ANALYSES OF COAL SAMPLES FROM VARIOUS FIELDS IN THE UNITED STATES.

By MARIUS R. CAMPBELL.

INTRODUCTION.

The accompanying table gives the analysis of all coal samples collected by the United States Geological Survey during the year 1913. The analyses were made at the Pittsburgh laboratory of the Bureau of Mines by the same methods as those employed in all previous work by that bureau and by the Geological Survey, and consequently the results are comparable in every way with those already published by the two organizations.

In the course of a year many coal fields are examined in detail or reconnaissance by members of the United States Geological Survey. Those fields located in the eastern part of the United States are surveved for the purpose of determining the amount and quality of the coal contained in them and of making public the facts concerning them in order to assist in their development. In the public-land States of the West the examinations are made in part for a similar purpose, but also (and in late years this has come to be the controlling motive) to gather data for the classification of the land as mineral or nonmineral according to its coal content. If the land is classed as coal land a valuation must be assigned it in accordance with certain rules and regulations adopted by the Interior Department, which take into account the amount of the coal and also its quality. The amount of the coal is determined from field data which are sufficiently complete for making a fairly reliable tonnage estimate; the quality of the coal is determined largely by chemical analysis. In determining the quality it is necessary to have not only the ordinary chemical analysis but also calorimeter determinations of the heating value. The analyses here given, as well as those previously published by the Bureau of Mines and the Geological Survey, generally give both of these factors for determining the value of a coal and afford a reliable basis for the valuation of the public land. In addition they present a vast amount of information by which almost any coal in the United States may be compared with others to determine its relative value for commercial uses.

Most of these analyses will be published in the descriptions of the fields to which they pertain, but as such reports will necessarily be delayed until all the data gathered in the field have been thoroughly classified and digested, they may not appear for several months or even a year. In order, however, to make the analyses immediately available to the public, they have been grouped according to States and counties and are herewith published in advance of the reports to which they relate. As a result of this mode of publication it is impossible to discuss and compare the analyses in order to show the relative grades of the coal samples, but it is believed that from the description of the samples that is given those wishing to make such comparisons can do so and can determine for themselves the relative efficiencies of the particular coals in which they are interested. This use is believed to be sufficiently great to justify the publication of the analyses in advance of the report on the field in which the samples were collected.

Many of the samples, especially those from public-land States, were collected in fields in which mining either has not been begun or has attained only negligible development. In these fields it is difficult, if not impossible, to secure fresh material, and hence the analyses show the coal to be of a lower grade than would appear were the sample made up of strictly unweathered coal. In the table all the weathered samples that have been recognized as such are marked. Their analyses should be taken with considerable allowance, and no important comparisons should be made with them or developments of the coal bed undertaken until they have been checked by the analysis of freshly mined coal. The analysis of weathered coal is valuable only until it can be supplanted by more reliable results.

In taking a sample of coal for analysis the geologist is instructed to make every endeavor to procure fresh unweathered material. He is supposed to face up the bed in the mine or prospect until fresh material is available, and then to obtain his sample by making a uniform cut across the bed from roof to floor, including all such benches and partings as an experienced and careful miner would include in commercial coal and throwing out such impurities as would certainly be excluded in practical operation. He is supposed to cut sufficient coal to give at least 6 pounds to the foot of coal bed sampled. The sample is hastily pulverized in the mine until it will pass through a ¹/₂-inch mesh and then is guartered down until about 4 pounds remain. This sample is placed in a galvanized-iron can, sealed with adhesive tape or paraffin, and mailed to the laboratory for analysis. The sampling is done on the principle that a coal mine should be sampled as carefully as a gold mine and that the sample should be even more carefully handled after it has been taken. The object of sealing is to prevent change in the moisture content, so that the coal may reach the laboratory in practically the same condition in which it exists in the mine. Coal is a very unstable substance, and great care must be exercised to prevent oxidation in the course of preparation and in transit. It is also important that the sample should consist of neither the best nor the poorest coal, but that it should be representative of the output of the mine, if one is in operation, or, if the field is undeveloped, it should represent as nearly as possible the merchantable coal that may be secured at some time in the future when mining is carried on.

Although the aim of the geologist in obtaining a sample by the method specified above is to obtain coal that is representative of the output of the mine, practical experience has shown that this is seldom or never accomplished: Almost invariably the sample obtained in the mine contains a lower percentage of impurities than does the coal which reaches the consumer. This is largely due to carelessness in mining and handling and probably could be largely eliminated were the conditions of mining more nearly ideal. By comparing a large number of samples taken in a mine with those taken at the point of consumption it has been found that there is a fairly constant though small difference in the percentage of moisture, ash, and sulphur, and that almost invariably the amount of these substances in the mine sample is less than it is in the coal as it reaches the market. For this reason a small amount should be added, especially to the ash given in the accompanying table, to correctly represent the ash in merchantable coal from the same mine.

During the early stages of land classification all the analytical work was done by the Geological Survey, but with the establishment of the Bureau of Mines "the analyzing and testing of coals, lignites, and other mineral-fuel substances" of the United States passed by law to that bureau. Accordingly all the analyses listed in this paper were made at the Bureau of Mines and to that bureau should be given the responsibility and credit. Although the analytical work has passed from one bureau to another, the laboratory and many of the chemists engaged in the work have remained the same and consequently the results are strictly comparable.

In the table the analyses are given in four forms, marked A, B, C, and D. Analysis A represents the sample as it comes from the mine. This form is not well suited for comparing one coal with another in order to determine their relative merits as a fuel because the amount of moisture in the sample as it comes from the mine is largely a matter of accident, and consequently analyses of the same coal expressed in this form may vary as widely as the analyses of coal from different beds or from different fields. Analysis B represents the sample after it has been dried at a temperature a little above the normal until its weight becomes constant. This form of analysis probably represents the coal in its most stable condition and one approaching most closely its condition as it reaches the market. Therefore it is the form best adapted to the general purposes of comparison. Analysis C represents the theoretical condition of the coal after all the moisture has been eliminated. Analysis D represents the coal after all moisture and ash have been theoretically removed. This is supposed to represent the true coal substance, free from the most significant impurities. Forms C and D are obtained from the others merely by recalculation. They are useful in a study of the pure coal substance, free from impurity, but as this substance is not the same as the coal that reaches the bin of the consumer neither form C nor form D should be used in practical work.

In the analytical work it is not possible to determine the proximate constituents of coal or lignite with the same degree of accuracy as the ultimate constituents. Therefore the air-drying loss, moisture, volatile matter, fixed carbon, and ash are given to one decimal place only; whereas the ash (in the ultimate analysis), sulphur, hydrogen, carbon, nitrogen, and oxygen are given to two decimal places. The determination of the calorific value to individual units is not reliable, hence in the column headed "Calories" the values are given to the nearest five units and in the column headed "British thermal units" they are given to the nearest tens, as the value of a British thermal unit is about one-half that of a calorie.

CLASSIFICATION OF COAL.

The classification of coal into various grades, such as bituminous, semibituminous, and lignite, is arbitrary and not at all satisfactory, but it is in common use in the United States and it seems desirable to give the class for each sample, because from the analysis one could not always determine this important point. The classes generally used in the United States are as follows: Anthracite, semianthracite, semibituminous, bituminous, subbituminous, and lignite.

Anthracite.—Anthracite coal is generally well known, but in a systematic classification it is generally defined as a hard coal having a fuel ratio (fixed carbon divided by volatile matter) of not less than 10. Most of this coal comes from the anthracite fields of eastern Pennsylvania, but small areas are known in some of the Western States where the coal has been changed to anthracite by the heat and pressure of masses of igneous rock.

Semianthracite.—Semianthracite coal has a fuel ratio ranging from 6 or 7 to 10. There is only a small amount of this coal in the United States, found in local basins or in close proximity to igneous rocks.

Semibituminous.—Semibituminous coal is of great commercial importance, but is not widely distributed. Its fuel ratio ranges from

3 to 6 or 7. It is the best steam coal in the country, and some of it can be utilized in the manufacture of coke. The centers of production are the Pocahontas and New River fields of Virginia and West Virginia, Georges Creek field of Maryland, Windber field of Pennsylvania, and the western end of the Arkansas field in the vicinity of Fort Smith. Though small areas containing this grade of coal have been found in Washington and Colorado, the amount of such coal in these fields is small.

Bituminous.—Bituminous coal is the most important grade in the country and includes most of the coals east of the Rocky Mountains. In the Western States there are large areas of bituminous coal, such as the Trinidad-Raton field of Colorado and New Mexico; the Grand Hogback field of Colorado; the Book Cliffs field of Utah; the Rock Springs, Kemmerer, and Black Hills fields of Wyoming; the Great Falls field of Montana; and many districts of Washington. This grade furnishes most of the coking coal of the country, and it is largely sold for steam raising and for domestic use.

Subbituminous.—The term "subbituminous" has been adopted by the Geological Survey for what has generally been called "black lignite." The latter term is objectionable, for the reason that the coal is not lignitic in the sense of being woody, and the use of the term seems to imply that the coal is little better than the brown, woody lignite of North Dakota, whereas many of the coals of this class closely approach the lowest grade of bituminous coal. In fact, it is extremely difficult to separate this class from the one below and the one above. It is generally distinguished from the lignite by its color and freedom from apparent woody texture and from bituminous coal by the slacking it undergoes when exposed to the weather. As the latter is an important difference in commercial use, it has been adopted by the Geological Survey as the criterion for the separation of subbituminous and bituminous coals.

Subbituminous coal is found in most of the western fields, being well known in the field about Boulder and Denver and in North Park, Colo.; Gallup, N. Mex.; Hanna, Douglas, Sheridan, and the Bighorn Basin, Wyo.; Red Lodge and Musselshell, Mont.; and in many of the districts of Washington and Oregon.

Lignite.—As used by the Geological Survey the term "lignite" is restricted to the coals that are distinctly brown and generally woody. They are intermediate in quality between peat and subbituminous coal. Lignite is abundant in the North in eastern Montana and North Dakota and in the northwest corner of South Dakota. In the South it is present in all of the Gulf States, but it has been developed commercially only in Texas.

ANALYSES.a

[Made by the Bureau of Mines. A. C. Fieldner, chemist in charge.]

ALABAMA.

DEKALB COUNTY.

			1	Proxima	ate.			τ	Jltimate.			Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
18230	2.6	A B C D	3.6 1.1	19. 0 19. 5 19. 7 22. 4	65.9 67.6 68.4 77.6	11.8	1.44 1.48 1.49 1.69						
18233	2.8	A B C D	3.4 .6	18. 7 19. 2 19. 3 22. 7	65.2	14. 54 14. 95 15. 05	$1, 22 \\ 1, 25 \\ 1, 26 \\ 1, 48$	4. 29 4. 09 4. 05 4. 77	72.86 74.92 75.41 88.77	1. 27 1. 31 1. 31 1. 54	5.82 3.48 2.92 3.44	7,055 7,255 7,305 8,595	12,700 13,060 13,150 15,480
18234	2.9	A B C D	3.8 1.0	19. 0 19. 6 19. 7 22. 8		12.8 13.1 13.3 	$\begin{array}{c} 1.52 \\ 1.56 \\ 1.58 \\ 1.82 \end{array}$					7,215 7,425 7,500 8,645	12,980 13,370 13,500 15,560
18231	2.2	A B C D	2.8	20. 2 20. 7 20. 8 25. 0	62.0	16.4 16.7 16.8	4. 43 4. 53 4. 56 5. 48						
18232	3.0	A B C D	3.5	20.6 21.3 21.3 24.1	64.8 66.8 67.2 75.9	11.1 11.4 11.5	2.64 2.72 2.74 3.09						

COLORADO.

LA PLATA COUNTY.

17745F	1.3	A 4.7 B 3.4 C D	36. 8 37. 3 38. 6 45. 0	45. 0 13. 5 45. 6 13. 7 47. 2 14. 1 55. 0	.87	5. 47 5. 39 5. 19 6. 05	66.56 67.46 69.81 81.34	1.51 1.53 1.58 1.84	12.08 11.05 8.34 9.72	6,640 6,730 6,965 8,115	11,950 12,110 12,540 14,610
17747	1.4	A 11.6 B 10.3 C D	31. 4 31. 8 35. 5 43. 9	40. 1 16. 9 40. 7 17. 2 45. 4 19. 1 56. 1	.61 .62 .69 					4,615 4,680 5,220 6,455	8,300 8,420 9,400 11,620
17748	.7	A 4.2 B 3.6 C D	36.1 36.4 37.7 44.8	44. 6 15. 1 44. 8 15. 2 46. 5 15. 8 55. 2				·····		6,500 6,545 6,890 8,055	$11,700 \\ 11,780 \\ 12,220 \\ 14,500$
17855	2.5	A 5.8 B 3.3 C D	37. 2 38. 2 39. 5 42. 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 .59	5.67 5.53 5.34 5.75	71. 41 73. 27 75. 81 81. 62	1. 61 1. 65 1. 71 1. 84	14.02 12.08 9.40 10.12	7,025 7,210 7,460 8,030	12,650 12,980 13,430 14,460

a Description of samples is given on pp. 508-526.

ANALYSES OF COAL SAMPLES.

COLORADO—Continued.

MOFFAT COUNTY.

•	A 4	17.0000		Proxim	ate.			1	Ntimate.	•		Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17592	7.8	A B C D	23.3 16.8	a 29.6 32.1 38.6 42.5	40.0 43.4 52.1 57.5	7.13 7.73 9.29	0.65 .70 .85 .94	5.79 5.35 4.18 4.61	54.00 58.55 70.37 77.58	0.68 .74 .89 .98	31.75 26.93 14.42 15.89	4,925 5,340 6,420 7,075	8, 870 9, 610 11, 550 12, 740
17593	5.1	A B C D	22.1 17.9	a 31.6 33.3 40.6 43.0	42.0 44.2 53.8 57.0	4.34 4.57 5.57	.72 .76 .92 .97	6.01 5.73 4.56 4.83	55.39 58.37 71.10 75.29	1.18 1.24 1.51 1.60	32.36 29.33 16.34 17.31	5, 165 5, 445 6, 630 7, 020	9,300 9,800 11,930 12,640
17686	b 2. 4	A B C D	11.7 9.6	38.0 38.9 43.0 46.2	44.3 45.4 50.2 53.8	5.96 6.10 6.75	.92 .94 1.04 1.12	5.84 5.71 5.14 5.51	63. 99 65. 54 72. 48 77. 73	1. 14 1. 17 1. 29 1. 38	22, 15 20, 54 13, 30 14, 26	6,210 6,360 7,035 7,545	11, 180 11, 450 12, 670 13, 580
17696	6.1	A B C D	18.9 13.6	a 30.4 32.4 37.5 40.7	44, 4 47, 3 54, 7 59, 3	6.29 6.70 7.76	. 64 . 68 . 79 . 86	5.71 5.36 4.45 4.82	57.47 61.22 70.90 76.86	.82 .87 1.01 1.09	29.07 25.17 15.09 16.37	5,400 5,755 6,665 7,225	9,720 10,360 11,990 13,000
17782	ð 1. 8	A B C D	11.9 10.2	36.8 37.5 41.7 44.6	45.6 46.5 51.8 55.4	5.72 5.83 6.49	.55 .56 .62 .66	5, 83 5, 73 5, 12 5, 48	64.36 65.56 73.03 78.10	1.40 1.43 1.59 1.70	22. 14 20. 89 13. 15 14. 06	6,240 6,355 7,080 7,575	11, 230 11, 440 12, 750 13, 630
17840	ð 2. 2	A B C D	14.2 12.2	36. 3 37. 1 42. 2 44. 4	45.3 46.4 52.9 55.6	4.18 4.28 4.87	.59 .60 .69 .73	5.82 5.70 4.94 5.19	63. 54 64. 98 74. 06 77. 85	1.22 1.25 1.42 1.49	24.65 23.19 14.02 14.74	6, 100 6, 235 7, 105 7, 470	10, 980 11, 230 12, 790 13, 450

ILLINOIS.

MCDONOUGH COUNTY.

15119	10.1	В С	3.5	42.0 43.5	47.4 49.1	7.13 7.39	3.20 3.32	5.33 5.11		$1.34 \\ 1.38$	11.99 9.19	7,225	13, 490
-------	------	--------	-----	--------------	--------------	--------------	--------------	--------------	--	----------------	---------------	-------	---------

KENTUCKY.

PIKE COUNTY.

17459F	1.4	A B C D	3.2 1.9	33.0 33.5 34.1 36.0	58.7 59.5 60.6 64.0	5.08 5.15 5.25	0.62 .63 .64 .68	5.33 5.25 5.14 5.42	78. 45 79. 53 81. 05 85. 54	1.40 1.42 1.45 1.53	9.12 8.02 6.47 6.83	7,710 7,815 7,965 8,410	13, 880 14, 070 14, 340 15, 130
17460F	1.0	А В С D	2.5 1.5	34. 8 35. 2 35. 7 37. 4	58.4 59.0 59.9 62.6	4.26 4.30 4.37	.59 .60 .61 .64	$5.22 \\ 5.16 \\ 5.07 \\ 5.30$	79.89 80.69 81.94 85.68	$1.45 \\ 1.46 \\ 1.49 \\ 1.56$	8.59 7.79 6.52 6.82	7,915 7,995 8,115 8,490	14, 250 14, 390 14, 610 15, 280
17461F	1.3	A B C D	2.8 1.5	36. 2 36. 7 37. 2 39. 0	56.7 57.4 58.4 61.0	4.30 4.35 4.42	1.35 1.37 1.39 1.45	5.39 5.32 5.22 5.46	79. 25 80. 25 81. 50 85. 27	1.47 1.49 1.51 1.58	8.24 7.22 5.96 6.24	7,875 7,975 8,100 8,475	14, 180 14, 360 14, 580 15, 260

a Volatile matter determined by the modified official method. (See Bureau of Mines Bull. 22, p. 29.) b The small air-drying loss indicates that the coal was weathered.

