CONTRIBUTIONS TO ECONOMIC GEOLOGY
(SHORT PAPERS AND PRELIMINARY REPORTS)

1922

PART I.—METALS AND NONMETALS EXCEPT FUELS

F. L. RANSOME, G. R. MANSFIELD, AND E. F. BURCHARD
GEOLOGISTS IN CHARGE
CONTENTS

[The letters in parentheses preceding the titles are those used to designate the papers for advance publication.]

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) The Candelaria silver district, Nev., by Adolph Knopf (published Jan. 20, 1922)</td>
<td>1</td>
</tr>
<tr>
<td>(B) Colemanite in Clark County, Nev., by L. F. Noble (published Feb. 23, 1922)</td>
<td>23</td>
</tr>
<tr>
<td>(C) Bonanza ores of the Comstock lode, Virginia City, Nev., by E. S. Bastin (published Mar. 29, 1922)</td>
<td>41</td>
</tr>
<tr>
<td>(D) Silver enrichment in the San Juan Mountains, Colo., by E. S. Bastin (published June 30, 1922)</td>
<td>65</td>
</tr>
<tr>
<td>(E) Primary native-silver ores near Wickenburg, Ariz., and their bearing on the genesis of the silver ores of Cobalt, Ontario, by E. S. Bastin (published Aug. 2, 1922)</td>
<td>131</td>
</tr>
<tr>
<td>(F) General features of the brown hematite ores of western North Carolina, by W. S. Bayley (published Oct. 17, 1922)</td>
<td>157</td>
</tr>
<tr>
<td>(G) General features of the magnetite ores of western North Carolina and eastern Tennessee, by W. S. Bayley (published Dec. 8, 1922)</td>
<td>209</td>
</tr>
<tr>
<td>(H) Peridotite dikes in Scott County, Ark., by H. D. Miser and C. S. Ross (published Dec. 22, 1922)</td>
<td>271</td>
</tr>
<tr>
<td>(I) Diamond-bearing peridotite in Pike County, Ark., by H. D. Miser and C. S. Ross (published April 25, 1923)</td>
<td>279</td>
</tr>
<tr>
<td>(J) The Los Burros district, Monterey County, Calif., by J. M. Hill (published April 28, 1923)</td>
<td>323</td>
</tr>
<tr>
<td>Index</td>
<td>331</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

PLATE I. Typical exposures of limestone member of Horse Spring formation in Clark County, Nev.: A, Near Horse Spring; B, Near Bitter Spring.

II. Colemanite deposit near Callville Wash, Nev.: A, Looking east along outcrop of colemanite bed; B, Looking west along outcrop of colemanite bed.

III. "Goose egg" structure in limestone beds associated with colemanite deposit near Callville Wash, Nev.

IV. Geologic map of Nottely-Valley River belt, N. C., showing location of principal ore deposits.

V. Views in brown-hematite mines in western North Carolina: A, View in Heaton & Russell mine, near Maltby; B, Hydraulic jet in Heaton & Russell mine; C, Hayes-Hoblitzell mine, near Marble; D, Mammillary ore in Savage mine, near Murphy.

VI. Views in brown-hematite mines in western North Carolina: A, Ore bed in mine of Southern Iron Mining Co., near Andrews; B, West end of bed shown in A, showing parallelism with surface; C, General view of bed shown in A; D, Ore vein in Heaton & Russell mine, near Maltby.
Plate VII. A, B, Photomicrographs of peridotite dike near Olio, Scott County, Ark. 276

VIII. Geologic map of parts of Pike, Howard, and Hempstead counties, in southwestern Arkansas. ... 280

IX. Geologic map of the Prairie Creek area of peridotite in T. 8 S., R. 25 W., 2½ miles south-southeast of Murfreesboro, Pike County, Ark. .. 280

X. A, Exposures of the hypabyssal intrusive peridotite ("hardebank") in the northern part of the Mauney mine, near Murfreesboro, Ark.; B, View looking north across the large open cut of the Mauney mine, near Murfreesboro, Ark. ... 296

