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EXPERIMENTAL AND THEORETICAL GEOPHYSICS

PERIODIC HEAT FLOW IN A STRATIFIED MEDIUM 
WITH APPLICATION TO PERMAFROST PROBLEMS

By ARTHUR H. LACHENBRUCH

ABSTRACT

Solutions to the Fourier heat equation for quasi-steady periodic flow in a 
stratified semi-infinite medium can be obtained readily by standard methods. 
The results have wide application to studies of earth-temperature variations 
induced by diurnal, annual, and other periodic variations in ground-surface 
temperature. Much of the previous work on this subject has been interpreted 
with reference to the solution for the homogeneous case; and this can be seriously 
in error when applied to stratified earth materials.

One application of the theory is to the important problem of determining the 
minimum thickness of gravel fill required to maintain the material on which it 
rests (the subgrade) in a perennially frozen state in permafrost areas. The 
results indicate that the required fill thickness is very sensitive to the thermal 
properties of the subgrade. If a thin layer of material with a low thermal contact 
coefficient, such as spruce logs, is placed between the fill and subgrade, the thick­ 
ness of fill required to maintain undisturbed permafrost can be greatly reduced.

The thermal properties of the soil beneath the layer supporting plant growth 
can have an important influence on the temperatures in that layer. This effect, 
which cannot be explained by studies of the ground surface and the surficial 
layer, is likely to have important application to plant ecology in the arctic.

The theory yields an approximate method of estimating the effect of winter 
snow cover on the mean annual temperature of the ground surface.

INTKODUCTION

When a simple harmonic temperature variation is impressed on the 
ground surface, the resulting thermal wave passes downward into the 
earth. If the periodic variation persists over a long period of time, 
initial transient effects die out, and the temperature at each depth 
oscillates with the same frequency as the surface temperature but 
with an amplitude and phase that diminish with increasing depth. 
This condition, which is sometimes referred to as a quasi-steady state, 
provides a very useful model for study of the effects of annual, diurnal, 
and other roughly harmonic variations of the ground-surface tempera­ 
ture. It has been customary to interpret these phenomena on the 
basis of the well-known solution to the Fourier heat equation for a

1



2 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

homogeneous semi-infinite solid whose surface temperature varies 
sinusoidally with time. In most cases, however, it is more realistic 
to consider the ground as stratified, and important aspects of many 
problems are not treated adequately by the homogeneous case.

Solutions for periodic heat flow in a stratified semi-infinite medium 
are developed below together with a few examples of their application 
to ground temperature studies. Throughout this paper it is assumed 
that the dominant mode of heat transfer, beneath the ground surface, 
is conduction. Where appreciable amounts of heat are transferred 
by other means, such as the movement of water, these effects must be 
considered separately. A second assumption is that the water in the 
soil has a well-defined freezing point, which is taken here to be 0° C. 
This assumption should not result in any serious difficulty insofar as 
the major applications are concerned.

Lettau (1954) has presented an ingenious solution to the more 
general but inverse problem of finding the thermal parameters as a 
function of depth from a knowledge of the temperature as a function 
of depth, periodic in time. His results are useful in analyzing obser­ 
vational temperature data. In the present approach, the temperature 
as a function of depth and time is predicted from a knowledge of the 
surface temperature and thermal parameters as a function of depth. 
These results are useful in predicting the temperature in stratified 
media.
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THE TWO-LAYER PROBLEM

THEORY

In this section the ground is represented as the semi-infinite medium, 
3>0, composed of materials with one set of thermal properties (de­ 
noted by the subscript 1) in the stratum 0<x<CXT and a second set 
of properties (denoted by the subscript 2) in the region x^>X, shown 
in figure 1. It will be assumed that the temperature of the surface
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Q(0,t)-A0 sin t*t, 6(jt,0)-0

7
Jt-0

.\\\\\\\\\
» a 2>02» etc

\

x-X

FIGURE 1. Conditions of the two-layer problem.

3=0 varies as AQ sin at, and that the temperature is initially zero for 
all x. (Any other initial condition would serve equally well in deter­ 
mining solutions valid for large values of time.) Stated formally, 
the problem is to find the temperature, 9 (x,t), which satisfies the fol­ 
lowing equations:

0(x,o=0i,o<x<.y

b»0,_l 50,
;. , =     -^T>oxa cti ot

0i(0, 0 = 4o sin orf,x=0,<>0

^lae, <
ox* ai dt

el (X,t)=e2(X,t),x=x

Ki^-K*^,x-X 1 bx~ * ox X ~ A

0^02 = 0, t = Q 

02-^0, X-^ 03 .

The Laplace transform will be denoted by a bar, thus

(1)

(2)

(3)

(4)

(5)

(6)

(7)

493800 59-



EXPERIMENTAL AND THEORETICAL GEOPHYSICS

With this notation, the transformation of equations 1 through 7 
leads to

J9/-V  

(8)

(9)

(10)

(11)

(12)

(13)

-j,z=0

l=, X<x

-j 
da;

~r~
da;

Following a standard procedure, we assume solutions of the form

«,", 0<x<X 

erv, X<x (14b)

inhere C, D, and E are functions which are independent of x and are 
to be determined from equations 8 through 13. Upon evaluating C, 
D, and E, and substituting in equation 14 we obtain :

--/p

where

(I6a)

K, X<x (15b)

M=

The thermal parameter ft will be referred to as the "contact coeffi­ 
cient," it is also known as "thermal inertia" and "conductive capa­ 
city." It plays a very important role in the theory of transient heat 
flow through stratified media.

There are two convenient ways to manage the inversion of equa­ 
tions 15a and 15b. The first is to expand the denominator in a Taylor
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series. The terms of the resulting series are each of the same form as 
the transform of the solution for the homogeneous case, and hence the 
term by term inversion can be written down directly. Thus for the 
steady oscillating part of the solution this method leads to

Qi(x,t)=A0 e * l sin orf-zVo 

{ /Z r 
e "* ^ sin w<- (2nZ+x)V^ 

L V^«

,/Zll-V2.JJ' 0<x<X (16a)

S (-

  . f , fc/x-X . (2n+l)X\~] X sm w<-Vo(   J=-+i    7=^  I l»
L » ^ \ Va2 v«i / J

The first term in equation 16a represents the solution for the homo­ 
geneous case, while the series represents the correction due to the 
contrast in contact coefficients at the interface, x=X. Equations 
16a and 16b are useful in analyzing problems in which the stratifica­ 
tion produces only small departures from the homogeneous case.

When the effects of stratification are great, it is usually more con­ 
venient to use expressions for 61 and 92 in closed form. These can be 
obtained by direct application of the Laplace transform inversion 
theorem to equation 15.

