In a report recently issued by the United States Geological Survey, the coal of the Oakmont mine, on Abram Creek, 1 mile southeast of Harrison, W. Va., was reported, on the basis of a single analysis, to contain 2.95 per cent of sulphur. On receiving a protest from the owners of the mine that this percentage is entirely too great and that the publication of this figure would tend to discredit the coal in the market, the mine was visited on July 15, 1920, by the writer, and new mine samples for analysis were cut. These represent the coal in the parts of the mine from which most of the coal is now being mined or from which production is expected in the near future. The analyses of the samples, together with that published previously (No. 69071), are as follows:

<table>
<thead>
<tr>
<th>Analyses of coal from the Oakmont mine, near Harrison, W. Va.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>75355</td>
</tr>
<tr>
<td>75356</td>
</tr>
<tr>
<td>75357</td>
</tr>
<tr>
<td>69071</td>
</tr>
</tbody>
</table>

Sample 75355 was cut at the face of the first right entry, about 2,500 feet from the mine mouth; sample 75356 at the face of the seventh left entry, 300 feet from the main entry and about 4,000 feet from the mine mouth; sample 75357 in room 19, off the twelfth right entry, 1,000 feet from the main entry and about 5,000 feet from the mine mouth; and sample 69071 in room 11, off the thirteenth right entry, 5,100 feet from the mine mouth.

The sections of the coal bed at the points sampled and the parts included in the samples are as follows:

Sections of Thomas coal bed in Oakmont mine, near Harrison, W. Va., showing parts sampled.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ft.</th>
<th>in.</th>
<th>Sample</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75355</td>
<td></td>
<td></td>
<td>75357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>1</td>
<td></td>
<td>Coal</td>
<td>9(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>Coal (2)</td>
<td>2(\frac{1}{4})</td>
<td>Bone and coal</td>
<td>1(\frac{1}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal (2)</td>
<td>2</td>
<td></td>
<td>Coal (2)</td>
<td>2(\frac{1}{4})</td>
<td></td>
</tr>
<tr>
<td>Total coal</td>
<td>4</td>
<td>0</td>
<td>Total coal</td>
<td>3(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>Bed</td>
<td>4(\frac{1}{2})</td>
<td></td>
<td>Bed</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ft.</th>
<th>in.</th>
<th>Sample</th>
<th>Ft.</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75356</td>
<td></td>
<td></td>
<td>69071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal (2)</td>
<td>11</td>
<td></td>
<td>Coal</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Bone and coal</td>
<td>10(\frac{1}{4})</td>
<td>Shale</td>
<td>1(\frac{1}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal (2)</td>
<td>2(\frac{1}{2})</td>
<td></td>
<td>Coal (2)</td>
<td>5(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>Total coal</td>
<td>3</td>
<td>8</td>
<td>Total coal</td>
<td>3(\frac{11}{2})</td>
<td></td>
</tr>
<tr>
<td>Bed</td>
<td>4(\frac{1}{2})</td>
<td></td>
<td>Bed</td>
<td>4(\frac{1}{2})</td>
<td></td>
</tr>
</tbody>
</table>

From these analyses it is apparent that the coal of the Oakmont mine is a semibituminous or smokeless coal, which is rather high in ash and contains a variable amount of sulphur. The analyses show that the coal with the lowest percentage of sulphur (1.01 per cent) is within half a mile of the mouth of the mine; that the sulphur content increases with considerable regularity to 1.58 per cent at a point about 4,000 feet from the mine mouth, 2.78 per cent about 5,000 feet from the mine mouth, and 2.95 per cent about 5,100 feet from the mine mouth. A short distance beyond the point last mentioned the main entry of the mine has been driven through to the outcrop of the coal bed on the south side of the spur of the hill which projects from the west into the bend of Abram Creek at Emoryville. On account of this limitation of the mine in a southerly direction it is not known whether the sulphur continues to increase in that direction or whether the high-sulphur coal is limited to a certain area and is succeeded by coal of a lower sulphur content than that showing in the southern part of the mine.

In the recent sampling the writer was accompanied by the mine foreman, who, at each place where a sample was cut, indicated the parts of the coal bed that were excluded in mining, and these parts were carefully excluded from the sample cut for analysis. At the point where sample 75355 was taken only two small layers of bone were excluded, but where samples 75356 and 75357 were cut the middle member of the bed consists of an intimate mixture of bone...
and coal, some of which is "gobbed" by the miners but most of which is loaded on the mine cars and is supposed to be thrown out when the coal passes from the screens into the railroad car. Much of the bone is thus doubtless removed, but some of it escapes the pickers, and hence it is probable that the coal which reaches the market contains a higher percentage of ash than is shown in the analyses given above.

