CONTENTS

Introduction	175
Earth physics	177
General	177
Gravity	177
Magnetism and electricity	181
Seismology	189
Radioactivity	197
Heat	199
Volcanology	200
Tectonophysics	202
Internal constitution	203
Exploration geophysics	205
General	205
Gravity methods	207
Magnetic methods	208
Seismic methods	212
Electrical methods	217
Radioactive methods	219
Logging and borehole methods	220
Technical aids	221
Patents	222
Gravity methods	222
Magnetic methods	223
Seismic methods	223
Electrical methods	227
Electromagnetic methods	227
Radioactive methods	227
Logging and borehole methods	229
Technical aids	231
Index	235
GEOPHYSICAL ABSTRACTS 147, OCTOBER–DECEMBER 1951

By Mary C. Rabbitt and S. T. Vesselowsky

INTRODUCTION

Geophysical Abstracts are prepared by the Geophysics Branch of the Geological Survey, United States Department of the Interior, as an aid to those engaged in geophysical research and exploration. Periodicals, books, and patents are regularly searched for material dealing with geophysical exploration and with the physics of the solid earth.

Abstracts are grouped in three sections dealing with earth physics, exploration geophysics, and patents. The first section has been further divided into sections on gravity, magnetism and electricity, seismology, radioactivity, heat, and tectonophysics, and internal constitution of the earth. The section on exploration geophysics covers gravimetric, magnetic, seismic, electric, and radioactive methods, well logging, and technical aids. Patent abstracts are taken from the Official Gazette of the U. S. Patent Office. Within each group the order of the abstracts is as follows: general papers, bibliographies, and reviews; theory; instruments; methods and techniques; observations.

As many readers may not have ready access to the source material, an effort is made to include all significant new material in these abstracts. Where geographic names quoted differ from the decisions of the United States Board on Geographic Names, the latter are added in brackets.

Geophysical Abstracts 1–86 and 112–127 were issued as Information Circulars by the Bureau of Mines, and 87–111 were issued as Bulletins of the Geological Survey. Geophysical Abstracts 128 and following numbers have been published as Bulletins of the Geological Survey.

All Geophysical Abstracts published as Information Circulars are now out of print. Geophysical Abstracts issued as Bulletins of the Geological Survey (except Nos. 87 and 88 which are out of print) may be purchased as single copies or by subscription from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
For subscription, the Superintendent will accept a deposit of $5 in payment of subsequent issues. When this fund is near depletion, the subscriber will be notified. The deposit may also be used to purchase any other publication from the Superintendent of Documents.

Acknowledgments.—Special credit is due James R. Balsley, Jr., David F. Barnes, Lucy E. Birdsall, W. J. Dempsey, Roland G. Henderson, H. R. Joesting, Elizabeth King, J. L. Meuschke, Frank W. Stead and Isidore Zietz who have prepared the abstracts signed with their initials.
A method has been devised to test for periodic constituency of a series of twelve numbers, which might correspond to the months of a year, subject to a yearly oscillation. For any series, a numerical constant, \(k \), is evaluated. With the help of a standard curve or table in which \(k \) is evaluated as a function of percent periodicity, the latter may be determined.

Eighteen geophysical elements were analyzed for periodic constituency. They cluster about two points of the \(k \) curve. Twelve of the series cluster around 69 ±2.5 percent. The other six crowd around 91 ±1.8 percent periodic constituency. It is significant that the latter were all of the variation of temperature in continental climates.

It is assumed that a true annual variation would have at least 60 percent periodicity. In reality, this would be equivalent to a period of the annual variation of air pressure deduced from one year of observation. The method was also applied to twelve monthly temperature variations of each of nine hot springs. The percent constituency was divided into two groups, those above and below 60 percent periodicity. It is shown that the former group had significantly lower temperatures on the average than the latter. This is contrary to previous interpretation which indicated real annual variations for both groups.—I. Z.

The various methods for determining regional gradients and consequently residual anomalies are reviewed. Regional maps may be obtained by the method of arithmetic means, average profile, circle summation and finally, the fitting of a plane by least squares to the observed data. All of these methods are variations of a least-squares approach, the latter being especially recommended for the reduction of pseudoanomalies which sometimes appear when some other method is used. As illustrations, the residual and regional maps of a theoretical gravity field are presented using the method of arithmetic means and least squares.—I. Z.

Gravity measurements can be used for geophysical, geologic, exploration, and geodetic purposes. Gravity anomalies permit determination of the absolute undulations of the geoid and the absolute deflections of the vertical. These are the bases of a World Geodetic System, together with astronomical observations. Collecting and analyzing data by scientists of different countries is necessary to
prepare a World Geodetic System. Likewise, additional gravity surveys are needed in many parts of this country, as well as in other parts of the world.—L. E. B.

Elasticity corrections for a rigid pendulum are computed by considering the stretching and bending corrections separately. The stretching correction is a static one and depends only on the changes in the first and second moments of the pendulum when placed on its support. The bending correction is obtained by a simple method based on the use of the angular momentum equation. The source of error in J. S. Clark's work (Royal Soc. London Philos. Trans., ser. A, 238, 65, 1940) is pointed out and also an error in Harold Jeffreys' work (See Geophys. Abstract 11918) which does not affect Jeffreys' final value of g.—H. R. J.

13097. Morelli, Carlo. Studio del gravimetro Worden no. 50 e sua applicazione per un rilievo geofisico di dettaglio alle foce del Timavo [Investigation of the Worden gravimeter no. 50 and its use in a detailed geophysical survey at the mouth of the Timavo]: Annali Geofis., v. 4, no. 2, pp. 247–271, 1951.

This is a detailed description and discussion of the theory of the Worden gravimeter, including its adjustment and calibration, determination of drift, effect of temperature and pressure gradients, sensitivity to magnetic influences and to mechanical shocks. The instrument is compensated for variation of temperature, but not for strong temperature gradients. The drift is within -0.03 to $+0.15$ mgal per hour, the average value being to $+0.05$ mgal per hour. The accuracy of a single reading is ± 0.03 mgal. An experimental detailed gravimetric survey was made with this instrument around the Foce del Timavo, near Trieste, with 52 stations occupied. Bouguer anomalies are shown in a table and on two maps.—S. T. V.

Among the experiments performed by Eötvös in his studies of the gravitational field was one to prove that the force of gravity to which a body is exposed when moving in the east-west direction on the earth's surface is different from that in the north-south. To detect this variation a light horizontal beam with two equal masses at its ends is suspended on a knife edge by a vertical wire with adjustable torsional reaction. If the beam is placed in a north-south direction and made to oscillate horizontally, vertical oscillations of the beam and its masses will develop after a certain time, whereas those oscillations will not be observed if the initial horizontal oscillations of the beam are on the east-west line. The vertical oscillations of the beam are caused by variations in the total gravity force acting on the moving masses resulting from slight, but measurable, increase or decrease of the term representing the centrifugal effect of the rotating earth and acting in the direction opposite to gravitational force. The effect of the various different factors are considered and the two differential equations for the horizontal and vertical oscillations of the systems are derived. To make the vertical oscillations—
tions observable it is necessary to adjust the systems so that the natural periods almost coincide. The phenomenon is related to the Foucault pendulum experiment.—S. T. V.

The studies of the errors in the calculations of deflexions of the vertical show that quite useful calculations may be made by using Jeffreys' determination of the lower harmonics of the free-air anomalies to give the contribution to the deflection from most of the world, the local part being found by using Stokes's integral over a cap of 10 of 15 degrees radius. Estimates of deflexions are made for Greenwich, Herstmonceux, Southampton, and Bayeux. Although at present the uncertainties of the deflections calculated are very large, they would be considerably reduced if gravity measurements were made in the South Pacific.—L. E. B.

From gravity determinations at sea made by Vening Meinesz and Cassinis, it is concluded that the force of gravity over the lowlands of continental sialic masses is the same as that over ocean depths of 5000 m where the bottom is sima. Thus where the ocean bottom is covered with sial there must be a gravity deficiency. From the value of gravity force at a point of ocean surface and the corresponding depth, it is possible to tell whether the mountains rising from the bottom, but not reaching the ocean surface, are formed of sima or sial. As examples, gravity profiles across the Atlantic Ocean and the Pacific in the vicinity of the Hawaiian Islands are discussed. Bouguer anomalies of different mountain systems such as the Alps, the Himalayas, the Rockies, the Caucasian and central Asian ridges are also discussed. The author concludes that the greatest thickness of sial is normally found at the periphery of mountain systems and remains constant under the whole area.—S. T. V.

The changes in the position of the principal axis of inertia of the rotating earth, caused by the seasonal displacement of the masses of the air contained between the latitudes 5° and 65° north and south of the equator, are computed in view of their influence on the displacement of the axis and it is concluded that the pole of inertia describes a trajectory contained in the rectangle of dimensions 0.15″ by 0.05″.—S. T. V.

Both authors have recently studied the periodic displacements of the pole of inertia of the earth. Huaux investigating the effect of seasonal displacements of atmospheric masses and Melchior the displacement on the basis of observations collected by the Service International des Latitudes during the last 50 years. The agreement in the results obtained from these separate studies is good. It is evident that the earth cannot be treated as a rigid body in precise determinations, and that displacement of the air masses is not the only factor to be taken into account.—S. T. V.

This is a reprint of the article abstracted in Geophys. Abstract 12145. An index has been added.—L. E. B.

Gravity traverses between the pendulum stations of Dublin, Sligo, Galway, and Cork and a regional gravity survey of Leinster and a small area centered on Kingscourt, County Cavan, have been made using a Graf-Askania gravimeter with stations observed at 4 to 8 mile intervals. Results are given as Bouguer anomaly maps.

The outstanding feature is the decrease in anomaly of 2.3 mgals per mile from the east coast to the Leinster granite, with the lines of equal anomaly being closely parallel to the geologic strike. Over the Leinster and Galway granites, the plain west of Dublin, and the Devonian rocks of Cork and Kerry, the anomalies are low relative to the rest of the field and are either negative or very nearly zero. The lower Paleozoic rocks in the east and in the vicinity of Carrickmacross, the area south and southeast of Sligo and south of Galway are high-anomaly areas, the anomalies on the east coast, however, being nearly twice any other. In general, the lines of equal anomaly trend northeast parallel to the geologic strike in the north where Caledonian folding predominates and have an east-west trend over the American folding in the south. Isostatic anomalies are in many places larger than the Bouguer anomalies, but are less than 25 mgal except for a strip along the east coast.

The gravity anomaly on the Welsh coast is repeated with almost perfect symmetry on the Irish coast. These anomalies and the negative observation in the Irish Sea may be explained as resulting from thickening of lower Paleozoic sediments and the presence of a land mass in the Irish Channel during development of the Paleozoic geosyncline or as a compressional rift structure of the channel.—M. C. R.

This is a brief report on the gravimetric survey made by the Istituto di Geofisica Applicata del Politecnico di Milano, over an area of about 150 sq km of the comune of Milan. A Western G4 A gravimeter was used, and 220 stations were occupied. The whole area was divided into six polygons, the closing errors in each found being negligible. The report gives details on the computations involved and contains three maps of the area with observed anomalies contoured
at intervals of 0.5 mgal and residual anomalies contoured at 0.25, and 0.125 mgal. Free air and Bouguer reductions were applied, but the topographic correction was omitted as the area surveyed is essentially flat. The major anomaly is negative and roughly circular with a radius of about 10 km; the maximum absolute value of the anomaly is 1.4 mgal.—S. T. V.

Gravity differences between Imaichi and Nikkō [Tochigi-ken] were measured immediately after and three months after the Imaichi earthquake of December 26, 1949, using a North American gravimeter. Changes of about 2 mgals in the gravity difference between Imaichi and Nikkō were found, which may have been the effect of the earthquake.—M. C. R.

The Cuddapah basin, which is a crescent-shaped area of about 14,000 sq mi. roughly between 14° and 17° N. lat and 78° and 80° E. long., is of particular interest because gravity determinations show a marked defect of gravity over the basin as compared with that over the surrounding region, although the rocks in both areas have normal density. The bottom of the basin has been contoured from geologic data and found to slope eastward to a maximum depth of more than 18,000 ft. The defect in gravity is then ascribed to a downwarping of the crust, which is assumed to have a total thickness of 30 km. Computation of the effect of downwarping to 18,000 ft gives results consistent with the gravity data.—M. C. R.

MAGNETISM AND ELECTRICITY

The revised second edition of this monograph is a brief description of the present knowledge of the earth's magnetic field and its changes, using limited mathematical developments.—L. E. B.

Blackett's hypothesis predicting a linear relation between the magnetic moment of a rotating celestial body and its angular momentum is arrived at through another consideration. These celestial globes are assumed to possess a nucleus of degenerate matter from which free electrons migrate into outer shells more easily than the positive ions. As a consequence of this development, the mean temperature of the sun is determined to be about 15,000,000°, which is of the right order of magnitude.—I. Z.

Recent developments in the domain theory of ferromagnetism and the properties of some newer magnetic materials used in the construction of physical instruments
are discussed. According to the domain hypothesis, a ferromagnetic material is made up of small particles, or domains, of two different linear dimensions, one about 10^{-2} cm and another of 10^{-6} cm. In each of these domains the material is magnetized to saturation along a particular crystallographic direction. Change in magnetization of the material can take place either by domain boundary displacement or by rotation of the direction of magnetization in each domain. Most technically important magnetic properties are determined by the factors affecting change of magnetization in a domain, such as magneto-crystalline anisotropy, magnetostriction, and impurities and internal strain in the material.—S. T. V.

Positive and negative magnetostriction is a lengthening and shortening respectively of a material by the application of a longitudinal magnetic field. Certain combinations of magnetic fields can twist a specimen, and, conversely, torsion plus a circular field can produce a longitudinal field. Experimentally this was done by twisting a cylindrical specimen while passing a current from end to end. With iron a decrease in the circular field (that is, switching off the current) resulted in a decrease in the longitudinal field. However, for steel and nickel the longitudinal field was increased when the current was sufficiently large. With nickel it was also found that a switching on and off of the current produced successively higher fields until a steady state was reached after five cycles.

Measurement of the longitudinal magnetic field is more accurately determined by a suspended needle magnetometer than by a search coil and ballistic galvanometer.—W. J. D.

Magnetometers discussed consist of a rotating detector coil whose output is amplified and a Helmholtz-Gaugain coil mounted on a theodolite. (See Geophys. Abstracts 12359 and 12628.)

Either the direction of the axis of rotation of the rotating detector coil or the central axis of the H–G coil can be read on the horizontal and vertical circles of the theodolite. In the second case the axis of rotation is always at right angles to the H–G coil. In measuring the three elements of the geomagnetic field, declination and dip are determined with no field produced in the H–G coil and Z and H are determined by orienting the H–G coil in the direction of the component to be measured and observing the field necessary to null these components, or by measuring the angles between a resultant field produced by the known field of the H–G coil and the vertical axis and the horizontal plane. Similarly, the total field can be measured by the two methods.

If the angle between the H–G coil and the axis of rotation is kept more than 80°, the coil constant of the H–G field in that direction can be computed to 10^{-6}, or better than is required for one gamma accuracy.

Contribution of lead-in wires is calculated to be zero when the coils are wound in opposite sense, and 1×10^{-4} for φ equals 6° or 0 when φ equals 0 if the coils are wound in the same sense; 90°–φ is the angle between the central axis of H–G coil and axis of detector rotation.

The accuracy of magnetometers of this type is limited by the sensitivities of the detector, the theodolite spirit level and the accuracy of the vertical and horizontal circles.—W. J. D.
MAGNETISM AND ELECTRICITY

Magnetometers of the Helmholtz-Gaugain coil and rotating detector type having an accuracy of 0.1° in dip and declination and 1 gamma in intensity have been constructed. These are of the design which measure the dip of the resultant field when a known field of the H–G coil is superimposed on the earth’s total field.

Electrical and mechanical details of construction are given together with instructions for setting up the instrument and making observations. A comparison of readings between two of these instruments and observatory magnetograms is shown and the accuracy is with the specified limits.—W. J. D.

The remanent magnetization of a specimen is measured by rotating it inside a magnetic shield constructed of high-permeability material and observing the deflection of a small suspended magnet at the center of the shield. The mathematical theory of the instrument is presented as well as graphs of the instrument sensitivity and of measurements of a typical specimen.—J. R. B.

The QHM consists of a small magnetic needle suspended by a vertical quartz fiber and a telescope to read the position of the needle by means of a mirror also attached to the suspension fiber. Known torsions are exerted on the quartz fiber by turning the suspension through radians. From the angular changes in needle position and the constants of the instrument, the horizontal magnetic intensity can be determined. Because it weighs only 1½ lb and exhibits very low drift, the QHM is especially good for making international comparisons of horizontal intensity standards. By observing the horizontal intensity with varying amounts of torsion it is also possible to find the mean index error for zero torsion and thus determine declination. One complete observation, six conditions of torsion, for declination can be made in nine minutes. Tables show the results for typical determinations under ideal conditions.—W. J. D.

It has been possible to keep the temperature compensation of the magnetic variometer as small as 0.07 per degree Centigrade by means of a magnetic shunt alloy of Fe-Ni-Cr system made in the Tohoku University Metal Matter Laboratory. This alloy has the following characteristics: one magnetic Curie point at 100–150 C, a very large temperature coefficient of permeability, and a linear relation between permeability and temperature in the interval 10–600 C. These characteristics are not changed by cold work, cooling, heating, or similar processes. For the simple bar magnet, considered to be the best for the magnetic variometer, the condition necessary to make the temperature-coefficient zero is

\[V = V_o(Q_1 + Q_2)/N \alpha, \]

where \(Q_1 \) and \(Q_2 \) are the temperature coefficients of magnetic moment and of the quartz fiber's rigidity; \(N \) is the demagnetization factor, \(V_o \) the volume of the magnet, \(V \) the volume of the shunt alloy, and \(\alpha \) the temperature coefficient of the permeability of the shunt alloy.
A portable variometer using the shunt alloy has also been constructed. It can be used in fields where the change of temperature is 10 to 20 °C, is very stable and the accuracy is about 0.5μ.—M. C. R.

A theoretical study has been made of the possibility of using Kubetskii's electronic tube for measurements of rapid changes of geomagnetic field, such as those due to the action of solar protuberances, of meteorites passing near the atmosphere, or to processes deep in the earth. The instrument consists of a photovoltaic element with several amplifiers in series. The current passing through the anode of the instrument is affected by the changes of the magnetic field to which the tube is exposed and thus can be used for the measurement of these changes. An important feature of the instrument is the absence of inertia, making it adaptable for measurement of rapid changes. From an analysis of the tube in its present construction it is concluded that it can be conveniently used for the purpose. The measurable range of variations of the field is 3×10^{-5} oersted to 1.3 oersted. Disturbing magnetic waves of frequency less than 1 sec can be detected on the instrument.—S. T. V.

The influence of mechanical stresses on the magnetic properties of magnetite and some ferronickel alloys has been studied experimentally by placing samples inside a magnetometer coil and exposing them to tensile or compressive stresses which were either kept constant or oscillating within certain limits. An astatic magnetometer with vertical coils, of a sensitivity equal to 0.4 maxwell per mm of scale was used and the intensity of magnetic field surrounding the samples ranged from zero to 60 oersted.

The following conclusions were drawn from the tests: Under simultaneous action of a constant magnetic field and an alternating elastic stress of decreasing intensity, the intensity of magnetization in all samples of magnetite and ferrous alloys increased in a measure proportional to the intensity of exerted stress, and the remanent magnetism was also increased; a constant compressive stress produced a decrease of magnetization; the coefficient of the decrease of magnetic susceptibility with increasing constant compression ranged from -0.0002 to -0.0011.

The first conclusion may explain the greater natural values of magnetism of rock as compared with laboratory data as caused by mechanical stresses produced by earthquakes or by tectonic deformation.—S. T. V.

The intense natural remanent magnetization of rocks can be produced only by their cooling in the geomagnetic field from a temperature higher than their Curie point. If a rock in a weak magnetic field is cooled from T_1 to T_2 below its Curie point, its remanent magnetization will increase on further cooling even if the magnetic field is removed. This change is reversible with change of temperature, provided T_2 is not exceeded, and may correspond to the reversible change in the spontaneous magnetization of magnetic domains. If the magnetic field
is less than one oersted, the remanent magnetization at t (less than T_2) produced by cooling from T_1 to T_2 in the field F can be expressed as

$$\int_{T_1}^{T_2} (F, t) \approx F \int_{T_1}^{T_2} I(T, t) \psi(T) dT$$

where $T = (T_1 - T_2)/2$, $I(T, t)$ is the intensity of spontaneous magnetization of the magnetic domains at t and $F\psi(T)$ is the probability of the orientation of domain vectors in the direction of the magnetic field F.

J. R. B.

The two variables, temperature and pressure, are inadequate to explain mineralogical changes and orientation effects that accompany metamorphism. The author suggests consideration of the local geomagnetic field as another factor. This suggestion is based on presence of magnetic anomalies in volcanic and tectonically active areas and reports that, in experiments on the synthesis of mica, introduction of a weak magnetic field facilitated the growth of large sheets. Experiments on the effect of magnetic fields on crystallizing minerals and detailed studies of magnetic phenomena in tectonically active areas are proposed as fields for future investigations. —J. L. M.

The effect of the solar eclipse of September 12, 1950, was investigated at Nemuro, Onagawa and Katsuura, Japan, by observing the declination and horizontal components of the magnetic field and dH/dt of the three components. At the eclipse, the observed declination was considerably less than that of the following day, a day of normal magnetic activity. The residual field calculated from the deviation of the horizontal component and declination of September 12 from that of September 13, is illustrated along with the position of the shadow by the moon for the times of 11 h, 12 h, 13 h, 14 h, in the ionosphere at a height of 100 km. According to S. Chapman, the residual field may be explained by a residual current system by considering the decrease of conductivity in the ionosphere in the area of the shadow of the moon at the time of the eclipse. There is good correlation between observed and computed residual fields. The ratio of the amplitudes of micropulsation of $(dH/dt)_E$ and $(dH/dt)_N$ of every two stations is plotted as a function of time. The amplitude ratio of Nemuro-Onagawa and Nemuro-Katsuura is large at the time of maximum phase of the eclipse. This is attributed to the effects of an S_d current system by the solar eclipse. —I. Z.

A relationship exists between changes of the horizontal component of the geomagnetic field and the development of anticyclonic pressure systems over the eastern United States. Statistical studies show that the existence for the same local mean times of high horizontal intensity values at Cheltenham, Md. and low values at Tucson, Ariz., in contrast with previous days, indicates an increase in anticyclonic central pressure 24 to 48 hr later over the eastern
United States. Further studies of the hours between midnight and noon show the horizontal intensity values immediately after sunrise give the best indication of anticyclonic developments 36 to 48 hr later.—J. L. M.

13123. Imamiti, Syuiti. One of the universal variations of geomagnetic field [In Japanese with English abstract]: Kakioka Magnetic Observatory Mem. v. 6, no. 1, pp. 18-23, 1951.

There are rather strong, sharp variations (called provisionally peak variations) in the geomagnetic field. The amplitude of this peak variation is large at the time of magnetic storms and smaller on calm days, and a single variation generally does not continue more than 20 min. The peak variation vectors all over the world except at higher latitudes are almost parallel to each other, and their magnitudes increase as the stations approach the auroral zones. It is believed that this peak variation is due to Birkeland's ring current at the auroral zone; its height is estimated as 2000 km, and its position at latitude of 70°.—M. C. R.

By treating the flow of an ionized stream past a magnetic dipole as analogous to a streamline flow around a submerged obstacle, an attempt is made to explain phenomena not satisfactorily accounted for by the prevailing theories of magnetic storms. Presumably, there would be a hollow space surrounding the dipole having a computed radius of 5.5 earth radii. The steady state of flow of the stream past and around the earth sets up a toroidal ring current which, by its momentum, remains after the stream ceases to flow. The radius of the circular cross section of the ring current, calculated from the decrease in H in the main phase of an average magnetic storm, is approximately equal to the diameter of the earth. Unstable charges on the surface of the ring under an expellant field of 10^{-3} v per cm and guided to the auroral zone by the magnetic field possess sufficient energy to penetrate the atmosphere to the 90-100 km levels and produce luminescence (auroras). The main features of the S_c^p field are accounted for by a polarization field set up by a Hall current in the auroral zone. The current system of bay disturbances can be accounted for in the same manner as the S_c^p field, provided the necessary current system is advanced in phase by 6 hr.—R. G. H.

The writer is critical of the Chapman-Ferraro theory of magnetic storms and of the superstructure erected upon it by D. F. Martyn in his paper, "The theory of magnetic storms and auroras" (Geophys. Abstract 13124). The field of electric currents in gases is complicated by the numerous factors that may enter. Too often Nature differs with the investigator on what factors are essential in a particular phenomenon. Geophysicists would do well to check their theoretically derived results by laboratory experiment. Scale model experiments, for example, lead to important understandings of geophysical phenomena.—R. G. H.

In an attempt to establish a classification, the disturbances on the 1948-49 records at Kakioka were divided into 4 groups: bay disturbances, impulsive
disturbances, oscillations, and irregular disturbances. On the basis of this investigation, impulsive and irregular disturbances showed tendencies similar to the bay disturbances in the course of day. Further investigations are being made using the records at other observatories.—M. C. R.

Newton, in 1948, found the diurnal frequency of occurrence of sudden commencements associated with geomagnetic disturbances at Greenwich had a broad minimum around 8 hr. Data from magnetic observatories at the same latitude confirmed the 8 hr minimum, while those in low latitudes had an 8 hr minimum apparent only for sudden commencements that are followed by large or moderate disturbances. The frequency of occurrence of the type of sudden commencements where the increase in H is preceded by a small preliminary movement in the opposite direction, is believed to depend on universal time, and generally this type is more frequent in the hours following 12 hr G. m. t. This suggests a possible dependence on geomagnetic longitude.—L. E. B.

Alibåg Observatory’s records from 1905–44 have been analyzed for data on sudden commencements in geomagnetic field variations. The first type, characterized by a rise in H and a fall in V, is very prominent; the second type, where the increase in H is preceded by a small movement in the opposite direction, is absent in Alibåg. The third type, called “inverted sudden commencements” does occur at Alibåg but the frequency is small.

Graphs of the diurnal variation of the incidence of sudden commencements at Alibåg show a minimum between 4 and 7$^\text{h}$ and about 17$^\text{h}$ local time and a more prominent maximum between 9$^\text{h}$ and 15$^\text{h}$. Some sudden commencements recorded at Alibåg have not been recorded at Abinger Observatory. Although sudden commencements are possibly a world-wide phenomenon, the data analyzed at different observatories are not uniform and are influenced by local effects.—L. E. B.

A study of sudden commencements occurring at Lerwick from April 1934–December 1949 shows that the form of the sudden commencement has little connection with the size of following disturbance but the amplitude of the main impulse of the sudden commencement is related to some extent to the size of the following disturbance. The sudden commencements are rather more frequent during the equinox than during the winter or summer and there is a relation between the annual number of sudden commencements and the mean annual sun-spot number and a measure of the annual magnetic activity. The form taken by the sudden commencements is much more varied than has been found for stations in lower latitudes, but a definite variation is found in the form of sudden commencement according to time of occurrence. The average of all Lerwick sudden commencements is shown to be opposed to the main disturbance field.—L. E. B.

Telluric currents were measured during the summers of 1939–40 in two areas, one in the region of the known positive magnetic anomaly near Kremenchug.
Ukrainian S. S. R., the other some 75 miles away in an area of normal magnetic characteristics. In each place of observation the measuring lines were 1 km long, one being placed in the geographic meridian, the other along the latitude circle. From the results of the measurements of telluric currents, daily variations of their components in the N-S and E-W directions were computed. Simultaneously observations at the Stepantovka magnetic observatory, about 250 miles away, were similarly recorded and analyzed. There is a close similarity between graphs of telluric currents and of magnetic variation, but with a phase difference of 1 h 30 m to 2 h. Variation in phase displacements of two curves is attributed to differences in the electrical resistivity of the ground in places of observation.—S. T. V.

In the summer of 1944, while recording the earth potential gradient and induced current in a horizontal loop in an investigation of the pulsations in the earth's magnetic field at Yabuki-machi, Fukushima-ken, a change of 1 to 2 mv per km in the earth potential gradient was always recorded when the train was running at a distance of about 300 m from the nearest electrode. This is considered to be due to the potential of flow produced by the stress of the soil weighed down by the train.—M. C. R.

Between June and September 1950, minor volcanic activity on Sakurajima, as reported by the Kagoshima Meteorological Observatory, occurred in four periods: from the end of June to early in July; several days before and after July 25; early in August; and from the end of August to early in September. During these periods of volcanic activity both east and north components of earth potentials changed markedly at Kanoya, about 27 km southeast of the volcano. Volcanic microtremors occurred more frequently during periods of larger earth potentials, at least from the end of January to the middle of June.—M. C. R.

From 1934 to 1942, 266 sudden-commencement storms of earth-current potentials were recorded at Kakioka. The mean storm-time variation is similar to that in geomagnetism. The direction and duration of sudden change at the time of occurrence, as obtained from frequency curves, are E. 10°N. and 3.5 min respectively. The mean duration of storms is 30 hr.—M. C. R.

13134. Yanagihara, Kazuo. Earth-resistivity near the Kakioka Magnetic Observatory [In Japanese with English abstract]: Kakioka Magnetic Observatory Mem., v. 6, no. 1, pp. 36-41, 1951.

Earth resistivity has been measured since April 1948 at the Kakioka Magnetic Observatory, using the Wenner-Gish-Rooney method with several systems of electrode arrangement and base length. The field equipment, method, and apparatus and some preliminary experiments are described in this paper. It was found
that both the direct-current method and low-frequency ratio-meter method gave
the same results within 3 to 5 percent. No diurnal variation of the resistivity
was found. Monthly mean values are tabulated.—M. C. R.

13135. Kitamura, Masatoshi. On the result of observation of the earthing-
resistance [English abstract]: Kakioka Magnetic Observatory Mem.,
v. 6, no. 1, pp. 54-61, 1951.

From systematic observations made monthly from 1947 to 1950 with a Kohl-
rausch bridge, it has been found that the contact resistance between electrodes and
the soil in which they are placed decreases as the earth temperature increases, or
as the amount of precipitation increases more than about 200 mm. Thus it follows
that the seasonal variation can be considered to be chiefly the result of changes in
the concentration, and consequently conductivity, of the solution surrounding the
electrodes resulting from changes of earth temperature or ground water.—M. C. R.

13136. Fritsch, Volker. Blitzschläge im Gebirge [Lightning strokes in moun-

Observations in Saxony and Austria on the frequency of lightning strokes in
different regions show that the higher site is not always the most vulnerable;
geologic structure is more important. The fact that the more ancient formations
are struck most is probably explained by the electrical properties of these forma-
tions. The ratio of strokes observed in pre-Cambrian rock to those in Paleozoic
schist and in Quaternary deposits is 11.7.3.5.6. Maps of Austria and Saxony
showing the relative danger to lightning of the different zones are included.—S. T. V.

13137. Grabovskii, M. A. Variation of the electrical resistivity of magnetite
under magnetization [In Russian]: Akad. Nauk SSSR Izv., Ser. geofiz.,
no. 4, pp. 61–70, 1951.

Several samples of magnetite were tested for electrical resistivity at different
temperatures and it was found that with temperature increasing from room tem-
perature to about 200 C the resistivity drops from 30 ohms to about 0.5 ohms.
The process was not reversible and on cooling the resistivity came back to only
14 ohms and after several days to 16 ohms. The samples of magnetite were also
tested for the effect of magnetic field on their electrical resistivity. The descrip-
tion of the experimental arrangement for the measurement of galvanomagnetic
effect is given. It was established that with increasing intensity of the surrounding
magnetic field the resistivity decreases independently of the direction of the
magnetic field.

From the results of his experiments the author concludes that among the
causes of telluric currents the variation of the geomagnetic field must be taken
into account as well as possible variation of temperature.—S. T. V.

13138. Kato, Yoshio, and Noritomi, Kazuo. The thermal variation of the
electrical conductivity of rocks: Tōhoku Univ. Sci. Rept., 5th ser., Geo-

The variation of electrical conductivity with increasing temperature was
measured for a few specimens of granitic rocks. The log of the conductivity
varied linearly with the reciprocal of the absolute temperature but showed a sharp
change in slope at about 600 C. This change in slope may represent either the
inversion from low to high quartz or the increasing importance of the second term in Koch and Wagner’s theoretical formula for conductivity in ionic crystals.—

D. F. B.

SEISMOLOGY

Included in this article are reports on the seismological program, the questionnaire program, principal earthquakes of the United States during 1949, strong-motion, vibration and tiltmeter work, and instrument development.—M. C. R.

Dollar’s catalogue of Scottish earthquakes and Longuet-Higgins and Darbyshire’s work on microseisms are briefly summarized. Work at the Imperial College of Science and Technology, London, on elastic properties of rocks at frequencies between 40 and 120 cycles per second, the Leeds University work on ground amplitudes and frequencies resulting from blasting, and Stoneley’s discussion of the effect of a low-velocity layer on amplitudes of surface waves are mentioned also.—M. C. R.

The propagation of elastic waves through a layer of ice covering a lake was studied experimentally during the winter of 1943. It was found that elastic motions of the ice caused by a sharp impact were flexural waves. The observed dispersion curve corresponded to theory. Wave velocity was found to be half the measured phase velocity, as predicted by theory. In the frequency range of 3 to 60 cycles per second, measured velocities follow the theoretical law within limits of observational error; it may be assumed that the same holds true for frequencies as high as 1000 cycles per second.—M. C. R.

According to the theory of the propagation of elastic waves in plates as given by Lamb, there are both symmetrical and unsymmetrical oscillations with respect to the middle plane of the plate. When the wave length is small in comparison with the thickness of the plate the velocity of both approaches the velocity of the Rayleigh wave. When the wave length is longer, the velocity of the symmetrical oscillations approaches a limit which lies between 1.63 and 2.00 times the velocity of transverse waves. The unsymmetrical waves are flexural waves if their wave length is long in comparison with the thickness of the plate.

Three measurements of flexural waves in plates of ice covering a lake show that these waves fulfill the theoretical law of dispersion. Computed thicknesses of the ice, however, are smaller than measured values, the discrepancy being great when the temperature is near 0 C.—S. T. V.

When a wave with a non-plane front is incident on the boundary between two elastic media, there is generated in addition to the reflected and refracted waves a third wave which has a rectilinear front and is propagated through the lower-velocity medium. Dynamic relations controlling the propagation of this wave are studied, limiting the analysis to longitudinally polarized waves. Two cases are discussed, with the source of vibrations in the medium of lower velocity, and in the second medium. Differential equations are derived for the propagation of each of the three waves, following the method of Smirnov and Sobolev.

The results of the study are as follows: The intensity of the frontal wave as it reaches any point of the plane increases along the front line in the direction toward the point of contact with the front of the reflected wave; the intensity of the frontal wave decreases with distance of the point of observation from the epicenter in the relation $\xi^{2/3}$; vertical displacements in the reflected wave decrease in the same ratio, but horizontal displacements only in the ratio $\xi^{2/3}$; the amplitude of the reflected wave with the spreading of the wave front tends to zero and later becomes negative, so that there are points on the plane where the amplitude of the reflected wave becomes very small and only the frontal wave is registered.—S. T. V.

This is the continuation of the study on the propagation of the plane front wave in a two-dimensional space [see Geophys. Abstract 13143]. In the present paper the propagation of longitudinal waves produced by an expansible point source in a medium composed of two infinite semispaces separated by a plane is discussed. The velocities of propagation of seismic waves in these semispaces are different; the point source exciting waves is placed in the space of the lower velocity.

The solution is obtained by the method worked out by V. I. Smirnov and S. L. Sobolev using complex variables. First the displacement potentials are written down for the incoming, reflected, and refracted waves. The wave equations established in the first study are transformed to a new reference plane, the problem remaining two dimensional. The boundary conditions of the new equations remain the same, but the equations describing initial conditions at the point source are to be changed accordingly.

In the final solution equations are obtained for all three waves. The solutions are only approximate, but give the path of the waves very accurately.—S. T. V.

A matrix formalism developed by W. T. Thomson is used to obtain the phase-velocity dispersion equations for elastic surface waves of Rayleigh and Love type on multilayered solid media. The method is used to compute phase and group velocities of Rayleigh waves for two assumed three-layer and one two-layer model of the earth’s crust in the continents. The computed group velocity curves are compared with published values of the group velocities at various frequencies of Rayleigh waves over continental paths. The scatter of the observed values is larger than the difference between the three computed curves. It is believed that not all of this scatter is due to observational errors but probably represents a real horizontal heterogeneity of the continental crusts.—Author’s abstract.

The characteristic equation for the propagation of elastic waves in a floating ice sheet is derived. Since the solution cannot be reduced to symmetric and antisymmetric modes as in the case of a plate in a vacuum or liquid, the evaluation of phase velocities of intermediate wave lengths is exceedingly difficult. Solutions are obtained, however, at very low wave lengths, which reduce to Rayleigh and Stoneley waves, and at very large wave lengths, which are longitudinal and flexural waves. A solution for Love waves is also obtained.—D. F. B.

Based on a theory of porous solids previously developed by the author, the elasticity of a hexagonal close packing of equal spheres is treated. The packing is anisotropic and because of the weight of the spheres, also inhomogeneous. The velocities of propagation of elastic waves have been calculated for evacuated interspaces and for interspaces filled with a liquid or gas. In the case of evacuated or air-filled interspaces, the wave rays and travel times have been computed. The packing which has been treated may be of use as a model for a dry or wet loose material such as gravel or sand. Though the model is very simplified, the results obtained show some typical effects such as anisotropy, inhomogeneity, and a 90° angle of emergence.—Author’s abstract.

This is the summary of the paper, presented at the convention of the society in Davos, August 1950, discussing the analysis of changes in elastic properties of a porous medium caused by filling the pores with a fluid. Results of theoretical studies show that if in a dry sandstone the velocity of longitudinal seismic waves is 2.3 kmps, this velocity will be increased to 2.75 kmps if the pores are filled with water. Detailed results of the study will be presented later.—S. T. V.

