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SYMBOLS

6 or T temperature (degrees C).
t time since initiation of temperature disturbance in S (sec)
t0 time of initiation of temperature disturbance in S (sec)
t' =t+t0
a thermal diffusivity (cm2 per sec)
w angular frequency (w= 1.99X 10~7 radians per sec for a period

equal to 1 year)
Q solid angle (steradians) 
S finite region of plane z=Q 
p, \ polar coordinates in plane z=Q 
r = [(x-x'Y+(y-y'Y+ Z^=[p^z^ ̂ 
A amplitude of temperature variation in undisturbed portion

of plane z=Q (degrees C) 
B mean value of surface temperature in disturbed region, S, of

plane z Q (degrees C) 
C amplitude of temperature variation in disturbed region, S, of

plane z Q (degrees C) 
D =C A, amplitude of seasonal temperature disturbance in

disturbed region of plane z=0 (degrees C)

erf x =-f=- I e~u* du
V"" Jo
2 C*°

erfc x =-7= I e~"2 rfw

weighting factor for principal-disturbance calculation

2 r ~i^ ,   r

weighting factor for seasonal-disturbance calculation

sm
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EXPERIMENTAL AND THEORETICAL GEOPHYSICS

THREE-DIMENSIONAL HEAT CONDUCTION IN 

PERMAFROST BENEATH HEATED BUILDINGS

By ARTHUR H. LACHENBRUCH

ABSTRACT

The general Green's function solution has been integrated for the case of heat 
conduction in a homogeneous semi-infinite medium in which the temperature at 
the surface varies sinusoidally with time but the mean temperature and ampli­ 
tude of the variation are different within and outside an arbitrarily shaped region 
at the surface. The amplitude and mean temperature can be treated as functions 
of position within the arbitrary surface region. For certain simple surface regions 
the results can be expressed in terms of tabulated functions. Numerical results 
for the general case can be obtained by simple graphical procedures.

The results can be applied to the study of disturbances in ground temperature 
caused by the presence of bodies of water or by engineering surface modifications 
such as those produced by erecting a heated building. The primary application 
of such studies is in high-latitude regions where much of the undisturbed ground 
is perennially frozen. In such areas, a method of predicting the extent of thawing 
induced by various modifications of the temperature of the ground surface is 
important in problems of engineering design and logistics.

INTRODUCTION

The temperature distribution in permanently frozen ground is of 
considerable importance in Arctic and Antarctic regions. Inasmuch 
as engineering operations in these regions are carried out on normally 
permanently frozen mediums (snow, ice, and permafrost) a knowledge 
of the temperature distribution in these mediums under various dis­ 
turbing influences is important to the engineer so that he can, for 
example, design in such a way as to keep critical parts of structural 
foundations frozen, or water-supply sources and conduits unfrozen. 
Several problems of more scientific than practical nature, such as the 
relation between the age of a lake and the transient disturbance of 
ground temperature it produces, can also be approached through the 
study of idealized models such as those considered in this paper.

One of the important general problems is to determine the dis­ 
turbance of subsurface temperature that results when the temperature

51



52 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

at the ground surface within a finite region, S, is different from the 
surface temperature characteristic of the area outside S. The condi­ 
tions correspond to the presence of natural features such as a lake or 
river, or a region in which the thermal properties of the surface cover 
are appreciably different from those characteristic of the area in gen­ 
eral, and to modifications of the surface such as those resulting from 
erecting a building, stripping the vegetation, or emplacing a gravel 
fill.

Inasmuch as probably the most important application is to study 
of the temperature distribution beneath a heated building, this general 
problem will be referred to for convenience as the heated-building 
problem,
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OUTLINE OF THE HEATED-BUILDING PROBLEM

For study of the general aspects of ground temperatures the simple 
two-parameter sinusoidal approximation for the undisturbed surface 
temperature, A sin at, usually serves quite well. The temperature 
origin is taken as the mean annual temperature just beneath the 
ground surface in the undisturbed area. The angular frequency, w, 
corresponds to a period of 1 year. In the finite region, S, of the sur­ 
face in which the surface temperature is disturbed, the significant 
parts of the problem can usually be treated by representing the tem­ 
perature by B(x,y)-\-C(x,y) sin ut. Here B(x,y) is the difference in 
mean annual temperature between the undisturbed area and the sur­ 
face point (x,y) in the disturbed region S. C(x,y) is the amplitude of 
temperature variation at (x,y) in S.

