Annotated Bibliography on the Geology of Selenium

GEOLOGICAL SURVEY BULLETIN 1019-M
Annotated Bibliography on the Geology of Selenium

By GWENDOLYN W. LUTTRELL

CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

GEOLOGICAL SURVEY BULLETIN 1019-M

Contains references on geologic occurrence, mineralogy, geochemistry, metallurgy, analytical procedures, biologic effects, production, and uses of selenium

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959
Luttrell, Gwendolyn Lewise (Werth) 1927-
Annotated bibliography on the geology of selenium.
iii, 867-972 p. maps (1 fold. in pocket) 25 cm. (U. S. Geological Survey. Bulletin 1019-M. Contributions to bibliography of mineral resources)

016.55349
CONTENTS

Abstract .. 867
Introduction ... 867
 Geochemistry ... 868
 Mineralogy ... 869
 Geologic occurrence ... 870
Explanation of annotated bibliography .. 873
Serials .. 876
Annotated bibliography .. 881
Index ... 949

ILLUSTRATIONS

PLATE 5. Map showing selenium-bearing ore deposits of the world, excepting the United States. In pocket

FIGURE 2. Map showing selenium-bearing ore deposits of the United States. 874
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

ANNOTATED BIBLIOGRAPHY ON THE GEOLOGY OF SELENIUM

By Gwendolyn W. Luttrell

ABSTRACT

This bibliography includes annotations of nearly 400 papers on the geologic occurrence, mineralogy, and geochemistry of selenium, as well as papers on metallurgy, analytical procedures, biologic effects, production, and uses of selenium which are of geologic interest. A summary of the uses, mineralogy, geochemistry, and geologic occurrence of selenium is contained in the introduction.

INTRODUCTION

Selenium, a comparatively rare element, is playing an increasingly large part in manufacturing processes and in articles of everyday use because of its unique properties. Selenium was discovered by J. J. Berzelius in 1817, but it remained only a laboratory curiosity until one of its valuable properties, its variation in electrical resistance when exposed to light, was discovered by Willoughby Smith in 1873. Since then, this and other unusual properties of selenium, especially its rectifying property, or the ability to change alternating to direct current, have led to its wide use in industry.

The two principal uses for selenium, accounting for 50 percent and 25 percent respectively of U. S. consumption, are in rectifiers and pigments. Rectifiers are used in voltage multiplier circuits, in other electronic devices, and in television and radio equipment. Selenium pigments impart a red color to paint, ceramics, rubber, paper, silks, leather, and other products. Other uses for selenium are as a decolorizer in flint glass; as a coloring agent in ruby and amber industrial glass; as a degasser in the manufacture of stainless steel, where it also improves machinability; as an alloying element to increase the machinability of copper; as a vulcanizing agent in rubber, where it improves resistance to heat, oxidation, and abrasion; as a catalyst in the preparation of drugs and pharmaceuticals; as an antioxidant in lubricating
oils; in photoelectric cells; as a toner in photography; in blasting caps; in insecticides; as a resin solvent; and in the separation and purification of hydrocarbons. Many of these uses are increasing, and the resulting demand has stimulated research on the geology and geochemistry of selenium, for it is through such studies that new sources of the element will be found.

The ores of many of the world’s large copper mines contain minute amounts of selenium, and at present the most important commercial source of selenium is copper anode slimes from which it is recovered as a byproduct. Increased demand for selenium has led to improved practices in byproduct recovery, so that the supply has increased notably in recent years. Selenium also is produced as a byproduct of the flash roasting of pyrites in the manufacture of sulfuric acid.

United States production of selenium in 1954 was 713,200 pounds and imports in that year were 209,600 pounds, as reported in the Bureau of Mines Minerals Yearbook for 1954. The price of selenium, which was $1.50 per pound in the early 1930’s, increased to a high of $18.50 for 99.99 percent selenium in late 1956, but dropped to $13.50 in mid-1957.

GEOCHEMISTRY

The distribution of selenium in nature and its concentration in ore deposits are subjects which have not been given detailed study until recently. The abundance of selenium in magmatic rocks given by V. M. Goldschmidt (1954) is 0.09 ppm. The atomic number of selenium is 34 and its atomic weight is 78.96; selenium is between sulfur and tellurium in the periodic table, and it is closely related to these elements in certain aspects of its geochemical behavior. Selenium is a chalcophile element and has a high affinity for sulfur. The atomic radii of selenium and sulfur are so similar that selenium readily replaces sulfur diadochically in sulfide minerals. The substitution appears to occur more readily at high than at low temperatures, for the sulfur-selenium ratio ranges from 400:1 to 20,000:1 in high temperature sulfides, but ranges from 70,000:1 to 250,000:1 in low temperature magmatic sulfides. Selenium also accompanies sulfur in some volcanic sulfur deposits.

The close relationship between sulfur and selenium in primary ores does not continue during the cycle of weathering and leaching because a much higher oxidation potential is required to oxidize selenides to selenates than to oxidize sulfides to sulfates, and the low oxidation potential under which weathering commonly takes place is not sufficient to form selenates. Ordinarily only selenites form, and these are readily removed from solution by reduction or absorption. Thus selenium is separated from sulfur in evaporites and in sulfur deposits.
formed by the reduction of sulfates. Very little of the selenium carried into sea water remains in solution, the bulk of it being removed with organic matter, iron and manganese hydroxides, and iron sulfide.

MINERALOGY

Selenium occurs in nature in crystalline and amorphous elemental form; in solid solution with tellurium and sulfur; combined with other metals as selenides, sulfoselenides, selenites, and selenates; in many sulfide and sulfosalt minerals in which it substitutes for a small part of the sulfur in the crystal lattice; and as an oxide of selenium.

A list of minerals of selenium follows. Selenium is listed in the formulas of minerals in which it may be a major constituent.

<table>
<thead>
<tr>
<th>Minerals of selenium</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenides, sulfoselenides</td>
<td></td>
</tr>
<tr>
<td>Achavalite</td>
<td>FeSe(?)</td>
</tr>
<tr>
<td>Aguilarte</td>
<td>Ag_2Se</td>
</tr>
<tr>
<td>Berzelianite</td>
<td>CuSe</td>
</tr>
<tr>
<td>Bornhardtite</td>
<td>(Co, Cu, Ni)_2Se_4(?)</td>
</tr>
<tr>
<td>Cadmoselite</td>
<td>Cd (Se, S)</td>
</tr>
<tr>
<td>Claithalite</td>
<td>PbSe</td>
</tr>
<tr>
<td>Crookeite</td>
<td>(Cu, Tl, Ag)_2Se</td>
</tr>
<tr>
<td>Eskebornite</td>
<td>CuFe_2Se_4(?)</td>
</tr>
<tr>
<td>Eucairtite</td>
<td>CuAgSe</td>
</tr>
<tr>
<td>Ferroselite</td>
<td>FeSe_2</td>
</tr>
<tr>
<td>Guanajuatite (frenzelite, castillite)</td>
<td>BiSe_3</td>
</tr>
<tr>
<td>Hastite</td>
<td>(Co, Fe)Se_2</td>
</tr>
<tr>
<td>Klockmannite</td>
<td>CuSe</td>
</tr>
<tr>
<td>Metacinnabar, selenian (onofrite, guadalcazarite)</td>
<td>Hg(S, Se)</td>
</tr>
<tr>
<td>Naumannite (cacheutaite)</td>
<td>AgSe</td>
</tr>
<tr>
<td>Paraguanajuatite</td>
<td>BiSe_3</td>
</tr>
<tr>
<td>Penroseite (blockite)</td>
<td>(Ni, Cu, Pb)Se_2</td>
</tr>
<tr>
<td>Stilleite</td>
<td>ZnSe</td>
</tr>
<tr>
<td>Tiemannite</td>
<td>HgSe</td>
</tr>
<tr>
<td>Trogtalite</td>
<td>CoSe_2</td>
</tr>
<tr>
<td>Umangite</td>
<td>CuSe_2</td>
</tr>
<tr>
<td>Unnamed cobalt selenide</td>
<td>CoSe(?)</td>
</tr>
<tr>
<td>Sulfides and tellurides</td>
<td></td>
</tr>
<tr>
<td>Argentite</td>
<td>Ag_2S</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td>FeAsS</td>
</tr>
<tr>
<td>Bismuthinite</td>
<td>Bi_2(S,Se)_3</td>
</tr>
<tr>
<td>Bornite</td>
<td>Cu_2FeS_4</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>CuFeS_2</td>
</tr>
<tr>
<td>Cinnabar</td>
<td>HgS</td>
</tr>
<tr>
<td>Csiklovaite</td>
<td>BiTeS_2</td>
</tr>
<tr>
<td>Galena</td>
<td>PbS</td>
</tr>
<tr>
<td>Gruenlingite</td>
<td>BiTeS_3</td>
</tr>
<tr>
<td>Joseite</td>
<td>BiTeS(?)</td>
</tr>
<tr>
<td>Marcasite</td>
<td>FeS_2</td>
</tr>
<tr>
<td>Molybdenite</td>
<td>MoS_2</td>
</tr>
</tbody>
</table>
Minerals of selenium—Continued

<table>
<thead>
<tr>
<th>Sulfides and tellurides—Continued</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td>FeS₂</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>Fe₁₋ₓS</td>
</tr>
<tr>
<td>Siegenite (selenosiegenite)</td>
<td>(Co,Ni)₃(S,Se)₄</td>
</tr>
<tr>
<td>Sphalerite (wurtzite)</td>
<td>ZnS</td>
</tr>
<tr>
<td>Stannite</td>
<td>CuFeSnS₄</td>
</tr>
<tr>
<td>Stibnite</td>
<td>Sb₂S₃</td>
</tr>
<tr>
<td>Tetradymite</td>
<td>Bi₂Te₂S</td>
</tr>
<tr>
<td>Trolite</td>
<td>FeS</td>
</tr>
<tr>
<td>Vaesite (selenovaesite)</td>
<td>Ni(S,Se)₂</td>
</tr>
<tr>
<td>Villamaninite (bravoite)</td>
<td>(Ni,Fe,Cu)S₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sulfosalts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiviatite</td>
<td>Pb₃Bi₆(S,Se)₁₄(?)</td>
</tr>
<tr>
<td>Cosalite (selenocosalite)</td>
<td>Pb₂Bi₅(S,Se)₅</td>
</tr>
<tr>
<td>Kobellite (selenokobellite)</td>
<td>Pb₃(Bi,Sb)₂(S,Se)₄(?)</td>
</tr>
<tr>
<td>Platynite</td>
<td>PbBi(Se,S)₃ (?)</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td>(Cu,Fe)₁₅Sb₂S₃</td>
</tr>
<tr>
<td>Weibullite (seleniferous galenobismutite)</td>
<td>PbBi₃(S,Se)₄(?)</td>
</tr>
<tr>
<td>Wittite</td>
<td>Pb₃Bi₆(S,Se)₁₄(?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selenites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlfeldite</td>
<td>NiSeO₄·6H₂O (?)</td>
</tr>
<tr>
<td>Chalcomenite</td>
<td>CuSeO₃·2H₂O</td>
</tr>
<tr>
<td>Cobaltomenite</td>
<td>hydrous cobalt selenite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selenite or selenate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerstenite (molybdomenite)</td>
<td>hydrous lead selenite or selenate PbSeO₄ (?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tellurite</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmonsite (durdenite)</td>
<td>Fe₂(TeO₃)₁₂·2H₂O?SeO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxide</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenolite</td>
<td>SeO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixtures of selenides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrbachite</td>
<td>Tiemannite, claustralite</td>
</tr>
</tbody>
</table>
| Zorgite, "seebachite" | Clausthalite, umangite,
tiemannite |
| Tilkrodite, selenkobaltblei | Clausthalite, cobaltite,
hematite |

GEOLOGIC OCCURRENCE

Selenium occurs in metallic ore deposits, most commonly in hydrothermal base metal sulfide deposits of all temperature and depth ranges. It is present in disseminated copper deposits of the porphyry type, in vein and replacement copper deposits, in massive sulfide ores, in copper-lead sulfide vein deposits, in epithermal silver-gold veins, in quicksilver and antimony deposits, and in the sandstone-type uranium-vanadium deposits of the Western United States. It is also present in volcanic emanations and deposits. Selenium also occurs as a trace element in many sedimentary deposits, particularly coals, volcanic tuffs, phosphate deposits, and sedimentary iron ores. It is
present in shales and other sedimentary rocks, and in soils and vegetation associated with or derived from seleniferous formations.

In hydrothermal base metal sulfide deposits most of the selenium replaces sulfur in the lattices of sulfide minerals, such as pyrite, chalcopyrite, sphalerite, galena, marcasite, and arsenopyrite. Selenium minerals have been identified only in a few massive sulfide deposits, and sulfide vein deposits.

Selenium has been detected in amounts of not more than a few hundredths of a percent in the ores of most of the world's large copper deposits, including the disseminated deposits at Ray and Morenci, Ariz.; Ely, Nev.; Bingham, Utah; Chino, N. Mex.; and Cananea, Mexico; and the replacement and vein deposits of Butte, Montana; Cerro de Pasco, Peru; Northern Rhodesia; and Belgian Congo. Some of the better known seleniferous massive sulfide deposits are at Riotinto, Spain; Mt. Lyell, Tasmania; Mt. Isa, Queensland; Bor, Yugoslavia; Boliden, Sweden; Flin Flon, Manitoba; Sudbury, Ontario; and Ducktown, Tenn.

In certain sulfide vein deposits a variety of selenium minerals is found. The copper-silver-lead veins of Skrikerum, Sweden; Harz Mountains, Germany; Copiapó, Chile; and Colquechaca, Bolivia; and the pitchblende-bearing sulfide veins of Goldfields, Saskatchewan, and Shinkolobwe, Belgian Congo are characterized by a wide variety and abundance of selenium minerals.

Selenium minerals are found in many epithermal silver-gold fissure vein deposits. Examples are deposits in the Silver City district, Idaho; Comstock Lode and Jarbridge district, Nev.; and Guanajuato, Mexico, where naumannite, sometimes in large quantities, has been identified. Unidentified selenium minerals in combination with gold and silver are found in the Republic district, Wash., and in Radjang Lebong, Sumatra. The seleniferous silver-gold ores of Tonopah and Aurora, Nev.; San Francisco district, Utah; and the Liberty Bell mine, Telluride district, Colo., all contain small amounts of an unidentified black mineral, which is possibly a gold or silver selenide.

Some epithermal quicksilver deposits contain tiemannite. Tiemannite has been noted at Buckskin Peak, Nev.; the Abbott mine, Calif.; the Lucky Boy mine, Piute County, Utah; and at Guadalupe, San Onofre, and Huitzuco, Guerrero, Mexico. At Huitzuco the selenium is associated with antimony ores.

In most epithermal veins selenium minerals are rare, but in a few deposits they constitute a major part of the ore. At the Lucky Boy quicksilver mine the ore consisted almost entirely of tiemannite, and at the De Lamar mine, Silver City district, Idaho, the principal silver mineral was naumannite, although it was mistaken for argen-
The unusual deposit at Radjang Lebong, Sumatra, consists of a combination of gold and silver with selenium.

A few rare veins of selenide minerals are known in which sulfide minerals are absent. The Hiaco (Pacajake) silver mine near Colquechaca, Bolivia, and the silver-lead selenide vein at Cerro de Cacheuta, Argentina, are veins that contain only selenide minerals and a few secondary selenite minerals.

Uranium deposits in sandstone in the Western United States generally contain selenium in association with sulfide minerals or with carbonaceous material. Recent studies have shown that the selenium in some of these deposits occurs in elemental crystalline form, but in most the element seems to be substituting for sulfur in sulfide minerals.

Selenium is found associated with products of volcanic origin. A volcanic tuff deposit in Fremont County, Wyo., was found to be seleniferous, and soils derived from volcanic materials in the Hawaiian Islands are seleniferous. The source of the selenium in the Hawaiian soils is believed to be volcanic gases and sublimates. Seleniferous sulfur of volcanic origin has been reported from the Valley of Ten Thousand Smokes, Alaska; from Krisuvik, Iceland; from Vesuvius, Lipari Island, and Sicily, Italy; from Kilauea, T. H.; from Tateyama and Iwojima Islands, Japan; and from New Zealand. Seleniferous sulfur locally containing as much as 5.18 percent selenium is reported from Kilauea, T. H.

Selenium is a minor constituent of rocks and soils in many areas. The average concentration of selenium in shale calculated by Krauskopf (1955) is 0.5–1 ppm; in sandstone 1 ppm; in limestone 0.1–1 ppm. These figures are tentative, based on only a few published analyses. An unusually large concentration of selenium in the rocks and soils of certain of the Western United States has attracted much attention because of livestock losses resulting from selenium poisoning and the possibility that humans may suffer ill effects from consumption of seleniferous grains and crops.

The selenium in sedimentary shales and sandstones may have been derived from volcanic dust or gases, or from decomposed igneous rocks in which it was a primary constituent, and deposited by normal processes in the seas. Sedimentary iron oxide formations and pyrite concretions in sedimentary rocks are enriched in selenium. The selenium in these rocks is believed to represent the removal by ferric ions of selenium carried into sea water.

Selenium in soils commonly is derived from the parent rocks, although surface ground water containing selenium may increase the content.
In the Western United States the most seleniferous formations are shales and sandstones for the most part of Cretaceous age, but certain Permian, Triassic, Jurassic, and Tertiary formations are also highly seleniferous. These are found in Arizona, Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, Idaho, and Wyoming. Certain plants, including species of *Astragalus*, *Stanleya*, and *Xylorrhiza*, which require selenium for growth, are found in these areas. These plants, called indicator plants, absorb large amounts of selenium from the soil and convert it into a form available to other vegetation. Indicator plants frequently contain enough selenium to be toxic to grazing animals.

Soils with an unusually high content of selenium are also found in Ireland, Japan, Mexico, Cuba, Colombia, Puerto Rico, and Hawaii. The seleniferous soils of Hawaii and Puerto Rico are unusual in that although they contain a high concentration of selenium they do not support seleniferous vegetation. It is thought that in regions such as these selenium is combined with iron in an insoluble form.

Phosphate rock deposits, particularly those that contain pyrite and large amounts of organic material, are among the most seleniferous sedimentary rocks known. Recent studies have shown that phosphate rock from the Phosphoria formation in Wyoming contains up to 300 ppm selenium, and a vanadiferous shale in the Phosphoria formation locally contains as much as 1500 ppm selenium. Dark colored phosphate rock from the Western United States and Canada, most Tennesse “blue rock,” South Carolina phosphates, and phosphates from Africa and Palestine contain unusually large amounts of selenium.

Selenium has been found in coal in England and Belgium, where it is believed to be associated with pyrite seams.

EXPLANATION OF ANNOTATED BIBLIOGRAPHY

This bibliography includes annotated references to papers on the geologic occurrence, mineralogy, and geochemistry of selenium; and papers on other subjects such as metallurgy, analytical procedures, biologic effects, production, and uses of selenium, which also contain geologic information. Annotations taken from “Chemical Abstracts” give the page or column number and volume. The maps (pl. 5 and fig. 2) show the location of ore deposits in which selenium minerals have been found or in which selenium occurs as an ore constituent. Areas of seleniferous soils and rocks and seleniferous sulfur, coal, and phosphate deposits are not shown on the maps.
FIGURE 2.—Map showing selenium bearing ore deposits of the United States.
<table>
<thead>
<tr>
<th>Locality</th>
<th>Mine or district</th>
<th>County</th>
<th>State</th>
<th>Locality</th>
<th>Mine or district</th>
<th>County</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chelan Lake district</td>
<td>Chelan</td>
<td>Do</td>
<td>49</td>
<td>Stink Rock and Gypsum Valley districts</td>
<td>San Miguel</td>
<td>Do</td>
</tr>
<tr>
<td>2</td>
<td>Republic district</td>
<td>Ferry</td>
<td>Do</td>
<td>50</td>
<td>Cortez and Rio districts</td>
<td>Montezuma</td>
<td>Do</td>
</tr>
<tr>
<td>3</td>
<td>Cœur d'Alene district</td>
<td>Shoshone</td>
<td>Do</td>
<td>51</td>
<td>La Plata Mountains</td>
<td>La Plata</td>
<td>Do</td>
</tr>
<tr>
<td>4</td>
<td>Yellow Pine district</td>
<td>Valley</td>
<td>Do</td>
<td>52</td>
<td>Liberty Bell mine, Telluride district</td>
<td>San Miguel</td>
<td>Do</td>
</tr>
<tr>
<td>5</td>
<td>Blackbird district</td>
<td>Lemhi</td>
<td>Do</td>
<td>53</td>
<td>Camp Bird mine</td>
<td>Ouray</td>
<td>Do</td>
</tr>
<tr>
<td>6</td>
<td>Kirtley Creek district</td>
<td>Do</td>
<td>Do</td>
<td>54</td>
<td>Vulcan mine</td>
<td>Gunnison</td>
<td>Do</td>
</tr>
<tr>
<td>7</td>
<td>Gravel Range district</td>
<td>Do</td>
<td>Do</td>
<td>55</td>
<td>Rifle district</td>
<td>Garfield</td>
<td>Do</td>
</tr>
<tr>
<td>8</td>
<td>Parker Mountain district</td>
<td>Do</td>
<td>Do</td>
<td>56</td>
<td>Whitehorn district</td>
<td>Fremont</td>
<td>Do</td>
</tr>
<tr>
<td>9</td>
<td>Yankee Fork district</td>
<td>Custer</td>
<td>Do</td>
<td>57</td>
<td>Wet Mountains</td>
<td>Fremont and</td>
<td>Do</td>
</tr>
<tr>
<td>10</td>
<td>Mackay district</td>
<td>Do</td>
<td>Do</td>
<td>58</td>
<td>Crinkle and White Canyon districts</td>
<td>Ely</td>
<td>Do</td>
</tr>
<tr>
<td>11</td>
<td>Silver City district</td>
<td>Do</td>
<td>Do</td>
<td>59</td>
<td>Comstock and Mother Lode district</td>
<td>Ely</td>
<td>Do</td>
</tr>
<tr>
<td>12</td>
<td>Troy district</td>
<td>Do</td>
<td>Do</td>
<td>60</td>
<td>Cripple Creek district</td>
<td>Telluride</td>
<td>Do</td>
</tr>
<tr>
<td>13</td>
<td>Cedar Creek district</td>
<td>Do</td>
<td>Do</td>
<td>61</td>
<td>Eureka district</td>
<td>Yavapai</td>
<td>Do</td>
</tr>
<tr>
<td>14</td>
<td>Butte district</td>
<td>Do</td>
<td>Do</td>
<td>62</td>
<td>Walker district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>15</td>
<td>Montana district</td>
<td>Do</td>
<td>Do</td>
<td>63</td>
<td>East Bench district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>16</td>
<td>Iron Mountain district</td>
<td>Do</td>
<td>Do</td>
<td>64</td>
<td>Gold Hill</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>17</td>
<td>Abbott and Clear Lake district</td>
<td>Do</td>
<td>Do</td>
<td>65</td>
<td>Homestake mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>18</td>
<td>Socaire mine</td>
<td>Do</td>
<td>Do</td>
<td>66</td>
<td>Montana district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>19</td>
<td>Mt. Jackson mine</td>
<td>Do</td>
<td>Do</td>
<td>67</td>
<td>Jenner district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>20</td>
<td>Mother Lode district</td>
<td>Do</td>
<td>Do</td>
<td>68</td>
<td>Edgemont district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>21</td>
<td>Murphy district Mother Lode</td>
<td>Do</td>
<td>Do</td>
<td>69</td>
<td>Eureka district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>22</td>
<td>Mother Lode</td>
<td>Do</td>
<td>Do</td>
<td>70</td>
<td>Walker district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>23</td>
<td>Guadalupe mine</td>
<td>Do</td>
<td>Do</td>
<td>71</td>
<td>Big But and Black Canyon districts</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>24</td>
<td>San Joaquin Ranch mine</td>
<td>Do</td>
<td>Do</td>
<td>72</td>
<td>United Verde mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>25</td>
<td>Buckskin Peak, National district</td>
<td>Hinton</td>
<td>Do</td>
<td>73</td>
<td>Monument Valley district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>26</td>
<td>Jarbidge district</td>
<td>Do</td>
<td>Do</td>
<td>74</td>
<td>Magma mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>27</td>
<td>Potos (Preble) district</td>
<td>Do</td>
<td>Do</td>
<td>75</td>
<td>Ray district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>28</td>
<td>Comstock district</td>
<td>Do</td>
<td>Do</td>
<td>76</td>
<td>Old Hat district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>29</td>
<td>Aurora district</td>
<td>Do</td>
<td>Do</td>
<td>77</td>
<td>Grant district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>30</td>
<td>Tonopah district</td>
<td>Do</td>
<td>Do</td>
<td>78</td>
<td>Park City mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>31</td>
<td>Ely district</td>
<td>Do</td>
<td>Do</td>
<td>79</td>
<td>La Ventana mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>32</td>
<td>Camp Floyd district</td>
<td>Do</td>
<td>Do</td>
<td>80</td>
<td>Shafter district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>33</td>
<td>Bingham district</td>
<td>Do</td>
<td>Do</td>
<td>81</td>
<td>Tri-State district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>34</td>
<td>Salt Lake district</td>
<td>Do</td>
<td>Do</td>
<td>82</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>35</td>
<td>Gold Springs-Stake Line district</td>
<td>Iron</td>
<td>Do</td>
<td>83</td>
<td>Antoine Creek district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>36</td>
<td>San Francis district</td>
<td>Do</td>
<td>Do</td>
<td>84</td>
<td>Bauxite district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>37</td>
<td>Ohio district</td>
<td>Do</td>
<td>Do</td>
<td>85</td>
<td>Bog Mountain mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>38</td>
<td>Maryvale district</td>
<td>Do</td>
<td>Do</td>
<td>86</td>
<td>Ducktown district</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>39</td>
<td>Silver Reef district</td>
<td>Do</td>
<td>Do</td>
<td>87</td>
<td>Dolihnum mine</td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>40</td>
<td>Iron Mountain district</td>
<td>Do</td>
<td>Do</td>
<td>88</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>41</td>
<td>Henry Mountains district</td>
<td>Do</td>
<td>Do</td>
<td>89</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>42</td>
<td>Temple Mountains and San Rafael Swell district</td>
<td>Emery</td>
<td>Do</td>
<td>90</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>43</td>
<td>Thompsons Range district</td>
<td>Do</td>
<td>Do</td>
<td>91</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>44</td>
<td>Paradox Valley</td>
<td>Do</td>
<td>Do</td>
<td>92</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>45</td>
<td>Monticello and White Canyon districts</td>
<td>San Juan</td>
<td>Do</td>
<td>93</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>46</td>
<td>Blue Mountain district</td>
<td>Do</td>
<td>Do</td>
<td>94</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>47</td>
<td>Maybell district</td>
<td>Do</td>
<td>Do</td>
<td>95</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
<tr>
<td>48</td>
<td>Utean, Bull Canyon, Paradox Valley, Pineville districts</td>
<td>Do</td>
<td>Do</td>
<td>96</td>
<td></td>
<td>Do</td>
<td>Do</td>
</tr>
</tbody>
</table>

*Information obtained from unpublished sources. †Information obtained from company annual reports.
This list gives the abbreviations, full names, and places of publication of serials cited in the bibliography.

<table>
<thead>
<tr>
<th>Serial Abbreviation</th>
<th>Full Name and Place of Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accad. gioenia sci. nat. Catania Atti</td>
<td>Atti dell'Accademia gioenia di scienze naturali in Catania. Catania, Italy.</td>
</tr>
<tr>
<td>Annali osservatorio vesuviano</td>
<td>Annali dell'osservatorio vesuviano. Naples, Italy.</td>
</tr>
<tr>
<td>Australasian Inst. Mining Engineers Trans.</td>
<td>Transactions of the Australasian Institute of Mining Engineers. Melbourne, Australia.</td>
</tr>
</tbody>
</table>
Canadian Inst. Mining and Metallurgy Trans.—Transactions of the Canadian Institute of Mining and Metallurgy. Montreal, Canada.
Canadian Mining Jour.—Canadian Mining Journal. Gardenvale, Quebec, Canada.
Econ. Geology—Economic Geology. Urbana, Ill.
Finska vetensk.-soc. Öfversikt av Förh.—Öfversikt av Finska vetenskaps-societetens Förhandlingar. Helsingfors.
Fortschr. Mineralogie—Fortschritte der Mineralogie. Krefeld-Ürdingen, Germany.

Ingeniería [Mexico]—Ingeniería. Mexico City.

Iron Age—The Iron Age. New York.

Mineralog. Mitt.—Mineralogische Mittheilungen. Vienna.

Mineria [Peru]—Mineria. Lima.

Naturaleza [Mexico]—La Naturaleza. Mexico.

Neues Jahrb. Mineralogie, Monatsh.—Neues Jahrbuch für Mineralogie, Monatshefte. Stuttgart, Germany.

Norsk geol. tidsskr.—Norsk geologisk tidsskrift. Oslo.

Zentralbl. Mineralogie—Zentralblatt für Mineralogie, Geologie und Paläontologie. Stuttgart, Germany.

Ahlfeld, Friedrich. *See also* Block and Ahlfeld, 1937; Herzenberg and Ahlfeld, 1935.

The Pacajake (Hiaco) mine in the Surumi region, 25 kilometers east-southeast of Colquechaca, Bolivia, was discovered in 1935. The deposit is a vein in a fracture zone in sandy slate and sandstone of Devonian age. The principal gangue mineral is siderite, with minor amounts of barite, hematite, and calcite. The selenium minerals occur in small lenses in the gangue; the principal ore mineral is blockite (penroseite) which occurs in more or less pure concentric masses resembling native arsenic, or in intimate mixture with claustralhale, tiemannite, and naumannite. The blockite contains 0.22 percent platinum metals. The oxidized ore consists of native selenium, chalcomenite, ahlfeldite, selenolite, and cerussite. Veins of altered eruptive rocks containing traces of gold and platinum metals crop out near the ore vein. The origin of the deposit is unknown. The Pacajake deposit is similar to Tilkerode in the Harz Mountains where platinum, gold, and selenium minerals are also found. About 3,000 kg of selenium minerals have been produced from the Pacajake deposit.

