IRON-ORE DEPOSITS NEAR NOME.

By Henry M. Eakin.

INTRODUCTION.

Considerable local interest has long attached to deposits of iron ore in an area that centers about 25 miles northwest of Nome. A day was spent at this locality by the writer in July, 1914, and some of the more important properties were hastily examined. No previous study of the deposits had been made by the Survey.

GEOGRAPHY.

Five groups of claims are held in the iron-bearing district. Three of these—the Mogul, Monarch, and Galena groups—are on the height of land between Sinuk River and Washington Creek, a south tributary of the Sinuk. The American group, comprising four claims, is west of Sinuk River below American Creek, and the Cub Bear group, also of four claims, crosses the divide between Washington Creek and Cripple River. Heavily iron-stained blossom occurs at half a dozen other places in the same general area.

The Monarch group was reached easily in a day’s travel on horseback from Nome, the route followed being along the beach to Penny River, up this stream to Willow Creek, and thence northward across the heads of Arctic Creek, Cripple River, and Washington Creek. There is no definite trail to follow beyond Arctic Creek, but the country is open and easily traversed.

The immediate vicinity of the principal properties has a sharp topographic relief of 800 to 1,000 feet. The valleys are fairly broad, but the interstream ridges are generally steep sided and more or less broken along their summits. Timber is absent, and the rocks are well exposed on all the higher features.

Those interested in the iron ores have proposed the construction of a railroad from the vicinity of the properties to the coast along the Sinuk River valley. The route is apparently practicable and would give a down grade all the way to the coast, a distance of about 14 miles.
The bedrock of the iron-bearing area consists chiefly of the several formations of the Nome group, including the Port Clarence limestone and other limestones, schists, and slates of early Paleozoic age. The iron-ore deposits are chiefly in limestone areas that were mapped by Collier with the undifferentiated members of the group. There is a small area of Tertiary sedimentary rocks, including thin coal seams, on Coal Creek, a west tributary of Sinuk River about 3 miles west of the Monarch group of claims.

The valleys are floored with alluvium, part of which is of glacial origin. Gravel beds and erratic bowlders are widely distributed at elevations up to 1,000 feet above sea level. The aggregate area covered by high-level gravel beds, however, is not large.

The iron-ore deposits consist of limonite veins and stockworks and their residual products. Hematite, galena, pyrolusite, and small quantities of gold also occur as accessories in some of the lodes. The examination was too brief to permit detailed studies, but the general impression gained is that there had been strong mineralization at certain localities, and that the mineralizing agencies had affected a considerable area. The following brief notes will serve to indicate the character of the ores at several localities.

CLAIMS.

MONARCH GROUP.

The Monarch group, including 14 claims, or about 300 acres, lies on the limestone ridge that trends eastward between Sinuk River and Washington Creek. It covers the ridge top for about 3,000 feet and extends laterally for over a mile. Within this property the ridge crest is broken by two gaps at an elevation of about 1,000 feet above sea level, in which are the chief deposits of iron ore. Elsewhere the limestone is more or less iron-stained and may contain small ore veinlets, but the average iron content of the limestone mass may be too low to permit its being classed as ore.

The east gap is mantled by a heavy residual deposit of limonite and hematite, derived from the weathering of unusually abundant ore veins that cut the underlying limestones. The residual ores have also slumped down into the head of the gulch that leads northward from the gap, where they occur in considerable amounts. The veins in bedrock beneath the gap are apparently numerous, and range in width from a few inches to about 30 feet. They are approximately

2 Idem, pl. 10.
vertical, but their persistence, either vertically or horizontally, is not determinable from the exposures.

In the west gap there is no important accumulation of residual ore. The underlying limestone is cut, however, by a wide stockwork of limonite and pyrolusite veinlets. No heavy veins were seen at this locality.

The residual deposits of the east gap have been developed over an area approximately 600 by 800 feet, in open cuts that range from a few yards to several hundred feet in length. A shallow shaft and a short drift have been driven into the deposit in the head of the northerly gulch, 50 feet below the gap level. An open cut at the south margin of the gap has uncovered a mass of undisturbed limonite, apparently a vein 30 feet in width, cutting the limestone country rock.

In the west gap several short open cuts have been made in loosened bedrock material which contains numerous veinlets of limonite and pyrolusite. Elsewhere on the claims the iron-stained limestone detritus has been thrown out of open cuts without revealing any high-grade ores.

The residual ore of the east gap has a loose granular texture and a high iron content, and is unusually free from injurious impurities. Two samples taken by the writer, one from an open cut at the east margin of the deposit and the other a composite sample from a line of open cuts 400 feet long across its center, were found to contain 53 and 55 per cent of metallic iron, respectively. The complete analysis of the composite sample, which is probably fairly representative of the whole deposit, is as follows:

Analysis of composite sample of iron ore from Monarch group of claims.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>5.53</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.34</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>78.30</td>
</tr>
<tr>
<td>MgO</td>
<td>0.10</td>
</tr>
<tr>
<td>CaO</td>
<td>1.97</td>
</tr>
<tr>
<td>H₂O</td>
<td>10.40</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>None</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.13</td>
</tr>
<tr>
<td>S</td>
<td>Trace</td>
</tr>
<tr>
<td>MnO</td>
<td>1.37</td>
</tr>
<tr>
<td>BaO</td>
<td>Trace</td>
</tr>
</tbody>
</table>

The iron, manganese, phosphorus, and sulphur contents of the ore, calculated from this analysis, are as follows: Fe, 54.81; Mn, 1.00; P, 0.057; S, trace.

No samples were obtained from the veins from which this residual material has been derived. The character of the ores in the undisturbed veins was therefore not determined.

Only qualitative analyses of samples taken from the west gap were made. They contain limonite and pyrolusite in about equal amount.
The veinlets appear to comprise only a small part of the general mass of the stockwork, so that the iron and manganese content of minable material is probably not high.

The development work done so far on the Monarch property has failed to furnish an adequate basis for estimating the quantity of ore available in either the residual deposits or the underlying veins. The size and extent of the veins for the most part can only be conjectured. The area of the residual deposits is fairly well outlined, but their depths have not been generally demonstrated. However, it seems certain that the residual high-grade ores aggregate at least several hundred thousand tons. Apparently they cover an area 600 by 800 feet to a depth of several feet. In places shafts 12 feet deep are said to have been sunk in ore. Although ore occurs in the head of the northerly gulch 50 feet or more below the level of the east gap, it is unsafe to assume that the divide is underlain by ore to this depth, for this ore is apparently not in place, but has slumped down into the head of the gulch from the gap above. Obviously additional prospecting will be required to determine accurately the reserves of high-grade residual ores and to demonstrate the availability of the undisturbed vein ores. The stockwork of the west gap will also require careful investigation to determine its value. The relatively high manganese content of the veinlets and the reported association of gold with the manganese strengthens the possibility that this deposit may prove of commercial value.

The limestones on the property away from the gaps contain from 5 to 40 per cent of iron. The average content is probably nearer the lower figure, and if this proves true it seems doubtful that much of this material can be considered as commercial ore.

Mogul Group.

The Mogul property consists of four claims situated on the Sinuk River and Washington Creek divide about 1½ miles east of the Monarch property. No development work has been done here, the locations being made on the strength of a few acres of the blossom of ore veins that cut the limestones locally. Evidence of the veins is found in heavily iron-stained limestone detritus that has a scant admixture of limonite nodules and vein fragments. There is little evidence as to the size and extent of the veins or the possibilities of commercial development.

Galena Group.

The Galena group, which was not visited by the writer, consists of nine claims situated 2 miles southwest of the Monarch property. Several open cuts, shafts, and short drifts are reported to have been
made on the property, uncovering a number of veins and small stock­
works bearing limonite and galena. No large bodies of ore are
reported to have been developed up to midsummer, 1914, but suffi­
cient encouragement had been given by the findings to stimulate
further development work, which was then in progress.

AMERICAN GROUP.

The American group includes four claims situated at the base of
a limestone ridge west of Sinuk River, below American Creek, 2
miles northwest of the Monarch property. The locations are said to
cover an "iron-ore bed" over 50 acres in extent. The only develop­
ment work done consists of a few pits 6 to 8 feet deep, and no
analyses have been made of the ore. The locality was not visited
by the writer.

CUB BEAR GROUP.