It is generally convenient to assume that the surface temperature 
presently characteristic of the undisturbed region (outside S) formerly 
obtained over the entire surface, and that any initial transient effects 
had died out by the time, #0 , that the disturbing condition was intro­ 
duced in the region, S.
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Thus the heated-building problem can be stated formally as follows: 
Find the temperature, Q(x,y,z,t'), in the semi-infinite solid z^>Q, subject 
to the following conditions:

d2e . d2e . d2e i de . .. m
(1)x Cty2 d02 a dt

'=0 (2)

all
, ^x., , x ,. 0 ,0 v b) £o<£', (x,y) not ui £ (3)

Q(x,y,0,t')=B (x,y) + C(x,y) sin «*', 2=0, t*<V , (x,y) in 5. (4)

Here tQ is taken sufficiently large that transient initial effects have 
died out by the time (t'=t0) of initiation of the disturbance in S. 
f (z) represents the normal geothermal profile assumed independent 
of time.

It has been implicitly assumed above that the ground surface has 
no appreciable relief, and thus can be represented by the plane 2=0. 
In addition, we shall assume that the ground is homogeneous and 
neglect the effects of latent heat resulting from the change of state 
of interstitial water or ice. The physical implications of these limiting 
assumptions will be discussed briefly later.

With latent heat neglected the relations become linear and it is 
generally possible to consider B and C to be constant over finite sub- 
regions of S and solve the problem for each of these subregions. 
These solutions are later superposed to give the collective effect of 
the entire region, S. Thus the necessity of considering B and C as 
functions of position is eliminated. A further simplification resulting 
from neglecting latent heat arises from the fact that it is then possible 
to disregard the normal static geothermal profile, f(z), and consider 
the surface effects separately. To get the complete solution, f(z) 
can be added to the final result. It can be neglected, however, for 
most problems involving small heated structures.

With the assumption of homogeneity and no latent heat, the 
problem is reduced to

d2e . d2e . 52e i de , _ ,. /CN
(5) v 'dx2 ch/2 dz2 aftt 

Q(x,y,Q,t)=A sin ut, z=Q, £>0, (x,y) not in S (6) 

Q(x,y,Q,t)=B+C sin at, 2=0, *>0, fotf) in S (7)
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and

0(z,2/,2,0)=00 (2,o), 3>0, *=0 (8)

where t=t' to.
This solution can be expressed as the sum of three independent
solutions as follows:

(9)

where 60 is the limit, as t' becomes infinite, of the solution to the 
problem

WT 1 ftT^£=1 ̂ £, s>o, r>o (10)
d22 adt '

T(Q,t)=A sin orf', 2=0, t' >0 (11) 

T(z, 0)=0, 2>0, «'=0. (12) 

GI is the solution to

5*0! d20 t d2 ©! 1 50! , . .
^ g + ̂  2 + ^. 9 ==~ ~5TT' 2x>0, fP>U (16)do;2 dy2 ds2 a d£

0i(a;, y, 0, 0=5, <>0, s=0, (x, y) in S (14) 

QI (*, y, 0, 0=0, C>0, «=0, (x, y) not hi ^ (15) 

0X (x, y, 2,0) =0,^=0, 2>0. (16) 

and 02 is the solution to

d202 l d0

©2 (*, y, 0, f)=D sin coi, s=0, C>0, (^, y) in ^ (18)

02 (x, y, 0, 0=0, s=0, i>0, (x, y) not hi S (19)

e2 («,2/, 2, 0)=0, 2>0, i=0 (20)

where D= C- A. (21)

The solution for 00 is well-known (see, for example, Carslaw and 
Jaeger, 1947, p. 47, eq 3) and is given by

00 (2, t)=Ae~* sin ut-z' (22)
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The solutions for Qt and 62 can be approached through the use of 
Green's functions in heat conduction. The following method has 
been used by Birch (1950) for a similar problem.

