BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY FOR 1909 WITH SUBJECT INDEX

BY JOHN M. NICKLES

WASHINGTON UNIVERSITY

WASHINGTON GOVERNMENT PRINTING OFFICE 1910
QE 75
89
wo. 44-498
copy 2
CONTENTS.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Serials examined</td>
<td>6</td>
</tr>
<tr>
<td>Bibliography</td>
<td>11</td>
</tr>
<tr>
<td>Classified scheme of subject headings</td>
<td>112</td>
</tr>
<tr>
<td>Index</td>
<td>115</td>
</tr>
<tr>
<td>Lists</td>
<td>158</td>
</tr>
<tr>
<td>Chemical analyses</td>
<td>158</td>
</tr>
<tr>
<td>Minerals described</td>
<td>159</td>
</tr>
<tr>
<td>Rocks described</td>
<td>160</td>
</tr>
<tr>
<td>Geologic formations described</td>
<td>160</td>
</tr>
</tbody>
</table>

111771
INTRODUCTION.

The bibliography of North American geology, including paleontology, petrology, and mineralogy, for the year 1909 follows the plan and arrangement of its immediate predecessors, the bibliographies for 1906-7 and 1908 (Bulletins 372 and 409 of the U. S. Geological Survey). It includes publications bearing on the geology of the continent of North America and adjoining islands, also Panama and the Hawaiian Islands. Papers by American writers on the geology of other parts of the world are not included. Text-books and papers general in character by American authors are included; those by foreign authors are excluded unless they appear in American publications.

As heretofore, the papers, with full title and medium of publication and explanatory note when the title is not fully self-explanatory, are listed under the authors arranged in alphabetic order. The author list is followed by an index to the literature listed. In this index the entries, in one alphabet, are of three kinds—first, subject, with various subdivisions, to enable the specialist to ascertain readily all the papers bearing on a particular subject or area; second, titles of papers, many of them abbreviated or inverted, under their leading words; and third, cross references, which have been freely used to avoid too much repetition. The subjects have been printed in black-faced type, the titles of papers and cross references in ordinary type. As it may not be always obvious which subject headings have been adopted, a classified scheme of those used immediately precedes the index.

The bibliography of North American geology is comprised in the following bulletins of the U. S. Geological Survey: No. 127 (1732-1892); Nos. 188 and 189 (1892-1900); No. 301 (1901-1905); No. 372 (1906-7); and No. 409 (1908).
SERIALS EXAMINED.

American Mining Congress: Papers and Addresses, 11th Annual Session; 12th Annual Session.
California State Mining Bureau: Bulletin, nos. 54-56. San Francisco, Cal.
California, University of, Department of Geology: Bulletin, vol. 5, nos. 18-23. Berkeley, Cal.
Canada, Department of Mines, Mines Branch: Miscellaneous publications. Ottawa, Ont.
Canadian Institute: Transactions, vol. 8, pt. 3. Toronto, Ont.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Centralblatt für Mineralogie, Geologie und Paläontologie, Jahrgang 1909. Stuttgart, Germany.
Deutsche geologische Gesellschaft: Zeitschrift, Bd. 61; Monatsberichte, nos. 1-12. Berlin, Germany.
Indiana Academy of Science: Proceedings for 1908. Indianapolis, Ind.
Indiana, Department of Geology and Natural Resources: 33d Annual Report. Indianapolis, Ind.
Mexico, Instituto geológico: Parergones, t. 2, nos. 8-10, t. 3, nos. 1-3. Mexico, D. F.
Mining Science, vols. 57-60. Denver, Colo.
Neues Jahrbuch für Mineralogie, etc., 1909: Beilage Band, 27, 28. Stuttgart, Germany.
New Brunswick Natural History Society: Bulletin, no. 27 (vol. 6, pt. 2). St. John, N. B.
Ohio Naturalist, vol. 9, nos. 3–8, vol. 10, nos. 1–2. Columbus, Ohio.
Ontario, Bureau of Mines: Report, vol. 18, pts. 1, 2; General Index to Vols. I–XVI. Toronto, Ont.
Paleontographica, Bd. 55, Lief. 5–6; Bd. 56. Stuttgart, Germany.
St. Louis Academy of Science: Transactions, vol. 18, nos. 2–5. St. Louis, Mo.
Sociedad científica "Antonio Alzate:" Memorias y revista, t. 25, nos. 5–12. Mexico, D. F.
Sociedad geológica mexicana: Boletín, t. 5, 6, pt. 1. Mexico, D. F.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Techemaks Mineralogische und petrographische Mitteilungen, N. F., Bd. 27, 28. Vienna, Austria.

Zeitschrift für Krystallographie, Bd. 46, 47, H. 1–2. Leipzig, Germany.

Zeitschrift für praktische Geologie, Jg. 17. Berlin, Germany.
BIBLIOGRAPHY.

Adams, Frank Dawson.

Adams, Frank D., and Barlow, Alfred E.

Adams, W. J.

Agraz, Juan S.

Aguilera, José G.
10. The carboniferous deposits of northern Coahuila.—Eng. and Min. Jour., vol. 88, pp. 730-733, October 9, 1909. Describes the general geology of the coal fields of Coahuila, Mexico, the occurrence, character, and relations of Cretaceous coal-bearing strata, and the character and occurrence of the coal beds.
Alden, William C.
 The discussion is based upon the character of the drift in southern Wisconsin and northern Illinois.

Alderson, Matt. W.
 Describes ore deposits produced by thermal waters.

Aldrich, Thomas H., jr.

Allen, R. C.
 Describes the geology and structure of the range and the occurrence, character, and relations of the iron ores, the igneous origin of which is discussed.

Allen, Roy Hutchins.
 Includes notes on the geology and the occurrence of the copper ores.
 Includes notes on the local geology and the occurrence and character of the copper ores.

Allen, Eugene T., and White, W. P.

Ames, Mary Lesley.

Ami, Henry M.

Anderson, Glenn.

Anderson, Robert.
Anderson, Robert—Continued.
Describes the general geology, the volcanic rocks, the occurrence, character, relations, and origin of Tertiary sedimentary rocks, and prospecting for oil.
Includes notes upon the geology.

Anderson, Tempest.

Anonymous papers. See page 111.

Anrep, S. A.
Investigation of the peat bogs and peat industry of Canada during the season 1908-9.—See Nyström and Anrep, no. 903.

Arkansas Diamond Company.
29. A brief account of the discovery and investigation and the official reports of geologist and mining engineer on the occurrence of diamonds in Pike County, Arkansas. Little Rock, 1908. 38 pp.
Includes reports by John T. Fuller and Henry S. Washington.

Arnold, Ralph.
Describes the general geology and the characters of sedimentary, metamorphosed sedimentary, and igneous rocks.

Describes the stratigraphy of the region, comprising Mesozoic and Cenozoic formations, with lists of fossils showing distribution, and gives systematic descriptions of species.

Discusses the correlation of Tertiary formations of the Pacific coast States.
Description of the Santa Cruz quadrangle, California.—See Branner and others, no. 138.

Arnold, Ralph, and Johnson, H. R.

Ashley, George Hall.
Ashley, Harrison Everett.

Aston, James.

Atwood, Wallace W.

Babb, Percy Andrus.
44. The Magistral copper district, Mexico.—Eng. and Min. Jour., vol. 88, pp. 1215–1216, 2 figs., December 18, 1909. Includes notes on the local geology and occurrence of copper ores near Ameco, State of Jalisco, Mexico.

Bagg, Rufus Mather, jr.

Bain, Harry Foster.

Bain, Harry Foster, and others.

Baker, F. C.

Baker, M. B.
Balarezo, Manuel.
 Gives a summarized account of the silver and copper deposits of Mexico, with regard to geographic distribution, geologic occurrence, and types of deposits.

 Gives a brief account of ore-bearing deposits at El Dorado, Territory of Tepic, Mexico.

Ball, Max W.
 Describes the geography, stratigraphy, and structure of the field and the physical properties and composition of the coals.

Ball, S. Mays.

Ball, W. G.
The lead-silver deposits at Newburyport, Massachusetts, and their accompanying contact zones.—See Clapp and Ball, no. 229.

Bancroft, George J.

Barbour, Percy E.
 Includes notes on the occurrence of petroleum in the Los Angeles field, California.

Barlow, Alfred E.
 Describes the geology of the district and the occurrence of the silver ores.
 The nepheline and associated alkali syenites of eastern Ontario.—See Adams and Barlow, no. 4.

Barnett, V. H.
The stratigraphic and faunal relations of the Waldron fauna in southern Indiana.—See Kindle and Barnett, no. 670.

Baron, H. J.
 Includes notes on the occurrence of the silver ores.
 Includes notes on the local geology and the occurrence and character of the copper ores,
Barrell, Joseph.

Barry, John G.
Describes the occurrence of natural gas in Bottineau County and prospecting in the field.

Barry, John G., and Melsted, V. J.

Bartow, Edward.
71. Classification of waters according to physical and chemical properties.—Illinois State Geol. Survey, Bull. no. 10, pp. 22-55, 8 figs., 1909.

Bartow, Edward, and others.

Bascom, Florence.
Describes the occurrence and relations of the several pre-Cambrian gneisses.

Bascom, Florence, and others.
Describes the general physical features, the general geology and geologic structure, the distribution, character, and relations of pre-Cambrian, Cambrian, Ordovician, Triassic, Cretaceous, Tertiary, and Quaternary formations, and pre-Cambrian and Triassic igneous rocks, the geologic and physiographic history, and the mineral resources.

Describes the geography and topography, the occurrence, character, and relations of pre-Cambrian, Cambrian, Triassic, Cretaceous, Tertiary, and Quaternary formations, and of igneous rocks, the structural features, the geologic history, and the economic resources.

Baskerville, Charles.
Describes the characters and occurrence of minerals containing the rare metals titanium, tungsten, uranium, vanadium, zirconium.

Includes notes on the geology of oil-bearing shales of New Brunswick.

Bassler, Ray S.
78. The cement resources of Virginia west of the Blue Ridge.—Virginia Geol. Survey, Bull. no. 2A, 309 pp., 30 pls., 30 figs., 1909.
Describes the general geology of northwestern, western, and southwestern Virginia, the distribution, characters, and relations of Cambrian, Ordovician, and later Paleozoic formations with particular reference to cement materials, and the geology and cement materials of individual counties. Includes illustrations of characteristic fossils.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Bassler, Ray S.—Continued.
 Includes notes on the stratigraphy of Louisville, Ky., and vicinity, a brief biography of Henry Nettleroth (with portrait), and a list of the types obtained from the Nettleroth collection.
 Describes a slab containing Uintacrinus socialis from Kansas and other paleontologic accessions.

Bastin, Edson S.
 Mineral resources of the United States, 1908: Graphite; quartz and feldspar.—See no. 1170.

Bastin, Edson S., and Davis, Charles A.

Bather, F. A.
 Describes the Miocene beds at Florissant, Colo., and the conditions under which they were deposited, and gives a list of papers relating to the Florissant fossils, published after 1905.

Baumhauer, H.
 Describes measurements of the crystals of benitoite.

Bayley, William Shirley.
 Describes the occurrence and relations of pre-Cambrian sedimentary and gneissic rocks, structural features of the Highland area, and the magnetite deposits.

Becke, F.
 A note upon uranium ore and associated minerals from Bald Mountain, Colorado.

Becker, George F.
89. Relations between local magnetic disturbances and the genesis of petroleum.—U. S. Geol. Survey, Bull. 401, 24 pp., 1 pl., 1909.

Beede, Joshua W.
 Describes the occurrence, characters, and relations of the formations in Kansas and adjacent parts of Oklahoma.
18 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Beede, Joshua W.—Continued.

91. The bearing of the stratigraphic history and invertebrate fossils on the age of the anthracolithic rocks of Kansas and Oklahoma.—Jour. Geology, vol. 17, no. 8, pp. 710–729, 1 fig., 1909.

Beede, Joshua W., and Rogers, Austin F.

Discusses the nomenclature, the correlation value of species, the faunal distribution by horizons, including a chart, and the faunal characteristics of the various stages into which the coal measures are divided.

Bennett, John.

96. History of geological fieldwork in Kansas.—See Haworth and Bennett, no. 517.

97. General stratigraphy of Kansas.—See Haworth and Bennett, no. 518.

Berg, G.

Describes crystalline slates in Las Animas Canyon south of Silverton, Colo.

Bergeat, Alfred.

Describes the geologic relations and the petrographic-chemical properties of a granodiorite mass in the State of Zacatecas, Mexico, and the contact phenomena.

Describes nontronite from Concepcion del Oro, Mexico, produced by the action of iron sulphate in solution upon wollastonite.

Berkey, Charles P.

The paper in full has been published in the American Geologist, vol. 29, pp. 171–177, 1902.

Gives characters by which the formations can be discriminated and notes upon their distribution.
Berry, Edward W.
Describes and renames Cretaceous plants from the Raritan formation of New Jersey.
Gives notes upon the distribution, in Pleistocene times and later, of various plants, and upon the occurrence of Pleistocene swamp deposits, and remarks upon several additions to the known Pleistocene flora of Virginia.
Beyer, Samuel Walker.
Bibbins, Arthur Barneveld.
Bigot, Raoul.
Describes prospecting for copper in the State of Michoacan, Mexico.
Birge, E. A.
An administrative report.
Blackwelder, Eliot.
Describes the physical characteristics of the formation and the character and distribution of the sediments of which it is formed.
Blake, William P.
Blake, William P.—Continued.

Blatchley, Raymond S.

Includes data in regard to the Illinois oil pools.

Bogdanovich, K.

123. Earthquakes of Messina and San Francisco. [In Russian]. St. Petersburg, 1909. 160 pp.; 84 figs.

Böggild, O. B.

Describes the occurrence and crystallographic characters.

Bordeaux, Albert F. J.

A review of the silver deposits of Mexico in their geologic relations.

Böse, Emilio.

A preliminary notice of a Pliocene fauna from Tuxtepec, Oaxaca, Mexico, describing occurrence and character of fauna and giving a list of species identified.

Discusses the origin and structure of the so-called central plateau of Mexico.

Discusses the origin of fault-zones through volcanic forces with particular reference to the valley of Mexico.

Botsford, C. W.

Gives a general account of the geology and notes on the ore deposits.

Gives an account of the geology of the district and its relations to that of Guanajuato and other localities in Mexico.

Bowles, O.

Bownocker, John Adams.

132. Geology as applied to the formations in which natural gas is found in the Appalachian regions.—Progressive Age, vol. 27, pp. 541–544, July 1, 1909.
Bradford, A. H., and Curtis, Roy P.
 Includes notes on the local geology and the occurrence of placer gold.

Bradford, Robert H.

Bradley, W. M.

Branner, John C.

Branner, John C., and others.
 Describes the geography, the general character of the rocks, the distribution, character, and relations of Jurassic, Cretaceous, Tertiary, and Quaternary formations, and of igneous rocks, the geologic structure, the geologic history, and the mineral resources.

Branson, E. B.
 Describes new species of Pelecypoda, Gastropoda, and Trilobita from early Ordovician strata.

Brigham, William T.
141. The volcanoes of Kilauea and Mauna Loa.—Bernice Pauahi Bishop Mus., Mem., vol. 2, no. 4, 222 pp., 28 pls., 143 figs., 1909.
 Gives the recorded history of these volcanoes to 1909.

Brinsmade, Robert B.

British Columbia.
Annual report of the minister of mines for the year ending 31st December, 1908, being an account of mining operations for gold, coal, etc., in the Province of British Columbia. Victoria, B. C., 1909.—See Robertson, no. 1007.

Brock, Reginald Walter.
 Outlines the administrative work and field investigations carried on in 1908. Includes brief reports by various members of the staff.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Brock, Reginald Walter—Continued.
Gives a sketch of his life and a list of his writings on geology.

Brooks, Alfred Hulse.

Brooks, Alfred H., and others.

Brooks, E. W.
Describes the occurrence and character of copper ores in the Banner mining district, Gila County, Ariz.

Brooks, William Keith.
Includes a list of his writings.

Brown, E. Percy.
Gives notes on the local geology of the Upper Seal Harbour gold district, Guysborough County, Nova Scotia.

Brown, Robert M.
Gives a brief account of the ninth annual intercollegiate geologic excursion. Includes notes upon various geologic features of the region traversed.

Brown, Thomas Clachar.

Brumell, H. P. H.

Buckley, Ernest Robertson.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY; 1909.

Buckley, Ernest Robertson—Continued.

160. Lead and zinc mining in the Central States in 1907.—Econ. Geology, vol. 4, no. 2, pp. 175-177, 1909.

Discusses the occurrence of lead and zinc ores in Missouri.

Buehler, H. A.

An administrative report, but includes a chapter on the mineral resources of Missouri.

Burchard, Ernest F.

Mineral resources of the United States, 1908: Fluorspar and cryolite; gypsum; barytes and strontium; mineral paints.—See no. 1170.

Burckhardt, Carlos, and Villarello, J. D.

166. Estudio geológico de los alrededores de una parte del Río Nazas en relación con el proyecto de una presa en el cañón de Fernández.—Mexico, Inst. Geol., Parerg., t. 3, no. 2, pp. 117, 135, 9 pls., 1909.

Describes the geology along the river Nazas, in the State of Durango, Mexico.

Burgess, J. A.

Burling, Leander D.

Burrows, A. G.

Describes the geology of the area and the mining operations.

Burrows, R. H.

Bustamante, Miguel.

172. Climas de los tiempos geológicos y la división en eras (trabajo leído el 19 de octubre de 1906 en la Sociedad Geológica Mexicana).—Mexico, 1906. 28 pp.

Discusses climate in geologic time and the division into eras.

173. Crítica y teorías nuevas sobre el periodo carbonífero.—Mexico, 1909. 39 pp.
Butler, Bert S.
Reviews occurrences previously reported, describes an occurrence in Shasta County, Cal., and the evidence for its primary origin.

Mineral resources of the United States, 1908: Copper.—See no. 1170.
The Yakutat Bay region, Alaska.—See Tarr and Butler, no. 1137.
The Yakutat Bay region, Alaska; areal geology.—See Tarr and Butler, no. 1138.

Butler, G. Montague.

Butts, Charles.
Describes the geologic occurrence and relations, methods of exploitation and manufacture, and qualities of the products.

Caine, Thomas A., and others.

Cairnes, D. D.
Includes notes on the general geology and the occurrence and character of coal deposits and copper and other ores.

Caldwell, M. M.

Calkins, Frank Cathcart.
Describes the physiographic features of the region, the occurrence, character, and relations of Algonkian and igneous rocks, and the geologic structure.

Calvert, W. R.
Describes the topography, stratigraphy, and structure of the field, the occurrence and character of the coal beds, the character of the coal, and the mining development.
Describes the geography and geologic structure of the field, the occurrence, character, and relations of Carboniferous, Jurassic, Cretaceous, and Quaternary formations, the distribution and character of the coal beds, and the quality of the coal.
Calvin, Samuel.
186. Geology and revelation. An address delivered before the members of the Okoboji Lakeside Laboratory on Sunday, the Fourth of July, 1909. Privately printed for the students of the Lakeside Laboratory, 1909. 27 pp., 1 pl. (port. of the author).

Campbell, Marius R.

Campbell, Marius R., and Parker, Edward W.

Campbell, William.

Camsell, Charles.

Canada, Department of Mines, Mines Branch.

Canada, Geological Survey.

Capps, Stephen R., jr.

Carman, J. Ernest.

Gives an account of the bed-rock geology with particular reference to the development of existing physiographic features, and describes these features and their origin.
26 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Carney, Frank.
199. State geological survey reports on limited areas.—School Science and Mathematics, vol. 8, pp. 475-482, June, 1908.

An historical review of contributions to the subject of glacial erosion made by various writers.

Carpenter, M. H.

Carpenter, Philip P.

Carr, Henry C.

Includes notes on the local geology and the character and occurrence of the ores in the Salmon River Mountains, Lemhi County, Idaho.

Carter, Oscar C. S.

Case, Ermine C.

Discusses the stratigraphy and mode of deposition of the red beds.

Castro, Carlos.

Describes an analysis of kaolin in coal from Villafuente, State of Coahuila, Mexico, and explains its origin.

Chamberlin, Rollin Thomas.
Chamberlin, Thomas Chrowder.
214. The former rates of the earth’s rotation and their bearings on its deformation. In The tidal and other problems, published by the Carnegie Institution of Washington, pp. 3-59, 6 figs., 1909.

Chamberlin, T. C., and others.

Chambers, R. E., and Chambers, A. R.
Includes notes on the geologic occurrence of the iron ores and a geological section of the ore-bearing strata of Wabana, Newfoundland.

Chance, H. M.

Chase, Edwin E.

Chase, Thorington.
Includes notes on the geology of the district and the occurrence of the ores.

Cirkel, Fritz.
223. Report on the iron-ore deposits along the Ottawa (Quebec side) and Gatineau rivers.—Canada, Dept. Mines, Mines Branch, 147 pp., 5 pls., 15 figs., 2 maps, 1909.
Discusses the geologic occurrence of the mineral in Canada and other countries, the shape and structure of the ore bodies, the composition of the ores, and their properties and metallurgy.
225. The Opasatika Lake district, Province of Quebec.—Eng. and Min. Jour., vol. 87, pp. 455-456, 2 figs., February 27, 1909.
Gives notes upon the geology of the district and the occurrence of copper ores.
Cist, Jacob.
 “From Silliman’s American Journal of Science, vol. 4, 1832,” pp. 1-16. Includes sections showing the position and relations of anthracite coal seams.

Clapp, Charles H.
Describes the general geology and the mineral occurrences.

Clapp, Charles H., and Ball, W. G.
Describes the history of the discovery and development, the general geology, and the mineralogy of the deposits.

Clapp, Frederick G.
A preliminary report on the geology of Florida with special reference to the stratigraphy.—See Matson and Clapp, no. 829.

Clark, B. W.
Laboratory manual in physical geography.—See Hopkins and Clark, no. 590.

Clark, George Archibald.
The Bogoslofs.—See Jordan and Clark, no. 639.

Clark, William Bullock.
An administrative report.
An administrative report.
An administrative report.
Description of the Philadelphia district.—See Bascom and others, no. 74.
Description of the Trenton quadrangle, New Jersey-Pennsylvania.—See Bascom and others, no. 75.

Clark, Wm. Bullock, and Twitchell, M. W.
Clarke, Frank Wigglesworth.

Clarke, John Mason.
240. Fifth report of the Director of the science division, including the 62d report of the State Museum, the 28th report of the State geologist, and the report of the State paleontologist for 1908. Director's report for 1908.—New York State Mus., Bull. 133, pp. 5-114, 17 pls., 2 figs., 1909.
Outlines the progress of geologic and paleontologic investigation in New York. Includes various data upon the geology and paleontology of the State.

Cleland, Herdman F.
Includes a short account of the geology of the island.

Cockerell, Theodore Dru Alison.
Includes a description of Protomelecta brevipennis n. sp. from the Miocene shales of Florissant, Colo.

Describes insects from the Miocene shales of Florissant, Colo.

Describes Hirmeoneura occulta n. sp. from the Miocene shales of Florissant, Colo.

Describes Philorites johannseni n. gen. and n. sp. from the Eocene near Rifle, Colo.

Describes new Diptera from the Miocene shales of Florissant, Colo., and the Eocene near Rifle, Colo.

Describes new genera and species of Orthoptera and Diptera from the Miocene shales of Florissant, Colo.

Describes briefly Glossina osborni n. sp. from the Miocene shales of Florissant, Colo.

Describes Pelandrena n. gen., P. reducta n. sp., and Halictus miocenicus n. sp., from the Miocene shales of Florissant, Colo.
Cockerell, Theodore Dru Alison—Continued.
Describes insects from Eocene shales near Rifle, Colo., and from the Miocene shales of Florissant, Colo.

Describes fossil insects, *Palaeochrysa concinnula* n. sp., and *P. ferruginea* n. sp., from the Miocene shales of Florissant, Colo.

Includes a description of *Melitta willardi* n. sp., from the Miocene shales of Florissant, Colo.

Describes a fruit *Firmianites aterrimus* new gen. and sp., and an insect *Sytomostylus? fortis* new sp.

262. Fossil Euphorbiaceae, with a note on Saururaceae.—Torreya, vol. 9, no. 6, pp. 117-119, 2 figs., June, 1909.
Describes *Acalypha myricina* n. sp. and *Croton furcatulum* n. sp. from the Miocene shales of Florissant, Colo., and *Tithymalus willistoni* n. sp. from the Loup Fork beds of Kansas.

Gives notes upon fossil plants from the Cretaceous of Marshall, Boulder County, Colo., and the occurrence of amber and describes *Phragmites laramianus* n. sp.

264. Two new fossil plants from Florissant, Colorado.—Torreya, vol. 9, no. 9, pp. 184-185, 2 figs., September, 1909.
Describes *Hypolepis coloradensis* n. sp. and *Bauhinia pseudocotyledon* n. sp. from the Miocene shales of Florissant, Colo.

Coffey, George N.

Describes the formation of clay dunes in southern Texas.

Coleman, Arthur P.

Gives notes upon the geology of the district, and the occurrence and character of iron deposits.

Gives an account of the geology of the district, and the occurrence and character of iron deposits.

Coleman, Arthur P.—Continued.

 Discusses the nomenclature and source of the clays of Ontario.

271. The bearing of pre-Cambrian geology on uniformitarianism.—Abstract: Cana­

 November 15, 1909.
 Discusses the evidence for the glacial origin of the Lower Huronian conglomerate.

Collier, Arthur J.

273. Classification of low grade coal. Discussion of paper by M. R. Campbell.—Econ.

Collier, Arthur J., and Smith, Carl D.

274. The Miles City coal field, Montana.—U. S. Geol. Survey, Bull. 341, pp. 36–61,
 1 pl., 1909.
 Describes the stratigraphy and structure of the field, the occurrence, character, and
 relations of the coal beds, the character of the coal, and the mining developments.

Collins, W. F.

275. Occurrence of gold in placers.—Min. and Sci. Press, vol. 98, p. 850, June 19,
 1909.

Collins, W. H.

276. Preliminary report on Gowganda mining division, district of Nipissing,
 Ontario.—Canada, Geol. Survey Branch, Publ. no. 1075, 1909. 47 pp.,
 7 figs., 1 map. Abstract: Canadian Min. Jour., vol. 30, pp. 369–371,
 392–394, 3 figs., 1909.
 Describes the general features of the region, the occurrence and relations of pre-Cainbrian
 formations and glacial deposits, and the mineral deposits, particularly silver.

277. A geological reconnaissance of the region traversed by the National Trans­
 continental Railway between Lake Nipigon and Clay Lake, Ontario.—Canada, Geol.
 Survey Branch, 67 pp., 2 pls., 1 fig., 2 maps, 1909.

278. Report on the region lying north of Lake Superior between the Pic and Nipi­
 gong rivers, Ontario.—Canada, Geol. Survey, 24 pp., 1 map, 1909.

 Describes the general geology, the areal distribution of formations, and the occurrence of
 silver, iron ore, and asbestos.

Condit, D. Dale.

280. The Conemaugh formation in southern Ohio.—Ohio Naturalist, vol. 9, no. 6,
 pp. 482–488, April, 1909.
 Describes the stratigraphy of the formation and gives lists of fossils from the Ames and
 Cambridge limestones and notes on their occurrence.

Conrad, Timothy A.

Fossil shells from Tertiary deposits on the Columbia River, near Astoria

Notes on shells, with descriptions of new species (reprinted from Acad. Nat.

Descriptions of new fossil shells of the United States (reprinted from Acad.
Conrad, Timothy A.—Continued.
Notes on shells, with descriptions of three recent and one fossil species
Description of fossil shells from the Eocene and Miocene formations of Cali-
ifornia (reprinted from Description of the fossils and shells collected in
California by William P. Blake [H. Doc. 129], Washington, 1855. Appen-
dix to the preliminary geological report of William P. Blake, Palaeontol-
Note on the Miocene and post-Pliocene deposits of California, with descrip-
tions of two new fossil corals (reprinted from Acad. Nat. Sci. Philadelphia,
Proc., vol. 7, p. 441, 1855).—U. S. Geol. Survey, Prof. Paper 59, p. 172,
1909.
Descriptions of three new genera, twenty-three new species middle Tertiary
fossils from California, and one from Texas (reprinted from Acad Nat.
Description of the Tertiary fossils collected on the survey (reprinted from
Report on the paleontology of the survey (reprinted from Pacific R. R. repts.,
185, 1909.

Cook, C. W.
Iodirite from Tonopah, Nevada, and Broken Hill, New South Wales.—See
Kraus and Cook, no. 681.

Cook, Harold James.
281. Notice of a new camel from the lower Miocene of Nebraska.—Am. Naturalist,
vol. 43, pp. 188–189, March, 1909.
Describes briefly a specimen from the lower Harrison beds, near Agate, Sioux County,
Nebr., for which the name Oxydactylus campestris n. sp. is proposed.
282. A new proboscidean from the lower Miocene of Nebraska.—Am. Jour. Sci.,
Describes Gomphotherium conodon n. sp.

A Pliocene fauna from western Nebraska.—See Matthew and Cook, no. 840.

Cook, John H.
283. Some preglacial valleys in eastern New York and their relation to existing

Cooledge, C. W., and Overspeck, L. S.
284. The iron deposits of the Black Hills, South Dakota.—Min. Science, vol. 60,

Cooper, W. F.
285. Paleozoic geology of Tuscola County, Michigan. With notes on the Marshall-
and Grand Rapids formations by Alfred C. Lane and Chas. A. Davis.—
Michigan Miner, vol. 11, no. 6, pp. 9–20, 1 fig., May, 1909.
Describes the character, occurrence, and relations of Carboniferous formations, and the
geologic relations and character of the coal seams.

Coss, Frederic.
286. A study of the glacial rock on Shawnee Mountain [Pennsylvania].—Wyoming
Describes a rock showing glacial strie.
Coste, Eugene.

Cox, G. H.

Crawford, R. D.

The Hahns Peak region, Routt County, Colorado.—See George and Crawford, no. 446.

Croasdale, Stuart.
Arranges in tabular form the characteristics of igneous rocks to aid in their determination.

Crosby, William O.
293. A study of the geology of the Charles River estuary and the formation of Boston Harbor.—Massachusetts, Report of the Committee on Charles River dam, Boston, 1903; Appendix no. 7, pp. 345-369, 2 pls., 1903.

Cross, Whitman.
Discusses the application of the term Laramie group and proposes the term Shoshone group for the deposits resting unconformably upon the Laramie as restricted.

Curtis, Roy P.
Dredging at Breckenridge, Colorado.—See Bradford and Curtis, no. 133.

Dale, T. Nelson.

Dall, William Healey.
Includes a list of his writings.

56693°—Bull. 444—10—3
Dall, William Healey—Continued.

Discusses the stratigraphic position of the beds and gives systematic descriptions of the invertebrates. Appendixes contain reprints of rare papers by Conrad, Dana, Shumard, and Carpenter pertaining to the investigation.

Dalton, Leonard V.

Daly, Reginald A.

Discusses the calcium and magnesium content of the ocean in pre-Cambrian and later time and presents data from analyses of river waters for determining this.

Dana, Edward S., and Ford, William E.

Dana, James D.

Daneš, Jiří V.

Notes the absence of evidences of glacial action in the Coast Ranges and Sierra Nevada of southern California.

Darton, Nelson Horatio.

Gives an account of the general geology and the occurrence and quality of various structural materials.

Discusses briefly the stratigraphic position of the Whitewood limestone in which the fossils were found.

Description of the Philadelphia district.—See Bascom and others, no. 74.

Description of the Trenton quadrangle, New Jersey–Pennsylvania.—See Bascom and others, no. 75.
Darton, N. H., and O’Harra, C. C.

Describes the geography, the stratigraphy, including Carboniferous, Triassic, Jurassic, Cretaceous, and Quaternary formations, the geologic structure, the geologic history, the mineral resources, and the underground water conditions.

Darton, N. H., and Siebenthal, C. E.

Describes the geography and general geology, the occurrence, character, and relations of Carboniferous, Triassic, Jurassic, Cretaceous, and Tertiary formations, the geologic structure, the mineral resources, including coal, gypsum, bentonite, and others, and the underground waters.

Davis, Charles A.

Peat deposits of Maine.—See Bastin and Davis, no. 83.
Material resources of the United States, 1908: Peat.—See no. 1170.

Davis, William Morris.

Includes essays on physiographic subjects reprinted from various journals.

Describes the physiographic features and history of the great canyon of the Colorado River in northern Arizona.

Describes the history of the canyon.

Day, Arthur L.
Day, David T.

Mineral resources of the United States, 1908: Platinum; petroleum.—See no. 1170.

Dean, Bashford.

Gives notes upon a restoration of the jaws of *Carcharodon megalodon* on exhibition in the American Museum of Natural History.

De Kalb, Courtenay.

Includes notes on the geology and the occurrence of the copper ores.

Includes notes on the occurrence of the copper ores in Bingham Canyon, Utah.

Includes notes on the occurrence of copper ores in Bingham Canyon, Utah.

DeWolf, Frank W.

Dickinson, H. P.

Diller, Joseph Silas.

Mineral resources of the United States, 1908: Asbestos; talc and soapstone.—See no. 1170.

Diller, Joseph Silas, and Kay, G. F.

Describes the general geology, the occurrence, character, and relations of Paleozoic, Jurassic, Cretaceous, Tertiary, and igneous rocks, the geologic structure, the mineral resources, chiefly quartz- and placer-gold and copper, and the mining developments.
Dinsmore, Chas. A.
 Includes notes on the local geology and the occurrence and character of the copper ores.
 Includes notes on the geology of the region and the occurrence of tin ore on Mount Franklin, near El Paso, Tex.

Dole, Richard B., and Stabler, H.
 Presents estimates as to the rate of denudation.

Douglass, Earl.

Dowling, D. B.
350. The coal fields of Manitoba, Saskatchewan, Alberta, and eastern British Columbia.—Canada, Geol. Survey, 111 pp., 11 pls., 2 figs., 1 map, 1909.

Dresser, John A.
357. A geological reconnaissance along the National Transcontinental Railway from the St. Lawrence River to the interprovincial boundary between Quebec and New Brunswick.—Canada, Geol. Survey, Summ. Rept., 1908, pp. 124–128, 1909.
359. On the asbestos deposits of the eastern townships of Quebec.—Econ. Geology, vol. 4, no. 2, pp. 130–140, 4 figs., 1909.
Dresser, John A.—Continued.

360. The asbestos industry of eastern Quebec.—Min. World, vol. 30, pp. 593–595, 4 figs., March 27, 1909.
Describes the geology of the district, the character, relations, and origin of the veins, and the character and occurrence of the asbestos.

Describes the general geology and the occurrence of asbestos, chromite, talc, copper, antimony, and nickel deposits.

Dulieux, E.

Includes an account of the geology and the mineral resources of the region.

Dumble, E. T.

Discusses the stratigraphic position of certain beds.

Duncanson, H. B.

Eastman, Charles R.

Describes Helodus comptus n. sp. from the Meadville upper limestone (base of the Waverly) at Meadville, Pa.

Discusses the position of the palatal dental plates in the Mylostomatidae.

Eaton, H. N.

Eberle, Frank.

Eckel, Edwin C.

Mineral resources of the United States, 1908: Cement industry in the United States in 1908.—See no. 1170.

Ekeley, John B.

Ells, E. E.

Ells, R. W.

Ells, R. W.—Continued.
 Discusses the age and correlation of various beds in the vicinity of St. John, New Brunswick.

Emmons, Newton W.
 Includes notes on the occurrence of ores.

Emmons, Samuel Franklin.
 Reviews the progress in the geological investigation of the mineral resources of the United States.

Emmons, William H.
 Discusses the occurrence and genesis of copper deposits of the "segregated vein" type in eastern North America from Quebec to Georgia and Tennessee, and more particularly in Maine and New Hampshire.

Estes, A. W.

Evans, A. W.
 Includes a short account of the geology of the field and the occurrence and character of the coal.

Evans, Horace F.

Eyerly, T. L.
383. The geology of Hemphill County [Texas]. With a brief description of its topography, water supply, and soils. [1907.] 16 pp., 2 pls. [Private publication?]

Fairbanks, Harold W.

Fairchild, Herman Le Roy.

Fairchild, Herman Le Roy—Continued.

Paribault, E. Rodolphe.

Describes the geologic structure of the area, and the occurrence and relations of gold-bearing rocks and tungsten deposits.

Fay, Albert H.

Includes notes on the occurrence of copper ores in Orange County, Vt.

Fenneman, N. M.

Ferguson, Edw. G. W.

Discusses the definition of the terms vein, apex, vein matter, and ore.

Fisher, Cassius A.

Describes the topography, the occurrence, relations, and character of Carboniferous, Jurassic, Cretaceous, and Tertiary formations, the occurrence and character of coal beds, and the character of the coal.

Describes the topography and structure of the field, the geologic occurrence of the coal, the distribution, relations, and character of the coal beds, and the quality and composition of the coals.

Fleck, Herman.

Includes notes on the occurrence of uranium and vanadium.

Fleming, W. L.

Includes notes on the occurrence of the gold ores.

Fletcher, Hugh.

Gives various notes on the geology of the area examined.

Flores, Teodoro.

Describes the physiographic features and general geology of the vicinity of Tetecala, State of Morelos, and explains a sinking of the earth which took place suddenly at the locality.

Gives data regarding the physiographic features and geology of the State of Oaxaca, Mexico.

408. Los yacimientos de tecali de los alrededores de Tequisistlan, municipalidad del mismo nombre, distrito de Tehuantepec, Estado de Oaxaca.—Soc. Geol. Mexicana, Bol., t. 6, pp. vii-viii, 67-78, 3 pls., 1909.
Gives a brief account of deposits of Mexican onyx near Tequisistlan in the State of Oaxaca, Mexico.

Geologic study of the Sierra of Guanajuato.—See Villarello, Flores, and Robles, no. 1192.

Foerste, August F.

Gives notes upon the stratigraphy of lower Mississippian formations in Kentucky and Ohio, and the faunas, and descriptions of fossils from the Bedford-Berea rocks of Kentucky.

The systematic descriptions of fossils are preceded by a discussion upon the correlation and distribution of upper Ordvician formations and horizons.

The Waverly formations of east central Kentucky.—See Morse and Foerste, no. 887.
42. BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Fohs, F. Julius.

Ford, William E.

Ford, W. E., and Pogue, J. L.

Ford, W. E., and Tillotson, E. W.

Forstner, William.

Fraas, Eberhard.
Describes a footprint supposed to have been made by a small dinosaur and a vertebra of Ophthalamosaurus (Baptanodon) from the Jurassic of Jameson Land, Greenland.

424. In den Bad Lands von Süd-Dakota.—Aus der Natur, Jg. 2, Heft 17, pp. 513-521, Heft 18, pp. 552-559, 10 figs., 1906.
A general account of the Bad Lands of South Dakota and the noteworthy fossils found in them.

Compares the Jurassic deposits of Württemberg, Germany, with those of the Great Plains.

Frecheville, William, and Marriott, Hugh F.
Free, E. E.
Calls attention to eolian action in transporting material to the sea.

Freeman, John R.
429. Report on subsidence of land and harbor bottom.—Massachusetts, Report of the committee on Charles River dam; Boston, 1903; Appendix no. 20, pp. 529-572.
Presents various data to show that Boston, Mass., is slowly sinking into the sea and the harbor bottom tends to slowly become deeper.

Freudenberg, Wilhelm.
Gives observations upon the physiography and geology of the Sierra Nevada Mountains of Mexico.

Fuller, John T.

Fuller, Myron L.

Gale, Hoyt S.
Describes the general stratigraphy and structure of the region, the occurrence, character, and relations of the coal-bearing formations, and the distribution and character of the coals.

Gannett, Henry.

Ganong, W. F.

Gardner, James H.
436. The coal field between Gallina and Raton Spring, New Mexico, in the San Juan coal region.—U. S. Geol. Survey, Bull. 341, pp. 335-351, 1 pl. (map), 1909.
Describes the geography, topography, and stratigraphy of the field and the occurrence relations, and character of the coal beds.

Describes the stratigraphy and structure of the field, the occurrence, character, and relations of the coal beds, and the composition of the coals.

Describes the topography and geology of the field and the occurrence, character, and relations of the coal beds.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Garrison, F. Lynwood.

Geddes, Charles Walter.
Includes a brief account of the local geology and of the occurrence of the gold ores.

Gehrmann, Charles A.

George, R. D.
Describes the general geology of the region, the lithology, the character and occurrence of tungsten ores, and the relations and origin of the ore bodies.
445. The main tungsten area of Boulder County, Colorado, with notes on the intrusive rocks by R. D. Crawford.—Colorado Geol. Survey, 1st Rept., 1908, pp. 7-103, 11 pls., 1909.
Describes the general geology and character of the rocks of the area, the occurrence and characters of tungsten minerals, and the occurrence, relations, and mining of tungsten ores in Boulder County, Colo.

George, R. D., and Crawford, R. D.
Describes the general features of the region, the occurrence, character, and relations of pre-Cambrian, Carboniferous, Triassic, Cretaceous, and Tertiary formations, and igneous rocks, and the economic geology.

Gibson, Thomas W.

Gidley, James Williams.

Gilbert, Grove Karl.
Explains the convexity of hilltops as due to the action of creep.

Gill, H. V.
Gilmore, Charles W.

Describes *Opisthasurus* n. gen. and n. sp. from Como Bluff, Albany County, Wyo., and gives a list of vertebrate fossils from the same locality and notes upon some of them.

Girty, George H.

Discusses the relations of upper Carboniferous faunas and the correlations of Carboniferous and so-called Permian formations.

Discusses the correlation and stratigraphic position of the beds containing the Guadalupian fauna.

Discusses the stratigraphic relations of the Caney shale and gives systematic descriptions and figures of the invertebrate fauna.

Goldschmidt, V., and Mauritz, B.

Describes the crystallography of calomel from Terlingua, Tex.

Goldthwait, James Walter.

460. Intercision, a peculiar kind of modification of drainage.—School Science and Mathematics, vol. 8, no. 2, pp. 129-139, 3 figs., February, 1908.

Goldthwait, J. W., and Jacobson, R. C.

Gordon, C. E.

Discusses the age, relations, and occurrence of metamorphosed pre-Cambrian and Cambrian sediments in New York and adjoining States.

Gordon, Charles H.

Discusses the occurrence of chalk beds, to which the formation name Annona chalk has been given, in northeast Texas, and considers them to be the equivalent of the upper part of the Austin chalk of central Texas.

Gould, Charles N.

Grabau, Amadeus W.

Discusses the age and mode of formation of Ordovician and Silurian formations in Pennsylvania.

Nomenclature and subdivision of the upper Siluric strata of Michigan, Ohio, and western New York.—See Lane and others, no. 733.

New upper Siluric fauna from southern Michigan.—See Sherzer and Grabau, no. 1068.

Grabau, Amadeus W., and Shimer, Hervey Woodburn.

Gives brief descriptions, usually with figures, and geologic horizon and distribution of characteristic fossils. Includes keys to the genera and species and references to the more important literature.

Graham, Richard P. D.

Describes the occurrence, crystallography and optical properties, and the composition.

Grandin, M. V.

Describes the general geology of the South Cheticamp mining district and the occurrence, relations, and character of copper and other ores.
Granger, Walter.

Gives an historical review of previous work on the Washakie formations and the views entertained as to its age, relations, and deposition, describes the topography and geology with sections, and indicates the faunal horizons.

Grant, Ulysses Sherman.

Grasty, J. S.

The character and structural relations of the limestones of the Piedmont in Maryland and Virginia.—See Mathews and Grasty, no. 825.

Gratacap, Louis P.

Gray, F. W.

