NOTE

The Survey's "Contributions to economic geology" are published in two parts, one including papers on metals and nonmetals except fuels and the other including papers on mineral fuels. As the subtitle indicates, most of the papers in these volumes are of three classes—(1) short papers describing as thoroughly as conditions will permit areas or deposits on which no other report is likely to be prepared; (2) brief notes on mining districts or economic deposits whose examination has been merely incidental to other work; and (3) preliminary reports on economic investigations the results of which are to be published later in more detailed form. Although these papers set forth mainly the practical results of economic investigations they include brief theoretical discussions and summary statements of conclusions if these appear to require prompt publication.
CONTENTS

[The letters in parentheses preceding the titles are those used to designate the papers for advance publication]

(A) Ilsemannite at Ouray, Utah, by F. L. Hess (published July 6, 1923) 1

(B) Origin of certain rich silver ores near Chloride and Kingman, Ariz.,
by E. S. Bastin (published Feb. 23, 1924) .. 17

(C) Observations on the rich silver ores of Aspen, Colo., by E. S. Bastin
(published Sept. 22, 1924) ... 41

(D) New and known minerals from the Utah-Colorado carnotite region, by
F. L. Hess (published Oct. 16, 1924) .. 63

(E) Deposits of magnesia alum near Fallon, Nev., by D. F. Hewett (pub­
lished Oct. 25, 1924) .. 79

(F) Molybdenite in the Rocky Bar district, Idaho, by F. C. Schrader
(published Oct. 28, 1924) ... 87

(G) Bauxite in northeastern Mississippi, by E. F. Burchard (published
January 9, 1925) .. 101

Index ... 147

III
ILLUSTRATIONS

PLATE I. Bluff of shales and sandstones on the southwest side of Duchesne River, 1½ miles northwest of Ouray, Utah. 2
II. Molybdenum-bearing sandstone in an open cut 2 miles northwest of Ouray, Utah. 3
III. Rich baritic silver ore from Smuggler mine, Aspen, Colo. 48
IV. Cross section of replaced wood in sandstone, Jo Dandy mine, Paradox Valley, Colo. 64
V. Diagonal section of replaced wood shown in Plate IV. 64
VI. Sandstone impregnated with vanoxite showing peculiar blotching due to segregation of the vanoxite, Jo Dandy mine, Paradox Valley, Colo. 64
VII. Vanoxite crystals extending into a gypsum veinlet, Jo Dandy mine, Paradox Valley, Colo. 65
VIII. Concretion of vanoxite in sandstone, from Beattie & Beattie’s Bill Bryan claim in Wild Steer Canyon, on the south side of Paradox Valley, Colo. 66
IX. A, Underside of the concretion of vanoxite shown in Plate VIII; B, Crystals of vanoxite in interstices of sandstone, Jo Dandy mine, Paradox Valley, Colo. 67
X. A, B, Segregation of rauvite in sand in the Shinarump conglomerate, Temple Mountain, Utah; C, Shrinkage cracks due to dehydration of vanoxite between sand grains in a section from the Kunkle claims, 6 miles west of Gateway, Colo. 70
XI. Aggregates of zippeite with acicular crystals of gypsum, from Grand Wash, 2 miles southeast of Fruita, Wayne County, Utah. 71
XII. A, Specimen from Decker-Hortenstine prospect, Rocky Bar district, Idaho, showing occurrence of molybdenite; B, Specimen from Rinebold prospect, Rocky Bar district, Idaho, showing occurrence of molybdenite. 92

FIGURE 1. Map of the vicinity of Ouray, Utah, and outline map showing location of Ouray. 2
2. Primary (hypogene) intergrowth of proustite with tennantite and quartz, Empire No. 2 mine, Chloride, Ariz. 22
3. Replacement of proustite by native silver, George Washington claim, Mineral Park, Ariz. 23
4. Contact relations of proustite and sphalerite with galena, Queen Bee mine, Mineral Park, Ariz. 26
5. Primary (hypogene) association of proustite and tennantite, Queen Bee mine, Mineral Park, Ariz. 26
6. Proustite crowded with inclusions of sphalerite and chalcopyrite and bordering tennantite essentially free from such inclusions, Queen Bee mine, Mineral Park, Ariz. 27
7. Inclusions of primary proustite in galena, Queen Bee mine, Mineral Park, Ariz. 28
ILLUSTRATIONS

FIGURE 8. Veinlets of proustite following cleavage planes in galena and contacts between galena and quartz, Queen Bee mine, Mineral Park, Ariz. .. 29
9. Primary (hypogene) intergrowth of proustite and pearceite with tennantite, Kay mine, Mineral Park, Ariz. ... 31
10. Primary intergrowth of proustite with tennantite, sphalerite, etc., Mineral Park, Ariz. ... 32
11. Primary association of proustite and tennantite, Mineral Park, Ariz. ... 33
12. Primary proustite in association with galena, tennantite, and quartz, Cupel mine, Stockton Hill, Ariz .. 34
13. Tennantite traversed by veinlets of chalcopyrite, galena, bornite, sphalerite, and calcite ... 45
14. Tennantite traversed by late primary replacement veinlets of pearceite, base-metal sulphides, and calcite ... 46
15. Argentite, pearceite, and tennantite in irregular and apparently primary intergrowth ... 47
16. Replacement of galena by a galena-like mineral, probably a lead-silver sulphide, followed by pearceite ... 48
17. Replacement of sphalerite stringers in barite by native silver 50
18. Replacement of barite by native silver ... 51
19. Ragged replacement remnants of barite blades in native silver 52
20. Native silver replacing sphalerite and barite 53
21. Association of native silver and pearceite 54
22. Composition diagrams of cool descending mine waters of Aspen, Colo. .. 57
23. Sketch map of western Churchill County, Nev., showing location of alum deposits near Fallon ... 80
24. Sketch map showing local relations of alum deposits near Fallon, Nev. ... 81
25. Index map of Idaho showing position of the Roaring River molybdenite area in the Rocky Bar district ... 88
26. Topographic map showing the position of the molybdenite prospects on Roaring River, Rocky Bar district, Idaho 89
27. Claim map of molybdenite prospects on Roaring River, Rocky Bar district, Idaho ... 94
28. Map showing distribution and geologic relations of bauxite deposits of northeastern Mississippi ... 104
29. Topographic map of Smoky Top bauxite area, Pontotoc County, Miss. ... 126
30. Cross section of bauxite prospect pits, Smoky Top area, Pontotoc County, Miss. ... 127