Geologic occurrence, mineralogy, and analyses of berzelianite, umangite, naumannite, claustralhale, eucairite, klockmannite, tiemannite, selenolite, chalcomenite, molybdenite, cobaltomenite, and achavalite are described. At Sierra de Umango, La Rioja Province, umangite, klockmannite, eucairite, berzelianite, claustralhale, tiemannite, and achavalite form veinlets and inclusions in fergusonous calcite gangue. Oxidation of the copper selenides formed chalcomenite and malachite. At Cerro de Cacheuta, Mendoza Province, naumannite, claustralhale, klockmannite, umangite, berzelianite, and achavalite occur in veinlets in porphyry, forming a mechanical mixture once thought to be a polyselenide of lead, silver, copper, iron, and cobalt, called cacheutaite. Oxidation products are selenolite, chalcomenite, molybdenite, and cobaltomenite. At depth naumannite is the principal ore mineral; below 12 meters depth claustralhale and cerussite are the only minerals found. At Tinogasta, Catamarca Province, umangite, chalcomenite, malachite, and gypsum occur in veinlets. At Sañogasta, La Rioja Province, umangite occurs in veinlets in granite. At Cuesta de los Llantenes, La Rioja Province, umangite and claustralhale occur in calcite veins.

881

The occurrence of selenium and selenium minerals in Bolivia is described. Minerals include clausthalite, naumannite, umangite, and blockite, which occur at Pacajake.

The selenium vein at Pacajake, Bolivia is described.

--- 1955, Las especies minerales de Bolivia : Bilbao, Banco Minero de Bolivia, 3d ed., p. 20, 22, 27, 40, 68-69, 98, 131-133.

Descriptions of the mineralogy and occurrence at the Pacajake (Hiaco) mine, Colquechaca, Bolivia, of native selenium, naumannite, tiemannite, clausthalite, penroseite (blockite), selenolite, chalcomenite, ahlfeldite, molybdenite, lead selenate, and hydrated selenite of iron.

Description of procedure for analyzing selenium in organic compounds of which it is a major constituent.

Allchin, J. P. See Friend and Allchin, 1941.

Allen, F. B., 1900, Tellurium in the ores of the Hauraki goldfields: Australasian Inst. Mining Engineers Trans., v. 7, no. 87, p. 94-98.

Selenium was detected in auriferous silver sulfide ore in quartz gangue at Great Barrier, New Zealand.

Uses and properties of various forms of selenium, such as amorphous, crystalline, and colloidal are described.

Soils in the Leiva district, State of Boyacá, Colombia, are high in selenium. All plants grown on these soils are high in selenium, indicating that the selenium is in a form readily available to plants.

Angelelli, Victorio. See also Ahlfeld and Angelelli, 1948.

Thin irregular veins of selenium minerals are found at Tinogasta, Catamarca; Sierra de Umango, Cuesta de los Llantenes, and Sañogasta, La Rioja; and Cerro de Cacheuta, Mendoza. The deposits are thin veins and stringers of umangite, klockmannite, eucarite, clausthalite, tiemannite, and naumannite in calcite gangue. Malachite and chalcomenite are found also, and are believed to be alteration products of umangite.
Analyses of lead bismuth selenide mineral from Falun are given.

In the Republic district, veins of quartz, adularia, and calcite in andesites and lake beds of Tertiary age and in porphyritic rocks intrusive into these formations contain narrow concentric dark bands consisting of finely distributed tetrahedrite, chalcopyrite, native gold, and selenium in an unknown form. An analysis of a gold-selenium ore from the Republic mine gave 4.36 percent gold and 2.62 percent selenium. After free gold was eliminated by treating the ore with an alkaline sulfide solution, the gold-selenium ratio was 2:3, suggesting the presence of a gold selenide mineral with the formula Au$_2$Se$_3$. Gold and selenium appear to be intimately associated in the ore, but it is not known whether they constitute an integral substance or are otherwise associated. No definite selenium minerals could be identified in the ore, although small crystals of pyramidal habit giving a reaction for selenium were found. The authors suggested that they may be a selen-antimonide of silver, analogous to rittingerite.

Specimens of penroseite from Colquechaca, Bolivia, and blockite from the Hiaco mine, Bolivia, were studied. They were thought to be different minerals because blockite contained less lead and more selenium than penroseite. X-ray studies show that both minerals are intergrown with naumannite and variations in lead and silver content are due to admixture with naumannite. Penroseite and blockite may be regarded as identical minerals, the true composition of which is still uncertain.

Some selenium and tellurium are present in the matte obtained from smelting the concentrates from the Liberty Bell mine near Telluride, but no selenium or tellurium minerals have been recognized in the ores. The ore veins are late Tertiary fissure veins in Tertiary volcanic rocks. The ore consists of sphalerite, galena, pyrite, chalcopyrite, tetrahedrite, pearlite, argentite, native silver, and an unidentified black mineral in quartz and calcite gangue. Gold is present in the ore but was not observed.

The mineral combination in which selenium occurs is not known, but it is believed to be associated with gold and silver in electrum. Selenium was found in pannings consisting mostly of electrum from ore in the West End mine.
Pannings from heavy sulfide ore contained 2.56 percent selenium. Five analyses of ores, concentrates, and bullion containing selenium are given.

Umangite occurs as a primary ore mineral at Rio Tinto. Three unidentified minerals account for the presence of silver, bismuth, nickel, cobalt, antimony, and selenium in the ore. Ore deposits of the Rio Tinto type, which are of replacement origin, are characterized by—large bodies of massive pyrite ores in schistose or sheared rock, associated with igneous intrusions; the minerals pyrite, chalcopyrite, sphalerite, galena, quartz; usually barite and arsenopyrite; absence of high temperature minerals; scarcity of gangue minerals; presence of gold and silver; small amounts of less common metals such as bismuth, selenium, and antimony; lenslike form; association of sericitized rocks; original deep burial; and relatively old age.

Bauerle, L. C. See Everett and Bauerle, 1957.

Seleniferous areas of the United States, and the form and behavior of selenium in soils and vegetation are briefly described.

Bearse, A. E. See Waitkins and others, 1942.

Beath, O. A. See also Trelease and Beath, 1949.

Selenium indicator plants were found growing on soils derived from two sandstone members of the Chugwater formation in central Albany County, Wyoming, one a sandstone member near the middle of the formation, and the other a limy sandstone in the basal portion, equivalent to the "Embar" of central Wyoming. The average selenium content of a composite sample was 2.4 ppm; one sample from the middle sandstone member gave 10 ppm. selenium.

Sources of selenium available to plants are limonite concretions, iron pyrites, marcasite, carbonaceous shales, buried alkali beds, bentonite, jarosite, lignite, phosphate rock, ferruginous sandstone, and limy sandstone. Experiments on the distribution and form of selenium in plants and soils are described. The form of selenium in soils derived from most formations in Wyoming is insoluble and not available to most vegetation. Soils derived from the Morrison formation are toxic.

Native vegetation growing on the Morrison formation in southeast Utah and southwest Colorado is generally seleniferous. The shales, sandstones, and over-
lying alluvial wash contain selenium, some of which is in a form available to all types of vegetation. No correlation exists between the amount of selenium in the rocks and the amount in the plants growing on them. Selenium concentrations are highest in the Salt Wash member of the Morrison formation, particularly in the uranium-vanadium ore zones. The origin of selenium is believed to parallel that of vanadium and other trace elements in the Salt Wash member. A study was made of the selenium content of the uranium-vanadium ores, shales, alluvial wash, and vegetation in the Thompsons district, Utah.

Unrelated plant species rooted in the same soil absorb and concentrate selenium in several different chemical forms and follow a consistent pattern in the forms of selenium they contain. *Astragalus*, *Stanleya*, and certain cereal grains yield only organic selenium; *Aster*, *Atriplex*, and *Xyloporhis* yield only inorganic selenate; certain native grasses yield both inorganic and organic selenium. It is not known what influence the form of selenium in the soil may exert on the form of selenium in plants. Usually 50 percent or more of the selenium in accumulator plants is water soluble, so that the decay of such plants can return a significant amount of available selenium, both organic and inorganic, to the soil.

Leafy carbonaceous seams in shales of the continental portion of the Medicine Bow formation of Cretaceous age in southern Albany County, Wyo., contain over 150 ppm selenium. The concentration of selenium in carbonaceous material is confined to the top part of the seams where skeletal leaves and other vegetable matter are still recognizable. These data confirm the authors' theory of vegetative enrichment of selenium through cycles of growth and decay of highly seleniferous native plants.

The toxic nature of seleniferous plants grown on shales of the Benton, Niobrara, Steele, and Pierre formations of Cretaceous age in Wyoming is discussed. Seleniferous plants are pictured and described.

Seleniferous formations of Cretaceous and Eocene ages in Wyoming are described. The source of the selenium in these formations is believed to be volcanic material from which the sediments were derived, for there was extensive volcanic activity and selenium was a primary constituent of the magma from these volcanoes. Methods of analysis for selenium in plants and soils are given, and absorption of selenium by vegetation, highly seleniferous drainage basins known as poison basins, and poisonous plant groups are discussed. Pyrite concretions from the Niobrara formation contained up to 548 ppm selenium and averaged from 250 to 350 ppm selenium. Concretions from the Benton, Steele, Lewis, Mesaverde, and Morrison formations contained 0.5 to 4.1 ppm selenium. Selenium in such concretions is almost totally insoluble.

Report on studies of the form of selenium in soils and plants, and the growth behavior of and distribution of selenium in plants grown on seleniferous soils.

Selenium is found to be a primary constituent of stratigraphically equivalent rocks of Permian and Triassic age in Wyoming, including the Phosphoria, Dinwoody, "Embar", and basal Chugwater formations. One of the source materials from which these formations were derived was selenium-bearing magma from volcanoes active during Permian and Triassic time. Analyses are given of phosphate and selenium content of the Phosphoria formation from several places in Wyoming. There is no correlation between phosphate and selenium; selenium is distributed unevenly and its content is highly variable, ranging from 5.2 to 200 ppm at Rocky Point. Lighter colored phosphate rock is lower in selenium content than dark colored material. No selenium was found in crude oils from Fremont County.

The presence of selenium in the soil may have been caused by the erosion of igneous rocks containing seleniferous material or the absorption of selenium from brackish water or shallow basins by marine organisms or plants. In some places selenium occurs in carbonaceous beds, but not in carbonate beds of the same formations. Geographical and geological occurrences of 32 species of native selenium indicator plants are reported. The origin and form of selenium in soil were studied. Selenium in the soil is believed to be in a highly insoluble form, and the number of plants capable of absorbing it is small compared with the total forage cover.

Studies of 563 specimens of native plants from Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Texas, and Utah. Species of known indicator plants were given special attention. The studies demonstrated that many formations of late Paleozoic to Quaternary age, including igneous and sedimentary rocks, support seleniferous vegetation.

In a study of the distribution of types of selenium-bearing plants, seleniferous vegetation from Arizona, California, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming was analyzed. Data were obtained on seleniferous areas in Stoddard County, Mo., and Dryden, Tex., where no selenium indicator plants had been reported. The Dakota and Morrison formations were found to be seleniferous over large areas.

Further studies on the occurrence and classification of selenium indicator plants are reported. From formations not previously tested in Arizona, California, Colorado, Montana, Nebraska, New Mexico, North Dakota, South Dakota, Texas, Utah, and Wyoming, 407 analyses were made of indicator plants.

Five tuffs from Lysite poison draw, Fremont County, Wyo., contained 12.5, 29, 112, 175, and 187 ppm selenium. In the last three, 84 to 96 percent of the total was water-soluble selenium, mostly in the form of selenate. Tertiary sandstone in the Poison Butte area, Carbon County, contained 112 ppm selenium, of which 91.4 ppm was water-soluble selenate. Vanadiferous siltstone in the phosphatic shale member of the Phosphoria formation in western Wyoming contained from 188 to 680 ppm selenium and from 0.12 to 2.12 percent vanadium. Selenium showed a positive correlation with the vanadium content of the rock. Phosphatic rocks from the Phosphoria formation contained from a few to 212 ppm selenium. Uranium-vanadium ores and carbonaceous shales also had high selenium content. Vanadiferous rocks contained a high proportion of insoluble selenium in the form of selenite, whereas the tuffs and sandstone contained mostly soluble selenates.

A correlation of seleniferous range plants with the geological formations on which they grow shows that shales of the Niobrara, Steele, Pierre, Morrison, Wasatch, Benton, Hilliard-Cody, Lewis, and Bridger formations, and a dark band of the Dakota formation support seleniferous vegetation.

The Lucky Boy claim, Mt. Baldy district, Piute County, Utah, contains bunches of tiemannite in limestone. One ore body was 4 feet thick. Seventy-six flasks of mercury were produced from this ore, which averaged 10 percent mercury.

Free selenium occurs in association with crusts of sodium chloride on the lava as small connected spots or aureoles surrounding the sodium chloride. Chlorides of potassium and iron were also found with the selenium. (Chem. Abs., v. 2, p. 249.)

Typical tank house slimes from ores of the Frood and other mines in the Sudbury district have an average content of 15.03 percent selenium. Refining process and equipment are described.

Description of selenium plant and recovery process used by the Ontario Refining Company.

Analyses of ores, minerals, and concentrates to determine the distribution of selenium in sulfide ores of the Skellefte district show that pyrite, pyrrhotite, and sphalerite are generally low in selenium; chalcopyrite is richer than pyrite; arsenopyrite and galena are generally high in selenium. No correlation was found between copper, arsenic, or zinc and selenium; correlations were found between bismuth and antimony and selenium. Study included the Boliden, Åkulla, Renström, Långdal, Kristineberg, Rävilden, eastern Bjurfors, Laver, Adak, and Lainijaur deposits. Ores from the Boliden mine are generally richer in selenium than those of the other mines. The largest concentration of selenium was found in the quartz-tourmaline veins, where sulfide minerals and tellurides with considerable amounts of selenium occur. Arsenopyrite ore is also rich in selenium; pyrite ore is low in selenium. At Boliden the average selenium content of pyrite was from 0.004 to 0.03 percent; of galena, 1 to 1.5 percent; of chalcopyrite, 0.07 to 0.14 percent; of sphalerite, 0.03 to 0.09 percent; of arsenopyrite, 0.04 to 0.16 percent; of pyrrhotite, 0.002 to 0.007 percent. Variations in selenium content of a given mineral from various deposits are attributed to the great differences in selenium content of the ores, as regulated by the selenium content of the mineralizing solutions.

Berman, Harry. See Palache and others, 1944.

Berry, L. G. See Peacock and Berry, 1940.

Molybdenate and cobaltomelinite, selenites of lead and cobalt, formed as alteration products of selenides, are associated with chalcomenite, copper selenite, at Cerro de Cacheuta, Mendoza, Argentina. Lead carbonate and white needles believed to be selenious acid, selenolite, are found in veins in molybdenate and are believed to be alteration products of molybdenate.

Describes the chemistry and chemical compounds of selenium separated from sulfur from the Falun mine, Sweden.

Sulfo-selenides of mercury form a complete isomorphous series defined by the diadochy of sulfur and selenium which is denoted as the metacinnabar series, including the minerals metacinnabar, onofrite, and tiemannite. The
series is found in its entirety at Marysvale, Utah. Selenium is unable to replace sulfur in the cinnabar structure except for possible trace amounts. It is proposed that the distribution of selenium between cinnabar and metacinnabar is related to differences in bond type. Some crystallographic data are given.

Selenium is closely related to sulfur and it almost always accompanies sulfur. Types of deposits in which selenium occurs are: (a) native sulfur in volcanic districts; (b) sulfide lodes as at Lehrbach, Zorge, and Tilkerode in the Harz; (c) copper shales; (d) pyrite deposits as at Fahlun, Rio Tinto, and Rammelsberg. In most deposits the sulfur-selenium ratio is 10,000:1. Although tellurium tends to occur in separate deposits, it is found with selenium in telluride lodes of the young gold-silver group. In such cases about 1.5 percent of the tellurium is replaced by selenium. The gold-selenium deposits of Radjang Lebong, Sumatra, are described.

Describes forms, properties, and uses of selenium.

Biltz, Wilhelm. See Geilmann and Biltz, 1931.

Clausthalite, blockite (penroseite), and other selenides occur in a vein with a gangue of limonite, barite, and hematite at the Hiaco silver mine, near Colquechaca, Bolivia. Analysis of blockite shows it to contain copper and nickel with minor amounts of cobalt, iron, lead, mercury, silver, and platinum.

Selenium minerals occur in a vein along a fault area in the Hiaco silver mine in the Pacajake anticline in the central Bolivian cordillera, 30 km from Colquechaca, Bolivia. The chief mineral is blockite (penroseite), a nickel-copper selenide, with some clausthalite, chalcomenite, naumannite, native selenium, and other selenium minerals, in a gangue of barite, siderite, hematite, and calcite.

At Tinogasta, Catamarca Province, Argentina, umangite mixed with sulfides and gypsum, occurs in thin layers in stratified calcitic-silicic gangue.

The behavior of the minerals studied is described in detail, and values of melting points are given as: realgar, 310; orpiment, 320; kermesite, 517; stibnite, 546; tetradymite, 600; guanajuatite, 690; bismuthinite, 718° C. The occurrence of the minerals is discussed, and by tabulating their melting points and modes of occurrence it is shown that in a general way those with the lowest melting points form under conditions of low temperature and pressure, near the surface.
of the earth, while the higher the melting point becomes the more the mineral is found in deep-seated rocks. (Chem. Abs., v. 9, p. 2364.)

Studies of uranium-vanadium deposits in the Salt Wash sandstone member of the Morrison formation indicate that the deposits are similar in mineralogy. Metallic minerals associated with the ore are pyrite, Marcasite, and galena. Many of the deposits contain claustralite, which forms thin zones or layers of limited extent.

A dull black mineral was found closely associated with argentite in a quartz vein on the ninth level of the De Lamar mine, Owyhee County, Idaho. The author provisionally identified the mineral as angulane, a silver sulfoselenide.

Tiemannite was found in large masses in association with cinnabar in the Abbott mine, Lake County, in the Socrates mine, Sonoma County, and in Orange and Santa Clara Counties.

Bright, M. S. See Hillebrand and others, 1953.

A large number of crystals of metallic selenium, some of which were of large size, were formed by sublimation. The larger crystals were formed at higher temperatures. All were believed to belong to the hexagonal system. The properties, reaction to light, conductivity, and effects of mechanical pressure of the crystals are described.

Hexagonal and monoclinic artificial crystals of selenium are described.

Disseminated sulfide replacement ore from the Nong Phai lead-zinc mine, Kanchanaburi, western Thailand, contains 0.05 percent selenium.

Analysis of a specimen of selensulfur from Kilauea, Hawaii, gave 5.18 percent selenium and 94.82 percent sulfur. Lava which had been discarded as showing
practically no selensulfur contained 0.07 percent selenium and 3.32 percent sulfur. Also present were silica, phosphorous, iron, aluminum, titanium, calcium, magnesium, sodium, and potassium. No tellurium or arsenic were found. Such a small amount of selenium was found that the mineral was considered only a variety of sulfur, and "seleniferous sulfur" was suggested as a more appropriate name for the mineral.

Seven specimens of seleniferous sulfur contained selenium in the following uniform but small amounts: from Kilauea, 5.18 percent; from New Zealand, 0.298 and 0.195 percent; from Lipari Island, 0.285 and 0.272 percent; from Sicily, 0.070 and a trace.

Brown, J. C. See Miller and Brown, 1938.

There is reason to suspect the presence of selenium in the copper ores of Singhbhum and in the lead-zinc-copper ores of Bawdwin, in the Shan States, but in neither case are analyses available of the waste products in which it may have accumulated during their treatment.

Specimens of sulfoselenide of mercury from Marysvale, Utah, were identified as onofrite. Compositions of several sulfur-selenium-mercury minerals are compared. Sulfoselenides of mercury form an isomorphous series from metacinnabarite, which contains no selenium, through guadalcazarite, onofrite, and tiemannite, which contains very little sulfur. Sulfoselenides of mercury are found at Culebras, San Onofre, and Guadalcazar, Mexico, and at Marysvale, Utah.

Descriptions of selenium minerals from Guadalcazar, Mexico, are given.

The mineral guadalcazarite, from Guadalcazar, Mexico, is described.

Burris, Robert. See Franke and others, 1936.

Ferroselite was first observed in Middle Devonian sandstone of the Tuvinsk Autonomous Territory associated with barite, pyrite, sphalerite, chalcopyrite, and a calcite-laumontite cement of the quartz sand grains. Its occurrence in clastic portions of effusive rock fragments and pelites indicates enrichment of selenium from highly dispersed selenium in sediments. Widespread Paleozoic
Acidic effusive rocks must have been the source of the selenium. The mineralogy is described. (Chem. Abs., v. 51, col. 2477.)

Ferroselite occurs associated with chalcopyrite and pyrite, in disseminations in calcite, cementing polymict sandstones and in coarse fragmental pelites in Middle Devonian deposits of the Tuvinsk Autonomous Territory. The composition of ferroselite is FeSe₂, and it is found in small prismatic crystals of 0.2 to 0.5 mm in length and 0.1 mm in cross section. (Chem. Abs., v. 50, col. 9239.)

A new cadmium selenide mineral was found in association with ferroselite, clausthalite, native amorphous selenium, cadmium-bearing sphalerite, pyrite, and other minerals. The mineral, named cadmoselite, forms fine disseminations in the cement of sandstone. Mineralogic and crystallographic data are given.

Butler, B. S., 1913, Geology and ore deposits of the San Francisco and adjacent districts, Utah: U. S. Geol. Survey Prof. Paper 80, p. 95, 186.

The presence of selenium was detected in ore from the Golden Reef mine on the east side of the San Francisco Range. The primary ore mineral is galena with small amounts of pyrite. The ore is valuable chiefly for its gold, which is present in an unknown form, but it is probably not free. The form in which selenium is present has not been determined.

Selenium occurs in small amounts in many of the ore deposits of Utah. It collects in bullion and some of it is probably recovered in refining. In 1913, blister copper from the Garfield smelter, which derived most of its ore from the Bingham district, contained an average of 56 pounds of selenium per 100 tons of blister copper. Selenium is present in the gold-silver ores of the Gold Springs-State Line region and the Tushar Range, in mercury ore of the Lucky Boy mine near Marysvale, and is widely distributed in the sandstone deposits in southeastern Utah. The only apparently primary silver mineral recognized in banded quartz veins in the Tushar Range has a silver-white metallic luster and contains both selenium and tellurium. The mineral contains free gold in minute fissures, and possibly gold is one of its essential constituents. The rich gold ore of the Bully Boy and Webster mine in the Ohio district is in part native and in part probably combined with silver as telluride and selenide. Tiemannite and onofrite were found in a replacement deposit from 2 to 8 inches thick in limestone at the Lucky Boy mine, Mount Baldy district. The silver ore of the Silver Reef sandstone deposit carries selenium, which would suggest that part of the silver at least may be combined in some form with selenium.

Byers, H. G. See also Edgington and Byers, 1942; Lakin and Byers, 1941, 1948; Lakin and others, 1938; Miller and Byers, 1935; Robinson, W. O. and others,
1934, Slater and others, 1937; Williams and Byers, 1934, 1935a, b, 1936; Williams and others, 1940, 1941.

Two samples of Pierre loam contained 2 ppm selenium, 460 and 470 ppm vanadium, and wheat grown on the soil contained 25 ppm selenium and 9 ppm vanadium.

Results of a reconnaissance survey of seleniferous soils in Wyoming, Montana, South Dakota, Colorado, Nebraska, Kansas, Oklahoma, Utah, New Mexico, and Arizona are given. Large areas of South Dakota were sampled and contour maps were prepared to detect the distribution of selenium in the soils. Investigations were made of selenium in Pierre shale in Nebraska and South Dakota, in water, and in pyrites. The author concluded that the source of selenium is sulfide minerals in the soil parent materials, and the selenium content of vegetation is dependent on the quantity and distribution of selenium and the amount of available sulfur in the soil.

Analyses of soils and vegetation in Nebraska, South Dakota, and Wyoming, south and southwest of the Black Hills; in Mesa, Montrose, and Delta Counties, Colo., near the Grand Valley and Uncompahgre irrigation projects; in a large area of western Kansas; and in areas of Montana are given. These show that seleniferous soils are derived from the Pierre and Niobrara formations, and that irrigation or drainage removes the selenium from the soil. The effects of rainfall, relation of selenium in the soil to that in the plant, selenium poisoning of water, and miscellaneous analyses of soils and vegetation of Wyoming, Canada, New Mexico, Texas, North Carolina, Puerto Rico, and Cuba are discussed.

Selenium is of general distribution throughout all soils, as it is through all igneous rocks. The source of exceptional quantities of selenium in soils derived from shales was seleniferous volcanic emanations deposited in seas of the Cretaceous or other periods when shales were produced.

High selenium content of soils near the town of Irapuato in the Guanajuato River valley, State of Guanajuato, is caused by selenium-bearing waste from the Guanajuato silver mines. Slimes left after silver and gold extraction were dumped in the canyon and during periods of inundation were deposited over the flood plain of the stream. Ore from the Sirena mine, Guanajuato, contained 16 ppm selenium; slimes contained 4.6 ppm selenium.

Eighteen meteorites of various compositions were examined for selenium content. All stony meteorites—stone, chondrite, pallasite, and mesosiderite—examined contained from 3 to 15 ppm selenium. Iron alloy samples from octahedrite meteorites contained no selenium; concretions of troilite (iron sulfide) found in octahedrite meteorites contained 23 ppm and 200 ppm selenium.

The quantity of selenium in vegetation grown upon seleniferous soil depends on the concentration of selenium in the soil, plant species, composition of soil, moisture, stage of development of plant, and part of plant examined.

Three hundred analyses of shales, soils, and plants collected in Cretaceous areas of Alberta, Saskatchewan, and Manitoba provinces indicate a large area of seleniferous soil. Selenium content of shales varied from 0.3 to 3.0 ppm; soils, from 0.1 to 6 ppm, plants, from 3 to 4190 ppm. Analyses are given.

Volcanic gas and sublimates of Hawaiian volcanoes are high in selenium; lavas and volcanic ash are low in selenium. Selenium is present in all the soils of Hawaii as insoluble basic ferric selenite. Selenium content of soils varies from 1 to 26 ppm and is higher in soils in areas of higher rainfall. Selenium of Hawaiian soils is derived from volcanic gases or sublimates and is carried down into the soil by rain and held there in a highly insoluble form. The authors conclude that selenium is of volcanic origin and was brought down by rainfall into the Cretaceous seas of the Western United States in which seleniferous shales were formed.

This report contains tables showing the selenium content of soils in Prowers, Kiowa, Cheyenne, Bent, Otero, Crowley, Lincoln, Las Animas, Huerfano, Pueblo, El Paso, and Fremont Counties, Colo.; Colfax, Mora, San Miguel, and Harding Counties, N. Mex.; and parts of Arizona and Utah. Results are given of studies on variations in selenium content of plants, effect of irrigation on selenium, selenium in the Colorado River and in the ocean, selenium in soils of Hawaii and Puerto Rico, and the distribution of selenium in the soil profile.

Very small amounts of selenium in pyrite were determined. Analyses of 8 pyrites gave 11-72 ppm selenium; of 1 marcasite, 4 ppm; of 1 pyrrhotite, 1.5 ppm; of 1 sphalerite, 67 ppm selenium. (Chem. Abs., v. 51, col. 9422.)

Occurrence, source, chemical and physical properties, and uses of selenium are described.

Properties, uses, and detection of selenium and selenium minerals are described.

Callaghan, Eugene. See Hewett and others, 1936.

Campbell, T. W. See McCullough and others, 1946.

Canadian selenium occurs in copper sulfide and gold ores; it is produced by two companies.

Biogeochemical studies of the relationship of plants to uranium-vanadium deposits were made in the Thompsons district, Grand County, Utah, where uranium ore in the Salt Wash sandstone member of the Jurassic Morrison formation contains unusual concentrations of uranium, vanadium, and selenium. Plants growing near shallow ore deposits accumulate small amounts of these metals. The effects of these metals on plant growth were observed, the ecology of the plants was studied, and the distribution of various species of indicator plants was mapped in detail. A uranium-tolerant flora has been recognized and is characterized by selenium-indicator plants. Where selenium-bearing ore lies at shallow depth and where the geography and rainfall are favorable for plant growth, the distribution of selenium-indicator plants is the same as that of the carnotite ores. Certain species of selenium-indicator plants can be mapped as guides to exploration.

Carbonaceous uranium ore in the Westwater Canyon member of the Jurassic Morrison formation contains a high percentage of selenium and the mapping of selenium-indicating Astragalus and Oryzopsis plants commonly associated with these deposits is suggested as a method of prospecting for uranium. Selenium-indicator plants apparently do not grow on the Todillo limestone member of the Wanakah formation in the same area, although in places the uranium ore contains sufficient selenium to support such plants.

Botanical methods of prospecting for metalliferous ores are based on the premise that deposits at depth may be reflected chemically in surface vegetation. Uranium is a necessary nutrient for plant growth and therefore is present in all plants. Selenium, which is associated with uranium ores in many areas, is necessary only to certain plants known as selenium-indicator plants. Astragalus confertiflorus, A. preussi var. arctus, A. thompsonae, A. pattersoni, Oryzopsis hymenoides, and Aster venuata are selenium-indicator plants common in uranium districts. They bear a recognizable relationship to carnotite de-
posits of the southwest and have distinct distribution patterns which depend on the amount of selenium in the ore and the amount required by the plant. In the Thompsons district, Utah, plants were mapped over an area of 6 square miles and 1000 holes were drilled. Of 194 holes drilled in areas supporting the growth of indicator plants, 90 were in mineralized ground. Indicator plants were present in the vicinity of 12 percent of the unmineralized holes, 54 percent of the mineralized holes (including ore holes), and 81 percent of the ore holes. Of 10 orebodies discovered in the Yellow Cat area, 4 would not have been found had it not been for the additional information furnished by indicator plants.

Mapping the distribution of indicator plants rooted in ore-bearing formations is an effective prospecting method. Distinctive plants requiring selenium or sulfur may indicate associated uranium ores. *Astragalus* plants have delineated ore bodies to depths of 25 meters.

Botanical prospecting by mapping indicator plants is used in semiarid parts of the Colorado Plateau at low altitude. The distribution of indicator plants is controlled by the availability of chemical constituents of the ore, such as selenium, sulfur, and calcium. Plants of the genus *Astragalus* are most useful in prospecting for uranium deposits of high selenium content. Fifty indicator plants usually associated with carnotite deposits and plants tolerant of mineralized ground are described and illustrated.

Selenium-indicator plants are used in prospecting for uranium on the Colorado Plateau because the availability of selenium to plants is increased many fold by the presence of carnotite, and the distribution of selenium-indicator plants is controlled by the distribution of carnotite. The most useful plant is *Astragalus pattersoni*, which commonly absorbs several thousand parts per million selenium from uranium ores, and is capable of extracting selenium directly from ore bodies as deep as 75 feet. Prospecting by indicator plants is advantageous where the uranium content is 0.01 percent or more and the selenium content is 0.01 percent or more, if the upper limits of the ore body are not more than 40 feet below the surface.

