, 12.

Triticites n. gen., Girty, 9.
secalicus Say, Girty, 9.

Triticites n. gen., Wood (Elvria), 3.

Triticites n. gen., Wood (Elvria), 3.

Tritonium Link, Arnold, 2.

Virginia Clark, Case, 1.

Virginia ? Leidy, Lambe, 3, 5.
vagans Cope, Lambe, 5, 3.
vagans Cope, Stanton and Hatcher, 1.

indecisus Say, Girty, 9.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genus and species described—Continued.

Trochosniilia ? sp. indet., Vaughan, 17.

Trochus sp., Shattuck, 8.

Troodou formosus Leidy, Lambe, 3.

Trophon Montfort, Arnold, 2.

(Boreotrophon) cerriensis n. sp., Arnold, 2.

chesapekeanus n. sp., Martin, 5.

gabiani n. sp., Anderson, 7.

(Boreotrophon) gracilis Perry, Arnold, 2.

kernensis n. sp., Anderson, 7.

(Boreotrophon) multi costatus Eschscholtz, Arnold, 2.

(Boreotrophon) pedroana n. sp., Arnold, 2.

(Boreotrophon) scalariformis Gould, Arnold, 2.

(Boreotrophon) stuarti Smith, Arnold, 2.

(Boreotrophon) var. precursur new var., Arnold, 2.

sublevls Harris, Clark and Martin, 2.

(Boreotrophon) tenuisculptus Carpenter, Arnold, 2.

tetricus Conrad, Martin, 5.

tetricus var. levls n. var., Martin, 5.

(Trophon) triangulatus Carpenter, Arnold, 2.

sp., Martin, 5.

Tropidocyclas Dall, Dall, 8.

Tropidocyclus De Koninck, Clarke, 19.

hyalinus n. sp., Clarke, 19.

Tropiceltites Mojsisovics, Hyatt and Smith, 1.

frechi n. sp., Hyatt and Smith, 1.

Tropicolaris, Beecher, 8.

alternata, Beecher, 8.

bicornata, Beecher, 8.

Tropidolepbus carinatus (Conrad), Kindle, 1.

carinatus Conrad, Raymond (P. E.), 3, 4.

carinatus (Con.), Weller, 6.

carinatus Conrad, mut. pygmaeus nov., Loomis, 4.

Tropidomya Dall and Smith, Dall, 8.

Tropiscurula n. gen., Casey, 5.

caseyi Ald., Casey, 5.

crenula n. sp., Casey, 5.

Tropites Mojsisovics, Hyatt and Smith, 1.

Tropites Mojsisovics, Smith (J. F.), 5.

dilleri n. sp., Smith (J. F.), 5.

subbulatus Hauer, Hyatt and Smith, 1.

torquillus Mojsisovics, Smith (J. F.), 5.

Trophon Mojsisovics, Hyatt and Smith, 1.
Paleontology—Continued.

Genera and species described—Continued.

Toronilla (Striotoronilla) similis C. B. Adams, Arnold, 2.

Striotoronilla stearnsii D. & B., n. sp., Arnold, 2.

Pyriscus subcuspidata Carpenter, Arnold, 2.

Pyriscus tenaculica Gould, Arnold, 2.

Striotoronilla torquata Gould, Arnold, 2.

Striotoronilla torquata, var. styliina Carpenter, Arnold, 2.

Lancea tridentata Carpenter, Arnold, 2.

Turrilepas (?) olosa n. sp., Ruedemann, 1.

Turritella Lamarck, Arnold, 2.

sequistriata Conrad, Martin, 2.

belederei Cragin, Tones (A. W.), 2.

budaensis n. sp., Shattuck, 2.

burkarti n. sp., Cragin, 2.

conica n. sp., Weaver, 1.

cooperi Carpenter, Arnold, 2.

gallitoensis n. sp., Johnson (D. W.), 5.

humerosa Conrad, Clark and Martin, 2.

indenta Conrad, Martin, 6.

Jewettii Carpenter, Arnold, 2.

mortoni Conrad, Clark and Martin, 2.

Plebeia Say, Martin, 5.

pothonacensis n. sp., Clark and Martin, 2.

variabilis Conrad, Martin, 5.

variabilis var., Martin, 5.

variabilis var. allicoseta Conrad, Martin, 5.

variabilis var. cumberlandia Conrad, Martin, 5.

variabilis var. exaltata Conrad, Martin, 5.

Wood, 1.

Turrilites brazoensis F. Roemer, Lasswitlz, 1.

peramplus n. sp., Lasswitz, 1.

wysogorski n. sp., Lasswitz, 1.

Tylocrinus Grinnell, Springer (F.), 1.

socialis Grinnell, Springer (F.), 1.

socialis Schuchert, 8.

socialis Grinnell, Hovey (E. O.), 14.

sp., Whiteaves, 15.

Uintacyon Leidy, Wortman, 2.

edax Leidy, Wortman, 2.

Edax Cope, Case, 9.

moratus Cope, Case, 9.

Ulmus basicordata n. sp., Hollick, 10.

californica? Lesq., Knowlton, 14.

newberryii n. sp., Knowlton, 14.

spectosa Newb., Knowlton, 14.

Umbraculum (Eosinica) elevatum n. sp., Aldrich, 3.

Unicardium? semirotundum n. sp., Cragin, 2.

? transversum n. sp., Crain, 2.

Uncinulus mabelloris (Hall), Weller, 6.

nucleolatus (Hall), Weller, 6.

pyramidatus (Hall), Weller, 6.

vellatus (Hall), Weller, 6.

Unio Retzius, Letson, 1.

asopiformis n. sp., Whitfield, 6.

aldrichi White, White (C. A.), 1.

belliplicatus Meek, White (C. A.), 1.

brachypophistus White, White (C. A.), 1.

browni n. sp., Whitfield, 6.

cuspidens Lam., Wagner, 2.

cretacoilus n. sp., Maury, 1.

criosgonium Meek, White (C. A.), 1.

douglasii n. sp., Stanton, 4.

endlich White, White (C. A.), 1.

farri n. sp., Stanton, 4.

felchii White, White (C. A.), 1.

gibbosus Eames, Letson, 1.

gonionotus White, White (C. A.), 1.

gonionotus White, White (C. A.), 1.

holmesianus White, White (C. A.), 1.

iridoides White, White (C. A.), 1.

mecropisthus White, White (C. A.), 1.

nannimonsis n. sp., Whiteaves, 1.

nucalis Meek and Hayden, White (C. A.), 1.

percorrugata n. sp., Whitfield, 6.

postbiblicata n. sp., Whitfield, 6.

priscus Meek and Hayden?, Stanton and Hatcher, 1.

priscus var. abbreviatus n. var., Stanton, Stanton and Hayden, 1.

proavitus White, White (C. A.), 1.

propheticus White, White (C. A.), 1.

retusoides n. sp., Whitfield, 6.

senectus White, White (C. A.), 1.

stilloni n. sp., Whitfield, 6.

stewardi White, White (C. A.), 1.

supernivensis n. sp., Stanton, Stanton and Hatcher, 1.

subapatatus Meek and Hayden, Stanton and Hatcher, 1.

toxonotus White, White (C. A.), 1.

? trigoniaformis n. sp., Maury, 1.
FOR THE YEARS 1901-1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Unio verrucosiformis n. sp., Whitfield, 6.

Vetustus Meek, White (C. A.), 1.

Unitrypa, Cundings, 9.

precursora (Hall), Shimer, 5.

Urolophus hallieri (?), Cooper, Arnold, 2.

Uromantes Cope, Williston, 14.

Urosalpinx choneus (Say)?, Martin, 5.

rusticus (Conrad), Martin, 5.

Urosyca robusta n. sp., Weaver, 1.

Urotheca n. gen., Matthew (G. F.), 1.

pervetus n. sp., Matthew (G. F.), 1.

sp., Matthew (G. F.), 12, 20.

Ursus n., Matthew (W. D.), 5.

Ussurin Diener, Hyatt and Smith, 1.

compressa n. sp., Hyatt and Smith, 7.

waageni n. sp., Hyatt and Smith, 1.

Uvigerina d'Orbigny, Bagg, 6.

canadiensis d'Orbigny, Bagg, 6, 9.

pygmaea d'Orbigny, Bagg, 6, 9.

raphanus, Guppy, 4.

tenulistrata Reuss, Bagg, 6, 9.

Vaccinum alaskanum n. sp., Knowlton, 16.

Vaginulina legumen (Linne), Bagg, 1.

Valvata Muller, Letson, 1.

sincera Say, Letson, 1.

tricarinata Say, Letson, 1.

Vanikoro pulchella var., Whiteaves, 12.

Varanosaurus acutirostris n. gen. and sp., Roolf, 2.

Varioideos n. gen., Casey, 5.

Velocinna Meek, Dall, 8.

Venericardia Lamarck, Dall, 8.

Venericardia Lamarck, Arnold, 2.

Venericardia Lamarck, Dall, 8.

section Cardites s. s., Dall, 8.

section Cyclocardia Conrad, Dall, 8.

(Pteromeris) acaris n. sp., Dall, 8.

alticostata Conrad, Dall, 8.

barbensis Stearns, Arnold, 2.

bullula n. sp., Dall, 8.

(Cyclocardia) californica n. sp., Dall, 8.

carsonensis n. sp., Dall, 8.

castraua n. sp., Glenn, 6.

granulata Say, Glenn, 6.

(Cyclocardia) granulata Say, Dall, 8.

greggiana n. sp., Dall, 8.

hadra n. sp., Dall, 8.

helmea n. sp., Dall, 8.

marylandica n. sp., Clark and Martin, 2.

nasuta n. sp., Dall, 8.

(Pleuromeris) parva Lea, Dall, 8.

(Pteromeris) periplana Conrad, Dall, 8.

plancostata Lamarck, Dall, 8, 10.

Venericardia planicostata var. regia Conrad, Clark and Martin, 2.

potapacensis n. sp., Clark and Martin, 2.

precisa n. sp., Dall, 8.

scabriocostata Guppy, Dall, 8.

(Pleuromeris) scutula n. sp., Dall, 8.

sericostata Hellprin, Dall, 8.

simplex n. sp., Dall, 8.

(Pleuromeris) tellina n. sp., Dall, 8.

(Pleuromeris) tridentata Say, Dall, 8.

venricosa Gould, Arnold, 2.

vicksburgensis n. sp., Casey, 4.

vicksburgiana n. sp., Dall, 8.

wicxoxensis n. sp., Dall, 8.

Venerupis Lamarck, Dall, 8.

Ventricola Ranmer, Dall, 8.

Venus Linne, Arnold, 2.

Venus (Linné), Lamarck, Dall, 8.

campechiensis Gmelin, Dall, 8.

campechiensis var. capax (Conrad), Glenn, 6.

campechiensis var. cuneata (Conrad), Glenn, 6.

campechiensis var. mortoni (Conrad), Glenn, 6.

campechiensis var. tetrica (Conrad), Glenn, 6.

(Chione) comradiana n. sp., Anderson, 7.

ducatelli Conrad, Glenn, 6.

ducatelli Conrad, Dall, 8.

(Chione) fluiffiraga Sowerby, Arnold, 2.

(Chione) gnidia Broderip and Sowerby, Arnold, 2.

halidona Dall, Dall, 8.

langdoni Dall, Dall, 8.

mercenaria Linne, Glenn, 6.

mercenaria var. notata Say, Dall, 8.

(Chione) neglecta Sowerby, Arnold, 2.

perlaminosa Conrad, Arnold, 2.

plena Conrad, Dall, 8.

plena Conrad, Glenn, 6.

rileyi Conrad, Glenn, 6.

(Chione) simillima Sowerby, Arnold, 2.

(Chione) succincta Valenciennes, Arnold, 2.

(Chione) temblorensis n. sp., Anderson, 7.

tridacnoides Lamarck, Dall, 8.

Vermetus corneol Castillo and Aguilera?, Cragin, 2.

graniferus (Say), Martin (G. C.), 5.

virginicus (Conrad), Martin (G. C.), 5.

sp., Clark and Martin, 2.

Vermipora serpuloides Hall, Slimer, 5.

serpuloides Hall, Weller, 6.
INDEX TO NORTH AMERICAN GEOLOGY

Paleontology—Continued.

Genera and species described—Continued.

Verrispongia n. gen., Whitfield, 12.
Acrothamnites n. sp., Whitfield, 12.
hamiltonensis n. sp., Whitfield, 12.
Verticordia S. Wood, Arnold, 2.
(Trigonulina) bowdenensis n. sp., Dall, 8.
(Trigonulina) cossmannii n. sp., Dall, 8.
(Trigonulina) dalliana n. sp., Aldrich, 2.
(Trigonulina) emmonsi Conrad, Dall, 8.
(Trigonulina) eocenensis Langdon (em.), Dall, 8.
Vermispongia n. gen., Whitfield, 12.
dactyliformis n. sp., Whitfield, 12.
hamiltonensis n. sp., Whitfield, 12.
Verticordia S. Wood, Arnold, 2.
(Trigonulina) bowdenensis n. sp., Dall, 8.
(Trigonulina) cossmannii n. sp., Dall, 8.
(Trigonulina) dalliana n. sp., Aldrich, 2.
(Trigonulina) emmonsi Conrad, Dall, 8.
(Trigonulina) eocenensis Langdon (em.), Dall, 8.
Vertigomark! n. sp., Gulick, 1.
(Trigonulina) sp. indet., Dall, 8.
Vertigo mark! n. sp., Gulick, 1.
umellata n. sp., Gulick, 1.
Viburnum hollicldi n. sp., Berry, 4.
mattewanense n. sp., Berry, 7.
(Trigonulina) sp. indet., Dall, 8.
Vidgacy callosa var., Becker, 1.
sorcery var., Becker, 1.
Villorita cyprinoides (Wood), Dall, 8.
Vulcanomya Dall, Dall, 8.
Vulpavus Marsh, Wortman, 2.
hargeri n. sp., Wortman, 2.
Vitaphyllum multifldum Fontaine, Fontaine, 5.
Vitrinella C. B. Adams, Arnold, 2.
williamsoni Dall, Arnold, 2.
(Trigonulina) sp. indet., Dall, 8.
Volvula iota var. diminuta n. var., Martin (G. C.), 5.
Volvula iota var. marylandica n. var., Martin (G. C.), 5.
Vulcanomya Dall, Dall, 8.
Vulputavus Marsh, Wortman, 2.
Vulvula iota var. diminuta n. var., Martin (G. C.), 5.
Vulcanomya Dall, Dall, 8.
Vulputavus Marsh, Wortman, 2.
Vulvarina Hinds, Arnold, 2.
Volvulinula cylindrica Carpenter, Arnold, 2.
Volutophyllum multifldum Fontaine, Fontaine, 5.
Vitrinella C. B. Adams, Arnold, 2.
williamsoni Dall, Arnold, 2.
Vitulinula postulosa Hall, Kindel, 1.
Viverravidse, Matthew (W. D.), 1.
Viverravus Marsh, Wortman, 3.
minutus n. sp., Wortman, 3.
viviparus montanaensis n. sp., Stanton, 4.
Volupia Defrance, Dall, 8.
Volutilithes petrosus (Conrad), Clark and Martin, 2.
suborbicularis n. sp., Hall, 1843, Beecher, 1.
Vulvarina Hinds, Arnold, 2.
Volvula A. Adams, Arnold, 2.
cylindrica Carpenter, Arnold, 2.
Volutophyllum multifldum Fontaine, Fontaine, 5.
Vitrinella C. B. Adams, Arnold, 2.
williamsoni Dall, Arnold, 2.
Vitulinula postulosa Hall, Kindel, 1.
Viverravidse, Matthew (W. D.), 19.
Viverravus Marsh, Matthew (W. D.), 1.
Viverravus Marsh, Wortman, 3.
minutus n. sp., Wortman, 3.
viviparus montanaensis n. sp., Stanton, 4.
Volupia Defrance, Dall, 8.
Volutilithes petrosus (Conrad), Clark and Martin, 2.
sp., Clark and Martin, 2.
Volvarina Hinds, Arnold, 2.
Volvula A. Adams, Arnold, 2.
cylindrica Carpenter, Arnold, 2.
lota (Conrad), Martin (G. C.), 5.
lota var. calveria n. var., Martin (G. C.), 5.
FOR THE YEARS 1901–1905, INCLUSIVE.

Paleontology—Continued.

Genera and species described—Continued.

Xenaspis Waagen, Hyatt and Smith, 1.
marcoui n. sp., Hyatt and Smith, 1.

Xenodiscus Waagen, Hyatt and Smith, 1.

bittneri n. sp., Hyatt and Smith, 1.

Xenophora conchyliphora (Born),
Martin (G. C.), 5.

Xenotherium unicum n. gen. and sp.,
Douglass, 9.

Xiphactinus L.edy, Stewart, 1.
audax (Cope), Stewart, 1.
brachygnaithus Stewart, Stewart, 1.
lowii Stewart, Stewart, 1.

Xiphias? radiata (Clark), Eastman, 1.

Xeuotherium unicuin n. gen. and sp.,
Douglass, 9.

Xiphactinus Leidy, Stewart, 1.
audax (Cope), Stewart, 1.

Xiphias? radiata (Clark), Eastman, 1.

Zaphrentis intortus n. sp., Greene, 13.

Yuccites hettagensis Saporta?, Fontaine, 1.

Zacanthoides (Olenoides) spinous Walcott, Woodward (H.), 1.

Zamia washingtoniana Ward, Fontaine, 5.

Zamiopsis insignis Fontaine, Fontaine, 5.

Zamites arcticus Goppert, Fontaine, 3.
tenuinervis Fontaine, Fontaine, 3.

Zaphrentis Rafinesque, Grabau, 1.

Zaphrentis Rafinesque and, Clifford, Lambe, 2.
aflins Billings, Lambe, 2.
albicornis n. sp., Greene, 13.
albus n. sp., Greene, 1.

alveolatus n. sp., Greene, 13.

amplexiformis n. sp., Greene, 5.
calculus n. sp., Greene, 15.
callosus n. sp., Greene, 15.
cassedyi Milne Edwards, Greene, 13.
cingulosus Billings, Lambe, 2.
cnittus n. sp., Greene, 14.

compressa Milne Edwards, Greene, 13.
curtus n. sp., Greene, 1.

gibsoni White, Girty, 3.
gigantea Lesueur (sp.), Lambe, 2.

halli E. & H., Greene, 13.

incondita Billings, Lambe, 2.

