CONTRIBUTIONS TO ECONOMIC GEOLOGY

(Short Papers and Preliminary Reports)

1917

Part II.—Mineral Fuels

David White.
Geologist in Charge

Ohio State University
Washington
Government Printing Office
1918
NOTE.—The Survey's annual volumes entitled "Contributions to economic geology" are issued in parts, and the last part will include a volume title-page, table of contents, and index for the use of those who may wish to bind the separate parts. A small edition of the bound volume will also be issued, but copies can not be supplied to those who have received all the parts.
CONTENTS.

[The letters in parentheses preceding the titles are those used to designate the papers for advance publication.]

(A) The Cleveland gas field, Cuyahoga County, Ohio, with a study of rock pressure, by G. S. Rogers (published Mar. 2, 1917) 1
(B) Structure of the northern part of the Bristow quadrangle, Creek County, Okla., with reference to petroleum and natural gas, by A. E. Fath (published July 26, 1917) 69
(C) The De Soto-Red River oil and gas field, La., by G. C. Matson and O. B. Hopkins (published June 28, 1917) 101
(D) The Irvine oil field, Estill County, Ky., by E. W. Shaw (published Sept. 5, 1917) 141
(E) The Bowdoin dome, Mont., a possible reservoir of oil or gas, by A. J. Collier (published July 27, 1917) 193
(F) The Corsicana oil and gas field, Tex., by G. C. Matson and O. B. Hopkins (published Aug. 30, 1917) 211
(G) The Palestine salt dome, Anderson County, Tex., by O. B. Hopkins (published Nov. 6, 1917) 253
(G) The Brenham salt dome, Washington and Austin counties, Tex., by O. B. Hopkins (published Nov. 6, 1917) 271
(H) Oil and gas possibilities of the Hatchetigbee anticline, Ala., by O. B. Hopkins (published Dec. 11, 1917) 281
(I) Phosphatic oil shales near Dell and Dillon, Beaverhead County, Mont., by C. F. Bowen (published Jan. 12, 1918) 315

Index 321

ILLUSTRATIONS.

PLATE I. Map of Cleveland gas field, Cuyahoga County, Ohio, showing geologic structure 28
II. Diagram showing decline in daily production of 15 wells in West Park group, Cleveland, Ohio 56
III. Geologic index map of Oklahoma showing oil and gas pools 70
IV. Topographic map of the northern part of the Bristow quadrangle, Okla., showing geologic structure 72
V. Stratigraphic sections of rocks exposed in the northern part of the Bristow quadrangle, Okla 74
VI. Fault scarp showing slickensided surface of sandstone produced by fault movement 86
Plate VII. Index map of a part of the Gulf Coastal Plain, showing the location of the productive oil fields and the location and in part the extent of the Sabine uplift.

VIII. Map of the De Soto-Red River oil and gas field, La. In pocket.
IX. Representative well logs arranged along a north-south line from the Caddo field to the De Soto-Red River field, La.
X. Logs of wells arranged in a northeast-southwest direction across the De Soto-Red River field, La.
XI. Geologic sketch map of a part of northeastern Kentucky.
XII. Common surface expression of different strata in Irvine oil field, Ky.: A, Comparatively gentle but rocky slopes, with sink holes developed on strata above Maxville (?) limestone, 2 miles west-southwest of Fitchburg; B, Characteristic appearance of "Corniferous" limestone in railway cut just north of Irvine; C, Quarry in black Ohio shale, Irvine.
XIII. Sketch map showing the general geologic structure in the Irvine oil field and vicinity, Ky.
XIV. Sketch map of Irvine oil field, Ky., showing main features of geologic structure, oil and gas wells, and farms. In pocket.
XV. Structural features in Irvine oil field, Ky., apparent without instrumental determination: A, Southeastward dip of lower member of Maxville (?) limestone and Pottsville sandstone 1½ miles east of Irvine; B, Southeastward dip of lower member of Maxville (?) limestone shown by limestone cliff 5 miles east of Irvine; C, Small faults and brecciation of "Corniferous" limestone at Irvine.
XVI. Map of the Bowdoin dome, Phillips and Valley counties, Mont.
XVII. Index map showing the location of the oil fields of the Gulf Coastal Plain.
XVIII. Sketch map showing the location of the Corsicana oil and gas field, Tex., and other productive fields in the vicinity, together with an outline of the areal geology of the region.
XIX. Diagram of materials penetrated in wells.
XX. Diagram showing the position of the sands in different parts of the Corsicana oil and gas field, Tex., and their tentative correlations in the generalized stratigraphic section.
XXI. Map of the Corsicana oil and gas field, Tex., showing geologic structure and development. In pocket.
XXII. Index map showing the location of the Palestine salt dome, Tex., with reference to the other domes and to the oil fields of the region.
XXIII. Sketch map of the Palestine salt dome, Tex.
XXIV. Map of the Brenham salt dome, Tex.
XXV. Well logs arranged along an east-west line across the Brenham salt dome, Tex.
XXVI. Geologic map and sections of the Hatchetigbee anticline, Ala.
XXVII. Characteristic fossils of the Jackson formation and Claiborne and Vicksburg groups.
XXVIII. Perlarchus lyelli (Conrad), a characteristic fossil of the upper Claiborne.
XXIX. Plotted well logs showing the thickness and lithology of the formations underlying the Hatchetigbee anticline, Ala.
ILLUSTRATIONS.

