Radioactivity in some Oil Fields of Southeastern Kansas

GEOLOGICAL SURVEY BULLETIN 988-E

Radioactivity in some Oil Fields of Southeastern Kansas

By GARLAND B. GOTT and JAMES W. HILL

A CONTRIBUTION TO THE GEOLOGY OF URANIUM

GEOLOGICAL SURVEY BULLETIN 988-E

This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission

UNITED STATES DEPARTMENT OF THE INTERIOR

Oscar L. Chapman, Secretary

GEOLOGICAL SURVEY

W. E. Wrather, Director

CONTENTS

Abstract	
Introduction	
Acknowledgments	
General geology	
Mineralogy	
Radioactivity	-
Pre-Cambrian rocks	
Cambrian and Ordovician rocks	
Arbuckle group	
Ordovician rocks	
Carboniferous rocks	
Mississippian rocks	
Shale	
Limestone	
Pennsylvanian rocks.	
Shales	
Limestones	
Coals	
Permian rocks	
Radium-bearing precipitates	
Sample data	
Relationship of helium to radioactive materials	
Conclusions	
Literature cited	
Index	

ILLUSTRATIONS

[Plates 8-17 in pocket]

PLATE 8. Relationship of radioactivity and helium in some oil and gas fields in southeastern Kansas.

- 9. Comparison of sample and gamma-ray logs, Marion County.
- 10. Comparison of sample and gamma-ray logs, Sedgwick and Butler Counties.
- 11. Radioactivity and lithology in the North Augusta field, Butler County.
- 12. Columnar sections and radiometric measurements of drill samples, Marion, Butler, Sedgwick, Cowley, and Elk Counties.
- 13. Location of radiu.m-bearing precipitates, Cowley County.
- 14. Location of radium-bearing precipitates, Butler County.
- 15. Location of radium-bearing precipitates, Marion County.
- 16. Radioactivity and structure of the Augusta field, Butler County.
- 17. Comparison of normal with abnormal radioactivity and correlation of abnormal radioactivity with perforated casing.

CONTENTS

			Page
FIGURE	29.	Comparison of a Lane-Wells gamma-ray log with radiometric analyses	71
	30.	Typical radioactivity anomalies of different sedimentary-rock types as recorded on gamma-ray logs	77
	31.	Radioactivity of pre-Cambrian, Cambrian and Ordovician, and basal Pennsylvanian rocks	78
	32.	Radioactivity of Dilworth, no. 2 Fee well	82
		Part of the gamma-ray log of the C. V. Stewart, Brown no. 2 well, showing abnormal radioactivity in Wabaunsee group	83

$T \mathrel{A} B \mathrel{L} E \mathrel{S}$

			Page
TABLE	1.	Radium content of precipitates	74
	2.	Contact-metamorphic-type minerals	75
	3.	Radiometric analyses of Pennsylvanian coals from southeastern	
		Kansas and adjacent areas	85
	4.	Description of radium-bearing precipitates	87
	5.	Spectrographic, radiometric, and chemical analyses of radium-	
		bearing precipitates	88
	6.	Sample data: Augusta field, Butler County	89
	7.	Sample data: Cowley County	106
	8.	Sample data: Butler County	108
	9.	Sample data: Marion County	112
	10.	Drill samples radiometrically analyzed: southeastern Kansas	114

IV

A CONTRIBUTION TO THE GEOLOGY OF URANIUM

Radioactivity in some oil fields of southeastern Kansas

By GARLAND B. GOTT and JAMES W. HILL

ABSTRACT

Radium-bearing precipitates derived from oil-well fluids have been found in more than 60 oil and gas fields in Cowley, Butler, Marion, Sedgwick, and Greenwood Counties of southeastern Kansas. The abnormal radioactivity of these precipitates has been studied by means of gamma-ray and sample logs; by radiometric, chemical, petrographic, and spectrographic analyses of the precipitates and drill samples; and by chemical analyses of brines collected from oil wells in the areas of high radioactivity. The most radioactive precipitates were collected from a narrow belt, roughly marginal to the Nemaha anticline, that extends from the southern part of Marion County southward to near the Kansas-Oklahoma boundary.

Most of the formations in this area have no higher concentration of radioactive constituents than is normally found in rocks of similar lithology elsewhere, but in a few wells the drill samples from beds just below the eroded top of the Arbuckle group and from some limestones in the Kansas City group have an abnormally high radium content. The highest radioactivity caused by radium in any of the rocks from this area that have been radiometrically analyzed is equivalent to that of 0.26 percent uranium oxide. This analysis indicates as much radium as would be found in equilibrium with about 0.5 percent uranium.

The radioactivity of the precipitates ranges from 0.000 to 10.85 percent equivalent uranium oxide, and the uranium oxide content ranges from 0.000 to 0.006 percent. Radium determinations have shown that radium is the element that causes most of the radioactivity. Brines, collected from oil wells where radiumbearing precipitates have formed, contain as much as 0.2 ppm of uranium.

Radium-bearing samples have been found in many of the fields that originally produced commercial quantities of helium. Radium-bearing precipitates also have been found in the surface pipes of wells that have penetrated rocks containing contact-metamorphic or hydrothermal-type minerals.

The conclusion that significant quantities of uranium may be present in the subsurface rocks is based largely on the following evidence:

1. Vuggy limestones and dolomites that contain as much radium as would be present with 0.5 percent uranium strongly suggest that uranium has only recently been leached, perhaps by the drilling fluids at the time the well was drilled. The radium now present in the precipitates was probably derived from these rocks.

2. Contact-metamorphic or hydrothermal-type minerals in altered limestones indicate that hydrothermal solutions have penetrated the limestones and suggest that uranium may have been deposited from those solutions.

3. The large amount of radium in some of the precipitates suggests that it was derived from rocks that contain an abnormal concentration of uranium.

4. The association of helium with other uranium-decay products suggests that the helium is radiogenic. So much radiogenic helium would require a large body either of uranium or thorium, and the presence of radium indicates that uranium rather than thorium is present.

INTRODUCTION

Abnormally high radioactivity in oil and gas wells in southeastern Kansas was noted in 1948 during an investigation to determine the value of commercial gamma-ray well logs in the search for radioactive ore deposits. Because of these high radioactivity anomalies, a detailed investigation of the Augusta field in Butler County and a reconnaissance investigation of oil wells in Cowley, Butler, Marion, Sedgwick, and Greenwood Counties were undertaken in 1949. Radiometric determinations with portable field counters were made at more than 300 oil, natural gas, and helium wells, and 132 samples of oil-well precipitates were analyzed radiometrically or chemically; 125 brine samples were analyzed chemically; 115 gamma-ray and neutron logs were examined; drill cuttings from about 70 wells were examined, and samples from 50 wells were analyzed radiometrically; surface outcrops of many of the exposed formations, including coals, were radiometrically examined, and two gamma-ray logs were made. The general area investigated and some of the results are shown on plate 8.

During the field investigations, uncalibrated standard portable gamma-beta survey meters were used for preliminary radioactivity determinations, but all equivalent uranium oxide (eU_3O_8) percentages were determined in the Denver laboratory of the U. S. Geological Survey.

An approximate calibration of the deflections on gamma-ray logs was made by comparing the equivalent uranium in 212 core samples of the Weber formation from uncased wells in the Rangely field, Colorado, with the corresponding gamma-ray logs. A 1-in. deflection was caused by about 0.0007 percent equivalent uranium at a 10-in. sensitivity scale. Part of the calibration data is shown graphically in figure 29. The correlation between the two types of radiometric measurements was satisfactory and indicated that the calibration is reasonably reliable for use in interpreting the degree of radioactivity represented on Lane-Wells gamma-ray logs through the Weber formation in the Rangely field. Many complicating factors exist, however, which might cause erroneous interpretations, and it is doubtful if the calibration can be strictly applied to the gamma-ray logs of wells in the southeastern Kansas area. The most important of these factors are the thickness versus the grade of the bed, the fluid content of the

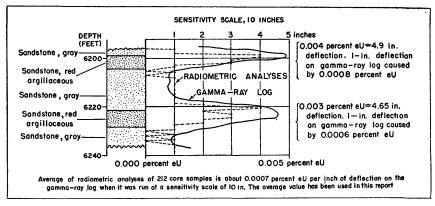


FIGURE 29.-Comparison of a Lane-Wells gamma-ray log with radiometric analyses.

well, the shielding effect of casing in cased wells, differences in individual instruments, and the rate of movement of the ionization chamber. Nevertheless, semiquantitative data obtained by using the approximate calibration were helpful in estimating the order of magnitude of the equivalent uranium in the rocks from which the gammaray logs were obtained.

The radioactivity anomalies represented on gamma-ray logs seemed to indicate that the drill holes had penetrated radioactive host rocks. After it was found that the radioactivity at the surface was caused by radium-bearing precipitates, however, the possibility was suggested that the radioactivity anomalies represented on gamma-ray logs might have been caused by a similar type of deposit that had accumulated on the casing in the rock face at depth. Because of this possibility, it seemed desirable to obtain radiometric data of newly drilled wells located adjacent to a radioactive well. The recently completed Rex and Morris-Loomis nos. 6 and 7 wells, located near old radioactive wells in the SW1/NE1/2 sec. 21, T. 27 S., R. 4 E., in the North Augusta field were chosen and gamma-ray and neutron logs were made before a radioactive deposit had time to accumulate on the casing. Although one basal Pennsylvanian black shale bed caused a greater deflection than was expected, there were no radioactivity anomalies comparable to those recorded on logs of the older It was therefore concluded that the abnormal deflections shown wells. on other gamma-ray logs in this field were caused by radioactive precipitates on the casing or on the walls of the drill hole.

ACKNOWLEDGMENTS

The investigation of radioactivity in southeastern Kansas was made by the U. S. Geological Survey as part of the comprehensive investigation of uranium resources that is being carried out for the Atomic Energy Commission.

The writers are indebted to many persons who have contributed information and assistance relative to this investigation. George J. Petretic and the staff of the Denver Trace Elements laboratory of the U.S. Geological Survey made all the radiometric and chemical analyses. Joseph Berman of the same laboratory is reponsible for most of the mineralogic identifications. The Magnolia Petroleum Co., Cities Service Oil Co., Sohio Petroleum Co., and Sinclair-Prairie Oil Co. provided gamma-ray logs, maps, drill samples, and stratigraphic information. In addition the following organizations and individuals have cooperated by contributing copies of radioactivity logs, samples, helium data, or general information: A. D. Allison and Co., Aikman and Braden, Continental Oil Co., C. R. Colpitt, H. E., Colpitt, Dilworth and Miller, Eagle Picher Mining and Smelting Co., Hammer and McClain Drilling Co., Lane-Wells Co., Rex and Morris Drilling Co., Socony Vacuum Oil Co., Inc., the State Geological Survey of Kansas, and the U.S. Bureau of Mines.

GENERAL GEOLOGY

The geologic history of southeastern Kansas from Late Cambrian through Mississippian time is one of long periods of marine deposition interrupted by comparatively shorter periods of emergence and erosion. The deposition of the relatively thick sections of carbonate rocks, which are interbedded with a few beds of shale and coarser clastics, was interrupted several times by uplift. While uplifted, the land mass was subjected to erosion and was reduced nearly to base level.

The sequence of sedimentary rocks in this area consists of the dolomite of the Arbuckle group of Cambrian and Ordovician age; the Simpson group, Viola limestone and Maquoketa shale of Middle and Late Ordovician age; the dolomites and limestones of Silurian and Devonian age; Chattanooga shale of Late Devonian and Mississippian age; the Kinderhook group overlain by the cherty limestones of Mississippian age; the interbedded shales, limestones, and sandstones of Pennsylvanian age, which are, in ascending order: Cherokee and Marmaton formations, Pleasanton, Kansas City, Lansing, Douglas, Shawnee, and Wabaunsee groups; and the interbedded shales, limestones, and sandstones of early Permian age.

Oil wells in southeastern Kansas have been drilled into these rocks, but in many of the oil fields along the Nemaha anticline in which radioactivity anomalies have been detected, the Mississippian, Silurian, Devonian, and Upper Ordovician rocks were removed by pre-Pennsylvanian erosion, and consequently radiometric and chemical data are not available for some parts of the stratigraphic section in all the oil fields in this area. Radioactive limestones in areas of folded and faulted rocks and the higher-than-normal radioactivity in

72

several places along the pre-Pennsylvanian erosional surface suggest that the structural and erosional history may have played an important role in the localization or introduction of uranium-bearing minerals into the dolomite of the Arbuckle group and the limestones of the Kansas City group.

The Nemaha anticline, the major structural feature in southeastern Kansas, was formed during late Mississippian or early Pennsylvanian time. This structure is an asymmetrical linear uplift. The north end is in southeastern Nebraska, and the anticline extends across the central part of Kansas into Oklahoma. The pre-Pennsylvanian beds along the east flank of the uplift are reported to have been displaced several hundred feet by faulting, but the beds on the west flank dip comparatively gently toward the west. The structural development of the Nemaha anticline has been illustrated by Lee and others (1946, sheet 7), through the use of cross sections.

During deposition of the earliest Pennsylvanian sediments the Nemaha anticline was undergoing erosion, and by the time the initial Pennsylvanian sea had invaded southern and central Kansas the pre-Pennsylvanian sediments had been partly removed from the crest of the anticline and pre-Cambrian rocks had been exposed on the higher parts of the structure. Elsewhere a karst topography had developed on the surface underlain by Mississippian limestone, and a mantle of residual chert was concentrated on the erosional surface. Later, much of this residual mantle was reworked into the basal Pennsylvanian formations.

The shallow Pennsylvanian seas advanced and retreated over the land, leaving relatively thin limestones, shales, sandstones, and some coals. This cyclic sedimentation was repeated many times throughout Pennsylvanian time and into Permian time.

MINERALOGY

Chemical analyses of radioactive precipitates indicated that neither uranium nor thorium is present in these deposits in amounts sufficient to account for the observed radioactivity. This suggested that the radioactivity was caused by radium, and its presence was established by measuring the radon in six samples. These measurements showed that there was enough radium in the samples to account for most of the radioactivity. Table 1 shows percent equivalent uranium, percent uranium, radium content, and calculated percent equivalent uranium. The percent equivalent uranium and percent uranium were determined by direct measurements in the laboratory. The radium content was calculated from direct measurements of radon. The calculated percent equivalent uranium was determined from the radium content.

218610-53----2

74 A CONTRIBUTION TO THE GEOLOGY OF URANIUM

The close agreement between the equivalent uranium content and the calculated equivalent uranium content of each sample demonstrates conclusively that the radioactivity of the samples was caused largely by radium. The assumption that the abnormal radioactivity throughout the southeastern Kansas area is also caused largely by radium is, therefore, substantiated.

