INDEX TO GEOPHYSICAL ABSTRACTS 168-171, 1957

AUTHOR INDEX

A

Abad, L. F. See Alcaraz, Arturo.

Abramson, N. H. Theoretical investigations of the four-electrode crevasse detector. 171-122

Adachi, Ryutaro. Fundamental relations on the seismic prospecting. 169-287

Adachi, Ryutaro. On a proof of fundamental formula concerning refraction method of geophysical prospecting and some remarks. 169-288

Ádám, A. A new telluric measuring instrument. 171-50

Adams, J. A. S. See Rogers, J. J. W.

Adcock, C. M. See Warman, H. R.

Afanas'yev, G. D. On the Cenozoic igneous activity of the Caucasus and some results of absolute age determinations on Caucasus rocks by the potassium-argon method. 171-45

Aggarwala, B. D., and Saibel, Edward. A hypothesis of formation of mountains and continents. 169-146

Agich, F. J. Exploration for reefs by geophysical methods. 168-113

Agocs, W. B., and Hartman, R. R. Airborne magnetometer profile from Olympia, Wash., to Laramie, Wyo. 169-242

Ahrens, L. H. Radioactive methods for determining geological age. 168-1

See also Russell, R. D.

Akamatu, Kel. Tomoda's method for calculating the correlation coefficients as applied to microtremor analysis. 171-298

Thermal process near the earth's crust. 171-69

See also Tomoda, Yoshio.

Akimoto, Syun-iti. Magnetic properties of ferromagnetic oxide minerals as a basis of rock-magnetism. 171-255

Akimoto, Syun-iti, Nagata, Takesi, and Katsura, T. The TiFeO3-TiFeO5 solid solution series. 168-233

See also Aramaki, Shigeo, and Nagata, Takesi.

Akkopyan, Ts. G. The influence of local topography on the Zs field in connection with the kind of magnetization of the effusive rocks. 168-246

Aksenovich, G. I., Gal'perin, E. I., and Zayonchkovskiy, M. A. Special features of the equipment for deep seismic sounding and the results of its use. 169-279

Alberding, H. Application of principles of wrench-fault tectonics of Moody and Hill to northern South America. 170-159

Albertinoll, P. See LeFèvre, Colette.

Albrecht, O. On the gravity measurements in Baden-Württemberg. 169-169

See also Macdonald, G. A.

Aldrich, H., Jr. Frost penetration below highway and airfield pavements. 169-199

Aldrich, L. T., Wetherill, G. W., and Davis, G. L. Occurrence of 1,350 million-year-old granitic rocks in western United States. 169-24

See also Tilton, G. R., and Wetherill, G. W.

Aleksyev, A. S., and Tsepelev, N. V. The intensity of reflected waves in the stratified heterogeneous elastic medium. 168-61

381
Alexander, N. S., and Onwumechili, C. A. Variation of the horizontal force near the magnetic equator. 170-232

Alexeyev, F. A. See Flarov, G. N.

Al'pin, L. M. Asymmetric (angular) electrical surveying. 168-377

Alvir, A. D. A cluster of little known Philippine volcanoes. 168-383

Amadei, Gaetano. See Tribaldo, Giuseppe.

Ambroggi, R., and de Gélos, E. Effect of the Orléansville earthquake on the ground water layer of the Souss. 171-52

Anderson, E. C. See Arnold, J. R.

Andreasen, P. See Espersen, J.

Andreyev, B. A. See Abelsky, M. E.

Andreyev, S. S. Investigations of the deep structure of the crust of the earth, using the converted wave PS, recorded during earthquakes. 169-68

Seismic characteristics of the Russian Platform. 169-38

Andreyev, S. S., and Shebalin, N. V. On the use of short-period seismographs for distinguishing converted waves on the records of distant earthquakes. 171-77

Angenheister, Gustav. On the magnetization of the basalts of the Vogelsberg. 170-251

The present state of paleomagnetic research. 170-265

Antevs, Ernst. Geological tests of the varve and radiocarbon chronologies. 169-6

Aoki, Harumi. See Iida, Kumizi.

Aramaki, Shigeo, and Akimoto, Syun-iti. Temperature estimation of pyroclastic deposits by natural remanent magnetism. 171-256

Arans, Francesco, and Uras, Ivo. Some results of an analysis of the natural radioactivity of the coals from Sulcis. 170-265

Armstrong, D. Dating of some minor intrusions of Ayrshire. 171-271

Arnold, J. R., and Anderson, E. C. The distribution of carbon-14 in nature. 170-220

Arnold, Kurt. An expansion series for tangents to the plumb line, determined from surface values. 170-166

Arnov, L. Ye. See Enzenshteyn, B. S.

Asada, Akie. See Noritomi, Kazuo.

Asami, Elizo. A palaeomagnetic consideration on the remanent magnetism of the basalt lavas at Kawajiri-misaki, Japan. 171-270

Aswathanrayana, U. See Mahadevan, C., and Sastry, A. V. R.

Atkins, A. R. See Gane, P. G.

Ault, W. U. See Kulp, J. L.

Aurand, K., Jacob, W., and Schraub, A. Investigations on the radon decay products in the Gasten thermal water. 169-263

Avtov, P. Ya., and Dal'yan, I. B. Experiences in rotary drilling of wells in prospecting for water, using geophysical well logging methods. 169-115

B

See also Goldich, S. S.

Badger, A. S. New developments made in direct recording heads. 169-284

Bailey, L. F. See Melton, B. S.

Baker, P. E. Density logging with gamma rays. 171-316

Neutron capture gamma-ray spectra of earth formations. 171-311

Balakrishna, S. Concerning the classification of gravitational anomalies of a geosynclinal region. 171-177

The radioactivity of some thermal springs of Tkvarcheli. 169-277

Balkay, Bálnint. Recent experiments on physical properties of rocks. 169-316

Balsley, J. R. Geophysical exploration program of the U. S. Geological Survey. 169-126

Balsley, J. R., Bianchett, J., Kirby, J. R., and others. Aeromagnetic maps of Maine. 171-282

Balsley, J. R., Gilbert, F. P., Mangan, G. B., and others. Aeromagnetic maps of
Montana... 171-284
See also Graham, J. W.

Banks, M. R. See DuBose, P. M.

Baranov, V. A new method for interpretation of aeromagnetic maps: pseudo-
gravimetric anomalies... 169-241

Barendsen, G. W. Radiocarbon dating with liquid CO₂ as diluent in a scintilla-
tion solution.. 169-5

Barendsen, G. W., Devey, E. S., Jr., and Gralenski, L. J. Yale natural radi-
carbon measurements III.. 171-25

Barkhatov, D. P. See Veshev, A. V.

Barrabés, Louis. The eruption of Soufrière de la Guadeloupe.. 168-334
The evolution of the eruption of Soufrière de la Guadeloupe.............................. 168-335

Barsukov, O. M. A method of combined excitation of an alternating electro-
magnetic field... 170-97

Calibration of amplitude and phase measuring instruments used in
electric exploration... 170-100

—Correlation between the variation of amplitude and phase angle of the
electric field with the elements of the magnetic ellipse of polarization............. 170-96

Barta, György. On the secular variation of the geomagnetic field...................... 171-238
Variation of the geomagnetic field in the Carpathian basin.......................... 171-242

Barrels, Julius. Geomagnetic depth soundings.. 171-239
The contrast between geomagnetic S and L at Huancayo.................................. 171-245

Basharin, L. A. The fumaroles of Sheveluch volcano during September-Decem-
ber 1953.. 169-317

Bate, G. L., Huizenga, J. R., and Potratz, H. A. Thorium content of stone meteor-
ites... 171-14

Bates, T. F., and Strah, E. O. Mineralogy, petrography, and radioactivity of
representative samples of Chattanooga Shale.. 171-309

Bath, Markus. Earthquake energy.. 169-65

—Shadow zones, travel times, and energies of longitudinal seismic waves in
the presence of an asthenosphere low-velocity layer.. 170-63

Bauer, A. See LeFèvre, Colette.

Baum, R. B. See Breck, H. R.

Baumgart, I. L., and Healy, J. Recent volcanicity at Taupo, New Zealand........ 168-5

Bedeke, E. On the geology and geophysics of the depths. An interpretative
epilog.. 171-207

Begemann, Friedrich. Distribution of artificially produced tritium in nature........ 171-220

Begemann, Friedrich, Geiss, Johannes, and Hess, D. C. Radiation age of a me-
teorite from cosmic-ray-produced He⁶ and He⁷... 170-19

Begemann, Friedrich, and Libby, W. F. Continental water balance, ground water
inventory and storage times, surface ocean mixing rates and world-wide water
circulation patterns from cosmic-ray and bomb tritium.................................... 171-222

Behounek, F., and Majerova, M. Radon content of the air................................. 168-266

Belser, Arthur. Variations in the geomagnetic dipole in the past 15,000 years..... 170-228

Bella, Francescò, and Cortesi, Cesare. Activity of the carbon-14 dating labora-
tory of the University of Rome... 171-23

Bellugi, Arnaldo. A moot question of the graduated arrangement of electric
methods... 168-80

—Determination of the electrical conductivity of the ground by the known
distribution of surface potentials.. 169-97

—Further development of Buchheim's theoretical geoelectrical method.............. 170-94

—Principles of geoelectric equivalence and the error of some distribution
laws of electric methods for multilayer ground.. 168-79

Bellugi, Arnaldo, and Maaz, R. The Stevenson method for determining the elec-
trical conductivity from the potential distribution on the boundary plane of
semispace... 169-98

Belshé, J. C. Palaeomagnetic investigations of Carboniferous rocks in England
and Wales... 170-246

Recent magnetic investigations at Cambridge University.................................. 170-245

Beemelen, R. W. van. Physical versus physico-chemical interpretation of grav-
ity data.. 170-175

Bencu, Enzo. Results of the studies on petroleum exploration in Sicily.................. 170-114

Bennett, R. F. From the bottom up.. 170-136

Berbesler, J. The equipment used in radiometric surveys. 168–273

Berekheimer, Hans. See Sutton, G. H.

Berdichevskiy, M. N., and Petrovskiy, A. D. Procedures of bilateral equatorial electrical surveying. 168–78

Berg, J. W., Jr. See Mandel, Peter, Jr., and Murphy, W. O., Jr.

Berzon, I. S. Determination of vertical discontinuities by using dynamic properties of seismic refracted waves. 169–302

———. Effective velocities and depths determined by the traveltime curves of multiple reflection. 168–299

———. On certain dynamic peculiarities of waves, propagating in vertically stratified medium. 171–107

Berzon, I. S., and Ratnikova, L. I. On the nature of certain waves making difficult the separation of reflected waves on the Russian Platform. 171–337

Besairie, Henri. The Cambrian period in Madagascar. 171–36

Bespalov, D. F., and Grumbkov, A. P. The new radiometric equipment. 168–268 See also Kukharenko, N. K.

Best, J. G. Investigations of recent volcanic activity in the Territory of New Guinea. 168–324 See also Taylor, G. A.

Beveridge, A. J., and Folinsbee, R. E. Dating Cordilleran orogenies. 168–324 See also Taylor, G. A.

Blackett, P. M. S. Lectures on rock magnetism. 170–234

Blanchet, J. See Balsley, J. R.

Blanchot, A. The recent formations of western Mauritania. 171–122

Bliphardt, I. H., Jr. See Patterson, R. L., Jr.

———. Inclined strata of steep dip and infinite extent, magnetized in the direction of the dip (The inverse problem of magnetometry). 171–277

Blix, R., Uibsch, H. von, and Wickman, F. E. A search for variations in the relative abundance of the zinc isotopes in nature. 169–211

Blum, A. See LeFèvre, Colette.

Blum, Eugen. Fundamental problems in the quantitative evaluation of electric logging diagrams. 168–102

Boato, Giovanni. See Craig, Harmon.

Bogdanov, F. A. See Rivkin, I. D.

Bol'shakov, A. S. On the possibility of reestablishing the initial remanent magnetization of rocks. 171–253

———. Stability of the normal magnetization of rocks. 170–238

Bolt, B. A. The epicenter of the Adelaide earthquake of 1954 March 1. 170–38

———. Velocity of the seismic waves Lg and Rg across Australia. 170–65 See also Bullen, K. E.

Bonchkovsky, V. F. The results of the activity of the Garm expedition. 168–36

Bonchkovsky, V. F., and Bubleynikov, F. D. The earth, its shape and physical properties. 171–145
Bonchkovskiy, V. P., and Karmaleyeva, P. M. Preliminary results of the operation of an azimuthal installation for measurement of inclination. 171-152

Bonini, W. E., and Woolard, G. P. The observation accuracy of high-range geodetic-type Worden gravimeters. 169-156

Books, K. G. See Menschke, J. L.

Borges, J. F. Statistical estimate of seismic loading. 169-61

Borisevich, E. S. High frequency galvanometers with chassis. Optical system for the photo recording of oscillatory processes. 170-288

Bortfeld, Reinhard. Multiple reflections in northwest Germany. 168-300

Bot, A. C. W. See Schürmann, H. M.

Boulanger, J. D. See Besairie, Henri.

Bourcart, J. Attempt at submarine mapping west of Corsica. 170-300

Bouška, Jan. Distribution of the geomagnetic field in Czechoslovakia reduced to the epoch 1950.0. 171-240

Bordeschenko, V. N., and Tuzov, V. P. Results of the well logging in the Moscow region coal basin. 169-117

Bradley, John. The meaning of paleogeographic poles. 168-238

Braggard, Lucien. Mean curvature of the principal sections and vertical gradient of gravity at a point on an ellipsoid of revolution. 170-145

Bramlette, M. N. See Arrhenius, G.

Brauch, Wolfang. On the documentation and classification of geophysics. 170-140

Breck, H. R., Schoellhorn, S. W., and Baum, R. B. Velocity logging and its geological and geophysical applications. 170-290

Bremner, P. C. See Miseser, A. D.

Brennon, P. See Besairie, Henri.

Breusse, J. J. Exploration of pyrite bodies by electrical prospecting. 168-94

Breyer, Friedrich. Results of seismic measurements on the south German major fault block especially in regard to the surface of the Variscan. 168-301

Bright, O. T. Introduction to radioactivity logging. 169-267

Brinkmeier, Georg. A distribution of structural elements of the northwest German area. 169-136

See also Carr, D. B.

Brown, G. L. See Harrison, J. C.

Brown, J. M. See Harris, N.

Brown, R. M. See Singer, I. A.

Bruet, E. Earthquakes of volcanic origin. 171-67

Bruns, R. Pendulum measurements. The German gravity base network, IV. Pendulum and gravimeter measurements on the European gravimeter calibration line in 1955 by the German Geodetic Research Institute. 169-181

See also Watermann, H.

Brunstrom, R. G. See Warman, H. R.

Brynjófsson, Arl. Studies of remanent magnetism and viscous magnetism in the basalts of Iceland. 171-268

Bubleynikov, F. D. See Bonchkovskiy, V. P.

Bucha, Václav. Magnetic properties of rocks in applied geophysics. 170-235

Bucher, W. H. Model experiments and ideas on the mode of orogenesis. 170-158

The problem of orogenesis in the light of new field and experimental evidence. 171-155

Buchheim, Wolfgang. On the theory of the galvanic polarization of electrically active disseminated ores. 170-130

Buddington, A. F. See Balsley, J. R., and Graham, J. W.

Buja, Zdzislaw. See Przewlocki, Kazimierz.
Bujalow, N. I. Reports on the exploration and exploitation of petroleum and natural gas in the Deutsche Demokratische Republik 170-138

Bukhnakhashvili, A. V. On the methods of electrical exploration of ore deposits 169-90

Bukhnakhashvili, A. V., Kebuladze, V. V., and Chanturishvili, L. S. On the use of the natural electric field in studying the heterogeneities of rocks 169-96

Bukhnakhashvili, A. V., and Prangishvili, G. M. The experiences with the registration of the seismoelectric effect 169-83

Bulakh, Ye. G. One more criterion for checking the interpretation of gravitational anomalies 170-178

Bulanshe, Yu. D. The effect of the compressibility of the compensating fluid in quartz gravimeters with horizontal torsion string 168-151

Bulashevich, Yu. P., and Voskoboynikov, G. M. Gamma-gamma well logging in coal deposits of the Urals and the possibility of avoiding lithological logging in some of the exploratory drill holes 169-271

Bulashevich, Yu. P., and Zakharchenko, V. F. The potential of naturally polarized ellipsoidal bodies 168-34

Bull, C. Observations in north Greenland relating to theories of the properties of ice 170-161

Bull, C., and Hardy, J. R. The determination of the thickness of a glacier from measurements of the value of gravity 168-149

Bullen, K. E. Note on the phases PKJKP 168-44

Bullen, K. E. On the constitution of Mars (second paper) 169-103

Bullen, K. E., and Bolt, B. A. The South Australian earthquake of 1939 March 26 168-17

Bullen, K. E., and Burke-Gaffney, T. N. Evidence relating to the earth's inner core from hydrogen bomb explosions in 1954 170-203

Bunow, Kurd von. Selenotectonics and geotectonics 170-154

Bune, V. I. Classification of earthquakes according to the elastic wave emanating from the focus 168-27

Bunker, C. M. See Hilpert, L. S.

Burke-Gaffney, T. N. Seismological and related aspects of the 1954 hydrogen bomb explosions 169-72

Burmeister, F. Geomagnetic measurements near the Bodensee (Lake of Constance) 168-227

Burr, H. S. Effect of a severe storm on electric properties of a tree and the earth 168-100

Burwash, R. A. Reconnaissance of subsurface Precambrian of Alberta 168-135

Busièbre, P. See Besaire, Henri.

Buttlar, Haro von. See Frische, R. H.

Bycroft, G. N. The magnification caused by partial resonance of the foundation of a ground vibration detector 171-88

Byerly, Perry. Seismicity of the Western United States 169-33

Byers, A. R. Comparison of electromagnetic geophysical prospecting methods over known sulphide zones in the Flin Flon area, Saskatchewan 170-105

Bykov, A. A. See Orekhovskiy, F. V.

Byus, Ye. I., and Rublnshkteny, M. M. New data on the Tabatskur earthquake of May 7-8, 1940 169-41

The nature of seismic activity of the southern slope of the Greater Caucasus 169-40
Cagniard, Louis, and Neale, R. N. New use of small-scale models for electrical prospecting ... 171-120

Cagniard, Louis. See also LeFèvre, Colette.

Caire, André. See Reussner, Alain.

Cameron, H. L. Tectonics of the Maritime Area.. 171-162

—— Aeromagnetic maps of the Province of Alberta... 171-287

—— Aeromagnetic maps of the Province of Manitoba... 171-228

—— Aeromagnetic maps of the Province of New Brunswick.................................... 171-289

—— Aeromagnetic maps of the Province of Newfoundland...................................... 171-290

—— Aeromagnetic maps of the Province of Nova Scotia.. 171-292

—— Aeromagnetic maps of the Province of Ontario... 171-293

—— Aeromagnetic maps of the Province of Quebec... 171-294

—— Aeromagnetic maps of the Province of Saskatchewan....................................... 171-295

Caputo, Michele. A procedure for the calibration of gravimeters.......................... 171-171

—— On the behaviour of a Worden gravimeter for periodical variations in external temperature and rapid variations of pressure............................... 170-180

—— The gravimetric tie Roma-Beirut-Karakorum in 1954-55................................. 170-185

Carabelli, E. and Folletti, R. Seismic model experiment on thin layers..................... 171-104

Carder, D. S. See Cloud, W. K.

Carey, S. W. The orocline concept in geotectonics... 170-150

Castro, Honorato de. Determination of the law of variation of seismic velocities in an oil well.. 169-293

Cavallero, Carmelo. The effusive activity of Stromboli of March 22, 1955................. 169-333

Celminž, Alfavars. Theoretical questions on multiple geophones in underground measurements .. 168-282

Chain, W. E. The present state of geotectonics in other countries............................ 170-148

Chakrabarty, S. K. Disturbances in different types of elastic media........................ 169-79

—— The spherical harmonic analysis of the earth's main magnetic field............... 169-209

Chandrasekhar, S. Effect of internal motions on the decay of a magnetic field in a fluid conductor.. 168-206

Chanturishvili, L. S. See Bukhnalashvili, A. V.

Chastenet de Géry, Jérôme. See Kunetz, Géza.

Chekin, B. S. On the change of shape of a wave during reflection and refraction........... 170-81

Cherdnytsev, V. V. On the invariability of universal world constants......................... 171-290

Cheremenskyy, G. A. On the problem of determining the mineral content of the formation water and associated properties from well logging data in the Western Siberian lowland.................................. 169-118

Chetayev, D. N. Analytical interpretation of data obtained by the self-potential electrical prospecting method in conditions of complex relief.......................... 171-117

—— On the determination of transient electromagnetic fields in heterogeneous media .. 168-86

—— The inverse problem in the electric method of exploration............................... 170-192

Chomhardt, L. G. Recognition and evaluation of formations by electrical and radioactivity logs.. 169-110, 170-125

Chopra, K. P. Magnetic fields in a conducting fluid sphere with volume currents.......... 171-234

—— The range of existence of Stoneley waves in an internal stratum. 1. Symmetric vibrations.. 169-84

Christie, J. W. See McIntyre, D. B.

Chronique des Mines d'Outre-Mer et de la Recherche minière. Oil in the Gabon........ 171-140

Chupakhin, M. S. See Teys, R. V.

Clark, S. F., Jr. Heat flow at Grass Valley, California... 169-185

—— Radiative transfer in the earth's mantle... 171-192

Clarkson, H. N., and LaCoste, L. J. B. Improvements in tidal gravity meters and their simultaneous comparison.. 168-150

INDEX TO GEOPHYSICAL ABSTRACTS 168–171, 1957

Abstract

Closs, Hans. Problems and outlook of geophysical work underground in the search for siderite veins. 168–122

Closs, Hans, and Hahn, Albrecht. Remarks on the map of gravity anomalies of the German Alpine foreland. 171–181

See also Bentz, Alfred.

Cloud, W. K. Intensity distribution and strong motion seismograph results. 171–66

See also Murphy, L. M., and Tocher, Don.

Coche, André. See Hée, Arlette.

Collette, B. J. The physical interpretation of gravity data (Some remarks in connection with J. Hossers’ paper “Gravity and crustal shortening in the Alps”). 169–162

Collin, C. R. See Lenoble, André.

Committee for the Investigation and Correlation of Eustatic Changes of Sea Level. Australian and New Zealand research in eustasy—Part 1. 168–9

Conrad, Victor. On thermal springs. A contribution to the knowledge of their nature. 168–180

Contini, Camillo. Thermometric prospecting for natural steam. 170–202

Cook, A. H. Comparisons between relative gravity measurements with the Cambridge pendulum apparatus and Worden gravity meters in North America, South Africa, Australia, New Zealand, and Great Britain. 169–157

Cook, F. A. Near surface soil temperature measurements at Resolute Bay, Northwest Territories. 169–189

Cook, K. L. See Johnson, J. B., Jr., Mandel, Peter, Jr., and Murphy, W. O., Jr.

Cook, M. A. Where is the earth’s radiogenic helium. 169–265

Coron, Suzanne. Contribution to the study of the gravity field in France. 171–170

Cortesi, Cesare. See Bella, Francesco.

Cotton, C. A. An example of transcurrent drift tectonics. 171–161

— Geomechanics of New Zealand mountain-building. 168–137

Coulomb, Jean. On a possible auroral origin of certain geomagnetic pulsations. 171–246

The determination of the epicenter of an earthquake by means of pairs of stations recording the P wave at the same time. 171–75

Coulomb, R. See Lenoble, André.

Cox, Allan. Remanent magnetization of lower to middle Eocene basalt flows from Oregon. 169–233

Craig, Harmon. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. 170–218

Craig, Harmon, Boato, Giovanni, and White, D. E. Isotopic geochemistry of thermal waters. 171–228

Creux, Yvon. Limits of the possibilities of local isostatic compensation on the French West African stable basement. 170–216

Crook, K. A. W. A polarity reversal in the Tertiary volcanics of the Kurrajong-Bilpin District, with petrological notes. 171–267

Csomor, Dezsa. See Bisztricsany, Ede.

Cucuzza-Silvestri, Salvatore. The seismic period at Pedara (Etna) in February 1955. 170–43

Curtis, G. H., Lipson, Joseph, and Evernden, J. F. Potassium-argon dating of Plio-Pleistocene intrusive rocks. 168–11

Cutitita, Frank. See Sentie, F. E.

Cziki, K., and Fodor, J. Study of the deuterium content of natural inland waters and vegetable saps. 170–223

D

Dakhnov, V. N. Geophysical methods of the exploration of drill holes. 169–128

— The present state and the anticipated further development of the radiometry of drill holes. 169–268

Daly, J. W., and Dyson, D. F. Geophysical investigations for radioactivity in the Harts Range area, Northern Territory. 170–277

Daly’yan, I. B. See Arvor, P. Ya.

Damon, P. E. Terrestrial helium. 169–207
Damon, P. E., and Kulp, J. L. Determination of radiogenic helium in zircon by stable isotope dilution technique. 171-26

See also Carr, D. R.

Danchev, P. S. On the relation between the initial pressure of the explosion and the coefficient of charging. 169-289

Daniels, Farrington. See Zeller, E. J.

Datsevich, A. A. Testing of the geophones. 168-284

Daughtry, A. C. See Brannon, H. R., Jr.

Davis, J. G. See Nature.

Davis, Raymond, Jr. See Schaeffer, O. A.

Davydov, B. I. On the equation of state of solid bodies. 169-194

De Bremaeker, J. Cl., and Michel, Jean. An automatic spot brightener. 168-50

Deevey, B. S., Jr. See Barendsen, G. W.

de G61is, E. See Ambroggi, R.

Deicha, Georges. Possible geotectonic aspects of isostatic equilibrium. 168-199

Demidovich, O. A. Experiences with the use of electrical methods in exploration for drinking water under semidesert condition. 169-105

Denton, E. M. Continuous velocity log. 168-287

de Sitter, L. U. Elastic or plastic buckling of the earth's crust. 170-152

de Swardt, A. M. J. The 1954 eruption of Cameroon Mountain. 168-328

Deutsch, E. R. The magnetic hysteresis of rocks and minerals at high temperatures. 168-241

——— The measurement of magnetic hysteresis in rocks and minerals at high temperatures. 168-236

Deutsch, Sarah. Age of the Lausitz granite from the pleochroic halos. 170-26

Deutsch, Sarah, Kipfer, P., and Picciotto, E. Pleochroic halos and the artificial coloration of biotite by p-particles. 171-35

See also Schürmann, H. M. E.

Devirza, A. L. See Vinogradov, A. P.

De Vries, Hl. Contribution to radiocarbon dating and measurement of paleotemperatures to Pleistocene correlations. 170-7

de Witte, A. J. Saturation and porosity from electric logs in shaly sands. 169-109

Deyev, L. L. See Voskoboynikov, G. M.

Diamond, Herbert, Friedeman, A. M., Gindler, J. E., and Fields, P. R. Possible existence of Cm²⁴⁷ or its daughters in nature. 168-256

Dibble, R. R. Crustal structure project: The seismic energy and magnitude of the explosions. 169-66

Dibeler, V. H. The isotope reference sample program at the National Bureau of Standards. 171-214

Die Omschau. Eruption of Stromboli. 168-313

——— New geomagnetic maps of the polar region. 169-217

——— Wandering of the north magnetic pole. 168-239

Dietz, R. S. See Richards, A. F.

Dingemans, Guy. Formation and transformation of continents. 169-145

Dobkina, E. I. See Vinogradov, A. P.

Dobrinskaya, A. P. Geophysical research and progress in exploration. 169-201

Doell, R. R. Crystallization magnetization. 171-262

Dohr, Gerhard. A contribution of reflection seismology to investigation of the deeper basement. 171-210

——— On the detection by seismic reflection of very deep surfaces of discontinuity. 170-209

Dole, Malcolm. The oxygen isotope cycle in nature. 171-226

Dorn, W. L. A case study bearing on the origin and propagation of 2- to 6-second microseisms. 170-261

Doyle, H. A. Seismic recordings of atomic explosions in Australia. 170-211

Drake, C. L. See Nafe, J. E.
Abstract

Dredmanis, Aleksis. Stratigraphy of the Wisconsin glacial stage along the northwestern shore of Lake Erie. .. 170-17

Droste, Zofla. The angular distribution of density of energy in seismic waves. 170-78

Dubinsky, A. Ya. Geothermal conditions of the Caucasian foreland and of the adjoining regions of the eastern Donbas. 169-186

DuBois, P. M. Comparison of paleomagnetic results for selected rocks of Great Britain and North America. 170-247

Due Rojo, Antonio. Seismic notes, 1955. .. 169-29

Dumanoir, J. L., Tixier, M. P., and Martin, Maurice. Interpretation of the induction-electrical log in fresh mud. 171-132

Dunlap, H. F. See Dobrin, M. B.

Dunlap, R. C., Jr. Seismic magnetic data processing. 168-289

Dyachkova, A. Ya., and Sollogub, V. B. Tracing faults by the seismic reflection method in the outer zone of the Carpathian arc. 169-311

D'yakonov, B. P. Principles of the use of the amplitude and phase characteristics of the electromagnetic field in electrical exploration. 168-88

———The effect of a cylinder on the electric field around a point source. 169-95

Dyer, W. B. In southwestern Ontario gravity survey pays its way. 168-159

Dyke, L. J. An electrical resistivity survey in northwestern Ankle. 168-185

Dyson, D. F. See Daly, J. W.

Eaton, J. P. Theory of the electromagnetic seismograph. 168-51

Ebert, K. H., König, H., and Wänke, H. A new method of determining very small amounts of uranium and its application to uranium analysis of stone meteorites. .. 171-12

Ebert, K. H., and Wänke, H. On the effect of cosmic radiation on iron meteorites. 171-13

Eby, J. B. Salt dome interest centers on Gulf Coast. 168-120

See also Kulp, J. L.

Edwards, George, and Hess, D. C. Isolation and isotopic analysis of lead in meteorites and rocks. .. 171-223

Edwards, R. R. See Kuroda, P. K.

Edwards, R. S. See Ewing, J. I., and Officer, C. B.

Egedal, J. See Espersen, J.

Egyed, László. A new dynamic concept of the internal constitution of the earth. 171-203

——— Some notes concerning the principles of regional anomalies. 168-145

———The causes of crustal movements in Hungary. 171-160

———The magnetic field and the internal structure of the earth. 168-210

Eiby, G. A. About earthquakes. .. 170-36

———Crustal structure project: The Wellington profile 169-202

———Crustal structure project: The Wellington profile 169-201

———Note on the velocity discontinuity at a depth of 2 km in the Wellington region. ... 169-203

Einarsson, Trausti. Magneto-geological mapping in Iceland with the use of a compass. ... 170-252

———The paleomagnetism of the Icelandic basalts and its stratigraphic significance. ... 170-253

Eisler, J. D. See Hadley, C. F.

Ellenberger, H. On the work of the Deutsche Geodatische Forschungsinsitut on earth tide research. ... 169-74

Elouard, P. Contribution to the study of the ground water of the Tirisium sandstone, Mauritania. .. 170-121

———Water investigations in the recent formations of Inchiri, Mauritania. 170-123

Elsasser, W. M. Earth's magnetism. ... 169-212

———Hydromagnetic dynamo theory. ... 170-225

Elsasser, W. M., Noy, E. P., and Winckler, J. R. Cosmic-ray intensity and geomagnetism. ... 168-8

Elson, J. A. Lake Agassiz and the Mankato-Valders problem 171-22

Emberger, A. See Besairie, Henri.
AUTHOR INDEX

Emiliani, Cesare. Temperature and age analysis of deep-sea cores. 168-205

Enshsteyn, B. S. Specific resistivity of rocks to alternating current. 170-182

Enshsteyn, B. S., and Aronov, L. Ye. Experimental investigations of the natural electromagnetic field of the earth within the spectrum from 2 to 300 seconds per second. 169-26

Epstein, Samuel. Variation of the O18/O16 ratios of fresh waters and ice. 171-227

Erath, L. W. Direct recording vs FM recording in seismic tape machines. 170-284

Ertel, Hans. A compatibility term of higher geodesy. 171-150

Enshsteyn, B. S., and Aronov, L. Ye. Experimental investigations of the natural electromagnetic field of the earth within the spectrum from 2 to 300 seconds per second. 169-26

Esperence, J., Andreassen, P., Egdeal, J., and Olsen, J. Measurements at sea of the vertical gradient of the main geomagnetic field during the Galathea expedition. 168-211

Evans, C. B. See Miller, C. R., Jr.

Evans, P., and Metre, W. B. Recent geological work in Upper Assam. 169-138

Everdingen, R. O. van. See Rutten, M. G.

Everitt, C. W. F. See Clegg, J. A.

Everden, J. F. See Curtis, G. H.

Evraud, Pierre, and Lepersonne, J. State of knowledge concerning the existence of petroleum deposits in the Belgian Congo and Ruanda-Urundi. 169-133

Ewing, J. L., Officer, C. B., Johnson, H. R., and Edwards, R. S. Geophysical investigations in the eastern Caribbean: Trinidad Shelf, Tobago Trough, Barbados Ridge, Atlantic Ocean. 170-212

Ewig, Maurice, Jardetsky, W. S., and Press, Frank. Elastic waves in layered media. 170-71

Ewing, Maurice, Jardetsky, W. S., and Press, Frank. Elastic waves in layered media. 170-71

Eydman, I. Ye. The parameters of electric well logging. 168-108

F

Fanselau, Gerhard. Some recent developments in the geomagnetic field balance. 169-225

Fanselau, Gerhard, and Lucke, O. On the variability of the main geomagnetic field and its theories. 169-218

Farley, R. A. See Scalfie, F. E.

Farre, B. See Utsmann, R.

Fedotov, S. A. Approximate determination of dynamic traveltime curves of waves refracted on curvilinear boundaries. 171-106

Federov, G. N., and Alexeyev, F. A. Approximate determination of dynamic traveltime curves of waves refracted on curvilinear boundaries. 171-106

Federov, G. N., and Alexeyev, F. A. Approximate determination of dynamic traveltime curves of waves refracted on curvilinear boundaries. 171-106

Federov, G. N., and Alexeyev, F. A. Approximate determination of dynamic traveltime curves of waves refracted on curvilinear boundaries. 171-106

Fedynskiy, V. V. Geophysical prospecting for oil and gas in the Soviet Union. 168-118

Fedynskiy, V. V., and Komarow, S. G. Geophysical investigation of drill-holes in USSR. 168-104

Feeley, H. W. See Kulp, J. L.

Fergusson, G. J., and McCallum, G. J. The cosmic ray flare of 23 February 1956 and its effect on the New Zealand radiocarbon dating equipment. 170-12

Fergusson, G. J., and Rafter, T. A. New Zealand 14C age measurements. 170-11

Ferrua, L. See Smith, W. L.

Ferrua, L. See Smith, W. L.

Fields, P. R. See Diamond, H.