ĺ

497

498 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

MONTANA.

BIGHORN COUNTY.

]	Proxima	ate.			τ	Jltimate	•		Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen,	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17711	3.7			31.9 33.1 41.2 44.6	39.5 41.1 51.1 55.4	6.0 6.2 7.7	$0.51 \\ .53 \\ .66 \\ .72$					4,895 5,085 6,325 6,855	8,810 9,150 11,380 12,340
]	HILL	COUI	NTY.					-
17841F	10. 1	A B C D		a 29. 2 32. 5 38. 5 43. 9		9.28 10.32 12.23	$\begin{vmatrix} 1.15 \\ 1.28 \\ 1.52 \\ 1.73 \end{vmatrix}$	5.98 5.40 4.35 4.96	50.03 55.63 65.95 75.14	$ \begin{array}{c} 1.02\\ 1.13\\ 1.34\\ 1.53 \end{array} $	$\begin{array}{c} 32.54 \\ 26.24 \\ 14.61 \\ 16.64 \end{array}$	4,705 5,230 6,205 7,065	8,470 9,420 11,170 12,720
17842F	1.2	A B C D		34.0 34.4 36.6 40.2	50.551.254.459.8	8.33 8.43 8.97	$ \begin{array}{r} 1.77 \\ 1.79 \\ 1.91 \\ 2.10 \end{array} $	5. 13 5. 06 4. 66 5. 12	67.62 68.45 72.84 80.01	$1.42 \\ 1.44 \\ 1.53 \\ 1.68$	15.73 14.83 10.09 11.09	6,540 6,620 7,045 7,740	11,770 11,920 12,680 13,930
17892	19. 1	A B C D	31.4 15.2	a 30. 4 37. 6 44. 4 56. 2	29.4	14.4 17.8 20.9	$ \begin{array}{c} 1.35\\ 1.67\\ 1.97\\ 2.49 \end{array} $				 		
					MUSS	ELSI	IELL	COUN	TY.				
17586F	2.2	A B C D		32.4 33.1 37.4 40.4	47.6 48.7 55.0 59.6	6.58 6.73 7.60	$\begin{array}{c} 0.39 \\ .40 \\ .45 \\ .49 \end{array}$	5.59 5.46 4.74 5.13	63.89 65.34 73.79 79.86	0.98 1.00 1.13 1.22	22.57 21.07 12.29 13.30	6,175 6,315 7,130 7,720	11,120 11,370 12,840 13,890
17587	3.4	A B C D		31.5 32.6 36.9 39.9	47.5 49.1 55.5 60.1	6.5 6.7 7.6	.80 .83 .94 1.02			.		5,750 5,950 6,725 7,280	10,350 10,710 12,110 13,100
17588	2.1	A B C D	11.7	32.6 33.3 37.7 41.1	46.8 47.8 54.1 58.9	7.0 7.2 8.2	.58 .59 .67 .73					6,105 6,235 7,065 7,690	10,990 11,220 12,710 13,840
17589 .	2.0		13.4 11.7	33.2 33.9 38.3 42.1	45.6 46.5 52.7 57.9	7.8 7.9 9.0	.51 .52 .59 .65					6,050 6,175 6,990 • 7,685	10,890 11,120 12,590 13,830
<u> </u>	·	·	·	·	N	EW	MEX	LICO.	<u>.</u>		<u> </u>	·	<u>'</u>

COLFAX COUNTY.

17703	0.9	A B C D	2.6 1.7	36.0 36.4 37.0 44.3	45.7	16.08 16.23 16.51	0.56 .57 .57 .68	5.35 5.30 5.19 6.22	67. 63 68. 25 69. 43 83. 16	$1.56 \\ 1.57 \\ 1.60 \\ 1.92$	8.82 8.08 6.70 8.02	6,750 6,810 6,930 8,300	12, 150 12, 260 12, 470 14, 940
17746F	1.6	A B C D	5.7 4.1	37.4 38.0 39.6 45.6	45.4	12.28 12.48 13.02	1.09 1.11 1.16 1.33	5.47 5.38 5.13 5.90	• 66. 31 67. 41 70. 33 80. 86	1.40 1.42 1.48 1.70	13, 45 12, 20 8, 88 10, 21	6,655 6,765 7,055 8,115	11,980 12,180 12,700 14,600
17781F	.4	A B C D	2.0 1.6	35. 7 35. 9 36. 4 42. 1	49.4	13. 10 13. 15 13. 36	.78 •.78 .80 .92	5. 24 5. 22 5. 12 5. 91	70. 71 70. 99 72. 13 83. 25	$1.32 \\ 1.33 \\ 1.35 \\ 1.56$	8.85 8.53 7.24 8.36	7,035 7,065 7,180 8,285	12,670 12,720 12,920 14,910

a Volatile matter determined by the modified official method.

•

ANALYSES OF COAL SAMPLES.

NEW MEXICO-Continued.

SAN JUAN COUNTY.

	A 1	Terrer	1	Proxim	ate.			1	Ultimate.	,		Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17749	1.6	A B C D	6.6 5.1	35.4 36.0 37.9 44.1	45.6	13.1 13.3 14.1	0.66 .67 .71 .83					6,380 6,485 6,835 7,950	11,490 11,680 12,300 14,310
17750	1.8	A B C D		36.7 37.4 41.1 42.6	49.6 50.5 55.4 57.4	3.1 3.1 3.5	.64 .65 .72 .75		· · · · · · · · · · · · · · · · · · ·	 		6,115 6,225 6,840 7,085	11,010 11,210 12,310 12,750

SOCORRO COUNTY.

17602	1.3	A B C D	6.5 5.3	34.5 34.9 36.9 39.9	52.6 55.5	7.09 7.18 7.58	0.50 .51 .53 .57	5.32 5.25 4.92 5.32	69.35 70.24 74.16 80.24	$1.17 \\ 1.19 \\ 1.25 \\ 1.35$	$16.57 \\ 15.63 \\ 11.56 \\ 12.52$	6,660 6,750 7,125 7,710	11,990 12,150 12,820 13,870
17728	6.7	A B C D	12.6	38.9	41.8 47.9	11.6	$.43 \\ .46 \\ .53 \\ .61$					4,710 5,050 5,780 6,665	8,480 9,090 10,400 11,990

OREGON.

GRANT COUNTY.

				1					1	1	
18125	27.4	A	34.7	a 20.0	14.2	31.1	1.41		 		
		В	10.1	27.6	19.5	42.8	1.94		 		
		a		20 6							
		n									
		D	•••••	00.0	11.0		7.10	••••	 		

WHEELER COUNTY.

18126	7.2	В С	13.8 7.1		31.5 33.9	36.8		 	 		
18127	6.6	A B C D	13.4 7.3	$\begin{array}{c} 25.4\\ 27.4 \end{array}$	32.1 34.3 37.0 57.5	33.0 35.6	. 49 . 53	 	 	4,040 4,320 4,665 7,235	7,270 7,780 8,390 13,030

PENNSYLVANIA.

CENTER COUNTY.

17444F	2.1	A 3.4 B 1.3 C D	$22.8 \\ 23.3 \\ 23.6 \\ 27.1$	62.7	12.40 12.67 12.83	0.88 .90 .91 1.04	$\begin{array}{r} 4.\ 69\\ 4.\ 55\\ 4.\ 46\\ 5.\ 12\end{array}$	74.44 76.07 77.05 88.39	$ \begin{array}{c} 1.45 \\ 1.48 \\ 1.50 \\ 1.72 \end{array} $	6.14 4.33 3.25 3.73	7,245 7,400 7,500 8,600	13,040 13,320 13,500 15,480
17445	2.2	A 3.5 B 1.4 C D	22.1 22.5 22.9 24.9	$\begin{array}{c} 66.6 \\ 68.1 \\ 69.0 \\ 75.1 \end{array}$	7.8 8.0 8.1	$1.79 \\ 1.83 \\ 1.86 \\ 2.02$	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		7,700 7,875 7,980 8,685	13,860 14,170 14,370 15,630
17446F	2.1	A 3.5 B 1.4 C D	23.7 24.2 24.6 27.8		11.24 11.48 11.64	2.66 2.72 2.75 3.11	4.78 4.64 4.56 5.16	73.51 75.11 76.13 86.16	$1.34 \\ 1.37 \\ 1.39 \\ 1.57$	6.47 4.68 3.53 4.00	7,255 7,415 7,515 8,505	13,060 13,340 13,530 15,310
17447F	1.2	A 1.9 B6 C D	22. 0 22. 3 22. 4 26. 3	62.3	14. 57 14. 75 14. 85 	.99 1.00 1.01 1.19	4.43 4.34 4.30 5.05	73.26 74.18 74.67 87.69	$1.26 \\ 1.28 \\ 1.28 \\ 1.50 $	5.49 4.45 3.89 4.57	7,095 7,185 7,235 8,495	12,780 12,940 13,020 15,290

^a Volatile matter determined by the modified official method.

499

CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

PENNSYLVANIA—Continued.

		T	·]	roxim	ate.			τ	Ultimate.			Heatin	g value.
ratory di No. lo	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17441F	1.4	A B C D	2.4 1.1	22.4 22.7 23.0 25.2	66.4 67.3 68.0 74.8	8.75 8.87 8.97	3.15 3.19 3.23 3.55	4.71 4.62 4.55 5.00	78.05 79.14 80.01 87.89	$1.36 \\ 1.38 \\ 1.39 \\ 1.53$	3.98 2.80 1.85 2.03	7,660 7,770 7,855 8,625	13,790 13,980 14,140 15,530
17442F	1.9	A B C D	2.8 .9	20.2 20.6 20.8 24.0	65.1	13.10 13.35 13.48	$3.04 \\ 3.10 \\ 3.13 \\ 3.62$	4.66 4.54 4.48 5.18	72.98 74.40 75.10 86.80	$1.27 \\ 1.29 \\ 1.31 \\ 1.51$	4.95 3.32 2.50 2.89	7,215 7,355 7,425 8,580	12,990 13,240 13,370 15,450
17443F	1.0	A B C D	2.0 1.0	31.1 31.4 31.7 34.8	58.3 58.9 59.5 65.2	8.65 8.73 8.82	$2.01 \\ 2.03 \\ 2.05 \\ 2.25$	5.04 4.98 4.92 5.40	76.99 77.73 78.54 86.13	$1.60 \\ 1.62 \\ 1.63 \\ 1.79$	$5.71 \\ 4.91 \\ 4.04 \\ 4.43$	7,630 7,705 7,785 8,535	13,730 13,870 14,010 15,370

CLEARFIELD COUNTY.

ELK COUNTY.

17455	1.5	A 2.9 B 1.5 C D	34.7 35.2 35.7 39.6	52.753.554.3 60.4	9.66 9.80 9.95	3.92 3.98 4.04 4.49	5.19 5.10 5.02 5.57	72.67 73.75 74.86 83.13	$1.41 \\ 1.43 \\ 1.45 \\ 1.61$	7.15 5.94 4.68 5.20	7,380 7,490 7,600 8,440	13, 280 13, 480 13, 680 15, 200
17456F	1.3	A 2.7 B 1.5 C D		58.6 59.3 60.2 64.4	6.32 6.40 6.49	2.52 2.55 2.59 2.77	5.22 5.14 5.06 5.41	78.10 79.10 80.26 85.83	$1.45 \\ 1.47 \\ 1.49 \\ 1.59$	$\begin{array}{r} 6.39 \\ 5.34 \\ 4.11 \\ 4.40 \end{array}$	7,785 7,885 8,000 8,555	14,020 14,200 14,400 15,400
17457	1.8	A 3.1 B 1.4 C D	30.6 31.1 31.5 34.9	57.0 58.0 58.8 65.1	9.3 9.5 9.7	3.45 3.51 3.56 3.94					7,440 7,570 7,675 8,495	13, 390 13, 630 13, 820 15, 300
17458	1.0	A 2.7 B 1.7 C D	33.7 34.0 34.6 38.0	$54.9 \\ 55.5 \\ 56.5 \\ 62.0$	8.7 8.8 8.9	2.89 2.92 2.97 3.26		· · · · · · · · · · · · · · · · · · ·			7,480 7,560 7,690 8,440	13,470 13,600 13,840 15,190

JEFFERSON COUNTY.

17448F	1.2	A B C D	1.9 .7 	34.6 35.0 35.3 39.4	53.9	10.28 10.40 10.48	2.91 2.95 2.97 3.32	5.00 4.93 4.88 5.45	72. 73 73. 61 74. 11 82. 79	$1.51 \\ 1.53 \\ 1.54 \\ 1.72$	7.57 6.58 6.02 6.72	7,305 7,395 7,445 8,315	13,150 13,310 13,400 14,970
17449F	1.2	A B C D	3.1 1.9	32. 3 32. 7 33. 3 37. 0	54.9 55.6 56.7 63.0	9.67 9.78 9.98	1.69 1.71 1.74 1.93	4.99 4.92 4.80 5.33	73. 71 74. 58 76. 07 84. 51	$1.60 \\ 1.62 \\ 1.65 \\ 1.83$	8.34 7.39 5.76 6.40	7,345 7,430 7,580 8,420	13,220 13,370 13,640 15,150
17450F	.5	A B C D	1.9 1.4	34.5 34.7 35.2 39.3	53.5	10. 40 10. 45 10. 60	3.38 3.40 3.45 3.86	5.03 5.00 4.91 5.49	74.08 74.46 75.54 84.50	$1.51 \\ 1.52 \\ 1.54 \\ 1.72$	5.60 5.17 3.96 4.43	7,385 7,425 7,530 8,425	13,290 13,360 13,550 15,160

500

ANALYSES OF COAL SAMPLES.

PENNSYLVANIA—Continued.

SOMERSET COUNTY.

		Derm]	Proxim	ate.			τ	Ultimate	•		Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17689	2.9	A B C D		19.8 20.4 20.7 23.7	65.8	12.12 12.48 12.65	0.67 .69 .70 .80	4.70 4.51 4.42 5.06	74.31 76.51 77.55 88.78	$\begin{array}{c} 1.27 \\ 1.31 \\ 1.33 \\ 1.52 \end{array}$	$\begin{array}{r} 6.93 \\ 4.50 \\ 3.35 \\ 3.84 \end{array}$	7,175 7,385 7,490 8,570	12,920 13,300 13,480 15,430
17690	2.4	A B C D	.8	17.1 17.5 17.7 20.9	66.2	15.11 15.48 15.61	$1.47 \\ 1.51 \\ 1.52 \\ 1.80$	$\begin{array}{c} 4.38 \\ 4.22 \\ 4.15 \\ 4.92 \end{array}$	72.65 74.42 75.06 88.95	$1.31 \\ 1.34 \\ 1.35 \\ 1.60$	5.08 3.03 2.31 2.73	7,165 7,340 7,400 8,770	12,890 13,210 13,320 15,790
17691	2.0	А В С D	3.1 1.1	18.9 19.4 19.6 22.0	68.4	10.88 11.10 11.22	$1.52 \\ 1.55 \\ 1.57 \\ 1.77 \\ 1.77$	4.60 4.47 4.40 4.96	76.38 77.95 78.80 88.76	1.29 1.32 1.33 1.50	5.33 3.61 2.68 3.01	7,455 7,605 7,690 8,660	13, 420 13, 690 13, 840 15, 590
17692	2.1	A B C D	2.9 .8	$21.7 \\ 22.1 \\ 22.3 \\ 25.2$	65.9	10.92 11.15 11.25	$1.16 \\ 1.18 \\ 1.19 \\ 1.34$	4.69 4.56 4.50 5.07	76.60 78.24 78.91 88.92	$1.39 \\ 1.42 \\ 1.43 \\ 1.61$	5.24 3.45 2.72 3.06	7,475 7,635 7,700 8,680	13,460 13,750 13,860 15,620
17693	1.4	A B C D	.7	21.1 21.4 21.5 24.5	65.9 66.4	11.82 11.98 12.07	2.44 2.47 2.49 2.83	4.57 4.48 4.43 5.04	76.40 77.45 78.00 88.71	${ \begin{array}{c} 1.30 \\ 1.32 \\ 1.33 \\ 1.51 \end{array} } $	3.47 2.30 1.68 1.91	7,465 7,565 7,620 8,665	13,430 13,620 13,710 15,600
17694	2.7	A B C D		17.6 18.1 18.3 20.2	69.5 71.4 72.1 79.8	9.28 9.53 9.62	$1.63 \\ 1.67 \\ 1.69 \\ 1.87$	4. 61 4. 44 4. 37 4. 83	77. 72 79. 84 80. 60 89. 18	$1.20 \\ 1.23 \\ 1.24 \\ 1.37$	5.56 3.29 2.48 2.75	7,515 7,720 7,795 8,625	13, 530 13, 900 14, 030 15, 520
17695	1.7	A B C D	2.9 1.2	18.7 19.0 19.3 20.4	73.2 74.5 75.4 79.6	5.19 5.28 5.34	.63 .64 .65 .69	4. 82 4. 71 4. 63 4. 89	82.90 84.36 85.37 90.18	$1.42 \\ 1.44 \\ 1.46 \\ 1.54$	5.04 3.57 2.55 2.70	7,975 8,115 8,210 8,675	14,350 14,610 14,780 15,620
17831	6.0	A B C D	11.5 5.9	20. 1 21. 3 22. 7 26. 7	58.7	13.2 14.1 15.0	.78 .83 .88 1.03					5,680 6,045 6,420 7,555	10,230 10,880 11,560 13,600
17832	2.4	A B C D	1.2	20.4 20.9 21.1 23.1	67.9 69.6 70.4 76.9	8.2 8.3 8.5	. 83 . 85 . 86 . 94	······		•••••		7,610 7,795 7,890 8,620	13,700 14,040 14,200 15,510

TIOGA COUNTY.