insolens n. sp., Greene, 1.
Alleged Parker channel, Williams (E. H.), 1.
Anthracite coal fields, Storrs (A. H.), 1.
Anthracite coal near Perkiomen Creek, Curter (O. S. C.), 2.
Anticlinal folds, Hopkins and Smallwood, 1.
Barite in Pennsylvania, Stoek, 2.
Barnesboro-Patton field, Burrows, 1.
Basal conglomerate in Lehigh and Northampton counties, Peck, 2, 3.
Beaver field, Pennsylvania, Woolsey, 3.
Bi-

biminnous coal field of Pennsylvania, White and Campbell, 1.
Brownsville-Connelsville folio, Campbell (M. R.), 8.
Buried valley of Wyoming, Corss, 1.
Buried valley of Wyoming, Griffith, 1.
Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.
Caves of Huntington County, Morganroth, 1.
Cement belt in Lehigh and Northampton counties, Peck, 5.
Cement materials and industry of the United States, Eckel, 34.
Cement-rock deposits of the Lehigh district, Eckel, 26.
Charbons gras de la Pennsylvanie et de la Virginie occidentale, Heurteau, 1.
Clastic rocks of the Lehigh basin, Fuller, (M. L.), 4.
Clays of Great Valley and South Mountain areas, Hopkins (T. C.), 4.
Clays of Pennsylvania, Woolsey, 1.
Clays of southeastern Pennsylvania, Hopkins (T. C.), 1.
Clays of the United States, Hies, 6.
Clays of upper Ohio and Beaver River region, Hies, 2.
Coal Measures of bituminous regions, Adams (T. K.), 1.
Coal Measures of central Pennsylvania, Fluck, 1.
Coal mining in the Wilmore basin, Butts, 3.
Composition of petroleum, Mabery, 2.
Connelsville region mineral resources, Evenson, 1.
Contributions to Devonian paleontology, Williams and Kindle, 1.
Contributions to mineralogy, Eyerman, 1.
Correlation of Piedmont formations, Mathews, 6.
Current notes on physiography, Davis (W. M.), 41.
Deposition of Appalachian Pottsville, White (D.), 15.
Description of four meteorites, Ward (H. A.), 3.
Elensburg field, Pennsylvania, Butts, 7.
Elders Ridge coal field, Stone (R. W.), 1, 7.
Elders Ridge Channel, Williams (E. H.), 1.
Extra-morainic pebbles in Pennsylvania, Woolsey, 2.
Gaines field, Fuller and Alden, 1.
Gaines oil field, Fuller (M. L.), 3.
Geographic development of northern Pennsylvania and southern New York, Campbell (M. R.), 9.
Geological excursion in Pittsburgh region, Grant (U. S.), 4.
Geology of Pittsburgh district, White (J. C.), 6.
Gisements de minerais de zinc, Demaret, 1.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Glacial gravel of the Kittanning quadrangle, Leverett, 10.
Graphite and garnet, Hopkins (T. C.), 3.
Hyner gas pool, Fuller (M. L.), 9.
Indiana field, Richardson (G. B.), 3.
Kansas glaciation and its effects on the river system of northern Pennsylvania, Williams (E. H.), 2.
Kittanning field, Butts, 4.
Latrobe field, Campbell (M. R.), 18.
Limestones of southwestern Pennsylvania, Clapp, 4.
Lodel Creek and Skippack Creek, Lyman, 2.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 2, 4.
Masontown-Uniontown field, Campbell (M. R.), 6.
Mauch Chunk of Pennsylvania, Stevenson (J. J.), 1.
Meteoreisen-Studien, Cohen, 4.
Misnamed Indiana anticline, Richardson (G. B.), 1.
New species of Olenellus, Wanner, 1.
Northward flow of ancient Beaver River, Hiea, 1.
Occurrence of serpentine and talc, Peck, 1.
Oil and gas fields of Greene County, Stone (R. W.), 2.
Oil and gas in the vicinity of Philadelphia, Carter (O. S. C.), 3.
On spangolite, Penfield, 3.
Ordovician section near Bellefonte, Collie, 3.
Origin of anticlinal folds near Medville, Smallwood and Hopkins, 1.
Original southern limit of Pennsylvania anthracite beds, Lyman, 4.
Pennsylvania anthracite coal field, Stoek, 1.
Pennsylvania—Continued.
Petroleum industry of Europe and America, Otsuka, 1.
Physiographic features of the Susquehanna basin, Hollister, 1.
Physiographic studies in southern Pennsylvania, Stose, 3.
Piedmont district of Pennsylvania, Bascom, 3.
Pittsburg coal in the Burgettstown quadrangle, Griswold, 3.
Pocono rocks in the Allegheny Valley, Campbell (M. R.), 14.
Recent geological work in western Pennsylvania, Campbell (M. R.), 3, 7.
Recent structural work in western Pennsylvania, Butts, 2.
Recent work in bituminous coal field of Pennsylvania, Campbell (M. R.), 11.
Revision of Phyllocaricla from Chenung and Waverly groups of Pennsylvania, Beecher, 8.
Road-making materials of Pennsylvania, Ihlseng, 1.
Rural Valley folio, Butts, 6.
Serpentines of Philadelphia, Jonas, 1.
Shifting of faunas, Williams (H. S.), 4.
Slate industry at Slattington, Dale, 2.
Slate investigations during 1904, Dale, S.
Steinkohlengebiete von Pennsylvanien und Westvirginien, Sinimersbach, 1.
Structure of South Mountain, Stose, 1.
Topography and travel in Pennsylvania, Tower, 2.
Upper Paleozoic rocks of Ohio and Pennsylvania, Girty, 10.
Water resources of Chambersburg and Mercersburg quadrangles, Stone, 4.
Water resources of the Curwensville, Patton, Ebensburg, and Barnesboro quadrangles, Clapp, 3.
Water resources of the Pawpaw and Hancock quadrangles, Stose and Martin, 1.
Water resources of the Philadelphia district, Bascom, 2.
Water resources of the Wayneburg quadrangle, Stone (R. W.), 4.

Petrology.
Alaska.
Alaska-Treadwell mine, Palache, 2.
Geology about Chichagof Cove, Palache, 3.
Reconnaissance of northwestern portion of Seward Peninsula, Collier, 1.

Petrology—Continued.
Alaska—Continued.
Rocks and minerals of south Alaska, Novarese, 1.
Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.
Tin deposits of the York region, Collier, 8.
Arizona.
Bisbee folio, Ransome, 14.
Bradshaw Mountains folio, Jaggar and Palache, 1.
Clinton folio, Lindgren, 28.
Conglomerate dikes in southern Arizona, Campbell (M. R.), 15.
Copper deposits of Clinton-Morenci district, Lindgren, 29.
Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.
Geology of Fort Apache region, Reagan, 3.
Geology of Globe copper district, Ransome, 6.
Globe folio, Ransome, 13.
Petrography of the Tucson Mountains, Guild, 1.
Reformed copper ores, Goodwin, 1.
Arkansas.
Magmatic differentiation of rocks, Keyes, 27.
Zinc and lead deposits of north Arkansas, Branner, 2.
California.
Berkeley Hills, Lawson and Palache, 1.
California feldspar-corundum rocks from Plumas County, Lawson (A. C.), 1.
Clastic dikes, Newsom, 4.
Copper in northern California, Diller, 6.
Crystalline rocks of the San Gabriel Mountains, Arnold and Strong, 1.
Eclogites in California, Holway, 1.
Geological section of the Coast ranges, Osmoith, 1.
Geology of Mineral King, Knopf and Thelen, 1.
Geomorphicy of Kern basin, Lawson (A. C.), 10.
Glancohane and associated schists in the Coast ranges, Nutter and Barber, 1.
Igneous rocks near Pajaro, Reid (J. A.), 1.
Klamath Mountain section, Diller, 12.
Miocene diabase of the Santa Cruz Mountains, Huel and Arnold, 1.
Orbicular gabbro at Dehesa, Lawson (A. C.), 11.
Orbicular gabbro from San Diego County, Lawson (A. C.), 7.
Orbicular gabbro of Dehesa, Kessler and Hamilton, 1.
Pegmatyte veins of Pala, Waring, 2.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Plumasite, Lawson (A. C.), 8.
Petrology—Continued.

California—Continued.

Roofing slate of igneous origin, Eckel, 27.
San Luis folio, Fairbanks, 7.
Variability in rock magma, Turner, 8.

Canada.

Abitibi region, Kay, 1.
Amphiboloidal trap rock, Dresser, 3.
Archean rocks of Ottawa Valley, Osann, 2.
Areas of nepheline-syenite, Miller (W. G.), 1.
Atlin mining district, Gwillim, 1.
Boundary Creek district, Brock, 3.
Canadian Rockies. Part II; On some rock-specimens, Bonney, 2.
Characteristics of Atlin gold field, Gwillim, 2.
Copper-bearing rocks in Quebec, Dresser, 7.
Descriptions of rocks collected in 1900, Barlow, 1.
Explorations in Abitibi, McMillan, 1.
Geology and petrography of Shefford Mountain, Dresser, 9.
Geology of Brome Mountain, Dresser, 11.
Geology of Michipicoten Island, Burwash, 1.
Geology of Rigaud Mountain, Le Roy, 1.
Geology of St. Helens Island, Nolan and Dixon, 1.
Geology of the International Boundary, Daly, 10.
Geology of western part of International Boundary, Daly, 13.
Geology of Yamaska Mountain, Young, 1.
Hornblende lamprophyre dike at Richmond, Dresser, 2.
Huroniana of Moose River basin, Parks, 1.
Iron ranges of Michipicoten west, Bell (J. M.), 3.
Iron ranges of northwestern Ontario, Coleman, 12.
Iron ranges of the Lower Huronian, Coleman, 4.
Lake Temiscaming to Height of Land, Miller (W. G.), 5.
Lamprophyres of the Rossland mining district, Barber, 1.
Laurentian limestones and granite of Haliburton County, Graton, 1.
Michipicoten iron ranges, Coleman and Willmott, 2.
Michipicoten iron region, Coleman and Willmott, 1.
Microscopic examination of sections of rocks, Barlow, 2.
Mining in the Rossland district, Campbell (C. M.), 1.
Monteal Hills, Adams (F. D.), 7.

Petrology—Continued.

Canada—Continued.

Nepheline and other syenites near Port Coldwell, Ontario, Coleman, 8.
Nepheline rock from Ontario, Adams (F. D.), 8.
Nepheline rocks of Ice River, Barlow, 4.
Nepheline syenite in western Ontario, Miller (W. G.), 7.
Nickel and copper deposits of Sudbury, Barlow, 8.
Notes on geology and ore deposits of southeastern British Columbia, Corless, 2.
Notes on specimens collected in the Canadian Rocky Mountains, Bonney, 13.
Ore deposits of Boundary Creek district, Brock, 2.
Ore deposits of Copper Mountain, Scott (O. N.), 1.
Origin of veins in asbestiform serpentine, Merrill (G. P.), 14.
Petrographical contribution to geology of Quebec, Dresser, 6.
Petrography of Kettle River mining division, Silver, 2.
Petrography of Mount Orford, Dresser, 4.
Petrography of rock samples from British Columbia, Robertson, 4.
Petrography of Sheffield and Brome Mountains, Dresser, 8.
Petrography of Shefford Mountain, Dresser, 5.
Pyroxenites of the Grenville series in Ottawa County, Canada, Gordon (C. H.), 5.
Report of section of chemistry and mineralogy, Hoffmann, 1.
Round Lake to Abitibi River, Bolton, 1.
Secondary origin of certain granites, Daly, 11.
Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.
Sudbury district, Barlow, 3.
Sudbury mining district, Barlow, 6.
Sulphide ore bodies of Sudbury region, Silver, 1.
Syenites near Port Coldwell, Coleman, 13.
Up and down the Mississaga, Graton, 2.
Varieties of serpentine in southeastern Quebec, Dresser, 16.
Volcanic rocks of New Brunswick, Bailey (L. W.), 10.

Colorado.

Andesite of Mount Sugar Loaf, Hogarty, 1.
Basaltic zones as guides to ore deposition, Stevens (E. A.), 2.
Garnetiferous bed in Golden Gate Canyon, Bailey, Rath, and Grider, 1.
Granite of West Sugar Loaf Mountain, Henry, 1.
For the years 1901-1905, inclusive.

Petrology—Continued.

Colorado—Continued.
Greenstone schists in the San Juan Mountains, Howe, 3.
La Plata folio, Cross and Spencer, 1.
Mica andesite of west Sugar Loaf Mountain, Blake (J. C.), 1.
Nodular-bearing schists near Pearl, Read, 2.
Occurrence of limburgite, Stevens (E. A.), 1.
Olivinite dike of Magnolia district, Whitaker, 1.
Ore deposits of Rico Mountains, Ramson, 3.
Silverton folio, Cross and Howe, 1.
Spanish peaks folio, Hills, 1.
Sunset trachyte, Breed, 1.
Tellurium veins in La Plata Mountains, Austin, 1.

Connecticut.
Newark system of the Pomperaug Valley, Hobbs, 2.
Tungsten mine at Trumbull, Hobbs, 5.

District of Columbia.
Washington folio, Darton and Keith, 1.

Georgia.
Granites and gneisses of Georgia, Watson (T. L.), 8.
Granitic rocks of Georgia, Watson (T. L.), 1.
Origin of the phenocrysts in porphyritic granites, Watson (T. L.), 3.
Sandstone dikes near Columbus, McCullie, 6.
Trap dikes of Georgia, McCullie, 1.
Weathering of granitic rocks, Watson (T. L.), 4.

Greenland.
Eisenführenden Gesteinen der Insel Disko, Nicolau, 1.
Mineralogisk resa i Syd Groenland, Flink, 1.
Mineralogisk-petrografiske undersøgelser af Groenlands nefelinusyeniter og beslægtede bjælgarter, Ussing, 1.
Petrographie Nord-Grünlands, Belowsky, 1.
Rocks and minerals from north Greenland and Froblsher Bay, Emerson (B. K.), 8.
Rocks from east coast of Greenland, Nordenskjold, 1.
Rocks of Nugsuaks Peninsula, Phalen, 1.

Guatemala.
Alta Verapaz, Sapper; 3.
Asche des Vulcans Sta. Maria, Bruns, 1, 2.
Cendres d’un volcan près du Santa Maria, Ordoñez, 5.

Mexici.
Análisis y clasificación de granate, Villareilo, 7.
Copper deposits at San Jose, Kemp, 32.
INDEX TO NORTH AMERICAN GEOLOGY

Petrology—Continued.

Mexico—Continued.
Criadero de fierro del Cerro de Mercado, Durango, Rangel, 1.
Criaderos de fierro de la hacienda de Vaquerias, Villareal and Böse, 1.
Geology of nepheline syenite area at San José, Tamaulipas, Finlay (G. I.), 7.
Geology of San Pedro district, Finlay (G. I.), 5.
Geology of the San José district, Finlay (G. I.), 8.
Geology of western Mexico, Parrington, 13.

In San Cristobal gefallene Asche, Schottler, 1.
Nauhcampatepetl o Cofre de Perote, Ordofiez, 18.
Naturlicher Koks in den Santa Clara Kohlenfeldern, Sonora, Ochsenius, 1.
Profil durch den Ostabfall der Sierra Madre Oriental, Böse, 2.
Rhyolitas, Ordofiez, 1.
Rocas de Chiapas y Tabasco, Ordofiez, 14.
Roche basaltique de la Sierra Verde, Kroustchoff, 1.
Section across the Sierra Madre Occidental of Chihuahua and Sinaloa, Weed, 9.
Vulkanische Asche, Schmidt, 1.
Xinantcatl ou volcan Nevado de Tolucana, Ordofiez, 7.

Michigan.
Geological cross sections of Keweenaw Point, Hubbard (L. L.), 1.
Menominee district of Michigan, Bayley, 1.
Notes on rocks and minerals of Michigan, Wright (F. B.), 6.
Tamarack Mine cross section, Lane, 45.

Minnesota.
Dalles of the St. Croix, Berkey, 1.
Keweenawan area of eastern Minnesota, Hall (C. W.), 3.
Keewatin area of eastern and central Minnesota, Hall (C. W.), 4.
Mesabi iron-bearing district of Minnesota, Leith, 4.
New iron-bearing horizon in Keewatin in Minnesota, Winchell (N. H.), 1.
Origin and development of iron ores of Mesabi and Gogebic iron ranges, Leith, 8.
Secondary origin of certain granites, Daly, 11.
Spheralitic texture in the Archean greenstones of Minnesota, Clements, 6.
Vermilion iron-bearing district of Minnesota, Clements, 3.

Missouri.
Lead and zinc deposits of Mississippi Valley, Keyes, 20.

Montana.
Geological reconnaissance across the Bitterroot Range and Clearwater Mountains, Lindgren, 21.
Geology and ore deposits of Elkhorn mining district, Weed, 5.
Igneous rocks of Algonkian series, Finlay (G. I.), 4.
Igneous rocks of Highwood Mountains, Pirsson, 4.
Microscopic petrography of Elkhorn mining district, Barrett, 1.
Missourite, a new leucite rock, Weed and Pirsson, 2.
Petrographic province of central Montana, Pirsson, 5.
Petrography of Square Butte, Pirsson, 3.
Petrography of Yogo peak, Pirsson, 1.
Shoklin Sag and Palisade Butte laccoliths in the Highwood Mountains, Weed and Pirsson, 1.

Nevada.
Geology of the Tonopah mining district, Spurr, 29.

Newfoundland.
Variolitic pillow lava, Daly, 9.

New Hampshire.
Albany granite and its contact phenomena, Hawes, 2.
Composition of labradorite rocks, Dana, 1.
Eruptive rocks in Campion, Hawes, 1.
Geology of Monadnock Mountain, Perry, 2.
Geology of Mount Kearsarge, Perry, 1.
Geology of the Belknap Mountains, Pirsson and Washington, 1.
Rocks of Lake Winnipesaukee, Washington, 3.

New Jersey.
Glaucobite, Prather, 3.
Leucite-tingualte from Beemerville, Wolff, 1.
Serpentines of Manhattan Island, Newland, 1.

New Mexico.
Analcite-bearing camptonite from New Mexico, Ogilvie, 2.

New York.
Adirondack augite-andesite, Cushing, 1.
Eruptive dikes in Syracuse, Schneider, 4.
Exposure of serpentine at Syracuse, Kraus, 1.
FOR THE YEARS 1901–1905, INCLUSIVE.

Petrology—Continued.

New York—Continued.

Field work in town of Minerva, Finlay (G. I.), 2.
Genesis of amphibole schists and serpentines of Manhattan Island, Julien, 7.
Geological history of the hematite iron ores of Antwerp and Fowler belt in New York, Crosby, 3.
Geology of Adirondack region, Cushing, 10.
Geology of Paradox Lake quadrangle, Ogilvie, 6.
Geology of Rand Hill, Cushing, 2.
Geology of the city of New York, Gratacap, 7.
Geology of the Hudson Valley, Dale, 5.
Geology of the serpentines of central New York, Schneider, 6.
Geology of the vicinity of Little Falls, Cushing, 9.
Northumberland volcanic plug, Woodworth, 7.
Peridotite dikes near Ithaca, Matson, 2.
Petrography and age of the Northumberland rock, Cushing, 7.
Petrography of dikes in Syracuse, Smyth (C. H.), 2.
Pre-Cambrian outlier at Little Falls, Herkimer County, Cushing, 4.
Recent geologic work in Franklin and St. Lawrence counties, Cushing, 5.
Rossie lead veins, Smyth (C. H.), 4.
Serpentines of Manhattan Island, Newland, 1.

North Carolina.
Copper-bearing rocks of Virgilina copper district, Watson (T. L.), 6.
Corundum of North Carolina, Pratt and Lewis, 1.
Granites of North Carolina, Watson (T. L.), 13, 16.
Leopardite, Watson (T. L.), 14.
Oribicular gabbro-diabase from Davie County, Watson (T. L.), 15.

Ohio.
Ohio bowlders containing heronite, Wright (A. A.), 2.

Oklahoma.
Geology of the Wichita Mountains, Gould, 13.

Oregon.
Contribution to petrography of John Day Basin, Calkins, 1.
Coos Bay folio, Diller, 4.
Eclogites in California, Holway, 1.
Geology and petrography of Crater Lake National Park, Diller and Patton, 1.
Gold belt of Blue Mountains, Lindgren, 4.
Mesozoic of southwestern Oregon, Loudenback, 6.
Port Orford folio, Diller, 11.

Pennsylvania.
Occurrence of serpentine and talc, Peck, 1.
Piedmont district of Pennsylvania, Bascom, 3.
Road-making materials of Pennsylvania, Hisong, 1.
Serpentines of Philadelphia, Jonas, 1.

Philippine Islands.
Volcanoes and seismic centers of the Philippine Archipelago, Maso, 1.

South Dakota.
Deposits of wolframite in the Black Hills, Irving, 1.
Igneous rocks of the Sundance folio, Smith (W. S. T.), 5.
Newly discovered rock at Sioux Falls, Todd (J. E.), 8, 12.
Sundance folio, Darton, 26.

Tennessee.
Deposits of copper ores at Ducktown, Kemp, 10.
Erratic bowlder from the Coal Measures of Tennessee, McCallie, 5.

Texas.
Geologie und Petrographie der Apache Mountains, Osann, 1.
Quartz-feldspar-porphyry from Llano, Iddings, 3.

Utah.
Geology of Bingham Canyon, Kemp, 23.
Mineral crest, Jenney, 2.

Vermont.
Geology of Ascutney Mountain, Daly, 7.
Granite of Barre, Finlay (G. I.), 1.
Granite area of Barre, Finlay (G. I.), 2.
Petrographic description of dikes of Grand Isle, Shimer, 1.
Petrography of Bolvidere Mountain deposits, Marsters, 3.
Serpentine belt of Lamoille and Orleans counties, Marsters, 2.
Structural details in Green Mountain region, Dale, 1.
Terranes of Orange County, Richardson (C. H.), 2.

Virginia.
Copper-bearing rocks of Virgilina copper district, Watson (T. L.), 6.
Occurrence of unakite, Ithaien, 2.

Washington.
Building and ornamental stones of Washington, Shedd, 2.
Clealum iron ores, Smith and Willis, 1.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geology and water resources of Yakima County, Smith (G. O.), 3.
Geology of Mount Rainier, Smith (G. O.), 1.
Ore deposits of Monte Cristo, Spurr, 3.
Pseudo-serpentine from Stevens County, Clarke (F. W.), 2, 5.
INDEX TO NORTH AMERICAN GEOLOGY

Petrology—Continued.

West Indies.

Cendres des éruptions de la Montagne Pelée, Lacroix, 2.
Composition chimique des poussières volcaniques de la Martinique, Gillot, 1.
Composition des cendres projetées par la Montagne Pelée, Michel-Lévy, 2.
Cordérite dans les produits éruptifs de la Montagne Pelée, Lacroix, 17.
Dust from Soufrière, Bonney, 5.
Enclaves basiques des volcans de la Martinique, Lacroix, 18.
Enclaves des andésites de Montagne Pelée, Lacroix, 6.
Examination of ash that fell on Barbados after eruption of St. Vincent, Flett, 1.
History of the Caribbean Islands, Frazer, S.
Montagne Pelée et ses éruptions, Lacroix, 20.
Observations minéralogiques faites sur les produits de l’incendie de Saint-Pierre, Lacroix, 10.
Recent tufts of the Soufrière, Howe (E.), 2.
Roches volcaniques de la Martinique, Lacroix, 1, 3.
Volcanic dust, Falconer, 1.
Volcanic dust and sand from St. Vincent, Diller and Steiger, 1.
Volcanic dust from West Indies, Porter (F. B.), 1.
Volcanic rocks of Martinique and St. Vincent, Diller, 7.
Vulkanische Asche vom Volcan Soufrière, Klein, 1.
Vulkanischen Kleinben Antillen und die Ausbrüche der Jahre 1902 und 1903, Sapper, 19.