Figueroa Huerta, Santos. Geophysical technique employed for petroleum exploration in Mexico during the last 15 years. 168-116

Fireman, E. L., and Schwarzer, D. Measurement of Li6, He3, and He3 in meteorites and its relation to cosmic radiation. 169-2

Fischer, Georg. The lower crust from the petrographer's point of view. 171-205

Flanagan, F. J. See Smith, W. L.

Fleming, C. A. The ages of some Quaternary sediments from Wangandu district (N 137, N 138). 170-12

Flerov, G. N., and Alexeyev, F. A. The use of radioactive radiations in prospecting and developing oil deposits in the USSR. 168-271
Abstract

Flesch, Louis. See Hée, Arlette.
Fodor, J. See Cziki, K.
Fokin, A. F. See Veshev, A. V.
Folicaldi, K. See CarabelU, E.
Pollsbee, R. E. See Beveridge, A. J.
Foshag, W. F. Pariticin

Fournier, Hugo. See LéFèvre, Colette.
Fournier, K. P. See de Witte, Leendert.
François, Solange. See Glangaud, Louis.
Fredricks, R. W. See Knopoff, L.
Friedman, A. M. See Diamond, H.
Friedman, Irving. Water in tektites

Frische, R. H., and Buttlar, Haro von. A theoretical study of induced electrical
polarization

Fritsch, Volker. On the geoelectrical investigation of the cement injection of
dam walls and reservoirs

--- On the question of geoelectrical lightning risks

Fröhlich, Friedrich. On the problem of the inhomogeneity of the earth's interior
(What statements does the present state of research permit in this respect?)

Fujiwara, Kiyomaru. See Kubo, Kyosuke.

Gabriel, V. G. Use of gravity meter as a torsion balance

Gabrielli, L., and Polana, G. On the heat exchange through the walls of Dewar
vessels

Gaibar-Puertas, Constantino. Secular variation of the geomagnetic field

Gaither, V. U. Index of wells shot for velocity (Fifth supplement)

Galanopoulos, A. G. Earthquake activity in the Greek area from 1950 to 1953
--- On the determination of the age of the Santorin caldera
--- Strain relief at the same rate on both sides of the Aegean mass

Gáth, János, and Stegena, Lajos. Deep reflections in the vicinity of
Hajdúszbazló
--- Deep reflection investigations in Hungary for the study of continental
structure
--- Some data obtained by seismic reflection measurements on crustal
structure in Hungary

Gal'perin, E. I. Azimuthal deflections of seismic rays

--- See also Aksenovich, G. I.

Galushko, P. Ya. See Sollogub, V. B.

Gamburtsev, G. A. Present state and outlook of studies on the forecasting of
earthquakes

Gamburtsev, G. A., and Veytman, P. S. Comparison of the data from deep
seismic profiling on the structure of the earth's crust in the region of northern
Tien Shan with the data from seismology and gravimetry

Gandzyuk, G. A., and Potushanskiy, A. A. Geothermic investigations on the
propagation of the thermal field in the sedimentary deposits of the territory
of the Ukraine

Gane, P. G., Atkins, A. R., Sellschop, J. P. F., and Sellmian, P. Crustal struc-
ture in the Transvaal

Gangi, A. F. See Knopoff, L.

Ganguli, M. K. See Fransank, S. K.

Garrett, M. J. Seismic reflection survey, Darriman, Gippsland, Victoria

Gassmann, Fritz, and Weber, Max. On electrical resistivity measurements in the
Swiss Alps

Gates, J. P. Descriptive geometry and the offset seismic profile

Gavala, Juan, and Tayler, E. F. Oil exploration by Valdebro in Spain

Gavlin, Sven. Variations in isotopic composition of carbon from metamorphic
rocks in northern Sweden and their geological significance

Gay, L. O., and Kosten, M. Some applications of geophysical methods to
geological problems in the Gold Coast

Geddes, A. E. M. Note on large microseisms recorded at Aberdeen on 1954

--- December 9

Geler, Siegfried. See Hersemann, Lothan.
Geiss, Johannes. See Begemann, F.
Gentner, W., and Kley, W. Argon determinations in potassium minerals—IV. The question of argon loss in potassium feldspar and mica minerals. 171-41

Gentner, W., and Zähringer, J. Argon and helium as nuclear reaction products in meteors. 168-201

Gerling, E. K. The argon method of age determination and its use for distinguishing the Precambrian formations of the Baltic and Ukrainian shields. 170-32

Gerling, E. K., and Morozova, I. M. Determination of the activation energy of argon isolated from micas. 171-43

Glanella, V. P. Earthquake and faulting, Fort Sage Mountains, California, December, 1950. 170-49

Gidon, Paul. The order of succession of orogenic phenomena and its consequences. 171-156

Gilbert, P. F. See Balsley, J. R.

Gilbert, R. L. G. Some comments on the results obtained with the Cambridge pendulum apparatus in North America. 170-186

Gill, E. D. Radiocarbon dating for glacial varves in Tasmania. 168-8

— Radiocarbon dating of late Quaternary shorelines in Australia. 170-9

— Report of the A. N. Z. A. S. Committee for the Investigation of Quaternary Strandline Changes. 171-21

Gilpatrick, L. O. See Rona, Elizabeth.

Gilvary, J. J. Temperatures in the earth’s interior. 168-176

Gindler, J. E. See Diamond, H.

Ginsburg, A. S. See Strick, E.

Girlanda, Antonino. Study of a seismic movement in the Tyrrhenian Basin originating at a depth of 265 km. 170-42

Glangeaud, Louis; Péard, Robert; François, Solange; Ferrenoud, Marie-Jean; and Tottot, Michel. The phreatic and artesian ground waters of the northern Jura. Their relations to the karst system. 168-99

See also Reussner, Alain.

Glotov, O. K. On accounting for refraction on intermediate discontinuities when interpreting traveltime curves of refracted and reflected waves. 171-330

Glukhov, V. A. See Rizhchenko, Yu. V.

Goguel, Jean. Influence of surface temperature variations on the geothermal gradient, especially in permafrost. 170-200

— The relationship of geothermy in deep geophysics. 171-193

See also Reussner, Alain.

See also Baadsgaard, H.

Goldstein, M. See Lenoble, André

Golomb, V. E. See Abel’sky, M. E.

Gol’tsman, F. M. The use of linear systems for filtering composite oscillations. 170-286

Gondouin, M., Tixier, M. P., and Simard, G. L. An experimental study on the influence of the chemical composition of electrolytes on the SP curve. 171-133

Gonzalez-Miranda, Luis de Miguel. Telluric current storms. 169-25

Gonzalez-Reyna, Jenaro. A new volcano. 168-321

Goosby, Cleo. See Kuroda, P. K.

Gorelik, A. M. Determination of the direction and velocity of an underground stream by electrometric measurements in one drill hole. 171-121

Gorelik, A. M., and Nesterenko, I. F. Electrofiltration potential method in the determination of the radius of the depression hollow during a pumping test from a bore hole. 169-106

Gorkovenko, V. G. General survey of seismology of the territory of the USSR. 170-47

Gorščukov, G. S. Seismic observations during the first half of the year 1951. 169-48

— Volcanic tremor related to the eruption of the Bylinkina volcano. 169-335

Gorter, E. W. Chemistry and magnetic properties of some ferromagnetic oxides like those occurring in nature. 171-248

Gotsadze, O. D. Determination of the position of refracting and diffracting surfaces in the earth’s crust from anomalies in the angle of seismic ray. 168-41

— Dynamic characteristics of the foci of earthquakes in the Caucasus. 170-50
Abstract

Gottfried, David. See Lyons, J. B.

Goudsward, W. On the effect of the tank wall material in geoelectrical model experiments .. 171-119

Gough, D. I. A study of the palaeomagnetism of the Pilansberg dykes 168-244

Gould, H. R. See Rigg, G. B.

Grabe, R., and Lehmann, M. Geomagnetic mapping of a diabase dike near Schönbrunn, Thuringia ... 171-296

Graef, R., Loewy, W., and Pott, G. Representation of depth-contour maps of arbitrarily curved refraction horizons, including refraction of rays, three-dimensional case .. 169-300

Graf, Anton. Description of a newly developed marine gravimeter and results of the first voyage of measurement on the Starnberger See aboard the Seehaupt 171-168

Graham, J. W. Paleomagnetism and magnetostriction 168-235

Graham, J. W., Buddington, A. F., and Baisley, J. R. Stress-induced magnetizations of some rocks with analyzed magnetic minerals 170-239

Graham, K. W. T., and Hales, A. L. Palaeomagnetic measurements on Karroo dolerites ... 170-255

Graleski, L. J. See Barendsen, G. W.

Grant, Fraser. A problem in the analysis of geophysical data 169-158

Grebe, W.-H. Fumaroles and thermal springs in the older volcanic mountains of El Salvador ... 169-332

Green, C. H. The status and psychology of geophysical exploration within the petroleum industry ... 169-142

Green, V. P. See Rozova, E. A.

Green, R. See Irving, E., and Jaeger, J. C.

Gregg, D. R. Eruption of Ngauruhoe, January 1956 170-302

Griffiths, D. H., King, R. F., and Wright, A. E. Some field and laboratory studies of the depositional remanence of recent sediments 171-261

Griggs, D. T., and Kennedy, G. C. A simple apparatus for high pressures and temperatures ... 168-305

Groshevoy, G. V., and Pasechnik, I. P. The MPS-I seismograph designed as a high-precision field instrument for recording short period components of seismic waves .. 168-283

Grossmangin, Michel, and Walker, E. B. Gas detection by dual-spacing neutron logs in the Greater Orinoco area, Venezuela ... 171-314

Gross, Hugo. The progress of the radiocarbon method 1952-1956 171-15

Grujić, Nikola, and Ristić, Vojislav. A detail of the geophysical exploration at Jurija, Golija Mountains ... 168-254

Grumbkov, A. P. See Bespalov, D. F.

Gryglewicz, Zofia, and Skoczek, Hanna. Seismic activity in the year 1955 ... 170-37

Gaell, R. N. See Cortes, H. C.

Gubin, I. Ye., and Vasilyeva, L. B. Seismotectonic conditions of the Gissar Valley ... 168-39

Guillaume, Marcel. See Reusser, Alain.

Gurvich, A. S. See Volovich, M. I.

Gurvich, I. I. On the use of nonlongitudinal profiles in the refracted wave method ... 171-322

Guryev, L. I. See Zubenko, F. S.

Gutenberg, Beno. Comparison of seismograms recorded on Mount Wilson and at the Seismological Laboratory, Pasadena .. 168-43

Gutenberg, Beno. Continental drift, a critical examination 170-155

Gutenberg, Beno. Effects of ground on earthquake motion 170-56

Gutenberg, Beno. Effects of ground on shaking in earthquakes 168-42

Gutenberg, Beno. On the question of mountain roots 171-208

Gutenberg, Beno. The ‘boundary’ of the earth’s inner core 171-204

See also Press, Frank.

Gzovskiy, M. V. Tectonophysical basis of the geologic criteria of seismicity. Part I ... 169-37
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haak, F.</td>
<td>A torsion-magnetometer for measuring the vertical component of the earth's magnetic field</td>
<td>168-245</td>
</tr>
<tr>
<td>Haak, Hans.</td>
<td>On the question of the internal partitioning of the earth's rock mantle</td>
<td>170-205</td>
</tr>
<tr>
<td>Haag, I. B.</td>
<td>The effect of temperature on BMZ measurements</td>
<td>171-247</td>
</tr>
<tr>
<td>Hackett, J. E.</td>
<td>Relation between earth resistivity and glacial deposits near Shelbyville, Illinois</td>
<td>169-107</td>
</tr>
<tr>
<td>Hadley, C. F., and Elsler, J. D.</td>
<td>Electrical recorder for seismic data</td>
<td>171-839</td>
</tr>
<tr>
<td>Haefeli, Robert.</td>
<td>Glacier fluctuations and glacier flow</td>
<td>169-150</td>
</tr>
<tr>
<td></td>
<td>Notes on the formation of ogives as pressure waves</td>
<td>170-183</td>
</tr>
<tr>
<td>Hager, R. V., Jr.</td>
<td>See Handin, John</td>
<td></td>
</tr>
<tr>
<td>Hahn, Albrecht</td>
<td>See Close, Hans</td>
<td></td>
</tr>
<tr>
<td>Hahn, Albrecht</td>
<td>See Close, Hans</td>
<td></td>
</tr>
<tr>
<td>Hales, A. L.</td>
<td>See Graham, K. W. T.</td>
<td></td>
</tr>
<tr>
<td>Hall, S. H.</td>
<td>Scale model seismic experiments</td>
<td>168-280</td>
</tr>
<tr>
<td>Hamaguchi, Hiroshi, Reed, G. W., and Turkevich, Anthony.</td>
<td>Uranium and barium in stone meteorites</td>
<td>171-9</td>
</tr>
<tr>
<td>Hambleton, W. W.</td>
<td>See Merrim, D. F.</td>
<td></td>
</tr>
<tr>
<td>Hameister, Ernst</td>
<td>On wave propagation and elastic properties in samples of sedimentary rocks from deep borings</td>
<td>170-87</td>
</tr>
<tr>
<td></td>
<td>Petrophysical investigations in the laboratory and their application to geology and petrology</td>
<td>170-69</td>
</tr>
<tr>
<td>Hamilton, E. L.</td>
<td>Marine geology of the southern Hawaiian ridge</td>
<td>170-299</td>
</tr>
<tr>
<td>Hammer, S. I.</td>
<td>Modern methods of gravity and seismic interpretation</td>
<td>168-143</td>
</tr>
<tr>
<td>Handin, John, and Hager, R. V., Jr.</td>
<td>Experimental deformation of sedimentary rocks under confining pressure; tests at room temperature on dry samples</td>
<td>170-295</td>
</tr>
<tr>
<td>Hanaford, W. L. W.</td>
<td>See Serson, P. H.</td>
<td></td>
</tr>
<tr>
<td>Hantzsche, Walter.</td>
<td>The oldest rocks and fossils</td>
<td>168-2</td>
</tr>
<tr>
<td>Hardtwig, Erwin.</td>
<td>Approximation formulas for the reflection and transmission coefficients appearing in the reflection and refraction of elastic waves at discontinuities</td>
<td>171-109</td>
</tr>
<tr>
<td>Hardy, J. R.</td>
<td>See Bull, C.</td>
<td></td>
</tr>
<tr>
<td>Harris, J. L.</td>
<td>See Seedsman, K. R</td>
<td></td>
</tr>
<tr>
<td>Harris, N., Pallister, J. W., and Brown, J. M.</td>
<td>Oil in Uganda</td>
<td>169-177</td>
</tr>
<tr>
<td>Harrison, J. C., Brown, G. L., and Spiess, F. N.</td>
<td>Gravity measurements in the northeastern Pacific Ocean</td>
<td>171-188</td>
</tr>
<tr>
<td>Hartman, R. R.</td>
<td>See Agec, W. B.</td>
<td></td>
</tr>
<tr>
<td>Hatanaka, Motohiro.</td>
<td>On the earthquake resistant properties of arch dams</td>
<td>171-71</td>
</tr>
<tr>
<td>Hatferton, T.</td>
<td>Shallow subsurface prospecting by the electrical resistivity method at Balclutha</td>
<td>171-129</td>
</tr>
<tr>
<td>Haughton, S. H.</td>
<td>The geophysicist and some geological problems</td>
<td>171-146</td>
</tr>
<tr>
<td>Havemann, Hans.</td>
<td>Transgression-regression and convection</td>
<td>170-156</td>
</tr>
<tr>
<td>Hawley, J. E.</td>
<td>See Russell, R. D.</td>
<td></td>
</tr>
<tr>
<td>Haxel, O.</td>
<td>Geological and archeological dating with C14</td>
<td>169-4</td>
</tr>
<tr>
<td>Hayden, R. J.</td>
<td>See Wasserburg, G. J.</td>
<td></td>
</tr>
<tr>
<td>Healy, John.</td>
<td>Preliminary account of hydrothermal conditions at Wairakei, New Zealand</td>
<td>168-327</td>
</tr>
<tr>
<td></td>
<td>Report on volcanology : New Zealand</td>
<td>168-326</td>
</tr>
<tr>
<td>Hedström, E. H.</td>
<td>In defense of mining geophysics</td>
<td>171-138</td>
</tr>
<tr>
<td>Hée, Arlette, Coche, André, Jarovoy, Michel, and Kraemer, Robert.</td>
<td>Determination of the absolute age of two Vosges granites</td>
<td>171-34</td>
</tr>
<tr>
<td>Hée, Arlette, Coche, André, Jarovoy, Michel, and Kraemer, Robert.</td>
<td>On the absolute age of two granites from the Vosges range</td>
<td>169-17</td>
</tr>
<tr>
<td>Hée, Arlette, and Flesch, Louis.</td>
<td>Apparent absolute age of the zircons from Espaly (Haute Loire)</td>
<td>169-18</td>
</tr>
<tr>
<td>Heiskanen, W. A.</td>
<td>The Columbus geoid</td>
<td>171-149</td>
</tr>
<tr>
<td>Heiskanen, W. A., and Uttila, U. A.</td>
<td>Gravity survey of the state of Ohio</td>
<td>169-174</td>
</tr>
</tbody>
</table>
Helbig, Klaus. Remarks on the spectrum of seismic shooting underground. 168-298

Helm, Hans von. See Hecht, F.

Henderson, J. R., and others. Aeromagnetic maps of New York and New Jersey. 171-286

See also Meuschke, J. L.

Hergerdt, M. A comparison of calculated values of Uzzz according to different approximate formulas for theoretical and practical examples. 170-170

Hermegger, F., and Wänke, H. On the uranium content of stone meteorites and their “age”. 171-11

Herrn, Eugene. The reliability of North American seismological stations. 168-52

Hersov, J. B. See Knott, S. T.

Herzog, L. F. Rb-Sr and K-Ca analyses and ages. 171-47

Hess, D. C. See Begemann, F., and Edwards, George.

Heuberger, J. C. Thermal measurements in the Greenland ice-cap. 168-140

Hey, M. H. See Nature.

Hide, Raymond. The hydrodynamics of the earth’s core. 168-208

Hiersemann, Lothar. Geological-geophysical theories on the structure and dynamics of the earth’s crust. 168-131

— On the significance of rheology for geophysical-geological theories. 171-153

Hiersemann, Lothar, and Geier, Siegfried. Geoelectrical prospecting methods in the Soviet Union. 170-119

Higgs, D. V. See Handin, John.

Hill, M. N. Geophysical Investigations on the floor of the Atlantic Ocean in Discovery II, 1956. 170-213

Hiller, R. E. How to log gas-drilled holes. 168-104

Hiller, Wilhem. On the mechanics and dynamics of earthquakes. 171-68

Hilpert, L. S., and Bunker, C. M. Effects of radon in drill holes on gamma-ray logs. 170-272

Hirasawa, Kiyoshi. See Tateishi, Tetsuo.

Hirschberg, D. See Deutsch, Sarah.

Hochstrasser, Urs. See Stoneley, R. S.

Hodgson, J. H. Direction of faulting in some of the larger earthquakes of the north Pacific, 1950-1953. 168-31

— Direction of faulting in some of the larger earthquakes of the southwest Pacific, 1950-1954. 168-32

— Nature of faulting in large earthquakes. 169-51

See also Misener, A. D.

Hoekstra, H. R. Oxygen isotope variations in some uranium minerals. 171-229

Hoering, Thomas. Variations in the nitrogen isotope abundance. 171-225

Hoffman, J. H. See Baadsgaard, H.

Hohne, F. C. Radiometric assaying of uranium ore in place. 168-274

Holland, H. D. Radiation damage and age measurement in zircons. 171-46

Homer, R. C. Geochemistry and geophysics in 1956. 169-129

Holmes, Arthur. How old is the earth? 170-1

Holser, W. T., and Schnee, C. J. Polymorphism in the earth’s mantle. 170-206

Holtscherer, J. J. Contribution to the knowledge of the Greenland Ice Cap. First part: Seismic measurements. 168-141

Honda, Hirokichi. The mechanism of earthquakes. 170-48

Honda, Hirokichi, and Emura, Kinya. The production of two-dimensional elastic waves. 170-74

Honda, Hirokichi, Masatsuka, Akira, and Emura, Kinya. On the mechanism of the earthquakes and the stresses producing them in Japan and its vicinity (Second paper). 169-55

Honda, Hirokichi, Nakamura, Kôhei, and Takagi, Akio. The disturbance in a semi-infinite elastic solid due to a linear surface impulse. 170-73

Honda, Hirokichi, Nakamura, Kôhei, and Nakamura, Kôhei. The Sine Hiroto: mechanism of deep earthquakes and the rigidity of the earth’s core. 169-69

Honda, Ichirô; Obi Nakamura; Ono, Yoshihiko; and Sugiyama, Mitsuaki. Electrical prospecting for ground water at western part of Aichi Prefecture. 171-127
Honma, Ichirō, and Ono, Yoshihiko. Electrical prospecting for the industrial water supply purposes in Seien District, Shizuoka Prefecture. 171-128

Hope, E. R. Linear secular oscillation of the northern magnetic pole. 169-216

Hope, E. R. Rotation, pulse-disturbance, and drift in the geomagnetic secular variation. 169-219

Horton, C. W. The structure of the noise background of a seismogram II. 169-296

Hosoya, K., and K. K. On secular observations of tilting motion of the ground. 171-83

Hosper J. Gravity and crustal shortening in the Alps. 168-200

Hourq, V. Gravity and crustal shortening (a reply to B. J. Collette). 170-176

Hourq, V. Petroleum exploration in Madagascar. 169-139

Housner, G. W. Dynamic pressures on accelerated fluid containers. 168-26

Houtermans, F. G. Radioactivity and age of the earth. 169-3

Hudson, D. E. Response spectrum techniques in engineering seismology. 169-57

Hughes, D. S., and Maurette Christian. Variation of elastic wave velocities in basic igneous rocks with pressure and temperature. 168-73

Hulsenga, J. R. See Bate, C. L.

Hull, L. V. The new Dallas Seismological Observatory at Southern Methodist University. 168-53

Hultqvist, Bengt. The Kiruna Geophysical Observatory, Sweden. 171-147

Hunathashi, Mitsuo. See Minato, Masao.

Hunter, K. E., and Whitaker, J. C. Nuclear magnetometer reveals structural grain with aerial mapping. 168-248

Hurley, P. M. Test on the possible chondritic composition of the earth's mantle and its abundance of uranium, thorium, and potassium. 169-197

Hurley, P. M., and Fairburn, H. W. Abundance and distribution of uranium and thorium in zircon, sphene, apatite, epidote, and monazite in granitic rocks. 171-305

Husmann, Otto. Determinations of the thorium and uranium content of gneisses, anatetic, and magmatic rocks of the central Black Forest by means of the coincidence method. 169-257

Huser, E. A redetermination of the half-life of "Rb. 171-302

Ichinohe, Tokio. On change of gravity with time. 171-178

Iida, Kunizo, and Aoki, Harumi. Seismic source energy and wave energy in visco-elastic medium. 170-76

Indian Journal of Meteorology and Geophysics. Early history of geomagnetic observations in India at Colaba Observatory, Bombay (1841-1906). 168-213

Ingall, L. N. Magnetic results from Heard Island, 1952. 171-241

Inglis, D. R. Shifting of the earth's axis of rotation. 169-76

Ingers, E. Fault plane of the Chile earthquake, December 7, 1958. 170-51

Innes, M. J. S. Gravity and isostasy in central Quebec. 169-172

Irving, E. Directions of magnetization in the Carboniferous glacial varves of Australia. 170-243

Irving, E. Rock magnetism. A new approach to some palaeographic problems. 170-240

Irving, E., and Green, R. Paleomagnetic evidence from the Cretaceous and Cenozoic. 170-244

Israël, Hans. The naturally radioactive environment of the world around us. 171-300
INDEX TO GEOPHYSICAL ABSTRACTS 168-171, 1957

Abstract

Itenberg, S. S. Geophysical methods of prospecting, the vade-mecum of the oil geologist in the field... 169-127

—— The geophysics of oil fields for geologists, 2d ed....................... 171-137

Ivakin, B. N. Head waves, normal waves and other waves in a thin rigid layer in a fluid.. 171-103

—— The similarity of the elastic wave phenomena.......................... 168-63

Ivanhoe, L. F. A gravity maximum in the Great Valley of California due to the isostatic effect of the Sierra Nevada...................... 168-156

—— Chart to check factor effects on gravity anomalies.................... 170-174

Ivanov, A. G. An approximate formula for the evaluation of the alternating magnetic field over a vein.............................. 169-102

—— Investigation of the phase-structure of electromagnetic fields in electric exploration----------------------------------- 169-103

—— Study of the phase structure of electromagnetic fields in electrical exploration--------------------------------- 168-87

Ivanova, V. F., and Khristianov, V. K. Neutron logging in prospecting for commercial deposits of boron.............................. 168-267

Iwasaki, I., Katsura, T., Shimokawa, H., and Kamada, Masaaki. Radioactivity of volcanic gases in Japan.......................... 169-266

Iwasaki, S. Yōji. See Sato, Mitsuonosuke.

J

Jackson, W. H. See Davis, W. E.

Jacobi, W. See Aurand, E.

Jaeger, J. C. Elasticity, fracture and flow with engineering and geological applications.. 169-77

—— Palaeomagnetism.. 168-287

—— The temperature in the neighborhood of a cooling intrusive sheet 169-183

—— The variation of density and magnetic properties. Appendix to the problems of the quartz dolerites: Some significant facts concerning mineral volume, grain size and fabric by Germaine C. Joplin.... 171-252

Jaeger, J. C., and Green, R. The use of the cooling-history of thick intrusive sheets for the study of the secular variation of the earth's magnetic field.................. 169-220

Jaffe, H. W. See Lyons, J. B., and Quinn, A. W.

Janczewski, E. W. Seismic activity of dislocations in the Carboniferous substratum of Upper Silesia...................................... 170-44

Jardetzky, W. S. See Ewing, Maurice.

Jaronov, Michel. See Hée, Arlette.

Jeffrey, L. M. See Rona, Elizabeth.

Jeffery, P. M. See Wellisch, L. T.

Jelstrup, G. Observations on the gravimetric calibration base, Hammerfest-Munich with the Cambridge pendulum apparatus.............. 169-168

Jensen, Eberhart. Toroidal oscillation of an incompressible conductive fluid sphere in a decay field................................. 168-209

Jensen, Henry. On the heat-distribution in group-microseisms.............. 170-262

—— The earthquake off Stevns on June 4, 1954... 171-55

Jensen, M. L. Sulfur isotopes and mineral paragenesis.................... 169-209

Jessen, Werner. See Schaub, Heribert.

Jhingran, A. G. A note on an earthquake in the Andaman Islands (26th June 1941).. 168-20

Jitsukawa, Akira. See Tsuishi, Choji.

Jobert, Georges. Effect of crustal structure on the deformations caused by ocean tides.. 168-54

—— Influence of crustal structure on the deformations caused by oceanic tides.. 171-158

Jobert, Nelly. Evaluation of the period of oscillation of a heterogeneous elastic sphere, by application of Rayleigh's principle; (natural vibrations of rotation).. 168-59

—— On the natural period of spheroidal oscillations of the earth........ 169-92

John, Horst. The subdivision of the German Alpine foreland Molasse by means of seismic velocities... 171-334

Johnson, Arthur. Observations on the Nisqually glacier and other glaciers in the northwestern United States.. 168-142

Johnson, H. R. See Ewing, J. I., and Officer, C. B.

Johnson, J. B., Jr., and Cook, K. L. Regional gravity survey of parts of Tooele, Juab, and Millard Counties, Utah.......................... 168-169

Jones, H. T. See Waldie, A. D.

Jouve, J. H. See Kurouda, P. K.
Abstract

Joplin, G. C. See Jaeger, J. C.

Jung, Karl. On the structure of the earth's crust. 165-190

Jurin, Georges. Remarks on the uranium content of the waters of the southern Vosges. 171-308

Jurkiewicz, Leopold. See Przewlocki, Kazimierz.

K

Kaku, Koichi. Distribution of radon in central Kyushu. 169-265

Kallasam, L. N. Some results of the application of resistivity methods to problems of civil engineering, mining and ground-water in India. 170-107

Kalashnikov, A. G. Magnetic properties of heterogeneously magnetized prisms. I. Magnetization of prisms in open and closed circuits. 169-227

Jarkan, Karl. Remarks on the uranium content of the waters of the southern Vosges. 171-308

Jurand, Georges. On the structure of the earth's crust. 168-190

Jarkicz, Leopold. See Przewlocki, Kazimierz.

K

Kaku, Koichi. Distribution of radon in central Kyushu. 169-265

Kallasam, L. N. Some results of the application of resistivity methods to problems of civil engineering, mining and ground-water in India. 170-107

Kalashnikov, A. G. Magnetic properties of heterogeneously magnetized prisms. I. Magnetization of prisms in open and closed circuits. 169-227

Kanada, M. See Iwasaki, I.

Kamenetskiy, F. M., Kaufman, A. A., and Yakubovskiy, Yu. V. Selection of the best frequency in using the inductive methods of electrical exploration. 170-95

Kanai, Kiyoshi; Takahasi, Ryutarō; and Kawasumi, Hiroši. Seismic characteristics of ground. 169-55

Kanai, Kiyoshi; Tanaka, Tetsuji; and Osada, Kaito. Measurement of the microtremor. II (Tokyo Metropolitan). 171-297

Kanai, Kiyoshi; Nasu, Nobuko; Tanaka, Tetsuji; and Osada, Kaito. Measurement of the microtremor. IV (Sakata and Tsuruoka). 171-297

Kanai, Kiyoshi; Kawasumi, Hiroši; Tanaka, Tetsuji; and Osada, Kaito. Measurement of the microtremor. V (Osaka City). 171-297

Kanai, Kiyoshi; Kawasumi, Hiroši; Tanaka, Tetsuji; and Osada, Kaito. Measurement of the microtremor. VI (Osaka City). 171-297

Kanai, Kiyoshi; Tanaka, Tetsuji; Morishita, Toshio; and Nakagawa, Kyoji. Measurement of the microtremor. VI (Ishinomiya City). 171-297

Kanai, Kiyoshi; Tanaka, Tetsuji; and Osada, Kaito. Measurement of the microtremor. VII (Kawasaki City). 171-297

Kanai, Kiyoshi, and Yoshizawa, Shizuyō. Relation between the amplitude of earthquake motions and the nature of the surface layer. IV (The case of finite train.). 168-70

Kaneko, Jun, Honma, Ichiro, and Sugiyama, Mitsusuke. Electrical prospecting for industrial water supply purposes at the neighborhood of the Ogaki City in Gifu Prefecture. 170-116

Kántás, K. Development in the newest geophysical research method in the telluric. 171-124

—Results of the simultaneous measurements of telluric currents between Peking (China) and Sopron (Hungary) executed from 9th to 14th January 1956. 171-51

Kappelmeyer, O. The use of near surface temperature measurements for discovering anomalies due to causes at depth. 171-194

Kaputensky, A. F. A geochemical hypothesis of the earth's structure. 171-201

Karanđejew, K. B., and Mısı̇yuk, L. Ya. New automatic measuring equipment for direct current electrical exploration methods. 169-100

Karlıström, T. N. V. The problem of the Cochrane in late Pleistocene chronology. 169-8

Karmalejeva, P. M. See Bonchkovskiy, V. F.

Kárnak, Vít. Graphical determination of the distance and azimuth of an epicenter. 168-48

Karr, P. R. See Melton, B. S.

Katoka, Hisashi, and Matsuoka, Bun'ichi. On determining the depth of buried ore body by the ground resistivity method. 170-103

Katayama, Nobuo, and Mazima, Tetchū. Beta counter type DC-P 1 for precise measurement in galleries as well as in laboratories. 168-272

Kato, Yoshio, and Takagi, Akio. Model seismology. (Part 2.) Two dimensional model experiment on wave propagation in the earth's model. 169-91

—Seismic model studies. Part 3. On the initial motion of dilatational and distortional waves produced by various types of forces. 170-84

Kato, Yoshio, and Watanabe, Tomiya. A survey of observational knowledge of the geomagnetic pulsation. 170-231
Abstract

Katskov, A. I. Experiences with application of the gravitational gradiometer in prospecting for pyrite deposits. 170-195

Katsura, T. See Akimoto, Syun-iti, and Iwasaki, I.

Kaufman, A. A. See Kameneckii, F. M.

Kaula, W. M. Accuracy of gravimetrically computed deflections of the vertical. 170-169

——— Deflections of the vertical in New Britain. 170-187

Kauw, G. See Rieszler, W.

Kawasumi, Hiroshi. See Kanai, Kiyoshi.

Kazinskiy, V. A. Correcting for topographic masses in making gravity measurements underground. 169-164

——— On balancing the elastic system of gravitational variometers. 170-178

——— On the principles of the theory of mining gravimetry. 168-148

Kazmi, S. A. A. Role of applied geomagnetism in the exploration of mineral and oil resources of the Country. 171-143

Kebuladze, V. V. See Bukhnikashvili, A. V.

Kehrer, Wilhelm. See Hecht, F.

Keller, Gerhard. Advances in methods and results of geological time reckoning. 171-2

Kelloq, W. C. Observation and interpretation of radioactive patterns over some California oil fields. 170-275

——— The development and interpretation of aerial radioactivity surveys. 169-275

Kennedy, G. C. See Griggs, D. T.

Kertai, Gy. Oil and natural gas in Hungary. 169-137

Keylis-Borok, V. I. The theory of waves excited during dislocation. 170-72

Khalilov, N. I. Clamping brace for the seismograph to be used in well logging. 170-289

——— Evaluation of the accuracy of data obtained by the refracted-wave method. 168-295

Khalin, L. A. The field pattern of a point source in the presence of a hemispherical indentation. 168-76

Kharin, D. A., and Rulev, B. G. Electrodynamic seismograph for recording large displacements. 169-64

See also Kirnos, D. P.

Khramov, A. N. On the possibility of stratigraphic correlation and identification of sedimentary series by their remanent magnetization. 169-234

Khristianov, V. K. See Ivanova, V. F.

Khurges, L. L. Use of a converter for feeding the anodic circuits of a seismic station. 169-286

Kiesling, J. See Schürmann, H. M. E.

Kleinh, Karl. On an experimental torsion balance for the measurement of the horizontal gradient of the vertical gravity gradient. 170-181

King, R. F. See Griffiths, D. H.

Kintsinger, P. R. Paleomagnetic survey of Triassic rocks from Arizona. 170-256

See also Vacquier, Victor.

Kipfer, P. See Deutsch, Sarah.

Kirby, J. R. See Balsley, J. R., and Bromery, R. W.

Kirnos, D. P., and Kharin, D. A. Basic equipment of seismological stations in the U. S. S. R. 170-59

Kitamura, Masatoshi. What types of magnetic storm are accompanied by the decreases of the intensity of cosmic rays. 168-217

Kitzono, Takeshi; Yoshizumi, Eisaburo; and Taniguchi, Keiichiro. On the vertical exploration by central induction method. 170-104

Kley, W. See Gentner, W., and Schürmann, H. M. E.