Serial no.	Equivalent uranium (percent)	Uranium (percent)	Radium content ¹ (g Ra/g)	Calculated equivalent uranium (percent) ²
15539	1. 17 1. 14 1. 20 8. 11 7. 10 4. 37	$\begin{array}{c} 0.\ 003 \\ 003 \\ 000 \\ 001 \\ 000 \\ 001 \end{array}$	$\begin{array}{c} 9.4 \times 10^{-9} \\ 7.5 \times 10^{-9} \\ 1.1 \times 10^{-8} \\ 4.6 \times 10^{-8} \\ 3.2 \times 10^{-8} \\ 2.5 \times 10^{-8} \end{array}$	$ \begin{array}{r} 1.6\\ 1.3\\ 2.0\\ 7.8\\ 5.5\\ 4.3 \end{array} $

TABLE 1Radium	content of the	<i>p</i> recipitates
---------------	----------------	----------------------

¹ Calculated from radon measurements. ³ Calculated from radium content. The radium content of a sample that contains 1 percent uranium in equilibrium is 3.11 × 10⁻⁹ g/g. This amount of radium would measure 0.52 percent equivalent uranium.

In an attempt to locate the radium host rocks, an extensive study was made of cable-tool drill samples and a few surface samples from rocks of Pennsylvanian and Ordovician age. Minerals that resemble a contact-metamorphic assemblage were identified in samples collected from four localities in this area. A sample consisting of altered shales, sandstones, and limestones was collected from exposures of metamorphic rocks in the Silver City dome area, sec. 29, T. 26 S., R. 15 E., in Woodson County, Kans. It contained amphiboles, titaniferous magnetite, sphene (and leucoxene), epidote, and phlogopite. In addition, Knight and Landes (1932, p. 7) have identified galena and sphalerite in well cuttings from this area.

An unusually large number of minerals that may have been formed as the result of the introduction of hydrothermal solutions has been identified in dolomite of the Arbuckle group and limestone of the Kansas City group in drill cuttings from wells in the Augusta field. Magnetite is one of the more abundant minerals in these samples and is present in fine magnetite-rich laminae, which suggests a partial replacement of the limestone or dolomite. The minerals that have been identified in samples from this field are magnetite, pyrite, chalcopyrite, hematite, "limonite," oligoclase, garnet, chalcedony, glauconite, chlorite, fluorite, talc, barite, and radioactive celestite. A11 these minerals, except talc, are found in clastic sedimentary rocks, but it is improbable that such an assemblage would be deposited along with carbonate sediments. Most of these minerals were in samples from just below the Pennsylvanian and Arbuckle contact and in limestone of the Kansas City group. Cavities in masses of finely crystalline celestite, commonly less than one-tenth of an inch in diameter, were found in limestone and dolomite samples from some wells, but in samples from other wells the celestite lined the interior of the limestone and dolomite "cavities." Magnetite, finely crystalline calcite, with lesser amounts of chlorite, fluorite, and possibly some organic material also are present in the "cavities."

Between depths of 1,400 and 1,700 ft in the Bird and Hanley-Shipley no. 1 well, located in sec. 15, T. 30 S., R. 12 E., are several minerals that may have resulted from the metamorphism of limestone. They were clintonite, corundophilite, diopside-hedenbergite partly altered to a tremolite-actinolite asbestos, and some orthoclase and calcite.

The sample from 3,230 ft in the Derby-Rimel no. 2 well in sec. 30, T. 27 S., R. 2 E., contains garnet, magnetite, actinolite, and possibly some chlorite.

A dolomite and sandy black shale sample from between 3,287 and 3,309½ ft in the James-Rimel no. 1 well, in sec. 20, T. 27 S., R. 2 E., contained pyrite, chalcopyrite, magnetite, covellite(?), and an unidentified malachite-green mineral.

Table 2 lists these minerals, together with the general locality in which they have been found. They may have been formed in dolomites and limestones that were being altered by hydrothermal solutions, perhaps guided by obscure fissures and fractures. Igneous activity in southeastern Kansas is shown by the granite that has intruded middle Pennsylvanian sediments at the Rose dome in sec. 13, T. 26 S., R. 16 E., and by the metamorphosed rocks that are thought to be closely underlain by intrusive rocks in the Silver City dome area (Knight and Landes, 1932). The minerals identified in the drill cuttings may be closely associated with similar bodies of intrusive rocks.

Locality	Minerals identified	Country rock
Silver City area, sec. 29, T. 26 S., R. 15 E.	Amphibole, titaniferous magnetite, sphene (and leucoxene), epidote, phlogopite, sphalerite, and galena.	Metamorphosed sedimentary rocks consisting of altered shales, sand- stones, and limestones, which ap- pear to have been affected by silicic hydrothermal solutions.
Augusta field T. 27 S., R. 4 E.	Pyrite, chalcopyrite, magnetite, hema- tite, "limonite," celestite, oligoclase, garnet, chalcedony, glauconite, chlorite, talc, fluorite, and barite.	Pennsylvanian limestones and Or- dovician dolomites.
Bird and Hanley-Shipley no. 1, sec. 15, T. 30 S., R. 12 E.	Clintonite, corundophilite, diopside- hedenbergite partly altered to a tremolite-actinolite asbestos, ortho- clase, and calcite.	Limestone and shale samples from 1,435 to 1,670 ft.
Derby-Rimel no. 2, sec. 30, T. 27 S., R. 2 E. James-Rimel no. 1 sec. 20, T. 27 S., R. 2 E.	Garnet, in agnetite, actinolite, and chlorite (?). Altered pyrite, chalcopyrite, magne- tite, covellite (?), and a malachite- green mineral with low birefringence and refractive index of $1.80 \pm .03$.	Chalcedonic limestone sample from 3,220 to 3,235 ft. Dolomite and sandy black shale sample from between 3,237 and 3,309½ ft.

TABLE 2.—Contact-metamorphic-type minerals

Introduction of minerals by hydrothermal solutions is strongly indicated, and the products of uranium decay in this area indicate that uranium minerals were deposited probably by the same process.

RADIOACTIVITY

Abnormal radioactivity in several southeastern Kansas oil and gas fields first was detected because of unusually large deflections on gamma-ray well logs and later was detected in separator tanks and oil-well pipes on the surface by portable beta-gamma survey meters. Chemical and spectrographic analyses indicated insufficient uranium or thorium in the samples to account for the radioactivity. Radium determinations, however, showed that radium and its decay products were the principal radioactive elements present. The presence or absence of ionium has not been established.

The radium-bearing precipitates were derived directly from oil or brines and were deposited on the interior of oil pipes and in the bottom of separator tanks. The radioactivity of the precipitates that have been tested ranges from 0.000 to 10.85 percent equivalent uranium oxide.

The oil and gas fields that were radiometrically traversed are shown on plate 8, and those fields that are located in Cowley, Butler, and Marion Counties are also on plates 13, 14, and 15. The fields in which the radium-bearing precipitates originated overlie or are roughly marginal to the Nemaha anticline. However, a few gammaray logs of wells in fields as far as 35 miles from the crest of the anticline indicate that the area in which the radioactive precipitates were formed is greater than that indicated on plate 8.

With few exceptions, the rocks that have been microscopically examined, radiometrically analyzed, or studied indirectly through the use of gamma-ray logs, are comparable in degree of radioactivity to other rocks of similar lithologies in the midcontinent region. Usually the limestones, dolomites, and sandstones are the least radioactive, and the shales contain the greatest proportion of radioactive elements. This general relationship is shown by the comparison of the percent equivalent uranium estimated from a gamma-ray log and the corresponding lithology in figure 30. Some significant exceptions to the general relationship have been noted, however, and are illustrated by the comparatively high radioactivity of limestones and sandstones shown graphically on plate 12.

PRE-CAMBRIAN ROCKS

Metamorphic and igneous pre-Cambrian rocks have been penetrated by many drill holes, particularly by those wells on the Nemaha anticline. Landes (1927) has shown that the pre-Cambrian rocks of Kansas consist principally of granite, granite gneiss, and schist, but that locally other types of igneous and metamorphic rocks occur.

The only radiometric data obtained by the writers regarding the pre-Cambrian rocks in this area are from a gamma-ray log of the Shell Oil Company—J. V. Taton no. 8 well in the NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 36, T. 31 S., R. 2 E., and from a few fragments of drill cuttings from the

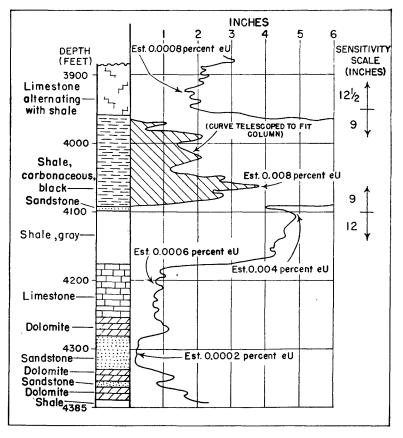


FIGURE 30.—Typical radioactivity anomalies of different sedimentary-rock types as recorded on gammaray logs in estimated percent eU. (Ruled area of gamma-ray curve is telescoped to fit column.)

Kaufman well in the NW¼NE¼ sec. 2, T. 20 S., R. 7 E. Both of these wells are on the Nemaha anticline.

The gamma-ray log of the Shell Oil Company well indicates that the pre-Cambrian rocks penetrated by the drill bore contain about 0.01 percent equivalent uranium. A portion of this log is shown in figure 31 and illustrates the relative radioactivity of the pre-Cambrian, Cambrian and Ordovician, and lower Pennsylvanian rocks penetrated by this drill hole. The drill cuttings from the Kaufman well were

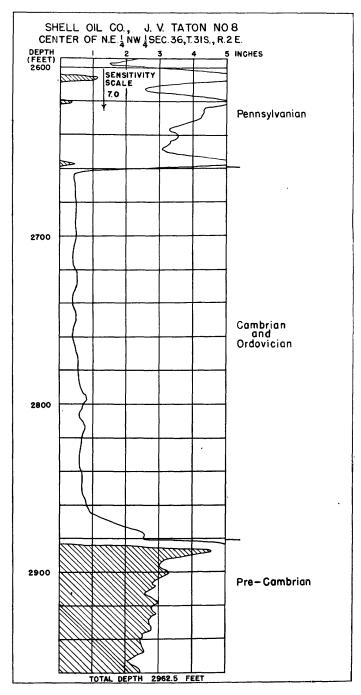


FIGURE 31.-Radioactivity of pre-Cambrian, Cambrian and Ordovician, and basal Pennsylvanian rocks.

fragments of a pre-Cambrian quartz diorite and contained only about 0.001 percent equivalent uranium.

CAMBRIAN AND ORDOVICIAN ROCKS ARBUCKLE GROUP

The basal Paleozoic formations in this region are included in the Arbuckle group. Because of differential erosion the dolomite of the Arbuckle in some places is overlain by Pennsylvanian sedimentary rocks, but over most of the area is overlain by rocks of the Simpson group of Ordovician age.

Drill samples of the Arbuckle group from several places along the Nemaha anticline are radioactive. These samples contain minerals that may have been formed by the introduction of hydrothermal solutions into the sediments. An example of this type of material is a radioactive black vuggy limestone sample from between 2,529 and 2,530 ft deep in the Magnolia-South Anderson no. 7 well in sec. 15, T. 27 S., R. 4 E., in the North Augusta field (pl. 12, index no. 344; and pl. 16). This limestone is several feet below the top of the Arbuckle group and in the bottom 6 ft of the well. The vuggy fragments contained circular cavities similar to those that would be left after oolites had been removed, although in many places such a small arc of the walls enclosing the spherical cavities has been removed that any solid particle that originally might have occupied these spaces would have been larger than the openings leading from the spaces, and therefore could not have fallen out. Almost all the sample was finely laminated with dark and light bands, and a few of the fragments were brecciated and recemented. The banding was caused by alternating layers of the lodestone variety of magnetite and finely crystalline calcite. Chlorite and celestite were identified, and it is thought that some organic material also was present. Radiometric measurements of the magnetic fraction showed that it was more radioactive than the nonmagnetic fraction. The samples from this interval were contaminated with a high percentage of shale caved from a higher place in the drill hole, and, therefore, the equivalent uranium oxide content of 0.03 percent was probably less than the actual content. Hand-picked fragments of the banded limestone contain about 0.1 percent equivalent uranium oxide and more nearly represent the degree of radioactivity in this zone.

An Arbuckle group sample from between depths of 2,513 and 2,514 ft in the Magnolia-Foster no. 14 well had 0.008 percent equivalent uranium. About 50 percent of the sample was a gray crystalline dolomite and the remaining part was composed of a dark vuggy material, magnetite, limonite, pyrite, and a minor amount of fibrous celestite. Tiny spherical cavities were observed in many of the iron oxide fragments. A magnetic concentrate, including the dark vuggy material, contained 0.25 percent equivalent uranium. The lithology and radioactivity of the samples from this well are shown graphically on plate 12, index no. 29.

Although the samples were significantly radioactive, chemical analyses have shown that uranium is not present. Because the radioactivity was undoubtedly caused by radium, it is probable that a uranium-bearing mineral originally occupied the cavities. As the half-life of radium is only 1,580 yr, its presence in the limestone indicates that the uranium has been removed during recent time. The only environmental change to which the hypothetical uranium mineral could have been so recently subjected was that brought about by drilling.

ORDOVICIAN ROCKS

Little data have been obtained relative to the radioactivity of the Viola limestone of Middle and Late Ordovician age or the Maquoketa shale of Late Ordovician age, but radiometric measurements of drill samples indicate that the green shale and glauconitic sandstones of the Simpson group contain as much as 0.006 percent equivalent uranium. The radioactivity of the sandstones and shales of the Simpson group are illustrated graphically on plate 12, index nos. 70, 72–76, and 310–312.

CARBONIFEROUS ROCKS

MISSISSIPPIAN ROCKS

The Mississippian rocks consist of the cherty "Mississippi" limestone of Meramec and Osage age underlain by the Kinderhook group. Although the Chattanooga shale is in part of Devonian age, for convenience it is included with the Kinderhook group.

SHALE

Because the Chattanooga shale has been removed by pre-Pennsylvanian erosion in most of the fields in which wells have been gammaray logged, only meager information regarding its radioactivity is available. A few gamma-ray logs and some radiometric analyses of samples from southeastern Kansas have indicated that the equivalent uranium content of the Chattanooga in that area ranges from about 0.002 to 0.007 percent equivalent uranium.

LIMESTONE

Radioactive "Mississippi" limestone may be represented by abnormal deflections on the gamma-ray logs of the Dilworth no. 2 Fee well in the Dexter field and the C. R. Colpitt-Spier no. 1 well in the Peabody field. The gamma-ray logs of both these wells show high radioactivity anomalies at depths correlative with the "Mississippi"

80

limestone, but there is evidence that radium bearing precipitates are the source of radioactivity.

