Melting and Transformation Temperatures of Mineral and Allied Substances

F. C. KRACEK

ONTRIBUTIONS TO GEOCHEMISTRY

EOLOGICAL SURVEY BULLETIN 1144-D

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

CONTENTS

	Page				
Abstract	. 1				
General discussion Acknowledgments General references					
Elements	4				
Oxides	10				
Oxide systems involving Al ₂ O ₃	13				
Oxide systems exclusive of Al ₂ O ₃ , B ₂ O ₃ , SiO ₂	. 14				
Silicate systems, binary	17				
Silicate systems, ternary	21				
Silicate systems, quaternary and higher	30				
Silicate systems, miscellaneous	32				
Carbonates	33				
Systems, miscellaneous	36				
References	63				

ILLUSTRATIONS

-

_

Figure 1.	The system FeO	39
2.	The system SiO ₂ -Al ₂ O ₂	40
3.	The system SiO ₂ -CaO	41
4.	The system SiO ₂ -FeO	42
5.	The system SiO ₂ -MgO	43
6.	The system CaO-Al ₂ O ₂ -SiO ₂	44
7.	The system FeO-Al ₂ O ₃ -SiO ₂	45
8.	The system $K_0O-Al_0O_2-SiO_2$	46
9.	The system MgO-SiO ₂ -Al ₂ O ₂	47
10.	The system Na ₉ O-Al ₉ O ₃ -SiO ₉	48
11.	The system CaO-FeO-SiO ₂	49
, 12.	The system CaO-MgO-SiO ₂	50
13.	The system MgO-FeO-SiO ₂	5 1
14.	The join plane, SiO_{9} -FeO-CaAl ₉ Si ₉ O ₉ , (anorthite),	
	of the system Al ₂ O ₂ -CaO-FeO-SiO ₂	52
15.	The ternary section, KAlSi ₂ O ₆ (leucite)-SiO ₂ -CaAl ₂ Si ₂ O ₈	
	(anorthite), of the system Al ₂ O ₃ -CaO-K ₂ O-SiO ₂	53
16.	The ternary section, KAlSi ₂ O ₆ (leucite)-SiO ₂ -CaMgSi ₂ O ₆	
	(diopside), of the system Al ₉ O ₃ -CaO-K ₉ O-MgO-SiO ₃	54

.

ILLUSTRATIONS

		Dage
Figure 17.	The ternary section, NaAlSi $_{3}O_{8}$ (soda feldspar)-KAlSi $_{3}O_{8}$	1000
	(potash feldspar)-CaAl ₂ Si ₂ O ₈ (lime feldspar), of the	
	system Al ₂ O ₃ -CaO-K ₂ O-Na ₂ O-SiO ₂	55
18.	The join plane, Mg_2SiO_4 (forsterite)-CaAl_2Si_2O_8 (anorthit	e)
	SiO ₂ , of the system Al ₂ O ₃ -CaO-MgO-SiO ₂	56
19.	The ternary section, $CaMgSi_2O_6$ (diopside)-Mg $_2SiO_4$	
	(forsterite) CaAl ₂ Si ₂ O ₈ (anorthite), of the system	
	A1 ₂ O ₃ -CaO-MgO-SiO ₂	57
20.	The ternary section, NaAlSi $_3O_8$ (albite)-CaAl $_2Si_2O_8$	
	(anorthite)-CaMgSi $_2^{ m O}{}_6$ (diopside), of the system	
	Al ₂ O ₃ -CaO-MgO-Na ₂ O-SiO ₂	58
21.	The join plane, NaAlSiO $_4$ (nepheline, carnegieite)	
	-FeO-SiO ₂ , of the system Al ₂ O ₃ -FeO-NaO-SiO ₂	59
22.	The section, $KA1Si_2O_6$ (leucite)-SiO ₂ -Fe ₂ SiO ₄ (fayalite),	
	of the system Al ₂ O ₃ -FeO-K ₂ O-SiO ₂	60
23.	The ternary section, $KA1Si_2O_6$ (leucite)-SiO ₂ -Mg ₂ SiO ₄	
	(forsterite), of the systemAl ₂ O ₃ -K ₂ O-MgO-SiO ₂	61
24.	The ternary section, $KA1Si_2O_6$ (leucite)-SiO $_2$ -Mg $_2SiO_4$	
	(forsterite), of the system Al_2O_3 -K $_2O$ -MgO-SiO $_2$	62

CONTRIBUTIONS TO GEOCHEMISTRY

MELTING AND TRANSFORMATION TEMPERATURES OF MINERAL AND ALLIED SUBSTANCES

By F. C. KRACEK

ABSTRACT

The temperatures of melting, boiling, and change of structural symmetry are compiled for compounds, eutectics, and solid solutions in oxide, silicate, and a few other systems. Frimary emphasis is given to compounds of geologic interest; the compilation is not comprehensive of all phase equilibrium studies. Phase diagrams are given for 24 particularly complex systems that would be difficult to describe otherwise; for example, ll diagrams of quaternary and higher order silicate systems show the temperature-composition stability fields for 56 compounds and for 6 two-liquid composition ranges.

For a given compound, the transition temperatures and the appropriate crystal systems are given for synthetic polymorphs as well as for those which occur naturally as minerals; polymorphs are identified by Greek letters or Roman numerals, and by names, according to usage. Temperatures are given, as available, for the following: decomposition, triple point, Curie point, specific heat anomaly, and solid solution, eutectic, peritectic, and incongruent melting points. Oxygen pressure and total pressure, including atmospheric, are stated if pertinent.

Data listed for 103 chemical elements are symbol, name, atomic number, atomic weight, melting point, boiling point, and any known transition temperature. Compilations of several groups of oxides are presented: 60 single oxides, l2 pairs involving Al203, and 70 pairs exclusive of Al203, B203, and SiO2. (In a chemical system, each natural and synthetic compound is identified according to the ratio of oxides in mole percent.) Silicate systems compiled and presented are 25 binary systems, 61 ternary systems, and 5 miscellaneous ones; joins for 33 quaternary and higher systems are also listed, data for 11 being illustrated in diagrams, and the rest with references but without temperature data. The following are listed without temperature data; 38 single and binary carbonate systems, 72 miscellaneous, mostly ternary systems, including oxides, phosphates, sulfates, and fluorides, and the pertinent references.

GENERAL DISCUSSION

<u>Scope of the tables.</u>—These tables list the melting (congruent and incongruent) temperatures, boiling temperatures, and transition temperatures for the more important substances of interest to the geologist, the geochemist, and the petrologist. Eutectic and related data are given when the substance under discussion has been studied as part of a binary or higher system. The aim in compiling the tables has been to describe the known thermal reactions of the compounds and the systems briefly, but in enough detail to be of use to an investigator in the field where extensive reference books are not usually available. <u>Arrangement</u>.—The entries are arranged alphabetically by chemical symbol (elements) or formula (compounds). Compounds composed of two or more oxides (except carbonates, sulfates, and other oxygen salts) are entered in the increasing alphabetical order of the constituent oxides.

Mineralogic names.-Minerals follow the nomenclature employed in Dana, E. S., and Ford, W. E., 1922, A textbook of mineralogy: New York, John Wiley & Sons, 720 p.

Description of systems.—The compositions of solution phases(liquid or solid) expressed in terms of percentage of the end components, molecular or by weight. For the molecular percentage the mole is taken as the accepted gramformula weight. Thus, for a binary system the composition of a melt at a eutectic or other significant point may be stated as 18 percent of CaO or 82 percent of TiO₂, as shown below. Compositions of compounds in a system, on the other hand, are given in terms of the mole ratio of the components, as is usual in chemical practice:

CaO-TiO₂:-CaTiO₃, (1:1), <u>Perovskite</u>, melting point 1970°; eutectic with TiO₂, 18 percent CaO, 1460°.

This signifies that in the system composed of CaO and TiO₂ as components, there is a 1:1 compound, CaTiO₃ = CaO·TiO₂, whose mineral name is Perovskite; this mineral melts at 1970°C, and it is a constituent of a eutectic with TiO₂, the eutectic melting at 1460°C. The composition of the eutectic melt is 18 percent CaO, 82 percent TiO₂. Only one of these percentage numbers is required to specify composition in a binary system, as it will be evident that in a system of <u>n</u> components, only (<u>n</u>-1) percentage values suffice to specify the composition adequately.

Unless otherwise stated, compositions are given in weight percent. Mole percentages are indicated by mole percent; thus, for the composition in the example given above, 18 percent CaO is equivalent to 23.824 mole percent CaO.

Temperature scale.-The practical scale of temperature, originally planned to be a thermodynamic scale (International Critical Tables, v. 1, p. 52) was placed on a working basis by the high temperature gas thermometer work of Day and Sosman (1911, 1922) at the Geophysical Laboratory. Since 1914 the Geophysical Laboratory has used this scale adapted for practical use with thermocouples by L. H. Adams (1919, 1926). The Geophysical Laboratory, for the purposes of consistency, is still using this scale in the temperature measurements it reports. In 1927 the Seventh General Conference in Weights and Measures adopted a scale of temperatures which became known as the International Temperature Scale of 1927. The International Temperature Scale of 1927 was soon recognized to be faulty in the upper reaches of temperature, and a new scale, the International Temperature Scale of 1948, was adopted by the Conference in Weights and Measures in 1948, (H. F. Stimson, 1949). The International Temperature Scale of 1948 is discussed in relation to the International Temperature Scale of 1927, and the Geophysical Laboratory Scale by Sosman (1952); see also R. J. Corruccini (1949).

Sosman (1952) states:

On the basis of the 1948 scale, the corrections made by Sosman and Anderson in 1933 at 1550°C and lower, none of which exceed +5°C, are reduced to about two-thirds their former(1927 scale) magnitude, and the original Geophysical [Laboratory]temperatures can usually be left without error beyond the experimental uncertainty. Temperatures beyond 1550°, however, will still have to be proportionately increased, to bring them into line with the International 1948 Scale. The melting point of pure silica as cristobalite, for example, originally 1713°, becomes 1723°. Because of the possibility of further revision of the scale, and to avoid confusion, the temperatures given in this compilation are the unamended, original values, except where specifically denoted by the legend (International Temperature Scale). In particular, the melting-point determinations on silicates done at the Geophysical Laboratory are all referred to the Day and Sosman gas thermometer scale upon which the Adams (1919) standard thermocouple tables (International Critical Tables, v. 1, p. 57) are based.

For the work published from the School of Mineral Industries, Pennsylvania State University, and from the National Bureau of Standards, on the other hand, the data are given in terms of the International Temperature Scale of 1948. Such data are reproduced here without specifically calling attention to the scale used.

Estimated temperature values, as for elements, for which actual measurements have not been made, are enclosed in parentheses.

Precision (as distinct from the absolute accuracy) of the determinations of the transformation, where known, is indicated thus, ± 3 . Where no bracket is given, the last significant figure given is uncertain.

<u>References to the literature</u>.-Previous investigations are referred to in detail for the more complex systems. They are not given in general for single substances, particularly when the data are available in one or more handbooks in common use; this is done to avoid an unnecessarily long list of citations.

Acknowledgments

I wish to acknowledge the courtesy of the editors of the following journals for permission to reproduce the following figures: the American Journal of Science, for figures 1-7, 10, 13, 16, and 18-21; the Journal of Geology and University of Chicago Press, for figures 9, 17, and 24; the Journal of the American Ceramic Society, for figures 2, 3, 8, 12, 14, and 23; the American Mineralogist, for figure 22; and the Commission Géologie de Finlande, for figure 15. Thanks are also due Dr. Sydney P. Clark, Jr., for permission to reproduce figure 11.

General References

Simple compounds:

- Landolt, Bornstein, Roth, and Scheel, 1923, Physikalisch-Chemische Tabellen: Berlin, Julius Springer, 5th ed. and supp., 2 v.
- Tables annuelles de constantes et donnees numeriques de chimie, de physique et de technologie: Paris, Gauther-Villars, Chicago, Ill., Univ. Chicago Press, yearly volumes from 1910.
- Mellor, J. W., 1922-1937, A comprehensive treatise on inorganic and theoretical chemistry: London, New York, Longmans, Green & Co., 16 v.
- Gmelins Handbuch der anorganischen Chemie: 8th ed., Leipzig-Berlin, Verlag Chemie G.m.b.H., 1924-.
- Abstract Journals.
- Compounds and systems with silica, alumina, and other refractory oxides: Levin, E. M., McMurdie, H. F., and Hall, F. P., 1956, Phase diagrams
 - for ceramists: Columbus, Ohio, American Ceramic Society, 286 p. International critical tables: New York, McGraw-Hill Book Co., 1928, v. 4, p. 83-97.
 - Eitel, Wilhelm, 1954, Physical chemistry of the silicates:Chicago, Ill., Univ. Chicago Press, 1592 p.
 - Bowen, N. L., 1928, The evolution of the igneous rocks: Princeton, N. J., Princeton Univ. Press, 332 p.; also reprinted by Dover Publications, Inc., New York.

ELEMENTS

Symbol	Name	Atomic No.	1956 Atomic weight	Melting point (degrees C)	Boiling point (degrees C)	Transition point (degrees C)
Ar	Argon	18	39.944	-189.31	-185.87	
Ac	Actinium	89	227	(1200) ^a	(3300)	
Ag	Silver	47	107.880	960.8	2193	
A 1	Aluminum	13	26.98	660.1	2450	
Am	Americium	95	(243)			
As	Arsenic	33	74.91	814 ^b	615 ^C	
At	Astatine	85	(211)	(300)	(380)	
Au	Gold	79	197.0	1063	2707	
в	Boron	5	10.82	2027	3927	
Ba	Barium	56	137.36	710	1638	375
Be	Beryllium	4	9.013	1283	2477	
Bi	Bismuth	83	209.00	271.3	1559	
Bk	Berkelium	97	(245)			
Br	Bromine	35	79.916	-7.2	58.3	
С	Carbon	6	12.011		4347 ^C	
Ca	Calcium	20	40.08	850	1482	450
Cd	Cadmium	48	112.41	320. 9	765	200
Ce	Cerium	58	140.13	804	2927	-133, 393, 440

	Cf	Californium	98	(248)			
190-21	Cl	Chlorine	17	35.457	-101.0	-34.06	
6	Cm	Curium	96	(245)			
- 63 -	Co	Cobalt	27	58.94	1495	2877	447, 850, 1150 ^d
	Cr	Chromium	24	52.01	1903	2642	1840
	Cs	Cesium	55	132.91	2 8. 5	68 5	
	Cu	Copper	29	63.54	1083	258 2	
	Dy	Dysprosium	66	162.51	1500	2327	
	Е	Einsteinium	99	(255)			
	Er	Erbium	68	167.27	1527	(2630)	
	Eu	Europium	63	152.0	(830)	(1430)	
	F	Fluorine	9	19.00	-219.62	-188.14	-227.60
	Fe	Iron	26	55 . 8 5	1539	2887	760 ^d , 910, 1400
	Fm	Fermium	100	(252)			
	Fr	Francium	87	(223)	(27)	(680)	
	Ga	Gallium	31	69.72	29.78	2237	2.6 ^e
	Gd	Gadolinium	64	157.26			
	Ge	Germanium	32	72.60	937.3	(2700)	
	Н	Hydrogen	1	1.0080	-259.31 ^f	-252.89	
	D	Deuterium	1	2.00147	-254.52	-249.56	
	Не	Helium	2	4.003	-272.2 ^g	-268.94	
					-270.97 ^h		
		1	1	1 1	(I

MELTING AND TRANSFORMATION TEMPERATURES

ĥ

Symbol	Name	Atomic No.	1956 Atomic weight	Melting point (degrees C)	Boiling point (degrees C)	Transition point (degrees C)
Hf	Hafnium	72	178.58	1977	(5200)	1500
Hg	Mercury	80	200.61	-38.87	356.58	
Но	Holmium	67	164.94	(1500)	(2300)	
I	Iodine	53	126.91	113.7	184.35	
In	Indium	49	114.82	156.17	2047	
Ir	Iridium	77	192.2	2443	4130	
К	Potassium	19	39.100	63.4	766	
Kr	Krypton	36	83.8	-157.21	-153.23	
La	Lanthanum	57	138.92	920	3367	-163, 548, 709
Ιi	Lithium	3	6.940	180.55	1331	-196
Lu	Lutetium	71	174.05	(1730)	(1930)	
Md	Mendelevium	101	(256)			
Mg	Magnesium	12	24.32	650	1120	
Mn	Manganese	25	54.94	1244	2087	727, 1101, 1137
Мо	Molybdenum	42	95.95	2610	(4800)	
N	Nitrogen	7	14.008	-209.97	-195.82	-237.53
Na	Sodium	11	22.991	97.82	889	
Nb	Niobium	41	92.91	2497	4900	

Nd	Neodymium	60	144.27	1024	(3090)	-164, 508, 714
Ne	Neon	10	20.183	-248.59	-246.08	
Ni	Nickel	28	58.71	1453	2840	350-400 ^d
Np	Neptunium	93	(237)	640		
0	Oxygen	8	16.000	-218.76_{f}	-182.96	-229.37, -249.26
Os	Osmium	76	190.2	2700	(4230)	
Р	Phosphorus,	15	30.975			-77.15 ^j
	yellow, cubic			44.1	280	-2.3 ^k
	red, triclinic			590 ⁱ	431 [°]	
	violet			593 ⁱ		
Pa	Protoactinium	91	231	(1200)	(4000)	
Pb	Lead	82	207.21	327.3	1750	
Pd	Palladium	46	106.7	1549.5 ¹	3130	
				1552 ^m		
Pm	Promethium	61	(145)	(1000)	(2700)	
Ро	Polonium	84	210	254	962	97
Pr	Praseodymium	59	140.92	935	3017	798
Pt	Platinum	78	195.09	1755 ¹	3800	
				1769 ^m		
Pu	Plutonium	94	(242)	1300		
Ra	Radium	88	226.05	700	(1500)	
Rb	Rubidium	37	85.48	38.8	700	- 30

MELTING AND TRANSFORMATION TEMPERATURES

קס

ELEMENTS

Symbol	Name	Atomic No.	1956 Atomic weight	Melting point (degrees C)	Boiling point (degrees C)	Transition point (degrees C)
Re	Rhenium	75	186.22	3147	(5600)	
Rh	Rhodium	45	102.91	1960	3960	
Rn	Radon	86	222	- 71	-61.8	
Ru	Ruthenium	44	101.1	2500	4110	1035, 1200, 1500
S	Sulphur	16	32.066	119.25 ⁿ	444.60	95.5 ⁰
Sb	Antimony	51	121.76	630.5	1440	95, 413
Sc	Scandium	21	44.96	1400	3900	
Se	Selenium					
	gray trigonal	34	7 8. 96	217.4	685	150 ^p
Si	Silicon	14	28.09	1410	2680	
\mathbf{Sm}	Samarium	62	150.35	1052	(1590)	917
Sn	Tin	50	118.70	231.9	2690	18 ^q
Sr	Strontium	38	87.63	770	1384	
Та	Tantalum	73	180.95	2997	5400	
Тb	Terbium	65	158.93	(1400)	(2500)	
Tc	Technetium	43	(99)	(2100)	(4600)	
Те	Tellurium	52	127.61	449.8	1097	348?
Th	Thorium	90	232.05	1695	4200	225
Ti	Titanium	22	47.90	1812	3280	884

Tl	Thallium	81	204.39	303.6	1457	232, 153 ^r
Tm	Thulium	69	168.94	(1630)	(2100)	
U	Uranium	92	238.07	1133	(3900)	662, 776
v	Vanadium	53	50.95	1917	3380	
w	Tungsten	74	183.86	3380	(5500)	650
Xe	Xenon	54	131.30	-111.8	-108.11	
Y	Yttrium	39	88.92	(1490)	(4400)	
Yb	Ytterbium	70	173.04	824	(1530)	798
Zn	Zinc	30	65.38	419.5	908	
Zr	Zirconium	40	91.22	1852	(4380)	862
	•	•	1	1	1	I

^a Figures in parentheses are estimates.

^b 36 atmospheres.

^c Sublimation point.

^d Curie point.

^e 11,600 atmosphere.

^f Triple point.

^g 25.3 atmosphere.

^h 2 liquids.

ⁱ 43 atmosphere.

- ^j 1 atmosphere.
 ^k 5,800 atmosphere.
 ¹ Day and Sosman scale.
 ^m International, 1948.
 ⁿ Monoclinic.
 ^o Rhombic-monoclinic, 1 atmosphere.
 ^p Red-gray.
 ^q Gray-white
- ^r 37, 800 atmosphere.

OXIDES

- Ag₂O Dissociation (1 atm) 191°C.
- Al2O3 (a) High-temperature phases: α, Corundum: trigonal melting point (pure) 2040°C. β aluminas: hexagonal isomorphous compounds from alkali or alkaline earth melts, formed in the ratio 1:11 for Na2O, K2O, MgO to Al2O3, and 1:6 for CaO, SrO, BaO to Al2O3. ζ alumina: LiAl5O8, cubic, from melts containing Li2O.
 - (b) Transition aluminas: produced in calcination of aluminum compounds, or in oxidation of aluminum metal. Varieties ρ, x and k result on dehydration of α trihydrate; η and θ from β trihydrate, γ and δ from α monohydrate, but all have been made by suitable dehydration and rehydration treatment of a single sample of fine-grained α trihydrate. All varieties convert to α at or below about 1100°C. δ may result from combustion of aluminum metal. η is obtained in oxidation of aluminum metal at its melting point. k was obtained in thermal decomposition of hydrated aluminum chloride. (Russell and others, 1956.)
- As_2O_3 <u>Arsenolite</u>, cubic (labile), melting point 275°C; sublimation point 193°C.

Claudetite, monoclinic, melting point 313°C.

- As₂O₅ Vitreous only, decomposes (1 atm) 315°C.
- B₂O₃ Trigonal melting point 450°C.
- BaO Melting point 1925°C.
- BeO Bromellite melting point 2530°C.
- Bi₂O₃ <u>Bismite</u>, I rhombic melting point 820°C; II cubic, glows 680°C transition point II to I, 704°C; boiling point 1890°C.
- CO₂ Sublimation point (1 atm) -78° to 48° C; triple point (5.112 atm) -56.60° C.
- CaO Melting point 2570°C; boiling point 2850°C.
- CeO₂ Ceria, melting point 2600°C; partly decomposes 2500°C.
- Ce₂O₃ Melting point 1692°C.
- CoO Melting point 1935°C.
- Co_3O_4 Dissociates (1 atm) at 970°C to CoO and O_2 .
- Co₂O₃ Dissociates 895°C.
- Cr₂O₃ Melting point 1990°C; transition point 33°C.
- CrO₂ Loses 0, 300°C.
- CrO_3 Melting point 196°C, liquid decomposes to Cr_2O_3 and O_2 .
- CuO <u>Tenorite</u>, melting point more than 1240°C (75 atm O₂), dissociates 1104°C (1 atm) to Cu₂O and O₂; eutectic of CuO and Cu₂O 1080°C (0.51 atm O₂) in a melt of 86 percent Cu, 14 percent O₂; C_p anomalies -40°C, -60°C. These depend on thermal history. (Smyth and Roberts, 1920.)
- Cu₂O <u>Cuprite</u>, melting point 1235°C; transition point natural translucent to opaque, 56°C.

FeO Natural "Jozite" is ferromagnetic.

- Artificial "Wüstite" is Fe deficient; lower limit stability 570°C decomposes to Fe and Fe₃O₄ below 570°C: ferromagnetic.
- Artificial, eutectic with Fe solid solution 1371°C; artificial O-rich Wüstite incongruent melting point 1424°C to Fe₃O₄ and liquid (24 percent O); Wüstite forms 2 liquid layers with excess Fe solid solution (0.16 to 22.60 percent O); C_p anomaly in metastable -88°C. (Darken and Gurry, 1945, 1946.) See figure 1.
- Fe₃O₄ <u>Magnetite</u>, artificial, forms limited solid solution both with excess Fe and excess O; O rich oxidizes in air (1/5 atm O₂) below 1388°C; melting point 1597°C; magnetic transition point natural 580°C, artificial 510° to 680°C; C_p anomaly -159°C; magnetic anomaly -160°C. (Darken and Gurry, 1946.)
- Fe₂O₃ <u>Hematite</u>, dissociates in air (1/5 atm O₂)1388°C; (1 atm O₂) 1457°C, to magnetite and O₂;orthobaric melting point is unknown, transition point 1030. (Greig and others, 1935; Darken and Gurry, 1946.)
 - α , paramagnetic, isomorphous with corundum.
 - $\gamma,$ ferromagnetic, isomorphous with magnetite; produced on oxidation of magnetite, also on dehydration of γ FeOOH (Lepidocrocite).
- Ga₂O₃ Melting point 1740°C; dimorphous: α , isomorphous with corundum; β , monoclinic, transition point 650°C.
- GeO₂ Soluble, quartz type, melting point 1116°C±4°C. <u>Insoluble</u>, rutile type, labile, melting point 1086°C±5°C; transition point 1033°C±10°C; volatilizes above 1250°C.
- H₂O <u>Water</u>, melting point 0.000°C, boiling point 100.000°C (thermometric fixed points at 1 atm); orthobaric triple point 0.01°C (International 1948 Scale).
 - Triple points of high pressure modifications:
 - (1) I III L, 2047 atmosphere, -22.0°C
 - (2) I II III, 2100 atmosphere, -34.7°C
 - (3) II III V, 3397 atmosphere, -24-3°C
 - (4) III V L, 3416 atmosphere, -17°C
 - (5) V VI L, 6175 atmosphere, 0.16°C
 - (6) VI VII L, 21678 atmosphere, 81.6°C
 - (Bridgman, 1937).

D2O, heavy water melting point 3.82°C, boiling point 101.42°C(1 atm).