FIGURE 1. Geologic section from Oberlin through Cleveland to Painesville, Ohio, showing eastward thickening of subdivisions between Berea sandstone and Clinton sand 13
2. Map of east end of Rockport pool, Cleveland, Ohio 38
3. Diagram showing decline of rock pressure in wells in Rockport group, Cleveland, Ohio ... 39
4. Map of northern part of Brooklyn pool, Cleveland, Ohio 41
5. Sketched curve showing average decline of initial rock pressures of wells in Brooklyn group, Cleveland, Ohio 42
6. Map of northeastern part of West Park pool, Cleveland, Ohio 44
7. Sketched curves showing average decline in initial rock pressure in two neighboring groups of wells in West Park pool, Cleveland, Ohio ... 45
8. Map of eastern part of Lakewood pool, Cleveland, Ohio 45
9. Sketched curve showing average decline in initial rock pressure of wells in Lakewood group, Cleveland, Ohio 47
10. Diagram showing relation of rate of decline of rock pressure to acreage per well in Cleveland field, Ohio 48
11. Curve showing decrease in initial open flow with decrease in initial rock pressure in 29 wells in Lakewood group, Cleveland, Ohio ... 50
12. Sketched curve showing decrease in percentage of open flow delivered into pipe line with decreasing rock pressure, Cleveland field, Ohio ... 54
13. Diagram showing average decline in production of over 350 wells in the Cleveland field, Ohio ... 57
14. Sketch map showing areal distribution of Elgin sandstone, Tiger Creek sandstone, and Dewey limestone in Bristow quadrangle, Okla ... 72
15. Composite skeleton stratigraphic section of the Glenn pool region, Okla ... 75
16. Sketch map showing location of axes of Catfish anticlines and the anticlines of the Cushing oil and gas field, Okla 83
17. Sketch of a faulted sandstone bed 86
18. Diagrammatic cross section showing an accumulation of oil and gas caused by a fault and a possible condition under which a fault may not cause oil and gas to accumulate 88
19. Diagram showing number of productive wells and dry holes and average initial daily production of new wells drilled in De Soto Parish, La., from August, 1913, to June, 1916 135
20. Diagram showing number of productive wells and dry holes and average initial daily production of new wells drilled in Red River Parish, La., from May, 1914, to June, 1916 136
21. Generalized profile showing slope of the top of the chalk and its depth below sea level from Mansfield to Pelican, La 140
22. Cross section from Irvine to Campton, Ky 168
23. Profile of the oil sand across the Irvine oil field, Ky., from northeast to southwest 169
24. Diagram showing number of wells drilled in and near the Irvine oil field, Ky., from October, 1913, to February, 1917 . . . 182
25. Diagram showing production of Irvine oil field, Ky., from December, 1915, to January, 1917 182
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Diagram showing percentage of successful wells in Irvine oil field, Ky., from October, 1915, to February, 1917</td>
<td>182</td>
</tr>
<tr>
<td>27</td>
<td>Diagram showing average initial production of successful wells in Irvine oil field, Ky., from October, 1915, to February, 1917</td>
<td>182</td>
</tr>
<tr>
<td>28</td>
<td>Diagram showing production in Irvine oil field, Ky., for each month from December, 1915, to January, 1917, divided by total number of productive wells previously drilled</td>
<td>183</td>
</tr>
<tr>
<td>29</td>
<td>Key map showing location of Bowdoin dome, Mont.</td>
<td>193</td>
</tr>
<tr>
<td>30</td>
<td>Section showing simple types of structure</td>
<td>221</td>
</tr>
<tr>
<td>31</td>
<td>Diagram showing average daily production of wells, number of producing wells, number of new wells, and number of abandoned wells in the Corsicana oil and gas field, Tex., 1896-1915</td>
<td>245</td>
</tr>
<tr>
<td>32</td>
<td>Diagram showing production of oil in the Corsicana pool and Powell district, Tex., from discovery until 1915</td>
<td>248</td>
</tr>
<tr>
<td>33</td>
<td>Index map showing location of Dell and Dillon, Beaverhead County, Mont.</td>
<td>315</td>
</tr>
</tbody>
</table>
CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1917.