17451F	0.8	A B C D	1.7 .9	$21.5 \\ 21.7 \\ 21.9 \\ 24.1$	67.6 68.1 68.7 75.9	9.23 9.30 9.39	1.73 1.74 1.76 1.94	4.54 4.48 4.43 4.89	78.50 79.11 79.83 88.10	1.38 1.39 1.40 1.55	4.62 3.98 3.19 3.52	7,670 7,730 7,800 8,610	13,810 13,920 14,040 15,500
17452	1.5	A B C D	2.4 .8	19.7 20.1 -20.2 23.2	65.2 66.2 ~66.8 76.8		2.47 2.51 2.53 2.91					7,285 7,400 7,465 8,575	13, 120 13, 320 13, 430 15, 440
17453	1.1	A B C D	1.9 .8 	20.6 20.8 21.0 24.1	65.7	12.5 12.7 12.8	2.87 2.90 2.92 3.35				· · · · · · · · · · · · · · · · · · ·	7,305 7,385 7,445 8,535	13, 150 13, 300 13, 400 15, 370
17454F	1.5	A B C D	2.3 .8	20.9 21.2 21.4 23.8		9.88 10.03 10.11	$1.28 \\ 1.30 \\ 1.31 \\ 1.46$	4.52 4.42 4.37 4.86	78.15 79.32 79.98 88.98	1.43 1.45 1.46 1.62	4.74 3.48 2.77 3.08	7,565 7,680 7,745 8,615	13,620 13,820 13,940 15,510

CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

PENNSYLVANIA—Continued.

WESTMORELAND COUNTY.

		Form	. 1	Proxima	ate.			τ	Ultimate.	-		Heatin	g value.
Labo- ratory No.	ratory ary-		Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17901 F	1.9	A B C D	2.6 .7	21.4 21.9 22.0 25.0	65.6	11.59 11.82 11.90	$1.94 \\ 1.98 \\ 1.99 \\ 2.26$	4.63 4.51 4.46 5.06	75.81 77.29 77.84 88.36	$1.25 \\ 1.27 \\ 1.28 \\ 1.45$	4.78 3.13 2.53 2.87	7,425 7,570 7,625 8,655	13,370 13,630 13,720 15,580

UTAH.

CARBON COUNTY.

17604F	1.1	A B C D		38.4 39.6	49.9 50.5 52.0 56.8	8.15	1.151.161.201.31	5.66 5.59 5.43 5.93	71.91 72.74 74.95 81.82	1.47 1.49 1.53 1.67	11.75 10.87 8.49 9.27	7,130 7,215 7,435 8,115	12, 840 12, 980 13, 380 14, 610
17605	1.2	A B	4.4	38.2 38.6	50.5 51.1 52.8 57.0	$\begin{array}{c} 7.1 \\ 7.3 \end{array}$. 82 . 83 . 86 . 93					7,090 7,180 7,420 8,000	12,760 12,920 13,350 14,400

GRAND COUNTY.

17577F	2.0	A B C D	 37.1 37.8 39.9 44.9	46.3 48.9	10.44 10.65 11.24	0.66 .67 .71 .80	5.59 5.48 5.17 5.82	65.98 67.29 71.05 80.04	1.45 1.48 1.56 1.76	15.88 14.43 10.27 11.58	6, 510 6, 640 7, 010 7, 895	11,720 11,950 12,620 14,210
17578	1.3	B	 37.8 38.3 40.4 45.5	45.9 48.3	10.7	.62 .65					6.590 6,680 7,040 7,935	11,860 12,020 12,670 14,280

SANPETE COUNTY.

17715	0.1	A 3.6 B 3.6 C D	29.2 29.2 30.3 39.5	44.7 44.7 46.4 60.5	22.5 22.5 23.3	6.79 6.80 7.05 9.20	 	 •••••	5, 715 5, 725 5, 935 7, 745	10,290 10,300 10,680 13,940
17717	.2	A 2.4 B 2.2 C D	32.4 32.5 33.2 41.3	46.0 46.1 47.1 58.7	19.2 19.2 19.7	3.71 3.72 3.80 4.73	 	 	6,225 6,235 6,375 7,935	11,200 11,230 11,480 14,290
17718	.8	A 2.7 B 1.9 C D	35.7 36.0 36.7 43.8	45.9 46.2 47.1 56.2	15.7 15.9 10.2	4.63 4.67 4.76 5.68	 	 	6,585 6,635 6,770 8,075	11,860 11,950 12,180 14,540

a Volatile matter determined by the modified official method.

502

ANALYSES OF COAL SAMPLES.

VIRGINIA.

DICKENSON COUNTY.

			1	roxim	ate.			. T	Jltimate			Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17559	1.8	A B C D	2.6 .9	25.5 25.9 26 1 29.5		10.9 11.1 11.2	0.70 .71 .72 .81					7,470 7,605 7,670 8,640	13, 440 13, 690 13, 810 15, 550
17560	1.7	A B C D	2.6 .9	26.0 26.5 26.7 29.2	63.2 64.3 64.9 70.8	8.2 8.3 8.4	.73 .74 .75 .82					7,725 7,860 7,935 8,660	13,910 14,150 14,290 15,590
17561F	1.8	A B C D	2.6 .9	$\begin{array}{c} 26.2 \\ 26.6 \\ 26.9 \\ 29.8 \end{array}$	$\begin{array}{c} 61.7\\ 62.8\\ 63.4\\ 70.2 \end{array}$	9.48 9.65 9.74	.74 .75 .76 .84	4.75 4.64 4.58 5.07	77.60 78.98 79.70 88.30	1.57 1.60 1.61 1.78	$5.86 \\ 4.38 \\ 3.61 \\ 4.01$	7,575 7,710 7,780 8,620	13,640 13,880 14,010 15,520
17743	1.7	A B C D	2.8 1.1	$31.6 \\ 32.2 \\ 32.5 \\ 35.2$	$58.2 \\ 59.1 \\ 59.8 \\ 64.8$	7.4 7.6 7.7	$1.45 \\ 1.47 \\ 1.49 \\ 1.61$					7,685 7,815 7,905 8,565	13,840 14,070 14,230 15,410
17744	1.8	A B C D		32.4 33.0 33.4 35.7	58.4 59.5 60.2 64.3	6.2 6.3 6.4	$1.62 \\ 1.65 \\ 1.67 \\ 1.78$		· · · · · · · · · · · · · · · · · · ·	. .	· • • • • • • • • • •	7,795 7,935 8,030 8,575	14,030 14,290 14,460 15,440
17751	1.3	A B C D	1.0	$29.4 \\ 29.8 \\ 30.1 \\ 32.1$	$\begin{array}{c} 62.2\\ 63.0\\ 63.6\\ 67.9 \end{array}$	$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \end{array}$.76 .77 .78 .83						
17752	1.6			$29.2 \\ 29.7 \\ 29.9 \\ 31.6$	$\begin{array}{c} 63.2 \\ 64.2 \\ 64.8 \\ 68.4 \end{array}$	$5.1 \\ 5.2 \\ 5.3$.80 .81 .82 .87		· · · · · · · · · · · ·				

)

18121F	1.9	A 2.9 B 1.0 C D	31. 957.32. 558.32. 859.35. 564.	9 7.6 3 7.6	1.78 1.81 1.83 1.98				7,655 7,800 7,880 8,535	13, 780 14, 040 14, 190 15, 360
18122	1.6	A B C D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5.8	.66 .67 .68 .72	 			7,930 8,060 8,135 8,640	14, 280 14, 510 14, 640 15, 550
18123	1.1	A 2.0 B 9 C D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7.9 3 8.0	. 66 . 67 . 67 . 73				7,685 7,770 7,840 8,520	13, 830 13, 990 14, 110 15, 330
18124 F	1.4	A 2.3 B9 C D	35. 5 55. 36. 0 56. 36. 3 56. 39. 0 61.	3 6.80 3 6.87	.67 .68 .69 .74	$\begin{array}{c cccc} 5.26 & 78.84 \\ 5.18 & 79.94 \\ 5.13 & 80.66 \\ 5.51 & 86.61 \end{array}$	1.69 1.71 1.73 1.86	6.83 5.69 4.92 5.28	7,780 7,890 7,960 8,545	14,000 14,200 14,330 15,390
18128	1.0	A B C D	35.3 55. 35.7 56. 35.9 56. 38.8 61.	3 7.2 3 7.3	.58 .58 .59 .64	· · · · · · · · · · · · · · · · · · ·			7,800 7,875 7,945 8,565	14,040 14,180 14,300 15,420
18129	1.4	A 2.4 B 1.0 C D	36.3 55. 36.8 55. 37.2 56. 39.7 60.	6.3 6.4	.52 .53 .53 .57	· · · · · · · · · · · · · · · · · · ·			7,840 7,945 8,025 8,570	14, 110 14, 300 14, 450 15, 430

VIRGINIA—Continued.

RUSSELL COUNTY-Continued.

			Vola- Fixed					τ	Jltimate.			Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Asb.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
18130	0.8	A B C D	1.6 .8	36.7 37.0 37.3 39.9	55.3 55.8 56.2 60.1	6.4 6.4 6.5	0.58 .58 .59 .63				•••••	7,870 7,935 8,000 8,550	14,170 14,290 14.400 15,390
18131F	1.1	A B C D	1.8 .8	36.2 36.5 36.8 39.4	55.5 56.1 56.5 60.6	$\begin{array}{c} 6.53 \\ 6.60 \\ 6.65 \\ \ldots \end{array}$. 54 . 55 . 55 . 59	5.25 5.18 5.14 5.51	79.28 80.12 80.76 86.51	$1.49 \\ 1.51 \\ 1.52 \\ 1.63$	$\begin{array}{r} 6.91 \\ 6.04 \\ 5.38 \\ 5.76 \end{array}$	7,830 7,915 7,980 8,545	14, 100 14, 250 14, 360 15, 380
18235	2.4	A B C D	1.0	35.7 36.6 37.0 39.4	55. 0 56. 3 56. 8 60. 6	6.0 6.1 6.2	.55 .56 .57 .61					7,760 7,945 8,030 8,555	13, 970 14, 310 14, 450 15, 400
18236	2.4	0	.3.2 .9	35. 4 36. 3 36. 6 39. 1	55. 1 56. 4 56. 9 60. 9	6.3 6.4 6.5	.59 .60 .61 .65					7,760 7,945 8,020 8,575	13,970 14,300 14,430 15,440
18237	2.4	A B C D	3.3 .9 	35. 1 36. 0 36. 3 38. 2	56.9 58.3 58.8 61.8	4.7 4.8 4.9	.50 .51 .52 .55					7,925 8,115 8,195 8,615	14, 270 14, 610 14, 750 15, 510
18238	2.4	A B C D	3.3 1.0	35. 1 35. 9 36. 3 38. 5	55.9 57.2 57.8 61.5	5.71 5.85 5.91	.55 .56 .57 .61	5.37 5.23 5.17 5.49	78.72 80.62 81.44 86.55	1.37 1.40 1.42 1.51	8. 28 6. 34 5. 49 5. 84	7,820 8,010 8,095 8,600	14,080 14,420 14,570 15,490
18239	1.0	A B C D	1.8 .8	31.4 31.8 32.0 34.3	60.3 60.9 61.4 65.7	6.5 6.5 6.6	.52 .53 .53 .57					7,880 7,960 8,025 8,590	14, 180 14, 330 14, 440 15, 460
18240	1.8	A B C D	2.5 .8	31. 9 32. 4 32. 7 34. 9	59.5 60.6 61.1 65.1	6.1 6.2 6.2	.44 .45 .45 .48					7,820 7,960 8,020 8,555	14,070 14,330 14,430 15,400
18241	1.9	A B C D	2.4 .6	32.5 33.1 33.3 35.7	58.4 59.5 59.8 64.3	6.7 6.8 6.9	.49 .50 .50 .54	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		7,790 7,940 7,985 8,575	14,020 14,290 14,380 15,440
18242	1.6	A B C D	.6	31.9 32.5 32.7 35.0	59.4 60.3 60.7 65.0	6.50 6.60 6.65	.46 .47 .47 .50	5.11 5.02 4.98 5.33	79.69 80.94 81.48 87.28	1.04 1.06 1.06 1.14	7.20 5.91 5.36 5.75	7,840 7,960 8,015 8,585	14, 110 14, 330 14, 430 15, 460
18243	2.4	A B C D	3.1	33.7 34.5 34.8 37.0	57.3 58.7 59.1 63.0	5.9 6.0 6.1	.79 .81 .82 .87					7,860 8,050 8,115 8,640	14, 150 14, 490 14, 600 15, 550
18244	1.6	A B C D	.8	34.6 35.2 35.5 37.6	57.3 58.3 58.7 62.4	5.7 5.7 5.8	.83 .84 .85 .90					7,945 8,075 8,140 8,645	14,300 14,540 14,660 15,560
18245	2.0	A B C D	2.7 .8	33.7 34.4 34.7 36.8	57.9 59.0 59.5 63.2	5.7 5.8 5.8	.78 .80 .80 .85			 		7,920 8,080 8,145 8,650	14, 260 14, 540 14, 660 15, 570
18246	2.0	A B C D	2.7 .7	33.8 34.5 34.8 37.0	57.7 58.9 59.3 63.0	5.78 5.90 5.94	.83 .85 .85 .90	5.27 5.15 5.11 5.43	79.33 80.93 81.55 86.70	1.29 1.32 1.33 1.41	7.50 5.85 5.22 5.56	7,915 8,075 8,135 8,650	14,250 14,530 14,650 15,570

ς

ANALYSES OF COAL SAMPLES.

VIRGINIA-Continued.

:

1

Í

ł

WISE COUNTY.

		-	-	Proximate.				τ	Ultimate.			Heating value.		
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.	
18226	1.5	A B C D	2.4 .9	33.4 33.9 34.2 36.0	59.4 60.3 60.9 64.0	4.8 4.9 4.9	0.58 .59 .59 .62					8,035 8,160 8,235 8,660	14, 460 14, 680 14, 830 15, 590	
18227	1.5	A B C D	2.3 .9	32.9 33.4 33.7 35.5	59.9 60.7 61.3 64.5	4.9 5.0 5.0	. 53 . 54 . 54 . 57					8, 035 8, 150 8, 225 8, 665	14, 460 14, 670 14, 810 15, 600	
18228	1.4	A B C D	2.3 .9	32.7 ,33.2 33.5 35.5	$59.2 \\ 60.1 \\ 60.6 \\ 64.5$	5.8 5.8 5.9	.51 .52 .52 .55					7,985 8,100 8,170 8,685	14, 370 14, 580 14 710 15, 630	
18229F	1.5	A B C D	2.3 .8	32, 9 33, 4 33, 7 35, 5	59.6 60.5 61.0 64.5	5.22 5.30 5.34	. 54 . 55 . 55 . 58	5.18 5.09 5.C5 5.33	80.78 81.97 82.67 87.33	1.57 1.59 1.61 1.70	6.71 5.50 4.78 5.06	8,010 8,130 8,200 8,660	14, 420 14, 630 14, 760 15, 590	

WEST VIRGINIA.

MCDOWELL COUNTY.

