Minor Elements in Bedrock Soil, and Vegetation at an Outcrop of the Phosphoria Formation on Snowdrift Mountain Southeastern Idaho

By FREDERICK B. LOTSPEICH and ELLEN L. MARKWARD

CONTRIBUTIONS TO GENERAL GEOLOGY

GEOLOGICAL SURVEY BULLETIN 1181-F

A geochemical study

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

لر

۲ ۲

٢

نا ب

0

1

А

ì

2

4

א

J.

۰.

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

CONTENTS

٤

2

4

ì

4

1

ŕ

r

ץ ר

~

ł,

,

Abstract
Methods of investigation and results Study of weathered and unweathered bedrock Study of samples from complete profiles Bedrock
Study of weathered and unweathered bedrock 1 Study of samples from complete profiles 1 Bedrock 1
Study of samples from complete profiles 1 Bedrock 1
Bedrock1
Colluvially dragged layers of shale
Soil2
Vegetation 24
Minor elements in shrubs 24
Snowberry2
Snowbrush30
Mountain lover
Minor elements in trees3
Douglas-fir 3
Subalpine fir34
Engelmann's spruce3
Willow
Discussion and summary of data on minor elements
Barium3
Chromium3
Copper
Manganese 33
Nickel
Strontium3
Vanadium
Zinc
Conclusions 4
Selected references

ILLUSTRATIONS

PLATE 1.	Comparison of chemical composition of fresh and weathered	
	rock In j	pocket
		Page
FIGURE 1.	Index map	$\mathbf{F4}$
	Photograph of side of trench 1 at sampling site	5
3.	Diagrammatic longitudinal section showing groups of beds and	
	sites of sampling	6
4.	Sketch map of area on west side of Snowdrift Mountain	9

m

CONTENTS

TABLES

			rage
FABLE	1.	Soil profile description (generalized)	F 7
	2.	Phosphorus and minor-element content of samples from the	
		Meade Peak Phosphatic Shale Member of the Phosphoria	
		Formation	10
	3.	Phosphorus and minor-element content of samples of 22 com-	
		plete profiles and one bedrock exposure near Montpelier,	
		Idaho	18
	4.	Summary of minor-element content of shrubs	30
	5.	Comparison of minor-element composition of leaves (or needles)	
		and twigs from four species of trees growing over the Phos-	
		phoria Formation and Park City Formation	32
	6.	Minor-element composition of Douglas-fir tree at site 21	33
		· · · · · · · · · · · · · · · · · · ·	

1

) fi

N.

`*۲*۹

N. X

)

ير 14

٦

,

CONTRIBUTIONS TO GENERAL GEOLOGY

MINOR ELEMENTS IN BEDROCK, SOIL, AND VEGETATION AT AN OUTCROP OF THE PHOSPHORIA FORMATION ON SNOWDRIFT MOUNTAIN, SOUTHEASTERN IDAHO

By FREDERICK B. LOTSPEICH and ELLEN L. MARKWARD

7

ť

ABSTRACT

In southeastern Idaho, the Phosphoria Formation of Permian age contains measurable though minor amounts of barium, chromium, copper, manganese, nickel, strontium, vanadium, and zinc. On the western slope of Snowdrift Mountain north of Montpelier, Idaho, this formation has been covered by a thin colluvium derived from the Grandeur Tongue of the Park City Formation (also of Permian age, although older), which is poorer in these metals. In this environment, conditions are favorable for studying the movement of the elements by analysis of samples of bedrock, soil, and vegetation.

In the unweathered rock, there seems to be a definite positive correlation of strontium content and a rough positive correlation of vanadium content with phosphorus content, irrespective of lithology. Zinc shows a generally positive correlation with phosphorus in rock units in which silty constituents are high. An inverse correlation seems evident between manganese and phosphorus, and there seems to be a rough inverse correlation between barium and phosphorus.

In a comparison made between the metal content of samples of fresh phosphatic shale and that of weathered phosphatic shale in the twelve lithologic units studied, barium, chromium, and vanadium show an increase with weathering in 8, 8, and 10 units respectively; zinc shows a decrease with weathering in 9 units. For copper, manganese, nickel, phosphorus, and strontium, results are neither consistent nor conclusive; that is, a few units of fresh rock have the higher content of the metal measured, a few units of weathered rock have the higher content, and in the remaining units differences are nil or negligible. In distribution, amount, and general relations with other elements, in all lithologic units except one, copper and nickel are similar.

Minor-element content of the source of the colluvium is about the same as that of most soil-forming material. The soil above the phosphatic shale contains more phosphorus, zinc, vanadium, chromium, and strontium, and slightly more copper, than that above the Grandeur Tongue of the Park City Formation. The barium content of soil over the two formations is about the same. Manganese, barium, nickel, and strontium are more concentrated in the upper soil horizons than in the lower.

Analysis of plants shows wide variations in metal content among different species of plants growing under similar conditions. Such variations are demon-

~

7

Á.

4

i

}

۲

ì

....

۶.

بۇ

٦

strated by analytical results on samples from three shrub species and are probably related to the rooting habit and physiology of each species. Different types of plant tissue also vary widely in minor-element content, as do the same types of tissue when of different ages.

INTRODUCTION

Although geochemical techniques for locating hidden ore deposits are currently in common use, further fundamental studies must be made before the full potentialities of geochemical methods of exploration can be utilized. Still important is the need, emphasized by Hawkes (1950), for fundamental research in the relative mobility of metallic elements in the zone of weathering.

This study is an attempt to relate, in accordance with Goldschmidt's enrichment principle (Goldschmidt, 1954), the metal content of bedrock to the metal content of an overlying colluvial soil of extraneous origin and to the metal content of vegetation growing in the soil. In addition, by comparing samples of weathered rock with samples of corresponding units of fresh rock and by studying the soil and the vertical distribution of elements between bedrock and surface, some information has been obtained on the behavior of several metallic elements during the weathering processes. Such information allows better interpretation of geochemical data and points the way to proper sampling.

The Phosphoria Formation, of Permian age, is well suited in southeastern Idaho to this type of investigation for the following reasons: the phosphatic shale beds of this formation contain several metals in measurable quantity; the shale beds are remarkably persistent and are nearly uniform in both lithology and chemical composition for tens of miles; in many places the outcrops have been covered by colluvium derived from another rock unit; and in some of these places, soil has developed from the colluvium, and a considerable plant cover is growing from the soil.

For the work reported here, samples were collected during the summers of 1954 and 1955 at a site about 20 miles north of Montpelier, Idaho (fig. 1). At this locality trenches had been dug in 1948 by the U.S. Geological Survey in its investigation of phosphate deposits of the northwestern United States, and underground workings had been started by the Central Farmers Fertilizer Co. about the same time. The site is at an altitude of approximately 8,300 feet. The mean annual temperature at Montpelier is 41.6° F (the range is from -34° to 102°), and the mean annual precipitation is about 22 inches. Although comparable data are not available for the work site, the mean annual temperature is thought to be about 3° F lower there because of the higher elevation.

In the area studied, the Phosphoria Formation is made up of two members. The lower, the Meade Peak Phosphatic Shale Member, consists of about 180 feet of rock commonly called phosphatic shale, which may be subdivided into three types: the so-called phosphate rock, a highly phosphatic shale; argillaceous phosphate rock, which contains less phosphate and more silt and clay; and phosphatic mudstone, a hard well-indurated rock, some of which is nodular and some of which is highly calcareous. The upper member, the Rex Chert Member, is about 250 feet thick and consists of massive chert, siliceous shale, and, locally, lenses of calcareous mudstone. The Meade Peak is underlain by the Grandeur Tongue of the Park City Formation, a sequence of carbonate rocks and sandstone units more than 5,000 feet thick. The Rex is overlain by the Dinwoody Formation of Early Triassic age.

The Phosphoria beds studied lie in the western limb of the anticline that forms Snowdrift Mountain and are exposed locally on the western slope of the mountain. The beds strike N. 10° E. and dip 70° W. Because of the anticlinal structure, the older rocks (those of the Grandeur Tongue of the Park City Formation) crop out on the mountain at an altitude higher than that of outcrops of the Meade Peak phosphatic shale member. Above the phosphatic shale beds of the Phosphoria Formation, the slope of the land surface is only 10° W.; but above the Park City Formation, it is about 25° W. The topography has permitted movement of colluvium from the Park City Formation downward across the exposure of the phosphatic shales.

At the work site, the sandy texture of the soil is a clue to the source of the colluvium. It is believed that the colluvium can not have been derived from the phosphatic shale, because the phosphatic shale beds contain very little sand (McKelvey, Davidson, O'Malley, and Smith, 1953). Furthermore, large chunks of limestone and dolomite in the colluvium resemble the carbonate rocks of the Park City Formation; no rocks of their type or appearance are associated with the phosphatic shale. This evidence, together with the position of the Park City exposure topographically higher than that of the Phosphoria Formation and with the presence of the steeper slope above the Park City, strongly suggests that through weathering and subsequent movement the colluvium has been derived from the Park City Formation. Frost action may have played an important role in the transport of this material, although the presence of incipient soil horizons rules out recent mixing action.

At the contact between the colluvium and the phoshatic shale, the truncated edges of the shale beds are overturned, having been rolled and dragged downslope by movement of the colluvium above them.

ł

CONTRIBUTIONS TO GENERAL GEOLOGY

لمر

Ł

۴.

5

¥Ì

2

<u>کر</u> ۱۰

5

Ē.

j,

٦

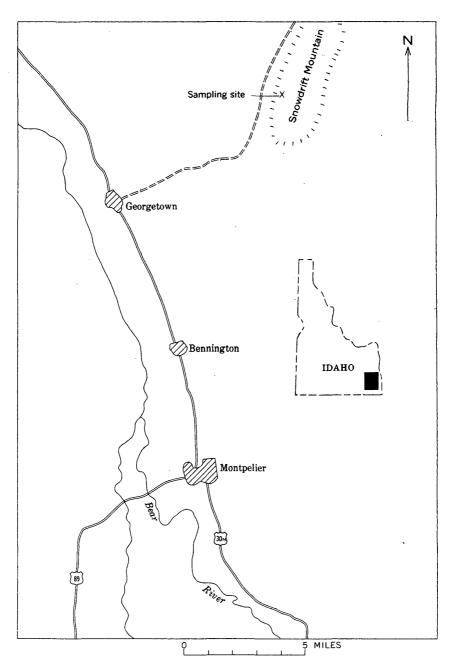


FIGURE 1.—Index map showing location of sampling site on west side of Snowdrift Mountain, northeast of Georgetown, Idaho.

MINOR ELEMENTS, SNOWDRIFT MOUNTAIN, IDAHO

Figure 2, a photograph, and figure 3, a diagrammatic section of the site where samples were collected, show the contact relation of the shale beds to the overlying colluvial soil. Although the dragged beds have been thinned and the attitude of their layering has been changed from a 70° dip to one roughly parallel to the surface slope of 10°, the identity of some individual beds has been preserved to the extent that these beds are recognizable 40 feet or more downslope from their former position.

Soil horizons, though identifiable, are not well developed, as is indicated in the generalized soil-profile description (table 1). Among characteristics of the several soil horizons, the main variable is color, whose changes seem to be due to the degree to which the yellow of the parent material is masked by organic matter. The coloring effects of organic matter are especially noticeable in the horizons near the surface. Typical structures of the soil units are only incipiently developed, except for the weak granular structure in the upper horizons and the subangular blocks in the deeper horizons. The yellow material of the C horizon is somewhat vesicular and the vesicles have a darker color than that of the matrix.

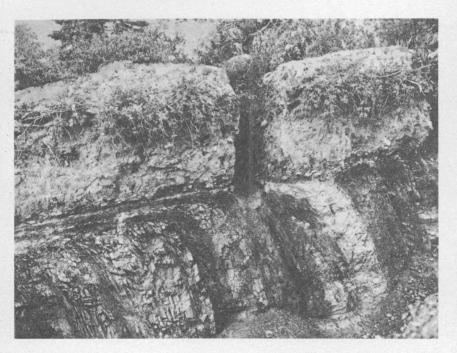


FIGURE 2.—Photograph of side of trench 1 at sampling site near Georgetown in southeastern Idaho. Photograph shows truncated beds of phosphatic shale in Meade Peak Member of Phosphoria Formation which have been dragged by movement of overlying colluvium. Samples were taken from small excavation at center.

695-901 0-63-2

لمر

ŧ

F

ì T

ζ,

5

Ğ

2

ų

1/

7

,

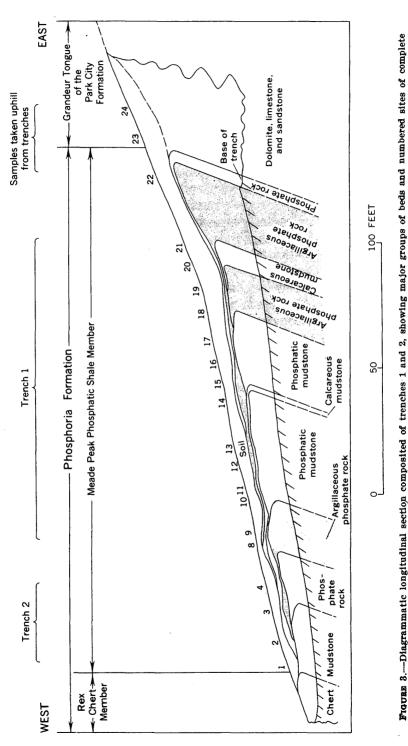
`` *

`

Ċ

)

¥ ۲


. لار

> ! .

λ

ł

profile sampling near Georgetown, southeastern Idaho. Relative thickness of soil is correct.

TABLE 1.—Soil profile description (generalized)

[From the surface as reference (designated 0), soil horizons are measured both upward and downward. Soil colors are from "Soil Color Charts," published by Munsell Color Co., Inc., Baltimore, Md.]

Horizon	Depth (inches)	Description
A ₀₀	4-2	Dry leaves and other vegetal material, somewhat matted but not visibly decayed.
A ₀	2–0	Partially decomposed plant material; leaves have lost their identity.
Ground surface	0 · 0–6	Dark grayish-brown (10YR 4/2, dry) silt loam;
All	· 0-0	single-grained to weak crumb structure; many roots; this is the horizon having maximum con- tent of organic matter.
A ₁₂	6–12	Dark-brown (10YR 4/3, dry) silt loam; single- grained to weak crumb structure; roots are numerous and organic matter content appears to be high; separation of this horizon from A_{11} is arbitrary.
AC	12-16	Yellowish-brown (10YR 5/4, dry) silt loam; weak blocky structure; roots are still numerous, although organic-matter content has decreased; this is a transition horizon having arbitrary
C	16–36	boundaries above and below. Yellowish-brown $(10YR 5/6, dry)$ silt loam; sub- angular blocks; number of roots decreases with depth; this horizon may contain numerous limestone, sandstone, and dolomite boulders, ranging in size from 6 to 24 inches in greatest dimension, that have a weathered skin; sharp boundary with underlying, colluvially dragged layers of phosphatic shale.

In southeastern Idaho, the mountain slopes support forest growth, including both trees and shrubs; the broad valleys support only brushy plant cover. The tree species most abundant in the general region is quaking aspen (Populus tremuloides); Douglas-fir (Pseudotsuga taxifolia) and lodgepole pine (Pinus contorta var. latifolia) are next in abundance. At altitudes above 8.000 feet, Engelmann's spruce (Picea engelmanni), subalpine fir (Abies lasiocarpa), and limber pine (Pinus flexilis) are common members of the forest com-The most numerous of the shrubby species that cover the munity. lower slopes are mountain mahogany (Cercocarpus sp.), snowbrush (Ceanothus velutinus), snowberry (Symphoricarpos oreophilus), and mountain lover (Pachistima myrsinites). Sagebrush (Artemisia tridentata), which is plentiful in certain areas, in some places extends to an altitude of 9,000 feet although it is usually restricted to the valley bottoms. In the immediate vicinity of the outcrop studied at East Georgetown, the trees in the order of their abundance are Douglas-fir, spruce, subalpine fir, aspen, and willow, and the chief shrubs are snowbrush, snowberry, and mountain lover.

د

٣

5

>

)

 \mathbf{r}

`,

, A

x

1

In this report, the senior author is responsible for planning the investigation, for the field work, for some of the analyses, and for the major part of interpretation of analytical results. The contribution of the junior author lies in the organization and presentation of material and in the checking of data.

Special thanks are due the Central Farmers Fertilizer Co. of Chicago for permitting collection of samples from their property and for the trenching they did for the benefit of the Geological Survey field party.

METHODS OF INVESTIGATION AND RESULTS

For study of the behavior of several chemical elements during the weathering process and of the movement of these elements from their source in the bedrock to their present position, data were obtained from analytical determinations made on different types of material during two phases of investigation. In one phase, a comparative study was made of samples of weathered bedrock and samples of fresh bedrock. In the second phase, to supply information on what happens in the vertical zone between bedrock and surface, complete profile sampling was done—that is, samples were taken from bedrock in place, from shale layers that had been dragged by moving colluvium, from soil developed in the colluvium, and from plants growing in the soil.