A portion of the gamma-ray log of the Dilworth no. 2 Fee well located in sec. 8, T. 33 S., R. 7 E., is shown in figure 32. It reveals a marked radioactivity anomaly between depths of 2,685 and 2,710 ft, an interval which should represent part of the Cherokee shale of early Pennsylvanian age. A smaller radioactivity anomaly at depths correlative with the "Mississippi" limestone is represented on the log between 2,815 and 2,856 ft. Radiometric measurements of samples from 2,700 to 2,706 ft, in the zone of greatest deflection, and of other samples from that part of the adjacent Olds no. 1 well represented in figure 32, indicate that the sediments are only normally radioactive. Inasmuch as a radium-bearing precipitate was collected from the tubing that had been removed from the bottom of the Dilworth well, it is believed that all the abnormal radioactivity recorded on the gamma-ray log had a similar source.

A gamma-ray log of the C. R. Colpitt-Spier no. 1 well (pl. 9) located in the Peabody field, in sec. 8, T. 22 S., R. 4 E., shows a greater radioactivity anomaly at the top of the "Mississippi" limestone than was indicated on the Dilworth, no. 2 Fee log. However, as radium-bearing precipitates also are being formed at depth in the tubing of this well it is probable that the deflection between 2,350 and 2,370 ft also is caused by a radium-bearing precipitate.

PENNSYLVANIAN ROCKS

SHALES

The radioactivity of the exposed black shales of Pennsylvanian age was investigated by Slaughter.¹ He found that phosphatic nodules disseminated in shales contain as much as 0.095 percent uranium, but the uranium content of the shale is much lower.

Black fissile shales, some of which contain phosphatic nodules, are present throughout the Pennsylvanian rocks. These shales range in thickness from a few inches to about 6 ft and usually are represented on the gamma-ray logs by large deflections. In degree of radioactivity most of these shales resemble the Chattanooga shale, and estimates based upon gamma-ray logs, supplemented by some radiometric analyses of drill samples, indicate that they contain from about 0.004 to 0.01 percent equivalent uranium oxide. The radioactivity of the black shales is compared with other Pennsylvanian rocks on plates 9, 10, 11, and 12.

The gray shales of Pennsylvanian age contain a smaller proportion of radioactive elements than the black shales. However, the gammaray log that is partially reproduced in figure 33 indicates that one of

¹ Slaughter, A. L., Radioactivity of Pennsylvanian black shales and coals in Kansas and Oklahoma: U. S. Geol. Survey Trace Elements Inv. Rept. 18, September 1945. [Unpublished.]

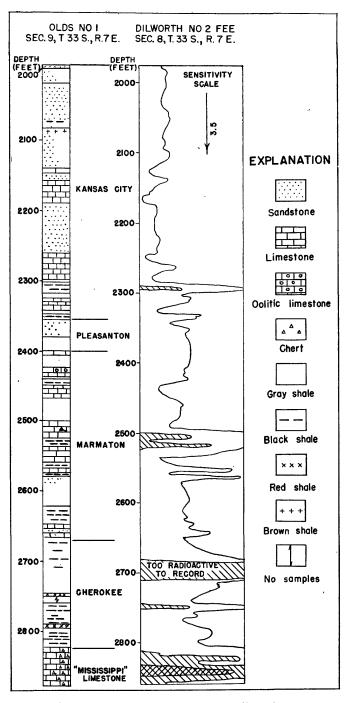


FIGURE 32.-Radioactivity of Dilworth, no. 2 Fee well.

C. V STEWART, BROWN NO 2 $SE_4^I SW_4^I SEC. 6$, T. 32 S., R. 5 E

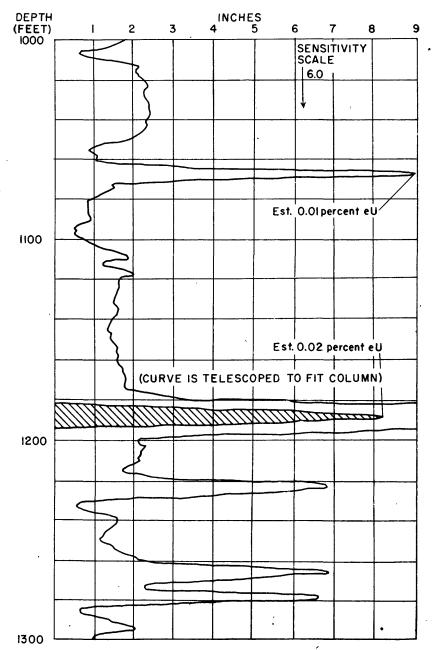


FIGURE 33.—Part of the gamma-ray log of the C. V. Stewart, Brown no. 2 well, showing abnormal radioactivity in Wabaunsee group in estimated percent eU. (Ruled area of gamma-ray curve is telescoped to fit column.)

the upper gray shales of the Wabaunsee group may have an equivalent uranium oxide content of about 0.02 percent, but the abnormal deflection, like those previously mentioned, may be caused by a radioactive precipitate.

LIMESTONES

Abnormally radioactive limestones were detected by routine radiometric scanning of drill samples and are illustrated by the comparison of sample and radiometric logs shown on plate 12. The most radioactive limestone sample detected in this manner was from a limestone of the Kansas City group and contained 0.012 percent equivalent uranium oxide. The sample was one of a set of cable-tool drill cuttings from between 2,027 and 2,031 ft deep in the Aikman and Braden-South Anderson no. 1 well located in the NE¼NW¼NW¼ sec. 15, T. 27 S., R. 4 E., in the North Augusta field. (See pl. 12, . index no. 22; and pl. 16.) The sample was composed principally of brown crystalline limestone cut by small veinlets of dark fluorite and magnetite. It also contained about 5 percent of gray talc and a lesser amount of soft vuggy celestite, encrusted with magnetite and limonite. Minor amounts of sericite and gypsum were associated with the limestone, and oligoclase and garnet were identified in one small fragment. The celestite contained spherical cavities as much as one-eighth of an inch in diameter, but some of the openings were so small that the original filling could have been removed only by No uranium was found in the vuggy fragments by chemical solution. analysis, although 0.22 percent equivalent uranium oxide was determined by radiometric analysis. Talc, magnetite, and fluorite in this sample indicate an introduction of minerals by hydrothermal solutions, and the cavities possibly represent the mold from which a mineral or a hydrocarbon compound was removed, perhaps upon contact with the drilling solutions. The presence of talc, which generally forms in zones of stress, would seemingly indicate that the spherical cavities were formed later than the talc. The mineral assemblage suggests that solutions of magmatic origin have altered the limestone, and one or more uranium minerals probably were introduced during the process. Solutions would have had easy access, for much fracturing of the limestones would have resulted from the folding and faulting.

COALS

Inasmuch as coal samples from drill cuttings were not available for radiometric analyses, a few of the Pennsylvanian coals were sampled at their outcrops in eastern Kansas. Radiometric analyses of the coal samples shown in table 3 indicate that their uranium content is uniformly low. The Mulky coal containing 0.004 percent equivalent uranium oxide is the most radioactive of the coals sampled; a black shale, with phosphatic nodules containing 0.011 percent uranium oxide, overlies this coal.

Sample no.	Location	Percent eU3O3	Name of coal	Group or formation	Remarks
18383	SE¼SE¼SW¼ sec. 16, T. 16 S., R. 15 E.	0. 001	Nodaway	Wabaunsee	Strip pit.
18384	SW14SW14NW14 sec. 27, T. 17 S., R. 17 E.	. 000	Upper Williams- burg.	Douglas	Outcrop, slacked, wet.
$\begin{array}{c}18385\\18386\end{array}$	SW14 sec. 14, T. 17 S., R. 19 E SW14 NW14 sec. 29, T. 16 S., R. 18 E.	. 001 . 000	Ottawa Lower Williams- burg.	do do	Outerop. Do.
$\frac{18387}{18388}$	Center sec. 11, T. 23 S., R. 25 E. NE¼SW¼SW¼ sec. 17, T. 27 S., R. 25 E.	. 000 . 000	Mulberry Bevier	Marmaton Cherokee	Strip pit. Do.
18390	NW14SW14 sec. 5, T. 26 S., R.	.004	Mulky	do	Outcrop.
18391	25 E. SE¼ sec. 19, T. 31 N., R. 33 W.	. 000	Weir-Pittsburgh	do	Strip pit. One mile south of Minden- mines, Mo.
18392	NW14 sec. 13, T. 29 S., R. 25 E.	. 000	Mineral	do	Strip pit.
18393	SW14SE14 sec. 34, T. 28 S., R. 25 E.	.000	Croweburg	do	Abandoned strip pit.
18394	SW14SE14SE14 sec. 16, T. 28 S., R. 25 E.	. 001	Bevier	do	Abandoned strip pit; slacked.
18395	SW14SE14SE14 sec. 16, T. 28 S., R. 25 E.	. 000	do	do	Slacked.
18396	Center W ¹ / ₂ sec. 32, T. 31 S., R. 25 E.	. 000	Rowe	do	Strip pit.
18397	NW14SE14 sec. 7, T. 33 S., R.	. 000	Columbus	do	Abandoned strip
18398	24 E. SW48E14 sec. 23, T. 31 S., R. 16 E.	. 000	Thayer	Kansas City_	pit. Outcrop.

TABLE 3.—Radiometric analyses of Pennsylvanian coals from southeastern Kansas and adjacent areas

PERMIAN ROCKS

The upper Permian rocks in this area have been removed by erosion, and the remaining lower Permian rocks are composed of alternating limestone, sandstone, and calcareous gray, red, or variegated shales. Evaporites consisting principally of rock salt and gypsum are present at shallow depths in some parts of the area.

The relative radioactivity of the lower Permian rocks, as represented on gamma-ray logs, is shown on plates 9 and 10. The no. 2 and 3 gamma-ray logs (pl. 3) indicate abnormally high radioactivity at depths of less than 500 ft. Part of the abnormal radioactivity recorded on the log of the no. 2 well may have been caused by marine evaporites. Whether the radioactivity anomalies recorded on these two logs represent radioactive elements in the sediments, or radioactive precipitates on the casing is uncertain. The radioactivity anomalies shown on the no. 5 log on plate 9 probably reflect the presence of radium-bearing precipitates on the casing.

Another gamma-ray log on which has been recorded an abnormal deflection at a depth correlative with Permian rocks, but which may also have been caused by a radioactive precipitate on the casing, is that of the Cities Service-Pierpoint no. 77 well located in sec. 33, T. 25 S., R. 5 E. The radioactivity represented by the deflection on this log is on the order of 0.02 percent equivalent uranium, which would be significant only if the radioactive deposit is associated with one of the sedimentary beds penetrated by the well bore.

Aside from the abnormal radioactivity indicated by the gamma-ray logs of these wells, the radioactivity of the Permian sedimentary rocks, as interpreted from gamma-ray logs and from radiometric measurements of samples, probably grades downward from about 0.004 percent equivalent uranium.

RADIUM-BEARING PRECIPITATES

Radium-bearing precipitates derived from oil-well fluids have been found in 60 oil fields in southeastern Kansas. The general distribution of the fields in which these precipitates have been found is shown on plate 8. However, abnormal deflections on several gamma-ray logs indicate that the area in which these precipitates might be present is larger than is indicated on the map.

Radiometric data consisting of field determinations and of the percent equivalent uranium oxide of samples collected in Cowley. Butler. and Marion Counties are shown on plates 13, 14, and 15. Some disagreement is shown by comparison of the relative radioactivity obtained by field determinations with the equivalent uranium oxide content of samples collected from the same locality. This disagreement was caused by the dissemination of finely broken precipitates in the surface material, which made it difficult to collect representative samples and to make field radiometric measurements of the material. The field determinations are recorded in terms of meter divisions and exclude the average background readings. Those field readings, recorded in table 6 and on plate 16, that were observed on the 20.0 or 2.0 sensitivity scales, were converted to the comparable number of units on the 0.2 sensitivity scale. Although the conversion is not exact because the portable survey meters were uncalibrated, the field determinations give a general idea of the relative radioactivity in those areas where samples were not collected.

The radium-bearing precipitates are composed chiefly of celestite, iron oxide, gypsum, and barite. The radioactivity ranges from a few hundredths of a percent to 10.85 percent equivalent uranium oxide. Radiometric measurements have shown (p. 6) that the radioactivity is largely caused by radium and its decay products, and chemical analyses have shown that the greatest amount of uranium oxide in any of the samples that have been analyzed is 0.006 percent.

The radium-bearing precipitates have been deposited on the interior of oil and water pipes, in the bottom of oil and brine separator tanks, and in ditches and ponds used for the disposal of brine. Most of the

86

precipitates are laminated with alternating dark and light bands. The light bands are made up chiefly of celestite, gypsum, or barite. The dark bands are composed principally of magnetic iron oxide, finegrained pyrite, limonite, calcite, and in a few samples some hydrocarbons. In most of the specimens that were examined the coloring of the darker bands was caused by iron oxide, but in some specimens it was caused largely by hydrocarbons. Autoradiographs and radiometric measurements show that the celestite is the principal radiumbearing mineral.

Several representative specimens of radioactive precipitates from this area have been examined by Joseph Berman, of the Geological Survey laboratory, and his identifications are tabulated in table 4.

Spectrographic analyses (table 5) have been made of several samples and show that the principal elements in the radium-bearing precip-

Serial no.	Percent eU ₃ O ₈	Percent U ₃ O ₈	Description
18447	0. 32	0.001	Sample collected from a salt-water disposal ditch in the Graham field in sec. 9, T. 33 S., R. 3 E., "The sample consists of a large fragment of re- cemented detrital pebbles and sand. The cementing agent is primarily porous quartz and chalcedony, although minor amounts of opal, gypsum, and clay are present. The cemented particles are predominantly limonite-
18448	8. 15	. 000	stained quarts sand." (Mineralogy by Berman, Joseph, 1950.) A limonite-stained pipe scale collected from a well in the Graham field located in the NW¼ sec. 10, T. 33 S., R. 3 E. "The minerals present are predominantly magnetic material, celestite, limonite, and minor amounts of gypsum." (Mineralogy by Berman, Joseph, 1950.)
15558	. 24	. 005	Pipe scale. The pipe from which this sample was collected was removed from the bottom of the Dilworth no. 2 Fee well located in sec. 8, 7. 38 s., R. 7 E., in the Dexter field. "The scale is composed predominately of fine-grained precipitated celestite, probably containing some physically intermixed hydrocarbons that give the specimen its dark color. No other minerals were observed." (Mineralogy by Berman, Joseph, 1949a.)
15548	. 38	. 000	The sample was collected from the interior of a pipe at the Sinclair-J. C. Scully no. 2 well located in the $NE_4'NE_4'$ sec. 16, T, 27 S., B. 4 E., in the North Augusta field. "The chief mineral appears to be a form of radiating and fibrous * * * celestite containing inclusions of iron which can be removed, when the sample is ground fine enough, by con- centrated HCL. * * The sample is made up of alternating gray and black bands. The color of these bands is due largely to the presence of iron but some hydrocarbons are also present." (Mineralogy by
13165	. 029	. 000	Jones, R. S., 1949.) Random sample collected from the ground surface on the Magnolia-North Anderson lease in the SE¼ sec. 9, T. 27 S., R. 4 E., in the North Augusta field. The sample was contaminated with surface material and consists of oil-impregnated debris. "The greater part of the oil was removed at a moderate temperature (300°) leaving an ash that is composed predomi- nantly of subangular quartz silt and lesser quantities of feldspar, chlorite,
13167	. 043	. 000	clay, and iron oxide." (Mineralogy by Berrinan, Joseph, 1949b.) An oil-impregnated sample from the ground surface in the North Augusta field near a well located in the SEVSWANEVA sec. 21, T. 27 S., R. 4 E. "It is composed predominantly of iron oxide and gypsum with minor amounts of clay and quartz." (Mineralogy by Berman, Joseph, 1949b.)
13169	. 12	. 000	The sample is composed of surface depicts collected from near a well in the SE¼ sec. 9, T. 27 S., R. 4 E. It is partially oil-impregnated with residual oil and is composed predominantly of iron oxide, small prisms of celestite, and gypsum. Minor amounts of clay and fine quartz slit are present.
13170	. 24	. 000	The sample was collected from the inside of a pipe at a well in sec. 9, T. 27 S., R. 4 E. It is partially oil-impregnated with residual oil and "is composed predominantly of iron oxide, small prisms of celestite, and gypsum. Minor amounts of clay and fine quartz slit are present."
13171	. 39	. 000	(Mineralogy by Berman, Joseph, 1949b.) The sample was collected near the center of sec. 21, T. 27 S., R. 4 E., in the North Augusta field. It was formed as an encrustation on the ground surface and mineralogically is similar to sample no. 13170. However, a greater amount of gypsum and a correspondingly lesser amount of celestite are present.