- HfO₂ Hafnia, melting point 2810°C.
- HgO Montroydite, dissociates in air $(1/5 \text{ atm } O_2) 426^{\circ}C$, $(1 \text{ atm } O_2) 496^{\circ}C$.
- La₂O₃ Melting point 2315°C±20°C; boiling point about 4200°C.
- MgO Periclase, melting point 2800°C.
- $\frac{\text{MnO}}{\text{in air below 1200°C; } C_{p} \text{ anomaly } -155°C.}$
- Mn₃O₄ <u>Hausmannite</u>, stable in air below 1200°C; oxidizes in air to Mn₂O₃ below 877°C; melting point 1567°C; transition point, tetragonal to cubic, 1160°C. (Van Hook and Keith, 1958.)
- $\frac{Mn_2O_3}{Mn_2O_4} \frac{Braunite}{plus O_2}, \text{ dissociates in air (1/5 atm O_2) 877°C, (1 atm) 1090°C to}{Mn_2O_4 plus O_2; transition point 600°C.}$

CONTRIBUTIONS TO GEOCHEMISTRY

- MnO₂ <u>Polianite</u>, dissociates in air 530°C±50°C, in 1 atm O₂ 565°C±50°C; C_p anomaly -181°C. Pyrolusite is partially hydrated, has structure like Polianite.
- MoO, Molybdite, melting point 795°C with sublimation.
- NiO Bunsenite, melting point 1990°C.
- Ni_3O_4 Dissociates to NiO and O_2 at less than 600°C.
- Ni₂O₃ Unstable in anhydrous condition.
- P₂O₅ (Tabular) melting point more than 570°C; (acicular) melting point 569°C; tends to remain glassy; sublimation point about 360°C; sublimation to glassy state, 400° to 500°C.
- PbO <u>Massicot</u>, melting point 886°C; transition point tetragonal to rhombic <u>488°C</u>; volatilizes below 750°C.
- Pb₃O₄ Minium, artificial dissociates (1 atm O₂) 601°C to PbO+O₂.
- $\frac{\text{PbO}_2}{\text{when precipitated; 313°C when electrolytic.}} \xrightarrow{\text{Plattmerite, artificial dissociation (1 atm O_2) 344°C to Pb_3O_4+O_2}$
- SO₂ Melting point -75.46°C, boiling point -10.0°C.
- SO3 Melting point (prismatic icelike) 16° to 8°C; (low asbestoslike) 32. 5°C; (high asbestoslike, at 2. 29 atm)82. 2°C; sublimation point 44. 8°C.
- Sb2O3
 Valentinite, rhombic, melting point 656°C, boiling point 1550°C.

 Senarmontite, cubic melting point 656°C.

 Transition point rhombic to cubic 557°C.

 Oxidizes in air to SbO2 below 930°C.
- SbO2 <u>Cervantite</u>, melting point unknown; dissociates in free air to Sb₂O₃ liquid +O₂ at 930°C.
- Sb_2O_5 Dissociates in air at 380°C to SbO_2+O_2 .
- SiO₂ Quartz melting point (metastable) about 1470°C; transition point low trigonal to high hexagonal 573°C±3°C; transition point Quartz-Tridymite 867°C±3°C;
 - <u>Tridymite</u>, melting point (metastable) about 1670°C; transition point rhombic to low hexagonal 105°C, low hexagonal to high hexagonal 163°C; transition point Tridymite to Cristobalite 1470°C±10°C;
 - Cristobalite, melting point 1713°C±10°C (Day and Sosman scale), 1723°C±10°C (International 1948 scale); transition point rhombic to cubic 200° to 270°C depending on thermal history. (Fenner, 1913; Greig, 1927a.)
- SnO_2 <u>Cassiterite</u>, melting point 1127°C with decomposition; transition point 410°C.
- SrO Melting point 2430°C.
- TeO₂ <u>Tellurite</u>, melting point 732.6°C, sublimation point above 450°C; droplets solidify vitreous.
- ThO₂ Melting point 3050°C.
- TiO₂ Rutile, melting point 1825°C. Anatase, artificial, by dehydrating TiO₂ gel at about 900°C transition to Rutile in presence of flux at or above 400°C without flux 915°C;

 α to β Anatase transition point 642°C;

Brookite, transition in presence of flux to Rutile below 900°C; Decomposes to $Ti_2O_3+O_2$ above 1600°C.

D12

- UO₂ Melting point 2176°C.
- V₂O₅ Melting point 690°C; liquid decomposes 1750°C.
- WO₃ Tungstite, melting point 1473°C.
- ZnO Zincite, artificial melting point 1975°C; sublimation point 1800°C.
- ZrO₂ <u>Baddeleyite</u>, melting point 2690°C; transition point 625°C, 1000°C, 1900°C; boiling point about 4300°C.

OXIDE SYSTEMS INVOLVING A1203

- BaO-Al₂O₃:-3BaO·Al₂O₃, (3:1), eutectic with BaO, 1660°C; melting point 1750°C; eutectic with (1:1), 1710°C.
 - -BaO·Al₂O₃, (1:1), <u>Barium spinel</u>, melting point 1830°C; eutectic with (1:6), 1790°C.
 - -BaO·6Al₂O₃ (1:6), melting point 1900°C; eutectic with Al₂O₃, 1890°C. (Toropov and Galakhov, 1952.)
- BeO-Al₂O₃:-BeO·Al₂O₃, (1:1), <u>Chrysoberyl</u>, eutectic with BeO, 1835°C; melting point 1870°C; eutectic with (1:3), 1850°C.
 - -BeO $3Al_2O_3$, (1:3), melting point 1910°C; eutectic with Al_2O_3 ,
 - 1890°C. (Lang and others, 1952; Foster and Royal, 1949.)
- CaO-Al₂O₃:-3CaO·Al₂O₃, (3:1), incongruent melting to CaO and liquid, 41 percent Al₂O₃, 1535°C; eutectic with (5:3), 50 percent Al₂O₃, 1395°C.
 - -5CaO·3Al₂O₃, (5:3), melting point 1455°C; eutectic with (1:1), 53 percent Al₂O₃, 1400°C.
 - -CaO·Al₂O₃, (1:1), melting point 1600°C; eutectic with (3:5), 67 percent Al₂O₃, 1590°C.
 - -3CaO 5Al₂O₃, (3:5), composition is in question, may be CaO. 2Al₂O₃, melting point 1720°C; eutectic with Al₂O₃, 76 percent Al₂O₃, 1700°C. (Rankin and Wright, 1915; Goldsmith, 1948.)
- FeO-Al₂O₃:-3FeO·Al₂O₃, (3:1), decomposes below liquidus to (1:1) and FeO, 1230°C.
 - -FeO·Al₂O₃, (1:1), <u>Hercynite</u>, incongruent melting to Al₂O₃ and liquid, 12 percent Al₂O₃, 1440°C; eutectic with FeO, 7 percent Al₂O₃, 1305°C. (McIntosh and others, 1937.)
- FeO-Fe₂O₃-Al₂O₃:-(Muan and Gee, 1956.)
- Fe2O3-Al2O3:-Fe2O3.Al2O3, (1:1), is unstable below 1318°C relative to the phase assemblage: Hematite solid solution plus Corundum solid solution. (Muan, 1958a.)
- Ga₂O₃-Al₂O₃:-Ga₂O₃. Al₂O₃, (1:1), decomposes below the liquidus to Ga₂O₃ solid solution, 825°C; α Al₂O₃ solid solution plus β Ga₂O₃ solid solution coexist in solvus, 800° to 2000°C; limits of homogeneity: α Al₂O₃ solid solution, 0 to 28 mole percent Ga₂O₃; β Ga₂O₃ solid solution, 34 to 100 mole percent Ga₂O₃ at 800°C; 31 to 100 mole percent Ga₂O₃ at 2000°C. α solid solution and β solid solution liquidus descends with a slope discontinuity in region of the solvus from melting point Al₂O₃, 2035°C, to melting point Ga₂O₃, 1740°C. (Hill and others, 1952.)
- MgO-Al₂O₃:-MgO·Al₂O₃, (1:1), <u>Spinel</u>, melting point 2135°C; eutectic with MgO, 45 percent MgO, 2030°C; eutectic with Al₂O₃, 5 percent MgO, 1860°C. Spinel solid solution coexists with Al₂O₃ and with liquid, solid solution limit 15 percent MgO, 1860°C. (Rankin and Merwin, 1916; Roy, R., and others, 1953.)

690-216 O - 63 - 3

- MnO-Al₂O₃:-MnO·Al₂O₃, (1:1), incongruent melting to Al₂O₃ and liquid, 71 percent MnO, 1560°C; eutectic with MnO, 76 percent MnO, 1520°C. (Hay and others, 1934.)
- PbO-Al₂O₃:-PbO Al₂O₃, (1:1), incongruent melting to Al₂O₃ and liquid, 91 percent PbO, 985°C; eutectic with 94 percent PbO, 865°C. (Geller and Bunting, 1943.)
- TiO₂-Al₂O₃:-TiO₂·Al₂O₃, (1:1), melting point 1860°C; eutectic with TiO₂,19.5 percent Al₂O₃, 1705°C; eutectic with Al₂O₃, 60 percent Al₂O₃, 1840°C; transition 1820°C. (Bunting, 1933; Lang and others, 1952; Wartenberg and Reusch, 1932.)
- UO₂-Al₂O₃:-No compounds; eutectic, 75 percent Al₂O₃, 1930°C; UO₂+2 immiscible liquids, 51 to 75 percent Al₂O₃, 1930°C. (Lambertson and Mueller, 1953a.)

OXIDE SYSTEMS EXCLUSIVE OF A1203, B203, SiO2.

- BaO-MgO No compounds; eutectic 41 percent MgO, 1500°C.
- BaO-TiO₂ BaO·TiO₂, (1:1), melting point 1612°C; transition point 112.7°C; (Rase and Roy, 1955a.)
- BaO-ZrO₂ BaO·ZrO₂, (1:1), melting point 2650°C; eutectic with BaO, 10 mole percent ZrO₂, 1440°C; eutectic with ZrO₂, 90 percent ZrO₂, 2050°C.
- BeO-CaO Eutectic, 44 percent CaO, 1470°C.
- BeO-CeO2 Minimum 1960°C, 25 percent CeO2.
- BeO-CoO Minimum 1750°C, 65 percent BeO.
- BeO-Cr2O3 Minimum 2210°C, 30 percent BeO.
- BeO-Cu₂O Eutectic 1200°C, about 1 percent BeO.
- BeO-Fe₃O₄ Minimum 1580°C, 15 percent BeO.
- BeO-La₂O₃ Minimum 1400°C, 25 percent BeO.
- BeO-MgO Minimum 1950°C, 48 percent BeO.
- BeO-Mn₃O₄ Minimum 1540°C, 16 percent BeO.
- BeO-NiO Eutectic 1900°C, 12 percent BeO.
- BeO-ThO₂ Minimum 2210°C, 20 percent BeO. All systems above with BeO by (Wartenberg, Reusch, and others, 1937).
- BeO-TiO₂ Minimum 1670°C (eutectic?), 15 percent BeO, (Lang and others, 1952.)
- BeO-ZrO₂ Eutectic 2200°C, 75 percent BeO. (Wartenberg, Reusch, and others, 1937.)
- CaO-CeO₂ Minimum 1980°C, 30 percent CaO.
- CaO-CoO Eutectic 1420°C, 36 percent CaO.
- CaO-Cu₂O Eutectic 1140°C, 27 percent CaO.
- CaO-Fe₂O₃ 2CaO·Fe₂O₃, (2:1), melting point 1449°C; eutectic with CaO, 42.0 percent CaO, 1438°C.
 - CaO·Fe₂O₃, (1:1), incongruent melting to (2:1) plus liquid, 24 percent CaO, 1216°C; eutectic with (1:2), 1 atm O₂, 21.5 percent CaO, 1206°C.

- CaO·2Fe₂O₃, (1:2), disproportionates to (1:1) plus Hematite below 1172°C; incongruent melting to Hematite solid solution plus liquid, 78.0 percent Fe₂O₃ (1 atm O₂) 1228°C.
 Magnetite plus Hematite plus liquid 81.5 percent Fe₂O₃, (1 atm O₂) 1430°C. (Phillips and Muan, 1958.)
- CaO-Mn₃O₄ Minimum 1450°C, 15 percent CaO.
- CaO-NiO Eutectic 1750°C, 36 percent CaO.
- CaO-SrO Continuous solid solution.
- CaO-ThO₂ Eutectic 2300°C, 24 percent CaO. All above systems with CaO by (Wartenberg, Reusch, and others, 1937.)
- CaO-Cr₂O₃ Readily oxidized to chromate. (Ford and White, 1949.)
- CaO-Fe₂O₃ 2CaO·Fe₂O₃, (2:1), incongruent melting to CaO and liquid 38 percent CaO, 1436°C.
 - CaO·Fe₂O₃, (1:1), incongruent melting to (2:1) and liquid 24.5 percent CaO, 1216°C; eutectic with Fe₂O₃, 7 percent CaO, 1205°C; not a true binary system because of dissociation of Fe₂O₃ to FeO. (Sosman and Merwin, 1916.)
- CaO-MgO Eutectic 2360°C, 66 percent CaO. (Rankin and Merwin, 1916.)
- CaO-TiO₂ CaTiO₃, (1:1), <u>Perovskite</u>, melting point 1970°C; eutectic with TiO₂, 18 percent CaO, 1460°C; transition point 1260°C.
 - Ca₃Ti₂O₇, (3:2), incongruent melting at 1750°C to (1:1) and liquid 60 percent CaO; eutectic with CaO, 63 percent CaO, 1695°C. (DeVries and others, 1954a); see also (Coughanour and others, 1954; Berezhnoy, 1950; Roth, 1958.)
- CaO-ZrO₂ CaZrO₃, (1:1), melting point 2550°C; eutectic with ZrO₂ solid solution, 24 percent CaO, 2390°C; eutectic with CaO, 60 percent CaO, 2250°C. (Ruff and others, 1929.)
- CeO₂-Cr₂O₃ CeO₂·Cr₂O₃(?), melting point 2440°C; eutectic with Cr₂O₃ 2240°C.
- CeO₂-Fe₃O₄ Minimum 1510°C, 30 percent CeO₂.
- CeO₂-MgO Minimum 2250°C, 20 percent CeO₂.
- CeO₂-Mn₃O₄ Minimum 1540°C, 20 percent CeO₂. For systems with CeO₂ above, see (Wartenberg and Eckhardt, 1937.)
- CeO₂-ZrO₂ Two series solid states at liquidus; eutectic 2310°C. (Duwez and Odell, 1950.)
- CoO-MgO Continuous series solid solution. (Wartenberg and Prophet, 1932.)
- CoO-ZrO₂ Minimum 1730°C. (Wartenberg and Gurr, 1931.)
- Cr_2O_3 -FeO FeCr_2O_4, Chromite, melting point 1670°C.
- Cr₂O₃-MgO MgCr₂O₄, melting point 2200°C; eutectic with MgO 2100°C, 33 percent MgO; eutectic with Cr₂O₃ 2100°C, 8 percent MgO. (Wilde and Rees, 1943.)
- Cr₂O₃-ZrO₂ Minimum 2320°C. (Wartenberg and Gurr, 1931.)
- Cu₂O-MgO Eutectic 1120°C, 20 percent MgO. (Wartenberg and Prophet, 1932.)

CONTRIBUTIONS TO GEOCHEMISTRY

- CuO-PbO Eutectic 698°C, 41 percent PbO.
- FeO-MgO Continuous series solid solution. (Bowen and Schairer, 1935.)
- FeO-MnO Two series solid solution, peritectic relation, 1430°C. (Hay and others, 1934.)
- FeO-Mn₂O₃ (Fe, Zn, Mn)O• (Fe, Mn)₂O₃, <u>Franklinite</u>, melting point above 1420°C.
- FeO-TiO₂ FeTiO₃, (1:1), <u>Ilmenite</u>, natural melting point 1450°C; artificial melting point 1470°C; transition point 215°C; eutectic with TiO₂ 1330°C, 68 percent TiO₂.
 - Fe₂TiO₄, (2:1), <u>Pseudobrookite</u>, artificial melting point 1470°C; eutectic with(1:1)1320°C; eutectic with FeO 1305°C, 5 percent TiO₂. (Grieve and White, 1939.)
- Fe₂O₃-MgO Fe₂O₃·MgO, <u>Magnesioferrite</u>, melting point 1750°C with loss of O₂. (Roberts and Merwin, 1931.)
- Fe₂O₃-Mn₂O₃ Subliquidus limited solid state fields: Fe₂O₃, 0 to 14 percent Mn₂O₃ at 600°C, 0 to 19 percent Mn₂O₃ at 1050°C; Mn₂O₃, 71 to 100 percent Mn₂O₃ at 600°C, 36 to 100 percent Mn₂O₃ at 1000°C. (Mason, 1944.)
- Fe₂O₃-ZrO₂ Minimum 1520°C. (Wartenberg and Gurr, 1931.)
- K₂O-GeO₂ K₂O·GeO₂, (1:1), melting point 842°C; eutectic with (1:2) 710°C, 63.6 percent GeO₂.
 - K₂O. 2GeO₂, (1:2), melting point 797°C, eutectic with (1:4) 789°C, 70.4 percent GeO₂.
 - K₂O·4GeO₂, (1:4), melting point 1038°C; eutectic with GeO₂ 1006°C, 85.1 percent GeO₂. (Schwarz, 1929.)
- La₂O₃-MgO La₂O₃·MgO, melting point 2030°C; eutectic with La₂O'₃, 1970°C, 8 percent MgO; eutectic with MgO, 1990°C, 34 percent MgO.
- La₂O₃-ZrO₂ La₂O₃·3ZrO₂(?), incongruent melting point 2300°C; eutectic with La₂O₃ 2080°C, 20 percent ZrO₂. (Wartenberg and Gurr, 1931.)
- Li₂O-GeO₂ 2Li₂O·GeO₂, melting point 1298°C. Li₂O·GeO₂, melting point 1239°C. (Schwarz, 1929.)
- MgO-GeO₂ (Robbins and Levin, 1959.)
- MgO-Mn₃O₄ Continuous liquidus without eutectic or minimum.
- MgO-NiO Continuous solid solution. (Wartenberg and Prophet, 1932.)
- $MgO-TiO_2$ Mg_2TiO_4 , melting point 1732°C.
 - MgTiO₃, melting point 1630°C. MgTi₂O₅, melting point 1652°C. (Coughanour and DeProsse, 1953.)
- MgO-ZrO₂ Two series solid solution, eutectic 2070°C; α - β ZrO₂ transition point 2550°C.
- MnO-TiO₂ MnTiO₃, (1:1), <u>Pyrophanite</u>, incongruent melting to (2:1) and liquid, 60 percent TiO₂, 1360°C.
 - Mn₂TiO₄, (2:1), melting point 1450°C, eutectic with MnO, 34 percent TiO₂, 1330°C. (Grieve and White, 1940.)

$Mn_{3}O_{4}$ -Zr O_{2}	Minimum 1460°C. (Wartenberg and Gurr, 1931.)
Na ₂ O-GeO ₂	 Na₂GeO₃, (1:1), melting point 1083°C; eutectic with (1:2), 76 percent GeO₂, 778°C. Na₂Ge₂O₅, (1:2), melting point 799°C; eutectic with (1:4), 78.5 percent GeO₂, 789°C. Na₂Ge₄O₉, (1:4), melting point 1052°C; eutectic with GeO₂, 89 percent GeO₂, 1042°C. (Schwarz, 1929.)
Na ₂ O-TiO ₂	Na ₂ TiO ₃ , melting point 1030°C. Na ₂ Ti ₂ O ₅ , melting point 985°C. Na ₂ Ti ₃ O ₇ , melting point 1128°C. (Washburn and Bunting, 1934.)
SnO_2 -ZrO $_2$	SnO ₂ volatilizes before fluxing occurs.
$SrO-ZrO_2$	SrZrO ₃ , melting point above 2700°C.
$\mathrm{ThO}_2\text{-}\mathrm{TiO}_2$	<pre>Minimum, 45 percent TiO₂, 1640°C. (Wartenberg and Eck- hardt, 1937.)</pre>
ThO2-ZrO2	Continuous solid solution at liquidus probably; unmixing sol- vus, maximum about 2700°C, 50 mole percent ThO ₂ . (Ruff and others, 1929.)
TiO ₂ -ZrO ₂	ZrTiO ₄ , incongruent melting to ZrO ₂ solid solution and liquid, 55 percent TiO ₂ 1850°C, eutectic with TiO ₂ solid solution, 70 percent TiO ₂ , 1760°C. (Brown and Duwez, 1954; Coug- hanour, Roth, and DeProsse, 1954; Sosman and Andrews, 1951.)
UO ₂ -CaO	UO ₂ •CaO and UO ₂ •2CaO, both decomposes below liquidus, 1850°C and 1790°C, respectively; eutectic UO ₂ solid solu- tion and CaO, 38 mole percent UO ₂ , 2080°C; solid solution limits at eutectic 55 to 100 mole percent UO ₂ . (Alberman and others, 1951.)
UO ₂ -MgO	No compounds; eutectic MgO and UO ₂ , 30 percent MgO, 2100°C; UO ₂ in equilibrium with 2 liquids, about 8 to 24 percent MgO, about 2200°C. (Lambertson and Mueller, 1953b.)
UO2-ThO2	Continuous series solid solution. (Lambertson, Mueller and Gunzel, 1953.)
UO ₂ -ZrO ₂	Two series solid solutions meet at a eutectic, about 52 per- cent ZrO ₂ , 2540°C. Solvus for face-centered UO ₂ solid solution and tetragonal. ZrO ₂ solid solution, maximum about 1930°C, 52 mole percent ZrO ₂ . (Lambertson and Mueller, 1953c.)
ZnO-ZrO ₂	Eutectic 1810°C; ZnO volatilizes. (Wartenberg and Gurr, 1931; Wartenberg and Eckhardt, 1937.)
	SILICATE SYSTEMS, BINARY
Al ₂ O ₃ -SiO ₂	3Al ₂ O ₃ ·2SiO ₂ , (3:2), <u>Mullite</u> , incongruent melting to Corundum plus liquid of 55 percent Al ₂ O ₃ , 1810°C; eutectic with Cristobalite 94. 5 percent SiO ₂ , 1959°C. (Bowen and Greig, 1924; Schairer, 1942.) See figure 2.

CONTRIBUTIONS TO GEOCHEMISTRY

- (3:2)melts congruently 1875°C; eutectic with Corundum 1860°C. (Toropov and Galakhov, 1951.)
- (3:2) forms solid solution to 79 percent Al_2O_3 . (Toropov and Galakhov, 1958.)
- Liquidus relations of Bowen and Greig (1924) are confirmed, Mullite phase has range of homogeneity 72 to 78 percent Al_2O_2 . (Trömel and others, 1957.)
- Al₂O₃[•]· SiO₂, (1:1), <u>Sillimanite</u>, <u>Andalusite</u>, <u>Kyanite</u>, all decompose to Mullite and SiO₂; <u>Kyanite</u> between 1000°C and 1325°C; Andalusite between 1325°C and 1410°C; Sillimanite between 1345°C and 1550°C. (Greig, 1926.)

Andalusite synthesis (Roy, D. M., 1954.)

Kyanite-Sillimanite equilibrium curve 18, 200 bars at 1000°C; 21, 000 bars at 1300°C, with Kyanite field on the high pressure side of curve. (Clark and others, 1957.)

B₂O₃-SiO₂

No compounds, no liquid immiscibility, eutectic near 100 percent B_2O_3 , 450°C.

BaO-SiO,

- Ba_2SiO_4 , (2:1), melting point above 1700°C; eutectic with (1:1), 24.5 percent SiO₂, 1551°C.
- BaSiO₃, (1:1), melting point 1604°C; eutectic with (2:3), 40 percent SiO₂, 1437°C.
- Ba₂Si₃O₈, (2:3), melting point 1450°C; solid solution with (1:2).
- BaSi₂O₅, (1:2), <u>Sanbornite</u>, melting point 1420°C; solid solution with (2:3); eutectic with tridymite, 50 percent SiO₂, 1374°C.
- Cristobalite liquidus: no liquid immiscibility in contradistinction from systems of MgO, CaO and SrO with SiO₂. (Eskola, 1922; Glushkova, 1957; Greig, 1927a.)
- BeO-SiO₂ Eu
 - Eutectic of BeO, SiO₂ and liquid, 95 percent SiO₂, 1670°C.
 Be₂SiO₄, (2:1), <u>Phenacite</u>, decomposes 1560°C, below eutectic of system. (Morgan and Hummel, 1949.)
- CaO-SiO,
- Ca₃SiO₅ (3:1), disproportionates below the liquidus, to CaO and (2:1), 1900°C; unstable below 1250°C.
- Ca₂SiO₄, (2:1) melting point 2130°C; eutectic with CaO, 30.5 percent SiO₂, 2065°C; tetramorphous, α , α (Bredigite), transition point 1437°C; α , γ transition point 725°C; β , Larnite, is labile at 1 bar, stable above 137 bars; D. M. Roy (1958). Transition behavior is influenced by additions of Mg₂SiO₄, Ca₃(PO₄)₂ and other substances in solid solution (Bredig, 1950). For the influence of grain size and departures from stoichiometry upon α^1 to β , or α^1 to γ transitions, see Guinier and Yannaquis (1957). Transition of α^1 to γ results in about 10 percent volume increase. (Rankin and Wright, 1915; Roy, D. M., 1958; Bredig, 1950; Muan and Osborn, 1951.)
- Ca₃Si₂O₇, (3:2), incongruent melting to (2:1) and liquid, 44.5 percent SiO₂, 1475°C; eutectic with (1:1), 45.5 percent SiO₂, 1455°C.
- CaSiO₃, (1:1), melting point 1540°C; Wollastonite, monoclinic; transition at 1125°C to <u>Pseudowollastonite</u>, pseudohexagonal; eutectic with Tridymite, 63 percent SiO₂, 1436°C.
- Cristobalite liquidus, liquid immiscibility 72 to 99 percent SiO₂, 1698°C. (Rankin and Wright, 1915; Greig, 1927a.) See figure 3.