Minor amounts of selenium are concentrated in uranium-bearing coal. The ratio of selenium to uranium is very high in mineralized coal, with 600 ppm selenium reported in one sample. Selenium indicator plants associated with
sulfur indicator plants were noted on the slope below the outcrop of uranium-bearing coal.

Caron, P. E. See Stone and Caron, 1954.

Carstens, C. W., 1941a, Om geokjemiske undersøkelser av malmer: Norsk geol. tidsskr., v. 21, no. 2-3, p. 213-227.

The selenium content and sulfur-selenium ratios of sedimentary and hydrothermal pyrites of the Bymark group of the Trondheim area, Norway, including the Leksdals and Løkken-Grong types, are discussed. The article contains many analyses of ores containing selenium.

Sedimentary pyrite of the Leksdals type contains no selenium; hydrothermal pyrite of the Løkken-Grong type contains more than 10 ppm selenium.

The pyrite in the Bymark group of the Trondheim area is of two types: the Leksdals type of sedimentary origin, and the Løkken-Grong type of hydrothermal origin. Pyrite of the Leksdals type contains less than 0.1 percent copper and is relatively selenium free. Pyrite of the Løkken-Grong type customarily contains a minimum of 0.5 percent copper and a significant amount of selenium, averaging from 20 to 30 ppm. A table gives copper, sulfur, and selenium contents of copper-bearing sulfide ores and concentrates, and sulfur-selenium ratios, which range from 42,000:1 for copper-poor ore at Løkken-Grong to 1800:1 for copper-rich ore.

Castillo, Antonio del, 1873, Descubrimiento de una nueva especie mineral de bismuto: Naturaleza [Mexico], v. 2, p. 274-276.

Description of a double selenide of bismuth and zinc from Guanajuato, Mexico, is given.

A bismuth-zinc-selenium mineral from Guanajuato, Mexico, is described.

Strong, fetid odor in newly broken reddish-stained granitic rocks in the thorium area from Querida to Rosita, Custer and Fremont Counties, Colo., was thought to be caused by selenium compounds, but a chemical analysis showed only traces of selenium. However, volatile compounds may have escaped during grinding of the sample.

Blister cakes from Hudson Bay Mining and Smelting Company, Flin Flon, Manitoba, and anodes from Noranda Mines, Ltd., Noranda, Quebec, are refined
at Montreal East. Both ores have unusually high selenium and tellurium content. Average assay of slimes from Noranda is 22 percent selenium. Selenium recovery plant and process are described.

Occurrence of selenium in mineral waters and with sulfur as selensulfur in volcanic sublimates of the Lipari Islands is noted.

The occurrence of selenium and the association and distribution of selenium minerals are described.

The assay method is described.

The method used for determining elements, including selenium, in bullion produced by Myjinbouw Maatschappij Redjang Lebong, Sumatra, is described.

Silver sulfoselenide occurs in dark-gray sectile masses intimately admixed with other minerals. It appears to be an isomorphous mixture of naumannite and argentite molecules, associated with argentite and silver and replaced by stephanite.

Sulfides in the Morrison and Entrada formations of Jurassic age and the Wind River formation of Eocene age contain abnormally large amounts of selenium substituting for sulfur. Sulfides from the same stratigraphic zone usually contain the same relative amounts of selenium regardless of their position with respect to uranium ore deposits. As much as 5 percent selenium was found in pyrite and chalcocite. Sulfides from the Chinle and Shinarump formations of Triassic age usually contain less than 3 ppm selenium except in the Temple Mountain mining district, Utah, where they contain as much as 0.5 percent selenium. Clausthalite and eucairite have been identified from several uranium ore deposits in the Morrison formation. Oxidation of these seleniferous minerals underground or in damp cool places produces a characteristic pink bloom of monoclinic native selenium, which may invert to more stable hexagonal native selenium at higher temperatures on the surface.

Investigations of the minor—and trace-element content of sulfides associated with uranium ore deposits from sandstone-type deposits have shown that selenium commonly substitutes for sulfur. The Morrison formation and Entrada sandstone of Jurassic age and the Wind River formation of Eocene age seem to be
seleniferous stratigraphic zones; sulfides deposited within these formations generally contain abnormal amounts of selenium. Tables showing selenium content of sulfides from sedimentary rocks of Triassic, Jurassic, Cretaceous, and Tertiary ages, from many uranium mines in Utah, Colorado, Arizona, New Mexico, and Wyoming, and from some hydrothermal vein deposits are given. The average selenium content of iron sulfides from mineralized rock of Triassic age was 0.0019 percent; of Jurassic age, 0.20 percent; of Cretaceous age, 0.005 percent; of Tertiary age, 0.087 percent. The selenium content of pyrite, marcasite, and chalcocite is much greater than that reported in previously published data. The maximum amount of selenium substituting for sulfur in the pyrite structure was found to be 3 percent by weight. Some copper sulfide samples of Jurassic age which had an extremely high selenium content were shown to contain small inclusions of clausthalite and rarely eucairite. Ferroselite was found in 2 deposits on the Colorado Plateau, and it was established that galena forms an isomorphous series with clausthalite in nature.

During oxidation of the selenium-bearing sulfides and selenides from the Colorado Plateau and Wyoming, the selenium forms pinkish crusts of either monoclinic or hexagonal native selenium intergrown with soluble sulfates, suggesting that under "normal" oxidizing conditions native selenium is more stable than selenites or selenates. The selenium content of sulfides from sedimentary rocks of Mesozoic and Tertiary age is above normal and is related to periods of volcanic and intrusive activity penecontemporaneous with the formation of the containing sediments.

Description of simplified procedure for determination of selenious acid by the Norris and Fay method is given.

Sudbury nickel-copper ores contain recoverable amounts of selenium.

Coniglio, L. See Zambonini and Coniglio, 1925.

Cox, T. H. See Pugsley and Cox, 1937.

Curl, A. L. See also Mathews and others, 1937.

Volumetric determination of selenium using starch indicator is described.

Gold occurs at the Mount Allen mine near Mount Hope in an auriferous belt of slate interbedded with Silurian slates. The gold is in plates along laminae of the slate, in grains associated with quartz nodules, and in grains enclosed
in aggregates of bismuth oxide and carbonate. Selenium is distributed irregularly throughout the stone. The author believes that selenium and bismuth once existed as a selenide of bismuth which was probably auriferous.

Dake, H. C. See DeMent and Dake, 1946.

Damour, A. See also DesCloizeaux and Damour, 1881.

Analysis of chalcominite from Cacheuta, Mendoza, Argentina, is described. The mineral was found in silver, lead, and copper selenide veins, associated with azurite, iron oxide, and lead carbonate.

Specimens from El Plomo mine, Ojojoma district, Department of Tegucigalpa, Honduras, included a blackish gray mineral in quartz-barite gangue found to be an isomorphous mixture intermediate between selenium and tellurium in composition, called selen-tellurium. It most closely resembles native tellurium from Faczebaja which contained 6.7 percent selenium. Also analyzed was a greenish yellow ferric tellurite mineral with selenium replacing part of the tellurium, which was named durdenite.

Livingstonite, stibnite, cinnabar, metacinnabar, barcenite, terlinguaite, guadalcazarite, tiemannite, and onofrite are associated with pyrite, realgar, sulfur, graphite, fluorite, and gypsum in matrices of calcite, gypsum, and dolomite. The sulfides and selenides ascended in hot alkaline solutions and were deposited near the surface by diminution of pressure, temperature, dilution, and oxidation of solutions, and by precipitating agents. (Chem. Abs., v. 39, col. 44.)

Delevaux, Maryse. See Coleman and Delevaux, 1957.

Two mineral substances, one gray metallic and one red, are both believed to be zinc-mercury selenide minerals.

A mineral from Culebras, Mexico, formerly believed to be a biseleniuret of zinc, was found to be native selenium ore with a variable mixture of zinc, mercury, cadmium, and iron.

A summary of the history, mineralogy, occurrence, physical properties, chemical properties, compounds, biological nature, technology, and analysis of selenium.

Ore from certain massive sulfide veins in the Shinkolobwe mine contains minerals with compositions similar to vaesite and siegenite, except that in one mineral 19 percent of the sulfur is replaced by selenium (selenio-vaesite) and in the other 11 percent of the sulfur is replaced by selenium (selenio-siegenite). In the selenio-sulfide veins, which contain a greater variety of minerals than do the selenium-free sulfide veins, the usual accessory minerals are molybdenite, pyrite, chalcopyrite, bornite, digenite, covellite, and gold. In these veins 3 other selenium minerals are found; one is thought to be related to umangite, and 2 are unidentified but are known to be selenides. A mineral almost identical with molybdenite occurs in certain brecciated formations intimately associated with selenio-sulfides, which is thought to be a variety of selenium molybdenite.

No relation between selenium content and the amount of fluorine, vanadium, and arsenic was found in 70 samples of water. The water from 12 purification plants contained 0-5 micrograms per liter selenium. Natural water from 40 different locations contained 0-67 gamma per liter selenium. (Chem. Abs., v. 42, col. 2039.)

Veins containing selenides of lead, silver, and copper are found at Cacheuta, southeast of Mendoza, Argentina. The minerals are identified as cacheutaite, clausthalite, zorgite, berzelianite, and a new copper selenite mineral, chalcomenite.

Minerals found in Mt. Etna's eruptive materials include selenium among some 60 sulfide, oxide, carbonate, and silicate minerals. (Chem. Abs., v. 42, col. 491.)

Selenium minerals, uses, prices, and production are discussed. The only commercial source of selenium is anode sludge formed during the electrolytic refining of blister copper. Anode sludge is obtained by Electrolytic Refining and Smelting Company of Port Kembla, New South Wales, and the Mount Lyell Mining and Railway Company at Queenstown, Tasmania. The anode sludges from these companies contain from 1 to 2 percent and 2 percent selenium respectively. Selenium is present in the Mount Morgan ore and one analysis of blister copper from Mount Morgan gave 0.019 percent selenium. The converter flue dust has been found to contain selenium to the extent of 0.04 percent. Selenium is present in small amounts in tellurides at Kalgoorlie and Rothsay, Western Australia, but the occurrences are not of economic importance.
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

A sample of sulfur from Chachani, Arequipa, contained 99.69 percent sulfur, 0.01 percent selenium, no arsenic, 0.09 percent organic substances, 0.14 percent ash, and 0.07 percent water. (Chem. Abs., v. 34, col. 5603.)

Orange-red sulfur similar to the selen-sulfur of the Lipari Islands, Naples, and Hawaii, is found among volcanic sulfur deposits in Japan. It has been obtained from Iwoshima; Motoyama, Satsuma, and Tateyama, Etchui; and Oshima. One specimen examined contained 0.06 percent selenium, 0.17 percent tellurium, 0.01 percent arsenic, and a trace of molybdenum. Yellow sulfur also may contain traces of selenium and tellurium.

Selenium and tellurium occur as copper selenides and copper-gold tellurides in the copper-nickel ores of International Nickel Company of Canada. The amount of selenium in the ore is exceedingly small and no attempt is made to determine the amount. Copper anode slimes contain 8–10 percent selenium. Metallurgy of selenium is described.

Doležal, Jan. See Čadek and Doležal, 1957.

Specimens of silver-copper selenide mineral (eucalirite) were found in Flamenco in the Atacama desert in Chile and in the Province of San Juan, on the other side of the Andes.

A vein containing selenium minerals was found in the Province of Mendoza, Argentina, near the area of the coal mines of Cacheuta. The vein is similar to the sulfide ores of Chile, being rich in silver near the surface and becoming rich in lead and poor in silver at depth, except that the ore minerals are selenides rather than sulfides. Near the surface the ore mineral is a poly-selenide of silver and copper, with a little iron and cobalt, similar to eucalirite, in which there is isomorphous substitution of copper for silver at depth. In the deeper parts of the vein the ore is lead selenide, containing very little silver or copper.

A list of references in the New York Public Library on mineralogy, crystallography, properties, uses, and patents of selenium.

Brief review of methods of recovery of selenium from refinery flue dusts.
Draize, J. H. See Beath and others, 1934a, b.

Tiemannite occurs in large masses near Clear Lake and in the Abbott mine, Lake County; in the San Joaquin Ranch mine, Orange County; and in the old Guadalupe mine near New Almaden, Santa Clara County.

Klockmannite from Sierra de Umango, Argentina, was compared with artificial klockmannite and was found to be physically and structurally identical.

A study of natural and artificial selenides, mainly by microscopic and X-ray methods, including naumannite, aguilarite, eucarite, crookesite, berzelianite, umangite, claustralite, tiemannite, penroseite, guanajuatite, and paraguana­juatite.

Edgington, Glen. See also Robinson and Edgington, 1945.

Core samples of sea floor sediments containing volcanic ash were analyzed. Bering Sea core contains 0.25-0.7 ppm selenium; Ocean City, Md., 0.6-2 ppm selenium; North Atlantic, less than 0.1-0.8 ppm selenium; Caribbean Sea at Bartlett Deep, less than 0.08-0.2 ppm selenium. No evidence of a relation between volcanic activity and selenium accumulation can be drawn from these data.

Selenium occurs as a trace in the Mount Lyell ores, but constitutes 3.9 percent of the final electrolytic slimes from the purification of copper. The amount of selenium in the ore is in the order of 1 part in 124,000. In the North Lyell bornite-chalcopyrite ore body a mineral believed to be berzelianite or eucarite occurs in minute silver-white needle-shaped inclusions in bornite and in chal­cocite replacing bornite.

The possibility of using sulfur-selenium ratios as a method of distinguishing between sulfide deposits of sedimentary or supergene and hydrothermal origin was tested on Australian sulfide ores. Sulfur-selenium ratios of sedimentary pyrites range from 500,000 to 38,000; sulfur-selenium ratios of known hydrothermal pyrites range from 9,000 to 13,000. This investigation shows that
high selenium content is associated with hydrothermal origin, but low selenium content is not positive evidence of sedimentary origin, because some hydrothermal sulfides are low in selenium. The amount of selenium in hydrothermal ore depends on the amount of selenium available to mineralizing solutions and on factors controlling the substitution of selenium for sulfur. On the basis of their sulfur to selenium ratios, the deposits at Nairne, South Australia; Broken Hill, N. S. W.; and Mount Isa, Queensland; are considered to be of hydrothermal origin. In many Australian sulfide ores investigated, the early formed minerals, chalcopyrite, pyrite, bornite, and arsenopyrite, are the most seleniferous; later formed minerals, sphalerite, galena, and tetrahedrite, are less seleniferous; and the low-temperature minerals, stibnite, cinnabar, and barite, are poor in selenium. Tables show sulfur and selenium content of sedimentary, supergene, and hydrothermal pyrite, pyrrhotite, chalcopyrite, sulfates, gossans, molybdenite, sphalerite, galena, stannite, stibnite, cinnabar, tetrahedrite, arsenopyrite, and bornite.

The smelter recoveries of selenium from blister copper are: Fairfield, Utah, 2,800 lb. selenium from 5,000 tons blister from Bingham mine; Steptoe, Nev., 3,303 lb. from 3,000 tons blister from Nevada Consolidated mines; Omaha, Neb., 213 lb. from 800 tons blister from Rocky Mountain lead-silver mines; Mountain, Calif., 54 lb. from 150 tons blister; Tacoma, Wash., 336 lb. from 800 tons blister from Pacific coast and Alaska copper ores; Aguascalientes, Mexico, 1,870 lb. from 1,100 tons blister from Mexican gold-silver-copper ores; Cerro de Pasco, Peru, 275 lb. from 2,000 tons blister; Mt. Lyell, Tasmania, 336 lb. from 800 tons blister.

A review of physical and chemical properties, analytical methods, metallurgy, inorganic and organic compounds, health and safety factors, and uses of selenium.

Determinations made by the Tennessee Copper Company of selenium in composite samples of Ducktown primary ores taken in December, 1907, give the following selenium contents: Burra Burra mine, 0.0175 percent; London mine, 0.011 percent; Polk County mine, trace. Six samples of lead-bearing copper ores from the secondary zone contained traces of selenium.

Eppson, H. F. See Beath and others, 1934b, 1935, 1937a, b, 1939a, b, 1940, 1941; Beath and Eppson, 1947.

Exploration work on a seleniferous tuff in the Poison Draw area north of Lysite, Fremont County, Wyo., established that selenium mineralization is
erratically distributed in small irregular bodies and is not confined to any one tuff bed. Of 206 samples assayed from 11 drill holes, only 8 contained more than 0.005 percent selenium. The extent and grade of reserves could not be calculated because of the sporadic nature of the mineralization and the lack of correlation between infrequent showings. Metallurgical research to develop a process to recover high-purity selenium from the tuff included water-leaching, precipitation from pregnant solutions, and direct-volatilization methods. Because of the low tenor of ore and the presence of soluble sulfates and bentonitic clay, all methods of extraction were complicated and expensive.

Guanajuatite and frenzelite from Santa Catarina mine, Guanajuato, Mexico, are the same mineral.

Tetradymite from the White Hall mine, Spotsylvania County, was analyzed and found to contain 7.23 percent selenium, 37.96 percent tellurium, and 54.81 percent bismuth.

Data in the literature on the selenium content of galena, sphalerite and wurtzite, chalcopyrite, pyrite and marcasite, pyrrhotite, and arsenopyrite are summarized in tables for each mineral. The tables list references, type of analysis, and quantitative determinations by arbitrarily selected concentration ranges.

Fleming, G. A. See also Walsh and others, 1951.

Analyses were made of rock, soil, and plant samples from certain parts of Counties Limerick, Tipperary, and Meath where chronic selenium poisoning of animals had been reported. The rocks were Upper and Middle Carboniferous Limestone associated with shale and sandstone beds of the Yoredale and Pendleside series. The source of the selenium was found to be certain shale beds. Soils with the highest selenium content were poorly drained, low-lying, and of high organic matter and molybdenum content. The soils were believed to be of lacustrine origin, the selenium having been carried in by drainage from surrounding areas. As much as 1,200 ppm selenium was found in soils.

Foster, Z. C. See Hough and others, 1941.

Sulfur in the form of ground sulfur and gypsum was added to a seleniferous field in Gregory County, S. D., on which wheat and corn were grown. The application of sulfur did not inhibit the absorption of selenium by the plants. Plants appear to absorb less selenium during dry seasons than during rainy seasons.

A method is described by which colored precipitates of colloidal fineness can be filtered onto a mat of barium sulfate. This procedure can be used for the estimation of 0.005 to 0.15 mg of selenium with an accuracy of 0.001 to 0.01 mg.

The minerals, clausthalite, tiemannite, naumannite, and umangite, and the mechanical mixtures, lehrbachite (clausthalite and tiemannite), zorgite (clausthalite and umangite), "selenkobaltblei" (clausthalite, "kobaltglanz", hematite), and "seebachite" (clausthalite, umangite, tiemannite), from the Harz are described. The paragenesis of selenium minerals at Clausthal is: pyrite, quartz, calcite, chalcopyrite, clausthalite, tiemannite; at Trogtal: hematite, "kobaltglanz", clausthalite; at Lehrbach: dolomite, clausthalite, tiemannite, umangite, chalcocite, chalcopyrite; at Zorge: quartz, hematite, calcite, clausthalite, tiemannite, umangite; at Tilsikerode: pyrite, quartz, dolomite, calcite, chalcopyrite, clausthalite, naumannite, tiemannite.

Berzelianite from Skrikerum, Sweden, the Caroline mine near Lehrbach, and the Oberjeremiashöhö mine between Zorge and Wieda is described. Seleniferous material identified as a mixture of clausthalite, "kobaltglanz", and an unknown component from a quarry at Trogtal near Lautenthal is also described. In the Harz, the sulfides, pyrite and chalcopyrite, are older than the selenides, which are the last product of hydrothermal deposition.

A bismuth-selenium-sulfur mineral from Guanajuato, Mexico, is described.

Artificial chalcomenite has a different crystal form from natural chalcomenite, although the composition is the same.

Artificial selenite of copper was formed from a solution of potassium selenite precipitated by copper sulfate.

Analyses of sulfur indicated 12.5 ppm selenium and 250 ppm tellurium in extracted sulfur; 200 ppm selenium and 4000 ppm tellurium in insoluble residue; and 18.9 ppm selenium and 378 ppm tellurium in crude mineral.

Description and analysis of eucairite from La Rioja Province, Argentina, are given.

Fronde!, Clifford. See Palache and others, 1944.

Carnotite deposits at the southern foot of Blue Mountain near Skull Creek, 18 miles east of the Colorado-Utah boundary, occur as crusts and impregnations in sheared and brecciated coarse white sandstone of Jurassic age. The deposits are associated with copper sulfates, vanadates, and carbonates, and contain a copper selenite or selenate mineral. This is the first occurrence of a selenite mineral noted in the United States.

Cupriferous pyrite ore of the Eastern Bjurfors ore field contains an average of 0.021 percent selenium. The ore of the Middle Bjurfors field contains 0.002 and 0.012 percent selenium.

Tellurides of lead, silver, and gold are found in pegmatite associated with a compact pyrite-sphalerite-chalcopyrite ore in the Rudtjebäcken mine, Skellefte district, North Sweden. The telluride-bearing pegmatite contains 0.07 percent tellurium and 0.013 percent selenium.

Minerals of which selenium forms an essential constituent have been identified from only a few deposits in the Skellefte district. Ödman described 2 sulpho-minerals at Boliden which, because of their significant content of selenium, were called selenocosalite and selenokobellite. In the principal sulfides of the ores highly varying values for selenium are obtained from different samples of the same mineral from the same deposit. In pure sulfide minerals values from less than 0.001 to 0.14 percent selenium were obtained. The succession galena-chalcopyrite-sphalerite-pyrite indicates a decreasing selenium content.

Two kinds of sulfur are found at Papandajan: (a) yellow pure sulfur which coats the ground around active volcanic craters and contains bright red and orange spots; (b) gray less pure sulfur which occurs around sulfur swamps and contains a metallic material like pyrite. The yellow sulfur contains more selenium than the gray, as well as arsenic, lithium, and thallium.
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

Selenium deposits in the "Roter Bär" mine, east of St. Andreasberg, Harz, are described and are compared with other selenium ores in the Harz. The minerals clausenthalite, tiemannite, guanajuatite, zinc selenide, naumannite, umangite, and berzelianite are described and their chemical and physical properties are described.

Two samples of tetradymite were examined. The first was associated with gold and quartz and was believed to come from the White Hall mine, Spotsylvania County, Va. The second sample was broad folia of tetradymite implanted in decomposed micaceous slate from the Tellurium mine, Fluvanna County, Va. Only traces of selenium were found in both samples.

Joseite from San Jose, Minas Geraes, Brazil, was found to contain a small amount of selenium. Seleniferous galenobismutite from Falun, Sweden, is described and analyses are given.

Descriptions and analyses are given of: aguilarite from the San Carlos mine, Guanajuato, Mexico; seleniferous bismuthinite probably from Guanajuato, Mexico; and guanajuatite (frenzelite) from Germany.

Descriptions and analyses of aguilarite are given.

Selenium acts very much like arsenic in some qualitative tests. Selenium has been noted in coal from Liége, Belgium, and in coke from England.

Gilbert, C. S. See Beath and others, 1934a, b, 1935, 1937a, b, 1939a, b, 1940, 1941, 1946; Beath and Gilbert, 1936.

Gile, P. L. See Hough and others, 1941.

Giustiniani, E. See Matteucci and Giustiniani, 1897.

History, uses, compounds, and natural occurrence of selenium are discussed.

One percent of the selenium supplied to sea water is present. The amount of selenium which has potentially been supplied to sea water is so great that a
serious poisoning of the ocean would have been caused if some phenomena of elimination had not been in action. Selenium has been removed from aqueous solutions by adsorption on freshly precipitated hydroxides of iron. Considerable concentrations of selenium are in sedimentary iron ores.

The average abundance of selenium in magmatic rocks is 0.09 ppm; in meteorites, 7 ppm. Pneumatolytic and high-temperature hydrothermal sulfide ores contain more selenium than medium- and low-temperature sulfide ores. Selenium also is markedly associated with gold and silver deposits of the epithermal range. In the cycle of weathering, very little selenium remains in sea water; most is removed with the hydrolyzate sediments, mainly with organic matter, iron and manganese hydroxides, and iron sulfides. Two parts per million selenium was noted in pyritic lead veins of Gilpin County, Colo.; selenium also noted in ores from Mansfeld, Rammelsburg, Bad Grund, and Upper Silesia, Germany, and from St. Agnes, Cornwall, England.

The similarity of sulfur and selenium suggests that they may be geologically isomorphous, as they are in certain sulfide minerals. Sulfur of volcanic origin contains perceptible amounts of selenium, but in sedimentary rock formations the sulfur is substantially free from selenium. A study of anhydrite, polyhalite, kainite, and kieserite from sea-water deposits shows that in these sulfates the selenium, in proportion to the sulfur, is 10 to 100 times rarer than in eruptive rocks. The higher oxidation potential required for selenium explains the conversion of sulfur to sulfate ion whereas the selenium remains as selenide or native selenium independent of the fate of sulfur. The selenium is therefore removed from the circulating solutions by the reducing action of rocks and minerals and may be expected to accumulate in coal deposits, a conclusion verified by the occurrence of selenium in Yorkshire anthracite. (Chem. Abs., v. 27, p. 4757.)

The selenium content of primary magmatic sulfides was found to be higher than that of other materials, but the selenium-sulfur ratio was highest in sedimentary iron and manganese oxide ores. Sea water, salt beds, and sedimentary rocks are low in selenium. This is because selenium reaching the ocean is not oxidized to selenate, but is absorbed by precipitating iron and manganese hydroxides. The only salt deposit high in selenium is Chilean caliche, formed under oxidizing conditions sufficiently high to convert selenium to selenate. (Chem. Abs., v. 30, col. 1334.)

A brief history of the discovery of natural selenite minerals and descriptions of the occurrence and mineralogy of lead selenate from Pajake, Bolivia, and Cacheuta, Argentina; molybdonite from Cacheuta, Argentina, and Trogtal, Lautertal, Hartz, Germany; and ahlfeldite, an alteration product of penroseite,
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

from Pacajake, Bolivia. The authors consider the existence of cobaltomenite doubtful. The paragenesis of the secondary minerals in limonite at Pacajake is anglesite, cerussite, selenate, lead, chalcocite, and ahlfeldite.

No commercially exploitable deposits of selenium minerals exist in Mexico. Selenium occurs associated with silver minerals or forming part of their composition in silver ores associated genetically with andesitic rocks, and is recovered as a byproduct of silver refining. All recent selenium production has been from the State of Guanajuato.

A mineral believed to come from the Colquechaca silver mines, Bolivia, was identified as penroseite, a lead-copper selenide with minor amounts of nickel and cobalt. The mineral contained thin veins of goethite or limonite and a white selenide, believed to be clausthalite, and was found in fissure veins in rhyolite.

Gott, G. B. See Christman and others, 1953.

Analyses of joseite, grünlingite, and cosalite from Rézbanya-Baita, all of which contain small amounts of selenium.

Greaves, J. E. See Holt and Greaves, 1941.

Tellurobismuthite at Mångfallberget contains small quantities of selenium substituting for tellurium. Selenium is much rarer here than at Boliden mine.

At the Lucky Mc mine, Gas Hills anticline, Fremont County, Wyoming, in the upper Wind River formation, native selenium has been identified in minute particles, and an unknown selenite or selenate mineral occurs in reddish streaks.

Hagner, A. F. See Beath and others, 1946.

Bibliography on the sources, extraction, compounds, and uses of selenium.

Selenium in excess of 10 ppm was not found in Hawaiian agricultural and grazing soils. With the exception of Ekoa, (*Leucaena glauca*), which possesses the property of accumulating selenium, no samples of Hawaiian vegetation contained more than traces of selenium. A sample of the coral-red exudate from Mauna Loa volcano contained 6000 ppm selenium. (Chem. Abs., v. 34, col. 6005.)

Harand, Josef. *See* Alber and Harand, 1939.

Typical analyses of blister copper treated at Nichols Copper Co. refinery at Laurel Hill, N. Y., showed the following percentages of selenium-tellurium content: Katanga, 0.0002; Rio Tinto, 0.0065; Pyrite, 0.002; Magma, 0.0135; U. V. X., 0.15; Granby, 0.025; Phelps Dodge, 0.03; Tennessee, 0.025; Ducktown, 0.016; Bor, 0.0007; Noranda, 0.20; Nichols blister, 0.02.

Harris, W. E. *See* Walker and others, 1941.

The abundance of selenium in igneous rocks is 0.09 ppm; its average abundance in fresh water is 8 ppm, and in the mineral residue of fresh water, 55 ppm. The role of selenium in vegetation and the use of indicator plants in prospecting are described briefly.

Two analyses of matte from the Camp Bird mine, Ouray, Colo., representing 10 months milling in 1906-07, contained 0.99 percent and 1.500 percent selenium. Selenium in the Camp Bird ore does not occur in pyrites, as is commonly thought, for the pyrites contain only traces of selenium, but is believed to occur in some other mineral which passes into the slimes. No selenium minerals were noted in the Camp Bird ore. Mattes from Cripple Creek contained no selenium.

Hefter, O. *See* Goldschmidt and Hefter, 1933.

Minerals of the isomorphous series clausthalite-galena from Kongsberg silver mines and from Numedal contained 80, 79, and 93 mol. percent of lead selenide. Selenium-bearing galena containing about 10 molecular percent of lead selenide was found also at Åland and Ålandåsen, North Vinoren, north of Kongsberg.

Heikes, V. C. *See* Butler and others, 1920.

Hernandez Ortiz, David. *See* McAllister and Hernandez Ortiz, 1945.

In New Mexico selenium indicator plants are generally found on Cretaceous soils and alluvial formations. Selenium indicator plants and the area of their occurrence in New Mexico are listed. The report contains maps showing the occurrence of formations of Cretaceous age in New Mexico and locations where plants have been collected which contained more than 10 ppm selenium, and areas where common indicator plants of selenium have been collected.

Blockite (penroseite) was found at the Hiaco silver mine, Pacajake, 30 km northeast of Colquechaca, Bolivia. The mineral was in a siderite vein in quartzite, associated with pyrite, chalcopyrite, naumannite, and barite. Ahlfeldite, a nickel selenite mineral, occurs as an alteration product of blockite. Blockite, a nickel-copper selenide, with lead and cobalt, and 0.022 percent of platinum metals, was believed by the authors to be a different mineral from penroseite.

Brief review of selenium occurrences and uses.

Selenium production in 1912 was from anode slimes left in the electrolytic refining of copper.

Selenium occurrence in uranium-vanadium-bearing sandstones is mentioned.

Selenium minerals and their occurrences are described. Selenium recovery from blister copper in the United States and foreign countries is discussed, with particular emphasis on the selenium content of blister copper from Butte, Mont., treated at the Anaconda and Great Falls smelters. Potential sources, uses, and field tests are given.

