Geophysical Abstracts 167
October-December 1956

GEOLOGICAL SURVEY BULLETIN 1048-D
Geophysical Abstracts 167
October-December 1956

By MARY C. RABBITT, DOROTHY B. VITALIANO, S. T. VESSELOWSKY and others

G E O L O G I C A L S U R V E Y B U L L E T I N 1 0 4 8 - D

Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957
CONTENTS

Introduction .. 293
Extent of coverage .. 293
List of journals ... 293
Form of citation .. 294
Abstractors ... 294
Age determinations ... 295
Earth currents .. 303
Earthquakes and earthquake waves ... 304
Elasticity .. 314
Electrical exploration ... 316
Electrical logging ... 319
Electrical properties ... 319
Exploration summaries and statistics ... 320
General .. 320
Geodesy .. 320
Geotectonics .. 322
Glaciers ... 327
Gravity .. 328
Heat and heat flow ... 334
Internal constitution .. 336
Isostasy ... 339
Isotope geology .. 340
Magnetic field of the earth ... 341
Magnetic properties ... 344
Magnetic surveys .. 348
Microseisms .. 352
Radioactivity .. 353
Radioactivity logging and surveying ... 358
Seismic exploration ... 359
Strength and plasticity ... 363
Submarine geology .. 364
Volcanology ... 365
Index ... 371
Index to Geophysical Abstracts 164–167 ... 375
INTRODUCTION

EXTENT OF COVERAGE

Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.

Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

LIST OF JOURNALS

The following list supplements the List of Journals published in Geophysical Abstracts 160 (January-March 1955, Bulletin 1033-A) and the supplements published in Geophysical Abstracts 161 through 166. Full titles and abbreviations of journals cited for the first time in this issue (with the sponsoring organization and its address where these do not form part of the title) are given.

F ORM OF CITATION

The abbreviations of journal titles used are those adopted by the U. S. Geological Survey and used in many geological journals. For papers in most languages other than English, the title is given in the original language as well as in translation. Slavic names and titles have been transliterated by the system used by the United States Board on Geographic Names. This system of transliteration for Russian was given in Geophysical Abstracts 148 (January-March 1952, Bulletin 991-A). Titles of papers in Japanese and Chinese are given in translation only.

A B S T R A C T O R S

Abstracts have been prepared by J. R. Balsley, P. E. Byerly, W. H. Diment, Beryl T. Everett, R. G. Henderson, D. R. Mabey, Virginia S. Neuschel, L. C. Pakiser, and Isidore Zietz as well as by the principal authors. The notation “Author’s abstract” followed by the initials of an abstractor indicates a translation of the author’s abstract.
AGE DETERMINATIONS

A review.—M. C. R.

A collection of papers presented at the meeting in Toronto in 1953. In addition to the papers abstracted separately (see Geophys. Abs. 164–19, 166–25, 167–17, 167–20), discussion by P. M. Hurley, Sherwin F. Kelly, A. E. J. Engel, R. M. Hutchinson, J. F. Henderson, and J. M. Harrison is included. Hutchinson reported age determinations by the Larsen method for 6 samples of Precambrian intrusions of central Texas. The ages were confirmed by the field relations.—M. C. R.

A general review of the principal features of the solar system and the main theories of its origin and development. In discussing the age of the earth Smart includes chapters on the geologic record and conflict with physical science, radioactivity, and astronomical evidence.—B. T. E.

The figure 3.5×10^9 years can at present be accepted as a close approximation of the age of the earth—the time elapsed since its elements were uniformly mixed, probably in a molten state. The same figure, or one perhaps only slightly greater, can be considered the age of the solar system. Although it is likely that the true age of the elements is the radioactive age of the heavy isotopes—about 4×10^9 years—it is possible that the lighter elements have originated from two different processes during the primordial explosion and also currently in stellar interiors. Meteorites are of no avail in estimating the age of the universe because they are recent arrivals in the solar system, bearing evidence of catastrophes that took place well after the beginning of the solar system. Ages of white dwarf stars are estimated as 4×10^9 years on the basis of conversion of hydrogen into helium. Conclusions based on stability of star clusters and double clusters are overruled by the shorter lifetime of their components; estimates based on the red shift of extragalactic nebulae are 4.5×10^9, but with the considerable uncertainty involved, admissible ages range between 3 and 6×10^9. This would represent the time elapsed since the universe was in a highly condensed state, as yet undescribed.—D. B. V.

Within experimental error, meteorites have one age as determined by three independent radiometric methods. The most accurate method ($\text{Pb}^{206}/\text{Pb}^{207}$) gives an age of $4.55 \pm 0.07 \times 10^9$ years. Using certain assumptions which are apparently justified, one can define the isotopic evolution of lead for any meteoritic body. It is found that earth lead meets the requirements of this definition. It is therefore believed that the age for the earth is the same as for meteorites. This is the time since the earth attained its present mass.—Author's abstract

The radioactive heating of spherical bodies is discussed and the melting of asteroids is investigated quantitatively, as well as qualitatively. Very general conclusions include the following: a hot origin for asteroids leads to a reasonable thermal history, whether the time of origin was 4.5 or 5.5×10^9 years ago; an origin by cold accretion and subsequent radioactive heating is feasible for $t_s=5.5 \times 10^9$ years, or if concentration of radioactive substances was higher than is at present thought reasonable. In either case, the asteroids from which the meteorites originated were probably about 1,000 km in diameter. There may be a contradiction between pressure and temperature requirements deduced from metallurgical studies, and the helium ages for iron meteorites are hard to reconcile with other data.—D. B. V.

An evaluation of the radiocarbon method including review of the principles and analysis in some detail of the sources of error. Charcoal (including thoroughly charred bone), fresh wood, and coarse marine shells are the most useful samples. For highest precision, the precision of estimate of original C^4 must be taken into account. The probability that a radiocarbon age lies outside the limits of probable error is about 30 percent. A C^4 determination gives an estimate of the time at which the carbon in a particular sample was removed from the CO$_2$ cycle; whether this date actually represents the time of a given archeological event must be determined carefully in the field. —D. B. V.

Dates for archeological samples from the earliest phases of the Neolithic period in Switzerland and Denmark as determined in the carbon-14 laboratory at Copenhagen between February 1953 and May 1955. —M. C. R.

The first installment of the radiocarbon ages determined at the Michigan laboratory from 1950 to the present. During 1950–52 the method used was similar to that developed by Libby. Because of increasing atmospheric contamination, operations were suspended in late 1952 until a system using a carbon dioxide-carbon disulfide Geiger counter was developed. Operations were resumed in
1954. Ages are given for samples from the Mississippi Valley, the Great Lakes region, and other parts of the United States, Mexico, Alaska, Eurasia, the Pacific Islands, and South America. —M. C. R.

Carbon-14 dating of peat samples from Ozegahara (a sub-tundra on the boundary of Tochigi, Fukushima, Niigata, and Gunma prefectures) indicates that the layer 2 m beneath the surface is 1,000 years old and the layer from 3 to 4 m deep is 5,000 years old. The rate of sedimentation is about 1.6 mm per year at present, and seems to have been 1 mm and 0.25 mm per year when the layers 2 m and 3 to 4 m beneath the surface were formed. —M. C. R.

Radiocarbon dating of silicified wood found in the mound of Old Faithful supports the deduction that Old Faithful cannot be more than a few hundred years old. Study of the mound shows that the greater part was built by hot springs in at least two stages with a dormant period between long enough for the pine forest to encroach upon the mound. —V. S. N.

A description of the Hredavatn volcanic area of western Iceland, about 70 km north of Reykjavik. Several lava flows have been dated by the radiocarbon method as between 1,100 and 3,700 years old (see also Geophys. Abs. 165-5).—D. B. V.

Integration of geologic information and carbon-14 dates establishes an absolute chronology of events in the Lake Michigan basin as follows: Two Creeks-Bowmanville low-water stage, 11,000 years ago; end of Lake Aignouquin 8,000 years ago; Lake Chippewa low-water stage, 5,000 years ago; beginning of Nipissing Great Lakes, a little less than 4,000 years ago. Climatic changes indicated forest succession in southwestern Michigan can be correlated by pollen studies and carbon-14 dating. The chronology proposed differs from those proposed by Antevs and Flint. —M. C. R.

Radiocarbon ages of samples of the Anoka sand plain and the Mississippi valley train, for basal organic sediments in lakes on the Mankato drift, and for deposits of Lake Agassiz which were presumed to record the retreat of the Des Moines lobe of the Keewatin ice sheet in Mankato time, suggest that the surface drift at the type locality in south-central Minnesota should be correlated with the Cary glacial substage rather than with the Valders advance. Use of the term Valders
instead of Mankato for the last major substage of the Wisconsin is suggested; adoption of the term would establish the several important intervals of the middle and late Wisconsin—Tazewell, Cary, Two Creeks, and Valders—as units of reference based on the activity of a single ice lobe (Lake Michigan lobe).—M. C. R.

The form in which uranium and thorium are present in weakly radioactive minerals—whether isomorphously as part of the crystal structure, or disseminated as microinclusions of highly radioactive minerals, or as absorbed compounds—has a direct bearing on the helium retention and hence on the suitability of such minerals for helium age determinations. In an attempt to establish criteria for suitability, more than 20 garnets of different varieties were analyzed and dated. The results show that in spite of their abundance in nature and favorable lattice structure, suitable garnets are rare. Even well-formed crystals contain inclusions of different minerals, particularly the contact metamorphic garnets. The inclusions range from macroscopic to submicroscopic in size. Good results were obtained only for schorlomite from alkaline pegmatoid rocks; spessartite and andradite sometimes gave approximate results, but almandite and grossularite showed no agreement with the known age. It is concluded that titaniferous and manganiferous garnets, which often contain yttrium, probably are more favorable than other varieties because the radioactive elements occur in them isomorphously.—D. B. V.

The geologic ages of 19 Archean specimens from Mysore and Bihar in India have been determined by the a-helium method and the results tabulated. The highest age obtained was 1,700 million years for magnetite crystals of Dhawar rocks from Holemarasipura; in view of the high retentivity factor of magnetite for helium, this may represent a good approximation of the correct age. The possibilities of helium leakage in some other specimens are discussed.—D. B. V.

A preliminary report on a comparative age study on rock-forming minerals. Minerals from five massive Precambrian granites were used to determine apparent ages by three radioactive decay schemes: uranium-lead, lead-lead, and rubidium-strontium. Analytical data are given together with data for several pegmatite minerals, two of which are presumed to be genetically associated with the granites. Disagreement among the calculated ages indicates need for many additional laboratory studies coordinated with comprehensive field observations.—M. C. R.

A table is given which permits construction of a graph for calculation of the apparent age of thor-uraniferous minerals as a function of the lead content, of the total alpha radioactivity, and of the fraction \(F \) of alpha radioactivity due to uranium alone.—Author's summary, D. B. V.

The uncorrected \(\frac{206}{208} \) age of average zircon isolated from the Lausitz granodiorite has been determined as \(315 \times 10^8 \) years; a clear sample yielded an age of \(280 \times 10^6 \) years. These ages are in the vicinity of that reported for monazite from the same rock (Geophys. Abs. 163-132). The clear zircon constitutes about 85 percent of the total zircon; the other 15 percent of dark zircon could be a residual zircon of Precambrian age, approximately \(550 \times 10^8 \) years old. Minerals from Nigeria, Singkep (Indonesia), and Egypt are also under investigation in the program in progress.—D. B. V.

Age determinations on monazite are used in conjunction with other data to date the orogenies in peninsular India and Ceylon. Six main periods are recognized: 485, 735, 955, 1570, 2300, and 2450 million years ago.—M. C. R.

A description of some details of the uraninite occurrence in pegmatite near Grabo on the Ivory Coast. Its age has been determined as \(1985 \times 10^8 \) years by the uranium-lead method by Pellas, Guillemin and Chervet and as \(1940 \pm 20 \times 10^8 \) years by the lead-isotope method by Lazard and Roth. These values have been confirmed by dating the zircon associated with the uraninite.—D. B. V.

167-22. Bernazeaud, Jacques; Grimbert, Arnold; Lazard, Bertrand; Roth, Raoul; and Sanselme, Henri. Conditions de gisement et âge de l'uraninite de Bas-Cavally (Côte d'Ivoire) [Conditions of deposition and age of the uraninite at Bas-Cavally (Ivory Coast)]: Acad. Sci. Paris Comptes Rendus, tome 242, no. 23, p. 2744-2746, 1956.

The primary uranium deposits of Bas-Cavally, Ivory Coast, occur in pegmatites intercalated in the metamorphic complex, near the villages of Grabo, Nekaounie, and See. The \(\text{U}_3\text{O}_8, \text{PbO}, \text{and ThO}_2 \), rare-earths contents have been determined for three samples from the Grabo deposit, and thorium for one of them. By using the Wickman graphs, an age of \(1780 \times 10^6 \) years was deduced by Pellas. On the basis of the lead isotope ratios (\(206=100; 204=0.19 \pm 0.001; 207=12.06 \pm 0.06; 208=0.76 \pm 0.02; \text{Th/U}=0.01 \)) the age is calculated as \(1950 \pm 20 \times 10^6 \) yrs. The discrepancy between the two determinations may be due to loss of lead, partly
in the course of the history of the mineral and partly during chemical analysis. The isotopic age is probably closer to the true age.—D. B. V.

From mass spectrometer measurements of lead isotope ratios, the conventional ages of five galena specimens from different parts of Madagascar are determined as 330±50 million years (Ankitokazo); 390±60 million years (Migioky); 1,890±50 million years (Ambatomitsangana); 1,850±50 million years (Ankitokazo); and 2,140±70 million years (Andrambo). The ages for the Ambatomitsangana and Ankisatra specimens are in close agreement with that of a specimen from Besakay in the same geologic setting (see Geophys. Abs. 164-35); the first two are manifestly too high. On the basis of the fifth determination the Vohibory series must belong earlier in the Precambrian than hitherto believed.—D. B. V.

Lead ratios of zircon samples show two principal ages for the granites: 260 million years for places near Peabody, Rockport, and Cape Ann, north of North Attleboro, north end of Whitinsville, and near Fitchburg; and 355 million years for places northeast of Milford and east of Wrentham. It is probable that the Quincy-type granites north and south of Boston, as well as part of the area mapped as Dedham granodiorite, and some granites extending southward into Connecticut, are all approximately 260 million years old. The age of at least one area of granite mapped as Dedham granodiorite is 350 million years.—V. S. N.

The Precambrian rocks of the Wichita Mountains form a stratiform complex which is the upper part of a gabbroic lopolith formed under conditions of tectonic quiet or tension. Zircon age determinations indicate the rocks are 640 million years old and may be correlative with the Keweenawan of the Lake Superior region. The Arbuckle Mountains complex probably represents part of a composite batholith formed in an orogenic belt. Zircon age determinations indicate an age of 940 million years and indicate correlation with the granitic rocks of central Texas. Rhyolite and diabase dikes cutting the Arbuckle granitic rocks are probably related to the rocks of the Wichita Mountains.—M. C. R.

Age determinations have been made on various minerals from the Bob Ingersoll pegmatite. The uranium-lead ages agree at 1,600 million years; Rb-Sr ages of microcline, muscovite, and lepidolite are all about 2,050 million years, probably indicating that the currently accepted Rb decay-constant is incorrect. K-A ages
of the micas are in fairly good agreement with U-Pb ages when a K^α branching ratio of 0.100 is used. The K-A age of the microcline is definitely lower, probably indicating loss of argon from this mineral.—Authors' abstract.

The age of a galena sample from the Homestake mine determined by lead isotope analysis is 1500 to 1700 million years, similar to that of the uraninite from the Bob Ingersoll mine. A period of Precambrian mineralization is indicated. The age of a galena sample from the Spokan mine cannot be obtained accurately but is considerably younger or ≤400 million years.—M. C. R.

The regularities in the discordant U-Pb ages noted by Ahrens (see Geophys. Abs. 162-164, 163-131) for the Witwatersrand and Canadian and Rhodesian shields can be more easily explained by chemical leaching or alteration at a single episode of geological history than by some physical control of lead loss. The more difficult question of the uniqueness of this interpretation requires the results of more general theoretical discussion, which is being prepared. Aside from the possibility that the regularities are coincidental, there are a very limited number of similar geochemical processes that will produce such age patterns. Discovery of these regularities and their possible explanation indicates the possibility that discordant U-Pb ages may be used to determine some aspects of the common geologic history of large areas, even entire geologic provinces.—D. B. V.

The use of ultra-high-vacuum techniques in the argon extraction apparatus and of a new specially designed mass spectrometer, in the potassium-argon dating program now in progress at Berkeley, allows precise measurement of radiogenic argon in small and young samples. Data for 12 rocks and mineral separates (7 from the Yellowknife area in Canada, 3 from the Sierra Nevada batholith, a chondrite meteorite from Forest City, Iowa, and a Middle Devonian potash salt from Saskatchewan) are tabulated, with ages calculated according to alternative decay constants. For the Yellowknife specimens, the results show that micas retain more argon than feldspars and more orthoclase than plagioclase. Ages for biotites are consistent and in good agreement with earlier determinations, suggesting that biotite may retain argon quantitatively. A very short time is inferred for emplacement of the Yellowknife granite series. The Sierra Nevada batholith is dated at 100×10^6 years. The age obtained for the meteorite, 4500×10^6 years, is remarkably close to an earlier determination at another laboratory (see Geophys. Abs. 160-151). The age of 285×10^6 years for the sylvite is in agreement with the time scale of Holmes.—D. B. V.

The apparent ages of twelve sedimentary minerals, dated in the course of the Berkeley potassium-argon experiments and ranging from 16 to 285×10^6 million years,
are plotted against assigned stratigraphic age arrived at by interpolation on Holmes' time scale. (Experimental data are tabulated. Radiogenic argon was determined by isotopic dilution techniques, K by flame photometry.) Agreement is generally good. Whether the discrepancy between an uncontaminated Miocene glauconite and several Oligocene glauconites is due to greater loss in argon in surface samples or inheritance of argon rich in ^{40}A by the Miocene sample is as yet undetermined.—D. B. V.

The discrepancy in ^{40}A/^{40}K ratios between micas and feldspars reported by Wetherill (Geophys. Abs. 167-26) has been confirmed. From the suite of micas investigated, at least 85 percent of the radiogenic ^{40}A seems to have been retained; in comparison, the potassium feldspars have lost about 30 percent. The branching ratio of 0.085 (see Geophys. Abs. 161-132) is therefore an empirical calibration constant that corrects for diffusional losses from the feldspars, bringing the calculated ages into reasonable agreement with the "true" age. If it can be assumed that no ^{40}A is inherited in potassium minerals, it is always possible to assign a lower limit to the true age by the argon method. To evaluate the age obtained, the criterion of agreement between the ^{40}A/^{40}K ratios for several different samples of a given mineral from a given occurrence should always be used. Although the micas seem to be suitable for absolute dating, it is still necessary to obtain minimal evidence of consistency before an age estimate can be made. Further comparisons between good Pb-U ages and ^{40}A/^{40}K ages are necessary before the argon method can be considered established.

Ages determined from the ^{40}A/^{40}K ratios in 4 authigenic sedimentary minerals (3 glauconites, 1 feldspar) are also presented and found to be in reasonable agreement with Holmes' time scale.—D. B. V.

The ages of 3 muscovite, 2 lepidolite, and 4 microcline samples from 4 Western Australian pegmatites have been determined using both the potassium-argon and rubidium-strontium methods. The values 1.13×10^8 and 0.56×10^8 were used for the decay constants of Rb87 and K40, respectively, and a branching ratio of 0.10 ± 0.01 for K40. The rubidium ages were corrected by 20 percent for comparison purposes. For the micas the ages are consistent, with the exception of one low argon age; for the feldspars the argon ages are considerably lower than the strontium ages in all but one case. It is concluded that the four pegmatites are contemporaneous and of an age of 2,800 million years.—D. B. V.

The concentrations of rubidium and strontium in two chondritic meteorites have been determined by the stable isotope dilution method and strontium isotope abundances of the chondrites and an achondrite with a large strontium-rubidium ratio investigated. Meteorites and the Earth seem to have had identical strontium isotope compositions, including an "original" strontium concen-
tration (Sr) of 0.068 ± 0.001 approximately 4.7 × 10^9 years ago. This evidence admits the possibility of a contemporaneous origin of these chondrites and Earth about 4.7 billion years ago.—V. S. N.

The Sr\(^{87}/\text{Sr}^{88}\) and Sr\(^{87}/\text{Sr}^{86}\) abundance ratios are given for samples of sea water (1), limestone (2), strontianite (3), and celestite (4). Ages calculated from the 87/86 ratios do not correspond well with those estimated from the stratigraphic position; the ratios of calculated/estimated age range from 0.9 to 3.4 and the best results, as expected, are from the unaltered limestone.—D. B. V.

The age of lepidolite from the deposit near Rožna was determined by the strontium-rubidium method, by the ratio of the intensities of the spectral lines of strontium and rubidium, suggested and developed by Ahrens, and by the method of direct quantitative spectral analysis of the mineral. From the ratio of the spectral intensities of strontium and rubidium and the Ahrens graph, the absolute age is (450-460) × 10^8 years. By quantitative spectral analysis the strontium content was determined to be 0.0024 percent and the rubidium — 1.52 percent. Assuming that the entire strontium content is in the form of Sr\(^{87}\), and the rubidium is present as Rb\(^{87}\), and using the data of Brewer, Ecklund and others, the age is computed to be equal to 475 × 10^9 years.—S. T. V.

Ratios of radiogenic Sr\(^{87}/\text{Rb}^{87}\) have been determined for five lepidolites ranging in age from 100 to 2,700 million years. The data agree with those obtained several years ago in this laboratory and demonstrate the reproducibility of the method of isotope dilution and the applicability of the Rb\(^{87}\) decay to mineral age measurements on lepidolites over the whole extent of geologic time.—Authors' abstract.

This paper was also published in the Comptes Rendus, Académie des Sciences (see Geophys. Abs. 166-10).—D. B. V.

EARTH CURRENTS

167-38. Burkhart, K[urt]. Konstruktionsunterlagen der induktiven Pulsations- und Erdfstrom-Anlage am Erdmagnetischen Observatorium in Fürstenfeldbruck [Construction data for the inductive pulsation and
A description and analysis of the installation at Fürstenfeldbruck. For the induction apparatus, mu metal bars 2 meters long are used. Experiments show that the largest amplitudes are attained if the resistance of the coils corresponds to that of the galvanometer. — M. C. R.

Electric currents which are generated by tidal streams have been observed in the land near the coast of Cook Strait, New Zealand. In each tidal period, the vector representing the horizontal component of the potential gradient was found to rotate through 360° in a counter-clockwise direction. Corresponding rotary streams were observed in the Strait.

The potential gradient associated with those streams which are directed along the channel is explained by the theory worked out by Longuet-Higgins (1949) [see Geophys. Abs. 139-1153]. No theory is available for dealing with on-shore streams.

Using the potential-gradient measurements, the magnitudes of those streams directed along the channel were computed. These computed values agree with certain direct observations of the streams made by the survey vessel H. M. N. Z. S. Lachlan.—Author's abstract

EARTHQUAKES AND EARTHQUAKE WAVES

A revised and substantially enlarged edition of the book first published in 1949 [see Geophys. Abs. 143-12373]. As before, the book is divided into two parts: the first on seismology in general, written by Savarenskiy; and the second on the measurement of seismic waves, written by Kirnos.—S. T. V.

The text of a popular talk on causes and distribution of earthquakes.—D. B. V.

A popular description of some of the famous earthquakes of modern times, including the Lisbon (1755), Messina (1908), San Francisco (1906), Tokyo (1923), and Hawkes Bay, New Zealand (1931) shocks.—D. B. V.

During 1953 and 1954, the International Bureau of Seismology studied 3,610 earthquakes, and 2,496 epicenters were determined by the collaboration of numerous seismological services. The most important shocks are tabulated by
regions, giving date, time, latitude and longitude, magnitude (where possible), and focal depth (if calculated). The 21 principal destructive earthquakes are listed separately; 7 were in the Mediterranean region, 2 in Asia (Iran and Tibet), 10 in the Pacific and 2 in the West Indies. They caused a total of almost 2,000 deaths in 1953 and more than 1,300 in 1954.—D. B. V.

Aftershocks of the Tottori earthquake in Japan on September 10, 1943, were observed instrumentally for about a month at eight stations set up for the purpose. The number of aftershocks decreased markedly after Sept. 14. Distribution of $S-P$ times indicates shocks occurred throughout a wide area; most foci were apparently between the Sikano and Yosioka faults and the coast of the Japan Sea to the north. Magnitudes (computed by Tsuboi’s formula) of shocks recorded at four stations ranged from 2.2 to 4.1.—M. C. R.

From 684 to 1955, 136 tsunamis have accompanied submarine earthquakes in the vicinity of Japan, chiefly off northeastern and southwestern Japan. The magnitudes of the earthquakes ranged from 5.5 to 8.6; all submarine shocks of magnitude 8 or more were accompanied by tsunami. The relation between the magnitude of the earthquake and that of the tsunami is given by $m=aM+b$ (m and M being the magnitude of the tsunami and earthquake, a and b constants). Earthquakes accompanied by tsunami are always followed by aftershocks, some of which may be accompanied by tsunami.—M. C. R.

The force producing earth tides varies periodically with the position of the earth on its ecliptic, being greater when the earth is in perihelion (nearest to the sun) and smaller in aphelion, and also with the phases of the moon, being greater during the new moon and full moon and smaller during the first and last quarters. A statistical study of 33 earthquakes in the Caucasus from 1932 to 1947 shows that the 3 most severe earthquakes occurred during the periods when the cosmic factors were the most favorable for the generation of earthquakes; 17 earthquakes occurred during the time when the cosmic factors were of average intensity, 11 during the time intervals when these factors were of the greatest intensity, and no earthquakes occurred during the intervals when cosmic factors were least favorable for the production of earthquakes.—S. T. V.

A list and brief description of the 12 earthquakes felt in Madagascar during 1954. The strongest was that of June 11; its intensity was estimated, from
macroseismic effects, to have been 7 at the epicenter, in the vicinity of Lake Alaotra.—D. B. V.

The epicenters in central Valais, Switzerland, determined by different methods from instrumental data of European observatories, lie on the north side of the Rhône valley along the depression between the Aar and Mont Blanc massifs. The foci of the main shocks apparently are about 10 km deep, presumably in the crystalline basement, whereas the foci of most of the aftershocks are in the more shallow sedimentary cover. Seismograms at Neuchâtel, at a focal distance of 80–90 km, show typical double onsets. The aftershocks can be considered due to secondary effects in the cover material. For more precise determination of details of position and number of fractures, a denser permanent network of stations in the epicentral region would be necessary.

In the strongest earthquakes, such as those of January 25 and May 30, 1946, a secondary zone of damage was noted on the south side of the lower Rhône valley, in addition to the main zone of damage between Leuk and Sion. This is attributed to such factors as the nature of the ground and construction, or greater density of population, rather than to earthquake conditions themselves. The orientation of the zone of aftershocks, as well as the distribution of macroseismic effects of the main shocks, indicates an east-west-trending dislocation.—D. B. V.

An outline of the seismological work done in Turkey during 1952–54 by the University of Istanbul, the Technical University of Istanbul, the Ministry of Public Works, and the Istanbul-Kandilli Observatory, most of which was directed toward understanding the seismicity of the country and thereby finding means to reduce earthquake damage. Major earthquakes during that period included: Adana, October 22, 1952, intensity 7 at epicenter, 35°40' E. long., 37°05' N. lat.; Yenice-Gönen, March 18, 1953, magnitude 7 1/2, epicenter at 27°30' E. long., 39°85' N. lat.; İsılkiyeli, March 24 and 25, 1953, epicenter at 36°45' E. long., 37°05' lat.; İzmir-Karaburum-Foça, May 1 and 2, 1953, intensity 6–7, epicenter at 26°35'–26°40' E. long., 38°30'–38°40' N. lat.; Edirne, June 18, 1953, intensity 7–8, epicenter at 26°35' E. long., 41°45' N. lat. Most noteworthy of the minor shocks were those of Germencik-Ağut in October 1952 and Yeşilova in September–November 1953, with intensity 4–5.—D. B. V.

The earthquake which occurred at 18°10" G.m.t. on February 28, 1954 (3:40 a.m. March 1, local time) was the first recorded in almost 100 years in the Adelaide vicinity. No instrumental records are available at stations closer than 400 miles from the epicenter. From macroseismic data the intensity at the epicenter (in the vicinity of Darlington and Seafill) has been established as 8 on the modified Mercalli scale, with a second or minor epicenter of intensity 7.
near Beaumont. The focus was evidently very shallow (less than 2 or 3 km); more precise determination is impossible. Many buildings were damaged, a few beyond repair. Numerous new springs and increased or renewed flow from existing springs were reported in parts of the area, and two wells stopped flowing. The cause of the earthquake seems to have been movement along the comparatively recent Eden thrust fault. It may be significant that the epicenter is in a bend of the fault trace, where slow adjustment along an active fault plane might be impeded and thus allow greater shearing stress to build up before slipping. The actual triggering mechanism cannot be surmised; tides and atmospheric pressure were not favorable for this purpose. Many witnesses reported a flash of light in the sky at the time of the earthquake; possible explanations are examined and none found satisfactory.—D. B. V.

The epicenters of both shocks were near Caviaga in northern Italy. Depth of the focus was 5 km. The velocities of longitudinal waves were 5.1, 6.1, 6.9, and 8.16 kmps. Overlying the "granite" in which the velocity is 5.1 kmps is a layer of sediment 6 km thick in which the velocity of longitudinal waves ranges from 3.8 to 4.0 kmps. The thickness of the granite is 8 to 9 km; the total thickness of the two succeeding layers, 15 km. S_p velocity was 3.1 kmps, and S_s 4.52 kmps. The distribution of compressions and rarefactions suggests that the motion at the focus was an outward thrust inclined toward the northwest. The shocks may result from decompression in deep strata as the result of the extraction of methane which escapes with pressures greater than 100 kg per cm2.—M. C. R.

The earthquake of November 19, 1955, in Madagascar occurred at 0°59'23'' local time; the intensity was 5 in Tananarive and may have been 7 at the epicenter, which is somewhat south of Andilamena, at the northern end of the large geologic fracture along which lie Lake Alaotra and the Mangoro valley. Seismic wave propagation seems to have been easier along this break. The strongest aftershock on November 12 at 13°45' was felt weakly in Tananarive, more than 200 miles from the epicenter.—D. B. V.

The intensity of the earthquake of April 16, 1955, in Madagascar at 0°29'32'' local time was at least 7 at Ampefy, Soavinandriana, Mandoto, and Miaininarivo. From available instrumental data and approximate isoseismal lines, the epicenter is somewhat between Soavinandriana and Faratsiho. Macroseismic effects throughout the felt area are described briefly.—D. B. V.

In Venezuela the belts of greatest seismic activity seem to coincide with large strike-slip faults. However, population density must be taken into account in reaching such a conclusion because reports of shocks most frequently come from towns that, in the Mérida Andes, lie in longitudinal valleys.—L. C. P.

Provisional investigation of the frequency-depth relations of deep-focus earthquakes listed in Gutenberg and Richter's "Seismicity of the Earth" suggests a relative minimum at 60-80 km, a relative maximum at about 120 km, and in South America, Japan, the Sunda region, and New Zealand, a maximum at greater depth. A second relative minimum corresponds to the gap between intermediate and deep earthquakes.—M. C. R.

The epicenters of six Crimean earthquakes during 1928-29 were determined by Wadati's method extended to multilayer horizontal planes. The records of four seismological stations on the Crimean Peninsula were used and as the earthquakes were relatively weak the accuracy was evaluated by the mean square error of each determination, assuming that the weight of the obtained result is inversely proportional to the square of the mean square error. The errors in the epicenter determination ranged from ±14.0 to ±18.0 km, and the error in the determination of the apparent velocity was not more than ±0.5 km per sec. Wadati's method gives reliable results only for the earthquakes near the center of the Crimean Peninsula; it cannot be used for epicenters at azimuths of 210° or more.—S. T. V.

The three most important unsolved problems of soil mechanics related to the ground motion produced by destructive earthquakes are the influence of soil properties on local intensities, physical changes in soil due to passage of seismic waves and their effect on superimposed structures, and the interaction of structure and ground.—M. C. R.

Observations of earthquake-induced vibrations of buildings show that the smaller the rigidity of the subsoil surrounding the foundation, the larger the damping of the vibration of the building and the larger the maximum amplitude of the earthquake motion. It now seems established that the scale of earthquake force that must be taken into account in calculating earthquake-proof construction is nearly proportional to the square root of the rate of maximum amplitude of earthquake motion \(M \propto T_{0.25}. \), where \(M \) is the maximum ratio of maximum amplitude of roof-floor to that of basement and \(T_{0} \) is the predominant period of microtremor observed on ground, closely related to rigidity of the subsoil. The optimum conditions for earthquake-resistant construction are those in which the building stands in a limited area of soft ground within a large area of hard ground. (See also Geophys. Abs. 163-114, 165-46.—D. B. V.)
Because earthquake damage is related to subsoil characteristics, the building code requirements in Japan are based on type of building, seismic activity of the region, and subsoil characteristics of the building site. Subsoil characteristics in Tokyo have been studied by observations of earthquakes and microtremors, seismic prospecting, and dynamic tests with a vibrator. Predominant periods in records of earthquakes and short-period microseisms were nearly proportional to the thickness of the soil layer above the most remarkable discontinuity in the velocity log. The “foundation coefficient for the enhancement of amplitude is not constant for all earthquake motions, but is a function of their period.”—M. C. R.

After mathematical development of the fundamental theory of vibration analyzers, it is concluded that when a seismometer or a one-mass structure with no damping is subjected to earthquake acceleration \(a(t) \), the final amplitude \(y \), after the earthquake is over, represents the spectrum function of the earthquake velocity. A seeming contradiction of Housner's definition of the spectrum of an earthquake is explained.—D. B. V.

A seismometer, designed for determination of the class of an earthquake according to the scale of intensities suggested by Medvedev and recently adopted in part by Russian seismological observatories, consists of a spherical pendulum suspended in a tripod and having a natural period of vibration of 0.25 sec and damping ratio of 0.50. The damping ratio is adjustable over wide limits by an electromagnetic arrangement. The pendulum mass is formed as a spherical cap carrying a stylus in its middle that traces the deflection of the pendulum on the record beneath.

A sample record is included. The seismic impulse was produced artificially by an explosion of 1,800 tons of TNT at a distance of 600 m. The polar diagram of the deflections shows that the greatest amplitudes were observed not in the plane directed from the point of observation to the shot point, but at an angle of about 45°.—S. T. V.

A detailed and rigorous analysis of the vibrations of the mechanical system consisting of a seismometer with its pendulum on one side and the galvanometer, as the indicator of the vibrations on the other. Special attention is paid to the degree of coupling between the two partial systems and variations in the damping properties of the component systems caused by the changes in the degree of coupling. In galvanometric recording the degree of coupling should be small and the damping of component systems must not be equal.—S. T. V.

A description of the improved telerecording chronograph apparatus LTC–II, which uses 100–300 kc carrier waves through civil telephone lines. Schematic diagrams and photographs compare the new apparatus with the original one. The new model was first used in Wakayama in 1954.—D. B. V.

A description of the improved telerecording seismograph LTS–II which was developed with the telerecording chronograph (see preceding abstract) for use with existing communication lines. Seismograms reproduced include one received at the unattended Santa station and transmitted by LTS–II to the Kotono-ura central recording station in Wakayama.—D. B. V.

A description of a portable very high frequency radio-linked telerecording seismograph (RTS–I) designed for an unattended substation of the Wakayama seismological network where no telephone lines were available. Schematic diagrams and photographs of the transmitter and receiver, graphs and tables of frequency, sensitivity, and other characteristics, and examples of seismograms obtained with the apparatus are given.—D. B. V.

Discrepancies arise among magnitudes as derived from local earthquake data \((M_L)\), body waves \((M_s)\), and surface waves \((M_s)\). The relation of \(M_L\) to the others is as yet not definitive; but \(M_s = M_s - a (M_L - b)\). The latest revision gives \(a = 0.37, b = 0.76\). Pending further research it is recommended that \(M_L\) continue to be used as heretofore, but \(M_s\) (and ultimately \(M_L\)) should be referred to \(M_s\) as a general standard, called the unified magnitude and denoted by \(m\). Tentatively \(\log E = 5.8 + 2.4 m\) \((E \text{ in ergs})\). Revised tables and charts for determining \(m\) are given. [See also Geophys. Abs. 166-78]—Authors' summary
Calculation of the energy released during earthquakes, including all great shocks from 1904 to 1954, indicates that the average annual release of energy in earthquakes is roughly 10^{25} ergs. As this is only about 0.1 percent of the energy by disintegration of radioactive matter in the earth, processes maintained by the generation of heat could furnish the earthquake energy. In each of the three major depth ranges, shallow shocks, depth $h \leq 60$ km; intermediate shocks, $60 < h \leq 300$ km; deep shocks, $h > 300$ km; the frequency of earthquake increases about exponentially with decreasing earthquake magnitude m down to at least $m=2$, and in each the average energy release between 1904 and 1913 was greater than that in later decades. The largest energy calculated for a single shock during the 51 years, about 2×10^{25} ergs, was found for two shallow shocks. With increasing focal depth h the maximum energy of a single shock decreases to about 6×10^{22} ergs at $h = 650 \pm$ km and to about 4×10^{21} at $720 \pm$ km. No deeper earthquakes are known. The rapid decrease in energy release near 700 km could be caused by flow processes if the apparent coefficient of viscosity decreases to the order of 10^{20} poises at a depth of about 700 km.—Author’s summary

Trace amplitudes of surface-wave maximums recorded by undamped Milne seismographs have been used to determine the magnitude and energy of large shallow earthquakes from 1896 to 1903. Fifty-nine shocks are tabulated for which a unified magnitude of 7.4 or more (corresponding to the earlier magnitude of 7¾ or more) has been found. The unified magnitudes of shallow earthquakes between January 1904 and July 1956 for which the magnitude exceeded 7¾ are also tabulated. The greatest energy release in a single calendar year was 5×10^{26} ergs in 1897 in which there were 4 shocks (in Assam, off northeast Honshu, and 2 in the Philippine Islands) of about magnitude 8. The smallest energy release from shallow shocks was about 10^{24} ergs in 1954. The greatest shock (magnitude 8.1–8.2) in the period 1896–1955 was probably that of January 31, 1906, off the Colombia-Ecuador coast.—M. C. R.

Analysis of the directions of first arrivals at stations around the world indicates that the earthquake originated on either an approximately vertical fault striking north-south or a horizontal fault striking east-west. If the former, the movement indicated is east side up with respect to the west; if the latter, the material above the focus moved east with respect to the material below the focus. No choice is possible on the basis of present techniques. This is the first solution for an earthquake of more than normal depth in which virtually no transverse displacement is indicated.—M. C. R.

There are at present two very uncertain means of predicting earthquakes. The first takes note of certain electromagnetic phenomena that may appear be-
fore the initial shock of an earthquake, such as glimmers of color in the air, malaise in people, and agitation in animals; the second determines from the records the average interval between destructive earthquakes in a given seismic region. As the latter is subject to variations of several years, only the former can be taken seriously as a method of avoiding injury.—D. B. V.

Existing maps of the seismicity of different parts of the U.S.S.R. are based on the records of earthquakes between 1910 and 1963. However, the establishment of every new seismic station has produced an apparent increase in the seismicity of the surrounding region by recording weak earthquakes that had previously passed unnoticed. Seismicity maps can be corrected by extending the isoseismal lines into regions where there had been no seismic observations and few people, on the basis of the magnitude and energy of the earthquakes for which epicenters could be determined.—S. T. V.

Straight lines were fitted to first arrivals of a series of 7 earthquakes off the east coast of Japan October 12-18, 1935, recorded at stations at epicentral distances of less than 10° and azimuths of 180° to 270°. The velocity thus determined was 7.77±0.04 kmps, in good agreement with velocities given by Jeffreys and Hodgson. Redeterminations of the epicenters indicate a linear pattern and suggest repeated fracturing at the ends of a fault. No evidence for either P* or S* was found; evidence for a 3-layer structure of the crust below Japan must be regarded as weak if other records of near earthquakes show the same characteristics. A delayed pulse (S+15.8 sec) is observed between 4° and 9°.—M. G. R.

Study of ripples in aftershocks of the Boso-Oki earthquake in Japan on November 26, 1953, was undertaken to determine the effect of a seismically active zone on waves propagated through it. Most of the aftershocks that brought the strongest ripples to Tokyo were located in the inner side of the active area and those with faint ripples, on the outer side. Because seismograms at Hachijojima and Torishima showed the same distribution as at Tokyo, generation at the origin is considered a more plausible explanation of ripples than abnormal absorption.—D. B. V.

The angles of emergence of the first arrivals at the seismograph station in southern Sakhalin were determined for 79 earthquakes during 1951-55 by the
Benndorf formula \(\cos e = \frac{V_p}{V_s} \) and by the relation \(\cos e = (\frac{V_p}{V_s}) \cos \frac{1}{2} (90° + e) \), where \(V_s \) is the apparent velocity and \(V_p \) and \(V_s \) are the velocities of the longitudinal and the transverse waves respectively. In certain azimuths the results obtained by the two formulas were markedly different. In similar determinations for 31 earthquakes at the seismograph station of Uglegorsk, about 240 km to the north, there was close agreement between the two determinations. Microseisms were similarly related to the azimuth of arrival. The difference is attributed to an effect of the deep structure of the region around the southern tip of Sakhalin Island.—S. T. V.

In the deep earthquake of March 4, 1949, in the Hindu Kush, a phase between \(P \) and \(pP \) was clearly registered at most European stations. This phase can be explained in three ways: as a longitudinal wave reflected at a discontinuity near the epicenter \((pmP) \), as a transverse wave reflected as a longitudinal wave at the discontinuity \((smP) \), or as a doubly reflected wave. The last is ruled out on the basis of the recorded data. Using both the Gutenberg-Richter and the Jeffreys-Bullen tables, the depth to the reflecting discontinuity is calculated as about 75 km for the first hypothesis and about 140 km for the second. Although the Mohorovičić discontinuity is only 40 to 55 km deep under Georgia and Tien Shan, there is no other discontinuity known at present, to a depth of at least 250 km, that could account for such a reflection. Therefore the wave is considered to be \(pmP \).—D. B. V.

Velocities determined for Lg waves traversing the Sierra Nevada or the Central Valley and Coast Ranges of California differ by less than 2 percent from those reported for transcontinental North America and Eurasian paths. This suggests that the shear velocity in the upper part of the continental crust is not anomalous in orogenic belts, but does not necessarily imply homogeneity of material. The local phase velocity of Rayleigh waves depends on the period, the thickness of the crust, and the elastic constants of crust and mantle. Variations in phase velocity can be correlated with changes in crustal thickness rather than changes in elasticity.—M. C. R.

Satō applies his formula for analysis of dispersed surface waves to James T. Wilson's seismograms of the South Atlantic earthquake of August 28, 1933 (Geophys. Abs. 103-5801). Although the results seem to be valid, more data are necessary to yield dispersion curves that are trustworthy in detail. (See also Geophys. Abs. 165-90 and 167-86.)—D. B. V.
ELASTICITY

The propagation of longitudinal and transverse waves in samples of rock has been determined by means of schlieren photography of high-frequency head waves passing from a surrounding fluid medium into the sample; from the bending of these waves at the plane surface of the sample, the velocities and elastic constants can be calculated. Samples 3 cm or longer can be used. The measured velocities, especially the longitudinal, are valid for bodies of infinite extent. The apparatus and procedure are described and some results presented. These include tables giving the transverse and longitudinal velocities, Poisson's ratio, Young's modulus, shear modulus, and compressibility for 12 igneous rocks, 10 sedimentary rocks, and for anhydrites taken from different depths in various boreholes and measured both perpendicular and parallel to the bedding. Longitudinal velocities in the igneous rocks range from 5,100 to 8,000 m per sec, in the sedimentary rocks from 2,400 to 6,000 m per sec; transverse velocities in the igneous and sedimentary rocks range from 4,650 to 6,900 m per sec and 2,150 to 4,750 m per sec, respectively; these velocities correspond well with those obtained in seismic work. (See also Geophys. Abs. 163-193.) — D. B. V.

Because of the close relationship between Young's modulus and the longitudinal velocity in rock, Young's modulus can be obtained by recording timed arrivals of seismic waves set up by detonating small charges or striking the rock a sharp blow with a sledge hammer. In experiments at a proposed dam site in northern Iraq, the elastic modulus in dolomite was found to be 7.5×10^6 psi parallel to the bedding planes and 3.5×10^6 psi normal to the bedding. The corresponding values for limestone were appreciably lower, about 1.2×10^6 psi and less than 1.0×10^6 psi. — M. C. R.

The velocities of shear and compressional seismic waves in a rock may be used to calculate the value of Poisson's ratio in situ, and if the density is known the value of Young's modulus may be calculated as well. Experiments have been carried out in which these two types of wave were generated first by means of an electrically driven vibrator in the volcanic rock ignimbrite, and second in the concrete of a dam. From the velocities measured in each case the following elastic constants were calculated: for ignimbrite, $\mu=0.41$, $E=460,000$ psi; for concrete, $\mu=0.21$, $E=3,600,000$ psi. The value of E for ignimbrite was much smaller than would have been deduced from the compressional velocity alone, with the usual assumption as to the value of μ, and much larger than that given by the standard static compression test. The value for concrete was nearly the same by all three tests. — Author's abstract

Vibrations set up by the formation of cracks in floating sheets of ice on Lake Suwa, Japan, closely resemble those of natural earthquakes in many respects. P-wave velocities within the ice, measured by means of small explosions, ranged between 2,900 m per sec in the daytime (temperature 5°C, ice soft) and 3,230 m per sec at night (temperature −10°C). A second phase with a velocity of 1,820 m per sec (measured when \(V_1 = 3,200 \) m per sec) cannot be explained by the model, a third phase (1,460 m per sec) is apparently due to waves passing through the water beneath the ice; and a fourth (330 m per sec) is considered to be due to flexural waves of the ice sheet. Epicenters were located from P-wave arrivals at 12 precisely located detectors; as a check, the origin points of several known explosions were calculated in the same manner and found to be in good agreement with the true origin. A few foci were determined from the commencement time of the flexural waves, which, although not as distinct as the P-wave arrivals, were nevertheless clearer than those of surface waves in natural earthquakes. The two sets of foci so nearly coincide that it is reasonable to assume that the compressional and flexural waves started from the same point simultaneously.—D. B. V.

Seismic layer boundaries in nature are never clearly defined; even when contrast is strong, the transition must be continuous. Here the reflection and refraction of the SH wave is investigated mathematically for the case of a linearly variable layer, which passes continuously from one homogeneous layer to another.—D. B. V.

The propagation of seismic pulses through a material possessing solid friction is investigated. Problems are solved for both a simple impulse of displacement and a stress doublet impressed on the medium. For both cases the crest amplitude diminishes inversely with distance propagated, and the pulse width increases proportionally to this distance. For the stress doublet the shape of the pulses is asymmetrical.—I. Z.

The curve showing the relation between the distance from the vibration origin and the amplitude of the actual ground vibration generated by a vibrator is sometimes sinuate as the result of superposition of direct and refracted waves. It is shown mathematically that the necessary condition for the sinuate curve is that \(4H > vt \), where \(H \) is the thickness of the surface layer, \(v \) the velocity of propagation, and \(t \) the time, and that the greater \(4H \) is compared to \(vt \), the greater the number of waves.—M. C. R.

A fundamental formula for movement near the origin is derived, simplified for practical purposes, and applied to an actual example. With phase velocity and spectrum at 141.75 m known from the previous paper (Geophys. Abs. 165-90), the motion at any point and at any time can be calculated. Results are tabulated.—D. B. V.

A precise study of the displacement distribution of Sezawa waves in the surface layer shows that there is a region where the distribution can be exponential, and therefore that Sezawa waves are not Rayleigh-type waves of higher order.—M. C. R.

The proof, left incomplete in the original paper, that Satō's formula for Rayleigh wave propagation (Geophys. Abs. 150-13843) has only one real positive root smaller than K/β in the equation in question.—D. B. V.

Graphical scales can be prepared and used for rapid determinations of potential field values which depend only on the distance between two fixed points. The method can be applied to determine the potential at the surface of a homogeneous earth due to a current pole at its surface, and to the potential at the surface of the earth considered as an infinite insulator separated from the surface by a parallel plate of finite resistivity. Portions of two typical scales and two sets of equipotential curves drawn by use of the scales are shown.—Author's abstract

Recent advances in instrumentation of resistivity surveys warrant the use of a complete set of departure curves that will give direct solutions for the in-place resistivities. The Whirlwind I will compute 22 points for one departure curve in 10 minutes and involves some 10 million arithmetic operations. The curves when completed will be made available to industry.—V. S. N.

When measuring the apparent electric resistivity with the Wenner electrode configuration, there is added to the potential difference between the measuring
electrodes a potential difference produced by an additional electric field—the
disturbing potential. This potential difference is the result of the polarization
of the electrodes, of the presence of telluric currents, or of eddy currents from
industrial installations. It consists of a constant part and a variable one. The
constant part can be easily compensated; the variable term can sometimes
cause difficulties, especially when the electrode spacing and the desirable depth
of profiling are great. Changes in field practice, such as an increase of the
feeding current or feeding voltage, can decrease the intensity of the disturbing
potential differences. The advantages and disadvantages of different procedures
are discussed; attention is called to the possibility of dangerous shocks to those
making the measurements. Changes in the analysis of the data are also con­sidered. The procedures are explained by an example of a profile composed of
three layers with different electric properties.—S. T. V.

167–92. Bukhnikashvili, A. V., and Kebuladze, V. V. ḳ voprosu o statsionarnosti

The natural electric field in zones of sulfide or graphite deposits is usually
assumed to be invariable in time but there are numerous exceptions to this rule.
For example, the intensity of the electric field over chalcopyrite deposits was
measured and recorded during 2 summer months and positive and negative
potential variations of as much as 20 percent were found. These variations
could not be related to changes in weather conditions or in the water content of
the ground, but are attributed to changes in the electrochemical process within
the deposits or on their boundary. Use of the self-potential method requires
a regular check of the constancy of the electric field.—S. T. V.

The thesis that applied geophysics in general, and the self-potential method
in particular, should be used as a technical aid in extrapolating from the known
to the unknown is illustrated by two examples from Germany. In the former,
near Jäckendorf, the results of a self-potential survey in a region of carbonaceous
schists were meaningless alone and could be interpreted only in combination with
magnetic and geologic data; in the latter, a known pyrite vein in the central Harz
was successfully traced along the strike and downward.—D. B. V.

167–94. Orilia, N., and Petrucci, G. Su una attrezzatura adatta alla prospezione
del sottosuolo col metodo elettrochimico (polarizzazione provocata)
[On a device adapted for subsurface prospecting by the electrochemi­cal (induced potential) method]: Geofisica Pura e Appl., v. 33, p.
101–110, 1956.

A device for measuring induced polarization has been tested in the laboratory
and field. It uses a special commutator which closes the polarizing circuit and
at the same time opens the measuring circuit and vice versa. Otherwise the
measurements are made by the Poggendorff method.—M. C. R.
Underground streams can often cause local electrical fields of relatively high intensity by electrofiltration. In the Akhalkalaki highland, Georgian SSR water losses of as much as 1.8 m³ per sec were observed in a relatively small lake. Natural potential measurements indicated an anomaly of 44 mv and made it possible to determine the point of loss and the direction of the underground stream. Another example is in a small basin formed by the Terek River, where there were significant losses of water along a natural dam about 80 m long. The maximum anomaly here was 350 mv, in an area where the normal background was only ± 20 mv. In many places the electrofiltration potential can be increased by oxidation of pyrite inclusions. Electrofiltration potential can be either positive or negative.—S. T. V.

In the arid areas of Rajasthan, patches of land containing potable water commonly occur adjacent to those in which the ground water is brackish. Resistivity surveys have been used by the Geological Survey of India to distinguish the areas on the basis of typical depth curves. Regional problems of finding water are best attacked by seismic surveys to delineate depressions in the bedrock, detailed electromagnetic inductive and resistivity surveys to evaluate the subsurface conductivity and determine depth to water table and salinity, and direct measurement of electrical conductivity, density, and temperature of the water in wells. As a corollary of the water problem, the resistivity measurements in wells have also been used to delineate areas where the salinity is high enough to be suitable for the manufacture of salt.—M. C. R.

The electrical resistivity method was used during the building of hydroelectric powerhouses in Yugoslavia to determine the depth of alluvium and terraces along 75 to 100 profiles upstream and downstream from the site of the future dam. Results of the measurements on the Drina River were within 15 percent of those found by drilling.—S. T. V.

The crevasse detector is a four-electrode system analogous to the Wenner-Gish-Rooney system of measuring effective conductivity but using dielectric displacement currents rather than conduction currents. Capacitive transfer reactance between pairs of electrode sleds or vehicles is continuously indicated or recorded. The method has been successfully used on traverses at speeds of 2 to 20 mph and with electrode spacing of 7 to 180 ft.—M. C. R.
ELECTRICAL LOGGING

The MicroLogs are used to pick out porous and permeable zones, for calculating the percent porosity of a formation, and with electrical surveys to calculate water saturation of a potential pay zone. Numerous logging examples from East Texas are given.—V. S. N.

ELECTRICAL PROPERTIES

The electrical resistivity of 60 pyrite, 31 chalcopyrite, 42 pyrrhotite, 8 arsenopyrite and löllingite, 6 cobaltite, 15 galena, 26 hematite, 46 magnetite, 16 various manganese minerals, 23 complex ores, and 7 graphitic shale samples, mostly from Sweden, was measured by the four-point method. The electrical resistivity of ore samples varied "locally" on a single sample, often by factors of 10 to 100, but usually within about 30 percent; the resistivity varied by factors of 100 to 10,000 from one sample to another. Cracks, sometimes of microscopic size, layering or banding, and a porous structure all affect the resistivity. The variation from sample to sample depends in addition on the percentage of ore. The results indicate that, other things being equal, pyrite, chalcopyrite, pyrrhotite, arsenopyrite, magnetite, and graphite ore bodies are excellent objects of electrical prospecting, and galena, psilomelane, hollandite, and pyrolusite are also suitable. The suitability of hematite bodies for detection by electrical methods depends on the surrounding rock. Sphalerite and the manganese minerals bixbyite, braunite, hausmannite, manganite, and piemontite would be almost undetectable by electrical prospecting.—M. C. R.

On the basis of experimental studies, Perkins and coworkers conclude that the resistivity factor, F, the tortuosity, T, and the porosity, p, in brine-saturated sandstones are related by $F = T^*/p$, that in sands containing both electrolyte and hydrocarbons the tortuosity of the interstitial water, T_s, the resistivity ratio, F_s, the electrolyte saturation, S, and the porosity, p, are related by $F_s = T_s^*/pS$, and that the saturation exponent, customarily used in interpretation of the electric log, may be expressed in terms of tortuosity and apparent cross-sectional area of the electrolyte through which electric current flows. M. R. J. Wylie and A. J. de Witte in comments on following pages state their belief that tortuosities of porous media cannot be measured experimentally and that the Perkins experiments provide only a means of comparing porosities.—M. C. R.

Among the materials measured here for dielectric constant and dielectric loss in the 3-cm region by standing-wave techniques are four samples of marbles from four places in India. Two show low attenuation and are suggested for use as
supports in air-filled coaxial lines and microstrips in ultra-high frequencies.—D. B. V.

EXPLORATION SUMMARIES AND STATISTICS

A discussion of such problems as access, anomalous velocity distribution in near-surface formations, and poor surface material, in seismic exploration of northern Alberta and northeastern British Columbia, Canada.—V. S. N.

The Little Smoky oilfield in northwestern Alberta, Canada, was discovered by seismic exploration in 1952-53. Valuable experience was gained in methods of working in difficult muskeg areas.—V. S. N.

The use and limitations of gravity and seismic reflection methods in clarifying structural questions in coal-mining regions is illustrated by means of examples from the Ruhr and Aachen districts. For problems of overburden, particularly from the hydrological point of view, electrical methods can also be useful.—D. B. V.