Inasmuch as JM|<1, 0i and 02 have poles only at p=±i<a on the 
principal branch and branch points at the origin. They are therefore 
single valued within and on the contour shown in figure 2. Hence

-}- f 
J

(17)
  _i «-»n j i 
// IV

where
wo=#e(po)>0.
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v

FIGURE 2. Contour tor Inversion of Q(x,p).

In the limit as #-»<» and e->0 the integral over the contours I, V, 
and III vanish. As S-»0 the integrand in the integral over contours 
II and IV each contain as a factor a descending exponential in t, 
while the remaining factor is bounded. Hence, the contribution of 
these integrals to 6 (x,t) vanishes as t becomes infinite. They, there­ 
fore, represent transient effects associated with the initial conditions 
assumed. For reasons that will be discussed below, we are interested 
only in the steady oscillating part of the solution which must be 
given simply by the sum of the residues at the two poles p=±iw.
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On evaluating the residues and neglecting the initial transient effects, 
we obtain

)-- r .

^sin ^-tfX-x)
L V 2a

(18a)

(18b) 
where

I      4X
. cos 2XJ- "

It is seen that these results reduce to the corresponding solution for 
the homogeneous case (Carslaw and Jaeger, 1947)

(19) 
\ V2a/

by setting
/3i=j82 and ai=oz.

APPLICATION TO THE GRAVEL-FILL PROBLEM

The problem that will now be considered is that of finding the 
minimum thickness of gravel fill necessary to keep the material on 
which it rests (the subgrade) perennially frozen in permafrost areas. 
This problem is of great practical importance inasmuch as the thaw­ 
ing of the subgrade produces mechanical effects which can result in 
costly damage to a roadway or airfield. In approaching this problem 
analytically, it is customary to treat the ground as homogeneous with 
thermal properties selected to approximate those of the fill material.
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In what follows, we shall consider the dependence of the minimum 
fill thickness on the thermal properties of the subgrade as well as the 
properties of the fill itself.

The problem is to find the minimum thickness, X, of gravel fill 
with properties Kit PI, Ci, «i, required to maintain the material on 
which it rests (with properties K2, p2, c2 , a2) hi a perennially frozen 
state when the surface temperature of the gravel varies annually as 
AQ sin at. In other words, we seek the thickness of fill that will 
reduce the amplitude of annual temperature variation at its base 
(z=X) to F; where F is the freezing temperature of water referred to 
the mean annual surface temperature as zero. A fortunate feature 
of the problem formulated in this way is that the complicating effects 
of latent heat can often be neglected in the first analysis without 
serious error. This is because superfreezing temperatures occur only 
in the gravel, which is generally highly permeable and well drained 
and hence has a very low moisture content. If the fill material is 
emplaced in the winter or early in spring, initial transient effects can 
be neglected, and only the periodic part of the solution need be 
considered.

At the interface x X, equations 18a and 18b give

-x^HL

sin I ut X~-  ]-\-Me * * sin I orf+.X'-/-  I >. (20)

The amplitude of the expression in braces hi equation 20 is equal to
_/,Q' Tnavat<vno amiafirtn Oft nan V»o ixmitf.an

where

Therefore equation 20 can be written 

Q(X,t)=A(X) sin (orf-

(22)

Numerical results for equation 21 are presented hi terms of the three 

dimensionless parameters, X-+I- , fa/fa, &ndA(X)/AQ, in plate 1. The

range of values selected for j8,//32 includes most cases likely to be en­ 
countered in ground temperature studies. The phase relationships 
given by equation 22 are shown in figure 3. From plate 1 it is seen
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FIGUBE 3. Two-layer case. Effect of thermal properties and thickness of surflclal layer on phase at the
interface (x=X),

that, at the interface, the amplitude can be strongly affected by the 
deeper layer, and that the only parameter of the deeper layer in­ 
volved is its contact coefficient, &. The damping is greater or less 
than in the homogeneous case according to whether fa is greater or 
less than &. At large depths, S-+1, and the amplitude differs from 
that given by the homogeneous case by a factor of

A+fc
The phase lag #, however, approaches that for the homogeneous case 
for large X and is identically equal to it whenever

=(2n-l),n= 1,2,3...
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/   

In most applications the values of # for X* /-   <^ are of principal
\ £iOL\ £i

importance. In this quadrant, <t> is greater or less than -S\K   , accord-\ ̂ «i
ing to whether & is greater or less than ft.

In most of the applications discussed below, we are concerned only 
with rough approximations in which only the first harmonic of the 
surface temperature and the associated amplitude are considered. 
The above information on phase is included here so that these results 
can be applied directly to more refined approximations taking account 
of higher order harmonics.

Table 1 gives typical values for the thermal parameters of various 
materials. They are taken from measurements made in place by the 
writer and W. J. Maher in arctic Alaska (Lachenbruch, 1957a).

It should be emphasized that this table is presented only for illustra­ 
tive purposes, and that different materials with the same geologic or 
engineering designation, such as gravel, can vary widely with respect 
to these parameters.

The gravel-fill problem can be solved with the aid of plate 1 by 
setting A(X)=F. For example, suppose we wanted to know how 
much gravel (medium (1), table 1) would be required to keep a sub- 
grade of icy silt (medium 3, table 1) from thawing by conduction 
effects in the summer. For this problem the curve j8i/&=0.6, shown 
in plate 1, is used. In a region where F/Ao for the surface of the gravel 
is about 0.5, it is found from plate 1 that X/y=OA5 or X=(QA5) 
(290) = 130 cm or 4% feet. Comparable conditions might be found 
along the Arctic coast of Alaska where F might be close to 9 centigrade 
degrees and AQ about 18 centigrade degrees. The exact values of AQ 
and F, of course, depend upon the nature of the surface, and they are 
subject to considerable variation locally for this reason. They are 
also subject to variation from year to year at a given place. Making

TABLE 1. Typical thermal parameters for selected materials 

[Given In cgs units. See list of symbols on page IV]

Medium

3. Icy silt  .  -     -    .-
4. Frozen organic silty clay..       _ _

8. Wet peat (thawed)...-- _ ... _   ..

K

0.003
.006
.006
.003

rvMU
.0004
.0045
.0013
.0002
.0006

P

2.0
2.1
1.6
1.35
.5
.4
.9

1.0
.2
.35

e

0.18
.20
.31
.32
.4
.5
.4

1.0
.45
.45

ft

0.033
.050
.055
.036
.009
.009
.040
.036
.0042
.0097

a

0.0083
.014
.012
.007

mv>
.002
.0125
.0013
.0022
.0038

T

290
375
345
265
140
140
355
115
150
196
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a similar calculation based on the homogeneous case, j8i/j82=l, shown 
in figure 3, we find J£/y=0.69, which gives Z=(0.69) (290) =200 cm 
or 6% feet. Thus in this problem, neglecting the thermal properties 
of the subgrade would lead to an overestimation of the required fill- 
thickness by 50 percent. If F/A^ were 0.3, a condition that could be 
realized in northern interior Alaska, the 0.6 curve gives X=2Ql cm or 
about 8% feet. The homogeneous case would indicate a value for X 
of 378 cm or about 11% feet.

