

General Remarks on the Pre-Selma Cretaceous Strata of Western Alabama

By LOUIS C. CONANT

STUDIES OF PRE-SELMA CRETACEOUS CORE SAMPLES
FROM THE OUTCROP AREA IN WESTERN ALABAMA

G E O L O G I C A L S U R V E Y B U L L E T I N 1160-F

CONTENTS

	Page
Abstract	97
Extent and thickness of the Vick formation	97
Relations between Cretaceous and present drainage systems	98
References	101

ILLUSTRATION

	Page
FIGURE 12. Major drainage lines in north Alabama and part of Tennessee	100
	III

STUDIES OF PRE-SELMA CRETACEOUS CORE SAMPLES, WESTERN ALABAMA

F. GENERAL REMARKS ON THE PRE-SELMA CRETACEOUS STRATA OF WESTERN ALABAMA

By LOUIS C. CONANT

ABSTRACT

The Vick formation, previously known in only one small outcrop area, has now been identified in the shallow subsurface. Evidence in this series of papers points to a nonmarine environment for the Vick and mainly a shallow and commonly brackish-water marine environment for the overlying Tuscaloosa group and the McShan and Eutaw formations. The distribution of gravel in several formations suggests that the Tennessee and Sequatchie Rivers flowed into the Cahaba and Warrior Rivers during Cretaceous time.

EXTENT AND THICKNESS OF THE VICK FORMATION

The preceding papers have supplied many facts regarding the thickness, petrology, paleontology, and conditions of accumulation of the pre-Selma Cretaceous strata of western Alabama; they have confirmed some theories that evolved during the surface mapping from 1944 to 1948; and they have supplied new information. Here an attempt is made to synthesize some of the newly acquired subsurface information with knowledge previously obtained, some of it not heretofore published.

The Vick formation has been entirely unknown beyond its 1-square-mile outcrop area (fig. 1; Conant, 1946), and its suggested Early Cretaceous age has never been satisfactorily established. The presence in the Webb hole of at least 104 feet of beds that seem to be of the same unit indicates that the Vick is present at least 15 miles downdip, or southwest, from the outcrop area. This supports the original concept that the few outcrops of the Vick formation represent a subsurface unit that is almost completely overlapped by the beds of the Tuscaloosa group. The exact age of the Vick, however, is still not established, though Monroe reports fossil leaves of probable Cretaceous age, and also points out the similarity between some of the core samples and the Lower Cretaceous beds of the deeper subsurface. It is only fair to note, however, that some geologists who have studied

the subsurface units in Mississippi and Alabama believe the Vick should be correlated with the "Lower Tuscaloosa" of the subsurface, which is of Late Cretaceous age. A satisfactory resolution of the Vick problem will probably require additional samples from the updip area, where few drill holes have encountered it. Until this is accomplished, the Vick formation is considered to be of Early(?) Cretaceous age.

If the 104 feet of sediments in the Webb hole is the total thickness of the Vick, then the formation has about the same thickness as at the outcrop, where it was estimated to be about 100 feet thick (Conant 1946). This is in marked contrast to thicknesses of 2,500 to 3,000 feet of beds of Jurassic and Early Cretaceous age that are commonly encountered in oil-test wells in Wilcox County, Ala., about 50 miles farther south. If the beds identified as Vick on the outcrop and in the Webb hole are correlative with some of the Lower Cretaceous beds of the deeper subsurface, it is surprising that they are not thicker in the Webb hole, perhaps as much as 500 feet thicker. Monroe believed that the hole bottomed in shale of Paleozoic age, but he also considered the possibility that the lowest rocks encountered in the hole may belong to the Vick formation. It might well be, however, that these lowest rocks are the top of another succession of Jurassic or Lower Cretaceous strata that are a few hundred feet thick.

Geologists who have studied the deeper subsurface sediments in the Coastal Plain of central-western Alabama and central-eastern Mississippi (Applin and Applin, 1947; Eargle, 1948) have shown that the top of Lower Cretaceous rocks is marked by the highest occurrence of red shale containing "pink-lime" nodules and veinlets, and that it represents a major unconformity. Evidence of this unconformity should be carefully searched for in cores from updip holes and in water wells as they are being drilled. Carefully prepared structural maps, showing the configuration of both the bottom and top of Lower Cretaceous sediments, and isopach maps of this unit should indicate the areal limits of rocks of Early Cretaceous age in the absence of fossil evidence. Also, the lower part of the Cretaceous rocks in eastern Alabama and western Georgia should be studied and correlated with the Cretaceous rocks in western Alabama to determine age and facies relations.