Kneissl, Max. Level and scale of the provisional European gravimeter network (Morelli-Martin network, 1956). 169-178

——— The German part of the European gravimeter-standard line, Hammerfest-Rome. 168-161

——— The international European gravimeter-measurement bases. 170-183

——— Measuring geologic time. 171-1

Knopff, L., Fredricks, R. W., Gangi, A. F., and Porter, L. D. Surface amplitudes of reflected body waves. 171-102

Knott, S. T., and Hersey, J. B. Interpretation of high-resolution echo-sounding techniques and their use in bathymetry, marine geophysics, and biology. 171-343

Kobayashi, K. See Nagata, Takeshi.
Kobayashi, Naota, and Takeuchi, Hitoshi. Propagation of tremors over the surface of an elastic sound. 171-95

See also Takeuchi, Hitoshi.

Kober, Leopold. Atomic structure and geology. 169-192

Kobori, Takaji. Quake resistant and nonlinear problems of the structural vibrations to violent earthquakes. 171-72

Kocz Y, F. F., Tomic, Ernst, and Hecht, Friedrich. On the geochemistry of uranium in the Baltic Sea basin. 168-262

Kokesh, F. P. Gulf Coast seismic velocity surveys. 168-303

Kolbenheyer, Tibor. The solution of the boundary value problem of the electric resistivity method for an oblate ellipsoid of rotation. 171-116

Komarov, A. G. On the question of the age of the gabbro-peridotite formation in the Urals. 168-234

——— On the remanent magnetization of eruptive rocks and its relation to their age. 169-226

Komarov, S. G. Determination of the porosity of rocks by their specific resistivity. 168-108

See also Fedynsky, V. V.

Komarov, V. A. See Yoffe, L. M.

Kondorskaya, N. V. Concerning regional peculiarities of travel times of seismic waves. 171-78

——— Identification of the sP wave in shallow earthquakes and its use in determining the depth of focus. 168-46

König, H. See Ebert, K. H.

Koning, L. P. G. Seismic evidence on orogenic processes. 169-50

Korolev, V. G. See Rozova, E. A.

Korovnichenko, Ye. G. On one of the exchanged waves, recorded during the seismic investigations by the method of correlated refracted waves. 171-325

Korsunskaya, G. V. Volcanoes of Simushir Island. 168-320

Koshechkin, B. I. See Zabanko, F. S.

Kosminskaya, I. P. Analysis of the zones of interference of seismic waves. 171-105

Kosminskaya, I. P., and Tulina, Yu. V. An attempt at the application of deep seismic sounding in the investigation of crustal structure in several regions in western Turkmen SSR. 171-209

Kosten, M. See Gay, L. O.

Kovaliev, O. I. Some instruments for the processing of seismograms. 171-327

Kozłowski, Mieczyslaw. Temperature distribution in a liquid flowing out through a boring. 169-184

Kozulin, Yu N. The field of the vertical magnetic dipole over the two-layer medium. 169-236

See also Pavinsky, P. P.

Kraemer, Robert. See Hée, Arlette.

Krajčovič, Silvester. Geophysical measurements over the surface of water. 171-126

——— On the influence of a spherical body upon artificial geoelectric fields. 171-314

Krauslin, V. S. The conference of the geophysicists of the Ministry of Geology and Conservation of Natural Resources. 168-117

Krestinsk, V. N. Seismicity and geologic structure of the northern Tien Shan. 171-53

Krinari, A. L., and Zubkov, V. L. The characteristic elastic properties of the Paleozoic rocks of the Tartar Autonomous SSR. 171-112

Krishnamurthi, M., and Balakrishna, S. Attenuation of sound in rocks. 169-90

Krishman, R. S. Age determination of crustal rocks by radioactivity methods. 170-8

Krutikhovskaya, Z. A. Certain questions on geophysical exploration methods for rich iron ores of the "Krivoy Rog" type. 171-281

Kubo, Kyösuke, and Fujitawa, Kiyomaru. Report on the radioactivity of earthy graphite in the Kumano District, Omine Coal Field. 169-261

Kukharevko, N. K., Shimelevich, Yu. S., Bespalov, D. F., and Olovkovich, V. A. A new geophysical method of locating oil-bearing and water-bearing strata and of determining the contact between water and oil in casing oil wells. 171-318

Kudryavtsev, Yu. I. The inverse two-dimensional problem of geophysics. 169-190

Kulp, Gerad F. The formation of the planets. 171-280

Kulp, J. L., and Eckelmann, W. R. Discordant U-Pb ages and mineral type. 169-14

See also Carr, D. R. Damon, P. E., Eckelmann, W. R., Volkoh, H. L.
Kunetz, Géza. Application of the statistical properties of earth currents in practical geophysics. 170-90

Kunetz, Géza, and Chastenet de Géry, Jérôme. Conformal mapping and various problems of potential in media of different "permeability." 168-81

Kunori, Soichi; Sato, Gakuji; and Yokoyama, Hidekichi. Electrical prospecting at the Hakko copper mine, near Hirotsuki City, Amori Prefecture. 170-117

Kupch, W. O. Rocking Regina. 171-54

Kutscher, Fritz. Applied magnetic measurements in Hesse. 169-244

Kuzhelov, G. K. Some cases of thermomagnetization of ferromagnetic bodies. 171-206

Kuzivanov, V. A. On the analytic continuation of gravity potential into the interior domain. 169-159

Kuznetsov, V. P. Certain peculiarities of the focal mechanism of the Semakhia earthquakes causing discrepancies in the determination of the epicentral coordinates. 169-39

Lacaze, J. R. On the microseisms produced by certain cold fronts at Algiers. 168-255

Lachenbruch, A. H. A probe for measurement of thermal conductivity of frozen soils in place. 171-199

LaCoste, L. J. B. See Clarkson, H. N.

Lafargues, Pierre. Present possibilities of the application of geophysical techniques to ore exploration in metal mines. 170-134

Lagrua, Jean. Imperfection of isostatic equilibrium in the Sahara. 170-215

Lagrua, Jean, and Lambert, Alexis. Preliminary interpretation of the gravimetric anomalies of eastern Algeria. 169-167

Lakavchenko, P. I. Gravimetric exploration for oil and gas. 171-190

Lambert, Alexis. See Lagrua, Jean.

Lameyre, Jean. See Pangaud, Claude.

Lamont, Norman. Relationships between the mud resistivity, mud filtrate resistivity, and the mud cake resistivity of oil emulsion mud systems. 171-131

Landegren, Sture. Preliminary note on the isotopic composition of carbon in some Swedish rocks. 170-221

Larionov, L. V. See Veshev, A. V.

Larson, E. R. Minor features of the Fairview fault. 171-66

Lassovszky, Karoly. Determination of the amplitude ratio of the lunisolar effect from gravimeter observations made at Budapest during 37 days in 1951. 168-55

Lavergne, Michel. See Vacquier, Victor.

Lazar, N. See Senftle, F. E.

Lebedev, V. I. On the possibility of absorption of solar energy by the crystalline material of the earth. 168-173

Ledent, D. Determination of the deformation coefficient of the earth from gravimeter observations. 171-91

Laughton, A. S. Sound propagation in compacted ocean sediments. 169-89

Lauterbach, Robert. Applied geophysics in exploration and mapping. 168-111

Lecht, L. D. Use and abuse of earth waves. 169-67
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeFèvre, Colette, Albertinoli, P., Bauer, A., Blum, A., Cagniard, Louis, and Fournier, H.</td>
<td>Electrical and telluric measurements on the great Aletsch glacier</td>
<td>171-130</td>
</tr>
<tr>
<td>LeFèvre, Colette, and Fournier, Hugo.</td>
<td>Telluric measurements and records on the Aletsch glaciers</td>
<td>170-124</td>
</tr>
<tr>
<td>Lehmann, Martin.</td>
<td>Geomagnetic and geoelectric investigations on lamprophyre dikes in the Lausitz</td>
<td>168-251</td>
</tr>
<tr>
<td>See also Grabe, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leighton, Morris M.</td>
<td>Radiocarbon dates of Mankato drift in Minnesota: A discussion; Wright, H. E., Jr. A reply</td>
<td>169-7</td>
</tr>
<tr>
<td>Lenoble, André, and others.</td>
<td>Uranium prospecting and exploration</td>
<td>168-124</td>
</tr>
<tr>
<td>Lensen, G. J., Stevens, G. R., and Wellman, H. W.</td>
<td>The earthquake risk in the Wellington district</td>
<td>170-58</td>
</tr>
<tr>
<td>Lepersonne, J.</td>
<td>See Evrard, Pierre.</td>
<td></td>
</tr>
<tr>
<td>Levallolos, Jean-Jacques.</td>
<td>On the determination of the geoid by gravity measurements on the topographic surface</td>
<td>170-146</td>
</tr>
<tr>
<td>Lewis, D. B.</td>
<td>See Handlin, John.</td>
<td></td>
</tr>
<tr>
<td>Libby, W. F.</td>
<td>See Begemann, Friedrich.</td>
<td></td>
</tr>
<tr>
<td>Lieberman, Harry A.</td>
<td>An investigation of the geoid in Europe</td>
<td>170-147</td>
</tr>
<tr>
<td>Libeld, Rudolf.</td>
<td>The phenomena of stability and instability of the Mathieu differential equation, demonstrated by a physical pendulum</td>
<td>170-165</td>
</tr>
<tr>
<td>Link, W. K.</td>
<td>Exploration Brazil 1955</td>
<td>169-134</td>
</tr>
<tr>
<td>Lin'kov, E. M.</td>
<td>A four channel electronic oscillograph for recording seismic vibrations</td>
<td>168-285</td>
</tr>
<tr>
<td>———</td>
<td>A new method of multichannel oscillographic recording of seismic waves</td>
<td>168-286</td>
</tr>
<tr>
<td>Lipson, J. I.</td>
<td>See Curtis, G. H., Reynolds, J. H., and Wasserburg, G. J.</td>
<td></td>
</tr>
<tr>
<td>L'Observatoire de Ksara (Liban).</td>
<td>The Lebanon earthquake of March 16, 1956 (new study)</td>
<td>169-36</td>
</tr>
<tr>
<td>Locke, E. R.</td>
<td>See Goedelke, T. R.</td>
<td></td>
</tr>
<tr>
<td>Lode, W.</td>
<td>See Graesser, E.</td>
<td></td>
</tr>
<tr>
<td>Loewe, Fritz.</td>
<td>Notes on temperature and accumulation measurements on the Greenland icecap</td>
<td>171-166</td>
</tr>
<tr>
<td>Loomer, E. I.</td>
<td>See Whitham, Kenneth.</td>
<td></td>
</tr>
<tr>
<td>López de Azcona, J. M.</td>
<td>The age of the uraninites of the Sierra Albarrana</td>
<td>170-25</td>
</tr>
<tr>
<td>Lorens, P. J.</td>
<td>See Williams, W. J.</td>
<td></td>
</tr>
<tr>
<td>Lotze, Franz.</td>
<td>Actuogeological characteristics of the year 1955</td>
<td>169-30</td>
</tr>
<tr>
<td>Lozinskaya, A. M., Tsimel'zon, I. O., and Laskina, V. V.</td>
<td>Experiences with remotely operated marine gravimeters in a regional survey of the Caspian Sea</td>
<td>168-153</td>
</tr>
<tr>
<td>Lübeck, O.</td>
<td>See Fanselau, Gerhard.</td>
<td></td>
</tr>
<tr>
<td>Luk'yanov, A. V.</td>
<td>Model studies of alternating electromagnetic fields</td>
<td>168-91</td>
</tr>
<tr>
<td>Lundberg, Hans.</td>
<td>Airborne gravity surveys</td>
<td>169-158</td>
</tr>
<tr>
<td>Lundqvist, G.</td>
<td>Carbon-14 analyses in Swedish Quaternary geology, 1955-57</td>
<td>171-18</td>
</tr>
<tr>
<td>———</td>
<td>Log in Öje. A definite interglacial find</td>
<td>168-6</td>
</tr>
<tr>
<td>Lundqvist, Jan.</td>
<td>Carbon-14 dating of recurrence surfaces in Värmland</td>
<td>171-19</td>
</tr>
<tr>
<td>———</td>
<td>Interglacial find near Bolden</td>
<td>168-7</td>
</tr>
<tr>
<td>Lyakhov, L. L.</td>
<td>See Yakubovskiy, Yu. V.</td>
<td></td>
</tr>
<tr>
<td>Lyons, J. B., Jaffe, H. W., Gottfried, D., and Waring, C. L.</td>
<td>Lead-alpha ages of some New Hampshire granites</td>
<td>171-32</td>
</tr>
<tr>
<td>Lyubimova, Ye. A.</td>
<td>On the effect of the heat exchange by radiation in the thermal regime of the earth</td>
<td>170-199</td>
</tr>
<tr>
<td>———</td>
<td>The effect of redistribution of radioactive sources on the thermal history of the earth</td>
<td>168-174</td>
</tr>
<tr>
<td>Lyustikh, Ye. N.</td>
<td>Isostasy and isostatic hypotheses</td>
<td>170-214</td>
</tr>
<tr>
<td>———</td>
<td>On convection in the earth's mantle in accordance with the computations of Pekeris</td>
<td>170-207</td>
</tr>
</tbody>
</table>

M

Maaz, R. | See Bellulgi, Arnold. | |
<p>| McCarthy, G. R. | An annotated list of North Carolina earthquakes | 171-65 |
| ——— | A marked alignment of earthquake epicenters in western North Carolina and its tectonic implications | 169-31 |
| McCallum, G. J. | See Fergusson, G. J. | |
| McClay, J. F. | See Zmuda, A. J. | |
| McCulloh, T. H. | Simple Bouguer gravity and generalized geologic map of the northwestern part of the Los Angeles Basin, California | 170-197 |</p>
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macdonald, G. A.</td>
<td>Hawaiian volcanoes from 1949 to 1952</td>
<td>168-311</td>
</tr>
<tr>
<td>MacDonald, G. J. F.</td>
<td>Quartz coesite stability relations at high temperatures and pressures</td>
<td>168-186</td>
</tr>
<tr>
<td>MacDonald, K. L.</td>
<td>Penetration of the geomagnetic secular field through a mantle with variable conductivity</td>
<td>170-208</td>
</tr>
<tr>
<td>McFarland, E. Jr.</td>
<td>See Brannon, H. R.</td>
<td></td>
</tr>
<tr>
<td>McIntyre, D. B., and Christie, J. W.</td>
<td>Nature of faulting in large earthquakes</td>
<td>169-52</td>
</tr>
<tr>
<td>Mahadevan, C.</td>
<td>Investigations on the age of Madras granites and south Indian rocks</td>
<td>170-266</td>
</tr>
<tr>
<td>Mahadevan, C. and Aswathanarayana, U.</td>
<td>Radioactivity of charnockites and their petrogenesis</td>
<td>170-268</td>
</tr>
<tr>
<td>Maino, Armando, and Motta, Antonino</td>
<td>Preliminary note on the gravimetric survey of the area within the Folio 150, "Roma"</td>
<td>170-194</td>
</tr>
<tr>
<td>Manfredini, Antonio.</td>
<td>Geophysical study of the Piana delle Cinque Miglia, Folio 153, Agnone (central Italy)</td>
<td>169-123</td>
</tr>
<tr>
<td>————</td>
<td>Locating the ground waters in the Piana del Coll for the water supply of Palermo, Folio 249, "Palermo"</td>
<td>170-110</td>
</tr>
<tr>
<td>————</td>
<td>Locating springs beneath the stream bed of the Torrente Farlò—Folio 246, "Cittanova" (central Italy)</td>
<td>170-294</td>
</tr>
<tr>
<td>————</td>
<td>The geomagnetic importance of Andamans in Bay of Bengal</td>
<td>168-212</td>
</tr>
<tr>
<td>————</td>
<td>On the measurement of the electrical resistivity of the terrain for the foundation of the Sincrotrone Nazionale in the vicinity of Rome</td>
<td>170-108</td>
</tr>
<tr>
<td>————</td>
<td>Seismic apparatus for civil engineering problems</td>
<td>170-287</td>
</tr>
<tr>
<td>————</td>
<td>Some geophysical studies in the search for water made in central and southern Italy. Geotechnical aid to borings as a result of the geophysical study of the Piana della Marsiliana—Folio 135, "Orbetello" (central Italy)</td>
<td>170-109</td>
</tr>
<tr>
<td>————</td>
<td>Two investigations for water in the urban center of Rome</td>
<td>170-111</td>
</tr>
<tr>
<td>Mangan, G. B.</td>
<td>See Balsley, J. R.</td>
<td></td>
</tr>
<tr>
<td>Manukhov, A. V.</td>
<td>The approximation of thin layers with degenerated models</td>
<td>168-67</td>
</tr>
<tr>
<td>Markova, N. G.</td>
<td>See Vinogradov, A. P.</td>
<td></td>
</tr>
<tr>
<td>Martin, Hans.</td>
<td>Blowing up of both towers of the Ulrichskirche in Magdeburg on April 5, 1936.</td>
<td>170-293</td>
</tr>
<tr>
<td>Martin, Jean.</td>
<td>Note on an electrical phenomenon observed in an ice pit on the Greenland ice cap.</td>
<td>171-105</td>
</tr>
<tr>
<td>Martin, Maurice.</td>
<td>Current possibilities of electric and nuclear logging methods.</td>
<td>170-111</td>
</tr>
<tr>
<td>————</td>
<td>Chapter 1. Review of quantitative interpretation of electric logs</td>
<td>170-126</td>
</tr>
<tr>
<td>————</td>
<td>Present possibilities of the methods of electric and nuclear logs</td>
<td></td>
</tr>
<tr>
<td>Mason, R. G.</td>
<td>See Honda, Hirokichi.</td>
<td></td>
</tr>
<tr>
<td>Martinez, J. D.</td>
<td>See Howell, L. G.</td>
<td></td>
</tr>
<tr>
<td>Martischenko, L. G.</td>
<td>See Vinogradov, A. P.</td>
<td></td>
</tr>
<tr>
<td>Marussi, Antonio.</td>
<td>Gravimetric and magnetometric surveys performed by the Italian Karakorum expedition 1954-5.</td>
<td>169-170</td>
</tr>
<tr>
<td>Masatsuka, Akira.</td>
<td>See Honda, Hirokichi.</td>
<td></td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Matsuoka, Bun'ichi. See Kataoka, Hisashi.
Matsumoto, Toshimatsu. See Satō, Yasuo.
Mauersberger, Peter. Calculation of the effect of altitude on the main geomagnetic field... 170-227
— Consideration of the oblateness of the earth in the potential development of the main geomagnetic field... 170-226
— Determination of the external of the main geomagnetic field................. 169-214
— On the determination of the non-potential part of the main geomagnetic field.. 169-215
— The mean energy density of the main geomagnetic field at the earth's surface and its secular variation... 169-213
Maurette, Christian. See Hughes, D. S.
Mantort, Jacques de. See Reussner, Alain.
Mayne, K. I. See Damon, P. E.
Mazina, Tetchi. See Katayama, Nobuo.
Medvedev, S. V. Seismometric observations in the Ashkhabad zone............. 168-38
— The dependence of seismic effects on the frequencies of natural vibrations of structures... 168-23
— The effect of inner friction forces on the vibration of structures during earthquakes... 168-25
— The oscillation of a vertical system acted upon by horizontal seismic impulses................................. 168-24
Melchior, F. J. On the effect of earth tides on the oscillations of the water level of Lake Tanganyika at Albertville.. 168-57
Melton, B. S., and Bailey, L. F. Multiple signal correlators.......................... 170-142
Melton, B. S., and Karr, P. R. Polarity coincidence scheme for revealing signal coherence... 170-141
Mendonça Dias, A. A. de. A hypothetical model of the geomagnetic secular variation in Western Europe and the North Atlantic............... 168-216
Menzel, Heinz, and Rosenbach, Otto. Theoretical investigations of the effect of the weathered layer on the spectrum of elastic waves in seismic reflection surveys... 171-324
Mercer, V. J., and Redford, W. H. New calibration and conversion techniques for radioactivity logs.. 170-274, 171-315
Merlin, O. H., Picciotto, E., and Wilgain, S. Photographic study of the distribution of radioactivity in the Adamello granodiorite................. 169-259
Merritt, D. F., and Hambleton, W. W. Relation of an airborne magnetic profile to the geology along the Kansas-Nebraska border.................. 169-243
Metre, W. B. See Evans, P.
Meyer, V. A. Application of geophysical logging on polymetallic ore deposits.. 170-135
— Separation of sulfides in drill holes by measuring the artificially produced galvanic couples... 171-135
— See also Veshev, A. V.
Meyer-Abich, Helmut. The active volcanoes of Guatemala and El Salvador (Central America)... 168-310
Michel, Jean. See De Bremaecker, J. Cl.
Michel, Robert. See Panguaud, Claude.
Michot, Paul. The geology of the deep zones of the earth's crust..................... 168-189
Migaux, Léon, and Kunez, Géza. Contribution of surface electrical methods to petroleum prospecting (with discussion)................................. 168-93
Mikhaliovik, Jelenko. Seisnicity of southwestern and southern Macedonia...... 169-34
Miki, Haruo. On the earth's mantle.. 169-196
Minakami, Takeshi. Report on volcanic activities and volcanological studies in Japan for the period from 1951 to 1954................................. 168-318
— Report on volcanology: Japan... 168-21
Minakami, Takeshi, and Morimoto Ryōhei. Volcanic activities in Japan during the years 1949-1953.. 168-315
Minakami, Takeshi, and Sakuma, Shūzō. On magnetization of Mt. Fuji (Huži) and other volcanoes in Japan. 169-235

Minato, Masao; Yagi, Kenzo; and Hnathashi, Mitsu. Geotectonic synthesis of the green tuff regions in Japan. 168-136

Mirtsching, A. Development of petroleum prospecting in the Soviet Union in the years 1950-1955. 168-139

Misener, A. D., Bremner, P. C., and Hodgson, J. H. Heat flow measurements in permafrost at Resolute Bay, Northwest Territories. 171-196

Mitsui, Takanori. See Naniba, Munetosi.

Mizuk, L. Y. See Karandeyev, K. B.

Mo, Kyoo. Experimental study of diffraction of water surface waves. 168-72

Moiseyenko, F. S. Experiences gained in geologic surveying of the district of Nerchinsky Zavod in the Eastern Transbaykal region using geophysical data. 170-139

Mokhova, E. N. Numerical determination of the magnetization of a prism with constant susceptibility. 171-236

Mogli, Kyoo. Experimental study of diffraction of water surface waves. 168-72

Molchan, A. D. Profitable geophysical case histories. 168-128

Molchan, A. D. Profitable geophysical case histories. 168-128
Nafe, J. E., and Drake, C. L. Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. 170-88

See also Sutton, G. H.

Nagamune, T. M. Waves in a medium with double surface layers. 169-86

Nagata, Takesi, and Akimoto, Syun-iti. Magnetic properties of ferromagnetic limonites. 168-232

Nagata, Takesi, Akimoto, Syun-iti, Uyeda, Selya, Shimizu, Y., Ozima, M., and Kobayashi, K. Paleomagnetic study on a Quaternary volcanic region in Japan. 171-269

Nagata, Takesi. Uyeda, Selya, and Ozima, M. Magnetic interaction between ferromagnetic minerals contained in rocks. 171-258

See also Akimoto, Syun-iti.

Nairn, A. E. M. Palaeomagnetic collections from Britain and South Africa illustrating two problems of weathering. 170-242

Nakabayashi, Kazutaka. Results of electric logging in coal fields of Japan. 169-116

Nakagawa, Ichiro. See Nishimura, Eiichi.

Nakagawa, Kyoji. See Kanai, Kiyoshi.

Nakamura, Kohei. On the viscoelastic nature of the earth's core. 170-204

See also Honda, Hirokichi.

Nakamura, S. T. On the surface figure of the earth, the moon, and other planets. 169-143

Nakamura, S. T., and Onuki, Akira. Magnetic anomalies along the Bay of Yatsuhiro, Kumamoto prefecture. 169-246

Namba, Munetosi. A consideration to the process of volcanic explosion. Part 6 of Some studies on Volcano Aso and Kuju. 169-326

Namba, Munetosi. A consideration of the process of earthquake frequency followed by a volcanic explosion. Part 8 of Some studies on Volcano Aso and Kuju. 169-328

Namba, Munetosi. Annual variation of internal energy of Volcano Kilauea. Part 12 of Some studies on Volcano Aso and Kuju. 169-330

Namba, Munetosi. Earth current at Khailar. Part 13 of Some studies on Volcano Aso and Kuju. 169-27

Geophysical study of Arizona Meteorite Crater. Part 10 of Some studies on Volcano Aso and Kuju. 169-329

Namba, Munetosi, and Murota, Tosisato. On the shape of old Aso crater and the distribution of the central cones and hot springs. Part 3 of Some studies on Volcano Aso and Kuju. 169-323

Namba, Munetosi; Murota, Tosisato; and Mitsui, Takanori. Annual volcanic variation of Kuju. Part 1 of Some studies on Volcano Aso and Kuju. 169-321

On the periodicity of active volcanoes Aso and Kuju. Part 2 of Some studies on Volcano Aso and Kuju. 169-322

Nandi, J. N. Seismic exploration of the continental shelf off the west coast of India. 169-200

Naqvi, A. M., and Bhargava, R. N. Recurrence tendency of geomagnetic activity during the current sunspot minimum. 168-222

Naruse, Yō. See Sugimura, Arata.

Nasu, Nobuji. See Kanai, Kiyoshi.

Nature. Bombardment of the earth by meteors. 168-134

Naydin, D. P. See Teys, R. V.

Neale, R. N. See Cagniard, L.

Neher, H. V. Gamma rays from local radioactive sources. 169-252

Nelson, Jack. A report on electric and MG-electric logs in the Fairbanks Quadrangle, Sullivan County, Indiana. 171-133

Nesterenko, I. P. See Gorelik, A. M.

Nettleton, L. L. Gravity survey over a Gulf Coast continental shelf mound. 170-192

Submarine gravity detailing, San Luis Pass Dome, Brazoria County, Texas. 169-176

Nevolin, N. V. Nature of the gravity and magnetic anomalies of the central and eastern regions of the Russian platform. 171-187

Ney, E. P. See Elsasser, W. M.

Nicolaïen, L. O. Solid diffusion in radioactive minerals and the measurement of absolute age. 168-10

See also Tilton, G. R.

Nicolet, Marcel. On the origin of atmosphere argon. 169-205

The aeronomic problem of helium. 170-222

Nieelsen, L. E. Preliminary study on the regimen and movement of the Taku glacier, Alaska 168-186

Nier, A. O. Determination of helium isotope abundance ratios 171-219

Nikolina, V. N. The anomalies of alternating electromagnetic fields over cylindrical heterogeneities 168-90

Ninagawa, Shinji. Sclptic prospecting at Chiba district-Sclptic prospecting on Kwant6 district (I) 169-308

Nishihara, Masao. Deformational characteristics of rocks under low stresses 170-296

Nishimura, Eiich. On the change of state of the materials in the earth's crust with relation to seismic activity 171-85

Nishimura, Eiich.; Ichinohe, Tokio; and Nakagawa, Ichiro. A consideration on earth tidal change of gravity 170-66

Nishtake, Teruo. Elastic properties of rocks with relation to the earth's interior 169-195

Nodila, M. Z. Results of the exploration of a sharply localized magnetic anomaly of extreme intensity 169-247

Norelius, R. O. *See* Swift, Gilbert.

NorninIII, Armando. The gradient of the gravitational field 171-173

Noritomi, Kazuo, and Asada, Akie. Studies on the electrical conductivity of a few samples of granite and andesite 169-121

Noritomi, Kazuo, and Nabetani, Sachio. On the specific heat of rocks and the velocity of elastic waves within the outer layer of the earth's crust 169-188

Novozhilova, M. Ye. The field of a polarized sphere near a contact 171-115

Nyuard, R., Sigmond, R. S. Radiocarbon dating in Trondheim 170-15

Ogiwara, Kenzo. Gravity survey in Zumma Prefecture 168-167

Ogura, Sadahiko. *See* Okabe, Katsuhiko.

Ogurtsov, K. I. Quantitative investigations of the wave processes in elastic semispace in response to different types of exciting forces 168-60

Ohashi, Syuji. On the SP phenomena at ore deposits and their surrounding layers 168-85

Okabe, Katsuhiko; Yamanaka, Kaoru; and Ogura, Sadahiko. Spontaneous potential measured at Besshi mine 170-113

Okabe, Sigur. On some relations between the hot spring and radioactivity 169-264

Oliver, J. E., and Ewing, Maurice. Higher modes of continental Rayleigh waves 170-65

—— Microseisms in the 11- to 18-second period range 169-249

Olsen, J. *See* Esperensen, J.

Olsen, R. W. The technical-economical aspects of automatic data reduction 169-127

Ono, Yoshihiko. *See* Honma, Ichirô.

Onuki, Akira. *See* Nakamura, S. T.

Onwumechill, C. A. *See* Alexander, N. S.

Ooba, Syohachi. Study of the relation between the subsoli conditions and the distribution of damage percentage of wooden dwelling houses in the province of Tōtōmi in the case of the Tōnankai earthquake of December 7, 1944 171-74

Opdyke, N. D. *See* DuBois, P. M.

Öpik, E. J., and Singer, S. F. Reinterpretation of the uranium-heliumages of iron meteorites 170-18

Opitz, D. The lateral effect in seismic reflection surveys 169-298
Abstract

Orekhovskiy, F. V., and Bykov, A. A. Experiences in the use of seismic exploration methods under winter conditions in the Kuybyshev region along the Volga River. 169-310

Orgeval, M., and Zimmerman, M. Petroleum possibilities of the Subalpine zone, southern basin. 170-190

Osada, K. See Kanai, Kiyoshi.

Osohia, J. S. See Muench, N. L.

Ostlund, H. G. Stockholm natural radiocarbon measurements. 170-16

Ostrovskiy, A. Ye. The slow movements of the earth's crust during violent earthquakes. 168-37

Ovchinnikov, I. K. Electrical exploration methods for pyrite deposits beneath a screening surface layer. 170-92

Ozawa, Izu. On the observation of crustal deformation at Osakayama. 171-78

Ozima, M. See Nagata, Takesi.

P

Pakiser, L. C., and Black, R. A. Exploration for ancient channels with the refraction seismograph. 168-296

See also Zietz, Ildore.

Pallister, J. W. See Harris, N.

Pananskenko, G. D. Sismicity of the Kola Peninsula and northern Karelia. 171-56

Pantin, H. M. Fossiliferous concretion from the shelf south-east of Cape Campbell, New Zealand. 170-14

Parrhomenko, E. I. See Volozroich, M. P.

Parrack, A. L. See Kaufman, S.

Parry, J. H. The problem of reversed magnetizations and its study by magnetic methods. 171-259

Parwel, A., Ryhage, R., and Wickman, F. E. Natural variations in the relative abundance of the nitrogen isotopes. 169-208

Pasechnik, I. P. Contribution to the study of the seismic activity of the Khait epicentral zone. 169-48

See also Groshevov, G. V.

Paterson, M. S. Lüders' bands and plastic deformation in the earth's crust. 168-304

Patterson, A. M. See Sollogub, V. B.

Patterson, C. C. Age of meteorites and the earth. 171-5

Patterson, R. L., Jr., and Bilford, I. H., Jr. Atmospheric carbon-14. 170-6

Paul, W. Lead isotope variations. 171-224

Pavinsky, P. P., and Kozulina, Ya. N. The field of a vertical magnetic dipole over a two-layer medium. 168-89

Pearson, W. J. An investigation into the geological significance of some magnetic anomalies in the Lac la Ronge area of northern Saskatchewan. 171-280

Péch, Karel. The waves of the Rayleigh type in a layered medium (first part). 171-99

Péčová, Jana. Contribution to the study of straty (earth) currents. 168-15

Pegum, D. M. Magnetic investigations in the Kadina-Wallaroo and surrounding areas. 169-248

Pelaez, V. R. The volcanic activity of Catamaran and Hibok-Hibok, Camiguin Island, Mindanao, of September 1948. 168-332

Peloschek, H. P. Contributions to the geology of Timor XI. Reports on magnetic observations and radioactive measurements in Indonesian Timor. 170-260

Perrenoud, M. J. See Glangeaud, Louis, and Reussner, Alain.

Perry, D. See Brannon, H. R., Jr.