Dilatational and rotational velocities in rock samples have been measured at pressures from 1 to 5,000 bars and temperatures of 25 C to 200 C (300 C for two samples), using pulse methods [see also Geophys. Abstracts 12231 and 12232]. Specimens studied were the Twin Sisters dunite, Quincy granite, Barriefield granite, Cheshire quartzite, Danby marble, Solenhofen limestone, Caplen Dome sandstone, an argillaceous limestone, and a calcareous shale. Measured rotational velocities check well with other measurements at lower frequencies by Birch. Poisson’s ratio has been calculated from the measured velocities. Values in the quartzite were 0.13 to 0.14; in the calcareous shale, 0.18; in dry sandstone, 0.20 to 0.25; in all others, greater than 0.3. The effect of interstitial water on velocity was observed on one sandstone and one limestone specimen. In the sandstone, presence of water apparently increased the velocity at low pressure and reduced the rate of increase with pressure; behavior in the limestone was effectively the opposite.—M. C. R.

SEISMOLOGY

The partitioning of energy of P waves incident from above against the boundary of the earth's inner core and of P and SV waves incident from below has been calculated, assuming an inner core with rigidity as in an earth model based on compressibility theory, and the calculations have been used to estimate the relative amplitudes of $PKJKP$ and $PKIKP$ at different epicentral distances. $PKJKP$ is most likely to be observed between 130° and 155° in which range the amplitude is about one-fifth that of $PKIKP$.—M. C. R.

The propagation of waves at the surface of an elastic, isotropic, infinite medium is studied using vectorial treatment, and the theory is then extended to a firmo-viscous medium (that is, one with internal friction).

It was found that the velocity of propagation of Rayleigh waves in the firmo-viscous is infinite for very high frequency waves, but as μ / μ' increases tends towards a value corresponding to the purely elastic medium. (Here μ is the Lamé constant and μ' the coefficient of internal friction.)

The firmo-viscosity of the medium produces a noticeable reduction of the vertical component of the wave's amplitude, especially for the small values of μ / μ' and high frequency waves. The ratio of the vertical to horizontal amplitudes in a purely elastic medium is 1.47, while in a firmo-viscous medium this ratio increases from 1.05 to 1.47 when $\lambda = \mu$.

As in a purely elastic medium in the firmo-viscous one, the particles in the path of Rayleigh waves have elliptic paths, but with deflected axes of the ellipse.

Rayleigh waves propagating through a medium with internal friction have a high degree of absorption, especially those of high frequency. Computed absorption coefficients show good agreement with observations.—S. T. V.

Detailed study of the records has shown a great number of onsets of different waves. Among these are second onsets of longitudinal and transverse waves following first arrivals by a definite time interval. Four layers have been determined from the observations: granite, in which the velocities of longitudinal, transverse, and Rayleigh waves are 5.88, 3.39, and 3.09 kmps; diorite, in which the velocities are 6.005, 3.47, and 3.20 kmps; gabbro, in which the velocities are 6.55, 3.78 and 3.59 kmps; and peridotite, in which the velocities are 8.34, 4.82, and 4.31 kmps. A cross section of the earth's crust between Haslach and Füssen, based on seismic, gravimetric, and magnetic measurements, is included.—M. C. R.

On the basis of data from a seismic survey, consisting of 12 reversed refraction profiles in the waters around Long Island and from a few wells in eastern Long Island, a contour map of the crystalline rock surface has been drawn. This sur-
face is approximated by a plane dipping south to southeast at about 55 ft per mile. Relief of 200 to 300 ft has been found on the basement surface. Velocity in the basement varies from 5.3 to 6.0 kmps with a mean of 5.6 kmps. Other mean velocities observed were 1.65 kmps in unconsolidated sediments and 2.0 kmps in semiconsolidated sediments, the latter found only south and southeast of the island.—M. C. R.

Hales takes exception to Willmore's statement [see Geophys. Abstract 12947 for reference] that in South Africa a tendency for waves to arrive early at distances beyond 120 km is associated with the exposure of high-velocity rock in the region where the onsets are observed. A well-defined early P phase between 220 and 300 km in western Transvaal studies is cited as evidence of crustal layers increasing in basicity with depth either as a continuous variation of composition or discontinuous change because: geologic maps do not show a distribution of formations consistent with the idea of a single-layer crust with thin cover of high-velocity material near the field stations; lack of correspondingly early S phases suggests a change in the ratio of longitudinal and transverse velocities; and observations of the distances at which phases totally reflected at the Mohorovičiät discontinuity appear agree satisfactorily with the two-layer hypothesis. Willmore's note points out the existence, at least in parts of the area, of 5,000 or more feet of the Vetensdorp series, the properties of which are very similar to those required for the high-velocity material, and states again that “it seems premature to assert horizontal stratification provides the only possible explanation of the results.”—M. C. R.

Byerly's method of determining direction of faulting from the distribution of initial compressions and rarefactions has been applied to four north Pacific earthquakes, one in the Aleutians, one in central Alaska, one in the Queen Charlotte Islands, and one in Vancouver Island. The Aleutian earthquake of April 1, 1946 could have resulted from motion along a fault striking N. 65° W. and dipping 65° to the north, or more probably a fault striking N. 22° 30' E. and dipping 85° to the west, the east side moving north with respect to the west side. The central Alaska earthquake of October 16, 1947 most probably occurred on a normal fault striking N. 30° W. and dipping 78° to the northeast. The Queen Charlotte Islands shock of August 22, 1949 may have occurred along a fault striking N. 29° W. and dipping 77° to the northeast, with the Pacific side moving north relative to the continent, or a fault striking N. 64° E., dipping 92° south, with the south side moving east. The former is more probable geologically. The British Columbia earthquake of June 23, 1946, occurred on a gravity fault striking north-northwest. There is no conclusive evidence, however, regarding the exact strike or dip.—M. C. R.

Rothé's hypothesis that the Atlantic is divided by the median ridge into two different types of structure is considered and rejected. The geophysical evidence
cited includes the velocities of surface waves recorded at Lisbon from shocks in the mid-Atlantic, similarity in seismicity and submarine topography on two sides of the ridge, and similarity in gravity anomalies, except for the negative anomalies in the Antilles. Geologic evidence, the nature of the rocks in Atlantic islands and obtained by dragging operations, is also considered and shown to be consistent with the idea that Atlantic structure is the same east and west of the ridge.—M. C. R.

This is the latest in the series of annual summaries of earthquake activity in the United States and regions under its jurisdiction. Included are noninstrumental reports of earthquakes in the United States, Alaska, Hawaii, Panama Canal Zone, and Puerto Rico, a table of the principal earthquakes of the world during 1948, and analyses of strong motion records. The most severe shocks (intensity 7 on the modified Mercalli scale) in the U. S. during 1948 were those of December 4, with epicenter near Desert Hot Springs, Calif.; December 29, with epicenter near Verdi, Nev.; and December 31, with epicenter about 10 miles east of Watsonville, Calif. Shocks of intensity 6 occurred in Wyoming, near the New Mexico-Texas-Oklahoma border, near Boulder City, Nev., and in several parts of California.—M. C. R.

The catalog contains a description of 120 earthquakes originating in Scotland, and 4 originating outside Scotland but felt within the country, between January 1, 1916, and April 30, 1949. Eight items of information are tabulated for each entry: British Earthquake Inquiry reference number, name of shaken area, date, time, intensity (Rossi-Forel), area disturbed, general character (duration, associated sounds, and other phenomena), and the most accessible reference. There are five broad seismic regions with marked activity and four regions of lesser seismic activity, all in central Scotland. Other factors discussed are the annual, monthly, and daily distributions, sequences of shocks, durations, intensities, disturbed areas and effects.—L. E. B.

In the Silesian coal basin, numerous, often catastrophic, rock bursts have occurred in the mines. The cause of these rock bursts is to be found in the tectonic character of the basin, which combined with processes of erosion and sedimentation, has produced instability of underground formations.

Several recently observed rock bursts are described and the methods of observation discussed. Seismologically, the rock bursts are tectonic earthquakes with very shallow foci. They can be studied only on the basis of seismological evidence obtained from an extended network of seismic stations covering the whole basin. For determination of the foci of these shocks, the methods of Kovesligethy and Inglada are recommended. A Galitzin seismograph with a one- or two-second period is suggested as an appropriate instrument. Details of the still incomplete network of seismic stations are also discussed.—S. T. V.

To investigate the possibility of predicting rock bursts the relation between the occurrence of rock bursts and changes of barometric pressure over the Silesian coal basin was studied using seismograph records of the geophysical station of Bytom for 1929–1935. The 2800 seismic shocks observed during this period of time were analyzed in relation to the hourly barometric readings and the annual averages of the atmospheric pressure. Because of the lack of microbarometric readings at Bytom, the mean barometric pressure over the corresponding latitude was used, and the general seismic activity of the crust at the point of observation resulting from remote earthquakes or from microseismic factors was not eliminated. The coefficient of correlation between occurrences of shocks and annual averages of pressure is 0.48 ±0.15; between shocks and hourly readings 0.68 ± 0.07. The study will be repeated using data from the recently installed microbarometer and more complete observations of seismic shocks from extended network of seismic stations in the Silesian coal basin.—S. T. V.

Eleven earthquakes which occurred between 1938 and 1944 were investigated, chiefly on the basis of questionnaire post cards circulated shortly after each shock, and the epicenters and isoseismal lines determined for each. The maximum intensity observed was 6 on the modified Mercalli scale. Several shocks could be related to known geologic structures but most were probably related to vertical movements affecting the entire subcontinent.—M. C. R.

This earthquake, apparently the greatest since seismological observations have been made, occurred at 14h 09m 30s G. m. t. August 15, 1950. The epicenter, as calculated by Rothé and Peterschmitt at Strasbourg, was near 28.6° N. lat., 96.5° E. long., which is in Assam near the borders of India and Tibet. The epicenter is somewhat to the northeast of the major seismic zone of Assam and at the junction of the north-northeast-south-southwest structural axes of Burma and east-west structural axes of the Himalayas. The magnitude of the shock was 8.6. Some 20,000 sq mi of Assam territory were seriously affected by the earthquake and subsequent floods, and damage may amount to 20 million pounds in Assam alone.—M. C. R.

This is an eye-witness account of the occurrence of one of the greatest earthquakes near the epicenter. Capt. Kingdon-Ward and his wife were camped on the left bank of the Luhit River at approximately 28°30' N. lat., 97°00' E. long. at the time of the August 15 earthquake.—M. C. R.

From September 2 to 10, 1943, minor earthquakes were felt in the neighborhood of Shāhkot village, Sheikhpura district, Punjab. However no shocks
were recorded on the Dehra Dún seismograph during this time and no shocks have been recorded during historic time from the Shāhkot area. According to geodetic data collected by the India Survey, the Shāhkot area lies in a region of positive geodetic anomalies and near the junction of two upwarps. The shocks may have been caused by differential movements between the upwarps, differential movement between the principal upwar and downwar to the north, or slight slipping of the alluvial strata.—L. E. B.

Some aspects of a seismic sea wave warning system off the Northeastern coast of Japan organized in September 1941 and the one for the Pacific ordered after the great Aleutian earthquake of April 1, 1946 are described.

A preliminary short note about the system now in action in Japan is also added.

Some details about Hawaiian tsunamis and studies on a tidal gauge specially constructed for the warning of tsunamis and a new phase observed in seismic records of submarine earthquakes are noted.—Author’s English résumé.

RADIOACTIVITY

There exist great discrepancies among the experimental determinations of the half life of K⁴⁰. Some published values would make the temperature of earth’s crust in the past too high, while the assumption of other values would make the history of the earth surprisingly short. An attempt has been made to improve experimental technique, taking into account all possible sources of errors or inaccuracies, and using an X-ray method similar to that of Bleuler and Gabriel, but with the filling gas of the Geiger-Muller counter itself as a selective detector. The source was placed directly on the inner walls of the counter which was filled alternately with two gases, one possessing low, the other high efficiency for the Kα X-rays of argon. Argon and krypton were used for this purpose, the first as low-efficiency gas, the second as the most suitable high-efficiency one. The upper limit of about 0.02 was found for the branching ratio between electron capture and β decay. With this value and the previously measured value of the specific β activity of potassium, the total half life of K⁴⁰ is found to be $(1.33 \pm 0.08) \times 10^9$ years, in good agreement with the value of Houtermans and others.—S. T. V.

The half life of K⁴⁰ now appears fixed at 1.3×10^9 years, with an uncertainty of about 10 percent. About 12 percent of the disintegration forms A⁴⁰ by K capture, while 88 percent results in Ca⁴⁰ by β emission. The mean energy released per disintegration is 0.71 Mev, yielding 27×10^{-4} calories per gram year of ordinary potassium at the present time. With these constants, the production of the A⁴⁰ of the atmosphere, heat production by potassium in the earth, and measurement of age are discussed. Ample quantities of A⁴⁰ have been produced, but release to the atmosphere involves uncertainties. A large part of the heat conducted to the surface of the earth may be generated by potassium decay. The exist-
ence of reasonably reliable decay constants should encourage additional efforts to obtain ages of potassium minerals.—Author's abstract.

Because of the difficulty in reconciling the amount of argon in the atmosphere, recent determinations of the decay constants of K-40, and the probable upper limit of the amount of igneous rocks denuded during geologic time, it must be concluded either that atmospheric argon is not derived from K-40 in the crust, or that if the low branching ratio of K-40 is correct, argon can escape from a considerable depth in the crust. A theory which postulates slow convection currents in the substratum would give a plausible explanation of the phenomenon as it might mean a small percentage of the argon generated in quite a considerable fraction of the earth's volume could escape by volcanoes and similar means during geologic time.—M. C. R.

The carbon content and beta activity due to uranium and thorium have been determined for 315 samples of eight sedimentary formations, two sandstones, two limestones, and four shales. Carbon contents of nine cores of a Miocene shale from the Los Angeles Basin range from 2.56 to 12.8 percent, and the radioactivities from 2.98 to 13.5 beta counts per minute, the correlation suggesting a concentration of radioactivity in the sediments with higher organic contents. Similar relations for other formations, though based on fewer samples, suggests a genetic relationship between uranium, thorium, and carbon content.—M. C. R.

According to the author, the opinion that the rate of radioactive disintegration of different substances is constant and independent of exterior conditions and can thus form the basis of the determinations of geologic age is wrong. It is "idealistic," and contradicts the teaching of V. I. Lenin as expressed in his book "Materialism and Empiriocriticism." The author indicates discrepancies in the findings of different geophysicists in their determinations of geologic age by the method.

According to Vinogradov, classic experiments of Curie, Rutherford, Vernadskii and others performed with most precise methods, for instance optical studies of pleochroism, and experiments performed under widely varying conditions have positively proved that the radioactive method is the most accurate in geologic chronology. Therefore the rate of nuclear disintegration of heavy elements is to be considered as a fundamental constant of nature. Possible variations of its value are too small to be measured. Only under artificial conditions created in laboratories, but never found in geologic history, can this radioactive disintegration be accelerated.

Frank agrees with Boganik that it would be erroneous to consider the rate of radioactive disintegration as a kind of absolute constant which cannot be changed by any exterior conditions, but similar statements were never made by reputable physicists. This rate can be changed and the process of nuclear disintegration
influenced, but only under artificially created conditions. It would be highly improbable that such conditions existed in geologic history. Contradictions in the results obtained by different scientists must be studied and will probably be explained without rejecting the radioactive method.

Starik points out that it has been proven that thermodynamic conditions during the history of the earth cannot have produced any change in the rate of radioactive disintegration of such elements as uranium, actinium, or thorium. The rate in lighter elements, such as beryllium or tritium, can have been changed by less than 1 percent. Therefore, the radioactive method remains the most accurate and reliable method of geologic chronology.—S. T. V.

Flint discusses the origins of radiocarbon \((^{14}C)\), the methods of assay, possible errors in date determination, and general results of tests made. Radiocarbon is of particular importance in Pleistocene research and the importance of radiocarbon dating lies in the fact that such dating is absolute and world-wide.—L. E. B.

HEAT

The temperature gradient of the crust is generally assumed to be 32°C per km. This value is found to be much too high and its appearance in geophysical literature is attributed to the fact that most measurements of the gradient have been made in carboniferous or sedimentary formations with lower heat conductivity than the crystalline rocks. The average value of the temperature gradient of the crust should be taken 10 to 12°C per km and that value used in computations of the heat balance of the earth.—S. T. V.

The distribution of temperature below the surface of an accumulating snowfield is investigated mathematically. The controlling differential equation for temperature in a semi-infinite solid whose surface is rising with a constant velocity, \(v\), is solved with the aid of the Laplace transform. The diffusivity is assumed constant and the surface temperature is assumed to vary sinusoidally with time. The calculations show that the annual temperature wave, if accompanied by rapid accumulation of snow, produces lower temperatures in the firn than would obtain if there were no accumulation. The problem of an ablating snowfield can be treated in a similar way by changing the algebraic sign of \(v\), provided ablation occurs without melting. It is found that the problem involving a diffusivity which increases with depth may also be treated approximately as equivalent to a problem of negative velocity of accumulation.—R. G. H.

About 1,000 measurements of true rock temperatures, correct to 0.1°F, have been made, using platinum resistance thermometers and thermistor resistance thermometers, at various depths in mine workings in eight regions of Ontario
and Quebec [see Geophys. Abstracts 9863 and 12587]. Heat flow for each region has been computed from the average vertical temperature gradients and thermal conductivity measurements of approximately 300 rock specimens collected near the points of temperature measurement. The values obtained lie between 0.69×10^{-6} and 1.05×10^{-6} cal. Best values and probable errors as determined by statistical analysis and rejection criteria indicate the difference in values is real, and that regions with higher temperature gradients also have greater heat flow. If a difference in the rate of radioactive heat production between granitic and basaltic rocks of $3 \times 4 \times 10^{-8}$ cal per cm3 per sec is assumed, a difference of 7 to 10 km in the thickness of the granitic layer would produce a difference in heat flow at the surface of 0.3×10^{-6} cal per cm2 per sec. As recent gravity observations in western Ontario have been interpreted as indicating warpings at the base of the granitic and intermediate layers, variations in heat flow may reasonably be attributed to warpings at the base of the granitic layer.—M. C. R.

Temperatures of 30 and 31 C have been measured in the springs of Shionoha and Goshiki-yu. The origin of the springs is apparently closely related to a quartz-porphyry intrusion.—M. C. R.

VOLCANOLOGY

Volcanic activity during the years 1941-1947 is reviewed with separate data for individual countries. For every eruption chronological data as well as available information on explosive and effusive activity, composition of lava, and seismic phenomena accompanying eruptions, are given.—S. T. V.

Work at the Hawaiian Volcano Observatory for the years 1948 and 1949 is summarized. Data from five seismographs showed there was an average of 5 earthquakes per week, with a decided increase in the daily number preceding the January 1949 eruption of Mauna Loa. Two tiltmeters recorded variations in tilt, both in the east-west and north-south directions. The accumulated north-south net tilt for 2 years was 5.6 seconds to the south, while there was no significant accumulation of east-west tilt for that period. Periodic measurements were made of the width of certain cracks in and near the Kilauea caldera to determine closing or opening due to pressure or tilt. Radiation observations were made with a Geiger-Müller counter on hot lava flows in February 1949. The number of counts per minute ranged from 38 to 45, approximately the same count obtained on local prehistoric lavas. Temperature measurements of escaping steam and of rainfall were continued.

A special study of Mauna Loa was made during its 1949 eruption and a brief account of its summit eruption is given, listing in chronological order the various phases and lava flows.—L. E. B.
Santorin, which had been dormant for more than eleven years, became active again in August 1939. In this report a preparatory stage from August 20 to September 22, 1939, is distinguished from the following period of intensive explosive and extrusive activity to November 25. During the first period, fissuring of the domes covering the volcano was observed, accompanied by the appearance of fumaroles. Frequent underground detonations were heard, followed by the slight sagging of lava masses covering the older domes. The temperature of the water in the springs on the slopes of the volcano increased substantially; two measurements of the temperature of the sea water in the bay showed a rise of 23–24°C to 50 and 52°C. The most important phenomenon during this preparatory period was the formation of the new dome, with an insignificant stream of lava from it.

From September 23 to November 25, eruptive activity became very intense, resulting again in the formation of a new dome. The authors were in the position to observe the volcanic activity during this whole period and their observations of various phases are presented in the form of a detailed log book, containing also 44 pictures and two topographic maps of the area.

The results of chemical analysis of the lava flowing from the new domes are also given. Additional observations on the later period of eruption will be presented in a subsequent report.—S. T. V.

This is a compilation of several reports on the eruption that began with a series of severe earthquakes on December 28, 1943, and ended in September 1945, following the formation of a parasitic double dome on the northeastern side. The reports include studies of the geologic history of the volcano, a general description of the eruption, seismometric observations, topographic deformation accompanying the eruption, magnetic investigations, petrology, and "forerunning phenomena." A bibliography of 90 items is appended.—M. C. R.

The volcano Mihara-yama, on Ō-shima began erupting July 16, 1950, after a ten-year period of quiet. The eruption was similar to that of the preceding large-scale eruption in 1912, a quiet eruption commonly observed in basaltic volcanoes. The eruption started with the formation of a small opening in the upper portion of the old crater wall, from which the lava flowed down like a waterfall accompanied by small explosions. Two days later this activity stopped and lava flowed out as a lava spring from the bottom of the old crater. On July 22, the new crater again became active and after August 2, the eruption began to have some regularity, with explosions in the new crater and steady growth of a cinder cone while hardened lava blocks were pushed out from the foot of the cone through the heavy pile of cinder. The explosion vents of the new crater were horizontally only about 10 m distant and vertically about 110 m above the lava spring vents. Although the upper and the lower vents are apparently connected in some way, explosive activity occurs only in the upper vents.—M. C. R.

Krakatoa is supposed to have become inactive in 1681 and to have remained in that state until 1883, when a severe eruption took place. Attention is called to the communication of F. Epp in his book "Schilderungen aus Ostindiens Archipel" covering a visit to the island in 1839, in which two fumaroles were noticed on the slopes of the volcano, which evidently was active at this date.—S. T. V.

TECTONOPHYSICS

This massive volume covers the structural geology of the entire continent and its associated islands. After a general summary of the continent’s tectonic history, it proceeds to detailed descriptions of individual provinces which feature a vast number of maps and sections.—D. F. B.

This is an abstract of a lecture in the series of popular scientific lectures at Convocation Hall, University of Toronto, during the 1950–51 season. Island arcs, origins of mountains, processes of erosion and release of energy from within the earth are briefly outlined.—L. E. B.

Compressional mountains of the Appalachian type reveal a pattern and a cycle of events so consistent as to suggest strongly a common genesis.

The cycle starts with the upwarping of a relatively large area which, if above sea level, is accompanied by a downwarp around its margins—a geosyncline—which serves as a catchment basin for sediments. After a considerable time, crustal movement off the upwarp causes thrusting and crumpling at its margins, overriding and folding any sedimentary rocks along the side of the geosyncline nearest the upwarp. After halts enduring for perhaps a geologic period, thrusting is repeated one or more times from the same direction. Compelling evidence indicates the presence of magma beneath the upwarped area.

Such a succession of events occurring in a definite order cannot be fortuitous; it demands a common cause for mountain systems of the compressional type. A mechanism which seems best to explain the events and sequences of the cycle is as follows: Atomic heating expands the crust and subcrust and melts a portion of the crust within a limited area, causing a domed regional uplift on a foundation of molten material having no permanent strength. Erosion of the uplifted area causes isostatic transfer, initiating an adjacent downwarp whose sinking is accentuated as it is filled with sediment. The crust creeps slowly down the slopes of the dome, and eventually thrust-faults toward the downwarp and folds its sedimentary rocks. Repeated movements occur, but finally crustal sliding off the dome causes tension and block-faulting in its central parts and copious emission
of lavas and escape of heat. After this final orogenic spasm, the lateral creep of the crust ceases and the upwarped area subsides as the magma beneath it cools and congeals.—Authors’ abstract

This is a review of different theories on the origin of tectonic movements in the crust of the earth. The article contains many examples and illustrations from different parts of the world, but the greatest attention is concentrated on the tectonics of the Alps, especially their western portion.—S. T. V.

The investigation of the development in spherical harmonics of the Earth’s topography by Prey shows that the first six terms are large; they practically dominate the great features, the distribution of the continents and the oceans, which appears to be founded on a mathematical base. The same is true for the variability in thickness of the sialic layer.

The large first order term is probably caused by the moon’s birth from the Earth while the wave of great terms from the 2nd to the 6th order can be perhaps explained by a system of currents in the mantle; this might possibly have been connected with the commotion in the Earth when it resumed its equilibrium figure after the release of the moon or it may have occurred in a slightly later phase as a consequence of temperature disturbances; we thus arrive at a hypothesis about the origin of continents and oceans closely approaching that of Osmond Fisher, Jeffreys and Escher.

The higher order terms show two further waves of prominent values, the 8th to 11th order and the 12th to 16th order terms which each point to some physical phenomenon behind it. Possibly they were likewise caused by currents in the mantle but of a smaller size than the first mentioned system.—Author’s Summary.

It is known that the earth loses from its surface into interplanetary space a certain amount of heat. On the other hand, some heat is generated inside the earth by radioactive disintegration, seismic activity, pressure-induced density changes, and similar phenomena. Using hypothetical and to some extent doubtful data on mechanical and thermal processes in the crust and in the core, the author concludes that the hypothesis of contraction of the earth is untenable, and that the amount of heat generated inside of the earth exceeds heat losses from its surface.—S. T. V.

INTERNAL CONSTITUTION

This is the second and revised edition of this work, originally published as Volume VII of the Physics of the Earth by the National Research Council. Obsolete data have been revised and new material has been added without increasing the size. Contributors of the volume, in addition to the editor, are

Fundamental phenomena established by the findings of modern geotectonics are the existence of slow vertical movements of oscillatory nature taking place in the crust of the earth and the importance of related subcrustal magmatic processes. These vertical movements of the crust have very small velocities, ranging from fractions of millimeters to few centimeters per year, although the total amplitude of such displacements has amounted to 15-20 km in certain regions.

The important feature of these oscillations is their variability. They are now and were still more in past geologic periods exceedingly complicated, varying in direction and intensity. They have resulted in the elevation of whole continents, as well as thousands of local changes of level resulting in the formation of geosynclines, faults, grabens. At one time in geologic history the entire surface of the earth was covered with ripples caused by subcrustal movements. This was the geosynclinal period of the evolution of the earth, followed by the transitory period with simultaneous existence of synclines and platforms, produced by stretching out of synclines into plane surfaces. Eight centers of the formation of such platforms, equally distributed over the northern and southern hemispheres, can be pointed out. The reverse process of transformation of platforms into geosynclines has occurred in certain regions, but it has been of a localized and less pronounced character.

Tectonic processes in the continents were the same as over oceans. Alpine geosynclines and platforms can be traced to the ocean depths, the only difference being that the tectonic outline has been preserved on the ocean bottom while erosion and sedimentation have produced great changes on the continents. As an example is cited the middle Atlantic ridge, which is an alpine geosyncline with still-volcanically-active Iceland on one end and two platforms on either side, the platforms being a continuation of the platforms of the European, American, and African continents. Similar conditions are found in the middle ridge of the Indian Ocean.

Some non-Russian authors are included in the bibliography, but in the paper itself, the work of scientists of the non-Russian world is not mentioned.—S. T. V.

G. F. S. Hills has suggested an explanation of the distribution of continents based on the experimental discovery of H. Pénard of cellular convection in a thin horizontal layer of liquid as the temperature decreases upward. Instability arises when the temperature gradient exceeds the adiabatic temperature by some value. This is applied for the first time to the case of a spherical earth. The appropriate differential equations are solved subject to the boundary conditions that the surface temperature of the assumed sphere is constant and that the surface is free. To discuss convection currents in the core a well-conducting rigid boundary is assumed. It is found that the easiest modes to excite are those in which the disturbances of temperature and radial velocity contain spher-
tical harmonics of degree one. The surface currents would tend to sweep the floating matter to one side. This is a possible explanation of the distribution of land and water hemispheres. This development does not consider the magnitude of surface relief that could be produced.—I. Z.

EXPLORATION GEOPHYSICS

GENERAL

Chapter 5 contains a list and brief description of geophysical and hydrologic investigations in different sections of Spain. These reports are accompanied by profiles and geologic maps of the investigated areas.—L. E. B.

Section 3 contains a list and brief description of the continuation of projects previously reported (1948) and of similar new projects begun during 1949.—L. E. B.

Included in the report is a summary of the work of the Underground Water and Geophysics Branch. A relationship between the electrical resistivity of weathered rocks and their water-yielding properties, in a specified area has been established and the factors governing the presence or absence of underground water in a large part of the country have been determined.

Other geophysical methods used were the electromagnetic (to determine narrow zones of weathering), seismic (to determine configuration of artesian basins), magnetic (to trace Karroo dolerites), and regional gravimetric surveys. Three long-period Benioff seismographs have been installed in Pretoria, Pietermaritzburg, and Grahamstown, and a fourth will be installed at Kimberley.—L. E. B.

The report includes a brief summary of work in the geophysical exploration since 1937. Electrical, gravity, magnetic, and radioactive surveys have been made. Electromagnetic work is being considered. The Seismological Observatory at Entebbe has been transferred to the Meteorological Department.—L. E. B.

Chapter 8 of this book deals briefly with geophysical methods, equipment, and interpretation of data for oil prospecting. Discussions of well logging, magnetic, seismic, gravity, aeromagnetic, and electromagnetic methods, as well as other techniques such as geochemistry and soil analysis, are discussed.—L. E. B.

Structures favorable to the accumulation of petroleum and the principles of magnetic, gravimetric, and seismic methods of determining them are reviewed.—M. C. R.

The importance of geology in the discovery of new fields does not need demonstration. Surface observations should be supplemented by indirect methods including geophysics, and electrical and radioactivity logging.—M. C. R.

A thorough, detailed study of pre-Cambrian tectonics is recommended as a guide for the discovery of oil accumulations in the overlying Paleozoic and Mesozoic formations of western Canada. Interpretation of existing geophysical data and aerial photographs provides abundant material for determining the tectonics of the pre-Cambrian, which is obviously related to that exposed in the adjacent Canadian shield. These rocks are seldom covered by more than 10,000 ft of sediments, and later faulting may be guided by lines of weakness within the pre-Cambrian. The tectonics control the physiography of the pre-Cambrian erosion surface, the irregularities of which are reflected both in the attitude of the sediments, such as closures produced by differential compaction over a ridge, and in the sedimentation, for example, in the pinching out of sands on steep slopes, and the growth of reefs on platforms. Two possible alignments of oil fields may be distinguished, one along the strike, and the other paralleling the main direction of late faulting in the pre-Cambrian shield.—E. K.

The maximum depth depends on the depth to which openings may exist in sedimentary rock, the depth to which favorable sedimentary rocks may occur, and the depth to which oil and gas can be expected to exist if favorable rocks are present. From a study of experimental evidence on such factors as compressibility, crushing strength, temperature and pressure, and solubility of the chief reservoir rocks, sandstone and limestone, it is concluded that theoretically oil or gas may occur in sandstones to a depth of 65,620 ft and in limestones to 51,300 ft.—M. C. R.

New dual-season equipment has revolutionized geophysical operations in Canada. These improvements include the “Weasel” vehicles for muskeg operations, Bombardier trucks with rubber tracks, trailer camps for improved living conditions, portable seismic instruments or “suitcase” method, and helicopter and air transport.—L. E. B.

Artesian hot water and steam from boreholes are used extensively in Iceland for heating buildings. About 600 liters of water per second with an average temperature of 87° C is thus used, and the production of steam is about 70 metric tons per hour. Most of the boreholes are near hot springs.

Geophysical [and related] methods are now used to aid in developing additional sources of water, especially at greater depths. These methods are magnetic, thermal and chemical, electrical resistivity, and hydrological.

Magnetic surveys in connection with structural studies have been useful in locating alluvium-covered basalt dikes in basalt flows. The dikes, which are aquifers by virtue of their higher permeability, give rise to large magnetic anomalies.

Temperature measurements in springs and wells give information on the volume and source of hot water, inasmuch as the temperature is proportional to the volume of water available. The silica content, on the other hand, is in inverse proportion to the volume of water.

Electrical resistivity surveys have been used since 1947 to outline areas of low bedrock resistivity, which are in general indicative of underlying hot water because the mineral content and hence the conductivity of the water increases with temperature.

Systematic measurements of artesian pressure in boreholes permit estimating the hydrologic possibilities in thermal areas and thereby determining the point at which additional drilling becomes uneconomic.

Steam occurrences are found in areas where volcanic basement is overlain by Quaternary tuff and sediments as much as 400 m thick. Geologic studies and prospect drilling have been more useful than geophysical measurements in developing these occurrences, because of their large areal extent and recognizable structural control.—H. R. J.

GRAVITY METHODS

This paper describes gravity meter and magnetometer surveys made during 1945 to 1949 of some 6,000 square miles of southern England. The problem was to select areas where the Paleozoic floor underlying the Mesozoic rocks are most likely to consist of a considerable thickness of upper Carboniferous rocks, preferably overlying lower Carboniferous rocks; and within those areas to locate and map anticlinal folds in the Carboniferous rocks. If a considerable thickness of Carboniferous rocks exists, including anticlinal structures containing porous rocks protected by adequate cover rocks, there would be a reasonable prospect for oil discovery.

A total of 13,300 gravity stations and 2,900 magnetic stations were observed. The accuracy of gravity stations is expressed as a standard error of about ± 0.05 mgal; and the relative accuracy of the anomalies varies from ± 0.1 mgal in the flatter parts of the area to ± 0.3 mgal in the more hilly parts. The gravity data are shown on a Bouguer anomaly map with a contour interval of 1 mgal. The magnetic measurements are accurate to about ± 5 gammas and are shown on a vertical intensity map with a contour interval of 20 gammas, corrected for terrestrial gradients.
To arrive at an expression of thickness of the Coal Measures from gravity data it was necessary to take into account the effects of both the relatively light overlying Mesozoic rocks and of the relatively dense underlying pre-Coal Measures rocks. The Mesozoic effect was determined empirically from density and gravity observations over known thicknesses of Mesozoic rocks directly overlying older Paleozoic rocks. The pre-Coal Measures rocks are considered as producing random variations about zero, of magnitude defined by a standard deviation of 3.8 mgals. On this basis a contour map of predicted Coal Measures thickness was prepared. Deficiencies of gravity on this map represent comparatively thick Coal Measures sections. The predicted thickness is subject to a standard error of 2,000 ft, mainly owing to unpredictable variations in the pre-Coal Measures rocks.

Also presented is a map showing trends of residual gravity highs, obtained by subtracting a regional gradient from the Bouguer anomaly map. All significant known anticlines are represented by these trends. Anomalies not correlated with surface structure are considered to be caused by structures in the underlying Paleozoic rocks.

The magnetic and gravity maps are in general agreement. Depth estimates based on magnetic data indicate no great interval between the base of the Mesozoic and the top of the igneous rocks in areas of strong, localized magnetic highs, which are also areas of gravity highs. The magnetic data further suggest that the basement rocks were involved in the Paleozoic structures.

It is concluded that appreciable thickness of Upper Carboniferous rocks may be present under considerable areas of the Mesozoic regions in south-central England, and that the major residual gravity highs represent actual geologic structures.

Preliminary seismic results support the gravity interpretation given in this paper.—H. R. J.

MAGNETIC METHODS

Magnetic base stations in groups of four to six were established in six areas in the large iron-mining districts of Minnesota, Michigan, and Wisconsin during the summer of 1946. Differences in magnetic intensity between stations and between each area and a magnetic datum at Cheltenham were measured with a modified Askania magnetometer. Magnetic data, locations of stations, and Brunton compass-and-tape survey data are given in figures and tables.—M. C. R.

As a result of a promising discovery of gold in Keith township, district of Sudbury, in June 1946, a detailed geological survey of part of the area was undertaken. A magnetometer survey was carried out over part of the properties of Joburke and Garnet gold mines. The magnetic work was undertaken in an effort to trace certain key horizons and thereby gather important structural information. It was not successful in tracing rhyolites or in tracing fault structures because of lack of magnetic contrast. Some success was obtained in tracing the iron formation. The most interesting anomaly was found in the central part of the Garnet property, trending at a small angle across the strike and schistosity. Diamond drilling showed the anomaly to be due to a biotite lamprophyre less than 20 ft wide. A magnetic contour map of the Joburke area is included.—M. C. R.

A Thalen Tibery Magnetometer was used in making 34 east-west vertical-magnetic-force traverses across a magnetite-rich, garnet-biotite paragneiss striking approximately north-south on the island of Tiree, Scotland. Where exposed the magnetite occurs as a band 13 ft wide, with the middle portion nearly pure magnetite. Observations at 100-ft stations along the profiles showed anomalies as large as 5000 gammas but a single band of magnetite-rich gneiss apparently does not continue across the island and there is no concentrated band of magnetite which would make ore.

Seven other traverses were run elsewhere on the island to investigate the magnetite content of other bands of paragneiss. No significant anomalies were found. The data are presented on maps and profiles together with a discussion of each profile.—W. J. D.

13206. Canada Geological Survey. Ground magnetic survey map of the Province of Quebec, Abitibi County. Scale 1 inch = 1,000 feet, contour interval=100, 500 or 1,000 gammas: Dept. of Mines and Resources, Mines, Forests and Sci. Services Branch, 1948.

Geophysics Paper 2 is a magnetic map of Bourlamaque quadrangle, Abitibi County, Province of Quebec. The magnetic information on these four sections of the blue line map was supplied through the courtesy of the individual property owners and compiled by George Shaw and D. MacCallum. These areas have been geologically mapped on the same scale (1 in. = 1,000 ft). An attempt has been made to reduce all surveys to a common magnetic base, but individual surveys have not otherwise been changed.—L. E. B.

The study of magnetic anomalies that originate from large-scale differences within the basement complex can reveal the large-scale structural pattern of the magnetic rock mantle, the maximum depth to its upper surface, and a rough figure for the depth at which rocks cease to be magnetic. The magnetic anomalies can be assumed to be produced, in the northern hemisphere, by south-seeking magnetic poles distributed over the top surface of a mass of magnetic material and by north-seeking poles over the bottom. Since the intensity of the anomaly at the point of measurement is proportional to the difference of the solid angles subtended by the top and bottom surfaces of the mass, the anomaly will be greatest when the mass is deepest and will have steepest sides when the top of the mass is nearest the level of measurement. If the sides of the mass are not vertical, the sharpness of the anomaly will be decreased. Thus the sharpness of magnetic anomalies is a measure of the maximum possible depth to the upper surface of the polarization contrasts.