RELATIONS BETWEEN CRETACEOUS AND PRESENT DRAINAGE SYSTEMS

The 30 feet of coarse gravel at the presumed base of the Vick formation in the Webb hole is especially interesting. During the surface mapping, Monroe, Conant, and Eargle (1946) frequently noted that the sediments in nearly every formational unit were somewhat coarser

near the present Warrior River. This prompted them to wonder if the Warrior follows the approximate course of a Cretaceous stream. The presence of so much gravel in the Vick formation in the Webb hole, near the Cahaba River, brings to mind a water well this writer saw drilled at Brent, Ala. (fig. 12), on Jan. 1, 1946. That well, drilled for a municipal water supply in the heart of the town, started on the flood plain of the Cahaba River about 25 feet above an exposed contact across the river between Paleozoic rocks and the overlying Coastal Plain sediments. For 64 feet the drill penetrated clay, sand, and gravel. At that time it was not certain whether the sediments are of Cretaceous age, occupying an ancient stream channel, or are much younger, perhaps filling a Pleistocene valley of the Cahaba River. During Cretaceous time a major stream may have had a course similar to that of the present Cahaba in the Brent area, and was entrenched at least 40 feet in the Paleozoic rocks. If this interpretation is valid, the material encountered in the water well is the basal part of the Coker formation. About 12 miles downstream, in the area of the Webb well, the supposed ancient river deposited similar coarse gravel during Vick time, so at least part of gravel at Brent may belong to the Vick formation instead of the Coker formation.

Any assumption that the Warrior and Cahaba Rivers are descendants of Cretaceous streams has several interesting implications. For one thing, it means that at least part of the major stream pattern has not been greatly changed by tilting, Coastal Plain deposition, or other cause. An understanding of these Cretaceous drainage relations may well explain some aspects of the abnormal course of the Tennessee River. As shown on figure 14, the Cahaba River is directly in line, geographically and structurally, with the Tennessee River above Chattanooga, Tenn. At Chattanooga the Tennessee River turns sharply westward out of a mature valley and follows a deep gorge through a high ridge. In another few miles it joins the Sequatchie River and turns southwestward again, then for 60 miles follows a mature valley on the breached Sequatchie anticline directly toward the headwaters of the Warrior River. At Guntersville, Ala., the Tennessee River again, for no apparent reason, turns abruptly westward, leaving its well-developed valley. Only a low divide separates the headwaters of the present Warrior from the reach of the Tennessee near Guntersville. These relations, which have been observed and discussed by many others (for example, Hayes and Campbell, 1894; Johnson, 1905; Adams, 1928), suggest strongly that at one time the Tennessee River continued southwestward from Chattanooga to the course of the present Cahaba River, and that the Sequatchie River at one time flowed into the Warrior River. This drainage pattern

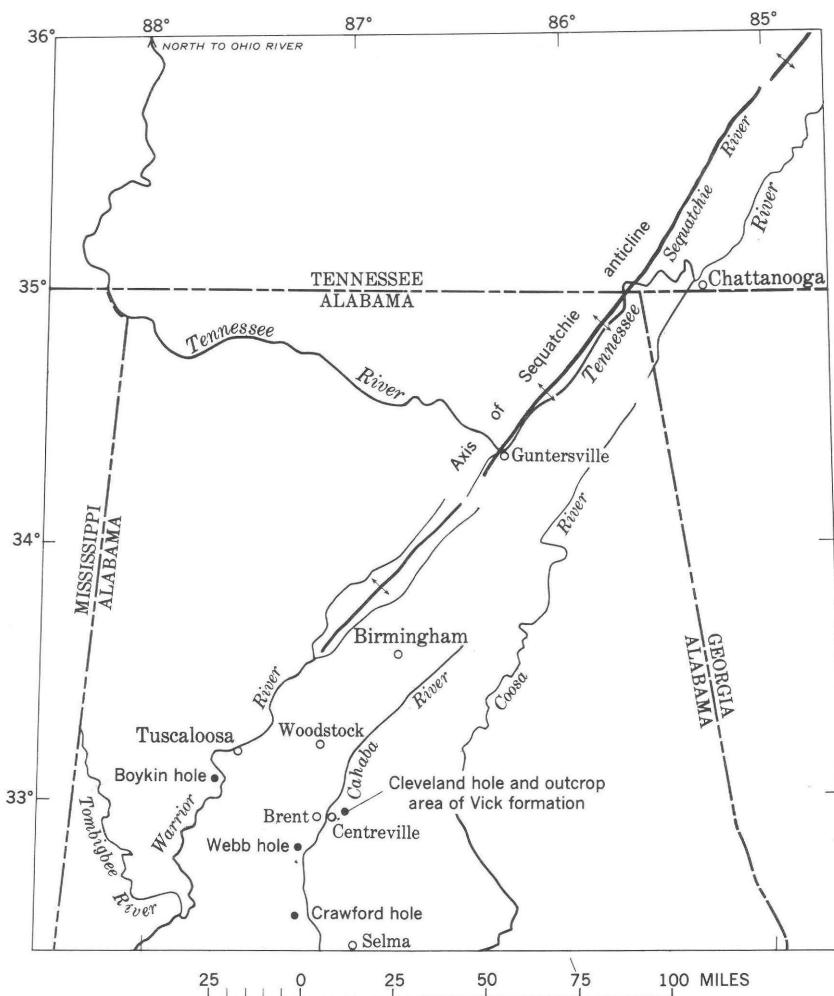


FIGURE 12.—Major drainage lines in north Alabama and part of Tennessee.

during Cretaceous time would explain the greater abundance of gravel in the Cretaceous sediments near the present rivers.