The surface and near-surface samples came from the trenches shown in figures 2 and 3, and in figure 4, a diagrammatic sketch of the area in plan. Trench 1, referred to here as the main trench, had been scooped out with a bulldozer in 1948. For purposes of the present work, this main trench was cleaned out and then deepened along its full length by an additional excavation 2 feet wide and $1\frac{1}{2}$ feet deep; exposures were therefore available of soil, colluvially dragged layers, and phosphatic shales in place to depths of 8 to 20 feet. Trench 2, a smaller trench, was dug about 100 feet north of the main trench, as part of the work reported here, in order to provide fresh exposures of the soil and vegetation, which had been stripped away along the top of trench 1. Figure 3, the diagrammatic logitudinal section, is a composite of both trenches.

STUDY OF WEATHERED AND UNWEATHERED BEDROCK

The trenches furnished samples of the phosphatic shale beds in the weathering zone; a channel sample weighing between 8 and 12 pounds was taken from each lithologic unit studied. Samples of the same units at depth were taken from the Central Farmers Fertilizer Co.

 $\mathbf{F8}$

mine about 800 feet down dip from rock exposed in the trench. Beds that are noticeably weathered near the surface appear unweathered in the mine.

Phosphorus is the only major rock-forming constituent of the phosphatic shales chemically determined in this study; the phosphorus content was estimated by means of a semiquantitative wet chemical colorimetric method, which, on the basis of the reactions described by Snell and Snell (1949, p. 672), had been developed in the laboratories of the U.S. Geological Survey for field use. The zinc content of the shale samples was also determined by use of a wet chemical semiquantitative field method. The shale samples were also analyzed by semiquantitative spectrographic methods for copper, nickel, manganese, vanadium, chromium, barium, and strontium; these analyses were made in a truck-mounted spectrograph. Analyses of individual samples are reported in table 2, and averages of groups of analyses representing the respective rock units are diagrammatically presented on plate 1.

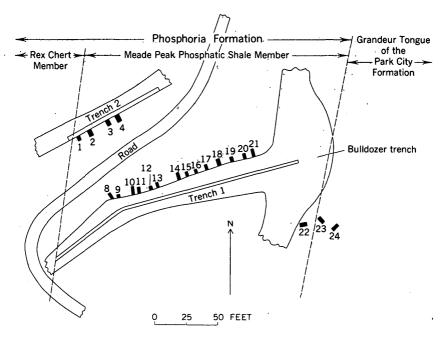


FIGURE 4.—Diagrammatic sketch map of area on west side of Snowdrift Mountain, northeast of Georgetown, Idaho. Trenches are outlined. Sites of complete profile sampling are numbered.

CONTRIBUTIONS TO GENERAL GEOLOGY

لر

1

۲

بر بر

ŕ

۰. ک

とたい

1.1.

ì

¥ ⊄ ∖

. २ २

یر بر

; ,

1

TABLE 2.—Phosphorus and minor-element content of samples from the Meade Peak Phosphatic Shale Member of the Phosphoria Formation

[Phosphorus is expressed in percent, trace elements in parts per million. Zinc and phosphorus were determined, by semiquantitative field methods, by R. R. Beins and G. C. Campbell; other elements, by semiquantitative spectrographic methods, by U. Oda]

San	aple				Consti	tuents				
Lab. No.	Field No.	Р	Zn	Cu	Ni	Mn	v	Cr	Ba	Sr
		SAMPLE	S OF UN	WEATHI	RED RO	CK, FR	OM MI	NE		
				Phospha	te rock					
54-5751 5752 5753 5754 5756 5756 5757 5758 5759 5760 5761 5762	$\begin{array}{c} 657\\ 658\\ 659\\ 660\\ 661\\ 662\\ 663\\ 664\\ 665\\ 666\\ 666\\ 666\\ 667\\ 668\\ \end{array}$	$\begin{array}{c} 7.50\\ 10.00\\ 1.50\\ 7.50\\ 2.00\\ 7.50\\ 15.00\\ 4.25\\ 1.00\\ 15.00\\ 7.50\end{array}$	$\begin{array}{c} 400\\ 1,000\\ 200\\ 1,000\\ 1,000\\ 1,750\\ 1,000\\ 1,750\\ 3,500\\ 3,500\\ 300\\ 1,500\\ 2,000\end{array}$	15 35 35 75 100 35 35 100 15 75 75	757520107515075150 <575100	$\begin{array}{c} 200\\ 150\\ 500\\ 350\\ 200\\ 200\\ 100\\ 200\\ 100\\ 75\\ 100 \end{array}$	$\begin{array}{c} 750\\ 1,500\\ 350\\ 500\\ 750\\ 1,500\\ 1,500\\ 2,000\\ 1,500\\ 750\\ 1,500\\ 1,500\\ 2,000\\ \end{array}$	$\begin{array}{c} 750 \\ 750 \\ 350 \\ 500 \\ 750 \\ 1, 500 \\ 750 \\ 1, 000 \\ 1, 500 \\ 150 \\ 750 \\ 750 \\ 750 \end{array}$	$75 \\ 75 \\ 100 \\ 75 \\ 150 \\ 150 \\ 100 \\ 75 \\ 100 \\ < 10 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$egin{array}{c} 3,500\ 3,500\ 350\ 1,000\ 750\ 3,500\ 2,000\ 3,500\ 2,000\ 750\ 3,50$
<u></u>	·		Argi	llaceous p	hosphate	rock		##	<u> </u>	
54-5763 5764 5765 5766 5767 5768 5769 5770 5771	669 670 671 672 673 674 675 676 677	$\begin{array}{c} 0.\ 75\\ 7.\ 50\\ 7.\ 50\\ 5.\ 00\\ 4.\ 25\\ 3.\ 75\\ 1.\ 50\\ .\ 50\\ 4.\ 25\\ 4.\ 25\end{array}$	500 7,000 3,500 3,500 2,000 3,000 750 300 2,000	$15 \\ 100 \\ 100 \\ 150 \\ 75 \\ 100 \\ 35 \\ 15 \\ 150 \\ 15$	<5 350 200 150 150 35 20 200	150 100 75 100 75 100 150 150 100	$500 \\ 5,000 \\ 3,500 \\ 3,500 \\ 1,500 \\ 2,000 \\ 200 \\ 50 \\ 500 $	$150 \\ 1, 500 \\ 1, 500 \\ 2, 000 \\ 1, 500 \\ 2, 000 \\ 350 \\ 200 \\ 1, 500 \\ 1$	<10 100 100 150 150 75 75 200	500 1, 500 2, 000 2, 000 2, 000 2, 000 2, 000 350 750
			1	Phosphatic	mudston	e				
55-3923 3924 3925 3926 3927 3928	736 737 738 739 740 741	5.0 5.0 4.0 1.0 2.5 2.5	400 600 400 200 1, 500 1, 500	100 75 75 50 150 100	75 100 50 20 200 150	200 200 200 200 200 200 200	200 200 200 200 350 350	$500 \\ 750 \\ 500 \\ 350 \\ 1, 500 \\ 1, 000$	$150 \\ 150 \\ 150 \\ 75 \\ 150 \\ 200$	750 750 500 350 350 350
			Nodu	lar phospi	atic mud	stone				
55-3929 3930 3931 3932 3934 3935 3936 3936 3938	742 743 744 745 746 747 748 749 750	$1.0 \\ 2.0 \\ 1.0 \\ 1.5 \\ 1.5 \\ 1.0 \\ 1.0 \\ 1.0 \\ 3.0 \\ 3.0 \\ 1.0 $	$\begin{array}{c} 600\\ 600\\ 400\\ 1, 500\\ 1, 500\\ 1, 500\\ 600\\ 300\\ 700\\ 2, 000 \end{array}$	50 75 75 100 75 75 75 75 150 150	50 75 100 100 100 75 50 200 350	150 150 200 200 200 200 350 150 100	350 500 750 500 750 500 350 500 350 500	$\begin{array}{c} 750\\ 750\\ 750\\ 1,500\\ 1,000\\ 1,500\\ 750\\ 350\\ 1,500\\ 1,500\end{array}$	150 350 350 200 350 200 200 200 200 200	500 750 500 500 500 500 500 350 500 500
			(Calcareous	mudston	B				
55-3939	752	10.0	1,000	75	200	50	1,000	1, 500	100	3, 500

MINOR ELEMENTS, SNOWDRIFT MOUNTAIN, IDAHO

Sar	nple				Const	ituents				
Lab. No.	Field No.	Р	Zn	Cu	· Ni	Mn	· v	Cr	Ba	Sr
	SAMP	LES OF			ROCK, F hatic mud		IINE-C	ontinued		
55-3940 3941 3943 3944 3944 3946 3946 3947 3948 3948 3949 3950 3951	753 754 755 756 (a) 757 758 759 760 761 762 763 763 764	1.03.0.5.11.56.012.510.05.07.53.06.02.0	$\begin{array}{c} 200\\ 100\\ 50\\ 20\\ 70\\ 300\\ 300\\ 300\\ 300\\ 1,500\\ 700\\ 3,000\\ 600\\ \end{array}$	35 20 15 15 35 35 35 35 100 100 150 75	50 35 10 5 20 75 35 35 35 50 150 150 350 50	350 200 200 200 200 100 100 150 100 200 100	500 150 100 200 350 500 200 350 350 350 350 1,000 350	$\begin{array}{c} 200\\ 150\\ 100\\ 75\\ 150\\ .\\ 500\\ 1, 500\\ 350\\ 500\\ 1, 500\\ 1, 000\\ 2, 000\\ 500 \end{array}$	$100 \\ 150 \\ 50 \\ 50 \\ 100 \\ 200 \\ 75 \\ 100 \\ 150 \\ 100 \\ 150 \\ 200 \\ 150 \\ 200 \\ 150 \\ 150 \\ 200 \\ 150 \\ 1$	20 50 20 35 35 3,50 2,00 2,00 2,00 75 75 50 1,00 35
	·		Pl	nosphatic	mudstone	9			'	
55-3953 3954 3955 3956 3957 3958 3959 3960 3961 3962	765 766 767 768 769 770 771 772 773 774	4.0 3.0 2.5 3.0 2.5 .1 1.0 .1 1.0 2.5	$\begin{array}{c} 2,000\\ 1,000\\ 1,000\\ 1,500\\ 1,500\\ 100\\ 200\\ 70\\ 1,500\\ 1,000\\ \end{array}$	150 75 150 100 75 10 15 15 75 75 75	350 150 200 150 150 <5 10 5 150 100	$\begin{array}{c} 100\\75\\100\\75\\100\\75\\100\\150\\150\\150\\200\\\end{array}$	750 500 350 350 350 35 75 75 500 350	$\begin{array}{c} 2,000\\ 1,500\\ 1,500\\ 2,000\\ 2,000\\ 150\\ 200\\ 150\\ 1,500\\ 1,500\\ 1,000 \end{array}$	$75 \\ 150 \\ 200 \\ 100 \\ 200 \\ < 5 \\ 50 \\ 5 \\ 350 \\ 350 \\ 350 \\ $	50 75 75 75 1,00 35 35 50 75
			Argill	aceous p	hosphate	rock				
55-3963 3964 3965	775 776 777	0.5 1.5 1.0	200 400 400	20 35 35	20 35 35	150 150 150	200 200 200	350 750 500	200 350 150	500 750 500
			Argil	laceous p	hosphate	rock				
55-3966 3967 3968 3969	778 779 780 781	5.0 2.0 4.0 5.0	1,000 400 1,500 600	100 50 50 35	100 35 75 75	150 150 100 100	[•] 200 100 200 350	2,000 500 1,500 1,000	350 200 200 100	750 750 1,000 1,000
			. Ca	lcareous	mudstone)				
55-3970 3971 3972 54-5772	782 783 784 678	$2.0 \\ 2.5 \\ 3.0 \\ 2.00$	400 1, 500 1, 500 1, 500	50 75 75 75	20 100 150 150	200 150 50 150	200 200 350 200	500 1, 500 1, 000 1, 000	150 200 100 200	50 0 1, 50 0 75 0 75 0

 TABLE 2.—Phosphorus and minor-element content of samples from the Meade

 Peak Phosphatic Shale Member of the Phosphoria Formation—Continued

1

:

4

بم ≺

7

L

.... 1

Ń

Ś

1

Ý

(

4 4

~ 3,

ţ

3

CONTRIBUTIONS TO GENERAL GEOLOGY

\ر

2

4 7 7

≻ ≉ _

بر د

).

۶ ۲

)

۲ ۲

ĸ

,

l,

t

Sar	aple				Const	ituents				
Lab. No.	Field No.	Р	Zn	Cu	Ni	Mn	v	Cr	Ba	Sr.
	SAMP	LES OF		THERED I			IINEC	ontinued		
			Argi	llaceous ph	osphate	rock				
54-5773 5776 5776 5777 5779 5780 5781 5782 5783 5785 5785 5785 5788 5788 5788 5788	680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 697	$\begin{array}{c} 2.00\\ 0.75\\ 3.75\\ 2.50\\ 7.50\\ 7.50\\ 7.50\\ 1.50\\ 1.50\\ 7.50\\ 7.50\\ 7.50\\ 7.50\\ 7.50\\ 3.75\\ 2.00\\ 0.15\\ 3.75\\ \end{array}$	$\begin{array}{c} 1,000\\ 300\\ 750\\ 1,250\\ 750\\ 3,000\\ 2,500\\ 2,500\\ 1,500\\ 2,500\\ 3,500\\ 3,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\end{array}$	$\begin{array}{c} 20\\ 15\\ 100\\ 75\\ 75\\ 100\\ 100\\ 15\\ 160\\ 75\\ 100\\ 100\\ 75\\ 20\\ <1\\ 75\end{array}$	$\begin{array}{c} 20\\ 100\\ 755\\ 150\\ 150\\ 150\\ 150\\ 150\\ 150\\ 150\\ 1$	78 100 100 50 75 75 75 50 50 50 35 55 75 75 75	$\begin{array}{c} 350\\ 200\\ 350\\ 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 2, 000\\ 2, 000\\ 2, 000\\ 2, 000\\ 2, 000\\ 1, 500\\ 350\\ 100\\ 750\end{array}$	350 150 750 500 750 750 750 750 750 750 750 7	$\begin{array}{c} 35\\ 10\\ 150\\ 75\\ 75\\ 150\\ 150\\ 75\\ 150\\ 150\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	500 200 750 351 1,000 1,000 1,000 1,000 750 750 755 350 100 755
	<u> </u>			Phosphat	e rock					
54-5790 5791 5792 5793	698 699 700 701	10.00 7.50 15.00 7.50	1, 500 1, 500 2, 000 2, 500	75 150 100 75	50 100 75 75	10 20 15 15	3, 500 3, 500 5, 000 3, 500	500 750 750 750	75 75 75 75 75	2,000 1,500 2,000 1,500
	<u> </u>	SAMPLE	S OF WE	EATHEREI	D ROCK	, FROM	TREN	CH		
				Phosphat	e rock					
54-5639 5640 5641 5642 5643 5645 5645 5645 5647 5649 5649 5650 5652	- 158 159 160 161 162 163 164 165 166 167 168 169 170 171	$\begin{array}{c} 6.00\\ 1.50\\ 15.00\\ 3.00\\ 7.50\\ 4.25\\ 10.00\\ 7.50\\ 7.50\\ 15.00\\ 7.50\\ 7.50\\ 5.00\\ 2.50\\ \end{array}$	$\begin{array}{c} 700\\ 2, 500\\ 500\\ 2, 500\\ 1, 000\\ 2, 500\\ 750\\ 1, 500\\ 750\\ 1, 500\\ 750\\ 1, 000\\ 2, 500\\ 2, 500\\ 750\\ 750\\ \end{array}$	15 15 15 20 20 15 15 15 35 75 15	$ \begin{array}{c} 10\\75\\<5\\75\\20\\35\\15\\15\\5\\5\\75\\20\\2\end{array} $	$\begin{array}{c} 50\\75\\<10\\350\\150\\200\\150\\20\\75\\<10\\10\\75\\10\\<10\\\end{array}$	$\begin{array}{c} 750\\ 500\\ 750\\ 500\\ 750\\ 500\\ 500\\ 500\\$	750 500 750 500 500 500 500 500 500 500	75 200 75 350 150 200 150 150 150 75 350 150 75 350	$\begin{array}{c} 1.\ 500\\ 150\\ 3.\ 500\\ 350\\ 750\\ 3.\ 500\\ 7.\ 500\\ 3.\ 500\\ 1.\ 500\\ 7.\ 500\\ 7.\ 500\\ 7.\ 500\\ 7.\ 500\\ 7.\ 500\\ 3.\ 500\end{array}$
	. <u> </u>		Argi	llaceous ph	osphate	rock				
54-5653 5654 5655 5656 5657 5659 5659 5660 5661 5662 5663 5664 5664 5665	172 173 174 175 176 177 178 179 180 181 182 183 183	$\begin{array}{c} 7.50\\ 4.25\\ .40\\ 7.50\\ 4.25\\ 7.50\\ 5.00\\ 3.75\\ 2.00\\ .85\\ 5.00\\ 4.25\\ 5.00\end{array}$	$\begin{array}{c} 1,500\\ 2,500\\ 750\\ 2,500\\ 2,500\\ 2,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\end{array}$	75 150 150 150 150 150 150 75 75 75 150 150 150	$\begin{array}{c} 75\\ 100\\ <5\\ 100\\ 150\\ 150\\ 150\\ 150\\ 150\\ 350\\ 350\\ 350\\ 350\\ 150\end{array}$	$75 \\ 75 \\ <10 \\ 75 \\ 50 \\ 20 \\ 100 \\ 20 \\ 150 \\ 1,000 \\ 100 \\ 150 \\ 75 \\ 75$	$\begin{array}{c} 3, 500\\ 3, 500\\ 500\\ 5, 000\\ 3, 500\\ 1, 500\\ 1, 500\\ 1, 500\\ 1, 500\\ 1, 500\\ 1, 000\\ 1, 000\\ 750\\ 500\\ \end{array}$	$\begin{array}{c} 1,500\\ 1,500\\ 150\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,500\\ 1,000\\ 750\\ 3,500\\ 1,500\\ 1,500\\ 1,500\\ \end{array}$	$\begin{array}{c} 150\\ 100\\ <10\\ 150\\ 150\\ 150\\ 200\\ 200\\ 750\\ 350\\ 150\\ 350\\ 350\end{array}$	$\begin{array}{c} 1,\ 500\\ 750\\ 750\\ 3,\ 500\\ 2,\ 000\\ 1,\ 500\\ 1,\ 500\\ 1,\ 500\\ 1,\ 500\\ 750\\ 750\\ 1,\ 000\\ 750\\ 1,\ 000\\ 1,\ 000\\ \end{array}$

