Index to Geophysical Abstracts 188-191
1962

By JAMES W. CLARKE, DOROTHY B. VITALIANO,
VIRGINIA S. NEUSCHEL, and others

GEOLOGICAL SURVEY BULLETIN 1166-E

Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

By James W. Clarke and others

AUTHOR INDEX

A

Abdullayev, R. A. Composition of normal traveltime curves and determination of mean velocity to refracting boundaries with the aid of nomograms -- 190-557
Abdullayev, R. N. Tectonics of the deep horizons of Lokbatan and the Khudat-Khachmas area of the cis-Caspian region from seismic prospecting data -- 189-581
Abe, Siro. See Fukushima, Naoshi.
Abel, J. F., Jr. Ice tunnel closure phenomena ----------------------------------- 191-681
Abelson, F. H. See Hoering, T. C.
Abubaker, Iya. Disturbance due to a line source in a semi-infinite transversely isotropic elastic medium -- 191-154
Abubaker, Iya. Scattering of plane elastic waves at rough surfaces. 1 ----------------------------------- 188-200
Academia Sinica. A direct current amplifier of the modulation type for the telluric current method of geophysical prospecting ----------------------------------- 188-146
Ackerman, R. K. See Ralph, E. K.
Ackerman, W. See Urbach, W.
Acta Geophysica Sinica. A supersonic impulse well-logging instrument ----------------------------------- 188-542
Adams, E. W., and Huffaker, R. M. Parent body hypothesis for origin of tektites ----------------------------------- 191-67
Adams, J. A. S., and Rogers, J. J. W. Bentonites as absolute time-stratigraphic calibration points ----------------------------------- 188-41
Adams, R. D. Thickness of the earth's crust beneath the Campbell Plateau ----------------------------------- 189-351
Adams, R. D. Total magnetic field surveys between New Zealand and the Ross Sea ----------------------------------- 188-467
Adams, W. M., and Allen, D. C. Seismic decoupling for explosions in spherical underground cavities ----------------------------------- 188-221
Adler, Isidore, and Dwornik E. J. Electronprobe analysis of schreibersite (rhabdite) in the Canyon Diablo meteorite ----------------------------------- 188-109
Afanas'yev, G. D. The petrographic interpretation of geophysical data on the structure of the earth's crust ----------------------------------- 189-352
Afanas'yev, G. D., Borisевич, I. V., and Shanin, L. L. On the geologic interpretation of radiological data according to determinations of the absolute age of rocks ----------------------------------- 191-1
Afanas'yev, G. D., Shanin, L. L., Gol'tsman, Yu. V., and Noskova, V. G. Tie points for the absolute time scale and some principles of its establishment ----------------------------------- 188-4
Afanas'yev, N. L. Determination of the center of a disturbing body from gravity anomalies ----------------------------------- 188-331
Afanas'yeva, V. I. Preliminary results of investigation of magnetic storms for the first half of the IGY ----------------------------------- 189-391

651
Agamaliyev, G. M. See Logovskaya, G. K.

Agarwal, R. G. Earthquake of May 15, 1909--------------------- 190-116
— Interpretation of aeromagnetic data in west central Saskatchewan and east central Alberta --------------- 190-479

Agostinelli, Cataldo. On the movement of a glacier. New hypothesis on the determination of the profile of a right angle section --- 189-274

Aguirre, Luis. See Ruiz, Carlos.

Ahrens, T. J., and Katz, Samuel. An ultrasonic interferometer for high-pressure research ---------------------- 191-205

Airinei, Ştefan. Gravimetric and geomagnetic investigations in the zone of bend of the eastern Carpathians and the Țara Birsei ------ 188-357

See also Ștefanescu, S. S.

Akamatsu, H. See Uyeda, Seiya.

Akasofu, Syun-Ichi. On a self-consistent calculation of the ring current field -- 191-429

Akasofu, Syun-Ichi, Cain, J. C., and Chapman, Sydney. The magnetic field of a model radiation belt, numerically computed------ 188-392
— The magnetic field of the quiet-time proton belt--------------- 191-452

Akasofu, Syun-Ichi, and Chapman, Sydney. The ring current and a neutral line discharge theory of the Aurora Polaris--------- 190-426

Aki, Keiiti. Revision of some results obtained in the study of the source function of Rayleigh waves --------------------- 191-105
— The use of long-period surface waves in the study of earthquake mechanism -- 189-109

Aki, Keiiti, and Press, Frank. Upper mantle structure under oceans and continents from Rayleigh waves --------------------- 188-373

See also Miyamura, Setumi.

Akopyan, Ts. G. Paleomagnetism of effusive rocks of the Armenian SSR, and the migration of the earth's poles during the Cenozoic era -- 190-464

Akrabova, A. Applying the method of refracted waves to the areas of fault tectonics in the Kamchia foredeep --------------- 190-630

Aksel'rod, S. M. On the scale of the curves of induction logging --- 190-224
— Water-oil contact determination by the method of induced sodium activation under the conditions of the oil fields of Azerbaijan - 189-522

Aksel'rod, S. M., and Putkaradze, L. A. Application of radioactive methods for investigation of drill holes in the oil industry of the Azerbaijan SSR -------------------------- 189-537
— Concerning the question of calibration of radioactivity logging apparatus (RK) ------------------------------- 191-598

Aksin, Vladimir. Recent work in investigation of oil and gas in the territory of Serbia ----------------------------- 188-289

Alcaraz, Arturo. Tilt measurements in Philippine volcanic areas--- 190-628

See also Asada, Toshi, and Davis, G. L.

Aleksandrov, K. S., and Ryzhova, T. V. Elastic properties of the rock-making minerals. Pt. 2. Phyllosilicates ---------------------- 191-201
— Elastic properties of the rock-making minerals. Pt. 3. Feldspars--- 191-202

Aleksandrov, S. Ye., Sukhodol'skiy, V. V., and Izmaylov, Y. P. New pendulum device for gravity determination at sea ------------------- 191-358

Aleksyev, A. S., Babich, V. M., and Gel'chinskii, B. Ya. The ray method of calculation of intensity of wave fronts ------------------- 191-174
Alekseyev, A. S., and Gel'chinskiy, B. Ya. The ray method of calculation of head wave intensities 191-178
Alekseyev, F. A. Radiometric method of direct exploration for oil and gas 190-515
Alekseyev, F. A., and Denisik, S. Ts. Radioactivity methods of control of exploitation of oilfields 189-507
Alekseyev, F. A., Denisik, S. Ts., Miller, V. V., and Odinokov, V. P. Application of the method of gamma-radiation spectroscopy in borehole investigations 189-510
Alekseyev, F. A., Grumkov, A.' P., and Gottikh, R. P. Radiometry and radiogeochemistry in direct search of oil and gas 189-495
Alekseyev, F. A., Odinokov, V. P., and Shimelevich, Yu. S. Activation analysis of rocks under borehole conditions, and its application to locating oil-bearing and water-bearing strata 189-521
Alekseyeva, K. N., and Tovarenko, K. A. The dielectric constant of stone meteorites 191-47
See also Burkser, Ye. S.
Aleksić, D. See Perić, M.
Alessio, Marisa, Allegri, Lucia, and Bella, Francesco. A CO2-proportional counter of small volume and high efficiency for low level β-counting 189-8
Alexander, I. H. Horizontal earth movement in the Baldwin Hills, Los Angeles area 190-287
Alexandrov, V. A., Pudovkin, M. I., and Yanovsky, V. M. The field of magnetic disturbances in the Artic and Antarctic 189-395
Alfano, Luigi. Geoelectrical explorations for natural steam near "Monte Amiata" 188-253
Alferov, B. A., Purtova, S. I., Serabryakova, Z. D., and Yastrebova, T. A. Research drill holes of the U.S. S. R. Uvat research drill hole (Tyumen Region) 191-257
Aliyev, S. A. Magnitude of the geothermal step in the Bibieybat field 188-366
See also Mekhtiyev, Sh. F.
Aliyev, V. I. See Kashkay, M. A.
Alksne, A. Y. See Spreiter, J. R.
Alldredge, L. R., and Van Voorhis, G. D. Source of the great Arctic magnetic anomaly 189-373
Allegri, Lucia. See Alessio, Marisa.
Allen, C. R. See Kovach, R. L.
Allen, W. B. See Tuttle, C. R.
Allingham, J. W. Aeromagnetic interpretation of zoned intrusions in northern Maine 188-447
Allingham, J. W., and Bates, R. G. Use of geophysical data to interpret geology in Precambrian rocks of central Wisconsin 188-450
Allonby, R. H. See Clarke, A. M.
Allsup, J. R. See Eckelmann, W. R.
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

Abstract

Alperovich, L. A. See Troitskaya, V. A.
Alterman, Z. See Pekeris, C. L.
Alypova, O. M. See Markhinin, Ye. K.
Ambraseys, N. N. A note on the chronology of Willis' list of earthquakes in Palestine and Syria 189-77
--- On the seismicity of south-west Asia. Data from a XV century Arabic manuscript 189-87
Amirkhanov, Kh. I., Brandt, S. B., and Bartnitsky, Ye. N. Radioactive argon in minerals and its migration 188-24
Amirova, A. V. See Khat'yanov, F. I.
Amiruddin, A. See Ehmann, W. D.
An, V. A. See Vladimirov, N. P.
Anders, Edward. See Fitch, Frank.
Andersen, F. See Loomer, E. I.
Anderson, D. L. Love waves dispersion in heterogeneous anisotropic media 191-153
--- The plastic layer of the earth's mantle 191-410
See also Harkrider, D. G.
Anderson, K. A. See Winckler, J. R.
Anderson, L. A. A remanent magnetometer and magnetic susceptibility bridge 188-423
Ando, Kiyomi. See Umez u, Naganori.
Ando, Seiichi. See Miyamura, Setumi.
Andreas, Dieter, and Hecht, Günther. Induced polarization as a well logging method in nonferrous metal prospecting 188-269
Andreasen, G. E., and Kane, M. F. Isostatic compensation in the Sangre de Cristo Mountains, New Mexico 188-342
Andreasen, G. E., Kane, M. F., and Zietz, Isidore. Aeromagnetic and gravity studies of the Precambrian in northeastern New Mexico 190-477
Andreyev, B. A. Development and adoption of methods of processing and interpretation of the results of gravity surveys 190-308
Andreyev, B. A., Boronin, V. P., and Krylov, S. V. Geophysical characteristics of oil-bearing structures of the Volga-Ural province 190-531
Andreyev, V. I. Taking account of certain demagnetizing factors in interpretation of magnetometric data 191-471
Andreyev, V. I., and Kt:prin, V. I. Geologic-geophysical evaluation of the prospects of an iron ore field in deep horizons as exemplified by the Tashtagol deposits 191-555
Angenheister, G. H., and Consbruch, Claus von. Pulsations of the geomagnetic field at Gottingen for 1953-58. Pt. 2 188-405
Anjaneyulu, T. S. S. Microseisms at Madras associated with disturbances in the Bay of Bengal 190-491
Annau, Edgar, and Vefalosn, Antall. Materials concerning the structure of the earth crust in northeast China 188-370
Annell, Charles. See Overstreet, W. C.
An pilogov, A. P. Problem of quantitative estimation of reservoir properties of terrigenous rocks according to SP logs 191-253
An pilogov, A. P., Korshikov, V. N., and Zudakina, Ye. A. Testing of methods of determination of reservoir properties of terrigenous strata of the Tyumazy and Serafimovka fields according to geophysical logging data 189-209
Antes, A. C. See Lorenz, P. J.
Antevs, Ernst. Transatlantic climatic agreement versus C14 dates — 189-7
Antsilevich, M. G. Interaction of the sun's corpuscular streamers with the earth's magnetic field ---------------------------------- 190-444
Antsyferov, M. S. The seismoacoustic control in the mining of coal seams with a tendency toward gas and coal bursts ----------- 191-669
Aoi, Shunji. See Sato, Takahiro.
Aoki, Harumi. Free oscillations of spherical seismic origins ------ 190-179
Archambeau, Charles. See Press, Frank.
Arenales, Ricardo. The earthquake of San Salvador, Corpus-Christi—June 7, 1917 -------------------------------- 190-118
Argentiere, Romulo. Notes on the radioactivity survey in the south part of Bahia --- 189-501
Arkhangelskaya, V. M. Dispersion of surface waves and structure of the crust --- 189-344
— Investigation of short period surface seismic Rayleigh waves --- 189-131
Arkhangelskaya, V. M., and Fedorov, S. A. Some results of study of attenuation of Rayleigh surface waves ------------------ 189-133
Arkhangelskiy, V. T. A method for changing the amplification of an electrodynamic seismograph preserving the shape of its frequency characteristics ---------------------------- 191-145
Arnold, A. B. Case-hardening effect on unconfined compressive strength and elastic modulus of Iron Canyon, agglomerate, California --- 191-664
Arnold, J. R. Nuclear effects of cosmic rays in meteorites ------- 189-39
Arnold, J. R., Honda, Masatake, and Lal, Devendra. Record of cosmic-ray intensity in the meteorites ------------------------ 190-67
See also Honda, Masatake.
Arnold, K. C. See Weber, J. R.
Arnold, Kurt. A graphic aid for the gravimetric correction of astronomic levelings --------------------------------------- 190-277
— The determination of the geoid from gravity values and the theory of Molodenskiy -------------------------------------- 190-272
— The methods of free-air reduction and of isostatic reduction in their reciprocal relations------------------------------- 189-289
Arnold, R. G. Equilibrium relations between pyrrhotite and pyrite from 325° to 743°C -------------------------------------- 191-395
Arogyaswamy, R. N. P. Prospecting for clay deposits ------------- 190-205
Aronov, L. Ye. Photoelectrical automatic device for controlling the recording of electrical processes ------------------- 191-132
See also Borisevich, Ye. S.
Aronovich, Z. I. On an approximate transformation of seismograph parameters -- 191-146
Arshvila, S. V. See Borisevich, Ye. S.
Arslanov, Kh. A. See Starik, I. Ye.
Artamonov, L. V., and Shuval-Sergeyev, N. M. On dipole induction profiling in airborne electrical prospecting -------------- 189-164
Artem'yev, Yu. M. See Zhirov, K. K.
Artm'ev, M. E., and Tarakanov, Yu. A. Gravimetric observations in one of the mines of the Krivoi Rog basin ------------ 191-375
Asada, Toshi, Steinhart, J. S., Rodriguez, B., Tuve, M. A., and Aldrich, L. T. The earth's crust-seismic studies -------- 191-88
Ashirov, K. B. See Mzhachikh, K. I.
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

Abstract

Aswathanarayana, U. Age of the Cuddapahs, India------------------ 189-28, 190-21
Asylbayev, U. Kh. See Cherdyntsev, V. V.
Atanasiu, Ion. Earthquakes in Rumania ----------------------------- 188-160
Auberger, Michel, and Rinehart, J. S. Method for measuring at-
tenuation of ultrasonic longitudinal waves in plastics and rocks -- 190-166
See also Klima, Karel.
Aubert de la Rte, E. The present manifestations of volcanism in the
New Hebrides (Melanesia) -- 190-631
Aue, L. F. Concerning the question of the geologic utilization of
maps of the second vertical derivative of potential fields -------- 190-331
measurement probe into the melt of the Kilauea Iki lava lake in
Hawaii --- 190-609
Austin, C. F., and Slawson, W. F. Isotopic analyses of single
crystals: A clue to history of deposition ---------------------------- 188-384
See also Slawson, W. F.
Avdulov, M. V. Determination of the error in the representativity
of gravity anomalies by the method of mean gradients ---------- 190-312
Aver'yanov, A. G., Veytsman, P. S., Gal'perin, Ye. I., Zverev,
S. M., Zayonchkovskiy, M. A., Kosminskaya, I. P., Krak­
shina, R. M., Mikhota, G. G., and Tulina, Yu. V. Deep seis-
mic sounding in the transition zone from the Asian Continent to
the Pacific Ocean during the International Geophysical Year----- 190-357
Averyev, V. V., Ivanov, V. V., and Piyp, B. I. Problems of us-
ing volcanic thermae of the Kurile-Kamchatka island arc for
power --- 190-345
Avramchev, L. See Tuparev, P.
Axford, W. I. The interaction between the solar wind and the
earth's magnetosphere --- 191-422
Axford, W. I., and Reid, G. C. Polar-cap absorption and the mag-
netic storm of February 11, 1958------------------------------- 189-418
Ayzberg, R. Ye., Germanyuk, M. M., and Kamyshev, N. N. Di-
rection of geological-geophysical work for oil and gas in the
Gaurdak-Kerki region--- 190-589
Ayzenshtadt, G. Ye.-A., Grinberg, I. G., D'yaakov, B. F.,Nevolin,
N. V., Trofimov, N. K., Cherepanov, N. N., and Eventov, Ya.
S. Prospects for oil and gas productivity of west Kazakhstan
and the main directions of regional, exploration, and prospecting
operations -- 190-249
Ayzenshtadt, G. Ye.-A., and Pinchuk, I. A. Research drill holes
of the U.S.S.R. Yuzhno-Emba 2 and Tugarakchan 5 research
drill holes --- 191-260
Azeem, Mohmmad. See Husain, M. K.
Azimi, Sh. A., and Ogil'vi, A. A. Experiment in application of a
single channel seismic apparatus for engineering-geological in-
vestigations --- 190-576

B

Baadsgaard, Halfdan, Campbell, F. A., Folinsbee, R. E., and
Cumming, G. L. The Bruderheim meteorite -------------------- 190-71
Baadsgaard, Halfdan, Folinsbee, R. E., and Lipson, J. I. Caledo-
nian or Acadian granites of the northern Yukon Territory ------- 188-59
Baadsgaard, Halfdan, Lipson, J. I., and Folinsbee, R. E. The
leakage of radiogenic argon from sanidine ------------------------ 188-26
See also Burwash, R. A., Folinsbee, R. E., and Lipson, J. I.
Baba, Kenzo. See Odani, Yoshitaka.
Abstract

Babayants, S. P., and Zavarzin, G. N. Application of geophysical surveying on a scale of 1:200,000 in covered regions --------- 188-291

Babich, V. M. Analytic extension of solutions of the wave equation into a complex region and the caustic ---------------------- 191-182

— Analytic properties of the field of a nonstationary wave in the neighborhood of a caustic ---------------------------------- 191-181

— Concerning convergence of series of the ray method for calculating wave front intensities -------------------------------- 191-175

— The ray method of calculation of intensity of wave fronts in the case of an elastic nonhomogeneous anisotropic medium--------- 191-176

See also Alekseyev, A. S.

Bacon, L. O. A method of determining dynamic tensile strength of rock at minimum loading ---------------------------------- 191-654

Badak, Jerzy. See Kita-Badak, Maria.

— Seismicity of the east part of the south spurs of the main Caucasus Range and some methodological problems of study of the seismicity of individual regions. Pt. 3 ---------------------- 188-162

Bailey, R. W. Madison River-Hebgen Lake earthquake and highway problems --- 188-150

Bailey, S. W. See Tyler, S. A.

Bainbridge, A. E., Sues, H. E., and Wänke, H. The tritium content of three stony meteorites and one iron meteorite --------- 190-84

Baker, C. O., and Bott, M. H. P. A gravity survey over the Freetown basic complex of Sierra ------------------------------- 188-353

Baker, George. A naturally etched Australite from Narembeen, Western Australia -- 189-62

— The largest known australite and three smaller specimens from Warralakin, Western Australia------------------------------- 190-94

Balakina, L. M., Shirokov, H. (Ye.) I., and Vvedenskaya, A. V. Study of stresses and ruptures in earthquake foci with the help of dislocation theory ---------------------------------- 189-102

Balakrishna, S. Earth tides ---------------------------------- 188-193

Balakrishna, S., and Johnson, P. V. Influence of earthquake shocks on the Askania gravimeter spring -------------------- 188-194

See also Hayakawa, Masami.

Balashov, V. N., and Polyakov, A. K. Experimental work with radiometric testing in an antimony mine --------------------- 188-500

Baldwin, H. L., Jr. See Hill, D. P., and Pakiser, L. C.

Balsamo, J. J. See Hill, D. P.

Balsamo, J. J. See Hemenway, C. H.

Balsley, J. R. Aeromagnetic maps of Maine----------------------- 191-533

Balsley, J. R., Meuschke, J. L., and Blanchett, Jean. Aeromagnetic map of the Eagle Harbor quadrangle, Keweenaw County, Michigan --- 191-542

Balyasnyy, N. D., Kogan, R. M., Renne, O. S., and Fridman, Sh. D. An experiment in determining the concentration of RaC, ThC", and K-40 in homogeneous granites according to the energy composition of γ-rays -------------------------------- 190-499

Banas, Henryk. Technical progress in seismic prospecting --------- 188-521

Banno, Shohei. See Miller, J. A.

Baramzina, V. A. See Dolina, L. P.
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

Baranov, V. I., and Knorre, K. G. Age and evolution of meteorite and terrestrial matter in the light of subsequent investigations 191-30

Barje, Henryk. Micromagnetics as an auxiliary method for investigation of the youngest geological deposits 190-473

Barinov, Ye. A., and Zhogolev, L. P. A device for measuring remanent magnetization of specimens of rocks 189-435

Barinova, A. Ya. See Kukhtikova, T. I. 212

Barkan, S. Branching ratio of α and β emissions from Bi(ThC) - 190-495

Barker, Harold, and Mackey, John. British Museum natural radio-carbon measurements III 190-28

Barnes, D. F. Gravity low at Minto Flats, Alaska 188-351

Barnes, V. E. Tektites 188-132

Barnett, C. H. A suggested reconstruction of the land masses of the earth as a complete crust 191-300

Barr, K. G. The use of a selective amplifier to increase the useful sensitivity of short period electromagnetic seismographs 189-136

Barta, György. Connections between the secular variations of the earth's magnetic field and other phenomena 189-386

Bartels, Julius. Geomagnetic activity in the International Geophysical Year, discussed against the background of previous years 189-390

Bartnitsky, Ye. N. See Amirkhanov, Kh. I.

Barvenko, H. Ya. Surface ice movement of the Lesser Almatinsky glaciers of the Zailiyskiy Altay range 191-321

— Surface motion of the ice in the Central Tuyuksuysky glacier 189-280

Barygin, V. M. Prospecting for kimberlite pipes from the air 191-560

Barykin, D. D. See Khalevin, N. I.

Basin, Ya. N. See Kukharenko, N. K.

Bassett, W. A. See Schaeffer, O. A.

Batalina, E. P. See Dyad'kin, I. G.

Bateman, P. C. Granitic formations in the east-central Sierra Nevada near Bishop, California 188-49

— Willard D. Johnson and the strike-slip component of fault movement in the Owens Valley, California, earthquake of 1872 188-151

Bates, C. C. VELA UNIFORM, the nation's quest for better detection of underground nuclear explosions 188-222

Bates, L. F. Modern magnetism 190-449

Bates, R. G. Airborne radioactivity surveys—A geologic exploration tool 190-506

— Natural gamma aeroradioactivity of the Oak Ridge National Laboratory area, Tennessee and Kentucky 191-591

See also Allingham, J. W.

Bath, G. D. See Irwin, W. P.

Bath, Markus. Direction of approach of microseisms 191-565

— The Conrad discontinuity 190-352

Bath, Markus, and Lopez Arroyo, Alfonso. Attenuation and dispersion of G-waves 190-137

Battelli, O. See Molina, F.

Bayembitov, F. G. Method of interpretation of diagrams of radioactive logging in reefs 189-542

Bażyński, Józef. Tasks and results of applying geophysics in geophysics in geological engineering 190-263

Beard, D. B. Self-consistent calculation of the ring current 191-428

Beard, D. B., and Jenkins, E. B. The magnetic effects of magnetosphere surface currents 191-421
Beck, A. E., and Valliant, H. D. On minimum pendulums -- 189-300
Beckmann, W. C. See McGuinness, W. T.
Bedcher, A. Z., Yeremia, A. S., and Stolovitskiy, B. M. Distribution of upper Miocene reservoirs in the West Kuban downwarp according to data of electrical logging and their gas-oil productivity -- 189-216
Bednářová-Nováková, Bohumila. A note on the question of the origin of geomagnetic storms -- 191-458
--- Connection between geomagnetic storms in IGY and IGC and occurrence of some kinds of filaments -- 191-461
Begery, W. R. Geophysical and geochemical surveys in the Connors area, St. Catherine, Jamaica -- 190-208
Behrendt, J. C. Geophysical and glaciological studies in the Filchner ice shelf area of Antarctica -- 188-319
Behrendt, J. C., Laudon, T. S., and Wold, R. J. Results of a geophysical traverse from Mount Murphy to the Hudson Mountains, Antarctica -- 191-265
Behrendt, J. C., and Parks, P. E., Jr. Antarctic peninsula traverse -- 191-638
Behrendt, J. C., Wold, R. J., and Laudon, T. S. Gravity base stations in Antarctica -- 191-369
Beland, J. See Neale, E. R. W.
Belash, V. A. On some methods of interpretation of results of observations by the method of induced polarization -- 191-224
Belevtsev, Y. N. The prospecting criteria of iron ores of magnetic anomalies -- 191-531
Belikov, B. P. Elastic properties of rocks -- 190-172
Belin, R. E. Some observations on the suppression of movement of a rock face by the application of rock bolts -- 189-593
Belitskaya, S. G. See Nazarenko, O. V.
Bell, Henry, III. See Overstreet, W. C.
Bella, Francesco, and Cortesi, Cesarina. The CO₂-proportional counter of the carbon-14 dating laboratory of the University of Rome -- 189-9
See also Alessio, Marisa
Belous, N. Kh. See Klyarovskiy, V. M.
Belousov, V. V. Author's reply to the preceding discussion -- 188-307
Belshe, J. C. See Everitt, C. W. F.
Belyankin, F. P. Gravitational effects of the moon and sun on tectonic processes in the earth's crust -- 188-196
Ben-Menahem, Ari. Radiation of seismic body waves from a finite moving source in the earth -- 188-204
Bennett, A. D. Study of multiple reflections using a one-dimensional seismic model -- 191-605
Bennett, H. F. See Crary, A. P.
Beránek, Břetislav. See Zounková, Milada.
Berckhmer, Hans, Müller, Stephan, and Sellevoll, Markvard, A. The crustal structure in southwest Germany from phase velocity measurements on Rayleigh waves -- 189-130
Berezin, E. M., and Kuzivanov, V. A. Nomograms for determination of corrections for the amplitude, temperature, submersion depth, correction for Eötvös effect, and for determination of the co-oscillation coefficient in pendulum observations 191-365

Berezkin, V. M. Accounting for the effect of the relief of a locality on the gravimeter readings according to the values of relative altitudes at certain points 191-340

— Nomograms for calculating the effect of relief on gravimeter readings according to the values of relative altitudes at characteristic points 191-341

Berg, E., and Janssen, T. Microseisms and earthquakes preceding the Nyamuragira-Kitzimbanyi eruption (central Africa) in 1958 190-619

Berger, I. Studies on geophysical prospecting in the Freiberg-Braud (Sächsisches Erzgebirge) 189-313

Berishvili, G. P. On the problem of study of variations of the geomagnetic field 191-453

Berkner, L. V. Geophysics today 190-253

Bernal, J. D. Comments 189-50

— Significance of carbonaceous meteorites in theories on the origin of life 189-46

Bernard, Pierre. Annual variation in microseismic agitation at Honolulu 189-479

— On the duality of the origin of microseisms according to the records at Abbadia (Basses-Pyrénées) 190-485

Berninghausen, W. H., and Van Padang, M. N. Catalogue of the active volcanoes of the world including solfataras fields. Part X, Antarctica 188-591

Bernshteyn, V. A. On magnetometric investigations in vicinity of volcanoes 190-622

Berry, D. S. An elastic treatment of ground movement due to mining, I. Isotropic ground 189-590

— and Sales, T. W. An elastic treatment of ground movement due to mining, II. Transversely isotropic ground. III. Three dimensional problem 189-590

Bershteyn, P. Ya. Reflection of waves from a boundary of an anisotropic half-space 190-162

Berthold, S. M. See Rubin, Meyer.

Berzon, I. S., Pak, V. A., and Yakovlev, V. N. Seismic sounding of the Fedchenko Glacier 189-582

Bespalov, D. F. New radiometric apparatus in commercial geology 188-481

— and Khaustov, A. I. High voltage source of 100kv for a borehole neutron generator 189-530

See also Alekseyev, F. A.

Bespyatov, B. I. An experience in the use of grouping in the Saratov and Stalingrad district of the Volga region 190-547

— Some problems of grouping theory in seismic prospecting 188-517

Bespyatov, B. I., and Khramoy, A. I. Experience in the use of seismic stations with magnetic recording 190-539

Bewersdorff, Axel. The effect of exsolution on remanent magnetization of titanomagnetites 189-429
Bezrukov, P. L. The place of marine geology among related sciences and its basic problems ------------------------ 191-688
Bezrukov, P. L., and Petelin, V. P. A manual for collection and preliminary treatment of samples of sea floor deposits ------------------ 191-686
Bhavsar, P. D. See Winckler, J. R.
Bhimasankaram, V. L. S. See Rao, B. S. R.
Bichevina, V. N. On the problem of the thickness of the crust in the insular region of the Far East of the USSR ------------------------ 191-402
Bidgood, D. E. T., and Harland, W. B. Palaeomagnetic studies of some Greenland rocks -------------------------- 188-430
Bien, G. S. See Hubbs, C. L.
Bilotserkovets', Yu. I. Determination of the thickness of a coal bed according to gamma-gamma logging curves----------------- 188-506
Birch, W. B., and Dietz, F. T. Seismic refraction investigations in selected areas of Narragansett Bay, Rhode Island ----------------- 190-579
Bjerhammar, Arne. On the gravity field of the earth ------------------ 189-238
Bjerrum, L. The effective shear strength parameters of sensitive clays--- 189-598
Bjerrum, L., Kringstad, S., and Kummenejo, O. The shear strength of a fine sand --------------------- 189-597
Black, R. A., and Roller, J. C. Relation between gravity and structure of part of the western flank of the Black Hills, South Dakota and Wyoming -- 188-338
See also Roller, J. C.
Black, R. F. See Evison, F. F., and Norris, D. K.
Blake, Weston, Jr. Radiocarbon dating of raised beaches in Nordaustlandet, Spitsbergen --------------------- 188-74
Blanchett, Jean. See Balsley, J. R.
Blankov, Ye. B. Distinguishing the radiation of individual elements in logging oil wells by the method of induced activity of sodium and chlorine ----------------------------------- 189-525
Blankova, T. N. Effectiveness of the methods of induced activity of sodium and chlorine in differentiating Devonian sandstones according to water and oil saturation------------------- 189-524
Blinstrupas, S.I., and Gedvilayte, N. M. Problem of modelling magnetic and gravity fields (I) -------------------- 189-462
Blot, Claude, Chaigneau, M., and Tazieff, Haroun. New Hebrides (March-May 1959) ------------------------ 190-632
Blot, Claude, Crenn, Yvonne, and Rechenmann, Julien. Elements contributed by gravimetry to the knowledge of the deep structure of Senegal --- 189-311
Blot, Claude, and Tazieff, Haroun. Some results of volcanic seismology at the volcano on Tanna, New Hebrides ---------------------- 188-597
Bloxam, T. W. Quantitative determination of uranium and thorium in rocks -- 191-575
Blue, D. M. See Savit, C. H.
Bo, Guan'-Khon. Shallow-water marine seismic surveying ------------------ 190-552
Bobrov, V. A., Polevaya, N.I., and Sprintsson, V. D. Preliminary data on ages of some magmatogenic rocks of the eastern regions of the Mongolian National Republic-- 188-96
Bobrovnik, D. P., and Yasinskaya, A. A. Mineralographic study of a meteorite fragment from the Poltusk collection-------------- 190-66
Bobrovnik, I. I. On the propagation velocity of seismic waves in bottom sediments of rivers and in the surface layer of marshes 188-531
Böödvarsson, Gunnar. Exploration and exploitation of natural heat in Iceland ----------------------------- 190-343
Abstract

Bogert, B. P. Seismic data collection, reduction, and digitization— 188-190
— The transfer function of a short-period vertical seismograph— 188-189
Bogorodskiy, V. V. See Rudakov, V. N.
Bogoslovskiy, V. N. The temperature conditions (regime) and movement of the Antarctic glacial shield — 189-275
Bokanenko, L. I., and Isayev, V. S. Preliminary results of determination of the thickness of the ice on Mount El'brus by the seismic method— 191-634
Bollman, Dorothy. See Tuman, V. S.
Bollo, M. F. Application of microseismic surveying to the construction of galleries— 191-661
Bol'shakov, A. S. Separation of thermoremanent and normal magnetization components by the temperature method — 191-470
Bol'shakova, O. V. Some features of the appearance of regular pulsations of the geomagnetic field with a period of 3-7 min at the Lovozero polar station — 191-446
Bol'shakova, O. V., and Zybin, K. Yu. On the frequency of occurrence and amplitude spectrum of the geomagnetic field pulsations (according to IGY and IGC data) — 189-397
Bol'shakova, O. V., Zybin, K. Yu., and Mal'tseva, N. F. Certain regularities in the behavior of the vertical component of short-period pulsations of a geomagnetic field of continuous character (Pc) — 189-398
Bol'shikh, S. F., Gorbatova, V. P., and Davydova, L. N. A study of kinematic and dynamic characteristics of reflected and head waves on models of a layered medium — 190-543
Bolt, B. A., and Marussi, Antonio. Eigenvibrations of the earth observed at Trieste — 191-116
Bonchev, P. R. See Penchev, N. P.
Bonchkovskiy, V. F. Certain generalizations of results of observations of tilts of the earth's surface — 189-246
Bondarenko, L. N. See Alekseyev, F. A., and Yerozolimsky, B. G.
Bondarenko, V. M., Kovalenko, N. D., and Tarkhov, A. G. Geophysical investigations of uranium deposits by the method of radiowave transparency — 191-241
Bonnet, G. New possibilities in proton magnetometers (1)— 190-384
— New possibilities of proton magnetometers (2) — 191-431
Books, K. G. Natural gamma aeroradioactivity of parts of the Los Angeles region, California — 191-592
— Remanent magnetism as a contributor to some aeromagnetic anomalies — 190-453
Boozer, G. D. See Serdengecti, S.
Borgel, R. Seismic movements in Chile — 190-119
Borisenko, T. I. See Cherdyn'tsev, V. V.
Borisevich, I. V. See Afanas'ev, G. D.
Borisevich, Ye. S., Gol'dfarb, M. L., and Mosyagina, M. S. A recording device with luminescent memory — 191-136
Borisevich, Ye. S., Gol'dfarb, M. L., and Preobrazhenskiy, V. B. Changeable pen-writing galvanometers — 191-141
Borisevich, Ye. S., Kastorskiy, S. A., and Mosyagina, M. S. Seismic oscillograph of the type OSB-V — 191-130
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borisevich, Ye. S., and Katyushkin, V. F.</td>
<td>Type GB galvanometers for seismic oscillographs</td>
<td>191-138</td>
</tr>
<tr>
<td>Borisevich, Ye. S., Zabelin, M. V., and Mosyagina, M. S.</td>
<td>Seismic oscillograph of the type OSB-IV</td>
<td>191-129</td>
</tr>
<tr>
<td>Borisov, O. G. See Borisova, V. N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borisova, V. N., and Borisov, O. G.</td>
<td>Observations in the crater of Bezemyanniy Volcano in the summer of 1960</td>
<td>191-693</td>
</tr>
<tr>
<td>Born, W. T.</td>
<td>Technical limitations of present geophysical tools</td>
<td>191-282</td>
</tr>
<tr>
<td>Borodechev, N. M.</td>
<td>A general solution of the dynamic problem for a viscous-elastic halfspace</td>
<td>189-147</td>
</tr>
<tr>
<td>Boronin, V. P. See Andreyev, B. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borovinskiy, B. A.</td>
<td>Application of geophysical methods to investigations of the Tuyuksu glacier and moraine</td>
<td>189-210</td>
</tr>
<tr>
<td>--- Electrical exploration of the moraine of the Maloalmatinsky glacier</td>
<td></td>
<td>189-194</td>
</tr>
<tr>
<td>--- Geophysical investigations on the Glavnyy Bol'shealmatinsky Glacier</td>
<td></td>
<td>191-268</td>
</tr>
<tr>
<td>--- On the question of the researches of the glaciers by the methods of the electrical prospect</td>
<td></td>
<td>191-245</td>
</tr>
<tr>
<td>Borovinskiy, B. A., and Vilesova, L. A.</td>
<td>Application of electro-metric methods to the study of hydrologic characteristics of moraines</td>
<td>191-251</td>
</tr>
<tr>
<td>Bortfeld, Reinhard.</td>
<td>Exact solution of the reflection and refraction of arbitrary spherical compressional waves at liquid-liquid interfaces and at solid-solid interfaces with equal shear velocities and equal densities</td>
<td>190-154</td>
</tr>
<tr>
<td>Bose, M. K.</td>
<td>The concept of continental growth and origin of the Indian Peninsula</td>
<td>190-286</td>
</tr>
<tr>
<td>Bose, S. K.</td>
<td>On low period sub-oceanic Rayleigh waves and their attenuation</td>
<td>188-187</td>
</tr>
<tr>
<td>Botezatu, Radu.</td>
<td>Gravity net of Rumania. I. Triangulation of gravimetric points of the first order in Rumania</td>
<td>188-337</td>
</tr>
<tr>
<td>See also Constantinescu, Liviu, and Stefanescu, S. S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bott, M. H. P.</td>
<td>A gravity survey off the coast of north-east England</td>
<td>189-309</td>
</tr>
<tr>
<td>--- A simple criterion for interpreting negative gravity anomalies</td>
<td></td>
<td>190-305</td>
</tr>
<tr>
<td>--- Geological interpretation of magnetic anomalies over the Ask-rigg block</td>
<td></td>
<td>190-481</td>
</tr>
<tr>
<td>See also Baker, C. O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottum, J. L., Gebhardt, R. E., and Townshend, J. B. Horizontal intensity comparisons between the sine galvanometer and the proton vector magnetometer</td>
<td>188-394</td>
<td></td>
</tr>
<tr>
<td>Bourguillot, R. See Cahen, Lucien.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouska, Jan.</td>
<td>Research into short-periodic variations of the earth's electromagnetic field at the observatory of Budkov</td>
<td>191-459</td>
</tr>
<tr>
<td>--- Research into the pulsation characteristics of the different phases of geomagnetic storms with particular regard to sudden commencements</td>
<td>191-462</td>
<td></td>
</tr>
<tr>
<td>--- The microstructure of ISC of geomagnetic storms</td>
<td></td>
<td>190-435</td>
</tr>
<tr>
<td>Bower, M. E.</td>
<td>See Gregory, A. F.</td>
<td></td>
</tr>
<tr>
<td>Bowman, A. L.</td>
<td>See Ostlund, H. G.</td>
<td></td>
</tr>
<tr>
<td>Boyarov, A. T.</td>
<td>Determination of reservoir properties of strata by specific resistance</td>
<td>188-273</td>
</tr>
</tbody>
</table>
Abstract

Boyarov, A. T. Method of determination of the specific surface according to geophysical logging data 191-252
See also Fel'dman, B. Ye.

Boyd, W. W., Jr. See Crary, A. P.

Boyer, P. D., Graves, D. J., Sueltzer, C. H., and Dempsey, M. E.
Simple procedure for conversion of oxygen of orthophosphate or water to carbon dioxide for oxygen-18 determinations 189-363

Boyum, B. H. Subsidence case histories in Michigan mines 188-281

Brace, W. F. Dependence of fracture strength of rocks on grain size 188-575

Bradley, R. S. Thermodynamic calculations on phase equilibria involving fused salts. Part II. Solid solutions and application to the olivines 191-413

Brady, R. S., Jamil, A. K., and Minro, D. C. Electrical conductivity of fayalite and spinel 190-237

Bradner, Hugh. Pressure variations accompanying a plane wave propagated along the ocean bottom 191-212

Brandt, S. B. See Amirkhanov, Kh. I.

Brant, A. A. Beneath the surface 191-288

Breth, H. The strength of formerly loaded ground 191-663

Briggs, M. H. Recent advances in the investigation of meteorites 191-34

Brodskaya, S. Yu., and Grabovskiy, M. A. Magnetic stability of one-component and two-component artificial systems 191-468

Brodskaya, S. Yu., and Grabovskiy, M. A. Study of magnetization processes of single-component and double-component ferromagnetic systems 189-426

Brocka, W. S., and Olson, E. A. Lamont radiocarbon measurements VIII 190-38

See also Eckelmann, W. R., and Olson, E. A.

Bromery, R. W. Aeromagnetic map of part of the Shin Pond quadrangle, Penobscot County, Maine 191-539
— Aeromagnetic map of the Grand Lake Seboeis Quadrangle, Aroostook and Penobscot Counties, Maine 191-532
— Geologic interpretation of the aeromagnetic map of the Lebanon quadrangle, Linn and Marion Counties, Oregon 191-544

Bromery, R. W., and Gilbert, F. P. Aeromagnetic map of the Mt. Cube quadrangle and part of the Runney quadrangle, Grafton County, New Hampshire, and Orange and Windsor Counties, Vermont 191-539
— Aeromagnetic map of the Skinner and parts of the Attean and Sandy Bay quadrangles, Somerset and Franklin Counties, Maine 191-537

Bronshteyn, V. A. On the problem of motion in the atmosphere of the Tungus meteorite 191-59

Brookins, D. G. See Hurley, P. M.

Brouwer, H. A. Vulcanism and tectonics 190-605

Browar, V. V., Magnitskii, V. A., and Shimbirev, B. P. Theory of the figure of the earth 190-269

Brown, Harrison. See Duke, Michael.

Brown, R. R., and Campbell, W. H. An auroral-zone electron precipitation event and its relationship to a magnetic bay 189-406

Brundage, H. T. Productivity in exploration 190-256

Brune, J. N. Attenuation of dispersed wave trains 189-122

— Correction of initial phase measurements for the southeast Alaska earthquake of July 10, 1958, and for certain nuclear explosions 191-104

— Radiation pattern by Rayleigh waves from the southeast Alaska earthquake of July 10, 1959 189-110

See also Kuo, John.

Bryant, Bruce, and Reed, J. C., Jr. Structural and metamorphic history of the Grandfather Mountain area, North Carolina 189-12

Bryant, H. L. Flowing well logs can save you money 188-509

Bryusov, B. A. On a method of determination of the location of a disturbing mass from gravimetric data 190-313

Buben, Jiri. Seismic investigations of mine bumps near Kladno in the year 1960 191-670

Bubleynikov, F. D., and Ivanov, A. G. Geophysical methods of prospecting for mineral resources 188-295

Bucha, Vaclav. Palaeomagnetic pole positions in the Pre-Cambrian and Palaeozoic periods investigated from Czechoslovak rocks (preliminary report) 191-487

Buchar, E. Determination of the flattening of the earth by means of the displacement of the node of the second Soviet satellite (19578) 188-301

Buchheim, Wolfgang. Theoretical principles of the measurement of electrical resistivity and dielectric constants of rocks in boreholes by induction according to the reaction method 191-247

Buchwald, Vagn, and Sorensen, Henning. An autoradiographic examination of rocks and minerals from the Ilulissat batholith, South West Greenland 188-473

Budde, Enno. See Wendt, Immoh.

Bufalini, M. See Hoering, T. C.

Buffet, A. See Layat, C.

Bugajski, H. J., and Willis, D. E. An auxiliary instrument for monitoring seismic signals 189-137

Bugaylo, V. A. An experience in interpreting magnetic and gravity anomalies in the Urals and Trans-Urals with the aid of logarithmic master charts 191-510

Bukhnikashvili, A. V. An apparatus for measuring natural potentials of ore samples 188-278

Bukhnikashvili, A. V., and Dzhashi, G. G., and Khvitiya, G. P. Certain features of the local natural electrical field exemplified by the Adzhark polymetallic deposits in Georgian SSR 190-242

Bulakh, Ye. G. Generalization of certain criteria for verification of interpretation of gravity anomalies 191-347

Bulakh, Ye. G., and Yevsikova, L. G. An integral method of interpreting gravity and magnetic anomalies 191-335

Bulanzhe, Yu. D. Co-oscillation of the support of quartz gravimeters having a horizontal torsion filament 191-362

Bulashchevich, Yu. P., and Sen'ko-Bulatnyy, I. N. Experimental verification of the optimum conditions for continuous activation logging 188-502

Bulatova, G. A. See Troitskaya, V. A.

Buldyrev, V. S. Generalization of the pass method for the case of two proximate saddle points 191-183
Buldyrev, V. S. Wave field in the neighborhood of caustics in nonstationary diffraction problems in cases of spherical and cylindrical interfaces of the mediums 191-186

Bulgakov, Yu. I., Veshev, A. V., and Larionov, L. V. Bridge devices for measurement of magnetic susceptibility of rocks and ores 188-424

Bulin, N. K. Magnitude of the mean velocity ratio for longitudinal and transverse waves in the sedimentary deposits in Turkmenia 191-602

Bull, C., Irving, E., and Willis, I. Further palaeomagnetic results from South Victoria Land, Antarctica 191-492

Bullard, E. C., and Griggs, D. T. The nature of the Mohorovičić discontinuity 189-353

Bullard, F. M. Volcanoes—history, in theory, in eruption 190-606

Bullen, K. E. Oscillations of the earth and the earth's deep internal structure 191-399

Bullerwell, W. Interpretation of geophysical surveys 188-293

Bulmasov, A. P. The area and conditions governing the use of geophysical survey methods in permafrost regions 189-231

Bunce, E. T., and Fahlquist, D. A. Geophysical investigations of the Puerto Rico trench and outer ridge 191-619

Burdin, Yu. B. See Voskoboynikov, G. M.

See also Nicolaysen, L. O.

Burgin, Lorraine. See Rinehart, J. S.

Burlatskaya, S. P., and Petrova, G. N. The archeomagnetic method of study of the geomagnetic field in the past 191-485

Burnev, P. H. See Nedelkov, I. P.

Burov, B. M., Darvoyd, G. N., Denisik, S. Ts., Odinokov, V. P., and Shcherbinskiy, V. G. Utilization of the neutron-neutron method (NNM), according to the epithermal neutrons for evaluation of porosity of sand and carbonate reservoirs 189-509

Bursa, Milan. On the determination of the curvature of the surface representing the figure of the earth according to astrogeodetic and gravimetric data 191-295

— Theory of the determination of the nonparallelity of the minor axis of the reference ellipsoid with the polar axis of inertia of the earth, and of the plane of the astronomic prime meridian with that of the geodetic prime meridian according to observations of artificial earth satellites 191-294

— Theory of the solution of the fundamental geodetic problem and the building of a uniform world geodetic system on the basis of artificial earth satellite observations 191-297

Burwash, R. A., Baadsgaard, Halfdan, and Peterman, Z. E. Precambrian K-Ar dates from Western Canada sedimentary basin 189-17

Bushnell, V. C. See Rigsby, G. P.
Butkovich, T. R., and Landauer, J. K. The flow law for ice ------------------- 189-605
Butler, R. A. See Doig, R. P., and Saull, V. A.
Buttlar, H. von, Stahl, W., and Wilk, B. Tritium measurements on rainwater without isotope enrichment ------------------------------- 189-359
Byerly, P. E. Discussion of "Gravity and aeromagnetic exploration in the Paradox Basin," by Nelson C. Steenland ---------------------------- 190-325
Byerly, Perry. Release of energy at the source of an earthquake -- 189-98
Bykova, K. I. See Troitskiy, S. G.
Byron, L. G. Wild steam well controlled by directional drilling --- 189-329
Bystritskaya, P. M. Results and problems of seismic work in the territory of Saratov ------------------------------- 190-584

Cagniard, Louis. Expansion of the core, contraction of the crust, and orogenic cycles ------------------------------- 189-355
Reflection and refraction of progressive seismic waves ------------------- 191-603
Cahen, Lucien, Pasteels, Paul, Ledent, Dolly, Bourguillot, R., Wambeke, L. van, and Eberhardt, Peter. Research on the absolute age of uraniumiferous mineralizations of Katanga and Northern Rhodesia -------- 190-16
Cahill, L. J. Evidence for ionospheric currents near the geomagnetic equator ------------------------------- 188-393
Cailleux, André, and Tricart, J. Background noise, information, and earth sciences ------------------------------- 190-258
Cain, J. C. See Akasofu, Syun-Ichi.
Cambron, E. See Gouin, Pierre.
Camotim, Data. See Wiegel, R. L.
Campbell, Colin. Statistics on employment of exploration geophysicists ------------------------------- 191-284
Campbell, F. A. See Baadsgaard, Halfdan.
Campbell, W. H., and Matsushita, Sadami. Auroral-zone geomagnetic micropulsations with periods of 5 to 30 seconds ------------------------------- 188-403
See also Brown, R. R.
Canada Geological Survey. Aeromagnetic maps of Manitoba ------------------- 191-546
Aeromagnetic maps of Northwest Territories ------------------- 191-548
Aeromagnetic maps of Ontario ------------------- 191-545
Aeromagnetic maps of Saskatchewan ------------------- 191-547
Canadian Mining Journal. Upper mantle project ------------------- 190-361
Capron, P. C. See Dossin, J. M.
Caputo, Michele. Deformation of a model of the earth caused by superficial distribution of gravitational mass ------------------- 191-327
Tables for the deformation of an earth model by surface mass distribution ------------------- 189-240
See also Desio, Ardito.
Carabelli, Edmondo. Glacier surveys and glaciological studies on the occasion of the International Geophysical Year (Miage Glacier)—geophysical exploration ------------------- 190-294
Carder, D. S., and Mickey, W. V. Ground effects from underground explosions ---------------- --- 189-159
Cardús, J. O. Note concerning solar, geomagnetic, and ionospheric activity (January-March, 1960) ------------------- 190-389
Note concerning solar, geomagnetic, and ionospheric activity (January-March 1961) ------------------- 190-391
Note concerning solar, geomagnetic, and ionospheric activity (October-December, 1960) ------------------- 190-390
Abstract

Carey, S. W. Folding--- 190-281

Carlson, J. E. See Kane, M. F.

Carlson, R. L. See Fisher, D. H.

Carpenter, E. W., Savill, R. A., and Wright, J. K. The depend-
ence of seismic signal amplitudes on the size of underground ex-
plosions --- 191-208

See also Savill, R. A., and Wright, J. K.

Carrier, G. F. See Stewart, R. W.

Carron, Jean-Paul, and Nozières, Philippe. Discontinuity of seis-
mic background noise on the border faults of the Limagne-------- 189-578

Carrozzo, M. T., and Morelli, Carlo. Master charts for magnetic
interpretation --- 191-525

Carrozzo, M. T., and Mosetti, F. On the linear combination of ob-
servational data for the reduction of certain maps---------------------- 191-342

Carsey, J. B., and Roberts, M. S. Exploratory drilling in 1961--- 190-245

Carsola, A. J., Fisher, R. L., Shipek, C. J., and Shumay,
George. Bathymetry of the Beaufort Sea------------------------------ 188-584

Carson, E. W., Savill, R. A., and Wright, J. K. The depend-
ence of seismic signal amplitudes on the size of underground ex-
plosions --- 191-208

See also Savill, R. A., and Wright, J. K.

Cassinis, Roberto. Application of seismic methods to geothermal
energy exploration-- 188-555

—— Refraction seismic surveying in the study of deep structure----- 190-554

Cattani, D. See Priester, W.

Cavin, R. S. See Crosby, J. W., III.

Cazenave, Horacio. See Olsson, Ingrid.

Central Water and Power Research Station Poona. Geophysical in-
vestigations: I. Dughanga project sites. II. Godavari anicut at
Dowlaiswaram -- 191-272

—— In-situ elasticity of rock in tunnels - New Bhira tunnel project - 191-194

—— Seismic refraction survey - Proposed Ukai dam site -------------- 191-637

—— Seismological investigations - Kopili dam project, Assam -------- 191-95

Ceplecha, Zd. Multiple fall of Přibram meteorite photographed---- 191-51

—— Note on the mass determination of the Přibram meteorites ---- 191-50

Červený, Vlastislav. On the length of the interference zone of a re-
flected and head wave beyond the critical point and on the ampli-
tudes of head waves--- 190-156

Červený, Vlastislav, and Hron, František. Reflection coefficients
for spherical waves-- 191-162

Chaigneau, M. See Blot, C.

Chakravortty, K. C., and Ghosh, D. P. Seismological study of the
crustal layers in Indian region from the data of near earthquakes - 189-345

Chambers, R. E. See Clarke, A. M.

Chang, C. C. Outer Van Allen belts and neutral points on interface
between solar wind and geomagnetic field----------------------------- 191-423

Chang, T. Y. Geophysical case history of Theuvenins Creek field,
Tyler County, Texas--- 188-553

Chao, E. C. T., Fahey, J. J., and Littler, Janet. Coesite from
Wabar Crater near Al Hadida, Arabia------------------------------------- 189-55

Chapman, C. A. See Donati, G. R. L.

Chapman, Sydney. Magnetic storms; their geometrical and physical
analysis, and their classification-- 191-460

See also Akasofu, Syun-Ichi, and Sugiura, Masahisa.
AUTHOR INDEX

Charlesworth, H. A. K. Some observations on deformation, crustal shortening, and uplift in the Canadian Rocky Mountains 190-282
Chauveau, Jean. Analogical study of the propagation of a seismic signal 190-159
Chekhovskaya, G. Yu., and Repina, V. L. Some results of application of geophysical methods of investigation for determination of the parameters of a stratum 190-217
Chelok'yan, R. S. Development of one-channel borehole radioactivity logging apparatus for operation in boreholes with temperatures up to 250°C 189-532
— Drill hole apparatus for simultaneous registration of radioactivity logs and joints in the casing 189-533
Chenoweth, P. A. Comparison of the ocean floor with the lunar surface 188-142
Cherdyn'tsev, V. V. Argon - the determiner of geologic time 191-10
— Determination of the absolute age of Quaternary fossil bones according to the isotopic ratio of the heavy elements 189-3
Cherdyn'tsev, V. V., Orlov, D. P., Isabayev, Ye. A., Asylbayev, U. Kh., Ivanov, V. I., Usatov, E. P., and Borisenko, T. I. Variation of the isotopic composition of natural uranium 188-389
See also Isabayev, Ye. A.
Cheremenskiy, G. A. Theory of an ellipsoidal sonde in the resistivity method with a shielded ground 190-195
Cherepanov, N. N. See Ayzenshtadt, G. Ye. A.
Cherkasov, P. A. Glacier ablation and its role in feeding the Baskan River of the Dzhungarsky Altay Range 191-322
Chernosky, E. J. Changes in the geomagnetic field associated with magnetic disturbances 190-417
Chernov, G. A. Reconstruction of geologic events by structural analysis and absolute age determination by the argon method on the Byelokurikhin massif in the Altay 188-85
Chernyshhev, I. V. Analysis of errors in the lead method of absolute age determination 191-4
— Nomograms for calculation of errors in determination of absolute age by the lead method 191-5
Cherry, J. T., Jr. The azimuthal and polar radiation patterns obtained from a horizontal stress applied at the surface of an elastic half space 189-140
Chessex, Ronald. Applications of thermoluminescence to geology 190-7
Chessex, Ronald, de Montmollin, F., Ferrara, G., and Longinelli, A. Measurements of the age of the Vallorcine granite (Switzerland) 189-25
Chetty, T. N. See Rao, H. N. R.
Chiguryayeva, A. A., and Ismail-Zade, T. A. Palinological data for the Apsheron deposits of the Ali-Bayramly region, and their correlation with the magnetic stability parameter 189-440
Chikvaidze, B. G. See Rubinshteyn, M. M.
Chinnery, M. A. Terrain corrections for airborne gravity gradient measurements 188-324
Chirivskaya, M. V. Experiment in combining seismic surveying and drilling operations 190-586
Chon, K. S. See Rustanovich, D. N.
Choudhury, M. A. On the longitudinal waves from artificial earthquakes in western Europe 189-343
Chow, T. J., and Patterson, C. C. The occurrence and significance of lead isotopes in pelagic sediments

Chrest, S. A. See Soberman, R. K.

Chujo, Junsuke. Gravitational survey of Kumamoto district in Kyushu

Chujo, Junsuke; Kondo, Nobuoki; and Kurasawa, Hajime. Marine sonic survey and land geological survey on the Shimabara Kaiwan

Chukin, V. T. Certain problems of the seven-electrode apparatus for lateral logging

Chzhan', Se-Chzhen'. Sounding by the method of induced potentials

Clar, E. Rock structure and geomechanics

Clark, T. H. See Saull, V. A.

Clarke, A. M., Chambers, R. E., Allonby, R. H., and McGraw, D. A marine geophysical survey of the undersea coalfields of Northumberland, Cumberland, and Durham

Clarke, R. S., Jr., and Henderson, E. P. Georgia tektites and related glasses

Clarke, W. B., and Thode, H. G. Xenon in the Bruderheim meteorite

Claus, George. See Nagy, Bartholomew.

Cleary, J., and Doyle, H. A. Application of a seismograph network and electronic computer in near earthquake studies

Clebsch, Alfred, Jr. Tritium-age of ground water at the Nevada Test Site, Nye County, Nevada

Clegg, J. A. See Everitt, C. W. F.

Clement, A. C. See Layat, C.

Cloud, W. K. See Steinbrugge, K. V.

Clough, R. W. Earthquake analysis by response spectrum superposition

Cobb, J. C. Dating of black shales

Cole, F. See Hemenway, C. L.

Cole, J. A. See Shaw, S. H.

Cole, K. D. Hydromagnetic radiation of the sun and its effect at the earth

— On solar wind generation of polar geomagnetic disturbance

Colley, G. C. Gravity surveys in heavy sand dunes

Compston, W., Jeffery, P. M. Metamorphic chronology by the rubidium-strontium method

Compston, W., and Pidgeon, R. T. Rubidium-strontium dating of shales by the total-rock method

Copley, J. C. Dating of black shales

See also Wilson, A. F.

Conrad, W. Calculation of disturbing bodies in the field of micromagnetics

Consbruch, Claus von. See Angenheister, G. H.

Constantinescu, Liviu, and Botezatu, Radu. Contribution to the physical interpretation of anomalies of potential fields. I. Analytical continuation in a lower halfspace

— Contribution to the physical interpretation of anomalies of potential fields. II. Conditions of application of analytical continuations

Constantinescu, Liviu, Soare, Andrei, and Soare, Alexandra. Degree of geomagnetic perturbation in the interval 1954-59 on a basis of measurements at the Surlai Geophysical Observatory
AUTHOR INDEX

Constantinescu, Liviu, and Șteflea, Vladimir. Secular variations of the geomagnetic field of the territory of the Rumanian Peoples Republic in the interval 1950-60 --------------- 188-399

Cook, A. H. The comparison of the earth's gravitational potential derived from satellite observations with gravity observations on the surface ------------------------------- 189-286

Cook, G. E. Luni-solar perturbations of the orbit of an earth satellite --------------- 191-329

Cook, J. C., and Cartes, S. L., Jr. Magnetic effects and properties of typical topsoils -------------------------- 189-436

Coombs, H. A. Catalogue of the active volcanoes and solfatara fields of the United States of America -------------------------- 188-588

Cooter, I. L. See Sanford, R. L.

Coppens, René. See Roubault, Marcel.

Coppolino, S. See Petrucci, Giuseppe.

Cordell, L. E. See Joesting, H. R.

Cortesi, Cesarina. See Bella, Francesco.

Corvalán, José. See Ruiz, Carlos.

Costa-Foru, Alexandru; Ghelfan, Pavel; Apostol, Ecaterina; and Baltac, Alexandru. Studies of the magnetic properties of some sedimentary rocks of the Rumania Peoples Republic -------------------------- 188-425

Costello, J. T., and Wilson, W. T. The many advantages of the sonic log --------------- 189-564

Cox, Allan, and Doell, R. R. Magnetic properties of the basalt in hole EM 7, Mohole project --------------- 191-472

Craig, Harmon. Mass-spectrometer analyses of radiocarbon standards --------------- 190-6

Cram, I. H., Jr. A crustal structure refraction survey in South Texas -------------------------- 188-369

Crampin, Stuart. See Jeffreys, Harold.

Crane, H. R., and Griffin, J. B. University of Michigan radiocarbon dates VI --------------- 190-35

---------------- University of Michigan radiocarbon dates VII --------------- 190-56

Crary, A. P. Glaciological studies at Little America Station, Antarctica, 1957 and 1958 -------------------------- 188-320

Crary, A. P., Field, W. O., and Meier, M. F. The United States glaciological researches during the International Geophysical Year -------------------------- 189-258

Crary, A. P., and Robinson, E. S. Oversnow traverse from McMurdo to the South Pole -------------------------- 189-583

Crary, A. P., Robinson, E. S., Bennett, H. F., and Boyd, W. W., Jr. Glaciological regime of the Ross ice shelf --------------- 190-296

Creer, K. M. A statistical inquiry into the partial remagnetization of folded Old Red Sandstone rocks --------------- 189-453

--------------- The dispersion of the geomagnetic field due to secular variation and its determination for remote times from paleomagnetic data --------------- 191-484

Crenn, Yvonne. Definition of an index characterizing the irregularity of gravity profiles --------------- 190-307

See also Rechenmann, Julien.