Although gravel fill usually has a lower contact coefficient (#) 
than frost-susceptible subgrade materials, this is not always so. For 
example, suppose the fill material was a sandy gravel (medium 2, 
table 1), and the subgrade was frozen organic silty clay (medium 4, 
table 1). For this case we use the curve labeled j8i//32 =1.4, shown in 
plate 1. Now when F/A0 =0.5, then Z=(375) (0.84)=315 cm (or 
10.3 feet), and the preservation of permafrost by the artificial em­ 
placement of such fill is not practicable even in an extremely cold 
climate. The homogeneous case applied to this problem would have 
given Z=(0.69) (375) =259 cm or 8.5 feet.

These numerical examples indicate that even with ideal fill materials, 
a perennially frozen subgrade can be maintained by gravel fill only 
under extremely cold climatic regimes. Examination of equation 21 
shows that the damping effect of the layer of thickness X is increased 
by a low diffusivity (as in the homogeneous case) through the ex­ 
ponential factor and by a low contact coefficient through the factor 
(!+A/)=2j8i/(/9i+j82). This suggests that more effective damping 
might be accomplished by inserting a thin stratum with a very 
low contact coefficient between the fill layer and the subgrade. 
To investigate the possibilities of such an approach, the correspond­ 
ing problem of periodic heat flow through a three-layered semi- 
infinite medium will now be considered.

THE THREE-LAYER PROBLEM

THEORY

In this section the ground will be represented as the semi-infinite 
medium, a:^>0, composed of materials with thermal properties

X,, 01, ft in Q<x<X

As in the previous problem, it will be assumed that the temperature 
at the surface x=Q varies as AQ sin ut, and that the temperature is

493800 59     8
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\

/ ,
^
\ \ \ \ \ \ \ T

^A' aA» ^A' etc \ _Y

\\x\\\\\

FIOUEE 4. Conditions of the three-layer problem.

= 02,X+A<z<« 

5*0, 1 50, A ^

initially zero lor all x (fig. 4). Stated formally, we are to find the 
temperature, Q(x,t), which satisfies the following equations:

e(*,0=0i,0<z<.X"

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

j=eA =e2 =o, <=o, z>o

L1 ~Sz~ =AA "dz" 

50a_.?. 502

02 (z,<)-»0, x->
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Applying the Laplace transformation to equations 23 through 32 we 
obtain

,»5
(33)

(34)

(35)

(36)

Q1 (X,p)=Q(X,p),x = X (37)

(38)

(39)

(40)
ax ax

Iime2 = 0, a;-* oo. (41)

We seek a solution to equations 33 through 41 of the following form: 

e(x,p) =Ql (x,p) = F e 9l*+ Ge~QlX, Q<x< X

where F, G, H, J, and R are functions independent of x to be deter­ 
mined. Inasmuch as the expressions for these functions are cumber­ 
some, only the result for 92 will be considered as this is sufficient for 
the present application. The result is

L , A , \C X A)^ 

*1 VaA Va2 I

l+P2 e

, J

(42)
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where

'"020A + 04 + 0201 + 0A01

p __ ~ 02/3 A + 0A   0201 + 0A01 

020A + 04 + 0201 + 0 A01

n  020A   0A + 0201+0A01

D » 4 ==

020A + 01 + 0201 + 0A01

020 A   04   0201 + 0 A01 

02/8 A + 04 + 0201 + 0A01

The inversion may again be performed by integration along the 
contour of figure 2. As in the two-layer case the integrals along con­ 
tours I, III, and V vanish in the limit. In the Appendix it is shown 
that the integrand has no singularities along contours II and IV and 
hence the contributions from II and IV represent initial transient 
effects. Thus the steady oscillating part must again be given by the 
residues at the poles of the integrand.

It is necessary to show that the expression in braces in equation 42 
has no zeros within the contour shown in figure 2. If any roots exist, 
they would be most likely to occur on the positive real axis, where 
each of the exponential factors must be less than unity.

Denoting
_2V«   -2V«   

e  & by A~\ e ^ by B-»,

we must prove

The expression for P2 , P3 , and P4 in equations 43 leads to

(45)

and equation 45 is true by the inequality AB=A-\-B l-\-(A l) 
(B l)^>A-}-B l. It is difficult to give a formal proof that roots 
do not occur for p not on the real axis, but it can be seen that if one 
did, an infinitesimal change in thermal parameters would remove it. 
Such a situation is incompatible with the physics of heat flow. Thus, 
it will be assumed that, as in the two-layer case, poles occur only at 
p=±i(a. The inverted result for large tis&tx=X,
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i[^y 8in r-+ j|( * + A yi
L ' z\V«i V«a/J

where

cos 2X<J^r+2Pt e * *"A cos 2A 

^&*x+±\

_ * YI
VQTA/ J

(46b)

APPLICATION TO THE GRAVEL-FILL PROBLEM

In the application to the fill problem, the amplitude of 0 at the sur­ 
face of the subgrade, x= X-\- A, is of primary interest. It can be shown 
that the amplitude of the expression in braces in equation 46a is equal 
to SH. Thus

where
A(X+A)=steady amplitude of Q(X+&,t)
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The exponential part of equation 47 represents the damping to be 
anticipated from the theory of the homogeneous case, while the expres­ 
sion in braces represents the interaction due to the dissimilarity of 
contact coefficients.

It was pointed out earlier that a thin layer of material with a low 
contact coefficient placed between the gravel layer and the subgrade 
might greatly increase the damping effect, making it possible to pre­ 
serve the subgrade in a frozen state with less fill material. For exam­ 
ple, suppose a 1-foot layer (A) of spruce logs l (medium 5, table 1) is 
placed on top of a subgrade of icy silt (medium 3, table 1). The prob­ 
lem is to find how much gravel, X, must be placed on top of the logs 
to keep the original surface, x=X-\-&, frozen   that is, by using A== 
1 foot and the appropriate values for ai, <*A, a2 ', Pi, P*, Pz from table 1, 
we must find X as a function of F/A0.

This is given by A(X+A)=F, or

(48,

The results for this case are presented as curve C, shown in figure 5. 
The results for the corresponding case without the intermediate layer 
are presented for comparison as curve B, shown in figure 5. Curve A, 
shown in figure 5, represents the result that would be obtained if the 
calculation had been made on the basis of the theory of the homo­ 
geneous case. It is seen from curve C that about 3X feet of gravel on 
top of 1 foot of corduroy would maintain a frozen subgrade for F/A0= 
0.3. Without the corduroy (curve B), 8% feet of fill would be required. 
From the homogeneous case we would have estimated that more than 
11 feet would be required. These data indicate that with the proper 
selection of materials the so-called passive method of road and airfield 
construction might be used for climatic conditions under which it is 
presently considered not feasible.