Includes notes on the geologic relations and occurrence of the coal deposits of Cape Breton Island, Nova Scotia.

Greene, F. C.

Greger, Darling K.

Describes the distribution and gives lists of fossils from the two formations represented.

Gregory, Herbert E.

A sketch of his life and a list of his writings.

Gives a general account of the physiographic features and descriptive geology and, in more detail, of the occurrence, character, and recovery of the underground waters.

Gregory, J. W.

Includes notes and figures of American forms from various horizons and descriptions of some species from the Cretaceous of New Jersey.
Griggs, Robert F.
Explains the formation by ice action of narrow ridges dividing lakes.

Grimsley, G. P.

Grosspietsch, Oskar.
Describes the crystallography of albite from Greenland.

Grout, Frank F.

Gulliver, F. P.
Gives an account of the meeting at Baltimore, December, 1908, and abstracts of papers presented.

Gunter, Herman.
The fuller's earth deposits of Gadsden County, Florida.—See Sellards and Gunter, no. 1050.

Guppy, R. J. Lechmere.
Discusses evidence for the pre-Miocene distribution of land in the Caribbean sea.

Haley, D. F.
Includes notes on the local geology and the occurrence of the ores.

Hall, Edward Hagaman.

Hamilton, S. Harbert.
Includes notes on the geology and the occurrence of iron, copper, and other ores and minerals.

BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Hannibal, Harold.

Hantzsch, Bernhard.
A description of northeastern Labrador. Includes notes on the geology and physiographic features.

Harder, Edmund Cecil.
Describes the local geology and the structure of the ore deposits.
Describes the character, composition, geographic distribution, and geologic relations of the various types of iron ore found in Virginia.

Harris, Gilbert Dennison.
Mineral resources of the United States, 1908: Iron ores, pig iron, and steel; manganese ores; chromic iron ore.—See no. 1170.

Harris, G. D., Perrine, I., and Hopper, W. E.
512. The geological occurrence of rock salt in Louisiana and east Texas.—Econ. Geology, vol. 4, no. 1, pp. 12-34, 2 pls., 7 figs., 1909.
Calls attention to the fact that the peridotite eruptives about Murfreesboro, Ark., are magnetic, and to the practical bearing of this fact.

Harrison, Alfred C., and others.
514. Oil and gas in northwestern Louisiana with special reference to the Caddo field.—Louisiana Geol. Survey, Bull. no. 8, 52 pp., 6 figs., 1909.

Hastings, John B.
A sketch of his life.

Haworth, Erasmus, and Bennett, John.
Haworth, Erasmus, and others.

519. Special report on oil and gas.—Kansas, Univ. Geol. Survey, vol. 9, 586 pp., 107 pls., 2 maps, 8 figs., 1908.

Includes chapters on discoveries of oil and gas, geographical and historical, detailed geology of oil and gas, life of oil wells and gas wells, commercial conditions of oil and gas, chemical composition of gas, and chemical composition of petroleum.

Hay, Oliver Perry.

Gives various notes upon fossil turtles.

Hayes, Charles Willard.

The first edition bearing title, Handbook for field geologists in the United States Geological Survey, 159 pp., 11 figs., was issued by the Survey in 1908 for official use.

Contributions to economic geology, 1908. Part I. Metals and nonmetals, except fuels.—See no. 1169.

Outlines the progress of investigations by the United States Geological Survey during the year 1908 and gives a list of publications issued in 1908 on nonmetallic mineral resources and iron ores.

Hayes, C. W., and Lindgren, Waldemar.

Hayford, John F.

Headden, William P.

Gives analyses and descriptive notes upon springs in Platte Canyon and in Delta County, Colo.

Hedburg, Edward.

Includes notes on the local geology and the occurrence of gold ores.

Henderson, Junius.

Describes the general geologic structure and the distribution and relations of pre-Carboniferous, Carboniferous, Permo-Triassic?, Jurassic, and Cretaceous formations.

Hennen, Ray V.

Describes the history, physiography, and geology of the Marshall-Wetzel-Tyler area of West Virginia, and the mineral resources, including petroleum, natural gas, coal, clays, road materials, and building stones.

Henning, Karl L.

538. Streifzüge in den Rocky Mountains.—Globus, Bd. 92, pp. 25-29, 46-49, 101-107, 10 figs.; 1907; Bd. 93, pp. 312-318, 5 figs., 1908.

Describes excursions in the Rocky Mountains in Colorado. Includes notes on physiographic features and the geology.

539. Streifzüge in den Rocky Mountains. IV. Morrison und die Morrisonformation.—Globus, Bd. 96, Nr. 22, pp. 344-349, 5 figs., December 16, 1909.

Describes the region around Morrison, Colo., the red beds and the Morrison formation.

Henshaw, Fred F.

Describes gold deposits and the occurrence of coal.

Hermann, A.

Herrick, R. L.

Includes notes upon the geology of the ore body.

Includes an account of the local geology and the occurrence and character of the gold and silver ores.

Includes notes on the geology, character, and occurrence of the ores.
Herrick, R. L.—Continued.

Includes an account of the geology of the vicinity of Globe, Ariz., and the occurrence and character of the copper deposits.

Hershey, Oscar H.

Includes notes on the local geology of a prospect in Del Norte County, Cal.

Herzig, C. S.

Hess, Frank L.

Describes the occurrence and character.

Describes the general geology and the occurrence, character, and origin of the graphite.

Mineral resources of the United States, 1908: Antimony; bismuth; selenium, tellurium; tungsten, nickel, cobalt, vanadium, etc.; tin; arsenic.—See no. 1170.

Hice, Richard R.

Higgins, D. E., jr.

Copper mining and prospecting on Prince William Sound, Alaska.—See Grant and Higgins, no. 485.

Notes on the geology and mineral prospects in the vicinity of Seward, Kenai Peninsula, Alaska.—See Grant and Higgins, no. 486.

Higgins, Edwin.

Includes notes on the geology and the occurrence and character of the iron ores.

Includes a brief account of the geology of the district and of the occurrence and character of the silver deposits.

Higgins, Will C.

Includes a short account of the local geology and the character and occurrence of the gold ores.
Higgins, Will C.—Continued.
Includes notes on the local geology and the ore deposits producing copper, gold, and silver.
Includes notes on the local geology and the occurrence of the gold ore.

Hijar y Haro, Luis.
Describes pyritiferous deposits yielding chiefly iron, with small amounts of lead, copper, silver, and gold.

Hill, J. M.
Describes the general features, the stratigraphy and geologic structure, and the mineral resources, chiefly gold and silver, and mining developments.

Hill, Robert T.

Hille, F.

Hillebrand, W. F., and Schaller, W. T.
Describes the occurrence and associations of the minerals and their physical properties, composition, and crystallography.

Hills, B. W.

Hills, Victor G.
Discusses the definition of this term.
Includes notes on the occurrence of tungsten ores in Colorado.

Hind, Henry Youle.

Hindry, W. E.
Includes notes on the geology and occurrence of the gold ores.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Hinds, Henry.

Hitchcock, Charles H.
 Describes briefly the history of the volcano Kilauea and its recent activity.

Hixon, Hiram W.

Hixson, A. W.
Analyses of Iowa coals.—See Lees and Hixson, no. 754.

Hlawatsch, C.
 Gives observations upon benitoite.
 Describes the crystallography of benitoite from California.
 Observations upon the class of crystals to which benitoite belongs.
 Gives notes upon natrolite and neptunite from San Benito, Cal.

Hobbs, William Herbert.
 Discusses the causes of earthquakes and the possibilities of prognostication.
583. Apparatus for instruction in geography and structural geology.—School Science and Mathematics, vol. 8, pp. 566-570, 662-668, 10 figs., 1908;
 vol. 9, pp. 644-653, 8 figs., 1909.

Holland, W. J.
Hollick, Arthur.
Proposes the new generic name *Fagopsis* for the *Planera longifolia* Lesq., from the Miocene shales of Florissant, Colo.

Hollick, Arthur, and Jeffrey, Edward Charles.

Holway, R. S., and Linsley, Earle G.

Hopkins, T. C., and Clark, B. W.

Hopper, W. E.
Oil and gas in northwestern Louisiana with special reference to the Caddo field.—See Harris, Perrine, and Hopper, no. 514.

Hore, R. E.
Includes notes on the occurrence of the copper ores.

Hovey, Edmund Otis.
The discussion and illustrations relate to effects produced by the eruptions of Mont Pelée in Martinique and the Soufrière in St. Vincent in 1902 and 1903.

595. Proceedings of the twentieth annual meeting of the Geological Society of America, held at Albuquerque, New Mexico, December 30 and 31, including the proceedings of the ninth annual meeting of the Cordilleran section, held at the same place and time.—Geol. Soc. America, Bull., vol. 19, pp. 513-617, 9 pls., 1909.
Includes abstracts of papers and obituary notices.

Gives an account of the twenty-first annual meeting at Baltimore, December, 1908, and abstracts of papers presented.

Records the discovery and describes the surface features and composition of this siderite to which the name Guffey is given.

Hovey, Edmund Otis—Continued.
Includes notes on the physiographic features of the island.

Howe, Ernest.
603. Landslides in the San Juan Mountains, Colorado, including a consideration of their causes and their classification.—U. S. Geol. Survey, Prof. Paper 67, 58 pp., 20 pls., 4 figs., 1909.

Howley, James P.
605. Geology and mineral resources of Newfoundland.—Min. World, vol. 31, pp. 701-704, 1 fig. [geol. map], October 2, 1909.

Hudson, George H.
606. Some items concerning a new and an old coast line of Lake Champlain.—New York State Mus., Bull. 133, pp. 159-163, 8 pls., 1909.
Proposes the term cup holes for shore-line excavations and discusses the position of shore lines of Lake Champlain.

Huene, F. v.
Gives a classification and phylogeny of the Dinosauria. Includes American forms.

Humphreys, Edwin W.

Hussakof, L.

Iddings, Joseph P.

Ingall, E. D.

Illinois State Geological Survey.
The several papers in this report have been listed under the individual authors.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Ingalls, A. O.

Ingalls, W. R.
The mineral wealth of the Cordilleræ.—See Raymond and Ingalls, no. 986.
The mineral wealth of America.—See Raymond and Ingalls, no. 987.

Inkey, B. de.
Describes some of the volcanoes of Mexico.

Jacobson, R. C.
Preliminary report on measurements of altitude of the Algonquin and Nipissing shorelines in Ontario.—See Goldthwait and Jacobson, no. 463.

Jaggar, Thomas A., jr.

Jeffrey, Edward Charles.
Describes Araucariopitys americana from Cretaceous deposits of Staten Island, New York.
Studies of Cretaceous coniferous remains from Kreisherville, New York.—See Hollick and Jeffrey, no. 588.

Jellum, S. P.

Jenks, William.

Jenney, Walter P.
Describes the location where found, the general characters, and the fall.
Describes the Quinn Canyon, Nevada, meteorite, and a meteor from which the fall may have been derived.
Discusses the geology of the district and the deposition of the ores.
Describes the geology of the district and the character and geologic relations of the ore bodies.
Jennings, E. P.

Jensen, Adolf Severin.
Discusses climatic changes in Greenland in Quaternary time as evidenced by the distribution of certain mollusks.

Johnson, Alexander T.
Includes a brief account of the geology and occurrence of the ores.

Johnson, Douglas Wilson.
Describes physiographic features and faulting in the Grand Canyon region.
Discusses the origin of hanging valleys with reference to glacial erosion.

Johnson, H. R.
Describes the stratigraphic formations and the geologic structure of the area.
The earthquake rift in eastern San Luis Obispo County, California.—See Arnold and Johnson, no. 33.
Sodium sulphate in Soda Lake, Carriso Plain, San Luis Obispo County, California.—See Arnold and Johnson, no. 34.

Johnston, Robt. A. A.

Johnston, W. A.
Discusses the correlation of the Ordovician formations of the area.

Jones, Charles Colcock.
634. An iron deposit in the California desert region.—Eng. and Min. Jour., vol. 87, pp. 785-788, 6 figs., April 17, 1909.
Includes notes on the geology of the district and the occurrence and character of the ore deposits and placer gravels.

Jones, Fayette A.
Describes the geology and physiography of the Little Hatchet Mountains in Grant County, N. Mex., and the character and occurrence of the gold ores.
Describes the occurrence of turquoise in New Mexico.
Jones, S. P.

Jordan, David Starr, and Clark, George Archibald.

Judson, John N.
Includes notes on the character and composition of the ores.

Katz, F. J.
The Fairbanks gold placer region, Alaska.—See Prindle and Katz, no. 970.

Kay, G. F.

Keele, Joseph.

Keith, Arthur.
Discusses the nomenclature of geologic formations and the work of the committee on geologic names of the U. S. Geological Survey in systematizing existing chaotic conditions.

Kelly, William.

Kemp, James Furman.
Presents and discusses various definitions of the term "ore."
646. Our knowledge of the filled channel of the Hudson in the Highlands and the submerged gorge on the continental shelf.—Abstract: Science, new ser., vol. 29, p. 279, February 12, 1909.

Kempton, C. W.
Includes notes on the geology of the island and the occurrence of ores.
Gives notes on the occurrence and character of various ore deposits.

Keyes, Charles Rollin.
Keyes, Charles Rollin—Continued.

The paper is devoted chiefly to a description of the occurrence and origin of the deposits of borax in the desert regions of southeastern California. The geologic structure of the region is discussed.

Discusses the occurrence of the lead and zinc deposits of the Ozark region of Missouri.

Describes the occurrence of borate minerals in the Tertiary clays of southern California and the lithology of the Tertiary terranes.

Kindle, Edward M.

Discusses the stratigraphic relations of the Ouray limestone of Colorado and New Mexico and the faunas contained therein and gives systematic descriptions and figures of the Devonian forms.

Kindle, Edward M.—Continued.
Describes the general geologic relations of the rocks in the vicinity of Cape Thompson, the occurrence and character of Carboniferous and Mesozoic strata. Includes lists of fossils identified and remarks upon their age by David White, G. H. Girty, and T. W. Stanton.
Description of the Watkins Glen-Catatonk district, New York.—See Williams, Tarr, and Kindle, no. 1255.

Kindle, E. M., and Barnett, V. H.

Kirk, Morris P.
Includes notes on the occurrence and nature of the ore.

Klautzsch, A.
Describes the San Francisco earthquake with particular reference to its cause in the geologic structure of California.

Knapp, G. N.
Description of the Philadelphia district.—See Bascom and others, no. 74.

Knight, Cyril W.
Includes abstracts of papers relating to the geology of North America.
Discusses the evidences for the glacial origin of the Lower Huronian conglomerate.
Grenville-Hastings unconformity.—See Miller and Knight, no. 866.

Kirk, Carl F.

Knopf, Adolph.
Describes the occurrence, character, geology, and mineralogic associations of tin deposits in Seward Peninsula.
Mineral resources of the Nabesna-White River district, Alaska.—See Moffit and Knopf, no. 874.

Knowlton, Frank Hall.
Concludes that the beds named should be referred to the Fort Union formation and are Eocene in age.
Koeberlin, F. R.

Kolderup, C. F.

An account of the San Francisco earthquake extracted from the report of the California State Earthquake Commission report.

Kraus, E. H., and Cook, C. W.

Describes the occurrence, composition, and crystallography.

Kümmel, Henry B.

Includes notes on the occurrence of the ores.

Description of the Philadelphia district.—See Bascom and others, no. 74.

Description of the Trenton quadrangle, New Jersey-Pennsylvania.—See Bascom and others, no. 75.

Kunz, George F., and Washington, Henry S.

Laflamme, C.

Gives a general account of the physiography, geology, and mineral deposits of the Notre Dame and Shickshock Mountains, Quebec.

Gives a general account of the physiography and geology of the Laurentian Highlands.

La Forge, Laurence

Notes on the crystallography of leadhillite.—See Palache and La Forge, no. 930.

Laguerenne, Teodoro L.

Describes the general geology of the mining district of Pregones, State of Guerrero, Mexico, the vein system, the deposits of lead and silver, and the mines.
Lahee, Fred. H.

Lakes, Arthur.

695. The general geology of Summit County, Colorado, with special reference to Breckenridge and vicinity.—Min. Science, vol. 57, pp. 243-244, 289-291, 6 figs., March 5 and 12, 1908.

697. Evolution of knowledge of veins and ore deposits.—Min. Science, vol. 58, pp. 5-6, 3 figs., July 2, 1908.

Lakes, Arthur—Continued.

Lambe, Lawrence M.

Includes a description of *Elomichthys elli* n. sp.

Lane, Alfred C.

Discusses the application to magmas of facts and conclusions in the paper cited.

729. The decomposition of a boulder in the Calumet and Hecla conglomerate, and its bearing on the distribution of copper in the Lake Superior copper lodes as indicating the trend and characters of the waters forming the chute.—Écon. Geology, vol. 4, no. 2, pp. 158-173, 1 fig., 1909.

Gives a general account of the geology of the iron regions of Michigan and discusses the origin of the iron ores and analyses of waters from the mines.

Lane, A. C., and others.

Lane, Louis.

Includes notes on the local geology.
Laney, Francis Baker.
Gives a general description of the rocks and structure of the district, and of the occurrence, character, and relations of the gold-copper ores.

Laney, Francis Baker, and Wood, Katharine Hill.
736. Bibliography of North Carolina geology, mineralogy, and geography, with a list of maps.—North Carolina Geol. and Econ. Survey, Bull. no. 18, 428 pp., 1909.

Langford, D. B.
Includes various notes upon the economic geology of Nova Scotia, New Brunswick Quebec, Ontario, Alberta, and British Columbia.

Larsen, Esper S.
Quartz as a geologic thermometer.—See Wright and Larsen, no. 1292.

Larsh, W. S.
Describes the local geology and the occurrence and relations of silver, copper, and lead deposits.

Lawson, Andrew C.

Lawton, N. Oliver.
Describes the location, extent, and character of sulphur deposits on Unalaska Island.

Leach, W. W.
Includes an account of the geology and occurrence of coal and other mineral resources.

Lee, Willis Thomas.
Describes the general surface features, stratigraphy and structure of the field, the geographic distribution and character of the coal beds, and the composition of the coals.

Describes the rock formations of the region and presents and discusses the evidences of an unconformity previously unknown, the extent of the erosion interval, and the correlations of the formations between which the unconformity exists.

Lee, Willis Thomas—Continued.

Presents evidence bearing upon the correlation of coal-bearing rocks in the Grand Mesa coal field of Colorado and the Raton coal field of New Mexico.

Lee, Willis T., and Nickles, John M.

Lees, James H.

Lees, James H., and Hixson, A. W.

Leighton, Henry.

Reviews the progress in geological mapping and gives a chronologic list of geologic maps of the State of New York.

Leith, Charles Kenneth.

756. Some observations on the tellurides.—Econ. Geology, vol. 4, no. 6, pp. 544-564, 1909.

Leonard, A. G.

Leonard, A. G., and others.

Leonard, A. G., and Smith, Carl D.

Describes the stratigraphy and structure of the field; the occurrence, character, and relations of the lignite beds; the character and uses of the lignite; and the mining operations.
LeRoy, Osmond E.
 Describes the general geology and the occurrence, character, and relations of the gold-silver-copper ores, and the mining developments.

Leverett, Frank.
 Discusses the erosion and weathering to which the drift sheets have been subjected as criteria for distinguishing them and determining their chronology and correlation with the drift sheets of Europe.

Levison, Wallace Goold.

Lewington, Guy A. R.

Lewis, J. Volney.
 Describes the characters and occurrence of alunite.

Lincoln, Francis Church.
 Describes the general geology, the character of the ore deposit, and the paragenesis of the minerals.

Lindgren, Waldemar.
769. The localization of values in ore bodies and the occurrence of shoots in metalliferous deposits.—Econ. Geology, vol. 4, no. 1, pp. 56-61, 1909.
 Gives a list of publications relating to deposits of metalliferous ores in the United States, issued by the United States Geological Survey in 1908, and outlines briefly the progress of investigation and the preparation of reports.
 Describes the general features and geology, and the occurrence, character, and relations of the zinc and lead ores.
 Summarizes the facts known regarding the distribution of ore deposits in the various geological ages in the continent of North America.
Lindgren, Waldemar—Continued.

Mineral resources of the United States, 1908: Gold and silver.—See no. 1170.
Contributions to economic geology, 1908. Part I. Metals and nonmetals, except fuels.—See no. 1169.

Linsley, Earle G.

A syllabus for the study of the physiographic provinces of California.—See Holway and Linsley, no. 589.

Linton, Robert.

Loftus, J. P.

Includes notes on the local geology and the occurrence of the gold ores.

Logan, William E.

Logan, William N.

778. The pottery clays of Mississippi.—Mississippi State Geol. Survey, Bull. no. 6, 228 pp., 45 pls. and figs., 1909.

Loomis, F. B.

Describes Testudo arenivaga, Hay, Testudo brevisterna n. sp., and Testudo undabuna n. sp.

Louderback, George Davis.

Describes the general geologic surroundings and mode of occurrence in San Benito County, Cal., the conditions under which the mineral was formed, the general relations of the minerals in the veins, and the crystallography and other features of benitoite, neptunite, natrolite, and other associated minerals.

Loughlin, G. F.

Ludlow, Edwin.

784. The coal industry in Mexico.—Eng. and Min. Jour., vol. 88, pp. 661-664, 1 fig., October 2, 1909.
Includes notes on the occurrence and composition of coals in the State of Coahuila, Mexico.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Lull, Richard Swan.
Reprinted, after author’s revision, from the American Journal of Science, vol. 25, March, 1908.

Luther, D. Dana.
Describes the occurrence, character, relations, and fossil content of Silurian and Devonian formations.

Lyman, Benjamin Smith.

Lyon, Edward West.
Includes notes on the geologic occurrence and mineralogic character of the ore bodies.

MacAlister, D. A.
The geology of ore deposits.—See Thomas and MacAlister, no. 1144.

McCallie, S. W.
Gives a description, with analysis, of a stone-iron meteorite from Pickens County, Ga.

McCaskey, H. D.
Mineral resources of the United States, 1908: Gold and silver; quicksilver.—See no. 1170.

McConnell, R. G.
A report on the geology and mineral resources of the Whitehorse district.
Describes the general geology and the mineral deposits, producing chiefly copper, gold, and iron.

McCormick, Clinton P.
Includes notes on the occurrence and character of copper ores.

McCourt, W. E.

McDermott, Walter.
Describes the occurrence and geologic relations of silver ore mined on Silver Islet, Lake Superior.
McDermott, Walter—Continued.

Describes the character and occurrence of the ore deposits.

MacDonald, Bernard.

MacDonald, Donald Francis.

Gives notes upon the geology, the character, relations, and mineralization of the veins, and the gold mines.

Macdougal, D. T.

McEvoy, James.

MacFarland, Ira.

MacFarlane, James.

Includes notes on the local geology and the occurrence of the copper ores.

MacFarren, H. W.

Includes notes on the geology and occurrence of the ores.

McInnes, William.

Includes notes on the geology of the region examined.

Maddren, A. G.

Mineral resources of the Kotsina-Chitina region, Alaska.—See Moffit and Maddren, no. 875.
Maine State Survey Commission.
An administrative report upon the progress of topographic, geologic, and hydrographic work.

Malloch, G.
Describes the general geology and occurrence and character of the coal.

Mansfield, George Rogers.

Marbut, Curtis F.

Marriott, Hugh E.
815. A visit to the mineral districts of Canada.—See Frecheville and Marriott, no. 426.

Marrs, G. O.

Martin, Al. H.
Includes notes on the occurrence of gold ores.
Includes notes on the local geology, and the occurrence and character of the gold deposits.
Includes notes on the local geology and the occurrence of gold ores.

Martin, George Curtis.
Describes the general geology of the foothills belt of northern Colorado, and the occurrence, character, and composition of limestones and shales.

Martin, Lawrence.
Apparatus for topographic field work on models in the laboratory.—See Mead and Martin, no. 843.

Marvin, C. F.
Discusses the Kingston earthquake as recorded in Washington, D. C.

Mather, Kirtley F.
Discusses the time and cause of drainage changes in this region.
Matthes, Edward B., and Grasty, J. S.

Mathez, Auguste.
Includes notes on the geologic relations of the ore deposits.

Matson, George Charlton.
Includes an account of the stratigraphy of the region.
Describes the location, geologic horizon, and composition.

Matson, George Charlton, and Clapp, Frederick G.

Matthew, George F.
Outlines the geologic history of the region known as Acadia, citing the various evidences from which this has been determined and discussing the stratigraphic position and correlation of the geologic formations.
Gives some account of reptilian remains collected in the Permian of Texas.
Gives an account of the meeting and abstracts of the papers read.
Matthew, W. D., and Cook, Harold J.
Describes mammalian fossils from Sioux County, Nebr., and discusses their stratigraphic position.

Mauritz, B.
Ueber Kalomel.—See Goldschmidt and Mauritz, no. 459.

Maury, Carlotta J.
Describes Levifusus fulguriparens n. sp., from the Eocene at Montgomery, La.

Mead, Walter J.
842. Relation of density to the specific volume of ore. A graphic method for the determination of the specific volume of ore from its porosity and included moisture.—Min. Science, vol. 58, pp. 89-91, 1 fig., July 30, 1908.

Mead, W. J., and Martin, Lawrence.

Melsted, V. J.
The geology of northeastern North Dakota with special reference to cement materials.—See Barry and Melsted, no. 70.

Mendenhall, Walter Curran.
844. A phase of ground water problems in the West.—Econ. Geology, vol. 4, no. 1, pp. 35-45, 2 figs., 1909.
Describes physical features and water supply of the region.

Describes the geography, the general geologic features, the character of the deposits, and the water resources.

Describes the occurrence, character, and value of the coal.

Merriam, John C.
Describes Felis atrox var. bebbi from the Quaternary of Rancho La Brea, near Los Angeles, Cal.

Describes Ilingoceros alexander n. gen. and n. sp., and Sphenophalos nevadanus n. gen. and n. sp., from late Tertiary beds near Thousand Creek in northern Humboldt County, Nev.
Merrill, F. J. H.

Includes notes on the local geology and the occurrence of the silver ores.

Merrill, George P.

Merwin, H. E.

Alamosite, a new lead silicate from Mexico.—See Palache and Merwin, no. 931.

On connellite and chalcophyllite from Bisbee, Arizona.—See Palache and Merwin, no. 932.

Mexico, Instituto Geologico.

A list of earthquakes and seismic shocks registered at the seismological station at Tacuba, D. F., Mexico, during the first half of 1909.

Catalogo de los temblores (macroseismos) sentidos en la Republica Mexicana durante los años de 1904 a 1908.—See Aguilera, no. 7.

Millar, Austin Q.

Miller, Arthur M.

859. Evidence that the Appalachian and central coal fields were once connected across central Kentucky.—Abstract: Science, new ser., vol. 29, p. 624, April 16, 1909.

Describes the occurrence of coal measure conglomerate in central Kentucky.

Miller, Benjamin L.

Description of the Philadelphia district.—See Bascom and others, no. 74.

Description of the Trenton quadrangle, New Jersey-Pennsylvania.—See Bascom and others, no. 75.

Miller, G. W.

Describes the character and occurrence of the gold deposits and the local geology.
Miller, Loye Holmes.

Describes *Teratornis merriami* n. gen. and n. sp., from the Quaternary asphalt beds of Rancho La Brea in southern California.

Miller, Willet G.

Miller, Willet G., and Knight, Cyril W.

Miller, William J.

867. Geology of the Remsen quadrangle, including Trenton Falls and vicinity in Oneida and Herkimer counties.—New York State Mus., Mus. Bull. 126, 51 pp., 11 pls., 4 figs., 1 geol. map (in pocket), 1909.

Describes the general geologic features, the occurrence, character, and relations of pre-Cambrian and Ordovician strata, the structural features, and the glacial geology.

Millward, William.

Gives lists of Paleozoic fossils found in limestone and chert pebbles of the Wisconsin drift and in bedded rocks of Carboniferous age and discusses the correlation of the formations of the latter.

Mining and Scientific Press.

Moffit, Fred H.

Includes an account of the general geology.

Moffit, Fred H., and Maddren, A. G.

Describes the general geology, the occurrence and relations of Triassic and other rocks of undetermined or doubtful age, and the mineral resources, chiefly copper and placer gold.
Moodie, Roy L.

876. Vertebrate paleontology: The Lysorophidae; Stegocephala; The Cotylosauria; The oldest known reptile; The age of the Gaskohle; Bison occidentalis; Nectosaurus; Callibrachion.—Am. Naturalist, vol. 43, pp. 116-124, February, 1909.

Gives various notes upon the forms mentioned.

Discusses the occurrence, characters, and classification of Carboniferous Amphibia.

Moore, Elwood S.

Gives an account of the geology of the region and the occurrence and character of iron deposits.

Gives an account of the geology and physiographic features of the region and of the distribution and character of bog iron deposits.

Describes the geology of the area, the petrography of the rocks, and the occurrence, character, relations, and origin of the iron deposits.

Moore, Phil. H.

Includes notes on the local geology and the occurrence and character of the gold ores.

Moore, Richard B.

Radioactivity of the thermal waters of Yellowstone National Park.—See Schlundt and Moore, no. 1033.

Morsack, Cajetan.

Includes notes on the character and occurrence of the deposits.

Morse, William Clifford, and Foerste, August F.

Munn, Malcolm J.

The discussion is based mainly upon structural and stratigraphic features of oil pools in the Sewickley quadrangle, Pennsylvania.

889. The anticlinal and hydraulic theories of oil and gas accumulation.—Econ. Geology, vol. 4, no. 6, pp. 509-529, 3 figs., 1909.

Nason, Frank L.

Describes folds in the Sierra Madre Oriental Mountains in Nuevo Leon, Mexico, and explains their production and relations to ore-bearing fissures.

Nelson, Gaylord.

Newland, David H.

Describes the distribution of the Clinton formation, the general structure of the beds, the occurrence of the iron ores, and their origin.

Newsom, J. F.

Description of the Santa Cruz quadrangle, California.—See Branner and others, no. 138.

Nicholas, Francis C.

Nickles, John M.

Classified list of papers dealing with coal, coke, lignite, and peat contained in publications of the U. S. Geological Survey, except those on Alaska.—See Lee and Nickles, no. 749.

Nicol, John M.

Includes notes on the local geology and the occurrence of placer gold.

Nicolas, Frank J.

Nordenskjöld, Otto.

Describes the occurrence, character, and relations of Archean and post-Archean eruptive rocks and of Paleozoic, Triassic, Jurassic, and Tertiary deposits.
Northwest Mining Journal.

Nylander, Olof O.

Nyström, Erik, and Anrep, S. A.

Obalski, J.
904. Mining operations in the Province of Quebec for the year 1908.—Quebec, Dept. of Colonization, Mines and Fisheries, 85 pp., 19 pls., 1909.

Includes notes on the occurrence of various mineral deposits.

Odendall, Leonhard.

Describes the occurrence and characters of the principal copper deposits of the United States, Mexico, and Canada, and discusses the various types of deposits.

O'Harra, Cleophas C.
Description of the Belle Fourche quadrangle, South Dakota.—See Darton and O'Harra, no. 312.

Ohio Geological Survey.
906. A geological map of Ohio. J. A. Bownocker, state geologist. Based on preceding maps by Newberry and Orton. Richmond-Lorraine boundary by Foerste and Morse; glacial boundary and shore of glacial Lake Erie (Lake Maumee) after Leverett. Scale, 8 miles to 1 inch, 1909.

Olcott, Theodore F.

Oldham, Richard Dixon.

Ontario, Bureau of Mines.
909. Visit [of the British Association for the Advancement of Science, Winnipeg Meeting, 1909] to Cobalt and Sudbury, August 17th to August 20th, Toronto, 1909. 31 pp., illus.

Describes the Cobalt and Sudbury (Ontario) mineral areas, giving data upon the geology, and the occurrence, relations, and genesis of the ores.

Ordóñez, Ezequiel.

 Gives a general account of the physiography and geology of Mexico and the general mode of occurrence of ore deposits.

Describes the physiographic features and the kinds and disposition of volcanic rocks forming its surface.
Orton, Edward, jr.

Osborn, Henry Fairfield.
Describes the general geology and climatic history of the Tertiary and Pleistocene of western North America and the character, origin, distribution, and relations of the various mammalian faunas and discusses their homotaxial relations and correlation.

Describes a specimen of Trachodon annectens from Converse County, Wyo., preserving part of the epidermal covering.

Discusses the habits and restorations.

Osborn, Henry Fairfield, and Matthew, W. D.
Explains the organization of the committee, the method of procedure, and the progress of correlation work.

Osgood, Samuel W.
Includes notes on the occurrence of the zinc ores.

O'Sullivan, Owen.
Includes notes on geologic features of the country traversed.

Outerbridge, Alexander E., jr.

Overspeck, L. S.
The iron deposits of the Black Hills, South Dakota.—See Cooledge and Overspeck, no. 284.

Pack, R. W.
Packard, George A.
 Includes notes on the local geology.
925. Copper mines and smelters of Shasta County, California.—Eng. and Min. Jour., vol. 88, pp. 393-399, 9 figs., August 28, 1909.
 Includes notes on the geology, occurrence, character, and genesis of the copper ores of Shasta County, Cal.

Paige, Sidney.
 Describes the geography and topography of the Hanover iron-ore district, the general geology, the occurrence, character, and relations of sedimentary and igneous rocks, the metamorphism produced by intrusions, and the distribution, character, and genesis of iron ores.
 Describes the general geology, the stratigraphy, and the geologic structure, metamorphism in the region, and the occurrence and character of marble.
 Describes sandstone dikes at this locality and discusses their origin.

Palache, Charles.
 Describes the occurrence, crystallographic characters, and chemical composition.
 Describes the characters, crystallography, and composition of the mineral obtained from a pegmatite dike near Hackberry, Ariz.
 Describes Psephophorus calvertensis n. sp.
Pardee, J. T.
Describes the general features, the stratigraphy, the geologic structure, and the vein system, particularly its faulting.

Paredes, Trinidad.
Describes the geology, occurrence, and relations of a copper deposit at Cerro Seco, in the State of Guerrero, Mexico.

Describes the hydrology of the region stated. Includes an account of the geology.

Describes the physiographic features, general geology, the Cretaceous and Tertiary formations, the geologic history, and the hydrology of the Valley of Ixmiquilpan, State of Hidalgo, Mexico.

Parker, Edward W.
Coal fields of the United States.—See Campbell and Parker, no. 191.

Parks, William Arthur.
Discusses the characters of the genus, and the generic position of various species referred to it and describes Protaster whiteaviesiavus n. sp., from the Trenton of Ontario.

Patton, Horace B.
943. The Montezuma mining district of Summit County, Colorado.—Colorado Geol. Survey, 1st Report, 1908, pp. 105-144, 4 pls., 1 fig., 1909.
Describes the general geology and the rocks of the area, the vein systems, and the occurrence and relations of gold, silver, lead, zinc, and iron ores.

Peale, A. C.

Peet, C. A.
945. Green River oil fields in Wayne County, Utah.—Salt Lake Min. Rev., vol. 11, no. 18, pp. 19-21, 6 figs., December 30, 1909.

Penck, Albrecht F. K.
Jour. Geog., vol. 8, no. 4, pp. 73-83, December, 1909.

Pepperberg, Leon J.

Describes the geology of the district and the occurrence and composition of limestone and shale.

Describes the topography and geology, the stratigraphy and structure of the field, the character and distribution of the coal beds, and the properties and composition of the coal.

Peragallo, Oreste.

Includes notes on the local geology and the occurrence, character, and origin of the silver-lead-zinc ores.

Perrine, I.

Oil and gas in northwestern Louisiana, with special reference to the Caddo field.—See Harris, Perrine, and Hopper, no. 514.

Peterson, O. A.

Includes an account of the Agate Spring fossil quarries in western Nebraska.

Proposes the name Daphniodon for the material described as Amphicyon superbus.

Phalen, William Clifton.

Mineral resources of the United States, 1908: Bauxite and aluminum; abrasive materials; salt and bromine; sulphur and pyrite.—See no. 1170.

Phillips, William B.

Includes a brief account of the geology of the district and the occurrence of the silver ore.

Includes notes on the occurrence of the ore.

Platt, James M.

Includes notes on the occurrence and character of the silver ores of the Zacualpan district, State of Mexico, Mexico.

Pogue, Joseph E.

Pogue, Joseph E.—Continued.

Describes the general geology of the region, the lithology, structural features, and geologic history.

Pogue, J. L.

Calcite crystals from Kellys Island, Lake Erie.—See Ford and Pogue, no. 417.

Crystals of datolite from Bergen Hill, New Jersey.—See Ford and Pogue, no. 418.

Poole, Henry S.

Pratt, Joseph Hyde.

964. The mining industry in North Carolina during 1907, with special report on the mineral waters.—North Carolina Geol. and Econ. Survey, Econ. Paper no. 15, 176 pp., 13 pls., 4 figs., 1908.

Pratt, Joseph Hyde, and Sterrett, Douglas B.

Prindle, Louis M.

Describes the general physical and geologic features, the occurrence, character, and relations of pre-Ordovician, Devonian, Carboniferous, Tertiary, and Quaternary formations, and the gold deposits.

Prindle, L. M., and Katz, F. J.

Prosser, Charles S.

Nomenclature and subdivision of the upper Siluric strata of Michigan, Ohio, and western New York.—See Lane and others, no. 733.

Prouty, William F.

Purdue, A. H.

972. The slates of Arkansas.—Arkansas, Geol. Survey, pp. 1–95, 7 pls., 1909.

Quackenbush, L. S.

Includes notes on the occurrence of various mammals.

Ramsay, J. D.

Includes notes on the geology of the district and the occurrence of the silver ores.

Rankin, G. S.

The binary systems of alumina with silica, lime, and magnesia.—See Shepherd and Rankin, no. 1056.

Ransome, Frederick Leslie.

Describes the occurrence and relations of pre-Tertiary sedimentary rocks and Tertiary igneous rocks and sedimentary deposits, the geologic structure and history, the mineralogy, and the distribution, geologic relations, and genesis of the ore bodies, and gives a detailed account of the mines.
Gives notes upon the local geology and the gold and silver ores.
Describes briefly the general geology, the occurrence and character of the ores, yielding principally gold, and the mining developments.
Describes the general geology, the occurrence, character, and relations of pre-Tertiary and Tertiary rocks, the mines and prospects, and the character of the copper deposits.
Describes the mining developments of the Humboldt region, the general geology and petrology of the mining districts, the occurrence, relations, and character of the ore deposits, mainly gold, silver, copper, antimony, nickel, and cobalt, and the mineralogy of the ore deposits.
[Petrography of the Newark group in the Trenton quadrangle.]—See Bascom and others, no. 74.

Raymond, Percy E.

Raymond, Rossiter W.

Raymond, R. W., and Ingalls, W. R.

Reagan, Albert B.

Reed, W. J.
The Madill oil pool, Oklahoma.—See Taff and Reed, no. 1132.

Reid, Harty Fielding.
Discusses the nomenclature and classification of faults, the nature of the observations necessary to determine completely the movement at a fault, and how this movement can be worked out from the observations.

Discusses conditions preceding and leading to tectonic earthquakes, and some characteristics of seismologic instruments; and suggests establishing a National Seismological Bureau.

Reynoso, José J.
Gives notes upon the geology and the lead and iron deposits of Naica, State of Chihuahua, Mexico.

Richards, Ralph W.
Describes the general features of the field, the stratigraphy and the structure, the character and distribution of the coal beds, and the qualities and composition of the coal.
Richardson, George Burr.
Describes the geography, the occurrence, character, and relations of pre-Cambrian, Cambrian, Ordovician, Silurian, Carboniferous, Cretaceous, and Quaternary formations, and of igneous rocks, the geologic structure, the geologic history, and the mineral resources.

Describes the location and topography, the stratigraphy and structure of the field, the occurrence and character of the coal beds, and the quality and composition of the coals.

Describes the topography, stratigraphy, including Cretaceous and Tertiary formations, and structure of the field, and the occurrence, character, and development of the coal beds and quality of the coal.

Bickard, Forbes.
Includes notes on the local geology.

Bickard, T. A.
Describes gold mining and the occurrence of placer gold in Alaska.

Ries, Heinrich.

Biggs, Elmer S.

Bitter, Etienne A.
Describes the geology of the district, the veins, and the character and structure of the silver ores.

Roberts, Milnor.
Describes features of Mount Rainier National Park, Washington.

Robertson, William Fleet.
Includes notes on the geology and occurrence of various ores in British Columbia.

Robles, R.
Geologic study of the Sierra of Guanajuato.—See Villarello, Flores, and Robles, no. 1192.
Roddy, H. Justin.
Notes the discovery of lower Cambrian fossils.

Roe, A. D.

Rogers, Austin F.
Coal measures faunal studies: faunal divisions of the Kansas coal measures.—See Beede and Rogers, no. 95.

Rogers, A. P.

Rogers, R. V.

Rohwer, S. A.

Root, W. A.
Includes notes on the occurrence and character of the ore deposits.

Rowe, Jesse Perry.
Includes notes on the occurrence and character of the coals.

Ruedemann, Rudolf.
Discusses the definition of inlier, and describes various types and their mode of formation with especial reference to occurrences in New York.
1020. Some marine algae from the Trenton limestone of New York.—New York State Mus., Bull. 133, pp. 194-216, 3 pls., 5 figs., 1909.

Ruhl, Otto.
Includes notes on the geology and the occurrence of the lead ores.
Rush, W. W.
 Includes notes on the local geology and occurrence of the ores.

Salisbury, Rollin D.
 Description of the Philadelphia district.—See Bascom and others, no. 74.
 Description of the Trenton quadrangle, New Jersey-Pennsylvania.—See Bascom and others, no. 75.

Sanford, Samuel.
 Mineral resources of the United States, 1908: Mineral waters.—See no. 1170.

Sargent, R. H.
 Describes physiographic features of Alaska.

Savage, T. E.

Sayles, Robert W.
 Notes the discovery of ophiuroids in the “upper clay” near Rockland, Me.

Schaller, Waldemar T.
 The mercury minerals from Terlingua, Texas.—See Hillebrand and Schaller, no. 565.

Scharff, R. F.

Scheffel, E. R.
 Considers that drainage changes may have been caused by tilting of the land in preglacial time rather than by the advance of glaciers.

Schlundt, Herman, and Moore, Richard B.

Schrader, Frank Charles.
 Describes the physiographic features and general geology, the occurrence of the ores, gold, silver, lead, copper, and zinc, and the mining developments.
Schubert, E. A.
Papers and Addresses, pp. 121-145, 1909.

Schuchert, Charles.
1036. Paleogeography of North America.—Abstract: Science, new ser., vol. 29,
pp. 629-630, April 16, 1909.
1037. Obituary: Joseph Frederick Whiteaves.—Am. Jour. Sci., 4th ser., vol. 28,
p. 508, November, 1909.
1908.
The Silurian section at Arisaig, Nova Scotia: Correlation.—See Twenhofel,
no. 1158.

Schultz, A. R.
1039. The northern part of the Rock Springs coal field, Sweetwater County,
Wyoming.—U. S. Geol. Survey, Bull. 341, pp. 256-282, 2 pls. (maps),
1909.
Describes the topographic features, stratigraphy, and geologic structure of the field,
the quality and composition of the coals, and the mining developments.

Schwarz, E. H. L.
1040. The probability of large meteorites having fallen upon the earth.—Jour.

Scott, J. G.
1041. Coal in Alberta.—Quebec, Soc. Géog., Bull., vol. 3, no. 4, pp. 41-44, May,
1909.
Notes the discovery of bituminous coal in northern Alberta.

Scott, W. A.
1042. Mining on Prince of Wales Island, Alaska.—Min. and Sci. Press, vol. 98,
Includes notes on the occurrence of the copper ores.
August 7, 1909.
Includes notes on the local geology and the occurrence of placer gold.