The temperature T (x, y, z, t) in a semi-infinite medium initially at 
zero, due to a surface temperature <j> (x, y, f) in S and zero outside S, 
is given by Carslaw and Jaeger (1947, p. 308, eq 3) as

**"'
By making the substitution

and reversing the order of integration, equation 23 is reduced to

(24)

where r2=(x-xr ') 2-\-(y-y') 2-\-zi (that is, r is the distance between the 
field point (x, y, z) and the element.of surface dx'dy') . 

Equation 24 can be rewritten

(25),y,z)=^ JJ / J^*^V-
^- 2-^/of

where dQ is the element of solid angle subtended by dx'dy' at the 

field point (x, y, z). By setting #(Vy,£  ̂ 32)=^ and integrating 

with respect to /3, an expression for 61 is obtained:

e1(*)^,e)=!JJfe-S+erfc^}rfa . (26)

By setting

B',J/',£ j =3 ) D sin cof t - 

an expression for 62 is obtained:

428961 57   2
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'. The sum of these two temperature fields gives the subsurface 
temperature disturbance due to a heated building (or other surface 
disturbance) in the region S. 6t (equation 26) will be referred to as 
the principal disturbance inasmuch as it gives the temperature dis­ 
turbance due to a building (or other feature) except for the effects 
of seasonal fluctuations. It can be thought of as giving a mean 
annual value of temperature disturbance at any subsurface position 
at any time after the surface region, S, was disturbed (for example, 
after the building was erected) . The sum of 60 and 92 (equations 22 
and 27) will be referred to as the seasonal effect as it gives the sea­ 
sonal oscillation about the principal disturbance. 92 will be called 
the seasonal disturbance. These three equations (22, 26, and 27) 
provide a complete solution to the heated-building problem for a 
homogeneous medium in which latent heat is neglected. The next 
two sections are discussions of equations 26 and 27 respectively.

THE PRINCIPAL DISTURBANCE, 0!

The principal disturbance as defined above is the temperature 
resulting in the ground (z^>0) from a constant temperature difference, 
B, between a point inside the disturbed region, S, and the mean 
annual temperature of the undisturbed region outside S.

In equation 26 the disturbed region may have an arbitrary con­ 
figuration (for example, the shape of the foundation of a heated 
building). It is evident, however, that this equation cannot be 
integrated directly for arbitrary S. The integration can be performed 
for certain simple situations, for example under the vertex of a circular 
sector of radius R and central angle X in the plane z=Q. In this 
case

(28)

(29)
For a circular region this reduces to

^0, 0, z, t)=B ferfc -JL-  1= erfc ^±^1. (30) 
L 2-y/^ T/z2 +R* 2^ J

The first term in equation 30 corresponds to the effect that would 
result if S covered the entire plane z=0, and the second term may be 
thought of as a correction for the finite radius, R, of S. By setting 
X=TT and 7T/2 in equation 29, results are obtained for a semicircle and 
a quarter circle respectively. These results may be used to estimate
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the principal disturbance under the edges and corners of a building 
for depths that are small with respect to building dimensions. Under 
these conditions the correction term is negligible and the disturbance 
is respectively one-half and one-quarter of that produced by the 
"infinite building" (that is, S= en tire plane z=Q). 

From equation 26 we obtain the relation

T>

limit Gifo y, z, *)=  Q(x, y, z ; S) (31)
£-»oo 61T

where fi is the solid angle subtended by S at the field point (x, y, 2). 
This special case is in agreement with results from potential theory 1 
A useful result for computing the steady-state principal disturbance 
at a point (x, y, z) beneath or to one side of the rectangular region 

b<y<-}-b is given by

61(3, y, 3)=s- -< tan -

tan

This result is obtained by substituting the appropriate expression 
for J2 in equation 31.