The other two-layer case discussed in the previous section is repre­ 
sented by curve B, shown in figure 6. The corresponding three-layer 
case   that is, 1 foot of spruce logs between X feet of sandy gravel 
(medium 2, table 1) and a subgrade of frozen organic silty clay (me­ 
dium 4, table 1)   is represented by curve C, shown in figure 6. The 
homogeneous case is shown as curve A in figure 6. In this case when 
F/A0  Q.3, about 11 feet of fill is required over 1 foot of corduroy, and 
the passive method is not practical. However at F/A^=OA, less than

1 Logs are mentioned here for the purpose of giving a concrete example. The selsction of the appropriate 
medium will, of course, be dictated by various engineering considerations, not the least of which is local 
availability. Pumice, which is available locally in some parts of the subarctic, and antarctic would prob­ 
ably serve equally well. Under conditions of poor drainage these media will be much less effective owing 
to the effects of water-saturation on the thermal properties.
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5 feet of fill plus 1 foot of logs (curve C, fig. 6) produces the effect 
which would have required 13 feet of fill alone (curve B, fig. 6), a 
saving of 8 feet of fill.

Curve C, shown in figure 5, intercepts the axis of FfA0 at about 0.4, 
indicating that 1 foot of logs with no fill is adequate to keep a subgrade 
of icy silt frozen when F/Ao=OA. Similarly, we find from Curve C, 
shown in figure 6, that the same 1 foot of logs would not preserve a 
frozen subgrade of organic silty clay unless FfA0 were about 0.5. From 
the homogeneous case, shown in plate 1, we see that a great thickness 
of logs would thaw to greater than 1 foot unless F/A0 were greater than 
0.8. This provides a good example of the effect of the contrast in 
contact coefficients on amplitude.

EFFECT OF LATENT HEAT

In the foregoing application it was stated that the moisture content 
of the surficial layer is small, and the thermal effects of latent heat 
associated with periodic freezing and thawing of this moisture were 
neglected. Although neglecting latent heat provides a margin of 
safety, inasmuch as it leads to an overestimation of the minimum 
fill thickness, it is desirable to have a method of estimating the effect.

Differentiating equation 16a with respect to x, setting x=Q, and 
integrating with respect to time throughout the thawing period, we 
find that the heat, Q, entering the ground surface at temperatures 
above freezing is

____ f<) § g>   2ra   p y T"T i 
Q=T/A*-F*fa J- -{ 1+2 £ (~M)*e f cos 2n -+sin 2n - V. (49) 

V « ^ n=i L V yJJ

The series in this equation represents the amount by which the flux 
of summer heat at the surface is modified by the presence of a second 
medium in x^>X. The total amount of latent heat absorbed during 
the thawing of the surficial layer is

where L is the latent heat per unit mass of the surficial layer. If 
we simply decrease Q. by LpvX, the effect of latent heat would be 
overestimated, however, because the latent heat retards the penetra­ 
tion of the freezing isotherm and hence increases the gradient and heat 
flux at the surface. The latent heat behaves as a continuous plane 
heat sink at the position of the freezing isotherm which descends from 
x Q to x=X in tune r with a mean strength of

We therefore approximate this gradient effect by that of a stationary 
continuous plane sink at x=(l/2)X with a strength of LpiX/r. The 
sink is supposed to persist throughout the time interval that the
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surface temperature remains above freezing. Field observations 
show that this interval is approximately equal to r. For this approxi­ 
mate correction stratification is neglected. Integrating the effect 
of this sink on the gradient at z=0, we find that the extra heat drawn 
into the ground by virtue of the presence of thawing moisture is, on 
the basis of these assumptions

where
/ oo f oo

&erfcy= \ dp \ erfcydy. 
Jv JP

Therefore to get the approximate effect of latent heat on X} we can 
reduce Q in equation 49 by

   T7-   

(50)

This may be done by reducing the amplitude by A^4.0 according to 
the following relation

 2n  r Yr Y X
cos 2n-+sin2n- 

L 7 yn=l

(51)

The amplitude reduction, AA0, may be computed by combining 
equations 49, 50, and 51. Thus,

(52)

f9 f °>   2n  r y rT "^
= /W--< l+Z(-M)»e 7 cos2n-+sin2n- V (53)

V <» ^ n=l L 1 V-1J

It is seen from these results that when latent heat is involved, the 
minimum thickness of fill, X, depends upon the amplitude, A0, and 
mean surface temperature,   F, individually and not simply on their 
ratio.

To obtain the correct value of A-A0 > trial values of X are introduced 
in equation 52. The corresponding trial value of AA0 is then used 
to form the ratio F/(A  A^L0); X is then read from plate 1, using 
FKA AAo) as ordinate. If this value of X agrees with the trial 
value, the problem is solved. Knowing the value of X from the case 
neglecting latent heat, the new. value of X can generally be obtained 
with 1 or 2 trials in equation 52.
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As an example of the calculation of the effects of small amounts 
of moisture, we shall consider the two-layer case discussed in previous 
sections in which X feet of medium 1 overlies medium 3. Gravel 
with the properties of medium 1 would normally have a moisture 
content of about 2 percent of the wet weight. Using this value and 
taking A0 as 18°C, from equation 52 it is found that the estimate of 
X is reduced from 4K feet to 3% feet by the correction for latent heat, 
when F/A0 =Q.5. (Neglecting stratification gave a value of 6% feet.) 
When F/A0 =Q.3, the correction for latent heat reduces X from 
8% feet to about 7 feet. The homogeneous case lead to UK feet in 
this instance. Thus, small amounts of moisture can affect an appreci­ 
able reduction in the minimum thickness of fill required to mam tain a 
frozen subgrade. However, in selecting fill materials it is important 
to bear in mind that as the moisture-retaining capacity of the fill is 
increased, its density, pt , conductivity, JKi, and specific heat, 
are generally increased; hence the contact coefficient, j81= 
increases rapidly. This in turn can lead to a large increase in the 
required thickness of fill by increasing the ratio

OTHER APPLICATIONS

TEMPERATURES IN A WELL-DRAINED ACTIVE LAYER

In permafrost areas sedimentary materials that were laid down 
under conditions of saturation are commonly drained locally by 
natural, and sometimes artificial, processes. If the material is 
permeable, excess water drains from the seasonally thawed stratum, 
while the original high ice content persists in the underlying perma­ 
frost. The sharp discontinuity in water (ice) content at the perma­ 
frost table leads to a corresponding change in thermal properties 
there. Because the active layer materials are relatively dry, the 
effect of seasonal change of state can often be neglected and the 
two-layer problem can be applied to anticipate the thickness of the 
active layer in terms of thermal properties and climatic factors.