GENERAL

The advent of high-speed digital computing machines requires extrapolation and interpolation methods which do not involve central differences and time-consuming tabular information. Extrapolation and interpolation formulae meeting these requirements are developed. These formulae are applicable to the desk calculator as well as to punched-card programming systems for electronic digital computers. Some applications of the usefulness of these formulae are noted in connection with the preparation of gravity and magnetic maps. Their usefulness may likewise be extended to other types of geophysical and experimental data where the time required to obtain computed results is an economic factor.—Author's abstract

GEODESY

A discussion of the requirements for establishing a World Geodetic System—it is necessary either to span the oceans with measuring chains or to determine the exact geographic positions of the initial points of the existing geodetic systems referred to the same reference ellipsoid—and the possibilities of attaining them.—D. B. V.
Any irregularity of density within the earth's crust will give rise at the surface not only to a vertical component, which contributes to gravity anomalies, but also to horizontal components contributing to deflections of the vertical and anomalies of curvature. Although the components are of the same order of magnitude, hitherto only vertical anomalies have been used for surveying underground resources. An untried survey method is proposed here, using observations of earth curvature. The method is based on the fact that the sum of the angles of elevation of the light ray joining two terrestrial points is the difference of the terrestrial curvature and optical curvature (refraction) of the ray. Two plans of operation are suggested. In the first, a pair of observers proceeds along any traverse line, observing mutually and simultaneously at adjacent points and determining the earth curvature of each interval between stations from their measures of reciprocal vertical angles. The rise of the geoid above its value at the starting point can be computed forthwith. In the second procedure, a modification which avoids certain practical objections, only one observer is required and reliance is placed on equality of refraction of fore and aft rays observed at a station midway between two targets, at the same mean time. For this to be true, the surfaces over which the two rays pass should be reasonably similar from a refraction point of view, and relative geoidal heights of the targets must be known from spirit levelling or other accurate means.—D. B. V.

The derivation of Stokes' formula is based on developments of spherical harmonics which do not contain first order terms. Due to the defectiveness of observations, the field of gravity anomalies might reveal first order terms. These terms should be removed by an adjustment before Stokes' formula can be employed.

The removal of first order terms, however, has been neglected in the works hitherto published. The last and most extensive of them, accomplished by Tanni in 1948, is revised here. As a conclusion, it can be stated that the effect of the first order terms is large enough to be taken into consideration in the future applications of Stokes' formula.—Author's abstract

The mean uncertainties introduced into Stokes' formula and the equation for plumb-line deflections by the fact that we do not yet know the gravity anomalies over large areas of the earth's surface are calculated as 2.6 m for ΔN ($N =$ Stokes' distance from geoid to reference spheroid) and 0.35" for $\Delta \xi$ and $\Delta \eta$ (ξ and η are plumb-line deflections). Stokes' theorem and the equations derived from it can be successfully applied and geodetic data successfully transferred from geoid to ellipsoid for those areas where the distance to the unsurveyed areas is sufficiently large. The limiting distance from the unsurveyed area of 3,000 km restricts application, at the moment, to the North American and European parts of the
central east-west belt of the northern hemisphere, but allows tying together the American and European geodetic systems and corresponding parts of the geoid.—D. B. V.

A tentative size of the earth was derived on the basis of four arcs: a meridional arc extending from South Africa to Scandinavia, a meridional arc extending from Chile to Canada, a parallel traversing the United States, and a parallel extending from western Europe to Siberia. Two types of deflection data were used in the solutions: the astrogeodetic (free-air) deflection and the isostatic deflection calculated on the basis of the Pratt-Hayford theory with depth of compensation at 113.7 km. A flattening of 1/(297±1) was assumed. The semimajor axis was calculated as 6,378,260±100 m with the free-air deflections and 6,378,285±100 m with the isostatic deflections.—M. C. R.

The computation and adjustment of the Baltic Ring of the Baltic Geodetic Commission has been carried out on the international (Hayford) ellipsoid, the starting coordinates being chosen in accordance with the system of coordinates used by the Geodetic Institute of Finland. Within the Baltic Ring are 87 stations with known deflections of the vertical, and others are available nearby; in some places the observations are close enough that the form of the geoid can be computed by "astronomical levelling." The baseline at Reval (Tallinn) was arbitrarily chosen as zero point. Elevations of the geoid above the reference ellipsoid are tabulated and shown on a map. The geoid so determined is compared to Tanni's gravimetrically determined geoid along certain profiles; agreement on the whole is not very good. An attempt is made to compute a new absolute orientation for the Baltic Ring, using corrections deduced from the divergences from Tanni's geoid, but results are regarded only as qualitative.—D. B. V.

Precise leveling along an east-west route 28 km long in the vicinity of Kurosawaziri crossed the so-called Morioka-Sirakawa Line which Tsuboi has shown is characterized by Bouguer anomalies of steep gradient. Relative vertical displacements since the survey of 1933–34 are small. A slight upheaval took place east of the line but there was no conspicuous movement on the west side.—D. B. V.

GEOTECTONICS

Some general basic problems of geotectonics are discussed which have resulted from a comprehensive treatment of geotectonic fundamentals by the author on
the basis of recent achievements in Soviet geology. Tectonic movements are classified as primary, or oscillatory, and secondary (plicative and ruptural). Under oscillatory movements, general vibrations and wave movements are defined and distinguished. Inside the earth's crust geosynclinal, parageosynclinal and "platform-like" oscillation forms are distinguished and the possibility of a stockwork-like layering discussed. The possibility of a pre-geosynclinal (Archaic) condition and possibility of an "activation of the platforms" beginning in a still earlier time is debated. In plicative deformation forms, complete folding, broken folding, and intermediate folding are distinguished, with discussion of their criteria and genesis.

The conclusion of the work consists of a discussion of the problems of continents and oceans. The beginning of the deep seas is laid in the Mesozoic. An increase in the amount of water in the course of earth history is probable. Presumably two levels of activity exist in the earth. The ultimate cause of the movements is to be sought in differentiation processes.—Author's summary, D. B. V.

An attempt to explain the tectonic activity of the earth by the theory of elasticity, assuming contraction of the earth as the primary cause of tectonic processes. At the beginning of the geologic history the radius of the earth is assumed to have been about 7,000 km and the average density 4.2 gr per cm.³ Contraction was caused by the cooling of the earth and a certain physico-chemical processes which released great amounts of gaseous substances. An immediate consequence was the folding of the external surface. This folding is analyzed in terms of the theory of elasticity as the "buckling of the plate (the crust) on an elastic foundation under the action of horizontal forces, distributed along its periphery." This general concept is applied to all tectonic processes in the formation of island arcs in the East Indies, Caribbean Sea, Japan Sea, Philippine Islands and other parts of the Pacific Ocean, and the orogenic phenomena producing the Caucasus Mountains. Folding of the crust is concentrated in its upper layer but inevitably involves the subcrustal zone and causes important vertical and horizontal dislocations of magmatic masses. Geologic evidence is considered, but the emphasis is on application of mechanical analysis to tectonic problems. Among the authorities cited are Marx, Engels, Lenin, and Stalin.—S. T. V.

Structures intermediate between geosynclines and platforms are divided into two groups: regions that have outlived geosynclinal development and are found in the course of changing into platforms, and regions where instead of a platform or a threshold folded zone there are formed structures similar to geosynclines. Geosynclines are considered to be structures characteristic of the first half of the geosynclinal (tectonic) cycle and subsequently transformed into folded regions. They arise within the boundaries of mobile belts, whose continuous existence is comparable to that of platforms.—Author's abstract, D. B. V.
In the light of knowledge of the relief of the ocean floor, and the geologic structure and history of the ocean basins, it is concluded that there are two critical stages in the evolution of the earth's crust. In the first, closely related to the formation of geosynclines and platforms at the surface, differentiation at depth gives rise to granitic massifs (originally, in the Archean, forming the entire surface of the globe but subsequently confined to geosynclinal belts); platforms are areas where the process has been completed. The second stage brings the rise of basic magma and partial destruction of the granitic layer. With its partial destruction great quantities of water are produced which enlarge the hydrosphere. Structural elements of the first stage, submerged under water or under submarine basalts, can sometimes be discerned in the topography of an ocean floor. Mediterranean seas (which according to geophysical evidence lack a granite layer) are considered to be embryo ocean basins; the west Siberian lowland is an “unsuccessful” ocean basin whose relations to the Urals are identical to those of the Piedmont plain of the Atlantic coast to the Appalachians.

Not only are geosynclinal zones eventually the site of ocean basins and "basification" of the crust, which may extend into neighboring platforms but, conversely, some parts of platforms are the scene of intense tectonic activity, such as the great uplift of Tyan Shan, central Asia, or southern Siberia, which may extend into adjacent geosynclines. Pamir, for instance, is abnormally uplifted in comparison to other parts of the Alpine geosyncline. In other words, evolution of the crust is active in areas of greatest contrast in composition structure, and surface relief. Analogous features of lunar relief suggest that the hypothesis is valid for the evolution of any planet of the "terrestrial type."—D. B. V.

A summary of the results of Russian investigations of deep fractures of the earth's crust. The fractures penetrate the metamorphic basement, are characterized by great extent and persistence, and constitute a controlling factor in the distribution of igneous rocks, ore deposits, and, in geosynclines, of sediments. Surface (secondary) fractures are genetically related to the deep (primary) fractures. Three main groups are recognized: those of platforms, those of regional depressions, and, most diverse, those of geosynclines. They are further subdivided and discussed in some detail; of the numerous examples cited, most are from the U. S. S. R.—D. B. V.

Experiments with stitching wax, an elastico-viscous material, indicate that it is a suitable material for model studies of the kinematics and dynamics involved in crustal deformation. The material flattens under its own weight.
if raised to slopes of more than a few degrees. In experiments with layers of stitching wax (representing limestones) and grease (representing shales) the flattening produced surficial folding. When layers of stitching wax were subjected to slow compression and one part kept a little warmer than the rest, a recumbent anticline was formed at the interface; the cooler “foreland” pushed under the uparching “welt,” and it in turn pushed the former down, flattening it. Features which in alpine mountains have been believed to call for either an actively overriding master thrust sheet or an active downsucking were produced simultaneously, suggesting that orogenic belts, at least of the alpine type, arise because at the time of their formation they are weaker than the normal crust. Bucher suggests that belts of deep-focus earthquakes, which are genetically related to orogenic belts, are fracture zones produced by shrinkage in the “strictosphere,” which lies between the deeper mantle and the outer zone, the “stereosphere.” Compression is localized in the stereosphere as volatiles rise along the fracture zones and warm and weaken the crust. A pattern of cracks formed in a thin shell shrinking between solid boundaries is similar to the pattern of orogenic belts.—M. C. E.

Deformation in zones of negative anomalies is estimated by considering the crust as a plate on an elastic foundation. If the modulus of elasticity is constant in the direction in which force is applied, the wavelength at the onset of buckling (or critical load) is unexpectedly small, 100 km at most. The inevitable inference is that it is not possible to speak of a buckling process but rather of a local, slowly developing plastic yielding, the effect of which is that the crust has continuously increased in thickness and the compressive force become more eccentric; owing to these circumstances the geosynclines have formed in the course of time in this plastic hinge.

Calculation of deformation of the plastic yield region is difficult as four boundary constants are involved. Stress and strain increments in a given crustal section must be coordinated with the time scale and studied by means of successive approximations, employing in each phase the constants which must be estimated from the stress-strain diagram of the crustal matter.—D. B. V.

The physical properties of rocks, as revealed by laboratory experiments determining their strain in a known stress field, can explain the different types of folding. The interval between the stress level and the elasticity limit appears to be the most important factor. This interval will increase either because of a fall in the resistance of the rocks or because of a rise in the stress. The two principal types of folding are concentric folding, a typical elastic-viscous kind of strain in which this interval is small, and cleavage folding, in which it is greater. An analogy of these two types of folding can be found in the paratectonic and orthotectonic types of orogenesis.—Author’s abstract

The term “wrench fault,” as suggested by Kennedy and Anderson, describes ruptures in the earth’s crust in which the dominant relative motion of one block
to the other is horizontal and the fault planes are essentially vertical; the term is synonymous with strike-slip fault and transcurrent fault. It can be shown theoretically that in any given tectonic area at least eight directions of wrench faulting and four directions of anticlinal folding and (or) thrusting should accommodate the structural elements of the region and that these directions should have a more or less symmetrical disposition with respect to the direction of the primary compressive stress. Analysis of field examples of faults and associated phenomena in California, the Basin and Range province, the Pacific Northwest, and the Midcontinent region among others indicates that wrench-fault tectonic systems are aligned systematically over large parts of the crust as suggested by Hobbs, Vening Meinesz, Sonder, and others. A shear pattern is suggested that may have resulted from stresses oriented essentially meridionally and acting in nearly the same direction throughout much of geologic time. Major wrench faults, which penetrate the entire outer crust of the earth and result in the segmentation of the crust into polygonal blocks, may constitute a fundamental type of yielding in the crust. The existence of more or less independent blocks separated by major faults would have an important bearing on "isostatic adjustment," the development of geosynclines, island arcs, and linear belts of igneous activity.—M. C. R.

The effect of viscosity on energy transfer in the crust according to Matuzawa's concept (see Geophys. Abs. 165-125) is considered. The efficiency of energy transfer depends on the relaxation time of the crust and duration of the pressure. The effect of viscosity is negligible when relaxation time $\tau \sim 10^{10}$ sec and the duration of pressure T_o is less than several decades, in which case Matuzawa's process would be valid. More accurate data on the viscosity of the crust (from rheological studies) and on T_o (from surface deformation studies) are necessary before further discussion can be developed.—D. B. V.

The initial impulse that sets in motion the forces leading to the formation of salt domes must be tectonic. Recent geophysical results, mainly of seismic refraction work, lead to the conclusions that orogenetic processes cause the salt to flow pseudoviscously; that in saline beds there exists a "compensation surface of folding" which can involve a considerable pressure gradient; and that the nature of the border trough makes a reliable time indicator for the development of the salt dome.—D. B. V.

Rejuvenation of the tectonic processes of a considerable area in western Mongolia by the earthquake of 1905, particularly the Khangalsky fault, suggests the irregularity in space and time of the development of large-scale faults and the importance of recent tectonic movements in creation of the present topographic features of Mongolia.—D. B. V.
The mass of ice varies along the length of a glacier because of the accumulation of snow in its upper regions and the ablation of ice in the lower regions. This mass change brings about variable speeds of flow and complex streamlines. General equations are derived using a type of plug flow for ice for the following: glaciers of constant arbitrarily shaped cross sections, arbitrary rates of ablation and accumulation, and arbitrary variations of the longitudinal velocity across the glacier; and glaciers of rectangular cross section with varying widths and depths, arbitrary velocity profiles, and arbitrary rates of ablation and accumulation. Streamlines are calculated for five typical cases by using these general equations. The calculated flow behavior is in agreement with the known behavior of glaciers.—Authors' abstract

Spectacular advance of the Taku glacier of the Juneau Icefield in Alaska during the past 50 years in an area where shrinkage is the rule has led to investigations in 1950-53 on the thermal regime of the upper glacier. The detailed glaciothermal data presented confirm and amplify the evidence of a present zone of maximum snowfall in the icefield's central névé and a net gain of this highest accumulation area for the past several years leading to the thickening and advance of the main branch of the glacier. By means of multiple thermistor cables inserted into boreholes a zone of annual chilling to a depth of 65 feet was observed at intermediate elevations (3600 ft) and evidence found of the retention of subfreezing englacial conditions in the crestal firn (6000 ft) during the 1951-52 thermal year. This is attributed to the relatively colder temperatures and the shorter summer ablation season in this sector and is intensified by the excessive accumulation. The lower rocks of the glaciers are classified as geophysically temperate and englacial temperature conditions in the primary highland névé are considered as marginal between temperate and polar.—B. T. E.

A discussion of temperature and density measurements in the névé. The density varies with depth according to Sorge's law, \(d = 0.917 - \frac{17.75}{34.7} + Z \), where \(d \) = density and \(Z \) = depth. The mean temperature decreased below a depth of 8 m in 1930, and below the equivalent depth of 19 m in 1950. This is attributed to a colder climate in the years before 1920.—P. E. B.

Formulas are presented for determining the topography of the basement surface under an icecap from the "micro-relief" of the surface. The ice is considered to be an ideally plastic material and the fundamental formula employed states the equality of the downslope component of the weight of the overlying

GLACIERS

ice to the opposing tangential frictional force of the basement, taken to be the “yield shear stress” for the ice. Calculated basement topography for the outer part of the Greenland ice cap is in good agreement with seismic depths and corroborates the theoretical conclusion that relative maximum and minimum altitudes of the basement surface along a given profile lie below the points of inflection of the curve representing the micro-relief of the surface. The formulas derived are shown to apply only when the slope of the surface of the ice is of sufficient magnitude.—P. E. B.

A discussion is given of a simple mathematical model of the carbon dioxide cycle in the system atmosphere-biosphere-sea. The discussion is confined to phenomena with characteristic times of the order of 10 to 10^6 years. The results suggest that the increase of carbon dioxide indicated by recent measurements may represent part of a natural self-sustained oscillation and not necessarily be a response to an increased combustion of fossil fuels.—P. E. B.

The most recent calculations of the influence of CO₂ on the infrared flux show that if the CO₂ concentration in the atmosphere is doubled or halved, the average temperature rises 3.6° C or falls 3.8° C, respectively. If the total CO₂ in the atmosphere-ocean system is reduced slightly and held fixed at this new value, the atmospheric CO₂ is initially lowered. The temperature falls sufficiently to start a glacial epoch. Glaciers form decreasing the volume of the oceans by perhaps 5 percent so that they slowly release additional CO₂ into the atmosphere. Eventually the CO₂ in the atmosphere is increased sufficiently to raise the temperature enough to melt the glaciers, thus increasing the volume of the oceans which now slowly begin to absorb more CO₂ from the atmosphere. After a further period of time the decreased CO₂ in the atmosphere brings lower temperatures and the glaciers form again, repeating the cycle. The cycle of oscillations has an average period of tens of thousands of years because of the slow exchange of CO₂ between the atmosphere and oceans. The cycle will continue as long as the total amount of CO₂ in the atmosphere-ocean system is unchanged. The hypothesis is discussed in detail in terms of the new data presented and of present knowledge of pertinent factors.—P. E. B.

GRAVITY

The Bouguer correction is applied to gravity data along with the terrain correction to eliminate the gravity effect of the topography and transform the
gravity data to a common level. The Bouguer correction is a function of the density of all the rocks lying above the level to which the gravity data are reduced. If density of the rocks forming the topography varies over the area of a survey, then the proper density should be used for every topographic feature. The Bouguer correction with varying density should be made only to a surface drawn through the low points of the topography. Below this surface a constant density should be used; otherwise, nonexisting gravity anomalies may be introduced into results of the survey, or existing anomalies may be distorted.—D. R. M.

Formulas are derived for the effect of the component of the disturbing acceleration in the sense of the swinging plane of the pendulums and for that perpendicular to this plane. The first formula has a part that checks well with nearly all values for this correction computed by Worsley; these plus another part of the correction that must be considered agree with the formula derived by Browne. The new formula confirms Worsley’s result that short-period vibrations are negligible if the knife edges of the pendulums follow the vibrations completely. For submarine observations it is desirable to dive deeply enough to avoid perceptible wave movements of periods less than about 6 sec, to avoid accelerations greater than a 150th part of gravity, and to avoid vibrations.—M. C. R.

Discussion of a method for eliminating instrumental drift from periodic measurements of gravity, prior to harmonic analysis. The method applies to the removal of an aperiodic function in polynomial form from a function which is the sum of periodic and aperiodic functions. The method makes it possible to calculate the mean square error of the observations and the probable error of the results. An example of the analysis is given for 1 month of continuous hourly measurements at Strasbourg.—P. E. B.

To reduce the labor of calculating terrain correction a method has been devised in which the ground around each station is divided into sectors by equally spaced radial lines and the integral of the topographic section is calculated along each dividing radius. By means of a special computation chart the integration is reduced to the measurement of an area or the first moment of an area by a planimeter or integrator.—M. C. R.

167-137. Bulhanzhe, Yu. D. Formuly dlya vychisleniya oshibok gravimetricheskoy svyazi dvykh punktov pri mnogokratnykh izmereniyakh, vypolnyayemykh gruppoy gravimetrov [Formulas for the evaluation of gravity data to a common level. The Bouguer correction is a function of the density of all the rocks lying above the level to which the gravity data are reduced. If density of the rocks forming the topography varies over the area of a survey, then the proper density should be used for every topographic feature. The Bouguer correction with varying density should be made only to a surface drawn through the low points of the topography. Below this surface a constant density should be used; otherwise, nonexisting gravity anomalies may be introduced into results of the survey, or existing anomalies may be distorted.—D. R. M.

Formulas are derived for the effect of the component of the disturbing acceleration in the sense of the swinging plane of the pendulums and for that perpendicular to this plane. The first formula has a part that checks well with nearly all values for this correction computed by Worsley; these plus another part of the correction that must be considered agree with the formula derived by Browne. The new formula confirms Worsley's result that short-period vibrations are negligible if the knife edges of the pendulums follow the vibrations completely. For submarine observations it is desirable to dive deeply enough to avoid perceptible wave movements of periods less than about 6 sec, to avoid accelerations greater than a 150th part of gravity, and to avoid vibrations.—M. C. R.

Discussion of a method for eliminating instrumental drift from periodic measurements of gravity, prior to harmonic analysis. The method applies to the removal of an aperiodic function in polynomial form from a function which is the sum of periodic and aperiodic functions. The method makes it possible to calculate the mean square error of the observations and the probable error of the results. An example of the analysis is given for 1 month of continuous hourly measurements at Strasbourg.—P. E. B.

To reduce the labor of calculating terrain correction a method has been devised in which the ground around each station is divided into sectors by equally spaced radial lines and the integral of the topographic section is calculated along each dividing radius. By means of a special computation chart the integration is reduced to the measurement of an area or the first moment of an area by a planimeter or integrator.—M. C. R.

167-137. Bulhanzhe, Yu. D. Formuly dlya vychisleniya oshibok gravimetricheskoy svyazi dvykh punktov pri mnogokratnykh izmereniyakh, vypolnyayemykh gruppoy gravimetrov [Formulas for the evaluation of gravity data to a common level. The Bouguer correction is a function of the density of all the rocks lying above the level to which the gravity data are reduced. If density of the rocks forming the topography varies over the area of a survey, then the proper density should be used for every topographic feature. The Bouguer correction with varying density should be made only to a surface drawn through the low points of the topography. Below this surface a constant density should be used; otherwise, nonexisting gravity anomalies may be introduced into results of the survey, or existing anomalies may be distorted.—D. R. M.
Several second-class base stations were established in different parts of the U. S. S. R. and tied by repeated trips between the central observatory at Moscow and the station in question, the differences of gravity being measured by several gravimeters on every trip. The probable error and greatest attainable accuracy of such a method are discussed. Formulas derived for the error are applied to the tie between stations at Moscow and Kazan. — S. T. V.

Analytical and experimental study of the sources of errors and the possible improvements of the gravimeters with horizontal quartz fiber, specifically the Nørgaard and the Russian CH3 and GAE–2 gravimeters, indicates that the error of an individual determination is $15 \pm (0.20–0.30)$ milligal. The errors of the micrometer readings are very small; the main source of errors is in the optical system which makes collimation of the indices difficult. The errors increase rapidly with decreasing angle of the opening of the torsion system. Improvements can be achieved by selection of a smaller rigidity constant of the torsion wire or by an increase of the magnification of the eyepiece of the microscope. — S. T. V.

The explanation of gravity anomalies need not invoke the hydrostatic equilibrium of the theory of isostasy; Perrin proposes a theory based on physico-chemical equilibrium in the solid earth. The surface alteration and erosion and sedimentation on the initial crust would destroy the initial physico-chemical equilibrium between the different relatively superficial layers. When the temperature rose sufficiently, owing to burial or some other cause, metamorphism and granitization would take place, tending toward reestablishment of the equilibrium between solid phases by diffusion over great distances. Metamorphism
and granitization would entail upward migration of Na, K, and Si and a downward migration of Al, Mg, and Fe. Erosion and sedimentation would tend to concentrate iron at certain points, conversely decreasing the density of the rest of surface terrains. The end result would be that the surface layers forming the continents and mountain ranges would become less dense than the layers below them, with consequent decrease of gravity. The anomalies calculated according to this theory (assuming an initial homogeneous density of 2.9) are of the same order of magnitude as the observed anomalies.—D. B. V.

Bouguer anomalies in the Berry region of central France follow the topography except in the valleys whereas classic theories of isostasy would indicate a widespread anomaly. Calculation of Putnam corrections results in a uniform residual anomaly of 5 to 10 milligals. This distribution of gravity would suggest “anti-regional” compensation that would call for light masses in the lower part of the crust in juxtaposition to deep roots of the granulite massifs. A narrow positive anomaly in the Jurassic covered region north of Argenton indicates the presence of denser rocks within 6 km of the surface. The limit of erosion of Mesozoic rocks apparently is on a flexure that isostatic adjustment tends to accentuate—M. C. R.

Hypotheses for source and emplacement of granite are classified as magmatic, metasomatic, and combined magmatic and metasomatic. The evidence of negative gravity anomalies, analyzed from various aspects, and of the low-velocity lithosphere channel of Gutenberg (Geophys. Abs. 162–234) indicate that batholiths have considerable extent in depth, hence forcible intrusion is unlikely to be the main mechanism in post-tectonic emplacement. The negative anomalies demonstrate that the emplacement involves considerable over-all removal of mass from the regions now occupied by granite, but they do not support the hypothesis that the bulk of this now resides in the country rocks as a basic front. The evidence suggests that both downward diffusion of surplus mass and stoping are possible primary mechanisms. Taken together, geophysical, geochemical and geological observations support the idea that a true granitic layer, underlying the metasedimentary rocks, provides the source material for granite. Syn- and postemplacement uplift of batholiths and the origin of mantled gneiss domes are attributed to isostatic-type phenomena depending on the granite mass deficiency—D. B. V.

Gravimetric missions have completed 4 years' work in the Congo basin and graben of Central Africa. This has led to the establishment of 3 pendulum stations tied to Uccle (Belgium), 7 stations of the international network, 27 stations of the base network, 6,000 stations in the Congo basin, 95 reconnaissance
stations in the graben, and a general survey across the northeastern part of the Congo and the territories of Uganda and Tanganyika. Jones describes in detail the problems which were confronted in this area and the methods and instruments used. Four schematic maps showing the general geography, gravimetric networks, and levelling in the area are included.—B. T. E.

This paper accompanied presentation to the Société géologique de France of the recently published Poitou-Marche gravimetric map, Bureau des Recherches géologiques, géophysiques et minières, covering the northern part of the Massif Central between the Poitou and the Limagne regions. The close relation between the distribution of gravity intensity and structure of the basement is illustrated by reference to several details on the map. Over the granulites, in particular, the isogams closely parallel the structure contours.—D. B. V.

Gravity, magnetic, and geologic profiles drawn from Disappointment Valley to Tabeguache Creek and across Paradox Valley, Colorado, illustrate the use of magnetic and gravity surveys in an area where the structure of the older rocks differs in many places from that of the overlying rock. In general, the magnetic anomalies are caused by the contrasting magnetic effects of the basement rocks. The gravity anomalies are caused by contrasting densities in both the crystalline and sedimentary rocks. The largest gravity anomalies in the Uravan area are associated with the piercement salt anticlines of Gypsum and Paradox Valleys. The density of the cores of these structures is about 2.2 g per cm³, whereas the density of the adjacent rock is about 2.5 to 2.6 g per cm³.—B. T. E.

A gravity survey consisting of 230 stations in an area of approximately 170 square miles was undertaken to study the deep-seated effects of the North and Middle Craven fault systems. The maximum standard error of any single Bouguer anomaly is estimated to be no more than 0.19 milligal. Results indicate the Craven fault system is not associated with any large gravity variations because of the lack of a bulk density contrast between Lower Paleozoic and Lower Carboniferous rocks. Deposition and deformation of the Ingletonian and Lower Paleozoic rocks and the general direction of the North and Middle Craven faults have apparently been controlled by existence of a low-density structurally rigid Precambrian massif.—M. C. R.
The diurnal variations of gravity at Tananarive, Madagascar, determined in four series of observations at intervals of approximately 2 weeks in February-April 1954 are shown in curves. The calculated values of theoretical gravity and the observed values were treated by the method of least squares to give the ratio of observed to theoretical amplitude. The average ratio of 1.141 is lower than that of 1.20 generally accepted for the whole earth but it is within the extremes noted by other authors in different countries.—D. B. V.

According to measurements made in September 1955, the position of Tromelin Islet (east of Madagascar) is 54°30′54″±7″ E. long., 15°53′01″±7″ S. lat. (precision of the order of 250 m); magnetic declination is 10.9°±0.05° toward the west; absolute gravity is 978.64022 milligals, and there is a positive Bouguer anomaly of 207.8 milligals. This anomaly is consistent with those of other islands far at sea and surrounded by deeps of the order of 4,000 m, such as Réunion, +235 milligals, and Mauritius, +260 milligals.—D. B. V.

The gravity map of the Kotuku-Ahaura district (North Westland, New Zealand) shows that the Grey-Inangahua depression contains two major synclines arranged en echelon and separated by an anticline on which there is a minor closed structure, the Ahaura dome, 12 miles northeast of the oil seepages at the Kotuku dome. The strata at the Ahaura dome inferred from the geologic history probably contain no impermeable layers capable of trapping oil, but as this is not certain a test boring is recommended.—D. B. V.

The gravity anomalies of the western part of the West Siberian plain are due to changes in relief in the pre-Mesozoic basement. Being rather weak, they are difficult to distinguish and interpret without the aid of reconnaissance surveys by magnetic or other geophysical methods.—D. B. V.

Ten gravimeter observations were made on St. Thomas and 21 on St. Croix islands. Contours of the simple Bouguer anomalies on St. Thomas are essentially parallel to the strike of the surface structures and agree in trend and absolute value with those on Puerto Rico. A gravity minimum of about 20 milligals
on St. Croix can be correlated with the Tertiary sedimentary basin. The gravity data indicate that these sediments form a wedge with the maximum thickness, about 2 km, near the eastern margin of the basin. Seismic and gravity data in the Virgin Islands region indicate the crust is 29 km thick in both the Puerto Rico and Virgin Islands platforms but that there is a relatively thin crust beneath the Anegada trough, perhaps as the result of extension of the crustal rocks.—M. C. R.

A brief report of the observations of gravity in 1953 in Macedonia, southern Yugoslavia. Seven stations were occupied with a Worden gravimeter. The measurements are tabulated.—S. T. V.

HEAT AND HEAT FLOW

A report on the highlights of the conference. These included: the importance of thermal studies in the elucidation of the history of the earth [see Geophys. Abs. 164-180 and 165-212]; thermal measurements in drill holes as indicators of structure in oilfields or the composition of the upper layers of the crust (for example, in the Caucasus the geothermal gradient varies from 7 m per 1°C to 40-50 m or even 100 m per °C in accordance with the structure of the region); and the possibility of using the internal heat, coming to the surface as hot springs, for residential heating or for agricultural purposes or, in volcanic regions such as Kamchatka and the Kurile Islands, for production of electric energy.—S. T. V.

The theory of Lebedev and Belov, that solar energy absorbed in weathering of aluminum silicates serves as a fundamental source of energy in endogenic processes, is shown to be based on erroneous assumptions. It is shown that in the reactions involving changes in the atomic coordinates of aluminum—for instance, kaolinitization of feldspars—other factors such as temperature and alkalinity of the solutions enter in and invalidate the analogy to photosynthesis in organic substances. Lebedev’s theory is contrary to the second law of thermodynamics. The predominant metamorphic reactions, dehydration and decarbonatization, undeniably require a vast consumption of energy in comparison to which the production of energy by weathering is insignificant.—D. B. V.

From a study of the heat conductivity of various building bricks, it has been deduced that heat conductivity increases with decreasing porosity and with in-
creasing pore water content. Laboratory measurements of the thermal conductivity of representative rock samples were made, therefore, to determine whether similar relationships hold for sedimentary rocks. The thermal conductivity apparatus used causes heat to flow at an unknown but constant rate through a pile consisting of a cylindrical rock sample and a standard sample of known thermal conductivity. The heat conductivity of the rock sample can then be calculated from the measured temperature gradients in the rock and standard and the known heat conductivity of the standard. Radial heat transfer is largely prevented by a cylindrical brass shield heated to a longitudinal temperature distribution as nearly as possible to that of the pile.

In addition to porosity and pore water content, permeability also affects heat conductivity through the influence of convective heat transport in the wider pores. A quantitative relationship was found between porosity and the product of thermal conductivity and the formation resistivity factor of sedimentary rocks. Differences between heat conductivities of cores either partly filled with water and gas, or with oil or water, are small. Heat conductivity can be calculated from the porosity and resistivity factor for certain rock types.—L. C. P.

De Vries points out that Webb overlooked the fact that his calculation of the thermal conductivity of a cubic arrangement of spheres (Geophys. Abs. 165-215) is based on an inadmissible simplification and that he has derived an approximate method for calculating the thermal conductivity of soils from their composition, moisture content, and dry density. Webb, in reply, states that he realizes the formula is nonrigorous but that his purpose in writing was to challenge the validity of Gemant's method of determining the conductivity of dry soil in which the air-phase conductance is neglected.—M. C. R.

In 1954 live steam and boiling water were reported as issuing from shallow wells being drilled in an area between the Pyramid and Peloncillo Mountains, 15 miles southwest of Lordsburg, N. Mex. Geothermal measurements were made by inserting resistance thermometers into holes driven 4 feet into the ground. The anomalous area covers approximately two sections. The maximum observed temperature 1 meter below the surface was 23°C, approximately 12°C higher than readings outside the anomalous region. At three places in the warmest area a mean vertical gradient of 10°C per m was observed. The source of the heat may be hot steam and vapors ascending from great depth along faults and fractures, a relatively recent intrusive body beneath the rhyolite bedrock, or the rhyolite itself (although this last is improbable if the rhyolite is of mid- to late-Tertiary age as are similar rhyolites in adjacent areas).—M. C. R.

Geothermal gradients, in the salt section of the Solado formation of Permian age as indicated by temperature logs, are nearly uniform in west Texas and eastern New Mexico. The gradients range from 7.70°C per km to 9.00°C per km. From measurements of thermal conductivity and a review of the litera-
ture, the thermal conductivity of rock salt is estimated as about 13×10^{-8} cal per cm sec °C with an uncertainty of about 10 percent. The heat flow is calculated as $1.1 \pm 0.1 \times 10^{-9}$ cal per sq cm.—M. C. R.

Measurements of the flow of hot streams, emission of steam from fumaroles, and heat loss from the surface of hot pools in several soufrières in the Lesser Antilles yield rough estimates of the thermal output of the region. The highest heat output observed was at the Boiling Lake of Dominica, 1.44×10^7 cals per sec; the lowest, $2,900$ cals per sec at Mount Misery in St. Kitts. As steam temperatures range as high as 185°C, well above that which can be obtained by expanding saturated steam down to atmospheric pressure from any initial condition, it is suggested that much of the steam may come directly from magma rather than from meteoric water in contact with heated rock. The total heat output of the soufrières ($<10^9$ cals per sec) is of the same order of magnitude as the average heat of major eruptions in historic times (1.3×10^8) and the combined figure is of the same order of magnitude as heat flow through a nonvolcanic area of the same size (1.3×10^8). Unless substantial additional heat flow remains to be detected, it must be concluded that the West Indian activity is a very minor anomaly in the terrestrial heat flow pattern.—D. B. V.

INTERNAL CONSTITUTION

In Dauvillier's theory of the origin of the universe, the role of the solar system may be summed up as follows: The chemical elements constituting our solar system were born with the sun (then a red giant star) 5 billion years ago at the center of a globular cluster. The solar system itself resulted from an interaction which took place 10^9 yrs later at the center of the galactic nucleus. During the ensuing thirty-odd revolutions of the spiral the solar system has worked outward from the center of the galaxy, and the sun has used up almost all its hydrogen. Soon it will explode as a supernova, sterilizing the earth, evaporating the oceans and melting the lithosphere, and become a hyperdense star. In several billion years it will escape from the spirals into the galactic domain, where it will be captured by a globular cluster. The sun, hyperdense and dark, will explode in a stellar encounter at the center of the cluster, engendering new chemical elements and a new red giant, thus initiating a new cycle.—D. B. V.

The Widmanstatten pattern of iron meteorites and the theoretical time of cooling of a solid sphere indicates that all meteorites originated from breakdown presumably by collision of a planet or planets 1,000 to 2,000 km in diameter. If the discontinuity at the boundary of the earth's core is not due to a difference in chemical constitution but to a phase transition of the silicate material in
the mantle, the energy released in transition of an unstable planetary core is too small to cause ejection of meteoritic fragments to space. Moreover, the stresses are too small to cause rupture of the planetary mantle; in such a case transition is regulated by viscosity and is extremely slow. The ejection of meteoritic fragments from the surface of the unstable planet is then completely ruled out. Phase transitions of complex materials are expected to take place in several steps. The sharpness and isolated occurrence of the discontinuity at the boundary of the earth's core is probably due to a difference in chemical composition; namely, the presence of an iron core.—D. R. V.

A critical review of hypotheses on the internal structure of the earth, such as the composition and physical state of the core, the sources of terrestrial magnetism, the composition of the lower portions of the mantle, the nature of the transitional layer under the effect of high temperature and pressure, the genesis of the crust, and the processes going on in the crust.—S. T. V.

A thorough discussion of what has been learned of the earth's internal constitution by geophysical research. The introduction includes the most fundamental principles related to the behavior of matter; state, viscosity, elasticity; isotropy and anisotropy; and effects of temperature and pressure. Chapters are devoted to the following topics: properties derived from geodetic measurements, such as shape, size, acceleration of gravity, mass, density, and moment of inertia; properties found by astronomical observation; secular variations of the solid earth as related to the magnitude and direction of the force of gravity; seismophysical investigation of the deep interior; density distribution; gravity, pressure, elasticity and viscosity as functions of depth; temperature; the chemical composition of the earth and solar system; the physical constitution of the crust and distribution of land masses; magnetism and electric currents. Also included is an index of geophysical constants and magnitudes.—B. T. E.

Study of paleogeographic maps by Strahow and the Termiers shows there has been a tendency toward a decrease in the area of water-covered continental areas during geologic time, and thus an expanding earth. The rate of annual increase of the radius is estimated to have been, on the average, 0.5 mm per year. The formation of continents and ocean basins can be explained on this basis as the result of the disruption of a continuous crust and the rise of ultrabasic magma along the line of rupture to a level corresponding to hydrostatic equilibrium, about 5 to 6 km lower than the average level of the surface of the continental areas. Periodicity of stress accumulation and release is a consequence of expansion of volume; the duration of the period (which must agree with that of transgression and regression) is estimated as 50 million years.—M. C. R.

The earth's interior becomes more and more homogeneous toward the center. The core consists of matter in an ultra-high pressure phase that is unstable, resulting in a steady expansion of the earth's volume. The expansion of the earth and attendant stresses and energy transfers account for the formation of the crust, continents, and ocean basins; the energy of tectonic forces and earthquakes; the origin of deep-focus earthquakes; surface structural features, such as fracture systems, deep-sea troughs, and the African Rift Valleys; continental drift; periodicity of geologic phenomena; and mountain building.—D. B. V.

The theory that the moon was originally an independent planet and was captured by tidal forces when it happened to pass the earth at a distance of 26.1 earth's radii is mathematically simpler than the theory that the moon originated from material of earth's core, undergoing sudden transitions at pressures exceeding 4×10^6 atmospheres and explosively ejected into nearby space; the moon can also be more completely traced back in time. "Unfortunately, we cannot be sure that nature actually chose the simpler method of attaching the moon to our planet."—D. B. V.

This is a review of recent observations and opinions on the structure of the earth, based on laboratory experiments and on seismological research. Previous concepts have been too simple. Questions of crustal layering, mountain roots, seismicity of the earth, fault movement in the Kern County, Calif., earthquakes of July 21, 1952 and succeeding months, heat flow from the earth's surface, and constitution of the mantle and core are treated more or less briefly.—D. B. V.

A discussion of seismic effects and measurements in ocean basins of earthquakes and explosions, delivered at a convocation celebrating the dedication of the Laboratory of Oceanography at Woods Hole, Mass., June 1954.—M. C. R.

Regional differences in crustal structure in Japan were investigated by analysis of the duration of the refracted wave observed ahead of the direct wave. The thickness of the crust is estimated to range from 25 to 50 km. The depth of focus is also related to the thickness of the crust; in general, the foci seem to be a little above the bottom of the crust in the area concerned.—M. C. R.

Seismological observations of a large blast at the Kamaisi Mine in northeastern Japan on September 13, 1953, were concentrated within a distance of 300 km south of the blast point. The P-wave data indicate that a layer in which the velocity is 6.05 km/s overlies a layer in which the velocity is 7.2 or 7.6 km/s at a depth of 22 or 25 km. The result is supported by observation of reflected waves. S-wave data indicate that a layer in which the velocity is 3.46 km/s overlies a layer in which the velocity is 4.5 or 4.8 km/s at a depth of 32 or 36 km. Discrepancies probably arise from the assumption that the crustal structure is horizontally uniform. (See also Geophys. Abs. 166-247.) —D. B. V.

Isotopic investigations or radiogenic lead in rocks and meteorites, here reviewed, show that the chemical differentiation resulting in accumulation of radioactive elements in an outer silicate portion of the planet and their impoverishment in the deeper subcrustal regions (metallic phase), took place 4,500 million years ago. The primary magma, from which the hydrosphere and the granitic and basaltic layers of the crust were formed by further differentiation, must have been derived from the upper aluminosilicate phase of the outer portion rather than the deeper magnesian silicate phase; such ultrabasic magma does not contain enough potash to produce granites on differentiation, whereas a primary magma close to present-day basalts does.—D. B. V.

Calculations of pressure as [a] function of depth under a rock column in a region of high mountains, a second under continental lowlands, and a third under a deep ocean basin are carried out on the basis of the most recent data on layering in the earth's crust and on density of rocks. At depths below about 50 km the calculated pressure is nearly the same in all three columns, indicating approximately hydrostatic equilibrium. In the continents the mean density of a column above the Mohorovičić discontinuity seems to be at least 0.1 greater than the value of 2.67 g per cm³ which is being used in isostatic calculations, and the difference between the density of the material below the discontinuity and the average density above it is probably closer to 0.5 g per cm³ than to the value of 0.6 which is now in use. Since in most of the Pacific basin and in a large part of the Atlantic basins the depth of the water and the thickness of the rock layers above the Mohorovičić discontinuity are of the same order of magnitude, separate treatment of these two layers seems to be preferable.—Author's summary

In developing the external space potential according to spherical functions, it is known that the first-order harmonic term is lacking if the origin of the co-
ordinate system lies in the center of gravity. This is also the case if first-order terms are included in the mass distribution. This paper shows mathematically how the first-order term can be adjusted to known isostatic theories by assuming displacement of the center of gravity.—D. B. V.

Changing gage relations and water-level data at Port Dalhousie, Toronto, Oswego, Kingston, and Cape Vincent over the period 1860-1952 show that the crust in the Lake Ontario-Upper St. Lawrence River Basin is being differentially uplifted at rates that range from 0 at Port Dalhousie to 1.29±ft per 100 years at Cornwall.—M. C. R.

A review of the contributions of Schloëtz and Nansen, pioneers in isostatic research in Norway.—D. B. V.

ISOTOPE GEOLOGY

The relative abundance of the boron isotopes has been measured on 43 samples of boron minerals and sea water. Contrary to an earlier investigation, no variations could be observed except for sea water, where boron seems to be about 2 percent “heavier” than in the minerals. If variations do occur, they are less than a few parts per thousand.—Authors' abstract

The deuterium content of the hydrogen in methane from the Lacq oilfield in southern France is the same as the average content of deuterium in the surface waters, about 150 ppm. The hydrogen in hydrogen sulfide, however, has a deuterium content of 90±10 ppm. This value is interpreted as the effect of isotope exchange reactions between hydrogen and water. The reaction depends on the temperature of the deposit (here taken as 140°C); conversely, the temperature of the deposit can be estimated from the deuterium content of the H2S gas, given the volumes of water and gas present.—D. B. V.

A program of investigation of the relative abundance of the stable isotopes of sulfur in the sulfides of bedded ore deposits for which both epigenetic and syngenetic origins have been proposed was begun with a study of the Rhodesian copper belt deposits. The S34/S32 ratios fall within the range for those known to date for hydrothermal, magmatic, and pegmatitic sulfides, and also come within part of the range established for H2S of biogenic origin. Isotope ratios
in sulfides of other deposits determined for comparison give some support to an
epigenetic origin for the Kipushi (Katanga) deposits and indicate that the
Luisha (Katanga) deposit is also of epigenetic origin. The Messima digenite
ratios are close to that of meteoritic sulfur. Field and microscope evidence
should be considered with isotope evidence and more investigation is needed
of sulfur isotope ratios from deposits of unquestioned sedimentary origin.—
V. S. N.

MAGNETIC FIELD OF THE EARTH

167-170. Namikawa, Tomikazu. Magnetohydrodynamic oscillations of a con­
ducting liquid mass rotating in a uniform magnetic field: Jour. Geo­

The basic magnetohydrodynamic equations for small oscillations are derived
with the aid of the field equations. Solutions are obtained in terms of infinite
series; but Namikawa is primarily interested in the effect of Coriolis forces of
cosmic magnitudes. Solutions for an infinitely long cylinder with a rigid bound­
ing surface indicate that when the Coriolis force is much greater than the electro­
magnetic force, two periods result—one longer and one shorter than that of a
nonrotating cylinder.—R. G. H.

167-180. Rikitake, Tsuneji. Magneto-hydrodynamic oscillations of a conduct­
ing fluid sphere under the influence of the Coriolis force: Tokyo

Study of the magnetohydrodynamic oscillations of a highly conducting fluid
sphere rotating in a uniform magnetic field shows that previous discussion (See
Geophys. Abs. 164-219, 165-246, 166-256) concerning the stability of the earth's
dynamo should be altered to take into account the Coriolis force.—D. B. V.

167-181. Jirlow, K. Experimental investigation of the inhibition of convection

A layer of mercury, enclosed by two plexiglass plates and a plexiglass cylinder
was subjected to constant downward vertical fields of 600 and 10,000 gauss. The
layer was heated from below and cooled above by circulating water. The results
confirm the theoretical inhibition of the onset of convection of an electrically
conducting fluid by a magnetic field.—P. E. B.

167-182. Runcorn, S. K[eth]. The present status of theories of the main geo­
magnetic field: Geologie en Mijnbouw, jaarg. 18, no. 11, p. 347-349,
1956.

A review of recent theories on the geomagnetic field.—D. B. V.

167-183. Olczak, Tadeusz. Über die Säkularänderungen des Erdmagnetismus
in Polen im Zeitraum von 1901,0 bis 1935,0 [On the secular varia­
tions of geomagnetism in Poland in the period from 1901.0 to 1935.0]:

With the aid of tables and sketch maps, the secular changes in declination, in­
clination, and horizontal and vertical intensity of the earth's magnetic field in
Poland from 1901 to 1935 are presented.—D. B. V.

Analysis of data from observatories in different parts of the world shows an unmistakable secular variation of a period of approximately 44 years in each of the geomagnetic elements. In equatorial regions the wave is halved, corresponding to the 22-year period of sunspot magnetization; for the H wave at Oslo, an 11-year sunspot period can be discerned. The superimposed waves for declination and east component proceed from west to east around the earth; for the other magnetic elements the maximum values are synchronous over the entire earth. Referred to the adjusted secular variation, the actual variation is sometimes fast and sometimes slow.—D. B. V.

During the summer of 1953, variations of the geomagnetic field were continuously recorded on 7 stations 150 to 300 km apart between latitudes 67° and 73° N. Brunelli's variometers were used. It was found that simultaneous variations of the geomagnetic field at stations 200 to 300 km apart were of very different character, sometimes of the same phase, others opposite, with absolute differences in intensity of the magnetic vector of 200 to 300 gammas. Differences between stations at greater distances were sometimes as much as 700 gammas.

Vector charts of the variations showed the sources were 150 to 1,500 km above the earth. Other geomagnetic variations were produced by induced telluric currents at depths of about 150 km. Detailed study of these variations using an extended and dense enough network of geomagnetic stations is necessary. The morphology of these magnetic disturbances is of importance in aerial navigation at high altitudes, especially in airborne magnetic surveys.—S. T. V.

Statistical study of the variations of the geomagnetic field observed at Alma-Ata between September 1, 1953, and August 25, 1954, indicates an annual periodicity of two forms of magnetic disturbances related to the equinox (maximum) and to the solstice (minimum). These variations are attributed to changes in the intensity of the corpuscular stream from sunspots. Typical magnetograms are reproduced.—S. T. V.

A discussion of data from 52 observatories in both hemispheres. Two types of activity are distinguished and defined, and their connections with magnetic storms, aurorae, and bays are discussed.—P. E. B.

Using the same instruments and procedure as in the western and southern part of the island (see following abstract), magnetic declination was measured at six stations in central Madagascar in April 1954. Because diurnal variations were weak on the days of the survey, the results listed will not differ significantly from the corrected values.—D. B. V.

Between September 27 and November 3, 1954, magnetic declination was measured by reoccupying 10 old stations (mainly those of Besairie) in different regions in western and southern Madagascar. Results are listed, uncorrected for diurnal or seasonal variation. (See also Geophys. Abs. 163-54.)—D. B. V.

In this paper an attempt is made to bring the empirical results of year-round earth current observations into harmony with the theory of simple, inductively coupled current circuits. Proceeding from the simple Laplace law of electrodynamics, a satisfactory correspondence can be found between observation and theory for the magnetic reaction of the earth current. The original observations needed for more exact calculations are lacking; also the number of observations should be significantly greater. Finally, the calculation of the magnetic reaction could yield better results if the curvature of the earth is taken into account.—Author's conclusions, D. B. V.

One hundred twenty-three geomagnetic field lines have been integrated by an electronic computer, taking into account also the quadrupole terms of the potential. A table gives the coordinates of the two points of intersection, one in the northern and one in the southern hemisphere, between the earth's surface and each calculated field line.—Authors' abstract

A portable electrical magnetometer, consisting of a magnetic detector of the saturated transformer type mounted on the telescope of a nonmagnetic theodolite built at the Dominion Observatory, can be used to make a complete observation of declination, inclination, and total intensity in 15 minutes at any magnetic latitude. Probable errors are ±0.3' in declination, ±0.2' in inclination, and
±0.02 to ±0.1 percent in total intensity depending on the frequency of standardization. A circuit diagram is given.—M. O. R.

MAGNETIC PROPERTIES

An accurate magnetic balance is described and its specifications given. One arm contains the sample of volume 5 cu mm or less, heating coils, and thermocouples. An electromagnet producing maximum fields of 7,500 oersteds acts on the sample. Cooling of the sample is achieved through the evaporation of liquid air. The apparatus should prove useful in the analysis of inverse magnetization of volcanic rocks. After the Curie point of magnetite is passed, a magnetization parallel to the earth's field is produced. Subsequent oxidation in the cooling rock allows TiO₂ to combine with FeO in the magnetite, with the production of γ-Fe₂O₃. The apparatus should be useful in evaluating the influence of γ-Fe₂O₃ in producing inverse magnetization. Formulas for determining the relative amounts of different magnetic constituents from measurements on a sample and a qualitative graph of the expected influence of TiO₂FeO and γ-Fe₂O₃ on the magnetization of magnetite are presented.—P. E. B.

The tangents to field lines were determined for a cylinder of molybdenum mu-metal 1 m long with the aid of a small compass. The background field was removed by duplicate measurements with the cylinder at a distance. A map of field lines is presented.—P. E. B.

A report of a meeting of Section A of the British Association on September 4, 1956. P. M. S. Blackett presented a brief account of the history and present state of the subject; A. E. M. Nairn gave an account of the work carried out by members of the group working under S. K. Runcorn; and Clegg described paleomagnetic research at the Imperial College of Science and Technology.—M. O. R.

Studies of the remanent magnetization of lava flows in Iceland indicate that since Miocene time the magnetic pole has centered on the geographic pole. Reverse magnetizations in both igneous and sedimentary rocks are also found. Mechanisms involving chemical action, proposed by Néel, cannot be reconciled with the field evidence. Laboratory experiments are believed to cast doubt on the remaining two mechanisms proposed by Néel. Reversal of the main geomagnetic
MAGNETIC PROPERTIES

field is suggested. Four periods of reversal are observed. The theory of polar wandering is incompatible with the magnetic evidence.—M. C. R.

Study of the paleomagnetic directions of the geologic column in various parts of the world indicates that there has been little continental displacement around the North Atlantic since late Precambrian times, but it seems probable that in the southern hemisphere displacement may have been very extensive, of the order of 6,000 miles since the end of the Paleozoic era.—D. B. V.

The most important conclusion that can be drawn at present from recent paleomagnetic determinations is that since Precambrian times Europe and North America cannot have drifted any appreciable distance with respect to one another. There is still the possibility of polar wandering, or a displacement of the axis of rotation with respect to the solid crust, while the position of the axis in space and the relative position of the continents remain unaltered. The magnetic pole does not necessarily coincide with the pole of rotation and paleomagnetic data cannot be used to check the position of the latter. If terrestrial magnetism is controlled by the pattern of convection currents in the earth's liquid core, as is now widely believed, the type of currents and magnetic elements would be determined by the distribution of radioactive sources in the mantle, distribution of land and sea, and other factors regulating heat flow to the surface; rotation would influence but not control geomagnetism. The hypothesis of close coincidence of mean magnetic and rotational axes is therefore not well founded, in the light of present knowledge of the earth's magnetic field.—D. B. V.

If one assumes that the remanent magnetization of sediments is stable and represents the direction of the earth's magnetic field at the time of their formation, one can study the movement of the earth's magnetic pole throughout geologic time. If this slow steady change of the pole and its rapid reversals can be considered established, the magnetism of sedimentary rocks can be used to study the rate of deposition of sediments, the relative movement of continents, and the thermal history of rocks; and to establish a means of correlating lava flows or other igneous intrusions.—J. R. B.

Laboratory studies of a sample of crushed magnetite mixed with plaster of Paris from the Gudur area (South India) show that: the coercivity increases linearly with decrease in percentage by weight of magnetite and with decrease in grain size of magnetite; remanence increases with increasing percentage of magnetite and decreasing grain size; the field at which maximum susceptibility occurs increases with decrease in grain size; the ratio of the maximum susceptibility to that at zero field is nearly constant with varying grain size; susceptibility increases rapidly with increasing magnetite content; the suscepti-
bility increases with decreasing field and decreasing percent of voids, and the variation of susceptibility shows an increase with decrease in magnetic fields. The susceptibility of magnetite is considerably reduced by crushing the material.—J. R. B.

Samples of dolerite from the Blundefield quarry in northern England were found to contain at least three magnetic components. In the initial stage of weathering nearly 30 percent of the magnetic component vanishes, presumably by chemical change, and as much as 60 percent of the remaining component readily decomposes on heating.—M. C. R.

The thermoremanent magnetization of magnetite sand from Niijima decreases with increasing temperature but increases abruptly near the Curie point. Experimental heating and quenching indicate there are two magnetically different constituents with different Curie points. Heat treatment changes the degree of intergrowth of a constituent into others in a mineral grain and also the magnetic interaction between these magnetic constituents. Chemical, microscopic, and X-ray analyses combined with the magnetic measurements of titanomagnetite grains separated from the sand indicate that the two components have Curie points of 470° and 540°C and are of the spinel type with lattice parameters of 8.404 and 8.395 Å. The constituent with the higher Curie point can be produced by oxidation and developed as lamellae in the matrix of the constituent with lower Curie point.—M. C. R.

Cylinders of kaolin containing disseminated pulverized pyrite were heated to 600°C for varying periods of time, in vacuum or in an atmosphere of nitrogen, and then allowed to cool in a field of 0.192 oersted. After short periods of heating in vacuum large thermoremanent magnetizations were observed. These were of the same magnitude as those produced previously in similar samples of magnetite and kaolin and were due to the alteration of the pyrite to pyrrhotite. Prolonged heating at 600°C was accompanied by the alteration of pyrrhotite to iron monosulfide, of negligible magnetization.—P. E. B.