TABLE 2.—Phosphorus and minor-element content of samples from the Meade Peak Phosphatic Shale Member of the Phosphoria Formation—Continued

MINOR ELEMENTS, SNOWDRIFT MOUNTAIN, IDAHO

Sar	nple				Consti	tuents				
Lab. No.	Field No.	Р	Zn	Cu	Ni	Mn	v	Cr	Ba	Sr
	SAMP	LES OF	WEATHE	RED RO	CK, FRO	M TRE	осн—с	ontinued		
			Р	hosphatic	mudston	e				
4-5666	185	10.00	750	75	50	100	200	750	100	3, 5
- 5667 5668	186 187	.85 3.75	1,500	75 100	350	1,000 200	750	1,000 500	750	777
5669	188	3.75	500 500	75	150 50	200	350 200	1,500	150 350	1,0
5670	189	3.00	500	75	35	20	200	750	150	- ' 2
5671	190	2.00	750	100	100	200	350	750	350	E
5672	. 191	1.50	750	150	150	75	500	2,000	750	- 1
5673	192	3.75	500	100	75	50	750	2,000	500	1,0
5674		5.00 3.75	. 500	100	75 100	75 20	500	2,000	350	1, [
5675 5676		3.75 1.50	500 500	150 150	100	15	750 750	2,000 1,500	350 500	Ĩ
5677	196	2.00	500	75	75	15	500	750	500	1
5678	197	3.00	400	150	75	15	1,000	3, 500	500	1,0
5679	. 198	5.00	300	150	75	15	750	2,000	350	
		· · ·	Nodul	ar phosph	atic mud	stone		. ,		
4-5680	199	0.60	400	100	75	15	500	750	500	7
5681	200	3.00	1,000	150	350	350	500	750	350	2
5682	201	3.75	1,000	150	200	150	1, 500 [.]	1,500	350	
5683	202	1.25	1,000	150	150	75	1,000	1,500	500	
5684	203	2.00	1,000	100	150	75	1,000	1,500	750	1, (
5685 5686	204 205	1.00	750 750	75 50	150 100	75 75	500 500	750 350	750 750	
5687	205	.40	750	150	100	75	350	1,500	500	
5688	207	4.25	500	150	100	75	1,000	2,000	150	
5689	208	.75	750	150	150	75	1,500	750	500	
5690	209	4.25	1,000	200	350	350	1,500	5,000	350	
5691	210	7.50	750	150	150	100	750	1,500	150	3, [
5692	211	4.25	750	200	200	100	1,500	1,500	150	
5693 5694	212 213	7.50 5.00	750 750	75 75	150 350	$100 \\ 1,000$	350 750	750 150	100 350	1,(
5695	214	5.00	750	75	75	1,000	500	750	150	-
							000			
			С	alcareous	mudstone	e 				
4-5696	215	0.25	750	75	350	1, 500	750	500	350	2
			Nodul	ar phosph	atic mud	stone				
4-5697	216	2. 50	380	75	50	50	350	750	350	7
5698	217	7.50	750	75	350	750	350	1,000	150	1, (
5699	218	4.25	300	150	10	50	200	1,500	100	3
5700 5701	219 220	2.00 3.75	300	150 200	50 75	50 75	500 350	1,500	350 150	8
5702	220	3. 75 . 75	750 1,250	150	200	75	350	1,500 1,500 1,500 1,500 1,000	500	
5703	222	2.00	1,000	150	200	20	750	1, 500	350	Ì
5704	223	4.25	1,250	- 350	350	20	750	1,500 2,000	200	
5705	224	2.00	1,250	100	150	100	750	1,000	100	1
5706	225	3.00	2,500	150	350	350	1,000	1,500	350	1, 5
5707	226	2.00	2,500	100	350	500	500	1,500	350	- 7

TABLE 2.—Phosphorus and minor-element content of samples from the Meade Peak Phosphatic Shale Member of the Phosphoria Formation—Continued

4

7 X Y

ようし

メイト

۲ ۲

í

Υ **`**

بر بنز

.1

3

695-901 0-63----3

CONTRIBUTIONS TO GENERAL GEOLOGY

Sar	nple				Const	ituents				
Lab. No.	Field No.	Р	Zn	Cu	Ni	Mn	v	Cr	Ва	8r
	SAMP	LES OF		RED ROO	-		NCH—C	Continued		
	,,		P	hosphatic	mudston	e				
54-5708 5709 5710 5711 5712 5713 5714 5716 5716 5717 5718	227 228 229 230 231 232 233 234 235 236 237	$\begin{array}{c} 0.15\\.75\\.25\\.25\\.50\\3.00\\.40\\.50\\.75\\.50\\.50\\.75\\.3.00\\\end{array}$	$\begin{array}{c} 250\\ 1,250\\ 750\\ 750\\ 2,000\\ 1,000\\ 750\\ 2,000\\ 1,000\\ 750\\ 400\\ 750\end{array}$	$ \begin{array}{c} 10\\ 75\\ 75\\ 50\\ 75\\ 150\\ 150\\ 100\\ 75\\ 100\\ 150\\ 150\\ 100\\ 150\\ 150\\ 100\\ 150\\ 15$	100 100 75 150 150 750 150 150 75 150	$100 \\ 100 \\ 200 \\ 50 \\ 15 \\ 3,500 \\ 350 \\ 15 \\ 10 \\ 75$	$\begin{array}{c} 20\\ 200\\ 150\\ 50\\ 1,000\\ 1,000\\ 1,500\\ 350\\ 350\\ 350\\ 350\end{array}$	$150 \\ 750 \\ 350 \\ 150 \\ 750 \\ 1,000 \\ 1,500 \\ 1,000 \\ 500 \\ 750 \\ 1,500 \\ 1,$	<10 200 50 35 350 500 750 500 500 500 200	38 18 18 38 38 38 38 38 38 38
5719 5720	238 239	. 40 . 40	400 200	100 35	75 50	15 10	500 350	350 350	500 500	20 35
	I <u> </u>	<u> </u>	Argil	laceous ph	osphate	rock		· · ·		<u> </u>
54-5721	240	2.00	400	200	75	10	750	2,000	200	2,00
5722 5723 5724 5726 5726 5727 5728 5728 5728 5730 5731 5732	240 241 242 243 244 245 246 247 248 249 250 251	2.00 5.00 4.25 2.50 4.25 1.25 7.50 .25 3.00 7.50 3.00 2.00	$\begin{array}{c} 400\\ 300\\ 300\\ 750\\ 300\\ 2,000\\ 400\\ 750\\ 750\\ 750\\ 750\\ 1,250\\ \end{array}$	$\begin{array}{c} 200\\ 200\\ 150\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 150\\ 150\\ 150\\ 150\\ \end{array}$	$ \begin{array}{r} 73 \\ 350 \\ 75 \\ 350 \\ 75 \\ 350 \\ 75 \\ 350 \\ 75 \\ 100 \\ 150 \\ 350 \\ 75 \\ \end{array} $	$ \begin{array}{c} 10 \\ 10 \\ -10 \\ 10 \\ 15 \\ -10 \\ 20 \\ 10 \\ 10 \\ 20 \\ 350 \\ \end{array} $	$\begin{array}{c} 730\\ 1,000\\ 750\\ 1,500\\ 500\\ 1,500\\ 1,000\\ 3,500\\ 3,500\\ 3,500\\ 3,500\\ 1,500\\ 500\\ \end{array}$	$\begin{array}{c} 2,000\\ 3,500\\ 1,000\\ 2,000\\ 1,500\\ 1,500\\ 2,000\\ 5,000\\ 1,500\\ 1,500\\ 1,500\\ 1,000\\ 500\end{array}$	$\begin{array}{c} 200\\ 150\\ 150\\ 150\\ 150\\ 350\\ 100\\ 350\\ 100\\ 150\\ 100\\ 150\\ 150\\ 150\\ 150\\ 1$	2,00 2,00 1,50 2,00 2,00 35 3,50 50 75 75 35
			(Calcareous 1	nudstone					
4-5733 5734 5735	252 253 254	2.00 5.00 .75	400 1,000 750	50 150 7	35 150 5	100 75 100	350 750 100	350 750 150	35 200 35	15 50 10
			Argi	llaceous ph	osphate re	ock				
4-5736 5738 5739 5740 5741 5742 5743 5743 5747 5748 5749 5750	255 256 257 258 259 260 261 262 529 530 531 532	$\begin{array}{c} 7.50\\ 7.50\\ 4.25\\ 5.00\\ 7.50\\ 2.00\\ 7.50\\ 7.50\\ 5.00\\ 5.00\\ 5.00\\ 2.00\\ 7.50\end{array}$	$\begin{array}{c} 750\\ 1,500\\ 1,500\\ 1,250\\ 1,250\\ 1,250\\ 1,250\\ 750\\ 1,000\\ 1,250\\ 1,250\\ 1,250\end{array}$	100 150 100 100 20 100 75 75 100 100 150	50 35 100 100 75 20 150 100 75 100 150 100	$15 \\ 10 \\ 150 \\ 20 \\ 10 \\ 150 \\ 10 \\ 75 \\ 75 \\ 20 \\ 500 \\ 200$	$\begin{array}{c} 1,000\\ 3,500\\ 3,500\\ 2,000\\ 2,000\\ 750\\ 2,000\\ 1,500\\ 350\\ 1,000\\ 1,500\\ \end{array}$	$\begin{array}{c} 750\\ 1,000\\ 750\\ 500\\ 750\\ 350\\ 750\\ 750\\ 750\\ 500\\ 750\\ 350\\ 1,000\\ \end{array}$	75 150 150 150 20 75 75 75 100 75 150	504 756 756 356 356 500 356 756 756
				Phosphate	e rock					
4-5795 5796 5797	722 723 724	15.00 15.00 15.00	1, 500 1, 500 1, 000	75 100 75	35 75 20	20 200 15	3, 500 3, 500 3, 500	750 1,000 750	75 75 75	2,000 1,500 1,500

TABLE 2.—Phosphorus and minor-element content of samples from the Meade Peak Phosphatic Shale Member of the Phosphoria Formation—Continued

F14

لمر • آهر

5

)

4 > >

٨

۲۰ ۱

ア ト こ と エ モ

÷,

זי גי

;

١.

C

For the elements reported, ranges of concentration in the samples listed in table 2 are as follows (phosphorus expressed in percent, other elements in parts per million):

く

≺

13

4

1

۲

÷,

3

-)

h

٢.

1

In ur	weathered rock	In weathered rock
Phosphorus	0.1–15	0. 1–15
Zinc	20-7,000	200–2, 500
Copper	<1-150	7-500
Nickel	<5-350	<5-750
Manganese	10-500	<10-3, 500
Vanadium	35-5, 000	205, 000
Chromium	50-2,000	150-5, 000
Barium	< 5-500	<10-750
Strontium	100-3, 500	100–3, 500

When analyses of the samples of unweathered rock listed in table 2 are arranged in the numerical sequence of the phosphorus values obtained, several possibilities are disclosed for initial relations among individual elements and also between certain elements and certain rock types. It must be remembered, however, that although the lithologic designation of each rock unit given in table 2 and plate 1 is applicable to the unit as a whole, single samples within a group may vary somewhat, lithologically, from the majority of samples taken from the unit.

In the 93 samples of unweathered rock that were analyzed in this study, the lowest phosphorus content, 0.1 percent, was in 3 samples of phosphatic mudstone; the highest, 15 percent, was in 3 samples of phosphate rock. The median phosphorus content is 3 percent, which was the content of 6 samples of mudstone, 2 of which are nodular and 1 of which is highly calcareous. The first quartile value is 1.5 percent, which was the content of 7 samples, 3 of which were taken from nodular phosphatic mudstone, and 4 of which were taken from argillaceous phosphate rock. The third quartile value is 7.5 percent, which was the content of 16 samples, 8 from argillaceous phosphate rock, 7 from phosphate rock, and 1 from nodular phosphatic mudstone.

The nine highest zinc values determined—ranging from 3,000 to 7,000 ppm (parts per million)—were in argillaceous rocks that contained 3.75 to 7.5 percent phosphorus, values that are above the median but well below the maximum concentration of phosphorus measured. The two lowest zinc values determined—20 and 50 ppm—were for samples that had the two minimum phosphorus values. Only one sample that had a zinc value of less than 200 ppm had a phosphorus content above the first quartile value, and none of the samples that had contained less than 200 ppm zinc had a phosphorus value above the median of 3 percent.

۶

æ.

7

\$

Ł

e;

Ċ

Le-

7

×

2.-

17

Į

ť-

Â

The distributions of nickel and chromium—and, to some extent, of barium—are similar to the distribution of zinc in that most of the minimal values of these elements are in rocks having the lowest phosphorus values, and the maximal values are in argillaceous rocks having only moderately high phosphorus values. From these facts it seems that in the unweathered shale beds of the Meade Peak Member of the Phosphoria Formation, zinc, nickel, chromium, and possibly barium have a rough positive correlation with phosphorus in rocks of high argillaceous content.

Both vanadium and strontium, especially the latter, seem to show positive correlation with phosphorus regardless of lithology. The four minimum values of each of these two elements were determined in rocks which had a phosphorus content less than the first-quartile phosphorus value of 1.5 percent. The eight high values of each were in rocks of high phosphorus content—maximal vanadium in rocks having from 5 to 15 percent phosphorus, and maximal strontium in rocks having 7.5 to 15 percent phosphorus.

An inverse correlation between manganese and phosphorus seems possible; with one exception the highest manganese values were in rocks whose phosphorus content was 2 percent or less, whereas the five lowest manganese values were in rocks whose phosphorus content was 7.5 percent or more.

No definite relations are obvious between content of phosphorus and the contents of other elements, which seem to be randomly distributed relative to phosphorus.

On plate 1, histograms of average values computed from analytical results on groups of samples from the mine are shown beside histograms of average values computed from analytical results on corresponding groups of samples from the trench. Each group averaged represents a lithologic unit. Inspection of this figure shows that for the section as a whole there seem to be no consistent or significant differences between unweathered and weathered rock in content of zinc, managanese, vanadium, and strontium. In most of the rock units studied, weathering apparently has concentrated chromium, barium, copper, and possibly nickel.

The effect of weathering on the mobility of elements seems to be related to the character of the rock being weathered. In the 12-inch marker bed of highly calcareous mudstone 84 feet from the chert, amounts of manganese, barium, and nickel have greatly increased during weathering, but strontium, chromium, and phosphorus have decreased. The only weathered rock unit strikingly enriched in phosphorus is the high-grade phosphate rock 159 feet from the chert; this unit shows little or no enrichment in other elements. Barium shows its greatest increase with weathering in the mudstone units, including the calcareous unit mentioned above. Chromium shows some increase in all the weathered mudstone units except the highly calcareous ones, but its maximum increase is in the argillaceous phosphate rock in the interval 116 to 121 feet from the chert—a unit which also shows considerable enrichment in strontium, nickel, and copper. The adjoining unit 121 to 128 feet from the chert, also argillaceous phosphate rock, shows a great enrichment in vanadium, considerable enrichment in copper, and some in nickel and chromium.

Κ

71

4

¥

ί

4

 \sim

Ţ

Ł

ì

 \mathbb{R}^{n}

>

2

STUDY OF SAMPLES FROM COMPLETE PROFILES

From short trenches dug into the banks of trenches 1 and 2 (figs. 2-4), complete profile samples were collected at 19 sites over the phosphatic shale beds of the Meade Peak Member of the Phosphoria Formation. The locations of these short trenches were determined by the availability of the plant species that had been chosen for study. In the aggregate, the samples from these sites provide data across the entire section of phosphatic shales exposed in the region. The technique used to sample the colluvially dragged shales and the soils was described by the U.S. Soil Survey Staff (1951, p. 330).

For purposes of comparison, soil and vegetation samples were also collected at three sites over the carbonate rock of the Grandeur Tongue of the Park City Formation upslope from the outcrop of the phosphatic shales, where it is believed that metal from the shales can not have enriched the colluvium. One representative sample—sample 785—was taken from the outcropping weathered carbonate bedrock to learn in what amounts the elements determined in the colluvial soil had been present in the source rock from which the colluvium was derived.