As an example, we shall consider in some detail a locality near 
Barrow, Alaska, at which a great accumulation of peat was deposited 
under bog conditions. Subsequent recession of a nearby river terrace 
lead to very effective local drainage and disappearance of the bog. 
Today there occurs here a surficial layer about 25 cm thick of loose 
dry peat in which virtually all the water is contained within the 
vegetal fibers. At depths greater than 25 cm, the material is a 
perennially frozen peat in which virtually all the space between the 
vegetal fragments is filled with ice.

The thermal parameters of the surficial peat and the permafrost 
peat are represented, respectively, by those given for media 6 and 
7 in table 1. If the ground-surface temperature did, in reality, vary
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as AQ sin tat with a period of 1 year, the interface would be expected 
to lie ultimately at the position given by the curve j81 /j82 =0.25, shown 
in plate 1, for the appropriate value of F/AQ. This is the maximum 
depth to which the thaw could ultimately penetrate under these 
conditions and hence the maximum depth to which the surface layer 
could be drained of its interstitial moisture. From table 1 it is seen 
that X=25 cm corresponds to an abscissa of X/140=0.18 in plate 1. 
Thus the value of F/Ao characteristic of the surface temperature 
under these conditions, as given by plate 1, is 0.54. Actually, of 
course, the surface temperature is not strictly sinusoidal, and the ratio 
of annual mean to amplitude of the first harmonic (F/A0) is subject 
to variation from year to year. From 3 years of continuous tempera­ 
ture recordings just beneath the surface at this site, it was found 
that for 1 year the ratio of the mean to amplitude of the first harmonic 
(F/Ao) was close to 0.54 while for the other 2 years it was greater than 
0.70. From a comparison of these data with air temperature measure­ 
ments made by the weather bureau during the past 25 years, it seems 
reasonable to conclude that the ratio F/A0 at this site is rarely appre­ 
ciably less than 0.54 although it probably approaches this value 
fairly frequently, or about every 3 or 4 years. During 4 of the 6 
years from the spring of 1949 to the spring of 1955, F/A0 was probably 
close to 0.54. Thus F/^lo=0.54 might be said to represent a fre­ 
quently occurring warm year, and it is not unreasonable that the po­ 
sition of the interface should be identified with such a year. An 
isolated anomalously warm year would result in only a small incre­ 
ment of seasonally thawed permafrost due to the retarding effects 
of latent heat, and the amount of moisture drained from this incre­ 
ment during these isolated years would probably be restored by the 
freezing of summer rainwater during the more normal years that 
occur between the anomalous years.

If the active layer thickness of 25 cm was to be accounted for by 
the homogeneous case, it is seen from plate 1 that a value of F/A0 « 0.83 
would be required. Such large values probably occur only a few 
times in a century.

An example of actual surface-temperature data at the site under 
discussion is given in plate 2. The simple harmonic approximation 
(curve A) is the one with the same maximum number of cumulative 
degree-days above and below 0°C. (same freezing and thawing index) 
and the same mean as the observed values. For problems involving 
a change of properties at the top of permafrost, this approximation 
has certain advantages over using the first term in a trigonometric 
series. The freezing-index method is much easier to apply, and it 
takes better account of the critical role played by the freezing point. 
Amplitudes obtained by the two methods generally agree to within
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a few percent however, and the chief advantage of the first method 
is its convenience. A harmonic analysis taking account of many 
terms is of course preferable to any simple harmonic approximation, 
but approximate results can usually be obtained quickly by the 
simple method, with a minimum of data.

A comparison of the simple harmonic approximation made by the 
freezing index method (curve A), with the results of a six-term har­ 
monic analysis (curve B~), is given in plate 2. The simple method 
leads to A0=17.5, F=QA5 in centigrade degrees, and F/A^=0.54. 
The parameters in the trigonometric-series approximation are given 
in the second and third columns of table 2. Each of these approx­ 
imations to the surface temperature has been projected to the inter­ 
face z=X=25 cm with the aid of plate 1 and figure 3. The results 
are represented by curves A' and Br in plate 2. It will be noted that 
both curves are tangent to the 0° C. line, indicating that both the 
simple and refined approximation lead to the same value of X in this 
case.

TABLE 2. Parameters in the harmonic analysis of ground temperatures at special 
hole 85, Barrow, Alaska, May 11, 1954 to May 11, 1955

[Terms of form A(X) sin [arf-

Term In trigonometric series

1st.-.-        .  ............
ad........   .      ........
3d..... .....       .......... ......
4th...............    ......... ........
«h._.._        ._      ..
tth... . .        .. ....

Surface 
z=0

A«f)

16.90 
2.37 
1.41 
1.20 
1.07 
1.43

0(0)

0.05 
.65 
.16 

3.45 
.88 

3.80

Two-layer case, 
x=X=25 cm

A(X)

9.13 
1.05 
.55 
.42 
.35 
.43

*O)

0.47 
1.15 
.72 

4.05 
1.52 
4.47

Homogeneous case, 
z=25 cm, 

X=«

AW

14.11 
1.84 
1.03 
.84 
.72 
.92

«(*)

0.23 
.90 
.47 

3.81 
1.28 
4.24

It is interesting to compare these results for the two-layer case with 
those that would have been predicted on the assumption that the 
surficial dry layer extended to great depth that is, the homogeneous 
case. This is done in plate 3 where curve B and curve Br are repro­ 
duced from plate 2. Curve B" represents the temperature that would 
result at a?=25 cm from a surface temperature represented by curve B, 
if the change in properties at the top of permafrost is neglected. In 
each case the thermal wave passes through 25 cm of dry peat, but 
in the homogeneous case the maximum temperature at 25 cm. is 
greater than 5° C, whereas in the stratified case it is 0° C. In fact, 
from plate 1 it is seen that in the homogeneous case the thaw would 
penetrate to about 85 cm. This illustration points out again the 
incompleteness of statements that a given amount of a specified 
surficial material will preserve permafrost in a given climate. The
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insulating quality of the surficial layer is actually quite sensitive to 
the thermal properties of the material it insulates.

For the two-layer case under discussion the expression in braces in 
equation 49 has the value of 3.0. Hence the paradox that three times 
as much summer heat is drawn through the ground surface, x=0, in 
the two-layer case as in the corresponding homogeneous case, although 
the depth of thaw is less than one-third as great.

To get some idea of the magnitude of the neglected effects of higher 
order harmonics, we note from plate 3 that for purposes of estimating 
the position of the top of permafrost, the most significant of these 
can be represented roughly by a sine wave with a period of about 10 
days and an amplitude, A'Q, of about 2%° C. From plate 1 it is 
seen that at X=25 cm the amplitude would have diminished to about 
0.12.<4'o«0.02.<4o, and the maximum effect of this higher frequency 
term would be to increase the estimate of X by only 1 or 2 cm.