The gravimetric and magnetic anomalies at the surface of the ground in Denmark and Northern Holland are supposed to originate from the same deep-seated bodies. From a combined analysis of these anomalies it is concluded that the intensity of magnetization in these bodies is of the order of magnitude 10^{-7} cgs units.
On the tentative assumption that the direction of remanent magnetization in these deep rocks is uniform, this direction is such that it corresponds to an attracting magnetic pole (the south pole) near that part of the Antarctic coast which lies south of South America. Similarly the other pole (the north pole) may be situated somewhere in the neighbourhood of the central part of the Arctic Siberian coast. At the present time, the first of these poles is situated northwest of Greenland, and the other is situated south of Australia.—Author's conclusion

Study of the remanent magnetism in a series of 18 French plateau basalts (all but one from the Velay flows, Auvergne) shows that the geomagnetic field from the time of the first eruption of the Velay volcanoes, in the Villafranchian, was opposite to the present earth's field. This inverse orientation continued through the early Pleistocene (Saint Prestian and Cromerian), changed during the lower Pleistocene (sometime before the emission of the slope basalts and the last glaciation) to the direction that persists today. It is suggested that this change in direction of magnetization be used as a horizon marker in dating Quaternary volcanic rocks; care must be exercised to make certain that the original thermoremanent magnetization is actually being measured.—D. B. V.

Paleomagnetic data for rocks of Jurassic age in Yorkshire indicate that Britain in Jurassic time must have had approximately the same position relative to the pole as at present; Runcorn's data for Arizona indicate that the movement of America is not significant, but data on the Rhodesian lavas indicate a movement of about 2,000 miles and Irving's results on dolerite sills in Tasmania indicate a movement of about 2,800 miles. If the axial dipole field coincides with the axis of rotation, continental drift must be accepted.—M. C. R.

The density and magnetic susceptibility of about 4,000 specimens of Paleozoic strata from different drill holes in the eastern part of the Tatar SSR were determined, the density by hydrostatic weighing of the specimens covered with a paraffin film, and the magnetic susceptibility with a Dolginov astatic magnetometer. The densities of the specimens varied with composition, geologic age, depth, and the degree of metamorphism and ranged from 2.19 g per cm3 in sandstones to 2.88 g per cm3 in anhydrites. The magnetic susceptibility ranged from 1×10^{-4} cgs in gypsum to 3×10^{-8} in dolomites and 7×10^{-6} in siltstones. These data indicate that the magnetic anomalies of as much as 4,000 to $5,000 \times 10^{-4}$ cgs observed in this area can be explained by the presence of magnetic rocks in the crystalline basement.—S. T. V.

A description of the geology of the Precambrian basement rock of Texas and southeast New Mexico as determined by a study of well cores and cuttings furnished by oil companies operating in the area. Besides discussions on each of the main lithologic units, a chapter on the analysis of gravity data is included. Major lithologic-structural divisions of the basement in general agree well with regional gravity trends. The margin of the Texas craton and the Van Horn and Red River mobile belts are well expressed whereas rootless stratiform terranes are not separately reflected.

Magnetic susceptibility measurements on 96 samples of Precambrian rock from deep wells in west Texas and southeast New Mexico are tabulated in an appendix. Susceptibilities of major rock types, such as granite and gabbro, show an extremely wide range (gabbro: 220×10^{-6} cgs to $6,900 \times 10^{-6}$ cgs) with considerable overlap of maximum and minimum values, suggesting that an “average susceptibility” for a particular rock type means little and that susceptibility of a particular rock mass cannot be determined by random sampling of wells.—B. T. E.

The remanent magnetization of late-Tertiary lavas in seven sections of Columbia River basalts has been examined. Approximately equal numbers of normally and reversely magnetized lava flows have been found. At least three field reversals during their eruption are indicated, if the reversed magnetization is interpreted as the result of a reversed geomagnetic field at the time of cooling of the lavas.—Authors’ abstract

MAGNETIC SURVEYS

Total magnetic intensity anomaly expressions are derived for four simple sources: the point pole, line of poles, point dipole, and line of dipoles. Type curves are presented for the point pole and dipole. For all cases, factors are calculated which may be multiplied into the half-maximum distances on the anomaly profiles to yield depth estimates. These methods serve as a first approximation in the interpretation of aeromagnetic data, but their limitations must be kept in mind. Two examples of the application of the methods are given.—Author’s abstract

167-211. Fanselau, Gerhard. Über die Reduktion von Messungen mit den magnetischen Feldwaagen, speziell der kombinierten Fadenwaage [On the reduction of measurements with the magnetic-field balances, especially the combined-suspension balance]: Freiberger Forschungshefte, C22 Geophysik, p. 5-19, 1956.

A detailed review of the various corrections, such as the adjustment of the horizontal balance for the effect of Z, and temperature compensation, that must be considered for greatest precision in magnetic field balance measurements. Although elementary, these factors are frequently neglected in evaluating magnetic
surveys. These corrections are especially important for the precise combined-suspension balance.—D. B. V.

The gravity surveys which revealed large negative anomalies between Adrar and Reggane in the Tanezrouft desert, Algeria (see Geophys. Abs. 154-14618 and 163-14) have been supplemented by more detailed gravity measurements and a magnetic survey. The gravity anomalies show very strong gradients and correlate strikingly with the magnetic anomalies, gravity minimums (as much as —60 mgal) corresponding to magnetic maximums (more than 200 gammas) and vice versa. The depth of the structure thus reflected is not calculated, but the enormous thickness of the "intercalary continent" which is suggested merits further prospecting.—D. B. V.

Seven hundred thirty magnetic stations were established in a regional survey of 1,500 square miles in the southern part of the Sydney basin. The magnetic results indicated the broad outline of the basin, and indicated areas of interest where detailed work may be undertaken. Correlation between magnetic and gravity profiles on four geological sections has shown that the degree to which the lithological and structural changes are reflected depends on variations of magnetic susceptibility and density. General conclusions were obtained from the application of laboratory susceptibility determinations to explain magnetic anomalies in the field.—V. S. N.

A map of the vertical magnetic anomalies of the Vienna basin and its environs has been compiled, chiefly from surveys made from 1934 to 1941 by the Eurogasco company and its successor, the Gewerkschaft Austrogasco, and partly from surveys by the former Amt für Bodenforschung of Bohemia and Moravia. The first part of this paper, by Bürgl, is concerned with the geologic interpretation of Austrogasco's work. Maximum magnetic intensities are found over the inner phyllites (almost 1,400 gammas) and locally over crystalline limestones (almost 3,000 gammas) of the Thaya dome. The magnetic anomalies reflect composition and in some places structure: in the Trnava basin, for instance, basement ridges are correlated with magnetic minimums and depressions with magnetic maximums. Gravity anomalies reflect lithology in the basement rather than structure.

The second (geophysical) part of the paper, by Kunz, describes the field procedures and reduction of measurements to the same normal field. (The latter could not be done for the Bohemia-Moravia surveys because the field data and base maps were not available, hence the results in the marginal areas of the map are only relative.) Magnetic profiles made by the Montanistische Hochschule Leoben of Salzburg in 1933 (see Geophys. Abs. 76-2630, 84-3098, and 87-3486) agree in general with the new map.—D. B. V.
Measurements of vertical magnetic intensity were made at 73 stations on San Miguel and 32 in the other islands of the Azores except Santa Maria. Anomalies are particularly irregular on San Miguel and Terceira Islands, where magnetite-rich basalts cut and are cut by trachytes. The normal value of Z is taken as 0.3780 gauss. On San Miguel the highest value obtained was 0.4126 in the extreme west of the island; negative anomalies were noted over the craters of the Caldeira das Sete Cidades and of the Lagōa das Furnas, with a minimum of 0.3578 at the former. A notable west-northwest-trending structural line follows a series of volcanic peaks from west of Lagōa do Fogo to near the Caldeira das Sete Cidades. The highest values in the whole archipelago were found on Flores Island. Sketch maps show positive and negative anomalies for San Miguel and for the whole archipelago.—D. B. V.

A magnetic survey of the Ahuachapán fumaroles and surrounding area to a distance of several kilometers (complementing McBirney’s investigations, Geophys. Abs. 167-280) was found useless to trace underground steam deposits because of the small range of variations (75 gammas maximum) and their apparent lack of relation to fumarole activity.—D. B. V.

During the recent regional magnetic survey by the Przedsiebiorstvo Poszukiwan’ geolozycznych [Polish Bureau of Geophysical Exploration] an important magnetic anomaly was found in the region of Jordanowo; over an area some 25 km long and about 8 km wide there is a positive magnetic anomaly of more than 200 gammas produced by a body elongated in the NNW–SSE direction. Using the method of Andreyev (see Geophys. Abs. 164-248) and that of line poles, the depth of the lower and the upper boundaries of the disturbing body was found and the average magnetic susceptibility determined as 0.0024. The economic value of the source of this anomaly is questionable.—S. T. V.

An aeromagnetic survey was made of 700 square miles in the southern part of Prince of Wales Island, Alaska, in 1945 in reconnaissance exploration for magnetic iron and associated copper deposits. The survey primarily succeeded in delineating the intrusive igneous rocks of the area along the margins of which contact-metamorphic ore bodies have developed. Strong positive anomalies on a total intensity magnetic contour map suggest places for further geological or
geophysical investigation. The two most attractive areas for exploration are thought to be north of the head of Hetta Inlet and north of Cholmondeley Sound.—Authors' abstract

Advance editions of blue-line aeromagnetic maps which show by contour lines the total magnetic intensity at about 1,000 feet above ground level have been published for the following quadrangles west of fourth meridian: 243, Calling River; 244, Breynat; 245, Philomena; 246, Corrigal Lake; 247, Ranch; 248, Logan Lake; 308, Goodwin Lake; 309, Wiau Lake; 310, Winefred Lake; 311, Grist Lake; 312, Fawcett Lake; 313, Calling River; 314, McMillan Lake; 315, Wandering River, 322, Howard Creek; 325, Winefred River, 326, Christina Lake; 327, Conklin; 328, Thornbury Lake; 329, Medusa Lake; 330, Parallel Creek; 331, Pelican Mountain; 334, January River; 335, Waddell Creek; 336, Bohn Lake; 337, Cowpar Lake; 339, Wabasca; 340, Pelican Lake; 341, Pelican Portage; 342, Dropoff Creek; 343, Watchus Lake; 344, Quigley; 345, Christina River; 346, House River; 347, Serpentine Creek; 348, Bolivin Creek; 349, Sittingman Lake; 350, Muskwa River; 352, Horse River; 353, Gregoire Lake; 354, Kinosis; 355, Teppe Creek; 356, Wood Buffalo River; 357, Livock River; 358, Algar Lake; 461, Gipsy Lake; 497, Victor Creek; and 498, Caribou Lake.—B. T. E.

Blue-line aeromagnetic maps which show by contour lines the total magnetic intensity at about 1,000 feet above ground level have been published for the following quadrangles: 249, Howley Lake; 250, Puddle Pond; 251, Main Gut; 258, Stephensville; 259, Harrys River; 270, Star Lake; 271, Little Grand Lake; 272, Corner Brook; 273, Rainy Lake; 274, Mainland; 275, Serpentine; 276, Shag Island; 316, St. Fintans; 317, Little Friars Cove; and 318, Flat Bay.—B. T. E.

Blue-line aeromagnetic maps which show by contour lines the total magnetic intensity at about 1,000 feet above ground level have been published for the following quadrangles in the District of Mackenzie: 105, Pointe Ennuyeuse; 106, Landry Creek; 107, Desklanata Lake South; and 108, Brule Point. Advance editions: 359, Deering Island; 360, Striding River; 361, Meyrick Lake; 362, Dehoux Bay; 363, Sugitt Lake; 364, Lone Lake; 366, Sherwood Lake; 369, Dolby Lake; 370, Arnot Lake; 371, Nicol Lake; 372, Nixon Lake; 373, Edwards Lake; 375, Bouskill Lake; 376, Turner Lake; 377, Thomas Lake; 378, Wignes Lake; 379, Burslem Lake; 380, Eaton Lake; 381, Bertran Lake; 382, Flett Lake; 383, Innes Island; 384, Wright Lake; 385, Southby Lake; 386, Rutledge Lake; 387, Atkinson Lake; 388, Mountain Lake; 389, Cochrane Lake; 390, Ananethad Lake; 391, Millar Lake; 392, Veira Lake; 393, Audrecyk Lake; 394, Gozdz Lake; 395, Vermette Lake; 396, Bull Lake; 397, Sanderson Lake; 398, Crowe Lake; 399, Broad Lake; 400, Jarvis Lake; 401, Knowles Lake; 404, Sammon Lake; 405, Sinclair Lake; and 406, Foster Lake.—B. T. E.

Advance editions of blue-line aeromagnetic maps which show by contour lines the total magnetic intensity at about 1,000 feet above ground level have been published for the following quadrangles: 277, Obabika Lake (Nipissing, Sudbury, and Timiskaming Districts); 278, Solace Lake (Sudbury District); 282, Lady Evelyn Lake (Timiskaming and Sudbury Districts); 283, Elk Lake (Timiskaming District); 288, Charlton (Timiskaming District); 290, Radisson Lake (Timiskaming District); 291, Muskoscenda Lake (Timiskaming and Sudbury Districts); 292, Dana Lake (Cochrane, Timiskaming and Sudbury Districts); 293, Timmins (Timiskaming and Cochrane Districts); 294, Lipsett Lake (Cochrane and Timiskaming Districts); 295, Ramore (Cochrane and Timiskaming Districts); and in Cochrane District: 296, Matheson; 297, Porquis Junction; 298, Pamour; 299, Kamiskotia Lake; 300, Thorburn Creek; 301, Crawfish Lakes; 302, Iroquois Falls; and 303, Bingle.—B. T. E.

Advance editions of blue-line aeromagnetic maps which show by contour lines the total magnetic intensity at about 1,000 feet above ground level have been published for the following quadrangles: 423, Cautaru Bay; 424, William Point; 425, Beartooth Island; 426, Easter Head; 430, Crackingstone; 431, Maurice Bay; 432, Forget Lake; 433, Uranium City; 434, Thulicho Lake; 435, Harper Lake; and 436, Goldfields.—B. T. E.

Aeromagnetic surveys have been made with a modified AN/ASQ-1 magnetometer installed in a Miles Aerovan plane. Results of surveys in the North Island thermal area are shown in maps and profiles. A well-defined belt of positive anomalies from Nelson across Cook Strait through Taranaki and along the west coast of Auckland Province is believed to indicate a belt of igneous rock and may be related also to a major upper Paleozoic-lower Mesozoic geosyncline. There seems to be a tendency for the oceanic areas to be negative; if real, this may mean that New Zealand as a whole has a positive anomaly relative to the main geomagnetic field of the southwest Pacific.—M. C. R.

MICROSEISMS

Bermuda seismograms from September 1951 through December 1954 included 34 periods when microseisms of 7-10-sec periods were recorded. With one exception these were related to a low-pressure area or cold front in the near vicinity of the continental shelf along eastern America, and in the exception the low-pressure area was in the vicinity of the Mid-Atlantic Ridge. Comparison
with the Palisades records indicates that the mechanism of transmission of the 7-10-sec microseisms is probably the same as that of short-period surface waves from earthquakes, and that the microseisms are propagated very well along purely continental or purely oceanic paths but the continental margin acts as a barrier to them as it does to short-period earthquakes waves.—M. C. R.

If microseisms are surface waves between the ocean and the sea bed of the type first described by Stoneley, their velocity will be the greater the more shallow the water, and energy will tend to be refracted away from islands and usually reduced. Refraction diagrams for 6-sec microseisms for the island of Bermuda show the effect on the energy of incident waves is marked, particularly for waves approaching from the northeast and southwest quadrants. Anomalies in the recording of microseisms at Bermuda, such as those reported by Carder (Geophys. Abs. 163-118), can be explained in terms of this refraction.—M. C. R.

Microseisms have been recorded at Évreux in 1949 and at Coutainville (Manche) in 1953. The measurements at Évreux show that periods of relative microseismic inactivity correlate with periods of relative inactivity in the Moroccan swell. The N/E ratio is approximately unity in the Norman stations, but $N>E$ in Paris and Uccle, and $N<E$ in Kew and De Bilt.—P. E. B.

Periodograms of microseisms for September 11-15, 1950, when typhoon Kezia passed over Japan, fall into two groups: one (September 11-12) showing a sharp peak with a correlation ratio >0.5, and the other (September 13-15) without a sharp peak. The former are considered to have been directly related to the typhoon, but did not always approach the station from the center of the storm. The individual waves of the very irregular microseisms of the latter group may be of different origin. Microseismic period spectra constructed according to Tomoda's correlation method give similar results.—D. B. V.

RADIOACTIVITY

It is shown that the potassium-argon age of young minerals depends almost linearly on the decay constant for electron capture in K^40 and is very insensitive to the decay constant for beta emission. This fact permits calculation of λ_e by comparing the concordant uranium-lead age of coegenetic uraninite with A^4/U^4 ratios found in young samples of mica. It is found that $\lambda_e = (0.557 \pm 0.26) \times 10^{-10}$ yr$^{-1}$. Similar comparisons with older mica samples indicate that satis-
factory agreement with the uraninite ages are obtained by use of this value of
λ, together with λ2=(0.472±0.05)×10^{-9} \text{yr}^{-1}. It is concluded that there is no
conflict between the decay constants inferred by this geological method and those
found by direct counting experiments.—\textit{Authors' abstract}

167-230. Diamond, Herbert, and Barnes, Raymond F. Alpha half-life of Pu^{244}:

The half-life of Pu^{244} was found to be \((7.6±2) \times 10^7\) years by measuring the
activity of its Np^{239} decay product. If the elements were formed \(5.5 \times 10^7\) years
ago, and the amount of Pu^{244} formed were comparable to half the amount of
Th^{232} in the earth today, the current Th^{232}:Pu^{244} ratio in thorium ores might be
estimated as \(10^2\). If the half-life of Pu^{244} were \(9.6 \times 10^7\) years then ore contain­
ing 34 kg of thorium might contain a detectable \((10^{-18}\text{ g})\) amount of Pu^{244}. The
ratio of heat emission shows that Pu^{244} and its U^{238} descendant may have been
important in the heat balance of the earth during its early history.—\textit{M. C. R.}

G. L. Half-life of Rb^{87}: \textit{Phys. Rev.}, v. 103, no. 4, p. 1045–1047,
1956.

A comparison of the ratio, radiogenic Sr^{87}/Rb^{87}, found in eight Rb minerals
of differing Rb content from the same rock unit has shown this ratio to be con­
stant for a given mineral assemblage. This ratio has been measured on Rb
minerals from six rock units for which concordant U-Pb ages ranging from 375
to 2,700 million years have also been obtained. From the ratio radiogenic
Sr^{87}/Rb^{87} and the age of the mineral obtained from the U-Pb age, the half-life
of Rb^{87} is calculated to be \((5.0±0.2) \times 10^1\) yr. This lies in the range of values
found by direct counting experiments.—\textit{Authors' abstract}

167-232. Retter, Reinhold. Registrierung des Potential gradienten, Messun­
gen de polaren elektrischen Leitfähigkeit der Luft sowie der rela­
tiven Luftradioaktivität und Bestimmung des NO\textsubscript{4}−Gehaltes von
Niederschlägen und Nebeln auf dem Zugspitzplatt (2580 m NN) im
Sommer 1955 [Recording of potential gradients, measurements of
the polar electrical conductivity of the air as well as the relative
radioactivity of the air and determination of the NO\textsubscript{4}− content of
precipitation and clouds on the Zugspitzplatt (2,580 m above sea
level) in the summer of 1955]: \textit{Geofisica Pura e Appl.}, v. 33, p.

The results of atmospheric radioactivity measurements, published separately
elsewhere (see Geophys. Abs. 164–267, 165–303), are included in this detailed
report on meteorological studies on the Zugspitzplatt in the Bavarian Alps.—
\textit{D. B. V.}

167-233. Sievert, Rolf M. Records of gamma radiation from the ground and

The γ radiation of the ground from natural and artificial radioactivity, and
the β radiation from radioactive debris in the atmosphere, have been recorded
in Sweden since 1950. Observations are reported on the influence of rain and
snowfall, with and without the effects caused by transportation of radioactive
debris from nuclear explosions.—\textit{P. E. B.}
Study of the alpha-radioactivity of two samples of metallic meteorites—Toluca (Hamburg) and Carbo—by means of nuclear emulsions shows that in spite of all precautions more than 85 percent of the alpha rays emitted can be attributed to contamination of the surface of the specimen by polonium (corresponding to 100 atoms of Po per cm²). The maximum U and Th concentrations for each sample, calculated solely on the basis of alpha tracks having a residual track in the emulsion less than 15 microns (a track from Th²³²), are found to be $U < 0.6 \times 10^{-8}$ g per g ($Th = 0$) and $Th < 2 \times 10^{-8}$ g per g ($U = 0$). These values are very close to those found by Paneth (Geophys. Abs. 163-151, 164-18) for the same meteorites. A maximum uranium concentration of 10^{-7} g per g was also determined for the Toluca troilite. At present, the technique is limited to detection of U and Th concentrations on the order of 5×10^{-8} g per g; it is hoped that it can be refined to reduce the background factor, 90 percent of which is due to radon in air, by a factor of 10 to permit detection of concentrations of 5×10^{-9} g per g.—D. B. V.

Laboratory measurements of the β-radioactivity of potash minerals indicate that the β-ray count, which is proportional to K_2O content, varies with grain size and with density of powdered samples. A new, rapid radioactivity method for determining the K_2O content in boreholes in potash mining practice has been developed to replace chemical analysis of chip samples or well cuttings. The open side of an arrangement of three aluminum β-ray counters, shielded at the back by a brass plate 1 mm thick, is placed against the surface to be analyzed, and the beta and gamma activity measured. The open side is then closed by a 1-mm brass plate and the measurement repeated on the same place, giving the gamma-ray count alone. The K_2O content (p) can then be calculated from the formula $p = (u - Ny/A$, where $u =$ total count, $V =$ gamma-ray count, and N and A are constants. The results of a series of borehole measurements by this method are compared with chemical analyses of well cuttings; in 75 percent of the cases, the accuracy is within ± 2 percent K_2O.—D. B. V.

The results of radioactivity measurements on 50 rocks and minerals from various parts of India are tabulated, giving alpha activity (as number of alphas per mg per hr) and equivalent uranium (in parts per million). Some specimens of magnetite, magnetite apatite, pegmatite, and hornblende contain the equivalent of more than 0.001 percent of uranium. The highest, equivalent uranium 1,733 ppm in a magnetite from Bihar, is attributed to the presence of a higher percentage of thorium (see following abstract). Alpha activities of traprocks from different localities are nearly of the same order.—D. B. V.

Thorium-uranium concentration ratios in 10 Indian rocks and minerals were calculated from scintillation counter measurements, estimating the range of the α-particles emitted by thorium and uranium. The results are tabulated. The highest ratio obtained (Th/U=8.92) was in a magnetite apatite from Bihar, the lowest (Th/U=0.10), in a garnetiferous pegmatite from Andhra.—D. B. V.

The mean β-radioactivity of 36 representative specimens of khondalites from the Eastern Ghats of Andhra State was determined as 9.32×10^{-8} g eU per g rock, with a standard deviation of 4.74×10^{-8} g eU per g rock. The radioactivity is conditioned by three mutually related factors: mineralogical constitution (radioactivity is proportional to heavy-mineral content), nature of association (radioactivity is higher near pegmatites, charnockites, and interaction rocks, lower near calc-granulites, quartzites and quartz veins), and petrogenetic history (it is suggested that the khondalites may have acquired their significant radioactivity content by absorption of radioactive matter in a colloidal environment syngenetic with sedimentation, rather than during hypometamorphism).—D. B. V.

The radioactivity of a specimen of granite from the Karkonosze mountains [Riesengebirge] in Lower Silesia was studied in the Institute of Experimental Physics of the University of Warsaw by the nuclear emulsion method. Exposures as long as 781 hours were used. Uranium content was found to range from 0.56×10^{-6} to 0.75×10^{-6} g per g, and thorium content from 1.22×10^{-7} to 1.49×10^{-7} g per g.—S. T. V.

The distribution of radioactive substances in seven specimens of Tatra granite, nine from Lower Silesia, and one from Volhynia was investigated in the Institute of Experimental Physics of the University of Warsaw by the nuclear emulsion method. The highest radioactive content was found in granite from Lower Silesia; the radioactive materials are concentrated in small inclusions dispersed in the rock or extended along microscopic fissures.—S. T. V.

This describes γ- and β-ray measurements made with Geiger-Müller counters in the laboratory of the Institut Naftowy (state petroleum institute) in Cracow.
on 80 specimens from drill cores from Polish oilfields. The results are tabulated, giving depth, lithologic description, density where known, proportion of radioactive material per gram of rock, γ-ray count, total β+γ count, and γ/β+γ ratio for each sample.—D. B. V.

Gamma-ray measurements of the radioactivity of post-Pleistocene sediments were made along the shore of the Gulf of Lion on the Mediterranean coast of France, using a portable C. E. R. E. "gammaphone." Comparison of the results with granulometric and mineralogic data indicates that such radioactivity measurements provide a useful tool for field study of the sedimentological evolution of beaches. (See also Geophys. Abs. 164-261.)—D. B. V.

Gamma-ray measurements are the basis of a new method for determining the density of sandy soils in place, more reliable and quicker than sampling. A metal rod is introduced into the ground, the tip of which contains a radioactive preparation of known gamma-ray intensity. As the absorbing material consists essentially of the same elements (Si and O), the absorption coefficient depends only on the density of the material, and the latter can be calculated from the measured intensity, which varies with the square of the distance between the preparation in the rod and the counter. Test measurements have shown the usefulness of the method.—D. B. V.

The radioactivity of several hot springs of the Tkvarcheli region, Georgian SSR, was measured with a universal electrometer as 20.9 to 39.5 curies per liter.—S. T. V.

The thermal spring at Fojnica, Bosnia, issues from a fault in bituminous Carboniferous shales at the western margin of an extensive terrace of calcareous sinter. Analysis of its water and that of 3 wells in the vicinity shows that the Ca, Mg, and free CO₂ content and temperature decrease with distance from the fault, but radioactivity increases several fold. Evidently the water takes up radon generated from uranium that has been precipitated along with iron in the sinter.—D. B. V.
RADIOACTIVITY LOGGING AND SURVEYING

A discussion of the different radioactive methods of exploration for water or hydrocarbons and for determination of the density, porosity, and water content of soil.—S. T. V.

The reading on a gamma-ray counter at a point on the earth's surface is the result of several radiation effects: gamma-radiation of the surrounding rock and the effect of the contamination of different parts of the counter and cosmic radiation. If the reading is repeated with a screen formed of a lead jacket 1.5 to 2 cm thick covering the tube of the counter, the new reading will be the sum of cosmic radiation, counter contamination and the radiation from rock as modified by the effect of the lead jacket. This coefficient can be readily determined experimentally, the cosmic radiation can be determined by measurements in a mine or at a sufficiently protected place, and therefore the counter background can be computed without difficulty.—S. T. V.

A re-evaluation of published airborne radioactivity surveys of the Redwater field, Alberta, and the Coalinga field, California, shows that the distinct gamma-ray patterns of these oilfields can be explained by sources of radioactivity at or near the surface of the ground that are unrelated to subsurface accumulations of oil. The surface distribution of radioactive elements can be correlated with areal geology, the distribution of soils, and surface and ground waters. A brief survey of the literature describing radioactivity anomalies over other oilfields supports these conclusions. Any correlation of these anomalies with deeply buried oil pools is believed to be fortuitous.—L. C. P.

The map of the radioactivity of the Hercynian Vosges, based on 3,500 uniformly spaced measurements, shows several large distinct petrographic units; by establishing numerous geological correlations, the map disentangles some of the fundamental features of the Hercynian basement. The maximum radioactivity seems to correspond to the paroxysmal phase of the Hercynian orogeny.—Author's abstract, D. B. V.

The average radioactivity measured with two Geiger counters at several places high in the Sierra da Estrela, Portugal, was 0.05 milliroentgens per hour. High values (maximum 0.5 milliroentgens per hour) at the Nave de St. Antonio fountain probably indicate a local source of radioactivity; it is hoped that systematic prospecting will soon be undertaken.—D. B. V.

Carborne counter surveys, using Geiger counters, and scintillation counter surveys of interroad areas indicated relatively high variations over background. Test flights indicated the anomalies could be detected from the air if flight elevations of 20 or 30 ft were used. As a result of the combined ground and air reconnaissance, 12 radioactive mineral occurrences were found.—M. C. R.

SEISMIC EXPLORATION

Vibration impulses of variable frequency and duration have been generated by means of an electrically excited vibrator and the resulting seismic waves recorded at the ground surface along a 200-ft traverse. The first arrivals were refractions from the water table and a deeper clay-siltstone interface, and these were checked with the results of a standard refraction survey. The amplitudes of displacement of the refracted waves varied in each case with approximately the inverse square of the distance; the critical distance was marked by a discontinuity of amplitude. Two later impulsive arrivals recorded within 50 msec of the first were interpreted respectively as a transformed reflection from 85-ft depth and an ordinary compressional reflection from 200-ft depth. A dispersive Rayleigh wave gave an independent estimate of the shear velocity and thickness of the surface layer. Air-coupled waves of frequencies 70.8 cycles per second and 330 cycles per second were recorded and have been related to the first- and third-mode Rayleigh waves, respectively.—Author's abstract

A series of measurements were made to investigate some of the fundamental properties of shear waves and to explore the possibility of using horizontally polarized (SH) shear waves for reflection prospecting. A special source was devised to produce a shearing motion which was detectable as far as 400 feet vertically and 1,000 feet horizontally. Direct, refracted, and reflected SH and SV (vertically polarized) shear waves were identified on a series of surface and subsurface recordings. A strong, highly dispersive surface wave, which satisfies the theoretical criteria of Love waves, was also observed. Certain anomalous features of the data which did not conform to the predictions of simple isotropic theory were readily explained by considering the stratified section under obser-
vation to be transversely isotropic. It was found that horizontal SH velocity exceeded vertical SH velocity by 100 percent whereas the corresponding compressional wave velocities differed by only 12 percent. SV anisotropy was manifested by a complex variation of velocity at intermediate directions of travel. Other theoretical predictions were confirmed in detail by the experimental data. An evaluation of SH reflection recording was made in four different areas. It was possible at one location, using multiple horizontal geophones and the shear source, to obtain an SH reflection from the base of a thick weathered layer. However, the results in general indicate that the method is not likely to have much practical importance.—Author's abstract

Statistical methods are applied to the propagation of seismic waves within the earth's crust. Two formulas are discussed, both representing a proportionality between the components of the tension tensor and the velocity vector measured on or near the surface of the ground. One formula represents the classical approach; the other formula, which is, in a sense, statistical, introduces the average value of the components. By using these theoretical results and the measurement on or near the surface, the thickness of the horizontal layers can be determined to a first approximation. The physical properties of the layers can also be evaluated by considering higher-order terms.—I. Z.

A summary, by W. Palme, of a lecture on the theory, apparatus, procedure, and application of the continuous-velocity logging method (see Geophys. Abs. 150-13964 and 166-329), presented at the January 1956 meeting of the Hannover section of the Deutsche Gesellschaft für Mineralölwissenschaft und Kohlchemie.—D. B. V.

Fictitious seismic anomalies sometimes result from use of inadequate techniques to correct for weathered layer, for surface elevation changes, and unusual velocity gradient. The effect of differential overburden on the velocities in the underlying layers, usually referred to as the load effect, is also generally neglected in routine seismic interpretation. Its importance is demonstrated by an example from a survey in western Canada in which a fairly attractive anomaly is shown to be the result of velocity variations associated with topography. Corrections for load effect require reliable near-surface velocity measurements to supplement conventional surveys.—M. O. R.

To determine the coefficients V_z and k in the linear velocity function $V = V_0 + k z$ (where V is velocity at depth z, V_0 is velocity at datum plane, k in practice is
between 0 and 3) giving the best fit to data from a well velocity survey or a
T & T statistical analysis, a unique theoretical curve is constructed, using reduced
coordinates, and the experimental curve is matched to it to obtain the best
possible fit; logarithmic scales are used in constructing the graphs. V_0 and k
are easily found by a relative translation of the theoretical graph with respect
to the experimental graph. Unlike the seismic logging method, this method,
mathematically speaking, is not rigorous. The reasoning is based on rectilinear
wave paths (velocity constant and equal to mean velocity) whereas they are
in fact curved. In practice the error is negligible if the dips are slight.—D. R. V.

167-258. Grunebaum, Bernard. Relation between reflection time increment,
inclination of reflecting layer and integration coverage: Geo­

The principal limitation on the number of traces that can be composited
(either for the McCollum Geograph or conventional reflection shooting) is the
time displacement of a reflection from one trace to the next which, in turn, is
mainly dependent on the dip of a reflecting layer. If y is designated as the time
increment as a fraction of one wavelength, it is shown that, for sinusoidal
waves, integrations can be performed for all values of y up to 0.6 with signal-
to-noise ratio losses of less than 50 percent. Experimental results verify this
conclusion.—L. C. P.

167-250. Korschunow, A[lex]. On the reliability of harmonic analysis of

A check analysis of a seismogram from a blast of 125 g of explosive at a
distance of 200 m, previously analyzed (see Geophys. Abs. 166-124) demon­
strated a functional connection between reliability of phase values and magni­
tude of Fourier coefficients. At best harmonic analysis yields a 6-percent phase
scattering and at worst 13 percent.—M. C. R.

167-260. Krey, Thleodor], and Helbig, K. A theorem concerning anisotropy
of stratified media and its significance for reflection seismics;

A medium consisting of layers in which Poisson's ratio is approximately the
same can be considered as isotropic for reflections of quasi-longitudinal waves if
dips are small. Calculations of steeper dips can be made from curves of the
correction for the effect of anisotropy.—M. C. R.

167-261. Bohanenko, L. I. Opredeleniye chastotnykh i fazovykh kharakteris­
tik elektrodinamicheskikh seysmopriyemnikov pri pomoshchi dopolnitel’nykh katushek vozbuzychennyh [Determination of the fre­
quency and phase characteristics of electrodynamic seismometers

By inserting an additional coil into the moving system of an electrodynamic
seismometer and exciting it by an external electromotive force, the principal
coil of the instrument is displaced and the phase characteristics and the fre­
quency spectrum can be determined without shaking-table experiments. Results
are more accurate and obtained more quickly because only electric quantities are
recorded and used in the seismometer equations. The additional coil must be
placed in the homogeneous magnetic field and not too near the main coil of the instrument so that coupling between the two coils is avoided.—S. T. V.

A special portable apparatus for recording higher-frequency reflected and refracted waves in seismic prospecting includes an oscillograph, 8 amplifiers, 10 seismographs, storage batteries, cable, and a controlling switchboard. The recording is made with greater speed, and the starting of paper drive is synchronized with the shooting of the charge. Two types of seismographs were used. Electromagnetic seismographs were used for frequencies up to 500 cycles per second and piezoelectric seismographs for higher frequencies.

A detailed description of various elements of the installation is given, including wiring diagrams and the characteristic amplifier curves.—S. T. V.

A review of the principles of design of seismic reflection amplifiers. Filtering, sensitivity, noise, gain control, and harmonic distortion are included in the treatment.—M. C. R.

The history of offshore seismic shooting in California is reviewed with respect to charge type and damage to marine life. Several substitutes for the currently required black powder charges of low efficiency and high cost are examined. Experimental data in the form of pressure vs time oscillograph recordings are presented. Explosives were developed that can be employed more advantageously than black powder. These explosives will minimize damage to marine life, decrease present hazards of handling, and decrease the cost of explosives. "Multipulse" charges, composed of alternating layers of 40 percent gelatin and an inert substance enclosed in a tube, seemed to be the most satisfactory. Conventional seismic records obtained with black powder (90 lbs) and multipulse charges (10 lbs) are presented to demonstrate the superiority of the latter.—W. H. D.

Recent geophysical surveys of the inner Kartalin plain and its surrounding ridges, whose complicated geologic structure has been a subject of controversy by the Geophysical Institute of the Georgian Academy of Sciences, indicate that two essentially horizontal formations 400 and 2,000 m thick overlie limestones of Cretaceous age. Seismic velocities in the two layers and the limestones are 2,000, 3,150 and 4,700 m per sec, respectively. No epicenters have been located in this flatland, although there have been shocks of intensities 8 and 9 in the
surrounding ridges. Thus the seismological evidence confirms the results of the
geophysical exploration.—S. T. V.

seismischen Methoden [The mapping of salt dome flanks with

The boundaries of the Rethem salt dome in northern Germany have been
determined graphically by seismic methods, using the Gardner method (see
Geophys. Abs. 136–10826).—D. B. V.

167–267. Martin, Hans. Talsperrengeophysik [Dam geophysics]: Freiberger

The Rappbode dam site in Germany was investigated in 1942 by means of
seismic registration of explosions in a quarry 700 m upstream. Velocities
ranged from 1.8 km/s in weathered rock to 4.5 km/s in pure diabase; in the
immediate vicinity of the dam velocities at the surface (0–5 m) were from 2.2
to 2.6 km/s, and in the unconsolidated formations below the depth of 5 m, 3 to
3.7 km/s. In 1952, more exact measurements with a 6-trace refraction ap­
paratus indicated the velocity in the unconsolidated layers was from 2.8 to 2.9
km/s, and increased to 3.6 to 5 km/s in layers that had been consolidated by
grouting.—D. B. V.

167–268. Day, Arthur Alan; Hill, Maurice Neville; Laughton, Anthony Seymour;
and Swallow, John Crossley. Seismic prospecting in the Western
approaches of the English Channel. With an appendix on the results
at two additional seismic stations, by R. D. Adams and A. A. Day:

Seismic refraction measurements at 25 seismic stations in the area of the
Western approaches to the English Channel indicate 4 layers correlated respec­
tively with semiconsolidated sediments of Cretaceous-Tertiary age, the New
Red system, the Paleozoic system, and a metamorphic basement. The basement
forms a long, deep trough; the Paleozoic floor is depressed in a trough of variable
depth, bounded on the north by an outcrop of the basement rock that may be
the westward extension of the upthrust Lizard-Start metamorphic belt.—D. B. V.

STRENGTH AND PLASTICITY

Mines Rept. Inv., no. 4459, 79 p., 1949; Part 2: Rept. Inv. no. 4727,
37 p., 1950; Blair, B. E., Physical properties of mine rock, Part 3:

A report on the physical properties and related geologic and petrographic
data of rocks from operating mines, quarries, or blasting-research test sites.
Data determined from laboratory tests on diamond-drill core are given for the
following: apparent specific gravity, apparent porosity, compressive strength,
tensile strength, flexural strength (modulus of rupture), impact toughness,
abrasive hardness, scleroscope hardness, elastic properties (modulus of elas­
ticity, modulus of rigidity, apparent Poisson's ratio, specific damping capacity,
and longitudinal bar velocity). In parts 3 and 4, stress-strain curves are pre­
sented where available.—V. S. N.

The Benioff torsion apparatus for creep testing of slender cylindrical specimens is described. Continuous creep and creep recovery curves for granodiorite and gabbro at room temperature and atmospheric pressure are given. For constant-torque tests of up to 1 week's duration, the results are closely represented by the equation $e(t) = \frac{\omega}{\mu} \left[1 + q \ln(1+at) \right]$ which was found valid for low stresses up to 0.05 percent of the rigidity modulus. The results are compared with early torsion creep experiments by A. A. Michelson. The strain behavior of rocks at low stresses is discussed.—Author's abstract

Petrofabric analyses and detailed studies of the internal structures of specimens of Yule marble deformed at 400° and 500° C and confining pressure of 5,000 atmospheres lead to a general hypothesis of homogeneous deformation in which strain is assumed to be approximately the same in every grain and due to twin gliding on $\{0112\}=e$ and translation gliding in the opposite sense on $\{10\overline{1}1\}=r$. Reorienting of grains is the result partly of twinning and partly of external rotation of the grain in the sense opposite to that of internal twin or translation gliding.—M. C. R.

Deformation can be measured on the basis of the variation of the distance between two ends of a wire stretched between two poles buried in the ground at some distance from each other. The electrical resistance of the wire is affected by the degree of stretching; this resistance can be measured by a Wheatstone bridge. Variation in length can also be measured by a circular dynamometer inserted at one end of the stretched wire. To use the dynamometer in the measurements of dynamic deformations, the frequency of its natural vibrations should be higher than the frequency of the impulses acting on the wire. Optical magnification is necessary. The length of the wire is critical; if the length of the wire is equal to the length of the seismic wave, no deformation will be measured. From the measurements in the field Kats concludes that in weak formations, such as sediments or sand, both temporary and permanent deformations of 10-15 microns can be observed with a base length of 0.5 m.—S. T. V.

SUBMARINE GEOLOGY

The crust beneath the eastern Indian Ocean is not all of one character; it is marginally continental in origin with a primary simatic oceanic crust (thalasso-
craton) occupying the main eastern ocean. Both the continental shelf and the deep-sea floor are intimately related to the features of the continent; the shelves and deep-sea basins are broadest and deepest opposite the basins on the mainland, and positive blocks in the Precambrian framework of the mainland are reflected by deep-sea ridges and narrow ridges and shallowness on the continental shelf. The main India-Australian Basin apparently does not possess this basic pattern. Geophysical data are not yet complete and therefore cannot adequately support the above description. The seismicity of the area is low, but long-range determinations of Rayleigh-type waves emanating from earthquakes in the Solomon Islands and the Mid-Indian Ridge may be instructive. Formal names given to sectors of the Western Australian shelf and the deep-sea floor are listed.—B. T. E.

The Danish Deep Sea Expedition, the Galathea Expedition, of 1950-52, using a magnetic rake over an area of 45,000 square meters (mainly in the southeastern oceans), collected more than 300 magnetic particles of remarkable character. Most of the particles were spheres with diameter of less than half a millimeter and were composed of magnetite or a silicate groundmass loaded with magnetite crystallites. Spherical cavities occur in most of them, and the structure and composition of metallic particles found in them seem to require high temperatures and rapid cooling in the process of formation.

Comparison of these particles with similar material from Swedish Deep Sea Expedition and with certain features in the crusts of two Danish stony meteorites seems to favor the theories of Murray and Renard, of the Challenger Expedition of 1872-76, that these particles were torn off from meteorites in their passage through the atmosphere. Stony meteorites were obviously an important source. The name "caudaites" is suggested to distinguish particles from meteorites and cosmic dust.—V. S. N.

VOLCANOLOGY

A progress report on the catalogue of the active volcanoes of the world. Of the 19 sections into which the world's volcanoes have been divided, those on Indonesia and the Philippines (and Cochin China) have already been published, the section on Hawaii is in the process of publication, those on Africa, Arabia, and the Indian Ocean will be finished within the year, and nearly all the rest have been assigned to experts in each area and should be finished within the 5 years allotted for the compilation.—D. B. V.

The correlation between density of a volcanic arc and the chemical composition of its rocks is even more important than that between density and "charac-
teristic radius" (see Geophys. Abs. 148-13395, 13896, 154-14743). The reciprocal values of density (after Sapper) and the mean percentage of \(\text{Al}_2\text{O}_3 \) (based on analyses of 255 rocks from 179 volcanoes) are given for 15 volcanic arcs; plotted graphically, the results fall on a straight line.—D. B. V.

Deep submarine volcanism as a geochemical factor plays an extraordinarily important role in strengthening the biological potential of the oceans. Whereas sedimentation causes sea water to become deficient in inorganic nutrient matter, volcanism adds phosphorus, nitrogen, and other nutrient elements and thus increases the productivity of organisms. The enrichment of the Tyrhenian and Caribbean seas in phosphorus and nitrogen is discussed and the silicon content of the Atlantic and Pacific Oceans compared. The abundance of marine life near Japan, the Aleutians, Indonesia, and the Antarctic should be correlated to some extent with volcanic activity. Shallow submarine volcanism has no particular effect on the chemistry of the sea water because gases can escape to the atmosphere and the normal balance is quickly restored.—D. B. V.

The main volcanic vents of the Azores, including Agua-de-Pau on San Miguel, Cinco Picos on Terceira, and Fayal, are calderas which lie in the center of spiderweblike patterns formed by a combination of ring and radial fractures. The rims are usually steep fault scarps, and the basins seem always to be caused by engulfment along one of the ring faults. Removal of magma in the Azores volcanoes is usually accomplished by explosive ejection of pumice and cinder. Subsidence is probably by single-block stoping of the Glen Coe type rather than by piecemeal subsidence of the Krakatoa type.—D. B. V.

167-279. Bartolucci, Giorgio. Sulla manifestazioni fumaroliche, solfatariche ed idrotermali nel nw della Repubblica Argentina e loro possibilità di utilizzazione industriale [Fumaroles, solfataras, and hot springs in northwestern Argentina and the possibility of their industrial use]: Annali Geofisica, v. 9, no. 1, p. 31-42, 1956.

A description of fumaroles and hot springs in the provinces of Salta and Jujuy. They are classed into two groups on the basis of the presence of Quaternary volcanoes to which they can be related. In general, those not related to igneous activity are believed to be more suitable for industrial use.—M. C. R.

Preliminary studies of the more important fumarolic regions in El Salvador were carried out intermittently during 1953, 1954, and 1955 to investigate the possibility of exploiting geothermal power. The Ahuachapán region is recommended as most promising because of the extent of the surface manifestations, accessibility, and indications that the steam is of primary magmatic origin and thus probably of high quality and volume. A conservative estimate places the heat output of the area at 48,836,000 g-cal per min, or 3,260 kw, enough to supply the entire town of Ahuachapán with power. Several test drilling locations are suggested.—D. B. V.
A dense cloud of ash was erupted from Izalco volcano in El Salvador at approximately 1:00 p.m. on February 28, 1955, and was followed immediately by flow of lava in two streams from the principal crater at the summit. Six tremors were felt in the vicinity during the afternoon and evening of the first day, of which three were registered instrumentally at the capital. By March 8, explosions were less violent, occurring at intervals of 3 to 18 minutes. In mid-May 1956 this type of activity was still going on, but, with the exception of several strong explosions early in November 1955, had diminished gradually. Lava had practically ceased to flow by the end of November. Several miniature glowing cloud eruptions were observed on January 3, 1956.—D. B. V.

The more important fumaroles and thermal springs in the coastal ranges, in the old volcanics in the interior of El Salvador, and in the northern part of the country are individually described. In comparison to the manifestations in the youthful volcanoes, there is less hydrothermal alteration of the surrounding rock and little or no sulfur deposition, indicating that juvenile waters are not being produced. Moreover, the location of the vents and springs seems to be more closely related to fracture patterns.—D. B. V.

Topographic changes in Mihara Crater (the summit crater of the central cone of Mihara volcano, Ōshima Island, Japan) brought about by the ten eruptions that have occurred since 1874 are described. The activity of 1953-54 and resulting changes are treated in greatest detail. Numerous sketch maps, diagrams, and photographs are given.—D. B. V.

Quantitative data on the energy of the Strombolian-type volcano Mihara on Ōshima Island, Japan, during its moderate activity in 1953 and 1954 were
obtained from seismologic observation of volcanic tremors (related to surface activity) and local earthquakes (associated with release of energy deeper in the volcano) and from magnetic observations (from which the depth and thermal state of the magma reservoir could be deduced). Local earthquakes and volcanic tremors do not occur simultaneously and they involve almost the same total energy, suggesting that they share the same energy source but differ in the place where it is released. Also, the total seismic energy of Mihara over a period of activity is of the same order as that of the vulcanian type Mount Asama, although individual paroxysms of the latter may be 10^8 or 10^9 times stronger. Comparison of the relation of thermal energy estimated to have been received from below with energy released by the various volcanic and seismic manifestations indicates that a volcano is a very inefficient heat engine.—D. B. V.

Anomalous changes in the geomagnetic field during the 1953-54 eruption of Mihara volcano, Oshima Island, Japan, are explained in the light of possible thermal processes beneath the volcano. The considerable heat supplied from below the magma reservoir causes demagnetization; cooling (by heat conduction at the surface and by expansion of water vapor) causes magnetization and is restricted by external conditions. The heating process can be explained quantitatively by considering the subterranean mass to be divided by cracks into many small unit spheres. Cooling by expansion of water vapor from a depth of about 2 km to the surface must account for about half the heat involved.—D. B. V.

Paricutin Volcano is the most recent volcano of the Michoacan volcanic province of Mexico. Its initial eruption on February 20, 1943, was preceded by 2 weeks of local earth shocks and subterranean noises. The cone grew with great rapidity, reaching a height of 167 m in 6 days of activity. Activity during the first 2½ years can be divided into 3 periods: Quitzoch period during which the volcano built its cone centered about the original Cuixtalamal vents, 2 km southeast of the village of Paricutin; Sapichu period when principal activity shifted to new vents at the northeast base of the main cone and formed the adventitious cone, Sapichu; and Taqui period during which lava issued alternately from the Taqui and Ahuan vents on the west and south base of the main cone. During the eruption of Sapichu the activity of the main cone was greatly reduced but during the Taqui period activity in the main crater was erratic and variable and showed no apparent correlation with the emission of lava from the new vents. After 3 years of activity the cone reached a height of about 350 m above the original vent. Lava flows covered an area of about 18½ square km and destroyed the villages of Paricutin and San Juan Parangaricutiro.—V. S. N.
The andesite volcano Ngauruhoe erupted from May 1954 to March 1955, producing its greatest outflow of lava in historic time. There were ten main flows, with a total volume of the order of 8 million cubic yards. Molten lava was high in the throat from May 1954 to June 1955, but flowed from the crater only during the months from June to September 1954. The period of lava emission was characterized by prolonged lava fountaining that built a spatter-and-cinder cone within the old crater. Hot avalanches accompanied some of the flows. Ash emission continued intermittently throughout the eruption but reached a peak about the end of September. From the evidence of older lava flows it seems probable that Ngauruhoe has reached its maximum height consistent with the available magmatic pressure and that any further growth will be lateral.—D. B. V.

During the renewed activity of the volcano Las Pilas in Nicaragua in 1952, a fissure almost 1 km long opened adjacent to one of the largest collapse craters, which served as a collecting basin. Occurring at the climax of the rainy season, the eruption was clearly phreatic. Such eruptions seem to be brought on by the chilling effect of ground water, which, after saturating the magma with water vapors, lowers its temperature until a critical point is reached and a sudden release occurs, accompanied by a great volumetric increase capable of producing such an expansion crack as the Las Pilas fracture.—D. B. V.

The eight coalescing pits including the one holding Lake Nejapa near Managua, Nicaragua, are not true explosion craters but evolved as follows: basalt was erupted from a fissure through the major axis of the present pits, after which the magma subsided; fluxing by hot gases in the void thus created weakened the basalt roof; as collapse occurred at one point after another the suddenly released gases scattered fragments of rock about the rims, but no magma was ejected.—D. B. V.