When heated on charcoal or in a closed tube, selenium gives off a fetid odor like "rotten horseradish", and forms a red coating and a silvery-white coating of selenium dioxide.

Traces of selenium were noted in analyses of black vanadium-bearing sandstone from Jo Dandy mine, Paradox Valley, Montrose County, Colo., and in rauvite and metatorbernite from Temple Mountain, Utah.

Discusses selenium in silver ore at the Silver Reef mine near Leeds, Utah, and in asphaltites in Shinarump conglomerate, and the origin of seleniferous uranium-vanadium deposits on the Colorado Plateau. At Silver Reef, the silver occurs as chloride and sulfide above water level, mostly associated with plant remains and carbonaceous matter in Painted Desert sandstone. Silver was originally deposited as silver sulfide and selenide, and reprecipitated above the water table as cerargyrite and selenide. Copper, uranium, and vanadium are associated with the silver ore.

Gives the compositions of lead-copper selenide minerals from the Andes.

Selenium was reported in relative abundance in pyritic ores of the United Verde mine, Jerome district, Yavapai County, Ariz.

Hey, M. H. See Bannister and Hey, 1937.

Heyman, A. M. See Christman and others, 1953.

Gold-bearing veins in the High Grade, Winters, and Hayden Hill districts, Calif., and the Aurora and Silver Star districts, Nev., belong to one class of late Tertiary mineral deposits and are characterized by white quartz, adularia, and calcite veins with numerous offshoots into highly altered country rock carrying finely distributed free gold, tetrahedrite, pyrite, chalcopyrite, and frequently selenium in an unknown compound. In the Aurora district the veins are fine-grained quartz banded by dark streaks of quartz, adularia, argentiferous tetrahedrite, pyrite, chalcopyrite, free gold, and a soft bluish-gray mineral supposed to be a combination of gold and possibly silver with selenium. The similarity between these veins and the quartz-adularia veins carrying gold and selenium at Tonopah, Nev., and Republic, Wash., is discussed.

Hill, W. L. See Rader and Hill, 1935.

Specimens of tetradymium from a locality near Whitehorn, Fremont County, Colo., contained approximately 0.20 percent selenium.

Two selenium minerals accompany metahewettite from the Thompsons district, Utah, and have been noticed at Paradox Valley and Henry Mountains,
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

Utah: (a) Gray hydrous silicate of aluminum, vanadium, and potassium contains inclusions identified as selenium and bituminous matter; (b) A selenium mineral occurs in amounts up to one percent included as specks in gray silicate. The selenium is probably present as elemental selenium and not as a selenide or oxygenated compound.

Chemistry of selenium, attack of selenium minerals, and methods of separation and determination of selenium are described.

Hilmoe, R. J. See Searight and others, 1946.

Hoffman, J. I. See Hillebrand and others, 1953.

Holmes, R. S. See Slater and others, 1937.

Small non-toxic amounts of selenium are present in most forage plants in the Trout Creek area and in the Pine Valley and Antelope Valley area; plants in the Cache National Forest Reserve area are almost free of selenium. No apparent relationship was observed between the selenium and sulfur content of forage plants.

Holtz, H. C. See Howe and Holtz, 1919.

Hopkinson, F. J. See Wernimont and Hopkinson, 1940.

Describes method of testing for selenium requiring very small amounts of material.

Exceedingly young soil profiles contained no selenium. Young soil profiles derived from volcanic ash contained from 0.1 to 0.4 ppm selenium in areas of light rainfall and from 1.5 to 6 ppm selenium in areas of heavy rainfall. Old soil profiles derived from middle aged lava contained 0.4 to 4 ppm selenium in areas of light rainfall and 12 to 14 ppm selenium in areas of heavy rainfall. These are among the highest concentrations of selenium encountered in soils that do not produce seleniferous vegetation. It is presumed that selenium is present in these soils as an insoluble ferric selenite.

Contains references on selenium compounds with platinum and the influence of selenium on platinum.

Investigation at Outokumpu, Finland, of methods of separation of gold and silver, believed to be in the form of selenides, by flotation from anode slimes.

The properties, uses, production, prices, ore minerals, and geology and occurrences of selenium are described. Selenium occurs in the Blaine Republic, Flag Hill, Golden Valley, Lamefoot, Republic, and Valley mines, Republic district, Ferry County. Mine locations are shown on a map.

Selenium injury to plants can be inhibited by the addition of sulfur, either as sulfate or as elemental sulfur. The amount of sulfur required varies with the toxicity of the soil.

Factors affecting selenium absorption are available sulfur, soil type, amount of sand in the soil, method of adding selenium, form of selenium in soil, and growth of previous crops.

Addition of sulfur as sulfate to seleniferous soils retards absorption of selenium by plants. Because of their chemical similarity, sulfur and selenium may be able to play interchangeable roles in plant chemistry.

Hutton, R. S. See Franke and others, 1936.

Properties, uses, and production of selenium, including methods of extraction from pyrites and copper refinery slimes.

Some selenium is contained in all pyrites; the ratio between sulfur and selenium in pyrites varies from 10,000:1 to 100,000:1. A method for quantitative determination of selenium in pyrite is described.

Summary of uses, availability, and sources of selenium.

Marine waters collected at Shirahama, Wakayama Prefecture, Japan, contained 4-6 micrograms per liter of selenium. (Chem Abs., v. 48, col. 6175.)

Selenium content of Japanese coastal waters ranged from 4 to 6 micrograms per liter. (Chem. Abs., v. 49, col. 2250.)

Compilation of data on selenium in soils, including the form of selenium in soil, sulfur-selenium relationships of soils, and relationship of plants to content and form of selenium in soils.

Selenium is recovered in Canada by Canadian Copper Refiners Ltd., Montreal East, from copper anodes produced at Noranda and Gaspe smelters of Noranda Mines Ltd. and from blister copper produced at Hudson Bay Mining and Smelting Company at Flin Flon. It is also recovered at Copper Cliff refinery of International Nickel Co. of Canada Ltd. as a black, free-flowing, amorphous powder averaging 99.5 percent selenium.

Selenium is produced mostly as a byproduct from electrolytic copper refineries, and partly from sulfuric acid factories. In 1953, selenium was produced from 10 refineries including Niihama, Saganoseki, Hitachi, Nikko, and from the Miike sulfuric acid factory. Selenium is contained in minerals such as sulfur, pyrite, chalcopyrite, and other sulfide minerals.

A discussion of the association of selenium with silver ores at Silver Reef, Utah, and the origin and enrichment of the ores. Selenium usually occurs with minerals believed to have been formed by highly heated vapors and solutions in direct association with igneous disturbances. Its presence at Silver Reef seems to favor the theory of the deposition of silver through fissures. The silver was deposited originally in the sandstone in combination with selenium and probably sulfur by the reducing action of lignitic matter. The ore bodies were later enriched by secondary precipitation of silver sulfides.

Jensen, C. L., See Peterson and others, 1957.

Selenium-sulfur occurs at Tateyama-Jigoku, Province of Etchu, and on the Island of Iwojima near the Province of Osumi.

Describes wittite and seleniferous chiviatsite found at Falun with quartz and magnetite in amphibole rock.

Johnson, H. F. See Harloff and Johnson, 1933.

Johnson, L. R. See Thorvaldson and Johnson, 1940.

Flue dusts recovered from furnaces burning coal from the Sainte-Marguerite mine and from Beyne, Liege, were analyzed and found to contain selenium.

Jornlin, D. F. See Olson and others, 1942a.

More than 50 samples of sulfide ores and their products were analyzed for selenium. Mill concentrates relatively high in selenium are also high in bismuth, cobalt, tin, and zirconium. Minerals containing selenium are almost never recognized in the deposits. Selenium is relatively more abundant in sulfide deposits of certain areas, one of which is the mountainous region of central Arizona. There is no apparent connection between the concentration of selenium in epigenetic ore deposits and its concentration in sedimentary rocks such as the selenium-bearing shales of Cretaceous age in the Great Plains area. These selenium-bearing shales are widespread and probably received their selenium from Cretaceous volcanic materials. Some recent volcanic materials, especially sulfur, are notably rich in selenium.

Mentions selenium impurities and how they form. Copper bullion that presumably came from Butte, Montana, carries 0.0072 percent selenium and tellurium.

Selenium is particularly abundant in asphaltic ores in the Moss Back member of the Chinle formation in the Temple Mountain mineral belt. An average uranium to selenium ratio of 950:1 was reported from the Campbird No. 7 ore.

The selenium content of pyrites from various sources was determined by the iodometric method. Total selenium varied from 4.01 grams per ton in certain Norwegian ores to 90 grams per ton in Falun ore. Pyrites high in copper and lead contain less selenium than pyrites free of these metals. This is also true of sulfur. Louisiana sulfur is mentioned as almost pure, but the selenium content is not given. (Chem. Abs., v. 6, col. 1660.)

Sulfur from Japan and Sicily tested by iodometric methods contained from 1 to 20 grams per ton selenium. (Chem. Abs., v. 6, col. 1578.)
Methods for determining selenium are described.

Methods for determining selenium are described.

Methods of determining selenium are described.

Klinger, H. See Heusler and Klinger, 1885.

Describes ecaairite and umangite from Argentina.

Knight, H. G. See also Byers and Knight, 1935.

Review of research on seleniferous soils and selenium poisoning.

Selenium occurs in the following formations in Wyoming: Little Medicine tongue of the Dinwoody (basal Chugwater) and the Phosphoria formations of Permian age; Morrison formation of Jurassic age; Pierre, Steele, Niobrara, Lower Cloverly, Mesaverde, Cody, Hilliard, and Upper Cloverly formations of Cretaceous age; and the Wind River, Chadron, Bridger, Uinta, Fort Union, and Ferris formations of Cenozoic age.

Tetradymite containing small amounts of selenium occurs in all mineral localities of the Carpathian basin. Cosalite from Rézbénya contains 6.57 percent selenium. Csiklovaite, similar to tetradymite, is described.

Article contains a brief review of physical and chemical properties and the recovery of selenium from copper smelter products. Blister copper at La Oroya contains 0.03 percent selenium and copper anode slimes contain 1.8-2 percent selenium.
Komkov, A. I. See Buryanova and Komkov, 1955; Buryanova and others, 1957.

Kovalev, G. A. See Buryanova and others, 1957.

Most minor metals are more concentrated in shale than in sandstone or limestone, and for most elements, the amounts in shale are close to the crustal abundance. The abundance of selenium in sedimentary rocks is high, possibly because it is supplied to the sediments by volcanic emanations as well as by erosion. The abundance of selenium in the earth’s crust is 0.00 ppm; its average concentration in shale is 0.5 to 1 ppm; in sandstone, 1 ppm; in limestone, 0.1 to 1 ppm; in iron oxide sediments, 0.5 to 5 ppm. Iron oxide forms a positive colloid, and anion-forming elements such as selenium tend to concentrate with it. The concentration of selenium in evaporites is far below the crustal average. Selenium is enriched by a factor of 300 in sedimentary pyrites. Selenium is widely disseminated and concentrated in clastic sedimentary rocks in the Rocky Mountain region, where its presence is attributed to volcanic activity and leaching of the selenium chiefly as soluble selenate. It is also present in sandstones of the Colorado Plateau and is said to show a rough correlation with vanadium.

Krilanovich, N. J., See McCullough and others, 1946.

Krusch, P. See Beyschlag and others, 1914.

Lakin, H. W. See also Byers and others, 1936, 1938; Byers and Lakin, 1939; Lovering and others, 1956; Trites and Lakin, 1956; Williams and Lakin, 1935; Williams and others, 1940, 1941.

A small, simple one-piece still for use in rapid field determination of selenium uses 1 gram of material, concentrated sulfuric acid, hydrobromic acid, and bromine. This method can detect as little as 50 ppm selenium immediately and on standing, as little as 10 ppm selenium.

Cretaceous shales of California were examined and found to contain selenium, but not in large amounts. Data on the selenium content of the sea floor of the Gulf of California and of the Pacific Ocean off southern California are given. Investigations of a mildly seleniferous area in Clark County, Nev., of low selenium content of Permian formations of Oklahoma, and of Cretaceous areas of New Jersey, Maryland, and the District of Columbia, which contain minor amounts of selenium, are described. The soils of the Lower Brule Indian Reservation are derived from Pierre shales and contain 0.2 to 16 ppm selenium. The selenium content of atmospheric dust in cities was studied and found to vary from 0.05 to 10 ppm. The source of selenium is probably the pyritic material in coal. A discussion of the modes of accumulation of selenium is presented.

The report contains analyses of selenium content of soils, minerals, and vegetation of northeastern North Dakota, and areas of Utah, Nevada, Idaho, and Oregon and analyses of 98 samples of pyrite and sulfide ores. Investigation of soils and vegetation of the Park City region, Utah, shows that mine residue slimes deposit selenium in the soils of the valley along Silver Creek. One sample of ore from Park City contained 540 ppm selenium; the slimes contained an average of 70 ppm selenium.

Vegetation grown on soils in Hawaii and Puerto Rico is not seleniferous. Selenium may be present in soils in three forms which become available to plants only by slow processes of hydrolytic action: (a) free selenium, (b) pyritic selenium, and (c) basic ferric selenite. Soils of Hawaii and Puerto Rico are highly ferruginous, and the selenium in such soils is insoluble and does not produce toxic vegetation.

Two samples of breccia ores from Saxberg and Garpenberg, Sweden, containing 11 percent zinc and much pyrrhotite, contained less than 1 and 100 ppm selenium, respectively.

Laney, F. B. See Bastin and Laney, 1918; Emmons and Laney, 1926; Piper and Laney, 1926.

Minerals formed as the result of a fire at the United Verde mine, Jerome, Ariz., included a black substance which occurs as a coating on fragments of rock beneath iron hoods placed over vents where sulfur dioxide gas issues. The material was found to be sulfide of arsenic with selenium (As(S,Se)₃).

Discussion of analytical chemistry of selenium including descriptions of methods for oxidized compounds, precipitation tests, qualitative detection in complex mixtures, quantitative methods, separation of selenium and tellurium, and analytical methods practiced at refineries. Brief paragraphs on occurrence and uses.

Describes reduction of selenium compounds such as selenious acid, selenic acid, and sodium selenate, by chemical substances, micro-organisms, plant substances, and animal tissues.

In the presence of living bacteria, selenious acid, selenic acid, and sodium selenite were reduced to free red selenium. Sodium selenate was not reduced to free selenium. The reduction of selenium is directly proportional to the rate of growth of the organism.

There is a very small amount of selenium in the ores; flue dust from the Detroit Copper Company's smelters averaged 0.0125 percent selenium-tellurium; matte averaged 0.013 percent selenium-tellurium.

Gold-quartz veins in Tertiary andesitic rocks and tuffs in the Republic district, Wash., contain concentric crusts of quartz, chalcedony, and opal with dark streaks of antimonial tetrahedrite and chalcopyrite. These are rich in gold and carry one percent of selenium, probably combined with the gold. These rare Tertiary selenide veins are similiar to those at Tonopah, Nev.

Tertiary rhyolite flow at the summit of Buckskin Peak shows hot-spring action with the development of chalcedony and silicified rhyolite, in which were found reddish-brown spots giving a strong reaction for selenium.

Selenium is present in pyritic copper ores of the Mansfeld district, Germany, in small veins in pre-Cambrian rocks at Falun and Skrikerum, Sweden, and in Paleozoic rocks in the Harz, Germany. It occurs more commonly in epithermal quicksilver, silver-lead, and gold-silver veins. Banded veins of gold and selenides, free from other ore minerals, occur in a fine-grained quartz gangue at Republic, Wash., and Radjang Lebong, Sumatra. The gold is finely distributed and the gold selenide has not been positively identified. The veins have probably been deposited close to the surface as colloids.

Loughlin, G. F. See Butler and others, 1920.

In the Gas Hills area uranium minerals occur in the Wind River formation of early Eocene age in the Thermopolis shale of early Cretaceous age. The uranium is concentrated in clayey and conglomeratic sandstone and in carbonaceous shale. The source of the uranium may have been tuff in the White River formation or younger Tertiary rocks that once overlaid the area. Uranium was carried downward and laterally along sandstone aquifers and was concentrated in favorable host rocks. Eleven samples were analyzed for selenium, and contained from 2 to 80 ppm. The Lysite area, 30 miles north of Gas Hills, is an area of highly seleniferous tuffaceous strata of middle and late Eocene age. The significant feature of the Lysite occurrence is the large amount of water-soluble selenium.

Describes a method for semiquantitative determination of selenium in soils, rocks, and vegetation containing from 2 to 100 ppm selenium. The method, which is not suitable for field use, is a microchemical adaptation of the distillation procedure of Hillebrand and others, combined with Frauke's confined spot method of estimation.

Tiemannite, onofrite, and other rare selenides of mercury, antimony, and thallium are reported in the Huitzuco ore.

The Lucky Boy quicksilver mine, 5 miles southwest of Marysvale, Piute County, Utah, lies on a steep fault scarp on the east side of the Tushar Range. The commercial ore was mainly onofrite and tiemannite, the sulfo-selenide and selenide of mercury, which occurred in a deposit from 2 to 8 inches thick, following the bedding planes and impregnating impure dark gray limestone. Tiemannite also was present in a vein carrying barite and cinnabar.

Description of method for determining selenium content of organic compounds.

Crystallographic study of cobalt selenide minerals and selenides of the spinel group.

Description of a method for determining selenium content of organic matter.

Analysis of the mineral guanajuatite gives the formula Bi₄Se₆ with varying amounts of sulfur replacing selenium.

Description of a method for determining amounts of selenium ranging from 0.1 to 0.001 percent in sulfur. Commercial sulfur from Texas, crude Louisiana sulfur, and crystal sulfur from Garginti, Italy, contained no selenium; Sicilian selenosulfur of volcanic origin contained 0.064 percent selenium.

A review of the cycle of selenium in seawater and its removal by adsorption on freshly precipitated ferric hydroxide, which is shown by the presence of selenium in larger amounts in sedimentary iron ores than its average abundance in the earth's crust. The total amount of selenium supplied to seawater is 0.054 ppm; the amount present is 0.004 ppm. The ability of certain plants to absorb large amounts of selenium is mentioned.

Description of procedures of sample preparation, isolation of selenium, and methods of determining selenium.

Analysis of the products of a fumarole on the northwest flank of Vesuvius which erupted on July 3, 1895. In addition to the elements usually found, there were fluorine, phosphorous, boron, and red incrustations of selenium.

A treatise on the history, occurrence, extraction and purification, allotropic forms, physical and chemical properties, and compounds of selenium.

Mellquist, H. See Klason and Mellquist, 1912a, b.

Merwin, H. E. See Hillebrand and others, 1914.

Meyer, Julius, and Bratke, Herbert, 1924, Zur Kenntnis der Doppelselenide.

Analyses are given for umangite, eucairite, zorgite, lehrbachite, and crookesite.

Report on investigation of the distribution of minor elements in the Salt Wash sandstone member of the Morrison formation to determine which are most useful in tracing patterns of metal dispersion around uranium deposits. Samples were collected in and near the Blitz and Joe Dandy mines in the Henry Mountains mining district, Utah. Most of the samples taken more than a few feet away from the uranium deposits contain less than 1 ppm selenium. Thus, the presence or absence of selenium in rock samples is not a useful guide to uranium ore.
Miller, J. T. See also Byers and others, 1938.

Plants are classified into three types in relation to their tolerance of selenium in the soil: (a) those that absorb selenium readily; (b) that are able to absorb moderate or large amounts of selenium without severe injury; and (c) that have very limited tolerance of selenium and absorb only small quantities.

Analyses of soils in northern and central Mexico indicate the presence of selenium only in the Irapuato, Guanajuato, soils, chiefly in the upper 10 inches. Selenium is derived from mine slimes which wash down into the valley. The selenium content averaged from 0.01 ppm at a depth of 144 inches to 1.5 ppm at from 0 to 10 inches.

Water from a temporary spring in the Niobrara formation in T. 6 S., R. 7 E., Custer County, S. Dak., and soil and vegetation in the neighborhood were analyzed for selenium. The water contained 0.4 ppm selenium, the soil contained 1.5 to 4.0 ppm selenium, the vegetation contained as high as 1600 ppm selenium. Water from another spring in T. 36 N., R. 47 W., contained 0.07 ppm selenium.

Describes isotopes, occurrence, properties, toxic effects, extraction, economics, and uses of selenium.

Selenium content of European Palaeozoic and Japanese Mesozoic clay shales was determined by the method of Goldschmidt and Strock. The selenium contents varied somewhat, but the atomic ratio of sulfur to selenium was approximately 10,000:1 for all three. (Chem. Abs., v. 30, col. 1335.)

Describes occurrence, uses, recovery processes, and supplies of selenium.

Moore, B. N. See Hewett and others, 1936.

A review of the general features, minerals, and occurrence of selenium. At Jerome, Yavapai County, Ariz., crystals of selenium nearly 1 inch long have been found in the fire zone of the United Verde mine. Soils in the vicinity of Camp Verde and also in the upper Tonto Valley are known to contain selenium, but percentages present are not available.

Raw electrolytic slime at Raritan Copper Works, Perth Amboy, N. J., contains 5.31 percent selenium. Selenium recovery plant is capable of producing 3,000 pounds of powdered selenium per month.

Moxon, A. L. See also Olson and Moxon, 1939; Olson and others, 1940, 1942a, b; Searight and Moxon, 1945; Searight and others, 1946, 1946-47.

Geological and geographical distribution of selenium in South Dakota and the United States, factors affecting selenium content of soils and plants, and methods of analysis are described. The source of the selenium is believed to be volcanoes of the Cordilleran Geanticline active during the Mesozoic era. Selenium may have been a constituent of the magmas or it may have been conveyed by winds with gases and ash and deposited with sedimentary materials in the Mesozoic seas which covered the Great Plains. In support of this hypothesis is the fact that zones high in selenium also contain bentonite which is presumed to be derived from volcanic ash. In South Dakota, the Pierre and Niobrara formations are the most seleniferous and the soils derived from these formations are heavy clay or gumbo soils. Map and table show distribution and selenium content of Cretaceous formations of South Dakota.

Review of literature on the geological distribution of selenium in the Cretaceous formations of Western United States, selenium content of soils, absorption of selenium by plants, and selenium poisoning in animals.

Analyses of seleniferous formations in South Dakota are given. The Niobrara formation is the most consistently highly seleniferous formation. The Sharon Springs member, the upper part of the Virgin Creek member, and the Interior (Mobridge) member of the Pierre formation are also highly seleniferous. Factors determining surface distribution of selenium are width of outcrop, creeping of beds, alluvial deposition, leaching, and secondary deposition. During the formation of soils from bedrock there is considerable loss of selenium by leaching, surface runoff, mixing of parent materials, and topography as it affects surface runoff. Factors determining the availability of selenium to plants are the kind of plants present and their stage of growth, chemical form of the selenium, total selenium content of the soil, climate, and others. Selenium contents of grasses and converter plants in South Dakota are compared. In general, the selenium content of formations determines the type of plants and the selenium content of the plants. A hypothetical selenium cycle is presented.

Selenium occurs in all Cretaceous formations in South Dakota from the Dakota sandstone through the Pierre formation. Selenium content is low
In the Dakota, Graneros, Greenhorn, and Carlile formations, the Fort Hays member of the Niobrara formation, and the Sully and Virgin Creek members of the Pierre formation; high in the Smoky Hill member of the Niobrara formation and the Sharon Springs member of the Pierre formation; and locally high in thin parts of the Mobridge member of the Pierre formation. There is a close relationship between formation, type of vegetation, and selenium content of vegetation.

Localities where selenium minerals have been found in California are described. These include naumannite from the Idaho-Maryland mine, Grass Valley, Nevada County; tiemannite from Clear Lake and Abbott mine, Lake County, Helen mine and San Joaquin Ranch mine, Orange County, Guadalupe mine, Santa Clara County, and Socrates mine, Sonoma County; eucairite at Willard Mining Company property, Murphys district, Calaveras County.

Analyses of tank house materials in 1932 gave 0.031 percent selenium in anodes, 2.83 percent selenium in slimes.

Crystallographic forms of selenium, mixed sulfur-selenium crystals, and metallic selenium are described.

Nakagawa, Yasuharu. *See* Ishibashi and others, 1953.

Four analyses of ore from Silver Reef, Utah, gave an average of 0.23 percent selenium and 0.26 percent silver. In one specimen the selenium content was 90 ounces per ton.

A theory that all minerals contain minute amounts of all chemical elements is presented. Mansfeld copper shale contained 0.03 percent selenium and sphalerite from Silesia contained 0.04 percent selenium.

Nolan, T. B. *See* Hewett and others, 1936.

The minerals eucairite, berzelianite, and crookesite from the copper mine at Skrikerum are described. The thallium content of the minerals is discussed. Eucalrite and berzelianite contain very little thallium, while crookesite contains about 16 percent thallium.

First selenium minerals found at Skrikerum copper mine were eucaitrite and berzelianite. Crookesite was found later by the author.

Nordström, Th., 1879, Mineralanalytiska bedrag; 2—Selenhaltigt mineral från Falun: Geol. fören. Stockholm Förh., v. 4, p. 283.

Description of a bismuth lead selenide mineral found at Falun, Sweden.

Selenium minerals from Falun, Sweden, are described.

O'Connor, R. See Walsh and others, 1951.

Ödman, O. H. See also Grip and Ödman, 1942.

A general description of the ore and minerals of the Boliden mine. Selenium is found in varying but small amounts; a number of minerals including selenides are as yet unidentifed by the author.

A lead-bismuth-sulfo-selenide mineral occurs in large quantities intergrown with galena in the quartz-tourmaline ore at Boliden. It is called selenocosalite. A mineral similar to kobellite but containing large amounts of selenium also occurs in the quartz-tourmaline veins; it is called selenokobellite.

Selenium recovery at La Oroya smelter of Cerro de Pasco Corp., Peru, is described. Eighty percent of the selenium entering the smelter is in lead concentrates and the remainder is in copper concentrates. The Casapalca mine produces 90 percent of the lead concentrates, which contain 0.09 percent selenium; the copper concentrates come from the Cerro, Yauricocha, and Morococha mines and contain 0.01 percent selenium. A large part of the selenium which enters the smelter in lead concentrates emerges in the residue of the electrolytic refining of copper. The metallurgy of selenium is described and flow sheets showing the recovery of selenium at La Oroya are pictured.

Zorgite from Zorge, Germany, was found to consist of umangite, clausthalite, and an unknown green mineral; zorgite from Tilkerode, Germany, consisted of umangite and clausthalite only. "Selenquecksilberkupferblie" from Zorge was found to be composed of clausthalite, umangite, and tiemannite.

Olson, O. E. See also Moxon and others, 1938, 1939.

Most of the seleniferous soils in South Dakota are derived from the Pierre formation. The availability of selenium to plants depends on the amount of water soluble selenium, which in turn depends on the amount of selenium in the organic fraction of the soil.

In field studies on naturally seleniferous soils it has been found that no correlation exists between selenium content of *Astragalus* and the total, water-soluble, or base-soluble selenium content of the first foot of soil. Soils in which the leaching of selenium is apparently greater seem to produce plants with a higher selenium content, and it appears that much selenium is absorbed from the subsurface soils.

No correlation between selenium and arsenic content of soils in South Dakota was noted. Arsenic content of the soils studied was greater than selenium content, but plants grown in the soils contained more selenium. Selenium was present in a more available form than arsenic.

Analyses of plants and soils from T. 107 N., R. 78 W., South Dakota, indicate that soil at 2 or 3 feet in depth, rather than the top 1 foot, is the source of “available” selenium to plants. During weathering of rock to soil, a large part of the selenium is oxidized to the soluble selenate form and is leached from the surface to the subsurface soils, or to soils at lower elevations.

Osborn, R. A. *See* Curl and Osborn, 1938; Mathews and others, 1937.

Eucairite from La Rioja, Argentina, is described with analyses.

Painter, E. P. *See also* Franke and Painter, 1937.

Review of the forms of selenium in soil and plants, and selenium content of soils and plants. Discusses organic compounds, methods of analysis, and properties of selenium in plants.

Palache, Charles, 1934, Contributions to crystallography: Claudetite; minasragrite; samsonite; native selenium; indium: Am. Mineralogist, v. 19, p. 203.

Needles of native selenium were found as incrustations on quartzite and fire-fritted sandstone in the fire-zone of the United Verde mine, Jerome, Ariz. The crystals reach a length of 2 cm and a diameter of 1 mm.

A crystallographic study of chalcomenite, hydrous selenite of copper, from the Hiaco lead-silver mine, near Colquechaca, Bolivia. Chalcomenite occurs in cavities lined with limonite together with blockite (penroseite), cobaltomenite (ahlfeldite), and needles of selenolite at the Hiaco mine.

Describes mineralogy and occurrence of selenium, selentellurium, seleniferous sulfur, tetradymite, gruenlingite, joseite, agularite, naumannite, berzelianite, eucalirite, umangite, clausthalite, tilkerodite, zorgite, metacinnabar, guadalazarite, onofrite, tiemannite, lehrbachite, klockmannite, guanajuatite, penroseite, blockite, wittite, weibullite, seleniferous galenobismutite, platynite, chalcopyrite, ahlfeldite, chalcomenite, cobaltomenite, kerstenite, molybdenomine, and selenolite.

Joseite from British Columbia and other areas does not contain selenium, while joseite from San José, Minas Geraes, Brazil, contains from 1.46 to 1.48 percent selenium. Selenium is found in these specimens to substitute for tellurium in a general formula.

Guanajuatite from Guanajuato, Mexico, gave X-ray pattern similar to those of bismuthinite and stibnite and very different from that of artificial Bi₂Se. Weibullite, seleniferous galenobismutite, and seleniferous chalcopyrite from Falun, Sweden, give varying proportions of lead, bismuth, selenium, and sulfur, with copper and iron. These minerals are shown by polished sections and X-ray powder photographs to be essentially alike, being intimate intergrowths of two undetermined white metallic minerals, with associated chalcopyrite.

Presents crystallographic measurements and chemical analyses of tiemannite from Marysvale, Utah. The mine from which the tiemannite was taken is described by J. E. Clayton as being situated on the east face of a mountain slope and near a profound fault extending north and south. To the east are eruptive rocks including porphyry and trachyte. Underlying the ore beds to the west is quartzite overlaid by 400 feet of gray limestone. The Deertrail vein, carrying gold, silver, lead, and a little copper, is situated at the contact between the quartzite and limestone. In the upper part of the limestone the selenide of mercury is found in a bed of shaly limestone from 15 to 20 feet thick. The vein has been traced north and south about 100 feet along the outcrop and dips into the mountain at an angle of 15°. The ore occurs in masses intermixed with shaly limestone, crystals being very rare. The accompanying minerals are barite, oxide of manganese, quartz, and calcite. The relationship between selenides and sulfides of mercury is discussed.
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

Description of guadalcazarite from Guadalcazar, Mexico, associated with cinnabar in a quartz and barite gangue.