The effect of latent heat on X can be estimated from equation 52. 
The available moisture in the surficial dry peat represents about 50 
percent of the wet-sample weight. Using this value and A0=l7.5° C, 
^^,=0.54, equation 52 yields X=24 cm. Thus the effect of latent 
heat would be to decrease the estimate of depth of thaw by only 1 
cm in the present case.

Inasmuch as virtually all the living organisms at this locality must 
reside within this 25-cm seasonally-thawing stratum, the temperatures 
within it are important to ecological and physiological studies. 
Insofar as these temperatures are controlled by conducted heat, they 
can be investigated with the aid of the theory developed above.

If the temperature in the active layer is represented by
ei(x) A(x) sin [ut-v(x)], 0<x<X 

it is found from equation 18a that

, 0<X <X (55) 

where

-2X

Xcos 2(Z-s)^/£r +2M2e ' ' cos

(56)
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and <fr(x) is given by 

tan 0=

f
Ll- M*e

c Me

(57)

Based on equation 55, curve B shown in figure 7, shows how the 
amplitude of a wave with a period of 1 year diminishes through the 
25 cm layer. Curve A, the homogeneous case, and curve (7, the 
result obtamed from plate 1, are also shown for comparison. It is 
seen from curve B that for F/Ao^>Q.54, X=25 cm, superfreezing tem­ 
peratures penetrate somewhat deeper than would be predicted on the

A(x) 
A0

1.0

0.9

0.8

0.7

0.6

0.5

Curve A: X-&>

Curve B: 0 < x< X=25 cm

Curve C: X-x

20 250 5 10 15

X,'m centimeters 

FISUKK 7. Amplitude of annual wave In surflcial layer for medium 6 In 0 <x<X; medium 7 In x>X,
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assumption that the interface occurred at the position of the maximum 
depth of the freezing isotherm (curve C, fig. 7).

For the data plotted in plate 2, the simple harmonic approximation 
to the surficial temperature has an amplitude, Ao, of 17.5° C and a 
mean temperature,  F, of  9.45° C. This simple harmonic approx­ 
imation will be used to show the effect of stratification on annual 
temperature variation within the active layer. Curve B in figure 7 
shows that the amplitude of the sinusoid is reduced to about 
0.74 A0 «13.0° C, at a depth of 13 cm. Thus the annual maximum 
temperature at the 13-cm depth is 13.0-9.45=3.6° C. In general, if 
the material below 25 cm had a lower contact coefficient than it does 
in this case, the maximum temperature at the 13-cm depth would be 
greater. In particular, if the deeper material had the same contact 
coefficient as the surficial 25-cm layer, the amplitude of the annual 
wave, as given by curve A of figure 7, would be about 0.91 A0 » 
15.9° C, and the annual maximum temperature would be about 
6.5° C at 13 cm. Knowing the amplitude and mean in the two cases, 
we can easily compute other quantities of probable importance in 
ecological studies. The results are summarized in table 3. The 
example shows that for identical thermal conditions at the surface 
the thermal properties of the material underlying the layer supporting 
plant growth can have a profound effect on the temperatures of the 
plants at root level. The particular media used in this example were 
selected as a matter of convenience, and they are probably of minor 
importance insofar as the roots of vascular plants are concerned. 
Nevertheless the principal is quite general, and it is likely that these 
effects have an appreciable influence on the local distribution and 
characteristics of plant types in the arctic.

TABLE 3. Effect of deep layer (x>X) on temperatures in surficial layer (0<x<X = 
25 cm) at a depth of IS cm in medium 6 (of table 1).

Period with temperature >0° C ...... __ .. ________
  . ...- °C.-

/3,/fc=0.25

+3.6
90

200

A/&-1.00

+6.5
110
450

A wave with a period of 10 days would diminish in amplitude as 
indicated by curve B, shown in figure 8. This provides an interesting 
example of how an increasing depth to the interface increases the 
effect of higher order harmonics in the surficial layer. Thus, if 
F/AQ were consistently 0.7, the surficial dry layer would be about 
13 cm thick according to curve C, shown in figure 7. As a result, 
the 10-day wave would have an amplitude of about 25 percent of its 
surface value at 13 cm (curve C, fig. 8). For F/A^Q.54: however, the
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A'(x)

Curve A: A-«J
Curve B: 0<Jt<X=25cm
Curve C:X-x

0.4

0.2

5 10 15 

X, in centimeters 

FlGUEE 8. Amplitude of 10-day wave in surflcial layer for medium 6 in 0 <z<A", medium 7 in x>X.

interface lies close to 25 cm, and the 10-day wave has an amplitude of 
about 50 percent of its surface value at 13 cm (curve B, fig. 8). An 
additional point of interest in figure 8 is that the amplitude computed 
from equation 55, curve B, differs by less than 1 percent from that 
computed by the result for the homogeneous case, curve A, for depths 
less than 3 or 4 cm. That is, when ft/j82=0.25, the effect of the con­ 
trast in contact coefficients at 25 cm is not felt at depths less than 3 
or 4 cm for a wave with a period of 10 days. By multiplying the

abscissal scale ,it is seen that the damping of an annual

wave could be treated by the homogeneous case in the upper 20 to 
25 cm if the interface occurred at 150 cm. These and similar results 
can be predicted quickly by evaluating the term corresponding to 
n=l in equation 16a.
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EFFECT OF SEASONAL SNOW COVER ON MEAN ANNUAL GROUND
TEMPERATURES

Although the mean annual temperature of the ground surface is one 
of the most important parameters in permafrost problems, it is one 
for which very little information is available. A great deal of atten­ 
tion has been devoted to the problem of estimating this quantity from 
air-temperature measurements and other data commonly recorded in 
routine meteorological observations. The relationship between air 
temperature and ground-surface temperature is extremely complex, 
and several modes of energy transfer are involved. However, in high 
latitudes one of the most important factors influencing the difference 
between the mean annual temperature of the air and ground is the in­ 
sulating effect of the continuous winter snow cover. We shall attempt 
to apply the results from the two-layer case to obtain an order of 
magnitude for this effect.

It will be assumed that the temperature of the bare-ground surface 
in the summer and the upper surface of the snow in the winter can 
be represented by a sinusoid with amplitude A* and a period of 1 year. 
We shall assume that the ground is covered by a blanket of snow of 
thickness X, for a winter period, assumed for convenience to be of 6 
months duration. (This provides a reasonable representation of con­ 
ditions at many sites in Arctic Alaska.) The radiative transfer in the 
snow of short wave incoming radiation will be neglected. This is 
probably justified during most of the Arctic winter.