Peter, P. W., and Martin, R. G. Possible application of the reflection seismograph in determining structural controls favorable for uranium deposition. 168-297

Peters, B. Radioactive beryllium in the atmosphere and on the earth. 168-202

Petraschen', G. I. The rational method of solving problems of the dynamic theory of elasticity of stratified isotropic media with plane-parallel separating boundaries. 168-64

Petraschen', G. I., and Uspeensky, T. N. The propagation of waves in stratified media, isotropic within individual elastic strata. 168-65

Petraschen', G. I., and Yenal'skly, V. A. Certain interference phenomena in media containing thin plane-parallel layers. Part 1. 168-66

Petrov, L. V. On one method of solving the inverse problem of gravimetry. 171-174
INDEX TO GEOPHYSICAL ABSTRACTS 168–171, 1957

Petrova, G. N. Magnetic stability of rocks.. 169–229
Petrovskiy, A. D. See Berdichevskiy, M. N.
Petrucci, Giuseppe. The electrical field of a vertical disturbing layer............. 170–91
Petijohn, F. J. See Waterburg, G. J.
Peyve, A. V. Relation of sedimentation, folding, volcanism, and mineral deposits to deep fractures. Main types of deep fractures. Part 2................................. 168–133
Pécaud Robert. See Glangeaud, Louis.
Picchetto, E. E. Present data on the age of the earth and of the solar system.... 171–3
—— Use of liquid emulsions in the study of the radioactivity of rocks............. 169–253
Picchetto, E. E., and Wilgain, S. Confirmation of the half life of thorium-232... 168–257
See also Arrhenius, G., Deutsch, Sarah, Koczy, F. F., Ledent, D., and Merlin, O. H.
Pigrov, V. M. Some observations on the recording of the SP curve when using the station OKS.. 169–119
Piontkovskiy, S. S. Instrument for determining the remanent magnetism of rocks. 168–229
Pirson, S. J. Formation evaluation by log interpretation................................ 169–113
Plyp, B. I. Klyuchevskaya Sopka and its eruptions during the years 1944–1945 as well as in the past.. 170–301
Plassard, Jacques. State of gravimetry in Lebanon at the end of 1953............. 170–196
Plyusnin, M. I. See Veksler, V. I.
Poborski, Josef. See Przewlocki, Kazimierz.
Poddar, M. C. Preliminary report of the Assam earthquake, 15th August, 1950... 170–40
Pohly, R. A. Use of gravity in locating geological traps.............................. 169–182
Polani, G. See Gabrielli, L.
Polak, L. S., and Rappoport, M. B. Correlation between electrical and elastic properties of sedimentary rocks......................... 169–122
—— The absorption of gamma rays by sedimentary rocks............................. 169–254
Polanski, Antoni. Critical remarks on some geochemical speculations concerning atmospheric argon.. 170–217
Polevaya, N. I. Absolute age of some magnetic complexes of the USSR according to data of the argon method.. 170–83
Poleiko, F. Z. See Yurkova, L. A.
Pommier, Gilbert, and Richard, Henri. Supermultiplication of charges and selenograms in the Sahara (northern zone)............................ 171–331
Popov, Ye. I. Experience in changing the dimensions of the quartz system of the Nørgaard type and CH3 gravimeters............................. 170–179
—— Investigation of the possibility of decreasing the temperature coefficients of quartz gravimeters through the use of glass with low thermoelastic coefficient.. 171–170
Porter, L. D. See Knopoff, L.
Possegla, G. A. See Petrova, G. N.
Posgay, Karoly. Consideration of explosion conditions in shallow seismic measurements.. 171–321
Potratz, H. A. See Rate, G. L.
Pott, G. See Graesser, E.
Poulaert, G. See Koczy, F. F., and Ledent, D.
Potuchanskiy, A. A. See Gandszyny, G. A.
Powers, H. A. Activity of Alaskan volcanoes, 1949–1953............................. 168–308
Pramanik, S. K., and Ganguli, M. K. Sunspots and geomagnetic variation........ 168–223
Prangishvili, G. M. See Bukhnikashvili, A. V.
—— Determination of crustal structure from phase velocity of Rayleigh waves. Part 1.. 168–192
—— Determination of crustal structure from phase velocity of Rayleigh waves. Part 2.. 169–199
—— Rigidity of the earth’s core.. 168–184
Press, Frank, and Gutenberg, Beno. Channel P waves at the earth’s crust........ 168–45
Press, Frank, and Healy, John. Absorption of Rayleigh waves in low-loss media... 171–101
See also Ewing, Maurice.
Preston, F. W. Thermal conductivity in the depths of the Earth...................... 168–177
Prider, R. T. Pre-Cambrian succession in Western Australia........................ 170–2
AUTHOR INDEX

Abstract

Prosen, D. Operations preceding establishment of the gravimetric network of the FNR Yugoslavia. 168-171

Pryor, W. A. Groundwater geology of White County, Illinois. 169-120

Przewlocki, Kazimierz. The application of radioactive methods in well logging. 168-270

Przybyszewski, Eugeniusz. Comparison of La Cour magnetometers at the geophysical observatory on the Hel Peninsula. 170-233

Puchkov, S. V. On the limiting intensity of earthquakes on basement rock. 168-28

Pudovkin, I. M. Variations of the magnetic field during precise regional aeromagnetic surveys. 168-250

Quarta, F., and Maino, C. Certain considerations on well velocity measurements by Agip Mineraria in Italy and especially on the Po plain. 170-291

Quinn, A. W., Jaffe, H. W., Smith, W. L., and Waring, C. L. Lead-alpha ages of Rhode Island granitic rocks compared to their geologic ages. 171-33

Quiring, Heinrich. Continental drift and geomagnetism. 171-264

Rabe, C. L. A relation between gamma radiation and permeability, Denver-Julesburg basin. 171-317

Rafter, T. A., and Fergusson, G. J. The atom bomb effect: Recent increase in the 14C content of the atmosphere, biosphere, and surface waters of the oceans. 171-215

See also Fergusson, G. J.

Raitt, R. W. Seismic refraction studies of Eniwetok atoll. 170-210

— Seismic refraction studies of the Pacific Ocean Basin. Part 1: Crustal thickness of the central equatorial Pacific. 168-196

Rapoport, M. B. See Polak, L. S.

Raspopov, O. M. See Ochapovsky, B. L.

Rataikova, L. I. See Berson, L. S.

Rayther, L. D. Nomogram for determination of effective velocities values. 171-328

Redford, W. H. See Merced, V. J.

Reed, G. W., and Turkovich, Anthony. The uranium content of two iron meteorites. 171-10

— Uranium, helium, and the ages of meteorites. 171-7

See also Hamaguchi, Hiroshi.

Reich, Hermann. Deep boundary surfaces seismically determined in southern Germany and their geological significance. 171-211

Rell, O. E. Damage to Nevada highways. 171-66

See Tocher, Don.

Reiter, Reinhold. Variations in concentration and ratios of radon and thoron derivatives in the air according to measurements in the northern Alps. 171-307

Renner, Janos. Regional character of deviations of the vertical. 171-151

Reussner, Alain; Caire, Andre; Glangeaud, Louis; Goguel, Jean; Guilbaume, Marcel; Mauzot, Jacques de; Munck, Fernand; Perrenoud, M. J.; Ricour, Jean; and Stanudin, Boris. Three examples of hydrogeological surveys of alluvium in the department of Jura. 168-98

Revelle, Roger, and Sues, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. 170-219

Rey Pastor, Alfonso. Morphotectonic study of the Guadalquivir fault. 171-68

— The Central Segura region and the earthquake at Ojós (Murcia) of May 2, 1950. 170-46

— Seismotectonic study of the southeastern part of Spain. 170-45

Reynolds, J. H. K-A dating. 171-39

463327—58—5
Reynolds, J. H., and Lipson, J. L. Rare gases from the Nuevo Laredo Stone meteorite .. 171-8
Reynolds, M. A. See Taylor, G. A.
Reyer, D. See Hourcq, V.
Rice, D. A. See Morelli, Carlo.
Richard, Henri. See Pommier, Gilbert.
Richards, A. F., and Dietz, R. S. Eruption of Bârœna volcano, San Benedicto Is., Mexico................................. 168-323
Richter, D. H. See Davis, W. E.
Ricour, Jean. See Reussner, Alain.
Riel, W. J., van. Some aspects of the exploration of the Peel region........ 169-140
Riezel, W., and Kauw, G. Natural radioactivity of Ce 142................. 171-301
Rigg, G. B., and Gould, H. R. Age of Glacier Peak eruption and chronology of postglacial peat deposits in Washington and surrounding areas.................. 169-9
Rikitke, Tsuneji; Yokoyama, Izumi; and Satô, Setsuko. Anomaly of the geomagnetic Dst field of the magnetic storm on June 18-19, 1936 171-244
Rikitake, Tsuneji; Yokoyama, Izumi; and Satô, Setsuko. The geomagnetic Dst field of the magnetic storm on June 18-19, 1936 171-244
Ricour, Jean. See Reussner, Alain.
Riel, W. J., van. Some aspects of the exploration of the Peel region........ 169-140
Riezel, W., and Kauw, G. Natural radioactivity of Ce 142................. 171-301
Rigg, G. B., and Gould, H. R. Age of Glacier Peak eruption and chronology of postglacial peat deposits in Washington and surrounding areas.................. 169-9
Rikitke, Tsuneji; Yokoyama, Izumi; and Satô, Setsuko. Anomaly of the geomagnetic Dst field of the magnetic storm on June 18-19, 1936 171-244
Rikitake, Tsuneji; Yokoyama, Izumi; and Satô, Setsuko. Anomaly of the geomagnetic Dst field of the magnetic storm on June 18-19, 1936 171-244
Ricour, Jean. See Reussner, Alain.
AUTHOR INDEX 413

Abstract

Roques, Maurice, and Thiebaut, Jean. On the absolute age of the migmatites of the Saint Barthélemy massif, in the Pyrenees of Ariège... 169-19

Rosen, R. Note on some observations of radon and thoron exhalation from the ground.. 170-269

Rosenbach, Otto. Basic observations on the theory and practice of the second derivative method in the interpretation of gravity data... 170-172

See also Menzel, Heinz.

Rosenqvist, I. T. See Moum, Johan.

Rosoff, C. Geophysical well-logging in exploration for water and mineral exploitation .. 168-105

Rossi, Dino. Radioactivity logging in the laboratory in the investigation of endogene steam.. 169-272

Röthisberger, Hans. On the seismic and petrographic characteristics of some Molasse rocks, including the description of methods of determining grain sizes in consolidated material... 170-70

Roy, S. K. New views on the 1917 eruption of the volcano Boquerón, El Salvador, Central America.. 170-304

—— The present condition of the volcanoes in Central America... 170-303

Roze, T. N. Approximate estimation of the depth of magnetized bodies... 169-238

—— Determination of the characteristics of a deposit from magnetic and gravitational observations... 169-237

Rozova, E. A. On the seismicity of the basin of the Naryn River... 169-43

—— The Alaykel’ earthquakes of April 15-20, 1955... 169-49

Rozova, E. A., and Green, V. P. Distribution of the epicenters of earthquakes which occurred in the Kirghiz S. S. R... 171-62

Rozova, E. A., and Korolev, V. G. Seismicity of the region around Frunze... 169-42

Rubinshteyn, M. M. See Byus, Ye. I.

Rudakov, A. G. See Vinin, A. P.

Rul’ev, B. G. See Kharin, D. A.

Rumberfeld, B. E. See Broding, R. A.

Runcorn, S. K. Palaeomagnetic comparisons between Europe and North America... 169-230

—— Rock magnetism.. 169-232

—— The sampling of rocks for palaeomagnetic comparisons between the continent... 170-241

See also Dubols, P. M.

Ruprechtová, Libuše. Regional traveltime curves of PP and SS waves for the Praha station... 171-86

Russell, R. D. Abundances of meteoric lead isotopes... 168-203

—— Interpretation of lead isotope abundances... 171-31

See also Farquhar, R. M.

Russell, R. D., and Ahrens, L. H. Additional irregularities among discordant lead-uranium ages... 169-15

Russell, R. D., and Farquhar, R. M. Isotopic analyses of leads from Broken Hill, Australia [and] Hawley, J. E. Spectrographic analyses... 170-21

Rustanovich, D. N. Certain questions related to the study of seismicity of the Ashkhabad region... 169-44

Rutten, M. G., Everdingen, R. O, van, and Zijderveld, J. D. A. Palaeomagnetism in the Permian of the Oslo Graben (Norway) and of the Estèrel (France)... 170-250

Ryabinin, L. A., and Znamenskiy, V. V. New data on recording multiple waves in seismic exploration... 169-295

Rybár, István. Eötvös torsion balance model E-54... 171-169

Ryhage, R. See Parwel, A.

Ryng, S. I. The deep geological structure of White Russia’s territory as revealed by geophysical investigation... 171-139

Ryes, Yu. S. Experimental investigation of induced polarization in electronic and ionic conductors... 170-93

S

Sacks, I. S. A low-noise transistorized seismic preamplifier... 170-285

Saibel, Edward. See Aggarwala, B. D.

Saint Ours, J. de. See Besairie, Henri.

Saito, Tomosaburô. On the magnetic properties of natural pyrrhotite... 168-230

See also Murozumi, Masayoshi.

Sakuma, Shûzô. On the period and amplitude of volcanic tremors... 169-334

See also Minakami, Takeshi.
INDEX TO GEOPHYSICAL ABSTRACTS 168–171, 1957

Abstract

Salgueiro, P. R. Some aspects of gravimetry in Latin America 171–185
Salvatori, Henry. New developments in seismic methods 168–277
Samsonov, N. N. See Abel'sky, M. E.
Sano, Shun'ichi. See Sato, Mitsunosuke.
Sanudo, Guillermo. Gravimetric survey of the northern Adriatic Sea with a remote control gravimeter 171–180
Sardarov, S. S. New reactor for separation and purification of radiogenic argon 170–28
Sarrot-Reynaud, J. Distribution of the radioactivity of the Carboniferous, Permian and Triassic sediments of the La Mure dome (Isère) 169–258
Sassa, Kenzo. Some problems on the forecasting of the earthquake (II). On the observation of the crustal strain accompanied by the earthquake 171–84
Sassa, Kenzo, and Nishimura, Eiichi. On phenomena forerunning earthquakes 169–70
Sato, Gakuji. See Kunori, Soichi.
Sato, Mitsunosuke, Iwasaki, Syoji, and Sano, Shun'ichi. The airborne radiometric surveying in the southern parts of Okayama Prefecture and in the central parts of Tottori Prefecture 170–276
Sato, Ryosuke. On the propagation of tremors along the interface of water and solid produced by a point source in a solid. Part 2 171–97
Sato, Setsuko. See Rikitake, Tsuneji.
Sato, Yasuo. Definition, classification and representation of surface waves 169–82
Study on surface waves XIII. Nomograph for the phase velocity of Love waves in doubly stratified medium 171–100
Sato, Yasuo, and Matumoto, Toshimatu. On the relay computer designed for correlogram analysis 168–49
Savitz, C. H. See Walling, Dean.
Saxov, S. E. A gravity survey of the vicinity of Ottawa 168–158
Some gravity measurements in Thy, Mors, and Vendsyssel 170–189
Schäffer, A. E., and Willmore, P. L. The use of a least squares method for the interpretation of data from seismic surveys 168–293
Schmelewitsch, S. J. See Kucharenko, N. K.
Schleusener, Alfred. Remarks on the free-air gravity map of Central Europe 169–180
Schmidt, Gerhard. Self-potential measurements underground at the Siegerland siderite mines 168–96
Schmidt, Herbert. Investigations of the theory and practice of geomagnetic oscillation measurements with specifications of a new oscillation measuring device 168–226
Schneer, C. J. See Holser, W. T.
Schoellhorn, S. W. See Breek, H. R.
Scholle, J. G. J. On the seismic waves in a spherical earth 169–78
Schrage, Ingrid. Experimental investigations on the induced galvanic polarization of sulfide ores and graphite-bearing rocks 170–131
Schraub, A. See Aurand, K.
Schumacher, Ernst. A lower limit for the age of the universe 169–1
Age of meteorites by the Rb 87–Sr 87 method 171–8
Schwartz, G. M. See Meuschke, J. L.
Schwarzer, D. See Fireman, E. L.
Schwegler, Felix. Fluctuations of the earth's axis 170–67
Seedsman, K. R. Magnetic and gravity investigations at Curramulka 171–279
AUTHOR INDEX

Abstract

Seedsman, K. R., and Harris, J. L. Airborne scintillometer survey of eastern Eyre Peninsula. 169-274

Sellman, P. See Gane, P. G.

Sellschop, J. P. F. See Gane, P. G.

Semenov, A. S. Electrical exploration by the natural potential method. 169-94

Geophysical exploration methods for deposits of polymetallic ores. 171-144

Semenov, A. S., Novoshilova, M. E., and Veshev, A. V. The variable spontaneous electric field in the ground. 171-118

Semenov, M. V. See Yoffe, L. M.

Senftle, F. E. Half-life of Th228 and branching ratio of Bi212. 171-303

Senftle, F. E., Farley, R. A., and Lazar, N. Half-life of Th228 and the branching ratio of Bi212. 168-258

Senftle, F. E., Stieff, L. R., Cuttitta, Frank, and Kuroda, P. K. Comparison of the isotopic abundance of U238 and U235 and the radium activity ratios in Colorado Plateau uranium ores. 169-210

Serson, P. H., and Hannaford, W. L. W. A statistical analysis of magnetic profiles. 169-224

Shamina, O. G. Frequency analysis of seismic oscillations. 168-40

See also Riznichenko, Yu. V.

Shan'gin, N. V. On the damping of seismic waves. 169-296

Shapiro, D. A. Simultaneous recording of the apparent resistivity and the SP curves when using single-pole potential probe. 169-101

Sharp, R. P. Glaciers in the Arctic. 171-164

Shavrova, N. N. A note concerning the radium content of the lavas of the volcanoes belonging to the Klyuchevskaya group. 168-260

Shaw, D. M. Comments on the geochemical implications of lead-isotope dating of galena deposits. 170-224

Shebalin, N. V. See Andreyev, S. S.

Shepard, F. P. Northward continuation of the San Andreas fault. 170-158

Shereshevskaya, S. Y. Results of gravimetric investigations in the depression of the Donetz and Donetz rivers and the northwestern borderlands of the Donetz fold. 171-186

Shibata, Isamu. Measurements of radioactivity in the Saga coalfield, Kyushu. Supplementary report on the radioactivity of coal-measures in some coalfields of Kyushu. 169-270

Shibata, Kihon. Study of spontaneous polarization for the veins at Nishimurayama-gun, Yamagata Prefecture. 168-95

Shillibeer, H. A. See Stevens, J. R.

Shima, Etsuzo. Note on the depth calculation by the seismic refraction method. 170-283

Shimazu, Yasuo. See Takeuchi, Hitoshi.

Shimizu, Y. See Nagata, Takesi.

Shimomura, H. See Iwasaki, I.

Shurbet, D. H., and Ewing, Maurice. T phases at Bermuda and transformation of elastic waves. 170-82

Shurbet, G. L., and Worzel, J. L. Gravity anomalies and structure of the West Indies, Part III. 168-170

——— Gravity measurements in Oriente Province, Cuba. 168-160

——— Gravity observations at sea in USS \textit{Ongser}, Cruise III. 168-155

——— Gravity observations at sea in USS \textit{Diablo}. 169-171

See also Worzel, J. L.

Sicardi, Ludovico. The Solfatara di Pozzuoli. 169-338

Sigmond, R. S. See Nydal, B.

Sigurjónsson, Th. Direction of magnetization in Icelandic basaltas. 170-254

Silveya, O. I. See Riznichenko, Yu. V.

Sima, Hiromu. See Honda, Hirokiichi.

Simard, G. L. See Gondouin, M.

Simola, Torsti. See Tuominen, H. V.

Simon, Béla. Fifty years of Hungarian seismological investigations. 171-59

Simons, L. H. See Brannon, H. R., Jr.

Singer, I. A., and Brown, R. M. The annual variations of sub-soil temperatures about a 600-foot circle. 168-179

Singer, S. F. The origin and age of meteorites. 171-4

See also Opik, E. J.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinitsyna, Z. L.</td>
<td>On the determination of small amounts of radon and thoron in mixtures of them.</td>
<td>171-306</td>
</tr>
<tr>
<td>Sipahiglu, Osman</td>
<td>On the time interval between chromospheric eruptions and geomagnetic disturbances.</td>
<td>168-219</td>
</tr>
<tr>
<td>Sirim, A. N., and Timerbayeva, K. M.</td>
<td>The hot springs of the Karymskchina Valley.</td>
<td>168-318</td>
</tr>
<tr>
<td>Skeels, D. C.</td>
<td>Correlation of geological and geophysical data.</td>
<td>168-114</td>
</tr>
<tr>
<td>Skelton, J. D.</td>
<td>See Katsman, S.</td>
<td></td>
</tr>
<tr>
<td>Skoczek, Hanna</td>
<td>See Gryglewicz, Zofia.</td>
<td></td>
</tr>
<tr>
<td>Skorupa, Jan.</td>
<td>A rapid and convenient method of evaluating effective velocities from traveltime curves of reflected waves.</td>
<td>169-301</td>
</tr>
<tr>
<td>Skuridin, G. A.</td>
<td>On the theory of the dissipation of elastic waves by curved boundaries.</td>
<td>169-80</td>
</tr>
<tr>
<td>Slaucitajs, Leonidas</td>
<td>Geomagnetic measurements in the region of the Antarctic Peninsula, adjacent islands, and the Weddell Sea in 1951-56.</td>
<td>169-221</td>
</tr>
<tr>
<td>Smith, R.</td>
<td>See Whetton, J. T.</td>
<td></td>
</tr>
<tr>
<td>Skuridin, G. A.</td>
<td>On the theory of the dissipation of elastic waves by curved boundaries.</td>
<td>169-80</td>
</tr>
<tr>
<td>Skuridin, G. A.</td>
<td>On the theory of the dissipation of elastic waves by curved boundaries.</td>
<td>169-80</td>
</tr>
<tr>
<td>Smith, R.</td>
<td>See Whetton, J. T.</td>
<td></td>
</tr>
<tr>
<td>Sokolov, K. P.</td>
<td>Geologic interpretation of the data obtained from magnetic surveying.</td>
<td>170-257</td>
</tr>
<tr>
<td>Sollogub, V. B.</td>
<td>The tectonic structure of the Precarpathian depression according to seismic data.</td>
<td>171-338</td>
</tr>
<tr>
<td>Steck, I. Ye.</td>
<td>The effect of secondary processes in the age determination of rocks by radioactive methods.</td>
<td>169-13</td>
</tr>
<tr>
<td>Stark, Hans.</td>
<td>Formation and cause of a fissure zone in the unconsolidated deposits of the Menderes valley during the earthquake of July 16, 1955.</td>
<td>171-64</td>
</tr>
<tr>
<td>Starodubrovskaya, S. P.</td>
<td>Experiences from an attempt to locate the buried faults through the dynamic characteristics of refracted waves.</td>
<td>170-279</td>
</tr>
<tr>
<td>Steenama, J. J. S.</td>
<td>See Schürmann, H. M. E.</td>
<td></td>
</tr>
<tr>
<td>Steineman, Samuel.</td>
<td>Flow and recrystallization of ice.</td>
<td>169-148</td>
</tr>
<tr>
<td>Steinert, Harald.</td>
<td>Fossil magnets as tools of earth history.</td>
<td>168-249</td>
</tr>
<tr>
<td>Stevens, G. R.</td>
<td>Earth movements in the Wellington area.</td>
<td>168-22</td>
</tr>
<tr>
<td>Stevens, J. R., and Shillibeer, H. A.</td>
<td>Loss of argon from minerals and rocks due to crushing.</td>
<td>169-23</td>
</tr>
<tr>
<td>Steff, L. R.</td>
<td>See Senftle, F. E.</td>
<td></td>
</tr>
<tr>
<td>Stoneley, R. S.</td>
<td>The transmission of Rayleigh waves across an ocean floor with two surface layers. Part 1: Theoretical.</td>
<td>168-68</td>
</tr>
<tr>
<td>Stoneley, R. S., and Hochstrasser, Urs.</td>
<td>The attenuation of Rayleigh waves with depth in a medium with two surface layers.</td>
<td>169-85</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Stoyko, Nicolas. The atomic clock and the irregularity of the rotation of the earth.. 168-56

Strahl, E. O. See Bates, T. F.

Straka, H. Two C¹ determinations of the age of the Eifelmaar... 169-10

Strick, E., and Ginsburg, A. S. Stoneley-wave velocities for a fluid-solid interface... 168-69

Strickland, L. See Gerrard, J. A. F.

Stubbs, P. H. S. See Clegg, J. A.

Studt, F. E. Wairakei hydrothermal system and the influence of ground water.. 170-201

Stupak, N. K., and Tyapkin, K. F. Logarithmic master chart \[T_a = \sqrt{H^2 + Z_a^2} \] for determination of the depth of a layer of magnetized rocks.. 169-239

Stupnikova, N. I. See Zykov, S. I.

Suess, H. E. See Revelle, Roger.

Sugawara, Akira. See Yoshizawa, Yukio.

Sugimura, Arata, and Naruse, Yō. Changes in sea level, seismic upheavals, and coastal terraces in the southern Kantō region, Japan.. 169-204

Sultanova, F. F. An evaluation of errors in the determination of the foci of earthquakes when using the method of time-fields... 171-76

Šumi, František. Interpretation of gravimetric measurements in exploration for oil................................... 168-172

Suringa, R. See Schürmann, H. M. E.

Sutton, G. H., Berckhemer, Hans, and Nafe, J. E. Physical analysis of deep sea sediments.. 171-111

Suyama, Junji, and Odani, Yoshihiko. The electric survey in the Taniguchi district of the Shirataki mine, Kochi Prefecture... 170-118

Svyatlovskiy, A. Ye. Two peculiar volcanoes of the Tolmachev Dol.. 168-319

Swenumson, G. H. Geophysical case history of the Anderson Ranch field, Lea County, New Mexico............................. 171-339

Swift, Gilbert, and Norellus, R. G. New nuclear radiation logging method.. 168-289

Synge, J. L. Flux of energy for elastic waves in anisotropic media.. 169-81

Sytinskiy, A. D. See Ochapovskiy, B. L.

Széndás, György. General experiences in the use of geophysical methods in Hungary... 168-162

T

Tajima, Hirokazu. See Tsuboi, Chūjū, and Yokohama, Izumi.

Takada, Michio. Tele-observation of the crustal movement... 171-163

Seismic model studies. Part 2. On dilatational and distortional waves in semi-infinite solid due to a linear surface impulse... 170-83

Takagi, Akio. See also Honda, Hirokichi, and Kato, Yoshio.

Takahashi, Ruytarō. The “SMAC” strong motion accelerometer and other latest instruments for measuring earthquakes and building vibrations... 169-60

See also Kanai, Kiyoshi.

Takenaka, Syunzo. On the relation between electric properties of pyrrhotite and ore deposits: 1. Variation in the electric resistivity of pyrrhotite with ore deposits.. 168-110

On the relation between the magnetism of pyrrhotite and ore deposits (1st paper).. 168-231

Takeuchi, Hitoshi. The dynamo theory of the earth’s main magnetic field.. 171-236

Takeuchi, Hitoshi, and Kobayashi, Naota. Propagation of tremors over the surface of an elastic solid... 171-96

Wave generations from line sources within the ground... 170-75

Wave generations in a superficial layer resting on a semi-infinite lower layer.. 171-94

Takeuchi, Hitoshi, and Shimazu, Yasuo. Convective fluid motions in a rotating sphere................................. 171-233

On a self-exciting process in magneto-hydrodynamics (III).. 171-235

See also Kobayashi, Naota.

Tanabashi, Ryō. Ultimate resistance of building structures to destructive earthquakes.. 171-70

Tanaka, Teiji. See Kanai, Kiyoshi.

Taniguchi, Kelichiro. See Kiyono, Takeshi.

Tarbox, G. E. Aerial geophysical prospecting... 168-129

Recent developments in airborne minerals exploration... 168-247
Abstract

Tárcz-Hormoch, Antal. On the accuracy of values calculated from geophysical measurements. 170-144

Tateishi, Tetsuo, and Hirasawa, Kiyoshi. Seismic prospecting in the vicinity of Yokishiba Town, Chiba Prefecture. 171-336

Taychinov, R. S. Investigation of the susceptibility and the saturation magnetization of sedimentary rocks in strong magnetic fields. 170-237

Taylor, E. F. See Gavala, Juan.

Taylor, G. A. An outline of Mount Lamington eruption phenomena. 168-325

Taeada-Flores, Hernan. See de Witte, Leendert.

Teyss, R. V., Chupakhin, M. S., and Naydin, D. P. Determination of paleotemperatures according to the isotopic composition of oxygen in calcite of shells of some Cretaceous fossils from Crimea. 171-230

Thiebaut, Jean. See Roques, Maurice.

Thienhau, Rolf. Problems and outlook of mining geological investigations in the Siegerland siderite workings. 168-123

Thysen-Bornemisza, Stephan von. The two-stage gravimeter measurement method. 169-163

Tilton, G. R. Acid washing experiments. 171-29

Tilton, G. R., Davis, G. L., Wetherill, G. W., and Aldrich, L. T. Isotopic ages of zircon from granites and pegmatites. 170-23

Tilton, G. R., and Nicolaysen, L. O. The use of monazites for age determinations. 171-27

Thomson, R. V., Chupakhin, M. S., and Naydin, D. P. Determination of paleotemperatures according to the isotopic composition of oxygen in calcite of shells of some Cretaceous fossils from Crimea. 171-230

Tocher, Don. Anistropy in rocks under simple compression. 168-71

Tocher, Don, and others. The Dixie Valley-Fairview Peak earthquakes of December 16, 1954. 171-66

Tomoda, Yoshibumi. A simple method for calculating the correlation coefficients. 171-148

Tomoda, Yoshibumi, and Aki, Keiti. Use of the function sin a/2 in gravity problems. 171-178

Toperczer, Max. The Wien-Koblenz geophysical observatory. 168-224

Tornqvist, B. H. On electromagnetic prospecting from aircraft. 170-90

Tribalto, Giuseppe, and Amadei, Gaetano. On some preliminary results of gravimetric measurements in the areas of Frosinone, Cassino and Caserta (central Italy). 170-193

Trikkalinos, J. The expression of young, very strong Diluvial and Recent orogenic movements in the region of Greece. 170-39

Troitskaya, V. A. Short period pulsations of the electromagnetic field of the earth. 170-39

True, H. W. Induction-electrical logging in Oklahoma. 168-114

Tsareva, N. V. The propagation of elastic waves in sand. 168-75

Tsepelev, N. V. See Alexeyev, A. S.

Tsinev'zon, I. O. See Lozinskaya, A. M.
Abstract

Tsuboi, Chuji. Crustal structure in northern and middle California from gravity-pendulum data. 168-191
--- Determination of the Gutenberg-Richter magnitude of earthquakes occurring in and near Japan. 171-81
--- Earthquake energy, earthquake volume, aftershock area, and strength of the earth's crust. 171-82

Tsuboi, Chuji; Jitsukawa, Akira; and Tajima, Hirokazu. Gravity survey along the lines of precise levels throughout Japan by means of a Worden gravimeter. Part 8. 168-165
--- Gravity survey along the lines of precise levels throughout Japan by means of a Worden gravimeter. Part 9. 168-166

Tulina, Yu. V. See Kosminskaya, I. P.

Tuominen, H. V., Mikkola, Toivo, and Simola, Torsti. Exploration for ore in the Orijarvi region, Finland. 170-137

Urbish, H. von. See Blix, R.

Urra, Ivo. See Aram, Francesco.

Uray, Tokuji. On some remarkable phases on seismograms of near earthquakes. Part 2. 169-71

Utzmann, R., and Favre, B. Effect of the noncylindricity of structures on the telluric field. Study on reduced models for resistant anticlines. 170-35

Uyeda, Selya. See Nagata, Takesi.

Vaccquier, Victor, Holmes, C. R., Klitzinger, P. R., and Lavergne, Michel. Prospecting for ground water by induced electrical polarisation. 170-101

Vanček, Jiří. On the magnitude of the transitional zone for elastic waves produced by different shock-exciting functions. 168-62

Vanček, Jiří, and Žařotek, Alois. Determination of magnitude from P, PP and S waves for the seismological station at Praha. 171-79

Vasjková, Věra. Some remarks on the utility of radiometric equipment in the field. 168-276

Van Nostrand, R. G. See Henkel, J. H.

Van Siclen, D. C. Organic reefs of Pennsylvania age in Haskell County, Texas. 170-292

Vargo, J. L. See Bromery, R. W.

Vasil'eva, L. B. The seismic map of the Gissar Valley region. 169-47

Vecchi, Orlando. Geologial and geophysical aspects of lithospheric faults (Sicily, Italian Pre-Alps, Jura, Rhine Graben). 171-159
--- Geophysical features and deep geology of Sicily and surrounding areas. 169-175, 171-182

Veksler, V. I., and Plyusnin, M. I. Low frequency electromagnetic surveying of the drill hole surroundings. 171-125

Verhuen, J. A. The geophysical history of a geosyncline. 171-157

Veshev, A. V., Fokin, A. F., and Ochkur, M. A. Use of combined electric profiling for geologic mapping on a large scale. 170-170

Veshev, A. V., Meyer, V. A., Larlonov, L. V., and Barkhatov, D. P. Magnetic susceptibility logging of the weakly magnetic formations. 171-274

See also Semenov, A. S.
INDEX TO GEOPHYSICAL ABSTRACTS 168-171, 1957

Vetterlein, Pascal. The advantages of magnetic tape recording for seismic measurements

Veytsman, P. S. See Gamburtsev, G. A.

Vinogradov, A. P. Comparison of data on the age of rocks obtained by different methods, and geologic conclusions

Vinogradov, A. P., Devirits, A. L., Dobkina, E. I., Markova, N. G., and Martishchenko, L. G. Determination of absolute age by C

Vinogradov, S. D. Acoustic observations in the mines of Kizelov coal basin

Vlodavets, V. I. On the genesis of certain volcanic fissures

Voitkevich, G. V. Radiogeology and its significance for the knowledge of the history of the earth

Volarovich, M. I., and Gurvich, A. S. Study of the dynamic moduli of elasticity of rocks as affected by temperature

Volarovich, M. F., and Balashov, D. B. Study of the effect of hydrostatic pressure up to 1,000 kg per cm² on the velocity of propagation of elastic waves in specimens of coal

Volarovich, M. F., and Parkhomenko, E. I. Artificial production of rock-burst phenomena by compression and simultaneous torsion of thin specimens

Volarovich, M. P., and Vyskočil, Vincenc. A contribution to the study of the present tectonic movements in Slovakia

Vyskočil, Vincenc. A contribution to the study of the present tectonic movements in Slovakia

Wade, A. L. See Gerrard, J. A. F.

Waldie, A. D. New geophone will improve seismic field production

Waldie, A. D., Moore, T. O., and Jones, H. T. Magnetic tape recording gains popularity

Walker, B. B. See Grosmangin, Michel.

Walling, Dean, and Savit, C. H. Interpretation method for well velocity surveys

Welke, H. See Ebert, K. H., and Hernegger, F.

Ward, W. H. Glaciological studies in the Penny Highland Baffin Island 1953

Waring, C. L. See Lyons, J. B., and Quinn, A. W.

Warman, H. R., Roberts, K. H., Brunstrom, R. G., and Adcock, C. M. Report on oil and gas in the United Kingdom

Warren, J. R. Study of magnetic anomalies associated with ultrabasic dikes in the Western Kentucky Fluorspar District

Wasserburg, G. J. and Hayden, R. J. A dating

Wasserburg, G. J., Pettijohn, F. J., and Lipson, J. I. A dating of micas and feldspars from the Glenarm series near Baltimore, Maryland

Watanabe, Tomiya. See Kato, Yoshio.
AUTHOR INDEX

Waterlot, Gérard. The position of sills of igneous rocks and metamorphic rocks of the Cambrian Rocroi massif compared to the zones of positive magnetic anomalies and to the Bouguer anomalies. 170-191

Watermann, H. On the gravity measurements of the 1st Division of the Deutsches Geodätische Forschungsinstitut in the year 1952. 169-179

—— Tidal corrections for measured gravity values. 169-166

Watson, G. S. Analysis of dispersion on a sphere. 168-242

—— A test for randomness of direction. 168-243

Wayne, W. J. Thickness of drift and bedrock physiography of Indiana north of the Wisconsin glacial boundary. 171-340

Webb, J. E. Radiometric probing of developmental faces in underground workings at Crocker Well East. 171-320

Weber, Max. Determination of the wave-front velocity in a uniaxial heterogeneous medium from seismic refraction measurements. 168-294

—— The elevation of seismic refraction measurements in a uniaxial inhomogeneous body by a power series with a finite number of terms. 169-299

See also Gassmann, Fritz.

Webster, R. K., Morgan, J. W., and Smales, A. A. Some recent Harwell analytical work on geochronology. 170-5

Weertman, J. Deformation of floating ice shelves. 170-162

—— On the sliding of glaciers. 170-164

Wegmann, E. Active tectonics, denudation and related phenomena. 170-157

Weißmann, H. W. See Lensen, G. J.

Wendt, Immo, and Wolters, Richard. An additional method of determining the bulk density of soils by means of gamma rays. 171-319

Westphal, W. H. Geologic considerations in the application of geophysics to mining exploration. 170-133

Wetherill, G. W. Radioactivity of potassium and geologic time. 171-38

See also Aldrich, L. T., and Tilton, G. R.

Whetton, J. T., Meyers, J. O., and Smith, R. Correlation of rock density determinations for gravity survey interpretation. 169-165

Whittaker, J. C. See Hunter, K. E.