Peterson, H. E. See also Sill and Peterson, 1954.

Two methods for qualitative detection of selenium in rocks and soils are described. Both methods are sensitive to 10 ppm selenium and can be made semiquantitative by using suitable standard samples. Fusion with potassium pyrosulfate and a reducing agent can be used if the sample does not contain sulfur or carbonaceous material which, if not oxidized, interfere with the detection of selenium. Caustic fusion with sodium peroxide and sodium hydroxide before fusion with potassium pyrosulfate insures complete oxidation of the sample if sulfur or carbonaceous material are abundant.

Two specimens of galena contained 1.17 and 1.23 percent selenium, and a specimen of antimony-copper sulfide contained 0.13 percent selenium. (Chem. Abs., v. 4, p. 2787.)

The silver deposits of the Silver City district are quartz-filled fissure veins and breccia veins. Naumannite and argentite, as they occur in the Silver City district, have identically the same physical properties. It is probable that of the two, naumannite was and is by far the more abundant. Much of the mineral previously called argentite was in reality naumannite. Naumannite is a late hypogene mineral, and may be supergene in some cases. It occurs in the De Lamar, Trade Dollar, Alpine, Banner, and Poorman veins. Clausthalite was found as a minor accessory mineral in the Trade Dollar vein.

Lead-copper selenides found as accessory minerals in an unidentified lead mine of Peru were analyzed. The selenides were of two distinct types and were associated with azurite, malachite, and chrysocolla. Analyses showed selenides corresponding to the formulas (Pb, Cu) Se and (Cu,Pb),Se, with traces of cobalt, iron and silver.

Properties, occurrence, and distribution of selenium in South Dakota; effects of rainfall on selenium content of soils, poison springs; and selenium convertor plants are discussed. Analyses of soil samples for selenium content show that soils formed from rocks of the Pierre and Niobrara formations are the most-
seleniferous. Report also contains results of investigation of selenium in the Fort Randall area and a map showing toxic areas of South Dakota.

Selensulfur occurs as thin adherent layers in strongly altered siliceous rock. It is amorphous, vitreous, of a brownish-red color, with a conchoidal fracture and reddish streak. The mineral contains traces of arsenic and tellurium. Selensulfur also occurs in an opaque orange-yellow crystal phase which is probably derived from the amorphous phase. Analyses of the soluble portion gave 98.71 percent sulfur, 1.03 percent selenium, 0.18 percent tellurium; and 99.06 percent sulfur, 0.83 percent selenium, and no tellurium. Caution is necessary not to confuse real selensulfur with other products of fumarole activity around Vulcano which have a similar appearance, but which consist mostly of sulfur and arsenic with subordinate amounts of selenium and tellurium. (Chem. Abs., v. 20, p. 2804.)

Selenium occurs in quantities from less than 0.1 ppm in Tennessee brown phosphate rock to 55 ppm in Wyoming and Algerian phosphates. Phosphate rock from Florida, Tennessee (except Tennessee blue rock), Kentucky, Arkansas, Oklahoma, Australia; light-colored phosphates from Western United States; and apatites from Virginia and Canada contained 1 ppm or less of selenium. Dark-colored phosphates from Western United States and Canada, the majority of Tennessee blue rock and South Carolina phosphates, and Africa and Palestine phosphates contained from 1 to 55 ppm selenium. Larger amounts of selenium occur in pyritiferous phosphates and in phosphates containing greater amounts of organic material. Primary phosphate deposits contain about 5 times as much selenium as secondary phosphate deposits. Permian deposits contain the largest amount of selenium, followed by Miocene, Cretaceous, Jurassic, Eocene, Devonian, and post-Tertiary deposits. Only a small amount of the selenium in raw phosphate rock finds its way into superphosphates and phosphoric acid.

Describtes analyses of klockmannite from Sierra de Umango, Argentina; Lehrbach, Harz Mountains, Germany; and Skrikerum, Sweden.

Crystallographic description of villamaninite from the Carménes mine, near Villamanin, Léon, Spain.

Discussion of mineralogy and occurrence at Guanajuato of guanajuatite and paraguanajuatite.
Ramdohr, Paul, 1949, Neue Erzmineralien: Fortschr. Mineralogie, v. 28, p. 69–70. Eskebornite from Tilkerođe, Harz Mountains, Germany, is described.

A new zinc selenide mineral, stilleite, was found in an ore sample from Shinkolobwe, Belgian Congo, associated with pyrite, linneite, clausthalite, two unidentified minerals, and dolomite. The mineral is cubic, of the sphalerite type, isotropic, and the color resembles that of tetrahedrite.

Four new cobalt selenide minerals occur in violet to red-brown intergrowths in clausthalite; hematite and secondary native selenium are also present. The minerals are trogtalite (CoS₈), hastite (CoS₉ or Co₃AsSe), bornhardtite (Co₅Se₈), and an unnamed mineral too scarce to study.

Selenium is chalcophile and is enriched in sulfide ore bodies. It forms selenides and sulfoselenides of silver, copper, bismuth, mercury, and lead in hydrothermal rocks; selenites of copper, cobalt, and lead; selenates; and also occurs as native selenium, selen-tellurium, as the oxide, and with volcanic sulfur. Selenium is absorbed in plants, animals, bacteria, and coal. Cycle of selenium: it is removed from sea water with depositing oxidate sediments which are able to adsorb selenium nearly quantitatively from aqueous solutions. During the weathering of seleniferous sulfide deposits selenium is oxidized to selenite; in sediments where the redox potential is very high selenium is oxidized to selenate. Both selenates and selenides are readily reduced to selenium and various selenides.

Rhian, Morris. See Moxon and Rhian, 1943.

Selenium is found in small reddish-brown spots in cinnabar-bearing siliceous sinter deposited by hot springs.

Selenium minerals are found in the uranium deposits of the Goldfields district, which are basically veins containing hematite, pitchblende, and gangue. The selenide deposits are unimportant in amount as compared with other types of deposits here, but they are of interest because of their size and because selenium is associated with uranium deposits at Theano Point on Lake Superior and in the Western United States. Selenides are found in the western part of the Goldfields–Martin Lake area only, from the Gil group northward through Martin Lake and Ato Bay to Hal Lake and the Stream fault. The Hal Lake
and Ato Bay deposits are not radioactive and are small bodies of massive selenides which include umangite, klockmannite, and berzelianite, with some claustralite, chalcounite, and native copper. The selenides cement and partly replace brecciated host rock and are largely free of gangue minerals. Selenides are associated with pitchblende at Martin Lake mine in the Eagle group and in the Gil group, where they surround and cement fractures in the pitchblende. The selenides are associated with calcite, and where they are plentiful, sulfides are scarce or lacking. The selenides were deposited later than pitchblende, arsenides, or sulfozides. The presence of native copper and selenides indicates a temperature of deposition below 200° C. Tiemannite has been found in the Nicholson No. 2 zone, and claustralite is abundant in the Ace shaft.

A new cobalt-nickel-copper selenium mineral occurring in disseminated grains and small masses and resembling pentlandite was found with umangite, klockmannite, berzelianite, claustralite, pyrite, hematite, and chalcopyrite at the Eagle group of claims and Ato Bay, Beaverlodge Lake, Goldfields district, Saskatchewan. The minerals cement sheared and fractured host rocks. The principal alteration product is chalcomenite.

A method for determining very small quantities of selenium in wheat and soil is described. One sample of soil contained 0.3 ppm selenium; 5 and 6 ppm selenium were found in samples of wheat.

Wheat from Saskatchewan, Canada, and South Africa contained from 1 to 2 ppm selenium, indicating seleniferous soils in those areas. Wheat from New South Wales, Australia; Spain; Argentina; and Canterbury, New Zealand contained less than toxic amounts of selenium.

A method for determining selenium in soil by quantitative distillation as bromide from strong hydrobromic acid solution. By this method it is possible to detect as little as 1 part of selenium in 10 billion parts of soil.

Variation in selenium content of plants is greater than that of any other element, and ranges from less than 0.1 to 14,900 ppm in Astragalus racemosus.

Detailed descriptions of distillation procedures.

A spectrochemical method for determining selenium in sulfide minerals is described.
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

Sulfide ore minerals of the eastern Alps were analyzed for selenium. The highest value found was 0.01 percent in pyrite from Agordo, Italy.

Rose, Herm. See Geilmann and Rose, 1928.

Rossi, Michael. See Walker and others, 1941.

The following occurred on burning heaps of Carboniferous sediments rich in pyrite: rhombohedral γ-selenium, letovicite, mascagnite, α-sulfur, copiapite, epsomite, hexahydrite, pickeringite, lapparentite, and organic substances—anthracene and fluorene. (Chem. Abs., v. 32, col. 885.)

Crystals of γ-selenium were found and many organic compounds were formed during the destructive disintegration of coal. (Chem. Abs., v. 33, col. 509.)

Sahama, Th. G. See Rankama and Sahama, 1949.

The mineralization forming the lead-zinc-manganese deposits of the Yakumo mine in the Neogene Tertiary formation is divided into three stages. The chief minerals are quartz, rhodochrosite, galena, sphalerite, pyrite, and chalcopyrite. Selenium has been detected in rhodochrosite, galena, sphalerite, and in pyrite of the second stage of mineralization. Selenium content tends to increase in later stages in rhodochrosite, to decrease in later stages in sphalerite, to increase in middle stages in pyrite, to decrease in middle stages in galena. Distribution of the minor elements, including selenium, has some relation not only to the chemical character of the ore solution but also to the physical conditions at the time the minerals crystallized.

Sandals, K. M. See Moxon and others, 1938.

Sanderson, L., 1940, Selenium: Canadian Mining Jour., v. 61, p. 370–371.

A summary of sources, properties, extraction, and uses of selenium.

Sanford, Samuel. See Schrader and others, 1917.

A summary of chemical properties, uses, identification tests, history, occurrence, minerals, preparation, production, imports, exports, markets, and prices of selenium. Tables show sales of selenium from 1910 to 1927, imports from 1913 to 1928, and monthly prices for 1913 and from 1920 to 1929.
Sarasin, Edmond. *See* Friedel and Sarasin, 1881a, b.

Discussion of physical and chemical properties, geology, mineralogy, geographic distribution, domestic and foreign production and consumption, metallurgy, and uses of selenium. Appendix contains lists of selenium minerals, seleniferous formations, indicator plants, United States production and imports, and bibliography.

Discussion of physical and chemical properties, geology, mineralogy, geographic distribution, domestic and foreign production and consumption, metallurgy, and uses of selenium. Appendix contains tables of selenium minerals, seleniferous formations, indicator plants, United States production and imports, production of electrolytic copper refineries, and bibliography.

A summary of geographic distribution, geology, metallurgy, reserves, uses, government wartime controls, substitutes, domestic production, consumption, foreign trade, prices, research, outlook, and problems of selenium.

Selenium exists in three forms: (a) liquid (above 220° C.), (b) crystalline red, (c) crystalline gray or metallic. Describes properties and transformations of the different forms of selenium.

Schäller, W. T. *See* Hewett and others, 1936.

Schellinger, A. K. *See* Koeppel and Schellinger, 1957.

Scherbatoff, H. *See* Jacks and Scherbatoff, 1940.

Schloen, J. H. *See also* Clark and Schloen, 1944.

Ore from the Noranda and Hudson Bay mines is treated at the Montreal East plant. Ore from Noranda typically contains 0.144 percent selenium, that from Hudson Bay contains 0.117 percent selenium. Selenium plant operation is described.

Analyses are given of selenium in anodes, raw slimes, and treated slimes from Boliden, Sweden; Noranda, Quebec; Electrolytic Refining and Smelting Co., Port Kembla, New South Wales, Australia; Mount Lyell, Tasmania; Norddeutsche Affinerie, Hamburg, Germany; Outokumpu, Finland; and Rhodesia Copper Refineries Ltd., N’kana, Northern Rhodesia. Methods used at the refineries are described. Bibliography on selenium metallurgy.

Article contains tables giving selenium content of copper anodes, raw slimes, and leached slimes from American Smelting and Refining Co.; Anaconda Co.; Boliden, Sweden; Montreal East and Noranda (Canadian Copper Refiners); Cerro de Pasco, Peru; Port Kembla, New South Wales; Mount Lyell, Tasmania; Copper Cliff, Ontario; Kennecott; Norddeutsche Affinerie, Hamburg, Germany; Phelps Dodge; Outokumpu, Finland; Raritan; N'kana, Rhodesia; and U. S. Metals smelters.

Sulfide minerals contained the following amounts of selenium: sphalerite from Norway, 0.0004 percent; sphalerite from Oberschlesen, Germany, 0.0002 percent; sphalerite from Harz, Germany, 0.0001 percent; galena from Spain, 0.0003 percent; bismuthinite from Schneeberg, Germany, trace; argentite from Freiberg, Germany, 0.001 percent; chalcopyrite from Butte, Mont., 0.005 percent.

A new mineral from the Cármenes district near Villamanín, Province of León, Spain, has the formula, (Cu, Ni, Co, Fe) (S, Se)2, and contains about 1.5 percent selenium. The ores of the district are sulfide minerals of copper, cobalt, and nickel in a dolomite gangue.

Naumannite occurs with argentite, electrum, and gold in a gangue of quartz and adularia in veins of the Jarbidge district, Nev.

Tiemannite occurs in large masses near Clear Lake and at the Abbott mine in Lake County; at the San Joaquin Ranch mine in Orange County; and at the Guadalupe mine near Los Gatos in Santa Clara County, Calif. Onofrite and tiemannite occur at the Lucky Boy mine near Marysvale, Utah.

Schumb, W. C. See Marvin and Schumb, 1935.

Searight, W. V. See also Moxon and others, 1938, 1939.

Brookings, Kingsbury, Hamlin, Beadle, Day, Clark, Deuel, Grant, Spink, Brown, Codington, and Roberts Counties contain Pleistocene glacial deposits underlain by seleniferous chalk beds of the Mobridge member of the Pierre formation. Selenium occurs in small amounts in all glacial and associated deposits of north-
eastern South Dakota and western Minnesota. Selenium is mostly in silt and clay in Pleistocene deposits, derived from the seleniferous formations over which the glaciers moved. The greatest amount of selenium is in Arlington loess and loesslike silts in poorly drained areas where it has been leached, transported downslope, and redeposited at lower levels.

All Pleistocene glacial tills of northeastern South Dakota contain selenium, averaging less than 1.5 ppm selenium. Loess deposits contain little selenium in upland areas; in depressions they carry noteworthy amounts. The source of the selenium in glacial drift, outwash, alluvium, and loess is bedrock or older drifts over which the glaciers have moved. In South Dakota seleniferous Cretaceous formations underlie Pleistocene glacial deposits.

The stratigraphic distribution of selenium sources in the Virgin Creek, Mobridge, and Elk Butte members of the Pierre formation in northwestern Lyman County, S. Dak., was mapped by determining the selenium content of western wheatgrass growing on the soils. The selenium source beds are horizontal, so that the ranges of maximum selenium content can be mapped topographically. The authors discuss the possibility of mapping toxic areas on the basis of the topographic position of seleniferous beds.

Selvig, W. A. See Gibson and Selvig, 1944.

Naumannite, a selenide of silver, occurs as nodules in white to bluish clay filling fissures in silver stopes of the De Lamar mine, Silver City district, Owyhee County, Idaho. The mineral resembles argentite and it is possible that much of the silver ore mined was naumannite rather than argentite.

Naumannite from the De Lamar mine, Silver City district, Owyhee County, Idaho, contained 22.92 percent selenium and 1.10 percent sulfur.

Tetradymite, from near the head of Trail Creek, Hailey quadrangle, Blaine or Custer County, contains small amount of selenium replacing tellurium.

Selenium appears to be confined to, and characteristic of, late Tertiary veins in volcanic rocks. Guanajuatite was found on Kirtley Creek, northeast of Salmon, Lemhi County. Naumannite was found in the Montana and Lucky Boy mines, Yankee Fork district, Custer County; Monument mine, Gravel Range district, and Parker Mountain district, Lemhi County; De Lamar mine, Silver City district, Owyhee County. Clausthalite was found in the Hypotheek mine, Coeur d'Alene district, Shoshone County.

Generalized view of oxidation-reduction reactions as a means of distribution of elements is presented. Oxidations tend to concentrate salts of heavy metals, formed by the oxidation of acids of vanadium, molybdenum, chromium, arsenic, selenium, tellurium, sulfur, and phosphorous. Sulfides, selenides, and tellurides show decreased hydrolyzability on oxidation and their concentration takes place only after reduction reactions. (Chem. Abs., v. 43, col. 8996.)

Shigematsu, Tsunenobu. See Ishibashi and others, 1953.

Shimidzu, Tetsukichi. See Divers and Shimidzu, 1883.

Determinative tables for selenium minerals, aguilarite, clausthalite, eucairite, klockmannite, lehrbachite, naumannite, onofrite, tiemannite, and umangite; tests for selenium.

Shutt, R. See Waitkins and others, 1942.

A new method is described for direct titration of selenious acid to a starch-iodide end point by adding starch to selenious acid and enough potassium iodide to form a transparent blue color, and then titrating with standard thiosulfate. This method retains the colorless end point of the Norris and Fay method and can be used for determining much larger quantities of selenium than is possible by the McNulty method. Procedures are given for precipitating metallic selenium from flue dust or ore, for oxidizing metallic selenium to selenious acid, and for titrating with thiosulfate.

Sisson, L. L. See Olson and others, 1940.

Eleven soil profiles representing 4 of the great soil groups and 3 other soils were examined. The 11 profiles included soils from Wisconsin, Kansas, Iowa, Washington, Missouri, Texas, Ohio, Oklahoma, and North Carolina. Their selenium content ranged from 0.01 to 2.50 ppm. Pierre clay loam and Niobrara sandy clay loam contained 22 and 18 ppm selenium respectively. A relatively high selenium content was found in soils of low silica-sesquioxide ratio, and a tendency for illuviated horizons to have an accumulation of selenium was noted.

Selenium crystallizes in a simple triangular lattice with three atoms grouped at each corner. Strontium and barium selenide have simple cubic structures.

The article describes a method for estimating the amount of selenium in sulfur. Four samples of commercial sulfur from Japan contained 0.045, 0.055, 0.085, and 0.152 percent selenium.

Ely porphyry copper ores yielded 110 pounds of selenium for each 100 tons of blister copper refined at the Steptoe smelter.

Sulfide ore from the Montana vein, Montana Tonopah mine, contained 2.56 percent selenium; oxidized ore from the Valley View mine contained 0.78 percent selenium. Selenium occurs in part as a silver selenide; a selenide of gold is not impossible. The oxidized ore shows that much of the silver selenide is attacked by oxidizing agents. "The oxidized ore of Tonopah is really a modified ore, consisting of an intimate mixture of sulfides and selenides, together with secondary sulfides, chlorides, and oxides."

Analysis of oxidized ore from the 300-foot level of the Valley View vein contains 0.75 percent selenium. Selenium occurs, in part at least, as a silver selenide. There is less than one third as much selenium in the oxidized ore as in the sulfide ore. The primary ores contained quartz, adularia, carbonates, polybasite or stephanite, argentite, chalcopyrite, pyrite, galena, sphalerite, silver selenide, and gold in an undetermined form.

Occurrence of selenium in pyrites, radioactive materials, sulfuric acid, and in certain sulfate and phosphate fertilizers is noted. Selenium is released into the air during the roasting of pyrites, smelting operations, and burning of coal. Studies of the biochemical effect of such selenium on plants and seeds in the presence and absence of radioactivity are described.

General treatise containing summary of history, occurrence, methods of recovery, fabrication, toxicity, and uses of selenium. Physical and chemical properties are described in detail.

Stone, R. W. See Schrader and others, 1917.

Stradner, E. See Machatschki and Stradner, 1952.

Strock, L. W. See also Goldschmidt and Strock, 1935.

Summary of data from paper by Goldschmidt and Strock on the distribution of selenium in products of magmatic origin and of secondary erosion and sedimentation. The distribution of selenium in sulfides is associated with the differentiation and cooling of primary magma. Selenium is richer in the primary sulfide phase of the first differentiation of the magma, such as troilite meteorites and pneumatolytic sulfide ores. Sulfides of magmatic segregation origin contain less selenium, and hydrothermal sulfides which issue from the magma in the last stages of differentiation contain the least selenium. In the erosion cycle a very high oxidation potential is required to oxidize selenide to selenate. Selenium in a very soluble form was present in highly oxidized caliche beds in the Atacama desert, Chile. Selenium does not follow sulfur into sea water but is absorbed by ferric hydroxide-rich marine sediments, thus accounting for seleniferous sedimentary iron ores. Possible sources of selenium in shales and other sedimentary rocks are: (a) erosion of caliche and lignite beds, (b) absorption from water by ferric hydroxide and plants. Sources of selenium in soil are the parent selenium-rich sedimentary rocks, magmatic rocks with sulfide masses, eroding caliche beds, and waters, which have leached other formations, rising to the surface.

Tabulated information on selenium content of soils in Ireland, Russia, Japan, Canada, Mexico, Puerto Rico, Colombia, New Zealand, Hawaiian Islands, and United States—including Wyoming, Oklahoma, South Dakota, Nebraska, Montana, Colorado, Kansas, New Mexico, Arizona, North Dakota, Nevada, Texas, Missouri, Utah, New Jersey, California, and Idaho.

Sweeney, A. See Walsh and others, 1951.

Tetradymite in gold-bearing quartz veins in quartz-sericite schist at the Tellurium mine, Fluvanna and Goochland Counties, contains traces of selenium.

Waters from each of the 3 sources of the spring at La Roche-Posay, Vienne, France, contained 0.2 milligram per liter of selenium.

Of 3 species of plants growing in a seleniferous spring at La Roche-Posay, Vienne, France, 2 were found to have absorbed selenium in their tissues.

Native selenium has been identified in three localities during studies of sandstone-type uranium-vanadium deposits. The selenium occurs as purple-gray
metallic acicular crystals, usually in a felty aggregate of small crystals not more than 2 mm in length. The localities are the Road Hog No. 1A mine, Black Hills, Fall River County, S. Dak., in Lakota sandstone of Early Cretaceous age; Peanut mine, Bull Canyon, Montrose County, Colo., in high-grade ore in Salt Wash sandstone member of the Morrison formation of Late Jurassic age; and Parco No. 23 mine, Thompsons district, Grand County, Utah, in Salt Wash sandstone member of the Morrison formation.

Banded quartz from Republic, Washington, contains concentric black metallic bands consisting of argentian tetrahedrite in which small particles of gold, electrum, pyrite, chalcopyrite, and naumannite are embedded.

Analyses are given of 230 composite samples of wheat grown in Saskatchewan. The maximum amount of selenium found was 1.5 ppm, contained by 3.2 percent of the samples; the average amount of selenium found was 0.44 ppm. Wheat grown on soil of glacial lacustrine origin generally contained more selenium.

Selenium is present in soil as insoluble ferric selenite, soluble selenates, and organic compounds derived from plant decomposition. Selenium accumulator plants are native range plants rather than cultivated crops or native grasses. Accumulator plants are capable of absorbing selenium from virgin shale soils, converting it into water-soluble forms, and returning it to the soil in a form available for absorption by all types of plants.

Trelease, S. F., and Beath, O. A., 1949, Selenium, its geological occurrence and its biological effects in relation to botany, chemistry, agriculture, nutrition, and medicine: New York, Published by the authors, 292 p.
A general survey of selenium as it is related to agriculture and public health, containing chapters on history of selenium poisoning, selenium indicator plants, distribution in rocks and soils, accumulation of selenium by plants, selenium poisoning in animals, selenium in relation to public health, prevention and control of selenium poisoning, and chemistry. Maps show outcrops of Permian, Triassic, Jurassic, Cretaceous, and Tertiary formations and locations of plant samples containing 50 ppm or more of selenium in the Western United States. A discussion on origin of selenium in rocks and types of selenium-bearing materials is given.

Inorganic selenite used in experiments was found to be essential for growth of indicator plants. Addition of sulfur tended to reduce the intake of selenium by plants growing in environments of low selenium concentration.
CONTRIBUTIONS TO BIBLIOGRAPHY OF MINERAL RESOURCES

Trites, A. F., Jr., 1956, Selenium occurrences in the United States: Mines Mag. [Colorado], v. 46, no. 8, p. 43-44.

Selenium occurs associated with uranium in the Gas Hills area, Fremont County, Wyo., in the Temple Mountain and Henry Mountain areas, Utah, and in the Grants area, N. Mex., where it has been released from pyrite by oxidation. Selenides of copper, lead, silver, and mercury are found in many sulfide deposits in the Western United States and Mexico. Selenium is associated with sulfur in volcanoes in Hawaii and Alaska, and at the Vulcan mine, Gunnison County, Colo. It occurs in the phosphate deposits of the northwestern States and in the Upper Cretaceous rocks of the Colorado Plateau and the Western States.

Selenium released during oxidation of seleniferous sulfide minerals is in less soluble form than sulfur and tends to be concentrated in the oxidized zone. In seleniferous pyrite-bearing sandstone-type uranium deposits of the Colorado Plateau and Wyoming, secondary selenium minerals are concentrated either in mantles overlying unoxidized ore bodies or in haloes enclosing these bodies. The most seleniferous rock is commonly sandstone containing red elemental selenium with varying amounts of hydrosulfuric oxide containing some basic ferric selenite. Small amounts of selenium are being removed from these deposits by surface and underground water; some of this selenium is retained in the rock as basic ferric selenite, some is absorbed in plants, some enters the atmosphere as gas, some enters streams to be discharged in the ocean and inland basins. Concentrations of selenium are now being built up in bottom sediments in the Gulf of California outward from the mouth of the Colorado River.

The Radjang Lebong gold mine in southwestern Sumatra is a reef 1,000 feet long in porphyrite or altered andesite country rock. The ore is hard, close-grained amorphous silica with very little quartz, containing in places a breccia of black silicified slate, and often accompanied by calcite. The gold is finely disseminated throughout, and occurs as free gold and as auriferous silver carrying 1 part of gold to 10 parts of silver. The gold may be associated with tellurium. An analysis of the bullion gives no tellurium, but it contains 4.55 percent selenium. Similar gold-bearing reefs occur at the Lebong Soelit mine, 5 miles west of Radjang Lebong, and at an unnamed reef 7 miles west of Lebong Soelit.

[Japanese, English summary.]

Selenium content of pyrites from Japanese mines ranged from 0.2 to 39 ppm, with an average of 12.6 ppm; copper pyrites contained 4 to 39 ppm, with an average of 18.8 ppm; iron pyrites contained 3 to 7 ppm, with an average of 5 ppm; marcasite and pyrrhotite contained 0.2 to 0.7 ppm, with an average of 0.45 ppm. Pyrite slags contained 0.2 to 2.5 ppm, with an average of 0.86 ppm. Small quantities of selenium were found in Japanese soils, ranging from 0.4 to 1.2 ppm, with an average of 0.78 ppm. No correlation was found between the sulfur and selenium content of pyrites.

Selenium was found in sulfide ore from a mine on the Mother Lode near Table Mountain in Tuolumne County.

The report contains a summary of the selenium supply situation in 1952, including United States requirements and production. Recommendations are made for reducing selenium consumption and expanding production. Increased domestic supplies can be obtained by increasing imports, improving metallurgical practice, and by developing new sources such as nonferrous metal smelting industries, uranium-vanadium plants, iron blast furnace flue dust, sulfuric acid plants, and selenium-bearing rocks and soils. Selenium in iron ore at Iron Mountain, Utah, is described. Uses, geochemistry, and metallurgy of selenium are outlined.

Analyses of mixed specimens of high grade ore from intermediate levels of the New Republic mine, Ferry County, Wash., gave 5.26 percent selenium. Silver is partly in the form of silver selenide; 60 percent of the gold is combined with selenium, probably as a gold-silver selenide.

Strong traces of selenium were detected in ore from the Monument mine at Myers Cove, Gravel Range district. This vein and possibly the similar Parker Mountain and Musgrove deposits are of a rare type of later Tertiary veins enclosed in Tertiary eruptive rocks and characterized by selenium which is found at Tonopah, Nev., and Republic, Wash. Selenium probably occurs at the Monument mine as a selenide of gold or silver. Its source is probably a blue-black mineral which occurs in scattered and bunched grains of microscopic size.

Selenium was noted in post-Oligocene gold-silver ores of the Montana and Lucky Boy mines in the Yankee Fork district, Custer County. The ore is fine-grained quartz containing pyrite, gold, tetrahedrite, chalcopryite, galena, and enargite. Blue-black specks in the ore contain selenium, gold, lead, bismuth, and copper. The ore veins are in Algonkian schists and quartzites and Miocene tuffs, latites, andesites, basalts, and rhyolites.

Describes properties of selenium rectifiers and possible substitute materials for rectifiers. Possible sources of additional selenium are phosphate deposits in Idaho, Wyoming, Utah, and Montana; lysite tuffs in Wyoming; high-selenium uranium-vanadium ores; and pyrite-pyrrhotite ore of the United Verde mine, Jerome, Ariz., which contains 0.03 percent selenium and from which 1,131,500 pounds of selenium could be recovered annually for many years.
Vaes, J. F. *See also* Derriks and Vaes, 1956.

In the Shinkolobwe deposit a mineral similar to vaesite but containing appreciable amounts of selenium was found accompanied by siegenite and small amounts of pyrite and molybdenite. It was called selenio-vaesite. A seleniferous variety of siegenite containing a small amount of tellurium was also found and was called selenio-siegenite.

Selenium content of pyrites is presented: Sibaev, 0.012 percent; Baky-Usyk, 0.012 percent; Bakyrtov, 0.013; Yulalin, 0.006 percent. (Chem. Abs., v. 35, col. 6541.)

Tiemannite and onofrite, with other rare selenides and arsenides of mercury, antimony, and thallium, have been reported in specimens of Huitzuco ores, which are telothermal or epithermal blanket veins and stockworks in brecciated rocks. Geysers later reworked the original minerals and more recent deposits were formed in the extinct geyser and hot spring vents.

Viets, F. G., Jr. *See* Searight and others, 1946–47.

Uranium minerals were found in sandstone of the Browns Park formation of Miocene age in the Poison Basin area, 6 miles west of Baggs. Six ore samples analyzed for selenium contained from 12 to 80 ppm. The occurrence of uranium in the Poison Basin area coincides remarkably with an area known to be high in selenium content. The association of the two elements is probably not due to chemical combination in a specific mineral, but to a common origin. The association may be sufficiently common that prospecting for uranium may be continued in areas of high selenium content.