TABLE 4.—Description of radium-bearing precipitates

itates are strontium, barium, calcium, iron, silicon, and aluminum. Nineteen minor elements seem consistently to be present in the five samples that were analyzed.

SAMPLE DATA

Both radiometric and chemical data for the samples collected in Cowley, Butler, and Marion Counties are tabulated in tables 5, 6, 7, 8, 9, and 10. These data show a range from no detectable radioactivity to a maximum of 10.85 percent equivalent uranium oxide in one of the samples collected from Cowley County. The most uranium oxide found in any of these samples was 0.006 percent in a sample from the Molk-Loomis well in the North Augusta field in Butler County. (See table 6, index no. 244.) Several samples collected from wells in Marion County (see table 9) contained as much as 0.003 percent uranium oxide, but all these samples were composed of surface debris in which fine-grained fragments of radium-bearing precipitates had become disseminated. As the samples that are contaminated with surface debris seem to contain more uranium than[•]do the uncontaminated samples, some uranium may have been concentrated in the surface material from fluids that had leaked or overflowed.

Serial no.	Radio- metric	Chem- ical		Spectrographic analyses								
Serial IIO.	Percent eU3O8	Percent U2O8	Sr	Ва	Ça	Fe	Al	Si	Cu	Mn	Ti	Mg
13170 1 13171 1 15555 1 15555 1 15555 1 15555 1 15555 1 15559 1 18451 2 18451 2 18452 2 18382 2 18382 2 18382 2 18382 2 18382 2 15839 1 15529 1 15529 1 15537 1 15568 1	$\begin{array}{r} .83\\ 1.31\\ .12\\ .001\\ 10.85\\ .007\end{array}$	0.000 .000 .006 .000 .001 .001 .001 .001	xx xx xx xx xx xx xx xx xx xx xx xx xx	0. x 0. x 0. x 0. x 0. x 0. x 0. x	xx xx x x x x x x x x x x x x x x x x	XX XX XX XX XX XX XX XX XX XX XX XX XX	x x x x x x x x x x x x x x x x x x x	x x x x x x x 0. x x x x x x x x x x x x x x x x x x x	0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 0. 0x	0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 0. x 0. x	0. 0x 0. 0x 0. 0x 0. 0x 0. 0x 	

TABLE 5.—Spectrographic, radiometric, and chemical analyses of radium-bearing precipitates

¹ Analyses by Morris Slaven, U. S. Geological Survey, July 5, 1949. The following elements were found to be present in quantities less than 0.01 percent: Ag, B, Be, Bi, Cb, Cd, Co, Cr, Mo, Ni, Pb, Sn, V, Zn, and Zr.

² Analyses by Paul R. Barnett, U. S. Geological Survey.

NOTE .--- 0.0x, 0.x, x, and xx mean 0.01 to 0.1, 0.1 to 1, 1 to 10, and 10 to 100 percent, respectively.

Index no.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E.)	Field radio- activity ¹	Serial no.			
	Samples from producing wells								
1 2	Kansas City Douglas	Magnoliadod	Suits 1 Suits 1}2	_ SW14-10-27-4do	(2) (3)	1560 1631			
2	do	do	do	do	(3)	1641			
2 3 4	do Arbuckle, plugged back to Kansas City Simpson	do do do	Suits 3	do do do	(3) (2) (2)	1559 1560 1553			
4 5 6 7 8 9 10 11 12 13 14 15	do		Scully 1. Scully 2. Scully 3. Scully 5. Scully 6. Scully 15. Scully 23. Scully 23. Scully 23. Scully 24. Scully 28. Scully 29. Anderson 1.	NEi¼-16-27-4. NEi¼-0-27-4. NE¼-16-27-4. · <	තිමටුටිමෙමමෙමෙලි මෙමට්ටිමෙමම	1844 1554 1554 1555 1555 1555 1555			
15 15 16 16 17 17 18 19	dododo	do 	do. 	do	00000000000000000000000000000000000000	1560 1561 . 1561 1561 1561 1561 1561 			
19 19 20 21 22	do Douglas Arbuckledo	do United Hammer and Maclean Aikman and Braden	do do Bates 2A South Anderson 1	do do SW1/4-10-27-4. NW1/4-10-27-4.	(2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	1561 1561			
23 24 25 26 27	do	do Magnolia Rex and Morris Magnolia do	Robertson 1 Loomis 7 Foster 1	_ NW1/4-10-27-4do	(0) (5) (15) (10)	1563			

TABLE 6.—Sample data: Augusta field, Butler County

See footnote at end of table.

ndex no.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E.)	Field radio- activity 1	Serial no.
		Samp	les from producing wells—Continue	ed		
28 29 30 31 32 33 34 35 36 37 38	Kansas City Arbuckle, plugged back to Kansas City Arbuckledo Kansas Citydo dodo dodo dodo dodo dodo	Magno liado do	Foster 14 Foster 16 do	do 		580 1555 1562 1562 1562 1562 1562 1562 1563
39 40 41 42 43	do Douglas?	do do	- Kramer 16. Kramer 17. 	NW14-28-27-4 SW14-28-27-4 SW14-28-27-4 SE14-26-27-4 do do		1563
44 45 46 47 47 48 49 50	Kansas Citydo	Sinclair—Citics Service do do do do do do do	Safford 8 Skaer 1 Skaer 2 Skaer 5 do Skaer 10 Skaer 12 Skaer 14	NE¼-35-27-4 do do do do do do		1626 1626 1626
51 52 52 53 54 55 56	Arbuckle, plugged back to Kansas City Arbuckle, plugged back to Kansas City do 	do do	Skaer 15	do		1623/ 16268 16267 16260 16230
57 58 58 59 60 61 62	Kansas City do. do. Arbuckle. do. 	do	Starkey 3 Starkey 4 	do		1627 1627 1626 1627 1627

TABLE 6.—Sample data: Augusta field, Butler County—Continued

v

06

63	Simpson	do	Starkey 12	do	መ	16277
64	Kansas City		Starkey 13	do	00000000	
65	Simpson	do	Starkey 15	do	- X	2
66	Arbuckle	do	Starkey 16	do	8	
67	dodo.	Charmen Önskam		GW1/ 90 07 1		1/2/0
			King 7	SW14-36-27-4	(2)	16242
68	do		King 12	do	<u>w</u>	16243
69	dodo	do	King 14	NW14-36-27-4	(0)	6
70	do	Hammer and Maclean	Moyle 2	SW14-35-27-4	(0)	16278
			-			i i
71	do	do	Movle 3	do	() ()	
72	do	do	Ambler 1	NW14-2-28-4	ເຫັ	16284
					(0)	
73	do	do	Ambler 2	ob	(0)	
			11010/101 #		(0)	F
74	do		Ambler 3	do	0	10045
14	[u0	·]ao	Ampier a	······ao	(0)	16245
					(A)	
75	do	do	Ambler 4	do		16285
76	do	do	Ambler 5	do	(0)	¥
				· ·		
77	dodo	Cities Service	Brant 3	SE14-2-28-4	(0)	16260
78	- do	do	Brant 7	ob	(4)	16256
79	Kansas City		Brant 9	do	() (4) (1) (10)	
80	Arbuckle	do	Brant 10	do	- XX	
81	do	do	Brant 11	do	器	16258
81		do			「おい」	16259
	do		do	do	(III)	10209
82	do	do	Brant 13	do		E
83	do		Brant 14	do	(0)	S
84	Kansas City	do	Hazlett 3	NE14-11-28-4	(0)	C
85	do	do	Hazlett 4	do	(0)	6
86	Arbuckle	dodo	Hazlett 5	do	(10)	16250
87	do	do	Hazlett 6	do	<u>آ</u>	
88	do	do	Hazlett 7	do	ത്	ζ
89	do	do	Wallace 4	NW14-11-28-4	8	16288
90	do		Wallace 7	do	8	10200 (
91	do	do		do	8	H
92			Wallace 8		S.	[P
	do		Wallace 10	do		
93	do		Wallace 12	do	യ	K
94	Kansas City		Wallace 18	do	(0)	7
95	do		Wallace 19	do	000000000000000000000000000000000000000	16253
96	do	do	Wallace 20	do	(0)	16287
97	do	do	Moyle 1	SE14-10-28-4	(ii)	
98	do	do	Moyle 10	SW14-10-28-4	ത്	
99	do	do	Moyle 11	do	澎	
100	Arbuckle	do	Moyle 27	NE¼-15-28-4	8	
101	do	do	Moyle 29	SW14-10-28-4	8	
101	do			0 1 4 - 10 - 20 - 4	w w	
		do	Moyle 30	SE14-10-28-4	Sec. 19	10001
103	do		Moyle 33	SW14-11-28-4 NE14-15-28-4	(3)	16291 (
104	do	do	Moyle 34	NE14-15-28-4	(0)	
105	(?)	do	Moyle 43	SE14-10-28-4	(ð)	(
106	Arbuckle	do	Moyle 44	do	(10)	16289
106	do	do	do	do	(10)	16292
						C

See footnote at end of table.

1990 Ave. 1

RADIOACTIVITY IN SOME OIL FIELDS OF SOUTHEASTERN KANSAS 16

idex 10.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E.)	Field radio- activity ¹	Serial no.
	•	Samj	ples from producing wells—Continue	ed		•
107	Kansas City	Cities Service		SW14-11-28-4	(0)	
108	Arbuckle	do		SE¼-10-28-4		
09	Kansas City	do	Moyle 47	NŴ¼-14-28-4	(0)	
10	Arbuckle	do	Moyle 48	SW14-11-28-4	(0)	
11	Douglas	Hammer and Maclean	Walker ? 1	NE14-3-28-4	(0)	16244
12	Arbuckle	do		do	(0)	
13	Kansas City	Cities Service		SW14-2-28-4	(0)	16247
14	Arbuckle				(0)	
15	do	do			(0)	
16	do		Moyle 3		(0)	
17	do	do	Moyle 4	do	(0)	
18	do	do	Moyle 5	do	(0)	
19	do	Adair (west)	Feltham 1	NW14-9-28-4	(0)	
20	do	do	Feltham 1-B		(0)	
21	do	Cities Service	Feltham 2.		(Q)	
22	do		Scully 4		(5)	16301
23	do		Scully 8 Scully 9	do	(0)	
24		do	Scully 11	do	(3)	
25 26	do	do	Scully 12		1	
20 27	do	do	Brown 6		8	
28	do	do	Brown 7		8	
29	do	do	Brown 16	do	-1 🛞	
29 30	do	Aikman and Braden	Blood 2	SW ¹ / ₄ -21-28-4	8	
31	dodo	do	Blood 3	do	8	
32	do	do	Blood 20		-1 🛞	
33	do		Varner 6	NE ¹ / ₄ -17-28-4	8	
34	do		Varner 12	d0	8	
35	do		Varner 13			
36	Kansas City		Varner 17			
37	do	do	Varner 18		$ \begin{array}{c} 10 \\ \\ \\ \\ $	
38	Arbuckle	do	Varner 19	do		1629
38	do	do	do	do	28	1629
39	do	do	Varner 21	NE ¹ / ₄ -17-28-4		1029
40	do	do	Varner 23		1 8	
11	do	do	Varner 25		$ \begin{array}{c} $	
12	do		Varner 26	NE ¹ / ₄ -17-28-4	8	
13	do		Varner 28		(3)	
44	Kansas City		Varner 32			
15	do		Varner 33		 1	
46	do	do	Varner 34		- 8	

TABLE 6.—Sample data: Augusta field, Butler County—Continued

•

92

147 147	Arbuckle		Kirkpatrick 6	SE ¹ / ₄ -17-28-4		16316 16317
147	Kansas City			do		10317
148	Arbuckle		Haskins 5			16320
149	do		Haskins 9		3	
					····· (10)	
151	do		Haskins 20		(15)	
152	do		Haskins 22		$(\overline{0})$ $(\overline{50})$	
153	do		Smith 25	NW14-20-28-4		16323
153	do		do			16322
154	do	do	Smith 26		(0) (5)	
155	dodo	do	Smith 31	$N E \frac{1}{4} - 20 - 28 - 4$		16314
156	dodo	do	Smith 32	SE ¹ /4-17-28-4	۵.	16315
157	do	do	Smith 44		ă،	
158	do	do	Love 22		X	
159	do		Love 23		····· 8	
160	do		Love_26	do		
161	do		Love 33	NW ¹ /4-29-28-4		16327
162	Lansing				····· 🛞	10327
					····· 👷	
163	Arbuckle				(W)	
164	do				(0)	
165	dodo		Chance 1		(0)	
166	do	do	Chance 2			
167	do	do	Chance 3	do	(0)	
168	do	Thrifty	Vinvard 2	do	M l	
169	do	do	Vinvard 3		ได้ ไ	
170	do		Blakeslee 1	NW ¹ /417-28-4	ش ا	
171	Arbuckle	Magnolia		NW ¹ / ₄ -10-27-4	······ (0) ······ (0) ······ (0) ····· (0) ····· (0) ····· (0) ····· (30)	15540
172	(2)	Hammer and Maclean.		d0		15606
173	Douglas and Kansas City	Magnolia	do			15538
173	do		do	do	(5) (5) (2) (10)	15603
	Arbuckle				(8)	
174					(2)	15619
175	do					15621
176	(?)	Molk	Loomis		(10)	15528
176	(?)	dodo	do	do	(10)	15623
177	Arbuckle	Sinclair	Scully	NE¼-9-27-4	(40)	15608
178	Kansas City and Arbuckle	Magnolia	Anderson	SE ¹ /4-9-27-4	(40)	15615
179	(?)	United		do	ີ (ຫົ	
180	Kansas City and Arbuckle	Sinclair				15552
180	do	do				15622
181	(2)	Aikman and others				15624
182		Aikman and Braden			🐰	
		Daw and Marris				
183		Rex and Morris		NE ¹ ⁄ ₄ -21-27-4	👷	
184	(¹) (¹) (¹)	do	do			
185	Kansas City and Arbuckle	Magnolia			(50)	15630
186	do			NW ¹ / ₄ -28-27-4	(20)	15633
187	Kansas City?				(0)	
188	do	do	do	do	1 (5)	15556

•

See footnote at end of table.