Whittaker, W. W. See Brannon, H. R., Jr.

Whitham, Kenneth, and Loomer, E. I. Irregular magnetic activity in northern Canada with special reference to aeromagnetic survey problems. 170-258

Whitten, C. A. Geodetic measurements. 171-66

See Tocher, Don.

Wichman, F. E. Leakage of uranium and lead and the measurement of geologic time. 171-30

See also Blix, R., and Parwel, A.

Wieladek, Romuald, and Wojtczak, Bożenna. Application of the generalized adjustment method in the determination of coordinates of the seismic focus on the basis of several different phases. 170-60

Wijk, A. M. van. Notes on the determination of the temperature and induction coefficients of magnetometer magnets. 168-225

Williams, Milton. See Brannon, H. R., Jr.

Williams, W. J., and Lorenz, P. J. Detecting subsurface faults by radioactive measurements. 169-273

Willmore, P. L., and Tolmie, R. Geophysical observations on the history and structure of Sable Island, in Ocean floors around Canada (a symposium). 171-333

Willmore, P. L. See also Scheldegger, A. E.

Wilson, G. M. Magnetic recording—new key to data interpretation. 168-282

Wilson, J. T. Origin of the earth’s crust. 168-132

Winckler, J. R. See Elsasser, W. M.

Winn, R. H. Log interpretation in heterogeneous carbonate reservoirs. 170-273, 171-134

Wojtczak, Bożenna. See Gryglewicza, Zofia, and Wieladek, Romuald.
Wolf, Helmut. The geoid determined by L. Tanni, and the question of the ellipticity of the earth's equator. 169-144

Wolff, Wilhelm. Geophysical contributions to investigation of the basement of the Rhenish Schiefergebirge. 171-141

Wolters, Richard. See Wendt, Immo.

Woodmansee, W. C. Radiometric reconnaissance of copper mine dumps, northern Yorke Peninsula. 170-278

Woollard, G. P. Standardization of the world's gravity data. 168-144

See also Bonini, W. E.

World Conference on Earthquake Engineering Proceedings 169-54

Worzel, J. L., and Shurbet, G. L. Gravity observations at sea in USS Corsoa. 170-188

Worzel, J. L. See also Shurbet, G. L.

Wray, J. L. See Zeller, E. J.

Wright, A. E. See Griffiths, D. H.

Wright, H. E., Jr. The late-glacial chronology of Europe—A discussion. 171-20

See also Leighton, M. M.

Yagl, Kenzo. See Minato, Masao.

Yakubovskyi, Yu. V., and Lyakhov, L. L. Electrical exploration methods. 170-89

See also Kamenskii, F. M.

Yamaguchi, Rinzo. Velocity of surface waves propagated upon elastic plates. 169-83

Yamanaka, Kaoru. See Okabe, Katsuhiko.

Yaschenko, M. L. See Gerling, E. K.

Yenal'skiy, V. A. See Petrushen', G. I.

Yepina't'yeva, A. M. Experiences in recording refracted transverse waves in seismic exploration. 169-294

——— On reflected waves produced at angles of incidence greater than the critical angle. 171-108

Yermolin, G. M. See Gerling, E. K.

Yokoyama, Hidekichi. See Kunori, Soichi.

Yokoyama, Izumi. Energetics in active volcanoes. 171-344

——— See also Rikitake, Tsuneji.

Yokoyama, Izumi, and Tajima, Hirokazu. A gravity survey on Volcano Mihara, Ooshima Island by means of a Worden gravimeter. 171-184

Yoshizawa, Shizuyo. See Kanai, Kiyoshi.

Yoshizumi, Eishu. See Kiyono, Takeshi.

Youmans, Arthur, and Monaghan, Ralph. Stability requirements for scintillation counters used in radioactivity logging. 171-312

Yurchenko, B. I. The method of seismic observations in drill holes. 169-304

Zaccara, Gaetano. Preliminary results on the water investigations made in the Roman countryside in 1955. 170-112

Zähringer, J. See Gentner, W.

Zakharchenko, V. P. See Bulashevich, Yu. P.

Zapol'skiy, V. P. See Rivkin, I. D.

Zátopek, Alois. On some problems of the dynamics of the earth's crust in the Carpathian region. 171-60

See also Vanč, Jiří.

Zayonchkovskiy, M. A. See Aksenovich, G. I.

Zeller, E. J., Wray, J. L., and Daniels, Farrington. Factors in age determination of carbonate sediments by thermoluminescence. 170-34

Zeuch, Richard. Graphic determination of depth of focus of earthquakes. 169-62

Zietz, Isidore. See also Henderson, R. G.

Zietz, Isidore, and Pakiser, L. C. Note on an application of sonar to the shallow reflection problem. 169-506

Zijderveld, J. D. A. See Butten, M. G.

Zimmerman, M. See Orgeval, M.
Zmuda, A. J. Extrapolation of geomagnetic field components along a radius from the center of the earth

Zmuda, A. J., and McClay, J. F. A method of interpolating magnetic data under conditions of mutual consistency

Znamenskiy, V. V. See Ryabinin, L. A.

Zones, C. P. Changes in hydrologic conditions

See also Tocher, Don.

Zubenko, F. S., Gur'yeva, L. I., and Koshechkin, B. I. The eruption of the submarine mud volcano Buzovinskaya Sopka

Zubkov, V. L. See Krinari, A. I.

Zykov, S. L., and Stupnikova, N. I. The determination of the geologic age of a pegmatite vein in Koyta-Tundra using cyrtolite, orthite and uraninite methods
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Acoustic logging, equipment for: Rizni-chenko 168–288</td>
</tr>
<tr>
<td>Acoustic phenomena, relation to stress conditions, Kizelov coal basin: Vinogradov 171–341</td>
</tr>
<tr>
<td>Africa, age determinations: Häntzschel 168–2; Kulp 169–14</td>
</tr>
<tr>
<td>Electrical surveys: Blanchot 170–122; Dyke 168–97; Elouard 170–121, 123; Gay 169–245; Migaux 168–98</td>
</tr>
<tr>
<td>Exploration for oil, Cameroun: Hourcq 169–131</td>
</tr>
<tr>
<td>Geophysics in geologic problems: Houghton 171–146</td>
</tr>
<tr>
<td>Gravity surveys, Uganda: Harris 169–177</td>
</tr>
<tr>
<td>Age, Africa, lepidolites: Häntzschel 168–2</td>
</tr>
<tr>
<td>Africa, strandlines Morocco and Algeria: Stearns 170–8</td>
</tr>
<tr>
<td>Yttrotantalite, Swaziland: Kulp 169–14</td>
</tr>
<tr>
<td>Appalachian metamorphism: Carr 170–27; Eckelmann 170–20; Wasserburg 170–31</td>
</tr>
<tr>
<td>Archaic samples, lower Mississippi Valley: Brannon 168–4</td>
</tr>
<tr>
<td>Arizona, granitic rocks: Aldrich 169–24</td>
</tr>
<tr>
<td>Australia, Broken Hill leads: Russell 170–21</td>
</tr>
<tr>
<td>Glacial varves, Tasmania: Gill 168–8</td>
</tr>
<tr>
<td>Old shorelines, Victoria: Comm. Inv. and Correlation Eustatic Changes of Sea Levels 168–9</td>
</tr>
<tr>
<td>Quaternary sea levels: Gill 170–9, 171–21</td>
</tr>
<tr>
<td>Shield: Prider 170–2</td>
</tr>
<tr>
<td>Baltic shield area: Gerling 170–21</td>
</tr>
<tr>
<td>California, Sierra Nevada batholith: Beveridge 171–44; Reynolds 171–39</td>
</tr>
<tr>
<td>Sutter Buttes: Curtis 168–11</td>
</tr>
<tr>
<td>Canada, Churchill province: Burwash 168–135</td>
</tr>
<tr>
<td>Cochrane area glacial material: Karlstrom 168–9</td>
</tr>
<tr>
<td>Goldfields pitchblende: Russell 169–15</td>
</tr>
<tr>
<td>Great Bear Lake: Eckelmann 170–20</td>
</tr>
<tr>
<td>Grenville province: Eckelmann 170–20; Tilton 170–23</td>
</tr>
<tr>
<td>Huron claim, Manitoba: Kulp 169–14</td>
</tr>
<tr>
<td>Lake Athabasca: Eckelmann 170–20</td>
</tr>
<tr>
<td>Manitoba: Eckelmann 170–20; Häntzschel 168–2</td>
</tr>
<tr>
<td>Nelson batholith: Beveridge 171–44</td>
</tr>
<tr>
<td>Paleozoic rocks, Quebec: Fairbairn 168–13</td>
</tr>
<tr>
<td>Peace River province: Burwash 168–135</td>
</tr>
<tr>
<td>Age—Continued</td>
</tr>
<tr>
<td>Canada—Continued</td>
</tr>
<tr>
<td>Thunder Bay lead mineralization: Farquhar 170–22</td>
</tr>
<tr>
<td>Wisconsin glacial stages: Dreimanis 170–17</td>
</tr>
<tr>
<td>Yellowknife province: Reynolds 171–39</td>
</tr>
<tr>
<td>Carbon–14 determinations, geologic tests of: Anteves 169–6; Heldberg: Munnich 170–10</td>
</tr>
<tr>
<td>Stockholm: Lundqvist 171–18; Yale: Barendsen 171–25</td>
</tr>
<tr>
<td>Caribbean deep-sea core: Volchok 169–12</td>
</tr>
<tr>
<td>Colorado, Front Range: Eckelmann 170–20</td>
</tr>
<tr>
<td>Granitic rocks: Aldrich 169–24</td>
</tr>
<tr>
<td>Plateau mineralization: Eckelmann 170–20</td>
</tr>
<tr>
<td>Connecticut, Portland area: Eckelmann 170–20</td>
</tr>
<tr>
<td>Cordilleran orogenies: Beveridge 171–44</td>
</tr>
<tr>
<td>Cordilleran region: Tilton 170–23</td>
</tr>
<tr>
<td>Deep-sea core, Caribbean Sea: Volchok 169–12</td>
</tr>
<tr>
<td>Pacific Ocean: Volchok 169–12</td>
</tr>
<tr>
<td>Earth: Holmes 170–1; Houtermans 169–8; Keller 171–2; Knopf 171–1; Patterson 171–214; Picciotto 171–3</td>
</tr>
</tbody>
</table>
| France, Espaly zircon: Hée 169–18;
<p>| Saint-Barthélemy migmatites: Roques 169–19 |
| Vosges granites: Hée 169–17, 171–34 |
| Franco-Italian Alps, Grand Paradis massif: Pfangad 170–24 |
| Germany, Eifelmaar volcanic deposits: Straka 169–10 |
| Hechtsberg pegmatite: Gentner 171–41 |
| Lausitz granite: Deutsch 170–28; Schürmann 171–49 |
| Glacial stages: Anteves 169–6; Dreimanis 170–17; Elson 171–22; Emilliani 168–205; Gross 171–15; Karlstrom 169–8; Leighton 169–7; Lundqvist, G. 168–6; Lundqvist, J. 167–7; Rizzi 169–9; Wright 171–20 |
| Greece, Santorin caldera: Galanopoulos 171–17 |
| Idaho, Coeur d’Alene district: Eckelmann 170–20 |
| Indonesia, Billiton tin granite: Schürmann 171–49 |
| Karelia, uraninites and monazites: Häntzschel 168–2 |</p>
<table>
<thead>
<tr>
<th>Age—Continued</th>
<th>Sweden—Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katanga minerals, Belgian Congo: Ledent 169–20, 21</td>
<td>Quaternary deposits: Lundqvist 171–18</td>
</tr>
<tr>
<td>Louisiana, Quaternary deposits: Brannon 169–11</td>
<td>recurrence surfaces: Lundqvist 171–19</td>
</tr>
<tr>
<td>Madagascar, Cambrian igneous rocks: Besairie 171–36</td>
<td>universe: Piccioletto 171–3; Schumacher 169–1</td>
</tr>
<tr>
<td>Maryland, Glenarm series: Wassenburg 170–31</td>
<td>igneous rocks: Polevaya 170–33</td>
</tr>
<tr>
<td>Massachusetts, Paleozoic igneous rocks: Fairbairn 168–13</td>
<td>Paleozoic and Mesozoic rocks and minerals: Gerling 171–42</td>
</tr>
<tr>
<td>metamorphic rocks: Holland 171–46</td>
<td>pegmatite, northern Karelia: Zykov 169–16</td>
</tr>
<tr>
<td>meteorites: Ahrens 169–1; Begemann 170–19; Hamaguchi 171–9; Holmes 170–1; Houtsman 169–3; Opik 170–19; Russell 170–19; Singer 171–4; Urey 168–14; Webster 170–5</td>
<td>Precambrian complexes, Ukraine: Vinogradov 170–4</td>
</tr>
<tr>
<td>New Brunswick, Paleozoic igneous rocks: Fairbairn 168–13</td>
<td>Precambrian magmatic cycles, Ukraine shield area: Gerling 170–32</td>
</tr>
<tr>
<td>Bedford area: Eckelmann 170–20</td>
<td>lepidolites: Häntschel 168–2</td>
</tr>
<tr>
<td>New Zealand, ashfalls at Lake Taupo: Baumgart 168–5</td>
<td>Age determination, ancient material: Häntschel 168–2</td>
</tr>
<tr>
<td>concretion from shelf: Pantin 170–14</td>
<td>carbon-14 method, effect of cosmic ray flare on equipment: Ferguson 170–12</td>
</tr>
<tr>
<td>raised beach near Greymouth: Comm. Inv. and Correlation Eustatic Changes of Sea Levels 168–9</td>
<td>effect of geomagnetic field on: Beiser 170–228</td>
</tr>
<tr>
<td>Norway, Hobol pegmatite: Gentner 171–41</td>
<td>review: Haxel 169–4</td>
</tr>
<tr>
<td>Romeland: Kulp 169–14</td>
<td>Stockholm laboratory: Ostlund 170–16</td>
</tr>
<tr>
<td>Pacific core: Volchok 169–12</td>
<td>using liquid CO₂ as diluent: Barendsen 169–5</td>
</tr>
<tr>
<td>correlation of Precambrian rocks by: Houghton 171–146</td>
<td>helium methods: Begemann 170–19; Damon 171–26; Krishnan 170–3; Singer 171–4</td>
</tr>
<tr>
<td>lepidolites: Häntschel 168–2</td>
<td>ionium method: Volchok 169–12</td>
</tr>
<tr>
<td>Pacific core: Volchok 169–12</td>
<td>principles: Ahrens 168–1; Krishnan 170–3</td>
</tr>
<tr>
<td>lepidolites: Häntschel 168–2</td>
<td>suitability of monazites: Tilton 171–27</td>
</tr>
<tr>
<td>Pacific core: Volchok 169–12</td>
<td>magnetization as basis: Komarov 168–234</td>
</tr>
<tr>
<td>Pleistoceene glaciation: Antevs 169–6; de Vries 170–7; Elson 171–22; Drennan 170–17; Gill 170–8; Karlstrom 169–8; Leighton 169–7; Lundqvist, G. 168–6, 171–18; Lundqvist, J. 168–7; Lundqvist, G. 168–6</td>
<td>meteorites, from residual radioactive nuclei: Gentner 168–201</td>
</tr>
</tbody>
</table>
Age determination—Continued
potassium-argon method, discrepancies:
Stevens 169–23
effect of argon loss: Stevens 169–23;
Wasserburg 171–40
mass spectrometer for: Reynolds 171–39
minerals suitable for: Gerling 171–43, 45; Goldich 170–30
new reactor for: Sardarov 170–28
precision: Carr 171–87
principles: Ahrens 168–1; Carr 170–27; Herzog 171–47
reproducibility: Baadsgaard 170–29
uncertainties in: Wetherill 171–38
young rocks: Curtis 168–11
potassium-calcium method: Herzog 171–47
radiation damage method: Fairbairn 168–13; Holland 171–46
rubidium-strontium method, comparison of techniques: Webster 170–5
principles: Herzog 171–47
sedimentary rocks: Wasserburg 171–40
sedimentation rates from: Volchok 169–12
skeletal method: Zeller 168–20
Airborne electromagnetic surveys, methods:
Tornqvist 170–99
recent developments in: Tarbox 168–247
Airborne gravity surveys, test: Lundberg 169–153
Airborne magnetic maps, Alberta: Canada Geol. Survey 171–287
Maine: Balsley 171–282
Minnesota: Meuschke 171–283
Montana: Balsley 171–284
New Brunswick: Canada Geol. Survey 171–289
Newfoundland: Canada Geol. Survey 171–290
New Jersey: Henderson 171–286
New York: Henderson 171–286
Northwest Territory: Canada Geol. Survey 171–291
Nova Scotia: Canada Geol. Survey 171–292
Ontario: Canada Geol. Survey 171–293
Quebec: Canada Geol. Survey 171–294
Saskatchewan: Canada Geol. Survey 171–295
Airborne magnetic profile, Washington to Wyoming: Agocs 169–242
Airborne magnetic surveys, corrections for magnetic disturbances: Pudovkin 168–250
recent developments: Tarbox 168–247
Airborne radioactivity survey, Australia, Eyre Peninsula: Seedsman 168–274
Interpretation: Kellogg 168–275
Alaska, earthquakes, 1954: Murphy 168–16
earthquakes, direction of faulting: Hodgson 168–31
Alaska—Continued
Taku glacier, regimen and movement:
Nielson 168–138
Algeria, age, strandline at Tipasa: Stearns 170–8
earthquake, Oran: Ambroggi 171–52
electrical surveys, Hodna Basin: Migaux 168–93
gravity survey, eastern: Lagrula 169–167
seismic surveys, Bay of Algiers: Muraour 169–307
Alps, crustal shortening in: Hospers 168–200
electrical resistivity surveys: Gassmann 169–104
gravity anomalies: Hospers 168–200
radioactivity of air, northern: Reiter 171–307
size of root: Hospers 168–200
Anatolian rocks, radioactivity of, Black Forest, Germany: Hsümann 169–287
Andaman Islands, geomagnetic importance:
Malurkar 168–212
Andesite, electrical conductivity, variation with temperature: Noritomi 168–121
radioactivity, Sulec basin, Sardinia: Aramu 170–265
thermal conductivity: Yoshisawa 169–191
Anhydrite, deformation: Handin 170–295
elastic constants: Hamelster 170–87
Antarctica, ice thickness, Queen Maud Land:
Robin 169–151
magnetic observations: Slautclajtis 169–221
Appalachian geosyncline, development in Maritime area, Canada: Cameron 171–162
Argon, activation energy, isolated from micas: Gerling 168–143
atmosphere, amount of radiogenic: Polanski 170–217
origin: Nicolet 169–205; Polanski 170–217
isotopes, meteorites: Gentner 168–201;
Reynolds 171–8
retentivity in minerals: Carr 170–27, 171–37; Gentner 171–41; Gerling 171–43;
Reynolds 171–39; Stevens 169–23;
Wasserburg 171–40;
Wetherill 171–38
specific gamma activity: Wetherill 171–38
Arizona, age, granitic rocks: Aldrich 169–24
magnetization, Triassic rocks: Klintzinger 170–256
Meteorite Crater, origin: Namba 169–329
sedimentary rocks, Monument Valley: Pakiser 168–296
Asia, central, crustal structure Tien Shan:
Gamburtsev 168–197; Krestnikov 171–63
seismicity, Tien Shan: Krestnikov 171–53
SUBJECT INDEX

A

Asia—Continued

sP phase in records of earthquakes: Vvedenskaya 168–47
gravity observations, Karakoram region: Marussi 169–170
Assam, earthquake of August 15, 1950, damage: Poddar 170–40
Atlantic Ocean, bottom topography: Hill 170–213
crustal structure: Hill 170–213; Shurbet 168–155
gravity observations: Shurbet 168–155, 169–171; Worzel 170–188
magnetic secular variation, northern part: Mendonca Dias 168–216
magnetic surveys: Hill 170–213
seismic surveys: Hill 170–213; Willmore 171–333
submarine relief, caused by subaerial erosion: Malaise 170–298
uranium in waters: Rona 168–264
Atmosphere, argon content: Nicolet 169–205; Polanski 170–217
beryllium-10 in: Peters 168–202
carbon isotopes: Rafter 171–215
helium isotopes: Damon 169–207
nitrogen: Parwel 169–208
oxygen isotopes: Dole 171–226
radioactivity, northern Alps: Reiter 171–307
radon content: Behounek 168–266
Australia, age, Broken Hill leads; Russell 170–21
age, glacial varves, Tasmania: Gill 168–8
old shorelines and terraces, Victoria: Comm. Inv. and Correlation Eu-
static Changes of Sea Levels 168–9
Quaternary sea levels: Gill 170–9
strandline changes: Gill 171–21
airborne radioactive survey, Eyre Peninsula: Seedsman 169–274
crustal structure: Bullen 168–17; Doyle 170–211
earthquake, March 26, 1939: Bullen 168–17
March 1, 1954: Bolt 170–38
gravity measurements: Cook 169–157
magnetic anomalies, Kurranjong-Bilpin district: Crook 171–267
magnetic surveys, Kadina-Wallaroo areas: Pegum 169–248
Yorke Peninsula: Seedsman 171–279
radioactivity surveys, for copper: Woodmansee 170–278
Northern Territory: Daly 170–277
Yorke Peninsula: Woodmansee 170–278
seismic recordings of atomic explosions: Doyle 170–211
seismic survey, Victoria: Garrett 171–332
seismic wave velocities: Doyle 170–211
Austria, Bad Gastein thermal waters, radioactivity: Aurand 168–203
Vienna-Kolnitz observatory: Toporzer 168–224

B

Azerbaijan S. S. R., earthquakes, Shemakha region: Kuznetsov 169–39

Baffin Island, glaciological studies, Highway glacier: Ward 168–139.

Bahama Islands, gravity observations: Shurbet 168–155
Barium, in stone meteorites: Hamaguchi 171–9
Baltic Sea, uranium content of waters and bottom sediments: Koczy 168–262
Baltic Shield, age: Gerling 170–32
Basalt, elastic wave velocity, effect of pressure: Volarovich 170–86
magnetization, Coiron plateau, France: Boer 171–272
Iceland: Elinarson 180–253
Vogelberg, Germany: Angen Helster 170–251
Belgian Congo, age, Katanga yttrocrasite: Ledent 169–21
age, Kalongwe and Luishya pitchblendes: Ledent 169–20 geophysical explo-
ration: Evrard 169–133
Belorussian S. S. R., geophysical exploration: Ryng 171–139
Beryllium-10, in atmosphere and on earth: Peters 168–202
Beta counters, for field use: Katayama 168–272
Blottite, artificial coloration by alpha-par-
ticles: Deutsch 171–35
suitability for argon age determinations: Gerling 171–43
Bismuth, branching ratio of 212: Senftle 168–258, 171–303
Boron, neutron logging for: Ivanova 168–267
Brazil, geophysical exploration 1955, by Petrobras: Link 169–134

C

Calcium, in meteorites: Herzog 171–47
California, age, Sierra Nevada batholith: Reynolds 171–39
Sutter Buttes volcanic rocks: Curtis 168–11

Catalina Island, earthquakes: Kuznetsov 169–39
gravity observations, Karakoram region: Marussi 169–170
Assam, earthquake of August 15, 1950, damage: Poddar 170–40
Atlantic Ocean, bottom topography: Hill 170–213
crustal structure: Hill 170–213; Shurbet 168–155
gravity observations: Shurbet 168–155, 169–171; Worzel 170–188
magnetic secular variation, northern part: Mendonca Dias 168–216
magnetic surveys: Hill 170–213
seismic surveys: Hill 170–213; Willmore 171–333
submarine relief, caused by subaerial erosion: Malaise 170–298
uranium in waters: Rona 168–264
Atmosphere, argon content: Nicolet 169–205; Polanski 170–217
beryllium-10 in: Peters 168–202
carbon isotopes: Rafter 171–215
helium isotopes: Damon 169–207
nitrogen: Parwel 169–208
oxygen isotopes: Dole 171–226
radioactivity, northern Alps: Reiter 171–307
radon content: Behounek 168–266
Australia, age, Broken Hill leads; Russell 170–21
age, glacial varves, Tasmania: Gill 168–8
old shorelines and terraces, Victoria: Comm. Inv. and Correlation Eu-
static Changes of Sea Levels 168–9
Quaternary sea levels: Gill 170–9
strandline changes: Gill 171–21
airborne radioactive survey, Eyre Peninsula: Seedsman 169–274
crustal structure: Bullen 168–17; Doyle 170–211
earthquake, March 26, 1939: Bullen 168–17
March 1, 1954: Bolt 170–38
gravity measurements: Cook 169–157
magnetic anomalies, Kurranjong-Bilpin district: Crook 171–267
magnetic surveys, Kadina-Wallaroo areas: Pegum 169–248
Yorke Peninsula: Seedsman 171–279
radioactivity surveys, for copper: Woodmansee 170–278
Northern Territory: Daly 170–277
Yorke Peninsula: Woodmansee 170–278
seismic recordings of atomic explosions: Doyle 170–211
seismic survey, Victoria: Garrett 171–332
seismic wave velocities: Doyle 170–211
Austria, Bad Gastein thermal waters, radioactivity: Aurand 168–203
Vienna-Kolnitz observatory: Toporzer 168–224

Azerbaijan S. S. R., earthquakes, Shemakha region: Kuznetsov 169–39

Baffin Island, glaciological studies, Highway glacier: Ward 168–139.

Bahama Islands, gravity observations: Shurbet 168–155
Barium, in stone meteorites: Hamaguchi 171–9
Baltic Sea, uranium content of waters and bottom sediments: Koczy 168–262
Baltic Shield, age: Gerling 170–32
Basalt, elastic wave velocity, effect of pressure: Volarovich 170–86
magnetization, Coiron plateau, France: Boer 171–272
Iceland: Elinarson 180–253
Vogelberg, Germany: Angen Helster 170–251
Belgian Congo, age, Katanga yttrocrasite: Ledent 169–21
age, Kalongwe and Luishya pitchblendes: Ledent 169–20 geophysical explo-
ration: Evrard 169–133
Belorussian S. S. R., geophysical exploration: Ryng 171–139
Beryllium-10, in atmosphere and on earth: Peters 168–202
Beta counters, for field use: Katayama 168–272
Blottite, artificial coloration by alpha-par-
ticles: Deutsch 171–35
suitability for argon age determinations: Gerling 171–43
Bismuth, branching ratio of 212: Senftle 168–258, 171–303
Boron, neutron logging for: Ivanova 168–267
Brazil, geophysical exploration 1955, by Petrobras: Link 169–134

Calcium, in meteorites: Herzog 171–47
California, age, Sierra Nevada batholith: Reynolds 171–39
Sutter Buttes volcanic rocks: Curtis 168–11
earthquake, Dec. 14, 1850: Gianella 168–49
Dec. 21, 1954, engineering study: Steinbrugge 169–58
Gravity anomaly, Great Valley: Ivanhoe 168–155
gravity map, Los Angeles basin: McCulloh 170–197; Rosenbach 170–172
heat flow, Grass Valley: Clark 169–185
isostatic effect of Sierra Nevada: Ivanhoe 168–156
radioactivity surveys, oil fields: Kellogg 170–275
INDEX TO GEOPHYSICAL ABSTRACTS 168–171, 1957

California—Continued
San Andreas fault, northward continuation: Shepard 170–158
seismicity: Byerly 169–33

age, lead mineralization, Thunder Bay: Farquhar 170–22
Paleozoic igneous rocks: Fairbairn 168–13
pitchblende, Goldflelds: Russell 169–15
Wisconsin glaciation: Dreimanis 170–17
airborne gravity surveys: Lundberg 169–153
earthquake, May 15, 1909: Kupsch 171–54
earthquakes, British Columbia: Hodgson 168–31
geophysical exploration for nickel: Lantersbach 168–121
gravity and isostasy: Innes 169–172
gravity surveys: Dyer 168–159; Miller 168–157; Saxov 168–158
heat flow in permafrost, Northwest Territories: Misener 171–196
magnetic anomalies, Lac la Rouge area: Pearson 171–280
magnetic field of earth, irregular activity: Whitham 170–258
tectonics, Maritime area: Cameron 171–162
temperature measurements, Resolute Bay: Cook 169–189
Carbon, isotopes, atmosphere: Craig 170–218; Patterson 170–6; Rafter 171–215
isotopes, distribution, biosphere: Craig 170–218
hard water: Münnich 168–204
metamorphic rocks, northern Sweden: Gavelin 171–216
modern material: Revelle 170–219
ocean waters: Craig 170–218; Rafter 171–215
Swedish Precambrian rocks: Landegren 170–221

Carbon dioxide, exchange time between atmosphere and sea: Arnold 170–220; Brannon 171–217; Craig 170–218; Rafter 171–215; Revelle 170–219
Caribbean Sea, age of core from: Volchok 169–12
crystal structure: Ewing 170–212; Of fcer 169–198
wrench-fault tectonics: Alberding 170–159
Central America, volcanic activity 1955–56: Roy 170–505
Cerium-142, natural radioactivity: Riezler 171–301

Chile, earthquake, Dec. 7, 1953: Ingram 170–51
China, earthquake: Shepard 170–158
Chlorine-36, for geological dating: Schaeffer 171–218
pitchblende: Kuroda 169–206
rocks: Schaeffer 171–218
Chromium, gravity surveys for: Davis 171–191
Coal, elastic waves: Volarovich 169–93
groundwater exploration for, Peel basin, Netherlands: Riel 169–140
nitrogen isotopes: Parwel 169–208
radioactivity, effect of intrusions: Shibata 168–261

Corsica, submarine topography off west coast: Bourcart 170–300
Crust, anorthositic layer: Michot 168–119
buckling: de Sitter 170–152
deformation due to earth tides: Jobert 169–184
differentiation during geologic time: Fischer 171–205
Crust—Continued

discontinuity at base, nature: Robertson 168–188
dynamics: Hiesemann 168–131; Žatopek 171–60
electrical conductivity, Japan: Rikitake 168–221
energy sources: Lebedev 168–173
forces: Vening Meinesz 171–157
insular type: Biby 169–201
nature: Haughton 171–146
origin: Wilson 168–132
plastic deformation in: Paterson 168–304
reflection from base, northeastern Hungary: Gálf 168–195
reflections from discontinuities: Dohr 171–210
rheological behavior: Scheldegger 170–149
rigidity, Shetland Islands: Tomashek 171–90
sical discontinuity: Michot 168–189
slow movements preceding earthquakes: Ostrvistky 168–37
structure, anorthositization in: Michot 168–189
Atlantic Ocean: Shurbet 168–155
Australia: Bullen 168–17
Bavarian Alps: Reich 171–211
California: Press 168–192; Tsuboi 168–191
Caribbean region: Ewing 170–212; Officer 169–198
Caribbean region: Ewing 170–212; Officer 169–198
effect on tidal deformation: Jobert 171–153
Eniwetok: Raitt 170–210
France, from Rochilles explosions: Bernard 168–193
from PS waves: Andreyev, 169–68
Germany Dohr 170–209, 171–210; Mühlen 168–194; Reich 171–211; Wolff 171–141
structure, Greenland: Holtzscheler 168–141
New Zealand: Eiby 169–201, 203
seismological data: Jung 169–190
Turkmen S. S. E.: Kosminskaya 171–209
West Indies: Shurbet 168–170
thickness, Alps: Gutenberg 171–208
Appalachian Mountains: Gutenberg 171–208
Atlantic: Gutenberg 171–208
Australia: Doyle 170–211
California: Gutenberg 171–208; Press 169–199
Canadian shield: Gutenberg 171–208
Europe: Gutenberg 171–208
mountain roots: Gutenberg 171–208
Transvaal: Gane 168–195
Crustal movements, causes, Hungary: Eggyed 171–160
observations, Kyūto: Takada 171–163
Cuba, gravity surveys, Camaguey Province: Davis 171–101
Oriente Province: Shurbet 168–160

Curium-247, half-life: Diamond 168–256
possible existence in nature: Diamond 168–256
Czechoslovakia, earth currents from electric trains: Pěcova 168–15
electrical surveys, Danube River: Kráľovič 171–126
geophysical exploration for nickel: Lauterbach 168–121
isostatic uplift, Carpathian mountains: Vyskocil 169–147
magnetic maps, 1950.0: Bouška 171–240
tectonic movements in: Vyskocil 169–147

D

Deep-sea cores, temperature and age analysis: Emiliani 168–205
Deflection of vertical, accuracy of gravimetrically computed: Kaula 170–169
Hungary, relation to gravity anomalies: Renner 171–151
Deformation, active, relation to denudation and other phenomena: Wegmann 170–157
by combined torsion and compression: Volarovich 169–312
by tides, effect of crustal structure: Jobert 171–158
crust, nature: de Sitter 170–152
experimental, effect of gamma radiation: Handin 170–297
floating ice shelves: Weertman 170–162
plastic, Liiders' bands: Paterson 168–304
rocks, experiments: Baksy 168–306; Handin 170–295
under low stresses: Nishihara 170–296
Denmark, earthquake of June 4, 1954: Jensen 171–55
electrical resistivity surveys: Sorgenfrei 170–106
gravity surveys, northern Jutland: Saxov 170–189
Density, determination by radioactivity logging: Ochkur 170–271
determination underground by gravimeter and torsion balance: Riche 170–177
mantle: Bullen 168–187
methods of determination: Whetton 169–165
rocks, laboratory measurements: Hamelster 170–69
soils, determination by radioactivity: Wendt 171–319
variation in dolerite sill: Jaeger 171–252
Deuterium, inland waters, Hungary: Cziki 170–223
thermal waters: Craig 171–228
Dolomite, elastic wave velocity, effect of pressure: Volarovich 170–86
experimental deformation: Handin 170–295
strength: Handin 170–295
INDEX TO GEOPHYSICAL ABSTRACTS 168–171, 1957