Comparison of a sketch of Krakatoa made in 1748 with other early maps and sketches shows that little if any change in shape occurred between 1596 and 1883. This is to be expected inasmuch as the only activity during that pre-explosion interval consisted of the weak eruption of 1680–81.—D. B. V.
<table>
<thead>
<tr>
<th>Abstract</th>
<th>Darbyshire, J.</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, R. D.</td>
<td>268</td>
<td>Ahrens, L. H.</td>
</tr>
<tr>
<td>Ahrens, L. H.</td>
<td></td>
<td>Dauvillier, A.</td>
</tr>
<tr>
<td>Athai, V. S.</td>
<td>18, 236, 237</td>
<td>Davis, G. L.</td>
</tr>
<tr>
<td>Aldrich, L. T.</td>
<td>17, 26, 36, 229, 231</td>
<td>Day, A. A.</td>
</tr>
<tr>
<td>Allan, D. W.</td>
<td>6</td>
<td>de Graaff Hunter, James</td>
</tr>
<tr>
<td>Aslanyan, A. T.</td>
<td>115</td>
<td>de Panfils, M.</td>
</tr>
<tr>
<td>Aithal, V. S.</td>
<td>16, 236, 237</td>
<td>de Sitter, L. U.</td>
</tr>
<tr>
<td>Aswathanarayana, U.</td>
<td>238</td>
<td>Deutsch, Sarah</td>
</tr>
<tr>
<td>Barnes, R. F.</td>
<td>230</td>
<td>De Vries, D. A.</td>
</tr>
<tr>
<td>Barta, György</td>
<td>184</td>
<td>de Witte, Leendert</td>
</tr>
<tr>
<td>Bartolucci, Giorgio</td>
<td>279</td>
<td>Diamond, Herbert</td>
</tr>
<tr>
<td>Bateman, A. M.</td>
<td>178</td>
<td>Dibble, R. R</td>
</tr>
<tr>
<td>Belousov, V. V</td>
<td>114, 117</td>
<td>DiFilippo, Domenico</td>
</tr>
<tr>
<td>Bernard, Pierre</td>
<td>227</td>
<td>Dixon, R. H</td>
</tr>
<tr>
<td>Bernazeaud, Jacques</td>
<td>22</td>
<td>Dubief, Jean</td>
</tr>
<tr>
<td>Besairie, Henri</td>
<td>23</td>
<td>Dürbaum, Hansjürgen</td>
</tr>
<tr>
<td>Blair, B. E.</td>
<td>269</td>
<td>Durr, F.</td>
</tr>
<tr>
<td>Block, L.</td>
<td>191</td>
<td>Eberhardt, Peter</td>
</tr>
<tr>
<td>Bobanenko, L. I</td>
<td>261</td>
<td>Eckelmann, W. R</td>
</tr>
<tr>
<td>Bot, A. C. W. C.</td>
<td>19</td>
<td>Eged, László</td>
</tr>
<tr>
<td>Bott, M. H. P.</td>
<td>142</td>
<td>Eriksson, E</td>
</tr>
<tr>
<td>Bourgoin, J. P.</td>
<td>129</td>
<td>Evison, P. F.</td>
</tr>
<tr>
<td>Broecker, W. S.</td>
<td>7</td>
<td>Ewald, H.</td>
</tr>
<tr>
<td>Brown, P. D.</td>
<td>80</td>
<td>Ewing, Maurice</td>
</tr>
<tr>
<td>Brunn, Anton Fr.</td>
<td>274</td>
<td>Fairbairn, H. W</td>
</tr>
<tr>
<td>Bucher, W. H.</td>
<td>119</td>
<td>Fairbridge, R. W</td>
</tr>
<tr>
<td>Bukhnikashvili, A. V.</td>
<td>92</td>
<td>Faneu, Gerhard</td>
</tr>
<tr>
<td>Bulanze, Yu. D.</td>
<td>137, 139</td>
<td>Favre, B.</td>
</tr>
<tr>
<td>Buljan, Miljenko</td>
<td>277</td>
<td>Fedosyenko, N. Ye</td>
</tr>
<tr>
<td>Bírgl, Hans</td>
<td>214</td>
<td>Fischer, Irene</td>
</tr>
<tr>
<td>Burkart, Kurt</td>
<td>38, 190</td>
<td>Flawn, P. T.</td>
</tr>
<tr>
<td>Byerly, P. E.</td>
<td>145</td>
<td>Folinsbee, R. E</td>
</tr>
<tr>
<td>Cailo, Pietro</td>
<td>51</td>
<td>Förtsch, Otto</td>
</tr>
<tr>
<td>Campbell, C. D.</td>
<td>209</td>
<td>Foshag, W. F</td>
</tr>
<tr>
<td>Canada Geological Survey</td>
<td>219, 220, 221, 222, 223</td>
<td>Frankel, S. P.</td>
</tr>
<tr>
<td>Carlyle, R. H.</td>
<td>104</td>
<td>Frohlich, Friedrich</td>
</tr>
<tr>
<td>Castet, Jean</td>
<td>212</td>
<td>Garbe, S.</td>
</tr>
<tr>
<td>Cattala, Louis</td>
<td>147, 148, 188, 189</td>
<td>Gast, P. W.</td>
</tr>
<tr>
<td>Choudhury, M. A.</td>
<td>76</td>
<td>Geiss, Johannes</td>
</tr>
<tr>
<td>Chovitz, Bernard</td>
<td>111</td>
<td>Geological Association of Canada</td>
</tr>
<tr>
<td>Clark, R. H.</td>
<td>271</td>
<td>Georgl, J.</td>
</tr>
<tr>
<td>Clark, S. P., Jr.</td>
<td>158</td>
<td>Gerard, V. B.</td>
</tr>
<tr>
<td>Clegg, J. A.</td>
<td>193</td>
<td>Glazov, A. N.</td>
</tr>
<tr>
<td>Cock, J. I.</td>
<td>70</td>
<td>Goguel, Jean</td>
</tr>
<tr>
<td>Cook, J. C.</td>
<td>98</td>
<td>Gonzalez, J. R</td>
</tr>
<tr>
<td>Correia Neves, J. M.</td>
<td>250</td>
<td>Grebe, W. H.</td>
</tr>
<tr>
<td>Coze, Jean</td>
<td>53</td>
<td>Gregg, D. R.</td>
</tr>
<tr>
<td>Crane, H. R.</td>
<td>9</td>
<td>Gregory, A. F.</td>
</tr>
<tr>
<td>Custódio de Morais, J.</td>
<td>215</td>
<td>Greggs, D. T.</td>
</tr>
<tr>
<td>Grimbert, Arnold</td>
<td></td>
<td>Grimber, Arnold</td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Grunebaum, Bernard</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Gunten, H. R. von</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Gutenberg, Beno</td>
<td>67, 68, 69, 167, 172</td>
<td></td>
</tr>
<tr>
<td>Haalck, Hans</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Hamilton, W. B</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Hannaford, W. L. W.</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Hayden, R. J</td>
<td>31, 229</td>
<td></td>
</tr>
<tr>
<td>Heiskanen, W. A</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Helbig, K.</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Henderson, J. R., Jr.</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Herlofson, N.</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>Hermont, A. J</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Herrin, Eugene</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Herzog, L. F</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Hill, M. J.</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Hill, M. N.</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Hisgenen, R. A</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Hodgson, J. H</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Holmes, Arthur</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Hori, Minoru</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Hosapers, J.</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Housner, G. W</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Houtermans, F. G</td>
<td>19, 23, 234</td>
<td></td>
</tr>
<tr>
<td>Hurley, P. M</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Iida, Kumizi</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Ikegami, Ryôhei</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>Isselantian, M. S</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Jacobs, J. A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Jakosky, J. J.</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Jakosky, J. J., Jr.</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Jelstrup, H. S</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Jensen, K. J.</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Jensen, M. L</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Jirlow, K.</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Joesting, H. R</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Jolly, R. N.</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>Jones, L.</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Jones, V. L</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Jung, Karl</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Kanai, Kiyoshi</td>
<td>58, 85, 87</td>
<td></td>
</tr>
<tr>
<td>Kantor, Ján</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kasahara, Keizô</td>
<td>74, 128</td>
<td></td>
</tr>
<tr>
<td>Kats, A. Z.</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>Kawasumi, Hiroshi</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Kebladze, V. V</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Ketser-Graut, C.</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Klintzinger, P. R</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Kirnos, D. P.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Kishimoto, Yoshimichi</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Klemmer, Konrad</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Knoopp, L.</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Kobayashi, Naoyoshi</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Koning, L. P. G</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Korschunow, A.</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Korszhinsky, D. S</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Kos'ya'kova, K. Ya</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Krey, Theodor</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Krimari, A. I</td>
<td>207</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krylov, A. Ya</td>
<td>15</td>
</tr>
<tr>
<td>Kulp, J. L.</td>
<td>7, 27</td>
</tr>
<tr>
<td>Kunz, Bruno</td>
<td>214</td>
</tr>
<tr>
<td>Kupčo, Gejza</td>
<td>35</td>
</tr>
<tr>
<td>Lagrula, Jean</td>
<td>212</td>
</tr>
<tr>
<td>Langer, Ebbe</td>
<td>274</td>
</tr>
<tr>
<td>Lapwood, E. R</td>
<td>73</td>
</tr>
<tr>
<td>Lashkhi, A. S</td>
<td>95</td>
</tr>
<tr>
<td>Laughton, A. S</td>
<td>268</td>
</tr>
<tr>
<td>Lawrie, J. A</td>
<td>224</td>
</tr>
<tr>
<td>Lazard, Bertrand</td>
<td>22</td>
</tr>
<tr>
<td>Lecolazet, Robert</td>
<td>135</td>
</tr>
<tr>
<td>Lipson, J. I</td>
<td>28, 30</td>
</tr>
<tr>
<td>Lomnits, C.</td>
<td>270</td>
</tr>
<tr>
<td>Landbak, Asger</td>
<td>264</td>
</tr>
<tr>
<td>Lyubimova, Ye. A</td>
<td>133</td>
</tr>
<tr>
<td>McBirney, A. R</td>
<td>260, 259, 290</td>
</tr>
<tr>
<td>Machado, Frederico</td>
<td>278</td>
</tr>
<tr>
<td>Magnitskyy, V. A</td>
<td>162</td>
</tr>
<tr>
<td>Małoszewski, Stanisław</td>
<td>247</td>
</tr>
<tr>
<td>Manley, Horace</td>
<td>291</td>
</tr>
<tr>
<td>Marcelli, L.</td>
<td>51</td>
</tr>
<tr>
<td>Marinov, N. A</td>
<td>125</td>
</tr>
<tr>
<td>Marler, G. D</td>
<td>11</td>
</tr>
<tr>
<td>Martin, Hans</td>
<td>267</td>
</tr>
<tr>
<td>Matschinski, Matthias</td>
<td>254, 276</td>
</tr>
<tr>
<td>Matsumoto, Hidetaro</td>
<td>65</td>
</tr>
<tr>
<td>Matusawa, Takeko</td>
<td>85</td>
</tr>
<tr>
<td>Mayerud, P. N</td>
<td>157</td>
</tr>
<tr>
<td>Medvedev, S. V</td>
<td>61</td>
</tr>
<tr>
<td>Mienhold, Rudolf</td>
<td>124</td>
</tr>
<tr>
<td>Meyer-Abich, Helmut</td>
<td>281</td>
</tr>
<tr>
<td>Miholíč, Stanko</td>
<td>245</td>
</tr>
<tr>
<td>Miller, D. S</td>
<td>27</td>
</tr>
<tr>
<td>Miller, M. M</td>
<td>127</td>
</tr>
<tr>
<td>Miyamura, Setumial</td>
<td>62, 64, 65, 66</td>
</tr>
<tr>
<td>Monakhov, P. I</td>
<td>75</td>
</tr>
<tr>
<td>Monnet, C.</td>
<td>136</td>
</tr>
<tr>
<td>Montandon, Frédéric</td>
<td>71</td>
</tr>
<tr>
<td>Moody, J. D.</td>
<td>122</td>
</tr>
<tr>
<td>Morals, M. X. de</td>
<td>250</td>
</tr>
<tr>
<td>Moret, Léon</td>
<td>37</td>
</tr>
<tr>
<td>MÜller, Erich</td>
<td>79</td>
</tr>
<tr>
<td>Murachchi, Sadanori</td>
<td>82</td>
</tr>
<tr>
<td>Murina, G. A</td>
<td>15</td>
</tr>
<tr>
<td>Myers, J. O</td>
<td>148</td>
</tr>
<tr>
<td>Neaga, Takesi</td>
<td>202</td>
</tr>
<tr>
<td>Nairn, A. E. M.</td>
<td>206</td>
</tr>
<tr>
<td>Namikawa, Tomikazu</td>
<td>179</td>
</tr>
<tr>
<td>Narain, H.</td>
<td>213</td>
</tr>
<tr>
<td>Negi, B. S.</td>
<td>96</td>
</tr>
<tr>
<td>Nersesov, I. L</td>
<td>63</td>
</tr>
<tr>
<td>Neumann van Padang, M</td>
<td>275, 291</td>
</tr>
<tr>
<td>Ney, P.</td>
<td>34</td>
</tr>
<tr>
<td>Nicolaysen, L. O</td>
<td>17</td>
</tr>
<tr>
<td>Nielsen, L. E</td>
<td>126</td>
</tr>
<tr>
<td>Nishimura, Eiichi</td>
<td>169</td>
</tr>
<tr>
<td>Nisakan, E.</td>
<td>120</td>
</tr>
<tr>
<td>Nisse, Gerhard</td>
<td>93</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>O'Connell, D. J. K.</td>
<td>41, 42</td>
</tr>
<tr>
<td>Ogilvie, W. P</td>
<td>103</td>
</tr>
<tr>
<td>Okada, Atsushi</td>
<td>113</td>
</tr>
<tr>
<td>Okada, Atusi</td>
<td>284</td>
</tr>
<tr>
<td>O'kotsimskaya, M. V.</td>
<td>186</td>
</tr>
<tr>
<td>Ölander, V. R</td>
<td>112</td>
</tr>
<tr>
<td>Olczak, Tadeusz</td>
<td>183</td>
</tr>
<tr>
<td>Olsson, B. H</td>
<td>39</td>
</tr>
<tr>
<td>Omote, Syun'itiro</td>
<td>44, 82</td>
</tr>
<tr>
<td>Öpik, E. J</td>
<td>4, 161, 166, 198</td>
</tr>
<tr>
<td>Ortilla, N.</td>
<td>94</td>
</tr>
<tr>
<td>Osoba, J. S</td>
<td>101</td>
</tr>
<tr>
<td>Ozima, M</td>
<td>202</td>
</tr>
<tr>
<td>Parasnis, D. S</td>
<td>100</td>
</tr>
<tr>
<td>Parwel, A</td>
<td>176</td>
</tr>
<tr>
<td>Patterson, C. C</td>
<td>5, 17</td>
</tr>
<tr>
<td>Pauly, Hans</td>
<td>274</td>
</tr>
<tr>
<td>Perkins, F. M., Jr.</td>
<td>101</td>
</tr>
<tr>
<td>Perrin, René</td>
<td>140</td>
</tr>
<tr>
<td>Petrucc, G.</td>
<td>94</td>
</tr>
<tr>
<td>Peyve, A. V</td>
<td>118</td>
</tr>
<tr>
<td>Piciotto, E. E</td>
<td>234</td>
</tr>
<tr>
<td>Pienkowski, S</td>
<td>240</td>
</tr>
<tr>
<td>Pnar, Narlye</td>
<td>49</td>
</tr>
<tr>
<td>Pias, W. H., Jr.</td>
<td>33</td>
</tr>
<tr>
<td>Pias, G. N.</td>
<td>132</td>
</tr>
<tr>
<td>Poisson, Charles</td>
<td>47, 52</td>
</tr>
<tr>
<td>Potger, J. E</td>
<td>43</td>
</tr>
<tr>
<td>Press, Frank</td>
<td>77, 108</td>
</tr>
<tr>
<td>Price, C. A</td>
<td>174</td>
</tr>
<tr>
<td>Prosen, D</td>
<td>225</td>
</tr>
<tr>
<td>Pudovkin, I. M</td>
<td>185</td>
</tr>
<tr>
<td>Puri, D. D</td>
<td>102</td>
</tr>
<tr>
<td>Rao, M. B. R</td>
<td>96</td>
</tr>
<tr>
<td>Rao, V. B.</td>
<td>200, 213</td>
</tr>
<tr>
<td>Reiter, Reinhold</td>
<td>232</td>
</tr>
<tr>
<td>Research Group for Explosion Seismology, Japan</td>
<td>170</td>
</tr>
<tr>
<td>Reynolds, J. H</td>
<td>29</td>
</tr>
<tr>
<td>Ribe, K. H</td>
<td>101</td>
</tr>
<tr>
<td>Richter, C. F.</td>
<td>67</td>
</tr>
<tr>
<td>Rikitake, Tsuneji</td>
<td>180</td>
</tr>
<tr>
<td>Rivière, André</td>
<td>242</td>
</tr>
<tr>
<td>Robertsaw, Jack</td>
<td>80</td>
</tr>
<tr>
<td>Robson, G. R</td>
<td>156</td>
</tr>
<tr>
<td>Roche, Alexandre</td>
<td>205</td>
</tr>
<tr>
<td>Rod, Emilie</td>
<td>54</td>
</tr>
<tr>
<td>Roman, Irwin</td>
<td>89</td>
</tr>
<tr>
<td>Roques, Maurice</td>
<td>18</td>
</tr>
<tr>
<td>Roquet, Juliette</td>
<td>203</td>
</tr>
<tr>
<td>Rossman, D. L</td>
<td>218</td>
</tr>
<tr>
<td>Roth, Étienne</td>
<td>177</td>
</tr>
<tr>
<td>Roth, Raoul</td>
<td>22</td>
</tr>
<tr>
<td>Rothé, J. P</td>
<td>43, 249</td>
</tr>
<tr>
<td>Rozsa, T.</td>
<td>256</td>
</tr>
<tr>
<td>Rubin, Meyer</td>
<td>14</td>
</tr>
<tr>
<td>Runcorn, S. K</td>
<td>182, 197, 199, 209</td>
</tr>
<tr>
<td>Rydgerowa, D.</td>
<td>240</td>
</tr>
<tr>
<td>Salikhov, A. G</td>
<td>297</td>
</tr>
<tr>
<td>Sanselme, Henri</td>
<td>22</td>
</tr>
<tr>
<td>Sastry, A. V. R</td>
<td>283</td>
</tr>
<tr>
<td>Satō, Yasuo</td>
<td>78, 76</td>
</tr>
<tr>
<td>Savarenkxii, Ye. F</td>
<td>40, 72</td>
</tr>
<tr>
<td>Schulze, G. A</td>
<td>286</td>
</tr>
<tr>
<td>Schurmann, H. M. E</td>
<td>19</td>
</tr>
<tr>
<td>Schwarzbach, Martin</td>
<td>12</td>
</tr>
<tr>
<td>Selzer, E</td>
<td>194</td>
</tr>
<tr>
<td>Serson, P. H</td>
<td>192</td>
</tr>
<tr>
<td>Shashkin, V. L</td>
<td>247</td>
</tr>
<tr>
<td>Sheynmann, Yu. M</td>
<td>116</td>
</tr>
<tr>
<td>Shima, Makoto</td>
<td>10</td>
</tr>
<tr>
<td>Shurbet, D. H</td>
<td>225</td>
</tr>
<tr>
<td>Shurbet, G. L</td>
<td>151</td>
</tr>
<tr>
<td>Sievert, R. M</td>
<td>233</td>
</tr>
<tr>
<td>Sigler, Peter</td>
<td>19, 22</td>
</tr>
<tr>
<td>Smart, W. M.</td>
<td>3</td>
</tr>
<tr>
<td>Smellie, D. W</td>
<td>210</td>
</tr>
<tr>
<td>Spadea, M. C.</td>
<td>51</td>
</tr>
<tr>
<td>Srivastava, S. S.</td>
<td>102</td>
</tr>
<tr>
<td>Starik, I. Ye</td>
<td>15</td>
</tr>
<tr>
<td>Steenama, J. J. S</td>
<td>19</td>
</tr>
<tr>
<td>Stefanović, D.</td>
<td>97</td>
</tr>
<tr>
<td>Stober, G.</td>
<td>216</td>
</tr>
<tr>
<td>Stockton, F. D</td>
<td>126</td>
</tr>
<tr>
<td>Subsoil Research Team, Earthquake Research Institute, Tokyo University</td>
<td>59</td>
</tr>
<tr>
<td>Suggate, R. P</td>
<td>149</td>
</tr>
<tr>
<td>Suringa, R.</td>
<td>19</td>
</tr>
<tr>
<td>Suzuki, Tomisaburo</td>
<td>58</td>
</tr>
<tr>
<td>Swallow, J. C.</td>
<td>268</td>
</tr>
<tr>
<td>Szwacka, C. J.</td>
<td>239, 240</td>
</tr>
<tr>
<td>Tamrazyan, G. P</td>
<td>46</td>
</tr>
<tr>
<td>Tauber, Henrik</td>
<td>8</td>
</tr>
<tr>
<td>Tilton, G. R</td>
<td>17, 26, 229, 231</td>
</tr>
<tr>
<td>Timofeyev, A. N</td>
<td>150</td>
</tr>
<tr>
<td>Trappe, H. J</td>
<td>266</td>
</tr>
<tr>
<td>Tatslashivili, D. A.</td>
<td>95</td>
</tr>
<tr>
<td>Tsujura, Masaru</td>
<td>64, 66</td>
</tr>
<tr>
<td>Tsuya, Hirochibh</td>
<td>284</td>
</tr>
<tr>
<td>Turner, F. J</td>
<td>271</td>
</tr>
<tr>
<td>Twarowska, B.</td>
<td>240</td>
</tr>
<tr>
<td>Ublisch, H. von</td>
<td>178</td>
</tr>
<tr>
<td>Uryson, V. O.</td>
<td>91</td>
</tr>
<tr>
<td>Vajk, Raoul</td>
<td>133</td>
</tr>
<tr>
<td>van der Vliet, G.</td>
<td>155</td>
</tr>
<tr>
<td>Van Nostrand, R. G.</td>
<td>235</td>
</tr>
<tr>
<td>Vatan, M. A.</td>
<td>242</td>
</tr>
<tr>
<td>Vening Meinesz, F. A.</td>
<td>110, 134</td>
</tr>
<tr>
<td>Venkatasubramanian, V. S.</td>
<td>16</td>
</tr>
<tr>
<td>Vickers, R. C.</td>
<td>251</td>
</tr>
<tr>
<td>Vidal, H.</td>
<td>139</td>
</tr>
<tr>
<td>Voytkевич, G. V.</td>
<td>171</td>
</tr>
<tr>
<td>Wade, R. T.</td>
<td>99</td>
</tr>
<tr>
<td>Walton, M. S., Jr.</td>
<td>218</td>
</tr>
<tr>
<td>Wanner, Ernst</td>
<td>48</td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Wasserburg, G. J</td>
<td>31, 229</td>
</tr>
<tr>
<td>Watanabe, Tasuku</td>
<td>284</td>
</tr>
<tr>
<td>Watson, I. J</td>
<td>146</td>
</tr>
<tr>
<td>Webb, John</td>
<td>156</td>
</tr>
<tr>
<td>Webber, G. R</td>
<td>24</td>
</tr>
<tr>
<td>Welander, P</td>
<td>131</td>
</tr>
<tr>
<td>Wendent, Immo</td>
<td>235, 243</td>
</tr>
<tr>
<td>Wetherill, G. W</td>
<td>26, 28, 36, 229, 231</td>
</tr>
<tr>
<td>Whetton, J. T</td>
<td>146</td>
</tr>
<tr>
<td>Wickman, F. E</td>
<td>176</td>
</tr>
<tr>
<td>Wierzchicka, Zuzanna</td>
<td>241</td>
</tr>
<tr>
<td>Willmore, P. L</td>
<td>159</td>
</tr>
<tr>
<td>Windes, S. L</td>
<td>280</td>
</tr>
<tr>
<td>Wolff, Wilhelm</td>
<td>105</td>
</tr>
<tr>
<td>Worzel, J. L</td>
<td>151</td>
</tr>
<tr>
<td>Wright, H. E., Jr.</td>
<td>14</td>
</tr>
<tr>
<td>Yamazaki, Yoshio</td>
<td>82</td>
</tr>
<tr>
<td>Yeres'ko, S. I</td>
<td>56</td>
</tr>
<tr>
<td>Yokoyama, Izumi</td>
<td>285, 286</td>
</tr>
<tr>
<td>Yoshizawa, Shizuyo</td>
<td>58</td>
</tr>
<tr>
<td>Ziefurts, H</td>
<td>155</td>
</tr>
<tr>
<td>Zmyslowska, S</td>
<td>240</td>
</tr>
<tr>
<td>Zumberge, J. H</td>
<td>13</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Abdulgafarov, K. K.</td>
<td>See Cheryntsev, V. V. causes of non-reflection of some southwestern Transdanubian areas.</td>
</tr>
<tr>
<td>Adams, J. A. S.</td>
<td>The uranium geochemistry of Lassen Volcanic National Park, California.</td>
</tr>
<tr>
<td>Adams, R. D.</td>
<td>See Day, A. A.</td>
</tr>
<tr>
<td>Adams, W. M.</td>
<td>The Reelf horizontal seismograph and its calibration.</td>
</tr>
<tr>
<td>Adlung, Alfred.</td>
<td>Determination of the angles of emergence with the aid of the wave front method.</td>
</tr>
<tr>
<td>Afanas'ev, G. D.</td>
<td>The problem of the age of magmatic formations of the northern Caucasus.</td>
</tr>
<tr>
<td>Argos', W. B., and Isaacs, K.</td>
<td>Tunis to Lisbon airborne magnetometer profile.</td>
</tr>
<tr>
<td>Ahrens, L. H.</td>
<td>Analytical error as a possible cause of the t(206/238) > t(207/235) > t(207/206) age distribution.</td>
</tr>
<tr>
<td>Adams, W. M.</td>
<td>Radioactive methods for determining geological age.</td>
</tr>
<tr>
<td>Aithal, V. S.</td>
<td>Determination of thorium and uranium concentration ratios in Indian rocks and minerals.</td>
</tr>
<tr>
<td>Aki, Keiiri.</td>
<td>Quantitative prediction of earthquake occurrence as stochastic phenomena.</td>
</tr>
<tr>
<td>Alcaraz, Arturo.</td>
<td>The Lanao earthquake, Philippines.</td>
</tr>
<tr>
<td>Aldrich, L. T.</td>
<td>Measurement of radioactive ages of rocks.</td>
</tr>
<tr>
<td>Aldrich, L. T., Davis, G. L., Tilton, G. R., and Wetherill, G. W.</td>
<td>Radioactive ages of minerals from the Brown Derby mine and the Quartz Creek granite near Gunnison, Colorado.</td>
</tr>
<tr>
<td>Aldrich, L. T., Tilton, G. R., Davis, G. L., Nicolaysen, L. O., and Patterson, C. C.</td>
<td>Comparison of U-Pb, Pb-Pb, and Rb-Sr ages of Precambrian minerals.</td>
</tr>
<tr>
<td>Aleksandyrk, V. M.</td>
<td>See Starkl, J. Ye.</td>
</tr>
<tr>
<td>Alger, R. P.</td>
<td>Electrical logging problems in the Eocene Wilcox.</td>
</tr>
<tr>
<td>Allan, D. W., and Jacobs, J. A.</td>
<td>The melting of asteroids and the origin of meteories.</td>
</tr>
<tr>
<td>Allen, William, Jr.</td>
<td>The gravity meter in underground prospecting.</td>
</tr>
<tr>
<td>Al'pin, L. M.</td>
<td>Model studies of resistivity well logging by mathematical nets.</td>
</tr>
<tr>
<td>Ambolt, N.</td>
<td>See Egedal, J.</td>
</tr>
<tr>
<td>Amirkhanov, Kh. I., Gurvich, I. G., and Sardarov, S. S.</td>
<td>The mass-spectrometric rapid method of determination of the absolute age of geologic formations using the radioactive disintegration of K into A.</td>
</tr>
</tbody>
</table>
Amirkhanov, Kh. I., Gurvich, I. G., Shanaia, L. L., and Sardarov, S. S. A mass-spectrometric method of measuring the amount of radiogenic argon in geological formations to determine their absolute age. 166–21

Anderson, W., and Turner, R. C. Radon content of the atmosphere. 166–311

Andreyev, B. A. Determination of the depth of the upper surface of the crystalline bedrock in the (Russian) shield regions from magnetic anomalies. 164–248

Annav, Edgar. See Pogay, Károly.

Aнестиy, N. A. Instrumental distortion and the seismic record. 165–334

Antsyferov, M. S., and Gol'dfarb, M. L. Experimental investigation of a string galvanometer. 164–114

Aoki, Harumi. See Iida, Kumizi.

Arakawa, Y. On the microseisms caused by a typhoon. 164–293

Arambourg, C. The “raised beaches” of the Quaternary. 164–207

Argentiere, Rómulo. The radioactivity of nonuranium- and thorium-bearing rocks. 165–309

Argentieri, D. Gravitational effect of Jupiter on some geophysical phenomena. 164–79

Arkhan’el’skaya, V. M. Determination of the azimuth of the epicenter of an earthquake from the records of surface waves of distant earthquakes. 166–75

Armbrust, B. F., Jr., and Kuroda, P. K. On the isotopic constitution of radium Ra-224/Ra-226 and Ra-228/Ra-226) in petroleum brines. 165–307

Arnold, K. On the mean ellipsoid of the earth. 166–186

Asada, Toshi. On lower limit of the magnitude of earthquakes accompanied by aftershocks. 164–57

Asami, Eizo. Reverse and normal magnetism of the basaltic lavas at Kawajiri-Misaki, Japan. 166–282

Asano, Shizuo. On the accuracy of hypocenter determination. 165–51

Aslanya, A. T. The study of the theory of the tectonic deformation of the earth. 167–115

Aswathanarayana, U. Absolute ages of the Archaen erogenic cycles of India. 164–84

Applications of nuclear physics in the economic aspects of geology. 166–298

Aswathanarayana, U., and Mahadevan, C. The potentialities of deep sea sediments as sources of radioactive elements. 166–909

Baranov, V. I. Aeroradiometric prospecting for uranium and thorium deposits and the interpretation of gamma anomalies. 165–330

The effect of external conditions on radioactive disintegration. 166–300

Barucci, Italo. On the apparent modulus of elasticity of porous solids. 164–96

Barenboym, M. I. Dynamic characteristics of the refracted waves on the slopes of salt domes. 165–338

The recording of subsalt horizons. 164–299

Barnes, J. W., Lang, E. J., and Potratz, H. A. Ratio of lanthanum to uranium in coral limestone. 166–20

Barnes, R. F. See Kulp, J. L.

Bartels, Julius. Geomagnetically indicated local heterogeneities of electric conductivity of the underground. 164–194

See also Haasz, I. B.

Bartels, Julius. Geomagnetically indicated local heterogeneities of electric conductivity of the underground. 164–194

Bartolucci, Giorgio. Fumaroles, solfataras, and hot springs in northwestern Argentina and the possibility of their industrial use. 167–279
Baryshnikov, V. B. See Monakhov, F. L.
Bassompierre, Pierre, and Munck, Fernand. Discovery by magnetic exploration of a bed of iron ore in the Calymenes schists south of the Flamanville granite (Manche) 164-244
Bate, G. L. See Kulp, J. L.
Bateman, A. M., and Jensen, M. L. Notes on the origin of the Rhodesian copper deposits 167-178
Báth, Markus. The earth's core—a modern geophysical problem 165-222
Baus, R. A. See Blifford, I. H., Jr.
Beals, C. S., Hodgson, J. H., Innes, M. J. S., and Madill, R. G. Problems of geophysics in the Canadian Arctic 165-158
Beck, A. The stability of thermistors 166-254
Beck, A., Jaeger, J. C., and Newstead, G. The measurement of the thermal conductivities of rocks by observations in boreholes 166-233
Beer, K. E. See Bowie, S. H. U.
Begemann, F., Gels, Johannes, Houtermans, F. G., and Buser, W. Isotopic composition and radioactivity of recent Vesuvius lead 164-23
Bethune, Rudolf. Geoelectric exploration for the dam over the Vitava River near Zlakovice 164-111
Behre, C. H., Jr. See Banfield, A. F.
Bellair, Pierre. The volcanic activity of the Ahaggar in the framework of African volcanic activity 164-316
Bellulgi, Arnaldo. Field generated by a cable carrying alternating current lying on a terrain with interlayer 165-116
— On a geoelectrical inverse problem 166-150
— On the Elfiex electrical method for direct exploration for petroleum 165-108
— The function of a thin electrically conducting layer 165-115
Belousov, V. V. Fundamental questions of general geotectonics 167-114
— Internal structure and the evolution of the earth from geotectonic evidence 164-191
— On the geologic structure and evolution of the ocean basins 167-117
Bemmelen, R. W. van. The geochemical control of tectonic activity 166-193
Bendefy, Lászlo. Determination of temporal changes of elevation of base levels 165-182
Benioff, Hugo. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence 166-48
— Relation of the White Wolf fault to the regional tectonic pattern 166-198
— Seismograph development in California 166-97
Benioff, Hugo, and Gutenberg, Beno. General introduction to seismology 166-37
Bennema, J. Holocene movements of land and sea-level in the coastal area of the Netherlands 165-233
Berckhemer, Hans. Rayleigh-wave dispersion and crustal structure in the east Atlantic Ocean basin 166-248
Berckhemer, Hans, and Oliver, Jack. On the significance of seismic impulses with parallel traveltime curves 166-344
Bereza, G. V., Slutskovsky, A. I., and Polishkov, M. K. Frequency analysis of seismic vibrations 165-351
Bernard, Pierre. Microseismic activity in Normandy 167-227
— On the amplification of seismographs whose period is increased with condensers 164-72
Bernazeaud, Jacques; Grimbert, Arnold; Lazard, Bertrand; Roth, Raoul; and Sanselme, Henri. Conditions of deposition and age of the uraninite at Bas-Cavally (Ivory Coast) 166-22
Berry, J. E. See Hicks, W. G.
Berzon, I. S. Approximate methods of quantitative interpretation of the maps of equal arrival of reflected waves 166-345
— The change in the predominant frequency of seismic waves with increasing distance from the source of vibrations 165-333
Berzon, I. S., Paryskaya, G. N., and Starodubrovskaya, S. P. On recording high-frequency reflected waves on the Russian Platform 166-338
Besada, E. M. See Hernández, R. P. J.
Besalrie, Henri; Eberhardt, Peter; Houtermans, F. G.; and Signer, Peter. Age determinations on some galenas from Madagascar. 164-35

Second series of measurements of age of galenas from Madagascar. 167-23

See also Holmes, Arthur.

Bespalov, D. F. See Kukharenko, N. K.

Binge, H.-J. Volcanism and intrusions as a result of the dependence of σ on time in Jordan's cosmology. 164-303

Birch, Francis. Heat flow at Eniwetok Atoll. 166-239

Bisby, H., Franklin, E., and Taylor, D. Instrumental developments in the prospecting, mining and chemical processing of nuclear materials. 165-320

Black, R. A. Geophysical exploration for uranium on the Colorado Plateau. 165-152

Blackwell, J. H. The axial-flow error in the thermal conductivity probe. 165-219

Blair, B. B. Physical properties of mine rock, Part 3. 167-269

Blifford, I. H., Jr., Friedman, H., Lockhart, L. B., Jr., and Baus, R. A. Geographical and time distribution of radioactivity in the air. 166-310

Block, L., and Herlofson, N. Numerical integration of geomagnetic field lines. 167-191

Blum, H. A., and Martin, J. L. Log interpretation problem in low resistivity sands. 164-122

Blum, P. A., and Lebeau, André. On a method of eliminating slow variations in recording pulsations of the geomagnetic field. 166-269

Blundun, G. J. The refraction seismograph in the Alberta foothills. 166-300

Boga, Giovanni. Methods and instruments of modern geophysical research. 166-172

Bod, Magdolna. See Brkel, András.

Bögvad, R. SeeBondam, J.

Bokanenko, L. I. Determination of the frequency and phase characteristics of electrodynamic seismometers by means of additional exciting coils. 167-261

Boldisár, T. Terrestrial heat flow in Hungary. 166-238

Bonchkovskiy, V. F., and Namsaray, S. On the precision of the inclinometer. 164-142

Bondam, J., and Bögvad, R. The geothermal gradient at Ivigtut, South Greenland. 165-216

Bonelli y Rubio, J. M. See Rodríguez-Navarro de Fuentes, José.

Bonini, W. E. See Woillard, G. P.

Bordet, Claude. On the geology of the Isère-Arc tunnel (Savoie). 164-185

Borrego González, Joaquín. The Atlas gravimeter, model F. Description, calibration, and maintenance of the instrument. 164-158

Bortfeld, Reinhard. On surface waves in the Minden-Steinhuder Meer area. 164-294

Bott, A. C. W. C. See Schurrmann, H. M. E.

Bott, M. H. P. A geophysical study of the granite problem. 167-142

Bourgoin, J. P. Certain characteristics of the surface and base of the Greenland icecap. 167-129

Bowen, S. H. U., Hale, F. H., Ostle, D., and Beer, K. E. Radiometric surveying with a car-borne counter. 165-327

See also Davidson, C. F.

Boyle, T. L. Airborne radiometric surveying. 165-328

Bradley, W. C. Carbon-14 date for a marine terrace at Santa Cruz, California. 165-6

Brand, E. Results of recent exploratory activity in the Rehden-Aldorf area. 166-182

Brannon, H. R., Jr., and Osoba, J. S. Spectral gamma-ray logging. 165-316

Brauch, Wolfgang. The perpendicular-time curve in seismic reflection. 164-285

Brekhovskikh, L. M. On tsunami and observations of very distant propagation of sound in the ocean. 166-70

Brinkmeyer, G. Team work in seismic prospecting. 166-327

Brock, B. B. Some observations on vertical tectonics in Africa. 164-147

Broda, E., and Rohringer, G. The measurement of radio-carbon with the gas Geiger counting tube. 164-11

Broding, K. A., and Rummel, B. F. Simultaneous gamma-ray–resistance logging as applied to uranium exploration. 165-187

Broecker, W. S., Kulp, J. L., and Tucek, C. S. Lamont natural radiocarbon measurements III. 166-6

See also Ericson, D. B.

Bronshteyn, K. G. Magnetic susceptibility of sedimentary rocks. 164-232

Brown, P. D., and Robertshaw, Jack. The in-situ measurement of Young's modulus for rock by a dynamic method. 167-80
AUTHOR INDEX 379

Abstract

Brown, R. J. E. See Pihlainen, J. A.
Brown, R. M., and Grummitt, W. E. The determination of tritium in natural waters 165-240
Brown, W. F., Jr. Minimum variance in gravity analysis 164-161
Brandage, H. T. Australian aerial survey reports near completion 165-281
Brunn, Anton Fr., Langer, Ebbie, and Pauly, Hans. Magnetic particles found by raking the deep sea bottom 167-274
Brúnjófsson, Ari. Results of partial demagnetization of the natural magnetism of Icelandic basalts 165-269
Bucher, W. H. Role of gravity in orogenesis 167-119
Buddington, A. F., Fahey, Joseph, and Vlisidis, Angelina. Thermometric and petrogenetic significance of titaniferous magnetite 164-181
Budryk, Witold. The effects of earthquakes in the mines of Upper Silesia 164-48
Bukhnikashvili, A. V. Experiences with the measurement of short-period variations of telluric currents as a method of determining geologic structure applied to the section of the Georgian Military Highway 166-168
Bukhnikashvili, A. V., and Kebuladze, V. V. On the invariability of the electric field of sulfide deposits 167-92
Bulanzhe, Yu. D. Formulas for the evaluation of the errors in gravimetric tying of two points with repeated measurements performed with a bank of gravimeters 167-137
Bulanzhe, Yu. D., and Popov, E. I. Quartz gravimeter for the determination of gravimetric base stations 167-139
Buljan, Miljenko. Deep submarine volcanism and the chemistry of ocean 167-277
Bullard, F. M. Volcanic activity in Costa Rica and Nicaragua in 1954 164-308
Bullen, K. E. Features of seismic pP and PP rays 166-87
Bullerwell, W. Temperature surveys in the [Stowell Park] boreholes 166-237
Burdon, D. J. See Manley, Horace.
Burgers, J. M. Rotational motion of a sphere subject to visco-elastic deformation 166-191
Burke, W. H., Jr., and Meinschein, W. G. C14 dating with a methane proportional counter 164-10
Burkhart, Kurt. Construction data for the inductive pulsation and earth-current installation at the geomagnetic observatory in Fürstenfeldbruck 167-38
——— Micropulsations of earth currents and the horizontal component of the earth's magnetism 166-34
——— The earth current, its origin and apparent effect on the geomagnetic field 167-190
Burling, R. L. Some unusual reflections of sound in the ocean 166-356
Burwash, R. A. See Shillibeer, H. A.
Buser, W. See Hegemann, F.
Butterlin, Jacques. New information on the geologic constitution of the depths of the Caribbean Sea 165-229
——— On the nature of the sea bottom in the Antilles 164-202
Buwalda, J. P. See Gutenberg, Beno.
Bycroft, G. N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum 165-77
Byerly, F. E. See Joestring, H. R.
Byus, Ye. I. On the seismicity of Transcaucasia 165-29

C

Cahen, Lucien. Geology of the Belgian Congo 165-881
See also Holmes, Arthur.
Cailleux, André. Amplitude of glacio-eustatic regressions 164-208
Caloi, Pietro. C 164-66
Caloi, Pietro, and Spada, M. C. Relations between slow variations in inclination and seismic movements in zones of high seismicity

Cambefort, H. Measurement of the porosity of rocks by electrical methods

Campbell, C. D., and Runcorn, S. K. Magnetization of the Columbia River basalts in Washington and northern Oregon

Campbell, W. M. See Martin, J. L.

Canada Geological Survey. Aeromagnetic maps of Newfoundland, Aeromagnetic maps of Northwest Territories, Aeromagnetic maps of the Province of Alberta, Aeromagnetic maps of the Province of Ontario, Aeromagnetic maps of the Province of Saskatchewan

Carabelli, E. Experimental geophysical surveys in ancient burial places

Carey, S. W. Correlation of the post-Triassic history of Tasmania with secular variation in temperature and viscosity of the sub-crust

Wegener's South American-African assembly, fit or misfit

Carlyle, R. H. Little Smoky geophysical exploration

Carpenter, E. W. Some notes concerning the Wenner configuration

Carpenter, B. W., and Habberjam, G. M. A tripotential method of resistivity prospecting

Carre, A. E. Thermal constants of pyrophyllite and their change on heating

Castet, Jean, Dubief, Jean, and Lagrula, Jean. On a zone of large gravity and magnetic anomalies in the northern Tanezrouft

Castro, Honorato de. Gravimetric determination of the best-fitting ellipsoid for Mexico

The determination of gravity by the oscillations of a free pendulum

Variations in the latitude of points on the surface of the earth produced by the action of the moon and the sun

Cattala, Louis. Geographic position, value of magnetic declination and intensity of gravity at Tromelin Islet

Measurements of the gravimetric tide at Madagascar

Some measurements of magnetic declination in the central part of Madagascar

Some measurements of magnetic declination in western and southern Madagascar

Structural interpretation of the gravity survey of Madagascar

Study of gravity in Madagascar

Chadwick, Peter. Heat flow from the earth at Cambridge

Chakraverty, S. K. Disturbances of cylindrical origin in an isotropic elastic medium

On disturbances produced in an elastic medium by twists applied on the inner surface of a spherical cavity

Chapman, N. G., and Humphrey, R. W. An investigation of the variation of the atmospheric radioactivity at Wellington from 5 May to 18 July 1955

Chapman, R. W. See Jaffe, H. W.

Chastenet de Géry, Jérôme, and Kunetz, Géza. Potential and apparent resistivity over dipping beds

Chatterjee, J. S. The crust as the possible seat of earth's magnetism

Cherdynsetv, V. V., and Abdulgafarov, K. K. The helium content of some stony meteorites

Cherdynsetv, V. V. See also Kosov, N. D.

Chernyavkina, M. K. Evaluation of the errors in the determination of the epicenters of the aftershocks of the Chattal' earthquake

Chetayev, D. N. A theorem of electric exploration

Theory of sounding using direct current impulses in a nongrounded loop

The reflex method of electrical exploration

See also Tikhonov, A. N.

Choudhury, M. A. Depth of the Mohorovicíč discontinuity in the Hindu Kush region

Chovits, Bernard, and Fischer, Irene. A new determination of the figure of the earth from arcs

Chudoba, Vratislav. Gravimetric nets in Czechoslovakia

Chujo, Junske. On an analysis of the off set spread

Chukin, V. T. See Komarov, S. G.
AUTHOR INDEX

Abstract

Chuman, R. W. Electric log correlation of the Mesaverde Group in southwestern Wyoming. 165-139
Cipa, W. Short note on some geomagnetic investigations on lava flows and tuff vents in the fore-Eifel. 165-285
Clancourt, Henri de. Trial interpretation of certain gravity anomalies in the western Mediterranean and northern Africa. 165-205
Clark, A. R. The determination of the long dimension of conducting ore bodies. 165-121
Clark, R. H. See Turner, F. J.
Clark, S. P., Jr. Effect of radiative transfer on temperatures in the earth. 166-228
See also Herrin, Eugene
Clarkson, H. N., and LaCoste, L. J. B. An improved instrument for measurement of tidal variations in gravity. 166-205
Clegg, J. A. Rock magnetism. 167-195
Cross, Hans, and Schott, Wolfgang. State of petroleum geology and geophysics. 164-133
See also Murphy, L. M., and Newmann, Frank.
Cock, J. I. See Hodgson, J. H.
Colbert, L. O. Geophysical research in Alaska. 165-157
Colley, G. C. Gravity variations in surveys across geological boundaries. 164-166
Collins, Francis, and Lee, C. C. Seismic wave attenuation characteristics from pulse experiments. 164-93
Collins, T. L. See White, F. A.
Comstock, S. S. Scintillation drill-hole logging. 165-317
Cook, J. C. An electrical crevasse detector. 167-98
Cook, K. L. Regional gravity survey in northeastern Oklahoma and southeastern Kansas. 164-179
Cortes, H. C., and Gsell, R. N. There is oil under those shelves. 165-151
Costa, N. L. See Marquez, L.
Coulomb, Jean. Rapid variations of the magnetic field and telluric currents. 166-131
Cowper, G. See Cruikshank, A. J.
Cram, I. H. See Oliphant, C. W.
Crane, H. R. University of Michigan radiocarbon dates I. 167-9
Crosthwaite, L. B. A measurement of atmospheric radioactivity at Wellington. 165-300
Cruikshank, A. J., Cowper, G., and Grummitt, W. E. Production of Be' in the atmosphere. 165-236
Cucuzza Silvestri, Salvatore. The recent activity of Stromboli (February-March, 1954). 166-370
Cummins, G. L., Wilson, J. T., Farquhar, R. M., and Russell, R. D. Some dates and subdivisions of the Canadian Shield. 166-25
Curatolo, M., Palumbo, Donate, and Santangelo, Mariano. Uranium and thorium content of meteorites. 164-255
Custódio de Morais, J. Some observations of terrestrial magnetism in the Azores. 167-215
Temperatures of the ground. 165-214

D

Dakhnov, V. N. On the low apparent resistivity of producing horizons, formed by thin layers of clay and oil-bearing sand. 164-121
Dakhnov, V. N., Kholin, A. I., and Baranov, O. A. The separation of strata on the basis of their saturation with oil or water in cased wells by the neutron gamma method. 166-321
Daniele, Farrington. See Zeller, E. J.
Darbyshire, J. Refraction of microseisms at island stations. 167-226
Das Gupta, S. C. Note on microseisms produced on the surface of the earth due to storm in the deep sea. 164-250
Dauviller, A. The origin of the chemical elements and the evolution of the universe. 167-160
Davidson, C. F., and Bowie, S. H. U. Methods of prospecting for uranium and thorium. 165-322
Abstract

Davidson, C. F. See also Horne, J. E. T.

Davis, G. L. See Aldrich, L. T., and Wetherill, G. W. 166-29

Davydov, B. I. Phase transitions under high pressures 165-221

Day, A. A. On the values of gravity at St. Anne (Alderney), St. Peter Port (Guernsey) and St. Helier (Jersey) 165-196

De Bremaecker, J. C. Use of amplitudes: Part II, Focal depths 165-57

Debedant, G., and Machado, E. A. M. Effects of certain filters on correlation 166-183

Deeg, Emil, and Huber, Oskar. The dielectric behavior of various clays in relation to their water content by measurement with decimeter waves 164-129

de Graaf, Hunter, James. Observing and using deflections 167-103

Dellwig, L. F. The Barker County earthquake of January 6, 1956 166-55

Denson, M. E. Geophysical-geochemical prospecting for uranium 165-158

Denton, E. R. Formation porosity and fluid content from velocity logs 166-331

De Panfilis, M. See Caloi, Pietro.

de Sitter, L. U. The strain of rock in mountain-building processes 167-121

Deutsch, E. R. See Clegg, J. A.

Deutsch, Sarah, Houtermans, F. G., and Picciotto, E. E. Study of the radioactivity of metallic meteorites by the photographic method 167-234

Deutsch, Sarah, Picciotto, E. E., and Houtermans, F. G. Radioactivity of iron meteorites by the photographic method 165-304

de Vries, Hl. See Straka, H.

Dewan, J. T. Neutron log correction charts for borehole conditions and bed thickness 165-318

de Wittler-Leendert. A study of electro log interpretation methods in shaley formations 164-129

See also Frankel, S. P.

Diamond, Herbert, and Barnes, R. F. Alpha half-life of Pu 167-280

Die Umschau. The profile of the sea floor in the northern Arctic Sea 166-368

DiFilippo, Domenico. See Caloi, Pietro.

Dixon, R. H. See Turner, F. J.

Doer, M. B., and Van Nostrand, R. G. Exploration geophysics makes rapid strides 165-144

——— Review of current developments in exploration geophysics 164-132

Dobrin, M. B. See also Press, Frank.

Doell, R. R. Palaeomagnetic study of rocks from the Grand Canyon of the Colorado River 164-234

——— Remanent magnetization of the upper-Miocene "blue" sandstones of California 165-268

Dohr, G. Periods of first motion on Göttingen seismograms 166-95

Doke, Tadayoshi. See Tajima, Elzo.

Domalski, W. Some problems of shallow refraction investigations 166-347

Donohoo, H. V. W. Annual review, geophysics and geochemistry 165-145

Dowling, J. J. Adjustable magnetic control for seismographs 165-69

Driver, G. E. Tritium survey instruments 165-241

Drysdale, W. S. Firth of Forth seismic refraction survey 165-308

Dubief, Jean. See Castet, Jean.

Due Rojo, Antonio. Geophysics as the present time in the polar regions 166-184

——— Radioactive chronometry 166-1

——— Seismic activity in Spain during 1951 164-41

——— Seismic activity in Spain during 1952 164-42

——— Seismological notes of the year 1953 165-36

——— Seismological notes for 1954 165-21

——— Submarine geology 166-367

——— The seismic period in Granada, April-May, 1956 166-61

Dumanoir, J. L. See Martin, Maurice.
AUTHOR INDEX

Dürbaum, Hansjürgen. Note on a paper by Satô. 167-88

Durr, F., and Stober, G. Note on magnetic measurements in the fumaroles of Ahuachapán. 167-216

Dutt, Amitava. Some observations on the mobility and diffusion of potassium during metamorphism. 164-268

Du Vernet, J. P. An airborne magnetometer survey in the Arctic Islands. 166-288

Dyer, W. B. Gravity prospecting in southwestern Ontario. 165-193

Dyk, Karl. A comparison of additive and multiplicative compounding. 165-344

Dzhibladze, B. A. See Savarenskiy, Ye. F., and Solov'yev, E. L.

Eardley, A. J. The riddle of mountain building. 166-194

Eason, G., Fulton, J., and Sneddon, I. N. The generation of waves in an infinite elastic solid by variable body forces. 165-78

Eaton, J. P. See Macdonald, G. A.

Eberhardt, Peter, Geiss, Johannes, Lang, C., Herr, Wilfrid, and Merz, Erich. On the question of the decay of ^{130}Tm. 164-217

See also Besairie, Henri, and Schurmann, H. M. E.

See also Kulp, J. L.

Eckermann, H. von, and Weckmann, F. E. A preliminary determination of the maximum age of the Alnö rocks. 165-19

Egedal, J., and Ambolt, N. The effect on geomagnetism of the solar eclipse of 30 June 1954 (supplementary communications). 165-249

Egyed, László. A new theory on the internal constitution of the earth and its geological-geophysical consequences. On a new method of determination of mean density. The change of the earth's dimensions determined from paleogeographical data. 167-164

Eklund, S. See Flintus, J.

Ellis, L. G., and Winterhalter, A. C. Unusual reflection events in offshore seismic work. 166-355

Elssasser, W. M. See Takeuchi, Hitoshi.

Emiliani, Cesare. Pleistocene temperature variations in the Mediterranean. 165-243

Enensteyn, B. S., Rybakova, E. V., and Skugarevskaya, O. A. Some results of experimental investigations on the building up of electrical current in the ground. 166-134

See also Tikhonov, A. N.

Engineering and Mining Journal. New airborne geophysical method speeds prospecting. 165-117

Ericson, D. B., Broecker, W. S., Kulp, J. L., and Wollin, Goësta. Late Pleistocene climates and deep-sea sediments. 166-8

Eriksson, E., and Welander, P. On a mathematical model of the carbon cycle in Nature. 167-131

Erkel, András, and Bod, Magdolna. Interpretation of the results of induced potential measurements with respect to laboratory experiments. 165-141

Erósa, János. See Posgay, Károly.

Escher, B. G. Three caldera-shaped accidents: volcanic calderas, meteoric scars, and lunar cirques. 164-305

Evans, H. T., Jr. See Jaffe, H. W.

Everingham, I. B. See Thyrr, R. F., and Wood, F. W.

Evernden, J. F., and Verhoogen, John. Electrical resistivity of meteorites. 166-170

Evison, F. F. A coal seam as a guide for seismic energy. 165-366

Seismic waves from a transducer at the surface of stratified ground. 167-252

The seismic determination of Young's modulus and Poisson's ratio for rocks in situ. 167-81

Ewald, H., Garbe, S., and Ney, P. The isotopic composition of strontium from sea water and from rubidium-poor rocks. 167-34
Ewing, Maurice, and Press, Frank. Rayleigh wave dispersion in the period range 10 to 500 seconds. 165-62
--- Seismic measurements in ocean basins. 167-105
See also Katz, Samuel, Miller, E. T., Press, Frank, Shurbet, D. H., and Shurbet, G. L.

Fabian, H. J. Carbon ratio theory, geothermal gradient and natural gas deposits in northwest Germany. 164-183

Fahy, Joseph. See Buddington, A. F.

Fair, D. R. R., and Howells, H. A survey of the natural gamma radioactivity in the West Cumberland area. 165-310

Fairbairn, H. W. See Webber, G. R.

Fairbridge, R. W. Some bathymetric and geotectonic features of the eastern part of the Indian Ocean. 167-273

Fallini, Filippo. Determination of the regional gravity gradient in the area of the plains of the Garigliano and lower Volturno (Campania). 165-200

Fanselau, Gerhard. On the reduction of measurements with the magnetic field balances, especially the combined suspension balance. 167-211

Fanselau, Gerhard, and Frohlich, Friedrich. The ferrimagnetism of the field of the earth's crust. 165-258

Favre, B. Determination of the position of space in a reflector underneath a refracting interface separating two media of different velocity, from the information derived from a shot at a single cross spread. 164-287
--- On the determination of the coefficients of a linear velocity function as a function of the depth in seismic reflection. 167-257

Fedoseyenko, N. Ye. A portable high-frequency installation for parametric measurements. 167-262
See also Ventskevich, E. V.

Fedynskiy, V. V. Ten years of investigations at the NIIGR (Scientific research institute of geophysical methods of exploration) 1944-54. 165-147

Fecly, H. W. See Kulp, J. L.

Fenner, G. W. See Oliphant, C. W.

Finley, J. E. See Oliphant, C. W.

Fireman, E. L., and Schwerzer, D. Measurement of the tritium concentration in natural waters by a diffusion cloud chamber. 166-254

Fisher, Irene. See Chovitz, Bernard.

Flandrin, J. The development of guiding principles and techniques in petroleum geology. 164-131

Flawn, E. T. Recent rocks of Texas and southeast New Mexico. 167-208

Fleckenstein, J. O. Spinning motion of the earth of geophysics and fundamental system of astronomy. 164-80

Flint, R. F. New radiocarbon dates and late-Pleistocene stratigraphy. 166-7

Flinta, J., and Eklund, S. On the radioactivity of RbK. 166-302

Folinsbee, R. E. Archean monazite in beach concentrates, Yellowknife geologic province, Northwest Territories, Canada. 168-28

Folinsbee, R. E., Lipson, J. L., and Reynolds, J. H. Potassium-argon dating. 167-20

Ford, I. H., and Ollier, C. D. Radioactivity of zircons. 164-259

Förtsch, Otto, Schneider, H. J., and Vidal, H. Seismic studies of the Gepatsch and Kesselwand fms in the Otzal Alps. 164-153

Förtsch, Otto, and Vidal, H. Glaciological and glacial-geological results of seismic measurements on glaciers of the Otztaler Alps, 1953-1954. 165-169
--- Results of seismic measurements on the Hintereis glacier in the Ötztal Alps, 1954. 167-130

Foshaq, W. F., and Gonzalez, J. R. Birth and development of Parmicin volcano. 167-287

Frankel, S. P., and de Witte, Leendert. Digital computation of resistivity departure curves on Whirlwind I. 167-90

Franklin, E. See Bisby, H.

Frantti, G. E. Geophysical investigations in the central portion of Michigan's Upper Peninsula. 165-209

Fredriksson, Kurt. Cosmic spherules in deep-sea sediments. 165-378

Friedman, H. See Bliford, I. H., Jr.
AUTHOR INDEX

Friedman, Irving. Deuterium content of natural waters and other substances... 164-211
Fritsch, Volker. Geoelectrical foundation investigations in Yugoslavia and Austria... 165-128
Fritze, K., and Strassmann, F. Indirect determination of the half-life of rubidium... 165-294
Frohlich, Friedrich. On the techniques of investigations of the magnetisation of igneous rocks... 165-193
See also Fauselau, Gerhard.
Fuchida, Takato. Recent progress in well logging... 165-188
Fujimoto, F. On vibrational characteristics of the ground assumed from seismogram data... 168-85
Fulton, J. See Eason, G.
Funt, B. L. See Pringle, R. W.

Gaertner, H. R. von. Thoughts on the mountain-building theories of Ernst Kraus... 164-148
Gaither, V. U. Index of wells shot for velocity—fourth supplement... 164-289
Gálfi, János; Gellert, Ferenc; and Sédé, Loránd. Pressure wave formation in air shooting... 165-362
Gálfi, János, and Liptay, István. Pressure gage for seismic investigation purposes... 164-277
Gálfi, János, and Stegena, Lajos. Deep reflection in the vicinity of Hajdászoboszló... 166-364
Galperin, E. I. The method of solving direct three-dimensional problems of geometric seismology in stratified media with boundary surfaces of any form... 166-343
Gamburtsev, G. A., Veitsman, P. S., and Tulina, Yu. V. The constitution of the earth's crust around the northern Tien Shan as revealed by the deep seismic sounding... 164-199
Garbe, S. See Ewald, H.
Gardner, L. W. See Wyllie, M. R. J.
Garland, G. D. Gravity measurements in North America with the Cambridge pendulum apparatus... 165-192
Garrigue, Hubert, and Perrin, Albert. Radioactive blowhole at the summit of Puy-de-Dôme... 166-308
Garvitch, Z. S. A field instrument for measuring temperatures of natural boiling pools... 165-218
Garvitch, Z. S., and Probine, M. C. Soil thermometers... 166-232
Gaskell, T. F. Seismic prospecting in the Middle East... 165-340
Gast, P. W. See Kulp, J. L.
Gates, Olcott, and Gibson, William. Interpretation of the configuration of the Aleutian Ridge... 164-150
Gayskiy, V. N. The accuracy of the determination of the focus and the structural elements of the crust of the earth... 164-03
See also Golenetskiy, S. I.
Geese-Bähnisch, Ingeborg, and Huster, E. New determination of the half-life of Rb... 166-301
Gelas, Johannes. See Begemann, F., Eberhardt, P., and Schurmann, H. M. E.
Gellert, Ferenc. See Gálfi, János.
Gentner, W.; Goebel, K., and Prag, R. Argon determination on potassium minerals... 164-27
Gentner, W., and Kley, W. On geologic age determination by the potassium-argon method... 164-28
Gentner, W., and Zühringer, J. Argon and helium determinations in iron meteorites... 164-210
Geological Association of Canada. Symposium on Precambrian correlation and dating... 167-2
Georgi, J. Temperature and density measurements on the Greenland icecap... 167-128
Gerard, V. B. A simple, sensitive, saturated-core recording magnetometer... 165-255
Gerard, V. B., and Lawrie, J. A. Aeromagnetic surveys in New Zealand, 1949-1952. 167-224

Gerasimov, I. P. The application of geomorphologic methods in seismotectonic studies. 165-50

Gerling, E. K. Age relations of the granite Intrusions of the Ukraine on the basis of the data obtained by argon method. 166-22

Gerling, E. K., and Rik, K. G. New determination of the age of stony meteorites by the argon method. 166-23

Gerrits, Heinrich. The geological structure of the South American cordillera. 166-378

Geslin, Marcel. Radioactivity of natural waters, rocks, and sediments. 166-303

Gialanella, Lucio. The origin and evolution of the cosmic world. 164-189

Gibbs, H. S., and McCallum, G. J. Natural radioactivity of soils. 165-312

Gibson, William. See Gates, Olcott.

Gidon, Paul. Geologic results of geophysical exploration in the vicinity of Chambéry. 165-363

Gilet, B. J. See Kulp, J. L.