The method of interpretation of magnetic surveys consists of comparing observed anomalies with the computed magnetic effects of idealized bodies. The models in this report are bottomless rectangular prisms with vertical sides having uniform polarization and a polarization vector in the direction of the present earth's field. Since most magnetic anomalies arise from the lithology and not from the topography of the basement rock, the interpretation of magnetic anomalies in terms of topographic relief of a homogeneous basement has not been considered.
The total anomalous magnetic intensity due to a prism is the surface integral of the product of two functions of position, the polarization $I(\alpha, \beta)$, and an irrational algebraic function $U(\alpha, \beta, \delta)$ and can be written

$$\Delta T = \int \int I(\alpha, \beta) U(\alpha, \beta, \delta)\, d\alpha d\beta$$

where α and β are respectively the north and east coordinates on a plane containing the upper surface of the prism, and δ the complement of the dip angle which is assumed constant over the area of any one map. This integral can be evaluated approximately by dividing the α, β plane into small squares, estimating the average values of the functions I and U for each square and summing up the individual products. If the polarization is uniform, as is assumed in this report, the I function is a constant and the anomaly can be determined from a summation of the U function alone. The U function has been derived in terms of α, β, δ.

The values of the function at coordinate intersections and the average values at the centers of the coordinate squares have been computed and tabulated for specific values of the inclination. Contour maps of total magnetic intensity produced by any rectangular prisms can be quickly prepared by using these tables. This report includes maps of the total anomalous magnetic intensity of 6 to 9 rectangular prismatic models at seven inclinations and of fifteen special models. The cross-sectional dimensions of the prisms are in units of the depth of burial of the upper surface. These charts also show the second vertical derivative or curvature of the total anomalous magnetic intensity. There has also been derived the expression for the total anomalous magnetic intensity produced by a thin plate, but none of the values have been computed.

The zero contour of the second derivative map tends to outline the top surface of the magnetic anomaly so the second derivative map is most useful for choosing the appropriate model. Since the steepest gradients are caused by the shallowest and steepest contacts these are measured on both maps and are used to determine the depth to the source of the anomaly. Various standard profiles have been chosen on the models and their "depth indices" determined. These depth-indices vary with the size and shape of the model and the inclination of the magnetic field, but certain ones that have a wide range of reasonably constant value can be used to make a preliminary check on the proper choice of the model. The magnetic susceptibility contrast is the amplitude of the observed anomaly divided by the product of the intensity of the earth's main field and the amplitude of the anomaly of the model chosen.

The usefulness and accuracy of the charts and of this method of interpretation are demonstrated by six examples: Worcester County, Md.; Appalachian Plateau, central Pennsylvania; Mangum, Okla.; Bagdad, Ariz.; and northeastern Umnak and northern Adak Islands, Alaska. The general geology of each area is presented and used to interpret some of the magnetic anomalies in terms of geologic units. A second derivative map has been prepared from each total intensity map and features of the two maps are compared with the computed anomalies of models. A suitable model is chosen and the depths are computed. The computed depths are compared with actual depths where they are known and where these data are not available, the depths computed from the two different levels or from the intensity and second derivative maps are compared. The mean error of the depths computed from the intensity map are 6 percent for Bagdad, 12 percent for Umnak, and 3 percent for Adak; those computed from the second derivative maps are 1 percent for Bagdad, 20 percent for Umnak, and 10 percent for Adak.—J. R. B.

Dip needle and geologic investigations have been made in part of the area covered by an aeromagnetic survey described in a similar Ontario Department of Mines Report on the Bancroft and Coe Hill sheets (Geophys. Abstract 12818) to which this report is an addendum. The magnetic anomalies are attributed to magnetite, and one near Marmora has been found, by drilling, to be caused by a magnetite ore body covered by 100 to 700 ft of Ordovician limestone. A tabular summary is given of 43 magnetic anomalies examined with descriptions of terrain, geology, aeromagnetic anomaly, dip needle results, and cause of the anomaly.

It was found that the aeromagnetic survey was valuable as a means of discovering magnetite ore bodies and of mapping areas of magnetite-rich rocks. The flat-lying Paleozoic rocks may be magnetically ignored and in this district pyrrhotite is a minor factor in producing anomalies. Dip needle surveys of an aeromagnetic anomaly generally show that the ground feature has different shape, direction of elongation, and other characteristics than measured at altitude. However, even the most intensive ground surveys require mining work to dissipate speculation.—J. R. B.

The development of airborne magnetic surveying through the efforts of American and Canadian geophysicists is reviewed. Instrumental equipment and procedures are described. Possible future developments of the method, as for instance, in the search for oil and for nonmagnetic minerals and especially when combined with aerial photography, are discussed.—S. T. V.

A BMZ (magnetic zero balance) magnetometer mounted in gimbals in an airplane having a wooden air frame was used to make vertical intensity measurements at 500 m and 4000 m above the Sound, between Denmark and Sweden. Five east-west traverses and one north-south traverse were made.

Corrections for lack of verticality as determined by reading a spirit level and for the permanent magnetization of the aircraft engines were made. Periodic clamping of the balancing magnet minimized errors due to vibration. Corrections for time variation were made by use of the Rude SKOV observatory records and the measurements adjusted to Rude SKOV absolute determination at January 1, 1949. An accuracy of from 50 to 100 gammas for various traverses is estimated. The data are presented on maps and profiles and a comparison of airborne and ground magnetic measurements shows agreement in all essentials.—W. J. D.

Geophysics Paper 66 is an aeromagnetic map of California Lake quadrangle, Northumberland, Gloucester and Resigouche Counties, New Brunswick. The
total magnetic intensity at about 500 ft above ground level is shown by contour lines on this blue line map.—L. E. B.

Geophysics Paper 52 is an aeromagnetic map of Hornby Channel quadrangle, in the District of Mackenzie, Northwest Territories, Canada. The total magnetic intensity at about 1000 ft above ground level is shown by contour lines on this blue line map.—L. E. B.

Geophysics Paper 19, Kinojevis, Temiscamingue and Abitibi Counties, Province of Quebec, shows the total magnetic intensity at about 1,000 ft above ground level by means of contour lines on a blue line map.—L. E. B.

SEISMIC METHODS

This is a description, accompanying a schematic diagram, of the reflection method of seismic prospecting.—L. E. B.

This is a condensation of the article in the Colorado School of Mines Quarterly, abstracted as Geophys. Abstract 12019.—L. E. B.

In nontechnical language a brief description is given of the equipment, usually 5 trucks, and the duties of the 15 man crew, working in 2 sections, that compose the seismograph crew. Principles of the reflection method are briefly and simply explained.—L. E. B.

This is a reprint of the article (published in Oil in Canada, v. 3, no. 26, pp. 16–27, 1951) and abstracted in Geophys. Abstract 12823. A diagrammatic cross section through the sediments of Alberta has been added.—L. E. B.

Different possibilities of studying seismic phenomena by models are discussed, and related investigations made since 1944 in the Geophysical Institute of the Akademija Nauk SSSR are described. Use of lattice models of discrete properties as well as hydraulic models utilizing ripples on the surface of fluid (water, mercury
and others), was found unsatisfactory. More promising is optical observation with cinematographic recording of waves excited in gaseous, liquid, or transparent solid media. The so-called oscillographic method is considered the most powerful. In this the behavior of different component parts of the studied medium is observed and recorded by devices similar to familiar geophones, connected to special oscillographs. The waves in the model are produced piezoelectrically and can be of many kinds and of different spectra. The selection of the source exciting the waves must be made in accordance with the evidence obtained in seismological observations and with the assumed form of the initial impulse in the focus of the earthquake.

A detailed description is given of experimental installations used in the studies with the analysis of elements employed for the production and observation of the waves. The final picture obtained from the model, using a number of oscillographs, is similar to the seismic record obtained from multichannel seismograph in the field during seismic exploration.

The scales of the phenomena observed in the field and on the model are analyzed and conditions to be fulfilled for the fidelity of the records on the model are discussed.

An extensive bibliography is included.—S. T. V.

If a seismic wave coming from a medium of lower velocity of propagation is incident at less than grazing angle on a formation of higher velocity, then in addition to the reflected wave and the refracted wave propagating along the boundary, a third wave, called the “sliding wave”, will be formed in the higher-velocity medium along its path. The amplitude of this wave will decrease because of the involvement of an ever increasing number of particles in the vibration, so that the energy density decreases at points further from the source of vibration and because the energy of vibrations is absorbed owing to the incomplete elasticity of the medium as well as to repeated reflections, producing energy radiation downward into the ground. The amplitude A of the wave in different points of the medium can be assumed to vary according to the formula

$$A = C f(x) e^{-\left(\alpha_1 x + \alpha_2 r_1 + \alpha_3 r_2\right)}$$

where C is a constant, x the distance from the source of vibrations, α_1, and α_2 are the coefficients of absorption in the upper and lower media, r_1 and r_2 are the lengths of advance of the sliding and refracted waves and $f(x)$ is the function which determines the decrease of the amplitudes by spreading of the area of vibrations. Following Muskat, Brekhovskikh and others, $f(x)$ is assumed to be an exponential function of the simplest form x^n.

A detailed discussion of the graphoanalytical method of the determination n is presented, and the method is applied to available experimental data. From these data the amplitude curve, the relation between A and x is first derived. This is presented in the form $\log A = \psi(x)$, $\psi(x)$ being the unknown. There are several possibilities of determining the shape of $\psi(x)$, the most convenient and accurate being that using the amplitude curves of waves propagating in the same direction. The values of n determined from different sets of observations under different geologic conditions ranged from 1.5 to 2.0, although some greater and smaller values were also found.

It is evident than n is a function of the depth and the thickness of refracting formation, that it is influenced by the ratio of the velocities in the overburden and in the refracting medium, and that it is a function of the principal frequency of the wave spectrum. The determination of n is the first step in finding the
coefficients of absorption of different geologic formations. Knowledge of n and of α_1 and α_2 will increase the usefulness of the seismic method of exploration.—S. T. V.

Seismic methods of exploration now in use are based on differences in the velocities of propagation of elastic waves through different layers. The author hopes to have introduced a second characteristic parameter of geologic formations and thus to increase the power of seismic method of exploration. A method is given for finding from experimental data the coefficients of absorption of elastic waves in different layers. Graphoanalytical methods are developed for finding the coefficients of absorption in the refracting formation and in the overburden. The suggested methods were then applied to experimental data obtained in several surveys. The agreement between the experimental and computed results was not always satisfactory, which could many times be attributed to such factors as curvature of the boundary, an inappropriate selection of the value of n (see preceding abstract), or to resonance phenomena, but many values were fully reliable.—S. T. V.

On one particular prospect in shallow water repetitive patterns appeared on short spread seismograms in such prevalence as to jeopardize identification of desired reflections. It is demonstrated that under favorable conditions, less restrictive than thought necessary heretofore, a layer of water comprises an effective wave guide for seismic energy propagation. Reinforcement fronts formed by multiple reflection of sound in water can develop into a set of waves completely overshadowing other seismic arrivals. With but minor modifications conventional wave guide theory applies.

Examples from the prospect are presented to illustrate various reinforcement patterns. Observed frequency characteristics, group velocity, and phase velocity magnitudes are investigated for normal modes of propagation.—Authors' abstract.

During seismic exploration over water-covered areas quite often an underwater explosion is followed by one or more secondary pulses which greatly complicate seismograms. These pulses occur because the gas bubble formed by the products of explosion expands until the pressure in the bubble drops below that of the surrounding water, and then contracts so that the pressure becomes very high, and a new sound wave is emitted on the subsequent expansion. Numerous experiments have been made to determine conditions necessary to avoid secondary pulses. Shots were produced with different kinds of explosives in amounts ranging from very small charges to more than 100 kg. Experiments were carried out in different reservoirs to test the influence of various boundary conditions. The depth of explosions ranged from 1 to 15m. Records of the explosion and secondary pulses were made by multichannel seismographs, placed at different distances from the shot point. Experiments will be continued, but the follow-
ing preliminary findings are presented: the ratio of the secondary amplitude, A_2, to that of the first, A_1, may be greater than one, for small charges of less than 300 g, and may sometimes be as high as 3.3; with charges greater than one kg, A_2/A_1 is usually less than one, decreasing with every following pulse; secondary pulses are improbable when $Q = (h+30)/38.6^3$, Q being the amount of explosive in kilograms and h the depth of the shot. — S. T.V.

Studies for the purpose of determining the form and laws of propagation of the primary seismic disturbance were made in the Pierre shale of eastern Colorado where the shale is 4,000 or 5,000 ft thick. Three vertical-component geophones were placed in a drill hole at depths of 822, 622, and 422 ft and a horizontal component at 522 ft. Charges were fired at depths varying in steps of 25 ft throughout the length of 310-foot holes drilled at distances of 50 to 1,600 ft from the instrument hole. Results show that the disturbance broadens as the square root of the travel time, and the law of decay of amplitude of earth-particle velocity is reasonably close to the $-5/2$ power of the travel time. The "seismic punch," which is the earth-particle velocity for a travel time of 1,000 milliseconds, is very low for shallow shots, and increases as the shot is placed deeper, reaching a maximum for shot depths of about 100 ft. For the mathematical theory of the propagation of these disturbances, see Geophys. Abstract 7297.—M. C. R.

Extensive field studies of surface waves generated by explosions such as those used in seismic prospecting have been made by an experimental seismic crew of the Magnolia Petroleum Co. Records were made by vertical and horizontal geophones through a system with flat response from 5 to 200 cycles per second. Shots were exploded in boreholes 40 ft or more deep and also 8 ft in the air, and recorded along surface profiles and at depths to 100 ft in boreholes. Dispersion characteristics of Rayleigh waves recorded at the surface from hole shots can be explained as the effect of near-surface layering. Variations in shear velocity rather than in compressional velocity seem to control the dispersion. The variation of maximum Rayleigh-wave amplitude with increasing depth of explosion and the trajectories of particle motion show as good agreement with theory as can be expected, considering the simplifying assumptions made. Constant-frequency wave trains observed immediately after the air wave arrival on records of air shots have been identified as air-coupled waves.—M. C. R.

A method is described whereby seismic records may be secured which have sufficient dimensional stability that a composite reprint of several records, from a continuous profile, when placed in proper sequence, yields a cross section of seismic arrivals. A method is described for entering corrected time scales on the seismic record section itself. Double recording is provided, with traces in transposed positions but alike in phase relation, which makes possible the construction of closed traverse sections. A few examples of the record section are shown and some uses suggested.—Author’s abstract.

The characteristics of the Haeno seismograph used by the Geological Survey of Japan is described in some detail, and the seismic records and their interpretation discussed briefly.—M. C. R.

Sounding of glaciers is of fundamental importance when the eventual capacity of big hydroelectric installations erected high in the mountains is determined by the volume of glaciers feeding the turbines. Use of seismic methods initially met great difficulties because the complexity of the bottom configuration often caused unreadable seismograms. Use of modern instruments equipped with electrical geophones and suitable amplification has been more successful. Exploration by the seismic reflection method of an area of more than 12 sq km of glaciers in Valais and in other parts of Switzerland during 1948–50 produced good results. The error in the determination of the depth of ice as revealed by subsequent thermal drilling was never greater than ±5 percent. The thickness of the layer ranged from 80 to 500 m.—S. T. V.

From seismic surveys to investigate the subsurface geologic structure, it was found that the direction of strike is northwest, the central part of the area is a little higher than the lateral parts, indicating plateau-like configuration; and an anticlinal structure is surmised at the depth of 300–400 m below the surface.—M. C. R.

Seismic refraction surveys were made in the Shimizusawa district in the southern part of Yubari. Three layers of seismic wave velocities of 2.0–2.2 kmps, 2.9 kmps, and 3.5–3.8 kmps, from the surface downward, were recognized. The 2.0–2.2 kmps and 2.9 kmps layers correspond to the Poronai shale bed, and the 3.5–3.8 kmps layer to the Ishikari series. The depth of the boundary between upper and lower layer is shallower in the north than in the south. A fault is postulated.—M. C. R.

Seismic refraction surveys to determine the boundary between granite and Tertiary formations on Sakito Island [Sakito-shima], show that there are three layers, in which the velocities are 1.65, 2.7–3.2, and 4.3–5.3 kmps, which may correspond to the Quaternary, Tertiary and granite, respectively. The boundary between granite and Tertiary zones trends approximately northwest-southeast and is deeper in the north than in the south.—M. C. R.
ELECTRICAL METHODS

The secondary magnetic fields of a conducting sphere embedded in a relatively poorly conducting medium under the influence of a time varying magnetic field are investigated. Applied fields of the sinusoidal and step function types are considered.

The total external steady-state field involves in phase and out of phase components which could be the basis of a geophysical method to ascertain the conductivity or radius of the embedded sphere. A local field could be set up by a suitable ungrounded wire loop, and the secondary fields obtained by receiving loops.

The calculations show that the conductivity or radius of the sphere could also be determined by measuring the magnetic field response following the application of step-function-type magnetic field. Although the conditions appear stringent, the solution would be satisfactory, for example, for a large massive sulfide body of conductivity 10^{-2} mhos per meter in a surrounding country rock of conductivity 10^{-3} mhos per meter.—R. G. H.

The problem of propagation of electromagnetic waves generated by a horizontal magnetic or electric dipole located above the surface of a finitely conducting spherical earth is treated in much the same way as the problem of a vertical dipole. Lack of symmetry about the axis of the horizontal dipole, however, requires that consideration be given to all the spherical components of both the electric and the magnetic fields.

The total field at a point is regarded as the superposition of spherical waves originating at the center and at the surface of the sphere. All component waves which have travelled over a distance greater than twice the diameter are neglected. Formulas for the field in the shadow domain are obtained in terms of residues of contour integrals.

In the case of the horizontal electric dipole, the electric field has only a weak radial component and the magnetic field only a weak azimuthal component on the surface of the earth. For the horizontal magnetic dipole, however, the radial and azimuthal components of both the electric and magnetic fields are of considerable importance at large distances from the source.

In the lit region the derived series converged too slowly to permit calculations, hence an approximate expression was obtained by recourse to geometric-optical rays.—R. G. H.

In electrical vertical sounding the first step, obtaining the resistivity curves, is simple, but the interpretation is difficult, necessitating long calculations and seldom leading to conclusive results. Even in the simplest case of parallel horizontal strata the existing methods of Hummel, Ehrenberg and Watson, or Stefanescu lead to conclusions as to the tectonic properties of the explored area only after long summation of series (Hummel's method) or cumbersome evaluation of integrals (Stefanescu's procedure). A new graphoanalytical method of analysis of the
data is suggested. It gives the value of the apparent resistivity of a stratified terrain more accurately and with fewer difficulties than any known analytical methods. For constant resistivity of the ground, equations and formulas similar to those of Hummel are used. If the resistivity varies according to a certain law, the value of the potential energy propagating from the source is found by the formula of Stefanescu, using Bessel's functions of zero order. By introducing new variables into Stefanescu's equations, the formula for apparent resistivity is obtained in a simpler form, avoiding summation of infinite series. The formula can be further simplified if only approximate values are sought. Using the method of similarity formulas for varying electrode spacing are obtained so that it is possible to collate the results obtained with different arrangements of electrodes. The last section of the article contains examples of the use of the suggested method.—S. T. V.

One current electrode and two potential electrodes are placed in a diamond-drill hole with four current electrodes on the surface placed symmetrically about the hole on E-W and N-S lines. By means of electrical images an expression is derived for the in-hole potential difference for a conducting sphere near the drill hole and in a poorly conducting medium.

In a field test where the size and shape of small sulfide ore bodies were accurately known, the ratios of potential for north and south measurements and for west and east measurements for various depths served to determine the direction of the ore bodies from the drill hole. From resistivity profiles for expanding and fixed electrode systems it was possible to determine depths.—R. G. H.

The method used consists of determining the apparent resistivity of the ground, increasing electrode separation by very small steps, and covering in regular, relatively dense profiles the whole area under investigation. Measurements are made with alternating current. Variation of resistivity in corresponding points of parallel profiles indicate subterranean changes from aquiferous to impermeable formations. In certain doubtful cases drilling of a few holes is recommended. Three examples of the use of this method are given. The object of the first assignment was to explore the possibility of finding sources of water in an isolated depression, in the others the problem consisted of establishing the absence of subterranean springs near the sites of a projected dam and an important engineering structure. The method is applicable where the soil is covered with at least one foot of humus, but in areas covered with lava or bare rocks it should not be employed.—S. T. V.

Electrical resistivity and self-potential surveys were made on Monte del Falò between Lago Maggiore and Lago d'Orta, on the site of an abandoned mine. The immediate aim of the exploratory work was to investigate the position and the
extent of several quartz veins containing lead and zinc sulfide ores which had been cut by underground galleries in previous mining work. A zone of minimum resistivity was mapped and subsequently found to correspond to an ore deposit. Spontaneous potential curves taken over the same profiles also showed a sharp dip at two points over the vein. The spontaneous potential curve also shows a negative anomaly of 150 mv which is apparently not related to sulfide mineralization.—S. T. V.

Seismic and electric surveys have been made for ore deposits covered by the Quaternary formation. The ores in the Hanaoka mine are massive replacement deposits. The country rock is chiefly a green tuff, and it is supposed that basaltic andesite has acted as a cap rock on these ore deposits. Some indications of spontaneous polarization from the deposits at shallow depth have been recognized. Values of the negative centers are from 50 to 200 mv. Seismic surveys were made to determine the structure of the basaltic andesite.—M. C. R.

Self potential and resistivity surveys were made in four areas for the purpose of discovering unknown ore deposits. An extension of the Shijukuin ore deposits was recognized, and some indications of buried unknown deposits were found.—M. C. R.

Electrical and magnetic surveys of the Oshirabetsu graphite mine, Hokkaido, have been made. In the self-potential survey a conspicuous negative-anomaly zone was found to extend about 200 m west from the second adit. The value of the negative center was 1000 mv. From the resistivity method, relatively shallow ore deposits are to be expected near the second adit and at the western part of the natural-potential anomaly zone. From the magnetic results, pyrrhotite should be mainly at the south side of the ore deposit. The ore body is estimated to be about 200 m in length from east to west, 5 to 39 m in width, and to have fair extension in depth.—M. C. R.

RADIOACTIVE METHODS

Ionization chambers, proportional counters, Geiger counters, and scintillation counters can be used as radiation detectors in searching for radioactive ores. The most suitable detector should be light, small, and capable of measuring ordinary gamma-ray activity of rocks at ordinary walking speeds to within about 10 percent. The most important factor in interpreting the results of a gamma-ray survey is the recognition of anomalies, herein defined as radiation intensities unexpectedly large for the associated field conditions. Proper interpretation of anomalies requires knowledge of the characteristic radiation intensities of rock types.
Allowance must also be made for the effect of topography, weathering, and climate. Although surface gamma-ray measurements are very useful for finding uranium ores, their value depends mainly on the accuracy with which the anomalies are interpreted.—F. W. S.

Moisture and density of soils may be measured by use of a device consisting of a radioactive source and detector lowered into a 1-inch metal tube driven into the ground. Fast neutrons emitted by the source are converted by impact with water molecules to slow neutrons, the number of slow neutrons being proportional to the water content of the surrounding soil. A similar arrangement, using gamma-ray emanation, measures soil density. Continuous and automatic recording is feasible. Laboratory and field tests show the accuracy of the method equals or exceeds that of standard procedures.—M. C. R.

Radioactivity on the surface and within the Caribou mine was measured using a Geiger-Müller counter. The surface survey failed to detect any evidence of above-normal gamma-ray intensity over the country rock. In the mine at the 1,040-foot level, an anomaly was found. Throughout the area the quartz-monzonite host rock showed a normal gamma-ray count.—L. E. B.

LOGGING AND BOREHOLE METHODS

Two nomographs for determination of water saturation and porosity have been developed for use in analytical investigations of electrical-log data. Examples of the use of the nomograms are given.—L. E. B.

In the secondary recovery of oil by water flooding, accurate information is needed on porosities and oil saturations and on permeabilities or water-input rates. Work by C. A. Doh in Illinois has shown that electrical logging of a well under two different hydrostatic heads gives two logs showing a difference in resistivity which seems to be correlative with permeability. Operations in the Appalachian region have shown an initial decrease in resistivity and later increase during flooding, the decrease being a function of porosity and the increase of the relative permeability of the formations to water. The technique used in the Bradford field is based on the use of a short lateral curve and a careful control of the amount of water in the hole. The first resistivity curve is obtained immediately after the sand is covered with water and the second with an additional head of water selected so as not to exceed the flooding pressure. The third run is made several hours after the well has been filled with water. Porosity determinations from the differential resistivity between second and first runs showed fair correlation with those made by core analysis. Differential resistivities between
third and second runs have been used with some success to estimate the water input or permeability of the sand layers.—M. C. R.

The basic principles of operation and interpretation of gamma-ray logging are discussed. Such factors as counter efficiency, effect of size and shape of counters, statistical variations, and time constants are considered, both theoretically and in the light of examples from actual records.—M. C. R.

Experiments were performed to determine the distribution of thermal neutrons and of indium resonance neutrons in continuous hydrojenous media and in pipes passing through hydrojenous media. Included in the study were water, brine, mixtures of sand and water, and mixtures of sand and brine. Experiments in a continuous typical barite drilling mud showed that the neutron distributions were essentially the same as in water. Also, from the point of view of these experiments oil and fresh water are nearly identical.

These experiments show that well fluid (and, by inference, cement) imposes serious limitations on the sensitivity and accuracy of the neutron-neutron logging method. The indium resonance neutron response (or, in general, the intensity of epithermal neutrons) is a more reliable indicator of hydrogen content of the formation than is the thermal neutron response. The neutron-neutron method of chlorine determination was found to be not sensitive enough to be useful with brines of the concentrations ordinarily found in reservoirs.—Authors' abstract.

Radioactivity well logging including both gamma-ray and neutron measurements can provide additional data on the depth to and thickness of producing zones for perforation and treatment (hydra-frac or strata-lift). The neutron curve, calibrated in terms of porosity, offers porosity information in a given field without the expense of an extensive coring program.—F. W. S.

The use of shaped explosive charges in well shooting involves the control and concentration of detonating forces at one particular point. Advantages are greater safety and zone coverage, less cleanout time, and satisfactory performance at higher temperatures than nitroglycerin. Shaped charges may be used in both open and cased holes.—L. E. B.

A description is given of a vibrating table designed for the calibration of vibrometers and seismographs. The table can produce vertical vibrations with frequencies ranging from 5 to 10,000 cycles per second. Vibrations of the table are
produced by an electrodynamic exciter, consisting of a magnetizing coil and an oscillating armature. The resulting amplitudes of the table are measured electrically.—S. T. V.

Variations in the length of the sidereal day can be determined by two extremely precise instruments, the pendulum clock and the new quartz-crystal clock. A pendulum clock, recently designed and installed at the University of Göttingen, consists of two pendulums, with two masses fixed at the ends of the oscillating rods and provided with an attachment producing electromagnetic impulses controlled photoelectrically at each oscillation. The rods and masses are made of invar. The pendulums are suspended in an evacuated chamber in which the temperature is kept constant thermostatically within limits of ±0.1 degree. The use of two masses makes the period of oscillations independent of the position of the knife edge, and friction caused by the knife edges is so small that the pendulum, once started, continues oscillating for six hours.

By using an electronic oscillograph it is possible to make readings on this clock with an error less than few hundred thousandths of a second. The greatest drawback of this clock is the change of the length of the rod caused by some molecular rearrangements of invar, producing from time to time discontinuous changes in the daily rate of the clock. This necessitates the use of three similar clocks installed together, increasing the cost and creating difficulties in servicing them. Another drawback, common to all pendulum clocks, is their sensitivity to even feeble seismic shocks as well as to changes of gravity caused by stellar bodies or by deep seated displacements of subcrustal masses. The quartz clock is also described. In this the controlling element is a crystal of quartz, excited to vibrate with its own very constant natural frequency, independent of gravity force and its variations. For short intervals of time, not exceeding about 30 days, the quartz clock is the most precise time-measuring instrument known. Its daily rate can be made as low as 0.4 sec per day, but after some years of use the elastic properties of the quartz crystal change, resulting in a decrease of the precision of the clock.—S. T. V.

PATENTS

GRAVITY METHODS

A gravity meter comprising a housing, a body having a spherical downwardly convex lower face, a second body mounted within said housing having a spherical upwardly concave upper face, resilient means within said housing supporting said first body suspended over said second body, the convex face of said first body being separated from the concave face of said second body by a uniform distance determined by the pull of gravity on said resilient supporting means, said two faces being concentric with regard to the point of suspension of said first body, an oscillator circuit, means electrically connecting said two bodies into said oscillator circuit as the two plates of a condenser, the frequency of said oscillator circuit being controlled by the capacity of said condenser, means for indicating the variations of said frequency occurring in response to changes in the capacity of said condenser as the spacing between said bodies is varied proportionally.
to changes in the force of gravity acting on said suspended body, a casing sur­rounding said housing, and means for supporting said housing for substantial self-leveling within said casing. Claims allowed, 8.

In an apparatus for measuring gravitational forces, a mounting frame, a flexible torsional suspension arm, a manual control secured to one end of said arm for introducing torsion longitudinally of said arm, the other end of said arm being mechanically free and unattached to said frame, a weighted cross arm secured to said suspension arm adjacent the free end of said torsional suspension arm, cooperating means carried by said frame and suspension arm for magnetically supporting the mechanically free end of said suspension arm in spaced relation with the supporting means carried by said frame for maintaining said suspension arm taut and horizontally disposed and indicating means for indicating the position of said cross arm and the torsion introduced in said suspension arm. Claims allowed, 12.

MAGNETIC METHODS

In a compensated magnetometer system for measuring changes other than protracted changes in a magnetic field, a magnetometer sensitive to all changes in said field, a source of compensating current for said magnetometer, and means for controlling the flow of said current from said source to said magnetometer, said means comprising a normally balanced bridge circuit including a pair of variable impedance elements, the input diagonal of said bridge being connected to said current source and the output diagonal of said bridge being connected to said magnetometer, and means operable in response to variations in the output of said magnetometer due to all changes in said field but effective only after a chosen time delay to vary the impedance offered by said impedance elements, said time delay being such that compensation occurs only for protracted changes in said field. Claims allowed, 6.

A torque magnetometer for measuring the torque exerted by a magnetic field on a specimen of magnetic material comprising a rotor for supporting said specimen for rotation therewith, a magnet for creating the magnetic field, said specimen being located in said magnetic field, a strain gage for measuring the torque exerted by the magnetic field on said specimen, and a connection between said strain gage and said rotor. Claims allowed, 14.

SEISMIC METHODS

A mechanically operated timing device for firing charges of explosives in predetermined order and at precise time intervals comprising in combination terminals for connecting said device to a power source; an electric motor; a circuit from said terminals to said motor; a rotatable cam-shaft operatively connected to said motor; at least two electrically energizable relays; circuits from said terminals to said relays; cam-operated circuit-breaking elements connected in series therein with each of said relays and relay-operated circuit-breaking elements, connected in parallel therein with said cam-operated circuit-breaking elements, at least one of said relay circuits also having connected in series therein a circuit-breaking element operated by a different relay; a plurality of firing circuits, each having connected in series therewith a cam-operated circuit-closing element; a blasting circuit connecting said firing circuits to said terminals, said blasting circuit having connected in series therewith at least one relay-operated circuit-closing element; a short circuit containing connected in series a relay-operated circuit-breaking element interposed between said relay operated circuit-closing element in the blasting circuit and said firing circuits; and means for stopping said motor when the said cam-shaft has substantially completed one revolution; the cams on said shaft being so positioned as to (1), operate the circuit-closing elements completing the circuit to the relays which, when energized, close the main circuit and open the short circuit, (2), after the said shaft has attained constant speed, operate the circuit-closing elements in the firing circuit in predetermined order and at equal intervals, (3), operate the circuit-closing elements in the circuit of the relay regulating the circuit of the blasting circuit and short circuit control relays, and, (4), operate the motor stopping means. Claims allowed, 3.

An accelerometer comprising a housing formed as a spool having thereon a plurality of electromagnetic windings, a chamber formed at each end of said spool, a plurality of diaphragms each mounted to divide each chamber, each diaphragm having a relatively small aperture therein, a movable magnetic armature mounted in the spool passage interconnecting said chamber, means for adjustably securing said armature to said diaphragm, and a damping fluid filling said chambers and said interconnecting passage. Claims allowed, 5.

In apparatus for use in seismic surveying of underwater formations, the combination with a plurality of detector assemblies each including a detector and a buoyant support for said detector, the combined weight of said detector assembly being not substantially greater nor less than the weight of water displaced by said assembly when completely submerged, of a towing line directly connecting said detector assemblies in spaced relation, floats secured directly to major portion of said line intermediate and beyond said detector assemblies and supporting such major portions of said line at the surface, weights on said line adjacent to and at each side of and spaced from said detector assemblies at points on said line intermediate said floats and detector assemblies, the mass of said weights being sufficient to cause said detector assemblies and that portion only of the line adjacent the detector assemblies to submerge only when the line is slack to form at each detector assembly a depressed bight in the towing line, whereby the detector assemblies are surfaced during towing, and conductors extending from each detector along said line. Claims allowed, 4.

A seismic surveying system for submerged areas including a marine cable adapted to be towed through the submerging medium, buoys spaced apart from each other and attached to said cable, a weighting chain for each buoy attached by one end thereto with the free end of the chain adapted to drag upon the surface of the submerged area, and seismic detectors each supported in a submerged carrier, said carriers being connected by nonrigid means to said cable and spaced apart along the cable, each detector being in electrical communication with an electrical conductor in association with said cable, the relative weight of the said chains and buoyancy of the combined cable and buoys being such that the upward force of the buoyancy of the combined cable and buoys is greater than zero but less than the downward force of the entire weight of the chains, so that the whole assembly will stabilize at a level where the supporting of a portion of each chain by the ground surface leaves in balance the opposing upward force of the buoyancy and downward force of the unsupported portion of the chains. Claims allowed, 9.

A system of earth tremor detecting assemblies comprising, in combination, a plurality of seismometers, the seismometers being adapted to pick up earth tremors and transmit them through transducers and amplifying means to a recording assembly, each seismometer including a vertical column and a transducer affixed to an adjustable horizontal platform, seismometer elements operatively suspended on each column for, respectively, detecting longitudinal, transverse and vertical earth disturbances, each assembly of said elements including a horizontally disposed pendulum, a vane on the pendulum adapted to be oscillated between the poles of a transducer by movements of the pendulum, means for adjusting the pendulum vane and the pendulum, means for holding the seismometer elements on the column and on the pendulum, magnetic damping means mounted on the platform and adapted to be adjustably disposed in relation to the pendulum, the transducer poles being adjustably mounted in relation to the pendulum vane, air damping means including apertures in the vane, and electronic means adapted to maintain the elements of the assembly in accurate relation to each other. Claims allowed, 3.

A receptive apparatus for submarine compressional waves comprising a base plate, a dome mounted on the base plate to form with the plate a fluid tight chamber, a body of liquid contained in the chamber formed by the dome and plate, a supporting tube mounted on the base plate within the chamber and extending from near the center of the plate to near the center of the chamber, a cork-imbedded directional hydrophone situated in the chamber and an elastic flexible cable extending through the supporting tube to the cork-imbedded hydrophone and constituting the sole support therefor, the length of cable extending from the unmounted end of the tube to the hydrophone and the over-all size of the cork-embedded hydrophone being limited to prevent contact of the hydrophone with the dome, whereby the hydrophone is floated upwardly from the unmounted end of the supporting tube in various positions of the dome and base plate without contacting the dome. Claims allowed, 2.

A system for first producing on an elongated magnetizable medium a composite magnetic record of a plurality of phase-related seismic signals which are separately collected in the presence of noise at different points, for then separately reproducing the phase-related signals in their original phase relationship and for mixing the reproduced signals to produce resultant signals of a predetermined character; which comprises a magnetic recording head for magnetically recording signals on said medium, a plurality of dispersed signal pickup devices operative separatively to pick up said phase-related seismic signals and the accompanying noise at said different points, means for separately modulating carriers having different frequencies with said signals and the accompanying noise, a composite signal channel for concurrently impressing the modulated carriers upon said recording head, reproducing means including signal separating channels individually corresponding to said carrier frequencies and each provided with a carrier selective filter followed by a signal and noise demodulator, a mixing network including means for mixing at least two of the demodulated signals to produce a resultant signal, and means included in said signal separating channels at points following said demodulators for preventing at least certain frequency components of the noise from entering said mixing network. Claims allowed, 9.

In a seismic wave generating and recording system the combination comprising a generating station, a recording station, and a signal system for transmitting signals from one station to the other, means for moving a recording medium at said recording station, means to make indications on said medium at predetermined intervals of time, a rotatable cam member driven by said moving means, pulse-generating means including a set of contacts actuated by said rotatable cam member to make a pulse in said signal system at a predetermined interval of time from the time of making one of said indications, means to generate seismic waves at the generating station comprising an explosive charge, an electric heating element disposed to set off said explosive charge and to be broken in the resulting explosion, and firing-current-generating means to generate sufficient electric current to heat said element enough to set off said charge connected to said element by a first electric circuit containing a first open switch, first switch-closing means comprising a second electric circuit responsive to any of said pulses to close said first open switch, a third electric-circuit means containing a second open switch connecting said second circuit means to said signal system for reception of said pulses only when said second open switch is closed, and means connected to said firing-current-generating means disposed to close said second open switch when sufficient electric current is normally being generated, whereby said charge is set off only in response to the actuation of said firing-current-generating means, but at a time set by one of said pulses, means for impressing a signal on said signal system actuated by an open circuit in said heating element immediately said element is broken in said explosion, means for making indications on said medium responsive to said signal to record the time of the explosion, means for detecting the arrival of seismic waves by generating electric current, and means responsive to current from said last mentioned means for actuating said indicating means to indicate the time of arrival of said seismic waves on said medium. Claims allowed, 9.

An apparatus for determining electrical characteristics of the earth's crust, comprising; means generating frequency-modulated radio frequency energy, an antenna system operative to deliver the radio-frequency energy thus generated to the earth's crust, a plurality of receiving elements located at various points in the earth's crust equidistant from said antenna system operative to receive part of the generated energy primarily after direct propagation through selected portions of the earth's crust, a receiving system responsive to the frequency differences between the transmitted and received signals for amplifying the received signals, switching means for connecting individually and sequentially each of said receiving elements to said receiving system, and indicator means operable from the output of said receiving system for indicating the relative rate of energy propagation through each of the selected portions of the earth's crust. Claims allowed, 3.

