Selected Bibliography of Talc in the United States

By CELINE W. MERRILL

CONTRIBUTIONS TO ECONOMIC GEOLOGY

G E O L O G I C A L S U R V E Y B U L L E T I N 1 1 8 2 - C

General and specialized references through December 1962
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>C1</td>
</tr>
<tr>
<td>Selected bibliography</td>
<td>4</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
</tr>
</tbody>
</table>

III
CONTRIBUTIONS TO ECONOMIC GEOLOGY

SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES

By Celine W. Merrill

INTRODUCTION

The following bibliography presents a list of both general and specialized references on talc in the United States that are available in either the library of the U.S. Geological Survey or of the Department of the Interior in Washington, D.C. A few foreign articles of general interest are also included. This bibliography is not exhaustive, but it is an attempt to provide the basis for research on the mineralogy, geology, and industrial uses of talc. The entries are arranged alphabetically by author and are indexed by subject.

The term “talc” is used in a mineralogical sense as a mineral name and in an industrial sense as a general term for a wide variety of rocks having a broad range of industrial uses. In the mineralogical sense, talc is a hydrous magnesium silicate having the general structural formula Mg$_6$[Si$_2$O$_{22}$]OH$_4$; in terms of the oxides, the formula is commonly written as 3MgO·4SiO$_2$·H$_2$O. By the industrial definition, the name “talc” is applied to rocks ranging in composition from those composed mainly of talc through those containing tremolite, serpentine, magnesite, and other essential minerals in addition to talc to those relatively uncommon rocks composed mostly of tremolite or serpentine. Where uncertain from the context, the intended usage will be made clear by such phrases as “the mineral talc,” “talc rock,” and “industrial talc.”

Talc is a white, pale-green, or gray-white mineral having a pearly luster and greasy feel. It is extremely soft (1 on the Mohs scale), has a perfect basal cleavage, and has a specific gravity of 2.75–2.83. Most industrial talcs can be distinguished by their softness and slippery feel, but the more impure varieties vary widely in hardness and texture.
In both industrial and geologic usage, varieties of talc rocks are known by specific names, and often the industrial and the geologic terms differ in usage; furthermore, neither usage is entirely consistent. "Steatite," as a geologic term, denotes a rock composed chiefly of talc, whereas, when used in industry, it depicts a talc rock of high purity, suitable for the manufacture of electronic insulators, but for which the specifications vary for different uses and among different manufacturers. "Soapstone" is a massive variety of talcose rock suitable for the manufacture of sawed and shaped slabs. It varies widely in mineral composition, from steatite (in the geologic sense of the term) to talcose rocks containing abundant magnesite, serpentine, amphibole, pyroxene, chlorite, and mica. "Grinding talc" is a term applied to all varieties of talc suitable for grinding into powdered form. Other commonly used terms include "grit," a talc-magnesite rock; "fibrous talc," a variety of industrial talc having abundant fibrous or acicular minerals such as tremolite; and "lava talc" and "block talc," both industrial types of massive steatite.

Most commercial talc deposits are associated with ultramafic igneous rocks or dolomitic marbles. The deposits are worldwide in distribution and range from Precambrian to Tertiary in age. Both types of deposits vary in size, form, and geologic relations. Minable deposits of pure talc rock are rare and are generally small or constitute only a small proportion of larger deposits of talc-magnesite rock, talc-tremolite-sepentine rock, and other talcose rocks.

The properties requisite for particular tales vary greatly and depend upon the manufacturing process and intended use. The more critical properties include the particle size and shape, the chemical composition of the mineral talc, and the identity and proportion of contaminant minerals. Particle shape is of particular importance in industrial steatites and in other tales for some industrial uses. The chemical composition of the mineral talc is of importance only in industrial steatite and in tales for a few other ceramic uses. Though oxides, sulfates, sulfides, and many other minerals restrict the use of commercial tales, the presence of some silicates is desirable for certain uses. For example, fabricators often require a small percentage of CaO in steatite, and tremolitic talc is in demand for some paints because of its white color and low oil-absorption property.

There are few substitutes for talc, and, because of its abundance, there is little demand for them. Pyrophyllite, a hydrous aluminum silicate, has properties very similar to those of talc and competes with talc for some uses.

Of the total talc consumed in the United States in 1960, more than 35 percent was used in ceramics, for which talc is especially suitable. Almost 19 percent was used in the paint industry, as
an extender and a pigment in certain paints. More than 29 percent was used in roofing, insecticides, rubber, paper, and asphalt, both as a filler and a dusting agent. The rest went into many diverse products such as talc crayons, foundry facings, plaster products, polishing agents, textiles, tile, cements, toilet preparations, and miscellaneous other products.

The purer and whiter grinding grades of talc are used principally for steatite (in the fabrication of electronic insulators), pharmaceuticals, cosmetics, paper manufacture, and ceramics. Lower grades of talc are suitable for most other uses.