The main entry of the mine is driven on the coal bed, which dips gently northward, at an angle sufficient for drainage of the mine by gravity. At the time of sampling the superintendent stated that the daily output of the mine was about 450 tons.
INDEX.

A. Acknowledgments for aid. 17, 35, 59, 92, 125, 157

Alamo Arroyo, San Juan County, N. Mex., coal beds on and near. 235-237
and Meyers Creek, N. Mex., map of the district between. 232

Alamosa Creek, Socorro County, N. Mex., flow of. 3

Alamosa Creek valley, Socorro County, N. Mex., climate of. 4

coal in. 14
field work in. 1
geography of. 1-4
geologic map of. 12
igneous rocks of. 11
industries of. 3-4
mail and transportation in. 4
mountains bordering. 1-3
oil and gas possibilities in. 13-15
section of rocks exposed in. 5
stratigraphy of. 4-11
structure of. 11-13

Amarillo field, Tex., availability of gas from. 60, 83
Analyses of coals from San Juan County, N. Mex. 179, 183-185
from Idaho and Wyoming. 149-150, 151-152
Animas River, Colo., coal bed on. 155
Antelope mine, Cambria, Wyo., section in bore hole of. 22, 41
Ash tests of coals from San Juan County, N. Mex. 188-191
Availabilty of gas resources, factors governing. 59-63

B. Badlands in San Juan County, N. Mex., plate showing. 160
Barker Arroyo and Youngs Reservoir, N. Mex., map of the district between. 204
Barker, No. 1, well, near Eastland, Tex., loss of gas from. 79, 80
Barnett, E. H., cited. 30
Barney's ranch, Idaho, coal prospect on. 123-124
Bassler, Harvey, work of. 157
Bauer, Clyde Max., and Reside, John B., Jr., Coal in the middle and eastern parts of San Juan County, N. Mex. 155-157
Bear Mountains, N. Mex., features of. 1-2
Bear River formation, coal in, in eastern Idaho. 131
Bell Mountain, N. Mex., location of. 2
Bell Mountain sandstone member, plate showing. 8
Belknap mine, Idaho, description of. 142-143
Bend arch Tex., gas in. 86
Bennett, H. R., work of. 157
Bentonite, occurrence of, in the Lance Creek field, Wyo. 101
Big Hole Range, Idaho, features of. 125

Black Diamond mine, San Juan County, N. Mex., thickness of coal bed in. 205
Blackfoot, Idaho, location of. 128
Blackfoot Range, Idaho, features of. 125
Black Lake Canyon, San Juan County, N. Mex., coal beds near. 230-231
and Splitlip Flat, N. Mex., map of the district between. 230
Blake's mine, San Juan County, N. Mex., section of coal beds in. 188, 198
Boise mine, Idaho, description of. 143
Breckenridge ranch, Hayden, Idaho, reported occurrence of coal on. 145-146
Brimhall Wash, San Juan County, N. Mex., coal beds on and near. 217-223
Brinson mine, Idaho, description of. 133
Brittain, J. C., work of. 157
Broom Mountain, N. Mex., location of. 2
Brown, Royce, work of. 157
Brown Bear mine, Idaho, description of. 141-142
Brown County, Tex., gas in. 83
Burns Canyon, Idaho, phosphate rock near. 157

C. Callahan County, Tex., gas in. 83
Cambridge, Wyo., log of well at. 20
section in bore hole of Antelope mine at. 22, 41
Campbell, Marius R., acknowledgment to. 157
Character of coal in the Thomas bed near Harrison, W. Va. 239-241
Campbell, Robert M., work of. 17, 92
Canyon Coal Mining Co., operations of. 133
Caribou Range, Idaho, features of. 125
Carlsbad shale, nature and occurrence of, in the Mule Creek oil field, Wyo. 44-45
nature of, in the Upton-Thomas oil field, Wyo. 25-26
Chamisso formation, nature of, in the Alamosa Creek valley, N. Mex. 8-9
Chaco River, N. Mex., plateau surface near, plate showing. 158
Chappell, R. C., acknowledgment to. 17
Cities of Texas using natural gas, source of supply to. 61
Clark, Frank R., work of. 157
Cliff House sandstone, sections of, in San Juan County, N. Mex. 163, 165
Cloward, J. A., acknowledgment to. 155
Cloward entry, Idaho, description of. 132-133
Coal, bituminous and subbituminous, differences between. 178
in eastern Idaho, nature and occurrence of. 129, 131-151
in San Juan County, N. Mex., analyses of. 179, 183-185
ash tests of. 188-191
competition with. 180-181
distribution of. 177
properties and composition of. 177-188
sampling of, at the mine. 179

243
INDEX.

A.