XI. A, Altered volcanic breccia ("blue ground") in cut of Ozark mine, near Murfreesboro, Ark.; B, Ozark mine and washing plant, near Murfreesboro, Ark. ... 296

XII. A, Photomicrograph of nearly fresh hypabyssal intrusive peridotite ("hardebank"), Prairie Creek area of peridotite, near Murfreesboro, Ark.; B, Photomicrograph of hypabyssal intrusive peridotite ("hardebank") from summit of Middle Hill, in the area of peridotite near Prairie Creek, Murfreesboro, Ark. 296

XIII. A, Photomicrograph of blue-gray tuff from drill hole No. 3 near Arkansas mine, near Murfreesboro, Ark.; B, Photograph of polished surface of volcanic breccia ("blue ground") from southern part of Mauney mine, near Murfreesboro, Ark. 297

XIV. Maps showing the distribution of the peridotite at the American and Kimberlite mines and at Black Lick, Ark. ... 304

XV. A, Diamonds from the Arkansas mine, Pike County, Ark.; B, Trenches on the Kimberlite mine, near Murfreesboro, Ark. 320

Figure 1. Index map showing the location of the Candelaria district, Nev. 2

2. Columnar section of the Tertiary rocks of the Candelaria district, Nev. 9

3. Map showing location of colemanite deposits in Clark County, Nev. 24

4. Diagrammatic sketch showing mode of occurrence of colemanite deposit near Callville Wash, Clark County, Nev. 36

5. Argentite occupying a similar interstitial position to galena with respect to quartz and sphalerite, in bonanza ore from 1,650-foot level of C. & C. mine, Comstock lode, Nev. 48

6. Primary argentite and gold (electrum?) in bonanza ore from 1,650-foot level of C. & C. mine, Comstock lode. 49

7. Bonanza ore from C. & C. mine, Comstock lode, East vein, between 2,000 and 2,050 foot levels, carrying abundant primary argentite associated with galena, sphalerite, chalcopyrite, quartz, and gold 50

8. Polybasite, probably primary, intergrown with galena, sphalerite, chalcopyrite, and quartz in ore from C. & C. mine, Comstock lode, East vein, 2,200-foot level. 51

9. Primary (?) argentite in small quartz-lined vug peripherally replaced by native silver in shallow ore from Belcher bonanza, Comstock lode. 53

10. Detail, under higher magnification, of the exceedingly irregular replacement boundary between native silver and argentite in the specimen from which figure 9 was drawn. 54

11. Polybasite peripherally replacing primary argentite in shallow ore from the Belcher bonanza, Comstock lode. 55

12. Composition diagrams of hot ascending waters from Comstock lode and Tonopah, Nev., and from Ouray, Colo. 61
CONTENTS.