Cress, P., and Wyness, R. The Devon Island expedition: Observation of glacial movements -------------------------- 188-318

Crews, A., and Futterman, J. Geomagnetic micropulsations due to the motion of ocean waves -------------------------- 189-407

Cromie, W. J. Preliminary results of investigations on Arctic Drift Station Charlie --------------- 191-684
Crosby, J. W., III, and Cavin, R. E. Geochemical and resistivity prospecting methods—A field investigation in Pend Oreille County, Washington 189-190
Crowley, F. A. Gravity observations along the northern coast of Ellesmere Island 190-328
Crozier, W. D. Five years of continuous collection of black, magnetic spherules from the atmosphere 190-88
Cumming, G. L. See Baadsgaard, Halfdan.
Curedale, R. G. See Parkinson, W. D.
Curtis, G. H. A clock for the ages 188-30
Curtis, G. H., and Evernden, J. F. Age of basalt underlying Bed I, Olduvai 191-22
Curtis, G. H., Savage, D. E., and Evernden, J. F. Critical points in the Cenozoic 188-45

Dadashev, A. M. Logging characteristics of the section of the productive unit of the Kyanizadag area 188-272
Dahm, J. N. See Earl, J. H.
Dakhnov, V. N. Present status of geophysical methods of determination of reservoir properties and oil-gas saturation of rocks and means for their further investigations 189-203
Damnjanovic, Konstantin, and Milanovic, Bozidar. Possibility of determination of the position of an ore body on the basis of a magnetic anomaly at an ore deposit in Macedonia 188-459
See also Perić, M.
Damon, P. E., and Giletti, B. J. The age of the basement rocks of the Colorado Plateau and adjacent areas 188-46
Damon, P. E., and Long, Austin. Arizona radiocarbon dates III 190-58
Danes, Z. F. Structure calculation from gravity data and density logs 189-292
Danilevich, S. I. See Komlev, L. V.
Darvoyd, G. N. See Burov, B. M.
Datta, S. K. Shear waves in a semi-infinite visco-elastic medium due to transient torsional couple applied on the circumference of a circle on the plane boundary 189-144
Davidyuk, L. A. See Burkser, Ye. S.
Davis, E. M. See Stipp, J. J.
Davis, F. J., and Reinhardt, P. W. Extended- and point-source radiometric program 191-588
— Radiation measurements over simulated plane sources 191-587
Davis, G. L., Tilton, G. R., and Wetherill, G. W. Mineral ages from the Appalachian Province in North Carolina and Tennessee See also Aldrich, L. T.
Davis, T. N., and Kimball, D. S. The auroral display of February 13-14, 1958 190-403
Davydov, A. Ya. Positive anomalies of the natural electric field over sulfide ore bodies 190-243
Abstract

Davydov, V. F. See D'yachkov, N. P.
Davydova, L. N. See Bol'shikh, S. F.
Davydova, N. I. Study on models of the dependence of dynamic characteristics of longitudinal head waves on the thickness of refracting layers --- 191-191

de Bremaecker, J. Cl. Seismicity of the graben of central Africa-- 188-159
de Bremaecker, J. Cl., Donoho, Paul, and Michel, J. G. A direct digitizing seismograph --- 191-123

Decae, A. On some movements of the ground in Geneva------------------- 191-566

Deevey, E. S. See Stuiver, Minze.

de Feiter, L. D. See Roosen, J.

Deffeyes, K. S., and Martin, E. L. Absence of carbon-14 activity in dolomite from Florida Bay ------------------------------- 190-12

Degens, E. T., and Epstein, Samuel. Relationship between ^{18}O ^{16}O ratios in coexisting carbonates, cherts, and diatomites --------- 190-378

Delsemme, A. H. First contribution to the study of the energy release of Nyiragongo Volcano ------------------------------ 188-596

Demenitskaya, R. M. Basic features of the structure of the earth's crust according to geophysical data ---------------- 189-337

Demidenko, S. G. See Burkser, Ye. S.

Demidovich, O. A. See Bondarenko, V. M.
de Montmollin, F. See Chessex, Ronald.

DeMsey, M. E. See Boyer, P. D.

DeMsey, W. J. Aeromagnetic maps of Maine ---------------------- 191-536

See also King, E. R.

Den, S. K. See Van, Z. C.

Denisik, S. Ts. See Aleksyev, F. A., Burov, B. M., and Odinokov, V. P.

Deniskin, N. A., Nikiforova, N. N., and Lomakina, Z. D. On electromagnetic sounding of the earth's deep layers ------ 188-143

Denkhaus, H. G. See Hill, F. G.

DeNoyer, John, Willis, D. E., and Wilson, James T. Observed asymmetry of amplitudes from a high explosive source ---------- 189-161

DeNoyer, John. See also Meecham, W. C.

Deresiewicz, H. A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum --------------------- 191-152

--- The effect of boundaries on wave propagation in a liquid-filled porous solid: IV. Surface waves in a half-space--------- 191-149

De Santis, L. First measurements of natural radioactivity of air at Bari------------------------------- 189-492

Desio, Ardito, and Longinelli, Antonio. On the age of the Baltoro granites (Karakorum-Himalayas) ---------------------------------- 188-95

Desio, Ardito; Marussi, Antonio; and Caputo, Michele. Glaciological research of the Italian Karakorum expedition, 1953-55------ 191-271

Dessler, A. J., Hanson, W. B., and Parker, E. N. A mechanism to establish the magnetic storm ring current------------------- 190-427

de Turville, C. M. Terrestrial accretion and the solar wind ------ 189-35

Deumer, J. M. See Dossin, J. M.

Deuser, W. G. A new method for the separation of strontium from rubidium for Rb-Sr -- 190-4

Deuser, W. G., and Herzog, L. F. Rubidium-strontium age determinations of muscovites and biotites from pegmatites of the Blue Ridge and Piedmont --------------------------- 190-10
de Villiers, J. W. L. See Burger, A. J.
de Visintini, G. More selectivity in residuation
DeWitt, R. N. The occurrence of aurora in geomagnetically conjugate areas
D’Hoeraene, J. Deconvolution of real traces
Dibeler, V. H. See Shields, W. R.
Dicke, R. H. Dating the galaxy by uranium decay
--- The Ètvös experiment
Dickson, G. O. Thermoremanent magnetization of igneous rocks
Dietz, F. T. See Birch, W. B.
Diment, W. H. See Stewart, S. W.
Dmitriyev, A. N. See Klyarovskiy, V. M.
Dmitriyev, M. K., Flaks, Ya. Sh., and Golovin, A. P. Experience in the application of radiometric investigations for the direct prospecting for oil deposits in the Bashkir ASSR
Dmitriyev, V. I. Diffraction of electromagnetic waves at a conducting plate in a conducting medium
Dobrin, M. B. Exploration Geophysics—today and tomorrow
Dobronravova, A. N., Levskiy, L. K., Murin, A. N., and Titov, N. Ye. Study of the yields of Xe and Kr isotopes formed by irradiation of uranium by protons having an energy of 680 Mev
Dobrovolsky, Ernest, and Lemke, R. W. Engineering geology and the Chilean earthquakes of 1960
Dobrovolskij, V. P. Certain characteristics of the interpretation of electrical sounding curves obtained during investigation of permafrost thickness
Dobrowolski, T., and Young, J. The determination of the half life or RaC'
Dobrynin, V. M. Determination of permeability of sandy and clayey rocks by the method of potentials of induced polarization
See also Dakhnov, V. N.
Dodd, R. T., Jr. See Hart, S. R.
Doc, B. R. Relationships of lead isotopes among granites, pegmatites, and sulfide ores near Balmat, New York
See also Aldrich, L. T., and Davis, G. L.
Doell, R. R., and Cox, Allan. Paleomagnetism
See also Cox, Allan.
See also Sauil, V. A.
Dokoubil, Stanislav; Karpinsky, Jurij; and Kaspar, Milan. The attenuation of electromagnetic waves in rocks
Dolbikina, N. A. See Monakhov, F. I.
Dolginov, S. Sh., Zhuzgov, L. N., and Pushkov, N. V. Preliminary report on geomagnetic measurements with the third Soviet artificial earth satellite
Dolina, L. P., Ivanchuk, L. F., and Baramzina, V. A. Introduction of geophysical methods of determination of reservoir properties of strata for calculation of oil reserve and analysis of exploitation of oil pools
Domokurov, I. A. See Rekunov, N. A.
Donaldson, I. G. Temperature gradients in the upper layers of the earth's crust due to convective water flows
Abstract

Donati, G. R. L., and Chapman, C. A. Meteorites in the University of Illinois Natural History Museum—A descriptive catalog 188-119

Donato, R. J., O'Brien, P. N. S., and Usher, M. J. Absorption and dispersion of elastic energy in rocks 188-211

Donoho, Paul. See De Bremaecker, J. Cl.

Dordević, Vojislav. See Ristić, Vojislav.

Dorman, James. Period equation for waves of Rayleigh type on a layered, liquid-solid half space 189-150

See also Oliver, J. E.

Dorman, M. L., and Nikolayevskiy, A. A. New data on the geology of the Vilyuy synclise according to data of geophysical investigations 190-591

Dorn, T. F., Fairhall, A. W., Schell, W. R., and Takashima, Y. Radiocarbon dating at the University of Washington I 190-39

Dorofeyeva, M. K. See Sveshnikov, G. B.

Doulloff, A. A. The response of a disk in a dipole field 188-225

Doykov, Zh. See Tuparev, P.

Doyle, D. See Studt, F. E.

Doyle, H. A. See Cleary, J.

Dragašević, Tihomir. Some characteristics of seismic refraction investigations in the Ulcinj area 188-557

Drake, C. L. Geophysics, GEOPHYSICS, and engineering 190-255

Drummond, J. E., and McNabb, A. On the analysis of surface temperature surveys 189-321

Dryakhlova, Ye. A., and Rozin, A. A. Research drill holes of the U.S.S.R. Pokur research drill hole (Tyumen district) 189-220

Du Bar, J. R. New radiocarbon dates for the Pamlico formation of South Carolina and their stratigraphic significance 190-11

Dubin, Maurice. Meteoritic dust measured from Explorer I 188-127

Dubois, R. L. Magnetic characteristics of a massive hematitic body 190-459

Dubrovkin, L. I. Investigations on ground traverses in Antarctic during the period of the IGY 189-585

Duclaux, Françoise. The diurnal variation in the terrestrial magnetic field at Tamanrasset from 1948 to 1955 (horizontal component) 190-404

Ducrot, Marcel. The active volcano of Reunion Island. Surveillance and study of the activity. Possibilities of utilization of the energy released 190-633

Duda, Seweryn. Phenomenological investigation of an aftershock series from the Aleutian Islands region 189-75

Dudarev, A. N. On the magnetic properties of rocks and ores of the Altay-Sayan Region 191-477

Due Rojo, Antonio. Seismic notes for 1960 190-115

Duesterhoeft, W. C., Jr., and Smith, H. W. Propagation effects on radial response in induction logging 191-248

Duffus, H. J., Shand, J. A., and Wright, C. S. Short-range spatial coherence of geomagnetic micropulsations 189-403

Duke, Michael, Maynes, Donald, and Brown, Harrison. The petrography chemical composition of the Bruderheim meteorite 190-70

Dunayev, V. A. See Ovchinnikov, L. N.
Dunford, H. B. See Thode, H. G.
Dunning, K. L. See O'Keefe, J. A.
Dürrschner, Horst. On the character of reflections and the travel-time curves according to velocity logs
Dutta, Subhas. Motion in a non-homogeneous elastic medium by a twisting impulsive force on the surface of a spherical cavity
Dvorkin, I. L., and Rezvanov, P. A. On the application of scintillation counters for counting slow neutrons in oil wells
Dwornik, E. J. See Adler, Isidore.
D'yachkov, N. P., Davydov, V. F., and Vershinin, V. I. Use of a pantograph for transformation of \(\Delta T \) curves
Dyadin, N. N. See Harris, M. A.
Dyad'kin, I. G., and Batalina, E. P. Temporal change of space-energy distribution of neutrons from an impulse source
D'yakonov, D. I. See Dakhnov, V. N.
D'yakov, B. F. See Ayzenshtadt, G. Ye. A.
Dychno, N. M. See Schatenstein, A. I.
Dyck, W., and Fyles, J. G. Geological Survey of Canada radiocarbon dates I
Dzhabarova, Kh. S. See Ismail-Zade, T. A.
Dzhafarov, Kh. D. Some new data on the geology of the Agdzhabediy-Zhdanovsk region of the Kirovabad oil-bearing area
Dzhamalov, S. A. The heat of the earth's interior
Dzhashi, G. G. See Bukhninashvili, A. V.
Eardley, A. J. History of geologic thought on the origin of the Arctic Basin
Earl, J. H., and Dahm, J. N. Case history—Desert Springs gas field, Sweetwater County, Wyoming
Eaton, J. P. See Krivoy, H. L.
Eberhardt, Peter. See Cahen, Lucien.
Ebert, A. A., Jr. Use of a getter-ion type pump with a mass spectrometer
Eby, R. E. See Smith, R. F.
Eckelmann, F. D. See Kulp, J. L.
Eckels, Ann. See Lecar, Myron, and O'Keefe, J. A.
Egyed, László. Palaeomagnetism and the ancient radii of the earth
Ehmann, W. D., Amiruddin, A., Rushbrook, P. R., and Hurst, M. E. Some trace element abundances in the Bruderheim meteorite
Ekren, E. B. See Frischknetcht, F. C.
Ellanskiy, M. M. On the possibility of estimating the permeability of water-bearing reservoirs from geophysical logging data
Emery, C. L. The measurement of strains in mine rocks—The photoelastic technique for studying rock strains
Emiliani, Cesare, and Mayeda, Toshiko. Carbonate and oxygen isotopic analysis of core 241A
See also Rosholt, J. N.
Abstract

Emura, Kinya. Elastic waves generated by a directional source (1) - 189-544
See also Kato, Yoshio, and Nakamura, Kohei.

Endo, G., Shibato, Kihei, and Momose, H. Relations between geology, ore deposit, and spontaneous polarization potential - 189-180
Endo, Kunihiko. See Kigoshi, Kunihiko.

Enenshteyn, B. S., and Ivanov, A. P. The method of continuous frequency sounding - 190-194
See also Ivanov, M. A.

Enescu, Dumitru. On the determination of energy emitted by the focuses of earthquakes in the form of seismic waves - 190-132

Engel, Leonard. See Ewing, Maurice.

Engstrøld, L. G., and Ostlund, H. G. Stockholm natural radiocarbon measurements IV - 190-52

Eppley, R. A. See Wood, H. O.

Erickson, G. P., and Kulp, J. L. Potassium-argon dates on basaltic rocks - 188-38

Eto, Tsuneo. On the electromagnetic seismographs at Syowa Base, Antarctica - 190-147

Eventov, Ya. S. See Ayzenshtadt, G. Ye. A.

Everdingen, R. O. van. Studies on the igneous rock complex of the Oslo Region 17. Paleomagnetic analysis of Permian extrusives in the Oslo Region, Norway - 188-432

Everitt, C. W. F. The magnetic properties of three Carboniferous sills - 189-454

Everitt, C. W. F., and Belshé, J. C. Paleomagnetism of the British Carboniferous system - 188-431

Everitt, C. W. F., and Clegg, J. A. A field test of palaeomagnetic stability - 191-474

Everden, J. F., and Richards, J. R. Potassium-argon ages at Broken Hill, Australia - 188-98
See also Curtis, G. H.

Evison, F. F. Rock magnetism and low-angle faulting - 191-483
See also Thompson, A. A.

Ewald, H. See Urbach, W.

Ewing, J. I., Worzel, J. L., and Ewing, Maurice. Sediments and oceanic structural history of the Gulf of Mexico - 190-582

Ewing, Maurice, and Engel, Leonard. Seismic shooting at sea - 190-351
See also Ewing, J. I., Gerard, Robert, and Heezen, B. C.

Eyggenson, M. S. Cosmic factors of geotectonics - 190-280

F

Fahey, J. J. See Chao, E. C. T.

Fahlquist, D. A. See Bunce, E. T.

Fahrig, W. F. The geology of the Athabasca formation - 189-18

Fairbridge, R. W. Solar radiation and cyclic variations of sea level - 188-321

Fairhall, A. W. See Dorn, T. F.

Fairhurst, C. Laboratory measurement of some physical properties of rock - 188-576

Fajklewicz, Zbigniew. Approximation of the regional fields of gravity by higher order polynomials in the light of the possibility of their numerical calculation - 190-298
Faradzhev, A. S. See Terekhin, Ye. I.
Farrand, W. R., and Gajda, R. T. Isobases on the Wisconsin marine limit in Canada -- 190-289
Faul, Henry. Some Paleozoic dates in Maine, western Europe, and southern United States -- 188-35
Faust, L. Y. Case history of geological-geophysical cooperation -- 191-614
Fay, Vey-Tsin. Dynamical impulse method of determination of elastic parameters of specimens of rocks under high confining pressures -- 190-174
Faytel'ison, A. Sh. Utilization of the results of gravity exploration for distinguishing the main paleostructural elements of the western regions of the Soviet Baltic -- 188-358
Fechtig, H., Gentner, W., and Kalbitzer, S. Argon determination on potassium minerals--9. Measurements concerning the different types of argon diffusion -- 189-6
Fedin, A. A. Improvement of the circuit for the shot-time mark by radio -- 190-578
Fedorov, S. A. See Arkhangel'skaya, V. M.
Fedorov, Ye. P. Study of the motion of the poles -- 190-150
Fedoro, N. A. Nomograms for calculation of H and Z over a paraboloid of revolution -- 191-521
Fedotov, S. A. Seismicity of the south of the Kuril Islands -- 188-163
Fel'dman, B. Ye., and Boyarov, A. T. Determination of oil saturation and reservoir properties of rocks of the Kuybyshev area according to geophysical data -- 189-208
Fel'dman, I. I. On the method of the quantitative determination of boron and manganese contents in rock strata -- 189-505
Fergusson, G. J., and Libby, W. F. University California, Los Angeles dates I -- 190-51
Fernandez, I. I. Effect of relief on the magnetic field of the earth -- 191-527
Fernald, A. T. Radiocarbon dates relating to a widespread volcanic ash deposit, eastern Alaska -- 190-13
Ferraes, S. G. Note on the determination of the earthquake mechanism by S waves -- 191-103
See also Chessex, Ronald.
Ferreira, H. A. Report on two recent manifestations of volcanic activity in Portuguese territory -- 190-617
Fesenkov, V. G. Nature of comets and the conditions of their fall on the earth -- 191-53
-- On the comet nature of the Tungus meteorite -- 189-43
-- On the nature of the Tungus meteorite -- 189-44
-- Some problems of meteorites -- 189-40
Field, W. O. See Crary, A. P.
Fielder, Gilbert. Origin of the Mare Imbrium -- 188-138
-- Small-scale explosion craters, impact craters, and the physical structure of the moon's surface -- 189-63
-- Structure of the moon's surface -- 189-64
See also Warner, Brian.
Figueroa Abarca, Jesus. Earthquake of Jaltipan -- 188-152
-- Note on seismic periods -- 188-102
-- Some consideration about the effect of Mexican earthquakes -- 189-115
Filatov, V. A. See Konstantinov, G. N.
Filin, T. D. See Popov, V. I.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filippov, M. S., Komlev, L. V., and Kuchina, G. N.</td>
<td>Age data of the argon method for rocks of the northwest Ukrainian shield</td>
</tr>
<tr>
<td>Filippov, Ye. M.</td>
<td>Investigation by the method of groups of neutron density distribution in highly absorbing rocks intersected by a borehole</td>
</tr>
<tr>
<td></td>
<td>On the problem of the depth of investigation of rocks and ores by the method of diffused gamma radiation</td>
</tr>
<tr>
<td></td>
<td>Some problems of the technique and theory of the gamma-gamma method</td>
</tr>
<tr>
<td></td>
<td>See also Polak, L. S.</td>
</tr>
<tr>
<td>Finn, R. S., and Heap, W. O.</td>
<td>How vibratory seismic systems are performing</td>
</tr>
<tr>
<td>Fireman, E. L.</td>
<td>The Ehole meteorite, its acquisition and its radioactivity</td>
</tr>
<tr>
<td></td>
<td>See also Polak, L. S.</td>
</tr>
<tr>
<td>Fireman, E. L., and Rowland, F. S.</td>
<td>An additional measurement of the tritium content of atmospheric hydrogen of 1949</td>
</tr>
<tr>
<td>Firsoff, V. A.</td>
<td>Surface of the Moon - Its structure and origin</td>
</tr>
<tr>
<td>Fisher, D. E.</td>
<td>See Fireman, E. L.</td>
</tr>
<tr>
<td>Fisher, R. L.</td>
<td>See Carsola, A. J.</td>
</tr>
<tr>
<td>Fitch, Frank, Schwarz, H. P., and Anders, Edward.</td>
<td>"Organized elements" in carbonaceous chondrites</td>
</tr>
<tr>
<td>Fitch, J. L.</td>
<td>See Patton, B. J.</td>
</tr>
<tr>
<td>Flaks, Ya. Sh.</td>
<td>See Dmitriyev, M. K.</td>
</tr>
<tr>
<td>Flanagan, F. J.</td>
<td>Fatigue in scintillation counting</td>
</tr>
<tr>
<td>Fleyshman, D. G., and Glazunov, V. V.</td>
<td>Determination of the beta-decay constant of K-40</td>
</tr>
<tr>
<td>Flinn, E. A.</td>
<td>Exact transient solution of some elementary problems of elastic wave propagation</td>
</tr>
<tr>
<td>Florensov, N. A.</td>
<td>On the neotectonics and seismicity of Mongol-Baikal mountain region</td>
</tr>
<tr>
<td>Fokin, A. F.</td>
<td>The field of a point source current and of a charged conductor on the flat surface of the earth for the case of a non-homogeneous medium</td>
</tr>
<tr>
<td></td>
<td>See also Ryss, Yu. S.</td>
</tr>
<tr>
<td>Folinsbee, R. E., Baadsgaard, Halfdan, and Lipson, J. I.</td>
<td>Potassium-argon dates of Upper Cretaceous ash falls, Alberta, Canada</td>
</tr>
<tr>
<td>Fomenko, K. Ye.</td>
<td>See Godin, Yu. N.</td>
</tr>
<tr>
<td>Fomin, V. M.</td>
<td>See Tal'Virskiy, B. B.</td>
</tr>
<tr>
<td>Fomina, V. I.</td>
<td>Determination of the parameters of a section in interpretation of multilayered VES curves of type H</td>
</tr>
<tr>
<td></td>
<td>Improvement in the accuracy of determination of the thickness of a sedimentary complex by using data on regularities of measurement of the mean longitudinal resistivity ρ_1</td>
</tr>
<tr>
<td>Foose, R. M.</td>
<td>See Hoy, R. B.</td>
</tr>
<tr>
<td>Fornaca-Rinaldi, G.</td>
<td>See Ferrara, G.</td>
</tr>
<tr>
<td>Fortin, Jean-Pierre.</td>
<td>See Rinehart, J. S.</td>
</tr>
<tr>
<td>Foster, M. R., Hicks, W. G., and Nipper, J. T.</td>
<td>Optimum inverse filters which shorten the spacing of velocity logs</td>
</tr>
</tbody>
</table>
Foster, T. D. Heat-flow measurements in the northeast Pacific and in the Bering Sea ----------------------------------- 190-333
Fougere, Paul. The terrestrial magnetic field ---------------------------------- 190-383
Fowler, W. A., Greenstein, J. L., and Hoyle, Fred. Deuteronomy. Synthesis of deuterons and the light nuclei during the early history of the solar system ----------------------------------- 189-36
--- Nucleosynthesis during the early history of the solar system --- 190-63
Franiti, G. E., Willis, D. E., and Wilson, James T. The spectrum of seismic noise ------------------------ 189-472
Frantz, F. H., Sr. Boost bridge accuracy with a null amplifier --- 190-261
Franz, P. Geomagnetic and petrographic investigation in the southwest part of the Schwarzbarg Saddle and in the southwest Thuringian-Franconian Triassic area, as a contribution to the interpretation of regional magnetic anomalies ----------------------------------- 189-473
Fraser, G. D. See Witkind, I. J.
Frassetto, Roberto. See Northrop, John.
Freedman, R. O. See Krueger, H. W.
Freitag, C. A. See Light, D. E.
Fremd, V. M. Piezoelectric seismic pickup for strong movements 191-125
Fridman, Sh. D. See Balyasnyy, N. D.
Friend, J. P. See Walton, Alan.
Frischknecht, F. C., and Ekren, E. B. Electromagnetic studies in the Twin Buttes quadrangle, Arizona 188-250
See also Keller, G. V., and Plouff, Donald.
Frissora, J. See Soberman, R. K.
Fritsch, Volker. The geoelectric investigation of medicinal waters in the vicinity of Lake Neusiedler in Burgenland 188-254
Fritsch, Volker, and Mosetti, Ferruccio. Geophysical problems in prospecting for bauxite with particular regard to the prospecting for its deposits in the Adriatic basin 190-201
Fröhlich, Lothar. On geomagnetic and petromagnetic investigations in the region of the Frankenwald transverse zone as a contribution to the regional geophysical anomalies 189-471
Fröhlich, Friedrich, Stiller, Heinz, and Wagner, F. C. Experiences with laboratory methods of rock investigations 189-449
See also Mauersberger, Peter, and Stiller, Heinz.
Frosch, R. A. See Northrop, John.
Fukushima, Naoshi. Morphology of magnetic storms 190-423
--- Some remarks on the morphology of geomagnetic bays --- 190-402
Fukushima, Naoshi, and Abe, Siro. The initial phase of the magnetic storm on Feb. 11, 1958 190-445
See also Nagata, Takesi.
Fukutomi, Takaharu. On the possibility of volcanic hot springs of meteoric and magmatic origin and their probable life span 188-600
--- Rates of discharge of heat energy from the principal hot spring localities in Hokkaido, Japan 191-392
Fullam, E. F. See Hemenway, C. L., and Soberman, R. K.
Fuller, M. D. A magnetic fabric in till 191-480
Furcron, A. S. Geologic age of the tektite shower and its associated rocks of the Georgia Coastal Plain 190-93
Furumoto, A. S. The use of ScS-wave data in focal mechanism determinations 191-102
Furuwa, Shigemasa, and Ninagawa, Shinji. Seismic prospecting at the Ombara district of Ningyo-toge 188-562
Futterman, J. See Crews, A.
Fyles, J. G. See Dyck, W.
AUTHOR INDEX

G

Gadzhiyeva, T. A. See Tsaturyants, A. B.
Gajardo, E., and Lomnitz, Cinna. Seismic provinces of Chile--------- 188-158
Gajda, R. T. See Farrand, W. R.
Galanopoulos, A. G. On magnitude determination by using macro-
seismic data -- 191-98
Gallant, R. Frequency of meteorite falls throughout the ages ------ 189-52
Gal'perin, Ye. I. On the change of the displacement direction of
particles during passage of seismic waves through a zone of low
velocities -- 191-166
Gal'perin, Ye. I., Goryachev, A. V., and Zverev, S. M. Crustal
structure researches in the transition region from the Asiatic
Continent to the Pacific-- 189-346
See also Aver'yanov, A. G.
Galushko, P. Ya. Once more concerning the possibility of determi-
ning the cause of vertical movements of the earth's crust from
gravity anomalies--- 189-241
Gamkrelidze, P. D. Meso-Cenozoic orogenic phases of the Alpine
zone of southern U.S.S.R --- 190-285
Gamow, George. Gravity --- 191-325
Gantar, C., Morelli, Carlo, and Pisani, M. Some effects of inter-
nal pressure variations at various temperatures on the scale fac-
tor of Worden gravimeters-- 190-318
Gantar, C., Morelli, Carlo, Pisani, M., Segre, A. G., and Zamp-
pieri, L. The magnetic relief of southern Italy----------------------- 190-482
Gantar, C., Morelli, Carlo, and Sancin, S. A comparison between
the precise leveling of 1949 in the harbor zone of Trieste and a
repetition carried out in 1958 -- 190-290
Gantar, C., Morelli, Carlo, Segre, A. G., and Zampieri, L. Gra-
vimetric studies and geological considerations of Pantelleria
Island --- 191-373
Gantar, C., Zampieri, L. New gravimetric measurements con-
necting the airports of Rome and Catania----------------------------- 191-367
See also Morelli, Carlo.
Garkalenko, I. O. Differentiation of coal seams and determination
of their thickness by gamma-gamma logging -------------------------- 188-505
The effect of caverns in investigations by the gamma-gamma
logging method--- 188-508
Garland, G. D. Natural earth currents and electric logging-------- 189-200
The Upper Mantle Project -- 190-360
See also Vozoff, Keeva.
Garner, E. L. See Shields, W. R.
Gasanenko, L. B. Interpretation parameters of an electromagnetic
field --- 188-236
Gasanenko, L. B., and Sholpo, G. P. On the theory of electromag-
netic sounding-- 188-230
See also Van'yan, L. L.
Gassmann, Fritz. A spatial n-layer problem of seismic refraction
surveying --- 188-520
Solution of an n-layer problem by a seismic reflection method-- 188-523
Gast, P. W. The rubidium-strontium method ------------------------- 188-18
See also Giletti, B. J., and Wetherill, G. W.
Gauer, Z. Ye. See Leypunskaya, D. I.
Gault, D. E. See Shoemaker, E. M.
Gavrilova, L. K. See Tugarinov, A. I.
Gayanov, A. J. See Zommer, I. E.
Gaynanov, A. G., and Smirnov, L. P. Crustal structure in the area of transition from the Asiatic continent to the Pacific Ocean ------ 190-334
Gayskiy, V. N. On certain regularities of the seismic process as exemplified by Tadzhikistan earthquakes ------------------------- 191-99
Gayskiy, V. N., and Katok, A. P. Certain problems connected with study of seismic regime as exemplified by the earthquakes of the Pamir-Hindu-Kush zone ----------------------------- 189-88
Gazaryan, Yu. L. On a geometric-acoustic field approximation in the neighborhood of a nonsingular point of the caustic ----------------- 191-179
--- On propagation of sound in nonhomogeneous mediums ----------------- 191-180
Gebhardt, R. E. See Bottum, J. L.
Gedonov, L. I. See Shvedov, V. P.
Gedvilayte, N. M. See Blinstrupas, S. I.
Geertsma, J. On Tuman's paper on "Refraction and reflection of sonic energy in velocity logging" ------------------------------------- 190-561
--- Velocity-log interpretation: The effect of rock bulk compressibility -- 188-540
Geiss, Johannes, Oeschger, Hans, and Signer, Peter. Radiation ages of chondrites--- 188-118
See also Jäger, Emilie, and Rosholt, J. N.
Gel'chinskiy, B. Ya. Formula for geometric divergence --- 191-177
See also Alekseyev, A. S., and Vavilova, T. I.
Gelfand, N. I. On interpretation of geophysical anomalies by the method of tangents -- 191-500
--- On interpretation of geophysical anomalies of higher derivatives of magnetic potential -------------------------------------- 191-501
Gel'man, O. Ya. See Rubinshteyn, M. M.
Gennai, N. Result of drilling at Bagnore (Monte Amiata, Italy) --- 190-344
Gentner, W. See Fechtig, H., Koenigswald, G. H. R., von, and Zähringer, J.
Geographical Survey Institute. Magnetic survey of Japan, 1951-57 -- 189-380
Gerard, Robert, Langseth, M. G., Jr., and Ewing, Maurice. Thermal gradient measurements in the water and bottom sediment of the western Atlantic -------------------------------------- 189-324
Gerling, E. K. Present status of the argon method of age determination and its application in geology -------------------------- 188-22
Gerling, E. K., Morozova, I. M., and Kurbatov, V. V. On the retention of radiogenic argon in pulverized potassium-bearing minerals --- 191-12
--- The retentivity of radiogenic argon in ground micas --------- 188-23
Gerling, E. K., and Ovchinnikova, G. V. Anomalous ages obtained by the rubidium-strontium method -------------------------- 188-76
Gerling, E. K., Yashchenko, M. L., Varshavskaya, E. S., and Matveyeva, I. I. Comparative study of the argon and strontium methods of absolute geologic age determination ------------------ 188-71
See also Polkanov, A. S.
Germanyuk, M. M. See Ayzberg, R. Ye.
Gernik, V. V., and Potapov, V. G. An attempt at differentiating volcanic layers in the Polar Urals by means of magnetic exploration --- 190-483
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic daily variation at Koror</td>
<td>Gettemy, J. W.</td>
<td>189-401</td>
</tr>
<tr>
<td>Hannover radiocarbon measurements II</td>
<td>Geyh, M. A., Schneekloth, Heinrich, and Wendt, Immo.</td>
<td>190-53</td>
</tr>
<tr>
<td>Geologic interpretation of the gravity anomalies of west Uzbekistan</td>
<td>Geyman, B. M.</td>
<td>190-333</td>
</tr>
<tr>
<td>Is the use of volcanoes to increase the rainfall in the Sahara utopian</td>
<td>Ghe, Bernard</td>
<td>190-620</td>
</tr>
<tr>
<td>Hannover radiocarbon dates II</td>
<td>Gfeller, Chr., Oeschger, H., and Schwarz, U.</td>
<td>190-26</td>
</tr>
<tr>
<td>Age of basement rocks in eastern United Arab Republic and northern Sudan</td>
<td>Gheith, M. A.</td>
<td>188-64</td>
</tr>
<tr>
<td>On designing of perforated models of seismic mediums</td>
<td>Gil'bershteyn, P. G.</td>
<td>190-175</td>
</tr>
<tr>
<td>Small-scale field seismoscope for measurement of the velocity of elastic waves</td>
<td>Gil'bershteyn, P. G., and Koloskov, I. A.</td>
<td>190-181</td>
</tr>
<tr>
<td>The directivity problem for a buried line source</td>
<td>Gilbert, Freeman, and Knopoff, Leon.</td>
<td>188-197</td>
</tr>
<tr>
<td>Excitation and propagation of pulses on an interface</td>
<td>Gilbert, Freeman, and Laster, S. J.</td>
<td>189-143</td>
</tr>
<tr>
<td>Experimental investigation of PL modes in a single layer</td>
<td>Giletti, B. J., and Gast, P. W.</td>
<td>189-141</td>
</tr>
<tr>
<td>Absolute age of pre-Cambrian rocks in Wyoming and Montana</td>
<td>Giletti, B. J., Lambert, R. St. J., and Moorabth, Stephen.</td>
<td>188-47</td>
</tr>
<tr>
<td>Geophysical Institute of Peru</td>
<td>Giliberti, A.</td>
<td>191-290</td>
</tr>
<tr>
<td>On a new mechanism of producing micropulsations of the earth's magnetic field</td>
<td>Glazunov, V. V.</td>
<td>191-305</td>
</tr>
<tr>
<td>Compute seismic wave lengths via nomogram</td>
<td>Glazunov, V. V.</td>
<td>190-399</td>
</tr>
<tr>
<td>Effect of the reference plane on seismic reflection</td>
<td>Giorgio, A.</td>
<td>190-537</td>
</tr>
<tr>
<td>Initiation of continental drift</td>
<td>Girdler, R. W.</td>
<td>191-305</td>
</tr>
<tr>
<td>The measurement and computation of anisotropy of magnetic susceptibility of rocks</td>
<td>Gligor, R. M. Geology of Porter township</td>
<td>189-16</td>
</tr>
<tr>
<td>Separation of total gravity fields as a process of frequency filtering</td>
<td>Gladkyi, K. V.</td>
<td>188-329</td>
</tr>
<tr>
<td>Measurement of the strain of a glacier snout</td>
<td>Glen, J. W.</td>
<td>191-317</td>
</tr>
<tr>
<td>Present status of the decay constants</td>
<td>Glendenin, L. E.</td>
<td>188-17</td>
</tr>
<tr>
<td>Corrections for a moving gravity meter</td>
<td>Glicken, Milton</td>
<td>191-353</td>
</tr>
<tr>
<td>On the joint smoothing of a system of traveltime curves of reflected waves</td>
<td>Glogovskiy, V. M.</td>
<td>190-546</td>
</tr>
<tr>
<td>Construction of reflecting horizons by the method of middle points</td>
<td>Glotov, O. K.</td>
<td>190-540</td>
</tr>
</tbody>
</table>
Glover, R. N. See Watt, D. E.
Glyuzman, A. M. Field of a point-source current, located at points on a surface having the form of a parabolic cylinder 190-183
— The theory of electric surveying of buried structures. 1 191-222
Gnoinski, Adam. See Kalinowska-Widomska.
Godwin, Harry, and Willis, E. H. Cambridge University natural radiocarbon measurements III 190-30
— Cambridge University natural radiocarbon measurements IV; Nuclear-weapon testing and the atmospheric radiocarbon concentration 190-31
— Cambridge University natural radiocarbon measurements V 190-45
Goel, P. S., and Kohman, T. P. Cosmogenic carbon-14 in meteorites and terrestrial ages of "finds" and craters 190-87
Goering, Marjory. See Woodriff, Ray.
Goguel, Jean. Some considerations on the utilization of geothermal energy, a propos of New Zealand 190-349
Goldberg, E. D., and Koide, Minoru. Geochronological studies of deep sea sediments by the ionium/thorium method 190-603
Gold'feld, I. V. On the problem of distinguishing two groups of different age in the Archean in southwest Ukrainian SSR 191-26
See also Burkser, Ye. S.
Gold'farb, M. L., and Preobrazhenskiy, V. B. A four-channel pen-writing recording device 191-140
See also Borisevich, Ye. S.
Gold'in, S. V. On the study of mean velocity variation down to a marker reflecting horizon 190-544
Goldsmith, P. See Brown, F.
Goldthwait, R. P. Study of ice cliff in Nunatarssuaq, Greenland 189-261
Golenetskiy, S. I. On the traveltime curves of seismic waves for the South Baykal area 191-119
Golomb, V. E. Experience in prospecting with gravimeters-altimeters for oil and gas in Siberia 190-314
Golovin, A. P. See Dmitriyev, M. K.
Gol'tsman, F. M. On the experimental analysis of interferences and the reliability of the results of grouping of signals 190-523
— Statistical evaluation of the reliability of the results of grouping of signals 190-524
Gol'tsman, F. M., and Keyl'man, Yu. N. Universal filters of seismic signals 188-547
Gol'tsman, Yu. V. See Afanas'yev, G. D.
Golubchira, M. N. See Tugarinov, A. I.
Goodman, A. See Hemenway, C. L.
Gorai, Masao. Ultimate origin of granite 191-416
Gorazdovskiy, T. Ya. Theoretical premises of a method for predicting mechanical failure of ice and permafrost fields 189-607
Gorbachev, I. F. Research drill holes of the U.S.S.R. Rubin research drill hole (Krasnoyarsk Territory) 190-236
Gorbatova, V. P. See Bol'shikh, S. F.
Gordienko, P. A. The Arctic Ocean 188-286
See also Shabanov, B. A.

Gorodenskiy, S. N. On magnetic anomalies ΔT of arbitrary intensity --- 188-436
--- Some general features of magnetic anomalies ΔT of considerable intensity --- 188-435

Gorokhov, I. M. See Komlev, L. V., and Yashchenko, M. L.

Gorshkov, E. S. See Yanovskiy, B. M.

Gorshkov, G. P. Recent tectonic movements and the geology of earthquakes --- 190-135

Gorshkov, G. S. Determination of the explosion energy in some volcanicoes according to barograms --- 190-607
--- Notes on the eruption of Karymskiy volcano in 1960 --- 191-695
--- Some results of seismometric investigations at the Kamchatka Volcanological Station --- 190-634

Goryachev, A. V. See Gal'perin, Ye. I.

Goryunov, I. I. The study of rock fracturing from electrical logging data --- 191-254

Gottikh, R. P. See Alekseyev, F. A.

Gouin, Pierre. Reversal of the magnetic daily variation at Addis Ababa --- 189-388

Goupillaud, P. L. An approach to inverse filtering of near-surface layer effects from seismic records --- 188-524

Gow, A. J. Drill-hole measurements and snow studies at Byrd Station, Antarctica --- 189-262

Grabovskiy, M. A. See Brodskaya, S. Yu

Grachev, A. A., and Petrovskiy, A. D. Some results of radiowave transluccence on iron-ore deposits of the middle Urals --- 190-184

Graeffe, G., and Nurmia, M. The use of thick sources of alpha spectrometry --- 189-483

Graham, K. W. T. The remagnetization of a surface outcrop by lightning currents --- 189-448

Graham, K. W. T., and Hales, A. L. Preliminary palaeomagnetic measurements on Silurian sediments from South Africa --- 188-433

Grannis, P. D. Electrostatic erosion mechanisms on the moon --- 188-135

Gratsinskii, V. G. On distortions of spectrums of seismic impulses by resonance analyzers, and methods of their corrections --- 190-160

Graulich, J. M. Presentation and interpretation of the magnetic map of the Grand Halleux massif --- 189-469

Graves, D. J. See Boyer, P. D.

Green, D. H. See Miller, J. A.

Green, H. F. See Brown, F.

Green, Jack. Lunar volcanic mechanisms --- 190-97
--- The atmosphere of the moon --- 190-98
--- The geology of the lunar base --- 190-99

Green, Ronald. Thermoelectric currents in meteorites --- 188-106

See also Hill, P. A.
Greenhouse, J. P. The Devon Island Expedition------------------ 189-193
Greenstein, J. L. See Fowler, W. A.
Gregory, A. F., Bower, M. E., and Morley, L. W. Geological intepretation of aerial magnetic and radiometric profiles, Arctic Archipelago, Northwest Territories ------------------------ 190-480
Geological interpretation of aeromagnetic profiles from the
Canadian Arctic Archipelago ----------------------------------- 189-468
Gregory, A. F., Morley, L. W., and Bower, M. E. Airborne geo-
physical reconnaissance in the Canadian Arctic Archipelago --- 188-455
Gregory, P. H. Identity of organized elements from meteorites --- 191-36
Griffin, J. B. See Crane, H. R.
Griffiths, D. H., and King, R. F. Discussion of paper by N. D.
Opdyke, "The paleomagnetism of the New Jersey Triassic: a field
study of the inclination error in red sediments" ---------------- 188-429
Griggs, D. T. See Bullard, E. C.
Grigor'eva, E. I. See Kirov, K. T.
Grigor'yev, D. P. On the constitution of meteorite mineralogy---- 188-110
Grigor'yev, I. G. See Rubinshteyn, M. M.
Grinberg, I. G. See Ayzenstadt, G. Ye. A.
Griscom, Andrew, and Peterson, D. L. Aeromagnetic, aeroradio-
activity, and gravity investigations of Piedmont rocks in the
Rockville quadrangle, Maryland------------------------------- 188-280
Grichenko, Z. G. See Shvedov, V. P.
Gross, W. H., and Strangway, D. W. Remanent magnetism and the
origin of hard hematites in Precambrian banded iron formation-- 191-475
Grosse, Siegfried. The representation of the relief of the Upper
Cretaceous with thin cover in seismic refraction data ---------- 191-628
Grosse, Siegfried, Kopf, Manfred, and Sonntag, Klaus. Results of
gravimeter measurements in the western Erzgebirge ----------- 190-330
See also Kopf, Manfred.
Grumbkov, A. P. An experiment in separation of thorium and radi-
um components of gamma radiation by an automobile radiometer
in prospecting for oil -- 189-494
Grumbkov, A. P. Methods, apparatus, and treatment of data in ra-
dioactivity prospecting for petroleum ------------------------ 190-516
Grumbkov, A. P., Matveyev, V. V., Semenov, G. S., and Sokolov,
A. D. Radiometer-analyzer "Avtogras" and its application to ra-
dioactive prospecting for oil and gas------------------------ 189-496
Use of scintillation apparatus for exploration for oil and gas
pools -- 190-509
See also Alekseyev, F. A.
Gründland, I. Speed of combustion of the elements in the course of
nucleosynthesis and age of the elements—functions of the initial
mass in which nucleosynthesis takes place. Attempt at evaluation
of the proportion of elements heavier than H and He on the planet
Jupiter -- 188-102
Grünenfelder, M., and Stern, T. W. The zircon age of the Bergell
massif -- 188-66
Grushinsky, N. P. Experiment in the use of a gravimeter on a sur-
face ship --- 191-381
--- Marine gravity measurements in the Antarctic during 1956-
1957 --- 191-357
Gryzlov, V. S. On the problem of improving the effectiveness and
quality of logging in prospecting for coal deposits ----------- 190-228
Guberman, Sh. A. Application of similarity principles to solution of
borehole radiometry problems ------------------------------- 189-506
Guberman, Sh. A. On the possibility of an integrated interpretation of the data of neutron-neutron and neutron-gamma methods for investigation of boreholes 189-517

On the spectroscopy of gamma radiation of natural and artificial radioactive isotopes under borehole conditions 189-511

Gugunava, G. Ye. See Lashkhi, A. S.

Gulin, Y. A. Effect of conditions of measurement on evaluation of rock porosity from the data of gamma logging 189-513

Gupta, I. N. Resonant oscillations of the overburden excited by seismic waves 189-162

Gurevich, V. F. A device for control and testing of seismic apparatus 189-570

Gusev, Yu. M. On the problem of methods of interpretation of asymmetric ΔT anomalies 191-514

Gustavsson, John. See Olsson, Ingrid.

Gutenberg, Beno. The asthenosphere low-velocity layer 191-409

Gutiérrez Díez, J. L. See Sell Cantalapiedra, J.

Guzanova, I. G. See Komarov, S. G.

Gykasyan, P. Kh. See Shiririnyan, K. G.

Gzovskiy, M. V. Tectonophysics and earthquake forecasting 191-107

Hadley, J. B. See Witkind, I. J.

Haefeli, Robert. On the rheology of ice shields in the Arctic and Antarctic 191-316

Hagedoorn, J. G. On Hawkin's paper "The reciprocal method of routine shallow seismic refraction investigations" 191-611

Hagiwara, Takahiro, and Kayano, Ichiro. Seismological observations of the Kita Mino earthquake, August 19, 1961 and its aftershocks 191-82

Hagiwara, Yukio. See Momose, Hiroto.

Hahn, G. W. See Tuttle, C. R.

Halenka, Jaroslav. Geomagnetic activity after large chromospheric flares 191-463

Hales, A. L. An upper limit to the age of the Witwatersrand system 188-62

See also Graham, K. W.

Haller, J. See Kulp, J. L.

Hallgren, D. See Hemenway, C. L.

Hamada, Kazuo. See Tazime, Kyozi.

Hamilton, A. C. Evaluation of the Dominion Observatory bronze pendulum apparatus 189-299

Hamilton, W. S. Structural model of large part of the earth 190-292

Hamilton, Warren. See Myers, W. B., and Witkind, I. J.

Hammond, J. W. Ghost elimination from reflection records 191-606

Hansen, B. L., and Landauer, J. K. Some results of ice cap drill hole measurements 189-276

Hanson, W. B. See Dessler, A. J.

Haraldson, Stig. Rapid geomagnetic fluctuations 188-404

Hardy, H. R., Jr. Standardized procedures for the determination of the physical properties of mine rock under short-period uniaxial compression 189-592
Hargrave, D. R. F. Digital computers in log interpretation 190-230
Harkrider, D. G., and Anderson, D. L. Computation of surface wave dispersion for multilayered anisotropic media 189-149

See also Press, Frank.

Harland, W. B. See Bidgood, D. E. T.

Harris, M. A. Materials for the absolute time scale of the USSR 188-7
Harris, M. A., Dyadin, N. N., and Zakirova, F. S. Preliminary time scale of the Precambrian and Paleozoic of the southern Urals and the eastern part of the Russian platform 188-6

Harris, P. G., and LeMaitre, R. W. Volcanic activity on Tristan da Cunha on December 16-17 189-617

Harrison, E. R. An experiment to determine the nature of the earth's distant magnetic field 191-424

—— Determination of the nature of the earth's distant magnetic field 188-391
—— The earth's distant magnetic field 191-425

Hart, S. R. Mineral ages and metamorphism 188-32
Hart, S. R., and Dodd, R. T., Jr. Excess radiogenic argon in pyroxenes 191-9

See also Aldrich, L. T., Davis, G. L., and Hurley, P. M.

Haruki, Kiyonosuke, and Nakazawa, Jiro. On the radioactivity of the Miocene sedimentary rocks in the Chugoku Mountainland 191-594

Hasegawa, K. See Kojiro, T.

Hatuda, Zin'itiro; Nishimura, Susumu; and Hirose, Yoshihisa. Radioactivity around ore deposits 188-499

Haubrich, R. A. A digital seismograph system for measuring earth noise 189-478

Haugen, R. T. See Richter, D. H.

Hauwitz, M. W. Dependence of interval between flare and associated sudden commencement storm on prestorm conditions 190-412

Hawkes, D. D. The structure of the Scotia Arc 190-284

Hawkins, G. S. Asteroidal fragments 189-41

Hawkins, L. V. Reply to Hagedoorn's discussion on Hawk's paper "The reciprocal method of routine shallow seismic refraction investigations" 191-611

—— The application of the seismic method and seismic timers to the investigation of the depth and quality of magnesite deposits near Young, N.S.W 190-592

—— The reciprocal method of routine shallow seismic refraction investigations 188-533

Hayakawa, Masami. Study of the thermal state in the upper part of the earth's crust 189-332

Hayakawa, Masami, and Balakrishna, S. Some theoretical considerations for the high ultrasonic velocities in Indian granites 188-212

Haynes, C. V. Moon rocks, pt. 1 190-101

Healy, James, and Tazieff, Haroun. Surveillance of the active volcanoes of New Zealand 190-630

Heap, W. O. See Finn, R. S.

Hecht, Gánter. See Andreas, Dieter.

Heck, N. H. See Wood, H. O.
Hédervári, Péter. Some selenomorphological remarks to the problem of the hypsometric and hypsographic curves of the moon ---- 189-68
Heezen, B. C., and Ewing, Maurice. The mid-oceanic ridge and its extension through the Arctic Basin -------------------------- 188-582
Hefer, F. W. The use of photo-resistive cells as losser elements in a transistorized seismic amplifier ------------------------ 189-569
Heigold, P. C. See McGinnis, L. D.
Heirtzler, J. R. The longest electromagnetic waves -------------- 189-370
Heiskanen, W. A. Is the earth a triaxial ellipsoid --------------- 190-268
--- Ten years as professor in geodesy in America --------------- 189-239
Heitfeld, K. H. The significance of historical thought patterns in geology for geomechanics-------------------------- 191-646
Helliwell, R. A. See Mlodnosky, R. F.
See also Soberman, R. K.
Henderson, E. P. See Clarke, R. S., Jr.
Henderson, J. R., Jr. Aeromagnetic map of the Bridgewater quadrangle, Aroostook County, Maine---------------------- 191-534
Hennessy, D. J. See Nagy, Bartholomew
Henriksen, S. W. The hydrostatic flattening of the earth -------- 188-305
Heppner, J. P. See Hess, R. F.
Herbst, R. F. See Werth, G. C.
Hereth, A., and Schombierski, A. Determination of the anisotropy of strength of a rock body that is traversed by several sets of joints, with electronic computers----------------------------- 191-665
Herrmann, Horst. Results of a regional seismic reflection profile in the foreland of the Central German Main fracture 191-626
Herron, Thomas. See Hunkins, Kenneth.
Hersey, J. B. Findings made during the June 1961 cruise of Chain to the Puerto Rico Trench and Caryn sea mount -------------- 189-610
--- The Puerto Rico Trench, a geophysical laboratory -------- 188-581
Hervás Burgos, Pablo. Location of a magnetic vein -------------- 191-528
Herzog, L. F. Analyses of identical samples by more than one laboratory --- 188-20
--- Geological age determination by X-ray fluorescence Rb/Sr ratio measurement in lepidolite ------------------ 190-5
See also Deuser, W. G.
Hesse, Werner. Investigations on multiple reflections in seismic surveying --- 189-555
Hess, W. D. See Lorenz, P. J.
Hesse, Albert. Electrical resistivity measurements on a stratigraphic section of a prehistoric deposit ----------------- 189-187
Hessler, V. P. Characteristics of telluric current at land and sea based stations -- 190-106
Hibberd, F. H. An analysis of the positions of the earth's magnetic pole in the geological past ---------------------- 189-450
Hicks, W. G. See Foster, M. R.
Hill, D. P., Baldwin, H. L., Jr., and Pakiser, L. C. Gravity, volcanism, and crustal deformation in the Snake River Plain, Idaho ------------------------------- 188-346
Hill, F. G., and Denkhaus, H. G. Rock mechanics research in South Africa, with special reference to rockbursts and strata movement in deep level gold mines ------------------------ 189-596
Hill, M. N., and Mason, C. S. Diurnal variation of the earth's magnetic field at sea -------------------------- 191-441
Hill, P. A., and Green, Ronald. Thermo-electricity and resistivity of pyrite from Renison Bell and Mt. Bischoff, Tasmania --------- 191-263
Hilten, Dick van. A deviating Permian pole from rocks in northern Italy -- 191-486
— Geology and Permian paleomagnetism of the Val-di-Non area, W. Dolomites, N. Italy ------------------------ 189-455
— Presentation of paleomagnetic data, polar wandering, and continental drift ------------------------ 189-445
Hinterberger, H., König, H., and Wänke, H. Primordial rare gases in the meteorite Breitscheid-------------------------- 191-40
Hiramatsu, Yoshio, and Oka, Yukitoshi. Stress around a shaft or level excavated in ground with a three-dimensional stress state-- 189-594
Hirasawa, Kiyoshi. See Honsho, Shizumitsu, and Kaneko, Tetsuichi.
Hirono, Motokazu. On the magnetic clouds responsible for variations of cosmic-ray and geomagnetic field ------------------- 189-412
Hirono, Takuzu. Seismicity of Japan---------------------------------- 188-167
Hirose, Yoshihisa. See Hatuda, Zin'itiro.
Hjelme, Jørgen. Seismic experiments near Rømø ------------------- 189-579
Ho, Chuan-Da. See Tseng, Jung-Sheng.
Hobson, G. D. Seismic exploration in the Canadian Arctic islands-- 189-575
— Vaudreuil map-area, Quebec, Part II. The seismic method applied to a bedrock channel problem ------------------- 190-583
Hodgson, J. H. The Upper Mantle project ------------------------- 191-406
Hoering, T. C. The carbon isotope effect in the synthesis of diamond ----------------------------------- 188-376
— The carbon-isotope effect on the rate of enzymatic decarboxylation of formic and glutamic acid ------------------- 188-379
— The effect of physical changes on isotope fractionation----------------------------- 188-378
Hoering, T. C., and Abelson, P. H. Carbon isotope effects in aerobic metabolism of microorganisms ------------------- 189-367
Hoering, T. C., and Bufalini, M. The isotope effect in the low-temperature adsorption of gases --------------- 189-368
Hoerlin, Herman. Artificial aurora and upper atmospheric shock produced by Teak ---------------------------------- 189-371
Höfer, Karl-Heinz. Is there a periodicity of mine bumps--------- 191-672
Hoff, G. See Hemenway, C. L.
Hoffman, A. A. J. See Horton, C. W.
Hoffren, V. See Hyypia, E.
Hofmann, R. B. Aftershock-energy release versus tidal effects, Hebgen Lake Earthquake, Montana ------------------- 188-147
Hofmann, Walther. Tellurometer measurements on the Greenland Ice Cap during the International Glaciological Greenland Expedition (EGIG) summer 1959 ------------------ 191-313
Hollister, J. C. The effect of the present slump on geophysical education ---------------------------- 191-286
Holm, D. A. New meteorite localities in the Rub' al Khali, Saudi Arabia ------------------------------- 189-56
Holmes, G. W. See Ostenso, N. A.
Holt, A. See Brown, F.
Holz, Peter. Operating ideas from South Africa - Seismic prospecting ------------------------------- 191-617
Honda, Hirokichi. The generation of seismic waves ---------------------- 189-103
Honda, Masatake, Unemoto, S., and Arnold, J. R. Radioactive species produced by cosmic rays in Bruderheim and other stone meteorites 190-68

See also Arnold, J. R., Rama, and Stauffer, Heinz.

Honkasalo, Tauno. Compensation of the north European precise leveling network 190-276

Honsho, Shizumitsu; Nagumo, Shozaburo; Kamata, Seikichi; and Hirasawa, Kiyoshi. On delay shooting 189-559

Hoover, D. B. See Warrick, R. E.

Hoover, T. E. See Stipp, J. J.

Hőrai, K. Itt. See Uyeda, Seiya.

Hori, Minoru. See Miyamura, Setumi.

Horibe, Tomio, and Kobayashi, Ryoji. Physical and mechanical properties of coal-measures rocks 188-215

Horikawa, Yoshiro, and Hosono, Takeo. Radiometric survey with car-mounted instrument in the southeastern part of Iwate Prefecture 188-489

Horikawa, Yoshiro; Ujiiie, Akira, and Hosono, Takeo. Radiometric survey with car-mounted instrument in the Jōban Province, Fukushima Prefecture 188-491

See also Sugiyama, Tomonori.

Horon, Octave, Mégrien, Claude, and Soyer, Robert. Note on the Salt Springs of Saint Père sous Vezelay (Yonne) 188-252

Horton, C. W., and Hoffman, A. A. J. Power spectrum analysis of the telluric field at Tbilisi, U.S.S.R., for periods from 2.4 to 60 minutes 191-75

Hoshino, Kazuo. Fissures of alluvium deposits in the Hyuga-nada earthquake, February 27th, 1961, with some geological interpretations 190-124

See also Nagahama, Haruo.

Hosono, Takeo. See Horikawa, Yoshiro, and Nakai, Junji.

Hosoyama, Kennosuke. See Nishimura, Eiichi.

Hou, Zong-Tsu. On the magnetic property of volcanic rocks occurring in the Great Shingan Mountain region, northeast China 188-466

Houser, F. N., and Poole, F. G. Age relations of the Climax composite stock, Nevada Test Site, Nye County, Nevada 188-48

Houtz, R. E. Note on minor damage caused by the Suva earthquake of June 1961 189-82

— The 1953 Suva earthquake and tsunami 189-81

Howard, A. D. The hydrothermal phenomena of the Yellowstone National Park 188-598

Howell, L. G. Chemical and crystal controlled magnetization of rocks 191-465

Hower, J. See Hurley, P. M.

Hoy, R. B., and Foose, R. M. Earth deformation from a nuclear detonation in salt 191-289

Hoyle, Fred. On the origin of the solar nebula 189-33

See also Fowler, W. A.

Hoylman, H. W. How to determine and remove diurnal effects precisely 188-445

Hron, František. See Červený, Vlastislav.

Hsu, Shao-Hsien. Design, construction, and testing results of the type-581 seismograph 188-191

Hu, Hai-Chang. On reciprocal theorems in the dynamics of elastic bodies and some applications 190-164

Hubbs, C. L., Bien, G. S., and Suess, H. E. La Jolla natural radiocarbon measurements II 190-57
Abstract

Huber, Carolyn. See Judd, W. R.

Hudson, D. E. Some problems in the application of spectrum techniques to strong-motion earthquake analysis ------------------- 189-114

See also Merchant, H. C.

Hudson, G. B. See Light, D. E.

Hudson, J. A. Love waves in a heterogeneous medium ------------------- 190-152

--- The total internal reflection of SH waves ------------------- 191-156

Huffaker, R. M. See Adams, E. W.

Huggenberger, A. U. Body and foundation of a construction in their mutual action ------------------- 191-673

Hughes, H. See Hurley, P. M.

Hughes, M. P. Solar radio emissions and geophysical disturbances during July 1959 ------------------- 190-413

Hulston, J. R. Isotope geology in the hydrothermal areas of New Zealand ------------------- 190-371

Hulston, J. R., and McCabe, W. J. Mass spectrometer measurements in the thermal areas of New Zealand. Pt. 1, Carbon dioxide and residual gas analyses ------------------- 189-327

--- Mass spectrometer measurements in the thermal areas of New Zealand. Pt. 2, Carbon isotopic ratios ------------------- 189-328

Hunkins, Kenneth. Seismic studies of the Arctic Ocean floor ------------------- 189-611

Hunkins, Kenneth, Herron, Thomas, Kutschale, Henry, and Peter, George. Geophysical studies of the Chukchi cap, Arctic Ocean ------------------- 188-284

Hunt, C. B. See Straus, W. L., Jr.

Hurley, P. M., Fairbairn, H. W., Pinson, W. H., Jr., and Hower, J. Unmetamorphosed minerals in the Gunflint formation used to test the age of the Animikie ------------------- 191-19

Hurley, P. M., Hughes, H., Pinson, W. H., Jr., and Fairbairn, H. W. Radiogenic argon and strontium diffusion parameters in biotite at low temperatures obtained from Alpine Fault uplift in New Zealand ------------------- 188-27

See also Pinson, W. H., Jr.

Hurst, M. E. See Ehmann, W. D.

Hurtig, Eckart. Investigations of the propagation velocity of longitudinal waves in models of petrographic bodies ------------------- 190-173

Husain, M. Khurshid; Azeem, Mohammad; and Qureshi, M. M. The design of a simple uranium-thorium discriminator for weakly active ores containing less than 1 percent U3O8 equivalent: Pt.II-Design, use, and testing of discriminator ------------------- 188-479

Hutton, V. R. S. Equatorial micropulsations ------------------- 190-430

--- Equatorial micropulsations and ionospheric disturbance currents ------------------- 191-444

Hyyppa, E., Höffren, V., and Isola, A. Geological Survey of Finland radiocarbon measurements I ------------------- 190-47

I

Ibe, Yukimi. See Yokoyama, Hidekichi.

Idlis, G. M., and Karyagina, Z. V. The comet nature of the Tungus meteorite ------------------- 191-54

Igarashi, Toshio. See Koizumi, Hisanao.

Ignat'yeva, T. S. Recommendations for using a combined survey of average gradients and a micromagnetic survey in prospecting for rare metal pegmatite veins ------------------- 189-170
AUTHOR INDEX

Ignat'yeva, T. S., and Il'yushchenko, N. P. An experience in the study of forms of rare metal replacement in pegmatite veins by using the method of high accuracy micromagnetic survey------ 189-463

Igushkin, I. A. See Rekunov, N. A.

Iida, Kumizi, and Kumazawa, Mineo. Elastic wave velocity and thermal expansion of volcanic rocks at high temperatures ------ 189-154

See also Shibato, Kihel.

Iijima, Azuma, and Kagami, Hideo. Cainozoic tectonic development of the continental slope, northeast of Japan ------------------ 189-257

Ikegami, Kyohi. Intensity-frequency relation for felt earthquakes in Japan --- 188-171

Ilev, N. P. See Kirov, K. T.

II'in, A. V. A rift valley in the Atlantic Ocean ------------------- 189-612

Il'yushchenko, N. P. See Ignat'yeva, T. S.

Imbò, Giuseppe. Some phenomena accompanying the preliminary phases of eruptive manifestations of Vesuvius and the relative possibilities of predictions ------------------------ 190-621

Indian Minerals. Progress in geophysical exploration in recent years by the Geological Survey of India ------------------- 190-251

Inghilleri, Giuseppe. See Morelli, Carlo.