<u> </u>													
17469	1.0	A B C	1.8 .9	19.7 19.9 20.0	71.1 71.7 72.4	7.4 7.5 7.6	0.50 .50 .51 .55					7,850 7,925 7,995	14, 130 14, 270 14, 390
		D	•••••	20.0 21.7	78.3		.51				•••••	7,995 8,650	14, 390 15, 570
17470	1.4	A B C D		20. 2 20. 5 20. 7 22. 4	69.8 70.8 71.3 77.6	7.8 7.9 8.0	.77 .78 .79 .86					7, 820 7, 930 7, 995 8, 690	14, 070 14, 270 14, 390 15, 640
17471F	1.2	A B C D	l ò	19.9 20.2 20.3 22.1	70.4 71.2 71.8 77.9	7.71 7.80 7.87	.69 .70 .70 .76	4.47 4.39 4.34 4.71	80.95 81.92 82.60 89.65	$1.53 \\ 1.55 \\ 1.56 \\ 1.69$	4.65 3.64 2.93 3.19	7, 835 7, 930 7, 995 8, 680	14, 110 14, 280 14, 400 15, 620

17462	1.8	A 4.0 B 2.2 C D	37.3 38.0 38.9 40.9	53.8 54.8 56.0 59.1	4.9 5.0 5.1	0.68 .69 .71 .75					7,610 7,750 7,925 8,350	13, 700 13, 950 14, 270 15, 030
17463	1.8	A 4.1 B 2.3 C D	36.8 37.5 38.4 41.8	51.3 52.3 53.5 58.2	7.8 7.9 8.1	.80 .81 .83 .90					7,310 7,440 7,615 8,290	13, 150 13, 400 13, 710 14, 930
17464	2.3	A 4.7 B 2.4 C D	36.2 37.1 38.0 41.4	51.4 52.6 53.9 58.6	7.7 7.9 8.1	.65 .67 .68 .74					7, 260 7, 430 6, 715 8, 290	13, 070 13, 380 13, 710 14, 920
17465F	2.0	A 4.2 B 2.3 C D	37.3 38.0 38.9 41.9	$51.7 \\ 52.7 \\ 54.0 \\ 58.1$	6.81 6.95 7.11	.73 .74 .76 .82	$5.22 \\ 5.10 \\ 4.96 \\ 5.34$	75.47 76.99 78.80 84.83	$1.55 \\ 1.58 \\ 1.62 \\ 1.74$	10.22 8.64 6.75 7.27	7,395 7,545 7,720 8,315	13,310 13,580 13,900 14,960
17466	2.1	A 4.5 B 2.4 C D	35.5 36.3 37.1 40.9	$51.3 \\ 52.4 \\ 53.8 \\ 59.1$	8.7 8.9 9.1	.80 .82 .84 .92					7,195 7,350 7,535 8,290	12,950 13,230 13,560 14,920

MINGO COUNTY.

CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

WEST VIRGINIA-Continued.

MINGO COUNTY-Continued.

				Proxima	ate.			τ	Ultimate			Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17467	2.4	A B C D	5.5 3.1	32 8 33.6 34.7 39.6	51.3	11.7 12.0 12.4	$1.02 \\ 1.04 \\ 1.08 \\ 1.23$					6,795 6,960 7,185 8,205	12,230 12,530 12,940 14,770
17468F	2.3		5.0 2.7	33.8 34.6 35.6 39.9	52.1	10.31 10.55 10.85	.85 .87 .89 1.00	$5.15 \\ 5.01 \\ 4.84 \\ 5.43$	71.13 72.77 74.84 83.95	$1.51 \\ 1.55 \\ 1.59 \\ 1.78$	$11.05 \\ 9.25 \\ 6.99 \\ 7.84$	6,975 7,135 7,335 8,230	12,550 12,840 13,210 14,810
17472F	1.7	A B C D		$35.6 \\ 36.2 \\ 36.9 \\ 38.6$	$56.5 \\ 57.5 \\ 58.6 \\ 61.4$	4.33 4.40 4.49	.66 .67 .68 .71	$5.41 \\ 5.31 \\ 5.19 \\ 5.43$	79.67 81.04 82.61 86.49	$1.51 \\ 1.54 \\ 1.57 \\ 1.64$	8.42 7.04 5.46 5.73	7,775 7,910 8,060 8,440	13,990 14,230 14,510 15,190
17473F	1.5	A B C D	3.7 2.2	$33.6 \\ 34.1 \\ 34.8 \\ 36.2$	$59.1 \\ 60.0 \\ 61.4 \\ 63.8$	3.64 3.70 3.78	$.64 \\ .65 \\ .66 \\ .69$	$5.46 \\ 5.37 \\ 5.24 \\ 5.45$	79.79 81.00 82.85 86.11	$1.53 \\ 1.55 \\ 1.59 \\ 1.65$	$8.94 \\ 7.73 \\ 5.88 \\ 6.10$	7,780 7,900 8,080 8,400	14,010 14,220 14,550 15,120
17474F	.8	A B C D	2.2 1.4	36.0 36.3 36.8 39.9	$54.3 \\ 54.7 \\ 55.5 \\ 60.1$	7.54 7.60 7.71	$1.65 \\ 1.66 \\ 1.69 \\ 1.83$	5.00 4.96 4.86 5.27	76.45 77.03 78.12 84.64	$1.58 \\ 1.59 \\ 1.61 \\ 1.74$	$7.78 \\ 7.16 \\ 6.01 \\ 6.52$	7,650 7,705 7,815 8,470	13,770 13,870 14,070 15,250
17475F	.8	A B C D	2.4 1.6 	32.8 33.1 33.6 35.2	$\begin{array}{c} 60.5 \\ 61.0 \\ 62.0 \\ 64.8 \end{array}$	4.30 4.33 4.41	.74 .75 .76 .80	$5.06 \\ 5.01 \\ 4.91 \\ 5.14$	79.82 80.45 81.78 85.55	$1.53 \\ 1.54 \\ 1.57 \\ 1.64$	$8.55 \\ 7.92 \\ 6.57 \\ 6.87 \\ 9.87 \\ 9.87 \\ 9.87 \\ 9.85 \\ $	7,955 8,015 8,150 8,525	14, 320 14, 430 14, 670 15, 350
17476	1.4	A B C D	2.8 1.4 	31.5 32.0 32.4 34.0	$\begin{array}{c} 61.1 \\ 62.0 \\ 62.9 \\ 66.0 \end{array}$	4.6 4.6 4.7	$1.39 \\ 1.41 \\ 1.43 \\ 1.50$					7,905 8,020 8,140 8,535	14,230 14,430 14,650 15,360
17477	1.9	A B C D	3.3 1.4 	31.0 31.6 32.1 33.9	$\begin{array}{c} 60.4 \\ 61.5 \\ 62.4 \\ 66.1 \end{array}$	5.3 5.5 5.5	${ \begin{array}{c} 1.14 \\ 1.16 \\ 1.18 \\ 1.25 \end{array} }$				·	7,765 7,915 8,030 8,500	13,980 14,240 14,450 15,300
17478	1.9	A B C D	3.3 1.5	$30.9 \\ 31.5 \\ 32.0 \\ 34.4$	58.9 60.0 60.9 65.6	6.9 7.0 7.1	$1.11 \\ 1.13 \\ 1.15 \\ 1.24$	 			· · · · · · · · · · · · · · · · · · ·	7,680 7,830 7,950 8,555	13,830 14,090 14,310 15,400
17479F	1.7	A B C D	3.1 1.4 	31.4 32.0 32.4 34.4	$59.9 \\ 60.9 \\ 61.8 \\ 65.6$	5.60 5.70 5.78	$1.18 \\ 1.20 \\ 1.22 \\ 1.29$	$5.12 \\ 5.02 \\ 4.93 \\ 5.23$	79.51 80.90 82.09 87.12	$1.60 \\ 1.63 \\ 1.65 \\ 1.75$	$\begin{array}{c} 6.99 \\ 5.55 \\ 4.33 \\ 4.61 \end{array}$	7,805 7,945 8,060 8,555	14,050 14,300 14,510 15,400
17480	2.0	A B C D	4.5 2.5	38.8 39.6 40.6 43.2	50.9 52.0 53.3 56.8	5.8 5.9 6.1	$2.01 \\ 2.05 \\ 2.10 \\ 2.24$					7,425 7,580 7,775 8,275	13,370 13,650 13,990 14,900
17481	2.8		3.0	37.0 38.1 39.2 42.8	49.5 50.9 52.5 57.2	7.8 8.0 8.3	1.87 1.92 1.98 2.16	 		 		7,100 7,300 7,530 8,210	12,780 13,140 13,550 14,780
17483	1.3	A B C D	3.0 1.7	34.7 35.1 35.7 37.0	58.9 59.7 60.8 63.0	3.4 3.5 3.5	.66 .67 .68 .70	 	 			7, 920 8, 025 8, 165 8, 460	14, 250 14, 440 14, 700 15, 230

506

WYOMING.

CONVERSE COUNTY.

	1 -		:	Proxim	ate.			. τ	Jltimate	• •		Heatin	g value.
Labo- ratory No.	Air- dry- ing loss.	Form of analy- sis.	Mois- ture.	Vola- tile mat- ter.	Fixed car- bon.	Ash.	Sul- phur.	Hy- dro- gen.	Carbon.	Nitro- gen.	Oxy- gen.	Calo- ries.	British thermal units.
17657	7.0	A B C D	22.8 17.0	34.7 37.3 44.9 48.4	37.0 39.8 48.0 51.6	5.52 5.93 7.15	$0.71 \\ 76 \\ .92 \\ .99$	6.07 5.70 4.58 4.93	54.68 58.77 70.79 76.24	$1.02 \\ 1.10 \\ 1.32 \\ 1.42$	$32.00 \\ 27.74 \\ 15.24 \\ 16.42$	5, 150 5, 535 6, 670 7, 180	9, 270 9, 960 12, 000 12, 930
17658	5.5	A B C D	21. 1 16. 5	a 31. 5 33. 3 39. 9 43. 3	41.3 43.7 52.3 56.7	6.1 6.5 7.8	.73 .77 .92 1.00			· · · · · · · · · · · · · · · · · · ·		5, 105 5, 400 6, 470 7, 015	9, 190 9, 720 11, 640 12, 630
17722F	5.6	A B C D	25.1 20.6	a 32.0 33.9 42.7 45.6	38.1 40.4 50.9 54.4	4.77 5.05 6.37	.73 .77 .97 1.04	$\begin{array}{c} 6.31 \\ 6.03 \\ 4.70 \\ 5.02 \end{array}$	52.81 55.94 70.50 75.29	$1.16 \\ 1.23 \\ 1.55 \\ 1.66$	34. 22 30. 98 15. 91 16. 99	4,980 5,275 6,650 7,100	8,970 9,500 11,970 12,780
17723F	5.5	A B C D	23.5 19.1 	a 34. 3 36. 3 44. 9 49. 4	35.2 37.2 46.0 50.6	7.00 7.40 9.15	. 59 . 62 . 77 . 85	5.85 5.54 4.23 4.66	$51.19 \\ 54.15 \\ 66.90 \\ 73.64$.99 1.05 1.29 1.42	34.38 31.24 17.66 19.43	4,755 5,030 6,210 6,835	8, 560 9, 050 11, 180 12, 310
17902	14.1	A B C D	27.2 15.3	$a 29.7 \\ 34.6 \\ 40.8 \\ 45.2$	36.1 42.0 49.6 54.8	7.0 8.1 9.6	.40 .47 .55 .61				· · · · · · · · · · · · · · · · · · ·	4, 275 4, 975 5, 870 6, 495	7,700 8,950 10,570 11,690
				·	FRI	EMON	TCO	UNTY	•		•		· .

1

ĺ

)

17584	ð 2. 1	В С	11.3	39.7 44.7	35.0 39.5	14.0 15.8	$3.54 \\ 4.00$					5,560 6,270	10,010 11,280
-------	--------	--------	------	--------------	--------------	--------------	----------------	--	--	--	--	----------------	---------------

HOT SPRINGS COUNTY.

17709	2.0	A 13.7 B 11.9 C D	35.8 36.6 41.5 46.2	41.7 42.6 48.3 53.8	8.8 8.9 10.2	0.60 .61 .69 .77	 	 	5,800 5,915 6,720 7,480	10, 440 10, 650 12, 090 13, 460
17830	2.2	A 11.5 B 9.5 C D	34.3 35.0 38.7 46.1	40.0 40.9 45.2 53.9	$14.2 \\ 14.6 \\ 16.1 \\ \dots$.45 .46 .51 .61			5, 545 5, 675 6, 270 7, 475	9,990 10,210 11,280 13,450
17731	11.6	A 25. 2 B 15. 3 C D	33. 1 37. 5 44. 2 47. 9	36.0 40.7 48.1 52.1	5.7 6.5 7.7	.98 1.11 1.31 1.42	 	 	4, 180 4, 730 5, 580 6, 045	7, 520 8, 510 10, 050 10, 880

NATRONA COUNTY.

17778	6.1	В С	19.2	a 33.6 35.8 44.3 47.8	39.2 48.5	$5.8 \\ 7.2$.75 .92	 	 	5,155 6,380	8,710 9,280 11,480 12,370
17895	10.0	A B C D	24.9 16.5	<i>a</i> 30. 7 34. 1 40. 9 43. 9	52.3	6.8	. 53	 	 	4, 830 5, 370 6, 435 6, 900	8,700 9,670 11,580 12,420

a Volatile matter determined by the modified official method. b This small air-drying loss indicates that the coal is weathered. 508 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

DESCRIPTIONS OF COAL SAMPLES.

ALABAMA.

DEKALB COUNTY.

18230. Semibituminous coal from Yellow Creek mine of W. C. Hill, sec. 24(?), T. 7 S., R. 9 E., 3 miles northwest of Blanche. Sample cut in mine 300 feet south of mouth, from surface of coal weathered for 10 months, on November 20, 1913, by Charles Butts. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Yellow Creek mine.

	г .	ш.
Coal ¹ , ²	1	1
Clay ²		$\frac{1}{2}$
Coal 1, 2		
Clay ²		$\frac{1}{2}$
Coal ^{1,2}		4
Clay ²		1
Coal ^{1, 2}		$3\frac{1}{2}$

 $2 1\frac{1}{2}$

18233. Semibituminous coal from same locality as No. 18230. Sample cut 20 inches below surface of coal weathered for 10 months. Sample dry.

18234. Semibituminous coal from same locality as No. 18230. Sample cut 1 foot below surface of coal weathered for 10 months. Sample dry.

18231. Semibituminous coal from Beeson Gap mine of McSpaden & Baker, T. 7 S., R. 9 E., 1 mile northeast of Fort Payne. Sample cut in mine 200 feet northeast of mouth on November 20, 1913, by Charles Butts. Coal bed at point sampled is 1 foot 1 inch thick. Sample represents entire thickness of bed. Sample dry.

18232. Semibituminous coal from prospect pit of W. T. Underwood, sec. 31 (?), T. 7 S., R. 10 E., 1 mile west of Blanche. Sample cut in pit 10 feet from mouth on November 20, 1913, by Charles Butts. Sample dry. Section at point of sampling is as follows:

Section of coal bed in prospect pit of W. T. Underwood.

Coal	Ft. 1	in. 9 2
	1	11

1 Part sampled for Nos. 18230 and 18234.

² Part sampled for No. 18233.

⁸ Not included in sample.

COLORADO. LA PLATA COUNTY.

17745F. Bituminous coal from Mormon mine in sec. 17, T. 33 N., R. 11 W. Sample cut at end of main entry, 50 feet from mouth of mine, on August 6, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Mormon mine.

1

	Ft.	in.
Coal		7
Shale ¹		ł
Coal		7
Shale		ł
Coal, bony	1	. 9
Shale ¹		1
Coal		11
Shale ¹		ł
Coal	1	5^{2}
-	5	51

17747. Bituminous coal from Cinder Butte mine in sec. 14, T. 32 N., R. 12 W. Sample cut at end of entry on August 5, 1913, by M. A. Pishel. Coal weathered. Section at point of sampling is as follows:

Section of coal bed in Cinder Butte mine.

	Ft.	in.
Coal, bony		5
Coal		8
Shale ¹		1
Coal		3
Bone		5
Coal		5
Coal, bony		9
Bone		2
Coal	1	10
	5	

17748. Bituminous coal from Soda Spring mine in sec. 1, T. 32 N., R. 12 W. Sample cut in mine 100 feet west of mouth on August 5, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Soda Spring mine.

	Ft.	in.
Coal, bony ¹	2	6
Coal	2	10
Shale ¹		11

	Fτ.	1n.
Coal	1	10
Bone ¹		1
Coal.		8
Bone ¹		
Coal		·8
Bone ¹	2	1
		<u> </u>

11

8

17855. Bituminous coal from Wheeler mine in Hay Gulch in sec. 31, T. 35 N., R. 11 W., 7½ miles southwest of Hesperus, Upper No. 5 bed. Sample cut near end of entry, 75 feet from mouth of mine, on September 12, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Wheeler mine.

oal one ¹	1	8
Coal, bony.		10
-	5	7

MOFFAT COUNTY.

17592. Subbituminous coal from Seick mine in sec. 2, T. 7 N., R. 92 W., 8 miles northwest of Craig. Sample cut in mine 120 feet N. 80° E. of mouth on July 24, 1913, by E. T. Hančock. Mine had not been worked for two years. Sample weathered (?). Section at point of sampling is as follows:

Section of coal bed in Seick mine.

	Ft.	in.
Coal (not mined) ¹	2	· 3
Coal	5	3
•		
	7.	6

17593. Subbituminous coal from Kimberly mine (not operated) in sec. 32, T. 7 N., R. 90 W. Kimberly bed. Sample cut in mine 120 feet N. 12° E. of mouth on July 25, 1913, by E. T. Hancock. Sample was wet (weathered ?). Section at point of sampling is as follows:

¹ Not included in sample.

Section of coal bed in Kimberly mine.

	Ft.	in.
Coal, impure	2	1
Coal	2	1
Coal, impure	1	5
Coal	2	1
	7	8

17686. Bituminous (?) coal from Lay mine of Wisconsin Coal Mining Co., 1 mile south of Lay, in sec. 31, T. 7 N., R. 93 W. Sample cut in mine 270 feet south of mouth on August 21, 1913, by E. T. Hancock. Sample weathered (?). Section at point of sampling is as follows:

Section of coal bed in Lay mine.