E

Earth, age: Houtermans 169–3; Keller 171–2; Patterson 171–5; Picciotto 171–3
axis, variations: Schwedler 170–67
evolution: Kober 169–192
ellipticity of equator: Wolf 169–144
goethothermal behavior: Goguel 171–193
internal constitution: See Internal constitution
origin: Reber 171–200
rotation: Jobert 168–59; Stoyko 168–56
spheroidal oscillations: Jobert 169–92
thermal history: Lynbimova 168–174
Earth currents, application to prospecting: Kantas 171–124; Kunetz 171–123
effect of narrow anticlines: Utzman 170–35
Japan, Khalil: Namba 169–27
measuring apparatus, Sopron, Hungary: Adam 171–50
simultaneous measurements in China and Hungary: Kantas 171–51
storms: Gonzalez-Miranda 169–25
surveys, Sicily: Beneo 170–114
statistical interpretation: Kunetz 170–90
Earth tides, amplitude ratio, Budapest: Lassovsky 168–55
corrections to gravity measurements: Watermann 169–166
deformation coefficient: Lassovsky 171–91; Tomaschek 171–90
displacement of ground: Ichinohe 169–75
effect of water level, Lake Tanganyika: Melchor 169–57
instruments, München: Ellenberger 169–74
observations, Japan: Ichinohe 169–75; Nishimura 170–66
observations, Shetland Islands: Tomaschek 171–90
problems in research: Tomaschek 169–73, 171–89
Earthquake engineering, world conference on: World Conference Earthquake Engineering Proc. 169–54
Earthquakes—Continued
California, Dec. 14, 1950: Glanella 170–49
Dec. 21, 1954: Steinbrugge 169–58
Canada, May 15, 1959: Kupch 171–54
causes: Aki 171–60; Hiller 171–68
Central Asia, April 15–20, 1955: Rozova 169–49
Tien Shan area: Krestinkov 171–53
Chile, Dec. 7, 1953: Ingram 170–51
crustal strain accompanying: Oszawa 171–73
crustal strain before, observation: Sassa 171–84
deep focus, mechanism: Honda 169–69
depth determination: Kondorskaya 168–46; Vedenskaya 168–47; Wildelek 170–60; Benck 169–62
Denmark, June 4, 1954: Jensen 171–55
dynamic fluid pressures developed during: Housner 168–26
effects on structures: Borges 169–61; Hatanaka 171–71; Housner 170–57; Kobori 171–72; Medvedev 168–23, 24, 25; Tanabashi 171–70
energy, calculation: Bath 169–65; Dibble 169–57
classification by: Bune 169–27
epicenter location: Coulomb 171–75; Sul–tanova 171–76; Wieldelek 170–60
Finland, 1728: Panaenko 171–56
frequency: Tomoda 171–80
Georgian S. S. R., May 7–8, 1940: Byus 169–41
Greece, 1950–53: Galanopoulos 171–57
causes: Galanopoulos 171–58; Trikka–inos 170–39
Hawaiian Islands; 1954: Murphy 168–16
Hungary, Feb. 20, 1953: Kurnik 168–18
Jan. 12, 1956: Bizetscany 171–61
Carpathian region: Zatopek 171–60
research: Simon 171–59
India, June 26, 1941, Andaman Islands: Jhingran 168–20
Indonesia, Nov. 2, 1954: Ritsema 170–41
intensity: Hersberger 168–29; Puchkov 168–28; Roberts 169–30
Israel: Shalem 169–35
Italy, Dec. 25, 1952, Tyrrhenian Basin: Girlanda 170–42
Earthquakes—Continued

Japan, Dec. 7, 1944, damage to buildings:
Ooba 171–74

ground movements before: Hosoyama 171–83; Ozawa 171–73; Sassa 169–70

stresses producing: Honda 170–231

uplift of land: Sugimura 169–204

Kamchatka, 1951: Gorshkov 169–48

Nov. 4, 1952: Hodgson 168–31

Kirgiz S. S. R., 1820 to date: Rozova 171–62

1929-54: Rozova 169–42

April 15-20, 1955: Rozova 169–49

Naryn River valley: Rozova 169–43

Lebanon, March 16, 1956: L'Observatoire de Ksara 169–36

Macedonia: Mihailović 169–34

magnitude, equation for Japan: Tsuboi 171–81

equation for Praha: Vanek 171–79

proposed new term: Roberts 168–30

relation to energy: Koning 169–50

relation to orogenesis: Koning 169–50

relation to volcanic activity: Bruet 171–67

response spectrum techniques in studying: Hudson 169–57

slow movements of crust preceding: Ostrovskiy 168–37

Spain, relation to structure: Rey Pastor 170–46

Ojos, 1950: Rey Pastor 170–46

stress distribution: Ritsema 168–33

strong-motion seismographs for: Cloud 169–56; Takahashi 169–60

Earthquakes—Continued

Gissar Valley: Gubin 168–39; Vasil'yeva 169–49

Khalt zone: Pasechnik 169–46

Tennessee, 1901–23: Moneymaker 169–32

tilting motion accompanying: Hosoyama 171–53

Turkey, Nov. 10, 1935: Stark 161–64

Turkmen S. S. R., Ashkhabad region: Medvedev 168–38; Rustanovich 169–44

U. S.: 1954: Murphy 168–16

U. S. R.: Andreyev 169–38; Gorshkov 170–47; Kondorskaya 171–78

western United States: Byerly 169–33

world, 1954: Murphy 168–16

East Germany, petroleum exploration: Bjalow 170–138

Egypt, age of feldspar from: Schurmann 171–49

Elastic constants, anhydrite: Hameister 170–87

conglomerate: Hamelster 170–87

gypsum: Hamelster 170–87

limestone: Hamelster 170–87

sandstone: Hamelster 170–87

shale: Hamelster 170–87

Elastic properties, correlation with electrical: Polak 169–122

Paleozoic rocks, Tatar A. S. S. R.: Kri

nari 171–112

Elastic waves, absorption: Balakri

na 168–74; Rzinichenko 171–98

amplitude, near source of shock: Vančk 168–62

attenuation in rocks: Krishnamurthi 169–90

compressional, velocities in rocks under compression: Tocher 168–71

reflection and transmission coefficients at plane boundary: Hardtwig 171–109

diffraction, experimental study: Mogi 168–72

dissipation by curved boundaries: Skurli

din 168–50

dynamic peculiarities in vertically strati

fied media: Berson 171–107

dynamic traveltime curves: Fedotov 171–106

energy, visco-elastic medium: Ida 170–76

energy flux, anisotropic media: Synge 169–81

generation, by diocation: Keyll-Borok 170–72

by impulsive displacements in cavity: Verma 171–82

from line sources: Honda 171–73; Takeuchi 170–75, 171–96

Love, nomograph for determination of phase velocity: Sato 171–100

M , dispersion in medium with double sur

face layers: Nagamune 169–80
Elastic waves—Continued
model experiments: Carabelli 171-104;
Ivakin 168-63; Manukhov 168-67;
Press 171-101
near source, small-scale field investiga-
tion: Mason 169-87
propagation, effect of thin layer: Manuk-
hov 168-67
from different types of exciting forces:
Ogurtsov 168-60
in heterogeneous medium: Robinson
171-93
in layered media: Carabelli 171-104;
Ewing 170-71; Manukhov 168-67;
Petrashe 168-65, 66
in surface layer: Takeuchi 171-94
in vertically stratified media: Berzon
171-107
on elastic plates: Yamaguchi 169-83
on water-solid interface: Sato 171-97
over surface of elastic solid: Takeuchi
171-96
pressure-generated in cavity: Chakra-
borty 169-79
Rayleigh, attenuation with depth: Stone-
ley 169-85
propagation in internal layer: Pech 171-
99
reflected, angles greater than critical:
Xepin’yeva 171-108
curvilinear boundary: Alekseyev 168-
271
solid-surface interface: Nafe 170-80
surface amplitude: Knopoff 171-102
shape, effect of reflection and refraction:
Chekin 170-81
Stoneley, velocity at fluid-solid interface:
Strick 168-69
Stoneley type, range of existence in inter-
val stratum: Chopra 169-84
surface definition: Sat6 169-82
from external tangential force: Kobay-
ashi 171-95
transmission at solid-solid interface:
Nafe 170-80
two-dimensional, generation: Honda 170-
74
ultrasonic, propagation: Balakrishna
168-74; Tsareva 168-75
velocity, anisotropy: Tocher 168-71
calculated from specific heat: Noritomi
169-183
coal: Volarovich 169-98
effect of compression: Sollogub 169-88;
Tocher 168-71
effect of moisture content: Tsareva 168-
75
effect of pressure: Tsareva 168-75;
Volarovich 169-93, 170-96
factors affecting: Sollogub 169-98
in ocean sediments: Laughton 169-89
mafic igneous rocks: Hughes 168-73
relation to grain size: Balakrishna 168-
74
sand: Tsareva 168-75
Elastic waves—Continued
velocity—Continued
variation with pressure: Hughes 168-
73
with temperature: Hughes 168-73
elasticity, calculation of velocity from:
Nishitake 169-195
geological applications: Jaeger 169-77
rocks, effect of temperature: Volarovich
170-68
solution of problems by Mellin contour
integrals: Petrashev 168-64
strength and deformation: Jaeger 169-77
Electrical conductivity, anisotropy: Noritomi
169-121
drill cores, electromagnetic determination:
Malmqvist 170-259
effect of temperature: Noritomi 169-121
granite: Noritomi 169-121
Stevens method of determining: Belluigi
169-98
Electric current distribution, in earth’s in-
terior, and geomagnetic field: Bartels 171-
259
Electrical exploration, asymmetric electrode
configurations: Al’pin 168-77
automatic measuring equipment: Karande-
yev 168-100
bilateral equatorial electrode arrange-
ments: Berdichevsky 168-78
Buchheim method: Belluigi 170-94
by industrial alternating currents: Yoffe
179-98
detection of crevasses, theoretical inves-
tigations: Abramson 171-122
determination of capacity of bore hole:
Gorelik 169-106
determination of depth to saturated aquifer:
Friesche 170-129
determination of underground stream flow:
Gorelik 171-121
derivation from single pole method: Bel-
uigi 168-80
electrode configurations: Al’pin 168-77;
Belluigi 168-80
equivalence: Belluigi 168-79
for controlling cement injection: Fritsch
168-100
for ground water, U. S. S. R.: Demidovich
169-105
for ore deposits: Bukhnikashvill 168-82,
169-99
for petroleum: Migaux 168-93
for pyrite deposits: Ovchininokov 170-92
ice, apparatus for: Lefevre 170-124
importance of geologic factors in inter-
pretation: Hackett 169-107
induced polarization, for ground water:
Vacquier 170-101
induced polarization, model experiments:
Rysa 170-93
in geologic mapping, Altai Mountains:
Veshev 170-170
in presence of screening layer: Ovchini-
nokov 170-92
interpretation by conformal mapping:
Kunets 168-81
Electrical exploration—Continued

inverse problem, analogy to aerodynamics: Chetayev 170-102
method of calculation: Bellugi 160-97
Longcolog: Lee 160-108
methods, U.S.S.R.: Hiersemann 170-119
model experiments: Cagniard 171-120
resistivity, depth calculations: Kataoka 170-103
Sandexsurvey: Lee 160-108
self-potential, effect of topography: Shibato 168-95
in closed polygons: Bukhnikashvili 169-96
in regions of complex relief: Chetayev 171-117
interpretation: Chetayev 171-117
textbook: Semenov 169-94
simultaneous resistivity and self-potential: Shapiro 169-101
telluric, effect of narrow anticlines: Utzmann 170-35
textbook of: Yaknbovskiy 170-89
Electrical field, alternating current in Infinite cable: Barsukov 170-96
natural, over sulfide ores: Urazayev 168-83
oblate ellipsoid: Kolbenheyer 171-116
point source, effect of cylinder on: Dyakonov 169-95
point source on surface with hemispheroidal indentations: Khalfin 168-76
polarized sphere near contact: Novozhilova 171-115
response to step function dipole current source: Bhattacharyya 171-157
spherical body: Krajcovic 171-114
vertical disturbing layer: Petrucci 170-91
Electrical logging, choice of program: Martin 170-126
combined induction and laterolog technique: Martin 170-126
comparison with core, German coal field: Schaub 168-107
correlation with radioactivity logs: Burge 170-127
disturbances caused by magnetization: Pigrov 169-119
effect of chemical composition of electrolytes on σP: Gondouin 171-133
exploration or development programs including: Chombart 170-125
for aquifers, Illinois: Pryor 169-120
formation evaluation by: Pirson 169-112
galvanic couple in: Meyer 171-135
guard, theory: de Witte 168-101
guard electrode response curves: de Witte 168-101
heterogeneous carbonate reservoirs: Winn 171-134
in gas drilled holes: Hiller 168-104
in mining problems: Rossof 168-105
in search for water: Roseff 168-105
induction: Dumanoir 171-132

Electrical logging—Continued

Indiana, Sullivan County: Nelson 171-136
interpretation: Blum 168-102; Chombart 169-110, 170-125; Dumanoir 171-132; Eydaman 168-103; Martin 169-111; Winn 170-273
Japanese coal fields: Nakabayashi 169-116
Kazakh S. S. R., for water: Avrov 169-115
letter symbols for: Martin 169-111
Mauritania, French West Africa: Elouard 170-123
microlaterolog, principle and technique: Martin 170-126
mineral content of water: Cheremenskiy 169-118
Oklahoma: True 169-144
porosity determinations from: Miller 169-112; de Witte 169-109
relations of mud, mud cake, and mud filter resistivities: Lamont 171-131
separation of sulfides: Meyer 171-135
U. S. S. R.: Boydachenko 169-117; Fedynskiy 168-105; Voskoboynikov 169-269
Electrical polarization, induced, disseminated ores: Buechheim 170-130
induced, graphitic rocks: Schrage 170-131
sulfide ores: Schrage 170-131
theoretical study: Frische 170-129
Electrical potential, distribution on boundary of semispace: Bellugi 169-98
ellipsoidal bodies: Bulashevich 168-84
Greenland ice cap: Martin 171-165
Electrical properties, correlation with elastic: Polak 169-122
effect of severe storm: Burr 168-109
ground, relation to lightning strikes: Frisch 169-126
induced polarization, sedimentary rocks: Rokitanskiy 169-125
Electrical resistivity, effect of alternating current: Enenshteyn 170-132
errors in calculations: Tarczy-Hornoch 170-144
field measurements of: Enenshteyn 170-132
instruments: Gassmann 169-104
interpretation: Dyke 168-97; Kolbenheyer 171-114; Krajcovic 171-114
metalliferous synthetic cores: Mandel 169-123
model experiments: Goudswaard 171-119
pyrrhotite, relation to temperature: Taknaka 168-110
rocks, related to porosity: Komarov 168-108
Electrical self-potential, effect of weather: Semenov 171-118
origin: Okabe 170-115
over ore deposits: Ohashi 168-85
variable: Semenov 171-118
INDEX TO GEOPHYSICAL ABSTRACTS 168-171, 1957

Electrical surveys, Aletsch glacier: LeFevre 171-130

Algeria, Hodna Basin: Migaux 168-9

Czechoslovakia, Danube River: Krajcovic 171-126

Denmark: Sorgenfrei 170-106

France, Alsace: Migaux 168-93

Bresse: Migaux 168-93

Doubs: Glangeaud 168-99

Jura: Reussner 168-98

Roches-Gagneaux: Breusse 168-94

France, Bresse: Migaux 168-93

Doubs: Glangeaud 168-99

Jura: Reussner 168-98

Roches-Gagneaux: Breusse 168-94

French Equatorial Africa: Migaux 168-93

Mauritania: Blanchot 170-122; Elouard 170-121, 123

Germany, Lusatia masif: Lehmann 168-251

Siegerland mines: Schmidt 168-96

Gold Coast: Gay 169-245

Illinois, near Shelbyville: Hackett 169-107

India, dam and bridge sites: Kailasam 170-107

India, Kamptee coalfield: Kailasam 170-107

Purna Valley: Kailasam 170-107

Italy, Agnone folio: Manfredini 170-110

Orbetello folio: Manfredini 170-109

Palermo vicinity: Manfredini 170-113

Rome: Manfredini 170-108, 111

Sicily: Beneo 170-114; Migaux 168-93

Japan, Aichi: Honma 171-127

Aomori: Kunori 170-117

Besshi mine: Okabe 170-115

Gifu: Kaneko 170-116

Kochi: Suyama 170-118

Nishinouraya: Shibato 168-90

Shizuoka: Honma 171-128

Madagascar: Migaux 168-93

Morocco, Rharb: Migaux 168-93

New Zealand, Balclutha: Hatherton 171-129

Swiss Alps: Gassmann 169-104

Sweden: Sorgenfrei 170-106

Uganda, Lake George: Dyke 168-97

Yugoslavia, Goliya Mountain: Grujic 168-254

Electrofiltration potential, effect of pumping: Gorelik 169-106

Electromagnetic exploration, airborne methods: Tornqvist 170-99

alternating field in: Barsukov 170-97

amplitude and phase measurements: D'yakonov 168-58

around drill holes: Veksler 171-125

calibration of instruments: Barsukov 170-100

comparison of methods: Byers 170-105

field over vein: Ivanov 169-102

frequency selection: Kamenskii 170-95

importance of phase structure: Ivanov 169-103

laboratory experiments: Kyono 170-104

model studies: Luk'yev 168-91

Electromagnetic field, over cylindrical heterogeneities: Nikitina 168-90

phase structure: Ivanov 168-87

Electromagnetic field—Continued

transient, in two layer medium: Chetayev 168-86

vertical magnetic dipole on surface of two-layer ground: Pavinskiy 168-89

Electromagnetic surveys, airborne, recent developments: Tarbox 168-247

anomalies, errors: Ivanov 168-87

Japan, Kitatoyotsu district: Murozumi 168-252

phase compensation equipment: Ivanov 168-87

Saskatchewan, Flin Flon area: Byers 170-105

Electromagnetic waves, transient, propagation in medium of finite conductivity: Bhattacharyya 168-92

Elements, order of formation: Kober 169-192

El Salvador, active volcanoes: Meyer-Abich 168-810

fumaroles and thermal springs: Grebe 169-339

geothermal power possibilities: Grebe 169-332

Solfatara and fumarole fields: Grebe 169-322

volcanic eruptions, Boqueron, 1917: Roy 170-304

Energy, crust, source: Lebedev 168-173

earthquakes: Bath 169-65; Dibble 169-66; Taubol 171-82

explosions, calculated from instrumental magnitude: Dibble 169-66

solar, as source of endogene reactions: Lebedev 168-173

Engineering, electrical methods in: Fritsch 169-100

England, earthquake, Feb. 11, 1957: Dollar 169-131

Equation of state, solid bodies: Davydov 169-194

Equator, ellipticity: Wolf 169-144

Europe, central, free-air gravity map: Schloesener 169-180

gravity network, standardization: Kneissl 169-178

International gravity network, German portion: Kneissl 168-161

surveys: Kneissl 170-183

western, magnetic secular variations: Mendonça Dias 168-216

Eustasy, Australia, role of carbon-14 dating: Comm. Inv. and Correlation Eustatic Changes of Sea Levels 168-9

Faults, deep, relation of sedimentation, folding, volcanoes in, and mineral deposits: Pyeue 168-133

lithospheric: Vecchia 171-159

location by radioactivity measurements: Vankova 168-276; Williams 169-278
Faults—Continued
movements on, earthquakes: Gianella 170–49; Hodgson 168–31, 32, 169–51; Ingram 170–51; McIntyre 169–52; Muhlbauer 170–54; Ritsema 168–33; Scheidagger 169–53; Tocher 171–66
regional, geologic and geophysical aspects: Vecchia 171–159
San Andreas, California, northward continuation: Shepard 170–158
seismic method of tracing: Dyachkova 169–311
transcurrent, New Zealand, Mt. Miroros: Cotton 171–161
Figure of the earth, compatibility term in theoretical determination: Ertel 171–150
mean curvature of principal sections: Bragard 170–145
representation by spherical harmonics: Nakamura 169–143
Finland, earthquakes, 1728: Panssenko 171–56
goalophysical exploration, Orijarvi region: Tuominen 170–137
Folding, relation to deep faults: Peyve 168–133
Fracturing, mechanics of: Hubbert 171–342
France, age, Espaly zircons: H6e 169–18
age, Grand Paradis massif: Pangaud 170–24
Saint Barthémy migmatites: Roques 169–19
Vosges granites: H6e 169–17, 171–35
crustal structure, Rochilles explosions: Bernard 168–193
electrical surveys, Alsace: Miguax 168–93
Bresse: Miguax 168–93
Jura: Glangeaud 168–99; Reussner 168–98
Roches-Gagneaux: Breusse 168–94
gravity map: Coron 171–179
gravity surveys, Pontoise: Feuger 171–183
Rocroi massif: Waterlot 170–191
southern basin subalpine zone: Orgeval 170–190
magnetic surveys, Rocroi massif: Waterlot 170–191
magnetization, Colron basaltis: Boer 171–272
volcanic rocks, Estrel: Roche 170–249
Rutten 170–250
radioactivity, sediments of La Mure dome: Sarrot-Reynaud 169–258
seismic surveys: Glangeaud 168–93
uranium content of water, Vosges: Ju- rain 171–308
French Equatorial Africa, electrical surveys, Gabon: Miguax 168–98
geophysical exploration for petroleum, Gabon: Chronicle des Mines d’Outre-Mer 171–140; Hourcq 169–32
French West Africa, geophysical exploration for water, Mauritanie: Blanchot 170–122; Elouard 170–21, 123
isostatic compensation: Crenn 170–216
Punauxles, Sheveluch volcano, Kamchatka: Basharina 168–317

G
Galvanometer, high-frequency: Borisевич 170–143
Gamma rays, absorption, in sedimentary rocks: Polak 169–254
Geodesy, compatibility term for higher: Ertel 171–150
Geoid, calculation from gravity observations: Levallois 170–146
computed at Ohio State: Helskanen 171–149
determinations by differences in vertical gravity gradients: Bragard 170–145
Europe, orientation of: Lieberman 170–147
Geophones, theory and testing: Datskevich 168–284
Geophysical case history, Anderson Ranch field, New Mexico: Swenumson 171–339
organic rocks, central northern Texas: Van Siclen 170–292
Geophysical exploration, 1956; Holmer 169–129
automatic data reduction in: Olsen 168–127
Belgian Congo: Evrard 169–133
Belorusssia S. S. R.: Ryng 171–139
Brazil, 1955, by Petrobras: Link 169–134
Cameroon, Africa: Hourcq 168–131
drill hole methods: Dakhov 169–128
Meyer 170–135
evaluation of methods, Siegerland siderite mines, Germany: Closs 168–122
Finland, Orijarvi region: Tuominen 170–137
for minerals, current status: Westphal 170–133
potentialities: Hedstrom 171–138; Latfargues 170–134
U. S. S. R.: Krasulin 168–117
for petroleum, Indian: Evans 169–138
present status: Green 169–142
for reefs: Agnich 168–113
Geophysical exploration, for salt domes: Eby 168–129
for uranium: Broding 168–125; Lenoble 168–124
France, for uranium: Lenoble 168–124
geologic data in interpretation: Skeels 168–114
Germany, 1951–54: Bentz 168–115
Siegerland siderite deposits: Closs 168–122; Thienhaus 168–123
helicopters: Tarbox 168–129
Hungary: Kertal 169–137
Geophysical exploration—Continued
in geologic mapping, U. S. S. R.: Molseyenko 170–139
Madagascar: Hourcq 169–139
Mauritania, French West Africa: Blanchot 170–122
methods: Itenberg 169–127
Mexico, for petroleum: Figueroa Huerta 168–116
offshore development: Cortes 168–112
Pakistan: Kazmi 171–139
polymetallic ores: Meyer 170–135; Semenov 171–144
recent advances: Bennett 170–136
research developments, 1956: Dobrin 169–130
Ruanda Urundi: Evrard 169–133
Spain, by Valdebro: Gavala 169–141
textbook: Itenberg 171–137
types of oil traps found: Morrisey 168–128
Ukraine, for iron ore: Krutikhovskaya 171–281
United Kingdom: Warman 169–135
U. S. Geological Survey: Balsley 168–126
U. S. S. R., for oil and gas: Fedynskiy 168–118
for polymetallic ores: Semenov 171–144
Geophysical measurements, accuracy of calculated values: Tarczy-Hornoch 170–144
Geophysical surveys, Carpathian Basin, Hungary, regional structure from: Scheffer 171–142
East Germany: Bujalow 170–138
Gabon, French Equatorial Africa: Chronique des Mines d’Outre-Mer 171–140
Netherlands, Peel coal basin: Riel 169–140
New Zealand volcanic and thermal areas: Healy 168–326
Rhenish Schiefergebirge, Germany: Wolff 171–141
Geophysics, classification: Brauch 170–140
documentation: Branch 170–140
textbook: Bonckhovskiy 171–145
Georgian S. S. R. earthquakes, May 7–8, 1940: Byus 169–41
magnetic anomalies: Nodia 169–247
radioactivity of hot springs: Balavadze 169–262
seismicity, Greater Caucasus: Byus 169–40
International European network: Kneisal 168–161
Starnberger See: Graf 171–168
groundwater surveys, Alps foreland, interpretation: Closs 171–181
Baden-Württemberg: Albrecht 169–169
Bayern levelling network: Watermann 169–170
magnetic surveys, Hess: Kutscher 169–244
Lausitz massif, lamprophyre dikes in: Lehmann 168–251
Siegeland siderite deposits: Schmidt 168–96
explosion seismic results, Magdeburg church razing: Martin 170–293
geophysical exploration, 1951–54: Bentz 169–326
nickel: Lauterbach 168–121
groundwater surveys, Rhenish Schiefergebirge: Wolff 171–141
Geophysical exploration, multiple reflections in: Bortfeld 168–300
radioactivity of crystalline rocks, Black Forest: Husmann 169–257
seismic exploration, multiple reflections in: Bortfeld 168–300
geothermal behavior of the earth: Goguel 171–193
Geothermal conditions, Walraken, New Zealand: Healy 168–327
Geothermal gradient, anomalies, use in prospecting for steam deposits: Contini 170–202
effect of surface temperature variations: Goguel 170–200
in permafrost: Goguel 170–200
Ukraine: Gandzuky 171–198
Geothermal power, possibilities in El Salvador: Grebe 169–332
radioisotope logging of boreholes for, Italy: Rossi 169–272
Germany, age, Hechstberg pegmatite: Gentner 171–41
age, Eifelmaar volcanic rocks: Straka 169–10
Lausitz granite: Schümann 171–49
crustal structure: Dohr 170–209; Muhlen 168–194; Reich 171–211; Wolff 171–141
earth tide instruments at Munich: Ellenberger 169–74
electric log compared with lithology, Lower Rhine coal basin: Schaub 168–107
geophysical surveys, Lausitz massif, lamprophyre dikes in: Lehmann 168–251
Starnberger See: Graf 171–168
gravity surveys, Alps foreland, interpretation: Closs 171–181
Baden-Württemberg: Albrecht 169–169
Bavarian levelling network: Watermann 169–170
magnetic surveys, Hess: Kutscher 169–244
Lausitz massif, lamprophyre dikes in: Lehmann 168–251
near Schönbrunn: Grabe 171–296
magnetization, Miocene igneous rocks: Vogelsang 171–263
Vogelsberg basaltic: Angenheister 170–251
radioactivity of crystalline rocks, Black Forest: Husmann 169–257
seismic exploration, multiple reflections in: Bortfeld 168–300
Geotectonics, compared to moon tectonics: Biilow 170–154
Seismology, development: Cameron 171–162
geochemical history: Vening Meinesz 171–157
Geotectonic significance of rhyolites: Hiersemann 171–153
Geotectonics, compared to moon tectonics: Biilow 170–154
orocline concept: Carey 170–150
philosophical aspects: Sonder 170–151
present status, Russia vs. other countries: Chail 170–148
role of solar energy: Lebedev 168–173
Germany—Continued
seismic surveys, Schleswig - Holstein: Hecht 168-302
Siegerland siderite deposits: Helbig 168-298
southern: Breyer 168-301
seismic velocities, Alpine foreland Molasse formations: John 171-334.
Siegerland siderite deposits, geophysical study: Closs 168-122; Thienhaus 168-123
structural elements, northwestern Brinck meier 169-136
Glacial chronology, carbon-14 dating: Antevs 169-6; Dreimanis 170-17; Elson 171-22; Emiliani 168-205; Gross 171-15; Karistrom 169-8; Leighton 169-7; Lundqvist, G. 168-6; Lundqvist, J. 168-7; Rigg 169-9; Wright 171-20
Glaciers, arctic and subarctic: Sharp 171-164
behavior of ice: Bull 170-161
electrical measurements: LeFèvre 170-124
formation of pressure waves: Haefeli 170-276
mean shear stress, Highway glacier, Baffin Island: Ward 168-139
mechanism of sliding: Weertman 170-164
movement, Switzerland, Rhône glacier: Haefeli 169-150.
regimen and movement, Taku: Nielsen 168-138
recession, northwestern United States: Johnson 168-142.
thickness determined by gravity measurements: Bull 168-149
velocity of flow, Highway glacier, Baffin Island: Ward 168-139
Gold Coast, electrical surveys for water: Gay 169-245
magnetic surveys, north of Nanwa gold mine: Gay 169-245
Granite, electrical conductivity, variation with temperature: Noritomi 169-121
Gravimeters, accuracy for long-distance measurements: Graf 169-152
altimeter combined with: Yurkova 169-154
CH3: Popov 170-179
marine: Graf 171-168
Nørgaard, effect of compressibility of compensating liquid: Bulanzehe 168-151
North American, accuracy of in Japan: Matsuda 168-154
quartz fiber, temperature coefficient: Popov 171-170
tidal, improved design: Clarkson 168-150
use as torsion balance: Gabriel 169-155
variation in temperature within Dewar vessels: Gabriei 171-172
Gravimeters—Continued
Worden, accuracy: Bonini 169-156
calibration: Caputo 171-171
pressure, effect: Caputo 170-180
temperature, effect: Caputo 170-180
Gravimetry, textbook on: Abel'sky 171-167
Gravity, accuracy of observations with Cambridge apparatus: Gilbert 170-186
analytic continuation: Kuzivanov 169-159
comparison of measurements with Worden and Cambridge instruments: Cook 169-157
corrections for mining galleries: Kazinsky 168-148
deflections of vertical from, accuracy: Kaula 170-169
deflections of vertical, New Britain: Kaula 170-187
density determination by underground measurements: Rische 170-177
density determination for interpretation: Whetton 169-165
determination for orthometric height computation: Mül ler 168-130
determination of glacier thickness: Bull 168-149
elevation corrections, Caucasus Mountains: Ochapovskiy 168-178
errors in calculation from pendulum data: Târzîy-Hortoch 170-144
gradient, effect of spherical masses on: Norinelli 171-173
measurement at sea: Romuyk 170-167, 168
residual, determination: Tribalto 170-171
second derivative, graphical determination: Tyapkin 171-175
second-derivative interpretation by: Rosenbach 170-172
secular changes, Japan: Ichinone 171-178
third derivative, measurement by torsion balance: Kilchling 170-181
third vertical derivative, above simple masses: Hergerdt 170-170
tidal correction: Watermann 169-166
tidal variations: Ichinone 169-75, 171-178; Nishimura 170-66
vertical gradient, corrections in Caucasus Mountains: Ochapovskiy 168-168
field determination: Thysen-Bornemisza 170-182
Gravity anomalies, along faults: Vecchia 171-159
Alps, size of root and crustal shortening: Hoppers 168-200
California, Great Valley: Ivanhoe 168-156
depth determinations from: Kudryavtsev 169-160; Petrov 171-174
effect of elevation factor: Ivanhoe 170-174
free air, central Europe: Schlesener 169-180
from undulations in boundary between two media: Vyskočil 168-146
Gravity anomalies—Continued

- **Germany, northwest**: Brinckmeler 169–136
- **Hungary**, compared to plumb-line deviations: Renner 171–151
- **instrument to simulate**: Gerrard 169–161
- **island arcs**: Jung 168–190
- **isostatic, Sahara**: Lagrula 170–215
- **interpretation**: Bulakh 170–173; Hammer 168–145; Mikov 169–240; Petrov 171–174; Rosenbach 170–172; Roze 169–237; Tomoda 171–176
- **Quebec**: Innes 169–172
- **reduction to new surface**: Kuzivanov 168–147
- **regional**: Egyed 168–145
- **residual, calculation**: Egyed 168–145
- **Sicily**: Vecchia 169–175
- **statistical analysis**: Grant 169–158
- **types, Caucasus**: Balavadze 171–177
- **Gravity map, France**: Coron 171–179
- **Atlantic Ocean**: Shurhet 168–155, 169–171; Worzel 170–188
- **Gravity observations, absolute, Hammerfest-Munich calibration line**: Jeistrup 169–168
- **Australia**: Cook 169–157
- **Bahama Islands**: Shurbet 168–155
- **calculation of geoid from**: Levallois 170–146
- **determination of deformation coefficient from**: Lassovsky 171–91
- **German network, 1955**: Watermann 169–181
- **Germany, international European network**: Kneissl 168–161
- **Sarnberger See**: Graf 171–168
- **Great Britain**: Cook 169–157
- **Himalayan region**: Marussi 168–170
- **Italy, Rome**: Morelli 170–184
- **Karakorum expedition**: Caputo 170–185
- **Latin America**: Salgueiro P. 171–193
- **Po Basin**: Rocci 168–164
- **Pontine Plain**: Tribalto 170–171
- **Rome area**: Zaccara 170–112
- **Rome f o l i o**: Maino 170–194
- **Japan, Kwantō district**: Tsuboi 168–195
- **Kyūshū**: Tsuboi 168–166
- **Mihara volcano, 1956**: Yokoyama 171–184
- **Zumma prefecture**: Ogawa 168–167
- **Lebanon**: Plassard 170–196
- **limiting factors in Hungary**: Szénás 168–162
- **methods**: Thyssen-Bornemisza 170–182
- **Ohio**: Heiskanen 169–174
- **Ontario, southwestern**: Dyer 168–159
- **Sudbury basin**: Miller 168–157
- **v i c i n i t y of Ottawa**: Saxov 168–158
- **Texas, San Luis Pass dome**: Nettleton 168–169
- **underground**: Kazinskiy 168–165
- **platform**: Nevolin 171–187
- **U. S. S. R., Caspian Sea**: Lozinskaya 168–153
- **Ukraine**: Sumi 168–172
- **Venezuela, Cordillera de la Costa**: Smith 170–198

Gravity surveys—Continued

- **Denmark, Jutland**: Saxov 170–189
- **European network, standardization**: Kneissl 169–178
- **Europe, international network**: Kneissl 170–183
- **for chromite, Cuba**: Davis 171–191
- **for pyrite**: Katskov 170–195
- **France, Poitou**: Feuגני 171–183
- **Rocroi massif**: Waterlot 170–191
- **southern basin of Subalpine zone**: Orgeval 170–190
- **Germany, Alps foreland, interpretation**: Class 171–181
- **Baden-Württemberg**: Albrecht 168–169
- **Bavarian levelling network**: Watermann 168–179
- **Gulf of Mexico, southeast of Galveston**: Nettleton 170–192
- **Indonesia, Timor Island**: Ritsema 169–173, 171–227
- **Italy, Adriatic Sea**: Morelli 168–163; Sans Huelin 171–180
- **Frosinone and Caserta**: Tribalto 170–185
- **textbook**: Lakavchenko 171–190
- **Tien Shan**: Gamburtsev 168–197
- **Uganda**: Harris 169–177
- **value in Appalachian region**: Pohly 169–182
- **Venezuela, Cordillera de la Costa**: Smith 170–198
- **Yugoslavia**: Sušić 168–172