The United States leads in world production of talc and in recent years has produced about 25 percent of the world total. New York, California, Texas, Georgia, Montana, Vermont, Virginia, and Maryland lead in production; other producing States include North Carolina, Nevada, Alabama, Arkansas, and Washington. Most of Virginia's production is soapstone; she is the leading producer in the United States. Much of the "talc, soapstone, and pyrophyllite" recorded for North Carolina and California is pyrophyllite, in which these two States lead. Montana and California have been principal producers of steatite in recent years; these two States, plus North Carolina and Nevada, are the chief domestic sources of cosmetic talc. Texas has recently become a principal source of ceramic talc for tileware. Much of the best cosmetic talc and the highest grade steatite has long been imported from Italy and India.

Most of the talc exploited in New York, California, Montana, North Carolina, and Nevada is associated with metamorphosed carbonate rocks; that in Vermont, Virginia, Maryland, and Washington is associated chiefly or entirely with ultramafic igneous rocks, and large deposits of such talc also occur in California and other States. The deposits of Texas, Georgia, Alabama, and Arkansas include both types of associations or are of unknown or doubtful origin.

The following table shows a comparison between the United States and world annual total of talc, soapstone, and pyrophyllite production for the period 1949–60. The data are from the U.S. Bureau of Mines.

<table>
<thead>
<tr>
<th>Year(s)</th>
<th>United States (Thousands of short tons)</th>
<th>World (Thousands of short tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949–53 (avg)</td>
<td>590</td>
<td>1,550</td>
</tr>
<tr>
<td>1954</td>
<td>619</td>
<td>1,620</td>
</tr>
<tr>
<td>1955</td>
<td>726</td>
<td>1,790</td>
</tr>
<tr>
<td>1956</td>
<td>739</td>
<td>1,930</td>
</tr>
<tr>
<td>1957</td>
<td>684</td>
<td>2,080</td>
</tr>
<tr>
<td>1958</td>
<td>718</td>
<td>2,030</td>
</tr>
<tr>
<td>1959</td>
<td>792</td>
<td>2,290</td>
</tr>
<tr>
<td>1960</td>
<td>734</td>
<td>2,450</td>
</tr>
</tbody>
</table>
CONTRIBUTIONS TO ECONOMIC GEOLOGY

SELECTED BIBLIOGRAPHY

Bain, G. W., 1934, Discussion of: The problem of serpentinization, etc., by H. H. Hess (1933b) : Econ. Geology, v. 29, no. 4, p. 397-400.

Bennington, K. O., 1956, Role of shearing stress and pressure in differentiation as illustrated by some mineral reactions in the system MgO-SiO₂-H₂O : Jour. Geology, v. 64, p. 558-577.

SELECTED BIBLIOGRAPHY
OF TALC IN THE UNITED STATES

Bowen, N. L., and Tuttle, O. F., 1948, Serpentine and talc equilibria [abs.]: 18th Internat. Cong., London, Volume of titles and abstracts, p. 4. (Published in full as "The System MgO-SiO\textsubscript{2}-H\textsubscript{2}O" in Geol. Soc. America Bull., v. 60, no. 3, p. 439–460.)

--- 1949, The system MgO-SiO\textsubscript{2}-H\textsubscript{2}O: Geol. Soc. America Bull., v. 60, no. 3, p. 439–460. (See also v. 58, Dec. 1948.)

--- 1936, Ceramic materials other than clays abundant in California: Mining and Metallurgy, v. 17, no. 337, p. 441–443; 1937, Year Book 1936, p. 66 [abs.].

686–495—63——2

CONTRIBUTIONS TO ECONOMIC GEOLOGY

—— 1949b, New York talcs, their geological features, mining, milling, and uses: Mining Eng., v. 1, no. 9, p. 345–458.
SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES

Gunzenhauser, A., 1941, Steatite and special ceramic materials; their development, application and manufacture: Ceramic Industry, v. 37, p. 41-46.

———1933b, The problem of serpentization and the origin of certain chrysotile asbestos, talc, and soapstone deposits: Econ. Geology, v. 28, no. 7, p. 634-637. (See also Bain, 1934; Chawner, 1934; Dresser, 1934.)

———1935, Reply to Discussion of The problem of serpentization, etc. by Hess: Econ. Geology, v. 30, no. 3, p. 329-325. (See also Hess, 1933b; Bain, 1934; Chawner, 1934; Dresser, 1934.)

Hickok, K. E., 1940, Nonmetallic minerals: Mines Mag. [Colorado], v. 30, p. 65-66, 74.

ClO CONTRIBUTIONS TO ECONOMIC GEOLOGY

SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES

Keith, S. B., and Bain, G. W., 1932, Chrysotile asbestos; pt. 1, Chrysotile veins: Econ. Geology, v. 27, no 2, p. 169-188.

Lamar, R. S., 1944a, Geology, chemistry and utility of California talcs: Official Digest 238, p. 393-397.