13. Composition diagrams of cool descending mine waters from Comstock lode and Tonopah, Nev., and from Red Mountain, Colo. .. 62
14. Composition diagrams of thermal spring waters from Ouray, Colo., and somewhat similar mine waters from Virginia City and Tonopah, Nev. .. 69
15. Ore showing primary pearceite intergrown with tetrahedrite, chalcopyrite, and galena, Bachelor mine, Ouray, Colo. ... 71
16. Primary intergrowth of proustite, galena, quartz, and sphalerite, in ore from Yankee Boy mine, between Ouray and Telluride, Colo. ... 77
17. Irregular intergrowth, apparently primary, of tennantite and proustite, Humboldt mine, between Ouray and Telluride, Colo. .. 80
18. Irregular intergrowth, apparently primary, of galena, quartz, and proustite, Humboldt mine, between Ouray and Telluride, Colo. ... 81
19. Primary veinlet of quartz and proustite traversing sphalerite, Humboldt mine, between Ouray and Telluride, Colo. ... 82
20. Primary intergrowth of quartz, sphalerite, galena, tennantite, proustite, pyrite, and gold, Smuggler-Union mine, Telluride, Colo. ... 85
21. Late primary veinlet of quartz and proustite traversing sphalerite, Smuggler-Union mine, Telluride, Colo. ... 86
22. Ore showing primary pearceite intergrown with tetrahedrite, chalcopyrite, and sphalerite, Waters vein, Liberty Bell mine, Telluride, Colo. ... 90
23. Replacement of galena by argentite, showing an apparently intermediate mineral, Waters vein, Liberty Bell mine, Telluride, Colo. ... 91
24. Replacement veinlets of stromeyerite in sphalerite, Yankee Girl mine, Red Mountain, Colo. ... 100
25. Probable replacement remnants of galena and tennantite (?) in secondary stromeyerite, Yankee Girl mine, Red Mountain, Colo. ... 101
26. Stromeyerite as a pseudomorphic replacement of bournonite (?), Yankee Girl mine, Red Mountain, Colo. ... 102
27. Diagram showing what minerals have replaced others in the ores of the Yankee Girl mine, Red Mountain, Colo. ... 103
28. Replacement veins of covellite in enargite, Genesee mine, Red Mountain, Colo. ... 106
29. Composition diagrams of mine waters from Genesee mine, Red Mountain, Colo., and of waters of similar quality from Ducktown, Tenn., and Butte, Mont. ... 107
30. Composition diagrams of waters from Emma mine, "Soda Spring," and Rosebud mine, Dunton, Colo. ... 118
31. Primary argentite in sphalerite, Smuggler-Almont mine, Dunton, Colo. ... 122
32. Primary polybasite or pearceite irregularly intergrown with pyrite, sphalerite, and chalcopyrite, Smuggler-Almont mine, Dunton, Colo. ... 123
33. Characteristic relations of niccolite, chloanthite, and calcite, Monte Cristo mine, near Wickenburg, Ariz. ... 135
34. Primary intergrowth of niccolite, native silver, and chloanthite, Monte Cristo mine, near Wickenburg, Ariz. ... 136
35. Primary native silver forming branching crystals enveloped by chloanthite, Monte Cristo mine, near Wickenburg, Ariz. ... 137
Figure 36. Drawing on a larger scale of a portion of the specimen shown in figure 35 .. 138

37. Irregular primary intergrowths of native silver, chalcopyrite, chloanthite, and quartz, Monte Cristo mine, near Wickenburg, Ariz .. 139

38. Irregular primary intergrowth of proustite, tennantite, and calcite, Monte Cristo mine, near Wickenburg, Ariz .. 140

39. Primary association of proustite, tennantite, calcite, and quartz, Monte Cristo mine, near Wickenburg, Ariz .. 141

40. Primary intergrowth of proustite, tennantite, quartz, and gersdorffite, Monte Cristo mine, near Wickenburg, Ariz .. 142

41. Association of niccolite, chloanthite, and native silver which has been fractured and argentite and calcite deposited in the fractures, probably as late primary minerals, Monte Cristo mine, near Wickenburg, Ariz .. 143

42. Replacement of native silver by argentite, Monte Cristo mine, near Wickenburg, Ariz .. 144

43. Part of a "nest" of niccolite within smaltite, Kerr Lake mine, Cobalt, Ontario .. 148

44. "Nest" of niccolite and silver within smaltite, Kerr Lake mine, Cobalt, Ontario .. 149

45. View on larger scale of a part of a "nest" of silver in smaltite similar to that shown in figure 44, Kerr Lake mine, Cobalt, Ontario .. 150

46. Veinlets of calcite and native silver traversing niccolite, Kerr Lake mine, Cobalt, Ontario .. 152

47. Index map of western North Carolina showing location of areas containing valuable deposits of brown hematite ore .. 159

48. Geologic map of area containing deposits of brown hematite at Tennelina, near Hot Springs, N. C .. 164

49. Diagrammatic north-south section through area shown in figure 48, Culberson, N. C .. 165

50. Northwest-southeast section across Nottely River hematite belt at Culberson, N. C .. 168

51. Northwest-southeast section across Valley River hematite belt near Marble, N. C .. 169

52. Diagrammatic cross section through Fain-Hitchcock mine, near Murphy, N. C .. 173

53. Section across end of pit on J. W. Walker property, near Andrews, N. C .. 191

54. Geologic map of the Peachtree area and the eastern part of the Brasstown belt, N. C .. 195

55. Section across Brasstown belt, Peachtree area, and Valley River belt near Regal, N. C .. 196

56. Map of Martin Creek area and Hiwassee-Nottely River belt, N. C., showing location of deposits of brown hematite .. 199

