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PREFACE

The primary purpose of this publication is to provide tables for
the construction of polyconic projections of topographic maps of
standard quadrangles without any interpolation. Bulletin 650,
““Geographic tables and formulas,” gives many of the data needed,
but the projection tables in that bulletin are incomplete, and many
of them require difficult interpolation. The tables given herewith
have been prepared with arguments for each meridian and parallel
represented on maps of standard quadrangles, and the data are
given in inches for each of the standard field scales employed by the
Geological Survey. Tables in the same form have also been prepared
for the two scales on which most of the quadrangle maps of the
Geological Survey are published in final form—1:62,500, 1:125,000—
and also for the scales 1:63,360, 1: 20,000, 1:12 OOO and 1:10,000.
On account of lack of funds for printing, these tables have not been
included in this publication, but it is hoped that they can be published
at a later date. _

A secondary purpose is to present in one publication all of the
theory of the polyconic projection, with the formulas developed in
detail and their use so explained that the engineer or cartographer
with only an average knowledge of mathematics can understand and
use them. Complete instructions are given for making polyconic
projections of standard quadrangles by means of these tables.

The theory of the modified polyconic projection of the interna-
tional map of the world is also explained, and tables for its construc-
tion are given with the data in meters on the natural scale as well as
in inches on the scale of 1 :1,000,000. For the first time these data
have been computed for each degree of latitude.

The tables have been computed by members of the computing sec-
tion of the United States Geological Survey, under the supervision
of George T. Hawkins. The author is indebted to David H. Baldwin
and Edward W. Tibbott, of the Geological Survey, and to Oscar
Adams, of the United States Coast and Geodetic Survey, for val-
uable advice and critical review. Notices of errors and suggestions
for improvement of the material are invited.

C. H. BirpsEvE,
Chief Topographic Engineer.
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FORMULAS AND TABLES FOR THE CONSTRUCTION
OF POLYCONIC PROJECTIONS

Compiled by C. H. BirpsEYE

GENERAL CONSIDERATIONS

Choice of a projection.—In mapping large areas the engineer is
confronted with the problem of representing accurately on the plane
surface of a map the details that exist on the earth’s spherical surface.
As it is impossible to do this exactly, he must resort to the use of some
convention that will represent the earth’s surface with the least dis-
tortion. The systematic drawing on a plane surface of lines that
represent reference lines on the spherical surface of the earth is
called a map projection. There are many systems of projection,
each of which fulfills certain desirable conditions but none of which
is ideal. The choice of the proper projection to use for a certain
map is not always easy but depends largely on the extent of the area
to be represented and on the use to which the map will be put. The
best treatise on map projection published in English is United States
Coast and Geodetic Survey Special Publication 68, “Elements of
map projection.” '

Advantages and disadvantages of the polyconic projection.—The
topographic engineer needs a projection which is simple in construc-
tion, which can be used to represent small areas on any part of the
globe, and which, for each small area to which it i1s applied, preserves
shapes, areas, distances, and azimuths in their true relation to the
surface of the earth. For areas of small extent the polyconic pro-
jection meets all these needs, and it was adopted for the standard
topographic map of the United States, in which the 1° quadrangle
is the largest unit and the 15’ quadrangle is the average unit. Misuse
of this projection in attempts to spread it over large areas—that is,
to construct a single map of a large area—has developed serious errors
and gross exaggeration of details. For example, the polyconic pro-
jection is not at all suitable for a single-sheet map of the United States
or of a large State, although it has been so employed. Its greatest
advantage lies in the facts that it has been computed for all latitudes
of the entire spheroid and that it represents a small area on any part

of the earth’s surface just as well as one on any other part.
1
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2 FORMULAS FOR CONSTRUCTION OF POLYCONIC PROJECTIONS

Characteristics of the polyconic projection.—~The polyconic projec-
tion takes its name from the fact that it is based on the development
of a large number of cones each conceived to be tangent to the sphe-
roid at a parallel of latitude to be represented on the map. It has
been computed for every minute of latitude from 0° to 90°, and exist-
ing tables make its construction very easy. It was devised by
Ferdinand Hassler, the first superintendent of the United States
Coast and Geodetic Survey, and has been computed by that bureau.
The theory of the projection and tables for its construction are given
in Coast and Geodetic Survey Special Publications 57 and 5. .