Ingram, R. E. Generalized focal mechanism ---------------------- 189-99

Innes, M. J. S. Gravity and isostasy in northern Ontario and Manitoba --- 189-308

Inoue, Eiji. A new GSI pendulum apparatus --------------------- 189-302

Inoue, Eiji, and Seto, Takao. Pendulum determinations of the gravity difference between Tokyo and Melbourne ---------------- 189-304

International Geophysical Year Bulletin (No. 45). Ocean tide measurements from Antarctic ice shelves using gravity techniques --- 189-319

International Geophysical Year Bulletin (No. 56). Preliminary results from Arctic Ocean Drifting Station Charlie ---------------- 191-685

International Geophysical Year Bulletin (No. 57). Solar-terrestrial activity during the second half of 1961 ------------------ 189-417

International Geophysical Year Bulletin (No. 60). The Year of the Quiet Sun; proposed program of the United States----------------- 190-447

Ionescu, Florian. Application of the micromagnetic method to the study of crystalline rocks of the South Carpathians ----------- 188-462

See also Ştefănescu, S. S.

Ionosphere Research Committee. Catalogue of disturbances in ionosphere, geomagnetic field, field intensity of radio wave, cosmic ray, solar phenomena and other related phenomena, no. 21 ------- 189-381

--- Catalogue of disturbances in ionosphere, geomagnetic field, field intensity of radio wave, cosmic ray, solar phenomena and other related phenomena, no. 23 ----------------------------- 189-382

--- Catalogue of disturbances in ionosphere, geomagnetic field, field intensity of radio wave, cosmic ray, solar phenomena and other related phenomena, no. 25 -- 189-383

--- Catalogue of disturbances in ionosphere, geomagnetic field, field intensity of radio wave, cosmic ray, solar phenomena and other related phenomena, no. 30 -- 189-384

Iosif, T. Seismic activity in the territory of the Rumanian Peoples Republic (1957-1959) ---------------------------------- 190-127

Irie, Tsuneji. See Yoshizumi, Eizaburo.

Irving, E. Paleomagnetic directions and pole positions, part 4.

Pole numbers 4/1 to 4/34-- 189-451

See also Bull, C.
Irwin, W. P., and Bath, G. D. Magnetic anomalies and ultramafic rock in northern California

Isaacson, E. de St. Q. Stress waves resulting from rock failure

Isabayev, Ye. A., Cherdyntsev, V. V., and Yenikyeyev, R. Sh. Determination of the age of young formations by the ratio of thorium and uranium isotopes

Isacks, Bryan. See Oliver, J. E.

Isakovich, M. A., and Roy, N. A. Acoustic method of measuring the dynamical parameters of meteorites

Isaev, V. S. See Bokanenko, L. I.

Ishida, Haruko. See Kato, Yoshio, and Suzuki, Ziro.

Ishida, Tamotsu. Preliminary reports on a traverse to the Yamato Mountains in 1960: Pt. IV, Preliminary report of seismic soundings along the route to the Yamato Mountains

Seismic observations of the Yamato Mountains traversing trip

Ishii, Fujio. See Kunori, Shoichi.

Islamov, K. Sh. See Bagdasarova, A. M.

Ismail-Zade, T. A., and Dzhabarova, Kh. S. Relation between the destructive field and data of spore-pollen analysis on Maykop and Sarmat deposits of Talysh

See also Chiguryayeva, A. A.

Ismet, A. R., Mamedova, R. A., and Shakhmaliev, R. N. Concerning gamma-anomalies occurring in oil wells of Apsheron

Isola, A. See Hyypa, E.

Israilewitsch, E. A. See Schatenstein, A. I.

Itenberg, S. S. Use of geophysical logging data for unification of stratigraphic sections

Ito, H. See Kawai, Naoto.

Ito, Mitsuyoshi. See Kato, Yoshio.

Ivakin, B. N. Methods of controlling the density and elasticity of a medium during two-dimensional modeling of seismic waves

Ivanchuk, L. F. See Dolina, L. P.

Ivanhoe, L. F. Right-lateral strike-slip movement along the Lake Clarke fault, Alasaka

Ivankin, P. F., and Malygin, A. A. Method of interpreting and systemizing magnetic anomalies in the example of the Lenino-gorsk mining region

Ivankina, A. T., and Morozova, A. A. Composition of a detailed velocity section from neutron gamma logging

Ivanov, A. G. Electrical prospecting in China

Ivanov, A. I., Lyapichev, G. F., and Zamyatin, N. I. Absolute age of anorthoclase granite porphyries from the Teniz-Korzhunkisky basin (Central Kazakhstan)

Absolute age of Caledonian intrusives of the Chingiz Range (Eastern Kazakhstan)

Ivanov, A. I., Monich, V. K., Zamyatin, N. I., and Nurybayev, A. N. Absolute age of the alkaline rocks of the Ishim complex in central Kazakhstan

Ivanov, A. P. See Enenshteyn, B. S.

Ivanov, I. B. See Zhirov, K. K.

Ivanov, K. G. Energy of the Tungus meteorite
AUTHOR INDEX

Abstract

Ivanov, K. G. Geomagnetic phenomena observed at the Irkutsk magnetic observatory after the Tungus meteorite------------------ 191-56
Ivanov, M. A., and Enenshteyn, B. S. A noninertial method of measurement of amplitudes and phases of electric oscillations--- 188-249
Ivanov, V. I. See Cherdyntsev, V. V.
Ivanov, V. V. See Averyev, V. V.
Ivanova, K. S. See Komlev, L. V.
Ivanova, L. A. See Yepinat'yeva, A. M.
Ivanova, T. G. See Vasil'yev, Yu. I.
Ivanova, Z. S. See Khat'yanov, F. I.
Ives, R. L. Dating of the 1746 eruption of Tres Virgenes volcano, Baja California del Sur, Mexico------------------------ 190-611
Iwasaki, Shoji; Kanaya, Hiroshi; and Komai, Jiro. Airborne radiometric survey in Jōban area, Fukushima Prefecture ------- 188-495
--- Airborne radiometric survey in the southern part of Okayama Prefecture -------------------------------- 188-497
--- Airborne radiometric survey in the western part of Kitakami area, Iwate Prefecture -------------------- 188-493
Iwasaki, Shoji; Kojima, Seishi; and Kanaya, Hiroshi. Airborne radiometric survey in the northern part of Yamaguchi Prefecture ------ 188-498
Iwasaki, Shoji; Kojima, Seishi; Kanaya, Hiroshi; and Komai, Jiro. Airborne radiometric survey in the eastern part of Fukushima Prefecture ------------------- 188-494
Iwata, Takao. Concentration dependence of the magnetically induced directional order in face-centered cubic non-ideal solid solutions-------------------------- 189-430
Iyer, H. M. World-wide microseismic study ----------------------------- 191-564
Izaki, Akira. See Sasa, Yasuo.
Izakowski, Andrzej. Technical progress in geophysical work ----- 190-262
Izmaylov, Y. P. See Aleksandrov, S. Ye.

J

Jacchia, L. G. The earth's gravitational potential as derived from satellite 1957β1 and 1958β2 ----------------------------- 188-303
Jackson, P. L. Thermal noise in electrodynamic seismometers --- 189-138
Jackson, W. H., Shawe, F. R., And Pakiser, L. C. Gravity study of the structural geology of Sierra Valley, California------- 188-350
See also Warrick, R. E.
Jacobs, J. A. Characteristics of geomagnetic pulsations---------- 190-437
--- Geophysical investigations on the Salmon Glacier, British Columbia ------------------------------- 189-263
Jacobs, J. A., and Jolley, E. J. Geomagnetic micropulsations with periods of 0.3-3 sec ("pearls") ---------------- 199-443
See also Nishida, A., and Westphal, K. O.
Jacobshagen, V. The isotopic composition of natural waters and their changes during the water cycle ---------------- 191-418
Jaeger, J. C. Punching tests on disks of rock under hydrostatic pressure --------------------------------- 189-586
Jaeger, Wolfgang. Geologic-geophysical investigation of the Hammerunterwiesental phonolite (Erzgebirge) ---------------- 188-457
Jaeggin, R. P. See Koulomzine, T.
Jaeschke, Rudolf. A horizontal vectograph for the registration of geomagnetic pulsations: construction and first utilization ---- 191-432
Jäger, Emilie; Geiss, Johannes; Niggli, Ernst; Streckeisen, Albert; Wenk, Eduard; and Wuthrich, Hans. Rb-Sr age of rock-forming micas of the Swiss Alps ---------------------------- 188-67
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

Abstract

Jakowlewa, E. A. See Schatenstein, A. I.
Jamil, A. K. See Bradley, R. S.
Jansen, H. S. Comparison between ring-dates and 14C-dates in a New Zealand kauri tree --------------------- 190-24
Janssen, T. See Berg, E.
Jarosch, H. See Pekeris, C. L.
Jayaraman, A. See Newton, R. C.
Jeffery, P. M., and Reynolds, J. H. Concerning Xe$_{129}$ in meteorite Abee ---------------------------------- 188-115
--- Origin of excess Xe-129 in stone meteorites ---------------------------------- 190-75
See also Compston, W., and Wilson, A. F.
Jefford, G. See Macleod, W. N.
Jeffreys, Harold. A suggested reconstruction of the land masses of the earth as a complete crust ------------------------ 191-300
--- Deep foci and distribution of velocity --------------------------------- 191-113
--- Small corrections in the theory of surface waves --------------- 189-129
--- Some normal earthquakes ------------------------------------ 191-114
Jeffreys, Harold, and Crampin, Stuart. Rock creep: a correction--
Jenkins, E. B. See Beard, D. B.
Jenny, W. P. Aeromagnetics develop new prospects and tech-
nique --- 188-443
--- How to correct magnetic data for instrumental drift, diurnals -- 188-444
--- Many old, updated magnetic prospects prove to be valid ------- 188-442
--- Regional magnetic data show prospective trends (pt. 2) ------- 188-441
Jiang, Bai-Qin. A statistical study of the relations between solar flares and magnetic storms ----------------- 188-414
Jiříček, František. On the types and dispersions of whistlers as ob-
served in Czechoslovakia ------------------------------------ 190-448
Jobert, Georges. Nonhydrostatical stresses in a gravitating planet ------------ 189-38
--- Nonhydrostatic tensions in a gravitating planet ------------- 189-37
Joesting, H. R. Discussion of "Gravity and aeromagnetic explora-
tion in the Paradox Basin," by Nelson C. Steenland---------- 190-325
Joesting, H. R., Case, J. E., and Cordell, L. E. The Rio Grande trough near Albuquerque, New Mexico ------------ 188-343
See also Case, J. E.
Johnson, A. I. See Moston, R. P.
Johnson, H. M. A history of well logging------------------- 191-249
--- How different mud additives affect $R_m-R_{mf}-R_{mc}$ ratios ----- 188-264
Johnson, P. V. See Balakrishna, S.
Johnson, R. B. See Dickey, D. D.
Jolivet, J. Geophysical surveillances of the volcanoes of the French Antilles. Possibilities of prediction and control of eruptions ---- 190-613
Jolley, E. J. See Jacobs, J. A.
Jones, A. R. Airborne gamma monitor for ground contamination -- 188-478
Jones, D. C. Alternative employment for geophysicists in the oil industry --- 191-285
Jones, G. H. S. Transverse motion from repeated explosions ---- 190-206
Jones, R. V. Sub-acoustic waves from large explosions ----------- 188-131
Judd, W. R., and Huber, Carolyn. Correlation of rock properties by statistical methods --------------------------- 191-641
Jung, F. R. Altitude systems and altitude reduction -------------- 190-275
Junge, C. E. See de Turville, C. M.
Junger, Arne. Signal, noise, and seismic records --------------- 189-549
AUTHOR INDEX

K

Kaasa, R. A. See Mooney, H. M.
Kaganov, M. A., and Rozenshtok, Yu. L. On the measurement of thermal fluxes with the aid of heat meters 189-331
Kage, Erhardt. Magnetic tape recording technique in seismic reflection surveying for electronic interpretation 191-616
Kahler, F. Rock mechanics and geomechanics. Formation, course, and goal of a new science 191-644
Kailasam, L. N. Seismic exploration in the Karaikal-Nagore of the Caouery basin, Madras State 189-224
Kakokka Magnetic Observatory. Report of the geomagnetic and geoelectric observations, 1959-60 191-436
Kaku, Hidezo. Studies on SP phenomena (1) and (2) 189-177
Kalbitzer, S. See Fechtig, H.
Kalenov, Ye. N. Change of S according to data of electrical sounding near a vertical contact 190-196
Kalina, Jaroslav. See Marušiak, Ivan.
Kalinowska-Widomska, Ewa; Marianiu, Janusz; and Gnoiński, Adam. A signaling apparatus for magnetic storms at the Swider Geophysical Observatory 190-385
Kalliokoski, Jorma. Temperatures of formation and origin of the Nigadoo and Brunswick Mining and Smelting No. 6, deposits, New Brunswick, Canada 191-396
Kal'varskaya, V. P. Investigation of curves of magnetic susceptibility logging on models 188-440
Kamata, Seikichi. See Honsho, Shizumitsu, and Nagumo, Shozaburo.
Kamenetskiy, F. M., and Kovalenko, V. F. Some results of testing MPP 191-237
Kamenev, S. P. Interpretation of diagrams of electrical logging opposite clayey sands in fields northwestern Sakhalin 188-274
Kamo, Kosuke. Nature of the volcanic micro-tremors at the Volcano Aso, part 1. Observation of a new type of long-period micro-tremors by long-period seismograph 190-635
— Nature of the volcanic micro-tremors at the Volcano Aso, part 2. Some natures of the volcanic micro-tremors of the 1st kind at the Volcano Aso 190-636
See also Okano, Kennosuke.
Kamyshnev, N. N. See Ayzberg, R. Ye.
Kan, Yung-Chul. See Tseng, Jung-Sheng.
Kanai, Kiyoshi. An empirical formula for the spectrum of strong earthquake motion 188-173
Kanai, Kiyoshi, and Osada, Kaio. Seismic characteristics in ground of mountainous formation (Observation of the after shocks of the Kita Mino earthquake) 191-87
Kanakina, M. A. See Zelenov, K. K.
Kanamori, Hiroo. See Tsuboi, Chuji.
Kanaya, Hiroshi. See Iwasaki, Shoji.
Kanayev, V. F. See Zatonskiy, L. K.
Kane, M. F. A comprehensive system of terrain corrections using a digital computer 191-339
— Structure of plutons from gravity measurements 188-325
Kane, M. F., and Carlson, J. E. Gravity anomalies, isostasy, and geologic structure in Clark County, Nevada 188-345
Kane, M. F. See also Andreasen, G. E., Oliver, H. W., and Pakiser, L. C.

Kaneko, Tetsuichi. A simple method of determination for three velocity layers by the seismic refraction and reflection signal from a layered refractor

Kaneko, Tetsuichi, and Hirasawa, Kiyoshi. An experiment on the reduction of wave noises by using multiple geophone setting and pattern shooting

Kanel'akov, D. P., and Villard, O. G., Jr. Ionospheric disturbances associated with the solar flare of September 28, 1961

Kang, Yong-ho. On the anomalies of the geomagnetic field due to Mt. Kabuto, Hyogo Prefecture, Japan

Role of pyrrhotite in rock magnetism

See also Kawai, Naoto.

Kanizay, S. P. Mohr's theory of strength and Prandtl's compressed cell in relation to vertical tectonics

Kántás, Karl. Computing and plotting seismic data with electronic computer

Kapitanov, Yu. T., Serdyukova, A. S., and Korenkov, A. P. Express method of concentration determination of radium A and correlation between the decay products of radon in the air

Kaplan, B. L., and Mayorov, V. V. On the problem of generation of transverse waves by directed shots

Karakama, Ikuo. See Omote, Syun'itiro.

Karapatyan, G. A. See Shirinyan, K. G.

Karapetyan, K. I. On the new Gegam type of volcano

Karatayev, G. I. Structure of the earth's crust in western Siberia according to geophysical data

Karlen, Ingvar. See Olsson, Ingrid.

Kárník, Vít. Epicenter maps for Europe

New seismic maps of Czechoslovakia

Kárník, Vít, and Tobyáš, Vladimír. Underground measurements of the seismic noise level

See also Vanek, I.

Karpinsk’a, N. M., and Kharechko, G. E. On the problem of some physical properties of rocks of the Northern Sivash area

Karpinsky, Jurij. See Dokouţil, Stanislav.

Karpushin, D. M., Kudymov, B. Ya., and Shirokov, A. S. Problems of the method of determination of the economic effectiveness of new geophysical technique

Karus, Ye. V., and Saks, M. V. Impulse ultrasonic logging

Karyagina, Z. V. See Idlis, G. M.

Kashkay, M. A., and Aliyev, V. I. Structure and composition of the Yardymly iron meteoritic shower

Kašpar, Jan. Conformal representation of one surface on another under selected conditions

Kaspar, Milan. See Dokouţil, Stanislav.

Kastorskiy, S. A. See Borisevich, Ye. S.

Kato, Yoshio. Geomagnetic micropulsations

Geomagnetic pulsations and hydromagnetic oscillations of the exosphere
Kato, Yoshio, and Saito, Takao. Morphological study of geomagnetic pulsations .. 190-433
Kato, Yoshio; Suzuki, Ziro; Nakamura, Kohei; Takagi, Akio; Emura, Kinya; Ito, Mitsuysoshi; and Ishida, Haruko. The Chile tsunami of 1960 observed along the Sanriku coast of Japan .. 189-117
Kato, Yoshio, and Tamao, T. Hydromagnetic waves in the earth's exosphere and geomagnetic pulsations .. 190-434
Katok, A. P. See Gayskiy, V. N.
Kats, A. Z. Seismic microregionalization on a basis of differentiation of grounds according to deformations caused by the passage of seismic waves .. 190-125
Kats, S. A. The equivalence principle of interference systems 190-522
Katyushkin, V. F. See Borisevich, Ye. S.
Katz, Samuel. See Ahrens, T. J.
Kaufman, A. A. On an approximate theory of induction logging 191-251
—— Three methods of field excitation in low-frequency electrical prospecting of ore deposits .. 191-223
Kauranen, Pentti. Alpha branching in the decay of Pb210 and Bi210, a new mercury isotope Hg206 .. 189-485
Kavin, A. V. Electrical exploration operations by the telluric current method in the Chinese Peoples Republic .. 188-145
Kawachi, Yosuke; Obi, Itsuaki; Saito, Tsuguo; and Uno, Kaichi. Reconnaissance radiometric survey on Nan-etsu Mine, Niigata Prefecture .. 191-595
Kawai, Naoto. Mountain-building movement in Japan and its vicinity .. 188-311
—— Subsolidus phase relation in titanomagnetite and its significance in rock-magnetism .. 189-424
Kawai, Naoto, Ito, H., and Kume, Shoichi. Deformation of the Japanese Islands as inferred from rock magnetism .. 189-458
Kawai, Naoto, and Kang, Yong-ho. Magnetic minerals in black and red beds in Japan .. 189-444
Kawashima, Takeshi. See Nagumo, Shozaburo.
Kayano, Ichiro. See Hagiwara, Takahiro, and Omote, Syun'itiro.
Kazakov, G. A. See Polevaya, N. I.
Kazanchan, P. P. Data for the study of seasonal movements of the crust under the conditions of the Armenian SSR .. 189-255
Kazinskiy, V. A. Approximation of the deflection of plumblines observed in the gravity field of the earth .. 191-328
Kebuladze, V. V., and Kiziriya, L. V. Steady short-period oscillations of the field of earth currents .. 191-71
Keeling, C. D. The concentration and isotopic abundance of carbon dioxide in rural and marine air .. 188-377
Kelarev, V. V. See Ovchinikov, L. N.
Keller, G. V. Electrical properties of a part of the Portage Lake lava series, Houghton County, Michigan .. 188-275
—— Electrical resistivity of rocks in the Area 12 tunnels, Nevada Test Site, Nye County, Nevada .. 190-238
Keller, G. V., and Frischknecht, F. C. Electrical resistivity studies on the Athbasca Glacier, Alberta, Canada .. 189-191
See also Plouff, Donald, and Zablocki, C. J.
Kellogg, P. J. Flow of plasma around the earth .. 191-426
Kellogg, P. J., and Winckler, J. R. Cosmic ray evidence for a ring current .. 188-411
Kellogg, W. C. Airborne AFMAG theory, equipment and operation in the western United States 189-172

Kelly, S. F. Geophysical exploration for water by electrical resistivity 191-238

Kempton, J. P. See McGinnis, L. D.

Kennedy, G. C., and La Mori, P. N. The pressures of some solid-solid transitions 188-375

See also Newton, R. C.

Kern, J. W. A note on the generation of the main-phase ring current of a geomagnetic storm 191-456

— Effects of moderate stress on directions of thermoremanent magnetization 188-415

— The effect of stress on the susceptibility and magnetization of a partially magnetized multidomain system 188-416

See also Vestine, E. H.

Keylis-Borok, V. I. Differentiation of the spectra of surface waves due to earthquakes and underground explosions 189-151

— Some new investigations of earthquake mechanism 189-104

— The density of seismic energy and the level of predominant frequency of earthquakes 189-95

Keyl'man, Yu. N. See Gol'tsman, F. M.

Keyvsar, Z. I. See Komarov, S. G.

Khain, V. Ye. Main stages of development of the crust (in the areas of the present continents) 189-250

Khakhtleb, Ye. M. See Tal'virskiy, D. B.

Khalevin, N. I., and Barykin, D. D. An apparatus for acoustic investigations in boreholes 190-563

Khalturin, V. I. See Nersesov, I. L.

Khan, M. A. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks 190-452

Khan', Yuan'. Seismicity of the Tsilyan'shan and adjacent regions from the point of view of seismology 190-128

Kharaz, I. I., and Raykher, L. D. The $t_{0}/2$ lines process in the method of reflected waves 188-525

Kharchenko, F. M. See Kravets', V. V.

Kharchenko, G. E. See Karpins'ka, N. M.

Kharin, D. A. See Bagdasarova, A. M., Kirnos, D. P., and Rulev, B. G.

Kharitonova, V. Ya. See D'yakonova, M. I.

Khattr'yanov, F. I. On the prospects of exploration of the oil-gas bearing reef masses in the zone of the Cis-Ural downwarp 188-290

Khattr'yanov, F. I., Amirova, A. V., and Ivanova, Z. S. Layer zonality of seismic wave velocity within serveral oil-bearing platform structures of Bashkiria 190-585

Khaustov, A. I. See Alekseyev, F. A., and Bespalov, D. F.

Klobustov, A. A. On the direction of experimental investigations on deformation of rocks 191-653
AUTHOR INDEX

Khokhlov, P. V. See Soluyan, S. I.

Kholin, A. I. See Dakhnov, V. N.

Khomenko, V. I. On the feasibility of using magnetization of rocks for tectonic regionalization 191-493

Khomenko, V. I. Types of magnetic anomalies of the Transcarpathians 191-551

Khomenuk, Yu. V. Method of double rotating field 191-233

Khramov, A. I. On an efficient analyzer for a system with accumulation and transformation of frequency 190-571

Khramov, A. I. Semiconductor voltage transformers for power supply of seismic stations from storage batteries 190-577

Khramov, A. I. On seismological regionalization 190-564

Kigoshi, Kunihiko; Tomikuna, Yoshio; and Endo, Kunihiko. Gakushuin national radiocarbon measurements 190-48

Kimball, D. S. See Davis, T. N.

King, E. R. An aeromagnetic profile from Anchorage to Nome, Alaska 188-453

King, E. R., Zietz, Isidore, and Dempsey, W. J. The significance of a group of aeromagnetic profiles off the eastern coast of North America 188-446

King, R. F., and Rees, A. I. The measurement of the anisotropy of magnetic susceptibility of rocks by the torque method 189-428

Kireyev, V. F. Electric log characteristics of the lower Apsheron deposits of the Klamas area in relation to their oil-gas productivity 189-217

Kirnos, D. P., Rulev, B. G., and Kharin, D. A. The seismograph VEGIK for use in engineering seismology and in recording of weak near and local earthquakes 190-144

Kirnos, D. P., and Solovyev, V. N. Seismograph with optical registration for recording strong and destructive earthquakes 191-131

Kirov, K. T., and Grigorova, E. I. Seismic regionalization of Bulgaria 191-90

Kirov, K. T., Grigorova, E. I., and Ilev, N. P. Contribution to the seismicity of Bulgaria 189-78

Kiselev, M. I. Method of eliminating the record of an air wave in generating elastic oscillations by air shots 190-548

Kishinouye, Fuyuhiko. Microseisms and subsoil conditions 190-493

Kishinouye, Fuyuhiko, and Onda, Isao. Field studies of the Kita Mino earthquake on August 19, 1961 191-80

Kita-Badak, Maria, and Badak, Jerzy. Occurrence of radioactive shales in sediments of the Menilite series in the Carpathians 188-476

Kitsunezaki, Choro. Study on high frequency seismic prospecting (2) 188-564

Kitto, G. B. See Briggs, M. H.
Kivioja, L. A. Development of gravity Bouguer anomalies of state of Ohio and the isostatic anomalies of north Atlantic in Fourier series --- 191-338
Kizawa, Takashi. See Yamaguchi, Rinzo
Kiziriya, L. V. See Kebuladze, V. V.
Klma, Karel; Pros, Zdenek; and Vanek, Jiří. Ultrasonic attenuation of longitudinal waves in solids---------------------------- 190-167
See also Vanek, I.
Klimentov, P. P. Hydrogeologic investigations in boring for thermal water ----------------------------------- 191-391
Klugman, I. Yu., and Lerner, B. L. Programming of kinematic corrections in the apparatus for automatic seismic profiling from the data of seismic prospecting MOV ------------------------- 190-538
Klushin, I. G. Methods of combined interpretation of geophysical data for the purpose of studying the density of deep layers of the crust --- 191-349
--- On evaluation of the depth of the crystalline basement from data of magnetic and gravity anomalies ---------- 190-467
Klushin, I. G., and Tolstikhin, I. N. Distinguishing linear tectonic dislocations on geophysical maps ------------- 191-292
Klyarovskiy, V. M., Dmitriyev, A. N., Kozhevnikov, V. S., and Belous, N. Kh. Absolute age of Cretaceous and Tertiary sediments of the western Siberian iron ore basin according to glauconites ------------------ 188-91
Kment, Vítězslav, and Kuhn, Arno. Technique of measuring radioactive radiation -------------------------------- 188-480
Knopoff, Leon. Analytical calculation of the fault-plane problem --- 189-100
--- Statistical accuracy of the fault-plane problem---------------- 189-101
See also Gilbert, Freeman.
Knoppe, K. G. See Vinogradov, A. P.
Knorre, K. G. See Baranov, V. I., and Zhirov, K. K.
Knothe, Christian. Homogeneous three-component arrangements for deep seismic investigations------------------- 188-543
Knudsen, W. C. Elimination of secondary pressure pulses in offshore exploration ---------------------------------- 189-550
Kobayashi, H. See Ohashi, Shuji.
Kobayashi, Hajime. Electrical prospecting at Nawaji Mine, Shizuoka Prefecture -------------------------- 188-260
--- Electrical prospecting at Okuyama Mine, Shizuoka Prefecture - 189-197
Kobayashi, Kazuo. An experimental demonstration of the production of chemical remanent magnetization with Cu-Co alloy ------------------ 188-420
Kobayashi, Naota. See Takeuchi, Hitoshi.
Kobayashi, Ryoji. See Horibe, Tomio.
Kobranova, V. N. See Dakhnov, V. N.
Koch, L. See Kulp, J. L. 230 Koczy, F. F. Ratio of Th to Th in deep-sea sediments------ 188-31
See also Rosholt, J. N.
Koenigswald, G. H. R. von, Gentner, W., and Lippolt, H. J. Age of the basalt flow at Olduvai, East Africa --------------------- 190-17
Kogan, R. M. See Balyasnyy, N. D.
Kogan, S. D. See Pasechnik, I. P.
Kogan, S. Ya. Determination of the coefficient of absorption of seismic waves------------------------------- 191-112
--- Problem of determination of the energy of body seismic waves - 188-184
Kohman, T. P. See Goel, P. S.
AUTHOR INDEX

Köhlsing, Juliusz. Graphical method of interpretation of electrical exploration investigations in the search for water 188-240

— Laboratory determination of the modulus of elasticity of rocks 189-156

Koide, Minoru. See Goldberg, E. D.

Koizumi, Hisanori; Igarashi, Toshio; Ohmachi, Hokuichiro; Okumi, Shizuka; and Okano, Takeo. Radiometric reconnaissance of the metallic ore deposits at the environs of Kesennuma City, Miyagi Prefecture 188-487

Kojima, Seishi. See Iwasaki, Shoji.

Kojiro, T., Suyama, Junji, and Hasegawa, K. On the problem of the SP measurement 189-182

Kokouchi, Yukio. Severe magnetic storms recorded at Kakioka 189-420

Kokubun, Susumu. See Nagata, Takesi.

Kolbenheyer, Tibor. On the boundary problem of electrical surveying for a layered triaxial ellipsoid 191-227

— On the theory of the gravitational field of homogeneous and non-homogeneous infinite prisms 191-333

— The gravitational field of a homogeneous circular cylinder 191-334

Kolesnikov, Yu. A. A device for photo-optical recording of earthquakes by the variable width method and for subsequent reproduction of seismograms 191-137

Kolmakov, M. V. Integral determination of effective velocities in the method of reflected waves 190-545

Kologrivov, R. See Kulp, J. L.

Kolomenskiy, V. D. Results of the X-ray investigation of the stone meteorite Nikol'skoye 188-123

— X-ray investigation of the fusion crust of the Kunsak meteorite 190-65

Koloshov, I. A. See Gil'bershteyn, P. G.

Kolyubakin, V. V., and Lapina, M. I. A survey of methods of solution of direct and inverse problems of magnetic exploration 188-438

Komarov, S. G., Keyvsar, Z. I., Kozina, Z. K., Skoblikova, G. I., and Guzanova, I. G. Determination of porosity by SP 189-210

Komarov, V. A. Elements of the theory of induced polarization 189-167

Komissarova, R. A., and Slautsitays, I. P. On the age of the Ashin formation according to paleomagnetic data 189-457

Komlev, L. V., and Gorokhov, I. M. Age of some Ukrainian micas by the strontium method 188-79

See also Filipov, M. S.

Komissiya po Opredeleniyu Absolyutnogo Vozrasta Geologicheskikh Formatsiy. Absolute time scale based on the data of geochronologic laboratories of the USSR in the year 1960 188-11

Komovskiy, G. F. Thermoluminescence of stone meteorites 191-48

Kono, Nobuaki. See Chujo, Junsuke.

See also Kárník, Vít, and Vanek, I.

Kondrat'yev, O. K. See Yepinat'yeva, A. M.

Konečný, Mojmir. Some types of geomagnetic pulsations studied at the fast-recording observatory Budkov with an inductive magnetometer 191-449
Konig, H. See Hinterberger, H.
Kononkov, V. F. Determination of depth of occurrence of the center of gravity of anomalous masses according to data of gravity surveying -------------------------- 189-293
Konovalov, M. M. Borehole seismic prospecting ------------------------ 188-538
Konstantinov, G. N., Konstantinova, L. S., and Filatov, V. A. On the problem of determination of the zero level of magnetic anomalies -- 191-518
Konstantinova, A. G. Dependence of natural frequency of oscillations of specimens of rocks on unilateral pressure -------- 191-200
Konstantinova, L. S. See Konstantinov, G. N.
Kopayev, V. V., and Martynova, T. A. A test of the application of the results of laboratory measurements of magnetic properties of iron quartzites to interpretation of magnetic anomalies of the KMA ------------------------------------- 188-464
Kopayev, V. V., and Martynova, T. A. On the magnetic susceptibility of ferruginous quartzites of the Stary Oskol iron ore region of the KMA ------------------------ 189-438
Kopf, Manfred. Studies on methods of geologic interpretation of geomagnetic results, illustrated by the example of Elbe Valley Schiefergebirge ------------------------------- 189-470
Kopf, Manfred, Grosse, Siegfried, and Sonntag, Klaus. Density determination on rocks of the western Erzgebirge -- 190-329
See also Grosse, Siegfried.
Korenkov, A. P. See Kapitanov, Yu. T.
Korhonen, Jorma. Adjustment of levellings in region of slow vertical movement ----------------------------------- 188-313
Koridalin, Ye. A. Certain characteristics of type Lg and Rg waves and regional features of their propagation ------------------------- 189-132
See also Bagdasarova, A. M.
Korshikov, V. N. See Anpilogov, A. P.
Koryagin, V. V., and Sokolov, A. F. On cross-profiling in the method of reflected waves ---------------------------------- 190-551
Koshelev, I. P., and Syromyatnikov, N. G. Some regularities in the migration of isotopes of U-234 and U-238 ------------------------------- 188-390
Kosminskaya, I. P. See Aver'yanov, A. G., and Yepinant'yeva, A. M.
Kostelka, Ludwig. Noteworthy rock stress phenomena in the Bleiberg-Kreuth mine workings ------------------------------- 191-660
Kotadia, K. M., and Ramanathan, K. R. Magnetic and ionospheric disturbances in low latitudes ----------------------------- 189-396
Koulomzine, T., and Jaeggin, R. P. Discovery of the iron ore deposit of Mount Wright Iron Mines Co. Limited ---------------------- 188-454
Kouvo, Olavi, and Kulp, J. L. Isotopic composition of Finnish galenas -- 188-73
See also Wetherill, G. W.
Kovalenko, G. V. See Vlasov, A. Ya.
Kovalenko, N. D. See Bondarenko, V. M.
Kovalenko, V. F. See Kamenetskiy, F. M.
Kovalevskiy, G. F. See Plekhanov, G. F.
AUTHOR INDEX

Kovtun, A. A. Magnetotelluric investigations of stratified non-
homogeneous structures --------------------------------- 190-111
Kovtun, A. A., and Novoselova, S. M. Build-up of an alternating
electromagnetic field over a layered homogeneous medium ---- 188-229
Kovylin, V. M. Results of seismoacoustic investigations in the area
of the Java deep-sea trench ----------------------------- 189-613
See also Sysoyev, N. N.
Kozachok, I. A. On the slowing down of neutrons in an absorbing
medium --- 190-521
Kozhevnikov, V. S. See Klyarovsky, V. M.
Kozina, Z. K. Porosity determination from resistivity curves----- 190-222
See also Komarov, S. G.
Kozlenko, S. P. Tectonic regionalization of Lower Volga region --- 190-248
Kozlov, A. V. On determination of the coordinates of the point of
intersection of a seismic ray and inclined boundary--------- 189-125
Kozlov, E. A. On the accuracy of determining the effective velocity
by combined traveltimes of reflected waves --------------- 190-541
Kozlov, I. G., Yastrebova, T. A., Purtova, S. I., and Serabryakova,
Z. D. Research drill holes of the U.S.S.R. Khanty-
Mansiysk research drill hole (Tyumen Region) ------------- 191-256
Kozlovski, Mieczyslaw. On some special cases of magnetic storms
recorded at the Polish-Vietnamese station at Cha-Pa (Vietname-
es Democratic Republic)------------------------------------- 190-446
Kozulin, Yu. N. On the theory of frequency electromagnetic sound-
ing of multilayered structures --------------------------------- 191-235
Krackshina, R. M. See Aver'yanov, A. G.
Krasnov, B. A. Experience in operating the GVP-1 gravimeter-
altimeter -- 191-356
Kravchenko, G. L. Nature of the Mangush magnetic anomaly south-
east of the Sea of Azov -------------------------------------- 188-465
Kravets', V. V. On the velocities of elastic oscillations and anisot-
ropy of certain metamorphic rocks ------------------------ 191-198
Kravets', V. V., and Kharchenko, F. M. On nonstationary pro-
cesses in the seismics of refracted waves ------------------ 190-558
Kravtsov, G. S. On determination of mean velocities from the
traveltimes curves of refracted waves ---------------------- 191-115
Krinar, A. I. Some results of the search for efficient methods of
determination of reservoir properties and oil saturation or rocks
according to the borehole electrometry under the conditions of
Tartaria --- 189-206
Kringstad, S. See Bjerrum, L.
Krinov, E. L. Some considerations on collection of meteoritic
matter in polar countries ------------------------------- 188-120
Krivoy, H. L., and Eaton, J. P. Preliminary gravity survey of
Kilauea Volcano, Hawaii ---------------------------------- 188-352
Křišovský, Ladislav. Anomalous D-region during X-emission from
flares and geomagnetic activity ----------------------------- 191-450
Krizhansky, L. M. See Zhiro, K. K.
Kropotkin, P. N. Paleomagnetism, paleoclimates, and the problem
of great horizontal movements of the crust of the earth --- 188-310, 190-461
Krouse, H. R., and Thode, H. G. Thermodynamic properties and
geochemistry of isotopic compounds of selenium ----------- 190-379
Krueger, H. W., and Freedman, R. O. K40-Ar age determinations
aid subsurface correlation ------------------------------- 190-1
Kruglyakova, G. I. Results of paleomagnetic investigations in the
Ukraine -- 190-462
Kruc, Zvonimir. Geomagnetic investigation of the iron deposit of Bašćine near Ljublje ----------------------------- 188-461
Kruc, Zvonimir, and Vidović, Nada. Application of the resistivity method in investigation of bauxite deposits under a cover in Istria --- 188-256
Krummenacher, Daniel. Determinations of isotopic age made on some rocks of the Himalayas of Nepal by the potassium-argon method --- 189-29
Krummenacher, Daniel, Merrihue, C. M., Pepin, R. O., and Reynolds, J. H. Meteorite krypton and barium versus the general isotopic anomalies in meteoritic xenon ------------------------------- 190-83
Krutikhovskaya, Z. A. See Kuzhelov, G. K., and Zavoys’kiy, V. M.
Krylov, A. Ya. The possibility of utilizing the absolute age of metamorphic and fragmental rocks in paleogeography and paleotectonics ----------------------------- 188-34
See also Ravich, M. G., Starik, I. Ye., and Vistelius, A. B.
Krylov, S. V. On determination of horizontal variations of velocity from traveltime curves of reflected waves --- 190-542
See also Andreyev, B. A.
Krylova, M. D. On the problem of determining the temperatures of formation of rocks by T. F. Barth’s method --- 190-350
Kuchina, G. N. See Filippov, M. S., and Komlev, L. V.
Kudymov, B. Ya. See Karpushin, D. M.
Kuhm, Arno. See Kment, Vítězslav.
Kukharenko, N. K. Role of instrumental and borehole factors in the determination of stratum porosities according to data of neutron-gamma logging of boreholes --- 189-518
Kukharenko, N. K., and Basin, Ya. N. On the problem of porosity determination of strata from neutron gamma logging data --- 190-198
Kukhtikova, T. I. Dislocations in foci of the Tadzhik depression ----------------------------- 189-107
Kukhtikova, T. I., and Barinova, A. Ya. The mechanism of movements at the focuses during the Shurob earthquake and its aftershocks --- 189-80
Kukuruza, V. D. The point method of interpretation of VES curves --- 188-238
Kulikov, V. I. On the problem of geological interpretation of gravity anomalies --- 189-298
—— On the problem of geological interpretation of seismic prospecting data --- 189-548
Kulikova, M. V. See Stroiteleva, A. V.
Kulinkovich, A. Ye. Regularities in curves of resistivity logging -- 190-221
—— Use of the Monte Carlo method for solution of problems of geophysical methods of prospecting --- 190-257
Kulp, J. L., and Eckelmann, F. D. Potassium-argon isotopic ages on micas from the southern Appalachians --- 188-40
Kulp, J. L., Kologrivov, R., Haller, J., and Koch, L. Potassium-argon ages on rocks from eastern Greenland --- 190-15
Kulp, J. L., and Neumann, Henrich. Some potassium-argon ages on rocks from the Norwegian basement --- 188-70
See also Erickson, G. P., and Kouvo, Olavi.
Kumar, P. Geotectonic movements and their influence on the hydrography of Indo-Gangetic Plains --- 189-256
Kumazawa, Mineo. Disturbances in electromagnetic field in rocks due to piezoelectric effects in connection with seismic waves ---- 190-141
See also Iida, Kumizi.
Kume, Shoichi. On the changes in remanent magnetization of ferromagnetic bodies subjected to hydrostatic pressures. 190-454

See also Kawai, Naoto.

Kummeneje, O. See Bjerrum, L.

Kun, V. V. Peculiarities of seismic waves in mediums with layers that pinch out (according to model experiments). 191-168

See also Yepinat'yeva, A. M.

Kundorf, Woldemar, and Rotter, Dietrich. An investigation of the application of the method of natural high-frequency seismic fields (self-impulse method) in coal and ore mining. 190-568

Kunori, Shoichi. Historical review of the generation of S. P. current. 188-247

Kunori, Shoichi, and Ishii, Fujio. Studies on the relation between spontaneous polarization potential and mineralization on the adit in the Ōzumī Mine, Yamagata Prefecture. 189-199

Kuiz, Bruno. The hyperbolic increase of depth with time. 190-155

Kuo, J. J., Brune, James, and Major, Maurice. Rayleigh wave dispersion in the Pacific Ocean for the period range 20 to 140 seconds. 189-128

See also Donath, F. A.

Kuo, Tseng-Chien. Fault-plane determination by means of S-waves recorded at two stations. 188-176

Kuprin, V. I. See Andreyev, V. I.

Kurasawa, Hajime. See Chujo, Junsuke.

Kurbatov, V. V. See Gerling, E. K.

Kutenkov, M. V. See Petrov, G. I.

Kutschale, Henry. See Hunkins, Kenneth.

Kuzivanov, V. A. Gravity determination by a gravimeter on a moving base. 191-364

See also Berezin, E. M.

Kuz'min, A. M. On the retention of argon in microline. 191-13

Kuz'mina, N. V. See Bagdasarova, A. M.

Kuznetsov, G. A. See Polak, L. S.

Kuznetsov, G. F. On the problem of interpretation of magnetic anomalies with the aid of OVKA master charts for vertical layers. 191-511

Kuznetsov, K. K. See Gurevich, G. I.

Kuznetsov, V. P., and Vaysman, G. I. A relay for audible signals warning about burned out bulbs and exhausted storage batteries. 191-127

See also Bagdasarova, A. M.

Kuznetsov, Yu. V. See Starik, I. Ye.

Kvale, Anders. Norwegian earthquakes in relation to tectonics. 190-126

Kvapil, Rudolf. Effect of radiation energy on rock properties. 191-650

Kvasha, L. G. Some data on the structure of chondrites. 191-56

Laboratory of Logging of the Academy of Petroleum of the MNP. Laterologging. 190-229

Lachenbruch, A. H. Depth and spacing of tension cracks. 188-568

Ladynin, A. B. Processing of gravimetric observations by introducing the zero-point correction according to nonlinear law by the successive approximation method. 191-351
Lafargue, Maurice. See Millecamps, M. M. R.
LaGow, H. E., Schaefer, D. H., and Schaffert, J. C. Micrometeorite impact measurements on a 20 in. diameter sphere at 700-2,500 km altitude --- 188-126
Lakin, H. W. See McCarthy, J. H., Jr.
Lal, Devendra. See Arnold, J. R.
Lambert, R. St. J., and Mills, A. A. Some critical points for the Paleozoic time scale from the British Isles -------------------------- 188-2
See also Giletti, B. J.
La Mori, P. N. See Kennedy, G. C.
Landauer, J. K. See Butkovich, T. R., and Hansen, B. L.
Landergren, Sture. The content of 13C in the graphite-bearing magnetite ores and associated carbonate rocks in the Norberg mining district, central Sweden -------------------------- 190-369
Langbein, W. B. See Matalas, N. C.
Lange, Wolfgang. Gravimetry at sea ---------------------------------- 190-315
Langford, G. T. Radiation surveys aid oil search --------------------- 190-507
Langleben, M. P. Young's modulus for sea ice ------------------------ 188-216
Langseth, M. G., Jr. See Gerard, Robert.
Lapina, M. I. See Kolyubakin, V. V.
Larionov, L. V. See Bulgakov, Yu. I.
Larionov, V. A. A contribution to the problem of determination of the value of the ratio of remanent to inductive magnetization under field conditions ------------------------------- 191-481
--- Calculations of the magnetic field in a vertical plane for certain simple bodies --- 191-505
--- Method of vertical magnetic sounding ----------------------------- 191-512
Larionov, V. V. Determination of rock porosities from neutron-gamma logging data -- 189-519
--- Evaluation of porosity of reservoirs and their clay content from the data of borehole radiometry -------------------------- 190-519
See also Dakhnov, V. N.
Larochelle, Andre. Palaeomagnetism of the Monteregian Hills, southeastern Quebec --- 189-452
Lashkhi, A. S., and Gugunava, G. Ye. On the problem of correlation between intensity variation of cosmic electric radiation and electrotelluric disturbances -------------------------- 190-114
Lashkhi, B. A. See Rubinshteyn, M. M.
Laster, S. J. See Gilbert, Freeman.
Latyshova, M. G. See Dakhnov, V. N.
Laubenbakh, A. I. See Yermakov, V. L.
Laudon, T. S. See Behrendt, J. C.
Lauffer, H. A device for ascertaining rock flexibility for the adjustment of pressure-tunnel and pressure-shaft linings --------- 191-662
Lauterbach, Robert. Geomagnetic fabric investigation in the Northeast Heath of Mecklenburg ------------------------------- 189-472
--- Remarks on the present state of the micromagnetic investigation method --- 189-460
See also Mauersberger, Peter.
Lawrence, L. J., and Rafter, T. A. Sulfur isotope distribution in sulfides and sulfates from Broken Hill South, New South Wales -- 191-417
AUTHOR INDEX

Abstract

Layat, C., Clement, A. C., Pommier, Gilbert, and Buffet, A. Some technical aspects of refraction seismic prospecting in the Sahara ------------------------------- 188-532

Lazarev, G. Ye., and Shumskiy, P. A. Preliminary results of gravimetric investigations of thickness of the ice sheet --------------- 191-383
See also Ushakov, S. A.

Lazareva, A. P. See Savarenkiy, Ye. F.

Lebeau, André. On a property of the nighttime magnetic activity at the Dumont d'Urville station (Adélie Land) -------------------------- 189-405

Lebedev, A. P. See Dakhnov, V. N.

Lebedev, T. S., and Sobakar, G. T. Certain new data on the density of sedimentary rocks of the southern margin of the Donets Basin ------------------------------- 191-376

Lebedeva, F. V. See Shamina, O. G.

Lecar, Myron, Sorenson, John, and Eckels, Ann. A determination of the coefficient J of the second harmonic in the earth's gravitational potential from the orbit of satellite 1958/32 --------------- 188-304

Lechekhlev, V. R. See Burkaer, Ye. S.

Ledynt, Dolly. See Cahen, Lucien.

Leenhardt, Olivier. Analysis of a seismic profile drawn by the refraction method off of the Vanoise coast ------------------------------- 190-602

Leet, F. J. See Leet, L. D.

Leet, L. D. The detection of underground explosions ------------------- 191-207

Leet, L. D., and Leet, F. J. Cause of microseisms--a theory-------- 191-562

Legar, A. P. Rapid method of determination of the declination of the magnetic field ------------------------------- 190-474

Legin, V. K. See Starik, I. Ye.

Legrand, R. Epeirogeny, source of tectonics. According to some examples selected in Belgium ------------------------------- 188-309

Lehmann, Inge. The travel times of the longitudinal waves of the Logan and Blanca atomic explosions and their velocities in the upper mantle ------------------------------- 191-408

LeMaitre, R. W. See Harris, P. G.

Lemke, R. W. See Dobrovoly, Ernest.

Lennon, G. W. The deviation of the vertical at Bidston in response to the attraction of ocean tides ------------------------------- 188-195

Lennox, D. H. See Garland, G. D.

Lensen, G. J. Principal horizontal stress directions as an aid to the study of crustal deformation ------------------------------- 189-112

Leonard, R. S. Measurements of localized distortions in the earth's magnetic field near the auroral zone ------------------------------- 190-424

Leontiyev, I. Y. See Berzon, I. S.

Leprêtre, Bernard. The bar correction in magnetic measurements made by means of a theodolite ------------------------------- 188-395

Lerner, B. L. See Klugman, I. Yu.

Levadnyy, V. T. On microanisotropy of Meso-Cenozoic deposits of the south of the West Siberian Lowland ------------------------------- 191-246

Levi, V. A. On the problem of transformation of isonormals into isoverticals ------------------------------- 188-513

Levin, B. Yu. Meteorites ------------------------------- 188-104
Levin, F. K. The seismic properties of Lake Maracaibo
Levskiy, L. K. Cosmogenic isotopes in the Yardymly meteorite
See also Dobronravova, A. N.
Leypunskaya, D. I., and Gauer, Z. Ye. On neutron activation analysis of rocks
Li, C. K. See Van, Z. C.
Libby, W. F. See Ferguson, G. J.
Liebenberg, W. R. See Nicolaysen, L. O.
The flotation of radioactive minerals—Pt. 2
Linehan, D., Murphy, S. J., and Murphy, V. J. Engineering seismology applications in metropolitan areas
Lineras, Enrique. The geochronological methods and some ages of minerals of the Argentine, obtained by means of the lead-uranium ratio
Link, František. Volcanic activity and eclipses of the moon
Link, Harald. On the differences between statically, dynamically, and seismically determined moduli of elasticity of rock and bedrock
Link, T. A. Feast or famine in the oil and gas producing industry
Lipson, J. I., Folinsbee, R. E., and Baadsgaard, Halfdan. Periods of orogeny in the western Cordilleran
See also Baadsgaard, Halfdan, and Folinsbee, R. E.
Lisitsyn, A. P. See Zhivago, A. V.
Littler, Janet. See Chao, E. C. T.
Litvinenko; O. K. Application of calculating machines for distinguishing local and regional gravity anomalies
Livingston, C. W. The natural arch, the fracture pattern, and the sequence of failure in massive rocks surrounding an underground opening
Lliboutry, Louis. The dynamics of the glacier and the wave of 1891-95 according to the measurements of Joseph Vallot
Lockett, F. J. The reflection and refraction of waves at an interface between viscoelastic materials
Logachev, A. A. The present state and possibilities of improvement of a geologic interpretation of magnetic measurement
Logovskaya, G. K., and Agamaliyev, G. M. Determination of the coefficient of porosity of reservoirs and horizons of producing oilfields of the Pri-Kura depression according to geophysical data
Løken, Olva. The late-glacial and postglacial emergence and the deglaciation of the northernmost Labrador
Lomakina, Z. D. See Deniskin, N. A.
Lombard, D. B. The Hugoniot equation of state of rocks
Lombard, D. B., and Power, D. V. Close-in shock studies
Lomnitz, Cinna. A study of the Maipo Valley earthquakes of September 4, 1958
— An Andean structure
— Application of the logarithmic creep law to stress wave attenuation in the solid earth
— Stresses and strains in the interior of a nonevolutive planet
See also Gajardo, E.
AUTHOR INDEX

Long, Austin. See Damon, P. E.
Long, L. E. Isotopic ages from northern New Jersey and south-eastern New York ----------------------------- 188-37
--- Some isotopic ages from south-west England ------------------- 189-23
Longinelli, A. See Chessex, Ronald, and Desio, Ardito.
Longman, I. M. A Green's function for determining the deformation of the earth under surface mass loads. 1. Theory ------------------ 190-148
Loomer, E. I. Record of observations at Resolute Bay Magnetic Observatory 1957-1958. With a summary of earlier observations ------------------------------- 188-397
Loomer, E. I., and Andersen, F. Record of observations at Baker Lake Magnetic Observatory 1957-1958. With a summary of earlier observations ----------------------------------- 188-398
Lopez Arroyo, Alfonso. See Båth, Markus.
Lorenz, P. J., Rodenberg, O. C., Shadle, L. G., Antes, A. C., and Hess, W. D. Background radioactivity in the Decorah fault region ----------------------------- 189-500
Lorius, Claude. Concentration of deuterium in layers of névé in the Antarctic ----------------------------- 189-358
Löser, Günther. Radioactive soil air measurements as a contribution to clarification of structural problems on the southwest border of the Thüringer Wald ---------------------- 189-502
Loshchakov, A. I. Concerning the question of interpretation of aeromagnetic observations made in the diamond regions of western Yakutia
--- Experiment in interpretation of the regional magnetic field and the relation of magnetized bodies to tectonics in the diamond-bearing regions of western Yakutia ----------------------------- 191-558
Lossovskiy, Ye. K. On evaluation of accuracy of the method of mean velocities in the seismics of refracted waves ----------------------------- 189-123
--- Peculiarities of amplitude graphs of elastic plane waves in a layered medium ----------------------------- 191-170
Lotgering, F. K. Paramagnetic susceptibilities of Fe$^{2+}$ and Ni$^{2+}$ ions at tetrahedral or octahedral sites of oxides ----------------------------- 191-466
Lotz, J. R. See Harwood, T. A.
Lotze, Franz. Actuo-geologic characteristics of the year 1959 ---- 189-84
Lovejoy, E. M. P. Comments on paper by V. V. Beloussov, "The origin of folding in the earth's crust" ----------------------------- 188-307
Lovering, J. F. See Green, Ronald.
Lovering, T. S. See McCarthy, J. H., Jr.
Lovtysus, A. V. See Starik, I. Ye.
Lovtysus, G. P. See Starik, I. Ye.
Lowdon, J. A. Geological age determinations ----------------------------- 188-50
See also Wanless, R. K.
Lowman, P. D., Jr. See O'Keefe, J. A.
Lozano Calvo, Luis. On the mechanical interpretation of terrestrial deformations ----------------------------- 191-651
See also Morelli, Carlo.
Lozinskiy, Z. N. Application of high frequency filtration of seismic apparatus in the Kuybyshev region on the Volga ----------------------------- 188-545
Lucas, H. F., Jr. See Machta, Lester.
Lucas, K. A. See Milne, W. G.
Lucke, Otto. On the plasma-theory representation of the geomagnetic variation field ----------------------------- 189-387
See also Mauersberger, Peter.
Ludwig, R. See Urbach, W.
Lugn, R. V. See Shoemaker, E. M.
Lundbergh, Holger. Swedish "Operation Ice Tunnel"
Lyapichev, G. F. See Ivanov, A. I.
Lyons, P. L. Economics of geophysics in oil exploration
Geophysical background of Arkoma basin tectonics
Lyttleton, R. A. Dynamical calculations relating to the origin of the solar system
Lyubavin, Yu. P. See Grammakov, A. G.
Lyubimova, Ye. A. On the processes of heat transfer in earth's mantle
Lyuke, Ye. I. On the experimental relationship of the energy of seismic waves to the conditions of the explosion
Lyustikh, Ye. N. Some investigations of isostasy and earth's contraction
Lyustikh, Ye. N., and Saltykovskiy, A. Ya. On the problem of the formation of the granitic layer of the earth's crust
Mabey, D. R. Regional magnetic and gravity anomalies in the Darwin area, California
McAulay, I. R., and Watts, W. A. Dublin radiocarbon dates I
McBurney, C. B. M. Absolute age of Pleistocene and Holocene deposits in the Haua Fteah
McCabe, W. J. See Hulston, J. R.
McCallum, K. J., and Wittenberg, J. University of Saskatchewan radiocarbon dates III
McCarty, J. H., Jr., Lovering, T. S., and Lakin, H. W. Density comparison method for the determination of $\delta^{18}O/\delta^{16}O$ ratios in prepared waters
McCaslin, William. See Meuschke, J. L.
McConnell, Duncan. Dating of fossil bones by the fluorine method
McCormick, G. R. Petrology of Precambrian rocks of Ohio
Macdonald, G. A. Prediction of eruption of Hawaiian volcanoes
MacDonald, G. J. F. On the internal constitution of the inner planets
McDonald, H. R., and Wantland, Dart. Geophysical procedures in ground water study
MacDowall, J. A local survey of the earth's magnetic field in the vicinity of Royal Society Base, Halley Bay
Geomagnetic activity at Halley Bay on disturbed days
McGinnis, L. D., and Heigold, P. C. Regional maps of vertical magnetic intensity in Illinois
McGinnis, L. D., and Kempton, J. P. Integrated seismic, resistivity, and geologic studies of glacial deposits
McGraw, D. See Clarke, A. M.
McGuinness, W. T., Beckmann, W. C., and Officer, C. B. The application of various geophysical techniques to specialized engineering projects
Machado, Frederico. Secular variation of seismo-volcanic phenomena in the Azores
Abstract

Machta, Lester, and Lucas, H. F., Jr. Radon in the upper atmosphere 190-504

Mackey, John. See Barker, Harold.

McLarty, D. M. E. Geonomics 191-277

McLean, A. C. A gravity survey of the Sanquhar coalfield 191-371

Macleod, W. N., and Jefford, G. The Akwanga meteorite 189-54

McManis, L. B. Proposed standards for seismic amplifiers—and what they mean to field records 188-546

McMath, V. E. Rapid sedimentation and phase transition at the M discontinuity 189-243

McNabb, A. See Drummond, J. E.

McNair, A. The half-life of vanadium-50 188-468

McNair, A., and Wilson, H. W. The half-life of rubidium-87 189-482

Macpherson, J. D. A new interpretation of seismic refraction profiles obtained in the Hartlen Point region of the Scotian Shelf 191-620

Maeda, Hiroshi, Sakurai, K., Ondoh, U., and Yamamoto, M. Solar-terrestrial relationships during the IGY and IGC 190-420

Maeda, Kenjiro. See Nakamura, Hisayoshi.

Magnitskiy, V. A. The upper mantle and its effect on the development of the crust of the earth 190-365

Makarevich, K. G., and Tokmagambetov, G. A. Some data on ice formation on the Maloalmatinsky glaciers 189-281

Makarova, S. D. Some problems of the seismotectonics of middle Asia 191-93

Makino, Naofumi. On the potential distribution of spontaneous polarization 189-179

Maksimov, L. S., and Tokmakov, V. A. Remote control of a long-period vibration pickup 191-142

Maletskaya, T. S. Application of the methods of logging geophysics for determination of porosity and productivity of the Lower Cretaceous and Miocene reservoirs as exemplified by the Leningrad, Kalinin, and north Ukrainian areas 190-216

Malina, J. A super-shear test in phyllite rock with the tested bodies in undisturbed position 191-674

Mal'tseva, N. F. See Bol'shakova, O. V.

Malygin, A. A. Magnetic properties of rocks of the Leninogorsk region 188-426

See also Ivankin, P. F.

Mälzer, Hermann, and Möller, Dietrich. Leveling by the International Glaciological Greenland Expedition (EGIG) - Summer campaign 1959 191-314

Mamedova, R. A. See Ismet, A. R.

Managadze, G. D. Problem of determination of a density interface- 189-297
Mandelbaum, Hugo. On Rigassi’s note on "Faults and earth tides" - 190-149
Mann, V. I. Bouguer gravity map of North Carolina ----------------- 190-323
Marek, František. Methods of interpretation of logarithmic travel-
time curves --- 191-607
Mariani, F., and Molina, F. Geomagnetic, auroral, ionospheric,
and cosmic ray perturbations: interdependence and relations with
solar activity. 4. The cosmic ray perturbations ----------------- 191-451
Marianuk, Janusz. See Kalinowska-Widomska.
Markhinin, Ye. K., Alypova, O. M., Nikitina, I. B., Pugach,
V. B., and Tokarev, P. I. Studies of the condition of the vol-
canoes of the Klyuchevskoy group and Sheveluch Volcano in 1960- 191-692
Markhinin, Ye. K., Sirin, A. N., Timerbayeva, K. M., and
Tokarev, P. I. Attempt at volcano-geographic regionalization of
Kamchatka and the Kurile Islands------------------------------- 191-697
Markov, A. V. The Moon-------------------------------------- 190-103
Markuze, L. S. Use of theoretical travelt ime curves in interpreta-
tion of seismic exploration data in the Pripyat' depression ------ 188-515
Marshall, C. H. Thickness of the Procellarian system, Letronne
Region of the moon-- 188-141
Marshall, R. R. Mass spectrometric study of the lead in carbona-
ceous chondrites -- 190-79
Martin, E. L. See Deffeyes, K. S.
Martynova, T. A. See Kopayev, V. V.
Marušiak, Ivan, Kalina, Jaroslav, and Vičánek, Jan. The determina-
tion of the resistivity of a bed 100 percent saturated with water
in shaly sands -- 189-212
Marussi, Antonio. See Bolt, B. A., and Desio, Ardito.
Marych, M. I. A new derivation of N. K. Migay's formula for de-
termination of the figure of the earth ---------------------- 190-271
Marzahn, Kurt. Investigation of the pendulum and gravimeter
measurements on the European gravimeter calibration system
(status as of July 1, 1959) -------------------------------- 190-304
Masaytis, V. L. See Rustanovich, D. N.
Mason, Brian. Potassium-argon ages of metamorphic rocks and
granites from Westland, New Zealand------------------------- 188-100
Mason, C. S. See Hill, M. N.
Matalas, N. C., and Langbein, W. B. Information content of the
mean -- 191-273
Matsuda, Takeo, Tateishi, Tetsuo, and Suda, Yoshiro. Gravity
survey at the southern part of Jōban coal field --------------- 189-317
Matsuda, Tokihiko. See Morimoto, Ryōhei.
Matsui, M. See Miyamoto, S.
Matsuo, Hideteru. See Ohashi, Shuji.
Matsuo, Sadao. On the chemical nature of fumarolic gases of Vol-
cano Showashinzan, Hokkaido, Japan ------------------------ 189-622
— The behavior of volatiles in magma-------------------------- 189-626
Matsushima, Shogo. On the strength distribution of the earth's
crust and the upper mantle, and the distribution of the great
earthquakes with depth -- 188-172
Matsushita, Sadami. On geomagnetic sudden commencements, sud-
den impulses, and storm durations -------------------------- 191-457
See also Campbell, W. H.
Mattana, N., Sanna, S., and Serra, A. The natural radioactivity at
Cagliari and its correlation with some meteorological elements-- 191-579
Matumoto, Hideteru. See Miyamura, Setumi.
Matumoto, Tosimatu. See Sato, Yasuo.

Matveyev, A. V. On the problem of aerial prospecting in wooded areas
--- 191-582

Matveyev, B. K. Electrical field of a point source in a multi-
layered medium with a spherical inclusion---------------------- 191-213

Matveyev, V. V., and Sokolov, A. D. Scintillation liquid radiom-
eter-analyzer "Avigras" -- 189-497

See also Grumkov, A. F.

Matveyeva, E. T. See Molochnov, G. V.