The method of geophysical surveying which comprises establishing a potential contact with the earth at a center of observation, establishing at least two pairs of current contacts with the earth at the ends of current base lines crossing one another at said center and with said current contacts remote from said center, supplying currents to said respective pairs of current contacts, adjusting said currents to produce resultant potential gradients in the earth corresponding to a phantom current base line rotated in azimuth about said center relative to the established base lines, and measuring the potential differences between said center potential contact and points on said phantom base line. Claims allowed, 9.

In a method of conducting electromagnetic-wave investigations, the steps of: generating electromagnetic waves with a wave-generating means, propagating said waves with a radiator positioned above and adjacent to the earth's surface and electrically coupled to said wave-generating means, receiving said waves with a receiver located in or above the air-earth interface and spaced apart from said radiator, maintaining at a predetermined value the amplification constant of said receiver, varying the frequency of the waves emitted by said wave-generating means, measuring the magnitude of the output of said receiver, and simultaneously varying the length and effective height of said radiator in a manner adapted to maintaining substantially constant at said receiver the amplitude of the waves arriving through the air from said radiator. Claims allowed, 4.

A device of the character described having in combination, an alpha-particle-emitting material, said material being distributed in a thin layer over a substantial area, a second material capable of emitting neutrons upon bombardment by alpha particles from said first material, said second material being of planiform configuration, the area thereof corresponding generally to the area of said first mentioned material, and disposed in spaced relation to said first material within the effective range of alpha particles emitted therefrom, and a third material capable of becoming radioactively excited upon bombardment by neutrons emitted from said second material, said third material being of planiform configuration and of area corresponding to the area of said first and second materials and supported in spaced relation therewith beyond the effective range of alpha particles from said first material and within the effective range of neutrons from said second material. Claims allowed, 2.

A pocket chamber comprising a barrel having a carbon-impregnated liner therein, a bottom closure and an open top, an electrode supported in said barrel and insulated therefrom, a removable cap slidably into the open top and means to seal the cap to the top. Claims allowed, 13.

Apparatus of the class described comprising support means including a radiation impermeable member having a surface adapted to support a sample of radioactive material, means operable to provide a uni-directional magnetic field across the sample mounting surface of the member, the intensity of said field being such that the direction of the emitted particles will be substantially reversed in direction and positive and negative beta particles emitted from such sample will be deflected in opposite directions, means to detect beta particles, means to mount the detecting means contiguous to the member, said means providing two mounting positions for the radiation detecting means, said mounting positions being on opposite sides of the member and positioned from the member in a direction normal to the magnetic field, and a shield having a movable portion mountable adjacent to the member to shield the detecting means. Claims allowed, 8.

A pocket-size portable radiation detector comprising a casing having an eyepiece, a pair of screens disposed within said casing in one plane normal to the axis of vision and at opposite sides of said axis, one of said screens being inherently luminescent and the other being treated to glow when exposed to radioactivity, and a panel structure arranged between said eyepiece and said screens and in parallelism with the latter, the half of said panel structure associated with the inherently luminescent screen being of graduated transparency from one edge to an opposite edge, said panel structure carrying two series of opaque characters disposed in rows behind said screens. Claims allowed, 4.

Neutron-intensity indicating means comprising two members of dissimilar metals joined together to provide a thermocouple, said metals having low neutron capture properties and being capable of developing thermoelectromotive forces at a junction thereof, a coating of nonfissionable material having higher neutron capture properties than the thermocouple members disposed on at least one junction of the thermocouple members, thereby providing a hot junction for the thermocouple. Claims allowed, 7.

LOGGING AND BOREHOLE METHODS

In electrical-logging apparatus wherein an alternating current is conducted through an input conductor contained in a conductor cable to an input current electrode in a borehole and thence through the surrounding formations to another electrode to establish an electric field in the surrounding formations around said input current electrode and wherein a portion of such electric field is tested by a pair of spaced, potential pick-up electrodes in said borehole and the potential thus picked up is conducted to the top of said borehole through a pair of conductors contained in said cable to measuring apparatus at the surface exterior to said borehole, the apparatus comprising: a generator of an alternating current having a wave form which includes a constant amplitude portion and a varying amplitude portion in the cycle; electrical connection from said generator to said other electrode and to said input conductor adjacent the top end of said conductor cable whereby said alternating current may be conducted through said conductor to said input current electrode adjacent the other end of said cable and thence through the surrounding formations to said other electrode; an electric meter; connections from said pair of conductors contained in said conductor cable to said meter whereby a potential may be applied to said meter which is representative of a potential appearing between the conductors of said pair of conductors; and switching apparatus for periodically grounding said pair of conductors for a predetermined fractional portion of the cycle. Claims allowed, 12.

An electrical-potential method of drill hole exploration comprising electrifying the subsurface with a direct-current source by means of current electrodes spaced either side of a drill hole, measuring potentials along the drill hole to indicate the presence of a conductor anomaly and to locate it generally in one direction relative the drill hole, rotating the current electrodes to electrify the subsurface in a substantially orthogonal direction, measuring potentials along the drill hole with the subsurface electrified in said orthogonal direction to locate the azimuth of said anomaly, electrifying the subsurface along said drill hole and measuring potentials along the drill hole with the subsurface electrified in the direction of the hole to identify said anomaly as a good or poor conductor enabling its azimuthal locations to be confirmed. Claims allowed, 15.

In an electrical system for making a natural potential log and a plurality of resistivity logs of an oil well or the like simultaneously, in which electrodes are lowered into a borehole on a single conductor electrical cable, power is sent down the cable from an alternating-current source at the surface of the ground to cause current to flow through fluid in the borehole and through earth formations and signals indicative of the natural earth potential and of the resistivity of the formations are transmitted up the cable to measuring apparatus at the surface, the combination with a plurality of pick-up electrodes in the borehole of a matching section for impressing all of said signals upon the conductor of the cable and a plurality of units for converting the alternating-current potentials impressed upon certain of said pick-up electrodes by the flow of current into frequency-modulated signals, each of said units having an input from one or more of said pick-up electrodes and having an output into said matching section and each of said units consisting of a signal-receiving circuit for converting changes in alternating-current potential into changes in resistance, an oscillator circuit for generating carrier waves connected to said signal-receiving circuit and a buffer amplifier connected to said oscillator circuit and said matching section, the arrangement being such that the changes in resistance of said signal-receiving circuit modulate the frequency of the carrier waves of said oscillator circuit. Claims allowed, 6.

In an electrical system for making simultaneously a plurality of resistivity logs of earth formations along a borehole, the combination with a single conductor cable having current electrodes and pick-up electrodes at its lower end of a source of alternating current at the surface of the ground connected to the conductor of the cable and arranged to cause a formation current to flow between said current electrodes, frequency modulation signalling circuits connected to said pick-up electrodes and the conductor of the cable for transmitting signals to measuring apparatus at the surface of the ground and a frequency converter at the lower end of the cable for causing the formation current to have a different frequency than that transmitted through the conductor of the cable from said source. Claims allowed, 6.

An apparatus including a drill bit having cutting edges, a recess in one of said edges, a passage extending from within said bit and in communication with said recess, an insulated conductor extending within said passage and having a terminal exposed within said recess, a separable plug of electrical insulating material electrically sealing the said recess, and an electrical circuit including a current source, a current responsive indicator and said conductor in series, whereby wearing away of the cutting edge to an extent such as to remove the plug from the recess exposes the terminal of the conductor for closing the electrical circuit and producing a signal on said indicator. Claims allowed, 4.

A shock-absorbing housing for instruments used in measuring and recording borehole information in well-drilling operations adapted to be suspended by a wire line comprising, in combination: a tubular chamber constructed to receive and enclose said instruments; a nose plug divided into shock-absorbing and connector members detachably attachable to the lower end of said chamber, said shock-absorbing member including a metallic nose piece, a plurality of slotted resilient disks above said nose piece to absorb vertical shock, a metallic body section above and adjacent said resilient disks, a longitudinally movable pin centrally disposed in said body section and through said resilient disks connecting said nose piece to the body member in alignment therewith, a plurality of resilient rings of a diameter larger than said body section compressed between the shock-absorbing and connector members to absorb lateral shock, and the connector member constructed to attach said shock-absorbing member to the instrument chamber; a tail plug longitudinally and concentrically apertured to receive said suspending line and divided into shock-absorbing and retainer members detachably attachable to the upper end of said chamber, a resilient sleeve within the suspending line aperture of the shock-absorbing member enclosing the suspending line and adapted to absorb vertical operating shocks, a plurality of resilient rings of a diameter larger than said shock-absorbing member compressed between the shock-absorbing and retaining members to absorb lateral shock, and said retainer member threaded to engage said shock-absorbing member above said resilient rings. Claims allowed, 3.

A flow meter comprising a housing adapted for being lowered into a well and having a passageway extending longitudinally therethrough, means carried by said housing to induce well fluid to flow through said passageway, semiconductor means disposed in the said passageway in the path of said fluid and having the characteristic that its electrical resistance decreases in a nonlinear manner with increase in operating temperature, means electrically connected to said semiconductor means for maintaining a constant electric current flowing through said semiconductor means and responsive to variations in electrical resistance thereof, whereby the characteristics of said fluid flow may be determined. Claims allowed, 8.

TECHNICAL AIDS

In determining field distribution in an electrical device, the improvement which comprises imposing on a pool of electrolyte corresponding in shape to a section of the device electrical potentials corresponding in magnitude and location to field forces acting upon the section, exploring the pool by moving at least one electrode therein in a direction corresponding to that extending across the section.
to locate a line of equipotential points in the pool, moving the electrode similarly in the pool to locate another line of equipotential points differing from the potential of the first line, plotting current flow lines normal to the equipotential lines thus located on a chart of the section, locating points of equal electrical gradient on the flow lines in the pool thus located by electrical measurement of the gradient along the lines, and plotting the points of equal gradient thus located on the chart. Claims allowed, 4.

In a device for determining the condition of a force system operating at least approximately in accordance with Laplace's equation and having an electrically conductive body the shape of which is analogous to the system and means for impressing across the body an electrical potential analogous to the force impressed upon the system, the combination which comprises chart-supporting means, a rotatable probe member having at least three electrical contacts spaced from and out of line with each other and arranged to contact the body, one of the contacts being disposed on the axis of rotation of the probe member, means for measuring the potential between a first set of two of the contacts, means for measuring the potential between another set of two of the contacts which define a line transverse to that defined by the first set, a rotatable marker member having a plurality of markers spaced from each other and disposed adjacent the chart with one of the markers disposed on the axis of rotation of the marker member, means for contacting the markers with the chart, means for moving the probe member and the marker member in unison to corresponding positions respectively on the body and on the chart and means for rotating the probe member and marker member in unison through corresponding angles. Claims allowed, 16.

A method of compensating for changes in response characteristics of a multiplier phototube and amplifier controlling said multiplier phototube during a scanning operation, which comprises: periodically interrupting the control of said multiplier phototube by said amplifier and simultaneously subjecting the multiplier phototube both to scanning light modulated by a standard density and to a predetermined potential and adjusting the intensity of the scanning light in accordance with the response of the phototube and amplifier while under the influence of said light and predetermined potential. Claims allowed, 19.

A system for mounting a barrel-type galvanometer, comprising a cylindrical housing therefor, an annular groove in said housing, and an insulated terminal at one end of said housing, a permanent magnet, a pole piece shaped to receive said housing, a spring contact insulated from said magnet and extensible along the axis of said aperture, a second spring contact insulated from said first named contact equal in thickness to the axial width of said annular groove and operative transversely of said aperture whereby said second named spring is received by
said groove to position said galvanometer in said aperture to maintain said first-named spring in compression and in contact with said insulated terminal without interfering with rotation of said galvanometer about its longitudinal axis. Claims allowed, 10.

A system for controlling a multiplicity of galvanometers for recording adjacent light traces on film comprising a multiplicity of input circuit channels, a diode rectifier including a cathode and an anode individual to each of said channels, a multiplicity of electron tube amplifiers each including an anode, a control grid and a cathode, an output circuit individual to the anode and cathode of each of said amplifiers, a galvanometer individual to each of said output circuits, a connection between the anode of the individual diode rectifiers and the control grid of the respective electron tube amplifiers, a circuit extending between the anode of one diode rectifier in one of said channels and the cathode of the diode rectifier in the adjacent channel, a connection between said last mentioned circuit and the control grid of an additional electron tube amplifier, and a galvanometer connected with the output of said last mentioned amplifier. Claims allowed, 4.

A surveying apparatus which is adapted to be carried on a vehicle comprising a pendulum rotatably mounted on a substantially horizontal axis which is substantially transverse to the direction of motion of said vehicle, a generator of electric current which is adapted to produce a current proportional to the time derivative of the velocity of said vehicle, a torque compensator including a permanent magnet attached to said vehicle and having a coil wound on a cylindrical iron core connected with said generator and rotatably associated with said pendulum and having at least a portion which rotates within the magnetic field of said permanent magnet, a pole piece on said permanent magnet having a curved face which is substantially symmetrical about a transverse plane, the spacing between said face and said core varying substantially inversely as the cosine of the angle the plane of said coil makes with said transverse plane whereby a restoring torque is produced on said pendulum which is substantially proportional to the cosine of the angle of slope of the path over which said vehicle travels. Claims allowed, 5.
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>Aarts, W. H.</td>
</tr>
<tr>
<td>Agocs, W. B.</td>
</tr>
<tr>
<td>Alfano, Luigi</td>
</tr>
<tr>
<td>Alfvén, Hannes</td>
</tr>
<tr>
<td>Angenheister, G. H.</td>
</tr>
<tr>
<td>Anfyserov, M. S</td>
</tr>
<tr>
<td>Auden, J. B.</td>
</tr>
<tr>
<td>Barber, R. C.</td>
</tr>
<tr>
<td>Barret, W. M.</td>
</tr>
<tr>
<td>Bath, G. D.</td>
</tr>
<tr>
<td>Belcher, D. J.</td>
</tr>
<tr>
<td>Belousov, V. V</td>
</tr>
<tr>
<td>Benfleld, A. E</td>
</tr>
<tr>
<td>Birchenough, Q. H</td>
</tr>
<tr>
<td>Bondarenko, A. P.</td>
</tr>
<tr>
<td>Brant, A. A.</td>
</tr>
<tr>
<td>Brinker, E. M.</td>
</tr>
<tr>
<td>Brownlow, C. L</td>
</tr>
<tr>
<td>Bugrov, V. R.</td>
</tr>
<tr>
<td>Bullen, K. E.</td>
</tr>
<tr>
<td>Burton, W. L</td>
</tr>
<tr>
<td>Caloi, Pietro</td>
</tr>
<tr>
<td>Canada Geological Survey</td>
</tr>
<tr>
<td>Carreno, Alfonso de la O</td>
</tr>
<tr>
<td>Case, F. D.</td>
</tr>
<tr>
<td>Chakrabarty, S. K.</td>
</tr>
<tr>
<td>Chapman, Sydney</td>
</tr>
<tr>
<td>Clark, A. R.</td>
</tr>
<tr>
<td>Cloninger, J. S.</td>
</tr>
<tr>
<td>Cloud, R. T.</td>
</tr>
<tr>
<td>Conrad, Victor</td>
</tr>
<tr>
<td>Cook, A. H.</td>
</tr>
<tr>
<td>Cotte, G. F.</td>
</tr>
<tr>
<td>Cross, J. H.</td>
</tr>
<tr>
<td>Cunietti, Mariano</td>
</tr>
<tr>
<td>Curtis, A. R.</td>
</tr>
<tr>
<td>Cuykendall, T. R.</td>
</tr>
<tr>
<td>De Barr, A. E.</td>
</tr>
<tr>
<td>Delaney, C. F. G.</td>
</tr>
<tr>
<td>Dobrin, M. B.</td>
</tr>
<tr>
<td>Dollar, A. T. J.</td>
</tr>
</tbody>
</table>

<p>| Abstract |
| Eardley, A. J. | 13182 |
| Engelkemeir, D. W. | 13208 |
| Epinstaev, A. M. | 13222 |
| Everard, Pierre | 13196 |
| Ewing, Maurice | 13146, 13221 |
| Falcon, N. L. | 13202 |
| Paul, Henry | 13246 |
| Fay, C. H | 13231 |
| Ferraro, V. C. A | 13127 |
| Flnech, R. H | 13177 |
| Finger, D. L. | 13118 |
| Flint, R. F. | 13171 |
| Förtsch, Otto | 13141, 13152 |
| Frank, I. M. | 13170 |
| Fritzsch, Volker | 13136 |
| Fukui, Saburō | 13175 |
| Gallaway, R. L. | 13258 |
| Garda Sifneriz, José | 13191, 13192 |
| Gardiner, J. T. | 13248 |
| Gassman, Fritz | 13147, 13148 |
| Georgalas, G. C. | 13173 |
| Gilbert, H. W | 13269 |
| Glennie, E. A | 13107 |
| Goldstein, M. K. | 13265 |
| Goodell, R. R. | 13231 |
| Goodman, Clark | 13246 |
| Gotsman, B. | 13115 |
| Grabovskil, M. A. | 13137 |
| Gráf, Tibor | 13166 |
| Green, C. H. | 13215 |
| Greer, W. J. | 13273, 13274 |
| Gubler, Y. | 13197 |
| Gunderson, N. R. | 13290 |
| Gutenberg, Beno | 13188 |
| Hales, A. L. | 13154 |
| Hantke, Gustav | 13176 |
| Haraguchi, Kuman | 13175 |
| Harding, W. D. | 13208 |
| Haskell, Norman | 13145 |
| Hathaway, C. M. | 13256 |
| Hawkins, J. E. | 13261 |
| Hayakawa, Masami | 13106, 13226, 13229, 13230 |
| Heiskanen, W. | 13085 |
| Henderson, R. G. | 13207 |
| Hidy, J. H. | 13233 |
| Hirayama, Misao | 13126, 13131 |
| Hodgson, J. H. | 13155 |
| Hopkins, W. A. | 13299 |
| Huaux, Aimé | 13101, 13102 |
| Hughes, D. S. | 13149 |</p>
<table>
<thead>
<tr>
<th>Abstract</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idla, Kumiai</td>
<td>13106</td>
</tr>
<tr>
<td>Imamoto, M.</td>
<td>13123</td>
</tr>
<tr>
<td>Inouye, Win</td>
<td>13185</td>
</tr>
<tr>
<td>Ishikawa, Toshio</td>
<td>13179</td>
</tr>
<tr>
<td>Ivakin, B. N.</td>
<td>13218</td>
</tr>
<tr>
<td>Jack, W. R.</td>
<td>13292</td>
</tr>
<tr>
<td>Janeczek, J.</td>
<td>13159</td>
</tr>
<tr>
<td>Jeffreys, Harold</td>
<td>13190</td>
</tr>
<tr>
<td>Johnson, E. A.</td>
<td>13275</td>
</tr>
<tr>
<td>Katayose, K.</td>
<td>13106</td>
</tr>
<tr>
<td>Kato, Yoshio</td>
<td>13114, 13121, 13138</td>
</tr>
<tr>
<td>Kerr, A. J.</td>
<td>13247</td>
</tr>
<tr>
<td>Kingdon-Ward, F.</td>
<td>13163</td>
</tr>
<tr>
<td>Kitamura, Masatushi</td>
<td>13135</td>
</tr>
<tr>
<td>Koke, F.</td>
<td>13245</td>
</tr>
<tr>
<td>Krasnikowski, S. A.</td>
<td>13172</td>
</tr>
<tr>
<td>Krasnogorska, N. V.</td>
<td>13117</td>
</tr>
<tr>
<td>Kri, J. L.</td>
<td>13161</td>
</tr>
<tr>
<td>Kuboki, Tadao</td>
<td>13116</td>
</tr>
<tr>
<td>Lawrence, P. L.</td>
<td>13224</td>
</tr>
<tr>
<td>Lee, B. D.</td>
<td>13278, 13279</td>
</tr>
<tr>
<td>Lee, F. W.</td>
<td>13264</td>
</tr>
<tr>
<td>Lewis, H. A.</td>
<td>13255</td>
</tr>
<tr>
<td>Lewis, W. H.</td>
<td>13252</td>
</tr>
<tr>
<td>Lidstich, E. N.</td>
<td>13187</td>
</tr>
<tr>
<td>Lundbak, Asger</td>
<td>13210</td>
</tr>
<tr>
<td>MacDonald, G. A.</td>
<td>13177</td>
</tr>
<tr>
<td>McIntosh, D. H.</td>
<td>13229</td>
</tr>
<tr>
<td>Makityama, Jirō</td>
<td>13173</td>
</tr>
<tr>
<td>Maree, B. D.</td>
<td>13161</td>
</tr>
<tr>
<td>Martyn, D. F.</td>
<td>13124</td>
</tr>
<tr>
<td>Mockenborg, R. H.</td>
<td>13255</td>
</tr>
<tr>
<td>Melchior, P. J.</td>
<td>13102</td>
</tr>
<tr>
<td>Miller, D. S.</td>
<td>13254</td>
</tr>
<tr>
<td>Mine, W. G.</td>
<td>13155</td>
</tr>
<tr>
<td>Minakami, Takeshi</td>
<td>13179</td>
</tr>
<tr>
<td>Misener, A. D.</td>
<td>13174</td>
</tr>
<tr>
<td>Moore, C. M.</td>
<td>13216</td>
</tr>
<tr>
<td>Morel, Carles</td>
<td>13097</td>
</tr>
<tr>
<td>Moret, J.</td>
<td>13185</td>
</tr>
<tr>
<td>Morgan, Frank</td>
<td>13277</td>
</tr>
<tr>
<td>Mori, Kiyoshi</td>
<td>13290</td>
</tr>
<tr>
<td>Muruzumi, M.</td>
<td>13238</td>
</tr>
<tr>
<td>Murphy, L. M.</td>
<td>13157</td>
</tr>
<tr>
<td>Muskat, Morris</td>
<td>13277</td>
</tr>
<tr>
<td>Myers, J. O.</td>
<td>13205</td>
</tr>
<tr>
<td>Nagata, Takesi</td>
<td>13119</td>
</tr>
<tr>
<td>Nakagawa, Chūzō</td>
<td>13175</td>
</tr>
<tr>
<td>Nomura, Yukichi</td>
<td>13232</td>
</tr>
<tr>
<td>Norrellus, R. G.</td>
<td>13271</td>
</tr>
<tr>
<td>Noritoshi, Kazuo</td>
<td>13138</td>
</tr>
<tr>
<td>Oil in Canada</td>
<td>13290</td>
</tr>
<tr>
<td>Oliver, J. E.</td>
<td>13155</td>
</tr>
<tr>
<td>Papastamatiou, J.</td>
<td>13178</td>
</tr>
<tr>
<td>Parkinson, W. C.</td>
<td>13127</td>
</tr>
<tr>
<td>Parr, J. O., Jr.</td>
<td>13257</td>
</tr>
<tr>
<td>Petrucci, G.</td>
<td>13235</td>
</tr>
<tr>
<td>Poole, J. H. J.</td>
<td>13168</td>
</tr>
<tr>
<td>Precott, H. R.</td>
<td>13226</td>
</tr>
<tr>
<td>Press, Frank</td>
<td>13146, 13223</td>
</tr>
<tr>
<td>Prest, V. K.</td>
<td>13204</td>
</tr>
<tr>
<td>Reed, D. W.</td>
<td>13277</td>
</tr>
<tr>
<td>Rich, J. L.</td>
<td>13194</td>
</tr>
<tr>
<td>Ricker, Norman</td>
<td>13223</td>
</tr>
<tr>
<td>Ridland, G. C.</td>
<td>13242</td>
</tr>
<tr>
<td>Ritznienko, F. V.</td>
<td>13218</td>
</tr>
<tr>
<td>Roberts, E. B.</td>
<td>13139</td>
</tr>
<tr>
<td>Russell, W. L.</td>
<td>13240</td>
</tr>
<tr>
<td>Sack, H. S.</td>
<td>13241</td>
</tr>
<tr>
<td>Salt, D. J.</td>
<td>13234</td>
</tr>
<tr>
<td>Sans Huelin, Guillermo</td>
<td>13209</td>
</tr>
<tr>
<td>Satō, Kōnosuke</td>
<td>13237</td>
</tr>
<tr>
<td>Satō, Mitsumitsu</td>
<td>13229</td>
</tr>
<tr>
<td>Sawamura, Kōnosuke</td>
<td>13190</td>
</tr>
<tr>
<td>Scherbatskoy, S. A.</td>
<td>13340</td>
</tr>
<tr>
<td>Schmitt, O. H.</td>
<td>13233</td>
</tr>
<tr>
<td>Schuler, Max.</td>
<td>13350</td>
</tr>
<tr>
<td>Segré, E. O.</td>
<td>13366</td>
</tr>
<tr>
<td>Selényi, P.</td>
<td>13098</td>
</tr>
<tr>
<td>Shibata, Kihel</td>
<td>13339</td>
</tr>
<tr>
<td>Simon, R. F.</td>
<td>13224</td>
</tr>
<tr>
<td>Solani, Luigi</td>
<td>13105</td>
</tr>
<tr>
<td>Sorge, W. A.</td>
<td>13223</td>
</tr>
<tr>
<td>Sparkman, J. W., Jr.</td>
<td>13122</td>
</tr>
<tr>
<td>Staff, W. S.</td>
<td>13381</td>
</tr>
<tr>
<td>Starik, I. E.</td>
<td>13170</td>
</tr>
<tr>
<td>Steenland, N. C.</td>
<td>13307</td>
</tr>
<tr>
<td>Stenz, Edward</td>
<td>13180</td>
</tr>
<tr>
<td>Stuiken, E. J.</td>
<td>13221</td>
</tr>
<tr>
<td>Sugarman, Nathan</td>
<td>13398</td>
</tr>
<tr>
<td>Sullivan, Nathan</td>
<td>13169</td>
</tr>
<tr>
<td>Stütrunk, August</td>
<td>13227</td>
</tr>
<tr>
<td>Tanaka, Toshio</td>
<td>13114</td>
</tr>
<tr>
<td>Tarrant, L. H.</td>
<td>13202</td>
</tr>
<tr>
<td>Tateishi, Tetsuo</td>
<td>13228, 13229</td>
</tr>
<tr>
<td>Teixeira, Carlos</td>
<td>13166</td>
</tr>
<tr>
<td>Thirlaway, H. I. S.</td>
<td>13104</td>
</tr>
<tr>
<td>Thompson, L. G. D.</td>
<td>13174</td>
</tr>
<tr>
<td>Tillotson, Ernest</td>
<td>13140, 13162</td>
</tr>
<tr>
<td>Tittle, C. W.</td>
<td>13346</td>
</tr>
<tr>
<td>Treut, H. M.</td>
<td>13260</td>
</tr>
<tr>
<td>Tsukishima, Tetsuo</td>
<td>13112, 13113</td>
</tr>
<tr>
<td>Uffen, R. J.</td>
<td>13174</td>
</tr>
<tr>
<td>Uganda Protectorate Geological Survey</td>
<td>13194</td>
</tr>
<tr>
<td>Ulrich, F. P.</td>
<td>13139, 13167</td>
</tr>
<tr>
<td>Union of South Africa Department of Mines</td>
<td>13169</td>
</tr>
<tr>
<td>Vaqueiro, Victor V.</td>
<td>13207</td>
</tr>
<tr>
<td>Vasilev, I. I.</td>
<td>13220</td>
</tr>
<tr>
<td>Vecchi, Orlando</td>
<td>13236</td>
</tr>
<tr>
<td>Vening Meinesz, F. A.</td>
<td>13186</td>
</tr>
<tr>
<td>Ver Wiebe, W. A.</td>
<td>13195</td>
</tr>
<tr>
<td>Victoiren, J. A.</td>
<td>13267</td>
</tr>
<tr>
<td>Vinogradov, A. M.</td>
<td>13170</td>
</tr>
<tr>
<td>Wait, J. R.</td>
<td>13231</td>
</tr>
<tr>
<td>Weaver, J. D.</td>
<td>13120</td>
</tr>
<tr>
<td>Wegener, Kurt</td>
<td>13100</td>
</tr>
</tbody>
</table>
Abstract

Weiss, Oscar ... 13217
Westerveld, J... 13181
Whetton, J. T... 13205
Wijk, A. M. van... 13115
Willmore, P. L... 13154
Wilson, J. Tuzo... 13183
Wolf, Alexander... 13279
World Oil... 13243

Abstract

Yagi, Kenzo ... 13179
Yanagihara, Kazuo... 13194
Yokouchi, Yukio... 13133
Yoshimatsu, Takasaburo... 13132

ERRATA

Bulletin 981–C, abstract 13085, first line should read:

13085. Prospecting. Charles F. Teichmann, Mount Vernon, New York, and Burton
INDEX TO GEOPHYSICAL ABSTRACTS 144–147, 1951

AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>No.</th>
<th>Abst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aarts, W. H.</td>
<td>147</td>
<td>13111</td>
</tr>
<tr>
<td>Abeles, Florin</td>
<td>144</td>
<td>12651</td>
</tr>
<tr>
<td>Abraham, E. M.</td>
<td>145</td>
<td>12818</td>
</tr>
<tr>
<td>Abramovich, M. V.</td>
<td>144</td>
<td>12605</td>
</tr>
<tr>
<td>Addario, M.</td>
<td>145</td>
<td>13210</td>
</tr>
<tr>
<td>Acheson, W. B.</td>
<td>144</td>
<td>12810</td>
</tr>
<tr>
<td>Al'pin, L. M.</td>
<td>144</td>
<td>12647</td>
</tr>
<tr>
<td>Algai, Shunei</td>
<td>144</td>
<td>12529</td>
</tr>
<tr>
<td>Aliverti, Ouiseppina</td>
<td>144</td>
<td>12845</td>
</tr>
<tr>
<td>Anden, J. B.</td>
<td>146</td>
<td>13041</td>
</tr>
<tr>
<td>Angenheister, G. H.</td>
<td>147</td>
<td>13142</td>
</tr>
<tr>
<td>Antunes, M. T.</td>
<td>144</td>
<td>12938</td>
</tr>
<tr>
<td>Aquilina, Carmelo</td>
<td>144</td>
<td>13217</td>
</tr>
<tr>
<td>Arrigo, A. D.</td>
<td>145</td>
<td>12871</td>
</tr>
<tr>
<td>Asada, Toshi, and Suzuki, Ziro</td>
<td>146</td>
<td>12943</td>
</tr>
<tr>
<td>Asada, Toshi, with Suzuki, Ziro</td>
<td>146</td>
<td>12944</td>
</tr>
<tr>
<td>Athy, L. F., and Prescott, H. R.</td>
<td>144</td>
<td>12575</td>
</tr>
<tr>
<td>Auden, J. B.</td>
<td>147</td>
<td>13164</td>
</tr>
<tr>
<td>Babb, J. J., and Smith, N. J.</td>
<td>144</td>
<td>12267</td>
</tr>
<tr>
<td>Bailey, R. S., Gamma-ray directional receiver, U. S. patent</td>
<td>145</td>
<td>12869</td>
</tr>
<tr>
<td>Baird, H. F., and Cullington, A. L.</td>
<td>145</td>
<td>12725</td>
</tr>
<tr>
<td>Ball, H. W., and Garson, M. S., Geophysical survey of the Blantyre-Limbe area</td>
<td>145</td>
<td>13041</td>
</tr>
<tr>
<td>Banerjee, S. L.</td>
<td>145</td>
<td>12801</td>
</tr>
<tr>
<td>Barber, R. C.</td>
<td>147</td>
<td>13244</td>
</tr>
<tr>
<td>Barnes, K. B., New log interpreter</td>
<td>145</td>
<td>13045</td>
</tr>
<tr>
<td>Barnes, E. V., Mathis, R. W., and Romberg, F. E., Gravity prospecting for lead and zinc, New Mexico</td>
<td>146</td>
<td>12806</td>
</tr>
<tr>
<td>Barret, W. M., Means and method for electromagnetic-wave investigations, U. S. patent</td>
<td>147</td>
<td>13235</td>
</tr>
<tr>
<td>Barry, Adolbert, Clamping device for gravity meters, U. S. patent</td>
<td>146</td>
<td>13059</td>
</tr>
<tr>
<td>Bartels, Julius, Results of geomagnetic K-indices for the international Polar Year 1932-33</td>
<td>145</td>
<td>12720</td>
</tr>
<tr>
<td>Barton, R. W., with Victoren, J. A., Geiger tube, U. S. patent</td>
<td>144</td>
<td>12687</td>
</tr>
<tr>
<td>Bath, G. D., Magnetic base stations in Lake Superior iron districts</td>
<td>147</td>
<td>13203</td>
</tr>
<tr>
<td>Beasley, J. W., and Bulken, J. M., Trends in magnetic declination at Aplia and Christchurch</td>
<td>145</td>
<td>12721</td>
</tr>
</tbody>
</table>
Breston, J. R., with Johnson, W. E., Directional permeability measurements on oil sandstones.

Bowen, W. A., Jr., with Maple, E., and Singer, S. F., Evidence for ionosphere currents from rocket experiments near the geomagnetic equator.

The recent gravimetric tying of the All-Union Scientific Research Institute of Metrology.

Preliminary results of gravimetric determinations at the first-order station in Obi-Garm.

Belgradskii, M. F., The anomalous shape of geotherms in the Dniper-Donets syncline.

--- Geothermal anomalies observed on the salt domes of Emba.

Belousov, V. V., Problems of the internal structure of the earth and its evolution.

Benfield, A. E., 'The temperature in an accumulating snowfield.'

Benioff, H., Earthquakes and rock creep (Part I: Creep characteristics of rocks and the origin of aftershocks).

--- Global strain accumulation and release as revealed by great earthquakes.

--- Crustal strain characteristics derived from earthquake sequences.

Berger, P. R., with Lect, L. D., and Linehan, Daniel, Investigation of the T phase.

Berlage, H. P., 'The fundamental relation between the magnetic moment and the structure of rotating celestial bodies.'

Bernos, Carlo, 'The periodic analysis of diagrams.'

Berthelot, André, with Faraggi, Henriette, 'The alpha radioactivity of natural bismuth.'

Bethancourt, R. J., 'Shockproof case for borehole measuring instruments, U. S. patent.'

Bich, W. J., Oil prospecting—the tectonic approach.

Bickel, F. D., Allen, Robert, Farich, George, and Lewis, H. A., 'Blasting device, U. S. patent.'

Biljard, P. F., 'On the origin of reosynclines, mountain formation, and volcanism.'

Birch, Francis, "A simple technique for the study of the elasticity of crystals."

--- Remarks on the structure of the mantle and its bearing upon the possibility of convection currents.

--- Recent work on the radioactivity of potassium and some related geophysical problems.

Bird, J. M., 'Process for measuring permeability and porosity of borehole substrata, U. S. patent.'

Bjarnason, B. S., 'Instrument for and method of geophysical exploration, U. S. patent.'

Blake, N. B., 'Seismographic prospecting apparatus for directing explosive energy, U. S. patent.'

Blundell, E. M., with Jeffreys, Harold, 'The instability of a fluid sphere heated from within.'

Boaga, Giovanni, Tribalto, G., and Faccara, G., 'Gravimetric measurements in the caverns of Castellana.'

Boaga, Giovanni, Tribalto, G., and Faccara, G., 'Gravimetric measurements in the caverns of Castellana.'

Boato, G., Carelli, G., Nencini, G., and Santangelo, M., 'Isotopic composition of argon in natural gases.'

Björgvesson, Gunnar, 'Geophysical methods of prospecting for hot water in Iceland.'

Bogdanik, N. S., 'Radioactive disintegration and the radioactive method of the determination of the absolute geologic age of rocks and minerals.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bondarenko, A. P., 'Some evidence on the causes of telluric currents.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bionn, S., and Epinat'eva, A. M., 'Screening effect in seismic prospecting.'

Betson, I. S., 'Certain kinematic questions related to the propagation of diffracted seismic waves.'

--- Determination from experimental data of the power exponent of the function representing the spreading of refracted waves.

--- Remarks on the structure of the mantle and its bearing upon the possibility of convection currents.

--- Recent work on the radioactivity of potassium and some related geophysical problems.

Bird, J. M., 'Process for measuring permeability and porosity of borehole substrata, U. S. patent.'

Bjarnason, B. S., 'Instrument for and method of geophysical exploration, U. S. patent.'

Blake, N. B., 'Seismographic prospecting apparatus for directing explosive energy, U. S. patent.'

Blundell, E. M., with Jeffreys, Harold, 'The instability of a fluid sphere heated from within.'

Boaga, Giovanni, Tribalto, G., and Faccara, G., 'Gravimetric measurements in the caverns of Castellana.'

Boato, G., Carelli, G., Nencini, G., and Santangelo, M., 'Isotopic composition of argon in natural gases.'

Björgvesson, Gunnar, 'Geophysical methods of prospecting for hot water in Iceland.'

Bogdanik, N. S., 'Radioactive disintegration and the radioactive method of the determination of the absolute geologic age of rocks and minerals.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bondarenko, A. P., 'Some evidence on the causes of telluric currents.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bionn, S., and Epinat'eva, A. M., 'Screening effect in seismic prospecting.'

Betson, I. S., 'Certain kinematic questions related to the propagation of diffracted seismic waves.'

--- Determination from experimental data of the power exponent of the function representing the spreading of refracted waves.

--- Remarks on the structure of the mantle and its bearing upon the possibility of convection currents.

--- Recent work on the radioactivity of potassium and some related geophysical problems.

Bird, J. M., 'Process for measuring permeability and porosity of borehole substrata, U. S. patent.'

Bjarnason, B. S., 'Instrument for and method of geophysical exploration, U. S. patent.'

Blake, N. B., 'Seismographic prospecting apparatus for directing explosive energy, U. S. patent.'

Blundell, E. M., with Jeffreys, Harold, 'The instability of a fluid sphere heated from within.'

Boaga, Giovanni, Tribalto, G., and Faccara, G., 'Gravimetric measurements in the caverns of Castellana.'

Boato, G., Carelli, G., Nencini, G., and Santangelo, M., 'Isotopic composition of argon in natural gases.'