In this projection a central meridian is drawn as a straight line,
and the intersections of the parallels are spaced true to scale along
this central meridian. Each parallel is then laid down separately
by means of a cone whose base is tangent to the earth’s surface at
that parallel, with the vertex of the developed cone on the extension
of the central meridian. The arcs of the parallels thus drawn are
subdivided- to true scale, and the meridians are drawn through
these subdivisions. As a result the central meridian is shown as a
straight line, and theoretically all other meridians are shown as
curves. As the meridians and parallels nowhere intersect at right
angles, except along the central meridian, and as all the other merid-
ians are drawn as curves concave toward the central meridian,
it is theoretically impossible to fit together in a row, east and west,
two maps each of which is developed on its own central meridian,
as their joining edges are curved in opposite directions. However,
in practice and within certain limits this theoretical condition does
not exist. It is impossible for a draftsman or an engraver to draw
the limiting meridians of a 1° or smaller quadrangle within the
latitudinal limits of the United States other than as straight lines.
Moreover, as the projection is extended from the central meridian
the length of the meridians is theoretically increased, but even in
latitude 60° the difference in length between the line representing the
limiting meridian of a 1° quadrangle and the line representing the cen-
tral meridian is too small to be plotted, and the lengths of all the
meridians on a projection of 1° or smaller may be assumed to be
the same. Therefore, a row of maps east and west will join perfectly,
although as the north edge of each map is shorter than the south
edge the row will form a curve. A tier of maps north and south will
also join with sufficient accuracy. Theoretically, there will be small
gores between the edges of each east-west row of maps and the next
row to the north or south, but in actual practice the distortion of map
paper due to changes in atmospheric conditions'is greater than the
error of joining, so that by slightly stretching the outer tiers a moder-
ate number of maps—say five or six each way—can be joined with
approximately perfect accuracy. Seldom, if ever, will & map user
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wish to join more than five or six quadrangle maps in any direction.
The limits in the size of tables or wall space make further extension
impracticable, and therefore the theoretical weaknesses of this
projection can becignored so far as maps of small quadrangles are
concerned.

THEORY OF THE AMERICAN POLYCONIC PROJECTION

Clarke’s spheroid.—The data in the following tables for the polyconic
projection of maps are based on the dimensions of the spheroid
determined by Col. A. R. Clarke, R. E., in 1866, as expressed by
Clarke in meters but not as expressed by him in feet. Although the

International Geophysical Union has adopted the Hayford spheroid
as the most exactly determined representation of the size and shape
of the earth, and the dimensions of the Hayford spheroid are now used
in geophysical research, still the Clarke spheroid represents very
closely the true size and shape of the earth, and most of the existing
tables for the projection of maps are based on it. In the following
tables the data are merely converted from measurements on the
spheroid in meters, given in United States Coast and Geodetic Survey
Special Publication 5, to inches on the several map scales employed
by the United States Geological Survey. Some interpolation has.
been required in order to provide data for arguments for use in the
construction of standard projections of 714’ and 15’ quadrangles,
such as latitude and longitude intervals of 114’, 214’, 334’, and 714’.
Interpolation has also been employed in the conversion of the data,
which may have resulted in errors of 0.001 inch in the tables, but
one one-thousandth of an inch can not be plotted. .

Tables are given for all the standard field scales employed by the
Geological Survey for latitudes 0° to 51° or more. As the computa-
tion of special projections may be required, the fundamental formulas
and demonstrations of their development are given with instructions
for their use. The nomenclature employed in the formulas given in
different publications on this subject differs, and in some demon-
strations of the development of the formulas there may be some doubt
as to the meaning of the symbols employed and some confusion in the
use of mathematical expressions, such as an arc expressed in terms
of the radius. An attempt has therefore been made to explain fully
the meaning of each symbol or expression and to make the demonstra-
tions and the instructions as to the use of the formulas so clear that a
cartographer with only average knowledge of mathematics can follow
them. In these demonstrations the following publications have been
consulted freely and to some extent are quoted verbatim: United
States Coast and Geodetic Survey Special Publications 5 and 57,
Smithsonian Geographic Tables, and United States Geologlcal Sur-
vey Bulletins 50 and 650.
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Clarke expressed the dimensions of the spheroid in meters and also
in English feet. According to him 1 meter=239.370432 inches=
3.28086933 feet. The Smithsonian Geographic Tables and United
States Geological Survey Bulletin 50, both prepared by R. S. Wood-
ward, depend on the Clarke spheroid as expressed by him. in feet.
Some of the tables given in United States Geological Survey Bulletin
650 are extracts from the Smithsonian Geographic Tables and some
are extracts from the United States Coast and Geodetic Survey
tables. The polyéonic projection tables computed by the United
States Coast and Geodetic Survey depend on the dimensions of the
spheroid as expressed by Clarke in meters, and the tables given herein
depend on these dimensions and on the legal value in the United
States of 1 meter=239.37 inches=23.28083333 feet. This figure does
not, express the absolutely correct relation between the international
meter and the inch, but it is close enough for all practical purposes of
map projection. Therefore, in order to reduce the dimensions of the
spheroid as given by Clarke and Woodward in feet, and any tables of
length based thereon, to corresponding values given in the United
States Coast and Geodetic Survey Tables and those in this publica-

tion, it is necessary to multiply by the fraction _39.87 0.99998903

39. 370432
(log. 9.99999523-10). '
Constants of the generating ellipse.—The constants of the generating
ellipse of a spheroid for which values are required i in the computation
of projection tables are defined as follows:

a=semimajor axis.
b =semiminor axis.
e = eccentricity.
_a—b 1—+41—¢*
“atb 14+41-¢
The values of these constants with their IOgarithms for the Clarke

spher01d of 1866 expressed in meters as used in computing the tables
in this publication are:

a8 =6,378,206.4 meters. log & =6.8046985690.
b =6,356,583.8 meters. log b =6.8032237768.
e? =0.0067686580. log €? =7.8305025710-10.
n =0.0016979157. log n =7.2299161198-10.

Radit of curvature—The principal radii of curvature of an ellipsoid
(see fig. 1) are
pw =the radius of curvature of a merld_lonal section.
pn—the radius of curvature of a section normal to the meridian.
Both are constant for a given latitude, but for precise computations
infinitely small sections of the circumference of the meridional ellipse
must be considered, because meridional arcs cover a range of latitude,
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and therefore p, must be evaluated for infinitely small changes in
latitude. ‘
In Figure 1, let APP’D represent a quadrant of the generating
ellipse; AQQ’'B, a quadrant of the circumscribed circle; EFF’D, o
quadrant of the inscribed circle; P and P’, two contiguous points on
the ellipse at the ends of the infinitely small arc ds; PK and P’K
(= pm), the normals at P and P’, or the radius of curvature of the
infinitely small meridional arc ds; PK’ (= p,), the radius of curvature
of a section normal to the meridian; OA (=a), the semimajor axis;
OD (=h), the semiminor axis; the angle XRP = ¢, the latitude of the
point P; and the angle XOQ =y, the geocentric latitude of the point P.

F1GURE 1.—Elements of generating ellipse

Expressing the coordinates of the point P in parametric form, we
have :
X=4g COS ¥

y=Db sin ¢y

As the point moves from P to P’ the small changes in x and y are
PF (= —dx) and FP’ (=dy), respectively. If the two equations are
differentiated, ¢ being regarded as a variable angle and x and y as
functions of ¢, then

dx= —a sin ¢ dy

dy= b cos :l/.d\l/

The triangles RPE and PP'F are similar and the angle PP'F = angle
PRE = ¢, therefore '

tan ¢=_d—§x~
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Substituting the values of dx and dy, we have

asinv_8y.ny

tan _¢_ cosy b

or

tan ¢--b- tan ¢

The eccentricity of the ellipse, represented by e, is defined by the
equation

. &2"_b2 b2
, a a/
or
b2
—=1—e?
a2
and
b
—=q1—¢°
-8

Substituting this value, we have

tan ¢ =I—e” tan ¢

but
. tan ¢y  tan ¢ J1—¢e? tan ¢
=t = =
Sy =tan YOS Y = Y Vit tan §  YiFtan’g—o'tan’ $
"/szsin(ﬁ '\/l_ezsin¢
e cos ¢ cos ¢ _y1—¢’sin ¢
sin” ¢, sin’® $ oS’ ¢tsin’e—e’sin’é +1—e sin’ ¢
14 e’
cos? ¢ coqus cos ¢
cos y= S0 ¥ smnp 1 1
tany Jittan’y +lttan’¢—eltanie
1 _ 1 _ cos ¢
'\/1+sin2¢_ ,8in® ¢ +Jcos’ p+sin®p—e’sin®¢p /1 —e’sin® ¢
cos? ¢ cos? ¢ cos ¢ A

Using the fundamental differential formula d tan x=sec? x dx, we
have

sec? ¢ dy=d tan ¢
Substituting the value of tan y and differentiating, we have

sec? ¥ dy=+/1—¢* sec? ¢ do
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or

cos dm/l—-e sec’dé _

1/] - e sec2¢d¢
dy= ‘/1 1—e?sin? ¢

s ¢ —e?sec? ¢ do cos? =

V1—e?do

1—e®sin® ¢

Let ds denote the infinitely small meridional arc PP’ of the generating
ellipse; pn=PK, the radius of curvature of the small arc; and d¢
the angle PKP’, expressed in circular measure, through which the
end of the radius moves in generating the small arc. . Then considering
the infinitely small arc of the ellipse as an arc of a circle and using
the relation arc =radius times generating angle, we get

pm dp=ds.
But

ds=\/ﬁ2+3§2=w/a2 Sin? y + b% cos? ¥ dy =

ya?sin® ¢ +a%(1 —e?)cos* ¢ dy =a /sin? Y + cos® ¢ — e? cos® Y dy =
&1/1—e2cos2¢d|// |

also
J1- cos’ ¢ 1—¢’ sm2¢ e’cos’¢
1-efcos’y = \/ (1 — e’ sin® cb) \/ 1—¢?sin® ¢ -
\/l—ez (sm2¢+cos ) A1=¢
1—e?sin® ¢ ‘/1_62 sin? ¢
and
_Vi—e'de d¢
W= 1—e?sin’ ¢ ¢
therefore
1/ T oot U Q= L€ )d¢~
—ecosty dy= (l—e sin? ¢) %
and .
_a(l—e)de
ds= (1—e’sin® ¢)#
but »
_ds.
Pm"—dd)
therefore
__a(l—e?)
Pen (1—efsin? ¢)s "~~~ """"TTTTTmmoooes 1]

If we pass a plane through any point P on the ellipsoid, parallel
to the equatorial plane of the ellipsoid, this plane intersects the
ellipsoid in a circle which represents the parallel at the point P, and
the normals to the surface of the ellipsoid at every point on this
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parallel circle intersect in a point X’ on the minor axis of the ellipsoid.
If we pass a plane through the normals of any two contiguous points
on the parallel circle and then let these normals approach each other
until they coincide, we obtain a plane tangent to the given parallel
and perpendicular to the meridian at the point of tangency. The
radius of curvature in this plane corresponding to a small arc of the
parallel is represented by PK’, because the normals of each point on
the arc intersect at K’. If we denote this radius by p, we have in
the triangle PK'E’, v

X
cos ¢—‘Tu
Hence
a COS ¢
X _acosy +l—esin® a I
Pn=Cos ¢ cos¢  cos¢  (l—elsin® gy """ (1]

It is evident that p, is always greater than p,, except when ¢ = 3 90°;
in that event p,=pn.

Logarithms of pn, and p, in English feet are given in the Smithso- .

nian Geographic Tables for each minute from 0° to 90° and in Geo-
logical Survey Bulletin 50 for each minute from 21° to 51°; to reduce
these logarithms to logarithms of the radii expressed in American
feet to correspond to the relation with the legal value of the meter
in the United States, 47.7 in the last (7th) place must be subtracted.
To reduce logarithms of American feet to logarithms of meters (United
States legal value) the logarithm 9.48401583-10 should be added.
Consequently the logarithms given in the Smithsonian Geographic
Tables or in Geological Survey Bulletin 50 may be used for compu-
tations of formulas and tables given in the present publication by
adding the logarithm 9.48401106-10. .

However,'in connection with geodetic computations the Coast and
Geodetic Survey has adopted several factors based on the Clarke
spheroid as expressed in meters (United States legal value), and it is
more convenient to use two of these factors, log A and log B, than to
use the values of p, and p, given in the Smithsonian Geographic
Tables. The logarithms of these factors have been computed to the
seventh place for each minute from 0° to 72° and are given in Geo-
logical Survey Bulletin 650 and in Coast and Geodetic Survey Special
Publication 8. These factors are

_a —e? sin? ¢)%
a arc 1’

_ (1—é’sin® ¢)}
a(l—e®) arc 17/

A

B
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Introducing these factors into the formulas for py and p, given above,
we have

Pm Barc 1/~~~ ""-"-"ttooomemo-- [III]
1 :
Pu=7Q arc 177" " "Tommmmmmommmsee- [IV]

In these factors arc 1 s expressed in radians ! and is 0.0000048481368
log arc 1’ =4.6855748668-10, which is the same as log sin 1’/ to the
tenth decimal place.

Meridional arcs.—The length of an arc of a circle equals the length
of its radius times the length of the arc expressed in radians. If a
very short section of a meridional ellipse is considered as an arc of a
circle, the length of this short section can be found by the use of
simple formulas with sufficient exactness for use in ordinary large-
scalé map projections. But if it is desired to find the length of a
long arc or to determine exactly the length of a short arc, it is neces-
sary to take the summation of the lengths of the infinitely small arcs
making up the arc whose length is desired, by the :process of inte-
grating between the limiting parallels the variable lengths of the
small arcs corresponding to infinitely small uniform subdivisions of
the difference of latitude.

The léngth of a short mer1d1onal arc lying between two glven paral-
lels of latitude can be computed by the simple formulas given below,

. in which

¢ and ¢, are the latitudes, expressed in degrees, minutes, and
seconds, of the ends of the arc.

=%(¢1+¢2) and is the mean latitude of the arc.

A¢p=¢;— ¢, and is here taken as the length of the arc expressed in
radians.

A¢’ =¢;— ¢ and is here taken as the length of the arc expressed in
minutes. o

Arc 1’=0.0002908882 radian, or the length of an arc of 1’ for a
unit radius.

AM is the required length of the arc, or the meridional distance
expressed in meters. Then, as the length of the arc equals the length
of the radius times the arc expressed in radians, .

AM =p Ap=pyarc 1’ A¢’
But
_ 1
Pm™ B arc 17

1.A radian is an arc of a circle equal to its radius and is a unit arc in circular measure. Its value in degrees

is %, which equals 57°.20577951 or 3437°.746771 or 206264’.80625,



10 FORMULAS FOR CONSTRUCTION OF POLYCONIC PROJECTIONS

therefore _ ,
arc 1’A¢’ 60A¢’

aM = arc 1’B B ~----tmmtmemmmmmoe- V]

Log 60=1.7781513. Log B for the mean latitude ¢ is given for esch
minute of latitude in Table 28, Geological Survey Bulletin 650, and
in Coast and Geodetic Survey Special Publication 8. The approxi-
mate formula for AM should not be used for arcs of the meridian
longer than 1°. The error will depend on the latitude but for 1° will
be approximately -+ 0.8 meter, for 30’ about + 0.4 meter, for 15" about
+0.2 meter, and for 714’ about +0.1 meter. The latitude, the scale,
and the size of the projection will control largely the selection of

formulas.

~ For the computation of the length of a long meridional arc or the
precise computation of a short arc, a formula must be used which will
give the sum of the varying lengths corresponding to infinitely small
subdivisions of the difference of latitude. In other words, the approxi-
mate formula AM =p,A¢ must be integrated between the limits of
the latitudes of the ends of the arc. The expression will be integrated
first in general form between latitude 0° and any latitude ¢.

d¢=an infinitely small difference in latitude, or the differential of
the latitude.

M =the length of the arc in meters, from the Equator to latitude ¢.
Using the value of pg given in [I], we have

¢ a(l —ez) do
M= f(l—e sin 2¢)%

Expanding the binomial reciprocal of the denominator, we have

(1 ¢? sin? ¢)"—l+ge sin? ¢+—~e sin* ¢+ e s1n°¢

8
-|-i—2—§e sin® ¢,+ ......
But,
sin? ¢=l(1—cos 2¢)=l——1— cos 2¢
2 2 27
sin‘ ¢=§—% cos 2¢+—;— cos 4¢

5 15
sin® ¢ = 16 3zcos2¢+l6cos4¢> 32cos6¢

. 35 7 7 1
sin® $=128 16 08 2¢+32 cos 4¢— 16 cos 6¢+128 cos 8¢

Substituting these values and arranging the terms as constants and as
coefficients of cos 2¢, cos 4¢, etc., we have

8

¥
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\

A
. 175 11025
a2 ain? AV~ 2422t 00
(1—e?sin? ¢) (1+ -l—64 +256 +16384 e+ . )
B
2 ___4 §_2_562205s
<4 + +512 +20486 + -+ ) cos 2¢
C
o4 105 o 2205 >
+( +256 +4096 + .. cos 4¢
D
e 315 4 315 o
( 512 ¢ topag®t )‘""’S 6¢
E
. 315 4. ...
+( 16384e+ >.c058¢
. Sy S }
Then
¢
M=fa(l—62)[A—-Bcos2¢+Ccos4¢—Dcos6¢+Ecos8¢—----]d¢
0
fundamental for-
mulas in
which
But | | |m is a definite
S mdx=mx+k and /' m cos nx dx=% sinnx+k < cizeﬁ;wl?;ziable
quantity

n is a coefficient
of the variable

Therefore
SJa(l—e*) Ade=a(1—e?) Ap+k

k is a constant.

Sa(l1—e?) B cos 26 dp=a (1—e?) B%sin 2¢+k
Sa(1—e?) Ccosd¢ dp=2a (1—e?) C%sin 4¢+k
Ja(1—e?) D cos 6o do=a(1—e? D%Sin 6¢+k

SJa(l—e*) Ecos 8 dop=a(1—e*) E % sin 8¢ +k.
6243°—29——2
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The value of M between the limits 0° and ¢° is the difference between
the integrals when ¢=¢° and when ¢=0°. If $=0° then sin 2¢,
sin 4¢, etc., =0, and the integral of each of the five terms given above
is equal to k. In the subtraction of integrals all the k’s cancel.
Therefore, '

M=a(1—e2)[A¢—%Bsin 29+ C sin 46— D sin 66
+1E 'nS .—....]
g sin Se—
Substituting the values of A, B, C, D, and E, we get

175 11025
_ 24 "ol b S v ..
=a(l (32’)|:(1+4 + +256 +16384e + )d)

525 , . 2205 .
2 -v 4 PP
2(4 + +512 "+50a8% T >Sm2¢

115,105 , 2205 .
_( e+ 356 T2006¢ T )Sm‘“’

(5t st - ')Sm o
815, ;
+8 16384¢ T '>Sm8¢

Let

A= a(l~e2)<1+—e 1200 1100 11025, )

64° "256° T 16384
=6,367,399.6891 meters. -
525 2
Aimali=e)(Fe+foet+ Eet+ooret+ - - )
-32 433.8882 meters.

1 2 ot 105 ef 2205 4 . >_ Y :
A4—2a(1—e)< +256 +40966+ .+« s - )=34.4187 meters.

315
2 et v )=
a(l e )(512 2048 + . ; ) 0.0454 meters.

A8=Za(1*02) 12;§4e‘s+" . ->=0.00006 meters.

Then o ‘
1, . 1, . 1, . 1, .
M=A0¢—§A2sm2¢+§A4sm4¢——§Assm6¢+§Agsm8¢—- -« [VI]

This expression, in which ¢ is expressed in radians, gives the length

of the arc of the meridian (in meters, if a is taken in meters) from the

PRI

N

e i

T e e e

[ I e S

o

et e s ok ¢
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Equator to the parallel at latitude ¢. The length of the arc of the

meridian represented by the difference between two values of ¢ is

found by taking the difference in the values of M for the two latitudes.

Let M,=length of the arc of the meridian from the Equator to
latitude ¢,.

M, =length of the arc of the mendlan from the Equator to
latitude o1

AM =M,—M,=length of the arc between latitudes ¢; and ¢..

=% (¢2+ ¢1) =mean latitude of the arc. .

Ap=¢y— ¢
Then ;

AM = Aq (¢2— 1)~ %Az (sin 2¢,—sin 2¢,)+ A4 (sin 4¢,—sin 4¢,

—3 A, (sin 64, sin 66,) +1 As (sin 86, sin 84,) -
But '
sin a—sin B:=2 cosé (a+8) sin% (a—B)

Substituting .
2 ¢, 4 ¢, etc., for a and 2 ¢4, 4 ¢4, etc., for B, we have

1 1 .1
AM = A, (¢o— 1) — 3 A, |:2 cosg (2¢2+2¢1) sing (2¢2—2¢,)

.1 7]
5 A 2 cos (400 +461) sing (4= 44)

1 .1
—%A6[2 coS§(6¢2+6¢i) Sln§(6¢2‘6¢1)_

+3 A 2 005 (36:+84) sin (36— 841)

But
1 @e+2¢) =29, 5 (b +d) =44, etc.
and
%(2¢2—2¢1)=A¢, %(4¢2~4¢1‘)=2 A, etc.
therefore

AM=AjAp— A, cos 2¢ sin A+ A, cos 4¢ sin 2A¢
—Agcos6¢sin 3¢+ Agcos8psind Ag— « - - - - _[VIT)

In the first ‘term of the formula given above, A is expressed in radians,
and the value of A, is 6,367,399.6891 meters. If it is desired to use



<
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the formula with A¢-expréssed in degrees, minutes, or seconds, values .
of Ay must be taken as follows:
A°y= 360A° 111 132 0894 meters log =5.0458394793
27 - |
r — =
A’y 31600 A,=1,852.2015 meters log =3.2676882316 .
o 2m . ' _ <
A, ——1296000A0r 30.8700 meters log =1.4895366
In computing lengths of arcs of the meridian for the projection tables
given in this publication, in which the arcs are. taken in terms of-
minutes, the following formula should be used, the last term contain- .

ing Ag being dropped:-

AM =1,852.2015A¢" — 32,433.8882 cos 2¢sin Ap+ 34.4187 cos 4¢sin 2A¢
—0.0454 cos 6¢psin 3Ap+ - - -+ - - .. [VIII]

log 1,852.2015=23.2676882316
32,433.8882 =4.5109990154
34.4187=1.5367944629 &

0.0454 =8.6570559 — 10 )

Arcs of the parallel.—For computations of the length of the arc of
the parallel lying between two given meridians of longitude the for-
mulas given below may be used, in which—

¢ is the latitude of the parallel, expressed in degrees, minutes,
and seconds.

r is the length of the radius of the parallel, expressed in meters. -

pn is the length of the radius of curvature of the section normal to’
the meridian, expressed in meters. .

A\ and N, are the longitudes of the ends of the arc, expressed in
degrees, minutes, and seconds. N

AN=X\;—)\; and is the arc of the parallel expressed in degrees or ;
minutes or seconds, the unit depending on the formula used. If -
fractional parts of degrees or minutes or seconds are required they
must be expressed decimally.

AP is the required length of the arc expressed in meters.

The radius of any parallel is equal to the product of the radius of
curvature of the normal section for the same latitude by the cosine
of that latltude, as is seen in Flgure 2 in the triangle PK’M, in which

cos ¢= p~- Therefore

n

T=py COS ¢
and the entire length of the parallel is

27t =2mpy, COS ¢
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Any arc of the parallel is equal to the entire length of the parallel
divided by the number of units in the circumference and multiplied
by the number of the same units in the arc. Therefore

AP =2_1p§6%ﬂ (AN in degrees)

But
-
Pn= X arc 177
therefore
AP=( 2r > cos ¢> (AN in degrees)
360 arc 1’/ A g
207 \/cos ¢
(Mc Te )< ) AN in degrees)
But
T 20r 20w
arc 1°—T§6 - and ma—z—?)ﬁﬂo
180
therefore :
AP (meters) =360 "02
cos ¢
A AN (minutes) po---oo--- (IX]
cos ¢

==X AX (seconds)

Rectangular coordinates.—In the polyconic system of map projection
each parallel of latitude represented on the map appears as the devel-
oped circumference of the base of a right cone tangent to the spheroid
along that parallel. Thus the parallel PN (fig. 2) and the arc P,P,
(fig. 3) will appear in projection as the arc of a circle PP,P,N (fig. 4)
whose radius GP,=1 is equal to the slant height of the tangent cone
PGN (fig. 2).

In constructing a map projection on this system the meridians and
parallels are usually delineated by plotting and joining their points
of intersection. The coordinates of these points may be expressed
in the following manner (see figs. 3 and 4): For any parallel, as
PP,P;N, take the origin P, at the intersection with the central merid-
ian and let the rectangular axes of Y(P,G) and of X(P,Q) be respec-
tively coincident with and perpendicular to this meridian. :

Let AN represent the difference of longitude between the central

~ meridian and the next adjacent one; AP = P,P; the arc of the parallel

between the central meridian and the next adjacent one; 6 the angle
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at the apex of the developed tangent cone between the central meridian
and the next adjacent one; ¢ the latitude of the parallel, which is
also the angle at the apex of the tangent cone between a meridional
element of the surface of the cone and its axis; I the slant height of
the tangent cone and the radius of the developed parallel; r the radius
of the parallel in the plane of the parallel; and p, the radius of curva-
ture at P, of the cross section of the ellipsoid through the point P,
normal to the central meridian.

Then from Figure 4, in the triangle GP,S, it is apparent that

x={[sin §
and in the ti‘iangle P,P.S that

y=x tan%

1

C o K
F16URE 2.—Elementsofellipsoid and tangent FIGURE 3.—Sector of tangent
cone . cone

Substituting the value of x and remembering that sin 6=2 sin % cos %’
we have '

y=2 1 sin? %
From Figure 3, in the triangle GP,K’, it is apparent that

l=p, cot ¢

The length of the are AP (fig. 3) is measured by the length of ‘the
radius r of the parallel times the central angle A\ (in radians), and

the same arc is also measured by the length I of the radius of the

developed cone times the angle  (in radians); therefore

19=rAX\
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But from Flgure 3, in ' the ‘triangle P,K'M, it is apparent that
r=p, cos ¢; therefore

PN coS ¢
0=——-—l——

Substituting in this the value of  given above, we have
6=AX sin ¢

Then, substituting in the éxpressions for x and y the values of 1 and
6, we have’

cot ¢ sin (AX sin ¢)

X=py cot ¢ sin (AN sin ¢) = Naro 17 - - X]
. o1 .
1 ' 2 cot ¢ sin? 5 (AX sin ¢)
¥y =2p, cot ¢ sin? 5 (AN sin ¢)= A aro 1”7 --[XT]

)

uelpgdew |9J1U83

Rl X Q
FicURrE 4.—Developed cone

In the two formulas given above the expression A\ sin ¢ is approxi-
mately the convergence of the meridian, and it will give an angle
in the same units as are used for AN. For example, if AN is taken
in radians, degrees, or minutes the angle (AX sin ¢) will be in radians,
degrees, or minutes, respectively. The expression sin ¢ is really a
coefficient of AN just -as if it were a quantity like 2 or 4.

Log A is given for each minute of latitude from 0° to 72° in
Table 28, Geological Survey Bulletin 650, and in Coast and Geodetic
Survey Special Publication 8.

Log arc 1’" =4.6855749-10.

The formulas for x and y given above are exact expressions of the
coordinates of the point P. But when AN is small substitution for

the quantities sin (AN sin ¢) -and sinzé (AN sin |¢) of the first two

1
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terms of
use and
sions are

their expansions will yield formulas more convenient to
at the same time give satisfactory results. These expres-

sin (AN sin ¢) =AM\ sin ¢ —% (ANsin @)+ «c.e-

sin? = (A)\ sin ¢) = i (A)\ sin ¢)?— (A)\ sin ¢)t+eee.

Substituting these values in the formulas for x and y, we have

X=p, cOb ¢ AN sin ¢>—% pn cOb & (AN sin ¢)>+ v et

But cot ¢ sin ¢ =cos ¢; therefore

X=paA\ cOS ¢— 1 PulAN cos ¢ (AN sin ¢)2+ -« .-
6

or
X=pAN cos ¢ [1 —= (A)\ sin ¢)2+ .- :I
But
N S
Pr=Karc1”
therefore
X Caro | 1 (B sin gyt ] --------- [X11]
also
y =2p, cot qS;i— (AN sin ¢)?—2p, cot ¢4—18 (ANsin @)t -+ - -
=% AX’?; sin ¢ cos ¢—§1‘1pnA>\2 sin ¢ cos ¢ (AXsin ) e
—;—pnm\?»sm ¢ cos ¢ [1 ~75 (AN sin ¢)?+ - - - ]
But ‘
sm ¢ cos qs—l sin 2¢ and 1
Po =R arc 177
therefore ‘
%%%—f%[l—l%m sin )P+« - ] ...... [XIIT]

In these two formulas for x and y A\ is expressed in radians. A\
may be taken in seconds, minutes, or degrees by using the following
relations:

AXF= AN arec 1"
ANF=AN arc 1’=60 AN arc 1"’
AN'=AN° arc 1°=3600 AN° arc 1"/
!
\\

1
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and the formulas may be written as follows by substituting in the
coefficient the proper value of AN expressed in terms of arc 1’/, so as to .
cancel the term arc 1’ in the denominator, and by substituting in
the series the proper value of AN expressed in terms of arc 1’/, arc
1/, or arc®, as the case may require:

_Ax OOS ¢[1 1 (AN arc 177 sin ¢)2+ - - - ] .
A)\" 2 1”7 62 1 . Seﬁ:)z)rll?ls [XIV]
y ar”) &ZCA sin ¢[1—I§(A}\”arcl"sin ¢)*+ ]
TSk s & "’[1 2 (AVarc 1/ sin )*+ - - - ] :
A‘)\ n [XW
, ' minutes
15(A>\) &201 S0 2¢ [1—— AX’arc 1’ sin ¢)°+ ]
o
=—————3600A)‘ cos ¢|:1—1(A)\°arc 1° sin ¢)*+ - - - ] .
00(ANOY? o in 9 dgé\rgés [XVi]
_900(aN°) azc 1°sin ¢[1——(A)\°a,rc 1°sin ¢+ :l .

The constants in these formulas with their logarithms are as follows:

arc 1’/ =0.0000048481 radian log=4.6855749—10
arc 1’ =0.0002908882 radian log=6.4637262—10
arc 1° =0.0174532925 radian log=8.2418774—10

This group of formulas seems more complex than the formulas for
x and y given in X and XI, but the terms are so arranged that their
use will be found more convenient in making a large number of
computations, especially if the terms within the brackets can be
dropped.

Analysts of formulas.—Analysis of the last group of formulas for
x will show that for values of AN of 1° or less and for latitudes of 60°
or less the terms within the brackets can be disregarded with a result-
ing maximum error of +2.2 meters in the abscissa of the developed
parallel. The ordinate of the developed parallel of 45° has the great-
est value for the same value of A\, and for values of A\ of 1° or less
the terms within the brackets in the formulas for y can be disre-
garded with a resulting maximum error of +40.007 meter. The
following table gives an idea of the errors in the values of x and y
resulting from the use of the first term only of these formulas:

Latitude 25° Latitude 50°

Value of AX -
60’ 30 15’ 7Y 60" 30/ 15 %4

Errors in x, in meters..| +0.915 | 4+0.114 | 40.014 [ 40.002 | +2.121 } 4-0.267 | 4-0.033 | -0.004
Errors in y, in meters_.| +.0017 | +-.0001 | -+.0000 [ +-.0000 | --.0071{ --.0004 | +-.0000 | --.0000
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Even the maximum error of 2.2- meters on the spheroid can not be
. plotted on any ordinary map projection; consequently where AN does
not exceed 60 minutes it is sufficient to use only the first term in the
bracket in any one of the last group of formulas for x and y.
Analysis of the formula for AP and of the rigid formula for x shows
that for short arcs of the parallel of 30’ or less and for latitudes of 50°
or less there is very little difference between the actual lengths- of
the arcs of the parallels and the abscissas of their development, and

that either formula may be used for the other. The following table

gives an idea of these differences:

Latitude 25° ’ . Latitude 50°
Value of AX
30 15, 7Y’ 30 15 4
Value of AP, in meters.......... 50,475.93 | 25,237.96 | 12,618.98 | 35,849.06 | 17,924.53 8,962. 26
Value of x, in meters-..__.._... 50,475.82 | 25,237.95 | 12,618.98 | 35,848.79 | 17,924.50 8, 962. 26

CONVERSION DATA

Values in meters on the spheroid can. be transformed easily into
measurements in inches on any map scale by reducing meters to
. inches and dividing the result by the scale relation. In the following
table the two operations have been combined into one factor, and the
table will be found convenient for use in conversion by logarithms or
for use by direct multiplication in a computing machine. The tables
are based on the United States legal value of 1 meter =39.37 inches,
log=1.5951654

Log tobe | Multiplication
Scalo added factor
1:5,000 7. 8966954~10 0. 0078740000
1:10, 000 7. 5951654~10 . 0039370000
1:12,000 7. 5159842-10 . 0032808333
1:20, 000 7.2941354-10 . 0019685000
1:24, 000 7. 2149542-10 . 0016404167
1:31,250 7.1003154-10 . 0012598400
1:31,680 7. 0943802-10 . 0012427399
1:48, 000 6. 8139242-10 . 0008202083
1:62, 500 6. 7992854-10 . 0006299200
1:63,360 6. 7933502-10 . 0006213699
1:96, 000 6. 6128942-10 . 0004101042
1:125, 000 6. 4982554-10 . 0003149600
1:192, 000 6. 3118642-10 . 0002050521
1:250, 000 6. 197225410 . 0001574800
1:500, 000 5.8961954-10 . 0000787400
1:750, 000 5.7201041-10 . 0000524933
1:1, 000, 000 5. 5951654-10 . 0000393700

Other interesting data concerning scale relations will be found in
Tables 40 and 44, Geological Survey Bulletin 650.
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CONSTRUCTION OF PROJECTIONS

Different methods of construction.—Polyconic projections may be
constructed by hand,.by using the instructions and tables published
in Coast and Geodetjc Survey Special Publication 5, which gives the
required values in meters on the surface of the spheroid, or by using
the instructions and tables given in this publication with measure-
ments in inches on the map scale desired; or they may be constructed
mechanically by means of a Bumstead projection plate. The prac-
tice of the Geological Survey indicates preference in the reverse order
from that given above. Directions for constructing projections by
hand can be given best by means of practical examples, but in general
a central meridian is assumed upon which the intersections of the
parallels are plotted to scale. Each parallel is then developed
separately as an arc of a circle with its center lying in the extension
of the central meridian. The arcs of the developed parallels are
subdivided to scale, and the meridians are drawn through the corres-
ponding subdivisions. However, in actual practice on projections
of small quadrangles the parallels are not drawn as arcs of circles,
but their intersections with the meridians are plotted from the
computed x and y values, and the sections of the parallels between
adjacent meridians are drawn as straight lines. On polyconic
projections of quadrangles of 1° or smaller all meridians may be drawn

"as straight lines, and in large-scale projections of small quadrangles

in low latitudes both meridians and parallels may be drawn as straight
lines. For example, the curvature of the parallels of a projection of
a 15" quadrangle in latitudes from 0° to 25° on a scale of 1 : 48,000 or
for a 714’ quadrangle in any latitude on a scale of 1 : 31,680 or larger
is so small that it can not be plotted.

The meridional distances given in the tables apply to the c