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SCOPE OF INVESTIGATION AND REPORT.

Studies of ore deposits aim to interpret the associations of ores, 
in order that the systematic exploitation of known deposits or the 
search for unknown ones may be carried on intelligently. Such 
studies attempt to determine the source of the materials that make up 
the ore and associated minerals, the conditions that determine the 
favorable places for accumulation, the processes by which the accu- 
mulation has been accomplished, and the subsequent processes that 
have affected the deposit or brought it to view at the surface.

It is apparent that any attempt to determine areas that may con- 
tain ore deposits now unknown must be based upon a sound even if 
incomplete hypothesis concerning the origin and mode of occurrence 
of the ores, and such a hypothesis can be formulated only after many 
deposits of the particular ore .sought have been thoroughly explored 
and studied.

Manganese minerals are widely distributed in Virginia, and a 
fairly complete explanation of the origin of the large deposits, which 
are sources of ore, will be possible only when many deposits have 
been examined in detail. Although much remains to be learned in 
future work, it is believed that sufficient is now known concerning 
some types of these deposits in Virginia to warrant the direction of 
effort toward exploration in areas where unknown deposits may be 
found.

This report aims to present briefly the results of field work in a 
part of Virginia where many manganese deposits are known. The 
examination was directed toward the discovery of areas likely to con­ 
tain manganese, with the aid of data gathered in a study of the geo- 
logic relations of known deposits. The field work was done in coop­ 
eration with the Geological Survey of Virginia. As it has brought 
forth much information concerning the nature and structure of the 
rocks associated with the manganese ores, which may greatly aid the 
operators of producing mines, a more detailed report will be pub­ 
lished later by the Virginia Survey.
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AREA EXAMINED AND METHODS EMPLOYED.

Northwestern Virginia has long been the source of much of the 
manganese ore mined in the United States, and at times it has been 
the scene of active prospecting in the hope that other extensive 
deposits like that at the Crimora mine might be discovered. The 
manganese deposits lie along the east side of the Shenandoah Val­ 
ley, at the foot of the Blue Ridge. For the present investigation a 
narrow belt was selected extending from Front Royal at the north 
to a point about 10 miles southwest of Waynesboro at the south. 
(See fig. 26.) This strip is about 85 miles long and averages 4 miles

FIGUHH 26. Index map of northern Virginia, showing location of undeveloped tracts 
recommended as favorable for prospecting for manganese. Tracts are numbered in the 
order of prospective promise.

wide, and the Crimora mine occupies a central position in it. A pre­ 
liminary geologic map of the area has been prepared, and this will be 
published in the report of the Geological Survey of Virginia.

The method of study was very similar to that which would have 
been employed in making a detailed areal map of the region. Trav­ 
erses were run along the roads and up the streams that cross the belt 
nearly at right angles to the trend of the bedded rocks. By this 
means the attitude of the beds was determined and the boundaries of 
the rock formations were located. The adjacent mountains were 
climbed where more information was needed or where a general view 
was desired for the purpose of location. This was essential in many 
places on account of the inadequate exposures of the rocks in the
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lowlands and the necessity of resketching the topographic base map 
where it was inaccurate. Where the rocks were found so broken by 
weathering or so covered by rock waste that the bedding could not be 
determined, the structure was inferred by the study of surface forms 
and the distribution of distinctive debris derived from the several 
formations.

In addition to the traverses for the purpose of making the map and 
determining the structure of the rocks, manganese and iron mines, 
prospect pits, and holes of any sort where information as to the 
relation of the ore to the bedrock might be observed were examined. 
At only a few places was the unaltered limestone in the mine pits 
visible, but the relation of the ore to the residual clay and to the 
wash was carefully scrutinized. The clay in most of the deeper 
mines and in some of the shallow pits was found to preserve the 
original bedding of the impure dolomite and limestone, so that the 
structural relations of the ore to these rocks could be determined.

THE MANGANESE DEPOSITS. 

GENERAL FEATURES.

The known manganese deposits of this part of Virginia are masses 
of oxides that are associated with rocks of several different types 
and have diverse structural relations. Some bodies of the oxides are 
rather large and so pure that they may be mined and shipped with- 
out prelminary treatment. Other masses are composed of nodules 
disseminated through clay in proportions that have a wide range. 
The material from such deposits must be washed to procure ore of 
high enough grade to warrant shipping.

A complete discussion of the origin of the deposits should include 
geologic data of several kinds, such as the distribution of manganese- 
bearing rocks and minerals, the chemical properties of manganese 
compounds and natural minerals, the character of the ground water 
of the region, the characteristics and stratigraphic relations of the 
rocks with which the ores are associated, the local structure of the 
rocks, and the surface features resulting from the erosional processes 
that have affected the region. Brief statements concerning, data of 
the last three kinds only are presented in this report, as they are 
used in outlining favorable areas for the accumulation of the ores.

ROCKS WITH WHICH THE ORE IS ASSOCIATED.

The rocks which occur in the vicinity of the manganese deposits 
of the Blue Ridge and adjacent part of the Shenandoah Valley in­ 
clude sandstone, shale, limestone, and dolomite and the older crystal­ 
line rocks on which these rest. The oldest crystalline rock present 
in the area is granite. The other crystalline rocks are greenstone, 
greenstone schist, and sericite schist, which were originally molten
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lavas. The massive greenstone is very resistant to weathering that 
is, it is not readily soluble in water nor easily broken up by frost and 
rain and therefore it forms the highest summits of the Blue Ridge 
throughout this area.

Immediately overlying the crystalline rocks are sandstones and 
quartzites, composed in part of unassorted debris derived from the 
disintegration of the older crystalline rocks. These beds range from 
soft arkose through harder arkosic sandstone to hard gray sandstone 
and dark ferruginous quartzite. With them are associated beds of 
slaty argillaceous sandstones. Some of the basal obeds have rounded 
grains and small pebbles of quartz, which are usually clear and trans­ 
parent, though some have an opaline blue color. Besides quartz 
there are grains of feldspar, generally chalky white from weathering, 
y.nd considerable clay and iron oxide. A spotted sericite schist, rep­ 
resenting a thin amygdaloidal lava flow, occurs at several places in- 
terbedded with the lowest sedimentary beds. These rocks have been 
called the Unicoi formation in northern .Tennessee, and that name 
will be used in this report. They are equivalent to the Weverton 
sandstone and Loudoun formation of Maryland and northern Vir­ 
ginia. Their thickness in this area is estimated to be 1,750 to 2,000 
feet. The formation is best exposed in the cuts of the Southern 
Railway 4 miles east of Front Royal but is also well shown on the 
Simmons Gap road south of Elkton and elsewhere in the belt between 
the main Blue Ridge and the front foothills.