	Ft.	in.
Coal		11;
Coal, with streaks of shale		5
Sandstone		11
Coal, with thin streaks of shale		4
Coal	1	
Shale, sandy		11/2
Coal, with thin streaks of shale		$6\frac{1}{2}$
Coal ¹	4	7^{-}
Shale, sandy		7
Coal		10
Coal, with some streaks of shale	1	11

11 5

17696. Subbituminous coal from Blevins mine in sec. 28, T. 8 N., R. 93 W. Sample cut in mine 140 feet N. 50° E. of mouth on August 19, 1913, by E. T. Hancock. Sample weathered (?). Section at point of sampling is as follows:

Section of coal bed in Blevins mine.

Coal Shale Coal ¹	-	5 1
•	11	5]

17782. Subbituminous coal from Hart mine in T. 4 N., R. 91 W. (not subdivided). Sample cut in mine 100 feet N. 39° W. of mouth on September 22, 1913,

¹ Part sampled.

by E. T. Hancock. Coal bed at point sampled is 6 feet 9 inches thick, and sample represents entire bed. Sample wet.

17840. Bituminous (?) coal from Roby mine in T. 4 N., R. 91 W. (not subdivided). Sample cut in mine 75 feet N. 56° W. of mouth on September 24, 1913, by E. T. Hancock. Sample represents 7 feet $1\frac{1}{2}$ inches of coal, entire thickness of bed. Sample wet and weathered.

ILLINOIS.

McDONOUGH COUNTY.

15119. Bituminous coal from mine of Frank Burdick in NE. $\frac{1}{4}$ sec. 16, T. 4 N., R. 2 W., 1 mile northwest of Industry. Murphysboro bed. Composite of samples 15117 and 15118.¹

KENTUCKY.

PIKE COUNTY.

17459F. Bituminous coal from No. 2 mine of Burnwell Coal & Coke Co., 2 miles west of Matewan. No. 2 or Gas bed. Sample cut in room 9 off fourth left entry off main entry, 2,000 feet from mine mouth, on June 3, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in No. 2 mine.

		in.
Coal		5
Bone ²		7
Coal		2
Clay ²		2
Coal	2	
Coal, splint		9
	5	1

17460F. Bituminous coal from Little Thacker mine of Thacker Coal Co., $1\frac{1}{2}$ miles southwest of Thacker, Alum bed. Sample cut at face of first right entry off main air course, 700 feet from mine mouth, on June 5, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

See U. S. Geol. Survey Bull. 531, pp. 338-339, 1913.
Not included in sample.

Section of Alum coal bed in Little Thacker, mine.

	Ft.	in.
Coal, bony		$1\frac{1}{2}$
Coal	2	5
Clay ¹		4
Coal, splint		
	4	$6\frac{1}{2}$

17461F. Bituminous coal from Little Thacker mine of Thacker Coal Co., 1½ miles southwest of Thacker. Thacker bed. Sample cut at last right entry off No. 2 drift, 3,000 feet from mine mouth, on June 5, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of Thacker coal bed in Little Thacker mine.

	Ft.	in.
Coal, lustrous	1	4
Coal, splint	. 1	4
Coal, gray, splint		7
Coal, lustrous		10
	5	1

MONTANA.

BIG HORN COUNTY.

17711. Subbituminous coal from local strip pit in sec. 30, T. 1 N., R. 38 E., 36 miles south of Sanders. Sample cut 6 feet deep under heavy sandstone on August 27, 1913, by G. S. Rogers. Sample dry. Section at point of sampling is as follows:

Section of coal bed in local bank.

	Ft.	in.
Bone		2
Coal ²	7	
Coal (weathered)	3	4
Coal, reported in drill record	21	
	31	6

HILL COUNTY.

17841F. Subbituminous coal from old mine of A. M. Banks and Charles Severn, in NW. 4 sec. 28, T. 37 N., R. 9 E. No. 1 bed. Sample cut in first room on right,

> ¹ Not included in sample. ² Part sampled.

75 feet from mine mouth, on September 30, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in old mine of A. M. Banks and Charles Severn.

	гı.	ш.
Coal	3	2
Shale, coaly ¹		5
	9	7

17842F. Bituminous coal from West Butte mine of P. J. McDermott, NW. sec. 6, T. 36 N., R. 2 E. Sample cut in mine 100 feet west of shaft on September 11, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in West Butte mine.

	Ft.	in.
Coal	2	1
Shale ¹		4

25

17892. Subbituminous coal from outcrop in SW. $\frac{1}{4}$ sec. 2, T. 37 N., R. 9 E., 35 miles north of Rudyard. No. 1 bed. Sample cut September 28, 1913, by Eugene Stebinger. Sample dry and weathered. Section at point of sampling is as follows:

Section of coal bed on outcrop.

· . ·	Ft.	in.
Coal	2	8
Shale, coaly ¹	• .	4

3

MUSSELSHELL COUNTY.

17586F. Subbituminous coal from mine No. 2 of Republic Coal Co., in SE. $\frac{1}{2}$ sec. 36, T. 8 N., R. 25 E., $\frac{31}{2}$ miles southeast of Roundup. Roundup bed. Sample cut in mine 800 feet east of shaft on July 21, 1913, by C. T. Lupton. Sample dry. Section at point of sampling is as follows:

Section of coal bed in mine No. 2.

Coal	Ft.	in.
Coal	. 4	3
Bone ¹	-	1
Coal		
	5	10

¹ Not included in sample.

17587. Subbituminous coal from mine No. 4 of Davis Coal Co., in SE. $\frac{1}{4}$ sec. 17, T. 8 N., R. 25 E., 3 miles southeast of Roundup. Roundup bed. Sample cut in mine 3,000 feet S. 5° W. of mouth on July 21, 1913, by C. T. Lupton. Sample damp. Section at point of sampling is as follows:

Section of coal bed in mine No. 4.

Coal		
Bone ¹ Coal		
	3	6

17588. Subbituminous coal from mine No. 3 of Roundup Coal Mining Co., NE. 4 sec. 22, T. 8 N., R. 25 E., one-half mile west of Roundup. Roundup bed. Sample cut in room 2, off seventh entry west, 3,000 feet west from mouth of entry, on July 21, 1913, by C. T. Lupton. Sample represents 5 feet 8 inches of coal, entire thickness of bed. Sample dry.

17589. Subbituminous coal from Keene mine of Pine Creek Coal Mining Co., in NE. ½ sec. 28, T. 8 N., R. 25 E., 3½ miles southwest of Roundup. Roundup bed. Sample cut in mine 500 feet northeast of mouth on July 19, 1913, by C. T. Lupton. Sample represents 3 feet of coal, entire thickness of bed. Sample dry.

NEW MEXICO.

COLFAX COUNTY.

17703. Bituminous coal from Brilliant mine of St. Louis, Rocky Mountain & Pacific Co., T. 31 N., R. 23 E. Tin Pan bed. Sample cut in first east entry off No. 5 main south entry of Tin Pan Canyon on August 30, 1913, by W. T. Lee. Section at point of sampling is as follows:

Section of coal bed in Brilliant mine.

•	Ft.	in.
Coal		6
Shale ¹		2
Coal		9
Shale ¹		8
Coal	1	9
Bone ¹		1
······································		

•	Ft. in.	
Coal	1	2
Shale ¹		2
Coal		8
·. –		

 $5 10\frac{1}{2}$

17746F. Bituminous coal from mine of Yankee Fuel Co., in sec. 35, T. 32 N., R. 62 W. Highest bed. Sample cut in mine 570 feet N. 20° E. from mouth on September 18, 1913, by W. T. Lee. Sample dry. Section at point of sampling is as follows:

Section of coal bed in mine of Yankee Fuel Co.

	Ft.	in.
Coal		7
Shale ¹		11
Coal	1.	7
Shale ¹	1	1
Coal	1	9
	5	11

17781F. Bituminous coal from Koehler No. 3 mine of St. Louis, Rocky Mountain & Pacific Co., at Koehler. Raton bed. Sample cut in room 71, off second east entry, on September 23, 1913, by W. T. Lee. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Koehler No. 3 mine.

	Ft.	in.
Coal		10
Coal, bony		4
Coal.		6
Bone ¹		1
Coal.	1	5
Bone ¹		12
Coal	1	1
Bone ¹	1	4
Coal		9
Bone ¹		1
Coal	3	2
	9	71

SAN JUAN COUNTY.

17749. Bituminous coal from the New Mexico mine in sec. 22, T. 32 N., R. 12 W., 28½ miles southwest of Durango. Bed A. Sample cut in mine 75 feet east of mouth on August 5, 1913, by M. A. Pishel. Sam-

¹Not included in sample.

ple dry. Section at point of sampling is as follows:

Section of coal bed in New Mexico mine.

	Ft.	in.
Coal, bony	4	9
Shale 1		2
Coal	2	1
	7	

17750. Bituminous coal from Government mine in sec. 21, T. 30 N., R. 16 W., 20 miles northwest of Farmington. Hogback bed. Sample cut in mine 100 feet southwest of mouth on August 22, 1913, by M. A. Pishel. Sample represents 6 feet 3 inches of coal, entire thickness of bed.

SOCORRO COUNTY.

17602. Bituminous (?) coal from prospect in sec. 18, T. 1 N., R. 6 W., 20 miles northwest of Magdalena. Sample cut in face of entry, 30 feet from mouth, on July 28, 1913, by D. E. Winchester, Sample dry. Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	in.
Bone ¹		2
Coal		41
Shale, carbonaceous ¹		2
Coal		4
Shale ¹		1
Coal	.1	7

 $2 7\frac{3}{4}$

17728. Bituminous coal from prospect in SW. 1 sec. 20, T. 3 N., R. 9 W., 65 miles northwest of Magdalena. Sample cut in face of entry, 8 feet from mouth, on September 5, 1913, by D. E. Winchester. Sample dry and slightly weathered. Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	
Coal		6
Bone ¹		2
Coal		6
Bone ¹		11
Coal	2	3
	3	6]

5 8

OREGON.

GRANT COUNTY.

18125. Lignite from prospect on the Stewart ranch in NW. $\frac{1}{4}$ NW. $\frac{1}{4}$ sec. 11, T. 13 S., R. 27 E., $5\frac{1}{2}$ miles east of Dayville. Sample cut from face of old prospect. Lignite probably weathered. Section at point of sampling is as follows:

Section of lignite bed in old prospect.

	Ft.	in.
Lignite ¹	1	
Sandstone 1		6
Lignite	2	2
Sandstone 1.		4
Lignite ¹	. 1	8
0		

WHEELER COUNTY.

18126. Subbituminous (?) coal from prospect in Dry Hollow in SW. $\frac{1}{4}$ SE. $\frac{1}{4}$ sec. 28, T. 8 S., R. 21 E. Sample cut 20 feet from mouth of drift 130 feet long. Section at point of sampling is as follows:

Section of coal bed in prospect in Dry
Hollow.
flottow. Ft. in.
Coal and bone ² 1 Coal and bone ² ³ 6 Sandstone 6
Sandstone
Coal ³ 1 6
Coal ²³
10

18127. Subbituminous (?) coal from same locality as No. 18126.

PENNSYLVANIA. CENTER COUNTY.

17444F. Bituminous coal from Macon drift, Poormansite mine of Lehigh Valley Coal Co., 1½ miles northeast of Clarence. Lower Kittanning bed. Sample cut in side entry, 1,000 feet from mine mouth, on May 31, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Macon drift, Poormansite mine.

	Ft.	in.
Coal		8
Bone ¹		3
Coal	: 2	10
`	3	-9

¹ Not included in sample.

² Parts sampled for No. 18127.

⁸ Parts sampled for No. 18126.

365°-Bull. 541-14-33

17445. Semibituminous coal from Poormansite "High Coal" of Lehigh Valley Coal Co., 1½ miles northeast of Clarence. Lower Freeport bed. Sample cut in side entry, 600 feet from mine mouth, on May 31, 1913, by M. A. Pishel. Sample moist. Section at point of sampling is as follows:

Section of coal bed in Poormansite "High Coal" mine.

	Ft.	m.
Coal	2	7
Bone ¹		10
Coal	2	6
	5	11

17446F. Bituminous coal from mine No. 15 of Lehigh Valley Coal Co., onehalf mile northeast of Gillintown. Lower Freeport bed. Sample cut in main entry, 500 feet from mine mouth, on May 31, 1913, by M. A. Pishel. Sample damp. Section at point of sampling is as follows:

Section of coal bed in mine No. 15.

F	t.	in.
Bone ¹		10
Coal	L	6
Bone ¹		2
Coal 1	L	
	3	6

17447F. Bituminous coal from mine No. 22 of Lehigh Valley Coal Co., 12 miles northwest of Clarence. Lower A bed. Sample cut in main entry, three-fourths of a mile from mine mouth, on May 31, 1913, by M. A. Pishel. Sample dry. Section at point of sampling is as follows:

Section of coal bed in mine No. 22.

Coal, bony ¹ Fire clay ¹ Coal Clay ¹	3	5 2] 1]
Coal		$\frac{\frac{12}{8}}{1}$

CLEARFIELD COUNTY.

17441F. Bituminous (?) coal from Horseshoe mine of Potter, Bigler & Potter, one-half mile south of Karthaus. Lower Kittanning bed. Sample cut from room 3, second entry, 1,000 feet from mine

014 CONTRIBUTIONS TO ECONOR	MIC GEOLOGY, 1912, PART II.
mouth, on June 2, 1913, by M. A. Pishel. Sample dry. Section at point of sam- pling is as follows:	Section of coal bed in Dagus mine. Ft. in. Coal, bony ¹ 1
Section of coal bed in Horseshoe mine.	Coal, good
Ft. in. Coal, bony ¹	$\begin{array}{c} Pyrite^{1} \dots & 1 \\ Coal \dots & 1 \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \end{array} $
Pyrite ¹ ¹ Coal	17456F. Bituminous coal from Byrne- dale No. 31 mine of Shawmut Mining Co., at Byrnedale. Lower Kittanning
17442F. Semibituminous coal from the Shinola mine of Shadock & Kelly at Karthaus. Bed A. Sample cut in main entry, 600 feet from mine mouth, on June 2, 1913, by M. A. Pishel. Sample dry.	bed. Sample cut in first left entry off main entry, 600 feet from mine mouth, on June 3, 1913, by M. A. Pishel. Sec- tion at point of sampling is as follows: Section of coal bed in Byrnedale No. 31
Section at point of sampling is as follows: Section of coal bed in Shinola mine.	mine.
Ft. in. Coal 1 6 Bone ¹ 4 4 Coal 1 8	Ft. in. Coal, bony ¹
Bone ¹ 5 3 11	3 61
17443F. Bituminous coal from Eriton mine of Northwestern Mining & Exchange Co., 3½ miles south of Dubois. Lower Freeport bed. Sample cut in mine 200 feet southwest of shaft on June 5, 1913, by M, A. Pishel. Sample dry. Section at point of sampling is as follows:	17457. Bituminous coal from mine No. 1 of Dents Run Mining Co., at Wilmere. Lower Kittanning bed. Sample cut in fourth left entry, 600 feet from mine mouth, on June 3, 1913, by M. A. Pishel. Sample dry. Section at point of sam- pling is as follows:
Section of coal bed in Eriton mine.	Section of coal bed in mine No. 1.
Ft. in. Coal, bony 1	Ft. in. Coal, bony 10 Clay 11 Coal
ELK COUNTY. $7 8\frac{1}{2}$	4 3 1
17455. Bituminous coal from Dagus mine of Northwestern Mining & Exchange Co., at Dagus. Lower Kittanning bed. Sample cut in room off face heading, first right entry (Fleming section); 1 mile from mine mouth, on June 4, 1913, by M. A. Pishel. Sample dry. Section at point of sampling is as follows: 'Not included in sample.	17458. Bituminous coal from Elbon No. 5 mine of Shawmut Mining Co., at Brandy Camp. Lower Kittanning bed. Sam- ple cut in first left entry, No. 4 drift, 1,000 feet from mine mouth, on June 4, 1913, by M. A. Pishel. Sample dry. Section at point of sampling is as follows: ¹ Not included in sample. • Part sampled.

514 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

Ś

Section of coal bed in Elbon No. 5 mine.

	Ft.	in.
Coal	. 1	9
Mineral charcoal		1/2
Coal	1	2^{-}
	2	111

JEFFERSON COUNTY.

17448F. Bituminous coal from West Clarion mine of Northwestern Mining & Exchange Co., 1 mile west of Brockwayville. Lower Freeport bed. Sample cut in second right entry, drift No. 8, 800 feet from mine mouth, on June 5, 1913, by M. A. Pishel. Sample represents 3 feet 4 inches of coal, entire thickness of bed. Sample dry.

17449F. Bituminous coal from West Clarion drift No. 14 of Northwestern Mining & Exchange Co., 1 mile west of Brockwayville, Upper Freeport bed. Sample cut in second room off main entry on June 5, 1913, by M. A. Pishel. Sample represents 2 feet 6 inches of coal, entire thickness of bed. Sample dry.

17450F. Bituminous coal from West Clarion No. 1 mine of Northwestern Mining & Exchange Co., 1 mile west of Brockwayville, Lower Kittanning bed. Sample cut in third right entry off first entry, face drift No. 1, 4,000 feet from mine mouth, on June 5, 1913, by M. A. Pishel. Sample represents 4 feet of coal, entire thickness of bed. Sample dry.

SOMERSET COUNTY.