Björgvesson, Gunnar, 'Geophysical methods of prospecting for hot water in Iceland.'

Bogdanik, N. S., 'Radioactive disintegration and the radioactive method of the determination of the absolute geologic age of rocks and minerals.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bondarenko, A. P., 'Some evidence on the causes of telluric currents.'

Bonchkovskii, V. F., 'The method of measuring the inclination of the surface of the earth at a point.'

Bionn, S., and Epinat'eva, A. M., 'Screening effect in seismic prospecting.'

Betson, I. S., 'Certain kinematic questions related to the propagation of diffracted seismic waves.'

--- Determination from experimental data of the power exponent of the function representing the spreading of refracted waves.

--- Remarks on the structure of the mantle and its bearing upon the possibility of convection currents.

--- Recent work on the radioactivity of potassium and some related geophysical problems.
AUTHOR INDEX

Brockamp, B., The barometric computations of elevations on the Greenland expedition of Wegener; Surface of the glacier and of the basement rock
Brownell, G. M., Radiation surveys with scintillation counter
Brownell, G. M., with Pringle, R. W., and Roulston, K. L., Ultrasensitive portable gamma-ray spectrometer
Brownlow, C. L., Seismograph blaster time breaker circuit, U. S. patent
Brownscombe, E. R., Slobod, R. L., and Caudle, B. H., Laboratory determinations of relative permeability
Bruce, V. G., A graphical method for solving vibration problems of a single degree of freedom
Brackshaw, J. M., The delineation of a dyke by the magnetic method
Bryan, C. L., Regional geology and geophysics of the Ark-La-Tex area
Bucher, W. H., Fundamental properties of orogenic belts
Buchsbaum, Ralph, with Epstein, Samuel, Lowenstam, H. A., and Urey, H. C., Carbonate-water isotopic temperature scale
Buford, T. B., with Jones, F. H., Electric logging applied to ground water exploration
Bugrov, V. R., with Riznichenko, D. V., and Ivakin, B. N., Modeling of seismic waves
Buhle, M. B., with Foster, J. W., An integrated geophysical and geological investigation of aquifers in glacial drift near Champaign-Urbana, Ill.
Bullard, E. C., Remarks on deformation of the earth’s crust
Bullard, E. C., Freedman, Cynthia, Gellman, H., and Nixon, Jo, The westward drift of the earth’s magnetic field
Bullen, J. M., with Beagley, J. W., Trends in magnetic declination at Apia and Christchurch
Bullen, K. E., Theoretical travel-time of S waves in the Earth’s inner core
--- Venus and the Earth’s inner core
--- Theoretical amplitudes of the seismic phase PKJKP
Burg, K. E., Ewing, Maurice, Press, Frank, and Stuikken, E. J., A seismic wave guide phenomenon
Burgess, J. M., Basic concepts concerning deformation of materials under stress
Burtst, J. G., Vibrograph, U. S. patent
Burkhart, K., Earth-current investigations at the Fürstenfeldbruck Magnetic Observatory
Burmist, J. G., Accelerometer, U. S. patent
Burton, V. L., and Sullivan, G. R., Carbon content and radioactivity of marine rocks
Bush, R. E., Interpretation of radioactivity logs in reef limestone
--- Experimental investigations of quantitative interpretations of radioactivity logs
Byerly, Perry, and Everdend, J. F., First motion in earthquakes recorded at Berkeley
Cagniard, Louis, Geophysical prospecting
Callahan, J. T., with Lahmeyer, J. D., Radioactivity detector, U. S. patent
Caloi, Pietro, The horizontal pendulum as a clinometer
--- Theory of Rayleigh waves in elastic and visco-elastic media, developed by the means of vectorial operators
Caloi, Pietro, and Giorgi, Maurizio, The study of the earthquake of April 13, 1938 on the Lipari Islands
Caloi, Pietro, and Feronaci, Francesco, The deep-focus earthquake of August 28, 1946, and the depth of the core
--- On the discontinuity at the depth of about 930 km
Canada Geological Survey, Ground Magnetic Survey, Preliminary maps of the Province of Quebec, Abitibi County
--- Preliminary aeromagnetic map of the Province of New Brunswick
--- Aeromagnetic maps of the Province of Ontario
--- Aeromagnetic maps of Northwest Territories
--- Aeromagnetic maps of the Province of Alberta
--- Preliminary aeromagnetic map of Quebec Province
--- Aeromagnetic maps of the Province of Quebec, Abitibi County
--- Aeromagnetic maps of Province of New Brunswick
--- Aeromagnetic maps of the Province of Quebec
--- Ground magnetic survey map of the Province of Quebec, Abitibi County
Canada Geological Survey, Aeromagnetic map of Province of New Brunswick 147 12314
— Aeromagnetic map of Northwest Territories ... 147 12315
— Preliminary aeromagnetic maps of Province of Quebec ... 147 12316
Canfora, J. W., Radiation detector, U. S. patent .. 145 12616
Cardos, J. O. See Oriol Cardas, J.
Cardwell, P. H., Treatment of earth formations penetrated by a deep well bore, U. S. patent 144 12694
Careri, G., with Boato, G., Nencini, G., and Santangelo, M., Isotopic composition of argon in natural gases ... 145 12771
Carlisle, C. H., Apparatus for seismic exploration, U. S. patent 145 12811
Carreño, Alfonso de la, Maps of gravity anomalies in Mexico .. 147 13013
Case, F. D., Seismometer system, U. S. patent ... 147 12859
Castelli, P. M. C. de. See de Castelli, P. M. C.
Castro, Honorato de, Determination of the constants k and μ in the seismological formula $t = 2/k \sin^{-1} (k/2r)$... 144 12638
Candle, B. H., with Brownsmomie, E. R., and Slobod, R. L., Laboratory determinations of relative permeability ... 144 12663
Cecchin, Gino, The variations of terrestrial latitudes and related geophysical phenomena 146 12868
Chackett, K. F., K^0 and the age of the atmosphere ... 145 12768
Chakhmabty, S. K., “Sudden Commencements” in geomagnetic field variation 147 13128
Chapman, Sydney, The earth’s magnetism and its changes ... 145 12771
Chapman, Sydney, The earth’s magnetism (2d ed) .. 147 13108
Chernikovs, M. K., with Rozova, E. A., The earthquake of November 2, 1946, and the epicentral zone of its aftershocks ... 145 12759
Chertkova, E. I., Some of the results obtained on models of tectonic breaks 144 12591
Claridge, G. C., Preliminary investigation of gravity anomalies .. 146 12898
Clark, A. R., and Salt, D. J., The investigation of earth resistivities in the vicinity of a diamond drill hole ... 147 13234
Clayton, Neal, Geology and geophysics of the North Snyder area, Scurry County, Tex 146 13017
Clavells, A. B., with Scharon, H. L., Geophysics on the Pennsylvania Turnpike 144 13038
Clevell, D. H., Recent developments in seismic research .. 144 12865
Cloud, P. E., The 1949 eruption of Ngauruhoe ... 145 12784
Cloud, R. T., Pendulum compensator, U. S. patent .. 147 13283
Coates, J., Geophysics and the geologist .. 145 12798
Coatman, J. W., Radiation detector, U. S. patent .. 145 12864
Conard, Victor, A method of estimating the periodic constituent of a geophysical series 147 13083
Constable, J. M., Portable radiation detector, U. S. patent ... 145 12862
Cook, A. H., The calculation of deflexions of the vertical from gravity anomalies 147 13099
Cook, A. H., and Thirlaway, H. I. S., Recent observations of gravity in Wales and the Borders 145 13278
Coos, A. H., with Browne, B. C., McCarthy, E. J., and Parasnis, D. S., Gravity measurements at York, Newcastle-upon-Tyne, Edinburgh and Aberdeen 146 12899
Coote, G. F., The seismic operation ... 147 13214
Cornejo Toledo, Alfonso, and Hernandez Osuma, Alfonso, Gravitational anomalies in the saline basin of the Isthmus, in the coastal plain of Tabasco, Campeche, and the Yucatan Peninsula 144 12627
Cornell, J. H., Airborne aids to oil development in Canada ... 146 12962
Cornett, J. R., with Hawkins, J. E., Seismic signal amplifier, U. S. patent 145 12852
Cox, J. F., On some possibilities offered by study at planetary scale of terrestrial phenomena 146 12607
Cox, J. F., with Dungan, F. H. Van den, and Mieghem, J. Van, On seasonal fluctuations in the rotations of the earth ... 144 12599
Cray, A. P., with Press, Frank, Oliver, Jack, and Katz, Samuel, Air-coupled flexural waves in floating ice .. 145 12733
Cross, J. H., with Hughes, D. S., Elastic wave velocities at high pressure and temperatures 147 15149
Croy, Stefan Von. See Von Crop, Stefan
Crumrine, K. C., Well logging, U. S. patent .. 144 12693
— Detection of scattered neutrons, U. S. patent ... 146 12863
— Amplifying and pulse selecting circuit for radiation detectors, U. S. patent 146 12872
D., Seismometer system, U. S. patent .. 147 13259
...
<table>
<thead>
<tr>
<th>No.</th>
<th>Abst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>Cunietti, Mariano, On the demagnetization of astatic gravimeters.</td>
</tr>
<tr>
<td>147</td>
<td>Cunietti, Mariano, The gravimetric survey of the commune of Milan.</td>
</tr>
<tr>
<td>147</td>
<td>Curtis, A. R., Elasticity correction of a pendulum used in the absolute measurement of gravity.</td>
</tr>
<tr>
<td>145</td>
<td>Curtles, L. F., with Krasnow, Shelley, Multiple element radioactive ray recording, U. S. patent.</td>
</tr>
<tr>
<td>146</td>
<td>Daly, J. W., Velocity information needed for seismic interpretation.</td>
</tr>
<tr>
<td>145</td>
<td>Danilov, V. V., Methods of treating the data of repeat geodetic surveys to detect horizontal deformation of the crust.</td>
</tr>
<tr>
<td>146</td>
<td>Danilovich, V. N., Kinematic relations during an overthrust folding.</td>
</tr>
<tr>
<td>145</td>
<td>Dario Rozo, M., The flattening of the earth.</td>
</tr>
<tr>
<td>147</td>
<td>Day, F. H., X-ray calibration of radiation survey meters, pocket chambers, and dosimeters.</td>
</tr>
<tr>
<td>147</td>
<td>De Barr, A. E., Magnetic materials and ferromagnetism.</td>
</tr>
<tr>
<td>145</td>
<td>de Castellvi, P. M. C., Geological and practical considerations for the erection of the first seismograph station on the eastern slope of Andes in Colombia.</td>
</tr>
<tr>
<td>147</td>
<td>de Castro, Honorato. See Castro, Honorato de.</td>
</tr>
<tr>
<td>146</td>
<td>Delaney, C. F. G., with Poole, J. H. J., Origin of atmospheric argon and the radiocative decay constants of potassium-40.</td>
</tr>
<tr>
<td>145</td>
<td>De la O Carrefio, Alfonso. See Carreno, Alfonso de la O.</td>
</tr>
<tr>
<td>145</td>
<td>de Niem, G. de. See Niem, G. de.</td>
</tr>
<tr>
<td>147</td>
<td>Di Filippo, Domenico, The representation at the surface of the earth of the dynamic nature of a shock at the focus.</td>
</tr>
<tr>
<td>141</td>
<td>Di Filippo, Domenico, and Marcelli, L., The first motion of seismic waves recorded at Rome between 1938 and 1943.</td>
</tr>
<tr>
<td>146</td>
<td>Digiesi, Domenico, The new magnetic map of the Military Geographical Institute with isogenics reduced to the epoch 1,1,1948.</td>
</tr>
<tr>
<td>144</td>
<td>Dobrin, M. B., Dispersion in seismic surface waves.</td>
</tr>
<tr>
<td>147</td>
<td>Dobrin, M. B., Simon, R. F., and Lawrence, P. L., Rayleigh waves from small explosions.</td>
</tr>
<tr>
<td>147</td>
<td>Doll, H. G., Selective SP logging.</td>
</tr>
<tr>
<td>145</td>
<td>Doll, H. G., and Martin, Maurice, Recent developments in electrical logging and auxiliary methods.</td>
</tr>
<tr>
<td>147</td>
<td>Drake, C. L., with Oliver, J. E., Geophysical investigations in the emerged and submerged Atlantic Coastal Plain, Part VI, The Long Island area.</td>
</tr>
<tr>
<td>145</td>
<td>Due Rojo, Antonio, and Gimeno Ruort, Antonio, Paths of seismic surface waves.</td>
</tr>
<tr>
<td>146</td>
<td>Dyk, Kari, and Eisler, J. D., A study of the influence of background noise on reflection piking.</td>
</tr>
<tr>
<td>147</td>
<td>Eardley, A. J., Structural geology of North America.</td>
</tr>
</tbody>
</table>
Effect on installations of seismic vibrations from blasting

Eisler, J. D., with Dyk, Karl, A study of the influence of background noise on reflection picking.

Ellis, L. G., Seismographic prospecting, U. S. patent.

Epina't'eva, A. M., Secondary pressure-bubble pulses in seismic exploration.

Epina't'eva, A. M., with Berson, I. S., Screening effect in seismic prospecting.

Erkelens, C. H. van.

Evernden, J. F., with Byerly, Perry, First motion in earthquakes recorded at Berkeley.

Everard, Pierre, Geophysical methods used in petroleum exploration.

Ewing, Maurice, with Worzel, J. L., Gravity measurements at sea, 1947.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Fadell, H. R., Earthquakes accompanying the 1949 eruption of Mauna Loa.

Fagnani, Henriette, and Berthelot, André, The alpha radioactivity of natural bismuth.

Farar, L. R., Seismic velocity as a function of depth and geologic time.

Fehr, R. O., Fiske, A. H., Jr., and Wells, R. J., Accelerometer, U. S. patent.

Finch, R. H., Earthquakes accompanying the 1949 eruption of Mauna Loa.

Epina't'eva, A. M., Secondary pressure-bubble pulses in seismic exploration.

Epina't'eva, A. M., with Berson, I. S., Screening effect in seismic prospecting.

Erkelens, C. H. van.

Evernden, J. F., with Byerly, Perry, First motion in earthquakes recorded at Berkeley.

Everard, Pierre, Geophysical methods used in petroleum exploration.

Ewing, Maurice, with Worzel, J. L., Gravity measurements at sea, 1947.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Fadell, H. R., Earthquakes accompanying the 1949 eruption of Mauna Loa.

Fagnani, Henriette, and Berthelot, André, The alpha radioactivity of natural bismuth.

Farar, L. R., Seismic velocity as a function of depth and geologic time.

Fehr, R. O., Fiske, A. H., Jr., and Wells, R. J., Accelerometer, U. S. patent.

Ferraro, V. C. A., and Parkinson, W. C., Sudden Commencements in geomagnetism: their phenomenon.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.

Ewing, Maurice, with Press, Frank, Ground roll coupling to atmospheric compressional waves.
The question of explaining the magnetic field of the earth's core and the universal magnetism of celestial bodies.
--- The thermal factor in the generation of microseisms.
Giori, Maurizio, with Caloi, Pietro, The study of the earthquake of April 13, 1938 on the Lipari Islands.
Godovkina, N. V., Measurements of the inclination of the surface of the ground in 1946-47 in Stalinabad and Obi-Garm.
Goguel, J. M., Seismic refraction with variable velocity.
--- Geologic structure of the pre-Alpine depressions of the Saône and Rhône rivers according to geophysical exploration.
Gohara, Yasuma, On the prospecting for the ground water.
Goldstein, M. K., Determination of ground constants, U. S. patent.
Goto, Hisao, with Konishi, Ichiro, A dynamical consideration on earthquake damage to bridges.
Gotsman, B., with Wijk, A. M. van, Note on the use of the quartz horizontal-force magnetometer for the determination of magnetic declination.
Grabovskii, M. A., Variation of the electrical resistivity of magnetite under magnetization.
Gráf, Tibor, On the radioactivity of K⁴⁰.
Grant, C. K., Geophysical observations at Moorlands.
- Magnetic surveys in the Middleback Range.
Green, C. H., Relationship of research and field operations in seismic exploration.
Greer, W. J., Well logging system, U. S. patent.
--- Electric well logging system, U. S. patent.
Griggs, David, Some experiments on the plasticity of rocks in the earth.
--- Summary of convection-current hypotheses of mountain building.
Groses, A. W., Results of magnetometric survey at Benallt manganese mine, Caernarvonshire.
Gubler, Y., Methods of petroleum exploration of sedimentary basins.
Gurevich, L. E., and Lebedinskii, A. I., Gravitational condensation of a dust cloud.
--- Properties of the cloud from which the planets of the solar system were generated.
Gutenberg, Beno, Travel times from blasts in southern California.
--- PKKP, PPP, and the earth's core.
--- Roved travel times in southern California.
--- Crustal layers of the continents and oceans.
--- Summary of colloquium on plastic flow and deformation within the earth.
--- Internal constitution of the earth.
Gutiérrez, Celedonio, with Fries, Carl, Jr., Activity of Paricutin volcano from January 1 to June 30, 1950.
--- Activity of Paricutin volcano from July 1 to December 31, 1950.
Guyod, Hubert, Electric logging.
--- Gravity of earthquakes and dynamics of the earth's crust.

H
Haalek, Hans, New views on the origin of the magnetic field of the solid earth.
--- The present status of the development of gravimetry and its problems.
--- The question of explaining the magnetic field of the earth's core and the universal magnetism of celestial bodies.
--- The most advantageous use of the Kittlès torsion balance and the processing of the data.
--- The principle and theory of a combination magnetic field balance particularly adapted to special problems of applied geophysics.
Hafner, W., Stress distributions and faulting.
Hagen, Werner, Mining at very great depths in South Africa and India.
Hager, Dorsey, Practical Oil Geology (9th ed.).
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>No.</th>
<th>Abst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. L., and Willmore, P. L.</td>
<td>Crustal layers of the earth</td>
<td>147</td>
<td>13154</td>
</tr>
<tr>
<td>Hammer, Sigmund</td>
<td>Recent developments in gravity prospecting</td>
<td>144</td>
<td>12618</td>
</tr>
<tr>
<td>Hanke, Gustav</td>
<td>Review of volcanic activity 1941-1947</td>
<td>147</td>
<td>13178</td>
</tr>
<tr>
<td>Harada, Yoshimichi, with Muto, Katsuhiko, and Okuda, Toyozo,</td>
<td>The land deformation accompanying the Fukui earthquake of June 23, 1948</td>
<td>144</td>
<td>12569</td>
</tr>
<tr>
<td>Harada, Yoshimichi, with Tsukubawa, Ietsune, and Amagai, Shonel,</td>
<td>Magnetic survey in the southwestern part of Japan</td>
<td>144</td>
<td>12529</td>
</tr>
<tr>
<td>Haraguchi, Kuman, Fukui, Saburo, Makiyama, Jirö, and Nakagawa, Chūičō,</td>
<td>Report on the Hot Spring research at Goshiki Spa and Shionoha Spa, Kawaikamiura, Yoshino-gun Nara Prefecture</td>
<td>147</td>
<td>13175</td>
</tr>
<tr>
<td>Harding, W. D.</td>
<td>Preliminary report on ground Investigation of aeromagnetic anomalies of the Campbelford and Bannockburn sheets</td>
<td>147</td>
<td>13208</td>
</tr>
<tr>
<td>Hardwig, Erwin</td>
<td>Mathematical problems of geophysics</td>
<td>144</td>
<td>12604</td>
</tr>
<tr>
<td>---</td>
<td>Investigations of microseisms in Germany during the second World War</td>
<td>145</td>
<td>12671</td>
</tr>
<tr>
<td>Harris, Sidon</td>
<td>Exploring for Pennsylvania reef reserves in west Texas</td>
<td>146</td>
<td>13016</td>
</tr>
<tr>
<td>Haskell, Norman</td>
<td>The dispersion of surface waves on multi-layered media</td>
<td>147</td>
<td>13143</td>
</tr>
<tr>
<td>Hathaway, Claude M., Accelerometer unit, U. S. patent</td>
<td></td>
<td>147</td>
<td>12826</td>
</tr>
<tr>
<td>Hawkins, H. E.</td>
<td>Magnetic exploration for chrome</td>
<td>146</td>
<td>12999</td>
</tr>
<tr>
<td>Hawkins, J. E., System of seismic recording, U. S. patent</td>
<td></td>
<td>147</td>
<td>12691</td>
</tr>
<tr>
<td>Hawkins, J. E., and Cornett, J. B., Seismic signal amplifier, U. S. patent</td>
<td></td>
<td>145</td>
<td>12622</td>
</tr>
<tr>
<td>Haxel, O., with Houtermans, F. G., and Heintze, J., The half life of K 40</td>
<td></td>
<td>144</td>
<td>12577</td>
</tr>
<tr>
<td>Hayakawa, Masami, The variation of the seismic wave velocity</td>
<td></td>
<td>144</td>
<td>12544</td>
</tr>
<tr>
<td>---</td>
<td>Outline of “Some problems of seismic prospecting”</td>
<td>147</td>
<td>13226</td>
</tr>
<tr>
<td>Hayakawa, Masami, and Mori, Kiyoshi, Seismic prospecking on the seabottom near Sakito. Naganasai Prefecture</td>
<td></td>
<td>147</td>
<td>13230</td>
</tr>
<tr>
<td>Hayakawa, Masami, with Tateshi, Tetsuo, Seismic prospecting at Shimizusawa district in Ishikari coalfield, in Hokkaido.</td>
<td></td>
<td>147</td>
<td>13229</td>
</tr>
<tr>
<td>Hayakawa, Masami, with Iida, Kumizi, and Katayose, K., Changes of gravity differences between Imaichi and NIKKÔ owing to the “Imaichi Earthquake”</td>
<td></td>
<td>147</td>
<td>13106</td>
</tr>
<tr>
<td>Hayashi, Masaki, with Kato, Yoshio, Utashiro, Shinkichi, Shoji, Rikiti, Ossaka, Justo, and Inaba, Fumio, On the changes of the earth-current and the earth's magnetic field accompanying the Fukui earthquake</td>
<td></td>
<td>146</td>
<td>12912</td>
</tr>
<tr>
<td>Hayes, R. C., Earthquakes in New Zealand during the year 1949</td>
<td></td>
<td>145</td>
<td>12751</td>
</tr>
<tr>
<td>Heath, R. B., with Herzog, Gerhard, Lord, A. H., Jr., and Evans, L. M., Measuring apparatus, U. S. patent</td>
<td></td>
<td>144</td>
<td>12679</td>
</tr>
<tr>
<td>Hebard, G. G., Porostimeter and method of using same, U. S. patent</td>
<td></td>
<td>144</td>
<td>12698</td>
</tr>
<tr>
<td>Hedström, Sven-Eric, with Krabbe, Ulrik, Means for generating low-frequency electrical oscillations, U. S. patent</td>
<td></td>
<td>146</td>
<td>13077</td>
</tr>
<tr>
<td>Heinze, J., with Houtermans, F. G., and Haxel, O., The half life of K 40</td>
<td></td>
<td>144</td>
<td>12577</td>
</tr>
<tr>
<td>Heiskanen, W., On the isostatic structure of the earth's crust</td>
<td></td>
<td>145</td>
<td>12712</td>
</tr>
<tr>
<td>---</td>
<td>On the post glacial uplift of land in Pennsascadia</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>---</td>
<td>On the large positive and negative gravity anomaly fields</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>---</td>
<td>The world-wide gravity program of the Mapping and Charting Research Laboratory of Ohio State University</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Henderson, R. G., with Vacquier, Victor V., Steenland, N. C., and Zjets, Isidore, Interpretation of aeromagnetic maps</td>
<td></td>
<td>147</td>
<td>13207</td>
</tr>
<tr>
<td>Henderson, R. G., with Zjets, Isidore, Magnetic anomalies at high altitudes</td>
<td></td>
<td>145</td>
<td>12722</td>
</tr>
<tr>
<td>Henson, R. L., Jr., Seismographic prospecting apparatus, U. S. patent</td>
<td></td>
<td>146</td>
<td>13066</td>
</tr>
<tr>
<td>Herdström, H., and Kollett, R., Seismic sounding of shallow depth</td>
<td></td>
<td>144</td>
<td>12646</td>
</tr>
<tr>
<td>Hermont, A. J., and Tupin, J. C., Seismic exploration system, U. S. patent</td>
<td></td>
<td>145</td>
<td>12847</td>
</tr>
<tr>
<td>Hernandez Osuna, Alfonso, with Cornejo Toledo, Alfonso, Gravitational anomalies in the saline basin of the Isthmus, in the coastal plain of Tabasco, Campeche, and the Yucatan Peninsula</td>
<td></td>
<td>144</td>
<td>12527</td>
</tr>
<tr>
<td>Herzog, Gerhard, Petroleum exploration and production research</td>
<td></td>
<td>144</td>
<td>12611</td>
</tr>
<tr>
<td>---</td>
<td>Measurement of thickness, U. S. patent</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>---</td>
<td>Prospecting, U. S. patent</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>---</td>
<td>Geophysical prospecting using gamma-ray detectors, U. S. patent</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>Herzog, Gerhard, with Stratford, W. M., and Teichmann, C. F., Prospecting, U. S. patent</td>
<td></td>
<td>146</td>
<td>13083</td>
</tr>
<tr>
<td>Hess, H. H., Comment on mountain building</td>
<td></td>
<td>146</td>
<td>12957</td>
</tr>
<tr>
<td>Hidy, J. H., with Schmitt, O. H., Electrical bridge compensation system for magnetometers, U. S. Patent</td>
<td></td>
<td>147</td>
<td>13253</td>
</tr>
<tr>
<td>Hiller, A. B., Sleeve supported electrode for well logging, U. S. patent</td>
<td></td>
<td>146</td>
<td>12890</td>
</tr>
<tr>
<td>Hiller, W., The determination of the azimuth of earthquakes from surface waves</td>
<td></td>
<td>146</td>
<td>12937</td>
</tr>
</tbody>
</table>
Hopkins, W. A., and Gilbert, H. W., Radiation detection instrument. U. S. patent...
Horsley, C. B., and Seavey, G. C., Geoacoustic apparatus for underground exploration. U. S. patent...
Hollister, J. C., Geophysics grows at "Mines"...
Hoskinson, A. J., Harmonic analysis of gravity observations...
Houtermans, F. G., Haxel, O., and Eeintze, J., The half life of K...
Earth current due to stress...
Homma, S., On the propagation of dispersive seismic waves...
Hoylman, H. W., A two-level aeromagnetic profile across western Texas...
Holland, H. D., and Kulp, J. L., Low level alpha counting of solids by the scintillation method...
Hoge, Edmond, Reflections on the distribution of terrestrial magnetism in Belgium...
Hodgson, J. H., and Milne, W. G., Direction of faulting in certain earthquakes of the north Pacific...
Hodgson, J. H., The implications of the Poulter method to the problem of seismic prospecting...
Hodgson, E. A., The Saint Lawrence earthquake, March 1, 1925...
Hirayama, Misao, Classification of magnetic disturbances...
Method of determining path, rate of flow, etc., in subsurface strata, U. S. patent...
Hinson, H. EL, Method of locating leaks in wells and well fittings, U. S. patent...
Howe, H. H., with O'Dea, P. L., Six additional years of spontaneous increase in magnetic moment...
Hoylan, H. W., A two-level aeromagnetic profile across western Texas...
Huaux, Aimé, On the simultaneous displacements of the instantaneous axis of rotation and of the principal instantaneous axis of inertia of the earth...
Huaux, Aimé, with Melchior, P. J., On the annual displacement of the rotational axis of the earth within the earth in relation to the annual oscillation of the principal instantaneous axis of inertia of the earth...
Hubbert, M. K., Mechanical basis for certain familiar geologic structures...
Hughes, D. S., and Cross, J. H., Elatic wave velocities at high pressures and temperatures...
Hughes, D. S., and Jones, H. J., Elastic wave velocities in sedimentary rocks...
Hughes, J. C., with Klaus, H., Gravity exploration for reefs and other porosity maxima...
Iida, Kumizi, Hayakawa, Masami, and Katayose, K., Changes of gravity differences between Imaichi and Nikiô owing to the "Imachi Earthquake"...
Imamitli, Syuiti, One of the universal variations of geomagnetic field...
Imaba, Fumio, with Kato, Yashio, Utashiro, Shirkichi, Shoji, Rikii, Ossaka, Justo, and Hayashi, Massaki, On the changes of the earth-current and the earth's magnetic field accompanying the Fukul earthquake...
Ingham, W. N., and Keewl, N. B., Radioactivity of the Bourlamaque, Ehsivir, and Cheddar batholiths, Canada...
Inoue, Fujii, and Ono, Hideko, The horizontal displacements accompanying the great Kwantu earthquake 1923...
Inouye, Win, On seismic sea wave warning systems...
Institute of Civil Engineers, Tho, Civil engineering code of practice No. 1...
Ishikawa, Toshio, with Minakami, Takeshi, and Yagi, Kenzo, The 1944 eruption of volcano in oil wells...
Ito, Ichiro, Effects of anisotropy of media on the self-potential curves of electrical prospecting...
Ivakin, B. N., with Riznichenko, fD. V., and Bugrov, V. R., Modeling of seismic waves...
Jack, W. R., and Brinker, E. M., Torsional balance device. U. S. Patent...
Janczewski, E. W., The problem of underground shocks observed in the Polish coal basin and methods of studying these phenomena...
Jansen, Hermann, and Schuster, Alfred, Capacity measurements with high frequency currents in oil wells...
Jardetzky, W. S., The problem of mountain chains...
Jansen, Hermann, and Schuster, Alfred, Capacity measurements with high frequency currents in oil wells...
Jeffreys, Harold, and Bland, M. E. M., The instability of a fluid sphere heated from within...
Jonke, A. L., Well temperatures in the Abilene area...
Keller, G. V., The role of clays in the electrical conductivity of the Bradford sand... 145 12932
—— An improved electrode system for use in electric logging. 146 13051
Kelly, S. F., The rise of geophysics. 146 12996
—— Geophysics. 146 12970
Kerr, A. J., Determination of porosity of the Palo Pinto Reef by radioactivity logging... 146 13056
—— Applications of radioactivity well logging in west central Texas. 147 13247
Keeson, Otto, Ore Deposits and mining geophysics. 146 12976
—— The value of geoelectrical investigations in exploration and discovery of ore deposits... 146 13330
Kikuchi, Takehiko, with Kato, Yoshio, On the phase difference of earth current induced by the changes of the earth's magnetic field. 146 12921
Kielecz, J., The theoretical determination of travel time. 146 12924
King, J. G., Electromagnetic accelerometer, U. S. patent. 145 12879
Kingdon-Ward, F., Notes on the Assam earthquake. 147 13163
Kikuchi, Takehiko, with Kato, Yoshio, On the phase difference of earth current induced by the changes of the earth's magnetic field. 146 12921
Klabbe, Errik, and Hedstrom, Sven-Eric, Means for generating low-frequency electrical oscil- 147 13116
Korneva, L. A., The anomalous geomagnetic field and its equivalent system of electric currents in the world's ocean. 144 12526
Krabbe, Ulrik, and Hedström, Sven-Eric, Means for generating low-frequency electrical oscil- 147 13172
Krasnovski, S. A., The average temperature gradient in the earth's crust. 147 13117
Krasnovskik, N. V., Investigation of conditions under which Kubetskii's multiplier can be used for measuring of magnetic field. 146 13117
Krasnow, Shelley, Apparatus for taking physical measurements in boreholes, U. S. patent... 145 12974
—— Apparatus for investigating a plurality of physical values in boreholes, U. S. patent... 145 12874
Krasnow, Shelley, and Curtiss, L. F., Multiple element radioactive ray recording, U. S. patent... 145 12875
Krasnow, Shelley, with Test, M. J., Geiger-Müller tube mounting, U. S. patent. 144 12990
Krige, L. J., and Maree, B. D., Earthquakes in South Africa. 147 13161
Krumbein, W. C., Regional stratigraphic analysis as a guide to geophysical exploration... 146 12975
—— Some relations among sedimentation, stratigraphy, and seismic exploration. 146 13008
Kuboki, Tadao, On the temperature compensation of a magnetic variometer by means of a magnetic shunt alloy... 147 13116
Kulp, J. L., with Holland, H. D., Low level alpha counting of solids by the scintillation method... 144 12585
Kumagi, N., Kawai, N., and Nagata, Takeshi, Recent progress in palaeomagnetism in Japan... 145 12799
Lahme, J. D., and Callahan, J. T., Radioactivity detector, U. S. patent... 144 12969
Landes, K. K., Petroleum geology. 145 12799
Laszlo, Bendefy, Possible use of geodetic bench marks made by the former Military-Geographic Institute of Vienna for determination of movements of the crust... 144 12593
Lawrence, P. L., with Dobrin, M. B., and Simon, R. F., Rayleigh waves from small explosions... 147 12224
Lebedinski, A. L., with Gurevich, L. E., Gravitational condensation of a dust cloud... 144 12597
—— Properties of the cloud from which the planets of the solar system were generated... 144 12598
Lee, B. D., Electrical analogue, U. S. patent. 147 13278
Lee, B. D., with Telfhamm, C. F., and Lord, A. H., Jr., Prospecting, U. S. patent... 146 13085
Lee, B. D., with Wolf, Alexander, Electrical analogue, U. S. patent... 147 13279
Lee, F. W., Geophysical surveying, U. S. patent... 147 13264
Loet, L. D., Blasting vibrations' effects, Pt. 1... 144 12551
—— Discussion of "Proposed use of the T phase in tsunami warning systems"... 145 12738
—— Blasting vibrations' effects, Pt. III... 145 12829
—— Vibration studies—Blasting and rock bursts... 146 13023
Loet, L. D., Linehan, Daniel, and Berger, P. R., Investigation of the T phase... 147 12737
Levitskaia, A. A., Earthquakes in the region around the Gom Kazbek... 145 12749
Lewis, H. A., with Bickel, F. D., Allen, Robert, and Earich, George, Blasting device, U. S. patent... 144 12700
—— Blasting device, U. S. patent... 147 13255
AUTHOR INDEX

251

Lewis, W. H., Circuit for multiple channel recording galvanometers, U. S. patent. 147 15282

Licastro, Pasquale, Investigation of resistivity changes during flooding of the Bradford sand. 146 15083

Linder, E. G., Methods of and means for detecting nuclear particles, U. S. patent. 146 15087

Lynch, Daniel, with Leet, L. D., and Berser, F. R., Investigation of the T phase. 145 12757

Lisitsikh, E. N., The problem of energy balance of the earth as the test of different geothectonic hypotheses. 147 13147

Livingston, C. W., Research at the Colorado School of Mines in subjects related to the mechanics of rock failures. 146 12792

Logie, H. J., The velocity of seismic waves on the Witwatersrand. 145 12742

Long, M. V., Magnetic testing device, U. S. patent. 144 12698

— Magnetic testing recording system for metallic bodies, U. S. patent. 144 12699

Longuet-Higgins, M. S., A theory of the origin of microseisms. 144 12573

Lord, A. H., Jr., and Pancake, Evan, Prospecting, U. S. patent. 146 13052

Lord, A. H., Jr., with Teichmann, C. F., and Lee, B. D., Prospecting, U. S. patent. 146 13085

Lowenstam, A., with Epstein, Samuel, Buchsbaum, Ralph, and Urey, H. C., Carbonate-water isotopic temperature scale. 146 12777

Lozano Calvo, Luis, Cartographic requirements in the measurement of gravity. 144 12751

Lucas Ortueta, Ramón de, and Yuste Garride, Enrique, Magnetic materials. 145 12811

Ludeman, C. G., Detection and measurement of penetrative radiation, U. S. patent. 146 13079

Lundbak, Åger, Aeromagnetic survey of vertical intensity over the Sound with apparatus of the BMZ type. 147 13210

Lundberg, Hans, Airborne electrical surveys for regional studies in oil and ore prospecting. 144 12953

Lundberg, Hans, and Wilson, B. T., Airborne geophysical methods make further strides in 1960. 146 12965

Lyons, P. L., A seismic reflection quality map of the United States. 146 13319

M

McCarthy, E. J., with Browne, B. C., Cook, A. H., and Parasnis, D. S., Gravity measurements at York, Newcastle-upon-Tyne, Edinburgh and Aberdeen. 146 12699

McCarthy, M. D., Seismic recording system, U. S. patent. 146 13067

MacDonald, G. A., with Finch, R. H., Report of the Hawaiian Volcano Observatory for 1948 and 1949. 147 13177

McGaha, S. W., Radioactivity dictionary. 146 13243

McGaha, S. W., and Terry, J. M., Greater Seminole area of Oklahoma. 146 13242

Macht, H. G., The representation of the main geomagnetic field and of its secular variation by means of two eccentric dipoles. 146 12903

McIntosh, D. H., Geomagnetic “sudden commencements” at Lerwick. 147 13129

McKellar, A., Isotopic variations of geophysical significance. 144 12382

McLeod, K. W., Invertible geophone, U. S. patent. 146 12849

McNatt, E. M., Drilling rate logger, U. S. patent. 145 12879

— Magnetic compass compensation device, U. S. patent. 145 12878

Magnée, Ivan de, Geiger-Müller counters. Some aspects of their use in prospecting. 144 12654

Magnetic testing recording system for metallic bodies, U. S. patent. 146 13053

Makiyama, Jiro, with Haraguchi, Kuman, Fukui, Saburo, and Nakagawa, Chuzo, Report on the Hot Spring researches at Goshiki Spa and Shionoha Spa, Kawakamimura, Yoshino-gun Nara prefecture. 147 13175

Makihara, Iro, with Haraguchi, Kuman, Fukui, Saburu, and Nakagawa, Chūzo, Report on the Hot Spring researches at Goshiki Spa and Shionoha Spa, Kawakamimura, Yoshino-gun Nara prefecture. 147 13175

Maharaj, L. L., The great earthquake on Assam border of August 15, 1950. 145 12756

Maple, E., Bowen, W. A., Jr., and Singer, S. F., Evidence for ionosphere currents from rocket experiments near the geomagnetic equator. 146 12919

Marchell, L., with Di Filippo, Domenico, The first motion of seismic waves recorded at Rome between 1943 and 1945. 144 12552