Lamar, R. S., 1944b, Particle shape and differential shrinkage of steatite talc bodies: Am. Ceramic Soc. Jour., v. 27, no. 11, p. 317-320.

Merrill, F. H., 1901, Geologic map of New York: New York State Museum. Scale, 1:316,800.

Midwest Research Institute, 1946, Mineral resources of Nebraska, Iowa, Kansas, Missouri, Oklahoma, Arkansas: Midwest Res. Inst., Kansas City, Mo. Scale, 1:1,250,000.

Mitchell, F. B., 1944, Talc, steatite, and soapstone: Mine and Quarry Eng., v. 9, p. 66–70.

Thurnauer, Hans, 1940, Utilization of talc as a ceramic raw material: Ceramic Age 35, p. 146–148.

Wasserman, Gilbert, 1956, Magnetic survey of the Staten Island serpentinite: Staten Island Inst. Arts and Sciences Proc., v. 18, p. 3-19.

SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES

Alabama:
 Jones 1939
 McMurray and Bowles 1941
 Maynard and others 1923
 Reed 1950
Alaska:
 Waskey 1946
Arkansas:
 Frommer and Fine 1956
 Midwest Research Institute 1946
Asbestos:
 Bain 1934
 Beckwith 1939
 Chawner 1934
 Dresser 1934
 Hess 1933b, 1935
 Hopkins 1914
 Keith and Bain 1932
 Taber 1916
 Wing 1951
 Wing and Dawson 1949
Bibliography:
 Avery and others 1958
 Chidester and Worthington 1962
Block tale:
 Comefero and others 1954
 U.S. Bureau of Mines 1944
California:
 Area:
 Merrimac: Hietanen 1951
 Santa Catalina Island: Tucker 1927
 Silver Lake: Wright, L. A. 1949, 1954
 Superior: Wright, L. A. 1952
 Talc City: Gay and Wright, L. A. 1954
 Western Sierra Nevada: McDonald 1941
 White Eagle: Wright, L. A. 1948
 County:
 Inyo:
 Hall 1948
 Hall and Mackevett 1953
 Murphy 1932
 Page 1951
 Riverside: Tucker and Sampson 1945
 San Bernardino: Wright, L. A., Stewart, Gay, and Hazenbush 1953
 General:
 Burchiel 1936
 California Div. of Mines 1956
 Chidester, Engel, and Wright 1953
 Jenkins 1938
 Lamar 1944a
 Wright, L. A. 1950
 Wright, L.A., Chesterman, and Norman 1964
 California—Continued
 Genesis:
 Chidester, Engel, and Wright 1963
 Wright, L. A. 1953
 Use:
 Lamar 1952
 Lemmon 1955
 Canada:
 Avery and others 1958
 Spence 1940
 Economics:
 Bowles and Justice 1933
 Greaves-Walker 1945
 Hall and Mackevett 1958
 Hitchcock, Edward, and others 1961
 Irving 1960
 Johnson 1939
 Lasky 1945, 1950
 Olson 1944
 Rushton 1944b
 Sampson 1922a, 1923
 U.S. Bureau of Mines 1932–60
 General:
 California Div. of Mines 1956
 Chidester, Engel, and Wright 1963
 Diller 1909, 1911a, 1912, 1913, 1914, 1916, 1917, 1919, 1920a, b, 1921
 Engel 1949a
 Engel and Wright, L. A. 1960
 Gillson 1937
 Hickok 1940
 Irving 1956, 1960
 Lado 1923
 Mitchell 1944
 Roff 1943
 Sampson 1922a, b, 1923
 Stuckey 1950
 U.S. Bureau of Mines 1932–61
 Geochemistry:
 Brindley 1954
 Chidester 1962
 Comefero and others 1954
 Efremov 1954
 Hauser and LeBeau 1946
 Selfridge 1936
 Whittaker and Zusman 1956
 Wright, L. A. 1948
 Geology:
 Applied:
 Bailey 1949

C19
C20 CONTRIBUTIONS TO ECONOMIC GEOLOGY

Geology—Continued
Applied—Continued
Clark 1899
Teague 1946
Economic:
Bailey 1949
Bayley 1941
Furcron 1935
Hitchcock, Edward, and others 1861
Jacobs 1944
King and Flawn 1953
Lamar 1944a
Olson 1944
Stose and Jones 1939
Stuckey and Steel 1953
Teague 1946
Structural:
Bain 1936, 1942
Benson 1918
Brown, J. S., and Engel 1956
Brown, W. R. 1954
Chidester 1953, 1962
Du Rietz 1935
Engel 1947, 1962
Engel and Wright, L. A. 1960
Flawn 1958
Furcron and Teague 1947
Hess 1933a, b, 1955
Jones 1939
Osberg 1952
Pearre and Hoy 1960
Thomas 1951
Van Horn 1948
White, W. S., and Jahns 1950
Wilk 1953
Wright, L. A. 1957
Geophysics: Hurley and Thompson 1959
Georgia:
General:
Crickmay 1936
Georgia Div. Mines, Mining, and Geology 1939
Hopkins 1914
Hunter 1941
Hunter and Gildersleeve 1946
McCallie 1910
Maynard and others 1923
Teague 1946, 1950
Murray County: Furcron and Teague 1947
Idaho: Shannon 1926
Maine:
Hurley and Thompson 1950
Smith, G. O., and others 1907
Wing 1951
Wing and Dawson 1949
Maps:
Geologic:
Mineral deposits:
Barnes 1946
Barnes and others 1950
Billings and Chidester 1948a, b
Chidester 1953, 1962
Chidester, Stewart, and Morris 1952a, b