The gravel in the Gordo formation is much coarser in the Webb well than in the Boykin. If the samples from these two wells are typical of their areas—the Warrior and Cahaba Valleys, respectively—then it appears that coarser gravel was being transported and deposited in the Cahaba River Valley than in the Warrior Valley. Likewise, the abundant gravel in the lower 30 feet of the McShan formation in the Crawford hole may have similar significance. In the surface mapping of the beds in the area of the Warrior Valley a little gravel was observed at the base of the McShan, but at many places the gravel may have

been overlooked. If the Crawford samples give a true representation of the basal McShan in that area, then it appears that a larger or more active stream was entering the Gulf at that time along the course of the Cahaba River than along the course of the Warrior.

Thus, the suggestions are strong that from some time during the Early Cretaceous until McShan time in the Late Cretaceous an ancestral Cahaba River was transporting more gravel than was the supposed ancestral Warrior River. This, in turn, suggests, but by no means demonstrates, that the Tennessee River may have flowed into the Cahaba, and that the Sequatchie River may have flowed into the Warrior.

Unpublished observations, by this writer, of the Coastal Plain beds where they lap onto the folded Appalachians, particularly near Woodstock, Ala. (fig. 12), indicate that a subdued valley-and-ridge topography existed at the beginning of deposition of Upper Cretaceous sediments. The relief on this surface was on the order of 100 to 200 feet. Rather than indicating a well-developed peneplain with sluggish streams inundated by the sea, this observation suggests that the Cretaceous sea advanced onto an area of moderate relief and moderately active drainage. The coastline probably was strongly indented, and many embayments had brackish water. If this deduction is correct, further detailed work on the Cretaceous sediments in western Alabama should reveal evidence of considerably different environments of deposition within short distances.

REFERENCES

Adams, G. I., 1928, The course of the Tennessee River and the physiography of the southern Appalachian region: *Jour. Geology*, v. 36, p. 481-493.

Applin, P. L., and Applin, E. R., 1947, Regional subsurface stratigraphy, structure, and correlation of middle and early Upper Cretaceous rocks in Alabama, Georgia, and north Florida: U.S. Geol. Survey Oil and Gas Inv. Prelim. Chart 26.

Conant, L. C., 1946, Vick formation of pre-Tuscaloosa age of Alabama Coastal Plain: *Am. Assoc. Petroleum Geologists Bull.*, v. 30, p. 711-715.

Eargle, D. H., 1948, Correlation of pre-Selma Upper Cretaceous rocks in northeastern Mississippi and northwestern Alabama: U.S. Geol. Survey Oil and Gas Inv. Prelim. Chart 35.

Hayes, C. W., and Campbell, M. R., 1894, Geomorphology of the southern Appalachians: *Natl. Geog. Mag.*, v. 6, p. 63-126.

Johnson, D. W., 1905, The Tertiary history of the Tennessee River: *Jour. Geology*, v. 13, p. 194-231.

Monroe, W. H., Conant, L. C., and Eargle, D. H., 1946, Pre-Selma Upper Cretaceous stratigraphy of western Alabama: *Am. Assoc. Petroleum Geologists Bull.*, v. 30, p. 187-212.

INDEX

[Italic page numbers indicate major references]

A	Page	Page	
<i>Abietineae pollenites microreticulatus</i>	pl. 7	<i>brevifrons, Nemodon</i>	57
Abstracts, Chapters A-F.....	1, 9, 55, 65, 71, 97	Broken Arrow Bend.....	60
Acknowledgments.....	2, 10, 70	<i>Bryozoa</i>	56
Age, of floras.....	90	cyclostomatous.....	58
<i>Ammobaculites</i>	66		
<i>Ammotium</i>	66		
Ancestral Cahaba River.....	101	C	
Ancestral Warrior River.....	101	Cahaba River.....	101
<i>Anemia</i>	80	ancient.....	99
<i>adiantifolia</i>	80	relation to Cretaceous streams.....	99
<i>Angiospermae</i>	83	Carbonate-cemented sandstone.....	35
<i>Anomia</i>	63	average percentages of rock and mineral fragments.....	48
<i>ponticulana</i>	62	composition and formation.....	36
<i>preolmstedi</i>	56	percentage of rock-forming materials.....	37
sp.....	61, 62	province.....	39
<i>Aphanacapsa</i>	80	<i>Cardium</i>	56
<i>Araliaceoipollenites edmundi</i>	84, 88	(<i>Trachycardium</i>) <i>ochilleanum</i>	56, 57
<i>Araucaria bladensis</i>	82	sp.....	57
<i>jeffreyi</i>	82	Caytoniopollenites pallidus.....	82, 88; pl. 6
<i>Araucariacites</i>	82; pl. 6	Centreville, Ala.....	61
<i>australis</i>	pl. 6	<i>Centropyxis</i>	67
<i>Arca</i> sp.....	58	Chert-cemented sandstone.....	35
areolatus, <i>Sabalpoilenites</i>	83	average percentages of rock and mineral fragments.....	48
Atkinson formation.....	65	composition.....	39
<i>australiensis, Dacrycarpites</i>	81; pl. 7	percentage of rock-forming materials.....	40
		provenance.....	41
		texture and mode of formation.....	39
		Chomotrites reducens.....	88, 92
		Chroococcales.....	80
		identified in Webb, Boykin, and Crawford cores.....	75
		<i>Cicatricosisporites</i>	80
		<i>brevitalesuratus</i>	88; pl. 3
		<i>dorogensis</i>	pl. 3
		<i>dunrobinensis</i>	88
		sp.....	pls. 3, 6
		<i>Cingulatisporites</i>	90
		<i>dubius</i>	pl. 6
		<i>problematicus</i>	88; pl. 3
		<i>scrabratus</i>	pls. 4, 6
		<i>Classoides, Classopollis</i>	82; pl. 6
		<i>Classopollis</i>	82
		<i>classoides</i>	82; pl. 6
		<i>torosus</i>	88
		Clay minerals.....	47
		Cleveland core hole, dicotyledons.....	4
		rocks drilled.....	4
		sorting coefficients.....	16
<i>Brachidontes</i>	62, 63	stratigraphic units in.....	13
<i>fulgens</i>	62		
Brent, Ala., interpretation of municipal well		<i>Cliftonia</i>	85
core.....	99		
<i>Breviarca</i>	63		
sp.....	62		