Gas wells, abandonment of 66
depletion of, hastened by competition 74
Gibbs, J. F., work of 157
Gibson, J. K., tests of gas made by 122
Grind Teton, Idaho, elevation of 126
Graneros shale, nature and distribution of, in the Upton-Thornton oil field, Wyo.......................... 23-25
nature and occurrence of, in the Mule Creek oil field, Wyo............. 43-44
nature of, in the Upton-Thornton oil field, Wyo............. 25

H.

Haden, Idaho, reported occurrence of coal at 145-146
Hancock, E. T., The Lance Creek oil and gas field, Niobrara County, Wyo, 91-122
The Mule Creek oil field, Wyo.......................... 35-53
The Upton-Thornton oil field, Wyo.......................... 17-34
Harrison, W. Va., coal near, character of 225-241
Hartville uplift, Wyo, location of 45,107
Hatcher, J. B., cited .. 103-104
Hawthorne, Dr. J. E., acknowledgment to 91
Heald, J. E., work of .. 157
Heise district, Idaho, coal prospects in 123-124,134
Hendrickson mine, San Juan County, N. Mex. 157
Hill, Robert T; acknowledgment to 59
Hillrrian, L., acknowledgment to 125
Hoden, Idaho, analyses of coals from 144
coal bed in ... 141
coil mines in ... 137,140-143
geologic map of .. 138
location of .. 137
prices and production of coal in 123,143
structural features of 138-140
Horseshoe district, Idaho, analyses of coals from 144
coil bed in ... 141
coal mines in ... 137,140-143
geologic map of .. 138
location of .. 137
prices and production of coal in 123,143
structural features of 138-140
Horseshoe mine, Idaho, description of 142
Hunter Wash, San Juan County, N. Mex. 142
coal beds on and near 222-227
and Coal Creek, N. Mex., map of the district on 222

I.

Ida Bitley No. 5 well, Stephens County, Okla., loss of gas from 77
Idaho, southeastern, drainage of 126-127
southeastern, field work in 153
groologic map of .. 124

K.

Keys field. See Walter field.
Kimbetoh Arroyo, San Juan County, N. Mex. coal beds on and near 233-235
Kirtland shale, nature and divisions of, in San Juan County, N. Mex. 171-172,175
Klavechi Arroyo, San Juan County, N. Mex., coal beds on and near 212-218
Knowltan, F. H., fossils determined by 1,130
Kunz drift, Idaho, description of 135

L.

La Cruz anticline, Alamosa Creek valley, N. Mex., description of 12
La Crus Peak, N. Mex., location of 2-3
plate showing .. 2
La Jara, N. Mex., location of 2-3
Lance Creek field, Niobrara County, Wyo. development in, history of 91-92,112-113
development in, possibilities for 126-127
drainage of .. 94
field work on .. 93
gas from, tests of .. 122
general section of .. 95-96
geologic map of .. In pocket
oil from, analysis of 121-122
production of oil and gas in 118-119
occurrence of oil and gas in 119-120
roads in ... 93-94
sands containing oil and gas 115-117
stratigraphy of .. 94-107
structure of .. 107-109
wells in, features of 117-120
Lance Creek field, map of 105-106
La Plata River, N. Mex., map of the district near 200
La Plata-San Juan divide, San Juan County, N. Mex., coal beds in 203
La Plata Valley, San Juan County, N. Mex., coal beds in 200-203
Lavas, occurrence of, in southeastern Idaho 123,126
Lewis shale, nature and thickness of, in San Juan County, N. Mex. 166,175
Limestone County, Tex., gas in 82
Loco oil and gas field, Stephens County, Okla., development and reserve of ... 75-78
Lonr Star Gas Co., acknowledgment to 59
gas marketed by ... 64,87
Loss of gas, estimate of 64-66
Louisiana, northwestern, availability of gas from 60,82

M.