Maps—Continued
Geologic—Continued
Mineral deposits—Continued
Christman 1959
Dietrich and Lonsdale 1958
Engel 1962
Furcron and Teague 1947
Gillson 1927
Hopkins, O. B. 1914
James 1946
King and Flawn 1953
Page 1942, 1951
Pearre and Hoy 1960
Peck 1955
Perry, E. S. 1948
Pratt and Lewis 1905
Reed 1959
Van Horn 1948
Wigglesworth 1916
Wing 1951
Wing and Dawson 1949
Quadrangle maps: See individual States.
Regional:
Barnes 1946
Bloomer and Werner 1955
Brown, J. S., and Engel 1956
Cady, Albee, and Chidester 1962
Chidester, Engel, and Wright 1963
Darton and others 1937
Doll and others 1961
Emerson 1917
Engel 1962
Flawn 1958
Furcron and Teague 1947
Gay and Wright, L. A. 1954
Georgia Div. of Mines, Mining, and Geology 1939
Gilluly 1945
Hitchcock, C. H. 1878
Hitchcock, Edward, and others 1861
Hopkins, H. R. 1957
Jenkins 1938
King and Flawn 1953
McDonald 1941
Merrill 1901
Pearre and Hoy 1960
Rice and Gregory 1906
Ross and others 1955
Van Horn 1948
Virginia Geol. Survey 1928
White, W. S., and Jahns 1950
Mineral locality:
Barnes 1946
Beekwith 1939
Burfoot 1930, 1938
Chidester, Billings, and Cady 1951
Chidester, Engel, and Wright 1963
Chidester and Worthington 1962
Furcron and Teague 1947
Greaves-Walker and Riggs 1937
Hopkins, O. B. 1914
Keith, Arthur 1903
Luedke and others 1959
SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES

Maps—Continued
Mineral locality—Continued
Midwest Research Institute 1946
Myer and Stewart 1946
Osterwald, F. W., and others 1959
Pearre 1956, 1957
Pearre and Calkins 1957a, b
Perry, E. S. 1948
Pratt and Lewis 1905
Valentine 1949
Van Horn 1948
Wright, L. A. 1957

Maryland:
Clark 1899
Pearre and Heyl 1961

Massachusetts:
Emerson 1917
Pearre 1956

Metamorphism:
Bain 1934, 1936
Bowen 1940
Chawner 1934
Childress 1939, 1962
Dresser 1934
Du Rietz 1935
Hess 1933a, b, 1935, 1955
Page 1951
Phillips and Hess 1936
Reed 1934
Wilk 1953

Mineral localities—Continued
Maine:
Hurley and Thompson 1950
Smith, G. D., and others 1907
Wing 1951
Wing and Dawson 1949
Maryland: Pearre and Heyl 1960
Massachusetts: Pearre 1956
Montana:
James 1946
Perry, E. S. 1948
U.S. Bureau of Mines 1944
Nevada: Page 1942
New Hampshire:
Hitchcock, C. H. 1878
Myers and Stewart 1946
Pearre and Calkins 1957b
New Jersey: Peck 1905
New Mexico:
Bailey 1949
Jicha 1954
New York:
Cushing and Newland 1925
Engel 1947, 1949a, 1962
Ladoo 1929
Luedke and others 1959
Nevius 1899
Newland 1921
Trayer 1940, 1941
Wade and Wandke 1923
Wasserman 1956
North Carolina:
Bryson 1932, 1937, 1938
Greaves-Walker and Riggs 1937
Hunter 1941
Hunter and Gildersleeve 1946
Keith, Arthur 1963, 1904, 1905, 1907
King and others 1965
Olson 1944
Pratt and George 1940
Pratt and Lewis 1950
Ralston 1944
Stuckey 1937, 1942, 1949, 1950
Stuckey and George 1940
Stuckey and others 1947
Stuckey and Steele 1953
Van Horn 1948

Oklahoma: Midwest Research Institute 1946
Pennsylvania:
Montgomery 1955
Pearre and Heyl 1960
Peck 1905, 1911
Rhode Island: Pearre 1956
South Carolina: Sloane 1908
South Dakota: Dart 1959
Southeastern States:
Ralston 1944
Stuckey 1950
Texas:
Barnes 1940, 1946
Barnes and Mathis 1942
Barnes and others 1950
Dietrich and Lonsdale 1958
Flawn 1958