	Page
<i>Clione</i>	56, 63
sp.....	57
Coker formation.....	61, 99
conditions of accumulation.....	52
percentage of rock-forming materials.....	46
source and type of pollen and spore samples.....	73
Webb and Boykin core holes, grain-size analyses.....	16
Color terms.....	10
<i>Complexipollis praetutumescens</i>	pl. 5
<i>Concaviporites punctatus</i>	pl. 3
<i>rugulatus</i>	88; pl. 3
<i>concarus, Triatriopollenites</i>	89
<i>Conclavipollis anulopyramis</i>	pl. 8
Conclusions from drilling information.....	7
Conditions of accumulation.....	49
Core description, Webb Hole.....	61
Core holes, drilling of.....	2
<i>Corrugatisporites arcuatus</i>	88; pl. 6
<i>coryphaeus Triatriopollenites</i>	89
Crawford core, microfossils identified.....	75
Crawford cores, from Eutaw and McShan formations, fossils.....	55
Crawford hole, core, source and type of samples, pollen and spore studies.....	73
description of core and list of fossils.....	56
fossils of.....	7
upper part of the Gordo formation.....	6
Crawford samples, gravels in.....	101
<i>cretacea, Ostrea</i>	56, 59, 60
Cretaceous drainage relations.....	99
Cretaceous sediments, gravel in.....	98
Crustacean fragments.....	58
Crustacean remains, Eutaw formation.....	7
Ctenoid fish scale.....	58
<i>Cupaniedites major</i>	85, 88
<i>Cyrilla</i>	85
<i>Cyrillaceapollenites megaeuctactus</i>	84, 85
<i>Cyatheacidites annulata</i>	88
<i>Cyatridites mesozoicus</i>	88; pl. 3
<i>Cycadopites follicularis</i>	pl. 4
(<i>Cyclopyxis</i>).....	67
<i>Cyclorisma</i>	57
Cyclostomatous Bryozoa.....	58
<i>Cymbophora</i> sp.....	56, 57
<i>Cyprimeria</i> sp.....	57
D	
<i>Dacrycarpites australiensis</i>	81, 88; pl. 7
<i>Dacrydiumites florini</i>	88
<i>Dacrydiumites (Phyllocladites) florini</i>	81
<i>davisi, Harpoloparia</i>	58
<i>Deflandrea</i>	80; pl. 9
<i>Deltoidospora halli</i>	pis. 3, 6
<i>Densisporites perinatus</i>	pl. 6
Dexter member.....	62
Dicot pollen, comparative percentages.....	91
<i>Dicotetradites claratus</i>	pl. 5
Dicotyledonous families represented by pollen	84
Dicotyledons, criteria for dating pre-Selma strata.....	90
identified in Webb, Boykin, and Crawford cores.....	77, 78
<i>Diffugia</i>	67
Dinoflagellata.....	80
identified in Boykin and Crawford cores.....	75
discoloripites, <i>Salix</i>	84
Distribution of rock and mineral fragments.....	43
Drainage systems, Cretaceous and Present.....	98
Drennen, C. W., quoted.....	2
<i>dubius, Inaperaturopollenites</i>	82; pl. 6
E	
Ecology, Eoline, Webb hole.....	63
Eutaw formation, Crawford hole.....	60
McShan and Eutaw formations.....	60
<i>edmundi, Araliaceopollenites</i>	84
<i>Enoploctyia</i> sp.....	58
Eoline ecology, Webb hole.....	63
Eoline fauna, age and correlation.....	61
Eoline member.....	5, 6, 47
Coker formation, microfossil content and lithology.....	65
environment of deposition.....	87
upper contact.....	6
Eoline member of Coker formation, conditions of accumulation.....	52
sorting coefficients of samples.....	19
Webb and Boykin holes, grain-size analyses.....	18
<i>Ephedra</i>	83
sp.....	pl. 6
<i>Eucalyptus</i>	86
<i>Eucommidites troedsonii</i>	88
<i>Eugenia</i>	86
Euless member.....	62
Eutaw and McShan fauna, age and correlation.....	59
Eutaw formation.....	47
complete section, Crawford hole.....	7
conditions of accumulation.....	52
description and list of fossils.....	56
early Late Cretaceous age.....	93
environment of deposition.....	87
grain-size analyses.....	30, 32, 33
palynomorphs.....	87, 88
percentage of rock-forming materials.....	46
sorting coefficients of samples.....	30
source and type of pollen and spore samples.....	73
<i>Exogyra</i>	56
<i>upatoiensis</i>	56, 57, 59
<i>Extratriporopollenites audax</i>	88
F	
Facies changes, in Palynomorph zone.....	86
Fecal pellets, phosphatized.....	37, 39
Filicinae.....	80
Fish scale, Ctenoid.....	58
Fish vertebra.....	56, 58
Fish vertebra and other bone fragments.....	58
Floras, stratigraphic interpretation and age.....	90
Florini, <i>Dacrydiumites (Phyllocladites)</i>	81
Floristic zones, within the palynomorph zone.....	87
Foraminifera, Eoline member, Boykin hole.....	5
identified in Crawford core.....	75