The Cub Bear group includes four claims located end to end along
the croppings of iron-ore veins cutting across the limestone ridge
between Washington Creek and Cripple River. The blossom of the
veins, where it shows through the vegetation at intervals, consists of
the usual iron-stained limestone detritus mixed with limonite nod­
ules and vein fragments. A few shallow pits have been dug, reveal­
ing limonite-hematite veins as much as several feet in width. Large
blocks of ore taken from some of the pits exhibit botryoidal and
mammillary forms and fibrous texture and are essentially pure
limonite with possibly a very little accessory hematite. No estimate
of the amount of ore in the deposit or of its availability for mining
is possible at the present stage of development.
The chief progress made in the placer-mining industry in Seward Peninsula in 1914 consisted in further consolidation of properties for new dredging ventures, the financing of additional mining concerns, the construction of new dredges, and a general improvement in the success of dredging operations. Forty dredges (including one tin dredge), with an aggregate daily capacity of 42,000 cubic yards, operated for all or a part of the open season in 1914, against 34 dredges, with an aggregate daily capacity of 33,400 cubic yards, in 1913. Four new dredges were completed, and four others that were reported as under construction in 1913 were in the same condition in 1914. At least three additional dredges were contemplated for construction before the season of 1915.

The dredging season of 1914 was unusually short. On account of winter frost, snowbanks, and valley ice but few dredges commenced operations before July 1, and many were tied up until July 15 or 20. The four new dredges completed during the summer began operating at still later dates. The operations were cut short in the fall by an unusually early freeze-up.

Other forms of placer mining were carried on with varying success in all the productive districts. The water supply for hydraulic and ground-sluicing operations, although much better than in 1913, was only fair, and some of the larger plants were unable to work at full capacity much of the season. A little drift mining was done both in summer and in winter, but in general these operations were of relatively minor importance.

An important element of progress in the mining industry in Seward Peninsula is the development of economies that render gravels of lower and lower grades available for exploitation. Among these may be mentioned the removal of hazard in dredging operations by systematic prospecting, the reduction of overhead costs by the formation of larger companies that operate a number of dredges under the same superintendency, reduction of fuel expenses by use of
internal-combustion engines burning crude oil, a more efficient use of steam in thawing frozen ground, and a closer attention to economy in the commissariat. Attention is also being given to the saving of gold from the black sands that are produced in large amounts in the vicinity of Nome. A plant was installed at Nome for this purpose during the summer, and presumably it began operating before the end of the season. There is promise of a further economy in thawing the frozen coastal-plain deposits near Nome by systematic application and withdrawal of surface waters. Fortuitous occurrences incident to the artificial drainage of dredging ground indicate the possibility of developing such a method of thawing, which is a crucial necessity to the economic exploitation of the enormous low-grade reserves of the Nome coastal plain.

In all about 1,200 men were employed in mining on Seward Peninsula in 1914 for an average season of 100 days. About 450 of these men were employed on dredge crews and in dredge construction. The total production of the placers has an estimated value of $2,700,000.

OPERATIONS BY DISTRICTS.

NOME DISTRICT.

DREDGING.

The dredging situation in the Nome district showed marked improvement in 1914 over the preceding year. In 1913 there were thirteen dredges in the district, of which seven were operating, three were idle, and three were under construction. In 1914 eleven dredges operated, and the same three were still incomplete. Two new dredges were installed during the year, and the old Peluk Creek dredge was taken to Anikovik River, in the Port Clarence district.

The two new dredges were built on Bangor and Arctic creeks. The Bangor dredge has a close-connected line of 3\(\frac{1}{2}\) cubic-foot buckets, develops 150 horsepower with an internal-combustion engine using crude oil as fuel, and has an estimated daily capacity of 2,000 cubic yards. The fuel consumption is estimated at 6 barrels of crude oil a day. It was planned to complete its construction and begin operating by September 1.

The Arctic Creek dredge is of the flume type, with a 2\(\frac{1}{4}\) cubic-foot open-connected bucket line. It has 60-horsepower distillate engines, using 100 gallons of fuel a day. Its capacity is estimated at 1,000 cubic yards daily. The dredge was completed and operation commenced July 20.

There is considerable divergence of opinion as to the most economical size and type of dredge for use in the district. The capacity of buckets in the active dredges ranges from 1\(\frac{1}{4}\) to 10 cubic feet.
The estimated costs per yard of gravel do not differ materially with the size of dredge employed, being, as a rule, 10 to 15 cents in thawed ground and 20 to 30 cents where steam thawing is required. These figures do not include royalty, amortization, or other overhead charges. Some significance may attach, however, to the fact that the more recently built dredges now operating are of the smaller type and the dredges that have been under construction for several years and are still incomplete are of the larger type.

The future of the dredging industry in the Nome district hinges strongly on the possible development of cheap methods of thawing the frozen coastal-plain deposits. These deposits comprise the greater part of the known reserves of the district. The thawed gravels along the courses of streams have a much smaller areal extent and their exploitation is a comparatively simple matter. At present the frozen deposits are thawed in advance of dredging operations by means of steam points driven from the surface to the required depth. Although this method is fairly economical in relatively shallow and rich deposits, its present cost is prohibitive for the deeper and leaner placers that constitute the larger reserves of the coastal plain.

A possible method of thawing the coastal-plain deposits more cheaply by means of ditch water is suggested by the results of an artificial drainage project in the vicinity of Nome. A drainage ditch was dug across the tundra at a short distance from one of the natural watercourses and parallel with it. In places the excavation penetrated through the muck and into the surface of the underlying gravels. After a time it was noted that considerable water was lost from the ditch by seepage, presumably through the gravels toward the natural watercourse, along which there was a zone of thawed ground. Later the thawed strip of gravel along the stream was dredged, and it was found that the area between the ditch and the stream was also thawed and available for dredging. Apparently the ditch water seeping through the gravels eliminated the ground frost to progressively greater depths, until the circulation affected the whole thickness of the gravels down to bedrock. The depth of thawing the first summer exceeded the depth of winter frost of the following season, so that the second summer's thawing was added to that of the first, and so on to bedrock. It is estimated that the surface of ground frost was lowered about 20 feet a year.

This occurrence accords with the laws of ground-water circulation as developed by Slichter and applied by Van Hise. The waters

do not move in straight lines between the point of entrance into the gravels and the point of their withdrawal, but tend to follow a number of divergent paths from the former and of convergent paths near the latter. The coastal-plain gravels, where thawed, are fairly homogeneous and offer a nearly uniform degree of permeability to ground waters. The ideal circulation would be modified at the inception of the process by the high level of the surface of ground frost. As this surface was lowered by the influence of the relatively warm ditch waters the circulation would take on more and more the ideal form. The rate of circulation of ground water is affected by the difference in elevation between the points of entrance and exit, being more rapid under a higher head. The depth of gravels affected would depend somewhat on the horizontal distance between these points.

The general principles of a possible method of thawing by systematic application of ditch waters and withdrawal of ground waters seem clear. The details of such projects will have to do with topographic conditions, the muck overburden of the gravels, and the degree of homogeneity of the deposits. Although no insurmountable obstacles to the development of this method are apparent, it will probably require a great deal of careful experimental investigation to develop an efficient practical application of it.

OTHER FORMS OF PLACER MINING.

Extensive hydraulic-mining operations were carried on by the Pioneer Mining Co. on and near Center Creek. Four hydraulic lifts on different claims were used intermittently, as water from the Miocene and Pioneer ditches was available. An average of about 125 men were employed. A considerable shortage of water prevented continuous operation of all the plants at full capacity, but a large production was made.

Drift mining in the vicinity of Nome has fallen off greatly in relative importance each year since 1907, but there is still a considerable production from this source. The present operations are confined to placers of moderate gold tenor that are available only for the most economical methods. Expenses are reduced by a more economical use of steam for thawing, pressure being turned on the points for three hours instead of six as formerly, and a longer period of sweating allowed. The expense of the commissariat is also reduced, so that the daily cost of board per man is in some places as low as 90 cents instead of the $2 or $3 formerly allowed. These practices have permitted the reopening of several mines that previously had been abandoned on account of their low gold tenor.