Connecticut: Pearre 1957
Delaware: Pearre and Heyl 1960
Georgia:
Crickmay 1936
Furcron and Teague 1947
Hopkins, O. B. 1914
Hunter 1941
Hunter and Gildersleeve 1946
McCallie 1910
Idaho: Shannon 1926

Mineral localities—Continued
Alabama:
Jones 1939
McMurray and Bowles 1941
Reed 1950
Arkansas: Midwest Research Institute 1946
California:
Gay and Wright, L. A. 1954
Hall 1948
Hall and Mackevett 1953
Hietanen 1951
McDonald 1941
Page 1942, 1951
Tucker 1927
Tucker and Sampson 1945
Wright, L. A., Chesterman, and Norman 1954
Wright, L. A., Stewart, Gay, and Hazen-bush 1953
Connecticut: Pearre 1957
Delaware: Pearre and Heyl 1960
Georgia:
Crickmay 1936
Furcron and Teague 1947
Hopkins, O. B. 1914
Hunter 1941
Hunter and Gildersleeve 1946
McCallie 1910
Idaho: Shannon 1926
<table>
<thead>
<tr>
<th>Mineral localities—Continued</th>
<th>Mineralogy—Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas—Continued</td>
<td></td>
</tr>
<tr>
<td>King and Flawn 1953</td>
<td>Gruner 1984</td>
</tr>
<tr>
<td>Pence 1955</td>
<td>Helricks and Jefferson 1938</td>
</tr>
<tr>
<td>United States:</td>
<td>Lamar 1946</td>
</tr>
<tr>
<td>Chidester, Engel, and Wright 1963</td>
<td>McConnell 1954</td>
</tr>
<tr>
<td>Chidester and Worthington 1962</td>
<td>Nagy 1953</td>
</tr>
<tr>
<td>Diller 1909, 1911a, b, 1912, 1913, 1914, 1916, 1917, 1919a, b, 1920a, b, 1921</td>
<td>Nagy and Bates 1952</td>
</tr>
<tr>
<td>Ladoo 1923</td>
<td>Pask and Warner 1954</td>
</tr>
<tr>
<td>Vermont:</td>
<td>Roy, D. M., and Roy, Rustum 1954a, b</td>
</tr>
<tr>
<td>Bain 1936, 1942</td>
<td>Searle and Grimshaw 1959</td>
</tr>
<tr>
<td>Billings and Chidester 1948a, b</td>
<td>Stemple and Brindley 1960</td>
</tr>
<tr>
<td>Cady, Albee, and Chidester 1963</td>
<td>Thurnauer and Rodriguez 1942</td>
</tr>
<tr>
<td>Chidester 1953, 1962</td>
<td>Vitaliano 1957</td>
</tr>
<tr>
<td>Chidester, Billings, and Cady 1951</td>
<td>Wilk 1953</td>
</tr>
<tr>
<td>Chidester, Stewart, and Morris 1952a</td>
<td>Wright, H. D. 1960</td>
</tr>
<tr>
<td>Chidester and Worthington 1962</td>
<td>Zussman and others 1957</td>
</tr>
<tr>
<td>Christman 1959</td>
<td></td>
</tr>
<tr>
<td>Gillson 1927</td>
<td></td>
</tr>
<tr>
<td>Hadley 1939</td>
<td></td>
</tr>
<tr>
<td>Hess 1933b</td>
<td></td>
</tr>
<tr>
<td>Hitchcock, Edward, and others 1961</td>
<td></td>
</tr>
<tr>
<td>Jacobs 1914, 1916, 1938, 1944</td>
<td></td>
</tr>
<tr>
<td>Ladoo 1919</td>
<td></td>
</tr>
<tr>
<td>Marsters 1904</td>
<td></td>
</tr>
<tr>
<td>Pearson and Calkins 1957a</td>
<td></td>
</tr>
<tr>
<td>Perry, E. L. 1929</td>
<td></td>
</tr>
<tr>
<td>Phillips and Hess 1936</td>
<td></td>
</tr>
<tr>