Page	J	Page	
Fossils, list, from Webb hole.....	61	<i>Jasaminum</i>	85
Fragnents, Crustacean.....	58	<i>jeffreyi</i> , Araucaria.....	82
<i>Frazinoipollenites pudicus</i>	88		
<i>fulpensis</i> , <i>Brachidontes</i>	62		
		L	
	<i>labdacus</i> , <i>Pinuspollenites</i>	83	
G	<i>Lagunculina</i>	67	
<i>Galahea</i> sp.....	58	<i>Latipollis</i>	pls. 5, 8
<i>geinitzi</i> , <i>Scaphites</i>	89	<i>latis</i>	pls. 5, 8
Glauconite.....	7, 36, 38, 47	<i>normis</i>	88
environment of deposition.....	87	<i>subtils</i>	pl. 8
fractured grains.....	38	<i>Leiotorites</i>	90
in Mooreville chalk.....	7	<i>L. subtilis</i>	88; pl. 3
source of.....	38, 39	<i>lenites</i> <i>Porocolpopol.</i>	90
Glauconitic sand, Eutaw formation.....	30	<i>Leptodermella</i>	67
in Eoline member.....	18	Lewisville member.....	62
McShan formation.....	28	Lignite bed, in Eoline member.....	5, 18
Mooreville Chalk.....	31	<i>Liliacidites intermedius</i>	84, 88; pl. 7
<i>Gleichenia circinata</i>	81	<i>Lima</i> sp.....	58
<i>circinidites</i>	81, 88	<i>Linearia metastriata</i>	57
<i>Gleicheniidites senonicus</i>	81, 88	<i>Lingula</i>	61, 63
<i>Gonyaulax</i>	80	<i>subspatulata</i>	61, 62
Gordo formation, grain-size analyses.....	19, 30	Lower cretaceous-Upper Cretaceous uncon-	
gravels in.....	100	formity.....	98
source and type of pollen and spore		<i>Lucina</i> sp.....	57
samples.....		<i>Lycopodiaceales</i>	80
<i>Gordonia</i>	73	<i>Lycopodites</i>	80
Grain size analyses.....	85	<i>Lycopodium cernitides</i>	80, 88
summary.....	11	<i>cernuum</i>	80
Gravel sediments, interpretation of.....	99		
<i>Gryphaea wratheri</i>	56, 59	M	
Gude, A. J., 3rd, clay mineral analyst.....	47	<i>Macruran</i>	57, 58
Guntersville, Ala., drainage relations.....	99	<i>Macruran abdominal segments</i>	58
Gymnospermae.....	81	<i>major</i> , <i>Cupaneidites</i>	85
identified in Webb, Boykin, and Crawford		<i>Podocarpidites</i>	81
cores.....	77	Mapping, methods of investigation.....	2
<i>Gynkaletes</i>	pl. 4	<i>margaritatus</i> , <i>Ilexpollenites</i>	84
retroflexus.....	pl. 4	Marl.....	43
		Marly sediments, percentage distribution of	
H		constituents.....	47
<i>Haplodhragmoides</i>	66	McShan and Eutaw fauna, age and correla-	
<i>Hardouinea</i>	59	tion.....	59
bassleri	57, 59	McShan formation.....	7, 47
<i>henrici</i> , <i>Quercoidites</i>	84; pl. 5	conditions of accumulations.....	52
<i>hiatus</i> , <i>Taxodiaeapollenites</i>	82	early Late Cretaceous age.....	93
<i>Hoploparia davisi</i>	58, 59	environment of deposition.....	87
sp.....	59	full thickness in Crawford hole.....	7
<i>Hymenozonotriletes</i>	90	grain-size analyses.....	28, 29, 30
reticulatus.....	88; pl. 6	palynomorphs.....	87, 88
<i>Hystrichosphaera cornigera</i>	74, 88	sorting coefficients of samples.....	30
Hystrichosphaeridae, identified in Webb,		source and type of pollen and spore	
Boykin, and Crawford cores.....	75	samples.....	73
<i>Hystrichosphaeridium multifurcatum</i>	74; pl. 9	Mechanical analyses, Eoline member.....	18, 19
pulcherrimum	74; pl. 9	<i>megaceactus</i> , <i>Cryillaceapollenites</i>	84
truncigerum	pl. 9	<i>Membranilaranz pterospermooides</i>	88
zanthiopyxides parvispinum	pl. 9	<i>mesozoticus</i> , <i>Tsugaepollenites</i>	83
Hystrichosphaeridae.....	74	<i>metastriata</i> , <i>Linearia</i>	57
		Methods of study.....	74
I		<i>Meyeria</i> sp.....	58
<i>Ilex</i>	84, 85	<i>Michystridium bacilliderum</i>	88
<i>Ilexpollenites margaritatus</i>	84	<i>inconspicuum</i>	88
<i>Inaperaturopollenites</i>	pl. 4	<i>parvimentum</i>	88; pl. 8
dubius	82, 83; pl. 6	<i>parvispinum</i>	88
<i>Inoceramus labiatus</i>	89	<i>pileferum</i>	74; pl. 9
<i>intermedius</i> , <i>Liliacidites</i>	84	microalatus, <i>Pityosporites</i>	83
Introductions to Chapters A-C, E-F.....	1, 9, 55, 71, 97		