Data from the analyses are reported in table 3, in which the complete profile at each site (including analytical results on shrubs) is shown as a unit. In this table, the lowermost part of the C horizon is the bottom of the soil; DSh designates the colluvially dragged layers of shale, and BR designates bedrock in place.

BEDROCK

Of the bedrock samples included in the complete profiles from the 19 sites over the phosphatic shales, all but 2 (those at sites 1 and 22) have already been reported in table 2 and plate 1. To the information in the previous section, therefore, little is added here toward clarification of relations between elements within the Meade Peak Member of the Phosphoria Formation. Only one new figure is supplied by the results from analysis of these two bedrock samples: a different maximum for phosphorus in the weathered shales studied

>

ł

مذيمها

Ś,

4.

Ľ

£

is the 18 percent of phosphorus in the bedrock sample from site 22.

The analysis of the sample of weathered carbonate bedrock from the Grandeur Tongue of the Park City Formation indicates the probable metal content of the colluvium from which the soil was derived. The values for the respective metals in general are near the minimum of the ranges in the phosphatic shale samples.

TABLE 3.—Phosphorus and minor-element content of samples of 22 complete profiles and one bedrock exposure near Montpelier, Idaho

[Type of sample: S, P, and C denote shrub species Symphoricarpos, Pachistima, and Ceanothus; Y and O show type of growth, young and old; Ao and Ao are layers of unconsolidated organic material (humus) on the ground surface, which in column headed "Depth" is designated by 0; A1, A11, AC, C, I, C2, C3, and C4 are soil horizons, DSh is dragged shale, and BR is bedrock. Depth of sample: Asterisk indicates plant sample; no depth recorded. Phosphorus content is expressed in percent; trace elements are in parts per million. Leaders mean not determined]

	Sa	mple						Constituent				
Lab. No.	Field No.	Туре	Depth (inches)	Cu	Zn	v	Cr	Mn	Ni	Sr	Ва	Р

PROFILES ABOVE PHOSPHORIA FORMATION Profile at site 1 200-500 1, 000-2, 000 100-200 55-598. S-Y S-0 50-100 20-50 2.0-4.0 1.0-2.0 2.0-4.0 0.5-1.0 599.... . 100-200 50-100 75 600... 71 P-Y P-0 * 20-50 1, 100-200 601__ QA 50 - 10020 - 5024 247 3-2 2-0 85 \overline{A}_{00} A_0 < 55 248... A₁₁ A₁₂ AC C₁ 811... 0-4 20 850 , 150 750 350 0 350 812 ... 4--9 350 9-13 813. 814... 815... 13-18 $\tilde{26}$ Č₂ DSh 18-24 100 20 40 30 75 .5 .01 1058. 24-32 1059. DSh DSh 32-40 40-49 ,000 350 1060_{-} 1069. BR 49-60 1, 000 1.0 Profile at site 2 55-602. C-Y C-0 200-500 20-50 1.0-2.0 20 - 50603... 50-100 200-500 -50 2,000 1.0-2.0 >59 122 249.... Ã.00 3 - 1.5.8 250... 265 1.5-0 0-6 12 600 550 A 1.2 816... A₁₁ 20 .5 A12 C 6-9 36 2.0 817_. 2.0 3.0 5.0 4.0 13.0 200 500 000 818... 9-14 700 75 ĎSh 14-18 DSh DSh , 400 , 200 200 50 18 - 231, 750 23-28 000 750 200 150 1064_ 28-30 75 50 75 10.0 DSh 1065. 273 274 40 50 , 200 , 200 , 400 DSh 30-35 10.0 350 350 200 DSh DSh 35-42 42-49 1, 1 350 1.0 DSh 49-59 3Ŏ 1, 200 1, 500 1.0 54-5629. BR >59 2.00

	Sa	mple						Constituent				
Lab No.	Field No.	Туре	Depth (inches)	·Cu	Zn	v	Cr	Mn	Ni	Sr	Ва	Р
	<u> </u>	PRO	FILES A	BOVE				MATION-0	Contin	ued		
	<u> </u>	1			PI	onie a	t site 3				1	
55-604 605 606 251 253 819 820 821 1070 1071 1072 1073 1074 1075 54-5642	74 75 76 77 277 280 281 282 283 284 285 286 287 288 289 161	S-Y S-O C-O A ₀₀ A ₁₁ A ₁₂ C DSh DSh DSh DSh DSh DSh BR	* * 2.5-1.5 1.5-0 0-5 5-10 10-18 18-26 26-32 32-40 40-51 51-58 58-70 70-73 >73	22 10 10 8	$\begin{array}{c} 20\\ 80\\ 30\\ 10\\ 150\\ 210\\ 550\\ 600\\ 400\\ 700\\ 1,000\\ 1,000\\ 1,000\\ 1,400\\ 1,400\\ 2,500\\ 2,500\\ \end{array}$	$\begin{array}{c} 29\\ 75\\ 60\\ 44\\ >46\\ 50\\ 50\\ 75\\ 500\\ 350\\ 200\\ 1,500\\ 1,000\\ 1,000\\ 750\\ 500\end{array}$	$\begin{array}{c} 50{-}100\\ 50{-}100\\ 50{-}100\\ 20{-}50\\ 105\\ 66\\ 75\\ 75\\ 75\\ 75\\ 1,500\\ 1,500\\ 500\\ 1,500\\ 750\\ 750\\ 750\\ 750\\ 500\\ \end{array}$	$\begin{array}{c} 200{-}500\\ 1,000{-}2,000\\ 200{-}500\\ 200{-}500\\ 200{-}500\\ 490\\ 200\\ 200\\ 200\\ 705\\ 200\\ 75\\ 100\\ 100\\ 500\\ 350\\ \end{array}$	$\begin{array}{c} 20{-}50\\ 20{-}50\\ 20{-}50\\ 20{-}50\\ 21\\ 9\\ 10\\ 20\\ 35\\ 50\\ 100\\ 75\\ 35\\ 20\\ 100\\ 75\\ 75\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,000\\ 750\\ 1,500\\ \hline \\ 150\\ 200\\ 750\\ 750\\ 500\\ 750\\ 500\\ 750\\ 500\\ 750\\ 350\\ 350\\ 350\\ \end{array}$	350 1,000 150 350 200 200 200 200 200 100 75 100 150 350	1.0-2.1.0-
			<u> </u>		Pro	ofile at	site 4	<u> </u>				
55-608 609 254 254 822 822 824 1077 1078 1078 1078 1080 1080 1082 1083 54-5653	78 79 290 291 292 293 294 295 296 297 298 299 300 301 302 172	S-Y S-O A ₀₀ A ₁₁ AC DSh DSh DSh DSh DSh BR BR	$\begin{array}{c} \bullet\\ & \bullet\\ 1.5{-}0\\ 0.{-}5\\ 5{-}10\\ 10{-}14\\ 14{-}24\\ 24{-}32\\ 32{-}41\\ 41{-}52\\ 52{-}58\\ 58{-}65\\ 65{-}68\\ 68{-}78\\ >78\end{array}$	100 100 120 120 120 120	80 180 360 575 600 475 600 1,000 1,000 1,200 1,200 2,000 1,000 1,000 1,000	$\begin{array}{c} 21\\ 100\\ 30\\ 38\\ 50\\ 100\\ 150\\ 1,500\\ 350\\ 1,000\\ 1,500\\ 3,500\\ 3,500\\ 3,500\end{array}$	$\begin{array}{c} 50-100\\ 100-200\\ 30\\ 69\\ 75\\ 75\\ 75\\ 75\\ 1,000\\ 1,000\\ 1,500\\ 1,000\\ 1,000\\ 2,000\\ 750\\ 1,500\\ 1,500\end{array}$	$\begin{array}{c} 100-200\\ 1,000-2,000\\ 250\\ 690\\ 500\\ 200\\ 200\\ 200\\ 100\\ 50\\ 200\\ 75\\ 100\\ 75\\ 76\end{array}$	$\begin{array}{c} 20-50\\ 20-50\\ 10\\ 23\\ <5\\ 5\\ 10\\ 20\\ 75\\ 75\\ 150\\ 100\\ 150\\ 100\\ 35\\ 75\end{array}$	750 1,000 350 200 500 500 750 750 750 750 750 750 1,500		2.0-4. 1.0-2. 9. 9. 4. 5. 5. 17. 7.
					· Pro	ofile at	t site 8					
55-014 615 260 261 834 835 836 1103 1104 1105 1106 54-5651	94 95 334 335 336 337 338 339 340 341 342 170	$\begin{array}{c} C-Y\\ C-O\\ A_{00}\\ A_{0}\\ A_{1}\\ AC\\ C\\ DSh\\ DSh\\ DSh\\ BR\\ \end{array}$	• • 3-2 2-0 0-4 4-9 9-12 12-20 20-27 27-37 37-43 >43	60	30 20 400 350 750 850 850 1,400 1,400 1,400 2,500	58 37 >140 >117 200 350 350 3,500 2,000 2,000 2,000 3,500	50-100 50-100 450 265 200 350 500 1,000 750 1,000 750	$\begin{array}{r} 200-500\\ 200-500\\ 450\\ 370\\ 350\\ 200\\ 50\\ 200\\ 50\\ 200\\ 350\\ 10\end{array}$	50-100 50-100 96 53 5 20 75 100 50 50 20	1, 500 3, 500 350 750 500 750 500 750 750 750	150 350 750 150 750 150 75 150 100 150	1. 0-2. (0. 5-1. (4. 4 3. (3. (4. (4. (6. () 8. () 14. (5. ()
					Pro	file at	site 9		. <u></u>			
55-617 262 837 838 839 1107 1108 1109 1110 1111 1111	97 343 344 345 346 347 348 349 350 351 175	C-O A ₀ A ₁ AC C DSh DSh DSh DSh DSh BR	$\begin{array}{c} \bullet \\ 1.5-0 \\ 0-4 \\ 4-12 \\ 12-21 \\ 26-32 \\ 32-40 \\ 40-47 \\ 47-54 \\ > 54 \end{array}$	100 160 160 160	675 675 550 1,000 1,000 1,400 1,700 2,000	46 >147 150 200 500 750 1,500 2,000 5,000 5,000	$50-100 \\ 470 \\ 350 \\ 500 \\ 750 \\ 1,000 \\ 1,500 \\ 2,000 \\ 1,5$	200-500 200 350 100 100 150 75 100 75 75	50-100 67 10 20 35 100 100 150 100 100	350 750 750 750 750 750 750 750 3, 500	350 750 500 150 200 150 100 100 150	$\begin{array}{c} 0. \ 5-1. \ 0\\ 4. \ 7\\ 2. \ 0\\ 5. \ 0\\ 4. \ 0\\ 5. \ 0\\ 5. \ 0\\ 5. \ 0\\ 5. \ 0\\ 5. \ 0\\ 5. \ 0\\ 5. \ 0\\ 7. \ 5\end{array}$

 TABLE 3.—Phosphorus and minor-element content of samples of 22 complete

 profiles and one bedrock exposure near Montpelier, Idaho—Continued

* * * * *

4

٦ į

× + +

Ì,

∀ 4

1

יי יי ▲ ו

-(**1**

CONTRIBUTIONS TO GENERAL GEOLOGY

/

"

× × >

۶ جه بو

r

ドイト

ſ

۶

مر - تم

<u>بر</u>

r

4 4 1

÷

	Sa	mple						Constituent	,			
Lab. No.	Field No.	Туре	Depth (inches)	Cu	Zn	v	Cr	Mn	Ni	Sr	Ba	P
		PRO	FILES A	BOVE			RIA FOR t site 10	MATION-	Contin	ued		
55-618 619 263 840 841 843 1112 1113 1114 1115 1116 54-5662	98 99 352 353 354 355 356 357 358 359 360 361 181	$\begin{array}{c} S-Y\\ S-O\\ A_0\\ A_{11}\\ A_{12}\\ AC\\ C\\ DSh\\ DSh\\ DSh\\ DSh\\ BR\\ \end{array}$	$\begin{array}{c} * \\ * \\ 1.5-0 \\ 0-4 \\ 4-10 \\ 10-17 \\ 17-26 \\ 26-33 \\ 33-40 \\ 40-54 \\ 46-54 \\ 54-60 \\ >60 \end{array}$		80 440 600 625 550 475 700 500 700 700 700 1,000 1,000	36 100 89 75 50 75 100 350 350 150 150 1,500	$\begin{array}{c} 20{-}50\\ 100{-}200\\ 200\\ 150\\ 200\\ 350\\ 1,000\\ 2,000\\ 750\\ 1,000\\ 1,500\\ 750\end{array}$	$\begin{array}{c} 200-500\\ 1,000-2,000\\ 520\\ 3860\\ 200\\ 100\\ 75\\ 20\\ 50\\ 50\\ 50\\ 1,000\\ \end{array}$	52 10 10 10 75 75 50 100 150	$\begin{array}{c} 1,500\\ 1,500\\ \hline &350\\ 350\\ 500\\ 350\\ 500\\ 350\\ 750\\ 500\\ 350\\ 500\\ 750\\ 500\\ 750\\ \end{array}$	200 1, 500 750 500 350 150 150 150 150 150 150 750	$ \begin{array}{c} 1.0-2.0\\ 0.5-1.0\\ 1.12\\ .8\\ .8\\ 1.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 6.0\\ 8.0\\ .85\end{array} $
					Pro	file at	site 11					
55-620 621 264 265 845 846 1117 1119 1120 1121 54-5667	100 101 362 363 364 365 366 367 368 369 370 371 186		* * 3-1.5 1.5-0 0-5 5-13 13-19 19-25 25-33 33-42 42-48 48-55 >55	3 5 12 16 15 8 8 80 80 50 100 50 75	$\begin{array}{c} 30\\ 50\\ 120\\ 280\\ 550\\ 450\\ 300\\ 700\\ 700\\ 500\\ 500\\ 1,500 \end{array}$	$\begin{array}{r} 64\\ 110\\ 36\\ 49\\ 50\\ 50\\ 200\\ 1,000\\ 200\\ 150\\ 500\\ 350\\ 750\\ \end{array}$	$\begin{array}{c} 50{-}100\\ 100{-}200\\ 55\\ 98\\ 100\\ 200\\ 2,000\\ 2,000\\ 1,000\\ 500\\ 1,000\\ 1,000\\ 1,000\\ 1,000\end{array}$	$\begin{array}{c} 200-500\\ 2,000-5,000\\ 130\\ 343\\ 350\\ 200\\ 100\\ 50\\ 200\\ 200\\ 200\\ 35\\ 50\\ 1,000\\ \end{array}$		1,000 750 350 200 350 750 500 200 350 750	150 1, 000 750 750 200 150 200 150 150 750	$1.0-2.0 \\ 1.0-2.0 \\ .28 \\ .74 \\ .5 \\ .3 \\ 2.0 \\ 8.0 \\ 3.0 \\ 1.0 \\ 4.0 \\ .85$
					Pro	file at	site 12					
55-622 623 624 266 266 847 848 848 1122 1122 1126 1126 1126 1126 1127 1128 1127 1128 1129 1129	102 103 104. 105 372 373 374 375 376 377 378 379 380 381 382 383 384 385 194	C-Y C-O P-Y P-O A ₀₀ A ₁₀ A ₁₂ A ₁₂ C DSh DSh DSh DSh DSh DSh DSh DSh BR	$\begin{array}{c} \bullet\\ $	$\begin{array}{c} 2\\ 1\\ 5\\ 3\\ 26\\ 22\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 100\\ 120\\ 40\\ 80\\ 100\\ 150\\ \end{array}$	$\begin{array}{r} 36\\ 15\\ 34\\ 50\\ 390\\ 360\\ 500\\ 475\\ 300\\ 200\\ 700\\ 700\\ 700\\ 700\\ 700\\ 500\\ 500\\ 300\\ 700\\ 500\\ 500\\ \end{array}$	$\begin{array}{c} 60\\ 39\\ 70\\ 68\\ >99\\ 60\\ 50\\ 75\\ 100\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 3$	$\begin{array}{c} 20{-}50\\ 20{-}50\\ 50{-}100\\ 50{-}100\\ 225\\ 150\\ 150\\ 150\\ 150\\ 150\\ 100\\ 750\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 2,000\\ 2,000\\ \end{array}$	$\begin{array}{c} 200-500\\ 200-500\\ 200-500\\ 300-500\\ 740\\ 2000\\ 350\\ 2000\\ 500\\ 2000\\ 100\\ 500\\ 100\\ 500\\ 500\\ 500\\ 500\\ $	$\begin{array}{c} 100-200\\ 50-100\\ 50-100\\ 20-50\\ 45\\ 5\\ 5\\ 20\\ 20\\ 20\\ 100\\ 50\\ 100\\ 50\\ 100\\ 50\\ 75\\ 35\\ 75\\ 100\\ \end{array}$		350	$\begin{array}{c} 1. \ 0-2. \ 0\\ 1. \ 0-2. \ 0\\ 2. \ 0-4. \ 0\\ .5-1. \ 0\\ 1. \ 36\\ .5\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2$