Co2SiO4, (2:1), melting point 1420°C; eutectic with CoO 1377°C. CoO-SiO, CoSiO₃, (1:1), may exist as incongruent melting phase, breaks up into SiO₂and liquid at 1400°C; eutectic with (2:1), 1382°C. (Asanti and Kohlmeyer, 1951.) Cristobalite liquidus with liquid immiscibility 1725°C. (Greig, 1927b.) Cr₂O₃-SiO₂ No compounds, eutectic 1710°C. Liquid immiscibility overlying field of Cr₂O₃, 5 to 95 percent Cr₂O₃, 2200°C. (Bunting, 1930b; Keith, 1954.) Cu₂O-SiO₂ No compounds, eutectic with 8 percent SiO₂, 1060°C; liquid immisibility overlying Cristobalite, 36 to $\overline{95}$ percent SiO₂, 1690°C. (Berezhnoy and others, 1952.) FeO-SiO₂ Fe₂SiO₄, (2:1), <u>Fayalite</u>, melting point 1205°C; eutectic with Wüstite, 24 percent SiO₂, 1177°C; eutectic with Tridymite 38 percent SiO₂, 1178°C. Cristobalite and two liquids, 58 to 97 percent SiO₂, 1690°C. (Bowen and Schairer, 1932; Greig, 1927b; Muan, 1958c.) See figure 4. Fe203-SiO5 No compounds; liquidus temperatures are not determined. Cristobalite and two immiscible liquids of very wide range. Eutectic probably near 100 percent SiO₂. At 1 atmosphere pressure of air, Fe_2O_3 ; dissociates to Fe_3O_4 and oxygen above 1388°C. (Bowen and others, 1930; Darken and Gurry, 1946; Greig, 1927b; Muan, 1958c.) K₂O-SiO₂ K₂SiO₃, (1:1), melting point 976°C, transition point 725°C, transition point 750°C; eutectic with (1:2), 45.5 percent SiO₂, 780°C. K₂Si₂O₅, (1:2), melting point 1045°C; transition point 217°C, transition point 593°C; eutectic with (1:4), 67.6 percent SiO₂, 742°C. K₂Si₄O₉, (1:4), melting point 770°C; transition point 592°C; pressure lowers melting point 60°C per kilobars, raises transition point 28°C per kilobar; eutectic with Quartz 72.5 percent SiO₂, 769°C. (Kracek, Bowen, and Morey, 1937; Goranson and Kracek, 1932.) Li₄SiO₄, (2:1), incongruent 1255°C; eutectic with (1:1), 55.3 Li,O-SiO, percent SiO₂, 1024°C. Li₂SiO₃, (1:1), melting point 1201°C. $Li_2Si_2O_5$, (1:2), incongruent melting to (1:1) and liquid, 80.1 percent SiO₂, 1033°C; eutectic with Tridymite, 82.2 percent SiO₂, 1028°C; transition point 936°C. (Jaeger and Klooster, 1914; Kracek, 1930b; Kracek, 1939.) MgO-SiO2 Mg₂SiO₄, (2:1), Forsterite, melting point 1890°C; eutectic with MgO, 36 percent SiO₂, 1850°C. MgSiO₃, (1:1), Enstatite, and its varieties, incongruent melting to (2:1), and liquid, 60.9 percent SiO2, 1557°C; slow transition Protoenstatite to Enstatite, 1260°C; Protoenstatite - Clinoenstatite 700°C cooling, 1000 to 1100°C heating. (Foster, 1951b.) Cristobalite and immiscible liquids, 69 to 99 percent SiO₂, 1695°C. (Bowen and Anderson, 1914; Greig, 1927a.) See

figure 5.

MnO-SiO,

Controlled atmosphere in furnace to retain Mn in 2+ state. Mn2SiO₄, (2:1), <u>Tephroite</u>, melting point 1345°C; eutectic with MnO, 25.5 percent SiO₂, 1317°C; eutectic with (1:1), 38.3 percent SiO₂, 1251°C.

MnSiO₃, (1:1), <u>Rhodonite</u>, incongruent melting to Tridymite plus liquid, 44.5 percent SiO₂, 1291°C.

Cristobalite plus 2 liquids, 55 to 99 percent SiO₂, 1705°C. (Glasser, 1958a), with references to earlier data.

Mn₃O₄-SiO₂

In air atmosphere (0.21 atmosphere O₂). System is a portion of Mn-Si-O.

 Mn_3O_4 (cubic) + Mn_3O_4 (tetragonal), 1160°C.

 Mn_3O_4 (tetragonal) + Mn_2O_3 , 877°C.

 Mn_3O_4 (cubic) + Tephroite + liquid, 33 percent SiO₂, 1230°C. Mn₂SiO₄ Tephroite, + MnSiO₃ solid solution + liquid, 34 percent SiO₂, 1206°C.

- Mn₃O₄ (cubic) + Mn₂O₃ solid solution + MnSiO₃ solid solution 1168°C.
- $MnSiO_3$ solid solution + Tridymite + liquid, 42 percent SiO₂, 1272°C.
- Mn_2O_3 solid solution + $MnSiO_3$ solid solution + Tridymite, 1048°C.
- Cristobalite+2 liquids, 55 to 99 percent SiO₂, 1700°C. (Muan, 1959.)

Na₂O-SiO₂

Na₄SiO₄, (2:1), incongruent melting point 1118°C; eutectic with (1:1), 43.1 percent SiO₂, 1022°C.

Na2SiO₃, (1:1), melting point 1089°C; eutectic with (1:2), 62.1 percent SiO₂, 837°C.

- Na₂Si₂O₅, (1:2), melting point 874°C; eutectic with Quartz, 74.2 percent SiO₂, 789°C; metastable eutectic with Tridymite, about 75 percent SiO₂, 770°C; 6 slowly inverting polymorphous phases A, B, C, D, E, F; rapid transition in A, 678°C, 707°C; rapid transition in E 549°C, 573°C, 593°C. (Morey and Bowen, 1925; Kracek, 1930a; d'Ans and Löffler, 1930; Kracek, Morey, and England, 1953.)
- NiO-SiO₂ 2 immiscible liquids, 1725°C; eutectic with SiO₂, 90 percent SiO₂. (Greig, 1927b.)
- P₂O₅-SiO₂ Compounds SiO₂·P₂O₅ and 3SiO₂·P₂O₅ crystallize rapidly, whereas the components tend to remain vitreous. (Huttner, 1908; Tamman, 1925.)
 - Pb4SiO₆, (4:1), incongruent melting to PbO and liquid 6.7 percent SiO₂, 725°C;transition 120° to 155°C, transition 720°C; eutectic with (2:1), 8.2 percent SiO₂, 714°C.
 - Pb₂SiO₄, (2:1), melting 743°C; eutectic with (1:1), 15.4 percent SiO₂, 716°C.
 - PbSiO₃, (1:1), melting point 762; eutectic with Quartz, 29 percent SiO₂, 732°C.
 - Cristobalite and immiscible liquid pair probable. (Geller and others, 1934.)
 - Pb₃Si₂O₇, (3:2), <u>Barysilite</u>, natural melting point 690°C; artificial does not crystallize in 20 hours at 705°C.

PbSiO₃, (1:1), natural melting point 764°C; eutectic with SiO₂, 26.9 percent SiO₂, 732°C.

Rb2O-SiO2

PbO-SiO2

Rb₂Si₂O₅, (1:2), melting point 1115°C.

Rb₂Si₄O₉, (1:4), melting point 957°C. (Kracek, 1933.)

- SnO-SiO₂ No liquid immiscibility found at 80 and 90 percent SiO₂, at 1715°C and 1725°C, respectively. (Greig, 1927a.)
- SrO-SiO₂ Sr₂SiO₄, (2:1), melting above 1700°C; eutectic with (1:1), 34.5 percent SiO₂, 1545°C.

SrSiO₃, (1:1), melting point 1580°C; eutectic with Tridymite, 53.5 percent SiO₂, 1358°C.

Cristobalite and two immiscible liquids, 70 to 97.5 percent SiO₂, 1692°C. (Eskola, 1922; Greig, 1927a.)

TiO₂-SiO₂ No compounds; eutectic of SiO₂ and <u>Rutile</u>, 10. 5 percent TiO₂, 1550°C. Rutile and 2 immiscible liquids, 19 to 93 percent TiO₂, 1780°C.

Rutile, TiO₂, melting point 1830°C. (DeVries, Roy, and Osborn, 1954b.)

ZnO-SiO₂ Zn₂SiO₄, (2:1), <u>Willemite</u>, melting point 1512°C; eutectic with ZnO, 22.5 percent SiO₂, 1507°C; eutectic with Tridymite, 50.9 percent SiO₂, 1432°C.

Cristobalite and 2 immiscible liquids, 65 to 98 percent SiO₂, 1695°C. (Bunting, 1930a.)

ZrO₂-SiO₂ ZrSiO₄, (1:1), <u>Zircon</u>, decomposes to oxides below liquidus, 1540°C.

SILICATE SYSTEMS, TERNARY

- Al₂O₃-BaO-SiO₂ BaO·Al₂O₃·2SiO₂, (1:1:2), <u>Celsian</u>, monoclinic; <u>Paracel-</u> <u>sian</u>, orthorhombic, topazlike; (Spencer, 1942); melting above 1700°C.
 - 3BaO. 3Al₂O₃. 2SiO₂, (3:3:2), decomposes below liquidus, (Toropov, Galakhov and Bondar, 1954, 1955.)
 - Field boundaries and melting relations for (1:1:2) and mullite, silica and Ba silicates. (Thomas, 1950.)
- $\begin{array}{ccc} \text{Al}_2\text{O}_3\text{-}\text{CaO-SiO}_2 & \text{CaO-Al}_2\text{O}_3\text{-}2\text{SiO}_2, & (1:1:2), & \underline{\text{Anorthite}}, & \text{melting point} \\ & 1550^\circ\text{C}. \end{array}$

2CaO·Al₂O₃·SiO₂, (2:1:1), melting point 1590°C.

- Melting relations and field boundaries for (1:1:2), (2:1:1) and adjoining binary and unary compounds have been determined. (Rankin and Wright, 1915; Greig, 1927a; Goldsmith, 1948; Langenberg and Chipman, 1956.) For ternary equilibrium diagram, see figure 6.
- 2FeO·2Al₂O₃·5SiO₂ (2:2:5), <u>Iron Cordierite</u>, incongruent melting to Mullite and liquid 1210°C.
 - 3FeO·Al₂O₃. 3SiO₂, (3:1:3), <u>Almandine</u>, dry could not be crystalized; natural (3:1:3) decomposes 900°C.
 - For ternary equilibrium diagram, see figure 7. Lowest ternary eutectic. (Fe Cordierite, Tridymite, Fayalite), 1083°C. (Schairer and Yagi, 1952; Langenberg and Chipman, 1956.)
- Al₂O₃-Fe₂O₃-SiO₂ Ternary diagram giving equilibrium phases at 1000°C; solid solution with a gap, solid solution Al₂O₃ and solid solution Fe₂O₃. (Nowotny and Funk, 1951; see also Muan, 1958a.)

690-216 O - 63 - 4

Al203-FeO-SiO

Eutectic with SiO₂, ZrO₂ and liquid 1670°C. (Curtis and Sowman, 1953.)

Al₂O₃-K₂O-SiO₂

Al₂O₃-MgO-SiO₂

Al₂O₃-MnO-SiO₂

- K₂O·Al₂O₃·SiO₂, (1:1:1) in octahedra prepared with aid of fluxes, melts well above 1700°C.
- K2O·Al₂O₃·2SiO₂, (1:1:2); low temperature hexagonal; similar to natural <u>Kaliophilite</u> below 900°C; above 1000°C orthorhombic; hexagonal <u>Kalsilite</u> is formed only in presence of some Na₂O, between 650°C and 1200°C. (Rigby and Richardson, 1947.) Hexagonal <u>Kalsilite</u> is phase stable below 840°C, a second high orthorhombic modification in some melts with NaAl SiO₄ present. (Tuttle and Smith, 1953.) Melts above 1700°C; eutectic with (1:1:4), 1615°C.
- K2O·A12O3·4SiO2, (1:1:4), Leucite, melting point 1686°C; cubic above (603°C) 627°C.
- K2O·Al₂O₃·6SiO₂, (1:1:6), <u>Potash feldspar</u>, incongruent melting to (1:1:4) and liquid, <u>1150°C</u>; eutectic with SiO₂ 990°C.
- For ternary equilibrium diagram, see figure 8; lowest ternary eutectic with Potash feldspar, K₂Si₄O₉, K₂Si₂O₅, 695°C. (Schairer, 1955; Schairer and Bowen, 1947b See figure 8.
- Al_2O_3 -Li_2O-SiO_2 Li_2O-Al_2O_3 · 2SiO_2, (1:1:2), <u>Eucryptite</u>, melting point 1405°C; α - β transition point 970°C; transition point lowered by solid solution with (1:1:4) to about 900°C; interrupted series solid solution at liquidus with (1:1:4); transition point about 1410°C.
 - Li₂O·Al₂O₃·4SiO₂, (1:1:4), <u>Spodumene</u>, melting point 1425°C; α - β transition point 510°C; transition point lowered in solid solution by (1:1:2) to 485°C, by (1:1:8) to 460°C; solid solution with excess SiO₂ at liquidus; eutectic with Tridymite, 1356°C.
 - eutectic with Tridymite, 1356°C. Li2O=Al2O3. 851O2 (1;1:8), Petalite, decomposes below liquidus to Quartz and (1:1:4), 680°C. (Roy, Rustum, and Osborn, 1949; Roy, Rustum, Roy, D. M. and others, 1950; Krishna-Murthy and Hummel, 1954; Hatch, 1943.)
 - 2MgO. 2A12O3. 5SiO2, (2:2:5), <u>Cordierite</u>, incongruent melting to Mullite and liquid, 1460°C.
 - 4MgO·5Al₂O₃·2SiO₂, (4:5:2), <u>Sapphirine</u>, incongruent melting to MgO·Al₂O₃, Spinel, and liquid, 1482°C. For ternary equilibrium diagram see figure 9; lowest ter-
 - nary eutectic with MgO·SiO₂, Tridymite and Cordierite, 1345°C. (Rankin and Merwin, 1918; Bowen and Greig, 1924; Greig, 1927a; Schairer, 1942; Foster, 1950, 1951a; Keith and Schairer, 1952.)
 - 2MnO· 2Al₂O₃· 5SiO₂, (2:2:5), <u>Manganese Cordierite</u>, incongruent melting to mullite and liquid about 1168°C.
 3MnO· 3Al₂O₃· 3SiO₂, (3:1:3), <u>Spessartite</u>, melting above 1200°C.

Partial study of system at the liquidus. (Snow, 1943.)

Al₂O₃-Na₂O-SiO₂
 Na₂O·Al₂O₃·2SiO₂, (1:1:2), <u>Nepheline</u>, hexagonal, low temperature; <u>Carnegieite</u>, cubic, high temperature; transition point 1248°C pure, solid solution of Albite raises transition point to 1280°C, solid solution of Na₂ SiO₃ lowers transition point to 1163°C; Carnegieite, melting point 1526°C; ternary eutectic of Na₂SiO₃, Na₂Si₂O₅ and 1:1:2, 760°C.

- NaO·Al₂O₃·4SiO₂, (1:1:4), Jadeite, no sharp melting point at 1 atmosphere; decomposes to glass as low as 800°C; the glass devitrifies to a mixture of (1:1:2) and (1:1:6) in solid solution. Thermochemical data indicates that Jadeite should be formed by reaction Albite + Nepheline = 2 Jadeite at 25°C and 1 atmosphere. The stability of Jadeite is favored by increased pressure. At higher temperatures increasingly higher pressures are required, reaching 17,000 atmospheres at 927°C. (Kracek, Neuvonen, and Burley, 1951; Kelley and others, 1953.) Synthesis of Jadeite has been accomplished by above reaction at pressures and temperatures related by P=(1000+18.5t) kg per cm². (Robertson and others, 1957.)
- Na₂O·Al₂O₃·6SiO₂, (1:1:6), Albite, melting point 1118°C, ternary eutectic with Quartz, Na2Si2O5, 740°C.
- For ternary equilibrium diagram see figure 10; lowest ternary eutectic with Na₂Si₂O₅, Albite and Nepheline 732°C. (Schairer and Bowen, 1956.)

Al₂O₃-PbO-SiO₂

- 4PbO·Al₂O₃·2SiO₂, (4:1:2), incongruent melting to an unidentified compound and liquid, 837°C.
 - 8PbO·Al₂O₃·4SiO₂, (8:1:4), incongruent melting at (4:1:2) and liquid, 735°C.
 - 6PbO·A1₂O₃·6SiO₂, (6:1:6), melting point 811°C.
 - Detailed study of high PbO compositions in the ternary system. (Geller and Bunting, 1943.)
- Al₂O₃-TiO₂-SiO₂ No ternary compounds; fields of mullite and corundum, TiAl₂O₅, rutile and cristobalite; ternary eutectic of cristobalite, Rutile and TiAl₂O₅, about 1480°C. (Agamawi and White, 1951.)
- Al₂O₃-ZnO-SiO₂ No ternary compounds; fields of ZnO, Zn2SiO4, Cristobalite, ZnAl₂O₄, mullite and corundum; lowest ternary eutectic Zn₂SiO₄, cristobalite and ZnAl₂O₄, 1305°C. (Bunting, 1932.)

B203-BaO-SiO2 3BaO · 3B₂O₃ · 2SiO₂, (3:3:2), melting point 1009°C.

- Field of 2 liquids extends from BaO-B₂O₃ boundary far towards BaO-SiO2 boundary over fields of BaO·4B2O3, Tridymite, and Cristobalite.
- Lowest ternary eutectic with BaO-4B2O3, BaO-2B2O3 and Tridymite, 810°C. (Levin and Ugrinic, 1953; Levin and Cleek, 1958.)
- CaO. B2O3. 2SiO2, (1:1:2), Danburite, decomposes to 2 liquids 996° to 1002°C.
 - 5CaO·B₂O₃·SiO₂, (5:1:1), melting point 1419°C.
 - Field of 2 liquids extends completely across the system from CaO-B₂O₃ to CaO-SiO₂, overlying fields of CaO. (Flint and Wells, 1936; $2B_2O_3$, (1:1:2), and SiO₂. Morey and Ingerson, 1937.)
 - Li2B2O4-Li2SiO3, eutectic, 22 percent Li2SiO3, 803°C. (Klooster, 1910a, b.)
 - $Na_2O \cdot B_2O_3 \cdot 2SiO_2$, (1:1:2), melts above 730°C; extent of field of(1:1:2) could not be determined owing to reluctance to crystallize.

- B203-CaO-SiO2

B203-Li2O-SiO2

B₂O₃-Na₂O-SiO₂

No liquid immiscibility in the system. (Morey, 1951.)

D24	CONTRIBUTIONS TO GEOCHEMISTRY
B203-PpO-SiO5	 5PbO·B₂O₃·SiO₂, (5:1:1), incongruent melting to 2PbO. SiO₂ and liquid about 550°C. Liquid immiscibility extends into system from PbO-B₂O₃ to part overlying fields of PbO·2B₂O₃ and SiO₂. (Geller and Bunting, 1939.)
B ₂ O ₃ -ZnO-SiO ₂	No ternary compounds. Liquid immiscibility area extends completely across sys- tem from ZnO-SiO ₂ to ZnO-B ₂ O ₃ boundaries. It partly overlies fields of ZnO-B ₂ O ₃ , 5ZnO-2B ₂ O ₃ , Zn ₂ SiO ₄ and SiO ₂ . (Ingerson, Morey and Tuttle, 1948.)
BaO-CaO-SiO ₂	The binary join CaSiO ₃ -BaSiO ₃ : 2CaO·BaO·3SiO ₂ (2:1:3) incongruent melting to CaSiO ₃ and liquid 52 percent BaSiO ₃ , 1320°C. (Eskola, 1922.)
$BaO-Na_2O-SiO_2$	The binary join Na ₂ Si ₂ O ₅ -BaSi ₂ O ₅ : eutectic, 33 percent BaSi ₂ O ₅ , 797°C. (Greene and Morgan, 1941.)
BaO-TiO ₂ -SiO ₂	 The binary join BaTiO₃-SiO₂: BaO·TiO₂SiO₂, (1:1:1), melting point 1400°C; eutectic with BaTiO₃, 32 percent SiO₂, 1260°C; eutectic with (1:1:2), 67 percent SiO₂, 1246°C. BaO·TiO₂·2SiO₂, (1:1:2), melting point 1250°C; eutectic with SiO₂, 70 percent SiO₂, 1245°C. BaO·TiO₂·3SiO₃, (1:1:3), decomposes below liquidus to (1:1:2) and Tridymite, 965°C. Cubic to hexagonal BaTiO₃ transition point raised to 1575°C by limited solid solution. (Rase and Roy, 1955a, b.)
CaO-FeO-SiO ₂	 CaO·FeO·SiO₂, (1:1:1), <u>Ca-Fe Olivine</u>, melting point 1208°C. The join CaSiO₃-(1:1:1), forms the only binary system within the ternary; eutectic at 20 percent CaSiO₃, 1203°C. 2CaO·FeO·2SiO₂, (2:1:2), <u>Fe Akermanite</u>, stable only below 775°C; decomposes into (1:1:1) and CaSiO₃ 775°C. CaO·FeO·2SiO₂, (1:1:2), <u>Hedenbergite</u>, stable only below 965°C; decomposes into CaSiO₃ solid solution; melting relations are ternary, there being no crystalline FeSiO₃, but mixtures 0 to 72 percent FeSiO₃ behave in binary manner(Bowen, Schairer, and Posnjak, 1933, p. 217.) No ternary eutectic in System, but the field of Ca-Fe olivines which are solid solution about 1100°C. Courses of crystallization of Wollastonite solid solution and Ca-Fe Olivines solid solution are outlined(Bowen, Schairer, and Posnjak, 1933, figures 9-25.) For ternary diagram, see figure 11. (Bowen, Schairer, and Posnjak, 1933; Allen and Snow, 1955.)
CaO-Fe ₂ O ₃ -SiO ₂	 Partial study of system outlines fields in CaSiO₃, Ca₃Si₂ O₇, Ca₂SiO₄, and CaO. Extent of 2 liquid region from Fe₂O₃-SiO₂ towards CaO-SiO₂ boundary was not determined. (Burdick, 1940; Greig, 1927b; Iwasé and Nisioka, 1938; Phillips and Muan, 1958.)

CaO-K₂O-SiO₂

2CaO· K₂O· 9SiO₂, (2:1:9), incongruent melting to β Ca SiO₃ and liquid 1050°C; eutectic with K₂O· 4SiO₂ 730°C; ternary eutectic with K₂O· 4SiO₂ and Quartz 720°C; ternary eutectic with K₂O· 2SiO₂ and K₂O· 4SiO₂ 720°C.
CaO· 4K₂O· 10SiO₂, (1:4:10) melting point 946°C.

CaO· $2K_2O$ · $6SiO_2$, (1:2:6), melting point 959°C.

- β CaO· K₂O· 6SiO₂, (3:1:6), incongruent melting to β Ca SiO₃ and liquid 1020°C; dimorphous, transition point 985°C.
- CaO· $2K_2O$ · $3SiO_2$, (1:2:3), incongruent melting to (1:1:1) and liquid 1005°C; eutectic with K₂O· SiO_2 900°C; eutectic with K₂O· $2SiO_2$ 900°C; eutectic with (1:4:10), 895°C; eutectic with (1:2:6) 895°C; ternary eutectic with K₂O· SiO_2 , and K₂O· $2SiO_2$, 770°C.

CaO·K2O·SiO₂, (1:1:1), melting point 1630°C.

- Region of good glasses: fields of (2:1:9) and of (3:1:6), composition limits 2 to 15 percent CaO, 67 to 73 percent SiO₂. (Morey, Kracek, and Bowen, 1930.)
- The binary join Li_4SiO_4 -Ca₂SiO₄, $6Li_2O$ ·4CaO·5SiO₂, (6:4:5), melting point 1108°C; eutectic with Li_4SiO_4 1090°C; eutectic with (4:6:5), 1065°C.
 - 4Li₂O·6CaO·5SiO₂, (4:6:5), melting point 1090°C; eutectic with Ca₂SiO₄, 1050°C. (Schwarz, 1921; Wallace, 1909.)
- gO-SiO₂ CaO·MgO·2SiO₂, (1:1:2), <u>Diopside</u>, melting point 1391°C; forms continuous solid state with MgO·SiO₂.
 - 2CaO·MgO·2SiO₂, (2:1:2), <u>Akermanite</u>, melting point 1454°C; low temperature limit of stability was studied in hydrothermal experiments: mixtures of oxides in ratio (2:1:2) yielded CaSiO₃ as Wollastonite and CaO. MgO·SiO₂ as Monticellite when heated below 700°C to 750°C at pressures up to 4000 bars. Above 750°C Akermanite was formed. Results have bearing on the problem of the petrogenetic grid of the Bowen (1940) decarbonation series: (Harker and Tuttle, 1956.)
 - CaO· MgO· SiO₂, (1:1:1), <u>Monticellite</u>, incongruent meltint to MgO plus liquid, 1503°C.
 - 3CaO·MgO·2SiO₂, (3:1:2), <u>Merwinite</u>, incongruent melting to Ca₂SiO₄ plus liquid, 1575°C.
 - For ternary diagram, see figure 12. (Ferguson and Merwin, 1919; Greig, 1927a; Ricker and Osborn, 1954; Bowen, 1914; Schairer and Bowen, 1942;Osborn, 1943; Bredig, 1950; Atlas, 1952.)
 - CaSiO₃-MnSiO₃, Wollastonite-Rhodonite, isodimorphous series solid solution; α - β CaSiO₃ transition point raised to 1374°C. (Voos, 1935.)
 - Ca2SiO₄-Mn2SiO₄, <u>Tephroite</u>, solid solution with a minimum, 15 mole percent Tephroite, 1170°C; <u>Glauchochroite</u>, CaMnSiO₄, is interpreted as equimolar solid solution (Kallenberg, 1914; Tokody, 1928.)
 - CaO· 2Na₂O· 3SiO₂, (1:2:3), incongruent melting to (2:1:3) and liquid 1141°C; eutectic with Na₂O· SiO₂, 1060°C.
 2CaO· Na₂O· 3SiO₂, (2:1:3), melting point 1284°C; eutectic with Na₂O· 2SiO₂, 862°C.
 - 3CaO·Na₂O·6SiO₂, (3:1:8), Devitrite, incongruent melting to β CaSiO₃ and liquid 1047°C.