— Magnitude and energy of earthquakes in Italy. 144 12554

— Study of the earthquake of Gran Sasso, d’Italia, September 8, 1950. 146 13338

988250—52—6
Mardock, E. S., with Bush, R. E., Some preliminary investigations of quantitative interpretations of radioactivity logs .. 144 12651
Maree, B. D., with Krige, L. J., Earthquakes in South Africa .. 147 13161
Marsh, C. R., Radiation counter, U. S. patent .. 145 12886
Marshall, F. E., Radiation detector, U. S. patent .. 144 12698
Martin, Maurice, with Doll, H. G., Recent developments in electrical logging and auxilliary methods .. 144 12651
Martyn, D. F., The theory of magnetic storms and auroras .. 147 13124
Mason, S. L., with Jones, C. T., Marine exploration in the Gulf of Mexico .. 146 12983
Mathis, R. W., with Barnes, V. E., and Romberg, F. E., Gravity prospecting for lead and zinc, New Mexico .. 145 12806
Mecklenburg, R. H., with Bickel, F. D., and Lewis, H. A., Blasting device, U. S. Patent .. 147 13255
Medvedev, S. V., Tentative zoning of the Moldavian S. S. R. according to seismic activity .. 145 12753
Meisser, Otto, The torsionally suspended magnetic needle .. 146 12988
Meisser, Otto, and Jung, H., Magnetic prospecting instruments .. 146 12999
Meister, F. J., Calibration and testing of vibrometers .. 146 12931
Melchoir, P. J., and Hauaux, Aimé, On the annual displacement of the rotational axis of the earth within the earth in relation to the annual oscillation of the principal instantaneous axis of inertia of the earth .. 147 13102
Menzel, Heinz, Considerations on the theory of Love waves .. 144 12537
Merranton, P. L., The sounding of glaciers, methods and results .. 144 12942
Merrell, R. H., The distribution and frequency of Alaskan earthquakes .. 144 12563
Meshcherëkov, Š. A., with Donabedj, A. T., The relationship between the local anticlines and gravity anomalies in the Russian platform .. 146 12900
Metzger, A. A. T., On potential-drop-ratio measurements in structural investigations .. 145 12834
Miegheim, J. Van, with Dungeon, F. H. Van den, and Cox, J. F., On seasonal fluctuations in the rotation of the earth .. 144 12599
Migaux, Leon, Some examples of the application of the telluric method .. 145 12838
Miller, D. S., Automatically recording torque magnetometer, U. S. Patent .. 147 13244
Miller, R. L., with Munk, W. H., Variation in the earth’s angular velocity resulting from fluctuations in atmospheric and oceanic circulations .. 144 12600
Mille, W. G., with Hodgson, J. H., Direction of faulting in certain earthquakes of the north Pacific .. 147 13155
Minakami, Takeshi, Report on the volcanic activities in Japan during 1939-47 .. 145 12782
Minakami, Takeshi, Ishikawa, Toshio, and Yagi, Kenzo, The 1944 eruption of volcano Uso in Hokkaido, Japan. .. 147 13179
Missener, A. D., and Thompson, L. G. D., Temperature gradients in Ontario and Quebec .. 144 12587
Missener, A. D., Thompson, L. G. D., and Uffen, R. J., Terrestrial heat flow in Ontario and Quebec .. 147 13174
Mitchell, G. D., Jr., Seismic prospecting method, including generation of a cylindrical wave front, U. S. patent .. 145 12853
Monakhov, F. I., Questions on the polarization of transverse seismic waves .. 144 12541
— The determination of the displacement vector produced by transverse waves .. 146 12934
— The interpretation of observed data on deep-focus earthquakes at short epicentral distance .. 146 12986
Montandon, Frédéric, Faults and seismic zones in the northwestern Alps .. 145 12720
Mooney, H. M., A study of the energy content of the seismic waves .. 144 13042
Moore, C. M., How a seismic crew does the job .. 147 13216
Moore, R. W., Development of geophysical methods of subsurface exploration in the field of highway construction .. 146 13037
Morelli, Carlo, The Padova-Trieste gravimetric tie and regional gravimetric survey of east-central Veneto .. 145 12715
— The use in geophysical studies of the relations between magnetic and Eötvös anomalies .. 145 12809
— Investigation of the Worden gravimeter no. 50 and its use in a detailed geophysical survey at the mouth of the Timavo .. 147 13097
Morté, Léon, Recent concepts on the origin of mountain chains .. 147 13185
Morgan, Frank, Roed, D. W., and Muskat, Morris, Subsurface flowmeter, U. S. patent .. 147 13277
Mori, Kiyoshi, with Hayakawa, Masami, Seismic prospecting on the seabottom near Sakito, Nakasai prefecture .. 147 13320
Mossope, S. C., A multi-thermometer method for temperature measurement in boreholes .. 146 12803
Mota Lindonor, The determination of the dip and depth of geological strata .. 146 12821
Mudd, O. C., Grounding device for electrical conductors, U. S. patent .. 146 12857
Munley, Gary, Apparatus for measuring intensity of magnetic field, U. S. patent .. 146 13064
AUTHOR INDEX 253

Muffy, Gary, with Vasquez, V. V., Method and apparatus for measuring the values of magnetic fields, U. S. patent. 145 12845
Mukherjee, S. M., Remarks on two Hindukush earthquake shocks 144 12555
— Microseisms and sea waves 144 12574
Mukhina, G. V., The screening effect of conductive layers located over a vertical vein 144 12449
Müller, Max, An induction-impulse method for the detection of petroleum 146 13633
Munk, W. H., and Miller, R. L., Variation in the earth's angular velocity resulting from fluctuations in atmospheric and oceanic circulations 144 12600
Munz, F. D., A revision of the theory of elasticity 144 12532
Murakami, M., Electrical prospecting on Yokota mine, Fukushima prefecture 147 12328
Murphy, L. M., and Ulrich, F. P., United States earthquakes 1948 147 13157
Muskal, Morris, with Morgan, Frank, and Reed, D. W., Subsurface flowmeter, U. S. patent, 147 13277
Muto, Kakushiko, Okuda, Toyozo, and Harada, Yoshimichi, The land deformation accompanying the Fukui earthquake of June 28, 1948. 144 12569
Myers, J. O., with Whetten, J. T., Geophysical surveying, Practical application to general problems. 144 12609
— Geophysical survey of a magnetite deposit in the Island of Tiree. 147 13205

N

Nadai, A. L., Some mechanical questions about the deformation of rocks. 146 12957B
Nagata, Takesi, Natural remanent magnetism of igneous rocks and its mode of development. 147 13119
Nagata, Takesi, and Watanabe, Takeshi, Magnetic properties of the rocks containing maghemite (γ-Fe₂O₃). 146 12916
Nagata, Takeshi, with Kumagai, N., and Kawai, N., Recent progress in palaeomagnetism in Japan. 145 12726
Nakabayashi, Kazutaka, and Fujiwara, Takayo, Generating mechanism of the spontaneous polarization. Classification of the generating mechanism. Single electrode potential of ores. 144 12650
Nakagawa, Chikuo, with Harauchi, Kuman, Fukum, Saburu, and Makiyama, Hiro, Report on the Hot Spring researches at Goshiki Spa and Shiono Spa, Kawakamimura, Yashimogun Nara prefecture. 147 13175
Nakamura, S. T., On visco-elastic medium 146 12923
— On the seismic energy and the age of the earth 146 12945
Nature, The granitic layer of the earth's crust. 146 12947
— Concealed coalfields of the Midlands. 146 12986
Nencini, G., with Boato, G., Careri, G., and Santangelo, M., Isotopic composition of argon in natural gases. 145 12771
Neresova, Z. A., Variation of the ice content of the ground as a function of its temperature. 144 12601
Nettleton, L. L., On the use of geophysical tools. 144 12608
Neufeld, Jacob, Multiplex well logging system, U. S. patent 144 12695
Neuman, L. J., New developments in geophysical prospecting. 145 12667
Newlands, Margery, Rayleigh waves in a two-layer heterogeneous medium. 146 12927
Nickle, C. O., and Rowland, L. O., Exploration and refining lead rush of technical advances in all branches. 144 12616
Nicollini, Tito, Variations of the average annual latitudes. 145 12795
Niem, G., de, Calculation of the gravitational force of prismatic bodies. 144 12516
Nigidi, Paul, Rocks and mineral deposits. 145 12800
Nishimoto, Eiichi, with Sasao, Kenzo, On phenomena forerunning earthquakes. 144 12566
Nixon, Jo, with Buliard, E. C., Freedman, Cynthia, and Gellman, H., The westward drift of the earth's magnetic field. 144 12525
Nomura, Yukichi, On the propagation of electric waves from a horizontal dipole over the surface of the earth sphere. 144 12525
Norilomi, Kazuo, with Kato, Yoshio, The thermal variation of the electrical conductivity of rocks. 147 13138
Norilomi, Kazuo, with Kato, Yoshio, and Shoji, Rikiki, The report of the prospecting of the deep underground structure by the seismic method. 146 13029

O

O'Carreno, Alfonso de la. See Carreno, Alfonso de la O.
O'Dea, P. L., and Howe, H. H., Six additional years of spontaneous increase in magnetic moment. 146 12918
Officer, C. B., Normal mode propagation in three-layered liquid half space by ray theory. 145 12731
Oil in Canada, Western Canada operation—1951 style. 147 13200
Okuda, Toyozo, On the mode of the vertical land deformation accompanying the great Nan-
kaido earthquake 1946. 144 12571

Okuda, Toyozo, with Muto, Katsuhiko, and Harada, Yoshimichi, The land deformation ac-
companying the Fukui earthquake of June 28, 1946. 144 12569

Oliver, J. E., and Drake, C. L., Geophysical investigations in the emerged and submerged
Atlantic Coastal Plain, Part VI, The Long Island area. 147 13158

Oliver, Jack, with Fross, Frank, Crary, A. P., and Katz, Samuel, Air-coupled flexural waves in
floating ice. 144 12557

Olson, R. W., Magnetic amplifier, U. S. patent. 145 12886

O'Malley, T. M., Exploration speeded in Peace River by aeromagnetic survey. 144 12632

Ono, Hideko, with Inoue, Eiji, The horizontal displacements accompanying the great Kwanto
earthquake 1923. 144 12570

Oriol Cardas, J., On the law of phase in telluric currents. 144 12530

Otsuka, Justo, with Kato, Yoshiho, and Utashiro, Shinkichi, On the changes of the terrestrial
magnetic field accompanying the Tochigi earthquake of Dec. 26, 1949. 144 12913

Pain, J. H., and Delaney, C. F. G., Origin of atmospheric argon and the radioactive decay
constants of potassium-40. 147 13168

Paul, Martin, Contribution to the question of solar influence on geophysical phenomena. 146 12591

Pavlova, T. G., with Gerling, E. K., Determination of the geological age of two meteorites by
the argon method. 145 12769

Peirson, S. J., Review of quantitative methods of electrical-log interpretation. 146 13048

Peisson, D. S., with Browne, B. C., Cook, A. H., and McCarthy, E. J., Gravity measurements
at York, Newcastle-upon-Tyne, Edinburgh and Aberdeen. 146 12909

Pendley, L. C., Subsurface earth exploration by electrical resistivity method. 146 13039

Peronaci, Francesco, with Caloi, Pietro, The deep-focus earthquake of August 28, 1946, and the
depth of the core. 144 12557

Perr, J. O., Jr., Seismic surveying, U. S. patent. 146 13057

Petrucci, G., Exploration of foundation sites by electrical sounding. 147 13235

Petersen, D. H., The background counting rate in a Geiger-Muller counter. 146 13044

Peterschmitt, Elie, with Rothe, J. P., Seismic study of the Haslach explosions. 144 12548

Petroleum Engineer, Underground magnetic logging device. 146 13049

Petrucci, G., Exploration of foundation sites by electrical sounding. 147 13335

Pinar, Nuriye, Geologic and seismologic study of the Karaburun (Izmir) earthquake of July 23,
1949. 146 12940

Pinillos, Jose Dulanto. See Dulanto Pinillos, Jose.

Pinson, S. J., Review of quantitative methods of electrical-log interpretation. 146 13048

Poirvelein, Hermann, Waves propagating under conditions of anisotropy. 144 12355

Poole, J. H., and Delaney, C. F. G., Origin of atmospheric argon and the radioactive decay
constant of potassium-40. 147 13168

Pough, F. H., The birth and growth of a volcano. 144 12779

Poulter, T. C., Seismic exploration employing elevated charges, U. S. patent. 144 12677

Prescott, H. R., Seismic record sections. 147 13228

Prescott, H. R., with Athy, L. F., Seismographic record correlation system, U. S. patent. 144 12675

Press, Frank, Crary, A. P., Oliver, Jack, and Katz, Samuel, Air-coupled flexural waves in float-
ing ice. 145 12733
<table>
<thead>
<tr>
<th>No.</th>
<th>Abst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>Press, Frank, and Ewing, Maurice, Ground roll coupling to atmospheric compressional waves.</td>
</tr>
<tr>
<td>147</td>
<td>Propagation of elastic waves in a floating ice sheet.</td>
</tr>
<tr>
<td>144</td>
<td>Press, Frank, with Burg, K. E., Ewing, Maurice, and Stulken, E. J., A seismic wave guide phenomenon.</td>
</tr>
<tr>
<td>144</td>
<td>Press, Frank, with Ewing, Maurice, Crustal structure and surface-wave dispersion.</td>
</tr>
<tr>
<td>147</td>
<td>Prest, V. K., Geology of the Keith-Muskego townships area.</td>
</tr>
<tr>
<td>144</td>
<td>Price, A. T., Recent theories of the earth's magnetic field.</td>
</tr>
<tr>
<td>146</td>
<td>Pringle, R. W., The scintillation counter.</td>
</tr>
<tr>
<td>146</td>
<td>Pringle, R. W., Roniston, K. L., and Brownell, G. M., Ultrasensitive portable gamma-ray spectrometer.</td>
</tr>
<tr>
<td>146</td>
<td>Puchkov, S. V., with Kats, A. L., On the vibrations of buildings caused by explosions.</td>
</tr>
<tr>
<td>146</td>
<td>Pugh, W. E., Method and apparatus for underwater seismic prospecting, U. S. patent.</td>
</tr>
<tr>
<td>144</td>
<td>Puranen, Maunu, and Kahma, A. A., Method of magnetographic surveying, U. S. patent.</td>
</tr>
<tr>
<td>145</td>
<td>Quiring, Heinrich, The heat balance of the earth as the basis of an absolute measurement of time.</td>
</tr>
<tr>
<td>145</td>
<td>Ramirez, J. E., The violent earthquake of August 5, 1949, in Pelleio, Ecuador.</td>
</tr>
<tr>
<td>145</td>
<td>Raspet, Rudolph, Temperature compensation means for magnetic field balances, U. S. patent.</td>
</tr>
<tr>
<td>145</td>
<td>Ruford, M. S., Tidal variations of gravity.</td>
</tr>
<tr>
<td>147</td>
<td>Reed, D. W., with Morgan, Frank, and Muskat, Morris, Subsurface flowmeter, U. S. patent.</td>
</tr>
<tr>
<td>145</td>
<td>Reichertz, P. P., Apparatus for measuring interstitial water content, permeability, and electrical conductivity of well cores, U. S. patent.</td>
</tr>
<tr>
<td>145</td>
<td>Reimer, J. H., with Smith, P. C., Nuclear radiation detector, U. S. patent.</td>
</tr>
<tr>
<td>144</td>
<td>Rey Pastor, Alfonso, The progress of seismic geography. Development of the science and the more outstanding investigations.</td>
</tr>
<tr>
<td>144</td>
<td>Rich, J. L., Origin of compressional mountains and associated phenomena.</td>
</tr>
<tr>
<td>145</td>
<td>Richardson, A. D., Suspension galvanometer and magnet assembly, U. S. patent.</td>
</tr>
<tr>
<td>144</td>
<td>Richter, C. F., Velocities of P at short distances.</td>
</tr>
<tr>
<td>144</td>
<td>Richter, C. F., with Gutenberg, Beno, The progress of seismic geography. Seismicity of the earth and related phenomena.</td>
</tr>
<tr>
<td>144</td>
<td>- Geography of earthquakes and dynamics of the earth's crust.</td>
</tr>
<tr>
<td>144</td>
<td>- Seismicity of the coastal region of Alicante.</td>
</tr>
<tr>
<td>147</td>
<td>Ringland, G. C., Radioactivity at the Caribou Silver Mine, Boulder County, Colo.</td>
</tr>
<tr>
<td>146</td>
<td>Ring, Roland, Well surveying instrument, U. S. patent.</td>
</tr>
<tr>
<td>145</td>
<td>Riutort, Antonio Olmno. See Olmno Riutort, Antonio.</td>
</tr>
<tr>
<td>147</td>
<td>Riznichenko, IiO. V., Ivakin, B. N., and Bugrov, V. R., Modeling of seismic waves.</td>
</tr>
<tr>
<td>144</td>
<td>Robbins, A. R., Deviation of the vertical.</td>
</tr>
<tr>
<td>144</td>
<td>Roberts, D. L., Anti-earthquake damage operations.</td>
</tr>
<tr>
<td>147</td>
<td>Roberts, E. B., and Ulrich, F. P., Seismological activities of the U. S. Coast and Geodetic Survey in 1949.</td>
</tr>
<tr>
<td>145</td>
<td>Rojo, Antonio Due. See Due Rojo, Antonio.</td>
</tr>
<tr>
<td>146</td>
<td>Romana, A., The general character of the classification of geomagnetic bays and the law of their appearance during the day.</td>
</tr>
<tr>
<td>145</td>
<td>Romberg, F. E., with Barnes, V. E., and Mathis, R. W., Gravity prospecting for lead and zinc, New Mexico.</td>
</tr>
<tr>
<td>145</td>
<td>Romberg, F. E., with George, W. O., Tide-producing forces and artesian pressures.</td>
</tr>
<tr>
<td>146</td>
<td>Rossire, E. E., Studies in non-structural petroleum prospecting. 1, A nonstructural working hypothesis for petroleum prospecting.</td>
</tr>
<tr>
<td>146</td>
<td>Rosenblum, Benjamin. See Roston, Benjamin.</td>
</tr>
<tr>
<td>145</td>
<td>Rostagni, Antonio, Radioactivity of potassium and the age of the earth.</td>
</tr>
<tr>
<td>146</td>
<td>Roston, Benjamin, with Whitehead, Stanley, Location of conducting and/or magnetic bodies, U. S. patent.</td>
</tr>
<tr>
<td>144</td>
<td>Rothé, J. P., The Kerraue earthquakes and the seismicity of Algeria.</td>
</tr>
<tr>
<td>145</td>
<td>- The structure of the Atlantic.</td>
</tr>
<tr>
<td>145</td>
<td>- The structure of the bed of the Atlantic Ocean.</td>
</tr>
<tr>
<td>144</td>
<td>- Summary of the seismicity of the earth during the years 1947-48 (Seismologic chronicle).</td>
</tr>
<tr>
<td>144</td>
<td>Roston, J. P., and Petersenschmitt, Elle, Seismic study of the Hasslieh explosions.</td>
</tr>
<tr>
<td>146</td>
<td>Roniston, K. L., with Pringle, R. W., and Brownell, G. M., Ultrasensitive portable gamma-ray spectrometer.</td>
</tr>
<tr>
<td>144</td>
<td>Rowland, L. O., Exploration at new heights in activity and methods.</td>
</tr>
</tbody>
</table>
Rowland, L. O., with Nickle, C. O., Exploration and refining lead rush of technical advances in all branches.......................... 144 12616
Rozo, Dario M., Exploration and refining lead rush of technical advances in all branches.. 144 12616
Rummerfield, B. F., Some problems in seismic exploration in Mexico................................. 144 12645
Runcorn, S. K., Heat flow in the earth............................ 146 12952
Russell, W. L., Principles of petroleum geology...................... 146 12970
Russell, W. L., and Scherbatskoy, S. A., The use of sensitive gamma-ray detectors in prospecting 147 13240
Rust, W. M., Jr., Exploration geophysics—yesterday, today, tomorrow.................. 146 12962
Sack, H. S., with Belcher, D. J., and Cuykendall, T. R., The measurement of soil moisture and density by neutron and gamma-ray scattering.. 147 13241
Salt, D. J., with Clark, A. R., The investigation of earth resistivities in the vicinity of a diamond drill hole.. 147 13244
Sanick, I. H., Lowering the electrical resistance of soils and of electrode-to-soil contacts, U. S. patent.......................... 145 12858
Sans Huelin, Guillermo, Airborne magnetic prospecting... 147 13269
Santangelo, M., with Bosto, G., Careri, G., and Nencini, G., Isotopic composition of argon in natural gases.. 145 12771
Santangelo, M., with Festa, Camilla, A method for determining the age of the earth........ 144 12579
Sappenfield, L. W., A magnetic survey of Adams County, Ohio, cryptovolcanic structure......... 145 12814
Saskatchewan Department of Natural Resources, Part I Schedule of wells drilled for oil and gas to 1951, Part II Exploration, drilling and production data to 1951.......................... 146 12971
Sassa, Kenzo, and Nishimura, Eiichi, On phenomena forerunning earthquakes................ 144 12566
Satō, Kōnosuke, Geophysical exploration of the Black ore deposits (“Kuroko”) at Hanmokka Mine, Akita prefecture.. 147 13237
Satō, Mitsunosuke, and Shibatō, Kihei, Geophysical prospecting in Oshirabetsu mine, Tokachi Province, Hokkaido.......................... 147 12929
Satō, Yasuo, Boundary conditions in the problem of generation of elastic waves............ 144 12534
Satō, Yasuo, with Takahashi, Takehito, On the theory of elastic waves in granular substance 1.. 144 12533
Savarenkou, E. F., Problems facing the seismological institutions of the U. S. S. R.......... 144 12575
Sawamura, Kōnosuke, On the volcanic activity of Mt. Mihara, Izu Oshima Is. in 1950.................. 147 13180
Scharen, H. L., and Cleaves, A. B., Geophysics on the Pennsylvania Turnpike............... 146 13038
Scherbatskoy, S. A., Radiation detector, U. S. patent.. 144 12690
Scherbatskoy, S. A., with Russell, W. L., The use of sensitive gamma-ray detectors in prospecting.. 147 13240
Schlumberger, Marcel, Well logging system, U. S. patent... 146 13090
Schmitt, O. H., Unbalanced magnetometer, U. S. patent.. 146 13062
Schmitt, O. H., and Hidy, J. H., Electrical bridge compensation system for magnetometers, U. S. patent... 147 12853
Schneider, Otto, The age of the earth.. 145 12765
Schuler, Max, Precise timekeeping and its importance.. 147 12950
Schumann, Wolfgang, On the introduction and importance of an iron-index for minerals.... 145 12812
Schuster, Alfred, with Jansen, Hermann, Capacity measurements with high frequency currents in oil wells.. 146 13052
Scott, C. B., Method of generating directional seismic waves, U. S. patent...................... 146 12854
Scott, K. L., Method of and apparatus for making magnetic measurements, U. S. patent...... 144 12671
Seavey, G. C., with Horsley, C. B., Geoaoustic apparatus for underground exploration, U. S. patent.. 145 12656
Segré, E. G., Method and apparatus for measuring strong alpha emitters, U. S. patent........ 147 13296
Seldawy, P., On the possibility of a modification and further development of the Edtővs experiment with torsion balance.. 147 13098
Sell, B. W., Well logging, U. S. patent... 146 13092
Shibatō, Kihei, with Satō, Mitsunosuke, Geophysical prospecting in Oshirabetsu mine, Tokachi Province, Hokkaido.......................... 147 13239
Sherborne, J. E., Method and apparatus for borehole logging, U. S. patent..................... 146 13091
Shoji, Rikii, with Kato, Yoshio, Prospecting of the underground structure of the new volcano “Showashinzan” by the seismic method.. 146 13021
— New type of earth inductor and its uses for the prospecting of the underground structure... 146 13031
AUTHOR INDEX

Shoji, Riki, with Kato, Yoshio, and Noritomi, Kazuo, The report of the prospecting of the deep underground structure by the seismic method. ... 146 12920
Shoji, Riki, with Kato, Yoshio, Utashiro, Shinkichi, Osaka, Justo, Hayashii, Masaaki, and Inaba, Fumio, On the changes of the earth-current and the earth's magnetic field accompanying the Fukui earthquake. ... 146 12912
Shulekin, V. V., The magnetic field of the earth and the influence of the world's ocean on its pattern ... 144 12927
Sillagdo, F., Enrique, The Anuesch, Peru, earthquake of November 10, 1946 ... 144 12517
Silverman, Daniel, and Stuart, R. W., Means for logging drilling rates, U. S. patent ... 144 12592
Simon, R. F., with Dobrin, M. B., and Lawrence, P. L., Rayleigh waves from small explosions ... 147 13224
Simonato, J. B., The first applications of the radioactive method in Comodore Rivadavia. ... 144 12922
Singer, S. F., with Maple, E., and Bowen, W. A., Jr., Evidence for ionosphere currents from rocket experiments near the geomagnetic equator. ... 146 12919
Sivaramakrishnan, M. V., Some geomagnetic disturbances at Alibag Observatory (India) and allied radio and solar effects (1937-46) ... 145 12719
Slack, H. A., and Whitham, K., A further investigation of the radioactivity of the Round Lake and Elnevir batholiths. 144 12584
Slater, R. L., Marine seismic prospecting in search of petroleum. ... 144 12522
Slichter, L. B., An electromagnetic interpretation problem in geophysics ... 146 13029
Slobod, R. L., with Browncombe, E. R., and Caudle, B. H., Laboratory determinations of relative permeability ... 144 12963
Smith, A. E., Graphic adjustment by least squares ... 146 12808
Smith, N. J., Accuracy factors in geophysical prospecting ... 146 12974
Smith, N. J., with Babh, J. J., Apparatus for marine seismic prospecting, U. S. patent ... 144 12576
Smith, P. C., and Reiser, J. H., Nuclear radiation detector, U. S. patent ... 145 12896
Solabai, Luigi, On the interpretation of composite reflections. ... 145 12824
Sorokin, L. V., General course of geophysical prospecting ... 147 13907
Sorskin, A. A., The mechanism of breaking of geologic strata with simultaneous formation of lenses ... 145 12788
Stuart, R. W., with Silverman, Daniel, Means for logging drilling rates, U. S. patent ... 144 12592
Steenland, N. C., with Vacquier, Victor V., Henderson, R. G., and Zietz, Isidore, Interpretation of aeromagnetic maps. ... 147 13207
Stefaninzi, A., On the radioactivity of atmospheric precipitates. ... 145 12764
Stenz, Edward, On the suggested correlation between the rock bursts and the changes of atmospheric pressure. ... 147 13160
Stoneley, Robert, Polarization of the S-phase of seismograms. ... 145 12734
Stormont, D. H., New Seismic test Oil companies to resume offshore exploration after developing black-powder methods to reduce fish kill. ... 146 13015
Stratford, W. M., Prospecting, U. S. patent ... 146 13084
Stratford, W. M., Teichmann, C. F., and Herzog, Gerhard, Prospecting, U. S. patent ... 146 13083
Stuart, R. W., with Silverman, Daniel, Means for logging drilling rates, U. S. patent ... 144 12592
Süßstrunk, August, Seismic sounding of glaciers. ... 146 13922
Suzuki, Ziro, and Asada, Toshi, Observations of microearthquakes in Sikoku district. ... 147 13244
Sugarman, Nathan, with Engelkeim, D. W., Radiation detection and measuring apparatus and method, U. S. patent ... 147 13268
Sullivan, G. R., with Burton, V. L., Carbon content and radioactivity of marine rocks. ... 147 13160
Susstrunk, August, Seismic sounding of glaciers. ... 146 13922
Sorokin, L. V., General course of geophysical prospecting ... 147 13162
Sivaramakrishnan, M. V., Some geomagnetic disturbances at Alibag Observatory (India) and allied radio and solar effects (1937-46) ... 145 12719
Steffen, W. S., Locking mounting for galvanometers, U. S. patent ... 147 13281
Sorokin, L. V., General course of geophysical prospecting ... 147 13268
Suzuki, Ziro, with Asada, Toshi, On microearthquakes having accompanied aftershocks of the Hukui earthquake of June 28, 1948. 146 12943
Swan, B. G., Index of wells shot for velocity (third supplement) 144 12946
Swift, L. M., Method and apparatus for adjusting spacing between neutron source and detector, U. S. patent 144 12996
—— Casing collar locator, U. S. patent 145 12882
Szurovy, G., Geological structure of the southern part of the great Hungarian plain 146 13013

T

Takahashi, Takehito, and Satô, Yasuo, On the theory of elastic waves in granular substance. I. 144 12533
Tanaka, Toshio, with Kato, Yutshio, On a new astatic magnetometer used for measurement of magnetic properties of rocks. 147 13114
Tarrant, L. H., with Falcon, N. L., The gravitational and magnetic exploration of parts of the Mesozoic covered areas of south-central England, Part II. 147 13302
Tateishi, Tetsuo, Report on seismic prospecting near West Toyama. 147 13228
Tateishi, Tetsuo, with Hayaikawa, Masami, Seismic prospecting at Shimizusawada district in Ishikari coalfield, in Hokkaido. 147 13229
Telchmann, C. F., Radioactive exploration, U. S. patent. 145 12871
—— Radiation detection, U. S. patent. 146 13076
Telchmann, C. F., Lee, B. D., and Lord, A. H., Jr., Prospecting, U. S. patent. 146 13085
Telchmann, C. F., with Stratford, W. M., and Herzh, Gerhard, Prospecting, U. S. patent. 146 13083
Teixeira, Carlos, On a hypothesis of the structure of the Atlantic Ocean. 147 13156
Terry, J. M., with McGaha, S. W., Greater Seminole area of Oklahoma. 145 12842
Test, M. J., and Krasnow, Shelley, Gelier-Müller tube mounting, U. S. patent. 144 12900
Thayer, J. M., and Fearon, R. E., Method and apparatus for neutron well logging, U. S. patent. 146 12997
Thirlaway, H. I. S., Measurements of gravity in Ireland. Gravimeter observations between Dublin, Sligo, Galway, and Cork. 147 13104
Thirlaway, H. I. S., with Cook, A. H., Recent observations of gravity in Wales and the Borders. 145 12708
Thompson, L. G. D., with Misener, A. D., Temperature gradients in Ontario and Quebec. 144 12857
Thompson, L. G. D., with Misener, A. D., and Uffen, R. J., Terrestrial heat flow in Ontario and Quebec. 147 13174
Throts, H. M., Some requirements for future progress in geophysical prospecting. 146 12985
Tiltoxon, Ernest, Seismology in Great Britain, 1949-50. 147 13140
Tiratsoo, E. N., Radioactivity measurements as an aid to geological mapping. 145 12840
—— Petroleum geology. 146 12978
Tittle, C. W., Faul, Henry, and Goodman, Clark, Neutron logging of drill holes: the neutron-neutron method. 147 13246
Tittle, C. W., with Faul, Henry, Logging of drill holes by the neutron, gamma method, and gamma ray scattering. 145 12841
Tolip, L. H., with Falcón, N. L., The gravitational and magnetic exploration of parts of the Mesozoic covered areas of south-central England, Part II. 147 13302
Tocchi, Ivan, Submarine topography of the North Atlantic. 145 12747
Tomkins, E. R., Combination beta and gamma chamber, U. S. patent. 144 12882
Topozer, Max, Contribution to the methods of regional magnetic surveys. 146 12802
Toups, J. C., with Hermont, A. J., Seismic exploration system, U. S. patent. 146 12847
Toups, J. C., with Mcgaha, S. W., Greater Seminole area of Oklahoma. 145 12842
Tso, M. J., and Krasnow, Shelley, Gelier-Müller tube mounting, U. S. patent. 144 12900
Tsehock, D. J., Metal detection apparatus, U. S. patent. 146 12950
Trostov, A. V., The ratio of carbon isotopes contained in meteorites. 145 12770
Trussman, A. E., Report of the Geological Survey Board (Great Britain) for the year 1949. 145 12930
Tsubokawa, Ietsune, On the condition 2 (Isostatic anomaly) $J = \alpha$ minimum a good criterion for determining the thickness of the isostatic earth's crust. 146 12996
—— Dependence of the isostatic depth on the horizontal scale of the topographist be compensated. 146 12997
—— On seismic activities. 146 12942
Tsubokawa, Ietsune, A new type magnetometer. 144 12925
—— Theory of electromagnetic magnetometer using rotating coil-detector. 147 13112
—— G. S. I. precise (first order) magnetometer. 147 13113
Tsubokawa, Ietsune, Harada, Yoshimichi, and Amagai, Shonei, Magnetic survey in the southwestern part of Japan. 144 12529
Tunin, V. S., The telluric method of prospecting and its limitations under certain geologic conditions. 144 12568
Turlygin, S. A., and Kardina, N. A., Nonpolarizable diffusion electrodes. 146 13032
AUTHOR INDEX 259

U

Uffen, R. J., with Misener, A. D., and Thompson, L. G. D., Terrestrial heat flow in Ontario and Quebec.. 147 13174

Uganda Protectorate, Geological Survey, Summary of progress for the years 1929 to 1949 with appendix of analyses of rocks and minerals from Uganda and graphs of mineral output...... 147 13194

Ulrich, F. P., with Murphy, L. M., United States earthquakes 1948.. 147 13157

Ulrich, F. P., with Roberts, E. B., Seismological activities of the U. S. Coast and Geodetic Survey in 1949.. 147 13139

Union of South Africa, Department of Mines, Annual report, including reports of the Government Mining Engineer and the Geological Survey for the year ending 1949.. 147 13193

Urey, H. C., with Epstein, Samuel, Buchsbaum, Ralph, and Lowenstam, H. A., Carbonate-water isotopic temperature scale.. 145 12777

Usami, Tatsuo, On the effect of ocean upon Rayleigh waves.. 146 12933

U. S. Geological Survey, Total intensity aeromagnetic maps of New Mexico.. 144 12834

U. S. Geological Survey, Total intensity aeromagnetic maps of Indiana.. 145 12820

U. S. Geological Survey, Total intensity aeromagnetic maps of Minnesota.. 145 12919

U. S. Geological Survey, Total intensity aeromagnetic maps of Missouri.. 146 12997

Utashiro, Shinkichi, with Kato, Yoshio, Investigation of the sudden commencement of the magnetostatic storm by induction magnetograph.. 146 12907

Utashiro, Shinkichi, with Kato, Yoshio, and Ossaka, Justo, On the changes of the terrestrial magnetic field accompanying the great Nankaidō earthquake of 1946.. 146 12914

Utashiro, Shinkichi, with Kato, Yoshio, and Ossaka, Justo, On the changes of the terrestrial magnetic field accompanying the Tochigi earthquake of Dec. 26, 1949.. 146 12913

Utashiro, Shinkichi, with Kato, Yoshio, Shoji, Rikii, Ossaka, Justo, Hayashi, Masaki, and Inaba, Fumio, On the changes of the earth current and the earth's magnetic field accompanying the Fukui earthquake.. 146 12912

V

Vacquier, V. V., and Mufly, Gary, Method and apparatus for measuring the values of magnetic fields, U. S. patent.. 145 12846

Vacquier, Victor V., Steenland, N. C., Henderson, R. G., and Ziet, Isidore, Interpretation of aeromagnetic maps.. 147 13207

Valk, Raoul, Regional correction of gravity data.. 146 12984

Valerius, C. N., and Von Croy, Stefan, Case history of Benton Field, Bossier Parish, La.. 144 12543

Valle, P. E., The Ionian earthquake of April 22, 1948.. 146 12899

Van der Merme, J. H., The influence of convection on measured borehole temperature.. 145 12774

van Erkelens, C. H., Gravity survey in the Leigh Creek area.. 144 12626

Van Mieghem, J. see Mieghem, J. Van.