Gill, E. D. Radiocarbon dates for Australian archaeological and geological samples. 165-4

Gillieson, A. H., and Thorne, R. P. Discrepancy between the spectro-isotopic and the mass-spectrometric results for the natural abundance ratio of the lithium isotopes. 164-213

Girlanda, Antonino. Study of a seismic movement of the Tyrrhenian basin, originating at a depth of 265 km. 164-49

Giuliani, Francisco. Active stress in unconsolidated and consolidated ground. 166-86

Glazov, A. N. The utilization of radioactive isotopes in engineering investigations. 167-246

Glicksen, Milton. Uses and limitations of the airborne magnetic gradiometer. 164-259

Gladen, Albert, and Coron, Suzanne. Gravity anomalies in the Grand Duchy of Luxembourg. 165-203

Goebel, K. See Gentner, W.

Goguel, Jean. Geologic application of gravity surveys. 165-175

Goguel, Jean. Remarks on the gravimetry of the northern Massif Central. 167-144

Gol'dfarb, M. L. See Antsyferov, M. S.

Goldman, J. E. See Urquhart, H. M. A.

Golenetskiy, S. I., and Gayskiy, V. N. Two devices for the graphical processing of the observational data of near earthquakes. 165-55

Gonzales, J. R. See Foshag, W. F.

Gornshkov, G. S. The chronology of the volcanic eruptions of the Kuril Ridge. 166-376

Gottfried, David, Senftle, F. E., and Waring, C. L. Age determination of zircon crystals from Ceylon. 164-22

Grabovskiy, M. A. Determination of the vertical component of the magnetic field over a two-phase magnetic system after its thermomagnetization. 165-275

Grabovskiy, M. A., and Petrova, G. N. The thermocoefficent force of rock at high temperatures. 166-273

Grabovskiy, M. A., Petrova, G. N., and Isakova, L. I. The generation of thermoremanent magnetization of rocks. 165-263
Abstract

Grebe, W. H. The fumaroles and thermal springs in the older volcanic mountains of El Salvador. 167-282
Gregg, D. R. Eruption of Ngauruhoe 1954-55. 167-288
Gregory, A. F. Analysis of radioactive sources in aeroradiometric surveys over oil fields. 167-248
Gregory, A. R. See Wyllie, M. R. J.
Griffiths, D. H. The remanent magnetism of varved clays from Sweden. 166-283
Greggs, D. T. See Turner, P. J.
Grumbilt, Arnold. The uraninite from Grabo (Ivory Coast). 167-21
Groschevoy, G. V. Two-coil reflex galvanometer free of inductive coupling. 165-103
Groschevoy, G. V., and Kopylov, V. P. A reflex galvanometer of small dimensions and high sensitivity. 164-278
Grummitt, W. E. See Brown, R. M., and Cruikshank, A. J.
Grunebaum, Bernard. Relation between reflection time increment, inclination of reflecting layer and integration coverage. 167-258

Gsell, R. N. See Cortes, H. C.
Guedes, S. V. See MacFadyen, D. A.
Guest, N. J. The volcanic activity of Oldonyo L'Engai, 1954. 166-369
Guigue, Simone. Radioactivity of the hot springs of Algeria. 164-264
Gutenberg, Beno. Damping of the earth's free nutation. 165-72

——— Epicenter and origin time of the main shock on July 21 and travel times of major phases. 166-43
——— Geophysical data implied in isostatic calculations. 167-172
——— Great earthquakes 1856-1903. 167-69
——— Investigations of microseisms in southern California. 166-295
——— Magnitude determination for larger Kern County shocks, 1932; effects of station azimuth and calculation methods. 166-46
——— New information on the structure of the earth. 167-187
——— Seismograph stations in California. 166-68
——— The energy of earthquakes. 167-68
——— The first motion in longitudinal and transverse waves of the main shock and the direction of slip. 166-47

Gutenberg, Beno, Buwalda, J. P., and Sharp, R. P. Seismic exploration on the floor of Yosemite Valley, California. 166-359
Gutenberg, Beno, and Richter, C. F. Earthquake magnitude, intensity, energy, and acceleration. 166-78
——— Magnitude and energy of earthquakes. 167-67

See also Benioff, Hugo, and Richter, C. F.

Gwinner, M. P. Earthquake focus and structure in Upper Swabia. 165-25

H

Haalck, Hans. The physics of the earth's interior. 167-163
Háaz, I. B. Determination of the dip, density, and magnetic susceptibility of a layer from its gravity and magnetic effect. 165-177
Háaz, I. B., and Barta, György. Differences in geomagnetic elements between the Budakeszi, Pruhonice, and Ogyalla observatories. 164-231
Haaberjam, G. M. See Carpenter, E. W.
Hagedoorn, J. G. Templates for fitting smooth velocity functions to seismic refraction and reflection data. 164-288
Hahn, Albrecht. See Wolf, Wilhelm.
Hahn, Otto. Radioactive methods for geologic and biologic age determinations. 165-1
——— The newer radioactive methods of geologic and biologic age determinations. 164-2
Abstract

Hale, F. H. See Bowie, S. H. U.
Hales, F. W. See Muir, F.
Hamamatsu, O. On the Queen Charlotte Islands earthquake (Aug. 22, 1949) observed in Japan (1st paper).. 166-50
Hamilton, R. G. See Oliphant, C. W.
Hamilton, W. B. Precambrian rocks of Wichita and Arbuckle Mountains, Oklahoma... 167-25
Hammer, Sigmund. Geophysical activity in 1955—interim report to midyear. 164-137
Hamano, L. W. W. See Slotnick, P. E.
Hansen, Miller. Geomagnetic survey of the Tioga area, north Dakota. 165-290
Harpum, J. R. Recent investigation in pre-Karoo geology in Tanganyika. 166-195
Harrington, M. R. Man’s oldest date in America.. 164-15
Harrison, J. C. An interpretation of gravity anomalies in the eastern Mediter­ranean... 165-206
Haase, T. On anomalies of the appearance time of the seismic initial motion in Japan.. 165-59
Hasegawa, Hiroshi. See Matsuura, Takeo.
Hasegawa, Kazuo. See Tsukada, Tadashi.
Hatase, Yasubiko. See Sano, Shun’ichi.
Hatsuda, Zinichiro. Radioactive exploration.. 165-325
Hatfield, Yasumasa. Recent application of geophysical prospecting to civil engineering... 165-364
Havemans, Hans. On the question of a system of convection currents in the earth... 164-146
Hayakawa, Masami, and Sasaki, Tsuneo. On “S. S. C.” and “E. T. L.” seismo­graph... 165-361
See also Nagumo, Shōsaburō.
Hayase, Ichikazu. Relative geologic age measurements on granites by pleochroic haloes of the radioactive minerals in their nuclei.. 164-24
Hayashi, Hajime. Recent development of geophysical exploration for oil... 165-154
Hayatsu, Akio. On the decay factor of maximum amplitude of earthquake motions... 164-58
Hayden, J. R. See Wasserburg, G. J., and Wetherill, G. W.
Heaps, H. S. The effect of elastic intrusions upon a gravitational stress. 166-105
Heaps, S. N. See White, J. E.
Hector, F. S. See Meek, J. H.
Hée, Arlette, and Jarovoy, M. Autoradiography of beta rays of potassium. 165-295
Heidecke, Otto. Basic principles of electrical logging.. 164-115
Heinrichs, W. E., Jr. Status of mining geophysics today.. 166-177
Heiskanen, W. A. On the World Geodetic System.. 167-107
Helbig, K. The propagation of elastic waves in anisotropic media. 165-82
See also Krey, Theodor.
Hellhardt, G. Seismic investigations on an ice sheet.. 165-367
Henderson, J. R., Jr. See Rossman, D. L.
Henderson, R. G. See Ziets, Isidore.
Hensoldt, E. E. Physics of the ground in construction of arteries of communi­cation. 5. Geophysical treatment... 166-175
Herlofson, N. See Block, L.
Hermont, A. J. Design principles for seismic deflection amplifiers. 167-263
Hernández, R. P. J., and Besada, E. M. Magnetic measurements on Deception Island... 166-290
Herr, Wilfried, and Merz, Erich. A new method of age determination of rhenium­bearing minerals by means of neutron activation.. 164-31
See also Eberhardt, P.
Herrin, Eugene, and Clark, S. P., Jr. Heat flow in west Texas and eastern New Mexico... 167-158
Herzog, Gerhard. Geophysical prospecting by the use of radioactivity surveying. 164-273
Herzog, L. F., and Pinson, W. H., Jr. Rb/Sr age, elemental and isotopic abun­dance studies of stony meteorites... 167-33
AUTHOR INDEX

Abstract

Hicks, W. G., and Berry, J. E. Application of continuous velocity logs to determination of fluid saturation of reservoir rocks 196–220

Higuti, T., and Onozaki, S. On the abnormal free vibration of Wiehert's 200 kg horizontal seismograph 165–68

Hill, H. J., and Milburn, J. D. Effect of clay and water salinity on electrochemical behavior of reservoir rocks 165–142

Hill, M. J. See Moody, J. D.

Hill, M. L. Nature of movements on active faults in southern California 166–200

Hill, M. N. Notes on the bathymetric chart of the N. E. Atlantic 165–74

See also Day, A. A.

Hiller, Helma, and Ruprecht, Leo. Seismic investigations in coal mining 164–292

Hirano, T. See Wadati, K.

Hirschberg, D. See Deutsch, Sarah.

Hirvonon, R. A. On the precision of the gravimetric determination of the geoid 164–141

— The removal of spherical harmonics of first order from a field of observed anomalies 167–109

Hongland, A. D. See McMurry, H. V.

Hodgson, J. H. A seismic survey in the Canadian Shield, II: Refraction studies based on timed blasts 165–227

—— Direction of faulting in Pacific earthquakes 164–60

—— Tables of extended distances for S, SS, sS 166–89

Hodgson, J. H., and Cock, J. I. Direction of faulting in the deep focus Spanish earthquake of March 28, 1954 167–70

—— Direction of faulting in the Greek earthquakes of August 9–18, 1953 166–51

See also Beals, C. S., and Willmore, P. L.

Hoekstra, H. R. and Katz, J. J. Isotope geology of some uranium minerals 165–245

Hoering, Thomas. Variations of nitrogen-15 abundance in naturally occurring substances 164–214

Holmes, Arthur. Dating the Precambrian of peninsular India and Ceylon 167–20

Holmes, Arthur, and Besairie, Henri. First measurements of geochronology in Madagascar 165–14

Holmes, Arthur, and Cahen, Lucien. African geochronology. Results available to September 1, 1954 168–17

Holma, S. Boundary waves of longitudinal type along a continuously varying intermediate layer 166–115

—— Rayleigh waves in a medium with superficial double layers 166–118

Honda, Hirokichi, and Nakamura, Kohel. On the motion of the surface of the sea due to a submarine earthquake 164–91

Hori, Minoru. See Miyamura, Setumii.

Horne, J. E. T., and Davidson, C. F. The age of the mineralization of the Witwatersrand 165–18

Horrix, Wilhelm. See Reich, Hermann.

Hoepers, J. Reversals of the main geomagnetic field 167–196

Housner, G. W. Geotechnical problems of destructive earthquakes 167–57

Houtermans, F. G. See Begemann, F., Besairie, Henri, Deutsch, Sarah, and Schurmann, H. M. E.

Howe, H. H. See Wait, J. R.

Howell, L. G. See Martinez, J. D.

Howells, H. See Fair, D. R. K.

Huber, Oskar. See Deeg, Emil.

Hughes, D. S., and Kennel, J. M. Variation of elastic wave velocity with frequency in fused quartz and Armco iron 165–96

Hughes, D. S., and Maurette, Christian. Variation of elastic wave velocities in granites with pressure and temperature 165–97

Humphrey, R. W. See Chapman, N. G.

Hunt, C. B. Radiocarbon dating in the light of stratigraphy and weathering processes 164–18

Huntley, H. E. Radioactivity in quartz inclusions 164–260
Abstract

Hurley, P. M. Direct radiometric measurement by gamma-ray scintillation spectrometer. Part I: Uranium and thorium series in equilibrium. 165-297

— Direct radiometric measurement by gamma-ray scintillation spectrometer. 165-298

Hurley, P. M., Larsen, E. S., Jr., and Gottfried, David. Comparison of radiogenic helium and lead in zircon. 165-11

See also Webber, G. R.

Huster, E. See Geese-Bühnisch, Ingeborg.

I Ichikawa, M. On non-linear oscillations of the vertical seismograph (for strong earthquakes) 166-98

— On the distribution of compressions and dilatations of the P-wave. 165-36

— On the first impulse and the network of seismologic observatories. 165-56

Iida, Kumizi. Earthquakes accompanied by tsunamis occurring under the sea off the islands of Japan. 167-45

— On the geophysical exploration for coal. 165-155

Iida, Kumizi, and Aoki, Harumi. On the visco-elastic waves radiated from a spherical gravity in elastico-viscous medium. 165-80

Iida, Kumizi, and Nakai, Junji. An investigation of orebody location and spontaneous polarization anomaly. 166-157

Iida, Kumizi, and Wada, Tatsuko. Vertical earth movement around the Bay of Ise as deduced from changes in heights of mean sea level. 165-234

Ikegami, Ryōhei. Relation between the periods of microseisms and the situation of typhoon. 167-228

Imbò, Giuseppe. Considerations arising from the seismic study of the last paroxysm of Vesuvius. 165-376

— Eruptive energies during the eruption of Vesuvius of March, 1944. 165-375

— Oscillations of the magma column revealed by statoscope observations. 164-312

Innes, M. J. S. See Beals, C. S.

Iosselliani, M. S. Seismologic nature of the inner Kartalin plain. 167-265

Ippolito, Felice. Present state of uranium and thorium prospecting in Italy. 165-326

Irving, E. Palaeomagnetic and palaeoclimatological aspects of polar wandering. 166-276

— The magnetization of the Mesozoic dolerites of Tasmania. 166-280

Isaacs, K. See Agocs, W. B.

Isakov, L. I. See Grabovsky, M. A.

Ishkov, P. K. The propagation of elastic waves in a layer lying on an elastic base. 165-81

Ivanhoe, L. F. Geometric analysis of seismic fault evidence. 165-348

Integration of geological data on seismic sections. 165-347

Iwai, Y. See Wadati, K.

J

Jacobs, J. A. Effect of altitude on the position of the magnetic pole. 166-257

Jacobs, J. A., and Allan, D. W. The thermal history of the earth. 165-211

See also Allan, D. W.

Jaeger, J. C. Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor. 166-229

See also Beck, A.

Jaoffe, H. W., Evans, H. T., Jr., and Chapman, R. W. Occurrence and age of chevkinite from the Devil's Slide fayalite-quartz syenite near Stark, New Hampshire. 165-10

Jakovsky, J. J., Jr. See Jakosky, J. J.

Janezczewski, E. W. Earthquakes in Upper Silesia. 164-46

— The location of the foci of some earthquakes in Upper Silesia during 1950. 164-47

Jankowsky, W. On the structure of the area between Bremen and Cuxhaven. 166-362

— Resurvey of the southwestern part of Japan after the great Nankaido earthquake of 1946. 164-55

— Second order magnetic survey of Japan. 164-246

— The observation of the vertical deflection in Japan. 186-190
AUTHOR INDEX

Abstract

Járáryi, István. See Stegena, Lajos.

Jarovoy, Michiel. See Hée, Arlette.

Jeffery, P. M. The radioactive age of four Western Australian pegmatites by the potassium and rubidium methods. 167–32

Jelstrup, H. S. The earliest essay on isostatic explanations in Norway. 167–175

Jensen, K. J. See Wasserburg, G. J.

Jensen, M. L. See Bateman, A. M.

Jirlov, K. Experimental investigation of the inhibition of convection by a magnetic field. 167–181

Joesting, H. R. Geophysical exploration in Alaska. 165–150

Joesting, H. R., and Byerly, P. E. Aeromagnetic and gravity profiles across the Uravan area, Colorado. 167–145

John, H. The problem of velocity in the area of the Swabian foreland Molasse. 166–361

Johnston, H. F. List of geomagnetic observatories and thesaurus of values. 166–283

Jolly, R. N. Investigation of shear waves. 167–258

Jones, E. A. W. See Shillibeer, H. A.

Jones, L. Introductory paper on the gravimetric surveys in the Belgian Congo and Ruanda-Urundi. 167–143

Jones, V. L. Extrapolation and interpolation formulae adaptable to desk and other types of digital computers. 167–106

Jung, Karl. The first order harmonic term in isostasy. 167–173

——. The representation of tidal forces. 164–77

——. What do we know about the depths of the earth. 164–192

Jurain, Georges. Abnormal radioactivity in the Upper Triassic of the Vosges. 164–262

K

Kallasam, L. N. Thickness of the Gangetic alluvium near Calcutta as deduced from seismic reflection measurements. 164–298

Kalashnikov, A. G. The geomagnetic field, its correlation with the structure of the earth and with the processes going on within it. 164–221

Kametani, Takuya. On reflection traveltime curves and their inclinations. 165–341

Kanai, Kiyoshi. A short note on the relation of amplitude-period of earthquake motion. 164–70

——. An explanation for the ground vibrations caused by periodically exerted force. 167–85

——. On Sezawa-waves (M-waves). Part II. 167–87

Kanai, Kiyoshi; Osaka, Kaio; and Yoshizawa, Shizuyo. Observational study of earthquake motion in the depth of the ground. V. (The problem of the ripple of earthquake motion). 165–63

Kanai, Kiyoshi, and Suzuki, Masazi. Analytical results of the acceleration seismograms obtained at Tokyo and Yokohama. 164–68

Kanai, Kiyoshi, and Suzuki, Tomisaburo. Relation between the property of building vibrations and the nature of ground. (Observations of earthquake motion at actual buildings) II. 165–46

Kanai, Kiyoshi; Suzuki, Tomisaburo; and Yoshizawa, Shizuyo. Relation between the property of building vibration and the nature of the ground. (Observation of earthquake motion at actual buildings) III. 167–58

Kanai, Kiyoshi; Tanaka, Teiji; and Osasa, Kaio. Measurement of the microtremor. I. 164–251

Kaneko, Tetsuichi, and Tazime, Kyozi. An experimental study on seismic waves. 165–353

See also Tamano, Toshiro.

Kantor, Ján, and Kupče, Gejza. The absolute age of lepidolites from Rožna township in Moravia determined by the radiogenic strontium method. 167–35

Kantor, S. A. The foundations of the theory of neutron logging. 164–270

Kapitza, S. P. Magnetic properties of eruptive rocks exposed to mechanical stresses. 164–238

Karapetyan, N. K. A method of determining reduced seismic accelerations. 164–53

——. The traveltime curve of seismic waves in the Little Caucasus. 165–31

Karatayev, V. N. The processing of the observations made with the CH-3 gravimeter. 166–206

Kárulik, Vit, and Vanék, Jirí. Traveltimes of P and S waves for Praha. 165–58
Abstract

Karplus, W. J., and Smith, O. J. M. The application of electrical transients to well logging... 165-135

Kasahara, Keichi. A short discussion on ripples in earthquake shocks. (After-shocks of the Boso-Oki earthquake).. 167-74

--- Experimental studies on the mechanism of generation of elastic waves V.. 166-122

--- Strain energy in the visco-elastic crust.. 167-123

Kashpur, Ya. N. Temperature measurement in the deepest drill hole of the Donets basin... 165-217

Katō, Yoshio. Recent development in magnetic prospecting.................. 165-280

Katō, Yoshio; Osaka, Justo; and Okada, Mitsunao. Investigation on magnetic disturbance by the induction magnetograph. Part IV................ 165-247

Katō, Yoshio, and Takagi, Akio. Model seismology (Part 1).................. 164-92

See also Suwa, Akira.

Kats, A. Z. Methods of measuring dynamic deformations in the ground and in structures... 167-272

--- On the estimation of the soil conditions in seismic microzoning........ 165-64

See also Puchkov, S. V.

Katsumata, M. Ground coefficient for amplitude of earthquake............ 160-84

Katz, J. J. See Hoekstra, H. R.

Katz, Samuel, and Ewing, Maurice. Seismic refraction measurements in the Atlantic Ocean. Part VII; Atlantic Ocean basin, west of Bermuda........ 165-228

Kaufman, Sheldon, and Libby, W. F. The natural distribution of tritium... 164-218

Kawasumi, Hiroshi. Notes on the theory of vibration analyser.............. 167-60

Kassnall, D. N. The correlation of the magnetic and gravitational fields of the earth with deep geologic processes.............................. 164-222

Kobuladze, V. V. On the possibility of using electrotelluric disturbances and the long-period variations in geologic exploration............... 166-130

See also Bukhnikashvili, A. V.

Keller, G. W. Dispersion of seismic waves near a small explosion........... 164-279

Kendall, J. M. See Hughes, D. S.

Kerr-Grant, C. The Adelaide earthquake of 1st March, 1954.................. 167-50

Kertz, Walter. Models for geomagnetically induced electric currents in the crust... 165-253

Keylis-Borok, V. I. Asymmetric interference waves in a multilayer medium... 165-84

--- On the relation between point sources and three-dimensional sources... 168-81

--- On the resonant properties of interference waves in a layer............ 164-89

Khalevin, N. I. Boundary velocities in basement formations of the Turgay lowland... 165-369

Khalifin, L. A. The field of a point source in the presence of an oblate and a prolate spheroid.. 166-129

Kholin, A. I. See Dakhnov, V. N.

Khovanova, P. I. Experiences in the use of low frequency earth currents in prospecting... 165-101

Kikkawa, EKyō. Study on radioactive springs...................................... 164-265

Kileezer, Gyula. Equalization of transformed observation data.............. 165-346

--- Possibility of the detection of shot and inverse layers by means of seismic refraction measurements.. 165-345

Killebach, V. J. See Hess, V. F.

Kimura, Koichi. See Kiyono, Takeshi.

King, A. J. Geophysical investigation at the Kidunda dam site................ 166-152

--- Preliminary magnetometric survey of Mwinditi Hill, near Itiso, Dodoma District... 166-289

--- The siting of water-borings at Mlali, Morogoro.. 166-151

King, L. C. Pediplanation and isostasy; an example from South Africa...... 164-206

King, R. F. The remanent magnetism of artificially deposited sediments..... 166-278

See also Powell, D. W.

Kintanar, R. L., Queina, Jose, and Alcaraz, Artuto. The Llanao earthquake, Philippines, 1 April 1955.. 165-28

Kintzinger, P. R. Geothermal survey of hot ground near Lordsburg, New Mexico......... 167-157

Kirillova, I. V. On an average epicenter map...................................... 166-30

Kirmes, D. P. See Savarenskii, Ye. F.

Kishimoto, Yoshinich. See Nishimura, Eichi.

Kishi, Haruo. See Shibatō, Kihel.
Krinari, A. I., and Salikhov, A. G. Density and magnetic susceptibility of Paleozoic rocks of the eastern part of the Tatar SSR and their effect on gravity and magnetic anomalies 167-207

Kriehman, M. S. The structural and tectonic history of India 164-145

Krouskij, L. Diagramming of a single reflection element by means of arcs 164-284

Kruglyakova, G. I. The effect of accessory minerals on the production of reverse polarity of rocks 165-265

Kukharenko, N. K., Shimelevich, Yu. S., Bespalov, D. F., and Odninokov, V. A. A new geophysical method of locating oil-bearing and water-bearing strata and of determining the contact between water and oil in cased oil wells 166-320

Kulakova, L. S., and Rikhter, V. G. A submerged mud volcano in the Caspian Sea 165-377

Kullerud, Gunnar, Padget, P., and Vokes, F. M. The temperature of deposition of sphalerite-bearing ores in the Caledonides of northern Norway 164-182

Kulp, J. L. Carbon-14 measurements on geological samples 164-5

Kulp, J. L., Ault, W. U., and Feely, H. W. Sulfur isotope abundances in sulfide minerals 165-244

Kulp, J. L., Bate, G. L., Ault, W. U., and Feely, H. W. Lead and sulfur isotope abundances in Mississippi Valley galenas 164-212

Kulp, J. L., Bate, G. L., and Giletti, B. J. New age determinations by the lead method 164-19

Kume, Shoichi. On some magnetic properties of ilmenite at low temperatures 165-262

Kunetz, G. A. Effect of vertical layers on electrical surveys 165-119

Kunori, Shoichi; Nakabayashi, Kazutaka; and Shibato, Kihei. A review of the origin of the generation of S. P. current 165-124

Kunz, Bruno. See Bürgl, Hans.

Kunz, K. S., and Tixler, M. P. Temperature surveys in gas producing wells 164-187

Kupčo, Gejza. See Kantor, Ján.

Kurata, Nobuo. On searching for ground water 165-130

Kurbatov, V. V. See Starik, I. Ye., and Zhilov, K. K.

Kuroda, P. K. On the isotopic constitution of radium (Ra-223/Ra-226) in uranium minerals and recent problems in geochronology 165-12

Kutasheva, E. V. See Nikitin, P. N.

LaCoste, L. J. B. See Clarkson, H. N.

Lagrula, Jean. On the synthesis of gravimetric and seismologic data on the crust of the earth 166-208

Lamont, A. H. Uranium prospecting in Canada—ground and aerial surveys 165-324

Lang, C. See Eberhardt, Peter.

Lang, E. J. See Barnes, J. W.

Langer, Ebbe. See Brunn, Anton Fr.

Langenau, G. F. Periodicity in climatic variations of former geologic epochs and some problems of geochronology 166-2

Lászlóy, János. Measurements of road vibrations due to motor vehicles by means of seismic instruments 164-297

Larsen, E. S., Jr. See Hurley, P. M.

Laslăhli, A. S. See Tutilăshvili, D. A.

Latta, T. E. Gamma-ray logging of drill holes 165-315

Laubscher, H. P. Structural and seismic deformation along normal faults in the Eastern Venezuelan basin 165-370

Laughton, A. S. See Day, A. A.
AUTHOR INDEX 395

Abstract

Lauterbach, Robert. Contributions to the structural interpretation of the geomagnetic survey map of the German Democratic Republic 165-286

Lawrence, P. L. See White, J. E.

Lawrie, J. A. See Gerard, V. B.

Lazard, Bertrand. See Bernazeaud, Jacques.

Lebeau, André. See Blum, P.-A.

LeBorgne, Eugène. Abnormal magnetic susceptibility of the upper layers of the soil .. 165-271

Lecolazet, Robert. An application of the method of H. and Y. Labrouste, using ordered linear sequences, to the analysis of the tidal variation of gravity 167-135

Legget, R. F. See Pihlainen, J. A.

Lehmann, I. The times of P and S in northeastern America .. 164-65

Leighton, M. M. See Rube, R. V.

Lembel, André. Method of prospecting and surveying uranium deposits .. 165-323

Lerici, C. M. Archeological exploration .. 165-148

——— Radiocarbon dating conference in Cambridge .. 164-7

Levin, B. Yu. The constitution of the earth .. 164-190

Li, Y.-Y. Domain walls in antiferromagnets and the weak ferromagnetism of α-Fe₂O₃ .. 165-259

Libby, W. F. Dating by means of radioactive carbon and tritium. Possibility of industrial application of these isotopes .. 164-8

——— Radiocarbon dating, 2d ed .. 166-5

See also Kaufman, S.

Lilyenberg, D. A. See Dumitrashko, N. V.

Linnenborn, V. J. Radioactivity and the age of the earth .. 164-4

Lipson, J. I. K-A dating of sediments .. 167-30

See also Folinsee, R. E.

Liptay, István. See Gáldi, János.

Lisowski, Bolesław. Solar daily variations of magnetic declination at Świdwin .. 165-251

Litvinenko, I. V. Nomograms for the construction of approximate seismic profiles .. 166-354

Lockhart, L. B., Jr. See Blifford, I. H., Jr.

Loomes, Fritz. The investigation of “inland ice”—Greenland, Antarctica .. 165-167

Logachev, A. A. Textbook of magnetic exploration .. 166-285

Lonitz, C. Creep measurements in igneous rocks .. 167-270

Lopes Paradela, Pedro. A modification in the seismic prospecting apparatus of the Servicio de Fomento Minero .. 165-358

Lopes Arroyo, Alfonso. On the elastic anisotropy of the earth’s crust .. 164-196

——— Tides in the solid earth body .. 164-75

Lotze, Franz. Current geological characteristics of the year 1953 .. 164-37

——— Current geological characteristics of the year 1954 .. 165-22

Lounsbury, M. The natural abundances of the uranium isotopes .. 166-252

Lozano Calvo, Luis. Calibration of gravimeters by the vertical gradient of gravity .. 165-186

——— Formula for normal gravity in Spain .. 166-214

Lozano, Sánchez. See Dupuy de Lome, E.

Lukavchenko, P. I. The measurement of gravity in drill holes .. 164-108

——— The urgent problems of petroleum gravimetry .. 164-155

Lundbak, Asger. Combined analysis of gravimetric and magnetic anomalies and some palaeomagnetic results .. 167-204

Lundberg, Hans. What causes low radiation anomalies over oil fields .. 166-322

Lyapunov, A. A. On a criterion for the verification of the interpretation of gravimetric observations .. 164-164

Lyubimova, Ye. A. The first all-union conference on geothermal investigation in the U. S. S. R. .. 167-153

——— The heating of the earth’s depths in the process of the formation of the earth .. 164-180

——— The thermal history of the earth and its geophysical aftereffects .. 166-230

——— The thermal regime of the earth .. 165-212

Lyustikh, Ye. N. Gravitational anomalies and the deep tectonics of Indonesia and other island arcs .. 165-197
Lyustikh, Ye. N. The evaluation of the rheological properties of asthenosphere from the "floating up" of Fennoscandia. 165-232

The role of volcanoes and thermal springs in the energy balance of the crust of the earth. 165-380

The tectonics of the deep parts of the crust according to gravimetric data. 165-171

Mabey, D. R. Geophysical studies in the intermontane basins in southern California. 166-220

McBirney, A. R. An appraisal of the fumarolic activity near Ahuachapan, El Salvador. 167-280

The origin of the Nejapa pits near Managua, Nicaragua. 164-309

Thoughts on the eruption of the Nicaraguan volcano Las Pilas. 167-289

McCallum, G. J. Correction for the effect of cosmic radiation on the field measurements of the radioactivity of soils. 166-306

Evaluation of the accuracy of the New Zealand radiocarbon dating method. 165-3

See also Gibbs, H. S.

McCarver, H. C. Geophysics is here to stay. 166-179

McClim, Lowell. See Zmuda, A. J.

McCullough, E. J. Resistivity measurements in cyclothemic sediments. 164-112

McDonald, K. L. Geomagnetic secular variation at the core-mantle boundary. 164-222

McDowell, A. N. See Travis, J. P.

Macedon, D. A., and Guedes, S. V. Air survey applied to the search for radioactive minerals in Brazil. 165-329

Macgregor, A. M. Significance of atomic dates. 166-18

McGregor, P. M. Magnetic results from Macquarie Island, 1952. 166-265

Machado, E. A. M. See Dedebant, G.

Machado, Frederico. The fracture pattern of Azorean volcanoes. 167-278

McMurry, H. V., and Hoagland, A. D. Three-dimensional applied potential studies at Austinville, Virginia. 166-164

McNair, A., Glover, R. N., and Wilson, H. W. The decay of potassium 40. 164-254

McPharlin, D. Magnetic observations in the Middleback Range area. 164-242

The geology and iron ore resources of the Middleback Range area. Appendix I, Magnetic observations in the Middleback Range area. 164-243

Madill, R. G. See Beals, C. S.

Maeck, Hideo. See Nagata, Takesi.

Magnetiky, V. A. The internal structure of the earth. 167-162

The nature of the intermediate layer in the earth’s mantle at depths of 400 to 900 km. 166-241

The physical state of matter in the deep parts of the earth. 165-223

Mahadevan, C., and Aswathanarayana, U. Age levels of Archaean structural provinces. 164-33

Radioactivity of sea floor sediments off east coast of India. 164-257

See also Aswathanarayana, U.

Makino, Naofumi. Electromagnetic methods. 165-118

Malecki, Ignacy, and Kołtowski, Waclaw. The use of ultrasonic waves in the investigation of the structure of homogeneous geologic formations. 164-95

Malinovskaya, L. N. Methods of determining the mechanism of earthquakes. 164-59

Małoszewski, Stanisław. The important magnetic anomaly near Jordanowo in Carpathian Mountains. 167-217

Malovýchko, A. K. The interpretation of gravimetric data in prospecting for favorable structures for oil and gas. 166-209

Malz, H. Observations of non-volcanic mud cones. 164-306

Manfredini, Antonio. On some results obtained in the field by the direct current electrical method. 165-129

Manley, Horace. The effects of weathering and alteration on the magnetic properties of a doleritic basalt. 167-201

Manley, Horace, and Burdon, D. J. The thermo-magnetic properties and history of some plutonic rocks from the Leinster Granite, Ireland. 165-270

Marcelli, L. See Caloi, Pietro.
AUTHOR INDEX

Marinov, N. A. On the structural significance of the fault rejuvenated by the earthquake of 1905 in Western Mongolia.. 167-195
Marler, G. D. How old is Old Faithful geyser.. 167-11
Marmo, Vlad. On the absolute age in geology.. 164-8
Marques, L., and Costa, N. L. The formation of 32p from atmospheric argon by cosmic rays.. 164-216
Marshall, C. E., and Narain, H. Regional gravity in the eastern and central Commonwealth [of Australia].. 165-190
Martin, G. R. See Purkayastha, B. C.
Martin, Hans. Dam geophysics.. 167-267
Martin, J. L., and Campbell, W. M. Displacement logging—a new exploratory tool.. 164-118
See also Blum, H. A.
Martin, Maurice, and Dumanoir, J. L. Determining true resistivity...................... 166-166
Martin, Rudolf. Geophysics and its application.. 164-135
Martinez, J. D., and Howell, L. G. Palaeomagnetism of chemical sediments........ 166-284
Martynova, T. A. See Ostrovsky, M. I.
Maruchek, J. L. See Oliphant, C. W.
Masuda, Hideo, and Kitano, Akihiko. On the direction of initial motion observed in seismic prospecting.. 166-348
Matschinski, Matthias. "Density" in a volcanic arc and relative amount of alumina in its rocks.. 167-276
——— Fluctuation phenomena in geophysics—Their mathematical description and practical application.. 165-159
——— On the theory of so-called head waves with infinitely small amplitudes........ 165-88
——— Statistical method in geophysical prospecting.. 165-254
Matson, T. E. See Oliphant, C. W.
Matsuda, Takeo. Gravity survey at Yokote District, Akita Prefecture.................. 166-222
Matsuda, Takeo. North American gravimeter.. 165-186
Matsuzawa, Akira. The method of analysis for gravitational prospecting...... 165-178
Matsumoto, Hidetaka. See Miyamura, Setumi.
Matsumoto, Toshihiko, and Satō, Yasuo. On the vibration of an elastic globe with one layer. The vibration of the first class.. 164-81
Matsuzawa, Takeo. Field theory of earthquakes: Details of the source region......... 165-55
——— Reflection and refraction of seismic waves through a continuously variable layer.. 167-83
——— S-waves at a solid-liquid interface. Part 2.. 164-84
Matsuzawa, Takeo, and Hasegawa, Hiroshi. Field theory of earthquakes........... 165-42
Maurette, Christian. See Hughes, D. S.
Mawdsley, J. B., and Farquhar, R. M. Report of the committee on Precambrian and related dating.. 160-24
Mayaud, P. N. Magnetic activity in the polar regions.. 167-187
Mayne, K. I. Terrestrial helium.. 165-259
Medvedev, S. V. Selometer for determining the intensity of earthquakes........... 167-61
Meek, J. H., and Hector, F. S. A recording magnetic variometer.................... 165-254
Mehendru, P. C. See Srivastava, S. S.
Melnikov, Vitaly. Remarks on the question of salt emplacement........................ 167-124
Melsch, W. G. See Miehl.
Meisser, Otto. Geophysical anomalies in the vicinity of the lead-zinc ore deposits of the Trepca.. 165-284
Mela, Henry, Jr. See Pharr, George.
Melchiori, Jorge. Geological and geophysical exploration in the mines of Cer- capuquio.. 165-291
Melchoir, P. J. Earth tides.. 164-76
——— On the damping of the free movement of the instantaneous pole of rotation at the surface of the earth.. 165-71
Melikova, O. S. See Starik, I. Ye.
Melkov, V. G. Methods of uranium prospecting.. 166-313
Menyaylov, A. A. The main stages of the evolution of Sheveluch Volcano........ 166-377
Merriam, D. F. History of earthquakes in Kansas... 166-54
Merz, Erich. See Eberhardt, Peter, and Herr, Wilfrid.

Meshcheryakov, Yu. A. Present day tectonic movements of British Isles. 166-201

Mielecke, Walter. Geoelectrical measurements as an aid to geologic mapping. 166-156

Migaux, I/le/on. Geophysics and petroleum exploration. 166-134

Miguel y Gonzalez-Miranda, Luis de. Rapid recorder for telluric currents. 166-33

Mikov, D. S. The interpretation of magnetic and gravitational anomalies by the method of the exclusion of elementary fields. 165-278

Milburn, J. D. See Hill, H. J.

Miller, D. S. See Kulp, J. L.

Miller, E. T., and Ewing, Maurice. Geomagnetic measurements in the Gulf of Mexico and in the vicinity of Caryn Peak. 165-287

Miller, M. M. Glaciothermal studies on the Taku glacier southeastern Alaska. 167-127

Milne, W. G. Canadian west coast earthquakes, 1952. 165-23

—— Canadian west coast earthquakes, 1953. 164-43

—— Canadian west coast earthquakes, 1954. 164-44

Monastersky, S. Polarization of the seismic activity in Canada, west of the 113th meridian 1941-1951. 166-149

Monjevic, A., Koufle, V., and Petrovic, M. Radiation detectors with halogen counters for use in prospecting. 165-321

Mining Magazine. Ilmenite in Norway. 164-247

Miranda, H. A., Jr. See Hess, V. F.

Misener, A. D. Heat flow and depth of permafrost at Resolute Bay, Cornwallis Island, N. W. T., Canada. 164-184

Miyabe, Naomi. Vertical earth movement in Nankai District. 166-189

Miyamoto, Sadao. New nomographs for estimating epicenter. 166-73

Miyamura, Setumi, and Horii, Minoru. Some laboratory experiments on the practical use of the accelerometric seismograph of the Ishimoto type. 166-62

Miyamura, Setumi, and Matumoto, Hidetsuru. Line carrier telerecording seismograph (abbr. LTS). 167-65

Miyamura, Setumi, and Tsujiura, Masaru. A VHF radio telerecording seismograph (abbr. VTS). 167-66

Miyamura, Setumi, and Tsujiura, Masaru. Line carrier telerecording chronograph (abbr. LTC) for local seismological network. 167-64

Molard, Pierre. Seismographs with electrostatic amplification. 164-73

Monaster, M. S. Density and elasticity in the earth's interior. 165-224

Monakhov, F. I. Angles of emergence of longitudinal seismic waves in southern Sakhalin region. 167-75

—— The character of the sources of microseisms related to cyclones. 166-293

Monahon, F. I., and Baryshnikov, V. B. On the sources of microseisms. 166-294

Monnet, C. The use of integrators helps computing terrain corrections in gravimetry. 167-136

Monon, Frédéric. On the frequency of destructive earthquakes and on their hypothetical prediction. 167-71

Moody, J. D., and Hill, M. J. Wrench-fault tectonics. 167-122

Mooney, H. M., and Wetzel, W. W. The potentials about a point electrode and apparent resistivity curves for a two-, three-, and four-layer earth. 166-144

Moore, E. J. Laboratory analysis of the electric logging parameters of the Wier sand. 166-167

Morales, M. X. de, and Correia Neves, J. M. Field observations of radioactivity in the Sierra de Estrella. 166-250

Moran, D. F. See Steinbrugge, K. V.

Morelli, Carlo. Gravity and tectonics in the Marche and in eastern Abruzzi. 164-173

—— Tidal gravity corrections for 1955. 166-174

Moret, Léon. New data on the absolute age and the origin of the clays of Eyzens near Grenoble, Isère. 166-10, 167-37

Mori, Kiyoshi. See Nagumo, Shōsaburō.
AUTHOR INDEX

Abstract

Morimoto, Ryohei, and Ossaka, Joyo. The 1952-1953 submarine eruption of the Myōjin reef near the Bayonnaise rocks, Japan (I) 165-384
See also Teya, Hiromichi.

Morrisey, N. S. Finding oil with geophysics 166-178

Morrison, L. S. Gravity surveys to determine possible fault trends 164-167

Mossman, R. W. See Oliphant, C. W.

Muchembélé, Georgette. Notes on radioactive underground waters of northern France and the radioactivity of the enclosing rocks 164-269

Müggé, R. Fluctuation of ground water level due to earthquakes and atmospheric pressure variations 164-54

Muir, F., and Hales, F. W. A rational approach to the design of electrical filters and of shot-hole and geophone patterns in seismic reflection prospecting 164-281

Mukherjee, B. Electrical conductivity of coal, coke, and lignite 164-127

Mukherjee, S. M. See Tandon, A. N.

Müller, Erich. Experiments on wave propagation in rock samples 167-79

Müller, Iván. The distribution of gravity on the surface of the Krasovskii, Hayford, and Bessel ellipsoids 165-170

Munck, Fernand. See Bassompierre, Pierre.

Munk, W. H. Polar wandering: a marathon of errors 165-73

Münich, K. O. See Schwarzbach, M.

Munuera Quinonero, Jose. Historical note on Spanish geomagnetic cartography 165-252

Mural, Isamu. See Shimozuru, Daisuke.

Murauchi, Sadanori. Geophysical studies of volcano Suwanose-Jima in the Tokara Islands 164-314

See also Omote, Syun'itiro.

Murtina, G. A. See Starik, I. Ye.

Murphy, L. M., and Cloud, W. K. United States earthquakes 1953 164-45

Myachkin, V. I. See Riznichenko, Yu. V.

Myers, J. O. See Whetten, J. T.

Mytton, J. W. See Pierce, A. P.

Nagamune, T. On the traveltime and the dispersion of surface waves (II) 166-244

Nagata, Takesi. Reverse magnetization of eruptive rocks 164-286

Nagata, Takesi; Oguti, Takasi; and Maekawa, Hideo. Model experiments of electromagnetic induction within the earth 166-258

Nagata, Takesi, and Ozima, M. Anomalous increase in thermo-remanent magnetization of ferromagnetic minerals. Magnetic interaction between different constituents in ferromagnetic minerals 167-202

Nagumo, Shozaburo; Mori, Kiyoshi; and Hayakawa, Masami. Experimental studies on seismic disturbances and reflection waves 166-334

Nairn, A. E. M. Relevance of palaeomagnetic studies of Jurassic rocks to continental drift 167-206

Nakabayashi, Kazutaka. See Kunori, Sholichi.

Nakai, Junji. See Iida, Kumizi.

Nakamura, Kobel. See Honda, Hirokichi.

Nakano, Takamasa. Crustal movement and shoreline development along the Pacific coast of Japan since Holocene period—A report on the geomorphological studies of lowlands of Japan 164-209

Namikawa, Tomikazu. Magneto-hydrodynamic oscillations of a conducting liquid mass rotating in a uniform magnetic field 167-179

Narmsaray, S. See Bonchovskiy, V. F.

Narain, A. G. The equations of the theory of earthquake resistance with the dissipation of the energy taken into account 164-52

Nechay, A. M. The identification of lithologic properties of rocks from the results of geophysical investigations in drill holes 165-134

Negi, B. S. See Rao, M. B. R.

Nersesov, I. L. The coefficient of coupling of the seismograph-galvanometer system 167-63

See also Subbotin, M. I.

Nettleton, L. L. History of concepts of Gulf Coast salt-dome formation 164-148
Neumann, Frank. Sensitivity controls on Galitsin-type seismographs. 166-108
Neumann, Frank, and Cloud, W. K. Strong-motion records of the Kern County earthquakes. 166-45
Neumann van Padang, M. A Swedish sketch of Krakatau in 1748. 167-201
Neumann van Padang, M. Present position regarding the catalogue of the active volcanoes of the world. 167-275
Newstead, G. See Beck, A.
Ney, P. See Ewald, H.
Nicholson, S. B., and Wulf, O. R. The diurnal variation of irregular geomagnetic fluctuations. 164-226
Nicolasen, L. O. See Aldrich, L. T.
Nielsen, L. E., and Stockton, F. D. Flow patterns in glacier ice. 167-128
Nieuwenkamp, W. Energy in orogenesis and metamorphism. 168-192
Nikitin, P. N., and Kutasheva, E. V. Catalog of local earthquakes in the region of the mineral waters (Mineral'nyye Vody) of the Caucasus. 165-37
Nikolaevskiy, A. A. On the factors changing the character of seismic records. 166-54
Nishimura, Elichii, and Kishimoto, Yoshimichi. On the local structural character of the earth's crust. 167-169
Niskanen, E. On the buckling of the earth's crust. 167-120
Noddack, W., and Zettler, G. Age determinations on granites of the Fichtelgebirge by the argon method. 164-26
Noguchi, Takashi. Spontaneous polarization method. 165-123
Nordentuti, Armando. Increase in the density of gravimetric observations in the east central zone of the Alpine arc. 164-175
Norton, Kasuo. Investigations of thermoelectricity for metallic and silicate minerals. 164-128
Nosske, Gerhard. Successes and failures with self-potential measurements. 167-93

O

Oakeshott, G. B. The Kern County earthquakes in California's geologic history. 166-41
Oakeshott, G. B., and others. Earthquakes in Kern County, California during 1952. 166-42
Obara, Nobuhiko. Geological researches for Takayama dam site, Kyōto Prefecture, accompanied by electric resistivity prospecting. 166-159
Oblogina, T. I. Dynamic characteristics of diffracted elastic waves. 168-120
Obolenskaya, A. N. Use of radioactive isotopes in drill-hole exploration. 166-319
Obrina, S. F. See Matorina, T. V.
Ochiai, Toshiro. See Tsukada, Tadashi.
O'Connell, D. J. K. Earthquakes: What causes them, and where they occur. 167-41
Odinokov, V. A. See Kukharevko, N. K.
Officer, C. B., Jr. Geological interpretation of a series of seismic reflection profiles from Bermuda to the continental margins. 165-372
Ogawa, Kenzo. Gravity survey at Ibaraki District. 166-223
Ogawara, M. Probability of the coming felt earthquake to Tokyo. 165-48
Ogilvie, W. P. Seismic exploration in the North. 167-103
Ogutti, Takasi. See Nagata, Takasi.
Ohashi, Shoji. On the figures of SP distribution (Part 4)—At the Kutchan mine area. 166-143
Okada, Atsushi. Results of precise levellings in the neighborhood of Kurosawaziri, Iwate Prefecture, northeastern Japan. 167-113
Okada, Atusi. See Tenya, Hiromichi.
Okuda, Mitsunao. See Kato, Yoshio.
Oksudomskaya, M. V. Seasonal distribution of short-period variations of the electromagnetic field of the earth. 167-186
Ölander, V. R. On the geoid in the Baltic area and the orientation of the Baltic Ring. 167-112
Olczak, Tadeusz. On the secular variations of geomagnetism in Poland in the period from 1901.0 to 1935.0. 167-183
Olczak, Tadeusz. On the secular variation of the magnetic declination at Gdansk. 164-225
Oliphant, C. W. Symposium: Examples of geological and geophysical cooperation in petroleum exploration. 166-180
Oliver, Jack. See Berckhemer, Hans, and Press, Frank.
Abstract

Oiller, C. D. See Ford, I. H.

Olsson, B. H. Note on the automatic recording of time signals on seismograph records. 164-74

The electrical effects of tidal streams in Cook Strait, New Zealand. 167-39

Omote, Syun’itiro. Aftershocks that accompanied the Tottori earthquake of Sept. 10, 1943. (The 2d paper). 167-44

Omote, Syun’itiro; Miyamura, Setumi; and Yamazaki, Yoshio. Triggered magnetic tape recorder for routine seismic observations. 166-107

Omote, Syun’itiro, and Tazime, Kyos. Basic study on seismic prospecting. 165-331

Omote, Syun’itiro; Yamazaki, Yoshio; Kobayashi, Naoyoshi; and Muranuchi, Sadanori. Ice tremors generated in the floating lake ice (Part 1). 167-82

Ono, Kichihiko. See Shibata, Kihéi, and Suyama, Junji.

Onozaki, S. See Higuti, T.

Opdyke, N. D., and Runcorn, S. K. New evidence for reversal of the geomagnetic field near the Pliocene-Pleistocene boundary. 165-272

Remanent magnetization of lava flows in northern Arizona. 166-279

Öpik, E. J. Cosmic sources of deep-sea deposits. 164-204

Paleomagnetism, polar wandering and continental drift. 167-198

The origin of meteorites and the constitution of the terrestrial planets. 167-161

The origin of the moon. 167-166

The time-scale of our universe. 167-4

Opp, A. G. A magnetometer survey of the Keene Dome, McKenzie County, North Dakota. 165-289

Orlla, N., and Petrucci, G. On a device adapted for subsurface prospecting by the electrochemical (induced potential) method. 167-94

Orme, G. B. Circuit equivalents of the seismic-electric effect. 165-354

Osada, Kaio. See Kanai, Kiyoshi.

Osoba, J. S. See Brannon, H. R., Jr., and Perkins, F. M., Jr.

Ossaka, Joyo. See Morimoto, Ryohei, and Tsuya, Hiromichi.

Ossaka, Justo. See Kato, Yoshio.

Ostle, D. See Bowle, S. H. U.

Ostrovskiy, M. I., and Martynova, T. A. Experimental studies of the magnetic properties of rocks from the Kursk magnetic anomaly. 165-274

Oszlaczky, Szilárd. Tables for the gravimetric effects of cylindrical masses. 165-176

Ovchinnikov, I. K. Contribution to the theory of the dissemination of current from point and linear electrodes in a heterogeneous semispace. 166-133

Ozawa, Izuo. On the observation of changes of the Earthcrust in the time of earthquakes. 166-72

Ozawa, Takeo. See Tenkada, Tadasahi.

Özdogan, İhsan. Electromagnetic variometer for the vertical component. 165-257

Ozekaya, M. L. Physical properties of the rocks forming the crystalline basement. 165-231

The results of laboratory determinations of the elastic properties of rocks. 164-97

Ozima, M. See Nagata, Takesi.

Padget, P. See Kullerud, Gunnar.

Pakeiser, L. C., and Warrick, R. E. A preliminary evaluation of the shallow reflection seismographs. 165-355

Palumbo, Donato. See Curatolo, M.

Paneth, F. A. The helium method of geologic age determination and the age of iron meteorites. 164-18

Pannocchia, G. The registration of earthquakes at Pavia. 164-67

Parascandola, Antonio. Note on the recent steam eruption at the Solfatara di Pozzuoli. 166-371

Parasnis, D. S. The electrical resistivity of some sulphide and oxide minerals and their ores. 167-100

Parisskaya, G. N. See Berzon, I. S.

Parwel, A., Ublach, H. von, and Wickman, F. E. On the variations in the relative abundance of boron isotopes in nature. 167-176

Pasechnik, I. P. Four component installation with inclined seismographs for azimuthal determination. 165-66

Pasechnik, I. P. See also Ventskevich, E. V.
Pastor, Manuel. Note concerning the Granadan earthquakes of April 19, 1956. 196-62
Paterson, N. R. Seismic wave propagation in porous granular media. 166-126
Patterson, C. C. Age of meteorites and the earth. 167-5

See also Aldrich, L. T.

Pauly, Hans. See Bruun, A. F.

Pekeris, C. L. The seismic buried pulse. 164-83
The seismic surface pulse. 165-88
Perkins, F. M., Jr., Osoba, J. S., and Ribe, K. H. Resistivity of sandstones as related to the geometry of their interstitial water. 167-101

Perrin, Albert. See Garrigue, Hubert.

Perrin, René. Possible explanation of gravity anomalies without recourse to isostasy. 167-140
Petrov, L. V. Distortions in phase displacement circuits. 166-242
Petrova, G. N. Experiences in tracing a buried fault by the magnetometric method. 165-288
Three kinds of magnetization in rocks. 160-272
Petrov, L. V. Distortions in phase displacement circuits. 164-83
Petrova, G. N. See also Grabovsky, M. A.

Petrovic, M. See Milojevic, A.

Petrucci, G. See Orilia, N.

Petrushevskiy, B. A. Importance of geologic phenomena in seismic zoning. 165-49
On the correlation between the seismic phenomena of Ural-Siberian Platform and the Tien Shan Mountains with the geologic conditions in these regions. 166-65

Petryan, Ye. P. See Starik, I. Ye.

Pettersson, Hans. Magnetic pellets and meteors. 164-203

Peyve, A. V. General characteristics, classification, and spatial distribution of deep fractures. Principal types of deep fractures. Part I. 167-118

Phair, George, and Mela, Henry, Jr. The isotopic variation of common lead in galena from the Front Range and its geological significance. 166-233

Phillips, G. A. See Waters, G. S.

Picciotto, E. E. Nuclear phenomena in geology and geophysics. 166-297
See also Deutsch, Sarah

Piekarowski, S., Rygierowa, D., Szwacka, C. J., Twarowska, B., and Zmyslawska, B. Modes of distribution of radioactive substances in Polish rocks. 167-240

Pieuchot, Maurice. See Richard, Henri.

Pinson, W. H., Jr. See Herzog, L. F.

Pipy, B. I. See Zavarifsky, A. N.

Pliss, G. N. The carbon dioxide theory of climatic change. 167-132
Plichon, J. N. Application of geophysical methods to civil engineering works. 166-174
Pohl, Egon, and Pohl-Rülling, Johanna. Radioactive measurements of the air in Badgastein and Böckstein. 164-266
Pohl, Egon. See also Pohl-Rülling, Johanna

Pohl-Rülling, Johanna, and Pohl, Egon. New determinations of the radium and radon content of some outlets of the Gastein hot springs. 164-268
Johanna. See also Pohl, Egon

Pohly, R. A. Reefs are hard to find. 166-225
Poisson, Charles. Earthquakes felt in Madagascar in 1954. 167-47
The Andilamena earthquake. 167-52
Polak, E. J. Geophysics as an aid in coal mining. 164-136
Polanski, Antoni. Radioactive methods of the determination of the absolute age in geology. 164-3

Polshkov, M. K. See Bereza, G. V.

Ponsford, D. R. A. Radioactivity studies of some British sedimentary rocks. 165-311
Radioactivity of the rocks of the [Stowell Park] borehole. 166-305
Popov, E. I. See Bulanze, Yu. D.

Poritsky, H. Propagation of transient fields from dipoles near the ground. 165-111
AUTHOR INDEX

Abstract

Porstendorfer, Gottfried. Telluric currents as a geophysical investigation method and the possibilities of their practical application in the German Democratic Republic. 164-103

Posgay, Károly. Mean error of seismic reflection measurements in the case of intensely jointed fault structures. 164-283

Posgay, Károly, and Annau, Edgar. Diffraction of seismic waves. 165-337

Posgay, Károly, and Erős, János. Determination of seismic wave velocities in near-surface layers. 164-282

Potratz, H. A. See Barnes, J. W.

Potzger, J. B. See Zumberge, J. H.

Powell, D. W., Griffiths, D. H., and King, R. F. Gravity and magnetic anomalies in North Wales; with an appendix on the magnetic anomalies over the Llyn peninsula. 164-172

Prig, R. See Gentner, W.

Press, Frank. Velocity of Lg waves in California. 167-77

Press, Frank, and Dobrin, M. B. Seismic wave studies over a high-speed surface layer. 165-100

Press, Frank, Ewing, Maurice, and Oliver, Jack. Crustal structure and surface-wave dispersion in Africa. 166-243

Price, C. A. Crustal movement in the Lake Ontario-Upper St. Lawrence River Basin. 167-174

Priddy, R. R. Fresh water strata of Mississippi as revealed by electrical log studies. 164-126

Princep Curto, J. M. Diurnal distribution of the basic type of geomagnetic bays in Tortosa, Cheltenham, Tucson, and San Juan. 166-266

Pringle, R. W., Turchinetz, W., and Funt, B. L. Liquid scintillation techniques for radiocarbon dating. 164-9

Provine, M. C. See Garvitch, Z. S.

Prosen, D. A contribution to the establishment of a gravimetric network in Yugoslavia. 167-152

Proskuryakova, T. A. See Savarenensky, Ye. P.

Pryor, W. A. Quality of groundwater estimated from electric resistivity logs. 169-168

Puchkov, S. V. Seismicity of the Ashkhabad region from observations in 1953. 166-64

Puchkov, S. V., and Katz, A. Z. Experiences of seismic microzoning of ground on the basis of instrumental data. 165-47

Pudovkin, I. M. Magnetic variations at high latitudes. 167-185

—— Some questions in the theory of the calculation of ΔT. 165-248

—— Three-dimensional computations of the vertical gradients of the horizontal and vertical components of the magnetic field in the interpretations of anomalies. 164-163

Pugh, J. C. Isostatic readjustment in the theory of pediplanation. 164-205

Furt, D. D. See Srivastava, S. S.