17689. Semibituminous coal from mine of Perry Wyand, one-half mile south of Bakersville. Sample cut in mine 300 feet southwest of mouth on August 30, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in mine of Perry Wyand.

	Ft.	in.
Shalė ¹		2
Coal	1	8
Binder ¹		3
Coal		6
	2	7

¹ Not included in sample.

17690. Semibituminous coal from Ralphton No. 6 mine of Quemahoning Coal Co., at Zimmermantown. Upper Freeport (E) bed. Sample cut in mine 1,200 feet east of shaft on August 30, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in Ralphton No. 6 mine.

	Ft.	in.
Coal	2	7
Binder ¹		14
Coal		4 ·
Binder		1
Coal		4]
	3	6

17691. Semibituminous coal from mine of Levi Berkey, 1³/₄ miles northwest of Edie. Upper Freeport (E) bed. Sample cut in mine 400 feet N. 60° W. of mouth on August 30, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in Levi Berkey mine.

	Ft.	in.
Coal	. 2	111
Binder 1		11
Coal		41
Binder 1.		ļ
Coal	•	7]
· · · · · · · · · · · · · · · · · · ·	4	1

17692. Bituminous (?) coal from mine of Jake Miller, 14 miles southwest of Gillette. Sample cut in mine 500 feet northeast of mouth on August 30, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in mine of Jake Miller.

Ft. 2	in.
Binder ¹	2
Coal	4 1
Coal, dirty.	$5\frac{1}{2}$
3	

17693. Semibituminous coal from Neva mine of James McKelvey, three-fourths of a mile northeast of Somerset. Sample cut in mine 400 feet from mouth on

516 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

ł

August 29, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in the Neva mine.

,	Ft.	
Shale ¹	-	3
Coal	. 2	4
Binder ¹		
Coal	-	31
Binder 1.	•	34
	3	1

17694. Semibituminous coal from mine of Sanner & Sheffar, one-half mile southeast of Somerset. Unidentified bed. Sample cut in mine 300 feet from mouth on August 29, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in Sanner & Sheffar mine.

Bone ¹ Coal. Binder ¹ . Coal, dirty ¹ .	2	3 8½ 5
	4	11

17695. Semibituminous coal from the Stauffer No. 2 mine of Myersdale Coal Co., 41 miles northeast of Somerset. Lower Freeport (D) bed (?). Sample cut in mine 500 feet from mouth on August 29, 1913, by J. H. Hance. Section at point of sampling is as follows:

Section of coal bed in Stauffer No. 2 mine.

Ft.	in.
Shale ¹	2
Coal 4	$1\frac{1}{2}$
4	31

17831. Bituminous coal from mine of Reuben Horner, 2 miles northwest of Boswell. Pittsburgh bed. Sample cut in mine 50 feet from mouth on September 29, 1913, by G. B. Richardson. Coal bed at the point sampled is 10 feet 6 inches thick. Sample represents lower Sample weathered. 10 feet.

17832. Semibituminous coal from mine of J. G. Berkey, 2 miles northwest of Boswell. Pittsburgh bed. Sample cut in

¹ Not included in sample.

mine 200 feet from mouth, on September 29, 1913, by G. B. Richardson. Coal bed at the point sampled is 4 feet 10 inches thick. Sample represents lower 3 feet 6 inches. Sample weathered.

TIOGA COUNTY.

17451F. Semibituminous coal from New mine of Morris Run Coal Mining Co... at Morris Run. Morgan bed. Sample cut in fourth room, first entry, 1 mile from mine mouth, on May 27, 1913, by M. A. Pishel. Sample dry. Section at point of sampling is as follows:

Section of coal bed in New mine.

		in.
Coal, bony ¹		6
Coal		
•		
	3	2

17452. Semibituminous coal from Bear Run mine of Blossburg Coal Co., one-half mile north of Landrus. Bloss bed. Sample cut in pillar in main entry 700 feet from mine mouth, on May 28, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Bear Run mine.

		in.
Coal	1	11
Shale ¹		3
Coal, dirty ¹	÷	10
Coal	1	2
Pyrite (lens) ¹		3
Coal		6

4 15

17453. Semibituminous coal from Anna S. mine of Fall Brook Coal Co., one-half mile west of Antrim. Bloss bed. Sample cut in room off side entry 1 mile from mine mouth, on May 29, 1913, by M. A. Pishel. Section at point of sampling is as follows:

Section of coal bed in Anna S mine.

	Ft.	in.
Coal	1	11
Bone ¹		3
Coal	1	0
Bone ¹		5
Coal		10
	4	5
Coal	1	0 5 10

17454F. Semibituminous coal from New mine of Morris Run Coal Mining Co., at Morris Run. Bloss bed. Sample cut in Sterling heading, 3 miles from mine mouth, on May 27, 1913, by M. A. Pishel. Sample dry. Section at point of sampling is as follows:

Section of coal bed in New mine.

	Ft.	in.
Coal, bony ¹		7
Coal, good	2	5
	3	

WESTMORELAND COUNTY.

17901F. Bituminous coal from mine of John Dyer, 3 miles southeast of Ligonier. Upper Freeport bed. Sample cut in end of entry, 200 feet from mine mouth, on October 15, 1913, by G. B. Richardson. Section at point of sampling is as follows:

Section of coal bed in mine of John Dyer.

	Ft.	in.
Coal		
Shale ¹		1
Coal		4
Shale 1		1
Coal		4
-		

UTAH.

2 11

CARBON COUNTY.

17604F. Bituminous coal from No. 3 mine of Utah Fuel Co., in the SW. ‡ SW. ‡ sec. 4, T 15 S., R. 14 E., 1 mile southeast of Sunnyside. Lower bed. Sample cut in face of second left entry in dips, about 150 feet within room 1, 1 mile northeast of mine mouth, on August 5, 1913, by F. R. Clark. Sample dry. Section at point of sampling is as follows:

Section of coal bed in No. 3 mine.

Coal ¹ Coal Coal ¹	Ft. 1 6 2	. in. 10
	9	10
17605 Bituminous coal same	94	No

17605. Bituminous coal, same as No. 17604F. Sample cut in face of room 5

¹ Not included in sample.

off second right entry, about 1 mile south of mine mouth. Sample represents 5 feet 4 inches of coal, entire thickness of bed. Sample dry.

GRAND COUNTY.

17577F. Bituminous coal from mine No. 1-A of American Fuel Co., of Utah, in the NW. $\frac{1}{4}$ sec. 27, T. 20 S., R. 20 E., 5 miles north of Thompson; middle bed of Bear coal. Sample cut in face of main entry, 1,200 féet east slightly southeast of mine mouth, on July 17, 1913, by F. R. Clark. Sample dry. Section at point of sampling is as follows:

Section of coal bed in No. 1-A mine.

	Ft.	in.
Coal	1	3
Coal, bony	1	1
Coal	1	
Shale		붗
Coal	1	2^{-}
Bone		1
Coal	1	1
	5	81

17578. Bituminous coal from prospect of American Fuel Co. of Utah, in SE. 4 NW. 4 sec. 27, T. 20 S., R. 20 E., 5 miles north of Thompson. Lower bed of Bear coal. Sample cut in face of prospect, 85 feet east from mouth, on July 17, 1913, by F. R. Clark. Sample dry and probably slightly weathered. Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	. in.
Coal ¹		10
Clay ¹		5
Coal	4	31
-	5	6 <u>1</u>

SANPETE COUNTY.

17715. Bituminous coal from Coal Creek mine of Johnny Reese in SE. 1782 NE. 1782 Sc. 14, T. 16 S., R. 2 E., 6 miles northwest of Ephraim. Sample cut in mine 300 feet N. 24° E. of mouth on September 4, 1913, by F. R. Clark. Sample dry. Section at point of sampling is as follows:

518 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1912, PART II.

Section of coal bed in Coal Creek mine.

	Ft.	in.
Coal, bright		5
Coal, dull		5
Coal, bright		2
Coal, dull	:	8
Bone ¹		11
- '		
	.,	7

17717. Bituminous coal from abandoned mine ("north tunnel") in NE. $\frac{1}{4}$ SE. $\frac{1}{4}$ sec. 2, T. 16 S., R. 2 E., $3\frac{1}{2}$ miles southwest of Wales. North tunnel bed. Sample cut beyond zone of weathering, 300 feet N. 5° E. of mine mouth, on September 9, 1913, by F. R. Clark. Sample wet. Section at point of sampling is as follows:

Section of coal bed in North Tunnel mine.

	Ft.	in.
Coal	1	3
Shale ¹	1	10
Coal		3
Shale ¹		$1\frac{1}{2}$
Coal		4
Shale ¹		1
Coal		6
Shale ¹		6
Coal	1	1
Bone ¹		3
•	6	$2\frac{1}{2}$

17718. Bituminous coal from mine of Henry Thomas (Old Canyon) in N. $\frac{1}{2}$ NE. $\frac{1}{2}$ sec. 35, T. 15 S., R. 2 E., 2 miles west of Wales. Sample cut from face of room 6, 1,400 feet north of mine mouth, on September 9, 1913, by F. R. Clark. Sample fresh and dry. Section at point of sampling is as follows:

Section of coal bed in mine of Henry Thomas.

	Fτ.	ın.
Coal	1	6
Bone		3
Coal		$5\frac{1}{2}$
Bone		$\frac{1}{2}$
Coal	1	$2\frac{1}{2}$
Bone ¹		8
Coal ¹		2
Shale ¹	1	2
Coal (not mined). ¹		
	5	31+

¹ Not included in sample.

VIRGINIA.

DICKENSON COUNTY.

17559. Bituminous coal from Nora Mills mine of Clinchfield Coal Corporation at Nora. Widow Kennedy coal bed. Sample cut 300 feet east of drift mouth on July 12, 1913, by Henry Hinds. Sample includes entire bed. Sample wet. Section at point of sampling is as follows:

Section of coal bed in Nora Mills	m	ine.
	Ft.	in
Coal.		6 3
Bone		1
Coal.		3
"Rash"		ł
Coal.		31
"Rash"		ł
Coal.		25
"Rash"		18
Coal		4
· · · · ·	2	81

17560. Bituminous coal from same mine as No. 17559. Sample wet. The section of the coal bed at point sampled, 300 feet northeast of drift mouth, is as follows:

Section of coal bed in Nora Mills mine.

	Ft.	in.
Coal.		$5\frac{1}{2}$
Bone		1
Coal		6 1
Shale ¹		14
Coal.		51
Bone.		
Coal		8
	2	35
	_	~ 0

17561F. Bituminous coal. Composite of Nos. 17559 and 17560.

17743. Bituminous coal from mine of Yellow Poplar Lumber Co., 4 miles northwest of Prater, Buchanan County. Upper Banner (?) coal bed. Sample cut in mine 200 feet from mouth on September 17, 1913, by T. K. Harnsberger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Yellow Poplar Lumber Co. mine.

F 6.	ın.
Coal, pyritiferous ¹	8
Shale ¹	7
Coal.	3

	Ft.	in.
"Rash"		1
Coal.		$9\frac{1}{2}$
Bone ¹		1
Coal	1	11/2
Sandstone ¹		11
Coal	ļ	3
		105
	4	108

17744. Bituminous coal from same mine as No. 17743. Sample dry. Section at point of sampling, 220 feet N. 85° E. of mine mouth, is as follows:

Section of coal bed in Yellow Poplar Lumber Co. mine.

Ft.	in.
	9 1
	6불
	3
	ł
	8吉
	1
1	$2\frac{7}{8}$
	1
1	$3\frac{1}{2}$
4	113
	1 1

17751. Bituminous coal from mine of C. C. Owens, 1 mile northeast of Mart. Splash Dam coal bed. Sample cut 10 feet north of main drift, 75 feet east of mine mouth, on September 19, 1913, by T. K. Harnsberger. Sample dry, coal slightly weathered. Section at point of sampling is as follows:

Section of coal bed in C. C. Owens's mine.

	Ft.	ìn.
Coal		
"Rash"		ł
Coal		
Shale Coal		$\frac{1}{4}$
Coal		2
Shale ¹		11
Coal		71
	2	67

17752. Bituminous coal from same mine as No. 17751. Sample dry, coal slightly weathered. Section at point of sampling, 15 feet south of main entry and 75 feet east of mine mouth, is as follows:

¹ Not included in sample.

| Section of coal bed in C. C. Owens' mine.

	Ft.	in.
Coal		8
Shale ¹		1
Coal		2
Shale ¹		1
Coal		31
Shale and pyrite		ł
Coal		4
	0	71

RUSSELL COUNTY.

18121F. Bituminous coal from mine No. 103 of Clinchfield Coal Corporation. Widow Kennedy bed. Sample cutin mine 260 feet N. 55° W. of mouth on November 17, 1913, by T. K. Harnsberger. Sample represents 5 feet 2 inches of coal, entire thickness of bed.

18122. Bituminous coal from mine No. 52 of Clinchfield Coal Corporation. Lower Banner bed. Sample cut 325 feet northeast of mouth of No. 0 drift on November 17, 1913, by T. K. Harnsberger. Sample represents 3 feet of coal, entire thickness of bed.

18123. Bituminous coal from same mine as No. 18122. Sample cut 1,700 feet southwest of mouth of No. 1 drift. Section at point of sampling is as follows:

Section of coal bed in mine No. 52.

	Ft.	in.
Coal	2	61
Coal and shale 1		2

 $^{2 8\}frac{1}{2}$

18124F. Bituminous coal. Composite of samples Nos. 18122 and 18123.

18128. Bituminous coal from No. 2 mine of Clinchfield Coal Corporation. Upper Banner bed. Sample cut 2,400 feet S. 18° E. of mouth of drift No. 3 on November 18, 1913, by T. K. Harnsberger. Section at point of sampling is as follows:

Section of coal bed in No. 2 mine.

	Ft	. in.
Coal	1	10
Sandstone 1		17
Coal	1	$2\frac{1}{2}$
Sandstone ¹		7
Coal	2	5
	5	71

18129. Bituminous coal from same mine as No. 18128. Sample cut 2,750 feet S. 78° E. of mouth of drift No. 5, tunnel line. Section at point of sampling is as follows:

Section of coal bed in No. 2 mine.

	Ft.	in.
Coal	1	4
Sandstone ¹		1
Coal	1	2
Shale ¹		1
Coal	1	6
	4	2

18130. Bituminous coal from same mine as No. 18128. Sample cut 3,400 feet S. 85° W. of mouth of drift No. 1, middle incline. Section at point of sampling is as follows:

Section of coal bed in No. 2 mine.

	Ft.	in.
Coal	1	6
Sandstone 1		1
Coal	1	5
Sandstone ¹		1
Coal	1	10
· <u> </u>	4	11

18131F. Bituminous coal. Composite of samples 18128, 18129, and 18130.

18235. Bituminous coal from mine No. 6 of Clinchfield Coal Corporation, at Wilder. Upper Banner coal bed. Sample cut 3,000 feet S. 71° W. of mouth of No. 1 opening on November 25, 1913, by T. K. Harnsberger. Section at point of sampling is as follows:

Section of coal bed in mine No. 6.

	Ft.	in.
Coal	1	6
Sandstone ¹		1
Coal	1	6 3
Shale ¹		1
Coal	2	2
Shale ¹		$3\frac{1}{4}$
Coal	1	$1\frac{1}{2}$
· · · ·	6	9 <u>1</u>
18236. Bituminous coal from san	nøm	ine
as No. 18235. Sample cut in a	oom	5,

¹ Not included in sample.

1,250 feet S. 35° E. of No. 3 opening, on November 26, 1913. Section at point of sampling is as follows:

Section of coal bed in mine No. 6.

	Ft.	in.
Coal	1	2.
Sandstone ¹		1
Coal	1	6 1
Coal and shale ¹		41
Coal		4]
Shale ¹		Ĵ
Coal		
Coal and shale ¹		6
Coal		8 1
	6	17

18237. Bituminous coal from same mine as No. 18235. Sample cut 4,000 feet S. 10° W. of No. 3 opening. Section at point of sampling is as follows:

Section of coal bed in mine No. 6.

	Ft.	in.
Coal	1	7
Sandstone ¹		1
Coal	1	8 1
Shale ¹		1
" Rash " ¹		4]
Coal	1	11
"Rash" and clay 1		6
Coal	1	5
· · · · · ·	7	8

18238. Bituminous coal. Composite of samples Nos. 18235, 18236, and 18237.

18239. Bituminous coal from mine No. 201 of Clinchfield Coal Corporation, 1 mile northeast of Slemp. Bed No. 4. Sample cut 5,200 feet N. 33° W. of shaft on November 26, 1913, by T. K. Harnsberger. Section at point of sampling is as follows:

Section of coal bed in mine No. 201.

"Rash" ¹	Ft.	in. Q
Coal		0
Sandstone 1		3
Coal	3	1
	6	1

18240. Bituminous coal from same mine as No. 18239. Sample cut 1,600 feet N. 68° W. of shaft. Section at point of sampling is as follows:

Section of coal bed in mine No. 201.

0	Ft.	in.
Coal	1	$9\frac{1}{2}$
Shale 1		5
Shale ¹ Coal	$\dot{2}$	3
	4	54

18241. Bituminous coal from same mine as No. 18239. Sample cut 2,900 feet N. 27° W. of shaft. Section at point of sampling is as follows:

Section of coal bed in mine No. 201.