 TABLE 3.—Phosphorus and minor-element content of samples of 22 complete

 profiles and one bedrock exposure near Montpelier, Idaho—Continued

MINOR ELEMENTS, SNOWDRIFT MOUNTAIN, IDAHO F21

	Sa	mple						Constituent				
Lab. No.	Field No.	Туре	Depth (inches)	Cu	Zn	v	Cr	Mn	Ni	Sr	Ва	Р
	•	PROI	FILES A	BOVE			RIA FOR site 13	MATION-C	Contin	ued		
55-626 628 629 268 269 853 853 853 1130 1131 1132 1133 1135 54-5680	106 108 386 387 388 390 391 392 393 394 395 396 397 199	S-Y P-Y P-O A ₀₀ A ₁₁ AC C DSh DSh DSh DSh DSh DSh BR	$\begin{array}{c} \bullet\\ $	3 5 22 23 15 15 15 8 10 80 80 30 120 80 100	15 56 380 400 525 225 125 500 1,000 1,200 700 500 800 400	$\begin{array}{c} 31 \\ 50 \\ 64 \\ > 70 \\ 56 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 750 \\ 350 \\ 500 \end{array}$	$\begin{array}{c} 10-20\\ 50-100\\ 50-100\\ 160\\ 170\\ 350\\ 100\\ 150\\ 750\\ 750\\ 350\\ 2,000\\ 1,000\\ 750\end{array}$	$\begin{array}{c} 200-500\\ 500-1,000\\ 200-500\\ 850\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 75\\ 50\\ 200\\ 500\\ 200\\ 75\\ 15\\ \end{array}$	$\begin{array}{c} 20-50\\ 20-50\\ 20-50\\ 32\\ 40\\ 20\\ 35\\ 10\\ 20\\ 50\\ 50\\ 150\\ 100\\ 50\\ 75\\ 75\\ 75\end{array}$	1,000 1,500 2,000 500 350 200 500 350 350 350 500 750 750	75 200 350 750 750 500 750 150 200 350 200 350 200 500	1.0-2. 1.0-2. 0.5-1. 1.
					Pro	file at	site 14	•	<u>.</u>	<u> </u>	·	·
55-630 631 632 633 270 855 855 856 857 857 857 1136 1137 1139 1139 1140 54-6691	$110\\111\\112\\113\\398\\399\\400\\401\\402\\403\\404\\405\\406\\407\\408\\210$	$\begin{array}{c} C-Y\\ C-O\\ P-Y\\ P-0\\ A_0\\ A_1\\ A_{12}\\ C\\ DSh\\ DSh\\ DSh\\ BR\\ BR\\ \end{array}$	$\begin{array}{c} \bullet\\ $	$\begin{array}{c}1\\<1\\\\\hline\\3\\24\\19\\15\\75\\20\\22\\40\\60\\60\\30\\160\\150\\\end{array}$	24 11 70 290 180 550 600 525 550 700 700 1,000 800 700 750	$\begin{array}{c} 26\\ 26\\ 46\\ 81\\ >100\\ 29\\ 200\\ 350\\ 350\\ 350\\ 350\\ 200\\ 350\\ 500\\ 500\\ 750\\ \end{array}$	$\begin{array}{c} 20{-}50\\ 20{-}50\\ 50{-}100\\ 230\\ 120\\ 350\\ 1,000\\ 350\\ 750\\ 750\\ 750\\ 750\\ 1,500\\ 1,500\\ 1,500 \end{array}$	$\begin{array}{c} 500-1,000\\ 200-500\\ 500-1,000\\ 300-1,000\\ 585\\ 500\\ 500\\ 350\\ 350\\ 200\\ 200\\ 100\\ 500\\ 500\\ 500\\ 100\\ \end{array}$	$\begin{array}{c} 50-100\\ 20-50\\ 20-50\\ 20-50\\ 46\\ 39\\ 20\\ 100\\ 20\\ 50\\ 50\\ 75\\ 150\\ 75\\ 150\\ \end{array}$	$\begin{array}{c} 1, 500\\ 3, 500\\ 1, 500\\ 2, 000\\\\ 350\\ 1, 000\\ 350\\ 350\\ 350\\ 500\\ 350\\ 500\\ 350\\ 750\\ 3, 500\\ \end{array}$	150 500 350 200 200 750 500 350 350 350 350 150 150	$1.0-2.0 \\ 0.5-1.0 \\ 2.0-5.1 \\ 1.0-2.1 \\ 1.0-2.1 \\ 1.0-2.0 \\ 1.0 \\ 2.0 \\ 2.0 \\ 3.0 \\ 2.0 \\ 3.0 \\ 0.0 $
					Pro	file at	site 15					
55-634 635 636 637 272 273 859 860 861 862 1141 1143 4-5700	114 115 116 117 409 410 411 412 413 414 415 416 417 219	S-Y S-O P-Y P-O A ₀₀ A ₁₁ AC C DSh DSh DSh BR	* * 3-1.5 1.5-0 0-6 6-13 13-20 20-29 29-35 35-42 42-47 >47	$ \begin{array}{c} 18\\3\\-1\\4\\20\\19\\15\\18\\20\\40\\50\\200\\70\\150\\\end{array} $	55 38 50 200 150 525 525 450 800 800 800 800 300	$\begin{array}{c} 13\\78\\49\\67\\>62\\32\\150\\150\\150\\200\\500\\200\\500\end{array}$	$\begin{array}{c} 10-20\\ 50-100\\ 20-50\\ 50-100\\ 83\\ 64\\ 200\\ 200\\ 350\\ 500\\ 1,000\\ 3,500\\ 2,000\\ 1,500\end{array}$	$\begin{array}{c} 200-500\\ 1,000-2,000\\ 500-1,000\\ 200-500\\ 190\\ 220\\ 500\\ 350\\ 350\\ 350\\ 200\\ 200\\ 200\\ 200\\ 75\\ 50\end{array}$	$\begin{array}{c} 20{-}50\\ 20{-}50\\ 20{-}50\\ 10{-}20\\ 28\\ 22\\ 5\\ 5\\ 0\\ 50\\ 75\\ 150\\ 150\\ 100\\ 50\end{array}$	1, 500 1, 500 1, 500 1, 500 200 200 200 200 500 500 500 500 500	350 1, 500 350 750 500 500 500 500 200 350 200 350	1.0-2.0 0.5-1.0 1.0-2.0 1.0-2.0

TABLE 3.—Phosphorus and minor-element content of samples of 22 complete profiles and one bedrock exposure near Montpelier, Idaho—Continued

ļ

≺ ₩ ₹ →

۲ ک

- 1 - 1 - 1

Y L

-`* * `*

ہد۔ م

\ ም ~

;

.

r :

بر بر

1

× ۲

~ ~ ~ ~ ~ ~ ~

٦ بر

	Sa	mple						Constituent				
Lab. No.	Field No.	Type	Depth (inches)	Cu	Zn	v	Cr	Mn	· Ni	Sr	Ba	Р
		PRO	FILES A	BOVE			RIA FOR t site 16	MATION-0	Contin	ued		÷
$\begin{array}{c} 55-638\\ 639\\ 274\\ 863\\ 866\\ 866\\ 1144.\\ 1145.\\ 1146.\\ 1146.\\ 1147.\\ 1148.\\ 1149.\\ 54-5707\end{array}$	118 119 418 419 420 421 422 423 424 425 426 427 428 429 226	S-Y S-O A ₀ A ₁₁ A ₁₂ AC C DSh DSh DSh DSh BR BR	$\begin{array}{c} *\\ & *\\ 3.5-2.5-0\\ 0-6\\ 6-12\\ 12-16\\ 16-25\\ 25-30\\ 30-38\\ 38-45\\ 45-53\\ 53-58\\ 58-64\\ >64\end{array}$	60 200	42 36 300 500 425 425 300 500 800 800 1, 200 1, 200 2, 500	$\begin{array}{c} 21\\ 72\\ >81\\ 77\\ 100\\ 200\\ 100\\ 1,000\\ 1,000\\ 500\\ 350\\ 200\\ 200\\ 500\\ \end{array}$	$\begin{array}{c} 10-20\\ 50-100\\ 185\\ 64\\ 75\\ 100\\ 75\\ 500\\ 1,000\\ 1,500\\ 1,000\\ 1,500\\ 1,000\\ 1,500\end{array}$	$\begin{array}{c} 200-500\\ 500-1,000\\ 450\\ 350\\ 350\\ 350\\ 200\\ 200\\ 100\\ 50\\ 100\\ 500\\ 500\\ 500\\ 500\\ \end{array}$	$\begin{array}{c} 20{-}50\\ 10{-}20\\ 55\\ 32\\ 5\\ 20\\ 35\\ 35\\ 50\\ 75\\ 75\\ 75\\ 100\\ 100\\ 150\\ 350\\ \end{array}$	$1,500 \\ 1,500 \\ 200 \\ 200 \\ 150 \\ 200 \\ 500 \\ 500 \\ 500 \\ 750 \\ 350 \\ 750 \\ $	350 1, 500 500 500 500 200 200 350 150 200 350 350	$1.0-2.0 \\ 1.0-2.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ .6 \\ .4 \\ .4 \\ .4 \\ .5.0 \\ 6.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 0 \\ 2.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
					Pro	ofile at	site 17					
55-640 641 276 277 867 868 870 1150 1152 - 1153 1154 54-5710	120 121 430 431 432 433 434 435 436 437 438 439 440 229	P-Y P-O A ₀ A ₁₁ AC C Sh DSh DSh DSh DSh BR	$\begin{array}{c} \bullet \\ 3-1.5 \\ 1.5-0 \\ 0-6 \\ 6-12 \\ 12-16 \\ 16-31 \\ 31-41 \\ 41-46 \\ 40-50 \\ 50-55 \\ 55-61 \\ >61 \end{array}$	200 70 50	40 50 210 400 275 425 1, 400 800 1, 000 1, 200 750	$\begin{array}{c} 27\\72\\+62\\45\\200\\150\\1,500\\1,500\\1,000\\350\\350\\1,000\\150\end{array}$	$\begin{array}{c} 10-20\\ 50-100\\ 105\\ 62\\ 75\\ 75\\ 50\\ 75\\ 1,000\\ 1,500\\ 1,000\\ 1,000\\ 1,000\\ 350\\ \end{array}$	$\begin{array}{c} 500-1,000\\ 200-500\\ 150\\ 620\\ 75\\ 500\\ 350\\ 350\\ 350\\ 20\\ 20\\ 20\\ 50\\ 50\\ 100\end{array}$	$\begin{array}{c} 10-20\\ 20-50\\ 21\\ 30\\ 8\\ 10\\ 5\\ 15\\ 75\\ 50\\ 50\\ 75\\ 150\\ 100\\ \end{array}$	1,000 3,500 350 200 150 100 500 750 500 500 350 150	200 750 500 500 150 150 150 150 200 200 50	$\begin{array}{c} 1.0-2.0\\ 0.5-1.0\\ & .6\\ & .6\\ 1.0\\ & .5\\ & .3\\ & .5\\ & .5\\ & .0\\ & .0\\ & .0\\ 1.0\\ & .25\end{array}$
					Pro	file at	site 18					
55-642 643 278 871 872 1156 1157 1157 1159 1160 54-5717	122 123 441 442 443 444 445 446 447 448 449 450 451 452 236	S-Y S-O A ₀₀ A ₁₁ A ₁₂ AC C DSh DSh DSh DSh DSh BR	* 3-1.5 1.5-0 0-7 7-13 13-18 18-35 35-44 44-50 50-54 54-60 60-64 64-69 >69	3 9 14 8 10 10 10 60 80 200 70 60 70 60 70 100	$\begin{array}{r} 32\\ 38\\ 110\\ 120\\ 375\\ 300\\ 250\\ 550\\ 1,200\\ 1,000\\ 700\\ 700\\ 700\\ 400 \end{array}$	$\begin{array}{c} 11\\ 99\\ >35\\ 28\\ 100\\ 100\\ 200\\ 2,000\\ 1,500\\ 1,500\\ 350\\ 200\\ 350\end{array}$	Trace 50-110 80 42 35 75 75 75 75 1,000 1,500 500 1,000 1,000 750	$\begin{array}{c} 200-500\\ 1,000-2,000\\ 200\\ 350\\ 200\\ 200\\ 150\\ 150\\ 150\\ 150\\ 35\\ 100\\ 20\\ 35\\ 75\\ 35\\ 10\\ \end{array}$	$\begin{array}{c} 10-20\\ 20-50\\ 16\\ 20\\ <5\\ <5\\ 10\\ 20\\ 75\\ 100\\ 35\\ 35\\ 75\\ 355\\ 75\\ 355\\ 75\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,500\\\\ 200\\ 150\\ 150\\ 150\\ 500\\ 500\\ 750\\ 750\\ 750\\ 500\\ 350\\ 350\\ \end{array}$	350 1, 500 500 500 200 100 100 100 200 200 200 200 200	$1.0-2.0 \\ 1.0-2.0 \\ .5 \\ .4 \\ .5 \\ .5 \\ .4 \\ 1.5 \\ 6.0 \\ 6.0 \\ 6.0 \\ 4.0 \\ 3.0 \\ .75$

 TABLE 3.—Phosphorus and minor-element content of samples of 22 complete

 profiles and one bedrock exposure near Montpelier, Idaho—Continued

MINOR ELEMENTS, SNOWDRIFT MOUNTAIN, IDAHO

pr	ofiles	s and	one bed	rock	expo	sure	near M	ontpelier,	Idaho)—Co	ntinu	ed
	Sa	mple						Constituent				
Lab. No.	Field No.	Туре	Depth (inches)	Cu	Zn	v	Cr	Mn	Ni	Sr	Ba	Р
		PRO	FILES A	BOVE			RIA FOR t site 19	MATION-0	Contin	ued		
55-644 645 280 875 876 877 878 878 1161 1162 1164 1165 1166 54-5714	$\begin{array}{c} 124\\ 125\\ 453\\ 454\\ 455\\ 456\\ 457\\ 458\\ 459\\ 460\\ 461\\ 462\\ 463\\ 464\\ 465\\ 233\end{array}$		* 4.5-2 2-0 0-7 7-13 13-18 13-18 13-8 0 30-50 50-57 57-63 63-71 71-79 90-90 90-100 >100	250 100 60	$\begin{array}{c} 22\\8\\110\\100\\300\\300\\150\\125\\550\\1,000\\1,000\\1,000\\1,000\\1,000\\2,000\end{array}$	$\begin{array}{c} 21\\ 22\\ 37\\ 50\\ 50\\ 50\\ 75\\ 1,500\\ 1,500\\ 1,000\\ 350\\ 350\\ 1,500 \end{array}$	$\begin{array}{c} 10-20\\ 20-50\\ 44\\ 20\\ 50\\ 35\\ 35\\ 35\\ 75\\ 750\\ 750\\ 750\\ 2,000\\ 1,500\\ 1,000\\ 1,500\end{array}$	$\begin{array}{c} 200{-}500\\ 200{-}500\\ 600\\ 500\\ 2000\\ 150\\ 2000\\ 200\\ 200\\ 200\\ 100\\ 100\\ 100\\ 3,500\\ \end{array}$	$\begin{array}{c} 20-50\\ 10-20\\ 16\\ 10\\ <5\\ 10\\ 10\\ 5\\ 15\\ 100\\ 35\\ 50\\ 50\\ 150\\ 50\\ 750\\ \end{array}$	750 1,500 100 100 100 500 500 500 500 500 500	160 350 500 750 500 150 75 100 75 75 100 150 750	1. 0-2. 1. 0-2. 1. 0-2.
		·	·		Pro	file at	site 20	·	·	<u> </u>	. <u></u>	·
55-646 647 283 881 881 883 883 1167 1168 1169 1170 54-5720	126 127 466 467 468 469 470 471 472 473 474 475 476 239		$\begin{array}{c} *\\ *\\ 2-1.5\\ 1.5-0\\ 0-6\\ 6-11\\ 11-18\\ 18-29\\ 29-51\\ 51-58\\ 58-64\\ 64-73\\ 73-80\\ >80\\ \end{array}$	80	42 50 87 240 375 275 325 475 375 875 875 1,200 1,200 1,200 1,400	$\begin{array}{c} 13\\ 86\\ >57\\ 87\\ 75\\ 50\\ 100\\ 100\\ 1,000\\ 1,000\\ 1,000\\ 2,000\\ 350\end{array}$	Trace 50-100 40 58 75 50 75 750 750 750 750 1,500 1,500	$\begin{array}{c} 500-1,000\\ 1,000-2,000\\ 180\\ 200\\ 200\\ 200\\ 200\\ 200\\ 150\\ 350\\ 100\\ 50\\ 75\\ 10\\ \end{array}$	$\begin{array}{c} 10-20\\ 10-20\\ 18\\ 18\\ <5\\ 5\\ 20\\ 15\\ 150\\ 75\\ 150\\ 50\\ \end{array}$	1,000 1,000 350 200 200 75 75 500 500 500 500 500 350	350 1, 500 750 500 750 200 75 100 100 100 150 500	1. 0-2. 0. 5-1.
					Pro	file at	site 21					
55-648 649 284 285 886 887 888 1171 1172 1173 1174 1175 54-5736	128 129 477 478 479 480 481 482 483 484 483 484 485 486 485 486 487 255	P-Y P-O A ₀₀ A ₁₁ A ₁₂ C ₁ C ₂ DSh DSh DSh DSh BR	$\begin{array}{c} *\\ *\\ 3-1\\ 1-0\\ 0-6\\ 6-12\\ 12-23\\ 23-43\\ 43-49\\ 49-56\\ 56-63\\ 63-68\\ 68-74\\ >74\end{array}$	4 4 13 16 10 10 12 60 60 100 70 80 100	1,400	1842>6275752,0007501,5002,0001,000	$\begin{array}{c} 20{-}50\\ 20{-}50\\ 56\\ 40\\ 100\\ 100\\ 100\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 500\\ 750\end{array}$	$\begin{array}{c} 200-500\\ 500-1,000\\ 280\\ 350\\ 200\\ 200\\ 200\\ 750\\ 750\\ 100\\ 35\\ 50\\ 15\end{array}$	$10-20 \\ 10-20 \\ 19 \\ 20 \\ 5 \\ 5 \\ 20 \\ 20 \\ 100 \\ 150 \\ 100 \\ 150 \\ 100 \\ 75 \\ 20 \\ 50 $	$1.000 \\ 1,500 \\ \\ 350 \\ 150 \\ 100 \\ 50 \\ 750 \\ 750 \\ 750 \\ 500 \\$	350 750 750 350 500 100 150 150 150 150 150 150 150 1	2.0-5 1.0-2 1 1 1 1 1 6 6 6 7 7
					Pro	file at	site 22					
55-650 651 286 287 890 891 891 893 893 895 1176	130 131 496 497 488 489 490 491 492 493 494 495	S-Y S-O A ₀₀ A ₁₁ A ₁₂ AC C ₁ C ₃ C ₃ C ₄ B-R	$\begin{array}{c} * \\ & * \\ 1-0.5 \\ 0.5-0 \\ 0-5 \\ 5-10 \\ 10-16 \\ 16-26 \\ 26-37 \\ 37-56 \\ 56-74 \\ > 84 \end{array}$	<1 4 13 14 15 10 8 8 8 10 26 70	24 48 140 240 250 325 375 275 675 1, 300 800	<10 59 28 45 75 50 50 75 100 100 2,000	0 20-50 19 40 100 75 75 50 100 200 350 500	200-500 5,000-10,000 400 350 350 350 350 150 150 20	5-10 10-20 13 31 15 10 < 5 5 10 20 50 20	750 1, 500 200 200 150 150 150 50 75 750	350 2,000 350 200 200 350 150 150 75	1.0-2 1.0-2 2 1 18