.

.

dex o.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E.)	Field radio- activity 1	Serial no.
		Samp	les from producing wells-Continue	ed		
89	Kansas City and Arbuckle	Magnolia	Kramer	SW14-28-27-4	(5) (0) (7) (3)	
)0	Kansas City	(?)		SE ¹ / ₄ -26-27-4	(0)	
1	Kansas City, Simpson, and Arbuckle.	Sinclair-Cities Service	Skear	Nɼ-35-27-4	(7)	1626
$2 \mid$	(?)	Magnolia	Palmer	NW1/4-35-27-4	(3)	
3	Arbuckle	Hammer and Maclean		SW14-35-27-4	(10)	1623
4	Kansas City, Simpson, and Arbuckle.	Sinclair-Cities Service		SE ¹ / ₄ -35-27-4	(5) (0) (0) (0) (5) (5) (5) (5) (5) (35)	1627
5	Arbuckle	Shawver Graham			(0)	1624
6	do	Hammer and Maclean		NW1⁄4-2-28-4	(0)	
7	(?)	B and R			(0)	
8	Kansas City and Arbuckle	Cities Service	Brant	SE ¹ / ₄ -2-28-4	(5)	1625
8	do	do		do	(5)	1625
9	Kansas City	do		SW1/4-2-28-4	(5)	1624
0	Kansas City and Arbuckle	do	Wallace	NW ¹ /4-11-28-4	(35)	1623
1	do	Sinclair-Cities Service				
2	do	Cities Service	Moyle		(ĪĎ)	
3	Arbuckle	Hammer and Maclean		NE ¹ / ₄ -3-28-4	(0)	
4	(?)	Adair		NE ¹ / ₄ -10-28-4.	$\begin{array}{cccc} (0) \\ () \\ (4) \\ () \\ (0) \\ () \\ (5) \\ () \\ (10) \\ () \\ (10) \\ () $	
5	(?)	do	dodo	do	(0)	1629
6	Kansas City and Arbuckle	Cities Service		SE ¹ / ₄ -10-28-4	(5)	1629
7	do	do	do		(10)	.
8	(?)	Adair		NW 1/4-10-28-4		
9	(?) .	Adair (west)		NE ¹ / ₄ -9-28-4	(ð)	
0	Kansas City and Arbuckle				(10)	1630
1	Arbuckle			Nɼ-16-28-4.	(5)	
2	do	do	do		(<u>5</u>) (<u>5</u>)	
3	Kansas City and Arbuckle				(ÌĎ)	
4	do	do	do	do	(TD)	162
5	do	do			(15)	163
6	(?)		Blakeslee		(Ō)	
7	Arbuckle	Cities Service			(5)	163
8	Kansas City and Arbuckle			NW¼-20-28-4	(20)	163
8	do	do			(20)	163
9	do					163
9	do				(10)	163
0	do				(20)	163
0	do	do			(20)	163
1	Lansing and Arbuckle				(40)	162
1	do	do			(40)	162
2	do	do			(10)	163
3	Arbuckle		Blood			163
24	do	Thrifty	Haskins	NE¼-19-28-4	Xi	163

TABLE 6.—Sample data: Augusta field, Butler County—Continued

235 226 227 228 229	do	Black Chai Macl	lodo	19-28-4 (1) 30-28-4 (2) 29-28-4 (5)	16325
Index no.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E)	Serial no.
		Samples from r	niscellaneous localities ²		
230	Kansas City and Arbuckle	_ Magnolia	Anderson	SE¼-9-27-4	13165
230 230 230	do do do	do	do		13166. 13169 13170
2 30	do	do	do	do	13171
231	Arbuckle?	Citron?	Anderson 8	NE¼-SE¼-SE¼-9-27-4	15547
232	(?)	do	Anderson	do	15620
233	(?)	··	Suits	SW14-SW14-NW14-10-27-4	15541
233 234 235 236 236 236	(?) Kansas City? (?) (?) .	do	Crite (2)	SE¼-NW¼-SW¼-10-27-4	$\begin{array}{c} 15542 \\ 15607 \\ 15600 \\ 15536 \\ 15537 \end{array}$
237 238 239 240	(?) (?) (?)		Batesdo Bates 1?South Anderson 2	SW¼-SW¼-SW¼-10-27-4 NW¼-SW¼-SW¼-10-27-4 do SW¼-NW¼-NW¼-15-27-4	15533 15534 15535 15529
241 242	(?) (?)		South Anderson 6 South Anderson 7	C-NW¼-15-27-4 NW¼-NW¼-NW¼-15-27-4	$15530 \\ 15531$
2 43	(?)		South Anderson	N ¹ / ₂ -NW ¹ / ₄ -NW ¹ / ₄ -15-27-4	1553 2
2 44	(?)	Molk	Loomis	SW14-SW14-NW14-15-27-4	15526

.

See footnotes at end of table.

•

Index no.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E)	Serial no.	
	· · · · · · · · · · · · · · · · · · ·	Samples from m	iscellaneous localities 2Continued	•		
245	(?)	Molk	Loomis	N1⁄2_SW1⁄4_NW1⁄4_15-27-4	15527	
245 246	(?) (?)	do	do Loomis 7	do S ¹ / ₂ -NW ¹ / ₄ -SW ¹ / ₄ -15-27-4	15528 15553	
247	(?)	Sinclair	Scully 16	, <u>, , , , , , , , , , , , , , , , , , </u>		
248 248 249 250 251 252	(?) . (?) . (?) Douglas?	Magnoliado. do. do. do.	do Foster 7 Kramer 13 Safford (?)	do SW14-SW14-NE14-21-27-4 	13167 13168 15554 15557 16233 16234	
253	(?)	Magnolia	Safford 2	NE¼-SE¼-NW¼-35-27-4	16281	
254 255 256 257 258 259 260 261 262	Kansas City	do	Safford 6. Safford 8. Skaer 3. Skaer 6. Skaer 9. Starkey 2. Starkey 14.	SE¼-NE¼-NW¼-35-27-4 NE¼-NE¼-NW¼-35-27-4 NW¼-NW¼-NE¼-35-27-4 NW¼-SW¼-NE¼-35-27-4 N ⁴ _NW¼-NE¼-35-27-4 N ⁴ _NW¼-NE¼-35-27-4 SW¼-NE¼-SE¼-35-27-4 SE¼-NE¼-SE¼-35-27-4 SE¼-NE¼-SE¼-35-27-4	16238 16264 16267 16274 16274 16246	
263 264	(?)	Cities Service		$ \begin{array}{c} E_{12} = SW_{4} - SE_{14} - 3 - 28 - 4 \\ NW_{4} - NE_{14} - NE_{14} - 16 - 28 - 4 \\ NW_{14} - NE_{14} - NE_{14} - 16 - 28 - 4 \\ \end{array} $	16251 16299	
265 266	(?)	dodo				

TABLE 6.-Sample data: Augusta field, Butler County-Continued

.

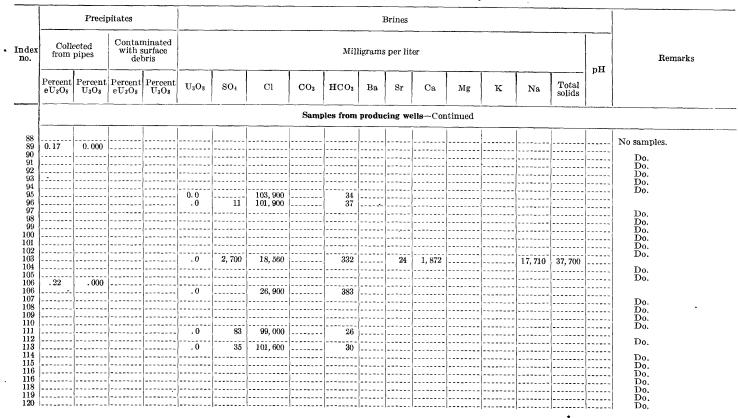
•

-												1							
21			Precipitates Brines																
	ndex no.		Collected from pipes Contaminated with surface debris Milligrams per liter							рН	Remarks								
3		Percent eU3O8	Percent U3O8	Percent eU3O8	Percent • U3O8	U ₃ O ₈	SO4	CI	CO3	HCO3	Ва	Sr	Ca	Mg	Ķ	Na	Total solids	pir	
-										Sample	s from	produ	cing well	ls					
	$\frac{1}{2}$	0,34	0,00			0.1	81	115, 100		27								6.4	Collected from gas well. Some
	2 2	. 67	. 001			.0	1, 387 63	80, 400 116, 000		9								6.1	brine is also pumped. Encrusted fiber cup from in- sert pump. Collected from gas well.
	3 4	1.31	. 003			.0	••••			-								6.5	Also spectrographically ana- lyzed.
	4 5 6 7	$.000 \\ 1.34 \\ .38 \\ .15$. 001 . 003 . 000 . 000																Evaporite.
	8 9 10	. 61	. 000																No samples. Do.
	$11 \\ 12$			0.075	0.000														Do.
	$13\\14\\15$. 012	. 000					•											Do. Cable-tool drill cuttings, see table 10. Evaporite.
	15 15					.0 .0	$\frac{82}{182}$	116,700 115,700		$ 26 \\ 28 $								$5.8 \\ 6.3$	
	16 16 17 17					.0 .0 .0 .0	85 75 1, 759 1, 735	$117,400 \\118,900 \\34,000 \\34,000 \\34,000$		32 29 200 167	99 47	127 228	2, 880 2, 670	923 477		17, 710 19, 140		6.8 6.8 7.2 7.6	
	18 19 19 19	. 006	. 000			.0 .0	2, 834 2, 380	20, 100 20, 700		239 232	9 59	29 25	1, 725 1, 950	455 417		11, 100 11, 450	38, 000 38, 100	7. 9 7. 8	No samples.

٠.

TABLE 6.—Sample data: Augusta field, Butler County—Continued

.


.

Precipitates . Brines Contaminated Collected Milligrams per liter Index with surface Remarks from pipes debris no. pН Total Percent Percent Percent Percent U_3O_8 Cl ĸ Na SO4 CO₃ HCO₃ Ba Sr Ca Mg solids U2O8 eU₃O₈ U₃O₈ eU₃O₈ Samples from producing wells-Continued Gas well: no samples. Radio 20 ---activity possibly caused by radon. Cable-tool drill cuttings, see 21 table 10. Do. 22 -----........ Do. 23 1 - - -____ --------------------------------. -----No samples. 24 ----------Cable-tool drill cuttings, see 25 --------------------------...... ----table 10. 7.8 26 0.0 ---------No samples. 27 -----..... -----Do. 28 (_____ -------------29 0.001 ------------------------------Also spectrographically ana-lyzed. 30 0.83 0.000 --------------------------6.9 81,800 112 30 .0 712 ---------{_____ ---------No samples. 31 ____ ---------------. 32 Do. --------------------115,200 6.3 33 32281 _ .__ -----------------114,500 34 7.0 34 .0 56 ---------------------...... 52 30 6.9 35 .0 115,200 ----------36 .0 5.4 ----------------------...... 37 Do. ----------. ----. ----Do. 38 ____ ---------...... 4.9 39 .0 -----____ -------------...... ------Cable-tool drill cuttings, see 40 -----. table 10. No samples. 41 ------Do. 42 ----------Collected from gas well. 43 0.008 0.000 ------Field measurement made of precipitate.

TABLE 6.-Sample data: Augusta field, Butler County-Continued

			 l			l				-	1					No samples.
			 													Do.
. 000	. 000		 .0	204	98, 300		64									
.000	.000		 .0	1, 595	17.910		320									
			 													Do.
]]			Do. Do.
			 .0	74	108, 300		38									D0.
. 17	. 000		 													
· -			 .0	76	111,000 27,200		41 380									
			 .0	2,084	27,200		360	38	68	1,782	464	146	11,560	38,800		
			 													Do. '
			 .0		49, 600											Do.
. 001	.000		 													D0.
			 .0	31	109,900		28									
• • • • • • • • • • • • • • • • • • •			 .0	2,740	24,300		332 268									
			 .0	1, 992	16,900		208	8	34	1,644	418		9, 640	33, 300		Do.
			 													Do.
			 .0	1,546	39, 400		187	41	182	2,900	1,038		21, 740	72, 300		D .
			 								•••••					Do. Do.
			 													Do.
			 .0	2, 274	18,100		343	13	36	1,804	859		10,410	35, 200		
			 .0	2, 570	2 0, 800		320	8	30	1, 994	495.		11, 790	40, 400		Do.
			 .0	1.744	18, 330		294									Also cable-tool drill cutti
				,	-, -		_									see table 10.
			 .0	2,610	19,640		298									No samples. Also cable-tool drill cutti
			 	2,010	19, 040		490									see table 10.
			 													Cable-tool drill cuttings,
			.0	2,780	22, 700		224									table 10. Also cable-tool drill cutti
			 	4,700	<i>22,10</i> 0		444									see table 10.
			 .0		21, 000											Do.
			 				• • • •									Cable-tool drill cuttings, table 10.
			 .0	2, 395	17,900		264	59	25	1.857	473		10, 210	35,100		table 10.
			 . ŏ	2,670	23, 860		251									
			 		• • • • • • • • • • • • • • • • • • •											No samples.
. 081	. 001		 													Do.
			 .0	931			268									_
			 													Do.
			 													Do. Do.
			 													Do.
. 26	.000		 													Do.

. .