From equation 29 we obtain

erf c . _ 2-yW

(33)

which represents the principal disturbance at a depth z beneath the 
vertex of the sector of a circular annulus with central angle X, inner 
radius Ri} and outer radius R2 . The principal disturbance for a region 
of arbitrary shape may thus be evaluated by dividing the region into 
concentric annular sectors and applying equation 33. This method 
can be used to give any desired degree of accuracy by choosing X and 
R2 Ri sufficiently small near the region's periphery. It can also be 
used to give rapid approximations in many cases. Generally, however, 
the calculation is simpler if the integration with respect to equation 
26 is performed graphically. The graphical methods described below 
have been used previously by Birch (1950).

To carry out the graphical integration, a grid is constructed by 
gnomonic projection of meridians and parallels of a hemisphere onto
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its north polar tangent plane. The meridians and parallels are so 
selected that the plane of projection is subdivided into concentric 
annular sectors each subtending equal elements of solid angle at the 
sphere's center. The field point (x, y, 2) is identified with the point 
at the center of the sphere, the projection plane is identified with 
the ground surface. Thus the radius of the sphere corresponds to 
the depth, 2, of the field point beneath the surface.

A grid of this type is shown in plate 1. It is divided into twelve 
concentric zones designated by letters A through L. The region in 
zone A subtends 2 percent of the total solid angle (2ir steradians) 
subtended by the plane 2=0. Zone B subtends 4 percent; zone C, 
6 percent; zone D, 8 percent; and zones E through J each subtend 
10 percent of that subtended by the entire plane. Zones K and L 
each subtend 5 percent. Thus, according to equation 31, the steady- 
state effect of a circular building whose periphery coincided with the 
outer limit of zone L would be 90 percent of the effect of a building of 
infinite dimensions covering the entire plane 2=0. The zones are 
cut by radial lines in such a way that each element of area of the grid 
subtends 0.1 percent of the solid angle subtended by the entire plane 
2=0. The depth, z, of the field point corresponds to 1 iuph. on the 
grid (pi. 1). Columns 2 and 3 of the table in plate 1 give the inner 
and outer radius of each zone in units of 2. This grid can be used to 
calculate the effects of surface disturbances at horizontal distances 
from the field point as much as about 10 tunes the depth. Grids 
with other specifications are easily constructed.

The integrand in equation 26 depends only upon the ratio 
{where a is the thermal diffusivity of the medium). In figure 22, the 
value, $, of the integrand in equation 26 is plotted against r^/at. For 
Any assumed at, the value of the integrand corresponding to any r is 
read directly from this graph. For purposes of the graphical integra­ 
tion it will be assumed that all points in a given zone are at the same 
distance, r, from the field point and that this distance is given by

r=VsMT2J that is, P=s2 [l+(p/*) 2]

where ~p is the mean radius of that zone. The error introduced by 
this simplification should be taken into account in designing grids 
for special purposes.

The method of integration is as follows. First a depth, z, is selected 
at which temperature information is desired. Next a plan drawing of 
the outline of the building foundation is made on tracing paper. The 
drawing is in units of z-, that is, if the depth under study is 10 feet, 
then, as 2 corresponds to 1 inch on the grid (pi. 1), the building will 
be drawn on the scale of 1 foot=0.1 inch. Next, the tracing paper
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is positioned on the grid in such a way that the horizontal coordinates 
of the field point coincide with the center of the grid. If we want to 
calculate the principal disturbance under a corner of this building, the 
drawing is placed with this corner over the center of the grid. Next 
a value of od, is selected that depends upon the time for which tem­ 
perature information is desired and the assumed diffusivity of the 
medium. The number of solid-angle elements subtended by the 
building in zone A is then counted. This number multiplied by 
0.001 gives the contribution that this zone will make after equilibrium 
is established. Next multiply z2/at by the value of l-j-(p/s) 2 for zone 
A given in column 4 of the table in plate 1. This product gives r*/od 
for zone A. The corresponding value of the ordinate in figure 22 
gives the amount by which this zone contribution must be weighted. 
This weighting factor multiplied by the steady-state contribution of 
the zone gives the contribution of zone A to the principal disturbance 
at (x, y, z) for the at assumed. The process is repeated for all zones 
intersected by the building's outline. The contributions of all zones 
are then added to get the principal disturbance.