Matveyeva, I. I. See Gerling, E. K.

Mauersberger, Peter; Lucke, Otto; Lauterbach, Robert; and
Frölich, Friedrich. Geomagnetism and Aeronomy, v. 3. Con-
cerning the magnetic field originating in the interior of the earth
--- 189-372

Mayaud, Pierre-Noël. Measurement of the "K" index at Addis
Ababa - January 1958 to June 1961----------------------------- 191-434

Mayeda, Toshiko. See Emiliani, Cesare.

Maynes, Donald. See Duke, Michael.

Mayorov, V. V. See Kaplan, B. L.

Mazor, E. Radon and radium content of some Israeli water sources
and a hypothesis on underground reservoirs of brines, oils and
gases in the Rift Valley -------------------------------------- 191-580

Medvedev, S. V. Effects of earthquakes of 8 and 7 points on sys-
tems of one degree of freedom -------------------------------- 190-133

Meecham, W. C., and DeNoyer, John. Azimuthal asymmetry of a
point source in a cylindrical low velocity medium
--- 189-142

Mégnien, Claude. See Horin, Octave.

Meidav, Tsivi. See Ginzburg, Avihu.

Meier, M. F. Vertical profiles of velocity and the flow law of gla-
cier ice --- 189-270

See also Crary, A. P.

Mekhtiyev, Sh. F., and Aliyev, S. A. Factors affecting the geo-
thermal step of the oil fields of Azerbaijan
--- 190-341

Mel'kanovitskiy, I. M. Crustal structure of the territory of the
Peri-Tashkent region, Kyzyl-Kum, and adjacent regions accord-
ing to geophysical data -- 189-222

— Geological interpretation of data of deep geophysical investiga-
tions in the closed part of the Tashkent region
-------------------------- 191-269

Melle, F. A. Van. Current research to improve the effectiveness
of standard geophysical methods------------------------------ 191-613

Mel'nikov, A. G. See Mirsalimov, R. M.

Mel'nikov, D. A. See Nechay, A. M.

Mel'nikova, M. V. See Troitskaya, V. A.

Menard, H. W. Correlation between length and offset on very large
wrench faults--- 191-307

— The East Pacific Rise-------------------------------------- 188-586

Mencher, E. See Pinson, W. H., Jr.

Mende, Rastislav. Determination of average density from gravi-
metric data --- 188-335

Merchant, H. C., and Hudson, D. E. Mode superposition in multi-
degree of freedom systems using earthquake response spectrum
data --- 189-120

Merino y Coronado, J. The earthquake of Jaltipan, Veracruz on
August 26, 1959 -- 188-153

Merrihue, C. M., Pepin, R. O., and Reynolds, J. H. Rare gases
in the chondrite Pantar -- 190-80

See also Krummenacher, Daniel.

Merrill, R. H. See Obert, Leonard.
Merritt, J. W. Geochemistry and radiation surveying for oil and gas .. 190-508
Meshcheryakov, Yu. A. Application of radiometric methods for the investigations of drill holes in the Kuybyshev area on the Volga -- 189-538
— Secular movements of the earth's crust and related problems -- 190-291
Meshkov, M. M. See Korchagina, O. A.
Metallova, V. V., Ryazanova, V. N., and Razeusskaya, I. V. On the problem of reversed polarity of titanomagnetites 189-442
Metallova, V. V., and Vey, Ts'in-yun'. Some results of investigation of magnetostriction of rocks 188-422
See also Balsley, J. R.
Mey, Shi-yun. See Savarenskiy, Ye. F.
Meyer, R. P. See Steinhart, J. S.
Meyer, V. A. Logging of boreholes in prospecting for polymetallic deposits .. 189-202
— On the factors that influence measurement in the method of electrode potentials .. 188-263
— The effect of shot on the character of SP anomalies in ore boreholes .. 188-265
Mezhiborskaya, Kh. B. Photoneutron method of determining beryllium .. 191-574
Michel, J. G. See De Bremaecker, J. Cl.
Mickey, W. V. See Carder, D. S.
Miguel y González Miranda, Luis de. Geomagnetic observations made at Toledo during the I.G.Y.-I.G.C .. 190-392
Mihalov, J. D. See Nakada, M. P.
Mikhailevskaya, A. D. See Komlev, L. V.
Mikhaylov, A. A., ed. Papers on the force of gravity and the figure of the earth .. 190-270
Mikhaylov, A. D. See Rekunov, N. A.
Mikhaylova, N. P. New data on the specific resistance of rocks of the Ukrainian crystalline shield 188-277
— On the natural magnetization of gabbro-pyroxenites of the Oktyabr'skiy alkaline massif 191-476
— On the remanent magnetization of the Devladov peridotites 190-458
Mikheyenko, V. N., and Nenashev, N. I. Absolute age of formation and relative age of intrusion of the Yakutsk kimberlites 188-90
Mikhota, G. G. See Aver'yanov, A. G.
Mikisha, A. M. See Romanyuk, V. A.
Mikov, B. D. A rapid method of determination of the elements of a magnetic field for certain bodies of regular shape 191-503
— Equations of magnetic field intensity for certain bodies of regular shape when the line of observation is inclined 191-504
Mikov, D. S. Determination of the depth of occurrence of geologic bodies using the ratio of the area of the anomalous graphs to the maximum intensities 191-520
Milanović, Božidar. See Damnjanovic, Konstantin.
Militzer, H. Near-seismic investigations with a ground vibrator --- 188-550
AUTHOR INDEX

Millecamps, M. M. R. On a new method of glaciological investigation ... 191-318
Millecamps, M. M. R., and Lafargue, Maurice. An account of an original electro-acoustic method for the study of the mechanism of ice-flow and deformation in the depth of a glacier 190-293
Miller, J. A. The potassium-argon ages of the Skiddaw and Eskdale granites 191-23
Miller, J. A., and Green, D. H. Age determinations of rocks in the Lizard (Cornwall) Area 189-24
Miller, J. A., and Mudie, J. D. Potassium-argon age determinations on granite from the Island of Mahe in the Seychelles Archipelago ... 189-26
Miller, J. A., Shibata, Ken, and Munro, Mary. The potassium-argon age of the lava of Killerton Park, near Exeter .. 191-24
Miller, J. A.; Shido, Fumiko; Banno, Shohei; and Uyeda, Seiya. New data on the age of orogeny and metamorphism in Japan .. 190-23
Miller, V. V. See Alekseyev, F. A.
Mills, A. A. See Lambert, R. St. J.
Milošteyn, D. M. Use of seismic surveying for study of the subsurface of southeast Turkmenistan 190-590
Minami, K. See Ono, Yoshikiko.
Minro, D. C. See Bradley, R. S.
Mironov, V. S. Gravity anomalies of the Rudny Altay and their geological importance 188-360
Mironov, V. S. On the theory of a gravimeter designed according to the principle of Golitsyn's vertical pendulum ... 188-336
See also Zhogolev, L. P.
Mirsalimov, R. M., and Mel'nikov, A. G. Capacitance effect of electric sounding electrodes on the performance of geophysical apparatus .. 188-261
Mishin, S. V. See Rykunov, L. N.
Misra, A. K. See Murrell, S. A. F.
Miyamoto, S. Magnetic boiling and underground structure of the moon .. 188-136
Miyamoto, S., and Matsui, M. Photographic atlas of the moon ... 188-140
Miyamura, Setumi; Hori, Minoru; Aki, Keiiti; Matumoto, Hideteru; and Ando, Seiichi. Observation of aftershocks of the Kita Mino earthquake, August 19, 1961 ... 191-84
Miyamura, Setumi, and Okada, Atusi. Results of levelling resurvey between Wakayama and Gobo, Wakayama Prefecture .. 188-316
Miyasawa, Ryoko. See Yamamoto, Mikio.
Mizyuk, L. Ya., and Kotyuk, A. F. Methods of airborne electrical prospecting ... 191-242
Mladenović, M. Lj. Electrical surveys, Yugoslavia, coal basins ... 188-257
Mołodnoski, R. F., and Helliwell, R. A. Graphic data on the earth's main magnetic field in space 190-382
Mochalov, Yu. Z. See Zhirov, K. K.
Moffatt, H. K. Intensification of the earth's magnetic field by turbulence in the ionosphere 190-396
Mohr, P. A. The Ethiopian rift system .. 191-306
Moiseyenko, F. S. Geologic nature of the gravity anomalies of Ulutau, Betpak-Daly, and Yerementau (eastern Kazakhstan) 189-315

Molina, F., and Battelli, O. On the position of the focus of the system of Sq currents 191-438

See also Mariani, F.

Möller, Dietrich. See Mälzer, Hermann.

Molochnov, G. V. On the effect of conductivity of the first layer in determination of the depth of the conducting basement by the dipole electromagnetic method 188-233

— The dipole electromagnetic method of determination of the depth of occurrence of a conducting layer with an inclined boundary 188-234

Molochnov, G. V., Matveyeva, E. T., and Osokina, G. N. Electromagnetic field of a vertical magnetic dipole over a two-layer formation having a boundary in the form of a bench 188-232

Molochnov, G. V., and Spiridovich, G. N. On the observational error of the dipole electromagnetic method 188-235

Molotkov, I. A. Asymptotic behavior of a nonstationary wave field in the neighborhood of the slip front in a diffraction problem on a convex cylinder 191-185

— Certain properties of cylindrical functions and of their zeros 191-187

Molotkov, L. A. On engineering equations of oscillation of plates of layered structure 191-190

— On propagation of elastic waves in mediums containing thin plane-parallel layers 191-188

— On propagation of low frequency oscillations in liquid halfspaces separated by a thin elastic layer 191-189

Molotova, L. V., and Vasil'ev, Yu. I. On the magnitude of the ratio of the velocities of longitudinal and transverse waves in rocks. Pt. 2 191-601

Momose, Hiroto, Hagiwara, Yukio, and Wani, Katsunosuke. On the gravity prospecting in the metal mine area 188-361

See also Endo, G., and Okabe, Katsuhiko.

Momose, Kanichi. See Nagata, Takesi, and Takeshita, Hisashi

Monakhov, F. I., and Dolbikina, N. A. Structure of microseisms and methods for determining the directions of the sources of their formation 191-572

See also Korchagina, O. A.

Mongelli, F., and Morelli, Carlo. Contributions to geothermal prospecting 191-386

Monich, V. K. See Ivanov, A. I.

Monster, Jan. See Thode, H. G.

Montandon, Frédéric. The great catastrophes caused by the forces of nature during the years 1958, 1959, and 1960 189-235

Mooney, H. M., and Kaasa, R. A. Air waves in engineering seismology 190-535

Moorbath, Stephen. Lead isotope abundance studies on mineral occurrences in the British Isles and their geological significance 189-22

See also Giletti, B. J.

Moore, C. M., Jr. Problems of the geophysical contractor 191-280

Moore, D. G., and Richards, A. F. Conversion of "relative shear strength" measurements by Arrhenius on East Pacific deep-sea cores to conventional units of shear strength 189-599

Moore, J. G. See Richter, D. H.

Moore, R. W. Observations on subsurface exploration using direct procedures and geophysical techniques 188-522
Abstract

Morais, M. X. de. Radioactivity of the nepheline syenite of the Cuiculungo quarry (Upper Golongo, Angola)----------------------- 189-487

Moralev, V. M. See Yel'yanyov, A. A.

Morelli, Carlo, Gantar, C., Inghilleri, Giuseppe, and Solaini, Luigi. Gravimeter measurements along the European calibration line between Bad Harzburg and the Etna Observatory ------------------ 191-366

Morelli, Carlo, and Lozano Calvo, Luis. The Rome-Barcelona tie with the European gravimetric net -------------------------- 191-368

See also Carrozzi, M. T., Gantar, C., and Mongelli, F.

Morgan, T. A. See Obert, Leonard.

Morimoto, Ryōhei. Submarine eruption of Myojian Reef------------ 190-627

Morimoto, Ryōhei, and Matsuda, Tokihiko. Geology of the area damaged by the Kita Mino earthquake. Part 1, The upper reaches of the Uchinami River and the Itoshiro River, Fukui and Gifu Prefectures, Japan ----------------------------- 191-86

Morley, L. W. See Gregory, A. F.

Morozova, A. A. See Ivankina, A. T.

Morozova, I. M. See Gerling, E. K.

Morrison, L. S. How useful are electronic computers in exploration ------------------------------- 190-259

Mosetti, Ferruccio. See Carrozzi, M. T., and Fritsch, Volker.

Moskvina, A. G. Calculation of the main constants of a seismograph from the shape of the magnification curve------------------ 191-144

Moskvina, A. G., and Shebalin, N. V. A study of seismic noise and calculation of the optimum seismograph constants ------------------ 191-568

See also Kirnos, D. P.

Moston, R. P., and Johnson, A. I. Geophysical exploration of wells as an aid in location of salt-water leakage, Alameda Plain, California -------------------------------- 188-268

Mosyagina, M. S. See Borisevich, Ye. S.

Mrázek, J. A relation between the frequency of the sporadic E-layer and the geomagnetic activity ----------------------------- 189-400

Mu, Iyun'-Guan'. Integration of the calculation of effective velocity-- 190-553

Mudie, J. D. See Miller, J. A.

Mudretsova, Y. A. Underground gravimetric work at chalcopyrite deposits of the Middle Urals ----------------------------------- 190-332

Muguruma, Jiro. See Nakaya, Ukichiro.

Mulford, J. W. See Machado, Frederico.

Muller, J. E. Notes on age determinations made on Cordilleran rocks -- 188-55

Müller, Karel. Regional magnetic investigation and the structure of the Kleine Donau Plain----------------------------- 188-458

Müller, Leopold. Geomechanics in engineering and mining practice ------------------------------- 191-647

--- On the origin of joints parallel to the surface. Attempt at a geomechanical explanation ------------------------------- 191-648

Müller, Stephan. See Berckhemer, Hans.

Mumme, I. A. Geophysical investigation of the Blinman Dome----- 189-318

--- Gravimetric investigations - Eden fault zone, Glen Osmond, Beaumont and Rosslyn Park areas ---------------------- 191-380

Mumme, W. G. A note on the mixed polarity of magnetization in Cainozoic basalts in Victoria, Australia ------------------- 191-491

Munk, W. H., and Cepeda, H. Concerning a remarkably sharp peak in the sea level spectra at Acapulco ------------------------ 189-116

Munro, Mary. See Miller, J. A.
Murai, Isamu, and Tsuya, Hiromichi. Some notes on the geologic structure of the Kita Mino district--------------------------- 191-85

Murin, A. N. See Dobronravova, A. N.

See also Polevaya, N. I.

Murozumi, Masayoshi. Exo- and endo-magnetic hydrothermal differentiations observed among the chemical components exhaled by Noboribetsu volcanic activity -------------------------------- 189-619

See also Ohashi, Shuji.

Murphy, S. J. See Linehan, D.

Murphy, V. J. See Linehan, D.

Murrell, S. A. F., and Misra, A. K. Time-dependent strain or "creep" in rocks and similar nonmetallic materials ---------- 191-639

Murthy, V. R. Isotopic anomalies of molybdenum in some iron meteorites--- 190-77

--- The isotopic composition of silver in iron meteorites--------- 190-85

Murthy, V. R., and Patterson, C. C. Primary isochron of zero age for meteorites and the earth----------------------------------- 189-53

Musgrave, A. W. Wave-front charts and three dimensional migrations -- 189-543

Mužijević, R. S. Results of geophysical research carried out for the purpose of exploration for oil deposits at Vojvodina---------- 188-288

See also Witkind, I. J.

Mzhachikh, K. I., and Ashirov, K. B. On the geochemistry of deuterium in oils and bitumens of the oil group 188-380

N

Nabighian, M. N. See Ștefănescu, S. S.

Naboko, S. I. At the foot of volcanoes-- 190-625

--- Change in the fumarole regime of Kliuchevsky volcano---------- 190-623

Nag, K. R. Disturbance due to shearing-stress discontinuity in a semi-infinite elastic medium----------------------------------- 191-155

--- On "SH" type of motion due to body forces in a semi-infinite elastic medium --- 188-202

Nagahama, Haruo, and Hoshino, Kazuo. Radioactive anomalies in eastern Tsuyama, Okayama Prefecture 188-488

Nagai, Jiro. Age of Hiei granite determined with zircon and lead-alpha method 190-22, 191-28

--- Determination of thorium-uranium ratio in radioactive minerals by alpha-ray counting -------------------------------------- 190-3

See also Hatuda, Zin’itiro.

Nagata, Takesi. Polar magnetic storms, especially in the southern polar region --- 190-425

Nagata, Takesi, Kokubun, Susumu, and Fukushima, Naoshi. Similarity and simultaneity of magnetic disturbance in the Northern and Southern Hemispheres------------------------------------ 190-418

Nagata, Takesi, Oguti, Takasi, and Momose, Kanichi. Preliminary report of geomagnetic observations at Prince Harald Coast, Antarctica--- 189-385

Nagumo, Shōzaburō. Elastic wave propagation in a liquid layer overlying a sloping rigid bottom--------------------------------- 188-201
Nagumo, Shozaburo; Kamata, Seikichi; and Kawashima, Takeshi. A new method of continuous profiling with off-set L-spread ---- 190-536

Nagumo, Shozaburo, and Kawashima, Takeshi. On the interpretation of seismic reflection method (2). Making of seismic cross-section -- 188-527

See also Honsho, Shizumitsu.

Nagy, Bartholomew; Claus, George; and Hennessy, D. J. Organic particles embedded in minerals in the Orgeuil and Ivuna carbonaceous chondrites ---------------------- 189-51

Nakada, M. P., and Mihalov, J. D. Accretion of solar wind to form a lunar atmosphere -- 189-66

Nakagawa, Ichiro. Some problems on time change of gravity, Pt. 1. On effect of oceanic tides upon the tidal variation of gravity ---- 190-299

--- Some problems on time change of gravity, Pt. 2. On analytical treatments for data of the tidal variation of gravity----------------- 190-300

--- Some problems on time change of gravity, Pt. 3. On precise observation of the tidal variation of gravity at the gravity reference station -- 190-301

--- Some problems on time change of gravity, Pt. 4. On continuous and precise gravity observation during the period of annular eclipse on April 19, 1958 --------------------------------- 190-302

--- Some problems on time change of gravity, Pt. 5. On free oscillations of the earth observed at the time of the Chilean earthquake on May 22, 1960 --------------------------------- 190-138

See also Nishimura, Eiichi.

Nakai, Junji, and Hosono, Takeo. Radiometric survey with car mounted instrument in Hiroshima Prefecture ------------------ 188-492

See also Sano, Shun-Ichi.

Nakamura, Hisayoshi. Report on the geological studies of hot springs in Japan ------------------------------------- 191-698

Nakamura, Hisayoshi, and Maeda, Kenjiro. Thermal waters and hydrothermal activities in Arima hot spring area, Hyogo Prefecture ---------------------------------- 189-625

Nakamura, Hisayoshi, and Sumi, Kiyoshi. Geothermal investigations of Matsukawa hot spring area, Iwate Prefecture ------ 188-599

Nakamura, Hisayoshi; Yanagihara, Chikataka; and Takagi, Shinchi. The third drilling for geothermal investigations in the Onikobe basin, Miyagi Prefecture ---------------------------------- 189-333

Nakamura, Kohei. Normal mode waves in an elastic plate, pt. 1 -- 188-207

--- Normal mode waves in an elastic plate, pt. 3 ------------------ 188-208

--- Velocity of long gravity waves in the ocean ------------------ 191-111

Nakamura, Kohei, and Emura, Kinya. Maximum water height at bay head in case of tsunami invasion ------------------ 189-118

See also Kato, Yoshio.

Nakaya, Ukichiro. The deformation of single crystals of ice ---- 189-604

--- Visco-elastic properties of snow and ice in Greenland Ice Cap- 189-271

Nakaya, Ukichiro, and Muguruma, Jiro. Physical properties of the ice of Fletcher’s Ice Island (T-3) --------------------- 190-600

Nakazawa, Jiro. See Haruki, Kiyoukensuke.

Nałęcz, Maciej, and Zawicki, Ignacy. A Hall-effect seismograph -- 189-135

Namnandorzh, O. See Vorob'ev, G. G.

Nanda, S. N. A proposed mechanism of generation of microseisms --- 190-484

Napalkov, Yu. V. On the theory of grouping of seismic receivers ---- 190-526
Nassonov, V. A. Extension of magnetic anomalies of complicated shape to a given altitude 191-522
— Solution of certain problems in magnetometry by using the similarity of anomalies 190-469
Nature. Royal Society Expedition to Tristan da Cunha—preliminary report 190-616
Naumchky, G. L. See Subbotin, S. I.
Nazarenko, O. V. On the effect of the lengths of measuring and input lines on the results of using a dipole axial arrangement 189-176
Nazarenko, O. V., and Belitskaya, S. G. On the problem of induced polarization of measuring electrodes observed during the process of electric prospecting 190-190
Nazarov, A. G. The method of engineering analysis of seismic forces 191-110
Nazarov, G. N. On some results of electrical prospecting of the salt dome structure of Baskunchak 188-259
Nazarova, T. N. See Isakovitch, M. A.
Nazmutdinov, R. Sh. See Rekunov, N. A.
Nechay, A. M. Evaluation of the productivity and reservoir properties of fractured carbonate rocks 188-271
Nechay, A. M., and Mel'nikov, D. A. Investigation of reservoir properties of strata according to geophysical data in the regions of the north-east cis-Caucasus 189-215
Nechayev, V. A. Seismic microregionalization of the territory of the city of Stalinabad, based on the instrumental-geological method 189-90
Nedelkov, I. P., and Burnev, P. H. Determination of gravitational fields in depth 189-290
Nedyalkov, I. P. On magnetization of bodies of weak magnetic permeability 189-432
— On the inverse problem of potential for n bodies 189-226
Negi, J. G. Diffraction of electromagnetic waves by an inhomogeneous sphere 191-230
— Inhomogeneous cylindrical ore body in presence of a time varying magnetic field 190-182
— Radiation resistance of a vertical magnetic dipole over an homogeneous earth 188-228
Nekhoroshev, A. S. To the problem of the methods for determining the presence of volcanic vapours at depth 190-336
Nenashev, N. I. See Mikheyenko, V. N.
Nenilina, V. S. See Bagdasarova, A. M.
Nepomnyashchikh, A. A. On the theory of interpretation of magnetic anomalies 191-523
Neprochnov, Yu. P. See Sysoyev, N. N.
Neret, Lucien. Can earthquakes be predicted 188-179
See also Bagdasarova, A. M., and Gurevich, G. I.
Ness, N. F., Skillman, T. L., Scearce, C. S., and Heppner, J. P. Magnetic field fluctuations on the earth and in space 190-432
Neugodov, L. N. See Isakovitch, M. A.
Neumann, Henrich. See Kulp, J. L.
AUTHOR INDEX

Abstract

Neumann van Padang, M. Measures taken by the authorities of the Vulcanological Survey to safeguard the population from the consequences of volcanic outbursts 190-629

— The steam borings in Kawah Kamodjang 190-347

See also Berninghausen, W. H.

Neumann, W. Irregular geomagnetic anomalies and their explanation 189-427

Neuhöfer, Horst. Theoretical investigations of the reflection and transmission of sonic and ultrasonic waves at cracks in sylvinite, hard salt, and rock salt that are filled with carbon dioxide 190-169

Neuvonen, K. J. The apparent age pattern of the crust 189-11

Nevolín, N. V. See Ayzenštadt, G. Ye. A.

Newfarmer, L. R. Geophysics' share of the exploration dollar in the U. S. and Canada 191-278

Newton, R., and Round, G. F. The diffusion of helium through sedimentary rocks 189-236, 191-293

Newton, R. C., Jayaraman, A., and Kennedy, G. C. The fusion curves of the alkali metals up to 50 kilobars 190-367

Neyman, V. S. See Shapiro, D. A.

Neyman, Ye. A. See Dakhnov, V. N.

Nicholls, H. R. Coupling explosive energy to rock 190-177

— In situ determination of the dynamic elastic constants of rock 190-168, 191-195

Nicolaysen, L. O. Graphic interpretation of discordant age measurements on metamorphic rocks 188-33

Nicolaysen, L. O., Burger, A. J., and Liebenberg, W. R. Evidence for the extreme age of certain minerals from the Dominion Reef conglomerates and the underlying granite in the Western Transvaal 188-61

See also Burger, A. J.

Niggli, Ernst. See Jäger, Emilie.

Nikiforova, N. N. See Deniskin, N. A.

Nikitina, I. B. See Markhinin, Ye. K.

Nikolayev, D. S. See Starik, I. Ye.

Nikolayevskiy, A. A. See Dorman, M. I.

Nikolov, N. S. Meteorites of Bulgaria 191-63

Nikolsky, A. P. On the distribution of periods of activity of magnetic disturbances over the 24 hours of the day 189-415

— On the problems connected with comparing magnetic disturbances of the Arctic and the Antarctic 189-394

Ninagawa, Shinji. See Furuya, Shigemasa.

Nipper, J. T. See Foster, M. R.

Nishida, Atsuhiro, and Jacobs, J. A. World-wide changes in the geomagnetic field 188-402, 190-419

Nishimura, Eiichi; Nakagawa, Ichiro; Hosoyama, Kennosuke; Saito, Masanori; and Takeuchi, Hitoshi. Free oscillations of the earth observed on gravimeters 188-180

Nishimura, Susumu. Variation in radioactivity across igneous contacts III 189-488, 190-513

— Variations in radioactivity and chemical elements across igneous contacts 189-489, 190-514

See also Hatuda, Zin'itsu

Noakes, J. E. See Stipp, J. J.

Noble, D. C. Stabilization of crustal subsidence in geosynclinal terranes by phase transition at M—a reply 189-244
Nodia, M. Z., and Vekua, L. V. On the problem of paleomagnetic variations

Nomura, Yukichi, and Takaku, Koshun. Propagation of elastic waves in a layered inhomogeneous earth sphere

Nordquist, J. M. A special-purpose program for earthquake location with an electronic computer

Nordyke, M. D. An analysis of cratering data from desert alluvium

Noritomi, Kazuo. The electrical conductivity of rock and the determination of the electrical conductivity of the earth's interior

Norris, D. K., and Black, R. F. Application of paleomagnetism to thrust mechanics

Palaeomagnetism and differential rotation in the Lewis thrust plate

Rock magnetism and low-angle faulting

Northrop, John. Evidence of dispersion in earthquake T phases

Northrop, John, Frosch, R. A., and Prassetto, Roberto. Bermuda-New England Seamount Arc

Noskova, V. G. See Afanas'ev, G. D.

Novoselova, S. M. See Kovtun, A. A.

Nozières, Philippe. See Carron, J. P.

Nurlibayev, A. N. See Ivanov, A. I.

Nurmia, M. See Graeffe, G., and Taagepera, R.

Nurse, E. J. See Light, D. E.

Nuttili, O. W., and Whitmore, J. D. On the determination of the polarization angle of the S wave

Nydal, Reidar. Trondheim natural radiocarbon measurements III

Nye, J. F. A theory of wave formation in glaciers

Obashev, S. O. Geomagnetic effect of the Tungus meteorite

Obayashi, Tatsuzo. Propagation of solar corpuscles and interplanetary magnetic field

Solar corpuscular radiation and polar ionospheric disturbances

Obert, Leonard. Effects of stress relief and other changes in stress on the physical properties of rock

In situ determination of stress on rock

Obert, Leonard, Merrill, R. H., and Morgan, T. A. Borehole deformation gage for determining the stress in mine rock

Oberti, Guido. Experimental investigations on the characteristics of the deformability of rocks

Obi, Itsuaki. See Kawachi, Yosuke.

Oblogina, T. I. A new method for determination of the absorption coefficient of seismic waves

Oborina, S. F. On the problem of crustal structure in the Arctic

Obotnin, N. F. See Yudin, I. A.

O'Brien, P. N. S. See Donato, R. J.

Obukhov, G. G. See Savarenskiy, Ye. F

Obukhov, V. A. Automatic spectrum analyzer of ultrasonic vibrations registered in seismic modeling

Öcal, Nevzat. Determination of the mechanism of some Anatolian earthquakes

Odani, Yoshitaka, and Baba, Kenzo. Geophysical explorations at Magome and Mizuhiki mines, Fukushima Prefecture—Investigation of the applicability of magnetic method for lead and zinc deposits of contact type
Odinokov, V. P., Denisik, S. A., and Shimelevich, Yu. S. Determination of the location of the water-oil contact from data of the neutron-gamma method and scintillation counter (NGM-LS) and of the neutron-neutron method according to thermal neutrons —— 189-512

See also Alekseyev, F. A., and Burov, B. M.

Oeschger, Hans, Renaud, André, and Schumacher, Ernst. Attempt at dating by tritium of the snow layers of the Jungfraufirn and determination of the annual accumulation —— 189-357

See also Geiss, Johannes, and Gfeller, Chr.

Officer, C. B., Jr. Use of continuous seismic profiler (Sparker) in geologic investigations for vehicular tunnel and bridge crossings— 188-548

See also McGuinness, W. T.

Ogawa, Kenzo. Gravity survey at Yamagata basin, Yamagata Prefecture —— 190-335

Ogil'vi, A. A. Geophysical methods of investigation —— 189-228

— Role of geophysical methods in study of ground water —— 190-202

See also Azimi, Sh. A.

Ogilvie, K. W. The half-value period of radium C —— 190-496

Ogorodov, N. V. An active volcano in the Sredinny Khrebet —— 188-593

Oguti, Takasi. K indices at Syowa Station, Antarctica —— 188-407

See also Nagata, Takesi.

Ohashi, Shuji, Kobayashi, H., Matsuo, H., and Murozumi, Masa-yoshi. On the contributions of surface soil and topography to the SP distribution —— 189-181

Ohl, A. I. Pulsations during sudden commencements of magnetic storms and long period pulsations in high latitudes —— 190-431

Ohmachi, Hokuichiro. See Koizumi, Hisanao.

Ohya, Masahiko. The relationship between abnormal tidal waves "tsunami" caused by the Chilian earthquakes and topography of the coasts of Kii Peninsula in the western part of Japan —— 190-136

Oil in Canada. Geophysical work almost holds own —— 188-282

Oilweek. Electro-Tech has portable seismograph —— 190-143

— Greater penetration for marine seismic method— 190-570

— Logging with pipe in hole possible with new tool— 189-214

— Rogers develops new seismic system and truck —— 188-549

Oka, Yukitoshi. See Hiramatsu, Yoshiro.

Okabe, Katsuhiro, Sato, Konosuka, Tsujimura, H., and Momose, H. A part of self potential method at the exploration of ore deposits— 189-183

Okada, Atusi. See Miyamura, Setumi.

Okada, Hiroshi, and Tazime, Kyozi. Love-waves in stratified three layers —— 190-529

Okano, Kennosuke, and Kamo, Kosuke. Direction of approach of microseisms observed in Kyushu —— 190-492

Okano, Takeo. See Koizumi, Hisanao.

O'Keefe, J. A., Lowman, P. D., Jr., and Dunning, K. L. Gases in tektite bubbles—— 191-68

Oksa, D. R. Resolution and curved path computation of steep dip using an electronic computer—— 189-552

Okumi, Shizuka. See Koizumi, Hisanao.

Olausson, Eric. Studies of deep-sea cores —— 188-65

Oliveira, Geraldo de. Analytic and graphic determination of the refractions horizon by means of envelope parabolas —— 190-532

Oliver, H. W., Pakiser, L. C., and Kane, M. F. Gravity anomalies in the central Sierra Nevada, California —— 188-348
Oliver, J. E. A summary of observed seismic surface wave dispersion 189-127
 - A worldwide storm of microseisms with periods of about 27 seconds 191-563
Oliver, J. E., and Dorman, James. On the nature of oceanic seismic surface waves with predominant periods of 6 to 8 seconds 188-185
Oliver, J. E., and Isacks, Bryan. Seismic waves coupled to sonic booms 191-211
See also Rexin, E. E.
Olson, E. A., and Broecker, W. S. Lamont natural radiocarbon measurements VII 190-37
See also Broecker, W. S.
Olsson, Ingrid; Cazeneuve, Horacio; Gustavsson, John; and Karlén, Ingvar. Uppsala natural radiocarbon measurements III 190-32
Olszak, Gerd. Some investigations on the action of group shooting in seismic reflection surveying .. 189-554
See also Teupser, Christian.
Omote, Syun'itiro; Karakama, Ikuo; Nakajima, Naoyoshi; Saito, Sadao; and Kayano, Ichiro. Aftershocks of the Kita Mino earthquake of August 19, 1961. Observations at the Kadohara and Hirugano stations ... 191-83
Onda, Isao. See Kishinouye, Fuyuhiko.
Ono, Tadanori. Geomagnetic bay-like disturbances before geomagnetic sudden commencements or sudden impulses ... 190-442
 - Ionospheric currents responsible for sudden commencements observed at the geomagnetic equator 188-410
Ono, Yoshihiko. Electrical survey by resistivity method for uranium deposits of sedimentary type ... 189-196
Ono, Yoshihiko; Suyama, Junji; and Takagi, Shin'ichiro. Geoelectrical prospecting at Matsukawa geothermal field ... 190-212
 - On the electrical prospecting by the direct current method in Izu-Oshima Island 190-214
Ontwumehilli, C. A. Lunar daily variation of the magnetic declination at Ibadan, Nigeria 188-406
Opik, E. J. The survival of stray bodies in the solar system 188-107
Opitz, Dietrich. Geometric evaluation of average velocities in seismic reflection measurements with "expanding spread" 189-556
Orellana Silva, Ernesto. Erroneous criteria in the interpretation of electric soundings 191-226
Orlov, D. P. See Cherdyntsev, V. V.
Orlov, G. G. On some formulas applied to cases of oblique magnetization .. 190-466
Orlov, V. P. Surface correlations of airborne surveys .. 190-475
 - Unusually large changes in the values of secular variations of the geomagnetic field 191-526
Orsini, C. Q. On the relative abundance of carbon, nitrogen, and oxygen in the cosmic rays ... 188-108
Osada, Kaio. See Kanai, Kiyoshi.
Osadchaya, R. I. See Ovchinnikov, L. N.
Osawa, Yutaka. On the damage to buildings during the Kita Mino earthquake of August 19, 1961 191-81
AUTHOR INDEX

Osipov, I. O. Character of variation of velocities of propagation of elastic waves in anisotropic mediums **************************** 191-163
— Reflection and refraction of plane elastic waves at the boundary of a liquid and a solid anisotropic body 191-169
— Transfer of seismic energy in anisotropic media 191-165
Osokina, G. N. See Molochnov, G. V.
Ostenso, N. A., and Holmes, G. W. Gravimetric determinations of ice thickness of Jarvis Glacier, Alaska*************** 191-370
See also Bentley, C. B., and Thiel, Edward.
Osterwald, F. W. Deformation and stress distribution around coal mine workings in Sunnyside No. 1 mine, Utah************ 188-570
— USGS relates geologic structures to bumps and deformation in coal mine workings .. 189-591
See also Engstrnad, L. G.
Ostroumov, G. V. The neutron method of analysis of skarn-type ores for boron--------------------------------------- 188-504
Otaki, Takemichi. Investigations of S. P. anomaly at the Matsuo mine field-- 189-198
Oulianoff, Nicolas. Crossed (rhomboid) ripple marks and the general problem of fossilization of ridges 188-580
Oulianoff, Nicolas. Movement of the glaciers (Plasticity of the ice, structure of the rock basement) 189-268
Ovanesov, M. G. See Yermakov, V. I.
Ovchinnikov, A. K. See Grammakov, A. G
Ovchinnikov, L. N. Ural materials for the absolute time scale ---- 188-8
Ovchinnikov, L. N., Kelarev, V. V., Panova, M. V., Dunayev, V. A., Shangareyev, F. L., and Osadchaya, R. I. On the problem of argon retention in micas .. 191-15
Ovchinnikov, L. N., Panova, M. V., and Dunayev, V. A. Correlation of the absolute age of Paleozoic effusives of the Urals with biostratigraphic positions .. 188-83
Ovchinnikov, L. N., Panova, M. V., and Shangareyev, F. L. Absolute age of some rocks from Hungary 188-68
Ovchinnikov, V. M. See Grammakov, A. G.
Ovchinnikova, G. V. See Gerling, E. K.
Overseas Geological Surveys. Geophysical field surveys - Bechuanaland 1961 191-623
— Geophysical field surveys - British Borneo 1961 191-561
Overstreet, W. C., Bell, Henry, III, Rose, H. J., Jr., and Stern, T. W. Recent lead-alpha age determinations on zircon from the Carolina Piedmont .. 188-39
Overstreet, W. C., Stern, T. W., Annell, Charles, and Westley, Harold. Lead-alpha ages of zircon from North and South Carolina .. 191-16
Özdoğan, Ihsan. Geomagnetic bays in Turkey. Part I: Statistical study .. 190-405

P

Paghis, Irvine. Magnetic impulses and sun-earth relations ------- 190-416
Paicu, Dumitru, and Patrichi, Constantin. Seismic results obtained on metamorphic and igneous formations 188-558
Pak, V. A. See Berzon, I. S.
Pakiser, L. C. Gravity, volcanism, and crustal deformation in Long Valley, California ------------------ 188-349
Pakiser, L. C., and Baldwin, H. L., Jr. Gravity, volcanism, and crustal deformation in and near Yellowstone National Park ------ 188-339
Pakiser, L. C., and Kane, M. F. Geophysical study of Cenozoic geologic structures of northern Owens Valley, California ------ 190-244
See also Hill, D. P., Jackson, W. H., Oliver, H. W., and Warrick, R. E.

Pal'gov, N. N. Thickness of the Kazakhstan glaciers and evaluation of the methods for its determination ------------------- 189-284
--- Thickness of the Kazakhstan glaciers in accordance with the calculation methods and seismic measurements ------------- 191-636

Palik, P. Further life-forms in the Orgueil meteorite -------------- 191-37

Pancini, Mario. Results of the first series of tests performed on a model reproducing the actual structure of the abutment rock of the Vaiont dam -- 191-678

Panek, L. K. Measurement of rock pressure with a hydraulic cell - 189-595
--- Methods for determining rock pressure ------------------------ 190-595

Panova, M. V. See Ovchinnikov, L. N

Parasnia, D. S. Magnetism, from lodestone polar wandering ------ 190-450

Parham, A. G. See Brown, F.

Parker, E. N. See Dessler, A. J.

Parkhomenko, E. I. See Volarovich, M. P.

Parkinson, W. D. The influence of continents and oceans on geomagnetic variations ------------------------------- 191-440

Parkinson, W. D., and Curedale, R. G. Isomagnetic maps of Australia for the epoch 1957.5. Pt. 2—Central and western Australia --- 191-437

Parks, P. E., Jr. See Behrendt, J. C.

Parry, L. G. See Green, Ronald.

Parsons, W. H. See Machado, Frederico.

Pasechnik, I. P., Kogan, S. D., Sultanov, D. D., and Tsibul'skiy, V. I. The results of seismic observations of underground nuclear and TNT explosions ------------------------------- 188-223

Pasteels, Paul. See Cahen, Lucien.

Patchett, J. G. Log interpretation of the Tertiary and Upper Cretaceous of Wyoming and surrounding areas ------------------- 188-267

Paterson, M. S., and Weiss, L. E. Experimental folding in rocks - 191-642

Paterson, N. R. An interpretation technique for airborne gravity gradient measurements----------------------------- 188-323
--- Experimental field data for the dual-frequency phase-shift method of airborne electromagnetic prospecting------ 188-227
--- Helicopter E. M. test, Mobrun orebody, Noranda----------- 191-236
--- Trends and prospects in mining geophysics------------------- 191-283

Patrichi, Constantin. See Paicu, Dumitru.

Patterson, C. C. See Chow, T. J., and Murthy, V. R.

Patton, B. J., and Fitch, J. L. Anhysteretic remanent magnetization in small steady fields ------------------------ 189-421
--- Design of a room-size magnetic shield ------------------------ 189-434

Pavlovic, B. V. Radioactive disequilibrium systems among uranium, ionium, and radium in sediments------------------- 188-471
See also Vučić, V. M.

Pavlovskiy, V. I., and Serebryakov, Ye. B. Nomogram for determining the form, dimensions, and density contrast of two-dimensional bodies of rectangular cross section from the U_{xz} curve --- 190-310
AUTHOR INDEX

Peyo Subiza, Gonzalo. Love wave dispersion along very long Euro-Asiatic paths--- 190-139
Peacock, J. D., and Williamson, R. Radon determination as a prospecting technique --------------------------------------- 191-585
Pearson, R. C.; Tweto, Odgen; Stern, T. W., and Thomas, H. H. Age of Laramide porphyries near Leadville, Colorado-------- 191-18
Pearson, Ronald. Life-forms in carbonaceous chondrites---------- 191-35
Pěč, Karel. Lg and Rg phases observed at Prague ----------------- 191-117
— Theory of the waves excited in the elastic half space by a plane source (Part 1) -- 189-145
— Theory of waves excited in an elastic half space by a plane source (Part 2) -- 190-157
— Theory of waves excited in an elastic half space by a plane source (Part 3) -- 190-158
Pechernikov, V. F. See Dakhnov, V. N.
Pěčová, Jana. On the rapid variations of the electrotelluric field at Budkov (Czechoslovakia)--------------------------- 191-448
Pedersen, Arne. Time, height, and latitude distribution of D layers in the subauroral zone and their relation to geomagnetic activity and aurora -- 190-397
Pegum, D. M. Gravity survey of the Willunga basin------------------ 191-379
Pekeris, C. L., Alterman, Z., and Jarosch, H. Effect of the rigidity of the inner core on the fundamental oscillation of the earth -- 191-412
Pelyushenko, V. M. Field magnetic station -------------------------- 188-396
Penchev, N. P., Pencheva, Y. N., and Bonchev, P. R. On the chemical composition of meteorite Gumoshnik (Bolgariya)--- 188-121
Pencheva, Y. N. See Penchev, N. P.
Penta, Francesco. Natural vapors ("endogene forces") -------------- 190-342
Pepin, R. O. See Krummenacher, Daniel, and Merrihue, C. M.
Perić, M., Damnjanović, Kostantin, and Aleksić, D. Possibility of the application of electrical logging methods in some coal basins- 188-270
Perić, M., and Milovanović, D. Comparison of the results of geomagnetic and mining exploration on the magnetite-hematite ore body at Damjan in east Macedonia -- 188-460
Per'kov, N. A. Album of type geologic-geophysical sections of boreholes of oil regions of the Volga-Ural province ----------- 189-218
— On the methods of geophysical borehole investigations of carbonate reservoirs-- 189-213
Pernikov, M. Sh. The method of determination of permeability of oil-bearing strata according to electric logging data -------- 189-204
Peschel, Gerald. See Stühringer, Hellmuth.
Petelin, V. P. See Bezrukov, P. L.
Peter, George. See Hunkins, Kenneth.
Peterman, Z. E. See Burwash, R. A.
Peterson, D. L. See Griscom, Andrew.
Petkevich, G. I. A scheme of the types of velocity profiles in the Cis-carpithian downwarp -------------------------------------- 191-631
— Seismic logging study in the Cis-carpithian depression ------------- 190-566
Petkov, I. N. On an analytical method of determining the layer velocities of seismic waves-------------------------------------- 189-545
Petrov, G. I., Kutenkov, M. V., Tenenbaum, I. M., and Yevseyeva, L. S. Methods of geological-geophysical development of uranium mines -- 189-498
Petrova, G. N. Various laboratory methods of determination of geomagnetic stability of rocks----------------------------- 190-456
Petrova, G. N., and Trukhin, V. I. Spontaneous variation in \(H_C \) of rapid cycles of magnetization of cooled ferromagnetics-------- 189-425
Petrova, G. N., and Zhilyayeva, V. A. A laboratory criterion of magnetic stability of rocks---------------------------------- 188-421
See also Burlatskaya, S. P.
Petrovskiy, A. D. See Grachev, A. A.
Petroucci, Giuseppe, and Coppolino, S. Some tests on water-bearing formations with the induced polarization and resistivity methods, using a bipolar measuring set-up---------------------------------- 191-239
Petrushevskiy, B. A. Earthquakes and the possibility of their predictions --- 191-108
— Earthquakes and what causes them --------------------------------- 189-85
— Investigations of seismicity of the territory of the Chinese Peoples Republic------------------------------- 189-92
— On the geologic setting of the Kansu earthquake of 1920----------------- 188-166
Pettijohn, F. J. See James, H. L.
Petty, A. J. See Meuschke, J. L.
Péwé, T. L. Age of moraines in Victoria Land, Antarctica---------- 189-31
Phinney, R. A. Propagation of leaking interface waves---------------- 188-183
Pichugin, N. I. Mapping steep contacts and tectonic dislocations according to VES data----------------------------------- 190-197
Pick, Miloš. Effect of one of the systematic errors in geographic latitude determination on the form of the geoid--------------------------------- 191-298
— Projective method for the transformation of a triaxial ellipsoid with nonparallel axes--------------------------------- 191-296
Pidgeon, R. T. See Compston, W.
Pierau, H. The origin of multiple impulses due to pulsating gas bubbles ("Bubbler") in seismic reflection measurements on land - 191-608
Pinchuk, I. A. See Ayzenshtadt, G. Ye. A.
Pinson, W. H., Jr. Some points on the geological time scale from Nova Scotia and New England----------------------------- 188-36
— The potassium-argon method: The problem of potassium analysis ---------------------------------- 188-21
Pinson, W. H., Jr., Hurley, P. M., Mencher, E., and Fairbsirn, H. W. K-Ar and Rb-Sr ages of biotites from Colombia, South America-------------------------------- 191-21
Pinson, W. H., Jr., and Schnetzler, C. C. Rubidium-strontium correlation of three tektites and their supposed sedimentary matrices-------------------------------- 190-92
See also Hurley, P. M.
Pisani, M. See Gantar, C.
Pisaroty, P. R., and Srivastava, B. J. Rise times versus magnitudes of sudden commencements of geomagnetic storms-------- 190-410
Piyp, B. I. See Averyev, V. V., and Vladavets, V. I.
Plekhanov, G. F., Kovalevskiy, G. F., Zhuravlev, V. K., and Vasil’ev, N. V. The effect of the explosion of the Tungus meteorite on the geomagnetic field -------------------------------- 191-58
Plewa, Stanislaw. Detection of water and gas horizons by the methods of drilling geophysics under the conditions of Rybniki Coal District--- 190-233
Plokhikh, N. A. The solution of some plane problems in d-c electrical prospecting---------------------------------- 191-221
Plouff, Donald. Gravity profile along Roberts Tunnel, Colorado --- 188-340
AUTHOR INDEX 731

Plouff, Donald. Gravity survey near Tucson, Arizona ------------ 188-344
Plumstead, E. P. Ancient plants and drifting continents ------------ 189-249
Pod'yapol'skiy, G. S., and Vasil'yev, Yu. I. The Rayleigh type wave on a free surface ------------ 188-206
Pogrebnikov, M. M., Rotshteyn, A. Ya., and Tsirell, V. S. Problems of study and calculation of variations in connection with using nuclear-resonance apparatus ------------ 189-376
Pohly, R. A. Gravity work may aid search for Trenton fracture zones---------------- 189-306
Polevaya, N. I. Data for compilation of the post-Precambrian scale of absolute geochronology ---------------- 188-10
Polevaya, N. I., Putintsev, V. K., and Sprintsson, V. D. The age of some magmatic and metamorphic rocks of North Korea ---- 188-97
See also Bobrov, V. A.
Polonskiy, A. M. The calculation of magnetic moments---------------- 191-218
Poloskov, S. M. See Isakovitch, M. A.
Polshkov, M. K. The quasi-steady processes in a seismic amplifier having π-shaped filters in the upper and lower frequencies -- 190-573
— Problem of the theory and design of an electrodynamic seismograph taking into account the input circuit of the seismic amplifier ---------------------------------- 188-544
— The quasi-steady processes in a seismic amplifier having T-shaped filters in the upper and lower frequencies--------------- 190-574
— Transient-to-steady processes in a seismic amplifier of rheostat type, having a symmetrical T-shape link of the high frequency ---------------- 190-575
Polyakov, A. K. Geologic-geophysical methods of servicing non-ferrous mines ---------------- 190-510
See also Balashov, V. N.
Polyakov, A. S. On the physical nature of apparent resistivity ---- 190-198
Pomtrleanu, V. V. Geothermometric investigations on the metalliciferous deposit in the Nistru basin, Baia Mare region ------------ 189-334
See also Savul, M.
Pommier, Gilbert. See Layat, C.
Poncelet, E. G. Theoretical aspects of rock behavior under stress- 188-572
Ponomarev, V. N., and Zakharchenko, V. F. Determination of azimuth of a magnetized sphere ------------ 190-451
Poole, F. G. See Houser, F. N.
Poole, W. H. See Neale, E. R. W.
Popov, I. I. See Savarenskiy, Ye. F.
Popov, N. V. See Alekseyev, F. A.
Popov, V. I. Relationship of the earthquakes of central Asia to the continuing development of the crust ------------------------- 191-311
— Some principal aspects of the nuclear theory of development of the crust ------------------------ 191-303
Popov, V. I., and Filin, T. D. Continental blocks (provinces), nuclear and internuclear areas of middle Asia and south Kazakhstan

Popov, V. K. Some problems in using cores and logging geophysics for evaluation of reservoir properties of strata

Popov, V. V. On temperature deformations of the earth's surface

Popov, Ye. I. Evaluation of the accuracy of measurements of the acceleration of gravity at sea by gravimeters

Quartz gravimeter for observations at sea

Popovici, Dorin. See Ţeţănescu, S. S.

Porstendorfer, Gottfried. Telluric surveying—fundamentals, technique, and new possibilities of application

Potapov, I. I. On the problem of the origin of the earth

Potapov, V. G. See Gernik, V. V.

Potapov, V. P. Some results of determination of porosity of the Yasnoye Pole substage of the Lower Carboniferous of the Perm region of the Kama River according to SP diagrams

Potter, R. R. See Neale, E. R. W.

Pounder, E. R., and Stalinsky, P. Elastic properties of Arctic sea ice

Power, D. V. See Lombard, D. B.

Poyarkova, Z. N. Research drill holes of the USSR Chulym research drill hole (Tomsk Region)

Pozin, L. Z. See Dakhnov, V. N.

Praus, Oldřich. A contribution to the asymptotic expression of the electromagnetic field of an electric dipole

Prentiss, David. See Rexin, E. E.

Preobrazhenskiy, V. B. See Borisevich, Ye. S., Gol'dfarb, M. L., and Vetchinkin, A. N.

Press, Frank, and Archambeau, Charles. Release of tectonic strain by underground nuclear explosions

Press, Frank, Harkrider, David, and Seafeldt, C. A. A fast, convenient program for computation of surface-wave dispersion curves in multilayered media

Price, A. T. The theory of magnetotelluric methods when the source field is considered

Priester, W., and Cattani, D. On the semiannual variation of geomagnetic activity and its relation to the solar corpuscular radiation

Pris, G. V. Possibilities of quantitative interpretation of inductive anomalies at low frequencies

The parameters of cylindrical conductors in the induction method of prospecting

The transient processes in a cylindrical conductor after an external magnetic field is switched off

Determination of the parameters of ore inclusions from the transient process curve in the method of field establishment

Pros, Zdeněk. See Klíma, Karel, and Vanek, I.

Proskuryakova, T. A. See Vasil'yeva, T. L.

Prosperi, D. See Giannini, M.

Protodyakonov, M. M. Methods of studying the strength of rocks used in the U.S.S.R.

Prouvost, Jean, Distribution of radioactivity in the granitic rocks of the Avalon region
AUTHOR INDEX

Provodnikov, L. Ya. Determination of the depth of occurrence of magnetized bodies taking into account error in selection of the normal field-------------------------- 191-508

— Master charts for a more precise definition of zero-level of the field of anomalies of the last order-------------------------- 191-506

— On the problem of determination of the depth of occurrence of the upper part of the surface of magnetized bodies in the form of a horizontal cylinder-- 191-507

— The relief of the folded basement of the West Siberian Lowland- 191-556

Pudovkin, I. M. Spatial analysis of the structure of a magnetic field, and its application to the practice of interpretation of anomalies--------------------------------- 188-439

See also Alexandrov, V. A.

Pugach, V. B. See Markhinin, Ye. K.

Purtova, S. I. See Alferov, B. A.

Puskhov, N. V. See Dolginov, S. Sh.

Putintsev, V. K. See Polevaya, N. I.

Putkaradze, L. A. See Aksel'rod, S. M.

Puzyrev, N. N. Regarding application of simplified procedures of observation in the study of the folded basement of the West Siberian Lowland by the method of refracted waves------------------- 191-612

Pyatnitskii, V. K. Determination of the depth of occurrence of magnetized bodies by characteristic points of the curve Z_a or ΔT-- 191-499

Q

Qurashi, M. M. See Husain, M. K.

Qureshy, M. N. Gravimetric-isostatic studies in Colorado ------- 190-326

R

Rabcwicz, L. von. From tunnel construction practice. Some experiences with true rock pressure ------------------------ 191-679

Raff, A. D. Further magnetic measurements along the Murray Fault--------------------------------- 189-467

Rafter, T. A. See Lawrence, L. J.

Raginov, Sh. S. About a peculiarity of the group velocities of Rayleigh waves-- 191-120

Ralph, E. K., and Ackerman, R. K. University of Pennsylvania radiocarbon dates IV--------------------------------- 190-25

Ralph, E. K., and Stuckenrath, Robert, Jr. University of Pennsylvania radiocarbon dates V--------------------------------- 190-54

Rama, and Honda, Masatake. Cosmic-ray-induced radioactivity in terrestrial materials--------------------------------- 190-497

— Natural radioactivity in the atmosphere--------------------------------- 190-503

Ramage, C. S. The Hawaii Institute of Geophysics--------------------------------- 189-233

Ramanathan, K. R. See Kotadia, K. M.

Ramaseswamy, G. Discussion of "An evaluation of basement depth determination from airborne magnetometer data" by Peter Jacobsen-------------------------- 191-529

Ramazanzade, M. G. See Rostomyan, P. M.

Ramsayer, K. The accuracy of the gravity reduction of levelings -- 190-303

Rao, B. S. R., and Bhimasankaram, V. L. S. Studies on magnetic properties in relation to magnetic prospecting of Kodur manganese belt, pt. 3. Correlation of the field results with the laboratory studies--------------------------------- 189-443

Rao, K. S. R. Lunar and solar geomagnetic tides i) the geomagnetic equatorial region. II. Geomagnetic tidal variations at Alibag

—— Lunar geomagnetic tides in the low latitudes region

Rao, V. B. See Sarma, V. V. J.

Raspopov, O. M. Calculation of the vertical gravity gradient from the known distribution of the gravity anomaly on a surface of arbitrary shape

—— Method of calculating the effect of topographic masses on the value of the vertical gradient of gravity

—— Method of determination of the disposition of anomalous bodies according to data of gravity prospecting

—— On the anomalies of the vertical gravity gradient in mountainous region

Rastogi, R. G. The effect of geomagnetic activity on the F2 region over Central Africa

Rattew, A. R. Helicopterborne electromagnetic, magnetic, and radiometric survey, Coronation mine, Saskatchewan

Rautian, T. G. Decay of seismic waves and the energy of earthquakes. I

See also Starik, I. Ye.

Raykher, L. D. See Kharaz, I. I.

Rechenmann, Julien. Map of isostatic anomalies of the Ivory Coast and of the Bamako and Bobo-Dioulasso areas

See also Blot, Claude.

Reed, J. C., Jr. See Bryant, Bruce.

Reed, J. J. Survey of developments in the field of rock mechanics

Rees, A. I. See King, R. F.

Reesor, J. E. Valhalla complex

—— White Creek Batholith

Refai, Eglal. Magnetic anomalies and magnetization of basalts in the area around Kemnath (Oberpfalz)

Reid, G. C. See Axford, W. I.

Reinhardt, H. G. Results of seismic reflection reconnaissance measurements in the northeastern Altmark

Reinhardt, P. W. See Davis, F. J.

Rekunov, N. A., Mikhailov, A. D., Domokurov, I. A., Nazmutdinov, R. Sh., and Igushkin, I. A. Seismic logging station SKS-8-59K

Renaud, André. See Oeschger, Hans.

Renne, O. S. See Balysatny, N. D.

Renner, J. Gravity research in Hungary in the years 1957 through 1959

Research Group for Explosion Seismology. Observations of seismic waves from the second Hokoda explosion

Reuter, F. Relaxation phenomena in the Rappsbodetal dam excavation, Harz

Rexin, E. E., Oliver, J. E., and Prentiss, David. Seismically-induced fluctuations of the water level in the Nunn-Bush well in Milwaukee
Reynolds, J. H. Isotopic composition of xenon from enstatite chondrites 188-113

See also Jeffery, P. M., Krummenacher, Daniel, and Merrrihue, C. M.

Reynolds, T. D., and Gloyna, E. F. Creep measurements in salt mines 188-571

Reysner, G. I. Preparation of maps of velocity gradients of vertical tectonic movements of the crust as exemplified in the northern Tien Shan 188-314

Rezanov, I. A. Crustal structure in platform areas 189-336

Rezanov, P. A. See Dvorkin, I. L.

Rezanov, R. A. Potentiality of the method of induced activity for quantitative evaluation of oil saturation and other parameters of a stratum 189-523

Re, Sok-Hang. The direct current dipole method of geoelectrical prospecting 190-193

Rice, J. A. See Keyser, A. R.

Rice, J. T. See Deresiewicz, H.

Rice, R. B. Inverse convolution filters 191-599

Richards, A. F. Geology of the Islas Revillagigedo, Mexico. 1. Birth and development of Volcano Bárceca, Isla San Benedicto 190-612

See also Machado, Frederico, and Moore, D. G.

Richards, J. R. Isotopic composition of Australian leads. 2. Experimental procedures and interlaboratory comparisons 189-361

See also Evernden, J. P.

See also Ault, W. U.

Richter, Kurt. Interpretation of telluric measurements by model experience 190-108

Rigassi, D. A. Faults and earth tides 188-192

Rigby, G. P. Fabrics of glacier and laboratory deformed ice 189-277

Rigby, G. P., and Bushnell, V. C. Proceedings of the third annual Arctic planning session, November 1960 188-283

Rikitake, Tsuneji. Geomagnetic bays in Turkey. Part II: A theory on current systems of geomagnetic bays 190-406

— Supplement to paper "Sq and ocean" 190-105

Rinehart, J. S., and Auburger, Michel. Authors' reply to preceding discussion [Ultrasonic attenuation of longitudinal waves in solids] 190-167

Rinehart, J. S., Fortin, J. P., and Burgin, Lorraine. Propagation velocity of longitudinal waves in rocks. Effect of state of stress, stress level of the wave, water content, porosity, temperature, stratification and texture 189-153

See also Auburger, Michel.

Ringwood, A. E. A model for the upper mantle 190-362

— Mineralogical constitution of the deep mantle 191-411

Ringwood, A. E., and Seabrook, Merren. Olivine-spinel equilibria at high pressure in the system Ni$_2$GeO$_3$-Mg SiO$_4$ 190-366

Rische, Hans. On the detection and interpretation of deep reflections in the Thuringian Basin 191-624

Ristić, Vojislav, and Đorđević, Vojislav. Geophysical investigation for graphite bodies at Donja Ljubata 188-255

Ritsema, A. R. Further focal mechanism studies at De Bilt 189-106
Ritsema, A. R., and Scholte, J. G. J. Note on the determination of the best-fitting plane for a given set of directions -------------- 188-175

Riznichenko, Yu. V. On seismic magnitudes of underground nuclear explosions ----------------------------- 188-224

See also Kärnik, Vít, and Vanek, I.

Roberts, M. S. See Carsey, J. B.

Robin, G. de C. The ice of the Antarctic ----------------------------- 191-267

Robinson, A. R. See Stewart, R. W.

Robinson, C. S., and Rosholt, J. N., Jr. Uranium migration and geochemistry of uranium deposits in sandstone above, at, and below the water table. Part II. Relationship of uranium migration dates, geology, and chemistry of uranium deposits ----------------------------- 188-14

Robinson, E., Versey, H. R., and Williams, J. B. The Jamaica earthquake of March 1, 1957 ----------------------------- 190-117

Robinson, E. S. See Crary, A. P.

Rocard, Yves. On the inequalities of seismic propagation of body waves at long distance ----------------------------- 189-163

Rodenberg, O. C. See Lorenz, P. J.

Rodionov, P. F. Electric prospecting for pyrite deposits of the Urals by the charge method ----------------------------- 188-246

Rodionov, V. P., and Sidorova, E. P. Results of paleomagnetic investigations in the south part of the Siberian platform and adjacent regions ----------------------------- 189-456

Rodriques, B. See Asada, Toshi.

Roethlisberger, Hans. The applicability of seismic refraction soundings in permafrost near Thule, Greenland ----------------------------- 189-576

Rogers, J. J. W. See Adams, J. A. S.

Rokityanskiy, I. I. Curve of deep magnetotelluric sounding (MTZ) according to data of the Borok Observatory ----------------------------- 191-74

--- Dispersion of conductivity of groundings and rocks at low frequencies ----------------------------- 188-244

--- On application of magnetotelluric methods on anisotropic and inhomogeneous massifs ----------------------------- 190-109

Roksandic, M. M. Some geotectonic features of the southeast part of the Tuzla basin according to data of geophysical investigations ----------------------------- 188-556

Roller, J. C., and Black, R. A. Determination of thickness of a basalt flow by electrical resistivity method on Buckboard Mesa, Nevada Test Site, Nye County, Nevada ----------------------------- 188-251

See also Black, R. A., and Warrick, R. E.

Romañá, Antonio. Geomagnetic rapid variations during IGY and IGС ----------------------------- 190-436

Romanov, Yu. A. See Yermakov, V. I.

Romanovskiy, V. F. See Alekseyev, F. A.