In a geochemical study of the biosphere, analyses were made of soils of the Russian plain from north to south along the 40th meridian. Minimum and maximum selenium contents were, in percentage of dry soil, below 10^{-4}. (Chem. Abs., v. 40, col. 1892.)

Vogt, J. H. L. *See* Beyschlag and others, 1914.

Sulfide ores occur as closely associated impregnations and breccia types, in zones parallel to the enclosing schists of the Ankerlia series. The chief ore minerals are pyrrhotite, chalcopyrite, sphalerite, and cubanite. Selenium is
found in copper flotation concentrates in amounts of 50 and 100 grams per ton. These figures indicate that selenium follows chalcopyrite; however, the present work cannot be taken as supporting Carstens' conclusion that selenium varies sympathetically with copper content. In specially cleaned samples of ore sulfides, selenium varied from 0.0007 to 0.0014 percent. These figures do not reveal conclusive variations of selenium with either copper or sulfur. The selenium occurs substituting for sulfur in the sulfide lattices. Its presence in the ore is considered as evidence of an epigenetic origin of the deposits.

A review of the uses of selenium, including alloys, rectifiers, ceramics, and chemical uses—including oxidizing agents, catalysts, fungicides, insecticides, antioxidants.

Selenium content of 40 samples of soils varied from less than 0.1 to 1 ppm. The underlying strata of much of Alberta are of upper Cretaceous age, but the soil is derived mostly from glacial drift formed from other types of rock, so that the seleniferous area may be much smaller than earlier suspected. Seleniferous areas are more likely to be found in southern Alberta rather than in central Alberta.

Walsh, T. See also Fleming and Walsh, 1957.

Low lying valley soils in a glaciated area underlain by upper Carboniferous limestone in County Limerick contain 30 to 324 ppm selenium. The soils are in an area of poor drainage and high rainfall. Formation of the soils was influenced by wash from the Yoredale beds (Avonian shales), which lie west of the affected area. These beds contain considerable deposits of iron pyrites, which may be the source of the selenium.

Ward, F. N. See Lovering and others, 1956.

Six specimens of meteoric iron contained quantities of selenium ranging from 0.04 to 0.23 percent.

Copper ore mined in 1897 contained an average of 0.001 percent of tellurium and selenium; the matte contained an average of 0.01 percent of tellurium and selenium. Matte shipped from Butte smelters in 1897 contained .015, .0021, and .0042 percent tellurium and selenium. The ratio of tellurium to selenium in matte is from 1:1 to 3:1. The constant presence of gold, together with tellurium and selenium, in the blister copper produced by the smelters, suggests the probable presence of minute quantities of some gold-silver telluride.

Selenium commonly substitutes for sulfur in sulfide minerals in the sandstone type uranium deposits to an extent not previously known. There is no significant difference in selenium content of sulfides, mostly pyrite and marcasite, from barren and mineralized rocks of the Morrison and Chinle formations. In Tertiary sediments, sulfides from mineralized rocks contain 60 times more selenium than sulfides from barren rocks. Selenium in Tertiary sulfides may have been introduced during uranium mineralization, while selenium in Morrison and Chinle formations may have been derived from volcanic debris deposited with the sediments. The highly seleniferous deposits contain claustralite, eucairite, ferroseulfite, and cobaltian ferroselite.

A history of the discovery of selenium and selenium minerals. Many localities are listed.

Weibull, M., 1885, Om selenhaltig galenobismutit från Falu grufva : Geol. fören. Stockholm Förh., v. 7, p. 657-666.

Gives analyses of lead bismuth selenides from Falun.

Wells, H. L. See Dana and Wells, 1890.

Method for volumetric determination of small amounts of selenium.

White, R. L. See Keys and White, 1956.

Whitehead, E. I. See Olson and others, 1942b; Searight and others, 1946, 1946-47.

Williams, K. T. See also Byers and others, 1936, 1938; Lakin and others, 1938; Robinson, W. O. and others, 1934.

Seleniferous soils develop in semiarid areas and are derived mostly from formations of Cretaceous, Permian, and Triassic age. Soils containing 1 ppm or less of selenium may produce toxic vegetation; irrigation reduces the selenium intake of vegetation.

Analyses of pyrites from arid and humid areas in Western and Southeastern United States show a high concentration of selenium in pyrites. In humid areas pyrite is converted to limonitic material, and selenium and sulfur are transformed to soluble forms and are removed from the soil by leaching. In arid and semiarid areas, where there is little leaching, pyritiferous soil parent material forms a soil with high selenium and sulfur content. Analyses are
given of pyrites from Nebraska, Utah, Colorado, Mississippi, Alabama, Georgia, North Carolina, Tennessee, and Virginia.

Waters taken from the Colorado, Gunnison, and Uncompahgre Rivers above irrigated lands contained very little selenium; waters taken below the entrance of irrigation drainage into rivers contained from 10 to 70 times as much selenium. Drainage waters from irrigated lands contained as much as 2.680 ppm selenium. The soils in this area are derived from seleniferous Mancos shale containing from 2 to 6 ppm selenium.

Nine deep sea samples taken in the Bering Sea off the coasts of Alaska and Siberia contained from 0.03 to 0.70 ppm selenium, with an average of 0.27 ppm selenium.

The chemical form of selenium in the soil determines the amount of selenium absorbed by vegetation. Pyrites carrying insoluble selenium are found in upper Cretaceous shales, particularly in the lower Pierre and upper Niobrara formations. Where iron is present in the soil, selenium may occur as insoluble basic ferric selenite. Water soluble selenates such as calcium selenate are formed in soils low in iron. The presence of selenates in humid soils is very unlikely. Organic matter in soils may contain water-soluble selenium compounds.

Describes method of determining selenium in air dried vegetation.

Contains methods for determining selenium in coal and animal matter; survey of toxic vegetation and soils in Montana; report on toxic soil in Guanajuato Valley, Mexico, with analyses of soils and vegetation of Chihuahua, Juarez, and Torreon areas; discussion of nontoxic seleniferous soils of Hawaii and Puerto Rico; report on seleniferous areas of the Eagle Ford formation in Texas; report on selenium content of cores from the sea floor between Halifax, Nova Scotia, and Falmouth, England.

Report contains tables showing selenium content of 1,000 samples of wheat from Colorado, Kansas, Nebraska, South Dakota, Wyoming, Montana, and North Dakota. The authors conclude that selenium is present in all wheat; maximum selenium content of wheat found was 25 ppm. The selenium content of 300 samples of corn, oats, and rye was studied. The maximum selenium content was 30 ppm in corn. Selenium content of soils, shales, and vegetation from Cretaceous areas of Alberta, Saskatchewan, and Manitoba is given. Reports on sele-
Wootton, W. O. See Cahen and Wootton, 1920.

Wright, F. E. See Hillebrand and others, 1914.

A short review is given of the literature on occurrences of selenium and tellurium in volcanic products. A yellow crust at Vesuvius in 1925 consisted of opal, sulfur, chlorides and sulfates of alkali metals with iron, lead, copper, and calcium. An aqueous solution contained 1.25 percent selenium and 0.04 percent tellurium. (Chem. Abs., v. 22, p. 4418.)

Selenium is present in sulfur and arsenic pentasulfide incrustations around fumaroles. An incrustation at fumarole 135 contained 0.13 percent selenium.
INDEX

Achavalite, Argentina: Ahlfeld and Angelelli 1948

Agullarite.
- Comstock Lode, Virginia City, Nev.: Coats 1936
- De Lamar mine, Owyhee County, Idaho: Bradley 1916

Mineralogy:
- Early 1950
- Geith 1891, 1892
- Palache and others 1944
- Short 1931
- San Carlos mine, Guanajuato, Mexico: Geith 1891

Ahlfeldite.
- Hiaco mine, Pacajake, Bolivia: Ahlfeld 1954
 - Ahlfeld and Muñoz Reyes 1955
 - Goni and Guillemin 1953
 - Herzenberg and Ahlfeld 1953
 - Palache 1937

Mineralogy:
- Goni and Guillemin 1953
- Palache and others 1944

Alaska, seleniferous sulfur, Valley of Ten Thousand Smokes: Zies 1929

Analyses of metallurgical products:
- Beath and others 1935
- Cahen and Wootton 1920
- DeMent and Dake 1946
- Elkin and Margrave 1954
- Hillebrand and others 1953
- Klein 1941, 1942, 1943
- Lenher 1923
- Mathews and others 1937
- Moxon 1937
- Painter 1941
- Robinson, W. O. 1933, 1945
- Robinson, W. O., and others 1934
- Short 1931
- Williams and others 1940

Gold-silver bullion:
- Clennell 1906, 1907

Gravimetric microdetermination:
- Alber and Harand 1939

Iodometric:
- Klassen and Mellquist 1912a, b
- Sill and Peterson 1954

Norris and Fay method:
- Coleman, W. C., and McCrosky 1937

Organic compounds:
- Alber and Harand 1939
- Horn 1934
- Mccullough and others 1946
- McNulty 1947
- Robinson, W. O. 1933
- Robinson, W. O., and others 1934
- Williams and Lakin 1935
- Williams and others 1940

Qualitative methods:
- Horn 1934
- Lenher 1923

Quantitative methods:
- Industrial and Engineering Chemistry 1916
- Lenher 1923
- Robinson, W. O. 1945

Semi-quantitative method:
- Lovering and others 1956

Spectrochemical method:
- RockenbaueT and Schroll 1955

Starch method:
- Curl and Osborn 1938

Sulfur:
- Marvin and Schumb 1935
- Smith 1915

Volumetric:
- Coleman, W. C., and McCrosky 1937
- Curl and Osborn 1938
- Wernimont and Hopkinson 1940

Analytical methods—Continued

General:
- Benham and others 1935
- Cahen and Wootton 1920
- DeMent and Dake 1946
- Elkin and Margrave 1954
- Hillebrand and others 1953
- Klein 1941, 1942, 1943
- Lenher 1923
- Mathews and others 1937
- Moxon 1937
- Painter 1941
- Robinson, W. O. 1933, 1945
- Robinson, W. O., and others 1934
- Short 1931
- Williams and others 1940

Colorimetric:
- Franke and others 1936

Distillation procedure:
- Robinson, W. O. 1945
- Robinson, W. O., and others 1934

Field test:
- Hess 1916, 1917
- Lakin 1956
- Peterson and others 1957

Volumetric:
- Coleman, W. C., and McCrosky 1937
- Curl and Osborn 1938
- Wernimont and Hopkinson 1940

949
Andes Mountains, lead-copper selenide minerals:
Heusler and Klinger 1885
Pisani 1879

Argentina.
Achavalite: Ahlfeld and Angelelli 1948
Berzelianite:
Ahlfeld and Angelelli 1948
Des Cloizeaux and Damour 1881
Cacheutaite:
Ahlfeld and Angelelli 1948
Des Cloizeaux and Damour 1881
Cerro de Cacheuta, Province of Mendoza:
Ahlfeld and Angelelli 1948
Angelelli 1950
Bertrand 1882
Damour 1881
Des Cloizeaux and Damour 1881
Domeyko 1866
Goni and Guillemin 1953
Chalcocenite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Bertrand 1882
Damour 1881
Des Cloizeaux and Damour 1881
Domeyko 1866
Chalcosthialeite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Des Cloizeaux and Damour 1881
Domeyko 1866
Cobaltmenite:
Ahlfeld and Angelelli 1948
Bertrand 1882
Cuesta de los Llanteres, Province of La Rioja:
Ahlfeld and Angelelli 1948
Angelelli 1950
Eucalrite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Domeyko 1866
Fromme 1890
Klockmann 1891
Otto 1890
Klockmannite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Earley 1949
Ramdohr 1928
La Rioja, Province of:
Ahlfeld and Angelelli 1948
Angelelli 1950
Earley 1949
Fromme 1890
Otto 1890
Ramdohr 1928
Lead selenate: Goni and Guillemin 1953
Molybdomenite:
Ahlfeld and Angelelli 1948
Bertrand 1882
Goni and Guillemin 1953

Argentina—Continued
Naumannite:
Ahlfeld and Angelelli 1948
Angelelli 1950
San Juan, Province of: Domeyko 1864
Sañogasta, Province of La Rioja:
Ahlfeld and Angelelli 1948
Angelelli 1950
Selenolite:
Ahlfeld and Angelelli 1948
Bertrand 1882
Sierra de Umango, Province of La Rioja:
Ahlfeld and Angelelli 1948
Angelelli 1950
Earley 1949
Ramdohr 1928
Tiemannite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Tinogasta, Province of Catamarca:
Ahlfeld and Angelelli 1948
Angelelli 1950
Bodenbender 1902
Umangite:
Ahlfeld and Angelelli 1948
Angelelli 1950
Bodenbender 1902
Klockmann 1891
Water: de Salas 1947
Zorgite: Des Cloizeaux and Damour 1881

Arizona.
Clifton-Morenci copper district: Lindgren 1905.
Magma mine, Pinal County, copper:
Harloff and Johnson 1933
Monument Valley, Apache County, uranium:
Coleman, R. G., and Delevaux 1957
Native selenium, United Verde mine:
Palache 1934
Soils:
Byers 1935
Byers and others 1938
Moore, R. T. 1953
Swaine 1955
United Verde mine, Jerome district, Yavapai County, copper:
Hewett and others 1936
Lausen 1928
Moore, R. T. 1953
Palache 1934
Panel on Selenium, Materials Advisory Board 1956
Vegetation: Beath and others 1939b, 1940, 1941
Artificial minerals:
Brown, F. C. 1914
Earley 1949, 1950
Friedel and Sarasin 1881a, b
Attack of selenium minerals: Hillebrand and others 1953
Australia.

Broken Hill, New South Wales: Edwards and Carlos 1954
General: Dimmick 1948
Mount Allen mine, Mount Hope, New South Wales: Curran 1895
Mount Isa, Queensland: Edwards and Carlos 1954
Mount Morgan, Queensland: Dimmick 1948
Nairne, South Australia: Edwards and Carlos 1954
Selenium-gold-bismuth ore: Curran 1895
Sulfide minerals: Edwards and Carlos 1954

Belgian Congo.

Katanga, copper: Harloff and Johnson 1933
Shinkolobwe mine, selenio-selenite, selenio-vaesite: Derrill and Vaes 1956, Vaes 1947
Ungamite and unknown selenides: Derrill and Vaes 1956

Belgium, Liège coal:

Gibson and Solvig 1944
Jorisson 1896

Berzelianite.

Argentina:

Ahlfeld and Angelell 1948
Des Cloizeaux and Damour 1881
Caroline mine, Lehrbach, Germany:

Frebold 1927b
Cerro de Cacheuta, Mendoza, Argentina: Des Cloizeaux and Damour 1881
Goldfields district, Saskatchewan, Canada:

Robinson, S. C. 1950
Robinson, S. C., and Brooker 1952

Mineralogy:

Earley 1950
Palache and others 1944
Mount Lyell, Tasmania: Edwards 1939
Oberjeremiashohe mine, Harz, Germany:

Frebold 1927b
"Roter Bir" mine, St. Andreasberg, Harz, Germany: Gellmann and Rose 1928

Skrikerum, Sweden:

Frebold 1927b
Nordenskïld 1867a, b

Bibliography:

Doty 1927
Halen 1921
Sargent 1954, 1955a

Biochemistry.

Biochemical effects of seleniferous materials: Stokiasa 1922
Biochemical reduction of selenium compounds: Levine 1915, 1925
Biology, general:

DeMent and Dake 1946
Trelease and Beath 1949

Bismuthinite.

Guanajuato, Mexico: Genth 1891
Melting point and mode of occurrence:

Borgrström 1914–15

Mineralogy:

Genth 1891
Palache and others 1944
Peacock and Berry 1840
Schneeberg, Germany: Schmidt 1925

Blockite. See Penroseite.

Bolivia.

Ahlfeldite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955
Goni and Guillemin 1953
Herzenberg and Ahlfeld 1935
Palache 1937

Chalcomenite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955

Clausthalite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1938, 1955
Block 1937
Block and Ahlfeld 1937
Gordon 1925

Cohaltominit: Palache 1937
Colquechaca:

Bannister and Hey 1937
Gordon 1925

Hiaco or Pacajake silver mine, Colquechaca:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1938, 1939
Bannister and Hey 1937
Block 1937
Block and Ahlfeld 1937
Goni and Guillemin 1953
Herzenberg and Ahlfeld 1935
Palache 1937

Lead Selenate:

Ahlfeld and Muñoz Reyes 1955
Goni and Guillemin 1953

Molybdomenite: Ahlfeld and Muñoz Reyes 1955

Native selenium:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955
Block and Ahlfeld 1937
Bolivia—Continued

Naumannite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1938, 1955
Bannister and Hey 1937
Block and Ahlfeld 1937
Herzenberg and Ahlfeld 1935

Penroseite (blockite):

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1938, 1955
Bannister and Hey 1937
Block 1937
Block and Ahlfeld 1937
Gordon 1925
Herzenberg and Ahlfeld 1935
Palache 1937

Selenite of Iron: Ahlfeld and Muñoz Reyes 1955

Selenolite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955
Palache 1937

Tiemannite:

Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955

Umangite: Ahlfeld and Muñoz Reyes 1938

Bornhardtite, Trogtal, Harz, Germany: Ramdohr and Schmitt 1955

Botanical prospecting.

Indicator plants:

Cannon and Kleinhampl 1956
Cannon and Starrett 1956
Hawkes 1957

Brazil, San Jose, Minas Geraes, Joseite:

Genth 1885
Peacock 1941

Burma, Bawdwin mine: Brown, J. C., and Dey 1955

Cacheuta, Argentina:

Ahlfeld and Angelelli 1948
Des Cloizeaux and Damour 1881
Mineralogy: Palache and others 1944

Cadmoselite: Buryanova and others 1957

Caliche, Atacama desert, Chile:

Goldschmidt and Strock 1935
Strock 1935

California.

Abbott quicksilver mine, Lake County:

Bradley 1918
Eakle 1914
Murdoch and Webb 1956
Schrader and others 1917

Bolivia—Continued

California—Continued

Clear Lake quicksilver, Lake County:

Eakle 1914
Murdoch and Webb 1956
Schrader and others 1917

Cretaceous shales: Lakin and Byers 1941

Guadalupe quicksilver mine, Santa Clara County:

Eakle 1914
Murdoch and Webb 1956
Schrader and others 1917

Helen mine, Orange County: Murdoch and Webb 1956

Idaho–Maryland mine, Grass Valley, Nevada County, naumannite: Murdoch and Webb 1956

Iron Mountain, Shasta County: Ellers 1913

Orange County, tiemannite: Bradley 1918

San Joaquin Ranch quicksilver mine, Orange County:

Eakle 1914
Murdoch and Webb 1956
Schrader and others 1917

Santa Clara County, tiemannite: Bradley 1918

Socrates quicksilver mine, Sonoma County:

Bradley 1918
Murdoch and Webb 1956

Soil: Swaine 1955

Table Mountain, gold, Mother Lode, Tuolumne County: Turner 1898

Tiemannite:

Bradley 1918
Eakle 1914
Murdoch and Webb 1956
Schrader and others 1917

Vegetation: Beath and others 1939b, 1940, 1941

Willard gold property, Murphys district, Calaveras County, cucurbitite: Murdoch and Webb 1956

Canada.

Alberta:

Byers and Lakin 1939
Walker and others 1941
Williams and others 1941

Copper refineries producing selenium:

Bernard 1933, 1944
Clark and Schloen 1944
Collins 1937
Djingheuzian 1957
Harloff and Johnson 1933
Janes 1936
Schloen and Elkin 1946

Flin Flon, Manitoba: Clark and Schloen 1944

General: Canada Department of Mines and Technical Surveys 1952
INDEX 953

Canada—Continued
Goldfields district uranium ores, Saskatchewan, clausthalite, blockmannite, tiemannite, uman-
Granby, British Columbia: Harloff and Johnson 1933
Manitoba:
Byers and Lakin 1939
Williams and others 1941
Noranda, Quebec: Schloen and Elkin 1946
Saskatchewan:
Byers and Lakin 1939
Robinson, S. C. 1950
Robinson, S. C., and Brooker 1952
Robinson, W. O. 1936
Thorvaldson and Johnson 1940
Williams and others 1941
Soils:
Byers 1936
Byers and Lakin 1939
Robinson, W. O. 1936
Swaine 1955
Walker and others 1941
Williams and others 1941
Sudbury, Ontario:
Benard 1933, 1944
Collins 1937
Schloen and Elkin 1946
Theano Point, Ontario, uranium: Robinson, S. C. 1950
Uranium ores: Robinson, S. C. 1950
Vegetation:
Byers and Lakin 1939
Robinson, W. O. 1936
Thorvaldson and Johnson 1940
Walker and others 1941
Williams and others 1941
Castilllito, mineralogy: Palache and others 1944
Sea also Guanajuatite.

Chalcomenite—Continued
Hlaco mine, Pacajake, Bolivia—Con.
Goni and Guillemin 1953
Palache 1937
Mineralogy:
Friedel and Sarasin 1881a, b
Palache 1937
Palache and others 1944
Chemistry:
Berzelius 1818
Gmelins Handbuch anorganischen Chemie 1942
Hillebrand and others 1953
Lenher 1923
Melior 1930
Trelease and Beath 1949
Chile.
Aguas Blancas, Copiapó, eucalrite: Palache and others 1944
Atacama desert, caliche:
Goldschmidt and Strock 1935
Strock 1935
Flamenco, Atacama desert, eucalrite: Domeyko 1864
Chiviatite.
Falun, Sweden:
Johansson 1924
Mineralogy:
Johansson 1924
Palache and others 1944
Peacock and Berry 1940
Clausthalite.
Argentina:
Ahlfeld and Angelelli 1948
Angelelli 1950
Cerro de Cacheuta, Mendoza, Argentina: Angelelli 1950
Bertrand 1882
Damour 1881
Des Cloizeaux and Damour 1881
Goldfields district, Saskatchewan, Canada:
Robinson, S. C. 1950
Robinson, S. C., and Brooker 1952
Hlaco mine, Pacajake, Bolivia:
Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1955
Block and Ahlfeld 1937

Sea also Guanajuatite.
INDEX

Colombia.

Leiva district soils, State of Boyaca:

Ancizar-Sordo 1947

Soils:

Ancizar-Sordo 1947
Swaine 1955

Colorado.

Blue Mountain, Routt (Moffat) County:
Gale 1908

Bull Canyon district, Montrose County:
Coleman, R. G., and Delevaux 1957

Camp Bird mine, Ouray: Headden 1907

Cortez district, Montezuma County:
Coleman, R. G., and Delevaux 1957

Gilpin County: Goldschmidt 1954

Gypsum Valley district, San Miguel County:
Coleman, R. G., and Delevaux 1957

Jo Dandy mine, Paradox Valley, Montrose County:
Hess 1925

La Plata Mountains, La Plata County:
Coleman, R. G., and Delevaux 1957

Leadville: Bartlett 1889
Liberty Bell mine, Telluride: Bastin 1923

Maybell district, Moffat County: Coleman, R. G., and Delevaux 1957

Native selenium: Thompson, M. E., and others 1956

Peanut mine, Bull Canyon, Montrose County: Thompson, M. E., and others 1956

Placerville district, Montrose County:
Coleman, R. G., and Delevaux 1957

Rico district, Montezuma County:
Coleman, R. G., and Delevaux 1957

Rifle district, Garfield County: Coleman, R. G., and Delevaux 1957

Slick Rock district, San Miguel County:
Coleman, R. G., and Delevaux 1957

Soils:

Beath 1943
Beath and others 1939b, 1940, 1941
Byers 1935, 1936
Byers and others 1938
Swaine 1955

Uranium, vanadium ores:
Coleman, R. G., and Delevaux 1957

Gale 1908
Hess 1925
Thompson, M. E., and others 1956

Uravan district, Montrose County:
Coleman, R. G., and Delevaux 1957
Colorado—Continued

Vegetation:
- Beat 1943
- Beath and others 1939b, 1940, 1941
- Williams and others 1941

Vulcan mine, Gunnison County, seleniferous sulfur: Trites 1956

Wet Mountains, thorium: Christian and others 1953

Whitehorn, Fremont County, tetradymite: Hillebrand 1905

Colorado Plateau.

Botanical prospecting:
- Cannon 1952, 1954, 1957
- Cannon and Kleinhampl 1956

Seleniferous uranium-vanadium deposits:
- Botinelly 1956
- Coleman, R. G. 1956
- Coleman, R. G., and Delevaux 1957
- Hess 1933
- Miesch and Connor 1956
- Trites 1956
- Weeks, A. D. 1956

Colorado River:
- Byers and others 1938
- Williams and Byers 1935a

Compounds.

General:
- Børglum 1818
- DeMent and Dake 1946
- Gmelins Handbuch anorganischen Chemie 1942
- Halen 1921
- Mallor 1930
- Painter 1941

Inorganic:
- Alber and Harand 1939
- Elkin and Margrave 1954
- McCullough and others 1946
- Painter 1941
- Wire, platinum: Howe and Holtz 1919

Copper deposits containing selenium. See Arizona; Australia; Belgian Congo; Canada; Finland; Germany; India; Italy; Japan; Mexico; Montana; Nevada; Northern Rhodesia; Peru; Spain; Sweden; Tasmania; Tennessee; U. S. S. R.; Utah; Yugoslavia.

Copper refineries—Continued

- Janes 1956
- Japan Geological Survey 1956
- Keller 1914
- Koeppe1 and Schellinger 1957
- Mosher 1933
- Murray 1933
- Olivares S. and Girón B. 1956
- Schloen and Elkin 1946, 1950, 1954

Cosaltite.

Boliden mine, Skellefte district, Sweden:
- Gavelin 1955
- Ödman 1941

Mineralogy:
- Grasselly 1948
- Koch 1948
- Palache and others 1944
- Rehbónya-Balta, Hungary:
 - Grasselly 1948
 - Koch 1948

Crookesite.

Mineralogy:
- Early 1950
- Meyer and Bratke 1924
- Palache and others 1944

Skríkérum, Sweden: Nordenskiöld 1867a, b

Crops. See Vegetation.

Crystallography:
- Ancel 1919
- Bianchi 1919
- Brown, F. C. 1914, 1915
- Machatschki and Stradner 1952
- Muthmann 1890
- Palache and others 1944
- Peacock and Berry 1940
- Saunders 1900
- Slattery 1925

Csiklovaite, Carpathian Basin, Hungary:
- Koch 1949

Cuba.

Soils: Byers 1936

Vegetation: Byers 1936

Czechoslovakia, Kladno coal: Rost 1935, 1937

Determination of selenium. See Analytical methods.

District of Columbia, soils: Lakin and Byers 1941

Durdenite. See Emmonsite.

Economics:
- Imperial Institute 1937
- Santmyers 1930
- Sargent 1954, 1955a, b
- Tyler 1962
Emmonsite (durdenite):
El Plomo mine, Ojojoma district, Department of Tegucigalpa, Honduras: Dana and Wells 1890
Mineralogy: Palache and others 1944

England.
Coke: Gibson and Selvig 1944
St. Agnes, Cornwall: Goldschmidt 1954

Eskebornite, Tilkerode, Harz, Germany: Ramdohr 1949

Eucalrite.
Aguas Blancas, Copiapó, Chile: Palache and others 1944
Argentina:
Ashfield and Angelelli 1948
Angelelli 1950
Fromme 1890
Klockmann 1891
Otto 1891
Cerro de Cacheuta, Mendoza, Argentina:
Doméyko 1866
Flamenco, Atacama desert, Chile: Doméyko 1864
Mineralogy:
Early 1950
Fromme 1890
Klockmann 1891
Meyer and Bratke 1924
Otto 1890
Palache and others 1944
Short 1931
Mount Lyell, Tasmania: Edwards 1959
Skrikerum, Sweden: Nordenskjöld 1867a, b

Uranium deposits, Western United States:
Coleman, R. G. 1956
Coleman, R. G., and Delevaux 1957
Weeks, A. D. 1956
Willard mine, Murphys district, Calif.:
Murdock and Webb 1956

Europe, clay shales: Minami 1935

Ferric selenite in uranium deposits: Trites and Lakin 1956

Ferrooselite.
Tuvinsk Autonomous Territory, U. S. S. R.:
Buryanova 1956
Buryanova and Komkov 1955

Uranium deposits, Western United States:
Coleman, R. G., and Delevaux 1957
Weeks, A. D. 1956

Finland, Outokumpu copper:
Hukki and Runolinna 1950
Schloen and Elkin 1950, 1954

France.
La Roche-Posay, Vienne, mineral waters: Taboury 1909
vegetation: Taboury 1932

Frenzelite. See Guanajuatite.

Geochemical prospecting. See: Botanical prospecting.

Geochemistry:
Cádiz and Doležal 1937
Goldschmidt 1937, 1954
Goldschmidt and Heften 1943
Goldschmidt and Strock 1935
Hawkes 1957
Krauskopf 1955
Landergren 1935
Mason 1952
Noddack 1936
Rankama and Sahama 1949
Shcherbina 1949
Strock 1935
Trites and Lakin 1956
Tyler 1952

Geologic formations, seleniferous, Western United States:
Beath 1936, 1937, 1943
Beath and Gilbert 1936
Beath and others 1934a, b, 1935, 1937b, 1939a, b, 1940, 1941, 1946
Byers 1934, 1935, 1936
Byers and Lakin 1939
Coleman, R. G. 1956
Coleman, R. G., and Delevaux 1957
Hershey 1945
Knight, S. H. 1937
Lakin and Byers 1941, 1948
Moxon 1937
Moxon and Rhian 1943
Moxon and others 1938, 1939
Olson and Moxon 1939
Pugsley and Cox 1937
Sargent 1954, 1956a
Seabright and Moxon 1945
Searight and others 1946, 1946–47
Trelease and Beath 1949
Walker and others 1941
Williams 1939
Williams and Byers 1935a, 1936
Williams and others 1940, 1941

Germany.
Bad Grund: Goldschmidt 1954
Borzelinite:
Frebold 1927b
Geilmann and Rose 1928
Bornhardtitte, Trogtal, Harz: Ramdohr and Schmitt 1935
Caroline mine, Harz: Frebold 1927b
Clausthal, Harz: Frebold 1927a, b
Germany—Continued

Clausthalite:
- Frebold 1927a, b
- Gellmann and Rose 1928
- Olsacher 1927
- Ramdohr and Schmitt 1955

Eskebornite, Tjilkerode: Ramdohr 1949

Guanajuatite:
- Gellmann and Rose 1928
- Genth 1891
- Ramdohr and Schmitt 1955

Hastite, Trogtal: Ramdohr and Schmitt 1955

Klockmannite, Lehrbach: Ramdohr 1928

Lehrbachlite: Frebold 1927a, b; Ramdohr 1928

Mansfeld, copper:
- Goldschmidt 1954
- Noddack 1936

Molybdonite, Trogtal: Gonin and Guillemin 1953

Native selenium, Trogtal: Ramdohr and Schmitt 1955

Naumannite:
- Frebold 1927a
- Gellmann and Rose 1928

Oberjeremashöhe mine, Harz: Frebold 1927b

Rammelsberg: Goldschmidt 1954

“Roter Bär” mine, St. Andreasberg, Harz: Gellmann and Rose 1928

Schneeberg, bismuthinite: Schmidt 1925

Selenquicksilberkupferblei, Zorge: Olsacher 1927

Telemannite:
- Frebold 1927a
- Gellmann and Rose 1928
- Olsacher 1927

Tjilkerode, Harz:
- Frebold 1927a
- Olsacher 1927
- Ramdohr 1949

Trogtal, Harz:
- Frebold 1927a, b
- Gonin and Guillemin 1953
- Ramdohr and Schmitt 1955

Trogtalite: Ramdohr and Schmitt 1955

Umangete:
- Frebold 1927a
- Gellmann and Rose 1928
- Olsacher 1927

Upper Silesia:
- Goldschmidt 1954
- Noddack 1936

Zinc selenium: Gellmann and Rose 1928

Zorge, Harz:
- Frebold 1927a
- Olsacher 1927

Zorgite:
- Frebold 1927a
- Olsacher 1927

Glacial deposits.