Gravity surveys

- **Denmark, Jutland**: Saxov 170–189
- **European network, standardization**: Kneissl 169–178
- **Europe, international network**: Kneissl 170–183
- **for chromite, Cuba**: Davis 171–191
- **for pyrite**: Katskov 170–195
- **France, Poitou**: Feu neger 171–183
- **Rocroi massif**: Waterlot 170–191
- **southern basin of Subalpine zone**: Orgeval 170–190
- **Germany, Alps foreland, interpretation**: Class 171–181
- **Baden-Württemberg**: Albrecht 168–169
- **Bavarian levelling network**: Watermann 168–179
- **Gulf of Mexico, southeast of Galveston**: Nettleton 170–192
- **Indonesia, Timor Island**: Ritsema 169–173, 171–227
- **Italy, Adriatic Sea**: Morelli 168–163; Sans Huelin 171–180
- **Frosinone and Caserta**: Tribalto 170–185
- **textbook**: Lakavchenko 171–190
- **Tien Shan**: Gamburtsev 168–197
- **Uganda**: Harris 169–177
- **value in Appalachian region**: Pohly 169–182
- **Venezuela, Cordillera de la Costa**: Smith 170–198
- **Yugoslavia**: Sušić 168–172

Gravity ties

- **Pakistan-India**: Marussi 169–170
- **Rome-Pakistan**: Marussi 169–170
- **Rome-Washington**: Morelli 170–184
Gravity variometers, balancing: Kazinskiy 170-173
Great Britain, geophysical exploration for oil: Warman 169-135
gravity measurements: Cook 169-157
Shetland Islands, earth tides: Tomasek 171-190
Greece, earthquakes, 1950-53: Galanopoulos 171-57
earthquakes: Galanopoulos 171-57, 58; Trikkalinos 170-39
recent tectonic movements: Trikkalinos 170-39
strain relief: Galanopoulos 171-57, 58
Greenland, crustal structure: Holtzscherer 168-141
seismic surveys, ice cap: Holtzscherer 168-141
temperatures in icecap: Heuberger 168-140; Loewe 171-166
Guatemala, active volcanoes; Meyer-Abich 168-310
Gulf Coast, salt dome reservoirs: Eby 168-120
Gulf of Mexico, gravity survey, southeast of Galveston: Nettleton 170-192
uranium in waters: Kona 168-264
Gypsum, elastic constants: Hameister 170-87
Hawaii, earthquakes 1954: Murphy 168-16
submarine geology: Hamilton 170-299
volcanic activity, 1949-52: Macdonald 168-311
1952: Macdonald 168-312
Heat, radiative transfer in earth: Clarke 171-192; Lyubimova 170-199
transfer in non-opaque media: Clarke 171-192
Heat conduction, borehole containing flowing liquid: Kozlowski 169-184
thick intrusive sheets: Jaeger 169-183, 220
Heat flow, California, Grass Valley: Clark 169-185
permafrost, Resolute Bay, N. W. T.: Goguel 170-200; Lachenbruch 171-195; Misener 171-196
Hungary, Transdanubian coal basin: Boldizsér 168-178, 169-187
New Zealand, Wairakei geothermal area: Healy 168-327; Studt 170-201
U. S. S. R., Caucasus: Dubinsky 169-186
Donbas: Dubinsky 169-186
Helium, escape from atmosphere: Cook 168-265; Nicolet 170-222
isotopes, atmosphere: Damon 169-207
isotopes, mass spectrometer for determining: Nier 171-219
meteorites: Fireman 169-2; Gentner 168-201; Reynolds 171-8
radioactive, determination in zircon: Damon 171-26
source of: Cook 168-265
retentivity in minerals: Damon 171-26
High pressure and temperature apparatus: Griggs 168-305
Hot springs, annual variations: Conrad 168-180; Murota 169-327
Austria, Bad Gastein: Aurand 169-263
effect of polar movement: Conrad 168-180
El Salvador: Grebe 169-339
Georgian S. S. R.: Balavadze 169-262
isotopic geochemistry: Craig 171-228
Japan, Aso volcano: Murota 169-327
Kamchatka, Karymshchina Valley: Sirin 168-318
radioactivity, Austria, Bad Gastein; Aurand 169-263
Georgian S. S. R.: Balavadze 169-262
Hungary, Carpathian Basin, structural elements: Scheffer 171-142
Carpathian region crustal dynamics: Zátopek 171-60
crustal movements: Egyed 171-160
crustal structure: Bízsrostény 171-61; Gáli 171-212, 213
deflections of vertical, relation to gravity anomalies: Renner 171-151
deuterium content, natural waters: Cziki 170-223
earth current apparatus at Sopron: Ádám 171-50
earth current measurements at Sopron: Kántás 171-51
earth tide amplitude at Budapest: Lassovsky 168-55
earthquake, Feb. 20, 1951: Kárnuk 168-18
Jan. 12, 1956: Bízsrostény 171-61
earthquake research, historical review: Simon 171-59
geomagnetic secular variation in Carpathian basin: Bartha 171-242
gyrophysical exploration, factors limiting: Sáznára 168-162
gyrophysical exploration, historical review: Kertal 169-137
heat flow, Transdanubian coal basin: Boldizsér 168-178, 169-187
seismic surveys: Gáli 168-195, 171-212
temperatures, Transdanubian coal basin: Boldizsér 168-178, 169-187
Hydrogen, isotopes, artificially produced: Begemann 171-220, 222
natural waters, Hungary: Cziki 170-223
tektites: Friedman 171-221
I
Ice, deformation of floating: Weertman 170-162
electrical surveys: Lefèvre 170-124
flow and recrystallization: Steinmann 198-148
longitudinal wave velocity: Holtzsherer 168-141
potential differences: Martin 171-165
slope, thickness relations, Greenland: Bull 170-161
temperatures, Greenland: Heuberger 168-140; Loewe 171-166
Ice—Continued
thermal measurements: Heuberger 168–110
thickness, Antarctica: Robin 169–151
Ice sheet, temperature distribution: Robin 169–149
Iceland, magnetization in basalts: Einarsson 170–252, 253
Idaho, airborne magnetic profile: Agocs 169–242
Illinois, electrical exploration for ground water: Hackett 169–107; Pryor 169–120
Inclination, azimuthal measurement: Bonschokovsky 171–132
India, Alibag Magnetic Observatory, description: Indian Journal of Meteorology and Geophysics 168–214
Colaba Magnetic Observatory, description: Indian Journal of Meteorology and Geophysics 168–215
earthquake, June 26, 1941, Andaman Islands: Jhingran 168–20
electrical surveys, engineering and mining problems: Kallasam 170–107
exploration for petroleum, Upper Assam: Evans 169–138
magnetic observations on west coast, 1538–1539: Custodio de Morais 168–215, 169–222
radioactivity, charnockites: Mahadevan 170–228; Sastry 170–267
gneisses: Sastry 170–227
off-shore sediments, Bay of Bengal: Sastry 171–310
seismic surveys, off west coast: Nanda 169–200
Indian Ocean, magnetic observations at Heard Island: Ingal 171–214
Indiana, electrical logging, Sullivan County: Nelson 171–136
seismic survey, north of glacial boundary: Wayne 171–340
Indonesia, age determinations: Schurmann 171–49
earthquake November 2, 1954, Sumbawa Island: Ritsema 170–41
gravity survey, Timor Island: Ritsma 169–173; 171–227
magnetic surveys of Timor: Peloschek 170–260
radioactivity surveys, Timor: Peloschek 170–260
See also Core, Crust, and Mantle
Isostasy—Continued
therories: Jung 168–190; Lysstikh 170–214; Strasser 171–107
Isotopes, argon, meteorites: Gentner 168–201; Reynolds 171–8
argon, reliability of calculations based on: Polishani 170–217
beryllium, in atmosphere and on earth: Peters 168–202
carbon, atmosphere: Rafter 171–215
ground water: Műnlich 168–204
metamorphic rocks, Sweden: Gavelin 171–216; Landegren 170–221
modern material: Revelle 170–219
natural distribution: Craig 170–218
oceanic materials: Arnold 170–220
ocean waters: Rafter 171–215
transfer and distribution: Craig 170–218
chlorine, pitchblende: Kuroda 169–216
rocks: Schaeffer 171–218
deuterium, natural waters: Cziki 170–223
thermal waters: Craig 171–228
helium, abundance ratios: Nier 171–219
atmosphere: Damon 169–207
escape from atmosphere: Nicolet 170–222
meteorites: Gentner 168–201; Reynolds 171–8
hydrogen, artificially produced: Beegemann 171–222, 222
natural waters: Cziki 170–223
tektites: Friedman 171–221
lead, geochemical implications: Shaw 170–222
galenas from Australia: Russell 170–21
galenas from Germany: Paul 171–224
galenas from Ontario: Farquhar 170–22
interpretation: Russell 171–31
meteorites: Edwards 171–223; Russell 168–203
neon, Nuevo Laredo meteorite: Reynolds 171–8
nour, air: Parwel 169–208
caliche: Parwel 169–208
calcoal: Hoering 171–225; Parwel 169–208
gas: Hoering 171–225
peat: Hoering 171–225
petroleum: Hoering 171–225
rocks: Hoering 171–225
sal ammoniac: Parwel 169–208
wood: Parwel 169–208
oxygen, atmosphere: Dole 171–222
cycle in nature: Dole 171–222
fresh waters and ice: Epstein 171–227
minerals: Hoekstra 171–229
paleotemperature determinations by: Teys 171–230
thermal waters: Craig 171–228
radium, Colorado Plateau uranin ores: Senftle 169–210
reference samples: Dibeler 171–214
sulfur, determination: Rafter 171–231
minerals: Kulp 171–232
relation to mineral paragenesis: Jensen 169–209
SUBJECT INDEX

Isotopes—Continued
thorium, sea water: Koczy 169–263
tritium, abundance in nature: Begemann 171–222
uranium, in Colorado Plateau uranium ores: Senftle 169–210
xenon, meteorites: Reynolds 171–8
zinc, abundance ratios: Blix 169–211
Israel, earthquakes: Shalem 169–35
Italy, age, Grand Paradis massif: Pangaud 170–24
Feb. 1955, Pedora: Cucuzza-Silvestri 170–43
electrical surveys, Agnone: Manfredini 170–110
near Rome: Zaccara 170–112
Orbetello: Manfredini 170–109
Palerno vicinity: Manfredini 170–113
Rome: Manfredini 170–108, 111
Sicily: Beneo 170–114; Migaux 168–93
syncreton foundation: Manfredini 170–108
gravity survey, Adriatic Sea: Morelli 168–163; Sans Huelin 171–180
Caserta: Tribalbo 170–193
Prosioone: Tribalbo 170–193
near Rome: Zaccara 170–112
Pontine Plain: Tribalbo 170–171
Po Basin: Rocco 168–164
Rome: Maino 170–194
Sicily: Beneo 170–114; Vecchia 169–175
radioactivity, Adamello granodiorite: Merlin 169–259
radioactivity, coals and rocks, Suelis basin, Sardinia: Aramu 169–205
radioactivity logging of steam boreholes: Rossi 169–272
seismic surveys, Po plain: Quarta 170–291; Rocco 168–164
Torrente Furha: Manfredini 170–294
Solfatara di Pozzunoi: Sicard 169–338
Stromboli, lava flow of March 22, 1955: Cavallaro 169–333
volcanic activity, Stromboli: Die Umschau 168–313

J
Jadeite, stability relations at high pressures and temperatures: Robertson 168–188
Japan, Aso volcano, hot springs: Namba 169–323
variation of water head: Murota 169–324
changes in sea level: Sugimura 169–204

K
Kamchatka, earthquakes, 1951: Gorshkov 168–48
direction of faulting: Hodgson 168–31
fumaroles, Sheveluch volcano: Basharin 168–317
hot spring, Karymshchina Valley: Sirin 168–318

Japan—Continued
earthquakes, land movements, Kwantō: Sugimura 169–204
mechanism at focus: Hodgson 168–81; Honda 170–55
tilting of ground before: Sassa 169–70
earth-tide observations: Nishimura 170–66
electric logging, coal fields: Nakabayashi 169–116
electrical surveys, Aichi: Honma 171–127
Aomori: Kunori 170–117
Besshi mine: Okabe 170–115
Chiba: Tateishi 171–336
Gifu: Kaneko 170–116
Kochi: Suyama 170–118
Kitatoyokesu district: Murozumi 168–222
Nishimurayama district: Shibatō 168–95
Shizuoka: Honma 171–128
geotectonic development, Hokkaido: Minato 168–136
gravity surveys, Kwantō: Tanbo 168–165
Kyūshū: Tanbo 168–166
Mibara: Yokoyama 171–184
Zumma: Ogawa 168–167
magnetic anomalies, Yatusiro Bay: Murozumi 169–246
magnetic surveys, Kitatoyokesu district: Murozumi 168–252
Kumamoto: Nakamura 169–223
magnetization of volcanoes: Minakami 169–235
mante, electrical conductivity: Rikitake 168–221
micro-tremor measurements in seismic regions: Kanai 171–297
radioactivity, graphite in Online coal field: Kubo 169–261
hot springs: Okabe 169–264
Saga coalfield: Shibata 168–321, 169–270
volcanic gases: Iwasaki 168–266
radioactivity surveys, airborne: Sato 170–276
radon in hot springs: Kaku 169–265
seismic survey, Chiba district: Ninagawa 169–308
seismic wave velocities: Utsu 169–71
volcanic activity 1949–53: Minakami 168–314, 315
1951–53: Minakami 169–318
Aso: Namba 169–321, 322
Kuju: Namba 169–321, 322

K
Kamchatka, earthquakes, 1951: Gorshkov 168–48
direction of faulting: Hodgson 168–31
fumaroles, Sheveluch volcano: Basharin 168–317
hot spring, Karymshchina Valley: Sirin 168–318
Kamchatka—Continued
volcanic activity, Koshelev, 1953: Naboko 169–336
northern part, 1954: Piyp 168–316
volcanic eruptions, Bylinkina: Gorshkov 169–335
Klyuchevskaya: Piyp 170–301
volcanic tremor, Bylinkina: Gorshkov 169–335
volcanoes, Tolmachev Dol: Svyatlovskiy 168–319
Kansas, airborne magnetic profile, Nebraska state line: Merriam 169–243
Karelo-Finnish S. S. R., age determinations: Hantzschel 168–2
Kazakh S. S. R., geophysical logging, exploration for water: Avrov 169–115
Kentucky, magnetic surveys, western fluor spar district: Warren 168–253
Kilauea, energy, annual variation: Namba 169–330
Kirgiz S. S. R., earthquakes, 1620 to date: Rozova 171–62
Alay Kel', April 1955: Rozova 169–49
Frunze region: Rozova 169–42
Naryn River valley: Rozova 169–43
Kurile Islands, earthquakes, direction of faulting: Hodgson 168–31
volcanoes, Simushir: Korsunskaya 168–320
L
Latin America, gravity determinations: Salgueiro P. 171–185
Lead, isotopes, origin and history: Russell 171–31
isotopes, galena from Germany: Paul 171–224
galena from Broken Hill, Australia: Russell 170–21
galena from Thunder Bay, Ontario: Farquhar 170–22
isotopic analysis, meteorites and rocks: Edwards 171–223
source of deposits: Shaw 170–224
Lebanon, earthquake of March 16, 1956: Observatoire de Ksara 169–106
gravity surveys: Plassard 170–196
Limestone, deformation: Handin 170–296
elastic constants: Hamelster 170–87
elastic wave propagation: Balakrishna 168–74; Hamelster 170–87
radioactivity, Sulcis basin, Sardinia: Ama
tu 170–265
strength: Handin 170–296
Lithium-6, meteorites: Fireman 169–2
Louisiana, age of Quaternary deposits: Brann
don 169–11
Lüders' bands, and plastic deformation in crust: Paterson 168–304
Madagascar—Continued
geophysical exploration for petroleum: Houreg 169–139
volcanoes, Karthala: Besairie 171–946
Macedonia, seismicity: Mihaliov 169–34
Magmatic rocks, radioactivity, Black Forest, Germany: Husmann 169–257
Magnetic anomalies, along faults: Vecchia 171–159
depth determinations from: Kudryavtsev 169–160; Roze 169–238; Stupak 169–239
effect of topography: Akopyan 168–246
interpretation: Baranov 169–241; Blin
trubas 171–275, 277; Henderson 171–276; Kalashnikov 169–227; Mikov 169–240; Roze 169–237; So
kolov 170–257; Vyskočil 171–278
source, under continents: Serson 169–224
under oceans: Serson 169–224
three-dimensional bodies, graphical calculation: Henderson 171–276
Magnetic charts, accuracy: Serson 169–224
Magnetic coercive force, magnetometer for measurement: Kalashnikov 168–228
Magnetic declination, India, 1538–39: Cus
tódio de Morais 168–215
Magnetic dipole, vertical, field over two-layer medium: Kozulin 169–236
Magnetic field, conducting fluid sphere with volume currents: Chopra 171–234
effect of internal motions on decay: Chandrasekhar 168–206
Incompressible fluid sphere, toroidal oscillation: Jensen 168–209
Magnetic field of the earth, Andaman Island region: Malurkar 168–212
Antarctic regions: Slauticajs 169–221
contrast between S and L at Huancayo: Bartels 171–245
Czechoslovakia, 1950.0: Bouška 171–240
decay: Chandrasekhar 168–206
deep, and electrical conductivity: Bartels 171–239
diurnal variations, Japan: Rikitake 168–221
near equator: Alexander 170–232
Peru: Bartels 171–245
disturbances, after solar flares: Sipahloğlu 168–219
effect of altitude: Mauersberger 170–227
effect of internal structure: Egged 168–210
effect of oblateness of earth: Mauersberger 170–226
effect of solar eclipses on: Malurkar 171–243
effect on carbon-14 dating: Beiser 170–228; Elsasser 168–3
evidence for continental drift: Bradley 168–238; Quiring 171–264
external part: Mauersberger 170–214
extrapolation of components: Zmuda 170–230
Heard Island 1952: Ingal 171–241
Magnetic field of the earth—Continued

India, 1538–39 : Custódio de Morais 169–222

Intensity, past 15,000 years: Beiser 170–228

Intensity, relation to carbon-14 dating: Elsasser 168–3

secular variation: Fanselau 169–218; Gaibar-Puertas 171–237; Mauersberger 169–213

irregular activity, northern Canada: Whitham 170–258

mean energy density: Mauersberger 169–213

non-potential part: Mauersberger 169–215

oscillations, experimental investigations: Emsenhteyn 169–26

pulsations: Coulomb 171–246; Kato 170–231; Trolisayka 168–220

reversals, cause: Elsasser 170–225; Takeuchi 171–236

secular variation, Carpathian basin: Barta 171–242

causes: Barta 171–238; Egred 168–210; Fanselau 169–218; Gaibar-Puertas 171–237; Mendonça Dias 168–216

cycles: Hope 170–229

geologic evidence: Jaeger 169–220

north Atlantic: Mendonça Dias 168–216

penetration through mantle: McDonald 170–208

periods: Jensen 168–209

pulse-disturbance: Hope 169–219

rotation: Hope 169–219

Western Europe and North America: Mendonça Dias 168–216

westward drift: Hope 169–219

variations, relation to sunspots: Pramanik 168–233

Magnetic field, westward drift: Hope 170–229

Magnetic hysteresis, rocks and minerals, at high temperature: Deutsch 168–241

Magnetic maps, north polar region: Die Umschau 169–217

Magnetic observatory, Alibag: Indian Journal of Metrology and Geophysics 168–214

Colaba: Indian Journal of Meteorology and Geophysics 168–213

Heard Island: Ingall 171–241

Magnetic permeability, drill cores, electromagnetic determination: Malmqvist 170–239

Magnetic pole, secular motion of: Hope 169–216

Magnetic profile, airborne, Kansas-Nebraska state line: Merriam 169–243

Magnetic properties, ferromagnetic minerals: Akimoto 171–255; Nagata 171–258

ferrimagnetic oxides: Gorter 171–248

heterogeneously magnetized prisms: Kalashnikov 169–227

reflection microscopy in studying: Millman 171–257

rocks of Czechoslovakia: Bucha 170–235

sedimentary rocks, Turkmen S. S. R.: Krhmov 169–234

stratigraphic correlation by: Krhmov 169–234

TiFe₂O₅–Ti₂FeO₅ series: Akomoto 168–223

universal torsion magnetometer for measurement of: Kalashnikov 168–228

use in determining composition: Parry 171–259

Magnetic recording, characteristics: Kaufman 169–283

direct vs. FM: Erath 170–248

techniques and uses: Dunlap 168–289; Waldie 168–290; Wilson 169–252; Vetterlein 168–291

using mu-metal: Badger 169–284

Magnetic storms, Dst field June 18–19, 1936: Rikitake 171–244

relation to cosmic ray intensity: Kitanura 168–217

recurrence tendency and solar activity: Naqvi 168–222

Magnetic surveys, airborne, effect of irregular magnetic activity: Whitham 170–258

airborne, interpretation: Henderson 171–276

recent developments: Tarbox 168–247

with nuclear magnetometer: Hunter 168–248

Atlantic Ocean: Hill 170–213

Australia, Kadina-Wallaroo areas: Pegum 169–248

Kurrajong-Billip district: Crook 171–267

Yorke Peninsula: Seedsman 171–279

France, Rocroi massif: Waterlot 170–191

Germany, diabase dikes near Schönbrunn: Grab 171–296

Hesse: Kutscher 169–244

Lausitz massif: Lehmann 168–251

Gold Coast: Gay 169–245

Indonesia, Timor: Peloschek 170–260
Magnetic surveys—Continued
interpolation of data from: Zmuda 168-249
Japan: Bay of Yatusiro: Nakamura 169-246
Kitatoyotsu district: Murozumi 168-252
Kumamoto prefecture: Nakamura 169-223
Mihara: Minakami 168-318
Kentucky, western fluorspar district: Warren 168-253
Russian platform: Nevolin 171-187
Saskatchewan, Lac la Ronge area: Pearson 171-220
Switzerland, Lake of Constance: Burmeister 168-227
Yugoslavia, Golija Mountain: Grujic 168-254
Magnetic susceptibility, correlation by: Komarov 168-234; Taychenov 171-251
disseminated materials, Maxwell formula: Silcher 171-250
eruptive rocks, Urals: Komarov 169-226
logging apparatus: Veshev 171-274
magnetometer for measurement: Kalashnikov 168-228
pyrrhotite, Japanese mines: Takenaka 168-231
sedimentary rocks: Taychinov 170-237
variation in dolerite sill: Jaeger 171-252
Magnetization, age determination by: Komarov 168-234
Barnett formation, Texas: Howell 169-221
basalt, Iceland, stratigraphic correlation by: Einarsson 170-253
Japan: Asami 171-270
Montagnes du Coiron, France: Boer 171-272
Oregon: Cox 169-233
Vogelsberg, Germany: Angenheister 170-251
behavior of different types: Petrova 171-254
blue sandstones: Doell 171-262
continental movement indicated by: Blackett 170-234; Bradley 168-238; Dje Umschau 168-239; Du Bois 170-247; Graham, J. 168-235; Graham, K. 170-255; Irving 170-240, 243; Jaeger 168-237; Runcorn 169-230; Quiring 171-264
continental rocks: Sersson 169-224
correlation by: Komarov 168-234
crystallization: Doell 171-262
dating of rocks, Ayrshire: Armstrong 171-271
determination of secular variation from: Jaeger 169-220
Adirondack rocks: Balsley 171-253
Carboniferous glacial varves, Australia: Irving 170-243
Magnetization—Continued
direction, Carboniferous rocks: Clegg 170-253
Deccan Traps: Clegg 170-248
effect of weathering: Nairn 170-242
Eocene basalts, Oregon: Cox 169-233
Jurassic rocks, England: Belshe 170-245, 246
Permian lavas, Oslo graben and Estørel, France: Rutten 170-250
Pilansberg dikes: Gough 168-244
ferromagnetic limonites: Nagata 168-232, 171-258
ferromagnetic oxides: Akimoto 171-255
field mapping by: Einarsson 170-240
gneisses, Adirondack Mountains: Balsley 171-273
igneous rocks, Eifelian conglomerates in the U.S.B.: Komarov 169-254
intensity, effect of heating: Belshe 170-245
Japanese volcanoes: Minakami 169-235
Miocene igneous rocks, Germany: Vogelsang 171-263
oceanic rocks: Sersson 169-224
open and closed circuits: Kalashnikov 169-228
Permian lavas, Oslo graben and Estørel, France: Rutten 170-230
Pilansberg dikes, South Africa: Gough 168-244
prismatic bodies: Kalashnikov 169-228; Mokhova 170-236
pyrrhotite: Saito 168-230
recent sediments, experimental studies: Griffiths 171-261
red beds: Graham 171-249
relation to geologic age: Komarov 169-226
remnant, data on history of earth's field: Blackett 170-234
determination of initial: Bol'shakov 171-253
effect of heterogeneity on: Kalashnikov 169-227
in petrologic studies: Jaeger 168-237
instruments for determining: Plonkovskiy 168-229
magnetometer for measurement of: Kalashnikov 168-228
statistical analysis: Watson 168-242, 243
Magnetization—Continued
remanent—Continued
stratigraphic correlation: Jaeger 168–237
reversed, magnetic methods in studying:
Parry 171–259
origin: Asami 171–270; Balsley 171–273;
Blackett 170–234; Deutsch 168–241; Nagata 171–258
relation to rock fabric: Vogelsang 171–263
Sawatch formation, Colorado: Howell 169–231
sedimentary rocks: Taychinov 170–237
stability: Bol’shakov 170–238; Deutsch 168–241; Petrova 169–229
stress-induced: Graham 170–239
thermomagnetism: Nagata 171–258
Triassic rocks, Arizona: Kintzinger 170–256
viscous: Brynjolfsson 171–268
volcanic rocks, France, Estérel: Roche 170–249
Japan: Nagata 171–269
Magnetometer, absolute horizontal intensity,
improved photoelectric: Schmidt 168–22G
BMZ, temperature correction for measurements with: Haaz 171–247
induction coefficient, magnets of QHM: Wijk 168–225
LaCour, baseline corrections at Swider and Hol, Poland: Przybyszewski 170–233
nuclear precession: Hunter 168–248
temperature coefficients, magnets of QHM: Wijk 168–225
torsion, for measuring vertical component: Haaleck 168–245
torsion-ribbon: Fanselau 169–225
universal torsion, for measuring magnetic properties: Kalashnikov 168–228
Magnetostriction, effect on magnetization:
Maine, aeromagnetic maps: Balsley 171–282
age, Paleozoic igneous rocks: Fairbairn 168–13
Manitoba, aeromagnetic maps: Canada Geol. Survey 171–288
age, Huron Claim: Kulp 169–14
lepidolites: Hänisch 168–2
Mantle, composition: Hurley, 169–197
convection: Havemann 170–156; Lyustikli 170–207
density: Bule 168–187
dynamics: Hiersemann 168–131
effective thermal conductivity: Clarke 171–192
electrical conductivity: McDonald 170–208; Rikitake 168–221
fayalite and forsterite stability: MacDonald 168–186
Mexico, eruption of San Benedicto Island (Bárgeona): Richards 168-323
geophysical exploration for petroleum: Figueroa Huerta 168-116
Paricutin, 1949-52 activity: Foshag 168-322
submarine eruption off Lower California: Gonzalez-Reyna 168-321
Michigan, airborne gravity surveys: Lundberg 169-153
Microseisms, 11-18-second period, origin: Oliver 169-249
Aberdeen, Dec. 9, 1945: Geddes 169-250
Algiers, 1954-55, relation to cold fronts: Lacaze 168-255
amplitudes, as warning of cyclone development: Upton 170-263
Australia, amplitudes, Brisbane: Upton 170-263
beat phenomena: Jensen 170-262
correlation coefficients in studies: Akamatu 171-298
nature: Geddes 169-250
origins: Domm 170-261
wave motion: Leet 169-67
Microtremor, measurements in Japanese seismic regions: Kanai 171-297
Mines, geophysical surveying: Close 168-122
Minnesota, aeromagnetic maps: Menschke 171-283
Model studies, elastic wave propagation: Carabelli 171-104; Ivakhin 168-63;
Manukhov 168-67; Press 171-101
electrical exploration: Cagniard 171-120;
Gondwaard 171-119
electromagnetic exploration: Luk'yanov 168-91
Induced polarization: Ryss 170-93
oreogenesis: Bucher 170-173
rock deformation: Balkay 168-306;
Handin 170-295; Volarovich 169-312
seismic wave propagation: Hall 168-280;
Ivakhin 171-103; Kato 169-91, 170-84, 85;
Press 169-291; Takagi 170-82, 83
Montana, aeromagnetic maps: Balsley 171-284
age of Boulder batholith: Knopf 168-12
Moon, tectonics: Bilow 170-154
Morocco, carbon-14 dating of strandline at Tangier: Stearns 170-8
effect of earthquake on ground water level: Ambroggi 171-52
electrical surveys, Rharb: Migaux 168-93
Mudstone, elastic constants: Hamelster 170-87
N
Nebraska, airborne magnetic profile, Kansas state line: Merriam 169-243
Neon, isotopes, Nuevo Laredo meteorite: Reynolds 171-8
Netherlands, geophysical surveys, Peel coal basin: Riel 169-140
Nevada, earthquakes, Dec. 16, 1954; Tocher 171-66
seismicity: Byerly 169-33
New Britain, deflections of vertical: Kaula 170-187
volcanic eruptions, Mt. Langila: Taylor 171-346
New Brunswick, aeromagnetic maps: Canada Geol. Survey 171-289
age, Paleozoic igneous rocks: Fairbairn 168-13
New Guinea, eruption of Mt. Lamington, 1951-52; Taylor 168-326
volcanic activity, 1949-53: Taylor 168-309
1951-53: Taylor 169-317
1952-53: Best 168-324
New Hampshire, aeromagnetic maps: Bromery 171-285
age determinations: Fairbairn 168-13;
Lyons 171-32
New Hebrides, volcanic activity, 1949-53: Taylor 168-309
1951-53: Taylor 169-317
New Jersey, aeromagnetic maps: Henderson 171-286
New Mexico, age, granitic rocks: Aldrich 169-24
seismic surveys, Anderson Ranch field: Swenumson 171-339
New York, aeromagnetic maps: Henderson 171-286
New Zealand, age, fossiliferous concretion: Pantin 170-14
age, Quaternary sediments, Wanganui district: Fleming 170-13
raised beach near Greymouth: Comm. Inv. and Correlation Eustatic Changes of Sea Levels 168-9
recent ashfalls at Lake Taupo: Baumgart 168-5
age determinations, Wellington carbon-14 laboratory: Ferguson 170-11
crustal structure: Eiby 169-201, 203
earth movements, Wellington area: Stevens 168-22
earthquake risk, Wellington district: Lensen 170-58
electrical resistivity surveys, Balelutha: Hatherton 171-129
dynamical surveys, volcanic and thermal areas: Healy 168-326
géothermal conditions at Wairakei: Healy 168-327
gravity measurements: Cook 169-157
heat flow in Wairakei geothermal area: Studt 170-201
mechanics of mountain building: Cotton 168-137
Ngauruhoe eruption, January 1956: Gregg 170-302
radon and thoron emanation, Wellington: Rosen 170-269
New Zealand—Continued
seismic wave velocity, Wellington area: Eiby 169–202
transcurrent drift tectonics, Mt. Miro-
roa: Cotton 171–161
volcanic activity, 1949–53; Healy 168–326
Nickel, geophysical exploration for: Lauter-
bach 168–121
Nigeria, age of galena and monazite: Schiir-
mann 171–49
eruption, Cameroon Mountain, 1954: de
Swardt 168–328
Nitrogen, isotopes, air: Parwel 169–208
caliche: Parwel 169–208
North America, gravity measurements: Cook 169–157
North Carolina, earthquakes, 1774–1956: MacCarthy 171–65
tectonic implications: MacCarthy 169–31
Northwest Territory, aeromagnetic map: Canada Geol. Survey 171–201
temperature measurements, Resolute Bay: Cook 169–189
Norway, age, euzenite, Kalsstad: Kulp 169–14
age, Hobol pegmatite: Gentner 171–41
minerals, Romteland: Kulp 169–14
ground temperatures near Oslo, 1955–56; Mourn 171–197
magnetization, Oslo graben lavas: Rutten 170–250
Nova Scotia, aeromagnetic maps: Canada Geol. Survey 171–282
age, Paleozoic igneous rocks: Fairbairn 168–13
Ocean bottom, investigation by, high-resolution echo-sounding techniques: Knott 171–343
nature: Haughton 171–146
Ohio, gravity survey: Heiskanen 169–174
Oklahoma, earthquake, April 169–172; Miller 168–21
Ontario, aeromagnetic maps: Canada Geol. Survey 171–293
age, lead mineralization, Thunder Bay: Farquhar 170–22
Wisconsin glaciation: Dreimanis 170–17
airborne gravity surveys: Lundberg 169–153
gephysical exploration for nickel: Lauter-
bach 168–121
gravity survey, southwestern: Dyer 168–
159
Sudbury basin: Miller 168–157
vicinity of Ottawa: Saxov 168–158
Oregon, magnetization, Siletz River basin: Cox 169–233
seismicity: Byerly 169–33
Orogenesis, field and experimental evidence: Bucher 171–155
mechanics, Alpine system: Glangeaud 170–
100
New Zealand: Cotton 168–137
model experiments: Bucher 170–153
random drag force as cause: Scheidegger 171–154
seismic evidence on: Koning 169–50
sequence of events: Gidon 171–156; Wil-
son 168–132
Orogenic movements, recent, Greece: Trik-
kalinos 170–39
Orthometric heights, determination of grav-
ity values for computation: Müller 168–130
Oxygen, isotopes, atmosphere: Dole 171–
226
isotopes, cycle in nature: Dole 171–226
fresh water and ice: Epstein 171–227
minerals: Hoekstra 171–229
paleotemperature determinations: Tey
171–230
thermal waters: Craig 171–228
Pacific Ocean, age of deep-sea red clay core: Volchok 169–12
crustal structure: Raitt 168–196, 170–210
earthquakes, direction of faulting: Hodg-
son 168–31, 32
fracture zones in north: Paterson 168–304
gravity measurement, northeastern: Har-
ison 171–188
seismic wave velocities: Raitt 168–196
uranium in waters: Rona 168–264
Pakistan, geophysical exploration: Kazmi 171–143
Paleomagnetism. See Magnetic field of the earth and Magnetisation
Paleotemperature measurements: de Vries 170–7; Emiliani 168–205; Tey
171–230
Panama Canal Zones, earthquakes 1954: Murphy 168–16
Papua, volcanic activity, 1951–53: Taylor 169–317
Permafrost, effect of ocean on temperatures: Lachenbruch 171–195
heat flow in, Resolute Bay, N. W. T.: Goguel 170–200; Lachenbruch 171–
195; Misener 171–196
Peru, contrast between Huancayo Magnetic Observatory: Bartels 171–245
Ubinas volcano: Spann 168–329
Petroleum, direct location: Lee 169–108
gephysical exploration: Bennett 170–136; Bentz 168–115; Bujolow 170–138;
Dakhnov 169–128; Eby 168–120; Evard 169–133; Fedynsky 168–
118; Figueroa Huerto 168–116; Gambé 169–141; Green 169–142;
Hourcq 169–132, 139; Itenberg 169–127; Kertai 169–137; Mirts-
ching 168–119; Riel 169–140; War-
man 169–135
Petroleum—Continued
radioactivity surveys for: Flerov 168–271
Philippine Islands, eruption of Catamaran
1948: Pelaez 168–332
eruption of Didicas, 1952: Alcaraz 168–331
eruption of Hibok-Hibok, 1948: Pelaez
1951: Macdonald 169–320
volcano cluster, Luzon: Alvir 168–333
Physical properties of rocks, laboratory
measurement: Hameister 170–69
Pleochroic haloes, age determinations by:
Deutsch 168–22, 171–35
Poland, geophysical exploration for nickel:
Lauterbach 168–121
magnetic components, Swider and Hel 1954.8:
Przybyszewski 170–233
radioactivity, Zecharstein salt series: Przewlocki
169–260
seismic activity, Upper Silesian coal basin:
Janczewski 170–44
Polar region, north, magnetic maps: Die
Umschau 169–217
Pole, definition: Bradley 168–238
movement, cause: Ingls 169–76; Schweider
170–67; Wilson 168–132
effects: Conrad 168–180; Schweider
170–67; Wilson 168–132
palaeomagnetic evidence: Bradley 168–238;
Cox 169–238; Die Umschau 168–239;
DuBols 170–247; Gough 168–244;
Graham 168–235; Howell 168–251;
Jaeger 168–237; Nagata 171–269;
Runcorn 169–230, 232; Sigurgeirsson
170–254
position, Cambrian: Howell 169–231
position, Carboniferous: Delshé 170–248;
Irving 170–243
Eocene: Cox 169–238
Paleozoé: Gough 168–244
Permian: Rutten 170–250
Quaternary: Elnarsson 170–253
Tertiary: Angenheister 170–251
Triassic: DuBols 170–266
Polyorphism, types: Holser 170–296
Porosity, determination by continuous ve-
locity log: Denton 168–287
determination from resistivity: Komarov
168–108
Portugal, radioactivity of granitic rocks,
Hesperic Massif: Morais 169–256
isotopes, crystalline rocks, Black Forest,
Germany: Husmann 169–257
radioactivity K-capture constant: Gerling
171–42
Potassium-argon-calcium branching ratio:
Herzog 171–47
Puerto Rico, earthquakes, 1954: Murphy
168–16
Pyrrhotite, electrical resistivity, relation to
temperature: Takenaka 168–110
magnetic properties: Saifō 168–230;
Takenaka 168–110
Quartz, stability in earth: MacDonald 168–186
Quartzite, ultrasonic wave propagation:
Balakrishna 168–74
Quebec, aeromagnetic maps: Canada Geol.
Survey 171–294
age, Paleozoic igneous rocks: Fairbairn
168–18
gravity and isostasy: Innes 169–172
R
Radioactivity, air, northern Alps: Reiter
171–307
air, world-wide: Israel 171–300
anatectic rocks, Black Forest, Germany:
Husmann 169–257
andesite, Sulcis coal basin, Sardinia:
Aramu 170–265
background: Neber 169–252
bismuth-212: Senftle 168–258, 171–303
bottom sediments, Baltic Sea: Koczy
168–262
Bay of Bengal: Sastry 171–310
Pacific: Arrhenius 170–264
cerium-142: Riezler 171–301
charnockites, India: Mahadevan 170–268;
Sastry 170–267
charnockite-gneiss hybrids, southern In-
dia: Sastry 170–267
Chattanooga shale: Bates 171–309
coal, effect of intrusions: Shibata 168–261
coals, Sulcis basin, Sardinia: Aramu 170–265
determining bulk density of soils: Wendt
171–319
determining ore grade in situ: Hohne
168–274
equipment for measuring, in exploration:
Berbesker 168–273; Katayama
168–272
fault location by: Vašková 168–276;
Williams 169–273
gneiss, Black Forest, Germany: Husmann
169–257
southern India: Sastry 170–267
granite, effect of weathering: Smith 168–259
Japan, Omine coal field: Kubo 169–261
New Hampshire: Smith 168–259
granite, statistical study: Smith 168–259
granitic rocks, Hesperic Massif, Portugal:
Morais 169–256
granodiorite, Adamello (Italy): Merlin
169–259
graphite, Japan, Omine coal field: Kubo
169–261
hot springs, Georgian S. S. R.: Balavadze
168–262
Japan: Kaku 168–265; Okabe 168–264
identification of earth materials by: Baker
171–311; Muench 171–313
India, rocks of southern part: Mahadevan
170–266
Japan, coalfield rocks: Shibata 168–261,
169–270
Radioactivity—Continued
limestone, Sulcis coal basin, Sardinia: Aramu 170–265
magmatic rocks, Black Forest, Germany: Husmann 169–257
mantle: Hurley 169–197
potassium-40: Gerling 171–42
relation to permeability, Denver-Julesburg basin: Rabe 171–817
relation to petrogenesis: Mahadevan 170–268
river water, Baltic region: Koczy 168–262
rocks, use of liquid emulsions in determination: Picciotto 169–253
salt series, Poland: Przewlocki 169–260
sea water, Baltic region: Koczy 168–262, 263
sedimentary rocks, La Mure dome, France: Sarrot-Reynauld 169–258
thermal waters, Bad Gastein, Austria: Aurand 169–263
thorium-232: Senftle 168–258
trachyte, Sulcis coal basin, Sardinia: Aramu 170–265
volcanic gases, Japan: Iwasaki 169–266
volcanic rocks, distribution: Rogers 169–255
Radioactivity logging, applications: Bright 169–267
calibration and conversion techniques: Mercier 170–274, 171–315
correlated with electric logging: Burge 170–127
density determination: Baker 171–316; Ochkur 170–271
Denver-Julesburg basin: Rabe 171–517
distinguishing oil- and water-bearing strata: Kucharenko 171–318
effect of radon in drill hole: Hilpert 170–272
exploration or development programs: Chombart 170–125
gas detection: Grosmanin 171–314
geothermal borings, Italy: Rossii 169–272
interpretation: Chombart 169–110, 170–125
Kazakh S. S. R., for water: Arrov 169–115
neutron, for boron: Ivanova 168–267
distinguishing oil and gas zones: Swift 168–269
present state: Dakhnov 169–268
principles: Bright 169–267; Przewlocki 168–270
scintillation equipment: Bespalov 168–268
selective gamma-gamma: Voskoboynikov 170–270
petroleum: Flerov 168–271
techniques: Fedynskiy 168–106
Radioactivity surveys, airborne, for petroleum: Kellogg 170–275
airborne, Japan: Sato 170–276
Radioactivity surveys—Continued
Australia, Crocker Well East: Webb 171–320
copper: Woodmanase 170–278
Northern Territory: Daly 170–277
Yorke Peninsula: Woodmanase 170–278
California oil fields: Kellogg 170–275
Indonesian Timor: Poleschek 170–70
location of faults: Vaňková 168–276; Williams 169–273
mine development: Webb 171–320
Poland, salt mines: Przewlocki 169–260
Radiogeology, textbook: Voitkevich 169–251
Radium, lavas of Klyuchevskaya: Shavrova 168–260
Radon, determination of small amounts mixed with thoron: Smitsyna 171–306
emanation from ground, Wellington, New Zealand: Rosen 170–269
in atmosphere: Behounek 168–266
Reefs, seismic exploration: Agnich 168–113
Rheology, geotectonic significance: Hersonmann 171–153
Rhode Island, ages of granitic rocks: Quinn 171–33
Rigidity, core: Press 168–184
crust, Shetland Islands: Tomaschek 171–90
Rock bursts, experimental investigations: Volchov 169–313, 314
Rotation of earth, movement of axis: Inglis 169–76
periods of oscillations: Jobert 168–59
velocity, variations: Stoyko 168–56
Ruanda Urundi, geophysical exploration: Evard 169–133
Rudibium, half-life of isotope 87: Herzog 171–47; Huster 171–302; Schumacher 171–6
meteorites: Herzog 171–47; Schumacher 171–6
Sahara, isostatic compensation: Lagrula 170–215
Salt dome, reservoirs, of world: Eby 168–120
Sandstone, deformation: Handin 170–295
elastic constants: Hameister 170–87
elastic wave velocity, Swiss Molasse: Rothlisberger 170–70
strength: Handin 170–295
thermal conductivity: Yoshizawa 169–191
scintillation counters, stability requirements: Youmans 171–312
Sea level, changes, southern Japan: Sugimura 169–204
Sedimentary rocks, correlation by magnetic properties: Krabrov 169–234; Tsychnov 171–251
gamma ray absorption in: Polak 169–254
Sedimentation, rate, from Be50: Peters 168–202
rate, from ionium age determinations: Volchok 169–12
relation to deep faults: Peyve 168–133
Seismic exploration, accessory equipment
for: Khurges 169–286
average velocity determination: Murusidze 168–292
charging coefficient: Danchev 169–289
corrections for lateral effects: Opatz 169–298
corrections for refraction effects: Glotov 171–330
drill hole observations: Yurchenko 169–304
dynamic properties of refracted waves: Berzon 169–302
effect of shot hole conditions: Posgay 171–321
effective velocities of reflections: Skorupa 169–301
equipment for deep sounding: Aksenovich 169–279
electrical recording: Hadley 171–329
form of traveltime curve: Adachi 169–287
four-channel electronic oscillograph: Lin'kov 168–285
geologic information: Hale 169–275
geophone, fixed in cable: Waldie 169–278
in search for uranium: Peter 168–297
interpretation, least squares method: Scheidegger 168–293
modern methods: Hammer 168–143
limiting factors, Hungary: Szenas 168–162
low-noise transistorized preamplifier for:
Sacks 170–285
magnetic tape recording: Badger 169–284;
Dunlap 168–289; Erath 170–284;
Kaufman 169–283; Waldie 168–290;
Wilson 169–282; Vetterlein 168–281
marine equipment: Goedicke 168–278
multichannel oscillographic recording:
Lin'kov 168–286
multiple, recording: Ryabinkin 169–295
multiple geophones, analysis: Voyutskiy 168–281
underground: Celminš 168–282
multiple reflections, effective velocities:
Berzon 168–299
northwest Germany: Bortfeld 168–300
nomogram for effective velocities: Raykher 171–328
offset profiles on: Gates 170–282
presentation of data: Burg 169–276
recent developments: Salvatori 168–277
recording techniques: Anstey 169–285;
Palmer 169–281
recording by profile printer: Palmer 169–281
reef recognition criteria: Agnich 168–113
reflection, determination of reflecting hori-
zons: Graeser 169–300
underground, energy spectrum: Helbig 168–298
velocity calculations: Tarczy-Hornoch 170–144