See, T. J. J.
1044. The past history of the earth as inferred from the mode of formation of the

Sellards, E. H.
1045. Fossil plants of the upper Paleozoic of Kansas.—Kansas, Univ. Geol. Sur-
vey, vol. 9, pp. 386-480, 26 pls., 2 figs., 1908.
Describes fossil plants from the coal measures and Permian formations of Kansas.
1046. Cockroaches of the Kansas coal measures and of the Kansas Permian.—
13-19, 1909.
pp. 233-251, 5 pls., 1909.

Sellards, E. H., and Gunter, Herman.
1050. The fuller's earth deposits of Gadsden County, Florida. With notes on
similar deposits found elsewhere in the State.—Florida State Geol. Sur-
Shaler, Nathaniel Southgate.

1051. The autobiography of Nathaniel Southgate Shaler, with a supplementary memoir by his wife. Boston, Houghton Mifflin Company, 1909. 481 pp., illus.

Includes a list of his writings.

Shannon, C. W.

Shattuck, George B.

Shaw, E. Wesley.

Describes the topography and stratigraphy of the field, and the occurrence, character, and mining of the coals.

Shaw, S. F., *

Includes notes on the geology and occurrence of gold and silver ores.

Shepherd, E. S., and Rankin, G. S.

Sheridan, Jo. E.

Describes briefly the geology, character, and occurrence of the coal beds.

Sherzer, William Hittell.

Nomenclature and subdivision of the upper Siluric strata of Michigan, Ohio, and western New York.—See Lane and others, no. 733.

Sherzer, W. H., and Grabau, A. W.

Discusses the relations and correlations of various Silurian-formations and gives lists of fossils from different beds.

Shideler, William.

Describes exposures of Richmond strata near Oxford, Ohio, and gives a list of the fossils collected.

Shimek, B.

Shimer, Hervey Woodburn.

BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Shumard, B. F.

Shurick, A. T.
Includes a brief account of the geology and the character of the coal.

Sibley, R. Roy.
Includes notes on the occurrence of the copper deposits.

Siebenthal, Claude E.
Mineral resources of the United States, 1908: Lead; zinc, cadmium.—See no. 1173.
Geology and mineral resources of the Laramie Basin, Wyoming.—See Darton and Siebenthal, no. 313.

Simmons, Jesse.
Includes notes upon the geology and occurrence of the tin ores.
Gives notes on the occurrence of the ore deposits.

Sinclair, W. J.
Describes the materials composing the Washakie formation of southern Wyoming and shows that they differ from those of the Bridger formation; and concludes that the two formations are not contemporaneous.

Singewald, Joseph T., jr.

Sivyer, Leonard D.

Sloan, Earle.
1068. A summary of the mineral resources of South Carolina. Issued by [South Carolina], Dept. Agriculture, Commerce, and Immigration. Columbia, S. C., 1907. 66 pp., illus.

Slocum, Arthur Ware.
Smith, Arthur L.
8 figs., December, 1909.
Discusses the form and mode of formation of several experimental deltas, and the necessary and modifying conditions of delta formation.

Smith, Burnett.
1072. On some Dinichthyid armor plates from the Marcellus shale.—Am. Naturalist,
vol. 43, pp. 588-597, 3 figs., October, 1909.
Describes fish remains from the Marcellus shale in the vicinity of Syracuse, N. Y., identified with *Dinichthus halmodus* (Clarke).
Records the discovery of two dikes, which are briefly described, at a locality 12 miles southwest of Syracuse, N. Y.

Smith, Carl D.
Describes the general features of the field, the various exposures of lignite beds, and the character of the lignite.
1075. The Fort Berthold Indian Reservation lignite field, North Dakota.—U. S.
Describes the general features of the field, the stratigraphy and structure, the distribution of the lignite, and its character and uses.
1076. The Fort Peck Indian Reservation lignite field, Montana.—U. S. Geol.
Survey, Bull. 381-A (advance chapter), pp. 36-55, 1 pl. (map), 1909.
Describes the topography and stratigraphy of the field, and the character and distribution of the lignite beds.
The Miles City coal field, Montana.—See Collier and Smith, no. 274.
The Sentinel Butte lignite field, North Dakota and Montana.—See Leonard and Smith, no. 761.

Smith, E. Eggleston.
1077. The eastern part of the Great Divide Basin coal field, Wyoming.—U. S.
Describes the general features of the field and the stratigraphy and structure, the occurrence and character of the coal beds, and the quality and composition of the coals.

Smith, Ethel M.
1078. A study of volcanic topography.—Jour. Geography, vol. 8, no. 3, pp. 56-61,
November, 1909.
Describes the physiographic history of extinct volcanoes of the United States.

Smith, F. C.
Presents a definition of the term “ore.”

Smith, George L.
19, pp. 605-657, 4 pls., 1 fig., 1909.
Describes the coal measures stratigraphy of southwestern Iowa and gives notes upon the range of certain fossils.
Smith, George Otis.

A summary of the work of the year, by branches and divisions, with notes on special features, brief descriptions of the publications, and maps showing areas covered by geologic and topographic surveys.

Smith, James Perrin.

Outlines the geologic history of California from the Cambrian to the present. Includes a synopsis of Quaternary history in tabular form.

Smith, Philip S.

Describes development of placer and lode gold deposits. Includes notes on the geology of the region.

Describes the general geology, the gravels, and the placer and lode gold deposits.

Snider, L. C.

Spalding, W. A.

Spencer, Arthur Coe.

Describes the mining developments, the constitution of the ore, and the characteristics, relations, and origin of the deposits.

Springer, Frank.

Spurr, Josiah Edward.

Questions the correctness of his former determination of scapolite rocks in Alaska.

Squire, George Hull.

Describes the deposits and discusses their origin and mode of formation.
Stabler, H.

Denudation.—See Dole and Stabler, no. 345.
Denudation in the United States.—See Dole and Stabler, no. 346.

Stanton, Timothy W.

Describes the distribution, relations, and faunal character of the “Ceratops beds,” and considers them to be of Cretaceous age, while the Fort Union formation, properly restricted, is of early Eocene age.

Stauffer, Clinton R.

Gives a general discussion of the middle Devonian of Ohio and adjoining States, describes sections and their faunas at various localities in Ohio, discusses the relationship of the middle Devonian faunas of Ohio, and gives notes on and descriptions and figures of species.

Stearns, Jane.
1097. A physiography laboratory.—Jour. Geography, vol. 8, no. 4, pp. 84-89, 7 figs., December, 1909.

Stephenson, L. W.

Sternberg, Charles H.

An autobiographical sketch. Includes numerous figures of fossils and restorations.

Describes the beds and gives notes upon the fossils collected from them.

Describes the discovery and occurrence of dinosaurian plates in western Kansas.

Sterrett, Douglas B.

Describes the location and general geology, the occurrence, and the mining of mica deposits in the vicinity of Custer, S. Dak., and explains the origin of the pegmatite.

Mineral resources of the United States, 1908: Mica; monazite and zircon; precious stones.—See no. 1170.

Monazite and monazite mining in the Carolinas.—See Pratt and Sterrett, no. 968.

Stevens, Blaney.

Stevenson, John James.

A sketch of his life and a list of his writings.

Stewart, C. A.

Stieglitz, Julius.

Stoek, H. H.

Includes notes on the geology, occurrence, and character of the iron ores of the Marquette Range, Michigan.

Stone, C. A.

Stone, Ralph W.

Describes the geography, the general geology, and the structure of the area examined, the occurrence, character, and relations of the coal beds, and the quality of the coal.

Storms, William H.

Includes notes on the local geology.

Stose, George W.

Describes the topographic features, the general geology, the occurrence, character, and relations of pre-Cambrian volcanic rocks, and of Cambrian, Ordovician, Silurian, and Devonian formations, the geologic structure, the geologic history, and the economic resources.

Stow, Audley H.

BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Stutzer, O.
 Describes the contact-metamorphic copper-ore deposits of Whitehorse, Yukon Territory.

Surr, Gordon.
 Describes composition, characters, probable origin, etc., of granite.

Swartz, Charles K.

Symons, Brenton.

Taff, Joseph A.
 Describes briefly the general features of the field and the stratigraphy of the coal-bearing rocks, and in more detail the occurrence, character, and mining of the coals.
 Mineral resources of the United States, 1908: Asphalt, related bitumens, and bituminous rock.—See no. 1170.

Taff, J. A., and Reed, W. J.
 Describes the stratigraphy and the structure of the field, and the physical properties, occurrence development, and source of the oil.

Tallman, Clay.
 Includes an account of the geology of the district.

Tarr, R. P.
Tarr, Ralph S.

1136. The Yakutat Bay region, Alaska; physiography and glacial geology.— U. S. Geol. Survey, Prof. Paper 64, pp. 11–144, 36 pls., 10 figs., 1909.
Description of the Watkins Glen-Catatonk district, New York.—See Williams, Tarr, and Kindle, no. 1255.

Tarr, Ralph S., and Butler, Bert S.

Taylor, Arthur E.

Taylor, Frank Bursley.

Tays, E. A. H.
Includes notes on the geology of the region.

Includes notes on the local geology and the occurrence of the gold ores in the San José de Gracia district in the State of Sinaloa, Mexico.

Thomas, H. H., and MacAlister, D. A.

Thomas, Kirby.
Includes a short account of the local geology and the occurrence of gold and silver ores.

Tillotson, E. W.
Orthoklaszwillinge von ungewöhnlicher Ausbildung.—See Ford and Tillotson.

Todd, James E.
Describes the geography, the general geology, the occurrence and relations of pre-Cambrian and Cretaceous strata and Quaternary deposits, the geologic history, and the economic resources, particularly the underground waters.

Discusses the probable margin of the Kansas ice sheet in the State of Kansas, the line of the master drainage stream, and the extent of erosion in Pleistocene and more recent times.

56699°—Bull. 444—10——7.
Tolman, C. F.
1148. The geology of the vicinity of the Tumamoc Hills, Arizona.—In Spalding, Distribution and Movements of Desert Plants (Carnegie Inst., Washington, Publ. no. 113), pp. 67-82, 3 pls. (incl. maps), 1 fig., 1909.

Describes the geology, and the occurrence and character of the copper ores.

Describes the geologic relations, character, and occurrence of the copper ores.

Describes the general geology of the district, and the occurrence, character, geologic relations, and genesis of the copper-ore deposits.

Describes the geology of the district, and the relations and characters of the copper-ore bodies.

True, Frederick W.

Truesdell, William H.
Describes the geology of the district, and the occurrence and character of the copper ores.

Turner, H. W.
Describes the geographic features, the occurrence, relations, and petrologic characters of pre-Cambrian, Cambrian, Ordevoian, Tertiary, and Quaternary deposits, and of igneous and volcanic rocks, and structural features.

Includes notes on the local geology and the occurrence of the gold ores.

Twenhofel, W. H.
Reviews previous work on the section describes the location, structure, petrology, mode of deposition, and subdivisions, and gives a detailed account of the various horizons, with lists of fossils.

Twitchell, M. W.
The geological distribution of the Mesozoic and Cenozoic Echinodermata of the United States.—See Clark and Twitchell, no. 238.

Tyrrell, J. B.
Tyssowski, John.

Udden, Johan August.
Discusses the occurrence of underground waters with respect to their geologic horizon.

Udden, Jon Andreas.
Describes the stratigraphy and the coal beds, and the structure, pointing out the possible occurrence of oil.
Describes the stratigraphy and geologic structure of the region, and the occurrence, altitude, and character of the coal beds.

Ulrich, Johannes.
Describes rocks collected in northeastern Labrador (see Hantzsch, no. 508).

Ulrich, Edward Oscar.
Discusses the criteria to be used in paleogeography.
Gives a classification of erosion channels and describes examples from Ordovician and later Paleozoic deposits.

United States Geological Survey.
The papers in this bulletin have been entered under the individual authors. Interspersed are lists of the Survey publications on various economic products.
Contains the following papers, mainly statistical in character, relating to the production, condition of the industry, etc., but also in some cases including notes on the geology and occurrence of the products treated:

PART I.

Summary of mineral production in the United States in 1908, compiled by W. T. Thom, pp. 7–69.
Iron ores, pig iron, and steel, by E. C. Harder, pp. 61–134.
Manganese ores, by E. C. Harder, pp. 135–150.
Copper, by B. S. Butler, pp. 185–226.
United States Geological Survey—Continued.

Zinc, by C. E. Siebenthal, pp. 245-273.
Gold, silver, copper, lead, and zinc in the United States, pp. 275-276.
Gold, silver, copper, lead, and zinc in the Western States, pp. 277-386.
Silver, copper, lead, and zinc in the Central States, pp. 387-443.
Antimony, by Frank L. Hess, pp. 709-711.
Bismuth, by Frank L. Hess, pp. 713-714.
Tungsten, nickel, cobalt, vanadium, etc., by Frank L. Hess, pp. 721-749.
Chromic iron ore, by E. C. Harder, pp. 751-770.
Tin, by Frank L. Hess, pp. 771-779.
Cadmium, by C. E. Siebenthal, pp. 793-803.

PART II.

FUELS.
Coal, by E. W. Parker, pp. 5-211.
Coke, briquetting, by E. W. Parker, pp. 213-221.
Coke, by E. W. Parker, pp. 223-283.
Gas, coke, tar, and ammonia, by E. W. Parker, pp. 285-316.
Natural gas, by J. Hill, pp. 317-344.

STRUCTURAL MATERIALS.
Cement industry in the United States in 1908, by E. C. Eckel, pp. 441-453.
Glass sand, other sand, and gravel, by A. T. Coons, pp. 505-510.
Sand-lime brick, pp. 517-519.

ABRASIVES.

CHEMICAL MATERIALS.
Borax, by C. G. Yale, pp. 603-605.
Fluorspar and cryolite, by E. F. Burchard, pp. 607-620.
Gypsum, by E. F. Burchard, pp. 621-628.
Phosphate rock, by F. B. Van Horn, pp. 629-642.
Salt and bromine, by W. C. Phalen, pp. 643-657.
Sulphur and pyrite, by W. C. Phalen, pp. 659-668.

PIGMENTS.

Barytes and strontium, by E. F. Burchard, pp. 669-673.

MISCELLANEOUS.
Asbestos, by J. S. Diller, pp. 697-706.
Graphite, by E. S. Bastin, pp. 717-738.
Magnesite, by C. G. Yale, pp. 739-741.
Mica, by D. B. Sterrett, pp. 743-754.
Mineral waters, by S. Sanford, pp. 755-760.
Monazite and zircon, by D. B. Sterrett, pp. 791-794.
Peat, by Charles A. Davis, pp. 795-804.
Precious stones, by D. B. Sterrett, pp. 805-839.
Quartz and feldspar, by E. S. Bastin, pp. 861-868.
Talc and soapstone, by J. S. Diller, pp. 869-878.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Upham, Warren.

Urbina, Fernando.
Describes physical features of the State of Yucatan, Mexico. Includes notes on the geology.
Describes a cavern situated near Cacahuamilpa, District of Alarcon, State of Guerrero, Mexico.
1175. Nota acerca de unos supuestos yacimientos de cobre y de yeso en el partido de Champoton (Estado de Campeche).—Soc. Geol. Mexicana, Bol., t. 6, pp. viii, 15-16, 1 pi., 1909.
A brief note regarding supposed deposits of copper and of gypsum near Champoton, State of Campeche, Mexico.

Valiquette, J. H.
Includes an account of the geology and mineral resources of the region visited.

Van Hise, Charles Richard.

Gives a general account of the pre-Cambrian rocks of North America and a summary of the literature relating to them, and a detailed account of their occurrence, relations, and characters in the several areas in which they are found.

Van Horn, F. B.
Mineral resources of the United States, 1908: Phosphate rock.—See no. 1170.

Van Horn, Frank R.

Van Ingen, Gilbert.
The so-called Clinton ores are considered to be of Salina age.
Vaughan, T. Wayland.
Gives notes upon the character of the deposits forming the Keys.

Veatch, Otto.

Villarello, Juan D.
Describes the physiographic features, the geology, and the underground waters in the vicinity of Montenegro, State of Queretaro, Mexico.

Describes the granites quarried in the Leahy and Red Stone quarries near Conway, New Hampshire, and the Bienvenue quarry on Deer Island, Maine.

1187. Hidrologia subterranea de los alrededores de Patzcuaro, Michoacan, Mexico.—Mexico, Inst. Geol., Parerg., t. 2, no. 9, pp. 341-362, 1 fig., 1909.
Describes the underground water resources of the vicinity of Patzcuaro, Michoacan. Includes a brief account of the geology of the region.

Describes the petroleum well of Dos Bocas, State of Vera Cruz, Mexico.

Villars, J. R.

Wade, W. Rogers.
Describes the occurrence and geologic relations of tourmaline.

Wadsworth, M. Edward.

Wainewright, Wilfrid B.
Waitz, Pablo.

1197. Principios de clasificacion y comparacion de rocas macizas (igneas).—Soc. Geol. Mexicana, Bol., t. 6, pp. xi-xii, 17-36, 3 pls., 1909.

Discusses the classification of igneous rocks.

Walcott, Charles D.

Walker, T. L.

Ward, Freeman.

Describes the character and extent of the formation, and its petrographic characters and structure.

Calamine crystals from the Organ Mountains, Donna Anna County, New Mexico.—See Ford and Ward, no. 419.

Waring, Gerald A.

Warren, C. H.

Washburne, Chester W.

Describes the general features of the field, the stratigraphy of the coal beds, and the distribution, relations, and character of the coals.

Describes the general geology, stratigraphy, and structure of the field, the mode of occurrence and character of the oil, and the development and production of the field.

Washington, Henry S.

Diamonds in Arkansas.—See Kunz and Washington.

Watson, C. B.

Watson, Thomas Leonard.

Watson, Thomas Leonard—Continued.

Weaver, Charles E.

Reviews previous work on the San Pablo formation, describes its geographic distribution, stratigraphic relations, and correlation, and gives a list of species occurring in it by horizons. Considers the San Pablo to be lower Pliocene.

Weeks, Fred B., and Nickles, John M.

Wegemann, Carroll H.

Gives a detailed account of geologic and physiographic features of the vicinity of Danville, Ill., and discusses the development of the drainage of the area.

Describes the topography and geology of the field, and the distribution and character of the coal beds.

Welch, R. Kemp.

Includes notes upon the occurrence and source of placer gold in North Carolina.

Weld, C. M.

Weller, Stuart.

Describes fossils from the Fern Glen formation in Missouri and Illinois, and discusses the correlation of the Fern Glen formation and its fauna.

West, H. E.

Includes notes on the occurrence and geologic relations of the silver ores in the Gowganda district.

Describes the local geology and the occurrence and geologic relations of gold and silver bearing manganese deposits in the Matagalpa district of Nicaragua.
Wheeler, H. A.

Wheeler, H. E.
Includes notes on the occurrence of fossils in the Eocene deposits of this locality.

Wheeler, Joseph T.

Wherry, Edgar T.
Gives an account of the meeting and abstracts of the papers presented.
Characterizes the formations of Cambrian and Ordovician age.

White, David.
1231. The upper Paleozoic floras, their succession and range.—Jour. Geology, vol. 17, no. 4, pp. 320-341, 2 figs., 1909.
Includes notes on the correlation of the coal beds.

White, Douglas.
Describes briefly the geologic occurrence of the zinc ores.

White, I. C.
Discusses the distribution of workable beds, the method of deposition of the coal, and the duration of the field under present methods of mining and use.

White, W. P.
Diopside and its relations to calcium and magnesium metasilicates.—See Allen and White, no. 20.
Whiteaves, J. F.

Whitlock, H. P.

Whitney, Milton.

Contains soil surveys of the following areas:
- Alabama, Butler County, pp. 437-465.
- Marion County, pp. 381-400.
- Talladega County, pp. 401-436.
- Arkansas, Conway County, pp. 753-771.
- California, Colusa area, pp. 927-972.
- Redding area, pp. 973-999.
- Siskiyou County, Butte Valley, pp. 1001-1014.
- Idaho, Minidoka area, pp. 909-926.
- Indiana, Marion County, pp. 793-812.
- Maryland, Easton area, pp. 121-163.
- Mississippi, Jasper County, pp. 525-556.
- Oktibbeha County, pp. 467-502.
- Prentiss County, pp. 503-523.
- Nebraska, North Platte area, pp. 813-836.
- New York, Dutchess County, pp. 31-79.
- North Carolina, Edgecombe County, pp. 249-269.
- Henderson County, pp. 227-247.
- North Dakota, McKenzie area, pp. 869-879.
- Morton area, pp. 817-858.
- Pennsylvania, Johnston area, pp. 81-120.
- South Carolina, Lee County, pp. 323-343.
- Oconee County, pp. 271-298.
- Sumter County, pp. 299-321.
- South Dakota, Bellefourche area, pp. 881-906.
- Tennessee, Giles County, pp. 773-791.
- Texas, Bastrop County, pp. 663-704.
- Brownsville area, pp. 705-732.
- Cooper area, pp. 733-752.
- Robertson County, pp. 591-640.
- Wilson County, pp. 641-662.
- Virginia, Montgomery County, pp. 193-225.
- West Virginia, Middlebourne area, pp. 165-192.

Whytock, P. R.

Describes the occurrence of the gold ores.
Wiard, Edward S.

Wickham, H. F.

Wiechert, E.

Wieland, G. R.

Williams, Henry S.

Wilder, F. A.

Willard, Daniel E.

Williams, Bailey.

Wichard, Edward S.

Wickham, H. F.
Williston, Samuel W.

Wilson, Alfred W. G.

Presents and discusses evidence to determine whether the capping trap sheets are surface flows or intrusions.

Includes notes on the geology of the area examined.

Wilson, E. B.

Discusses the application of the terms dip, pitch, and hade.

Includes notes on the minerals containing boron and their occurrence.

Wilson, Morley E.

Describes briefly the physiographic features, the general geology, and the occurrence and character of the formations of the area examined in the western part of the Province of Quebec, Canada.

Wilson, W. J.

Winchell, Alexander N. *
1269. Elements of optical mineralogy.—See Winchell and Winchell, no. 1273.

Winchell, Newton Horatio.

Describes the megascopic characters of specimens taken from a drilling in the Mesabi Range, Minnesota.
Winchell, N. H., and Winchell, Alexander N.
1273. Elements of optical mineralogy: an introduction to microscopic petrography, with description of all minerals whose optical elements are known and tables arranged for their determination microscopically. New York, D. Van Nostrand Company, 1909. 502 pp., 4 pls., 350 figs.

Winston, W. B.
Includes notes on the geologic occurrence of the gold ores.

Wisconsin Geological and Natural History Survey.
1275. Sixth biennial report of the commissioners of the Geological and Natural History Survey covering the period from July 1, 1906, to June 30, 1908. Madison, Wisconsin, 1908. 45 pp.
An administrative report.

Wittich, Ernesto.
1276. Contribuciones a la geologia de la region meridional de la Baja California.—Soc. Geol. Mexicana, t. 6, pp. xii-xiii, 5-14, 1 pl., 1909.
Describes the general features of the southern part of Lower California, the occurrence, character, and relations of igneous rocks, and Tertiary, Quaternary, and recent deposits and the geologic structure.

Wolcott, G. E.
Describes the local geology and the occurrence of gold ores.

Wolff, J. Fred.
Includes notes on the geologic occurrence of the iron ores.

Wolff, John E.

Wood, Elvira.
1280. A critical summary of Troost’s unpublished manuscript on the crinoids of Tennessee.—U. S. Nat. Mus., Bull. 64, 150 pp., 16 pls., 1 fig., 1909.

Wood, George McLane.
States the practice of the Survey in the preparation of its publications. Includes definitions of geologic terms.

Wood, H. O.
Crystallographic notes on minerals from Chester, Mass.—See Palache and Wood, no. 933.

Wood, Katharine Hill.
Bibliography of North Carolina geology, mineralogy, and geography, with a list of maps.—See Laney and Wood, no. 736.

Woodman, J. Edmund.
Woodruff, Elmer Grant.

Describes the surface features, the stratigraphy and structure of the field, the occurrence and character of the coal beds, and the character of the coal.

Describes the stratigraphy and structure of the field and the geologic occurrence, mining, and character of the coals.

Describes the location, geologic relations and structure, and the occurrence and origin of the sulphur ore.

Woodward, A. Smith.

1286. Address of the president to the geological section of the British Association for the Advancement of Science.—Science, new ser., vol. 30, pp. 321-331, September 10, 1909.
Discusses evolution among the vertebrates and the problems which this study has raised.

Woodworth, Jay B.

Woolsey, Lester H.

Describes the general geology, the occurrence and character of the coal beds, the character of the coal, and the development.

Wright, C. T.

1289. The laboratories for physical geography in two California high schools.—Jour. Geography, vol. 8, no. 1, pp. 10-14, 3 figs., September, 1909.

Wright, Charles W.

Includes notes on the geology of Kasaan Peninsula and other districts of southeastern Alaska.

Wright, Fred. Eugene.

Gives optical measurements of clinoenstatite crystals and calls attention to distinctions between enstatite and clinoenstatite.
The binary systems of alumina with silica, lime, and magnesia; optical study.—See Shepherd and Rankin, no. 1056.

Wright, Fred. Eugene, and Larsen, Esper S.

Wright, George Frederick.

Wright, J. W.
Includes notes on the local geology and the occurrence of the ores yielding gold, silver, and copper.

Yates, J. A.

Yeandle, W. H.

Young, George A.
Describes the general geology and the occurrence and relations of an iron-ore deposit, and gives general notes on the Tobique country.

Zalinski, Edward R.
Describes the gem material, and its geological occurrence in Tooele County, Utah.

Zambonini, F.
A discussion in regard to the distinctions between enstatite and clinoenstatite.

Zehring, W. S.
Includes notes on the geology and occurrence of the copper ores.

Anonymous.
Describes the geologic conditions and occurrence of the ores in the Liberty Bell mine, at Telluride, Colorado.
CLASSIFIED SCHEME OF SUBJECT HEADINGS.

1. GENERAL.

Associations, meetings; Addresses; History; Philosophy; Biography; Bibliography; Educational; Text-books.
Classification; Nomenclature; Cartography; Technique; Fieldwork; Surveys; Borings.
Geochemistry; Chemical analyses (list); Atmosphere.
Miscellaneous.

2. REGIONAL.

The States of the Union, Alabama, etc.; the Provinces of Canada, Alberta, etc.; Greenland; Mexico; the countries of Central America; the West Indies, and the single islands; the Hawaiian Islands.

3. ECONOMIC.

Ore deposits, origin; Contact phenomena.
Gold; Placers; Black sands; Silver; Quicksilver; Nickel; Cobalt; Copper; Lead; Zinc; Iron; Magnetite; Manganese; Tin; Aluminum; Bauxite; Antimony; Bismuth; Tungsten; Wolframite; Vanadium; Uranium; Carnotite ores; Molybdenum; Molybdenite; Titanium; Rutile; Platinum; Monazite; Rare earths; Tantalum; Selenium; Tellurium; Zircon.
Coal; Anthracite; Coke; Peat; Lignite; Bituminous rock; Natural gas; Petroleum; Oil shales; Asphalt; Albertite; Gilsonite; Grahamite; Ozokerite.
Stone; Building stone; Granite; Bluestone; Limestone; Lime; Marble; Onyx; Sandstone; Clay; Kaolin; Bentonite; Fire clay; Ganister; Slate; Shale; Marl; Sand; Glass sand; Sand-lime brick; Gravel; Cement and cement materials; Concrete materials; Road materials; Trap; Steatite; Soapstone; Talc.
Precious stones; Diamonds; Sapphires; Turquoise; Tourmaline.
Abrasive materials; Corundum; Emery; Garnet; Diatomaceous earth; Tripoli; Volcanic ash; Millstones; Novaculite.
Asbestos; Feldspar; Mica; Quartz; Gypsum; Graphite; Fuller's earth; Infusorial earth; Magnesite; Mineral paint; Chromium; Chromite; Chromic iron ore; Fluorspar; Barite; Barytes; Strontium; Arsenic; Pyrite; Sulphur; Sulphate of soda; Cryolite; Phosphorus; Phosphate; Apatite; Glaucnite; Borax; Bromine; Salt; Natron deposits.

4. DYNAMIC AND STRUCTURAL.

Earth, genesis of; Earth, age of; Earth, interior of; Earth, temperature of.
Volcanoes; Earthquakes; Seismographs.
Isostasy; Orogeny; Changes of level.
Magmas; Intrusions; Dikes; Laccoliths; Metamorphism; Contact phenomena.
Deformation; Folding; Faulting; Unconformities.
Conglomerates; Concretions; Stalactites; Jointing; Cleavage.
Sedimentation; Denudation; Erosion; Caves; Sink holes; Erratic boulders; Weathering; Wind work; Dunes; Loess; Landslides.
Glaciers; Glacial erosion; Eskers; Kames; Moraines; Kettle holes.
Drainage changes.

112
5. PHYSIOGRAPHIC.

Geomorphology; Relief maps.
Valleys; Cirques; Deserts; Dunes; Deltas; Alluvial fans; Eskers; Kames; Mounds, natural; Natural bridges; Sink holes; Karsts.
Lakes; Swamps; Marshes; Everglades; Terraces; Shore lines; Rivers; Meanders; Falls; Springs.

6. HISTORICAL OR STRATIGRAPHIC.

Geologic history; Geologic time; Paleogeography; Paleogeographic maps; Paleo-climatolgy.
Geologic maps; Geologic formations described (list).
Pre-Cambrian, Cambrian; Ordovician; Silurian; Devonian; Carboniferous; Triassic; Jurassic; Cretaceous; Tertiary; Quaternary; Recent; Glacial geology; Glaciation; Glacial lakes; Ice ages.

7. PALEONTOLOGY.

Geographic distribution.
Vertebrata; Man, fossil; Mammalia; Aves; Reptilia; Amphibia; Pisces; Footprints, fossil.
Invertebrata; Arthropoda; Trilobita; Ostracoda; Insecta; Arachnida; Myriapoda.
Mollusca; Cephalopoda; Gastropoda; Pelecypoda.
Molluscoidea; Brachiopoda; Bryozoa; Vermes.
Echinodermata; Echinoidea; Asteroidea; Crinoidea; Crystoidea.
Coelenterata; Anthozoa; Hydrozoa; Graptolites.
Protozoa; Spongida; Foraminifera.
Paleobotany; Diatoms.
Problematica.

8. PETROLOGY.

Rocks, origin; Rocks described (list); Igneous and volcanic rocks; Rock-forming minerals.

9. MINERALOGY.

Minerals described (list); Crystallography; Pseudomorphism; Paragenesis of minerals; Rock-forming minerals; Meteorites.

10. UNDERGROUND WATER.

Mine waters; Thermal waters; Geyser; Springs; Mineral waters.

11. SOILS.

56693°—Bull. 444—10—8
INDEX.
[The numbers refer to entries in the bibliography.]

Aberdeen-Reclfield district, South Dakota: Todd, 1146.

Abrasive materials.
 North Carolina: Pratt, 904.

Addresses.
 Antiquity of man: Penck, 947.
 Darwin and geology: Stevenson, 1106.
 Distribution of nation's mineral wealth: Smith, 1083.
 Earthquake forecasts: Gilbert, 450.
 Geologic basis for artesian prediction: Darton, 309.
 Geologic essentials of a mine report: De Kalb, 336.
 Geologic forecast of the future opportunities of our race: Chamberlin, 217.
 Geology and revelation: Calvin, 186.
 Igneous rocks, study of: Iddings, 611.
 North America and Europe: Penck, 946.
 Pleistocene problem in Iowa: Calvin, 187.
 Aftonian mammalian fauna: Calvin, 188.

Alabama.

Economic.
 Chattanooga district, iron: Higgins, 556.
 Clinton iron ores in the Birmingham district: Burchard, 163.
 Clinton iron ore in Chattanooga region: Burchard, 164.
 Coal, Lahausage mine: Evans, 381.
 Cooa coal field: Frouty; 971.

Palaeontology.
 Claiborne fossils: Wheeler, 1225.

Alaska.

General.
 Prince William Sound: Stevens, 1105.
 Yakutat Bay region: Tarr and Butler, 1137.

Economic.
 Big bonanza copper mine, Latooshe Island: Lincoln, 768.
 Fairbanks gold placer region: Prindle and Katz, 970.
 Fortymile quadrangle: Prindle, 969.
 Gold: Rickard, 1002.
 Gold Hill district placers: Maddren, 809.
 Haines district, gold: Scott, 1043.
 Innoko district placers: Maddren, 810.
 Iron Creek region: Smith, 1086.

Alaska—Continued.

Economic—Continued.
 Kenai Peninsula: Grant and Higgins, 486.
 Kotsina-Chitina, Chistochina, and Valdez Creek regions: Moffit, 873.
 Kotsina-Chitina region, mineral resources: Moffit and Maddren, 875.
 Makushin sulphur deposits, Unalaska: Lawton, 741.
 Mineral resources: Brooks, 149, 150.
 Mineral resources, 1908: Brooks et al., 151.
 Mining industry, 1908: Brooks, 148.
 Peut: Davis, 315.
 Prince of Wales Island, copper: Scott, 1042.
 Prince William Sound: Stevens, 1105.
 copper: Grant and Higgins, 485, McCormick, 793.
 gold: Grant, 484.
 Ruby Creek district: Maddren, 808.
 Seward Peninsula: Smith, 1085.
 Southwestern Alaska: Atwood, 41; Wright, 1290.
 Tin deposits, Seward Peninsula: Knopf, 670.
 White River, copper: Lewington, 765.

Dynamic and structural.
 Glaciers: Reid, 994.
 Kebuk glacier: Hershey, 546.
 Rock glaciers: Capps, 197.
 Yakutat coastal plain formation: Blackwelder, 118.

Physiographic.
 General: Sargent, 1026.
 Bogoslof: Jordan and Clark, 639.
 Malaspina glacier region: Martin, 821.
 Point Hope spit: Kindle, 667.
 Yakutat Bay region: Tarr, 1136.

Stratigraphic.
 Balboa-Herendeen Bay district: Atwood, 42.
 Cape Thompson section: Kindle, 669.
 Fortymile quadrangle: Prindle, 969.
 Kotsina-Chitina region: Moffit and Maddren, 875.
 White River region, copper-bearing amygdalooids: Knopf, 670.
 Yakutat Bay region: Tarr, 1136; Tarr and Butler, 1138.

Palaeontology.
 Mammoth expeditions: Quackenbush, 974.
Alaska—Continued.

 Petrology.
 Scapolite rocks: Spurr, 1091.
 Yakutat Bay region: Butler, 174.

 Mineralogy.
 Pyrite with gold and galena: Pogue, 959.

 Alberta.

 Economic.
 Bighorn and Brazeau coal lands: McEvoy, 802.
 Bighorn, Brazeau, and Saskatchewan coal lands: Dowling, 353.
 Big Horn coal basin: Malloch, 812.
 Coal fields: Dowling, 350, 352.
 Kananaskis coal area: Dowling, 355; McEvoy, 801.
 Lignite areas: Dowling, 351.
 Mining districts: Langford, 737.

 Dynamic and structural.
 Landslide at Frank: Burling, 108.
 Algae from Trenton limestone of New York: Ruedemann, 1020.
 Algonkian. See Pre-Cambrian.
 Algonquin and Nipissing shore lines in Ontario: Goldthwait and Jacobson, 463.

 Aluminium.

 Ammonites. See Cephalopoda.

 Amphibia.
 General: Moodie, 876.
 Carboniferous: Moodie, 878.
 classification, etc.: Moodie, 877.
 in American Museum of Natural History: Moodie, 880.
 Diplacanthus: Williston, 1258.
 Lysorophus: Moodie, 876.
 Microsauria: Moodie, 879.
 Stegocephala: Moodie, 876.
 Trematos from the Permian: Williston, 1200.
 Amphibolites of the Laurentian area: Adams, 2.
 Analyses, chemical. See list, p. 158.

 Animikie. See Pre-Cambrian.

 Anthozoa (corals).
 Cincinnati: Foerste, 412.
 Developmental stages: Grabau, 475.
 Rugose corals, morphology and development: Brown, 156.
 Silurian fossils from Ohio, Indiana, and Kentucky: Foerste, 400.

 Anthracite.
 Anticinal and hydraulic theories of oil and gas accumulation: Munn, 889.
 Anticinal theory of oil and gas accumulation: Clapp, 231.

 Antimony.
 Canada: Young, 1297.
 Quebec: Dresser, 361.

 Apatite.
 Canada: Young, 1297.

 Archean. See Pre-Cambrian.

 Arizona.

 General.
 Tucson: Blake, 120.

 Economic.
 Banner mining district, Gila County: Brooks, 152.
 Caliposa placer: Hedburg, 534.
 Copper Creek mining district: Sibley, 1062.
 Copper fields of southern Arizona: Tolman, 1150.
 Dragoon tungsten deposits: Richards, 996.
 Globe, copper: Sivyer, 1067.
 Greens Valley district: Hedburg, 535.
 Johnson and Dragoon districts, copper: Dinsmore, 342.
 Marble prospects in Chiricahua Mountains: Paige, 927.
 Miami copper mine: Herrick, 545.
 Miami-Inspiration copper-ore zone: Tolman, 1152.
 Mohave County, mineral deposits: Schrader, 1034.
 Patagonia district: Dinsmore, 341.
 Ray chalcoite deposits: Tolman, 1151.
 Ray copper district: Truesdell, 1156.
 Ray copper mines: Herrick, 544.
 San Francisco district: Martin, 816.
 Silverbell copper deposits: Tolman, 1153.
 Tombstone district: Shaw, 1055.
 Turquoise mining district: Platt, 956.

 Dynamic and structural.
 Erosion and deposition in bolson region: Tolman, 1149.
 Physiographic.
 Bolson region: Tolman, 1150.
 Colorado Canyon: Davis, 319-321.
 Grand Canyon district: Johnson, 629.
 Grand Canyon of Colorado: Davis, 319.
 Meteor Crater: Hastings, 516.

 Stratigraphic.
 Ray copper district: Truesdell, 1155.
 Tumamoc Hills: Tolman, 1148.

 Petrology.
 Tumamoc Hills: Tolman, 1148.

 Mineralogy.
 General: Blake, 119.

 Connellite and chalcopyllite from Bisbee: Palache and Merwin, 932.

 Arkansas.

 General.
 Bibliography of geology of Arkansas: Branner, 136.

 Economic.
 Diamond field, Pike County: Arkansas Diamond Company, 29; Branner, 137; Eberle, 368; Fuller, 431; McCourt, 794.
 Mineral resources: Estes, 386.
 Murfreesboro eruptions magnetic: Harris, 513.
 State: Purdue, 972.

 Stratigraphic.
 Ouachita Ordovician area: Purdue, 973.

 Arsenio.
 Artesian waters and wells. See Underground water
INDEX.

Arthropoda. See also Crustacea, Arachnida, and Insecta.

Asbestos.

General.
- Depth of deposits: Cirkel, 226.
- Canada: Young, 1297.
- Ontario, Gowganda district: Collins, 276.
- Ontario, Montreal River district: Collins, 279.
- Quebec: Dresser, 359-361.
- Wyoming: Lakes, 710.

Asphalt. See also Asphaltite and Grahamite.

General.
- Distribution and mode of occurrence: Lakes, 708.
- Nevada, northeastern: Anderson, 27.
- Oklahoma: Gould, 468, 469; Taff, 1130.

Associations, meetings.

American Association for the Advancement of Science, Section E, Baltimore meeting, 1908: Gulliver, 501.
- American Society of Vertebrate Paleontologists, seventh annual meeting: Matthew, 838.
- British Association for the Advancement of Science, Winnpeg meeting: Knight, 573.
- Geological Society of America, meeting, December, 1908: Hovey, 596.
- Geological Society of America, 29th meeting, at Albuquerque: Hovey, 595.
- Geologists of northeastern United States, second annual spring conference: Wherry, 1228.
- New England intercollegiate geological excursion: Brown, 155.

Asterolepis.

Protaster: Parks, 941.

Atmosphere.

Equilibrium between carbon dioxide of atmosphere and calcium compounds of water: Stieglitz, 1109.

Aves (birds).

Peacock from Quaternary asphalt beds, California: Miller, 803.
- Teratornis from Rancho La Brea: Miller, 844.

Barite. See also Barites.

Canada: Young, 1297.
- Missouri, St. Francois and Washington counties: Buckley, 158.
- Pennsylvania, Mercersburg-Chambersburg district: Stone, 1119.

Barites. See also Barite.

- Base level of eolian erosion: Keyes, 655.
- Batrachia. See Amphibia.

Bauxite.

Beaches. See also Shore lines; Terraces.

Ohio, Berea, Cleveland, and Enfield sheets: Carney, 202.
- Ontario, southwestern: Taylor, 1140.
- Belle Fourche quadrangle: Darton and O'Harra, 312.

Benitoite. Baumhauer, 85; Hlawatsch, 578-580; Loderback, 781.

Bentonite.

Bibliography.

Abrasive materials: U. S. G. S., 1169.
- Alaska, Pleistocene mammals: Quackenbush, 974.
- Yakutat Bay region: Tarr, 1130.
- Alberta, coal fields: Dowling, 350.
- Antimony: U. S. G. S., 1169.
- Arkansas geology: Branner, 136.
- Asbestos: U. S. G. S., 1169.
- Barite: U. S. G. S., 1169.
- Beaches, raised, of Ohio: Carney, 202.
- Building stone: U. S. G. S., 1169.
- Cement materials: U. S. G. S., 1169.
- Cement, Virginia: Bassler, 78.
- Cenozoal mammal horizons: Osborn, 913.
- Chromium: U. S. G. S., 1169.
- Clays: U. S. G. S., 1169.
- Coal, Iowa: Lees, 732.
- United States Geological Survey publications on - on: Lee and Nickles, 749.
- Colorado, Hahns Peak region: George and Crawford, 446.
- north central: Henderson, 536.
- Copper: Odondall, 906; U. S. G. S., 1169.
- Corals, rugose, morphology and development: Brown, 156.
- Delta: Smith, 999.
- Entelodontidae: Peterson, 551.
- Fletcher, Hugh, writings: Brook, 146.
- Florissant fossils: Bather, 84.
- Fuller's earth: U. S. G. S., 1169, 1170.
- Gabb, W. M., writings: Dall, 298.
- Gold: U. S. G. S., 1169.
- Granite, economic geology of: Dale, 297.
- Hellprin, Angela, writings: Gregory, 492.
- Drewsler district, New York: Koeberlin, 679.
- Magnesite: U. S. G. S., 1169.
- Manganese: U. S. G. S., 1169.
- Manitoba, coal fields: Dowling, 350.
- Mexicco, Cretaceous coal fields: Aguilla, 10.
Bibliography—Continued.

Mollusca, post-Eocene marine, of northwest coast of America: Dall, 301.
Nevada, Goldfield district: Ransome, 976.
Humboldt County: Ransome, 880.
New York, geological maps: Leighton, 755.
Pleistocene: Fairchild, 385.
Nickel: U. S. G. S., 1109.
North American geology for 1900-7, 1908: Nickles, 895, 916.
North Carolina, geology, mineralogy, and geography: Laney and Wood, 736.
Nova Scotia, Arisaig section: Twenhofel, 1158.
Peat: Bastin and Davis, 83.
Iowa: Lees, 753.
Pleistocene mammals of Alaska: Quackenbush, 974.
Pleistocene of New York: Fairchild, 386.
Pre-Cambrian: Van Hise and Leith, 1178.
Fyrite: U. S. G. S., 1169.
Road materials: U. S. G. S., 1169.
Safford, James Merrill, writings: Stevenson, 1107.
Salines: U. S. G. S., 1169.
Saskatchewan, coal fields: Dowling, 350.
Shaler, Nathaniel Southgate, writings: 1051.
Silurian, Arisaig section, Nova Scotia: Twenhofel, 1158.
Silver: U. S. G. S., 1169.
Sulphur: U. S. G. S., 1169.
Tantalum: Hess, 549.
Tertiary land connection between North and South America: Scharff, 1030, 1031.
Texas, El Paso quadrangle: Richardson, 998.
Tungsten: George, 445; U. S. G. S., 1109.
Uranium: U. S. G. S., 1169.
Virginia, cement resources: Bassler, 78.
Zinc: U. S. G. S., 1169.