The accuracy of the graphical integration with respect to £2 can be 
checked quickly by comparison of the effect under the center of a 
circular region calculated by equation 30 with that obtained by the 
use of the grid. This was done for several cases and for a variety of 
assumed values for R, z, and at. The effects calculated by the two 
methods agreed within 0.005 B. The error introduced by counting 
solid-angle increments on the grid can be checked by comparing the 
total with the computed solid angle subtended by the region at the 
field point if the geometry: of the region permits (for example, for a 
rectangular region equation 32 may be used).

As an example of the application of the graphical method, we shall 
calculate the principal disturbance at 2 points 20 feet beneath a sur­ 
face assumed to be disturbed oyer a [rectangular region 40 feet by 
100 feet. To fix ideas we; may jthink of the effect of a building 40 
feet by 100 feet in wMch the m0an annual floor temperature is con­ 
stant and exceeds the mean annual teniperatiire of the ground surface 
outside the building by 5°C. Let position 1 correspond to a point 
20 feet beneath the center of such a building, and position 2 to a 
point 20 feet beneath a point on the transverse center line 10 feet 
from the building. The appropriate scale and positioning of the 
region's outline for these two calculations are shown in plate 2.

Table 1 illustrates the steps in the calculation of the principal dis­ 
turbance for an assumed value «Z=5X105 cm2 . Table 2 gives a 
summary of the results of table 1 and a comparison of the equilib­ 
rium principal disturbance as computed with the grid and with the 
solid-angle formula (eq 32). The discrepancy corresponds to a net
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error in counting of about one solid-angle unit on the grid (0.002r 
steradians).

The third column in table 1 shows the degree of advance toward 
equilibrium for each zone for the at assumed. The portion of the dis­ 
turbed region in zone J contributes on the order of only 10 percent 
of its full equilibrium effect while that in zones A through D contrib­ 
utes more than 90 percent. Because in position 2 the region subtends 
more of the outer zones, it is approximately 15 percent farther from 
equilibrium for the assumed at (table 2). To contour the temperature 
at the 20-foot depth for a given at, simply shift the tracing over the 
grid, changing only the values corresponding to columns 4 and 5 in 
table 1. Although the first calculation might take about 20 minutes, 
subsequent ones may each be made in about 5 minutes. To study 
the temperatures at the 10-foot depth, the scale of the region's out­ 
line is doubled and the process repeated. To study the change of 
temperature with time at a given point, values corresponding to those 
in columns 2 and 3 are changed but those corresponding to column 4 
are not, and the calculation is again accomplished speedily. The 
change in principal disturbance with time, as calculated with the 
grid method, is shown graphically for positions 1 and 2 in figure 23.

TABLE 1. Calculation of principal disturbance 

[See pi. 2; fig. 22]

Zone

A....... ____ ..
B... .............
O... ..____ .......
D......  .......
E....... .........
P...  ..........
G................
H......  .......
I.....  .  .....
J.....      ...

Principal dis- 
turbance, 
units 10-3B...

<rf=5X105 cm2

S-IK!)']