Overlying the Unicoi formation are dark-gray shales, slates, and 
thin sandstones which in northern Tennessee constitute the Hampton 
shale. The shales and slates are mostly sandy and weather to hackly 
outcrops, so that in many places their original character and bed­ 
ding can not be clearly discerned. Some of the shale is dark and 
banded but weathers to soft buff rock. The formation is the same 
us the lower part of the Harpers shale of northern Virginia. It is 
estimated to be about 400 feet thick in this area but may be much 
thicker, as it is in general highly folded. Typical rocks of the 
Hampton and Unicoi formations are easily distinguished, but the 
two formations were not separately mapped everywhere in the field, 
because there are shaly rocks in the Unicoi and hard sandstones and 
arkoses in the Hampton. All these rocks weather more easily than 
either the underlying greenstone or the overlying massive white 
quartzite, so that they form depressions or subordinate ridges be­ 
tween the main Blue Ridge on the east and the outer foothill ridges 
on the west.

The next higher formation is a massive white quartzite, the out­ 
crops of which make prominent ridges in this region. It is here 
called the Erwin quartzite. The western foothills of the Bine Ridge 
throughout most of the area are composed of this rock, and in many
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places it forms the front ridges. The formation in this region is 
generally made up of three massive cliff-making ledges separated by 
thinner-bedded sandstones. The thickness in the measured section 
given below, the best-exposed section in this region, is 500 feet, but it 
appears elsewhere to be much greater, possibly 1,000 feet.

Section of Erwin quartzite in Blue Ridge near Stanley, Va.

Feet.
White sandstone full of scolithus; crumbles readily to sand. 

Barely exposed in place. Upper layers harder; weather 
red to rusty and porous____________________ 120 

Upper cliff: Hard white thick-bedded vitreous quartzite.
Contains some scolithns______________ '.______ 40 

Partly covered, probably crumbly white sandstone______ 90 
Middle cliff: Hard thick massive beds of bluish-white vitre­ 

ous quartzite__________________________ SO 
Covered, probably crumbly sandstone_____________ 70 
Lower cliff: Hard white vitreous quartzite. Contains some 

scolithus _________________ '.__________________ 100

500

The cliff-making ledges consist largely of massive beds of dense 
white quartzite, some of which are 15 to 20 feet thick without a 
visible trace of bedding. Many of the beds contain casts of worm 
tubes (scolithus), and as these were vertical when the sediments were 
deposited they may be used to determine the bedding of the rocks, 
which is at right angles to them. This formation is the same as the 
Erwin quartzite of northern Tennessee and has also been correlated 
with the Antietam sandstone of northern Virginia. It is believed, 
however, to represent not only the Antietam but also a lower quartz­ 
ite, the Montalto quartzite of southern Pennsylvania, which is a mem­ 
ber of the Harpers shale.

In the Shenandoah Valley the Erwin quartzite is overlain by a 
great thickness of limestone and shale, but only those beds immedi­ 
ately adjacent to the mountain front need here be considered. The 
formation that normally lies above the Erwin quartzite the Shady 
dolomite is composed largely of coarse dolomite containing chert 
nodules and beds of impure shaly limestone. Because of the solu­ 
bility of the dolomite it readily breaks down into grains and finally 
weathers into red clay and is generally not visible at the surface. It 
therefore forms a deep-red granular and clayey soil containing chert 
fragments and underlies low valleys. Some yellow laminated clay or 
ocherous layers at the base represent banded argillaceous limestones. 
Unallotted dolomite has been exposed only in a few shafts and tunnels 
in the region. The formation is the same as the Shady limestone of 
northern Tennessee and is equivalent to the Tomstown limestone of 
southern Pennsylvania and Maryland. It is reported to be 1,800 feet
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thick in the vicinity of Natural Bridge, and it has probably about the 
same thickness here.

The next recognized formation of the limestone group is a shale 
called Watauga in northern Tennessee. Its characteristic color is 
reddish purple, but in this area it is generally so much weathered that 
it is buff colored. In places it is weathered to purple and buff banded 
ocherous clay, as at the ocher mine 10 miles southwest of Luray. It 
contains thin calcareous shales and blue limestone beds and in places 
thinly laminated ripple-marked sandstone, which is best displayed 
east of Front Royal. It is the equivalent of the Waynesboro shale 
of southern Pennsylvania and Maryland, which is conspicuously pur­ 
ple and sandy. The thickness in this area could not be determined, 
because of poor exposures. The formation is reported to be 900 
feet thick in the vicinity of Natural Bridge, where it is better exposed, 
but it does not appear to be so thick in this area. A.bove the Watauga

FIGURE 27. Generalized structure section of the west front of the Blue Ridge and the 
adjacent part of the Shenandoah Valley, showing the normal relations of the rocks and 
their former extent (dashed lines) before removal by erosion.

shale are limestones and dolomites that have not been differentiated 
in this area, and as they need not be considered in the present connec­ 
tion, they will not be described.

All the sedimentary rocks above described are geologically very 
old. No fossils, except the worm tubes in the Erwin quartzite, were 
found in them in this area, but casts of shells and other fossils have 
been found in the equivalent formations elsewhere, and they are there­ 
fore known to belong in the Cambrian and to be among the oldest 
fossiliferous rocks known in the eastern part of the continent.

The sediments were nearly horizontal when they were laid down in 
the sea. The beds are now in most places steeply inclined and folded 
into long troughs (synclines) and arches (anticlines) whose axes are 
parallel to the northeasterly trend of the mountain ridges. (See fig. 
27.) After being folded and wrinkled the rocks were worn down by 
processes of atmospheric erosion, and the softer and more soluble 
rocks were removed from the higher regions. The underlying 
quartzites, shales, and greenstones were thus exposed and, because of
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their resistance to erosion, now form the mountains, whereas the 
limestone underlies the valleys. A generalized cross section showing 
the rocks of the region as they are now and their extent before they 
were eroded is given in figure 27.

The manganese deposits are not confined to a single thin group of 
beds but lie in or over beds that range from the upper part of the 
Erwin quartzite to the lower part of the Watauga shale, strati- 
graphically 2,000 feet higher. Most of the deposits, however, occur 
in banded clays that are believed to have been derived by weathering 
in place from the lower 200 feet of the Shady dolomite.

RELATION OF DEPOSITS TO STRUCTURAL FEATURES.

Manganese oxides are widespread in the Shenandoah Valley, but 
as most of the rocks near by are deeply decayed, the structural asso­ 
ciations of many small bodies of the oxides are obscure. Studies of 
a number' of deposits that were large enough to warrant extensive 
exploration, however, show that at least five structural types may be 
recognized and that in most places the local structure of the adja­ 
cent rocks has determined the form of the deposits and in large meas­ 
ure their areal extent and their persistence below the surface.