	Ft.`	in.
Coal	1	4 1
Shale ¹		$3\frac{1}{2}$
Coal	2	3
· · · · · ·	3	11

18242. Bituminous coal. Composite of samples Nos. 18239, 18240, and 18241.

18243. Bituminous coal from mine No. 55 of Clinchfield Coal Corporation, at Wilder. Lower Banner coal bed. Sample cut 900 feet S. 60° W. of No. 3 opening on November 25, 1913, by T. K. Harnsberger. Section at point of sampling is as follows:

Section of coal bed in mine No. 55.

Coal	•	4
-	3	71

18244. Bituminous coal from same mine as No. 18243. Sample cut 2,500 feet S. 35° E. of No. 5 opening. Section at point of sampling is as follows:

Section of coal bed in mine No. 55.

	Ft.	in.	
Coal		7	
"Rash" ¹		2	
Sandstone ¹	1	9	

¹ Not included, in sample.

	Ft.	in.
Coal	3	5
"Rash" ¹		7
	6	6

18245. Bituminous coal from same mine as No. 18243. Sample cut 1,300 feet N. 35° W. of No. 2 opening. Section at point of sampling is as follows:

Section of coal bed in mine No. 55.

	Ft.	in.
" Rash'' ¹		$\frac{1}{2}$
Coal	3	6
" Rash" ¹		4
	3	101

18246: Bituminous coal. Composite of samples Nos. 18243, 18244, and 18245.

WISE COUNTY.

18226. Bituminous coal from Cranesnest No. 1 mine of Clinchfield Coal Corporation, near Caney (Dickenson County). Upper Banner coal bed. Sample cut 1,500 feet southwest of entrance to main entry on November 22, 1913, by T. K. Harnsberger. Section at point of sampling is as follows:

Section of coal bed in Cranesnest No. 1

mune.		
	Ft.	in.
Coal		11
Sandstone 1.		1
Coal.	2	
Sandstone ¹		1
Coal	1	71
Coal and shale ¹		$2\frac{1}{2}$
Coal		3 1
Shale ¹		4
Coal		2
Shale ¹		13
Coal		10
	5	101

18227. Bituminous coal from same mine as No. 18226. Sample cut 500 feet

northeast of mine mouth. Section at point of sampling is as follows:

Section of coal bed in Cranesnest	No	. 1
mine.		
	Ft.	in.
Coal	1	10
Sandstone 1		- 1
Coal	2	2
_		
	4	1

18228. Bituminous coal from same mine as No. 18226. Sample cut 4,100 feet southeast of entrance to main entry. Section at point of sampling is as follows:

Section of coal bed in Cranesnest No. 1 mine.

	Ft.	in.
Coal	2	10
Sandstone ¹		1
Coal	1	$5\frac{3}{4}$
Shale		1
Coal.		3
Shale ¹		5
Coal		6
Shale		붋
Coal		$9\frac{1}{2}$
	6	45

18229F. Bituminous coal. Composite of samples Nos. 18226, 18227, and 18228.

WEST VIRGINIA.

MCDOWELL COUNTY.

17469. Semibituminous coal from mine of Central West Coal Co., 8 miles south of Iaeger. Pocahontas No. 5 bed. Sample cut in mouth of dip entry off main entry, 500 feet from mine mouth, on June 7, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed of Central West mine.

Ft.	in.
Coal, lustrous	4
Coal, laminated	7
Coal, splint	11
Coal, lustrous 1	6
8	

17470. Semibituminous coal from same mine as No. 17469. Sample cut in second left entry off main entry, 1,500 feet from

¹ Not included in sample.

mine mouth. Sample dry. Section at point of sampling is as follows:

Section of coal bed of Central West mine.

	Ft.	in.
Coal, lustrous		3
Coal, fine-grained		4
Coal, splint		5
Coal, lustrous		1
·	3	1

17471F. Semibituminous coal. Composite of samples Nos. 17469 and 17470.

MINGO COUNTY.

17462. Bituminous coal from Winifrede mine of Williamson Coal & Coke Co., 1 mile east of Williamson. Winifrede bed. Sample cut 700 feet northeast of mine mouth on May 31, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Winifrede mine.

	Ft.	in.
Coal, splint	2	4
Coal, bony		4
Coal, splint	1	1
Clay ¹		2
Coal, splint	1	9
· . · ·	5	8

17463. Bituminous coal from Buffalo mine of Buffalo Collieries Co., 1 mile northeast of Chataroy. Winifrede bed. Sample cut in room 1 on right, off drift No. 12, 500 feet from mine mouth, on May 30, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Buffalo mine.

	Ft.	in.
Coal, splint	3	1
Coal, bony ¹		4
Coal, splint	2	
	5	5

17464. Bituminous coal from the mine of E. L. Sternberger Coal Co., 1½ miles northeast of Williamson. Winifrede bed. Sample cut in room 2 on left, off shop entry, 900 feet from mine mouth, on May 29, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Winifrede mine.

	Ft.	in.
Coal, splint	2	7
Coal, bony		3 1
Coal, splint		5
Coal, lustrous	•	7
Clay ¹		10
Coal, splint	1	6
Coal, lustrous		5
•	6	71

6 7

17465F. Bituminous coal. Composite of samples Nos. 17462, 17463, and 17464.

17466. Bituminous coal from mine of Howard, Jr., Coal Co., 2 miles northeast of Chataroy. Coalburg bed. Sample cut in first air course on main entry, 700 feet from mine mouth, on May 30, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Howard mine.

	Ft.	in.
Coal, splint	3	3
Bone ¹		3
Coal, lustrous, hard		11
Bone ¹	•	1
Coal, lustrous		6
Bone ¹		1
Coal, lustrous		. 7
· ·		
	F	Q

17467. Bituminous coal from Buffalo mine of Buffalo Collieries Co., 1 mile northeast of Chataroy. Coalburg bed. Sample cut in room 3 on left off main entry, 700 feet from mine mouth, on May 30, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Buffalo mine.

-	Ft.	in.
Coal, dull, hard	1	4
Clay ¹		1
Coal, lustrous, soft		6
Clay ¹		1
Coal, dull, hard		· 9
Bone ¹		4
Coal, splint		9

¹ Not included in sample.

Bone 1	- 	гт. -	ш. 2
Coal, lustrous, soft			
		5	

17468F. Bituminous coal. Composite of samples 17466 and 17467.

17472F. Bituminous coal from mine of White Star Mining Co., 3 miles northwest of Matewan. Alum bed. Sample cut in third left entry off main entry, 1,000 feet from mine mouth, on June 3, 1913, by Eugene Stebinger. Sample represents 3 fect 4 inches of coal, entire thickness of bed. Sample dry.

17473F. Bituminous coal from mine of White Star Mining Co., 3 miles northwest of Matewan. No. 2 or Gas bed. Sample cut at heading of main entry, 700 feet from mine mouth, on June 3, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in White Star mine.

	Ft.	in.
Coal, splint	•	4
Bone ¹		9
Coal, lustrous	. 2	6
Coal, splint	•	8
	4	. 3

17474F. Bituminous coal from mine of Red Jacket, Jr., Coal Co., 4 miles northeast of Matewan. Red Jacket bed. Sample cut in room 15 on left off main entry, 1,200 feet from mine mouth, on June 2, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Red Jacket, Jr., mine.

	Ft.	in.
Coal, lustrous		8
Coal, splint	1	8
Coal, banded		3
Coal, bony		2
Coal, lustrous	1	3
. ,	4	

17475F. Bituminous coal from War Eagle mine of War Eagle Coal Co., 3 miles northeast of War Eagle. War Eagle No. 2 bed. Sample cut in first room on right off main entry, 200 feet from mine mouth,

on June 6, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in War Eagle mine.

·	Ft.	in.
Coal, laminated		7
Coal, lustrous		9
Coal, bony		2
Coal, lustrous	2	8
	6	2

17476. Bituminous coal from Papoose mine of War Eagle Coal Co., 2 miles east of War Eagle. War Eagle No. 1 bed. Sample cut in fifth left entry off main straight entry, 600 feet from mine mouth, on June 6, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Papoose mine.

F	t. in.
Coal, lustrous, with sulphur streaks	5
Clay ¹	1/2
Coal, lustrous	9
Coal, splint	8
Coal, lustrous	9
Clay ¹	2
Coal, lustrous	2 10
	5 71

17477. Bituminous coal from same mine as No. 17476. Sample cut at heading No. 5 drift, 1,200 feet from mine mouth. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Papoose mine.

	Ft.	in.
Coal, lustrous	1	1
Coal, splint		11
Clay ¹		5
Coal, lustrous		4
Coal, splint		9
Coal, lustrous		7
	6	1

17478. Bituminous coal from Mephisto mine of War Eagle Coal Co., 3 miles northeast of War Eagle, War Eagle No. 1 bed. Sample cut at heading of second left air

¹ Not included in sample.

course, 500 feet from mine mouth, on June 6, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Mephisto mine.

	Ft.	in.	
Coal, soft	2	7	
Clay ¹		6	
Coal, hard.	1		
Coal, soft	2		
	e	1	

17479F. Bituminous coal. Composite of samples 17476, 17477, and 17478.

17480. Bituminous coal from Buffalo mine of Buffalo Collieries Co., 1 mile east of Chataroy. Thacker bed. Sample cut in prospect entry 60 feet in on May 30, 1913, by Eugene Stebinger. Sample wet. Section at point of sampling is as follows:

Section of coal bed in Buffalo mine.

	Ft.	in.
Coal, lustrous	2	7
Clay ¹		4
Coal, under water ¹		6
	3	5

17481. Bituminous coal from Winifrede mine of Williamson Coal & Coke Co., 1 mile east of Williamson. Thacker bed. Sample cut in new prospect drift 60 feet in on May 31, 1913, by Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of Thacker coal bed in Winifrede

mine.	Ft.	in.
Coal, dull		7°
Clay ¹	•	ł
Coal, lustrous	. 2	4
Clay ¹ :	-	1
Coal, lustrous	•	8
	3	$8\frac{1}{2}$

17483. Bituminous coal from mine of Red Jacket, Jr., Coal Co., 4 miles northeast of Matewan. Thacker bed. Sample cut in room 15 on left off main entry, 1,200 feet from mine mouth, on June 2, 1913, by

Eugene Stebinger. Sample dry. Section at point of sampling is as follows:

Section of coal bed in Red Jacket, Jr., mine.

	Ft.	in.	
Coal, lustrous	1	4	
Coal, splint		8	
Coal, lustrous	2	3	
	4	3	

WYOMING.

CONVERSE COUNTY.

17657. Subbituminous coal from mine of Fairview Coal Co., in NE. 1 sec. 5, T. 33 N., R. 75 W., at Glenrock. Sample cut in mine 200 feet northeast of shaft on August 15, 1913, by J. B. Reeside, jr. Sample wet. Section at point of sampling is as follows:

Section	of	coal	bed	in	Fairview	Coal	Co.
	-		n	ine	2.		

	FT.	ın.
Coal.	1	4
Shale ¹		2
Coal.	5	
	6	6

17658. Subbituminous coal from mine of Glenrock Coal Co., in NE. 1 SW. 1 sec. 4, T. 33 N., R. 75 W., one-fourth mile east of Glenrock. Sample cut in mine 75 feet N. 34° E. of main entry on August 15, 1913, by J. B. Reeside, jr. Sample dry. Section at point of sampling is as follows:

Section of coal bed in mine of Glenrock Coal

Co.	
· Ft.	in.
Coal.	11
Bone	4
Shale	2
Coal ² 5	· 4
6	9

17722F. Subbituminous coal from mine of Big Muddy Consolidated Coal Co., in SE. 1 sec. 26, T. 34 N., R. 77 W., at Big Muddy. Upper Big Muddy bed. Sample cut 300 feet down slope on September 12, 1913, by J. B. Reeside, jr. Sample fresh and dry. Section at point of sampling is as follows:

> ¹Not included in sample. ² Part sampled.

Section of coal bed in mine of Big Muddy Consolidated Coal Co.

· Ft.	
Coal 4	
Bone ¹	1
4	1

17723F. Subbituminous coal from mine of Big Muddy Consolidated Coal Co., in NW. 1 sec. 36, T. 34 N., R. 77 W., at Big Muddy. Lower Big Muddy bed. Sample cut in mine 40 feet from mouth of unused slope on September 12, 1913, by J. B. Reeside, jr. Sample represents 4 feet 3 inches of coal, entire thickness of bed. Sample dry, hard, and unweathered.

17902. Subbituminous coal from prospect in SE. 1 sec. 9, T. 33 N., R. 75 W., 2 miles south of Glenrock. Sample cut in prospect 40 feet from mouth, on October 15, 1913, by J. B. Reeside, jr. Sample dry Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	in.
Bone ¹		4
Coal	3	
-		
	3	4

FREMONT COUNTY.

17584. Subbituminous coal from prospect insec. 25, T. 42 N., R. 108 W., 8 miles northwest of Dubois. Sample cut 10 feet from mouth of prospect by D. Dale Condit. Sample wet and weathered. Section point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	in.
Clay with lenses of coal	. 2	6
Coal		3
Clay	. 1	5
Coal ²		10
Shale, gypsiferous		<u>}</u>
Coal ²	. 1	1
Coal, bony		2
Coal ²		7 1
Clay	. 1	7
Coal		61
Clay		4
Coal	•	$2\frac{1}{2}$

¹Not included in sample.

² Part sampled.

•	Ft.	in.
Clay		4
Coal		$5\frac{1}{2}$
	10	41

HOT SPRINGS COUNTY.

17709. Subbituminous coal from mine of Vede Putney, in sec. 24, T. 44 N., R. 99 W. Putney bed. Sample cut at face of room, 70 feet S. 65° W. from a point in the main entry 80 feet from the mouth, on August 27, 1913, by D. F. Hewett. Sample weathered (?). Section at point of sampling is as follows:

Section of coal bed in mine of Vede Putney.

	Ft.	in.
Coal	1	1
Coal, bony		3
Coal	2	1
Shale ¹		1
Coal ¹		4
Shale ¹		3
Coal ¹		6

17830. Subbituminous coal from prospect of E. L. Gwynn in sec. 1, T. 45 N., R. 99 W. Bed B. Sample cut in prospect 40 feet from mouth and 30 feet west on September 15, 1913, by D. F. Hewett. Section at point of sampling is as follows:

Section of coal bed in prospect of E. L. Gwunn.

•	Ft.	in.
Coal	. 1	2
Shale		6
Coal	•	2
Shale	•	1
Coal		1
Shale	-	5
Coal ²	. 4	
Shale	. 1	6
Coal	•	4
	8	3
	0	0

¹ Not included in sample. ² Part sampled. 17731. Subbituminous coal from Owl Creek mine of Berry Bros. in sec. 28, T. 44 N., R. 98 W. Sample cut in south wall of entry, 40 feet from mine mouth, on August 27, 1913, by D. F. Hewett. Section at point of sampling is as follows:

Section of coal bed in Owl Creek mine.

	Ft.	in.
Coal		3
Shale		2
Coal.		4
Shale		2
Coal ¹	. 2	11
	;	
	3	10

NATRONA COUNTY.

17778. Subbituminous coal from prospect in SE. $\frac{1}{4}$ sec. 22, T. 33 N., R. 78 W., 7 miles southeast of Casper. Sample cut in prospect 40 feet from mouth on September 22, 1913, by J. B. Reeside, jr. Sample dry; weathered (?). Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	in.
Coal	. 2	
Bone ²		3
	0	0

17895. Subbituminous coal from prospect in the SW. $\frac{1}{4}$ sec. 13, T. 36 N., R. 79 W., 5 miles north of Casper. Sample cut 20 feet in prospect on October 12, 1913, by J. B. Reeside, jr. Sample weathered (?). Section at point of sampling is as follows:

Section of coal bed in prospect.

	Ft.	in.
Bone	-	1
Coal	. 2	3
Bone ² .		5
	2	8 1

¹ Part sampled. ² Not included in sample.

INDEX.

. A.	1 450.
Alabama, coals of, analyses of	
Allegheny formation, occurrence and charac	-
`ter of	
Ames or "Crinoidal" member, occurrence and character of	
Amsterdam, Ohio, coal near	
oil pools in	
Anderson, M. J., work of	
Arkansas, gas in. See Fort Smith-Poteau ga field.	3
Ashley, G. H., on Rhode Island anthracite.	
work of Atoka formation, occurrence and character o	
oil found in	
	. <i>4</i> 0
· B.	
Backbone anticline, location and character of	
Backbone fault, occurrence and character of	
Barnett, V. H., on Douglas oil and gas field	
Wy0	
Barstow-Kramer region, Cal., geography of.	
geologic mapping of	
geology of	
previous knowledge ofoil, conclusions as to presence of o	-
·	
in141, wells drilled for	
paper on	
reconnaissance map of	
structure of	
topography of	
Bassler, Harvey, work of	338,356
Bauer, C. M., on lignite in vicinity of Plenty	
wood and Scobey, Mont	
Bearpaw shale, occurrence and characte	r
of	
Benton shale, faults cutting sandstone in	
figure showing fossils from	
occurrence and distribution of	
section showing structure of.	
Berea sand, character of, in Cadiz quad	
rangle, Ohio 1	
Big Injun sand, character of sandstone in	. 10
location of	
Big Sandy coal field, Mont., access to	
coal beds in, development of	367-378
coal in, analyses of samples of	
occurrence of properties of	
geologic map of	
explanation of	
geology of.	358-366
paper on	365-378
sections of coal beds in, figure showing.	. 373

1

Page.
Big Sandy coal field, Mont., structure of 366
topography of
Biswell Hill anticline, location and character
of
Boggy shale, occurrence and character of 25
Bokoshe syncline
Bolling coal beds, Virginia, occurrence and
character of 196-199
Book Cliffs coal field, Utah, location of 453
Boone limestone, depth of, in Glenn pool,
Okla 41
occurrence and character of
Bowen, C. F., on Big Sandy coal field,
Mont
on Cleveland coal field, Mont 338-355
on coal discovered between Musselshell
and Judith, Mont 329-337
Buck Knob anticline, locality and character
of 182–183
Butts, Charles, on coal resources of Pound
quadrangle, VaKy 165-221

c.