McKinley County, N. Mex., coal beds in 237
Mahogany Creek, Idaho, coal prospects on 145
Manaco shale, occurrence and age of, in San Juan County, N. Mex. 163,175
Mansfield, George R., Coal in eastern Idaho 123-153
INDEX.

Map, geologic, of Alamosa Creek valley, N. Mex. 12

geologic, of eastern Idaho. 124

of the Horseshoe and Pine Creek districts and Teton Basin, Idaho. 138

of the Lance Creek oil and gas field, Wyo. In pocket.

of the Mule Creek oil field, Wyo. In pocket.

central part of San Juan County coal field, N. Mex. 208

discovery of oil on, 226

of Petrilla gas field, Tex. 66

of T. 30 N., R. 16 W., N. Mex., showing locations of coal outcrops 192

of the district between Barker Arroyo and Youngs Reservoir, N. Mex. 204

between Black Lake Canyon and Split Hill Flat, N. Mex. 230

between Meyers Creek and Alamo Arroyo, N. Mex. 232

between Youngs Reservoir and San Juan River, N. Mex. 206

near La Plata River, N. Mex. 200

on Hunter Wash and Coal Creek, N. Mex. 222

of the San Juan County coal field, N. Mex. 156

of the Upton-Thornton oil field, Wyo. 18

showing gas fields and pools, and distances from Dallas, Tex. 58

Marathon fold, Tex., location of 86

Marketing natural gas, expenses of 59-60

Marcellus coal mine, San Juan County, N. Mex. location of 204

Martin farm, near Petrilla, Tex., discovery of gas on 58, 64

pool under, volume of gas in 68-69

wells producing from 68

Meadows, the, San Juan County, N. Mex., features of 157

Medio Arroyo, San Juan County, N. Mex., coal beds near 220-222

Menefee formation, in San Juan County, N. Mex., coal beds in, descriptions and sections of 177, 192-199

in San Juan County, N. Mex., coal from, nature and composition of 177, 179, 180, 181, 183, 189

exposure of, in the Great Hogback, plate showing 102

map showing locations of coal outcrops in 192

sections of 164, 165-166

sections of coal beds of, plate showing 194

Mesa Verde group, age of 175

exposure of, in the gap in the Great Hogback cut by Chaco River, N. Mex., plate showing 102

sections of, in San Juan County, N. Mex., 163-166

Mesa, Tex., availability of gas from 60, 52

Meyers Creek, San Juan County, N. Mex., beds on 221-223

and Alamo Arroyo, N. Mex., map of the district between 232

Miguel formation, nature of, in the Alamosa Creek valley, N. Mex. 6-8

Miller mine. See Brinson mine.

Mineral Wells gas field, Palo Pinto County, Tex., production and reserve of 78-79

Moorcroft oil field, Wyo., occurrence of oil in 30-31

Morrison formation, nature of, in eastern Wyoming and western South Dakota 97-98

Mowry shale member, nature and occurrence of, in the Mule Creek oil field, Wyo. 43, 48

Mule Creek oil field, Wyo., field work on 36-37

general section of 35-39

geologic map of In pocket.

land surveys in 37

location and extent of 35

oil wells drilled in 51-53

possibilities of oil and gas in 50-51

stratigraphy of 38-45

structure of 45-46

surface features of 37

Newcastle, Wyo., occurrence of oil near 29-30

Newcastle sandstone member, nature and occurrence of, in the Mule Creek oil field, Wyo. 42

New Mexico, coals from, analyses of 186

Niobrara formation, nature and occurrence of, in the Mule Creek oil field, Wyo. 45

nature of, in the Upton-Thornton oil field, Wyo. 26

North Central Oil Co., wells of, near Thornton, Wyo. 31

O.

Oakmont mine, near Harrison, W. Va., character of coal from 239-241

Obsidian, resemblance of, to coal 124

Ohio Oil Co., discovery well of, in the Lance Creek field, Wyo., log of 113

discharge of, into a dammed-up gulch, Lance Creek field, Wyo., plates showing 120

discharge of, into a dammed-up gulch, Lance Creek field, Wyo., plates showing 120

possibilities of, in eastern Idaho 153

Ojo Alamo sandstone, nature and relations of, in San Juan County, N. Mex. 172-173, 176

Ojo Amarillo Arroyo, San Juan County, N. Mex., coal beds on and near 205-209

Oklahoma, gas obtained from 62

gas resources in, earlier report on 57

Old Woman antiline, Wyo., location of 45-46, 107

P.