The five types of deposits will be briefly described. Figure 23 
shows cross sections of four deposits which have been studied recently 
and which probably include those types that are sources of most of 
the ore now mined in northwestern Virginia. ,

1. The commonest type of deposit in the belt under consideration 
is that represented at the old Kendall & Flick shaft, south of Elkton, 
but also shown at the Vesuvius mine, \\ miles northeast of Vesuvius, 
Eockbridge County, and elsewhere in the region (fig. 28, B). These 
deposits occur in a 200-foot zone of decomposed shale and cherty 
dolomite that overlies the upper beds of the Erwin quartzite, where 
the beds dip toward the Shenandoah Valley at angles that range 
from 30° to 60°. The structure near these deposits may be termed 
monoclinal, as all the beds are similarly inclined.. In such localities 
the upper surface of the Erwin quartzite forms the slope of a con­ 
spicuous straight ridge, and float ore from the deposits is found 
over the gentle slopes near by on the northwest. Under these struc­ 
tural conditions irregular bodies of manganese oxides are found 
here and there in a narrow belt of .decomposed shale and dolomite 
parallel to the outcrop of the Erwin quartzite. The bodies of man­ 
ganese oxides appear to have no relation to the transverse ravines 
that rise in the Blue Eidge and cross the quartzite. So far as avail­ 
able records show, no deposits of manganese ore or nianganiferous 
iron ore occurring under these conditions in this area have yielded 
more than 25,000 tons, and many have been abandoned before pro­ 
ducing as much as 5,000 tons.
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2. Deposits of another type occur in clays that' fill troughs formed 
by the upper surface of the Erwin quartzite. The best illustration
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FIGURE 28. -Sketches showing vertical cross sections of four' manganese mines in the 
Shenaudoah Valley-Blue Ridge region, representing four types of deposits. A, Cross 
section S. 48° E. through the Crimora manganese mine, Augusta County, Va., in 
which the ore lies in a trough in the Erwin quartzite; B, cross section S. 52° E. 
through the old Kendall & Flick mine, south of Elkton, Va., in which the ore occurs 
as pockets in. clay immediately above, the t9p of the Erwin quartzite, which has a 
monocliual structure; C, cross section S. 65° E. through the Midvale mine, Rockbridge 
County, Va., in which the ore occurs in gravel in a stream channel cut on nearly 
vertical limestone; D, cross section S. 65° E. through the mine at Dargan, Md., near- 
Harpers Ferry, W. Va., in which the ore occurs in<-clay along a fault zone.

of this type is the deposit worked at the Crimora mine, Augusta 
County. 1 (See fig. 28, A.) A detailed study of the 'Crimora mine

1 Hall, C. E., Geological notes on the manganese deposits of Crimora, Va.: Am. Inst. 
Min. Eng. Trans., vol. 20, p. 46, 1892.
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was made by one of the present writers in May, 1917, and a report 
is now in preparation. Near Elkton 1 manganese ore was mined 
from a U-shaped trough in the Watauga shale, but no other deposits 
with such associations are known.

At the Crimora mine over 300,000 tons of manganese ore has been 
recovered from a deposit about' 20 acres in extent that lies in a 
trough formed by the Erwin quartzite. The trough trends N. 40° 
E. and is therefore slightly inclined to the ridges adjacent to the 
Blue Ridge, which limit it, and it plunges southwest under the low 
plain that' here forms a part of the Shenandoah Valley. The 
trough is bounded on the northwest by an anticline, which also 
plunges southwest into the valley. Much ore has been recovered at 
depths ranging from 100 to 200 feet below the surface, but the 
limits of ore toward the southwest end of the deepening trough are 
not knoAvn. Explorations of the deposit at the Crimora mine, which 
has yielded more manganese than any other in the region east of the 
Allegheny Mountains, and of other deposits that have similar rela­ 
tions confirm the tentative conclusion that troughs in which the beds 
have low dips are the most favorable sites for the accumulation of ore.

Other deposits of manganiferous iron and manganese ore which 
occupy troughs in the Erwin quartzite occur at the Mount Torry 
mine, near Sherando, and the Red Mountain mine, 5 miles east of 
Peldn siding, on the Norfolk & Western Railway, Augusta County.

3. In the deposits of the third type manganese oxides replace 
porous sandstone along crushed zones in the Erwin quartzite. One 
deposit of this type has been prospected in the southeastern part of 
the Mount' Torry tract, south of Sherando, and another on Dry 
Run, 9 miles northeast of Luray, is being actively mined by the 
Compton Manganese Co. Such crushed zones appear to be irregular 
in distribution. They yield siliceous ore and, as they occur in hard 
rocks, are expensive to exploit.

4. A fourth type of deposit is represented by that explored near 
Dargan, Washington County, Md.2 (fig. 28, D). This deposit occurs 
along a fault zone in clay derived in part from the decomposition of 
limestone (Tomstown) on one side and shale (Harpers) on the other. 
Such deposits appear to be uncommon, and no others are known in 
the belt from Potomac River to Vesuvius, Va. They appear to yield 
small quantities of ore.

5. The fifth type of deposit in this region of which the structural 
relations are known is represented by that at Midvale, explored by 
the Rockbridge Manganese & Iron Co.3 (See fig. 28, C.) Another of

1 Hewett, D. F., Some manganese mines in Virginia and Maryland: U. S. Geol. Survey 
Bull. G40, pp. 42, 61-67, 1916.

2 Idem, pp. 42, 69-71. 
"Idem, pp. 42, 54-60.
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this type is now being explored on the Kennedy property, 3 miles 
southwest of Sherando, Augusta County. In these deposits manga­ 
nese oxides replace the clay zones of sediments that fill'an ancient 
river .channel (Midvale) or that form an ancient alluvial fan or 
gravel terrace (Kennedy). It is a coincidence that the Kennedy 
deposit is near the outlet of an ancient stream that rose in the high 
ridges several miles to the south and flowed in a trough directed 
toward the deposit. Such deposits are flat masses that conform to 
the depressions in which the sediments were laid down. Explora­ 
tion by drilling at the Kennedy mine is reported to show the presence 
of a large quantity of ore, and it is possible that here, as with de­ 
posits in troughs, the size may depend upon favorable local structural 
features.

The field work on which this report is based was directed especially 
toward the interpretation of the structure of the beds making up the 
Erwin quartzite, Shady dolomite, and Watauga shale. The tracts 
in the belt examined that are considered favorable to the accumula­ 
tion of manganese or manganiferous iron ore are those which are 
underlain by troughs of the upper beds of the Erwin quartzite, from 
the surface of which the products of decay of the overlying Shady 
dolomite have not been removed. The six tracts that are described 
in the following pages fulfill these conditions, but the troughs are 
considered favorable in proportion to the size of the area that has 
drained into them, or to the abundance of float ore present and the 
thoroughness of the decay of the rocks over the Erwin quartzite.

A number of faults have been recognized in this belt, but as the 
factors which determine the parts of the fault zones that are favor­ 
able to accumulation of ore are not known, and as the only deposit 
known to lie along a fault is not large, it would not be wise to direct 
exploration along such faults.

RELATION OF DEPOSITS TO SURFACE FEATURES.