Other mining operations reported in the vicinity of Nome during 1914 are as follows: Anvil Creek, one open-cut plant; Dexter Creek,
deep mining during winter; Nugget Gulch, open-cut mine; Daisy and Nicola gulches, open cut; Glacier Creek, open cut; Last Chance and Jess creeks, one hydraulic plant each; Cripple River basin, one small hydraulic plant on Oregon Creek and one open-cut mine on Willow Creek; Osborn Creek, one hydraulic mine; Boulder Creek, one open-cut mine with hydraulic lift; Buster Creek, one open-cut mine. Some drift mining was also reported on the third beach line.

An interesting though relatively unimportant phase of placer mining at Nome was the renewal of beach mining. The severe storm of 1913 was attended by a notable attack on the seaward scarp of the coastal plain, which in places was eroded back 60 to 100 feet. This resulted in the formation of new concentrations along the beach above the usual strand line, and during the summer of 1914 from 50 to 100 men were engaged in working them with rockers, surf washers, and short sluice boxes along the beach from Nome to Penny River. The concentrations were not very rich, and only ordinary wages were made.

SOLOMON DISTRICT.

Eight of the nine dredges that operated in the Solomon district in 1913 continued work in 1914, and one new dredge, built early in the summer, began work in August. The only dredge reported idle was that of the Nome, Montana & New Mexico Mining Co. on Goose Creek, which suspended operations pending additional prospecting. It is reported that at least four of the active dredges exhausted their available ground during the summer.

The new dredge was built for C. E. Kimball on Adams Creek. It has an open-connected line of 2½ cubic-foot buckets, develops 60 horsepower with distillate engines, uses 100 gallons of fuel a day, and has an estimated daily capacity of 1,000 cubic yards.

An innovation was introduced among the various types of power plants used on Seward Peninsula by W. H. Esterbrook, who has taken an option lease on the ground and equipment of the Seward Dredging Co. on Solomon River. The new plant is equipped with a 4-cylinder 4-cycle Diesel engine of 200 horsepower and a corresponding electric generator. It began operating the later part of July, and is said to have given very satisfactory results for the rest of the season. The fuel consumption is reported as 6 to 10 barrels of crude oil a day, compared with 42 to 50 barrels required by the steam plant that was replaced.

No mining other than dredging was in progress in the Solomon district. Two small outfits are reported to have prospected for elevated beach deposits in the vicinity of Jerome Creek during the summer and to have found such deposits at two levels, 130 and 150 feet above sea. The value of the discoveries is not disclosed.
CASADEPAGA DISTRICT.

Four dredges operated in the Casadepaga district, as in 1913, with the exception that the small dredge of the Oro Dredging Co. was moved from Goose Creek to Elkhorn Creek, a tributary of Niukluk River below the Casadepaga. The other three dredges worked on Casadepaga River, Willow Creek, and Goose Creek. No other mining was done in the district.

COUNCIL DISTRICT.

Six dredges continued operation in the Council district, as in 1913, with the exception that one of the Flume Dredging Co.'s dredges was moved from Ophir Creek to Crooked Creek. Of the other dredges, two worked on Ophir Creek and one each on Melsing, Mystery, and Warm creeks.

Hydraulic mining was carried on by the Wild Goose Mining Co. on Dutch Creek and by Stick & Co. on Albion Creek. A steam-scraper plant was operated on Melsing Creek.

It is estimated that fifteen different plants, employing about 120 men, were operated in the district, distributed as follows: Ophir Creek and tributaries, five; Crooked Creek, three; Melsing Creek, three; Warm Creek, three; Elkhorn Creek, one. There was no winter work in the district. The value of the gold produced in the district in 1914 is estimated to be $525,000.

KOYUK RIVER DISTRICT.

Renewed mining activity is reported on Sweepstakes Creek, where ten men are working four separate claims. Recent discoveries are said to have disclosed valuable placer ground in this section, and an increased activity is expected in 1915.

On Kenwood Creek, a south tributary of Koyuk River 20 miles above its mouth, a single outfit was working in a small way.

FAIRHAVEN DISTRICT.

About 75 men are reported to have engaged in mining on Candle Creek and tributaries in 1914. The Candle Creek Mining Co.'s dredge had a successful season. On claim No. 20, above Discovery, a steam-scraper plant was operated. Twelve smaller outfits were engaged in ground-sluicing and drifting on the benches of the Candle Creek valley, and one plant drifted on Jump Creek.

Four plants operated on Bear Creek during 1914, and one on Sheridan Creek, a tributary. About 20 men were employed. One plant operating on Discovery claim had a hydraulic equipment, including a Ruble elevator, and used water from the Bear Creek ditch.
under a 240-foot head. The other outfits used manual methods in open-cut work.

The Kugruk dredge operated successfully for a part of the open season. Two drilling outfits were engaged in testing ground for further dredging operations, and one drift mine was worked by a small force.

The two dredges on Inmachuk River were late in starting, owing to an unusual accumulation of winter ice, but operated successfully the later part of the season. The other mining activities in the Inmachuk region have not been reported.

KOU GAROK DISTRICT.

The Alaska-Kougarok Dredging Co. operated its 2½-cubic-foot dredge successfully on Kougarok River at the mouth of Henry Creek during the open season. The Behring Dredging Co. has drilled extensively on its holdings and has a 2½-cubic-foot close-connected bucket-line dredge landed at the head of navigation ready for transportation to Kougarok River below the mouth of Taylor Creek, where it is to be installed for operation during the summer of 1915. Plans have also been made for installing a dredge on Iron Creek.

The North Star ditch, which takes water from Taylor Creek, was used in hydraulic mining on claim No. 15, above Discovery, Kougarok River. A small hydraulic plant was installed on Macklin Creek. The other activities include five sluicing plants on Kougarok River, four on Dahl, two on Coffee, seven on Iron, two on Willow, one on Benson, two on Macklin, and two on Garfield.

The winter work in this district included two deep-mining plants on Kougarok River, one on Willow Creek, and one on Iron Creek, employing in all seven men and producing about $12,000 worth of gold. Thirty-four plants were operated in summer, employing about 130 men. The value of the gold produced in the district in 1914 was about $150,000.

PORT CLARENCE DISTRICT.

Six dredges operated in the Port Clarence district in 1914, but only three of them for much of the season. The open season was unusually short, extending only from the middle of July to early in October.

Three of the dredges operated for gold on Windy, Dick, and Sunset creeks. The York Dredging Co.'s dredge continued working for tin alone on lower Buck Creek.¹

The American Gold Dredging Co. put two dredges on Anikovik River and operated for tin and gold together. One of these dredges

was formerly on Peluk Creek near Nome and the other was new. The Peluk dredge was towed along the shore of Bering Sea to the mouth of the Anikovik, where it dug its own way across the bar into the river. It was then laid up in order to remodel the digging ladder and bucket line. The new dredge was installed on the river about a quarter of a mile from its mouth. It has buckets holding 2 cubic feet in an open-connected line, develops 80 horsepower by distillate engines, and has an estimated daily capacity of 800 cubic yards.
INDEX.

A.

Acknowledgments to those aiding	5-6, 58, 80, 248, 293
Alaska, southeastern, field work in	11
mining in	49
southwestern, mining in	47
Alaska-Ebner Gold Mining Co., developments by	100-101
Alaska Free Gold Mining Co., work of	48
Alaska Gastineau Gold Mining Co., operations by	98-99
Alaska Hydroelectric Co., power development by	40
Alaska-Juneau Gold Mining Co., development by	100
Alaska Treasure Consolidated Mines, development in	97-98
Alaska Venture Syndicate, development work by	42
Alaska-Washington Gold Mining Co., development work by	139
Alaskan claim, description of	169
Albert Creek, gold placers on	128
Alder Gulch, gold on	222
Alice mine, description of	175-176
American Creek, placer mining on	245
American (iron) group, description of	305
Anak River, basin of, gold in	301
description of	308
See also Toluksk-Anilak district.	
Aniokivik River, dredging on	372-373
tin placers on	91-92
Antimony, occurrence of	258, 260-267
Appropriation, allotment of	8-9
Avery River, development work on	135
Azurite, occurrence of	107-108, 110, 112

B.