	Page		Page		
Microfauna, from Coker formation	65	Pinus	83; pl. 4		
<i>Microforaminifers</i>	88	<i>Pinuspollenites labdacus</i>	83, 88; pl. 4		
Microfossil assemblage, composition	74	<i>Pityosporites microalatus</i>	83; pl. 4		
Microfossils in core samples identified	75	<i>Platanoidites</i>	85; pl. 5		
<i>microhenrici, Quercoidites</i>	84	<i>gertrudae</i>	pl. 8		
<i>Millettella</i>	67	sp	85		
<i>Minorpollis minimus</i>	pl. 8	<i>Platanus occidentalis</i>	85		
<i>Mohria</i>	80	<i>Plicatella</i>	80		
Mollusks, Eutaw formation	7	<i>trichacantha</i>	pl. 6		
in Eoline member	6	<i>Plicatula</i>	56, 63		
Monocotyledons, identified in Webb, Boykin, and Crawford cores	77	sp	61		
<i>Monolites major</i>	pl. 3	<i>plumosa, Botula</i>	61, 62		
Monroe, quoted	68	<i>Podocarpidites</i>	81		
<i>Monstruosipollis monstruosus</i>	88	<i>biformis</i>	82; pls. 4, 7		
Mooreville chalk, conditions of accumulation	53	<i>major</i>	81; pls. 4, 7		
fauna from	56	<i>Podocarpoxylon texense</i>	81		
grain-size analyses	30	<i>washingtonense</i>	81		
<i>Myrtaceidites parvus</i>	84, 85, 88	<i>Podocarpus</i>	81; pl. 7		
N					
<i>Nemodon</i>	62, 63	Pollen and micro spore studies, preliminary character	72		
<i>brevifrons</i>	57	Pollen flora, Late Cretaceous age	71		
sp	61	<i>Pollenites cingulum</i>	88		
<i>Nemopanthus</i>	84	<i>genuinus</i>	88		
<i>Normapolles</i>	89	<i>kruschi</i>	pl. 8		
forms, distinctive	89	<i>megagertrudae</i>	88; pl. 5		
<i>Nuculana</i> sp	57	<i>ornatus</i>	84, 85, 88		
<i>Nudopollis ornatus</i>	pl. 5	<i>quisquales</i>	pl. 5		
O		<i>polyformosus, Sequoiapollenites</i>	82; pl. 6		
<i>occidentalis, Platanus</i>	85	<i>ponticulana, Anomia</i>	62		
<i>ochileanum, Cardium (Trachycardium)</i>	56, 57	<i>Pontigulasia</i>	67		
<i>Oculopollis</i>	92	<i>Populus</i>	84		
<i>ornatus, Pollenites</i>	84	<i>Porocolpopollenites</i>	88, 90; pl. 8		
<i>Osmundacidites wellmani</i>	88	<i>orbiformis</i>	pl. 8		
<i>Ostrea</i>	63	<i>Poroplantes porosinusos</i>	88		
<i>battensis</i>	57, 59	<i>Pranlitina</i>	69		
<i>cretacea</i>	56, 59, 60	Pre-Selma Cretaceous rocks, stratigraphic relations	?		
<i>soleensis</i>	61, 62	Pre-Selma strata, zonation	90		
sp	57, 61	<i>prelimestedi, Anomia</i>	56		
Outcropping stratigraphic units	12	Previous publications	1, 2		
P		Program of investigation	1, 9		
<i>Paleohystrichosporea infusorioides</i>	80, 88; pl. 9	<i>Proteomina</i>	67		
<i>Palivurus rhamnooides</i>	92; pls. 5, 8	<i>Protophyllocladus subintegritolius</i>	81		
<i>pallidus, Caytonipollenites</i>	82; pl. 6	Provenance, carbonate-cemented sandstone	39		
Palymorphs of restricted distribution within the Pre-Selma section	88	<i>Pterospermopsis ginginensis</i>	74, 88; pl. 9		
Palymorph zones of Pre-Selma strata	86	Q			
Paris Basin, Upper Cretaceous fossils from	74	Quartz varieties in subsurface sandstone	34, 35		
Parvisaccites radiatus	81; pls. 4, 7	<i>Quercoidites henrici</i>	84; pl. 5		
<i>parvus, Myrtaceidites</i>	84	<i>microhenrici</i>	84; pl. 8		
<i>Pecten</i>	56	<i>intragranulatus</i>	pl. 8		
<i>Perinopollenites elatoides</i>	pl. 4	R			
Petrologic studies of unweathered core samples, Vick, Coker, McShan, and Eutaw formations	81	<i>radiatus, Parvisaccites</i>	81; pls. 4, 7		
Petrology, sampling	10	<i>reduncus, Chomotriletes</i>	92		
grain size analyses	10	Reeves farm, Centreville, Ala.	65		
Phosphatized fecal pellets	39	References, Chapters A-F	8, 53, 64, 70, 93, 101		
(<i>Phyllocladites</i>) <i>florini, Dacrymymites</i>	81	Roberts, H. R., quoted	59, 60		
Pink lime nodules	98	Rock forming materials	31		
		<i>Rugulatisporites</i>	pl. 6		
		<i>quintus</i>	88		
		<i>rurensis, Triatriopollenites</i>	89		