In a recent report 1 it has been suggested that several manganese 
deposits in the region between Potomac River and Midvale, Rock- 
bridge County, Va., occur under conditions that make it appear that 
they were formed during or soon after the period in which the valley- 
.floor peneplain was being established. This peneplain has been con­ 
sidered to be of early Tertiary age and for brevity it will here be 
referred to as the early Tertiary peneplain. It was also noted that 
several deposits crop out at the level of this plain, without regard 
to the extent to which the plain was locally dissected. The present 
investigation has shown that the outcrops of a number of additional

1 Hewett, D. F.,. op. cit, pp. 37-71.
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deposits lie close to the position of this peneplain, but also> that the 
lowest point of one deposit that at Bed Mountain, northeast of 
Vesuvius occurs 400 to 500 feet above the level of this plain, and 
that the surface near the Lyndhurst mine is not 50 feet below the 
early Tertiary plain, as stated in a previous report by the senior 
author,1 but nearly 250 feet below it. Therefore, while the conditions 
during or soon after the early Tertiary peneplanation appear to have 
been particularly favorable to the accumulation of certain deposits of 
manganese and possibly of iron ores, others were probably formed, 
at an earlier and some at a later period.

Evidence collected during this investigation shows that although, 
four periods of planation may be recognized,2 the recent physio­ 
graphic history has probably been even more complex.

Although field Avork has shown that the Midvale and Kennedy" 
deposits are in alluvial material laid down near the level of the early 
Tertiary plain and the region contains many remnants of gravel on. 
this plain, there is no way of recognizing, in advance of exploration,, 
the places where these gravels may contain deposits of manganese ore.

According to the hypothesis previously stated, that troughs present 
the most favorable structure for the accumulation of manganese ores, 
those troughs which pitch at a low angle under the early Tertiary 
plain would be the most favorable, and the parts of the troughs most 
likely to receive the deposits should be those where the top of the 
Erwin quartzite is not more than 300 feet below the present surface 
of the ground. ,

ORIGIN OF THE DEPOSITS. I

A hypothesis of the origin of the manganese deposits of the region 
is here presented briefly, in so far as it bears on the conditions that 
are most favorable for the accumulation of manganese oxides. The 
.purpose of this report does not permit the presentation of evidence 
bearing upon some phases of the hypothesis.

Definite evidence concerning the source of the manganese that now 
makes up the workable deposits is lacking; but, from the data at 

'hand, it appears that the manganese was originally widely dissemi­ 
nated as carbonate in the dolomite and limestone and possibly in 
silicates in other rocks found in the neighborhood of the deposits. 
The manganese was dissolved as bicarbonate and transported along 
established channels of circulation to the places where the oxides are 
now found, in clays produced by the previous decay of sericitic 
shales, limestone, and dolomite. The. oxides were probably deposited 
Avhen and where the solutions containing manganese bicarbonate

1 Hewett, 'D. P., op. cit, p. 61.
2 Watson, T. L., Drainage changes in the Shenandoah Valley region of Virginia:. 

Virginia Univ. Philos. Soc. Bull., Sci. ser., vol. 1, p. 355, 1913.

82153° 18 Bull. 660  19   i
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met oxygen-bearing waters. Manganese oxide appears to have been 
deposited largely by replacing the clay, although small quantities 
were deposited in open spaces. The largest deposits of manganese 
were formed in places where the maximum amount of manganese in 
solution met the most favorable conditions for deposition. Most 
complete rock decay and, therefore, solution of the maximum propor­ 
tion of manganese in the rocks are probably attained in regions of 
low relief haying a thick cover of vegetation, under the influence 
of a warm, moist climate. As the process of solution would be most 
active in those parts of the region above the average level of streams 
and above ground-v; ater level, more manganese should be delivered 
in solution to the belt of country where the ridges and hills meet the 
plains than elsewhere. ' -

If not diverted by the local rock structure the maximum flow of solu­ 
tions near the surface would have occurred near or directly under sur­ 
face stream channels. Where oxidation was possible deposits formed 
in the stream channels themselves As deeper circulation of surface 
waters was controlled by rock structure, troughs would have received 
the maximum circulation, although fault zones might have been 
locally favored. According to this hypothesis structural troughs 
were the most favorable channels for circulation, and if suitable con­ 
ditions for oxidation and deposition existed they should be the most 
favorable places for accumulation.

Many reports have been published which describe briefly the asso­ 
ciations of manganese ore in certain mines in Virginia, but most 
of the available information concerning the stratigraphic and struc­ 
tural relations of the deposits in Virginia is contained in reports- 
that are based on comprehensive studies of many deposits in a large 
area.1 The relation of the hypotheses of origin of the manganese 
deposits set forth in these reports will be discussed in a later report.

TRACTS RECOMMENDED FOR EXPLORATION.

BASIS OF RECOMMENDATIONS.

Descriptions of six undeveloped tracts along the west front of the 
Blue. Kidge are presented below. These tracts appear to present 
features favorable for the accumulation of deposits of manganese 
and manganiferous iron ores, and prospecting with the view to dis-

1 Penrose, R. A. F., Manganese, its uses, ores, and deposits: Arkansas Geol. Survey 
Ann. Kept, for 1890, vol. 1, pp. 401-412, 1891.

Hall, C. E., Geological notes on the manganese ore deposits of Crimora, Va.: Am. Inst. 
Min. Eng. Trans., vol. 20, pp. 46-49, 1892.

Watson, T. L., Mineral resources-of Virginia, Virginia Geol. Survey, 1907.
Harder, E. C., Manganese deposits of the United States: U. S. Geol. Survey Bull. 427," 

1910.
Hewett, D. F., Some manganese deposits in Virginia and Maryland: U. S. Geol. Survey 

Bull. 640, pp. 37-71, 1916.
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covering such deposits is recommended. Formerly such deposits 
were prospected by means of pits and trenches, but recently im­ 
provements in methods of employing the churn drill make it most 
useful for this purpose, and several operators use it extensively. 
Even if deposits should exist under these tracts, they may be covered 
by gravel or wash from the neighboring slopes, as at the Crimora 
mine, and exploration by drilling is peculiarly adapted to such 
conditions.

These tracts are regarded as favorable for exploration largely be­ 
cause they have the same structural and stratigraphic features as 
other areas within which large deposits of manganese and man- 
ganiferous iron ores are known and bear a similar relation to the 
surface. They are described in the order of greatest promise, the 
one in which the conditions are believed to be most favorable first. 
Fragments of manganese minerals have been found on the surface of 
many tracts, but as such fragments are widespread in this region they 
are not especially significant. Positive assurance that these tracts 
contain workable deposits of ore can not be given, but to those inter­ 
ested in searching for unknown deposits of these ores the tracts 
should offer an attractive field.

TRACT 1.

Tract 1 lies 2 miles southwest of Elkton, within a mile of the Nor­ 
folk £ 'Western Kail way. (See fig. 29.) The west front of the 
mountains in the vicinity of Elkton has many sharp offsets in its 
general southwest course. From Swift Run this course is a little 
south of west for 1£ miles to a point where the mountain front is 
slightly offset to the northwest. From that point the front runs 
Avest-southwest across Hawksbill Creek for 1£ miles to a sharp off­ 
set to the east of about .half a mile. The southwestward course 
then continues for three-fourths of a mile but is interrupted by 
a second sharp offset to the east of about a quarter of a mile. At 
Gap Run, three-quarters of a mile beyond, the mountain front is 
slightly offset in the opposite direction, to the west, but the south­ 
west trend is maintained. At SAvift Run the mountain front is 
offset to the southeast, and beyond Elk Run the front ridge breaks 
down to IOAV knolls for over a mile.