 TABLE 3.—Phosphorus and minor-element content of samples of 22 complete

 profiles and one bedrock exposure near Montpelier. Idaho—Continued

É

ŝ.,

-44

¥ *

ド・ インシュ

ר י א

4 4

` - `* - `

CONTRIBUTIONS TO GENERAL GEOLOGY

سعنا

×

3

r

۲ 4-

j.

¢.

٨

 TABLE 3.—Phosphorus and minor-element content of samples of 22 complete

 profiles and one bedrock exposure near Montpelier, Idaho—Continued

	Sa	mple					-	Constituent				
Lab. No.	Field No.	Туре	Depth (inches)	Cu	Zn	v	Cr	Mn	Ni	Sr	Ва	Р
			PROFI	LES			RK CITY site 23	FORMATIO	N			
55-652 653 288 896 897 898 898 900 901	132 133 498 499 500 501 502 503 504 505	$\begin{array}{c} S-Y \\ S-O \\ A_{00} \\ A_{1} \\ AC \\ C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{array}$	* 4-3 3-0 0-8 8-15 15-25 25-38 38-55 55-69	5 4 12 19 10 10 8 8 8 10	20 24 75 110 300 250 325 300 850	$\begin{smallmatrix} <10\\ & 39\\ & 5\\ & 16\\ & 50\\ & 100\\ & 50\\ & 75\\ & 75\\ & 50\\ \end{smallmatrix}$	$\begin{array}{c} 20-50\\ 20-50\\ 8\\ 16\\ 75\\ 150\\ 75\\ 150\\ 100\\ 350 \end{array}$	200-500 5, 000-10,000 350 350 350 350 200 150 100	$ \begin{array}{c} 10-20\\ 10-20\\ 4\\ 12\\ <5\\ 50\\ 5\\ 35\\ <5\\ 50\\ \end{array} $	750 1, 500 350 200 200 100 150 100	200 1, 500 750 500 200 150 200	1.0-2.0 1.0-2.0 .1 .2 .2 .3 .2 .5 .5 1.0
					Pro	ofile at	site 24	·				
55-654 655 290 902 903 904 905	134 135 506 507 508 509 510 511	$\begin{array}{c} S-Y\\ S-O\\ A_{00}\\ A_{0}\\ A_{1}\\ AC\\ C_{1}\\ C_{2} \end{array}$	* 4-3 3-0 0-8 8-15 15-25 25-40	6 2 13 13 8 10 10 8	24 38 65 300 300 300 375	$<\!\!\!\!\begin{array}{c} 10\\ 29\\ 10\\ 19\\ 35\\ 75\\ 50\\ 100\\ \end{array}$	$\begin{array}{c} 10-20\\ 20-50\\ 10\\ 14\\ 35\\ 75\\ 50\\ 100\\ \end{array}$	200-500 2,000-5,000 200 200 350 350 200	$ \begin{array}{r} 10-20 \\ 10-20 \\ 6 \\ 8 \\ <5 \\ 10 \\ 10 \\ 15 \\ \end{array} $	750 750 100 75 100 75	350 1, 500 500 500 500 200	1.0-2.0 1.0-2.0 .2 .1 .1 .1 .1 .3
					Pro	file at	site 27					
55-769 728 3973 3974 3975 3976 3977 3978 3979	569 570 729 730 731 732 733 734 735	P C A ₀₀ A ₁ AC C ₁ C ₂ C ₂ C ₃ C ₄	* 3-0 0-6 6-15 15-23 23-23 32-43 43-54	6 2 18 14 9 10 16 15 10	40 4 100 140 100 140 120 150 300	32 23 35 75 50 50 50 35 100	20-50 10-20 5 35 35 35 35 35 35 50	$500-1,000\\200-500\\350\\500\\75\\50\\50\\50\\50\\350\\350$	$10-20 \\ 5-10 \\ <5 \\ 20 \\ 10 \\ 20 \\ 50 \\ 75$	$1,500 \\ 1,500 \\ 200 \\ 500 \\ 150 \\ 150 \\ 50 \\ 50 \\ 50 \\ 50$	750 500 350 750 500 500 350 200 150	0.5-1.0 0.5-1.0 Tr. .01 .025 .005 .005 .025
		BED	ROCK F	ROM	EXP	OSED	PARK C	ITY FORMA	TION			
61-4101	785	BR	0	10	350	100	70	50	20	100	10	0. 45
!	I	COL		'	DRA	GGT	DIAVI	ERS OF S	TA T	<u> </u>		

COLLUVIALLY DRAGGED LAYERS OF SHALE

Methods used for analyzing samples from layers of colluvially dragged shale are the same as those used for analysis of samples of shale in place. An individual layer of the dragged shale could commonly be identified with the bed from which it was mainly derived, although some samples contained rock fragments from as many as three beds.

Layers of bedrock having a high vanadium content retain a high concentration of vanadium as dragged layers, except when there has been significant dilution with material of low vanadium content.

Dragged layers containing abundant chromium are derived from shale beds that are high in chromium, but the chromium concentration in some dragged layers that can be traced are greater than the contents of equivalent bedrock in place. For example, two samples from site 15 that contain 3,500 and 2,000 ppm chromium, respectively, are derived from beds containing 2,000 and 1,500 ppm chromium.

7

 $\mathbf{\lambda}$

┥

~\$

4

۲

-7

l

Y

١

- 1

4

Ŕ

۲

×

×

- 24

÷

5

۳ 1 Zinc is more evenly distributed through the dragged layers than the other elements and ranges from 500 to 2,000 ppm. In general, dragged layers contain less zinc than the beds from which they are derived. Nonetheless the dragged layers that contain the most zinc are derived from the shale beds of highest zinc content.

Strontium in dragged layers is less than that in the source beds. In a single sample of the dragged shale, this element has a value of 1,000 ppm; otherwise, its range is from 100 to 750 ppm. In bedrock, strontium content is as high as 3,500 ppm.

The maximum barium content in dragged layers is 500 ppm, which is the content of four samples, whereas the maximum in bedrock samples is 750 ppm. The decrease in the barium content of dragged layers—perceptible, but not so pronounced as that of strontium indicates that barium compounds are commonly less soluble than those of strontium. Dragged layers high in barium, however, are derived from layers of bedrock that are high in barium.

The relation of phosphorus content of bedrock to that of dragged layers requires consideration of the data in table 2 as well as study of values in table 3, which alone might be misleading. In table 3, only one phosphorus value above 7.5 percent is shown for bedrock as compared to 17 values above 7.5 percent phosphorus in the dragged layers. Actually the phosphorus content of the dragged layers is lower than that of their respective beds in place, when analyses of equivalent beds are compared.

Thin beds relatively rich in copper retain their copper content as dragged layers for tens of feet downhill. Sample 463, which was taken at site 19 from a layer 30 to 40 feet downslope from the bed from which it was derived, contains 250 ppm copper, the maximum among samples of dragged layers of shale. Vertical migration of copper seems to have been insignificant, because although dragged layers are only 4 to 6 inches thick, samples from material both above and below these dragged layers contain less copper. Although table 3 shows a maximum copper content of only 150 ppm in the bedrock samples included, table 2 shows that the greatest concentration of copper is 500 ppm, found in one sample of weathered bedrock that is also high in organic matter (11 percent carbon) and rather high in phosphate.

What happens to nickel during weathering is not clear. Several dragged layers derived from beds in the lower part of the shale section have a higher nickel content than that of beds in place, whereas others have a nickel content that is much lower than that of the beds in place.

5

1

Y

<u>\$</u>-

1

4

γ

٤.

×

ł

×

7

÷.-

≻

×

7

1.0

Ж

4

Į

k

ć

۲ ۲

Maximum manganese content in dragged layers is considerably less than that in bedrock. The two highest values for manganese in the dragged layers are 750 and 500 ppm as compared to 3,500 and 1,000 ppm in the bedrock.

SOIL

The pH of soil was determined on a soil-water paste of each sample by use of a Beckman pH meter having a glass electrode. Particle size distribution was estimated by the method of Kilmer and Alexander (1949). To obtain an estimate of the organic content of each sample, a split from each was oven-dried and weighed. After the split was treated with 30 percent H_2O_2 , it was weighed again. From the difference in the weights, the approximate weight of organic matter included in the sample was computed. Soil samples were prepared for analytical study by being air dried, disaggregated, and screened through a sieve having a 2-mm mesh. No attempt was made to crush rock particles, and all material that stayed on the sieve was discarded.

The samples were analyzed for phosphorus by the chemical semiquantitative field method used in analysis of the shale samples. Vanadium content also was determined by use of a rapid chemical semiquantitative field method. Copper content of soil samples was determined by use of the biquinoline analytical method described by Almond (1955), and zinc content was determined by use of a modification of the dithizone analytical method described by Holmes (1945). The samples were analyzed semiquantitatively also by means of the truck-mounted spectrograph.

The pH ranges from 4.6, in the A horizon of profile 19, to 7.7, in the horizons of profile 23. Free carbonates are not present. Overall acidity is greatest in the horizons that have the most organic matter, the pH ranging from 4.6 to 6.2; in the mineral soil the range is from 6.0 to 7.7.

The relative amount and distribution of sand (2-0.05 mm), silt (0.05-0.002 mm), and clay (< 0.002 mm) within a soil profile gives information on soil-forming processes and on the sources from which the soil is derived. The great amount of sand in all profiles studied (40-60 percent) is believed to indicate that the soil has been derived from the sandy Grandeur Tongue of the Park City Formation.

The vertical distribution of clay is similar in all profiles. The general range in the clay content of the soils is from 10 to 15 percent, although the C horizon of profile 4 contains 20 percent, and a few profiles have horizons that contain only 7-8 percent of clay. Such small variations in clay content within the profiles suggest that there has been little or no eluviation of clay by soil-forming processes and that the variations observed may be ascribed to mixing during colluvial movement of the parent material of the soil.

Organic matter is most abundant in horizons near the surface; in the soils studied, the organic content decreases rapidly with depth. Samples from profile 1 contain the most organic matter-as much as 4.3 percent at the surface; samples from all other profiles average from 1.5 to 2 percent.

The generalized description in table 1 is representative, with minor variations, of all the soil profiles examined. Thicknesses of soil in individual profiles range from 12 to 74 inches. The C horizons of some profiles contain rock fragments of considerable size; others contain few or none. There is little or no difference in color between soil horizons over the Phosphoria Formation and corresponding soil horizons above the Park City.

X

--•

J

7 Ł

Vanadium content of soil sampled ranges from 5 to 750 ppm. Inspection of table 3 demonstrates that the vanadium content of soil developed over the Park City Formation (profiles at sites 23, 24, 27) is markedly lower than that of soil developed over the phosphatic shales. The higher vanadium content of the soil over the shale units almost certainly reflects movement of vanadium from the shale into the soil. It is interesting to note that vanadium seems to be in generally lower concentrations in thick soil.

The relative distribution of chromium in soil is similar to that of vanadium. Thus the chromium content of soil over the Park City Formation (35-350 ppm) is less than that of soil over the shales (35-1,000 ppm). Chromium content, like vanadium content, tends to be less in thick profiles.

Zinc content of soil ranges from 125 to 1,300 ppm over the Phosphoria and from 65 to 850 ppm over the Park City Formation.

The barium content of soil ranges from 75 to 750 ppm and is about the same in soil over the phosphatic shale beds as in soil over the Park City Formation. The barium in the soil, therefore, is probably derived directly from the barium in the colluvium.

Strontium content of soil samples ranges from 50 to 1,000 ppm, but samples from most profiles contain between 100 and 400 ppm. Strontium content is nearly as high in soil overlying the Park City Formation as in soil overlying the phosphatic shales.

ζ

4

.C.

 \mathbf{F}

j.

٨

4

۲

ż

-

٨

ł

YC.

1. .

4-

5

ż

`

لر لر

Phosphorus is the only element under discussion commonly considered of major importance in plant nutrition. In comparison with the underlying dragged shale layers, the soil is generally low in phosphorus content. Samples from the soil profiles overlying the shales are higher in phosphorus, however, than are normal agricultural soils, whose phosphorus content seldom exceeds 0.1 percent by weight. Samples from several soil profiles overlying the shales contain as much as 5.0 percent phosphorus (profiles 1, 9, and 14), although the average for all profiles is much lower. Phosphorus content of soil samples varies greatly but seems to be less in samples from profiles over the Park City Formation, ranging from 0.005 to 1.0 percent in profiles 23, 24, and 27. The soil overlying the phosphatic shales has probably been enriched in phosphorus.

Copper content of the soil is low, ranging from 8 to 75 ppm; most samples contain less than 30 ppm. There seems to be no relation between the copper content of the dragged phosphate layers and the overlying soil. Soil overlying the Park City contains nearly as much copper as that overlying the Phosphoria, even though the shale units contain much more copper than does the carbonate rock that is the parent material of the soil.

Nickel in the soil is similar to copper in content and distribution. Like copper, there is no appreciable difference between the nickel content of soil overlying the Park City and that of soil overlying the Phosphoria.

Manganese content of the soil is rather high, especially in the upper soil horizons—that is, in the A_{00} , A_0 , and A horizons. Over both the Phosphoria and the Park City Formations, the upper soil horizons not only contain more manganese on the average than either the AC or the C soil horizons, but they are very similar in manganese content to most of the lithologic units of the phosphatic shale (pl. 1). The manganese content of the soil overlying the Park City Formation differs very little from that of most of the profiles over the phosphatic shales.

VEGETATION

Three shrub species were chosen for study: Symphoricarpos (snowberry), Ceanothus (snowbrush), and Pachistima (mountain lover). Of these three, as many species were sampled as were growing at each site where profile samples were taken. At seven sites only two of the species were present, at 15 sites only one was present. Two samples were collected from each shrub; one was of new growth and the other of older growth.

Three species of conifer-the Douglas-fir, subalpine fir, and Engelmann's spruce-were also sampled, as well as one deciduous treethe willow. Samples were collected from the north, south, east, and west sides of every tree. The new growth (branch tips) of each conifer sample was segregated from the older growth, the twigs and leaves were separated, and all sample material was air dried.

{

4

 \prec

¥

٨

2

4

×

к

د ـ

×

ÌЖ,

ł,

-1

4

J

く

At site 21, a Douglas-fir was sampled on the north, south, east, and west, both near ground level and about 10 feet above the ground; the different types of material were separated as described in the previous paragraph. Four samples of cones were also taken, and a sample of branch wood was collected at each height on each side. Forty-four samples in all were collected from this single tree.

After the air-dried vegetation was digested by means of a perchloricnitric acid mixture, quantitative determinations for copper and zinc were made on all samples. Vanadium content of the plant samples was measured by a quantitative spectrographic method. Semiquantitative spectrographic methods were used to estimate other elements. All plant material analyzed spectrographically was ashed before analysis.