0.752 
.804 
.896 

1.053 
1.326 
1.773 
2.491 
3.752 
6.309 

12. 852

Weighting 
factor, *

0.945 
.939 
.930 
.914 
.880 
.830 
.740 
.600 
.370 
.093

Position 1 
2=20ft,z=0, y=0

Number of 
Q units 

subtended

20 
40 
60 
80 
99 
67 
46 
34 

9 
0

455 
(equilibrium)

Zone contri­ 
bution 

(units of 
KH.B)

18.9 
37.6 
55.8 
73.1 
S7.1 
55.6 
34.0 
'20.4 
3.3 
.0

385.8 
(transient)

Position 2 
2=20 ft, z=30ft, y=0

Number of 
£J units 

subtended

0 
0 
1*A 

MH 
31 
36 
39J4 
42 
27 

2

193M 
(equilibrium)

Zone contri­ 
bution 

(units of 
WHS)

0 
0 
1.6 

13.3 
27.3 
29.9 
29.2 
25.2 
10.0 

.2

136.7 
(transient)

TABLE 2. Summary of principal-disturbance values

Position

l_._.-_. _______________
2

at*

Table 1

0. 4555
.1945

..

Equation 32

0. 4559B
. 19455

at=5X105 cm»

0. 3865
.1375

Percent of 
equilibrium at
at-5X10' cms

84.8
70.6
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3 YEARS 
(«=0.01)

FIGTTKE 23.  Principal disturbance 20 feet beneath a 40- by 100-foot region with temperature B° 0 
above surrounding surface. Abscissa is atom*.

In the example given, the mean annual temperature disturbance, 
B, was assumed to be independent of position throughout the dis­ 
turbed surface region. If it were different over some subregion (for 
example, in the vicinity of a furnace or an unheated wing), the num­ 
ber of solid angle units subtended by such a subregion would be 
weighted proportionally and the calculation carried out as before.

THE SEASONAL DISTURBANCE, 62

The seasonal disturbance, 62 , as previously defined, is the tempera­ 
ture resulting in the ground (2>0) from a temperature in S of 
D sin ut while the temperature of the surface outside S is maintained 
at zero.

Equation 27 can be rewritten

e,G», y, 2, «)=~if/{ Jf /"in

The first integral in equation 34 represents the steady seasonal dis­ 
turbance that will obtain after the surface disturbance in S has per­ 
sisted for some time (£>rYa). The second integral describes the 
manner hi which the seasonal disturbance builds up for small values 
of time. The expression in braces hi this integral will have to be 
evaluated numerically before the grid of the previous section can be 
used to perform the integration with respect to fl.
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For most problems the first integral in equation 34 is the more 
important quantity, as the second may eventually be neglected. The 
expression in braces in the first integral can be evaluated as follows:

f* ^ dyr2 C m 6>r2
=sin«* cos -P-& e-*pdfi- cos <at\ smf^e~^d^. (35) 

J o lap* J o 4af}*

By integrating each of the expressions on the right side of equation 35 
by parts and using the relations

2g+sin 2g] 

(Bierens de Haan, 1939, table 369, formula 1)

fa e-z2 cos^ ̂ =^e-2'[cos 2<z-sin 2q] 
Jo x2 x2 4g

(idem, table 369, formula 2)

fV^sm^<fo=^<r*sin 22 
Jo «  2

(idem, table 263, formula 12)

rV*2 
Jo x2 2

(idem, table 263, formula 13) 

we obtain

(36)
By substituting this result in equation 34,

dti  transient term. (37)
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As was true for the integral in equation 26, the integration in 
equation 37 is easily performed for a point (x,y,z) under the vertex of 
a circular sector, S, of radius R and central angle X.

r^ / 
2«sinf ut 

lz2 +R2

transient term. (38)

For a circular region this reduces to

transient term. (39)

In direct analogy to equation 30 the first term in equation 39 cor­ 
responds to the effect that would result if S covered the entire plane 
s=0, and the second term represents edge effects arising as a result of 
the finite radius, R, of S.