Romanyuk, V. A. Determination of gravity acceleration by a gravimeter installed on a moving base ----------------------------- 190-319

--- Determination of the damping coefficient of a highly damped gravimeter ----------------------------- 190-320

--- Observations of pendulums on a gyrostabilized platform ----------------------------- 190-321

--- The effect of co-oscillation of the support on the period of pendulum oscillation ----------------------------- 191-363

Romanyuk, V. A., and Mikisha, A. M. Effect of the geometric form of the knife edge of a pendulum on its movement ----------------------------- 190-317

Romberg, F. E. An oscillating system for a long-period seismometer for horizontal motion ----------------------------- 188-188
Roosen, J., and de Feiter, L. D. Details of the relation between type IV-outbursts and sc-geomagnetic storms------------------ 190-421
Rose, E. R. Iron and titanium in the anorthosite of St. Urbain, Quebec ------------------------------ 188-51
Rose, H. J., Jr. See Overstreet, W. C., and Ruiz, Carlos.
Rosemann, Heinz. The effect of coupling of the seismometer to the ground on the transfer of energy ------------------------------- 191-610
Rosholt, J. N., Jr. Uranium migration and geochemistry of uranium deposits in sandstone above, at, and below the water table. Part I, Calculation of apparent dates of uranium migration in deposits above and at the water table---------------------- 188-13
See also Robinson, C. S.
Rostomyan, P. M., and Ramazanzade, M. G. One cause of certain variations in the geothermal step in oil fields------------------ 189-322
Rothé, J. P. Catalogue of the seismicity of the globe during the years 1958 and 1959 (seismological chronicle) ------------------------------- 189-83
— The earthquakes of Chile (May 21 to June 22, 1960) ------------------- 189-76
Rothe, Klaus. Radiometric determinations on minerals and rocks (Principles, methods of measurement with counting tube, calibration, and application)--- 191-589
Rothstein, A. Ya. Absolute nuclear-resonance digital magnetometer------------------- 189-375
— On the resolution power of a nuclear resonance airborne magnetometer ------------------- 189-465
See also Pogrebnikov, M. M.
Rotter, Dietrich. See Kundorf, Woldemar.
Roubault, Marcel, and Coppens, René. Effect of alteration on the distribution of the radioactive elements in rocks ------------------- 189-486
Round, G. F. See Newton, R.
Roux, Jean. Sequel to volcanic activity in Haute-Auvergne ------------ 189-623
Rowe, M. W., and Van Dilla, M. A. On the radioactivity of the Bruderheim chondrite ------------------------------- 190-69
Rowland, F. S. See Fireman, E. L.
Roy, Amalendu. Ambiguity in geophysical interpretation ----------------- 191-274
— Rapid computation of gravity anomalies for irregularly shaped three-dimensional bodies ------------------- 188-322
Roy, N. A. See Isakovich, M. A.
Rozenstok, Yu. L. See Kaganov, M. A.
Rozin, A. A. See Dryakhlova, Ye. A.
Rubin, Meyer, and Berthodl, S. M. U.S. Geological Survey radiocarbon dates VI --- 190-33
Rubinshtein, M. M. Some critical points of the post-Cryptozoic geological time scale --- 188-82
Rudakov, V. N., and Bogorodsky, V. V. On the problem of measuring glacier thickness by electromagnetic methods ------------------- 189-186
Ruddock, K. A. See Ward, S. H.
INDEX TO GEOPHYSICAL ABSTRACTS 188-191, 1962

Abstract

Rudich, Ye. M. Recent movements of Sakhalin -------------------------- 188-315
Ruhe, R. V. Age of the Rio Grande Valley in southern New Mexico - 189-13
Ruiz F., Carlos; Aguirre, Luis; Corvalán, José; Rose, H. J., Jr.; Segerstrom, Kenneth; and Stern, T. W. Ages of batholithic intrusions of northern and central Chile ------------------------------- 188-60
Ruiz F., Carlos, and Saint Amand, Pierre. Observations concerning the Chilean earthquakes of May 1960--- 190-120
Rulev, B. G., and Kharin, D. A. Seismographs for recording large displacements ------------------------------ 190-145
See also Kirnos, D. P.
Runcorn, S. K. Statistical methods in rock magnetism------------------ 188-418
— Towards a theory of continental drift -------------------------------- 189-248
Ruprechtová, Libuše, and Vvedenskaya, A. V. On the stresses acting at the foci of earthquakes near the bend of the Carpathian arc 190-134
Rusakov, L. S. See Isakovitch, M. A.
Rush, Stanley. Methods of measuring the resistivities of anisotropic conducting media in situ -------------------------- 191-262
Rushbrook, P. R. See Ehmann, W. D.
Rusnak, G. A. See Ostlund, H. G.
Russell, R. D. Isotopic studies and geochronology; VIII--------------- 189-14
— The evolution of the earth’s crust–isotopic evidence ----------------- 189-338
Russell, R. D., and Slawson, W. F. Age of the Cuddapahs, India ---- 190-20
Russell, W. L., and Steinhoff, R. O. Radioactivity of volcanic sediments in Brazos County, Texas------------------------------- 188-472
Rustanovich, D. N., Masaytis, V. L., and Chon, Khen Suk. Seismicity and the problems of seismotectonics and seismic regionalization of Korea -- 190-129
Ryaboy, V. Z. See Vol’vovskiy, B. S., and Vol’vovskiy, I. S.
Ryll, Alan. The Hebgen Lake, Montana, earthquake of August 18, 1959-- 189-72
Ryan, J. A. The case against thermal fracturing at the lunar surface --- 190-95
Ryan, T. G. See Soberman, R. K.
Ryazanova, V. N. See Metallova, V. V.
Rykunov, L. N., and Mishin, S. V. Certain features of propagation of microseisms along continental paths---------------------- 189-480
See also Vasil’yeva, T. L.
Rýsavy, Josef. The development of Czechoslovak geodesy and cartography from 1945 to 1960 ------------------------------------- 191-299
Ryss, Yu. S. Main characteristics of variable natural electric fields in the ground and their geologic significance ----------------- 189-169
Ryss, Yu. S., Fokin, A. F., and Shatrov, B. B. The possibilities of electrical prospecting by direct and low frequency currents ---- 189-173
Ryzhova, T. V. See Aleksandrov, K. S.
Rzheusskaya, I. V. See Metallova, V. V.

S

Sadil, Josef. Target—the moon -- 190-102
Saemundsson, T. Statistics of geomagnetic storms and solar activity -- 189-414
Safrovnov, V. S. How much of cosmic matter falls on the earth--------- 191-65
Sagitov, M. U. Calculation of the second vertical derivative of gravity anomaly, and its application to determination of anomalous masses ---------------------------------- 189-294
AUTHOR INDEX

Saha, B. P. A preliminary note on short period microseisms recorded by Benioff seismograph at Shillong.............. 190-490
--- The seismic Lg waves and their propagation along the granitic layer of the crust of Indian sub-continent........... 190-140
Saint Amand, Pierre. The earthquakes of May—Chile 1960........ 190-121
See also Ruiz F., Carlos.
Saito, Masanori. See Nishimura, Eiichi, and Takeuchi, Hitoshi.
Saito, Sadao. See Omote, Syun’iitiro.
Saito, Takao. Oscillation of geomagnetic field with the progress of pt-type pulsation.................. 189-404
See also Kato, Yoshiro.
Saito, Tsuguo. See Kawachi, Yosuke.
Saito, Yutaka. See Takeshita, Hisashi.
Saks, M. V. See Karus, Ye. V.
Sakurai, K. See Maeda, Hiroshi.
Sala, Ilmari. Experimental studies on the stress concentration index of sea-ice.................. 191-682
Sales, T. W. See Berry, D. S.
Salisbury, J. W. The lunar environment.......................... 190-100
Saltykovskiy, A. Ya. See Lyustikh, Ye. N.
Sancin, S. See Gantar, C.
Sandstrom, N. See Weber, J. R.
Sanford, R. L., and Cooter, I. L. Basic magnetic quantities and the measurement of the magnetic properties of materials------- 191-464
Sanna, S. See Mattana, N.
Sano, Shun-Ichi. A study on airborne radioactivity surveying...... 188-483
--- Radioactivity logging of sedimentary rocks in the Jōban district.... 188-512
Sano, Shun-Ichi, Nakai, Junji, and Takei, Yoshiyuki. Geophysical loggings at Tazawa Lake district, Akita Prefecture.... 188-510
Sano, Shun-Ichi, Takagi, Shin-Ichiro, and Nakai, Junji. Geophysical loggings at Higashi-Tagawa district, Yamagata Prefecture.... 188-511
See also Shibato, Kihei.
Santo, T. A. Dispersion of Love waves along various paths to Japan (Part 1)... 191-404
--- Division of the south-western Pacific area into several regions in each of which Rayleigh waves have the same dispersion characters.................. 191-403
--- Observation of surface waves by Columbia-type seismograph installed at Tsukuba Station, Japan. (Pt. 1)—Rayleigh wave dis­persions across the oceanic basin.. 188-371
--- Rayleigh wave dispersion across the oceanic basin around Japan (Pt. 2)... 188-372
Sarbash, V. F. See Kevorkov, R. A.
Schrödinger, Hellmuth, and Peschel, Gerald. Detection of a hitherto unknown part of the Red Iron Ore layer at the south edge of the Btchenberg anticline by geomagnetic measurements........... 191-550
Sardarov, S. S. Bond energy and retention of radiogenic argon in micas.. 191-11
Sarma, V. V., Jagannadha, and Rao, V. B. Variation of electrical resistivity of river sands, calcite, and quartz powders with water content.. 191-261
Sasa, Yasuo, and Izaki, Akira. Submarine geology of the Togararu Straits.. 191-687
Sass, J. H. See LeMarne, A. E.
Sato, Koji. On the types of Japanese volcanic thermal water........ 189-624
Sato, Konosuke. See Okabe, Katsuhiko.
Sato, Ryosuke. Love waves propagated across transitional zone --- 189-152
--- Short-period elastic surface waves propagated along the surface
of a semi-infinite isotropic heterogeneous medium -------------- 189-148
Sato, Takahiro, and Ao, Shunji. A guyot at the north margin of the
West Philippine Sea Basin ------------------------------------- 189-614
Sato, Yasuo, and Matumoto, Tosimatu. Vibration of an elastic
globe with a homogeneous mantle over a homogeneous core. Vi-
bbrations of the first class ---------------------------------- 190-163
See also Usami, Tatsuo.
Saull, V. A., Clark, T. H., Doig, R. P., and Butler, R. B. Ter-
restrial heat flow in the St. Lawrence Lowland of Quebec ------ 189-323
See also Doig, R. P.
Savage, D. E. See Curtis, G. H.
Savarenskiy, Ye. F., and Kirnos, D. P. Elements of seismology
and seismometry --- 188-155
Savarenskiy, Ye. F., and Mey, Shi-yun. Investigation of seismic
activity of the territory of China ----------------------------- 188-164
Savarenskiy, Ye. F., and Obukhov, G. G. On the stability of de-
termination of earthquake intensities according to surface waves - 188-170
Savarenskiy, Ye. F., Popov, I. I., and Lazareva, A. P. Observa-
tions of long period waves of Chilean earthquake of 1960 ------- 189-134
See also Kárník, Vit, Vanek, I., and Vasil'yeva, T. L.
Savill, R. A., Carpenter, E. W., and Wright, J. K. The deriva-
tion and solution of indicator equations for seismometer-galva-
nometer combinations including the effect of seismometer induct-
ance -- 191-124
See also Carpenter, E. W., and Wright, J. K.
Savinskiy, D. Certain analytic and statistical regularities in gam-
ma surveying of deposits of radioactive elements in natural oc-
currence and in gamma logging---------------------------------- 190-511
techniques applied to oceanic crustal studies------------------ 190-581
Savonenkov, V. G. See Komlev, L. V.
Savul, M., and Pomirleanu, V. V. Paleogeothermal investigations
of hydrothermal vein deposits of Baia-Sprie ------------------- 188-368
--- Paleogeothermometric investigations on complex sulfide de-
posits localized in crystalline schists in the Eastern Carpathians
in the Rumanian People's Republic. 1. Mineralizations of the
Lesul Ursului --- 189-335
Saxov, S. E. The vertical movement of Eastern Greenland (Ang-
magssalik)--- 189-254
Sazonov, A. M. See Grammakov, A. G.
Scarfe, F. L. Micropulsations and hydromagnetic waves in the exo-
sphere -- 189-399
Scearce, C. S. See Ness, N. F.
Schaefer, D. H. See LaGow, H. E.
Schaeffer, O. A., Stoenner, R. W., and Bassett, W. A. Dating of
Tertiary volcanic rocks by the potassium-argon method--------- 188-25
Schafter, J. C. See LaGow, H. E.
Schäffner, H. J. Interpretation of focal mechanisms by means of
asymmetrical dislocations ------------------------------------- 189-113
Schatenstein, A. I., Jakowlewa, E. A., Swajginzewa, E. N.,
Warschawski, Ja. M., Israilewitsch, E. A., and Dychno, N. M.
Isotope analysis of water -------------------------------------- 188-381
Schearer, L. D. See Keyser, A. R.
AUTHOR INDEX 741

Abstract

Scheidegger, A. E. Niveal effects .. 189-259
— Stresses in the earth's crust as determined from hydraulic
fracturing data ... 191-666
— The tectonics of Asia in the light of earthquake fault-plane 189-111
— Underground stresses .. 188-312
Schell, W. R. See Dorn, T. F.
Scherbak, M. P. See Burkser, Ye. S.
Schilling, G. F. Meteorites—Their origin and properties 189-42
— Origin of tektites ... 189-60
Schmerling, E. R. See Goldberg, R. A.
Schmidt, R. A. Temperatures of mineral formation in the Miami-
Picher district as indicated by liquid inclusions 191-394
Schmidt, R. G. Aeroradioactivity survey and areal geology of the
Hanford Plant area, Washington and Oregon (ARMS-1) 191-593
— Aeroradioactivity survey and areal geology of the Savannah
River plant area, South Carolina and Georgia 189-499
Schneekloth, Heinrich. See Geyh, M. A., and Wendt, Immo.
Schneider, Götz. Propagation of microseisms in northern and cen-
tral Europe .. 190-486
Schneider, Manfred. A remark on the determination of the natural
period of horizontal pendulums ... 190-151
Schnetzler, C. C. See Pinson, W. H., Jr.
Scholte, J. G. J. See Ritsema, A. R.
Schombierski, A. See Hereth, A.
Schulze, Reinhard. Automation of the sea gravimeter Gss2 191-355
Schumacher, Ernst. See Oeschger, Hans.
Schürmann, H. M. E. The Riphean of the Red Sea area 190-19
Schwarcz, H. P. A possible origin of tektites by soil fusion at im-
 pact sites .. 189-59
See also Fitch, Frank.
Schwarz, U. See Gfeller, Chr.
Science Council of Japan. Proceedings of the second world confer-
ence on earthquake engineering ... 188-178
Sciuti, S. See Giannini, M.
Seabrook, Merren. See Ringwood, A. E.
Seafeldt, C. A. See Press, Frank.
Segerstrom Kenneth. See Ruiz F., Carlos.
Segre, A. G. See Gantar, C.
Sehnal, L. The effect of the equatorial ellipticity of the earth's
gravitational field on the motion of a close satellite 191-332
Seigel, H. O. Induced polarization and its role in mineral explora-
tion .. 190-187
Sell Cantalapiedra, J. L., and Gutiérrez Díez, J. L. Geophysical
investigation in the lignites of Majorca 190-232
Sellevoll, M. A. See Berckhemer, Hans.
Semenenko, N. P. Age of metamorphism of the rocks of the Rakhov
massif ... 188-80
— Geochronological scale of the Precambrian according to meas-
urements in the Academy of Sciences of the Ukraine SSR 188-5
Semenov, A. S. Ore geophysics in the USSR 190-264
Semenov, G. S. See Grumkobov, A. P.
Sengbush, R. L. Stratigraphic trap study in Cottonwood Creek field,
Big Horn Basin, Wyoming ... 191-618
Sen'ko-Bulatnyy, I. N. See Bulasheivich, Yu. P.
Serabryakova, Z. D. See Alferov, B. A., and Kozlov, I. G.
Serata, Shosei. Transition from elastic to plastic states of rocks under triaxial compression ---------------------------------- 188-573
Serata, Shosei, and Gloyna, E. F. Design principles for underground salt cavities --------------------------------------- 189-600
Serbulenko, M. G. Correlation method of interpretation of two-dimensional potential fields ---------------------------------- 191-515
--- On correlation interpretation of higher derivatives of two-dimensional potential fields ---------------------------------- 191-517
Serdene, S., and Boozer, G. D. The effects of strain rate and temperature on the behavior of rocks to triaxial compression --- 188-574
Serdyukova, A. S. See Kapitanov, Yu. T.
Serebryakov, Ye. B. See Pavlovskiy, V. I.
Serebryannyy, L. P. On development of an absolute chronological scale of the upper Pleistocene and Holocene by the radiocarbon method ---------------------------------- 189-10
Serikov, M. I. Determination of the modulus of elasticity of ice by the resonance method ---------------------------------- 189-608
--- Mechanical properties of Antarctic sea ice ---------------------------------- 191-683
Serra, A. See Mattana, N.
Service Hydrographique de la Marine and Compagnie Generale de Geophysique. Tidal gravity corrections for 1962 ---------------------------------- 189-303
Seto, Takao. See Inoue, Eiji.
Seya, Kiyoshi. A theoretical consideration of radioactive intensity in the air ---------------------------------- 191-586
--- Consideration of spontaneous polarization potential at the Oage pyrite mine, Aomori Prefecture ---------------------------------- 189-178
Shabanov, B. A. On improving the accuracy of processing telluricograms ---------------------------------- 190-113
Shabanov, B. A., and Gorelov, L. A. Results of testing the method of telluric currents in the border zone of the Peri-Caspian depression ---------------------------------- 191-76
See also Gorelov, L. A.
Shabanov, P. F. See Vilesov, Ye. N.
Shabanov, S. F. See Tsaturyants, A. B.
Shadle, L. G. See Lorenz, P. J.
Shagam, Reginald. See Bass, M. N.
Shaginyan, S. A. The results of instrumental determination of dynamic characteristic of coefficient ---------------------------------- 189-89
Shakhmaliev, R. N. See Ismet, A. R.
Shakina, V. Determination of reservoir properties and the position of the water-oil contact by geophysical and radiometric methods ---------------------------------- 190-215
Shalayev, S. V. Application of the function of a complex variable to geological interpretation of gravity and magnetic data ---------------------------------- 191-496
Shamina, O. G. Investigation of elastic waves on two-dimensional bimorphous models ---------------------------------- 190-171
--- Model investigation of head waves and reflected waves beyond the critical angle ---------------------------------- 190-170
--- Study of dynamic characteristics of longitudinal waves in layers of various thickness ---------------------------------- 191-172
Shamina, O. G., and Lebedeva, F. V. On transformed waves on models of the crust and the mantle ---------------------------------- 191-167
See also Silayeva, O. I.
Shand, J. A. See Duffus, H. J.
Shangareyev, F. L. See Ovchinnikov, L. N.

Shan'gin, N. V. An arrangement for modeling seismic processes -- 189-571
— Seismic station for engineering-geological investigations —— 189-572

Shan'gin, N. V., and Vilenskaya, S. M. Study of elastic properties and seismic wave velocities in the interior of the earth from drill cores —— 188-214

Shapiro, D. A. Application of the radioactive methods for investigation of drill holes in the Tatar ASSR —— 189-539
— Control of boreholes condition by the neutron-gamma logging method —— 190-520

Shapiro, D. A., and Neyman, V. S. Evaluation of porosity of strata according to SP diagrams —— 190-218

Shapiro, Ralph. See Silverman, S. M.

Shapley, A. H. International Geophysical Calendar for 1962 —— 189-234

Shaposhnikov, D. P. Study of Lipovskiy Khutor meteorite —— 189-57

Sharp, R. P., and Epstein, Samuel. Oxygen-isotopes ratios and glacier movement —— 189-278

Shashkin, V. L. See Troitskiy, S. G.

Shatrov, B. B. See Ryss, Yu. S.

Shats, M. M. See Starik, I. Ye.

Shaub, Yu. B. Apparatus for electric prospecting by the method of variation of resonance frequency of the generating circuit —— 189-166
— Experimental verification of features of the method of a rotating magnetic field —— 188-243
— On the effect of the specific resistance of the country rock on the form of anomalistic curves in airborne electrical prospecting —— 191-217
— On the utilization of measurements of the parameters of the frame of the generating circuit in electrical prospecting on sonic frequencies —— 189-165

Shawe, F. R. See Jackson, W. H.

Shecherbakov, A. V. See Tokarev, A. N.

Shecherbakov, D. I. The absolute age scale for geologic formations— 189-4

Shecherbinskii, V. G. See Burov, B. M.

Shecherbo, M. N. See Vas'il'yev, Yu. I.

Shebalin, N. V. On calculation of variations of parameters of electrodynamic seismographs —— 191-147
See also Kárnýk, Vít, Kirnos, D. P., Moskvina, A. G., and Vanek, I.

Shechkov, B. N., and Solov'yeva, O. N. On group velocities of Rayleigh waves for a composite continent-ocean path —— 189-349

Sherwood, J. W. C. The Seismoline, an analog computer of theoretical seismograms —— 191-600

Shestakov, G. I. See Zhirov, K. K.

Shibata, Ken. See Miller, J. A.

Shibato, Kihei; Iida, Kumizi; and Sano, Shun-Ichi. Geophysical prospecting studies of uranium resources at Hirase Mine, Gifu Prefecture —— 190-213

See also Endo, G.
Shido, Fumiko, See Miller, J. A.
Shilin, A. K. See Shumenkova, Yu. M.
Shima, M., and Thode, H. G. The sulfur isotope abundances in Abee and Burderheim meteorites 190-73
Shimazu, Yasuo. Physical theory of generation, upward transfer, differentiation, solidification, and explosion of magmas 190-353
— Thermodynamics of tectogenesis 191-301
Shimbirev, B. P. See Brovar, V. V.
Shimelevich, Yu. S. See Alekseyev, F. A., Odinokov, V. P., and Yerolozimskiy, B. G.
Shimozuru, Daisuke. Seismologic study of Nyiragongo Volcano 188-595
Shipek, C. J. See Carsola, A. J.
Shirokov, A. S. Methods of geophysical work in prospecting for mineral resources 190-247
See also Karpushin, D. M.
Shirokova, Ye. I. See Balakina, L. M.
Shkol'nikov, A. S. See Alekseyev, F. A., and Yerolozimskiy, B. G.
Shneiderov, A. J. On the internal temperature of the earth 188-363
— Radioactively induced stratification and discontinuity zones of the earth 191-577
— The plutono- and tectonophysical processes in an expanding earth 189-252
Shneyerson, M. B. Interpretation of traveltime curves of refracted waves in prospecting on flat platform structures 188-535
Shnurman, G. A. Experience in the application of radiometric methods in the oil areas of the east cis-Caucasus 189-540
Shoemaker, E. M. Exploration of the moon's surface 189-67
Sholpo, G. P. See Gasanenko, L. B., and Van'yam, L. L.
Sholpo, L. E. See Yanovsky, B. M.
Shor, G. G., Jr. Seismic refraction studies off the coast of Alaska 189-339
Shport, L. P. SeeYepinat'yeva, A. M.
Shraybman, V. I. See Vol'vosvkiy, I. S.
Shreve, R. L. The borehole experiment on Blue Glacier, Washington 191-315
Shhteynberg, V. V. Recording of earthquakes with high speed scanning 190-146
Shukolyukov, Yu. A. See Gerling, E. K.
Shuleshko, P. A method of integration over the boundary for solving boundary value problems 188-292
Shull'ts, S. S. Fundamental geostuctural elements of the earth according to data on recent tectonics of the U.S.S.R. 191-310
Shumskiy, P. A. Glaciological investigations in Antarctica 190-252
— The mechanism of ice straining and its recrystallization 189-606
See also Lazarev, G. Ye.
Shumway, George. See Carsola, A. J.
AUTHOR INDEX

Shurbet, D. H. Note on use of a Sofar geophone to determine seismicity of regional oceanic areas 191-89
Shuval-Sergeyev, N. M. See Artamonov, L. V.
Shvank, O. A. Calculation of the first and second derivatives of gravity anomalies 191-343
Shvedov, V. P., Gritchenko, Z. G., and Gedonov, L. I. Concentration of Be-7 in ground-level air and atmospheric precipitations 191-581
Sidorova, E. P. See Rodionov, V. P.
Signer, Peter. See Geiss, Johannes
Silayeva, O. I., and Shamina, O. G. Absorption of ultrasonics in granites 189-155
Silverman, S. M., Ward, Fred, and Shapiro, Ralph. The correlation between 5577 A night airglow intensity and geomagnetic activity 190-398
Simáně, Jindřich. The "Pribram A" seismoacoustic station 191-671
Simeon, G., and Sposito, A. Preliminary report on a peculiarity in the variations of the earth's magnetic field 191-439
Simin, Dina. Determination of density in the territory of Vojvodina 188-354
Simonenko, T. N. Calculation of derivatives of the "pseudogravitational" field according to magnetic survey data for the case of a plane problem 191-502
— On the problem of determination of the direction of magnetization of bodies in their natural occurrence 191-513
Singer, S. F. Theory of magnetic storms 190-428
Sinno, Kenji. Method of magnetic storm forecasting from the activities of flares accompanied by solar radio noise outbursts 189-411
— On the great solar flare which started at 21h09m, February 9th, 1958, as the likely source of geomagnetic storm, February 11th 189-419
Sirán, Gustáv. On the determination of secular changes in the geomagnetic field 190-393
Sirin, A. N. See Markhinin, Ye. K., and Rudich, K. N.
Skillman, T. L. See Ness, N. F.
Skoblikova, G. I. See Komarov, S. G.
Skolnick, H. Ancient meteoritic dust 188-128
Skorupa, Jan. Geophysical aspects of CMEA meeting in Prague 188-296
— Methods of geophysical work in exploration for oil and gas deposits in Poland 188-297
Skosyreva, L. N. See Yermakov, V. I.
Skrzat, Zofia. Investigation of radioactivity of pegmatites from the Szklarska Poręba region by the method of nuclear plates 188-485
Skur'yat, A. N. A small size illuminator (MO) for tiltmetric and seismic recording 191-126
Slautsitays, I. P. See Komissarova, R. A.
Slawson, W. F., and Austin, C. F. A lead isotope study defines a geological structure 189-362
— See also Austin, C. F., and Russell, R. D.
Slepnev, Yu. S., and Sharon, L. L. Absolute age of the rare-metal pegmatites of the eastern Sayan 191-27
Śliwiński, Zygmunt, and Soja, Zbigniew. Practical method of construction of seismic reflection profiles 189-558
Sluchanko, Z. Ye. See Kevorkov, R. A.
Smirnov, L. P. See Gaynanov, A. G.
Smith, D. E. An evaluation of the odd harmonics in the earth's gravitational field 191-331
Smith, D. E. Determination of the earth's gravitational 191-330
Smith, E. J. A comparison of Explorer VI and Explorer X magnetometer data 189-402
Smith, E. J., and Sonett, C. P. Satellite observations of the distant field during magnetic storms 190-415
Smith, H. W. See Duebsterhoft, W. C., Jr.
Smith, J. G. See Savit, C. H.
Smith, R. F., Eby, R. E., and Turok, C. W. Variations in isotopic content of natural uranium 188-388
Smith, W. E. Geophysics on the move 190-254
Smithson, S. B. A regional gravity study over the Permian Baerum cauldron of the Oslo region 189-314
Soare, Alexandra. See Constantinescu, Liviu.
Soare, Andrei. See Constantinescu, Liviu.
Sobakar, G. T. See Lebedev, T. S.
Soberman, R. K., and Hemenway, C. L. Micrometeorite collection from a recoverable sounding rocket, Article III 190-91
See also Hemenway, C. L.
Sobolev, G. A. See Volarovich, M. P.
Sobotovich, E. V. Possibility of determining the absolute age of the granites of the Terskey Ala-Tau by the lead included in them 188-92
See also Starik, I. Ye.
Sobouti, Y. The relationship between unique geomagnetic and auroral events 190-414
Soja, Zbigniew. See Śliwiński, Zygmunt.
Sokhranov, N. N. On the transition zone and determination of the water-oil contact according to geophysical measurements 190-220
— Quantitative interpretation of electrical logging data in a transition zone 188-262
Sokolov, A. D. See Grumbkov, A. P., and Matveyev, V. V.
Sokolov, A. F. See Koryagin, V. V.
Solaini, Luigi. See Morelli, Carlo.
Solonenko, V. P. On irregularity of distribution of shock intensity of earthquakes on the surface of the earth 191-100
— The Gobi-Altay earthquake 191-78
Solovyev, O. A. Application of the two-dimensional integral transformation of Fourier for interpretation of magnetic anomalies 191-519
— Method of interpretation of magnetic anomalies from their vertical and horizontal gradient Z_a 191-497
— Some problems of transformation of curves of observed values of magnetic potential derivatives 191-516
— The method of determination of the ratio l/σ of obliquely magnetized bodies of arbitrary forms according to the values of Z_a and V_{zx} 191-498
Solovyev, S. L. See Kárník, Vít, and Vanek, I.
Solovyev, V. N. Automatic device for controlling the recording of seismographs AUZ-I 191-133
See also Kirnos, D. P., and Ye, Shi-Yan'.
Soluyan, S. I., and Khokhlov, P. V. Propagation of acoustical waves of finite amplitude in a dissipative medium -------------- 191-173
Somerton, W. H. Additional thermal data for porous rocks—Thermal expansion and heat of reaction ------------------------ 188-364
Sonett, C. P. See Smith, E. J.
Sonntag, Klaus. See Grosse, Siegfried, and Kopf, Manfred.
Sørensen, Henning. See Buchwald, Vagn.
Sorensen, John. See Lecar, Myron.
Soguy, J. West African fold belt 190-283
Soyer, Robert. See Horan, Octave.
Spears, D. A. The distribution of alpha radioactivity in a specimen of Shap granite ----------------------------- 188-474
Spencer, T. W. See Sherwood, J. W. C.
Spiridovich, G. N. See Molochnov, G. V.
Sponheuer, Wilhelm. Methods of focal depth determination in macroseismics ---------------------------------- 190-130
Sposito, A. See Simeon, G.
Spreiter, J. R., and Alksne, A. Y. On the effect of a ring current on the terminal shape of the geomagnetic field ----------------- 190-381
Spreiter, J. R., and Briggs, B. R. Analysis of the effect of a ring current on whistlers ------------------------- 191-430
Springer, D. L. See Werth, G. C.
Squires, R. K. See O'Keefe, J. A.
Srivastava, B. J. See Pisharoty, P. R.
Stacey, F. D. Theory of the magnetic properties of igneous rocks in alternating fields ------------------------ 189-423
Stacey, F. D., Lovering, J. F., and Parry, L. G. Reply to preceding discussion [Thermoelectric currents in meteorites] ------ 188-106
Stackler, W. F. See Thyssen-Bornemisza, Stephen.
Stahl, W. See Buttlar, H. von.
Stalinsky, P. See Pounder, E. R.
Stam, J. C. Modern developments in shallow seismic refraction techniques ------------------------------------ 189-561
Standard, J. C. Submarine geology of the Tasman Sea ------------------------------- 188-585
Stankevich, L. I. Research drill holes of the USSR Pestovo research well (Novgorod Region) ---------------- 191-258
Starik, I. Ye., and Arslanov, Kh. A. Age according to radiocarbon of some samples from the Quaternary period ----------------------------- 188-75
Stauder, William. An application of S waves to focal mechanism studies ---------------------------------- 189-105
— S-wave studies of earthquakes of the north Pacific; Part I: Kamchatka --------------------------------- 191-132
Stauffer, Heinz. On the production ratios of rare gas isotopes in stone meteorites ------------------- 190-81
Abstract

Stauffer, Heinz, and Honda, Masatake. Cosmic-ray-produced V-50 and K-40 in the iron meteorite Aroos 190-76

Stearns, H. T. Eustatic shorelines on Pacific islands 190-267

Steenland, N. C. Gravity and aeromagnetic exploration in the Paradox Basin 191-543

Ștefănescu, S. S.; Airinei, Ștefan; Botezatu, Radu; Ionescu, Florian; Popovici, Dorin; and Stoenescu, Scarlet. Geophysical exploration for iron in the vicinity of Constanța 188-463

Ștefănescu, S. S., and Nabighian, M. N. Concerning lines of the magnetic field of an input line AB 188-241

Șteflea, Vladimir. See Constantinescu, Liviu.

Steinbrugge, K. V., and Cloud, W. K. Epicentral intensities and damage in the Hebgen Lake, Montana, earthquake of August 17, 1959 189-71

Steinemann, Samuel. Thermodynamics and mechanics of ice at the melting point 189-272

Steinhart, J. S., and Meyer, R. P. Minimum statistical uncertainty of the seismic refraction profile 189-560

See also Asada, Toshi.

Steinhoff, R. O. See Russell, W. L.

Stelzer, Johannes. Determination of the magnitude equations for the Potsdam seismic station 188-169

Stenin, P. A. See Tslav, L. Z.

Stenson, H. R. Geophysical case history of the Alturitas concession, state of Zulia, western Venezuela 188-287

Stephenson, G. The gravitational instability of an infinite homogeneous rotating viscous medium in the presence of a magnetic field 189-287

Stewart, D. B. See Ault, W. U.

Stewart, S. W., and Diment, W. H. Frequency content of seismograms of nuclear explosions and aftershocks 188-181

Stiller, Heinz, Frölich, Friedrich, and Wagner, F. C. Changes of state in magnetic rock samples. The thermomagnetic behavior of the vein material (magnetite) of serpentinite samples 188-419

See also Frölich, Friedrich.

Stipp, J. J., Davis, E. M., Noakes, J. E., and Hoover, T. E. University of Texas radiocarbon dates I 190-43

Stockwell, C. H. Structural provinces, orogenies, and time classification of rocks of the Canadian Precambrian shield 188-1

Stoenescu, Scarlet. See Ștefănescu, S. C.

Stoenner, R. W. See Schaeffer, O. A.

Stolian, E. Geophysical applications of computers 190-260

Stolovitsky, B. M. See Schaeffer, A. Z.

Stommel, Henry. See Stewart, R. W.

Stovas, M. V. Importance of irregularities in the earth's rotation in the formation of planetary deep fractures in the earth's crust 189-242
Strakhov, V. N. Approximations of functions on a half-axis and application of similar approximations to calculation of integrals used in interpretation of magnetic and gravity anomalies ------- 191-494
- Construction of quadrature formulas with almost equal coefficients ---------------------------------- 191-495
- Experience in interpretation of magnetic anomalies of the KMA by the method of ΔZ isolines construction in a vertical plane ------ 190-468
- On calculation systems for analytic extension of potential fields. I --- 188-437

Strangway, D. W. See Gross, W. H.
Straus, W. L., Jr., and Hunt, C. B. Age of Zinjanthropus ------- 190-18

Streckeisen, Albert. See Jäger, Emilie.
Stroiteleva, A. V., and Kulikova, M. V. Short review of geophysical study of the presence of iron deposits in central Kazakhstan--- 191-553
Stuart, D. J. Gravity study of crustal structure in western Washington--- 188-347
Stuart, D. J., and Wahl, R. R. A detailed gravity profile across the Southern Rocky Mountains, Colorado -------------------------------- 188-341
Stuchenrath, Robert, Jr. See Ralph, E. K.
Studt, F. E., and Doyle, D. Electric power generation from geothermal steam at Wairakei, New Zealand------------------- 190-348
Stuiver, Minze, and Deevey, E. S. Yale natural radiocarbon measurements VI ---------------------------------- 190-36
- Yale natural radiocarbon measurements VII -- 190-59
See also Washburn, A. L.
Stupak, N. K. Application of geophysical methods in prospecting for nickel silicate deposits in the middle Dnieper region -------- 191-552
Subbotin, S. I., and Naumchky, G. L. Concerning the paper by P. Ya. Galushko "On the possibility of determining the cause of vertical movements of the earth's crust from gravity anomalies"- 189-241
Suda, Yoshiro. On the calibration of the North American gravimeter AGI-108 and AGI-157 -------------------------- 189-301
See also Matsuda, Takeo.
Suelter, C. H. See Boyer, P. D.
Suess, H. E. Thermodynamic data on the formation of solid carbon and organic compounds in primitive planetary atmosphere-------- 190-62
Suess, H. E., and Wänke, H. Radiocarbon content and terrestrial age of twelve Stony meteorites and one iron meteorite --------- 190-86
See also Bainbridge, A. E., and Hubbs, C. L.
Suga, M. See Ono, Yoshihiko.
Sugiura, Masahisa. A note on the DS variation of geomagnetic storms: A critical examination of method of analysis--------- 190-441
- A study of the morphology of geomagnetic storms--- 190-440
- Asymmetry of Dst variations of geomagnetic storms with respect to the geomagnetic equator -------- 188-412
- Evidence of low frequency hydromagnetic waves in the exosphere -- 189-369
Sugiura, Masahisa, and Chapman, Sydney. The average morphology of geomagnetic storms with sudden commencement ---------- 190-443
See also Wilson, C. R.
Sugiyma, Tomonori, and Horikawa, Yoshio. Radiometric survey with car-mounted instrument at the surroundings of Mt. Asahidake--- 188-490
Sugiyma, Tomonori, and Komai, Jiro. Airborne radiometric survey in the western part of Mt. Asahidake -- 188-496
Abstract

Sukhodol'skiy, V. V. The PNU device for investigation of tilts and accelerations in gravity determinations at sea 191-361
See also Aleksandrov, S. Ye.

Sulimov, I. N. Research drill holes of the U. S. S. R. Zhigalov research drill hole (east Siberia) 190-235

Sultanov, B. I. Some causes of geothermal anomalies in the Apscheron oil region 189-325

Sultanov, D. D. See Pasechnik, I. P.

Šumi, Franč. Geophysical investigations for chromite 188-299
See also Aleksandrov, S. Ye.

Šumi, Kiyoshi. See Nakamura, Hisayoshi.

Suoninen, E. J. On the correction to be applied for variations in the mutual position of the transmitter and receiver in airborne electromagnetic measurements .. 190-186

Sutton, G. H. Note on long-period noise in seismographs 190-142

Suyama, Junji. On the interpretation of S. P. log 189-211
See also Kojiro, T., and Ono, Yoshihiko.

Suzuki, Ziro, and Ishida, Haruko. On the surface waves of Aleutian, Alaska Philippine earthquakes 189-348
— On the surface waves of Kamchatka earthquakes 189-347
See also Kato, Yoshio.

Svatkov, N. M. Ice movement in Shokalskiy Glacier 191-323

Sveshnikov, G. B., and Dorofeyeva, M. K. Certain electrochemical properties of sulfide minerals 188-279

Svetov, B. S. Role of the procedure for exciting a field in the low-frequency inductive method of electrical prospecting 191-215

Svetov, B. S., and Turchin, Yu. A. A simplified apparatus for amplitude-phase measurements of a low frequency electromagnetic field (API-U) .. 190-206

Svyatlovskiy, A. Ye. Thermal underground waters of the Kamchatka and the role of recent tectonics and volcanism in their dynamics .. 190-346

Swain, R. J. Recent techniques for determination of "in-situ" elastic properties and measurement of motion amplification in layered media .. 189-565

Swanson, H. E. Model studies of an apparatus for electromagnetic prospecting .. 189-188

Swift, L. M. Intermediate range earth motion measurements 191-210
See also Adams, W. M.

Swithinbank, Charles. Ice movement island 191-319

Swjaginzewa, E. N. See Schatenstein, A. I.

Syromyatnikov, N. G. See Koshelev, I. P.

Szabo, Bela. The external terrestrial gravity field 190-297

T

Taagepera, R., and Nurmia, M. On the relations between half-life and energy release in alpha decay 189-484

Tabata, Tadashi. Studies on mechanical properties of sea ice, IV. Bending tests of sea ice beams 189-603

Takagi, Akio. See Kato, Yoshio.

Takahashi, Takehito. Dispersion curves for the higher modes of surface waves in heterogeneous media

- The dispersion of Love waves in heterogeneous half space overlain by a homogeneous layer

Takaku, Koshun. See Nomura, Yukichi.

Takano, Minoru. Brief considerations on rupture of arch dam abutment

Takashima, Y. See Dorn, T. F.

Takei, Yoshiyuki. See Sano, Shun-Ichi.

Takeshita, Hisashi; Saito, Yutaka; and Momose, Kanichi. Palaeomagnetisms and volcanic geology of the Shigarami formation

Takeuchi, Hitoshi, Saito, Masanori, and Kobayashi, Naota. Statical deformations and free oscillations of a model earth

- Study of shear velocity distribution in the upper mantle by mantle Rayleigh and Love waves

See also Nishimura, Eiichi.

Talobre, Joseph. Ten years of measurements of internal compression of rocks; progress and practical results

Tal'Virskiy, B. B., and Fomin, V. M. Nature of the magnetic and gravity anomalies of the Bukharo-Khivin oil-gas area and of Kyzyl-Kum

See also Vol'voskiy, B. S.

Tal'virsiky, D. B., and Khakhlev, Ye. M. Surface structure of the pre-Jurassic basement in the lower reaches of the Yenisey River according to seismic prospecting

See also Vol'voskiy, B. S.

Tal'ysnskiy, I. I., Bilen'kii, B. F., and Dragon, Ya. P. To the theory of neutron logging

Tamao, T. See Kato, Yoshio.

Tamrazyan, G. P. Periodicity of seismic activity in the course of the last fifteen hundred to two thousand years (in the example of Armenia)

Tanaevsky, Olga. See Servant, J.

Tandon, A. N. Seismic recording at Delhi of the Russian nuclear explosions on 23 and 30 October 1961

Taneda, Sadakatu. Moving of the magma chamber of the Sakurajima Volcano

- Temperature variation of active crater—Short communication on the Naka-dake crater of the Aso Volcano

Tanner, J. G., and Uffen, R. J. Gravity anomalies in the Gaspé Peninsula, Quebec

Tanner, W. F. Components of the hypsometric curve of the earth

Tarakanov, Yu. A. See Artem'yev, M. E.

Tárczy-Hornoch, Antal. On the determination of earthquake fociuses

- On the localization of seismic focuses in mining districts

Tarkhov, A. G. See Bondarenko, V. M.

Tateishi, Tetsuo. See Matsuda, Takeo.

Tatevosyan, L. K. Some features of the deep structure of the crust in the region of the Caucasus according to gravimetric data

Tauber, Henrik. Copenhagen radiocarbon dates

- Danish carbon-14 dating results I
Taylor, H. P., Jr., and Epstein, Samuel. Relationship between $\text{O}^{18}/\text{O}^{16}$ ratios in coexisting minerals of igneous and metamorphic rocks. Pt. 1. Principles and experimental results ------ 190-376
- Relationship between $\text{O}^{18}/\text{O}^{16}$ ratios in coexisting minerals of igneous and metamorphic rocks. Pt. 2. Application to petrologic problems -- 190-377
Taylor, S. R. Fusion of soil during meteorite impact, and the chemical composition of tektites 191-66
Tazieff, Haroun. See Blot, C., and Healy, James.
Tazime, Kyozo. May M-waves be classified into two major branches -------------------------------- 188-209
- Ray-theoretical construction of dispersive Rayleigh waves ---- 191-161
- Reflection and refraction coefficients of elastic plane waves on a plane boundary --- 188-199
Tazime, Kyozo, and Hamada, Kazuo. Transition from dispersive Rayleigh waves to sound waves in a layer overlying a liquid half space ------------------------------- 188-205
See also Okada, Hiroshi.
Teisseyre, Roman. A dislocation theory of the earthquake processes --- 188-174
Telyakova, Z. Kh. Results of investigations of the crust in the south part of West Siberian Lowland by the method of deep seismic sounding --- 191-632
Tenenbaum, I. M. See Petrov, G. I.
Teplitskiy, V. A. Experience in the use of the seismic method of the plane front in Eastern Turkmenia ------------------------------- 190-550
Terekhin, Ye. I., and Faradzhev, A. S. Modeling of electric sounding over non-horizontal interfaces ------------------------------- 188-245
Tereshko, D. L. Calculation of the potential field at different levels according to its distribution on the earth's surface, as given on a map of isolines -------------------------------- 189-227
Terzaghi, Karl. Measurement of stresses in rock -- 190-596
Teskey, M. F. Use of high speed computers in geophysics -- 189-229
Teupser, Christian, and Olszak, Gerd. A contribution to the technique and application of hammer-blow seismic surveying -- 189-557
Thiel, Edward, and Ostenso, N. A. Seismic studies on Antarctic ice shelves -- 188-566
Thode, H. G., Monster, Jan, and Dunford, H. B. Sulphur isotope geochemistry -- 188-387
See also Clarke, W. B., Krouse, H. R., and Shima, M.
Thomas, Erich. Structural elements in the east Mecklenburg and northeast Brandenburg area on the basis of seismic refraction survey data ------------------------------- 191-625
Thomas, H. H. See Pearson, R. C.
Thomas, T. Y. Plastic flow and fracture in solids -- 188-567
Thompson, A. A., and Evison, F. F. Thickness of the earth's crust in New Zealand ------------------------------- 189-350
Thorarinsson, Sigururd. On the possibilities of predicting the next eruption of Katla -- 188-592
- On the predicting of volcanic eruptions in Iceland ------------------------------- 190-614
Thyssen-Bornemisza, Stephen, and Stackler, W. F. Micro-gravimetric measurements over a known geologic structure ------------------------------- 189-291
Tikhonov, V. I. See Zatonskiy, L. K.
Tikhonov, V. Ye. See Zhirov, K. K.
Tilles, David. Primordial gas in the Washington County meteorite - 190-78
Tilton, G. R. See Aldrich, L. T., Davis, G. L., and Wetherill, G. W.

Timerbayeva, K. M. See Markhinin, Ye. K., and Rudich, K. N.

Timofeyev, A. N. On interpretation of magnetic anomalies in the case of variable magnetic susceptibility of rocks 191-509

Timoshin, Yu. V. On the grouping of seismometers on large bases 191-609

--- On the theory of grouping 190-525

Tishchenko, V. Ye. Limitation of the effect of seasonality on the process of geophysical investigations in west Siberia 190-250

Titov, N. Ye. See Dobronravova, A. N.

Tobyš, Vladimír. See Kárník, Vít.

Tocher, Don. The Hebgen Lake, Montana, earthquake of August 18, 1959, MST 189-69

Tokarev, A. N., and Shcherbakov, A. V. Radiohydrogeology 189-490

Tokarev, P. I. See Markhinin, Ye. K.

Tokmagambetov, G. A. Density and porosity of the ice, firm and snow of the Lesser Almatinskiy glaciers 191-244

--- Mechanical properties of ice and firm in the Maloalmatinsky glaciers 189-282

--- Thermal conductivity of snow, firm, and ice on the Maloalmatinsky glaciers 189-283

See also Makarevich, K. G.

Tokmakov, V. A. See Maksimov, L. S.

Toksöz, M. N. See Ben-Menahem, Ari.

Tolstikhin, I. N. See Klushin, I. G.

Tomashkovskaya, I. S. Investigation of the shear modulus for rock samples under high confining pressures by the torsion method 190-599

Tomikuna, Yoshio. See Kigoshi, Kunihiko.

Tomkëieff, S. I. Kamchatka-Kuriles volcanoes 188-590

Tomoda, Yoshibumi. See Tsuboi, Chuji.

Tongiorgi, Ezio. See Ferrara, G.

Toperczer, Max. Textbook on general geophysics 188-294

Toporets, S. A. On the effect of metamorphism on the electrical and elastic properties of coals 188-276

Torio, Francisco. The energy of atomic nuclei 191-576

Tovarenko, K. A. See Alekseyeva, K. N.

Townshend, J. B. See Bottum, J. L.

See also Walton, Alan.

Tremmel, E. The estimation of the influence of incomplete propagation of tensile stress in jointed rock on the stress of pressure-shaft sheathing 191-680

Treskov, A. A. Straight-line epicentrals 191-96

Tricart, J. See Cailleux, André.

Trofimov, N. K. See Ayzenshtadt, G. Ye. A.

Troitskaya, V. A. The microstructure of the magnetic storms in respect of pulsations for the first eight months of the IGY 189-416

Troitskiy, S. G., Shashkin, V. L., and Bykova, K. I. Apparatus spectra of gamm-rays from infinite layers of uranium ores 191-583
Abstract

Troitiski, S. G., Shashkin, V. L., and Bykova, K. I. On the possibility of separate determination of uranium and thorium according to the data of measurements of gamma-ray spectra of ores in their natural occurrence

Troyer, A. W. The information content of a Rieber sonogram

Trubitsyn, V. P. Properties of matter at high pressures

Trukhin, V. I. See Petrova, G. N.

Tryggvason, Eysteinn. Crustal structure of the Iceland region from dispersion of surface waves

--- Crustal thickness in Fennoscandia from phase velocity of Rayleigh waves

Tsaturyants, A. B., and Gadzhiyeva, T. A. On the geothermal step in the oil-gas regions of Azerbaijan

Tsaturyants, A. B., and Shabanov, S. F. Problem of establishing systematic variations in the geothermal step with depth for the fields of Azerbaijan

Tseng, Jung-Sheng; Kan, Yung-Chn; Ho, Chuan-Da; and Lee, Pang-Nian. A study of the crystalline basement in Chai-Da-Mu basin by the low frequency refraction seismic method

Tsipul'skiy, V. I. See Pasechnik, I. P.

Tsikulin, M. A. An approximate estimate of the parameters of the Tungus meteorite of 1908 according to the picture of destruction of the forest massif

Tsirel', V. S. Use of a nuclear portable magnetometer for surveys at sea

See also Pogrebnikov, M. M.

Tskhakaya, A. D. On the depths of Caucasus earthquakes

Tslav, L. Z. The problem of locating a water-oil contact in carbonate sediments in cased boreholes

Tslav, L. Z., and Stenin, P. A. Present status and the possibilities of development of neutron methods for the investigation of drill holes in the Orenburg district

Tsutsumi, Tsuboi. Chiju. Upward continuation of gravitational potential and force for a spherical earth

Tsuboi, Chiju, Tomoda, Yoshibumi, and Kanamori, Hiroo. Continuous measurements of gravity on board a moving surface ship

Tsujimura, H. See Okabe, Katsuhiko.

Tsuya, Hiromichi. See Murai, Isamu.

Tugarinov, A. I. To the geologist—methods of absolute age determination on rocks

Tugarinov, A. I., Gavrilova, L. K., and Golubchira, M. N. Evolution in the isotopic composition of lead of rocks in Dnieper region

See also Vinogradov, A. P.

Tulin, V. A. Quartz clock for gravity determinations at sea

Tulina, Yu. V. See Aver'yanov, A. G.

Tuman, V. S. Refraction and reflection of sonic energy in velocity logging

Tuman, V. S., and Bollman, Dorothy. Application of computers to the interpretation of well logs

Tuparev, P., Doykov, Zh., and Avramchev, L. Preliminary results of the complex geological and geophysical survey and exploration of Blind ore bodies in the "Gramatikovo" deposit, "Keremidoto" sector
Abstract

Turchin, Yu. A. See Svetov, B. S.

Turok, C. W. See Smith, R. F.

Tuttle, C. R., Allen, W. B., and Hahn, G. W. A seismic record of Mesozoic rocks on Block Island, Rhode Island ------------------ 188-552

Tuve, B. See Asada, Toshi.

Tuyezov, I. K. Seismic exploration method for search and detailing of Meso-Cenozoic structures of the Tatar Irtysh River region --- 188-559

Tvaltvadze, Guri. New data on the seismologic structure of Mukhrani-Tirifoni valley--- 189-580

Tweto, Ogden. See Pearson, R. C.

Tyapkin, K. F. Application of formulas of the two-dimensional problem to interpretation of magnetic anomalies caused by geologic objects of finite dimensions along strike ------------------ 190-471

- Graphical calculation of v_x and v_{zz} from results of measurement of γg for the case of linear anomalies that are finite along strike- 190-309

- Graphical methods of calculation of anomalies of γg due to geologic objects of finite length -------------------------- 191-350

- On accounting for lateral effects in the interpretation of plane gravity anomalies by the direct method ------------------ 191-346

- On the problem of determination of the vertical coordinate of the gravity center of two-dimensional bodies from magnetic observational data ------------------------ 191-524

- On utilization of formulas of the plane problem for interpretation of gravity anomalies due to geological objects of finite length ----------------------------- 191-348

- Two methods of determining the direction of magnetization of rocks from the results of magnetic measurements -------------- 190-470

Tyler, S. A., and Bailey, S. W. Secondary glauconite in the Biwabic iron-formation of Minnesota ------------------------- 188-44

U

Udintsev, G. B. See Sysoyev, N. N., Zatonskiy, L. K., and Zhivago, A. V.

Uffen, R. J. Some Canadian contributions to the International Upper Mantle Project ------------------------ 191-407

See also Tanner, J. G.

Ujiie, Akira. See Horikawa, Yoshio.

Uklonskiy, A. S. Preliminary investigations of the isotopic composition surface and ground waters of Uzbekistan------------------ 191-419

Uloomov, V. I. Statistical analysis of records of local earthquakes and crustal structure in central Asia ------------------ 190-356

Umemoto, Shunji. Isotopic composition of barium and cerium in stone meteorites -------------------- 188-112

See also Honda, Masatake.

Umezu, Naganori, and Ando, Kiyomi. Electrical prospecting method by three phase alternating current (3). Potentials due to a buried conducting and insulating sphere ------------------ 191-228

U. S. Army Map Service. Isostatically reduced topographic deflections of the vertical at selected stations in both eastern and western hemispheres ---------------------- 190-274

U. S. Coast and Geodetic Survey. Magnetograms and hourly values, Fredericksburg, Virginia, 1959 ------------------------ 190-386

- Magnetograms and hourly values, Honolulu, T. H., 1958 ---- 189-377
Abstract

U. S. Coast and Geodetic Survey. Magnetograms and hourly values, San Juan, P. R., 1958 ... 189-378
— Magnetograms and hourly values, Sitka, Alaska, 1959 190-388
— Magnetograms and hourly values, Tucson, Arizona, 1958 ... 190-387

Uno, Kaichi. See Kawachi, Yosuke.

Unz, M. Linear approximation of apparent resistivity functions—— 191-229

Urbach, W., Ackermann, W., Ewald, H., and Ludwig, R. The Sr-87/Sr-86 isotope ratio of strontium samples from calcareous rocks .. 189-365

Urey, H. C. Lunar physics and topography 189-65
— Origin of life-like forms in carbonaceous chondrites 189-47

Usami, Tatsuo, and Sato, Yasuo. Torsional oscillations of a homogeneous elastic spheroid .. 191-150

Usatov, E. P. See Cherdyntsev, V. V.

Ushakov, S. A., and Lazarev, G. E. Some conclusions from seismic and gravimetric data for the profile from Little America to Byrd Station .. 189-584

Ushakova, A. M. On the radioactivity of the rocks of the Perzhanka intrusive complex ... 191-578

Usher, M. J. See Donato, R. J.

Utech, Karl. Frequency of meteorite falls throughout the ages ---- 188-103
— On the occurrence of magnetic spherules in the Buntsandstein of North Germany, their stratigraphic value and probable origin ... 189-58

Utkin, V. I. See Voskoboynikov, G. M.

Utsu, Tokui. A statistical study on the occurrence of aftershocks — 189-97
— On the nature of three Alaskan aftershock sequences of 1957 and 1958.. 189-74

Utter, Stephen. Stress determinations around an underground mine opening ... 191-658

Uyeda, Seiya. An interpretation of the transient geomagnetic variations accompanying the volcanic activities at Volcano Mihara, Oshima Island, Japan ... 191-454

Uyeda, Seiya, Hiroi, Kiti, Yasui, M., and Akamatsu, H. Heat-flow measurements over the Japan trench 189-326

Uyeda, Seiya, and Yabu, Takeo. Some experiments on thermal shock fracture of rocks ... 191-699
See also Miller, J. A.

Uznadze, E. D. See Rubinshtein, M. M.

V

Vachnadze, Yu. A. On the problem of radiometric analysis of rocks .. 190-501

Vakhromeyev, G. S. The possibilities of geophysical methods in prospecting and exploration for rare metal carbonatites — 190-265

Vasilyev, A. A. Determination of the earth's poles positions during the Tertiary period on a basis of study of the remanent magnetization of rocks of several regions of north Fergana 191-489

Valle, P. E. On the behavior of the temperature in the earth's interior ... 191-385

Valliant, H. D. See Beck, A. E.

Van, Guan'-Yuan'. On the new Chinese seismic scale 188-165

Van, Zi-Chan; Den, Sin-Khuey; Li, Chi-Kon; and Ye, Su-Tien. Initial results of study of the positions of ancient poles on a basis of analysis of natural remanent magnetism of rocks of China ... 190-465
Vandel'shteyn, B. Yu. Analysis of the results of an experimental study of diffusion-adsorption potentials ------------------------ 190-227
Van Dilla, M. A. See Rowe, M. W.
Vanek, I., Kľma, Karel, and Pros, Zdeněk. Particulars of the method of measurement of absorption of elastic waves in rock samples ------------------------ 191-197
Vaněk, Jiří. See Kárník, Vít, and Klíma, Karel.
Van Houten, F. B. Ferric oxides in red beds as paleomagnetic data ------------------------ 189-447
Vantsyan, G. M. On certain factors distorting the results of magnetic prospecting and electrical profiling of ore deposits in the Armenian SSR----------------------------- 190-203
--- On the method of geophysical investigations of ore deposits of the Armenian SSR----------------------------- 188-258
Van Voorhis, G. D. See Alldredge, L. R.
Van'yayn, L. L. Elements of the theory of building up of an electromagnetic field ------------------------ 188-237
Van'yayn, L. L., Gasanenko, L. B., and Sholpo, G. P. An asymptotic representation of a low frequency dipole electromagnetic field ------------------------ 188-231
Varnes, D. J. Analysis of plastic deformation according to Von Mises' theory, with application to the South Silverton area, San Juan County, Colorado ------------------------ 190-594
Varshavskaya, E. S. See Gerling, E. K., and Yashchenko, M. L.
Vasil'ev, N. V. See Plekhanov, G. F.
Vasil'ev, Yu. I. Two sets of constants of attenuation of elastic oscillations in rocks ------------------------ 191-196
Vasil'ev, Yu. I., and Ivanova, T. G. On filtering properties of thin layers ------------------------ 190-527
Vasil'ev, Yu. I., and Shcherbo, M. N. On characteristic oscillations in the system, horizontal seismograph—ground ------------------------ 190-572
See also Molotova, L. V., and Pod'yapolskiy, G. S.
Vavilova, T. I., and Gel'chinskiy, B. Ya. The theoretical model of an explosion at an interface ------------------------ 189-146
Vaysman, G. I. See Kuznetsov, V. P.
Vdovykin, G. P. Bitumens of the carbonaceous chondrites Grosnaya and Mighei ------------------------ 191-38
Vecchia, Orlando. Density in gravimetry in mountains ------------------------ 188-334
--- Gravimetric exploration for natural steam in Tuscany ------------------------ 189-312
Vedrins'ev, G. A. On the theory of electrical sounding of horizontally nonhomogeneous mediums ------------------------ 189-175
Vefalosh, Antall. See Annau, Edgar.
Vekua, L. V. Some results of paleomagnetic investigations on volcanic rocks of Georgia ------------------------ 190-463
See also Nodia, M. Z.
Vandel'shteyn, B. Yu. Some information on methods of determination of parameters of oil- and gas-bearing strata according to geophysical logging investigations used abroad ------------------------ 189-205
See also Dakhnov, V. N.
Vening Meinesz, F. A. Continental and ocean-floor topography; mantle convection currents 190-364

— Convection currents in the mantle of the earth 188-308

Verbyts'kyy, T. Z. Radiation of a loop antenna in electrically conductive medium .. 191-243

Verč, Josef. An attempt at separation of the individual frequency bands of earth current variations 188-144

Versey, H. R. See Robinson, E.

Vershinin, V. I. See D'yachkov, N. P.

Veshev, A. V. See Bugakov, Yu. I.

Vestine, E. H. Morphology of magnetic storms 190-422

Vestine, E. H., and Kern, J. W. Cause of the preliminary reverse impulse of storms ... 190-409

Vetchinkin, A. N., and Freobrazhenskiy, V. B. An automatic seismic recording device with magnetic memory 191-135

Vetshteyn, V. Ye. See Burker, Ye. S.

Vey, Tsin-yun'. See Metalliova, V. V.

Veytsman, P. S. See Aver'yanova, A. G.

Vičánek, Jan. See Marušiak, Ivan.

Vidović, Nada. See Kruc, Zvonimir.

Vilczek, Else, and Wänke, H. Sodium-22 in the Breitscheid meteorite ... 188-117

Vilenskaya, S. M. See Shan'gin, N. V.

Vilesov, Ye. N., and Shabanov, P. F. Drilling experiments on high-mountain glaciers .. 189-279

Vilosev, L. A. See Borovinskiy, B. A.

Villard, O. G., Jr. See Kanellakos, D. P.