MINOR ELEMENTS IN SHRUBS

Table 4 summarizes minor-element content both of shrubs growing over the Phosphoria Formation and of shrubs growing over the Park City Formation. The data show that there are marked differences in the minor-element content of samples, not only from different plant species but also from tissues of different age from a single specimen.

SNOWBERRY

Snowberry bushes growing over the Phosphoria Formation contain more vanadium, chromium, zinc, and nickel than those growing over the Park City Formation. The snowberry growing over the Park City, however, contains more barium; in the old tissue, it contains more manganese. The average values of strontium in samples of snowberry growing over the Phosphoria Formation are about the same as those in samples of this plant growing over the Park City. Copper content seems slightly higher in snowberry above the Phosphoria Formation, but the content is so low that differences may not be significant.

Young tissue of snowberry contains more nickel—but less zinc, vanadium, chromium, manganese, strontium, and barium—than older tissue contains. Phosphorus content of young tissue is higher than that of old tissue of snowberry plants growing over the Phosphoria Formation, but phosphorus content of old and young tissue is the same in plants of the same species above the Park City. Above both formations, the young tissue of snowberry contains slightly more copper than the old tissue.

TABLE 4.—Summary of minor-element content of shrubs

[All analyses are in parts per million except phosphorus, which is in percent. Copper and zinc in the airdried plant material were determined quantitatively by F. B. Lotspeich, Charles Thompson, and Harry Nakagawa. Other analyses are spectrographic determinations made on plant ash by George Boyes. Vanadium is by quantitative and all other elements are by semiquantitative spectrographic analyses]

≻

У

4.

A

ŧ.

۶

Formation under shrub	Material (tissue)	Content	Cù	[.] Zn	V.	Cr	Mn	Ni	Sr	Ba	Р
		. Sį	ympha	ricarp	08 (sn	owberry	r)				
Phosphoria	Young	Max	18	55	80	_ 100	1,000	100	1,500	350	4.
		Min	2	20	11	Trace	100	10	750	75	1.
		Avg	6	34	26				1,100	270	2.
	Old	Max Min	6 2	80 - 36	110 50	200 50	5,000 500	50 10	1,500 750	2,000 1,000	2. 0.
		Avg	4	58	· 90	50	000	10	1,250	1,280	0.
Park City	Young	Max	Ĝ	24	<10	50	500	20	750	350	2.
		Min	í	20	<10	Ö	200	5	750	200	1.
		Avg	4	23	<10				750	300	
	Old	Max	4	- 48	59	50	10,000	20	1,500	2,000	2.
		Min	2	24	29	20	2,000	10	750	1,500	1.
		Avg	3	38	42				1, 250	1,670	
						brush)					
Phosphoria	Young	Max Min	3 1	36 22	60 21	100 10	1,000 200	200 20	1,500 750	150 100	2. 1.
	Old	Avg Max	2	29 · 20	45 46	100	500	. 100	1,000 3,500	140 500	2.
	01u	Min	1	20	40 22	20	200	100	3, 500	· 200	0 .
		Avg	1.3	14	37	20	200		2,300	350	
Park City			2	4	23	15	350	7	1,500	500	0.
		Pa	ichisti	ma (n	nounts	in lover	·)				
Phosphoria	Young	Max	5	50	70	100	1,000	100	1,500	350	5.
		Min	<1	30	18	10	100	10	750	75	1.
		Avg	3	38	41				1,270	240	
	Old	Max	5	90	81	100	1,000	50	3, 500	750	2.
		Min	2 3	50	42 64	20	100	10	1,500	200	0.
Park City		Avg	3 6	60 40	04 32	35	750	15	1,930	520 750	0.

SNOWBRUSH

Snowbrush shrubs growing over the Phosphoria Formation contain more zinc, vanadium, chromium, nickel, and phosphorus than those growing over the Park City; barium is higher in these plants above the Park City. There is no significant difference in content of either manganese or copper between snowbrush growing over the Phosphoria and snowbrush over the Park City.

Differences between metal content of young tissue and of old tissue of snowbrush are not as marked as those of snowberry. Only small differences in vanadium, chromium, manganese, nickel, and phosphorus content exist between young and old tissue. In young tissue of snowbrush, however, the zinc content is definitely higher and the strontium content lower than that in old tissue. There seems to be no significant variation in copper content.

MOUNTAIN LOVER

Young tissue of the shrub mountain lover contains more manganese, nickel, and phosphorus than old tissue. Old tissue, however, contains more zinc, vanadium, chromium, strontium, and barium. Young and old tissue contain about the same amount of copper.

Old tissue from mountain lover growing over the Phosphoria Formation contains more vanadium, chromium, zinc, nickel, and phosphorus but less manganese and barium than that from mountain lover growing over the Park City Formation. In samples of mountain lover, copper concentrations are too low to permit definite conclusions. There seems to be no consistent pattern of distribution of strontium.

К

à

۲

1

Ś

MINOR ELEMENTS IN TREES

Table 5 presents data showing the minor-element content of leaves (or needles) and twigs taken from four species of trees, some of which were sampled over the Phosphoria Formation and some over the Park City Formation. For this table, analytical results on young and old tissue of leaves or twigs have been averaged for each species for purposes of comparison of concentrations in these tissues over the two formations.

To learn whether significant differences in metal content exist between the same plant tissue of different ages and in different places on a single tree, 44 samples from a Douglas-fir at site 21 (fig. 4) were
collected and analyzed. The results (table 6) show that some of these differences are considerable.

DOUGLAS-FIR

Both needles and twigs of Douglas-fir growing over the phosphatic shales contain considerably more strontium and slightly more vanadium than needles and twigs of Douglas-fir growing over the Park City Formation. Zinc, barium, and manganese are higher in both needles and twigs of the Douglas-fir growing over the Park City Formation. Chromium, phosphorus, copper, and nickel content of both needles and twigs are nearly the same in samples from trees over both formations. The data in table 5 show that in Douglas-fir trees vanadium and barium tend to be more highly concentrated in twigs and that manganese is more highly concentrated in needles.

The data in table 6 show that among samples from the same Douglasfir tree, not only does the content of a given element differ appreciably in needles and twigs, but the content similarly differs between old needles and young needles.

Vanadium concentration, for example, is greatest in cones and lowest in branch wood 10 feet above the ground. The second highest vanadium content is in young needles near the ground. Old twigs, however, contain more vanadium than either old needles or young twigs.

n of minor-element composition of leaves (or needles) and twigs from four species of trees growing over the		ullion except phosphorus, which is in percent. Copper and zinc in the air-dried plant material were determined quantitatively by F. B. Lotspeich,
growing	•	aly by F. I
of trees		uantitative
pecies (ermined q
our s		ere det
from]	ion	aterial w
twigs	ormat	plant m
and	City J	ir-dried
needles)	Phosphoria Formation and Park City Formation	zinc in the a
(0r	tion c	erand
leaves	Forma	Copp
on of	voria	percent
ompositie	Phosph	which is in I
vent c		phorus,
vr-elen	•	t phos
min_0	·	n excel
t of	•	nillio
<i>trison</i>		ts per i
)duuo;		in par
10		es are
TABLE 5		[All analyses a

r parts per million except phosphorus, which is in percent. Copper and zinc in the air-dried plant material were determined quantitatively by F. B. Lotspelch, ppson, and Harry Naizawa. Chier analyses are spectrographic determinations made on plant ash by George Boyes. Vanadium is by quantitative and al sare by samiquantitative procedraphic analyses)	
[All analyses are in parts per mill: Charles Thompson, and Har other elements are by semigu	

		Doug	Douglas-fir			Subalpine fir	ine fir			Engelmann's spruce	ı's spruce		li M	Willow
Element	Phosph	loria	Park City	City	Phosphoria	horia	Park City	City	Phosphoria	horia	Park City	City	Phos-	Park
	Leaves	Twigs	Leaves	Twigs	Leaves	Twigs	Leaves	Twigs	Leaves	Twigs	Leaves	Twigs	phoria	City
Vanadium 20-50 Chromium 20-50 Barium 36 Structium 1, 380 Mickeli 1, 000-2, 000 Manganese 1, 000-2, 000	$\begin{array}{c} 20-50\\ 20-50\\ 1, 380\\ 6, 250\\ 6, 250\\ 2, 250\\ 2, 250\\ 1, 200-2, 000\\ 1, 000-2, 000\end{array}$	20-50 20-50 37 5-1.0 5-1.0 500-1,000 500-1,000	$\begin{array}{c} 10-20\\ 10-20\\ 53\\ 1,800\\ 4,250\\ 4,250\\ 2,25\\ 2,2\\ 2,2\\ 3\\ 5-10\\ 5-10\\ 2,000-5,000\end{array}$	20-50 20-50 41 2,120 5-1,00 5-1,000 1,000-2,000	20-50 3, 880 3, 880 1, 500 5-10 1, 000-2, 000	$\begin{array}{c} 50-100\\ 50-100\\ 51\\ 5,200\\ 1,250\\ 1,250\\ 1,250\\ 1,250\\ 1,200\\ 2,00\\ 1,200\\ 1,000-2,000\end{array}$	$\begin{array}{c} 12\\ Tr.\\ 55\\ 53\\ 3380\\ 1,330\\ 1,310\\ 2.310\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 000\\ 3.5\\ 000\\ 2.5\\ 000\\ 2.5\\ 000\\ 2.5\\ 000\\ 2.5\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 0$	29 10-20 3,000 3,000 1. 0-2.0 1,000-2,000 1,000-2,000	10-20 10-20 3,000 1,0-2,0 1,0-2,0 1,0-2,0 5-10 2,000-5,000 2,000-5,000	110-200 6, 200 8, 200 1, 0-2, 4 1, 0-2, 4 1, 0-2, 4 2, 000-5, 000 2	$\begin{array}{c} 10^{-20}\\ 10^{-20}\\ 44\\ 1, 220\\ 1, 620\\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .$	$\begin{array}{c} 20-50\\ 20-50\\ 1,500\\ 1,500\\ 2,-5\\ 2-,5\\ -4\\ 1,000-2,000\\ 1,000-2,000\\ \end{array}$	10-20 1455 1455 1,600 .5-1.0 .5-1.0 200-500	$\begin{array}{c} {\rm Tr.} \\ {\rm Tr.} \\ {\rm 31} \\ {\rm 420} \\ {\rm 1,060} \\ {\rm 1,060} \\ {\rm 1,060} \\ {\rm 2.5} \end{array}$

יא ג

 \mathbf{b}

6

۲

ĸ

نہ 1 5

4

٦

×

ζ

٦

F33

21
90
5
3
*
tree a
ŝ
ŭ
د
\$
- . .
la l
0
2
2
P
5
2
2
3
i;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ă
ž
5
ల
**
5
2
ŝ
ž
9
S.
ino
- 23
M
ė.
ū
Э
- 5
TAI
C.1

[All elements expressed in parts per million except phosphorus, which is in percent. Copper and zinc were determined quantitatively in the air-dried plant material by F. B. Lotspeich, Charles Thompson, and Harry Nakagawa. Other analyses are spectrographic determinations made on plant ash by George Boyes. Vanadium is by quantitative and all other elements are by semiquantitative spectrographic analyses]

lood	Cones		6 20-50 2 2
Branch wood	10 feet above	ground	10-14 10-20 1,620 3,560 0.5-1 0.5-10 200-500
	Near	ground	20-50 22-50 3,880 3,880 2-4 4 2-4 2-10 200-500
	F	Twigs	20-50 20-50 43 1, 310 3, 500 3, 500 3, 500 20-50 20-50 20-50 20-50 20-50 20-50 20-50 20-50 20 20 20 20 20 20 20 20 20 20 20 20 20
10 feet above ground	DIO	Leaves	20-50 24-50 1,060 3,100 3,100 3,100 1-2 2 1,000-2,000 500
10 feet abo	ng	Twigs	20-50 20-50 44 2 120 2 120 1-2 1-2 20-50 500-1,000
	Young	Leaves	20-50 20-50 20-50 20-50 1-2 1-2 1-2 1,000-20-54 1,000-2,000
	I	Twigs	20-50 1, 500 4, 250 4, 250 1-2 20-50 500-1, 000
Near ground	DIO	Leaves	20-50 33 1,120 3,570 3,570 1-2 5-10 1,000-2,000 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,100 5,00 5,
Near	Bu	Twigs	50-100 50-100 1,440 3,500 2-4 13 2-4 2-4 20-500
	Young Leaves		50-100 50-100 32,500 3,500 3,500 2-4 20-50 500-1,000
	Element		Vanadium. Uhromium. Zino. Bartuntum. Prosphorus. Popsphorus. Nickel.

بكر

4

٨,

7

۵

۲

Ļ

2.4

占

Xa

् च

と

٢,

57

X

×

4.;

4

5

---

h

۶.

**{**--

Chromium is rather evenly distributed. The old leaves and twigs, the young leaves and twigs 10 feet above the ground, and the branches near the ground have about the same content; young leaves and twigs near the ground have a slightly higher chromium content, as do cones; branch wood 10 feet above the ground is slightly lower in chromium.

The zinc content of twigs is higher than that of leaves, and old twigs contain more zinc than young twigs. Samples at the 10-foot height contain less zinc than those at ground level. Both branch wood and cones are lower in zinc than either leaves or twigs. Distribution of copper is about the same as that of zinc.

Barium content is higher in twigs than it is in leaves, except for the young twigs sampled 10 feet above the ground. The highest barium content, however, is in branch wood at a height of 10 feet.

Old tissue contains more strontium than young tissue, and strontium content of all samples tends to be higher at ground level than at 10 feet above ground. Branch wood has about the same strontium content as twigs and leaves; cones contain the least amount of strontium.

Phosphorus content is higher in new tissue than in old tissue in samples from ground level, but in samples of new and old tissue from 10 feet above ground there is no difference in phosphorus content. Branch wood from ground level contains more phosphorus than a similar sample from 10 feet above ground. Cones contain as much phosphorus as young leaves and twigs.

Nickel content of young leaves is the same as that of young twigs; in older tissue, twigs contain more nickel than leaves, and cones contain as much nickel as twigs. The nickel content of branch wood is low.

Regardless of age of tissue or position of tissue on the tree, leaves contain about twice as much manganese as twigs. Branch wood and cones have about the same manganese content, nearly one-half the content of twigs.

#### SUBALPINE FIR

Analyses of vanadium, chromium, zinc, barium, strontium, and nickel are definitely lower in samples from subalpine fir trees growing over the Park City Formation than in samples from trees of the same kind growing over the Phosphoria, whereas copper content tends to be slightly higher in trees over the Park City. Phosphorus content of needles is about the same, whether the sample came from a tree over the Phosphoria or over the Park City, and phosphorus content of twigs is also the same in samples from trees over both formations. Manganese content of needles is higher in samples from trees over the Park City, but manganese content of twigs from trees over the Park City is the same as that of twigs from trees over the Phosphoria. In twigs, vanadium, chromium, and phosphorus concentrations are higher than in needles; zinc, barium, and strontium concentrations, however, are higher in needles than in twigs.

K

لمر

۲

-4

4

->

--`\

K

ĸ

¥

2

¥

K

1

4

Ł

イ 久

#### ENGELMANN'S SPRUCE

Samples from a spruce tree growing over the Phosphoria Formation contain more vanadium, zinc, barium, strontium, phosphorus, and nickel than samples from the same species of trees growing over the Park City Formation. Twigs contain more vanadium, chromium, barium, and nickel than needles. Results for the other elements show no significant variations.

#### WILLOW

In samples from a willow tree growing over the Phosphoria Formation, chromium, zinc, barium, strontium, phosphorus, and nickel contents were higher than in samples from a willow tree growing over the Park City Formation. Vanadium content, however, is higher in samples from the tree growing over the Park City. In copper content the difference between the trees is negligible. Samples from the willow growing over the Phosphoria Formation have the highest zinc content of all the vegetation samples analyzed for this study.

#### DISCUSSION AND SUMMARY OF DATA ON MINOR ELEMENTS

In considering the data amassed in this investigation, certain plantsubstrate relations (Goldschmidt, 1954) should be kept in mind. Roots of plants extract from the substrate the elements that are then translocated to stems, leaves, flowers, and fruits; after these plant parts die, fall to the ground, and are decomposed, the elements enter and enrich the soil.

The soil at every profile-sampling site over the Phosphoria Formation, except site 22, is underlain by one or more colluvially dragged layers of phosphatic shale, and many of the plants sampled were rooted in these metal-rich dragged layers. Where the soil is less than 24 inches thick, the roots of the snowberry and mountain lover shrubs penetrate the dragged shale. Snowbrush, however, has a root system that in some places penetrates bedrock at depths of 8 to 10 feet. The roots of the trees also may extend considerable distances both vertically and laterally.

#### BARIUM

In the unweathered phosphatic shale beds of the Meade Peak Member of the Phosphoria Formation, barium probably has a random distribution in relation to phosphorus content, although plate 1 shows a possible rough inverse correlation of barium with both phosphorus

λ.

.

).

4

Y

F

<u>بر</u>

}

×;

いたい

5

Y.

 $\geq$ 

•7

4

5

1

t.

1.1

k

and strontium. The highest barium contents are in layers having considerable muddy or silty constituents. Plate 1 shows a slight general increase of barium with increase of weathering in most of the rock units studied; the greatest increase is in the mudstone units, especially the marker bed of calcareous mudstone near the middle of the section. Barium content is lower in the colluvially dragged layers, however, than in bedrock.