TABLE 6.—Sample data: Augusta field, Butler County-Continued

121													1					
121 122	. 42	. 001																
123																		
124																		
125																		
126																		
127																		
128																		
129										'								
130																		
131																		
132																		
133																		
134																		
$135 \\ 136$																		
$130 \\ 137$					[
137	.064	. 000																
138	.001	.000			.0	2, 340	22, 990		283	12	46	2,335	509		12 080	45, 500		
139						4,010	22, 550		200	14	70	4,000	0.90		14, 900	40,000		
140																		
141																		
142																		
143																		
144																		
145																		
146																		
147	. 42	.000																
147					.0	2, 285	19,000		345	11	34	1,975	488	158	11,000	37,900		
148																		
149	. 052	. 000																
150																		
151]															
152																		
153	. 58																	
153					.0	638	71,900		164									
154																		
155	. 28	.000			.0	2,670	20,400		307	47	52	2,106	477		11 020			
$156 \\ 157$.0	4,070	20,400		307	4/	02	2,100	4//	100	11, 830	39, 900		
157																		
158																		
160													-					
161	. 018	. 000																
162	.010																	
163																		
164																		
165																		
166																		
167																		
168																		
169																		
170																		
~				1	1													

٠

•

.

.

							Brines	1							oitates	Precip		
Remarks	рH					ər	per lit	igrams	Mil				-	urface	Contan with s deb		Colle from	Index no.
		Total solids	Na	ĸ	Mg	Са	Sr	Ва	нсоз	CO3	Cl	SO4	U3O8	Percent U3O8	Percent eU3O8	Percent U3O8	Percent eU ₃ O ₈	
		•			8	l system	disposa	brine-	les from	Sam				,				
Wood collected from separate tank, radioactivity cause precipitates.								•								0.000	0.004	171
D o.	6.9 6.9 6.9 6.5	201, 600 184, 000	57, 800 51, 600	207 193	3, 550 3, 620	8, 080 7, 810	2, 332 2, 003	68 52	33 22 26 34		113, 700 118, 500 108, 800 87, 800	91 29 46 363	0.0 .0 .0			. 000	. 002	172 173 173 174 175
Collected from area near seg arator tank.	7.0 6.8 7.0	152,400	43 900		2, 720	6, 640	 1, 282		63 57 26		19, 220 109, 800 88, 800	457 219 172	.0 .0 .0	0.000				176 176 177 178
No samples. Collected from separator tank No samples.	7.2 7.9		17, 200		697	2, 153		20 20	115		78, 300 28, 000	536 2, 720	.0 .0			. 000	. 28	79 80 80 81
Do. Do.	6.9 7.2	68, 200	20, 050	155	1, 056	3, 040	281	13	 87 113		81, 700 38, 770	741 1, 627	.0					182 183 184 185 185
Do. Collected from area near sep arator tank. No samples. Do.														. 002	. 060			187 188 189 190
Do.		60, 700	18, 200	138	1,046	2, 950	356	50	195		34, 250	1, 263	.0					191 192

TABLE 6.—Sample data: Augusta field, Butler County—Continued

193 194 195	. 21	. 000	. 046	. 002	. 19			 328			1 000						Collected from separator tank. Collected from abandoned separator tank site.
196					. 19	2,354	20, 200	 328	44	19	1,800	455	144	11,280	38,000		No samples.
197 198			. 055	.000				 									Do. Collected from area near sep-
198					.0	2, 107	2 5, 600	 222	73	194	2, 185	642	153	14, 050	47, 300		arator tank.
199 200					.0	32 243	104,900 106,700	 41 37									
201					.0	440	100, 100	 01									No samples.
202								 									Do.
203								 									Do.
$\frac{204}{205}$.0	1 204	18 040	 147		22	1 207			10,370	- 25 100		Do.
206			. 036	. 000	.0	1,694	18, 240	 147			1,627	449 	150	10, 370	35,100		Collected from area near sep- arator tank.
207								 									No samples.
208 209								 					 -				Do.
209 210					.0	1,487		 190									Do.
210					.0	1,407	51,200	 132									Do.
212								 									Do.
213								 									Do.
$\frac{214}{215}$.14	1,322	51,400	 179							- 17 000		
215 216					.0	2, 140	24, 440	 258	34	127	2, 238	618	166	13, 450	45, 900		Do.
217					.0	1,087	20,010	 177									D0.
218			.051	.000		1,001		 									Collected from area near sep-
218					.0	790	70,800	128									arator tank.
219			. 093	. 001				 									Do.
219 220			. 021	. 000	.0	2, 368	36, 750	 291	14	369	3, 340	1,096	173	20, 050	67, 400	•	Do.
220					.0	356	63, 300	 199									
221	.33	. 005						 									Collected from separator tank.
221					.0	2,610	21,300	 168	43	33	2,010	499	166	12, 300	41,900		
22 2 223					.0	$1,651 \\ 2,209$	33,400 19,430	 136 232									
224					.2	2, 209	19,430	 232									
225					. 4	5/1	10,020	 414									No samples.
226								 									Do.
227					.0	634	19,820	 488									- D-
228 229			•••••					 									Do. Do.
440								 									
		·	·					 ·		·	,			·	·		

		Preci	itates								Brines							
Index no.	Collect pipes o		Contan with s def	urface					N	filligran	15 per lite	r					pH	Remarks
	Pc rcent eU3O8	Percent U ₃ O ₈	Percent eU3O8	Percent U ₃ O ₈	U3O8	SO4	Cl	CO3	HCO3	Ba	Sr	Ca	Mg	к	Na	Total solids		
230			0.029	0.000														Collected from area near
230			.008	. 000														separator tank. Do.
2 30	0.12	0.000																Collected from separator
23 0	. 24	. 000																Collected from separator tank; also spectrograph-
230			. 39	. 000														ically analyzed. Collected from area near
231	. 001	. 000																separator tank. Evaporite, collected from
232					0.0	99	111,600		38								6.7	well. Collected from separator
233	.16	. 000					•											tank. Collected from abandoned
233	. 22	. 000																separator tank site. Do.
$\frac{234}{235}$.1		113, 600										7.0 6.5	Collected from well.
236 236	.056	.002 .001																Collected from scrap pipe. Collected from scrap pipe;
200	. 10																	also spectrographically analyzed.
$237 \\ 238$. 006	. 000																Collected from scrap pipe.
238 239 240	. 42 . 33 . 31	.000																Collected from well. Collected from abandoned
241	. 38	.000																well site. Do.

.

TABLE 6.—Sample data: Augusta field, Butler County—Continued

242			. 007	. 000											 		Collected from abandoned well site, cable-tool drill
243			. 011	. 000											 		cuttings, see table 10. Collected from abandoned separator tank site.
244	.64	. 006													 		Collected from area near separator tank; also spec-
245			. 003	. 000											 		trographically analyzed. Collected from area near separator tank.
$245 \\ 246$. 14 . 001	. 000 . 000											 		Do. Collected from area near well.
247	. 025	. 001													 		Collected from abandoned well site.
248 248 249	. 092	. 000															Do. Do. Do.
$\frac{250}{251}$. 28 . 001	. 000															Do. Collected from well.
252 253	. 003	. 000			.0	2, 213	98, 400		i i					1			Collected from disposal pond. Collected from abandoned
254					.0	48	112,700		31	•••••					 		well site. Collected from well. Do.
$255 \\ 256$. 000	.000											 		Collected from abandoned well site.
$257 \\ 258 \\ 259$.000	. 000	. 000 . 044	. 000 . 000											 		Dø. Do. Do.
$\frac{260}{261}$. 003	. 000	. 049	.000											 		Do. Do.
$262 \\ 263 \\ 264$. 16	. 000	. 002	, 000											 		Do. Do. Fresh water precipitate col-
265					.0	123	•1										lected from power plant. Fresh water from 4-mile creek.
2 66	. 085	.000													 		Collected from abandoned well site.
	1			!				l	I				l	I			

¹ Approximate radioactivity determined in the field with a standard portable gamma-beta survey meter. Figures listed are meter divisions (excluding average background of 2-3 divisions). Figures between 0 and 20, 21 and 2000, 201 and 2000, were observed on the 0.2, the 2.0, and the 20.0 sensitivity scales, respectively, and were converted to the comparable number of units on the 0.2 scale. The conversion is not exact because the instrument was uncalibrated. ² These miscellaneous sample localities are not shown on the Augusta field map because of poor information relative to location or to fluid source.

TABLE 7.—Sample Data: Cowley County

Index no.	Р	roducin	g formati	ion or gro	up		Co	ompany			Lease na	ume and	well no.		L	ocation (SecT	.SR.E.)		Serial no.	.06
267 268 269 270 270 270 270 270 272 272 272 273 273 273 273 273 273 274 276 276 276 276 276 276 276 277 278 279 279 279 280 280 280 280	do do Arbuck do 	ee (Bart le and F le and F le City ar ppian ppian	lesville) Xansas C Xansas C d Chero d Chero	ity iity kee (Bar	tlesville)		nental	Miller		Boy Boy Boy Boy Boy Boy Gra Fin Mar Rac Dif Dif Dif Dif Dif Dif Dif Dif Boy Boy Boy Boy Boy Boy Boy Boy Boy Boy	thered _ do do dd dd	aham e 1 e 2		SF	$b'_4 = 28 - 3$ do da	1-3 2-5 33-3 33-3 -3 -3 -3 -7				18450 18429 18430 15585 15643 18447 18448 18449 18447 18448 17918 17923 17924 17919 17929 15635 15638 15638 15638 15638 15642 15644 15642 15644 15642 156444 156444 156444 156444 15644	A CONTRIBUTION TO THE GEOLOGY OF
Index no.	Collector pipes of Percent eU308	ed from r tanks	with s del	Percent	U ₃ O ₈	SO₄	С1	CO3	M HCO2		Brines s per lite Sr	r Ca	Mg	K	Na	Total solids	pH	F	lemarks		F URANIUM
267	0.001	0.001					 	 	- 							-		Ċollected tank.	from	separator	

106

268 268			0.085	0.000														Do. Collected from separator tank; gypsum, and celes-
269			.040	. 001			1							1				tite. Collected from separator
269 270 270	8.15	. 000	. 32	. 001													6.5	
270	. 048	.001																posal line.
270 271	5.16 10.85	. 001 . 001																Collected form separator tank Collected form separator tank Collected from scrap pipe used on the Bower or
270	- -				.0	1, 137	68, 000	0	71	18	403	5, 600	1, 367	179	33, 100	112, 500		Graham lease, Collected from separator
$272 \\ 272 \\ 273 \\ 273 \\ 273 \\ 273 \\ 273 \\ 273 \\ 273 \\ 273 \\ 272 \\ 273 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 272 \\ 273 \\ 272 \\ 273 \\ 272 \\ 272 \\ 273 \\ 272 \\ 273 \\ 272 \\ 273 \\ 272 \\ 273 \\ 272 \\ 273 $.0 .0 .0	$1,296 \\1,301 \\1,450$	61, 100 58, 100 50, 400	0 0 0	83 98 75	0 16 11	$ \begin{array}{r} 109 \\ 248 \\ 56 \\ \hline \end{array} $	5,070 4,920 3,090	$1,187 \\ 1,172 \\ 1,006$	234		99, 800 99, 800 88, 600		Collected from well.
273 274				. 002	.0	1, 441	52, 100	4	79 	11 	31 	4, 490	1,015	192	27, 400	88, 900		Evaporite on brine-disposal
$275 \\ 276$. 019	. 001	.0	·											7.5	Collected from well.
276			. 001	. 000														
276	:				.0	716	56, 000		55	16	259	5, 090	1,150	374	29, 960	99, 100	7.0	posal pond; evaporite. Collected from brine-dis-
$277 \\ 278$.0												6.5	Drill cuttings, see table 10.
279	. 24	. 005																tank. Also drill cuttings, see table 10.
279 279	. 48	. 002			.0													Collected from well.
$\frac{279}{280}$.0 .0												5.5	Do. Do.
280 281					.0	1,658			80	59 	144	4, 530				91, 800	6.5	Do. Core samples, see table 10.
282					.05		137											tank.
283					.0	9	82, 600	0	11	441	719	6, 740	1, 813	66	44,000	139, 100		Do.

TABLE 8.—Sample data: Butler County 1

Index no.	Producing formation or group	Company	Lease name and well no.	Location (SecT.SR.E.)	Serial no.
284	Kansas City and Hunton		Hawk	SE14-4-23-4	16328
284 285 286	do Kansas City	Palmer	do McLaughlin I Thompson 1	do SW1 <u>4</u> -8-23-4 2-24-3	16329 18376
287	Mississippian?		Houston	NE¼-1-25-3.	17915
288			Augustine 1	dodo	
289 289 290	Viola do Abruckle?	Deep Rock	Robinson 1do	3-25-5. do. NW¼-5-26-5.	$18377 \\ 18342 \\ 16309$
290 291	do	Colpitt	do Linn 1A	do	16310
292		Magnolia	Koogler 71	SE¼-30-26-5	
293	Kansas City		Klinger	NW14-24-27-3	18332
294 295	Simpson		Klinger 1 Taylor 1	do NE¼-17-27-4	18367
14 1 296 297 22	Arbuckle Kansas City do Arbuckle do	Sinclair Magnolia? Magnolia. Hammer and Maclean. Aikman and Braden	Scully 29 Suits 1 Suits 9. Bates 2. South Anderson 1 South Anderson 2	NE¼-9-27-4. SW¼-10-27-4. do. NW¼-15-27-4. do.	
23 298 299 300 301	do Kansas City Arbuckle	Cosmic Magnolia	Loomis 10	15-27-4. NW¼-15-27-4. 16-27-4. NE¼-21-27-4.	
302 29 303	Arbuckle, plugged back to Kansas City Arbuckle		Loomis 7 Foster 14 Foster 21	dodo	

304 Blakeslee Wilson 1½ NE¼-28-27	-4
	-4
	4
306do	-4F
307do Cities Service Scully 120 SE1/4-21-27-	4
308	4
309	4
310 Alter and Brackensiek Sanford 1 SE1/4-27-27-	4
311	
	4
	2
	n
	-3 18346
11 E/4-27-30	-0
314	18426
017 $B016(1)$ $B026(1)$	4
515 Afbuckler Sw/4-17-29-	4 17909
316 Cherokee (Bartlesville)	
$d_{10} = d_{10} = d$	
318 Douglas	15583
319 Mississippian	-7
320 Arbuckle	
	5
	1834.3
321 Viola Stern 1 NE¼-33-27	6
322 do	-6 18340
323do	-7
324 Arbuckle NW14-24-29	-5 1845, 🤇
324 do	1792
	2 2
	· • • • • • • • • • • • • • • • • • • •
324dodd_dodd_dd	1836 0
	6

٠

¹ Sample data pertaining to the Augusta field in Butler County are listed separately in table 6.