Seismic exploration—Continued
refraction, accuracy: Khailevin 168–295
delay-time analysis: Pakiser 168–296
direct interpretation: Weber 168–294
effect of shot hole depth: Posgay 171–321
errors in depth calculation: Shima 170–285
for ancient channels: Pakiser 168–296
instrument, for engineering problems:
Manfredini 170–287
interpretation: Weber 169–299
in vertically-stratified medium: Berzon 169–292
transverse profiles: Gurvich 171–322
transverse waves: Yepinat'yeva 169–294
Wiechert-Herglotz method: Gershank 171–326
Russian instruments for: Slutskovskiy 169–277
shooting methods: Posgay 171–321
structure of background noise: Horton 169–290
sonar method: Ziets 169–306
tracing faults: Dyachkova 169–311;
Starudubrovskaya 170–279
traveltime of refracted waves: Adachi 169–288
underground, multiple geophones: Cel-
minš 168–282
universal filter systems, theory: Gol'ts-
man 170–286
use of converted refracted waves: Vas-
il'yev 170–281
use of transformed wave: Korovnichenko 171–325
use of transverse waves: Volin 169–292;
Yepinat'yeva 169–294
U. S. S. R., difficulties: Berzon 171–337
under winter conditions: Orekhovskiy 169–310
well velocity surveys, interpretation:
Walling 169–297
wells shot for velocity, 1955–56: Gatlher 168–279
Seismic logging, applications: Breck 170–
290; Denton 168–287
clamping brace for seismograph: Kha-
levin 170–289
circuit of probe: Mozhenko 168–280
ultrasonic, equipment: Riznichenko 168–
288
Seismic loading, statistical estimate: Borges 168–83
Seismic surveys, Algeria, Bay of Algiers:
Muraour 169–307
Antarctica, Queen Maud Land: Robin 169–151
Arizona, Monument Valley: Pakiser 168–
296
Atlantic Ocean: Hill 170–213; Willmore 171–333
Australia, Victoria: Garrett 171–332
Belgian Congo: Evrard 169–133
France, Doubs department: Glangeaud 168–99
Seismic surveys—Continued

<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany, deep discontinuities shown:</td>
<td>Dohr 170–209, 210</td>
</tr>
<tr>
<td>Schleswig-Holstein:</td>
<td>Hecht 168–302</td>
</tr>
<tr>
<td>Siegerland siderite deposits:</td>
<td>Helbig 168–298</td>
</tr>
<tr>
<td>southern:</td>
<td>Breyer 168–301</td>
</tr>
<tr>
<td>Greenland ice cap:</td>
<td>Holttecher 168–141</td>
</tr>
<tr>
<td>Gulf Coast:</td>
<td>Kokesh 168–303</td>
</tr>
<tr>
<td>Hungary, near Hajdusosoboslo:</td>
<td>Galf 168–195</td>
</tr>
</tbody>
</table>
| Seismic waves—Continued | electromotive forces generated: Bukhni-
| | kashvili 169–303 |
| Gulf Coast: | Kokesh 168–303 |
| Indiana, north of glacial boundary: | Wayne 171–340 |
| Italy, Po Basin: | Rocca 168–164 |
| Po plain: | Quarta 170–291 |
| Japan, Chiba: | Ninagawa 169–308;
| | Takelsh 171–336 |
| New Mexico, Anderson Ranch field: | Swenuim 171–336 |
| Ruanda-Urundi: | Evrand 169–133 |
| Sahara, shooting method: | Pommier 171–331 |
| South West African river beds: | Gough 171–335 |
| Texas, organic reef near Stamford: | Van Siclen 170–292 |
| Tien Shan: | Gamburtsev 168–197 |
| Turkmen S. S. R.: | Kosminskaya 171–209 |
| Ukrainian S. S. R., Precarpathian depression: | Sologob 171–338 |
| United Kingdom: | Warman 169–135 |
| U. S. S. R., Carpathian foreland: | Dyachko 169–311 |
| Ural-Emba region: | Kuznetsova 169–296 |
| Utah, Monument Valley: | Pakiser 168– |

Seismic waves—Continued

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy, distribution: Droste 170–78</td>
</tr>
<tr>
<td>effect of low-velocity layer: Bãth 170–63</td>
</tr>
<tr>
<td>first motion: Kato 170–84</td>
</tr>
<tr>
<td>frequency analysis: Shamina 168–40</td>
</tr>
<tr>
<td>from hydrogen bomb explosions: Bullen 170–203</td>
</tr>
<tr>
<td>interference phenomena: Kosminskaya 171–105</td>
</tr>
<tr>
<td>long-period, relation to oscillations of rotation: Jobert 168–58, 169–92</td>
</tr>
</tbody>
</table>
| model experiments: Hall 168–280; Ivakin 171–103; Kato 169–91, 170–84, 85;
| | Takagi 170–82, 83 |
| periods, dependence on crustal structure: | Aki 171–87 |
| dependence on magnitude: Aki 171–87 |
| effect of ground: Kanai 169–55 |
| effect of weathered layer: Menzel 171–324 |
| Pasadena and Mt. Wilson: | Gutenberg 168–43 |
| PEKJRP on Tucson records: Bullen 168–44 |
| Pu, velocity, central U. S.: | Miller 168–21 |
| PP, traveltime curve, Praha: | Ruprechtova 171–86 |
| produced at discontinuities in the crust: Andreyev 171–77 |
| propagation in spherical earth: Scholte 169–78 |
| PS, in determining crustal structure: | Andreyev 169–68 |
| reflected, from curvilinear surfaces: | Fedotov 170–79 |
| non-minimum-time paths: Fedotov 170–79 |
| SoS, mathematical expression for: Honda 169–69 |
| Sw, velocity, central U. S.: | Miller 168–21 |
| sP, identification: Kondorskaya 168–46;
| | Vvedenskaya 168–47 |
| spectrum analysis, computer: Sato 168–49 |
| SS, traveltime curve, Praha: | Ruprechtova 171–86 |
| surface, Lg, Australia: | Bolt 170–65 |
| Rayleigh, higher modes: | Oliver 170–64 |
| surface Rg, velocity, Australia: | Bolt 170–65 |
| synthetic cores: Murphy 171–110 |
| transformed, used in seismic surveys: | Korovnichenko 171–325 |
| transverse, in exploration: | Volin 169–202 |
| traveltimes, effect of weathered layer: Bãth 170–63 |
| from hydrogen bomb explosions: Burke-Gaffney 169–72 |
| North America: | Herrin 168–52 |
| regional peculiarities, U. S. S. R.: Kondorskaya 171–78 |
| use and abuse: | Leet 169–67 |
Seismic waves—Continued

velocity, Alpine foreland: John 171-334
Australia: Bole 170-65; Doyle 170-211
depth-continental: Sutton 171-111
effect of bore-filling fluid: Murphy 171-110
effect of porosity: Murphy 171-110; Sutton 171-111
effect of rock frame: Murphy 171-110
effect of sorting: Sutton 171-111
effect of temperature: Sutton 171-111
effect of water content: Biby 169-203
Eniwetok: Raitt 170-210
France, Rochelles explosion: Bernard 168-193
Germany, Magdeburg explosion: Martin 170-293
Greenland ice cap: Holtzchere 168-203
Gulf Coast: Kokesh 168-303
Italy, Tyrrhenian Basin: Gerlanda 170-42
Japan: Utsu 169-71
marine sediments: Nafe 170-88
New Zealand: Ebly 169-201, 202
Transvaal: Gane 168-198
uniaxial heterogeneous medium: Weber 168-294
U. S.: Miller 168-21
variation with depth: Castro 169-293; Nafe 170-88; Quarta 170-291
variation with lithology: Quarta 170-291
Seismo-electric effect, observation: Bukhnikashvili 169-303
Seismograms, instrument for processing data: Kovalev 171-327
Seismograph, automatic spot brightener: De Bremaecker 168-50
electrodynamic, for large displacements: Kharin 169-64
electromagnetic, adjustment: Eaton 168-51
calibration: Eaton 168-51
theory: Eaton 168-51
high magnification: Groshoey 168-283
magnification caused by partial resonance of foundation: Bycroft 171-88
Sprengnether short-period, calibration: Eaton 169-63
Seismological stations, Dallas: Hull 168-53
North America, reliability: Herrin 168-52
Shale, deformation and strength: Handin 170-295
elastic constants: Hameister 170-57
Sicily, telluric surveys: Vecchia 171-182
Signal detection, statistical method: Melton 170-141, 142
below noise level: Melton 170-141
Soils, bulk density determination, by gamma radiation: Wendt 171-319
temperature variation: Siner 168-197
thermal diffusivity: Singer 168-179
Solfataras, El Salvador: Grobe 169-332
Italy, Solfatare di Pozzuoli: Sicardi 169-333
Solomon Islands, volcanic activity, 1951-53: Taylor 169-317
Sonic methods, high-resolution, use in marine geophysics: Knott 171-343
Sound, attenuation in rocks: Krishnamurthi 169-90
South Africa, gravity measurements: Cook 169-157
magnetization, Pilanoberge: Gough 168-244
South West Africa, seismic refraction surveys in river beds: Gough 171-353
Spain, age, Sierra Albarana; uraninite: Lopez de Arcon 170-25
earthquakes, Ojo's, 1950: Rey Pastor 170-46
relation to structure: Rey Pastor 170-45
geophysical exploration by Valdebro: Gavala 169-141
seismotectonic conditions, Guadalquivir fault: Rey Pastor 171-63
Specific, temperature variations: Noritomi 169-188
Statistics in geophysics: Tomoda 171-148
Stain, self-gravitational, earth: McCutchen 168-58
strength, rocks subject to tension and compression: Volarovich 169-312
sedimentary rocks, as function of pressure: Handin 170-295
Stress, cooling earth: Aggarwala 169-146
seismoaoustic methods of study: Rischnichenko 169-315
sonic method of observation: Rivkin 169-316
Strontium-87, primordial abundance: Schumacher 171-6
variation with time: Herzog 171-47
Submarine geology, southern Hawaiian Ridge: Hamilton 170-299
Submarine topography, Corsica, west coast: Bourcart 170-300
Sulfur, isotopes, minerals: Kulp 171-232
preparation of compounds for determining: Rafter 171-231
relation to mineral paragenesis: Jensen 169-209
Sun, eclipses, effect on geomagnetic field: Malurkar 171-243
Sunspots, relation to magnetic variations: Pramanik 168-223
Swaziland, age determinations, yttrotantalite: Kulp 171-14
(Sweden, age, interglacial wood: Lundqvist, G. 168-6; Lundqvist, J. 168-7
lepidolites: Hultschel 168-2
Quaternary deposits: Lundqvist 171-18
reconnaissance surfaces: Lundqvist 171-19
carbon-isotope studies: Gavelin 171-216; Landegren 170-221
electrical surveys, Scania: Sorgenfrei 170-106
Kiruna Observatory: Hultqvist 171-147
Switzerland, electrical surveys, Aletsch glacier: LeFevre 171-130
Alps: Gassmann 169-104
elastic wave velocities, Molasse: Rothlisberger 170-70
magnetic observations, Lake of Constance: Burmeister 168-227
Syenite, elastic wave velocity, effect of pressure: Volarovich 170-86
Syria, gravity surveys: Plassard 170-196

Gissar Valley: Gubin 168-39; Vasil' yeva 169-47
Khalt district: Bune 169-45; Pasechnik 169-46
Stalinabad district: Bune 169-45
seismicity, from energy relations: Bune 169-45
seismological expedition: Bonchkovskiy 168-36; Pasechnik 169-46
Tektites, water content: Friedman 171-221
Telluric currents, see Earth currents
Temperature, effect on frost penetration: Aldrich 169-190
Greenland icecap: Heuberger 168-140; Loewe 171-186
ground near Oslo, Norway, 1955-56: Moun 171-197
Hungary, Transdanubia coal basin: Boldizsár 168-178, 169-187
interior of earth: Gilvarry 168-176; Verhoogen 168-175
near cooling intrusive sheet: Jaeger 169-183
near-surface, effect of deep sources: Kappelmeyer 171-194
Resolute Bay, N. W. T.: Cook 169-189
permafrost near ocean edge: Lachenbruch 171-195
soil, annual variation: Singer 168-179
thermal springs annual variation: Conrad 168-180
U. S. S. R., Caucasus: Dubinskiy 169-186
Temperature corrections, BMZ magnetometer: Haas 171-247
Temperature distribution, cooling intrusive sheets: Jaeger 169-220
ice sheets: Robin 169-149
liquid flowing through boring: Kozlowski 169-184
Temperature measurements, near-surface, to obtain geologic information: Kappelmeyer 171-194
Tennessee, earthquakes, 1901-25: Money maker 169-32
Texas, gravity survey, San Luis Pass dome: Nettleton 169-178
seismic surveys, organic reefs: Van Siclen 170-292

Thermal conductivity, andesite: Yoshizawa 169-191
frozen soils, probe for in situ measurements: Lachenbruch 171-199
grandiorite, Grass Valley, California: Clark 169-185
interior of earth: Clark 171-192; Preston 168-177
mantle: Clarke 171-192
marl, Hungary: Boldissár 169-187
method of measurement: Yoshizawa 169-191
porphyrite, Grass Valley, California: Clark 169-185
sandstone: Yoshizawa 169-191
Transdanubian coal basin: Boldissár 168-178
Thermal diffusivity, soil: Singer 168-179
Thermal effects of ocean on permafrost: Lachenbruch 171-195
Thermal history of the earth, importance of curium: Diamond 168-256
Thermal regime in earth, effect of heat exchange by radiation: Lyubimova 170-199
Thermal springs, annual variations: Conrad 168-180
polar movement, effect of: Conrad 168-180
isotopic geochemistry: Craig 171-225
radioactivity, Bad Gastein, Austria: Aurand 169-263
Thermometric prospecting method: Contin 170-202
Thorium, crystalline rocks, Black Forest, Germany: Husmann 168-257
isotopes in minerals: Rona 171-304
isotopes in sea water: Koczy 168-263
half life of isotope 232: Picciotto 168-257; Senftle 168-258
Thoron, determination of small amounts mixed with radon: Sinitzyna 171-305
emanation from ground, Wellington, New Zealand: Rosen 170-269
Torsion balance, Ervös model E-54: Rybár 171-169
density determination by underground measurements: Rische 170-177
Transvaal, crustal thickness: Gane 168-198
seismic wave velocities: Gane 168-198
Tritium, abundance in nature: Begemann 171-222
artificially produced, distribution: Begemann 171-220
in meteorites: Fireman 169-2
ground water study by means of: Begemann 171-222
Turkey, earthquakes of July 16, 1955: Stark 171-64
Turkmen S. S. R., earthquakes, Ashkhabad region: Medvedev 168-38
Uganda, electrical surveys, Lake George region: Dyke 168-97
Ukraine, geothermal gradients: Gandzyuk 171-198
Ukrainian S. S. R., geophysical exploration for iron ore: Krutikhovskaya 171-281
gravity surveys: Shereshevskaya 171-186
seismic surveys, Precarpathian depression: Sollogub 171-338
United States, earthquakes 1954: Murphy 168-16
Universe, age: Picciotto 171-3; Schumacher 169-4
Uranium, crystalline rocks, Black Forest, Germany: Husmann 169-257
geophysical exploration: Eroding 168-125
river and sea waters, Baltic region: Koczy 168-262
sea water: Kona 169-264
spring waters, Vosges, France: Jurain 171-308
stone meteorites: Ebert 171-12; Hamaguchi 171-9; Hernegger 171-11
seismic exploration methods: Peter 168-297
Uranium-thorium ratios in minerals: Hurley 171-305
U. S. Coast and Geodetic Survey, strong-motion program: Cloud 169-56
U. S. S. R., age, Cenozoic igneous rocks: Polevaya 170-33
Mesozoic rocks: Gerling 171-42; Polevaya 170-33
Paleozoic rocks and minerals: Gerling 171-42; Polevaya 170-33
pegmatite from northern Karelia: Zykov 169-16
Precambrian igneous rocks, Baltic shield: Gerling 170-52
structure: Gerling 171-42; Hantzsche 168-2
Ukraine shield: Gerling 170-52; Polevaya 170-33; Vinogradov 170-4
rocks of Caucasus massifs: Afanas'yev 171-45
crustal structure, Turkmen S. S. R.: Kosminskaya 171-209
earthquakes, Ashkhabad region: Mededev 168-38; Rustanovich 169-44
Khirgis S. S. R.: Rozova 169-42, 45, 49; 171-62
Kurile Islands: Hodgson 168-31
mechanism at focus: Gotsadze 170-50
Russian platform: Andreyev 169-38
Shemakha region: Kuznetsova 169-39
Tadzhik S. S. R.: Bonchkovskiy 168-36; Bune 169-45; Guben 168-39;
Faschnik 169-46; Vasyll'eva 169-47
electric logging, Moscow coal basin: Boydachenko 169-117
techniques: Fedynskiy 168-106
U. S. S. R.—Continued
electrical surveys, Altai Mountains: Veshev 170-170
for ground water: Demidovich 169-105
methods: Hiersemann 170-119
geophysical exploration for metallic ore: Krasulin 168-117; Semenov 171-144
geophysical exploration for petroleum: Fedynskiy 168-118; Mirtsching 168-119; Ryng 171-139
geophysical logging for coal: Vokoboynikov 169-269
for water: Avrov 169-115
geophysical surveys in geologic mapping, Nerchinskaya Zavod: Moiseyenko 170-139
geothermal measurements: Dubinskly 169-186
Ukraine: Gandzyuk 171-198
gravity anomalies, Russian platform: Nevolin 171-157
gravity corrections, Caucasus Mountains: Ochapovskiy 169-168
geophysical surveys, Lozinskaya 168-153
Ukraine: Shereshevskaya 171-186
magnetic anomalies, Caucasus Mountains: Akopyan 168-246
Russian platform: Nevolin 171-187
radioactivity logging: Bula'sheevich 169-271; Fedynskiy 168-106; Flerov 168-271
radioactivity surveys for petroleum: Flerov 168-271
seismic activity: Gorshkov 170-47
seismic surveys, Carpathian foreland: Dyachkova 169-311; Sollogub 171-338
transformed waves: Berson 171-337
Turkmen S. S. R.: Kosminskaya 171-209
Ural-Emb region: Kuznetsova 169-309
seismic travel times, regional peculiarities: Kondorskaya 171-78
seismological stations, basic equipment: Kirnos 170-59
volcanic eruptions, Caspian Sea: Zubenko 169-337
Kurile Islands: Korsnnskaya 168-320
Kamchatka: Naboko 169-336; Piyp 168-316, 170-301; Svyatlovskiy 168-319
Venezuela, gravity survey, Cordillera de la Costa: Smith 170-198
Vermont, age, Paleozoic igneous rocks: Fairbairn 168-13
Virgin Islands, gravity observations: Shurbet 168-155
Volcanic activity, 1955; Lotze 169-30
Alaska, 1949-53; Powers 168-308
Australian possessions, 1949-53; Taylor 168-309
Hawaii, 1949-52: Macdonald 168-311
1952: Macdonald 168-312
Volcanic activity—Continued

Italy, Stromboli: Die Umschau 168-313
Japan, Kujju: Namba 169-321
1949-53: Minakami 168-314, 315
1951-53: Minakami 169-318
Kamchatka, 1954: Piyп 168-316
Koshelev volcano, Kamchatka: Naboko 169-326
1952-53: Best 168-324
New Hebrides Islands, 1951-53: Taylor 169-317
New Zealand, 1949-53: Healy 168-326
Papua, 1951-53: Taylor 169-317
Philippines, 1949-53: Alcaraz 168-330
Solomon Islands, 1951-53: Taylor 169-317

Volcanic arcs, chemical and physical relations: Matschinski 168-307
Volcanic eruptions, Japan, Aso, periodicity: Namba 169-322

Barcena (San Benedicto Island), Mexico: Richards 168-323
Buzovninskaya Sopka, Caspian Sea: Zubenko 169-337
Cameroon Mountain, Nigeria: de Swardt 168-328
Catamaran, Philippines, 1948: Pelaez 168-332
Didicas, Philippines, 1952: Alcaraz 168-331
energy released: Yokoyama 171-344
Hibok-Hibok, 1948: Pelaez 168-332
1951: Macdonald 168-320
Klyuchevskaya, Kamchatka: Piyп 170-301
Kujju, Japan, periodicity: Namba 169-322
Lake Taupo, New Zealand: Baumgart 168-5
Mt. Lamington, New Guinea: Taylor 168-325
Mt. Langila, New Britain: Taylor 171-346
Myojin, Japan: Minakami 168-315
New Britain, lunar-solar effect on: Taylor 171-346
Osawa, Japan: Minakami 168-315
Paricutin, 1949-52 activity: Foshag 168-322
prediction: Murota 169-327
relation to earthquakes: Namбa 169-328
Santorin: Galanopoulos 171-17
Soufriere de la Guadeloupe, October 1956: Barrabee 168-335, 334
Stromboli, 1955 March 22: Cavallaro 168-333
submarine, Lower California: Gonzales Reyna 168-321
Volcanic explosions, compared to gas rush in coal mines: Namba 169-325
process: Namba 169-326
Volcanic fissures, cause: Vlodavets 168-331
Volcanic gases, radioactivity, Japan, Iwasaki 168-268
Volcanic tremor, related to eruption of By-linkina, Kamchatka: Gershkov 169-335

Volcanic tremor—Continued
period and amplitude, Mihara: Sakuma 169-334
Volcanism, island arcs: Jung 168-190
relation to deep faults: Peyve 168-133
Volcanoes, active, El Salvador, description: Meyer-Abich 168-310
Guatemala, description: Meyer-Abich 168-310
Boqueton, El Salvador, 1917 eruption: Roy 170-304
Central America, 1955-56 activity: Roy 170-303
Etna, earthquake swarm at Pedara, Feb. 1955: Cuccuза-Sivestrei 170-43
Japan, Aso, crater shape: Namba 169-323
variation of water head: Murota 169-324
magnetisation: Minakami 168-235
Kamchatskaya, Tolmachev Dol: Syvatlovskiy 168-319
Klyuchevskaya, radium content of lavas from: Shavrova 168-320
Kurile Islands, Simushir: Korsunskaya 168-320
Madagascar, Karthala: Besairie 171-345
Mihara, Japan, gravity survey 1956: Yokoyama 171-184
Ngauruhoe, eruption of Jan. 1956: Gregg 170-302
Peru, Ubinas, description: Spanн 168-329
Philippines, little-known cluster on Luzon: Alvir 168-333
relation of lava composition to structure: Vlodavets 169-319
Sheveluch, fumaroles: Basharina 168-317
Stromboli, activity: Die Umschau 168-313

W
Washington, age, Glacier peak eruption: Rigg 169-9
post-glacial peak deposits: Rigg 169-9
airborne magnetic profile: Jakeсs 169-242
earthquakes, direction of faulting: Hodgson 168-31
geophysical exploration for nickel, Chelan County: Lauterbach 168-121
seismicity: Byerly 169-33
West Indies, crustal structure: Shurbet 168-170
eruption, Soufriere de la Guadeloupe, October 1956: Barrabee 168-333, 334
graph observations: Shurbet 168-170
Wrench-fault tectonics, northern South America: Alberding 170-159
Wyoming, age, granitic rocks: Aldrich 169-24
lepidolites: Hantzschel 168-72
airborne magnetic profile: Jakeсs 169-242

X
Xenon, Nuevo Laredo meteorite: Reynolds 171-8
Y
Yugoslavia, electrical surveys, Golija Mountain: Grujić 168-254
gravity surveys for oil: Šumi 168-172
gravity value, Beograd: Prosen 168-171

Yugoslavia—Continued
magnetic surveys, Golija Mountain: Grujić 168-254

Z
Zinc, isotopic abundance ratios: Blix 169-211
Geophysical Abstracts 168-171
January-December 1957

G E O L O G I C A L S U R V E Y B U L L E T I N 1 0 6 6

Abstracts of world literature contained in periodicals, books, and patents

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1958
CONTENTS

(The letters in parenthesis are those used to designate the chapters for separate publication)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Geophysical Abstracts 168, January–March</td>
<td>1</td>
</tr>
<tr>
<td>(B)</td>
<td>Geophysical Abstracts 169, April–June</td>
<td>95</td>
</tr>
<tr>
<td>(C)</td>
<td>Geophysical Abstracts 170, July–September</td>
<td>191</td>
</tr>
<tr>
<td>(D)</td>
<td>Geophysical Abstracts 171, October–December</td>
<td>283</td>
</tr>
<tr>
<td>(E)</td>
<td>Index to Geophysical Abstracts 168–171, 1957</td>
<td>381</td>
</tr>
</tbody>
</table>

Under department orders, Geophysical Abstracts have been published at different times by the Bureau of Mines or the Geological Survey as noted below.

[Mimeographed]

[Mimeographed]