Canada: Walker and others 1941
Minnesota: Searight and Moxon 1945
South Dakota: Searight and Moxon 1945, Searight and others 1946

Gold-bismuth-selenium ore, New South Wales, Australia: Curran 1895

Gold deposits containing selenium. See Australia; California; Honduras; Hungary; Idaho; Nevada; New Zealand; Sumatra; Utah; Virginia; Washington.

Gold selenide.
Aurora district, Nev.: Hill, J. M. 1915
Monument mine, Myers Cove, Idaho: Umpleby 1913a

Radjang Lebong, Sumatra: Lindgren 1933

Republic district, Wash.: Bancroft 1914
Lindgren 1908, 1933
Umpleby 1910

Tonopah, Nev.: Bastin and Laney 1918
Spurr 1905a

Grüningite.
Mineralogy:
- Grasselly 1948
- Palache and others 1944
- Rezbañya-Balta, Hungary: Grasselly 1948

Guadalcazarite. See Metacinnabar.

Guanajuatite (frenzelite, castillilite).
Germany: Genth 1891
Guanajuato, Mexico:
- Fernandez 1877
- Frenzel 1874
- Mallet 1878
- Peacock and Berry 1940
- Ramdohr 1948

Kirtley Creek, Lemhi County, Idaho: Shannon 1926
Melting point and mode of occurrence:
- Bergström 1914–15

Mineralogy:
- Earley 1950
- Fernandez 1877
- Mallet 1878
- Palache and others 1944
- Peacock and Berry 1940
- Ramdohr 1948

“Roter Bär” mine, St. Andreasberg, Harz, Germany: Gellmann and Rose 1928

Hastite, Trogtal, Harz, Germany: Ramdohr and Schmitt 1955
INDEX

Hawaii.
Soil:
Byers and others 1936, 1938
Hance 1939
Hough and others 1941
Lakin and others 1938
Swaine 1955
Williams and others 1940
Vegetation: Hance 1939
Volcanoes:
Brown, G. V. 1916, 1917
Byers and others 1936
Hance 1939

History:
DeMent and Dake 1946
Gmelins Handbuch anorganischer Chemie 1942
Mellor 1930
Santmyers 1930
Stone and Caron 1954
Trelease and Beath 1949
Weeks, M. E. 1956

Honduras, El Plomo mine, Ojojoma district, Department of Tegucigalpa:
Dana and Wells 1890

Hot spring deposits, National district, Humboldt County, Nev.:
Meadgren 1915
Roberts 1940

Hungary.
Carpathian Basin, esiklovalite, tetradyomite: Koch 1948
Faczebaja, selentellurium: Dana and Wells 1890
Rezhanya-Balta, cosalite:
Grasselly 1948
Koch 1948
grüningite, josette: Grasselly 1948

Iceland, Krísvik, seleniferous sulfur: Friend and Allchin 1941

Idaho.
Agularite, De Lamar silver mine, Owyhee County:
Bradley 1916
Clausthalite:
Piper and Laney 1926
Shannon 1926
De Lamar mine, Silver City district, Owyhee County:
Bradley 1916
Piper and Laney 1926
Shannon 1926, b; 1926
Gravel Range district, Lemhi County:
Shannon 1926
Umpleby 1913a
Hypotheek mine, Coeur d’Alene district, Shoshone County, clausthalite:
Shannon 1926
Kirtley Creek, Lemhi County, gunnajuattite:
Shannon 1926

Idaho—Continued
Musgrove mine, Blackbird district, Lemhi County: Umpleby 1913a
Naumnannite:
Piper and Laney 1926
Shannon 1920a, b; 1926
Parker Mountain district, Lemhi County:
Shannon 1926
Umpleby 1913a
Silver City district, Owyhee County:
Bradley 1916
Piper and Laney 1926
Shannon 1920a, b; 1926
Soil:
Lakin and Byers 1948
Swaine 1955
Trade Dollar mine, Silver City district, Owyhee County, clausthalite:
Piper and Laney 1926
Trall Creek, Halley quadrangle, tetradyomite:
Shannon 1925
Vegetation: Beath and others 1939b
Yankee Fork district, Custer County:
Shannon 1926
Umpleby 1913b

India, Singhbhum copper: Brown J. C., and Dey 1955
Indicator plants. See Vegetation
Iowa, soil: Slater and others 1937

Ireland.
County Limerick:
Fleming and Walsh 1957
Walsh and others 1951
County Meath:
Fleming and Walsh 1957
County Tipperary:
Fleming and Walsh 1957
Rocks:
Fleming and Walsh 1957
Soil:
Fleming and Walsh 1957
Swaine 1955
Walsh and others 1951
Vegetation:
Fleming and Walsh 1957

Iron ores.
Iron Mountain, Utah: Tyler 1952
Sedimentary:
Goldschmidt 1937
Goldschmidt and Strock 1935
Strock 1935

Italy.
Agordo, pyrite:
Rockenbau er and Schroll 1956
Garginti, sulfur:
Marvin and Schumb 1935
Lipari Island, seleniferous sulfur:
Brown, G. V. 1917
Clarke 1924
Quercigh 1925
Montecatini, copper:
Sargent 1955
Mount Etna:
Di Franco 1942
Italy—Continued
Sicily, seleniferous sulfur: Brown, G. V. 1917
Klason and Mellquist 1912b
Marvin and Schumb 1935
Vesuvius, fumarole incrustation: Matteucci and Glusthlanl 1897
Zambonini and Coniglio 1925
lava: Bellini 1907

Japan.
Clay shales: Minami 1935
General: Japan Geological Survey 1956
Hitachi copper mine: Sargent 1955a
Iwojima Island and Tateyama-Jikoku, seleniferous sulfur: Jimbo 1899
Iwoshima, Etchui, and Oshima, seleniferous sulfur: Divers and Shimazu 1893
Sea water:
Ishibashi 1953
Ishibashi and others 1953
Sulfur:
Saito 1953
Tsuge and Terada 1950
Yakumo mine: Saito 1953

Java, Papandajan, West-Java, seleniferous sulfur: Gelmann and Blitz 1931

Josette.
Mineralogy:
Genth 1885
Grasselly 1948
Palache and others 1944
Peacock 1941
Rezhänya-Blatta, Hungary: Grasselly 1948
San Jose, Minas Geraes, Brazil:
Genth 1885
Peacock 1941

Kansas.
Sulfur:
Byers 1935, 1936
Slater and others 1937
Swaine 1955
Wheat:
Williams and others 1941

Kerstenite, Mineralogy: Palache and others 1944

Klockmannite.
Argentine:
Ahlfeld and Angelell 1948
Angelell 1950
Earley 1949
Ramdohr 1928

Klockmannite—Continued
Goldfields district, Saskatchewan, Canada:
Robinson, S. C. 1950
Robinson, S. C., and Brooker 1952
Lehrbach, Harz, Germany: Ramdohr 1928
Mineralogy:
Earley 1949
Palache and others 1944
Ramdohr 1928
Short 1931
Sierra de Umango, Argentina:
Angelell 1950
Earley 1949
Ramdohr 1928
Skrikerum, Sweden: Ramdohr 1928

Kobellite, Boliden, Skellefte district, Sweden:
Gavelin 1955
Odman 1941

Lead-bismuth-selenide, Falun, Sweden:
Atterberg 1974
Nordström 1879

Lead-copper selenides, Peru: Pisani 1879

Lead selenate.
Cerro de Cacheuta, Mendoza, Argentina:
Goni and Guillellm 1953
Hiasco mine, Pachajke, Bolivia:
Ahlfeld and Muñoz Reyes 1955
Goni and Guillellm 1953
Mineralogy:
Goni and Guillellm 1953
Palache and others 1944

Lead-zinc deposits containing selenium. See
Burma; Colorado; Thailand; U. S. S. R.; Utah.

Lehrbachite.
Harz, Germany: Frebold 1927a
Mineralogy:
Meyer and Bratke 1924
Palache and others 1944
Short 1931

Louisiana, sulfur: Marvin and Schumb 1935

Maryland, soil: Lakin and Byers 1941

Metacinnabar (guadalcazarite; onofrile).
Culebras, Mexico: Brush 1951
Guadalcazar, Mexico:
Brush 1951
Burkart 1886, 1872
Peterson 1872

Huitzoco, Guaránero, Mexico:
de la Peña 1944
McAllister and Hernandez Ortiz 1945
VaupeU 1938
Metacinnabar—Continued
Lucky Boy mine, Marysvale, Piute County, Utah:
Bethke 1956
Brush 1881
Butler and others 1920
McCaskey 1912
Schrader and others 1917

Mineralogy:
Bethke 1956
Burkart 1872
Palache and others 1944
Petersen 1872
Short 1931

San Onofre, Mexico: Brush 1881

Metallurgy:
Benard 1933, 1944
Djingheuzian 1957
Downie 1852
Elkin and Margrave 1954
Everett and Bauerle 1957
Harloff and Johnson 1933
Hukki and Runolinna 1950
Imperial Institute 1937
Keller 1914
Koeppel and Schelling 1957
Mining Journal 1953
Mosher 1933
Murray 1933
Olvares S. and Girón B. 1956
Sanderson 1940
Sargent 1954, 1955a
Schloen and Elkin 1946, 1950, 1954
Stone and Caron 1954
Tyler 1952

Meteorites:
Byers 1938
Goldschmidt 1954
Strock 1935
Warren 1888
Williams and others 1941

Mexico.
Agullarite, San Carlos mine, Guanajuato: Genth 1891
Bismuthinite, Guanajuato: Genth 1891
Cananea, copper: Sargent 1955
Chihuahua, soil: Williams and others 1940

Culebras quicksilver:
Brush 1881
Del Rio 1828, 1836
General: Gonzáles Reyna 1956
Guadalcazar, quicksilver:
Brush 1881
Burkart 1866, 1872
Petersen 1872
Guanajuatite, Guanajuato:
Fernandez 1977
Frenzel 1874
Mallet 1878
Peacock and Berry 1940
Ramdohr 1948

Mexico—Continued
Guanajuato, silver:
Aguilero 1901
Byers 1937b
Castillo 1873, 1874
Fernandez 1877
Frenzel 1874
Gent 1891
Gonzáles Reyna 1956
Mallet 1878
Miller and Brown 1928
Peacock and Berry 1940
Ramdohr 1948
Williams and others 1940

Huitzuco, Guerrero, quicksilver:
de la Peña 1944
McAllister and Hernandez Ortiz 1945
Vaupell 1938

Juarez, soil: Williams and others 1940

Metacinnabar:
Brush 1881
Burkart 1866, 1872
de la Peña 1944
McAllister and Hernandez Ortiz 1945
Petersen 1872
Vaupell 1938

Paraguanajuatite, Guanajuato: Ramdohr 1948

Riolite, Culebras: Del Rio 1828, 1836
San Onofre, quicksilver: Brush 1881

Soil:
Byers 1937b
Miller and Brown 1938
Swaine 1955
Williams and others 1940

Tiemannite:
Brush 1881
de la Peña 1944
McAllister and Hernandez Ortiz 1945
Vaupell 1938

Torreon, soil: Williams and others 1940

Mineralogy:
Borgström 1914–15
Clarke and Washington 1924
DeMent and Dake 1946
Earley 1949, 1950
Gonf and Guillemin 1933
Hess 1916
Muthmann 1890
Palache and others 1944
Short 1931

See also various minerals.

Minerals. See particular minerals.

Minnesota, glacial deposits: Searight and Maxon 1945
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missouri, soil:</td>
</tr>
<tr>
<td>Beath and others 1940</td>
</tr>
<tr>
<td>Slater and others 1937</td>
</tr>
<tr>
<td>Swaine 1955</td>
</tr>
</tbody>
</table>

| Molybdenite: |
| Argentina: |
| Ahlfeld and Angelelli 1948 |
| Bertrand 1882 |
| Goni and Guillemin 1953 |
| Cerro de Cacheta, Mendoza, Argentina: |
| Bertrand 1882 |
| Goni and Guillemin 1953 |
| Hiaco mine, Pacajake, Bolivia: Ahlfeld and Muñoz Reyes 1955 |

| Mineralogy: |
| Goni and Guillemin 1953 |
| Palache and others 1944 |
| Trogtaí, Harz, Germany: Goni and Guillemin 1953 |

| Montana. |
| Butte copper ore: |
| Hess 1916 |
| Weed 1912 |

| Soil: |
| Byers 1935, 1936 |
| Swaine 1955 |
| Williams and others 1940, 1941 |

| Vegetation: |
| Beath and others 1930b, 1940, 1941 |
| Williams and others 1940, 1941 |

| Native selenium. |
| Henry Mountains, Utah: Hillebrand and others 1914 |
| Hiaco mine, Pacajake, Bolivia: |
| Ahlfeld 1954 |
| Ahlfeld and Muñoz Reyes 1955 |
| Block and Ahlfeld 1937 |
| Lucky Mc mine, Fremont County, Wyo.: Grutt 1956 |
| Mineralogy: Palache and others 1944 |
| Paradox Valley, Utah: Hillebrand and others 1914 |
| Peanut mine, Montrose County, Colo.: Thompson, M. E., and others 1956 |
| Road Hog No. 1A mine, Fall River County, S. Dak.: Thompson, M. E., and others 1956 |
| Thompsons district, Utah: Hillebrand and others 1914 |
| Thompson, M. E., and others 1956 |
| Trogtaí, Harz, Germany: Ramdohr and Schmitt 1955 |
| United Verde mine, Jerome district, Ariz.: Palache 1934 |
| Uranium-vanadium deposits, Western United States: Coleman, R. G. 1956 |
| Coleman, R. G., and Delevaux 1957 |

| Native selenium—Continued |
| Uranium-vanadium—Continued |
| Grutt 1956 |
| Hillebrand and others 1914 |
| Thompson, M. E., and others 1956 |
| Trites and Lakin 1956 |

| Naumannite. |
| Argentina: |
| Ahlfeld and Angelelli 1948 |
| Angelelli 1950 |
| Colquechaca, Bolivia: Bannister and Hey 1937 |
| De Lamar mine, Silver City district, Idaho: Shannon 1920a, b; 1926 |
| Gravel Range district, Lemhi County, Idaho: Shannon 1926 |
| Hiaco mine, Pacajake, Bolivia: Ahlfeld and Muñoz Reyes 1938, 1955 |
| Ahlfeld 1954 |
| Bannister and Hey 1937 |
| Block and Ahlfeld 1937 |
| Herzenberg and Ahlfeld 1935 |
| Idaho—Maryland mine, Grass Valley, Calif.: Murdoch and Webb 1956 |
| Jarbidge district, Nev.: Schrader 1923 |
| Mineralogy: Earley 1950 |
| Palache and others 1944 |
| Short 1931 |
| Parker Mountain district, Lemhi County, Idaho: Shannon 1926 |
| Republic district, Wash.: Thompson, R. M. 1954 |
| “Roter Bir“ mine, St. Andreasberg, Harz, Germany: Gellmann and Rose 1928 |
| Silver City district, Owyhee County, Idaho: Piper and Landy 1926 |
| Shannon 1920a, b; 1926 |
| Tilkerode, Harz, Germany: Frebold 1927a |
| Yankee Fork district, Custer County, Idaho: Shannon 1926 |

| Nebraska. |
| Pierre formation: Byers 1935 |
| Soil: |
| Byers 1935 |
| Swaine 1955 |
| Vegetation: Beath and others 1941 |
| Williams and others 1941 |

| Nevada. |
| Aurora district: Hill 1915 |
| Buckskin Peak, quicksilver, National district, Humboldt County: Roberts 1940 |
Nevada—Continued
Clark County, soil: Lakin and Byers 1941
Comstock Lode, Virginia City, aguilarite: Coats 1936
Ely district: Spencer 1917
Jarbidge district, naumannite: Schrader 1923
National district, Humboldt County, hot springs:
Lindgren 1915
Roberts 1940
Soil: Lakin and Byers 1941, 1948
Swaine 1955
Tonopah district:
Bastin and Laney 1918
Spurr 1905a, b
Vegetation:
Beath and others 1939b
Lakin and Byers 1948
New Jersey, soil:
Lakin and Byers 1941
Swaine 1955
New Mexico.
Botanical prospecting:
Cannon 1953
Cannon and Starrett 1956
Cretaceous formations: Hershey 1945
Grants area, uranium:
Cannon 1953
Coleman, R. G., and Delevaux 1957
Trites 1956
La Ventana mesa, uranium-bearing coal,
Sandoval County: Cannon and Starrett 1956
Soil:
Byers 1935, 1936
Byers and others 1938
Hershey 1945
Swaine 1955
Vegetation:
Beath and others 1939b, 1940, 1941
Byers 1936
Hershey 1945
New Zealand.
Great Barrier, Hauraki Goldfields:
Allen 1900
Seleniferous sulfur: Brown, G. V. 1917
Soil: Swaine 1955
North Carolina.
Soil:
Byers 1936
Slater and others 1937
Vegetation: Byers 1936
North Dakota.
Soil:
Lakin and Byers 1948
Swaine 1955
Williams and others 1941
North Dakota—Continued
Vegetation:
Beath and others 1939b, 1940, 1941
Williams and others 1941
Northern Rhodesia, N'Kana, Mufulira, copper: Schloen and Elkin 1930, 1954
Norway.
Birtavarre district, Troms, sulfide ores: Vokes 1957
Kongsberg and Numedal, clausthalite:
Heier 1953
Leksdals sedimentary pyrite: Carstens 1941a, b, c
Løkken-Grogn hydrothermal pyrite:
Carstens 1941a, b, c
North Vinoren: Heier 1953
Occurrence, general:
Boyschlag and others 1914
Cahen 1919
Clarke and Washington 1924
DeMent and Dake 1946
Gmelins Handbuch anorganischen Chemie 1942
Goldschmidt 1954
Halen 1921
Hess 1909, 1916
Hunting 1956
Iron Age 1952b
Lenher 1923
Lindgren 1933
Mellor 1930
Milligan 1933
Mining Journal 1953
Sanderson 1940
Santmyers 1930
Sargent 1954, 1955a, b
Stone and Caron 1954
Trites 1956
Tyler 1952
Ocean. See Water.
Ocean floor deposits. See Sea-floor deposits.
Ohio, soil: Slater and others 1937
Oklahoma, soil:
Byers 1935
Lakin and Byers 1941
Slater and others 1937
Swaine 1955
Onofrite. See Metacinnabar.
Oregon.
Soil: Lakin and Byers 1948
Vegetation: Beath and others 1939b
Oxidation zone:
Coleman, R. G., and Delevaux 1957
Goldschmidt and Strock 1935
Strock 1935
Trites and Lakin 1956
INDEX

963

Paraguanaquaitite.
Guanajuato, Mexico: Ramdohr 1948
Mineralogy:
Earley 1950
Ramdohr 1948

Penroseite (blockite).
Colquechaca, Bolivia:
Bannister and Hey 1937
Gordon 1925
Hiaco mine, Pacajake, Bolivia:
Ahlfeld 1954
Ahlfeld and Muñoz Reyes 1938, 1955
Bannister and Hey 1937
Block 1937
Herzenberg and Ahlfeld 1935
Palache 1937
Mineralogy:
Earley 1950
Gordon 1925
Palache and others 1944

Puerto Rico.
Soil:
Byers 1936
Byers and others 1938
Lakin and others 1938
Swaine 1935
Williams and others 1940
Vegetation: Byers 1936

Pyrites. See Sulfide minerals.

Quicksilver deposits containing selenium.
See Argentina; California; Mexico; Nevada; Utah.

Riollite, Culebras, Mexico: Del Rio 1828, 1836

Seafloor deposits.
Bering Sea:
Edgington and Byers 1942
Williams and Byers 1936b

Caribbean Sea at Bartlett Deep: Edgington and Byers 1942

Falmouth, England: Williams and others 1940

Gulf of California: Lakin and Byers 1941

Halifax, Nova Scotia: Williams and others 1940

North Atlantic: Edgington and Byers 1942

Ocean City, Md.: Edgington and Byers 1942

Pacific Ocean off southern California: Lakin and Byers 1941

Sedimentary rocks, concentration in:
Krauskopf 1935
See also Geochemistry; Geologic formations; Sulfide minerals.

Seebachite, Harz, Germany: Frebold 1927a

Selenide of iron, hydrous, Hiaco mine, Pacajake, Bolivia: Ahlfeld and Muñoz Reyes 1955

Seleniferous formations. See Geologic formations, seleniferous.

Seleniferous galenobismuthite. See Welsbutlite.

Seleniferous sulfur.
Chachani, Arequipa, Peru: Dios Guevara 1940

Garginti, Italy: Marvin and Schumb 1935

Properties—Continued
Imperial Institute 1937
Mellor 1930
Milligan 1953
Painter 1941
Sanderson 1940
Santmyers 1930
Sargent 1954, 1955a
Saunders 1900
Stone and Caron 1954

Phosphates.
General:
Rader and Hill 1935
Phosphoria formation: Beath and others 1937, 1946

Platinum compounds, bibliography: Howe and Holtz 1919

Platynite, mineralogy: Palache and others 1944

Poisoning:
Knight, H. G. 1935
Milligan 1953
Moxon 1937
Moxon and Rhian 1943
Stone and Caron 1954
Trelease and Benth 1949

Properties:
Ancel 1919
Bianchi 1919
Brown, F. C. 1914
Cahen 1919
Cahen and Woottton 1920
DeMent and Dake 1946
Elkin and Margrave 1954
Hunting 1956

Properties—Continued
Imperial Institute 1937
Mellor 1930
Milligan 1953
Painter 1941
Sanderson 1940
Santmyers 1930
Sargent 1954, 1955a
Saunders 1900
Stone and Caron 1954

Phosphates.
General:
Rader and Hill 1935
Phosphoria formation: Beath and others 1937, 1946

Platinum compounds, bibliography: Howe and Holtz 1919

Platynite, mineralogy: Palache and others 1944

Poisoning:
Knight, H. G. 1935
Milligan 1953
Moxon 1937
Moxon and Rhian 1943
Stone and Caron 1954
Trelease and Benth 1949

Properties:
Ancel 1919
Bianchi 1919
Brown, F. C. 1914
Cahen 1919
Cahen and Woottton 1920
DeMent and Dake 1946
Elkin and Margrave 1954
Hunting 1956

Puerto Rico.
Soil:
Byers 1936
Byers and others 1938
Lakin and others 1938
Swaine 1955
Williams and others 1940
Vegetation: Byers 1936

Pyrites. See Sulfide minerals.

Quicksilver deposits containing selenium.
See Argentina; California; Mexico; Nevada; Utah.

Riollite, Culebras, Mexico: Del Rio 1828, 1836

Seafloor deposits.
Bering Sea:
Edgington and Byers 1942
Williams and Byers 1935b

Caribbean Sea at Bartlett Deep: Edgington and Byers 1942

Falmouth, England: Williams and others 1940

Gulf of California: Lakin and Byers 1941

Halifax, Nova Scotia: Williams and others 1940

North Atlantic: Edgington and Byers 1942

Ocean City, Md.: Edgington and Byers 1942

Pacific Ocean off southern California: Lakin and Byers 1941

Sedimentary rocks, concentration in:
Krauskopf 1935
See also Geochemistry; Geologic formations; Sulfide minerals.

Seebachite, Harz, Germany: Frebold 1927a

Selenide of iron, hydrous, Hiaco mine, Pacajake, Bolivia: Ahlfeld and Muñoz Reyes 1955

Seleniferous formations. See Geologic formations, seleniferous.

Seleniferous galenobismuthite. See Welsbutlite.

Seleniferous sulfur.
Chachani, Arequipa, Peru: Dios Guevara 1940

Garginti, Italy: Marvin and Schumb 1935

Phosphates.
General:
Rader and Hill 1935
Phosphoria formation: Beath and others 1937, 1946

Platinum compounds, bibliography: Howe and Holtz 1919

Platynite, mineralogy: Palache and others 1944

Poisoning:
Knight, H. G. 1935
Milligan 1953
Moxon 1937
Moxon and Rhian 1943
Stone and Caron 1954
Trelease and Benth 1949

Properties:
Ancel 1919
Bianchi 1919
Brown, F. C. 1914
Cahen 1919
Cahen and Woottton 1920
DeMent and Dake 1946
Elkin and Margrave 1954
Hunting 1956

Puerto Rico.
Soil:
Byers 1936
Byers and others 1938
Lakin and others 1938
Swaine 1955
Williams and others 1940
Vegetation: Byers 1936

Pyrites. See Sulfide minerals.

Quicksilver deposits containing selenium.
See Argentina; California; Mexico; Nevada; Utah.

Riollite, Culebras, Mexico: Del Rio 1828, 1836

Seafloor deposits.
Bering Sea:
Edgington and Byers 1942
Williams and Byers 1935b

Caribbean Sea at Bartlett Deep: Edgington and Byers 1942

Falmouth, England: Williams and others 1940

Gulf of California: Lakin and Byers 1941

Halifax, Nova Scotia: Williams and others 1940

North Atlantic: Edgington and Byers 1942

Ocean City, Md.: Edgington and Byers 1942

Pacific Ocean off southern California: Lakin and Byers 1941

Sedimentary rocks, concentration in:
Krauskopf 1935
See also Geochemistry; Geologic formations; Sulfide minerals.

Seebachite, Harz, Germany: Frebold 1927a

Selenide of iron, hydrous, Hiaco mine, Pacajake, Bolivia: Ahlfeld and Muñoz Reyes 1955

Seleniferous formations. See Geologic formations, seleniferous.

Seleniferous galenobismuthite. See Welsbutlite.