As explained above, the seasonal effect is obtained by adding the 
seasonal disturbance, 62 , and the normal undisturbed seasonal varia­ 
tion, 60 (eq 22). Thus, after the transient effects have disappeared, 
the seasonal effect under the vertex of a circular sector of central 
angle X and radius R is

or, using equation 21,

e0+92= [^1-A (4-C)] e^ sin (crf-g VS)+

*V-0)^.-^&*(^J?+*<J£). (41)

As in equation 30, equation 41 can be used to estimate effects under 
straight edges and corners of buildings for depths that are small 
relative to dimensions of the building. At such depths under the
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edge of a building, the seasonal temperature variation would be 
approximated by that produced by linear heat flow under an un­ 
disturbed surface whose seasonal temperature variation had an ampli­ 
tude of % (A-\-O). The surface amplitude in this case is the average 
of that inside the building and that outside. Under a square corner 
the effect would be approximated by that produced in linear heat 
flow by a surface temperature of amplitude % (3A-\-C).

The important special case of no seasonal temperature variation in 
S is obtained by setting (7=0. Thus the seasonal temperature effect 
under the center of a circular region of constant temperature is seen 
from equation 41 to be

/2*-KR 2a sin ( a>^~~«-»"- -V- sin o,f-V?+B* ,/£   («>

Corresponding to equation 33, the seasonal effect under the vertex 
of the sector of an annulus with central angle X, inner radius RI, 
and outer radius R2 , is seen from equation 38 to be

(43)

Equation 43 can be used to evaluate graphically the equilibrium 
seasonal disturbance at any point, resulting from a temperature 
D sin wt in an arbitrarily shaped region of the surface 2=0.

As in the case discussed in the previous section, the calculation is 
somewhat simpler, though less precise, if the integration with respect 
to fi is performed graphically with the aid of the grid of plate 1. 
The procedure is the same as that used to compute the principal 
disturbance, except that in place of figure 22, we now use plate 3, 
which gives the value of the integrand, SF, in equation 37 as a function 
of r2/a for four values of u>t. Inasmuch as the seasonal disturbance is 
sinusoidal, with a period of 1 year at any point, its evaluation for 
only 2 values of ut would be enough to determine its behavior through­ 
out the annual cycle. The four curves are given in plate 3, so that 
additional points on the seasonal-effect-versus-time curve can be 
evaluated as a check.

As an extension of the example in the previous section, the equilib­ 
rium seasonal effect has been computed for positions 1 and 2, on the 
assumption that the temperature in the disturbed region is independ­ 
ent of time and that the temperature of the surface outside the region 
varies as A sin a>t. This seasonal effect is obtained by adding to GO
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(eq 22) the seasonal disturbance resulting from a temperature of 
 A sin ut in the disturbed region and zero outside (eq 37 with 
(7=0). This seasonal effect superposed on the equilibrium principal 
disturbance is shown graphically in figure 24. These results may be 
pictured as an approximation to the temperature beneath a surface 
supporting a heated building whose floor temperature does not vary 
seasonally and is everywhere B° C above the mean annual tempera­ 
ture of the surface outside. The numerical results in figure 24 are 
based upon an assumed diffusivity of 0.01 cm2 per sec. The bottom 
curve in this illustration represents the temperature to be expected 20 
feet beneath an undisturbed surface. A comparison of the curves 
representing the undisturbed case and position 2 in figure 24 reveals 
that the "building" has the effect of raising the mean annual tempera­ 
ture about 0.2B, diminishing the amplitude of seasonal variation 
about 20 percent, and causing the seasonal temperature wave to lead 
the undisturbed wave by a phase angle corresponding to about 1 week. 
At position 1 the building has the effect of raising the mean annual 
temperature about QA5B, diminishing the amplitude by more than 85 
percent, and causing the seasonal wave to lag the undisturbed wave 
by almost 2 months. As an example of the orders of magnitude in­ 
volved, both A and B are close to 15° C for most heated buildings in 
the vicinity of Barrow, Alaska.

Cases in which the amplitude of seasonal variation of temperature 
in the disturbed region varies with position may be treated by the 
method discussed for variable B (p. 62).

Cases in which the phase of sinusoidal variation of surface tempera­ 
ture is different inside and outside the disturbed region may be treated 
by superposing the seasonal disturbance caused by a temperature 
D'sm ut in S on that of a temperature D" cos «£, where D' and D" are 
adjusted to give the required phase difference and amplitude.