Palis, F. W., acknowledgment to 17

Palisade Creek, Idaho, reconnaissance for coal on 136-137

Pasture Canyon fault, Alamosa Creek valley, N. Mex., description of 12-13
INDEX.

Patterson Creek, Idaho, search for coal on... 146
Perry, L., acknowledgment to... 125
Petroleum, accumulation of...... 33-34, 110-112
origin of...... 13, 32, 109-110
relation of, to stage of carbonization of
organic deposits...... 13-14
Petrolia gas field, Tex., depletion of, summary
showing...... 70-71
development of...... 61-62
earlier report on...... 55-50
encroachment by water in...... 67-68
estimate of reserve in, by G. S. Rogers...... 57-58,
63-64
by E. W. Shaw...... 65, 68
extensions of, possibility of...... 69-70
loss of gas in...... 66
map of...... 66
number of wells in...... 65, 67
production of gas from...... 64
reduction of output from...... 58
rock pressure in...... 64, 67
Phosphate rock, resemblance of, to coal...... 124
Phosphoric formation, nature and occurrence
of, in eastern Idaho...... 125-129,
135-137
Pictured Cliffs sandstone, nature and thickness
of, in San Juan County, N. Mex...... 109, 175
Pierre shale, nature and distribution of, in the
Lance Creek oil and gas field, Wyo...... 100-102
nature of, in the Upton-Thornton oil field,
Wyo...... 27
Pina Veta China Arroyo, San Juan County,
N. Mex., coal mines on and near...... 211-213
Pine Creek district, Idaho, coal in...... 124
cal mines in...... 134-136
geologic map of...... 138
location of...... 123
Pine Creek Pass, Idaho, coal prospect at...... 134-135
Pipelines, cost of...... 59-60
forcing of gas through...... 62
installation of...... 62
Plateau surface near Chico River, N. Mex.,
plate showing...... 138
Point Lookout sandstone, sections of, in San
Juan County, N. Mex...... 165, 166
Ports, P. L., Shaw, E. W., and, Natural-gas
resources available to Dallas and
other cities of central-north Texas...... 55-89
Preston anticline, Okla.-Tex., oil and gas in...... 85
Pueblo Bonito mine, San Juan County,
N. Mex., section of coal beds in...... 188, 198
Pueblo Viejo, N. Mex., plate showing...... 85
Puerco formation, exposure of, in San Juan
County, N. Mex., plate showing...... 100
nature and thickness of, in San Juan
County, N. Mex...... 178-174, 176
Puertecito, N. Mex., location of...... 4
Rainy Creek, Idaho, coal prospects near...... 136
Ranger, Tex., oil and gas field near, discovery
of...... 58
oil and gas field near, capacity of wells in...... 82
"Red Beds" at Ojo de los Chupaderos,
N. Mex., plate showing...... 3
in Alamosa Creek valley, features of...... 5
occurrence of, in the Upton-Thornton
oil field, Wyo...... 23
Red Lake anticline, Alamosa Creek valley,
N. Mex., description of...... 11-12
Reeside, John B., jr., Bauer, Clyde Max.,
and, Coal in the middle and eastern
parts of San Juan County,
N. Mex...... 156-157
Reports on oil fields, information that should
be supplied by...... 35-36
Robinson, Heath M., work of...... 1
Rogers, G. S., estimate on the Petrolia field
by...... 57-58
S.
St. Anthony, Idaho, location of...... 128
Sandstone, cross-beded, at Ojo de los Chupa
deros, N. Mex., plate showing...... 3
including large reddish-brown concres
ctions, Buck Creek valley, Wyo.,
plates showing...... 104
weathered, on Meyers Creek, N. Mex.,
plate showing...... 166
San Juan County coal field, N. Mex., access to
climate and vegetation of...... 138-140
coal in Fruitland formation in...... 177-178,
184-185, 189-192, 199-207
coal in Menefo formation in...... 177-183,
188-189, 192-199
drainage and water supply of...... 158
features of...... 155
field work on...... 156-157
land forms in...... 157-158
land surveys in...... 159
map of...... 156
map of central part of...... 208
plateau in, features of...... 157
settlements and roads in...... 159-160
stratigraphy of...... 160-177
structure of...... 161
topography and vegetation of, plate show
ing...... 160
San Juan River, N. Mex., coal beds near...... 205
and Youngs Reservoir, N. Mex., map of
the district between...... 206
Schultz, A. R., acknowledgment to...... 125
Scott, B. H., work of...... 117
Scott & Ducey entry, Idaho, access to...... 117-118
description of...... 149
coal from, analysis of...... 149-150
Shackelford County, Tex., gas in...... 83
Shannon (?) sandstone, occurrence of, in the
Lance Creek field, Wyo...... 101-102, 114
Shaw, E. W., and Ports, P. L., Natural-gas
resources available to Dallas and
other cities of central-north Texas...... 55-89
Ship Rock, San Juan County, N. Mex.,
Indian school and agency at, coal
mined for...... 193
Smith, W. S. T., cited...... 99
Snake River plains, rocks and soils of...... 126
Snake River Range, Idaho, features of...... 125
INDEX.