Wisconsin.

Baraboo iron-bearing district of Wisconsin, Weidman, 5.
Dalles of the St. Croix, Berkey, 1.
Occurrence of fayalite in Wisconsin, Weidman, 4.

Wyoming.

Aladdin folio, Darton and O’Hara, 1.
Copper deposits of the Encampment district, Spencer (A. C.), 10.
Igneous rocks of the Aladdin quadrangle, Smith (W. S. T.), 6.
Igneous rocks of the Sundance folio, Smith (W. S. T.), 5.
Leucite hills of Wyoming, Kemp and Knight, 1.
Spherulites of the Yellowstone and Great Britain, Parkinson, 1.
Sundance folio, Darton, 29.

General.

Analysis of igneous rocks, Washington, 9.
Analysis of rocks, Clarke (F. W.), 4.
Petrology—Continued.

General—Continued.

Index to North American geology, paleontology, petrology, and mineralogy for 1892–1900, Weeks, 4.

Influence of country rock on mineral veins, Weed, 6.

Isomorphism and thermal properties of the feldspars, Day and Allen, 1.

Magmatic differentiation of rocks, Keyes, 27.

Mechanics of igneous intrusion, Daly, 8.

Metasomatic processes in fissure veins, Lindgren, 1.

Method of petrographic analysis, Derr, 1.

Methods for determining percentages of components of an igneous rock, Williams (I. A.), 2.

Microscopic-petrographical methods, Wright (F. E.), 2.

Mineral analyses, Clarke (F. W.), 1.

New combination wedge for use with petrographical microscope, Wright (F. E.), 1.

Nitrates in cave earths, Nichols (H. W.), 1.

Ores deposited by underground waters, Maclaren, 1.

Origin and classification of gneisses, Gordon (C. H.), 1.

Outline of elementary lithology, Barton, 1.

Paleozoic coral reefs, Grabau, 10.

Paramorphic alternation of pyroxene to hornblende, Gordon (C. H.), 4.

Perknite (lime-magnesia rocks), Turner, 2.

Plumose diabase containing sideromelan and spherulites of calcite and blue quartz, Emerson (B. K.), 5.

Porphyritic appearance of rocks, Lane, 23.

Practical working of the quantitative classification, Mathews, 4.

Preliminary report on recent eruption of Soufrière in St. Vincent, and a visit to Mont Pelée, in Martinique, Anderson and Flett, 1.

Preparing sections of rocks, Mackenzie, 1.

Principles controlling deposition of ores, Van Hise, 8.

Problems in geology of ore deposits, Vogt, 1.

Quantitative chemical-mineralogical classification and nomenclature of igneous rocks, Cross and others, 1.

Quantitative classification of igneous rocks, Cross and others, 2.

Bull. 301—06—47
INDEX TO NORTH AMERICAN GEOLOGY

Petrology—Continued.

Rocks described—Continued.

Andesite, Finlay (G. I.), 8.
Andesite, Gregory (H. E.), 1.
Andesite, Guild, 1.
Andesite, Hogarty, 1.
Andesite, Jaggar and Palache, 1.
Andesite, Lawson and Palache, 1.
Andesite, Lindgren, 4, 28.
Andesite, Scott (O. N.), 1.
Andesite, Smith (D. T.), 2.
Andesite, Smith (G. O.), 3.
Andesite, Spurr, 29.
Andesite, Weed, 5.
Andesite-granophyre, Fairbanks, 7.
Andesitic tuff, Calkins, 1.
Andesite, Johnson (D. W.), 6.
Anorthite, Pratt and Lewis, 1.
Anorthosite, Cushing, 5, 10.
Anorthosite, Ogilvie, 6.
Anorthosite, Pratt and Lewis, 1.
Anorthosite gabbro, Cushing, 2.
Anorthosite, Kolderup, 4.
Apatite, Osann, 1.
Apatite, Smith (W. S. T.), 5.
Aplite, Arnold and Strong, 1.
Aplite, Barrell, 1.
Aplite, Emerson (B. K.), 6.
Aplite, Reid (J. A.), 1.
Aplite, Smith and Calkins, 1.
Aplite, Watson (T. L.), 5.
Aplite, Wright (F. E.), 6.
Aplite-granite, Weed, 5.
Biotite, Julien, 7.
Biotite, Ransome, Arnold and Strong, 1.
Biotite, elekite-phonolite, Barlow, 4.
Biotite-diorite, Osmon, 1.
Biotite, gneiss, Belowsky, 1.
Biotite, Schottler, 1.
Biotite, Schottler, 1.
Biotite-syenite, Barlow, 4.
Biotite-syenite, Boltshausen, 1.
Biotite-syenite, Smith and Calkins, 1.
Biotite schist, Parks, 1.
Biotite, muscovite-granite, Smith and Calkins, 1.
Biotite schist, Warren, 2.
Biotite, tinguaitite, Sears, 1.
Biotite-ryolite, Spurr, 2.
Biotite-phonolite, Spurr, 2.
Biotite-phonolite (quartz monzonite), Koldernp, 4.
Biotite-phonolite, Koldernp, 4.
Biotite-phonolite, Smith (W. S. T.), 5.
Breccia, Barlow, 6.
Breccia, Johnson (D. W.), 6.
Breccia, Smith (W. S. T.), 5, 6.
Bytownite rock, Kolderup, 4.
Calcilutite, Grabau, 10.
Calcite-prehnite cement rock, Emerson (B. K.), 6.
Camptonite, Daly, 7.
Camptonite, Dresser, 2, 9.
Camptonite, Finlay (G. I.), 8.
Camptonite, G. W., 32.
Camptonite, Ogilvie, 2.
Camptonite, Barrell, 1.
Cancrinite-syenite, Barlow, 4.
Celestite-bearing rocks, Kraus, 5.
Chert, Leith, 4.
Chert, Wright (F. E.), 6.
Chlorite schist, Parks, 1.
Chloritite, Pratt and Lewis, 1.
Coke, natural, Ogilvie, 2.
Conglomerate, Wright (F. E.), 6.
Covite (shonkinite), Washington, 1.
Dacite, Diller and Patton, 1.
Dacite, Finlay (G. I.), 8.
Dacite, Lindgren, 4.
Dacite, Ransome, 6, 13.
Dacite, Smith and Calkins, 1.
Dacite, Spurr, 3, 29.
Dacite-granophyre, Fairbanks, 7.
FOR THE YEARS 1901-1905, INCLUSIVE. 739

Petrology—Continued.
Rocks described—Continued.
Dacite-porphyry, Diller, 11.
Diabase, Bascom, 1, 3.
Diabase, Belowsky, 1.
Diabase, Cross and Howe, 1.
Diabase, Daly, 7.
Diabase, Dresser, 4.
Diabase, Emerson (B. K.), 6, 8, 9.
Diabase, Fahlquist, 7.
Diabase, Finlay (G. L.), 4.
Diabase, Haeihl and Arnold, 1.
Diabase, Lane, 22.
Diabase, Leonard, 1.
Diabase, Lindgren, 1, 29.
Diabase, Parks, 1.
Diabase, Ransome, 6, 13.
Diabase, Smith and Calkins, 1.
Diabase, Warren, 2.
Diabase ophaniyte, Emerson (B. K.), 8.
Diabase-porphyrite, Palache, 3.
Diabase porphyry, Arnold and Strong, 1.
Dike rock, Smyth (C. H.), 2.
Diopside, Pratt and Lewis, 1.
Diorite, Cross and Spencer, 1.
Diorite, Daly, 7.
Diorite, Darton and Kelth, 1.
Diorite, Finlay (G. I.), 4, 8.
Diorite, Jaggar and Palache, 1.
Diorite, Kay, 1.
Diorite, Leonard, 1.
Diorite, Lindgren, 4.
Diorite, Parks, 1.
Diorite, Phalen, 1.
Diorite, Smith and Calkins, 1.
Diorite, Spencer (A. C.), 10.
Diorite, Spurr, 29.
Diorite, Warren, 2.
Diorite, Weed, 5.
Diorite, Weldman, 5.
Diorite, Wright (F. E.), 6.
Diorite-aphanite, Emerson (B. K.), 8.
Diorite-porphyrite, Palache, 3.
Diorite-porphyrhy, Arnold and Strong, 1.
Dolomite, Belowsky, 1.
Dolomite, Hoffmann, 6.
Dolomite, Knight (N.), 5, 6.
Dolomite, Newland, 1.
Dolomite, Van Hise, 12.
Dolomite, Wright (F. E.), 6.
Dolomite marble, Emerson (B. K.), 6.
Dunite, Pratt and Lewis, 1.
Ecolitiges, Holway, 1.
Ehosllthayenite, Osann, 1.
Enstatite, Pratt and Lewis, 1.
Enstatite-gabbro, Osann, 2.
Enstatite-peridotite, Spurr, 3.
Enstatite, Pratt and Lewis, 1.
Epidote, Phalen, 2.
Epidote-quartz-schist, Emerson (B. K.), 6.
Essexite, Adams (F. D.), 7.
Essexite, Daly, 7.
Essexite, Dresser, 5, 9.
Essexite, Sears, 1.
Felsite, Hoffmann, 6.
Felsite (rhyolite), Wright (F. E.), 6.
Perusite, Thriss, 4.
Fergusite, Thriss, 4.
Foyaite, Washington, 1.
Gabbro, Bascom, 1, 3.
Gabbro, Coleman, 13.
Gabbro, Cushing, 10.
Gabbro, Diller, 11.
Gabbro, Lawson (A. C.), 11.
Gabbro, Lindgren, 4.
Gabbro, Ogilvie, 6.
Gabbro, Osann, 2.
Gabbro, Parks, 1.
Gabbro, Pratt and Lewis, 1.
Gabbro, Smith and Calkins, 1.
Gabbro, Todd (J. E.), 7.
Gabbro, Weed, 5.
Gabbro, Wright (F. E.), 6.
Gabbro, orbicular, Kessin and Hamilton, 1.
Gabbro-diorite, Dresser, 4.
Gabbro-diorite, Leonard, 1.
Gabbro-diorite, Pratt and Lewis, 1.
Gabbro-diorite, Watson (T. L.), 15.
Glaucophane, Lettih, 4.
Glaucophane, Prather, 3.
Glaucophane - quartz - schist, Emerson (B. K,), 6.
Glaucophane schist, Thelen, 1.
Glaucophane schist, Nutter and Barber, 1.
Gneiss, Barlow, 6.
Gneiss, Bascom, 3.
Gneiss, Belowsky, 1.
Gneiss, Daly, 7.
Gneiss, Gordon, 1.
Gneiss, Graton, 1.
Gneiss, Lindgren, 21.
Gneiss, Ogilvie, 6.
Gneiss, Ordofiez, 14.
Gneiss, Phalen, 1.
Gneiss, Van Hise, 12.
Gneiss, Watson (T. L.), 8.
Granophyrole-pharos-alaskose, Iddings, 3.
Granite, Bascom, 3.
INDEX TO NORTH AMERICAN GEOLgy

Petrology—Continued.

Rocks described—Continued.
Granite, Belowsky, 1.
Granite, Cross and Howe, 1.
Granite, Brock, 3.
Granite, Cushing, 10.
Granite, Daly, 11.
Granite, Darton and Keith, 1.
Granite, Fairbanks, 7.
Granite, Finlay (G. I.), 1.
Granite, Graton, 1.
Granite, Hawes, 2.
Granite, Henry, 1.
Granite, Jaggar and Palache, 1.
Granite, Dairy, 1.
Granite, Finlay (G. I.), 1.
Granite, Graton, 1.
Granite, Hawes, 2.
Granite, Henry, 1.
Granite, Jaggar and Palache, 1.
Granite, Dairy, 1.
Granite, Fairbanks, 7.
Granite, Finlay (G. I.), 1.
Granite, Graton, 1.
Granite, Hawes, 2.
Granite, Henry, 1.
Granite-gneiss, Bascom, 1.
Granite-gneiss, Barton and Keith, 1.
Granite-porphyry, Calkins, 1.
Granite-porphyry, Ransome, 6, 11, 14.
Granitite, Clark and Steiger, 1.
Granitite, Ransome, 6, 14.
Grano-borolane, Pirsson, 4.
Granodiorite, Arnold and Strong, 1.
Granodiorite, Brock, 3.
Granodiorite, Calkins, 1.
Granodiorite, Denton and Keith, 1.
Granodiorite, Ransome, 6.
Granodiorite, Smith and Calkins, 1.
Granodiorite, Smith and Calkins, 1.
Grano-diorite, Smith and Calkins, 1.
Grano-porphyr, Spurr, 2.
Granitite, Clark and Steiger, 1.
Granitite, Ransome, 6, 13.
Grano-borolane, Pirsson, 4.
Granodiorite, Arnold and Strong, 1.
Granodiorite, Brock, 3.
Granodiorite, Calkins, 1.
Granodiorite, Lindgren, 4.
Granodiorite, Ransome, 6.
Granodiorite, Smith and Calkins, 1.
Granophyre, Sears, 1.
Granophyre, Smith and Calkins, 1.
Grano-pulaskose, Pirsson, 4.
Grano-shoshonite, Pirsson, 4.
Granulite, Belowsky, 1.
Granulite, Cabot and Lewis, 1.
Greenalite rock, Leith, 4.
Greenalite, Belowsky, 1.
Greenstone, Barlow, 6.
Greenstone, Howe, 3.
Greenstone, Silfer, 1.
Grossularite, Daly, 7.
Hzrburgite, Pratt and Lewis, 1.
Heronite, Clarke and Steiger, 1.
Hessose, Dresser, 11.
Highwoodose, Pirsson, 4.
Holyokeite, Emerson (B. K.), 3.
Hornblende, Gordon (C. H.), 4.
Hornblende, Phalen, 1.
Hornblende-andesite, Calkins, 1.

Petrology—Continued.
Rocks described—Continued.
Hornblende andesite, Johnson (D. W.), 6.
Hornblende-andesite, Smith and Calkins, 1.
Hornblende-andesite, Smith and Calkins, 1.
Hornblende-biotite-granite (quartz monzonite), Bascom, 1.
Hornblende-biotite-quartz-diorite, Spurr, 2.
Hornblende-dacite, Palache, 3.
Hornblende-diorite, Sears, 1.
Hornblende-diorite, Belowsky, 1.
Hornblende-diorite-gneiss, Arnold and Strong, 1.
Hornblende-diorite, Belowsky, 1.
Hornblende-epidote-gneiss, Sears, 1.
Hornblende-gneiss, Bascom, 3.
Hornblende-gneiss, Belowsky, 1.
Hornblende-gneiss, Emerson (B. K.), 3.
Hornblende-gneiss, Hobbs, 5.
Hornblende-granite, Sears, 1.
Hornblende-hypersthenite-andesite, Calkins, 1.
Hornblende-porphyr, Smith and Calkins, 1.
Hornblende-pyroxene-andesite, Smith and Calkins, 1.
Hornblende rock, Belowsky, 1.
Hornblende schist, Arnold and Strong, 1.
Hornblende schist, Julian, 7.
Hornblende-syenite, Le Roy, 1.
Hornblende schist, Thelen, 1.
Hornblende-syenite, Le Roy, 1.
Hornblende-diorite, Arnold and Strong, 1.
Hornblende-diorite, Spurr, 2.
Hornblende, Barlow, 7.
Hornstone, Barrell, 1.
Hornite, Wright (A. A.), 2.
Hydroxygite, Newland, 1.
Hypersthenite-kerlite, Phalen, 2.
Hypersthenite-basalt, Smith and Calkins, 1.
Hypersthenite-biotite-gabbro, Osann, 2.
Hypersthenite-dacite, Diller and Patton, 1.
Hypersthenite-gabbro, Bascom, 1.
Hypersthenite-gabbro, Leonard, 1.
Hypersthenite, Pratt and Lewis, 1.
Iolite, Barlow, 4.
Iolite, Washington, 1.
Iolite, Van Hise, 12.
Keratophyre, Sears, 1.
Kersantite, Barber, 1.
Labradorite porphyrite, Wright (F. E.), 6.
Labradorite rock, Kelderup, 4.
Latite, Cross and Howe, 1.
Latite, Palache, 3.
Latite, Pirsson, 4.
Laurdalose, Dresser, 11.
Leopadrite, Watson (T. L.), 14.
FOR THE YEARS 1901-1905, INCLUSIVE.

Petrology—Continued.

Rocks described—Continued.

Leucite-tinguaite, Wolff, 1.
Leucitite, Clarke and Steiger, 1.
Lignite, Hoffman, 6.
Limburgite, Finlay (G. I.), 8.
Limburgite, Johnson (D. W.), 6.
Limburgite, Stevens (E. A.), 1, 2.
Limestone, Hobbs, 5, 6.
Limestone, Sears, 1.
Limestone, Van Hise, 12.
Limestone, Wright (F. E.), 6.
Liparite, Osann, 1.
Liparite perlite, Emerson (B. K.), 6.
Liparite, Osann, 1.
Liparite, E. A. Stevens, 1, 2.
Liparite, H. E. Wrigl.it, 6.
Liparite, Newland, 1.
Liparite, Osann, 1.
Liparite, Pirsson, 4.
Liparite, Osann, 1.
INDEX TO NORTH AMERICAN GEOLOGY

Petrology—Continued.

Rocks described—Continued.

Plumasite, Lawson (A. C.), 8.
Porphyry Tuff, Bailey (L. W.), 10.
Porphyry, Bailey (L. W.), 10.
Porphyry, Kay, 1.
Porphyry, Lindgren, 29.
Porphyry, Tassin, 1.
Psmamites, Van Hise, 12.
Psphites, Van Hise, 12.
Pseudoleucite, Smith (W. S. T.), 6.
Pseudoleucite-basalt, Pirsson, 4.
Pseudoleucite-porphyry, Smith, (W. S. T.), 5.
Puakinite, Adams (F. D.), 7.
Puakinite, Brock, 3.
Puakinite, Dresser, 5, 9.
Puakinite, Sears, 1.
Puakinite, Washington, 1.
Pumice, Diller, 7.
Pumice, Diller and Patton, 1.
Pyroclastic schist, Parks, 1.
Pyroxene, Gordon (C. H.), 4.
Pyroxene-andesite, Calkins, 1.
Pyroxene-andesite, Cross and Howe, 1.
Pyroxene-andesite, Fairbanks, 7.
Pyroxene-andesite, Smith and Calkins, 1.
Pyroxene-tonalite, Emerson (B. K.), 6.
Pyroxenite, Calkins, 1.
Pyroxenite, Fairbanks, 7.
Pyroxene, Gordon (C. H.), 5.
Pyroxenite, Craton, 1.
Pyroxenite, Kemp, 11.
Pyroxenite, Leonard, 1.
Pyroxenite, Osann, 2.
Pyroxenite, Pratt and Lewis, 1.
Pyroxenite, Smith (W. S. T.), 5.
Pyroxenite, Smith and Calkins, 1.
Pyroxenite (websterite), Bascom, 1.
Pyroxenite-amphibolite, Pratt and Lewis, 1.
Quartz, basalt, Calkins, 1.
Quartz-augite diorite, Sears, 1.
Quartz-augite-mica-diorite, Smith and Calkins, 1.
Quartz-biotite-diorite, Osmont, 1.
Quartz diabase, Emerson (B. K.), 8.
Quartz-diabase, Jaggar and Palache, 1.
Quartz-diabase, Spencer (A. C.), 10.
Quartz-diabase-porphyry, Barrell, 1.
Quartz-diabase-porphyry, Weed, 5.
Quartz-feldspar-porphyry, Iddings, 3.
Quartz-hornblende-porphyrite, Arnold and Strong, 1.
Quartz-latite, Cross and Howe, 1.
Quartz-mica-diorite, Barrell, 1.
Quartz-mica-diorite, Barrell, 1.
Quartz-mica-diorite, Ransome, 6, 13.
Quartz-mica-diorite, Smith and Calkins, 1.
Quartz-monzonite, Arnold and Strong, 1.
Quartz-monzonite, Barrell, 1.
Quartz-monzonite, Cross and Howe, 1.
Quartz-monzonite, Ransome, 6, 13.
Quartz-monzonite, Weed, 5.
Petrology—Continued.

Rocks described—Continued.