Along the west flank of the mountains, immediately west of the 
line just traced, there are gravel-covered terraces that slope toward' 
Shenandoah River and are deeply trenched by cross streams. No 
rock exposures occur in the gravel-covered belt, but several mine 
shafts and test pits show that it is underlain by lower members of 
the Shenandoah group of limestones (Shady dolomite and Watauga 
shale). The gravel-covered area is 1 to 1| miles wide, except for a
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short stretch at the mouth of Hawksbill Creek, where it is reduced 
in width to about a quarter of a mile by the eastward bend of Shen- 
andoah Eiver. West of the gravel terraces at the mouth of Hawks- 
bill Creek, especially along Shenandoah River, there are exposures 
of the Watauga shale and overlying beds of limestone.

FIGURE 29. Sketch geologic map of region near Elkton, Va., showing location of tracts
1 and 3.

The western foothills of the Blue Ridge are made up of white 
quartzite (Erwin), whose structure determined the irregular course 
of the mountain front. Thus from Swift Run westward for 1£ 
miles, where the mountain front is straight and trends west-south­ 
west, the quartzite beds strike about parallel to the mountain front 
and dip 50°-60° NW., passing under the limestone of the valley. 
The small offset in the mountain front at Hawksbill Creek and the 
larger one east of Yancey are produced by a detached anticlinal ridge 
of quartzite which is separated from the main quartzite ridge by a
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shallow synclinal valley. Both the anticline and the syncline plunge 
sharply northeast just east of Hawksbill Creek, and the quartzite 
abruptly passes under the limestone of the valley. Southwest of 
Hawksbill Creek the folds plunge more gently southwestward, and 
the quartzite again passes below the level of the gravel-covered plain 
in that direction. The syncline widens in this direction, as the main 
sidge of the mountain here strikes more southerly and diverges from 
the outlying ridge, and the limestone embayment is therefore large 
and open. The offset in the mountain front three-quarters of a mile 
farther south' is apparently produced by two similar though smaller 
folds, which plunge south, and the northwest offset at Gap Run is 
formed by two other flat, gentle folds, which plunge north. The 
offset east of Swift Eun is apparently produced by a northeast­ 
ward-plunging anticline and syncline, for, although the bedding in 
the sandstone was not observed, the rocks seen along the road crossing 
the syncline are believed to be the basal sandy beds of the limestone 
group. Beyond this offset the mountain front is straight, although 
the front ridge breaks down beyond Elk Run, where the quartzite is 
weakened by crushing and probable minor faulting.

Although the white quartzite beds have a general steep westerly 
dip on the front foothills they flatten out toward the east and cap the 
tops of several spurs and ridges some distance back from the front, 
where they are nearly horizontal or even lie in gentle synclines. To. 
the east of and therefore beneath the white quartzite there are shales 
and arkosic sandstones which are somewhat folded and form a belt 
half a mile to 1£ miles wide. These basal Cambrian beds rest upon 
pre-Cambrian greenstone and greenstone schists which generally 
form the main mass of the Blue Ridge.

There is a group of manganese mines about 1 mile south of Elkton, 
which will be referred to as the Elkton mines. The old workings 
are known as the Kendall & Flick mines and include the Niesswaner 
shaft and Bartell shaft, which have been described by Harder 1 and 
Hewett.2 One of the mines is now being worked by the United 
States Manganese Co. These mines are on a terrace at the base 
of the quartzite ridge between Swift Run and Hawksbill Creek. 
Three of the mines, including the easternmost, which alone is active 
at present, lie close to the top of the northwestward-dipping quartz­ 
ite, and apparently there is no synclinal structure of the bedrock 
that determined the concentration of these deposits of ore. As the 
outer mine, which is about 1,200 feet from the base of the moun­ 
tain, struck the purple Watauga shale in its deep shaft, the steep

1 Harder, E. C., Manganese deposits of the United States : U. S. Geol. Survey Bull. 
427, 1910, p. 57.

2 Hewett, D. F., Some manganese mines in Virginia and Maryland : U. S. Geol. Survey 
Bull. 640, pp. 61-67, 1916.
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westward dip of the beds probably continues out that far, and the 
small syncline at Hawksbill Creek must therefore plunge steeply 
northeastward. Just east of Swift Run there is a manganiferous 
iron prospect which is in strike with the three Elkton mines, but the 
embayment to the south, between the prospect and the quartzite 
ridge, which is covered with mountain wash, has not been pros­ 
pected so far as known and may be worthy of investigation, as tlie 
structure of the inclosing rocks is apparently synclinal and favorable 
for the accumulation of ore.

Southeast of Yancey a manganese prospect north of the small run 
has been opened by J. H. Crawford and another south of the run by 
W. B. Yancey. These two prospects have direct bearing on the tract 
to which particular attention is here directed. The Crawford pros­ 
pect shaft, which is 75 feet deep, is on the south side of the embay­ 
ment in the mountain front 1£ miles east of Yancey station on the 
Norfolk & Western Railway. This embayment is a triangular area 
about half a mile long and covers about 180 acres. It lies in the 
reentrant angle between the white quartzite ridges locally called Little 
Piney Mountain (on the northwest) and Big Piney Mountain (on the 
southeast). In the saddle between these hills the upper quartzite 
beds of the Erwin formation lie horizontal in the bottom of the 
syncline. The quartzite hills diverge toward the southwest, and the 

. syncline plunges in the same direction, so that the trough "between 
the hills incloses the overlying Shady dolomite. At the Crawford 
shaft, half a mile south of the head of the trough, manganese nodules 
occur in red clay with chert fragments, which is the characteristic 
residuum of the Shady dolomite. The entire embayment, therefore, 

.is probably underlain by the Shady dolomite, but it is completely cov­ 
ered by wash from the quartzite mountains. The only means of de­ 
termining the thickness of the wash and the presence of manganese 
ore beneath the alluvial covering is by drilling or by digging test 
pits. The synclinal structure of the quartzite in the surrounding 
mountains, the favorably located basin filled With wash and under­ 
lain by gently dipping beds of the Shady dolomite or its residual 
clay, and the known presence of manganese ore in the trough justify 
the recommendation that this triangular area be thoroughly pros­ 
pected for manganese.

The conditions in the embayment in the mountain just south of 
this tract are not so well determined. The structure of the quartzite 
hills around the offset at the north end of the embayment is obscure 
and is inferred chiefly from the topography, but at the offset at the 
south end, just north of Gap Run, the quartzite lies in a very shallow, 
broad syncline. The alluvial filling in this embayment'appears to 
be heavy, but the Shady dolomite or its residual red clay is probably
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present, as the mariganiferous nodules in the Yancey prospect pits 
occur in red pebbly clay, although chert fragments, such as are char­ 
acteristic of the Shady dolomite were not seen in it. This area, 
though not as promising as the embayment east of Yancey, still has 
sufficiently favorable indications to suggest that further prospecting 
should be done in it. >

TRACT 2.