Baker Creek basin, placer mining in	242
Bald Mountain group, description of	179-180
Bear Creek, description of	300-310
geology of	310-311, 313-321
glaciation on	319-321
effect on placers	320-321
gold on	311-312, 315, 316-318
gravels of	310-311, 314-319
Beaver Creek, basin of, lignite of	228
gold lodes on	224
Bell Creek, gold of	347
Benito Creek, gold lode on	115
Bering River coal field, development in	43
opening of	104
test of coal from	25-27
Berners Bay district, mining in	41
Bethel, supplies from	302-303
Big Eldorado Creek, gold of	204-205, 220-221

C.

Big Four claim, description of	104-105
Big Harbor mine, development work in	41-42
Birch Creek district, mining in	60-61
Black & Hogan claims, development of	139
Black Gulch, cinnamon at	386
Bluebird group, description of	182
Bogus Creek, gold on	331-332
Bonanza Creek (Chisana drainage), gold placers on	208-216, 224-225
Bonanza Creek (Mokhatna basin), gold of	203, 311
Bondholder claim, work on	238
Bornite, occurrence of, in the Kotsina-Kus-Kulana district	107-108, 109, 110, 111, 112, 113, 114, 115
Brooks, A. H., administrative report of	7-14
on Alaskan mining industry in 1914	15-68
on Valdez mineral resources	152
preface by	5-6
Bryan Creek, gold on	223
Buck Creek, tin placers on	89-91
Budd Mining Co., placer claims of	187
Bunker Hill claim, description of	181
Butte Creek, gold of	335
Cache Creek, placer mining on	244
Calwales, D. D., on Chisana-White River district	205-207
California Creek, gold on	331
Cameron-Johnson Gold Mining Co., claims of	172-174
Camp Robber claim, work on	344, 345
Candle Creek, gold on	201
Canyon Creek, gold of	356-357
Capps, S. R., on mineral resources of Chisana-White River district	180-228
Carboniferous rocks, occurrence and character of	199
Casadopaga district, placer mining in	371
Cassiterite, occurrence of	85, 86, 87, 89-94
Chalocite, occurrence of	107-108, 109, 110, 111, 112, 114, 115
Chandalar district, mining in	64
Chapin, Theodore, on auriferous gravels of Nenana-Susitna region, paper on	118-130
Chatham Creek, gold on	221, 222, 224, 225
lignite on	228
Chavolda Creek, gold on	222
Chichagof mine, development at	43
Chisana district: geologic map of	202
gold tenor of gravels of	75-76
mining operations in	60