<td>Wigglesworth 1916</td>
<td></td>
</tr>
<tr>
<td>Zodiac 1940</td>
<td></td>
</tr>
<tr>
<td>Virginia:</td>
<td></td>
</tr>
<tr>
<td>Bevan 1942</td>
<td></td>
</tr>
<tr>
<td>Brown, W. R. 1954</td>
<td></td>
</tr>
<tr>
<td>Burfoot 1930, 1932</td>
<td></td>
</tr>
<tr>
<td>Furcron 1935</td>
<td></td>
</tr>
<tr>
<td>Hess 1933a</td>
<td></td>
</tr>
<tr>
<td>Hopkins, H. R. 1957</td>
<td></td>
</tr>
<tr>
<td>McGill 1936</td>
<td></td>
</tr>
<tr>
<td>Ryan 1929</td>
<td></td>
</tr>
<tr>
<td>Smith, J. W. 1961</td>
<td></td>
</tr>
<tr>
<td>Washington:</td>
<td></td>
</tr>
<tr>
<td>Merten 1936</td>
<td></td>
</tr>
<tr>
<td>Valentine 1949</td>
<td></td>
</tr>
<tr>
<td>Wilson and Pask 1936a, b</td>
<td></td>
</tr>
<tr>
<td>Western States: Roff 1948</td>
<td></td>
</tr>
<tr>
<td>Wyoming:</td>
<td></td>
</tr>
<tr>
<td>Albanese 1950</td>
<td></td>
</tr>
<tr>
<td>Beckwith 1957</td>
<td></td>
</tr>
<tr>
<td>Osterwald, F. W., and Osterwald, D. B. 1952</td>
<td></td>
</tr>
<tr>
<td>Osterwald, F. W., and others 1959</td>
<td></td>
</tr>
<tr>
<td>Mineralogy:</td>
<td></td>
</tr>
<tr>
<td>Bailey 1949</td>
<td></td>
</tr>
<tr>
<td>Bassett 1959</td>
<td></td>
</tr>
<tr>
<td>Bates and Mink 1950</td>
<td></td>
</tr>
<tr>
<td>Bennington 1956</td>
<td></td>
</tr>
<tr>
<td>Bowen and Tuttle 1948, 1949</td>
<td></td>
</tr>
<tr>
<td>Brindley and Zussman 1957</td>
<td></td>
</tr>
<tr>
<td>Efremov 1953</td>
<td></td>
</tr>
<tr>
<td>Faust and Murata 1953</td>
<td></td>
</tr>
<tr>
<td>Fisher and Potter 1956</td>
<td></td>
</tr>
<tr>
<td>Foshag and Wherry 1922</td>
<td></td>
</tr>
<tr>
<td>Gordon 1921</td>
<td></td>
</tr>
<tr>
<td>Montana:</td>
<td></td>
</tr>
<tr>
<td>James 1956</td>
<td></td>
</tr>
<tr>
<td>Heinrich 1947</td>
<td></td>
</tr>
<tr>
<td>Perry, E. S. 1948</td>
<td></td>
</tr>
<tr>
<td>Ross and others 1955</td>
<td></td>
</tr>
<tr>
<td>Swanson 1950</td>
<td></td>
</tr>
<tr>
<td>Nevada:</td>
<td></td>
</tr>
<tr>
<td>Page 1942</td>
<td></td>
</tr>
<tr>
<td>Vitaliano 1957</td>
<td></td>
</tr>
<tr>
<td>New Hampshire:</td>
<td></td>
</tr>
<tr>
<td>Billings 1935</td>
<td></td>
</tr>
<tr>
<td>Hitchcock, C. H. 1878</td>
<td></td>
</tr>
<tr>
<td>Myers and Stewart 1946</td>
<td></td>
</tr>
<tr>
<td>Pearson and Calkins 1957b</td>
<td></td>
</tr>
<tr>
<td>New Jersey:</td>
<td></td>
</tr>
<tr>
<td>Bayley 1941</td>
<td></td>
</tr>
<tr>
<td>Peck 1905</td>
<td></td>
</tr>
<tr>
<td>Zodiac 1946</td>
<td></td>
</tr>
<tr>
<td>New Mexico:</td>
<td></td>
</tr>
<tr>
<td>Bailey 1949</td>
<td></td>
</tr>
<tr>
<td>Jicha 1954</td>
<td></td>
</tr>
</tbody>
</table>
SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES C23