S	Page	T	Page																																												
<i>Sabalpollenites areolatus</i>	83	<i>Taurocuspollenites redundans</i>	pl. 3																																												
<i>Saccammina</i>	67	<i>Taxodiapollenites hiatus</i>	82, 83; pl. 6																																												
<i>colinensis</i> Applin, n. sp., systematic description.....	69; pl. 2	Taxodium pollen, characteristics of.....	83																																												
<i>Saccamminidae</i> , in Boykin hole.....	5	Teleostean vertebra.....	58																																												
<i>Salix</i>	84	<i>Tellina</i>	63																																												
<i>discoloripes</i>	84, 88; pl. 5	sp.....	61																																												
Sand, average percentages of rock and mineral fragments.....	48	<i>Tenerina tenera</i>	pl. 8																																												
composition.....	41	Tennessee River, relation to Cretaceous streams.....	99																																												
grouped for study.....	35	<i>Tetraporina</i>	pl. 9																																												
mode of formation.....	42	<i>texense</i> , <i>Podocarpozylon</i>	81																																												
percentage of rock-forming materials, Coker, McShan, and Eutaw formations.....	44	Tooth, shark.....	58																																												
provenance.....	42	<i>Torisporis intrastructurarius</i>	88; pl. 3																																												
<i>Scapanorhynchus subulatus</i>	58	<i>Trinatriopollenites</i>	pl. 8																																												
<i>Scaphites geinitzi</i>	89	<i>concavus</i>	89; pl. 8																																												
<i>Schima</i>	85	<i>coryphaeus</i>	88, 89																																												
<i>Schizaea</i>	80	<i>rurensis</i>	88, 89; pl. 8																																												
<i>Schizaeaceae</i>	80	(<i>Trachycardium</i>) <i>ochileanum</i> , <i>Cardium</i> sp. <i>Cardium</i>	56, 57																																												
<i>Schizaeoisporites</i>	80; pl. 6	<i>Tricolopollenites parvulus</i>	pl. 5																																												
<i>Schizoplanites reductus</i>	88	<i>retiformis</i>	pl. 5, 8																																												
<i>Schizosporis reticuloides</i>	88; pl. 9	Tricolporate pollen, identified in Webb, Boykin, and Crawford cores.....	78																																												
Selma Group, Mooreville chalk, logged drill holes.....	4	<i>Tricolopollenites</i>	pl. 5, 8																																												
Sequatchie River, relation to Cretaceous streams.....	99	<i>distinctus</i>	pl. 5																																												
<i>Sequoia</i>	83	Tricolporate pollen, identified in Webb, Boykin, and Crawford cores.....	78, 79																																												
<i>Sequoiapollenites polyformosus</i>	82; pl. 4	<i>Tricolporopollenites eschweilerensis</i>	pl. 8																																												
Several impressions of indeterminate pelecypods.....	61	<i>microreticulatus</i>	88																																												
Shark teeth, Eutaw formation.....	7, 57	<i>Trigonarca</i> sp.....	57																																												
Shark tooth.....	56, 57, 58	<i>Trilites</i> sp.....	pl. 3																																												
vertebra.....	57	<i>verrucatus</i>	pl. 3																																												
Shark vertebra.....	58	<i>Triorites edwardsii</i>	pl. 5																																												
Siderite spherules, in Coker formation.....	5	<i>Triplanosporites sinuosus</i>	pl. 3																																												
upper member of the Coker formation.....	6	<i>Trivestibulopollenites betuloides</i>	88, 89; pl. 8																																												
Silt.....	43	<i>Trochammina</i>	66																																												
average percentages of rock and mineral fragments.....	48	<i>Trudopollis</i>	92																																												
grouped for study.....	35	<i>Tsugaepollenites mesozoicus</i>	83, 88																																												
percentage of rock-forming materials.....	46	<i>Turonipollis turonis</i>	88																																												