Cadiz Junction, Ohio, wells near	. 14
Cadiz quadrangle, Ohio, northern part of	ſ,
field work in	. 9
geology of	. 10-14
location of	. 9
map of	. 9
oil and gas sands in	. 12
structure of	. 13
oil pools in	. 15-17
paper on oil and gas in	. 9-17
salt-water saturation of sand in	. 14-15
wells in, records of	. 11
Campbell, M. R., analyses of coal sample	s
from various fields	491-526
introduction by	. 7
on coking coal in Powell Mountain, Va.	163-164
work of 244,	399, 400
Cannonball marine member, occurrence an	d
character of	
Cannonball River lignite field, N. Dak	•,
agriculture of	
commercial relations of	245-246
field work in	244-245
geography of	
geologic map of central part of	
geologic map of western part of	282
geology of	
lignite beds in eastern part of	
lignite in, analyses of samples of	256 - 258
chemical composition of	255 - 261
description of, by townships	
distribution of	
mining of	261 - 263

INDEX.

· .
Page.
Cannonball River lignite field, N. Dak.,
lignite in, physical properties of. 254
lignite in, tests on samples of
location and extent of
map of North Dakota showing
paper on
topography of
California, reconnaissance of Barstow-Kramer
region
Casper formation, fossils from
occurrence and character of
sections showing structure of
Cavanal syncline, location and character of 28
Cherokee shale, occurrence and character of 39-40,
230
Choctaw fault, occurrence and character of 29
Chugwater formation, occurrence and char-
acter of
Claggett formation, occurrence and character
of
Clark, F. R., on coal near Thompson, Utah. 453–477
on coal near Wales, Utah
Clark, G. W., work of
Clark, H., work of
Oleveland coal field, Mont., coal in, analyses
of samples of 354
coal in, development of
occurrence and distribution of 349-351
properties of 351-355
geography of 339
geologic map of
explanation of
geology of
location of
294 paper on
"Cloverly" formation, occurrence and char-
acter of
section showing structure of
Coal and lignite, papers on 155-526
Coal, classification of 494-495
miscellaneous samples of 491-494
analyses of 496-507
description of 508-526
See also particular districts, places, etc.
Collier, A. J., work of
Colorado, coals of, analyses of 496-497
description of
fossils from
occurrence and character of. 62-63, 96-99, 342-343
sections showing structure of lower and
middle members of
Condit, D. D., on oil and gas in Cadiz quad-
rangle, Ohio 9-17
Custer, Mont., coal fields southwest of, access
to 317
coal fields southwest of, coal bed in, map
showing 325
coal in
occurrence and character of 323-327
quality of
development in, outlook for 328
action and any state of the sta

.

٩

		P	age.
Cu	ster	r, Mont., coal fields southwest of, field	
		work in	317
•	cos	al fields southwest of, geology and coal	
		resources of, paper on 310	5-328
		geology of 319	-323
		map of, and sections of coal	326

د

ŧ

ſ.

D.

structure of..... 321-323

topography of...... 317-319

Dakota sandstone, occurrence and character

of 128, 431
Davies, R. G., work of 142
Dayton oil field, N. Mex., development of 135-137
geology of 137-139
location of, sketch map showing 135
oil in, analyses of 137
discovery of 135
occurrence of 139
well in, log of
Douglas oil and gas field, Wyo., discovery of
oil in 49-50
faults cutting sandstone in Benton shale. 68
field work in 51-52
fossil plants from
future development of
gas in, analyses of 71–72
character of
geology of 53-68
igneous rocks in
land surveys in
location of
index map showing 49
map of
oil and gas in, occurrence of
oil in, analyses of 71
character of 70-71
origin of
production of
paper on 49-88
structure of 67-68
topography of 53
vegetable, fuel, and water supply of 50
wells and well logs in, details of
interpretation of
wells in

Е.

Eagle sandstone, coal in 334-335, 367-369
occurrence and character of 343-344, 359-360
Eden Ridge coal field, Oreg., access to 399
coal beds in, local features of 406-410
coal in, chemical analyses of
distribution of
general character of
quality of 406
tests of, results of
diagram showing percentage of ash and
heating value of coal from 415
field work in 400
geology of 402-403
location of
map of southwestern Oregon, show-
ing 400
map of
sections of coal beds in, plate showing 408

	Page.
Eden Ridge coal field, Oreg., structure of	403
surface features of	401
Tillett Theme weeks of	
Elliott, Frank, work of	51
Ellis formation, occurrence and character	•
of 34	41-342
F.	
Farmer, Frank, work of	142
Fayetteville formation, occurrence and char-	
	07 00
acter of	01-00
Forelle limestone, occurrence and character	
of	58
Fort Scott limestone, formations above	40
occurrence and character of	40
Fort Smith-Poteau gas field, ArkOkla.,	
Fort Sintu-roteau gas new, ATRORIA.,	00
field work in	23
geology of	24-33
location and description of	23
map of	32
oil in, probability of striking	31
structure of, general character of	26
theory as to source of oil and gas in	31
topography of	23 - 24
wells in, records of	3233
Fort Union formation, coal in	
correlation of	109
	107
fossils in	
occurrence and character of.	65,
104-106, 250-251, 2	
sections showing structure of	106
Fox Hills sandstone, occurrence and charac-	
ter of	248
occurrence of, in-Montana group	64
G.	
Gas and petroleum, papers on	9-154
	0 101
See also particular districts, places, etc.	100
Gebo formation, correlation of	108
fossils from	101
occurrence and character of 10	0-101
section showing structure of	101
Germano basin, location of	14
Gillan, S. L., work of	142
Gillian, S. D., WORK OL.	1
Glacial drift, occurrence and character of 30	1,348
Glacier coal field, Wash., coal beds in, charac-	1
ter of 39	2-393
coal in, character of	392
geology of 39	0-392
location of 38	
map showing	389
paper on	1
paper officer and description	5-050
prospects in, location and description	0.000
of 39	
structure of	392
surface features of	390
Gladeville sandstone, occurrence and charac-	
ter of	173
Glenn oil and gas field, Okla., cross section	- 1
showing	43
field work in	34
geology of	35
location of	001
	24
man of	34
map of	48
paper on	48 34–48
	48

1.1

ź

365°-Bull. 541-14----34

529

Page.
Glenn oil and gas field, Okla., topography of. 34
Green River oil and gas field, Utah, field
work in 115-117
history of development of 117-121
land surveys in
location of, index map showing 116
map of
oil accumulation, theory of 131-132
paper on 115-133
stratigraphy of 123–129
structure of 129-131
topography of 121-122
water supply of 122
wells drilled for oil or gas in 132-133
Greene, F. C., on the coal resources of part of
northeastern Missouri 223–242
Griswold, W. T., work of

н.

Harlan sandstone, occurrence and character
of 176–177
Harnsberger, T. K., work of 164,356
Hartford anticline, gas wells in 28
location and character of
Hartshorne sandstone, coal beds above 25
occurrence and character of
Heavener anticline, location and character of 28
Henrietta formation, occurrence and charac-
ter of
Herald, Frank A., work of 51
Hewett, D. F., on Shoshone River section,
Wyo
Hodge, E. T., work of
Hollis, Harry, work of 400
Hopedale oil field, Ohio, wells in 14
Horseshoe Creek district, Idaho, access to 379
coal beds in, development of 386-388
coal in, analyses of samples of 384-385
geology of
location and extent of
index map showing
map and sections of
paper on
structure of
surface features of

I.

Idaho, coal in. See Horseshoe Creek distric	t.
Illinois, coal of, analyses of	. 497
description of	. 510
Ilo formation, fossils in	104
occurrence and character of	103-104
section showing structure of	. 104
Indian Creek syncline, locality and character	er .
of	182–183
J.	•
Jaquet, J. R., work of	. 357
Judith River formation, coal in 335-337,	
occurrence and character of	345-348
sections showing structure of	345-347

ĸ.

Kansas Cit	y forr	nation, occ	urre	nce a:	nd char-	
	acter	of				229
Kentucky,	coal	resources	of.	See	Pound	
	quad	rangle.				

	rage.
Kentucky, coals of, analyses of	497
coals of, description of	510
Kootenai formation, probable occurrence of	342
L.	
$\label{eq:lance} \mbox{Lance formation, occurrence and character of.}$	65,
249-250, 298, 3	19–321
occurrence of Cannonball marine member	
in	249
Landes, Prof. Henry, work of	389
La Plata sandstone, occurrence and character	•
of	125
Lee formation, coal beds of 1	84-185
correlation of	180
occurrence and character of 1	70-171
Lee, Wallace, work of .:	317
Lesher, C. E., on Eden Ridge coal field,	
Oreg 3	
Lloyd, E. R., on Cannonball River lignite	
field, N. Dak 2	
Low Splint coal bed, Virginia, occurrence and	
character of	02 - 203
Lupton, C. T., on oil and gas near Green River,	
Utah 1	
· · · · ·	

M.

Madison limestone, occurrence and character	
of	341
Mancos shale, occurrence and character of	128
Massard Prairie, Ark., discovery of natural	
gas in	23
Massard Prairie anticline, gas wells in	27
location and character of	27
McAlester shale, occurrence and chara ter of	25
McElmo formation, gas in	127
occurrence and character of 12	
Salt Wash sandstone member of	127
section showing structure of	126
Meeteetse formation, coal in	102
occurrence and character of	102
section showing structure of	103
Milton anticline, part of, location and charac-	
ter of	28
wells sunk in	28
Mississippi River, gas from mud lumps at	
mouths of	19-22
Mississippian rocks, distribution of, in Pound	
quadrangle, VaKy	169
occurrence and character of, in Cadiz	
quadrangle, Ohio	10
Missouri, northeastern, coal beds of 23	31-235
coal of, chemical analyses of	35-239
equipment for mining 24	40-241
methods of mining	241
production of	241
quality of	235
quantity of	239
coal resources of, character of	223-24
development of	239
future prospects of	242
geography and topography of	224
geology of 2	25–231
history of 23	39-240
location of	223
index map showing	223

Page.
Missouri, northeastern, map showing, with
sections of coal
paper on
•structure of
Montana, coal in. See Big Sandy coal field;
Cleveland coal field; Musselshell
and Judith.
coals of, analyses of
description of
geology and coal resources of. See Custer.
lignite in. See Plentywood and Scobey.
Montana group, fossils from
occurrence and character of
Pierre formation, occurrence in
section showing structure of
Montreal anticline. See Poteau anticline.
Moore, R. C., work of
Morrison formation, occurrence and character
of 60, 61, 94–95, 431
section showing structure of
Morrow formation, occurrence and character
of 38–39
Mud lumps at the mouths of the Mississippi,
composition of gas from 20-22
conclusions reached regarding
development of
mud springs a feature of
occurrence and character of
Munn, M. J., work of
Musselshell and Judith, Mont., area be-
tween, coal in, paper on 329-337
area between, coal in Eagle sandstone
in
coal in Judith River formation in 335-337
field work in
geologic map of
geology of 331-334
location of
index map showing
structure of

N.

0.

Page.
Oregon, coal in. See Eden Ridge coal field.
coals of, analyses of 499
description of 513
Р.
_ •
Pack, R. W., on reconnaissance of Barstow-
Kramer region, Cal 141-154
Pardee coal bed, occurrence and character
of
Pennsylvania, coals of, analyses of 499-502
description of
Pennsylvanian rocks, distribution of, in Pound
quadrangle, VaKy 170–179 Petroleum and natural gas, papers on 9–154
Pierce, R. Z., work of
Pierre shale, occurrence of
in Montana group
Pine Mountain fault, occurrence and char-
acter of 182
Pitkin limestone, occurrence and character of. 38
Pittsburgh coal, appearance of, in Cadiz
quadrangle, Ohio
irregular formation of, cause of 10-11
Pleasanton formation, occurrence and char-
acter of
Plentywood-Scobey lignite field, Mont.,
culture of soil in
description of
field methods used in
geology of 297-302
lignite in, analyses of samples in 304
description of, by townships 306-315
development and use of 315
distribution of 305
paper on
physical and chemical characters
of 302–305
map showing coal fields in
sections of lignite beds in, plate showing. 314
structure of rocks in
surface features of
map of area near
location and character of
Poteau syncline, location and character of 29
Pottsville formation, occurrence and char-
acter of 10
Pound quadrangle, VaKy., accessibility of 168-169
coal, analyses of, in 218–219
chemical composition of, in 216-217
quantity of, ultimately available in 214-216
correlation of Pottsville formation in,
plate showing 178
development of 220
drainage of 167-168
geologic map and sections of
geology of 169-183
Kentucky area, description of coal beds
of
location of
index map showing
mining conditions in
paper on coal resources and general geol-
ogy of 165–221

>

Ì

Page.
Pound quadrangle, VaKy., sections of dia-
mond-drill holes in, plate showing . 170
structure of 181-183
topography of 167-169
Virginia area, description of coal beds of 184-206
Pound syncline, locality and character of 182
Powell Mountain, Va., coking coal in, correc-
tion of previous report relative to. 163
field work in 163
Q.

Quartzite	gravel,	ocurrence	and	characte	er
	of, in 1	Plentywood	-Scot	ey ligni	te
	field, M	font		•••••	300-301

R.

Rhode Island coal field, analyses of coal
samples from 158–159
anthracite beds of 156-157
anthracite of 157-162
briquetting tests with 160-161
chemical composition of 158-159
discussion of 155
household use of
metallurgic use of
paper on 155-162
physical character of
steaming tests with 160
use of, by conversion into gas 161
location of 156
sketch map showing 162
rocks of
Richardson, G. B., on petroleum near Day-
ton, N. Mex 135–140
Richmond, Ohio, and vicinity, oil wells in 14, 17
Rogers, G. S., on geology and coal resources of
eastern Montana

s.

Page.
Sierra Blanca coal field, N. Mex., geology
of
history of development of 422-424
investigation of, object of
location and extent of 419
map of New Mexico, showing 420
map of 450
map of White Oaks district in, and sec-
tions of coal 446
structure of 436-442
topography of 424-425
White Oaks district, coal in 442-446
map of 446
Sloan, A. H., work of 317
Smith, C. D., on Glenn oil and gas pool,
Okla 34-48
on structure of Fort Smith-Poteau gas
field, ArkOkla 23-33
St. Anthony coal field. See Horseshoe Creek
district.
Standiford coal beds, Virginia, occurrence
and character of 199-201
Steubenville quadrangle, Ohio-W. VaPa.,
oil pools in 14
Sugarloaf syncline, location and character of 28
Sundance formation, correlation of 107
fossils from
occurrence and character of 59,92
sections showing structure of 59-60, 92, 93
т.
Taff, J. A., work of
Taggart coal bed, Virginia, occurrence and
character of
Thom, W. T., jr., work of
Thomas, H. R., work of
Thompson, Utah, area near, coal in, analyses
of samples of
area near, coal in, physical character and chemical composition of 467-474
field work in 455
general features of
history and development of mining
in
land surveys in
paper on
stone available for use in 476–477
stratigraphy of 476-477
structure of
topography of $45-456$

тт	
U	•

Page.

Ι.

 β

0 0

08

₽ ſV.

> e cL

^{8]} G

Utah, coal in.	Sce Thompson; Wales.	
coals of, an	alyses of	. 502
descrip	tion of	517-518
map of, she	owing location of coal fields in	. 454

v.

Virginia, coal resources of.	See Pound quad-
rangle.	
coals of; analyses of	50

1000		
coals of; analyse	s of	503-505
description	of	518 - 522
coking coal in.	See Powell Mountain.	

w.

Wales coal field, Utah, coal in, analyses of
samples of
coal in, chemical composition of 484-488
general character of
field work in
history and development of 489
location of
map of Utah, showing
map of
mines and prospects in
paper on
previous reports on
stratigraphy of
structure of
topography of
Washington, coal in. See Glacier coal field.
Wegemann, C. H., on geology and coal re-
sources of Sierra Blanca coal field.
N. Mex 419-452
West Virginia, coals of, analyses of 505-506
description of 522-525
White Oaks district. See Sierra Blanca coal
field.
White River formation, occurrence and char-
acter of 66, 250–251
Quaternary rocks in
Wise formation, coal beds in 174-176, 188, 196
correlation of
occurrence and character of 173
Woodrüff, E. G., on Glacier coal field,
Wash
on Horseshoe Creek district, Idaho 379-388
work of
work of
coals of, description of 525-526
oil and gas in. See Douglas oil and gas
field; Shoshone River area.

a way wanter

Ο

C