EFFECT OF IDEALIZING THE PROBLEM

In order to obtain the above results it was necessary to assume that 
the medium was homogeneous and to neglect the effects of latent heat 
absorbed (or liberated) by the change of state of ice (or water).

In many engineering problems connected with permafrost, a thermal 
disturbance of the surface results in a descent of the freezing isotherm 
and the consequent thawing of frozen ground. Because the heat re­ 
quired to melt the ice causes no change in temperature, the establish­ 
ment of equilibrium conditions is retarded, and because the rate of 
descent of the freezing isotherm is, in general, a function of position, 
the amount by which the buildup of the temperature disturbance is 
retarded is also a function of position. When equilibrium is finally 
reached, however, the freezing isotherm is stationary and no latent
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+0.48

+.44 -

+.40 -

Principal disturbance = 0.4565

Principal disturbance = 0.1945

FIQUBE 24. Calculated temperature deviation from the undisturbed mean for large values of time at depth 
of 20 feet for C=0, a=*0.01 cm" per see. JB assumed equal to A to simplify presentation.
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heat is absorbed or liberated. Thus, if the effect of latent heat alone is 
considered, the equilibrium principal disturbance would be unaltered 
but the establishment of equilibrium would be somewhat slower than 
that described above (for example, in figure 23). The shape of the 
isotherms in the transient stages would also be altered. Latent heat 
will alter the seasonal effects by diminishing the amplitude and intro­ 
ducing some asymmetry for points near the freezing isotherm. It will 
be observed that for most problems of foundation engineering, ne­ 
glecting the effects of latent heat provides a margin of safety.

Effective homogeneity is rarely found in nature, and in general the 
ground is stratified with respect to thermal properties. For purposes 
of calculating the buildup of the principal disturbance in time or the 
equilibrium seasonal effects, an engineering approximation can prob­ 
ably be obtained in most cases by assuming an average value for the 
diffusivity and by using the results determined for the homogeneous 
case. Bracketing situations can commonly be obtained by assuming 
extreme values of diffusivity. It will be observed from equation 31 
that the steady-state principal disturbance is independent of thermal 
properties, provided the material is homogeneous. In a stratified 
medium this is not so, although the homogeneous case will still prob­ 
ably give results satisfactory for engineering purposes in most cases.

SUMMARY

With the above results it is possible to evaluate the transient 
principal temperature disturbance and the equilibrium seasonal effects 
in a semi-infinite homogeneous medium in which surface temperature 
varies sinusoidally, but with different mean temperatures and am­ 
plitudes inside and outside a surface region of arbitrary shape. Two 
graphical methods are available. The first involves summing inte­ 
grated contributions to the temperature; the second, a graphical 
integration with respect to solid angle. The first method is more 
precise but takes a little more time to apply. Since these methods 
would probably be primarily of interest to engineers who would use 
them to obtain approximate results, the second was discussed in 
greater detail. In the application of these methods to problems of 
foundation engineering in permafrost areas, some uncertainty is in­ 
troduced by neglecting the effects of stratification and latent heat. 
The latter, however, provides a margin of safety in cases of thawing 
permafrost.

Although the discussion in this paper is devoted primarily to the 
thermal disturbance caused by a heated building, the methods de­ 
scribed apply directly to several other important thermal problems 
in permafrost. For example, the geothermal disturbance caused by 
bodies of water in high latitudes is similar to that caused by a heated
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building in that the mean annual temperature beneath the water is 
anomalously high and the amplitude of seasonal temperature varia­ 
tion is low. The thermal disturbance caused by the presence of a 
roadway usually results in a slight shift in the mean annual tempera­ 
ture but a large increase in the amplitude of seasonal variation. The 
increased amplitude causes a thickening of the active layer beneath 
the roadway, which frequently results in destruction of the road. 
Another useful application of these methods is to predict the extent 
to which ground will freeze beneath cold-storage vaults in temperate 
regions.
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