375
INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chisana-White River district, copper of.</td>
<td>226-227</td>
</tr>
<tr>
<td>economic conditions in.</td>
<td>203</td>
</tr>
<tr>
<td>geography of.</td>
<td>191-198</td>
</tr>
<tr>
<td>geology of.</td>
<td>198-202</td>
</tr>
<tr>
<td>glacial deposits of.</td>
<td>201-202</td>
</tr>
<tr>
<td>glaciation in.</td>
<td>192-193</td>
</tr>
<tr>
<td>gold in.</td>
<td>202-205</td>
</tr>
<tr>
<td>description of.</td>
<td>208-223</td>
</tr>
<tr>
<td>origin of.</td>
<td>203-208, 226</td>
</tr>
<tr>
<td>production of.</td>
<td>224</td>
</tr>
<tr>
<td>Chitituke Creek, gold on.</td>
<td>104</td>
</tr>
<tr>
<td>location of.</td>
<td>189</td>
</tr>
<tr>
<td>map showing.</td>
<td>189</td>
</tr>
<tr>
<td>map of, showing mines and prospects.</td>
<td>202</td>
</tr>
<tr>
<td>mineral resources of, report on.</td>
<td>199-228</td>
</tr>
<tr>
<td>nomenclature in.</td>
<td>191</td>
</tr>
<tr>
<td>Chitostchina district, mining operations in.</td>
<td>44-45</td>
</tr>
<tr>
<td>Chitina district, mining in.</td>
<td>45, 104-105</td>
</tr>
<tr>
<td>Chistochina district, mining operations in.</td>
<td>44-45</td>
</tr>
<tr>
<td>Cinnabar.</td>
<td>108, 109, 110, 111</td>
</tr>
<tr>
<td>Chokosna River, mining on.</td>
<td>114</td>
</tr>
<tr>
<td>Cliff mine, description of.</td>
<td>170-172</td>
</tr>
<tr>
<td>Coal, consumption of, from 1899 to 1914.</td>
<td>24-25</td>
</tr>
<tr>
<td>leasing law for, and regulations there-</td>
<td>31-38</td>
</tr>
<tr>
<td>under.</td>
<td></td>
</tr>
<tr>
<td>production of, from 1888 to 1914.</td>
<td>17, 21, 21</td>
</tr>
<tr>
<td>steaming tests of.</td>
<td>25-30</td>
</tr>
<tr>
<td>Coal Creek, lignite on.</td>
<td>227-228</td>
</tr>
<tr>
<td>Columbia Glacier, mines near.</td>
<td>183-186</td>
</tr>
<tr>
<td>Consolidated claim, development work on.</td>
<td>185</td>
</tr>
<tr>
<td>Cook Inlet, gold tenor of gravels of.</td>
<td>76</td>
</tr>
<tr>
<td>Copper, occurrence of, in Chisana-White</td>
<td>226-227</td>
</tr>
<tr>
<td>River district.</td>
<td></td>
</tr>
<tr>
<td>occurrence of, in Iliamna-Lake Clark region.</td>
<td>257-258, 266</td>
</tr>
<tr>
<td>on Prince William Sound.</td>
<td>131-134</td>
</tr>
<tr>
<td>ores of, genesis of.</td>
<td>108</td>
</tr>
<tr>
<td>shipment of.</td>
<td>105</td>
</tr>
<tr>
<td>production of, from 1901 to 1914.</td>
<td>17, 18</td>
</tr>
<tr>
<td>Copper, native, occurrence of.</td>
<td>107-108, 109, 110, 111</td>
</tr>
<tr>
<td>Copper Center, location of.</td>
<td>122</td>
</tr>
<tr>
<td>Copper Creek, gold on.</td>
<td>116</td>
</tr>
<tr>
<td>mining on.</td>
<td>111-112</td>
</tr>
<tr>
<td>Copper mining, progress of.</td>
<td>16, 21, 22</td>
</tr>
<tr>
<td>Copper River basin, field work in.</td>
<td>11-12</td>
</tr>
<tr>
<td>gold tenor of gravels of.</td>
<td>76</td>
</tr>
<tr>
<td>mineral resources of, map showing.</td>
<td>104</td>
</tr>
<tr>
<td>mining in.</td>
<td>44-45</td>
</tr>
<tr>
<td>Copper River & Northwestern Railway, distributing points on.</td>
<td>103-104</td>
</tr>
<tr>
<td>Cottonwood Creek, prospecting on.</td>
<td>129</td>
</tr>
<tr>
<td>Council district, placer mining in.</td>
<td>371</td>
</tr>
<tr>
<td>Cretaceous coals, occurrence and character of.</td>
<td>268-269</td>
</tr>
<tr>
<td>description of.</td>
<td>269</td>
</tr>
<tr>
<td>Cripple Creek basin, description of.</td>
<td>347-348</td>
</tr>
<tr>
<td>geology of.</td>
<td>348-349</td>
</tr>
<tr>
<td>gold of.</td>
<td>349-351</td>
</tr>
<tr>
<td>mining in.</td>
<td>62</td>
</tr>
<tr>
<td>Field work, record of</td>
<td>7-8</td>
</tr>
<tr>
<td>Fish Creek, placer mining on</td>
<td>233</td>
</tr>
<tr>
<td>Fisher Creek, description of gold on</td>
<td>347</td>
</tr>
<tr>
<td>Flat Creek, dredging on</td>
<td>56, 240</td>
</tr>
<tr>
<td>Fortyfive prospect, description of</td>
<td>166-167</td>
</tr>
<tr>
<td>Fortymile district, dredging in gold tenor of gravels of</td>
<td>62-63</td>
</tr>
<tr>
<td>mining in</td>
<td>62-63</td>
</tr>
<tr>
<td>Fourth of July Creek, prospecting on</td>
<td>129</td>
</tr>
<tr>
<td>G.</td>
<td></td>
</tr>
<tr>
<td>Galena, production of</td>
<td>20</td>
</tr>
<tr>
<td>Galena (iron) group, description of</td>
<td>204-205</td>
</tr>
<tr>
<td>Garnet, mining of</td>
<td>21</td>
</tr>
<tr>
<td>Geographic distribution of investigations</td>
<td>10-13</td>
</tr>
<tr>
<td>Geological Survey, U. S., publications of, list of</td>
<td>i-xi</td>
</tr>
<tr>
<td>publications of, progress of</td>
<td>14</td>
</tr>
<tr>
<td>George River, gold on</td>
<td>201, 300-301, 351-352</td>
</tr>
<tr>
<td>Georgetown, settlement of</td>
<td>301, 303</td>
</tr>
<tr>
<td>Giffin, C. E., work of</td>
<td>190</td>
</tr>
<tr>
<td>Glacial evidence, in the Nelchina-Susitna region</td>
<td>119-121</td>
</tr>
<tr>
<td>Glacier Creek, gold on</td>
<td>223</td>
</tr>
<tr>
<td>Glacier Island, copper mining on</td>
<td>134</td>
</tr>
<tr>
<td>Glen Gulch, antimony at</td>
<td>267</td>
</tr>
<tr>
<td>Glennar</td>
<td>287</td>
</tr>
<tr>
<td>Gold, lode deposits of</td>
<td>96, 98-99</td>
</tr>
<tr>
<td>Gold, mining of, in 1914</td>
<td>21-24</td>
</tr>
<tr>
<td>Gold, placer deposits of</td>
<td>91-93</td>
</tr>
<tr>
<td>conditions favoring formation of</td>
<td>225-226</td>
</tr>
<tr>
<td>production of, 1850-1914</td>
<td>17, 18-20, 69-70</td>
</tr>
<tr>
<td>recovery of</td>
<td>73-79</td>
</tr>
<tr>
<td>Gold, sources of</td>
<td>71-72</td>
</tr>
<tr>
<td>Gold Butte claim, description of</td>
<td>182</td>
</tr>
<tr>
<td>Gold Bullion mine, operations at</td>
<td>48</td>
</tr>
<tr>
<td>Gold Creek, gold placers on</td>
<td>130</td>
</tr>
<tr>
<td>Golden, mining near</td>
<td>135</td>
</tr>
<tr>
<td>Golden Eagle claim, development on</td>
<td>135-136</td>
</tr>
<tr>
<td>Gold Hill, source of gold at</td>
<td>204-207</td>
</tr>
<tr>
<td>Gold King mine, description of</td>
<td>183-185</td>
</tr>
<tr>
<td>Gold Mountain group, mining on</td>
<td>42</td>
</tr>
<tr>
<td>Gold Run, gold placers on</td>
<td>218-219</td>
</tr>
<tr>
<td>Gold Standard property, development on</td>
<td>42</td>
</tr>
<tr>
<td>Goldstream Creek, placer mining on</td>
<td>234</td>
</tr>
<tr>
<td>Goodnews district, description of</td>
<td>357</td>
</tr>
<tr>
<td>gold of</td>
<td>357-358</td>
</tr>
<tr>
<td>Government railroad, benefits of</td>
<td>15</td>
</tr>
<tr>
<td>Granby Consolidated Mining, Smelting & Power Co., development by</td>
<td>42</td>
</tr>
<tr>
<td>Granite Creek, gold on</td>
<td>331</td>
</tr>
<tr>
<td>Granite mine, description of</td>
<td>136-138</td>
</tr>
<tr>
<td>Granite Peak, mining operations near</td>
<td>110</td>
</tr>
<tr>
<td>Grant Lake mine, operations at</td>
<td>46</td>
</tr>
<tr>
<td>Graphite, mining of</td>
<td>21</td>
</tr>
<tr>
<td>occurrence of</td>
<td>67</td>
</tr>
<tr>
<td>Gravels, auriferous, distribution of</td>
<td>71-73</td>
</tr>
<tr>
<td>gold content of</td>
<td>73-79</td>
</tr>
<tr>
<td>Grouse Creek, tin placers on</td>
<td>89, 91</td>
</tr>
<tr>
<td>Guthrie & Belloli claims, description of</td>
<td>181</td>
</tr>
<tr>
<td>Gypsum, mining of</td>
<td>21</td>
</tr>
<tr>
<td>H.</td>
<td></td>
</tr>
<tr>
<td>Hammond River, mining on</td>
<td>58-59</td>
</tr>
<tr>
<td>Hamshaw, F. T., claims of</td>
<td>211-213</td>
</tr>
<tr>
<td>Harrington, G. L., work of</td>
<td>140</td>
</tr>
<tr>
<td>Healy River basin, description of</td>
<td>50-61</td>
</tr>
<tr>
<td>location, map showing</td>
<td>50</td>
</tr>
<tr>
<td>mining in</td>
<td>65</td>
</tr>
<tr>
<td>Hecla claim, description of</td>
<td>170</td>
</tr>
<tr>
<td>Hickey prospect, description of</td>
<td>167-168</td>
</tr>
<tr>
<td>High Grade claim, description of</td>
<td>166</td>
</tr>
<tr>
<td>Hooley Gulch, placer mining in</td>
<td>242-243</td>
</tr>
<tr>
<td>Holrina River, gold in</td>
<td>261-262</td>
</tr>
<tr>
<td>Homestead mine, production of</td>
<td>227-228</td>
</tr>
<tr>
<td>Hood, O. P., report on coal tests by</td>
<td>29-30</td>
</tr>
<tr>
<td>Hornet claim, work on</td>
<td>344-345</td>
</tr>
<tr>
<td>Hot springs, mercury deposited by</td>
<td>287-288</td>
</tr>
<tr>
<td>Hot Springs district, gold of</td>
<td>239-245</td>
</tr>
<tr>
<td>gold tenor of gravels of</td>
<td>75, 79</td>
</tr>
<tr>
<td>mining in</td>
<td>58</td>
</tr>
<tr>
<td>tin in</td>
<td>92-94</td>
</tr>
<tr>
<td>Hummer Bay prospect, work on</td>
<td>138</td>
</tr>
<tr>
<td>Hydraulic mining, gold recoveries from</td>
<td>77</td>
</tr>
<tr>
<td>opportunities for</td>
<td>77</td>
</tr>
<tr>
<td>I.</td>
<td></td>
</tr>
<tr>
<td>Ibe group, description of</td>
<td>102</td>
</tr>
<tr>
<td>Ida Bell lode, description of</td>
<td>87</td>
</tr>
<tr>
<td>Ilditarod region, coal of</td>
<td>268-270</td>
</tr>
<tr>
<td>coal of, analysis of</td>
<td>269</td>
</tr>
<tr>
<td>mercury of</td>
<td>266</td>
</tr>
<tr>
<td>gravels of</td>
<td>56-57</td>
</tr>
<tr>
<td>gold of</td>
<td>298-301</td>
</tr>
<tr>
<td>tenor of</td>
<td>76, 78</td>
</tr>
<tr>
<td>map, geologic of</td>
<td>259</td>
</tr>
<tr>
<td>mining in</td>
<td>55-57</td>
</tr>
<tr>
<td>See also Lake Clark-Ilditarod region.</td>
<td></td>
</tr>
<tr>
<td>Igneous rocks, mercury deposited on intrusion of</td>
<td>289</td>
</tr>
<tr>
<td>Illamna Lake-Ilieamna Lake basin, gold in</td>
<td>263-264</td>
</tr>
<tr>
<td>Illamna region, galena of</td>
<td>258, 267-268</td>
</tr>
<tr>
<td>manganese in</td>
<td>258, 268</td>
</tr>
<tr>
<td>Independence Gold Mining Co., work of</td>
<td>48</td>
</tr>
<tr>
<td>Indian River district, mining in</td>
<td>60</td>
</tr>
<tr>
<td>Innoko district, gold tenor of gravels of</td>
<td>76</td>
</tr>
<tr>
<td>mining in</td>
<td>62</td>
</tr>
<tr>
<td>Investigations, geographic distribution of</td>
<td>10-13</td>
</tr>
<tr>
<td>J.</td>
<td></td>
</tr>
<tr>
<td>Jacksina Creek, gold lode on</td>
<td>224</td>
</tr>
<tr>
<td>Jackson group, development of</td>
<td>42</td>
</tr>
<tr>
<td>Jaynes, H. L., claims of</td>
<td>168-169</td>
</tr>
<tr>
<td>Johnson, B. L., on gold and copper deposits of Port Valdez district</td>
<td>140-188</td>
</tr>
<tr>
<td>on mining on Prince William Sound</td>
<td>131-139</td>
</tr>
<tr>
<td>Johnson Creek. See Chatthenda Creek.</td>
<td></td>
</tr>
<tr>
<td>Juasin mine, development in</td>
<td>102</td>
</tr>
<tr>
<td>Julian Creek, gold on</td>
<td>261</td>
</tr>
<tr>
<td>Juneau region, mining in</td>
<td>41, 95-102</td>
</tr>
<tr>
<td>Juneau district, new map for</td>
<td>11</td>
</tr>
<tr>
<td>Jurassic rocks, occurrence and character of</td>
<td>200</td>
</tr>
<tr>
<td>K.</td>
<td></td>
</tr>
<tr>
<td>Kantishna district, mining in</td>
<td>65</td>
</tr>
<tr>
<td>Kapen Creek, gold of</td>
<td>357</td>
</tr>
<tr>
<td>Katalla district, production of petroleum in</td>
<td>39, 43</td>
</tr>
<tr>
<td>Katz, F. J., on galena of Illamna region</td>
<td>267-268</td>
</tr>
<tr>
<td>on Lake Clark-Illamna Lake basin</td>
<td>263-264, 266</td>
</tr>
<tr>
<td>on Mulchatna basin</td>
<td>263</td>
</tr>
<tr>
<td>Kenai Peninsula, gold tenor of gravels of</td>
<td>78</td>
</tr>
<tr>
<td>mining on</td>
<td>45-46</td>
</tr>
<tr>
<td>Kennicott formation, position and character of</td>
<td>107</td>
</tr>
</tbody>
</table>
INDEX.