Table 3 shows that the barium content of the weathered carbonate rock of the Park City Formation is much lower than that of the phosphatic shales of the Phosphoria Formation. Nevertheless, the barium content of the soil is about the same over the two formations. Inasmuch as the barium content of the soil is higher in the upper horizons than in the lower and the barium content of shrubs and soil seems not to be influenced by barium content of either underlying dragged shale layers or bedrock, it seems probable that the plants are obtaining barium from the colluvium and are concentrating it in the upper horizons of the soil.

#### CHROMIUM

The distribution of chromium in unweathered shale units is similar to that of nickel and zinc and to a certain extent to that of barium. The chromium content of the unweathered shale is greatest in argillaceous rocks having a phosphorus content of 2.5 to 6 percent. Plate 1 shows that most rock units, especially mudstone, have undergone chromium enrichment with weathering. The greatest increase in chromium content has taken place in a unit of argillaceous phosphate rock in the interval 116 to 121 feet from the chert; a notable, but exceptional, decrease with weathering has occurred in the highly calcareous mudstone marker bed near the middle of the section.

The maximum chromium content of the phosphatic shale beds is 2,000 ppm for bedrock and 3,500 ppm for dragged layers; the chromium content of dragged layers generally is slightly higher than that of bedrock (table 3). The chromium content of the carbonate rock in the Park City Formation is 70 ppm.

Chromium content of all soil horizons is noticeably higher for soils over the Phosphoria Formation than those over the Park City. The same is true of chromium content of plants.

#### COPPER

Distribution of copper in the unweathered shale is somewhat similar to that of chromium (except that the amounts are less) and very similar to that of nickel, except in the thin marker bed of calcareous mudstone mentioned previously. Most of the minimum copper values are for rocks having the lowest content of phosphorus, and most of the maximum values are for argillaceous rocks of high organic content but only moderately high phosphorus content-2.5 to 7.5 percent.

In most rock units the copper content of weathered rock equals or exceeds that of unweathered rock (pl. 1). In two units of phosphate rock, weathered rock contains less than unweathered rock, but the differences-25 and 50 ppm-seem negligible. Two weathered units of argillaceous phosphate rock show copper enrichment of 250 and 150 ppm respectively.

4

 $\mathbf{x}$ 

>

->

*

4

The copper content of weathered rock from the Park City Formation was measured as less than 10 ppm. The range of copper values in the weathered shales in place is 7 to 500 ppm as shown in table 2; table 3 shows only 15 to 150 ppm. The range of copper content in the dragged shales is 20 to 250 ppm; the maximum copper content is in a layer at site 19 that could be traced to where it is a bed in place 30 to 40 feet away.

The copper content of soil over the Phosphoria is low but is slightly more than that of soil over the Park City-a range of 8 to 75 ppm as compared to a range of 8 to 19 ppm. The range of copper content of shrubs over the Phosphoria is less than 1 to 18 ppm; that of shrubs over the Park City is 2 to 6 ppm.

#### MANGANESE

The range of manganese content for fresh bedrock of the Phosphoria Formation examined in this study is 10 to 500 ppm. In the distribution of elements in the unweathered Meade Peak Member, there is a rough inverse correlation of manganese with phosphorus; the four minimum manganese values were for rocks having a phosphorus content of 7.5 percent or more, and the five maximum manganese values were for rocks having a phosphorus content of 2 percent or less.

In the weathered shale units, the range of manganese content is from less than 10 to as much as 3,500 ppm; minimum and maximum manganese values seem to be randomly distributed in relation to phosphorus. In most of the lithologic units studied, differences in manganese content are negligible between unweathered and weathered ÷, phosphatic shales. In the six units shown on plate 1 in which the manganese content is greater in the fresh rocks, 140 ppm is the maximum difference between unweathered and weathered material; in four of -1 the six units in which manganese concentration is higher in the weath-W ered rocks, the difference is less than 75 ppm. In only one rock unit is the contrast striking; the thin marker bed of highly calcareous mudstone previously mentioned contains only 50 ppm manganese where unweathered, but 1,500 ppm manganese where weathered.

ン

3

.i.,

7

X

h.

)

×-

춛

¥.

×

÷....

×4,

Ś.

è

þ.

١

2

ŕ-

7. 15

The manganese content of the bedrock sample from the Park City Formation is 50 ppm.

Table 3 shows the samples of dragged shale to be generally lower in manganese content (10 to 750 ppm) than the shale in place (10 to 3,500 ppm). Manganese content of soil is rather high, and is about the same over both formations except in the organic horizons  $A_{00}$  and  $A_{0}$ , which have manganese contents that are definitely greater over the Phosphoria Formation that over the Park City. Apparently plants concentrate the manganese and enrich these horizons, and possibly the A horizon as well.

#### NICKEL

In distribution, amount, and general relations with other elements and with all the lithologic units except one, nickel content is similar to copper content of the phosphatic shale. In unweathered rocks having a phosphorus content of 1 percent or less, all but one of the samples having minimum nickel contents are from the same layers that have minimum copper contents. The maximal values of nickel like those of copper are for rocks having muddy constituents and intermediate phosphorus content. In weathered rocks, nickel, like copper, shows random distribution in relation to phosphorus content. The range of nickel content in the shale is from less than 3 to as much as 550 ppm in unweathered rock and from less than 5 to as much as 750 ppm in weathered rock. The nickel content of the sample from the Park City Formation was 20 ppm.

Plate 1 shows little difference in nickel content between fresh and weathered rock units. In high grade phosphate rock and in the marker unit of calcareous mudstone, nickel content is greater in unweathered rock; the nickel content of most mudstones and other argillaceous rocks is a little higher in unweathered rock. Table 3 shows that the nickel content of shales in place is slightly more (20 to 750 ppm) than of dragged layers (20 to 150 ppm).

The C and the AC horizons of soil have about the same nickel content over the Phosphoria Formation as over the Park City. In the upper horizons—the  $A_{00}$ ,  $A_0$ , and A—as well as in the shrubs, nickel content is greater over the Phosphoria. It seems that plant uptake of nickel must be responsible for the concentration of nickel at the upper levels of the soil.

#### STRONTIUM

The range of strontium values is the same in both fresh and weathered phosphatic shales: 100 to 3,500 ppm. In the unweathered rocks there is a definite positive correlation between strontium and phosphorus regardless of lithology; the maximum values of both eleĸ

.4

-

2

K

-_4

4

ments occur in the same layers and the minimum values coincide as well. There is a rough positive correlation between strontium and phosphorus content in weathered rocks also.

Weathering has not caused any obvious consistent changes in strontium content of the several rock units. In 5 of the 12 lithologic units of shale, however, weathering has resulted in a change of strontium content of 500 ppm or more. Three of these units contain substantially more strontium where they are unweathered than where weathered, but in the other 2 units of the 5, strontium content is higher in the The most notable change has occurred in the thin weathered rock. marker bed of calcareous mudstone, in which weathering seems to have decreased the strontium content from 3,500 to 200 ppm and the phosphorus content from 10 percent to 0.25 percent. Weathering apparently has increased strontium content from 600 to 1,800 ppm in a unit of argillaceous phosphate rock in the interval 116 to 121 feet from the chert. In the other 7 units of the 12 studied, differences are The sample of bedrock from the Park City Formation negligible. -> contained 100 ppm strontium.

Strontium content of dragged layers of shale is not as high as that of equivalent bedrock layers. In the soil over both formations, strontium content increases progressively upward from the deepest horizon, C, through the A horizon. Both soil and shrub samples collected over the Phosphoria Formation contain more strontium than those collected over the Park City. Again, increases in the metal content in the upper soil horizons may be the result of concentration by plants.

### VANADIUM

Vanadium content of the shales ranges from 35 to 5,000 ppm in the unweathered shale and 20 to 5,000 ppm in the weathered shale. There seems to be a rough positive correlation of vanadium with phosphorus and strontium. In 10 of the 12 lithologic units studied, the vanadium content is higher in weathered rock than in unweathered rock. In most of the weathered units the increase in vanadium is between 100 and 300 ppm; in two units of argillaceous phosphate rock, however, the difference is greater-600 and 1,600 ppm. The vanadium content of the bedrock sample from the Park City Formation was 100 ppm. In general, vanadium content of the dragged shale is about the same as in the bedrock. The mineral horizons of the soil over the Phosphoria Formation contain substantially more vanadium (50 to 750 ppm) than do the analogous horizons over the Park City (35 to 100 ppm). The vanadium content of organic horizons of the soil over the Phosphoria Formation range from 28 to 147 ppm, as compared with a range from 5 to 35 ppm over the Park City Formation. Vana-

À

X

Χ-

٨

à.

متعز

**é** -

1

۲

7

dium content of shrubs ranges from 10 to 110 ppm over the Phosphoria and from 10 to 39 ppm over the Park City.

In 15 of the 22 profiles studied, vanadium content of the lower soil horizons (C and AC) is greater than that of the upper horizons (A, A₀, and A₀₀). In four profiles (2, 13, 16, 19) maximum values of vanadium in lower and upper horizons are equal, and in three profiles (14, 17, 21) the vanadium content of the upper horizons exceeds that of the lower. In soils whose total thickness is 40 inches or more, maximum vanadium content is 100 ppm; for those profiles wherein the underlying shales have a high vanadium content, one might expect a correlation between soil thickness and vanadium content of soil. Some profiles seem to support this premise, but data for an equal number of profiles seem to disprove it. Illustrative examples follow.

In profile 1, in which vanadium content of soil is greatest, 750 ppm, the thickness of the soil is 24 inches and the highest vanadium content of the shale is only 200 ppm. In profile 4, in which the thickness of soil is the same as that of profile 1, vanadium content of the shale ranges from 350 to 3,500 ppm, but the range of vanadium in the soil is only 30 to 150 ppm. In profile 2, in which soil thickness is 14 inches, there is a maximum vanadium content of 1,500 ppm in the shales but a maximum of only 200 ppm in the overlying soil. In the 18-inch soil of profile 3, the highest vanadium value is only 75 ppm, although vanadium content of underlying shale has a maximum of 1,500 ppm. In profiles 14 and 15, however, having soil thickness of 24 and 29 inches, respectively, the maximum vanadium content of shale at both sites is 500 ppm, but vanadium content of the one overlying soil is 500 ppm and of the other is 350 ppm.

#### ZINC

In unweathered shale in place, the range in zinc content is 20 to 7,000 ppm. The maximum value is for a sample from a bed of argillaceous phosphate rock having a phosphorus content of 7.5 percent; all the high zinc values (3,000 to 7,000 ppm) are for muddy or silty rocks having phosphorus contents ranging from 3.75 to 7.5 percent. Rocks of the minimum phosphorus contents have minimum zinc contents. Evidently there is a direct correlation between zinc and phosphorus in shales of high silty content; in the weathered shale, however, this relation is not apparent.

In general, the effect of weathering seems to equalize zinc distribution; the range of zinc content is much less in weathered shale than in unweathered shale.

For 9 of the 12 lithologic units shown on plate 1, average zinc content is higher in the unweathered rock than in the weathered; for one  $\geq$ 

رغد

÷

Ń

~,

•

4

•

×

-4

2

К

~

.

•

1

~~~

unit, average zinc content is the same in both; in the remaining two units, zinc content of the weathered rock is the higher. The range of zinc content of weathered shale is 200 to 2,500 ppm; in the dragged layers the range is 300 to 2,000 ppm. The zinc content of the sample from the Park City is 350 ppm.

All soil horizons above the Phosphoria have higher zinc contents respectively than comparable horizons above the Park City. The zinc content of the shrubs over the Phosphoria is higher also than that over the Park City.

CONCLUSIONS

Both metal-poor colluvium and the soil developed on it can be enriched by metallic elements from the substrata, if the metal content of the underlying beds is sufficient and in an available form. It is believed that the metabolic processes of vegetation growing in the soil constitute an important if not a necessary factor of the mechanism through which the enrichment is accomplished. The metal content of either plants or soil, therefore, may be evidence of a metal-rich substratum if proper sampling has been done. To obtain a comprehensive picture by plant sampling, material for analysis must be collected not only from different species, but also from tissues of different type and age. Comparisons of metal content, however, should be made only between analytical results on plant samples of the same species and age and on analogous tissue.

Before soil samples are collected, consideration must be given to the stage of development of the soil to be sampled. In the area studied, although little difference was noted in the metal content of adjacent horizons of the poorly developed soils, it is a well-substantiated fact that a noticeable difference exists in the metal content of adjacent horizons of soils in which soil development is advanced. It follows that in pedogeochemical investigations of regions with mature soils, the investigator must take the samples to be compared from the same soil horizons, if comparisons of their metal content are to be valid.

Where a surface slopes, even very gently, an investigator seeking the source of a metal anomaly should remember three facts documented by this study: (1) that colluvium may move, without much internal mixing, for great distances downhill; (2) that upended metalrich layers of rock can be dragged by moving colluvium for tens or even hundreds of feet downslope as identifiable units with little mixing and almost no significant change in characteristics except thinning; and (3) that anomalous concentrations of metal in the colluvium, in the soil developed on it, or in plants growing on the soil may have been derived from such displaced metal-rich layers rather than from the bedrock directly beneath the colluvial mantle.

λ.

٣

à

• •

×,

Ł

1

بير

\$.7

돓

۲

 \dot{c}

Fi.

þ

SELECTED REFERENCES

- Almond, Hy, 1955, Rapid field and laboratory method for the determination of copper in soil and rocks: U.S. Geol. Survey Bull. 1036–A, 8 p.
- Canney, F. C., Myers, A. T., and Ward, F. N., 1957, A truck-mounted spectrographic laboratory for use in geochemical exploration: Econ. Geology, v. 52, no. 3, p. 289-306.
- Connor, Jane, Shimp, N. F., and Tedrow, J. C. F., 1957, A spectrographic study of the distribution of trace elements in some podzolic soils: Soil Sci., v. 83, p. 65-73.
- Davidson, D. F., Smart, R. A. Peirce, H. W., and Weiser, J. D., 1953, Stratigraphic sections of the Phosphoria Formation in Idaho, 1949, pt. 2 : U.S. Geol. Survey Circ. 305, 28 p.
- Goldschmidt, V. M., 1954, Geochemistry: Oxford, Clarendon Press, 730 p.
- Hawkes, H. E., 1950, Geochemical prospecting for ores, in Trask, P.D., Applied Sedimentation: New York, John Wiley & Sons, p. 537-555.
- Holmes, R. S., 1945, Determination of total copper, zinc, cobalt, and lead in soils and soil solutions: Soil Sci., v. 59, p. 77-84.
- Kilmer, O. J., and Alexander, L. T., 1949, Methods of making mechanical analyses of soils: Soil Sci., v. 68, p. 15-24.
- Mansfield, G. R., 1927, Geography, geology, and mineral resources of part of southeastern Idaho: U.S. Geol. Survey Prof. Paper 152, 453 p.
- McKelvey, V. E., 1949, Geological studies of the western phosphate field: Am. Inst. Mining Metall. Engineers Trans., v. 184, p. 270-279.
- McKelvey, V. E., Davidson, D. F., O'Malley, F. W., and Smith, L. E., 1953, Stratigraphic sections of the Phosphoria Formation in Idaho, 1947–1948, pt. 1: U.S. Geol. Survey Circ. 208, 49 p.
- McKelvey, V. E., and others, 1959, The Phosphoria, Park City, and Shedhorn Formations in the western phosphate field: U.S. Geol. Survey Prof. Paper 313-A, p. 1-47.
- McKelvey, V. E., Swanson, R. W., and Sheldon, R. P., 1953, The Permian phosphorite deposits of western United States: Internat. Geol. Cong., 19th, Algiers 1952, Comptes rendus, sec. 11, p. 45–64.
- O'Malley, F. W., Davidson, D. F., Hoppin, R. A., and Sheldon, R. P., 1953, Stratigraphic sections of the Phosphoria Formation in Idaho, 1947–48, pt. 3: U.S. Geol. Survey Circ. 262, 43 p.
- Sheldon, R. P., Warner, M. A., Thompson, M. E., and Peirce, H. W., 1953, Stratigraphic sections of the Phosphoria Formation in Idaho, 1949, pt. 1: U.S. Geol. Survey Circ. 304, 30 p.
 - Smart, R. A., Waring, R. G., Cheney, T. M., and Sheldon, R. P., 1954, Stratigraphic sections of the Phosphoria Formation in Idaho, 1950–51: U.S. Geol. Survey Circ. 327, 22 p.
 - Snell, Foster Dee, and Snell, Cornelia T., 1949, Colorimetric methods of analysis,
 v. 2: D. Van Nostrand Co., Inc., 1950 p.
 - Swanson, R. W., Carswell, L. D., Sheldon, R. P., and Cheney, T. M., 1956, Stratigraphic sections of the Phosphoria Formation, 1953: U.S. Geol. Survey Circ. 375, 30 p.
 - U.S. Soil Survey Staff, 1951, Soil Survey Manual: U.S. Dept. Agriculture Handb. 18, 503 p.
 - Warren, H. V., Delavault, R. E., and Irish, R. I., 1952, Biogeochemical investigations in the Pacific northwest: Geol. Soc. America Bull., v. 63, p. 435-484.

О