Furkayastha, B. C., and Martin, G. R. The yields of 139 I in natural and in neutron-induced fission of uranium. 165-242

Puzyriev, N. N. On ways of making more precise the methods of interpreting seismic prospecting data. 166-353

—— The effect of the curvature of the boundary in the determination of the velocity using the traveltime curves of the reflected waves. 165-329

Quema, J. C. See Kintanar, R. L.

Quiring, Heinrich. Geomagnetism and geothermal gradient. 164-224

Rade, J. Notes on the geotectonics and uranium mineralization in the northern part of the Northern Territory, Australia. 166-196

Rafter, T. A. C¹ variations in nature and the effect on radiocarbon dating. 164-12

Raman, C. V. The elasticity of crystals. 165-98

Ramirez, J. E. Progress in seismology in Central America, Mexico, and the Caribbean islands during 1950 and 1951. 164-40

Rao, M. B. R., and Negi, B. S. Geophysical exploration in the arid tracts of Rajputana. 167-96
Abstract

Rao, V. B. Magnetic properties of magnetite

Rao, V. B., and Narain, H. Regional magnetic survey of the South Sydney Basin

Rassomakhin, G. L. See Vladimirov, N. P.

Reich, Hermann. Determination of Quaternary movements on the northern border of the Bavarian Alps on the basis of seismic investigations

Reich, Hermann, and Horrax, Wilhelm. Geophysical investigations of the Ries and its environs and their geological interpretation

Reinhardt, H. G. Quarry explosions in the investigation of deeper crustal structure

Reiter, Reinhold. Recording of potential gradients, measurements of the polar electrical conductivity of the air as well as the relative radioactivity of the air and determination of the NO₂⁺ content of precipitation and clouds on the Zugapptplatt (2,580 m above sea level) in the summer of 1955

— Variations of the natural radioactivity of the air, measurements at an elevation of 2,900 m above sea level in the northern Alps

Research Group for Explosion Seismology, Japan. Observations of seismic waves from the second Kamaitz explosion

The fifth explosion seismic observations carried out in northeastern Japan

Reynolds, J. H. See Folinsbee, R. E.

Rezanov, I. A. The Kaspanshik earthquake of the year 1946

Ribbe, K. H. See Perkins, F. M. Jr.

Richard, Henri, and Pleuchot, Maurice. Seismic efficiency of explosives

Richards, A. F. See Snodgrass, J. M.

Richter, C. F. Foreshocks and aftershocks

Seismic history in the San Joaquin Valley

Richter, C. F., and Gutenberg, Beno. Seismicity of Southern California

— See Gutenberg, Beno

Rik, K. G. See Gerling, E. K.

Rikhter, V. G. See Kulikova, L. S.

Rikitake, Tsuneji. Growth of the magnetic field of the self-exciting dynamo in the earth's core

Magneto-hydrodynamic oscillations in the earth's core

Magneto-hydrodynamic oscillations of a conducting fluid sphere under the influence of the Coriolis force

Magneto-hydrodynamic oscillations of a conducting fluid sphere in a uniform magnetic field

Rikitake, Tsuneji, and Yokoyama, Izumi. The anomalous behaviour of geomagnetic variations of short period in Japan and its relation to the subterranean structure. The 6th report. (The results of further observations and some considerations concerning the influence of the sea on geomagnetic variations)

Rimbert, Francine. On the demagnetization by an alternating magnetic field of magnetic and α-Fe₂O₃

On the effect of alternating fields on rocks with a viscous isothermal remanent magnetization

Rische, H. An expanded evaluation procedure for seismic refraction survey measurements

Sedimentological interest in the measurement of natural radioactivity

Rivkin, L. Ya. The nature of disturbances in electric well logging

Rizhchenko, Yu. V. Seismoacoustic methods of studying the stressed conditions of rocks

Rizhchenko, Yu. V., and Myachkin, V. I. The seismic impulse method in the investigation of rock pressure

Rizzi, Ted M. Airborne geophysics in the search for uranium in the Black Hills

Robertsaw, Jack. See Brown, P. D.

AUTHOR INDEX

Roche, Alexandre. On the date of the last inversion of the terrestrial magnetic field. 167-205

Rod, Emile. Earthquakes of Venezuela related to strike-slip faults? 167-54

Rode, K. P. Geo-kinetic evolution of greater India. 160-202

Rodriguez-Navarro de Fuentes, José. Proposed magnetic map of the Iberian Peninsula. 166-292

Rodriguez-Navarro de Fuentes, José, and Bonell y Rubio, J. M. The Gergal earthquake of July 1, 1950. 166-68

Rohringer, G. See Broda, E.

Roman, Irwin. Graphical scales for mapping potential functions. 167-89

Romberg, F. See Geyer, R. A.

Roques, Maurice. Determination of the absolute age of the Carboniferous granite of Mayet de Montagne, Allier. 166-30

——— Graph for calculation of the apparent ages of minerals by the lead-alpha method. 167-18

Rouet, Juliette. On the magnetic properties of volcanic rocks rich in pyrite. 167-208

——— Study of the magnetic properties of volcanic rocks with natural inverse magnetization. 165-266

Rose, J. C. See Woollard, G. P.

Ross, J. E. R. Geodetic investigations in the Canadian Arctic. 166-160

Roth, Étienne. Isotopic composition of the hydrogen of the gases at Lacq. 167-177

Roth, Raoul. See Bernazeaud, Jacques.

Rothé, J. P. Presentation of a radioactivity map of the Hercynian Vosges. 167-249

——— Table of the seismicity of the earth during the years 1953-1954 (Seismological chronicle). 167-48

Rourke, F. M. See White, F. A.

Roy, Supriya. Thermal experiments with the vanadium-bearing titaniferous magnetites of Mayurbhanj—A study of the different types of crystallographic intergrowths. 166-271

Rozsa, T. See Ballié, W.

Rubin, Meyer. See also Wright, H. E., Jr.

Rudnick, Philip. The spectrum of the variation in latitude. 165-74

Ruhe, R. V. Radiocarbon dates and Pleistocene chronological problems in the Mississippi Valley region. 165-7

Runcorn, S. K. Applications of remanent magnetization of rocks. 167-199

——— Paleomagnetic survey in Arizona and Utah. 165-273

——— Paleomagnetism, polar wandering and continental drift. 167-197

——— The present status of theories of the main geomagnetic field. 167-182

See also Campbell, C. D., and Oddyke, N. D.

Rupnik, J. L. See Oliphant, C. W.

Ruprecht, Leo. See Hiller, Heinz.

Russell, R. D. Lead isotopes as a key to the radioactivity of the earth's mantle. 165-313

Russell, R. D., and Allan, D. W. The age of the earth from lead isotope abundances. 166-4

Russell, R. D. See also Cummings, G. L., and Shillibeer, H. A., and Wilson, J. T.

Russell, W. L. The use of gamma-ray measurements in prospecting. 166-315

Rybakova, E. V. See Encashteyn, B. S.

Rygierowa, D. See Pienkowski, S.

S

Sabatier, Germain, and Saucier, Henri. Some experiences with the deformation of acid eruptive rocks at high temperature. 164-302

Sagisaka, S., and Yamagishi, N. Observations of surface waves of the near earthquakes. 166-96

St. Amand, Pierre. Two proposed measures of seismicity. 166-83
St. Clair, David. See Banfield, A. F.

Sakakura, A. Y. Air scattering of gamma rays from thick uranium sources. 165-296

Sakuma, Shōsuke. Effect of thermal history on viscosity of Oosima lavas (Elastic and viscous properties of volcanic rocks. Part 4) 164-99

Salkhov, A. G. See Kninari, A. I.

Salter, R. E. Magnetic tape recorder spells progress. 165-359

Samoylov, V. G., and Konshin, G. G. The application of the electric method of exploration to geologic investigations when designing and building reservoirs, ponds, and basins in areas of possible karst. 164-100

Sano, Shun'ichi. On the measurement of radioactive intensity in the field measured by gamma ray G. M. counter (1). 166-317

--- On the scintillation counters for geophysical use. 166-318

--- Portable instruments for measurement of radioactivity. 166-316

Sano, Shun'ichi, and Hatase, Yasuhiro. Radioactive prospecting in the Naegi Region, Gifu Prefecture. 166-326

Sanselme, Henri. See Bernazend, Jacques.

Santangelo, M. See Curatolo, M.

Santi, B. Exhalative-hydrothermal manifestations on the island of Ischia. 164-317

Santo Akina, Tetsuo. Comparative studies of surface waves travelling across Tibet Plateau and Sea of Japan, with some notes on the method of finding the velocities of surface waves for a limited position of their path. 165-61

Sappa, Mercurino. Geyseriform phenomena of the island of Ischia. 164-318

Sarrof, S. S. See Amirkhanov, Kh. I.

Sarrot-Reynaud de Cresseneuil, Jean. New attempts at stratigraphic correlation in the La Mure Coal Basin by radioactivity measurements. 166-324

Sasa, Kenzo. Geophysical prospecting applied to engineering for disaster prevention. 165-365

Sasaki, Tsuneo. See Hayakawa, Masami.

Sastry, A. R. V., and Aswathanarayana, U. Distribution of radioactivity in the rocks of South India: Part II-Khondalites of Andhra State. 167-238

Sato, Gakuji. A study on equilobre-four-electrode method (1).—Theoretical curves of apparent resistivity for simple ore models. 166-138

Sato, Kyōko. Geophysical exploration in mining of Japan. 165-156

--- Some problems of prospecting for radioactive minerals. 166-314

Sato, Ryosuke. On Rayleigh waves generated at rough surfaces (1) (two-dimensional case). 166-117

--- The reflection of elastic waves on corrugated surface. 166-114

Satō, Yasuo. Analysis of dispersed surface waves by means of Fourier transform I. 165-90

--- Analysis of dispersed surface waves by means of Fourier transform II. Synthesis of movement near the origin. 167-86

--- Analysis of dispersed surface waves by means of Fourier transform III. Analysis of practical seismogram of South Atlantic earthquake. 167-78

--- A note on Tsuboi-Nagata's method. 165-181

--- How can we get rid of surface waves? 165-342

--- On the direction of earthquake sound. 166-74

--- Relation between seismic intensity and epicentral distance (2). 165-40

--- Study on surface waves XI. Definition and classification of surface waves. 164-86

--- Study of surface waves XII. Non-dispersive surface waves. 165-89

See also Matumoto, Tosimatu, and Yamaguchi, Rinzo.

Sauvage, Henri. See Sabatier, Germain.

Sauer, Walther. The earthquakes of the province of Imbabura. 165-24

Sauramo, Atti. Land uplift with hinge-lines in Fennoscandia. 166-250

Savarenkskij, Ye. F. On the distortions of seismicity maps. 167-72

--- Remarks on the importance of ground conditions for seismic and climometric observations. 164-69

--- The structure of the mantle on the basis of seismic data. 165-266

--- The tsunami problem. 166-71

Savarenkskij, Ye. F., and Dzhibladze, E. A. On the seismicity of the Great Caucasus. 166-67
AUTHOR INDEX 407

Savarenskiy, Ye. F., and Kirnos, D. P. The elements of seismology and seismometry

Savarenskiy, Ye. F., Proskuryakova, T. A., and Tsiirel’-Sprintsson, V. S. The correlation between microseismic vibrations and the position of cyclones over the ocean

--- See also Matorina, T. V.

Sawicki, Jerzy. The magnetic field of a magnetic dipole placed on the surface of the earth

Scarsella, Francesco. On some correlations between the geologic and gravimetric surveys in the Marche, Umbria, and Abruzzi

Scheldegger, A. E. The physics of orogenesis in the light of new seismological evidence

Schenk, Erwin. Geoelectric investigations of the mineral spring area of Selters a. d. Lahn

Schneider, H. J. See Försch, O.

Schott, Wolfang. See Closs, Hans.

Schulze, G. A., and Trappe, H. J. The mapping of salt dome flanks with seismic methods

Schulz-Weidner, W. Did a giant meteorite create the Lesser Antilles

Schumacher, E. Age determinations of stone meteorites with the rubidium-strontium method

Schumann, G. Investigation of the radioactivity of the atmosphere by the filter method

Schuyler, G. L. Computations of the directions of microseisms at tripartite stations

Schwan, H. Determination of the relative oxygen isotopes ratios in silicate rocks and minerals

Schwarzbach, Martin. Contributions to the climatic history of Iceland. Part 4. The volcanic region of Hredavatn, West Iceland

Schwarzbach, Martin, and Mühlnich, K. O. On the determination of the absolute age of Gjáfbök volcano (western Iceland)

Schwarz, Wolfang. See Fireman, E. L.

Sebestyeı̈n, Károly. Filtration potential in the vicinity of Velem

Sebestyeı̈n, Károly. Investigations concerning the detection of some of our Transdanubian lignite deposits in boreholes by means of the induced potential method

Séchéty, Lorand. See Gáldi, János.

Seedsman, K. R. Regional gravity survey of the Moorlands Military sheet area

Seedsman, K. H. S. Elastic velocities in the Upper Alsace potash basin

Selzer, E. Experimental determination of the field of a permeable alloy cylinder, in a uniform magnetic field parallel to its axis of revolution

Senftle, F. E. See Gottfried, David.

Sermon, P. H., and Hannaford, W. L. W. A portable electrical magnetometer

Shakhshyarov, D. N. The method of interpreting the results of observations of the electromagnetic field in dipole sounding

Shalayev, S. V. The determination of a conductive body by electrical prospecting methods

Shamlin, O. G. Elastic impulses produced by destruction of specimens of rocks

Shanin, L. L. See Amirkhanov, Kh. I.

Sharp, R. P. See Baird, P. D., and Gutenberg, Beno.

Shashkin, V. L. Method of determining the natural background of gamma-radiation counters

Shebalin, N. V. Experiences with the instrumental observations at the central seismic station at Moscow

Sheynmann, Yu. M. Notes on the classification of structures of the continents

Shiba, Kin. Geophysical prospecting at Kuga Mine, Yamaguchi Prefecture

407

Abstract

407-40

164-249

164-187

164-174

165-164

166-155

167-266

164-201

165-15

163-304

167-19

165-292

164-215

167-12

165-5

165-102

164-110

164-124

164-291

164-104

167-19

167-192

166-148

164-104

166-366

167-247

165-67

167-116

164-118
Abstract

Shibatō, Kihei; Kishi, Haruo; and Takagi, Shinhichirō. Study on spontaneous polarization of powdered pyrite. 165-143

Shibatō, Kihei, Kobayashi, Hajime, and Ono, Kichihiko. Geophysical exploration at Tsuzura, Miyazaki Prefecture. 166-161

See also Kunori, Shotichi.

Shillibeer, H. A., and Burwash, R. A. Some potassium-argon ages for western Canada. 165-13

Shima, Makoto. On the geochemical study of carbon 14. I. The Osegahara peat. 167-10

Shima, Michiyasu. Elastic theory and elastic properties of the Earth's interior. 166-240

Shimazu, Tasuo. Chemical structure and physical property of the Earth's mantle inferred from chemical equilibrium condition. 164-195, 165-225

Shimel'evich, Yu. S. See Kukharenko, N. K.

Shimozuru, Daitsuke. A note on the elasticity of marble. 165-95

Shimozuru, Daitsuke. Study on the elasticity near the melting point. Part 2. Velocity of dilatational wave in sodium. 166-128

Shimozuru, Daitsuke, and Murrai, Isamu. Elasticity of marble with special reference to its elastic aeolotrophy. 166-94

Shmidt, O. Yu. The origin and early evolution of the earth. 164-188

Shokin, P. F. Certain regularities in the drift of zero of quartz gravimeters. 165-183

Concerning the evaluation of the drift of zero point in gravimeters. 164-159

Shumway, George. A resonant chamber method for sound velocity and attenuation measurements in sediments. 165-99

Shurbet, D. H., and Ewing, Maurice. Microseisms with periods of seven to ten seconds recorded at Bermuda. 167-225

Shurbet, G. L., and Ewing, Maurice. Gravity reconnaissance survey of Puerto Rico. 165-207

Skatskiy, V. I. Electromechanical accelerograph with a piezoelectric crystal transducer. 166-100

Skeltsik, D. C. Correlation of geological and geophysical data. 166-178

Skugarevskaya, O. A. See Enenshteyn, B. S., and Vladimirov, N. P.

Skuridin, G. A. The jumps in the discontinuous solutions of the dynamic equations of the theory of elasticity. 166-109

See also Zvolinskii, N. V.

Slack, H. A. See Krumbein, W. C.

Sneathals, L. B. Geophysics applied to prospecting for ores. 166-176
AUTHOR INDEX

Abstract

409

Slutskovskiy, A. I. On A. M. Yepinat’yeva’s paper “Secondary pressure-bubble pulses in seismic exploration” ... 164-280
——— The automatic amplified gain control in seismic amplifiers 164-274

See also Bereza, G. V. and Voyutskiy, V. S.

Smart, W. M. The origin of the earth ... 167-3

Smelle, D. W. Elementary approximations in aeromagnetic interpretation 167-210

Smith, D. O. Development of a vibrating-coil magnetometer 165-276
——— Magnetization of a magnetite single crystal near the Curie point 165-261

Smith, M. K. Noise analysis and multiple seismometer theory 165-343

Smith, O. J. M. See Karplus, W. J.

Smolitskiy, Kh. L. The generalization of a criterion for the verification of
the interpretation of gravitational observations 164-160

Sneddon, I. N. See Eason, G.

Snedgrass, J. M., and Richards, A. F. Observations of underwater volcanic
acoustics at Báraca Volcano, San Benedito Island, Mexico, and Shellkof
Strait, Alaska ... 164-311

Sobotovich, E. V. See Starik, I. Ye.

Sokha, Krzysztof. The problem of oscillation of energy in seismic investigations 166-336

Sokranov, N. N. See Komarov, S. G.

Solov’yev, S. L. On the classification of earthquakes according to their energy 166-76
——— The relation between energy and intensity of an earthquake 165-41

Solov’yev, S. L., and Dzhibladze, E. A. The changing of the flux of seismic
energy with epicentral distance .. 164-88

Solov’yev, V. N. The photoelectric signal device for violent earthquakes . 165-70

Soske, J. L. Seismic prospecting for petroleum and natural gas in the Great
Valley of California .. 166-558

Spadea, M. C. See Caloi, Pietro.

Spencer, T. W. Reflection of an acoustical pressure pulse from a liquid-solid
plane boundary ... 164-85

Sretenkliy, L. N. Production of elastic vibrations in a semiplane by undulatory
movements of a liquid .. 166-69

Srivastava, S. S., Mehendru, P. C., and Puri, D. D. Microwave dielectric measure-
ments: Part III—Solid dielectric materials of Indian origin 167-102

Stackler, W. F. Can gravity surveys map subsurface structures? 165-179
——— Gravity—an accurate exploration tool .. 166-211

See also Thyssen-Bornemisza, Stephan von.

Starik, F. Ye. See Starik, I. Ye.

Starik, I. Ye., Melikova, O. S., Kurbatov, V. V., and Aleksandrsk, V. M. The
dependence of the capacity of uraninite to radiate radon, thoron, and action
on the temperature .. 166-14

Starik, I. Ye., Melikova, O. S., and Sobotovich, E. V. The distribution of radioactive
elements in different parts of uraninite ... 165-15

minerals for determination of their age by the helium method 167-15

Starik, I. Ye., Starik, F. Ye., and Petryayev, Ye. P. The comparative leaching of
uranium and radium isotopes from uraninite 166-13

Starodubrovskaya, S. F. See Berzon, I. S.

Stead, F. W. Instruments and techniques for measuring radioactivity in the field 165-519

Steenman, J. J. S. See Schurmann, H. M. E.

Stefanović, D. Application of the electrical resistivity method in the solution of
problems in engineering geology ... 167-97

Stegena, Lajos, and Járnyi, Istvan. Horizontal torsion seismometer 164-275

See also Galfi, Janos.

Stefanbrugge, K. V., and Moran, D. F. Damage caused by the earthquakes of July 6
and August 23, 1954 .. 166-59

Stern, T. W. See Stieff, L. R.

Stieff, L. R., and Stern, T. W. The interpretation of the \(\text{Pb}^{206}/\text{U}^{238} \) < \(\text{Pb}^{207}/\text{U}^{235} \) < \(\text{Pb}^{208}/\text{Pb}^{206} \) age sequence of uranium ores 165-20

Stober, G. See Durr, F.

Stockton, F. D. See Nielsen, L. E.

Stoneley, R. S. Rayleigh waves in a medium with two surface layers (2d paper) ... 166-90
——— The propagation of surface elastic waves in a cubic crystal 165-87
Straka, H., and de Vries, H. I. A radiocarbon date for the age of the Eifel crater lakes. 164–16
Strakhov, V. N. The determination of certain basis parameters of magnetized bodies from magnetic observations. 165–277
Strassmann, F. See Fritze, K.
Strobach, Klaus. Studies of microseisms in Hamburg. 106–296
Stuart, M. R. Dielectric constant of quartz as a function of frequency and temperature. 165–140
Subbotin, M. L., and Nersesov, I. L. A fluxmeter inclinometer. 165–161
Subsoil Research Team, Earthquake Research Institute, Tokyo University. Investigation into seismic characteristics of subsoils in Tokyo. 167–59
Sucksdorff, E. The influence of the moon and the inner planets on the geomagnetic activity. 164–227
Suess, H. E. Absolute chronology of the last glaciation. 165–8
See also Rubin, Meyer.
Suggate, R. P. See Dibble, R. R.
Süni, Franc. Geoelectric exploration of inclined thin beds and ore veins. 166–146
Suringa, R. See Schurmann, H. M. E.
Sutton, G. H. Gravity bases in central Africa. 166–215
Suyama, Akira. The eruption of Sakura-Jima in 1955. 168–374
Suyama, Akira, Takeyama, I., and Kato, Y. The viscosity of fresh lava and the distribution of earth-current potential difference at the atri, during the 1950–51 eruptions of Miharayama. 169–375
Suyama, Junji. Equipment and field techniques of electrical prospecting. 165–126
Suyama, Junji; Kobayashi, Hajime; and Ono, Kichihiko. Geophysical prospecting in the Tsuno Mine, Shimane Prefecture. 166–162
Suzuki, Masazô. See Kanai, Kiyoshi.
Suzuki, Tomisaburo. See Kanai, Kiyoshi.
Suzuki, Ziro. On Love waves in heterogenous media. 164–87
Suzuki, Ziro, and Sima, Hiromu. On forms of seismic waves generated by explosion. II. 165–86
Svyatlovskiy, A. Ye. Seismotectonic characteristic of the Kamchatka-Kurile region. 164–39
The earthquakes and the peculiarities of the geologic structure of the Kurile-Kamchatka region. 166–66
Swallow, J. C. See Day, A. A.
Szabadvary, László. Geoelectric soil investigations based on several boring. 164–108
Szőnas, György, and Geresben, László. Application of seismic refraction measurements to bauxite exploration. 164–296
Szwacka, C. J. Analysis of the radioactivity of granite from Karkonosze Mountains. 167–239
See also Pienkowski, S.

Tajima, Eizo, and Doke, Tadayoshi. Airborne radioactivity. 165–302
Tajima, Hirokazu. See Tsuboi, Chuiji.
Takagi, Akio. See Kato, Yoshio.
Takagi, Shinichiro. On the origin of earthquake on the asymmetric push conical type of the distribution of initial motion of seismic wave (the 14th paper). 165–43
Takagi, Shinichiro. See also Shibato, Kihel.
Takahashi, Takehito. Analysis of the dispersion curves of Love waves. 165–91
Takahashi, Ryutaro. A short note on a graphical solution of the spectral response of the ground. 166–127
Takeuchi, Hitoshi, and Elsasser, W. M. Fluid motions near the core boundary and the irregular variations in the earth's rotation. 164–220
Takeyama, I. See Suwa, A.
Tamaki, Ituo. The anomalies of incident time of p-waves of deep earthquakes in Japan. 166–92
The crustal structure derived from the traveltime of shallow earthquakes in Japan. 166–246
Tamano, Yoshio, and Kaneko, Tetsuichi. Seismic field techniques and some other problems. 165–360
Tamrazyan, G. P. The earthquakes in the Kazbek region and their relation to elastic tides in the earth. 167–46
AUTHOR INDEX

Tanaevsky, Olga, and Vassy, Étienne. Natural and artificial radioactivity of the atmosphere. 165-305

Tanaka, Teiji. See Kanai, Kiyoshi. 165-28

Tandon, A. N. Zones of India liable to earthquake damage. 165-27

Tardi, Pierre. Definitive results of the measurement of an arc of the equatorial meridian in 1898 to 1906 by a French expedition under the authority of the Academy of Sciences. 166-187

Tarkhov, A. G. Determination of the electrical properties of rocks by the attenuation of radio waves. 166-171

Tarrant, L. H. A rapid method of determining the form of a seismic refractor from line profile results. 166-102

Tatsugami, Masao. Refraction computing set squares. 166-349

Tauber, Henrik. Copenhagen natural radiocarbon measurements. 167-8

Taylor, D. See Bisby, H.

Taylor, R. S. Glacial geology of north-central Keewatin, Northwest Territories, Canada. 166-9

Tazime, Kyozi. Dispersion by a small explosion. 166-363

Teisseyre, Roman. The conducting half-plane problem in geophysical exploration. 166-136

Temkina, B. S., and Yezupov, F. I. Data on the theory of resistivity well logging obtained from measurements on models. 164-119

Terrones L., A. J. The application of modern mining exploration methods in Peru. 165-133

Terry, N. B., and Woods, H. J. The measurement of elastic wave velocity in small cylindrical specimens. 166-121

Teupser, Christian. On the theory of recording of mechanical and electrodynamic vibration meters. 166-104

Thiel, Edward. Correlation of gravity anomalies with the Keweenawan geology of Wisconsin and Minnesota. 166-226

Thiesen, K. On the determination of D by means of QHM. 166-268

Thorne, R. P. See Gilleson, A. H.

Thyer, R. F., and Everingham, I. B. Gravity survey of the Perth Basin, Western Australia. 166-217

Thysen-Bornemisza, Stephan von, and Stackler, W. F. Observations of the vertical arch of gravity in the field. 166-221

Tikhonov, A. N., and Chetayev, D. N. On the possibility of using the resistance of an antenna for electrical sounding. 165-107

Tikhonov, A. N., and Eneashteyn, B. S. Physical causes of errors in vertical electrical sounding using the compensating method. 164-106

Tikhonov, A. N., and Shakhsuvarov, D. N. On the possibility of using the impedance of the natural electromagnetic field of the earth in exploration of the upper layers of the earth. 166-128

The method of evaluating electromagnetic fields excited in stratified media by alternating current. 165-104

Tilton, G. R. The interpretation of lead-age discrepancies by acid-washing experiments. 165-9

See also Aldrich, L. T., and Wetherill, G. W.

Timofeyev, A. N. On the causes of the gravity anomalies in the western part of the West Siberian plain. 167-150

Tedler, N. D. On the method of characteristic points. 169-185

Tocher, Don. Movement on the Rainbow Mountain fault. 166-60

Toperczer, Max. A contribution to the seismotechtonics of the eastern Alps. 164-38

Touls, W. J. Theory of a resonance method to measure the acoustic properties of sediments. 165-98

Traill, R. J. See Wanless, R. K.

Trappe, H. J. See Schulze, G. A.

Travis, J. P., and McDowell, A. N. Model studies of salt-dome tectonics. 164-149
Abstract

Tribalto, Giuseppe. Geophysical investigations during 1954 in Lazio. 165-198

Tsakov, G. D. Method of evaluating curves of the potential variation along a vertical electric profile, using similar curves for the potential-drop arrangement. 166-149

Tsal'mtso, I. O. The nature of the local gravitational anomalies on the Apsheronsk Peninsula. 166-227

Tsetiak, N. S. See Savranetskiy, Ye. F.

Tsal'mtshvili, D. A., and Lashkhi, A. S. Electrofiltration field of some phenomena of hydroelectric projects in the Georgian SSR. 167-95

Takakaya, A. D. On the seismicity of Akhalkalaki highland. 165-34

Tsobel, Chui'd. Gravity measurements by means of gravimeters. 165-187

Tsobel, Chui'd; Jitsukawa, Akira; and Tajima, Hirokazu. Gravity survey along the lines of precise levels throughout Japan by means of a Worden gravimeter. Part 6. Chubu district. 165-201

Tsuboi, Chuji. Gravity measurements by means of gravimeters. 165-187

Tsuboi, Chuji; Jitsukawa, Akira; and Tajima, Hirokazu. Gravity survey along the lines of precise levels throughout Japan by means of a Worden gravimeter. Part 7. Tôkôhu district. 165-202

Tsubu, Masaru. See Miyamura, Setsu.

Tsukada, Tadashi; Ochiai, Tochiro; Hasegawa, Kazuo; and Osawa, Takeo. Electrical exploration on Isahaya Bay. 165-131

Tsu'ya, Hiromichi. Geological and petrological studies of Volcano Fuji, Vol. 5. On the 1707 eruption of Volcano Fuji. 166-372

Tsu'ya, Hiromichi; Morimoto, Ryohei; and Ossaka, Joyo. The 1950-1951 eruptions of Mt. Mihara, Oshima volcano, Seven Izu Islands, Japan. Part II. The 1951 eruption. A. Activity of the second period. 164-313

Tsu'ya, Hiromichi; Okada, Atusi; and Watanabe, Tasuku. Evolution of Mihara Crater, Volcano Oshima, Izu, in the course of its activities since 1874. 167-284

Tucek, C. S. See Broecker, W. S.

Tulina, Yu. V. See Gamburtsev, G. A.

Turovskaya, B. See Anderson, W.

Tulina, Yu. V. See Gamburtsev, G. A.

Tyapkin, K. F. Rapid evaluation of the gradients of the potential on different levels. 164-185

Ubisch, H. von. See Parwel, A.

Udintsev, G. B. On the topography of the Kurile-Kamchatka graben. 166-372

Ullmann, Wolfgang. On the classification of seismographs, oscillation- or vibration-meters. 166-102

Urey, H. C. The cosmic abundances of potassium, uranium and thorium and the heat balances of the earth, the moon, and Mars. 165-213

Urquhart, H. M. A., and Goldman, J. E. Magnetostrictive effects in an antiferromagnetic hematite crystal. 165-260

Uryson, V. O. On the reduction of the effect of disturbances on deep electric profiling. 167-91

Usami, T. The reflection and refraction of elastic waves at sea bottom. 166-116

Utsu, Tokuiji. On deflection of the direction of initial motion of P wave. 166-94

Utsu, Tokuiji, and Seki, Akira. A relation between the area of aftershock region and the energy of main shocks. 166-79

Uyeda, Seiya. Magnetic interaction between ferromagnetic material contained in rocks. 165-267

Vajk, Raoul. Bouguer corrections with varying surface density. 167-133

Vajk, Raoul, and Walton, George. Geophysical history of Parentis oil field, France. 166-181

Valek, Rostislav. Gravimetric observations in the central part of the Slovak Carpathians and their interpretation. 165-195
AUTHOR INDEX

Abstract

VanderHoof; V. L. The major earthquakes of California... 166-88
van der Vliet, G. See Zierfuss, H.
Vaněk, Jiří. See Kárník, Vít.
Van Nostrand, R. G. Continuous velocity logging.. 166-329
— Continuous velocity measurement in boreholes... 167-235
See also Dobrin, M. B.
Varjão de Andrade, Paulo. A result of SP log interpretation... 164-123
Vasilyev, Yu. F. The resistance thermometer with the single-core cable............................. 164-188
Vassy, Etienne. See Tanaevsky, Olga.
Vatan, M. A. See Rivière, André.
Veitman, P. S. See Gamburtsev, G. A.
Vening Meinesz, F. A. A phase-transition layer between 200 and 900 km depth in the earth... 166-242
— On the possibility of applying Stokes’s theorem and the formula for the plum-line deflection derived from it... 167-110
— The second order corrections for pendulum observations at sea.................................. 167-134
Venkatasubramanian, V. S., and Aithal, V. S. The application of the α-helium method to some Archaean specimens... 167-16
Ventičkевич, E. V., Pasechnik, I. P., and Fedoseyenko, N. E. The use of "preliminary unrolling" in recording of seismic vibrations... 166-106
Verhoogen, John. Ionic ordering and self-reversal of magnetization in impure magnetites.. 166-277
See also Evernden, J. F.
Veselov, K. E. Elementary theory of gravimeters built as spring balances... 164-157
— Use of the second vertical derivative of the potential of gravity in the geologic interpretation of gravimetric survey... 164-162
Vickers, R. C. Airborne and ground reconnaissance of part of the syenite complex near Wausau, Wisconsin... 166-235
Victor, P.-E. Wringing secrets from Greenland’s icecap... 164-151
Vidal, H. See Förtsch, Otto.
Vladimirov, N. P., Naumenko, N. L., Rassomakhin, G. I., and Skugarevskaya, O. A. Experimental investigations of the building-up of the electromagnetic field in a multilayer medium... 166-185
Vlisidis, Angelina. See Buddington, A. F.
Vladavets, V. I. On tsunami related to volcanic eruptions... 166-380
— Some results of volcanological research in the U. S. S. R... 165-378
— Volcanoes of the U. S. S. R... 166-379
Vokes, F. M. See Kullerud, Gunnar.
Voskoboynikov, G. M. On the determination of the direction of the magnetization of disturbing bodies from the data obtained in magnetic exploration... 164-241
Voytkевич, G. V. Isotopic composition of lead and the problem of primary magma.. 167-171
Voyutskiy, V. S., and Slutskovskiy, A. I. Seismic station with velocity filters........................ 165-356
Vvedenskaya, A. V. The determination of the displacement fields produced by earthquakes, using the dislocation theory.. 166-80
Vvedenskaya, N. A. Generalizations on observations from the permanent seismic stations of Central Asia.. 165-33
— The accuracy of determinations of the focus of an earthquake by the method of intersections.. 165-52
Vybornykh, S. F. The method of marked atoms in investigations of the technical condition of oil and gas wells.. 166-323

W
Wada, Tatsuhiko. See Iida, Kumizi.
Wadati, Kiyoo, and Hirono, T. Magnitude of earthquakes—especially of near, deep-focus earthquakes.. 166-77
Wadati, Kiyoo, and Iwai, Y. The minute investigation of seismicity in Japan (2nd paper).. 166-77
Wade, R. T. Application of MicroLogs to the lower Glen Rose of East Texas.. 167-99
Wait, J. R. Mutual electromagnetic coupling of loops over a homogeneous ground— an additional note.. 165-112
— Radiation resistance of dipoles in an interface between two dielectrics........................ 165-105
— Transient fields of a vertical dipole over a homogeneous curved ground........................ 165-106
Abstract

Wait, J. R., and Howe, H. H. Amplitude and phase curves for ground-wave propagation in the band 200 cycles per second to 500 kilocycles

Waldie, A. D. Weight-drop technique—how it's working

Walton, George. See Vajk, Raoul.

Walton, M. S., Jr. See Rossman, L. C.

Wanless, R. K., and Tralli, R. J. Age of uraninites from Blind River, Ontario

Wanner, Ernst. The position of the earthquake foci in central Valais

Waring, C. L. See Gottfried, David.

Warrick, R. E. See Pakiser, L. C.

Wasserburg, G. J., and Hayden, R. J. The branching ratio of K⁴₀

Wasserburg, G. J., Hayden, R. J., and Jensen, K. J. A⁸₁⁻K⁴₀ dating of igneous rocks and sediments

Wasserman, B. The ages of uraninites by a new method

Watanabe, Tasuku. See Tsuya, Hiromichi.

Waters, G. S., and Phillips, G. A. New method of measuring the earth’s magnetic field

Watson, I. J. The results of gravimeter observations between the stations on the primary gravity base-line of Great Britain

Webb, John. Thermal conductivity of soil

Webber, G. R., Hurley, P. M., and Fairbairn, H. W. Relative ages of eastern Massachusetts granites by total lead ratios in zircon

Webber, Max. The determination of an arbitrarily curved layer boundary from seismic reflection measurements

— The traveltime surface of a multiple reflected wave front in an inhomogeneous body with arbitrarily curved surface

 Wegener, Kurt. The temperature in the Greenland ice cap

Welander, P. See Brinksson, E.

Wendt, Immo. Attempts at the determination of density of sand deposits by measurement of the absorption of gamma-radiation

— Potash determination in the laboratory and underground with the counter

Wetherill, G. W. An interpretation of the Rhodesia and Witwatersrand age patterns

— Discordant uranium-lead ages, I

Wetherill, G. W., Wasserburg, G. J., Aldrich, L. T., Tilton, G. R., and Hayden, R. J. Decay constants of K⁴₀ as determined by the radiogenic argon content of potassium minerals

— See also Aldrich, L. T.

Wetsel, W. W. See Mooney, H. M.

— The volcanoes of the Cordillera Central

— Glowing clouds, glowing tuffs, and welded tuffs

Whetton, J. T., Myers, J. O., and Watson, I. J. A gravimeter survey in the Craven district of northwest Yorkshire

— Gravity surveying in the East Carmarthenshire anthracite coal field

— The geological results of measurements of gravity in East Carmarthenshire

White, F. A., Collins, T. L., Jr., and Rourke, F. M. Search for possible naturally occurring isotopes of low abundance

White, J. E., Heaps, S. N., and Lawrence, P. L. Seismic waves from a horizontal force

Whitten, C. A. Crustal movement in California and Nevada

— Measurements of earth movements in California

Wickersham, W. E. Magnetic storm monitor

Wickman, F. E. The cycle of carbon and the stable carbon isotopes

— See also Eckermann, H. von, and Parwel, A.

Wiebenga, W. D. Geophysical investigations of water deposits, Western Australia
Author Index

Wielandt, Romuald. Theory of errors of measurements made by means of static gravimeters. 166-207

Wierzchicka, Zuzanna. Analysis of \(\gamma \) and \(\beta \) radioactivity of rock specimens. 167-241

Wilke, Horst. Deep tellurics—investigation of the earth's crust by means of geomagnetic variations. 164-193

—— Deep tellurics. Investigation of the regional electrical conductivity structure of the deep underground through geomagnetic variations. 166-249

Wilkens, Friedrich. Geoelectrical investigations of the Kropfmühle graphite deposit in the Bavarian Forest. 166-154

—— The basic principles of the self-potential method. 165-125

Wilkening, M. H. Variation of natural radioactivity in the atmosphere with altitude. 165-299

Williams, L. W. Geophysical survey, Ashford Coal Fields, New South Wales. 166-216

—— Seismic reflection survey at Roma, Queensland, 1952-53. 166-357

Williamson, P. L., and Hodgson, J. H. Charts for measuring azimuth and distance and for tracing seismic rays through the earth. 164-64

See also Robson, G. R.

Wilson, H. W. See McNair, A.

Wilson, J. T., Russell, R. D., and Farquhar, R. M. Economic significance of basement subdivision and structures in Canada. 166-26

Wilson, J. T. See also Cunnings, G. L.

Windes, S. L. Physical properties of mine rock, Part 1. 167-269

Winsberg, Lester. The production of chlorine-39 in the lower atmosphere by cosmic radiation. 165-238

Winterhalter, A. C. See Ellis, L. G.

Wohlfarth, E. P. The remanent magnetization of hematite powders. 164-237

Wolff, Wilhelm. The assistance of geophysics in the clarification of structural questions in coal mining. 167-105

Wolff, Wilhelm, and Hahn, Albrecht. The magnetic anomalies in the Hohe Venn Mountains. 164-245

Wollin, Goesta. See Ericson, D. B.

Wood, F. W., and Everingham, I. B. A provisional isogonic map of Australia and New Guinea showing predicted values for the epoch 1955.5. 164-230

Woods, H. J. See Terry, N. B.

Woods, J. P. The composition of reflections. 165-350

Woollard, G. P., Rose, J. C., and Bonini, W. E. The establishment of an international gravity standard. 165-188

Worzel, J. L., and Shurbet, G. L. Gravity anomalies at continental margins. 165-189

See also Bentley, C. R., and Shurbet, G. L.

Wray, J. L. See Zeller, E. J.

Wright, H. E., Jr., and Rubin, Meyer. Radiocarbon dates of Mankato drift in Minnesota. 167-14

Wulf, O. R. See Nicholson, S. B.

Wyllie, R. J., Gregory, A. R., and Gardner, L. W. Elastic wave velocities in heterogeneous and porous media. 164-100

Wyrobek, S. M. Application of delay and intercept times in the interpretation of multilayer refraction time distance curves. 166-351

Y

Yamagata, Osamu. See Minakawa, Shinya

Yamagishi, N. See Sagisaka, S.

Yamaguchi, Rinzo, and Satō, Yasuo. Range of possible existence of Rayleigh- and Stoneley-waves in a stratified medium. 165-92

—— Stoneley wave—its velocity orbit and the distribution of amplitude. 166-119

Yamaguti, Seiti. On the changes in the heights of mean sea-levels, before and after the great earthquakes. 165-44

Yamakawa, N. Investigation of the disturbance produced by spherical obstacles on the elastic waves (1). On the scattering of the elastic waves by a spherical obstacle. 166-113

Yamazaki, Yoshio. See Omote, Syun'itiro

Yamagihara, Kazuo. Abnormal variations of earth currents accompanied with the 'Bose-Oki earthquake', Nov. 25, 1953. 168-35

Yamamori, All. Critical review of the gravimetric prospecting methods. 166-204
Yepinat'yeva, A. M. Certain types of multiple seismic waves. 165-335

Kinematic peculiarities of refracted waves in media containing wedge-shaped strata. 166-346

Yeres'ko, S. I. Study of the errors in the determination of the foci of Crimean earthquakes. 167-56

Yezupov, F. I. See Temkina, B. S.

Yokouchi, Yukio. Principal magnetic disturbances at Kakioka, 1924-1951. 166-260

Solar-flare effects in geomagnetic field at Kakioka, 1924-1951. 166-261

Geomagnetic anomalies related to the magnetization of the basement in the vicinity of Gembudo. 164-235

Geomagnetic studies of Volcano Mihara. The 5th paper. (Changes in three geomagnetic components during the period from May 1951 to Aug 1953). 164-315

Geomagnetic studies of Volcano Mihara. The 6th paper. (Continuous observation of changes in geomagnetic declination during the period from 1851 to 1954). 165-250

Geomagnetic studies of Volcano Mihara. 7th paper. (Possible thermal process related to changes in the geomagnetic field). 167-286

Magnetic survey in Temmabayashi district, Aomori prefecture. 165-288

See also Rikitake, Tsuneji.

Yoshizawa, Shizuyo. See Kanai, Kiyoshi.

Yoshizumi, Elzaburo. On a electrical prospecting by traveling waves—Introduction. 166-139

On a electrical prospecting by traveling waves—Traveling waves in the case of a semi-infinite medium. 166-140

Yosikawa, Haruo. Some examples of electrical prospecting in the area bearing black ore ("Kuroko") deposits. 166-158

Yudkevich, R. V. The valuation of the oil-bearing potential of reservoirs characterised by low specific resistivity. 164-105

Yumura, Tetsuo. Magnetic anomaly due to serpentine rocks (Magnetic survey of the Hizume district). 166-291

On the results of geomagnetic observation at the solar eclipse Sept. 12th, 1950. 166-262

Yüngül, Sühili. Prospecting for chromite with gravimeter and magnetometer over rugged topography in east Turkey. 165-208

Yurchenko, B. I. On the methods of seismic observations in drill holes. 166-382

Turkevich, O. I. On the seismicity of Zakarpatskaya. 165-82

Z

Zaccara, Gaetano. On some gravimetric and electrical surveys in south-central Italy. 165-199

Zadorozhnyy, I. K., and Zvykov, S. I. The disintegration constants of radioactive elements used in the determinations of geologic age. 166-299

Zähringer, J. See Gentner, W.

Zatopek, Alols. Possible applications of electronic chronographs in geophysics. 164-154

Zavaritskiy, A. N., Plyp, B. I., and Gorshkov, G. S. The investigation of the Kamchatka volcanoes. 165-379

Zeitler, G. See Noddaek, W.

Zeller, E. J., Wray, J. L., and Daniels, Farrington. Thermoluminescence induced by pressure and by crystallization. 164-32

Zeschke, Günter. Prospecting and detection of radioactive minerals and ores. 166-312

Zhurov, K. K., and Kurbatov, V. V. X-ray analysis of monazites for their fitness for geologic age determinations. 166-16

Zidarov, D. Electromagnetic model for the solution of the direct problem of magnetometry and gravimetry. 164-240

Zierfurts, H., and van der Vliet, G. Laboratory measurements of heat conductivity of sedimentary rocks. 167-155

Zietz, Isidore, and Henderson, R. G. A preliminary report on model studies of magnetic anomalies of three-dimensional bodies. 166-286
Zmuda, A. J. Limiting form of Taylor series used in extrapolating components of the geomagnetic intensity .. 164–229
— Note on the adjustment of isomagnetic charts to mutual consistency 165–279
— Note on the components of magnetic intensity at inverse points relative to a spherical boundary ... 166–259
Zmuda, A. J., and McClung, Lowell. Vertical extrapolation of geomagnetic field components ... 164–228
Zmysłowska, S. See Pienkowski, S.

Zumberge, J. H., and Potzger, J. E. Late Wisconsin chronology of the Lake Michigan basin correlated with pollen studies .. 167–13

Zvolinskiy, N. V. Multiple reflections of elastic waves in a layer 164–90

Zykov, S. I. See Zadorozhny, I. K.
SUBJECT INDEX

A

Acoustic properties, sediments, determination: Shumway 165-99; Toulis 165-98

Action emanation, effect of temperature: Kosov 166-12; Starik 166-14

Aegean Sea, gravity anomalies: Harrison 165-206

Africa, age determination: Bernazeaud 167-22; Fritze 165-294; Grimbert 167-21; Holmes 166-17; Horne 165-18; Macgregor 166-18

crustal structure: Press 166-243

grid anomalies: Cizancourt 165-205; Sutton 166-215

isostasy and pediplanation: King 164-206

Precambrian orogenies: Harpum 166-195

radioactivity surveys: Bowie 165-327

tectonics: Brock 164-217

volcanic activity: Bellair 164-316

Age, Africa, compilation: Holmes 166-17

Africa, Ivory Coast uraninite: Bernazeaud 167-22; Grimbert 167-21

significance of: Macgregor 166-18

South, lepidolite: Fritze 165-294

Witwatersrand mineralization: Horne 165-18

atmosphere: Linnenborn 164-4

Australia, late Quaternary samples: Gill 165-4

molybdenite, New South Wales: Herr 164-31

pegmatite, Western: Jeffery 167-32

California, Santa Cruz marine terrace: Bradley 165-6

Sierra Nevada batholith: Follinsbee 167-29

Canada, Blind River uraninite: Wanless 166-27

core samples, Alberta and Saskatchewan: Shillibeer 165-13

Devonian sylvite, Saskatchewan: Follinsbee 167-29

geoantic provinces: Wilson 166-26

Keewatin peat, Northwest Territories: Taylor 166-9

Lake Athabasca uranium province: Eckelmann 164-21

major tectonic subdivisions: Cumming 166-25; Wilson 166-26

Marlan River area, Northwest Territories: Shillibeer 165-13

Age, Canada, monazite, Yellowknife geologic province: Follinsbee 166-28

Precambrian areas: Mawdsley 166-24

Yellowknife granite: Follinsbee 167-29

carbon-14 determinations, Chicago: Libby 166-5

Kopenhagen laboratory: Levi 165-2; Tauber 167-8

Lament laboratory: Broecker 166-6

Michigan laboratory: Crane 167-9

publication: Levi 164-7

U. S. Geological Survey: Rubi 164-14

Ceylon, Precambrian orogenies: Holmes 167-20

tsrocons: Gottfried 164-22

Chile, molybdenite from San Antonio: Herr 164-51

Colorado, Brown Derby pegmatite: Aldrich 165-17, 166-29

Quartz Creek granite: Aldrich 165-17, 166-29

crust: Linnenborn 164-4

Czechoslovakia, Rožba lepidolite: Kan 167-35

Denmark, Neolithic period: Tauber 167-8

dearth: Linnenborn 164-4; Patterson 167-5; Russell 166-4; Smart 167-3

France, clay near Grenoble: Moret 166-10, 167-37

Mayet de Montagne granite: Roques 166-30

Germany, Buggingen sylvite: Gentner 164-27

Elfehmea eruption: Straka 164-16

Fichtelgebirge granite: Noddack 164-26

Lausitz granite: Schurmann 167-19

Sassfurt sylvinit: Noddack 164-26

Iceland, Grabfok volcano: Schwarzbach 165-5, 167-12

India, Archean orogenies: Aswathanarayana 164-34; Holmes 167-20; Mahadevan 164-33

Archean rocks, Mysore and Bihar: Venkatasubramanian 167-16

Italy, Vesuvius lava: Begemann 164-23
Age, Japan, peat: Shima 167-10
Madagascar, galena: Besarelle 164-35, 167-23
pegmatite minerals: Holmes 165-14
Massachusetts, granites: Webber 167-24
meteorites: Cherdyntsev 164-17; Folinsbee 167-29; Gerling 165-16, 166-23; Herzog 167-33; Paneth 164-18; Patterson 167-5; Schumacher 165-15
Nevada, Tule Springs charcoal: Harrington 164-15
New Hampshire, Devil's Slide ring dike: Jaffe 165-10
Norway, Stavanger molybdenite: Herr 164-31
Oklahoma, Arbuckle and Wichita Mountains: Hamilton 167-25
Old Faithful geyser: Marler 167-11
Pleistocene glaciation: Bricson 166-8; Flint 166-7; Ruhe 165-7; Suess 165-8; Taylor 166-9; Wright 167-14; Zumberge 167-13
Sierra Nevada batholith: Folinsbee 167-29
South Dakota, Black Hills: Kulp 167-27; Wetherill 167-26
Sweden, Alno complex: Eckermann 165-19
lepidolite from Varutrask: Fritze 165-294
Switzerland, Neolithic period: Tauber 167-8
Texas, Precambrian intrusion: Geol. Assoc. Canada 167-2
Ukraine granites: Gerling 166-2
U. S. S. R., northern Caucasus: Afanas' yev 164-30; Amirkhanov 164-29
universe: Opik 167-4
Age determination, carbon-14 method, accuracy: McCallum 165-3
carbon-14: bibliography: Levi 165-2
conference on: Levi 164-7
effect of natural C14 variations: Rafter 164-12
effect of weathering: Hunt 164-13
evaluation: Broecker 167-7
liquid scintillation technique: Pringle 164-9
methane proportional counter: Burke 164-10
principles: Due Rojo 166-1; Hahn 164-2, 165-1; Kulp 164-5, 6; Libby 164-8, 165-5; Simon 164-1
comparison of methods: Aldrich 165-17, 166-29, 167-17
cube-edge variation method: Ahrens 167-1; Wasserstein 166-19
extinct radionuclide method: Kohman 165-314
fluorine method: Simon 164-1.
Airborne magnetic maps, Alaska, Prince of Wales Island: Rossman 167–218
Alberta: Canada Geol. Survey 167–219
Newfoundland: Canada Geol. Survey 167–220
New Zealand: Gerard 167–224
Northwest Territories: Canada Geol. Survey 167–221
Ontario: Canada Geol. Survey 167–222
Saskatchewan: Canada Geol. Survey 167–223

Airborne magnetic profile, Colorado Plateau: Joesting 167–145
Tunis to Lisbon: Agocs 165–282

Airborne magnetic surveys, Arctic Islands: DuVernet 166–288
Australia: Brundage 165–281
Brazil, in uranium exploration: MacFadyen 165–329
magnetic storm monitor for: Wickersham 164–258
Norway: Mining Mag. 164–247

Airborne radioactivity surveys, Brazil: MacFadyen 165–329
South Dakota, Black Hills: Rizzi 166–325
Wisconsin, near Wausau: Vickers 167–251

Alaska, aeromagnetic survey, Prince of Wales Island: Rossman 167–218
earthquakes, 1958: Murphy 164–45
geophysical exploration in: Joesting 165–150
geophysical research in: Colbert 165–157
thermal studies in Taku glacier: Miller 167–127

Alberta, aeromagnetic maps: Canada Geol. Survey 167–219
age of core samples: Shillibeer 165–13
gravity surveys: Stackler 166–211
seismic surveys: Blundun 166–360; Denton 164–290

Aleutian Ridge, structural interpretation of: Gates 164–150

Algeria, gravity and magnetic anomalies, Tanezrouft desert: Castet 167–212
radioactivity of hot springs: Guigue 164–264

Alps, earthquake in: Toperczer 164–38
structural development: Kraus 164–144
Anhydrite, elastic constants: Muller 167–79
Antarctica, investigations of ice sheets: Loewe 165–167

Antilles, Lesser, origin: Shulz-Welnder 164–201

Arctic Islands, airborne magnetic survey: DuVernet 166–288

Arctic Ocean, bottom structure: Umschau 166–368
Argentina, hot springs and fumaroles, northwestern: Bartolucci 167–279
magnetic surveys, Deception Island: Hernandez 166–200

Argon, isotopes in iron meteorites: Gentner 164–210
Arizona, gravity surveys, Bisbee copper mines: Allen 166–219
magnetisation, volcanic rocks: Opdyke 165–272

Asia, central, earthquake prediction: Petrunyevskiy 166–65
crustal structure, southeastern: Nagamune 166–244
earthquake, Nov. 2, 1945: Cherryakina 165–35
magnetic surveys, Ala Tau ridge: Petrova 165–283

Atlantic Ocean, bathymetric chart, northeastern: Hill 165–374
crustal structure: Berckhemer 166–248; Butterlin 164–202; Officer 165–372
gravity profile: Worzel 165–189
magnetic survey, Caryn Peak area: Miller 165–287
seismic surveys: Bentley 164–200; Katz 165–228

Australia, age, molybdenite, New South Wales: Herr 164–31

pecmatites, Western: Jeffery 167–32
age determinations, Quaternary samples: Gill 165–4

earthquakes, Adelaide, March 1, 1964: Kerr-Grant 167–50
electrical surveys, Western: Welbenga 166–153
gravity surveys, eastern: Marshall 165–190
Moorlands coalfield: Seedsman 164–169

New South Wales: Williams 166–216
Peake and Denison Ranges: Knapman 166–218

Perth Basin: Thyer 166–217
isogonic map, 1955.5: Wood 164–230
magnetic survey, airborne, northwestern: Brundage 165–281

Middleback Range: McPharlin 164–242, 243
New South Wales: Rao 167–213
radioactivity logging, Kadina district: Knapman 164–272

seismic surveys, Queensland: Williams 166–357
temperature in subcrust, secular variation: Carey 165–165
Austria, earthquakes, distribution: Toperczer 164–38
electrical surveys, engineering problems: Frisch 165–128
magnetic surveys, Vienna basin: Burgl 167–214
radioactivity, Gastein hot springs: Pohl-Rilling 164–208
radon content of air, Badgastein and
Bockstein: Pohl 164–206
seismic surveys, Ötztaler Alps glaciers:
Försch 164–163, 165–169, 167–130
Azores, magnetic survey: Custodio de Morais
167–215
volcanic fracture patterns: Machado
167–278

B
Baffin Island, seismic surveys, Penny Ice Cap: Rothlisberger 164–132
Baltic area, geoid: Ölander 167–112
Bashkir A. S. S. R., seismic exploration: Berzon 166–338
Bauxite, seismic surveys for, Hungary: Szenas 164–296
Belgian Congo, gravity observations: Sut-
ton 166–215
gravity surveys: Jones 167–143
volcanism and rift valleys: Cahen 165–381
Beryllium–7, production in atmosphere: Cruikshank
Boron, isotopes, variations in nature: Par-
wel 167–176
Brazil, airborne surveys for radioactive minerals: MacFadyen 165–329
electric logs, Bahia area: Varjão de
Andrade 164–123
gravity surveys: Stackler 166–211