Vas'ilev, F. I., Determination of the absorption coefficient of seismic waves.. 147 13220

Vecchia, Orlando, Geophysical exploration of a lead-zinc vein at Mottarone in the Provincia di Novara (Piemonte).. 147 13236

Veldkamp, J., Geomagnetic anomalies in the Netherlands.. 146 12917

Vening Meinesz, F. A., A remarkable feature of the earth's topography.. 147 12857I

Verhoogen, Jean, The adiabatic gradient in the mantle.. 147 12856

Verhoeven, F. H., Fluid motion of earth's interior as inferred from geomagnetism.. 146 12957Q

Vitoslav, S. S., Determination of the pattern of thermal field around buried bodies.. 144 12655

Victoreen, J. A., Ionization chamber, U. S. patent.. 147 12367

Victoreen, J. A., and Barton, R. W., Geiger tube, U. S. patent.. 144 12687

Vinogradov, A. P., in Bogani, N. S., Radioactive disintegration and the radioactive method of the determination of the absolute geologic ages of rocks and minerals.. 147 13170

Voit, Helmrich, The phase difference between computed and observed tides.. 146 12895
<table>
<thead>
<tr>
<th>No.</th>
<th>Abst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>Yoshimatsu, Takasaburo, Changes of earth-current potentials at Kanoya and activities of volcano Sakurajima.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Yiingil, Suhi, Rift valleys and some tectonic results of the Hatay gravity survey.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>145</td>
<td>Yuste Garride, Enrique, with Lucas Ortue, Ranion de, Magnetic materials.</td>
</tr>
<tr>
<td>145</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zaitsev, L. P., and Zvolinskei, N. V., Investigation of the frontal wave appearing on the boundary of two elastic media.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zaitsev, L. P., and Zvolinskei, N. V., Investigation of the axis-symmetrical front wave, generated on the plane boundary of two elastic liquids.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>145</td>
<td>Zelman, C. H., Geophysical Survey to the north of Leigh Creek coal field.</td>
</tr>
<tr>
<td>145</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zelt, Isidore, and Henderson, R. G., Magnetic anomalies at high altitudes.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zelt, Isidore, with Vaquier, Victor V., Steenland, N. C., and Henderson, R. G., Interpretation of aeromagnetic maps.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zvolinskei, N. V., with Zaitsev, L. P., Investigation of the frontal wave appearing on the boundary of two elastic media.</td>
</tr>
<tr>
<td>147</td>
<td>Abst.</td>
</tr>
<tr>
<td>147</td>
<td>Zvolinskei, N. V., with Zaitsev, L. P., Investigation of the axis-symmetrical front wave, generated on the plane boundary of two elastic liquids.</td>
</tr>
</tbody>
</table>
Subject Index

Author Abstract

Alaska.
Major shear zones. West 12592
Earthquakes, distribution and frequency, 1939-48. Merrell 12563

Alberta.
Aeromagnetic maps.
Astotin Lake quad. Canada Geol. Survey 13002
Cooking Lake quad. Canada Geol. Survey 13002
Edmonton East quad Canada Geol. Survey 13002
Edmonton West quad Canada Geol. Survey 13002
Leduc quad. Canada Geol. Survey 13002
Morminville quad. Canada Geol. Survey 13002
Mundare quad. Canada Geol. Survey 13002
Redwater quad. Canada Geol. Survey 13002
Snake Hills quad. Canada Geol. Survey 13002
Two Hills quad. Canada Geol. Survey 13002
Willingdon quad. Canada Geol. Survey 13002

Exploration.
Aeromagnetic surveys. O'Malley 12632, 12996
Peace River area. O'Malley 12632
Alaska, earthquakes. Rothé 12655
Alps, structure of basement rocks. Oulianoff 12748
Argentina, radioactivity logging, Comodore Rivadavia oil field. Simonti 12662

Argon.
Age determinations, meteorites. Gerling and Pavlova 12769
Isotope composition in natural gases. Boato, and others 12771
Origin of atmospheric argon. Poole and Delaney 13168
Arkansas, regional geology and geophysics, Ark-La-Tex area. Bryan 12982
Atlantic Coastal Plain, seismic surveys, Long Island area. Oliver and Drake 13133
Atlantic Ocean.
Bottom topography. Tolstoy 12747
Structure. Rothé 12745, 12746
Teixeira 13156

Australia.
Exploration.
Gravity survey, Leigh Creek coalfield. van Erkelens 12826
Leigh Creek coalfield. Williams 12824
Leigh Creek coalfield. Zelman 12808
Moorlands coalfield. Grant 12807
north of Leigh Creek coalfield. Fenner 12836
Magnetic surveys, Middleback Range. Grant 12816

Austria.
Exploration.
Electrical resistivity surveys since 1946. Fritsch 13034
Electrical resistivity surveys, Limburg dam. Fritsch 13040

Belgian Congo.
Exploration.
Electrical resistivity survey of kimberlite dikes. Magnée 12859

Belgium.
Gravimetric map, geologic interpretation. Magnée 12709
Magnetic anomalies. Hoge 12724
Bibliography, geologic time measurements. Marble 12757

Bismuth, natural radioactivity. Faraggi and Berthelot 12951

Brazil. Conselho nacional do petroleo
Report, 1946. 12613

California.
Seismology.
Revised travel times. Gutenberg 12741
Seismic wave velocities from blasts. Gutenberg 12948

Canada. See also the various provinces.
Exploration.
Activity. Rowland 12617
Activity 1950. Nickle and Rowland 12616
Equipment. Oil in Canada 13200
Problems. Weiss 12823, 13217
Seismic surveys of reefs. Weiss 12217
Tectonic approach to oil prospecting. Bichau 13198

Carbon.
Geophysical significance of C14/C12 ratio. McKellar 12852
Isotope ratios in meteorites. Trofimov 12770
Radiocarbon dating of late-Pleistocene events. Flint 13171
Relationship to radioactivity of marine rocks. Burton and Sullivan 13169

China.
Gravity surveys, Tarim Basin. Norin and Ambolt 12710

Chromite, magnetic exploration. Hawkes 12990
Clinometer. Caloi 12955
Coal.
Exploration.
Leigh Creek, Australia. van Erkelens 12986
Williams 12924
Zelman 12808
Moorlands, Australia. Grant 12987
north of Leigh Creek, Australia. Fenner 12936

263
Colombia.
Need for seismic observatory in eastern Andes........ de Castellvi 12754
Continental drift, implications in spherical harmonic development of topography......... Vening Meinesz 12518
Colorado.
Exploration.
Radioactivity measurements, Caribou silver mine.......... Ridland 13242
Continental shelf, seismic surveys, Long Island, N. Y., area Oliver and Drake 13153
Continents.
Distribution........ Jeffreys 13190
Geophysical and geological study, 1949-50........ Woollard 12602
Origin................ Vening Meinesz 13188
Convection currents.
In the mantle........ Vening Meinesz 12957
Instability of fluid sphere......... Jeffreys 13190
Structure of mantle, bearing on possible existence........ Birch 12957
Deformation. See also Earthtides, Orogeny.
Crustal strain characteristics.. Benioff 12957
Crustal warping and gravity anomalies, India........ Glennie 13107
Determination by analyses of repeat geodetic surveys..... Danilov 12793
Displacements accompanying earthquakes:
Ancash, Peru (1946)........ Sligado 12757
Fukui (1948)........ Muto and others 12569
Kwanto (1923)........ Inoue and Ono 12570
Nankaido (1946). Okuda 12571
Wilmington, Calif........ Roberts 12572
Effect of differential movements on formation of folded structures........ Sorskfl 12790
Experimental rupture of salt domes........ Chertkova 12591
Faulting with less formation........ Sorskfl 12788
Flow by gravity........ Gignoix 12785
Global strain accumulation and release........ Benioff 12732
Horizontal movement accompanying earthquakes........ Inoue and Ono 12570
Roberts 12575
Hydrothermal-differential pressure equipment for experimental studies........ Fairbairn 12595
Materials under stress, basic concepts of... Burgess 12597
Mechanical basis for certain geologic structures........ Hubbert 12596
Mechanical questions........ Nadai 12597
Plasticity of rocks, experiments........ Griggs 12597
Stress distributions and faulting........ Haller 12577
Vertical deformation........ Okuda 12571
Deformation and plastic flow... (Colloquium) 12597
Denmark.
Aeromagnetic survey, The Sound.................. Lundbak 12310
Density.
Computation from gravity measurements, Castellana caverns, Italy........ Bonga and others 12623
Marfa basin, Texas, rocks of........ Wilson 12981
Diamonds. Electrical resistivity surveys of kimberlite dikes, Belgian Congo........ Magnée 12539
Earth currents.
Caused by earthquakes Kato and others 12592
stress........ Hiyama 12337
variation of geomagnetic field and temperature........ Grabovskil 12537
volcanic activity........ Yoshimatsu 12332
Investigations at Fürstenfeldbruck Burkhart 12922
Micropulsations during eclipse Kato and Otashiro 12920
Observations in U. S. S. R.. Bondarenko 13130
Origin of........ Haslck 12716
Phase differences........ Kato and Kikuchi 12921
Phase law........ Cardus 12530
Relation to magnetic variations........ Bondarenko 13130
Sudden commencement storms.. Yokouchi 13133
Earthquake-resistant construction........ Dulanto Pinillos 12762
Earthquakes. See also Explosions, Rockbursts.
Causes.
Creep of rocks........ Benioff 12568
Crustal strain characteristics. Benioff 12597
U. S. S. R., May 28, 1948.. Keilis-Borok 12693
Energy........ Tsien 12942
Energy sources........ Nakamura 12545
Strain accumulation and release in..... Benioff 12792
Tilting motion preceding shock... Sassa and Nishimura 12556
Descriptive observations of particular shocks.
Ecuador, Pillaro, Aug. 5, 1949...... Ramirez 12755
Hawaiian Islands, accompanying Mauna Loa eruption........ Finch 12556
Hindu Kush, Feb. 1, and Nov. 21, 1929.......... Mukherjee 12555
India, Assam, Aug. 15, 1930........ Malurkar 12736
Tillotson 13162
Assam, eye-witness account...... Kingdon-Ward 13163
Punjab, Shâhîkot, Sept. 1943...... Auden 13144
Ionian Sea, Apr. 22, 1948........ Valle 12939
Italy, Gran Sasso........ Di Filippo and Marcetti 12938
Peru, Ancash, Nov. 10, 1946..... Sligado 12757
Quebec, St. Lawrence, Mar. 1, 1925........ Hodgson 12558
Turkey, Karaburun, July 23, 1949.. Pinar 12940
Distribution and frequency.
Alaska, 1939-40........ Merrell 12683
Algeria........ Rothé 12565
SUBJECT INDEX

Earthquakes—Continued

Distribution and frequency—Con.

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>General...</td>
<td>Gutenberg and Richter 12561, 12562</td>
</tr>
<tr>
<td>Rey Pastor</td>
<td>12560</td>
</tr>
<tr>
<td>Japan</td>
<td>Tsuboi 12942</td>
</tr>
<tr>
<td>Moldavian S. R.</td>
<td>Medvedev 12753</td>
</tr>
<tr>
<td>New Zealand, 1948</td>
<td>Hayes 12751</td>
</tr>
<tr>
<td>Northwestern Alps</td>
<td>Montandon 12750</td>
</tr>
<tr>
<td>Periodicity</td>
<td>Paul 12591</td>
</tr>
<tr>
<td>Scotland, 1916-49</td>
<td>Dollar 13158</td>
</tr>
<tr>
<td>South Africa, 1938-44</td>
<td>Krige and Maree 13161</td>
</tr>
<tr>
<td>Spain, 1948</td>
<td>Due Rojo 12752</td>
</tr>
<tr>
<td>Spain, Alicante</td>
<td>Rey Pastor 12564</td>
</tr>
<tr>
<td>United States, 1948..</td>
<td>Murphy and Ulrich 13157</td>
</tr>
<tr>
<td>U. S. S. R., central Caucasus-Levitska© 12749</td>
<td></td>
</tr>
<tr>
<td>World, 1947-48...</td>
<td>Rothé 12941</td>
</tr>
</tbody>
</table>

Effects.

Damage to bridge piers........ Konishi 12949 |
| Konishi and Goto 12948 |
| Kato and others 12912 |
| Gravity variation, Imalchi, Japan... Iida and others 13106 |
| Land deformation, Ancash, Peru. Silgado 12757 |
| Fukui, Japan...... Muto and others 12699 |
| Kwanto district, Japan... Inone and Ono 12570 |
| Nankaidō, Japan..... Okuda 12571 |
| Wilington, Calif., oil field... Roberts 12572 |
| Magnetic changes...Kato and others 12912,12913 |
| Kato and Uşasbiro 12914 |

Instrumental studies of particular shocks.

Chile, Aug. 28, 1946..Caloi and Peronaci 12557 |
| Ecuador, Pillileo, Aug. 5, 1949... Ramirez 12755 |
| Italy, Lipari Islands, Apr. 13, 1938 Caloi and Glorgi 12758 |
| Italy, lower Tirano, Mar. 16, 1941 Caloi and Peronaci 12740 |
| Peru, Satipo, Nov. 1, 1947 Goller 12559 |

Magnitude.

Microearthquakes in Japan.... Asada and Suzuki 12943 |
| Suzuki and Asada 12944 |
| Scale in Italy... Di Filippo and Marcelli 12654 |

Mechanism at focus.

Atlantic Ocean, Nov. 25, 1941. Di Filippo 12550 |
| North Pacific... Hodgson and Mine 13155 |
| Sicily, Mar. 16, 1941... Di Filippo 12551 |

Earth tides.

Artesian pressures affected by.... George and Romberg 12766 |
| Phase difference........ Volt 12695 |
| Schwager’s differential equation for... Boaga 12703 |

Ecuador.

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuador</td>
<td>Pillileo, Aug. 5, 1949... Ramirez 12755</td>
</tr>
</tbody>
</table>

Education.

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado School of Mines... Hollister 12612</td>
<td></td>
</tr>
</tbody>
</table>

Elastic constants.

Poisson’s ratio at high pressures and temperatures... Hughes and Cross 13149 |
| Variation with saturation and porous media......... Gassmann 13148 |

Elasticity, revised theory of... Murnaghan 13132 |

Elastic properties of rocks and minerals.

Crep characteristics... Benioff 13268 |
| Technique for study of crystals... Birch 12594 |

Elastic waves.

Boundary waves

Zaitsev and Zvolinskii 13143,13144 |
| Flexural waves, air coupled waves in floating ice, experimental observations of... Press and others 12733 |
| in granular substances... Försch 13141 |
| General... Leet 12531 |
| Generation of, boundary conditions for... Sató 12534 |
| Love waves in viscoelastic media... Monzel 12337 |

Propagation of, in anisotropic media... Poeverlein 12335 |
| in floating ice sheet... Press and Ewing 12346 |
| in granular substances... Takahashi and Sató 12333 |
| in liquid medium... Sretenskil 12356 |
| in three-layered liquid half space Officer 12731 |
| in plane-parallel plates... Angenheister 13142 |
| in visco-elastic media... Nakamura 12253 |
| through packing of spheres... Gassman 13147 |
| Rayleigh waves in elastic and firmo-viscous media... Caloi 13151 |
| Surface waves, amplitude and velocity of dispersive waves... Homma 12730 |
| dispersion of, in multi-layered media... Haskell 12315 |
| irrelevant roots of Rayleigh-wave equations for... Fu 12729 |
| Travel time, theoretical determination... Kikaz 12324 |
| Velocities at high pressures and temperatures... Hughes and Cross 13149 |
| Velocity of, in porous media... Gassmann 13148 |
| in sedimentary rocks, measurements by pulse method... Hughes and Jones 12826 |

Electrical exploration.

Airborne surveys... Lundberg 12653 |
| Conducting sphere in time-varying magnetic field... Walt 13231 |
| Dam sites... Petrucci 12328 |
| to determine effectiveness of grouting... Fritsch 13309 |
| Dipole sounding, theory of... Alpin 12547 |
| Ground-water prospecting... Gohara 13035 |
| Petrucci 12328 |
| in French West Africa... Breuse 12635 |
| in Iceland, for artesian hot water... Bödvarsson 13201 |
Author Abstract

Electrical exploration—Continued

Ground-water prospecting—Con.

in Illinois glacial drift

Foster and Buhle 13036

in Nyasaland........ Bell and Garson 13041

in Orange Free State, Weisz and Frost 12837

Highway engineering problems.. Moore 13037

Pennsylvania Turnpike........

Scharon and Cleaves 13038

Potential-drop-ratio measurements

in structural investigations. Metzger 12834

Resistivity curves in vertical

sounding. Alfano 12333

Resistivity in-hole-surface measure-

ments. Clark and Salt 13234

Resistivity reconnaissance in civil

engineering. Pendley 13039

Resistivity survey, at Medicine

Lake, Montana........ Edwards 12835

in Austria........ Prisch 12694

in lead-zinc vein, Monte Mot-
tarone, Italy. Vecchia 13236

in kimberlite dikes, Belgian

Congo. Magnée 12839

in Oshirabetsu graphite mine,

Japan........ Satô and Shibato 13239

Yokota mine, Japan........ Murozumi 13238

Screening effect of conductive

layers over vertical vein. Mukhina 12649

Self-potential curves, effects of

anisotropy of media. Itô 13028

Self-potential generating mechan-

ism, experiments. Nakabayashi and Fujiwara 12660

Self-potential surveys, Hanaoka

Mine, Japan........ Satô 13237

lead-zinc vein, Monte Motta-
tarone, Italy. Vecchia 13236

Oshirabetsu graphite mine,

Japan........ Satô and Shibato 13239

Yokota mine, Japan........ Murozumi 13238

Telluric methods........ Tuman 12648

advantages. Migaux 12838

Telluric surveys, Rhône-Saône

basin, France........ Goguel 12604

Electrical logging—Continued

Interpretation—Continued

porosity-permeability measure-

ments in secondary-recovery

Barber 13244

Methods of high-frequency ca-

pacity measurements........

Jansen and Schuster 13052

Recent developments... Dell and Martin 12656

Selective self-potential......... Doll 12657

Electrical potential, from propagation

eof elastic waves............... Ivanov 12339

Electrical properties of rocks and

minerals.

Conductivity, analogy with dif-

fusion................ Klinkenberg 12833

in Bradford sand........ Keller 12832

thermal variation. Kato and Noritomi 13138

Resistivity, seasonal variation........ Kitauma 13135

near Kakioka Observatory........ Yanagihara 13134

of magnetite................ Grabovski 13137

Electromagnetic exploration

Induction impulse method for
detection of petroleum........ Müller 13033

Interpretation problem........ Slichter 13029

Modification of Elbaf method....... Keunecke 13030

New type earth-inductor........ Kato and Shoji 13031

Radio methods................ Fritsch 12652

Transient methods, theory........ Wait 12631

Theory of propagation of waves in

thin layers................ Abelds 12651

Electromagnetic waves, propagation of

earth's surface........ Nōmura 13232

Electrodes, nonpolarizable diffusion..

Turygin and Karelina 13032

Engineering applications of geophysics.

Electrical surveys in civil engineer-
ing........ Pendley 13039

Electrical exploration of founda-
tion sites........ Petreucil 13235

Electrical resistivity surveys to
determine effectiveness of

grouting................ Fritsch 13040

General................ Anden 12968

Institution of Civil Engineers 12980

Highway engineering problems... Moore 13037

Pennsylvania Turnpike......

Scharon and Cleaves 13038

England.

Gravity measurements, New-
castle-on-Tyne.... Browne and others 12999

York.................. Browne and others 12999

Exploration.

Gravity surveys, south-central

England........ Falcon and Tarrant 13002

Midlands coalfield... Nature 12988

Magnetic survey, of Armadale

Dyke........ Bruckshaw 12615
SUBJECT INDEX

England—Continued

Exploration—Continued
Gravity surveys—Continued
south central England
Falcon and Tarrant 13202

Exploration.
Accuracy factors
Smith 12974
Activity in Canada
Rowland 12617
Activity in Canada, 1950
Nickle and Rowland 12616
Activity in Saskatchewan, 1948-50
Saskatchewan Dept. of Natural Resources 12971
Activity in 1950
Eckhardt 12969
Kelly 12970

Avenue for progress
Canada, methods of operation,
1951
Oil in Canada 13200
problems
Weiss 12828
Development and future
Rust 12992
Future
Beers 12964

Wagoner 12961

General
Cantos Figuerola 12797

Gulf of Mexico
Jones and Mason 12983

History
Kelly 12969

Instruments and methods
Whetton and Myers 12609

Methods, review of
Nettleton 12908

Mining geophysics
Keunecke 12976

New developments
Neuman 12967

Nonstructural hypothesis
Rosaire 12973

Old log data as tool
Bowles 13047

Regional stratigraphic analysis as guide
Krumbein 12975

Requirements for progress
Thralls 12965

Research problems
Herzog 12611

Tectonic approach to, in western Canada
Biebou 13198

Trends in mining geophysics
Lundberg and Wilson 12965

Working relations between geo-

physicists and geologists
Coates 12798

Explosions.
Field studies of surface waves generated
Dobrin and others 13224

Propagation of seismic disturb-
ance in shale
Ricker and Sorge 13223

Secondary pressure-bubble pulses
Epinat’eva 13222

Seismic observations, at Corona,
California
Gutenberg 12546

at Haslach, Germany
Rothé and Peterschmitt 12548

Fürtisch 13192

at Pavia, Italy
Aliverti and Solaini 12545

Vibration effects
Fish 13025, 13027

Leet 12820

Vibrations, general
Leet 13023

effects on buildings
Kats and Puchkov 12905

generation and measurement
Fish 13024

reduction by short delay initia-
tion
Fish 13026

088250—52—7

Geology and geophysics, address
Fleming 12603

Geophysical case histories. Louisiana,
Benton field
Valerius and Von Croy 12643

Delhi field
Hollingsworth 12803

Texas, north Snyder area
Clayton 12944

Geophysical frontiers
Wagoner 12961

Germany.

Exploration.
Seismic surveys, Ems basin
Closs 13017

Glaciers.
Methods for determining thick-
ness
Bourgin 12610

Seismic exploration, Switzerland.
Susstrunk 13022, 13227

Seismic investigations, Switzer-
land
Mercanton 12642

Seismic surveys, Greenland ice cap
Brockamp 12827

Temperature in accumulating snowfield
Benfield 13173

Gravitational exploration.
Interpretation, combined analysis
of gravity and magnetic data
Garland 12619

geologic considerations in eval-
uation of residual gravities
Gabriel 12621

second derivative methods
Elkins 12620

torsion balance data
Hassel 12985

Recent developments in
Hammer 12618

of reefs and porosity maxima
Klaus and Hughes 12806
Author Abstract

Gravitation exploration—Continued

Surveys, Australia, Leigh Creek coal field ... van Erkelens 12626
Williams 12842
Zelman 12808
Moorlands coal field, Australia. Grant 12807
north of Leigh Creek coalfield. Fenner 12825
France, Saône-Rhône basin Goguel 12804
Hungary, southern plain Szurovy 13018
Mexico, north of Isthmus of Tehuantepec Cornejo Toledo 12627
New Mexico lead-zinc ores Barnes and others 12806
Ontario, Clare River syncline area Fitzpatrick 12622

Gravity.

Anomalies, in Cuddapah basin, India Glennie 13107
Large, origin of Heiskanen 12907 K preliminary investigation of, in U. S. and Canada Claridge 12898
relation to anticlines, U. S. S. R. Donabedov and Meshcherëkov 12900
residual and regional, least squares determination Aages 13094
Attraction of prismatic bodies Niem 12516
Deflection of the vertical Robbins 12514
calculation from gravity anomalies Cook 13099
In mountains Wegener 13100
Regional surveys, England, Midlands coal Nature 12886
Ireland Thirlaway 13104
Italy, Milan Solalini and Cunietti 13105
near Trieste Morelli 13097
Padova-Trieste Morelli 12715
Oahu.................. Woollard 12707
Tarim Basin, China Norin and Ambolt 12716
Turkey, Amik plain, Hâsy province Yüngül 12901
Wales and the Borders Cook and Thirlaway 12708
Relation of gradient to magnetic anomalies Morelli 12899
Tidal variations Reford 12704
harmonic analysis Hoekinmon 12705
observations of, in Pecos County, Tex George and Romberg 12976
Value at the equator Jůdiçe 12714
Variations of, Æôütô experiment Scéliyê 13098
following earthquake at Imaichi, Japan Iida and others 13106

Gravity Instruments

Gravimeters, astatic, demagnetization of Cunietti 12701
Atlas Aquilina 12517
Worden no. 50 Morelli 13097
Pendulium, elasticity correction of Curtis 13096

Gravity map, of Belgium Magnèe 12709
Gravity measurements, at sea Worzel and Ewing 12522

Author Abstract

Gravity measurements—Continued

at Castellana caverns, Italy Bosga and others 12623
cartographic requirements for Lozano Calvo 12315
corrections of regional gradients Vajk 12894
declination Berroth 12893
England, at Newcastle-on-Tyne Browne and others 12899
at York Browne and others 12899
Moscow Boulanger 12319
Obî-Garm, Tadzhik, S. S. R. Boulanger 12320
Scotland, at Aberdeen Browne and others 12899
at Edinburgh Browne and others 12899
mapping and charting laboratory program Heiskanen 13095
present status of Haakel 12892
Pulkovo-Leningrad tie Boulanger 12321

Great Britain.
Geological Survey Board Report, 1949 Trueman 13030
Seismological activities, 1949-50 Tillotson 13140

Greece.
Volcanoes, Santorin eruption, 1939—41 Georgalas 13178
Greenland.
Seismic survey of ice cap Brockamp 12827
Gulf of Mexico.
Exploration in Jones and Mason 12983
Harmonic analysis Bernasconi 13064

Hawaiian Islands.
Gravity reconnaissance survey, Oahu Woollard 12707
Volcano Observatory report, 1948 Finch and Macdonald 13177
and 1949.... Finch and Macdonald 13177

Heat.
Balance in earth Lüôstîkh 13187
as basis for measurement of time Quiring 12773

Generation of, by radioactive bodies Jung 12580
Temperature in accumulating snowfield Benfield 13173
Temperature measurements, influence of convection in borehole measurements Van der Merwe 12774
multi-thermometer method Mossop 12953
Thermal conductivity, method of integration of one-dimensional equation Kœebêke 12772
Thermal gradient, average Kraskovskil 13172
determination from elastic wave velocities Verhoogen 12586
in India Hagen 12899
in mines Wijffels 12588
in Ontario Misener and Thompson 12587
in Quebec Misener and Thompson 12587
in South Africa Hagen 12899
in Texas, Abilene area Jenke 12954
. in U. S. S. R., Dnieper-Donets syncline Belïèkov 12775
in U. S. S. R., salt domes of Emba basin Belïèkov 12776
SUBJECT INDEX

Heat flow, from buried bodies of simple geometric shape
- Vialov 12655

Heat sources, radioactivity of potassium
- Voitkevich 12581

Hindu Kush.
- Earthquakes, Feb. 1, and Nov. 21, 1929
 - Mukherjee 12555

Hungary.
- Gravitational and seismic surveys of the southern plains
 - Szurovy 13018

Iceland.
- Exploration for hot water
 - Bödvarsson 13201

Illinois.
- Electrical resistivity and logging of aquifers
 - Foster and Buhle 13036

Indiana—Continued
- Aeromagnetic maps—Continued
 - Floyd County
 - U. S. G. S. 12820
 - Gibson County
 - U. S. G. S. 12634
 - Grant County
 - U. S. G. S. 12820
 - Hamilton County
 - U. S. G. S. 12820
 - Hancock County
 - U. S. G. S. 12820
 - Harrison County
 - U. S. G. S. 12820
 - Hendricks County
 - U. S. G. S. 12634
 - Henry County
 - U. S. G. S. 12820
 - Jackson County
 - U. S. G. S. 12998
 - Jay County
 - U. S. G. S. 12998
 - Jefferson County
 - U. S. G. S. 12820
 - Jennings County
 - U. S. G. S. 12820
 - Lawrence County
 - U. S. G. S. 12820
 - Madison County
 - U. S. G. S. 12820
 - Monroe County
 - U. S. G. S. 12998
 - Montgomery County
 - U. S. G. S. 12634
 - Morgan County
 - U. S. G. S. 12820
 - Ohio County
 - U. S. G. S. 12634
 - Orange County
 - U. S. G. S. 12634
 - Owen County
 - U. S. G. S. 12820
 - Parke County
 - U. S. G. S. 12820
 - Perry County
 - U. S. G. S. 12634
 - Putnam County
 - U. S. G. S. 12634
 - Ripley County
 - U. S. G. S. 12820
 - Rush County
 - U. S. G. S. 12998
 - Scott County
 - U. S. G. S. 12820
 - Shelby County
 - U. S. G. S. 12820
 - Switzerland County
 - U. S. G. S. 12998
 - Tippecanoe County
 - U. S. G. S. 12634
 - Tipton County
 - U. S. G. S. 12820
 - Vanderburgh County
 - U. S. G. S. 12634
 - Vermillion County
 - U. S. G. S. 12634
 - Warren County
 - U. S. G. S. 12634
 - Washington County
 - U. S. G. S. 12820

Internal constitution of the earth.
- Core, composition of...
 - Bullen 12960
- density of, seismologic evidence for...
 - Gutenberg 12796
- depth of, from records of Aug. 28, 1946 earthquake...
 - Caloi and Peronaci 12557
- inner core radius, seismologic evidence for...
 - Gutenberg 12736
- S waves, theoretical travel times for...
 - Bullen 12925
- Crust, composition of...
 - Nature 12947
- general...
 - Engel 12743
- structure of...
 - Gutenberg 12744
- structure of, from seismic records of Haslach explosion...
 - Förtsch 13162

Internal constitution of the earth.
- Core, composition of...
 - Bullen 12960
- density of, seismologic evidence for...
 - Gutenberg 12796

Aeromagnetic maps, Bartholomew County
- U. S. G. S. 12998
- Blackford County
- U. S. G. S. 12820
- Boone County
- U. S. G. S. 12634
- Brown County
- U. S. G. S. 12820
- Clark County
- U. S. G. S. 12820
- Clinton County
- U. S. G. S. 12634
- Crawford County
- U. S. G. S. 12820
- Dearborn County
- U. S. G. S. 12908
- Decatur County
- U. S. G. S. 12820
- Delaware County
- U. S. G. S. 12820
- Fayette County
- U. S. G. S. 12998

Internal constitution of the earth.
- Core, composition of...
 - Bullen 12960
Internal constitution of the earth—Continued

- Structure of mantle: Birch 12957 O
- Discontinuity at 950 km: Caloi and Peronaci 12746
- Textbooks: Gutenberg 13185
- Ionian Sea: Earthquakes, April 22, 1948: Valle 12939
- Gravity observations between Dublin, Sligo, Galway and Cork: Thirlaway 13104
- Iron: Magnetic exploration surveys, Middle East Range, Australia: Grant 12816
- Isostasy: Depth of compensation, criterion for dependence on horizontal dimensions: Tsuboi 12896
- Fennoscandian uplift: Heiskanen 12957
- IUGG 1948 report: Heiskanen 12712
- Wales: Cook and Thirlaway 12708
- Isotope geology, carbonate-water isotopic temperature scale: Epstein and others 12777
- Measurement of paleotemperatures: Urey and others 12775
- Italy: Earthquakes, Gran Sasso: Di Filippo and Marcelli 12986
- Lipari Island, Apr. 13, 1938: Caloi and Giorgi 12796
- Electrical surveys of lead-zinc vein, Monte Mottarone: Vecchia 13236
- Gravity, measurements in Casteljana caverns: Bouga and others 12623
- Regional survey, Milan: Solaimani and Cunietti 13105
- Regional survey, Padova-Trieste: Morelli 12715
- Magnetic maps: Digiesi 13221
- Volcanoes, Etna eruption, November 1950: Arrigo 12781
- Japan: Land deformation, Fukui 1948 earthquakes: Muto and others 12569
- Kwanto 1923 shock: Inoue and Ono 12570
- Nankaido, magnetic changes: Okuda 12571
- Magnetic disturbances: Bays, classification of: Martyn 13124
- Causes: Kato 12912
- Classification: Hirayama 13125
- Peak variations: Imamizu 13123
- Periodicity: Paul 12891
- Storms, associated with ionospheric disturbances: Chapman 12717
- Causes of: Martyn 13124

Japan—Continued

Earthquakes.
- Fukui, damage to bridge piers: Konishi and Goto 12946
- Earth current changes: Kato and others 12912
- Magnetic changes: Kato and others 12913
- Microearthquakes accompanying aftershocks: Asada and Suzuki 12943
- Kwanto, deformation of land: Inoue and Ono 12570
- Magnetic changes: Kato and Utashiro 12914
- Deformation of land: Okuda 12571
- Magnetic changes: Kato and others 12913

Exploration.
- Electrical surveys, Hanaoha mine, Akita-ken: Sato 12337
- Hokkaido, Oshibetsu mine: Sato and Shibato 13239
- Yakotu Mine: Murozumi 12338
- Seismic surveys, Hanaoha mine, Akita-ken: Sato 12337
- Ishikari coalfield, Hokkaido: Hayakawa and Tateishi 13229
- Jibun coal fields: Kato and others 13230
- Near west Toyama: Tateishi 13238
- Near Sakto, Nagasaki-ken: Hayakawa and Mori 13230
- Latitude variation: Cox 12967 P
- Related seismic phenomena: Cecchini 12966

Lead.
- Gravity surveys, New Mexico: Barnes and others 12806
- Lead-zinc exploration, electrical surveys for, at Monte Mottarone, Italy: Vecchia 13236
- Least squares adjustment: Smith 13083

Louisiana.
- Exploration: Benton field: Valerius and Von Croy 12643
- Delhi field: Hollingsworth 12803
- Regional geology and geophysics, Arka-Lex area: Bryan 12982
- Magnetic anomalies, relation to gravity gradient: Morelli 12809

Basic Seismic Phenomena.
- Faults, classification of: Romaña 12911
- Causes: Kato 12906
- Classification: Hirayama 13125
- Peak variations: Imamizu 13123
- Periodicity: Paul 12891
- Storms, associated with ionospheric disturbances: Kato 12910
- Causes of: Chapman 12717
- Alfven 13125
- Martyn 13124
Magnetic disturbances—Continued
Storms—Continued
sudden commencement.......... Kato and Utashiro 12907
at Allbäg................. Chakrabarty 13128
at Lerwick................. McIntosh 13120
diurnal frequency of Ferraro 13127
variations of cosmic-ray inten-
sity................. Kato and Kanno 12908
Magnetic exploration.
Airborne methods, advances in 1950........... Lundberg and Wilson 12995
General................. Sans Huelin 13209
Two-level profile............. Hoylman 12817
Interpretation of aeromagnetic
maps........................ Vaquier and others 13027
combined analysis gravity and
magnetic data................ Garland 12619
Surveys, airborne survey of Peace
River area, Alberta........... O'Malley 12932
artesian hot water, Iceland..... Bördvarsson 13201
Australia, Middleback Range— Grant 12816
England, Armathwaite Dyke.... Bruckshaw 12815
Ground investigations, aeromag-
etic anomalies............. Abraham 12818
Harding 13208
igneous pipes in central Ozarks— Holmes 12931
Japan, Oshirabetsu graphite
mine......... Saké and Shibato 13239
Magnetite deposits, island of
Tiree, Scotland............ Whetton and Myers 13205
Ontario, Joburke area........ Prest 13204
Wales, Benallt manganese mine, Caernarvonshire........ Groves 12929
Magnetic field of the earth.
Anomalies, at high altitudes..... Zietz and Henderson 12722
possible relation to metamor-
phism........................ Weaver 13120
Changes due to earthquakes
Kato and others 12912
Kato and Utashiro 12914
Kato and others 12913
Effect, on earth currents........ Kato and Utashiro 12920
on invar pendulums.......... Boulanger 12902
of solar eclipse........... Kato and Utashiro 12900
General.................... Chapman 12523
High altitude observations.... Maple and others 12919
Inferences on motion in earth's
interior.................... Vestine 12957Q
Influence of ocean........... Shulekin 12827
Magnetic conditions and anticy-
clonic development......... Sparkman 13122
Measurements, airborne survey,
The Sound.................... Lundbæk 13210
deviation trends in New Zea-
land................. Beagley and Bullen 12721
988250—52——8
<table>
<thead>
<tr>
<th>Magnetic properties of rocks and minerals—Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptibility, effect of magnetite state________</td>
</tr>
<tr>
<td>Nagata and Watanake 12916</td>
</tr>
<tr>
<td>Marfa basin, Texas__________ Wilson 12961</td>
</tr>
</tbody>
</table>

Magnetic storms. See Magnetic disturbances.