Kensington mine, development in.............. 101-102
Kenyon Creek, gold on.......................... 51
Ketchikan district, marble mines of........... 43
mining in..................................... 41-43
Kiiik River, gold lode on......................... 264
Klavanus River, mining operations on........... 109
Knight Island, copper mining on............... 109-110
Knope, Adolph, on tin lodes of Lost River.... 84-86
Kobuk region, mining operations in............ 68
Kodiak Island, mining on........................ 47
Kolmakof, mercury near......................... 280-286
mercury near, geology of......................... 281-282
mineralization of.. 283-286
Kot sina-Kuskulana district, copper in........... 105-114
description of...................................... 103-105
geology of.. 106-107
gold in... 105, 115
map, geologic of.................................... 108
mining in... 109, 111
mineral resources of, report on................. 103-117
Kougak district, placer mining in.............. 372
Kowkw Creek, gold of............................. 338
Koyuk River district, placer mining in........... 131
Koyukuk district, gold tenor of gravels of... 76, 79
mining in.. 56-60
costs of... 59
Kuethluk River basin, copper in............... 304
gold in... 302, 356-357
Kuskokwim Mountains, coal in.................. 305
description of.. 296-298
gold in.. 304
glaciation in.. 298
topography of.. 297-298
Kuskokwim region, description of.............. 290-296
economic conditions in............................ 302-303
field work in.. 12
geography of... 290-298
gold of.. 261-263, 265-268, 272-286
mercury deposits of.............................. 272-291
history of.. 272-274
origin of.. 287-288
See also Parks prospect; Kolmakof.
mineral deposits of, history of................ 298-358
mining in... 66-67
prospecting in.. 306
Kuskokwim River, description of.............. 260-281
section on, figure showing........................ 283
Kuskokwim River, lower, gold placers of........ 292-285
report on.. 292-285
Kuskulana Glacier, mining near................ 113-114
Kuskulana-Kotsina region. See Kotsina-
Kuskulana region.
Kuskulana River, mining on...................... 113, 114

Lake Clark-Iliamna Lake basin, gold in........... 263-264
Landlocked Bay, work at.......................... 133
Latouche Island, copper mining on.............. 132
Latouche Copper Mining Co., development by........ 132-133
Lignite, occurrence and character of........... 272-278
Lime Creek, mining operations on.............. 111
Lindgren, Waldemar, on cinnabar deposits...... 287
Little Eldorado Creek, gold placers on......... 216-217
Little Nelchina River, prospecting on.......... 129
Little Oshetna River, gold placers on.......... 130
Livengood Creek, gold on......................... 51
location of, map showing.......................... 52
Lode mining, increase of......................... 70
Long Creek, mining on............................... 57
Lost River (tin) mine, description of........... 84-88
Lost River region, geography of................ 54
gold of... 84-85
tin of.. 84-88

M.
McCaskey, H. D., on mercury production........ 290-291
Maddren, A. G., on copper in the Russian
Mountains.. 255-260
on gold placers of lower Kuskokwim............. 282-285
on Iditarod district................................. 56-57
on stibnite in Lake Clark-Iditarod region..... 267
work of... 272
See also Smith and Maddren.
Magnetite, occurrence of......................... 113, 114
Mahashite, occurrence of........................ 107-108, 111, 112
Mammoth Creek basin, mining in.................. 163-164
Manganese, occurrence of......................... 263, 265
Marble, production of................................ 21
Marvel Creek, description of........................ 330-340
gold of.. 340-341
graves of... 341-346
production of... 341-346
Maturaska field, coal from, test of............. 27-30
placer mining in.................................... 49
See also Susitna-Maturaska region.
Mayfield Gold Mining Co., claims of.............. 185-186
Mercury, production of............................. 21, 67, 230-291
production of, economic conditions affect­
ing.. 290-291
Mercury deposits, distribution of, in Alaska.. 272
in Kuskokwim region................................. 272-291
mining of... 21, 67
origin of.. 287-288
Mertie, J. B., work of............................... 284
Midsas (copper) mine, description of........... 187-188
production of.. 151-152
work at... 45
Midnight Sun claim, work on...................... 244
Miller Gulch, placer mining in.................. 243-244
Mining, mixed, average gold recovery from...... 78
Minne claim, description of...................... 150
Moffit, F. H., on mineral deposits of the
Kot sina-Kuskulana district...................... 103-117
Mogul (Iron) group, description of............... 394

L.
Lake Clark-Iditarod region, access to.......... 254-255
antimony in.. 258, 266-267
coal in... 258, 268-270
copper in... 257-258, 260
economic conditions in............................ 252-256
field work in.. 12
topography of.. 247-250
gold of.. 250-252
mercury in... 257
mineral resources of, report on................ 247-251
water resources of.................................. 270-271
INDEX.

Port Fidalgo, copper mining at............ 133-134
Port Valdez district, commercial conditions in. 141-143
copper ores of. 151-153
character of. 157-158
distribution of. 153-155
geologic relations of. 158-159
field work in 12
gold placer deposits of. 158-159, 186-187
gold lodes of. 151-155
copper of 07, 300, 304, 359-360
gold placer deposits of. 158-159, 186-187
gold lodes of. 151-155
copper of 07, 300, 304, 359-360
gold placer deposits of. 158-159, 186-187
gold lodes of. 151-155
geologic relations of. 158-159
map of. 186
mineral resources of. 151-158
mines and prospects of. 158-158
Port Wells district, mining in............ 134-139
Potato Mountain, tin rear................... 89
Precious metals, statistics on, collection of ... 13
Prince William Sound, copper of. 131-134
field work on 12
gold of. 134-139
map of. 138
mining near. 45, 131-139
Publications, Survey, on Alaska, list of. 1-11
progress of. 14
Pyrite, occurrence of. 109, 110, 112, 113, 114, 115
Quartz Creek, placer mining on. 244-245
Quartz Gulch, gold on. 332
Quicksilver. See Mercury.
Queen of Sheba claims, description of. 170
Quitsch prospect, description of. 167
Rainy Creek, gold of. 357
Rambler Gold Mining Co., claims of. 133
Ramspan district, mining in. 34
Ramsay-Rutherford Gold Mining Co., mine of. 150-161
Raspberry Island, gold on. 47
Ratby Buillion Creek, placer mining on. 235
Rex Creek, mining on. 116-117
Rheas-Ball mine, work on. 236
Roaring Creek, gold placers on. 130
mining on. 110-111
Robin Creek, description of. 337
gold of. 339
of. 333-339
of. 333-339
of. 333-339
of. 333-339
Rose Johnson claims, description of. 162-163
Roy Lode mine, work at. 237
Ruby district, gold tenor of gravels of. 76, 78, 79
mining in. 57-58
Ruby Gulch, gold of. 333
Rush & Brown mine, operations in. 41
Russian Mountains, access to. 360
copper of. 67, 300, 304, 359-360
gold of. 359
glacial conditions of. 359
mineralization of. 359
topography of. 358-359

N.
Navy Department, tests of coal by. 25-30
Nelchina River, gold of. 44
Nelchina-Susitna district, field work in. 110
gold of. 108, 109, 110, 111, 112, 113, 114
distribution of. 106
Nizina district, mining in. 44, 114-117
Nome, iron-ore district near, geography of. 361-362
gold of. 362-365
iron deposits of. 362-365
Nome district, dredging in. 366-367

O.
Ophir Creek, description of. 332-333
gold of. 333-334
gold of. 334-335
graves of. 330-331
Ore group, character of. 144
Osheta River, mining on. 130
Otter Creek, dredging on. 56, 260
Owl prospect, description of. 159-181
Parks (cinnabar) prospect, description of. 274-279
gold of. 275-278
stillbite at. 279
Passage Canal, tin on. 128-129, 219-220
Poorman Creek, gold placer on. 128-129, 219-220
tin placer on. 90
Petrof, Ivar, on mercury deposits. 273
Petroleum, consumption of, from 1905 to 1914. 39
production of. 21
Pilot Bay, gold on. 138
Pinoche mine, description of. 161-162
Placer mining, decline of. 70
production from, 1880-1914. 69-70
Pleasant Camp, gold near. 44
Poorman Creek, gold placer on. 128-129, 219-220
mining on. 58
Porcupine district, mining in. 44, 113
Port Clarence district, placer mining in. 372-373
Port Fidalgo, copper mining at. 133-134

INDEX.

INDEX.

INDEX.

INDEX.

INDEX.

INDEX.
INDEX.

S. Page.

Salmon Creek, water power on......................... 99-101
Sargent, R. H., work of.. 248
Sawmill Bay area, map of... 144
Seacoast Mining Co., claims of.............................. 178-179
Sealey-Davis Mining Co., claims of....................... 174-175
Sevenmile Creek basin, mining in............................. 64
Seward Peninsula, dredging in............................. 68-69, 367-373
field work in.. 13
Seward Bow Basin, gold loes in............................. 98-99
Seita district, mining in.. 45
Silver Gem claim, description of............................ 179
Silver-lead deposits. See Galena.
Silver-lead deposits. See Galena.
Skeen-Lechner mine, operations at......................... 46
Skookum Creek, gold placers on............................. 217-218
Smith, P. S., on mineral resources of Lake.................... 82-83
Spruce Creek, description of............................... 321-326
Smith, P. S., and Maddren, A. G., on quicksilver of Kuskokwim region..... 231-238
Snow Gulch, gold of... 222, 358
Solomon district, placer mining in......................... 370
Solomon Gulch, mines in... 187-188
Soo Mining Co., work of.. 236
Soo Creek, prospecting on....................................... 129
Springs, hot, mercury deposited by......................... 273-274
Spence Creek, description of................................. 267-268
Sprossing, coal in.. 307-308
geology of.. 327
gold on.. 311-312, 322-326, 328-330
production of.. 329-330
Spurr, J. E., on gold of Kuskokwim River................... 262
on gold of Kuskokwim River................... 262
on mercury deposits... 273-274
Stibnite, occurrence and character of...................... 67, 279
Stibnite, occurrence and character of...................... 67, 279
See also Antimony.
Sullivan Creek basin, placer mining in..................... 241-245
tin in.. 92, 240-241
Sunshine Creek, mining operations on...................... 233
Survey publications on Alaska, list of..................... 1-22
progress of.. 14
Surveys, progress of... 9
Susitna-Matanuska region, mining in......................... 47-49
Susitna-Melchina region. See Nechchina-Susitna region.
Susitna River basin, field work in........................... 11-12
gold tenor of gravels of...................................... 76
Sutter Creek, tin placers on................................... 89, 91
Sweptakes Creek, gold on...................................... 371

T.

Tacoma River, supply station on............................. 301
Talinaia River basin, mining in.............................. 67
Tenderfoot district, placer mining in....................... 223
territorial rocks, occurrence and character of................ 200-201
Thawing, new method of...................................... 368-369
Thompson-Ford Mining Co., claims of....................... 177
Three in One group, description of.......................... 176-177
Tiger claim, description of.................................... 170
Tin deposits, bibliography of................................. 82-83
development of... 16
discovery of.. 81-82
Tin deposits, distribution of............................... 81-82
map showing.. 82
dredging for... 91, 92-93
lode deposits of... 85-86, 87-89
placer deposits of.. 89-93
production of, from 1902 to 1914............................. 17, 20-21
Tin mining in Alaska, report on.............................. 81-94
Tiny Gulch, gold on.. 312
Togak Bay, placer on.. 358
Tolovans River basin, gold placer in.......................... 51-53
map of.. 52
Tomboy group, development of................................. 138
Trail Creek, gold of.. 358
Transportation, progress of.................................... 16
Treadwell mines, operations in............................... 41, 96-97
production in, 1882-1914..................................... 97
Triassic rocks, occurrence and character of................ 199-200
Tuhksak River, description of............................... 307-308
Tuhksak-Aniak district, geography of......................... 307-309
gold of.. 300
Tuhksak-Aniak district, geography of......................... 307-309
location of.. 292, 306-307
map of.. 358
Tungsten, occurrence of....................................... 67, 85-86
Twin Creek, mining on... 233, 238

V.

Valdez, description of... 142
Valdez mining district, mining in............................ 49
Valdez Glacier area, mines of................................. 159-163
Valdez group, character of.................................... 144
Valdez Mining Co., mines of................................. 162
Valparaismine, development work in......................... 42
Vault Creek, placer mining on................................. 233
Volcanic ash, occurrence and character of.................. 301-302
Von Guntner prospect, description of.......................... 167

W.

Wells, R. C., tests of cinnabar by............................. 279
Wells Bay, copper mining on..................................... 134
White Creek, mining operations on........................... 117
White River-Chisana district. See Chisana-White River district.
Wild Horse claim, work on..................................... 344-345
Williams, R. Y., on coal tests................................ 25-26
Williams-Gentler prospect, description of................... 164
Willow Creek district, mining operations..................... 48-49, 238
prospectings in.. 129
Wilson Creek. See Chavoya Creek.
Wilson Creek district, mining in............................. 65-66
Wolfmanite, occurrence of..................................... 85-86
Woodchopper Creek basin, mining in........................... 61-62
Wrangell district, mining operations in...................... 48-49
Y.

Yacko Creek, gold placers on................................. 129
Yakatatanga district, mining operations in................... 43
Yellow Jacket claim, work on.................................. 208, 314, 346
Yellow River, gold rush to..................................... 299-300
Yentna district, gold tenor of gravels of..................... 78
mining in.. 49
York region, map of.. 83-92
Yukon basin, field work in..................................... 13
gold tenor of gravels of...................................... 77, 78
production of gold and silver in............................. 49-50
RECENT SURVEY PUBLICATIONS ON ALASKA.

[Arranged geographically. A complete list can be had on application.]

All these publications can be obtained or consulted in the following ways:
1. A limited number are delivered to the Director of the Survey, from whom they can be obtained free of charge (except certain maps) on application.
2. A certain number are delivered to Senators and Representatives in Congress for distribution.
3. Other copies are deposited with the Superintendent of Documents, Washington, D. C., from whom they can be had at prices slightly above cost. The publications marked with an asterisk (*) in this list are out of stock at the Survey, but can be purchased from the Superintendent of Documents at the prices stated.
4. Copies of all Government publications are furnished to the principal public libraries throughout the United States, where they can be consulted by those interested.

GENERAL.

REPORTS.

50 cents.

*Railway routes from the Pacific seacoast to Fairbanks, Alaska, by A. H. Brooks.

MINERAL RESOURCES OF ALASKA, 1914.

*Prospecting and mining gold placers in Alaska, by J. P. Hutchins. In Bulletin 345, 1908, pp. 54-77. 45 cents.

MAPS.

*Map of Alaska; scale 1:5,000,000; 1912; by Alfred H. Brooks. 20 cents.
*Map of Alaska; scale 1:1,500,000; 1915; by A. H. Brooks and R. H. Sargent. 80 cents.
*Map of Alaska showing distribution of mineral deposits; scale, 1:5,000,000; by A. H. Brooks. 20 cents. Also included in *Bulletin 520. 50 cents. (New edition included in Bulletin 592.)

SOUTHEASTERN ALASKA.

REPORTS.

RECENT SURVEY PUBLICATIONS ON ALASKA.

IV

MINERAL RESOURCES OF ALASKA, 1914.

TOPOGRAPHIC MAPS.

Juneau special (No. 581A); scale, 1:62,500; by W. J. Peters. 10 cents each, or $3 for 50.

Berners Bay special (No. 581B); scale, 1:62,500; by R. B. Oliver. 10 cents each, or $3 for 50.

Kasaan Peninsula, Prince of Wales Island (No. 540A); scale, 1:62,500; by D. C. Witherspoon, R. H. Sargent, and J. W. Bagley. 10 cents each, or $3 for 50.

Copper Mountain and vicinity, Prince of Wales Island (No. 540B); scale, 1:62,500; by R. H. Sargent. 10 cents each, or $3 for 50.

CONTROLLER BAY, PRINCE WILLIAM SOUND, AND COPPER RIVER REGIONS.

REPORTS.

RECENT SURVEY PUBLICATIONS ON ALASKA.

The gold and copper deposits of the Port Valdez district, by B. L. Johnson. In Bulletin 622, 1915, pp. 140-188.

In press.

In preparation.

The Kotsina-Kuskulana district, by F. H. Moffit.

TOPOGRAPHIC MAPS.

Central Copper River region; reconnaissance map; scale, 1:250,000; by T. G. Gerdine. In Professional Paper 41. Not issued separately.

Headwater regions of Copper, Nabesna, and Chisana rivers; reconnaissance map; scale, 1:250,000; by D. C. Witherspoon, T. G. Gerdine, and W. J. Peters. In Professional Paper 41. Not issued separately.

Controller Bay region; scale, 1:62,500; by E. G. Hamilton and W. R. Hill. 35 cents. No wholesale rate.

Chitina quadrangle; reconnaissance map; scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, and others. In Bulletin 576.

6411° — 15 — 25
VI MINERAL RESOURCES OF ALASKA, 1914.

Port Valdez district; scale, 1: 62,500; by J. W. Bagley. Price 20 cents.

In preparation.

The Ellamar district; by R. H. Sargent and C. E. Giffin; scale 1: 62,500.
The Kotsina-Kuskulana district; scale 1: 62,500; by D. C. Witherspoon.

COOK INLET AND SUSITNA REGION.

REPORTS.

In press.

TOPOGRAPHIC MAPS.

Kenai Peninsula, southern portion; scale, 1: 500,000; compiled. In Bulletin 526. Not issued separately.
Mount McKinley region, reconnaissance map; scale, 1: 625,000; by D. L. Reaburn. In Professional Paper 70. Not issued separately.
RECENT SURVEY PUBLICATIONS ON ALASKA. VII

In preparation.

The Matanuska coal field; scale 1:62,500; by R. H. Sargent.
The Willow Creek district; scale 1:62,500; by C. E. Giffln.
The Broad Pass region; scale 1:250,000; by J. W. Bagley.

SOUTHWESTERN ALASKA.

REPORTS.

TOPOGRAPHIC MAPS.

Herendeen Bay and Unga Island region, reconnaissance map; scale, 1:250,000; by H. M. Eakin. In Bulletin 467. Not issued separately.
Chignik Bay region, reconnaissance map; scale, 1:250,000; by H. M. Eakin. In Bulletin 467. Not issued separately.
Iliamna region, reconnaissance map; scale; 1:250,000; by D. C. Witherspoon and C. E. Giffln. In Bulletin 485. Not issued separately.
*Kuskokwim River and Bristol Bay region; scale, 1:625,000; by W. S. Post. In Twentieth Annual Report, pt. 7. $1.80. Not issued separately.

YUKON AND KUSKOKWIM BASINS.

REPORTS.

Occurrence of wolframite and cassiterite in the gold placers of Deadwood Creek, Birch Creek district, by B. L. Johnson. In Bulletin 442, 1910, pp. 246-250.

RECENT SURVEY PUBLICATIONS ON ALASKA.

In preparation.

Chisana-White River district, by S. R. Capps.
Yukon-Koyukuk region, by H. M. Eakin.
Lake Clark-Iditarod region, by P. S. Smith.

Topographic maps.

Circle quadrangle (No. 641); scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, and others. 50 cents each, or $15 for 50. Also in Bulletin 295.
Fairbanks quadrangle (No. 642); scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, R. B. Oliver, and J. W. Bagley. 50 cents each, or $15 for 50. Also in Bulletins *337 (25 cents) and 525.
Fortymile quadrangle (No. 640); scale, 1:250,000; by E. C. Barnard. 10 cents each, or $3 for 50. Also in Bulletin 375.
Rampart quadrangle (No. 643); scale, 1:250,000; by D. C. Witherspoon and R. B. Oliver. 20 cents each, or $6 for 50. Also in Bulletin 337, and part in Bulletin 535.
Fairbanks special (No. 642A); scale, 1:62,500; by T. G. Gerdine and R. H. Sargent. 20 cents each, or $6 for 50. Also in Bulletin 525.
Iditarod-Ruby region, reconnaissance map; scale, 1:250,000; by C. G. Anderson, W. S. Post, and others. In Bulletin 578. Not issued separately.
Middle Kuskokwim and lower Yukon region; scale, 1:500,000; by C. G. Anderson, W. S. Post, and others. In Bulletin 578. Not issued separately.

In preparation.

Yukon-Koyukuk region; scale, 1:500,000; by H. M. Eakin.
Lake Clark-Iditarod region; scale, 1:250,000; by R. H. Sargent.
Lower Kuskokwim region; scale, 1:500,000; by R. H. Sargent.

SEWARD PENINSULA.

REPORTS.

MINERAL RESOURCES OF ALASKA, 1914.

Surface water supply of Seward Peninsula, Alaska, by F. F. Henshaw and G. L. Parker, with a sketch of the geography and geology, by P. S. Smith, and a description of methods of placer mining, by Alfred H. Brooks; including topographic reconnaissance map. Water-Supply Paper 314, 1913, 317 pp. 45 cents.

TOPOGRAPHIC MAPS.

Seward Peninsula, compiled from work of D. C. Witherspoon, T. G. Gerdine, and others, of the Geological Survey, and all available sources; scale, 1:500,000. In Water-Supply Paper 314. Not issued separately.

Seward Peninsula, northeastern portion, reconnaissance map (No. 655); scale, 1:250,000; by D. C. Witherspoon and C. E. Hill. 50 cents each, or $30 a hundred. Also in Bulletin 247.

Seward Peninsula, northwestern portion, reconnaissance map (No. 657); scale, 1:250,000; by T. G. Gerdine and D. C. Witherspoon. 50 cents each, or $30 a hundred. Also in Bulletin 328.

Seward Peninsula, southern portion, reconnaissance map (No. 658); scale, 1:250,000; by C. E. Barnard, T. G. Gerdine, and others. 50 cents each, or $30 a hundred. Also in Bulletin 328.

Grand Central quadrangle (No. 646A); scale, 1:62,500; by T. G. Gerdine, R. B. Oliver, and W. R. Hill. 10 cents each, or $3 for 50. Also in Bulletin 533.

Nome quadrangle (No. 646B); scale, 1:62,500; by T. G. Gerdine, R. B. Oliver, and W. R. Hill. 10 cents each, or $3 for 50. Also in Bulletin 533.

Casadepaga quadrangle (No. 646C); scale, 1:62,500; by T. G. Gerdine, W. B. Corse, and B. A. Yoder. 10 cents each, or $3 for 50. Also in Bulletin 433.

Solomon quadrangle (No. 646D); scale, 1:62,500; by T. G. Gerdine, W. B. Corse, and B. A. Yoder. 10 cents each, or $3 for 50. Also in Bulletin 433.
RECENT SURVEY PUBLICATIONS ON ALASKA.

NORTHERN ALASKA.

REPORTS.

TOPOGRAPHIC MAPS.

*Koyukuk River to mouth of Colville River, including John River; scale, 1:1,250,000; by W. J. Peters. In *Professional Paper 20. 40 cents. Not issued separately.