Vinogradov, A. P. Atomic abundances of the chemical elements of the sun and stony meteorites 191-39

— On the origin of the matter of the earth's crust. Part 1 191-398

Vinogradov, A. P., and Tugarinov, A. I. The geologic age of pre-Cambrian rocks of the Ukrainian and Baltic shields 188-77

Vinogradov, P. A. Certain data on the morphology of the frequency of occurrence of variations of Ps and Pt of the electromagnetic field of the earth ... 191-73

— On the problem of the radius of action of stray currents on records of variations of the electrotelluric field 191-72

Vinogradov, S. D. Experimental study of the distribution of the number of fractures according to energy during crushing of rocks .. 191-652

— On the distribution of energy from fractures during rock disruption ... 190-598

Visarion, Marius. Contribution of gravity exploration to the determination of salt structures and deposits of potassium salts in Neogene sediments of the eastern Carpathians 188-355

— Geophysical maps of the region of the eastern Carpathians to the east and west of the Ceahlau Massiv 188-356

Vistelius, A. B., and Krylov, A. Ya. On the absolute age of the clastic part of the sandy-silty deposits of southwest central Asia .. 188-84

Vitanage, P. W. Geology of the country around Polonnaruwa 189-27

Vladimirov, N. P., and An, V. A. On the method of processing magnetotelluric oscillograms 190-110
Vlasov, A. Ya., and Kovalenko, G. V. The effect of compaction on the natural remanent magnetization of the bottom sediments of the Atlantic Ocean .. 190-457
Vlasov, A. Ya., and Zvegintsev, A. G. On the stability of thermoremanent magnetization of magnetite under the simultaneous effects of temperature and reversed magnetic field............... 190-455
Vlodavets, V. I. Principles of the volcanic regionalization in the U.S.S.R .. 190-624
Vlodavets, V. I., and Piyp, B. I. Catalogue of the active volcanoes of the world including solfatara fields. Part VIII, Kamchatka and continental areas of Asia 188-589
Voegtl, K. The Devon Island expedition: Measurement of electrical resistivity of ice ... 189-192
Voelker, Hans. On the dependence of the period of geomagnetic pulsations on latitude ... 189-379
Volarovich, M. P. Investigation of physical-mechanical properties of rocks under high pressure 191-199
Volobuyev, M. I. See Zhirov, K. K.
Volodarskiy, R. F. Structural plan of the Amur-Zeya depression according to geophysical data 191-270
Vol'vovskiy, B. S., Vol'vovskiy, I. S., and Ryaboy, V. Z. Laboratory application of the RNP method for interpretation of data of deep seismic sounding 188-526
Vol'vovskiy, B. S., Vol'vovskiy, I. S., and Tal'virsiky, B. B. Use of seismic surveying for exploration for oil and gas fields in the Fergana valley 190-588
Vol'vovskiy, B. S., Vol'vovskiy, I. S., and Tal'virsiky, D. B. Conditions of conducting seismic prospecting in the Fergana Valley .. 188-514
See also Godin, Yu. N.
Vol'vovskiy, I. S., Ryaboy, V. Z., and Shraybman, V. I. On the nature of the regional gravity anomalies of the Bukhara-Khivin province and adjoining regions 191-378
— Surface geology of the Fergana depression according to geophysical data .. 190-587
See also Godin, Yu. N., and Vol'vovskiy, B. S.
Vorob'ev, G. G. A method of quantitative spectral analysis of tektites and the silicate phase of meteorites 188-133
Vorob'ev, G. G., and Namnandorzh, O. Spectrochemical investigation of the Mongolian meteorite 191-62
Vorob'eva, K. I. On the geothermal characteristics of the Ozek-Suat oilfield and of other regions of the Tersko-Kuma Plain 190-339
Voskoboynikov, G. M. On some problems of the theory of radio metric prospecting ... 190-512
Voskoboynikov, G. M., Utkin, V. I., and Burdin, Yu. B. Spectral methods of determination of the nature of selective logging anomalies 189-504
Voeksensenskiy, Yu. N. On the study of seismic reflections from nonspecular boundaries on three-dimensional models 191-192
Voytkovskiy, K. F. Speed of plastic deformation of polycrystalline ice -------------------------- 189-609
Voytsik, L. P., and Yerozolimskiy, B. G. A laboratory neutron generator ---------------------- 189-531
See also Alekseyev, F. A., and Yerozolimskiy, B. G.
Vozdvizhenskiy, B. I. On drilling super-deep boreholes ----------------------------- 190-359
Vozoff, Keeva, Ellis, R. M., and Garland, G. D. Composition of "pearls" ------------------- 191-442
Vronskiy, B. I. Elga meteorite ----------------------------- 191-52
Vučić, V. M., and Pavlović, B. V. Radioactivity of travertine at Niška Banja --------- 188-475
Vvedenskaya, N. A. See Kondorskaya, N. V.
Vyalov, S. S. Regularities of glacial shields movement and the theory of plastic viscous flow -- 189-273

Wagner, F. C. See Fröhlich, Friedrich, and Stiller, Heinz.
Wahl, R. R. See Plouff, Donald, and Stuart, D. J.
Wait, J. R. A note on the electromagnetic response of a stratified earth ---------------- 190-185
--- The electromagnetic fields of a dipole in the presence of a thin plasma sheet --------- 191-427
Wakahama, Gorow. On the plastic deformation of ice. I. Plastic deformation and dislocation networks in a single crystal of ice. II. An interpretation of the plastic deformation of a single crystal of ice based upon the theory of dislocation. III. Stress relaxation of ice. IV. The length of the Frank-Read source, the layer structure and the work softening in ice -------------------------- 189-601
Walker, Terry. Fracture zones vary acoustic signal amplitude ---------------------- 189-563
Walton, Alan, Trautman, M. A., and Friend, J. P. Isotopes, Inc. radiocarbon measurements I --------------------------- 190-29
See also Trautman, M. A.
Wambeke, L. van. See Cahen, Lucien.
Wangersky, P. J. See Rosholt, J. N.
Wani, Katsunosuke. See Momose, Hiroto.
Wänke, H. Scandium-45 as a cosmic-ray reaction product in iron meteorites, pt. 2 --------------------- 191-45
See also Bainbridge, A. E., and Hinterberger, H., Suess, H. E., and Vilckz, Else.
Wanless, R. K., and Lowdon, J. A. Isotopic age measurements on coeval minerals and mineral pairs ------------------------------- 188-29
See also Stockwell, C. H.
Wantland, Dart. See McDonald, H. R.
Ward, Fred. See Silverman, S. M.
Ward, S. H., and Ruddock, K. A. A field experiment with a rubidium-vapor magnetometer ---------------------- 189-464
Ward, W. H. Surface markers for ice movement surveys ----------------------- 189-265
Warner, Brian, and Fielder, Gilbert. Stresses around lunar craters --------------------- 188-137
AUTHOR INDEX

Warrick, R. E., Hoover, D. B., Jackson, W. H., Pakiser, L. C., and Roller, J. C. The specification and testing of a seismic-refraction system for crustal studies 189-568

Warrick, R. E., and Jackson, W. H. Poisson's ratio of rock salt and potash ore 188-213

Warschawski, J. M. See Schatenstein, A. I.

Wasson, J. T., and Junge, C. E. Terrestrial accretion and the solar wind 189-35

Watanabe, Tomiya. Geomagnetic bays and storm sudden commencements in high latitudes 189-413

— On the origins of geomagnetic pulsations 190-400

Watkins, J. S. Precambrian basement structure and lithology inferred from aeromagnetic and gravity data in eastern Tennessee and southern Kentucky 191-541

Watt, D. E., and Glover, R. N. A search for radioactivity among naturally occurring isobaris pairs 189-481

Watts, W. A. See McAulay, I. R.

Watznauer, A. Critical evaluation of model studies of bedrock mechanics and the limits of their practical applicability 191-649

Weber, Max. On the approximation of traveltime functions from discrete measured values with discontinuous power series 188-518

— The interpretation of seismic refraction measurements in the limiting case c_0=0 188-534

Wedo, Helmuth. Thorium and rare earths in the Poços de Caldas zirconium district, Brazil 188-486

Weeks, L. G. Geologic architecture of circum-Pacific 190-279

Weertman, Johannes. Equilibrium profile of ice caps 189-260

— Mechanism for continental drift 189-247

— Traveling waves on glaciers 189-269

Weihaupt, J. G. Geophysical studies in Victoria Land, Antarctica 191-266

Weinreb, Sander. A new upper limit to the galactic deuterium-to-hydrogen ratio 191-218

Weiss, L. E. See Paterson, M. S.

Wells, J. W. See Allen, J. R. L.

Wendt, Immo; Schneekloth, Heinrich; and Budde, Enno. Hannover radiocarbon measurements I 190-50

See also Geyh, M. A.

Wenk, Eduard. See Jäger, Emilie.

Wescott, E. M. Magnetic activity during periods of auroras at geomagnetically conjugate points 189-393

Westley, Harold. See Overstreet, W. C.

Weston, D. E. Underwater explosions as acoustic sources 188-530

Westphal, K. O., and Jacobs, J. A. Oscillations of the earth's outer atmosphere and micropulsations 191-447

Wetherill, G. W. Age measurements on the Cutler batholith, Ontario, Canada 188-53

Wetherill, G. W., Kouvo, Olavi, Tilton, G. R., and Gast, P. W. Age measurements on rocks from the Finnish Precambrian 188-72

See also Aldrich, L. T., and Davis, G. L.
Whipple, F. L. Oblateness of the earth by artificial satellites (Harvard College Observatory Announcement Card 1408)------------------- 188-302

White, E. A. See Arthur, D. W. G.

White, J. E. Elastic waves along a cylindrical bore ------------------- 190-153

White, S. E. Preliminary studies of motion of an ice cliff, Nunta­

tassuaq, Northeast Greenland 1955 ------------------------------- 189-264

Whitlock, D. W. See Eckelmann, W. R.

Whitmore, J. D. See Nuttli, O. W.

Whieduwilt, W. G. Interpreting techniques for a single frequency

 airborne electromagnetic device------------------------- 191-231

Wiegel, R. L., and Camotim, Data. Model study of oscillations of

 Hebgen Lake --- 189-73

Wier, K. L. See James, H. L.

Wiid, B. L. Gravity observations at Marion Island, Tristan da

 Cunha -- 189-305

Wil, B. See Buttlar, H. von.

Williams, E. T. Contribution to the discussion on paper entitled

 "Measurement of strains in mine rocks" (C. L. Emery) --------- 191-656

Williams, J. B. See Robinson, E.

Williamson, R. See Peacock, J. D.

Willis, D. E., and Wilson, James T. Effects of decoupling on

 spectra of seismic waves ---------------------------------- 189-160

See also Bugajski, H. J., DeNoyer, John, and Frantti, G. E.

Willis, E. H. See Godwin, Harry.

Willis, I. See Bull, C.

Wilson, A. F., Compton, W., and Jeffery, P. M. Radiocarbon

 ages from the Pre-Cambrian rocks of Australia -------------- 188-99

Wilson, A. H. A laboratory investigation of a high modulus bore­

 hole plug gage for the measurement of rock stress ------------ 188-578

Wilson, C. R. Sudden commencement hydromagnetic waves and the

 enhanced solar wind direction ----------------------------- 189-409

Wilson, C. R., and Sugiuara, Masahisa. Hydromagnetic interpreta­

 tion of sudden commencements of magnetic storms ---------- 188-409

Wilson, H. W. See McNair, A.

Wilson, J. Tuzo. Cabot fault, an Appalachian equivalent of the San

 Andreas and Great Glen faults and some implications for con­

 tinental displacement -------------------------------------- 191-308

--- Geophysics and continental growth ----------------------- 189-251

Wilson James T. See DeNoyer, John, Frantti, G. E., and Willis,

 D. E.

Wilson, R. L. Palaeomagnetism in Northern Ireland. Pt. 2. On the

 reality of a reversal of the earth's magnetic field ---------- 190-460

--- The palaeomagnetic history of a doubly-baked rock--------- 191-473

Wilson, W. T. See Costello, J. T.

Winckler, J. R., Bhavsar, P. D., and Anderson, K. A. A study of

 the precipitation of energetic electrons from the geomagnetic

 field during magnetic storms----------------------------- 191-455

See also Kellogg, P. J.

Winkler, E. M. Radiocarbon ages of postglacial lake clays near

 Michigan City, Indiana --------------------------------- 191-17

Winkler, H. A. Simplified gravity terrain corrections--------- 190-306

Witkind, I. J. Deformation of the epicentral area, Hebgen Lake,

 Montana, earthquake of August 17, 1959—Dual-basin concept ---- 188-148
AUTHOR INDEX

Abstract

189-70 Witkind, I. J., Myers, W. B., Hadley, J. B., Hamilton, Warren, and Fraser, G. D. Geologic features of the earthquake at Hebgen Lake, Montana, August 17, 1959

190-316 Wold, H. Possibilities for more accurate relative gravity measurements by means of a pendulum

190-373 Wolfgang, Richard. Origin of high tritium content of atmospheric methane, hydrogen and stratospheric water

188-105 Wong, Wen-Po. The chemical genesis of the earth

189-32 Wood, J. A. Chondrules and the origin of the terrestrial planets

189-253 Woodruff, Ray, and Goering, Marjory. Do the mountains of earth come from the moon

191-275 Woods, J. P. Exploration in a changing world

191-287 Woolard, G. P. The land of the Antarctic

190-569 World Oil. Gas-gun marine surveys run off U.S. west coast

188-456 Worst, B. G. The Great Dyke of Southern Rhodesia. Pt. 2—Geophysical observations

189-5 Wright, C. S. See Duffus, H. J.

190-178 Wright, J. K., and Carpenter, E. W. The generation of horizontally polarized shear waves by underground explosions

189-157 Wright, J. K., Carpenter, E. W., and Savill, R. A. Some studies of the P waves from underground nuclear explosions

191-445 See also Carpenter, E. W., and Savill, R. A.

191-590 Wright, R. W. Effect of magnetic disturbances on the equatorial ionospheric jet current

190-204 Wurzel, J. L. See Ewing, I. I.

188-477 Yamaguchi, Masaru. Alpha-activity of granite and andesite zircons from southwest Japan measured with nuclear emission

191-157 Yamaguchi, Rinzo. Surface waves and layered structures. Part 1, Influence of low velocity layer and some study on Lg and Rg waves

191-158 Yamaguchi, Rinzo, and Kizawa, Takashi. Surface waves and layered structures. Part 2, Theoretical dispersion curves for suboceanic surface waves

189-431 Yamamoto, Mikio, and Miyasawa, Ryofu. Ferromagnetic behavior and its dependence on the crystal orientation and on the method of demagnetization in single crystals and a polycrystal of 0.5 percent aluminium iron

190-204 Yakovlev, V. N. See Berzon, I. S.

191-590 Yakubovich, A. L. Scintillation radiometric apparatus and possibilities of its application to geological prospecting and exploration

189-253 Yakupov, V. S. The possibilities for electrical prospecting under permafrost conditions

188-477 Yamaguchi, Masaru. Alpha-activity of granite and andesite zircons from southwest Japan measured with nuclear emission

191-157 Yamaguchi, Rinzo. Surface waves and layered structures. Part 1, Influence of low velocity layer and some study on Lg and Rg waves

191-158 Yamaguchi, Rinzo, and Kizawa, Takashi. Surface waves and layered structures. Part 2, Theoretical dispersion curves for suboceanic surface waves

189-431 Yamamoto, Mikio, and Miyasawa, Ryofu. Ferromagnetic behavior and its dependence on the crystal orientation and on the method of demagnetization in single crystals and a polycrystal of 0.5 percent aluminium iron

188-456 Wyness, R. See Cress, P.

Y

Yabu, Takeo. See Uyeda, Seiya.

Yakovlev, V. N. See Berzon, I. S.

Yakubovich, A. L. Scintillation radiometric apparatus and possibilities of its application to geological prospecting and exploration

Yakupov, V. S. The possibilities for electrical prospecting under permafrost conditions

Yamaguchi, Masaru. Alpha-activity of granite and andesite zircons from southwest Japan measured with nuclear emission

Yamaguchi, Rinzo. Surface waves and layered structures. Part 1, Influence of low velocity layer and some study on Lg and Rg waves

Yamaguchi, Rinzo, and Kizawa, Takashi. Surface waves and layered structures. Part 2, Theoretical dispersion curves for suboceanic surface waves

Yamamoto, Mikio, and Miyasawa, Ryofu. Ferromagnetic behavior and its dependence on the crystal orientation and on the method of demagnetization in single crystals and a polycrystal of 0.5 percent aluminium iron
Abstract

Yamamoto, M. See Maeda, Hiroshi.

Yamashita, Shiro. The electromotive force generated within the ore body by the temperature difference ----------------------------- 190-199

Yanagihara, Chikatada. See Nakamura, Hisayoshi.

Yanovskiy, B. M. Problems of paleomagnetism in the U.S.S.R --- 191-488

Yanovskiy, B. M., Sholpo, L. E., and Gorshkov, E. S. Some features of viscous magnetization ----------------------------- 191-469

Yanovskiy, V. M. See Alexandrov, V. A.

Yanovel', A. A. Certain problems of the chemistry of meteorites--- 190-64

--- On the dependence of the structure of iron meteorites on chemical composition and conditions of crystallization ----------------------------- 191-41

Yarosh, A. Ya. Estimation of the depth of penetration of gravity exploration in the search for ore deposits ----------------------------- 190-311

Yashchenko, M. L., Varshavskiy, E. S., and Gorokhov, I. M. On the anomalous isotopic composition of strontium in minerals from metamorphic rocks ----------------------------- 191-8

See also Gerling, E. K.

Yaasinskaya, A. A. See Bobrovnik, D. P.

Yaskawa, Katsumi. Paramagnetism of some kinds of crystalline schists ----------------------------- 191-478

Yastrebova, T. A. See Alferov, B. A., and Kozlov, I. G.

Yasui, M. See Uyeda, Seiya.

Ye, Shi-Yan', Kirnos, D. P., and Solov'yev, V. N. A simplified recording device for instrumental observations in the epicentral zones of strong earthquakes ----------------------------- 191-128

Ye, Su-Tien. See Van, Z. C.

Yedinak, P. See Hemenway, C. L.

Yegorov, Yu. M. On the problem of recording geomagnetic field variations in the frequency range of 0.0-10.0 cycles per second - 191-433

Yeliseyeva, G. D. See Burksar, Ye. S.

Yel'yanov, A. A., and Moralev, V. M. New data on the age of the ultrabasic and alkaline rocks of the Aldan shield ----------------------------- 188-94

Yenikeyev, R. Sh. See Isabayev, Ye. A.

Yepinat'yeva, A. M. Present status of KMPV ----------------------------- 190-559

Yepinat'yeva, A. M., and Kondrat'yev, O. K. Experience in the application of high-frequency apparatus in study of the Paleozoic basement in western Siberia ----------------------------- 190-556

Yepinat'yeva, A. M., and Kosminskaya, I. P. Seismic surveying in China--- 188-560

Yeremina, A. S. See Bedcher, A. Z.

Yermakov, V. I., Laubenbakh, A. I., Ovanesov, M. G., Romanov, Yu. A., and Sko'syrev, L. N. Results of investigation of the natural gamma field in oil-bearing regions by the methods of airborne and land radiometric surveys----------------------------- 189-493

Yerozolimskiy, B. G., and Shkol'nikov, A. S. Method of separation of water and oil saturated layers ----------------------------- 189-515

See also Alekseyev, F. A., and Voytsik, L. P.

Yevseyeva, L. S. See Petrov, G. I.

Yevsikova, L. G. See Bulakh, Ye. G.
AUTHOR INDEX

Yokoyama, Hidekichi. Experimental studies on the spontaneous polarization method

Yokoyama, Hidekichi, and Ibe, Yukimi. Experimental studies for electromagnetic prospecting (pt. 3)

Yokoyama, Izumi. Relations between the short period changes in geomagnetism and in telluric currents

— The flow and upwelling of lava (pt. 1 and 2)

Yoshikawa, Keizo. On the crustal movement accompanying with the recent activity of the Volcano Sakurajima (pt. 1)

— On the crustal movement accompanying with the recent activity of the Volcano Sakurajima (pt. 2)

Yoshikawa, Soji. The ground motion near explosion

Yoshiyama, Ryoichi. Earthquake near the National Park Hakusan on August 19th, 1961

— The ratio of the velocity of P and S waves

Yoshizumi, Eizaburo, and Irie, Tsuneji. A study of the resistivity method using a resistance network

— Resistance network analyzer of the electrical prospecting

Yoshizumi, Eizaburo, and Irie, Tsuneji. A study of the resistivity method using a resistance network

— Resistance network analyzer of the electrical prospecting

Yoshizumi, Eizaburo, and Irie, Tsuneji. A study of the resistivity method using a resistance network

— Resistance network analyzer of the electrical prospecting

Young, J. See Dobrowolski, T.

Yudin, I. A. Mineralogic investigation of stone meteorite

— On the finding of meteoritic dust in the region of all of the Kunashak stone meteoritic shower

Yudin, I. A., and Obotnin, N. F. Mineralogic and X-ray study of the carbonaceous chondrites of Migei, Staroye Boriskino, and Groznaya

Yudin, L. I. See Alekseyev, F. A., and Yerozolimskiy, B. G.

Yukutake, Takesi. The influence of the magnetic field on spectra of seismic core waves

— The role of the surface electrical methods of geophysical prospecting in the petroleum industry

Yurchenko, B. I. Determination of the depth and dimensions of a three-dimensional body by the \(\Delta g \) anomaly

— Calculation of anomalies \(V_{zz} \) over three-dimensional bodies with the master-chart of two-dimensional bodies

— Calculations of \(\Delta g \) anomalies of three-dimensional bodies with a master chart of two-dimensional bodies

Yur'chenko, B. I. Correlation of reflections in a zone of erosion and pinch out of strata

Z

Zablocki, C. J. Electrical properties of sulfide-mineralized gabbro, St. Louis County, Minnesota

Zabolotnyy, I. K. Mass-spectrometric determination of the content of inert gases in iron

See also Vinogradov, A. P.
Abstract

Zähringer, J., and Gentner, W. On the Xe129 in the Abee meteorite ------------------------------- 188-114

Zakharchenko, V. F. Certain problems of neutron logging theory using an impulse generator of neutrons------------------------ 189-508

See also Ponomarev, V. N.

Zakharov, V. Kh. Dependence of an anomaly on the direction of intersection of a vertical thin stratum in connection with dipole electromagnetic profiling------------------------------------ 191-214

Zakirova, F. S. See Harris, M. A.

Zampieri, L. See Gantar, C.

Zamyatin, N. I. See Ivanov, A. I.

Zans, V. A. Bath Springs, St. Thomas - Their history and development -- 191-388

Zapol’skiy, K. K. Measurements of intensity and spectrum composition of short period microseisms --------------------- 190-489

Zátopek, Alois. Microseisms at Prague in the course of the International Geophysical Year ------------------------------ 191-570

--- New results of microseism research in Prague ---------------- 190-487

--- On the nature and origin of European microseisms --------------- 191-567

--- The development of Czechoslovak geophysics from 1945 to 1960- 191-291

See also Kárník, Víť, and Vanek, I.

Zavarzin, G. N. See Babayants, S. P.

Zav’yalskiy, V. M., and Krutikhovskaya, Z. A. On remanent magnetization of ferruginous quartzites at the southern closure of the Krivoy Rog synclinorium --------------------------------------- 189-439

--- On the effect of anisotropy of magnetic susceptibility on the accuracy of residual magnetization measurements --------------- 191-467

Zav’yalov, V. D. Interpretation of seismograms in zones of interference -- 190-530

Zawicki, Ignacy. See Nalecz, Maciej.

Zayonchkovskiy, M. A. See Aver’yanov, A. G.

Zaytsev, L. P. On degenerated head waves in an elastic medium with an interface ------------------------------- 191-171

Zbyszewski, G. The eruption of Capelinhos Volcano (Fayal Island, Azores)- -- 190-618

--- The eruption of Capelinhos Volcano in the island of Fayal (Azores)--- 189-618

Zelenskaya, M. L. The utilization of plastics for preparation of radioactive suspensions ----------------------------- 189-534

Zelenov, K. K., and Kanakina, M. A. Lake Biryuzovoye (Zavaritskiy caldera) and changes in the chemistry of its waters as a result of the 1957 eruption --------------- 191-696

Zenkova, V. A. See Cherkasov, P. A.

Zhadin, V. V. On investigation of longitudinal and transverse wave absorption by the seismic logging method ---------------- 191-615

Zharkov, V. N. Natural oscillations of the earth. Attenuation-------- 191--64

Zhavoronkov, V. Ya. See Polak, L. S.

Zhilevich, I. I. See Borisevich, Ye. S.

Zhilyayeva, V. A. See Petrova, G. N.
Abstract

Zhirov, K. K., Shestakov, G. I., and Ivanov, I. B. On the problem of the interpretation of age figures according to the lead method - 191-3

Zhirov, V. V. See Zhirov, K. K.

Zhogolev, L. P., and Mironov, V. S. Large-scale gravi-magnetometric work carried out during geologic mapping in the Rudnyy Altay 189-474

See also Barinov, Ye. A.

Zhukov, V. S. Use of electronic-acoustical and radiometric methods in the study of sea-ice properties 189-567

Zhuravlev, V. K. See Plekhanov, G. F.

Zhuzgov, L. N. See Dolginov, S. Sh.

Zolotov, A. V. Effective cross sections of chlorine for slow neutrons 189-527

— New data on the Tungus catastrophe of 1908 188-124

Zommer, I. E., and Gayanov, A. J. Methods and results of gravity measurements in the Antarctic 191-382

Zouneková, Milada, and Beránek, Bretislav. Velocity conditions in the inneralpine Vienna basin 188-537

Zudakina, Ye. A. See Anpilogov, A. P.

Zumberge, J. H. A new shipboard coring technique 190-604

Zverev, S. M. See Aver'yanov, A. G., and Gal'perin, Ye. I.

Zybin, K. Yu. See Bol'shakova, O. V.
SUBJECT INDEX

A
Acoustic logging, amplitude attenuation, fracture zones: Walker 189-563
Chinese model: Acta Geophysica Sinica 188-542
first arrivals, curved path: Geertsm 190-561; Tuman 188-541
instrumentation: Khalevin 190-563; Rekunov 190-565
interpretation: Geertsma 188-540
porosity: Costello 189-564
review: Karus 190-562
short spacing, inverse filters: Nipper 190-560
wave absorption: Zhadin 191-615
Africa, seismicity, A. D. 628 to A. D. 1500: Ambraseys 189-87
seismicity, West African Rift Valley: de Bremaecker 188-159
volcanic activity, Viruga volcanoes: Berg 190-619
Age, anorthosite, Quebec: Rose 188-51
basalt, Kenya: Koenigswald 190-17
New Jersey: Kulp 188-38
Tanganyika: Curtia 191-22
beaches, Greenland: Washburn 189-19
Spitsbergen: Blake 188-74
bentonite, Tennessee and Alabama: Adams 188-41; Faul 188-35
biotite, British Columbia: Reesor 188-58
Columbia: Pinson 191-21
Egypt: Cheith 188-64
England: Miller 191-24
New Zealand: Hurley 188-27
U. S. S. R., Caucasus: Rubinshteyn 188-82
black shale, Sweden: Cobb 188-12
Tennessee: Cobb 188-12; Faul 188-35
bones, China: Isabayev 188-15
Czechoslovakia: Isabayev 188-15
U. S. S. R.: Isabayev 188-15
clay (Precambrian), Ontario: Hurley 191-19
conglomerates, Transvaal; Nicolaysen 188-61
Age—Continued
crustal stages: Khain 189-250
dolomite, Florida: Deffeyes 190-12
earth: Baranov 191-30
extrusive rocks, U. S. S. R., Urals: Ovchinnikov 188-83
fluvial sediment, Mississippi and other rivers: Hurley 188-43
gabbro, U. S. S. R.: Shirinyan 188-81
galaxy, uranium decay: Dicke 190-61
galena, Australia: Richards 190-374
England: Mooribath 189-22
Finland: Kouvo 188-73
India: Aswathanarayana 189-28, 190-21; Russell 190-20
Norway: Mooribath 189-22
general listing, Antarctica: Starik 188-101
Argentina: Lineras 189-21
Canada: Lowdon 188-50
U. S. S. R.: Rubinshteyn 188-9
glauconite, general listing: Poleva-ya 188-28
Hungary: Ovchinnikov 188-68
Minnesota: Tyler 188-44
U. S. S. R.: Klyarovskiy 188-91
granite, British Isles: Lambert 188-2
California: Bateman 188-49
Colorado: Pearson 191-18
England: Long 189-23; Miller 191-23
Europe: Faul 188-35
India: Desio 188-95
Japan: Miller 189-30; Nagai 190-22
New York: Doe 191-415
New Zealand: Mason 188-100
Ontario: Ginn 189-16; Wetherill 188-53
Rhode Island: Pinson 188-36
Seychelles Archipelago: Miller 189-26
Switzerland: Chessex 189-25;
Grünenfelder 188-66
Union of South Africa: Hales 188-62
769
Age—Continued
granite—continued
U. S. S. R.: Ivanov 188-88; Sobotovich 188-92
Yukon Territory: Baadsgaard 188-59
granodiorite, Washington: Lipson 188-56
igneous rocks, Chile: Ruiz F. 188-60
Hungary: Ovchinnikov 188-68
Maine: Faul 188-35
Mongolian National Republic 188-96
Nevada: Houser 188-48
U. S. S. R.: Ivanov 188-86, -87; Yel'yanov 188-94
igneous and metamorphic rocks, Australia: Evernden 188-98
Canadian Cordillera: Muller 188-55
Ceylon: Vitanage 189-27
Greenland: Kulp 190-15
North Korea: Polevaya 188-97
U. S. S. R.: Chernov 188-85; Zhirov 188-93
kimberlite, U. S. S. R.: Mikheyenko 188-90
marine, invertebrates, South Carolina: Du Bar 190-11
marine sediments, ionium-thorium determinations: Goldberg 190-603
Mediterranean Sea: Olausson 188-65
metamorphic rocks, Canada: Burwash 189-17; Fahrig 189-18
England: Miller 189-24
Japan: Miller 190-33
Nepal: Krummenacher 189-29
New York and New Jersey: Long 188-37
New Zealand: Mason 188-100
North Carolina: Bryant 189-12; Davis 190-9
Scotland: Giletti 188-69
Southern Appalachians: Kulp 188-40
Tennessee: Davis 190-9
U. S. S. R.: Komlev 191-25; Ravich 188-89
Venezuela: Bass 189-20
metamorphism, Germany: Davis 189-1
meteorites: Vinogradov 191-49
Na-22 cosmic-ray age: Vilczek 188-117

Age—Continued
meteorites—continued
primary isochron of zero age: Murthy 189-53
radiation age of chondrites: Geiss 188-118
terrestrial age: Suess 190-86
thermoluminescence: Komovski 191-48
U-235/Pb-207 in Sikhote-Alin: Fireman 188-116
micas, British Columbia: Reesor 188-57
Canada: Stockwell 188-52
Norway: Gerling 188-71; Kulp 188-70
Ohio: McCormick 188-42
Sweden: Gerling 188-71
Switzerland: Jäger 188-67
U. S. S. R.: Filippov 188-78; Gerling 188-71; Komlev 188-79; Senenenko 188-80
monazite, U. S. S. R.: Gol'denfel'd 191-26
moraines, Antarctica: Pëwë 189-31
peat, Alaska: Fernald 190-13
pegmatites, Blue Ridge and Piedmont: Deuser 190-10
U. S. S. R.: Slepnev 191-27
Precambrian rocks, Australia: Wilson 188-99
Baltic shield: Polkanov 188-3
Colorado Plateau: Damon 188-46
Finland: Wetherill 188-72
Red Sea area: Schärtemann 190-19
U. S. S. R.: Vinogradov 188-77
Wyoming and Montana: Giletti 188-47
quartz monzonite, Maine: Pinson 188-36
radiocarbon dates, Belgium: Dossin 190-49
Canada: Dyck 190-40; McCallum 190-46; Trautman 190-42
Europe—North America correlation: Antevs 189-7
general listing: Barker 190-28; Broecker 190-38; Engstrand 190-52; Fergusson 190-51; Geyh 190-53; Gfeller 190-26; Godwin 190-30, -45; Hubbs 190-57; Hyypa 190-47; Olson 190-37; Olsson 190-32; Ralph 190-25, -54; Rubin 190-33; Stuiver 190-36, -59; Tauber 190-41, -60; Walton 190-29
Age—Continued
radiocarbon dates—continued
Germany: Wendt 190-50
Iceland: Wendt 190-50
Indiana: Winkler 191-17
Ireland: McAulay 190-27
Italy: Ferrara 190-34
Japan: Kigoshi 190-48
Libya: McBurney 188-63
Norway: Trondheim 190-55
U.S.S.R.: Starik 188-75
United States: Crane 190-35, -56; Damon 190-58; Dorn 190-39; Stipp 190-43; Trautman 190-42
Rio Grande entrenchment, New Mexico: Ruhe 189-13
sedimentary rocks, U.S.S.R.: Vistelius 188-84
sediments, Bahamas: Ostlund 189-44
Caribbean Sea: Rosholt 191-20
shales, Australia: Compton 191-29
slates, Maine and Rhode Island: Pinson 188-36
tectonic provinces, Canada, Appalachian: Neale 189-15
uraninite, South Africa: Burger 188-383
uranium migration, Wyoming: Robinson 188-14
volcanic ash, Alaska: Fernald 190-13
Alberta: Folinsbee 188-54
Tanganyika: Straus 190-18
United States: Curtis 188-45
volcanic glass, Utah: Schaeffer 188-25
Zinjanthropus, Tanganyika: Straus 190-18
zircon, Japan: Nagai 191-28
North Carolina and South Carolina: Overstreet 188-39, 191-16
Age determinations, argon diffusion: Amirkhanov 188-24; Baadsgaard 188-26; Fechtig 189-6; Gerling 188-23; Hurley 188-27; Reesor 188-57, -58; Wanless 188-29; Wrage 189-5
Canadian research: Russell 189-14
carbon-14 method, analysis of standards: Craig 190-6
C-14/C-12 variation with time: Jansen 190-24
counter at University of Rome: Alessio 189-8; Bella 189-9
Age determinations—Continued
carbon-14 method—continued
nuclear weapons testing: Godwin 190-31
Pleistocene time scale: Serebryannyy 189-10
coeval minerals: Wanless 188-29
fluorine method, bones: McConnell 190-8
geologic history, interpretation: Krylov 188-34
glaucnite, argon retention: Murina 191-14
ionium-thorium method, sedimentary rate of Th-232: Kocz 188-31
lead isotope method: Chernyshev 191-4, -5; Zhivov 191-3
lead-alpha method: Hatuda 190-2, 191-6; Nagai 190-3
metamorphic history: Nicolaysen 188-33
metamorphism, effect of: Hart 188-32; Neuvonen 189-11
methods reviewed: Tugarinov 191-2
potassium-argon method: Pinson 188-21
argon retention: Gerling 191-12; Kuz'min 191-13; Ovchinnikov 191-15; Sardarov 191-11
description: Curtis 188-383
excess argon in pyroxene: Hart 191-9
low potassium minerals: Aldrich 189-2
oil exploration: Krueger 190-1
review: Cherdyntsev 191-10; Gerling 188-22
protactinium-thorium method: Rosholt 188-13
rubidium decay constant: Glendenin 188-17
rubidium-strontium method: Gast 188-18
anomalous strontium isotopic ratios: Yashchenko 191-8
chemical separation: Deuser 190-4
effect of inclusion: Gerling 191-7
laboratories compared: Herzog 188-20
metamorphic chronology: Compton 188-19
thermoluminescence: Chessex 190-7
Age determinations—Continued

time scales: Afanas’yev 188-4;
Harris 188-6, -7; Komissiya po
Oпределии Absolutногo
Возраста Geологических
Formatiy 188-11; Lambert
188-2; Ovchimikov 188-8;
Polevaya 188-10; Polkanov 188-3;
Rubinshteyn 188-9; Semen-
enko 188-5; Shcherbakov 189-4;
Stockwell 189-1

time, factors affecting:Afanas’-
yev 191-1

uranium deposits, age of migration:
Robinson 188-14; Rosholt 188-13

uranium method: Burkser 188-16;
Cherdynsev 189-3; Davis 189-1

X-ray fluorescence, Rb/Sr ratio:
Hertog 190-5

Alabama, age, bentonite: Adams
188-41; Faul 188-35

Alaska, age, volcanic ash and peat:
Fernald 190-13

crust, structure: Shor 189-339

earthquake, 1950: Brune 191-104

goeatctonics, recent deformation:
Ivanhoe 190-288

gravity surveys: Barnes 188-351;
Ostenso 190-370

magnetic surveys: Agarwal
190-479

Mount Murphy to Hudson Moun-
tains: Behrendt 191-265

Victoria Land: Weihaupt 191-266

glaciers, Filchner ice shelf:
Behrendt 188-319

flow regimen: Crary 190-296

movement: Bogoslovskiy 189-275;
Haefeli 191-316; Swithinbank
191-319

Antarctica—Continued

Ross ice shelf: Crary 188-320

thermal gradient: Gow 189-262

gravity surveys: Behrendt 191-369;
Grushinskii 191-357; Lazarev
191-383; Ushakov 189-584;
Zomm 191-382

magnetic field, variations: Nagata
189-385

magnetic surveys, Halley Bay ice
shelf: MacDowall 189-476

New Zealand-Ross Sea traverse:
Adams 188-467

geophysical research: Rigsby 188-283

galactic surveys: Hunkins 188-284

T-3: Plouff 188-285

glaciers, movement: Haefeli 191-316

Arctic Ocean, geophysical surveys,
U. S. S. R.: Gordienko 188-286

origin of basin: Eardley 188-583

seismic surveys: Hunkins 189-611

submarine geology, Chukchi Shelf:
Cromie 191-684; International
Geophysical Year Bulletin: 191-685

Argentina, age, general listing:
Lineras 189-21

Arizona, age, Precambrian rocks:
Damon 188-46

electrical surveys, ore below fan-
glomerate: Frischknecht 188-250

gravity surveys: Plouff 188-344

magnetic field, measurements:
U. S. Coast and Geodetic Sur-
vey: 190-387

Asia, crustal structure: Santo 191-404
Asia—Continued
earthquakes, mechanism: Ritsema 189-106
seismicity, A. D. 628 to A. D. 1500: Ambraseys 189-87
Asteroids, collisions: Hawkins 189-41
Atlantic Ocean, Bermuda-New England Seamount Arc: Northrop 190-601
crust, structure: Savit 190-581
heat flow, bottom sediments: Gerard 189-324
magnetic surveys, profiles from Bermuda: King 188-446
Mid-Atlantic Ridge: Il'in 189-612
seismic surveys: Savit 190-581
Australia, age, galena: Richards 190-374
age, igneous and metamorphic rocks: Evernden 188-98
Precambrian rocks: Wilson 188-99
shales: Compston 191-29
earthquakes, 1961: Cleary 191-122
gravity surveys, Blinman dome: Mumme 189-318
fault zone: Mumme 191-380
Willunga basin: Pegum 191-379
isotopes, sulfur, Broken Hill: Lawrence 191-417
magnetic field, observations: Parkinson 191-437
magnetic surveys, Blinman dome: Mumme 189-318
paleomagnetism, Cenozoic: Mumme 191-491
Austria, electrical surveys, water: Fritsch 188-254
heat flow, Alps: Clark 188-365
Azores, volcanic eruptions Capelinhos: Ferreira 190-617; Machado 191-619; Zbyszewski 189-618, 190-618
volcanic eruptions, secular variation: Machado 190-615

B

Belgium, age, radiocarbon dates: Dossin 190-49
magnetic surveys: Graulich 189-469
Bering Sea, heat flow: Foster 190-333
Black Sea, radioactivity, sediment: Starik 190-500
Boundary value problems, method of integration: Shuleshko 188-292
Brazil, radioactive surveys: Argen­tiere 189-501; Wedo 188-486
British Columbia, age, mica: Reesor 188-57, -58
glaciers, thickness determination: Jacobs 189-263
British Isles, paleomagnetism: Everitt 188-431
Bulgaria, geophysical surveys, ore deposits: Tuparev 191-629
meteorites, review: Nikolov 191-63
seismic regionalization: Kirov 191-90
seismic surveys: Akrabova 191-630
seismicity: Kirov 189-78

C

California, age, granites: Bateman 188-49
earthquakes: Bateman 188-151; Wood 188-156
geophysical surveys, Owens Valley: Pakiser 190-244
geotectonics, recent deformation: Alexander 190-287
gravity surveys: Jackson 188-350; Kovach 190-327; Mabey 188-452; Oliver 188-348; Pakiser 188-349
magnetic surveys: Irwin 190-478; Kovach 190-327; Mabey 188-452
radioactivity surveys: Books 191-592
Canada, age, Athabasca formation: Fahrig 189-18
age, Cordilleran rocks: Muller 188-55
general listing: Lowdon 188-50
metamorphic rocks: Burwash 189-17
radiocarbon dates: Dyck 190-40; McMallum 190-46; Trautman 190-42
shield age program: Stockwell 188-52
tectonic processes, Appalachians: Neale 189-15

Bahamas, age, sediments: Ostlund 190-44
Baltic shield, age: Polkanov 188-3
Beaufort Sea, submarine geology, bottom topography: Carsola 188-584
Bechuanaland, seismic surveys: Overseas Geological Surveys 191-623
Canada—Continued
earthquakes, 1955-59: Milne 188-157
geophysical exploration, 1961: Oil in Canada 188-282
heat flow: Garland 190-337
magnetic surveys, Arctic Archipelago: Gregory 188-455, 189-468
radioactivity surveys, Arctic Archipelago: Gregory 188-455
seismic surveys, Arctic: Hobson 189-575
Upper Mantle Project: Canadian Mining Journal 190-361; Hodgson 191-406; Uffen 191-407
Cape Verde Islands, volcanic activity: Ferreira 190-61.7
Caribbean Sea, age, sediment: Roshol 191-20
Ceylon, age, igneous and metamorphic rocks: Vitanage 189-27
Chile, age, igneous rocks: Ruiz F. 188-60
crust, structure: Lomnitz 189-341
earthquakes, 1958: Lomnitz 188-154, 1960: Borgel 190-119; Dobrovolsky 188-177; Rothe 189-76; Ruiz F. 190-120; St. Amand 190-121
seismicity, regionalization: Gajardo 188-158
China, age, bones: Isabayev 188-15
crust, structure: Annau 188-370
earthquakes, 1920: Petrushevskiy 188-166
electrical exploration: Ivanov 188-248
electrical logging, laterolog: Laboratory of Logging of the Academy of Petroleum of the MNP 190-229
magnetic surveys, Great Shingan Mountains: Hou 188-466
paleomagnetism, Paleozoic and Mesozoic: Van 190-465
radioactivity exploration, methods: Grumbkov 190-516
seismic exploration, marine: Bo 190-552
refraction: Yepinat’yeva 190-559
seismic scales: Van 188-165
seismic surveys: Tseng 188-561; Yepinat’yeva 188-560
seismicity: Khan’ 190-129; Petrushevskiy 189-92; Savarenskiy 188-164
Colorado, age, granites: Pearson 191-18
gravity surveys: Plouff 188-340; Cureshy 190-326
Colorado Plateau, age, Precambrian rocks: Damon 188-46
Columbia, age, biotite: Pinson 191-21
Congo, volcanic earthquakes, Nyiragongo: Shimozuru 188-595
Conrad discontinuity, nature of: Bath 190-352
Continental drift, Cabot fault, correlation with Great Glen fault: Wilson 191-308
evidence from paleomagnetism: Kropotkin 188-310
flora correlation: Plumstead 189-249
Continents, growth, India: Bose 190-286
growth, nuclear theory: Popov 191-303
seismic evidence: Popov 191-311
Core, equations of state, metals: Trubitsyn 191-414
expansion, cause of orogeny: Cagniard 189-355
rigidity: Pekeris 191-412
seismic waves, magnetic field effect: Yukutake 189-356
static deformations: Takeuchi 189-354
Cosmic dust, collecting techniques: Soberman 190-89
density near earth: Dubin 188-127
impacts at 700-2,500 km elevation: LaGow 188-126
kinetic energy, ballistic pickup: Isakovich 188-125
origin: Soberman 190-91
rate of accretion: Safronov 191-65
size and shape: Hemenway 190-90
spherules: Crozier 190-88; Utech 188-103, 189-58
well cuttings: Skolnick 188-128
Cosmic rays, carbon, nitrogen, oxygen abundances: Orsini 188-108
Cosmogony, deuteron synthesis: de Turville 189-55; Fowler 189-36, 190-63
galactic deuterium-hydrogen ratio: Weinreb 191-218
Craters, natural fractures, influence on shape: Dickey 188-129
Craters—Continued
nuclear explosions, desert alluvium: Nordyke 190-266
shatter cones, laboratory produced: Shoemaker 188-130
Creep, rocks, Lomnitz law: Jeffreys 189-587
rocks, review: Murrell 191-639
salt, mine openings: Reynolds 188-571
Crust, absolute ages, metamorphic effect: Neuvonen 189-11
composition, continental and oceanic due to physical differences:
Afanas'ev 189-352
metamorphic rocks entirely: Rezanov 189-336
Conrad discontinuity: Båth 190-352
evolution, isotope tracers: Russell 189-338
granitic, formation: Lyustikh 191-400
oceanic, second layer: Ewing 190-351
stages of development: Khain 189-250
static deformations: Takeuchi 189-354
strength, hydrostatic flattening: Henriksen 188-348
structure, Alaska: Shor 189-339
Antarctica: Bentley 191-405
Arctic: Oborina 189-340
Asia: Santo 191-404
Asia-Pacific Ocean transition zone: Aver'yanova 190-357
Atlantic Ocean: Savit 190-581
basic features: Demenitskaya 189-337
Chile: Lomnitz 189-341
China: Annua 188-370
Euro-Asia: Payo Subiza 190-139
Europe: Choudhury 189-343
Fennoscambia: Tryggvason 191-401
Germany: Berckhemer 189-130
Iceland: Tryggvason 189-342
India: Chakravortty 189-345
Japan: Research Group for Explosion Seismology 190-358
Japan to Kamchatka: Suzuki 189-347
New Zealand: Adams 189-351; Thompson 189-350
ocean basins: Arkhangel'skaya 189-344

Crust—Continued
structure—continued
Pacific Ocean: Gaynanov 190-334; Santo 188-371, -372, 191-403
191-404; Shechkov 189-349; Suzuki 189-348
Puerto Rico Trench: Bunce 191-619
South America: Asada 191-88
Texas: Cram 188-369
U. S. R.: Bichevina 191-402; Deniskin 188-143; Gal'perin 189-346; Godin 190-354; Popov 191-304; Tatevosyan 190-355; Ulomov 190-356
Czechoslovakia, age, bones: Isabayev 188-15
godesy, review: Rysavy 191-299
gophysical research: Zátopek 191-201
magnetic surveys, Kleine Donau Plain: Møller 188-458
microseisms: Zátopek 190-487, 191-570
noise level: Karnik 191-569
paleomagnetism, Paleozioc: Bucha 191-487
seismic velocity surveys, Vienna basin: Zounková 188-537
seismicity, maps: Karnik 189-86

D
Deformation, fault pattern analysis, South Silverton, Colo.: Varnes 190-594
ice crystals: Nakaya 189-604
Denmark, seismic surveys: Hjelme 189-579
Density, rocks, Germany: Kopf 190-329
Drilling activity, United States, 1961: Carsey 190-245
Dutch East Indies, volcanic activity: Neumann van Padang 190-629

E
Earth, figure, astrogeodetic and gravimetric determination: Burša 191-295
figure, flattening: Henriksen 188-305; Lecar 188-304
formula for determining: Marych 190-271
Earth—Continued
figure—continued
integral equation: Bjerhammar 189-238
satellite measurements: Buchar 188-301; Jacchia 188-303; Szabo 190-297; Whipple 188-302
theory of: Brovar 190-269
triaxial ellipsoid: Heiskanen 190-268
free oscillations: Takeuchi 189-354
interior, Bullen models: Bullen 191-399
heat distribution: Valle 191-385
origin of components: Vinogradov 191-398
stress and strain: Lomnitz 191-397
temperature: Shneiderov 188-363
models, elastic globe: Sato 190-163
origin: Potapov 191-32; Wong 188-105
rotation, motion of the poles: Fedorov 190-150
tortional oscillations: Takeuchi 188-210
Earth currents, frequency bands, differentiation: Ver5 188-144
land and sea observations correlated: Hessler 190-106
magnetotelluric sounding, U.S.S.R.: Rokityanskiy 191-74
observations, Spain: Miguel y González Miranda 190-392
oceans, induction by Sq: Rikitake 190-105
potential gradient, stray currents: Vinogradov 191-72
power spectrum analysis, U.S.S.R.: Horton 191-75
self-potential exploration, effects on: Kojiro 189-182
short period changes: Kebuladze 191-71; Yokoyama 191-70
solar flares, correlation of distribution: Lashkhi 190-114
variations, morphology: Vinogradov 191-73
Earth current exploration, China: Ivanov 188-248; Kavin 188-145
direct current amplifier: Academia Sinica 188-146
methods: Gorelov 190-112
model experiments: Richter 190-108
review of methods: Porstendorfer 190-107
Earth current exploration—Continued
tellurograms, processing: Shabanov 190-113
Earth current surveys, U.S.S.R.: Deniskin 188-143; Shabanov 191-76
Earthquakes, acceleration, systems with one degree of freedom: Medvedev 190-133
aftershocks, magnitude-frequency-time relationship: Utsu 189-74
statistical study: Utsu 189-97
Alaska, 1959: Brune 191-104
Australia, 1961: Cleary 181-122
California, 1872: Bateman 188-151
history: Wood 188-156
Canada, 1955-59: Milne 188-157
cause: Petrushevskiy 189-85
Chile, 1958: Lomnitz 188-154
1960: Borgel 190-119; Dobrovolny 188-177; Rothé 189-76; Ruiz F. 190-120; St. Amand 190-121
China, 1920: Petrushevskiy 188-166
data processing, punch cards: Böger 188-190
energy: Gayskiy 191-99; Hofmann 188-147; Keylis-Borok 189-95; Teisseyre 188-174
engineering: Dobrovolny 188-177; Merchant 189-120; Science Council of Japan 188-178
epicenters: Cleary 191-122;
Tarczy-Hornoch 188-168; Treškov 191-96
Europe, 1901-55: Kárný 191-77
fault plane solutions: Kuo 188-176;
Ritsema 188-175
Fiji, 1953: Houtz 189-81
1961: Houtz 189-82
focal depth determination, macroseisms: Sponheuer 190-130
focal mechanism: Ben-Menahem 190-123; Enesku 190-132;
Furumoto 191-102; Schäffer 189-113; Stauder 191-132
focus, location by computer: Nordquist 189-94
free oscillations of earth, gravity effects: Nakagawa 190-138
geologic interpretation: Gorshkov 190-135
ground motions, empirical formulas: Kanai 188-173
intensity, irregular distribution at surface: Solonenko 191-100
Earthquakes—Continued
intensity-frequency relationship, Japan: Ikegami 188-171
Israel, catalog corrections: Ambraseys 189-77
Jamaica, 1957: Robinson 190-117
Japan, 1961: Hagiwara 191-82; Hoshina 190-124; Kanai 191-87; Kishinouye 191-80; Miyamura 191-84; Morimoto 191-86; Murai 191-85; Omote 191-83; Osawa 191-81; Yoshiyama 191-79
magnitude distribution: Hirono 188-167
magnitude, depth distribution: Matsushima 188-172
equation for Potsdam: Stelzer 188-169
macroseismic formulas: Galanopoulos 191-98
scale: Vanek 191-97
standardization of methods: Kárník 190-131
surface wave determination: Savarenskiy 188-170
mechanism, aftershocks: Duda 189-75
analytical calculation: Knopoff 189-100
couples without moment: Ingram 189-99
dislocation theory: Balakina 189-102
displacement of source: Keylis-Borok 189-104
frequency: Gurevich 191-106
generation of waves: Honda 189-103
long-period surface waves: Aki 189-109
principal horizontal stress: Lensen 189-112
Rayleigh waves: Brune 189-110
S-waves: Ferraes 191-103; Stauder 189-105
statistical accuracy: Knopoff 189-101
symposium: Byerly 189-98
tectonics of Asia: Scheidegger 189-111
Turkey: Ocal 189-108
Mexico, 1959: Figueroa Abarca 188-152; Merino y Coronado 188-153
microwave regionalization, deformation of seismic waves: Kats 190-125

Earthquakes—Continued
Mongolia, 1957: Solonenko 191-78
Montana, 1959: Bailey 188-150; Hofmann 188-147; Meyers 188-149; Ryall 189-72; Steinbrugge 189-71; Tocher 189-69; Wiegel 189-73; Witkind 188-148, 189-70
Nevada, history: Wood 188-156
prediction: Gzovskiy 191-107; Neret 188-179; Petuchevskiy 191-108
response spectrum: Clough 191-109
Rumania, catalog: Atanasiu 188-160
Saskatchewan, 1909: Agarwal 189-116
source function, Rayleigh waves: Aki 191-105
stress state at focus, Carpathian Mountains: Ruprechtová 190-134
strong-motion analysis, computer techniques: Hudson 189-114
Syria, catalog corrections: Ambraseys 189-77
textbook: Savarenskiy 188-155
1958: Kondorskaya 190-122
depth of focus in Caucasus: Tskhakaya 191-92
Tadzhik S. S. R.: Nersesov 189-79
volcanic, Congo: Shimozuru 188-155
water-level fluctuations: Rexin 189-119
world, 1958-60: Montandon 189-235
Earth tides, deviation of vertical, ocean tide attraction: Lennon 188-195
exploration tool for faults: Mandelbaum 190-149; Rigassi 188-192
gravimeter measurement, earthquake effect: Balakrishna 188-193, -194
horizontal pendulums, calibration: Schneider 190-151
orogeny, cause: Stovas 189-242; Woodriff 189-253
surface mass loads, Green's function: Longman 190-148
tectonic processes: Belyankin 188-196
tidal gravity corrections, 1962: Service Hydrographique de la Marine et Compagnie Générale de Géophysique 189-303
Egypt, age, biotite: Gheith 188-64
Elastic properties, coal, function of metamorphic rank: Toporets 188-276
cores, apparatus and methods: Shan'gin 188-214
feldspar: Aleksandrov 191-202
high pressure, ultrasonic interferometer: Ahrens 191-205
ice: Langleben 188-216; Nakaya 190-600; Serikov 189-608; Zhukov 189-567
micas: Aleksandrov 191-201
rocks, determination in place: Nicholls 190-168, 191-195; Swain 189-565
high pressure: Volarovich 191-199
U.S.S.R.: Belikov 190-172
Young's modulus: Köhlsling 189-156
sandstones, triaxial pressure: Horibe 188-215
Elastic waves, absorption: Silayeva 189-155; Vanek 191-197
acoustic field approximation: Gazaryan 191-179
amplitude, from M-discontinuity: Werth 189-158
layered medium: Lossovskiy 191-170
size of underground explosion: Carpenter 191-208
variation with frequency: DeNoyer 189-161
analog model: Chauveau 190-159
anisotropic half-space, reflection from: Bershteyn 190-162
attenuation, longitudinal waves: Klima 190-167
method of measuring: Aubeger 190-166
rock samples: Vasili'eva 191-196
azimuthal asymmetry, low velocity cylinder: Meecham 189-142
body, finite moving source: Ben-Menahem 188-204
inequalities at great distance: Roard 189-163
coupling, shotpoint medium: Adams 188-220
cylindrical function: Molotkov 191-187
decoupling effect, spherical cavity explosion: Adams 188-221; Willis 189-160
degenerated: Zaytsev 191-171
Elastic waves—Continued
dispersion, higher modes: Takahashi 191-160
Love waves: Takahashi 191-159
elastic globe: Sato 190-163
energy transfer, anisotropic mediums: Osipov 191-165
excitation, interface: Gilbert 189-143
explosions, characteristic periods: Keylis-Borok 189-151
effect of interface: Vavilova 189-146
extension, behind caustic: Babich 191-182
frequency, spectrum: Stewart 188-181
spherical seismic origin: Aoki 190-179
unilateral pressure: Konstantinova 191-200
geologic bodies, shape of: Buldyrev 191-183
geometric divergence: Gel'chinskiy 191-177
ground motion, near explosion: Yoshikawa 190-180
head waves, model studies: Davydova 191-191; Shamina 190-170
ray method: Alekseyev 191-178
horizontally polarized, underground explosions: Wright 190-178
horizontal stress applied to elastic half space: Cherry 189-140
impulses, distortion, by resonance analyzers: Gratsinskiy 190-160
inhomogeneous sphere: Nomura 190-165
interference zone, reflected and head waves superposed: Červený 190-156
line source, directivity problem: Gilbert 188-197
transversely isotropic elastic medium: Abubaker 191-154
liquid-solid boundary: Osipov 191-169
longitudinal, artificial earthquakes: Choudhury 189-343
dynamic characteristics: Shamina 191-172
Love, homogeneous medium: Deresiewicz 191-152; Hudson 190-152
transition zones: Sato 189-152
Elastic waves—Continued

low frequency oscillations, liquid half space: Molotkov 191-189
low velocity zone, change in displacement direction: Galperin 191-166
models, perforated: Gil'bershteyn 190-175; Ivakin 191-193
pinch out layers: Kun 191-168
two-dimensional: Shamina 190-171
M-waves, two major branches: Tazime 188-209
nonstationary, field near caustic: Babich 191-181
normal mode, elastic plates: Nakamura 188-207, 208
ocean bottom, pressure variations: Bradner 191-212
oscillations, layered structure: Molotkov 191-190
P-waves, nuclear explosions: Wright 189-157
PL modes, single layer: Gilbert 189-141
plane source: Pčč 189-145, 190-157, 190-158
propagation, cylindrical borehole: White 190-153
dissipative medium: Soluyan 191-173
effect of physical properties: Rinehart 189-153
exact transient solution: Flinn 189-139
interface: Gilbert 189-143
liquid layer over sloping bottom: Nagumo 188-201
nonhomogeneous medium: Gazaryan 191-180
thin layers: Molotkov 191-188
viscous-elastic halfspace: Bordonachev 189-147
Rayleigh, artificial explosion: Sheridan 191-151
dispersion: Tazime 191-161
free surface: Pod'yapol'skiy 188-206
liquid-filled porous solid: Deresiewicz 191-149
period equation: Dorman 189-150
reflection, liquid-filled porous solid: Deresiewicz 191-148
model study: Shamina 190-170
nonspecular boundaries: Voskresenskiy 191-192

Elastic waves—Continued

reflection and refraction, coefficients: Tazime 188-199
liquid-liquid and solid-solid interfaces: Bortfeld 190-154
resonant oscillations, overburden: Gupta 189-162
salt, behavior at CO2-filled cracks: Neunhoeffer 190-169
scaling law: Carder 189-159
scattering, rough surfaces: Abubakar 188-200
seismic-electric effect: Zablocki 188-218
SH-waves, semi-infinite elastic half space: Nag 188-202
total internal reflection: Hudson 191-156
shear, transient torsional couple: Datta 189-144
short period, semi-infinite isotropic medium: Sato 189-148
sonic booms, generated by: Oliver 191-211
spherical, reflection coefficients: Červený 191-162
spherical and cylindrical interfaces: Buldyrev 191-186
surface, dispersion: Harkrider 189-149
layered structure: Yamaguchi 191-157
two-layered structure including water layer: Yamaguchi 191-158
torsional oscillations of earth, attenuation: Zharkov 191-164
split spectral peaks: Usami 191-150
transformed, model study: Shamina 191-167
transition layer: Tsepelev 191-184
twisting impulse force, surface of spherical cavity: Dutta 188-203
velocity, anisotropic medium: Osipov 191-163
field seismoscope: Gil'bershteyn 190-181
granites of India: Hayakawa 188-212
ice: Thiel 188-566
increase with depth: Kunz 190-155
metamorphic rocks: Kravets' 191-198
Elastic waves—Continued
velocity—continued
variation with clay content of rocks: Hurtig 190-173
variation with temperature in volcanic rocks: Iida 189-154
viscoelastic material, reflected and refracted: Lockett 188-198
wave front, derived from slip front on cylinder: Molotkov 191-185
ray method: Babich 191-176
Elasticity, anisotropic mediums: Anderson 191-153
determination, uniaxial compression: Hardy 189-592
dynamics of elastic bodies, reciprocal theorems: Hu 190-164
energy of rupture: Vinogradov 191-652
equation of state, rocks: Lombard 188-217
line source, transversely isotropic elastic medium: Abubakar 191-154
Poisson’s ratio, halite and potash ore: Warrick 188-213
Rayleigh waves, transition to sound waves: Tazime 188-205
rocks, absorption and dispersion of elastic energy: Donato 188-211
high confining pressures: Fay 190-174
in place measurements in India: Central Water and Power Research Station Poona 191-194
laboratory measurements: Fairhurst 188-576
sea-ice: Pounder 191-204; Tabata 189-603
seismic modeling, automatic spectrum analyzer: Obukhov 190-161
shearing-stress discontinuity: Nag 191-155
twisting impulse force, surface of spherical cavity: Dutta 188-203
wave fronts, ray method: Babich 191-175
Electrical exploration, airborne, review: Mizyuk 191-242
amplitude and phase oscillations, noninertial measurement: Ivanov 188-249
apparent resistivity, physical nature: Polyakov 190-198
apparent resistivity functions, linear approximation: Unz 191-229

Electrical exploration—Continued
arkeology: Hesse 189-187
boundary problems: Gulyuzman 191-222; Kolbenheyer 191-227
buried cylinders: Plokhikh 191-221
buried spheres: Umezu 191-228
charge method, phase measurements: Kevorkov 189-174
Ural Mountain: Rodionov 188-246
conductivity of groundings, low frequency: Rokityanskiy 188-244
dipole electromagnetic method, asymptotic expression: Praus 191-232
depth to conducting basement: Molochnov 188-233
depth to inclined layer: Molochnov 188-234
direction of profile: Zakharov 191-214
length of lines: Nazarenko 189-176
direct current, dipole method: Ri 190-193
vertical layers: Ștefănescu 188-242
double rotating field: Khomenyuk 191-233
electromagnetic frequency sounding: Kozulin 191-235
glaciers, U.S.S.R.: Borovinsky 191-245
ground water: Ogil'vi 190-202
highway engineering: Moore 188-522
historical review: Kunori 188-247
horizontally nonhomogeneous medium: Vedrintsev 189-175
induced polarization: Chzh'nan' 190-192; Zaborovskiy 190-189
cylindrical conductors: Pris 190-188
electrodes: Nazarenko 190-190
ground water: Petrucci 191-239
interpretation: Belash 191-224
low frequency: Pris 191-216; Svetov 191-215
sulfides: Siegel 190-187
thoretical analysis: Komarov 189-167
U.S.S.R.: Shapovalov 190-191
terpretation, theoretical vs empirical: Orellana Silva 191-226
loop antenna, radiation intensity: Verbyts'kyy 191-243
low-frequency, direct current: Ryss 189-173
earth-atmosphere interface: Kaufman 191-223
Electrical exploration—Continued
magnetic field of an input line: Ștefănescu 188-241
magnetic moment, calculation: Polonjskiy 191-218
natural electrical field: Ryss 189-169
non-horizontal interfaces: Terekhin 188-245
oil, suitability of method: Yungul 190-200
permafrost: Dobrovol'skiy 189-185; Yakupov 190-204
point-source current, parabolic cylinder: Glyuzman 190-183
point source underground, field at surface: Fokin 189-168
resistivity, bauxite: Fritzsch 190-201
clay deposits: Arogyaswamy 190-205
ellipsoidal sonde with shielding: Cheremenskiy 190-195
ground water: Kelly 191-238
network analyzer: Yoshizumi 189-189, 190-207
pegmatites: Ignat'yeva 189-170
resistivity of probe: Rao 191-240
self-potential: Kaku 189-177;
Makino 189-179
earth current effect: Kojiro 189-182
Japan: Okabe 189-183
model studies: Yokoyama 189-184
ore deposits: Endo 189-180
soil and topographic effects: Ohashi 189-181
sulfide ore deposits: Seya 189-178
spherical inclusion, layered medium: Matveyev 191-213
temperature difference in ore body: Yamashita 190-199
topographic effect, model study: Vantsyan 190-203
transient processes, anomalous objects: Pris 191-220
cylinder: Pris 191-219
method: Kamenetskiy 191-237
vertical contact, total longitudinal conductivity: Kalenov 190-196
vertical electrical sounding, aquifers: Kōhsling 188-240
China: Ivanov 188-248
multilayered section: Pomin 188-239
point method: Kukuruza 188-238