Biography.
Fletcher, Hugh: Brock, 146; Schuchert, 1038.
Frazer, Persifor: Harrison, 515.
Gabb, William More: Dall, 298.
Hague, James Duncan: Raymond, 985.
Hellprin, Angelo: Gregory, 492.
Heyatt, Alpheus: Brooks, 153.
Lesley, Peter: Ames, 21.
Netterth, Henry: Bassler, 80.
Safford, James Merrill: Stevenson, 1107.
Shaler, Nathaniel Southgate, autobiography: 1051.
Sternberg, Charles H., autobiography: 1099.
Whitewaves, Joseph Frederick: Schuchert, 1037.

Birds. See Aves.

Bismuth.
Bison occidentals: Moodie, 876.
Bivalves. See Pelecypoda.
Black Hills region, geology and water resources: Darton, 306.
Bluestone.
New York: Newland, 894.
Bogoslofs: Jordan and Clark, 639.
Bolson region of Arizona: Tolman, 1149.
Borate deposits: Wainwright, 1196.
Boron: Wilson, 1235.

Borax.
General: Wilson, 1235.
California: Keyes, 600; Wainwright, 1196.

Borings.
Canada: Ingall, 613.
Ihllinois: Udden, 1105.
Louisiana, northwestern: Harris et al., 514.
Maine, southern: Bayley, 67.
Minnesota, Mesabi rocks: Winchell, 1272.

Botany, fossil. See Paleobotany.

Brachipoda.
Caney shale fauna, Oklahoma: Girty, 457.
Cincinnati: Foerste, 412.
Devonian, Montana: Raymond, 982.
Richmond group: Foerste, 414.
Silurian, Indiana, Ohio, and Kentucky: Foerste, 409.

British Columbia.
General.
British Columbia coast: Graham, 479.
Bulkley Valley: Leach, 742.
Texas Island: McConnell, 792.
Vancouver Island: Clapp, 228.

Economic.
Bear River district: Rush, 1023.
Bulkley Valley: Leach, 742.
Coal fields: Dowling, 350.
Lardeau district: Emmons, 375.
Mining districts: Langford, 737.
Mother Lode mine, copper: Allen, 18.
Oyoos and Similkameen districts: Camsell, 193.
Phoenix, Granby Consolidated, copper: Allen, 19.
Phoenix camp and Slocan district: LeRoy, 702.
Texas Island: McConnell, 792.
Vancouver Island: Clapp, 228.

Stratigraphic.
Correlation of the international strata: Evans, 392.

Palontology.
Stepheocras from Nicola valley: Whiteways, 1241.
INDEX.

British Columbia—Continued.
Mineralogy.
Pyromorphite: Bowles, 131.

Bromine.

Bryozoa.
Cretaceous, New Jersey: Gregory, 494.

Building stone. See also, Granite, Limestone, and Sandstone.
Florida: Sellards, 1049.
New Jersey: Lewis, 694.
New York: Newland, 694.
North Carolina: Pratt, 904.
Oregon, Portland region: Darton, 308.
Pennsylvania, Philadelphia district: Bascom et al., 74.
Rocky Mountains: Lakes, 702.
Washington: Darton, 308.
West Virginia: Grimsley, 490.
Marshall, Wetzel, and Tyler counties: Hen­nen, 537.
Calcite: Whitlock, 1242.
Calcite, crystallographic notes on: Fogg, 556.
Calcite crystals with new forms: Schaller, 1029.
Caliche: Blake, 120.
California—Continued.
Physiographic—Continued.
Yosemite Valley, glacial character of: Matthes, 830.

Stratigraphic.
Coalinga district: Arnold, 31.
Furnace Canyon: Keyes, 656.
Geologic history: Smith, 1084.
Historical geology of California: Forstner, 421.
McKittrick-Sunset district: Johnson, 631.
Mount Diablo: Louderback, 782.
San Pablo formation: Weaver, 1121.
Santa Cruz quadrangle: Branner et al., 138.
Tertiary: Arnold, 31, 92.
Paleontology.
Carinifex from the Santa Clara lake beds: Han­nibal, 507.
Cat allied to Felis atrox: Merriam, 850.
Coalinga district: Arnold, 30, 31.
Echinoids from the Tertiary: Pack, 923.
Peacock from Quaternary asphalt beds: Miller, 863.
Santa Cruz quadrangle: Branner et al., 138.
Tetratornis from Rancho La Brea: Miller, 864.
Petrology.
Epidote, pyrogenetic: Butler, 175.
Mineralogy.
Benitoite: Baunhauser, 85; Hlawatsch, 578–580.
paragenesis and occurrence: Louderback, 781.
Calcite crystals: Schaller, 1029.
Natrolite and neptunite from San Benito: Hla­watsch, 581.
Neptunite from San Benito County: Bradley, 135; Ford, 416.
Underground water.
Ground water problems: Mendenhall, 844.
Indio region, ground waters: Mendenhall, 846.
Southeastern California: Mendenhall, 845.
Calibrachion: Moodie, 876.
Cambric.
General.
Classification: Grabau, 471.
Paleogeographic map: Willis, 1256.
Stratigraphy.
British Columbia: Evans, 382.
Canada, maritime provinces: Matthew, 832.
Georgia: Veatch, 1184.
Massachusetts, Boston region: La Forge, 690.
Missouri, southeastern: Buckley, 158.
Nevada, Goldfield district: Ransome, 976.
Silver Peak quadrangle: Turner, 1156.
New Brunswick, Saint John: Els, 373.
New Jersey: Kümmel, 622.
Trenton quadrangle: Bascom et al., 75.
Pennsylvania, Lancaster County: Roddy, 1008.
Lehigh Valley: Wherry, 1229.
Mercersburg-Chambersburg district: Stose, 1119.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.
South Dakota, Black Hills region: Darton, 306.
Texas, El Paso quadrangle: Richardson, 998.
Virginia, western: Bassler, 78.
Cambrian—Continued.

Palentology.
Early Paleozoic faunas, evolution of: Walcott, 1198.
Pennsylvania, Lancaster County: Roddy, 1008.
Camel from Miocene of Nebraska: Cook, 281.
Camptosaurus, osteology of: Gilmore, 453.
Canada (general). See also the various provinces.

General.
Canada Geological Survey publications, 195.
Geology and economic minerals: Young, 1297.
Summary report of Geological Survey for 1908: Brock, 144.

Economic.
Asbestos deposits, depth of: Cirkel, 226.
Economic minerals: Young, 1297.
Mineral districts: Frecheville and Marriott, 426.
Mining districts: Langford, 737.
Peat industry: Nystrom and Anrep, 903.
Tungsten: Walker, 1199, 1200.

Stratigraphic.
Geological cycles in the maritime provinces: Matthew, 832.
Pre-Cambrian rocks: Miller, 865.

Palentology.
Report on invertebrate palontology: Ami, 22.
Report on vertebrate palontology: Lambe, 724.

Mineralogy.
Report on mineralogy: Johnston, 632.

Underground water.

Carboniferous—Continued.

Stratigraphy—Continued.
Kansas: Haworth and Bennett, 518.
anthracolithic rocks: Beede, 91.
coal measures: Beede and Rogers, 95.
Lawrence shales: Yates, 1295.
Permian: Beede 90.
upper Paleozoic plants: Sellards, 1045.

Kentucky: Miller, 859.
Bedford formation: Foerste, 410.
Blue Grass region: Matson, 827.
Wavetly formation: Morse and Foerste, 887.
Little Black Mountain region: Fieher, 398.
Massachusetts, Boston region: La Forge, 690.
Michigan, Tuscola County: Cooper, 285.
Montana, Great Falls region: Fisher, 396, 397.
Lewistown field: Culvert, 185.
New Brunswick: Wilson, 1208.
New Mexico, Hanover district: Paige, 926.
Manzano group: Lee, 745.
Nova Scotia, Cumberland: Poole, 962.
Joggins section: Logan, 777.
Northumberland County: Fletcher, 404.
Ohio, Conemaugh formation: Condit, 280.
Licking County: Carney, 200.
Oklahoma, anthracolithic rocks: Beede, 91.
Permian: Beede, 90.
Pennsylvania, Conemaugh sections: Raymond, 983.
marine fossils, new horizons for: Raymond, 984.
Meadville: Millward, 870.
Permian rocks of the Mississippi valley: Beede, 94.
South Dakota, Belle Fourche quadrangle: Darton and O'Hara, 312.
Texas, El Paso quadrangle: Richardson, 998.
Wichita-Brazos red beds: Gordon, 466.
Upper Carboniferous: Girty, 455.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.
Laramie Basin: Darton and Siebenthal, 313.

Palentologv.
Amphibia: Moodie, 878, 880.
classification, etc.: Moodie, 877.
Crinoid fauna from Texas Permian: Weller, 1220.
Devonian and Mississippian faunas: Weller, 1219.

Early vertebrate faunas: Williston, 1250.
Fern Glen fauna: Weller, 1218, 1221.
Fish fauna of Albert shales of New Brunswick: Lambe, 724.
Guadalupian fauna: Girty, 466; (review): Beede, 92.
Illinois, Foraminifera: Bagg, 46.
Iowa, southwestern: Smith, 1080.
Kansas, coal measures faunas: Beede and Rogers, 95.
cockroaches from coal measures and Permian: Sellards, 1046.
Kansas and Oklahoma: Beede, 91.
Kentucky, Bedford fauna: Foerste, 410.
INDEX.

Carboniferous—Continued.
Paleontology—Continued.
Ohio, Conemaugh formation: Condit, 289.
Oklahoma, Caney shale fauna: Girty, 457.
Pennsylvania, Devonian and Carboniferous: Millward, 870.
Helodus, n. sp.: Eastman, 365.
Pennsylvanian and Permian faunas of Kansas: Beede, 93.
Permian insects: Sellards, 1047.
Permo-Trias faunas of Kansas: Beede, 1129.
Upper Carboniferous: Girty, 455.
Carcharodon: Dean, 332.
Caney shale fauna, Oklahoma: Girty, 457.
Stepheoceras from the British Columbia Jurassic: Whiteaves, 1241.

Clay. See also Fire clay.
General.
Colloid matter of clay: Ashley, 37.
Geological investigation of clay: Ries, 1003.
Florida: Matson, 828; Sellards, 1049.
Georgia: Veatch, 1184.
Minnesota: Berkey, 100.
Mississippi, pottery clays: Logan, 778.
New Jersey, Philadelphia district: Bascom et al., 74.
New York: Newland, 894.
Ontario: Baker, 53, 54; Coleman, 270.
Oregon, Portland: Darton, 308.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.
Climate, geologie. See Paleoclimatology.
Clinton iron ore: Ball, 58.
Maryland: Singewald, 1066.
Pennsylvania: Kelly, 643.

Coal. See also Lignite.
General: Campbell, 180.
Barren zone of northern Appalachian field: White, 1237.
Chemical changes in the formation of coal: Dowling, 356.
Classification of: Collier, 273; Grout, 499.
Determination of depths to horizontal coal seams: Lakes, 712.
Effect of oxygen in coal: White, 1230.
Future production: Gannett, 434.
Metamorphism of coals, regional, representation of: White, 1234.
Origin: Coste, 287.
Oxygen, effect in coal: White, 1230.
Pressure in the formation and alteration of coal: Dowling, 354.
Rate of deposition: Ashley, 37.
Resin in Paleozoic coals: White, 1233.
Shortage of coal in northern Appalachian field: White, 1236.
United States Geological Survey publications on coal: Lee and Nickles, 749.
Alberta, Coosa field: Prouty, 971.
Labausen mine: Evans, 381.
Barren zone of northern Appalachian field: White, 1237.
Chemical changes in the formation of coal: Dowling, 356.
Classification of: Collier, 273; Grout, 499.
Determination of depths to horizontal coal seams: Lakes, 712.
Effect of oxygen in coal: White, 1230.
Future production: Gannett, 434.
Metamorphism of coals, regional, representation of: White, 1234.
Origin: Coste, 287.
Oxygen, effect in coal: White, 1230.
Pressure in the formation and alteration of coal: Dowling, 354.
Rate of deposition: Ashley, 37.
Resin in Paleozoic coals: White, 1233.
Shortage of coal in northern Appalachian field: White, 1236.
United States Geological Survey publications on coal: Lee and Nickles, 749.
Alabama, Coosa field: Prouty, 971.
Labausen mine: Evans, 381.
southwestern: Atwood, 41.
Yakutat Bay region: Tarr and Butler, 1138.
Alberta: Dowling, 350, 352; Scott, 1041.
Big Horn basin: Malloch, 812.
Bighorn and Brazeau coal lands: McEvoy, 802.
Bighorn, Brazeau, and Saskatchewan lands: Dowling, 353.
Cascade basin: Dowling, 354.

Cirques.
Montana, Crazy Mountains: Mansfield, 813.

Classification.
Coal: Grout, 499.
Crystals: Swartz, 1126.
Geologic materials: Grout, 498.
Ontario drift deposits: Coleman, 269.
Pre-Cambrian rocks: Van Hise, 1177.
Clay dunes: Coffey, 265.

Cartography. See also Maps.
New York, geological maps: Leighton, 755.

Caves.
Indiana: Greene, 490.
Mexico, Cacahuamilpa: Urbina, 1174.

Cenozoic mammal horizons of western North America: Osborn, 913.

Central America. See also Costa Rica, Guatemala, etc.
Cephalopoda. See also Mollusca.
Caney shale fauna, Oklahoma: Girty, 457.
Stepheoceras from the British Columbia Jurassic: Whiteaves, 1241.
Changes of level. General: Carter, 208.
Florida, southern: Sanford, 1025.
Isobases of post-Algonquin elevation: Goldthwait, 462.
Laurentian lakes basin, recent earth movements: Hobbs, 585.
Massachusetts, Boston and vicinity: Freeman, 429.
Chemical analyses. See list p. 158.

Chromite.
Quebec: Dresser, 361.

Chromolum.
Canada: Young, 1297.
Cincinnatian fossils: Foerste, 412.
Coal—Continued.
Alberta—Continued.
Kananaskis area: Dowling, 355; McEvoy, 802.
British Columbia: Dowling, 350.
Bulkley Valley: Leach, 742.
Canada: Ells, 372; Young, 1297.
Colorado, Book Cliffs field: Richardson, 1000.
Durango-Monero field: Gardner, 437.
Grand Mesa field: Lee, 743.
northwestern: Gale, 433.
Illinois: Bain et al., 50; DeWolf, 337.
Duquoin district: Udden, 1162, 1163.
Indiana: Ashley, 35, 36.
Iowa: Beyer, 111; Hinds, 571; Lees, 750; Wilder, 1252.
analyses of coal: Lees and Hixson, 754.
bibliography of coal: Lees, 752.
Manitoba: Dowling, 350.
Maryland, upper Potomac fields: Stock, 1112.
Mexico, Coahuila: Ludlow, 784.
Coahuila, northern: Aguilera, 10.
Michigan, Tuscola County: Cooper, 285.
Montana, Bridger field: Washburne, 1204.
Bull Mountain field: Richards, 997; Woolsey, 1288.
Crazy Mountains: Stone, 1115.
Custer National Forest: Dowling, 351.
Great Falls field: Fisher, 396; Shurick, 1061.
Lewistown field: Calvert, 184, 185.
Miles City coal field: Collier and Smith, 274.
Red Lodge field: Woodruff, 1283.
Roundup mines: Rowe, 1018.
Sentinel Butte lignite field: Leonard and Smith, 761.
Newfoundland: Howley, 604.
New Mexico, Dawson: Sheridan, 1057.
Durango-Monero field: Gardner, 437.
Fall River district, Alice mine: Herrick, 542.
Florence oil field: Washburne, 1206.
Fluorspar: Burchard, 165.
Grand Mesa coal field: Lee, 743.
Gunnison County: Hill, 562.
Hahns Peak region, Routt County: George and Crawford, 446; Lakes, 707.
Liberty Bell, Telluride: 1304.
Mining districts: Miller, 801.
Montezuma mining district, Summit County: Patton, 943.
Mineral resources: Lakes, 720.
Natural gas: Lakes, 706.
Newcastle, gold: Rickard, 1001.
Northwestern coal fields: Gale, 433.
Oil fields: Lakes, 695.
Ore deposition at Aspen: Loughlin, 783.
Rare metals: Fleck, 399, 401.
Summit County: Lakes, 695.
Taylor Peak and Whitepine iron deposits: Harder, 509.
Tungsten: Ekeley, 370; Hills, 668; Walker, 1199.
Boulder County: George, 443.
Uranium and vanadium deposits: Fleck, 400.
Dynamic and structural.
Landslides in San Juan Mountains: Howe, 603.
Smuggler Snake mud flow: Cross, 296.
Physiographic.
Mills moraine, Longs Peak region: Orton, 912.
Stratigraphic.
Book Cliffs coal field: Richardson, 1000.
Boulder County, Sugarloaf district: Crawford, 290.
Fluidal gneiss and contemporary pegmatites: Cross, 295.
COLORADO—Continued.
Stratigraphic—Continued.
Grand Mesa coal field: Lee, 747.
Gunnison County: Hill, 562.
Hahns Peak region, Routt County: George and Crawford, 446.
Leadville quadrangle, Pleistocene geology of: Capps, 196.
Morrison formation: Henning, 537.
Sugarloaf district, Boulder County: Crawford, 290.

PALEONTOLOGY.
Amber in Laramie: Cockerell, 263.
Ceropalidaj from Florissant: Rohwer, 1013.
Coleoptera from Florissant: Wickham, 1247.
Devonian fauna of the Ouray limestone: Kin­dle, 606.
Diptera from Florissant: Cockerell, 250.
Eocene insects: Cockerell, 246, 255.
Euphorbiacese: Cockerell, 262.
Fagacese: Hollick, 587.
Florissant fossils: Bather, 84.
Florissant insects: Cockerell, 243-245, 247-257; Rohwer, 1013, 1014; Wickham, 1247.
Florissant plants: Cockerell, 264.
Gaertneria: Colton, 390.
Gaertneria from Montana: Colton, 390.
Ground-sloth: Cockerell, 201.
Nemestrinidac: Cockerell, 244, 245.
Tsetse fly from Florissant: Cockerell, 252.

PETROLOGY.
Boulder County, intrusive rocks: Crawford, 290.
Sugarloaf district: Crawford, 290.
Crystalline slates from Las Animas Canyon: Berg, 96.
Sugarloaf district: Crawford, 290.

MINERALOGY.
Bald Mountain, minerals with uranium-ore: Becke, 88.
Guffey meteorite: Hovey, 598.

UNDERGROUND WATER.
Artesian waters of Costilla County: Headden, 532.
Mineral springs: Headden, 533.
Colorado Canyon: Davis, 319-321, 324.
Colorado desert: Mendenhall, 846, 848.
Concentration versus transportation: Shattuck, 1053.

CONGLOMERATES.
Marine and terrestrial: Barrell, 68.

CONGRESSES. See Associations.

CONNECTICUT.
Stratigraphic.
General: Gregory, 493.
Lighthouse granite: Ward, 1201.

PETROLOGY.
Lighthouse granite: Ward, 1201.

UNDERGROUND WATER.
General: Gregory, 493.

Ground water in the crystalline rocks: Ellis, 371.

CONTACT PHENOMENA.
Granodiorite of Concepcion del Oro, Zacatecas, Mexico: Bergan, 97.
Idaho, Cours d’Alene district: Calkins, 182.

CONTACT PHENOMENA—Continued.
Massachusetts, Newburyport: Clapp and Ball, 229.
Nevada, Silver Peak quadrangle: Turner, 1156.
Convexity of hilltops: Gilbert, 431.
Coon Butte: Merrill, 885.
Copper.
General: Emmons, 378.
Copper in sandstone: Jenks, 620.
Garnet contact deposits, depths at which formed: Keyes, 654.
Alaska, Kenai Peninsula: Grant and Higgins, 485.
Kotsina-Chitina region: Moffit and Maddren, 875.
Kotsina-Chitina, Chistochina, and Valdez Creek regions: Moffit, 873.
Latouche Island: Lincoln, 768.
Prince of Wales Island: Scott, 1042.
Prince William Sound: Grant and Higgins, 485; McCormick, 793.
southeastern: Wright, 1290.
White River district: Lewington, 765.
Arizona, Banner mining district: Brooks, 152.
Copper Creek district: Sibley, 1093.
Globe: Sivyer, 1067.
Johnson and Dragoon districts: Dinsmore, 342.

MEXICO.
Yerington: Jennings, 625; Ransome, 979.
Copper—Continued.
New Jersey: Kümmler, 686.
New Mexico, Black Range mining district: Wright, 1294.
North Carolina: Pratt, 904.
Orchids: Balsam, 735.
Porto Rico: Hamilton, 505.
Quebec: Dresser, 301.

Corals. See Anthozoa.
Correlation. See Stratigraphie.
Corundum.
Canada: Young, 1297.
Cotylodons: Moodie, 876.
Cretaceous.
General.
Paleogeographic map: Willis, 1250.
Stratigraphy.
Alaska, Kotsina-Chitina region: Moffit and Maddren, 875.
Alberta: Dowling, 352.
British Columbia, Vancouver Island: Clapp, 228.
California, Coalinga district: Arnold, 31.
McKittrick-Sunset district: Johnson, 631.
Santa Cruz quadrangle: Branner et al., 128.
Canada: Dowling, 350.
Ceratops beds: Stanton, 1094.
Colorado, Martin, 819.
Book Cliffs region: Richardson, 1000.
Florence oil field: Washburne, 1206.
Grand Mesa coal field: Lee, 745.
Laramie basin: Darton and Siebenthal, 313.
Little Snake River coal field: Ball, 57.
Sweetwater County: Schultz, 1039.
Wyoming, Bighorn basin: Washburne, 1204.

Cretaceous—Continued.
Stratigraphy—Continued.
Mexico, Chihuahua, etc.—Continued.
Rio Nazas region: Breckhardt and Villarelo, 166.
Montana: Pepperberg, 948.
Bull Mountain coal field: Richards, 997.
Crazy Mountains: Stone, 1115.
Fort Peck Indian Reservation lignite field: Smith, 1076.
Great Falls region: Fisher, 396, 397.
Lewiston field: Calvert, 185.
Milk River coal field: Pepperberg, 949.
Sweetgrass County: Woodruff, 1284.
New Jersey: Kümmler, 682.
Philadelphi district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.
New Mexico, Gallina-Raton Spring coal field: Gardner, 430.
Gallup-San Mateo field: Gardner, 438.
northern: Gardner, 437.
Raton field: Lee, 744.
North Carolina: Stephenson, 1008.
North Dakota, northeastern: Barry and Melsted, 70.
Oklahoma, Madill oil pool: Taff and Reed, 1132.
Aberdeen-Redfield district: Todd, 1146.
Belle Fourche quadrangle: Darton and O'Hara, 312.
Texas: Harris, 512.
chalk formations: Gordon, 405; Hill, 553.
El Paso quadrangle: Richardson, 998.
Utah, Book Cliffs region: Richardson, 1000.
northern: Gale, 433.
southern: Richardson, 999.
Wyoming, Bighorn basin: Washburne, 1204.
Woodruff, 1294.
Glenrock coal field: Shaw, 1054.
Great Divide Basin coal field: Smith, 1077.
Laramie Basin: Darton and Siebenthal, 313.
Flora of Atlantic coastal plain: Berry, 105.
Floras of Virginia, and North Carolina: Berry, 199.

Crimoidae. See also Echinochordata.
Jurassic: Springer, 1090.
Periglyptocirrus priscus, ornamentation of: Parks, 942.
Crinoida—Continued.
Troost's crinoids of Tennessee: Wood, 1280.
Uinctariscus socialis: Bassler, 81.

Cryolite.

Cryptograms. See Paleobotany.

Crystallography.
General: Wadsworth, 1195.
Alamosite, Mexico: Palache and Merwin, 931.
Albite: Grosspietsch, 497.
Arizonaite: Palmer, 934.
Benitoite: Baumhauer, 88; Hlawatsch, 578-580;
Louderback, 781; Palache, 929.
Calamine crystals from Organ Mountains, New
Mexico: Ford and Ward, 419.
Calcite: Pogue, 958.
from Kelly's Island: Ford and Pogue, 417.
from New Jersey trap region: Whitlock, 1242.
Caronel from Texas: Goldschmidt and Mauritz,
459.
Chalcopyrite: Palache and Merwin, 932.
Classification of crystals: Swartz, 1126.
Connelite: Palache and Merwin, 932.
Crystals, classification of: Swartz, 1126.
Datolite, New Jersey: Ford and Pogue, 418.
Greenland minerals: Biggild, 12.
Hastingite from Ontario: Graham, 450.
Idylrite: Kraus and Cook, 681.
Leadhillite: Palache and La Forge, 930.
Mercury minerals from Terlingua, Texas: Hillebrand and Schaller, 565.
Minerals from Chester, Mass.: Palache and Wood, 933.
Neptunite: Ford, 416.
Optical mineralogy, elements of: Winchell and Winchell, 1273.
Pyrite carrying gold and galena of unusual
habit: Pogue, 939.
Pyrite from Utah: Rogers, 1010.
Pyromorphite: Bowles, 131.

Cuba. See also West Indies.
Economic.
Iron ores, residual brown: Weld, 1217.
Curapaq: Céland, 341.
Cycads, fossil: Wieland, 1251.
Dizmonelix, origin: Riggs, 1004.
Dawsonite: Graham, 478.
Definitions. See Nomenclature.

Deformation.
Earth's rotation, bearing on deformation: Chamberlin, 214.
Deinosuchus hatcheri: Holland, 696.

Delaware.
General.
Philadelphia district: Bascom et al., 74.

Deltas.
Experiments in delta formation: Smith, 1070.

Desudation. See also Erosion.
Rate of, error in estimating: Free, 427.
Deposition. See Sedimentation.
Deposition of ores. See Ore deposits, origin.
Desert, lineaments of: Keyes, 601.

Desert varnish: Surr, 1125; Turner, 1156.

Deserts.
Colorado Desert: Mendenhall, 848.

Devonian.
General.
Evolution of North America: Grabau, 472.
Palaeogeographic map: Willis, 1250.

Correlation.
New York, Watkins Glen-Catatonk district:
Williams et al., 1255.

Stratigraphy.
Alaska, Forty Mile quadrangle: Prindle, 909.
British Columbia, Vancouver Island: Clapp,
228.
Canada: Dowling, 350.
maritime provinces: Matthew, 832.
Colorado, Ouray limestone: Kindle, 660.
Gaspe sandstone, age of: Williams, 1254.
Georgia: Veatch, 1194.
Illinois, northwestern: Carman, 198.
Iowa, eastern: Carman, 198.
Kentucky, Blue Grass region: Matson, 827.
Louisville region: Bassler, 89.
Missouri, central: Greger, 491.
New Brunswick: Wilson, 1258.
New Jersey: Kimmel, 682.
New York, Watkins Glen-Catatonk district:
Williams et al., 1255.
Ohio: Stauffer, 1906.
Pennsylvania, Mercersburg-Chambersburg dis-
trict: Stose, 1119.
Wisconsin: Céland, 242.

Paleontology.
Colorado, Ouray limestone: Kindle, 660.
Devonian and Mississippian faunas: Weller, 1219.
Dinichthyid armor plates from Marcellus shale
of New York: Smith, 1072.
Missouri, central: Greger, 491.
Montana, red shales fauna: Raymond, 982.
Nettlethor collection: Bassler, 80.
New York, Watkins Glen-Catatonk district:
Williams et al., 1255.
Ohio: Stauffer, 1906.
Paleozoic floras: White, 1231.

Diamonds.
Arkansas: Arkansas D. Co., 29; Branner, 137;
Eberle, 369; Fuller, 431; McCourt, 794;
Millar, 858.
Diastrophism as the ultimate basis of correlation:
Chamberlin, 216.

Diatomaceous earth.
Florida: Sellards, 1049.

Diatoms.
Diatomaceous dust on the Bering Sea ice floes:
Kindle, 608.

Dikes.
California, Santa Cruz quadrangle: Branner et al., 138.
Colorado, Sugarloaf district, Boulder County:
Crawford, 290.
New York, Brewster iron district: Koeberlin,
679.
in the Hamilton shale: Smith, 1073.
Dikes—Continued.

Dinichthyid armor plates from the Marcellus shale: Smith, 1072.

Dinichthyids from northern Ohio: Branson, 140.

Dinosauria, classification and phylogeny: Huene, 607.

Dinosaurs, Cretaceous iguanadont: Osborn, 917.

Diopside and its relations to calcium and magnesium metasilicates: Alien and White, 20.

Diopside and related minerals: Day, 325.

Dip and pitch: Raymond et al., 988.

Diplocaulus: Williston, 1258.

Distribution. See Geographic distribution.

Domes, origin: Harris, 512.

Dynamic and structural—Continued.
Equilibrium between carbon dioxide of atmosphere and calcium compounds of water: Stieglitz, 1109.

Earth, genesis of. See also Dynamic and structural (general).
Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth, interior of. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth's rate of rotation and bearing on deformation: Chamberlin, 214.

Earth's rate of rotation and bearing on deformation: Chamberlin, 214.

Echinodermata. See also Asteroidea, Blastoidae, Crinoidea, Cystoidea, and Echinoidea.

Ecological and Economic distribution: Clark and Twitchell, 238.

Echinoidea. See also Asteroidea, Blastoidae, Crinoidea, Cystoidea, and Echinoidea.

Economic (general). For regional, see the various States. See also Ore deposits, origin, and the particular products.

Ecolecanines: Lawson, 739.

Unconformities, valuation of: Blackwelder, 110.

Earth, interior of. General: Carter, 208; Wiechert, 1248.

Earthquakes.

Drift. See Glacial geology.

Dromomeryx: Douglass, 349.

Dunes.

General: Carman, 198.

Clay dunes: Coffey, 265.

Dynamic and structural (general). For regional, see the various States. See also Caves, Changes of level, Conglomerates, Deformations, Delta, Dunes, Drumlines, Dunes, Earth, genesis of, Earthquakes, Erosion, Eskers, Faulting, Folding, Geysers, Glaciers, Isotaxies, Karsts, Landslides, Magmas and intrusions, Marshes, Metamorphism, Mounds, natural, Natural bridges, Orogeny, Pebbles, Sedimentation, Shore lines, Sink holes, Temperature, Terraces, Thermal waters, Unconformity, Valleys, Volcanoes, Weathering.

Coal, rate of deposition: Ashley, 37.

Delta experiments: Smith, 1070.

Drainage changes. General: Scheffel, 1032.

Between carbon dioxide of atmosphere and calcium compounds of water: Stieglitz, 1109.

Earthquakes.

General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes and water circulation: Yeandle, 1296.

Earth, interior of. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earthquakes. General: Carter, 208, 209; Gill, 432; Hixon, 575; Reid, 952.

Earthquakes and firedamp: 1303.

Earthquakes and water circulation: Yeandle, 1296.

Earthquakes and water circulation: Yeandle, 1296.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.

Earth’s rate of rotation and bearing on deformation: Chamberlin, 214.
Economic—Continued.

Depth and continuity of fissure veins: Lakes, 720.

Folding of rock strata: Nason, 890.

Investigations of metalliferous ores in 1908: Lindgren, 770.

Investigations of nonmetalliferous mineral resources and iron ores, 1908: Hayes, 528.

Mineral wealth of the Cordilleras: Raymond and Ingalls, 986.

Mining terms, definitions: Merrill, 853.

Ore, definition of: Adams, 5; Herzig, 548; Hills, 567; Kemp, 644; Smith, 1079.

Ore deposition, development of theories of: Emmons, 377.

Ore deposits connected with placers: Alderson, 15.

Ore shoots: Jennings, 626; Lindgren, 769.

Organic matter in mines, veins, and ore deposits: Lakes, 698.

Specific volume of ore: Mead, 842.

Vein and its apex: Finch, 395.

Educational. See also Textbooks.

Apparatus for instruction in geography and structural geology: Hobbs, 583.

College unit in physical geography: Marbut, 814.

Geography at the University of Wisconsin: Martin, 822.

Laboratories for physical geography: Wright, 1293.

Laboratory for physiography: Stearns, 1097.

Laboratory for topographic work: Mead and Martin, 843.

Laboratory manual in physical geography: Hopkins and Clark, 590.

Laboratory methods for geography: Hobbs, 584.

Physical geography in the secondary school: Fenneman, 393.

Physiography in the high school: Fairbanks, 384.

Elevation and subsidence. See Changes of level.

El Paso quadrangle, Texas: Richardson, 998.

Emery.

New York: Newland, 894.

Enstatite and clinoenstatite: Wright, 1291.

Entelodontidae, revision of: Peterson, 531.

Eocene. See Tertiary.

Eolian erosion, base level of: Keyes, 655.

Erosion. See also Sedimentation and Glacial erosion.

Arizona, southern bolson region: Tolman, 1150.

Concentration versus transportation: Shattuck, 1053.

Convexity of hilltops: Gilbert, 451.

Deposition in the United States: Dole and Stabler, 345, 346.

Erosion channels, Paleozoic: Ulrich, 1167.

Glacial erosion in America: Caruth, 201.

Erosion—Continued.

Great Basin ranges, erosional origin of: Keyes, 653.

Illinois, northwestern: Carman, 198.

Iowa, eastern: Carman, 198.

Missouri River shifting: Duncanson, 364.

Nantucket shorelines: Guliver, 500.

Physiographic processes: Fenneman, 302.

St. Vincent Island, Wallibu and Râbaka gorges: Hovey, 597.

Valleys, formation of: Hovey, 593.

Weathering and erosion as time measures: Levett, 763.

Erratic boulder deposits.

Bowlder deposits in mid-Carboniferous marine shales: Taff, 1131.

Eruptive rocks. See Igneous and volcanic rocks.

Essays. See Addresses.

Eskers.

New York, Watkins Glen-Catataonk district: Williams et al., 1255.

Eurypterida: Clarke, 240.

Everglades.

Florida, southern: Sanford, 1025.

Faulting.

General.

Faulting, experimental demonstration: Reid, 993.

Fissures, laws of: Stevens, 1104.

Geometry of faults: Reid, 992.

Nomenclature: Reid, 992.

Arizona, Grand Canyon district: Johnson, 629.

California, Santa Cruz quadrangle: Branner et al., 138.

Colorado, Aspen: Spurr, 1032.

Earth movements associated with San Francisco earthquake: Oldham, 908.

Faults in seashore cliffs: Lakes, 699.

Great Basin ranges: Keyes, 663.

Idaho, northern: Calkins, 181.

Maryland, Piedmont region: Mathews and Grasty, 825.

Mexico, fault zones: Bose, 128.

Missouri, southeastern: Buckley, 158.

Montana, northwestern: Calkins, 181.

Nevada, Tonopah district: Burgess, 167.

New Jersey, Trenton quadrangle: Bascom et al., 75.

New York, Trenton Falls: Miller, 867.

Oregon, Cracker Creek district: Pardee, 937.

Pennsylvania, Mercersburg-Chambersburg district: Stone, 1110.

Trenton quadrangle: Bascom et al., 75.

Rocky Mountain faults: Washburne, 1207.

Texas, El Paso quadrangle: Richardson, 998.

Virginia, Piedmont region: Mathews and Grasty, 825.

southwestern: Bassler, 78.

Feldspar.

New York: Newland, 894.

Ontario: Morsack, 886.

Fern Glen fauna: Weller, 1218, 1221.

Field work.

Handbook for field geologists: Hayes, 523.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Fishes. See Pisces.

Florida.

General.
- Keys, geology of: Vaughan, 1182.
- State geologist's report: Sellards, 1048.

Economic.
- Clays: Matson, 828.
- Fuller's earth deposits of Gadsden County: Sellards and Gunter, 1050.
- Mineral industries: Sellards, 1049.
- Phosphate deposits: Van Horn, 1179; Stone, 1114.

Physiographic.

General.
- Matson and Clapp, 829.

Southern Florida.
- Sanford, 1025.

Stratigraphic.
- Southern Florida: Sanford, 1025.
- Stratigraphy: Matson and Clapp, 829.

Flow of rocks. Adams, 1.

Fluorspar.
- Colorado: Burchard, 165.
- Kentucky: Fobs, 415.

Folded strata, Trenton Falls: Miller, 867.

Folding.

General.
- Nason, 890.
- Mexico: Nason, 890.
- Pennsylvania, Mercersburg-Chambersburg district: Stose, 1119.

Foraminifera.

Fossils. See Paleontology.

Fuller's earth.
- Florida, Gadsden County: Sellards and Gunter, 1050.

Ganister.
- Pennsylvania, Blair County: Butts, 177.

Garnet.
- New York: Newland, 894.
- Gas. See Natural gas.
- Gases in rocks: Chamberlin, 213.

Gastropoda. See also Molluscs.
- Auburn chert fauna, Missouri: Branson, 139.
- Carinifex from Santa Clara lake beds, California: Hannibal, 387.
- Fulgur, genesis of: Maury, 841.

Gems. See Precious stones.
- Genesis of ores. See Ore deposits, origin.

Geochemistry.
- Chemical work of U. S. Geological Survey: Clarke, 239.
- Geogenesis. See Earth, genesis of.

Geographic distribution.
- Pacific Coast Tertiary faunas: Arnold, 32.
- Pleistocene Mammals: Bay, 524.
- Tertiary land connection between North and South America: Schnarr, 1030.
- Tertiary faunas: Dall, 299.
- Geologic formations, nomenclature: Keith, 642.
- Geologic formations described. See list p. 160.

Geologic formations, tables. See Stratigraphic, Tables of formations.

Geologic history. See also Paleoclimatology and Paleogeography.

Paleozoic.
- Ordovician, Silurian, and Devonian: Grabau, 472.

Post-Paleozoic.
- Tertiary, Pacific coast: Arnold, 32.

Regional.
- Arkansas, Ouachita Mountains: Purdue, 972.
- California: Forster, 421; Smith, 1084.
- Santa Cruz quadrangle: Branner et al., 138.
- Canada: Young, 1297.
- Colorado, north central: Henderson, 536.
- Florida: Matson and Clapp, 829.
- St. Louis area: Fenneman, 392.
- Iowa, eastern: Carman, 198.
- Kansas, Carboniferous: Beebe, 91.
- Maine, southern: Clapp, 230.
- Massachusetts, Boston and vicinity: Crosby, 293.
- Mexico, Ixmiquilpan Valley, Hidalgo: Paredes, 940.
- Missouri, St. Louis area: Fenneman, 392.
- southeastern: Buckley, 158.
- Nevada, Goldfield district: Ransom, 976.
- Tonopah district: Burgess, 167.
- New Brunswick: Matthew, 382.
- New Jersey, Philadelphia district: Bascom et al., 74.
- Trenton quadrangle: Bascom et al., 74.
- New Mexico, Rio Grande region: Lee, 745.
- New York, Watkins Glen-Catatonk district: Williams et al., 1255.
- North Carolina, Davidson County: Pogue, 960.
- North Dakota: Leonard, 729.
- Nova Scotia: Matthew, 382.
- Oklahoma, Carboniferous: Beebe, 91.
- Ontario, Lake Nipigon region: Wilson, 1262.
- Lake Wendigokan region: Moore, 884.
- Pleistocene: Coleman, 269.
- Pacific Coast, Tertiary: Arnold, 32.
- Pennsylvania, Mercersburg-Chambersburg district: Stose, 1119.
- Philadelphia district: Bascom et al., 74.
- Trenton quadrangle: Bascom et al., 75.
- South Dakota, Aberdeen-Redfield district: Todd, 1140.
- Belle Fourche quadrangle: Darton and O'Hara, 312.
- Texas, El Paso quadrangle: Richardson, 968.
- Cretaceous and Tertiary: Stanton, 1094.
- Laramie region, Cenozoic: Blackwelder, 117

Geologic maps.
- Alaska, Chignik Bay coal field: Atwood, 41.
- Cook Inlet region: Atwood, 41.
- Copper Mountain region: Wright, 1200.
- Fairbanks region: Prindle and Katz, 970.
- Fortymile quadrangle: Prindle, 969.
INDEX.

Geologic maps—Continued.
Alaska—Continued.
 Herendeen Bay coal field: Atwood, 41.
 Prince of Wales Island, Kasuan Peninsula:
 Wright, 1290.
 Yakutat Bay region: Tarr and Butler, 1138.
Alberta: Dowling, 352.
 coal areas: Dowling, 350.
Arizona, Tumacoe Hills: Tolman, 1148.
 western: Schrader, 1034.
Arkansas: Purdue, 972.
 Ouachita Mountains: Purdue, 973.
California, Santa Cruz quadrangle: Branner
 et al., 138.
 southern, artesian basins: Mendenhall, 844.
Canada, occurrence of economic minerals:
 Young, 1297.
Cenozoic mammal horizons of western North
 America: Osborn, 913.
Coal fields of United States: Campbell, 190.
Colorado, Book Cliffs coal field: Richardson,
 1000.
 Boulder County: George, 445.
 Boulder County, Sugarloaf district: Crawford
 290.
 Canyon City embayment: Washburne, 1206.
 Grand Mesa coal field: Lee, 743.
 Gunnison County, southeastern: Hill, 562.
 Leadville quadrangle, Pleistocene geology:
 Capps, 196.
 Montezuma district, Summit County: Patton,
 943.
 north central: Henderson, 536.
 northwestern: Gale, 433.
 southern: Gardner, 437.
 Sugarloaf district, Boulder County: Crawford,
 290.
 Taylor Peak district: Harder, 509.
 Whitepine district: Harder, 509.
 Florida: Matson and Clapp, 829.
 Georgia: Veatch, 1184.
 fossil iron ores: Ball, 58.
 northwestern: Ball, 58.
 Greenland, east: Nordenskjöld, 900.
 Idaho, northern: Calkins, 181.
 Illinois, Cordova quadrangle: Carman, 198.
 St. Louis area: Penneman, 392.
 Savannah quadrangle: Carman, 198.
 Iova, Cordova quadrangle: Carman, 198.
 Savannah quadrangle: Carman, 198.
 Kansas: Haworth et al., 519.
 Kentucky, Blue Grass region: Matson, 827.
 Lake Superior region: Brinsmade, 143.
 Louisiana-Texas salines: Harris, 512.
 Maine, southern: Clapp, 230.
 Manitoba, coal areas: Dowling, 352.
 Massachusetts, Boston Harbor and Charles
 River estuary: Crosby, 293.
 Mexico, Guanajuato district: Villarello et al.,
 1192.
 Queretaro: Paredes, 939.
 Missouri, St. Louis area: Fenneman, 392.
 southeastern: Buckely, 158.