<table>
<thead>
<tr>
<th>Rock Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serpentine, Newland</td>
<td>1</td>
</tr>
<tr>
<td>Serpentine, Peck</td>
<td>1</td>
</tr>
<tr>
<td>Serpentine, Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Serpentine, Smith and Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Serpentine, Spencer (A. C.)</td>
<td>10</td>
</tr>
<tr>
<td>Shale, Wright (F. E.)</td>
<td>6</td>
</tr>
<tr>
<td>Shale, Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Shonkinite, Barrell</td>
<td>1</td>
</tr>
<tr>
<td>Shonkinite, Osann</td>
<td>2</td>
</tr>
<tr>
<td>Shonkinite, Pirsson</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>Shonkinite, Weed and Pirsson</td>
<td>1</td>
</tr>
<tr>
<td>Shonkinose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Shoshonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Shale, Wright (F. E.)</td>
<td>6</td>
</tr>
<tr>
<td>Shale, Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Slate, Barlow</td>
<td>27</td>
</tr>
<tr>
<td>Slate, Sears</td>
<td>1</td>
</tr>
<tr>
<td>Slate, Van Hise</td>
<td>12</td>
</tr>
<tr>
<td>Slate, Barlow</td>
<td>5</td>
</tr>
<tr>
<td>Soda-granite-porphyry, Clarke and Steiger</td>
<td>1</td>
</tr>
<tr>
<td>Soda-rhyolite, Smith and Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Soda-syenite, Smith and Calkins</td>
<td>1</td>
</tr>
<tr>
<td>Soda-syenite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Söviksbergite, Sears</td>
<td>1</td>
</tr>
<tr>
<td>Sphalerite, Parkinson</td>
<td>1</td>
</tr>
<tr>
<td>Steatite, Pratt and Lewis</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Barlow</td>
<td>4</td>
</tr>
<tr>
<td>Syenite, Barrell</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Coleman</td>
<td>13</td>
</tr>
<tr>
<td>Syenite, Cushing</td>
<td>10</td>
</tr>
<tr>
<td>Syenite, Daly</td>
<td>7</td>
</tr>
<tr>
<td>Syenite, Key</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Ogilvie</td>
<td>6</td>
</tr>
<tr>
<td>Syenite, Osann</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Parks</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Peck</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Phalen</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Pirsson</td>
<td>1, 4</td>
</tr>
<tr>
<td>Syenite, Sears</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Weed and Pirsson</td>
<td>1</td>
</tr>
<tr>
<td>Syenite, Wright (F. E.)</td>
<td>3, 6</td>
</tr>
<tr>
<td>Syenite-porphyry, Cross and Spencer</td>
<td>1</td>
</tr>
<tr>
<td>Syenite-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Syenite-porphyry, Smith (W. S. T.)</td>
<td>5, 6</td>
</tr>
<tr>
<td>Syenite-porphyry, Wright (F. E.)</td>
<td>6</td>
</tr>
<tr>
<td>Syenite var. pulaskite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Syenite dike, Barber</td>
<td>1</td>
</tr>
<tr>
<td>Syenite-monzyote, Barber</td>
<td>1</td>
</tr>
<tr>
<td>Syenite porphyry, Barber</td>
<td>1</td>
</tr>
<tr>
<td>Tephrite, Stevens (E. A.)</td>
<td>2</td>
</tr>
<tr>
<td>Thunmanite, Penfield and Pratt</td>
<td>1</td>
</tr>
<tr>
<td>Teralite, Dresser</td>
<td>9</td>
</tr>
<tr>
<td>Tinguait, Finlay (G. I.)</td>
<td>4, 8</td>
</tr>
<tr>
<td>Tinguait, Kemp</td>
<td>32</td>
</tr>
<tr>
<td>Tinguait, Osann</td>
<td>1</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Tonalite, Spurr</td>
<td>3</td>
</tr>
<tr>
<td>Tonalite-porphyry, Spurr</td>
<td>3</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro - hornblende - adamellite, Pirson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-monzonose, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-porphyry, Pirsson</td>
<td>4</td>
</tr>
<tr>
<td>Trachyphyro-highwoodose, Pirson</td>
<td>4</td>
</tr>
</tbody>
</table>
INDEX TO NORTH AMERICAN GEOLOGY

Physiographic geology—Continued.
Appalachian region. Continued.

Anticlinal folds near Meadville, Pa., Smallwood and Hopkins, 1.
Appalachian River in eastern Tennessee, White (C. H.), 1.
Ashville folio, Keith, 9.
Base leveling and its faunal significance, Adams (C. C.), 1.
Beaver folio, Pennsylvania, Woolsey, 3.
Brownsville-Connellsville folio, Campbell (M. R.), 8.
Charleston folio, Campbell (M. R.), 2.
Current notes on physiography, Davis (W. M.), 7, 10, 13, 41, 43.
 Deposits of copper ores at Ducktown, Tenn., Kemp, 10.
Drainage modifications in Ohio, West Virginia, and Kentucky, Tight, 4.
Elkland-Tioga folio, Fuller and Alden, 2.
Gaines folio, Fuller and Alden, 1.
Geographic development of northern Pennsylvania and southern New York, Campbell (M. R.), 9.
Geological excursion in Pittsburg region, Grant (U. S.), 4.
Geology of Garrett County, Martin (G. C.), 2.
Geology of the Tellurah gorge, Jones (S. P.), 1.
Gravities and gneisses of Georgia, Watson (T. L.), 8.
Hydrography of southern Appalachian region, Pressy, 1, 2.
Hydrography of the southern Appalachians, Pressy and Myers, 1.
Indiana folio, Richardson (G. B.), 3.
Kansas glaciation and its effects on the river system of northern Pennsylvania, Williams (E. H.), 2.
Kittanning folio, Butts, 4.
Latrobe folio, Campbell (M. R.), 18.
Lineaments of the Atlantic border region, Hobbs, 22.
Masontown-Uniontown folio, Campbell (M. R.), 6.
Maynardville folio, Keith, 1.
Northward flow of ancient Beaver River, Hice, 1.
Original southern limit of anthracite beds, Lyman, 3.
Paleozoic Appalachia, Willis, 1.
Physiographic features of Maryland, Abbe, 1.
Physiographic features of the Susquehanna basin, Hollister, 1.
Physiographic studies in southern Pennsylvania, Stose, 3.
Physiography of Garrett County, Abbe, 2.
Raleigh folio, Campbell (M. R.), 5.
Stream contest along the Blue Ridge, Davis (W. M.), 48.

Physiographic geology—Continued.
Appalachian region—Continued.

Topography and travel in Pennsylvania, Tower, 2.
Underground waters of New Jersey, Knapp (G. N.), 1.
Atlantic coast region.
Current notes on physiography, Davis (W. M.), 16, 30.
Fall-line of the southeastern Vereinigten Staaten, Abbe, 3.
Forms of sand-dunes, Cobb, 4.
Geology of Coastal Plain formations, Shattuck, 5.
Glacial conditions on Long Island, Buffet, 1.
Lineaments of the Atlantic border region, Hobbs, 22.
New York City folio, Merrill and others, 1.
Norfolk folio, Darton, 7.
Origin of sandhill topography of the Carolinas, Cobb, 1.
Physical features of Cecil County, Md., Shattuck, 3.
Physiographic features of Maryland, Abbe, 1.
Physiography of Cecil County, Md., Shattuck, 4.
Recent changes in North Carolina coast, Cobb, 2.
Submarine canyon of Hudson River, Spencer (J. W.), 12.
Submarine valleys off the American coast, Spencer (J. W.), 10.
Underground waters of New Jersey, Knapp (G. N.), 1.
Washington folio, Darton and Keith, 1.

Canada.
Ancient channels of Ottawa River, Ellis (R. W.), 5.
Current notes on physiography, Davis (W. M.), 8, 20, 21, 38.
Economic resources of Moose River basin, Bell (J. M.), 2.
Exploration in Canadian Rockies, Wilcox, 1.
Exploration of northern side of Hudson Strait, Bell (Robert), 1.
Exploration of south shore of Hudson Strait, Low, 1.
Geological explorations in Athabaska, Dowling, 6.
Geological notes on the vicinity of Baff, Ogilvie, 3.
Geology of Brome Mountain, Dresser, 11.
Geology of Nastapoka Islands, Low, 3.
Geology of northeast coast of Labrador, Daly, 3.
Geography of Red River Valley, Dowling, 2.
Geology of region adjoining western part of international boundary, Daly, 4.
Physiographic geology—Continued.

Canada—Continued.

Geology of the Three Rivers map sheet, Ells (R. W.), 2.
Geology of west shore of Lake Winnepeg, Dowling, 1.
Geology of Yellow Head Pass route, McEvoy, 1.
Iron ores of Nipissing district, Miller (W. G.), 2.
Iron ranges of Michipicoten west, Bell (J. M.), 3.
Iroquois beach in Ontario, Coleman, 16, 17.
Lake basins in Alberta and British Columbia, Parkinson, 2.
Lineaments of the Atlantic border region, Hobbs, 22.
Natural history and physiography of New Brunswick, Ganong, 8.
Physical geography of northern Appalachian system, Dresser, 1.
Physiography of Acadia, Daly, 1.
Physiography of New Brunswick, Ganong, 1-3.
Pleistocene of Montreal and Ottawa Valley, Buchan, 3.
Raised shore lines along Blue Mountain escarpment, Hunter, 2.
Raised shore lines of St. Lawrence Valley and Great Lakes, Chalmers, 6.
Report on parts of Manitoba and Keewatin, Tyrrell, 1.
Report on surface geology shown on Fredericton and Andover quarter-sheet maps, Chalmers, 3.
Shore features of Lake Huron, Jefferson, 3.
Surface geology of eastern Quebec, Chalmers, 10.
Surface geology of southern part of Quebec, Chalmers, 8.
Up and down the Mississagi, Graton, 2.

Central America.

Gebirgshaus von Mittelamerika, Sapper, 22.

Great Basin region.

Basin-range structure in the Death Valley region, Campbell (M. R.), 13.
Basin-range structure of the Humboldt region, Louderback, 4.
Bisbee folio, Ransome, 14.
Block mountains of Basin Range province, Davis (W. M.), 52.
Clifton folio, Lindgren, 28.
Colorado Canyon, Davis (W. M.), 61.

Physiographic geology—Continued.

Great Basin region—Continued.

Desert dry lakes of California, Bailey (G. E.), 1.
Enseignements du Grand Canyon du Colorado, Davis (W. M.), 25.
Geology and ore deposits of the Bisbee quadrangle, Ransome, 11.
Geology of Nevada, Spurr, 9.
Geology of the Tonopah mining district, Spurr, 29.
Globe folio, Ransome, 13.
Grand Canyon of the Colorado, Davis (W. M.), 1.
Hurricane fault in southwestern Utah, Huntington and Goldthwait, 1, 2.
Mountain ranges of Great Basin, Davis (W. M.), 46.
Origin of Basin ranges, Gilbert, 11.
Physiography of southern Arizona and New Mexico, Fairbanks, 5.
Plateau province of Utah and Arizona, Davis (W. M.), 45.
Structural section of a Basin range, Louderback, 3.
Structures of Basin ranges, Keyes, 45.
Underground waters of Salt River Valley, Lee (W. T.), 9.
Walls of Colorado Canyon, Davis (W. M.), 31.
Wasatch, Canyon, and House ranges, Davis (W. M.), 59.
Zuni salt lake, Darton, 19.

Great Lakes region.

Ancient drainage at Niagara Falls, Currie, 1.
Chicago folio, Alden, 1.
Current notes on physiography, Davis (W. M.), 10, 34.
Baker's and esker lakes of northeastern Indiana, Dryer, 1.
Formation of Sandusky Bay, Mosely, 2.
Geological reconnaissance along north shore, Russell, 23.
Geology and paleontology of Niagara Falls, Grabau, 1.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Lakes of southeastern Wisconsin, Fenneman, 1.
Ontario const., Martin (J. O.), 1.
Physical history of Niagara River, Gilbert, 1.
Physiography of Wisconsin, Colle, 2.
Stream capture in Michigan, Bowman (J.), 1.
Submerged valleys in Sandusky Bay, Mosely, 1.
Surface geology of Alcona County, Michigan, Leverett, 8.
Physiographic geology—Continued.

Great Lakes region—Continued.

Vermillion iron-bearing district of Minnesota, Clements, 3.
Wisconsin shore of Lake Superior, Col- lins, 1.

Great Plains region.

Age of the Missouri River, Upham, 26.
Aladdin folio, Dauton and O’Harra, 1.
Concretions and their geological effects. Todd (J. E.), 6.
Current notes on physiography, Davis (W. M.), 20, 37, 40.
Flint hills of Kansas, Mead (J. R.), 1.
Geological observations on the Rosebud Indian Reservation, Reagan, 5.
High plains and their utilization, Johnson (W. D.), 1.
Hydrographic history of South Dakota. Todd (J. E.), 4.
Newcastle folio, Darton, 14.
Oelrichs folio, Darton, 8.
Old Piatte channel, Condra, 4.
Physiographic divisions of Kansas, Adams (G. I.), 5, 9.
Region between the Northern Pacific Railroad and Missouri River, Wood (L. H.), 1.
Story of the prairies, Willard, 1.
Structure of the Great Plains and the mountains on their western margin. Darton, 27.
Sundance folio, Darton, 26.
Topographic features and geological formations of North Dakota, Leonard, 4.

Hawaiian Islands.

Geology of Hawaiian Islands, Branner, 6.

Mexico.

Barrancas de Las Minas, Ordoñez, 18.
Fisiografia, geologia e hidrologia de La Paz, Angermann, 1.
Geographic and geologic features of Mexico, Hill (R. H.), 1.
Geology of western Mexico, Farrington, 13.
Nau- campatapetitl 6 Cofre de Perote, Ordoñez, 18.

Mississippi Valley region.

Age of the Missouri River, Upham, 26.
Concrete examples from topography of Howard County, Calvin, 6.
Cottonwood Falls folio, Prosser and Beede, 1.
Current notes on physiography, Davis (W. M.), 30.
Dalles of the St. Croix, Berkey, 1.
Delavan lobe of Wisconsin stage of glaciation, Alden, 3.
Physiographic geology—Continued.
New England and New York.

American Association for Advancement of science, summer meeting, Hovey, 46.
Ancient gorge of Hudson River, Wright (G. F.), 15.
Ancient water levels of Champlain and Hudson valleys, Woodworth, 10.
Changes of level at Cape Ann, Tarr, 3.
Connecticut rivers, Hobbs, 1.
Current notes on physiography, Davis (W. M.), 12, 21.
Delta plains of Nashua Valley, Crosby, 8.
Drainage features of central New York, Tarr, 11, 14.
Elevated beaches of Cape Ann, Woodworth, 5.
Finger lake region of western New York, Dryer, 4.
Formation of natural bridges, Cleland, 4.
Geological history of Charles River, Clapp, 1.
Geology of Adirondack region, Cushing, 10.
Geology of Grand Isle County, Perkins, 11.
Geology of Paradox Lake quadrangle, Ogilvie, 6.
Geology of the vicinity of Little Falls, Cushing, 9.
Glacial cleaves and rock-terraces on Mount Toby, Massachusetts, Emerson (B. K.), 4.
Glacial erosion in finger lake region, Campbell (M. R.), 19.
Glacial conditions on Long Island, Buflfet, 1.
Glacial topography in central New Hampshire, Emerson (P.), 1.
Glacial waters from Oneida to Little Falls, Fairchild, 8.
Gorges and waterfalls of central New York, Tarr, 12.
Gorges and waterfalls of New York, Reid (H. F.), 15.
Gorges and waterfalls of New York, Spencer (J. W.), 17.
Gorges and waterfalls of New York, Tarr, 13.
Granite area of Barre, Vt., Finlay (G.), 3.
Hanging valleys in the finger lake region of New York, Tarr, 8.
Inter-Glacial gorge problem, Matson, 1.
Interpretations of physiography of New York State, Brigham, 3.
Island tying, Gulliver, 5.
Lineaments of the Atlantic border region, Hobbs, 22.
Lower Silurian system of eastern Montgomery County, N. Y., Cumings, 6.
Minnewaska region, James, 1.

Physiographic geology—Continued.

Moraines of Seneca and Cayuga Lake valleys, Tarr, 10.
Nantucket shore lines, Gulliver, 3.
Newark system of the Pomperaug Valley, Hobbs, 2.
Physical geography and geology of Connecticut, Rice, 1.
Physical geography and geology of Springfield, Orr, 1.
Physical geography, etc., of Essex County, Mass., Sears, 1.
Physical geography of New York State, Tarr, 2.
Physiographic belts in western New York, Gilbert, 10.
Physiography of Lake George, Kemp, 4, 7, 15.
Physiography of the Adirondacks, Kemp, 37.
Pleistocene geology of western New York, Fairchild, 2.
Pre-Glacial course of middle portion of Genesee River, Whitbeck, 1.
Pre-Glacial stream flow in central New York, Carney, 2.
Pre-Glacial stream flow in central New York, Fairchild, 5.
Pre-Iroquois channels between Syracuse and Rome, Fairchild, 4.
Protection of terraces in upper Connecticutt River, Hitchcock (C. H.), 5.
Reconnaissance of the Elizabeth Islands, Hollick, 1.
River system of Connecticut, Hobbs, 3.
River terraces and reversed drainage, Mills (F. S.), 1.
River terraces in New England, Davis (W. M.), 29.
Sudbury basin shore lines, Gulliver, 6.
Syllabus for field and laboratory work in geology, Tarr, 1.
Taconic physiography, Dale, 9.
Terraces of Westfield River, Massachusetts, Davis (W. M.), 28.
Type case in diversion of drainage, Carney, 1.
Water supply from delta type of sand plain, Crosby, 13.

Ohio Valley region.

Changes in drainage near Lancaster, Hyde, 1.
Ditney folio, Fuller and Ashley, 1.
Drainage of southern Indiana, Newson, 1.
Drainage modifications in Knox, Licking, and Coshocton counties, Clark (W. Blair), 1.
Drainage modifications in Ohio, West Virginia, and Kentucky, Tight, 4.
Drainage modifications in Washington and adjacent counties, Ohio, Tight, 2.
Physiographic geology—Continued.
Ohio Valley region—Continued.
Glacial formations and drainage features of Erie and Ohio basins, LeVere, 4.
Geology of Cincinnati, Nickles, 3.
History of Littie Miami River, Bow-
locker, 1.
Inter-Glacial valley in Illinois, Hub-bard (G. D.), 1.
Lower Carboniferous area of southern Indiana, Ashley, 2.
Physiographic and ecological study of the Lake Eagle region, Mills (W. M.), 1.
Pre-Glacial drainage conditions in vicinity of Cincinnati, Fowke, 2.
Pre-Glacial drainage of Wayne and ad-
jacent counties, Ohio, Todd, 1.
Section across southern Indiana, New-
som, 3.
Topographic features of lower Tippe-
canoe Valley, Breeze, 2.
Topography and geography of Bean Blossom Valley, Monroe County, Ind., Marsters, 1.
Topography and geology of Clifton Gorge, Wells (W. E.), 1.
Topography of Athens and vicinity, Ohio, Stearns (R. E. C.), 3.
Valley of lower Tippecanoe River,
Breeze, 1.
Wabash River terraces in Tippecanoe County, Ind., McBeth, 3.

Pacific coast region.
Abandoned stream gaps in northern Washington, Smith (G. O.), 12.
Asymmetry of crest lines in the high Sierra of California, Gilbert, 19.
Coo Bay folio, Diller, 4.
Current notes on physiography, Davis (W. M.), 5.
Domes and dome structure of the high Sierras, Gilbert, 17.
Ellensburg folio, Smith (G. O.), 7.
Erosion on the Pacific coast, Hold, 2.
Faults relations of the Carrizo Creek beds, Arnold, 3.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geology and petrography of Crater Lake National Park, Diller and Pat-
ton, 1.
Geology and physiography of central Washington, Smith (G. O.), 8.
Geology and water resources of central Oregon, Russell, 21.
Geology and water resources of east-
central Washington, Calkins, 3.
Geology of Mineral King, Knopf and Thelen, 1.
Geology of the John Day Basin, Mer-
riam (J. C.), 1.

Physiographic geology—Continued.
Pacific coast region—Continued.
Great lava-flood, Redway, 1.
Hanging valleys of the Yosemite, Bran-
er, 5.
Lake Chelan, Fairbanks, 4.
Lake Chelan and its glacier, Gannett, 3.
Mount Lassen and cinder cone region, Miller (E. I.), 1.
Mount Stuart folio, Smith (G. O.), 13.
Origin of transverse mountain valleys, Le Conte, 1.
Pacific mountain system, Spencer (A. C.), 5.
Pacific mountain system of British Columbia and Alaska, Spencer (A. C.), 4.
Periodic migrations between Asiatic and American coasts of the Pacific Ocean, Smith (J. P.), 4.
Petroleum in California, Claypole, 3.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Physiography and deformation of the Wenatchee-Chelan district, Willis, 11.
Physiography and geology of the Sis-
kiyou range, Anderson (F. M.), 5.
Physiography of California, Fairbanks, 3.
Post-Tertiary deformation of the Cas-
cade Range, Willis, 13.
Potter Creek cave, Sinclair, 5.
Prehistoric California, Yates (L. G.), 1.
Profile of maturity in Alpine glacial erosion. Johnson (W. D.), 3.
Post-Tertiary elevation of Sierra Ne-
vara, Turner, 9.
River terraces of Klamath region, Her-
shey, 20.
River terraces of the Orleans basin, Hershey, 22.
San Luis folio, Fairbanks, 7.
Sierran valleys of Klamath region, Hershey, 18.
Terraces of the High Sierra, Gilbert, 24.
Tertiary peneplain in Klamath region, California, Hershey, 15.
Topographic development of Klamath Mountains, Diller, 10.
Wreck of Mount Mazama, Diller, 8.
Panama.
Current notes on physiography, Davis (W. M.), 33.
Rocky Mountain region.
Aladdin folio, Darton and O'Harra, 1.
Alps of Montana, Mathes, 2.
Canyons of southeastern Colorado, Lee (W. T.), 4.
Current notes on physiography, Davis (W. M.), 9, 12, 42, 44.
Description of Bates Hole, Wyoming, Knight (W. C.), 1.
Ephemeral lakes in arid regions, Keys, 30.
Fracture valley system, Iddings, 2.
Physiographic geology—Continued.