PART II. MINERAL FUELS.

DAVID WHITE, Geologist in charge.

INTRODUCTION.

The Survey's "Contributions to economic geology" have been published annually since 1902. In 1906 the increase in the number of papers coming under this classification made it necessary to divide the contributions into two parts, one including papers on metals and nonmetals except fuels and the other including papers on mineral fuels. In 1915 the year included in the title was changed from the year in which the field work reported in these papers was done to the year of publication, and in consequence there was no volume entitled "Contributions to economic geology, 1914." The subjoined table gives a summary of these bulletins.

United States Geological Survey "Contributions to economic geology."

<table>
<thead>
<tr>
<th>Date in title</th>
<th>Date of publication.a</th>
<th>Bulletin No.</th>
<th>Date in title</th>
<th>Date of publication.a</th>
<th>Bulletin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1902</td>
<td>1903</td>
<td>213</td>
<td>1911, Part I</td>
<td>1913</td>
<td>530</td>
</tr>
<tr>
<td>1903</td>
<td>1904</td>
<td>225</td>
<td>1912, Part I</td>
<td>1914</td>
<td>531</td>
</tr>
<tr>
<td>1904</td>
<td>1905</td>
<td>260</td>
<td>1913, Part I</td>
<td>1914</td>
<td>540</td>
</tr>
<tr>
<td>1905</td>
<td>1906</td>
<td>285</td>
<td>1914, Part I</td>
<td>1915</td>
<td>580</td>
</tr>
<tr>
<td>1906, Part I</td>
<td>1907</td>
<td>315</td>
<td>1915, Part I</td>
<td>1916</td>
<td>551</td>
</tr>
<tr>
<td>Part II</td>
<td>1907</td>
<td>316</td>
<td></td>
<td>1916</td>
<td>620</td>
</tr>
<tr>
<td>1907, Part I</td>
<td>1908</td>
<td>340</td>
<td></td>
<td>1916</td>
<td>621</td>
</tr>
<tr>
<td>Part II</td>
<td>1908</td>
<td>341</td>
<td></td>
<td>1917</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>1909</td>
<td>380</td>
<td></td>
<td>1917</td>
<td>641</td>
</tr>
<tr>
<td>1908, Part I</td>
<td>1910</td>
<td>381</td>
<td></td>
<td>1918</td>
<td>640</td>
</tr>
<tr>
<td>Part II</td>
<td>1910</td>
<td>430</td>
<td></td>
<td>1918</td>
<td>601</td>
</tr>
<tr>
<td>1909, Part I</td>
<td>1911</td>
<td>431</td>
<td>1917, Part I</td>
<td>1911</td>
<td></td>
</tr>
<tr>
<td>Part II</td>
<td>1911</td>
<td>470</td>
<td>1917, Part II</td>
<td>1912</td>
<td></td>
</tr>
<tr>
<td>1910, Part I</td>
<td>1912</td>
<td>471</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The date given is that of the complete volume; beginning with Bulletin 285 the papers have been issued as advance chapters as soon as they were ready.

As the subtitle indicates, the papers included in these volumes are of two classes—(1) short papers giving comparatively detailed descriptions of occurrences that have economic interest but are not...
of sufficient importance to warrant a more extended description; (2) preliminary reports on economic investigations the results of which are to be published later in more detailed form. These papers are such only as have a direct economic bearing, all topics of purely scientific interest being excluded.

Brief abstracts of the publications of the year are given in the annual report of the Director. The complete list of Survey publications affords, by means of finding lists of subjects and of authors, further aid in ascertaining the extent of the Survey's work in economic geology.

The reports on work in Alaska have been printed in a separate series since 1904, the volumes so far issued being Bulletins 259, 284, 314, 345, 379, 442, 480, 520, 542, 592, 622, 642, and 662.