Tract 2 lies between two spurs of the Blue Ridge about 3 miles 
southwest of Sherando and 6 miles south-southwest of Lyndhurst, in 
Augusta County. (See 
fig. 30.) It is about 
midway between the 
Kennedy mine, to the 
northwest, and the 
Mount Terry mine, to 
the southeast, and is 
drained by Mills Creek. 
A lumber railroad over 
which ore from these 
two mines is shipped 
passes just north of the 
tract and joins the Nor­ 
folk & Western Rail­ 
way near Lipscomb. 
A spur of the lumber 
road formerly ran 
southwestward up Mills 
Creek, but the rails and 
ties have been removed.

The mountain spurs 
on both sides of the 
tract are composed of 
white quartzite (Er- 
win), and the structure 
of each is anticlinal. 
Both anticlines plunge 
northeastward, so that 
in this direction the quartzite descends below the limestones and 
shales of the Shenandoah Valley. - (See fig: 30.) The area between 
the spurs is a northeastward-plunging syclinal trough and there­ 
fore is probably underlain by limestone and possibly some shale, but 
no outcrops are to be seen, as the surface is covered with quartzite

FIGURE 30. Sketch geologic map of area south of Lynd­ 
hurst, Va., showing location of tract 2.
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wash from the mountains. The anticlinal spurs on both sides of the 
plunging synclinal trough diverge to the northeast, so that the lime­ 
stone belt widens in this direction, forming a wedge-shaped area 
which is about 1 mile long in a northeasterly direction and about 
three-quarters of a mile wide between the points of the spurs. This 
wedge-shaped area merges on its northeast side with the great lime- 
stone and shale belt of the Shenandoah Valley.

This synclinal embayment closely resembles the adjacent embay- 
ment on the southeast, in which the Mount Torry mine is situated 
and which also is a synclinal trough. This mine produced a large 
 amount of iron ore 40 or 50 years ago and was abandoned because of 
ihe manganese in the ore. Later it was extensively prospected for 
manganese ore, and some ore was shipped. Both the manganiferous 
iron ore and the manganese ore are now being mined by a company 
which has leased the property. This embayment is larger than that 
on Mills Creek and the syncline is deeper, and although bedrock is 
not exposed at-the surface within the basin, fresh Shady dolomite 
was encountered in a shaft near the head of the valley.

West of tract 2 there is a smaller embayment of limestone in the 
mountain front. This embayment occupies a northeastward-plunging 
synclinal trough, at the mouth of which the Kennedy mine is located. 
Back in the mountain -the syncline deepens and forms a narrow 
valley which once inclosed limestone between two. high, rocky quartz- 
ite ridges. This limestone has probably all been removed by erosion, 
but some may still be present, deeply covered by the quartzite wash. 
Even if limestone or its residual clay is present, the area is too nar­ 
row to expect any large deposit of ore to occur in it, for the ore was 
probably largely carried out to the mountain front by the former 
underground drainage and deposited in the clays in which the 
Kennedy mine is located.

The accumulation of ore in the deposits in which the Mount Torry 
and Kennedy mines are located was greatly aided by the synclinal 
structure of the quartzite and overlying limestone. The ore is found 
in t'he undisturbed residual clay from the limestone and in overlying 
clay mixed with quartzite gravel and boulders, where solutions de­ 
posited the manganese oxides in crevices or bedding planes, and in 
nodules and masses replacing the clay. The structural conditions in 
tract 2 appear to be equally favorable for the accumulation of man­ 
ganese ore in commercial quantity, and although no manganese ore 
has been reported there,, possibly because of the deep filling of t'he 
basin with wash, the favorable structural relations warrant search 
for the ore. It is therefore recommended that the tract be thor­ 
oughly prospected by drilling.
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TRACT 3.

Tract 3 lies between Grindstone and Piney mountains, two foot­ 
hills of the Blue Ridge about 5 miles northeast of Elkton. (See 
fig. 29, p. 284.) It is chiefly in Kockingham County, but partly in 
Page County. Naked Creek, which flows near the north edge of 
the tract, forms the boundary line between the two counties. So far 
as known, no prospecting for manganese has been done within the 
area, but the Watson mine is about 1 mile to the north-northwest, 
and a number of manganese prospects are scattered along the west 
base of Grindstone Mountain, between it and this tract.

White quartzite (Erwin) is exposed on the crest and most of the 
west slope of Grindstone Mountain. In general its strike is parallel 
with the mountain, which trends N. 10°-20° W., and it dips 40°-50° 
W., passing beneath the limestone and shales that are exposed in 
the Shenandoah Valley. . A small embayment near the south end 
of Grindstone Mountain is formed by a steeply plunging syncline. 
No limestone is exposed at the surface in this syncline, but residual 
clay from the limestone was observed at the Wat'son mine and in the 
prospects near by, all of which are in the syncline. This residual 
clay retains the original bedding of the limestone and incloses de­ 
composed chert that is characteristic of the Shady dolomite. The 
clay is overlain by and at the top is partly mixed with quartzite 
boulders, which are especially numerous on the flat wooded spurs 

. that extend southward from the base of the mountain.
Grindstone Mountain ends abruptly at Naked Creek, where the 

mountain front is offset about a mile to the east and thence continues 
south in Piney Mountain. The crest and most of the west slope of 
Piney Mountain are formed of the same white quartzite, which strikes 
S. 25° W. and dips at a high angle toward the Shenandoah Valley. 
This offset is caused by an anticline and associated syncline, which 
are similar to but larger than those at the Watson mine, a mile to 
the north. The folds are so broad and open and plunge so steeply 
to the southwest that the strike of the Erwin quartzite here makes 
two nearly right-angle bends. (See fig. 29.) In the syncline a lime­ 
stone, which is probably the Shady dolomite, is inclosed above the 
white quartzite. The limestone is not exposed near the mountain, 
but a sink hole and red clay residual from limestone seen in a stream 
bank close to the west slope of Piney Mountain are sufficient evidence 
of its presence under the covering of wash. Dolomite beds are ex­ 
posed in Naked Creek south of the Watson mine and also farther 
out in the valley. The axis of the syncline strikes northeast between 
the two mountains but lies south of Naked Creek. Along the creek 
the white quartzite beds, which are north of the synclinal axis, strike 
N. 70° E. and dip 15°-30° SE. To the east, up the creek the older



290 CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1917  PART I.

Cambrian sandy shale and slate of the Hampton formation and 
arkosic sandstone and conglomerate of the Unicoi formation crop 
out beneath the white Erwin quartzite, with similar low southerly dips 
and nearly east strike. At the base of the Cambrian rocks purple 
ferruginous sandstone rests on pre-Cambrian greenstone schists.