<i>soleniscus</i> , <i>Ostrea</i>	61, 62	Tuscaloosa group, Coker formation (Eoline member).....	61																																												
Source of material.....	72	early Late Cretaceous age.....	93																																												
Spherules of siderite.....	41	environment of deposition.....	87																																												
Sporae Dispersae, identified in Webb, Boykin, and Crawford cores.....	75, 76	fern flora.....	90																																												
Spore tallies, comparative percentages.....	91	palynomorphs.....	87, 88																																												
<i>Sporites arcifer</i>	pl. 3, 6	polleniferous material.....	72																																												
<i>echinosporus</i>	pl. 9	<i>Sporopollis</i>	pl. 5, 8	U	60	<i>laqueaeformis</i>	pl. 8	<i>Uchee</i>	56, 57, 59	<i>pseudosporites</i>	pl. 5, 8	Upper member of Coker formation, conditions of accumulation.....	52	Stratigraphic interpretation of floras.....	90	grain-size analyses.....	18, 24, 26	Stratigraphic relations, of Vick, Coker, Gordo, McShan, and Eutaw formations.....	10	sorting coefficients of samples.....	28	Stratigraphic units in core holes, correlation with outcropping units.....	12	<i>Urnulina</i>	67	<i>subintegrigolius</i> , <i>Protophyllododus</i>	81	<i>subspatulata</i> , <i>Lingula</i>	61, 62	V	101	<i>subulatus</i> , <i>Scapanorhynchus</i>	58	Valley-and-ridge topography, Cretaceous.....	69	<i>Symplocoipollenites vestibulum</i>	84, 88; pl. 8	Vašček, M., quoted.....	58			Vertebra, shark.....	56, 58			Vertebrae, fish.....	
<i>Sporopollis</i>	pl. 5, 8	U	60																																												
<i>laqueaeformis</i>	pl. 8	<i>Uchee</i>	56, 57, 59																																												
<i>pseudosporites</i>	pl. 5, 8	Upper member of Coker formation, conditions of accumulation.....	52																																												
Stratigraphic interpretation of floras.....	90	grain-size analyses.....	18, 24, 26																																												
Stratigraphic relations, of Vick, Coker, Gordo, McShan, and Eutaw formations.....	10	sorting coefficients of samples.....	28																																												
Stratigraphic units in core holes, correlation with outcropping units.....	12	<i>Urnulina</i>	67																																												
<i>subintegrigolius</i> , <i>Protophyllododus</i>	81	<i>subspatulata</i> , <i>Lingula</i>	61, 62	V	101	<i>subulatus</i> , <i>Scapanorhynchus</i>	58	Valley-and-ridge topography, Cretaceous.....	69	<i>Symplocoipollenites vestibulum</i>	84, 88; pl. 8	Vašček, M., quoted.....	58			Vertebra, shark.....	56, 58			Vertebrae, fish.....																											
<i>subspatulata</i> , <i>Lingula</i>	61, 62	V	101																																												
<i>subulatus</i> , <i>Scapanorhynchus</i>	58	Valley-and-ridge topography, Cretaceous.....	69																																												
<i>Symplocoipollenites vestibulum</i>	84, 88; pl. 8	Vašček, M., quoted.....	58																																												
		Vertebra, shark.....	56, 58																																												
		Vertebrae, fish.....																																													

Page	Page		
<i>vestibulum, Symplocoipollenites</i>	84	Webb core, Eoline member of Coker formation, fossils.....	55
Vick formation, Cleveland and Webb holes.....	4	microfossils identified.....	75
Cleveland core hole, grain size analyses.....	11,	Webb core hole.....	17
14, 15, 16, 17		stratigraphic units in.....	12
conditions of accumulations.....	49	Vick formation.....	98
early Late Cretaceous.....	97	Webb core samples, sorting coefficients.....	16, 19, 28
extent and thickness.....	97	Webb core hole, core, source and type samples, pollen and spore studies.....	73
outcrop.....	4	core description and fossil history.....	61
sorting coefficients of samples.....	16	lower part of Gordo formation.....	6
Webb core hole, grain-size analyses.....	16, 17	rocks drilled.....	5
W		rocks of Eoline member.....	5, 6
Warrior River.....	101	rocks of upper member.....	6
relations to Cretaceous streams.....	99	Woodbine formation.....	62, 66
<i>washingtonense, Podocarpozylon</i>	81	<i>wratheri, Gryphaea</i>	56, 59