CaO-MnO-SiO₂

CaO-Na,O-SiO,

CaO-Li2O-SiO2

CaO-MgO-SiO,

Region of good glasses: field of Devitrite and adjoining regions, 5 to 15 percent CaO, 67 to 74 percent SiO₂. Lowest ternary eutectic with Devitrite, Quartz, Na₂O. 2SiO₂, 725°C. (Morey and Bowen, 1925; Morey, 1930.)

- 7CaO·P₂O₅·2SiO₂, (7:1:2), Nagelschmidtite, melting point indefinite; interpreted as series of solid solution of $Ca_3(PO_4)_2$ in Ca_2SiO_4 rather than as a compound by Bredig (1943, 1950); phase found in phosphate slag is biaxial positive, parallel extinction, $\alpha = 1.652$, $\gamma =$ 1.661, G = 3.035.
 - 5CaO P₂O₅ SiO₂, (5:1:1), <u>Silicocarnotite</u>, decomposes 1300°C to solid solution phases; compound has solid solution range of composition; biaxial, 2V nearly 90°, $\alpha = 1.632, \beta = 1.636, \gamma = 1.640.$
 - Ca2SiO₄-Ca₃(PO₄)₂ system, two series solid solution at liquidus, transition point 1900°C; Ca2SiO4 rich and $Ca_3(PO_4)_2$ rich solid solution with gap below liquidus; below 1300°C, (5:1:1), solid solution separate from the two series; transitions in Ca2SiO4 and in Ca3(PO4)2 are lowered by solid solution. (Bredig, 1950.)
 - Ca₃(PO₄)₂-SiO₂ system, eutectic of Ca₃(PO₄)₂, Cristobalite and liquid, about 8 percent SiO₂, 1540°C; Cristobalite and 2 liquids, 12.5 to about 95 percent SiO2, about 1680°C. (Trömel and others, 1948.)
 - Liquid immiscibility area extends from CaO-SiO₂, 1698°C, far towards CaO-P2O5. (Barrett and Mc-Caughey, 1942; Greig, 1927a; Tromel, 1932, 1943; Bredig, 1943, 1950; St. Pierre, 1953; Tromel and others, 1948; Hill, Faust, and Reynolds, 1944.)
 - The binary join CaSiO₃-SrSiO₃, solid solution series with a minimum, 56 percent SrSiO₃, 1475°C. (Eskola, 1922.)
 - CaTiSiO₅, (1:1:1), <u>Titanite</u> (Sphene), melting point 1382°C; eutectic with CaTiO₃, 1375°C; eutectic with Tridymite, 1373°C; eutectic with CaSiO₃, 1373°C; eutectic with TiO₂, Rutile, 1375°C.
 - Liquid immiscible region extends from CaO-SiO₂ to CaO-TiO2 boundary, in part overlying the fields of Cristobalite and Rutile. (DeVries, Roy, and Osborn, 1953, 1955; Berezhnoi, 1950; Iwasé and Fukusima, 1936; Iwasé and Nisioka, 1936.)
 - 2CaO·ZnO·2SiO₂, (2:1:2), melting point 1425°C; ternary eutectic with Tridymite and Zn2SiO4, 1170°C; eutectic with Zn2SiO₄ and ZnO, 1259°C; eutectic with ZnO and Ca2SiO₄, 1345°C; eutectic with CaSiO₃ and Ca3Si₂O₇, 1365°C; with CaSiO3 and Tridymite, 1223°C.
 - Liquid immiscible region extends from CaO-SiO2 to ZnO-SiO₂, in part overlying the field of Cristobalite. (Segnit, 1954.)
 - No ternary compounds; lowest temperatures are near MgO-SiO₂ binary; lowest ternary eutectic with MgSiO₃, SiO₂, MgCr₂O₄, with about 2 percent Cr₂O₃ added to eutectic of MgSiO₃ and SiO₂, 1546°C.

CaO-P,O5-SiO,

CaO-SrO-SiO,

CaO-TiO,-SiO,

CaO-ZnO-SiO2

Cr₂O₃-MgO-SiO₂

- Liquid immiscible region extends from MgO-SiO₂ to MgO-Cr₂O₃, partly overlying fields of Cr₂O₃, MgCr₂ O₄ (Picrochromite) and Cristobalite.
- Field of MgCr₂O₄, <u>Picrochromite</u>, separates field of MgO, Periclase, from that of 2 liquids. (Keith, 1954.)
- FeO-Fe₂O₃-SiO₂ Two-liquid region overlying Cristobalite across system near SiO₂ corner. (Greig, 1927b.) Ternary eutectic of Fayalite, Grunerite and Fe₂O₃.
 - Ternary eutectic of Fayalite, Grunerite and Fe₂O₃, 40FeO, 20Fe₂O₃, 40SiO₂. (Hallimond and Whiteley, 1919); this eutectic is not possible because FeSiO₃ does not crystallize in binary system FeO-SiO₃. (Bowen, Schairer and Posnjak, 1933.)

1600°C section of system (Gurry and Darken, 1950.)

- FeO-K₂O-SiO₂ K_2O ·FeO·5SiO₂, (1:1:5), melting point 900°C.
 - K₂O. FeO. 3SiO₂, (1:1:3), melting point 900°C.
 - Two-liquid region over Cristobalite along FeO-SiO₂ boundary, (Roedder, 1952.)

FeO-MgO-SiO, No ternary compounds.

- Fe_2SiO_4 -Mg₂SiO₄, the Olivine series solid solution.
 - The join FeSiO₃-MgSiO₃, this is not a binary system because FeSiO₃ is not a crystalline compound; the Mg SiO₃ end is composed of solid solution series of orthopyroxene and clinopyroxenes.
 - No ternary eutectic in system. Low temperatures on liquidus lie on $FeO-SiO_2$ boundary of composition triangle.
 - Reaction point Pyroxene (MgSiO₃), Olivine, Tridymite, liquid, 1305°C.
 - Reaction point Pyroxene, Cristobalite, Tridymite, liquid, 1470°C.
 - 2 liquid region extends from FeO-SiO₂ to MgO-SiO₂ overlying Cristobalite near SiO₂ corner.
 - For ternary diagram, see figure 13. (Bowen and Schairer, 1935.)
- FeO-MnO-SiO2

FeO-Na₂O-SiO₂

- No ternary compounds, no ternary eutectic, low temperature on liquidus lie at FeO-SiO₂ binary.
 - Fe2SiO₄-Mn2SiO₄ join, the <u>Knebelite</u> series solid solution. (Fayalite-Tephroite series.)
 - ${\rm FeSiO_3}$ -MnSiO₃ join is not a binary system, because Fe SiO₃ is not a crystalline compound; MnSiO₃ end is comprised of Rhodonite series solid solution.
 - FeO-MnO; two series solid solution with a transition point 1430°C; liquidus slopes down to boundary with the Knebelite series solid solution.
 - Two immiscible liquids region near SiO₂ corner extends completely from FeO-SiO₂ join to MnO-SiO₂ join, overlying Cristobalite field. (Hay, White and Mc-Intosh, 1935; Maddocks, 1935; White, 1943.)
- Na₂FeSiO₄, (1:1:1), melting point 976°C; reaction point with Na₂SiO₃, Na₂Si₂O₅ and liquid 724°C; reaction point with FeO, Na₂Si₂O₅ and liquid 720°C.

Liquid immiscible along FeO-SiO₂ border.

Lowest ternary eutectic with Fayalite, Na₂Si₂O₅, SiO₂ and liquid below 500°C. (Carter and Ibrahim, 1952.)

Fe ₂ O ₃ -K ₂ O-SiO ₂	 K₂O·Fe₂O₃·6SiO₂, (1:1:6), <u>Iron Orthoclase</u>, incongruent melting to (1:1:4) and liquid 920°C. K₂O·Fe₂O₃·4SiO₂, (1:1:4), <u>Iron Leucite</u>, incongruent melting to Fe₂O₃ and liquid 1050°C. (Faust, 1936.)
Fe ₂ O ₃ -Na ₂ O-SiO ₂	 Na₂O· Fe₂O₃· 4SiO₂, (1:1:4), Acmite, incongruent melting to Fe₂O₃ and liquid, 990°C; eutectic with Na₂Si₂O₅, 810°C; eutectic with (5:1:8), 817°C. SNa₂O· Fe₂O₃· 8SiO₂, (5:1:8), melting point 838°C; eutectic with Na₂SiO₃, 837°C, eutectic with Fe₂O₃, 816°C. 6Na₂O· 4Fe₂O₃· 5SiO₂, (6:4:5), melting point above 1091°C. 2Na₂O· Fe₂O₃· SiO₂, (2:1:1), melting point above 1145°C. Liquid immiscible along Fe₂O₃-SiO₂ border. (Bowen, Schairer, and Willems, 1930.)
K ₂ O-Li ₂ O-SiO ₂	 K₂O·Li₂O·4SiO₂, (1:1:4), melting point (870°C?) 820°C. 2K₂O·Li₂O·6SiO₂, (2:1:6), melting point 815°C. 5K₂O·Li₂O·6SiO₂, (5:1:6), melting point (880°C?) 857°C. 5K₂O·2Li₂O·7SiO₂, (5:2:7), melting point (900°C?) 880°C. 5K₂O·Li₂O·4SiO₂, (5:1:4), melting point (830°C?). The phase diagram is dominated by fields of Li₂O·SiO₂ and SiO₂. Modified from Sheybany (1948).
K ₂ O-MgO-SiO ₂	 K₂O. 5MgO·12SiO₂, (1:5:12), incongruent melting to Mg SiO₃ and liquid, .1174°C. K₂O·MgO·5SiO₂, (1:1:5), melting point 1089°C; eutectic with K₂Si₄O₉, 730°C; eutectic with Tridymite, 963°C; eutectic with Mg2SiO₄, 1053°C. K₂O·MgO·3SiO₂, (1:1:3), melting point 1134°C; eutectic with K₂Si₂O₅, 933°C; eutectic with (1:1:5), 1030°C; eutectic with K₂SiO₅, 933°C; eutectic with (1:1:5), 1030°C; eutectic with K₂SiO₅, 933°C; eutectic with (1:1:5), 1030°C; eutectic with K₂SiO₅, 913°C. K₂O·MgO·SiO₂, (1:1:1), melting point 1650°C; eutectic with K₂SiO₃, 950°C; eutectic with K₂Si₂O₅, 910°C; eutectic with (1:1:3), 1110°C. Liquid immiscible along MgO-SiO₂ border, overlying Cristobalite. (Roedder, 1951b.)
K ₂ O-Na ₂ O-SiO ₂	No ternary compounds in portion of system K ₂ SiO ₃ -Na ₂ SiO ₃ -SiO ₂ . K ₂ SiO ₃ -Na ₂ SiO ₃ join, eutectic 745°C. K ₂ Si ₂ O ₅ -Na ₂ Si ₂ O ₅ join, limited series solid solution of K ₂ Si ₂ O ₅ ;solid solution Na ₂ Si ₂ O ₅ , a minimum at 705°C; solid solution Na ₂ Si ₂ O ₅ , transition point at 742°C at the liquidus. Eutectic Na ₂ Si ₂ O ₅ , K ₂ Si ₂ O ₅ , Quartz and liquid 540°C. Modified from Kracek (1932).
К ₂ О-РЬО-SiO ₂	 K₂O·PbO·4SiO₂, (1:1:4), melting point 757°C. K₂O·4PbO·8SiO₂, (1:4:8), melting point 779°C. K₂O·2PbO·2SiO₂, (1:2:2), melting point 918°C. 2K₂O·PbO·3SiO₂, (2:1:3), incongruent melting to (1:2:2) and liquid, 806°C. (Geller and Bunting, 1936.)
K ₂ O-ZnO-SiO ₂	 K₂O·ZnO·SiO₂, (1:1:1), field of stability and melting point were not determined. Field of Willemite intrudes between those of ZnO and SiO₂. (Ingerson and others, 1948.)
Li ₂ O-MgO-SiO ₂	(Krishna-Murthy and Hummel, 1955.)

Li ₂ O-Na ₂ O-SiO ₂	 The join Na2SiO₃-Li₂SiO₃, continuous series solid solution from Na₂SiO₃ to NaLiSiO₃, with a liquidus minimum, 38.5 percent Li₂SiO₃, 845°C. NaLiSiO₃, (1:1:2), incongruent melting to Li₂SiO₃ solid solution and liquid, 847°C. The join Na₂Si₂O₅-Li₂Si₂O₅ is not binary at liquidus because of incongruent melting of Li₂Si₂O₅. Lowest ternary eutectic Na₂Si₂O₅, Li₂Si₂O₅ and Quartz, 637°C. (Kracek, 1939a, b.)
Li2O-ZrO2-SiO2	4Li ₂ O·3ZrO ₂ ·5SiO ₂ , (4:3:5), melting point 1152°C. (Schwarz, 1921.)
MgO-TiO2-SiO2	Incomplete study. Liquidus has a minimum below 1500°C. (Berezhnoi, 1950; Massazza and Sirchia, 1958.)
MgO-ZrO ₂ -SiO ₂	Compatibility triangles outlined. (Foster, 1951b.)
MnO-TiO ₂ -SiO ₂	MnSiO ₃ -MnTiO ₃ , eutectic, 22.3 mole percent MnTiO ₃ , 1120°C; solid solution limit 38 to 100 mole percent MnTiO ₃ . (Smolensku, 1912.)
Na ₂ O-PbO-SiO ₂	 Na₂O· 2PbO· SiO₂, (1:2:1), melting point 840°C; transition point 790°C; β decomposes to PbO and Na₂SiO₃, 590°C. Na₂O· 3PbO· 6SiO₂, (1:3:6). Na₂O· 2PbO· 3SiO₂, (1:2:3), melting point 615°C. Na₂O· 3PbO· 1SiO₂, (1:3:7). 3Na₂O· 3PbO· 11SiO₂, (3:3:11). (Krakau and others, 1937; Grebenshchikov, 1949.)
Na ₂ O-P ₂ O ₅ -SiO ₂	 5Na₂O· P₂O₅· 4SiO₂, (5:1:4), incongruent melting to(9:2:6) and liquid, 953°C. 9Na₂O· 2P₂O₅· 6SiO₂, (9:2:6), melting point 1100°C. 15Na₂O· 5P₂O₅· 6SiO₂, (15:5:6), incongruent melting to (9:2:6) and liquid, 987°C. Two liquids over Cristobalite in SiO₂-P₂O₅ rich region. (Turkdogan and Maddocks, 1952.)
Na ₂ O-ZrO ₂ -SiO ₂	Na ₂ O-SiO ₂ rich portion of system investigated to 1100°C, disclosing fields of Na ₄ SiO ₄ , Na ₆ Si ₂ O ₇ , Na ₂ SiO ₃ , Na ₂ ZrO ₃ , Na ₂ ZrSiO ₅ and Na ₄ Zr ₂ Si ₃ O ₁₂ . (d'Ans and Löffler, 1930.)
TiO,-Ti,O,-SiO,	Exploratory study. (Roy, Rustum, and others, 1952.)
TiO ₂ ZrO ₂ -SiO2	No ternary compounds. Ternary eutectic SiO ₂ , TiO ₂ , ZrO ₂ and liquid, 1500°C. (Sowman and Andrews, 1951; McTaggart and Andrews, 1957.)
	Additional References
A1203-B203-SiO	Dietzel and Scholze (1955).
Al ₂ O ₃ -SrO-SiO ₂	Dear (1957).
B ₂ O ₃ -P ₂ O ₅ -SiO ₂	Horn and Hummel (1955).
CaO-CaF ₂ -SiO ₂	3CaO.CaF2.2SiO2, Cuspidine, Brisi (1957).
$CaO-Cr_2O_3-SiO_2$	Glasser and Osborn (1958).

690-216 O - 63 - 5

MgO-MnO-SiO ₂	Glasser (1958b).
PbO-P205-SiO2	Paetsch and Dietzel (1956).
SrO-ZrO2-SiO2	Dear (1958).

SILICATE SYSTEMS, QUATERNARY AND HIGHER

Al ₂ O ₃ -CaO-Cr ₂ O ₃ -MgO-SiO	 ²⁷ percent R₂O₃ plane (75MgO·Al₂O₃, 25MgO. Cr₂O₃) parallel to the CaO-MgO-SiO₂ base. ⁷ percent R₂O₃ plane (50MgO·Al₂O₃, 50MgO. Cr₂O₃) parallel to the CaO-MgO-SiO₂ base. (Berry, Allen and Snow, 1950; also Warshaw and Keith, 1954.)
Al ₂ O ₃ -CaO-FeO-SiO ₂	 Study of several joins in the quaternary system: (a) FeO-Al₂O₃-CaAl₂Si₂O₈, Anorthite; (b) FeO-SiO₂-CaAl₂Si₂O₈, see figure 14; (c) FeO-CaSiO₃-CaAl₂Si₂O₈; (d) FeO-CaSiO₃-Ca₂Al₂SiO₇, Gehlinite; (e) FeO-Ca₂Al₂SiO₇-CaAl₂Si₂O₈; (f) FeO-Ca₂Al₂SiO₇; (g) FeO-Ca₂SiO₄-Ca₂Al₂SiO₇; (h) Ca₂Al₂SiO₇-Ca₂FeSi₂O₇, Iron Akermanite. (Schairer, 1942; Muan and Osborn, 1951.)
Al ₂ O ₃ -CaO-Fe ₂ O ₃ -SiO ₂	0, 2, 5, 10 and 20 percent Fe ₂ O ₃ planes paral- lel to base CaO-Ca ₂ SiO ₄ -5CaO·3Al ₂ O ₃ . (Lea and Parker, 1934; Swayze, 1946a, b.)
$A1_2O_3$ -CaO-Fe $_2O_3$ -MgO-SiO	2CaO-5CaO•3Al ₂ O ₃ -2CaO•Fe ₂ O ₃ -Ca ₂ SiO ₄ ;mod- ified by 5 percent MgO. (Swayze, 1946a, b.)
Аl ₂ O ₃ -СаО-К ₂ О-SiO ₂	CaO-5CaO·3Al ₂ O ₃ -K ₂ O·23CaO·12SiO ₂ ;(Taylor, 1942.) KAlSi ₂ O ₆ , <u>Leucite</u> -CaAl ₂ Si ₂ O ₈ , <u>Anorthite</u> , SiO ₂ ; see figure 15. (Schairer and Bowen, 1947a, b.)
Al ₂ O ₃ -CaO-K ₂ O-MgO-SiO ₂	<pre>KAlSi₂O₆, Leucite-CaMgSi₂O₆, Diopside-SiO₂; see figure 16. KAlSi₂O₆-CaMgSi₂O₆ binary section. (Bowen and Schairer, 1929; Bowen, 1937.)</pre>
A1 ₂ O ₃ -CaO-K ₂ O-Na ₂ O-SiO ₂	NaAlSi ₃ O ₈ , <u>Albite-KAlSi₃O8</u> Potash <u>Feldspar</u> - CaAl ₂ Si ₂ O ₈ <u>Anorthite</u> ; see figure 17. (Franco and Schairer, 1951.)
Al ₂ O ₃ -CaO-MgO-SiO ₂	 CaO-MgO-5CaO. 3Àl₂O₃-Ca₂SiO₄, with 0 and 5 percent MgO. (McMurdie and Insley, 1936.) SiO₂-Mg₂SiO₄, Forsterite-CaAl₂Si₂O₈, Anorthite. See figure 18. (Andersen, 1915.) CaSiO₃-CaMgSi₂O₆, Diopside-CaAl₂Si₂O₈Anorthite. (Osborn, 1942.) Ca₂Al₂SiO₇, Gehlinite-Ca₂MgSi₂O₇, Akermanite, binary solid solution. (Osborn and Schairer, 1941; Ferguson and Buddington, 1920.) CaSiO₃-Ca₂Al₂SiO₇-Ca₂MgSi₂O₇. (Osborn and Schairer, 1941.)

- CaMgSi₂O₆, <u>Diopside-CaAl₂Si₂O₈</u>, <u>Anorthite-</u> Mg_2SiO_4 , Forsterite; see figure 19. (Osborn and Tait, 1952.)
- MgO-Ca₂SiO₄-MgO·Al₂O₃, Spinel. (Prince, 1951.)
- $MgO \cdot Al_2O_3 Ca_2SiO_4 Ca_2Al_2SiO_7$, Gehlinite, (Prince, 1951.)
- MgO-Al₂O₃-Ca₂SiO₄. (Prince, 1951.) 10 percent MgO plane. (Prince, 1954.)
- CaAl₂Si₂O₈, Anorthite-Ca₂MgSi₂O₇, Akermanite. (DeWys and Foster, 1956; Prince, 1954.)
- $\begin{array}{c} \text{Al}_2\text{O}_3\text{-}\text{CaO-MgO-Na}_2\text{O-SiO}_2 & \begin{array}{c} \text{NaAlSi}_3\text{O}_8, & \begin{array}{c} \text{Albite-CaAl}_2\text{Si}_2\text{O}_8, & \begin{array}{c} \text{Anorthite-Ca} \\ \text{MgSi}_2\text{O}_6, & \end{array} \end{array} \\ \begin{array}{c} \text{Diopside}; \text{ see figure } \begin{array}{c} 20. & (Bowen, \end{array} \end{array}$ 1915.)
 - CaMgSi₂O₆-NaAlSiO₄, <u>Nepheline</u>, <u>Carnegieite</u>. (Bowen, 1922.)
 - CaMgSi₂O₆-NaAlSiO₄-NaAlSi₃O₈, <u>Albite</u>, a portion of $CaMgSi_2O_6$ -NaAlSiO₄-SiO₂. (Yoder, 1950, and from the unpublished work of Schairer.)

Al,O,-CaO-Na,O-SiO,

Al₂O₃-FeO-Fe₂O₃-SiO₂

Al₂O₃-CaO-P₂O₅-SiO₂

Al₂O₂-CaO-TiO₂-SiO₂

Al₂O₃-FeO-Fe₂O₃-SiO₂

Al₂O₃-FeO-Na₂O-SiO₂

Al,O,-FeO-K,O-SiO,

Al₂O₃-K₂O-MgO-SiO₂

Na2SiO3-CaSiO3-NaAlSiO4, Nepheline-CaAl2 Si2O8, Anorthite. (Spivak, 1944.) $CaSiO_3$ -NaAlSiO_4-CaAl_2Si_2O_8. (Gummer, 1943.)

Al₂O₃-CaO-Na₂O-P₂O₅-SiO₂ (Melent'ev and Ol'shanskiy, 1952.)

Al₂O₃-CaO-Na₂O-TiO₂-SiO₂ NaAlSi₃O₈, <u>Albite</u>-CaAl₂Si₂O₈, <u>Anorthite</u>-CaTi SiO₅, <u>Titanite</u>. (Prince, 1943.)

(Muan, 1957a, 1958b.)

- $Ca_3(PO_4)_2$ -Al₂O₃-SiO₂. (St. Pierre, 1953; Hartmann and Haegermann, 1953.)
- CaSiO₃-CaAl₂Si₂Og, Anorthite-CaTiSiO₅, Titanite. (Iwase and Nisioka, 1936.)
- Projection of the curved surface bounding mixtures that form 2 liquid layers, onto the FeO-Fe₂O₃-SiO₂ base. (Greig, 1927b; Muan, 1957a, b, 1958a, b, c); Muan and Gee, 1956.)
- FeO-SiO₂-NaAlSiO₄, Nepheline. See figure 21. (Bowen, 1937.)
- KAlSi₂O₆, <u>Leucite</u>-Fe₂SiO₄, <u>Fayalite</u>-SiO₂. See figure 22. (Roedder, 1951a.)

KAlSi2O6, Leucite-Mg2SiO4, Forsterite-SiO2 ternary system. See figure 23.

Mg₂SiO₄-KAlSi₂O₆-Mg₂Al₄Si₅O₁₈, Cordierite. $\begin{array}{c} {}^{\rm KA1Si_2O_6^--Mg_2A1_4Si_5O_{18}^--SiO_2^-}\\ {}^{\rm MgSiO_3-KA1Si_2O_6^--Mg_2A1_4Si_5O_{18}^-} \end{array}$

Mg2Al4Si5O18-KAlSi3O8, Potash Feldspar-3Al2 O3. 2SiO2, Mullite. (Schairer, 1954, 1955.)

$$A1_2O_3$$
- K_2O - Na_2O -Si O_2

 Al_2O_3 -MnO- Y_2O_3 -SiO₂

- B_2O_3 -CaO-Na₂O-SiO₂
- CaO-FeO-MgO-SiO,
- CaO-Fe₂O₃-MgO-SiO₂ CaO-MgO-MnO-TiO₂-SiO₂
- CaO-MgO-TiO₂-SiO₂

CaO-MnO-SiO₂-SiO₂ FeO-Fe₂O₃-MgO-SiO₂

- Al_2O_3 -CaO-P $_2O_5$ -SiO $_2$
- CaO-MgO-P205-SiO2-CaF2

CaO-MgO-P₂O₅-SiO₂ MgO-Fe₂O₃-TiO₂-SiO₂ NaAlSiO₄, <u>Nepheline</u>, <u>Carnegieite</u>-KAlSiO₄, <u>Kaliophilite</u>, <u>Kalsilite</u>-SiO₂. See figure 24. (Schairer, 1950.)

- NaAlSiO₄-KAlSiO₄; <u>Nephelite-Carnegieite</u> transition point is raised by solid solution from 1248° to 1404°C; Nephelite solid solution -Kaliophilite transition point is raised from 1540° to 1580°C. (Bowen, 1917.)
- KAlSi₃O₈-NaAlSi₃O₈. (Schairer, 1950); Structure study (Smith and Tuttle, 1957.)
- Mg2Al4Si5O18, Cordierite-LiAlSi2O₆, Spodumene. (Karkhanavala and Hummel, 1953; Prokopowitz and Hummel, 1956.)
- No quaternary compounds. (Herold and Smothers, 1954.)
- Mn3Al₂Si₃O₁₂, <u>Spessartite-Y₆Al₁₀O₂₄, Yttro-</u> <u>garnet</u>;system illustrates complete substitution of Al for Si. (Yoder and Keith, 1951.)
- Effects of additions of 1 and 5 percent B_2O_3 on the liquidus for <u>Devitrite</u>, Na₂Ca₃Si₆O₁₆. (Morey, 1932.)
- CaSiO₃-CaMgSiO₄, <u>Monticellite</u>-FeO, fields of <u>Magnesiowustite</u>, <u>Olivine</u> <u>Melilite</u> and Ca SiO₃, <u>Pseudowollastonite</u>; <u>all fields</u> except CaSiO₃ are solid solution. (Schairer and Osborn, 1950.)