56693°—Bull. 444—10—9

Geologic maps—Continued.
Montana, Bull Mountain coal field: Richards,
 997; Woolsey, 1288.
Crazy Mountains: Stone, 1115.
Custer National Forest: Wegemann, 1215.
Fort Peck Indian Reservation lignite field:
 Smith, 1076.
Great Falls region: Fisher, 396, 397.
 Lewistown coal field: Calvert, 184, 185.
 Miles City coal field: Collier and Smith, 274.
 Milk River coal field: Pepperberg, 940.
 northwestern: Calkins, 181.
 Red Lodge coal field: Woodruff, 1283.
 Sentinel Butte lignite field: Leonard and
 Smith, 761.
Nevada, De Lamar district: Miller, 892.
 Goldfield district: Ransom, 976.
 Tonopah district: Burgess, 167.
 White Pine mining district: Lasche, 738.
Newfoundland: Howley, 694.
New Jersey, Philadelphia district: Bascom
 et al., 74.
New Mexico, Gallina-Raton Spring coal field:
 Gardner, 436.
 Hanover iron district: Paige, 926.
 northern: Gardner, 437.
 Brewster district: Koebenin, 679.
 Geneva-Ovid quadrangles: Luther, 786.
 glacial lake succession: Fairchild, 385.
 New York City: Berkey, 101; Gratacap, 487.
 Remsen quadrangle: Miller, 857.
 Watkins Glen-Catatonk district: Williams
 et al., 1255.
North Carolina, Davidson County, Cid mining
 district: Pogue, 960.
North Dakota, Fort Berthold Indian Reserva-
 tion lignite field: Smith, 1075.
 Sentinel Butte lignite field: Leonard and
 Smith, 761.
 Washburn lignite field: Smith, 1074.
Ohio: Ohio G. S., 906.
 Oil and gas fields, 1908: Day, 328.
 Oklahoma, Madill oil pool: Taff and Reed, 1132.
 Ontario, Algoma and Thunder Bay districts:
 Wilson, 1267.
 Black Sturgeon Lake region: Coleman, 267.
 eastern: Adams and Barlow, 4.
 Gowganda district: Collins, 276.
 Gowganda and Miller lakes area: Burrows,
 169.
 Lake Nipigon-Clay Lake region: Collins, 277.
 Lake Wendigokan region: Moore, 884.
 Oregon, Cracker Creek mining district: Pardee,
 937.
 Harney Basin region: Waring, 1202.
 Portland: Darton, 308.
 Pennsylvania, Mercersburg-Chambersburg dis-
 trict: Stone, 1119.
 Philadelphia district: Bascom et al., 74.
 pre-Cambrian, Lake Superior region: Van Hise
 and Leith, 1178.
 Quebec, iron ore deposits: Cirkel, 223.
Geologic maps—Continued.
Saskatchewan, coal areas: Dowling, 350.
Aberdeen-Redfield district: Todd, 1146.
Belle Fourche quadrangle: Darton and O'Harrn, 312.

Texas, El Paso quadrangle: Richardson, 998.
Utah, Book Cliffs coal field: Richardson, 1000.
Belle Fourche quadrangle: Darton and O’Harra, 312.

Texas, El Paso quadrangle: Richardson, 998.
Utah, Book Cliffs coal field: Richardson, 1000.
Belle Fourche quadrangle: Darton and O’Harra, 312.

Geologic time.

Glacial time: Upham, 1171.

Geologic surveys. See Surveys.

Geometry of faults: Reid, 992.

Geomorphogeny. See Physiographic.

Geomorphology. See Physiographic.

Geomorphology.

Earth’s plan: Taylor, 1141.

Georgia.

Economic.

Chattanooga district, iron: Higgins, 556.
Clay deposits: Veatch, 1184.
Clinton iron ore in Chattanooga region: Burchard, 164.
Fossil iron ore deposits: Ball, 58.
Gold deposits: Jones, 638.
Manganese deposits: Watson, 1210.

Mineralogy.
Pickens County meteorite: McCalle, 790.
Thomson meteorite: Merrill, 864.

Gilsonite.

Distribution and mode of occurrence: Lakes, 708.

Glacial deposits, metamorphism of: Carney, 200.

Glacial erosion.

General: Carney, 201.

Alaska, Yakutat Bay region: Tarr, 1136.
Hanging valleys: Johnson, 630.
New York, southwestern Adirondacks: Miller, 808.
Watkins Glen-Cata tonk district: Williams et al., 1255.

Ohio, Kelley’s Island: Carney, 205.

Glacial lakes.

Agassiz: Grant, 483; Upham, 1172; Willard, 1239.
Ojibway: Coleman, 268.
Ohio: Carney, 202.
Ontario, Lake Ojibway: Coleman, 268.
Sargent, North Dakota: Willard, 1253.

Shawmut, Massachusetts: Crosby, 293.
INDEX.

Glacial period, cause: Scharff, 1030.

Glaciated rock: Corss, 2SG.

Glaciation.

Crazy Mountains of Montana: Mansfield, 813.

Pre-Cambrian: Coleman, 271, 272; Knight, 674.

Uinta and Wasatch Mountains: Atwood, 40.

Glaciers.

Alaska, Kobuk glacier: Hershey, 546.

Malaspina glacier region: Martin, 821.

Yukatat Bay region: Tarr, 1136.

Colorado, Mills moraine, Longs Peak region: Oron, 912.

Greenland: Nordenstamfjöld, 900.

Montana, Crazy Mountains: Mansfield, 813.

Variations of: Reid, 994.

Glass sand.

West Virginia: Grimsley, 490.

Glauconite: Bagg, 40.

Gold.

General.

Alluvial deposits, origin, character, and distribution: Lakes, 703.

Alluvial gold: Garrison, 440.

Nuggets, origin: Lakes, 734.

Alaska: Brooks, 148; Rickard, 1002.

Fairbanks placer region: Prindle and Katz, 970.

Fairhaven precinct: Henshaw, 540.

Fortymile quadrangle: Prindle, 969.

Gold Hill district: Maddren, 809.

Haines district: Scott, 1043.

Innoko district: Maddren, 810.

Iron Creek region: Smith, 1086.

Kona Peninsula: Grant and Higgins, 486.

Kestina-Chitina, Chistochina, and Valdez Creek regions: Moffit, 873.

Nizina placer district: Moffit and Maddren, 875.

Prince William Sound: Grant, 483.

Ruby Creek district: Maddren, 908.

Seward Peninsula: Smith, 1083.

southeastern: Wright, 1250.

southwestern: Atwood, 41.

Yukutak Bay region: Tarr and Butler, 1138.

Arizona, California placers: Hedburg, 534.

Greens Valley district: Hedburg, 535.

Mohave County: Schrader, 1034.

San Francisco district: Martin, 810.

Tombstone: Shaw, 1055.

British Columbia, Osoyoos and Similkameen districts: Cassell, 183.

Slocan district: Lotn, 762.

Texas Island: McConnell, 792.

Vancouver Island: Cassell, 228.

California, Alleghany district: Martin, 817.

Amador County: Storms, 1117.

Grass Valley: Martin, 818.

Kern County, Yellow Aster mine: Storms, 1116.

Mother Lode: Storms, 1138; Turner, 1156.

Gold—Continued.

Canada: Young, 1297.

Colorado, Breckenridge: Bradford and Curtis, 133.

Fall River district, Alice mine: Herrick, 942.

Gunnison County: Hill, 562.

Montezuma district, Summit County: Patton, 983.

Newcastle: Rickard, 1002.

Rouit district, HaMs Peak region: George and Crawford, 446.

Georgia: Jones, 638.

Idaho, central: Jellum, 619.

Mexico, Arteaga district, Chihuahua: Winston, 1274.

Chihuahua, Calabacillas: Geddes, 441.

El Chico district, Hidalgo: Thomas, 1145.

El Oro, Esperanza mine: Hindry, 570.

Guanajuato district: Botsford, 129.

Montezuma district, El Tigre mine: Herrick, 543.

Sinaloa, San José de Gracia: Tays, 1143.

Zacatecas, Concepcion del Oro district: Chase, 221.

Nevada, De Lamar mines, Lincoln County: Miller, 802.

Goldfield district: Ramsome, 976.

Hornsilver district: Ramsone, 977.

Humboldt County: Ramsone, 980, 981.

Liida district: Root, 1015.

Nye County, Manhattan placer: Jones, 635.

Rawhide district: Gehrmann, 442; Whytock, 1245.

Round Mountain, Nye County: Ramsone, 975. Lorens, 776.

Tonoapa: Jenney, 624; Johnson, 628.

New Mexico, Black Range mining district: Wright, 1294.

Sylvanite: Jones, 636.

Nicaragua, Matagalpa district: West, 1223.

North Carolina: Lyon, 788; Pratt, 964; Welch, 1216.

Gold Hill district: Laney, 735.

Nova Scotia, Kings and Lunenburg counties: Faribault, 385.

Leipsigate district: Moore, 885.

West Gore: Haley, 503.

Ontario, Lake Abitibi area: Baker, 52.

Lake Nipigon-Clay Lake region: Collins, 277.

Rainy River district: Fleming, 403.

Oregon, Bohemia mining district: MacDonald, 798.

Cracker Creek district: Pardoe, 937.

Rye Valley: Mathes, 826.

Walpe placers: Nicol, 898.

Quebec, Riviere Du Loup gold fields: Hind, 569.

United States (general): U. S. G. S., 1170; Lindgren, 772.

Utah, Box Elder County: Higgins, 550.

Century and Susannah mines, Golden: Higgins, 560.

Pitite County: Higgins, 558.

San Juan River: Lakes, 693.

Grahamite.

Oklahoma: Taff, 1130.
Grand Canyon: Davis, 319.

Granite.
 General: Surr, 1125.
 Structural features: Dale, 297.
Maine: Villarello, 1180.
New Hampshire: Villarello, 1180.
New York: Newland, 894.
North Carolina: Pratt, 904.
South Carolina: Watson, 1211.
Vermont: Dale, 297.

Graphite.
 Canada: Young, 1297.
 Mexico, Santa Maria mines: Hess, 554.
 Sonora, La Colorado: Hess, 552.
New York: Newland, 894.
Quebec: Brumell, 157.

Graptolites.
 Dictyonema websteri: Ruedemann, 1021.

Gravel.
 New York: Newland, 894.
 Oregon, Portland: Darton, 308.
 Washington, Seattle-Tacoma region: Darton, 308.
 Great Falls region, Montana: Fisher, 397.

Greenland.
 General.
 Geology and physical geography of east Greenland: Nordenskjold, 900.
 Palaeontology.
 Jurassic fauna: Fraas, 423.
 Quaternary Mollusca: Jensen, 627.
 Mineralogy.
 Albite: Grosspietsch, 497.
 Minerals from basalt of east Greenland: Boggild, 124.
 Grenville-Hastings unconformity: Miller and Knight, 866.

Guatemala.

Haiti.
 Mineral resources: Ferguson, 394.
 Hanging valleys: Johnson, 630.

Hawaiian Islands.
 Dynamic and structural.
 Volcanoes: Hitchcock, 572.
 Kilauea: Hitchcock, 573.
 Hawaiian Islands—Continued.
 Dynamic and structural—Continued.
 Volcanoes—Continued.
 Kilauea and Mauna Loa: Brigham, 141.
 Helodus, new species: Eastman, 365.

History, philosophy, etc.
 Huronian. See Pre-Cambrian.
 Ice Age. See Glacial geology.

Ice ages.
 Huronian, lower: Coleman, 271, 272.
 Zonal belt hypothesis: Wheeler, 1226.
 Icebergs: Tarr, 1136.

Idaho.
 Economic.
 Central Idaho gold districts: Jellum, 619.
 Cœur d’Alene district: Calkins, 182; Rowe, 1016; Ward, 1246; (review) Buckley, 101.
 Microstructure of ore from Frisco mine: Campbell, 192.
 Northern Idaho: MacDonald, 799.
 Phosphate deposits: Van Horn, 1179.
 Pliated veins: Lakes, 694.
 Vein structure in Monument mine, Lemhi County: Carr, 207.
 Stratigraphic.
 Northern Idaho: Calkins, 181.

Igneous and volcanic rocks.
 General.
 Chart of igneous rocks: Crossdale, 292.
 Classification, principles of: Waitz, 1197.
 Solidification of alloys and magmas: Aston, 39.
 Study of: Iddings, 611.
 Alaska, Fortymile quadrangle: Prindle, 908.
 Iron Creek region: Smith, 1086.
 Kotsina-Chitina region: Mollit and Maddren, 875.
 Arizona, Mohave County: Schrader, 1034.
 Tumamoc Hills: Tolman, 1148.
 California, Santa Cruz quadrangle: Branner et al., 138.
 Colorado, Aspen: Spurr, 1092.
 Boulder County: Crawford, 290, 291.
 Hahns Peak region, Routt County: George and Crawford, 446.
 Montezuma district, Summit County: Patton, 943.
 southwestern: Cross, 295.
 Lighthouse granite: Ward, 1201.
 Georgia: Veatch, 1184.
 Greenland: Nordenskjold, 900.
 Idaho, northern: Calkins, 181.
 Massachusetts, Boston region: La Forge, 690.
 Newburyport: Clapp and Ball, 229.
 Mexico: Aguillara, 9.
 Baja California: Wittich, 1276.
 Montana, Crazy Mountains: Stone, 1115.
 Lewistown field: Calvert, 182.
 northwestern: Calkins, 181.
INDEX. 133

gneous and volcanic rocks—Continued.
Nevada, Goldfield district: Ransom, 976.
Humboldt County: Ransom, 980.
Silver Peak quadrangle: Turner, 1156.
New Jersey, Highlands: Bayley, 88.
Trenton quadrangle: Bascom et al., 75.
New Mexico, Hanover district: Paige, 926.
New York, Brewster iron district: Koeberlin, 679.
Watkins Glen-Catatork district: Williams et al., 1255.
North Carolina, Davidson County: Pogue, 900.
Nova Scotia, Arisaig section: Twenhofel, 1158.
volcanic bombs: Poole, 901.
Ontario, Gowganda district: Collins, 270.
Lake Nipigon region: Wilson, 1202.
Lake Superior region: Follins, 278.
Harney Basin region: Waring, 1202.
Portland region: Barton, 308.
Pennsylvania, Mercersburg-Chambersburg district:
pre-Cambrian gneisses of Piedmont plateau:
Bascom, 73.
Trenton quadrangle: Bascom et al., 75.
South Dakota, Black Hills region: Darton, 300.
Texas, El Paso quadrangle: Richardson, 988.
Wyoming, Black Hills region: Darton, 300.
Sweetwater County: Schultz, 1039.
Yukon, Whitehorse belt: McConnell, 791.

Illinois—Continued.

Paleontology—Continued.
Foraminifers in the Carboniferous: Bagg, 46.
Mastodon, distribution: Bagg, 45.
Silurian fossils: Foerste, 411.

Underground water.
Classification of mineral waters: Bartow, 71.
Geological classification of the waters of Illinois:
Udden, 1101.
Mineral content of Illinois waters: Bartow et al., 72.

Indiana.
Economic.
Coal deposits, supplementary report: Ashley, 35.
Coal field, stratigraphy: Ashley, 36.

Dynamic and structural.
Caves and cave formations of the Mitchell limestone: Greene, 490.

Invertebrata (general). See also Annelida, Bivalvia, Brachiopoda, Bryozoa, Crustacea, Echinodermata, Foraminifera, Insecta, Mollusca, Problematica, Spongida, and Vermes.

Intrusions. See also Igneous rocks, Laccoliths, and Magmas.
Lake Nipigon diabase sheets: Wilson, 1202.
New York, Brewster iron district: Koeberlin, 679.
Ontario, Lake Nipigon trap sheets: Wilson, 1202.

Insecta.
Cerapodidae from Florissant: Rohwer, 1013.
Cockroaches of the Kansas coal measures and Permian: Sellards, 1046.
Coleoptera from Florissant: Wickham, 1247.
Diptera from Florissant: Cockerell, 250.
Eocene from Colorado: Cockerell, 243, 255.
Florissant, Colorado: Cockerell, 243, 245, 247-257.
Generic names based on American types: Cockerell, 258.
Nemestrinidae: Cockerell, 244, 245.
Permian, types of: Sellards, 1047.
Syntomostylus? fortis: Cockerell, 259.
Tsetse fly from Florissant: Cockerell, 252.

Interest, a drainage modification: Goldthwait, 460.

Intrusions. See also Igneous rocks, Laccoliths, and Magmas.
Lake Nipigon diabase sheets: Wilson, 1202.
New York, Brewster iron district: Koeberlin, 679.
Ontario, Lake Nipigon trap sheets: Wilson, 1202.

Invertebrata (general). See also Annelida, Brachiopoda, Bryozoa, Crustacea, Echinodermata, Foraminifera, Insecta, Mollusca, Problematica, Spongida, and Vermes.

California, Coalinga district: Arnold, 30, 31.
Colorado, Devonian fauna of Ouray limestone: Kindel, 666.
Devonian fauna of Ouray limestone, Colorado: Kindel, 666.
Fern Glen fauna: Weiller, 1218.
Invertebrata—Continued.

Index fossils of North America: Grabau and Shinier, 477.
Mesozoic Invertebrate faunas: Stanton, 1094.
Miocene of Astoria and Coos Bay, Oregon: Dall, 300.

National Museum collections: Bassler, 81.
Netterth collection: Bassler, 89.
New Mexico, Manzano group: Girty, 458.
Oklahoma, Caney shale: Girty, 457.
Iodyrite from Tonopah: Krais and Cook, 481.

Iowa.

General.
State geologist’s seventeenth report: Calvin, 189.

Economic.
Coal deposits: Hinds, 571.
Coal analyses: Lees and Hixson, 754.
Coal, bibliography of: Lees, 752.
Coals, fuel values: Wilder, 1252.
Coal mining, history of: Lees, 750.
Coal statistics: Beyer, 111.
Mineral production in 1908: Beyer, 110.
Peat: Beyer, 112.
Peat, bibliography of: Lees, 753.

Physiographic.
Mississippi Valley, Savanna-Davenport: Carman, 198.

Stratigraphic.
Aftonian sands and gravels in western Iowa: Shimek, 1060.
Carboniferous section of southwestern Iowa: Smith, 1089.
Des Moines stage, general section of: Lees, 751.
Mississippi Valley, Savanna-Davenport: Carman, 198.
Pleistocene problem: Calvin, 187.

Paleontology.
Aftonian mammalian fauna: Calvin, 188.

Iron.
Alabama, Birmingham district: Burchard, 163.
Chattanooga district: Higgins, 556.
Chattanooga region, Clinton ore: Burchard, 164.
British Columbia, Texada Island: McConnell, 792.
California, desert region: Jones, 634.
Canada: Young, 1297.
Colorado, Montezuma district, Summit County: Patton, 943.
Taylor Peak and Whitepine deposits: Harder, 599.
Cuba: Weld, 1217.
Georgia: Watson, 1210.
Chattanooga district: Higgins, 556.
Chattanooga region, Clinton ore: Burchard, 164.
Fossil ore deposits: Hall, 58.
Maryland: Singewald, 1066.
Mexico: Aguilar, 9.
Chihuahua, Naica district: Reynoso, 995.
Guerrero, Aldama district: Hijar y Haro, 561.

Iron—Continued.
Michigan mines: Lane, 732.
Lake Superior district: Brinsmade, 143.
Marquette Range: Stock, 1111.
Minnesota, Lake Superior region: Brinsmade, 143.
Mesabi Range: Wolff, 1278.
New Brunswick, Bathurst: Young, 1298.
Newfoundland: Chambers and Chambers, 219; Outerbridge, 922.
New Mexico, Hanover district: Paige, 926.
New York: Newland, 894.
Brewster district: Koeberlin, 679.
Clinton ores: Newland, 892.
North Carolina: Pratt, 904.
Ontario, Black Sturgeon region: Coleman, 207.
Bog ore on English River: Moore, 882.
Lake Nipigon-Clay Lake region: Collins, 277.
Lake Superior region: Brinsmade, 143.
Lake Wendakegan region: Moore, 884.
Montreal River district: Collins, 279.
Nipigon district: Coleman, 206.
North of Round Lake: Moore, 881.
Onanama Range: Moore, 881.
Thunder Bay and Rainy River districts: Hille, 564.
Woman River area: Allen, 17.
Pennsylvania, Bloomsburg ore: Van Ingen, 1181.
Clinton ores, Stone Valley: Kelly, 643.
Mercersburg-Chambersburg district: Stose, 1110.
Porto Rico: Hamilton, 505.
Quebec: Cirkel, 223.
Chrome ore: Cirkel, 224.
South Dakota, Black Hills: Coolidge and Overspeck, 284.
Tennessee, Chattanooga district: Higgins, 556.
Chattanooga region, Clinton ore: Burchard, 164.
Texas: Linton, 775.
Llano County: Phillips, 955.
United States (general): U. S. G. S., 1170; Hayes, 539.
Virginia, Appalachian region: Harder, 510.
West Virginia: Grimley, 496.
Wisconsin, Lake Superior district: Brinsmade, 143.
Spring Valley, brown ores: Allen, 16.

Isostasy.
Figure of the earth: Hayford, 530.

Jamaica.

General.
Caribbean region, geological connections: Guppy, 502.

Economic.
Copper mines: Outerbridge, 921.
Mineral resources: Outerbridge, 922.

Dynamic and Structural.
Kingston earthquake: Hovey, 594; Marvin, 823.

Jointing.
General: Buckley, 158.
INDEX.

135

Juglandaceae from Pleistocene of Maryland: Berry, 106.

Jurassic.

General: Fraas, 425.
Mesozoic invertebrate faunas: Stanton, 1094.
Paleogeographic map: Wilks, 1256.

Stratigraphy.

Alaska, Kotsina-Chitina region: Moffit and Maddren, 875.
California, Coalinga district: Arnold, 31.
Santa Cruz quadrangle: Branner et al., 138.
Canada: Dowling, 350.
Colorado, north central: Henderson, 530.
Montana, Great Falls region: Henderson, 536.
Greenland: Nordenskjold, 900.
Utah, southern: Richardson, 990.

Paleontology.

Camptosaurus, osteology of: Gilmore, 453.
Crinoid, new: Springer, 1090.
Greenland: Fraas, 423.
Mesozoic invertebrate faunas: Stanton, 1094.
Rhynchocephalian reptile from Wyoming: Gilmore, 454.
Stepheoceras from British Columbia: Whireaves, 1241.

Kansas.

General.
Fieldwork, history of: Haworth and Bennett, 517.

Economic.
Oil and gas: Haworth et al., 519.

Stratigraphic.

General: Haworth and Bennett, 518.
Anthracolithic rocks of Kansas and Oklahoma: Beebe, 91.
Coal measures faunal divisions: Beebe and Rogers, 95.
Kansas ice sheet, drainage of: Todd, 1147.
Lawrence shales: Yates, 1295.
Marion stage formations: Beebe, 90.

Paleontology.

Bison latifrons skull: Osborn, 916.
Coal measures faunas: Beebe and Rogers, 95.
Cockroaches from coal measures and Permian: Sellards, 1046.
Dinosaur, armored, from the chalk: Sternberg, 1101.
Euphorbiaceae: Cockerell, 262.
Paleozoic plants: Sellards, 1045.
Pennsylvania and Permian faunas: Beebe, 93.
Saurian from the Niobrara: Wieland, 1249.
Toxochelys stenopora: Hay, 521.
Ulna castrejensis socialis: Basler, 81.

Kauaia.

Georgia: Veatch, 1184.
Mexico, Coahuila: Castro, 212.

Kentucky.

Economic.
Fluorspar: Fobs, 415.

Stratigraphic.

Bedford fauna at Indian Fields and Irvine: Foerste, 410.
Blue Grass region: Matson, 827.
Connection of coal fields: Miller, 809.
Kentucky, Louisville region: Bassler, 50.
Waverly formations: Morse and Foerste, 887.

Paleontology.

Bedford fauna at Indian Fields and Irvine: Foerste, 410.
Cincinnatian and Lexington fossils: Foerste, 413.
Cincinnatian fossils: Foerste, 412.
Silurian fossils: Foerste, 409, 411.

Lakes.

See also Glacial lakes.
Divided lakes in western Minnesota: Griggs, 418.

Lakes, glacial. See Glacial lakes.

Lamellibranchiata. See Pelecypoda.

Land bridge between northern Europe and North America: Scharff, 1000, 1031.

Landslides.

Alberta, Frank: Burling, 108.
Colorado, San Juan Mountains: Howe, 603.
Slumgullion mud flow: Cross, 296.
New York, landslip in Hudson clays: Newland, 893.
Ohio, near Cleveland: Van Horn, 1180.

Laramie formation and Shoshone group: Cross, 294.

Laurentia: Adams, 3.

Lavas, Hawaiian: Brigham, 141.

Lead.

Arizona, Mohave County: Schrader, 1054.
British Columbia, Bear River district: Rush, 1023.
Canada: Young, 1207.
Colorado, Aspen: Spurr, 1092.

Montezuma district, Summit County: Patton, 943.
Idaho, Coeur d'Alene district: Rowe, 1016.

Massachusetts, Newburyport: Clapp and Ball, 229.

Mexico, Chihuahua, Las Plomosas: Burrows, 171.

Chihuahua, Nacca district: Reynoso, 965.

San Ygnacio: Burrows, 171.

Guerrero, Pregones district: Laguerrense, 691.
Lead—Continued.
Missouri: Buckley, 160; Keyes, 658.
Ozark region: Buckley, 159; Keyes, 633.
Ozark deposits, genesis of: Keyes, 657.
St. Francois and Washington counties: Buckely, 158.

southeast: Ruhl, 1022.

Nevada, Lida district: Bu't, 1015.

White Pine district: Larsh, 738.

New Mexico, Tres Hermanas district: Lindgren, 771.

United States (general): U. S. G. S., 1170; Lindgren, 772.

Virginia: Caldwell, 180.

Wisconsin: Brinsmade, 142.

Leadhillite, crystallography of: Palache and La Forge, 930.

Lignite. See also Coal.

Alberta, Cascade basin: Dowling, 351.

Montana, Fort Peck Indian Reservation field: Smith, 1076.
Sentinel Butte field: Leonard and Smith, 701.
North Dakota, Fort Berthold Indian Reservation field: Smith, 1076.
Sentinel Butte field: Leonard and Smith, 701.

southeastern: Leonard, 758.

Washburn field: Smith, 1074.

Saskatchewan, Cascade basin: Dowling, 351.

Limestone.

Colorado: Martin, 819.

New York: Newland, 894.

Oregon: Barton, 308.

Washington: Darton, 308.

Limestones, evolution of: Daly, 303.

Locus of vadose ore deposition: Keyes, 658.

Loess.

Iowa, eastern: Carman, 198.

St. Louis area: Fenneman, 392.

Louisiana. Economic.

Oil and gas in northwestern Louisiana: Harris et al., 514.
Rock salt: Harris, 512.

Paleontology.

Fulgur, genesis of: Maury, 841.

Lower Silurian. See Ordovician.

Lymneea: Baker, 51.

Lysorophidae: Moodie, 876.

Magnas. See also Intrusions.

General: Lane, 729.

Magnetic waters and volcanic action: Hixon, 574.

Solidification of alloys and magmas: Aston, 39.

Magnetic disturbances and the genesis of petroleum: Becker, 80.

Magnetic rocks: Harris, 513.

Magnetite.

New Jersey: Bayley, 86.

Maine.

General.

Kennebec River basin, geology of: Smith, 1081.

Economic.

Blue Hill copper deposits: Emmons, 378.

Deer Isle mines: Emmons, 378.

Granites: Villarello, 1186.

Molybdenite deposits of Tunk Pond: Hills, 566.

Peat deposits: Bastrin and Davis, 81.

Tourmaline deposits: Wade, 1194.

Physiographic.

Kennebec River basin: Smith, 1081.

Palaeontology.

Ophiuroïdes in glacial clay: Sayles, 1028.

Shells, fossil and living, in Little Mud Lake: Nylander, 902.

Underground water.

deep wells: Bayley, 87.

Mammalia.

Alaska: Quackenbush, 974.

Aneodon: Matthew, 835.

Apterodactylus and aptedactyl from Wyoming Oligocene: Matthew, 839.

Bison latifrons skull: Osborn, 916.

Camel from lower Miocene of Nebraska: Cook, 281.

Camels of lower Miocene: Loomis, 780.

Carnivores from the Miocene of western Nebraska: Peterson, 952.

Cat allied to Felis st stor: Merriam, 835.

Cenozoic mammal horizons of western North America: Osborn, 913.

Distribution of Pleistocene Mammalia: Hay, 524.

Dromomeryx: Douglass, 349.

Entelodontidae, revision of: Peterson, 951.

Faunal lists of Tertiary Mammalia of the West: Matthew, 836.

Ground-sloth from Colorado: Cockeyer, 248.

Mammoth expeditions to Alaska: Quackenbush, 974.

Pliocene of western Nebraska: Matthew and Cook, 840.

Pliocene of western Montana: Douglass, 347.

Pleistocene of Montana: Douglass, 248.

Pliocene from Miocene of Montana: Douglass, 347.

Pliocene from Miocene of Montana: Douglass, 347.

Pilolodus: Gidley, 448.

Sea lion from Oregon Miocene: True, 1154.

Strepsicerine antelopes: Merriam, 831.

Teleoceras from Nebraska Miocene: Oicut, 907.

Man, fossil.

Human race, origin: Wright, 1293.

Man, antiquity of: Penck, 946.

Manganese.

Canada: Young, 1297.

Georgia: Watson, 1210.

Nicaragua, Matagalpa district: West, 1223.

United States (general): U. S. G. S., 1170; Harder, 511.

Virginia: Bull, 88.

Mangrove in southern Florida: Vaughan, 1183.
INDEX.

Manitoba.
Economic.
Coal fields: Dowling, 350.

Marble.
Arizona, Chiricahua Mountains: Paige, 927.
New York: Newland, 594.
Maps. See Geologic maps.

Marl.
Definition of: Stewart, 1108.

Marble.
Maine: Bastin and Davis, 83.

Martinique.
St. Pierre and Mont Pelé in 1908: Hovey, 601.
Striations and U-shaped valleys: Hovey, 1127.

Maryland.
General.
Geological survey report: Clark, 234-236.
Economic.
Coal, upper Potomac fields: Stock, 1112.
Iron deposits: Singewald, 1006.

Stratigraphic.
Piedmont limestones: Mathews and Grasty, 825.

Paleontology.
Juglandaceae from the Pleistocene: Berry, 100.
Miocene drumfish: Smith, 1071.
Tropidoleptus fauna, recurrence of: Swartz, 1127.
Turtle from Miocene: Palmer, 936.

Massachusetts.
General.
Charles River estuary and Boston Harbor: Crosby, 293.
Economic.
Lead-silver deposits at Newburyport: Clapp and Ball, 239.

Dynamic and structural.
Subsidence of Boston Harbor: Freeman, 429.

Physiographic.
Nantucket shore lines: Gulliver, 500.

Stratigraphic.
Boston region: La Forge, 690.

Petrology.
Pegmatite in granite: Warren, 1203.

Mineralogy.
Hampden County minerals: Roe, 1009.
Minerals from Chester: Palache and Wood, 933.

Mastodon, distribution in Illinois: Bagg, 45.
Mauna Loa: Brigham, 141.

Meandering.
General: Fenneman, 392.
Missouri River shifting: Duncanson, 304.
Megalosaurus: Hay, 520.
Meetings. See Associations.

Mercersburg-Chambersburg district, Pennsylvania: Stoe, 1119.

Mercury. See Quicksilver.
Mercury minerals from Terlingua, Texas: Hightbrand and Schaller, 965.

Metamorphism.
Chemical composition for identifying metamorphosed sediments: Bastin, 82.
Glacial deposits: Carney, 200.
Metamorphosed ore deposits: Emmons, 378.

Meteorites.
General.
Composition of stony meteorites: Merrill, 856.
Probability of large meteorites having fallen upon the earth: Schwartz, 1040.

Georgia, Pickens County: McCallie, 790.
Guffey, Colorado: Hovey, 598.

Mexico, State of Durango: Agraz, 6.
Modoc: Hovey, 599.

Nevada: Jenney, 621.
Quinn Canyon, Nevada: Jenney, 622.

Thomson, Georgia: Merrill, 854.

Mexico.
General.
Baja California: Wittich, 1276.

Chihuahua, northeastern: Rogers, 1012.
Cochilla, kaolin in a coal: Castro, 212.
Geology of northern Mexico: Burrows, 171.
Guanaajuato district: Villarello et al., 1192.
Instituto Geologico de Mexico: Aguilera, 11.
Ixmiquilpan Valley, Hidalgo: Paredes, 940.
Oaxaca, geology of: Flores, 407.

Mexico.
General.
Aldana district, Guerrero: Hijar y Haro, 561.
Arteaga district: Winston, 1274.
Campeche, Champoton: Urbina, 1175.

Chihuahua, Calabacillas gold mine: Geddes, 441.

Cerro Santa Elena: Lane, 734; Merrill, 852.
San Ygnacio mine: Peragallo, 950.
Terrazas, copper: Baron, 67.
Cochilla, carboniferous deposits: Aguilera, 10.
coal: Ludlow, 784.

Copper deposit in Cerro Seco, Guerrero: Paredes, 938.

Copper in Michoucan: Bigot, 114.

El Chico district, Hidalgo: Thomas, 1145.

El Dorado mineral deposits: Balarezo, 56.
Esperanza mine, El Oro: Hindry, 570.

Guanaajuato district: Botsford, 129.

Guerrero, Pregones district: Laguerenne, 691.

Jalisco, Magistral copper district: Babb, 44.

Mexico, Zacualpan district: Platt, 957.

Mode of filling of some Mexican ore deposits: Villarello, 1191.

Oaxaca, Tehuantepec district: Flores, 408.

Oil fields: Day, 329.

Petroleum of Dos Bocas: Villarello, 1183.

Petroleum regions: Villarello, 1180, 1190.

Physical and geological features of Mexico mining: Ordóñez, 910.

Rio Plata mine, Chihuahua: Baron, 66.

San Luis Potosi, Dulces Nombres quicksilver deposit: Babb, 43.
Santa Maria graphite mines: Hess, 554.
Silver and copper deposits: Balarezo, 55.
Mexico—Continued.
Economic—Continued.
Silver mines, geological formation of: Bordeaux, 125.
Sinaloa, northern: Tays, 1142.
San José de Gracia: Tays, 1143.
Sonora, El Tigre mine: Herrick, 543.
La Colorado, graphite: Hess, 552.
Zacatecas district: Botsford, 130.
Concepcion del Oro district: Chase, 221.
Zacualpam district, Mexico-Guerrero: Carpenter, 200.
Dynamic and structural.
Central plateau, origin of: Bose, 127.
Earthquakes, catalog of, 1904-1908: Aguiller,a, 7.
In 1909: Mexico I. G., 857.
Effect of earthquakes on deep underground
water circulation: Yeandle, 1296.
Fault zone in Valley of Mexico: Bose, 128.
Folding of rock strata: Nason, 890.
Guerrero, cave of Cacahuamilpa: Urbina, 1174.
Physiographic.
Volcanoes: Inkey, 615.
Yucatan, physiographic features: Urbina, 1173.
Stratigraphic.
Guanajuato district: Botsford, 129.
Rioverde y Arroyo Seco region: Paredes, 939.
Paleontology.
Volcanoes: Inkey, 615.
Yucatan, physiographic features: Urbina, 1173.
Pliocene fauna of Tuxtepec: Bose, 127.
Williamsonias of Mixteca alta: Wieland, 1251.
Petrology.
General: Aguilera, 9.
Granodiorite of Concepcion del Oro, Zacatecas: Berges, 97.
Mineralogy.
Alamosite, a new lead silicate: Palache and Merwin, 931.
Meteorite from Durango: Agraz, 6.
Underground water.
Ixmiquilpan Valley, Hidalgo: Paredes, 940.
Michoacan, Patzcuaro: Villarello, 1187.
Queretaro. Montenegro: Villarello, 1185.
Mica.
Canada: Young, 1297.
North Carolina: Pratt, 964.
South Dakota: Sterrett, 1103.
United States (general) U. S. G. S., 1170.
Michigan—Continued.
General.
Salt water in Lake mines: Lane, 730.
State geologist's report: Lane, 727.
Economic.
Copper: Hore, 502; Odendall, 905.
Iron fields of Lake Superior region: Brinsmade, 143.
Iron mines and their mine waters: Lane, 728.
Marquette Range: Stock, 1111.
Mine waters: Lane, 728, 729, 732.
Tuscola County, coal: Cooper, 285.
Stratigraphic.
Porcupine Mountains: Lane, 731.
Silurian formations in southern Michigan: Sherzer and Grabau, 1088.
Michigan—Continued.
Stratigraphic—Continued.
Silurian strata, nomenclature and subdivision:
Lane et al., 733.
Tuscola County: Cooper, 285.
Paleontology.
Silurian faunas in southern Michigan: Sherzer and Grabau, 1058.
Underground water.
Iron mines and their mine waters: Lane, 732.
Microsauria, ancestors of the Reptilia: Moodie, 879.
Millstones.
New York: Newland, 894.
Mine waters.
General: Lane, 729.
Mine waters, field assay: Lane, 728.
Michigan, salt water in Lake mines: Lane, 730.
Mine explosions and earthquakes: Spalding, 1088.
Mineral paints.
New York: Newland, 894.
Mineral waters.
Classification: Bartow, 71.
Colorado: Headden, 533.
Kentucky, Blue Grass region: Matson, 827.
New York: Newland, 894.
North Carolina, Pratt, 964.
Mineralogy (general). See also Meteorites and Technique. For regional see the various States. For particular minerals see list p. 159.
Bement collection of minerals: Gratacap, 488.
Benitoite: Hawatsch, 578-580.
paragenesis and occurrence: Louderback, 781.
Binary systems of alumina with silica, lime, and
magnesia: Shepherd and Rankin, 1050.
Calcite crystals with new forms: Schaller, 1029.
Crystallography: Wadsworth, 1195.
Crystals, classification of: Swartz, 1120.
Diopside and its relations to calcium and mag-
Enstatite and clinoenstatite: Wright, 1291;
Zambonini, 1301.
Nevada, Humboldt County: Ransome, 980.
New Jersey, Newark igneous rocks: Levison, 764.
Optical mineralogy, elements of: Winchell and
Winchell, 1273.
Pyrite carrying gold and galena of unusual
habit: Pogue, 999.
Minerals described. See list p. 159.
Minnesota.
General.
Franconia, geology of: Berkey, 99.
Economic.
Clays: Berkey, 100.
Iron fields of Lake Superior region: Brinsmade, 143.
Mesabi Range: Wolff, 1278.
Physiographic.
Divided lakes: Griggs' 495.
Minnesota—Continued.

Stratigraphic.
Glacial drift in Mississippi Valley: Upham, 1171.
Mesabi rocks: Winchell, 1272.
Northeastern Minnesota: Winchell, 1289.
Underground water.
Minneapolis, deep wells: Winchell, 1271.
Miocene. See Tertiary.

Miscellaneous.
First calcareous fossils: Daly, 303.
Geologic essentials of a mine report: De Kalb, 330.
Instituto Geologico de Mexico: Aguilera, 11.
Instrumental surveying needed in practical geology: Lyman, 787.
Mining terms, definitions: Merrill, 853.
Quartz as a geologic thermometer: Wright and Larsen, 1292.
State geological survey reports on limited areas: Carney, 199.
Theory and hypothesis in geology: Lahee, 692.

Mississippi.

Economic.
Pottery clays: Logan, 778.

Paleontology.
Echinoïds from Ripley group: Slocum, 1069.
Mississippi Valley between Savanna and Davenport: Carman, 198.

Mississippian. See Carboniferous.

Missouri.

General.
State geologist's report, 1907-8: Buehler, 162.

Economic.
Joplin zinc belt, migrations of: Keyes, 659.
Lead and zinc: Buckley, 159.
Lead deposits of St. Francois and Washington counties: Buckley, 158.
Lead ores: Keyes, 658.
Mineral resources: Buehler, 162.
Ozark lead and zinc deposits: Buckley, 159; Keyes, 653.
genesis of: Keyes, 657.
Southeast Missouri lead district: Ruhl, 1022.
Tripoli deposits at Seneca: Nelson, 891.
Zinc ores: Keyes, 658.

Physiographic.
St. Francois and Washington counties: Buckley, 158.
St. Louis area: Fenneman, 392.

Stratigraphic.
Devonian of central Missouri: Greger, 491.
St. Francois and Washington counties: Buckley, 158.

Paleontology.
Auburn chert fauna: Branson, 139.
Fern Glen fauna: Weller, 1218, 1221.

Mineralogy.
Calcite from Joplin: Pogue, 958.

Mollusca. See also Cephalopoda, Gastropoda, and Pelecypoda.
Bibliography of post-Eocene marine of northwest coast of America: Dall, 201.
Caney shale fauna, Oklahoma: Girly, 457.

Mollusca—Continued.
Devinian, Montana: Raymond, 982.
Eocene deposits of Claiborne, Ala.: Wheeler, 1225.
Lynnzae: Baker, 51.
Maine, shells in Mud Lake: Nylander, 902.
New York, Bronx Borough, fresh-water fossils: Humphreys, 608.
Pliocene from Tuxtepec, Mexico: Blee, 126.
Quaternary from Greenland: Jensen, 627.

Molluscoidea. See Brachiopoda and Bryozoa.

Molybdenum.

Monazite.
North Carolina: Pratt, 964, 966; Pratt and Sterrett, 965.
South Carolina: Pratt and Sterrett, 965.

Montana.

General.
Crazy Mountains: Wolf, 1279.
Geological reconnaissance: Douglass, 348.

Economic.
Bridger coal field: Washburne, 1204.
Bull Mountain coal field: Richards, 997; Woolsey, 1288.
Cement material near Havre: Pepperberg, 948.
Crazy Mountains, coal: Stone, 1115.
Custer National Forest, coal: Wegemann, 1215.
Fort Peck Indian Reservation lignite field: Smith, 1076.
Great Falls coal field: Fisher, 396; Shurick, 1061.

Lewistown coal field: Calvert, 184, 185.
Miles City coal field: Collier and Smith, 274.
Milk River coal field: Pepperberg, 949.
Northwestern Montana: MacDonald, 799.
Red Lodge coal field: Woodruff, 1283.
Roundup coal mines: Rowe, 901.
Sapphire mines: Rowe, 1017.
Sentinel Butte lignite field: Leonard and Smith, 761.

Stratigraphic.
Ceratops beds: Stanton, 1094.
Crazy Mountains, glaciation: Mansfield, 813.
Great Falls region: Fisher, 396, 397.
Hells Creek and Ceratops beds: Knowlton, 678.
Lewistown coal field: Calvert, 185.
Northwestern Montana: Calkins, 181.

Paleontology.
Crocodile from Judith River beds: Holland, 586.
Devonian fauna: Raymond, 982.
Procamelus from Miocene: Douglass, 347.
Ptilodus: Gidley, 448.

Petroleum.
Northwestern Montana: Calkins, 181.
Phillipsburg quadrangle: Calkins, 183.

Underground water.
Great Falls region: Fisher, 397.