TABLE 8.—Sample data: Butler County 1—Continued

-		Preci	pitates	-							Brines							
Index no.		ed from r tanks	Contan with s det						1	Milligram	Is per lite	er	101 - 47 Ag				Ha	Remarks
	Percent eU3O8	Percent U3O8	Percent eU ₃ O ₈	Percent U3O8	U3O8	SO4	Cl	CO3	HCO3	Ва	Sr	Са	Mg	ĸ	Na	Total solids		
284			0.001	0.002														Collected from separator
284 285 286	0.22	0.001			0.0	1, 588	13, 240		192									tank. Do. Collected from well. Cable-tool drill cuttings, see
287					.0	1, 407	110, 800	0	0	82	112	280	2, 960	64	67, 100	199, 300		table 10. Collected from separator
288																		tank. Cable-tool drill cuttings, see table 10.
289 289	1.33	. 000			.0		18, 360											Collected from well.
290			. 085	. 000														Collected from separator tank.
290 291			. 004	. 003														Do. Rotary-drill cuttings, see
292																		table 10. Cable-tool drill cuttings, see
2 93					.04		122, 400				:							table 10. Collected from separator tank.
294 295	.070	.000																Collected from well. Cable-tool drill cuttings, see
14																		table 10. Do. Do.
296 297																		Do. Do.
$22 \\ 23 \\ 298$																		Do. Do. Do.
298 299 300																		Do. Do. Do.
301 302																		Do. Do.
29 303																		Do. Do.

2

A CONTRIBUTION TO THE GEOLOGY OF URANIUM

304				1								-						Do.
3 05					{													Do.
40																		Do.
306																		Do.
307																		Do.
308				1	1	1												Do. 9
309													}					Do.
310																		Do.
311																		Do.
70																		Do. 5
																		Do.
312																		
72																		Do.
73]			Do.
74																		Do.
75																		Do.
76																		Do. 0
313					.0		19.530											Collected from separator
															1			tank.
314	. 21	.001													1			Collected from well.
315	. 21				.0	91	124, 700	0	10	153	1,897	6,590	3, 430	161	67, 100	205 500		C. B. stall from another
010						1 21	124, 100	0	10	100	1,001	0,050	0,100	101	01,100	200,000		tank.
316									(1		1	1	1		Core samples, see table 10.
317	. 002	. 000																Collected from well.
318	.001	. 000																Do.
319	. 32	. 000																Do.
320			.002	. 001														Collected from separator
							1		1	1			1					tank.
320					0.		20, 310						1					Do. 0
321	. 002	. 000																Collected from well.
322					.0		19, 590											Collected from separator
							,			1				1	1	1	1	tank.
323					.0		68, 500	1		1	1							Do.
324	. 12	.000					00,000											Collected from water-flood
021	.12																	system (precipitate from
							1	1			1							brine before filtering).
324				1		0.040	07 000	1				0.000		000	1	1 40 000	1	
324					.0	2, 248	27, 300		87	0	74	2,500	582	302	15,080	48, 200		Collected from water-flood
		1					1		I							1		system (brine before fil-
					1 -			1			1				1			tering).
324					. 09													Collected from water-flood
				1							1				1			system (brine residue
				1	1	1	1		l I	1		1	1			1		from filtering).
			1	1	1	1	1	1		1	1	1	1	1	1	1	1	

¹ Sample data pertaining to the Augusta field in Eutler County are listed separately in table 6.

TABLE 9.—Sample data: Marion County

6	Aississippian				
			Cowman	SW1⁄4-11-17-4	18333
6	do		Bevins 4	$SE^{\frac{1}{4}-21-17-4}$	18368
	do		do		18334
7	do		Bevins		18335
	Viola		Rempel 1.	SE ¹ / ₄ -12-19-2	18369
1 -=	do	Sohio	Rempel	NE ¹ / ₄ -13-19-2	18336
	Hunton?		Mott	$ SE \frac{1}{4} - 10 - 21 - 3$	18338
		•	Wenger 1	SE ¹ ⁄ ₄ -14-21-3	
	Ziola	Coop. Refinery Assoc			
1	Kansas City and Viola	do	Reamy	do	18371
	viola	ao	do		18337
	do	Faylor?	Greeley Joliffe	NE ¹ 4-19-21-5	18370
		do			18374
		· a0	Joliffe(?)		18339
1			Jointe(!)	do	18375
			do	do	
1	Mississippian	Colpitt		NW ¹ / ₄ -8-22-4	18340 18373
1 *	do	do	do	do	3662
	do	do	do	do	5803
	do	do	do	do	5804
	do	do	do	do	5805
	do	do	do	do	5793
1				NE ¹ ⁄4-8-22-4	3659
			dò	do	5807
		Berry and Eells	Spier 1A		
1	Viola	do	Joliffe 1.	NW14-9-22-4	
1			Joliffe(?)	do	3661
			do	do	3663
			do	do	5799
			do	do	5802
			do	do	5808
	Mississippian		B. Alvin		18341
1	Viola	Progressive	Nonken 1		

		Precip	oitates		Brines													
ıdex no.	Collected from pipes or tanks		Contaminated with surface debris								pH	Remarks						
	Pe rce nt eU3O8	Percent U3O8	Porcent eU3O8	Percent U ₃ O ₈	U3O8	SO4	Cl	CO₃	HCO3	Ва	Sr	Са	Mg	К.	Na	Total solids		
325					0.0		31, 900											Collected from separator
$326 \\ 326$	0.022	0.000			.0		75,400											tank. Collected from well. Do.
320 327					:0		30, 500											Collected from separator tank.
328 329	.000	. 000			.0		18, 950											Collected from well. Collected from separator
330 331					.0		19, 920											tank. Do. Rotary-drill cuttings, see
332	. 000	.000																table 10. Collected from well.
333			0.002	0.001														Collected from separator tank.
333 334 335 335	. 013	.001	.048	.001	.0		22,070											Do. Do. Do.
336	. 27	. 001			.0		104, 700											Do. Collected from well.
336 336			. 083	. 003	.0		102, 900											Do. Do.
336 337 337 337 337	. 92	. 001	.088	. 003 . 001														Do. Do. Do.
337 337			.63 .077	.000														Do. Do.
337 338 338			.088	. 003	.0													Do. Do. Do.
339 340			.001	. 000														Do. Do. Rotary-drill cuttings, see
341			. 103	.001														table 10. Collected from area near
341 341			.059	. 003														separator tank. Do. Do.
341 341			. 20	.000														Do. Do.
342 343					.0		9, 380											Collected from separator tank. Cable-tool drill cuttings, see

•

X

218610 --53

TABLE 10.—Drill samples radiometrically analyzed: southeastern Kansas

[All radiometric and sample logs not marked with an asterisk (*) are plotted on plate 6]

Index no.	Reference map	Company	Lease name and well no.	Location (SecT.SR.E.)	Serial nos.	Range in per- cent eU2O8	Depth (feet)	Remarks	
286 288 291 292 295 14 1 296	Plate 14 do do do do do do do	Palmer Sheldon and Wixon Colpitt Magnolia Adkins Sinclair Hammer and Maclean. Magnolia	Thompson 1 Augustine 1 Linn 1A Koogler 71 Taylor 1 Scully 29 Suits 1 Suits 9	NE½SW¼-2-24-3 NE¼NW¼NE¼-1-25-3 NW¼-5-26-5. SE¼-30-26-5 NW¼NE¼17-27-4. SE¼NE¼-0-27-4 NW¼NW¼SW¼-10-27-4. NW¼NW¼SW¼-10-27-4	13975 -13982 13930 -13933 14007 -14149	0.000-0.007 .000001 .000002 .001006 .000004 .000002 .000002	2, 508-2, 913 2, 670-2, 681 605-2, 425 800-1, 410 2, 350-2, 880 2, 400-2, 453 1, 989-2, 013 1, 015-2, 043	Rotary-drill cuttings.* Rotary-drill cuttings.* Rotary-drill cuttings.*	A CONTRIBUTION
297 22	do do	Hammer and Maclean. Aikman and Braden	Bates 2 South Anderson 1	SW4SW4SW4-10-27-4 NW4NW4NW4-15-27-4	16330 -16400 18996 -19022	.000005 .000010	1, 989–2, 462 2, 027–2, 471	Radioactive "vesicular" celes- tite, magnetite, actinolite, and fluorite are present between depths of 2,027 and 2,031 ft.	
23 298 344	do do Plate 12	do Cosmic Magnolia	South Anderson 2 Loomis 10 South Anderson 7	NE¼NW¼NW¼-15-27-4 NW¼SW¼NW¼-15-27-4 NW¼NW¼NW¼-15-27-4	19023 –19035 14493B–14497B 15991	.000002 .000002 .030	2, 058-2, 465 2, 004-2, 035 2, 529-2, 530	Radioactive "vesicular" lime- stone, in part replaced by magnetite, containing some celestite and barite is present between depths of 2,529 and	TO THE (
299 300 345 301 302 29	Plate 14 Plate 12 Plate 12 Plate 14 do	do	South Anderson 9 Perry 1 Loomis 1 Loomis 3 Loomis 7 Foster 14	SW¼NW¼NW¼-15-27-4 16-37-4. NE¼SE¼-16-27-4. C-N¼NE¼-21-27-4. SE¼NW¼NE¼-21-27-4 NW¼NW¼SE¼-21-27-4	$\begin{array}{rrrr} 13983 & -14006 \\ 13946 & -13949 \\ 13940 & -13945 \\ 13845 & -13914 \\ 21356 & -21654 \\ 13568 & -13642 \end{array}$.000002 .001003 .001006 .000006 .000007 .000008	1, 996-2, 075 2, 474-2, 481 2, 475-2, 481 1, 919-2, 345½ 30-2, 346½ 2, 387-2, 610	Radioactive "vesicular" mineral containing iron, calcium, stron- tium, and barium is present between depths of 2,413 and	GEOLOGY OF
303 304 305 40 306 307 308	dodo do do do do do do		Foster 21 Wilson 11 <u>6</u> Kramer 14. Kramer 17. Kramer 18. Seully 120. West 1	NE4SE4NW4-28-27-4 NE4SW4-28-27-4 NW4SE4NW4-28-27-4 NW4SE4NW4-28-27-4	13934 -13936 13915 -13929 14474 -14493A 13643 -13727 13364 -13506 13190 -13363 13951 -13974	.000005 .000002 .001006 .000005 .000006 .000004 .000007	$\begin{array}{c} 2,377-2,431\\ 1,907-1,934\\ 2,245-2,321\\ 1,000-1,815\\ 1,000-2,335\\ 820-2,357\\ 2,008-2,463 \end{array}$	2,414 ft. Black shale, containing 0.005 per- cent eU ₃ O ₃ is present at 2,431 ft. Rotary-drill cuttings.*	URANIUM

309 310 311	do do		Lychlyter(?) Sanford 1 Palmer 7A	SE¼NW¼-11-27-4. SE¼SE¼SE¼-27-27-4. NW¼-35-27-4.	14658 -14698 14498 -14534 13840 -13844	.000006 .001006	2, 650–2, 917 2, 425–2, 629 2, 553–2, 590	
$\frac{70}{312}$	do	Hammer and Maclean.	Moyle 2	N E¼SW¼SW¼-35-27-4 SE¼SW¼SW¼-35-27-4	19105 -19135 19136 -19171	.000005	$2, 545-2, 610\frac{1}{2}$ 2, 585-2, 640 $\frac{1}{2}$,
72	do	do	Moyle 4 Ambler 1	SE45W 45W 4-30-27-4 SE4NE4NW 4-2-28-4	19136 - 19171 19036 - 19059	.000005	$2, 585-2, 640 \neq 2$ 2, 127-2, 611	,
73	do	do	Ambler 2	SW14NE14NW14-2-28-4	19060 -19072	.002006	2, 565-2, 614	
74		do	Ambler 3	NE ¹ ⁄ ₄ SW ¹ ⁄ ₄ NW ¹ ⁄ ₄ -2-28-4	19073 -19088	.000005	2,058-2,617	
75		do	Amhler 4	NW ¹ / ₄ NE ¹ / ₄ NW ¹ / ₄ -2-28-4	19089 -19100	.000004	2,609-2,620	
76		do	Ambler 5 Liggett W 14 Dilworth Fee 1	NE¼NE¼NW¼-2-28-4 16-26-8	19101 -19104	.001003	2, 618-2, 625	
316	do	Sohio	Liggett W 14	16-26-8	15578 - 15582	.003004	2, 514-2, 530	Core.*
277	Plate 13	Dilworth and Miller	Dilworth Fee 1.	N E¼-8-33-7 N E¼-8-33-7	19174 -19181	.002003	2, 665–2, 725 2, 700–2, 706	
279 281		do Fleet	Dilworth Fee 2	N E $\frac{1}{2}$ - $\frac{33-7}{2}$ - $\frac{33-7}{2}$ - $\frac{33-7}{2}$ - $\frac{33-6}{2}$ - 3	19172 - 19173 15586 - 15587	. 003	2,700-2,706	Core.*
331	Plate 15	rieet	Wenger 1	$W_{2}^{-27-33-0}$ SE ¹ / ₄ -14-21-3	15586 -15587 18456 -18608	.002004 .001004	2, 904-2, 940 1, 800-2, 880	Rotary-drill cuttings.*
340	do	Berry and Eells	Jolliffe 1	NW14NW14-9-22-4	5795	1.007 mg	2,275	Drilling'mud.*
340	do	dodo	ob	NW14NW14-9-22-4	5794	1.004 mg	2, 365	Drilling, mud.*
340	do	do	do	NW4/NW4/-9-22-4	5791	1.003 mg	2, 374	Drilling mud.*
340	do	do	do	NW14NW14-9-22-4 NW14NW14-9-22-4 NW14NW14-34-22-4	5797	1.005 mg	2,485	Drilling mud.*
340	do	do	do	NW14NW14-9-22-4	5851 - 5990	0.000003	1, 805-2, 4851/2	Rotary-drill cuttings.
343	do	Progressive	Nonken 1	NW14NW14-34-22-4	7052 - 7172	.000008	1, 786-2, 517	
346	Plate 12	James	Rimel 1	SE¼NW¼SW¼-20-27-2	14615B-14634	. 000 008	3, 264-3, 3091/2	Chalcopyrite and covellite(?) are present between depths of 3,287 and 3,309 ¹ / ₂ ft.
347	do	Fisher and Lauck	Trustee 8	19-27-2	14635 -14644	.000003	3, 080-3, 252	
348	do	Shawver and others	Soukup 1	NW14NE14-19-27-2	14645 -14657	.001005	3, 248-3, 269	
349	do	Vickers and Hinkle	Keys 3	SW¼NW¼NE¼-30-27-2	14699 -14722	.000005	3, 228–3, 334	Quartz sand, granite fragments, and bentonite between depths of 3.272 and 3.285 ft.
350	do	Derby	Rimel 2	C-NE¼-30-27-2	14589 -14615A	.000007	3, 230–3, 420	Garnet, e actinolite, magnetite, and chlorite(?) are present at a depth of 3.230 ft.
351	do	Bird and Hanley	Shipley 1	NW¼15-30-12	7781 - 7835	.000007	1, 0321, 685	Clintonite, corundophilite(?), a diopside-hedenbergite mineral, and some orthoclase are pres- ent between depths of 1,388 and
								1,671 ft.

1

¹ Milligrams of uranium per liter.