The mean summer temperature at the bare ground surface is then 
given by

i r=.A* - I 
T Jo6 summer=.A* - I sin f d 

o

If the transient effects due to the movement of the boundary surface 
at O3t=0 and T are neglected, the mean winter temperature at the 
ground surface is

6 winter=-4(X)-

where A(X) is the steady amplitude that would result from a wave 
with amplitude A* passing through thickness X of snow. Neglecting 
the transients in this way is justified if -X"2/4ai<<jT/w> where a^diffu- 
sivity of the snow. With these simplifications the shift in mean 
annual temperature (A6) due to the snow is given by

A6=- A*[1-A(X)/A*]. (58)
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It is important to bear in mind that this expression represents only 
the amount by which the mean-annual temperature of the ground 
surface will exceed that of the air-solid interface as a result of conduc­ 
tion effects in the snow. In precise work the latter cannot be identi­ 
fied directly with mean values computed from routinely measured air 
temperatures. In the Arctic the mean winter temperature of the 
snow surface is generally probably somewhat lower than the cor­ 
responding air temperature because of the high emissivity of snow for 
long wave lengths. In the summer the mean temperature of the bare 
ground surface can be higher or lower than that of the air, according 
to local radiation and moisture relationships.

When a third layer is not involved, the ratio A(X}jA* in equation 
58 can be computed for particular cases from plate 1. It is seen that 
the insulating effect of the snow is more pronounced when the sur- 
ficial ground layers have a high contact coefficient (j82). In addition, 
the effect increases not only with increasing snow depth, X, and de­ 
creasing snow diffusivity, ai} but also with a decreasing snow-contact 
coefficient, ft, and increasing amplitude, A*.

When 1 foot of packed, drifted snow (medium 10, table 1) overlies 
a considerable thickness of sandy gravel (medium 2, table 1), ft/ft 
«0.2, JT/7«0.15; and from plate 1, A(X)/A*~0.52. Then, accord­ 
ing to equation 58, the shift in mean temperature from the air-solid 
interface to the ground surface would be expected to be about 0.15 A*- 
Under these conditions at Barrow, Alaska, a reasonable value for A* 
is 20° C, which yields a mean shift of about 3° C. Under the same 
situation at Umiat, about 80 miles inland from the Arctic Coast, A* 
is probably about 50 percent greater and hence so is A0. The mean 
air temperatures and snow conditions are very nearly the same at 
Umiat and Barrow, and the greater permafrost temperatures which are 
recorded at Umiat are probably due largely to this amplitude effect. 
If the same snow conditions occurred over several feet of dry peat 
(medium 6, table 1), A0 would be expected to be about 0.04.A*, and 
the insulating effect would be reduced to about one-fourth of that in 
the previous case. In areas where wind drifting is less intense, the 
snow can have a lower 0, and the mean shift is accentuated. Condi­ 
tions that could easily be realized in the Alaskan Arctic might be 
represented by 1 foot of fresh snow drift (medium 9, table 1) overlying 
icy peat (medium 7, table 1). In this case /3i//32 «0.1, which leads to 
A0« 0.234*. At Barrow this might result in elevating mean ground 
temperatures by 4 or 5° C and at Umiat by as much as 7° C. Without 
more precise observational information these values cannot be verified 
directly. However, the magnitude of the mean shifts predicted by 
this method is in general agreement with the observed differences in 
the mean annual temperatures of the air and ground surface.
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Approximate values for A* have been estimated from known values 
of the amplitude of air-temperature variation and from ground-surface 
temperature observations at a limited number of sites. The assump­ 
tion of constant snow depth is thought to be reasonable for this degree 
of approximation, as the snow in this area commonly builds up rapidly 
early in winter, and during that time it has not packed from drifting. 
Thus, although X is smaller, at and ft are also smaller, and a more 
refined approximation based upon monthly steps would lead to 
approximately the same results.

The examples serve only to illustrate that this crude approximation 
for the effect of snow cover on mean ground temperatures seems to 
yield results that are reasonable. The extent to which the approxima­ 
tion is valid can be determined only after a much more detailed study.

An interesting correlary to this discussion is that if, over a period 
of time, the mean annual temperature and the time distribution of 
snow fall did not change systematically, but the amplitude of seasonal 
variation increased, geothermal evidence would indicate a secular 
increase in surface temperatures. In fact, this effect might be 
expected in the case of a regressing shoreline in the arctic as the 
climate changed from oceanic to continental. In the example dis­ 
cussed above, Umiat, which is about 80 miles inland, has an amplitude 
of seasonal variation about 50 percent greater than that at Barrow on 
the Arctic coast.

MEASUREMENT OF THE THERMAL PROPERTIES OF SOILS AND
BOCKS

Higashi (1953) described an apparatus that generated a sinusoidal 
temperature on the surface of a soil sample, and he used it successfully 
to measure the thermal diffusivity of soils in the laboratory. The 
temperature was measured as a function of time at two points at 
different distances from the controlled surface, and the diffusivity was 
computed by reference to the solution for the homogeneous semi- 
infinite medium equation 19.

The theoretical results discussed in the preceding sections suggest 
a modification of this procedure which may prove useful. A sinu­ 
soidal temperature is impressed on the upper surface of a glass or 
plastic reference disc of known thermal properties, and thermally 
sensitive elements are placed on the upper and lower surfaces of this 
disc. Then when the lower surface of the reference disc is in thermal 
contact with the medium to be tested, measurements of the amplitude 
on the two surfaces of the disc will give the contact coefficient, j8, 
of the test medium. The result is obtained from equation 21. Such 
a device could be made portable and used for measurements in place.

If the medium is consolidated, determination of the volume specific
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heat can usually be made in the laboratory without difficulty. If the 
medium is unconsolidated, however, the determination of the bulk 
density is sometimes very difficult. In this case the following modifi­ 
cation of the device might be used to measure the volume specific 
heat in place. A small thermally sensitive element placed on the tip 
of a thin poorly conducting plastic spike protruding from the axis of 
the reference disc would be embedded in the test medium as the 
instrument is positioned on its surface. A third measurement of the 
amplitude by this element would give the thermal diffusivity of the 
test medium from equation 19. Thus the two independent thermal 
parameters would be determined from a single field test.

The use of a controlled sinusoidal temperature for field and labora­ 
tory measurements has the advantage of transient methods hi that it 
permits a determination of both the conductivity and the volume 
specific heat. Most transient methods, however, have the disad­ 
vantage that the theoretical models used for interpretation are based 
on idealizations neglecting certain finite dimensions of the instrument; 
and this introduces a time-dependent error. Thus, considerable 
uncertainty is often involved in fixing the optimum duration of an 
experiment and the absolute accuracy of the measurements. Although 
the sinusoidal method does not result in a steady state in the true 
sense, the wave form approaches an equilibrium configuration. Thus 
the amplitude and phase approach steady values at each point. This 
gives the method the advantage of steady-state techniques. The 
oscillating part of the edge effects 0e, at the element imbedded in the 
test medium also approaches this quasi-steady state. They may be 
computed from Lachenbruch (1957b)

where R is the radius of the disc.
A further advantage of this method for field use is that the results are 
relatively insensitive to temperature drift in the test medium because 
they are obtained from the oscillating part of the temperature varia­ 
tion. This drift effect is often difficult to control in field measure­ 
ments in near-surface media inasmuch as the test disturbs the natural 
temperatures and obviates the possibility of a drift measurement at 
the completion of the test.