Magnetic surveys. Airborne, advantages and limitations... Hensen 12993
Alberta... O'Malley 12996
methods and uses... O'Malley 12994
Chromite exploration... Hawkes 12990
Crypto-volcanic structure, Ohio... Sappenfield 12814
Regional, methods... Toperczer 12902
southeastern New York... Veldkamp 12817

Magnetism. Domain theory... De Barr 13110
Hysteresis effect... Aarts 13111
Recent hypothesis... Lucas Ortueta and Yuste Garride 12811

Magnetite. Effect of alternating compressive stresses on magnetic properties... Finger 13118
Effect on susceptibility of rocks... Kato 12915
Variation of resistivity under magnetization... Grabovskii 13137

Manganese. Exploration.
Magnetic surveys Benallt mine, Wales... Groves 12629

Maps.
Aeromagnetic.
Alberta, Astoten Lake quad... Canada Geol. Survey 13002
Cooking Lake quad... Canada Geol. Survey 13002
Edmonton East quad... Canada Geol. Survey 13002
Edmonton West quad... Canada Geol. Survey 13002
Leduc quad... Canada Geol. Survey 13002
Morinville quad... Canada Geol. Survey 13002
Mundare quad... Canada Geol. Survey 13002
Redwater quad... Canada Geol. Survey 13002
Snake Hills quad... Canada Geol. Survey 13002
Two Hills quad... Canada Geol. Survey 13002
Willingdon quad... Canada Geol. Survey 13002
Alberta Islands... Vaucquer and others 13207
Arizona Backed area... Vaucquer and others 13207
Indiana, Bartholomew County... U. S. G. S. 12998
Blackford County... U. S. G. S. 12820
Boone County... U. S. G. S. 12834
Brown County... U. S. G. S. 12830
Clark County... U. S. G. S. 12820
Clinton County... U. S. G. S. 12834
Crawford County... U. S. G. S. 12820
Dearborn County... U. S. G. S. 12968

New Brunswick, Bathurst quad... Canada Geol. Survey 13005
California Lake quad... Canada Geol. Survey 13211
Point Vert quad... Canada Geol. Survey 12990
Tetagouche Lakes quad... Canada Geol. Survey 12990
<table>
<thead>
<tr>
<th>Maps—Continued</th>
<th>Author Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromagnetic—Continued</td>
<td></td>
</tr>
<tr>
<td>New Mexico, De Baca County</td>
<td>U. S. G. S. 1933</td>
</tr>
<tr>
<td>Guadalupe County</td>
<td>U. S. G. S. 12933</td>
</tr>
<tr>
<td>San Miguel County</td>
<td>U. S. G. S. 12933</td>
</tr>
<tr>
<td>Northwest Territories, Hornby</td>
<td></td>
</tr>
<tr>
<td>Channel quad</td>
<td>Canada Geol. Survey 13212</td>
</tr>
<tr>
<td>Prosperous Lake quad</td>
<td>Canada Geol. Survey 13001</td>
</tr>
<tr>
<td>Quyta Lake quad</td>
<td>Canada Geol. Survey 13001</td>
</tr>
<tr>
<td>Yellowknife Bay quad</td>
<td>Canada Geol. Survey 13001</td>
</tr>
<tr>
<td>Oklahoma, Mangum area</td>
<td>Vaucquer and others 13207</td>
</tr>
<tr>
<td>Ontario, Arnprior quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Bancroft quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Bannockburn quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Campbellford quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Carleton Place quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Coe Hill quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Kempsville quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Larder Lake quad</td>
<td>Canada Geol. Survey 13007</td>
</tr>
<tr>
<td>Merrickville quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Ottawa quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Perth quad</td>
<td>Canada Geol. Survey 13000</td>
</tr>
<tr>
<td>Pennsylvania, Appalacian Plateau</td>
<td>Vaucquer and others 13207</td>
</tr>
<tr>
<td>Quebec Abitibi County</td>
<td>Canada Geol. Survey 13213</td>
</tr>
<tr>
<td>Amos quad</td>
<td>Canada Geol. Survey 13004</td>
</tr>
<tr>
<td>Clerky quad</td>
<td>Canada Geol. Survey 13003</td>
</tr>
<tr>
<td>Desboes quad</td>
<td>Canada Geol. Survey 13005</td>
</tr>
<tr>
<td>Fourniere quad</td>
<td>Canada Geol. Survey 13004</td>
</tr>
<tr>
<td>Nasaraite River quad</td>
<td>Canada Geol. Survey 13004</td>
</tr>
<tr>
<td>Kinojevis County</td>
<td>Canada Geol. Survey 13213</td>
</tr>
<tr>
<td>La Motte quad</td>
<td>Canada Geol. Survey 13003</td>
</tr>
<tr>
<td>Maastricht quad</td>
<td>Canada Geol. Survey 13003</td>
</tr>
<tr>
<td>Opasenica quad</td>
<td>Canada Geol. Survey 13006</td>
</tr>
<tr>
<td>Palmaraole River quad</td>
<td>Canada Geol. Survey 13006</td>
</tr>
<tr>
<td>Taschereau quad</td>
<td>Canada Geol. Survey 13003</td>
</tr>
<tr>
<td>Teniscamingue County</td>
<td>Canada Geol. Survey 13213</td>
</tr>
<tr>
<td>Sound between Denmark and Sweden</td>
<td>Lundbak 13210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gravity—Continued</th>
<th>Author Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trieste</td>
<td>Morelli 13097</td>
</tr>
<tr>
<td>Turkey, Amik plain, Hatay province</td>
<td>Yüngül 12901</td>
</tr>
<tr>
<td>Austria and Saxonoy</td>
<td>Fritsch 13136</td>
</tr>
<tr>
<td>Belgium</td>
<td>Hoge 12724</td>
</tr>
<tr>
<td>Italy, isogonic</td>
<td>Diglesi 12733</td>
</tr>
<tr>
<td>Japan, 1950</td>
<td>Tsukubokawa 1259</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Velskamp 12917</td>
</tr>
<tr>
<td>New Zealand, 1945-5</td>
<td></td>
</tr>
<tr>
<td>Ontario, Joburke area</td>
<td>Preston 13204</td>
</tr>
<tr>
<td>Quebec, Abitibi County</td>
<td>Canada Geol. Survey 12991</td>
</tr>
<tr>
<td>Abitibi County Bourlamque quad</td>
<td>Canada Geol. Survey 13206</td>
</tr>
<tr>
<td>Scotland, island of Tire</td>
<td>Whetton and Myers 13205</td>
</tr>
<tr>
<td>South-central England</td>
<td>Falcon and Tarrant 13202</td>
</tr>
<tr>
<td>Radioactivity</td>
<td></td>
</tr>
<tr>
<td>Canada, Lake Athabaska</td>
<td>Brownell 13267</td>
</tr>
<tr>
<td>Seismicity</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>Rothé 12565</td>
</tr>
<tr>
<td>Belgium</td>
<td>Hoge 12724</td>
</tr>
<tr>
<td>Spain, Alcaucí</td>
<td>Rey Pastor 12564</td>
</tr>
<tr>
<td>United States, reflection quality</td>
<td>Lyons 13099</td>
</tr>
<tr>
<td>Telluric</td>
<td></td>
</tr>
<tr>
<td>Aquitaine</td>
<td>Migaux 12838</td>
</tr>
<tr>
<td>French Morocco</td>
<td>Migaux 12838</td>
</tr>
<tr>
<td>Mathematics, use in geophysics</td>
<td>Hardtwig 12044</td>
</tr>
<tr>
<td>Metamorphism</td>
<td></td>
</tr>
<tr>
<td>Equipment for experimental studies</td>
<td>Fairbairn 13205</td>
</tr>
<tr>
<td>Possible relation to magnetic anomalies</td>
<td>Weaver 13120</td>
</tr>
<tr>
<td>Mexico.</td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
</tr>
<tr>
<td>Gravity surveys north of Isthmus of Tehuantepec</td>
<td>Cornejo Toledo 12627</td>
</tr>
<tr>
<td>Problems</td>
<td>Rummerfeld 12645</td>
</tr>
<tr>
<td>Michigan.</td>
<td></td>
</tr>
<tr>
<td>Magnetic base stations, iron-mining districts</td>
<td>Bath 13203</td>
</tr>
<tr>
<td>Seism Gravitational, origin</td>
<td></td>
</tr>
<tr>
<td>Magnetic maps</td>
<td></td>
</tr>
<tr>
<td>Becker County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Clearwater County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Douglas County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Grant County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Mahnomen County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Otter Tail County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Polk County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Red Lake County</td>
<td>U. S. G. S. 12819</td>
</tr>
<tr>
<td>Aeromagnetic maps</td>
<td></td>
</tr>
<tr>
<td>Belguim</td>
<td></td>
</tr>
<tr>
<td>France, Auvergne</td>
<td>Magné 12799</td>
</tr>
<tr>
<td>French Morocco</td>
<td>Migaux 12838</td>
</tr>
<tr>
<td>Ireland</td>
<td>Thirlaway 13104</td>
</tr>
<tr>
<td>Mexico</td>
<td>Carreño 13103</td>
</tr>
<tr>
<td>South central England</td>
<td></td>
</tr>
</tbody>
</table>
Minnesota—Continued

Aeromagnetic maps—Continued

Magnetic base stations, iron-mining districts. Bath 13303

Missouri.

Magnetic fields, associated with igneous pipes Holmes 12631

Aeromagnetic maps.

Berryman quad. U. S. G. S. 12997

Higdon quad. U. S. G. S. 12997

Marquand quad. U. S. G. S. 12997

Sullivan quad. U. S. G. S. 12997

Union quad. U. S. G. S. 12997

Weingarten quad. U. S. G. S. 12997

Moldavian S. S. R.

Earthquakes, frequency and distribution of Medvedev 12753

Montana.

Electrical resistivity survey at Medicine Lake Edwards 12833

Netherlands.

Magnetic surveys. Veldkamp 12017

Netherlands East Indies.

Volcanoes, Krakatoa, 1839 activity. Westerveld 13181

New Brunswick.

Aeromagnetic maps.

Bathurst quad. Canada Geol. Survey 13005

California Lake quad. Canada Geol. Survey 13211

Tetagouche Lakes quad. Canada Geol. Survey 13006

Point Vert quad. Canada Geol. Survey 12990

New Mexico.

Gravity surveys for lead-zinc ores. Barnes and others 12806

Aeromagnetic maps.

De Baca County. U. S. G. S. 12633

Guadalupe County. U. S. G. S. 12633

San Miguel County. U. S. G. S. 12633

New York.

Magnetic survey, southeastern part Geyer 12813

Seismic refraction surveys around Long Island Oliver and Drake 13153

New Zealand.

Earthquakes 1948 Hayes 12751

Magnetic map for 1945.5 Baird and Cullington 12725

Magnetic declination trends at Christchurch Beagley and Bullen 12721

Volcanic eruption, Ngauruhoe 1949 Cloud 12784

Ruapehu, 1945 Beck 12783

Northwest Territories.

Aeromagnetic maps.

Hornby Channel quad. Canada Geol. Survey 13212

Prosperous Lake quad. Canada Geol. Survey 13001

Quyta Lake quad. Canada Geol. Survey 13001

Yellowknife Bay quad. Canada Geol. Survey 13001

Nyasaland.

Electrical resistivity surveys, Blantyre-Limbe area Bell and Garson 13041

Ohio.

Magnetic survey, Adams County crypto-volcano structure Sappenfield 12814

Oklahoma.

Radioactivity logging, greater Seminole area McGaha and Terry 12842

Ontario.

Gravity, regional survey of Clare River syncline Fitzpatrick 12622

Heat flow Misener and others 12674

Magnetic exploration, Sudbury district Prest 13204

Magnetic ground investigation of aeromagnetic anomalies Abraham 12818

Harding 13208

Radioactivity, of Cheddar batholith Ingham and Keever 12853

Elzevir batholith Ingham and Keever 12853

Slack and Whitham 12854

Round Lake batholith Slack and Whitham 12854

Seismic prospecting by Poulter method Hodgson 12641

Thermal gradients Misener and Thompson 12857

Aeromagnetic maps.

Armiprior quad. Canada Geol. Survey 13000

Bancroft quad. Canada Geol. Survey 13000

Bannockburn quad. Canada Geol. Survey 13000

Campbellford quad. Canada Geol. Survey 13000

Carleton Place quad. Canada Geol. Survey 13000

Coe Hill quad. Canada Geol. Survey 13000

Kemptville quad. Canada Geol. Survey 13000

Larder Lake quad. Canada Geol. Survey 13000

Merrickville quad. Canada Geol. Survey 13000

Ottawa quad. Canada Geol. Survey 13000

Perth quad. Canada Geol. Survey 13000

Origin of the earth.

Gravitational condensation of dust cloud Gurevich and Lebedinskii 12597

Properties of original cloud Gurevich and Lebedinskii 12598

Orogeny.

Convection current, hypotheses Griggs 12857 L

in mantle Birch 12857 O

Vening Meinesz 12857 N

Deformation in geosynclines Vening Meinesz 12857 I

Earthquakes, mountains and their origin Wilson 13183

Fundamental properties of orogenic belts Bucher 12597 E

Mountain building Hess 12597 M
Orogeny—Continued
Origin, of compressional mountains............. Rich 13184
of geosynclines and mountains............. Bijlaard 12967 F
Theory of mountain range formation........ Jardetzky 12590
Theories, general.................. Bullard 12967 G
Thermodynamic theory........ Glangeaud 12967 H

Oxygen.
Variation of O18 as geologic thermometer........ Epstein and others 12777
Variation of O18 as measurement of Cretaceous temperature........ Urey and others 12778

Paleotemperatures.
O18 temperature scale................ Epstein and others 12777
Upper Cretaceous of England, Denmark, and southeastern U. S........ Urey and others 12778

Patents—Continued
Electromagnetic exploration method........ Barret 12365
Electromagnetic exploration method........ Whitehead and Rosenblum 13076
Electromagnetic metal detector........ Gossick 12839
Tricebock 12860
Flowmeter subsurface................ Morgan and others 12377
Galvanometer and magnet assembly............ Richardson 12887
Galvanometer circuit for multiple channel recording........ Lewis 12382
Galvanometer mounting............... Staff 12381
Geophone, inverteble.................. McLoad 12849
Gravity meter clamping device............ Burry 13059
Logging and drilling device............ Sewell 13092
Low-frequency electrical generator........ Krabbe and Hedstrom 13077
Magnetic compass compensation device......... McNatt 13033
Magnetic detector, Vaseque and Muffy 12846
Magnetic exploration, airborne method........ Puranen and Kahma 12667
Magnetic pole devil.................. Pearson 13061
Magnetic instruments................ Frosch 12672
Scott 12671
Magnetic instrument, airborne electromagnetic instruments........ Bjernson 13075
Magnetic testing devices........ Long 12668, 12669
Magnetometer.................. Muffy 13064
Brattain 13065
Davidson 12670
Magnetometer, airborne........ Haglund 12660
automatically recording........ Miller 12624
electrical bridge compensation system........ Schmitt and Hidy 12353
temperature compensation........ Raspet 12845
unbalanced........ Schmitt 13062
Pendulum compensator................ Cloud 12833
Permeability equalization in borehole............... Cardwell 12694
Permeability measurements in boreholes........ Bird 12688
Porosimeter.................. Hebard 12698
Positron measurements in boreholes........ Bird 12688
Pressure gage................ Clevell 12848
Radioactive location of well leaks........ Hinson 12854
Radioactivity logging................ Hinson 12880
Krasnow and Curtis 12873
Radioactivity logging device........ Crumrine 12693
Radioactivity measuring device........ Bailey 12860
Collman 12864
Constable 12862
Crumrine 12863, 12872
Englekemir and Sugarman 12368
Freeman 12268
Golay 12870
Hersog 12865
Hersog and others 12679
Hopkins and Gilbert 13269
Lahmeyer and Callahan 12869
<table>
<thead>
<tr>
<th>Author Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents—Continued</td>
</tr>
<tr>
<td>Radioactivity measuring device—Continued</td>
</tr>
<tr>
<td>Linder 13087</td>
</tr>
<tr>
<td>Lindeman 13079</td>
</tr>
<tr>
<td>Marsh 12865</td>
</tr>
<tr>
<td>Marshall 12863</td>
</tr>
<tr>
<td>Scherbatskoy 12860</td>
</tr>
<tr>
<td>Segré 13266</td>
</tr>
<tr>
<td>Shenk and Canfora 12861</td>
</tr>
<tr>
<td>Smith and Reisner 12866</td>
</tr>
<tr>
<td>Radioactivity prospecting method.</td>
</tr>
<tr>
<td>Herzog 13081, 13086</td>
</tr>
<tr>
<td>Lord and Pancake 13082</td>
</tr>
<tr>
<td>Menke 12867</td>
</tr>
<tr>
<td>Stratford 13084</td>
</tr>
<tr>
<td>Radioactivity measurements, integration device.</td>
</tr>
<tr>
<td>Wolf 12686</td>
</tr>
<tr>
<td>Seismic detector, adjustable frequency.</td>
</tr>
<tr>
<td>Clewell 13070</td>
</tr>
<tr>
<td>Hawkins and Cornett 12852</td>
</tr>
<tr>
<td>Henson 13066</td>
</tr>
<tr>
<td>Seismic exploration elevated charges in marine apparatus.</td>
</tr>
<tr>
<td>Poulter 12877</td>
</tr>
<tr>
<td>Babb and Smith 12876</td>
</tr>
<tr>
<td>Seismic exploration elevated charges installation.</td>
</tr>
<tr>
<td>Mitchell 12863</td>
</tr>
<tr>
<td>record correlation system.</td>
</tr>
<tr>
<td>Athy and Prescott 12675</td>
</tr>
<tr>
<td>Hawkins 13261</td>
</tr>
<tr>
<td>Seismic records, device for comparing.</td>
</tr>
<tr>
<td>Gaede 12850</td>
</tr>
<tr>
<td>Seismic reflection method.</td>
</tr>
<tr>
<td>Ellis 13074</td>
</tr>
<tr>
<td>Seismograph.</td>
</tr>
<tr>
<td>Carlisle 12851</td>
</tr>
<tr>
<td>Case 13259</td>
</tr>
<tr>
<td>Seismograph blaster time breaker circuit.</td>
</tr>
<tr>
<td>Brownlow 13262</td>
</tr>
<tr>
<td>Seismograph recording system.</td>
</tr>
<tr>
<td>Hermont and Toups 12847</td>
</tr>
<tr>
<td>Seismic waves, directional generation.</td>
</tr>
<tr>
<td>Scott 12864</td>
</tr>
<tr>
<td>Williams 12855</td>
</tr>
<tr>
<td>Torsion balances.</td>
</tr>
<tr>
<td>Jack and Brinker 13259</td>
</tr>
<tr>
<td>Well logging, drilling rate.</td>
</tr>
<tr>
<td>McNatt 12879</td>
</tr>
<tr>
<td>Silverman and Stuart 12692</td>
</tr>
<tr>
<td>electrical.</td>
</tr>
<tr>
<td>Krasnow 12874, 12875</td>
</tr>
<tr>
<td>periodically variable self-potential.</td>
</tr>
<tr>
<td>Doll 12878</td>
</tr>
<tr>
<td>marker system.</td>
</tr>
<tr>
<td>Doll 12877</td>
</tr>
<tr>
<td>multiplex system.</td>
</tr>
<tr>
<td>Neufeld 12995</td>
</tr>
<tr>
<td>neutron, method and apparatus.</td>
</tr>
<tr>
<td>Thayer and Pearson 12697</td>
</tr>
<tr>
<td>radioactivity, locating means.</td>
</tr>
<tr>
<td>McPhee 12876</td>
</tr>
<tr>
<td>source-detector spacing.</td>
</tr>
<tr>
<td>Swift 12995</td>
</tr>
<tr>
<td>Well measurements permeability.</td>
</tr>
<tr>
<td>White 12884</td>
</tr>
<tr>
<td>Well surveying instrument.</td>
</tr>
<tr>
<td>Ring 13088</td>
</tr>
<tr>
<td>Underwater detector.</td>
</tr>
<tr>
<td>Trent 13290</td>
</tr>
<tr>
<td>Underwater seismic detector.</td>
</tr>
<tr>
<td>Frowe 13072</td>
</tr>
<tr>
<td>Underwater seismic exploration method.</td>
</tr>
<tr>
<td>Gaby 13069</td>
</tr>
<tr>
<td>Gallaway 13258</td>
</tr>
<tr>
<td>Subject</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Quebec—Continued</td>
</tr>
<tr>
<td>Aeromagnetic maps—Continued</td>
</tr>
<tr>
<td>Clericy quad</td>
</tr>
<tr>
<td>Desboues quad</td>
</tr>
<tr>
<td>Fournière quad</td>
</tr>
<tr>
<td>Kasanuta River quad</td>
</tr>
<tr>
<td>Kinojevis County</td>
</tr>
<tr>
<td>La Motte quad</td>
</tr>
<tr>
<td>Macamic quad</td>
</tr>
<tr>
<td>Omapaha quad</td>
</tr>
<tr>
<td>Palmarolle quad</td>
</tr>
<tr>
<td>Taschereau quad</td>
</tr>
<tr>
<td>Temiscamingue County</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Radiation surveys.</td>
</tr>
<tr>
<td>Canada, Lake Athabaska</td>
</tr>
<tr>
<td>Radioactive ores, gamma-ray detectors in exploration</td>
</tr>
<tr>
<td>Radioactivity.</td>
</tr>
<tr>
<td>Argon, age determinations in meteorites</td>
</tr>
<tr>
<td>Isotopic composition in natural gases</td>
</tr>
<tr>
<td>Bismuth</td>
</tr>
<tr>
<td>Carbon 12/Carbon 13ratio, geophysical significance</td>
</tr>
<tr>
<td>Isotope ratios in meteorites</td>
</tr>
<tr>
<td>Carbon 14 in late-Pleistocene dating</td>
</tr>
<tr>
<td>Contribution to earthquake heat</td>
</tr>
<tr>
<td>Measurements in geologic mapping</td>
</tr>
<tr>
<td>Potassium, age determinations</td>
</tr>
<tr>
<td>age of atmosphere</td>
</tr>
<tr>
<td>decay constants</td>
</tr>
<tr>
<td>Heat produced</td>
</tr>
<tr>
<td>Potassium-40, half-life</td>
</tr>
<tr>
<td>Initial abundance</td>
</tr>
<tr>
<td>Routhermans and others</td>
</tr>
<tr>
<td>Relationship to carbon content of marine rocks</td>
</tr>
<tr>
<td>Snow and rain</td>
</tr>
<tr>
<td>Radioactivity logging.</td>
</tr>
<tr>
<td>Argentina, Comodoro Rivadavia oil field</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Interpretation</td>
</tr>
<tr>
<td>Interpretation in reef limestone</td>
</tr>
<tr>
<td>Interpretation, porosity of Pale Pinto reef</td>
</tr>
<tr>
<td>Gamma-ray, basic principles</td>
</tr>
<tr>
<td>Methods, neutron-neutron</td>
</tr>
<tr>
<td>neutron-gamma</td>
</tr>
<tr>
<td>Oklahoma greater Seminole area</td>
</tr>
<tr>
<td>Quantitative interpretation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Radioactivity measuring devices.</td>
</tr>
<tr>
<td>Calibration</td>
</tr>
<tr>
<td>Geiger-Müller counters, background counting rate</td>
</tr>
<tr>
<td>COs filling gas</td>
</tr>
<tr>
<td>use in prospecting</td>
</tr>
<tr>
<td>Scintillation counters, counting methods and applications</td>
</tr>
<tr>
<td>measurement of alpha activity of solids</td>
</tr>
<tr>
<td>portable</td>
</tr>
<tr>
<td>ultrasensitive portable</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Radioactivity of rocks and minerals.</td>
</tr>
<tr>
<td>Bourlamaque batholith, Quebec</td>
</tr>
<tr>
<td>Caribou Silver Mine, Colorado</td>
</tr>
<tr>
<td>Cheddar batholith, Ontario</td>
</tr>
<tr>
<td>Elzevir batholith, Ontario</td>
</tr>
<tr>
<td>Round Lake batholith, Ontario</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reefs.</td>
</tr>
<tr>
<td>Exploration of, west Texas</td>
</tr>
<tr>
<td>Exploration problems</td>
</tr>
<tr>
<td>Gravitational exploration</td>
</tr>
<tr>
<td>Seismic exploration, problems in Canada</td>
</tr>
<tr>
<td>Rock bursts, correlation with changes of atmospheric pressure</td>
</tr>
<tr>
<td>Poland, problems and methods of studying</td>
</tr>
<tr>
<td>Review</td>
</tr>
<tr>
<td>Rotation of the earth</td>
</tr>
<tr>
<td>annual displacement of axis</td>
</tr>
<tr>
<td>displacements of axis of</td>
</tr>
<tr>
<td>effect of solar magnetism</td>
</tr>
<tr>
<td>seasonal fluctuations</td>
</tr>
<tr>
<td>Variations in angular velocity from fluctuations in atmospheric and oceanic circulations</td>
</tr>
<tr>
<td>Salt domes, thermal anomalies, Emba basin, U. S. R.</td>
</tr>
<tr>
<td>Samoa.</td>
</tr>
<tr>
<td>Magnetic declination trends at Apai</td>
</tr>
<tr>
<td>Saskatchewan.</td>
</tr>
<tr>
<td>Exploration activity 1948-50</td>
</tr>
<tr>
<td>Scotland.</td>
</tr>
<tr>
<td>Earthquakes, 1916-49</td>
</tr>
<tr>
<td>Gravity measurements, Aberdeen</td>
</tr>
<tr>
<td>Edinburgh</td>
</tr>
<tr>
<td>Magnetic exploration, magnetite deposit, island of Tire</td>
</tr>
</tbody>
</table>
Seismic exploration—Continued

Surveys—Continued

Japan, west Toyma........ Tatsushi 13288
Reef exploration in west Texas: Harris 13016
Seabottom near Sakio, Japan..... Hayakawa and Mori 13320
Southern Hungarian plain.... Szurov 13018
Spain, Baños de la Encina....... Cantos Figueroa 13019
structure Showashizan volcano, Japan........... Kato and Shoji 13021
Switzerland glaciers............. Stüsstrunk 13022
Theory, screening effect of low-velocity layer..........
Berson and Epinat’eva 13236

Seismic waves. See also Seismology.
Absorption coefficient........... Berson 13219
Vasilev 13220
Deep basement reflections on exploration records..... Junger 12946
Dispersion on ground roll..... Dobrin 12659
Energy content P and pP...... Mooney 12542
Energy loss by free vibration of inner layer............. Fu 12742
Model experiments............
Rznichenko and others 13218
P and S velocity, Africa, Witwatersrand........... Logue 12742
PKJKP, theoretical amplitudes. Bullen 13160
PKKP, observed times and amplitudes............. Gutenberg 12736
Polarization.................... Stoneley 12744
Propagation in shallow water........
Burg and others 13221
Propagation, primary disturbance in shale........ Ricker and Sorge 13223
P-wave velocity at short distances...
Richter 12547
Reflections from 500-km discontinuity.... Caloi and Peronaci 12740
S&S and depth core... Caloi and Peronaci 12557
S&S observation near epicenter.... Garrick 12735
Southern California travel times...
Gutenberg 12741
S waves in inner core........... Bullen 12925
T-phase..................... Leet and others 12737
T-phase, use in Tsunami warning systems..... Leet 12738
Variation of velocity with stress........
Hayakawa 12544
Velocities at short distances......
Aliverti and Solaini 12545
Southern California, blast records...
Gutenberg 12546
Velocity and frequency in ice........
Brockamp 12827
As function of depth and geologic time............. Faust 12825

Seismographs.
Calibration, vibrating table........
Anfisferov 13249

testing and.............. Meister 12931
Damping devices........ Freise 12666

Sedimentary rocks.

Elastic wave velocities, at high pressures and temperatures....
Hughes and Cross 13149
effect of interstitial water on........ Hughes and Cross 13149
measurements by pulse method...
Hughes and Jones 12826
variation with saturation... Gassmann 13148
Electrical conductivity of Bradford sand......................... Keller 12832
Radioactivity and carbon content.
Burban and Sullivan 13169
Seismic wave velocity as function of depth and age...... Faust 12825

Seismic exploration.
Black-powder use in offshore exploration........ Stormont 13015
Cost..................... Kastrop 12972
Glaciers..................... Bourgin 12660
methods and results........ Mercanton 12642
Highway engineering problems.... Moore 13037
Index of wells shot for velocity..... Swan 12646
Interpretation, determination of constants in travel-time formulas..... Castro 12638
dip and depth determinations...
Mota Lindonor 12821
general..................... Hayakawa 12226
influence of background noise on reflection recognition......
Dyk and Eisler 13012
refraction with variable velocity.
Goguel 12637
use of velocity data in........ Daly 12610
Marine prospecting Gulf of Mexico............ Slater 12822
Methods and techniques, absorption coefficient........ Vasilev 13220
composite reflections...... Solaini 12849
general................. Coote 12514
Moore 12516
Poultier method in southwestern Ontario................ Hodgson 12641
record sections............. Prescott 12225
shallow sounding in Sweden...
Herström 12640
Problems in Mexico............ Runnemeld 12645
Recent developments............ Clewell 12635
Reflection quality map of U. S. Lyons 12509
Research vs field operations...... Green 12315
Secondary pressure-bubble pulses.
Epinat’eva 13222
Sedimentation, stratigraphy relationships......... Krumbeln 13008
Surveys, Canadian reefs, problems... Weiss 12217
Germany, Ems basin............. Cless 12507
Glaciers, Switzerland 1946-50.... Stüsstrunk 12327
Greenland ice cap............. Brockamp 12827
Hanaoka mine, Japan............. Satô 12327
Ishikari coalfield, Hokkaido, Japan........ Hayakawa and Tatsushi 12229
Japan, Jōban coal field............ Kato and others 13020
<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antunes</td>
<td>Electromagnetic determination of constants. 12538</td>
</tr>
<tr>
<td>Ostrovski</td>
<td>For signaling intense earthquakes. 12632</td>
</tr>
<tr>
<td>Hayakawa</td>
<td>Haeno</td>
</tr>
<tr>
<td>Willmore</td>
<td>Portable high-sensitivity equipment. 12929</td>
</tr>
<tr>
<td>Girard</td>
<td>S. I. E. P-II equipment</td>
</tr>
<tr>
<td>Gassmann and Weber</td>
<td>With electronically adjustable constants. 12930</td>
</tr>
<tr>
<td>Hayakawa</td>
<td>Seismology. See also Seismic waves. Azimuth determination from surface waves. 12727</td>
</tr>
<tr>
<td>Hiller</td>
<td>Deep-focus earthquakes, interpretation of observations at short epicentral distances. 12937</td>
</tr>
<tr>
<td>Hodgson and Milne</td>
<td>Determination of direction of faulting North Pacific shocks. 13155</td>
</tr>
<tr>
<td>Mooney</td>
<td>Longitudinal seismic waves, energy content (P) and (pP). 12542</td>
</tr>
<tr>
<td>Byerly and Evernden</td>
<td>first motions recorded at Berkeley. 12553</td>
</tr>
<tr>
<td>Di Filippo and Marcelli</td>
<td>first motion recorded at Rome. 12554</td>
</tr>
<tr>
<td>Försch</td>
<td>Macroseismic methods of determining focal depth. 13152</td>
</tr>
<tr>
<td>Ingulda Garcia-Serrano</td>
<td>Magnitude and energy, determinations in Italy. 12540</td>
</tr>
<tr>
<td>Di Filippo and Marcelli</td>
<td>Mechanism at focus, determination from seismic-wave observations. 12554</td>
</tr>
<tr>
<td>Kellis-Borok</td>
<td>New York, refraction surveys around Long Island. 12549</td>
</tr>
<tr>
<td>Oliver and Drake</td>
<td>Rayleigh waves, generated by small explosions. 13153</td>
</tr>
<tr>
<td>Dobrin and others</td>
<td>in two-layer heterogeneous medium. 12927</td>
</tr>
<tr>
<td>Newlands</td>
<td>velocity, Haslach explosion records. 13152</td>
</tr>
<tr>
<td>Försch</td>
<td>effect of ocean. 12926</td>
</tr>
<tr>
<td>Usami</td>
<td>Seismic sea wave warning systems. 13165</td>
</tr>
<tr>
<td>Inouye</td>
<td>Surface waves, dispersion. 12543</td>
</tr>
<tr>
<td>Ewing and Press</td>
<td>Dispersion, in multi-layered media. 12543</td>
</tr>
<tr>
<td>Haskell</td>
<td>summary of theories and observations. 13145</td>
</tr>
<tr>
<td>Dobrin</td>
<td>Observations at Cartuja Observatory. 12639</td>
</tr>
<tr>
<td>Due Rojo and Gimeno Ruibert</td>
<td>To determine azimuth. 12739</td>
</tr>
<tr>
<td>Hiller</td>
<td>Transverse waves, displacement at surface. 12534</td>
</tr>
<tr>
<td>Monakhov</td>
<td>polarization. 12541</td>
</tr>
<tr>
<td>Monakhov</td>
<td>velocity, Haslach explosion records. 13152</td>
</tr>
<tr>
<td>Fortsch</td>
<td>Soil moisture, measurement by neutron scattering. 13241</td>
</tr>
<tr>
<td>Krige and Maree</td>
<td>Earthquakes, 1938-44. 13161</td>
</tr>
<tr>
<td>Weiss and Frost</td>
<td>Electrical surveys for water resources. 12837</td>
</tr>
<tr>
<td>Logie</td>
<td>Seismic-wave velocity, Witwatersrand. 12742</td>
</tr>
<tr>
<td>Hales and Willmore</td>
<td>Thermal gradient. 13154</td>
</tr>
<tr>
<td>Hagen</td>
<td>South Africa. 12599</td>
</tr>
<tr>
<td>Due Rojo</td>
<td>Earthquakes, 1948. 12752</td>
</tr>
<tr>
<td>Rey Pastor</td>
<td>Alcalde. 12604</td>
</tr>
<tr>
<td>Santos de la Encina</td>
<td>Seismic surveys Báfios de la Encina. 13019</td>
</tr>
<tr>
<td>S. I. E. P-II equipment</td>
<td>Submarine geology. 12747</td>
</tr>
<tr>
<td>Gassmann and Weber</td>
<td>Seismic exploration, seabottom near Sakito, Japan. 13230</td>
</tr>
<tr>
<td>Béla</td>
<td>Surveys, reports, Brasil Conselho nacional do petróleo, 1949. 12613</td>
</tr>
<tr>
<td>Trueman</td>
<td>South African Council for Scientific and Industrial Research. 12630</td>
</tr>
<tr>
<td>Uganda, Geological Survey Geophysical work 1942. 12602</td>
<td></td>
</tr>
<tr>
<td>U. S. Coast and Geodetic Survey 1949. 13194</td>
<td></td>
</tr>
<tr>
<td>Robert</td>
<td>Switzerland. 13159</td>
</tr>
<tr>
<td>Fed. Inst. of Technology Geophysics Department report</td>
<td>Seismic surveys of glaciers. 13227, 13202</td>
</tr>
<tr>
<td>Gassmann</td>
<td>Technical aids. 13214</td>
</tr>
<tr>
<td>Airborne aids. 13292</td>
<td></td>
</tr>
<tr>
<td>Cornell</td>
<td>Air-cleaned drill. 13014</td>
</tr>
<tr>
<td>World Petroleum</td>
<td>Oszillograph, high speed recording. 13248</td>
</tr>
<tr>
<td>Gardiner</td>
<td>Vibration table. 13249</td>
</tr>
<tr>
<td>Anfayrov</td>
<td>Voltage stabilizer for seismic stations. 13283</td>
</tr>
<tr>
<td>Sorskip</td>
<td>Tectonics. 12790</td>
</tr>
<tr>
<td>Wilson</td>
<td>Earthquakes and mountains, origin. 13183</td>
</tr>
<tr>
<td>Chertkova</td>
<td>Experimental rupture of salt domes. 12591</td>
</tr>
<tr>
<td>Gardiner</td>
<td>Flow by gravity. 12785</td>
</tr>
<tr>
<td>Sorskip</td>
<td>Formation of folded structures, effect of differential movements 12790</td>
</tr>
<tr>
<td>Bridgman</td>
<td>Implications of high-pressure phenomena. 12791</td>
</tr>
</tbody>
</table>
Author Abstract

Tectonics—Continued

Kinematic relations during over-thrust folding. Danilovich 12792
Major shear fractures, Alaska. West 12592
Mechanical basis for certain geologic structures. Hubbert 12786
Mechanics of rock failure, research at Colorado School of Mines. Livingston 12792
Mechanism of faulting and lens formation. Sorskii 12788
Origin of compressional mountains. Rich 13184
Problem of energy balance. L'vostikh 12377
Stress distribution and faulting. Hafner 12787
Theory of mountain range formation. Jardetzky 12590
Use of geodetic bench marks to detect crustal movements. László 12593

Texas.

Radioactivity logging West central. Kerr 12347
Regional geology and geophysics, Ark-La-Tex area. Bryan 12982
Thermal gradients, Abilene area. Jenke 12954

Exploration.

Marfa basin. Wilson 12981
North Snyder area, Scurry County. Clayton 12814
Two-level aeromagnetic profile. Hoylman 12817

Textbooks.

Earth conduction effects. Sunde 12830
Geophysical prospecting. Cagniard 12606
Geophysical prospecting. Sorokin 12607
How oil is found. Ver Wiebe 13195
Internal constitution of the earth. Gutenberg 13188
Magnetic field of the earth. Chapman 13108
Petroleum exploration. Abramovich 12605
Petroleum geology. Landes 12799
Petroleum geology. Russell 12979
Petroleum geology. Tirasoo 12978
Practical oil geology. Hager 12977
Rocks and mineral deposits. Niggli 12800
Structural geology of North America. Eardley 13182

Thermal springs.

Temperatures Shionaha and Goshiki spas, Japan. Harker and others 13173
Time, precise measurements of. Schuler 13200
Topography.

Spherical harmonic development. Vening Meinesz 12518, 13186
Tsunami warning system. Inouye 13165
Leet 12738

Gravity surveys, Amik plain, Hatay province. Yüngöl 12901

Turkey.

Earthquakes, Karaburun, July 23, 1949. Pinar 12940

Uganda.

Exploration.

Author Abstract

U. S. S. R.

Earthquakes.

Gora Karbek, Caucasus 1932-47. Levitskaf 12749
Kirghiz-Uzbek S. R. Nov. 2, 1946. Rozova and Chernavkina 12759

Gravity, relation of anomalies to anticlines.

Donabedov and Meshcherjakov 12300

Gravity measurements, Moscow.

Boulanger 13239

Obi-Garm. Boulanger 12320

Fulkovo-Leningrad tie. Boulanger 12321

Observed inclination of ground Central Asia. Godovkina 12795

Seismology, problems of seismological observations. Savarenskil 12575

Temperature, Emba basin salt domes. Bélakov 12776

Thermal gradients, Dnieper-Donets syncline. Bélakov 12775

Venus and Earth's inner core. Bullen 12900

Vibration problems, graphical method of solution. Bruce 12828

Vulcanism, origin. Bijlhard 12957

Vulcanes.

Activity 1941-47. Hantke 13176

Hawaiian Volcano Observatory Report, 1948 and 1949. Finch and Macdonald 13177

Italy, Etna, November 1950 eruption. Arrigo 12781

Japan, activity 1939-47. Minakami 12782

Mihara, 1930 eruption. Sawamura 13180

Sakurajima, earth current changes related to activity. Yoshimatsu 13123

Showashinzan, seismic surveys. Kato and Shoji 13021

Usu, 1944 eruption. Minakami and others 13179

Krakatoa, 1839 activity. Westerveld 13181

Mauna Loa, earthquakes accompanying 1949 eruption. Finch 12556

Mexico, Paricutin, activity, January-June 1949. Fried and Gutierrez 12780

Paricutin, activity, July-December 1949. Fried and Gutierrez 12955

Paricutin, development. Pough 12779

History. Derrau 12956

New Zealand, Ngauruhoe, 1949 eruption. Cloud 12784

Ruapehu, activity, August-December 1945. Beck 12783

Santoriner eruption, 1939-41. Georgalas 13178

Wales.

Magnetic surveys, Benallt manganese mine, Caernarvonshire. Groves 12629

Gravity, regional survey. Cook and Thirlaway 12708
<table>
<thead>
<tr>
<th>Water resources</th>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artesian water, Iceland</td>
<td>Bödvarsson 13201</td>
<td></td>
</tr>
<tr>
<td>Electrical logging</td>
<td>Jones and Buford 12660</td>
<td></td>
</tr>
<tr>
<td>Electrical methods</td>
<td>Gohara 13035</td>
<td></td>
</tr>
<tr>
<td>Electrical resistivity and logging, Illinois</td>
<td>Foster and Buhle 13036</td>
<td></td>
</tr>
<tr>
<td>Electrical resistivity surveys, Nyassaland</td>
<td>Bell and Garson 13041</td>
<td></td>
</tr>
<tr>
<td>Electrical surveys, French West Africa</td>
<td>Breusse 12836</td>
<td></td>
</tr>
<tr>
<td>South Africa, Orange Free State</td>
<td>Weiss and Frost 12837</td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td>Author</td>
<td>Abstract</td>
</tr>
<tr>
<td>Well logging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic logging device</td>
<td>Petroleum Engineer 13049</td>
<td></td>
</tr>
<tr>
<td>Old log data as exploratory tool</td>
<td>Bowles 13047</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic base stations, iron-mining districts</td>
<td>Bath 13203</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity surveys, New Mexico</td>
<td>Barnes and others 12806</td>
<td></td>
</tr>
</tbody>
</table>
Geophysical Abstracts 144-147
January-December 1951
(Numbers 12514–13283)

G E O L O G I C A L S U R V E Y B U L L E T I N 981

Abstracts of world literature contained in periodicals, books, and patents
UNITED STATES DEPARTMENT OF THE INTERIOR

Oscar L. Chapman, Secretary

GEOLOGICAL SURVEY

W. E. Wrather, Director
CONTENTS

[The letters in parentheses are those used to designate the chapters for separate publication]

(A) Geophysical Abstracts 144, January–March 1951 (nos. 12514–12700) 1
(B) Geophysical Abstracts 145, April–June 1951 (nos. 12701–12890) 55
(C) Geophysical Abstracts 146, July–September 1951 (nos. 12891–13092) 113
(D) Geophysical Abstracts 147, October–December 1951 (nos. 13093–13283) 175

Under Departmental orders, Geophysical Abstracts have been published at different times by the Bureau of Mines or the Geological Survey as noted below:

144–147, January–December 1951, Geological Survey, Bulletin 981