~

Sample nos. 16328 and 16310 from Butler County (see table 8, index nos. 284 and 290) are evaporites formed from brine that had been pumped from the subsurface formations. Although the uranium oxide content of these two samples is only 0.002 and 0.003 percent, it does indicate that some uranium was brought up with the brines.

Because abnormal radioactivity had been recorded on gamma-ray logs of wells in the Augusta field, a radiometric survey was made of all the producing wells to determine whether the radioactivity was evenly distributed throughout the field. The radiometric and chemical data are given in table 6, and the location of all wells from which samples were collected or field determinations made are shown on plate 16. The map of the Augusta field shows that most of the wells in which radium-bearing precipitates have formed either are producing from, or have been plugged back from, the Arbuckle group.

The wells in which the radium-bearing precipitates have formed are old, and many of them have leaks in the casing. Such leaks have resulted in the intermingling of high-sulfate brines from the Arbuckle group with comparatively high-strontium brines from the Pennsylvanian formations, particularly those brines from the Kansas City group. Intermingling of these brines apparently has resulted in the precipitation of celestite. Because of the chemical similarity of strontium and radium, radium is intimately associated with celestite.

Plate 11 is a diagram of the Nort Augusta field compiled from sample and gamma-ray logs and compares lithology with radioactivity.

Gamma-ray logs 1, 3, and 4 are normal logs and reflect the differences in lithology that normally would be expected; but logs 2, 5, and 6 show abnormal deflections that could be caused only by a much greater proportion of radioactive elements than normally is present in these rocks. Because radium-bearing precipitates have been found in surface pipes and tanks in this field and because of the intermingling of high-sulfate with high-strontium brines, it seems probable that radioactive celestite has been precipitated on the casing. All the abnormal deflections are opposite shale beds, suggesting that oxidation of pyrite in the shale, during the 25 to 30 yr since the wells were drilled, produced acid solutions that reacted with the iron casing and made holes in the casing. This would have permitted the deeper brines to come in contact with those from the shale beds and under suitable conditions resulted in the deposition of strontium and radium This type of deposit probably is illustrated by the gammasulfates. ray logs on plate 17, which show that a radioactive deposit between depths of about 2,950 ft and 3,000 ft in the Cramm "E" no. 1 well corresponds exactly to the perforation in the casing.

RADIOACTIVITY IN SOME OIL FIELDS OF SOUTHEASTERN KANSAS 117

It is particularly noticeable that those fields in southeastern Kansas from which the most radioactive samples have been collected are fields in which brines from the Arbuckle group and Pennsylvanian rocks could intermingle and thus bring about the conditions necessary for the precipitation of celestite. Because the chemistry of radium is similar to that of strontium and barium, it would be expected that radium sulfate would be precipitated along with strontium and barium sulfate.

The analytical data presented in tables 6, 7, 8, and 9 show that the radioactivity of the precipitates varies sharply, not only between different oil and gas fields but between different wells in the same field. Most of this variation is caused probably by an uneven distribution of uranium in the subsurface rocks. In the samples collected, the range of equivalent uranium oxide is from 0.000 to 10.85 percent. Because both the radioactive and nonradioactive precipitates were deposited in similar environments, it is probable that radium was present in some solutions and not in others, and that the radium was derived from localized sources.

As radium is a disintegration product of uranium, it would be expected that the brines from which the radium-bearing precipitates were derived also would contain measurable amounts of uranium. Although 0.1 to 0.2 ppm of uranium have been found in a few brine samples, there is no positive correlation between wells that produce these uranium-bearing brines and wells at which radium-bearing precipitates have been deposited. It is possible, however, that the uranium, which is more soluble than radium, was flushed from the reservoir rocks and other rocks surrounding the drill bore, by the first oil produced. During that stage in the history of the well much smaller volumes of brine would have been pumped than during the Some incomplete and inconclusive experimental data later stages. (G. J. Petretic, personal communication) indicate that uranium is more soluble in oil than it is in the type of brines pumped from wells It might be possible, then, that uranium could be flushed in this area. from the subsurface rocks by crude oil and that later the more insoluble radium was brought to the surface in the brine solutions. This would apparently be a satisfactory explanation for the vuggy radiumbearing limestones found in drill samples from the Augusta field in Butler County.

Chemical analyses for uranium have been made of oil samples collected from this area and as much as 0.70 ppm has been indicated; but the analyses could not be consistently duplicated, and the data have not been incorporated into this report. Although the data did indicate that some uranium was present in the oil, their significance cannot be evaluated until other data are available.

118 A CONTRIBUTION TO THE GEOLOGY OF URANIUM

RELATIONSHIP OF HELIUM TO RADIOACTIVE MATERIALS

The two principal theories that have been advanced in recent years to account for the large quantities of helium in some natural gases postulate either a primary or a radiogenic origin for helium. Most workers in this field have concluded that the greater part of the helium is of radiogenic origin. This conclusion is based primarily on the accumulation of radiogenic helium in uranium- and thorium-bearing rocks and on the similarity of geologic conditions under which heliumbearing gases have accumulated. A discussion of primary versus radiogenic helium in natural gases is given by Rogers (1921).

The presence of large volumes of helium, which are not known to be associated with uranium or thorium minerals, has been offered as evidence that most of the helium is of primary origin. This conclusion was based principally upon the assumption that uranium and thorium deposits sufficient to supply the helium in the earth and atmosphere do not exist, and, therefore, large volumes of radiogenic helium are improbable. Although the theory of primary origin, as applied to helium-bearing natural gases, could conceivably account for the helium, it apparently could not account for its limited geographic distribution and its association with other products of radioactive decay. Evidence that suggests the probability of radiogenic helium in these deposits is briefly summarized below.

1. If all helium were derived from a primary source, it would be so well disseminated in the earth's crust that it would accumulate in all structural traps that are capped by impervious beds. In the absence of the natural gases, helium would be expected to accumulate by itself. Actually commercial helium-bearing gases have accumulated only in a few places in the world, and helium never has been found except in association with other gases.

2. The important commercial helium reservoirs are located over major structural features, where various types of igneous and metamorphic rocks are closely subjacent to the helium reservoir rocks and are a possible source of radiogenic helium.

3. Most of the helium reservoirs in the midcontinent region are in formations of Pennsylvanian age. Prior to the deposition of these sediments the underlying Paleozoic and, in some places, pre-Cambrian rocks, had been subjected to erosion for long periods of time. In the process any primary helium that had already accumulated in any structure breached by erosion would have been lost to the atmosphere and could not have contributed to the present helium reserves. Because deformation of this region had established the structural outlines by early Pennsylvanian time, any primary accumulations that escaped destruction would remain entrapped and could not have migrated to the present-day helium fields.

4. Radium-bearing precipitates in the former helium-producing gas fields of southeastern Kansas and radon in the helium-bearing gas of other areas, strongly suggest that the helium is a product of radioactive decay.

5. In general the more radioactive precipitates have been found in those fields that originally produced the most helium (Rogers, pp. 99-103, 1921) and (Anderson and Hinson, pp. 58-66, 1951). The association between radium-bearing precipitates and helium-bearing gas is illustrated on plate 8.

By a process of elimination, then, it appears that most of the helium in the helium-bearing gases probably is radiogenic. If the helium is radiogenic, the deposits from which it was derived are of higher grade than the average rock, for otherwise radiogenic helium deposits would be found in favorable structures everywhere. If the helium and radium had a common source, the radioactive deposit must be relatively close to the rocks that supplied the radium.

CONCLUSIONS

Abnormally high concentrations of radium in precipitates and drill samples from southeastern Kansas, helium thought to be radiogenic in the oil and gas fields in which radium-bearing precipitates have formed, and the concentration of radium in comparatively small areas lead to the conclusion that uranium is present in greater-than-normal concentrations in the subsurface rocks. The presence of minerals that were formed probably as a result of the introduction of hydrothermal solutions suggests that the uranium may be localized in hydrothermal deposits, possibly of the vein type.

Radium-bearing precipitates in the southeastern Kansas oil fields are intimately associated with celestite, gypsum, and barite. This close association, when considered with the fact that strontium, calcium, barium, and radium sulfates are precipitated under the same conditions, strongly suggests that radium, too, is in the form of a sulfate, Radium sulfate, therefore, is probably precipitated and preserved along with the other sulfate minerals. The precipitation of these minerals is probably caused by the intermingling of brines high in sulfate ions with brines containing excess strontium, calcium, barium, and radium ions.

Because radium-bearing rocks are present in the Kansas City and Arbuckle groups, it seems reasonable that the radium-bearing precipitates were derived by solution and redeposition from those rocks. Chemical analyses of the radium-bearing limestones, however, show that they do not contain uranium and radium in equilibrium quantities, which indicates that uranium was removed from these rocks, or that radium was introduced into them within the past few thousand years.

Although the reason for the lack of equilibrium between radium and uranium cannot be determined from finely pulverized cable-tool drill samples, the vuggy nature of the rock fragments strongly suggests that soluble minerals have been removed by leaching. Some samples of vuggy rock fragments, which are thought to have been leached, contain as much radium as would be present with 0.5 percent uranium in equilibrium, suggesting that the leached material was a uranium mineral. The presence of radium, which has a half-life of 1,580 yr, precludes the possibility that uranium was removed or that radium was introduced, except during the last few thousand years.

The alternative to the theory that uranium has been leached from the limestone is to assume that radium has been introduced into it. That radium can be transported by oil-well fluids is demonstrated by the presence of radium-bearing precipitates in surface pipes and tanks, but there is no evidence to suggest that the radium was introduced into the limestones. On the contrary the spherical cavities in these rocks indicate that some material has been removed and not added to them.

The geologic environment of the radium-bearing limestones also suggests that radium was not moved into these rocks from a distant source. The radium-bearing limestones and dolomites are between 1,100 and 1,200 ft below sea level; therefore, circulation of fluids through the rocks probably would have been at a very slow, or even negligible, rate prior to the time that circulation was stimulated artificially by the oil well pumps. It would be difficult to envisage the transportation of radium salts more than a short distance under these conditions.

LITERATURE CITED

- Anderson, C. C., and Hinson, H. H., 1951, Helium-bearing natural gases of the United States: U. S. Bur. Mines Bull. 486.
- Knight, G. L., and Landes, K. K., 1932, Kansas laccoliths: Jour. Geology, vol. 40, no. 1.
- Landes, K. K., 1927, A petrographic study of the pre-Cambrian of Kansas: Am. Assoc. Petroleum Geologists Bull., vol. 11, no. 8, pp. 821-824.
- Lee, Wallace, and others, 1946, Structural development of the Forest City basin of Missouri, Kansas, Iowa, and Nebraska: U. S. Geol. Survey Oil and Gas Inv., Prelim. Map 48.
- Rogers, G. S., 1921, Helium-bearing natural gas: U. S. Geol. Survey Prof. Paper 121.

INDEX

. !

Page		Page
Acknowledgments	Limestones, Mississippian	80 81
Aikman and Braden-South Anderson no. 1	Pennsylvanian	84
well	Logs, gamma ray, Cities Service-Pierpont	
Analyses, radiometric	no. 77 well	
radiometric, Pennsylvania coals	Colpitt-Spier, C. R., no. 1 well	
radium-bearing precipitates 88	Cramm "E" no. 1 well	
Analyses, samples, Augusta field 89-105, 116, 117	Dilworth no. 2 Fee well	
Butler County	Lane-Wells	
'Cowley County	North Augusta field	
Marion County	Rex and Morris-Loomis nos. 6 and 7 wells. Shell Oil Co	
Arbuckle group	Stewart, C. V., Brown no. 2 well	
wells 89-96, 106, 108-109	Stewart, C. V., MOWII 10. 2 Well	00 01
Augusta field, Butler County	Magnetite	, 84, 87
analyses of samples	Magnolia-Foster no. 14 well	
radium-bearing precipitates 116; pl. 16	Magnolia-South Anderson no. 7 well	79
	Marion County	70, 76
Berman, Joseph, identifications by	analyses of samples	
Bird and Hanley-Shipley no. 1 well	radium-bearing precipitates	
Brines, high-sulfate and high-stronium 116, 117, 119	Method of investigation	
Butler County	Mineralogy	
radium-bearing precipitates	contact-metamorphic-type minerals	
radium-bearing precipitates	Mississippian rocks, limestone	
Cambrian rocks 79-80	shale	
Carboniferous rocks	wells 106, 108–10 Molk–Loomis well	
Celestite, radioactive 74, 75, 79, 84, 86, 87, 116, 119	Molk-Loomis weil.	66
Cherokee (Bartlesville) formation, wells 106	Natural gases, helium in	h nis
Cities Service-Pierpoint no. 77 well 85-86	Nemaha anticline	
Coals, Pennsylvanian 84-85	North Augusta field, radioactivity and lith-	
radiometric analyses, Pennsylvania coals. 85	ology	116
Colpitt-Spier, C. R., no. 1 well		
Conclusions 119 Cowley County 70, 76	Olds no. 1 well	81-82
analyses of samples 88, 106–107	Ordovician rocks	74, 80
radium-bearing precipitates		
Cramm "E" no. 1 well	Pennsylvanian rocks	
	brines, high-strontium 11	
Derby-Rimel no. 2 well	coals	
Dilworth no. 2 Fee well	radiometric analyses	
Douglas group, wells	limestones71,	
Geology, general	Permian rocks	
Goology; godor an	Phosphatic nodules, radioactive	81
Helium, relationship to radioactive materials	Pre-Cambrian rocks	76
118-119; pl. 8	10 000000000000000000000000000000000000	
Helium in natural gases 118-119; pl. 8	Radium 73, 74, 76, 80, 86, 116, 117, 12	19, 120
Hunton limestone, wells 108, 112	Radium-bearing precipitates	71,
	74, 76, 81, 86–88, 116, 11	
James-Rimel no. 1 well	analyses	88
Kansas City Group	description	87 ml 16
wells 89-96, 108	location, Augusta field 116; Butler County 86;	
Kaufman well	Cowley County 86;	
	Marion County	
Lane-Wells gamma-ray logs	North Augusta field	
Lansing group, wells		

INDEX

	Page
Rangely field, Colorado	70
Rex and Morris-Loomis nos. 6 and 7 wells	71
On the state of the	
Sedgwick County	70
Shales, Mississippian	80
Pennsylvanian 71,	
Shell Oil Co	77, 78
Simpson Group	80
Wells 89-91, 94, 106, 10	8-109
Rex and Morris-Loomis nos. 6 and 7 wells	71
Stewart, C. V., Brown no. 2 well 81,	83-84

.

	Page
Viola limestone	
Wells	108-109
Weber formation	70
Wells in Arbuckle group	106, 108-109
Douglas group 89-	90, 92-93, 96, 109
Hunton limestone	108, 112
Kansas City group	89-96, 108
Lansing group	
Simpson group	, 94, 106, 108109
Viola limestone	

.

Ο

.

' .

ŧ

. . • . . ```

•

, • . . .

•