Rocky Mountain region—Continued.

Geological structure of New Mexican bolson plains, Keys, 29.
Geology and water resources of Nueces County, Part I, Russell, 1.
Geology and water resources of Snake River plains, Russell, 5.
Geology of Black Hills, Darton, 1.
Geology of the Boulder district, Fennerman, 10.
Great Flat at Butte, Weed, 32.
Hanging valleys, Russell, 20.
Hanging valleys of Georgetown, Colo., Crosby, 6.
Hydrographic history of South Dakota, Todd (J. E.), 4.
La Plata folio, Cross and Spencer, 1.
Lewis Range of Montana and its glaciers, Matthes, 4.
Our northern Rockies, Chapman, 1.
Physiography of Flathead Lake region, Elrod (M. J.), 1.
Physiography of northern Rocky Mountains, Willis, 8.
Silverton folio, Cross and Howe, 1.
Spanish Peaks folio, Hills, 1.
Sundance folio, Darton, 26.
Twin Lakes glaciated area, Westgate, 1.

Southwestern region.

Atoka folio, Taff, 3.
Austin folio, Hill and Vaughan, 1.
Bisection of mountain blocks, Keyes, 40.
Bolson plains, Keyes, 32.
Bolson plains, Taff, 2.
Boston Mountain physiography, Hershey, 12.
Clinopinons of the Rio Grande, Herrick (C. L.), 5.
Colgate folio, Taff, 2.
Contact of Permian with Pennsylvanian in Oklahoma, Kirk (C. T.), 1.
Ephemeral lakes in arid regions, Keyes, 30.
Genesis of the Arkansas Valley, Keyes, 4.
Geological structure of New Mexican bolson plains, Keyes, 29.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Geology of Arbuckle and Wichita Mountains, Taff, 13.
Geology of the Cerrillos Hills, Johnson (D. W.), 4.
High altitude conoplain, Ogilvie, 5.
Lake Otero, Herrick (C. L.), 6.

Physiographic geology—Continued.

Southwestern region—Continued.

Laws of formation of New Mexico mountain ranges, Herrick (C. L.), 4.
Penepelines of the Ozark Highland, Hershey, 1.
Physical geography, geology, and resources of Texas, Dumble, 1.
Physiography of Ozark region, Marbut, 3.
Physiography of the Boston Mountains, Purdue, 3.
Saddle-back topography of the Boone chert region, Purdue, 4.
Structures of Basin ranges, Keyes, 45.
Tishomingo folio, Taff, 6.
Topography and geology of New Mexico, Jewett, 1.

West Indies.

Geography of Cuba, Vaughan and Spencer, 1.
Geological and physical development of Barbados, Spencer (J. W.), 6.
Geological and physical development of Dominica, Spencer (J. W.), 5.
Geological reconnaissance of Cuba, Hayes, Vaughan, and Spencer, 1.
Geological relationship of volcanoes of West Indies, Spencer (J. W.), 8.
Geology and physiography of Cuba, Hamilton, 2.
Physiography and geology of Bahama Islands, Shattuck and Miller, 1.
Preliminary report on recent eruption of Soufrière, in St. Vincent, and of a visit to Mont Pélee, in Martinique, Anderson and Flett, 1.
Vulkan von Guatemala und Salvador, Sapper, 1.
Windward Islands, Spencer (J. W.), 7.

General.

Base level, grade, and peneplain, Davis (W. M.), 26.
Bathymetrical features of the north Polar seas, Nansen, 2.
Bearing of physiography upon Suess's theories, Davis (W. M.), 57.
Bibliography of submarine valleys, Spencer (J. W.), 15.
Boston Mountain physiography, Hershey, 12.
Buried cypress forests, Bibbins, 3.
Classification of mountains, Rice, 3.
Climate features in the land surface, Penck, 1.
Complications of geographical cycle, Davis (W. M.), 56.
Current notes on physiography, Davis (W. M.), 4, 6, 11, 12, 14, 18, 35, 39, 40, 43.
Physiographic geology—Continued.
General—Continued.

Index to North American Geology

Physiographic geology—Continued.

Quaternary.

Alaska.

Appalachian region.

Atlantic coast region.

Crania of Trenton, N. J., Hrdlička, 1.

Geological notes, Hollick, 13.

Geology of Coastal Plain formations, Shattuck, 5.

Geography of Long Island, Veatch, 5.

Glacial geology of New Jersey, Salisbury and others, 1.

New York City folio, Merrill and others, 1.

Norfolk folio, Darton, 7.

Pleistocene problem in Maryland, Shattuck, 7.

Pleistocene problem of the North Atlantic coastal plain, Shattuck, 1.
Quaternary—Continued.

Atlantic coast region—Continued.
- Recently discovered facts in regard to Silver Lake, Holleck, 12.
- Results of resurvey of Long Island, Fuller and Veatch, 1.
- Stratigraphy of New Jersey clays, Küm-

mel and Knapp, 1.
- Surface formations in southern New Jersey, Salisbury, 3.
- Washington folio, Barton and Keith, 1.

Canada.
- Artesian borings, surface deposits, and ancient beaches, Chalmers, 5.
- Artesian wells of Montreal, Adams and LeRoy, 1.
- Borings for natural gas, petroleum, and water, Chalmers, 4.
- Canadian fossil insects, Scudder, 1.
- Explorations in Saskatchewan and Keewatin, Tyrrell, 3.
- Geologie von Canada, Haas, 2.
- Geology of Nevada, Spurr, G.

Great Lakes region.
- Chicago folio, Alden, 1.
- Forest beds of the lower Fox, Lawson (P. V.), 1.
- Glacial formations and drainage fea-

tures of Erie and Ohio basins, Lev-

erett, 4.
- Lakes of southeastern Wisconsin, Fen-

neman, 1.
- Physiographical field notes in the town of Wauwatosa, Wis., Bruncken, 1.

Great Plains region.
- Aladdin folio, Darton and O'Hara, 1.
- Camp Clarke folio, Darton, 10.
- Casselton-Fargo folio, Hall and Willard, 1.
- De Smet folio, Todd and Hall, 3.
- Fossil human remains found near Lan-

sing, Kans, Holmes, 1.
- Geology and water resources of the James River Valley, Todd and Hall, 2.
- Hartville folio, Smith (W. S. T.), 1.
- Huron folio, Todd (J. E.), 15.
- Man in Kansas during the Iowan stage of the Glacial period, Upham, 9.
- Oelrichs folio, Darton, 8.
- Olivet folio, Todd (J. E.), 9.
- Scotts Bluff folio, Darton, 11.
- Sundance folio, Darton, 20.

Gulf region.
- Geology of Mississippi embayment, Harris, 2.
- Oil fields of Texas-Louisiana Gulf coastal plain, Hayes and Kennedy, 1.
- Underground waters of Louisiana, Harris, 6.
- Underground waters of southern Lou-

isiana, Harris, 8.

Mexico.
- Criaderos de fierro de la hacienda de Vaquerias, Villarello and Biše, 1.

Mississippi Valley region.
- Discovery of the Lansing skeleton, Concannon, 1.
- Evidences (?) of water deposition of loess, Shimek, 14.
- Examination of soils from Illinois, Whitney (M.), 1.
- Fossil man from Kansas, Williston, 12.
- Fossil man of Lansing, Kans., Upham, 10.
- Fresh-water shells in the loess, Shi-

mek, 7.
- Geological formations of Iowa, Calvin, 4.
- Geology of Benton County, Savage, 7.
- Geology of Cedar County, Iowa, Nor-

ton, 1.
- Geology of Cherokee and Buena Vista counties, Machride, 2.
- Geology of Clay and O'Brien counties, Machride, 1.
- Geology of clays, Beyer and Williams, 2.
INDEX TO NORTH AMERICAN GEOLOGY

Quaternary—Continued.

Mississippi Valley region—Continued.
Geology of Clinton County, Udden (Jon A.), 1.
Geology of Dakota County, Burchard, 2.
Geology of Emmet, Palo Alto, and Focahontas counties, Macbride, 4.
Geology of Fayette County, Savage, 8.
Geology of Henry County, Iowa, Savage, 2.
Geology of Jasper County, Iowa, Williams (I. A.), 1.
Geology of Jefferson County, Iowa, Udden, 5.
Geology of Louisa County, Iowa, Udden, 2.
Geology of Marion County, Miller (E. L.), 1.
Geology of Minnesota, Hall (C. W.), 7.
Geology of Mississippi Valley at Little Falls, Minn., Winchell (N. H.), 8.
Geology of Monroe County, Iowa, Beyer and Young, 1.
Geology of Oktibbeha County, Logan, 2.
Geology of Page County, Iowa, Calvin, 1.
Geology of Pottawattamie County, Iowa, Udden, 3.
Geology of Wapello County, Leonard, 3.
Geology of Webster County, Iowa, Wilder, 3.
Kakabikansing, Brower, 1.
Lansing deposit not loess, Shimek, 12.
Lansing skeleton, Winchell (N. H.), 12.
Loess and the lowan drift, Shimek, 13.
Loess of southwestern Iowa, Willcox, 1.
Man in the Ice Age at Lansing, Kans., and Little Falls, Minn., Upham, 9.
Mastodon and mammoth remains, Anderson (N. C.), 1.
Primitive man and stone implements in North American loess, Upham, 11.
Primitive man in the Ice Age, Upham, 12.
Proboscidean fossils of Pleistocene deposits in Illinois and Iowa, Udden, 11.
Soils of Illinois, Leverett, 1.
Surface deposits of Missouri and Kansas, Broadhead, 7.
Tenth annual report of State geologist, Calvin, 5.

New England and New York.
Changes of level at Cape Ann, Tarr, 3.
Clays of Boston basin, Brown (R. M.), 1.
Geological and botanical notes: Cape Cod and Chappaquidick Island, Hollick, 4.
Geology of Fishers Island, Fuller (M. L.), 29.
Geology of Long Island, Veatch, 5.
Geology of Rand Hill, Cushing, 2.

Quaternary—Continued.

Pleistocene fauna of Sankaty Head, Cushman, 3.
Pleistocene formations of Sankaty Head, Nantucket, Wilson (J. H.), 1.
Pleistocene geology of Mooers quadrangle, Woodworth, 9.
Pleistocene geology of Nassau County, Woodworth, 2.
Pleistocene history of Fishers Island, Fuller (M. L.), 40.
Reconnaissance of the Elisabeth Islands, Hollick, 1.
Representatives of pre-Wisconsin till, Fuller (M. L.), 1.
Results of resurvey of Long Island, Fuller and Veatch, 1.

Ohio Valley region.
Discovery of a musk ox skull, Hatcher, 12.
Ditney folio, Fuller and Ashley, 1.
Fossil land shells of old forest bed of Ohio River, Billups, 1.
Glacial formations and drainage features of Erie and Ohio basins, Leverett, 4.
Lower Carboniferous area of southern Indiana, Ashley, 2.
Nomenclature of Ohio geological formations, Prosser, 10, 15.
Paleontology of Bartholomew County, Ind., mammalian fossils, Edwards (J. J.), 1.
Patoka folio, Fuller and Clapp, 2.

Pacific coast region.
Coos Bay folio, Diller, 4.
Ellensburg folio, Smith (G. O.), 7.
Excavations in a Quaternary cave in Shasta County, Furlong, 1.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geological section of the Coast Ranges, Osmont, 1.
Geology of the John Day basin, Merriam (J. C.), 1.
Gold belt of Blue Mountains of Oregon, Lindgren, 4.
Klamath Mountain section, Diller, 12.
Marine Pliocene and Pleistocene stratigraphy of coast of southern California, Arnold and Arnold, 1.
Marine Pliocene and Pleistocene of San Pedro, Arnold, 2.
Port Orford folio, Diller, 11.
Quaternary deposits of southern California, Hershey, 14.
River terraces of Klamath region, Hershey, 20.
River terraces of the Orleans basin, Hershey, 22.

Rocky Mountain region.
Aladdin folio, Darton and O’Harra, 1.
FOR THE YEARS 1901–1905, INCLUSIVE. 753

Quaternary—Continued.

Rocky Mountain region—Continued.
Geology of Black Hills, Darton, 1.
La Plata folio, Cross and Spencer, 1.
Nampa folio, Lindgren and Drake, 1.
Pleistocene geology of the Sawatch Range, near Leadville, Colo., Capps and Leffingwell, 1.
Silver City folio, Lindgren and Drake, 2.
Silverton folio, Cross and Howe, 1.
Stratigraphy and structure, Lewis and Livingston ranges, Montana, Willis, 6.
Sundance folio, Darton, 26.

Southwestern region.
Age of lavas of plateau region, Reagan, 2.
Colgate folio, Taff, 2.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Geology and water resources of Oklahoma, Gould, 15.
Geology of Fort Apache region, Reagan, 3.
Geology of southwestern Texas, Dumble, 13.
Geology of the Jemez-Albuquerque region, Reagan, 1.
Oil and gas fields of western interior and Gulf coast, Adams (G. L.), 2.
Tishomingo folio, Taff, 6.

West Indies.
Geological and physical development of Antigua, Spencer (J. W.), 1.
Windward Islands, Spencer (J. W.), 7.

General.
Cause of Glacial period, True (H. L.), 41.
Experiences with early man in America, Sterneberg, 1.
How long ago was America peopled, Matthew (G. F.), 24.
Loess and the Lansing man, Shimek, 5.
Organic remains in post-Glacial deposits, Olsson-Seffier, 1.
Primitive man in the Ice Age, Upham, 13.

Rhode Island.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Ries, 6.
Gaspee Point, a type of cuspat e foreland, Brown (R. M.), 2.
Minerals of Rhode Island, Davis (C. Abbott), 1.
Underground waters of Massachusetts and Rhode Island, Crosby, 14.
Water resources of Rhode Island, Crosby, 19.

Salvador.
Vulkan Izalco, Sapper, 7.
Vulkanische Ereignisse in Mittelamerika, Sapper, 20, 21.
Bull. 301—06—48

Silurian.

Alaska.
Geological section of Rocky Mountains in northern Alaska, Schrader, 1.
Geology of Copper River region, Men- denhall, 8.
Preliminary report on the Ketchikan mining district, Brooks, 4.
Reconnaissance in Alaska, Schrader, 3.
Tin deposits of the York region, Collier, 8.

Appalachian region.
Devonic and Ordovician formations of Maryland, Schuchert, 7.
Greenville folio, Keith, 11.
Manlius formation of New York, Schuchert, 4.
Maynardville folio, Keith, 1.
Niagara period near Cumberland, Uhler, 1.
Paleozoic Appalachiens, Willis, 1.
Paleozoic formations of Allegany County, Prosser, 3.
Rocks of Green Pond Mountain region, Kühnel and Weller, 2.
Rome folio, Hayes (C. W.), 5.
Siluric and Devonian Cystidea and Cambarocrinus, Schuchert, 11.

Atlantic coast region.
New York City folio, Merrill and others, 1.

Canada.
Artesian wells of Montreal, Adams and LeRoy, 1.
Counties of Cumberland, Hants, Kings, and Annapolis, Fletcher, 6.
Exploration de l'Ile d'Anticosti, Combes, 1.
Exploration of Ekwan River, Dowling, 8.
Fossiliferous rocks of southwest Ontario, Parks, 4.
Genus Trimerella, with descriptions of species from Silurian rocks of Kee- watin, Whiteaves, 3.
Geological exploration in district of White Bay, Howley, 1.
Geological formations about Montreal, Aml and Adams, 1.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology and natural resources of Ot- tawa and vicinity, Ells (R. W.), 7.
Geology of the principal cities in eastern Canada, Aml, 1.
Geology of the Three Rivers map sheet, Ells (R. W.), 2.
Monographie de l'Ile d'Anticosti, Schmitt, 1.
New Brunswick, Bailey (L. W.), 5.
INDEX TO NORTH AMERICAN GEOLOGY

Silurian—Continued.

Canada—Continued.

Notes on the late collecting season, Grant (C. C.), 10.

Perce: sketch of its geology, Clarke (J. M.), 26.

Petroleum and natural gas [in Ontario], Corkill, 2.

Problems in New Brunswick geology, Ellis (R. W.), 25.

Silurian and Devonian formations of eastern Canada, Ami, 12.

Stratigraphical note, Ami, 10.

Synopsis of geology of Canada, Ami, 2.

Great Basin region.

Geology and vein phenomena of Arizona, Comstock (T. B.), 1.

Geology of Nevada, Spurr, 6.

Historical geology of Esmeralda County, Nev., Turner, 5.

Great Lakes region.

Asphalt in Delta County, Mich., Lane, 6.

Chicago folio, Alden, 1.

Geological reconnaissance along north shore, Russell, 23.

Gypsum deposits in Ohio, Peppel, 1.

On the Salina group in northeastern Ohio, Claypole, 2.

Paleozoic coral reefs, Grabau, 10.

Physiographical field notes in the town of Wauwatosa, Wis., Bruncken, 1.

Stratigraphy and paleontology of the Niagara of northern Indiana, Kindle, 6.

Stratigraphy and paleontology of the Niagara of northern Indiana, Schuchert, 10.

Greenland.

Bidrag till nordostra Gronlands geologi, Nathorst, 1.

Mississippi Valley region.

Formations of northern Arkansas, Ulrich, 5.

Geological formations of Iowa, Calvin, 4.

Geological section across northern Illinois, Udden, 1.

Geology of Cedar County, Iowa, Norton, 1.

Geology of Clinton County, Udden (J. a.), 1.

Geology of Fayette County, Savage, 8.

Geology of Illinois, Rolfe, 1.

Geology of Minnesota, Hall (C. W.), 7.

Geology of Missouri, Gallaher, 1.

Lead and zinc deposits of southwestern Wisconsin, Grant (U. S.), 5.

Niagara limestones of Hamilton County, Ind., Kindle, 2.

Physiography and geology of the Ozark region, Adams (G. J.), 3.

Tahlequah folio, Taff, 17.

Water resources in Arkansas, Purdue, 9.

Silurian—Continued.

New England and New York.

American Association for Advancement of Science, summer meeting, Hovey (E. O.), 46.

Celestite near Syracuse, Kraus, 2.

Cobleskill limestone of New York, Hartnagel, 3.

Contact lines of Upper Siluric formations on the Brockport and Medina quadrangles, New York, Clarke, Ruedemann, and Luther, 1.

Eurypterid fauna from the Salina, Sarle, 2.

Geologic map of the Tully quadrangle, Clarke and Luther, 3.

Geological study of the Fox Islands, Smith (G. O.), 2.

Geology and paleontology of Niagara Falls, Grabau, 1.

Geology of eastern New York, Prosser, 11.

Geology of Onondaga County, N. Y., Schneider, 1.

Geology of Perry basin, Smith and White, 1.

Geology of the Hudson Valley, Dale, 5.

Grapholite (Levis) facies of Beekmantown formation in Rensselaer County, N. Y., Ruedemann, 3.

Guelph fauna of New York, Clarke and Ruedemann, 1.

Gypsum deposits in New York, Eckel, 22.

Lime and cement industries of New York, Ries, 4.

Manlius formation of New York, Schuchert, 4.

Map of Canandaigua and Naples quadrangles, Clarke and Luther, 1.

Quarry industry in southeastern New York, Eckel, 6.

Reef structures in the Clinton and Niagara strata, Sarle, 1.

Report of State paleontologist, Clarke (J. M.), 5.

Rocks of Rondout, Van Ingen and Clark, 1.

Siluric and Devonian faunas of Trilobite Mountain, Shimer, 5.

Siluric on Ontario section of eastern New York, Hartnagel, 2.

Stratigraphy of Becraft Mountain, Grabau, 9.

Undulations of the Lockport limestone, Gilbert, 23.

Ohio Valley region.

Bearing of Clinton and Osgood formations on age of Cincinnati anticline, Foerste, 4.

Cincinnati anticline in southern Kentucky, Foerste, 8.

Cincinnati geanticline, Foerste, 10.
FOR THE YEARS 1901–1905, INCLUSIVE.