C
Calderas, Azores, formation of: Machado
167–278
geomorphic features: Escher 164–305
California, age, marine terrace at Santa Cruz: Bradley 165–6
age, Sierra Nevada batholith: Folinsbee 167–29
earthquake, 1906, San Francisco: O’Connell 167–42
earthquakes, Kern County, 1952: Beni-
off 166–48; Gutenberg 166–43, 46, 47;
Neumann 166–45; Oakeshott 166–41, 42; Richter 166–44
major, 1769–1952: Vanderhoof
168–38
San Joaquin Valley: Richter 166–40
southern part: Richter 166–39
California, fault movements in: Benioff
166–48; Hill 166–199, 200; Whitten 166–188, 197
gravity surveys, intermontane basins: Mabey 166–220
radioactivity, Lassen volcanic rocks: Adams 164–238
seismic surveys, Great Valley: Soske
166–358
Searles Lake: Mabey 166–220
Yosemite Valley: Gutenberg 166–359
seismograph stations: Gutenberg 166–68
surface wave velocity: Press 167–77
tectonic pattern: Benioff 166–198
triangulation surveys across faults:
Whitten 166–188
Canada, age, Blind River uraninite: Wan-
less 166–27
age, core samples, Alberta and Sas-
tatchewan: Shillibeer 165–13
Devonian Sylvite, Saskatchewan: Folinsbee 167–29
goodge provinces: Wilson 166–26
Keewatin peat, Northwest Terri-
tories: Taylor 166–9
Lake Athabasca uranium province:
Eckelmann 164–21
major tectonic subdivisions: Cum-
ing 166–25; Wilson 166–26
Marlan River area, Northwest Terri-
tories: Shillibeer 165–13
Precambrian areas: Mawdsley
168–24
Yellowknife granite: Folinsbee
167–29
crustal movement, Lake Ontario–St.
Lawrence River basin: Price 167–174
earthquakes, west coast: Mlne 164–43, 44, 165–23
west of 113°, 1841–1951: Milne
166–49
goodge observations, Arctic regions: Ross 165–168
goodgeophysical research, Arctic regions: Beals 165–158
gravity surveys, Alberta: Stackler
166–211
British Columbia: Stackler 166–211
Northwest Territories: Stackler
166–211
Ontario: Dyer 165–183; Garland
165–191; Pohly 166–225
Yukon: Stackler 166–211
heat flow, Resolute Bay: Misener
164–184
seismic surveys, Shield area: Hodgson
165–227
Carbon, isotopes, atmosphere: Rafter 164-12
isotopes, diamond: Wickman 165-227
graphite: Wickman 165-237
igneous carbonates: Wickman 165-237
plants and animals: Rafter 164-12
sea water: Rafter 164-12
shells: Rafter 164-12
Carbon dioxide, cycle in nature: Ericksson 167-131
effect on climate: Plass 167-132
Carbon-14, half life: Zadorozhnyy 166-299
dating. See Age and Age determination,
measurement in gas Geiger counters: Broda 164-11
natural variations: Rafter 164-12
Caribbean Sea, crustal structure: Butterlin 165-229
earthquakes 1950-51: Ramirez 164-40
Caspian Sea, mud volcano: Kulskova 165-377
Central America, earthquakes 1950-51: Ramirez 164-40
Ceylon, age of orogenies: Holmes 167-20
age of zircons: Gottfried 164-22
Chile, age of San Antonio molybdenite: Herr 164-31
Chlorine-39, production in lower atmosphere: Winsberg 165-238
Coal, geophysical surveys for: Hiller 164-292; lida 165-155; Polak 164-136;
Whetton 164-170, 171; Williams 166-216; Wolff 167-105
Colorado, age of Brown Derby pegmatite: Aldrich 165-17, 166-29
age of Quartz Creek granite: Aldrich 165-17, 166-29
Colorado Plateau, aeromagnetic profile, Uravan area: Joesting 167-145
gravity profile, Uravan area: Joesting 167-145
remanent magnetization of rocks: Runcorn 165-275
sediment surveys: Pakiser 165-355
Columbia River basalts, magnetization: Campbell 167-209
Continental drift, effect of expanding earth: Egyed 167-165
paleomagnetic evidence on: Hospers 167-196; Nairn 167-206; Õpik 167-198; Runcorn 167-197
South American-African assembly: Casey 165-163
Continents, growth around nuclei: Cuming 166-23; Follinsbee 166-28
structures, classification: Sheynmann 167-116
Convection currents, distribution: Havemann 164-146
dynamic effects: Havemann 164-146
lead isotope evidence: Russell 165-313
Copper, electrical surveys for, Peru: Terrones 165-133
Core, fluid motions, effect on magnetic field: Takeuchi 164-220
fluid motions, effect on rotation: Takeuchi 164-220
magnetoelastice interactions in: Knopoff 164-82
magnetochemical oscillations: Richtake 164-219
nature: Bath 165-222; Õpik 167-161
Costa Rica, volcanic activity, 1954: Bullard 164-308
volcanoes, Cordillera Central: Weyl 165-382
Creté, gravity anomalies: Harrison 165-206
Crust, buckling: Niskanen 167-120
deformation, under present ice sheets: Japan: Miyabe 166-189
Loewe 165-167
post-Pleistocene, Fennoscandia: Sauramo 166-250
western Aleutian area: Gates 164-150
effect of viscosity on strain energy in: Kasahara 167-123
elastic anisotropy in: Lopez Arroyo 164-196
electrical conductivity, Europe: Wiese 160-249
energy from weathering processes: Korzhinskly 167-154
energy transfer: Kasahara 167-123
evolution: Belousov 167-117
ferrimagnetism: Fanselau 165-258
formation: Voytkevich 167-171; Egyed 167-165
magnetization: Chatterjee 166-255
mechanical behavior: Heaps 166-108
nature, eastern Indian Ocean: Fairbridge 167-273
strain variations in: Ozawa 166-72
structure, accuracy of determination: Guyasky 164-63
Africa: Press 166-243
Antilles region: Butterlin 164-202
Asia, southeast: Santo Akima 165-61; Nagamune 166-244
Atlantic Ocean: Bentley 164-200; Berckhemer 166-248; Butterlin 164-202; Katz 165-228
Canadian Shield: Hodgson 165-227
Caribbean Sea: Butterlin 165-229
determination from blasts: Adlung 166-245; Rehnhardt 164-197
determination from Cl, , waves: Calol 164-66
determination from geomagnetic variations: Wiese 164-193
determination from seismic wave dispersion: Santo Akima 165-61
Europe: Stoneley 164-90
Great Hungarian Plain: Galfi 166-304
Gulf of Mexico: Miller 165-287
Crust, structure, India, Hindu Kush region: Choudhury 167-76
Italy: Caloi 167-51
Japan: Nishimura 167-169; Research Group 166-247; Tamaki 168-246; Tsurol 165-201, 202; Utsu 165-94
New York: Katz 165-230
Pacific Ocean: Nagamune 166-244
Pennsylvania: Katz 165-230
Tibet: Santo Akima 165-61
Tien Shan: Gamburtsev 164-199
Virgin Islands: Shurbet 167-151
thickness, for gravity interpretation: Lagrula 164-198
Cyprus, gravity anomalies: Bemmelen 166-193; Harrison 165-206
Czechoslovakia, age of Rožna lepidolite: Kanter 167-35
electrical surveys, Vltava River dam: Behounek 164-111
gravity network: Chudoba 165-194
magnetic elements, Frunonct observatory: Haaz 164-231
seismic wave velocities: Adlung 166-245

D
Deep-sea sediments, cosmic sources: Öpik 164-204
cosmic spherules in: Fredriksson 165-373
deflection of the vertical, equation, uncertainties in: Vening Meinesz 167-110
Japan: Japan Geog. Survey Inst. 166-190
Deformation, crust, zones of negative anomalies: Niskanen 167-120
experimental, felsic rocks: Sabatier 164-320
marble: Shimozuru 165-371; Turner 167-271
methods of measuring: Bouckovskiy 164-142; Katz 167-272
model experiments: Bucher 167-119; Nettleton 164-148; Travis 164-149
variation with intensity of applied force: Gurevich 165-220
Danmark, magnetic anomalies: Lundbak 167-204
Density, determination for gravity surveys: Egyed 165-172
infinite inclined dike, from gravity: Haaz 165-177
mine rock: Windes 167-269
Paleozoic rocks, Tatar S. R.: Krinar 167-207
Deuterium, in natural waters: Friedman 164-211
dielectric constant, quartz: Stuart 165-140
marble: Srivastava 167-102
Dike, depth and dip from gravity: Haaz 165-177
Dolomite, Young’s modulus: Brown 167-80

E
Earth, age: Herzog 167-33; Patterson 167-5 evolution: Belousov 164-191; Schmidt 164-188
expansion: Egyed 167-164, 165
figure: Arnold 166-186; Chovitz 167-111
Internal structure. See Internal constitution.
origin: Gialanella 164-189; Levin 164-190; Schmidt 164-188
thermal history: Diamond 167-230;
Jacs 165-212; Lyubimova 165-230; Picciotto 166-29; Urey 165-213
Earth currents, crustal investigations by: Wies 164-103
effect on geomagnetic field: Burkhart 167-190
equipment for measuring: Burkhart 167-38; Miguel 166-33; Sebestyén 165-102
geophysical exploration by: Khovanova 165-101; Porstendorfer 164-103
low-frequency: Khovanova 165-101
micro pulsations: Burkhart 166-84
models: Kertz 165-253
observations at Toledo, Spain: Miguel 166-31, 32
origin: Burkhart 167-190; Porstendorfer 164-103
variations associated with earthquakes, Japan: Yanagihara 166-35
Earth tides, mathematical treatment: Melchior 164-76
representation: Jung 164-77
review: Lopez Arroyo 164-75
Earthquake waves. See Seismic waves.
Earthquakes, accelerations: Gutenberg 166-78; Karapetyan 164-53; Tandon 165-27
Alaska, 1953: Murphy 164-45
Assam, Aug. 15, 1950: Takahashi 165-91
Atlantic Ocean, Aug. 28, 1938: Satō 167-78
Australia, March 1, 1954: Kerr-Grant 167-50
Austria: Toperczer 166-38
California, fault motion: Whitten 166-197
Kern County 1952: Benloff 166-48; Gutenberg 166-48, 46, 47; Neumann 166-45; Oakshott 166-41, 42; Richter 166-44
major, 1769-1952; VanderHooft 166-38
Earthquakes, California, San Francisco, 1906: O'Connell 167-42
San Joaquin valley: Richter 166–40
southern: Richter 166–39
Canada, Aug. 22, 1949: Hamamatsu 166–50
west coast: Milne 164–43, 44, 165–23
west of 113°: Milne 166–49
Caribbean 1950–51: Ramirez 164–40
central America, 1950–51: Ramirez 164–40
Central Asia, aftershocks of Nov. 2, 1946: Chernyavkina 165–35
predictions: Petrushevskiy 166–65
deep-focus, cause: Lyubimova 166–230
deviations in traveltimes, Japan: Tamaki 166–92
records at Gottingen: Korschunow 166–91
depth determination: De Bremaecker 165–57; Girlanda 164–50
Ecuador, May and July 1955: Sauer 165–24
effect on earth currents, Japan: Yanagihara 166–35
effect on springs: Nikitin 165–37
effect on well levels: Mtigge 164–54
effects in mines, Silesia: Budryk 164–48
effects on buildings: Kanai 167–58; Karapetyan 164–53; Nazarov 164–52
energy: Gutenberg 166–78, 167–69; St. Amand 166–83; Savarenskiy 166–67; Solov’yev 166–76
epicenter location: Asano 165–51; Chernyavkina 166–45; Gayskiy 164–93; Golenetekly 165–55; Ichikawa 166–45; Kolosenko 165–55; Miyamoto 166–73; Pasechnik 165–66; Satô 166–74; Vvedenskaya 165–83, 52; Yeres’ko 167–56
frequency, relation to crack phenomena: Komura 164–56
rela. to depth: Konig 167–55
statistical formula for: Komura 164–56
Germany, Upper Swabia: Gwinner 165–25
Greece, Aug. 1953: Hodgson 166–51
Hawaii, 1953: Murphy 164–45
India, distribution: Tandon 165–26
Hindu Kush, March 4, 1949: Choudbury 167–76
March 22, 1954: Tandon 165–27
Earthquakes, intensity: Gutenberg 166–78; Kishinouye 166–45; Satô 165–40
Ionian Islands, direction of faulting: Hodgson 166–51
Italy, Messina, 1908: O’Connell 167–42
Italy, May 15–16, 1961, Val Padana: Caloi 167–51
Dec. 26, 1952: Girlanda 164–49
Nov. 23, 1954: Girlanda 164–50
deformation preceding, in Tolmezzo area: Caloi 164–61
Sept. 10, 1943 aftershocks: Omote 167–44
June 28, 1948, Fukui: Miyamoto 166–73
Oct.–Nov. 1952 off Sanriku: Sagisaka 166–96
November 26, 1953 aftershocks: Kasahara 167–74
October 19, 1955, Futatsui: Shima 166–53
crustal deformation associated with: Geog. Survey Inst. 164–55
damage, relation to nature of ground: Kanai 164–68; Subsoil Research Team 167–59
deep-focus, anomalous traveltimes: Tamaki 166–92
direction of first motion: Ichikawa 165–56; Utsu 166–94
distribution: Wadati 166–52
effect on mean sea level: Yamaguti 165–44
Suwanose-jima volcano, 1952–53; Murashishi 164–314
Tokyo, 1923; O’Connell 167–42
Kamchatka: Svyatlovskiy 164–39, 166–66
Kansas, Jan. 6, 1956: Dellwig 166–55
history of: Merriam 166–54
Kurile Islands: Svyatlovskiy 164–39, 166–66
Madagascar, 1954: Poisson 167–47
April 16, 1955: Coze 167–53
Nov. 19, 1955: Poisson 167–52
magnitude, 1896–1956: Gutenberg 167–69
effect of calculation methods: Gutenberg 166–46
effect of station azimuth: Gutenberg 166–46
Japan: Hayatu 164–58
near deep-focus: Wadati 166–77
new scale: Gutenberg 166–78, 167–67
relation to energy: Gutenberg 167–75, 167–67; Solov’yev 165–41; Utsu 166–76
relation to occurrence of aftershocks: Asada 164–57
tsunami-accompanied: Iida 167–45
Earthquakes, Manchuria, July 10, 1940: Fujimoto 166–85
mechanism at origin: Hodgson 164–60;
Kekis-Borok 166–81; Kogan 166–82;
Malinovskaya 164–59; Matsuoka 166–42;
Scheldegger 165–164; Takagi 165–43;
Tandon 165–27; Vvedenskaya 166–80
Mexico, 1950–51: Ramirez 164–40
Mongolia, 1905: Marinov 167–125
motion of sea surface due to: Honda 164–91
Nevada, 1860–1954: Byerly 166–56
Fallon–Stillwater, 1954: Byerly 166–56;
Cloud 166–57; Slemmons 166–58;
Steinbrugge 166–59; Tocher 166–60
New Zealand, Hawkes Bay, 1931: O'Connell 167–42
northeastern America: Lehmann 164–65
observations in central Asia: Vvedenskaya 165–33
observations of motion in buildings:
Kanai 165–46
Panama Canal Zone, 1953: Murphy 164–45
Philippine Islands, April 1, 1955: Alcaraz 165–28
Poland, Upper Silesia: Budryk 164–48;
Janczewski 164–46, 47
Portugal, Lisbon, 1755: O'Connell 167–45
prediction: Aki 164–62; Gerasimov 165–50;
Montandon 167–71; Petrushevskiy 165–49, 166–65
Puerto Rico, 1953: Murphy 164–45
recording devices, Japan: Miyamura 167–64, 65, 66
U. S. S. R.: Shebalin 165–67;
Ventskevich 166–106
registration by ground-water fluctuations:
Mugge 164–54
relation of soil mechanics to ground motion:
Housner 167–57
relation to earth tides: Tamrazyan 167–46
ripples in aftershocks, Japan: Kasahara 167–74
seismometer for determining intensity of: Medvedev 167–61
signal device: Solov'yev 165–70
slow movements related to: Gurevich 165–38
sounds: Sato 166–74
Spain, July 1, 1950, Gergal: Rodriguez 166–63
1951: Due Rojo 164–41
1952: Due Rojo 164–42
March 29, 1954, direction of faulting: Hodgson 167–70
April 19, 1956, Granada: Due Rojo 166–61; Pastor 166–62
Earthquakes, strain in crust at time of:
Ozawa 166–72
Switzerland, foci in central Valais:
Wanner 167–48
tsunamis accompanying, Japan 684–1955; Iida 167–45
Turkey 1952–56: Phnar 167–49
March 18, 1953; Muggle 166–54
Turkmen S. S. R., Nov. 5, 1946: Rezanov 164–51
U. S. S. R., Akhalkalaki region; Yshakhaya 165–34
Ashkhabad region: Puchkov 166–64
Caucasus: Kirillova 165–30; Nikitin 165–37;
Savarenskiy 166–67
Lake Issyk Kul region: Gerasimov 165–50
Little Caucasus region; Karapetyan 165–31
Transcaucasia: Byus 165–29
Ukraine: Turkevich 165–32
United States, 1953: Murphy 164–45
Venoven, relation to strike-slip faults: Rod 167–54
world, 1953; Due Rojo 164–36; Lotze 164–37;
Rothé 167–48
1954: Due Rojo 166–21; Lotze 165–22;
Rothé 167–48
distribution: O'Connell 167–41
Ecuador, earthquakes, May and July 1955:
Sauer 165–24
Egypt, geophysical methods in archaeology: Lerici 165–148
gravity anomalies, Nile delta; Harrison 165–206
Elastic constants, anhydrite: Müller 167–79
crystals: Raman 165–93
determination in small cylindrical specimens: Terry 168–121
igneous rocks: Müller 167–79
mantle: Shima 166–240
marble: Shimozuru 165–94
mine rock: Windes 167–29
porous media: Wyllie 164–100
porous solids: Barducci 164–96
sedimentary rocks: Muller 167–79
seismic determination: Brown 167–80;
Evson 167–81
volcanic rocks: Sakunta 164–99
Elastic creep in igneous rocks: Lomnitz 167–270
Elastic impedance, rigid circular plate: Bycroft 165–77
Elastic waves, amplitude-distance relations:
Kanai 167–85
attenuation, lossy media: Knopoff 166–112
resonant-chamber method of determining: Shumway 165–99;
Toolls 165–98
rocks: Collins 164–93
shallow-water sediments, San Diego area: Shumway 165–99
Elastic waves, boundary, continuously varying intermediate layer: Homma 166-115
composited, graphical analysis: Kosminskaya 165-85
cylindrical, in isotropic elastic medium: Chakraborty 166-110
reflection from plane boundary of semispace: Zvolinskiy 165-75
diffracted, dynamic characteristics of: Oblozyna 166-120
dispersed surface, analysis by Fourier transform: Sato 165-90
evanelastic-medium: lida 165-80
floating lake ice: Omote 167-82
from harmonic source: Kosminskaya 165-79
from point pressure pulse: Pekeris 164-88, 165-88
from point source in sea bottom: Honda 164-91
generated by explosion: Suzuki 165-86
generated by variable body forces: Eason 165-78
head, infinitely small amplitude: Mat-schinski 165-83
interaction with magnetic field: Knopoff 164-82
Love, dispersion in heterogeneous medium: Takahashi 165-91
model studies of generation: Kasahara 166-122
multiple reflections of: Zvolinskiy 164-90
nondispersive surface: Sato 165-89
produced by rock destruction: Shamina 166-386
produced by twists on surface of cavity: Chakraborty 166-111
propagation, anhydrite: Müllr 167-79
anisotropic media: Helbig 165-82
at discontinuities: Skuridin 166-109
axially symmetrical multilayered medium: Keyllis-Borok 165-84
cubic crystal: Stoneley 165-87
elastic layer on elastic base: Ishkov 165-81
electrical conductors: Knopoff 164-82
igneous and sedimentary rocks: Müllr 167-79
interference waves: Keyllis-Borok 164-80
materials possessing solid friction: Knopoff 167-84
on boundary of semispace: Kosminskaya 165-332
physical bases: Gurevich 165-75
pulse experiments: Collins 164-93
Rayleigh, generated at rough surface: Sato 166-117
range of possible existence in stratified medium: Yamaguchl 165-92
Elastic waves, reflection, at sea bottom: Usami 166-116
effect of Poisson's ratio: Koefoed 164-94
from liquid-solid boundary: Spencer 164-85
in continuously varying layer: Natuzawa 167-83
on corrugated surface: Sato 166-114
refraction, at sea bottom: Usami 166-116
refraction, in continuously variable layer: Matuzawa 167-83
scattering by spherical obstacle: Yamakawa 166-113
Sezawa, range of possible existence in stratified medium: Yamaguchi 165-92
spectral response of ground: Takahasi 166-127
Stoneley, velocity, orbit, distribution of amplitude: Yamaguchi 166-119
surface, Fourier analysis: Sato 167-78
SV, at solid-liquid interface: Matuzawa 164-84
velocity, as function of hydrostatic pressure: Shimozuru 165-95
determination in small cylindrical specimen: Terry 166-121
marble: Shimozuru 165-94
porous media: Wyllie 164-100
resonant-chamber method of determining: Shumway 165-99
shallow-water sediments, San Diego area: Shumway 165-99
sodium: Shimozuru 166-123
unconsolidated marine sediments: Shumway 165-99
variation with frequency in quartz: Hughes 165-96
Elastic waves, velocity, variation with pressure: Hughes 165-97
velocity, variation with temperature: Hughes 165-97; Shiino 164-98
Electrical conduction, metallic and silicate minerals: Nowitomi 164-128
Electrical conductivity, coals and coke: Mukherjee 164-127
crust, Europe: Wiese 166-249
Japan: Nagata 166-258
magnetically induced heterogeneities: Bartels 164-194
mantle: Evernden 166-170
Electrical crevasse detector: Cook 167-98
Electrical current, build-up in ground: Eneshteyn 166-134
dissemination in heterogeneous space from linear electrode: Ovchinnikov 166-133
generated by tidal streams, Cook Strait, New Zealand: Olsson 167-39
SUBJECT INDEX

Electrical dipole, field strength and phase of ground-wave propagation: Wait 165-110
in interface between perfect dielectrics, radiation resistance: Wait 165-105
transient field over homogeneous curved ground: Wait 165-106

Electrical exploration, applied potential method: McMurry 166-164
circular-line electrode method: Bacon 165-118
compensating method, errors in: Tikhonov 164-106
conducting half-plane problem: Telsyeyre 166-136
depth-profiling method, interpretation: Szabadvary 164-108
developments of past decade: Kiyono 165-122
direct-current method: Chetayev 166-132
equilibro-four-electrode method: Satô 166-138
equipment and field techniques: Suyama 165-126
evaluating sand deposits by: McCullough 164-112
for ground water: Rao 167-96
graphical scales in: Roman 167-89
inclined beds: Šumi 166-146
induced polarization methods: Dobrin 164-132
induced potential method, device for: Orilla 167-94
in engineering problems: Fritsch 165-128
in karst areas: Samoylov 164-109
instrument calibration: Barsukov 165-127
interpretation methods: Shalayev 164-104
inverse problem: Bellugi 166-150
magneto-telectric current method: Coulomb 166-151
potential variation curves in: Tsekov 165-149
reduction of disturbed effects: Uryson 167-81
reflex method: Chetayev 165-109
resistivity method, depth range: Krakovcov 166-145
determining long axis of ore body: Clark 165-121
four-electrode: Carpenter 164-107
interpretation: Kunetz 165-119;
Mooney 166-144
principles: Kiszow 164-101
self-potential method, basic principles: Kunori 165-124;
Wilcken 165-125
bibliography: Kunori 165-124
constancy of field: Bukhnikashvili 167-92
form of anomalies: Ohashi 166-143

Electrical exploration, self-potential method, limitations of: Noske 167-93
progress in: Noguchi 165-123
telluric-current method, apparatus for: Sebestyen 165-102
based on long-period variations: Kobuladze 166-130
U.S. S. R.: Bukhnikashvili 166-163
traveling-wave method: Yoshizumi 166-139
tri-potential resistivity method: Carpenter 165-120
two-coil galvanometer for: Groshev 165-108
use of antenna resistance in: Tikhonov 165-107
vela: Šumi 166-146
Electrical field, natural, of sulfide deposits: Bukhnikashvili 167-92
point source, effect of spheroidal disturbance: Khalin 166-129

Electrical logging, correlation of Mesaverde Group: Chuman 165-139
detection of thin oil-bearing beds: Dakhnov 164-121
determination of aquifer by, Mississippi: Priddy 164-126
determination of flooded zones by: Martin 164-118
disturbances, instrumental: Rivkin 164-117
stray currents: Komarov 165-136
effectiveness in determining true resistivity: Martin 166-166
evaluating oil potential by: Yudkevich 164-105
induced potential method: Sebestyen 164-124
interpretation in Wilcox formation: Alger 164-125, 166-169
interpretation methods in shaley formations: de Witte 164-120
interpretation problems, Frío sand, Texas: Blum 164-122
in low resistivity sands: Blum 164-122
in uranium exploration: Broding 165-137
laboratory study of parameters of Weir sand: Moore 166-167
lignite deposits, Hungary: Sebestyen 164-124
Ithologic determinations from: Nechay 165-134
MicroLog method, lower Glen Rose of East Texas: Wade 167-99
model studies: Al'pfn 166-165; Karplus 165-133; Temkina 164-119
principles and techniques: Heidecke 164-115
Electrical logging, progress in: Fuchida 165-138
quality-of-water determinations from: Pryor 165-168
transient method: Karplus 165-135
value of: Kisow-164-116
water wells, Brotas formation, Brazil: Varjao de Andrade 164-123
Electrical potential, induced, laboratory measurements: Erkel 165-141
point source, at surface near dipping bed: Chastenet de Gery 166-147
at surface of layered medium: Mooney 166-144
effect on thin vertical layers: Kuneta 165-119
Electrical properties, clays, relation to water content: Deeg 164-129
marbles: Srivastave 167-102
quartz, as function of frequency and temperature: Stuart 165-140
reservoir rocks: Hill 165-142
rocks, determination by attenuation of radio waves: Tarkhov 166-171
Electrical resistivity, apparent, over dipping beds: Chastenet de Gery 166-147
curves for layered earth: Mooney 166-144
cyclothemic sediments: McCullough 164-112
departure, curves, digital computation: Frankel 167-90
determination of porosity by: Cambridge 164-130
effectiveness of logs in determining: Martin 165-106
meteorites: Evernden 165-170
minerals and ores: Paramis 167-100
sandstones, relation to interstitial water: Perkins 167-101
Electrical spontaneous polarization, pyrite: Shibato 164-143
Electrical surveys, Australia, Wester, for ground water: Wiebenga 166-163
Austria: Fritsch 165-143
Czechoslovakia, Vitava River dam: Behounek 164-111
France, near Chambery: Gidon 165-106
Germany, Jankendorf and central Harz: Noske 167-93
Kropfmuhle graphite deposit: Wilekens 165-154
northern plain: Mielecke 165-156
Seligers mineral spring area: Schenk 165-155
Hungary, Koszeg hills: Sebestyeny 164-110
Italy, Caprarola and Frascati, south-central: Zaccara 165-199
Grosseto: Manfredini 163-129
Japan, for ground water: Kurata 165-130
Hanabusa mine: Iida 166-157
Electrical surveys, Japan, Hanaoka mine: Yoshikawa 166-158
Ishibuya Bay: Tsukada 165-131
Kuga mine, Yamaguchi-ken: Shibato 164-112
Mihara volcano: Suwa 166-375
Omi landcreep area, Yamagata: Minakawa 166-160
Takayama dam site: Obara 166-159
Tezno mine, Shimane-ken: Suyama 166-162
Tuszura, Miyazaki-ken: Shibato 166-161
Peru, for copper: Terrones 165-133
Tanganyika: King 165-151, 152
Virginia, Austinville: McMurry 166-144
Yugoslavia, dam sites: Fritsch 165-128; Stefanovic 167-97
Trepca lead-zinc district: Melser 165-284
Electrofiltration potential, hydroelectric projects, Georgian S.S.R.: Tsitstehvoli 167-95
Electromagnetic coupling of loops over homogeneous ground: Walt 165-112
Electromagnetic exploration, airborne, 1955 developments: Dobrin 164-182
Electromagnetic exploration, airborne, equipment for: Engineering and Mining Journal 165-117
Electromagnetic exploration, based on impedance: Tikhonov 16-176
Electromagnetic exploration, development: Slichter 16-176
dipole electrode arrangement: Shakh­suvarov 166-148
Ellex method, theory: Belluigi 165-108
estimation of tonnages by: Belluigi 165-115
galvanic, method, field procedures: Makino 165-113
Induction method, theoretical study: Kiyono 165-114, 166-142
limitations of: Slichter 166-176
text book on: Tarkhov 166-102
Electromagnetic field, build up in multilayer medium: Vladimirov 166-135
generated by alternating current-carrying cable over terrain including inter­layer: Belluigi 165-211
produced by spherical body in uniform field: Kiyono 165-114, 166-142
Electromagnetic surveys, Peru, Cercaquillo lead-zinc district: Melchiori 165-251
Portugal, Balho Alentejo pyrite belt: Rocha Gomes 165-132
Electromagnetic wave, propagation in ground: Portitsky 165-111
Electronic chronographs, geophysical uses:
Zatopek 164-154
Electronic computers, use in geophysics:
Jones 167-106; Kogbetliantz 166-212
El Salvador, Ahuachapan fumarole area:
McBirney 167-280
eruption of Izalco 1955-56: Meyer-Abich 167-281
magnetic survey, Ahuachapan fumarole area: Durr 167-216
peleean eruption products: Weyl 164-307
thermal activity in older volcanic area: Grebe 167-282
Engineering, geophysical methods in:
Fritsch 165-128; Hensoldt 166-175; Plichon 166-174
England, geophysical surveys for coal, West Midlands: Polak 164-136
groundwater observations, Channel Islands:
Day 165-196
groundwater survey, Yorkshire: Whetton 167-146
radioactivity background, West Cumberland area: Fair 165-310
radioactivity measurements, Stowell Park borehole: Ponsford 168-305
temperatures, Stowell Park borehole: Bullerwell 166-237
English Channel, seismic survey: Day 167-268
Eniwetok Atoll, heat flow: Birch 166-239

F

Faults, deep, classification and distribution of:
Peyve 167-118
location by radioactivity measurements:
Schumann 165-304
movements on, California: Benioff 166-48; Hill 166-189, 200; Oakeshott 166-41; Whitten 166-188, 197
Ionian Islands: Hodgson 168-51
Mongolia: Marinov 167-125
Pacific: Hodgson 164-60
Spain: Hodgson 167-70
radioactivity of springs near, Yugoslavia: Miholic 167-245
seismic interpretation of: Ivanhoe 165-348; Posgay 164-283
Fennoscandia, uplift in: Lyustlikh 165-232; Sauramo 166-250
Figure of the earth, determination from arcs:
Chovitz 167-111
Folding, relation to physical properties of: de Sitter 167-121
types in orogenesis: de Sitter 167-121
France, age of clay near Goenoble: Moret 166-10, 167-37
age of Mayet de Montagne granite:
Roques 166-80
electrical survey, near Chambéry:
Gidon 165-305
exploration of Parentis oil field: Vajk 166-181
France, gravity anomalies, Berry: Goguel 167-141
gravity map, northern Massif Central:
Goguel 167-144
hydrogen isotopes in gases of Lacq oil-field: Roth 167-177
magnetic surveys, Mauche: Bassempierre 164-244
magnetization of Auvergne basalts:
Roche 167-206
radioactivity, Hercynian Vosges: Rothé 167-249
littoral sediments: Rivière 164-261, 167-242
mineral springs: Muchembled 164-269
Mure coal basin: Sarrot-Reynaud 166-324
Puy-de-Dôme: Garrigue 166-308
Vosges Mountains: Jurain 164-262
seismic survey, near Chambéry:
Gidon 165-303
temperatures, Isère-Arèz tunnel: Boredt 164-135

G

Galapagos Islands, volcanoes and tectonics:
Banfield 164-310
Galvanometer, small high-sensitivity reflex:
Groshevov 164-273
string, sensitivity of: Antsyferov 164-114
Gamma-radiation counters, natural background of:
Shashkin 167-247
Gamma rays, air scattering:
Sakakura 165-296
Gas, radioactivity:
Pierce 165-308
Geochronology, climatic variations in:
Langergaussen 166-2
Geodesy, deflections of vertical:
Japan Geog. Survey Inst. 166-190
world system: Heiskanen 167-107
Geodetic observations in the Canadian Arctic:
Ross 165-190
Geoid, in Baltic area:
Ulander 167-112
best-fitting, Mexico: Castro 164-140
deflections, survey method based on:
de Graaff Hunter 167-108
precision of gravimetric determination:
Hirvonen 164-141
undulations, causes of:
Niskanen 164-159
Geophysical correlations, effect of “filters” on:
Dedebant 166-183
Geophysical exploration, activity 1955:
Donohoo 165-145; Hammer 164-137, 164-106
Alaska: Joesting 165-150
Alberta, Little Smoky field: Carlyle 167-104
Canada, problems of:
Ogilvie 167-103
continental shelf areas; Cortes 165-151
Geophysical exploration, for minerals: Heinrichs 166-177; Martin 164-135; Slichter 166-176
for petroleum: Flandrin 164-131; McCarver 166-179; Migaux 164-134; Morrisey 166-178
for uranium: Black 165-152; Denson 165-153
France, Parentis oilfield: Vajk 166-181
Germany: Brand 166-182; Closs 164-133
importance of geology in interpretation of: Oliphant 166-180; Skeels 166-173
in archeology: Carabelli 165-149; Lerici 165-148
in coal mining: Polak 164-136; Wolff 167-105
in foundation engineering: Hensoldt 166-175
Italy, modern instruments and methods: Boaga 166-172
Japan: Hayashi 165-154; Iida 165-155; Sato 165-156
probability methods in: Slichter 166-176
Spain: Dupuy de Lome 164-133
technical developments 1955: Dobrin 164-132, 165-144; Donohoo 165-145
ultrasonic wave methods: Kotoniski 166-337
U. S. S. R., Institute of: Fedynskiy 165-147
Geophysics, fluctuation phenomena in, mathematical analysis: Matschinski 165-169
method of characteristic points: Timofeyev 166-185
Georgian S. S. R. earthquakes, Kartalin plain: Isoselian 167-265
electrofiltration potential, hydroelectric projects: Taitishvili 167-95
radioactivity, hot springs: Balavadze 167-244
seismic surveys, Kartalin plain: Isoselian 167-265
Geotectonics, eastern Indian Ocean: Fairbridge 187-272
elasticity theory in: Aslanyan 167-115
fundamental questions of: Belousov 167-114
geochemical control of: Bemmelen 166-193
mechanical analyses: Aslanyan 167-115; Gurevich 165-162
model experiments: Bucher 167-119
related to uranium mineralization, Australia: Rade 165-202
role of gravity in: Bucher 167-119
sheet theory: Rade 166-202
vertical movements in, Africa: Brock 164-143
wrench-faulting in: Moody 167-122
Germany, age, Buggingen sylvite: Gentner 164-27
Eifelmaar eruption: Straka 164-16
Fichtelgebirge granite: Noddack 164-26
Lausitz granodiorite: Schurmann 167-19
development of applied geophysics: Closs 164-133
earthquakes and recent tectonics, Upper Swabia: Gwinner 165-25
electrical surveys, as aid to geologic mapping: Mielecke 166-156
Kropfmühle graphite deposit: Wilckens 166-154
mineral spring area at Selters: Schenk 166-155
near Jankendorf and central Harz: Noske 167-93
magnetic surveys, East: Lauterbach 166-286
Eifel volcanic area: Cipa 165-285
Hohe Venn region: Wolff 164-245
Ries: Reich 164-304
radioactivity of air, Zugspitzplatt, Bavarian Alps: Reiter 165-308, 167-232
seismic surveys, Alsatian potash mines: Seelis 164-291
Barsinghausen: Hiller 164-292
Bavarian Alps: Reich 164-293
lake ice: Hellbardt 165-367
Minden-Stehinuder Meer area: Bortfeld 164-294
Rappbode dam site: Martin 167-267
Rothem salt dome: Schulze 167-266
Ries: Reich 164-304
Ruhr coal district: Hiller 164-292
seismic wave velocities: Adlung 166-245
in Swabian foreland Molasse: John 166-361
structure between Bremen and Cuxhaven from seismic data: Jankowsky 166-362
telluric current surveys: Porstendorfer 164-103
use of geophysics in coal mining: Wolff 167-105
Glacial chronology, carbon-14 dating: Ericson 166-8; Flint 166-7; Ruhe 165-7; Suess 165-8; Taylor 166-9; Wright 167-14; Zumberge 167-13
Glaciation, carbon-dioxide theory of: Plass 167-132
Glaciers, effect on sea level: Cailleux 164-207
flow patterns: Nielsen 167-126
seismic surveys, Baffin Island: Röthlisberger 184-152
Ötzteraler Alps: Fötsch 164-152, 165-169, 167-130
Glaciers, temperature in Greenland: Georgi 167-128; Wegener 165-168

Taku, Alaska: Miller 167-127

Glaciology, recent history of: Baird 165-166

Granite, geophysical evidence on origin: Bott 167-142

Graphite, carbon isotopes: Wickman 165-237
electrical resistivity: Parasnis 167-100

Gravimeter, Atlas, calibration and maintenance: Borrego Gonzales 164-158
calibration by vertical gradient: Lozano Calvo 165-185

CHS, calibration: Koz'yakova 167-138

processing of data of: Karatayev 166-206
drift of zero: Shokin 164-159; 165-183

earth-tide studies: Clarkson 166-205

North American, description: Matsuda 165-186

quartz, for establishing bases: Bulanzhe 165-184

precision of: Bulanzhe 167-139

special types, U. S. S. R.: Bulanzhe 165-184; Lukavchenko 164-168

spring balance, theory: Veselov 164-162

static, theory of errors: Wieladek 166-207

Worden, description: Tsuboi 165-187

Gravitational effect of Jupiter: Arge\nentieri 164-79

Gravity, Bouguer correction with varying density: Vajk 167-133
derivatives, electronic computers for: Kogbetliantz 166-212
distribution, on surface of rotating ellipsoid: Müller 165-170
elevation corrections, across boundaries: Colley 164-166

free-air correction, improvement: Thysen-Bornemisza 166-221

static, theory of errors: Wieladek 166-207

measurement by electronic chronographs:
Zatopek 164-154
measurement by pendulum: Castro 164-156
measurement in drill holes: Lukavchenko 164-168

normal, for Spain: Lozano Calvo 166-214

second vertical derivative: Veselov 164-162

terrain corrections, density determination for: Egyed 165-172

integrators for computing: Morhett 167-138

tidal corrections for 1955: Goguel 165-173; Morelli 165-174

tidal variations, analysis: Lecolzet 167-135

instrument for measuring: Clark-son 166-205

vertical gradient: Thysen-Bornemisza 166-221

Gravity anomalies, Africa, northern: Cizancourt 165-205

analog computer for comparison of: Geyer 166-210

at continental margins: Worzel 165-189

effect of intermediate layer: Lagrula 166-208

France, Berry: Goguel 167-141

horizontal cylinder: Lyapunov 164-164

India: Krishnan 164-145

Indonesia: Lyustikh 165-197

infinite inclined dike: Haas 165-177

in interpretation of tectonics: Lyustikh 165-171

interpretation: Ball 165-180; Brown 164-161; Goguel 165-175; Lyapunov 164-164; Malovichko 166-209; Matsusawa 165-178; Mikov 165-278; Pudovkin 164-163; Sato 165-181; Smolitsky 164-160; Stackler 165-129; Veselov 164-162

Luxembourg: Coron 166-224

Mediterranean, eastern: Harrison 165-206

western: Cizancourt 165-205

model studies: Zidarov 164-240

North America, mid-continent area:
Thiel 166-226

over fault: Morrison 164-167

physicochemical explanation: Perrin 167-140

relation to changes in level, Hungary: Bendefy 165-182

relation to earthquake wave decay: Hayatu 164-58

relation to geologic processes: Kaza\nnik 164-222

relation to origin of granite: Bott 167-142

removal of first-order spherical harmonic terms: Hirvonen 167-109

vertical cylinder: Oszlaczky 165-176

Gravity observations, Africa, central: Sutton 166-215

Alaska: Garland 165-192

at sea, second-order corrections: Ven-\ning Melness 167-134

Belgian Congo: Sutton 166-215

Canada: Garland 165-192

Channel Islands: Day 165-196

Czechoslovakia: Chudoba 165-194

Great Britain, primary base-line: Wat-son 166-213

Indian Ocean, Tromelin Islet: Cattala 167-148

Madagascar: Cattala 164-177

Ruanda Urundi: Sutton 166-215

Tanganyika: Sutton 166-215

Uganda: Sutton 166-215

U. S. S. R. mines: Lukavchenko 164-168

evaluation of errors: Bulanzhe 167-137

Virgin Islands: Shurbet 167-151

Yugoslavia, Macedonia: Prosen 167-152
Gravity profile, Colorado, Uravan area: Joesting 167–145
Gravity surveys, Alberta: Stackler 166–211
Algeria, Tanezrouft desert: Castet 167–212
Arizona, Bisbee copper mines: Allen 166–219
Australia, eastern: Marshall 165–190
Moorlands coalfield area: Seedman 164–169
New South Wales: Williams 166–216
Peak and Denison Ranges: Knapman 166–218
Perth Basin: Thyer 166–217
Belgian Congo: Jones 167–143
British Columbia: Stackler 166–211
California, Mojave Desert: Mabey 166–220
Searles Lake: Mabey 166–220
Czechoslovakia, central Carpathians: Valek 165–195
England, Yorkshire: Whetton 167–146
France, northern Massif Central: Goguel 167–144
Germany, coal mining areas: Wolff 167–105
Illinois, reef-type structure: Pohly 166–225
Indiana, reef-type structure: Pohly 166–225
Italy, east-central: Morell 164–173;
Scaresella 164–174
Garigliano and Volturro plains: Fillini 165–200
northeastern part: Norfelli 164–175
south-central: Zaccara 165–199
Valle Latina and Pontine Plain: Tribalto 165–198
Japan, Akita-ken: Matsuda 166–222
Chubu district: Tsuob 165–201
Hokkaido: Geol. Survey Inst. 164–176
in progress: Tsuob 165–187
Kantō plain: Ogawa 166–223;
Tobel 165–187
Tōkoku district: Tsuob 165–202
Kansas, southeastern: Cook 164–179
Luxembourg: Glodeen 165–203
Madagascar: Cattala 165–204
Michigan, reef-type structure: Pohly 166–225
Upper Peninsula: Frantti 165–209
Minnesota, Lake Superior region: Thiel 166–226
modern methods: Taramanci 166–204
New Mexico, southeast: Flawn 167–208
New Zealand, Kotuku–Ahaura district: Dibble 167–149
Northwest Territories: Stackler 166–311
Oklahoma, northeastern: Cook 164–179

Gravity surveys, Ontario, northern: Garland 165–191
reelf-type structure: Pohly 166–225
Salma Guelph area: Dyer 165–193
Pennsylvania, Clinton County: Jarmell 165–210
Puerto Rico: Shurbet 165–207
Ruanda-Urandi: Jones 167–143
Sakhalin Island: Gnedin 166–208
Texas, west: Flawn 167–208
Turkey, for chromite: Yüngül 165–208
underground: Allen 166–219
U. S. S. R., Apsheron Peninsula: Tsimel’zon 166–227
Saratov region: Shvank 164–178
West Siberian plain: Timofeyev 167–150
Wales, East Carmarthenshire: Whetton 164–170, 171
northern: Powell 164–172
Wisconsin, Lake Superior region: Thiel 166–226
Yukon: Stackler 166–211
Great Britain, present-day tectonic movements: Meshcheryakov 166–201
primary gravity base-line: Watson 166–213
radioactivity, sedimentary rocks: Ponsford 165–311
Great Lakes, crustal movement in area of: Price 167–174
Great Britain, present-day tectonic movements: Meshcheryakov 166–201
primary gravity base-line: Watson 166–213
radioactivity, sedimentary rocks: Ponsford 165–311

Greenland, density in icecap: Georgi 167–128
seismic surveys of icecap: Loewe 165–197;
Victor 164–151
surface and base of icecap: Bourgoin 167–129
temperature in icecap: Georgi 167–128;
Wegener 165–198
thermal gradient: Bondam 165–216
Gulf of Mexico, magnetic survey: Miller 165–287
seismic reflections in: Ellis 166–355

H
Hawaii, earthquakes, 1954: Murphy 164–45
eruption of Kilauea, 1955: Macdonald 165–383
Heat, in earth: Diamond 167–230;
Jacobs 165–211;
Kohman 165–314;
Lyubimova 164–180, 165–212, 166–220;
Urey 165–213
Heat, sources of, in geologic processes: Nieuwekamp 166–192
Heat flow, Canada, Resolute Bay: Misener 164–184
England, Cambridge: Chadwick 166–236
Eniwetok Atoll: Birch 166–239
Hungary, László coal basin: Boldissár 166–238
Heat flow, New Mexico: Herron 167–158
Texas: Herrin 167–158
West Indies: Robson 167–159
Helium, isotopes, in atmosphere: Mayne 165–239
isotopes, in iron meteorites: Gentner 164–210
zircon: Hurley 165–11
Hematite, electrical resistivity: Parasnis 167–100
ferromagnetism in: Li 165–259
magnetostriction: Urquhart 165–260
Hot springs, Algeria, radioactivity: Guigue 164–264
Argentina, industrial use: Bartolucci 167–279
El Salvador: Grehe 167–286
Georgian S.S.R., radioactivity: Balavadze 164–317
heat loss from: Lyustikh 165–130
Italy, Lechia: Santi 164–317
Kamchatka: Zavaritskiy 165–379
radon content: Guigue 164–264
Yugoslavia, radioactivity: Miholic 167–245
Hungary, heat flow, Liassic coal basin: Boldizsár 166–238
induced potential logging for lignite: Sebestyén 164–124
leveling corrections: Bendefy 165–182
magnetic elements: Haaz 164–231
seismic surveys, bauxite deposits: Szénás 164–296
Dorog: Posgay 164–283
near Hajduszoboszoló: Gáli 166–364
road vibrations: Lanyi 164–297
Transdanubian area: Adam 164–235
self-potential surveys, Köszeg hills: Sebestyén 164–110
Hydrogen, isotopes, dating by: Libby 164–8
fumarole gases: Friedman 164–211
Lacq oilfield gases: Roth 167–177
natural waters: Friedman 164–211; Libby 164–8
phase transition under pressure: Davydov 165–221
survey instruments: Driver 165–241

Ice, density, Greenland: Georgi 167–128
elastic constants: Hellbardt 165–367
elastic wave propagation in: Omote 167–82
seismic surveys, Germany: Hellbardt 165–367
temperature, Alaska, Taku glacier: Miller 167–127
Greenland: Georgi 167–128; Wegener 165–168

Ice, thickness, Antarctica: Loewe 165–167
Greenland: Loewe 165–167; Victor 164–151
Icecap, determination of basement surface: Bourgoin 167–129
Iceland, age of Grabrok lavas: Schwarcbakh 165–5, 167–12
magnetization of basalts: Brynjolfsson 165–269; Hespers 167–196
Ihado, peleean eruption products: Weyl 164–307
Igneous rocks, creep in: Lomnitz 167–270
elastic constants: Müller 167–79
elastic wave propagation in: Müller 167–79
reverse thermoremanent magnetization of: Nagata 164–236
Illinois, gravity surveys, reef-type structure: Pohly 166–225
radioactivity, black shale: Krumbelin 168–307
Illinois Basin, electrical logging: Pryor 166–186
Ilmenite, magnetisation, at low temperature: Kume 165–262
Inellinometer, fluxmeter type: Subbotin 165–161
precision: Bonchakovskyy 164–142
India, age determinations: Aswathanarayan 164–34; Holmes 167–20; Mahadevan 164–33; Venkatasubramanian 167–16
crustal structure in Indian Kush: Choudhury 167–76
dielectric constants of marble from: Srivastava 167–102
earthquake, March 22, 1954; Tandon 165–27
distribution: Tandon 165–26
magnetization of Deccan trap: Clegg 166–280
orogenic cycles: Aswathanarayan 164–34; Mahadevan 164–33
radioactivity of charnockites: Aswathanarayan 164–250
radioactivity of rocks and minerals from: Aithal 167–236, 237; Sastry 167–238
radioactivity of sea floor sediments off coast of: Mahadevan 164–257
seismic survey in Gangetic alluvium, near Calcutta: Kailasam 164–298
structural evolution of: Rode 166–202
tectonic history: Krishnan 164–145
Indiana, gravity surveys, reef-type structure: Pohly 166–225
Indian Ocean, bathymetric and geoelectrical features: Fairbridge 167–273
declination and absolute gravity of Tromelin Islet: Cattala 164–148
Indonesia, gravity anomalies: Lyustikh 165–197
Internal constitution of earth: Belousov 164-191; Egyed 167-165; Gutenberg 167-167; Haasek 167-168; Jung 164-192; Kazanli 164-222; Magnitsky 165-225, 167-162; Matumoto 164-84; Molodensky 165-224; Savarensky 165-226; Venin 164-242

See also Core, Crust, and Mantle.