Electrical exploration—Continued
vertical electrical sounding—continued
steep contacts: Pichugin 190-197
three layers on basement: Levadny 191-225
vertical magnetic dipole, radiation resistance: Negi 188-228
Electrical logging, accuracy, reservoir properties: Popov 190-225
capacitance effect: Mirsalimov 188-261
carbonate rocks: Per'kov 189-213
coal deposits: Gryzlov 190-228;
Plewa 190-233
computer interpretation: Tuman 189-201
earth currents, effect of: Garland 189-200
electrode potential method: Meyer 188-263
fracturing: Goryunov 191-254
gabbro: Zablocki 188-266
induction: Aksel'rod 190-224;
Buchheim 191-247; Dobrynin 190-223; Duesterhoeft 191-248;
Kaufman 191-251
interpretation, digital computer: Hargrave 190-230
Wyoming: Patchett 188-267
laterolog, China: Laboratory of Logging of the Academy of Petroleum of the MNP 190-229
instrumentation: Chukin 190-231
methods, U.S.S.R.: Dakhnov 189-203
mud resistivity, effect of additives: Johnson 188-264
ore deposits: Meyer 189-202
permeability: Ellanskiy 190-226;
Per'nikov 189-204
resistivity, clayey sands: Kamenev 188-274
model experiment: Kulinkovich 190-221
oil saturation: Anpilogov 189-209
permeability: Dolina 189-207
porosity: Kozina 190-222; Logovsky 191-250
reservoir properties: Boyarov 188-273; Vendel'shteyn 189-205
salt-water leakage: Moston 188-268
water quality: Turcan 191-255
water-oil contact: Sokhranov 188-262, 190-220
Electrical logging—Continued

resistivity—continued
water-saturated sands: Marušiak 189-212
with drill pipe in hole: Oilweek 189-214
review: Johnson 191-249
self-potential, diffusion-adsorption
potentials: Vandel'shteyn 190-227
effect of shot in ore boreholes: Meyer 188-265
Japan: Suyama 189-211
porosity: Anpilogov 191-253; Fel'dman 189-208; Komarov 189-210; Krinari 189-206; Malets­skaya 190-216; Potapov 190-219; Shakina 190-215; Shapiro 190-218
reservoir properties: Chekhov­skaya 190-217
specific surface: Boyarov 191-252
sulfides, Germany: Andreas 188-269
surveys, Bulgaria, ore deposits: Tuparev 191-629
Japan, uranium: Sano 188-511
Majorca, lignite: Sell Cantalapie­dra 190-232
U. S. S. R.: Itenberg 190-234; Stan­kevich 191-258
Azerbaijan A. S. S. R.: Kireyev 189-217
Chulym research drill hole: Po­yarkova 191-259
cis-Caucasus: Nechay 189-215
Emba region: Ayzenshtadt 191-260
Khanty-Mansiysk research drill
hole: Kozlov 191-256
Kuban downwarp: Bedcher 189-216
Kyanizadag area: Dadashev 188-272
Maksimkin Yar research drill
hole: Shumenkova 189-219
Pokus research drill hole: Dryakhlova 189-220
Rymben research drill hole: Gor­bachev 190-236
Uvat research drill hole: Alferov 191-257
Volga-Ural district: Per'kov 189-218
Zhigalov research drill hole: Su­limov 190-235

Electrical logging—Continued
surveys—continued
Yugoslavia, coal basins: Perić 188-270
Electrical properties, basalts, Mich­igan: Keller 188-275
coal, function of metamorphic rank:
Toporets 188-276
earth's interior, conductivity: Nor­itomi 190-241
electromagnetic waves, attenuation
in rocks: Dokoupil 190-240
fayalite: Bradley 190-237
gabbro, boreholes: Zablocki 188-266
in place measurement: Rush 191-262
natural electrical field, sulfide
ores: Davydov 190-243
resistivity, function of water con­tent: Keller 190-238
rocks: Ivanov 190-239; Mikhailova 188-277
saturated sand and clay sizes:
Sarma 191-261
self-potential, ore bodies: Bukhnikashvili 190-242
ore samples: Bukhnikashvili 188-278
sulfide ores: Sveshnikov: 188-279
thermoelectricity, pyrite: Hill 191-263
Electrical surveys, Alberta, ice
thickness: Keller 189-191
Arizona, ore below fanglomerate:
Frischknecht 188-250
Austria, water: Fritsch 188-254
Canada, Athabasca Glacier: Keller 189-191
France, salt springs: Horon 188-252
Germany, Hammerunterwiesenthal
phonolite: Jaeger 188-457
sulfides: Andreas 188-269
Illinois, glacial deposits: McGinnis 189-573
Italy, geothermal energy: Alfano 188-253
Jamaica, copper: Bergey 190-208
Japan, gold: Kobayashi 188-260, 189-197
Matsukawa hot spring district:
Ono 190-212
molybdenite: Shibato 190-213
Oshima Island: Ono 190-214
propylite: Kunori 189-199
Electrical surveys—Continued
Japan—continued
sulfides: Otaki 189-198
uranium: Ono 189-196
Mongolia, East Gobi depression: Fomina 190-211
Nevada, basalt thickness: Roller 188-251
Nigeria, tin placer deposits: Shaw 190-209
Northwest Territories, Devon Island glaciers: Greenhouse 189-193; Voegtli 189-192
Caspian area: Nazarov 188-259
glaciers: Borovinskii 189-194, 189-195, 190-210; Tokmagambetov 191-244
microisotropy: Levadnyy 191-246
Washington, lead-zinc deposits: Crosby 189-190
Yugoslavia, bauxite: Krulc 188-256
coal basins: Mladenovic 188-257
graphite: Ristic 188-255
Electromagnetic exploration, AFMAG, western U.S.A.: Kellogg 189-172
airborne, dipole induction: Artamonov 189-164
dual-frequency phase shift method: Paterson 188-227
helicopter: Paterson 191-236
single frequency device: Wieduwilt 191-231
sonic frequencies: Shaub 189-165, 189-166
build-up of field: Kovtun 188-229; Van’yan 188-237
continuous frequency sounding: Enenshteyn 190-194
diffraction, inhomogeneous sphere: Negi 191-230
dipole field, infinitely conducting disc: Douloff 188-225
dipole sounding: Molochnov 188-232, 188-235
glacier thickness: Rudakov 189-186
inhomogeneous cylindrical body, time-varying field: Negi 190-182
low frequency, amplitude-phase measurement: Svetov 190-206
model studies, single sheet and schistose conductors: Swanson 189-188

Electromagnetic exploration—Continued
radiowave transluence, iron deposits: Grachev 190-184
uranium deposits: Bondarenko 191-241
resistivity of country rock, buried sphere: Shaub 191-217
rotating magnetic field experimental verification of method: Shaub 188-243
secondary magnetic field: Yokoyama 189-171
stratified earth: Gasanenko 188-230; Wait 190-185
transmitter-receiver position, errors connected with: Sioninen 190-186
two-layered medium: Gasanenko 188-236; Van’yan 188-231
wave diffraction, conducting plate in conductive medium: Dmitriyev 191-234
Ellesmere Island, seismic surveys, glacier thickness: Weber 191-621
England, age, biotite: Miller 191-24
galena: Moorbath 189-22
granites: Lambert 188-2; Long 189-23; Miller 191-23
metamorphic rocks: Miller 189-24
gravity surveys, marine: Bott 189-309
magnetic surveys: Bott 190-481
paleomagnetism, Triassic remagnetization of Old Red Sandstone: Creer 189-453
seismic surveys, coal fields: Clarke 189-577
Epirogenesis, source of tectonic movement: Legrand Subiza 190-139
Ethiopia, magnetic field, measurements: Gouin 191-435; Mayaud 191-434
Europe, crust, structure: Payo 188-35
gravitation line: Morelli 189-277
gravity, Bad Harzburg-Etna calibration line: Morelli 189-343
earthquakes, 1901-55: Karnik 191-77
gravity, Bad Harzburg-Etna calibration line: Morelli 189-343
Rome-Barcelona tie: Morelli 191-368
microseisms, nature and origin: Zatopek 191-567
Explosion seismology, explosive energy, coupling to rock: Nicholas 190-177
nuclear explosions, acoustic waves: Jones 188-131
air to ground coupling: Tandon 190-176
strain release: Press 188-219
VELA UNIFORM: Bates 188-222
scaling law: Carder 189-159
transverse motion: Jones 191-206
upper mantle, P-traveltimes: Lehmann 191-408

F
Fiji, earthquakes, 1953: Houtz 189-81
earthquakes, 1961: Houtz 189-82
Finland, age, galena: Kouvo 188-73
age Precambrian rocks: Wetherill 188-72
crust, thickness: Tryggvason 191-401
Florida, age, dolomite: Deffeyes 190-12
Folding, crustal shortening, not related to: Carey 190-281
Fracturing, textbook: Thomas 188-567
France, electrical surveys, salt springs: Horon 188-252
radioactivity, granite: Prouvost 190-498
seismic surveys, Limagne basin: Carron 189-578
thermal springs, Haute-Auvergne: Roux 189-623
French Antilles, volcanic activity, prediction: Jolivet 190-613
Fusion curves, alkali metals, up to 50 kb: Newton 190-367

G
Galvanometers, compared with proton vector magnetometer: Bottom 188-394
Geodesy, academic training, Ohio State University: Heiskanen 189-239
altitude reduction: Jung 190-275
Czechoslovakia, review: Ryšavý 191-299
deflection of the vertical, topography isostatically reduced: U. S. Army Map Service 190-274
Geodesy—Continued
hypsometric curve of the earth: Tanner 190-273
network, Scandinavia: Honkasalo 190-276
reference ellipsoid, satellite observations: Burša 191-294
satellite observations, mean earth ellipsoid: Burša 191-297
triaxial ellipsoids, transformation: Pick 191-296
trigonometric networks, transfer: Kašpar 190-278
Geoid, computation, errors in geographic latitude: Pick 191-298
computation, formula: Mihaylov 190-270
gravity values: Arnold 190-272
pear-shaped component: O'Keefe 188-306
Geologic thermometry, Rumania, sulfide ores: Savul 189-335
Geomechanics, engineering and mining practice: Müller 191-647
Geomechanics, general discussion: Clare 191-645
time as a factor: Heitfeld 191-646
Geophones, oscillations of instrument and ground: Vasil' yev 190-572
Geophysical anomalies, potential, inverse problem: Nedyalkov 189-226
Geophysical exploration, alternative employment of geophysicists: Jones 191-285
apparatus, Poland: Izakowski 190-262
Canada, 1961: Oil in Canada 188-282
chromite, Yugoslavia: Šumi 188-299
computers: Morrison 190-259; Stoian 190-260; Teskey 189-229
cost analysis, U. S. S. R.: Karpushin 188-298
current status (1962): Brundage 190-256; Dobrin 191-276; Link 191-281; Woods 191-275
economic problems (1962): Lyons 191-279; McLarty 191-277; Moore 191-280
employment statistics (1962): Campbell 191-284
engineering applications: Drake 190-255
engineering geology, Poland: Bażyński 190-263
Geophysical exploration—Continued
faults, determination from geo­
physical maps: Klushin 191-292
geothermal energy: Klimentov 191-
391
ground water: McDonald 189-232
interpretation, ambiguity in: Roy
191-274
factors controlling limits: Buller­
well 188-293
mining, trends (1962): Paterson
191-283
North America, trends (1959):
Newfarmer 191-278
permafrost areas: Bulmasov 189-
231
personnel requirements (1960):
Woods 191-287
Poland: Skorupa 188-296, -297
rare metals, carbonatites and alka­
lic rocks: Vakhromeyev 190-
265
seasonal nature, U. S. S. R.: Tish­
chenko 190-250
statistical methods: Kulinkovich
190-257
student enrollment (1962): Hollister
191-286
technical limitations: Born 191-282
textbook: Bubleynikov 188-295;
Ogil’vi 189-228
U. S. R.: Semenov 190-264; Shiro­
kov 190-247
Geophysical research, AmericanGe­
ophysical Union: Smith 190-254
Arctic regions: Rigsby 188-283
changing character (1962): Brant
191-288
Czecho|ovakia: Žátopek 191-291
Hawaii Institute of Geophysics:
Ramage 189-233
information, content of the mean:
Matalas 191-273
nature and limitations: Cailleux
190-258
International Geophysical Calendar
for 1962: Shapley 189-234
mantle: Magnitskiy 188-374
Peru: Giesecke 191-290
review (1962): Berkner 190-253
textbook: Toperczer 188-294
Geophysical surveys, Antarctica:
Behrendt 191-265; Robin 191-
267; Shumskiy 190-252; Weih­
haupt 191-266
Geophysical surveys—Continued
Arctic, Chuchi cap: Hunkins 188-
284
T-3: Plouff 188-285
Arctic Ocean, U. S. S. R.: Gordienko
188-286
California, Owens Valley: Pakiser
190-244
India: Indian Minerals 190-251;
Kailasam 189-224
dam sites: Central Water and
Power Research Station Poona
191-272
Karorour glaciers: Desio 191-
271
Japan, lead-zinc deposits: Odani
189-225
Maryland, Rockville quadrangle:
Griscom 188-280
Saskatchewan, Coronation mine:
Rattew 190-246
U. S. S. R., Amur-Zeya depression:
Volodarskiy 191-270
diamond deposits: Bondarenko
189-221
Glavnyy Bol’shealmatskiy gla­
cier: Borovinskiy 191-268
Kazakh S. S. R.: Ayzenshtadt 190-
249; Babayants 188-231
Kirovabad area: Dzhafarov 189-
223
Kyzyl-Kum: Mel’kanovitskiy 189-
222
Lower Volga: Kozlenko 190-248
reefs in Cis-Urals: Khat’yanov
188-290
Tashkent: Mel’kanovitskiy 191-269
Venezuela, Alturitas area: Stenson
188-287
Yugoslavia, oil and gas: Aksin 188-
289; Mužijević 188-288
Geophysical well logging, Russian
terminology: Dakhnov 188-300
Georgia, age, metamorphic rocks:
Kulp 188-40
radioactivity surveys: Schmidt 189-
499
tektites, age of fall: Fucron 190-
93
Geosynclines, subsidence, phase
change at M-discontinuity: Mc­
Math 189-243
Geotectonics, continental drift:
Girdler 191-305; Runcorn 189-
248; Sougy 190-283; Weertman
189-247
Geotectonics—Continued
continental growth: Weeks 190-279; Wilson 189-251
cosmic factors: Eygenson 190-280
crustal deformation: Caputo 189-240; Khain 189-250; Popov 189-245
earth tides: Belyankin 188-196
expanding earth: Barnett 191-300; Egyed 188-427; Shneiderov 189-252
isostasy, tectonic factor: Lyustikh 191-302
Mendocino fracture zone, North America continuation: Gilliland 191-309
model studies: Hamilton 190-292
physicochemical model, heat source: Shimazu 191-301
recent movements, Alaska: Ivanhoe 190-288
California: Alexander 190-287
Greenland: Saxov 189-254
India: Kumar 189-256
Italy: Gantar 190-290
Japan: Miyamura 188-316
measurement of: Korhonen 188-313
U. S. S. R.: Kazanchan 189-255; Rudich 188-315; Shul'ts 191-310
rift systems, Arabo-Ethiopian swell: Mohr 191-306
sea level changes, glacial control: Gill 188-317
Scotia Arc, origin: Hawkes 190-284
 secular movements: Meshcheryakov 190-291
tilting: Bonchkovskiy 189-246
vertical movements, cause of folding: Lovejoy 188-307
gravity anomalies: Subbotin 189-241
velocity gradients: Reysner 188-314
volcanoes, tension in crust: Brouwer 190-605
wrench faults, length-to-offset ratio: Menard 191-307
Geothermal anomalies, U. S. S. R., Apsheron Peninsula: Sultanov 189-325
Geothermal energy, exploration methods: Klimentov 191-391
Iceland: Böðvarsson 190-343

Geothermal energy—Continued
Indonesia: Neuman van Padang 190-347
Italy: Alfano 188-253; Cassinis 188-555; Gennai 190-344; Vecchia 189-312
Japan: Hayakawa 189-332; Nakamura 189-333
New Zealand: Byron 189-329; Goguel 190-349; Studt 190-348
review of literature: Penta 190-342
United Nations Conference 1961:
Smith 188-362
Kamchatka: Syvatlovskiy 190-346
Kurile-Kamchatka: Averyev 190-345
pyrrhotite-pyrite solvus: Arnold 191-395
quartz, Rumania: Pomfleau 189-334; Savul 188-368
spalerite, dolomite, and calcite; Miami-Picher district: Schmidt 191-394
New Brunswick: Kalliokoski 191-396
Germany, age, metamorphism:
Davia 189-1
age, radiocarbon dates: Wendt 190-50
cosmic spherules, Bundsandstein: Utech 189-58
crust, structure: Berckhemer 189-130
density, rocks: Kopf 190-329
electrical borehole surveys, sulfides: Andreas 188-269
Germany—Continued
electrical surveys, Hammerunterwiesenthal phonolite: Jaeger 188-457
gravity surveys, Erzgebirge:
Grosse 190-330
Freiberg-Brand area: Berger 189-313
magnetic field, observations: Voelker 189-379
magnetic properties, basalts: Refai 189-437
magnetic surveys: Franz 189-473; Fröhlich 189-471; Jaeger 188-457; Kopf 189-470; Lauterbach 189-472; Särchinger 191-550
radioactivity surveys, faults: Lös er 189-502
seismic surveys: Grosse 191-628; Herrmann 191-626; Reinhardt 191-627; Rische 191-624; Thomas 191-625

Glaciation, cyclical variations of sea level: Fairbridge 188-321
Glaciers, Antarctica, Filchner ice shelf: Behrendt 189-319
Antarctica, flow regimen: Crary 190-296
Ross ice shelf: Crary 188-320
thermal gradient: Gow 189-262
British Columbia: Jacobs 189-263
drilling technique: Vilesov 189-279
fabric studies, ablation zone: Rigsby 189-277
flow mechanism, glacial shields: Vyalov 189-273
melting point: Steinemann 189-272
Greenland, flow in ice cliffs: White 189-264
visco-elastic properties: Nakaya 189-271
historical review, U.S.S.R.: Cher kasov 189-285
ice caps, equilibrium profiles: Weertman 189-260
ice cliffs, Greenland: Goldthwait 189-261
ice formation, U.S.S.R.: Makare vich 189-281
I.G.Y. research, U.S. program: Crary 189-258
Italy, Miage glacier: Carabelli 190-294
markers and ice augers: Ward 189-265

Glaciers—Continued
movement, analysis: Agostinelli 189-274
Antarctica: Bogoslovskiy 189-275; Swithinbank 191-319
Arctic and Antarctic: Haefeli 191-316
creep tests on ice: Butkovich 189-605
Devon Island: Cress 188-318
Greenland: Mälzer 191-314
measurement: Cherkasov 191-322; Millecamps 190-293
Norway: Glen 191-317
Novaya Zemlya: Svatkov 191-323
oxygen-isotope ratio: Sharp 189-278
photogrammetric measurements: Millecamps 191-318
plasticity of ice: Oulianoff 189-268
rate in west Greenland: Hofmann 191-313
theories reviewed: Scheidegger 189-259
Washington, Blue Glacier: Shreve 191-315
U.S.S.R.: Barvenko 189-280, 191-311; Makarevich 191-320
vertical profiles: Meier 189-270
Sweden, Operation Ice Tunnel:
Lundbergh 190-295
temperature measurements, Greenland Ice Cap: Hansen 189-276
thermal conductivity, U.S.S.R.: Tokmagambetov 189-283
thermal regime, Antarctica: Bogo slovskiy 189-275
viscosity and cohesion, U.S.S.R.: Tokmagambetov 189-282
waves, dynamics: Lliboutry 189-266
formation: Nye 189-267
traveling: Weertman 189-269
Gravimeters, calibration: Suda 189-301
coscillation of the support: Bul anzhe 191-362; Romanyuk 191-363
earthquakes, effect of: Balakrishna 188-194
marine: Lange 190-315; Romanyuk 190-319, -320, -321; Tsuboi 190-322
accuracy: Grushinsk y 191-381
automation of Gss2: Schulze 191-355
Gravimeters, marine, equations of motion: Kuzivanov 191-364
marine, photo-recording: Popov 191-360
quartz pendulums: Aleksandrov 191-358
Russian PNU: Sukhodolskiy 191-361
pendulum, cylindrical blade: Romanyuk 190-317
Dominion Observatory at Ottawa: Hamilton 189-299
error due to thermal expansion: Beck 189-300
Golitsyn vertical: Mironov 188-336
Japanese GSI: Inoue 189-302
quartz clock: Tulin 191-359
scale factors, effect of internal pressure variations: Gantar 190-318
stationary clock pendulums: Wolf 190-316
Gravity, absolute value, Melbourne: Inoue 189-304
absolute value, Tokyo: Inoue 189-304
Union of South Africa: Wiid 189-305
acceleration, Eötvös experiment repeated: Dicke 191-324
measurement at sea: Popov 191-354
accreting planet, nonhydrostatic stresses: Jobert 189-38
Antarctica, base network: Behrendt 191-369
cylinder, homogeneous circular: Kolbenhayer 191-334
deflection of vertical, calculation: Kazinskiy 191-328
earth tides, Green's function: Longman 190-148
Europe, Bad Harzburg-Etna calibration line: Morelli 191-366
gravimeter calibration system: Marzahn 190-304
Rome-Barcelona tie: Morelli 191-368
free oscillations of earth: Nakagawa 190-138; Nishimura 188-180
geopotential heights, accuracy: Ramsayer 190-303
Hungary, research in 1957-59: Renner 191-374
Gravity—Continued
infinite homogeneous rotating viscous medium: Stephenson 189-287
Italy, base network: Gantar 191-367
model study, axial stress: Caputo 191-327
potential, surface and satellite observations compared: Cook 189-286
upward continuation: Tsuboi 189-288
prism, infinite homogeneous and nonhomogeneous: Kolbenhayer 191-333
regional fields, approximation by higher order polynomials: Fajklewicz 190-298
review of concept: Gamow 191-325
Rumania, base network: Botezatu 188-337
satellite measurements, asymmetric equatorial field: Smith 191-331
screening effect, eclipses: Nakagawa 190-302
tidal corrections, 1962: Service Hydrographique de la Marine and Compagnie Générale de Géophysique 189-303
time variations, tide effect: Nakagawa 190-299, -300, -301, -302
variation, surface of earth: Mikhailov 190-270
Gravity anomalies, analytical continuation in lower halfspace: Constantinescu 188-327, -328
attitude of disturbing bodies: Raspopov 188-332
classification: Kulikov 189-298
computation, Fourier series: Kivioja 191-338
irregularly shaped bodies: Roy 188-322
density interfaces, variation in difference: Managadze 189-297
depth to center of disturbing mass: Kononkov 189-293
error correction, mean gradients method: Avdulov 190-312
first and second derivatives: Shvank 191-343
geotectonics, indicators of vertical movements: Subbotin 189-241
interpretation: Andreyev 190-308
criteria for verifying: Bulakh 191-347
Gravity anomalies—Continued
interpretation—continued
cylinder equivalents: Tyapkin 191-346
direct method: Afanas'yev 191-337
integral grid: Bulakh 191-335
master charts: Tyapkin 191-350; Yun'kov 191-344-345
structural relief: Danes 189-292
linear combination method: Carrozookie 191-342
local separated from regional: Yun'kov 191-336
location of disturbing mass: Bryusov 190-313
plane problem, three-dimensional bodies: Tyapkin 191-348
regional removed from local, calculators: Litvinenko 188-330
vertical coordinate of disturbing mass: Afanas'yev 188-331
vertical gradients, mountainous regions: Raspopov 188-333
Gravity exploration, airborne, interpretation: Paterson 188-323
airborne, terrain corrections: Chinnery 188-324
density determination, superficial layer: Mende 188-335
depth to basement: Klushin 190-467
fractured sedimentary rocks: Andreyev 190-531
free-air reduction, isostasy: Arnold 189-289
gravimeter-altimeter, U.S.S.R.; Golomb 190-314
instrument correction, nomograms: Berezin 191-365
local relief effects: Berezin 191-340, 341
marine: Lange 190-315
microgravimetric surveys: Thyssen-Bornemisza 189-291
modeling fields: Blinstrupas 189-462
mountainous areas, rock density: Vecchia 188-334
moving gravimeter, Eötvös corrections: Glicken 191-353
ocean tide measurement: International Geophysical Year Bulletin 189-319
ore bodies, depth of penetration: Yarosh 190-311
plutons, mapping contacts: Kane 188-325
Gravity exploration—Continued
profile, index of irregularity: Crenn 190-307
quadrature formulas: Strakhov 191-494, 495
sand dune areas: Colley 188-326
second vertical derivative, calculation: Sagitov 189-294
separation of total fields, frequency filtering: Gladkiy 188-329
sloping contacts, direction determined: Bott 190-305
terrain corrections: Kane 191-339; Winkler 190-306
two-dimensional bodies, nomograms for parameters: Pavlovskiy 190-310
U.S.S.R., chalcopyrite: Mudretsova 190-332
vertical derivative, graphical calculation: Tyapkin 190-309
vertical gradient, calculation from known anomalies: Raspopov 189-295
topographic effect: Raspopov 189-296
zero-point correction, nonlinear: Ladynin 191-351
Gravity field of the earth, calculation: Nedelkov 189-290
coefficient J of second harmonic: Lecar 188-304
distribution of continents: Lamar 191-326
equatorial ellipticity: Sehnal 191-332
satellite measurements: Cook 191-329; Jacchia 188-303; Smith 191-330; Szabo 190-297
shape of earth: Bjerhammar 189-238
third degree zonal harmonic: Whipple 189-237
Gravity surveys, Alaska: Barnes 188-351; Ostenso 191-370
Antarctica: Grushinskii 191-357; Lazarev 191-383; Ushakov 189-584; Zommer 191-382
Arizona: Plouff 188-344
Australia: Mumme 189-318; 191-380; Pegum 191-379
California: Jackson 188-350; Kovach 190-327; Mabey 188-452; Oliver 188-348; Pakiser 188-349
Colorado: Plouff 188-340; Qureshy 190-326; Stuart 188-341
Gravity surveys—Continued

England, marine: Bott 189-309

Germany: Berger 189-313; Große 190-330

Hawaii, Kilauea Volcano: Krivoy 188-352

Hungary, research in 1957-59: Renner 191-374

Idaho: Hill 188-346

Italy, geothermal energy: Vecchia 189-312

Ivory Coast, isostatic anomalies: Rechenmann 189-310

Japan, Joban coalfields: Matsuda 189-317

Kumamoto district: Chujo 189-316

massive metal deposits: Momose 188-361

Yamagata basin: Ogawa 190-335

Manitoba: Innes 189-308

Michigan, fracture zones: Pohly 189-306

Nevada: Kane 188-345

New Mexico: Andreasen 188-342, 190-477; Joesting 188-343

North Carolina: Mann 190-323

Northwest Territories, Ellesmere Island: Crowley 190-328

Norway, Oslo area: Smithson 189-314

Oklahoma: Lyons 190-324

Ontario: Innes 189-308

Pacific Ocean: Gaynanov 190-334

North Carolina: Mann 190-323

Northwest Territories, Ellesmere Island: Crowley 190-328

Greenland, age, beach deposits: Washburn 189-19

age, igneous and metamorphic rocks: Kulp 189-15

gotectonics, recent movements: Saxov 189-254

geotectonics, recent movements: Saxov 189-254

temperature measurement: 189-276

visco-elastic properties: Nakaya 189-271

gnostatism, Paleozoic and Mesozoic: Bidgood 188-430

radioactivity, Ilfmuussaq batholith: Buchwald 188-473

seismic surveys: Roethlisberger 189-576

Gulf of Mexico, seismic surveys: Ewing 189-582

H

Hawaii, gravity surveys, Kilauea Volcano: Krivoy 188-352

Hawaiian Islands, magnetic field, observations: U. S. Coast and Geodetic Survey 189-377

microseisms, annual variation: Bernard 189-479

volcanic activity, Halemaumau: Richter 190-608
Hawaii—Continued
volcanic activity—continued
Kilauea Iki: Ault 190-609
prediction: Macdonald 190-610
Heat flow, Atlantic Ocean, bottom
sediments: Gerard 189-324
Austria, Alps: Clark 188-365
Bering Sea: Foster 190-333
Canada: Garland 190-337
distribution in earth: Drummond
189-321; Valle 191-385
instrumentation, borehole ther­
mmeter: Doig 189-330
Japan, Hokkaido hot springs: Fuku­
tomi 191-392
Manitoba, Flin Flon: Beck 191-389
mantle, mechanism: Lyubimova
191-387
measurement at surface: Mongelli
191-386
meters, accuracy: Kaganov 189-331
ocean sediments, dissipation of
tide energy: Stewart 189-320
Pacific Ocean: Uyeda 189-326
Quebec, Montreal area: Saull
189-323
volcanic steam pressures: Nekho­
roshev 190-336
Helium, diffusion, sedimentary
rocks: Newton 189-236,191-293
Hot springs, Japan, geological study:
Nakamura 191-698
Hungary, age, general listing:
Ovcchinnikov 188-68
ground surveys, research in 1957-59: Renner 191-374

I

India—Continued
age—continued
granite: Desio 188-95
crust, structure: Chakravorrtty
189-345
gophysical surveys: Central Water
and Power Research Station
Poona 191-272; Desio 191-271;
Indian Minerals 190-251; Kal­
asam 189-224
geotectonics, recent movements:
Kumar 189-256
magnetic surveys, manganese: Rao
189-443
seismic surveys, Ukai dam site:
Central Water and Power Re­
search Station Poona 191-637
seismicity: Central Water and Pow­
er Research Station Poona 191-95
Indian Ocean, radioactivity: Khitrov
190-502
Indiana, age, radiocarbon dates:
Winkler 191-17
Indonesia, geothermal energy: Neu­
man van Padang 190-347
Internal constitution, Upper Mantle
Project, Canadian program:
Canadian Mining Journal 190-361
Iowa, radioactivity surveys, Decorah
fault: Lorenz 189-500
Ireland, age, radiocarbon dates: Mc­
Aulay 190-27
Isostasy, glacial loading, North
America: Farrand 190-289
Isotopes, adsorption of gases, low
temperature: Hoering 189-368
argon, New Zealand thermal areas:
Hulston 189-327
barium, meteorites: Umemoto 188-112
Canadian research: Russell 189-14
carbon, enzyme-catalyzed reaction:
Hoering 188-379
fractionation: Hoering 188-376,
188-378
graphite and marble in Sweden:
Landergren 190-369
micro-organisms: Hoering 189-367
New Zealand thermal areas: Hul­
ston 189-328, 190-371
recent sediments and ancient oils:
Eckelmann 189-368
rural and marine air: Keeling 188-377

India—Continued
age—continued
granite: Desio 188-95
crust, structure: Chakravorrtty
189-345
gphysical surveys: Central Water
and Power Research Station
Poona 191-272; Desio 191-271;
Indian Minerals 190-251; Kal­
asam 189-224
geotectonics, recent movements:
Kumar 189-256
magnetic surveys, manganese: Rao
189-443
seismic surveys, Ukai dam site:
Central Water and Power Re­
search Station Poona 191-637
seismicity: Central Water and Pow­
er Research Station Poona 191-95
Indian Ocean, radioactivity: Khitrov
190-502
Indiana, age, radiocarbon dates:
Winkler 191-17
Indonesia, geothermal energy: Neu­
man van Padang 190-347
Internal constitution, Upper Mantle
Project, Canadian program:
Canadian Mining Journal 190-361
Iowa, radioactivity surveys, Decorah
fault: Lorenz 189-500
Ireland, age, radiocarbon dates: Mc­
Aulay 190-27
Isostasy, glacial loading, North
America: Farrand 190-289
Isotopes, adsorption of gases, low
temperature: Hoering 189-368
argon, New Zealand thermal areas:
Hulston 189-327
barium, meteorites: Umemoto 188-112
Canadian research: Russell 189-14
carbon, enzyme-catalyzed reaction:
Hoering 188-379
fractionation: Hoering 188-376,
188-378
graphite and marble in Sweden:
Landergren 190-369
micro-organisms: Hoering 189-367
New Zealand thermal areas: Hul­
ston 189-328, 190-371
recent sediments and ancient oils:
Eckelmann 189-368
rural and marine air: Keeling 188-377

India—Continued
age—continued
granite: Desio 188-95
crust, structure: Chakravorrtty
189-345
gphysical surveys: Central Water
and Power Research Station
Poona 191-272; Desio 191-271;
Indian Minerals 190-251; Kal­
asam 189-224
geotectonics, recent movements:
Kumar 189-256
magnetic surveys, manganese: Rao
189-443
seismic surveys, Ukai dam site:
Central Water and Power Re­
search Station Poona 191-637
seismicity: Central Water and Pow­
er Research Station Poona 191-95
Indian Ocean, radioactivity: Khitrov
190-502
Indiana, age, radiocarbon dates:
Winkler 191-17
Indonesia, geothermal energy: Neu­
man van Padang 190-347
Internal constitution, Upper Mantle
Project, Canadian program:
Canadian Mining Journal 190-361
Iowa, radioactivity surveys, Decorah
fault: Lorenz 189-500
Ireland, age, radiocarbon dates: Mc­
Aulay 190-27
Isostasy, glacial loading, North
America: Farrand 190-289
Isotopes, adsorption of gases, low
temperature: Hoering 189-368
argon, New Zealand thermal areas:
Hulston 189-327
barium, meteorites: Umemoto 188-112
Canadian research: Russell 189-14
carbon, enzyme-catalyzed reaction:
Hoering 188-379
fractionation: Hoering 188-376,
188-378
graphite and marble in Sweden:
Landergren 190-369
micro-organisms: Hoering 189-367
New Zealand thermal areas: Hul­
ston 189-328, 190-371
recent sediments and ancient oils:
Eckelmann 189-368
rural and marine air: Keeling 188-377

India—Continued
age—continued
granite: Desio 188-95
crust, structure: Chakravorrtty
189-345
gphysical surveys: Central Water
and Power Research Station
Poona 191-272; Desio 191-271;
Indian Minerals 190-251; Kal­
asam 189-224
geotectonics, recent movements:
Kumar 189-256
magnetic surveys, manganese: Rao
189-443
seismic surveys, Ukai dam site:
Central Water and Power Re­
search Station Poona 191-637
seismicity: Central Water and Pow­
er Research Station Poona 191-95
Indian Ocean, radioactivity: Khitrov
190-502
Indiana, age, radiocarbon dates:
Winkler 191-17
Indonesia, geothermal energy: Neu­
man van Padang 190-347
Internal constitution, Upper Mantle
Project, Canadian program:
Canadian Mining Journal 190-361
Iowa, radioactivity surveys, Decorah
fault: Lorenz 189-500
Ireland, age, radiocarbon dates: Mc­
Aulay 190-27
Isostasy, glacial loading, North
America: Farrand 190-289
Isotopes, adsorption of gases, low
temperature: Hoering 189-368
argon, New Zealand thermal areas:
Hulston 189-327
barium, meteorites: Umemoto 188-112
Canadian research: Russell 189-14
carbon, enzyme-catalyzed reaction:
Hoering 188-379
fractionation: Hoering 188-376,
188-378
graphite and marble in Sweden:
Landergren 190-369
micro-organisms: Hoering 189-367
New Zealand thermal areas: Hul­
ston 189-328, 190-371
recent sediments and ancient oils:
Eckelmann 189-368
rural and marine air: Keeling 188-377
Isotopes—Continued

carbon—continued
stratosphere: Brown 190-370
cesium, meteorites: Umemoto 188-112
deuterium, New Zealand hydrothermal areas: Hulston 190-371
oil and bitumen: Mzhachikh 188-380
seasonal firn layers: Lorius 189-358
deuterium-hydrogen ratio, galactic: Weinreb 191-218
getter-ion pump: Ebert 189-366
hydrogen, water: Schatenstein 188-381; Uklonskiy 191-419
krypton, from uranium: Dobronravova 190-380
lead, carbonaceous chondrites: Marshall 190-79
galena from Australia: Richards 190-374
instrumentation: Richards 189-361
ore deposition in U. S. S. R.: Tugarinov 190-375
ores and rocks at Balmat, N. Y.: Doe 191-415
origin of granite: Gorai 191-416
pelagic sediments: Chow 189-360
single galena crystal: Austin 188-384
South Africa: Burger 188-383
structure study in New Mexico: Slawson 189-362
meteorites, primoidal gas: Tilles 190-78
Yardymly 191-44
molybdenum, meteorites: Murthy 190-77
oxygen, coexisting carbonates, cherts, and diatomites: Degens 190-378
coexisting minerals in rocks: Taylor 190-376
density comparison method of determination: McCarthy 188-386
fractionation: Hoering 188-378; Taylor 190-377
glacial movement: Sharp 189-278
marine carbonates: Emiliani 188-385
water: Schatenstein 188-381; Uklonskiy 191-419
oxygen-18, method of determination: Boyer 189-363

Isotopes—Continued

oxygen-18—continued
rural and marine air: Keeling 188-377
potassium-40, Aroos meteorite: Stauffer 190-76
rare gases, meteorites: Merrihue 190-80; Stauffer 190-81
selenium, geochemistry: Krouse 190-379
silver, abundance ratios: Shields 189-364
iron meteorites: Murthy 190-85
strontium, limestones: Urbach 189-365
variations: Cast 188-18
sulfur, Australia, Broken Hill: Lawrence 191-417
chondrites, sulfur in chondrites: Shima 190-73
New Zealand hydrothermal areas: Hulston 190-371
S-32/S-34 ratios in nature: Thode 188-387
tritium, chondrites: Bainbridge 190-84
ground water at Nevada Test Site: Clebsch 188-382
Jungfraufirn: Oeschger 189-357
measuring method: Buttlar 189-359
stratosphere: Brown 190-370
thermonuclear explosions: Wolfgang 190-373
T/H ratio: Fireman 190-372
uranium, fractionation: Koshelev 188-390
ores of world distribution: Smith 188-388
uranium-235, enrichment in U. S. S. R. samples: Cherdynets 188-389
vanadium-50, Aroos meteorite: Stauffer 190-76
water, natural cycle: Jacobshagen 191-418
xenon, from uranium: Dobronravova 190-380
meteorites: Clarke 190-72; Jeffery 188-115; Krummenacher 190-83; Reynolds 188-113; Zähringer 188-114
Israel, radioactivity, water: Mazor 191-580
Italy, age, radiocarbon dates: Ferrara 190-34
Italian — Continued

1. Electrical surveys, geothermal energy: Alfano 188-253
2. Geotectonics, recent movements: Gantar 190-290
3. Geothermal energy: Gennai 190-344
4. Glaciers, Miage glacier: Carabelli 190-294
5. Gravity, base network: Gantar 191-367
6. Gravity surveys, geothermal energy: Vecchia 189-312
7. Magnetic surveys, Monte Nuovo: Gianfrani 191-549
8. Pulgia: Gantar 190-482
10. Radioactivity, atmosphere: Mattana 191-579
11. Seismic surveys, geothermal energy: Cassinis 188-555
12. Volcanic activity, Vesuvius: Imbo 190-621

Ivory Coast, gravity surveys, isostatic anomalies: Rechenmann 189-310

Japan — Continued

1. Electrical surveys, gold: Kobayashi 188-260, 189-197
2. Matsukawa hot spring district: Ono 190-212
3. Molybdenite: Shibato 190-213
4. Oshima Island: Ono 190-214
5. Sulfides: Otaki 189-198
6. Uranium: Ono 189-196; Sano 188-511
7. Geophysical surveys, lead-zinc deposits: Odani 189-225
8. Geotectonics, recent movements: Iijima 189-257; Miyamura 188-316
9. Geothermal energy: Hayakawa 189-332; Nakamura 189-333
10. Gravity surveys, Joban coalfields: Matsuda 189-317
11. Kumamoto district: Chujo 189-316
12. Massive metal deposits: Momose 188-361
13. Yamagata basin: Ogawa 189-335
15. Magnetic properties, schists: Yskawa 191-478
16. Shales and sandstones: Kawai 189-444
17. Magnetic surveys, Mt. Kabuto: Kang 189-475
18. Paleomagnetism, Neogene: Takeshita 191-490
19. Radioactivity exploration, procedure: Sano 188-483
20. Radioactivity surveys, Akita Prefecture: Sano 188-510
22. Fukushima Prefecture: Iwasaki 188-494
23. Hiroshima Prefecture: Nakai 188-492
24. Igneous contacts: Nishimura 190-513
25. Iwate Prefecture: Horikawa 188-489, 493
26. Jōban area: Horikawa 188-491; Iwaki Prefecture: Toizumi 188-487
27. Molybdenite: Shizhao 190-213
28. Mount Asahidake: Suyiyama 188-490, 496
29. Niigata Prefecture: Kawachi 191-595

Jamaica, earthquakes, 1957: Robinson 190-117
1. Electrical surveys, copper: Bergey 190-208
2. Thermal springs: Zans 191-388
3. Age, granite: Miller 189-30; Nagai 190-22
4. Age, metamorphic rocks: Miller 190-23
5. Radiocarbon dates: Kigoshi 190-48
7. Crustal structure: Research Group for Explosion Seismology 190-358; Suzuki 189-347
8. Earthquakes, 1961: Hagiwara 191-82; Hoshina 190-124; Kanai 191-87; Kishinouye 191-80; Miyamura 191-84; Mortimoto 191-86; Murai 191-85; Omote 191-83; Osawa 191-81; Yoshiyama 191-79
9. Intensity-frequency relationship: Ikegami 188-171
10. Tsunami: Ohya 190-136
11. Electrical exploration, propylite: Kunori 189-199
12. Self potential method: Okabe 189-183
Japan—Continued
radioactivity surveys—continued
Okayama Prefecture: Iwasaki 188-497
ore deposits: Hatuda 188-499
Tsuyama basin: Nagahama 188-488
uranium: Sano 188-511
Yamaguchi Prefecture: Iwasaki 188-498
seismic surveys, ore deposits:
Kitsunezaki 188-564
sparker: Chujo 188-563
uranium: Furuya 188-562
seismicity, 1923-59: Hirano 188-167
depth distribution of hypocenters:
Matsushima 188-172
Hokkaido: Ono 189-93
submarine geology, Tsugaru
Straits: Sasa 191-687
thermal springs, Arima area: Nakamura 189-625
geological study: Nakamura 191-698
Hokkaido: Fukutomi 191-392
Mounte Iwate: Nakamura 188-599
volcanic activity, Myojin Reef:
Morimoto 190-627
Sakurajima: Yoshikawa 190-626
volcanic earthquakes, microtremors: Kamo 190-635
volcanoes, Aso: Taneda 188-594
Noboribetsu: Murozumi 189-619
Sakura: Taneda 189-620
Showashinzan: Matsuo 189-622
Jointing, parallel to surface, origin: Muller 191-648

K
Katanga, age, uranium mineralization: Cahen 190-16
Kentucky, magnetic and gravity surveys: Watkins 191-541
radioactivity surveys: Bates 191-591
Kenya, age, basalt: Koenigswald 190-17
Korea, age, igneous and metamorphic rocks: Polevaya 188-97
seismicity: Rustanovich 190-129

L
Labrador, age strandlines: Løken 190-14
Lava, flow dynamics: Yokoyama 188-587
Leveling, astronomic, gravimetric correction: Arnold 190-277
Libya, age, radiocarbon dates: McBurney 188-63

M
Magma, origin: Shimazu 190-353
volutables, behavior during cooling: Matsuo 189-626
Magnetic anomalies, analytical continuations: Constantinescu 188-327, 328
determination of ΔT: Gorodenskiy 188-436
extension to a given altitude: Nasonov 191-522
high intensity, correction term: Gorodenskiy 188-435
interpretation: Logachev 191-530
complex variables: Shalayev 191-496
ΔZ isolines in vertical plane: Strakhov 190-468
Fourier integral transform: Solov'yev 191-519
integral grid: Bulakh 191-335
tangents method: Gel'fand 191-500
two-dimensional problem: Tyapkin 190-471
Zx, Hx, and Zz gradients: Gel'fand 191-501
master charts: Bugaylo 191-50; Kuznetsov 191-511
remanent magnetization: Books 190-453
variable susceptibility of rocks: Timofeyev 191-509
vertical and horizontal gradients: Solov'yev 191-497
zero level, two dimensional cases: Konstantinov 191-518
Magnetic exploration, airborne, basement depth determination: Ramaswamy 191-529
airborne, correlation with ground surveys: Orlov 190-475
bodies of ordinary geometric shape: Mikov 191-503
center of gravity of body, vertical coordinate: Tyapkin 191-524
data correction, chording method: Jenny 188-444
Magnetic exploration—Continued

declination, rapid determination: Legar 190-474
\(\Delta T \) curves, pantograph for transformation: D'yachkov 190-478
depth to basement: Klushin 190-467
depth to disturbing bodies: Gusev 191-514; Mikov 191-520; Pro-
vodnikov 191-508; Pyatnitskiy 191-499
depth to sphere or cylinder: Pro-
vodnikov 191-507
direct and inverse problems: Kol-
yubakin 188-438
direction of total vector, determi-
nation: Tyapkin 190-470
helicopter: Paterson 191-236
inclined line of observation: Mikov 191-504
iron ores: Belevtsev 191-531
isogon maps, oil exploration: Jenny 188-441
magnetic vein, attitude: Hervás
Burgos 191-528
master charts: Carrozza 191-525; Pro-
vodnikov 191-506
methods reviewed: Zaslavskii 189-472
micromagnetic method: Bareja 190-
473; Ignat'yeva 189-170, -463;
Jenny 188-442, -443; Lauter-
bach 189-460
micropulsations of earth's field,
base station monitor: Hoyl-
man 188-445
modeling fields: Blinstrupas 189-
462
oblique magnetization: Orlov 190-
466; Solov'yev 191-497, -498
paraboloid of revolution, \(H \) and \(Z \)
calculated: Fedorova 191-521
potential derivatives, transforma-
tion of curves: Solov'yev 191-
516
potential fields, analytical exten-
sion: Strakhov 188-437
"pseudogravitational" field: Simo-
enko 191-502
quadrature formulas: Strakhov 191-
494, -495
relief of terrain, iron deposits:
Ferdmanzhiev 191-527
secular variations of the geomag-
netic field: Orlov 191-526
similarity of anomalies, depth de-
termination: Nassonov 190-469

Magnetic exploration—Continued

structure of magnetic field, spatial
analysis: Pudovkin 188-439
two-dimensional potential fields:
Serbulenko 191-515, -517
U.S.S.R., kimberlite dikes: Bary-
gin 191-560
vector direction, determination:
Simonenko 191-513
vein systems, micromagnetic
measurements: Conrad 189-461
vertical bodies of simple shape:
Larionov 191-505
vertical sounding: Larionov 191-512
Magnetic field of the earth: asy-
metric shape: Harrison 191-425
aurora, nuclear explosion: Hoerlin
189-371
simultaneity at conjugate points:
DeWitt 189-392
bays, cause: Brown 189-406
current system: Rikitake 190-406
morphology: Fukushima 190-402
Turkey: Özdoğan 190-405
cosmic ray perturbations: Mariani
191-451
daily variation, reversal at Addis
Ababa: Gouin 189-388
def ormation, quiet days: Smith 189-
402
dipole near thin plasma sheet: Wait
191-427
dipole representation, graphs:
Mlodnosky 190-382
distant field: Harrison 191-424
distortions, proton belt: Akasofu
191-452
radar measurement: Leonard
190-424
disturbances, 1958: Davis 190-403;
Ionosphere Research Commit-
tee 189-381, -382, -383, -384
Antarctica: MacDowall 190-408
Arctic and Antarctic: Alexandrov
189-395; Nikolovsky 189-394
low latitudes: Kotadia 189-396
radio scintillations: Briggs 188-
408
Tungus meteorite: Ivanov 191-56;
Obashev 191-57
diurnal variations, Tamanrasset:
Duclaux 190-404
electrojet, effect of disturbances:
Wright 191-445
electromagnetic waves, long peri-
od: Heirtzler 189-370
Magnetic field of the earth, electron distribution near equator:
Goldberg 191-420
fluctuations, observations: Haraldson 188-404
geomagnetic tides: Rao 190-394
Great Arctic anomaly: Alldredge 189-373
horizontal perturbation vector:
Lebeau 189-405
hydromagnetic waves: Cole 190-429; Sugiura 189-369
impulses, sun-earth relations:
Paghis 190-416
instrumentation, low frequency recorder: Yegorov 191-433
vectograph: Jaeschke 191-432
International Quiet Sun Year: International Geophysical Year Bulletin 190-447
ionospheric currents, near geomagnetic equator: Cahill 188-393
lunar tides, low latitude: Rao 190-407
magnetoosphere surface currents:
Beard 191-421
measurements: Alaska: U. S. Coast and Geodetic Survey 190-388
Antarctica: Oguti 188-407
Arizona: U. S. Coast and Geodetic Survey 190-387
Australia: Parkinson 191-437
Canada: Loomer 188-397, -398
Ethiopia: Gouin 191-435; Mayaud 191-434
Germany: Voelker 189-379
Hawaii: U. S. Coast and Geodetic Survey 189-377
Japan: Geographical Survey Institute 189-380; Kakioka Magnetic Observatory 191-436
Puerto Rico: U. S. Coast and Geodetic Survey 189-378
Spain: Cardús 190-389, -390, -391; Miguel y Gonzales Miranda 190-392
Sq convergence: Molina 191-438
Virginia: U. S. Coast and Geodetic Survey 190-386
perturbations, difference between sunlit and dark auroral zones:
Oguti 188-407
plasma around earth: Kellogg 191-426

Magnetic field of the earth—Continued
micropulsations: Jacobs 190-437; Kato 190-401; Westphal 191-447
5 to 30 sec in auroral zone:
Campbell 188-403
equatorial regions: Hutton 190-430, 191-444
magneto-hydrodynamic waves:
Ginzburg 190-399
motion of ocean waves: Crews 189-407
pearls: Jacobs 191-443; Vozoff 191-442
sharp cutoff: Scarf 189-399
spatial coherence: Duffus 189-403
model radiation belt: Akasofu 188-392
nature, determination by alkali ions at high altitude: Harrison 188-391
pulsations: Kato 190-439
3-7 min period: Bol'shakova 191-446
Göttingen: Angenheister 188-405
hydromagnetic waves in the exosphere: Kato 190-434
morphology: Kato 190-433
origin: Watanabe 190-400
patterns: Bolshakova 189-397
pt-type: Saito 189-404
systematic variations: Bol'shakova 189-398
unusual types: Končný 191-449
ring current, generation: Kern 191-456
self-consistent calculation: Akasofu 191-429; Beard 191-428
shape of field: Spreiter 190-381
whistlers: Spreiter 191-430
Rumania, 1954-59: Constantinescu 188-400
satellite measurement: Dolginov 188-401; Fougere 190-383
secular variations: Siráň 190-393
displacements in core: Barta 189-386
Rumania: Constantinescu 188-399
short period pulsations, earth currents: Yokoyama 191-70
solar corpuscular radiation: Oba-yashi 189-408
solar wind, reaction with magnetosphere: Axford 191-422
trapping by Van Allen belts: Chang 191-423
Magnetic field of the earth—Continued
sudden enhancement of atmosphere flare maximum: Křivský 191-450
sudden impulses: Matsushita 191-457
textbook: Mauersberger 189-372
Tungus meteorite effect: Plekhanov 191-58
turbulence: Moffatt 190-396
variations, 11 year cycle: Berishvili 191-453
Antarctica: Nagata 189-385
conjugate points compared: Wescott 189-393
continuous and worldwide: Nishida 190-419
Czechoslovakia and U. S. S. R. compared: Pěčová 191-448
D-layer: Pedersen 190-397
daily lunar: Onwumechilli 188-406
during I. G. Y.: Bartels 189-390
E-layer frequency: Mrazek 189-400
f0 F2 in central Africa: Rastogi 189-389
night airglow intensity: Silverman 190-398
ocean basin effects: Parkinson 191-440
Palau Islands: Gettemy 189-401
parallelism between H and Z: Simeon 191-439
plasma theory: Lucke 189-387
rapid: Romaňá 190-436
sea and land compared: Hill 191-441
semiannual: Priester 190-395
space and on earth correlated: Ness 190-432
volcanic activity in Japan: Uyeda 191-454
worldwide: Nishida 188-402
whistlers: Jiricek 190-448
Magnetic properties, anisotropic susceptibility: Zvoys'kyi 191-467
anomalous, effect of adjacent ferromagnetic bodies: Neumann 189-427
anhysteretic remanent magnetization: Patton 189-421
azimuth of magnetized sphere: Ponomarev 190-451
basalt, Germany: Refai 189-437
Mohole project: Cox 191-472
Magnetic properties—Continued
basic quantities, measurement of: Sanford 191-464
chemical magnetization: Howell 191-465
crystal orientation: Yamamoto 189-431
demagnetization, spore-pollen content of rocks: Ismail-Zade 189-441
demagnetizing factors, discounting: Andreyev 191-471
ferromagnetic domains, in alternating fields: Stacey 189-423
gabbro-pyroxenites, U. S. S. R.: Mikhailova 191-476
general review: Parasnia 190-450
hematite body: Dubois 190-459
inclination of IN, compaction: Vlasov 189-433
induced directional order: Iwata 189-430
laboratory shield, room-size: Patton 189-434
magnetization, bodies of weak magnetic permeability: Nedyalkov 189-432
single and double component systems: Brodskaya 189-426
magnetostriction, effect on natural remanents: Metallova 188-422
manganese minerals: Rao 189-443
meteorites, origin: Green 188-106
pyrrhotite: Kang 191-479
remanent magnetization, apparatus: Barinov 189-435
chemical: Kobayashi 188-420
hematite: Gross 191-475
high hydrostatic pressures: Kume 190-454
quartzites: Zavoyskiy 189-439
remanent to induced, ratio under field conditions: Larionov 191-481
reversed polarity, titanomagnetite: Metallova 189-442
rocks, U. S. S. R.: Dudarev 191-477
schists, Japan: Yaskawa 191-478
serpentine, thermomagnetic analysis: Stiller 188-419
shales and sandstones, Japan: Kawai 189-444
sills, direction and intensity: Everitt 189-454
soils: Cook 189-436
Magnetic properties—Continued
stability, artificial systems: Brodskaya 191-468
criterion for: Petrova 188-421
methods of determination: Petrova 190-456
spore-pollen content: Chiguryayeva: 189-440
susceptibility, anisotropy in rocks: Khan 190-452
Fe and Ni oxides: Lotgering 191-466
glacial till: Fuller 191-480
measurement of anisotropy: Girdler 188-417
torque method of measurement: King 189-428
variation with temperature: Petrova 189-425
tectonic regionalization, U. S. S. R.: Khomenko 191-493
textbook: Bates 190-449
thermoremanence, baked laterite: Wilson 191-473
thermoremanent magnetization, igneous rocks: Dickson 189-422
separation from normal: Bol'shakov 191-470
stability in magnetite: Vlasov 190-455
titanomagnetite, exsolution effect on remanent magnetism: Beversdorff 189-429
subsolidus phase relations: Kawai 189-424
viscous magnetization: Yanovskiy 191-469
Magnetic storms—Continued
DS variation: Sugiyama 190-441
forecasting: Sinno 189-411
general discussion: Chapman 191-460
geomagnetic equator: Ondoh 188-410
H and Z variations, preceding commencement: Chernosky 190-417
initial phase, horizontal intensity: Fukushima 190-445; Kokouchi 189-420
microstructure: Bouška 190-435
separate from main phase: Kozlowski 190-446
magnetic clouds: Hirono 189-412
main phase, trapped particles: Singer 190-428
measurements to 8 earth radii: Smith 190-415
micropulsations, fine structure: Troitskaya 190-416
microstructure: Troitskaya 189-416
morphology: Fukushima 190-423; Sugiyama 190-440, -443; Vestine 190-422
periodic phenomena, electron precipitation: Winckler 191-455
perturbations propagated to earth, variation with latitude: Wilson 188-409
polar regions: Cole 189-410; Nagata 190-425
preliminary reverse impulse: Vestine 190-409
pulsations: Bouska 191-459, -462; Ohl 190-431
related phenomena: Matsushita 191-457
ring currents: Akasofu 190-426; Dessler 190-427; Kellogg 188-411
rise time, magnitude of SC: Pisharoty 190-410
solar control: Bednářová-Nováková 191-458; Halenka 191-463; Maeda 190-420; Saemundsson 189-414
filament geometry: Bednářová-Nováková 191-461
prestorm conditions: Haurwitz 190-412
type IV-outbursts: Roosen 190-421
solar corpuscular radiation: Oba-yashi 188-413
Magnetic storms—Continued
solar flares, correlation: Sinno
189-419
latitude for causing storms: Jiang
188-414
solar radio bursts: Hughes 190-413
sudden commencement, hydromagnetic waves: Wilson 189-409
variation, Dst and Dm: Sugiura 188-412
Magnetic surveys, Alaska, Anchorage-Nome profile: King 188-453
Antarctica, Halley Bay ice shelf: MacDowall 189-476
Atlantic Ocean, profiles from Bermuda: King 188-446
Australia, Blinman dome: Munne 189-318
Belgium: Graulich 189-451
California: Mabey 188-452
China, Great Shingan Mountains: Hou 188-466
Czechoslovakia, Kleine Donau Plain: Müller 188-458
England: Bott 190-481
Germany, Elbe Valley: Kopf 189-470
Frankenwald: Fröhlich 189-471
Hammerunterwiesenthal phonolite: Jaeger 188-457
iron deposits: Sárchinger 191-550
Mecklenburg: Lauterbach 189-472
Thüringia: Franz 189-473
Illinois, regional vertical intensity: McGinnis 188-448
India, manganese: Rao 189-443
Italy, Monte Nuovo: Gianfrani 191-549
Puglia: Gantar 190-482
Japan, Mt. Kabuto: Kang 189-475
Maine: Allingham 188-447; Balsley 191-533; Bromery 191-532, 191-535, -537; Dempsey 191-536; Henderson 191-534
Manitoba, maps: Canada Geological Survey 191-546
Michigan: Balsley 191-542; James 188-449
New Hampshire: Bromery 191-539; Meuschke 191-538, -540
New Mexico: Andreasen 190-477; Joesting 188-343
New Zealand—Ross Sea traverse: Adams 188-467

Magnetic surveys—Continued
Northwest Territories: Canada Geological Survey 191-548
Arctic Archipelago: Gregory 188-455, 189-468, 190-480
Oklahoma: Lyons 190-324
Ontario: Canada Geological Survey 191-545
Oregon: Bromery 191-544
Pacific Ocean, Murray Fault: Raff 189-467
Paradox Basin: Joesting 190-325; Steenland 191-543
Quebec, iron deposits: Koulomzine 188-454
St. Urbin anorthosite massif: Rose 188-51
Rumania, eastern Carpathians: Airinei 188-357; Visarion 188-356
iron deposits: Ţeţeanu 188-463
south Carpathians: Ionescu 188-462
Sarawak, bauxite: Overseas Geological Surveys 191-561
Saskatchewan: Canada Geological Survey 191-547
Southern Rhodesia, Great Dyke: Worst 188-456
Tennessee and Kentucky: Watkins 191-541
U. S. R., Armenian S. S. R.: Vantsyan 188-258
iron ores: Andreyev 191-555
Kazakh S. S. R.: Ivankin 191-554; Stroiteleva 191-553
Kursk magnetic anomaly: Kopayev 188-464
nickel ultrabasics: Supak 189-552
Rudnyy Altay: Zhogolev 189-474
Sea of Azov area: Kravchenko 188-465
Siberia: Karataiev 191-557
Transcarpathians: Khomenko 191-551
Urals: Gernik 190-483
Uzbek S. S. R.: Tal'-Virskiy 191-377
volcanoes: Bernahteyn 190-622
West Siberian Lowland: Provodnikov 191-556
Yakutia diamond fields: Loshchakov 191-558, -559
Utah: Case 188-451
Vermont: Bromery 191-539; Meuschke 191-538, -540
Magnetic surveys—Continued
Wisconsin: Allingham 188-450
Yugoslavia, iron deposits: Damnjanović 188-459; Krulc 188-461; Perić 188-460
Magnetic susceptibility, instrumentation, bridge device: Bulgakov 188-424
loss during orogeny, U. S. S. R.: Malygin 188-426
sedimentary rocks, Rumania: Costa-Foru 188-425
stress effect, rocks: Kern 188-416
Magnetic susceptibility logging, model study: Kal'varskaya 188-440
Magnetization, stress effect, rocks: Kern 188-416
thermoremanent, stress effect: Kern 188-415
Magnetometers, metastable helium: Keyser 189-374
nuclear resonance: Bonnet 190-384, 191-431; Bottom 188-394
marine: Tsirel' 189-466
resolving power: Rotshteyn 189-465
Russian model: Pogrebnikov 189-376; Rotshteyn 189-375
rubidium vapor, field test: Ward 189-464
Świder Observatory in Poland: Kalinowska-Widomska 190-385
Magnetotelluric currents, stratified structures: Kovtum 190-111
theory of, source field: Price 190-104
Magnetotelluric exploration, anisotropic massifs: Rokityanskiy 190-109
oscillograms, method of oscillograms: Vladimirov 190-110
three-layer interpretation curves: Yungul 188-226
Maine, age, igneous rocks: Faul 188-35
age, quartz monzonite and slate: Pinson 188-36
Maine, magnetic surveys: Allingham 188-447; Balsley 191-533;
Bromery 191-532, -535, -537; Dempsey 191-536; Henderson 191-534
Majorca, electrical logging surveys, lignite: Sell Cantalapiedra 190-232