(Rait, 1949.)

- CaMgSi₂O₆, <u>Diopside-MnTiO₃</u>; (Iwase and Nisioka, 1938.)
- (Berezhnoy, 1950; Iwase and Nisioka, 1938; Nisioka, 1935.)
- (Iwase and Nisioka, 1936.)
- (Muan and Osborn, 1956.)

Additional Systems

- Ca3(PO4)2-CaAl2Si2O8, <u>Anorthite</u>-SiO2 section. (St. Pierre, 1956.)
- 3Ca₃(PO₄)₂·CaF₂-MgSiO₃-SiO₂ section. (Bobrownicki and Swiecki, 1955.)
- Ca₃(PO₄)₂-MgSiO₃-SiO₂ section. (Sata, 1958.) (Rao, 1957.)

SILICATES, MISCELLANEOUS

 $CaSiO_3$ -CaF $_2$

Eutectic, 47 mole percent CaF₂, 1128°C. (Karandeeff, 1910; Boak and Olander, 1955.)
- FeO-FeS-SiO₂
 FeS-SiO₂, liquid immiscible, 5 to 95 percent SiO₂ over Cristobalite, 1690°C.
 FeO-FeS, eutectic 36 percent FeO, 920°C.
 Ternary eutectic FeO, Fe₂SiO₄, FeS, below 920°C.
 (Ol'shanskiy, 1950.)
 NaF-Na₂O-SiO₂
 Na₂SiO₃-NaF, eutectic, 39 mole percent NaF, 795°C. (Booth and others, 1933.)
 CaO-Na₂O-SO₃-SiO₂
 SiO₂-Na₂SiO₃-CaSiO₃-Na₂SO₄-CaSO₄, solubility relations at 1200°C.
 Na₂SiO₃-Na₂SO₄, eutectic 7 percent Na₂SO₄, 868°C. (Kordes and others, 1951.)
- Na₂SiO₃-Na₂WO₄ Na₂SiO₃ in equilibrium with 2 liquids, 14 to 99 percent Na₂SiO₃, 1080°C; eutectic near 100 percent Na₂WO₄, 696°C. (Tammann, 1925.)

CARBONATES

- Dissociates (1 atm CO₂) 219°C. (Drake and Benton, 1934; Watanabe, 1933; Centnerszwer, and Krustinsons, 1926.)
 - Witherite, melting point (90 atm CO₂) 1740°C; dissociates 0.068 atm CO₂, 1204°C; transition points 806°C, 968°C. (Dutoit, 1927; Finkelstein, 1906; Lander, 1949, 1951a.)
 - (Finkelstein, 1906); existence disproved by Lander (1951.)

) Melting point 800°C. (Le Chatelier, 1887.)

Melting point 740°C. (Le Chatelier, 1887.)

Melting diagram. (Boeke, 1913.)

Decomposes with loss of H₂O, 100°C.

Calcite, melting point (1038) bars CO₂), 1339°C; eutectic of CaCO₃, CaO plus liquid (40 bars CO₂), 50 mole percent CaO, 1240°C; dissociates (1 atm CO₂), 897°C; dissociation pressure at higher temperature, log P(bars CO₂) = -11, 355 -5.388 log T T(°K)

(°K) + 26.244. Heat of dissociation calculated 39.44 kcal per mol at 898.6°C and 35.79 kcal per mol at 1240°C; transition point 970°C found by Boeke(1912) may not exist. (Smyth and Adams, 1923; Johnston, 1910; Boeke, 1912; Harker and Tuttle (1955) observed higher pressure, lower temperatures in dissociates.

Aragonite metastable at room temperature and above, inverts to Calcite about 425°C at 1 atmosphere pressure; reversible transition point Calcite-Aragonite P(bars) = 16 T (°C) + 1400, MacDonald (1956); P(bars) = 17 T (°C) + 3600, Clark (1957); agrees with value calculated for 1 bar pressure, -195°C (79°K) from Jamieson (1953).

Vaterite, transition to Calcite from 430° to 440°C.

 $BaCO_{3} \cdot BaO$ $BaK_{2}(CO_{3})_{2}$ $CaNa_{2}(CO_{3})_{2}$ $CaCO_{3} - CaCO_{3}$ $BeCO_{3} \cdot 4H_{2}O$ $CaCO_{2}$

Ag₂CO₃

CaCO₂

(Kröger and others, 1943.)

Melting point 814°C. (Eitel and Skaliks, 1929.)

1 atm CO₂ isotherms. (Niggli, 1919.)

CaCO ₃ -K ₂ CO ₃
$CaCO_3$ - Na_2CO_3 - K_2CO_3
CaK ₂ (CO ₃) ₂
CaCO ₃ -Li ₂ O
CaNa ₂ (CO ₃) ₂

Melting or decomposition, (54.2 atm CO₂), 812°C; eutectic with (Na₂, Ca) CO₃ solid solution, 38 percent CaCO₃, 805°C. (Eitel, 1925; Niggli, 1916.)

<u>Ankerite</u>, dissociates in two steps, 610° to 770° C and <u>900^{\circ}</u>C.

CaO· MgO· (CO₂)₂, <u>Dolomite</u>, dissociates to CaCO₃, MgO, CO₂ at 1 atm CO₂, about 500°C; to CaO, MgO, CO₂ at 890°C.

High CO₂ pressure equilibrium was measured for dissociation of Dolomite to Magnesian Calcite+ MgO+CO₂ to 20,000 psi(1378 bars)875°C,Graf and Goldsmith (1955), revised in Graf and Goldsmith (1958);measured to 40,000 psi(2756 bars), 940°C. (Harker and Tuttle, 1955.)

Magnesian Calcite, solid solution of Mg in Calcite. Excess Ca solid solution in Dolomite.

Solid solution Ca in Magnesite, determined up to 900°C at pressure high enough to prevent dissociation. Details given in Graf and Goldsmith (1955) and Harker and Tuttle (1955).

Cancrinite, artificial, incongruent melting to Nepheline and liquid, (107 atm CO₂), 1253°C.(Eitel,1925).

- A complete series of solid solution exists from Ca CO₃ to MnCO₃ at temperatures above 550°C and pressures sufficient to prevent dissociation. (75.9 bars at 550°C rising to 1550 bars at 750°C for dissociation of MnCO₃). Unmixing of these solid solutions is observed in the MnCO₃-rich region below 550°C. One limb of the solvus approaches the 1:1 composition, the other limb 80 mole percent MnCO₃, as temperature falls to 450°C. Below 400°C no equilibrium is attained either in hydrothermal runs or in presence of Li_2CO_3 as flux.
- Kutnahorite, CaMn(CO₃)₂, is a phase in which the random arrangement of Ca ions and Mn ions of the solid solution is replaced by an ordered one with Ca and Mn in alternate layers of the lattice. This phase becomes disordered at temperatures above 450°C.

The heat of dissociation of $MnCO_3$ is calculated to be 26.0±0.4 kcal per mol. (Goldsmith and Graf, 1957.)

Spurrite, incongruent melting to Ca₂SiO₄ plus liquid, (122 atm CO₂), 1380°C. Artificial differs from natural mineral. Transition natural to artificial (120 atm CO₂), 1200°C., (Eitel, 1923.)

(Ca, Fe, Mg, Mn)CO₃ CaO-MgO-CO₂

CaCO3 · NaAlSiO4

CaO-MnO-CO,

CaCO₃·2Ca₂SiO₄

- Mixture 5CaCO₃· 2SiO₂ crystallized readily to Spurrite at 172 bars CO₂, 950°C; equilibrium values along P(CO₂) -T curve were measured from 25 to 310 bars, 700° to 1000°C. <u>Tilleyite</u>, 2CaCO₃· Ca₃Si₂O₇, did not crystallize in above experiments. (Tuttle and Harker, 1957.)
- Otavite, dissociation, (1 atm CO₂), 344°C. (Andrussov, 1925; Centnerszwer, 1930; Jander, 1928.)
 - Spherocobaltite, dissociation to basic carbonates. (Krustinsons, 1933.)
 - Appears to be unstable relative to CuO and CO₂. (Maier, 1929; Kelley and Anderson, 1935.)
 - Azurite, decomposes about 200°C.
 - Siderite, dissociation(1 atm CO₂)450°C. (Fleissner, 1925; Friedrich and Smith, 1912.)
 - Melting point 895°C, 422°C; vapor pressure of liquid 0.047 atmosphere at 1400°C. (Howarth and Turner, 1931.)
 - (Eitel and Skaliks, 1929.)
 - (Reisman, 1959.)
 - Melting point 735°C, 401°C; vapor pressure of liquid 0.177 atmosphere at 1100°C. (Howarth and Turner, 1931.)
 - Melting point 514°C; eutectic with Na₂CO₃, 61 percent Na₂CO₃, 510°C; eutectic with Li₂CO₃, 44 percent Li₂CO₃, 510°C. (Eitel and Shaliks, 1929.)
 - Magnesite, conflicting data on dissociation, dissociates to basic carbonates, (Centnerszwer and Bruzs, 1925); basic carbonates disproved on Xray evidence, (Huttig and Frankenstein, 1930); most consistent dissociation pressure measurements by Marc and Simek (1913); (1 atm CO₂), 404°C. (Kelley and Anderson, 1935.) High temperature and pressure equilibrium studied up to 40,000 psi(2750 bars), about 900°C by Harker and Tuttle (1955).
 - Nesquehonite, prepared by treating MgCl₂ solution at 14°C with K_2CO_3 solution. Loses 1H₂O over H₂SO₄ at room temperature; dried at 100°C, 150°C, 200°C with increasing loss of H₂O and some CO₂. (Menzel, Bruckner, Schultz, 1930.)
 - Melting point at 124 atm CO₂, 677°C. (Eitel and Skaliks, 1929.)
 - Rhodochrosite, dissociates 1 atm CO₂, 369°C. (Krustinsons, 1932, 1933.) Dissociation curve to high pressure CO₂ from 375° to 575°C is given by log $P(bars) = \frac{5740}{T(°K)} + 8.852$, and from 575° to 775°C by

CdCO³

- CoCO,
- CuCO3

Cu₃(OH)₂(CO₃)₂ FeCO₃

K₂CO₃

 $\begin{array}{c} \mathrm{K_2CO_3}\text{-}\mathrm{Li_2CO_3}\\ \mathrm{K_2CO_3}\text{-}\mathrm{Na_2CO_3}\\ \mathrm{Li_2CO_3}\end{array}$

LiNaCO₃

MgCO,

MgCO3 · 3HO

MgNa₂(CO₂)₂

MnCO₃

 $\log P(bars) = \frac{-10, 320}{T(^{\circ}K)} - 11.910 \log T(^{\circ}K) + 49.127.$ The calculated heat of dissociation is 26.0±0.4

- kcal per mol. (Goldsmith and Graf, 1957.) Na₂CO₃ Melting point 851°C; transition points 361°C, 489°C; vapor pressure of liquid 0.085 atmosphere, 1400°C. (Howarth and Turner, 1930.)
 - Eutectic 38 percent Na₂S, 756°C. (Tammann and Oelsen, 1930.)
 - Cerrusite, dissociates to basic carbonates. (Centnerszwer, Falk and Awerbach, 1925; Bružs, 1926; Colson, 1905, 1909.) 1 atm CO₂, 293°C. Kelley and Anderson, 1935; Peretti, 1957.)
 - Hydrocerrusite, decomposes below 400°C.
 - Strontianite, melting point (60 atm CO₂), 1497°C; dissociate, 0.152 atm CO₂, 1091°C; transition rhombic to trigonal, 925°C. (Dutoit, 1927;Lander, 1951a; Rossini and others, 1952.)
 - Smithsonite, sluggish dissociation (1 atm CO₂),varies from 300° to 400°C. (Centnerszwer,1930; Friedrich, 1911.)
 - $P(CO_2)$ -T curve passes through 689 bars at 310°C, 2067 bars at 410°C, and 3445 bars at 460°C. (Harker and Hutta, 1956.)

SYSTEM, MISCELLANEOUS

In this section are included references not elsewhere coveredifor systems of oxides and other substances of interest in synthetic studies.

(a) Three oxides:

Al ₂ O ₃ -BeO-MgO	(Geller, Yavorsky, Steierman, and Creamer, 1946.)
Al ₂ O ₃ -BeO-ThO ₂	do
Al ₂ O ₃ -BeO-TiO ₂	(Lang, Fillmore, and Maxwell, 1952.)
Al ₂ O ₃ -BeO-ZrO ₂	(Geller, Yavorsky, Steierman, and Creamer, 1946.)
Al ₂ O ₃ -CaO-Cr ₂ O ₃	(Vasenin, 1939.)
$\text{Al}_{2}\text{O}_{3}\text{-}\text{CaO-Fe}_{2}\text{O}_{3}$	(Hansen, Brownmiller, and Bogue, 1928;McMurdie, 1937; Swayze, 1946a, b.)
Al ₂ O ₃ -CaO-K ₂ O	$Al_2O_3 \text{-} 3CaO \text{-} Al_2O_3 \text{-} K_2O \text{-} Al_2O_3 \text{(Brownmiller, 1935.)}$
Al_2O_3 -CaO- P_2O_5	(Stone, Egan, and Lehr, 1956; St. Pierre, 1956.)
Al ₂ O ₃ -Cr ₂ O ₃ -MgO	(Wilde and Rees, 1943.)
Al ₂ O ₃ -FeO-MnO	(Hay, McIntosh, Rait, and White, 1937.)
Al ₂ O ₃ -MgO-ZrO ₂	(Salldau and Zhirmova, 1945.)
BeO-CeO ₂ -ZrO ₂	(Ruff, Ebert and Loerpabel, 1932; Lang, Roth, and Fillmore, 1954.)
BeO-Cr2O3-ZrO2	(Lang, Roth, and Fillmore, 1954.)

D36

Na₂CO₂-Na₂S

2PbCO, PbO H,O

PbCO,

SrCO3

ZnCO₂

(a) Three oxides Conti	nued:
BeO-MgO-ThO2	(Lang, Maxwell, and Geller, 1949.)
BeO-MgO-ZrO2	do
BeO-TiO ₂ -ZrO ₂	(Lang, Roth, and Fillmore, 1954.)
Bi ₂ O ₃ -MoO ₃ -PbO	(Zambonini, 1920.)
Bi ₂ O ₃ -PbO-WO ₃	do
CaO-Cr ₂ O ₃ -MgO	(Ford and Rees, 1949.)
CaO-Fe-Fe ₂ O ₃	(Martin and Vogel, 1932; White, 1943.)
CaO-FeO-Fe ₂ O ₃	(Krings and Shackmann, 1935;White, 1938;Gurry and Darken, 1950.)
CaO-Fe ₂ O ₃ -Fe ₃ O ₄	(Burdese and Brisi, 1952.)
CaO-MgO-SnO ₂	(Coughanour and others, 1955.)
$CaO-MgO-TiO_2$	do
CaO-ThO2-Z2O2	(Ruff, Ebert, and Loerpabel, 1932.)
Cr ₂ O ₃ -MoO ₃ -PbO	(Jaeger and Germs, 1921.)
Cr ₂ O ₃ -PbO-WO ₃	do
FeO-Fe ₂ O ₃ -MgO	(Roberts and Merwin, 1931.)
FeO-Fe ₂ O ₃ -Mn _x O _v	(Gurry and Darken, 1950.)
FeO-MnO-TiO2	(Grieve and White, 1940.)
MgO-SnO ₂ -TiO ₂	(Coughanour and others, 1955.)
MgO-ThO2-ZrO2	(Ruff, Ebert, and Loerpabel, 1932.)
PbO-TiO ₂ -V ₂ O ₅	(Belyayev and Nesterova, 1952.)

(b) Four or more oxides:

Al ₂ O ₃ -CaO-Fe ₂ O ₃ -K ₂ O	(Taylor, 1938.)
Al_2O_3 -CaO-Fe $_2O_3$ -Na $_2O_3$	(Eubank and Bogue, 1948.)
Al ₂ O ₃ -CaO-Fe ₂ O ₃ -MgO	(Rait, 1949.)
BaO-Na ₂ O-Nb ₂ O ₃ -TiO ₂	(Roy, Rustum, and others, 1953.)
CaO-MgO-SnO,-TiO,	(Coughanour and others, 1955.)

(c) Phosphates:

1

$$P_2O_5$$

CaO- P_2O_5
CaO-FeO- P_2O_5
CaO-Na₂O- P_2O_5
Fe₂O₃- P_2O_5
K₂O-Li₂O- P_2O_5
K₂O- P_2O_5 -SO₃

(Hill, Faust, and Hendricks, 1943.) (Trömel, 1943; Hill, Faust, and Reynolds, 1944.) (Oelsen and Maetz, 1941.) $CaP_2O_6-Na_2P_2O_6$. (Morey, 1952.) (Wentrup, 1936.) KPO_3-LiPO_3(Bergmann and Sholokovich, 1953.) K_2SO_4-K_2P_2O_6. (Bergmann and Sholokovich, 1953.)

690-216 O - 63 - 6

CONTRIBUTIONS TO GEOCHEMISTRY

(c) Phosphates Continue	d:		
Li20-P205-S03	Li ₂ P ₂ O ₆ -Li ₂ SO ₄ . (Bergmann and Sholokhovich, 1953.)		
$Na_2O-P_2O_5$	(Turkdogan and Maddocks, 1952; Morey and Ingerson, 1944.)		
$\text{Al}_{2}\text{O}_{3}\text{-}\text{CaO-Na}_{2}\text{O-P}_{2}\text{O}_{5}$	-SiO ₂ (Melent'ev and Ol'shanskiy, 1952.)		
(d) Sulfates:			
CuO-K ₂ O-Na ₂ O-SO ₃	(Bellanca and Carapezza, 1951.)		
K ₂ SO ₄ -CaSO ₄	do		
K ₂ SO ₄ -Li ₂ SO ₄	(Nacken, 1907.)		
K2O-PbO-SO3-WO3	(Belyayev and Nesterova, 1952.)		
Li_2SO_4 -MgSO_4	(Rea, 1938.)		
Li_2SO_4 -Na_SO_4	(Nacken, 1907.)		
Na_2SO_4 -CuSO_4	(Bellanca and Carapezza, 1951.)		
Na2O-PbO-SO3-WO3	(Belyayev,1952.)		
PbO-PbSO4	(Jaeger and Germs, 1921.)		
PbSO ₄ -PbCrO ₄	do		
PbSO ₄ -PbMoO ₄	do		
PbSO4-PbWO4	do		
(e) Fluorides of interest for model systems:			
BeF ₂ -NaF (Thilo and Schröder, 1951; Roy, D.M., and others, 1953.)		
BeF ₂ -PbF ₂ (Roy, D. M., and others, 1954.)		
KF-MgF ₂ (DeVries and Roy, 1953.)		
KF-ThF (Asker and others, 1952.)		

(Bergmann and Dergunov, 1941; Counts and others, 1953.)

(f) Oxides, halides: Al₂O₃-CaF₂ Al₂O₃-CaF₂-CaC Al₂O₃-CaF₂-Na Al₂O₃-Na₃AlF₆

LiF-MgF₂

Al ₂ O ₃ -CaF ₂	(Pascal, 1913.)
Al ₂ O ₃ -CaF ₂ -CaO	(Eitel, 1938a, b.)
Al_2O_3 -CaF ₂ -Na ₃ AlF ₆	(Pascal, 1913.)
Al ₂ O ₃ -Na ₃ AlF ₆	(Pascal, 1913; Drossbach, 1936.)
CaF ₂ -CaO	(Eitel, 1938b.)
CaF_2 -CaO-Ca $_2SiO_4$	do
$\mathrm{CaCO}_{3}\text{-}\mathrm{Na}_{2}\mathrm{CO}_{3}\text{-}\mathrm{Na}_{2}\mathrm{Cl}_{2}$	(Niggli, 1916.)

Figure 1.- The system: Fe-O. From Muan (1958d), reprinted by permission of the American Journal of Science;data are mainly from Darken and Gurry (1945, 1946). Solid lines are boundary curves separating phase areas labelled in the diagram; dash-dot curves are oxygen isobars in atmospheres. Boundary curves in the upper part of the figure are dashed where experimental data are lacking; in the upper right corner, dashed curves are inferred for oxygen pressures greater than 1 atmosphere.

Figure 2.- The system: SiO₂-Al₂O₃. From Shigeo Aramaki and Rustum Roy (written communication, 1959), showing the incongruent melting of mullite.

Figure 3.- The system: SiO₂-CaO. From Phillips and Muan (1958) reprinted by permission of the American Ceramic Society. Composite diagram based on Rankin and Wright (1915), Greig (1927a), Glasser and Osborn (1958), D. M. Roy (1958), and Welch and Gutt (1959).

Figure 4.- The system: SiO_2 -FeO. From Bowen and Schairer (1932); reprinted by permission of the American Journal of Science. The system is binary only when small amounts of Fe₂O₃ in the liquids are disregarded.

Figure 5.— The system: SiO₂-MgO. From J. W. Greig (written communication, 1958); based on Bowen and Andersen (1914) and Greig (1927a).

Figure 6.- The system: CaO-Al₂O₃-SiO₂. From Greig (1927a) with data from Rankin and Wright (1915). Goldsmith (1948) suggested that the compound designated 3 CaO 5 Al₂O₃ is probably CaO 2 Al₂O₃.

Figure 7.- The system: FeO-Al₂O₃. From Schairer and Yagi (1952); reprinted by permission of the American Journal of Science. The system is ternary only when a small content of Fe₂O₃ in the liquids is disregarded.

Figure 8.- The system: K₂O-Al₂O₃-SiO₂. From Schairer and Bowen (1955); reprinted by permission of the American Journal of Science.

Figure 9.- The system: MgO-Al₂O₃-SiO₂. From Keith and Schairer (1952); reprinted by permission of the Journal of Geology; copyright, 1952, by the University of Chicago. Composite diagram based on Rankin and Merwin (1918), Bowen and Greig (1924), Greig (1927a), Schairer (1942), and Foster (1950).

Figure 10.- The system: Na₂O-Al₂O₃-SiO₂. From Schairer and Bowen (1956); reprinted by permission of the American Journal of Science.

Figure 11.- The system: CaO-FeO-SiO₂. From S. P. Clark, Jr. (written communication, 1962), modified from Bowen, Schairer and Posnjak (1933). Estimated field boundaries are shown by broken lines. The system is ternary only if a small content of Fe_2O_3 in the liquids are disregarded.

Figure 12.— The system: CaO-MgO-SiO₂. From Ricker and Osborn (1954); reprinted by permission of the American Ceramic Society. Composite diagram based on Ferguson and Merwin (1919), Greig (1927a), Bowen (1914), Osborn (1942), and Bredig (1950).

Figure 13.- The system: MgO-FeO-SiO₂. From Bowen and Schairer (1935); reprinted by permission of the American Journal of Science. The system is ternary only if a small content of Fe_2O_3 in the liquids is disregarded.

Figure 14. – The system: Al_2O_3 -CaO-FeO-SiO₂; the join plane: SiO₂-FeO-CaAl₂Si₂O₈, Anorthite. From Schairer (1942); reprinted by permission of the American Ceramic Society. The join is not ternary in the field of hercynite, FeAl₂O₄.

Figure 15.- The system: Al₂O₃-CaO-K₂O-SiO₂; the ternary section: KAlSi₂O₆, Leucite-SiO₂-CaAl₂Si₂O₈, Anorthite. From Schairer and Bowen (1947a); reprinted by permission of Commission Géologie de Finlande.

Figure 16.- The system: Al₂O₃-CaO-K₂O-MgO-SiO₂; the ternary section; KAlSi₂O₆, Leucite-SiO₂-CaMgSi₂O₆, Diopside. From Schairer and Bowen (1938); reprinted by permission of the American Journal of Science.

Figure 17.- The system: Al₂O₃-CaO-K₂O-Na₂O-SiO₂: the ternary section: NaAlSi₃O₈, Soda feldspar-KAlSi₃O₈, Potash feldspar-CaAl₂Si₂O₈, Lime feldspar. From Franco and Schairer (1951): reprinted by permission of the Journal of Geology: copyright, 1951, by the University of Chicago.

Figure 18.- The system: Al₂O₃-CaO-MgO-SiO₂; the join plane: Mg₂SiO₄, Forsterite-SiO₂-CaAl₂Si₂O₈, Anorthite. From Andersen (1915); reprinted by permission of the American Journal of Science. The join fails to be ternary in the field of spinel, MgAl₂O₄.

Figure 19.- The system: Al_2O_3 -CaO-MgO-SiO₂; the ternary section: CaMgSi₂O₆, Diopside-Mg₂SiO₄, Forsterite-CaAl₂Si₂O₈, Anorthite. From Osborn and Tait (1952); reprinted by permission of the American Journal of Science.

Figure 20.- The system: Al₂O₃-CaO-MgO-Na₂O-SiO₂; the ternary section: NaAlSi₃O₈, Albite-CaAl₂Si₂O₈, Anorthite-CaMgSi₂O₆, Diopside. From Bowen (1915); reprinted by permission of the American Journal of Science.

Figure 21.- The system: Al₂O₃-FeO-Na₂O-SiO₂: the join plane: NaAlSiO₄, Nepheline, Carnegieite-FeO-SiO₂. From Bowen (1937); reprinted by permission of the American Journal of Science. The join is not ternary in the field of hercynite, FeAl₂O₄.

Figure 22.- The system: Al_2O_3 -FeO-K₂O-SiO₂; the ternary section: KAlSi₂O₆, Leucite-SiO₂-Fe₂SiO₄, Fayalite. From Roedder (1951a); reprinted by permission of the Mineralogical Society of America. The section is ternary only when small contents of Fe₂O₃ in the liquids are disregarded.