New York:
Areas:
Balmat-Edwards: Brown, J. S., and Engel 1956
Engel 1962
Gouverneur: Buddington 1926
Cushing and Newland 1925
Dake 1934
Engel 1947
Gilluly 1945
Norman and others 1939
General:
Engel 1949b
Ladoo 1920
Luedke and others 1959
Merrill 1901
Newland 1921
Dake 1934
Engel 1947
Gilluly 1945
Norman and others 1939

North Carolina:
Areas:
Murphy marble belt: Van Horn 1948
Spruce Pine: Olson 1944
Jackson County: Miller, Boswell, III 1953
General:
Bryson 1932, 1937, 1938
Greaves-Walker 1945
Greaves-Walker and Biggs 1937
Hart 1904
Hunter 1941
Keith, Arthur 1908
Moneymaker 1938
Murdock 1946
Pratt 1900
Stuckey 1937, 1942, 1949, 1958
Stuckey and others 1947
Stuckey and Steel 1953
Wake County:
Dillender and Gower 1953
Stuckey and George 1940
Western North Carolina:
Hunter and Glidersleeve 1946
Keith, Arthur 1904, 1905, 1906
King and others 1958
Pratt and Lewis 1905

Oklahoma: Midwest Research Institute 1946
Origin:
Bain 1934, 1942
Bates and Mink 1950
Benson 1918
Burfoot 1930, 1938
Chawner 1934
Childester 1933, 1934, 1935, 1936
Childester, Engel, and Wright 1933
Christman 1959
Dresser 1934
Du Rietz 1935

Origin—Continued
Engel 1949a, 1962
Engel and Wright, L. A. 1960
Furcron and Teague 1947
Gillson 1927
Hess 1932a, b, 1955
James 1946
Jicha 1954
Julien 1934
Montgomery 1955
Page 1951
Phillips and Hess 1936
Pratt and Lewis 1903
Read 1934
Skehan 1961
Smith 1895
Taber 1916
Van Horn 1948
Wilk 1953
Pennsylvania:
Bayley 1941
Miller, B. L., and others 1939
Montgomery 1955
Pearre and Heyl 1961
Peck 1905, 1911
Stose and Jonas 1939
Production:
Statistics:
Bryson 1937
Diller 1905, 1911a, b, 1912, 1913, 1914, 1916, 1917, 1919a, b, 1920a, b, 1921
Furcron and Teague 1947
Hopkins, O. B. 1914
Jacobs 1921
Ladoo 1923
Nevius 1899
Pearre and Heyl 1960
Teague 1950
U.S. Bureau of Mines 1932–62
Van Horn 1948
Properties:
Chemical:
Lemmon and Watts 1943
Lipinski 1941
General:
Pask and Warner 1954
Roy, D. M., and Roy, Rustum 1954a, b
Searle and Grimshaw 1950
Industrial:
Carl 1945
Ferguson 1926
Gleason 1946
King 1935
Klinefelter, O'Meara, Smith, and Tradell 1947
Kraemer and McDowell 1925
Lamar 1952
Lemmon 1955
Mamykin and Permyakov 1931
Murdock 1946
Pence 1955
CONTRIBUTIONS TO ECONOMIC GEOLOGY

Properties—Continued

Physical:
Bhushan and Roy, H. N. 1956
Carl 1945
Delaney 1940
Ewell and others 1935
Ferguson 1926
Fisher and Potter 1956
Grigorev 1937
Gruner 1934
Heinricks and Jefferson 1938
Lamar 1944
Moriyasu 1937
Selfridge 1936
Whittaker and Zussman 1956

Related or associated minerals:
Clay minerals:
Hauser and LeBeau 1946
Heinricks and Jefferson 1938
Miscellaneous:
Bassett 1959
Birch and Harvey 1935
Efremov 1953
Faust and Murata 1953
Gordon 1921
Hunter 1941
Miller, Roswell, III 1953
Pyrophyllite:
Gower and Bell 1956
Gruner 1934
Hendricks and Jefferson 1938
Irving 1956
Johnson 1939
Pratt 1900
Stuckey 1942, 1950, 1958
Trelschel 1957
U.S. Bureau of Mines 1932–60
Serpentine:
Bassett 1959
Bates and Mink 1950
Bowen and Tuttle 1948, 1949
Brindley 1954
Brindley and Zussman 1957
Childester 1962
Deer and others 1962
Faust and Fahey 1962
Hess 1933b, 1935
Julien 1914
Keith, S. B., and Bain 1932
Montgomery 1955
Nagy 1933
Nagy and Bates 1952
Selfridge 1936
Taber 1916
Whittaker and Zussman 1956
Zussman and others 1957

Resources and resources—Continued

Resources:
Eastern U.S.:
Bayley 1941
Bevan 1942
Brown, W. R. 1954
Bryson 1926
Childester 1953
Childester, Billings, and Cady 1951
Childester, Stewart, and Morris 1952a, b
Engel 1962
Furcron and Teague 1947
Hopkins, O. B. 1914
Hurley and Thompson 1950
McCallie 1910
McGill 1936
Newland 1921
Pearre and Heyl 1960
Reed 1950
Smith, J. W. 1961
Stose and Jonas 1939
Stuckey 1955
Stuckey and Steel 1953
Van Horn 1948
Western U.S.:
Barnes 1946, 1952
Barnes and Mathis 1942
Dietrich and Lonsdale 1958
Flawn 1958
Midwest Research Institute 1946
Page 1942, 1951
Perry, E. S. 1948
Tucker 1927
Tucker and Sampson 1945
Wright, L. A., Stewart, Gay, and Hazenbush 1953
United States:
Childester, Engel, and Wright 1963
Childester and Worthington 1962
Rhode Island:
Emerson 1917
Pearre 1956
Quinn 1959
Serpentinization:
Bain 1934, 1936
Benson 1918
Chawner 1934
Dresser 1934
Du Rietz 1935
Hess 1933b, 1935, 1955
Montgomery 1955
Phillips and Hess 1936
Thomas 1951
Soapstone:
Economics: Johnson 1939
General:
Barnes 1946
Engel 1949a
Hughes 1932
Irving 1956
Ladoo 1923
SELECTED BIBLIOGRAPHY OF TALC IN THE UNITED STATES C25