The ore at the Watson mine consists of concretionary psilomelane 
and pockets of wad in residual clay of the Shady dolomite. Ito was 
mined by means of a shaft and two tunnels and was concentrated in 
a mill at the mine, but no mining has been done here for several 
years. Similar ore occurs at the prospect pits along the foot of the 
mountain for about half a mile southeast of the mine. The mine and 
prospects are located in a small syncline and are therefore favorably 
situated for the accumulation of manganese ore, but large, rich de­ 
posits are probably not to be expected because of the small size of 
the syncline. The tract near Naked Creek, however, is larger and 
more favorably situated for the accumulation of ore, because the 
syncline from which ore could have been concentrated there is broad 
and open. Although no ore has been reported from this tract, it is 
recommended that the tract be thoroughly prospected by drilling or 
digging pits. It is not advisable to prospect in the stream flats of 
Naked Creek and its tributary flowing north at the west base of 
Piney Mountain, for but little, if any, residual clay in which manga­ 
nese ore would be expected occurs here between the alluvium and the 
unaltered limestone. Prospecting should be confined to the area 
between these two creeks.

TRACT 4.

Tract 4 is an irregular lowland area inclosed by low hills, 3 miles 
northeast of Waynesboro. (See fig. 31.) This region is served by 
the Shenandoah Valley branch of the Norfolk & Western Railway 
and the Chesapeake & Ohio Railway, which cross at Basic City.

The boundary between the -Blue Ridge and Shenandoah Valley 
here follows a very irregular but general southwesterly course, which 
is determined by the irregular structure and distribution of the un­ 
derlying rocks. Some of the foothills are so low that it is difficult 
to decide where the boundary between foothills and valley should 
be drawn. The westernmost foothills of the Blue Ridge are com­ 
posed of white Cambrian (Erwin) quartzite. Sawmill Ridge and 
Ramsey Mountain form the main ridge of the white quartzite in 
this area, and quartzite beds on their west slopes dip 50° W., toward' 
the valley. East of Ramsey Mountain and Sawmill Ridge the white 
quartzite is underlain by older Cambrian sandy shales and dark 
arkosic sandstones of the Hampton and Unicoi formations, and east 
of these are the pre-Cambrian greenstones and schists that compose 
the larger part of the Blue Ridge. West of the mountain front the
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Shenandoah Valley is underlain by Cambrian limestones, dolomites, 
and shales of the lower part of the Shenandoah group, but these 
beds are not exposed near the foot of the mountains because .of 
the thick covering of mountain wash consisting of gravel, sand, and 
clay.

West of Sawmill Kidge there is a low, narrow hill whose anti­ 
clinal character is well shown on the road up Sawmill Run, where 
the anticline plunges south. The narrow valley between this hill 
and Sawmill Ridge is therefore synclinal and probably contains some 
Shady dolomite overlying the quartzite. Manganese ore was mined 
on the Watts property in this syncline many years ago. From the 
west side of Ramsey Mountain a low ridge that extends 1 mile to the 
west is made up of several narrow north-south hills with shallow 
saddles between them. Although no outcrops from which the dip of 
the rocks could be determined were seen on these hills, they are covered

FIGURE 31. Sketch geologic map of region near Waynesboro, Va., showing location of
tract 4.

with angular quartzite fragments nearly in place, and the hills are 
believed to be small anticlines which plunge steeply to the north, 
toward Sawmill Rim, and less steeply to the south. Between the 
south ends of these hills are small' embayments which are structurally 
synclinal troughs, and two of them are sufficiently large to inclose 
the overlying Shady dolomite or its residual clay. In fact, fragments 
of chert derived from the Shady dolomite were found in the alluvial 
fill of the valleys. The quartzite in the low hills is seemingly that of 
the upper beds of the Erwin formation.

West of Ramsey Mountain, across an alluvium-filled valley three- 
fourths to 1 mile wide, is a group of low hills, including a higher 
one called Bear Mountain. These are quartzite hills which are cov­ 
ered with angular fragments of quartzite and cemented quartzite
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breccia, but no rock ledges from which the structure could be deter­ 
mined were seen. The hills are believed to be anticlinal in structure 
and to be made up of several low anticlines in which the quartzite is 
barely exposed at the surface. Between the individual hills are 
several small valleys   or hollows, presumably occupying synclinal 
troughs, which, if not too shallow, may contain Shady dolomite. 
Those on the north and east sides merge with the embayments on 
the south side of the quartzite hills to the north, which are known 
to contain chert residual from the dolomite. These structural 
troughs, which are large and deep enough to contain a considerable 
body of the Shady dolomite, or its residual clay, are favorable for 
the accumulation of manganese ore bodies. A prospect pit north­ 
east of Bear Mountain found considerable manganese ore, and two 
other prospect pits on the west flank of Ramsey Mountain also show 
ore. In fact, the whole lowland southwest of Ramsey Mountain 
and southeast of Bear Mountain is believed to be underlain by 
residual clay from limestone and therefore to have favorable struc­ 
tural conditions for the accumulation of ore. The surface of much 
of this area, especially the portions close to the quartzite hills, is 
strewn with small pieces of flinty iron ore, and the soil is markedly 
red in places. Both of these features indicate the probable presence 
of the basal beds of the Shady dolomite, in which some ore has been 
deposited. The limestone lowland and the white quartzite of Ramsey 
Mountain are abruptly terminated at the south ,by the older Cam­ 
brian shales and arkosic sandstones, which have been thrust west­ 
ward about 2 miles along an east-west fault, the trace of which lies 
close to the main road from the gap south of Ramsey Mountain to 
Basic City.

Because of the favorable structure just described it is recom­ 
mended that the triangular valley of about _1 square mile lying north 
of the fault and extending from Ramsey Mountain to Bear Moun­ 
tain, with its two northward synclinal prongs, be thoroughly pros­ 
pected by drilling or test pits to determine the presence of man­ 
ganese. The small synclinal valleys west and southwest of Bear 
Mountain are also recommended as possibly containing workable 
deposits and worthy of examination. The small syncline on Sawmill 
Run is likewise favorable, but large deposits are not to be expected 
there.

TRACT 5.

Tract 5 lies 6 miles due south of Luray and just northeast of 
Marksville. (See fig. 32.) As it is a limestone valley inclosed by 
quartzite ridges it may prove worthy of careful prospecting. The 
main quartzite ridge of the mountain front is broken down east of 
the village of Stony Man (Blosserville), as the white Erwin quartzite 
is here crushed by faulting. South of Stony Man the ridge appears
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to be anticlinal, with a fault on its southeast side, and farther south­ 
west, west of Ida, there are two quartzite ridges, the outer one appar­ 
ently anticlinal, so that the valley between them is a syncline. The 
fault east of the quartzite cuts out the Hampton shale to the southwest, 
bringing the Unicoi sandstone and Erwin quartzite together. These 
are minor structural features, however, and even if the synclines in 
the white quartzite inclose limestone, as is suggested by exposures of 
certain residual clays, they are hardly to be regarded as favorable 
for the accumulation of 
large manganese deposits. 