Mont Pele, condition in 1908: Hovey, 601.
Moraines.
Alaska, Yakutat Bay region: Tarr, 1136.
New York, Watkins Glen-Catatank district: Williams et al., 1256.
Mount Diablo, California: Louderback, 782.
Natron deposits.
Colorado, Costilla County: Headden, 532.
Nantucket shore-lines: Gulliver, 500.
Natural gas.
General.
Anticlinal theory of accumulation: Clapp, 231.
Anticlinal and hydraulic theories of accumulation: Monn, 888, 889.
Geology of, in Appalachian regions: Bow- nocker, 132.
Map of productive fields, 1908: Day, 327.
Occurrence, mode of: Clapp, 222.
Canada: Ells, 372; Young, 1297.
Colorado: Lakes, 706.
Illinois, Champaign County, in glacial drift: Knirk, 757.
Kansas: Haworth et al., 519.
Louisiana, northwestern: Harris et al., 514.
New York: Newland, 894.
North Dakota, Bottineau field: Barry, 09.
United States (general): U. S. G. S., 1176; Day, 322.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.
Nebraska.
Stratigraphic.
Pliocene of western Nebraska: Matthew and Cook, 840.
Paleontology.
Agate Spring fossil quarries: Peterson, 951.
Camel from lower Miocene: Cook, 251.
Carnivores from the Miocene: Peterson, 952.
Pliocene fauna: Matthew and Cook, 840.
Proboscidean from the Miocene: Cook, 252.
Teleoceras from Miocene: Oloot, 907.
Turtles from Harrison beds: Loomis, 779.
Nectosaurus: Moodie, 570.
Neptunite crystals from San Benito County, California: Ford, 416.
Nevada—Continued.
Economic—Continued.
Mason mining district, Lyon County, copper: Zehring, 1302.
Ore shoots: Chase, 220.
Petroleum: MacFarland, 853.
Rawhide district, Esmeralda County: Gehrmann 447; Whytock, 1243; Wolcott, 1277.
Round Mountain, Nye County: Loftus, 776; Ransome, 978.
Tonopah district: Burgess, 157; Jenney, 024; Johnson, 628.
White Pine district: Lorsh, 738.
Wonder district: Ritter, 136.
Yerington copper district: Jennings, 625; Ransome, 979.
Zinc mines of southern Nevada: White, 1235.
Physiographic.
Southwestern: Mendenhall, 845.
Stratigraphic.
Goldfield district: Ransome, 976.
Silver Peak quadrangle: Turner, 1156.
Tonopah district: Burgess, 107.
Paleontology.
Strepsicercine antelopes: Merriam, 851.
Petrology.
Goldfield district: Ransome, 976.
Silver Peak quadrangle: Turner, 1156.
Mineralogy.
Goldfield district: Ransome, 976.
Humboldt County: Ransome, 980.
Iodinite from Tonopah: Kraus and Cook, 681.
Leadhillite: Palache and La Forge, 930.
Meteor of 1894: Jenney, 022.
Meteorite: Jenney, 021.
Underground water.
Southwestern Nevada: Mendenhall, 845.
New Brunswick.
General.
Bathurst iron ore: Young, 1298.
Tobique County: Young, 1298.
Economic.
Bituminous shales: Ells, 374.
Mining districts: Langford, 737.
Oil shales: Baskerville, 76.
Phosphate deposits: Matthew, 883.
Physiographic.
Natural history and physiography: Ganong, 435.
Stratigraphic.
Cambrian rocks, new base for: Ells, 373.
Devonian and lower Carboniferous: Wilson, 1268.
Geological cycles in the maritime provinces: Matthew, 832.
Paleontology.
Fish fauna of Albert shales: Lambe, 724.
Newfoundland.
General.
Geology and mineral resources: Howley, 605.
Economic.
Coal: Howley, 604.
Mineral resources: Howley, 605; Outerbridge, 922; Symons, 1128.
Wabans submarine slopes: Chambers and Chambers, 219.
New Hampshire.
Economic.
 Copper deposits: Emmons, 378.
 Granites: Villarello, 1186.

New Jersey.
General.
 Administrative report, 1908: Kümmel, 683.
 Philadelphia district: Bascom et al., 74.
 Trenton quadrangle: Bascom et al., 75.
Economic.
 Building stones: Lewis, 706.
 Copper: Kümmel, 686.
 Mineral Industry: Kümmel, 685.
 Philadelphia district: Bascom et al., 74.
 Trenton quadrangle: Bascom et al., 75.
 Zinc deposits of Sussex County: Spencer, 1089.

New Mexico—Continued.
Paleontology.
 Calcite crystals from the Organ Mountains: Ford and Ward, 419.
 Calcite crystals: Schaller, 1020.

New York.
General.
 Director's report, 1908: Clarke, 240.
 Geological maps: Leighton, 755.
 Inliers, types of: Ruedemann, 1019.
 New York City: Gratacap, 487.
 Watkins Glen-Catatonk district: Williams et al., 1255.
Economic.
 Brewster iron-bearing district: Koeberlin, 679.
 Clinton ores: Newland, 892.
 Mining and quarry industry, 1908: Newland, 894.
 Watkins Glen-Catatonk district: Williams et al., 1255.
Dynamic and structural.
 Dikes in the Hamilton shale near Clintonville: Smith, 1073.
 Landslip in Hudson River clays: Newland, 893.
Physiographic.
 Champlain coast lines: Hudson, 606.
 Hudson River channel: Hovey, 602; Kemp, 464.
 Manhattan Island and East River channel: Berkey, 102.
 Moravia quadrangle: Carney, 203.
 Palisades of the Hudson: Hall, 504.
 Preglacial valleys in eastern New York: Cook, 283.
 Tertiary drainage problems: Grabau, 473.
 Watkins Glen-Catatonk district: Williams et al., 1255.
Stratigraphic.
 Adirondacks, ice movement and erosion: Miller, 568.
 Pleistocene geology: Miller, 869.
 Brewster iron-bearing district: Koeberlin, 679.
 Crystalline of southeastern New York: Berkey, 103.
 Dutchess County: Gordon, 404.
 Geneva-Ovid quadrangles: Luther, 780.
 Glacial waters west and south of the Adirondacks: Fairchild, 388.
 Glaciation, multiple: Fairchild, 386.
 Hudson valley and Ontarian glacier lobe: Fairchild, 387.
 Manhattan Island: Berkey, 101.
 Moravia quadrangle, Pleistocene geology: Carney, 203.
 New York City, geology: Gratacap, 487.
 Remsen quadrangle: Miller, 867.
 Silurian strata, nomenclature and subdivision: Lane et al., 733.
 Watkins Glen-Catatonk district: Williams et al., 1255.
New York—Continued.

Paleontology.

Algaj from Trenton limestone: Ruedemann, 1020.

Araucariopitys: Jeffrey, 617.

Cretaceous coniferous remains from Kreischer-
ville: Hollick and Jeffrey, 588.

Dinichthyid armor plates from Marcellus shale: Smith, 1072.

Fresh-water fossils from Bronx Borough, New
York City: Humphreys, 008.

Watkins Glen-Catatonk district: Williams, 1255.

Nicaragua.

Economic.

Matagalpa district: West, 1223.

Nickel.

Canada: Young, 1297.

Ontario, Sudbury: Ontario B. M., 909.

Quebec: Dresser, 361.

Nomenclature. See also Stratigraphic.

Dip, pitch, hade: Wilson, 1264.

Geologic names, status of: Keith, 642.

Geologic terms, definitions: Wood, 1281.

Geological terms: Grabau, 474.

Nontronite: Bergeat, 98.

North Carolina.

General.

Bibliography of geology, mineralogy, and geog-
raphy: Laney and Wood, 736.

State geologist’s biennial report: Pratt, 963, 965.

Economic.

Gold Hill copper district: Laney, 735.

Gold mining: Lyon, 788.

Mineral production in 1908: Pratt, 907.

Mineral waters: Pratt, 904.

Mining industry in 1907: Pratt, 904.

Monazite: Pratt, 966; Pratt and Sterrett, 968.

Peat deposits: Davis, 314.

Placer mining industry: Welch, 1216.

Tin deposits: Ball, 59.

Stratigraphic.

Cretaceous geology: Stephenson, 1098.

Davidson County: Pogue, 960.

Tertiary erosion intervals: Miller, 800.

Paleontology.

Cretaceous floras: Berry, 109.

Pleistocene flora: Berry, 107.

Petroleum.

Granites of Chapel Hill: Eaton, 308.

Volcanic rocks of Davidson County: Pogue, 960.

North Dakota.

General.

Geological reconnaissance: Douglass, 348.

Jamestown-Tower district: Willard, 1253.

Economic.

Bottineau gas field: Barry, 69.

Cement materials of northeastern North Da-
kota: Barry and Melsted, 70.

Fort Berthold Indian Reservation lignite field: Smith, 1073.

North Dakota—Continued.

Economic—Continued.

Sentinel Butte lignite field: Leonard and
Smith, 761.

Southwestern North Dakota: Leonard, 758.

Watsonburg lignite field: Smith, 1074.

Physiographic.

Northeastern North Dakota: Barry and Mel-
sted, 70.

Southwestern North Dakota: Leonard, 758.

Stratigraphic.

Geological history: Leonard, 759.

Hell Creek and Ceratops beds: Knowlton, 678.

Jamestown-Tower district: Willard, 1253.

Northeastern North Dakota: Barry and Mel-
sted, 70.

Southwestern North Dakota: Leonard, 758.

Underground water.

Jamestown-Tower district: Willard, 1253.

Northeastern North Dakota: Barry and Mel-
sted, 70.

Northwest Territories.

General.

Hudson Bay coast: O’Sullivan, 920.

Pelly River basin: Keele, 641.

Nova Scotia.

General.

Cumberland County: Fletcher, 405.

Volcanic bombs from near Lake Ainslie: Poole, 961.

Economic.

Auriferous antimony ore of West Gore: Haley, 503.

Bituminous shales: Ellis, 374.

Guysborough County, Richardson mine: Brown, 154.

Gypsum on Cape Breton Island: Tyssowski, 1160.

Kings and Lunenburg counties: Faribault, 390.

Leipsigate gold mining district: Moore, 885.

Mining districts: Langford, 737.

South Cheticamp, Cape Breton Island, ore de-
posits: Grandin, 481.

Stratigraphic.

Carboniferous, Northumberland County: Fletcher, 404.

Cumberland County: Poole, 962.

Geological cycles in the maritime provinces: Matthew, 832.

Joggins section: Logan, 777.

Silurian section at Arisaig: Twenhofel, 1158.

Paleontology.

Dictyonema websteri: Ruedemann, 1021.

Silurian section at Arisaig: Twenhofel, 1158.

Ohio.

Dynamic and structural.

Landslide accompanied by buckling: Van
Horn, 1180.

Physiographic.

Ohio, Licking County: Scheffel, 1032.

Licking County, Mary Ann township: Carney, 200.

Licking Narrows at Black Hand: Mather, 824.

Raised beaches of Bercia, Cleveland, and Euclid sheets: Carney, 202.
Ohio—Continued.

Stratigraphic.
Conemaugh formation: Condit, 280.
Devonian, middle: Stauffer, 1096.
Kelleys Island, glacial erosion on: Carney, 205.
Licking County, Mary Ann township: Carney, 200.
Silurian strata, nomenclature and subdivision: Lane et al., 733.

Paleontology.
Cincinnati and Lexington fossils: Foerste, 413.
Cincinnati fossils: Foerste, 412.
Dinichthyids from northern Ohio: Branson, 140.

Mineralogy.
Calcite crystals from Kelleys Island: Ford and Pogue, 417.

Oil. See Petroleum.

Oil shales.
Canada: Young, 1297.
New Brunswick: Baskerville, 77.
Nova Scotia and New Brunswick: Ells, 373.

Oklahoma.

Economic.
Asphalt deposits: Gould, 468, 469.
Coal: Gould, 470.
Grahamite: Taff, 1130.
Gypsum deposits: Gould, 467.
Mud hill oil pool: Taff and Reed, 1132.

Stratigraphic.
Anthracolitic rocks of Kansas and Oklahoma: Beede, 91.
Boulder deposits in mid-Carboniferous marine shales: Taff, 1131.
Caney shale: Girty, 457.
Marion stage formations: Beede, 90.

Paleontology.
Caney shale fauna: Girty, 457.

Oligocene. See Tertiary.

Ontario—Continued.

Economic—Continued.
Feldspar: Morsack, 886.
Gowganda district: Collins, 276; West, 1222.
Gowganda and Miller lakes silver area: Burrows, 169.
Iron fields of Lake Superior region: Brinsmade, 143.
Iron formation of Woman River area: Allen, 17.
Iron range north of Round Lake: Moore, 881.
Lake Abitibi area: Baker, 52.
Lake Wendigokan region: Moore, 884.

Mineralogy.
Hastingsite from Dungannon: Graham, 480.

Osceola.
Mexico, Oaxaca, Tehuantepec district: Flores, 408.
Opisthias ranis: Gilmore, 454.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Ordovician.

General.
Classification of: Grabau, 471.
Evolution of North America: Grabau, 472.
Paleogeographic map: Willis, 1256.
Paleogeography: Ulrich, 1165.

Stratigraphy.
Arkansas: Purdue, 972.
Ouachita area: Purdue, 973.
Canada, maritime provinces: Matthew, 832.
Georgia: Veatch, 1184.
Illinois, Alexander County: Savage, 1027.
Northwestern: Carman, 198.
Iowa, eastern: Carman, 198.
Kentucky, Blue Grass region: Matson, 827.
Missouri, southeastern: Carman, 198.
Ontario, Albany River region: Whiteaves, 1240.
Simcoe sheet: Johnston, 633.
Pennsylvania, Lehigh Valley: Wherry, 1229.
Ohio, eastern: Bassler, 80.
Michigan: Lane, 704.
Michigan, Onaman range: Moore, 883.
Nevada, Silver Peak quadrangle: Turner, 1150.
New Jersey, Kiimmel, 682.
Northwestern: Carman, 198.
Southeastern: Carman, 198.
South Dakota: Dakotan, 310.
Ontario, southeastern: Carman, 198.
Texas, El Paso quadrangle: Richardson, 998.
Virginia, western: Bassler, 78.
Wyoming, Black Hills region: Carman, 198.

Paleontology.
Algæ from Trenton of New York: Ruedemann, 1020.
Brachiopoda of Richmond group: Foerste, 414.
Cincinnatian and Lexington fossils: Foerste, 413.
Cincinnatian fossils: Foerste, 412.
Fish remains in Ordovician of Black Hills: Carman, 198.
Netterloth collection: Bassler, 80.
Ohio, Richmond near Oxford: Shideler, 1069.
Periglyptocrinus priscus: Parks, 942.
Protaster: Parks, 941.
Virginia, western: Bassler, 78.

Ore deposits, origin—Continued.

General—Continued.
Occurrence of ore deposits in mineral belts:
Mountains, 717.
Occurrences of ore in veins: Lakes, 714.
Ore deposition, development of theories of:
Emmons, 377.
Ore shoots: Lindgren, 769.
Ores formed by magmatic segregation: Garrison, 649.
Ores in volcanic craters and fumarole orifices:
Montagu, 715.
Outcrop of ore bodies: Emmons, 379; Min. and Sci. Press, 671.
Volcanic action and ore deposition: Chase, 222; Hixon, 577.
Cobalt-silver deposits of northern Ontario:
Hore, 691.
Colorado, Aspen ore deposits: Loughlin, 783; Spurr, 1092.
Copper, garnet contact deposits, depths at
which formed: Keyes, 654.
Michigan, Lane, 704.
Gold, alluvial: Lakes, 703.
Georgia: Jones, 638.
Goldfield district, Nevada: Ransome, 976.
Iron: Grimsley, 496.
Bog ore, Ontario: Moore, 882.

Lead and zinc of Ozark region: Buckley, 159; Keyes, 653.
Lead, Missouri, southeastern: Buckley, 158.
Manganese ores: West, 1223.
Massachusetts, Newburyport, silver-lead de-

posits: Clapp and Ball, 229.
Nevada, ore shoots: Chase, 220.
Ozark lead-zinc deposits: Keyes, 657.
Salt deposits, West Virginia: Grimsley, 496.
Silver, Colorado, Aspen: Spurr, 1092.
Lake Valley, New Mexico: MacDonald, 707.
Silver Ilet vein, Lake Superior: McDermott, 796.
Sudbury ores: Hixon, 576.
Tungsten, Colorado: George, 443.
Tungsten deposits and surface enrichment:
Mountains, 712.
Wisconsin, brown ores: Allen, 16.

Oregon.
General.
Prehistoric Siskiyou Island and Marble Halls:
Watson, 1208.
Economic.
Bohemia mining district: MacDonald, 798.
Cracker Creek district, Baker County: Pardee, 937.
Rogue River valley coal field: Diller, 339.
Rye Valley gold mines: Mathes, 826.
Oregon—Continued.
Economic—Continued.
Structural materials: Darton, 308.
Waldo, places: Nicol, 898.
Willow Creek, Morrow County, coal prospect: Mendenhall, 849.
Dynamic and structural.
Cracker Creek gold district, Baker County, faulting and vein structure: Pardee, 937.
Physiographic.
Harney Basin region: Waring, 1202.
Stratigraphic.
Harney Basin region: Waring, 1202.
Miocene of Astoria and Coos Bay: Dall, 300.
Tertiary: Arnold, 32.
Paleontology.
Miocene of Astoria and Coos Bay: Dall, 300.
Sea lion from Miocene: True, 1154.
Underground water.
Harney Basin region: Waring, 1202.
Origin of self-generating matter and the influence of aridity upon its evolutionary development: Macdougal, 800.
Orogeny.
Great Basin ranges, erosional origin of: Keyes 652.
Oscillation. See Changes of level.
Ostracoda. See also Crustacea.
Caney shale fauna, Oklahoma: Girty, 457.
Silurian fossils from Indiana, Ohio, and Kentucky: Foerste, 409.
Oxydactylus campestris: Cook, 281.
Ozokerite.
Utah: MacFarren, 806.
Pacific Coast Tertiary faunas: Arnold, 32.
Paints. See Mineral paints.
Paleobotany.
Algae from Trenton limestone of New York: Ruedemann, 172.
Amber in Laramie Cretaceous: Cockerell, 203.
Colorado, Fagopsis from Florissant: Hollick, 587.
Cretaceous coniferous remains from New York: Hollick and Jeffrey, 588.
Cretaceous floras of Virginia and North Carolina: Berry, 109.
Euphorbiaceae: Cockerell, 262.
Firminates aterrimus: Cockerell, 259.
Fossil plants: Cockerell, 264.
Kansas, upper Paleozoic plants: Sellards, 1045.
Mesozoic flora of Atlantic coastal plain: Berry, 105.
Paleozoic floras: White, 1231.
Structure of leaf in Cretaceous pines: Jeffrey, 618.
Virginia, Miocene flora: Berry, 104.
Paleozoic, revised classification of: Grabau, 471.
Paragenesis of minerals.
Copper deposits, Latouche Island, Alaska: Lincoln, 768.
Peat.
General.
Origin: Davis, 317.
Alaska: Davis, 315.
Canada: Nyström and Anrep, 903.
Florida: Sellards, 1049.
Indiana: Taylor, 1139.
Iowa: Beyer, 112.
Bibliography of peat: Lees, 753.
Maine: Bastin and Davis, 83.
New York: Newland, 894.
North Carolina: Davis, 314.
United States: Davis, 316; U. S. G. S., 1170.
Fenpeatite in granite of Massachusetts: Warren, 1203.
56693°—Bull. 444—10——10
Paleoclimatology.
General: Bustamante, 172.
Greenland: Jensen, 627.
Manson's theory of geological climates: Reid, 991.
Paleozoic: White, 1231.
Pleistocene conditions: Salisbury, 1024.
Paleogeographic maps.
Arizona and southern California in post-Pliocene: Blake, 1201.
Devonian, Columbus time: Stauffer, 1096.
Delaware-Ontariong time: Stauffer, 1096.
North America, Cambrian to Quaternary: Willis, 150.
Ordovician, Silurian, and Devonian: Grabau, 472.
Pacific Coast Tertiary: Arnold, 32.
Paleogeography. See also Geologic history, Paleoclimatology, and Paleogeographic maps.
Cambrian faunas, evolution of: Walcott, 1198.
Carboniferous: Girty, 455.
Devonian and Mississippian faunas: Weller, 1219.
Early vertebrate faunas: Williston, 1259.
Mesozoic of North America: Stanton, 1094.
New York: Clarke, 240.
North America: Schuchert, 1036.
Ordovician: Ulrich, 1165.
Ordovician, Silurian, and early Devonian: Grabau, 472.
Principles controlling restorations: Willis, 1256.
Richmond group: Foerste, 414.
Paleontology (general). See also the classes of animals and Paleobotany. For stratigraphic see the different systems. For regional see the various States.
General: Woodward, 1286.
American paleontology and Neo-Lamarckism: Case, 211.
Cambrian faunas, evolution of: Walcott, 1198.
Devonian and Mississippian faunas: Weller, 1219.
First calcareous fossils: Daly, 303.
Laboratory methods in vertebrate paleontology: Hermann, 541.
Ordovician, Silurian, and Devonian faunas: Grabau, 472.
Paleozoic, revised classification of: Grabau, 471.
Peat.
BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1909.

Pelecypoda. See also Mollusca.
Auburn chert fauna, Missouri: Brauson, 139.

Pennsylvania.
General.
Merricks-Chambersburg district: Stose, 1119.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.

Economic.
Anthracite at Wilkesbarre: Cist, 227.
Clinton iron-ore deposits of Stone Valley: Kelly, 434.
Oil and gas accumulation: Clapp, 231; Munn, 888.
Merricks-Chambersburg district: Stose, 1119.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.

Physiographic.
Drainage evolution: Fairchild, 389.
Merricks-Chambersburg district: Stose, 1119.
Preglacial drainage of western Texas: Hice, 555.

Stratigraphic.
Bloomsburg iron ore, stratigraphic position of: Van Ingen, 1181.
Cambrian of Lancaster County: Roddy, 1008.
Conemaugh sections: Raymond, 983.
Lehigh Valley district, early Paleozoic: Wherry, 1229.
Medina and Shawangunk: Grabau, 476.
Merricks-Chambersburg district: Stose, 1119.
Philadelphia district: Bascom et al., 74.
Pre-Cambrian gneisses of Piedmont plateau: Bascom, 73.
Shawnee Mountain, glaciated rock: Corns, 280.
Trenton quadrangle: Bascom et al., 75.

Paleontology.
Cambrian of Lancaster County: Roddy, 1008.
Devonian and Mississippian fossils near Meadville: Millward, 894.
Glacial drift fossils: Millward, 870.
Helodus, n. sp., Eastman, 365.
Marine fossils, new horizons for: Raymond, 984.

Mineralogy.
Carnotite: Wherry, 1227.
Underground water.
Philadelphia district: Bascom et al., 74.

Pennsylvaniaian. See Carboniferous.

Pentremites. See Blastoidae.

Permian. See Carboniferous.

Petroleum—Continued.
Canada: Eils, 372; Young, 1297.
Colorado: Lakes, 696.
Boulder field: Washburne, 1205.
Florence field: Washburne, 1206.
Illinois: Bahn, 48; Wheeler, 1224.
eastern: Blatchley, 122.
Kansas: Haworth et al., 519.
analyses: Day, 330.
Louisiana, northwestern: Harris et al., 514.
Mexico: Day, 336; Villarello, 1189, 1190.
Dos Bocas: Villarello, 1188.
Nevada: MacFarland, 803.
New York: Newland, 894.
Oklahoma, analyses: Day, 330.
Madill pool: Taff and Reed, 1132.
United States (general): U. S. G. S., 1170; Day, 326.
Utah: Rogers, 1011.
Green River fields in Wayne County: Peet, 945.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.

Petroleum (general). See also Igneous and volcanic rocks, and Technique. For regional, see the various States. For rocks described see p. 160.

Chemical composition as a criterion in identifying metamorphosed sediments: Bastin, 82.
Igneous rocks, general: Iddings, 611.
classification: Waltz, 1197.
Magnetic rocks: Harris, 513.
Microstructure of ore from Frisco mine, Idaho: Campbell, 192.
Scapolite, primary, in igneous rocks: Calkins, 193.

Philadelphia folio: Bascom et al., 74.

Philosophy. See also History.
Meteorites with reference to world-making: Merrill, 856.

Phosphate.
Florida: Seilards, 1049; Stone, 1114; Van Horn, 1179.
New Brunswick: Matthew, 833.
South Carolina: Matthew, 833; Van Horn, 1179.
Tennessee: Van Horn, 1179.
United States (general): U. S. G. S., 1170; Van Horn, 1179.
Utah: Van Horn, 1179.
Wyoming: Van Horn, 1179.

Physiographic (general). For regional, see the various States. See also Drainage changes.
Appalachian Mountain system, physiographic subdivisions: Davis, 323.
College unit in physical geography: Marbut, 814.
Colorado Canyon: Davis, 324.
Convexity of hilltops: Gilbert, 451.
Description of land forms: Davis, 322.
Desert, lineaments of: Keyes, 661.
Desert ranges, wind action on: Keyes, 654.
Earth's plan: Taylor, 1141.
Geographical essays: Davis, 318.
Physiographic—Continued.

Geography at the University of Wisconsin: Martin, 822.
Hanging valleys: Johnson, 680.
High-school course in physiography: Fairbanks, 384.
Interdiction, a drainage modification: Goldthwait, 460.
Laboratories for physical geography: Wright, 1289.
Laboratory for physiography: Stearns, 1097.
Laboratory for topographic work: Mead and Martin, 843.
Laboratory manual in physical geography: Hopkins and Clark, 590.
Laboratory methods for geography: Hobbs, 584.
Laramie region: Blackwelder, 117.
North America and Europe: Penck, 940.
Physical geography in the secondary school: Fenneman, 393.
Physiography: Fairbanks, 384.
Relation of geology to topography: Martin, 820.
Striations and U-shaped valleys not produced by glacial action: Hovey, 593.
Volcanic topography: Smith, 1078.

Pisces.

Arthrodira: Hussakof, 909.
Carcharodon: Dean, 332.
Devonian of Ohio: Stauffer, 1090.
Dinichthyid armor plates from Marcellus shale of New York: Smith, 1072.
Dinichthyids from northern Ohio: Branson, 140.
Fish remains in Black Hills Ordovician: Darton, 310.
Gar-pike from Utah: Cockerell, 200.
Giant of ancient sharks: Dean, 332.
Helodus, a new species, from Pennsylvania: Eastman, 365.
Miocene drumfish, Pogonias multidentatus: Smith, 1071.
New Brunswick, Albert shales: Lambe, 724.
Newfoundland, Rae district: Bascom et al., 74.
New Jersey: Kümmel, 682.
Placers. See also Gold.
Fortymile quadrangle: Prindle, 960.
Alluvial deposits, origin, character, and distribution: Lakes, 703.
Alluvial gold: Garrison, 440.
Arizona, Caliizona: Hildburg, 534.
Occurrence of gold in placers: Collins, 275.
Plitkoblende: Fleck, 402; Zalinski, 1300.
Placeros. See also Gold.
Fortymile quadrangle: Prindle, 960.
Alluvial deposits, origin, character, and distribution: Lakes, 703.
Alluvial gold: Garrison, 440.
Arizona, Caliizona: Hildburg, 534.
Occurrence of gold in placers: Collins, 275.
Plants. See Paleobotany.
Platinum.
Pleistocene. See Quaternary and Glacial geology.
Pliocene. See Tertiary.
Polyzoa. See Bryozoa.
Portland cement. See Cement.
Porto Rico.
Iron and copper deposits: Hamilton, 505.

Pre-Cambrian.

General: Van Hise and Leith, 1173.
Grenville-Hastings unconformity: Miller and Knight, 806.
Correlation.
Basis of pre-Cambrian correlation: Adams, 3.
Classification and correlation: Van Hise, 1177.
Stratigraphy.
Canada: Miller, 855.
moraine provinces: Matthew, 832.
Colorado, Hahns Peak region, Routt County: George and Crawford, 446.
north central: Henderson, 536.
Greenland: Nordenskjold, 900.
Idaho, northern: Calkins, 181.
Missouri, southeastern: Buckley, 158.
Montana, northwestern: Calkins, 181.
Nevada, Silver Peak quadrangle: Turner, 1156.
New Jersey: Kümmel, 682.
Trenton quadrangle: Bascom et al., 75.
New York, Rensselaer quadrangle: Miller, 867.
Ontario, Algoma and Thunder Bay districts: Wilson, 1267.
Gogwa and Miller lakes area: Burrows, 169.
Gogwa quadrangle: Collins, 276.
Lake Abitibi area: Baker, 52.
Lake Nipigon-Clay Lake region: Collins, 277.
Lake Superior region: Collins, 278.
Lake Wendigokan region: Moore, 884.
Montreal River district: Collins, 279.
Ontario area: Moore, 883.
South Lorraine area: Burrows, 170.
Pennsylvania, Mercersburg-Chambersburg district: Stone, 1119.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.
Aberdeen-Redfield district: Todd, 1146.
Texas, El Paso quadrangle: Richardson, 998.
Pre-Cambrian glaciation: Knight, 674.
Precious stones. See also Diamonds, Sapphires, and Turquoise.
Geological distribution and mode of occurrence in North America: Lakes, 711.
North Carolina: Pratt, 964.
Primates. See Mammalia.
Protaster: Parks, 941.
Protostegidae: Wieland, 1249.
Pseudomorphism.
Massachusetts, Hampden County: Roe, 1009.
Nontronite after wollastonite: Bergeat, 98.
Pyrite.
New York: Newland, 894.
Ontario, Lake Nipigon-Clay Lake region: Collins, 277.
Quartz.
North Carolina: Pratt, 964.
Quartz as a geologic thermometer: Wright and Larsen, 1292.

Quaternary. See also Glacial geology.

General.
- Paleogeographic map: Willis, 1256.
- Pleistocene physiographic geography: Salisbury, 1292.

Stratigraphy.
- Alaska, Fortymile quadrangle: Prindle, 909.
- McKittrick-Sunset district: Johnson, C31.
- Santa Cruz quadrangle: Branner et al., 138.
- Colorado, Rahn's Peak region, Routt County: George and Crawford, 440.
- Leadville quadrangle: Capps, 190.
- Delaware, Philadelphia district: Bascom et al., 74.
- Florida: Matson and Clapp, 829.
- southern: Sanford, 1025.
- Georgia: Veatch, 1184.
- Iowa, eastern: Carman, 198.
- Kentucky, Blue Grass region: Matson, 827.
- Mexico, Baja California: Wittich, 1270.
- Montana, Great Falls region: Fisher, 396, 397.
- Lewiston field: Galvert, 155.
- Nevada, Silver Peak quadrangle: Turner, 1156.
- New Jersey, Philadelphia district: Bascom et al., 74.
- Trenton quadrangle: Bascom et al., 75.
- Pennsylvania, Philadelphia district: Bascom et al., 74.
- Trenton quadrangle: Bascom et al., 75.
- South Dakota, Aberdeen-Redfield district: Todd, 1146.
- Belle Fourche quadrangle: Darton and O'Hara, 312.
- Texas, El Paso quadrangle: Richardson, 998.
- Utah, Uinta and Wasatch Mountains: Atwood, 40.

Paleontology.
- Aftonian mammalian fauna: Calvin, 188.
- California, cat allied to Felis atrox: Merriam, 850.
- Peacock from Pleistocene asphalts: Miller, 863.
- Teratornis from Rancho La Brea: Miller, 864.
- Distribution of Pleistocene Mammalia: Hay, 324.
- Greenland, Mollusca: Jensen, 627.
- Maryland, Juglandaceae from Pleistocene: Berry, 105.
- Ophiuroids in glacial clay of Maine coast: Sayles, 1028.

Quebec.

General.
- Geological reconnaissance: Dresser, 357.
- Labrador Peninsula: Valiquette, 1176.
- Lake Chibougamau region: Dulleux, 362.
- Lake Opasatica and the Height of Land: Wilson, 1296.
- Laurentian Highlands: Laframme, 689.
- Notre Dame and Shickshock Mountains: Laframme, 688.

Quebec—Continued.

Economic.
- Asbestos deposits: Dresser, 359, 360.
- Chrome iron deposits: Cirkel, 224.
- Iron ore deposits along Ottawa and Gatineau rivers: Cirkel, 223.
- Mining districts: Langford, 737.
- Mining operations for 1908: Obalski, 904.
- Opasatica Lake district: Cirkel, 225.
- Riviere Du Loup gold fields: Hind, 560.

Petroleum.
- Montérégian Hills, rock type from: Dresser, 358.

Quicksilver.
- Canada: Young, 1297.
- Mexico, San Luis Potosi, Dulces Nombres deposit: Babb, 43.
- Texas: Phillips, 934.
- Brewster County: Dinsmore, 343.

Rare earths.
- Colorado: Fleck, 401.
- Rare metals: Dickinson, 338.

Recent.

Palentology.
- Fresh-water fossils from Bronx Borough, New York City: Humphreys, 608.
- Shells, fossil and living, in Little Mud Lake: Nylander, 902.

Relief maps.
- Alaska, Brooks, 148.
- Malaspina glacier region: Martin, 821.

Reptilia.

General: Moodie, 876.

Cetiosaurus from Jurassic, osteology of: Gilmore, 453.

Cotylosauria and Nectosaurus: Moodie, 876.

Crocodile from Judith River beds of Montana: Holland, 586.

Dinosaur from Kansas chalk: Sternberg, 1101.

Dinosaur societies: Lull, 785; Williston, 1261.

Dinosauria, classification and phylogeny: Huene, 607.

Dinosaurs from Jurassic of Greenland: Fraas, 423.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.

Iguanodont dinosaur, epidermis of: Osborn, 914.

Iguanodont dinosaurs from upper Cretaceous: Osborn, 917.
INDEX.

Reptilia—Continued.
Trachodon skeleton: Osborn, 915.
Triceratops, Iguanodon, and Megalosaurus: Osborn, 915.
Turtles, from Harrison beds: Loomis, 779.
Resin in Paleozoic coals: White, 1233.

Rhode Island.
Mineralogy.
Calcite crystals: Schaller, 1029.

Road materials.
New Jersey, Philadelphia district: Bascom et al., 74.
Pennsylvania, Philadelphia district: Bascom et al., 74.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.
Rock glaciers: Capps, 197.

Rock streams: Howe, 603.
Rocks described. See list, p. 160.

Salt.
General.
Salt deposits, origin: Harris, 512.
Louisiana: Harris, 512.
New York: Newland, 894.
Texas: Harris, 512.
West Virginia: Grimsley, 496.
Sand. See also Glass sand and Silica.
New York: Newland, 894.
Oregon, Portland: Darton, 308.
Sand-lime brick.
New York: Newland, 894.
Sandstone. See also Building stone.
New York: Newland, 894.
West Virginia: Grimsley, 496.
Santa Cruz quadrangle: Branner et al., 138.

Santo Domingo.
Mineral resources: Kempton, 648.

Sapphires.
Montana: Rowe, 1017.

Saskatchewan.
General.
Churchill River and South Indian Lake: McInnes, 897.
Economic.
Coal fields: Dowling, 350.
Lignite areas: Dowling, 351.
Scapolite rocks: Spurr, 1091.

Sedimentation. See also Erosion.
Arizona, southern bolson region: Tolman, 1149.
Carboniferous of Licking County, Ohio: Carney, 200.
Chemical composition for identifying metamorphosed sediments: Bastin, 82.
Coal, rate of deposition: Ashley, 37.
Conglomerates, marine and terrestrial: Barrell, 68.
Continental formations of Tertiary: Matthew, 834.
Distomateous dust on Bering Sea ice floes: Kindle, 668.
Land deposits: Tolman, 1148.
Physiographic processes: Fenneman, 392.
St. Vincent Island: Hovey, 597.
Yakutat coastal plain of Alaska, formation of: Blackwelder, 118.

Seismographs.
Kingston: Marvin, 823.

Seismological instruments: Reid, 993.

Selenium. See Earthquakes.

Sodium.

Shore lines. See also Beaches and Terraces.
Lakes Michigan and Huron: Goldthwait, 462.
New York, Champlain coast lines: Hudson, 606.
Ontario, Algonguin and Nipissing shore lines: Goldthwait and Jacobson, 463.

Sink holes.
Florida: Matson and Clapp, 829.

Silurian. For Lower Silurian see Ordovician.
General.
Classification of: Grabau, 471.
Evolution of North America: Grabau, 472.
Nomenclature and subdivision of upper Siluric strata of Michigan, Ohio, and western New York: Lane et al., 733.
Paleogeographic map: Willis, 1256.

Stratigraphy.
Canada, maritime provinces: Matthew, 832.
Georgia: Veatch, 1184.
Illinois, Alexander County: Savage, 1027.
northwestern: Carman, 198.
Indiana, Waldron formation: Kindle and Barnett, 670.
Iowa, eastern: Carman, 198.
Kentucky, Louisville region: Bassler, 80.
Michigan, southern: Sherzer and Grabau, 1058.
New Jersey: Kümmel, 682.
Nova Scotia, Arisaig section: Twenhofel, 1158.
Pennsylvania, Merversburg-Chambersburg district: Stowe, 1119.
Shawangunk: Grabau, 476.
Texas, El Paso quadrangle: Richardson, 968.

Paleontology.
Waldron fauna: Kindle and Barnett, 670.
Kentucky: Foerste, 409, 411.
Netterloth collection: Bassler, 80.

Sedimentation. See also Erosion.
Arizona, southern bolson region: Tolman, 1149.
Carboniferous of Licking County, Ohio: Carney, 200.
Chemical composition for identifying metamorphosed sediments: Bastin, 82.
Coal, rate of deposition: Ashley, 37.
Conglomerates, marine and terrestrial: Barrell, 68.
Continental formations of Tertiary: Matthew, 834.
Distomateous dust on Bering Sea ice floes: Kindle, 668.
Land deposits: Tolman, 1148.
Physiographic processes: Fenneman, 392.
St. Vincent Island: Hovey, 597.
Yakutat coastal plain of Alaska, formation of: Blackwelder, 118.

Seismograms: Carter, 208.

Seismographs.
Kingston: Marvin, 823.

Seismological instruments: Reid, 993.

Selenium. See Earthquakes.

Sodium.

Shore lines. See also Beaches and Terraces.
Lakes Michigan and Huron: Goldthwait, 462.
New York, Champlain coast lines: Hudson, 606.
Ontario, Algonguin and Nipissing shore lines: Goldthwait and Jacobson, 463.

Sink holes.
Florida: Matson and Clapp, 829.

Silurian. For Lower Silurian see Ordovician.
General.
Classification of: Grabau, 471.
Evolution of North America: Grabau, 472.
Nomenclature and subdivision of upper Siluric strata of Michigan, Ohio, and western New York: Lane et al., 733.
Paleogeographic map: Willis, 1256.

Stratigraphy.
Canada, maritime provinces: Matthew, 832.
Georgia: Veatch, 1184.
Illinois, Alexander County: Savage, 1027.
northwestern: Carman, 198.
Indiana, Waldron formation: Kindle and Barnett, 670.
Iowa, eastern: Carman, 198.
Kentucky, Louisville region: Bassler, 80.
Michigan, southern: Sherzer and Grabau, 1058.
New Jersey: Kümmel, 682.
Nova Scotia, Arisaig section: Twenhofel, 1158.
Pennsylvania, Merversburg-Chambersburg district: Stowe, 1119.
Shawangunk: Grabau, 476.
Texas, El Paso quadrangle: Richardson, 968.

Paleontology.
Waldron fauna: Kindle and Barnett, 670.
Kentucky: Foerste, 409, 411.
Netterloth collection: Bassler, 80.
Nova Scotia, Arisaig section: Twenhofel, 1158.
Silurian—Continued.
Paleontology—Continued.
Ohio: Foerste, 409.
Ontario, Albany River region: Whittlesey, 1240.
Tennessee: Foerste, 411.

Silver.
Arizona, Mohave County: Schrader, 1034.
Tombstone district: Shaw, 1055.
British Columbia, Bear River district: Rush, 1023.
Slocan district: LeRoy, 943.
Idaho, Coeur d'Alene district: Rowe, 1016; Ward, 1246.
Northern: MacDonald, 799.
Massachusetts, Newburyport: Clapp and Ball, 229.
Mexico: Balarezo, 55; Bordeaux, 125.
Chihuahua, Rio Plata mine: Baron, 66.
Santa Eulalia mines: Merrill, 852.
San Ygnacio mine: Peragallo, 950.
El Chico district, Hidalgo: Thomas, 1145.
Guanajuato district: Botsford, 129.
Guerrero, Pregones district: Laguerenne, 691.
Montezuma district, El Tigre mine: Herrick, 543.
Sinaloa, northern: Tays, 1142.
State of Mexico, Zacualpan district: Platt, 957.
Zacatecas, Concepcion del Oro district: Chase, 221.
Zacualpan district: Carpenter, 206.
Montana, northwestern: MacDonald, 799.
Nevada, Hornsilver district: Ransome, 977.
Humboldt County: Ransome, 980, 981.
Lida district: Root, 1015.
Tonopah district: Jenney, 624; Johnson, 628.
White Pine district: Larsh, 738.
Wonder district: Ritter, 1085.
New Mexico, Black Range mining district: Wright, 1284.
Lake Valley: MacDonald, 797.
Nicaragua, Matagalpa district: West, 1223.
North Carolina: Pratt, 964.
Ontario: Hore, 591.
Cobalt district: Higgins, 557; Ontario B. M., 909.
Gowganda and Miller lakes area: Burrows, 169.
Gowganda district: Collins, 276; West, 1222.
Maple Mountain district: Ramsay, 975.
Montreal River district: Barlow, 64; Collins, 279.
Silver Islet vein, Lake Superior: McDermott, 795, 796.
South Lorraine area: Burrows, 170; Phillips, 913.
Texas, Presidio mines at Shafter: Kirk, 671.
United States (general): U. S. G. S., 1170; Lindgren, 772.
Utah, Box Elder County: Higgins, 559.

Slate.
General.
Origin of: Purdue, 972.
Arkansas: Purdue, 972.
New York: Newland, 894.
West Virginia: Grimesly, 496.

Stickstones: Lawson, 739.

Soapstone.
North Carolina: Pratt, 964.

Soils.
General: Whitney et al., 1244.
Soil surveys as related to geology: Kümml, 687.
Soil wastage: Chamberlin, 215.
Indiana, Daviess County: Snider, 1087.
Dubois, Perry, and Crawford counties: Shannon, 1032.
North Dakota, Jamestown-Tower district: Willard, 1253.
South Dakota, Bellefourche quadrangle: Darton and O'Harr, 312.
West Virginia, Middlebourn area: Caine et al., 178.

Solidification of alloys and magmas: Aston, 39.

South Carolina.
Economic.
Mineral resources: Sloane, 1068.
Monazite: Pratt and Sterrett, 968.
Phosphate deposits: Matthew, 833; Van Horn, 1179.
Tin deposits: Ball, 59.

Dynamic and structural.
Charleston earthquake: Hovey, 594.

Petrology.
Grantes: Watson, 1211.

South Dakota.
General.
Aberdeen-Redfield district: Todd, 1146.
Bad Lands: Frass, 424.
Belle Fourche quadrangle: Darton and O'Harr, 312.
Economic.
Belle Fourche quadrangle: Darton and O'Harr, 312.

Black Hills mother lode: Simmons, 1064.
Iron deposits of the Black Hills: Cooledge and Overspeck, 284.
Mica: Sterrett, 1103.
Tin in the Black Hills: Simmons, 1064.
Tin, tungsten, and tantalum deposits: Hess, 549.

Physiographic.
Stream robbery in Belle Fourche district: Darton, 311.

Stratigraphic.
Aberdeen-Redfield district: Todd, 1146.
Belle Fourche quadrangle: Darton and O'Harr, 312.

Paleontology.
Ancodon: Matthew, 835.
INDEX.

South Dakota—Continued.
Underground water.

Aberdeen-Redfield district: Todd, 1146.
Artesian water, prediction of: Darton, 309.

Aberdeen-Redfield district: Todd, 1146.

Stratigraphic—Continued.

Tables of geologic formations—Continued.

Kan:sas, Carboniferous: Beebe, 91, Haworth et al., 519.
Grease County: Haworth and Bennett, 518.
Ozark region: Haworth and Bennett, 518.
Kentucky, Blue Grass region: Matson, 827.
Louisiana, Austin quadrangle: Harris et al., 514.
Caddo field: Harris et al., 514.
salt region: Harris, 512.
Mexico, Coahuila, coal-bearing strata: Aguilera, 10.
Nevada, Tonopah district: Burgess, 107.
New Jersey: Kimmell, 682.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.
New Mexico, Galilina-Raton Spring coal field: Gardner, 456.
Raton field: Lee, 744.
Rio Grande region: Lee, 745.
New York, Geneva-Ovid quadrangles: Luther, 786.
Watkins Olen-Catatank district: Williams et al., 1255.
Oklahoma, Carboniferous: Beebe, 91.
Ohio, Devonian: Stauffer, 109C.
Ontario, Onaman iron range: Moore, 883.
Pleistocene: Coleman, 269.
Ohio, Devonian: Stauffer, 1096.
Ontario, Cincinnati area: Foerste, 413.
Or dovician, Silurian, and Devonian: Grabau, 472.