57. Index map of portions of North Carolina and Tennessee showing position of areas covered by figures 58-61 .. 210

58. Map showing principal mines and prospects on and near the Cranberry belt, in Avery and Mitchell counties, N. C., and Carter County, Tenn .. 215

59. Map showing principal iron-ore prospects in Ashe County, N. C .. 216

60. Map showing location of principal iron-ore deposits in Catawba, Lincoln, and Gaston counties, N. C .. 232
CONTENTS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Map showing location of prospects between Shell Creek and Butler, Tenn., and in adjacent portion of North Carolina</td>
<td>263</td>
</tr>
<tr>
<td>62</td>
<td>Diagrammatic north-south section through Finney & Teegarden mine, in valley of Lunsford Branch, Carter County, Tenn</td>
<td>266</td>
</tr>
<tr>
<td>63</td>
<td>Map showing location of peridotite in Scott County, Ark.</td>
<td>272</td>
</tr>
<tr>
<td>64</td>
<td>Sketch geologic map of a part of secs. 3 and 4, T. 3 N., R. 26 W., in the valley of Dutch Creek, Scott County, Ark., showing the occurrences of peridotite</td>
<td>273</td>
</tr>
<tr>
<td>65</td>
<td>Map of parts of Arkansas, Oklahoma, and adjacent States, showing the area that contains the diamond-bearing peridotite of Pike County, Ark.</td>
<td>279</td>
</tr>
<tr>
<td>66</td>
<td>Section of dike of weathered peridotite cutting the clay of the Trinity formation at the Kimberlite mine, Pike County, Ark.</td>
<td>305</td>
</tr>
<tr>
<td>67</td>
<td>Structure section through the American mine, Pike County, Ark., illustrating the relations of the peridotite to the Trinity and Bingen formations</td>
<td>308</td>
</tr>
</tbody>
</table>
CONTRIBUTIONS TO ECONOMIC GEOLOGY, 1922.

PART I. METALS AND NONMETALS EXCEPT FUELS.

INTRODUCTION.

The Survey's "Contributions to economic geology" have been published annually since 1902. In 1906 the increase in the number of papers coming under this classification made it necessary to divide the contributions into two parts, one including papers on metals and nonmetals except fuels and the other including papers on mineral fuels. In 1915 the year included in the title was changed from the year in which the field work reported in these papers was done to the year of publication, and in consequence there was no volume entitled "Contributions to economic geology, 1914." The subjoined table gives a summary of these bulletins.

United States Geological Survey "Contributions to economic geology."

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1902</td>
<td>1904</td>
<td>225</td>
<td>1913, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1904</td>
<td>1905</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1905</td>
<td>1906</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1906, Part I.</td>
<td>1907</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1907, Part II</td>
<td>1908</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1908, Part II</td>
<td>1909</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1909, Part II</td>
<td>1910</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1910, Part II</td>
<td>1911</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1911, Part II</td>
<td>1912</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1912, Part II</td>
<td>1913</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
<tr>
<td>1913, Part II</td>
<td>1914</td>
<td>225</td>
<td>1915, Part I.</td>
<td>1915</td>
<td>381</td>
</tr>
</tbody>
</table>

The date given is that of the complete volume; beginning with Bulletin 285, the papers have been issued as advance chapters as soon as they were ready.
As the subtitle indicates, most of the papers in these volumes are of three classes—(1) short papers describing as thoroughly as conditions will permit areas or deposits on which no other report is likely to be prepared; (2) brief notes on mining districts or economic deposits whose examination has been merely incidental to other work; and (3) preliminary reports on economic investigations the results of which are to be published later in more detailed form.

Although these papers set forth mainly the practical results of economic investigations they include brief theoretical discussions and summary statements of conclusions if these appear to require prompt publication.