Figure 23.- The system: A1₂O₃-K₂O-MgO-SiO₂: the ternary section: KA1Si₂O₆, Leucite-SiO₂-Mg₂SiO₄, Forsterite. From Schairer (1954); reprinted by permission of the American Ceramic Society. The fields of MgSiO₃, Enstatite, and of KA1Si₃O₈, Potash Feldspar, are so narrow they could not be shown in the diagram without some exaggeration.

Figure 24.- The system: A1₂O₃-K₂O-Na₂O-SiO₂: the ternary section: NaAlSiO₄, Nepheline, Carnegieite-KAlSiO₄, Kalsilite, Kaliophillite-SiO₂. From Schairer (1950); reprinted by permission of the Journal of Geology; copyright, 1950, by the University of Chicago.

REFERENCES

- Adams, L. H., 1919, Tables and curves for use in measuring temperatures with thermocouples: Am. Inst. Min. Metall. Engineers Bull., no. 153, p. 2111-2124.
- 1926, International critical tables: New York McGraw-Hill Book Co., v. 1, p. 57-59.
- Agamawi, Y. M., and White, J., 1951, The systems Al₂O₅-TiO₂SiO₂:British Ceramic Soc. Trans., v. 51, no. 5, p. 293-325.
- Alberman, K. B., Blakey, R. C., and Anderson, J. S., 1951, The oxides of uranium, Part II, The binary system UO2-CaO: Chem. Soc. London Jour., 1951, p. 1352-1356.
- Allen, W. C., and Snow, R. B., 1955, The orthosilicate-iron oxide portion of the system CaO-"FeO"-SiO₂: Am. Ceramic Soc. Jour., v. 38, no. 8, p. 264-280.
- Andersen, Olaf, 1915, The system anorthite-forsterite-silica: Am. Jour.Sci., ser. 4, v. 39, no. 232, p. 407-454.
- Andrussow, Leonid, 1925, Differential-methode und -apparat zur Bestimmung der Dissoziationsisochoren und Untersuchungen über die Kinetik der thermischen Dissoziation des Cadmiumkarbonats: Zeitschr. phys. Chemie, v. 115, no. 3 and 4, p. 273-288.
- d'Ans, J., and Löffler, J., 1930, Untersuchungen im System Na₂O-SiO₂-ZrO₂:
- Zeitschr. anorg. u. allg. Chemie, v. 191, no. 1 and 2, p. 1-35. Asanti, P., and Kohlmeyer, E. J., 1951, Über die thermischen Eigenschaften der Verbindungen von Kobalt mit Sauerstoff und Schwefel; Zeitschr. anorg. u. allg. Chemie, v. 265, no. 1-3, p. 90-98.
- Asker, W. J., Segnit, E. R., and Wylie, A. W., 1952, The potassium thorium fluorides: Chem. Soc. London Jour., 1952, p. 4470-4479.
- Atlas, Leon, 1952, The polymorphism of MgSiO3 and solid-state equilibria in
- the system MgSiO₃-CaMgSi₂O₆: Jour. Geology, v. 60, no.2, p. 125-147. Barrett, R. L., and McCaughey, W. J., 1942, The system CaO-SiO2-P2O5: Am. Mineralogist, v. 27, no. 10, p. 680-695.
- Bellanca, Angello, and Carapezza, Marcello, 1951, L'aftitalite nel sistema ternario Na₂SO₄-K₂SO₄-CuSO₄: Periodico mineralogica, v. 20, no.2-3, p. 272-307.
- Belyayev, I. N., 1952, Obmennoye razlozheniye vo vzaimnov sisteme iz sul'fatov i vol'framatov natriya i svintsa: Zhur. Obshchey Khimii, v. 22 (84), no. 10, p. 1746-1756.
- Belyayev, I. N., and Nesterova, A. K., 1952, Plavkost' troynoy sistem'i: okis' svintsa-pyatiokis' vanadiya-dvuokis' titana:Zhur. ObshcheyKhimii, v. 22 (84), no. 3, p. 396-403.
- Berezhnoy, A. S., 1950, Investigation of the system magnesia-lime-titanium oxide-silica: Ogneupory, v. 15, p. 350-359.
- Berezhnoy, A. S., Karyakin, L. I., and Dudavskiy, 1952, O sisteme Cu₂O-SiO₂ i o sushestvanii bezvodnykh silikatov medi: Akad, Nauk SSSR, Doklady, v. 83, no. 3, p. 399-401.
- Bergmann, A. G., and Dergunov, E. P., 1941, Das Schmelzdiagramm des System LiF-NaF-MgF₂: Acad. sci., U. R. S. S., Comptes rendus, v. 31, no. 8, p. 755-756.
- Bergmann, A. G., and Sholokhovich, M. L., 1953, Vzaimnaya sistema adiagonal'no-poyasnogo evtekticheskogo tipa iz metafosfatov i sul'fatov litiya i kaliya: Zhur. Obshchey Khimii, v. 23 (85), no. 7, p. 1075-1085.
- Berry, T. F., Allen, W. C., and Snow, R. B., 1950, Chemical changes in basic brick during service: Am. Ceramic Soc., Jour., v. 33, no. 4, p. 121-132.

- Boak, Tryggve, and Olander, Arne, 1955, The system CaSiO₃-CaF₂: Acta Chem. Scandinavica, v. 9, no. 8, p. 1350-1354.
- Bobrownicki, W., and Swiecki, Z., 1955, Phase diagrams for the production of silicate thermophosphates: Acad. polonaise Sci. Bull., Cl. 3, v. 3, no. 4, p. 233-237.
- Boeke, H. E., 1912, Die Schmelzerscheinungen und die umkehrbare Umwandlung des Calciumcarbonats: Neues Jahrb. Mineralogie, Geologie, u. Paläontologie, v. 1, p. 91-121.
- ------1913, Karbonatschmelzen unter Kohlensäuredruck. II: Naturf.Gesell. Halle Mitt., v. 3, p. 13-24.
- Booth, H. S., Starrs, B. A. and Bahnsen, M. J., 1933, The system sodium disilicate-sodium fluoride: Jour. Phys. Chemistry, v. 37, p. 1103-1107.
- Bowen, N. L., 1914, The ternary system: diopside-forsterite-silica: Am. Jour. Sci., 4th ser., v. 38, no. 224, p. 207-264.

- ------ 1928, The evolution of the igneous rocks: Princeton, N. J., Princeton Univ. Press, 332 p.

- Bowen, N. L., and Andersen, Olaf, 1914, The binary system MgO-SiO₂: Am. Jour. Sci., 4th ser., v. 37, no. 222, p. 487-500.
- Bowen, N. L., and Greig, J. W., 1924, The system Al₂O₃-SiO₂:Am. Ceramic Soc. Jour., v. 7, no. 4, p. 238-254.
- Bowen, N. L., and Schairer, J. F., 1929, The system:leucite-diopside:Am. Jour. Sci., 5th ser., v. 18, no. 106, p. 301-312.

- Bowen, N. L., Schairer, J. F., and Posnjak, E., 1933, The system CaO-FeO-SiO₂: Am. Jour. Sci., 5th ser., v. 26, p. 193-284.
- Bowen, N. L., Schairer, J. F., and Willems, H. W. V., 1930, The ternary system: Na₂SiO₃-Fe₂O₃-SiO₂: Am. Jour. Sci., 5th ser., v. 20, no. 120, p. 405-455.
- Bredig, M. A., 1943, Phase relations in the system calcium orthosilicateorthophosphate: Am. Mineralogist, v. 28, no. 11 and 12, p. 594-601.
 ——1950, Polymorphism of calcium orthosilicate: Am. Ceramic Soc. Jour., v. 33, no. 6, p. 188-192.
- Brewer, Leo, 1953, The thermodynamic properties of the oxides and their vaporization processes: Chem. Reviews, v. 52, p. 1-75.
- Bridgman, P. W., 1937, The phase diagram of water to 45,000 kg./cm²: Jour. Chem. Physics, v. 5, p. 964-966.
- Brisi, Cesare, 1957, Role of cuspidine (3CaO-2SiO₂-CaF₂) in the system CaO-SiO₂-CaF₂: Am. Ceramic Soc. Jour., v. 40, no. 5, p. 174-178.
- Brown, F. H., and Duwez, Pol, 1954, The zirconia-titania system: Am. Ceramic Soc. Jour., v. 37, no. 3, p. 129-132.
- Brownmiller, L. T., 1935, A study of the system lime-potash-alumina: Am. Jour. Sci. 5th ser. v. 29, no. 171, p. 260-277.

- Bružs, B., 1928, Velocity of thermal decomposition of carbonates: Jour. Phys. Chemistry, v. 30, no. 5, p. 680-693.
- Bunting, E. N., 1930a, Phase equilibria in the system SiO₂-ZnO:[U.S.] Natl. Bur. Standards Jour. Research, v. 4, no. 1, p. 131-136.
- -----1931, Phase equilibria in the system Cr₂O₃-Al₂O₃: [U.S.] Natl. Bur. Standards Jour. Research, v. 6, no. 6, p. 947-949.
- ------1932, Phase equilibria in the system SiO₂-ZnO-Al₂O₃: [U.S.] Natl. Bur. Standards Jour. Research, v. 8, no. 2, p. 279-287.
- ------ 1933, Phase equilibria in the systems TiO₂, TiO₂-SiO₂ and TiO₂-Al₂O₃:
- [U.S.] Natl. Bur. Standards Jour. Research, v. 11, no. 5, p. 719-725.
 Burdese, Aurelia, and Brisi, Cesare, 1952, Ricerche sul sistema CaO·Fe₂O₃-Fe₃O₄: Ricerca Sci., v. 22, no. 8, p. 1564-1567.
- Burdick, M. D., 1940, Studies on the system lime-ferric oxide-silica:[U.S.] Natl. Bur. Standards Jour. Research, v. 25, no. 4, p. 475-488.
- Carlson, E. T., 1932, The system: CaO-B₂O₃: [U.S.] Natl. Bur. Standards Jour. Research, v. 9, no. 6, p. 825-832.
- Carter, P. I., and Ibrahim, M., 1952, The ternary system Na₂O-FeO-SiO₂: Soc. Glass Technology Jour., v. 36, Trans., p. 142-163.
- Centnerszwer, M., 1930, Les Phénomènes de dissociation au point de vue de la regle des phases: Jour. Chimie Physique, v. 27, no. 1, p. 9-28.
- Centnerszwer, M., and Bružs, B., 1924, Die stufenweise Dissoziation des Magnesiumkarbonats: Zeitschr. phys. Chemie, v. 114, no. 3 and 4, p. 237-250.
- 1925, Zerfallsgeschwindigkeit fester Stoffe. I, Geschwindigkeit der Dissoziation des Magnesiumkarbonats: Zeitschr. phys. Chemie, v. 115, no. 5 and 6, p. 365-376.
- Centnerszwer, M., Falk, G., and Awerbuch, A., 1925, Über die Dissoziation des Bleikarbonats: Zeitschr. phys. Chemie, v. 115, no. 1 and 2, p. 29-53.
- Centnerszwer, M., and Krustinson, J., 1926, Beschreibung eines neuen Apparats zur dynamischen Bestimmung der Dissoziationsspannungen und die Dissoziation des Silberkarbonats: Zeitschr. phys. Chemie, v. 124, no. 3 and 4, p. 225-235.
- Clark, S. P., Jr., 1957, A note on calcite-aragonite equilibrium: Am. Mineralogist, v. 42, no. 7 and 8, p. 564-566.
- Clark, S. P., Jr., Robertson, E. C., and Birch, Francis, 1957, Experimental determination of kyanite-sillimanite equilibrium relations at high temperatures and pressures: Am. Jour. Sci., v. 225, no. 9, p. 628-640.
- Colson, Albert, 1905, Applications diverses du principle de Watt à la dissociation des carbonates de plomb et d'argent: Acad. sci. [Paris] Comptes rendus, v. 140, p. 865-867.
- Corruccini, R. J., 1949, Differences between the international temperature scales of 1948 and 1927: [U.S.]Natl. Bur. Standards Jour. Research, v. 43, no. 2, p. 133-136.
- Coughanour, L. W., and DeProsse, V. A., 1953, Phase equilibria in the system MgO-TiO2: [U.S.] Natl. Bur. Standards Jour. Research, v. 51, no. 2, p. 85-88.
- Coughanour, L. W., Roth, R. S., and DeProsse, V. A., 1954, Phase equilibrium relations in the systems lime-titania and zirconia-titania: [U.S.]
 Natl. Bur. Standards Jour. Research, v. 52, no. 1, p. 37-42.

- Coughanour, L. W., Roth, R. S., Marzullo, S., and Sennett, F. E., 1955, Solid-state reactions and dielectric properties in the system magnesialime-tin oxide-titania: [U. S.] Natl. Bur. Standards Jour. Research, v. 54, no. 3, p. 149-162.
- Counts, W. E., Roy, Rustum, and Osborn, E. F., 1953, Fluoride model systems. II, The binary systems CaF₂-BeF₂, MgF₂-BeF₂, and LiF-MgF₂: Am. Ceramic Soc. Jour., v. 36, no. 1, p. 12-17.
- MgF₂: Am. Ceramic Soc. Jour., v. 36, no. 1, p. 12-17.
 Curtis, C. E., and Sowman, H.G., 1953, Investigation of the thermal dissociation, reassociation, and synthesis of zircon: Am. Ceramic Soc. Jour., v. 36, no. 6, p. 190-198.
- Darken, L. S., 1948, Melting points of iron oxides on silica; Phase equilibria in the system Fe-Si-O as a function of gas composition and temperature: Am. Chem. Soc. Jour., v. 70, no. 6, p. 2046-2053.
- Darken, L. S., and Gurry, R. W., 1945, The system iron-oxygen. I. The wüstite field and related equilibria: Am. Chem. Soc. Jour., v. 67, p. 1398-1412.
- ——1946, The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases: Am. Chem. Soc. Jour., v. 68, no. 5, p. 798-816.
- -----1950, The composition of CaO-FeO-Fe₂O₃ and MnO-FeO-Fe₂O₃ melts at several oxygen pressures in the vicinity of 1600°: Am. Chem. Soc., Jour., v. 72, no. 9, p. 3906-3910.
- Day, A. L., and Sosman, R. B., 1911, High temperature gas thermometry: Carnegie Inst. Washington Pub. 157, 129 p.
- Dear, P. S., 1957, Subliquidus equilibrium for the ternary system SrO-Al₂O₃-SiO₂: Virginia Polytech. Inst. Bull., v. 50, no. 11, 12 p.
- -----1958, Subliquidus equilibrium for ternary system SrO-ZrO₂-SiO₂: Virginia Polytech. Inst. Bull., v. 51, no. 8, 10 p.
- DeVries, R. C., and Osborn, E. F., 1957, Phase equilibria in high-alumina part of the system CaO-MgO-Al₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 40, no. 1, p. 6-15.
- DeVries, R. C., and Roy, Rustum, 1953, Fluoride models for oxide systems of dielectric interest. The systems KF-MgF₂ and AgF-ZnF₂: Am. Chem. Soc. Jour., v. 75, no. 10, p. 2479-2484.
- DeVries, R. C., Roy, R., and Osborn, E. F., 1953, Phase equilibria in the system CaO-TiO₂-SiO₂ and their significance: Pennsylvania State Coll., School Mineral Industries 8th Quart. Prog. Rept. (2nd Ann. Rept.) Apr. 1, 1953, to June 30, 1953, p. 26-118.
- -----1954a, Phase equilibria in the system CaO-TiO₂: Jour. Phys. Chemistry, v. 58, no. 12, p. 1069-1073.
- -----1955, Phase equilibria in the system CaO-TiO₂-SiO₂: Am. Ceramic Soc. Jour., v. 38, no. 5, p. 158-71.
- DeWys, E. C., and Foster, W. R., 1956, The binary system anorthite (Ca Al₂Si₂O₈)-akermanite (Ca₂MgSi₂O₇): Am. Ceramic Soc. Jour., v. 39, no. 11, p. 372-376.
- Dietzel, Adolf, and Scholze, Horst, 1955, Untersuchungen im System B₂O₃-Al₂O₃-SiO₂: Glastechnische Ber., v. 28, no. 2, p. 47-51.
- Drake, L. C., and Benton, A. F., 1934, Adsorption of carbon dioxide and hydrogen on bare and oxygen-covered silver surfaces: Am. Chem. Soc. Jour., v. 56, no. 3, p. 506-511.

- Drossbach, Paul, 1936, Zur Elektrometallurgie des Aluminiums: Zeitschr. Elektrochemie, v. 42, no. 2, p. 65-70.
- Dutoit, William, 1927, Tensions de dissociations des carbonates de calcium de strontium et de baryum: Jour, chemie phys. v. 24, no. 2, p. 110-114.
- Duwez, Pol, and Odell, Francis, 1950, Phase relationships in the system zirconia-ceria: Am. Ceramic Soc. Jour., v. 33, no. 9, p. 274-283.
- Eitel, Wilhelm, 1923, Über das binare System CaCO₂-Ca₂SiO₄ und den Spurrit: Neues Jahrb. Mineralogie, Geologic u. Paläontologie, Beilage-Band, v. 48, p. 63-74.
- -1925, Über die Synthesen der Feldspatvertreter: Leipzig, Germany, Akad. Verlagsges., 258 p.
- -1938a, Die Wirkung der Fluoride als Mineralisatoren beim Klinkerbrand: Zement, v. 27, no. 30 and 31, p. 455-459 and 469-472.
- -1938b, Das System CaO-CaF₂-Ca₂SiO₄: Zeitschr. angew. Mineralogie, v. 1, no. 3, p. 269-284.
- -1941, Physikalische Chemie der Silikate: 2d ed., Leipzig, Germany, J.A. Barth, 826 p.
- Eitel, Wilhelm, and Skaliks, W., 1929, Über einige Doppelcarbonate der Alkalien und Erdalkalien: Zeitschr. anorg. u. allg. Chemie, v. 183, no. 3, p. 263-286.
- Eskola, Pentti, 1922, The silicates of strontium and barium: Am. Jour. Sci., 5th ser., v. 4, no. 23, p. 331-375. Eubank, W. R., and Bogue, R. H., 1948, Preliminary study on portions of
- the systems Na₂O-CaO-Al₂O₃-Fe₂O₃ and Na₂O-CaO-Fe₂O₅-SiO₃:[U.S.] Natl. Bur. Standards Jour. Research, v. 40, no. 3, p. 225-234.
- Faust, G. T., 1936, The fusion relations of iron-orthoclase: Am. Mineralogist, v. 21, no. 12, p. 735-763.
- Fenner, C. N., 1913, The stability relations of the silica minerals: Am. Jour. Sci., 4th ser., v. 36, no. 214, p. 331-384.
- Ferguson, J. B., and Merwin, H. E., 1919, The ternary system CaO-MgO-SiO2: Am. Jour. Sci., 4th ser., v. 48, no. 284, p. 81-123.
- Ferguson, J. B., and Buddington, A. F., 1920, The binary system Akermanite-Gehlenite: Am. Jour. Sci., 4th ser., v. 50, no. 296, p. 131-140.
- Finkelstein, Alexis, 1906, Die Dissociation des Baryumcarbonats: Deutsche chemische Gessell. Ber., v. 39, no. 7, p. 1585-1593.
- Fischer, W. A., and Hoffman, A., 1957, Gleichgewichtsuntersuchungen in den Systemem des Zirkonoxyds und Kalziumoxyds mit Eisenoxyden: Archiv Eisenhüttenw., v. 28, no. 12, p. 771-776.
- Fleissner, Hans, 1925, Über Erzröstung: Montanistische Rundschau, v. 17, no. 16, p. 523-529.
- Flint, E. P., and Wells, L. S., 1936, The system lime-boric oxide-silica: [U.S.] Natl. Bur. Standards Jour. Research, v. 17, no. 5, p. 727-752.
- Ford, W. F., and Rees, W. J., 1949, The CaO-MgO-Cr₂O₃ ternary system
- II: British Ceramic Soc. Trans., v. 48, no. 8, p. 291-321. Ford, W. F., and White, J., 1949, The CaO-MgO-Cr₂O₃ ternary system. III: British Ceramic Soc. Trans., v. 48, no. 11, p. 417-427.
- Foster, W. R., 1950, Synthetic sapphirine and its stability relations in the system MgO-Al₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 33, no. 3, p. 73-84.
- -1951a, High-temperature X-ray diffraction study of the polymorphism of MgSiO₃: Am. Ceramic Soc. Jour., v. 34, no. 9, p. 255-259.
- 1951b, A study of solid-state reaction in the ternary system MgO-ZrO2-SiO₂: Am. Ceramic Soc. Jour., v. 34, no. 10, p. 302-305.
- Foster, W. R., and Royal, H. F., 1949, An intermediate compound in the system BeO·Al₂O₃(chrysoberyl)-Al₂O₃(corundum): Am. Ceramic Soc. Jour., v. 32, no. 1, p. 26-34.

- Franco, R. R., and Schairer, J. F., 1951, Liquidus temperatures in mixtures of the feldspars of soda, potash, and lime: Jour. Geology, v. 59, no. 3, p. 259-267.
- Friedrich, K., 1911, Technisch-thermische Analyse von Hüttenprozessen: Stahl und Eisen, v. 31, no. 47, p. 1909-1917.
- Friedrich, K., and Smith, L. G., 1912, The thermal dissociation and the constitution of easily decomposed minerals: Centralb. Mineralogie, Geologie u. Paläontologie, 1912, p. 616-626, 651-659, 684-693.
 - -----1912, Thermische Data zu den Röstprozessen: Metallurgie, v. 9, no. 13, p. 409-418.
- Geller, A., 1924, Über das Verhalten verschiedener Minerale der Salzlager bei hohen Drucken und wechselnden Temperaturen: Zeitsch. Kristallographie, v. 60, no. 5 and 6, p. 414-472.
- Geller, R. F., and Bunting, E. N., 1936, The system K₂O-PbO-SiO₂: [U. S.] Natl. Bur. Standards Jour. Research, v. 17, no. 2, p. 277-289.
- -----1937, The system PbO-B₂O₃: [U. S.] Natl. Bur. Standards Jour. Research, v. 18, no. 5, p. 585-593.

- Geller, R. F., Creamer, A. S., and Bunting, E. N., 1934, The system: PbO-SiO₂: [U.S.] Natl. Bur. Standards Jour. Research, v. 13, no. 2, p. 237-244.
- Geller, R. F., and Lang, S. M., 1955, Personal communication.
- Geller, R. F., Yavorsky, P. J., Steierman, B. L., and Creamer, A. S., 1946, Studies of binary and ternary combinations of magnesia, calcia, baria, beryllia, alumina, thoria, and zirconia in relation to their use as porcelains: [U. S.] Natl. Bur. Standards Jour. Research, v. 36, no. 3, p. 277-312.
- Glasser, F. P., 1958a, The system MnO-SiO₂: Am. Jour. Sci., v. 256, no. 6, p. 398-412.
 - —1958b, The ternary system MgO-MnO-SiO₂: Dissertation Abs., v. 19, no. 1, p. 52, Library of Congress Card Microfilm 58-2260.
- Glasser, F. P., and Osborn, E. F., 1958, Phase equilibrium studies in the system CaO-Cr₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 41, no. 9, p. 358-367.
- Glushkova, V. B., 1957, Usloviya obrazovaniya silikatov bariya: Zhur.Neorganicheskoy Khimii, v. 2, no. 10, p. 2438-2448.
- Goldsmith, J. R., 1948, The compound CaO 2Al₂O₃: Jour. Geology, v. 56, no. 1, p. 80-81.
- Goldsmith, J. R., and Graf, D. L., 1957, The system CaO-MnO-CO₂, solidsolution and decomposition relations: Geochim. et Cosmochim. Acta, v. 11, no. 4, p. 310-334.
- Goldsmith, J. R., Graf, D. L., and Joensuu, O. I., 1955, The occurrence of magnesian calcites in nature: Geochim. et Cosmochim. Acta, v. 7, no. 5-6, p. 212-230.
- Goranson, R. W., and Kracek, F. C., 1932, An experimental investigation of the phase relations of K₂Si₄O₉ under pressure: Jour. Phys. Chemistry, v. 36, no. 3, p. 913-926.
- Graf, D. L., and Goldsmith, J. R., 1955, Dolomite-magnesian calcite relations at elevated temperatures and carbon dioxide pressures: Geochim. et Cosmochim. Acta, v. 7, p. 109-128.
- Grahmann, Werner, 1913, Vergleich der Sulfate der Erdalkalien und des Bleis in den Temperatur-konzentrationsdiagrammen mit Kaliumsulfat unter besonderer Berücksichtigung der dimorphie von anhydrit, Colestin, Baryt und Anglesit: Zeitschr. anorg. Chemie, v. 81, no. 3, p. 257-314.
- Grebenshchikov, I. V., 1949, Fiziko-khimicheskie svoystva troynoy sistemy, Okis' natriya-okis' svintsa-kremnezem: Moskva and Leningrad, Izdatel'stvo Akad. Nauk SSSR, 219 p.
- Greene, K. T., and Morgan, W. R., 1941, The system sodium disilicatebarium disilicate: Am. Ceramic Soc. Jour., v. 24, no. 4, p. 111-116.
- Greig, J. W., 1926, Formation of mullite from cyanite, and alusite, and sillimanite: Am. Jour. Sci., 5th ser., v. 11, no. 61, p. 1-26.