Silurian—Continued.
Ohio Valley region—Continued.
Columbia folio, Hayes and Ulrich, 1.
Devonian era in Ohio basin, Claypole, 5.
New fossils from Corniferous, Hamilton, and Medina shales, Herzer, 5.
Niagara domes of northern Indiana, Kindle, 3.
Niagara group, Foerste, 2.
Niagara group unconformities in Indiana, Elrod (M. N.), 1.
Nomenclature of Ohio geological formations, Prosser, 10, 15.
Ohio natural-gas fields, Bownocker, 4.
Oil and gas producing rocks of Ohio, Bownocker, 3.
Ordovician and Silurian rocks of Indiana, Foerste, 1.
Silurian and Devonian limestones, Foerste, 1.
Silurian and Devonian limestones of western Tennessee, Foerste, 7.
Stratigraphy and paleontology of the Niagara of northern Indiana, Schuchert, 10.
Terms Linden and Clifton limestones in Tennessee geology, Foerste, 5.
Topography and geology of Indiana, Hopkins (T. C.), 11.

Southwestern region.
Atoka folio, Taff, 3.
Geology of Arbuckle and Wichita Mountains, Taff, 13.
Geology of Fort Apache region, Reagan, 3.
Siluric fauna near Batesville, Ark., Van Ingen, 1, 2.
Tishomingo folio, Taff, 6.
Topography and geology of Clifton Gorge, Wells (W. E.), 1.

General.
Physical characters and history of some New York formations, Grabau, 17.
Siluro-Devonian boundary question, Williams (H. S.), 2.

South Carolina.
Carolina gold deposits, Weed, 3.
Carolina tin belt, Graton, 3.
Cement materials and industry of the United States, Eckel, 34.
Clays of the United States, Eibling, 6.
Mineral resources, Sloan, 1.
Phosphate industry, Chazal, 1.
Recent earthquakes, Davison (C.), 1.
Tin, Struthers and Pratt, 1.
Tin deposits of the Carolinas, Pratt and Storret, 1.
Underground waters of South Carolina, Glenn, 10.

South Dakota.
Age of Homestake lode, Hewett, 2.
Aladdin folio, Darton and O’Harra, 1.
Alexandria folio, Todd and Hall, 1.
Artesian wells in North and South Dakota, Upham, 1.
Bald Mountain district in the Black Hills, Blatchford, 2.
Benton formation in eastern South Dakota, Todd (J. E.), 13.
Black Hills ore deposits, O’Harra, 1.
Building stones of South Dakota, Todd (J. E.), 7.
Cave regions of the Ozarks and Black Hills, Owen, 4.
Cement materials and industry of the United States, Eckel, 34.
Crystal cave, Hovey (E. O.), 34.
Current notes on physiography, Davis (W. M.), 35.
Cyanide process in Black Hills of South Dakota, Fulton, 1.
Cycads from Black Hills, Wieland, 10.
Dakota Cretaceous of Kansas and Nebraska, Gould, 5.
Deposit of fuller’s earth, Cook, 1.
Deposits of wolfranite in the Black Hills, Irving, 1.
De Smet folio, Todd and Hall, 3.
Economic resources of Black Hills, Irving and Emmons, 1.
Edgemont folio, Darton and Smith, 1.
Geological observations on the Rosebud Indian Reservation, Reagan, 5.
Geologische Streifzüge durch die Prärien und Felsengebirge Nordamerikas, Fraas, 2.
Geology and mineralogy of the Black Hills, O’Harra, 3.
Geology and underground-water resources of the central Great Plains, Darton, 18.
Geology and water resources of James River Valley, Todd and Hall, 2.
Geology of artesian basins, McCaslin, 1.
Geology of Lincoln County, Bendrat, 1.
Geology of South Dakota, Todd (J. E.), 14.
Geology of the Black Hills, Jaggard, 5.
Glacial drift in the Dakotas, Upham, 27.
Gold ores of the Black Hills, Chance, 1.
Gold production of North America, Lindgren, 16.
Golden West mine, Storms, 5.
Gypsum deposits in South Dakota, Darton, 15.
Heteroceras simplicostatum, Whitfield, 3.
Huron folio, Todd (J. E.), 15.
Hydrographic history of South Dakota, Todd (J. E.), 4.
Igneous rocks of the Sundance folio, Smith (W. S. T.), 5.
South Dakota—Continued.

Jurassic stratigraphy on west side of Black Hills, Loomis, 3.
Laccoliths of the Black Hills, Jæger, 1.
Locality furnishing Cretaceous fishes, Hay, 12.
Mammals from Oligocene of South Dakota, Matthew (W. D.), 22.
Megacerops tyleri, Lull, 5.
Mineral building material, fuels and waters of South Dakota, Todd (J. E.), 5.
Mineral wealth of Black Hills, O'Harra, 2.
Mineralogical notes, Headden, 4.
Miocene mammals of South Dakota, Matthew and Gidley, 1.
Mitchell folio, Todd (J. E.), 11.
New dinosaur, Stegosaurus marshalli, Lucas (F. A.), 2.
New form of calcite-sand crystal, Barbour and Fisher, 2.
New rhinoceros, Trigonias osborni, Lucas (F. A.), 1.
Newcastle folio, Darton, 14.
Newly discovered rock at Sioux Falls, Todd (J. E.), 8, 12.
Oelrichs folio, Darton, 8.
Oligocene beds of the Bad Lands, Fraas, 1.
Olivet folio, Todd (J. E.), 9.
Ore deposits of northern Black Hills, Irving, 2.
Ore deposits of the Black Hills, Irving, 3, 4.
Parker folio, Todd (J. E.), 10.
Potsdam formation of Bald Mountain district, Blatchford, 1.
Problems of the Dakota artesian system, Todd (J. E.), 2.
Red Beds of Black Hills, Richardson (G. B.), 2.
Stratigraphy and paleontology of Black Hills rim, Wieland, 11.
Stratigraphy of the Black Hills, Darton, 2.
Sundance folio, Darton, 26.
Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 13.
Tungsten ores in the Black Hills, Simmons, 1.
Wolframite in Black Hills, Forsyth, 1.
Wolframite in Black Hills, Raymond (R. W.), 2.

Tennessee.

Appalachian River in eastern Tennessee, White (C. H.), 1.
Asheville folio, Keith, 9.
Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.
Cincinnati group in western Tennessee, Foerste, 6.
Classification of geologic formations of Tennessee, Safford, 2.
Clays of the United States, Ries, 6.

Tennessee—Continued.

Columbia folio, Hayes and Ulrich, 1.
Copper deposits of Appalachian States, Weed, 17.
Copper deposits of eastern United States, Weed, 37.
Copper deposits of southern United States, Weed, 2.
Cranberry folio, Keith, 4.
Cumberland Gap coal field, Ashley, 3, 4.
Cumberland Plateau coal field, Duffield, 1.
Deposits of copper ores at Ducktown, Kemp, 10.
Ducktown copper mining district, McCallie, 4.
Erratic bowlder from Coal Measures, McCallie, 5.
Fossiliferous sandstone dikes in Eocene of Tennessee and Kentucky, Glenn, 8.
Geology of Tennessee, Safford and Killebrew, 1.
Gerard Troost, Glenn, 9.
Gisements de minerals de zinc, Demaret, 1.
Greeneville folio, Keith, 11.
Horizons of phosphate rocks, Safford, 1.
Iron ore deposits of the Cranberry district, Keith, 5.
Iron ores of Shady Valley, Garrison, 2.
Jellico coal field, Evans (N. N.), 2.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.
Maynardville folio, Keith, 1.
Meteorites-Studien, Cohen, 4.
Meteorite from Hendersonville, Glenn, 3.
Minerals of region about Nashville, Glenn, 7.
Mount Mitchell folio, Keith, 12.
Mount Pleasant phosphate field, Ruhm, 1.
Portland-cement resources of Tennessee, Ulrich, 7.
Silurian and Devonian limestones, Foerste, 1.
Silurian and Devonian limestones of western Tennessee, Foerste, 7.
Southern Appalachian coal field, Hayes (C. W.), 7.
Stoneware and brick clays, Eckel, 18.
Tennessee iron ores, Maxwell, 1.
Tennessee marbles, Keith, 6.
Tennessee white phosphate, Eckel, 3.
Tennessee white phosphate, Hayes (C. W.), 3, 15.
Terms Linden and Clifton limestones in Tennessee geology, Foerste, 5, 9.
Underground waters of Tennessee and Kentucky, Glenn, 11.
Water resources of Tennessee, Glenn, 4.
Tennessee—Continued.
White phosphates of Decatur County, Eckel, 20.
Zinc mining in east Tennessee, Keith, 8.
Tertiary.
Alaska.
Coal resources of Alaska, Brooks, 3.
Geological section of Rocky Mountains in northern Alaska, Schrader, 1.
Geology about Chichagof Cove, Palache, 3.
Geology of Copper River region, Men
denhall, 8.
Gold placers of Fortymile, Birch Creek, and Fairbanks regions, Frindle, 2.
Reconnaissance in Alaska, Schrader, 3.
Atlantic coast region.
Administrative report, New Jersey Geolog
cal Survey, Smock, 1.
Cretaceous-Eocene boundary in the At
tlantic coastal plain, Clark (W. B.), 4.
Eocene deposits of Maryland, Clark
and Martin, 1.
Geology of coastal plain formations, Shattuck, 5.
Miocene deposits of Maryland, Clark
(W. B.), 6.
Miocene deposits of Maryland, Shat
tuck, 10.
Miocene formation of Maryland, Shat
tuck, 6.
Norfolk folio, Barton, 7.
Physical features of Cecil County, Md., Shattuck, 3.
Relations of Maryland Miocene, Dall, 14.
Stratigraphy of New Jersey clays, Kümmler and Knapp, 1.
Surface formations in southern New
Jersey, Salisbury, 1.
Tertiary fauna of Florida, Dall, 8.
Underground waters of New Jersey, Knapp (G. N.), 1.
Washington folio, Barton and Keith, 1.
Canada.
Boundary Creek district, Brock, 3.
Coal field of Souris River, Dowling, 9.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology of Yellow Head Pass route, McEvoy, 1.
Klondike gold fields, McConnell, 5.
Nicola coal basin, Ellis (R. W.), 23.
Synopsis of geology of Canada, Ami, 2.
Great Basin region.
Geology of Globe copper district, Ransome, 6.
Geology of Nevada, Spurr, 6.
Geology of the Tonopah mining district, Spurr, 29.
Globe folio, Ransome, 13.
Historical geology of Esmeralda County, Nev., Turner, 5.
Tertiary—Continued.
Great Basin region—Continued.
Lake Quibiris, an ancient Pliocene lake in
Arizona, Blake (W. F.), 6.
Notes on geology of southeastern Arizo
na, Dumble, 7.
Triassic ichthyosaurs from California and Nevada, Osborn, 15.
Underground waters of Salt River Val
ley, Lee (W. T.), 9.
Great Plains region.
Aladdin folio, Darton and O'Harra, 1.
Camp Clarke folio, Nebraska, Darton, 10.
Comparison of fossil diatoms, Elmore, 1.
Fossil mammals of Tertiary of north
easter Colorado, Matthew (W. D.), 2.
ological observations on the Rosebud Indian Reservation, Reagan, 5.
Geology and underground water re
sources of the central Great Plains, Darton, 18.
Geology and water resources of Patrick and Goshen Hole quadrangles, Adams (G. I.), 4.
Hartville folio, Smith (W. S. T.), 1.
High plains and their utilization, John
son (W. D.), 1.
Miocene mammals of South Dakota,
Matthew and Gidley, 1.
Note on the western Tertiary, Sarde
son, 5.
Oelrichs folio, Barton, 8.
Oligocene beds of the Bad Lands, Fraas, 1.
Origin of North Dakota lignites, Wild
der, 5.
Origin of Oligocene and Miocene de
posits of Great Plains, Hatcher, 11.
Osteology of Oxydactylus, Peterson, 1.
Prarie region of northeastern Colo
rado, Lokes, 32.
Scotts Bluff folio, Barton, 11.
Skeleton of Titanotherium dispar, Marsh; Hatcher, 7.
Sundance folio, Barton, 26.
Tertiary formations of the northern Great Plains, Darton, 12.
Tertiary terrane, new in Kansas geolo
gy, Adams (G. I.), 8.
Greenland.
Bidrag till nordostra Grönlands geologi, Nathorst, 1.
Tertiary fauna at Kap Dalton, Raven, 1.
Gulf region.
Age of Alabama white limestone, Raven, 1.
Dall's Tertiary fauna of Florida, Schu
chart, 12.
Eocene outcrops in central Georgia,
Harris, 5.
Geography and geology of Sabine River, La., Vestch, 2.
Tertiary—Continued.

Gulf region—Continued.

Geology along the Ouachita, La., Veatch, 3.

Geology of Mississippi embayment, Harris, 2.

Grand Gulf formation, Dall, 9.

Grand Gulf formation, Hilgard, 4.

Grand Gulf formation, Smith and Aldrich, 2.

Hills of Louisiana south of V. S. & P. Railroad, Lerch, 2.

Jackson outcrops on Red River, Casey, 1.

Oil fields of Texas-Louisiana Gulf coastal plain, Hayes and Kennedy, 1.

Oligocene of western Europe and southern United States, Maury, 1.

Preliminary report upon Florida parishes of east Louisiana, Clendenin, 1.

Salines of north Louisiana, Veatch, 1.

Shell Bluff, Georgia, one of Lyell's original localities, Vaughan, 4.

Southern oil fields, Hager, 1.

Subterranean waters of Louisiana, Harris, 3.

Tertiary fauna of Florida, Dall, 8.

Tertiary of Sabine River, Dumble, 10.

Underground waters of Louisiana, Harris, 6.

Underground waters of Louisiana and Arkansas, Veatch, 7.

Underground waters of southern Louisiana, Harris, 8.

Mexico.

Círaderos de fierro de la hacienda de Vaquerías, Villarello and Böse, 1.

Estado de Tabasco, Laguerenne, 1.

Geología de Chilpancingo, Ordonez and Böse, 1.

Geological section in Guerrero, Hall (C. E.), 1.

Mississippi Valley region.

Evolution of lowlands of southeastern Missouri, Marbut, 1.

Fluorspar deposits of southern Illinois, Bain, 19.

Fossiliferous sandstone dikes in the Eocene of Tennessee and Kentucky, Glenn, 8.

Geological section in southern Illinois, Nickles, 2.

Geology of Oktibbeha County, Logan, 2.

Winoka gravels, Hays, 1.

Winoka gravels, Park (E. J.), 1.

New England and New York.

Brandon clays, Woodworth, 8.

Tertiary—Continued.

New England and New York—Continued.

Geological relations of Brandon lignite, Dale, 6.

Pre-Pleistocene deposits at Third Cliff, Bowman (I.), 3.

Tertiary lignite of Brandon, Perkins, 17.

Ohio Valley region.

Patoka folio, Fuller and Clapp, 2.

Pacific coast region.

Berkeley Hills, Lawson and Palache, 1.

Californian Tertiary coral reef, Vaughan, 20.

Cleallum iron ores, Smith and Willis, 1.

Coal deposits of Washington, Landes and Ruddy, 1.

Contribution to petrography of John Day Basin, Calkins, 1.

Coos Bay coal fields, Rockwell, 1.

Coos Bay folio, Diller, 4.

Correlation of John Day and Mascall, Merriam and Sinclair, 1.

Ellensburg folio, Smith (G. O.), 7.

Faunal relations of the Carrizo Creek beds, Arnold, 3.

Fossil flora of John Day Basin, Oregon, Knowlton, 14.

Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.

Geological section of middle Coast ranges of California, Lawson (A. C.), 5.

Geological section of the Coast ranges, Osmont, 1.

Geological section through John Day Basin, Merriam (J. C.), 2.

Geology and physiography of central Washington, Smith (G. O.), 8.

Geology and water resources of Yakima County, Smith (G. O.), 3.

Geology of Salinas Valley, Nutter, 1.

Geology of the John Day Basin, Merriam (J. C.), 1.

Geology of Washington, Landes, 1.

Gold belt of Blue Mountains of Oregon, Lindgren, 4.

Great lava flood, Redway, 1.

John Day fossil beds, Merriam (J. C.), 3.

Klamath Mountain section, Diller, 11.

Marine Pliocene and Pleistocene of San Pedro, Arnold, 2.

Miocene diabase of the Santa Cruz Mountains, Haehler and Arnold, 1.

Miocene fauna in California, Merriam (J. C.), 10.

Miocene Foraminifera from Monterey shale, Bagg, 9.
Tertiary—Continued.
Pacific coast region—Continued.
Mount Diablo Range of California, Anderson (F. M.), 7.
Mount Stuart folio, Smith (G. O.), 13.
Neocene deposits of Klamath region, California, Hershey, 9.
Ore deposits of Monte Cristo, Spurr, 3.
Paleontology of Martinez group, Weaver, 1.
Physiographic features of Klamath Mountains, Anderson (F. M.), 2.
Pleistocene and Pliocene fossil shells, Rivers, 1.
Port Orford folio, Diller, 11.
Prehistoric California, Yates (L. G.), 1.
Reconnaissance of borax deposits of Death Valley and Mohave Desert, Campbell, (M. R.), 4.
San Luis folio, Fairbanks, 7.
Sierra Madre near Pasadena, Claypole, 4.
Stratigraphic problems in the Cascades, Smith (G. O.), 15.
Stratigraphy of Coast ranges of California, Anderson (F. M.), 6.
Tertiary formations of southern California, Anderson (F. M.), 2.
Tertiary formations of southern California, Hershey, 10.
Topographic development of Klamath Mountains, Diller, 10.
Panama.
Geology of the Isthmus of Panama, Hershey, 5.
Philippine Islands.
Geology of the Philippine Islands, Becker, 1.
Rocky Mountain region.
Age of the Monument Creek formation, Darton, 23.
Aladdin folio, Darton and O'Harra, 1.
Copper deposits of the Encampment district, Spencer (A. C.), 10.
Craniol elements and dentitions of Titanotherium, Hatcher, 4.
Cretaceous and Lower Tertiary section in south central Montana, Douglass, 3.
Discovery of Torrey's mastodon in Montana, Douglass, 6.
Eocene and earlier beds of Huerfano basin, Colorado, Hills, 2.
Fossil Mammalia of White River beds, Douglass, 3.
Fossil pine from Idaho, Knowlton, 4.
Fresh-water Tertiary at Green River, Wyoming, Davis (W. M.), 51.
Geology and water resources of Nez Perces County, Part I, Russell, 1.
Geology of Black Hills, Darton, 1.
Geology of Castle Rock region, Lee (W. T.), 2.
Geology of Idaho and Oregon, Russell, 8.

Tertiary—Continued.
Rocky Mountain region—Continued.
Geology of the Needle Mountains quadrangle, Cross and Howe, 3.
La Plata folio, Cross and Spencer, 1.
Marine fossils in the Titanotherium beds, Loomis, 6.
Nampa folio, Lindgren and Drake, 1.
Neocene lake beds of Montana, Douglass, 1.
Note sur les phénomènes volcaniques Tertiaires de la chaine d'Absaroka, Hague, 1.
Origin of fine gold of Snake River, Bell (R.). 3.
Prospecting for oil, Lakes, 36.
Silver City folio, Lindgren and Drake, 2.
Silverton folio, Cross and Howe, 1.
Spanish Peaks folio, Hills, 1.
Sunrise folio, Darton, 26.
Southwestern region.
Age of lavas of plateau region, Reagan, 2.
Austin folio, Hill and Vaughan, 1.
Colgate folio, Taff, 2.
Cretaceous and later rocks of Presidio and Brewster counties, Dumble, 12.
Fresh water Tertiary of Texas, Gidley, 4.
Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.
Geology and water resources of Oklahoma, Gould, 14.
Geology of Fort Apache region, Reagan, 3.
Lake Otero, Herrick (C. L.), 6.
Geology of southwestern Texas, Dumble, 13.
Geology of the Antelope Hills, Sherwin, 1.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Oil in Texas, Harris, 1.
Pelvic girdle of Zeuglodon Basilosaurus cetoides (Owen), Lucas (F. A.), 2.
Texas petroleum, Phillips (W. B.), 1.
Geology of the Cerrillos Hills, Johnson (D. W.), 4.
Geology of the Jemez-Albuquerque region, Reagan, 1.
West Indies.
Age des formations volcaniques de la Martinique, Giraud, 1.
Geological and physical development of Antigua, Spencer (J. W.), 1.
Geological and physical development of Anguilla, St. Martin, St. Bartholomew, and Sombrero, Spencer (J. W.), 3.
Geological and physical development of Guadeloupe, Spencer (J. W.), 2.
INDEX TO NORTH AMERICAN GEOLOGY

Tertiary—Continued.

West Indies—Continued.
Geological and physical development of the St. Christopher chain and Saba banks, Spencer (J. W.), 4.
Geological reconnaissance of Cuba, Hayes, Vaughan, and Spencer, 1.
Sangre Grande borings, Trinidad, Guppy, 2, 3.
Tobagan fossils, Guppy, 7.
Windward Islands, Spencer (J. W.), 7.