Soapstone—Continued

General—Continued

Mitchell 1944
Sampson 1922a, b, 1923
U.S. Bureau of Mines 1932-60
Wright, L. A. 1957

Location:

Miscellaneous States:
Barnes and Mathis 1942
Wilson and Pask 1930a, b

Southeastern U.S.:
Hopkins, H. R. 1957
Hopkins, O. B. 1914
Ryan 1929
Smith, J. W. 1961
Stuckey 1940, 1950
Stuckey and George 1940

Origin:
Hess 1933b, 1935
Wilk 1953

Properties: Delaney 1940

South Carolina: Sloane 1908

South Dakota: Dart 1959

Steatite:
California: Page 1951

Chemistry:
Chidester 1959
Lemmon and Watts 1943
Thurnauer and Rodriguez 1942

General:
Gunzenhauser 1941
Mitchell 1944

Properties:
Fisher and Potter 1956
Lamar 1944
White, J. S. 1944

Uses:
Gleason 1946
Hart 1954

Structure, talc deposits:
Bain 1942
Billings and Chidester 1948a
Brown, J. S., and Engel 1956
Brown, W. R. 1954
Clark 1899
Hall 1948
Stuckey 1942
White, W. S., and Jahns 1950

Tennessee:
Keith, Arthur 1904, 1905, 1907
King and others 1958

Texas:
Barnes 1940, 1946
Barnes and Mathis 1942
Barnes and others 1950
Darton and others 1937
Dietrich and Lonsdale 1958
Flawn 1958
Frommer and Fine 1956
King and Flawn 1953
Moore 1947
Pence 1955

United States:
Avery and others 1958
Chidester, Engel, and Wright 1963

United States—Continued

Chidester and Worthington 1962
Diller 1906, 1911a, b, 1912, 1913, 1914,
1916, 1917, 1919a, b, 1920a, b, 1921
Engel 1949a
Engel and Wright, L. A. 1960
Gillson 1937
Irving 1960
U.S. Bureau of Mines 1932-62

Uses:

Ceramic:
American Ceramic Society 1922-62
Bluhsan and Roy, H. N. 1956
Bryson 1938
Burchfield 1935, 1936
Engle 1947
Greaves-Walker and Riggs 1937
Gunzenhauser 1941
Industrial Publications 1923-62
King 1935
Klinefelter, O'Meara, Smith, and Truebuhl 1947
Kraner and McDowell 1925
Lipinski 1941
Pask and Warner 1954
Pence 1955
Searle and Grimshaw 1959
Thurnauer 1940
Trelischel 1957

General:
Barnes and others 1950
Engel 1949b
Gottlieb 1943
Lado 1923
Lamar 1944
Maynard and others 1923
Ralston 1944
Stuckey 1958
Stuckey and others 1947
Teague 1950
Wright, L. A., Chesterman, and Norman 1954

Insulation:

Gleason 1946
Klinefelter, Spell, and Gottlieb 1945
Thurnauer 1950

Miscellaneous:
Betz 1933
Comefero and others 1954
Diller and others 1920
Hudspeth and others 1952
Jones 1939
King and Evans 1933
Lemmon 1955
Murdock 1946

Paint: Lamar 1952

Refractories:

Birch and Harvey 1935
Ferguson 1926
Goner and Bell 1956
Mamykin and Permyakov 1931

Steatite bodies:

Hart 1954
Lemmon and Watts 1943
Vermont:

Areas, quadrangle or larger:
Albee 1957
Cady 1956
Cady, Albee, and Chidester 1963
Cady, Albee, and Murphy 1963

Christman 1969
Jacobs 1938
Marsters 1904
Osberg 1952
Skehan 1961
White, W. S., and Jahns 1950

General:
Bain 1942
Chidester, Billings, and Cady 1951
Doll and others 1961
Gillson 1927
Hitchcock, Edward, and others 1861
Jacobs 1914, 1916, 1944
Ladoo 1919
Pearre and Calkins 1957a
Wigglesworth 1916

Mines or prospects:
Billings and Chidester 1948a, b
Chidester 1933, 1959, 1962
Chidester, Stewart, and Morris 1952a, b
Zodiac 1940

Virginia:
Areas:
Bloomer and Werner 1955
Brown, W. R. 1954
Furcron 1935
Hess 1933a
Hopkins, H. R. 1957
Virginia Geol. Survey 1928

General:
Bevan 1942
Burfoot 1930, 1932, 1938
McGill 1936
Ryan 1929
Smith, J. W. 1961

Washington:
Merten 1936
Valentine 1949
Wilson and Pask 1936a, b

Wyoming:
Albanese 1950
Beckwith 1939
Osterwald, F. W., and Osterwald, D. B. 1952
Osterwald, F. W., and others 1959