Manitoba, gravity surveys: Innes 189-308
heat flow, Flin Flon: Beck 191-389
mechanism: Lyubimova 191-387
magnetic surveys: Canada Geophysical Survey 191-546
Mantle, composition, high-pressure experiments: Ringwood 191-411
convection currents: Vening Meinesz 188-308, 190-364
effect on crust: Magnitskiy 190-365
differential, geophysical research: Magnitskiy 188-374
low velocity layer: Anderson 191-410; Gutenberg 191-409
olivine-spinel equilibrium: Ringwood 190-366
shear velocity distribution: Takeuchi 190-363
structure, oceans and continents: Aki 188-373
upper part, model: Ringwood 190-362
P-traveltimes: Lehmann 191-408
Upper Mantle Project: Garland 190-360; Hodgson 191-406; Uffen 191-407
Maryland, geophysical surveys, Rockville quadrangle: Griscom 188-280
Mediterranean Sea, age, marine sediments: Olausson 188-65
refraction profile: Leenhardt 190-602
Meteorites, age: Vinogradov 191-49
age, anomalous U-235/Pb-207 in Sikhote-Alin: Fireman 188-116
Bruderheim: Baadsgaard 190-71
cosmogenic C-14: Goel 190-87
nucleogenesis: Baranov 191-30
primary isochron of zero age: Murthy 189-55
radiation age of chondrites: Geiss 188-118
sodium-22, cosmic-ray age: Vilczek 188-117
terrestrial: Suess 190-86
thermoluminescence: Komovskiy 191-48
atomic abundances: Vinogradov 191-39
bitumen content, Grosnaya and Mighei: Vdovsky 191-38
Bulgaria, review: Nikolov 191-63
carbonaceous chondrites, lead isotopes: Marshall 190-79
Meteorites—Continued

carbonaceous chondrites—continued
mineralogy: Yudin 189-45
chondrites, structure: Khasha 191-56
collections, University of Illinois: Donati 188-119

collision, statistical study: Opik 188-107

composition: Yanvel' 190-64
Bruderheim: Baadsgaard 190-71
cosmic-ray effect: Arnold 189-39
Gumoshnik (Bulgaria): Penchev 188-112

Nikol'skoye chondrite: Kolomenskiy 188-123
U. S. S. R.: D'yakonova 191-61
cosmic ray effects: Arnold 189-39
Czechoslovakia, Příbram: Ceplecha 191-50, -51
electronprobe analysis, schreibernsite in Canyon Diablo: Adler 188-109

cosmic ray effects: Arnold 189-39

radioactivity, Bruderheim chondrite: Rowe 190-69

rare gases, Breitscheid: Hinterberger 191-40
Pantar: Merrihue 190-80
recent advances (1962): Briggs 191-34
Scotland, Rab' al Khali: Holm 189-56
South-west Africa, Ehole: Fireman 190-82
stone, dielectric constant: Alekseyeva 191-47
sub-acoustic waves: Jones 188-131
trace elements, Bruderheim: Ehmann 190-74
U. S. S. R., dust from Kunashak: Yudin 191-64

Elga: Vronskiy 191-52
Lipovskiy Khutor: Shaposhnikov 189-57
Tungus: Bronshten 191-59; Fesenkov 189-43, -44, 191-53; Idlis 191-54; Ivanov 191-55, -56; Obashev 191-57; Plekhanov 191-58; Tsikulin 191-60; Zolotov 188-124

Yardymly: Levskiy 191-44
Kunshak, composition of fusion crust: Kolomenskiy 190-65
magnetic properties, origin: Green 188-106

mineralogy, Nikol'skoye chondrite: Yudin 188-122
proposed catalog: Grigor'yev 188-110

Meteorites—Continued

Mongolia, Noyan-Bogdo: Vorob'yev 191-62
Nigeria, Akwanga chondritic aerolite: Macleod 189-54
organic carbon: Gregory 191-36;
Palik 191-37; Pearson 191-35
Mokoia meteorite: Briggs 189-49
nature of: Fitch 189-48
Orgeuil and Ivuna: Nagy 189-51
origin: Urey 189-47
significance: Bernal 189-46, -50
origin, asteroids: Hawkins 189-41
chondrules as indicator: Wood 189-32

grouping of types: Schilling 189-42
Mexico—Continued
seismicity, Tehuantepec: Figueroa
Abarca 188-152
volcanic activity, Bárcena: Rich-
ards 190-612
Tres Virgenes Volcano: Ives 190-
611
Michigan, gravity surveys, fracture
zones: Pohly 189-306
magnetic surveys: Balsley 191-542;
James 188-449
Microseisms, cause: Nanda
190-484
Czechoslovakia: Karnik 191-569;
Zátopek 190-487, 191-570
direction of approach: Báth 191-565;
Okano 190-492
direction of source: Monakhov 191-
572
dual maximums, France: Bernard
190-465
Europe, nature and origin: Zátopek
191-567
frequency selection: Korchagina
191-571
Hawaii, annual variation: Bernard
189-479
India, Madras: Anjaneyulu 190-491
mine subsidence, detection: Boyum
188-281
origin, crustal stresses: Leet 191-
562
propagation, continental paths: Ry-
kunov 189-480
Europe: Schneider 190-486
relief effect: Vasil'yeva 190-488
seismographs: Haubrich 189-478
short period, generation: Saha 190-
490
measurement of: Zapol'skiy 190-
489
spectrum: Frantti 189-477
subsoil conditions: Kishinouye 190-
493
Switzerland: Decae 191-566
U. S. S. R., noise spectrum:
Moskvina 191-568
worldwide activity recorded: Oliver
191-563
worldwide study, proposal: Iyer
191-564
Mine bumps, Czechoslovakia: Buben
191-670
periodicity: Hőfer 191-672
prediction: Anzyferov 191-669
Pribram A seismoacoustic station:
Simane 191-671

Minnesota, age, glauconite: Tyler
188-44
Mohole project, basalts, magnetic
properties: Cox 191-472
Mohorovičić discontinuity, change in
chemical composition: Bullard
189-353
drilling to, U. S. S. R.: Vozdvizhen-
skiy 190-359
Mongolia, age, igneous rocks: Bo-
brov 188-96
earthquakes, 1957: Solonenko 191-
78
electrical surveys, East Gobi de-
pression: Fomina 190-211
meteorites, Noyan-Bogdo: Vorob'-
yev 191-62
Montana, age, Precambrian rocks:
Giletti 188-47
earthquakes, 1959: Bailey 188-150;
Hofmann 188-147; Myers 188-
149; Ryall 189-72; Steinbrugge
189-71; Tocher 189-69; Wiegel
189-73; Witkind 188-148, 189-
70
Moon, atlas, photographic: Miyamo-
to 188-140
atmosphere: Green 190-98; Nakada
189-66
craters, origin: Fielder 189-63;
Miyamoto 188-136
stresses around: Warner 188-137
crustal rocks: Haynes 190-101
electrostatic erosion: Grannis 188-
135; Walker 190-96
exploration: Shoemaker 189-67
general review: Markov 190-103;
Sadil 190-102; Salisbury 190-
100
geology of possible bases: Green
190-99
hypsographic curves: Hédervári
189-68
Mare Imbrium, stress factor in or-
gin: Fielder 188-138
nonhydrostatic tensions, gravity
induced: Jobert 189-37
orthographic atlas, limb areas:
Arthur 188-139
surface, compared to sea floor of
earth: Chenoweth 188-142
structure: Fiedler 189-64
thermal fracturing: Ryan 190-95
surface features, origin: Urey 189-
65
Moon—Continued
surface features—continued
Procellarian system: Marshall 188-141
structure and origin: Firsoff 191-69
tortional oscillations: Takeuchi 188-210
volcanism, mechanism: Green 190-97

N
Nepal, age, metamorphic rocks: Krummenacher 189-29
Nevada, age, igneous rocks: Houser 188-48
earthquakes, history: Wood 188-156
electrical surveys, basalts thickness: Roller 188-251
gravity surveys: Kane 188-345
New Brunswick, geothermometry, sphalerite: Kalliokoski 191-396
New Hampshire, magnetic surveys: Bromery 191-539; Meusche 191-539; -540
New Hebrides, volcanic activity: Aubert de la Rue 190-631
volcanic earthquakes, 1959: Blot 188-597
New Jersey, age, basalt: Kulp 188-38
age, metamorphic rocks: Long 188-37
New Mexico, age, Rio Grande entrenchment: Ruhe 189-13
gravity surveys: Andreasen 188-342, 190-477; Joesting 188-343
isotopes, lead: Slawson 189-362
magnetic surveys: Andreasen 190-477; Joesting 188-343
New South Wales, geothermal gradient, Cobar: LeMarne 191-303
seismic surveys, magnetite: Hawkins 190-592
New York, age, Balmat: Doe 191-415
age, metamorphic rocks: Long 188-37
New Zealand, age, biotite: Hurley 188-27
age, granites and metamorphic rocks: Mason 188-100
crust, structure: Adams 189-351; Thompson 189-350

New Zealand—Continued
gеothermal energy: Byron 189-329; Goguel 190-349; Studt 190-348
thermal areas, isotope studies: Hulston 189-327, -328
volcanic activity: Healy 190-630
Nigeria, electrical surveys, tin placer deposits: Shaw 190-209
North Carolina, age, metamorphic rocks: Bryant 189-12; Davis 190-9; Kulp 188-40
age, zircon: Overstreet 188-39, 191-16
gravity surveys: Mann 190-323
Northern Ireland, paleomagnetism, Tertiary: Wilson 190-460
Northern Rhodesia, age, uranium mineralization: Cahen 190-16
Northwest Territories, age, granite: Baadsgaard 188-59
electrical surveys, Devon Island glaciers: Greenhouse 189-193; Voegtl 189-192
glacial movement, Devon Island: Cress 188-318
gravity surveys, Ellesmere Island: Crowley 190-328
magnetic surveys: Canada Geological Survey 191-548
Norway, age, galena: Moorbath 189-22
age, micas: Gerling 188-71; Kulp 188-70
radiocarbon dates: Trondheim 190-55
Norway, glaciers, movement: Glen 191-317
gravity surveys, Oslo area: Smithsonian 189-314
paleomagnetism, Permian: Everdingen: 188-432
seismicity: Kvale 190-126
Novaya Zemlya, glaciers, rate of movement: Svatkov 191-323
Nova Scotia, seismic surveys, Scotian Shelf: Macpherson 191-620
Nuclear explosions, air, energy to ground: Tandon 190-176
amplitudes of arrivals from M-discontinuity: Werth 189-158
detection, acoustic waves: Jones 188-131
Rayleigh waves: Sherwood 191-151
VELA UNIFORM: Bates 188-222
wave picture: Leet 191-207
earth deformations, detonation in salt: Hoy 191-289
Nuclear explosions—Continued
 earth tide effects: Balakrishna 188-193
 first arrival directions: Pasechnik 188-223
 ground motion, intermediate range: Swift 191-210
 initial phases: Brune 191-104
 P-waves: Wright 189-157
 seismic—electric effect: Zablocki 188-218
 seismic magnitude: Riznichenko 188-224
 shock studies, instrumentation: Lombard 191-209
 signal amplitude, explosion size: Carpenter 191-208
 strain release: Press 188-219
 Nucleogenesis, speed of combustion of elements: Grundland 188-102
 Null-amplifier: Frantz 190-261

O

Ohio, age, mica: McCormick 188-42
Oklahoma, gravity surveys: Lyons 190-324
 magnetic surveys: Lyons 190-324
 Olivine-spinel equilibrium: Ringwood 190-366
 Ontario, age, clay (Precambrian): Hurley 191-19
 age, granite: Ginn 189-16; Wetherill 188-53
 gravity surveys: Innes 189-308
Oregon, magnetic surveys: Bromery 191-544; Canada Geological Survey 191-545
radioactivity surveys: Schmidt 191-593
seismic surveys: Donath 190-580
Orogeny, cause, earth tides: Stovas 189-242; Woodriff 189-253
Japan and vicinity: Kawai 188-311
 polycyclic nature, Alpine in U.S.S.R.: Gamkrelidze 190-285
 stress during: Charlesworth 190-282

P

Pacific Ocean, crust, structure:
 Gaynanov 190-334; Santo 188-371, -372, 191-403, -404; Shechkov 189-349; Suzuki 189-347, 189-348
 Pacific Ocean—Continued
 earthquakes, mechanism: Ritsema 189-106
 East Pacific Rise: Menard 188-586
 heat flow: Foster 190-333; Uyeda 189-326
 Kurile-Kamchatka arc, submarine relief: Zatonskiy 189-615
 magnetic surveys, Murray Fault: Raff 189-467
 seismic surveys, Java trench: Kovylin 189-613
 West Philippine Sea Basin, guyots: Sato 189-614
Paleomagnetism, archeology, ceramic specimens: Burlatskaya 191-465
Carboniferous, British Isles: Everitt 188-431
Cenozoic, Australia: Mumme 191-491
U.S.S.R.: Akopyan 190-464
continental drift, evidence for: Kropotkin 188-310
Cretaceous, Quebec: Larochelle 189-452
expanding earth hypothesis: Egyed 188-427
inclination error, sediments: Griffiths 188-429
isoclinal maps: Hilten 189-445
laboratory methods: Frölich 189-449
Lewis thrust plate: Evison 191-483
lightning, effect of: Graham 189-448
Mesozoic, Antarctica: Bull 191-492
China: Van 190-465
Neogene, Japan: Takeshita 191-490
paleoclimates, correlation: Kropotkin 190-461
paleosecular variations, calculation of: Creer 191-484
Paleozoic, China: Van 190-465
Czechoslovakia: Bucha 191-487
U.S.S.R.: Rodionov 189-456
Paleozoic and Mesozoic, Greenland: Bidgood 188-430
Permian, Italy: Hilten 189-455, 191-486
Norway: Everdingen 188-432
pole positions, catalog: Irving 189-451
secondary magnetization: Hibberd 189-450
pre-Triassic, Japan: Kawai 189-458
Paleomagnetism—Continued

- Red beds, ferric oxide minerals: Van Houten 189-447
- Reference grid, areas of anomalies: Nodia 188-428
- Remanent magnetometer: Anderson 188-423
- Review: Doell 189-446

Silurian, Union of South Africa:

- Graham 188-433

Stability, baked and unbaked sediments: Everitt 191-474

Statistical methods: Runcorn 188-418

Tertiary, Northern Ireland: Wilson 190-460

- U.S.S.R.: Valiev 191-499; Vekua 190-463

Triassic, England: Creer 189-453

U.S.S.R.: Yanovskiy 191-433

Thrust mechanics, analysis of: Norris 188-434, 189-459

Triassic, England: Creer 189-453

U.S.S.R.: Yanovskiy 191-488

Unreliability of thermoremanent directions: Kuzhelov 191-482

Paleotemperature, CaCO3, proportionally between: Emiliani 188-385

Pantelleria, gravity surveys: Gantar 191-373; Gaynanov 190-334

Paradox Basin, gravity surveys: Steenland 191-543

Pressure, rock, instrumentation: Panek 189-595

Puerto Rico, magnetic field, observations: U.S. Coast and Geodetic Survey 189-378

Puerto Rico Trench, crust, structure: Bunce 191-619

Seismic surveys: Bunce 191-619; Hersey 189-610

Plasticity, ice: Tabata 189-603; Wakahama 189-601

Rock, laboratory measurement: Fairhurst 188-576

Statistical correlation: Judd 191-641

Piezoelectric effects, quartz veins and pegmatites, U.S.S.R.: Volarovich 191-203

Planets, accreting, nonhydrostatic stresses: Jobert 189-38

Carbon in primitive atmosphere: Suess 190-62

Internal constitution: MacDonald 191-51

Plasticity, ice: Tabata 189-603; Wakahama 189-601

Snow: Kinosita 189-602

Textbook: Thomas 188-567

Radioactivity, pegmatites: Skrzt 188-485

Shale: Kita-Badak 188-476

Porosity, carbonate rocks, U.S.S.R.: Nechay 188-271

Potential field, extension into upper half space: Tereshko 189-227

Pressure, rock, instrumentation: Panek 189-595

Puerto Rico, magnetic field, observations: U.S. Coast and Geodetic Survey 189-378

Puerto Rico Trench, crust, structure: Bunce 191-619

Seismic surveys: Bunce 191-619; Hersey 189-610

Q

- Quebec, age, anorthosite: Rose 188-51
- Gravity surveys, Gaspé Peninsula: Tanner 189-307
- Heat flow, Montreal area: Saull 189-323
- Magnetic surveys, iron deposits: Koulomzine 188-454
- St. Urbain anorthosite massif: Rose 188-51
- Paleomagnetism, Cretaceous: Larochele 189-452
- Seismic surveys: Hobson 190-583

R

- Radioactivity, air, France: Servant 189-491
- Air, Italy: De Santis 189-492; Mattana 191-579
- RaA concentration: Kapitanov 190-505
- Alpha-active nuclides, half life: Taagepara 189-484
Radioactivity—Continued

Angola, nephline syenite: Morais 189-487

Be-7, air: Shvedov 191-581

beryllium, photoneutron determination: Mezhiborskaya 191-574

Bi-212, branching ratio: Barkan 190-495

bismuth, half life: Kauranen 189-485

cosmic ray induced, dust in atmosphere: Rama 190-503

terrestrial materials: Rama 190-497

detectors: Kment 188-480
disequilibrium conditions, sediments: Pavlovic 188-471

energy of atomic nuclei: Torio 191-575

granite, France: Prouvost 190-498; Roubault 189-486

Scotland: Spears 188-474

U. S. S. R.: Balyasnyy 190-499

ground water: Tokarev 189-490

igneous contact: Nishimura 189-488, -489

Indian Ocean: Khitrov 190-502

indium: Watt 189-481

instrumentation, airborne monitor: Jones 188-478

deep-sea: Khitrov 190-502
discriminator for weakly active ores: Husain 188-479

lead, half life: Kauranen 189-485

lead-212, decay scheme: Giannini 190-494

minerals, flotation: Light 188-482

pegmatites, Poland: Skrzat 188-485

platinum, half life: Graeffe 189-483

potassium, beta-decay constant: Fleyshman 191-573

radon, atmosphere: Machta 190-504

radiohydrogeology: Tokarev 189-490

radium-C', half life: Ogilvie 190-496

rhenium: Watt 189-481

rocks, analysis: Vachnadze 190-501

Greenland, Ilfmaussaq batholith: Buchwald 188-473

U. S. S. R.: Ushakova 191-578

uranium and thorium content: Bloxam 191-575

variations at contacts: Nishimura 190-514

Radioactivity—Continued

rubidium-87, half life: McNair 189-482

samarium, half life: Graeffe 189-483

sediment, Black Sea: Starik 190-500

shale, Poland: Kita-Badak 188-476

stratification of the earth, cause of: Shneiderov 191-577

tellurium: Watt 189-481

turquoise, Yugoslavia: Vučić 188-475

tungsten, half life: Graeffe 189-483

vanadium-50, half life: McNair 188-468

volcanic sediments, Texas: Russell 188-472

water, Israel: Mazor 191-580

zircon, alpha activity, Japan: Yamaguchi 188-477

specific alpha activity: Zaghioul 188-470

Radioactivity exploration, airborne, scintillator: Mätveyev 189-497

airborne, theory: Seya 191-586

antimony deposits: Balaahov 188-500

boron, neutron analysis: Ostro­umov 188-504

gamma methods, oil pools: Grumbkov 189-494

gamma-gamma method, nonferrous metals: Polyakov 190-510

gamma-ray spectrometer: Grumbkov 189-496

geologic mapping: Bates 190-506

instrument calibration, simulated source: Davis 191-587, -588

instrumentation: Rothe 191-589; Yakubovich 191-590

methods, China: Grumbkov 190-516

oil, soft radiation: Langford 190-507

oil and gas: Alekseyev 190-515; Merritt 190-508; Yermakov 189-493

procedure, Japan: Sano 188-483

radon determination: Peacock 191-585

scintillators, fatigue: Flanagan 188-484

uranium: Troitskiy 191-583

U. S. S. R.: Petrov 189-498
Radioactivity exploration—Continued
uranium and thorium determined separately: Troitskiy 191-584
wooded areas: Matveyev 191-582
Radioactivity logging, activation analysis: Alekseyev 189-521
chlorine, effective cross section for slow neutrons: Zolotov 189-527
gamma method: Alekseyev 189-510; Voskoboynikov 190-512
calibration of instruments: Aksel'rod 191-598
density determination: Polak 191-597
depth of penetration: Filippov 191-596
isotope analysis: Guberman 189-511
porosity: Gulin 189-513
salt-water leakage: Moston 188-268
U.S.S.R.: Ismet 189-536
gamma-gamma method, coal deposits: Bilotserkovets' 188-506; Garkalenko 188-505
effect of cavities: Garkalenko 188-508
theory and methods: Filippov 189-529
heavy elements: Voskoboynikov 189-504
high temperature, sondes: Chelok'yan 189-532
isotope preparation: Zelenskaya 189-534
Japan, Akita Prefecture: Sano 188-510
Jóban district: Sano 188-512
uranium: Sano 188-511
joints in casing, depth determination: Chelok'yan 189-533
neutron method: Alekseyev 189-516; Guberman 189-517
absorption: Kozachok 190-520
boron and manganese: Fel'dman 189-505
character of impulses: Zakharchenko 189-508
elements in rocks: Lepyunskaya 189-526
elements of high absorption cross section: Filippov 188-503
generator: Bespalov 189-530; Voytsik 189-531; Yerozolimskiy 189-535
radioactivity logging—Continued
neutron method—continued
impulse source: Yerozolimskiy 189-515
optimum conditions for: Bulashevich 188-502
sodium and chlorine content: Blankov 189-525
temporal change of space-energy distribution: Dyad'kin 188-501
water-oil contact: Odinokov 189-512; Tsav 189-514
neutron-gamma method: Shapiro 190-520
coal deposits: Makarov 188-507
porosity: Kukharenko 189-518; Larionov 189-519, 190-519
velocity section: Ivankina 188-539
neutron-neutron method, distribution of thermal neutrons: Tal'yanskiy 189-520
porosity: Burov 189-509
oilfield development: Alekseyev 189-507
scintillation counters, slow neutrons: Dvorkin 189-528
U.S.S.R.: Bespalov 188-481
similarity principles: Guberman 189-506
sodium activation: Aksel'rod 189-522; Blankova 189-524; Reznov 189-523
cis-Caucasus: Shnurman 189-540
Kuybyshev area: Meshcheryakov 189-538
Orenburg area: Tsva 189-541
reefs: Bayembitov 189-542
Tatar A.S.S.R.: Shapiro 189-539
Volga-Ural district: Per'kov 189-218
uranium deposits, model: Grammakov 190-517
water-oil contacts: Bryant 188-509
radioactivity surveys, averaging: Savinskii 190-511
Brazil: Argentière 189-501; Wedo 188-486
California: Books 191-592
Canada, Arctic Archipelago: Gregory 188-455
Germany, faults: Löser 189-502
Hanford Plant area, Washington and Oregon: Schmidt 191-593
Iowa, Decorah fault: Lorenz 189-500
Radioactivity surveys—Continued
Japan, Chugoku Mountains: Haruki 191-594
Fukushima Prefecture: Iwasaki 188-494
Hiroshima Prefecture: Nakai 188-492
igneous contacts: Nishimura 190-513
Iwate Prefecture: Horikawa 188-498; Iwasaki 188-495
Jōban area: Horikawa 188-491;
Iwaki 188-495
Miyagi Prefecture: Koizumi 188-487
Miigata Prefecture: Kawachi 191-595
molybdenite: Shibato 190-213
Mount Asahidake: Sugiyama 188-490, -496
Okayama Prefecture: Iwasaki 188-497
ore deposits: Hatuda 188-499
Tsuyama basin: Nagahama 188-488
Yamaguchi Prefecture: Iwasaki 188-498
Kentucky: Bates 191-591
Tennessee: Bates 191-591
U.S.R., oil pools: Alekseyev 189-495; Dmitriyev 189-503
Red Sea area, age, Precambrian rocks: Schürmann 190-19
Remanent magnetization, magnetic anomalies: Books 190-453
peridotites, U.S.S.R.: Mikhaylova 190-458
sediment, compaction effect: Vlasov 190-457
Reunion Island, volcanic activity: Ducrot 190-633
Rhode Island, age, granite and slate: Pinson 188-36
seismic surveys, Black Island:
Tuttle 188-552
Narragansett Bay: Birch 190-579
Rock mechanics, arch formation:
Livingston 188-579
general discussion: Kahler 191-644
model studies: Watznauer 191-649
review of developments (1962):
Reed 189-589
Rumania, earthquakes, catalog:
Atanasiu 188-160
géothermometry, quartz: Pomîrlănu 189-334

Rumania—Continued
géothermometry—continued
quartz: Savul 188-368
sulfide ores: Savul 189-335
gravity network: Botezatu 188-337
gravity surveys, eastern Carpathians: Airinei 188-357; Visarian 188-356
iron deposits: Ștefănescu 188-463
salt deposits: Visarian 188-355
magnetic field, 1954-59: Constantinescu 188-400
secular variations: Constantinescu 188-399
magnetic surveys, eastern Carpathians: Airinei 188-357; Visarian 188-356
iron deposits: Ștefănescu 188-463
South Carpathians: Ionescu 188-462
magnetic susceptibility, sedimentary rocks: Costa-Foru 188-425
seismicity, 1957-59: Iosif 190-127
seismic surveys, Apuseni Mountains: Paicu 188-558

Sahara Desert, seismic surveys:
Layat 188-532
San Salvador, earthquakes, 1917:
Arenales 190-118
Sarawak, magnetic surveys, bauxite:
Overseas Geological Surveys 191-561
Saskatchewan, earthquakes, 1909:
Agarwal 190-116
géophysical surveys, Coronation mine: Rattew 190-246
magnetic surveys: Agarwal 190-479;
Canada Geological Survey 191-547
Saudi Arabia, meteorites, Rab’ al Khali: Holm 189-56
meteorite craters, coesite: Chao 189-55
Scintillators, threshold discriminators: Grumbkov 190-509
Scotia Arc, origin: Hawkes 190-284
Scotland, age, granites: Lambert 188-2
gravity surveys, rock density measurements: McLean 191-372
Sanquhar coalfield: McLean 191-371
Seismic curves, Rayleigh, continental oceanic paths: Shechkov 189-349
Seismic engineering, seismic force analysis: Nazarov 191-110
Seismic exploration, absorption coefficient of waves: Oblogina 191-604
advances reviewed (1962): Brundage 190-256
air waves: Kiselev 190-548; Mooney 190-535
amplifiers: Polishkov 190-573, -574, 190-575
borehole geophones: Konovalov 188-538
computer processing of data: Kantas 188-551
controlled directional sensitivity: Trorey 189-547
coordination with geological work: Faust 191-614
current status (1962): Melle 191-613
delay shooting: Honsho 189-559
dip control, computer program: Oksa 189-552
elastic properties, measurements in place: Swain 189-565
engineering: Azimi 190-576; Linehan 189-562; McGuinness 189-551; Moore 188-522
filters, high frequency: Lozinskiy 188-545
universal: Gol'tsman 188-547
fractured sedimentary rocks: Andreyev 190-531
gas expoder: Oilweek 190-570; World Oil 190-569
geophone-to-ground coupling, noise: Rosemann 191-610
grouping: Bespyatov 188-517, 190-547; Kaneko 188-529; Kate 190-522; Napalkov 190-526; Timoshin 190-525, 191-609
head waves, layered mediums: 190-543
instrumentation, amplifiers: Hefer 189-569; McManis 188-546
recording system: Oilweek 188-549
refraction system: Warrick 189-568
transformers: Khomenyuk 190-577
interference, analysis of: Gol'tsman 190-523
interpretation: Zav'yalov 190-530

Seismic exploration—Continued
isonormals, converted to isoverticaals: Kulikov 189-548
conversion to isoverticaals: Levi 188-513
layer velocity, traveltime curves: Petkov 189-545
Love waves: Okada 190-529
magnetic recording: Kage 191-616
marine, China: Bo 190-552
engineering surveys: Officer 188-548
offshore singing: Ghosh 188-519
secondary pressure pulse eliminated: Knudsen 189-550
pinch out layers, model experiment: Kün 191-168
Poland, 1917-61: Banas 188-521
preliminary reconnaissance: Khramov 190-567
progressive seismic waves, reflection and refraction: Cagniard 191-603
reflection, areal integration method: Kolmakov 190-545
automatic seismic profiling: Klugman 190-538
bubble effect: Pierau 191-608
construction of sections: Śliwiński 189-558
construction of reflecting horizons: Giotov 190-540
cross sections: Nagumo 188-527
directional reception: Vol'volskiy 188-526
discrepancies caused by rivers and marshes: Bobrovnik 188-531
effective velocity determination: Kozlov 190-541; Mu 190-553
expanding spread: Opitz 189-556
geophone spread: Nagumo 190-542
ghost elimination: Hammond 191-606
horizontal velocity: Krylov 190-542
inverse convolution: Rice 191-599
layered models: Bol'shikh 190-543
layered refractor: Kaneko 188-528
magnetic recording: Bespyatov 190-539
multiple reflection: Hesche 189-555
near-surface layer, effects: Goupillaud 188-524
n-layer problem: Gassmann 188-523
Seismic exploration—Continued
reflection—continued
one-dimensional model: Bennett 191-605
plane front method: Teplitskiy 190-550
reference plane: Giorgio 190-537
Seismoline computer technique: Sherwood 191-600
shot grouping: Olszak 189-554; Vol'vovskiy 188-514
smoothing of traveltime curves: Glogovskiy 190-546
synthetic seismograms: Diirschner 189-533
t₀/2 line method: Kharaz 188-525
transverse traveltime curves: Koryagin 190-551
traveltime curve analysis: Marek 191-607
vertical velocity variation: Gol'din 190-544
vibrator systems: Finn 190-533
zones of erosion and pinch out: Yurchenko 190-549
refraction, China: Yepinat'yeva 190-559
deep structures: Cassinis 190-554
engineering: Stam 189-561
envelope parabolas: Oliveira 190-532
flat platform structures: Shneyerson 188-535
head wave identification: Puzyrev 191-612
high pressure: Yepinat'yeva 190-555
methods used in Siberia: Yepinat'yeva 190-555
n-layer problem: Gassmann 188-520
nonstationary processes: Kravets' 190-558
reciprocal method: Hagedoorn 191-611; Hawkins 188-533
Sahara Desert: Layat 188-532
statistical uncertainty of models: Steinhart 189-560
three velocity layer structure: Kaneko 188-536
traveltime curves: Abdulayev 190-557
traveltime function: Weber 188-534
rockbursts, location of: Tárczy-Hornoch 189-566

Seismic exploration—Continued
shear waves, generation: Kaplan 188-516
shot-time recorder: Fedin 190-578
signal-to-noise, analyzer: Khomenyuk 190-571
directional linear surface force: Emura 189-544
reliability criterion: Gol'tsman 190-524
visual quality of record: Junger 189-549
stomper: Teupser 189-557
surface shooting: Lyuke 190-528
thin layers, filtering properties: Vasil'ev 190-527
three-component arrangements: Knothe 188-543
traveltime curves, two-layer mediums: Markuze 188-515
traveltime functions: Weber 188-518
U.S.S.R., Fergana: Vol'vovskiy 188-514
vP/vs: Molotova 191-601
velocity section, neutron-gamma logging: Ivankina 188-539
velocity variation with depth: Bulin 191-602
vibrator method: Holz 191-617; Militzer 188-550
wave-front charts: Musgrave 189-543
wave length computation, nomogram: Ginzburg 190-534
Seismic logging, synthesis of data: Khramoy 190-564
U.S.S.R., cis-Carpathian depression: Petkevich 190-566
Seismic scales, China: Van 188-165
Seismic surveys, Alaska, marine: Shor 189-339
Antarctica, Antarctic Peninsula: Behrendt 191-638
discrepancy with gravity data: Ushakov 189-584
ice shelves: Thiel 188-566
ice thickness: Dubrovin 189-585
McMurdo to South Pole: Crary 189-583
Yamato Mountains: Ishida 188-565, 190-593
Arctic Ocean: Hunkins 189-611
Atlantic Ocean: Savit 190-581
Bulgaria: Akrabova 191-630; Tuparev 191-629
Seismic surveys—Continued
California: Kovach 190-327
Canada, Arctic: Hobson 189-575
Gulf of St. Lawrence: Macpherson 189-574
China: Yerinat'yeva 188-560
Chai-Da-Mu basin: Tseng 188-561
Czechoslovakia, Vienna basin: Zouková 188-537
Denmark: Hjelme 189-579
Ellesmere Island, glacier thickness: Weber 191-621
England, coal fields: Clarke 189-577
France, Limagne basin: Carron 189-578
Germany: Große 191-628; Hermann 191-626; Reinhardt 191-627; Rische 191-624; Thomas 191-625
Greenland: Roethlisberger 189-576
Gulf of Mexico: Ewing 190-582
Illinois, glacial deposits: McGinnis 189-573
India, Ukai dams site: Central Water and Power Research Station Poona 191-637
Italy, geothermal energy: Cassinis 189-555
Miage glacier: Carabelli 190-294
Japan, ore deposits: Kitsunezaki 189-573
Spark: Chujo 188-563
uranium: Furuya 188-562
Java trench: Kovlyin 189-613
mine subsidence, detection: Boyum 188-281
New South Wales, magnesite: Hawkin 190-592
Nova Scotia, Scotian Shelf: Macpherson 191-620
Oregon: Donath 190-580
Puerto Rico Trench: Bunce 191-619; Hersey 189-610
Quebec: Hobson 190-583
Rhode Island: Tuttle 188-552
Narragansett Bay: Birch 190-579
Rumania, Apuseni Mountains: Paicu 188-558
Sahara Desert: Layat 188-532
Texas: Chang 188-553; Cram 188-369
underwater acoustic sources: Weston 188-530
Seismic surveys—Continued
Caucasus: Abdullayev 189-581; Tvaltvadze 189-580
cis-Carpathian downwarp: Petkevich 191-631
coordinated with drilling: Chirvinskay 190-586
Fedchenko Glacier: Berzon 189-582, 191-635
Fergana: Vol'tovskiy 190-587, 190-588
ice thickness: Pal'gov 191-636
Saratov: Bystritskaya 190-584
Siberia: Dorman 190-591; Tal'virskyi 191-633
Tatar A. S. S. R.: Tuyezov 188-559
Terskol Glacier on Mt. El'brus: Bokanenko 191-634
Turkmen S. S. R.: Mil'ishteyn 190-590
West Siberian Lowland: Telyakova 191-632
Venezuela, Lake Maracaibo: Levin 191-622
Wyoming: Earl 188-554; Sengbush 191-618
Yugoslovia, Tuzla basin: Roksanid 188-556
Ulcinj area: Dragasevic 188-557
Seismic waves, absorption, variation with distance: Kogan 191-112
attenuation, energy at focus: Rau tian 189-96
formula for: Brune 189-122
body, inequalities at great distance: Rocard 189-163
destructiveness, variation with period: Figueroa Abarca 189-115
dynamic response, mode superposition: Merchant 189-120
energy, formulas for calculation: Kogan 188-184
free oscillations of the earth, gravimeter recording of: Nishimura 188-180
recorded at Trieste: Bolt 191-116
frequency spectrum: Stewart 188-181
G-waves, attenuation and dispersion: Báth 190-137
initial phases, Alaska earthquake of 1959: Brune 191-104
Seismic waves—Continued
intersection with inclined surface:
Kozlov 189-125
leaking interface, propagation:
Phinney 188-183
Lg, granite layer: Saha 190-140
Lg and Rg phases, observed at
Prague: Pěč 191-117
longitudinal, $\ddot{\phi}$1: Maisuradze 191-118
Love, Euro-Asian paths: Payo
Subiza 190-139
P- and S-wave velocities, differences at short distances: Jef­
freys 191-114
period, most destructive: Figueroa
Abarca 188-182
piezoelectric effects: Kumazawa
190-141
Rayleigh, attenuation: Arkhangel'skiy
skaya 189-133; Boae 188-187
Chilean earthquake of 1960:
Savarenskiy 189-134
dispersion: Kuo 189-128
group velocities: Ragimov 191-120
mantle structure: Aki 188-373
Pacific Ocean: Santo 188-371,-372
phase velocity: Berckhemer 189-
130
radiation pattern: Brune 189-110
short period: Arkhangel'skaya
189-131
refracted, mean velocity determi­
nation: Kravtsov 191-115;
Lossovskiy 189-123
S-waves, polarization angle: Nuttli
189-121
surface, crustal studies: Tryggva­
sen 189-342
dispersion: Oliver 189-127
general characteristics: Koridalin
189-132
oceanic of 6-8 sec period: Oliver
188-185
velocity: Jeffreys 189-129
T-phase, dispersion: Northrup 191-
121
velocity, a variation with period:
Kuo 189-128
Baykal area of U. S. S. R.:
Golenetskii 191-119
ratio of P- and S-waves: Yoshi­
yama 189-126
variation with depth: Jeffreys 191-
113

Seismicity, Africa, A. D. 628 to A. D.
1500: Ambroseys 189-87
Africa, West African Rift Valley:
de Bremaecker 188-159
Asia, A. D. 628 to A. D. 1500: Am­
braseys 189-87
Bulgaria: Kirov 189-78, 191-90
Chile, regionalization: Gajardo 188-
158
China: Khan' 190-128; Petrushevskiy
189-92; Savarenskiy 188-
164
Czechoslovakia, maps: Karnik 189-
86
India: Central Water and Power Re­
search Station Poona 191-95
Japan, 1923-59: Hiro 188-167
depth distribution of hypocenters:
Matsushima 188-172
Hokkaido: Ono 189-93
Korea: Rustanovich 190-129
Mexico, Tehuantepec: Figueroa
Abarca 188-152
Norway: Kvale 190-126
ocean areas, Sofar geophones:
Shurbet 191-89
recurrence distribution of earth­
quakes: Gayskiy 189-88
Rumania, 1957-59: Josif 190-127
South America: Asada 191-88
U. S. S. R., Armenia: Tamrazyan
191-91
Baikal-Mongol region: Florensov
191-94
Caucasus: Bagdasarova 188-161,
188-162
central Asia: Makarova 191-93
Kurile Islands: Fedotov 188-163
Tadzhik S. S. R.: Nechayev 189-90;
Shaginyan 189-89
Turkmen S. S. R.: Rezanov 189-91
world, 1958-59: Rothé 189-83
1959: Lotze 189-84
1960: Due Rojo 190-115
Seismographs, accelerometers, gra­
vimeter acting as: Balakrishna
188-194
amplification, frequency character­
istic preserved: Arkhangel'skiy
191-145
Chinese type 581: Haß 188-191
constants, calculation: Kirnos 191-
143; Moskvina 191-144
direct digitizing: de Bremaecker
191-123
electrodynamic, parameters deter­
mined: Shebalin 191-147
Seismographs—Continued
emagnetic, effect of amplifier
3 circuit: Polshkov 188-544
short period amplifier: Barr 189-
engineering geology: Shan’gin 189-
exhausted elements, warning sig-
galvanometers, pen-writing: Borise-
Russian GB: Borisevich 191-138
Hall-effect type: NaXecz 189-135
high speed scanning: Shteynberg
illuminator: Skur’yat 191-126
indicator equations: Savill 191-124
large displacements, recording of: Rulev 190-145
long-period, noise elimination: Sutton 190-142
oscillating system: Rombert 188-188
remote control: Maksimov 191-142
magnetoelectric, recording control: Aronov 191-132
microseisms: Haubrich 189-478
optical recorders: Kirnos 191-131
method: Kolesnikov 191-137
oscillographs, Russian SEO-I: Borisevich 191-134
parameters, transformation formu-
pen-writing device: Gol’dfarb 191-140
portable: Oilweek 190-143
Russian OSB-IV: Borisevich 191-
Russian OSB-V: Borisevich 191-
recorders: Ye 191-128
automatic control: Solov’yev 191-
luminescent memory: Borisevich
magnetic memory: Vetchinkin 191-
pen type: Borisevich 191-139
Russian VEGIK, engineering: Kirnos 190-144
seismic level recorder: Bugajski
short period vertical, transfer function: Bogert 188-189
strong motion, piezoelectric pick-
up: Fremd 191-125
Syowa Base (Antarctica): Eto 190-
testing apparatus: Gurevich 189-
water-well fluctuations: Rexin 189-
seismology, textbook: Savarenskiy 188-155
seismoscope, model experiments: Shan’gin 189-571
seismometers, electrodynamics, thermal noise: Jackson 189-138
Senegal, gravity surveys: Blot 189-
Seychelles Archipelago, age, granite:
Muller 189-26
Shear strength, clays: Bjerrum 189-
sand: Bjerrum 189-597
Shorelines, Pacific islands, eustatic:
Stearns 190-267
Stress waves, attenuation, logarithmic creep waves: Lomnitz 189-124
transient, tortional couple: Datta 189-144
Sierra Leone, gravity surveys:
Baker 188-353
Solar system, origin: Hoyle 189-33; Lyttleton 189-34
Solar wind, source of terrestrial hy-
drogen: de Turville 189-35
Solid transitions, pressures of: Ken-
South America, crustal structure:
Asada 191-88
seismicity: Asada 191-88
South Carolina, age, metamorphic rocks: Kulp 188-40
age, Pamlico formation: Du Bar 190-11
zircon: Overstreet 188-39, 191-16
radioactivity surveys: Schmidt 189-499
South Dakota, gravity surveys: Black 188-338
Southern Rhodesia, gravity surveys, Great Dyke: Worst 188-456
magnetic surveys, Great Dyke: Worst 188-456
South-west Africa, Ehole meteorite:
Fireman 190-82
Spain, electrical logging, lignite: Sell Cantalapiedra 190-232
magnetic field, measurements: Car-
düs 190-389, -390, -391
Specific gravity, gravity surveys in mountains: Vecchia 188-334
rocks, U.S.S.R.: Karpins'ka 188-359
Yugoslavia: Simin 188-354
Spitsbergen, age, beaches: Blake 188-74
Strain, measuring apparatus, high temperatures: Fisher 189-588
measurement, seismic fields method: Kundorf 190-568
mine rocks, birefringence measurement: Emery 191-655; Williams 191-656
photoelastic measurement: Emery 191-657
Strength, arch formation: Livingston 188-579
basalt, thermal shock fracture: Uyeda 191-699
case-hardening, effect of: Arnold 191-664
confining-pressure effect, instrumentation: Jaeger 189-586
determination, uniaxial compression: Hardy 189-592
distribution, coal mine workings: Osterwald 189-591
elastic-plastic transition, triaxial compression: Serata 188-573
fracture, effect of grain size: Brace 188-575
glacier ice, deformation mechanism: Shumskiy 189-606
ground, formerly loaded: Breth 191-663
ground movement due to mining: Berry 189-590
ice: Wakahama 189-601
closure of sub-ice excavations: Abel 191-681
creep tests: Butkovitch 189-605
function of structure: Serikov 189-608
rate of deformation: Voytkovskiy 189-609
modulus of elasticity, methods of determination: Link 191-643
Mohr's theory, vertical tectonics: Kanizay 188-569
permafrost and ice, mechanical failure: Gorazdovskiy 189-607
plasticity, and other physical properties: Newton 189-236
relative shear strength, conversion formula: Moore 189-599
Strength—Continued
relaxation phenomena, dam excavations: Reuter 191-677
rocks, anisotropy determination in jointed rock: Hereth 191-665
damsites: Huggenberger 191-673
device for tunnel and shaft measurements: Lauffer 191-662
energy distribution during fracturing: Vinogradov 190-598
energy of rupture: Vinogradov 191-652
experimental crinkling of schists: Paterson 191-642
experimental deformation: Khlobustov 191-653
experimental study: Oberti 191-675
high confining pressure: Tomashevskaya 190-599
high temperature and pressure: Lozano Calvo 191-651
measurement: Fairhurst 188-576; Malina 191-674; Protodyakonov 191-668; Talobre 191-667
microseismic study in mines: Bollo 191-661
model of dam abutment: Pancini 191-678
radiation effects: Kvapil 191-650
tunnels: Rabcewicz 191-679
rock mechanics: Hill 189-596
rock movement, suppression by bolts: Belin 189-593
salt, gallery design: Serata 189-600
sea ice, Antarctica: Serikov 191-683
stress concentration index: Sala 191-682
strain rate and temperature effects, triaxial compression: Serdengezi 188-574
tensile, rocks at minimum loading: Bacon 191-654
Stress, boreholes, determined from hydraulic fracturing: Scheidegger 191-666
changes, effect on rock properties: Obert 191-640
distribution, coal mine workings: Osterwald 188-570
instrumentation, borehole plug gage: Wilson 188-578
manifestations underground: Scheidegger 188-312
Stress—Continued
measurement: Panek 190-595
in place: Obert 191-659; Terzaghi 190-596; Utter 191-658
mine rocks, borehole gage: Obert 190-597
Germany: Kostelka 191-660
propagation, jointed rock: Tremmel 191-680
rocks, damsites: Takano 191-676
rock mechanics: Kahler 191-644; Poncelet 188-572
shaft or level, three-dimensional stress state: Hiramatsu 189-594
Stress waves, rock failure: Isaacson 188-577
Submarine geology, 10th Pacific Science Congress: Zhivago 191-689
Arctic Ocean, Chukchi Shelf: Cromie 191-684; International Geophysical Year Bulletin: 191-685
mid-oceanic ridge: Heezen 188-582
origin of basin: Eardley 188-583
seismic studies: Hunkins 189-611
Beaufort Sea, bottom topography: Carsola 188-584
Bermuda-New England Seamount Arc: Northrop 190-601
bottom sample collection: Bezrukov 191-686
coring, soft material: Zumberge 190-604
Gulf of Mexico: Ewing 190-582
Japan, Tsugaru Straits: Sasa 191-687
Mediterranean Sea, refraction profile: Leenhart 190-602
Pacific Ocean, East Pacific Rise: Menard 188-586
Java trench: Kovylin 189-613
Kurile-Kamchatka arc: Zatonskiy 189-615
West Philippine Sea Basin: Sato 189-614
Puerto Rico Trench: Hersey 188-581, 189-610
rate of sedimentation, ionium-thorium method: Goldberg 190-603
relation to other sciences: Bezrukov 191-688

Stress—Continued

Submarine geology—Continued
ripple marks, seismic origin: Oulianoff 188-580
sea floor, compared with surface of moon: Chenoweth 188-142
seismoacoustical studies: Sysoyev 189-616
Tasman Sea: Standard 188-585
Surface waves, dispersion curves, computer analysis: Press 188-186
Sweden, age, black shale: Cobb 188-12
age, micas: Gerling 188-71
crust, thickness: Tryggvason 191-401
glaciers, Operation Ice Tunnel: Lundbergh 190-295
isotopes, carbon of graphite and marble: Landergren 190-369
Switzerland, age, granite: Chess ex 189-25; Grullenfelder 188-66
age, micas: Jager 188-67
microseisms: Decae 191-566

T

Tanganyika, age, basalt: Curtis 191-22
age, Zinjanthropus: Straus 190-18
Tasman Sea, submarine geology: Standard 188-585
Tekrites, australites, Western Australia: Baker 190-94
australites, etched: Baker 189-62
gas bubbles, composition: O'Keefe 191-68
Georgia: Clarke 189-61; Furcron 190-93
origin: Schilling 189-60
meteorite impact: Barnes 188-132
parent-body hypothesis: Adams 191-67
terrestrial soil: Schwarcz 189-59; Taylor 191-66
volcanic processes on celestial body: Vorob'yev 188-133
spectral analysis: Vorob'yev 188-133
supposed sedimentary matrices, rubidium-strontium correlation: Pinson 190-92
uranium and lead content: Starik 188-134
Tennessee, age, black shale: Cobb 188-12; Faul 188-35
age, bentonite: Adams 188-41
metamorphic rocks: Davis 190-9
magnetic and gravity surveys: Watkins 191-541
radioactivity surveys: Bates 191-591
Tension cracks, depth and spacing: Lachenbruch 188-568
Texas, crust, structure: Cram 188-369
radioactivity, volcanic sediments: Russell 188-472
seismic surveys: Chang 188-553; Cram 188-369
Theodolites, magnetic, bar correction: Lepretre 188-395
Thermal properties, expansion, sandstone: Somerton 188-364
Thermal springs, France, Haute-Auvergne: Roux 189-623
Jamaica: Zans 191-388
Japan, Arima area: Nakamura 189-625
Hokkaido: Fukutomi 191-392
Mount Iwate: Nakamura 188-599
varieties of water: Sato 189-624
magnetic origin, heat regimen: Fukutomi 188-600
Wyoming, Yellowstone National Park: Howard 188-598
Thermoluminescence, meteorites, age: Komovskiy 191-48
Thermometers, borehole: Doig 189-330
Transvaal, age, conglomerates: Nicolaysen 188-61
Tristan de Cunha, volcanic activity: Harris 189-617; Nature 190-616
Tsunami, Japan: Kato 189-117; Ohya 190-136
spectrum, Acapulo: Munk 189-116
velocity: Nakamura 191-111
water height in bays: Nakamura 189-118
Turkey, earthquakes, mechanism: Öcal 189-108
magnetic field, bays: Özdoğan 190-405

Union of South Africa—Continued
age—continued
uraninite: Burger 188-383
palaeomagnetism, Silurian: Graham 188-433
United Arab Republic, age, biotite: Gheith 188-64
United States, age, radiocarbon dates: Crane 190-35, -56; Damon 190-58; Dorn 190-39; Stipp 190-43; Trautman 190-42
age, volcanic tuffs: Curtis 188-45
drilling activity, 1961: Carsey 190-245
volcanoes, catalog of active volcanoes: Coombs 188-588
U.S. S. R., age, biotite, Caucasus: Rubinshteyn 188-82
age, bones: Isabayev 188-15
extrusive rocks, Urals: Ovchinnikov 188-83
gabbro: Shirinyan 188-81
general listing: Rubinshteyn 188-9
glaucnite, west Siberia: Klyavrovskiy 188-91
granites: Ivanov 188-88; Sobotovich 188-92
igneous rocks: Ivanov 188-86, -87; Yel'yanov 188-94
igneous and metamorphic rocks: Chernov 188-85; Zhibov 188-93
kimberlite, Yakutsk A. S. S. R.: Mikheyenko 188-90
metamorphic rocks: Komlev 191-25; Ravich 188-89
micas: Filippov 188-78; Gerling 188-71, -76; Komlev 188-79; Semenenko 188-80
monazite: Gol'denfel'd 191-26
pegmatites: Slepnev 191-27
Precambrian rocks, Ukraine and Baltic shields: Vinogradov 188-77
radiocarbon dates: Starik 188-75
sedimentary rocks: Vistelius 188-84
time scales: Afanas' yev 188-4; Harris 188-6, -7; Ovchinikov 188-8
Ucrub, structure: Bichevina 191-402; Deniskin 188-143; Gal'perin 189-346; Godin 190-354; Popov 191-304; Tavtovsan 190-355; Ulomov 190-356
earth current surveys: Deniskin 188-143; Shabanov 191-76
U.S.S.R. —Continued
earthquakes, 1955: Kukhtikova 189-80
1958: Kondorskaya 190-122
depth of focus in Caucasus:
Tskhakaya 191-92
mechanism: Kukhtikova 189-107;
Stauder 191-132
Tadzhik S.S.R.: Nersesov 189-79
elastic properties, rocks: Belikov
190-172
electrical exploration, glaciers:
Borovinskii 191-245
electrical logging, Azerbaijan
A.S.S.R.: Kireyev 189-217
cis-Caucasus: Nechay 189-215
Chulym research drill hole: Poyarkova 191-259
Emba region: Ayzenshtadt 191-260
Khanty-Mansiysk research drill
hole: Kozlov 190-256
Kuban downwarp: Bedcher 189-216
Kyanizadag area: Dadashv 188-272
Maksimkin Yar research drill
hole: Shumenkova 189-219
Pokur research drill hole: Dryakovla 189-220
Rybin research drill hole: Gorbachev 190-236
surveys: Itenberg 190-234
Uvat research drill hole: Alferov
191-257
Volga-Ural district: Per'kov 189-218
Zhigalov research drill hole: Sul'mov 190-235
electrical surveys, Armenian
S.S.R.: Vantsyan 188-258
glaciers: Borovinskii 189-194,
189-195, 190-210; Tokmagambetov 191-244
microisotropy: Levadnyy 191-246
geophysical exploration: Shirokov
190-247
geophysical surveys, Amur-Zeya
depression: Volodarskiy 191-270
diamond deposits: Bondarenko
189-221
Fedchenko glacier: Berzon 191-635
Glavnyy Bol'shealmatinskiy gla-
cier: Borovinskii 191-268
Kazakh S.S.R.: Ayzenshtadt 190-249; Babayants 188-291

U.S.S.R. —Continued
geophysical surveys—continued
Kirovabad area: Dzhafarov 189-223
Kyzyl-Kum: Mel'kanovitskiy 189-222
Lower Volga: Kozenko 190-248
reefs in Cis-Urals: Khat'yanyov
188-290
Tashkent: Mel'kanovitskiy 191-269
geotectonics, recent movement:
Kazanchan 189-255; Rudich
188-315; Shul'ts 191-310
geothermal anomalies, Apsheronsk
Peninsula: Sultov 189-325
geothermal energy, Dagestan
A.S.S.R.: Dzhamsakov 188-367
Kamchatka: Svyatlovskiy 190-346
Kurile-Kamchatka: Averyev 190-345
geothermal gradient, Azerbaijan
S.S.R.: Aliev 188-366; Mekhtiyev
190-341; Tsaturyants 190-340
Karadag gas field: Tsaturyants
191-390
Tersko-Kuma Plain: Vorobyeva
190-339
geothermometry, igneous and meta-
morphic rocks: Krylova 189-350
glaciers, historical review: Cher-
kasov 189-285
ice formation: Makarevich 189-281
ice thickness: Pal'gov 189-284,
191-636
movement: Barvenko 189-280, 191-
321; Makarevich 191-320
thermal conductivity: Tokmagambetov
189-283
viscosity and cohesion: Tokmagambetov
189-282
gravity exploration, chalcopryite:
Mudretsova 190-332
gravity surveys: Artem'yev 191-375
Altay and Kolba ranges: Mironov
188-360
Baltic region: Faytel'son 188-358
Bukhara-Khiva: Vol'vovskiy 191-378
Donets Basin: Lebedev 191-376
Fergana: Vol'vovskiy 190-587
Kazakh S.S.R.: Moiseyenko
188-315
Rudnyy Altay: Zhogolev 189-474
Udmurth A.S.S.R.: Aue 190-331
Uzbek S.S.R.: Geyman 190-333; Tal'Virshtk 191-377
isotopes, lead in ores and intrusions: Tugarinov 190-375
magnetic properties, change during orogeny: Malgyn 188-426
quartzites: Kopayev 188-464
peridotites: Mikhailova 190-458
magnetic surveys, Armenian
S. S. R.: Vantsyan 188-258
iron ores: Andreyev 191-555
Kazakh S. S. R.: Ivankin 191-554; Stroiteleva 191-553
kimberlite dikes: Barygin 191-560
nickel ultrabasics: Stupak 191-552
Rudnyy Altay: Zhogolev 189-474
Sea of Azov area: Kravchenko 188-465
Siberia: Karatayev 191-557
Transcarpathian: Khomenko 191-551
Urals: Gernik 190-483
Uzbek S. S. R.: Tal'Virskiy 191-377
volcanoes: Bernshteyn 190-622
West Siberian Lowland: Provodnikov 191-556
Yakutia diamond fields: Loshchakov 191-558, -559
magnetotelluric sounding: Rokitskiy 191-74
meteorites, dust from Kunashak: Yudin 191-64
Elga: Vronskiy 191-52
Tungus: Fesenkov 189-43, -44, 191-53; Idlis 191-54; Ivanov 191-55, -56; Obashev 191-57; Tsikulin 191-60
Yardmy: Kashkay 191-43
microseisms, noise spectrum: Moskvina 191-568
paleomagnetism: Yanovskyi 191-488
Cenozoic: Akopyan 190-464
early Paleozoic: Rodionov 189-456
geostratigraphical scale: Kruglyakova 190-462
Ordovician: Komissarova 189-457
Tertiary: Valiyev 191-489; Vekua 190-463
radioactivity, granite: Balyasnyy 190-499
rocks: Ushakova 191-578
radioactivity logging, cis-Caucasus
Shnurman 189-540
Gamma anomalies: Ismet 189-536
Kuybyshiev area: Meshcheryakov 189-538
radioactivity logging—continued
Orenburg area: Talav 189-541
reefs: Bayembitov 189-542
Tatar A. S. S. R.: Shapiro 189-539
Volga-Ural district: Per'kov 189-218
radioactivity surveys, oil pools:
Alekseyev 189-495; Dmitriyev 189-503
seismic surveys: Dorman 190-591
Bashkir A. S. S. R.: Khat'yaynov 190-585
Caucasus: Tvaltvidze 189-580
cis-Caucasus: Abdullayev 189-581
cis-Carpathian downwarp: Petkevich 191-631
coordinated with drilling: Chirvinsky 190-586
Fedchenko Glaciers: Berzon 189-582
Fergana: Vol'vovskiy 190-587,-588
Saratov: Bystritskaya 190-584
Siberia: Tal'virskiy 191-633
Tatar A. S. S. R.: Tuyezov 188-559
Terskol Glacier on Mt. El'brus: Bokanenko 191-634
Turkmen S. S. R.: Ayzberg 190-589; Mil'shteyn 190-590
West Siberian Lowland: Telyakova 191-632
seismic wave velocity, Baykal area: Golenetskii 191-119
seismicity, Armenia: Tamrazyan 191-91
Baykal-Mongol region: Florensov 191-94
Caucasus: Bagdasarova 188-161, 188-162
central Asia: Makarova 191-93
Kurile Islands: Fedotov 188-163
Tadzhik S. S. R.: Nechayev 189-90;
Shaginyan 189-89
Turkmen S. S. R.: Rezanov 189-91
cis-Carpathian depression: Petkevich 190-566
specific gravity, rocks: Karpinsk'-ka 188-359
volcanic activity, Bezzymannyi:
Borisova 191-693
Ichinskaya Sopka in Kamchatka:
Ogorodov 188-593
Kamchatka: Naboko 190-625; Vlodavets 188-589
Kamchatka-Kuriles: Tomkeieff 188-590
Volcanic activity—Continued

Japan—continued
Noboribetsu: Murozumi 189-619
Sakura: Taneda 189-620; Yoshikawa 189-621, 190-626
Showashinzan: Matsuo 189-622
lunar eclipses, dust in atmosphere: Link 191-700
Mexico, Bárcelona: Richards 190-612
Tres Virgenes Volcano: Ives 190-611
New Hebrides: Aubert de la Rüe 190-631; Blot 190-632
New Zealand: Healy 190-630
Philippines: Alcaraz 190-628
prediction, chemical indexes: Murozumi 189-619
Reunion Island: Ducro 190-633
Sahara, use for increasing rainfall: Gèze 190-620
temperature variations: Taneda 188-594
tension in crust: Bouwer 190-605
Tristan de Cunha: Harris 189-617; Nature 190-616
U.S.S.R., Bezymyanniy: Borisova 191-693
Kamchatka: Naboko 190-625;
Ogorodov 188-593
Kamchatka-Kuriles: Tomkeieff 188-590; Zatonskiy 189-615
Karymsky: Gorshkov 190-695
Klyuchevskaya: Naboko 190-623
Klyuchevskaya group and Sheveluch: Markhinin 191-692
magnetic surveys: Bernshteyn 190-622
Plosky Tolbachik: Rudich 191-694
regionalization in the Kurile-Kamchatka area: Markhinin 191-697
Zavaritskiy: Zelenov 191-696
Volcanology, Gegam-type volcano: Karapetyan 191-690
lava, flow dynamics: Yokoyama 188-587
Volcanology—Continued
magma chambers, behavior of volatiles: Matsuo 189-626
regionalization, U.S.S.R.: Vlodavev 190-624
review: Bullard 190-606
steam pressures: Nekhoroshev 190-336
thermal shock fracture of basalt: Uyeda 191-699

Washington, age, granodiorite: Lipson 188-56
electrical surveys, lead-zinc deposits: Crosby 189-190
glaciers, movement, Blue Glacier: Shreve 191-315
gravity surveys: Stuart 188-347
radioactivity surveys: Schmidt 191-593
Wisconsin, magnetic surveys: Allingham 188-450
Wyoming, age, Precambrian rocks: Giletti 188-47
age, uranium migration: Robinson 188-14
electric logging, interpretation: Patchett 188-267
gravity surveys, Yellowstone National Park: Pakiser 188-339
seismic surveys: Earl 188-554; Sengbush 191-618
thermal springs, Yellowstone National Park: Howard 188-598

Y
Yugoslavia, electrical logging, coal basins: Perić 188-270
electrical surveys, bauxite: Krulc 188-256
coal basins: Mladenović 188-257
graphite: Ristić 188-255
geophysical surveys, chromite: Šumi 188-299
oil and gas: Aksin 188-289; Muži-jević 188-288
gravity surveys, Tuzla basin: Roksandić 188-556
magnetic surveys, iron deposits: Damnjanović 188-459; Perić 188-460
radioactivity, travertine: Vučić 188-475
seismic surveys, Tuzla basin: Roksandić 188-556
Ulcinj area: Drašević 188-557
specific gravity, rocks: Simin 188-354

ERRATA IN BULLETIN 1166
190-42, p. 326 (Bull. 1166-C)
First line should read "Trautman, Milton A., and Walton, Alan"
190-63, p. 329 (Bull. 1166-C)
First line should read "Fowler, William A., Greenstein, Jesse L., and Hoyle, Fred"
190-420, p. 414 (Bull. 1166-C)
First line should read "Maeda, Hiroshi, Sakurai, K., Ondoh, T., and Yamamoto, M."