Seleniferous sulfur.
Chachani, Arequipa, Peru: Dios Guevara 1940

Garginti, Italy: Marvin and Schumb 1935
<table>
<thead>
<tr>
<th>Location</th>
<th>Authors</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleniferous sulfur—Continued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaiser</td>
<td>1954</td>
</tr>
<tr>
<td></td>
<td>Muthmann</td>
<td>1890</td>
</tr>
<tr>
<td>Japan</td>
<td>Divers and Shimizu</td>
<td>1883</td>
</tr>
<tr>
<td></td>
<td>Jimbo</td>
<td>1899</td>
</tr>
<tr>
<td></td>
<td>Klason and Mellquist</td>
<td>1921b</td>
</tr>
<tr>
<td></td>
<td>Smith</td>
<td>1915</td>
</tr>
<tr>
<td></td>
<td>Kilaeua, Hawaii: Brown, G. V.</td>
<td>1916,</td>
</tr>
<tr>
<td></td>
<td>Krisuvik, Iceland: Friend and Alechins</td>
<td>1941</td>
</tr>
<tr>
<td></td>
<td>Lipari Island, Italy: Brown, G. V.</td>
<td>1917</td>
</tr>
<tr>
<td></td>
<td>Clarke</td>
<td>1924</td>
</tr>
<tr>
<td></td>
<td>Quercigh</td>
<td>1925</td>
</tr>
<tr>
<td></td>
<td>Louisiana: Marvin and Schumb</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>New Zealand: Brown, G. V.</td>
<td>1917</td>
</tr>
<tr>
<td></td>
<td>Papandajan, West-Java: Geilmann and Blitz</td>
<td>1931</td>
</tr>
<tr>
<td></td>
<td>Sicily, Italy: Brown, G. V.</td>
<td>1917</td>
</tr>
<tr>
<td></td>
<td>Klason and Mellquist</td>
<td>1912b</td>
</tr>
<tr>
<td></td>
<td>Marvin and Schumb</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>Texas: Marvin and Schumb</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>Valley of Ten Thousand Smokes, Alaska: Zies</td>
<td>1929</td>
</tr>
<tr>
<td></td>
<td>Vulcan mine, Gunnison County, Colo.: Trites</td>
<td>1936</td>
</tr>
<tr>
<td>Seleniosiegenite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Stegenite</td>
<td></td>
</tr>
<tr>
<td>Seleniovaesite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Vaesite</td>
<td></td>
</tr>
<tr>
<td>Selenkobaltblitel, Harz, Germany: Frebold</td>
<td>1927a</td>
<td></td>
</tr>
<tr>
<td>Selenocosalite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Cosalite</td>
<td></td>
</tr>
<tr>
<td>Selenokobellite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Kobellite</td>
<td></td>
</tr>
<tr>
<td>Selenolette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahlfeld and Angelelli</td>
<td>1948</td>
</tr>
<tr>
<td></td>
<td>Bertrand</td>
<td>1882</td>
</tr>
<tr>
<td></td>
<td>Cerro de Cacheta, Mendoza, Argentina: Bertrand</td>
<td>1882</td>
</tr>
<tr>
<td></td>
<td>Hlaco mine, Pacajake, Bolivia: Ahlfeld</td>
<td>1954</td>
</tr>
<tr>
<td></td>
<td>Ahlfeld and Munoz Reyes</td>
<td>1955</td>
</tr>
<tr>
<td></td>
<td>Palache</td>
<td>1937</td>
</tr>
<tr>
<td></td>
<td>Mineralogy: Palache and others</td>
<td>1944</td>
</tr>
<tr>
<td></td>
<td>Selenquecksilberkupferblitel, Zorge, Germany:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olsacher</td>
<td>1927</td>
</tr>
<tr>
<td>Selenellurium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Plomo mine, Ojojoma district, Tegucigalpa, Honduras: Dana and Wells</td>
<td>1890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faczebsja, Hungary: Dana and Wells</td>
<td>1890</td>
</tr>
<tr>
<td></td>
<td>Mineralogy: Palache and others</td>
<td>1944</td>
</tr>
<tr>
<td>Slegenite, Shinkolobwe mine, Belgian Congo: Derricks and Vaes</td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>Silver deposits containing selenium:</td>
<td>See Argentina; Bolivia; Germany; Idaho; Mexico; Nevada; Washington.</td>
<td></td>
</tr>
<tr>
<td>Silver-gold selenide.</td>
<td>Aurora, Nev.: Hill</td>
<td>1915</td>
</tr>
<tr>
<td></td>
<td>Monument mine, Myers Cove, Gravel Range district, Lemhi County, Idaho: Umpleby</td>
<td>1916a</td>
</tr>
<tr>
<td></td>
<td>Republic, Wash.: Bancroft</td>
<td>1914</td>
</tr>
<tr>
<td></td>
<td>Republic, Wash.: Umpleby</td>
<td>1910</td>
</tr>
<tr>
<td></td>
<td>Tonopah, Nev.: Bastin and Laney</td>
<td>1918</td>
</tr>
<tr>
<td></td>
<td>Spurr</td>
<td>1905a, b</td>
</tr>
<tr>
<td>Soils, seleniferous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption and content, factors affecting selenium:</td>
<td>Byers and Knight</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>Hurd-Karrer</td>
<td>1934, 1935a, b</td>
</tr>
<tr>
<td></td>
<td>Moxon</td>
<td>1937</td>
</tr>
<tr>
<td></td>
<td>Moxon and others</td>
<td>1939</td>
</tr>
<tr>
<td>Analysis: Robinson, W. O.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Robinson, W. O., and others</td>
<td>1934</td>
</tr>
<tr>
<td>Arizona:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Beath and others</td>
<td>1939b, 1940, 1941</td>
</tr>
<tr>
<td></td>
<td>Beath</td>
<td>1938</td>
</tr>
<tr>
<td></td>
<td>Byers</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>Byers and others</td>
<td>1939</td>
</tr>
<tr>
<td></td>
<td>Moore, R. T.</td>
<td>1953</td>
</tr>
<tr>
<td></td>
<td>Swaine</td>
<td>1955</td>
</tr>
<tr>
<td>California:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beath and others</td>
<td>1939b, 1940, 1941</td>
</tr>
<tr>
<td></td>
<td>Byers</td>
<td>1935</td>
</tr>
<tr>
<td></td>
<td>Byers and others</td>
<td>1939</td>
</tr>
<tr>
<td></td>
<td>Swaine</td>
<td>1955</td>
</tr>
<tr>
<td>Canada:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byers</td>
<td>1936</td>
</tr>
<tr>
<td></td>
<td>Byers and Lakin</td>
<td>1939</td>
</tr>
<tr>
<td></td>
<td>Robinson, W. O.</td>
<td>1936</td>
</tr>
<tr>
<td></td>
<td>Swaine</td>
<td>1955</td>
</tr>
<tr>
<td></td>
<td>Walker and others</td>
<td>1941</td>
</tr>
<tr>
<td></td>
<td>Williams and others</td>
<td>1941</td>
</tr>
<tr>
<td>Colombia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anezar-Sordo</td>
<td>1947</td>
</tr>
<tr>
<td></td>
<td>Swaine</td>
<td>1955</td>
</tr>
<tr>
<td>Colorado:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beath</td>
<td>1943</td>
</tr>
<tr>
<td></td>
<td>Beath and others</td>
<td>1939b, 1940, 1941</td>
</tr>
<tr>
<td></td>
<td>Byers</td>
<td>1935, 1936</td>
</tr>
<tr>
<td></td>
<td>Byers and others</td>
<td>1938</td>
</tr>
<tr>
<td></td>
<td>Swaine</td>
<td>1955</td>
</tr>
<tr>
<td>Cuba:</td>
<td>Byers</td>
<td>1936</td>
</tr>
<tr>
<td></td>
<td>District of Columbia: Lakin and Byers</td>
<td>1941</td>
</tr>
<tr>
<td>Form of selenium in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bear</td>
<td>1955</td>
</tr>
<tr>
<td></td>
<td>Beath and Eppson</td>
<td>1947</td>
</tr>
<tr>
<td></td>
<td>Beath and others</td>
<td>1937a, 1939a</td>
</tr>
<tr>
<td></td>
<td>Jones and Scherbahtoff</td>
<td>1940</td>
</tr>
</tbody>
</table>
INDEX

Soils, seleniferous—Continued
Form of selenium in—Continued
Lakin and others 1938
Olson and others 1942a, b
Olson and Moxon 1939
Painter 1941
Trelease 1945
Williams and Byers 1936
General:
Bear 1955
Byers 1935, 1936, 1937a
Byers and Knight 1935
Byers and others 1938
Jacks and Scherbatoff 1940
Knight, H. G. 1935
Lakin and Byers 1941, 1948
Miller 1937
Moxon and Rhian 1943
Painter 1941
Robinson, W. O. 1936
Sargent 1954, 1955a, b
Swaine 1955
Trelease and Beath 1949
Williams 1939
Williams and others 1940, 1941
Glacial:
Searight and Moxon 1945
Searight and others 1946
Walker and others 1941
Hawaii:
Byers and others 1936, 1938
Hance 1939
Hough and others 1941
Lakin and others 1938
Swaine 1955
Williams and others 1940
Idaho:
Beath and others 1939b, 1940, 1941
Lakin and Byers 1948
Swaine 1955
Iowa: Slater and others 1937
Ireland:
Fleming and Walsh 1957
Swaine 1955
Walsh and others 1951
Japan:
Swaine 1955
Tsuge and Terada 1950
Kansas:
Byers 1935, 1936
Slater and others 1937
Swaine 1955
Maryland: Lakin and Byers 1941
Mexico:
Byers 1937b
Miller and Brown 1938
Swaine 1955
Williams and others 1940
Minnesota: Searight and Moxon 1945
Missouri:
Beath and others 1940
Slater and others 1937
Swaine 1955
Montana:
Beath and others 1939b, 1940, 1941
Byers 1935, 1936
Swaine 1955
Williams and others 1940, 1941
Nebraska:
Beath and others 1941
Byers 1935, 1936
Swaine 1955
Nebraska:
Beath and others 1939b
Lakin and Byers 1941, 1948
Swaine 1955
New Jersey:
Lakin and Byers 1941
Swaine 1955
New Mexico:
Beath and others 1939b, 1940, 1941
Byers 1935, 1936
Byers and others 1938
Hershey 1945
Swaine 1955
New Zealand: Swaine 1955
Nontoxic:
Byers and others 1936
Hough and others 1941
Lakin and others 1938
North Carolina:
Byers 1936
Slater and others 1937
North Dakota:
Beath and others 1939b, 1940, 1941
Lakin and Byers 1948
Swaine 1955
Williams and others 1941
Ohio: Slater and others 1937
Oklahoma:
Byers 1935
Lakin and Byers 1941
Slater and others 1937
Swaine 1955
Oregon:
Beath and others 1939b
Lakin and Byers 1948
Origin of selenium in soil:
Beath and others 1939a
Byers 1937a, b.
Byers and others 1936
Moxon 1937
Pierre soil:
Byers 1934
Searight and others 1946-47
Puerto Rico:
Byers 1936
Searight and others 1946-47
South Africa: Robinson, W. O. 1936
Soils, seleniferous—Continued

South Dakota:

- Beath and others 1939b, 1941
- Byers 1935, 1936
- Franke 1937
- Miller and Byers 1935
- Moxon 1937
- Moxon and others 1938, 1939
- Olson and Moxon 1939
- Olson and others 1940, 1942b
- Pugsley and Cox 1937
- Searight and Moxon 1945
- Searight and others 1946, 1946
- Swaine 1955

Sulfur, effect on:

- Franke and Painter 1937
- Hurd-Karrer 1934, 1935b
- Jacks and Scherbatoff 1940

Texas:

- Beath and others 1939b, 1940, 1941
- Byers 1935
- Slater and others 1937
- Swaine 1955
- Williams and others 1940

Trace elements:

- Slater and others 1937
- Swaine 1955

U. S. S. R.:

- Swaine 1955
- Vinogradov 1945

Utah:

- Beath and others 1939b, 1940, 1941
- Byers 1935
- Byers and others 1938
- Lakin and Byers 1948
- Swaine 1955

Vegetation, effect on:

- Miller 1937

Washington:

- Slater and others 1937

Western United States:

- Beath and others 1939a, b, 1940, 1941
- Byers 1935, 1936
- Trelease and Beath 1949

Wisconsin:

- Slater and others 1937

Wyoming:

- Beath 1936, 1937
- Beath and Eppson 1947
- Beath and Gilbert 1936
- Beath and others 1934a, b, 1935, 1936, 1937b 1940, 1941, 1946
- Byers 1936
- Knight, S. H. 1937
- Swaine 1955
- Williams and others 1941

South Africa, soils and wheat:

- Robinson, W. O. 1936

South Dakota—Continued

- Custer County, seleniferous spring: Miller and Byers 1935
- Edgemont district, Fall River County, uranium: Coleman, R. G., and Delevaux 1937
- Fort Randall area: Pugsley and Cox 1937
- General: Pugsley and Cox 1937
- Glacial deposits:
 - Searight and Moxon 1945
 - Searight and others 1946
- Gregory County, soil: Franke and Painter 1937
- Niobrara formation:
 - Moxon 1937
 - Moxon and others 1939
 - Pugsley and Cox 1937
- Pierre formation:
 - Byers 1935
 - Moxon 1937
 - Moxon and others 1939
 - Olson and Moxon 1939
 - Pugsley and Cox 1937
- Road Hog No. 1A mine, Fall River County, native selenium:
 - Thompson, M. E., and others 1956

Seleniferous formations:

- Moxon 1937
- Moxon and others 1938, 1939
- Pugsley and Cox 1937

Soil:

- Byers 1935, 1936
- Franke and Painter 1937
- Miller and Byers 1935
- Moxon 1937
- Moxon and others 1938, 1939
- Olson and Moxon 1939
- Olson and others 1940, 1942b
- Pugsley and Cox 1937
- Searight and others 1946–47
- Swaine 1955

Stratigraphic distribution:

- Moxon 1933, 1939
- Searight and others 1946–47
- Swaine 1955

Vegetation:

- Beath and others 1939b, 1941
- Miller and Byers 1935
- Moxon 1937
- Moxon and others 1938, 1939
- Olson and Moxon 1939
- Olson and others 1940, 1942b
- Pugsley and Cox 1937
- Williams and others 1941

Spain:

- Carmenes mine, Villamanin, León, villamaninite:
 - Ramdohr 1937
- Schoeller and Powell 1920
- Rio Tinto, Huelva, umangite:
 - Bateman 1927
 - Harloff and Johnson 1933

Stilellite:

- Ramdohr 1956
Sulfide minerals.

Australia: Edwards and Carlos 1954

General:
- Čadek and Doležal 1957
- Fleischer 1955
- Kaiser 1954
- Lakin and Byers 1948
- Noddack 1936
- Schmidt 1925

Hydrothermal:
- Carstens 1941a, b, c
- Edwards and Carlos 1954
- Salto 1953

Italy: Rockenbauer and Schroll 1956

Japan:
- Salto 1953
- Tange and Terada 1950

Norway:
- Carstens 1941a, b, c
- Vokes 1957

Primary magmatic:
- Goldschmidt 1954
- Goldschmidt and Strock 1935
- Strock 1935

Pyrites:
- Beath and others 1935
- Byers 1935
- Čadek and Doležal 1957
- Carstens 1941a, b, c
- Edwards and Carlos 1954
- Gavelin 1939
- Industrial and Engineering Chemistry 1916
- Klaason and Mellquist 1912a
- Lakin and Byers 1948
- Rockenbauer and Schroll 1956
- Tange and Terada 1950
- Vakhрушев 1940
- Williams and Byers 1934

Sedimentary:
- Beath and others 1935
- Byers 1935
- Carstens 1941a, b, c
- Coleman, R. G. 1956
- Coleman, R. G., and Delevaux 1957
- Edwards and Carlos 1954
- Weeks, A. D. 1935
- Williams and Byers 1934

Southeastern United States: Williams and Byers 1934

Spain: Bateman 1927

Sweden:
- Bergenfelt 1953
- Gavelin 1939, 1955
- Landergren 1935
- U. S. S. R.: Pilipenko 1910

Western United States:
- Beath and others 1935
- Byers 1935
- Coleman, R. G. 1956
- Coleman, R. G., and Delevaux 1957
- Weeks, A. D. 1956
- Williams and Byers 1934

Sulfur, addition to seleniferous soil:
- Frank and Painter 1937
- Hurd-Karrer 1934, 1935a, b

See also Seleniferous sulfur.

Sumatra.
- Lebong Soellt, gold: Truscott 1901–02
- Radjang Lebong gold mine: Boyschlag and others 1914
- Lindgren 1933
- Truscott 1901–02

Sweden.
- Berzelianiite, Skirkerum:
 - Frebold 1927b
 - Nordensköld 1867a, b
- Bolden copper mine, Skellefte district:
 - Bergenfelt 1933
 - Gavelin 1955
 - Grip and Ödman 1938, 1941
- Chiviatite, Falun:
 - Johansson 1924
 - Peacock and Berry 1940
- Cosalite, Bolden mine:
 - Gavelin 1955
 - Ödman 1941
- Crookeslite, Skirkerum:
 - Nordensköld 1867a, b
- Eucaurite, Skirkerum:
 - Nordensköld 1867a, b
- Falun:
 - Atterburg 1874
 - Berzelius 1818
 - Genth 1885
 - Johansson 1924
 - Nordström 1879, 1880
 - Peacock and Berry 1940
 - Weibull 1885
- Garpenberg sulfide ores: Landergren 1935
- Klockmannite, Skirkerum: Ramdohr 1928
- Kobellite, Bolden mine: Gavelin 1955; Ödman 1941
- Malänäs district, Västerbotten: Gavelin 1939
- Rudtjebläcken mine, Skellefte district: Gavelin 1934
- Saxberg, sulfide ores: Landergren 1935
- Skellefte district:
 - Bergenfelt 1953
 - Gavelin 1954, 1955
 - Grip and Ödman 1942
 - Ödman 1938, 1941

Skirkerum:
- Frebold 1927b
- Nordensköld 1867a, b
- Ramdohr 1928

Sulfide minerals:
- Bergenfelt 1953
- Gavelin 1859, 1955
- Landergren 1935
- Telluride-bearing pegmatite, Rudtjebläcken: Gavelin 1954
INDEX

Sweden—Continued
Weibullite, Falun:
Genth 1885
Peacock and Berry 1940
Webull 1885
Wittite, Falun: Johansson 1924

Tasmania, Mount Lyell, berzelianite or eucairite: Edwards 1939

Tennessee, Ducktown copper ores: Emmons and Laney 1926

Tetradymite.
Carpathian Basin, Hungary: Koch 1948
Mineralogy: Palache and others 1944
Tellurium gold mine, Goochland Counties, Va.:
Genth 1855
Taber 1913
Trail Creek, Halley quadrangle, Idaho:
Shannon 1925
White Hall gold mine, Spotsylvania County, Va.:
Fisher 1849
Genth 1855
Whitehorn, Fremont County, Colo.:
Hillebrand 1905

Texas.
Soil:
Beath and others 1940
Byers 1936
Slater and others 1937
Swaine 1955
Williams and others 1940

Sulfur:
Beath and others 1939b, 1940, 1941
Byers 1936
Williams and others 1940

Vegetation:
Beath and others 1939b, 1940, 1941
Byers 1936
Williams and others 1940

Thailand, Nong Phai lead mine: Brown, G. F., and others 1952

Thorium, Wet Mountains, Colo.: Christian and others 1953

Tiemannite.
Argentina:
Ahfeld and Angelelli 1948
Angelelli 1950

California:
Bradley 1918
Eakle 1914
Murdock and Webb 1956
Schrader and others 1917

Germany:
Frebold 1927a
Gellmann and Rose 1928
Olsacher 1927

Goldfields district, Saskatchewan, Canada:
Robinson, S. C. 1950

Tiemannite—Continued
Hiaco mine, Pacajake, Bolivia:
Ahfeld 1954
Ahfeld and Muñoz Reyes 1955

Lucky Boy mine, Marysvale, Plute County, Utah:
Becker 1888
Bethke 1956
Brush 1881
Butler and others 1920
McCaskey 1912
Penfield 1885
Schrader and others 1917

Mexico:
Brush 1881
de la Peña 1944
McAllister and Hernandez Ortiz 1945
Vaupell 1938

Mineralogy:
Bethke 1936
Earley 1950
Palache and others 1944
Penfield 1885
Short 1931

Tilkerodite, mineralogy: Palache and others 1944

Trogtalite, Trogtal, Harz, Germany: Ramdohr and Schmitt 1955

Tuff, seleniferous, Wyoming:
Beath and others 1946
Everett and Bauerle 1957
Love 1954
Tyler 1952

Umangite.
Argentina:
Ahfeld and Angelelli 1948
Angelelli 1950
Bodenbender 1902
Klockmann 1891

Goldfields district, Saskatchewan, Canada:
Robinson, S. C. 1950
Robinson, S. C., and Brooker 1952

Harz, Germany:
Frebold 1927a
Gellmann and Rose 1928
Olsacher 1927

Hiaco mine, Pacajake, Bolivia: Ahfeld and Muñoz Reyes 1955

Mineralogy:
Earley 1950
Klockmann 1891
Meyer and Bratke 1924
Palache and others 1944
Short 1931

Rio Tinto, Spain: Bateman 1927

Shinkolobwe mine, Belgian Congo:
Derricks and Vaes 1956
Uranium deposits containing selenium. See Arizona; Belgian Congo; Canada; Colorado; Colorado Plateau; New Mexico; South Dakota; Utah; Wyoming.

Uses:
- Ancel 1919
- Blanch 1919
- Cahen 1919
- Cahen and Woottan 1920
- Elklin and Margrave 1954
- Gmelin's Handbuch der anorganischen Chemie 1942
- Halen 1921
- Hess 1909
- Huntting 1956
- Imperial Institute 1937
- Iron Age 1952
- Lenher 1923
- Materials Advisory Board 1956
- Milligan 1953
- Mining Journal 1953
- Sanderson 1940
- Santmyers 1930
- Sargent 1954, 1955a, b
- Stone and Caron 1954
- Tyler 1952
- Waitkins and others 1942

U. S. S. R.:
- Altai: Pilipenko 1910
- Bashkiriya, Southern Urals, pyrites: Vakhroushev 1940
- Belovo, Altai: Sargent 1955
- Cadmoselite: Buryanova and others 1957
- Karabash: Sargent 1955
- Krasnouralsk: Sargent 1955
- Kyshtym: Sargent 1955
- Soil:
 - Swaine 1955
 - Vinogradov 1945
- Tuvin Autonomous Territory, ferrosilite:
 - Buryanova and Komkov 1955
 - Buryanova 1956

Utah:
- Antelope Valley: Holt and Greaves 1941
- Bingham, Salt Lake County: Butler and others 1920
- Billings 1913
- Botanical prospecting: Cannon 1952, 1954
- Golden Reef mine, San Francisco district: Butler 1913
- Gold Springs-State Line region: Butler and others 1920
- Green River district, Grand County: Coleman, R. G., and Delevaux 1957
- Henry Mountains, native selenium:
 - Hillebrand and others 1914
 - Miesch and Connor 1956
- Trites 1956

Utah—Continued
- Iron Mountain, Iron County: Tyler 1952
- Lucky Boy mine, Marysvale, Plute County, metacinnabar, tieemanite:
 - Becker 1888
 - Bethke 1956
 - Brush 1851
 - Butler and others 1920
 - McCaskey 1912
 - Pendell 1885
 - Schrader and others 1917
- Monticello district, San Juan County:
 - Coleman, R. G., and Delevaux 1957
- Morrison formation: Beath 1943
- Moss Back member, Chinle formation:
 - Keys and White 1956
- Native selenium:
 - Coleman, R. G., and Delevaux 1957
 - Hillebrand and others 1914
 - Thompson, M. E., and others 1956
- Ohio district, Tushar Range, Bully Boy and Webster: Butler and others 1920
- Paradox Valley, native selenium:
 - Hillebrand and others 1914
- Pine Valley area: Holt and Greaves 1941
- San Rafael Swell, Emery County:
 - Coleman, R. G., and Delevaux 1957
- Shinarump conglomerate: Hess 1933
- Silver Reef district:
 - Butler and others 1920
 - Hess 1933
 - Jenney 1918
 - Newberry 1881
- Soil:
 - Byers 1935; Byers and others 1938; Lakin and Byers 1948; Swaine 1955
- Temple Mountain, Emery County:
 - Coleman, R. G. 1959
 - Coleman, R. G., and Delevaux 1957
 - Hess 1925
 - Keys and White 1956
 - Trites 1956
- Thompsons district, Grand County:
 - Beath 1943
 - Cannon 1952, 1954
 - Coleman, R. G., and Delevaux 1957
 - Hillebrand and others 1914
 - Thompson, M. E., and others 1956
- Trout Creek area: Holt and Greaves 1941
- Tushar Range: Butler and others 1920
Utah—Continued

Uranium—vanadium deposits:
Beath 1943
Cannon 1952, 1954
Coleman, R. G., and Delevaux 1957
Hess 1925, 1933
Hillebrand and others 1914
Keys and White 1956
Miesch and Connor 1956
Thompson, M. E., and others 1956
Trites 1956

Vegetation:
Beath 1943
Beath and others 1939b, 1940, 1941
Cannon 1952, 1954
Holt and Greaves 1941

White Canyon district, San Juan County: Coleman, R. G., and Delevaux 1957

Vaesite, Shinkolobwe, Belgian Congo:
Derricks and Vaes 1956
Vaes 1947

Vanadium deposits containing selenium. See Colorado; Utah; Wyoming.

Vegetation, seleniferous.
Absorption and content, factors affecting selenium:
Byers and Knight 1935
Hurd-Karrer 1935a, b
Moxon 1937
Moxon and Rhian 1943
Moxon and others 1939
Olson and Moxon 1938
Olson and others 1942a, b

Analysis: Williams and Lakin 1935

Arizona: Beath and others 1939b, 1940, 1941

Biochemical effects of selenium in atmosphere: Stoklasa 1922

California: Beath and others 1939b, 1940, 1941

Canada:
Byers 1936
Byers and Lakin 1939
Robinson, W. O. 1936
Thorvaldson and Johnson 1940
Walker and others 1941
Williams and others 1941

Carbonaceous fossil plants: Beath and Gilbert 1936

Colombia: Ancizar-Sordo 1947

Colorado:
Beath 1943
Beath and others 1939b, 1940, 1941
Byers 1936
Williams and others 1941

Crop plants: Olson and Moxon 1939

Cuba: Byers 1936

Vegetation, seleniferous—Continued

Form of selenium in:

Bear 1955
Beath 1937
Beath and others 1937a
Beath and Eppson 1947
Painter 1941
Trelease 1945

France, La Roche-Posay spring: Trousseau 1932

General:

Bear 1955
Beath and others 1937a, 1939a
Byers 1935, 1936
Byers and others 1938
Jacks and Scherbatoff 1940
Lakin and Byers 1948
Miller 1937
Painter 1941
Trelease and Beath 1949
Williams and others 1940, 1941

Grain:

Robinson, W. O. 1933, 1936
Thorvaldson and Johnson 1940
Walker and others 1941
Williams and others 1941

Hawaii: Hance 1939

Idaho:

Beath and others 1939b
Lakin and Byers 1948

Indicator plants, botanical prospecting:

Cannon and Kleinhampl 1956
Cannon and Starr 1956
Hawkes 1957

Indicator plants, dependence on selenium: Trelease and Treatise 1938

Indicator plants, Western United States:

Beath 1936
Beath and others 1939a, b, 1940, 1941
Hershey 1945
Sargent 1954, 1955a
Trelease 1945
Trelease and Beath 1949
Trelease and Treatise 1938

Ireland: Fleming and Walsh 1957

Kansas:

Byers 1936
Williams and others 1941

Montana:

Beath and others 1939b, 1940, 1941
Byers 1936
Williams and others 1940, 1941

Nebraska:

Beath and others 1941
Byers 1936
Williams and others 1941

Nevada:

Beath and others 1939b
Lakin and Byers 1948
Vegetation, seleniferous—Continued

New Mexico:
- Beath and others 1939b, 1940, 1941
- Byers 1936
- Hershey 1945

North Carolina:
- Byers 1936

North Dakota:
- Beath and others 1939b, 1940, 1941
- Lakin and Byers 1948
- Williams and others 1941

Oregon:
- Beath and others 1939b
- Lakin and Byers 1948

Pierre soils:
- Byers 1934, 1936
- Searight and others 1946-47

Puerto Rico:
- Byers 1936

Salt Wash sandstone member, Morrison formation:
- Beath 1943

Seleniferous spring, effect of:
- Miller and Byers 1935
- Taboury 1932

Selenium content:
- Robinson, W. O., and Edgington 1945

South Dakota:
- Beath and others 1939b, 1941
- Byers 1936
- Miller and Byers 1935
- Moxon 1937
- Moxon and others 1938, 1939
- Olson and Moxon 1939
- Olson and others 1940, 1942
- Pugsley and Cox 1937
- Williams and others 1941

Sulfur, effect of:
- Franke and Painter 1937
- Hurd-Karrer 1934, 1935b
- Trelease and Trelease 1938

Texas:
- Beath and others 1939b, 1940, 1941
- Byers 1936
- Williams and others 1941

Tolerance:
- Miller 1937

Uranium-vanadium deposits, effect of:
- Cannon 1952

Utah:
- Beath 1943
- Beath and others 1939b, 1940, 1941
- Holt and Greaves 1941
- Lakin and Byers 1948

Wyoming:
- Beath 1936, 1937
- Beath and Gilbert 1936
- Beath and others 1934a, b, 1935, 1937b, 1940, 1941
- Byers 1936
- Knight, S. H. 1937
- Williams and others 1941

Villamaninite:
- Carmenites mine, Villamanin, Spain:
 - Ramdohr 1937
 - Schoeller and Powell 1920

Villamaninite—Continued

Mineralogy:
- Palache and others 1944

Virginia.

Tellurium gold mine, Fluvanna and Goochland Counties, tetradymite:
- Genth 1855
- Taber 1913

White Hall gold mine, Spotsylvania County, tetradymite:
- Fisher 1849
- Genth 1855

Volcanic deposits.

Hawaiian volcanoes:
- Brown, G. V. 1916, 1917
- Byers and others 1936
- Hance 1939

Mount Etna, Italy:
- DiFranco 1942

Valley of Ten Thousand Smokes, Alaska:
- Zies 1929

Vesuvius, Italy:
- Bellini 1907
- Matteucci and Giustiniani 1897
- Zambonini and Coniglio 1925

Volcanic sulphur. See Seleniferous sulfur.

Washington.

General:
- Huntington 1956

Naumannite, Republic district:
- Thompson, R. M. 1954

Republic district, Ferry County:
- Bancroft 1914
- Huntington 1956
- Lindgren 1909
- Thompson, R. M. 1954
- Umpleby 1910

Soil:
- Slater and others 1937

Water.

Argentina:
- de Salas 1947

Colorado River:
- Byers and others 1935a
- Williams and Byers 1935a

General:
- Byers 1935, 1936

Hot springs, National district, Nev.:
- Lindgren 1915
- Roberts 1940

Irrigation, effect of:
- Byers and others 1938
- Williams and Byers 1935a

La Roche-Posay, France:
- Taboury 1909, 1932

Mineral waters:
- Clarke 1924

Poison springs, S. Dak.:
- Miller and Byers 1935
- Pugsley and Cox 1937

Rivers:
- Williams and Byers 1935a

Sea water:
- Byers and others 1938
- Goedemondt 1937, 1954
- Ishibashi 1953
- Ishibashi and others 1953
- Mason 1952

Water.
Weibullite (seleniferous galenobismutite).
Falun, Sweden:
Genth 1885
Peacock and Berry 1940
Weibull 1885
Mineralogy: Palache and others 1944

Wheat. See Grain.

Wisconsin, soil: Slater and others 1937

Wittite.
Falun, Sweden: Johansson 1924
Mineralogy: Palache and others 1944

Wyoming.
Albany County:
Beath 1936
Beath and Gilbert 1936
Baggs area, uranium, Carbon County:
Vine and Prichard 1954
Carbon County:
Beath and others 1946
Vine and Prichard 1954
Carbonaceous veins: Beath and Gilbert 1936
Converse County, uranium: Coleman, R. G., and Delevaux 1957
Crook County, uranium: Coleman, R. G., and Delevaux 1957
Crookes Gap district, Fremont County, uranium: Coleman, R. G., and Delevaux 1957
Gas Hills, Fremont and Natrona Counties:
Grutt 1956
Love 1954
General:
Beath 1937
Beath and others 1937
Lucky Mc mine, Fremont County, native selenium: Grutt 1956
Lysite Poison Draw, tuff deposits:
Beath and others 1946
Everett and Bauerle 1957
Love 1954
Tyler 1952
Medicine Bow formation: Beath and Gilbert 1936
Morrison formation: Beath 1937
Permian and Triassic formations:
Beath 1936
Beath and others 1937
Phosphoria formation: Beath and others 1937, 1946

Wyoming—Continued
Poison Basin, Baggs area, uranium,
Carbon County: Vine and Prichard 1954
Poison Butte, Carbon County: Beath and others 1946
Pumpkin Buttes district, Campbell County, uranium: Coleman, R. G., and Delevaux 1957
Seleniferous formation:
Beath and others 1934
Knight, S. H. 1937
Soil:
Beath 1937
Beath and others 1934, 1935, 1937, 1946
Byers 1935, 1936
Knight, S. H. 1937
Swaine 1955
Uranium deposits:
Coleman, R. G., and Delevaux 1957
Grutt 1956
Love 1954
Vine and Prichard 1954
Vanadiferous rocks: Beath and others 1946
Vegetation:
Beath 1938, 1937
Beath and others 1934a, b: 1935, 1937, 1940, 1941, 1946
Beath and Gilbert 1936
Byers 1936
Knight, S. H. 1937
Williams and others 1941
Yugoslavia, Bor, copper: Harloff and Johnson 1933
Zinc-bismuth selenide, Mexico: Castillo 1873, 1874
Zinc-mercury selenide, Culebras, Mexico: Del Rio 1828, 1836
Zinc selenide.
Mineralogy: Palache and others 1944
St. Andreasberg, Harz, Germany: Getlmann and Rose 1928
Stilleite: Ramdohr 1956
Zorgite.
Cerro de Cacheuta, Argentina: Des Cloizeaux and Damour 1881
Harz, Germany:
Frebold 1927a
Olsacher 1927
Mineralogy:
Myer and Bratke 1924
Palache and others 1944