Pennsylvania, lower: Grabau, 472.
Tertiary forming: Osborn, 913.
Tertiary of California, Oregon, and Washington: Arnold, 32.
Texas, Hemphill County: Eyerly, 383.
Utah, southern, coal region: Richardson, 999.
Virginia, western, Cambrian and Ordovician: Bassler, 78.
Tertiary of California, Oregon, and Washington: Arnold, 32.

Subterranean water. See Underground water.

Sudbury: Ontario B. M., 909.

Stream work: Shattuck, 1053.
Strepsicerine antelopes: Merriam, 851.

Subsidence. See Changes of level.

Subterranean water. See Underground water.

Sudbury: Ontario B. M., 909.
Sulphate of soda.
California, San Luis Obispo County: Arnold and Johnson, 34.

Sulphur.
Alaska, Makushin deposits, Unalaska: Lawton, 741.
Canada: Young, 1297.
Wyoming, Thermopolis: Woodruff, 1285.

Surveys.
General.
State geological survey reports on limited areas: Carney, 199.
Alaska: Brooks, 147.
Florida, state geologist's report: Sellards, 1048.
Illinois, administrative report, 1908: Bain, 49.
Illinois Geological Survey, work of: Bain, 47.
Iowa, state geologist's seventeenth report: Cal-vin, 189.
Kansas survey, field work of: Haworth and Ben-nett, 517.
Mexico, Chihuahua, northeastern: Rogers, 1012.
Instituto Geologico de Mexico: Aguilera, 11.
Maryland Geological Survey reports: Clark, 234-236.
Michigan, state geologist's report, tenth: Lane, 727.
North Carolina, state geologist's biennial report: Pratt, 963; 965.
metalliferous ore investigations: Lindgren, 770.
nonmetallic mineral investigations: Hayes, 528.
Wisconsin, report of director, 1906-08: Birge, 115.
sixth biennial report: Wis. G. N. H. S., 1275.

Swamps.
North Carolina: Davis, 314.
Tables of geologic formations. See Stratigraphic.

Talc.
New York: Newland, 894.
North Carolina: Pratt, 904.
Quebec: Dresser, 361.

Tantalum.
South Dakota: Hess, 549.

Technique.
Apparatus for structural geology: Hobbs, 583.
Demonstrating ore formations, new method of: Nicholas, 895.
Handbook for field geologists: Hayes, 525; (re-view) Lawson, 740.
Instrumental surveying needed in practical geology: Lyman, 787.
Laboratory methods in vertebrate paleontology: Hermann, 541.
Preparation of geological papers: Wood, 1281.

Tellurium.
Teritorides: Lenher, 756.

Tennessee.
Economic.
Chattanoogas district, iron: Higgins, 556.
Clinton iron ore in Chattanoogas region: Burchard, 164.
Phosphate deposits: Van Horn, 1179.
Zinc district, east Tennessee: Osgood, 919.
Paleontology.
Silurian fossils: Foeste, 411.
Troost's crinoids of Tennessee: Wood, 1280.
Teratornis: Miller, 864.

Terlingua, Texas, mercury minerals: Hilebrand and Schaller, 555.

Terraces. See also Shore lines.
Illinois, Danville region: Wegemann, 1214.
western: Carman, 198.
Iowa, eastern: Carman, 198.
West Virginia, Marshall, Wetzel, and Tyler counties: Hennen, 537.

Tertiary.
General: Dall, 299.
Erosion Intervals: Miller, 800.
Land connection between North and South America: Scharff, 1098, 1091.
Paleogeographic map: Willis, 1255.
Correlation.
Fort Union formation, correlated beds: Knowlton, 678.
Hell Creek and Ceratops beds: Knolwton, 678.
Tertiary correlation: Dall, 299.
Stratigraphy.
Alaska, Fortymile quadrangle: Prindle, 909.
Kotsina-Chitina region: Moffit and Maddren, 875.
Yakutat Bay region: Tarr and Butler, 1138.
California: Arnold, 32.
Coalinga district: Arnold, 31.
McKitttrick-Sunset district: Johnson, 631.
San Pablo formation: Weaver, 1212.
Santa Cruz quadrangle: Branner et al., 138.
southern: Keyes, 660.
Canada: Dowling, 350.
Caribbean region: Guppy, 502.
Colorado, Book Cliffs region: Richardson, 1000.
Grand Mesa coal field: Lee, 743.
Hahns Peak region, Routt County: George and Crawford, 446.
western: Gale, 433.
southern: Gardner, 437.
Florida: Matson, 828; Matson and Clapp, 829.
southern: Sanford, 1025.
Georgia: Veatch, 1184.
Greenland: Nordenskjold, 900.
Kentucky, Blue Grass region: Matson, 827.
Louisiana: Harris, 512.
northwestern: Harris et al., 514.
Mexico, Baja California: Wittich, 1276.
Coahuila: Aguilera, 10.
Ixmiquilpan Valley, Hidalgo: Paredes, 940.
Miocene of Astoria and Coos Bay, Oregon: Dall, 300.
Montana, Bull Mountain coal field: Woolsey, 1288.
INDEX.

Tertiary—Continued.
Stratigraphy—Continued.
Montana—Continued.
Crazy Mountains: Stone, 1115.
Custer National Forest: Wegemann, 1215.
Great Falls region: Fisher, 396.
Miles City coal field: Collier and Smith, 274.
Milk River coal field: Peperberg, 949.
Red Lodge coal field: Woodruff, 1283.
Sentinel Butte lignite field: Leonard and Smith, 761.
Sweetgrass County: Douglass, 348.

Nebraska, Pliocene: Matthew and Cook, 840.
western: Peterson, 951.
Nevada, Goldfield district: Ransome, 976.
Silver Peak quadrangle: Turner, 1150.
Yerington district: Ransome, 979.
New Jersey: Kümmel, 682.
Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.

New Mexico, Gallina-Raton Spring coal field:
Gardner, 436.
northern: Gardner, 437.

North Carolina: Miller, 860.

North Dakota, Sentinel Butte lignite field:
Leonard and Smith, 761.

Oregon: Arnold, 32.

Miocene of Astoria and Coos Bay: Dall, 300.

Pliocene of western Nebraska: Matthew and Cook, 840.

Texas: Dumble, 363; Harris, 512.

Utah, Book Cliffs region: Richmond, 1000.
northeastern: Gale, 433.

Virginia: Miller, 860.
Washington: Arnold, 32.

Olympic Peninsula: Reagan, 989.

Western North America: Osborn, 913.

Wyoming, Bighorn Basin: Washburne, 1204;
Woodruff, 1284.

Bridger Basin: Matthew, 834.

Glenrock coal field: Shaw, 1054.

Great Divide Basin coal field: Smith, 1077.

Laramie Basin: Darton and Siebenthal, 313.
Little Snake River coal field: Ball, 57.
Sweetwater County: Schuitz, 1039.

Washakie faunal horizons: Granger, 482.

Washakie formation: Sinclair, 1065.

Paleontology.
Alabama, Claiborne shells: Wheeler, 1225.
Anconodon: Matthew, 835.
California, Santa Clara lake beds: Carinifex: Hannibal, 507.
Coalina district: Arnold, 31.
Camel from lower Miocene of Nebraska: Cook, 281.
Caribbean region: Guppy, 502.
Caribbora and Insectivora of Bridger Basin
Eocene: Matthew, 834.
Coleoptera from Florissant: Weckham, 1247.
Colorado, Florissant plants: Cockerell, 264.

Miocene insects: Cockerell, 244, 245.

Fagopodis from Florissant: Hollick, 587.

Diptera from Florissant: Cockerell, 250.

Texas.

General.
El Paso quadrangle: Richardson, 998.

Hemphill County: Eyerly, 383.

Economic.
Celestite deposits: Hess, 561.

El Paso quadrangle: Richardson, 998.

Iron in east Texas: Linton, 775.

Iron ores of Llano County: Phillips, 955.
Presidio silver mines, Shafter: Kirk, 671.

Quicksilver: Phillips, 954.

Quicksilver deposits of Brewster County: Dinsmore, 343.

Rock salt: Harris, 512.

Tin mine: Dinsmore, 344.

Dynamic and structural.
Clay dunes: Coffey, 265.

Rockwall: Paige, 928.

Physiographic.
Clay dunes: Coffey, 265.
Texas—Continued.

Stratigraphic.
Chalk formations of northeast Texas: Gordon, 465; Hill, 563.
El Paso quadrangle: Richardson, 998.
Guadalupian stratigraphy: Girty, 456.
Tertiary: Dumble, 363.
Wichita-Brazos red beds: Gordon, 466.

Paleontology.
Permian reptiles: Matthew, 837.
Trematops from the Permian: Williston, 1260.

Mineralogy.
Calcite crystals: Schaller, 1029.
Calomel: Goldschmidt and Mauritz, 459.
Mercury minerals from Terlingua: Hillebrand and Schaller, 565.

Underground water.
El Paso quadrangle: Richardson, 998.

Text-books.
Crystallography: Wadsworth, 1195.
Igneous rocks: Iddings, 610.
Laboratory manual in physical geography: Hopkins and Clark, 590.
Optical mineralogy, elements of: Winchell and Winchell, 1273.

Trenches.
Mexico, Queretaro, Montenegro: Villarello, 1185.
Yellowstone National Park, radioactivity of thermal waters of: Schlundt and Moore, 1033.

Tides: Chamberlin, 214.

Tin.
General: Lakes, 721.
Alaska, Seward Peninsula: Knopf, 676.
North Carolina: Bell, 59.
South Carolina: Bell, 59; Hess, 549.
South Dakota, Black Hills: Simmons, 1063.
Texas: Dismore, 344.
El Paso quadrangle: Richardson, 998.

Titanium.
General: Baskerville, 76.

Tourmalin.
Maine: Wade, 1194.
Trachodon: Osborn, 915, 917.

Trap.
New York: Newland, 894.
Trap sheets of the Lake Nipigon basin: Wilson, 1262.
Trematops; Williston, 1260.
Trenton quadrangle, New Jersey-Pennsylvania: Bascom et al., 75.

Triassic.
General.
Paleogeographic map: Willis, 1250.
Stratigraphy.
Alaska, Cape Thompson: Kinde, 669.
Kotina-Chitina region: Moffit and Maddren, 875.

Triassic—Continued.
Stratigraphy—Continued.
Canada: Dowling, 380.
maritime provinces: Matthew, 882.
Colorado, Hahns Peak region, Routt County: George and Crawford, 446.
north central: Henderson, 536.
Greenland: Nordenskjöld, 900.
New Jersey: Küimmel, 682.
Trenton quadrangle: Bascom et al., 75.
Pennsylvania, Philadelphia district: Bascom et al., 74.
Trenton quadrangle: Bascom et al., 75.
Belle Fourche quadrangle: Darton and O’Harra, 312.
Black Hills region: Darton, 300.
Wyoming, Black Hills region: Darton, 300.
Laramie Basin: Darton and Siebenthal, 313.

Triceratops: Hay, 520.
Trilobites. See also Crustacea.
Auburn chert fauna, Missouri: Branson, 139.
Cincinnatian: Foerste, 412.
Silurian fossils from Indiana, Ohio, and Kentucky: Foerste, 409.

Tripoli.
Missouri, Seneca: Nelson, 891.
Tumamoc Hills, Arizona: Tolman, 1148.

Tungsten.
General: Baskerville, 76; Dickinson, 338; Surr, 1122.
Arizona, Dragoon: Richards, 996.
Canada: Walker, 1199, 1200; Young, 1297.
Colorado: Ekeley, 370; Hills, 568; Walker, 1199.
Boulder County: George, 443, 445.
Idaho, Coeur d’Alene district: Rowe, 1016.
Nova Scotia, Kings and Lunenburg counties: Fairbault, 360.
South Dakota: Hess, 549.
United States (general): U. S. G. S., 1170; George, 445.

Turquoise.
Arizona: Platt, 936.
New Mexico: Jones, 637.

Turtles. See Reptilia.
Unalaska, Makushin sulphur deposits: Lawton, 741.

Unconformities.
Erosion intervals in Tertiary of North Carolina and Virginia: Miller, 890.
Grenville-Hastings: Miller and Knight, 896.
Missouri, southeastern: Buckley, 158.
New Mexico, Raton field: Lee, 744, 748.
Valuation of: Blackwelde, 116.

Underground water (general). See also Geysers, Mineral waters, and Thermal waters.
For regional see the various States.
General: Mendenhall, 844, 847.
Artesian waters of the Atlantic Coastal Plain: Fuller, 432.
Classification of mineral waters: Bartow, 71.
Crystalline rocks, water in: Clapp, 223.
INDEX.

Underground water—Continued.
Effect of earthquakes on deep underground water circulation: Yeandle, 1296.
Geologic basis for artesian prediction: Darton, 309.
Ground water problems in the West: Mendenhall, 544.
Mine waters, field assay: Lane, 728.

Ungulata. See Mammalia.
Upper Silurian. See Silurian.

Uranium.
General: Baskerville, 76; Dickinson, 338.
Colorado: Fleck, 399, 400.

Utah.
Economic.
Bingham Canyon: MacFarren, 805.
Bingham copper district: MacFarlane, 804.
Bingham district, Boston Consolidated: DeKalb, 335.
Book Cliffs coal field: Richardson, 1000.
Century and Susannah mines, Golden: Higgins, 560.
Green River oil fields in Wayne County: Peet, 945.
Harmony, Colob, and Kanab coal fields: Richardson, 699.
Iron Springs district: Review: Kemp, 647.
Mineral deposits: Bradford, 134.
Napoleon-Maghera mines in Sierra Madre Mountains, Box Elder County: Higgins, 559.
Northeastern coal fields: Gale, 433.
Oil field: Rogers, 1011.
Ozokerite: MacFarren, 306.
Phosphate deposits: Van Horn, 1170.
San Juan River gold: Lakes, 683.
Sevier Consolidated mine of Gold Mountain-Piute County: Higgins, 558.
Utah copper mine: DeKalb, 334.

Physiographic.
 Uinta and Wasatch Mountains: Atwood, 40.

Stratigraphic.
 Book Cliffs coal field: Richardson, 1000.
 Uinta and Wasatch Mountains: Atwood, 40.

Paleontology.
Gar-pike: Cockerell, 260.
Mineralogy.
Amatrite: Zalinski, 1299.
Leadvillite: Palache and La Forge, 630.
Pyrite crystals from Bingham: Rogers, 1010.

Valleys.
General.
Formation of: Carney, 201; Fenneman, 392; Hovey, 693.
Hanging valleys: Johnson, 630.
U-shaped valleys: Hovey, 593.
Alaska, Yakutat Bay region: Tarr, 1136.
Illinois, Danville region: Wegemann, 1214.
northwestern: Carman, 198.
Iowa, eastern: Carman, 198.
Montana, Crazy Mountains: Mansfield, 813.
New York, Moravia quadrangle: Carney, 203.
Watkins-Glen-Catatonic district: Williams et al., 1255.

Vanadium.
General: Baskerville, 76.
Colorado: Fleck, 399, 400.

Vermont.
Economic.
Copper, Orange County: Fay, 391; Judson, 640.
Granites: Dale, 297.

Vertebrata (general). See also Amphibia, Aves, Mammalia, Pisces, and Reptilia.
General: Moodie, 570; Woodward, 1280.
Aftonian mammalian fauna: Calvin, 188.
Correlation through vertebrate paleontology: Osborn and Matthew, 918.
Faunal relations of early vertebrates: Williston, 1289.
Laboratory methods in vertebrate paleontology: Hermann, 541.
Pliocene fauna from western Nebraska: Mathew and Cook, 840.
Skeletons of fossil vertebrates, restoration of: Hay, 525.

Virginia.
Economic.
Cement resources: Hassler, 78.
Copper deposits of Greene County: Haney, 506.
Iron ores of Appalachian region: Harder, 510.
Lead and zinc ores: Caldwell, 180.
Manganese deposits: Ball, 58.
Mineral production in 1908: Watson, 1209.
Mineral resources: Schubert, 1035.
Pocket coal district in Little Black Mountain field: Fisher, 398.
Rutile deposits: 1205.

Stratigraphic.
Piedmont limestones: Mathews and Grasty, 825.
Tertiary erosion intervals: Miller, 860.
Western Virginia: Bassler, 78.

Paleontology.
Cretaceous floras: Berry, 109.
Miocene flora: Berry, 104.
Pleistocene swamp deposits: Berry, 108.

Mineralogy.
Calcite from Virgilina: Pogue, 958.

Volcanic rocks. See Igneous and volcanic rocks.

Volcanic topography: Smith, 1078.

Volcanoes.
General: Carter, 208; Hovey, 594.
Magmaic waters and volcanic action: Hixon, 574.
Seismic geology, evolution and outlook: Hobbs, 582.
Guatemala: Anderson, 27.
Hawaii: Hitchcock, 572.
Kilauea: Hitchcock, 573.
Kilauea and Mauna Loa: Brigham, 141.
Mexico: Freundegen, 430; Inkey, 615.
Mont Pelé in 1908: Hovey, 601.
Volcanic bombs from Nova Scotia: Poole, 961.

Washington.
General.
Geology and vein systems: Ingalls, 614.
Washington—Continued.

Economic.
- Coal resources: Tarr, 1134.
- Geology and vein systems: Ingalls, 614.
- Mineral resources: Northwest M. J., 901.
- Selenium-bearing ores of Republic district: Lindgren, 774.

Structural materials: Darton, 308.

Physiographic.
- Mount Rainier National Park: Roberts, 1006.

Stratigraphic.
- Olympic Peninsula: Reagan, 989.

Paleontology.
- Olympic Peninsula: Reagan, 989.

Petrology.

Weathering.
- Spheroidal weathering of dikes: Kemp, 645; Villars, 1193.
- Soil wastage: Chamberlin, 215.
- Weathering and erosion as time measures: Leverett, 763.

Well records. See **Borings**.

West Indies (general). See also the various islands.

West Virginia.

General.
- Marshall, Wetzel, and Tyler counties: Hennen, 537.

Economic.
- Coal: Stock, 1110; White, 1231.
- central West Virginia: Stock, 1113.
- upper Potomac fields: Stock, 1112.
- Iron ores, salt, and sandstones: Grimsley, 496.
- Marshall, Wetzel, and Tyler counties: Hennen, 537.
- Middlebourne area, soil survey: Caine et al., 178.

Physiographic.
- Marshall, Wetzel, and Tyler counties: Hennen, 537.

Stratigraphic.
- Marshall, Wetzel, and Tyler counties: Hennen, 537.

Wind work.

General: Carman, 198.

Arizona, southern bolson region: Tolman, 1149.

Basal level of eolian erosion: Keys, 655.

Clay dunes: Coffey, 265.

Deflation in desert ranges: Keys, 662.

Denuudation, error in estimating: Free, 427.

Eolian erosion upon varying rock-belts: Keys, 654.

New Mexico: Keys, 651.

Sand drift phenomena: Free, 428.

Wisconsin.

General.

Economic.
- Copper, southwestern area: Cox, 289.
- Iron fields of Lake Superior district: Brinsmade, 143.
- Lead and zinc fields: Brinsmade, 142.
- Spring Valley brown iron ores: Allen, 16.

Stratigraphic.
- Deposits on bluffs adjacent to the Mississippi: Squire, 1063.
- Devonian, middle: Cieland, 242.
- Discrimination of glacial drift sheets: Alden, 12.
- Glacial phenomena of southeastern Wisconsin: Alden, 13, 14.

Wolframite. See also **Tungsten**.

Wyoming.

Economic.
- Asbestos deposits: Lakes, 710.
- Bighorn Basin coal field: Washburne, 1204; Woodruff, 1284.
- Glenrock coal field: Shaw, 1054.
- Great Divide Basin coal field: Smith, 1077.
- Laramie Basin: Darton and Siebenthal, 313.
- Little Snake River coal field: Bull, 57.
- Natural gas: Lakes, 706.
- Phosphate deposits: Van Horn, 1179.
- Rock Springs coal field, Sweetwater County: Schuita, 1099.
- Sheridan coal field: Taff, 1129.
- Sulphur deposits, Thermopolis: Woodruff, 1285.

Stratigraphic.
- Ceratops beds: Stanton, 1089.
- Hell Creek and Ceratops beds: Knowlton, 678.
- Laramie Basin: Darton and Siebenthal, 313.
- Laramie beds of Converse County: Sternberg, 1100.
- Laramie region: Blackwelder, 117.
- Loup Fork beds: Riggs, 1004.
- Washakie formation, faunal horizons: Granger, 482.
- Washakie, volcanic ash formation: Sinclair, 1065.

Paleontology.
- Carnivora and Insectivora of Bridger Basin Eocene: Matthew, 834.
- Eocene fossils from Green River: Cockrell, 259.
- Iguanodonid dinosaur, epidermis of: Osborn, 914.
- Jurassic crinoid, new: Springer, 1090.
- Loup Fork fauna: Riggs, 1004.
- Oligocene vertebrates: Matthew, 839.
- Rhynochocephalian reptile from Jurassic: Gilmore, 454.
- Trachodon from Laramie beds of Converse County: Sternberg, 1099.

Underground water.
- Laramie Basin: Darton and Siebenthal, 313.
Wyoming—Continued.
 Underground water—Continued.
 Yellowstone National Park, thermal waters, radioactivity of: Schlundt and Moore, 1033.

Yukon.
 General.
 Pelly River basin: Keele, 641.
 Whitehorse copper belt: McConnell, 791.
 Whitehorse-Tantalus region: Cairnes, 179.
 Economic.
 Whitehorse copper deposits: Stutzer, 1121.
 Whitehorse-Tantalus region: Cairnes, 179.

Zinc.
 Arizona, Mohave County: Schrader, 1034.
 Canada: Young, 1297.
 Colorado, Aspen: Spurr, 1092.
 Montezuma district, Summit County: Patton, 943.

Zinc—Continued.
 Mexico, Chihuahua, Las Plomosas: Burrows, 171.
 San Ygnacio mine: Peragallo, 950.
 Missouri: Buckley, 658; Keyes, 659.
 Joplin zinc belt, migrations of: Keyes, 659.
 Ozark region: Buckley, 159; Keyes, 653.
 Ozark deposits, genesis of: Keyes, 657.
 Nevada, southern: White, 1235.
 New Jersey, Sussex County: Spencer, 1089.
 New Mexico, Tres Hermanas district: Lindgren, 771.
 Tennessee, east: Osgood, 919.
 Virginia: Caldwell, 189.
 United States (general): U. S. G. S., 1170; Lindgren, 772.
 Wisconsin: Brinsmade, 142.

Zircon.
 General: Baskerville, 76.
LISTS.

CHEMICAL ANALYSES.

[The numbers refer to entries in the bibliography.]

Alamosite, 931.
Alaskite, 1156.
Amphibole, 781.
Amphibolite, 2, 638.
Andesite, 167, 960, 976.
Antimony ore, 980.
Argillite, 766.
Arizonaite, 934.
Augen-schist, 1150.
Basalt, 75, 976.
Belcherose, 358.
Benitoite, 581.
Bentonite, 306, 313.
Bismite, 976.
Bowlder, altered, 729.
Calkic, 120.
Cancrinite, 4.
Cement materials, 948.
Chalk, 465.
Chloropap, 1156.
Clay ironstone, 1066.
Clinton ore, 1066.
Coal, 41, 57, 184, 185, 274, 313, 339, 350, 396, 398, 433,
437, 538, 540, 758, 761, 784, 949, 997, 1000, 1039, 1056,
1077, 1110, 1129, 1204, 1239, 1283, 1284, 1288.
Cobalt, 980.
Connellite, 932.
Dacite, 290, 976.
Dawsonite, 468.
Diabase, 75, 82, 638, 764, 960.
Diabase porphyrite, 729.
Diorite, 9.
Dolomite, 78, 158, 1156.
Dumortierite, 883.
Eglenstone, 565.
Epidote, 9, 175.
Episomite, 313.
Essexite, 2.
Feldspar, 4, 778.
Ferberite, 443, 445, 470.
Fluorspar, 178.
Fueller's earth, 1050.
Gabbro, 2, 74, 75.
Ganister, 177.
Gneiss, 74, 75, 82, 638, 1211.
Goldfieldite, 976.
Granite, 9, 74, 638, 760, 1156, 1201, 1211.
Granite augen schist, 1156.
Granodiorite, 980.
Graphite, 1170.
Gypsum, 313, 467.
Hampdenite, 1009.
Hampsinrite, 1069.
Hematite, 9, 1060.
Hornblende, 4.
Hornblende schist, 82.
Hornblende-biotite andesite, 976.
Hornstone, 1158.
Hubnerite, 370.
Igneous rocks, average, 856.
Jodrite, 681.
Iron ore, 16, 164, 224, 224, 510, 679, 892, 926, 1217,
1282.
Iron ore, Clinton, 892.
Kaolite, 212.
Kleinite, 565.
Lava, 141.
Lignite, 761, 1074.
Limestone, 74, 75, 78, 313, 308, 340, 760, 819, 948,
998, 1119.
Limonite, 1066.
Magnetite, 9, 86, 1066.
Marble, 308.
Metagabbro, 74.
Meteorites, 856.
Mica schist, 685.
Mine water, 729.
Minette, 1034.
Montreydite, 565.
Natural gas, 89, 1170.
Nepheline, 4.
Nepheline syenite, 75.
Neptunite, 135.
Nickel ore, 980.
Paint ore, 1170.
Pulissados, 358.
Pest, 112, 314.
Petroleum, 330, 1170.
Pitchblende, 399.
Portland cement, 308.
Porphyrite, 729.
Porphyry, 175, 638, 900.
Pyroxene, 1156.
Pyroxene-hornblende andesite, 976.
Quartz schist, 638.
Quartzite, 74, 75.
Retinite, 976.
Rhyolite, 167, 900, 1034.
LISTS.

Rhyolite tuff, 1148.
River water, 303.
Scapolite, 9.
Schist, 74, 638.
Serpentine, 1009.
Slate, 1184.
Sodalite, 4.
Sodium sulphate, 34, 313.
Syenite, 5, 75.
Syenite porphyry, 998.
Terlinguite, 565.

MINERALS DESCRIBED.

Ægynine, 781.
Alamosite, 933.
Albite, 407, 781, 933.
Alunite, 976.
Amatricite, 1299.
Amphibole, 781.
Analcime, 124.
Apophyllite, 124.
Aragonite, 124.
Arizonite, 934.
Autunite, 76, 1227.
Azurite, 875.
Bacodereyite, 76.
Barite, 565, 976.
Benitoite, 578-580, 781, 920.
Biotite, 5.
Bismite, 976.
Bismuthinite, 976.
Boracite, 1196.
Borite, 875.
Brookite, 76.
Calamine, 419.
Calaverite, 756.
Calcite, 4, 124, 417, 565, 778, 958, 976, 1029.
Calomel, 459, 565.
Cancriite, 4.
Carnotite, 76, 1227.
Cerargyrite, 976.
Chabazite, 124.
Chalcandrite, 875.
Chalcedony, 124.
Chalcocite, 875.
Chalcopyrite, 875, 933.
Chlorite, 933.
Cleaveite, 76.
Clineonstatite, 1291, 1301.
Cobaltite, 933.
Columbite, 1196.
Coneellite, 933.
Corundum, 4, 933.
Cuprite, 565.
Datolite, 418.
Dawsonite, 478.
Descolealite, 76.
Diapore, 933, 976.
Diopside, 20, 325.
Dumortierite, 883.
Durdenite, 976.
Eglestonite, 565.
Emmonsite, 976.
Enargite, 976.
Enstatite, 1291, 1301.
Epidote, 933, 976.
Eucolite, 4.
Eudialyte, 76.
Famatinite, 976.
Feldspar, 4, 378, 976.
Ferberite, 370, 443, 445.
Garnet, 4.
Glaucophane, 778.
Goldfeldite, 976.
Graphite, 4.
Gummite, 76.
Gypsum, 565, 778, 976.
Halotrichite, 976.
Hampdenite, 1009.
Hampshirel, 1009.
Hematite, 778, 976.
Heulandite, 124.
Hornblende, 4, 778.
Hübnerite, 76, 445, 445, 1199.
Hulenite, 76, 778, 933.
Jodyrufe, 681.
Jarosite, 665, 976.
Kermitine, 778, 976.
Kleinite, 565.
Krenmerite, 756.
Laumontite, 124.
Leadhillite, 630.
Levynite, 124.
Limonite, 976.
Magnetite, 4, 933, 1009.
Malachite, 975.
Marcasite, 778, 976.
Mellanterite, 976.
Mercury, 565.
Mesolite, 124.
Mica, 778.
Monastite, 966.
Montroydite, 565.
Muscovite, 4, 976.
Natrolite, 124, 581, 781.
Nepheline, 4.
Neptunite, 135, 414, 581, 781.
Nesquehlonite, 478.
Nivenite, 76.
Nontronite, 98.
Pandermite, 1196.
Perofskite, 76.
Pyrte, 778, 933, 976, 1010.
Pyromorphite, 131.
Quartz, 124, 778, 976.
Roscoelite, 76.
Rutile, 76, 778, 933.
Scapolite, 4.
Scheelite, 76, 443, 445, 1199.
Scolecite, 124.
Siderite, 778.
Sodalite, 4.
Stilbite, 124.
Sulphur, 976.
Sylvanite, 756.
Tellurium, 756.
Tenorite, 875.
Terlinguaite, 565.
Thomsonite, 124.
Thorogummite, 76.
Tinca!, 1196.

ROCKS DESCRIBED.

Alaskite, 976, 1156.
Alunite, 767.
Amphibolite, 2, 638, 1164.
Andesite, 167, 290, 291, 446, 960, 976, 1034, 1156.
Andesite porphyry, 999.
Andose, 2.
Aplite, 290, 1201.
Aporhyolite, 1119.
Augite camptonite, 174.
Basalt, 74, 138, 181, 291, 900, 976, 1148, 1156.
Basalt porphyry, 291.
Biotite andesite, 1148.
Biotite gneiss, 1164.
Biotite granite, 174.
Brecia, 960.
Bruniase, 358.
Campionose, 82.
Chert, 30.
Conglomerate, 174.
Dacite, 290, 291, 960, 1156.
Dacite porphyry, 446.
Diorite, 2, 181, 308, 446, 735.
Dolomite, 1164.
Epidote, pyrogenetic, 175.
Felsite, 291.
Folites, 82.
Gabbro, 74, 75, 446, 900.
Gneiss, 74, 75, 82, 86, 290, 445, 638, 679, 877, 1156, 1164.
Granite, 74, 82, 290, 368, 445, 638, 679, 735, 976, 999, 1125, 1156, 1201.
Granite gneiss, 74.
Granite porphyry, 1034.
Granodiorite, 97, 181.
Graywacke, 174, 1161.
Greenstone, 735, 883.
Hornblendite gneiss, 78, 1164.
Kedahake, 920.
Kersantite, 1034.
Lamprophyre, 181, 291.

GEOLOGIC FORMATIONS DESCRIBED.

Abilene conglomerate, Carboniferous, Kansas: Beede, 90.
Abo sandstone, Pennsylvanian, New Mexico: Lee, 745.
Aftonian beds, Pleistocene, Iowa: Shimel, 1090.
Akrön dolomite (Bullhead), Silurian, New York: Sherzer and Gräbner, 1058.
Alschua clays, Pliocene, Florida: Matson and Clapp, 839.
LISTS.

Alexanderian series, Silurian, Illinois and Missouri: Savage, 1027.
Aiger member, Silurian, Kentucky: Foerste, 409.
Aignouquin clay, Pliocene, Ontario: Coleman, 209.
Allegheny series, Carboniferous, West Virginia: Hennen, 387.
Allen limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Allenstown limestone, Cambrian, Pennsylvania: Wherry, 1239.
Altamaha formation, Tertiary, Georgia: Veatch, 1184.
Altamont limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Alum Bluff formation, Oligocene, Florida: Matson and Clapp, 829.
American Fork formation, Cretaceous, Montana: Douglass, 348.
American limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Ames limestone, Carboniferous, Ohio: Condit, 280.
Ames limestone, Carboniferous, Pennsylvania: Raymond, 983.
Amoncure bed, Silurian, Michigan: Lane et al., 733.
Amherstburg dolomite, Silurian, Michigan and adjacent: Sherzer and Grabau, 1058.
Anamosa limestone, Silurian, Illinois and Iowa: Carman, 198.
Anderdon coral limestone, Silurian, Michigan and adjacent: Sherzer and Grabau, 1058.
Anderdon limestone, Silurian, Michigan: Lane et al., 733.
Antietam sandstone, Cambrian, Pennsylvania: Steoe, 1119.
Antietam sandstone, Cambrian, Virginia: Bassler, 78.
Apalachia group, Oligocene, Florida: Matson and Clapp, 829.
Appanoose formation, Carboniferous, Iowa: Lees, 751.
Arcadia marl, Pliocene, Florida: Matson and Clapp, 829.
Archer beds, Pliocene, Florida: Matson and Clapp, 829.
Arlsal formation, Silurian, Nova Scotia: Twenhofel, 1158.
Arkansas novaculite, Arkansas: Purdue, 972.
Aspalago marl, Oligocene, Florida: Matson and Clapp, 829.
Astoria shales, Tertiary, Oregon: Dall, 300.
Athens shale, Ordovician, Virginia: Bassler, 78.
Atoka formation, Carboniferous, Oklahoma: Taff, 1130.
Aurora formation, Mexico: Burrows, 171.
Austin formation, Cretaceous, Texas: Gordon, 465.
Balley (Lower Helderberg), Silurian, Missouri: Buckley, 158.
Bald Eagle conglomerate, Ordovician, Pennsylvania: Grabau, 472, 476.
Baltimore gneiss, pre-Cambrian, Pennsylvania: Bascom, 78; Bascom et al., 74, 75.