Southwest Oil Co., wells drilled by, near Thornton, Wyo........................... 18,31
Splitlip Flat, San Juan County, N. Mex., coal beds near.......................... 230-231
and Black Lake Canyon, N. Mex., map of the district between............... 230
Springs in Alamosa Creek valley, N. Mex., location of............................. 3
Stanton, T. W., fossils determined by.. 1, 100-101, 104-105, 129, 136
Stephens County, Tex., gas in.. 83
Sulphur, content of, in coal from the Oakmont mine, near Harrison, W. Va... 239-241
See also Analyses of coals.
Sundance formation, nature of, in eastern Wyoming................................. 96-97
T.30 N., R. 15 W., San Juan County, N. Mex., coal beds in......................... 204-205
Teton Basin, Idaho, coal mines in .. 137-147
location of.. 123
north end of, reports of coal in... 145-146
oil in... 125
south end of, absence of coal-bearing rocks from.................................... 145
structural features of.. 146-147
Teton Range, Idaho, features of... 126
Thom, W. T., jr., work of.. 1
Thornton, Wyo., oil near, occurrence of.. 31
oil near, origin of... 32-33
quality of.. 32-32
Thornton dome, Wyo., development on... 18
possibilities of oil and gas in... 34
Timber, growth of, in eastern Idaho.. 127
in the Alamosa Creek valley, N. Mex... 2,3
Tiznatzin mine, San Juan County, N. Mex., section of coal beds in.............. 188,198
Torreon formation, exposure of, in San Juan County, N. Mex., plate showing. 160
nature and thickness of, in San Juan County, N. Mex................................. 173-174,176
Tough, F. B., work of.. 117
Tres Hermanos Buttes, N. Mex., location of.. 2
U.
U. S. Forest Service, acknowledgment to.. 125
Upton dome, Wyo., possibilities of oil and gas in.. 34
Upton-Thornton oil field, Wyo., map of.. 18
oil in and near.. 29-34
stratigraphy of.. 19-27
structure of.. 27-29
topography of.. 18-19
Utah, coals from, analyses of.. 187

W.
Wall Creek sandstone, nature and occurrence of, in the Mule Creek oil field, Wyo. 44-45,48
possibility of oil from, in the Lance Creek field, Wyo.................................. 114-115
Walter oil and gas field, Cotton County, Okla., development and reserve of 73-75
Wasatch formation, probable occurrence of, in San Juan County, N. Mex. 175,177
Waste of gas, laws needed to stop... 79-80
See also Loss of gas.
Water, encroachment by, in gas wells of the Petrolia, Tex., field.................. 67-68
Water supply, domestic, in southeastern Idaho... 127
Wayan formation, coal in, in eastern Idaho... 131
Wegeman, C. H., and Heald, K. C., cited.. 78
Wheelrite, occurrence of... 178
White, David, acknowledgment to.. 92
White River formation, nature, and distribution of, in the Lance Creek field 106-107
Wichita Falls, Tex., source of gas supply to... 62
Williams, Delbert, work of.. 1
Willow Creek-Carbon district, Idaho, coal in.. 124
coal mines in.. 132-134
location of.. 123
Winchester, Dean E., Geology of Alamosa Creek valley, Socorro County, New Mexico... 1-15
Wotencraft, Frank W., Mayor of Dallas, Tex., acknowledgment to.............. 59
request from, for examination of gas resources.. 55
telegrams to.. 58-59
Wright's camp, Wyo., section of sandstone and shale beds near.................. 40
Wyoming, northeastern, stratigraphic sections in...................................... In pocket.

Y.
Youngs Reservoir, San Juan County, N. Mex., coal beds in district adjacent to 204
and Barker Arroyo, N. Mex., map of the district between.......................... 204
and San Juan River, N. Mex., map of the district between.......................... 206