Northeast of Marksville 
an   outlying quartzite 
ridge trends northeast, 
and although large masses 
of rock cover its surface 
no rock was observed in 
place, and the structure 
could not be determined. 
It is believed to be an 
anticline, however, but 
may be faulted on the 
west side. The valley be­ 
tween the outlying ridge 
and the main ridge of the 
mountain front is deeply 
covered with sandstone 
wash, and the bedrock is 
concealed, but with the 
quartzite fragments there 
is much iron-ore float and 
some ferruginous chert 
derived from limestone. 
This valley is therefore

FIGURE 32. Sketch geologic map of area south of. 
Luray, Va., showing location of tract 5.

believed to be a synclinal 
limestone valley between 
two quartzite ridges and thus to be structurally favorable for the 
accumulation of manganese ore. Manganese ore has not been mined, 
in this area, but in a small synclinal valley on the mountain side 2 
miles southwest of Marksville some old workirigs show fragments of 
manganese oxide, and preparations are being made to reopen the 
workings.

The limestone embayment opens into the main valley both at the: 
north and south, but as a fault probably breaks the limestone at these 
places the bedding is not continuous across these breaks and the 
syncline is cut off. The synclinal basin therefore forms a wedge- 
shaped area with the point at the northeast, over 2 miles long and a
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mile in width at its southwest base. At the southwest it is cut off 
by pre-Cambfian granite, which is faulted across the end of the 
basin. The granite has been moved westward along the east-west 
fracture and now abuts against the ends of first the pre-Cambrian 
greenstone beds southwest of Ida, then successively the basal Cam­ 
brian sandstones and shales (Unicoi and Hampton), the upper white 
quartzite (Erwin), and finally the limestone of the inclosed valley. 
The fault thus caused a horizontal displacement of the rocks of at 
least 3 miles at this place.

This wedge-shaped embayment is regarded as a desirable place to 
prospect for manganese deposits, as its structure is favorable for the 
concentration of any manganese that may have been originally pres­ 
ent in the surrounding rocks.' The portion of the embayment south 
of the stream and road is a lowland with little coarse wash and has 
apparently been recently scoured by the stream, so that if ore were 
originally deposited there it has probably been removed by erosion. 
The higher part of the area, north of the road, is deeply covered with 
wash and is more favorable for the occurrence of ore, particularly, 
that portion which lies at or near the saddle in the valley between 
the outer ridge and the main ridge.

TRACT 6.

Tract 6 is a small area of valley and mountain slo^e in the vicinity 
of the Seibel manganese mine, near Happy Creek station on the 
Southern Railway, 3 miles east of Front Eoyal. (See fig. 33.) This 
tract is worthy of careful prospecting for manganese, which can be 
done most readily with the drill. The rocks of this area are unusu­ 
ally well exposed in the Southern Eailway Cuts east of the mine. 
Here the pre-Cambrian greenstone is succeeded on the west by nearly 
vertical beds of arkosic gray and purple banded sandstone and con­ 
glomerate which represent the basal formation (Unicoi sandstone) 
of the Cambrian. These beds are followed by purple shaly arkosic 
beds, hackly sandy shales, and soft buff sandstones with low dips and 
minor folds, and these in turn by nearly vertical, thicker, harder 
argillaceous sandstone with some thin dark shale partings which 
represent the Hampton shale. Then follows the main ridge-making 
upper white quartzite (Erwin), which is nearly vertical but also 
somewhat folded and much brecciated, the fragments being cemented 
in part by limonite.

At the foot of the west slope of the mountain is the Seibel manga­ 
nese mine, described in detail by Hewett.1 The manganese and man- 
ganiferous iron in a new pit at the mine clearly occur in clay that in 
part retains the original bedding of the limestone from whichdt was

1 Hewett, D. P., op. cit, pp. 67-69.
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derived and incloses decomposed chert from the limestone. This clay 
is residual from the Shady dolomite at the base of the Shenandoah 
group of limestones, for purple shale, residual banded clay, and thin 
sandstone of the next overlying formation (Watauga shale) crop out 
near the wagon road west of the mine. In the mine pits the residual 
clay merges at the top with mottled clay that has moved somewhat 
down the slope and has0 been more or less mixed with the sandstone 
wash from- the mountain. The overburden is not more than 10 feet 
thick at the mine. The ore seems to be mostly deposited in the un­ 
disturbed residual clay.

At the west end of the railway cut there is a small detached mass 
of brecciated white quartzite, which evidently forms a small anticline 
on the west flank of the 
main quartzite mass, 
although it is so highly brec­ 
ciated that the anticlinal 
structure can not be deter­ 
mined in the railway cut. 
The small ridge which this 
quartzite mass makes on the 
flank of the main quartzite 
ridge west of the railway is 
covered with fragments of 
the quartzite, but there are 
no bedrock outcrops on it. 
It declines toward the south­ 
west and merges into the 
wash-covered terraced 
mountain slope on which 
the Seibel mine is located. 
In the swale between -the 
main ridge and this small 

/ridge is much iron-ore float and several shallow pits which show con­ 
siderable manganese oxide. This swale is on the axis of a small 
syncline that plunges southwestward toward the Seibel mine and 
incloses the residual clav^s of the basal limestone beds which rest on 
the top of the gently dipping white quartzite. Its structure is there­ 
fore favorable for the accumulation of manganese ore. The fold, 
however, is so small that the embayment can not be regarded as 
likely to furnish a large quantity of manganese-and would not be 
classed as favorable for prospecting if it were not for the good 
showing of ore at the surface and in the surface pits over a .con­ 
siderable area northeast of the Seibel mine.

An iron mine was formerly worked by the Seibel Co. 1 mile south­ 
west of the manganese mine, on the flank of the same ridge. In the

Z MILES

FIGUKE 33. Sketch geologic map of area east of 
Front Royal, Va., showing location of tract 6.
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mine pit the brecciated white quartzite clearly overlies banded yel­ 
low clay residual from the Shady dolomite, which dips 40° SE., so 
that the beds are overturned. The unaltered Shady dolomite was 
encountered in a tunnel below the pit. These rocks strike south- 
westward but are cut off in this direction by the pre-Cambrian 
greenstone, which is faulted across the ends of the beds. The green­ 
stone has been moved westward along the fault, resting against "the 
ends first of the basal Cambrian beds, then in turn the white quartzite, 
the residual clay of the Shady dolomite, and lastly purple shales and 
thin sandstone of the Watauga formation. The horizontal move­ 
ment of the greenstone was at least 2 miles. To the west the brec­ 
ciated quartzite makes another low hill 1 mile from Front Royal, 
which is believed to be a crushed anticline, although the rock outcrops 
do not fully indicate the .structure. The limestone lowland between 
this sandstone hill and the Seibel iron mine is therefore synclinal. 
However, on account of the crushing of the quartzite, the marked 
overturning of the fold .at the iron mine, and the probability of 
minor faulting, this larger syncline is not regarded as particularly 
favorable for the occurrence of large deposits of manganese ore, 
although the residual clay is stained in places by manganese oxide.

The most favorable place for prospecting with the drill in this 
area, therefore, is along the mountain front in the vicinity of the 
Seibel mine, particularly northeast of the mine, between it and the 
railway, and search there for commercial deposits is recommended.
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