There are three obvious difficulties in the use of this method. The 
first is that good thermal contact between the reference disc and the 
test medium is necessary. However, the thermal effects of a semifluid 
coating introduced to reduce contact resistance can be estimated from 
the two- or three-layer cases discussed above.
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The second difficulty is the restriction on the grain size of the test 
medium, which is imposed by the maximum allowable horizontal 
gradients in the neighborhood of the thermal element at the base of 
the reference disc.

The third difficulty involves the disturbance of the temperature 
field by the spike supporting the thermal element imbedded in the test 
medium. The error due to conduction along the leads, however, can 
be estimated by the method described by Jeager (1955). One method 
of greatly reducing that error is to make the heater and reference disc 
in the form of an annulus with the spike mounted on a hub at the axis. 
In this method the measurements from the element on the spike would 
be interpreted by reference to (Lachenbruch, 1957b)

(59)

where E\ and R2 are the inner and outer radii, respectively, of the 
annulus.

The minimum thickness of a stratum to which this method can be 
applied may be estimated from equation 16a.

CONCLUSION

Many interesting and important phenomena associated with peri­ 
odic oscillations of ground temperature are related to the fact that the 
ground is stratified with respect to thermal properties. These effects, 
of course, cannot be studied by reference to the classical solution of the 
heat equation for the homogeneous case. However, solution for a 
stratified semiinfinite medium with sinusoidal surface temperature 
can be obtained directly by the Laplace transform method. The 
result for two layers is relatively simple. For a greater number of 
layers the solutions are more cumbersome, but they present no great 
analytical difficulty.

The insulating effect of a surficial stratum, or its ability to protect 
the underlying material from extremes of temperature, does not 
depend on its conductivity alone as in the case of steady flow, or upon 
its diffusivity alone as in the case of periodic flow in a homogeneous 
medium, and serious errors can result from neglecting this fact. It 
depends upon both the diffusivity and contact coefficient of the 
surficial stratum and the contact coefficients of all underlying strata 
sufficiently close to produce appreciable effects. As in the homo-
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geneous case, an exponential amplitude decrease with depth is pro-
rr

duced by the diffusivity, a=  

In the two-layer case the amplitude in the surficial stratum decreases 
more rapidly with depth than in the homogeneous case if j8i/j82 <Cl> 
where ft and & are the contact coefficients in the top and bottom 
strata, respectively. If ft/j82> 1 the insulating effect of the surficial 
stratum is less than in the homogeneous case. Where ft/j82=l, tem­ 
peratures in the surficial stratum may be computed from the homo­ 
geneous case without error. The diffusivity and contact coefficient 
can vary quite independently of one another. For example, a water- 
saturated peat (medium 8, table 1) experiences very little change in its 
contact coefficient as a result of freezing (medium 7, table 1), although 
freezing increases its diffusivity by a factor of 10.

These factors are probably important in determining the distribution 
of vegetation in the arctic. Summer temperatures in the neighborhood 
of plant roots in the surficial layer supporting vegetal growth are 
sensitive to the thermal properties of the subjacent layer. These root 
temperatures would be higher or lower according to whether the con­ 
tact coefficient of the deeper layer were relatively low or high. The 
large magnitude of these effects is indicated by the graphs presented 
above. Thus in two areas where all surface conditions were equal", 
identical surface layers might support plant assemblages of quite 
different characteristics if the contact coefficients of the subjacent 
strata differed widely between the two areas. The explanation for 
this would never be found from surface observation.

From the two-layer case it is found that the minimum thickness of 
gravel fill necessary to maintain a perennially frozen subgrade is 
strongly influenced by the thermal properties of the subgrade. Except 
under favorable conditions the amount of material required for perma­ 
frost preservation by a single layer of fill is too great to be practicable. 
From the three-layer case it is found that a thin layer of material of 
relatively low contact coefficient, such as logs or pumice, placed be­ 
tween the fill and the subgrade can greatly reduce the amount of fill 
required. Thus, the subgrade can probably be maintained in a peren­ 
nially frozen state under a variety of conditions by practicable methods 
when appropriate materials are available locally.

The foregoing results can also be applied to obtain an estimate of 
the effect of winter snow cover on the mean annual temperature of 
surficial permafrost layers. This effect may prove to be important in 
geothermal studies of climatic history.

The results from the two-layer case indicate a method for simul­ 
taneous measurement of the two independent thermal parameters,
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diffusivity and contact coefficient, by use of an artificial sinusoidal 
temperature wave.

The discussion in this paper is confined primarily to problems in which 
the neglected effects of latent heat are relatively unimportant, although 
a means of correcting for these effects is presented. It is important to 
bear in mind that under some conditions the movement of water re­ 
sults in the nonconductive transfer of appreciable amounts of heat 
and a change in thermal parameters with time. These effects are not 
considered here. As in any mathematical study of natural phenomena 
the models discussed above represent idealizations, but they give a 
useful insight into the natural processes associated with conductive 
heat transfer in stratified ground.
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APPENDIX  PROOF THAT 63 IS BOUNDED ON THE 
NEGATIVE REAL AXIS, THREE-LAYER CASE

It must be proved that

/  '   7= I  Z-Jp~7= ~2 VP~7= j-»i
* ^O.p-w*" (60)

on contours II and IV. On contour II =WH, and on IV 
Vp=  Wh*|. The 2 resulting expressions will be conjugates, hence 
only 1 case need be considered. Suppose that equation 60 is false. 
Then, setting

and using equation 43, there exist some values of A and B such that 
/32/34 [e<u+»- 1 +e" -e«]

+0! [~«*w+»- l+e^+e«l

+ft/3! [e«^+« - 1 -e^1 +e<B]

-f/SA/3i[-e' M+B>-l-e<4 -e«]=0. (61)

Denoting the expressions in brackets by the radius vectors Zj, zz, Z3, Zt 
in the complex plane we have

4 = 0.

It is seen that

Z\   Zz=
Hence

And since the sum of two orthogonal vectors vanishes only if each 
vector vanishes

Because the "0's" are positive,

Z\ and Zt have opposite sense (62)

Z2 and Z4 have opposite sense. (63)
35
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But
_l = 2 sin (+B)(-sin ++i cos

Hence, e i(A+B)  l and e14  e iB are colinear and by 62 the latter 
must dominate. This leads to

sin 4(A-B)|>|sin %(A+B)\. (64) 
Similarly,

= cos -cos + sn 

and 63 requires

|cosi(A-B)|>|cos|(A+B)|. (65) 

Squaring equations 64 and 65 and adding leads to the contradiction

Therefore equation 60 is true.
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