Iodine, isotopes, natural abundance: Purkayastha 165-242

in natural uranium fission: Purkayastha 165-242

Iodium-uranium ratio, coral limestone: Barnes 166-20

Iraq, seismic surveys: Gaskell 166-365

Isostasy, and pediplanation: King 164-206; Pugh 164-205

early Norwegian work on: Jelstrup 167-175

first order harmonic term in: Jung 167-173

South Africa: King 164-206

viscosity of crust from: Lyustikh 165-222

Isostatic calculations, geophysical data implied in: Gutenberg 167-172

Isostatic compensation, in Spain: Losano Calvo 168-214

Isostatic readjustment, Great Britain: Meshcheryakov 166-201

Great Lake region: Price 167-174

Isotopes, argon, in meteorites: Gentner 164-210; Gerling 165-16, 166-251

isolation for age determinations: Amirkhanov 166-21

Isotopes, beryllium, in atmosphere: Crulkshank 165-236

boron, variations in nature: Parwel 167-176

carbon, animals: Rafter 164-12

atmosphere: Rafter 164-12

crust: Wickman 165-237

diamond: Wickman 165-237

graphite: Wickman 165-237

igneous carbonates: Wickman 165-237

plants: Rafter 164-12

in sea water: Rafter 164-12

shells: Rafter 164-12

chlorine, production in atmosphere: Winsberg 165-238

helium, atmosphere: Mayne 165-239

meteorites: Gentner 164-210

Isotopes, hydrogen, fumarole gases: Friedman 164-211

gas, Laq oilfield: Roth 167-177

in natural waters: Brown 165-240; Fireman 166-254; Friedman 164-211

survey instruments: Driver 165-241

Isotopes, lead, and primary magma: Voytekovich 167-171

galena of Colorado Front Range: Phair 166-253

galena of Mississippi Valley: Kulp 164-212

mantle: Russell 165-313

meteorites: Voytekovich 167-171

Vesuvius lavas: Begemann 164-23

lithium, natural abundances: Fillies 164-213

naturally occurring, of low abundances: White 165-235

neon, meteorites: Gerling 165-16; 166-251

nitrogen, in naturally occurring substances: Hoering 164-214

oxygen, Mediterranean core: Emiliani 165-243

in silicate rocks and minerals: Schwander 164-215

in uranium minerals: Hoekstra 165-245

phosphorus, formation from argon in air: Marquez 164-216

potassium, diffusion in metamorphism: Dutt 164-263

radium, in uranium minerals: Kuroda 165-12

rubidium, meteorites: Herzog 167-33

strontium, meteorites: Herzog 167-33

rubidium-poor rocks: Ewald 167-34

sea water: Ewald 167-34

sulfur, Mississippi Valley galenas: Kulp 164-212

Rhodesian copper deposits: Bate man 167-178

sulfide minerals: Kulp 165-244

tantalum, decay scheme: Eberhardt 164-217

uranium, natural abundances: Louns bury 166-252

Italy, age determination, Vesuvius lava: Begemann 164-23

archeological studies by geophysical methods: Carabelli 165-149; Lerici 165-148

crustal structure: Caloi 167-51

earthquake, 1908, Messina: O'Connell 167-42

May 15-16, 1951, Val Padana: Caloi 167-51

Dec. 26, 1952, Trrhenian basin: Girlanda 164-49

Nov. 23, 1954: Girlanda 164-50

registration at Pavia: Pannocchia 164-67

slow deformation presaging, Tol mezzo area: Caloi 164-61

electrical surveys, Caprarola and Fras cati: Zaccara 165-199

Grosseto: Manfredini 165-129
SUBJECT INDEX

Italy, eruption at Solfatara di Pozzuoli: Parascandola 166-371

eruption of Stromboli February-March, 1954: Cucuzza Silvestri 166-370
geospatial methods in: Boaga 166-172
gravity surveys, east-central: Morelli 164-173; Scarsella 164-174
gravity surveys, Garigliano and Volturro plains: Falini 165-200
northeastern part; Norinelli 164-175
south-central: Zaccara 165-199
seismic surveys, Valle Latina: Tribalto 165-198
thermal waters, Ischia: Santi 164-317; Sappa 164-318
uranium and thorium prospecting in: Ippolito 165-326

Japan, crustal structure: Nishimura 167-169; Research Group 166-247, 167-170; Tamaki 166-246; Utsu 166-94
deflection of vertical: Geog. Survey Inst. 166-190
deforestation of crust following earthquake: Geog. Survey Inst. 164-55; Iida 165-234; Miyabe 166-189
earth-current measurements, Mihara volcano: Suwa 166-375
earthquake, Sept. 1, 1923: O'Connell 167-42
Sept. 10, 1943: Omote 167-44
June 28, 1948, at Fukui: Miyamoto 166-73
Oct.-Nov. 1952 off Sanriku: Sagi-saka 166-66
Nov. 26, 1953: Kasahara 167-74
Oct. 19, 1955: Shima 166-53
off British Columbia, records in: Hamamatsu 166-50
Suwanose-Jima: Muranchi 164-314
earthquake damage, relation to nature of ground: Kanai 164-85; Subsoil Research Team 167-59
earthquakes, deep-focus, traveltime anomalies: Tamaki 166-92
direction of initial motion: Utsu 166-94
distribution: Wadati 166-52
effect on mean sea level: Yamaguti 165-44
magnitude: Hayatsu 164-58
electrical surveys, for ground water: Kurata 165-150
Hanabusa mine, Gifu: Iida 166-157
Hanaoka mine: Yoshikawa 166-158

Japan, electrical surveys, for ground water—Continued
Isahaya Bay: Tsukada 165-131
Kuga mine, Yamaguchi: Shibatö 164-113
Oami land creep area: Minakawa 166-160
Takayama dam site: Obara 166-159
Tsuno mine, Shimane: Suyama 166-162
Tsuzura, Miyazaki: Shibatö 166-161
geochemical surveys, for coal: Iida 165-155 for oil: Hayashi 165-154
in mineral exploration: Sato 165-156
gravity surveys, Akita: Matsuda 166-222
Chubu: Tsuobö 165-201
Hokkaido: Geog. Survey Inst. 164-176
Kanto: Ogawa 166-223; Tsuobö 165-187
Toboku: Tsuobö 165-202
leveling survey, northeastern: Okada 167-113
southwestern: Geog. Survey Inst. 164-55
magnetic survey, Gembudo: Yokoyama 164-235
Hizume district: Yamura 166-292
Hokkaido: Geog. Survey Inst. 164-246
Kuga mine, Yamaguchi, Shibatö 164-113
Mihara volcano: Yokoyama 167-286
Temmabayaishi district, Aomori: Yokoyama 165-288
Tsuno mine, Shimane: Suyama 166-162
Tsuzura, Miyazaki: Shibatö 166-161
microseisms, relation to typhoon Sept. 11-15, 1950: Ikegami 167-125
movements of crust since Holocene: Nakano 164-209
radioactivity of atmosphere: Tajima 165-302
radioactivity survey, Naegi region, Gifu: Sano 166-326
radon in springs: Kikkawa 164-265
sea level changes, Bay of Ise: Iida 165-234
seismic surveys, in foundation engineering: Sasa 165-360
optimum conditions: Nagumo 164-334
techniques: Tamano 165-360
Japan, seismic surveys, tunnel and bridge sites: Hattori 165-364
 volcanic eruption, Fuji, 1707: Tsuya 166-373
 volcanic eruptions, Mihara: Suwa 166-375; Tsuya 164-313, 167-284; Yokoyama 167-285, 286
 Myojin reef: Morimoto 165-384
Sakura-jima, 1955: Suwa 166-374
Suwanose-Jima: Murauchi 164-314
Kansas, earthquake, Jan. 6, 1956: Dellwig 166-55
 earthquakes, history: Merriam 166-54
 gravity survey, southeastern: Cook 164-179
Kamchatka, earthquakes: Svyatlovskiy 164-39, 166-66
 thermal springs: Zavaritskiy 165-379
 topography: Udintsev 166-372
 volcanic activity: Menyaylov 166-377; Udintsev 166-372; Vlodavets 165-378; Zavaritskiy 165-379
Kang, earthquake, Jan. 6, 1956: Dellwig 166-55
 earthquakes, history: Merriam 166-54
Kirghiz S. S. R., seismic surveys: Gamburtsev 164-199
Kuril Islands, earthquakes: Svyatlovskiy 164-39, 166-66
 topography: Udintsev 166-372
 volcanic activity: Gorshkov 166-376; Udintsev 166-372; Vlodavets 165-378
Kuwait, seismic surveys: Gaskell 166-365
L
Latitude variation, effect of sun and moon: Castro 164-73
 spectrum: Rudnick 165-74
Lava, temperature and viscosity, Mihara eruption: Suwa 166-375
Lead, isotopes, galena from Colorado Front Range: Phair 166-233
 isotopes, galena from Mississippi Valley: Kulp 164-212
Lithium, isotopes, abundances in nature: Gillieson 164-213
Luxembourg, gravity map: Coron 166-224
 gravity survey: Gloden 165-203
M
Madagascar, age determinations: Besairie 164-35, 167-23; Holmes 166-14
 earthquakes, 1954: Polson 167-47
 April 16, 1955: Cose 167-53
 Nov. 19, 1955: Polson 167-52
 gravity, diurnal variations: Cattala 167-147
 observations: Cattala 167-177
 gravity surveys: Cattala 165-204
 magnetic declination: Cattala 167-188, 189
 Magnetic activity, influence of moon and inner planets: Sucksdorff 164-227
 polar regions: Mayaud 167-187
 Magnetic anomalies, computation of vertical components from T.: Simonenko 166-287
 electronic computers in analysis of: Kogbetlantz 166-212
 infinite horizontal masses: Strakhov 165-277
 infinite inclined dike: Haas 165-117
 interpretation: Mikov 165-278; Pudovkin 164-168; Smelle 167-210; Sato 165-181; Voskoboynikov 164-241; Ziets 166-298
 model studies: Zidarov 164-240; Ziets 166-298
 relation to geologic processes: Kazanli 164-222
 relation to volcanic eruptions: Yokoyama 164-315
 three-dimensional bodies: Ziets 166-298
 total intensity interpretation: Smelle 167-210; Ziets 166-298
 Magnetic declination, Danzig, secular variation: Olczak 164-225
 Indian Ocean, Tromelin Met: Cattala 167-148
 Japan, near Mihara volcano, 1951-1954: Yokoyama 165-250
 Magnetic declination, Madagascar: Cattala 167-188, 189
 measurement with QHM magnetometer: Thiesen 166-268
 solar daily variations at Swider: Lisowski 165-251
 Magnetic elements, annual values: Johnston 166-268
 Hungary: Haas 164-231
 Spain, Toledo observatory, 1947: San Roman 166-264
 Magnetic exploration, textbook: Logachev 166-285
 Magnetic field, effect on convection: Jirlow 167-181
 permeable alloy cylinder: Selzer 167-195
 vertical gradient: Pudovkin 164-163
SUBJECT INDEX

437

Magnetic field of the earth, secular variation, 44-year cycle; Bartels 167–184
Poland, 1901–1935; Olszak 167–183
relation to polar wandering; Quiring 164–224
short-period variations, Japan; Rikitake 166–36
model experiment, Japan; Nagata 166–258
seasonal distribution; Okhotsimskaia 167–186
variations at high latitudes; Pudovkin 167–185
variations, influence of sea; Rikitake 166–36
vertical component, variometer for; Ozdogan 165–267
Magnetic gradiometer, airborne; Glicken 164–239
Magnetic map, isogonic, Australia and New Guinea; Wood 164–230
Spain; Munuera Quifionero 165–232
Magnetic observatories, list of; Johnston 165–236
Magnetic storms, earth currents induced by, models for; Kertz 165–253
monitor for; Wickersham 164–238
Magnetic surveys, airborne, Alaska; Rossman 167–218
Alaska; Brundage 165–281
construction of isomagnetic charts from; Zmuda 165–228
New Zealand; Gerard 167–224
Norway; Mining Magazine 164–247
Alaska, Prince of Wales Island; Rossman 167–218
Algeria, Tanezrouft desert; Casta 167–212
Arctic Islands; Du Vernet 166–238
Argentina, Deception Island; Hernández 166–239
Asia, Ala Tau ridge; Petrova 165–238
Atlantic Ocean, Carya Peak area; Miller 165–227
Australia, Middleback Range; McParlin 164–242, 245
northerwestern; Brundage 165–251
New South Wales; Rao 167–213
Vienna basin; Bürgl 167–214
Azores Islands; Custódio de Morais 167–215
El Salvador, Ahuachapán fumarole area; Durr 167–216
France, Manche; Bassompierre 164–244
Germany, East; Lauterbach 165–256
Elbe valley area; Cipa 165–285
Hohe Venn region; Wolff 164–245
Elba; Reich 164–304
Gulf of Mexico; Miller 165–287

Magnetic field of the earth, bay disturbances, Cheltenham; Bartels 164–194; Princep Curto 166–266
diurnal distribution; Princep Curto 166–266
Japan; Kato 165–247
San Juan; Princep Curto 166–266
Sitka; Bartels 164–194
Tortosa; Princep Curto 166–266
Tucson; Bartels 164–194; Princep Curto 166–266
Watheroo; Bartels 164–194
disturbances, Kakioka, 1924–1951; Yokouchi 166–260
diurnal variation in low latitudes; Nicholson 164–226
diurnal variation, seasonal change; Nicholson 164–226
effect of altitude on pole; Jacobs 166–257
effect of Coriolis force on; Rikitake 167–180
effect of fluid motions near core boundary on; Takeuchi 164–220
effect of solar eclipse; Egedal 165–249; Yumara 166–262
effect of solar flares on, Kakioka data; Yokouchi 166–261
effect on earth currents; Bartels 164–194
in geologic past; Campbell 167–209; Clegy 167–195; Doell 164–224; Hoppers 167–196; Irving 166–276; Martinez 164–224; Nairn 167–206; Opdyke 165–272; Öpik 167–198; Roche 167–205; Runcorn 165–273, 167–197, 199
intensity, components at inverse points; Zmuda 166–259
extrapolation by Taylor series; Zmuda 164–228, 229
in polar regions; Quiring 164–224
numerical integration; Block 167–191
measurement by proton precession; Water 165–226
observations at Macquarie Island; McGregor 166–225
origins; Chatterjee 166–255; Kalashnikov 164–221; Kazanli 164–222; Nakikawa 167–179; Rikitake 164–219, 160–256, 167–180
present theories on; Runcorn 167–182
pulsations, recording; Blum 166–258
relation to earth currents; Burkhart 167–190
reversals; Campbell 167–209; Opdyke 166–279; Roche 167–205; Runcorn 167–199
secular variation, cause; Quiring 164–224
core-mantle boundary; McDonald 164–228
Magnetic surveys, Japan, Aomori-ken: Yokoyama 165-288
Hizen district: Yumura 166-291
Hokkaido: Geog. Survey Inst. 164-246
Mihara volcano: Yokoyama 167-286
Shimane-ken: Suyama 166-162
Tuszura, Miyazaki-ken: Shibatō 166-161
Yamaguchi-ken: Shibatō 164-113
Michigan, Upper Peninsula: Frantti 165-209
Norway: Mining Magazine 164-247
Peru, Cercapuquio lead-zinc district: Melchiori 165-291
Poland, Carpathian Mountains: Maloszewski 167-217
reduction of data: Fanselau 165-293
Sakhalin Island: Gnedin 166-203
Spain and Portugal: Rodríguez-Nava 165-282
Tanganyika: King 166-289
tioga area: Hansen 165-290
Tennessee: Clegg 166-281
Turkey, for chromite: Yungtil 165-208
U. S. S. K., shield area: Andreyev 164-248
Wales, northern: Powell 164-172
Yugoslavia, Trešća lead-zinc district: Melasser 165-284
Magnetic susceptibility, infinite inclined dike: Ház 165-177
Kurek anomaly: Ostrovskiy 165-274
magnetite: Rao 167-260
measured with Kalashnikov magnetometer: Bronshteyn 164-282
Paleozoic rocks, Tatar S. S. R.: Krinari 167-207
plutonic rocks, Leinster granite, Ireland: Manley 165-270
Precambrian rocks, southeast New Mexico: Flawn 167-208
west Texas: Flawn 167-208
relation to chemical composition: Bronshteyn 164-282
relation to stress: Kapitza 164-233
deadimentary rocks: Bronshteyn 164-232
soll: LeBorgne 165-271
Magnetite, crystallographic intergrowths in: Roy 166-271
demagnetization: Rimbert 166-274, 275
magnetic properties: Rao 167-200
magnetisation near Curie point: Smith 165-261
TIO, content as function of temperature: Buddington 164-181
Magnetization, anisotropy of, in rocks: Grabovskiy 166-270
artificially deposited sediments: King 166-278
Magnetization, basalts, Ahaggar Mountains, Algeria: Roquet 165-286
Avignon, France: Roche 167-205; Roquet 165-266
Columbia River: Campbell 167-209
Iceland: Brynjolfsson 165-269
Japan: Asami 166-282; Yokoyama 164-235
chemical sediments: Martinez 166-284
Colorado Plateau sediments: Runcorn 165-273
Deccan trap: Clegg 166-281
Denmark: Lundbak 167-204
dolerites, Tasmania: Irving 166-280
doleritic basalt: Manley 167-201
effect of alteration and weathering: Manley 167-201
effect of alternating field: Rimbert 166-274, 275
effect of heating: Grabovskiy 166-273
eruptive rocks: Nagata 164-236
ferrimagnetic model of: Fanselau 165-258
ferromagnetic minerals, effect of magnetic interaction: Nagata 165-202
generation of: Grabovskiy 165-263
Grand Canyon rocks: Doell 164-234
hematite: Li 165-259; Urquhart 165-260
Wohlfarth 164-237
ilmenite, at low temperature: Kume 165-262
Japanese rocks: Uyeda 165-267
lava flows northern Arizona: Opdyke 166-279
Ilpirite: Kruglyakova 165-265
magnetite: Rao 167-200; Smith 165-261
measurement in small samples: Smith 165-276
near Curie point: Smith 165-261
Netherlands: Lundbak 167-204
plutonic rocks, Leinster granite, Ireland: Manley 165-270
polar movements deduced from: Opik 167-198; Runcorn 165-273
present studies of: Clegg 167-195
reverse, effect of accessory minerals: Kruglyakova 165-265
effect of heating: Roquet 165-266
origin: Asami 166-282; Campbell 167-209; Clegg 167-195; Hosper 167-196; Nagata 164-236;
Roche 167-205; Uyeda 165-267; Verhoogen 166-277; Yokoyama 164-235
sandstones, California: Doell 165-288
sedimentary rocks: Runcorn 167-199
self-reversal by ionic ordering: Verhoogen 166-277
stability of remanent: Grabovskiy 166-254
Magnetization, Suwanose-Jima, Japan: Murauchi 164–314

- techniques of measuring: Frohlich 167–193
- titanomagnetite: Nagata 167–202
- two-phase systems: Grabovsky 165–275
- types of, in rocks: Petrova 166–272
- varved clays from Sweden: Griffths 166–283
- volcanic rocks, Arizona: Opdyke 165–272
- rich in pyrite: Roquet 167–203

Magnetometer, airborne, review of: Kato 165–280

- BMZ, suitability for southern hemisphere: Slaucitajs 166–267
- electronic recording variometer: Meek 165–254
- nuclear resonance: Dobrin 164–132
- portable electrical: Serson 167–192
- QHM, determination of declination with: Thiesen 166–268
- suitability for southern hemisphere: Slaucitajs 166–267
- saturated-core recording: Gerard 165–255
- studies of short-period fluctuations: Gerard 165–255
- vibrating-coil: Smith 165–276

Magnetostriction, hematite: Urquhart 165–260

Mantle, constitution of: Magnitskiy 166–241; Savarenskiy 165–226; Vening Meinesz 166–242

- distribution of elements in: Shimazu 164–195, 165–225
- elastic properties: Shima 166–240
- electrical conductivity in: Bvernden 166–170
- extinction coefficients of material: Clark 166–228
- fractures: Shimozuru 165–271

Marble, deformation as 300–500° C: Turner 167–271

- dielectric properties: Srivastava 167–102
- elastic wave velocity, under pressure: Shimozuru 165–371
- fracture of: Shimozuru 165–371

Massachusetts, age of granites: Webber 167–24

Mediterranean Sea, airborne magnetometer profile, Tunis to Lisbon: Agocs 165–282

- gravity anomalies: Cizancourt 165–205
- Harrison 165–206

Metamorphism, heat in: Nieuwenkamp 166–192

- relations to Japanese typhoon, Sept. 11–15, 1950: Ikegami 167–228
- relation to Moroccan swell: Bernard 167–227
- statistical investigations: Strobach 166–296
- vector seismograph for study of: Strobach 166–296

Meteorites, argon in: Gentner 164–210;格尔
- ling 165–16, 166–251
- electrical resistivity: Evernden 166–170
- helium in: Gentner 164–210
- neon: Gerling 165–16, 166–251
- origin of: Allan 167–6; Öpik 167–161
- Paricutin, birth and development: Foshag 167–287
- Michigan, gravity surveys, reef-type structures: Pohly 166–225
- gravity surveys, Upper Peninsula: Frantti 165–209
- magnetic surveys, Upper Peninsula: Frantti 165–209

Microseisms, Bermuda: Darbyshire 167–226; Shurbet 167–225

- mechanism of transmission: Shurbet 167–225
- observations, Hamburg, Germany: Strobach 166–296
- Normandy, France: Bernard 167–227
- northwestern Pacific Ocean: Monakhov 166–293

- U. S. R.: Savarenskiy 164–249
- origion: Das Gupta 164–250
- Gutenberg 166–295
- Monakhov 166–293, 294
- periods, Japan: Arakawa 165–293
- refraction at island stations: Darbyshire 167–226
- relation to Moroccan swell: Bernard 167–227

- southern California: Gutenberg 166–295
- statistical investigations: Strobach 166–296
- wave motion in: Strobach 166–296

- Microtremor, periods, Japan: Kanal 164–251
- Minnesota, age of Mankato drift: Wright 167–14

- gravity survey, Lake Superior region: Thiel 166–226

- Mississippi, electrical log studies of aquifers: Priddy 164–280
Model studies, crustal deformation: Bucher 167–119
elastic wave generation: Kasahara 166–122
electrical resistivity logging: Al'pin 166–165; Temkina 164–119
electrical transient logging: Karplus 165–155
electromagnetic induction in earth: Nagata 166–258
gravity anomalies: Zidarov 164–240; magnetic anomalies: Zidarov 164–240; Zietz 166–286
marine seismic phenomena: Sarrafian 165–349
radioactivity logging: Dewan 165–318
silt dome formation: Nettleton 164–148; Travis 164–149
seismic reflection: Woods 164–850
seismic wave propagation: Kota 164–92; Paterson 166–126
Moon, craters: Escher 164–305
origin of: Opik 167–166
Mountain building, theories: Eardley 166–194
Mud cones, development from gas explosions: Malz 164–306
Mud volcano, Caspian sea: Kulaskova 165–377
N
Netherlands, magnetic anomalies: Lundbak 167–204
Nevada, age of Tule Springs charcoal: Harrington 164–15
earthquakes, 1860–1954: Byerly 166–56
Fallon-Stillwater, 1954: Byerly 166–56; Cloud 166–57; Steinbrugge 166–59; Tocher 166–90; Whitten 166–188
triangulation and leveling surveys, near Fallon: Whitten 166–188
Newfoundland, aeromagnetic maps: Canada Geol. Survey 167–220
New Hampshire, age of Devil's Slide ring dike: Jaffe 165–10
New Mexico, gravity survey, southeast: Flawn 167–208
heat flow: Herrin 167–158
thermal survey near Lordsburg: Kintzinger 167–157
New Zealand, aeromagnetic survey: Gerard 167–224
earth currents near Cook Strait: Olsson 167–39
earthquake, Hawkes Bay, 1931: O'Connell 167–42
gravity survey, Kotuku-Abaura district: Dibble 167–149
isogonic map, 1955.5: Wood 164–230
New Zealand, peleean eruptions: Weyl 164–307
radioactivity, atmosphere at Wellington: Chapman 165–301; Crosthwait 165–300
soils: Gibbs 165–312; McCallum 165–306
Nicaragua, eruption of Las Pilas, 1952: McEvilly 167–289
origin of Nalapa pits: McEvilly 167–290
volcanic activity, 1954: Bullard 164–308
volcanic activity, Masaya-Nindiri vents: McEvilly 164–309
Nitrogen, isotopes, in natural substances: Hoering 164–214
North Dakota, magnetic survey, Keene dome: Opp 165–289
magnetic survey, Tioga area: Hansen 165–290
Northwest Territories, aeromagnetic maps: Canada Geol. Survey 167–221
age, Keewatin pest: Taylor 166–9
Marian River outcrops: Shillibeer 165–12
graviety surveys: Stackler 166–211
Norway, aeromagnetic survey, southwestern part: Mining Mag. 164–247
age of Stavanger molybdenite: Herr 164–31
radioactivity surveys, carborne: Bowl 165–327
temperature of formation of zinc deposits: Kullerud 164–182
O
Ocean basins, evolution: Belousov 167–117
seismic measurements in: Ewing 167–185
topography: Due Rojo 166–367
Ocean floor, radioactivity of sediments of: Mahadevan 164–257
Ohio, seismic surveys, Portage County: Pakiser 165–355
Oklahoma, age of Arbuckle Mountains: Hamilton 167–25
age of Wichita Mountains: Hamilton 167–25
gravity survey, northeastern part: Cook 164–278
Ontario, aeromagnetic maps: Canada Geol. Survey 167–222
gravity surveys: Dyer 165–193; Garland 165–191; Pohly 166–225
Oregon, magnetic measurements, Columbia River basalt: Campbell 167–299
Orogenesis, heat in: Nieuwenkamp 167–192
Precambrian, superposition in Tanganika: Harpum 166–195
South American cordillera: Garth 166–378
strain of rock in: de Sitter 167–121
Orogenesis, theories of: Eardley 166-194; Bardley 164-148; Kraus 164-144; Scheidegger 163-164
Orogenic movements, determination by seismic investigations: Reich 164-293
Oxygen, isotopes, Mediterranean deep-sea core: Emiliani 165-243
isotopes, silicate rocks and minerals: Schwander 164-215
uranium minerals: Hoekstra 165-245

P
Pacific Ocean, crustal structure: Nagamune 166-244
faults beneath: Due Rojo 166-287
magnetic observations, Macquarie Island: McGregor 163-265
Paleomagnetism. See Magnetic field of the earth
Paleotemperatures, Mediterranean Sea in Pleistocene: Emiliani 165-243
Panama Canal Zone, earthquakes, 1953: Murphy 164-45
Pennsylvania, crustal structure: Katz 165-280
gravity survey, Clinton County: Jarmell 163-210
Permafrost, depth at Resolute Bay, Canada: Misener 164-184
Peru, electrical surveys for copper: Terrones 165-133
magnetic and electromagnetic surveys Cercapuquio district: Melchior 165-291
Petroleum, airborne radioactivity surveys for: Gregory 167-248
general exploration for: Brand 166-182; Carlyle 167-104; Class 164-133; Cortes 165-151; Dupuy de Lome 164-138; Flandrin 164-131; Hammer 164-137, 165-146; McCarver 166-179; Migaux 164-131; Morrissey 166-177; Ogilvie 167-103; Oilphant 166-180; Vajk 166-181
radioactivity: Pierce 165-808
Phase transitions under pressure: Davydov 165-221
Philippine Islands, earthquake, April 1, 1955: Alcaraz 165-28
Phosphorus, formation of isotope 32 from argon: Marques 164-216
Plutonium, half life of isotope 244: Diamond 167-250
Poison's ratio, determination in situ: Evison 167-91
effect on reflection coefficients of waves: Koeofed 164-94
lake ice: Hellardt 165-367
Poland, earthquakes, Upper Silasia: Budryk 164-48: Jancewski 164-46, 47
gemagentic secular variation, 1901-35: Olczak 167-183
415621—57—11

Poland, magnetic observations, Swider: Lisowski 165-251
magnetic survey, Carpathian Mountains: Maloszewski 167-217
Polar regions, geophysical activity: Due Rojo 166-184
physical characteristics: Due Rojo 166-184
Pole, movement, damping: Gutenberg 165-72; Melchior 165-71
movement, effect of convection currents: Havemann 164-146
effect of earth's rigidity: Munk 165-73
mathematical treatment: Fleckenstein 164-80
paleoclimatic evidence: Irving 166-276
paleomagnetic evidence: Clegg 166-281; Irving 166-276; Nairn 167-206; Opik 167-198; Runcorn 165-273
sphere subject to visco-elastic deformation: Burgers 166-191
position, Jurassic time: Nairn 167-206
Mesozoic time: Irving 167-280
Porosity, determination by neutron logs: Edwards 164-271
determination by resistivity: Cambefort 164-130
determination by velocity logging: Denton 166-331
mine rock: Windes 167-289
Portugal, earthquake, Nov. 1, 1755: O'Connell 167-42
electromagnetic surveys, Baixo Alentejo pyrite belt: Rocha Gomes 165-132
magnetic survey: Rodriguez-Navarro 166-292
radioactivity surveys, Sierra da Estrela: Morais 167-290
soil temperatures, Coimbra Univ.: Custodio de Morais 165-214
Potash, determination underground by radioactivity: Wendt 167-235
Potassium, beta radiation: Hée 165-295
cosmic abundance: Urey 165-213
diffusion during metamorphism: Dutt 164-263
measurement by scintillation spectrometer: Hurley 165-298
Potassium-40, branching ratio: Gentner 164-28; McNair 164-254; Shillibeer 164-253;
Wasserburg 164-252, 165-31; Wetherill 167-229
half life: Zadorozhnyy 166-299
POTENTIAL function, gradient, evaluation on different levels: Tsypkin 164-165
graphical scales for mapping: Roman 167-89
Pressure gage, for seismic surveys: Galfi 164-277
Puerto Rico, earthquakes, 1953: Murphy 164–45
gravity survey: Shurbet 165–207
Pyrite, electrical resistivity: Parasnis 167–100
electromagnetic exploration for, Portugal:
Rocha Gomes 165–132
self-potential survey for, Germany:
Nosek 167–93
spontaneous polarization: Shibatô 165–143
Pyrrhotite, electrical resistivity: Parasnis 167–100
Quartz, elastic wave velocity: Hughes 165–96
dielectric constant: Stuart 165–140
Radioactivity, atmosphere, effect of temperature inversions: Reiter 164–267
atmosphere, filter method of studying: Schumann 165–304
France, Val-Joyeux: Tanaevsky 165–305
geographic distribution: Blifford 166–310
Germany, Bavarian Alps: Reiter 164–267, 165–303, 167–282
Germany, Heidelberg: Schumann 165–304
Japan: Tajima 165–302
New Zealand, Wellington: Chapman 165–301; Crosthwait 165–300
time distribution: Reiter 164–267
time distribution: Blifford 166–310
variation with altitude: Wilkening 165–299
black shale, Illinois: Krumbein 166–307
carbon: Zadorozhnyy 166–290
charnockites and associated rocks, India: Aswathanarayana 164–256
deep-sea sediments, India: Aswathanarayana 166–309
determination of density of sands by: Wendt 167–248
distribution in earth: Voytkevich, 167–171
. drill cores, Polish oil fields: Wierzbicka 167–241
. extinct natural: Kohman 165–314
fault location by: Schumann 165–304
geologic applications: Aswathanarayana 166–298; Pienkowski 167–240
granites, Japan: Hayase 164–24
Poland: Pienkowski 167–240; Szwacka 167–239
ground, Sweden, 1950–55; Sievert 167–233
Radioactivity, hot springs, Algeria: Guigue 164–264
Georgian S. S. R: Balavadze 167–244
Yugoslavia: Miholjic 167–245
khondalites, India: Sastry 169–238
littoral sediments, France: Rivière 164–261, 167–242
mantle: Russell 165–313
mineral springs, northern France: Muchembe 164–289
natural, West Cumberland area, England: Fair 165–310
natural waters: Geslin 166–303
near-surface materials: Hess 166–304
oil and gas fields, United States: Pierce 165–308
potassium brines: Armbrust 165–307
Pierce 165–308
potash salts, determination of potash content in boreholes: Wendt 167–235
potassium: Gentner 164–28; McNair 164–254; Wasserburg 164–252; Zadorozhnyy 166–299
precipitation, Val-Joyeux, France: Tanaevsky 165–305
Puy-de-Dôme summit: Garrigue 166–308
quartz inclusions: Huntley 164–260
relation to granitization in charnockites, India: Aswathanarayana 164–256
rocks, Stowell Park borehole, England: Ponsford 166–305
rocks and minerals, India: Alithal 167–236
rubidium: Flinta 166–302; Fritze 165–294; Geese-Bahnisch 166–301; Zadorozhnyy 166–299
sedimentary rocks, Great Britain: Ponsford 166–311
sediments off eastern India: Aswathanarayana 166–309; Mahadevan 164–257
soils, field measurement: McCallum 166–306
New Zealand: Gibbs 165–312
thermal waters, Yugoslavia: Miholjic 167–245
thorium: Zadorozhnyy 166–299
uranium: Zadorozhnyy 166–299
volcanic rocks, Lassen, Calif.: Adams 164–258
zircons: Ford 164–259
Radioactivity logging, Australia, Kadina district: Knapman 164–272
distinguishing oil- and water-bearing strata by: Dakhnov 166–321; Kukharenko 166–320
for uranium: Broding 165–137
gamma-gamma method: Dobrin 164–132
Radioactivity logging, gamma ray, equipment: Latta 165-315
interpretation: Latta 165-315
influence of bed thickness: Dewan 165-318
influence of borehole conditions: Dewan 165-318
model studies: Dewan 165-318
neutron, basic theory: Kantor 164-270
neutron, porosity determination by: Edwards 164-271
neutron-gamma method: Dakhnov 166-321
scintillation unit for: Comstock 165-317
spectral gamma ray: Brannon 165-316
tracer techniques: Vybornykh 166-323
uses: Russell 166-315
TJ. S. S. R. oilfields: Obolenskaya 166-319
radioactivity patterns around oilfields: Lundberg 166-322; Gregory 167-248
radioactivity surveys, Africa: Bowie 165-327
airborne, Brazil: MacFadyen 165-329
South Dakota, Black Hills: Ritsi 166-325
U. S. Atomic Energy Commission: Boyle 165-328
U. S. S. R.: Baranov 165-330
Wisconsin, near Wausau: Vickers 167-251
applications: Glazov 167-246; Herzog 164-273
Canada: Lang 165-324
carbone: Bowie 165-327
correction for residual radioactivity: Argentiére 165-309
France, for uranium: Lenoble 165-323
Hercynian Vosges: Rothé 167-249
Mediterranean coast: Rivière 167-242
Mure coal basin: Sarrot-Reynauld 166-324
instruments for: Bisby 165-320; Bowie 165-327; Milojevic 165-321; Sano 166-316; Satô 166-344; Stead 165-319
Italy, for uranium and thorium: Ippolito 165-326
Japan: Sano 166-328
methods: Davidson 165-322; Russell 166-315; Stead 165-319; Zeschke 166-312
Norway: Bowie 165-327
Portugal, Sierra da Estrela: Morais 167-250
review and bibliography: Hatsuda 165-325
stratigraphic correlation by: Sarrot-Reynauld 166-324
U. S. S. R.: Melkov 166-313

Radio wave methods: Chetayev 165-109
Radio wave, very low frequency, propagation: Wait 165-110
Radio waves, attenuation, determination of electrical properties by: Tarkhov 166-171
Radioactivity patterns around oilfields: Lundberg 166-322; Gregory 167-248
Radioactivity surveys, Africa: Bowie 165-327
airborne, Brazil: MacFadyen 165-329
South Dakota, Black Hills: Ritsi 166-325
U. S. Atomic Energy Commission: Boyle 165-328
U. S. S. R.: Baranov 165-330
Wisconsin, near Wausau: Vickers 167-251
applications: Glazov 167-246; Herzog 164-273
Canada: Lang 165-324
carbone: Bowie 165-327
correction for residual radioactivity: Argentiére 165-309
France, for uranium: Lenoble 165-323
Hercynian Vosges: Rothé 167-249
Mediterranean coast: Rivière 167-242
Mure coal basin: Sarrot-Reynauld 166-324
instruments for: Bisby 165-320; Bowie 165-327; Milojevic 165-321; Sano 166-316; Satô 166-344; Stead 165-319
Italy, for uranium and thorium: Ippolito 165-326
Japan: Sano 166-328
methods: Davidson 165-322; Russell 166-315; Stead 165-319; Zeschke 166-312
Norway: Bowie 165-327
Portugal, Sierra da Estrela: Morais 167-250
review and bibliography: Hatsuda 165-325
stratigraphic correlation by: Sarrot-Reynauld 166-324
U. S. S. R.: Melkov 166-313

Radio wave methods: Chetayev 165-109
Radio wave, very low frequency, propagation: Wait 165-110
Radio waves, attenuation, determination of electrical properties by: Tarkhov 166-171
Radioactivity patterns around oilfields: Lundberg 166-322; Gregory 167-248
Radioactivity surveys, Africa: Bowie 165-327
airborne, Brazil: MacFadyen 165-329
South Dakota, Black Hills: Ritsi 166-325
U. S. Atomic Energy Commission: Boyle 165-328
U. S. S. R.: Baranov 165-330
Wisconsin, near Wausau: Vickers 167-251
applications: Glazov 167-246; Herzog 164-273
Canada: Lang 165-324
carbone: Bowie 165-327
correction for residual radioactivity: Argentiére 165-309
France, for uranium: Lenoble 165-323
Hercynian Vosges: Rothé 167-249
Mediterranean coast: Rivière 167-242
Mure coal basin: Sarrot-Reynauld 166-324
instruments for: Bisby 165-320; Bowie 165-327; Milojevic 165-321; Sano 166-316; Satô 166-344; Stead 165-319
Italy, for uranium and thorium: Ippolito 165-326
Japan: Sano 166-328
methods: Davidson 165-322; Russell 166-315; Stead 165-319; Zeschke 166-312
Norway: Bowie 165-327
Portugal, Sierra da Estrela: Morais 167-250
review and bibliography: Hatsuda 165-325
stratigraphic correlation by: Sarrot-Reynauld 166-324
U. S. S. R.: Melkov 166-313

Radio wave methods: Chetayev 165-109
Radio wave, very low frequency, propagation: Wait 165-110
Radio waves, attenuation, determination of electrical properties by: Tarkhov 166-171
Radioactivity patterns around oilfields: Lundberg 166-322; Gregory 167-248
Radioactivity surveys, Africa: Bowie 165-327
airborne, Brazil: MacFadyen 165-329
South Dakota, Black Hills: Ritsi 166-325
U. S. Atomic Energy Commission: Boyle 165-328
U. S. S. R.: Baranov 165-330
Wisconsin, near Wausau: Vickers 167-251
applications: Glazov 167-246; Herzog 164-273
Canada: Lang 165-324
carbone: Bowie 165-327
correction for residual radioactivity: Argentiére 165-309
France, for uranium: Lenoble 165-323
Hercynian Vosges: Rothé 167-249
Mediterranean coast: Rivière 167-242
Mure coal basin: Sarrot-Reynauld 166-324
instruments for: Bisby 165-320; Bowie 165-327; Milojevic 165-321; Sano 166-316; Satô 166-344; Stead 165-319
Italy, for uranium and thorium: Ippolito 165-326
Japan: Sano 166-328
methods: Davidson 165-322; Russell 166-315; Stead 165-319; Zeschke 166-312
Norway: Bowie 165-327
Portugal, Sierra da Estrela: Morais 167-250
review and bibliography: Hatsuda 165-325
stratigraphic correlation by: Sarrot-Reynauld 166-324
U. S. S. R.: Melkov 166-313
Sea level, changes, before and after great earthquakes: Yamaguti 165-44
changes, effect of glaciers: Cailleux 164-208
Quaternary: Arambourg 164-207
Netherlands coast: Bennema 165-233
variations, Bay of Ise, Japan, related to earthquakes: Iida 165-234
Sedimentary rocks, elastic constants: Müller 167-79
potassium-argon ages: Lipson 167-30
Sediments, radioactivity of: Geslin 166-303
Seismic exploration, air shooting, pressure wave formation in: Galfi 165-362
analysis of approximate interpretation methods: Pazyrev 166-355
composition of reflections: Woods 165-350
compounding of seismometer outputs: Dyk 165-344; Grunenbaum 167-268
design of filters in: Muir 164-281
detection of diffracted waves in: Posgay 165-337
determination of reflector beneath refracting interface: Favre 164-287
determination of velocities in near-surface layers: Posgay 164-282
determining depth to reflecting horizon: Krouskij 164-284
developments 1930-50: Omote 165-331
direction of first motion in: Masuda 166-348
distortions in phase displacement circuits: Petrov 166-342
effect of change size on amplitude: Geskell 166-340
efficiency of explosions in: Richard 166-339
electric analog: Ormea 165-354
elimination of surface wave effects in: Bortfeld 164-294
factors affecting record character: Nikolayevsky 166-341
frequency spectrum of waves in: Berzon 165-333
geometric analysis of fault evidence: Ivanhoe 165-348
harmonic analysis of records: Korschunow 167-259
high-frequency reflection methods, U. S. S. R.: Berson 166-333
improvements in: Nature 166-328
integration of geologic evidence in interpretation: Ivanhoe 165-347
magnetic tape recording: Salter 165-359
marine, explosives for: Jakosky 167-264
model studies: Sarafian 165-349
Seismic, exploration, model studies, reflections: Woods 165-350
multiple reflections, equation for: Sojka 166-336
multiple seismometer arrays, theory: Smith 165-343
noise analysis: Smith 165-345
nomograms for use in interpretations: Litvinenko 166-354
parallel travelt ime curves: Berckemler 166-344
portable high frequency apparatus for: Fedosyenko 167-262
quantitative interpretation of isochrone maps: Berson 166-345
reflection, analyses of data: Kilczer 165-346
determination of coefficients of linear velocity function: Favre 167-257
determination of curved layers in: Weber 165-340
determination of curved reflectors from travelt ime curves: Pazyrev 165-339
effect of anisotropy of stratified media: Krey 167-260
graphical solutions: Tatsngami 166-349
geophone pattern: Berzon 164-281
geophone patterns: Muir 164-281
mean errors in analysis of fault structures: Posgay 164-282
perpendicular-time curve: Branch 164-285
shot-hole pattern: Muir 164-281
traveltime curves: Kametani 165-341
reflections from animate reflectors: Burling 166-356
refraction, Alberta foothills: Blundun 166-360
delay-time analysis: Tarrant 166-350
determination of discordant layer in: Kilczer 165-345
graphical solutions: Tatsugami 166-349
multilayer time-distance curves: Wyrkos 166-351
problems in anisotropic media: Berson 166-333
Rayleigh waves in: Korschunow 166-124
semigraphical interpretation: Tarrant 166-350 statistically treatment of data: Rischke 166-352
secondary pressure-bubble pulses: Slutskovsky 164-280
shallow-reflection method, evaluation: Pakser 165-335
Seismic, exploration, shallow-refraction, errors and limits in: Domzalski 166-347
statistical methods in: Matschinski 167-234
surface waves in: Sato 165-342
technical developments, 1955: Dobrin 164-327
techniques, Japan: Tamano 165-360
templates for velocity functions: Hagedoorn 164-288
ultrasonic waves in: Koltoñski 166-337; Malecki 164-332
use of shear waves in: Jolly 167-253
velocity determinations in deep boreholes: Kokesh 166-333
velocity filters in: Voyutskiy 165-356
velocity logging: Denton 164-290, 166-331; Hicks 166-330; Kokesh 166-333; Nature 166-329; Van Nostrand 166-329, 167-225; Yurchenko 166-332
weight-dropping method: Waldie 165-357
wells shot for velocity: Gaither 164-289
Seismic exploration instruments, American reflection-type, in Japan: Hayakawa 165-361
automatic gain control: Slutskovskiy 164-274
design principles for reflection amplifiers: Hamont 167-263
elimination of blasting cap lag: Lopes Paradela 165-358
Seismicity, correction of maps for lack of observation: Savarenaky 167-72
expression of: Kirillova 165-30; St. Amand 166-38
Seismic surveys, Alberta: Denton 164-290
Atlantic Ocean: Bentley 164-200; Katz 165-228
Australia, Queensland: Williams 166-357
Baffin Island, Penny Ice Cap: Rothlisberger 164-152
California, Great Valley: Sokse 166-358
Searles Lake: Mabey 166-220
Yosemite Valley: Gutenberg 166-359
Canadian Shield: Hodgson 165-227
Colorado Plateau: Pakiser 165-355
English Channel: Day 167-268
France, Chambery vicinity: Gidon 164-363
Georgian S. S. R., Kartalin plain: Ioselliani 167-265
Germany, Barsinghausen coal district: Hiller 164-292
Bavarian Alps: Reich 164-293
Seismic surveys, Germany, Bremen-Cuxhaven area: Jankowsky 166-362
lake ice: Hellbardt 165-367
Minden-Stehl倒入er Meer area: Bortfeld 164-294
Rappbode dam site: Martin 167-267
Rehthem salt dome: Schulse 167-266
Ries: Reich 164-304
Rubr coal district: Hiller 164-292
use in coal mining: Wolff 167-105
Greenland: Loewe 165-167; Victor 164-151
Gulf of Mexico, unusual reflections: Ellis 166-355
Hungary, for bauxite: Szenas 164-296
Dorag: Posgay 164-283
Hajduszeboslzo vicinity: Gali 166-364
ice covering lake, Germany: Hellbardt 165-367
ice sheets, Antarctica: Loewe 165-167
in landslide prevention, Japan: Sasa 165-385
India, near Calcutta: Kallasam 164-298
Iraq: Gaskell 166-365
Italy, Valle Latina: Tribalto 165-198
Japan, earthquake-proof building foundations: Sasa 165-365
tunnel and bridge sites: Hattori 165-364
Kirghiz S. R.: Gamburtsev 164-199
Kuwait: Gaskell 166-365
Middle East: Gaskell 166-365
Ohio, Portage County: Pakiser 165-355
Öztaler Alps glaciers: Fortsch 164-153, 167-130
Pacific Ocean: Nature 166-329
Scotland, Firth of Forth: Drysdale 165-365
Trucial Coast: Gaskell 166-365
U. S. S. R., Emba region: Barenboym 164-299, 165-338
Turgay lowland, Siberia: Khalevin 165-369
Venezuela: Laubscher 165-370
Wisconsin, lead-zinc district: Pakiser 165-355
Seismic waves, absorption coefficient, determination from group wave length: Korschunow 166-124
absorption coefficient, Spain: Rodrigues 166-68
acceleration, effect of foundation material: Puchkov 165-47
relation to period, Tokyo and Yokohama: Kanal 164-68
Seismic waves, amplitude, decay factor: Hayatu 164-58

effect of ground conditions: Savarenkoy 164-69

effect of soil layer on: Katsu 165-64

explosion-generated: Medvedew 167-61

ground coefficients, Japan: Katsumata 168-84

angles of emergence: Adlung 165-54; Monakhov 167-75

anomalies in arrival time, Japan: Haseba 165-59

chart for tracing ray paths: Willmore 164-64

diffraction of: Posgay 165-337

dispersion, at small distances: Tazime 166-363

near explosion: Keller 164-279

distortion by instruments: Anstey 165-334

effect of filters: Anstey 165-334

effect on foundations: Giuliani 166-86

effect on soil: Korschunow 164-288

Lg, velocity in California: Press 167-77

long-period: Matumoto 164-81

Love, in near earthquake, Japan: Sagisaka 166-96

Love propagation in heterogeneous media: Suzuki 164-87

Rayleigh, appearance in reflection surveys: Bortfeld 164-294

Rayleigh, dispersion, 10-500 sec range: Ewing 165-62

Rayleigh, dispersion in Africa: Press 166-243

Rayleigh, in refraction surveys: Korschunow 166-124

Rayleigh, proof of Sato formula for propagation: Durbaum 167-88

Rayleigh, propagation in medium with superficial double layers: Homma 166-118

Rayleigh, propagation in medium with two surface layers: Stonely 166-90

SezawaKye, displacement distribution: Kanai 167-87

velocity, as function of saturation: Hicks 166-330

crust: Gamburtsev 164-199, Katz 165-230

determination by elastic rebound: Ozerskaya 164-97

earthquake in Tyrrhenian Sea: Girlanda 164-49

earthquakes in Japan: Lapwood 167-73

effect of fault zones: Laubscher 165-370

effect of stress: Riznichenko 164-301

effect of topography: Ballile 167-236

Germany, Swabian foreland Molasse sediments: John 166-361

glacier ice, Austria: Fortsch 164-153, 165-169

glacier ice, Baffin Island: Röthlisberger 164-152
Seismic waves, velocity, laboratory determination: Ozerskaya 164-97
Little Caucasus: Karapetyan 165-31
mantle: Matorina 165-65
near Pavia, Italy: Pannocchia 164-67
northeastern America: Lehmann 164-65
northeastern Japan: Research Group 166-247
relation to stress: Riznichenko 166-300
Spain: Rodriguez 166-63
Seismograph, automatic time-signal recorder for: Olsson 164-74
classification of: Ullmann 166-102
coefficient of coupling with galvanometer: Nersesov 167-63
developments in California: Benioff 166-97
effect of shunt condenser: Bernard 164-72
electrodynamic, errors in recording: Teupser 166-104
frequency: Bokanenko 167-261
phase characteristics: Bokanenko 167-261
electromagnetic linear strain: Benioff 166-97
electromagnetic, recorder with amplifier: Tazime 166-105
electromechanical, for measuring vibrations in buildings: Skatskiy 166-100
electrostatic magnification: Molard 164-73
for determining intensity of earthquakes: Medvedev 167-61
four-component inclined: Pasechnik 165-66
fused quartz secular strain gage: Benioff 166-97
Galitzin-type, sensitivity controls for: Neumann 166-103
general equation of motion for one degree of freedom: Ullmann 166-101
horizontal torsion: Stegena 164-275
improved recording methods: Ventskevich 166-106
improvements, Moscow station: Shebalin 165-67
Ishimoto accelerometer, constants of: Miyamata 167-62
line carrier telerecording: Miyamata 167-65
line carrier telerecording: Miyamata 167-65
magnetic control for adjusting period: Dowling 165-69
mechanical, errors in recording: Teupser 166-104
Seismograph, radio telerecording: Miyamata 167-86
Reeff, calibration: Adams 164-71
shaking table for calibration: Gurvich 164-276
signal device: Solov'yev 165-70
strong motion, non-linear oscillations of: Ichikawa 166-98
 torsion: Benioff 166-97
triggered magnetic tape recording: Omote 166-107
variable inductance: Akamatu 166-99
variable reluctance transducer electromagnetic pendulum: Benioff 166-97
Wiechert 200 kg, abnormal free vibration: Higuti 165-68
Seismograph stations, California: Gutenberg 166-88
Seismology, concepts of: Benioff 166-37
textbook: Savarenskii 166-40
three-dimensional problems, graphical solution: Gal'perin 166-143
Seismometer, shaking table for calibration: Gurvich 164-276
Sols, radioactivity of, New Zealand: Gibbs 165-312
thermal conductivity: DeVries 167-156, Webb 165-215
Soll thermometers, errors in: Garvitch 166-232
Solar system, origin: Dauvillier 166-160
South America, orogenesis and volcanism of cordillera: Gerth 166-378
South Dakota, age of, Bob Ingersol pegmatite minerals: Wetherill 167-26
age of mineralization, Black Hills: Kulp 167-27
airborne radioactivity surveys, Black Hills: Riszi 166-325
Spain, earthquakes, July 1, 1950, Gergal: Rodriguez 166-63
earthquakes, 1951: Due Rojo 164-41
1952: Due Rojo 164-42
March 29, 1954: Hodgson 167-70
Granada, April 1956: Due Rojo 166-61; Pastor 166-62
geophysical exploration for petroleum: Dupuy de Lome 164-138
isostatic compensation in: Lozano Calvo 166-214
magnetic maps, historical note: Munuera Quinonero 165-232
magnetic observations Toledo observatory, 1947: San Roman 166-254
magnetic survey of: Rodriguez-Navarro 166-292
normal gravity formula for: Lozano Calvo 166-214
telluric current measurements at Toledo: Miguel 166-31, 32
Strain behavior of rocks at low stresses: Lomnitz 167-270
Strength, mine rock: Windes 167-269
Stress in elastic material from intrusions: Heaps 166-108
Strontium, isotopes, meteorites: Herzog 167-33
isotopes, rubidium-poor rocks: Ewald 167-34
Sulfur, isotopes, Mississippi Valley galenas: Kulp 164-212
isotopes, Rhodesian copper deposits: Bateman 167-178
sulfide minerals: Kulp 165-244
Sumatra, anisotropy in sedimentary section, Betun area: Kleyn 165-332
pelican eruption products: Weyl 164-307
Sweden, age, Alno complex: Eckermann 165-19
age, lepidolite from Varutrask: Fritze 165-294
microcline from Varutrask: Gentner 165-28
geophysical methods in archeology in: Lerici 165-148
radioactivity 1950-55: Sievert 167-233
Switzerland, earthquakes, focal in central Valais: Wanner 167-48
T
Tanganyika, electrical surveys, for water: King 165-151
electrical surveys, Kidunda dam site: King 165-152
gravity observations: Sutton 166-215
magnetic surveys: King 166-289
pre-Karroo systems: Harpum 168-195
volcanic eruption, Oldonyo L'Engeta: Guest 165-389
Tantalum, isotopes, South African tantalites: Eberhardt 164-161
Tatar S. S. R., density and magnetic susceptibility, Paleozoic rocks: Krinari 167-207
Tennessee, electrical surveys: Eberhardt 164-217
Tasmania, secular variation: Carey 167-165
soil, errors in thermometers for measuring: Garvitch 166-232
pingo in Mackenzie Valley: Pihlalnen 166-235
Portugal, Coimbra Univ: Custodio de Morais 165-214
U. S. S. R., Donets Basin: Kashpur 165-217
West Indies soufrières: Robson 167-159
Texas, age of Precambrian intrusions: Geol. Assoc. Canada 167-2
groundwater, heat flow: Herrin 167-158
Thermal conductivity, measurement in boreholes: Beck 166-233
Paleozoic and Mesozoic rocks, England: Chadwick 165-236
pyrophyllite: Carle 166-231
Resolve Bay cores: Misener 164-184
rock salt: Herrin 167-158
sedimentary rocks: Zierfuss 167-155
coil: DeVries 167-156, Webb 165-215
Thermal conductivity probe, axial-flow error in: Blackwell 165-219
for use in boreholes: Beck 166-233
theory: Jaeger 166-229
Thermal gradient, Canada, Resolute Bay: Misener 164-184
Germany, relation to oil and gas formation: Fabian 164-183
Greenland: Bondam 165-216
New Mexico, eastern: Herrin 167-158
New Mexico, Lordsburg area: Kintzinger 167-157
Texas, west: Herrin 167-158
Thermal history of earth: Diamond 167-230; Jacobs 165-213, 166-230; Picciotto 169-29; Urey 165-213
Thermal logs in gas wells: Kunz 164-187
Thermal springs, Argentina, industrial use: Bartolucci 167-279
El Salvador: Grebe 167-286
Heat loss from: Lyustikh 165-30
Kamchatka: Zavaritskiy 165-379
radioactivity, Yugoslavia: Miholic 167-245
Thermistors, stability: Beck 166-234
Thermoelectricity, metallic and silicate minerals: Noritomi 164-128
Thermoluminescence, age determination by: Zeller 164-32
induced by pressure and crystallization: Zeller 164-32
Thermometer, geologic, titaniferous magnetite as: Buddington 164-181
resistance, with single-core cable: Vasilyev 164-186
Thorium, cosmic abundances: Urey 165-213
direct measurement by scintillation spectrometer: Hurley 165-297, 298
exploration for, Italy: Ippolito 165-326
half life: Zadorozhnyy 166-299
Thorium-uranium ratios, Indian rocks and minerals: Aithal 167-326
Thoron, emanation, effect of temperature: Starik 166-14
Tritium, abundance in natural waters:
Brown 165-240; Fireman 166-254
age determination by: Kaufman 164-218; Libby 164-8
natural distribution: Kaufman 164-218
survey instrument for: Driver 165-241
Trucial Coast, seismic surveys: Gaskell 166-365
Tsunami, caused by volcanic eruption:
Kurile-Kamchatka region: Udintsev 166-372
mathematical expression of: Sretenskiy 166-69
prediction: Brekhovskikh 166-70
warning systems: Savarenskiy 166-71
Turkey, earthquake, March 18, 1953: Mugge 164-54
earthquakes, 1952-54: Pinar 167-49
gravity surveys for chromite: Yöngül 165-208
magnetic surveys for chromite: Yöngül 165-208
Turkmen S. R., earthquake, Nov. 5, 1946:
Rezanov 164-51
earthquakes, energy: Solov’yev 166-76
U
Uganda, gravity observations: Sutton 166-215
Ukrainian S. R., age of granites: Gerling 166-22
earthquakes: Yurkevich 165-32
United States, earthquakes 1953: Murphy 164-45
Universe, age: Öpik 167-4
origin: Dauphiller 167-160; Glanella 164-189
Uranium, cosmic abundances: Urey 165-213
direct measurement by scintillation spectrometer: Hurley 165-297, 298
geotectonics related to mineralization of Australia: Rade 166-196
half life: Zadorozhnyy 166-299
in meteorites: Curatolo 164-255
natural fission: Purkayastha 165-242
natural isotope abundances: Lounsbury 166-252
See also Radioactivity.
U. S. S. R., age, granites of Ukraine: Gerling 166-22
age, northern Caucasus minerals:
Afanas’ev 164-30; Amirkhanov 164-29
depth to basement: Andreyev 164-248
earthquakes, Akhalkalaki region: Tskhakaya 165-34
Ashkhabad region: Puchkov 166-64
Caucasus: Byus 165-29; Karapetyan 165-31; Kirillova 165-30;
Savarenskiy 166-67
energy: Savarenskiy 166-67
Ukraine: Yurkevich 165-32
geochemical investigations: Lyubimova 167-153
gravity measurements in mines: Luka-
uchenko 165-168
gravity survey, Apsheroun peninsula: Taimel’zon 166-227
Saratov region: Shvank 164-178
West Siberian plain: Timofeyev 167-150
Institute of geophysical exploration: Fedyns’kyi 166-147
magnetic properties, Paleozoic rocks:
Turkmen S. R.: Krinari 167-207
rocks of Kursk anomaly: Ostrov-
skiy 165-274
radioactivity, logging: Obolenskaya 166-319
seismic surveys, Bashkir A. S. R.: Berzon 168-338
Emba region: Barenboym 164-299,
165-338
Khirghiz S. S. R.: Gamburtsev 164-169
Russian platform: Berzon 166-338
telluric current survey: Bukhnikashvili 166-163
temperature measurement, Donets Basin: Kashpur 165-217
thermal gradient, Caucasus: Lyubimova 167-153
volcanic eruptions, Kurile Islands:
Gorshkov 166-376; Vlodavets 165-378
volcanoes: Vlodavets 165-378, 166-379;
Zavartiskiy 165-379
V
Venezuela, earthquakes, relation to strike-
slip faults: Rod 167-54
seismic surveys: Laubscher 165-370
Virginia, electrical surveys, Austinville: Mc-
Murry 166-164
Virgin Islands, crustal thickness: Shurbet
167-151
gravity observations: Shurbet 167-151
Viscosity, lava from Mihara: Suwa 166-375
obsidian: Sabatier 164-302
secular variation in subcrust, Tasmania: Carey 165-165
trachyte: Sabatier 164-302
volcanic rocks: Sakuma 164-99

Volcanic acoustics, underwater: Snodgrass 164-311

Volcanic activity, Costa Rica: Bullard 164-308; Weyl 165-382
energy released in: Lyustikh 165-380; Yokoyama 167-285
Japan, Suwanose-Jima: Murauchi 164-314
magnetic changes accompanying: Yokoyama 164-315, 165-250, 167-286
Mexico, Barcena volcano: Snodgrass 164-311
Nicaragua, 1954: Bullard 164-308
Masaya vents: McBirney 164-309
volcanic arcs, density versus chemical composition: Matschinski 167-276
Volcanic calderas, formation, Azores: Machado 167-278
geomorphic features: Escher 164-305
Volcanic craters, Nicaragua, origin: McBirney 167-290

Volcanic eruptions, 1953, damage from: Lotze 164-37
1954, damage from: Lotze 165-22
Etna, July 1955: Klemmer 167-283
Fuji, 1707: Tsuya 166-373
Kilauea, 1955: Macdonald 165-383
Las Pilas, Nicaragua: McBirney 167-289
Mihara, Japan: Suwa 166-375; Tsuya 164-313, 167-284; Yokoyama 167-286

Volcanic eruptions, Myojin reef, Japan: Morimoto 165-384
Ngauruho, New Zealand, 1954-55: Gregg 167-288
Oldonyo L'Engal, Tanganyika: Guest 166-369
Paricutin: Foshag 167-287
pelean: Weyl 164-307
Sakura-Jima, Japan, 1955: Suwa 166-374
Sheveluch, Kamchatka: Menyaylov 166-377
Solfatara di Pozzuoli, Italy: Parascondola 166-371
Stromboli, Feb-Mar. 1954: Cucuzza Silvestri 166-370

Volcanic eruptions, tsunami caused by: Vlodavets 166-380
Vesuvius, 1944: Imbo 164-312, 165-375, 376
Volcanic sounds: Snodgrass 164-311
Volcanism, mud-cone analogy: Malz 164-306
cause: Binge 164-303
origin, Belgian Congo: Cahen 165-381
northern Africa: Bellair 164-316
submarine, effect on chemistry of oceans: Buljan 167-277
Volcanoes, Costa Rica central cordillera: Weyl 165-382
Galapagos Islands: Banfield 164-310
Kamchatka: Vlodavets 165-378; Zavaritskiy 165-379
Kurile Islands: Vlodavets 165-378
South America: Gerth 166-378
U. S. S. R.: Vlodavets 166-379
world, catalog: Neumann van Padang 167-275

Volcanoes, Costa Rica central cordillera: Weyl 165-382
Wales, gravity surveys, East Carmarthenshire coalfield: Whetten 164-170, 171
gravity surveys, northern: Powell 164-172
magnetic survey, northern: Powell 164-172
Washington, magnetic measurements, Columbia River basalts: Campbell 167-209
West Indies, crustal structure: Butterlin 164-202
heat flow: Robson 167-159
Wisconsin, airborne radioactivity reconnaissance near Wausau: Vickers 167-251
gravity survey: Thiel 166-226
seismic surveys, lead-zinc district: Pakiser 165-355

Wales, gravity surveys, East Carmarthenshire coalfield: Whetten 164-170, 171
gravity surveys, northern: Powell 164-172
magnetic survey, northern: Powell 164-172
Washington, magnetic measurements, Columbia River basalts: Campbell 167-209
West Indies, crustal structure: Butterlin 164-202
heat flow: Robson 167-159
Wisconsin, airborne radioactivity reconnaissance near Wausau: Vickers 167-251
gravity survey: Thiel 166-226
seismic surveys, lead-zinc district: Pakiser 165-355

Young's modulus, determination in situ: Brown 167-80; Evison 167-81
dolomite: Brown 167-80
effect of porosity: Barducci 164-96
lake ice: Hellardit 165-367
limestone: Brown 167-80
rodlke minerals: Terry 166-121
Yugoslavia, electrical surveys, dam sites: Fritsch 165-128; Stefanović 167-97
gravity measurements, dam sites: Prosen 167-152
radioactivity, Fojulca hot spring: Miholić 166-245
Geophysical Abstracts 164–167
January-December 1956

Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration
CONTENTS

[The letters in parentheses are those used to designate the chapters for separate publication]

(A) Geophysical Abstracts 164, January–March .. 1
(B) Geophysical Abstracts 165, April–June .. 93
(C) Geophysical Abstracts 166, July–September .. 193
(D) Geophysical Abstracts 167, October–December 293

Under department orders, Geophysical Abstracts have been published at different times by the Bureau of Mines or the Geological Survey as noted below:
