CONTRIBUTIONS TO ECONOMIC GEOLOGY

(SHORT PAPERS AND PRELIMINARY REPORTS)

1929

PART II.—MINERAL FUELS

H. D. MISER
GEOLOGIST IN CHARGE
CONTENTS

[The letters in parentheses preceding the titles are those used to designate the papers for advance publication]

(A) The Forsyth coal field, Rosebud, Treasure, and Big Horn Counties, Mont., by C. E. Dobbin	Page
(B) The Kevin-Sunburst oil field and other possibilities of oil and gas in the Sweetgrass arch, Mont., by A. J. Collier	57
(C) Geology and coal resources of the Meeker quadrangle, Moffat and Rio Blanco Counties, Colo., by E. T. Hancock and J. B. Eby	191
(D) Geology and oil resources along the southern border of San Joaquin Valley, Calif., by H. W. Hoots	243

Index 333

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>PLATE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Index map showing location of Forsyth coal field, Montana</td>
<td>2</td>
</tr>
<tr>
<td>2. A, Light-colored sandstone and brown sandy shale at the top of the Judith River formation, near Finch, Mont.; B, Escarpment of the Tullock member of the Lance formation, on Armells Creek, T. 5 N., R. 40 E., Montana</td>
<td>2</td>
</tr>
<tr>
<td>3. A, Lebo shale member of the Fort Union formation overlain by the Tongue River member, sec. 31, T. 5 N., R. 41 E., Montana; B, Big Dirty coal bed at the base of the Lebo shale member of the Fort Union formation, SW. ¼ sec. 31, T. 3 N., R. 41 E., Montana</td>
<td>2</td>
</tr>
<tr>
<td>4. A, West side of the Wolf Mountains from the east quarter corner sec. 25, T. 1 N., R. 38 E., Montana; B, View in sec. 13, T. 3 N., R. 40 E., Montana</td>
<td>2</td>
</tr>
<tr>
<td>5. A, Massive sandstone above the Rosebud coal bed, sec. 13, T. 1 N., R. 41 E., Montana; B, Outcrop of the Rosebud coal bed in the North Coal Bank Coulee, sec. 24, T. 1 N., R. 41 E., Montana</td>
<td>18</td>
</tr>
<tr>
<td>6. A, View in sec. 31, T. 2 N., R. 40 E., Montana; B, Prospect on outcrop of the Rosebud coal bed in South Coal Bank Coulee, SE. ¼ sec. 15, T. 1 N., R. 41 E., Montana</td>
<td>18</td>
</tr>
<tr>
<td>7. Map of the Forsyth coal field, Montana, showing areal geology and position of coal beds</td>
<td>In pocket.</td>
</tr>
<tr>
<td>8. Stratigraphic sections of the Lance and Fort Union formations in the Forsyth and Tullock Creek fields, Montana, showing position and correlation of the coal beds</td>
<td>26</td>
</tr>
<tr>
<td>9. A, B, Strip pit of the Northwestern Improvement Co. at Colstrip, Mont</td>
<td>26</td>
</tr>
<tr>
<td>10. Sections of coal beds in the Forsyth coal field, Montana</td>
<td>In pocket.</td>
</tr>
</tbody>
</table>
PLATE 11. Unconformity between the Madison and Ellis formations as exposed near Stockett, Mont. 68

12. A, The weathered and channeled surface of the Madison limestone as exposed about 1 mile north of Stockett, Mont.;
 B, Blackleaf sandy member of the Colorado shale on south side of Missouri River near Carter Ferry, Mont. 68

13. A, Clay of a glacial lake bed locally distorted by a later glacial overthrust, north side of Teton River near Shannon Bridge, Mont.;
 B, Virgelle sandstone exposed about 11 miles west of Sunburst, Mont. 68

14. A, Four “discovery” pits dug near a section corner, in accordance with the provisions for land location under the placer-mining law;
 B, Miniature anticline in the Blackleaf sandy member of the Colorado shale. 68

15. Structure map of the Sweetgrass arch, Mont. 84

16. Structure contour map of the Kevin-Sunburst oil field, Mont. 84

17. Logs of 15 wells in the Kevin-Sunburst oil field, Mont., and the region south of it. 84

18. Analyses of waters associated with the oil in the Kevin-Sunburst field, Mont. 84

20. A, Escarpment formed by the lower beds of the Iles formation, looking northeast from Sulphur Creek, Colo.;
 B, Thin-bedded sandstone in Mancos shale, sec. 1, T. 1 N., R. 94 W., Colo. 202

21. A, Trout Creek sandstone at the “Transfer,” Colo.;
 B, Jointing in thin-bedded sandstone immediately above the Trout Creek sandstone at the “Transfer.” 202

22. A, Trout Creek sandstone in sec. 10, T. 2 N., R. 94 W., Colo.;
 B, Sandstone at base of Wasatch formation at Valentine ranch, secs. 7 and 8, T. 2 N., R. 94 W., Colo. 202

23. A, Terrace extending east from Meeker, Colo., along the south side of White River;
 B, Sulphur Creek syncline as observed from the “Transfer,” Colo.;
 C, Lion Canyon sandstone in the Sulphur Creek syncline, sec. 23, T. 2 N., R. 94 W., Colo. 202

24. Stratigraphic sections of Black Diamond, Fairfield, Goff, and Lion Canyon coal groups in the Meeker quadrangle, Colo., showing intervals between and thicknesses of coal beds. 202

25. A, Sulphur Creek mine, NE. ¼ sec. 10, T. 1 N., R. 94 W., Colo.;
 B, Montgomery mine, NW. ¼ sec. 29, T. 1 N., R. 94 W., Colo. 226

26. Sections of coal beds measured in T. 1 S., R. 94 W., and T. 1 N., R. 94 W., Colo. 226

27. Sections of coal beds measured in T. 2 N., Rs. 94 and 95 W., Colo. 234

28. Sections of coal beds measured in T. 3 N., Rs. 94 and 95 W., Colo. 234

29. Sections of coal beds measured in T. 3 N., Rs. 92 and 93 W., Colo. 234

30. Sections of coal beds measured in T. 2 N., Rs. 92 and 93 W., Colo. 234
CONTENTS

PLATE 31. Geologic map and structure sections of the foothills along the southern and southeastern border of San Joaquin Valley, Kern County, Calif. In pocket.

32. A, Eocene sandstone and conglomerate of probable Meganos age, Kern County, Calif.; B, Bentonite beds in the Tejon formation. 252

33. A, Coarse Vaqueros sediments and basalt agglomerate between Salt and Tecuya Creeks; B, Basalt agglomerate or flow breccia in Vaqueros just west of Pastoria Creek. 252

34. A, Conglomeratic sandstone of Turritella ocyana zone in the Tejon Hills; B, Well-rounded cobbles of the sandstone shown in A; C, Angular and subangular rock fragments, typical of the Santa Margarita and Chanac formations in the Tejon Hills. 268

35. A, Unconformity between white-weathering Maricopa shale and overlying Etchegoin near Muddy Creek; B, Santa Margarita and Chanac formations in the Tejon Hills. 268

36. A, Tulare and Etchegoin sediments on the north flank of Wheeler Ridge; B, Unconformity between overturned Tulare strata and overlying tilted Pleistocene alluvial-fan deposits 1 mile west of San Emigdio ranch. 292

37. A, Unconformity on Wheeler Ridge between Tulare and overlying tilted Pleistocene alluvial-fan deposits; B, Coarse indistinctly bedded Chanac sediments in the Tejon Hills. 292

38. A, Stream terraces along San Emigdio Canyon; B, Stream terrace along San Emigdio Canyon and its relation to mature physiographic surface of the upland. 292

39. A, Terrace remnants of Pleistocene alluvium high on north flank of Wheeler Ridge; B, High Pleistocene stream terrace deposits in lower Grapevine Canyon. 292

40. A, Small landslide of Etchegoin clay on the floor of San Joaquin Valley just east of San Emigdio Canyon; B, One of the landslides on the north flank of Wheeler Ridge; C, Mammillary solifluxion features along north edge of San Emigdio foothills, near Pleito Creek. 293

41. Sketch map showing structural features in Tertiary rocks along southern and southeastern border of San Joaquin Valley and the relation which this belt has to adjoining major structural provinces. 300

42. A, Devils Kitchen syncline, in San Emigdio Canyon, as seen from the west; B, Wheeler Ridge as seen looking north from the top of the Pleito Hills. 300

43. Structure contour map of Wheeler Ridge. 300

44. Structure section across central part of Wheeler Ridge. 316

45. Drainage map of the Wheeler Ridge area. 316

46. A, Tejon Hills as seen from the north; B, Producing oil field on top of Wheeler Ridge. 316

47. Airplane view looking southeastward along the axis of the Wheeler Ridge anticline. 324

48. Airplane view of the southern border of San Joaquin Valley from San Emigdio Canyon to Coaloil Canyon. 324
Chapter 1. Heating value of coal from the Forsyth field, Montana, and some other coals

Chapter 2. Log of the California Co.'s well in sec. 25, T. 26 N., R. 5 W., near Agawam, Mont.

Chapter 3. Arrangement of wells in a section and letters used in table to indicate their location, Kevin-Sunburst oil field, Montana.

Chapter 4. Decline in production of three leases in the Kevin-Sunburst oil field, Montana.

Chapter 5. Index map showing the relation of the Meeker quadrangle, Colo., to the main Yampa coal field and to possibly competing fields.

Chapter 6. Diagram illustrating relation between surface area and area of underlying inclined coal beds.

Chapter 7. Index map of southern California, showing oil fields considered in reports published by the United States Geological Survey.

Chapter 8. Unconformity between sandstone of the lower part of the Vaqueros and overlying breccia and basalt flows.

Chapter 9. Map showing probable subsurface structure of Wheeler Ridge producing area, Calif.