- Greig, J. W., and Barth, Tom. F. W., 1938, The system Na₂O·Al₂O₃·2 SiO₂ (Nephelite, Carnegieite)-Na₂O·Al₂O₃·6SiO₂(albite): Am. Jour. Sci., 5th ser., v. 35A, p. 93-112.
- Greig, J. W. Posnjak, E., Merwin, H. E., and Sosman, R. B., 1935, Equilibrium relationships of Fe₃O₄, Fe₂O₃, and oxygen: Am. Jour. Sci., 5th ser., v. 30, no. 177, p. 239-316.
- Grieve, J., and White, J., 1939, The system FeO-TiO2: Glasgow, Scotland, Royal Tech. College Jour., v. 4, pt. 3, p. 441-448.
- Guinier, André, and Yannaquis, N., 1957, Sur le polymorphisme du silicate bicalcique: Acad. sci. [Paris] Comptes rendus, v. 244, no. 21, p. 2623-2625.
- Gummer, W. K., 1943, The system CaSiO₃-CaAl₂Si₂O₈-NaAlSiO₄: Jour. Geology, v. 51, no. 8, p. 503-530.
- Gurry, R. W., and Darken, L. S., 1950, The composition of CaO-FeO-Fe₂O₃ and MnO-FeO-Fe₂O₃ melts at several oxygen pressures in the vicinity of 1600°: Am. Chem. Soc. Jour., v. 72, no. 9, p. 3906-3910.
 Hansen, W. C., Brownmiller, L. T., and Bogue, R. H., 1928, Studies on
- Hansen, W. C., Brownmiller, L. T., and Bogue, R. H., 1928, Studies on the system calcium oxide-alumina-ferric oxide: Am. Chem. Soc. Jour., v. 50, no. 2, p. 396-406.
- Harker, R. I., 1958, The system MgO-CO₂-A and the effect of inert pressure on certain types of hydrothermal reactions: Am. Jour. Sci., v. 256, p. 128-138.
- Harker, R. I., and Hutta, J. J., 1956, The stability of smithsonite: Econ. Geology, v. 51, no. 4, p. 375-381.
- Harker, R. I., and Tuttle, O. F., 1955, Studies in the system CaO-MgO-CO₂: Am. Jour. Sci., v. 253, p. 209-224, 274-282.
- Hartmann, H., and Haegermann, H., 1953, Untersuchungen im system CaO-P₂O₅-Al₂O₃ und CaO-P₂O₅-SiO₂-Al₂O₃: Zement-Kalk-Gips, v. 6, no. 3, p. 81-89.
- Hatch, R. A., 1943, Phase equilibrium in the system: Li₂O·Al₂O₃·SiO₂: Am. Mineralogist, v. 28, no. 9-10, p. 471-496.
- Hay, R., Howat, D. D., and White, James, 1934, Slag systems: West of Scotland Iron and Steel Inst., v. 41, pt. 6, p. 97-103.
- Hay, R., White, James, and McIntosh, A. B., 1935, Slag systems: West of Scotland Iron and Steel Inst., v. 42, pt. 6, p. 99-104.
- Hay, R., McIntosh, A. B., Rait, J. R., and White, Jr., 1937, Slag systems: West of Scotland Iron and Steel Inst., v. 44, pt. 6, p. 85-89.

- Herold, P. G., and Smothers, W. J., 1954, Solid-state equilibrium relations in the system MgO-Al₂O₃-SiO₂-ZrO₂: Am. Ceramic Soc. Jour., v. 37, no. 8, p. 351-353.
- Hill, W. L., Faust, G. T., and Hendricks, S. B., 1943, Polymorphism of phosphoric oxide: Am. Chem. Soc. Jour., v. 65, no. 5, p. 794-802.
- Hill, W. L., Faust, G. T., and Reynolds, D. S., 1944, The binary system P₂O₅-2CaO·P₂O₅, Part I: Am. Jour. Sci., v. 242, no. 9, p. 457-477.
- Hill, V. G., Roy, Rustum, and Osborn, E. F., 1952, The system aluminagallia-water: Am. Ceramic Soc. Jour., v. 35, no. 6, p. 135-142.
- Horn, W. F., and Hummel, F. A., 1955, Notes on the system B₂O₃-SiO₂-P₂O₅, Part I. The BPO₄-SiO₄ join: Soc. Glass Technology, Jour., v. 39, Trans., p. 113-120.
- Howarth, J. T., and Turner, W. E. S., 1930, The decomposition of sodium carbonate by heat: Soc. Glass Technology, Jour., v. 14, Trans., p. 394-401.
- Hummel, F. A., and Englert, W. J., 1955, Notes on the system B₂O₃-SiO₂-P₂O₅, Part II. The ternary system: Soc. Glass Technology, Jour., v. 39, Trans., p. 121-127.
- Hüttig, G. F., and Frankenstein, W., 1930, Study of oxide hydrates, XIX. The system, magnesium oxide-carbon dioxide: Zeitschr. anorg. allg. Chemie, v. 185, p. 413-416.
- Hüttner, K., 1908, Über die Einwirkung der Phosphorsäure auf Kieselsäure und Silikatgläser: Zeitschr. anorg. Chemie, v. 59, no. 2, p. 216-224.
- Ingerson, Earl, Morey, G. W., and Tuttle, O. F., 1948, The systems K₂O-ZnO-SiO₂, ZnO-B₂O₃-SiO₂, and Zn₂SiO₄-Zn₂GeO₄: Am. Jour. Sci., v. 246, no. 1, p. 31-40.
- Iwasé, Keizô, and Fukusima, Masaji, 1936, Metastable crystallization of CaTiO₃, TiO₂, SiO₂, and CaSiO₃ in place of CaO-SiO₂-TiO₂ due to supercooling of the latter: Tôhoku Imp. Univ. Sci. Repts,1st ser. (Honda Anniversary Volume), p. 454-462.
- Iwasé, Keizô, and Nisioka, Usaburô, 1936, The equilibrium diagram of the system, CaO TiO₂-SiO₂-MnO TiO₂: Tôhoku Imp. Univ. Sci. Repts., 1st ser., v. 25, no. 3, p. 504-509.
 - 1938, The equilibrium diagrams of the three binary systems; (1) CaO-SiO₂·TiO₂-MgO·TiO₂, (2) CaO·MgO·2SiO₂-MnO·TiO₂ and (3) CaO·SiO₂-2CaO·Fe₂O₃: Tôhoku Imp. Univ. Sci. Repts., 1st ser., v. 26, no. 4, p. 592-601.
- Jaeger, F. M., and Germs, H. C., 1921, III. Über die binären Systeme der Sulfate, Chromate, Molybdate, und Wolframate des Bleies: Zeitschr. anorg. u. allg. Chemie, v. 119, no. 2, p. 145-173.
- Jaeger, F. M., and Klooster, H. S., 1914, Studiën op het gebied der Silikaatchemie. I. Over de Verbindingen van Lithiumoxyde en Kiezelzuur: Koninkl. Akad. Wetensch., Amsterdam, Verslag, v. 22, p. 900-923.
- Jamieson, J. C., 1953, Phase equilibrium in the system calcite-aragonite: Jour. Chem. Physics, v. 21, no. 8, p. 1385-1390.
- Jander, Wilhelm, 1928, Reaktionen im festen Zustande bei höheren Temperaturen. III. Mitteilung. Heterogene Gleichgewichte bei Systemen, die mit einer Gasentwicklung verbunden sind: Zeitschr. anorg. u. allg. Chemie, v. 168, no. 2, p. 113-124.
- Johnston, John, 1910, The thermal dissociation of calcium carbonate: Am. Chem. Soc. Jour., v. 32, no. 8, p. 938-946.
- Kallenberg, S., 1914, Preliminary communication on the system CaSiO₃-MnSiO₃: Centralb. Mineralogie, Geologie u. Paläontologie, 1914, p. 388-391.

- Karandeeff, B., 1910, Über die binärem Systeme des Calciummetasilikats mit Calciumfluorid und Calciumchlorid: Zeitschr. anorg. Chemie, v. 68, no. 3, p. 188-197.
- Karkhanavala, M. D., and Hummel, F. A., 1953, Reactions in the system Li₂O-MgO-Al₂O₃-SiO₂, 1, The cordierite-spodumene join: Am. Ceramic Soc. Jour., v. 36, no. 12, p. 393-397.
- Keith, M. L., 1954, Phase equilibria in the system MgO-Cr₂O₂-SiO₂: Am. Ceramic Soc. Jour., v. 37, no. 10, p. 490-496.
- Keith, M. L., and Schairer, J. F., 1952, The stability field of sapphirine in the system MgO-Al₂O₃-SiO₂: Jour. Geology, v. 60, no. 2, p.181-186.
 Kelley, K. K., 1949, Contributions to the data on theoretical metallurgy. X,
- Kelley, K. K., 1949, Contributions to the data on theoretical metallurgy. X, High-temperature heat-content, heat-capacity, and entropy data for inorganic compounds: U.S. Bur. Mines Bull. 476.
- Kelley, K. K., and Anderson, C. T., 1935, Contributions to the data on theoretical metallurgy, IV. Metal carbonates-correlations and applications of thermodynamic properties: U.S. Bur. Mines Bull. 384.
- Kelley, K. K., Southard, J. C., and Anderson, C. T., 1941, Thermodynamic properties of gypsum and its dehydration products: U.S. Bur. Mines Tech. Paper 625.
- Kelley, K. K., Todd, S. S., Orr, R. L., King, E. G., and Boonickson, K. R., 1953, Thermodynamic properties of sodium-aluminum and potassium-aluminum silicates: U.S. Bur. Mines Rept. Inv. 4955.
- Kendall, James, and Davidson, A. W., 1921, Compound formation and solubility in systems of the type sulfuric acid, Metal sulfate: Am. Chem. Soc. Jour., v. 43, no. 5, p. 979-990.
- Klooster, van H. S., 1910a, Über das Verhalten der Metabor-und der Metaphosphorsäure in den Schmelzen ihrer Alkalisalze: Zeitschr. anorg. Chemie, v. 69, no. 2, p. 122-134.
- Kordes, Ernest, Zofelt, Bernhard, and Proger, Hansjurgen, 1951, Die Mischungslucke im flussigen Zustand zwischen Na-Ca-Silikaten und Na₂ SO₄: Zeitschr. anorg. u. allg. Chemie, v. 264, no. 5-6, p. 255-271.
- Kracek, F. C., 1930a, The system sodium oxide-silica: Jour. Phys. Chemistry, v. 34, p. 1583-1598.
- ——1932, The ternary system, K₂SiO₃-NaSiO₃-SiO₂: Jour. Phys. Chemistry, v. 36, p. 2529-2542.
- ——1939a, Phase equilibrium relations in the system, Na₂SiO₃-Li₂SiO₃: Am. Chem. Soc. Jour., v. 61, no. 8, p. 2157-2161.
 - ——1939b, Phase equilibrium relations in the system, Na₂SiO₃-Li₂SiO₃-SiO₂: Am. Chem. Soc. Jour., v. 61, no. 10, p. 2863-2877.
- Kracek, F. C., Bowen, N. L., and Morey, G. W., 1937, Equilibrium relations and factors influencing their determination in the system K₂SiO₃-SiO₃: Jour. Phys. Chemistry, v. 41, no. 9, p. 1183-1193.
- Kracek, F. C., Morey, G. W., and England, J. L., 1953, Polymorphism of sodium disilicate, Na₂Si₂O₅: Carnegie Inst. Washington Year Book 52, Ann. Rept. of the Director, Geophysical Lab., p. 58-60.
- Kracek, F. C., Morey, G. W., and Merwin, H. E., 1938, The system water-boron oxide: Am. Jour. Sci., 5th ser., v. 35A, p. 143-171.

- Kracek, F. C., Neuvonen, K. J., and Burley, Gordon, 1951, Thermochemistry of mineral substances, 1, A thermodynamic study of the stability of jadeite: Washington Acad. Sci. Jour., v. 41, no. 12, p. 373-383.
- Krakau, K. A., Mukhin, E. J., and Heinrich, M. S., 1937, Equilibrium diagram of the ternary system Na₂SiO₃-PbSiO₃-SiO₂: Acad. sci. U. R.S. S. Comptes rendus, v. 14, no. 5, p. 281-285.
- Krings, W., and Schackmann, H., 1935, Die Sauerstoffdrucke flüssiger Eisenoxyd-Eisenoxydulschmelzen: Zeitschr. Electrochemie, v. 41, no. 7b, p. 479-487.
- Krishna Murthy, M., and Hummel, F. A., 1954, Phase equilibria in the system lithium metasilicate-β-eucryptite: Am. Ceramic Soc. Jour., v. 37, no. 1, p. 14-17.
- Kröger, Von C., Illner, K. W., and Graeser, W., 1943, Über die Systeme Alkalloxyd-CaO-Al₂O₃-SiO₂. XI, Die Reaktionsdrucke im System K₂O-CaO-SiO₂CO₂: Zeitschr. anorg. u. allg. Chemie, v. 251, no. 3, p. 270-284.
- Krustinsons, J., 1932, Die Dissoziation des Manganspats und des Mangancarbonats: Zeitschr. Elektrochemie, v. 38, no. 10, p. 780-783,
- Lambertson, W. A., and Mueller, M. H., 1953a, Uranium oxide phase equilibrium systems, 1, UO₂Al₂O₃: Am. Ceramic Soc. Jour., v. 36, no. 10, p. 329-331.
- ——1953b, Uranium oxide phase equilibrium system II, UO₂-MgO: Am. Ceramic Soc. Jour., v. 36, no. 10, p. 332-334.
- -----1953c, Uranium oxide phase equilibrium system III, UO₂-ZrO₂: Am. Ceramic Soc. Jour., v. 36, no. 11, p. 365-368.
- Lambertson, W. A., Mueller, M. H., and Gunzel, F. H., Jr., 1953, Uranium oxide phase equilibrium systems, IV, UO₂-ThO₂: Am. Ceramic Jour., v. 36, no. 12, p. 397-399.
- Lander, J. J., 1949, Polymorphism and anion rotational disorder in the alkaline earth carbonates: Jour. Chem. Physics, v. 17, no. 10, p. 892-901.
- -----1951a, Experimental heat contents of SrO, BaO, CaO, BaCO₃ and SrCO₃ at high temperatures, dissociation pressures of BaCO₃ and SrCO₃: Am. Chem. Soc. Jour., v. 73, no. 12, p. 5794-5797.
- Lang, S. M., Fillmore, C. L., and Maxwell, L. H., 1952, The system beryllia-alumina-titania, phase relations and general physical properties of three-component porcelains: [U.S.] Natl. Bur. Standards Jour. Research, v. 48, no. 4, p. 298-312.
- Lang, S. M., Maxwell, L. H., and Geller, R. F., 1949, Some physical properties of porcelains in the systems magnesia-beryllia-zirconia and magnesia-beryllia-thoria and their phase relations: [U.S.] Natl. Bur. Standards Jour. Research, v. 43, no. 5, p. 429-447.
- Lang, S. M., Roth, R. S., and Fillmore, C. L., 1954, Some properties of porcelains and phase relations in the ternary systems of beryllia and zirconia with titania, ceria, and chromia: [U.S.] Natl. Bur. Standards Jour. Research, v. 53, no. 4, p. 201-210.
- Langenberg, F. C., and Chipman, John, 1956, Determination of 1600° and 1700°C liquidus lines in CaO·2Al₂O₃ and Al₂O₃ stability fields of the system CaO-Al₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 39, no. 12, p. 432-433.

- Lea, F. M., and Parker, T. W., 1934, Investigations on a portion of the quaternary system CaO-Al₂O₃-SiO₂-Fe₂O₃. The quarternary system CaO-2CaO·SiO₂-5CaO·3Al₂O₃-4CaO·Al₂O₃·Fe₂O₃:Royal Soc.[London] Philos. Trans., ser. A, v. 234, p. 1-41.
- Le Chatelier, H., 1887, Sur la determination de quelques points de fusion et de decomposition aux temperatures élevées: Soc. chim. France Bull., 2nd ser., v. 47, p. 300.
- Levin, E. M., and Cleek, G. W., 1958, Shape of liquid immiscibility volume in the system barium oxide-boric oxide-silica: Am. Ceramic Soc. Jour., v. 41, no. 5, p. 175-179.
- Levin, E. M., and Ugrinic, G. M., 1953, The system barium oxide-boric oxide-silica: [U.S.] Natl. Bur. Standards Jour. Research, v. 51, no. 1, p. 37-56.
- MacDonald, G. J. F., 1956, Experimental determination of calcite-aragonite equilibrium relations at elevated temperatures and pressures: Am. Mineralogist, v. 41, no. 9 and 10, p. 744-756.
- McIntosh, A. B., Rait, J. R., and Hay, R., 1937, The binary system, Feo-Al₂O₃: Glasgow, Scotland, Royal Tech. College Jour., v.4, pt. 1, p. 72-76.
- Mackenzie, W. S., 1957, The crystalline modifications of NaAlSi₃O₈: Am. Jour. Sci., v. 255, no. 7, p. 481-516.
- McMurdie, H. F., 1937, Studies on a portion of the system: CaO-Al₂O₃-Fe₂O₃:[U.S.] Natl. Bur. Standards Jour. Research, v. 18, no. 4, p. 475-484.
- McMurdie, H. F., and Insley, H., 1936, Studies on the quaternary system CaO-MgO-2CaO·SiO₂-5CaO·3Al₂O₃: [U. S.] Natl. Bur. Standards Jour. Research, v. 16, no. 5, p. 467-474.
- McTaggart, G. D., and Andrews, A. I., 1957, Immiscibility area in the system TiO₂ZrO₂-SiO₂: Am. Ceramic Soc. Jour., v. 40, no. 5, p. 167-170.
- Maddocks, W. R., 1935, The ternary system FeO-MnO-SiO₂: London, Iron and Steel Inst., Carnegie Scholarship Mem., v. 24, p. 51-68.
- Maier, C. G., 1929, Oxide cells of cadmium, copper, tin and lead: Am. Chem. Soc. Jour., v. 51, no. 1, p. 194-207.
- Marc, R., and Simek, A., 1913, Über die thermische Dissoziation des magnesiumkarbonats: Zeitschr. anorg. Chemie, v. 82, no. 1, p. 17-49.
- Marchal, Germaine, 1923, Sur la dissociation du sulfate d'argent: Acad. sci. [Paris] Comptus rendus, v. 176, p. 299-301.
- Martin, Erich, and Vogel, Rudolf, 1932, Das System Eisenoxydul-Eisenoxyduloxyd: Archiv Eisenhüttenw., v. 6, no. 3, p. 109-111.
- Mason, Brian, 1944, The system Fe₂O₃-Mn₂O₃, Some comments on the names bixbyite, sitaparite, and partridgeite: Am. Mineralogist, v. 29, no. 1 and 2, p. 66-69.
- Massazza, Franco, 1955, Ricerche sui sisteme SrO-SiO₂ e SrO-SiO₂-CaO: La Chimica e L'Industria, v. 37, no. 12, p. 939-943.
- Massazza, Franco, and Sirchia, Efisia, 1958, II sistema MgO-SiO₂-TiO₂, Nota II - Gli equilibri allo stato solido e alla fusione: La Chimicae L'Industria, v. 40, no. 6, p. 460-467.
- Mazzetti, C., and Carli, F., 1926, Borati anidri di litio, cadmio, piombo, manganese: Gazz. chim. italiana, v. 56, no. 1, p. 19-28.
- Melent'ev, B. N., and Ol'Shanskiy, 1952, Ravnovesie nesmeshivayushchikhsya zhidkostey v sisteme NaO-Al₂O₃-SiO₂-Ca₃(PO₄)₂: Akad. Nauk SSSR, Doklady, v. 86, no. 6, p. 1125-1128.
- Menzel, Heinrich, 1922, Über Dissoziations und Hydrolysengleichgewichte in Lösungen kohlensäuer und borsaurer Salze: Zeitschr. phys. Chemie, v. 100, p. 276-315.

- Menzel, Heinrich, and Brückner, Arndt, 1930, Studien an kohlensäuren Magnesiumsalzen. I. Basische Magnesiumcarbonate: Zeitschr. Elektrochemie, v. 36, no. 2, p. 63-87.
- Menzel, Heinrich, Brückner, Arndt, and Schulz, H., 1930, Studien an kohlensäuren Magnesiumsalzen. II, Normales Magnesiumcarbonat: Zeitschr. Elektrochemie, v. 36, no. 3, p. 188-196.
- Miyashiro, Akiho, 1957, Cordierite-indialite relations: Am. Jour. Sci., v. 255, no. 1, p. 43-62.
- Morey, G. W., 1930, The devitrification of soda-lime-silica glasses: Am. Ceramic Soc. Jour., v. 13, no. 10, p. 683-713.
- —— 1932, The effect of boric oxide on the devitrification of the soda-limesilica glasses. The quaternary system Na₂O-CaO-B₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 15, no. 9, p. 457-475.
- —— 1951, The ternary system Na₂O-B₂O₃-SiO₂: Soc. Glass Technology Jour., v. 35, Trans. p. 270-283.
- ----- 1952, The system sodium metaphosphate-calcium metaphosphate: Am. Chem. Soc. Jour., v. 74, no. 22, p. 5783-5784.
- Morey, G. W., and Bowen, N. L., 1925, The ternary system sodium metasilicate-calcium metasilicate-silica: Soc. Glass Technology, Jour., v. 9, Trans., p. 226-262.
- Morey, G. W., and Ingerson, Earl, 1937, The melting of danburite. A study of liquid immiscibility in the system, CaO-B₂O₃-SiO₂: Am. Mineralogist, v. 22, no. 1, p. 37-47.
- ----- 1944, The binary system NaPO3-Na4P₂O7: Am. Jour. Sci., v. 242, no. 1, p. 1-6.
- Morey, G. W., Kracek, F. C., and Bowen, N. L., 1930, The ternary system K₂O-CaO-SiO₂: Soc. Glass Technology, Jour., v. 14, Trans., p. 149-187.
- Morey, G. W., and Merwin, H. E., 1936, Phase equilibrium relationships in the binary system, sodium oxide-boric oxide, with some measurements of the optical properties of the glasses: Am. Chem. Soc. Jour., v. 58, no. 11, p. 2248-2254.
- Morgan, R. A., and Hummel, F. A., 1949, Reactions of BeO and SiO₂; synthesis and decomposition of phenacite: Am. Ceramic Soc. Jour., v. 32, no. 8, p. 250-255.
- Muan, Arnulf, 1955, Phase equilibria in the system FeO-Fe₂O₃-SiO₂: Am. Inst. Mining Metall. Engineers Trans., v. 203, p. 965-976.
- 1957b, Phase equilibrium relationships at liquidus temperatures in the system FeO-Fe₂O₃-Al₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 40, no. 12, p. 420-431.
- ------ 1958a, On the stability of the phase Fe₂O₃·Al₂O₃: Am. Jour. Sci., v. 256, no. 6, p. 413-422.
- ----- 1958b, Reactions between iron oxides and alumina-silica refractories: Am. Ceramic Soc. Jour., v. 41, no. 8, p. 275-286.
- ----- 1958c, Phase equilibria at high temperatures in iron silicate systems: Am. Ceramic Soc. Bull., v. 37, p. 81-84.
- 1958d, Phase equilibria at high temperatures in oxide systems involving changes in oxidation states: Am. Jour. Sci., v. 256, no. 3, p. 171-207.
 1959, Phase equilibria in the system manganese oxide-SiO₂ in air: Am. Jour. Sci., v. 257, no. 4, p. 297-315.
- Muan, Arnulf, and Gee, G. L., 1956, Phase equilibrium studies in the system iron oxide-Al₂O₃ in air and at 1 atm. O₂ pressure: Am. Ceramic Soc. Jour., v. 39, no. 6, p. 207-214.

Muan, Arnulf, and Osborn, E. F., 1951, Fundamental investigation of steel plant refractories problems. I, Phase relations in the system 2CaO-SiO₂-CaO·SiO₂-2CaO·Al₂O₃·SiO₂-FeO: Am. Iron and Steel Inst. Year Book, 1951, p. 325-359.

—— 1956, Phase equilibria at liquidus temperatures in the system MgO-FeO-Fe2O3-SiO2: Am. Ceramic Soc. Jour., v. 39, no. 4, p. 121-140.

- Nacken, Richard, 1907, Über die Bildung und Umwandlung von Mischkristallen und Doppelsalzen in den binärem Systemen der dimorphen Sulfate von Lithium, Natrium, Kalium und Silber: Neues Jahrb. Mineralogie, Geologie u. Paläontologie, Beilage-Band, v. 24, no. 1, p. 1-68.
- Niggli, Paul, 1916, Gleichgewichte zwischen TiO₂ and CO₂, sowie SiO₂ und CO₂ in Alkali-, Kalk-Alkali und Alkali-Aluminatschmelzen: Zeitschr. anorg. u. allg. Chemie, v. 98, no. 4, p. 241-326.

- Nisioka, Usaburð, 1935, The equilibrium diagram of the system CaO·MgO· 2SiO₂-CaOTiO₂: Tôhoku Imp. Univ. Sci. Repts., 1st ser., v. 24, no. 5, p. 714-717.
- Nowotny, H., and Funk, R., 1951, Ein Beitrag zum System: Al₂O₃-Fe₂O₃-SiO₂: Radex-Rundschau, 1951, no. 8, p. 334-340.
- Oelsen, Willey, and Maetz, Helmut, 1941, Das Verhalten des Flusspates und der Kalziumphosphate gegenüber dem Eisenoxydul im Schmelzfluss und seine metallurgische Bedeutung:Düsseldorf, Germany, Kaiser-Wilhelm-Inst. Eisenforschung, Mitt., v. 23, p. 195-245.
- Ol'Shanskiy, Ya. I., 1950, Sisteme FeS-FeO-SiO₃: Akad. Nauk SSSR Doklady, v. 70, no. 2, p. 245-248.
- Osborn, E. F., 1942, The system CaSiO₃-diopside-anorthite: Am. Jour. Sci., v. 240, no. 11, p. 751-788.

—— 1953, Subsolidus reactions in oxide systems in the presence of water at high pressures: Am. Ceramic Soc. Jour., v. 36, no. 5, p. 147-151.