Bandra shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Banar limestone, Carboniferous, Georgia: Veatch, 1184.
Bass Island series (lower Monroe), Silurian: Lane et al., 733.
Bays sandstone, Ordovician, Virginia: Bassler, 78.
Beacon Hill formation, Pliocene, New Jersey: Kümml, 652.
Bear Mountain granite, Colorado: Patton, 943.
Bearpaw, Cretaceous, Canada: Dowling, 350.
Bearpaw shale, Cretaceous, Montana: Pepperberg, 948, 949; Stone, 1114.
Bearpaw shales, Cretaceous, Montana: Douglass, 348.
Beaver limestone, Cambrian, Georgia: Veatch, 1184.
Beaverton marl, Silurian, Ohio: Foerste, 409.
Beecraft limestone, Devonian, New Jersey: Kümml, 682.
Bedford formation, Mississippian, Ohio and Kentucky: Morse and Foerste, 887.
Bedford shale, Carboniferous, Ohio: Carney, 200.
Beekmantown limestone, Ordovician, Pennsylvania: Steoe, 1119.
Beekmantown limestone, Ordovician, Virginia: Bassler, 78.
Beekmantownian, Ordovician: Grabau, 472.
Bellvale sandstone, Devonian, New Jersey: Kümml, 682.
Belly River, Cretaceous, Canada: Dowling, 350.
Belly River formation, Cretaceous, Alberta: Dowling, 352.
Benton, Cretaceous, Canada: Dowling, 350.
Benton formation, Cretaceous, Wyoming: Darton and Siebenthal, 313.
Benton shale, Cretaceous, North Dakota: Barry and Melsted, 70.
Benton shale, Cretaceous, South Dakota: Todd, 1146.
Beawood limestone, Carboniferous, West Virginia: Hennen, 597.
Berea formation, Carboniferous, Ohio: Carney, 200.
Berea grit, Mississippian, Ohio and Kentucky: Morse and Foerste, 887.
Bertie waterlime, Silurian, New York: Luther, 786.
Bethany Falls limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Big Blue series, Carboniferous, Kansas: Haworth and Bennett, 518.
Bigfork chert, Ordovician, Arkansas: Purdue, 972, 973.
Birdsville formation, Mississippian, Missouri: Buckley, 158.
Birmingham shale, Carboniferous, Pennsylvania: Raymond, 983, 984.
Black Hand formation, Carboniferous, Ohio: Carney, 200.
Black Hand formation, Mississippian, Ohio and Kentucky: Morse and Foerste, 887.
Black River formation, Ordovician, New York: Miller, 567.
Bladen formation, Cretaceous, North Carolina: Stephenson, 1058.
Blanchester division, Ordovician, Ohio: Foerste, 413.
Blanchester division, Ordovician, Ohio and Indiana: Foerste, 411.
Blaylock sandstone, Ordovician, Arkansas: Purdoo, 972, 973.
Bliss formation, Cambrian, Texas: Richardson, 998.
Blight, 1864.
Bone Valley gravel, Pliocene, Florida: Matson and Clapp, 829.
Boquilla slates, Mexico: Burrows, 171.
Boscowan, Cambrian, North America: Grabau, 472.
Bridger formation, Carboniferous, Pennsylvania: Stose, 1119.
Bridgerton formation, Pleistocene, New Jersey: Kümmei, 682.
Bridgerton formation, Quaternary, New Jersey: Bascom et al., 74.
Brown Park formation, Tertiary, Colorado: Gale, 453.
Brunswick beds, Triassic, New Jersey: Kümmei, 682.
Brush Creek formation, Carboniferous, Pennsylvania: Raymond, 983.
Buena Vista member, Mississippian, Kentucky: Morse and Foerste, 887.
Buena Vista, 1864.
Buffalo sandstone, Carboniferous, Pennsylvania: Raymond, 983.
Bullhead dolomite (Akron), Silurian, New York: Shriner and Grabau, 1058.
Burches Ferry formation, Cretaceous, North Carolina: Stephenson, 1058.
Burke formation, Algonkian, Idaho and Montana: Calkins, 181.
Burlingame limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Burlington formation, Mississippian, Missouri: Buckey, 158.
Burtone sandstone, Carboniferous, West Virginia: Hennen, 537.
Bushberg sandstone, Devonian, Missouri: Buckley, 158.
Burton sandstone, Oligocene, California: Branner et al., 138.
Byram gneiss, New Jersey: Bayley, 86.
Byram gneiss, pre-Cambrian, New Jersey: Kümmei, 682.
Caddo shale, Ordovician, Arkansas: Purdoo, 973.
Calhoun shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Calico Bluff formation, Carboniferous, Alaska: Prindlo, 909.
Callaway limestone, Devonian, Missouri: Greger, 491.
Caloosahatchee marl, Pliocene, Florida: Matson and Clapp, 829.
Cambridge limestone, Carboniferous, Ohio: Condit, 290.
Camillus shale, Silurian, New York: Luther, 786.
Caney shale, Carboniferous, Oklahoma: Girty, 455, 457; Taft, 1130, 1131.
Cape Brown series, Triassic, Greenland: Nordenskjöld, 900.
Cape Fear formation, Cretaceous, North Carolina: Stephenson, 1098.
Cape Fletcher formation, Greenland: Nordenskjöld, 900.
Cape Girardeau, Silurian, Missouri: Buckey, 158.
Cape Leile sandstone, Jurassic, Greenland: Nordenskjöld, 900.
Cape May formation, Pleistocene, New Jersey: Kümmei, 682.
Cape May formation, Quaternary, Delaware, Pennsylvania, and New Jersey: Bascom et al., 74.
Cape Stewart beds, Jurassic, Greenland: Nordenskjöld, 900.
Cardiff shale, Devonian, New York: Luther, 786.
Carile formation, Cretaceous, South Dakota: Darton, 307; Darton and O’Hara, 312.
Carolina gneiss, Archean, North and South Carolina: Pratt and Sterrett, 968.
Cascade formation, Cretaceous, Montana: Fisher, 397.
Cashqua River shale, Devonian, New York: Luther, 786.
Casper formation, Carboniferous, Wyoming: Darton and Siebenthal, 313.
Casville plant shale, Carboniferous, West Virginia: Hennen, 537.
Castle limestone member, Carboniferous, Montana: Fisher, 396.
Catskill formation, Devonian, New York: Williams, 1254.
Catskill formation, Devonian, Pennsylvania: Stose, 1119.
Chattahoochee formation, Oligocene, Florida: Matson and Clapp, 829.
Chenung formation, Devonian, New York: Williams, 1554.
Chattahoochee group, Tertiary, Georgia: Veatch, 1184.
Chattanooga shale, Devonian, Georgia: Veatch, 1184.
Chazy, Ordovician, North America: Grabau, 472.
Chazyian, Ordovician: Grabau, 472.
Chenung formation, Devonian, Pennsylvania: Stose, 1119.
Chenung or Kinderhook, Mississippian, Missouri: Buckley, 158.
Cherokee beds, Carboniferous, Iowa: Lees, 751.
Cherokee shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Cherokee stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Cherryvale shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Chester formation, Mississippian, Illinois and Missouri: Fenneman, 392.
Chénauna limestone, Ordovician, Georgia: Veatch, 1184.
Chickamauga limestone, Ordovician, Georgia: Veatch, 1184.
Chickamauga limestone, Ordovician, Virginia: Bassler, 78.
Chickies quartzite, Cambrian, Pennsylvania: Bascom et al., 74, 75.
Chico formation, Cretaceous, California: Arnold, 31; Branner, et al., 138.
Chippewa member, Oligocene, Florida: Matson and Clapp, 829.
Chipsa andesite, Tertiary, Montana: Ransome, 976.
Chitistone limestone, Triassic, Alaska: Moffit and Maddren, 35.
Chocawhatchee marl, Pliocene, Florida: Matson and Clapp, 829.
Chouteau formation, Mississippian, Missouri: Stose, 1119.
Chouteau limestone, Mississippian, Missouri and Illinois: Weller, 1218.
Chugwater formation, Triassic, Wyoming: Darton and Siebenthal, 313.
Cimarron series, Carboniferous, Kansas: Haworth and Bennett, 518.
Columbia formation, Pleistocene, Georgia: Veatch, 1184.
Columbus limestone, Devonian, Ohio: StaufFer, 1096.
Comanche formation, Cretaceous, Colorado: Henderson, 536.
Comanche series, Cretaceous, Texas: Richardson, 998.
Conasauga shale, Cambrian, Georgia: Veatch, 1184.
Concho conglomerate, Tertiary: Dall, 300.
Copley limestone, Ordovician, Pennsylvania: Wherry, 1229.
Cottonwood limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Cottonwood white layer, Eocene, Wyoming: Wherry, 834.
Council Grove stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Crab Orchard formation, Silurian, Kentucky: Foerste, 409.
Craghead Creek shale, Devonian, Missouri: Gregor, 491.
Crystal Mountain sandstone, Ordovician, Arkansas: Purdy, 972, 973.
Cuyahoga formation, Carboniferous, Ohio: Carney, 200.
Cuyahoga formation, Mississippian, Ohio and Kentucky: Morse and Foerste, 887.
Cynthiana formation, Ordovician, Kentucky: Foerste, 413.
Cynthiana formation, Ordovician, Ohio and Kentucky: Foerste, 412.
Cypress formation, Mississippian, Missouri: Buck-ley, 155.
Dakota, Cretaceous, Canada: Dowling, 350.
Dakota formation, Cretaceous, Colorado: George and Crawford, 446; Henderson, 586.
Dakota sandstone, Cretaceous, Colorado: Gale, 433; Martin, 819.
Dakota sandstone, Cretaceous, Colorado and Utah: Richardson, 1000.
Dakota sandstone, Cretaceous, New Mexico: Gardner, 436.
Dakota sandstone, Cretaceous, North Dakota: Barry and Melsted, 70; Willard, 1233.
Dakota sandstone, Cretaceous, South Dakota: Darton, 307; Darton and O’Harra, 312; Todd, 1146.
Davis formation, Cambrian, Missouri: Buckley, 158.
Decker Ferry formation, Silurian, New Jersey: Kummel, 682.
Deer Creek limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Delaware limestone, Devonian, Ohio: Stauffer, 1096.
Dennis limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Derby formation, Cambrian, Missouri: Buck-ley, 158.
Des Moines stage, Carboniferous, Iowa: Lees, 751.
De Soto beds, Pilocene, Floridas: Matson and Clapp, 829.
Detroit River series (upper Monroe), Silurian: Lane et al., 733.
Doerun formation, Cambrian, Missouri: Buckley, 158.
Dolgeville shales, Ordovician, New York: Miller, 807.
Douglas stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Doyles shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Dripping Spring quartzite, Cambrian, Arizona: Truesdell, 1155.
Drum limestone, Carboniferous, Cambrian, Arizona: Truesdell, 1155.
Dundee limestone, Devonian, Michigan and adjacent: Sherzer and Graban, 1058.
Dunkard series, Carboniferous, West Virginia: Hennen, 537.
Eagle, Cretaceous, Canada: Dowling, 350.
Eagle sandstone, Cretaceous, Montana: Calvert, 185; Fisher, 397; Pepperberg, 949; Stone, 1114.
Eagle Ford formation, Cretaceous, Texas: Gordon, 405.
Eden formation, Ordovician, Cincinnati region: Grabau, 472.
Eden shale, Ordovician, Kentucky: Matson, 827.
Edgewood limestone, Silurian, Illinois and Missouri: Savage, 1027.
Edmonton, Cretaceous, Alberta: Dowling, 350.
Edmonton formation, Cretaceous, Alberta: Dow-ling, 352.
Elbert formation, Devonian, Colorado: Kindle, 666.
Elbrook formation, Cambrian, Pennsylvania: Stone, 1119.
Elbrook limestone, Cambro-Ordovician, Virginia: Basler, 78.
Ell formation, Jurassic, Montana: Calvert, 185; Fisher, 396, 397.
Elounda formation, Carboniferous, Kansas: Hawn and Bennett, 518.
Elm Grove limestone, Carboniferous, West Virginia: Hennen, 537.
El Paso limestone, Ordovician, Texas: Richardson, 998.
Eminence formation, Cambrian, Missouri: Buck-ley, 158.
Empire formation, Tertiary, Oregon: Dall, 300.
Emporia limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Enfield shale member, Devonian, New York: Williams, 1254.
Englandtown sand, Cretaceous, New Jersey: Bas-com et al., 74, 75; Kummel, 682.
Enterprise shales, Carboniferous, Kansas: Beede, 90.
Erician, Devonian, New York: Luther, 786.
Esmeralda formation, Tertiary, Nevada: Turner, 1136.
Espelus grit, Devonian, New Jersey: Kummel, 682.
Espina breccia, Tertiary, Nevada: Ransome, 976.
Estill clay, Silurian, Kentucky: Foerste, 409.
Etcheogin formation, Miocene, California: Arnold, 30.
Etcheogin-Jacalitos formation, California: Johnson, 631.
Etcheminian, Cambrian, North America: Grabau, 472.
Eufaula formation, Cretaceous, Georgia: Vestch, 1184.
Everglades limestone, Pleistocene, Florida: Matson and Clapp, 829.
Fern Glen formation, Devonian, Missouri: Buck-ley, 158.
Fern Glen formation, Mississippian, Missouri and Illinois: Weller, 1218, 1221.
Fern Glen shale, Mississippian, Missouri and Illinois: Fenneman, 392.
Fernie shale, Jurassic, British Columbia: Dowling, 350.
Fernvale limestone, Ordovician, Illinois: Savage, 1627.
Fish Creek beds, Cretaceous, Montana: Douglass, 348.
Fish Creek sandstone, Carboniferous, West Virginia: Hennen, 537.
Fishkill limestone, Cambro-Ordovician, New York: Clarke, 240.
Flat Rock dolomite, Silurian, Michigan and adjacent: Sherzer and Grabau, 1058.
Flat Rock dolomites, Silurian, Michigan: Lane et al., 733.
Fleming Inlet series, Triassic, Greenland: Nordskold, 900.
Florena shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Florence flint, Carboniferous, Kansas: Haworth and Bennett, 518.
Floridian group, Pliocene, Florida: Matson and Clapp, 829.
Floyd shales, Carboniferous, Georgia: Veatch, 1184.
Forelle limestone, Carboniferous, Wyoming: Paroton and Siebenthal, 313.
Fork Mountain slate, Arkansas: Purdue, 972.
Fort Ancient division, Ordovician, Ohio: Foerste, 413.
Fort Benton formation, Cretaceous, Montana: Douglass, 348.
Fort Payne chert, Carboniferous, Georgia: Veatch, 1184.
Fort Riley limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Fort Scott limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Fort Union beds, Cretaceous, Montana: Douglass, 348.
Fort Union formation, Cretaceous, Montana: Douglass, 348.
Fort Union formation, Eocene, Montana: Stanton, 1094.
Fort Union formation, Eocene, North Dakota: Leonard, 758.
Fort Union formation, Eocene, North Dakota and Montana: Leonard and Smith, 761.
Fort Union formation, Eocene, Wyoming, North and South Dakota, and Montana: Knowlton, 678.
Fort Union formation, Tertiary, Wyoming: Shaw, 1054; Washburne, 1264; Woodruff, 1283, 1284.
Fort Union formation, Tertiary, Montana: Pepperberg, 949; Smith, 1076; Stone, 1164.
Fountain formation, Triassic?, Colorado: Martin, 819.
Fox Hills formation, Cretaceous, Colorado: Henderson, 536; Martin, 819.
Fox Hills formation, Cretaceous, Montana: Douglass, 348.
Fox Hills formation, Cretaceous, North Dakota: Leonard, 758.
Fox Hills sandstone, Cretaceous, South Dakota: Darton, 307; Darton and O'Harra, 312.
Fox Hills (?) sandstone, Cretaceous?, Montana: Smith, 1076.
Fox Hills substage, Cretaceous, Mexico: Agullera, 10.
Franciscan formation, Jurassic?, California: Arnold, 30, 31; Branner et al., 128.
Franklin limestone, pre-Cambrian, New Jersey: Kümmler, 652.
Franklin limestone formation, pre-Cambrian, New Jersey: Bayley, 86.
Franklin limestone, pre-Cambrian, Pennsylvania: Bascom et al., 75.
Fulton green shale, Carboniferous, West Virginia: Hennen, 537.
Fuson formation, Cretaceous, South Dakota: Darton, 307; Darton and O'Harra, 312.
Fusselman limestone, Silurian, Texas: Richardson, 998.
Galesburg shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Garrard sandstone, Ordovician, Kentucky: Foerste, 413.
Garrison formation, Carboniferous, Kansas: Haworth and Bennett, 518.
Gasonade formation, Cambrian, Missouri: Buckley, 158.
Gaspé sandstone, Devonian, Canada: Williams, 1254.
Geneva shale, Devonian, New York: Luther, 786; Williams, 1251.
Genundewa limestone, Devonian, New York: Luther, 786.
Gila conglomerate, Quaternary, Arizona: Truesdell, 1155.
Gilboy sandstone, Carboniferous, West Virginia: Hennen, 537.
Gilmore sandstone, Carboniferous, West Virginia: Hennen, 537.
Girardeau limestone, Silurian, Illinois and Missouri: Savage, 1027.
Glendale granite, Tertiary, Colorado: Crawford, 299.
Glen Park formation, Devonian, Missouri: Buckley, 158.
Glen Rose formation, Cretaceous, Texas: Hess, 551.
Globe limestone, Devonian-Carboniferous, Arizona: Truesdell, 1155.
Goodland limestone, Cretaceous, Oklahoma: Taff and Reed, 1132.
Gower limestone, Silurian, Illinois and Iowa: Carman, 198.
Grand Rapids group, Carboniferous, Michigan: Cooper, 285.
Grand Tower, Devonian, Missouri: Buckley, 158.
Grainger formation, Devonian, Virginia: Bassler, 78.
Greenbrier limestone, Mississippian, Virginia: Bassler, 78.
Greenbrier limestone, Mississippian, Virginia: Bassler, 78.
Grenelles bed, Ordovician, Kentucky: Foerste, 413.
Greenfield dolomite, Silurian, Ohio: Lane et al., 733; Sherzer and Grabau, 1058.
Greenhorn limestone, Cretaceous, South Dakota: Darton, 307; Darton and O'Harra, 312.
Green Pond conglomerate, Silurian, New Jersey: Kümmler, 682.
Green River formation, Tertiary, Colorado: Gale, 433; Lee, 743.
Grimes sandstone, Devonian, New York: Luther, 786.
Guadalupe conglomerate, Mexico: Botsford, 129.
Gunison formation, Jurassic, Colorado: Lee, 743.
Hancock limestone, Devonian, Virginia: Bassler, 78.
Hampton shale, Cambrian, Virginia: Bassler, 78.
Hannibal formation, Mississippian, Missouri: Buckley, 158.
Harpers schist, Cambrian, Pennsylvania: Stose, 1119.
Harpers shale, Cambrian, Virginia: Bassler, 78.
Hardyston quartzite, Cambrian, New Jersey: Kümmler, 682.
Hatch shale and flags, Devonian, New York: Luther, 786.
Hawthorne formation, Oligocene, Florida: Matson and Clapp, 829.
Helderberg limestone, Silurian, Pennsylvania: Stose, 1119.
Hell Creek beds, Cretaceous, Montana: Stanton, 1094.
Hell Creek beds, Eocene, Montana: Knowlton, 678.
Heronian shale member, Tertiary, California: Weber, 1212.
Herington limestone, Carboniferous, Kansas: Beede, 90.
Highbridge limestone, Ordovician, Kentucky: Matson, 827.
High Falls formation, Silurian, New Jersey: Kümmler, 682.
High Point sandstone, Devonian, New York: Luther, 786.
Holston marble, Ordovician, Virginia: Bassler, 78.
Honaker limestone, Cambrian, Virginia: Kümmler, 682.
Hopkinton limestone, Silurian, Illinois and Iowa: Carman, 198.
Hornerstown marl, Cretaceous, New Jersey: Bascom et al., 74, 75; Kümmler, 682.
Howard limestone, Carboniferous, Kansas: Hawthorne and Bennett, 518.
Hudson River (Thebes), Ordovician, Missouri: Buckley, 158.
Hueco limestone, Pennsylvania, Texas: Richardson, 998.
Hundred sandstone, Carboniferous, West Virginia: Hennepin, 537.
Huronian, pre-Cambrian, Ontario: Collins, 276.
Hurry Inlet series, Triassic, Greenland: Nordenskjöld, 900.

Hygiene sandstone member, Cretaceous, Colorado: Martin, 819.
Idaho Springs formation, Colorado: Patton, 943.
Illinoian drift, Pleistocene, Iowa: Calvin, 187.
Illinoian epoch, Quaternary, Illinois and Missouri: Fenneman, 392.
Illinoian glacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
Illinoian till, Pleistocene, Ontario: Coleman, 269.
Indian Fields member, Silurian, Kentucky: Foerste, 409.
Inwood limestone, New York: Berkley, 101, 103; Koeberlin, 679.
Iola limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Iowan drift, Pleistocene, Iowa: Calvin, 187.
Iowan glacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
Iowan till, Pleistocene, Ontario: Coleman, 269.
Iroquois clay, Pleistocene, Ontario: Coleman, 269.
Irvine formation, Tertiary, Kentucky: Matson, 827.
Ithaca shale member, Devonian, New York: Williams, 1254.
Jacaalitos formation, Miocene, California: Arnold, 30.
Jackfork sandstone, Carboniferous, Oklahoma: Taft, 1130.
Jackson stage, Eocene, Louisiana and Texas: Harris, 512.
Jacksonburg limestone, Ordovician, New Jersey: Kümmler, 682.
Jacksonville formation, Ordovician, Florida: Matson and Clapp, 829.
Jefferson City formation, Cambrian, Missouri: Buckley, 158.
Jeffersonville limestone, Devonian, Kentucky: Bassler, 89.
Joachim formation, Ordovician, Missouri: Buckley, 158.
Jollietown sandstone, Carboniferous, West Virginia: Hennepin, 337.
Judith River beds, Cretaceous, Montana: Douglass, 348.
Judith River formation, Cretaceous, Montana: Peperberg, 948, 949; Stone, 1114.
Junius formation, Ordovician, Pennsylvania: Stose, 1119.
Junius red beds, Ordovician, Pennsylvania: Graham, 476.
Kanouse sandstone, Devonian, New Jersey: Kümmler, 682.
Kanua drift, Pleistocene, Iowa: Calvin, 187.
Kansan epoch, Quaternary, Illinois and Missouri: Fenneman, 392.
Kansan glacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
Kansan or pre-Kansan drift, Pleistocene, New Jersey: Kümmler, 682.
Kanwaka shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Keewatin, pre-Cambrian, Ontario: Collins, 276.
Kendall tuff, Tertiary, Nevada: Ransome, 976.
Kennicott formation, Jurassic or Cretaceous, Alaska: Moffit and Maddren, 875.
Kekuk formation, Mississippian, Missouri: Buck-ley, 158.
Key Largo limestone, Pleistocene, Florida: San-ford, 1025.
Key West oolite, Pleistocene, Florida: Sanford, 1025.
Kibbey sandstone, Carboniferous, Montana: Fisher, 396.
Kickapoo limestone, Carboniferous, Kansas: Ha-worth and Bennett, 518.
Kiger stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Kimmswick formation, Ordovician, Missouri: Buckley, 158.
Kimmswick limestone, Ordovician, New Jersey: Kiimmel, 682.
Kimmswick limestone, Ordovician, Illinois: Sav-age, 1027.
Kimmswick limestone, Ordovician, Missouri: Wel-ler, 1218.
Kimmswick limestone, Mississippian, Illinois and Missouri: Fenneman, 392.
Kingsbury conglomerate, Eocene, Wyoming: Knowlton, 678.
Kingston or Port Ewen beds, Devonian, New Jer-sy: Kiimmel, 682.
Kittatinny limestone, Ordovician, New Jersey: Kiimmel, 682.
Knob (Riverside) sandstone, Mississippian, Ken-tucky: Bassler, 80.
Knobstone group, Mississippian, Kentucky: Bass-lar, 80.
Knox dolomite, Cambro-Ordovician, Virginia: Bassler, 78.
Knox dolomite, Ordovician, Georgia: Veatch, 1184.
Knoxville formation, Carboniferous, California: Ar-nold, 31; Branner et al., 138.
Knoxville-Chico rocks, Cretaceous, California: Ar-nold, 30; Johnson, 631.
Kootanie, Cretaceous, Canada: Dowling, 350.
Kootanie formation, Cretaceous, Alberta: Dowling, 352.
Kootenai formation, Cretaceous, Montana: Calvert, 185; Fisher, 396; Sheehan, 1114.
Lafayette shales, Carboniferous, Missouri: Buckley, 518.
Lafayette shales, Carboniferous, Illinois: Haworth and Bennett, 518.
Lafayette formation, Mississippian, Florida: Matson and Clapp, 629.
Lafayette formation, Tertiary, Georgia: Veatch, 1184.
Lafayette formation, Tertiary, New Jersey: Bas-com et al., 74.
Lafayette gravels, Tertiary, Missouri: Buckley, 158.
Lake Valley beds, Mississippian: Weller, 1218.
Lakota sandstone, Cretaceous, South Dakota: Dar-ton, 307; Darnton and O’Harra, 312.
La Luz schists, Mexico: Botsford, 129.
Lamotte formation, Cambrian, Missouri: Buckley, 158.
Lance Creek beds, Cretaceous, Wyoming: Stanton, 1094.
Lance Creek beds, Eocene, Wyoming: Knowlton, 678.
Lane shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Lanoria quartzite, pre-Cambrian, Texas: Richar-dson, 998.
Laramie formation, Colorado: George and Craw-ford, 446.
Laramie formation, Cretaceous, Colorado: Gale, 433; Stewart, 518.
Laramie formation, Cretaceous, Great Plains and Rocky Mountain region: Cross, 294.
Laramie, Cretaceous, Montana: Douglass, 348; Stone, 1114.
Laramie, Cretaceous, Mexico: Aguilar, 10.
Laramie formation, Cretaceous, New Mexico: Gar-dner, 436.
Laramie formation, Cretaceous, Wyoming: Ball, 57; Schultz, 1099; Smith, 1077; Washburne, 1204; Woodruff, 1284.
Las Vegas formation, Mexico: Burrows, 171.
La Roche, pre-Cambrian, Ontario: Collins, 276.
Lawrence shale, Carboniferous, Kansas: Haworth and Bennett, 518; Yates, 1295.
Leclaire limestone, Silurian, Illinois and Iowa: Car-man, 198.
Leeland formation, Carboniferous, Kansas: Ha-worth and Bennett, 518.
Leda clay, Mississippian, Ontario: Coleman, 269.
Lehighsville formation, Cambrian, Pennsylvania: Wherry, 1229.
LeRoy shale, Carboniferous, Kansas: Haworth and Bennett, 518.
Leverville formation, Oligocene, Florida: Matson and Clapp, 629.
Lewis shale, Cretaceous, Colorado: Gale, 433.
Lewis shale, Cretaceous, New Mexico: Gardner, 436.
Lewis shale, Cretaceous, Wyoming: Ball, 57; Schultz, 1099; Stanton, 1094.
Lewistown limestone, Silurian-Devonian, Virginia: Bassler, 78.
Lexington limestone, Ordovician, Kentucky: Mat-son, 827.
Liberty Hill formation, Ordovician, Virginia: Bass-ler, 78.
Linnetta clays, Mississippian, Kentucky: Morse and Foerste, 887.
Livingston formation, Tertiary, Montana: Stone 1114.
Lockatong beds, Triassic, New Jersey: Kümmel, 682.
Lockatong formation, Triassic, Pennsylvania: Bas-com et al., 74, 75.
Logan formation, Carboniferous, Ohio: Carney, 200.
Logan formation, Mississippian, Ohio and Ken- tucky: Morse and Foerste, 887.
Lone Tree white layer, Eocene, Wyoming: Mat-thew, 594.
<table>
<thead>
<tr>
<th>Location/Formation</th>
<th>Age</th>
<th>Reference 1</th>
<th>Reference 2</th>
<th>Reference 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longwood shale</td>
<td>Silurian, NJ</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lookout sandstone</td>
<td>Carboniferous, GA</td>
<td>Veatch, 1184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorraine beds</td>
<td>Ordovician, NY</td>
<td>Miller, 867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losee gneiss</td>
<td>Pre-Cambrian, NJ</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lostmans River limestone</td>
<td>Pleistocene, FL</td>
<td>Matson and Clapp, 829; Sanford, 1025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loudon formation</td>
<td>Cambrian, VA</td>
<td>Bassler, 78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana formation</td>
<td>Mississippian, MO</td>
<td>Buckley, 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisville formation</td>
<td>Silurian, KY</td>
<td>Bassler, 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisville limestone</td>
<td>Silurian, IN</td>
<td>Kindle, 606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowville, Ordovician</td>
<td>New York, PA</td>
<td>Grabau, 472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas dolomite</td>
<td>Silurian, Mich</td>
<td>Raymond, 983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas dolomite</td>
<td>Silurian, OH</td>
<td>Lane et al., 733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ludlowville shale</td>
<td>Devonian, NY</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutenberg sandstone</td>
<td>Carboniferous, WV</td>
<td>Hennen, 537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manasquan formation</td>
<td>Cretaceous, NJ</td>
<td>Bascom et al., 14, 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcellus shale</td>
<td>Devonian, NY</td>
<td>Luther, 786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion stage</td>
<td>Carboniferous, KS</td>
<td>Beede, 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshalltown clay-marl</td>
<td>Cretaceous, NE</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshalltown formation</td>
<td>Cretaceous, NE</td>
<td>Bascom et al., 74, 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maysville formation</td>
<td>Ordovician, KY</td>
<td>Matson, 827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meda rhyolite</td>
<td>Tertiary, NV</td>
<td>Ransome, 976</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medora group of lignite beds</td>
<td>Eocene, ND</td>
<td>Leonard and Smith, 761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesaverde formation</td>
<td>Cretaceous, CO</td>
<td>Gale, 435; Lee, 743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesaverde formation</td>
<td>Cretaceous, CO</td>
<td>Gardner, 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mientz River marl</td>
<td>Oligocene, FL</td>
<td>Matson and Clapp, 829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moccas sandstone</td>
<td>Cretaceous, CO</td>
<td>George and Crawford, 446; Lee, 743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhattan schist</td>
<td>New York, NY</td>
<td>Kerchove, 101, 103; Kerchove 697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manitoban series</td>
<td>Devonian, MB</td>
<td>Dowling, 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manlius limestone</td>
<td>Silurian, NY</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manlius limestone</td>
<td>Silurian, NY</td>
<td>Luther, 786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannington sandstone</td>
<td>Carboniferous, VA</td>
<td>Hennen, 537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manzano group, Penn</td>
<td>Mississippian, NM</td>
<td>Lee, 745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maquoketa shale</td>
<td>Ordovician, IL</td>
<td>Veatch, 1184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcellus shale</td>
<td>Devonian, NY</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcellus shale</td>
<td>Devonian, NY</td>
<td>Luther, 786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcellus sandstone, Carboniferous, VA</td>
<td>Hennen, 537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marcellus shale</td>
<td>Devonian, NY</td>
<td>Kümmer, 682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion limestones</td>
<td>Carboniferous, KS</td>
<td>Haworth and Bennett, 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion stage</td>
<td>Carboniferous, KS</td>
<td>Beede, 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matfield sandstone</td>
<td>Carboniferous, KS</td>
<td>Haworth and Bennett, 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matfield sandstone</td>
<td>Carboniferous, KS</td>
<td>Haworth and Bennett, 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matfield sandstone</td>
<td>Carboniferous, KS</td>
<td>Haworth and Bennett, 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan series,Carboniferous, MI</td>
<td>Cooper, 285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midway formation</td>
<td>Eocene, LA</td>
<td>Harris, 512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midway formation</td>
<td>Tertiary, GA</td>
<td>Veatch, 1184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Million bed, Penn</td>
<td>Devonian, KY</td>
<td>Foerste, 413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Million bed, Penn</td>
<td>Devonian, KY</td>
<td>Foerste, 413</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LISTS.

Minnekahta limestone, Carboniferous, South Dakota: Darton, 307; Darton and O’Harra, 312.
Minnekahta limestone, Carboniferous, Wyoming and South Dakota: Darton, 306.
Minnelusa sandstone, Carboniferous, South Dakota: Darton, 307; Darton and O’Harra, 312.
Mira basalt, Tertiary, Nevada: Ransome, 976.
Missouri Mountain formation, Ordovician, Arkansas: Purdu, 972.
Missouri Mountain slate, Arkansas: Purdu, 972.
Moccasin limestone, Ordovician, Virginia: Bassler, 78.
Monmouth group, Cretaceous, New Jersey: Bassler et al., 74, 75.
Monroe formation, Silurian, Michigan and adjacent: Sherzer and Grabau, 1058.
Monrean, Silurian, Michigan, Ohio, and Canada: Grabau, 472.
Mora sandstones, New Mexico: Keyes, 654.
Morrison stage, Cretaceous, Wyoming: Haworth and Bennett, 518.
Morse Point, Silurian, Nova Scotia: Young, 1307.
Morrison stage, Carboniferous, Wyoming and South Dakota: Darton, 306.
Mound Valley limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Mount Morris limestone, Carboniferous, West Virginia: Hennen, 537.
Mount St. Helens, Cretaceous, British Columbia: Clapp, 228.
Mount Moriah, Carboniferous, South Dakota: Darton, 307; Darton and O’Harra, 312.
Mount Whitmore, Carboniferous, Pennsylvania: Clapp, 228.
Mount Wonga, Carboniferous, South Dakota: Darton, 307; Darton and O’Harra, 312.
Moydart formation, Silurian, Nova Scotia: Twenhofel, 1158.
Murat limestone, Ordovician, Virginia: Basler, 78.
Nashua marl, Pliocene, Florida: Matson and Clapp, 659.
Nastapoka group, Canada: Young, 1297.
Nation River formation, Carboniferous, Alaska: Prindle, 969.
Natural Bridge limestone, Cambro-Ordovician, Virginia: Basler, 78.
Navarro formation, Cretaceous, Texas: Gordon, 466.
Navesink marl, Cretaceous, New Jersey: Bascom et al., 74, 75; Kummel, 682.
Nazareth cement rock, Ordovician, Pennsylvania: Wherry, 1229.
Nebraskan drift sheet, Pleistocene, Iowa: Shimke, 1000.
Neosho member, Carboniferous, Kansas: Haworth and Bennett, 518.
Neva limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
New Albany shale, Devonian, Kentucky: Bassler, 80.
Newark group, Triassic, Pennsylvania: Bascom et al., 74, 75.
Newfield formation, Algonkian, Nova Scotia: Young, 1307.
New Jersey, Carboniferous: Darton, 307; Darton and O’Harra, 312.
New England, Carboniferous, South Dakota: Martin, 819.
Newfoundland, Carboniferous, South Dakota: Martin, 819.
New Brunswick, Carboniferous, South Dakota: Martin, 819.
Newfoundland, Carboniferous, South Dakota: Martin, 819.
Newfoundland, Carboniferous, South Dakota: Martin, 819.
Nipissing clay, Pleistocene, Ontario: Coleman, 269.
Nisky formation, Ordovician, Pennsylvania: Wherry, 1229.
Nolichucky shale, Cambrian, Virginia: Bassler, 78.
Oak Grove sand member, Oligocene, Florida: Matson and Clapp, 829.
Ocala limestone, Oligocene, Florida: Matson and Clapp, 829.
Ochessee beds, Oligocene, Florida: Matson and Clapp, 829.
Octoraro schist, Ordovician, Pennsylvania: Bascom et al., 74, 75.
Ogalalla formation, Pliocene, Nebraska: Matthew and Cook, 887.
Ohio shale, Devonian, Kentucky: Matson, 827.
Ohio shale, Devonian and Mississippian, Kentucky: Morse and Foerste, 887.
Ohio Creek formation, Tertiary, Colorado: Lee, 743.
Ojinaga formation, Mexico: Burr, 171.
Oldham limestone, Silurian, Kentucky: Foerste, 412.
Olentangy shale, Devonian, Ohio: Stauffer, 1096.
Onondaga limestone, Devonian, New Jersey: Kümmler, 682.
Onondaga limestone; Devonian, New York: Kümmel, 682.
Osage formation, Carboniferous, South Dakota: Darton, 307; Darton and O'Hara, 312.
Osage formation, Carboniferous, Wyoming and South Dakota: Darton, 306.
Orchard Creek shale, Ordovician, Illinois: Savage and Bennett, 518.
Oread limestone, Carboniferous, Kansas: Haworth and Bennett, 412.
Oriskany formation, Devonian, New York: Kümmel, 682.
Oriskany formation, Devonian, Pennsylvania: Stose, 1119.
Oriskany sandstone, Devonian, New York: Kümmel, 682.
Pleasanton formation, Carboniferous, Iowa: Lees, 751.
Pleasanton formation, Carboniferous, Iowa: Lees, 751.
Pleasanton shales, Carboniferous, Iowa: Lees, 751.
Pleasanton shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Pleasanton shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Pocohock gneiss, pre-Cambrian, Arizona: Trueb, 1155.
Pocohock gneisses, New Jersey: Bayley, 1155.
Portage shales, Devonian, Pennsylvania: Stose, 1119.
Port Ewen (Kingston) beds, Devonian, New Jersey: Küm- mel, 682.
Potomac group, Cretaceous, New Jersey: Bascom et al., 74, 75.
Potesi formation, Cambrian, Missouri: Buckley, 158.
Pottawatome stage, Carboniferous, Kansas: Haworth and Bennet, 518.
Pottsville formation, Carboniferous, Ohio: Carney, 200.
Poughquag quartzite, New York: Clarke, 240.
Poxino Island shale, Silurian, New Jersey: Kummel, 682.
Pozo formation, Tertiary, Nevada: Ransome, 976.
Pre-Kansan drift, Pleistocene, Iowa: Calvin, 187.
Prichard formation, Algonkian, Idaho and Montana: Calkins, 181.
Proctor formation, Cambrian, Missouri: Buckley, 158.
Proctor sandstones, Carboniferous, West Virginia: Hennen, 537.
Prout limestone, Devonian, Ohio; Staufter, 1096.
Providence sand, Cretaceous, Georgia: Veatch, 1184.
Pulaski beds, Tertiary, Oregon: Dall, 300.
Purisima formation, Miocene, California: Branner et al., 138.
Put in Bay dolomites, Silurian, Ohio: Lane et al., 733; Sherzer and Grabau, 1058.
Quadrant formation, Carboniferous, Montana: Fisher, 396, 397.
Quadrant formation, Pennsylvania?, Montana: Calvert, 185.
Quercan sandstone, Tertiary, California: Weaver, 1212.
Quillayute formation, Pliocene, Washington: Reagan, 989.
Quinaielt formation, Pliocene, Washington: Reagan, 989.
Rabbitspring formation, Tertiary, Nevada: Ransome, 976.
Rafit River formation, Pliocene, Washington: Reagan, 989.
Raisin River dolomites, Silurian, Ohio and Michigan: Lane et al., 733; Sherzer and Grabau, 1058.
Rancocas group, Cretaceous, New Jersey: Bascom et al., 74, 75.
Raritan formation, Cretaceous, New Jersey: Bascom et al., 74, 75; Kümme1, 682.
Ravalli group, Algonkian, Idaho and Montana: Calkins, 181.
Red Bank sand, Cretaceous, New Jersey: Bascom et al., 75.
Red Bank sand, Cretaceous, New Jersey: Kümme1, 682.
Redstone limestone, Carboniferous, West Virginia: Hennen, 537.
Renfroes marl, Cretaceous, Georgia: Veatch, 1184.
Revett formation, Algonkian, Idaho and Montana: Calkins, 181.
Rhinestreet shale, Devonian, New York: Luther, 786.
Richmond formation, Ordovician, Kentucky: Matson, 837.
Ripley formation, Cretaceous, Georgia: Veatch, 1184.
Riverside. See Knob sandstone.
Roo~gneiss, Archean, North and South Carolina: Pratt and Sterrett, 906.
Rockford (Gouillette) limestone, Mississippian, Kentucky: Bassler, 89.
Rockmart shale, Silurian, Georgia: Veatch, 1184.
Rockwood formation, Silurian, Georgia: Veatch, 1184.
Rogersville shale, Cambrian, Virginia: Bassler, 78.
Rollins sandstone, Cretaceous, Colorado: Lee, 743.
Rome formation, Cambrian, Virginia: Veatch, 1184.
Romney or Chattanooga shale, Devonian, Virginia: Bassler, 78.
Romney shales, Devonian, Pennsylvania: Stose, 1119.
Rondout limestone, Silurian, New Jersey: Kümme1, 682.
Rondout waterlime, Silurian, New York: Luther, 785.
Roubidoux formation, Cambrian, Missouri: Buckley, 158.
Ruby formation, Tertiary, Colorado: Lee, 743.
Rush Run sandstone, Carboniferous, West Virginia: Hennen, 537.
Russell formation, Cambrian, Virginia: Bassler, 78.
Rutledge limestone, Cambrian, Virginia: Bassler, 78.
Sabine stage, Eocene, Louisiana and Texas: Harris, 512.
Ste. Genevieve formation, Mississippian, Missouri: Buckley, 158.
St. Joe marble, Mississippian, Arkansas: Weller, 1218.
St. Louis formation, Mississippian, Missouri: Buckley, 158.
St. Louis limestone, Mississippian, Illinois and Missouri: Fenneman, 392.
St. Peter sandstone, Ordovician, Kentucky: Matson, 837.
St. Peters formation, Ordovician, Missouri: Buckley, 158.
Sage Creek white layer, Eocene, Wyoming: Matthew, 834.
Saginaw formation, Carboniferous, Michigan: Cooper, 285.
Salina, Silurian: Grabau, 472.
Salt Fork stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Saluda bed, Ordovician, Indiana and Kentucky: Foerster, 413.
San Andreas limestone, Pennsylvanian, New Mexico: Lee, 745.
Sangamon Interglacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
San Lorenzo formation, Oligocene, California: Branner et al., 138.
San Pablo formation, Tertiary, California: Weaver, 1212.
Santa Fe granite, Colorado: Patton, 943.
Santa Margarita formation, California: Johnson, 631.
Santa Margarita formation, Miocene, California: Branner et al., 138.
Santa Margarita formation, Miocene, California: Arnold, 30.
Satanka shale, Carboniferous, Wyoming: Darton and Siebenthal, 313.
Saxicava sand, Pleistocene, Ontario: Coleman, 269.
Scarbore beds, Pleistocene, Ontario: Coleman, 269.
Scranton shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Sellersburg formation, Devonian, Kentucky: Bassler, 80.
Senecan, Devonian, New York: Luther, 786.
Sentinel Butte group of lignite beds, Eocene, North Dakota: Leonard and Smith, 761.
Severey shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Sevier shale, Ordovician, Virginia: Bassler, 78.
Sewickley sandstone, Carboniferous, West Virginia: Hennen, 537.
Sexton Creek limestone, Silurian, Illinois and Missouri: Savage, 1027.
Shady (Sherwood-Tomstown) limestone, Cambro-Ordovician, Virginia: Bassler, 78.
Shark River marl, Éocène, New Jersey: Kümmel, 682.
Sharon member, Carboniferous, Ohio: Carney, 200.
Shawangunk conglomerate, Silurian, New Jersey: Kümmel, 682.
Shawangunk conglomerate, Silurian, Pennsylvania: Grabau, 476.
Shawnee stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Sheep Creek beds, Carboniferous, Nebraska: Matthew and Cook, 840.
Shenandoah group, Cambro-Ordovician, Virginia: Bassler, 78.
Shenandoah limestone, Cambro-Ordovician, Pennsylvania: Bascom et al., 74, 75.
Sherburne flagstone member, Devonian, New York: Williams, 1254.
Shoal River marl member, Oligocene, Florida: Matson and Clapp, 839.
Shoshone group, Cretaceous, Rocky Mountain region: Cross, 294.
Siebert formation, Tertiary, Nevada: Ransome, 976.
Silver Creek hydraulic limestone, Devonian, Kentucky: Bassler, 80.
Skaneateles shale, Devonian, New York: Luther, 786.
Skennemunk conglomerate, Devonian, New Jersey: Kümmel, 682.
Slatington shale, Ordovician, Arkansas: Purdue, 973.
Snake Creek beds, Pliocene, Nebraska: Matthew and Cook, 840.
Sopchoppy limestone, Oligocene, Florida: Matson and Clapp, 829.
Spearfish formation, Triassic, South Dakota: Darton and O’Harra, 312.
Spearfish formation, Triassic, South Dakota: Darton, 306.
Spearhead rhyolite, Tertiary, Nevada: Ransome, 976.
Spergan, Mississippian, Missouri: Buckley, 158.
Spergan limestone, Mississippian, Illinois and Missouri: Fenneman, 392.
Spoon Butte beds, Tertiary, Nebraska: Peterson, 951.
Standley shale, Carboniferous, Oklahoma: Taff, 1130.
Stanley shale, Carboniferous, Arkansas: Purdue, 972.
Stanton limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Stockton beds, Triassic, New Jersey: Kümmel, 682.
Stockton formation, Triassic, Pennsylvania: Bascom et al., 74, 75.
Stonehouse formation, Silurian, Nova Scotia: Twenhofel, 1158.
Stones River formation, Ordoxious, Virginia: Bassler, 78.
Stones River limestone, Ordoxious, Pennsylvania: Stone, 1119.
Stormville sandstone, Devonian, New Jersey: Kümmel, 682.
Stringtown shale, Ordovician, Arkansas: Purdue, 972.
Striped Peak formation, Algonkian, Idaho and Montana: Calkins, 181.
Sub-Aftonian drift, Pleistocene, Iowa: Calvin, 187.
Sulphur Springs formation, Devonian, Missouri: Buckley, 158.
Summer stage, Carboniferous, Kansas: Haworth and Bennett, 518.
Sunbury formation, Carboniferous, Ohio: Carney, 200.
Sunbury shale, Mississippian, Ohio and Kentucky: Morse and Foerste, 887.
Sundance formation, Jurassic, Colorado: Henderson, 536.
Sundance formation, Jurassic, South Dakota: Darton, 307; Darton and O’Harra, 312.
Sundance formation, Jurassic, Wyoming: Darton, 306.
Sylvania sandstone, Silurian, Michigan: Lane et al., 733.
Sylvania sandstone, Silurian, Michigan and adjacent: Sherzer and Grabau, 1658.
Tampa formation, Oligocene, Florida: Matson and Clapp, 829.
Taylor sandstone, Carboniferous, West Virginia: Hennen, 537.
Tejon formation, Cretaceous, California: Arnold, 30; Johnson, 631.
Thebes sandstone, Ordovician, Illinois: Savage, 1027.
Tishenor limestone, Devonian, New York: Luther, 786.
Tinton bed, Cretaceous, New Jersey: Kümmel, 682.
Tishomingo granite, Oklahoma: Taff and Reed, 1132.
LISTS.

Tomstown limestone, Cambrian, Pennsylvania: Stose, 1119.

Topeka limestones, Carboniferous, Kansas: Haworth and Bennett, 518.

Toronto formation, Pleistocene, Ontario: Coleman, 269.

Trenton formation, Ordovician, New York: Miller, 867.

Trenton limestone, Ordovician, New York: Miller, 867.

Trentonian, Ordovician: Grabau, 472.

Tribune formation, Mississippian, Missouri: Buckley, 158.

Trinity sand, Cretaceous, Oklahoma: Taff and Reed, 1132.

Tulare formation, Pleistocene, California: Arnold, 30.

Tully limestone, Devonian, New York: Luther, 786.

Tunnel Point beds, Tertiary, Oregon: Dall, 300.

Tuscaloosa formation, Cretaceous, Georgia: Veatch, 1184.

Tuscarora sandstone, Silurian, Pennsylvania: Grabau, 476; Stose, 1119.

Tyrocheet shales and limestones, Silurian, Ohio: Lane et al., 733.

Tyroine beds, Ordovician, Pennsylvania: Grabau, 472.

Ulsterian, Devonian, New York: Luther, 786.

Uniontown sandstone, Carboniferous, West Virginia: Hennen, 537.

Unicoi sandstone, Cambrian, Virginia: Bassler, 78.

Unkappa sandstone, Jurassic, South Dakota: Darton, 307; Darton and O’Harra, 312.

Unkappa sandstone, Jurassic, Wyoming and South Dakota: Darton, 306.

Utica shale, Ordovician: Grabau, 472.

Utica shale formation, Ordovician, New York: Miller, 867.

Vancouver series, Triassic, British Columbia: Clapp, 228.

Vaqueros formation, Miocene, California: Arnold, 30; Branner et al., 138; Johnson, 651.

Vicksburg group, Cretaceous, Florida: Matson and Clapp, 829.

Vicksburg stage, Cretaceous, Louisiana and Texas: Harris, 512.

Vicksburg-Jackson formation, Tertiary, Georgia: Veatch, 1184.

Victoria series, Devonian, British Columbia: Clapp, 228.

Vitas shales, Carboniferous, Kansas: Haworth and Bennett, 518.

Vincentown sand, Cretaceous, New Jersey: Bascom et al., 74, 75; Kümmler, 652.

Wabannee stage, Carboniferous, Kansas: Haworth and Bennett, 518.

Waco limestone, Silurian, Kentucky: Foerste, 409.

Wagonwheel formation, Cretaceous, California: Johnson, 651.

Walden sandstone, Carboniferous, Georgia: Veatch, 1184.

Waldo formation, Cretaceous, Florida: Matson and Clapp, 829.

Waldron shale, Silurian, Indiana: Kindel and Barnett, 670.

Walnut shales, Carboniferous, Kansas: Haworth and Bennett, 518.

Wappinger limestone, New York: Clarke, 240.

Warren gravels, Pleistocene, Ontario: Coleman, 269.

Warsaw formation, Mississippian, Illinois and Missouri: Fenneman, 392.

Warsaw formation, Mississippian, Missouri: Buckley, 158.

Wasatch formation, Tertiary, Colorado: Gale, 453.

Wasatch formation, Tertiary, Wyoming: Schultz, 1039; Smith, 1077; Washburne, 1204.

Washakie formation, Tertiary, Wyoming: Granger, 452; Sinclair, 1055.

Washington limestones, Carboniferous, West Virginia: Hennen, 537.

Washington sandstone, Carboniferous, West Virginia: Hennen, 537.

Wautaga (Buena Vista) shale, Cambrian, Virginia: Bassler, 78.

Wautaga (Waynesboro-Buena Vista) formation, Cambro-Ordovician, Virginia: Bassler, 78.

Waverly formation, Mississippian, Ohio and Kentucky: More and Foerste, 897.

Waverly shale, Carboniferous, Kentucky: Matson, 827.

Waynesboro formation, Cambrian, Pennsylvania: Stose, 1119.

Waynesburg limestone, Carboniferous, West Virginia: Hennen, 537.

Waynesville bed, Ordovician, Ohio: Foerste, 413.

Weber formation, Carboniferous, Colorado: Spurr, 1091.

Weissner quartzite, Cambrian, Georgia: Veatch, 1184.

Wellsville sandstone member, Devonian, New York: Williams, 1554.

Wenonah sand, Cretaceous, California: Arnold, 30; Branner et al., 74, 75; Kümmler, 652.

West Hill (Gardeau) flags and shales, Devonian, New York: Luther, 786.

West River shale, Devonian, New York: Luther, 786.

West Union bed, Silurian, Ohio: Foerste, 409.

Weverton sandstone, Cambrian, Pennsylvania: Stose, 1119.

Weverton sandstone, Cambrian, Virginia: Bassler, 78.

Whirlpool sandstone, Silurian, New York: Grabau, 472.

White River formation, Tertiary, Montana: Douglass, 348.

Whitetail formation, Tertiary, Arizona: Truesdell, 1155.

Whitwood limestone, Ordovician, South Dakota: Darton, 307, 310.

Whitwood limestone, Ordovician, Wyoming and South Dakota: Darton, 306.

Willard shales, Carboniferous, Kansas: Haworth and Bennett, 518.
Winchester limestone, Ordovician, Kentucky: Matson, 827.
Windy Gap limestone, Carboniferous, West Virginia: Hennen, 537.
WinfieId formation, Carboniferous, Kansas: Haworth and Bennett, 518.
Winnipegian series, Devonian, Manitoba: Dowling, 350.
Wisconsin glacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
Wisconsin, Pleistocene, Ontario: Coleman, 269.
Wisconsin drift, Pleistocene, Iowa: Calvin, 187.
Wisconsin drift, Pleistocene, New Jersey: Küm mel, 682.
Wissahickon mica gneiss, pre-Cambrian, Pennsylvania: Bascom, 73; Bascom "et al., 74, 75.
Woodbury clay, Cretaceous, New Jersey: Bascom "et al., 74, 75; Küm mel, 682.
Woodford chert, Devonian, Oklahoma: Girty, 457.
Wreford limestone, Carboniferous, Kansas: Haworth and Bennett, 518.
Yakutat group, Mesozoic?, Alaska: Tarr and Butler, 1138.
Yarmouth interglacial epoch, Quaternary, Illinois and Iowa: Carman, 198.
Yarmouth interglacial interval, Pleistocene, Iowa: Calvin, 187.
Yeso formation, Pennsylvanian, New Mexico: Lee, 745.