General.
Geographical distribution of freshwater decapods, Ortonn, 3.
Oligocene Canidae, Hatcher, 10.
Outlines of continents in Tertiary times, Matthew (W. D.), 18.
Recent zoopaleontology, Osborn, 20.
Was man in America in the Glacial period? Winchell (N. H.), 16.

Texas.
Accumulation of petroleum, Hayes (C. W.), 8.
Austin chalk underlying Waco, Prather, 2.
Austin folio, Hill and Vaughan, 1.
Bat guano caves in Texas, Phillips (W. B.), 4.
Beaumont oil field, Phillips (W. B.), 2.
Chemistry of asphalt rocks, Harper (H. W.), 1.
Cinabarin deposits of Bog Bend province, Hill (R. T.), 8.
Clavilithes from the Texas Eocene, Johnson and Grabau, 1.
Coal fields of Texas, Ries, 14.
Coal, lignite, and asphalt rocks, Phillips (W. B.), 6, 12.
Coast prairie of Texas, Hill (R. T.), 1.
Composition and occurrence of petroleum, Mabery, 3.
Composition of Texas petroleum, Mabery, 1.
Corals of Buda limestone, Vaughan, 17.
Cretaceous and later rocks of Presidio and Brewster counties, Dumble, 12.
El Paso tin deposits, Weed, 4.
Excavation of Mastodon remains, Mackensen, 1.
Foraminiferal ooze, Udden, 9.
Fossils from Texas Cretaceous, Prather, 1.
Fresh-water Tertiary of Texas, Gidley, 4.
Geography of Texas, Simonds, 4.
Geological horizon of petroleum, Fishback, 1.
Geologie und Petrographie der Apache Mountains, Osann, 1.
Geology of Beaumont oil field, Dumble, 2.
Geology of Shafter silver mine district, Udden (Jolan A.), 11.

Texas—Continued.
Geology of southwestern Texas, Dumble, 13.
Gestringen deis minerals de mercure, Demaret, 2.
Glyptodont from Texas Pleistocene, Osborn, 17.
Great oil well near Beaumont, Dumble, 8.
Great oil well near Beaumont, Lucas (A. F.), 1.
Gypsum deposits in Texas, Hill (B. F.), 3.
Industrie du petrole en Californie, Heurteau, 2.
Iron ores of east Texas, Dumble, 3, 6.
Iron ores of northeastern Texas, Eckel, 37.
Kansas-Oklahoma-Texas gypsum hills, Gould, 4.
Koprolithen des Perms von Texas, Neumayer, 1.
Kreide-Ammoniten von Texas, Lasswitz, 1.
Lead ore in Burnett County, Phillips (W. B.), 9.
Mart and Bluff meteorites, Charlton, 1.
Mercury minerals from Terlingua, Moses, 2.
Meteorites-Studien, Cohen, 4.
Meteoriten von Cuernavaca und Tepic, Cohen, 8.
Meteorite from Allegan, Mich., and Mart, Tex., Merrill and Stokes, 1.
Minerals and mineral localities of Texas, Simonds, 1, 3.
Mollusca of Buda limestone, Shattuck, 8.
Morphology of the skull of Dimetrodon, Case, 10.
Mylona from Coal Measures of Texas, Whitfield, 2.
Native sulphur in El Paso County, Richardson (G. B.), 8.
New mercury mineral from Terlingua, Hillebrand, 8.
New quicksilver field in Brewster County, Phillips (W. B.), 8.
New quicksilver mining district, Kirk and Malcolmson, 1.
Oil and gas fields of western interior and Gulf coast, Adams (G. I.), 2.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes (C. W.), 13.
Oil fields of Texas-Louisiana Gulf coastal plain, Hayes and Kennedy, 1.
Oil fields of the Texas-Louisiana coastal plain, Fenneman, 7.
Oil fields of the Texas-Louisiana Gulf coast, Fenneman, 8.
Oil in Texas, Harris, 1.
Oligocene of western Europe and southern United States, Maury, 1.
Origin of natural mounds, Veatch, 10.
Paleontology of the Malone Jurassic formation, Cragin, 2.
Pelycosaur from Texas, Case, 10.
FOE THE YEARS 1901–1905, INCLUSIVE.

Texas—Continued.

Pelycosaurierreste von Texas, Broili, 4.
Permian life of Texas, Sternberg, 2.
Permische Stegocephalen und Reptilien aus Texas, Broili, 2.
Petroleum from the Beaumont field, Richardson and Wallace, 1.
Petroleum industry of Europe and America, Otsuka, 1.
Physical geography, geology, and resources of Texas, Dumble, 1.
Platygonus from Texas Pliocene, Giddley, 3.
Portland-cement resources of Texas, Taff, 15.
Quartz-feldspar-porphyry from Llano, Iddings, 3.
Quecksilbermineralien von Terlingua in Texas, Moses, 4.
Quicksilver deposits of Brewster County, Phillips (W. B.), 14.
Quicksilver district in Brewster County, Phillips (W. B.), 10.
Quicksilver industry in Brewster County, Phillips (W. B.), 11.
Quicksilver mines in Brewster County, Spalding, 1.
Reconnaissance in trans-Pecos Texas, Richardson (G. B.), 4.
Red sandstone of Diabolo Mountains, Dumble, 11.
Results of late mineral research in Llano County, Hidden, 1.
Sulf, gypsum, and petroleum in trans-Pecos Texas, Richardson (G. B.), 7.
Skull of Dinocyon from Miocene of Texas, Matthew (W. D.), 3.
Southern oil fields, Hager, 1.
Southwestern coal field, Taff, 5.
Stratigraphic notes on Malone Mountain, Stanton, 7.
Stratigraphic relations of Red Beds, Adams (G. I.), 11.
Stratigraphic sequence in trans-Pecos Texas, Richardson (G. B.), 5.
Sulphur, oil, and quicksilver in trans-Pecos Texas, Phillips (W. B.), 5.
Terlingua quicksilver deposits, Brewster County, Hill (B. F.), 1.
Terlingua quicksilver district, Kirk, 1.
Terlingua quicksilver deposits, Turner, 17.
Tertiary of Sabine River, Dumble, 10.
Texan oil deposits, Willey, 1.
Texas mercury minerals, Hill (B. F.), 2.
Texas oil-well fossil, Aldrich, 1.
Texas petroleum, Phillips (W. B.), 1.
Texas petroleum, Thiele, 1.
Tin deposits at El Paso, Weed, 15.
Trans-Pecos sulphur field, Caracristi, 1.

Texas—Continued.

Ueber Diacranodus texensis Cope, Broili, 3.
Upper Permian in western Texas, Girty, 2.
Vertebrates from Permian, Case, 5.
Volcanic origin of oil, Coste, 4.
Vorkommen der texanischen Quecksilbermineralien, Hill (B. F.), 4.

Triassic.

Alaska.

Geology of Copper River region, Mendellahl, 8.
Mesozoic section on Cook Inlet, Stanton and Martin, 1.
Stratigraphy and igneous rocks of Alaska, Emerson (B. K.), 6.

Appalachian region.

Mount Mitchell folio, Keith, 12.

Atlantic coast region.

Former extent of Newark system, Hobbs, 9.
Lodel Creek and Skippack Creek, Lynn, 2.
Mining in the Richmond coal basin, Virginia, Woodworth, 3.
New York City folio, Merrill and others, 1.

Canada.

Fossils, possibly Triassic, in bowlder clay of Kings County, Haycock, 2.
Geological history of Gaspereau Valley, Haycock, 1.
Geological record of Rocky Mountain region, Dawson, 2.
Geologie von Canada, Haas, 2.
Geology of Vancouver Island, Haycock, 3.
Geology of Vancouver Island, Webster, 1.
Kings and Hants counties, Nova Scotia, Fletcher, 2.
Synopsis of geology of Canada, Ami, 2.

Great Basin region.

Basin range structure of the Humboldt region, Louderback, 4.
Geology of Nevada, Spurr, 6.
Geology of southeastern Arizona, Huntington and Goldthwait, 1.
Notes on geology of southeastern Arizona, Dumble, 7.
Status of Mesozoic foras, Ward (L. F.), 5.

Great Plains region.

Aladdin folio, Darton and O'Harra, 1.
Atlantosaur and Titanotherium beds of Wyoming, Peck, 4.
Edgemont folio, Darton and Smith, 1.
Geology and underground water resources of the central Great Plains, Darton, 18.
Gypsum deposits in Wyoming, Knight (W. C.), 9.
Hallopus, Baptanodon, and Atlantosaur beds of Marsh, Williston, 25.
Hartville folio, Smith (W. S. T.), 1.
Newcastle folio, Darton, 14.
Triassic—Continued.

Great Plains region—Continued.

Oelrichs folio, Darton, 8.

Red Beds of Black Hills, Richardson (G. B.), 2.

Sundance folio, Darton, 26.

Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 13.

New England and New York.

Nature's hieroglyphics, Lull, 4.

Newark system of the Pomperaug Valley, Hobbs, 2.

Physical geography and geology of Connecticut, Rice, 1.

Wells of Triassic area of Connecticut Valley, Pynchon, 11.

Pacific coast region.

Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.

Gold belt of Blue Mountains of Oregon, Lindgren, 4.

Klamath Mountain section, Diller, 12.

Marine sediments of eastern Oregon, Washburne, 1.

Marine Trias of western America, Smith (J. P.), 5.

San Luis folio, Fairbanks, 7.

Triassic cephalopod genera, Hyatt and Smith, 1.

Triassic Ichthyopterygia from California and Nevada, Merriam (J. C.), 4.

Triassic Reptilia from northern California, Merriam (J. C.), 5.

Rocky Mountain region.

Aladdin folio, Darton and O'Harra, 1.

Border line between the Paleozoic and Mesozoic, Smith (J. P.), 1.

Copper deposits of the Encampment district, Spencer (A. C.), 10.

Dinosaur beds of the Grand River Valley, Riggs, 1.

Geology and ore deposits of Elkhorn mining district, Montana, Weed, 5.

Geology of Black Hills, Darton, 1.

Geology of the Boulder district, Fennerman, 10.

Geology of the Hellgate and Big Black-foot valleys, Winchell (N. H.), 25.

Halopes, Baptanodon, and Atlantosaurus beds of Marsh, Williston, 25.

La Plata folio, Cross and Spencer, 3.

Marine Trias of western America, Smith (J. P.), 5.

Red Beds of Colorado, Cross and Howe, 2, 4.

Sundance folio, Darton, 26.

Stratigraphy of Black Hills, Bighorn Mountains, and Rocky Mountain front range, Darton, 16.

Trias in northeastern Oregon, Lindgren, 3.

Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 6.

Triassic cephalopod genera, Hyatt and Smith, 1.

Southwestern region.

Fossils from the Red Beds, Gould, 1.

Geology and underground water conditions of the Jornada del Muerto, Keyes, 49.

Geology of the James-Albuquerque region, Reagan, 1.

Gypsum deposits in New Mexico, Herrick (H. N.), 1.

Jurassic horizon around the southern end of the Rocky Mountains, Keyes, 51.

Kansas-Oklahoma-Texas gypsum hills, Gould, 4.

Triassic system in New Mexico, Keyes, 50.

General.

Trinidad.

Growth of Trinidad, Guppy, 8.

Komuto shell-bed, Guppy, 6.

Utah.

Areal geology of the Bingham mining district, Keith, 13.

Bingham mining camp, Emmens, 1.

Cactus copper mine, Emmens (S. P.), 21.

Cement materials and industry of the United States, Eckel, 34.

Coal mining at Sunnyside, Harrington (D.), 1.

Colossal bridges of Utah, Dyar, 1.

Colossal bridges of Utah, Winchell (N. H.), 22.

Copper deposits of Beaver River Range, Crowther, 1.

Delamar and Horn-Silver mines, Emmens (S. F.), 3.

Economic geology of the Bingham district, Bottwell, 12.

Economic geology of the Bingham mining district, Emmens (S. F.), 22.

Eruption of rhyolite, Gilbert, 9.

Genesis of ore deposits at Bingham, Utah, Bottwell, 14.

Geology of Bingham Canyon, Kemp, 16.

Geology of Mercur, Dern, 1.

Geology of Park City district, Bell (R. N.), 4.

Geology of Utah, Talmage, 2.

Gold production of North America, Lindgren, 16.

Great Salt Lake Basin, Lakes, 37.

Gypsum, Diehl, 1.

Gypsum deposits in Utah, Bottwell, 3.

Hurricane fault in southwestern Utah, Huntington and Goldthwait, 1.

Hurricane fault in the Toquerville district, Huntington and Goldthwait, 2.

Iron ores in the Uinta Mountains, Bottwell, 5.

Iron ores in Utah, Leith, 11.
Utah—Continued.
Iron ores of the Uinta Mountains, Warwick, 1.
Joint veins, Gilbert, 2, 8.
Little Cottonwood granite body of Wasatch Mountains, Emmons (S. F.), 9.
Mineral crest, Emmons (S. F.), 12.
Mineral crest, Jenney, 2, 3.
Mineral crest, Smith (G. O.), 11.
Mineral resources of the Uinta Mountains, Berkey, 4.
Mineralogical notes, Headden, 4.
Mountain ranges of Great Basin, Davis (W. M.), 46.
Natural gas near Salt Lake City, Richardson (G. B.), 6.
Notes on two desert mines, Emmons (S. F.), 2.
Oil and asphalt prospects in Salt Lake basin, Utah, Boutwell, 11.
Ore deposits of Bingham, Boutwell, 2, 10, 18.
Origin of magnetic iron ores of Iron County, Jennings (E. F.), 2.
Paleontology of the Bingham mining district, Gilty, 12.
Park City mining district, Boutwell, 1, 4.
Platonia province of Utah and Arizona, Davis (W. M.), 45.
Reconnaissance of the Uintah reservation, Berkey, 5.
Red beryl from Utah, Hillebrand, 5.
Report on Park City mining district, Boutwell, 8.
Rock gypsum at Nephi, Boutwell, 6.
Rocky Mountain coal fields, Storrs (L. S.), 1.
Salt industry in Utah and California, Eckel, 26.
Slate deposits of California and Utah, Eckel, 24.
State line mining district, Smith (G. H.), 1.
Stratigraphy of Uinta Mountains, Berkey, 8.
Vanadium and uranium in southeastern Utah, Boutwell, 9.
Wasatch, Canyon, and House ranges, Davis (W. M.), 59.

Vermont—Continued.
Correlation of Piedmont formations, Mathews, 6.
Fauna of the Chazy limestone, Raymond (P. E.), 7.
Field work at Larrabees Point, Shimer, 3.
Fossil fruits and lignites of Brandon, Vt., Knowlton, 11.
Fossil fruits of Tertiary lignite of Brandon, Perkins, 13.
Geological relations of Brandon lignite, Dale, 6.
Geology of Ascutney Mountain, Daly, 7.
Geology of Grand Isle, Perkins, 1.
Geology of Grand Isle County, Perkins, 11.
Geology of the Taconic Range, Dale, 3.
Geology of Vermont, Seely, 2.
Glacial and post-glacial history of the Hudson and Champlain valleys, Péet, 1.
Glaciation of the Green Mountains, Hitchcock (C. H.), 7, 8.
Granite of Barre, Finlay (G. I.), 1, 3.
Hydrology of Vermont, Perkins, 14.
Lignite of Brandon and its fossils, Perkins, 12.
List of reports on the geology of Vermont, Perkins, 4.
List of works on the geology of Vermont, Perkins, 9.
Marble, slate, and granite industries, Perkins, 1.
Mineral industries, Perkins, 6.
Mineral industries and geology of certain areas of Vermont, Perkins, 4.
Mineral resources of Vermont, Perkins, 2, 10, 16.
Occurrence of asbestos, Kemp, 8.
Petrographic description of dikes of Grand Isle, Shimer, 1.
Petrography of Belvidere Mountain deposits, Marsters, 3.
Quartz veins in Maine and Vermont, Smith (G. O.), 14.
Serpentine belt of Lamoille and Orleans counties, Marsters, 2.
Serpentine of Belvidere Mountain, Marsters, 4.
Sketch of the life and work of Augustus Wing, Seely, 1.
State investigations during 1904, Dale, 8.
Sponges of Chazy formation, Seely, 3.
Stromatoceris of Isle La Motte, Seely, 5.
Structural details in Green Mountain region, Dale, 1.
Taconic physiography, Dale, 9.
Terranes of Orange County, Richardson (C. H.), 2.
Tertiary lignite of Brandon, Perkins, 17.
Triassic rocks of the Connecticut Valley as a source of water supply, Fuller (M. L.), 18.

Vermont.
Analysis of Washington marble, Richardson (C. H.), 1.
Asbestos region in northern Vermont, Kemp, 3, 6, 14.
Brandon clays, Woodworth, 8.
Cement materials and industry of the United States, Eckel, 34.
Concretions from Connecticut Valley, Sheldon, 1.
Copper deposits of Orange County, Smyth and Smith, 1.
Copper mines of Vermont, Weed, 28.
Vermont—Continued.
Underground waters of Vermont, Perkins, 15.
Water resources of Fort Ticonderoga quadrangle, Dale, 7.
Water resources of Taconic quadrangle, Taylor (F. B.), 5.
Water resources of Vermont, Perkins, 8.

Virginia.
Age of the Wise and Harlan formations of southwestern Virginia, White, 23.
Analysis of emery, Miller (W. W.), 1.
Arsenic mines at Brinton, Cowan, 1.
Atlantic coast Triassic coal field, Woodworth, 4.
Big Stone Gap coal field, Pultz, 1.
Cambro-Ordovician limestones of the Valley of Virginia, Campbell (H. D.), 1.
Carboniferous of the Appalachian basin, Stevenson (J. J.), 6.
Cement materials of the valley of Virginia, Bassler, 3.
Cement resources of the valley of Virginia, Catlett, 3.
Clays of the United States, Hies, 6.
Coals of Pocahontas field, Fowler, 1.
Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirsopp, 1.
Coal in Clallam County, Arnold, 5.
Cleatum iron ores, Smith and Willis, 1.
Coal deposits of Washington, Landes, 3.
Coal deposits of Washington, Landes and Ruddy, 1.
Coal in Clallam County, Arnold, 5.
Copper deposits of Appalachian States, Weed, 17.
Copper deposits of eastern United States, Weed, 37.
Copper deposits of southern United States, Weed, 2.
Copper-bearing rocks of Virgilina copper district, Watson (T. L.), 6.
Correlation of the Potomac formation, Ward (I. F.), 3.
Gisements de minerals de zinc, Demaret, 1.
Gypsum deposits in Virginia, Eckel, 23.
Lead and zinc deposits, Watson (T. L.), 17.
Lower Carboniferous of Appalachian basin, Stevenson (J. J.), 4.
Meteoric iron from Augusta County, Campbell and Howe, 1.
Mining in the Richmond coal basin, Woodworth, 3.
Norfolk folio, Darton, 7.
Northern coals of Big Sandy basin, Althouse, 1.
Occurrence of unakite, Phalen, 2.
Optische Orientirung des Albit von Amerlia, Becke, 1.
Origin of Oriskany limonites, Johnson (J. E.), 1.
Portland-cement resources of Virginia, Bassler, 2.
Report on various collections of fossil plants from the older Potomac of Virginia and Maryland, Fontaine, 5.
Richmond coal basin, Gay, 1.

Washington.
Abandoned stream gaps in northern Washington, Smith (G. O.), 12.
Anticlinal mountain ridges in central Washington, Smith (G. O.), 10.
Basalt mounds of the Columbia lava, Piper, 1.
Bibliography of literature referring to geology of Washington, Arnold, 1.
Building and ornamental stones of Washington, Shedd, 2.
Cement materials and industry of the United States, Eckel, 34.
Clay deposits of Washington, Landes, 5.
Cleatum iron ores, Smith and Willis, 1.
Coal deposits of Washington, Landes, 3.
Coal deposits of Washington, Landes and Ruddy, 1.
Coal fields of Cook Inlet, Alaska, and Pacific coast, Kirsopp, 1.
Coal in Clallam County, Arnold, 5.
Copper ores in the Cascade Mountains, Stretch, 4.
Discussion of Cleatum iron ores, Courtis, 1.
Dumortierite, Schaller, 5, 7.
Ellensburg folio, Smith (G. O.), 7.
Field notes on Mount Rainier, Landes, 6.
Fossil plants from State of Washington, Knowiton, 8.
Geological reconnaissance across the Cascade Range, Smith and Calkins, 1.
Geology and physiography of central Washington, Smith (G. O.), 8.
Geology and water resources of central Washington, Calkins, 3.
Geology and water resources of Yakima County, Smith (G. O.), 3.
Geology of Mount Rainier, Smith (G. O.), 1.
Geology of Washington, Landes, 1.
Glacial drift in the Dakotas, Montana, Idaho, and Washington, Upham, 27.
Washington—Continued.
Glacial drift in Washington, Upham, 28.
Glaciers of Mount Hood and Mount Adams, Reid (H. F.), 17.
Gold placers of the coast of Washington, Arnold, 4.
Independent mine at Silverton, Stretch, 2.
Iron ores of Washington, Shedd, 1.
Lake Chelan, Fairbanks, 4.
Lake Chelan and its glacier, Gannett, 3.
Mammals in the swamps of Whitman County, Sternberg, 3.
Metalliferous resources of Washington, Landes and others, 1.
Molybdenite at Crown Point, Crook, 3.
Mount Baker mining district, Smith (G. O.), 4.
Mount Stuart folio, Smith (G. O.), 13.
Mounts Hood and Adams and their glaciers, Reid (H. F.), 6.
Nonmetalliferous resources of Washington, Landes, 2.
Ore deposits of Monte Cristo, Spurr, 3.
Ore deposits of Monte Cristo, Washington, Winchell (H. V.), 1.
Ores of the Republic mine, Chatard and Whitehead, 1.
Physiography and deformation of the Wenatchee-Chelan district, Willis, 11.
Pseudo-serpentine from Stevens County, Clarke (F. W.), 2, 5.
Reconnaissance of Mount Hood and Mount Adams, Reid (H. F.), 4.
Silverton mining district, Stretch, 1.
Stratigraphic problems in the Cascades, Smith (G. O.), 15.
Water resources of Washington, Byers (H. G.), 1.
Water resources of Washington, Heine, 1.
Water resources of Washington, Ruddy, 1.