- Osborn, E. F., and Schairer, J. F., 1941, The ternary system pseudowollastonite-akermanite-gehlenite: Am. Jour. Sci., v. 239, no. 10, p. 715-763.
- Osborn, E. F., and Tait, D. B., 1952, The system diopside-forsteriteanorthite: Am. Jour. Sci., Bowen Volume, p. 413-433.
- Paetsch, H. H., and Dietzel, Adolf, 1956, Untersuchungen über das System PbO-SiO₂-P₂O₅: Glastechnische Ber., v. 29, no. 9, p. 345-356.
- Pascal, Paul, 1913, Die Elektrometallurgie des Aluminiums. I, Das ternäre System Tonerde-Fluorit-Kryolith: Zeitschr. Elektrochemie, v. 19, no. 16, p. 610-617.
- Peretti, E. A., 1957, Thermal decomposition of lead carbonate: Am. Ceramic Soc. Jour., v. 40, no. 5, p. 171-173.
- Phillips, Bert, and Muan, Arnulf, 1958, Phase equilibria in the system Caoiron oxide-SiO2 in air and at 1 atm. O2 pressure: Am. Ceramic Soc. Jour., v. 41, no. 11, p. 445-454.
- Posnjak, E., and Tunell, G., 1929, The system, cupric oxide-sulphur trioxide-water: Am. Jour. Sci., 5th ser., v. 18, no. 103, p. 1-34.
- Prince, A. T., 1943, The system albite-anorthite-sphene: Jour. Geology, v. 51, no. 1, p. 1-16.
- ----- 1951, Phase equilibrium relationships in a portion of the system MgO-Al₂O₃-2CaO·SiO₂: Am. Ceramic Soc., v. 34, no. 2, p. 44-51.
- 1954, Liquidus relationships on 10 percent MgO plane of the system lime-magnesia-alumina-silica: Am. Ceramic Soc. Jour., v. 37, no. 9, p. 402-408.

^{----- 1919,} Untersuchungen an Karbonat-und-Chloridschmelzen: Zeitschr. anorg. u. allg. Chemie, v. 106, no. 2, p. 126-142.

Prokopowitz, T. I., and Hummel, F. A., 1956, Reactions in the system Li₂O-MgO-Al₂O₃-SiO₂. II, Phase equilibria in the high-silica region: Am. Ceramic Soc. Jour., v. 39, no. 8, p. 266-278.

- Rait, J. R., 1949, Basic refractories: Iron and Steel, v. 22, p. 187-193, 289-293, 493-498, 623-628.
- Rankin, G. A., and Merwin, H. E., 1916, The ternary system CaO-Al₂O₃-MgO: Am. Chem. Soc. Jour., v. 38, no. 3, p. 568-588.
 - ----- 1918, The ternary system MgO-Al₂O₃-SiO₂: Am. Jour. Sci., 4th ser., v. 45, no. 268, p. 301-325.
- Rankin, G. A., and Wright, F. E., 1915, The ternary system CaO-Al₂O₃-SiO₂, with optical study: Am. Jour. Sci., 4th ser., v. 39, no. 229, p. 1-79.
- Rao, M. R., 1957, Melting points and certain phase relations in the system MgO-Fe₂O₃-TiO₂-SiO₂: Jour. Sci. and Indus. Research [India], sec. B, v. 16, p. 444-451.
- Rase, D. E., and Roy, Rustum, 1955a, Phase equilibria in the system BaO-TiO₂: Am. Ceramic Soc. Jour., v. 38, no. 3, p. 102-113.
- ----- 1955b, Phase equilibria in the system BaTiO₃-SiO₂: Am. Ceramic Soc. Jour., v. 38, no. 11, p. 389-395.
- Rea, R. F., 1938, Temperature measuring cones: Am. Ceramic Soc. Jour., v. 21, no. 3, p. 98-101.
- Reisman, Arnold, 1958, Reactions of the group VB pentoxides with alkali oxides and carbonates. IX, A DTA study of alkali metal carbonates: Am. Chem. Soc. Jour., v. 80, no. 14, p. 3558-3561.
- 1959, Heterogeneous equilibria in the system K₂CO₃-Na₂CO₃: Am. Chem. Soc. Jour., v. 81, no. 4, p. 807-811.
 Ricker, R. W., and Osborn, E. F., 1954, Additional phase equilibrium data
- Ricker, R. W., and Osborn, E. F., 1954, Additional phase equilibrium data for the system CaO-MgO-SiO₂: Am. Ceramic Soc. Jour., v. 37, no. 3, p. 133-139.
- Rigby, G. R., and Richardson, H. M., 1947, The occurrence of artificial kalsilite and allied potassium aluminum silicates in blast-furnace linings: Mineralog. Mag., v. 28, no. 197, p. 75-89.
- Robbins, C. R., and Levin, E. M., 1959, The system magnesium oxidegermanium dioxide: Am. Jour. Sci., v. 257, no. 1, p. 63-70.
- Roberts, H. S., and Merwin, H. E., 1931, The system MgO-FeO-Fe₂O₃ in air at one atmosphere: Am. Jour. Sci., 5th ser., v. 21, no. 122, p. 145-157.
- Robertson, E. C., Birch, Francis, and MacDonald, G. J. F., 1957, Experimental determination of jadeite stability relations to 25,000 bars: Am. Jour. Sci., v. 255, no. 2, p. 115-137.
- Roedder, E. W., 1951a, Low temperature liquid immiscibility in the system K₂O-FeO-Al₂O₃-SiO₂:Am. Mineralogist, v. 36, no. 3 and 4, p. 282-286.
 —— 1951b, The system K₂O-MgO-SiO₂: Am. Jour. Sci., v. 249, no. 2 and 3, p. 81-130, 224-248.
- ----- 1952, A reconnaissance of liquidus relations in the system K₂O·2SiO₂-FeO-SiO₂: Am. Jour. Sci., Bowen Volume, p. 435-456.
- Rollet, A. P., 1935, Sur les borates de potassium. Étude du systeme B₂O₃-K₂O: Acad. sci. [Paris] Comptes rendus, v. 200, no. 21, p. 1763-1765.
 —— 1936, Sur le polymorphisme du pentaborate de potassium 5B₂O₃·K₂O:
- Acad. sci. [Paris] Comptes rendus, v. 202, no. 22, p. 1863-1885. Rossini, F. D., Wagman, D. C., Evans, W. H., Levine, S., and Jaffe, I.,
- Rossini, F. D., Wagman, D. C., Evans, W. H., Levine, S., and Jaffe, I., 1952, Selected values of chemical thermodynamic properties: [U.S.] Nat. Bur. Standards Circ. 500, 1268 p.
- Roth, R. S., 1958, Revision of the phase equilibrium diagram of the binary system calcia-titania, showing the compound Ca₄Ti₃O₁₀: [U.S.] Natl. Bur. Standards Jour. Research, v. 61, no. 5, p. 437-440.

- Roy, D. M., 1954, Hydrothermal synthesis of andalusite: Am. Mineralogist, v. 39, no. 1 and 2, p. 140-143.
- 1958, Studies in the system CaO-Al₂O₃-SiO₂-H₂O: III, New data on the polymorphism of Ca₂SiO₄ and its stability in the system CaO-SiO₂-H₂O: Am. Ceramic Soc. Jour., v. 41, no. 8, p. 293-299.
- Roy, D. M., Roy, Rustum, and Osborn, E. F., 1953, Fluoride model systems. III, The system NaF-BeF₂ and the polymorphism of Na₂BeF₄ and BeF₂: Am. Ceramic Soc. Jour., v. 36, no. 6, p. 185-190.
- BeF2: Am. Ceramic Soc. Fourie, V. So, not one LiF-BeF2 and PbF2-BeF2: Am. Ceramic Soc. Jour., v. 37, no. 7, p. 300-305.
- Roy, Rustum, DeVries, R. C., Rase, D. E., Shafer, M. W., and Osborn,
 E. F., 1952, Hydrothermal crystal studies: Pennsylvania State Coll.,
 School Mineral Industries 6th Quart. Prog. Rept., Oct. 1, 1952, to Dec.
 31, 1952, p. 10-11.
- Roy, Rustum, and Osborn, E. F., 1949, The system lithium metasilicatespodumene-silica: Am. Chem. Soc. Jour., v. 71, no. 6, p. 2086-2095.
- Roy, Rustum, Roy, D. M., and Osborn, E. F., 1950, Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite: Am. Ceramic Soc. Jour., v. 33, no. 5, p. 152-159.
- Royster, P. H., 1949, Treatment of titaniferous iron ores: U.S. Patent 2, 471, 242, May 24, 1949; See Chem. Abs., v. 43, no. 16, col. 6142h.
- Ruff, Otto, Ebert, Fritz, and Loerpabel, Wilhelm, 1932, Beiträge zur Keramik hochfeuerfester Stoffe, V. Die terären Systeme: ZrO₂-ThO₂-CaO, ZrO₂-ThO₂MgO, ZrO₂-BeO-CaO, ZrO₂-BeO-CeO₂: Zeitschr. anorg. u. allg. Chemie, v. 207, no. 3, p. 308-312.
- Ruff, Otto, Ebert, Fritz, and Stephan, Edward, 1929, Beiträge zur Keramik hochfeuerfester Stoffe. II, Das System ZrO₂-CaO: Zeitschr. anorg. u. allg. Chemie, v. 180, no. 2, p. 215-224.
- Ruff, Otto, Ebert, Fritz, and Woitinek, Hans, 1929, Beiträge zur Keramik hochfeuerfester Stoffe. III, Das System ZrO₂-ThO₂: Zeitschr. anorg. u. allg. Chemie, v. 180, no. 3, p. 252-256.
- Russell, A. S., Gitzen, W. H., Newsome, J. W., Ricker, R. W., Stowe, V. W., Stumpf, H. C., Wall, J. R., Wallace, Paul, 1956, Alumina properties: Aluminum Co. of America, Alcoa Research Laboratories Tech. Paper 10 (revised), 85 p.
- Sabatier, G., 1957, Chaleurs de transition des forms de basse température aux formes de haute température du quartz, de la tridymite et de la cristobalite: Soc. française minéralogie et cristallographie Bull.,v. 80, no. 10-12, p. 444-449.
- Sal'dau, I. Ya., and Zhirnova, N. A., 1945, Fusion diagram of the ternary system ZrG₂-MgO-Al₂O₃. The problem of new superrefractory materials: Acad. sci. URSS, Cl. sciences chim., Bull., v. 6, p. 669-671.
- Sata, Toshiyuki, 1958, Phase relationship in the system 3CaO P₂O₅-MgO SiO₂-SiO₂: Chem. Soc. Japan Bull., v. 31, no. 4, p. 408-412.
- Schairer, J. F., 1942, The system CaO-FeO-Al₂O₃-SiO₂. I, Results of quenching experiments on five joins: Am. Ceramic Soc. Jour., v. 25, no. 10, p. 241-274.
- ------ 1950, The alkali-feldspar join in the system NaAlSiO₄-KAlSiO₄-SiO₂; Jour. Geology, v. 58, no. 5, p. 512-517.
- 1954, The system K₂O-MgO-Al₂O₃-SiO₂. I, Results of quenching experiments on four joins in the tetrahedron cordierite-forsterite-leucite-silica and on the join cordierite-mullite-potash feldspar: Am. Ceramic Soc. Jour., v. 37, no. 11, p. 501-533.

- Schairer, J. F., 1955, The ternary systems leucite-corundum-spinel and leucite-forsterite-spinel: Am. Ceramic Soc. Jour., v. 38, no. 5, p.153-158.
- Schairer, J. F., and Bowen, N. L., 1938, The system, leucite-diopsidesilica: Am. Jour. Sci., 5th ser., v. 35A, p. 289-309.
- ------ 1942, The binary system CaSiO₃-diopside and the relations between CaSiO₃ and akermanite: Am. Jour. Sci., v. 240, no. 10, p. 725-742.
- ----- 1947a, The system anorthite-leucite-silica: [Finland] Comm. Géol.
- Bull., v. 24, Suomen Geologinen Seuran Julkaisuja, no. 20, p. 67-87.
- ----- 1947b, Melting relations in the systems Na₂O-Al₂O₃-SiO₂ and K₂O-Al₂O₃-SiO₂: Am. Jour. Sci., v. 245, no. 4, p. 193-204.
- —— 1955, The system K₂O-Al₂O₃-SiO₂: Am. Jour. Sci., v. 253, no. 12, p. 681-746.
- ----- 1956, The system Na₂O-Al₂O₃-SiO₂: Am. Jour. Sci., v. 254, no. 3, p. 129-195.
- Schairer, J. F., and Osborn, E. F., 1950, The system CaO-MgO-FeO-SiO2:
 I, Preliminary data on the join CaSiO3-MgO-FeO: Am. Ceramic Soc. Jour., v. 33, no. 5, p. 160-167.
- Schairer, J. F., and Yagi, Kenzo, 1952, The system FeO-Al₂O₃-SiO₂: Am. Jour. Sci., Bowen Volume, p. 471-512.
- Schwarz, Robert, 1921, Über die binären Systeme des Lithium-Orthosilikates mit Zirkon-Orthosilikat und Kalzium-Orthosilikat: Zeitschr. anorg. u. allg. Chemie, v. 115, no. 1 and 2, p. 87-99.
- ----- 1929, Beiträge zur Chemie des Germaniums: Deutsche Chemische Gesell. Ber., v. 62, no. 9, p. 2477-2483.
- Schwarz, Robert, and Lewinsohn, Michael, 1930, Beiträge zur Chemie des Germaniums. IV, Mitteil.: Über die Systeme Na2GeO3-Na2SiO3 und K2GeO3-GeO2: Deutsche Chemische Gesell. Ber., v. 63 B, no. 4, p. 783-787.
- Segnit, E. R., 1954, The system CaO-ZnO-SiO₂: Am. Ceramic Soc. Jour., v. 37, no. 6, p. 273-277.
- Sheybany, H. A., 1948, De la structure des verres alcalino-silicatés mixtes (suite): Verres et Réfractaires, v. 2, no. 6, p. 363-375.
- Smith, J. V., and Tuttle, O. F., 1957, The nepheline-kalsilite system. I, X-ray data for the crystalline phases: Am. Jour. Sci., v. 255, no. 4, p. 282-305.
- Smolensky, S., 1912, Schmelzversuche mit Bisilikaten und Titanaten: Zeitschr. anorg. Chemie, v. 73, no. 3, p. 293-303.
- Smyth, F. H., and Adams, L. H., 1923, The system, calcium oxide-carbon dioxide: Am. Chem. Soc. Jour., v. 45, no. 5, p. 1167-1184.
- Smyth, F. H., and Roberts, H. S., 1920, The system cupric oxide, cuprous oxide, oxygen: Am. Chem. Soc. Jour., v. 42, no. 12, p. 2582-2607.
- Snow, R. B., 1943, Equilibrium relationships on the liquidus surface in part of the Mn -Al₂O₃-SiO₂ system: Am. Ceramic Soc. Jour., v. 26, no. 1, p. 11-20.
- Sosman, R. B., 1952, Temperature scales and silicate research: Am. Jour. Sci., Bowen Volume, p. 517-528.
- Sosman, R. B., and Merwin, H. E., 1916, Preliminary report on the system, lime: ferric oxide: Washington Acad. Sci. Jour., v. 6, no. 15, p. 532-537.
- Sowman, H. G., and Andrews, A. I., 1951, A study of the phase relations of ZrO₂-TiO₂ and ZrO₂-TiO₂-SiO₂: Am. Ceramic Soc. Jour., v. 34, no. 10, p. 298-301.
- Spencer, L. J., 1942, Barium-felspars (celsian and paracelsian) from Wales: Mineralog. Mag., v. 26, no. 178, p. 231-145.

- Spivak, Joseph, 1944, The system NaAlSiO₄-CaSiO₃-Na₂SiO₃: Jour. Geology, v. 52, no. 1, p. 24-52.
- Stimson, H. F., 1949, The International Temperature Scale of 1948: [U.S.] Natl. Bur. Standards Jour. Research, v. 42, no. 3, p. 209-217.
- Stone, R. L., 1943, Physical chemistry of firing steatite ceramics: Am. Ceramic Soc. Jour., v. 26, no. 10, p. 333-336, and personal communication.
- Stone, P. E., Egan, E. P., and Lehr, J. R., 1956, Phase relationships in the system CaO-Al₂O₃-P₂O₅: Am. Ceramic Soc. Jour., v. 39, no. 3, p. 89-98.
- St. Pierre, P. D. S., 1953, The constitution of bone china. Part I. High temperature phase equilibrium studies in the system tricalcium phosphate-alumina-silica: Canada Dept. Mines and Tech. Surveys, Mines Branch Tech. Paper 2, 107 p.
- 1956, Note on the system CaO-Al₂O₃-P₂O₅: Am. Ceramic Soc. Jour., v. 39, no. 10, p. 361-362.
- Stull, D. R., and Sinke, G. C., 1956, Thermodynamic properties of the elements: Am. Chem. Soc., Advances in Chemistry 18, 234 p.
- Swayze, M. A., 1946a, A report on studies of 1. The ternary system CaO-C5A3-C2F, 2. The quaternary system CaO-C5A3-C2F-C2S, 3. The quaternary system as modified by 5 percent magnesia. Part I, Am. Jour. Sci., v. 244, no. 1, p. 1-30.
 - 1946b, A report on studies of 1. The ternary system CaO-C₅A₃-C₂F,
 2. The quaternary system CaO-C₅A₃-C₂F-C₂S, 3. The quaternary as modified by 5 percent magnesia. Part II, Am. Jour. Sci., v. 244, no. 2, p. 65-94.
- Tammann, G., 1925, Über die Glaser als unterkühlte Flüssigkeiten: Glastechnische Ber., v. 3, no. 3, p. 73-87.
- Tammann, G., and Oelsen, W., 1930, Die Reaktionen beim Zusammenschmelzen von. Glassätzen: Zeitschr. anorg. u. allg. Chemie, v. 193, no. 3, p. 245-269.
- Taylor, W. C., 1938, Phase equilibria studies on mixtures of the compounds 4CaO·Al₂O₃·Fe₂O₃-2CaO·Fe₂O₃-K₂O·Al₂O₃: [U.S.] Natl. Bur. Standards Jour. Research, v. 21, no. 3, p. 315-325.
- ----- 1942, Further phase-equilibrium studies involving the potash compounds of Portland cement: [U.S.] Natl. Bur. Standards Jour. Research, v. 29, no. 6, p. 437-451.
- Thilo, Erich, and Schröder, Hansjürgen, 1951, Über das System NaF-BeF₂ und seine Beziehungen zum System CaO-SiO₂: Zeitschr. phys. Chemie, v. 197, no. 1 and 2, p. 39-62.
- Thomas, R. H., 1950, Phase equilibrium in a portion of the ternary system BaO-Al₂O₃-SiO₂: Am. Ceramic Soc. Jour., v. 33, no. 2, p. 35-44.
- Tokody, L., 1928, The binary system: Mn2SiO₄-Ca₂SiO₄: Zeitschr. anorg. u. allg. Chemie, v. 169, p. 51-56.
- Toropov, N. A., and Galakhov, F. Ya., 1951, Novye dannye o sisteme Al₂O₃-SiO₂: Akad. Nauk SSSR Doklady, v. 78, no. 2, p. 299-302.
- 1952, Diagramma sostoyaniya sistemy BaO-Al₂O₃: Akad. Nauk SSSR Doklady, v. 82, no. 1, p. 69-70.
- ------ 1958, Tverdye rastvory v sisteme Al₂O₃-SiO₂: Akad. Nauk SSSR Izv., Otdelenie Khimicheskikh Nauk, 1958, no. 1, p. 8-11.
- Toropov, N. A., Galakhov, F. Ya., and Bondar', I. A., 1954, Diagramma sostoyaniya troynoy sisteme BaO-Al₂O₃-SiO₂: Akad. Nauk SSSR Izv., Otdelenie Khimicheskikh Nauk, 1954, no. 5, p. 753-764.

- Toropov, N. A., Galakhov, F. Ya., and Bondar', I. A., 1955, Oblast' dibarievym trisilikatom bariya (sanbornitom): Akad. Nauk SSSR Izv., Otdeleinie Khimicheskikh Nauk, 1955, no. 1, p. 3-8.
- Trömel, Gerhard, 1932, Untersuchungen über die Bildung eines halogenfreien Apatits aus basischen Calciumphosphaten: Zeitschr. phys. Chemie, ser. A, v. 158, no. 5 and 6, p. 422-433.
- —— 1943, Untersuchungen im Dreistoffsystem CaO-P₂O₅-SiO₂ und ihre Bedeutung für die Erzeugung von Thomasschlacken: Stahl und Eisen, v. 63, no. 2, p. 21-30.
- Trömel, G. Harkort, H. J., and Hotop, W., 1948, Untersuchungen im System CaO-P₂O₅-SiO₂: Zeitschr. anorg. Chemie, v. 256, no. 5-6, p. 253-348.
- Trömel, G., Obst, K. H., Konopicky, K., Bauer, H., and Patzak, I., 1957, Untersuchungen im System SiO₂-Al₂O₃: Deutsche keramiche Gesell. Ber., v. 34, no. 12, p. 397-402.
- Turkdogan, E. T., and Maddocks, W. R., 1952, Phase equilibrium investigation of the Na₂O-P₂O₅-SiO₂ ternary system: Iron and Steel Inst. Jour., v. 172, part 1, p. 1-15.
- Tuttle, O. F., and Harker, R. I., 1957, Synthesis of spurrite and the reaction wollastonite + calcite ≠ spurrite + carbon dioxide: Am. Jour. Sci., v. 255, no. 3, p. 226-234.
- Tuttle, O. F., and Smith, J. V., 1953, The system KAlSiO₄-NaAlSiO₄: Carnegie Inst. Washington Year Book 52, Ann. Rept. of the Director, Geophysical Lab., p. 53-56.
- Van Hook, H. J., and Keith, M. L., 1958, The system Fe₃O₄-Mn₃O₄: Am. Mineralogist, v. 43, no. 1-2, p. 69-83.
- Vasenin, F. I., 1939, Fazy ravnovesiya sistemy CaO·Cr₂O₃-CaO·Al₂O₃: Zhur. Prikladnoy Khimii, v. 12, no. 5, p. 651-654.
- Voos, Ernst, 1935, Untersuchung des Schnittes CaO·SiO₂-MnO·SiO₂ im ternären System SiO₂-CaO-MnO: Zeitschr. anorg. u. allg. Chemie, v. 222, no. 2, p. 201-224.
- Wallace, R. C., 1909, Über die binärem System des Natriummetasilicats mit Lithium-, Magnesium-, Calcium-, Strontium- und Barium-Metasilicat; des Lithiummetasilicats mit Kalium-, Magnesium-, Calcium-, Strontium- und Bariummetasilicat; und über das Dreistoff system Na₂O-Al₂O₃-SiO₂: Zeitschr. anorg. Chemie, v. 63, no. 1, p. 1-48.
- Warshaw, I., and Keith, M. L., 1954, Solid solution and chromium oxide loss in part of the system MgO-Al2O3-Cr2O3-SiO2:Am. Ceramic Soc. Jour., v. 37, no.4, p. 161-168.
- Wartenberg, H., and Eckhardt, K., 1937, Schmelzdiagramme höchstfeuerfester Oxyde. VIII, (Systeme mit CeO₂): Zeitschr. anorg. u. allg. Chemie, v. 232, no. 2, p. 179-186.
- Wartenberg, H., and Gurr, W., 1931, Schmelzdiagramme höchstfeuerfester Oxide. III, Zeitschr. anorg. u. allg. Chemie, v. 196, no. 4, p. 374-383.
- Wartenberg, H., and Prophet, E., 1932, Schmelzdiagramme höchstfeuerfester Oxyde. V, Zeitschr. anorg. u. allg. Chemie, v. 208, no. 4, p. 369-379.
- Wartenberg, H., and Reusch, H. J., 1932, Schmelzdiagramme höchstfeuerfester Oxyde. IV, Zeitschr. anorg. u. allg. Chemie, v. 207, no. 1, p. 1-20.
- Wartenberg, H., Reusch, H. J., and Saron, E., 1937, Schmelzpunktsdiagrame höchstfeuerfester Oxyde. VII, Systeme mit CaO und BeO: Zeitschr. anorg. u. allg. Chemie, v. 230, no. 3, p. 257-276.
- Washburn, E. W., and Bunting, E. N., 1934, Note on phase equilibria in the system Na₂O-TiO₂: [U.S.] Natl. Bur. Standards Jour. Research, v. 12, no. 1, p. 239.

- Watanabe, Motoo, 1933, On the dissociation pressure of silver carbonate: Tôhoku Imp. Univ. Sci. Repts., 1st ser., v. 22, no. 5, p. 1229-1239.
- Welch, J. H., and Gutt, W., 1959, Tricalcium silicate and its stability within the system CaO-SiO₂: Am. Ceramic Soc. Jour., v. 42, no. 1, p. 11-15.
- Wentrup, H., 1935, Beitrag zum System Eisen-Phosphor-Sauerstoff: Archiv Eisenhuttenw., v. 9, no. 1, p. 57-60.
- White, James, 1938, Equilibrium at high temperatures in systems containing iron oxides: Iron and Steel Inst., Carnegie Scholarship Mem., v. 27, p. 1-75.
- ------ 1943, The physical chemistry of open-hearth slags: Iron and Steel Inst. Jour., v. 148, p. 579-694.
- White, James, Howat, D. D., and Hay, R., 1934, The binary system, MnO-SiO₂: Glasgow, Scotland, Royal Tech. College Jour., v. 3, pt. 2, p. 231-240.
- Whiteley, J. H., and Hallimond, A. F., 1919, The acid hearth and slag: Iron and Steel Inst. Jour., v. 99, p. 199-242.
- Wilburn, F. W., 1954, Differential thermal analysis: Soc. Glass Technology, Jour., v. 38, Trans., p. 371-382.
- Wilde, W. T., and Rees, W. J., 1943, The ternary system MgO-Al₂O₃-CrO₃: British Ceramic Soc. Trans., v. 42, no. 7, p. 123-155.
- Winchell, A. N., and Winchell, H., 1951, Descriptions of minerals, pt. II of Elements of optical mineralogy: New York, John Wiley & Sons, 551 p.
- Yoder, H. S., 1950, The jadeite problem: Am. Jour. Sci., v. 248, no. 5, p. 312-334.
- Yoder, H. S., and Keith, M. L., 1951, Complete substitution of aluminum for silicon. The system 3MnO·Al₂O₃·3SiO₂-3Y₂O₃·5Al₂O₃: Am. Mineralogist, v. 36, no. 7 and 8, p. 519-533.
- Zambonini, F., 1920, Wolframato e molibdato normali di bismuto, loro relazioni con i corrispondenti composti di piambo: Gazz. chim. italiana, v. 50, pt. 2, no. 3, p. 128-146.
- Zhirnova, N. A., 1939, Diagramma plavkosti sistemy ZrO₂-MgO; Zhur. Prikladnoy Khimii, v. 12, no. 9, p. 1278-1286.