West Indies—Continued.
Activity of Mont Pelée, Hellprin, 4.
Age des formations volcaniques de la Martinique, Giraud, 1.
Analyses of volcanic ejecta from Martinique and St. Vincent, Hillebrand, 1.
Analysis of dust from La Soufrière, Bridgford, 1.
Antillean volcanoes, McGeey, 3.
Auszubruchseriode des Mont Pelée, Stiibel, 2.
Bibliography of West Indian eruptions, Hovey (E. O.), 32.
Bitumen in Cuba, Vaughan, 8.

Bituminous deposits of Cardenas, Cuba, Peckham (H. E.), 1.
Cendres des éruptions de la Montagne Pelée, Lacroix, 2.
Changes in nomenclature of West Indian corals, Vaughan, 13.
Composition chimique des poussières volcaniques de la Martinique, Gillet, 1.
Composition des cendres projetées par la Montagne Pelée, Michel-Lévy, 2.
Composition des gaz des fumerolles du Mont Pelée, Gautier, 1.
Copper mines near Havana, Weed, 34.
Copper mines of Cobre, Santiago de Cuba, Moffet, 1.
Copper mines of Santa Clara Province, Cuba, Vaughan, 6.
Corridérite dans les produits éruptifs de la Montagne Pelée, Lacroix, 17.
Cuban fossil mammals, Vaughan, 9.
Dominica, Sapper, 12.
Dust from Soufrière, Bonney, 5.
Earliest Tertiary coral reefs in the Antilles and United States, Vaughan, 10.
Enclaves basiques des volcans de la Martinique, Lacroix, 18.
Enclaves des andésites de Montagne Pelée, Lacroix, 6.
Erosion phenomena in St. Vincent and Martinique, Hovey (E. O.), 35.
Erosion phenomena on Mont Pelée and Soufrière, Hovey (E. O.), 24.
Erosion phenomena on the islands of St. Vincent and Martinique, Hovey (E. O.), 30.
Éruption de la Martinique, Lacroix and others, 5.
Éruption de la Montagne Pelée, Lacroix, 13.
Éruption de la Montagne Pelée, Michel-Lévy, 1.
Éruption du volcan de Saint-Vincent, Lacroix, 15.
Éruption de Pelée, Jaggar, 6, 8.
Éruption volcanique à la Martinique, Thierry, 1.
Éruptions de Saint-Vincent, Lacroix, 19.
Éruptions des nuages de la Montagne Pelée, Lacroix, 12.
Éruptions of La Soufrière, St. Vincent, in May, 1902, Hovey (E. O.), 10.
Éruptions of Mont Pelée and the Soufrière, Hovey (E. O.), 33.
Éruptions de Soufrière, Anderson and Flett, 2.
Éruptions of 1902 of La Soufrière, St. Vincent, and Mont Pelée, Martinique, Hovey (E. O.), 9.
Éruptions volcaniques de la Martinique, Lacroix, 11.
État actuel de la Soufrière de la Guadeloupe, Lacroix, 14.
West Indies—Continued.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>État actuel du volcan de la Montagne Pelée, Lacroix</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Evolution of the Antilles, Falconer</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Field notes of a geologist in Martinique and St. Vincent, Jaggar</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Fossil corals from the elevated reefs of Curacao, Aruba, and Bonaire, Vaughan</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Fossil land shells of Bermuda, Gulick</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fossils of the Bahamas Islands, Dall</td>
<td></td>
<td>15, 16</td>
</tr>
<tr>
<td>Gaz des fumerolles du Mont Pelée</td>
<td>Moissan</td>
<td>1</td>
</tr>
<tr>
<td>Geography of Cuba, Vaughan and Spencer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geological and physical development of Antigua, Spencer (J. W.)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geological and physical development of Anguilla, St. Martin, St. Bartholomew, and Soubrero, Spencer (J. W.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geologic and physiographic history of the Lesser Antilles, Hill (R. T.),</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Geological age of the West Indian volcanic foundation, Spencer (J. W.),</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Geological and physical development of Barbados, Spencer (J. W.)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Geological and physical development of Dominica, Spencer (J. W.)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Geological and physical development of Guadeloupe, Spencer (J. W.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Geological and physical development of the St. Christopher chain and Saba banks, Spencer (J. W.)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Geological features of Azores, Howarth</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geological notes on the Marbela Manjak mine, Guppy</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Geological reconnaissance of Cuba, Hayes, Vaughan, and Spencer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Geological relationship of volcanoes of West Indies, Spencer (J. W.)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Geologie Haitis, Tippenhauser</td>
<td></td>
<td>1, 2</td>
</tr>
<tr>
<td>Geology and physiography of Cuba, Hamilton</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Gigantic fossil Lucina, Dall</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gold in Santo Domingo, Garrison</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Grande Soufrière de Guadeloupe, Hovey (E. O.)</td>
<td></td>
<td>28, 31</td>
</tr>
<tr>
<td>Guadeloupe, Sapper</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>History of the Caribbean Islands, Frazer</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Hydrology of Cuba, Fuller (M. L.), Inner cone of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Insel Grenada, Sapper</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Insel Montserrat, Sapper</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Insel S. Lucia, Sapper</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Inseln Nevis und S. Kitts, Sapper</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

West Indies—Continued.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron ores of Cuba, Spencer (A. C.)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Krater der Soufrière von St. Vincent, Sapper</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Manganese deposits of Santiago, Spencer (A. C.)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Manganese deposits of Santiago Province, Cuba, Spencer (A. C.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Manganese mining in Cuba, Chibas</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Martinique, Sapper</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Martinique and St. Vincent</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Martinique and St. Vincent revisited, Hovey (E. O.)</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Martinique und St. Vincent, Stübel,</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Martinique und sein Vulkaniamus, Deckert</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mechanism of the Mont Pelée spine, Gilbert</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Mineral deposits of Santiago, Cuba, Souder</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mineral deposits of Santiago, Cuba, Wenstrom</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mission de la Martinique, Lacroix</td>
<td></td>
<td>4, 16</td>
</tr>
<tr>
<td>Mont Pelée, Hovey (E. O.), new cone and obelisk of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Mont Pelée, Hovey (E. O.), new cone and obelisk of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Mont Pelée and tragedy of Martinique, Helprin</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mont Pelée—the eruptions of August 24 and 30, 1902, Helprin, 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Montagne Pelée et ses éruptions, Lacroix, 20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Nature of Pelé's tower, Helprin</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Nature of phenomena of eruption of Mont Pelée, Divers</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>New cone and obelisk of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>New cone of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Next eruption of Pelée, Jaggar</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Obelisk of Mont Pelée, Helprin</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Obelisk of Mont Pelée, Hovey (E. O.)</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Obelisk of Montagne Pelée, Helprin, 5 Observations minéralogiques faites sur les produits de l'incendie de Saint-Pierre, Lacroix, 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations sur les éruptions volcaniques, Lacroix, 7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Occurrence of gold and coal in Trinidad, Guppy</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Peculiar character of eruption of Mont Pelée, Verrill</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pelée and the evolution of the Windward Archipelago, Hill (R. T.), 16</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Pelée obelisk, Russell, 12, 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelée's obelisk, Argall (P. H.), 1, Physical history of the Windward Islands, Hill (R. T.), 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiography and geology of Bahama Islands, Shattuck and Miller</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Porto Rico, its topography and aspects, Wilson (H. M.), 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOR THE YEARS 1901-1905, INCLUSIVE.

West Indies—Continued.

Preliminary report on recent eruption of Soufrière in St. Vincent, and of a visit to Mont Pelée, in Martinique, Anderson and Flett, 1.

Préface de l’argon dans les gisements de la Guadeloupe, Moissan, 2.

Recent eruptions of Mont Pelée, Nicholls, 1.

Recent tuffs of the Soufrière, Howe (E.), 2.

Recent volcanic eruptions, Anderson (F.), 1.

Recent volcanic eruptions in West Indies, Milne, 1.

Recent volcanic eruptions in West Indies, Russell, 3.

Roches volcaniques de la Martinique, Lacroix, 1, 3.

S. Eustatius und Saba, Sapper, 13.

St. Vincent, Sapper, 9, 18.

St. Vincent, eruptions of 1902, Hovey (E. O.), 36.

Saugranda borings, Trinidad, Guppy, 2, 3.

Secondary phenomena of West Indian volcanic eruptions, Curtis, 1.

Soufrière of St. Vincent, Hovey (E. O.), 27.

Spine on Pelée, Jaggar, 7.

Stony corals of the Porto Rican waters, Vaughan, 3.

Tower of Pelée, Heilprin, 9, 10.

Union of Cuba with Florida, Spencer (J. W.), 11.

Visit to Martinique and St. Vincent after the great eruptions of May and June, 1902, Hovey (E. O.), 11.

Volcanic action and the West Indian eruptions of 1902, Lobley, 1.

Volcanic disturbances in the West Indies, Hill (R. T.), 6.

Volcanic dust, Falconer, 1.

Volcanic dust and sand from St. Vincent, Diller and Steiger, 1.

Volcanic dust from West Indies, Porter (F. R.), 1.

Volcanic dust from West Indies, Teall, 1.

Volcanic dust of Mont Pelée, Griffiths, 1.

Volcanic eruptions in the West Indies, Anderson (F.), 2.

Volcanic eruptions in the West Indies, Burns, 1.

Volcanic eruptions on Martinique and St. Vincent, Russell, 4.

Volcanic rocks of Martinique and St. Vincent, Diller, 7.

Volcanoes of Caribbean Islands, Hovey (E. O.), 22.

Volcanoes of Martinique, Guadeloupe, and Saba, Hovey (E. O.), 44.

Volcanoes of St. Vincent, St. Kitts, and Statia, Hovey (E. O.), 45.
West Virginia—Continued.

Petroleum and natural gas, White (I. C.), 8.

Properties of Summit Coal Company in Marshall County, Von Rosenberg, 1.

Pure limestone in Berkeley County, Stose, 2.

Raleigh folio, Campbell (M. R.), 5.

Siluric and Devonic Cystidea and Camarocrinus, Schuchert, 11.

Slate industry at Martinsburg, Dale, 2.

Slate investigations during 1904, Dale, 8.

Steinkohlengebiete von Pennsylvanien und Westvirginien, Simmersbach, 1.

Trip to West Virginia, Poole, 9.

Tug River coal field, Payne, 1.

Underground waters of West Virginia, Fuller (M. L.), 26.

Variation and equivalence of the Charleston sandstone, Campbell (M. R.), 10.

Water resources of Frostburg and Flintstone quadrangles, Martin (G. C.), 10.

Water resources of Pawpaw and Hancock quadrangles, Stose and Martin, 1.

Water resources of the Nicholas quadrangle, Ashley, 8.

Wisconsin.

Age of St. Croix Dalles, Upham, 31.

Baraboo iron ore, Hille, 2.

Baraboo iron ore, Winchell (N. H.), 23.

Baraboo iron-bearing district of Wisconsin, Weidman, 5.

Baraboo iron range, Rohn, 1.

Cement materials and industry of the United States, Eckel, 34.

Clays and clay industries, Buckley, 1.

Clays of the United States, Ries, 6.

Copper-bearing rocks of Douglas County, Grant (U. S.), 1.

Current notes on physiography, Davids (W. M.), 34.

Delavan lobe of Wisconsin stage of glaciation, Alden, 3.

Drumlins of southeastern Wisconsin, Alden, 4.

Eisenerzlagerstätten am Lake Superior, Mucco, 1.

Emigrant diamonds in America, Hobbs, 8.

Examples of joint-controlled drainage, Hobbs, 26.

Field work in Wisconsin lead and zinc district, Grant (U. S.), 8.

Forest beds of the lower Fox, Lawson (P. V.), 1.

Fossil Unio from Wisconsin, Wagner, 2.

Gisements de minerals de zinc, Dehaut, 1.

Glacial features of the St. Croix Dalles region, Chamberlin (R. T.), 1.

Glacial gold in Wisconsin, Thomas, 2.

Glacial lake Nicolet, Upham, 17.
Wisconsin—Continued.
Zinc and lead mines near Dodgeville, Ellis (E. E.), 1.
Zinc and lead ores of southwestern Wisconsin, Grant (U. S.), 10.

Wyoming—Continued.
Aladdin folio, Darton and O’Harra, 1.
A new hill of Wyoming, Read, 3.
Alkali lakes and deposits, Knight and Slosson, 1.
Armadillo from middle Eocene, Osborn, 30.
Astrodon (Pleurocetus) in the Altanotosaurus beds of Wyoming, Hatcher, 16.
Atlanticosaurus and Titanotherium beds, Peck, 4.
Baked clays and natural slags in eastern Wyoming, Bastin, 1.
Bonanza, Cottonwood, and Douglas oil fields, Knight and Slosson, 4.
Cement materials and industry of the United States, Eckel, 34.
Ceratopsia from the Laramie, Wy., Hatcher, 22.
Coal fields of Uinta County, Knight (W. C.), 7.
Coal of the Bighorn basin, Fisher (C. A.), 5.
Coal of the Black Hills, Darton, 20.
Coal resources of Wyoming, Trimbull, 4.
Copper deposits of the Encampment district, Spencer (A. C.), 10.
Copper mining in the Encampment and Pearl districts, Read, 4.
Crocodile from Wyoming Jurassie, Holland, 2.
Description of Bates Hole, Knight (W. C.), 1.
Deposit of titanite iron ore, Lindgren, 9.
Dinosaur Trachodon antecentis, Lucas (F. A.), 21.
Discovery of teeth in Baptanodon, Gilmore, 1.
Dutton, Rattlesnake, Arago, Oil Mountain, and Powder River oil fields, Knight and Slosson, 2.
Fore limb and manus of Brontosaurus, Hatch, 8.
Fossil turtles of the Bridger basin, Hay, 22.
Fresh-water Tertiaries at Green River, Davis (W. M.), 51.
Geologische Streifzüge durch die Prärien und Felsengebirge Nordamerikas, Fraas, 2.
Geology and mineral resources, Beebeer, 3.
Geology and underground water resources of the central Great Plains, Darton, 18.
Geology and water resources of the Patrick and Goshen Hole quadrangles, Adams (G. I.), 4.

Bull. 301—06—49
Wyoming—Continued.
Report by the State geologist, Beeler, 2.
Rocky Mountain coal fields, Storrs (L. S.), 1.
South Pass gold district, Fremont County, Beeler, 1.
Starfish from Cretaceous of Wyoming, Weller, 8.
Status of Mesozoic floras, Ward, 5.
Stratigraphy of the Black Hills, Darton, 2.
Sundance folio, Darton, 20.
Sweetwater mining district, Knight (W. C.), 3.
Teredo-like shell from Laramie group, Whitfield, 4.
Titaniferous magnetite in, Wyoming, Kemp, 36.
Triassic and Jurassic strata of the Black Hills, Hovey (E. O.), 13.

Miscellaneous—Continued.
Geology under the new hypothesis of earth origin, Fairchild, 6.
Geology under the planetesimal hypothesis of earth origin, Fairchild, 7.
Instituto Geologica de Mexico, Guild, 2.
Machine-made line drawings for the illustration of scientific papers, Daly, 14.
Magnetic phenomena around deep borings, Lane, 33.
Meeting of Section A of the American paleontological society, Hay, 20.
Meeting of Section E of American Association for the Advancement of Science, Hovey, 37, 39.
Method of facilitating photography of fossils, Van Ingen, 5.
Microscopic-petrographical methods, Wright (F. E.), 2.
Nansen's bathymetrical features of the north polar sea, Spencer (J. W.), 16.
Nebular and planetesimal theories of the earth's origin, Upham, 29.
The new geology and vein formation, Edwards (W. F.), 1.
New Paleotrochis locality, Cobb, 3.
Ore deposits and industrial supremacy, Stewart (J. L.), 1.
Paleochemistry of the ocean in relation to animal and vegetable protoplasm, Macallum, 1.
Physiography in the university, Marbut, 5.
Problems of geology, Van Hise, 15.
Problems of geophysics, Becker, 4.
Prof. James Hall and the Troost manuscript, Clarke (J. M.), 24.
Relation of geology to the mining industry, Lawson (A. C.), 12.
Relations of the earth sciences in view of their progress in the nineteenth century, Davis (W. M.), 53.
Scope of applied geology, Johnson (D. W.), 10.
Scope of geological teaching, Rice, 2.
State geological survey for Colorado, Finch (J. W.), 2.
Study of stratigraphy, Parks, 7.
System of keeping the records of a State geological survey, Buckley, 6.
Training of engineers in economic geology, Branner, 9.
University training of engineers in economic geology, Irving, 8.
Where did life begin?, Winchell (N. H.), 20.

Miscellaneous—Continued.
Advantages of combining topographical with geological surveying in unexplored regions, Bell (R.), 9.
American Association for Advancement of Science, summer meeting, Hovey, 46.
Autophotography, White (C. H.), 2.
Cement resources of northeast Mississippi, Crider, 1.
Comparison of features of the earth and moon, Shaler, 2.
Construction of geophysical laboratory, Becker, 2.
Correction, Van Hise, 16.
Crystal drawing, Penfield, 7.
Deep borings in United States, Darton, 25.
Desarrollo de la geologia en Mexico, Aguilera, 5.
Division of applied geology, U. S. National Museum, Merrill (G. F.), 16.
Elements of geology, Le Conte, 4.
Evolution of climates, Manson, 1, 3.
Field work in Wisconsin lead and zinc district, Grant (U. S.), 8.
Field work of a physiography class, Low, 5.
Geological bookkeeping, Kemp, 30.
Geological mine maps and sections, Brunton, 1.
Geological Society of America, Hovey (E. O.), 25, 38, 40, 41.
Geological Survey of Canada as an educational institution, Walker (T. L.), 1.
Geology, under the new hypothesis of earth origin, Fairchild, 6.
Geology under the planetesimal hypothesis of earth origin, Fairchild, 7.
Instituto Geologica de Mexico, Guild, 2.
Machine-made line drawings for the illustration of scientific papers, Daly, 14.
Magnetic phenomena around deep borings, Lane, 33.
Meeting of Section A of the American paleontological society, Hay, 20.
Meeting of Section E of American Association for the Advancement of Science, Hovey, 37, 39.
Method of facilitating photography of fossils, Van Ingen, 5.
Microscopic-petrographical methods, Wright (F. E.), 2.
Nansen's bathymetrical features of the north polar sea, Spencer (J. W.), 16.
Nebular and planetesimal theories of the earth's origin, Upham, 29.
The new geology and vein formation, Edwards (W. F.), 1.
New Paleotrochis locality, Cobb, 3.
Ore deposits and industrial supremacy, Stewart (J. L.), 1.
Paleochemistry of the ocean in relation to animal and vegetable protoplasm, Macallum, 1.
Physiography in the university, Marbut, 5.
Problems of geology, Van Hise, 15.
Problems of geophysics, Becker, 4.
Prof. James Hall and the Troost manuscript, Clarke (J. M.), 24.
Relation of geology to the mining industry, Lawson (A. C.), 12.
Relations of the earth sciences in view of their progress in the nineteenth century, Davis (W. M.), 53.
Scope of applied geology, Johnson (D. W.), 10.
Scope of geological teaching, Rice, 2.
State geological survey for Colorado, Finch (J. W.), 2.
Study of stratigraphy, Parks, 7.
System of keeping the records of a State geological survey, Buckley, 6.
Training of engineers in economic geology, Branner, 9.
University training of engineers in economic geology, Irving, 8.
Where did life begin?, Winchell (N. H.), 20.